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ABSTRACT

STOCHASTIC MODELING OF ROUTING PROTOCOLS FOR COGNITIVE RAD IO
NETWORKS

By

Soroor Soltani

Cognitive radios are expected to revolutionize wireless networking because of their ability to

sense, manage and share the mobile available spectrum. Efficient utilization of the available spec-

trum could be significantly improved by incorporating different cognitive radio based networks.

Challenges are involved in utilizing the cognitive radios in a network, most of which rise from the

dynamic nature of available spectrum that is not present in traditional wireless networks. The set of

available spectrum blocks (channels) changes randomly with the arrival and departure of the users

licensed to a specific spectrum band. These users are known asprimary users. If a band is used

by a primary user, the cognitive radio alters its transmission power level or modulation scheme to

change its transmission range and switches to another channel. In traditional wireless networks,

a link is stable if it is less prone to interference. In cognitive radio networks, however, a link that

is interference free might break due to the arrival of its primary user. Therefore, links’ stability

forms a stochastic process with OFF and ON states; ON, if the primary user is absent. Evidently,

traditional network protocols fail in this environment. New sets of protocols are needed in each

layer to cope with the stochastic dynamics of cognitive radio networks.

In this dissertation we present a comprehensive stochasticframework and a decision theory

based model for the problem of routing packets from a source to a destination in a cognitive radio

network. We begin by introducing two probability distributions called ArgMax and ArgMin for

probabilistic channel selection mechanisms, routing, andMAC protocols. The ArgMax probability

distribution locates the most stable link from a set of available links. Conversely, ArgMin identifies



the least stable link. ArgMax and ArgMin together provide valuable information on the diversity

of the stability of available links in a spectrum band. Next,considering the stochastic arrival of

primary users, we model the transition of packets from one hop to the other by a Semi-Markov

process and develop a Primary Spread Aware Routing Protocol(PSARP) that learns the dynamics

of the environment and adapts its routing decision accordingly.

Further, we use a decision theory framework. A utility function is designed to capture the

effect of spectrum measurement, fluctuation of bandwidth availability and path quality. A node

cognitively decides its best candidate among its neighborsby utilizing a decision tree. Each branch

of the tree is quantified by the utility function and a posterior probability distribution, constructed

using ArgMax probability distribution, which predicts thesuitability of available neighbors. In

DTCR (Decision Tree Cognitive Routing), nodes learn their operational environment and adapt

their decision making accordingly. We extend the Decision tree modeling to translate video routing

in a dynamic cognitive radio network into a decision theory problem. Then terminal analysis

backward induction is used to produce our routing scheme that improves the peak signal-to-noise

ratio of the received video.

We show through this dissertation that by acknowledging thestochastic property of the cogni-

tive radio networks’ environment and constructing strategies using the statistical and mathematical

tools that deal with such uncertainties, the utilization ofthese networks will greatly improve.
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Chapter 1

Introduction

Advances in technology and development of new wireless devices increase the need for better

utilization of spectrum bands. The number of unlicensed spectrum bands are limited and according

to FCC, up to 85% of licensed spectrum bands is wasted when thelicensed users are not using

their dedicated spectrum band. Cognitive radio networks (CRN) are developed to solve the under-

utilization problem of licensed spectrum bands.

Cognitive radios make use of not only their own available band, but also the vacancies of other

user’s bands. The cognitive radio interrupts its transmission upon the arrival of the other users.

Since the transmission is subjected to licensed (primary) user’s random interruptions, the com-

munication environment is stochastic. Protocols should bedesigned to cope with the stochastic

behavior of primary users and include the uncertainty in theavailability of spectrum in their im-

plementation. In traditional wireless networks, a link is stable if it is less prone to interference. In

cognitive radio networks, however, a link that is interference free might break due to the arrival

of its primary user. Therefore, links’ stability forms a stochastic process with OFF and ON states;

ON, if the primary user is absent. Evidently, traditional network protocols fail in this environment.

New sets of protocols are needed in each layer to cope with thestochastic dynamics of cognitive

radio networks. The new MAC and routing layer protocols should consider the stability of a link

because each time the communication fails, packets are lost. In addition, radios restart the hand-

shaking process, which increases communication overhead and severely damages the performance
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in terms of throughput and delay. By using a routing protocolthat guides the packets through the

paths with higher probability of stability than others, CRNs throughput and delay will substantially

improve. With acknowledging CRNs’true nature and using probability and stochastic theory tools,

we can develop protocols that nicely adapt to any uncertainty in the communication environment.

In order to identify a channel that has the highest probability of stability, we need to use the

statistical observations of channels availabilities and develop a probability distribution describing

the channels stabilities. Therefore, we introduce two probability distributions called ArgMax and

ArgMin, that are able to identify the most and the least stable channels. These probability dis-

tributions have broad applications in cognitive channel selection mechanisms, routing and MAC

protocols. The ArgMax probability distribution locates the maximum random variable among a set

of random variables, while the ArgMin locates the minimum random variable. The ArgMin proba-

bility distribution has a variety of applications and is shown to be useful in achieving a lower bound

on the network’s minimum spectral capacity. To show an application of the proposed probability

distributions, a Probabilistic Selection Routing Procedure (PSRP) is designed to guide packets in

a mesh CRN operating in a densely populated urban area. In PSRP the path is constructed step by

step based on the localized random decision of each node. Selection probabilities are assigned to

each neighbor node and evaluated periodically using the ArgMax probability distribution accord-

ing to the available usage time of a channel.

Next, we extend PSRP into a Primary Spread Aware Routing Protocol (PSARP). The proposed

Primary Spread Aware Routing Protocol(PSARP) is based on nonhomogeneous Markovian tran-

sitions that give priority to the paths with the minimum expected frequency presence of primary

users. The PSARP selects the next hop probabilistically. The probability of selection depends on

both the next hop’s ability to transfer a packet to a particular destination and also the stability of

the links connecting it to the sender node. A Primary Weight Measure (PWM) is used in assessing

2



the next hop ability to transfer packets to its own intermediate neighbor. PWM is constructed using

both ArgMax and ArgMin distribution and identifies the diversity of spread of channels around a

particular node, the sender node is able to estimate the stability in the network environment beyond

its next hop neighbor. Therefore, nodes are able to divert their traffic through the paths that are

less frequently affected by primary users. The PSARP is designed as an adaptive per-hop routing

scheme to quickly adapt to changes in the dynamic CRN environment and is successful to do so

based on our simulation results.

Finally, considering the basic definition of routing that decides among possible routes, and the

intrinsic property of cognitive radio networks that is the uncertainty of available resources, we

use decision theory to construct a more advance routing mechanism. In decision theory a player

plays against nature, meaning the player opponent does not try to increase its fortune, but exhibits

stochastic performance that is explained by probability laws. Decision theory address decision

making problems in an environment where uncertainty existsand the true state cannot be fully

predicted. This is exactly the situation of a cognitive radio sender. First, the variety of spectrums

and their corresponding channels provide multiple routes from the server to the client. Hence, the

server has multiple options with different routing consequences. Second, the chosen route might

not stay stable during the transmission period. Therefore,the sender node is uncertain about the

consequences of its decision. In other words, the circumstances governing a node’s decision might

change. The Decision Tree Cognitive Routing (DTCR) scheme is able to predict the dynamic

of the network environment and routes the client packets to aserver that operates in a heavily

populated urban area. To accommodate the needs of video applications, the DTCR is extended

into a Video Cognitive Routing (VCR) scheme that finds the best downlink route when video

packets are traversing from a server to a client.

In summary, this dissertation investigates the problem of routing in dynamic cognitive radio
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networks. Specifically, by considering the CRNs’ uncertainties, we introduce two frameworks, a

stochastic framework and a Decision theory based framework, to study the dynamics of CRN. Our

objective is to (1) provide a more accurate decision making tool to capture the stochastic behavior

of primary users in CRNs, and (2) maximize throughput and consequently packet loss by proposing

routing procedures that captures the uncertainties and adapts to variations accordingly.

1.1 Overview of Contributions

We summarize the contribution of this dissertation as follows:

• Identification of the most stable channel is crucial in decision making of MAC and routing

protocols in CRN. Therefore, we introduce the ArgMax and ArgMin probability distributions

and show their application in probabilistic channel selection mechanisms, routing, and MAC

protocols. In almost all of the probabilistic approaches designed for multi-channel-multi-

hop networks such as the work of Song et al [2] and Cui [3], the well-known probability

distribution Odds-On-Mean (OOM) is used to evaluate the selection probabilities. In OOM

probability distribution the probabilities are proportional to the population mean. However,

the ArgMax distribution locates the largest variable (in terms of magnitude) in a set of ran-

dom variables. Therefore, the ArgMax probability distribution is more suitable in modeling

probabilistic behavior than OOM in network systems. Replacing the OOM probability dis-

tribution by the ArgMax probability distribution in many probabilistic selection mechanisms

improves their performance significantly. The main functionality of the ArgMin probability

distribution is to locate the random variable that at an instant is the minimum of a set of

random variables. Therefore, ArgMin probability distribution has variety of applications in

networks. For instance, the minimal spectral capacity can be identified using the ArgMin

4



probability ditribution. Using the ArgMax and ArgMin probability distributions, we intro-

duce an interesting measure calledprimary weight measure, that indicates the frequency and

the nature of the distribution of primary users around a particular node. A low value of the

primary weight measure metric indicates uniform and frequent primary users interruptions

on the channels surrounding a node. With this information MAC and routing decisions are

taken more efficiently.

• By acknowledging the stochastic behavior of CRNs, we develop a stochastic model of a

mesh CRN in a densely populated urban area. In our model, the number of available nodes,

channels and the available usage time are random. Through this analysis, we formulate the

available usage time of each channel in a spectrum with a truncated distribution. Next, a

Probabilistic Selection Routing Procedure (PSRP) is proposed to guide packets in the CRN.

The superiority of ArgMax is shown by evaluating the performance of the PSRP adopting

ArgMax and OOM as its selection probabilities. We further, extend the PSRP and develop a

Primary Spread Aware Routing protocol (PSARP). PSARP is able to adapt to the uncertain-

ties of spectrum availability in cognitive radio networks.PSARP is based on the Markovian

property of a particular flow from a source to a destination and uses PWM as one of its rout-

ing metrics. We demonstrated through simulation that PSARPis robust to the variation of

the primary users’ activity. Our results confirm that using astochastic protocol for a stochas-

tic environment is indeed more suitable than using deterministic protocols. We believe this

research is the beginning of a new line of work on the development of stochastic routing

protocols.

• We proceed to adopt the techniques in statistics that address decision making problems in

an environment where uncertainty exists and the true state cannot be fully predicted. Hence,
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we construct the Decision Tree Cognitive Routing (DTCR) scheme. By adopting the de-

cision problem components, we construct appropriate sample and posterior distributions to

explain the status of channels and nodes in supporting packet delivery. We also introduce a

utility function that captures the effects of spectrum availability, bandwidth fluctuations and

path quality. This utility function is expandable to include other important decision making

factors. Our results show that DTCR is successful in maintaining the network throughput

near the optimal value and works significantly better than the AODV-based routing schemes

designed for dynamic cognitive radio networks.

• Transferring video applications over dynamic cognitive radio networks is challenging due

to the variation in bandwidth availability and the stability of the available bands. Therefore,

we use the decision theory components and expand on DTCR to develop a Video aware

Cognitive Routing scheme (VCR). We model and analyze the problem of downlink routing

of video packets in a dynamic CRN. The previous sample and posterior distributions are now

modified to explain the status of channels and nodes in supporting video frames quality of

service. The performance of DTCR and VCR is compared with themost acceptable class

of the previous dynamic routing strategies for CRNs with implementing the protocols on the

real time network simulator.

1.2 Organization of The Dissertation

The rest of this dissertation is organized as follows. Chapter provides the background on the

cognitive radios and cognitive radio networks as well as an overview of the related work that has

been done on the design and implementation of routing protocols. In Chapter , the definition

of the ArgMax and the ArgMin probability distributions is presented. In addition, we introduce
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the PWM routing metric that is made by combining these two probability measures. In Chapter

the stochastic modeling of a cognitive radio mesh network that leads to development of PSRP is

introduced. We show the usage of the ArgMax and the ArgMin probability distribution in PSRP

through simulation. In Chapter , the stochastic routing protocol PSARP is presented that routes

the packets in a CRN operating in a highly dynamic environment. The concept of decision theory

and DTCR is presented in Chapter . We show that by using the decision theory components, one

could utilize the cognitive abilities of CR nodes to design routing strategies adaptive to the dynamic

nature of cognitive radio networks. Chapter demonstrates how VCR is developed from the basis

of DTCR. At the end of each chapter a summary of the comparisonresults is presented. Finally

we highlight the possible future directions of this dissertation in Chapter .
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Chapter 2

Background

This chapter presents the background on the development of cognitive radios and cognitive radio

networks. The dynamics of cognitive radio networks are discussed, which led the development of

new sets of protocols at different network layers. Related work on routing protocols in network

layer of cognitive radio networks is also presented in this chapter.

2.1 Development of Cognitive Radios

The idea of cognitive radio was first introduced by Joe Mitolain 1991, “a radio that is aware of its

spectral environment as well as its user and network environment”. Traditional radios were built

on a fixed platform. Gradually, advances in digital communication transformed the analog design

to a programmable digital radio. Radio use could be flexible by modifying the software with no

hardware development.

Figure 2.1 shows a continuum of the software defined radio technology. The very first genera-

tion of these radios are software capable radios. These radios have fixed modulation capabilities,

relatively small number of frequencies, limited data and data rate capabilities, and the ability to

handle data under software control. They emerged into software programable radios, new func-

tionalities could be added through software changes and their advance network capabilities. The

next generation of these radios are software defined radios (SDR). By FCC definition a SDR is
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a communications device whose attributes and capabilitiesare developed and/or implemented in

software [4]. In SDR systems, there is complete adjustability through software of all radio operat-

ing parameters. To reach the vision of Mitola, sensors are added to SDRs that collect information,

such as chemical surroundings, geolocation, time of day, biometric data, or even network quality-

of-service (QoS) measures. These type of radios are aware radios. The aware radios do not use the

collected information and are simply aware of the changes. In the adaptive radios, frequency, in-

stantaneous bandwidth, modulation scheme, error-correction coding, channel mitigation strategies

(e.g., equalizers or RAKE filters), system timing (e.g., a TDMA structure), data rate (baud timing),

transmit power, and even filtering characteristics and operating parameters are adapted based on

the sensory measurement. Finally cognitive radios (CR) were developed. In this class of radios,

sensors create awareness of the environment and actuators interact with the environment. The CR

has the ability to create a model of the environment that includes state or memory of the observed

events. The CR has a learning capability that helps to selectspecific actions or adaptations to reach

a performance goal.

Figure 2.1 Software-Defined Radio Technology Continuum. [1].
For interpretation of the references to color in this and allother figures, the reader is referred to

the electronic version of this thesis dissertation.

The very first CRs were modeled in the Defense Advanced Research Projects Agency (DARPA)

NeXt Generation (XG) radio development program. The spectrum environment is sensed, the

unoccupied portion is identified. These radios rendezvous in the unoccupied band, communicate
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in that band, and vacate the band if a legacy signal reenters that band. [1].

2.2 Cognitive Radio Architecture

The cognitive radios are built on top of SDR platforms. The cognitive radio platform is shown in

Figure 2.2. The cognition engine sits on top of the software unit that controls the tunable parame-

ters in the hardware unit. The hardware is similar to other next generation radios (SDR, adaptive

radios). The main difference is in the processor that contains the cognition engine and a set of

computational modules. The modules have Radio Knowledge Representation Language (RXML)

frames. RXML provides a standard language within which unanticipated data exchanges can be

defined dynamically. The radio itself, including the equalizer, in the context of a comprehensive

ontology, is written in RXML.

Figure 2.2 CR platform; computational intelligence and learning capabilities are added to SDR
platform [1].

Each of the following functional components should be in place in order to have a complete
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cognitive radio. Some are developed and some are still underdevelopment. A minimal cognitive

radio architecture should have the following functional components:

• User interface, which includes haptic, acoustic, and videosensing and perception functions.

• Environmental sensor functions that sense environmental characteristics such as tempera-

ture, location, etc.

• SDR functions, which includes radio frequency sensing and software defined radio applica-

tions.

• Cognition functions; system control, planning and learning.

• Local effector functions; text, graphics and multimedia displays.

A CR node follows through the following cycle to command its effector unit for appropriate action.

It first observes the environment and gathers the sensory measurement. After this stage, the Orient

phase starts, which determines how significant is an observation. In this phase the CR creates a

short term memory of its observed data and after analyzing its short term memory, it saves the

important reading in its long term memory. Information manipulation is still an important topic in

the CR research. A CR then follows a plan to decide about its reaction to a certain stimuli. Finally

using effector modules, it initiates a selected process according to its plan.

Nokia Research Center, Qualcome and the XG technology INC, are the leading research and

development companies in cognitive radio technology. XG technology developed a new line of

products called Xmax systems, which includes “line of high-performance access points, fixed and

mobile personal WiFi hotspots, mobile switching centers (MSC’s) as well as network management

and deployment tools. XG’s unique and patented protocol outperforms WiFi, WiMax and tradi-

tional cellular technologies like LTE in shared and interference prone radio bands”. [5]. Currently
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different SDRs are commercially available that can be used in experimental test beds such as SDR

MK1.5 ’Andrus’ [6], USRP1 and USRP2 [7].

2.3 Cognitive Radio Networks

Cognitive radio networks are built with networking the CR nodes together. Researchers have

two categories for such networks: Network of Cognitive Radios (NCR) and Cognitive Networks

(CN). In the first category each node focuses on its own requirements and changes its parameters

according to its individual needs. In such networks, the end-to-end goal of the network might be

achieved as it is investigated by Neel, et al. [8] through game theory. However, these networks are

not actively perusing the end to end goals of the network. CNson the other hand are the networks

that cognitively adapt their parameters to reach a set of predefined goals. The common feature

between these two categories is that the CR nodes functionalities should be extended to encompass

the entire network stack. The architecture of a cognitive radio node is shown in Figure 2.3. The

communication system includes the network layer stack. Theend to end goals are defined by the

user domain. They could be end-to-end network requirementssuch as the quality of service or

delay. The cognitive engine is the core of the device. It performs the modeling, learning, and

optimization processes necessary to reconfigure the communication system in order to achieve the

goals. Information such as radio frequency (RF) and environmental data that could affect system

performance are gathered by the radio domain. The policy engine checks and controls the solutions

to follow the regulations set by the network administratorsand federal communication policies.

A cognitive radio follows a loop of self-explanatory components: Observe, Orient, Decide and

Act, to reach the requirements of wireless communication from its own perspective and network

perspective. Here, we elaborate on observable parameters (Meters) at each networking layer and
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Figure 2.3 CR architecture with a cognitive engine connected to the network protocol stack and a
policy engine that checks the support ability of the hardware in response to the commands of the

cognitive engine [1].

the corresponding control mechanisms (Knobs) that can improve the communication process. We

also present the cognition cycle that takes place by observing different parameters at each layer.

2.3.1 Knobs and Meters

The CR senses its environment and needs to be aware of the major factors that affect its communi-

cation. The environmental and communication factors couldbe directly observed by CR’s sensors

or conceived from previous measurement. The observable parameters at the different layers of

the network are called meters. By observing and comparing the meters with their desired value,

control parameters (knobs) are adjusted by the embedded protocols. Table 2.1 summarizes meters

and knobs at each network layer.

The cognitive engine requires four levels of awareness to make its decision: (1) recognizing

the needs of the user, (2) understanding the limitations imposed on the radio operation by the
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Table 2.1 Knobs and Meters by layer [1]

Layer Meters(Observable parameters) Knobs(Writable parameters)

NETWORK Packet delay Packet size
Packet jitter Packet rate

MAC Cyclic redundancy check (CRC) Source coding
Automatic repeat request (ARQ) Channel coding rate and type
Frame error rate Frame size and type
Data rate Interleaving details

Channel/slot/code allocation
Duplexing
Multiple access
Encryption

PHY Bit error rate (BER) Transmitter power
Signal-to-noise ratio (SNR) Spreading type
Signal-to-interference and noise ratio (SINR)Spreading code
Received signal strength indicator (RSSI) Modulation type
Pathloss Modulation index
Fading statistics Bandwidth
Doppler spread Pulse shaping
Delay spread Symbol rate
Multipath profile Carrier frequency
Angle of arrival (AOA) Dynamic range
Noise power Equalization
Interference power Antenna beam shape
Peak-to-average power ratio
Error vector magnitude
Spectral efficiency

channel and external environment, (3) realizing its own limitations in flexibility and power, and (4)

conforming to local regulations and policy. This is achieved by observing multiple meters related

to each category of awareness.

Advances in technology are bringing the vision of mixing intelligence with communication into

reality. This vision was first pictured by Claude Shannon. The CRs are the intelligent radios that

require a new set of protocols to communicate with each other. Protocols that have the ability to
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change different knobs in relation to the variations observed from multiple meters at the same time.

Traditional network protocols do not make use of the intelligence of CRs and therefore downgrade

them to an ordinarily wireless transmitter and receiver. For CRs to work to their full capacities,

network protocols should be fully adaptive to the changes made by cognitive engine.

Besides handling the unexpected changes due to the intelligent decision making of the device,

the operational environment of CRNs are very different fromtraditional wireless networks. In

such networks once a channel is available for a network node,it could use that channel without

interruption as long as it continues to transmit. In CRNs, radios are intelligent enough to make use

of not only their own available bandwidth but other’s available bands. Vacancies of other user’s

bands are exploited and a CR interrupts its transmission upon the arrival of the users. A stochastic

communication environment is created when the transmission is interrupted by the random arrivals

of other users. Protocols should be designed to cope with stochastic behavior of users and include

the uncertainties involved in their design. The MAC and routing layer protocols should consider the

stability of a band, since failing to make the right decisionwould severely damage the performance

of such networks. In the next section we introduce how CRs rendezvous to different bands and

elaborate more on the stochastic nature of CRNs and possiblesolutions in protocol design.

2.4 Spectrum Sharing

Cognitive radios have the ability to sense the available spectrum and identify whether it is being

used by other users. Their cognition engine can decide whether a sensed idle portion of a spectrum

in terms of frequency, time and space could be used. Two CRs could rendezvous at an unoccupied

channel and communicate. Traditional wireless networks use a dedicated spectrum band (channel)

for their communication. When the network users are inactive, a large portion of spectrum is
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wasted. The advance sensing ability of CRs opens a possibility to have a network consists of

CR nodes that only use the white space of spectrum to communicate. This will substantially

improve the existing spectrum utilization. The CRs that only use the white space spectrum are

called Secondary Users (SU). These users should interrupt their transmission on a specific band if a

licensed user of that band comes back. The licensed user is also referred to as Primary User (PU). A

CR should be able to observe the presence of primary and secondary users. Moreover, for reliable

communication, the received signal and interference to noise ratio (SINR), current connectivity,

packet delays and the state of other nodes’ parameter choices (power, channel selection, location)

also need to be observed and communicated with other nodes.

For a successful rendezvous in a CRN, multiple SUs must dynamically sense large number of

channels to identify vacancies. In addition, for two radiosto establish a link, control messages

need to be exchanged among the users. The problem of rendezvous is obviously not trivial. Ap-

proaches for rendezvous could be classified into two main categories: aided and unaided. The aided

rendezvous is infrastructure-based, meaning the information regarding the channel availability are

periodically broadcasted by a server. The server may also bea clearinghouse for link establishment

and the scheduling of transmissions. As it can be perceived from its name, in unaided rendezvous

each CR finds another node in the network by its own. In this type of rendezvous, a dedicated

control channel may or may not exist. Using a single control channel might result in a single point

of failure in large networks. Therefore a distributed solution in which different cluster of nodes

use different control channels, can be adopted. Another approach allows the control messages to

use data channels. As a result, all channels could be used as control channels. The process of

establishing a link without a control channel is called blind rendezvous. In an infrastructure-based

network, a control channel is used to identify spectrum availability. In the architecture proposed by

Buddhikot, et al. [9], some frequencies are selected for useas spectrum information channels. A
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wireless interface is dedicated by clients to scan these channels to broadcast information regarding

spectrum availability from the base-stations. Control channels are also used by clients to send the

beacon messages requesting the use of an available channel.Clearly, the use of a common control

channel simplifies the process of rendezvous. However, if multiple base-stations and associated

radios are in close vicinity of one another, they all competeto use the control channel. As the

users are quite diverse, possibly covering all wireless users, some regulators worry about how to

resolve the potential contention. The policy engine of CR nodes needs to be equipped with appro-

priate rules, preventing unfair allocation of the control channel, giving priority based on service

providers’ advantages in order to encourage them to invest in CR technology.

In most of the work on multi channel medium access control in decentralized networks, the con-

trol packet information is also sent on a dedicated control channel. They assume nodes equipped

with two radios [10]. One radio constantly monitors a dedicated control channel and by sending

request-to-send (RTS) and clear-to-send (CTS) frames usesthat channel to reserve transmission

on one of the potential data channels. The second radio tunesto the reserved data channel for

the exchange of data frames. This approach simplifies the rendezvous problem but as the network

size increases, the control channel acts as a bottleneck. Ifthe control channel is congested, the

operation of the entire network fails. A possible solution is to have multiple control channels.

The disadvantage is that the presence of PUs may not be sensedcorrectly that raises the issue of

fairness.

When there is no dedicated control channel (blind rendezvous), all channels are potentially

available for the exchange of control and data. The set of channels must be sensed in random

on pre established order for possible availability. The radios then need to send beacons and wait

for responses to make a connection with other users. A possible solution for blind rendezvous is

described in Horine and Turgut [11]. Radios take turns and access the channel in time slots. If
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the radio does not sense other users (PU or SU) in its vicinity, it sends a beacon message followed

by a period of silence to receive a response from a potential receiver. Two existing methods by

which the radios can eventually meet in the same channel are random rendezvous and sequence

based rendezvous. In random rendezvous, a radio wishing to join a network visits the potential

communications channels in random order. Sequence-based rendezvous was proposed by DaSilva

and Guerreiro [12] in which predefined sequences used by eachradio arranges the potential chan-

nels in their visiting order. The idea is that both transceivers follow the same sequence, although

arbitrarily delayed with respect to each other.

For a successful and efficient transmission between two SUs,not only the rendezvous solutions

should be robust to the dynamic spectrum occupation but alsotake into consideration the stability

of an available channel. If two CRs establish a connection following one of the rendezvous solu-

tions, and shortly after they start sending the data frames,the connection is torn down due to return

of a primary user, a substantial amount of network resourceswill be wasted. Large delay caused

by reestablishing a link will make the network useless for a wide range of applications. Since

CRs have the memory and the intelligence, the probabilisticapproach is the promising solutions to

overcome this problem.

Undeniably, CRNs structure falls under the framework of stochastic systems. With acknowl-

edging their true nature and using the probability and stochastic theory tools we can develop pro-

tocols that nicely adapt to any uncertainly and randomness exits in the communication environ-

ment. For instance, observing the history of the meters variations and using statistical methods

to assign selection probabilities to potential channels would substantially reduce the possibility of

connection interruption. Recently probabilistic approach is being used in MAC physical layer but

simplistic probability models are being adopted. In this dissertation we introduce a probability

model that points to most stable channel with higher accuracy than the commonly used probability
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model.

The medium access strategies are extensively under investigation. However, less attention

is made to the design of routing protocols for CRNs. In this dissertation, after introducing a

new probability distribution to find the most stable path, design of routing protocols in stochastic

environment is discussed. The routing protocols proposed in this dissertation use the learning

capabilities of CR to select the appropriate route.

2.5 Use of Decision Theory and Game Theory in CRN

In cognitive radio networks, secondary users are intelligent and act to optimize their performance.

They aim at maximizing their own benefits. Therefore, Game theoretic models are preferred.

game theory analyzes the strategies that decision makers can take in interacting with one another

in order to optimize their gain. As the definition suggests, by adopting game theory tools one

is able to obtain useful strategies in spectrum sharing and routing. The components of spectrum

sharing games in cognitive radio networks are described as follows: Players are the secondary

users that compete for the unlicensed spectrum band. Actions are the transmission parameters,

such as transmission power level, access rate, etc. Payoff (Utility) is a non-decreasing function of

the QoS by utilizing the spectrum. The games are divided intothe following main categories:

• Non-cooperative games and Nash equilibria

• Economic games, auction games and mechanisms design

• Cooperative games

• Stochastic games
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Efficient distributed approaches for dynamic spectrum sensing is derived by adopting non-cooperative

game theory. Neel et.al [13] and Giupponi et.al [13], present useful applications of this adaptation

in CRN. Economic games and cooperative games are also adopted in CRN as explained in [14].

However, one important aspect of CRN is overlooked in these schemes. The spectrum opportu-

nities and the surrounding radio environment keep changingovertime. Therefore, for a dynamic

environment, we cannot assume that the stage of the game is constant. However, this is the major

assumption in the first three game categories mentioned above. A stochastic game that is an exten-

sion of Markov Decision Process [15] is a better fit for designing MAC and routing strategies in

dynamic CRNs. In a stochastic game, after the players selectand execute their actions, the game

moves to a new random state with transition probability determined by the current state and one

action from each player. Meanwhile, at each stage each player attempts to maximize an objective

function. The objective function is the expected sum of the payoffs over an infinite horizon. The

solution is called policy and is a probability distributionover action set at any state. Stochastic

game is used in transmission control, anti-jamming defenseand spectrum auction. However using

stochastic game for routing is a challenge because the players should have complete knowledge

about the game being played. Meaning secondary users in a dynamic CRN should have a complete

knowledge of the available routes and the other secondary and primary users. The game should be

divided into stages so that the secondary users obtain some information about the others actions

and payoffs.

An alternative to game theory is statistical decision theory. Pratt, Raiffa and Schlaifer in [16]

explain that a problem of decision making under uncertaintycan be addressed by using statistical

decision theory. The problem should have the following characteristics:

1. A choice, or in some cases, the sequence of choices must be made among various course of

actions.
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2. The choice or sequence of choices will ultimately lead to some consequence, but the decision

maker cannot be sure in advance what this sequence will be because it depends not only on

his choice or choices but on an unpredictable event or sequence of events.

It is clear from the above characteristics that this associates well with situation of secondary users

when deciding their route in a dynamic CRN. First, a secondary user has multiple choices (differ-

ent links and routes) for routing. Second, the secondary user cannot be sure whether the chosen

route will stay stable to transfer its packets to the ultimate destination. The advantage of using

decision theory is that we assume that the player is playing against nature meaning the player op-

ponent does not try to increase its fortune, but exhibits stochastic performance that is explained

by probability laws. In decision theory the current state ofthe game is taken to be uncertain and

the decisions are made considering such uncertainties. In ahighly dynamic environment, deci-

sion theory leads to less computational complexity than game theory since many types of games

have multiple equilibria under such variations. Using the learning capability of cognitive radios

we modeled the problem of routing in CRN into a decision problem and obtained satisfactory im-

provement in the performance of the network. To the best of our knowledge, this is the first time

that statistical decision theory is adopted to model the problem of routing in dynamic CRN.

The problem of routing in CRN falls under a class of decision problem that is concerned with

the logical analysis of choices among various course of actions. For this class of problem, (a) the

consequence of any course of action depends on the state of the world s, (b) the true state (the

correct route) is as yet unknown, (c) it is possible to obtainsome information about the true state

by conducting an experimente at a cost, and observing the outcomez of the experiment. The

basic assumption is that the preference of the decision maker does not change. This means his

judgment about the outcomez of each potential experiment is consistent with his preference of the

consequence of his choice. His preference is presented by a utility function u and his judgment is
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sealed in terms of a probability measureP .

Here we introduce some definitions and notations that are used in these class of problems in

decision theory.

State spaceS = {s1, s2, ..., }: Set of possible states (choices) available to the decisionmaker.

Action spaceA = {a1, a2, ..., }: Variableai is the act of choosing statesj to visit.

Set of experimentsE = {e0, e1}: When the decision maker performs a test to get some information

in support of an act. Experiments are classified bye0 ande1, wheree0 stands for no experiment

ande1 is to perform an experiment or test to support a right act. Theexperimente1 gives rise to

possible samplesZ = {z1, z2, ...}, zi is a sample observation that is in favor of a statesi.

Sample distributionP (z|s): In statistics samples and measurements are subject to false readings,

therefore although samples are informative, but are not 100% reliable. Sample distributionP (z|s)

governs this probabilistic situation: it gives the probability of observing samplez whenevers is the

true state. Fors to be a true state means that it is the right and the most appropriate state. Sample

distribution is used in quantifying our observation in indeterministic environment.

Prior distributionP (s) is assigned to the state spaceS. An appropriate prior distribution is based

on the history of availability of a state and usually does notreflect current status of states. Posterior

distributionP (s|z): The probability of observing the states when the sample observation isz. This

measure indicates the possibility of choosing a true states by observing a sample observationz.

This probability is found using the conditional probability formula

P (s|z) = P (z|s)P (s)
∑

s P (z|s)P (s)
. (2.1)

Note that the denominator in the above equation is the marginal distribution of sample observation.
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In analyzing a decision problem a diagram known as decision tree is used. The tree demon-

strates different paths of reaching a state by performing ornot performing an experiment and

following different acts as shown in Figure 2.4. In any decision problem there is a loss/gain as-

sociated with a decision. When the decision maker makes a decision to perform an experimente

(relies on the sampling probabilitiesP (z|s)), it pays a cost and in return gains extra knowledge on

the possible consequence of his decision. Therefore, the utility function U(e, z, a, s) is assigned to

the decision data(e, z, a, s).

Figure 2.4 Decision tree with states{s1, s2, ..., }, actions{a1, a2, ..., }, and posterior
distributionsP (s|z).
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The utility functionu indicates the decision maker gains or losses. Decision datais usually

denoted by(e, z, a, s). The decision maker runs experimente, observes samplez, takes acta when

the true state is indeeds. An optimal act minimizes the expected loss or maximizes theexpected

gain; the later ismaxe Ep(z|e)[maxa[Ep(s|z,e)U(e, z, a, s)]].

In Chapter we present the details of modeling routing in a dynamic CRN using the decision

theory concepts mentioned above. In the following sectionswe categorize the routing protocols

developed for cognitive radio networks and provide an overview on their design.

2.6 Static and Semi-dynamic Routing Protocols

Developing routing protocols for wireless mesh networks has been investigated for years. With the

development of new technologies, more advanced routing schemes could be designed and imple-

mented. The importance of routing in CRN is greatly dependent on the behavior of PUs. Long

absence of PUs categorizes the CRN as a static multi-channel-multi-hop network and the tradi-

tional routing protocols are applied. When the PU’s behavior is more dynamic, new approaches

in routing are necessary. Zhu et al. [17] propose a spectrum based routing protocol that simplifies

the collaboration between spectrum decision and route selection by establishing a spectrum tree

at each spectrum band. They assume that the statistics of PU’s activities and available spectrum

band information can be obtained by existing spectrum sensing and sharing techniques. In [18] the

authors develop a routing protocol called SAMER, which offers a set of candidate routes to the des-

tination. The actual forwarding path opportunistically adapts to the dynamic spectrum conditions

and exploits the link with the highest spectrum availability at the time. In [19], authors propose

a new metric based on the probabilistic definition of link available capacity into the cost of the

Dijkstra-like algorithm. Researchers such as Wu et al. [20]propose a distributed multi-channel
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and routing assignment in heterogeneous multi radio multi-channel-multi-hop wireless networks

where the channel coordination and route selection is basedon the information exchanged among

two hop neighbors. In [21], authors allow each network node to exchange their spectrum oppor-

tunity information and select the optimal channel. The network learns the behavior of PUs via a

nonparametric statistical learning method based on past observations. In the work of Cui et al [3]

and Song [2], a probabilistic approach is introduced in which the OOM distribution is used to

assign the selection probabilities for every path.

ROSA-PMQ is designed for video or multimedia applications in semi-dynamic environment

[22]. It is a cross layer protocol that jointly does the routing, spectrum assignment, scheduling and

power assignment functionalities. Khalife et al. [19] propose a joint routing and channel selection

scheme to fulfill bandwidth requirements of flows. Jashni et al. [23] propose a routing scheme with

channel selection to support multimedia application in which the probability of channel selection

of neighbor SUs is evaluated using the game theory fictitiousplay technique. Xie et al. [24], Gao

et al. [25], and Xie and Xi in [26] propose routing schemes to support multicast communication in

CRNs. In Chapter , we present our scheme that focuses on the unicast transport of video application

packets in a highly dynamic environment.

2.7 Dynamic Routing Protocols

As mentioned in the previous section, by incorporating cognitive radios, the wireless network

possesses new dynamics and many researchers started to design new routing protocols accordingly.

Among those are the works of [17], [18] and [27]. They model the spectrum utilization as a new

metric to enhance the selection mechanism in traditional routing schemes. In [28], [29] and [30],

the problem of routing, scheduling and interference awareness is formulated into different forms
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of an optimization problem. These studies’ underlying assumption is that the behavior of primary

users is fairly predictable. The protocols we propose on theother hand, considers a dynamic

environment and takes into account the stochastic behaviorof CRNs.

Many of the proposed routing schemes for dynamic CRNs adopted the framework of ad hoc or

wireless sensor networks. The uncertainty in the links’ availability is mapped into the unavailabil-

ity of nodes in the above networks. Hence, protocols such as SODV [31], CODV [32], OSDRP [33]

and [34] are proposed. In fact, the nature of instability in ad hoc or sensor networks is very differ-

ent from CRNs. Links’ availability is unpredictable in CRNsand the repetition of calling a route

discovery mechanism in such protocols would increase the delay and degrade the overall through-

put. Previous studies mainly focus on reliable routing of video or multimedia applications that

require a certain quality of service in semi-dynamic environment. How et al. [33] propose OSDRP,

a quality of service aware routing protocol for dynamic environment that adopts the frame work of

AODV protocol.

In DTCR, we take a decision theory approach that gives a solution for decisions that need to be

made under uncertainties. A relatively close approach is game theory. Pavlidou and Kolsidas [35]

surveyed different routing protocols for wireless communication networks designed by the game

theory framework. These studies, however have static spectrums and channels. Nurmi [36] uses a

dynamic Bayesian game to form a dynamic stage game with incomplete information. Our decision

theory approach also uses the Bayesian rule to construct theposterior distributions in order to

include the effect of cognitive radio dynamics. In [14], theauthors summarize the applications of

game theory in cognitive radio networks. In the work of Zhu etal. [37], nodes are grouped into

layers similar to our work. They also use a game theory framework with an end-to-end path utility

to route the secondary users’ control messages in a pilot channel. Cacciapuoti et al. [38] develop a

theoretical model to analyze the opportunistic routing procedures. Our framework uses cognitive
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decision making to make its selection an opportunistic routing scenario.

The DTCR is different from the above since it uses the decision theory framework and a deci-

sion tree to model a decision strategy for a node. We construct sample and posterior distributions

to explain the status of channels and nodes in supporting packet delivery. These distributions use

a simple metric such as channel availability duration. However, they can be easily extended to use

advance metrics such as OPERA, proposed by Caleffi et al. [39]. There is no central agent helping

in decision making; the nodes try to estimate the future uncertainties and choose neighbor nodes

that maximizes their expected gain.

2.8 Cross Layer Design

As explained in section 2.3.1, we need to combine different meters from different layers to achieve

a performance goal. Therefore, at first glance, it might be plausible to adopt the cross layer ap-

proach and use the previously designed cross layer protocols for cognitive radio networks. To take

into account meters of different layers, originally researchers combine two layer’s meter (physical

and MAC layer) but this would optimize one objective in the expense of other objectives. Recently,

a new kind of cross layer design is proposed. CrossTalk [40],ECLAIR [41], CLD [42] and the

framework of Gong et al. [43] propose using a parallel structure that acts as a shared database

accessible to whichever layers choose to use it. The cognitive network design however, is taking a

different approach. They use the cognitive process that would consider not only the network goals

but also learns from its past behaviors. Use of learning and proactive adaptation is included in

cognitive radio networks. The protocols at each layer should be modified to include the learning

and adaptation processes.

We propose two new probability distributions ArgMax for theselection probabilities, and
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ArgMin to find minimal spectral capacity. The proposed distributions is not only limited to the

probabilistic routing but also could be used in probabilistic MAC layer techniques. We develop

two routing mechanism. First, PSARP that is specifically designed for nondeterministic dynamical

systems. In PSARP, we design a stochastic-based routing to locate the best route in a stochastic

environment using stochastic systems tools. We observed that the transition of packets from a

source to a destination in a cognitive radio network is a stochastic process since the random arrival

of primary users on channels make the next state of the system(next hop) in the path indetermin-

istic. PSARP adapts to the change of behavior of network dynamics and selects the next node

based on the uncertainty of channel existence. Second, the DTCR that is developed using decision

theory components to deal with decision making under uncertainties of cognitive radio networks

environment.

In the following chapter we elaborate more on the stochasticmodeling of cognitive radio net-

works and the proposed routing schemes.
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Chapter 3

ArgMax and ArgMin: Transitional

Probabilistic Models in Cognitive Radio

Mesh Networks

Random phenomena are present in any realistic system. Many parameters in computer networks

are random and follow a certain distribution. It is often of interest to find the maximum or the

minimum element of these random variables. The parameters could be channel occupancy, queue

capacity, packets arrival and departure rate, delay, etc. The main functionality of the ArgMax

(ArgMin) probability distribution is to locate the random variable that at an instant is the maximum

(minimum) of a set of random variables. In this chapter, we present the definition of the ArgMax

and ArgMin distributions. We also develop a new metric called Primary Weight Measure (PWM)

to capture the uniformity or diversity of availability in the channels of different spectrum bands. In

other words, PWM shows how the primary users affect the channels around a particular node. If all

the channels are affected uniformly by primary users, then all channels provide the same utilization

for a secondary node and there is no priority in selecting onechannel over another. Moreover, if a

node has the highest PWM, it has at least one channel that is minimally affected by primary users.

In subsequent chapters, we elaborate on the application of the proposed distributions and the PWM

metric in cognitive radio network.
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3.1 ArgMax and ArgMin distributions

Let Z1, · · · , Zn be a finite sequence of continuous random variables defined ona probability

space. We letZmax = max{Zi, i = 1, ..., n}. The corresponding ArgMax random variableτmax

indicates the index of the random variable that attains the maximum values. Precisely,(τmax =

i) = (Zmax = Zi), for i = 1, ..., n. A probability distribution ofτmax, {p(1), p(2), · · · , p(n)}, is

called the ArgMax distribution which is unique because of the continuity of the random variables

Z1, Z2, ..., Zn. Therefore

p(i) = P{τmax = i} = P{Zmax = Zi}, i = 1, · · · , n. (3.1)

The corresponding ArgMin random variableτmin indicates the index of the random variable that

attains the minimum values. Therefore

q(i) = P{τmin = i} = P{Zmin = Zi}, i = 1, · · · , n. (3.2)

Theorem 1. The ArgMax and ArgMin probability distribution for an arrayof independent con-

tinuous random variablesZ1, · · · , Zn with distribution functionsF1, F2, · · · , Fn are respectively

given by

p(i) =

∫ +∞

−∞





n
∏

j=1,j 6=i

Fj(z)



 dFi(z), i = 1, · · · , n. (3.3)

q(i) =

∫ +∞

−∞





n
∏

j=1,j 6=i

1− Fj(z)



 dFi(z), i = 1, · · · , n. (3.4)

Proof. The theorem will be easily proven by conditioning onZi = z, using the law of total
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probability and the independence assumption.

p(i) = P{Zmax = Zi} =

∫ +∞

−∞
p(Z1, Z2, · · · , Zn < z|Zi = z)dFi(z)

=

∫ +∞

−∞





n
∏

j=1,j 6=i

p(Zj < z)



 dFi(z), i = 1, · · · , n. (3.5)

We prove directly in the following lemma that{p(1), p(2), · · · , p(n)} given in (2) is indeed a

probability distribution.

Lemma 1. Assumep(1), p(2), · · · , p(n) are given by (2), then

p(1) + p(2) + · · ·+ p(n) = 1.

Proof. LetU(x) =
∏

j 6=i Fj(x) anddv(x) = fi(x)dx. ThendU(x) =
∑

k 6=i fk(x)
∏

j 6=i6=k Fj(x),

andV (x) = Fi(x). Therefore it follows from integration by parts that

p(i) = [
∏

j

Fj(x)]
∞
0 −

∑

k 6=i

∫ +∞

−∞
[
∏

j 6=k

Fj(x)]fk(x)dx = 1−
∑

k 6=i

pk.

Therefore
∑n

j=1 p(j) = 1

Following the same reasoning, the validity of the ArgMin probability distribution is also proven.

The odds-on-mean probability distribution, the well-known probability distribution that is used
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in most probabilistic channel selections and routing, is defined as follows.

φ(i) =
µi
n
∑

i=1

µi

, (3.6)

whereµi = E(Zi), i = 1, · · · , n. In our applicationµi >= 0.

The distribution of state space probabilities of odds-on-mean is different than the ArgMax

distribution. In the following subsection we demonstrate this difference through an example, where

the random variableZ follows an exponential distribution.

3.2 Exponentially Distributed Random Variables

We letSt denote the class of all subsets of{1, 2, ..., n} that contain exactlyt nonidentical members,

t = 1, · · · , n.

Theorem 2. LetZ1, · · · , Zn be independent exponentially distributed random variables with pa-

rametersλ1, · · · , λn. Then the following holds:

a. The ArgMax probability distribution is given by

p(n) = 1 +

n−1
∑

i=1

λn
λn + λi

−
∑

{i,j}∈S2

λn
λn + λi + λj

+
∑

{i,j,k}∈S3

λn
λn + λi + λj + λk

+ · · ·

+(−1)n
λn

λn + λ1 + λ2 + ... + λn−1
.
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b. The ArgMin probability distribution is given by

q(i) =
λi

∑n
j=1 λj

.

To derive the probability distributionp(1), · · · , p(n), apply Theorem 2 using the transformation

πi(j) = j − i, for j > i, andπi(j) = n+ j − i, for j ≤ i, and rearrange the set of the parameters

λ1, · · · , λn to

{λi+1, · · · , λn, λ1, · · · , λi−1, λi}.

Special Cases:Let n = 3. Then

p(1) = 1− λ1
λ1 + λ2

− λ1
λ1 + λ3

+
λ1

λ1 + λ2 + λ3
,

p(2) = 1− λ2
λ2 + λ1

− λ2
λ2 + λ3

+
λ2

λ1 + λ2 + λ3
,

p(3) = 1− λ3
λ3 + λ1

− λ3
λ3 + λ2

+
λ3

λ1 + λ2 + λ3
.

In terms ofµi =
1
λi

p(1) = 1− µ2
µ1 + µ2

− µ3
µ1 + µ3

+
µ2µ3

µ1µ2 + µ1µ3 + µ2µ3
.

Forµ1 = 1, µ2 = 2, µ3 = 3, p(1) ≃ 1
8 , while φ(1) =

µ1
µ1+µ2+µ3

= 1
6 . Therefore, we see that

the ArgMax distribution could be substantially different from the odds-on-mean distribution.
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3.3 Primary Weight Measure

The primary weight measure is a metric with nonnegative values. It is developed to capture the

uniformity or diversity in spectrum bands available to a secondary user. Small values of PWM

indicate uniformity while large values of PWM indicate diversity. The PWM metric is evaluated

by measuring the distance between the two probability distributions: ArgMax and ArgMin.

The ArgMax probability distribution points to the channel that at an instant of time appears to

have the maximum idle frequency. Assume a nodei is connected toj via a set ofNt available

channels at timet. A channel between nodei andj is stable if it is less prone to the arrivals of

primary users. We letuij [k, t] be the random variable that represents the link(i, j) utilization

via channelk at time t; defined as the average frequency that a channel, sensed by the nodei,

is available without any interruption from primary users. We suppress the time indext from our

notation whenever there is no ambiguity. In our simulation,we record the number of times that

a channel is sensed idle over a period of time and then use it for uij [k]. The probability that the

channeln between nodei andj has the maximum utility is modeled by the ArgMax probability

distribution as follows:

pi,j(n) = Pr{k∗ = n} = Pr
{

uij [n] = max{uij [k], uij [k] ∈ E[i, j : t]}
}

, (3.7)

wherek∗ is the channel between nodesi andj with maximum utilization at timet, andE[i, j; t] is

the set of all available channels between nodesi andj at timet.

Following the same analogy the ArgMin measure points to the channel that is less stable and

is highly exposed to the presence of primary users. Therefore, the probability that the channelh

34



between nodei andj has the minimum utility is

qi,j(h) = Pr{k∗ = h} = Pr
{

uij [n] = min{ uij [k], uij [k] ∈ E[i, j : t]}
}

(3.8)

wherek∗ is the channel betweeni andj with minimum utilization at timet. More comprehensive

definitions of ArgMax and ArgMin probability distributionsis presented in the Appendix.

Monitoring the ArgMax and ArgMin probability distributions provides interesting information

on the utilization of channels. If the primary users arrive frequently, the channels will be affected

almost uniformly by the primary users arrival. Therefore, the probability that a channeln has the

maximum idle frequency is close to the probability that the same channel has the minimum idle

frequency. Therefore the difference betweenpi,j(n)andqi,j(n) is small. Large gap between the

two probability distributionp andq imply a nonuniform spread of primary users on channels; and

hence, there exists a channel whose utilization is substantially larger. We measure the distance

between the distribution functions ArgMin and ArgMax by theKullback-Leibler divergence (K-

L) [44] measure.

The K-L divergence is a non-symmetric measure of the difference between two probability dis-

tributionsh andg. In probability theory,h represents the “true” distribution of data, observations,

or a precisely calculated theoretical distribution. The distributiong represents a theory, model, de-

scription, or approximation ofh. It also can be interpreted as the opportunity lost for implementing

g instead ofh.The K-L divergence for two discrete probability distributionsh andg is defined to

be

DKL(h‖g) =
∑

k

h(k) log
h(k)

g(k)
. (3.9)

It requires thatg(k) > 0 for all the values ofk for whichh(k) > 0. It possesses the properties that
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• DKL(h‖g) 6= DKL(g‖h).

• DKL(h‖g) ≥ 0.

• DKL(h‖g) = 0 ⇔ h = g.

In the context of a cognitive network, withh = pi,j , g = qi,j , and channel utilization as the

average frequency that a channel is idle without any interruption from primary user, we have the

following interpretations for the K-L divergence.

• DKL(pi,j‖qi,j): The expected utility acquired by transferring packets through channels

with maximum utilizations, instead of employing channels with minimum utilizations.

• DKL(pi,j‖qi,j): The expected utility lost by transferring packets throughchannels with

minimum utilizations, instead of employing channels with maximum utilizations.

Primary Weight Measure at nodei is denoted byδi,j defined by taking the average of the above

measures.

δi,j =
1

2
{DKL(pi,j‖qi,j) +DKL(qi,j‖pi,j)}. (3.10)

The K-L divergence is not symmetric. However, theδi,j is symmetric ini, j and indicates the

degree of the nonuniform spread of primaries in channels between nodesi andj. When there is

no primary user around a particular node,pi,j = qi,j and theδi,j = 0. However, if primary

users are present, channel utilizations follow a continuous distribution so theD(pi,j‖qi,j) > 0

and consequentlyδi,j > 0. For δi,j > 0, the larger the value ofδi,j , the more the channels that

are less occupied by primary users, and thus have priority over the other channels in the vicinity

of the nodei. Whenδi,j approaches zero, primary users are spread uniformly, and consequently

there is no privilege to any transition. Note that when primary users are present, theδi,j could be

near zero but not exactly equal.
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To show how the PWM represents the nature of the spread of primary users on channels around

a node, let us look at the following numerical example.

Example 1. Assume there are two nodes1 and2, each one has5 different channels available to

its neighborj. Primary users arrive at each of these channels randomly. The ArgMax probability

distributionp1,j indicates the channel that is more likely to stay stable among the other channels.

For instance, if channel3 has been idle the most duringN sensing periods, then thep1,j(3) has

the maximum value. Now if the primaries are affecting all thechannels with the same rate channel

3 might also be the channel that has been idle the least among other channels. Therefore, the

difference betweenp1,j(3) andq1,j(3) is small. As explained above, the PWM measure quantifies

this difference. Below, the primaries are spread around node1 according to normal distribution and

around node2 following a uniform distribution. After evaluating ArgMaxand ArgMin probability

densities for all channels, we have the following results for each node respectively:

node 1;







ch1 ch2 ch3 ch4 ch5

p1,j 0.26 0.21 0.28 0.12 0.13

q1,j 0.17 0.22 0.12 0.2 0.29






,

node 2;







ch1 ch2 ch3 ch4 ch5

p2,j 0.13 0.18 0.25 0.19 0.25

q2,j 0.16 0.24 0.24 0.19 0.17






.

Theδ1,j is 0.17 but theδ2,j is 0.02. As a result, the PWM is substantially lower when the channels

are affected uniformly by the arrivals of primary users.
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3.4 Summary

In this chapter we proposed two new probability distributions called ArgMax and ArgMin that

could be used in probabilistic protocols. The ArgMax probability distribution locates the maxi-

mum random variable among a set of random variables, while the ArgMin locates the minimum

random variable. Using these two probability distributions, we introduced an interesting measure

called primary weight measure, which indicated the frequency and the nature of the distribution of

primaries around a particular node. A low value of the primary weight measure metric indicated

uniform and frequent primary users interruptions on the channels surrounding a node. With this

information MAC and routing decisions are taken more efficiently.
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Chapter 4

Stochastic Modeling of Cognitive Radio

Networks and Probabilistic Routing

In this chapter, we focus on modeling a cognitive radio mesh network that is operating in a dynamic

environment similar to cities’ downtown. More specificallythe system is modeled by a semi-

Markov process. The ArgMax probability distribution that accurately identifies the most stable

available channel corresponding to a neighboring node is used as transition probabilities in the

stochastic process of the network. We show that the ArgMax probability distribution is a better

candidate than the frequently used OOM probability distribution through developing a Probabilistic

Selection Routing Procedure (PSRP) that adopts both probability distributions to guide packets

throughout the network. The simulation results suggest that ArgMax enables the routing scheme

to adapt to the network dynamic more quickly than the OOM probability distribution. The ArgMax

enhances the network throughput and end-to-end delay by over 30% when network load increases.

We also present an application of the ArgMin probability distribution by using it to select channels

with the lowest duration of availability, and to measure thethroughput of the network. Since

the CRN is a stochastic system, the minimum spectral capacity is rarely zero. Therefore, the

identification of the minimum spectral capacity is useful inthe development of a smart channel

allocation strategy. We show through simulation that with the help of ArgMin, the worst channel

in our setup could be used to transfer time-insensitive dataat low rates.
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In the next sections we present the definition of a Markov and Semi-Markov process that are

adopted in this dissertation to model the dynamics of a CRN. We also discuss the truncated distri-

bution that is used to model the duration of channel availability in CRNs.

4.1 An Overview of Markov and Semi-Markov Process

A Markov chain is a system that moves from one state to the nextin such a manner that the future

location is independent of the past if the present is known. In Markov chains we do not consider

the time it takes to transient from one state to another. Realsystems are running on actual time.

Markov processes not only take into account the changes of state but also the actual times spent in

between [45].

The stochastic processY = {Yt ∈ ℜ+} is said to be a Markov process with state spaceE if

for anyt, s ≥ 0 andj ∈ E,

P{Yt+s = j|Yu; u ≤ t} = P{Yt+s = j|Yt}

When the conditional probability mentioned above is independent oft ≥ 0 for all i, j ∈ E and

s ≥ 0, the processY is said to be a time-homogeneous Markov process. For fixedi, j ∈ E, the

functiont → Pt(i, j) is called transition function, where

Pt(i, j) = P{Yt = j|Yt−1 = i}

and the family of matricesPt, t ≥ 0, of the transition matrixPt(i, j) is simply called the transition
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matrix of the Markov process Y. The transition functions satisfy the following:

Pt(i, j) ≥ 0, (4.1)

∑

j∈E
Pt(i, j) = 1, (4.2)

∑

k∈E
Ps(i, k)Pt(k, j) = Pt+s(i, j). (4.3)

A semi-Markov process is one that, when it enters statei, i ≥ 0 :

1. At the next state, it will enter statej with probabilityPt(i, j), i, j ≥ 0

2. Given that the next state to be entered isj, the time until the transition fromi to j occurs has

distributionFij .

From the above dynamics we observed that the operation of thecognitive radio network is

similar to a semi-Markov process. It takes a random amount oftime for the network traffic to

stay in nodei before it moves to nodej. Let nodes1, 2, ...n denote the states of a stochastic

process, then the transition of packets could be modeled by asemi-Markov process. Since the

spectrum bands that could be used to transfer the packets from nodei to nodej are random and

are chosen based on the specified MAC and routing protocols, the transition probabilitiesPij vary

for different networks. In this chapter, we use the ArgMax probability distribution to model the

Pijs. Based on the above definition, LetJ(t) denote the states (nodes) entered at timet. Then J(t)

is a semi-Markov process with the state space equal to the number of nodes in the network. Next,

we present the definition of the truncated distribution. This distribution is used later to model the

density function of the available duration of channels.
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4.2 Truncated Distributions

Since the distribution of available usage time of a channel is unknown, we use the concept of a

truncated distribution later to model the remaining usage time of available channels. Therefore the

definition of a truncated distribution is provided here for the ease of readers. Let Y be a random

variable whose distribution functionF (y) is not concentrated entirely on[0,∞). Let t[Y ] be a

random variable with distribution function

F̂ (y) =
F (y)− F (0)

1− F (0)
= P (Y < y|Y ≥ 0), y ≥ 0. (4.4)

Then t[Y ] is called truncated random variable; Zolotarev refers tot[Y ] as the cut off of Y at

zero [46].

4.3 Cognitive Radio Network Model

The Cognitive Radio Network (CRN) under study has the general architecture of a mesh network,

where there exists a gateway node (node G), providing the main access to the internet. The edge

routers are connected to the gateway by the intermediate relay routers and the clients who access

the edge routers send or receive information at any instant of time.

In a populated urban area, smart phones, PDAs, laptops, radios and TVs operate and use their

specific spectrum bands. In a cognitive radio network, a cellular phone acts as a SU sender on an

unlicensed 2.4 GHz spectrum band and a SU relay node for transferring a network traffic generated

by a personal laptop. A general cognitive radio mesh networkarchitecture is shown in Figure 4.1.

In this example, there are 4 spectrum bands available and allthe nodes send their traffic to the

gateway at the top. As it can be seen, the number of relay nodesand spectrum bands available vary
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based on the strength of the radio equipment, inter arrival time of primary users and the number

of SUs located in the vicinity of a node. For instance, the senders S1 can access the relay R1 in

Figure 4.1 A simple mesh cognitive radio network architecture

the domain of spectrum band III but for the cellular phone sender S2, two spectrum bands III and

II are available, providing two relays R1 and R2. Since S2 is asecondary user, it should choose a

channel from the two spectrum bands that is less interruptedby the arrival of primary users.

When employing CRNs within a city, different sources of uncertainties are present. The be-

havior of primary users are unpredictable and produce uncertainty in the availability of channel

resources. Location discrepancy of primary users causes uncertainty in stability of channels. Fur-

thermore, it is possible that some SUs are affected by many PUs while others are not. Therefore,

the transmission bandwidth for each node is variable and is divided among secondary nodes. More-

over, the wireless radio range is affected by the interference and reflection therefore the number of
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Figure 4.2 The tree graph representation of the simple network architecture. The SU user S1 is
the nodei = 1 in layerl = 3 that hasM1,2 = 1 (R1) accessible neighbor, and is connected to it
by n1 = 1 channel. The SU user S3 is the nodei = 3 that hasM3,2 = 3 accessible neighbors

(R1, R2, R3), and is connected to R1 byn1 = 2 channels, to R2 byn2 = 2 channels and to R3 by
n3 = 1 channel.

accessible relays for a sender is not fixed. As a result, the dynamics of a CRN operating in a city

is unpredictable and should be studied under a stochastic framework. In the following sections we

present our stochastic modeling of such systems and the PSRPimplementation.

4.3.1 Medium Access and Physical Layer Assumptions

We assume the channel is shared with a Non-Contiguous Orthogonal Frequency Division Mul-

tiplexing (NC-OFDM) technique. This multi-carrier modulation technique is based on the Or-

thogonal Frequency Multiplexing (OFDM) technique. By using the NC-OFDM, portions of the

target licensed spectrum are occupied by both primary and secondary users. This is achieved by

deactivating (i.e. nulling) subcarriers that can potentially interfere with other users. This form of

OFDMA fills in the available spectral gaps within the channel’s transmission bandwidth partially
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occupied by other users while not sacrificing its error robustness [47].

The fluctuation of the wireless channel is modeled by the Rayleigh fading model. According

to the study in [48], Rayleigh fading is a useful model in heavily built-up city centers where there

is no line-of-sight between the transmitter and receiver.

4.3.2 Spectrum Usage Assumptions

Each spectrum band has a set of channels that are shared by other users with the help of OFDMA/NC

multiplexing. All SUs can tune to any combination of licensed channels using a single antenna

from different spectrums. Without loss of generality, one PU is associated with one spectrum band

(SB). The PU activity is modeled by an OFF/ON process. By the random arrival of PUs the ON

period is started.

To model such an agile network, a stochastic framework is considered. Nodes that are located

l hop away from the gateway, take a layer indexl. Therefore a tree graph topology withL layers is

formed. The tree graph topology of our simple example is shown in Figure 6.1b. At a given time

t, from the perspective of a secondary useri in layerl, the number of accessible neighbors at each

upper layerl − 1 is denoted byMi,l−1(t). The number of channels between nodei and each of

its accessible neighborsj is represented byNij(t), j = 1, · · · ,Mi,l−1(t). Therefore, a channel

between nodei and its upper layer neighborj is presented by(i, nj), nj = 1, · · · , Nij(t). We

summarize the notations in Table 6.1. We suppress the time indext and the layer indexl whenever

there is no ambiguity.

SinceMi andNij , j = 1, · · · ,Mi are random, elaborating on their distribution is essential.

Assume there are a total ofM∗
l−1 nodes in layerl − 1. In the initial configuration of the network,

nodes identify the layer index of their neighbor nodes by exchanging control messages. We con-

sider a mesh network where the nodes are stationary with longlasting energy. In this case, the hop
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Table 4.1 Notations

Symbol Description.
L Number of layers.
Mi,l−1(t) Number of nodes in layerl−1 accessible to a node

i in layerl at timet.
Nij(t) Number of channels available between the nodei

and its neighborj at timet.
W(i,nj)

(t) Idle period of channels (i, nj); j =

1, · · · ,Mi,l−1(t), nj = 1, · · · , Nij(t) at
time t.

X(i,nj)
(t) Inter arrival time of PUs on the channels(i, nj) of

a spectrum band at timet .
Y(i,nj)

(t) The amount of time that the PU or other secondary
users occupy the channels(i, nj) at timet.

number would not be dynamic. A nodej in layerl− 1 is considered assessable if it is within node

i’s transmission range. For simplicity, we assume that ifj is accessible byi, i is also accessible by

j. Let di be the transmission range of nodei, anddij represent the radial distance of nodei from

nodej at timet. Then the number of accessible neighbors at nodei is

Mi =

M∗
l−1
∑

j=1

I[dij < di], (4.5)

whereI(A) is the indicator function:I(A) = 1, if A is true, and I(A)=0, ifA is false.

From [47], when the channel is experiencing Rayleigh fading, the total available bandwidth

f(i,nj)
of channel(i, nj) at timet is

f(i,nj)
= (1− α(i,nj)

)B(i,nj)
, (4.6)

whereB(i,nj)
is the total bandwidth (Hz), andα(i,nj)

is the incumbent occupancy of the channel

(i, nj) at timet. The signal-to-noise ratio gainSNRg(i,nj)
of the channel(i, nj) at timet roughly
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indicates the occupancy influence on the channel (theSNR of a shared channel over theSNR of

the same channel when it is not shared by other users) and is given by

SNRg(i,nj)
= −20 log10(1− α(i,nj)

). (4.7)

By substituting (4.7) into (4.6), we have

f(i,nj)
= B(i,nj)

10
(−SNRg(i,nj)

/20)
. (4.8)

We represent the inter-arrival time of PUs on the channel(i, nj) by random variableX(i,nj)
with

density functionut(x) from a SB. The period of occupancy is represented byY(i,nj)
= 1/f(i,nj)

in seconds with density functionvt(y). Let W(i,nj)
= X(i,nj)

− Y(i,nj)
denote the available

usage time of thenth channel between nodesi and j. Then the channel(i, nj) is available if

W(i,nj)
> 0. Therefore, the number of channels available between nodesi andj at timet is given

by

Nij =

N∗
∑

nj=1

I[W(i,nj)
> 0], (4.9)

whereN∗ is the total number of channels between nodei andj from different spectrum bands. We

assume the system is in a steady state, and there are stationary distributions onMi,l−1 andNij ,

not depending on timet. Therefore, the expected number of available nodes is

E(Mi,l−1) =

M∗
l−1
∑

j=1

pij , (4.10)

wherepij = P [dij < di], depends on the strength of the radio signal. Moreover, the expected
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number of available channels between nodesi andj is

E(Nij) =

N∗
∑

nj=1

P [W(i,nj)
> 0]. (4.11)

Recall that the PU inter-arrival time on channel(i, nj) is represented by a random variable

X(i,nj)
with density functionut(x), and the occupancy period of other users is shown by a random

variableY(i,nj)
. Now, by using the definition of the truncated distribution given in section 4.2 the

density function oft[W(i,nj)
], the truncation ofW(i,nj)

at zero is given by

ft[W ](w) =
fWt

(w)

1− FW (0)
, w ≥ 0 (4.12)

where

fWt
(x) =



















∫∞
0 vt(s− x)ut(s)ds, x ≤ 0,

∫∞
x vt(s− x)ut(s)ds, x ≥ 0.

4.4 Probabilistic Routing Approach

In this section we propose the probabilistic routing approach (PSRP) and the usage of ArgMax

probability distribution. In the mesh CRN, in which packetsmove to the upper layers to reach

the gateway, transitions form a Markov chain whose states are transient, except for the gateway,

which is absorbing. The transition probabilities are not stationary in time, but certain stationary

assumptions are made as follows.

• The parameters of the available channel’s usage time distributions could be time dependent.

For instance, if the available channel’s usage time has Gamma distribution, then the param-

etersαt, βt might be time dependent.
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• The accessible states from an upper layer are time dependentrandom processes, but their

distributions are time invariant.

• The transition probabilities are time dependent only because of the time dependency of the

available usage time distribution parameters. The PSRP is self updating, in the sense that

at the commence of each transition it receives information on the number of spectrums and

their time portion of availability. Then, PSRP estimates the parameters of the distributions

of the idle period of channels using idle period data that arestored and updated.

Odds-On-Mean (OOM) is an intuitive nonparametric procedure that computes transition proba-

bilities using sample means of the channel idle period data sets. A parametric approach is more

informative and gives deep insights into the underlying statistical distributions of the variables

governing the system. We should bring to the attention of thereader that PSRP is not a complete

routing protocol. It is an uplink routing procedure with thepurpose of presenting the strength of

the ArgMax over OOM probability distribution. (PSRP will beshown to evolve into a routing

protocol in the next chapter.) Following this procedure, node i at layerl constructs its localized

Available Resources (AR) matrix at timet after communicating with its neighbors and sensing its

environment as follows.

ARl[i;M,N1, ..., Nj ] =























t[W1,1] t[W1,1] · · · t[W1,1]

t[W1,2] t[W1,2] · · · t[W1,2]

...
...

. . .
...

t[W1,N1
] t[W1,N2

] · · · t[W1,NM
]























.

Since the AR matrix is constructed for nodei in a specific layerl at time t, these indices are

exhibited from our notation when we refer to AR matrix elements. Each column corresponds to a
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neighboring nodej = 1, · · · ,M andNj is the size of columnj that represents the total number

of channels available linking nodei to nodej at timet. The variation of the column index is seen

in theNM index oft[W1,NM
] element of the matrix. The random variablet[W(i,nj)

] is the

available usage time of each channel(i, nj) at time t. This quantity is related to the available

bandwidth as explained in the previous section. Note that the dimensionsM , N1, ..., Nj are taken

to be random as the AR matrix varies for one transition of packets from one layer to another.

The position of the channel(i, n∗j ) with the highest available bandwidth is unknown to nodei.

Hence, the idea is to define a probability distributionPS on the set of statesS ≡ S[i;M,N1, ..., NM ] =

{(i, nj), j = 1, .....,M, nj = 1, ..., Nj} such that transition toS[i,M,N1, ..., NM ] occurs based

onPS targeting a channel with the highest available usage time for given values ofM,N1, ..., NM .

The ArgMax probability distribution locates the index of the maximum element of an array of

random variables. Therefore, based on equation 3.7, the transition distributionPS based on the

random available usage time of channelst[W(i,nj)
] is

PS(i, n
∗
j ) = P

{

t[W(i,n∗j )
] = max[ t[W(i,nj)

], (i, nj) ∈ S]

}

.

In statistics, whenever the distribution of the estimator is unavailable or is computationally

challenging, simulation methods are used to estimate the probability distribution. This method

is used by Kulldorff [49]. In network applications, the timely computation ofPS is very impor-

tant. We use an idea similar to what Kulldroff suggested, andpropose a simulation method in the

following section to estimate the ArgMax probabilities online.

The OOM probability distribution is the well known probability distribution that is used in

most probabilistic routing applications. According to OOMprobability distribution in equation
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4.13,PS is

PS(i, n
∗
j ) =

µ(i, n∗j )
M
∑

j=1

Nm
∑

nj=1

µ(i, nj)

, (4.13)

whereµ(i, n∗j ) is the average available bandwidth of the channel(i, n∗j ) between the nodei andj.

This well known probability distribution is often used since its computation is simple. However,

recall that the node in a particular layer wants to identify the path among all the channels from

different bands that has the most available bandwidth to transfer the packets to its neighbors in the

upper layer. Therefore, OOM does not accurately point to themaximum location.

4.5 Model implementation

This section describes implementation details of the ArgMax and ArgMin distributions and the

route selection scheme. We rely on the ability of the software defined radio transceivers embedded

in the nodes to detect the number of spectrums available. With the use of NC-OFDMA MAC layer,

a SU could select from different channels in a spectrum band and share the channel with other

SUs. SUs communicate with each other using a common control channel in the lower portion of

the spectrum where the transmission range is higher. The useof the common control channel can

improve the reliability of the framework [19]. In the initial configuration of the network, nodes

transmit fast messages to each other and try to calculate their distance based on the number of hops

from the gateway node. After this step, each node obtains an extra identity indexl indicating its

layer allocation, which will identify its upper layer neighbors. There is a time period allocated to

a node to complete its packet transmission. This time is divided into two parts: decision making

time td and transmission timets. During the decision making timetd, the following actions are
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completed:

1. Nodei starts handshaking with each of its upper layer neighbors, and obtains theSNRg(i,nj)

of every channel(i, nj) connecting its neighborj. SNRg(i,nj)
is evaluated at the receiver

antennas of neighbors.

2. Nodei evaluates the available bandwidth,f(i,nj)
, of each channel(i, nj) from theirSNRg(i,nj)

based on equation 6.1.

3. The AR matrix is constructed using the values off(i,nj)
. It should be noted that the usage

timet[W(i,nj)
] of the channel has a one-to-one relationship with the available bandwidth.

The more the available bandwidth, the longer the usage time.

t[W(i,nj)
] is used instead off(i,nj)

in our simulation model to portray a more realistic

setting, where our model distributions are gathered by the measurement study in [50]. Notice

that the two values (i.e.,t[W(i,nj)
], f(i,nj)

) could be used interchangeably.

4. Nodei evaluates the ArgMax or ArgMin probability distributions state space by analyzing

its AR matrix as follows:

Simulation Procedure to Estimate ArgMax and Argmin

ArgMax indicates the location of the maximum element and ArgMin indicates the location

of the minimum element. Hence in the following steps, whenever the ArgMin needs to be

implemented instead of the ArgMax the maximum is replaced bythe minimum.

(a) Nodei finds the channel(i, n∗j ) that has the maximum (minimum)t[W(i,nj)
] among

the AR matrix elements.

(b) Every time nodei tries to route its packets, it looks at its past AR matrices and evaluates

the likelihood that the channel(i, n∗j ) has the maximum (minimum)t[W(i,nj)
]. For
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example, consider nodei, making its routing decision for the 10th time. If in 4 out of

10 series of stored AR matrices, the channel(i, n∗j ) has the maximum available usage

time, then the ArgMax probability of(i, n∗j ) is 4/10. This method of estimating the

ArgMax and ArgMin probability distributions is adopted from the method used in [49].

5. Having the probability of each channel, nodei applies a Monte Carlo simulation to obtain

its routing selection information (i.e. the index of the next hop and the corresponding chan-

nel). The Monte Carlo performs a basic selection of candidates based on their probability

distributions. We like to emphasize that this simple and non-complex step exists in every

probabilistic routing protocol that locates the next node with its transition probability.

6. At this step, nodei has the routing information and starts its transmission of packets during

the transmission timets.

The above steps are summarized in Figure 4.3.

Figure 4.3 The node selection procedure
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The run time complexity of the proposed algorithm isΘ(n), wheren = N∗×M∗,N∗ andM∗

correspond to the maximum row and column size of the AR matrix. The complexity is the same

as OOM since the summation over all elements of the AR matrix is needed in estimating OOM as

well. We discarded the memory of the node after taking a sample of 100 AR matrices. The OOM

finds the maximum average value among the elements of AR matrix. Therefore, to obtain the

average value empirically, the sum of the 100 samples of eachelement should be divided by 100.

With 100 samples, we achieve satisfactory estimates for theOOM and ArgMax probability masses.

Note that in ArgMax, each time the AR matrix is stored, the index of the maximum variable

is evaluated and stored. Overall, the distributed nature ofthe algorithm makes the maximum

number of nodes and channels bounded. Therefore, the amountof memory needed to evaluate

the ArgMax is bounded. By using advance processors such as RAW proposed in [51] or multi-

core SIMD architecture presented in [52] for software defined radios, the PSRP algorithm is easily

implementable on small portable devices such as a cellphone[53].

4.6 Simulation Model

In order to analyze the effect of ArgMax and ArgMin, we simulate a cognitive radio network that

operates in a city center. Through our simulation setup we are able to drive actual workloads from

the network with varying sizes and dynamical parameters. Thus we have more flexibility over the

existing testbeds. In order to simulate a cognitive radio environment in a city center, we arrange the

nodes into a tree graph topology shown in Figure 6.1b. An extra identity indexl is assigned to each

node, indicating the node’s layer allocation from other nodes. At timet, the number of accessible

nodesMi,l−1 from the upper layer vary for each nodei depending on the radio signal strength,

which is affected by interference, reflection, and radio power. In the initial configuration, each
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nodei has a random value for its transmission rangedi. In addition, a random value is assigned

for the radial distance of nodej from nodei, dij . ThenMi,l−1 is evaluated using equation (4.5).

For simplicity, if a nodej is accessible from its lower layer nodei, then nodei is also accessible

by j.

4.6.1 Modeling of Inter-arrival Time of Primary Users

The primary user’s traffic follows a semi-Markov process with OFF/ON period following the ex-

ponential distribution with meanλ. This model is based on the measurement study in [54]. Asλ

gets larger, the channel is available for a longer period of time to be used by secondary users. We

change the value ofλ to see the effect of inter-arrival time of primary users on the performance of

the network.

4.6.2 Channel Occupancy Modeling

Once the channel is available, it is shared among other users. The usage time of a channelY

is always a positive number. Hence, gamma and lognormal distributions are the two appropriate

candidates. We use both of the two distributions to cover a wide range of channel usage patterns.

The lognormal distribution is used with different meanµ and standard deviationσ. Based on the

measurement study [50] performed on a cellular network in a crowded urban area, the channel

occupancy duration is represented by lognormal distribution. Note that the larger the value ofµ,

the more occupied the channel would be, hence the smaller available usage timet[W(i,nj)
] on

that channel. Later, to cover traffic patterns other than theone in cellular networks, we substitute

the lognormal distribution with the gamma distribution. The two parametersα andβ of gamma

distribution control the amount of channel usage similar tolognormal distribution parameters.
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4.6.3 Modeling of Available Channel Usage Time

The available channel usage times,t[W(i,nj)
]s, are generated by truncatingX−Y values at zero.

The truncated density function is evaluated based on equation 4.12. For each nodej there are a

total ofNij channels available, which are found based on equation 4.9.

In our simulation setup, we first use the simulation technique described in step4 of the previous

section to evaluate ArgMax probabilities. After assigningthe probabilities, a neighboring node

from the lower layer is chosen based on a Monte Carlo simulation on channel probabilities. We

use these probabilities in PSRP and compare its performancewith the case when OOM is used

instead of ArgMax. Second, we find ArgMin probability distribution by simply evaluating the

minimum element in our simulation instead of the maximum element, and provide the minimal

network throughput when the most unstable channels are used. For both scenarios, our simulated

model retains and updates the AR matrix values every 100 seconds.

By changing the distributions of primary user arrival patterns and their corresponding param-

eters, we are able to analyze the performance of ArgMax in different environmental dynamics.

We believe our simulation setup mimics real implementations to a good extend because firstly, we

selected the distributions in our simulation based on measurement studies on real networks as ex-

plained above. Secondly, we tried different distributionsas well that were not reported in studies,

but are highly probable of occurring in nature such as gamma distribution.

4.7 Results

In this section, we first present the simulation results and compare the performance of ArgMax

probability distribution with OOM probability distribution in a probabilistic selection routing al-

gorithm (PSRP). Second we elaborate on the applications of ArgMin by demonstrating network
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throughput when channels with minimum duration of availability are used to route packets.

4.7.1 PSRP with ArgMax Probability Distribution

We present the performance of the network in terms of throughput and end-to-end delay under

variations of primary user arrival distribution, network load, and network size. We expect to see

improvement when the amount of traffic is increased because of the nature of the ArgMax prob-

ability distribution. As a result, we evaluate the network with different sending rates to observe

different loads on the network.

A network with 75 nodes is selected and the simulation runs for 12 hours. The number of

accessible channels for each node changes every 100 seconds. In our simulation model, other SUs

behave in diverse manners; a heavy user who uses a large portion of the spectrum, leaving a small

portion to be used by others, a light user who consumes a smallportion of the spectrum band,

and an average user who uses the spectrum band in a moderate fashion. Therefore, three kinds

of channels could be available. A lognormal distribution with means0.8, 0.2, and0.5, a variance

of 0.5, and a gamma distribution withα = 1.5, 2, 3 andβ = 1 are used to model this diversity.

As explained in previous sections, the truncated distribution of available usage time of channels

is estimated using the exponential model for inter-arrivalof PUs on channels withλ = 30sec and

the lognormal or gamma distribution model of SUs. We have 5 spectrum bands with a minimum

bandwidth of 6Mb/sec (which could correspond to FM radio band) and a maximum of 144Mb/sec

(similar to a TV channel). Note that a spectrum band can have different numbers of channels

depending on its type. The bandwidth of each spectrum is divided equally among its channels.

For example, the 144Mb/sec spectrum band has6 channels, each with a bandwidth of 24 Mb/sec.

Overall we have 30 channels with heterogeneous bandwidths in our simulation.

For the routing layer, the total available usage time of eachchannel is important for selecting
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the next node and the access techniques in the MAC layer are responsible for providing the node

with an interference free channel from a band. Note that in a cognitive radio the transmission rate

varies based on the type of available channel.

Nodes67 to 78 are sources and they generate packets according to a Poissonprocess. The

packets mean arrival rate follows an exponential distribution between 30ms to 100ms. The packets

size is 2000 bytes. We change the sending rate of the packets and observe the performance of the

network.

Table 4.2 shows the difference between the average throughput for the two methods when send-

ing rate is changed and lognormal distribution is used to model the channel occupancy of SUs. The

PSRP that uses ArgMax in its decision making outperforms thePSRP with OOM. As the sending

rate is over 5Mb/sec, ArgMax performs much better than OOM because locating the most stable

path with the highest amount of available bandwidth is more crucial when the load increases. In

dynamic environments, mislabeling the most stable path would result in a greater amount of packet

loss and unwanted delay for the remaining packets. ArgMax chooses the path more precisely and

is able to learn the behavior of the network faster. In a very simple analogy, the difference is sim-

ilar to the difference of selecting a maximum value over an average value from a series of data.

The difference is more obvious when the system is in need of timely, accurate decisions. We see

the same trend in throughput when gamma distribution is usedto model SU behavior in Table 4.3.

Therefore we conclude that ArgMax is able to identify the channel with maximum duration of

availability regardless of the shape of its corresponding underlying distribution.

We present the overall end-to-end delay of the network with varying sending rates for both

OOM and ArgMax in Table 4.4. Our results show that the estimation of the ArgMax probability

through our proposed simulation scheme did not increase thedelay and even reduced it by60%.

To investigate the effect of network size, we changed the number of layersl from 6 to 12 while
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Table 4.2 Average throughput with 95% confidence interval for different sending rates,l=12, 78
nodes

Rate (Mb/s) OOM Throughput ArgMax Throughput
2 0.59± 0.0104 0.78± 0.0033
4 0.88±0.0061 0.96±0.0017
6 0.50±0.0095 0.87±0.0052
8 0.30±0.0071 0.64±0.0122

Table 4.3 Average throughput with 95% confidence interval for different sending rate with
Gamma distribution,l=12, 78 nodes

Rate (Mb/s) OOM Throughput ArgMax Throughput
2 0.873± 0.004 0.958± 0.0004
4 0.653±0.0018 0.935±0.002
6 0.471±0.0101 0.861±0.006
8 0.366±0.0074 0.751±0.008

Table 4.4 95% confidence interval of average end-to-end delay for different rates

Rate(Mb/sec) OOM Delay(msec) ArgMax Delay(msec)
6 383±21 149± 4
8 642± 34 285± 9
10 654±39 397± 12

keeping the sending rate constant at a high rate of 8Mb/sec. Table 4.5 shows that network size has

little effect on the average throughput of both ArgMax and OOM. This is due to the decentralized

nature of the PSRP algorithm. The ArgMax performs better because of its accuracy in locating the

path with the maximum available usage time.

Table 4.5 Average throughput with 95% confidence interval for different network size, sending
rate is 8Mb/sec

l OOM Throughput ArgMax Throughput
6 0.41± 0.008 0.66±0.010
8 0.36±0.007 0.65±0.011
10 0.30±0.005 0.64±0.014
12 0.32±0.006 0.6±0.008

Figure 4.4 and Figure 4.5 show the average throughput and theaverage end-to-end delay when

the mean duration of the idle period of PUsλ changes from15sec to60sec. As the idle period
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of PUs increases, the average throughput increases as well,while the average delay decreases.

However, the average throughput and the average delay change gradually when ArgMax is used

because the most stable channel is correctly identified, even when the idle period of PUs is small.

When OOM is used, the average throughput increases and the average delay decreases abruptly

after 30sec because the channels are more stable after this period on average.
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Figure 4.4 Effect of primary users on average throughput fora network with 12 layers and 78
nodes.

Figures 4.6 and 4.7 show the average number of MTUs stored in node queues and the maximum

number of dropped packets for each node. Nodes 67 to 78 are notshown in the figures since

they are source nodes. The distribution of the number of packets is uniform when PSRP uses

ArgMax, distributing the packets fairly over the network nodes by correctly identifying the network

dynamics. When PSRP uses OOM, the nodes that are closer to thesource fill up fast, but due to the

incorrect decision of a stable link, most of the packets are dropped during their trip from source to

destination. Therefore the resources of the nodes closer tothe gateway are wasted.
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Figure 4.5 Effect of primary users on average delay for a network with 12 layers and 78 nodes.

Figure 4.6 Queue Status for a network with 12 layers and 78 nodes.

4.7.2 PSRP with ArgMin Probability Distribution

In this section we evaluate the spectral resources that are available to a node by a channel subject

to frequent arrivals of primary users. A node always choosesa channel that is more stable at any
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Figure 4.7 Dropped packets status for a network with 12 layers and 78 nodes.

given time and ignores the resources of other channels available. In the stochastic framework of

cognitive radio networks, a channel can never be categorized as100% occupied, but it is given

a low priority probabilistically. An interesting observation is to determine the minimal spectral

capacity that is offered by our network configuration. In other words, we determine the minimum

rate that can be accommodated when the data is sent over the most unstable channels. Figure 4.8

shows the percentage of packets that are successfully received by the gateway when the packets

are sent over the worst channels. In the worst case scenario,at 2Mb/sec,30% of packets reach

the destination successfully. Using this information, we change the sending rate from 60Kb/sec to

300Kb/sec, which is only half of 600Kb/sec (i.e.30% of 2Mb/sec). The results are shown in Figure

4.9. We can see that about80% of packets are successfully transferred using the channel with the

lowest duration of availability at low rates. This result shows that with proper rate scheduling

and data classification, cognitive radio networks can trulyachieve maximum spectral utilization.

With the help of ArgMin probability distribution this minimum capacity is identified and used
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for transferring data that do not require high bandwidths orare not time-sensitive. Whenever

identification of a minimum random variable is needed, ArgMin comes into play. There are many

other scenarios in networking specifically in information theory or coding, where we need such

identifications.
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Figure 4.8 Minimum packet delivery ratio of a network with 12layers and 78 nodes under
frequent arrival of primary users.
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Figure 4.9 Minimum packet delivery ratio of a network with 12layers and 78 nodes under
frequent arrival of primary users at low rates.

63



4.8 Summary

In this chapter we proposed a decentralized probabilistic routing scheme (PSRP) for a cognitive

radio operating in a crowded urban area. PSRP uses ArgMax probability distribution to decide

among neighboring nodes with variable band channels. To show the strength of ArgMax over the

classical Odds-On-Mean probability distribution, which is used in most probabilistic protocols,

PSRP is implemented with both probability distributions. We have shown that the ArgMax is more

accurate in modeling and estimating the location of the maximum available band and increases the

aggregate throughput significantly. It also decreases the network delay by60% when the traffic is

high. In the next chapter we extend the PSRP into an stochastic protocol.
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Chapter 5

Stochastic Routing Protocol

In dynamic cognitive radio mesh networks the variation in spectrum diversity and availability is

high due to the presence and the sojourn time of primary users. In this chapter, we use the devel-

oped Primary Weight Measure (PWM) metric in Chapter that measures the uniformity of spread

of primary users around a particular node and propose a decentralized routing algorithm called

Primary Spread Aware Routing Protocol(PSARP). The PSARP is an adaptive per-hop routing

scheme that, unlike the predecessor schemes, is nondeterministic. The traffic from a source to

a destination is modeled by a Markov process, and packets areforwarded hop by hop based on

transition probabilities that reflect the next hop spectralavailability as well as the entire path qual-

ity. The PWM metrics of the nodes are relayed via back-pressure and are used in the construction

of transition probabilities. On a cognitive-based NS2 network simulator, we compare the perfor-

mance of PSARP with two previously developed routing protocols for dynamic environment. We

also develop a Cognitive Stochastic Routing (CSR) protocolbased on the PSARP stochastic frame-

work that uses backlogged queue capacity instead of PWM. Ourresults show higher throughput

in PSARP and CSR, which indicate the advantage of stochastic-based routing in a dynamic envi-

ronment. In addition, PSARP with its PWM measure is more successful in choosing the best path

due to the correct identification of the primary users’ distribution, and performs substantially better

than CSR at high rates.
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5.1 Stochastic Routing

Stochastic routing is the term given to the process of locating the best route in a stochastic en-

vironment using stochastic systems tools. In theory of stochastic systems, the observed system

parameters are random and variable. The evolution of the system is governed by transitional prob-

abilities that estimate the possibility of system landing on a next state. System designers create

transitional probabilities according to their preference. We observed that the transition of packets

from a source to a destination in a cognitive radio network isa stochastic process since the random

arrival of primary users on channels make the next state of the system (next hop) in the path inde-

terministic. Packets may be sent to a next hop but never reachthat hop due to the arrival of primary

users. Therefore, we develop a stochastic routing scheme that uses the transitional probabilities to

find the most stable path. Our protocol is different in naturefrom all other previous work since it is

not deterministic. First, we begin by presenting the protocol operating environment assumptions.

Next, the theoretical modeling is presented and finally, theprotocol implementation is discussed.

5.1.1 PSARP Operating Environment Assumptions

We consider a mesh network of secondary users in the downtownarea of a city, where there are

heterogenous primary users with a variety of spectrum availability. Secondary users may choose

their particular destinations randomly. We also assume that all users in our system have little to no

mobility.

5.1.1.1 Primary User Model

We consider a number of primary users with different transmission range and dynamic behavior.

The occupancy pattern of our primary users are random and categorized as follows: A heavy user
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that occupies the channel for a longer period of time (e.g., TV band users), a medium user that

has an average occupancy period, and a light user has a short period of usage similar to a cellular

telephony and data traffic patterns. A number of primary users are randomly deployed throughout

the network. Therefore, the secondary channel availability is not consistent. Some secondary users

might be affected by more primary users than others. Primaryusers access their dedicated channel

anytime they desire without notifying other secondary users on the channel.

5.1.1.2 Secondary User Model

The secondary users have access to a number of channels from different spectrum bands. The

medium access is CSMA. Hence, once a channel is available, other secondary users compete to

access the channel and transfer their packets when the channel is sensed idle. If a secondary users

senses a primary user transmission, it interrupts its transmission, queues up its packet, and waits

for the next channel availability.

5.1.1.3 Medium Access and Physical Medium Model.

The CSMA technique is used by the secondary users to access the physical channel. The CSMA is

enhanced with a PU detection mechanism. By the presence of a primary user, the secondary users

would not transmit and back-off until primary users have left the channel. Secondary users are

equipped with two radio interfaces with omni directional antennas. A control channel is dedicated

to the exchange of control packets and is monitored by one interface. Due to the irregular arrival of

primary users, a dedicated control channel is necessary forthe reliable transfer of control packets.

The other interface monitors the data channels. The wireless channel has the Rayleigh fading

model. According to [48], Rayleigh fading is appropriate for an urban area, where there is no line

of sight between the sender and the receiver.
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5.1.2 Theory

As explained in previous chapter, the flow of packets initiated from a sender to a receiver can be

modeled by a Markov process with time dependent transition probabilities. The transitions are step

wise from one node to another [55]. All thenodesof a particular flow form the transientstatesof

the Markov chain except the receiver, which is absorbing. Let us consider a secondary network. At

a time epocht, a secondary user senderi chooses any of its neighboring nodesj, {j 6= i, j ∈ Mi,t}

(Mi,t: total number of neighboring nodes ofi accessible fromi at timet) to send its packets to

the destinationd via channelk, k = 1, · · · , Nij based on the transition probabilitiespt[ij;d](k).

The variableNij represents the total available channels between nodesi andj at timet. The time

indext is suppressed from now in our notations whenever there is no ambiguity.

To have a reliable transmission, from a local perspective, the nodei at time t looks for a

neighboring nodej with a reliable link connection. In a global view however, the neighboring

nodej should be able to forward received packets to the desired destination. In other words, node

j should be on a valid path to the destination. Therefore, in any formulation forpt[ij;d](k), the

following two criteria must be addressed.

• Neighbor’s forwarding ability

• Neighbor’s link quality

5.1.2.1 Neighbor’s forwarding ability

To model a node’s forwarding ability, a selection probability gd(j) is assigned to each neighbor

nodej for a specific ultimate destinationd at time t based on its maximum PWM value∆j .

Probabilistically, the transition must go through the nodes that have maximum PWM meaning

they are less affected by the primary users. Therefore,gd(j) is found based on the odds on PWM
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probability distribution as follows.

gd(j) =
∆j

∑

m∈Mi,d

∆m
, j ∈ Mi,d (5.1)

whereMi,d consists of the nodei neighbor nodes that could be chosen for the ultimate destination

d at timet.

∆j = max{δj,m, m ∈ Mj,d} (5.2)

The setMi,d is identified in the initial setup phase of the PSARP protocol. As explained in section

3.3, when∆j = 0, there are no primary users around the nodej. Therefore,gd(j) = 1.

5.1.2.2 Link reliability

A link between nodei and nodej is stable if it is less interrupted by the primary users. Whena

primary user is absent, the channel is used by other secondary users. Therefore, a link reliability

metric should also capture other secondary users traffic load on the channel. We use the ArgMax

probability distribution to characterize the channel thathas the maximum utility among the set of

all available channels. Therefore, the probability that channeln at nodei has the maximum utility

isPij(n), evaluated using equation (3.7).

5.1.2.3 System Transitional Probabilities

Let us summarize the probabilistic dynamics of transitions. A nodei seeks an accessible node

with maximum PWM through a link with maximum utilization at agiven epoch. The system has

stochastic dynamics; consequently, the desirable nodes and links are subject to change. The transi-

tion has two stages: the selection of the desirable neighboring node for the ultimate destinationd,

69



and the selection of the desirable link. The tree diagram with rooti and branches[i → j, j → kj ],

j = 1, · · · ,Mi,d, kj = 1, · · · , Nij , shown in Figure 5.1, depicts the transitions fromi to j through

channelk. Thus, the transition probability fromi to j through the channelk at timet is

Figure 5.1 Transition probabilities tree diagram

p[ij;d](k) = gd(j)Pij(k). (5.3)
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Therefore the transition is fromi to any of the states in{(j, k) : j = 1, · · · ,Mi,d, kj =

1, · · · , Nij} The following matrix governs the transition probabilities.

Tid =

























p[i1;d](1) p[i2;d](1) · · · p[iMi,d;d]
(1)

p[i1;d](2) p[i2;d](2) · · · p[iMi,d;d]
(2)

...
...

. . .
...

p[i1;d](Ni1) p[i2;d](Ni2) · · · p[iMi,d;d]
(NiMi,d

)

























, (5.4)

The number of columns ofTid, Mi,d, is the number of neighbors available to nodei leading to

destinationd at timet, and the number of rows,Nij , is the number of channels available between

nodei and its neighborj at timet.

Clearly,
∑

Ni,jMi,d
jk

Pij,d[t; chk] = 1. We see this is satisfied since the elements of the

transition matrixTid are the ending branches of the conditional tree diagram in Figure 5.1. In

the next subsection, we present the framework and forwarding mechanism based on the transition

matrixTid of PSARP.

5.1.3 PSARP Implementation

In this section we layout the implementation of the stochastic protocol. First, we list different

routing components that are used to make the protocol reliable and sustainable in actual imple-

mentation. Second, we explain how these components are constructed. Finally, we explain the

adaptive per-hop forwarding procedure by following packets from a source to a destination. We

categorized the routing components into:

1. Tables

2. Control messages
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3. Transition probabilities

5.1.3.1 PSARP Tables

Two tables are held and maintained at each CR nodes.

• Neighbor table

Similar to AODV based protocols [31], CODV [32], OSDRP [33],each node holds a table

to store some attributes of its neighbors. These attributeswill eliminate the count to infinity

and the discontinuity problems that are usually present in adecentralized decision making

protocols. A neighbor table entry corresponding to a neighbor j is shown in Table 5.1.

Table 5.1 An entry of the neighbor Table

Neighbor Id (j)
Destination Id (d)
Number of hops

Authorization index (connectivity attribute)
Time to live (Expiration time for this node)

Max PWM,∆j
Reception channelk∗.

The channel utilization effect is captured in evaluating the channelk∗ that has the maximum

utility around neighborj by using equation (3.7).

• Forwarding table

The entries in the forwarding table construct the sets of candidates among the neighbors

that are suitable to receive packets for a specific destination. See Table 5.2. Each node

uses the forwarding table information to construct its transitional probabilities. This pro-

cess is explained in detail in the following subsections. Active neighbors are those with a
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lower number of hops and a valid authorization index; this information is obtained from the

neighbor table. Note that the forwarding table also exists in the other routing protocols.

Table 5.2 An entry of the forwarding Table

Destination
List of authorized neighbors

p[ij;d](k) transition probabilities

for all authorized neighbors

5.1.3.2 Control Messages

In order to update the entries of the neighbor table and forwarding table according to the system

dynamics, neighbors exchange two types of control messages.

• HELLO Packet

Similar to decentralized protocols, HELLO packets are responsible to update the neighbor

and forwarding table of each node. A HELLO packet carries thedestination of the next

packet waiting to be transmitted. The HELLO packet is generated when a node does not

have an entry for a particular destination or when the transition probability update period is

reached. HELLO packets are broadcast to neighbors on the common control channel with

the following information:

– Destination

– Number of hops

– Max PWM,∆j

– Received channel ID

Upon receiving the HELLO packet, the node updates the corresponding information in its
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Neighbor table. In order to avoid HELLO packet collisions, nodes send HELLO packets in

random time slots.

• Destination Acknowledgment DACK Packet

In order to avoid isolated nodes, the neighbors are authorized for a specific destination. To

set the authorization index in the neighbor table, when destination receives a message, it will

generate the DACK message. Instead of acknowledging each path, which may introduce

overhead for long packet headers, we authorize each neighbor via back-pressure. See Figure

5.2. Node1 wants to send to node4. Once node4 receives a packet, node4 authorizes

2 and3, letting them know that they can reach node4. Then, nodes2 and3 authorize1,

letting node1 know that it can reach4 through2, 3. The DACK is sent locally. Once a

Figure 5.2 Simple topology, node4 is the destination, generating DACK messages.

node is authorized, no DACK message will be sent to it. We alsoauthorize all paths with

a minimum number of hops to the destination to skip long paths. The DACK messages are

only sent in the initial set up. We consider a mesh network where the nodes are stationary

with long lasting energy. Therefore, the hop number would not be dynamic. Note that the

dynamics of channel availability and node occupancy are included in theTid matrix. Hence,

contrary to DSR, DSDV, AODV, and other reactive and proactive protocols, we do not need

to repeat this process during network operation.
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5.1.3.3 Transition Probabilities

As mentioned earlier, the next node is found based on the transition probability associated to it. In

order to find each entry of the transition matrixTi,d, Pij(k) is calculated by both nodesi andj,

and thegd(j) is evaluated by nodei based on the values of∆j that are stored in its Neighbor table.

• Evaluation of Channel Reliability Probabilities

Each nodei is aware of its surrounding and gathers the number of times that a channelk is

sensed idle (uij [k], the channel utilization parameter for each channelk). It constructs the

following vector for a pre-specified observation period:

Ri(t) = [uij [1] . . . uij [k]].

Therefore, the node has many realization of vectorRi(t) after t sensing periods. The

ArgMax and ArgMin probability distributions corresponding to the channel utilizations are

evaluated based on simplified simulation method presented in Algorithm 1. The variable

Tmax corresponds to the maximum number of observations. The variablesMaxk and

Mink represent the number of times that channelk has the maximum and minimum uti-

lization respectively.

• Evaluation of Forwarding Ability Probabilities

The∆j metric of the neighboring nodej informs the senderi of the distribution of primary

users around its neighborj. Each nodej calculates its∆j according to equation (5.2) at each

time t that a Hello-reply packet is sent. Based on the∆j obtained from all the neighbors,

p[ij;d] is calculated for each neighboring nodej based on equation (5.1).
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Algorithm 1 ArgMax and ArgMin probabilities calculation procedure

for t = 1 to Tmax do
in Ri(t)
if channelk has the maximumuij then
Maxk = Maxk + 1

end if
if channelk has the minimumuij then
Mink = Mink + 1

end if
end for
Pij(k) = Maxk/Tmax
Qij(k) = Mink/Tmax

5.1.3.4 PSARP Forwarding Mechanism

The procedure of forwarding packets from a source to a destination is presented here. In the initial

setup the neighbor and forwarding tables need to be constructed. Hence, to identify the authorized

neighbors, source nodes broadcast the data packets destined for a particular destination. By simple

flooding, the packets are delivered to the destination. The destination generates the DACK mes-

sages and the nodes that are authorized by receiving the DACKpacket from the destination, will

authorize their neighbors as explained in the constructionof control messages above. The DACK

messages are propagated back to the source so that the sourcenode can update the forwarding

table. After this initial setup the forwarding mechanism isas follows:

• The source nodei;

1. Checks the neighbor table to see if the destinationd is in the neighbor table. If not,

broadcasts the message (waits for DACK messages to arrive).

2. Sends the HELLO packets and collects the HELLO packets from its neighbors. Hence,

the forwarding and neighbor table elements are updated.

3. Computesp[ij;d](k) for each neighbor based on equation (5.3).

76



4. Sends number of packets with the same destination to neighbor j proportional to the

value ofp[ij;d](k). Therefore, the neighborj that has the highest value ofp[ij;d](k)

associated to it, is more often the next hop.

• The intermediate nodej upon receiving a message, checks the destination of the message

and

1. Checks the neighbor table to see if the destinationd is in the neighbor table. If not,

broadcasts the message (waits for DACK messages to arrive).

2. Looks at the forwarding table, if there is a neighborh for the destinationd, gets the

transition probabilitiesp[jh;d](k) from the table.

3. Forwards the number of packets destined tod to neighborh proportional to the value

of p[jh;d](k).

• The destination noded receives the packets and looks up the previous hop from the message

header and checks if it is included in the list of the authorized previous hops. If not, the

destination gathers a list of the unauthorized previous hops and insert them in the DACK

message. The DACK message is then broadcasted. Therefore, all the unauthorized previous

hops are authorized with one DACK message.

5.2 Additional Features

Here, we elaborate on some features embedded in PSARP that may be used in other stochastic

routing protocols.
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5.2.1 Update Period

Note that thep[ij;d](k) is highly dependent on how fastPij(k) andgd(j) are updated. Currently,

the update period is around one second. During this period, we can have 100 samples ofRi matri-

ces to estimatêPij(k) andĝd(j). From the law of the iterated algorithm proposed by Kolmogorov

in [56], the upper and lower bound on the rate of convergence of the estimator of a distribution to

its true value are as follows:

lim sup
n→∞

√
n‖P̂n − P‖√
2 ln lnn

≤ 1/2

lim inf
n→∞

√
2n ln lnn‖P̂n − P‖ = π/2

wheren is the number of samples. From the above we can find the upper bound on the error of the

estimator based onn, for largen

‖P̂n − P‖ <

√
ln lnn√
2n

(5.5)

We can see that by selectingn = 100, the error is about0.15; and asn increases, the rate of

convergence will go exponentially to zero. By selectingn = 200, the error is0.004. Therefore, by

having our update period around one second, or in other wordsby collecting100 to 200 samples,

we have a very good estimate for the ArgMax and OOM distributions corresponding toPij(k) and

gd(j) respectively.

5.2.2 Channel Selection Mechanism

The process of handshaking with neighbors in CRNs is challenging. A neighboring node that

chooses to change its channel due to the presence of a primaryuser should notify its neighbors of
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its decision in a timely manner. Nodes choose their sending channel based on their local sensing

measurement. For instance, suppose node1 is choosing channel1 because theP12(1) is maxi-

mum, while node2 is selecting channel2 because based on its sensing measurementP2j(2) is

maximum, where nodej is a neighbor of node2. Therefore node1 should check which channel

node2 is on before sending its packet on its decided channel. We have the following mechanism

in place to reduce packet loss for such a scenario. This mechanism will also reduce handshaking

overhead.

1) Each node chooses its receiving channel according to the values of the ArgMax probability dis-

tribution that locates the channel with the maximum idle frequency in the set of available channels.

The channel ID is sent to neighbors via HELLO packets and saved in the neighbor table.

2) When nodei wants to send its packets, the next hopj is selected based on the transition prob-

ability p[ij;d](k) in equation (5.3). Then, nodei switches to the receiving channel of nodej for

sending. If the receiving channel of nodej is occupied on the side of nodei, the next hop is rese-

lected.

3) After sending, nodei switches back to its own best receiving channel.

We can see that this mechanism forces the node to choose a linkthat is reliable at the both

sender and receiver side.

5.3 Evaluation

We study the effectiveness of PSARP in a dynamic environmentthrough simulation. The current

version of NS2 computer simulator has the traditional MAC layer that is suitable for evaluating pro-

tocols designed for wireless networks. However, a cognitive radio network has its own enhanced

MAC layer. In order to test the routing layer, we designed thecognitive MAC layer. We started
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by using the open source Cognitive Radio Cognitive Network simulator (CRCN) [57]. Although

a primary user is defined in CRCN, the MAC layer would not interrupt its transmission when

sensing primary users’ activities. Furthermore, the primary users’ traffic does not have priority

to secondary users’ traffic. Hence, the CRCN MAC layer is modified substantially to incorporate

these realistic scenarios.

We focus on adynamicenvironment. The primary transmitters and receivers locations are

unknown and their transmission duration is unpredictable.Therefore, we compare the protocol

with the Local Coordination Based Routing and spectrum assignment (LCBR) [58], and OSDRP

[33]. The LCBR is an AODV based protocol that uses the summation of frequency switching and

back off delay at a node on top of the number of hops as its routing metric. The protocol also

identifies traversing flows at each node and calculates the active frequency bands taken, which are

used for multi-flow multi-frequency scheduling. As mentioned in the related work, many other

schemes that are designed for the dynamic environment adoptthe same approach. The OSDRP

estimates the route lifetime based on the channel availability, as well as channel switching and

queuing delays, and adjusts the time of a flow according to theroute lifetime. In addition, it

controls the transmission power and selects the nearest forwarding SUs to the SU destination node

to support QoS.

Further more, to show that the PWM measure truly has an advantage to show the distribution

of primaries around a node, we also compare the PSARP with theCognitive Stochastic Routing

(CSR) protocol that we developed. CSR has the same stochastic dynamics as PSARP but uses

the backlogged queue capacities as an indication of next node’s reliability instead of PWM. The

results show that the stochastic approach we proposed is indeed successful in coping with the

uncertainties in dynamic environment in both protocols. However, the PSARP performs better

because the PWM measure enables it to recognize unstable routes more accurately.
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We used different scenarios. In the first scenario a network with 30 nodes with4 primary users

in a 1000X1000sqm area is considered. The secondary users are spread randomly throughout

the plane. The radio range is250m and a channel is dedicated to the control channel with the

bandwidth of250kb/sec. Three other channels are available, each with the bandwidth of2Mb/sec.

The secondary nodes are able to switch to another channel when their transmission is interrupted or

the channel is occupied. This scenario is similar to the testconfiguration of the OSDRP protocol.

5.3.1 Primary Users Traffic Patterns

The distribution of the inter-arrival time of primary usersis exponential with a mean of3.0. As a

result, the primary user’s traffic follows a Semi-Markov process with an OFF/ON period following

the exponential distribution. This illustrates the model presented in the measurement study [54]

of the behavior of primary users. Note that under the uniformdistribution, small, mid-size, and

large values assume the same frequencies. In other words, the frequencies that a primary user

who is on for a short time and a primary user who is using the channel for a longer period are the

same. Therefore, the uniform distribution is not a legitimate distribution for the sojourn time of a

primary user. The exponential distribution ideally explains the sojourn time distribution in which

the frequency of a primary users whose sojourn time exceeds athresholdτ decreases exponentially.

To evaluate PSARP under different primary user patterns, wechanged both the distributions

and their corresponding mean of the idle period of primary users and kept all the parameters of

scenario1 constant. The average throughput of the protocols is shown in Table 5.3. With the

exponential pattern, all four protocols gain higher throughput. This was expected, since the shape

of the distribution is skewed to the right. The average idle period will be higher than the uniform

distribution. PSARP and CSR maintain throughput even though the inter-arrival time of primary

users is changing from 3 to 30 seconds. When the inter-arrival time of primary users is 3 seconds,
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Table 5.3 Average throughput (bytes/sec), (30-node network) with different primary users traffic
patterns

Average Idle Period (sec) OSDRP LCBR CSR PSARP
Exponential (mean 3 sec) 2.30E4 3.49E4 5.20E4 5.5E4
Exponential (mean 30 sec)4.40E4 4.70E4 4.80E4 5.10E4

Uniform (mean 3 sec) 2.20E4 3.3E04 4.50E4 4.80E4
Uniform (mean 30 sec) 3.91E4 4,40E4 4.51E 4.83E4

the protocols should quickly adapt to the changes in the network dynamics. The PSARP adapts

to the primaries’ change of behavior. Its good performance is also an indication that the transition

probabilities are estimated in a timely manner to cope with the uncertainties. The OSDRP and

LCBR are not successful in capturing the randomness effect because of their deterministic frame-

work and frequent calling of route recovery mechanisms. However, as the idle periods increase,

meaning the channels are less interrupted by the primary users, the throughput of both protocols

improves and approaches that of the CSR and PSRP. This shows that stochastic modeling works

better than deterministic modeling when the environment isdynamic.

5.3.2 Effect of Network Load

We were also interested in measuring the performance of protocols under different loading condi-

tions. We change the sending rate from 81kb/sec to 1638kb/sec in the first scenario. We use the

exponential distribution with the mean of3 for the inter-arrival time for the primary users. We

used 15 different random scenarios with the same configuration as the first scenario, the results

shown in Figure 5.3 and Figure 5.4 are the average of the throughput and end-to-end delay from

all the15 random scenarios. There is a peak around a 409kb/sec rate in all four protocols. This

was expected since there are 8 CBR connections, meaning 8 sources are sending packets with

409Kb/sec. The channel’s bandwidth is 2Mb/sec. If the packets are distributed fairly across all

three channels, the network generates high throughput around this rate. However, if the availabil-
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Figure 5.3 Average throughput under different loading conditions, 30-nodes network.

ity of a channel is not determined accurately and packets aresent through an unreliable channel

or if the route is not updated on time, a bottleneck is generated. When the sending rate is higher

than 409kb/sec, the overall sending rate is more than the channel capacity. As a result, queues fill

up quickly. The power of PSARP and CSR are in their stochasticnature. Both protocols benefit

from the uncertainty of the network parameters. Hence, while OSDRP and LCBR try to find a

new route by unexpected arrival of a primary users, PSARP andCSR stochastic framework have

already predicted primary users arrival and chosen an appropriate node for forwarding the packets

to. PSARP and CSR learn and adapt to the primary users’ behavior more quickly. In OSDRP and

LCBR, when a link disappears, the corresponding node is removed from the routing table and the

new route discovery mechanism is initiated. Hence, the network operates with less nodes and does

not reach its optimal performance and generates less throughput. The LCBR performs better than

OSDRP due to its spectrum assignment mechanism that helps a node to forward packets with less

channel switching. We can see at higher rates that the network saturates and throughput drops. The
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sharp decrease in CSR is due to the decrease in queue capacityvariation. Hence CSR selection is

blind to the behavioral pattern of primary users located onehop away from the intermediate neigh-

bors at high rates. PSARP on the other hand, uses the PWM measure and is able to identify the

correct path. In Figure 5.4, we represent the end-to-end delay comparison. Since the environment

is highly dynamic, OSDRP does deliver a substantial amount of packets compared to PSARP and

CSR, which adds to end-to-end delay. PSARP and CSR are using ArgMax probability distribution

in locating the channel with the maximum utilization. The strength of ArgMax probability dis-

tribution is in its accurate identification of the maximum random variable among a set of random

variables. Therefore, the channel that is chosen has a higher probability to stay stable and provide

stable transmission. Therefore, packets are rarely buffered in the network. This further enhances

the performance of the PSARP and CSR and minimizes its end to end delay. Since PSARP chooses

the more stable path, its end to end delay is better than CSR. At the rate of 409kb/sec, CSR and

PSARP delay are the lowest and the throughput is at its peak value.
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Figure 5.4 Average end-to-end delay under different loading conditions, 30-nodes network.
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5.3.3 Large Network

In the second scenario, we use a network with 70 nodes. The sending rate is409kb/sec. The num-

ber of primary users are15, and they choose different channels from the three available channels.

There are10 CBR connections and sources are distributed randomly in a1500X1500 sqm field.

Since primary users’ inter-arrival time is random, learning their behavior and selecting the route

adaptively substantially improves the performance of the network. Table 5.4, shows the simulation

results for different distribution for the inter-arrival time of primary users. We can see that OSDRP

fails substantially to deliver packets due to the large instability of links and nodes. However, as the

idle period of the primaries increases and the network operational environment is closer to a semi-

dynamic environment, OSDRP and LCBR throughput increases.On the other hand, PSARP is still

successful in maintaining throughput within a range and adapts to the uncertainties. Since PSARP

and CSR are stochastic in nature, their throughput degradesas the environment tends to be more

static. The reason is that a node in these protocols selects the next hop and the receiving channel

probabilistically. It does not stay on a specific best channel or rely on a specific best next hop.

Nevertheless, PSARP has a higher throughput than CSR because the PWM measure captures the

distribution of primaries more accurately than the queue average backlogged capacity. When the

environment is semi-dynamic, PSARP performs slightly better than OSDRP and LCBR because it

distributes the packets fairly among the nodes based on its selection probabilities.

Table 5.4 Average throughput (bytes/sec), (70-node network) with different primary users traffic
patterns

Average Idle Period DSODV LCBR CSR PSARP
Exponential (mean 3 sec) 1.35E4 2.01E4 3.8E4 3.95E4
Exponential (mean 30 sec) 3.91E4 4.1E4 3.84E 4.10E4

Uniform (mean 3 sec ) 1.20E4 1.9E4 3.75E4 3.91E4
Uniform (mean 30 sec) 3.70E4 3.8E4 3.71E4 4.02E4

We also test the performance of PSARP under different loading conditions in the large network.
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Figure 5.5 present the average throughput. Although the network size has increased, the PSARP

is still successful in maintaining the throughput. The queues have more variations in their capaci-

ties, when there are more nodes in the network. Therefore, CSR throughput has less variation and

degrades slower compared to the scenario 1. The OSDRP and LCBR are showing the same trends

as scenario 1. Maintaining throughput is very useful in applications that require a guarantee of

delivery within a certain user defined quality of service range. In the future, it will be interesting

to evaluate the lower and upper bound of the PSARP delivery range. Evaluation of the delivery

range is useful to control the applications’ sending rate inorder to have a guaranteed delivery in

dynamic CRNs. Finally we present the comparison of the relative overhead frequency of the pro-
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Figure 5.5 Average throughput under different loading condition, 70-nodes network.

tocols over the first four hours of the large network operation in Figure 5.6. The relative overhead

frequency is the ratio of the number of overhead packets of each protocol over the total number of

overhead packets collected from all four protocols over that particular hour. The relative overhead

frequency of PSARP and CSR is larger in the first hour of operation due to the transmission of

DACK messages. Recall that the DACK messages are needed in the initial configuration of the
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network to configure the neighbor and forwarding table. However, the relative overhead frequency

decreases substantially after the first hour because only the HELLO messages would provide the

information needed to the sender nodes to update their transition probabilities. On the other hand,

the relative frequency of LCBR and OSDRP is higher due to the frequent calling the route recovery

and spectrum assignment mechanism.

Figure 5.6 Relative frequency distribution of overhead in the first 4 hours of network operation.

5.4 Summary

In this chapter, we introduced the Primary Spread Aware Routing Protocol (PSARP), which is able

to adapt to the uncertainties of spectrum availability in cognitive radio networks. PSARP is based

on the Markovian property of a particular flow from source to destination and uses PWM as one of

its routing metrics. We demonstrated through simulation that PSARP is robust to the variation of

the primary users’ activity. Our results confirmed that using a stochastic protocol for a stochastic

environment is indeed more cost efficient and suitable than using deterministic protocols that map

channels’ availability to nodes’ availability. We believethis research is the beginning of a new line

of work on the development of stochastic routing protocols.
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Chapter 6

Decision Tree Cognitive Routing

In the previous chapters we explained that in a dynamic CRN, the arrival rate of primary users is

high, causing small windows of spectrum usage opportunity.High variations in spectrum oppor-

tunities produce uncertainties in the problem of spectrum sharing and routing. In this chapter, we

focus on developing another routing scheme that works undersuch uncertainties.

It is indeed plausible to adopt elaborate techniques in statistics that address decision making

problems in an environment where uncertainty exists and thetrue state cannot be fully predicted.

This is exactly the situation of a cognitive radio sender. First, the variety of spectrums and their

corresponding channels provide multiple routes from the server to the client. Hence, the server has

multiple options with different routing consequences. Second, the chosen route might not stay sta-

ble during the transmission period. Therefore, the sender node is uncertain about the consequences

of its decision. In other words, the circumstances governing a node’s decision might change. The

theory of games and decision theory deal with decision making problems under uncertainty. In

game theory the players play against each other. Each playerwishes to maximize its fortune. This

theory is intensively used in networks [14]. In decision theory a player plays against nature, mean-

ing the player opponent does not try to increase its fortune,but exhibits stochastic performance

that is explained by probability laws. In decision theory the current state of the game is taken to be

uncertain and the decisions are made considering such uncertainties. In a highly dynamic environ-

ment, decision theory leads to less computational complexity than game theory since many types
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of games have multiple equilibria under such variations. Inthis chapter, we bring the problem

of routing in a dynamic CRN to the framework of a decision making problem. Then, backward

induction terminal analysis is used to produce the decisionstrategy for a sender node.

To translate routing in CRNs into a decision problem, noticethat in a CRN, a sender does

not have a full knowledge of the availability and stability of the neighboring nodes due to the

instability of available channels. The sender informationis expressed by two probability distribu-

tions, called prior and posterior distributions. A prior distribution governs and explains the natural

status of the states (neighboring nodes) unknown to the decision maker (sender). A posterior dis-

tribution gives the sender understandings of unknown states after performing an experiment that

gives partial additional information on the status of the unknown states. A utility function also

indicates the decision maker gains or losses. Decision datais usually denoted by(e, z, a, s). The

decision maker runs experimente, observes samplez, takes acta when the true state is indeeds.

An optimal act minimizes the expected loss or maximizes the expected gain; the latter equals to

maxe Ep(z|e)[maxa[Ep(s|z,e)U(e, z, a, s)]], wherep(z|e) is the marginal sample distribution for

e, p(s|e, z) is the posterior distribution, andU(e, z, a, s) is the utility function. When the decision

maker does not perform an experiment,p(s) ∼ p(s|e◦, z◦) stands for the prior distribution, while

e◦, z◦ means no experiment, no observation.

One important challenge is to propose appropriate posterior distribution. This will give weight

to the sampling and reduces the cost due to uncertainty. It isunderstood in Bayesian statistics that

a good posterior ultimately and efficiently will estimate the unknown parameters. However, in

cognitive radio networks the classical statistical distributions cannot be used as default probability

laws governing the sender realization of the status of the channels connecting it to its neighboring

nodes. This is due to the non-stationary presence of primaryusers. The performance of the ArgMax

distribution [59] motivates one to build the empirical ArgMax distribution that acts as a sample
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distribution. Then the posterior distribution is easily deduced. This nicely and effectively provides

the sample information to the sender, and is one of the contributions of this work.

The utility function also plays a crucial role in taking intoconsideration the side issues that are

imposed on a decision problem. In routing, it is vital to design a correct utility function, as it affects

the overall routing performance. We form a utility function, formula (8.1) in subsection 6.1.4,

which is equipped with different control knobs that adjust the gain by changing the significance of

parameters associated with spectrum stability, node reliability and bandwidth variability.

By adopting the decision problem components, we build a Decision Tree Cognitive Routing

scheme (DTCR) that aids a sender node in selecting the most appropriate next hop neighbor in

terms of stability and reliability. In summary the contribution of this chapter is as follows:

• We develop a decision tree cognitive routing scheme to modeland analyze the problem of

routing in a dynamic CRN.

• We construct appropriate sample and posterior distributions to explain the status of channels

and nodes in supporting packet delivery.

• We introduce a utility function that captures the effects ofspectrum availability, bandwidth

fluctuations and path quality. This utility function is expandable to include other important

decision making factors.

We compare the performance of our DTCR strategy with the optimal strategy. In the optimal

strategy, nodes have full knowledge of the future changes inthe network parameters. In other

words, no routing strategy performs better than the optimalstrategy. We also compare our method

with the local coordination based routing and spectrum assignment protocol [58] to measure the

deviation of our scheme and a routing protocol designed for adynamic environment from the

optimum strategy. We like to emphasize here that the DTCR is specifically designed for dynamic
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distributed cognitive radio networks, therefore choosinga semi dynamic routing protocol would

not provide us with a fair comparison. Our results show that our DTCR successfully treats the

occurrence of uncertainty and performs close to the optimalscenario. The DTCR uses the posterior

probability distribution to estimate the availability of aneighbor under uncertainty. The backward

induction scheme helps a node to choose a neighbor that is more likely to be the correct candidate;

it reduces the cost of choosing wrong candidates. Thereforeit operates substantially better than

the local coordination based routing protocol; its performance is indeed near optimal at low and

moderate sending rates. However, at high sending rates, it still outperforms the local coordination

based routing.

The organization of this chapter is as follows. In Section 6.1, we present the decision theory

frame work and DTCR utility function. The terminal analysisbackward induction and its use in

obtaining a correct decision in our strategy is discussed inSection 6.2. Section 6.3 presents the

details of implementation and simulation results.

6.1 System Model

We consider the mesh cognitive radio network in section 4.3 that is installed in an urban area.

Nodes have access to multiple spectrum bands and are able to choose any channel from those

spectrum bands. The diversity of the clients and the available spectrum bands result in a fairly

dynamic operating environment. The variety of spectrums and their corresponding channels pro-

vide multiple routes to the gateway. However, the chosen route might not stay stable during the

transmission period. Therefore, it cannot be guaranteed that the packets will reach the destination.

In such an environment, an end-to-end path does not provide afeasible solution. In our strategy a

node only decides among its neighbors and the quality of the remainder of the path to the gateway
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is translated by the amount of weight allocated to the neighbors.

We assume the channel is shared with a Non-Contiguous Orthogonal Frequency Division Mul-

tiplexing (NC-OFDM) technique, which is sufficiently agilewith respect to spectrum usage. By

deactivating (i.e, nulling) subcarriers that can potentially interfere with other users, this form of

OFDMA fills in the available spectral gaps within the channel’s transmission bandwidth partially

occupied by other users while not sacrificing its error robustness [47].

Similar to previous chapters, the fluctuation of the wireless channel is modeled by the Rayleigh

fading model.

A mesh cloud with a single gateway with four different spectrum bands is shown in Figures

(6.1a) and (6.1b). For simplicity, nodes located within thesame number of hops from the gateway

are grouped into one layer. We refer to a nodei in a layerl as i[l], i = 1, 2, · · · ,M , whereM

represents the total number of nodes in the network. The nodei[l] chooses a node that is located

either in its own layerl or in the upper layerl − 1, and is inside its radio transmission range. Let

Ni denote the number of candidate nodes available for nodei[l].

Table 6.1 summarizes the notations that are used in this article. For simplicity, we suppress the

notationsl andt, and usei andki,j whenever there is no ambiguity. Let us assume that the node

12[4] in Figure (6.1b) has packets to send to the gateway. Based on the spectrum coverage and node

12[4] radio range, this node has3 intermediate neighbors:8[3], 9[3] and11[4]. Node12[4] chooses

one of its neighbors. In terminology of decision theory [16], the set of possible states (choices)

available to the decision makeri is represented bySi = {s1, s2, ..., sNi
}. The node12[4] is the

decision maker. The states unknown to the decision maker arethe intermediate neighboring nodes,

s1 = 8[3], s2 = 9[3] ands3 = 11[4]. Therefore,S12 = {s1, s2, s3}. There is also a set of actions

that the decision maker can take, represented byAi = {a1, ..., aNi
}; aν is the act of choosing a

statesν to visit. According to our example, we have three acts,a1, a2, a3; aν corresponds to
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(a)

(b)

Figure 6.1 A simple mesh cloud within a city with its node diagram
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choosing a neighborsν , ν = 1, 2, 3.

Table 6.1 DTCR Notations

Si Decision state space of nodei.
Ai Decision action space of nodei.
Zi Decision sample space of nodei.
e The experiment of assessing the duration of channel

availability between the sender and its neighbors.
e0 No experiment.
i[l] Nodei in layerl; l hop away from the gateway.

k
i[l],j[l′](t) channelk between nodei[l] andj[l′] at timet.

Ni[l] Number of neighbors available for nodei[l].

M Total number of nodes in the network.

izj Maximum duration of channels availability in
spectrums between nodei and neighborj.

aj The act of choosing nodej.
(e, z, a, s) Branch of the tree corresponding to the experimente that

leads to samplez taking actiona when the true state iss.
ui(e, z, a, s) Utility function corresponding to the branch(e, z, a, s).

In the initial learning phase the sender gathers information from their neighbors and their sur-

rounding spectral measurements to construct the decision tree (refer to Section 2.5). Thedecision

tree is a technical term in statistical theory [16] and should notbe misinterpreted by a routing

tree or a graph theory tree. The decision tree demonstrates all possibilities in a decision making

problem. Figure 6.2 shows the decision tree associated to the decision making of the node12[4].

The node12[4], sits at the root of the tree and the states are at the ending branches of the tree. In

the beginning of any decision problem, the decision maker can perform an experiment to obtain

additional information in support of an act. Performing an experimente is not obligatory and the

node may go fore0, which means no experiment. The experiment here, is sensingthe duration

of availability of channels connecting the node 12[4] to itsneighbors. The possible outcome of

the experiment is12zj , the maximum duration of channels availability in spectrumbands between
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node12[4] and neighborj. The outcome ofe0 is z0, corresponding to no observation.

Figure 6.2 Node12 decision tree, with three states and three acts

6.1.1 Experimente

Performing an experiment in decision theory means that the decision maker is willing to give

some cost in exchange for gaining partial information aboutthe status of the unknown states. The

experimente is collecting and reading a history of primary users’ activities on its surrounding

channels, then measuring the maximum duration of channels availability 12zj in spectrum bands
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between the node12[4] and its neighborj. Many previous studies in routing also rely on past

measurements on the activities of primary users to find the most stable path [33,60].

We assume that there areKi,j spectrum bands available between nodesi andj. Each spectrum

band has a number of channels. Nodei[l] handshakes with its neighbor nodej, j = 1, 2, · · · , Ni,

and receives the signal-to-noise ratio gain (SNRgki,j
(t)) of a channelki,j of that spectrum band,

which connects nodei[l] to the nodej[l − 1]. TheSNRgki,j
(t) is evaluated at the neighbors’ re-

ceiving antennas. TheSNRgki,j
(t) at timet is the signal-to-noise ratio,SNR, of a shared channel

over theSNR of the same channel when it is not shared by other users. Hence, theSNRgki,j
(t)

roughly indicates the occupancy influence on the channel. Based on [47], the occupied bandwidth

of the channelki,j , denoted byOkij
, is given by:

Oki,j
(t) = Bki,j

√

10
(−SNRgki,j

(t)/10)
, (6.1)

whereBki,j
is the bandwidth of the channelki,j in Hz. Therefore the period of occupancy on the

channelki,j approximately is:

Yki,j
(t) = 1/Oki,j

(t). (6.2)

Let us denote the duration that the channelki,j is sensed idle by the random variableXki,j
. Then

the duration of channel availability isTki,j
= Xki,j

− Yki,j

Finally, nodei stores the maximum observed duration of channel availability in the spectrum

bands between itself and each of its neighboring nodes, intoa vectorRi:

Ri =
(

iz1 iz2 · · · izNi

)

. (6.3)

The variableizj = maxki,j
Tki,j

shows the maximum observed duration of channel availability

in the spectrums between nodei and j. The variableizj is a sample observation in favor of
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neighborj. Therefore, the node12[4] in our simple mesh network, Figure (6.1b), constructs the

following record.

R12 =
(

12z1 12z2 12z3

)

. (6.4)

The record vectorRi is used to construct a sample and ultimately a posterior distribution for the

maximum spectral channel availability durations as follows.

6.1.2 A Sample Distribution

We quantify the stability of the spectrum bands and their corresponding channels by using the

ArgMax probability distribution introduced in Chapter . In[59], the authors show the accuracy

of the ArgMax distribution in targeting the most stable channel. From the perspective of nodei,

iz = maxj izj is the quantity of the sampling interest. The ArgMax probability distribution for a

neighbor nodej∗ is the probability that the nodej∗ contributesizj∗ . The sampling distribution

is the ArgMax distribution whenever the neighbor node that has the maximum available channel

duration isj. We denote the sampling distribution bypi(j
∗|j), j∗, j = 1, 2 · · · , Ni.

The sampling distribution is estimated by the corresponding empirical distribution as fol-

lows: After the ArgMax distribution is estimated for a single realization of available channel

durations at each node (see algorithm (2) in Section 6.3) then the procedure will be repeated

for many realizations. The sampling ArgMax probabilities are classified according to nodes as-

suming maximum ArgMax probabilities. Then the sampling distribution is obtained by finding

the mean vector of each class. The result will be anNi × Ni matrix, where thej-th column

stands for the estimated sampling distribution wheneverj is the true (state) neighbor node. Let

us make a brief demonstration. LetNi = 3 and the ArgMax probabilities for6 realizations to

be:[.3 .5 .2], [.6 .1 .3], [.2 .7 .1], [.8 .1 .1], [.3 .6 .1], [.2 .3 .5]. The realization{[.6 .1 .3], [.8 .1 .1]}
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are assigned to node1, the realizations{[.3 .5 .2], [.2 .7 .1], [.3 .6 .1]} are assigned to node2, and

[.2 .3 .5] is assigned to node3. The sampling distribution will be the3× 3 matrix:

pi(j
∗|j) =















.7 .266 .2

.1 .6 .3

.2 .134 .5















. (6.5)

6.1.3 The Posterior Distribution

Now that the sample probabilitiespi(j
∗|j) are constructed, the decision maker can compute the

probability that neighbor nodej is the true node whenever his sample indicates thatj∗ is the

appropriate state. In other words, the nodej is the true neighbor to send to but the outcome of the

experiment is in favor ofj∗. This is indeed the posterior distribution on the neighboring nodes,

and is given by

pi(j|j∗) =
pi(j

∗|j)p(j)
∑

j pi(j
∗|j)pi(j)

, (6.6)

wherepi(j) is the priori distribution on the neighboring nodes. In our design the prior distribution

of a neighbor nodej is proportional to the total number of channels that connects it to the sender.

Note that the denominator in the above equation is the marginal sample distribution. This

probability distribution will be used in our backward induction procedure.

6.1.4 Utility Function

A utility function assigns a quantity (gain) to a decision datum (e,z,a,s). In a decision problem,

a utility function is either given or is formed to explain gains for correct decisions and losses for

wrong decisions, by taking into consideration the cost of sampling. Although a utility function can

take negative values, in practice, it is adjusted or transformed so that it assumes only nonnegative
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values. Naturally for fixs, the utility function attains its maximum at decision data(e0, as, s),

wheree0 is no experiment, andas is the trivial immediate act. The decision maker choosesas if

he knows the true state iss. Sampling cost as well as incorrect or inappropriate acts will reduce

the gain.

In our routing modeling, we go for zero-one scenario, in the sense that wrong selection of the

node is a total loss, i.e. zero utility. Thus we let

µ(a, j) =



















1 if a = j, whenj is the true state,

0 if a 6= j, whenj is the true state.

Consequently

ui(e0, a, j) = ηjµ(a, j), (6.7)

whereηj is a constant that reflects the transferring quality of nodej specified by the remaining

queue capacity of nodej. We let the maximum gain be reduced by the factor1 − e
(−γiz

∗
j ) due

to the sampling cost, wherez∗j is a sample andγi is the controlling factor to quantify the amount

of channel availability variation from the sender perspective. Depending on the sensitivity of the

application on the bandwidth fluctuation,γ is selected. For example, whenγ is around0.5, a small

difference in the duration of channel availability would provide a significantly higher gain and the

node is encouraged to choose the node with highest duration of availability. Although sampling

is expected to some extent guide one to the true state, it may not always point to the optimal act.

Such a deviation will reduce the gain. The factorV (a, a∗j ) is for the corresponding reduction. We

assume that

V (a, a∗j ) = e
−β[Ae(a)−Ae(a

∗
j )]

2
, (6.8)
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whereAe(a) is the gain associated with choosing the right acta andAe(a∗j ) is the gain of choosing

the acta∗j following observing the samplej∗. In our workAe(a) will be the maximum duration

of channel availability. The parameterβ is the knob that controls the significance of the amount of

gain associated with relying on the spectrum measurement. If β is small, a node may be chosen

that does not necessarily have the highest duration of channel availability. In other words,β acts

as an error tolerance factor in channel availability measurement. By considering the fact presented

above, our utility function assumes the following formulation.

ui(e, j
∗, a, j) = ηj [1− e

(−γiz
∗
j )][v(a, a∗j )µ(a, j)]. (6.9)

As mentioned previously, the environmental dynamics of thecognitive radio network might

change and the node might choose a neighbor that was not the most appropriate node in routing.

The indicator functionµ is chosen to model the gain/loss for such a scenario. Note that based onµ,

we assume total loss when a wrong node is selected to transferpackets. A wrong node would not

necessarily give a total loss but may be able to transfer somepackets based on its queue capacity.

An interesting future direction is to modelµ according to nodes’ queue length.

6.2 Making a decision using Backward Induction

After the construction of an appropriate decision tree for our routing problem, the optimum strategy

(course of action) is specified by a branch that leads to the maximum average utility. It is specified

by the backward induction terminal analysis.

Backward induction is to work back from the ending branches of the decision tree to the initial

starting point (root). The decision data(e, j∗, a, j) are eliminated one at the time. Random dataj
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Figure 6.3 Node12 decision tree with some utilities

andj∗ are eliminated through expectations; deterministic and optional dataa ande are eliminated

using maximizing process.

The first step is to find the expected utility with respect to the state distributions.

Eui(e, j
∗, a) = ∑

j ui(e, j
∗, a, j)p(j|e, j∗), (6.10)

Eui(e0, z0, a) =
∑

j ui(e, z0, a, j)p(j|e0, z0), (6.11)
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where the state distributionp(j|e0, z0) for the experiment(e0, z0) is the prior distribution, and

p(j|e, j∗) is the posterior distribution. The second step is to identify the optimal acta∗j for the

experimente and outcomej∗, defined by

Eui(e, j
∗, aoj) = max

a
Eui(e, j

∗, a). (6.12)

The maximum expected utility isEui(e, j
∗, aoj). We letI(e0) = maxa Eui(e0, z0, a), I(e0) be

the maximum expected gain under no experiment.

The third step is to use sample information by taking expectation of the maximum expected

utility for the optimalaoj with respect to the marginal sample distribution:

I(e) := E
{

Eui(e, j
∗, a0j )

}

=
∑

z

{

Eui(e, j
∗, a0j )

}

pi(j
∗). (6.13)

Recall thatpi(j
∗) = ∑

j pi(j
∗|j)pi(j) is the marginal sample distribution. TheI(e) is the maxi-

mum expected gain under experimente.

Finally I = max{I(e0), I(e)} specifies the total utility index. The branch that corresponds to

the index I and optimal actaoj specifies the right neighbor.

The backward induction procedure for our simple mesh network is depicted in Figure 6.4. After

following the above steps, the course of action in this example is through experimente because

I(e) > I(e0). Then forj∗ = 1 choosej = 3 sinceEsU(e, 1, a3) is maximum among other

branches extended from observingj∗ = 1, and forj∗ = 2, choosej = 1, and forj∗ = 3, choose

j = 3 for the same reasoning as above. As we see in this simple example, collecting the samples

and evaluating the sample and posterior distribution is needed in the initial learning phase of the

DTCR strategy. After this initial learning, the decision maker only decides its next hop by a saved
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Figure 6.4 Node12 decision tree

strategy developed in the learning phase. This is the reasonthat the DTCR is adaptable to the

changes in a highly dynamic environment. After the learningphase, it understands the dynamics

by relying on having only one sample observation which is available from any MAC protocol and

chooses the next hop according to the saved procedure.

103



6.3 Simulation

In this section we present the details of implementing our decision tree cognitive routing scheme

and the results of simulation. In our simulation setup we areable to explore larger size networks

with a variable range of parameters more effectively than what is possible in existing testbeds.

The simulation parameters and the traffic patterns are chosen based on measurement analysis done

on real networks. We have the capability to derive actual workload patterns from a network that

operates in a highly dynamic environment.

6.3.1 Implementation Details

Our topology is similar to Figure 6.1b. There is a single gateway and nodes are arranged into

layers based on their number of hops from the gateway node. The number of accessible nodesNi

varies depending on the radio signal strength. A random value is assigned for the radial distance

of nodei from nodej. If nodej is within the radio transmission range of nodei, it is considered

accessible by nodei. In our simulation model we haveK = 5 spectrum bands. The range of their

corresponding bandwidth changes from 6Mb/sec (which couldcorrespond to the FM radio band)

to 144Mb/sec (similar to a TV channel). Note that a spectrum band depending on its type could

have a different number of channels. The bandwidth of each spectrum is divided equally among

its channels. For example, the 144Mb/sec spectrum band has6 channels, each with a bandwidth

of 24 Mb/sec (similar to sub CATV band).

To demonstrate the effect of primary users on channels, we generate random numbers from an

exponential distribution with parameterλ. As λ gets larger, the amount of time that the PU is not

using a channel is less. Once the channel is available, it is shared among other users. Based on

a measurement study [50], the occupied portion of the channel is modeled by a lognormal distri-
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bution with meanµ and standard deviationσ. The larger the value ofµ, the more occupied the

channel would be. The duration of channel availabilityizj , can be found by using a truncated dis-

tribution when the occupied portion of the channel is available, refer to Section 4.2. The recordRi

is constructed by collecting the maximum duration of channel availabilities from each spectrum

band for each neighboring node and discarding the rest. Using Ri record, the ArgMax proba-

bility pi(izj) is evaluated empirically using algorithm 2. The variableTmax corresponds to the

length of the sensing period. The ArgMax probability distribution is updated and evaluated every

τ seconds. The variableτ decreases if the decision procedure indicates no testing isnecessary

according to the dynamics of the network. In other words, no new records need to be collected.

The sensing period of channels could also be controlled according to network dynamics in future

designs. As explained in the previous section, in the initial phase of network operation (learning

Algorithm 2 ArgMax probability calculation procedure

for t = 1 to Tmax do
in Ri(t)
if izj is maximumthen
Maxj = Maxj + 1

end if
end for
pi(izj) = Maxj (t)/t

phase), a sender constructs a decision tree on the set of its neighboring node. It evaluates the best

decision strategy based on backward induction to consider future uncertainties. After the initial

phase (operation phase), a node only looks at itsRi record at timet and makes its decision, based

on its current sensing observation. Algorithm 3 summarizesthe steps of the decision tree cognitive

routing procedure in each phase.

In the above algorithm, the end of the operation period depends on the node’s mobility, traffic

arrival rate and other network design factors. For a fairly static network, where nodes disappear
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Algorithm 3 Decision tree cognitive routing procedure

Require: pi(j), Ri, pi(izj) records.
Initial learning phase:
Evaluatepi(j

∗|j) using the ArgMax probability distributionspi(izj).
Using multipleRi records, evaluate utilities based on equation (8.1).
Evaluatepi(j|j∗) andpi(j

∗) usingpi(j
∗|j) andpi(j), equation (6.6).

Use the backward induction steps in Section 6.2 and get the decision strategy.
if I(e0) > I(e1) (takinge0 branch)then

Decrease the nodes sensing period.
else

Save the decision strategy.
end if
Operation phase:
At time t look at theRi
if izj is maximumthen

Look at the saved decision strategy, get the case whenizj is observed and choose the next
node accordingly.

end if
Switch to initial phase when operation period is ended.

due to their expected battery life, the operation period could be weeks. Note that any uncertainty

due to different environmental parameters is already counted in the initial learning phase. The

operation period can also be controlled adaptively. For instance, when the gateway throughput is

falling below a certain predefined threshold, a flag is sent tothe nodes to enter the initial phase and

change their decision strategy.

In our simulation, our nodes update their decision strategyevery4 hours and the simulation ran

for 12 hours. Every300 seconds the radial distance of nodes changes, meaning the set of neighbors

changes for a particular sender node. Based on study [50], weuse an exponential distribution with

meanλ = 1/3 to model the arrival rate of primary users. We consider a lognormal distribution

with means0.8, 0.2, 0.5 and0.5 variance to model heavy, moderate and light users on channels,

respectively.

We compare our decision framework with an optimal strategy.In the optimal strategy, nodes

have complete knowledge of the future changes in the networkstates. In other words, this is
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the best performance that the network could have with its queue length, number of channels and

packet arrival rate. We are also interested in making a comparison between the deviation of DTCR

and other protocols from the optimum strategy. As explainedin the related work, many routing

protocols designed for dynamic CRNs use the framework of ad-hoc networks. We used the local

coordination based routing and spectrum assignment protocol [58], which is an AODV based pro-

tocol that uses the summation of frequency switching and back off delay at a node on top of the

number of hops as its routing metric. The protocol also identifies traversing flows at each node

and calculates the active frequency bands taken, which are used for multi-flow multi-frequency

scheduling. As mentioned in the related work, many other schemes that are designed for the

dynamic environment adopt the same approach. The performance of this protocol is shown by

using the abbreviation of Secondary Option Protocol (SOP) in our simulation results. Since we are

considering a dynamic environment, DTCR is not compared to other protocols such as CRP [60]

designed for a semi dynamic environment.

6.3.2 Effect of Network Load

To test the decision strategy under various network loads, we used 78 nodes in our network, dis-

tributed randomly in a1500 × 1500 sqm field. There are 12 sources and a single gateway. The

sending rate of the sources is changed from 1Mb/sec to 7Mb/sec. The MTU size is 2000 bytes.

The average throughput and delay with their95% confidence intervals are shown in Figure 6.5

and Figure 6.6. The environment is highly dynamic with the average OFF period of primary users

ν = 3sec.

The DTCR procedure is more successful in capturing the uncertainties than the Secondary Op-

tion Protocol (SOP). In SOP the routing tables are not updated frequently enough and the repetition

of calling the route request mechanism results in transmission delay and packet loss. DTCR op-
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Figure 6.5 Average throughput with 95% confidence interval for different sending rate, size = 78
nodes
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Figure 6.6 Average throughput with 95% confidence interval for different sending rate, size = 78
nodes

erates near optimum when the rate is below 3Mb/sec. After this rate, the DTCR performance is

lower because as the rate increases, the variation in channel opportunities is larger and nodes have
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to adjust their decision making more quickly. In most of the applications, the sending rate does not

exceed the 3Mb/sec rate. In addition, there are many controlling parameters such as0 ≤ β, γ ≤ 1,

the length of the operation period and the sensing period in DTCR that can be adjusted to achieve

the desired performance. One interesting future directionis to find the optimum value of these

parameters by solving a classical optimization problem at each layer with the objective of max-

imizing the gainIi(β, γ), see Section 6.2. In the last subsection, we elaborate on theeffect of

control knobs in the utility function of DTCR and its decision making. We experimentally tried

different values forβ, γ in their corresponding ranges to achieve better performance at the gateway.

6.3.3 Effect of Network Size

We also changed the network size from30 to 78 nodes, and kept the sending rate constant at

2Mb/sec, andν = 3sec. Figure 6.7 and Figure 6.8 show the average throughput and end-to-end

delay with95% confidence intervals. Since DTCR is decentralized, networksize does not affect

the performance significantly. The performance of SOP dropssignificantly since the end-to-end

path is highly unstable.

6.3.4 Primary Users Traffic Patterns

We changed the primary users arrival rateλ and decreased it to create a semi-dynamic environment.

In table 6.2, variableν = 1/λ indicates the mean OFF time of the primary users. The networkhas

78 nodes and the sending rate is 2Mb/sec. We see that the SOP protocol performance improves

significantly. DTCR is still able to adapt to the changes in the environment. The performance is

closer to the optimum scenario. We would like to emphasize here that our design is tailored towards

a dynamic environment but we also foresee the DTCR working satisfactorily in a semi-dynamic
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Figure 6.7 Average throughput with 95% confidence interval for different network size, sending
rate is2Mb/sec
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Figure 6.8 95% confidence interval of average end-to-end delay for different network size,
sending rate is2Mb/sec

environment.
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6.3.5 Adjusting the DTCR Parameters

In the utility function described in Section 6.1.4, three control parametersβ, γ, η exist that quantify

the importance of local spectral measurement, its variation and path quality. In this section we show

how these variables change the utility function and change the selection of neighboring nodes. The

Table 6.2 Average throughput for different average OFF periods of primary users

ν (sec) SOP DTCR Optimum
3 0.211 0.921 0.931
30 0.816 0.925 0.931
60 0.919 0.928 0.931

variable0 ≤ β ≤ 1 is the knob that controls the significance of the amount of gain associated with

relying on the spectrum measurement. Consider a nodei with 5 neighbors. After sensing, it has

the following maximum duration of channel availability of aspectrum for each of its neighbors

Ri =

(

0.33d∗ 0.5d∗ 0.66d∗ .88d∗ d∗
)

,

where neighbor5 with d∗ has the maximum duration of channel availability to nodei. In order

to see the effect ofβ in the utility function, we kept all the parameters in equation 8.1 constant.

First, we letη = 1 for all the neighbors, meaning we assumed the remainder of the path to the

gateway is good for all of them. The variableγ = 0.05. As shown in the Figure 6.9, the utility

corresponding to the fifth neighboring node is equal to one, and the utility of other neighbors

decreases exponentially asβ increases. The smaller the value ofβ, the less is the difference

between the neighbors’ utility. The parameterβ could be chosen so that a node that does not

necessarily have the maximum duration of channel availability is selected. As explained in the

previous section, for some applications it is important to avoid paths that have high fluctuation of

bandwidth variation. The parameter0 ≤ γ ≤ 1 controls the sensitivity of a node to this variation.
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Figure 6.9 Utility on the states of5 neighboring nodes, with differentβ values.

According to Figure 6.10, whenγ increases, the nodes’ utility assumes a larger distance from each

other. After some point, there is no increase in utility. By choosingγ = 0.2, a designer can avoid

choosing nodes with duration of channel availability below0.88 of maximum channel availability

duration. Hence, a node is sensitive to channel variations.The parameterηj is very important in
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Figure 6.10 Utility on the states of5 neighboring nodes, with differentγ values.

choosing a stable end to end path. This variable could be evaluated according to any metric that the
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designers feel suitable and affordable such as delay. We used relative queue remaining capacities

of a neighbor nodej. Therefore0 ≤ η ≤ 1. We assigned the following values for each of the

neighbors,η1 = 1, η2 = 0.8, η3 = 0.6, η4 = 0.4, η5 = 0.2. Therefore, the first neighboring node

is on a very good path to the gateway. However, note that fromRi record, this neighbor channel’s

stability to nodei is very low. On the other hand, the fifth neighbor that has a high channel stability

to nodei, is not on a stable path to the gateway. We choose these controversial values for parameter

η on purpose to show how all of the above parameters come into play to aid nodei to choose a

good neighbor. We setβ = 0.05, γ = 0.2. The utilities are shown in Figure 6.11. In this scenario,

the fourth neighboring node has the highest utility. This neighbor is connected to nodei and the

gateway on a fairly stable path.
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Figure 6.11 Utility on the states of5 neighboring nodes, with differentη values.

6.4 Summary

We presented a decision theory framework to analyze the problem of routing in a cognitive radio

network operating in a highly dynamic environment. We modeled a node’s decision among its

candidate neighbors into a decision tree, and utilized a novel utility function to include the effect of
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spectrum availability, bandwidth fluctuation and path uncertainties in a node decision making. The

best candidate is chosen by analyzing the tree with backwardinduction and eliminating the choices

that might decrease the node gain when selected with uncertainty. The Decision Tree Cognitive

Routing scheme (DTCR) leads the node to choose the best candidate under high environmental

variations.
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Chapter 7

Decision Tree Modeling for Video Routing

in Cognitive Radio Mesh Networks

In this chapter, we translate video routing in a dynamic cognitive radio network into a decision the-

ory problem. Then terminal analysis backward induction that was used in previous chapter is used

again to produce our routing scheme that improves the peak signal-to-noise ratio of the received

video. In the proposed Video aware Cognitive Routing strategy (VCR), the sample and posterior

distributions of the decision theory based scheme of previous chapter are tailored to explain the

status of channels and nodes in supporting video frame quality of service, more specifically, the

priority of I B and P video frames.

Similar to DTCR, in VCR the two probability laws, prior and posterior distributions are used.

A prior distribution governs and explains the natural status of the states (neighboring nodes) un-

known to the decision maker (sender). A posterior distribution gives the sender understandings

of unknown states after performing an experiment that givespartial additional information on the

status of unknown states. The nodes use their sensing data topredict future state of channels and

reliability of the candidate nodes. New coding schemes suchas H.264 [61] slices the video into I, P

and B frames, with high to low priority of reconstructing thevideo at the receiver. The VCR selec-

tion takes into account the video frames priorities and their required bandwidth. More specifically,

the VCR is a per-hop routing scheme, in which the next node decision process is modeled into a
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decision tree. Each branch of the tree models a different scenario that might be shaped by spec-

trum availability uncertainties in dynamic cognitive radio networks. Nodes sense the surrounding

channels and construct a record of channel availability durations. The bandwidth requirement of

different frames in a group of video pictures (GOP) is taken into considerations, and nodes classify

their channels records accordingly. Then, sampling probabilities are constructed using the ArgMax

probability distribution introduced in Chapter that points to the node with the maximum duration

of channel availability in its records. Using the sampling probabilities, we construct posterior

probability distributions. The posterior distributions provide partial information on the uncertainty

in the existence of channels that can support the required video quality of service. Using this ap-

proach, nodes undertake spectrum and node selection simultaneously. The utility function similar

to previous chapter is used to adjust the gain by changing thesignificance of parameters associated

with spectrum stability, node reliability and bandwidth variability. We use backward induction

to analyze the decision tree and find a decision road map for the nodes to select their next hop

neighbor is response to changes in the environment

In summary the contribution of this chapter is as follows:

• Using a decision theory framework, we develop a video aware cognitive routing scheme

(VCR) to model and analyze the problem of downlink routing ofvideo packets in a dynamic

CRN.

• We construct appropriate sample and posterior distributions to explain the status of channels

and nodes in supporting video frames quality of service.

We compare the performance of VCR with OSDRP [33] in a cognitive radio mesh network that

operates in a city downtown. A video file is transferred from aserver to a client. Our simulation

results show that VCR is more successful in maintaining an acceptable Peak Signal-to-Noise Ratio
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(PSNR) than OSDRP as the arrival rate of primary users increases. In addition the reconstructed

video is played back successfully at the receiver when VCR isused. However, due to loss of frames

in OSDRP, the decoder is not able to reconstruct the entire video at the receiver.

The organization of this chapter is as follows. In Section 7.1, we show how DTCR decision

theory framework is modified to generate the VCR scheme.In Sections 7.2 we elaborate on the

VCR complexity. Section 7.3 presents the details of implementation and simulation results.

7.1 Decision Theory Framework of VCR

We consider a cognitive radio client in a multi-hop mesh topology network that is downloading

high definition video from a server. The network is located ina city downtown, where activities of

primary users is highly dynamic and unpredictable. All the nodes in the network have a cognitive

radio transceiver. They also have an extra interface dedicated to a control channel. The control

channel is only used for transferring control messages between the nodes. The video frames are

transported hop by hop from the server to the client. Figure 7.1 shows a simple topology. In this

section, this topology is used to explain the steps of our per-hop routing strategy. However, we

show in Section 7.3 that the scheme is indeed applicable to larger size ad-hoc mesh networks. For

simplicity, nodes that are located within the same number ofhops from the server are grouped

into one layer. We refer to a nodei in a layerl as i[l], i = 1, 2, · · · ,M , whereM is random

and represents the total number of nodes in the network. A node in a layerl can choose any

node in the lower layerl + 1 other than the nodes in its own layer who are authorized to send

packets to the receiver. The client broadcasts its layer index in a video request packet, when a

neighbor receives the request, it authorizes itself for that particular destination and informs its

neighbors of its authorization by broadcasting the received video packet. Therefore via a back
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Figure 7.1 A simple downlink mesh network topology within a city with its node diagram
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pressure approach, all the nodes are notified of their authorized neighbors. In addition, when a

node handshakes with its neighbor it receives the neighbor’s layer index. The layer index helps to

avoid count to infinity problem.

Due to the nature of a cognitive radio network, available channels at each node have diversity

in their bandwidth and duration of availability. Channels are available from a spectrum band

when the primary user of that band is absent. Nodes access andshare the available channels with

OFDMA/NC medium access technique.

We view the selection of the best candidate among the neighbors of a sender node as a decision

problem. Considering the uncertainties involved due to thearrival of primary users in cognitive

radio networks, it is desirable to choose a neighbor that is most reliable in receiving video packets

and forwarding them to the next node; and ultimately to the destination. The notations, we use in

this chapter are that used in in Table 6.1. Lets assume that node12[4] in Figure 7.1 is the client,

and is downloading a video from the server (0[0]). Based on the spectrum coverage, and radio

range of the gateway node, this node has3 intermediate neighbors:1[1], 2[1] and3[1]. Node0[0]

chooses one of its neighbors. Due to the nodes mobility and variation in transmission range, each

neighbor has a random number of neighborsNi. In terminology of decision theory [16], the set of

possible states (choices) available to the decision maker is represented byS = {s1, s2, ..., }. The

node0[0] is the decision maker. The states unknown to the decision maker are the intermediate

neighboring nodes,s1 = 1[1], s2 = 2[1] ands3 = 3[1]. Therefore,S = {s1, s2, s3}. There is

also a set of actions that the decision maker can take, represented byA = {a1, ..., aNi
}; aν is the

act of choosing a statesν to visit. According to our example, we have three acts,a1, a2, a3; aν

corresponds to choosing a neighborsν ν = 1, 2, 3.
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7.1.1 Initial Learning Phase

In this phase the sender gathers information from their neighbors and their surrounding spectral

measurements to construct the decision tree as explained inSection 2.5. The node0[0], sits at

the root of the tree and the states are at the ending branches of the tree. Now similar to the

uplink routing explained in previous chapter, the decisionmaker can perform an experiment to

obtain additional information in support of an act. Performing an experimente is not obligatory

and the node may go fore0 which means no experiment. Performing an experiment in decision

theory means that the decision maker is willing to give some cost in exchange of gaining partial

information about the status of the unknown states. The experiment e is collecting and reading

a history of primary users’ activities on its surrounding channels, then measuring the maximum

duration of channels availability0zj in spectrum bands between node0[0] and neighborj. Many

previous studies in routing also rely on past measurements on the activities of primary users to find

the most stable path [33,60].

7.1.1.1 Local Spectral Bandwidth Observations

We assume that there areKi,j spectrum bands available between nodesi and j. Each spec-

trum bandc hasKc number of channels. Nodei[l] handshakes with its neighbor nodej, j =

1, 2, · · · , Ni, and receives the signal-to-noise ratio gain (SNRg) of every channelki,j in spec-

trum bandc, ki,j = 1, · · · , Kc, that connects nodei[l] to the nodej[l + 1]. It then evaluates the

period of occupancy of each channel occupied bandwidth of the channelki,j , denoted byYki,j
,

based on equation 6.2. Let us denote the duration that the primary users do not use the channel

ki,j by Xki,j
. Then the duration of channel availability isTki,j

= Xki,j
− Yki,j

The video

is compressed using H.264 codec standard [61]. After compression, a group of pictures (GOP)
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consists of three types of frames: Intra-coded picture or I frame, Predictive picture or P frame and

Bi-predictive picture or B frame. An I frame is the most important frame. It has the main static

picture of a GOP, meaning if an I frame is lost, the scene of thevideo corresponding to that partic-

ular GOP will not be constructed at the receiver. P frames arealso important to provide reasonable

video quality. On the other hand, B frames could be predictedif I and P frames are available. This

type of video compression will provide a tolerance on packetloss as long as they are mostly B

frames. Therefore, the I frames are larger in size and receive high priority. In order to make our

decision scheme sensitive to the priority of I and P frames, we classify theTki,j
into two groups

of Iki,j
andPki,j , as follows:

Iki,j
= Tki,j

if Tki,j
> TI , for ki,j = {1, · · · , Kc}

Pki,j
= Tki,j

if TI > Tki,j
> TP , for ki,j = {1, · · · , Kc},

whereTI andTP are the time durations required for sending I and P frames across the channel

ki,j respectively.Ii,j = {ki,j ; Tki,j > TI} andPi,j = {ki,j ; TI > Tki,j
> TP }.

Finally, nodei stores the maximum observed duration of channel availability in the spectrum

bands between itself and each of its neighboring node, into avectorRi:

Ri =

(

iz1 iz2 · · · izNi

)

.

The variableizj = maxki,j∈Ii,j Iki,j + maxki,j∈Pi,j Pki,j shows the maximum observed

duration of channel availability in the spectrums between nodei andj. The set of possible samples

is represented byZ = {iz1,i z2, ...}. The variableizj is a sample observation in favor of nodej.

121



Therefore, node0[0] in our simple mesh network, Figure 7.1, constructs the following record.

R0 =

(

0z1 0z2 0z3

)

.

The record vectorRi is used to construct the sample and the posterior distribution for the

maximum spectral channel availability durations similar to the previous chapter. Refer to section

6.1.2 and section 6.6 to see how these distributions are constructed fromRi records.

Similar to previous chapter, We define the following utilityfunction. for the experimente

ui(e, j
∗, a, j) = cj [1− e

(−γiz
∗
j )][v(a, a∗j )µ(a, j)]. (7.1)

For no experimente0

ui(e0, a, j) = cjµ(a, j), (7.2)

wherecj is a constant that reflects the transferring quality of nodej specified by the remaining

queue capacity of nodej. Theγ is the controlling factor to quantify the amount of channel avail-

ability variation. The functionV (a, a∗j ) reflects the spectrum band quality, defined in formula

7.3.

µ(a, j) =



















1 if a = j, whenj is the true state,

0 if a 6= j, whenj is the true state.

Figure 7.2 shows some utilities on the node0 decision tree.

When observing the channels in a spectrum and measuring the maximum duration of their

availability without any interruption from primary users,it might be more beneficial to a node to

use a channel from a specific spectrum that has less availability duration but is connected to a node

that might be on a better path. The gain associated to choosing a node based on its spectrum band
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Figure 7.2 Node0 decision tree with some utilities

quality is quantified with the following formula.

V (a, a∗j ) = b1e
−b2[Ae(a)−Ae(a

∗
j )]

2
(7.3)

whereAe(a) is the gain associated with choosing the right acta andAe(a∗j ) is the gain of choosing
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the acta∗j following the sample observationj∗. For example, if the measurement of the maximum

duration of channel availability of spectrums are as follows,

R1 =

(

12 8 18

)

,

then theAe(a) = 18, Ae(a1) = 12 , Ae(a2) = 8 , Ae(a3) = 18. Therefore, sample0z3,

leading to choose node3[1] in our scenario, provides the maximum gain. The parametersb1 and

b2 are the knobs that control the significance of the amount of gain associated with relying on the

spectrum measurement. Ifb2 is small, a node may be chosen that does not necessary have the

highest duration of spectrum availability. In other wordsb1 andb2 provide the network designers

with an error tolerance factor in spectral measurement.

Some applications in CR networks suffer from high fluctuation of bandwidth availability due to

fluctuation in the channels’ availability. The variablei, z
∗
j is a measure of the maximum duration

of channels availability between i and j obtained from the experiment. Wheni, z
∗
j is high the utility

is large. The variableγ is the controlling factor to quantify the amount of variation. Depending on

the sensitivity of the application on the bandwidth fluctuation,γ is selected. For example, whenγ is

around0.5, a small difference in the duration of channel availabilitywould provide a significantly

higher gain and the node is encouraged to choose the node withhighest duration of availability.

As mentioned previously, the environmental dynamics of thecognitive radio network might

change and the node might choose a neighbor that was not the most appropriate node in routing.

The indicator functionµ is chosen to model the gain/loss for such scenario. Note thatbased onµ,

we assume total loss when a wrong node is selected to transferpackets. A wrong node would not

necessarily give a total loss but may be able to transfer somepackets based on its queue capacity.

An interesting future direction is to modelµ according to nodes queue length.
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It is essential that the node considers the quality of the remainder of the path to the gateway

when choosing its intermediate neighbor. The variablecs reflects this metric. Some researchers

use the average backlogged queue length [14] to quantify thequality of the path. For our utility

function we use the remaining queue capacity of nodej to quantify the value ofcs.

After the construction of an appropriate decision tree for our routing problem, the optimum

strategy (course of action) is specified by the backward induction terminal analysis introduced in

section 6.2

The backward induction procedure for our simple mesh network is depicted in Figure 7.3, The

course of action in this example is through experimente. Then forj∗ = 1 choosej = 3, for

j∗ = 2, choosej = 1, and forj∗ = 3, choosej = 3.

7.2 VCR Complexity

The run time complexity of the proposed scheme (VCR), isΘ(n), wheren = N2
i corresponds to

the size of the matrix for the construction of the posterioridistribution. we recall thatNi is the

maximum number of neighbors of nodei at timet. Since the VCR is a decentralized algorithm, the

number of accessible neighbors of a node is bounded and limited. Therefore, VCR will converge

quickly.

In order to have an estimate of the sample sizem required for the construction of posterior prob-

ability distributionPi(j|j∗). We use the law of the iterated algorithm proposed by Kolmogorov,

in [56]. The upper and lower bound on the rate of convergence of the estimator of a distribution to
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Figure 7.3 Node0 decision tree with backward induction procedure

its true value are as follows

lim supm→∞
√
m‖P̂m−P‖√
2 ln lnm

≤ 1/2

lim infm→∞
√
2m ln lnm‖P̂m − P‖ = π/2

From the above, the upper bound on the error of the estimator based on the sample sizem, follows
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that for largem:

‖P̂m − P‖ <

√
ln lnm√
2m

. (7.4)

Therefore, form = 100, the error is about0.15; asm increases the error converges exponentially

to zero. By selectingm = 200, the error is0.004. If we assume that the network installed in an

area, just started to operate, then the first150 msec of the operation time should be dedicated to

collecting about150 samples.

We discarded the memory of the node after taking and using a sample of 150 matrices to

minimize memory usage.

7.3 Simulation

Our topology is similar to Figure 7.1. The number of accessible nodesNi varies depending on the

radio signal strength. A random value is assigned for the radial distance of nodei from nodej. If

nodej is within the radio transmission range of nodei, it is considered accessible by nodei. In our

simulation model we have5 spectrum bands. The range of their corresponding bandwidthchanges

from 6Mb/sec (could correspond to FM radio band) to 144Mb/sec (similar to a TV channel). Note

that a spectrum band depending on its type could have different number of channels. The band-

width of each spectrum is divided equally among its channels. We used the JSVM software tools

to generate realtime traffic. A YUV video file with 176x144 pixels per inch (ppi) spatial resolution

is encoded and the stream file is extracted. The stream file hasI, P and B packets with high to low

frame length respectively. In addition, network nodes alsogenerate traffic packets with512 bytes

size, to demonstrate a real life scenario where there existsother traffic activities on the network.

The packets arrival rate is based on a lognormal distribution with meanν and standard deviationσ,

based on the measurement study [50]. We usedµ as0.8, 0.2, 0.5 and0.5 variance to model a heavy,
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moderate and light occupancy of users on channels. The videofile is sent from the server to the

client which is located in the outer layer. We compared our method with OSDRP [33] designed for
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Figure 7.4 Mean peak-signal-to-noise ratio for differentα

a dynamic environment. In OSDRP protocol, the end to end routes are found based the determinis-

tic strategy of the DSR protocol, and are prioritized according to the route lifetime. Route lifetime

is based on the channel availabilities as well as channel switching and queuing delays. In addition,

in order to support QoS, it controls the transmission power and selects the nearest forwarding SUs

to the SU destination node.

Figure 7.4, shows the robustness of our scheme to the primaryusers’ arrival rate. A network

with 30 nodes is chosen scattered around in 1000x1000sqm field. The measurement study [54]

suggests that the primary user’s traffic follows a Semi-Markov process with OFF/ON periods fol-

lowing an exponential distribution. Therefore, the primary users’ idle period is an exponential

distribution with meanα. Asα gets larger, the channels are interrupted less frequently by primary

users.

As the mean idle period of primary users decreases, the PSNR tends to degrade for OSDRP.

In OSDRP the routing tables are not updated frequently enough and the repetition of calling the
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Figure 7.5 End-to-end delay for different values ofα

route request mechanism results in transmission delay and packet loss. VCR makes its decision

considering the uncertainty of primary users’ arrival. In addition, the links are chosen that can

support the required transmission duration of I and P frames. As a result the video quality is

acceptable even when the primary users’ arrival is high. There are many controlling parameters

such asb1, b2, c2, in the utility function of VCR that can be adjusted to achieve better performance.

One interesting future direction is to adjust those parameters adaptively according to the video

quality variations at the receiver. We usedb1=5,b2=1 andc2=0.5 in our simulation.

Figure 7.5 shows the end-to-end delay of video frames for different mean idle periods of pri-

mary users. We see that the OSDRP achieves lower delay. However, based on Figure 7.7, the

relative loss frequency of I and P frames are higher in OSDRP than those of VCR. The video qual-

ity degrades substantially with the loss of I and P frames. Wesee that VCR is losing the B frames

more than the other frames. Hence it is able to provide bettervideo quality. The initial learning

phase of VCR also adds to its end-to-end delay but VCR fast decision making based on the stored

optimum strategy compensates for the delay. Ultimately, the video is received with a high quality

at the receiver. The relative loss frequency is calculated by dividing the total number of loss of
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Figure 7.6 Reconstructed Video frames (a)α=20msec, (b)α=30msc

each particular frame over the total number of that frame in the original YUV file.

Figure 7.6, shows the decoded video at the receiver forα=20 msec, andα=30 msec. As shown

in Figure 7.6a, the video player is unable to decode the videobeyond a received image and freezes.

Whenα=30 msec, the video is viewable but its quality degrades in OSDRP in comparison to MCR.

Our simulation results show that it is beneficial to use nondeterministic system theories such

as decision theory framework to cope with agile variations is spectrum diversity and availability of

dynamic cognitive radio networks.
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Figure 7.7 The relative loss frequency of I, P and B frames
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7.4 Summary

We used a decision theory framework to analyze the problem ofdownlink video routing in a cogni-

tive radio network operating in a highly dynamic environment. The video cognitive routing (VCR)

strategy models a node’s decision among its candidate neighbors into a decision tree. VCR utilizes

a posterior distribution that provides information on the links durations uncertainty and ultimately

the suitability of a neighbor node by taking the priorities of video frames into consideration. The

best candidate is chosen by analyzing the tree with backwardinduction and eliminating the choices

that might decrease the sender’s gain. The VCR guides the node to choose the best candidate un-

der high environmental variations. Our results show that VCR is successful to maintain the video

quality even when the primary users arrival rate is extremely high.
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Chapter 8

Summary and future work

8.1 Summary

We investigated the problem of routing in cognitive radio networks. We proposed two new proba-

bility distributions called ArgMax and ArgMin that could beused in probabilistic protocols. The

ArgMax probability distribution locates the maximum random variable among a set of random

variables, while the ArgMin locates the minimum random variable. The ArgMax probability dis-

tribution is shown to outperform odds-on-mean probabilitydistribution which is used frequently in

many applications. The ArgMin probability distribution has a variety of applications and is shown

to be useful in achieving a lower bound on the network’s minimum spectral capacity. Using these

two probability distribution, we introduced an interesting measure calledprimary weight measure,

which indicated the frequency and the nature of the distribution of primaries around a particular

node. A low value of the primary weight measure metric indicated uniform and frequent primary

users interruptions on the channels surrounding a node. With this information MAC and rout-

ing decisions are taken more efficiently. We developed a stochastic based routing called Primary

Spread Aware Routing Protocol (PSARP). On a cognitive-based NS2 network simulator, we com-

pared the performance of PSARP with two previously developed routing protocols for dynamic

environment. We also developed a Cognitive Stochastic Routing (CSR) protocol based on the

PSARP stochastic framework that uses backlogged queue capacity instead of PWM. Our results
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show higher throughput in PSARP and CSR, which indicate the advantage of stochastic-based

routing in a dynamic environment. In addition, PSARP with its PWM measure is more successful

in choosing the best path due to the correct identification ofthe primary users’ distribution, and

performs substantially better than CSR at high rates.

We used the decision theory concept and developed the decision tree cognitive routing scheme

(DTCR) and extended it to VCR to support a downlink video transfer in a dynamic environment.

We compared the performance of our DTCR strategy with the optimal strategy. In the optimal strat-

egy, nodes had full knowledge of the future changes in the network parameters. In other words,

no routing strategy performs better than the optimal strategy. We also compared our method with

the local coordination based routing and spectrum assignment protocol [58] to measure the devia-

tion of our scheme and a routing protocol designed for a dynamic environment from the optimum

strategy. Our results show that our DTCR successfully treats the occurrence of uncertainty and

performs close to the optimal scenario. The DTCR uses the posterior probability distribution to

estimate the availability of a neighbor under uncertainty.The backward induction scheme helps

a node to choose a neighbor that is more likely to be the correct candidate; it reduces the cost of

choosing wrong candidates. Therefore, it operates substantially better than the local coordination

based routing protocol; its performance is indeed near optimal at low and moderate sending rates.

However, at high sending rates, it still outperforms the local coordination based routing. Our sim-

ulation results of evaluating the VCR also show that VCR is more successful in maintaining an

acceptable Peak Signal-to-Noise Ratio (PSNR) as the arrival rate of primary users increases. In

addition the reconstructed video is played back successfully at the receiver when VCR is used.

The strategies developed could be used in many future designs to accommodate different needs

of network administrators. Using decision theory in cognitive radio networks opens the possibility

to use unlimited decision theory tools in developing new controlling and monitoring schemes. One
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can also simply look at the utility function defined in DTCR toadjust its parameter according to

the designers requirements or network performance. In thischapter, we elaborate on some possible

future directions.

8.2 Extensions and future works

8.2.1 Utility Function Adjustments

Recall that the DTCR uses a utility function as one of its decision making component. The utility

function we used is defined in subsection 6.1.4 as follows:

ui(e, j
∗, a, j) = ηj [1− e

(−γiz
∗
j )][v(a, a∗j )µ(a, j)]. (8.1)

Note that in our modeling, we go for zero-one scenario, in thesense that wrong selection of the

node is a total loss, i.e. zero utility. Thus, we let

µ(a, j) =



















1 if a = j, whenj is the true state,

0 if a 6= j, whenj is the true state.

However, the selection of a wrong node does not necessary mean a total loss because as long

as the selected node does not have a full queue, it is still able to transfer some of the packets.

One future direction is to model the parameterµ as a function of remaining queue capacity of the

neighbor nodes. Therefore, we do not assume total loss by selecting a wrong node but some loss

according to the transfer ability of the neighbor node.

The three control parametersβ, γ, η exist that quantify the importance of local spectral mea-
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surement, its variation, and path quality. Any of these parameters can be modeled as a function of

changes in flow dynamics or the quality of service requirements of a particular flow. For instance,

variableγ can be a function of required bandwidth of a certain flow to make the sensitivity of

the DTCR strategy self adaptive to the requirement of a particular flow passing through a specific

node.

Also, our utility function is concentrating on choosing a channel that has the least bandwidth

variability and the most stability in dynamic environment.This function could be altered to con-

sider the delay or Expected Transmission Time (ETT) of packets in applications that are delay

sensitive. In addition, the utility function could take into account the transport level requirements

or be replaced by the utility functions that are designed forcongestion control schemes such as the

ones described by Kunniyur et. al. in [62].

8.2.2 Primary Weight Measure in DTCR

The parameterη is the average queue capacity of the neighboring node. This metric provides a reli-

ability measure over links located one hop further. However, the queue capacity variation decreases

when the load increases. Hence, DTCR selection is blind to the behavioral pattern of primary users

located one hop away from its intermediate neighbors at low and high rates. We proposed the PWM

metric in Chapter that not only provides a measure on the reliability of non-intermediate links but

indicating the distribution of primaries around a particular node. One interesting future direction

is to designη not only based on the queue capacity but also the PWM measure.ThePWM [i, j]

indicates the degree of nonuniform spread of primaries in channels between nodesi andj. For

PWM [i, j] ∼ 0, primaries are more spread uniformly, and consequently there be no privilege to

any transitions distribution. For large values ofPWM [i, j] there is a cluster of channels at that

node for which the presence of primaries is much less than theothers and therefore choosing that
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particular node provides a significantly stable path. This metric is highly informative about the

reliability of the links surrounding a node. PWM could be used as one of the meters that is read

by the cognitive engine of cognitive radios to indicate whatknobs needs to be adjusted to avoid

inefficient transmission. (We encourage the readers to refer to Chapter for the definition of knobs

and meters).

8.2.3 More Decision Theory

It is also interesting to bring the advance concepts of decision theory into our decision theory

modeling of cognitive radio networks to evaluate the behavior of these networks over time. For in-

stance, recall that the optimal act will minimizes the expected loss or maximizes the expected gain;

the later ismaxe Ep(z|e)[maxa[Ep(s|z,e)U(e, z, a, s)]], wherep(z|e) is the marginal sample dis-

tribution for thee andp(s|z, e) is the posterior distribution,p(s) ∼ p(s|z◦, e◦) stands for the prior

distribution,e◦ (no experiment),z◦ (no observation). The quantityEp(s)[maxa U(e◦, z◦, a, s)]−

maxa Ep(s)U(e◦, z◦, a, s) is referred to as EVPI, the expected value for perfect information. It

is simply the expected opportunity lost by taking the act that maximizes the expected utility. This

quantity helps a cognitive node to consider the opportunityloss. If this quantity is not high, it

takes the act that is more cost efficient. The cost could be thenode energy, storage or delay. In the

broader perspective, the EVPI could be used to analyze the end-to-end cost of the system.

We encourage the readers to look at further concepts of decision theory and see how many

of them could be incorporated in system evaluation, design and modeling in cognitive radio net-

works.
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