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LO

ABSTRACT

CONSTITUTIVE MODELING AND FLEXURAL ANALYSIS

OF STEEL FIBER REINFORCED CONCRETE

FOR STRUCTURAL APPLICATIONS

by

Cha-Don Lee

The objective of this study was to develop techniques for predicting the

efbcts of steel fibers on the tensile, compressive and fiexural behavior of concrete.

A refined concept ("interaction concept") was proposed for predicting the

tensile strength of SFRC. This concept accounts for the contributions of fibers

through their pull-out action and also by arresting the growth of microcracks in

cementitious matrices. A constitutive model was also developed for predicting

the complete tensile stress-strain relationship of SFRC. The modeling of pOSt-

pcak performance takes into account the contributions of fibers crossing the

critical section through their pull-out action as well as that of matrix in its

post-peak softening range of behavior.

A simple and practical model was also developed for predicting the compres-

sive constitutive behavior of steel fiber reinforced concrete. The model accounts

for the efbcts of fiber volume fraction, aspect ratio and type (straight vs.

hooked), and the matrix compressive strength, on the compressive behavior of



SFRC.

A flexural analysis procedure, with some simplifying assumptions made to

simulate the fiexural behavior in the vicinity of the cracked section, was

developed which gives due consideration to the behavior at and near the critical

(cracked) section. The tensile and compressive constitutive models of SFRC

developed in this study were used in this fiexural analysis procedure. Analytical

studies were conducted using the developed fiexural analysis procedure in order

to derive relationships between the tensile constitutive behavior and the fiexural

strength of SFRC.

The complexity and inStability associated with testing cementitious materi-

als in direct tension have led to extensive use of flexural testing for assessing the

tensile behavior of SFRC. It is thus important to analyze fiexural test results in

order to derive information regarding tensile performance of SFRC. For this

purpose, a "System Identification" approach was ad0pted in this investigation.

The "System Identification" technique was used together with the developed

fiexural analysis procedure in. order to derive information on the tensile behavior

of SFRC using flexural test results. This technique was successful in obtaining

optimum sets of parameters which provide satisfactory matches between the

measured and predicted flexural load-deflection relationships. The tensile

characteristics of SFRC obtained from analysis of fiexural test results by "Sys-

tem Identification" were superior to those obtained from direct tension test

results. This phenomenon was attributed to the positive effects of strain gra-

dient existing in SFRC under flexural loads.
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CHAPTER 1

INTRODUCTION

Reinforcement of concrete with short, randomly distributed steel fibers leads

to improvements in the tensile strength, and tensile and compressive ductility of

the material [1-6].* Improvements in the stiffiiess, cracking characteristics,

strength and toughness of reinforced concrete structural elements in the presence

of steel fibers under fiexural, shear, torsional and axial forces are direct conse-

quences of the improvements in the tensile and compressive performance of the

material [7-9].

The advantages associated with the use of steel fibers in load-bearing struc-

tural elements can be realized in large scales only if structural engineers are pro-

vided with Structural design equations and guidelines for optimizing the use of

Steel fibers in conjunCtion with conventional reinforcing bars in structural ele-

ments. The very basic tools required for analytical studies on fiber reinforced

concrete structural elements are reliable constitutive models of fibrous concrete

which have been verified using comprehensive sets of experimental results. In

many applications Steel fiber reinforced concrete is subjected to fiexural forces.

It is thus important to develop analytical techniques to predicting the fiexural

behavior of steel fiber reinforced concrete which is marked by nonlinear stress

distribution and dominance of a cracked seetion in deciding the post-peak perfor-

11131106.

 

" Numbers in square brackets refer to the list of references.
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The objective of this research was to: (1) develop tensile and compressive

constitutive models for steel fiber reinforced concrete which reflect the current

level of our understanding of the physics of the material behavior under dif’tErent

stress systems and are refined using the available experimental data; and (2)

develop analytical techniques for flexural analysis of steel fiber reinforced con-

crete, and for deriving information on the direct tensile and compressive perfor-

mance characteristics of steel fiber reinforced concrete based on the flexural test

data.

A comprehensive review of the literature on mechanical properties and con-

stitutive modeling of steel fiber reinforced concrete under compression and ten-

sion is presented in Chapter 2. This chapter also critically reviews some popu-

lar concepts used in predicting the tensile strength of steel fiber reinforced con-

crete, and presents the background and analysis procedures for steel fiber rein-

forced concrete behavior under flexure. The development of an experimental

model for predicting the constitutive behavior of steel fiber reinforced concrete

under tension is described in Chapter 3. In Chapter 4, an empirical compressive

constitutive model is presented for compressive behavior of steel fiber reinforced

concrete. In both Chapters 3 and 4, parametric Studies are conduaed using the

developed constitutive models in order to assess the performance characteristics

of steel fiber reinforced concrete.

Chapter 5 describes the process of incorporating the developed tensile and

compressive constitutive models into an approximate nonlinear flexural analysis

procedure which takes into account the formation of one major crack at the

flexural section and the nonlinear distributions of stresses and curvatures in the

vicinity of this crack.

The system identification technique is used in Chapter 6 together with the

developed fiexural analysis procedure and tensile/ compressive constitutive models



in order to identify characteristic tensile and compressive values of the stress-

strain characteristics of steel fiber reinforced concrete using the flexural load-

deflection relationship. Finally, Chapter 7 summarizes the research program and

presents the. conclustions; suggestions are also made for future research in this

area.



CHAPTER 2

MECHANICAL PROPERTIES OF STEEL FIBER

REINFORCED CONCRETE: A REVIEW OF THE LITERATURE

2.1 INTRODUCTION

Stress system produced in concrete by external loads (compression, tension,

fiexure or multi-axial) lead to a tendency towards the propagation and intercon-

nection of microcracks in cementitious materials [10-13]. The ease with which

microcracks can propagate in concrete results in a brittle failure which is gen-

erally considered to be a major shortcoming of cementitious materials.

Reinforcement of concrete with short, randomly distributed steel fibers

results in improvements in tensile strength and tensile and compressive tough-

ness of the material. This is due to the fact that propagating microcracks in

cementitious matrices tend to be arrested or deflected [1,5,10,11,14] by fibers.

Debonding and pull-out actions of fibers under tension and the confinement of

cementitious matrices by steel fibers under compression are also important

mechanisms through which steel fibers improve the mechanical behavior of con-

crete [1,5,10,11,14]. Improvements in the fiexural performance of concrete in the

presence of steel fibers are direct consequences of the corresponding improve—

ments in the tensile and compressive performance of the material.

The desirable mechanical properties of steel fiber reinforced concrete have

encouraged the use of steel fiber reinforced concrete in wide ranges of non-

structural and structural applications [15] (see Table 2.1 ).



Table 2.1 Application of Steel Fiber Reinforced Concrete
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In order to design or analyze the reinforced concrete structural elements

incorporating steel fibers, it is important to understand and to be able to predict

the Stress-Strain and load-deformation properties of the material under tensile,

compressive and flexural loads. The remainder Of this chapter presents a

comprehensive review of the literature on the failure mechanisms of plain and

steel fiber reinforced concrete under compression, tension and flcxure. The avail-

able tensile and compressive constitutive models and flexural analysis procedures

developed for steel fiber reinforced concrete are also critically reviewed.

2.2 STEEL FIBER REINFORCED CONCRETE UNDER TENSION

The pre—peak tensile behavior of SFRC may be characterized by the process

of microcracking of the matrix prior to the formation of a continuous crack sys-

tem across the section which marks the peak load and the appearance of a mac-

rocrack. These propagating microcracks tend to be arrested by fibers leading to

increased stiffness and peak tensile strength of steel fiber reinforced concrete.

The peak tensile load is typically marked by the appearance of one major

crack at the critical section, after which the pull-out of fibers bridging the criti-

cal crack tends to dominate the behavior in the post-peak region. The fiber

pull-out process generally provides the composite material with important post-

peak ductility and toughness.

In the following discussion, first some observations regarding the nature of

microcracking in mortar and concrete are presented and the interaction mechan-

isms Of fibers with microcracks are described. The fiber pull-out process and the

tensile constitutive behavior of steel fiber reinforwd concrete are also discussed.



2.2.1 Microcracking in Mortar and Concrete under Tension

For air dried mortar and concrete, shrinkage-induced bond cracks around

large aggregate particles appear prior to any loading (Figure. 2.1(a)). In con-

crete, multiple cracking around sand grains is frequently observed (Figure.

2.1(b)), and this phenomenon seems to be more pronounced between adjacent

sand grains than around isolated ones.

In mortar, under tensile loads, microcracks tend to propagate along the seg-

ments of cement-sand grain interface and also around the air voids (Figure

2.1(c)). It can be shown that cracks under tension change orientation when

encountering aggregates under tensile stress in order to pass around aggregates

without crossing (see the microcrack in Figure 2.1(d) encountering aggregate

"A"). This suggests that aggregate surfaces may act as crack arrestors, causing

microcracks to stOp prior to reaching aggregate surfaces. In the presence of

aggregates, the crack path is thus never straight (see Figure 2.2 for mortar).

The overalltortuosity of the crack pattern in concrete is higher than that in mor-

tar, because concrete cracks must propagate around the densely spaced aggregate

pieces as well as sand grains.

Other phenomena sometimes Observed in the microcracking process include

the branching of microcracks inside the paste, and shattering of aggregate parti-

cles crossed by microcracks. Branching (Figure 2.3(a)) occurs at the crack tip,

and usually only one of these branches is activated and increases in width with

further loading. In some cases a crack is observed to run through, rather than

around, an aggregate grain (Figure 2.3(b)). This might cause the aggregate

grain to shatter.

The reorientation, branching and multiple cracking associated with the

interaction of microcracks with aggregate particles lead to the dissipation of

large amounts of energy, which is benefitial to tensile behavior of the material.



 

 

      
(a) Shrinkage Induced Bond Cracks (b) Multiple Cracking

 
 

       

(c) Crack Propagation (d) Reorientation of Cracks

Figure 2.1 Propagation of Cracks in Cementitious Matrix



 

    
Figure 2.2 Tortuosity of Crack Path

 

   

  

A ggregate

7/

      
 

 

(a) Microcrack Branching (b) Aggregate Shattering

Figure 2.3 Branching of Microcracks inside the Cement Paste and Shattering

of Grains by Crossing Microcracks
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2.2.2 Microcracking in Steel Fiber Reinforced Concrete Under Ten-

sron. .

The propagation mechanism of microcracks tends to be influnced by the

presence of fibers. Cracks approaching fibers in a direction almost parallel to

them tend to run parallel to such fibers for at least some distance along the

length (Figure 2.4(a)) and those cracks advancing in a direction inclined with

respect to steel fibers are either shifted (Figure 2.4(b), which occurs in 30% of

events in steel fibers) or branched out into multiple post-fiber cracks (Figure

2.4(c), observed in 50% of events in steel fiber).

The microcrack encountering a fiber stays continous, making the lateral

shifts around the fibers, as can be clearly seen in the picture of the groove under

a steel fiber which intersected microcracks in Figure 2.5.

 

 
 

        

 

 

 
 

(a) Parallel Running (b) Shifting (e) Branching

Figure 2.4 Interaction of Microcracks with Steel Fibers.
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Figure 2.5 Continuous Nature of Shifted Microcracks around a Steel Fiber.

The intersection of microcracks with steel fibers is strongly influenced by,

the nature of fiber-matrix interfacial zone [11]. This zone in steel fiber rein-

forced concrete consists Of 3 regions (Figure 2.6): (l) a thin duplex film in actual

contact with steel fibers; (2) outside this, 10 to 30 micrometer-thick porous

region incorporating massive calcium hydroxide crystals; and (3) outside this, a

highly porous layer parallel to the interface; pseudo-debonding may occur in this

very porous region due to the tensile stresses in a direction parallel to the crack

generated near the crack tip.

‘ The microcrack propagation in the vicinity of fibers (at the fiber-matrix

interface) might take place at the interface itself leading to the separation of the

matrix from the fiber (debonding, Figure 2.7(a)), or it might occur (as discussed

earlier, see Figure 2.4(c)) at a small distance (about 20 micro-meter) from the

fiber and parallel to it (pseudo-debonding, Figure 2.7(b)) [11]. The nature of

psuedo-debonding (Figure 2.7(b)) leads to branching and lateral shifting of the

advancing crack, and sometimes causes some true debonding between places
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Figure 2.6 Schematic Description of the Microstructure of Steel Fiber-Cement

Interface [11]
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Figure 2.7
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Figure 2.8 Interaction of a Crack with a Number of Randomly Oriented Steel

Fibers [11].

where parallel secondary cracks run past the fiber. The propagation of a micro.

crack when encountering a number of randomly oriented fibers might take place

with a mixture of fiber-matrix interaction types (see Figure 2.4 for these types),

as shown in Figure 2.8.

The branching, shifting and parallel running of microcracks involve dissipa-

tion of extra energy from the stressed system and illustrate an important

mechanism through which fibers enhance the pre-peak stiffness and the ultimate

tensile Strength of fiber reinforced concrete.

2.2.3 Pull-Out Mechanism of Steel Fibers in SFRC Under Tension

The pre-peak behavior and maximum tensile strength of the composite

material depends on local bond characteristics at the fiber-matrix interface, while

the post-peak behavior is dominated by an average bond behavior in pull-out

action of fibers bridging the critical crack. Thus, pull-out tests on individual
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fibers embedded in. concrete matrix seem to provide information which are more

relevant to average bond behavior in the post-peak tensile behavior of steel fiber

reinforced concrete [16].

Fiber-matrix interfacial bond strength is provided by a combination of

adhesion, friction and mechanical interlocking [17]. Fiber debonding from the

matrix at early stages of loading in the pre-peak region is resisted by the adhe-

sion of matrix to fibers. Following debonding, the frictional stress transfer

between fiber and matrix and mechanical bonding tend to dominate the pull-out

performance and the corresponding energy dissipation which characterize the

post-peak behavior of the composite. In the post-peak region under tensile

stresses, following the appearance of macrocracks, the resistance to pull-out is

provided in fibers aligned in the tensile stress direction primarily by shear

stresses along the interfaces. For inclined fibers, the progressive bending of suc-

cessive sections Of the fiber will require an additional efbrt which depends on the

rigidity and yielding properties of fibers. Inclined fibers may also produce a

normal stress component on part of the sliding surface of embedded fibers thus

slightly increasing the frictional resistance [17].

It is worth mentioning that an excessive increase in interfacial bond

Strength may actually cause fiber rupture (instead Of fiber pull-out) to dominate

the failure of the compoiste material, leading to a drop in toughness (which

benefits from the energy dissipated by the fiber pull-out process).

A typical relationship between average bond stress and pull-out deforma-

tion Obtained from pull-out tests on straight-round steel fibers is presented in

Figure 2.9 [18-21]. The pull-out behavior is observed to be linear before the

peak pull-out load is reached. In the post-peak region the fibers are observed to

gradually slip out at decreasing pull-out loads until the completion of fiber pull-

out. Mechanical deformations of steel fibers can modify the pull-out
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Figure 2.9 A Typical Relationship between Average Bond Stress and Pull-Out

1231elflection in Pull-Out Tests on Straight-Round Steel Fibers [l8-
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Figure 2.10 Effect of Fiber Types on Pull-Out Behavior
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load—deformation relationships (Figure 2.10).

2.2.4 Tensile Behavior Of Steel Fiber Reinforced Concrete

Fibers, with their microcrack arresting action, tend to increase the fracture

energy and consequently the tensile strength of concrete. With the progress of

microcracking process in SFRC, deviation from the linear behavior occurs in ten-

sile stress-strain relationship of the material (see Figure 2.11) [22,23].

The deviation from linear behavior under tension in SFRC takes place at

about 80% of the tensile strength [24]. The increase in the tensile strength of

the matrix resulting largely from the microcrack-arrest action of steel fibers at a

typical volume fraction of 1 to 2% is usually about 20 to 50% [24,25].

The peak load under direct tensile stress in SFRC seems to be reached when

a catastrophic microcrack propagation takes place and a continuous syStem of

microcracks forms at a critical cross section. Reference 24, based on microscOpic

Tensile Stress

Tensrle' Strain  J

 

Figure 2.11 Deviation from Linear Behavior in FRC, Resulting from Gradual

Microcrack Propagation.
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Figure 2.12 Typical Direct Tensile Stress-Strain Relationships for Concrete and

Mortar Matrices.

measurements, has concluded that immediately after peak load a single crack

becomes visible in steel fiber reinforwd concrete specimens under direct tension.

Thereafter, tensile deformations tend to be localized in the cracked location, and

unloading takes place outside the cracked region (Figure 2.11). Increasing defor-

mations at this stage result in gradual pull-out or rupture of fibers crossing the

crack.

The crack opening under tension is resisted at this stage by fibers bridging

the crack and also by the remainder of the tensile resistance of the matrix at the

crack in its softening zone of behavior. Fiber pull-out mechanism in post-peak

stage provides steel fiber reinforced concrete with greatly increased ductility com-

pared to plain concrete under tension. A typical direct tensile stress-

deformation relationship for concrete matrix, which demonstrates the post-

cracking tensile resistance and softening behavior Of cementitious matrices is
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shown in Figure 2.12 [10].

In spite of matrix contributions to tensile resistance at cracks, either fiber

pull-out or rupture Of fibers tends to dominate the post-cracking failure mechan-

ism Of SFRC under direct tension, depending on fiber length and fiber-matrix

interfacial bond characteristics. The longer fibers with better bond to cementi-

tious matrices tend to have higher pull-out forces, and thus they rupture before

pulling out. Theoretically Speaking, following the appearance of macrocrack and

the activization of the pull-out performance of fibers, two types of behavior

might be Observed: the tensile resistance might continue to increase with increas-

ing tensile deformations, or it might progressively drop following a sudden drop

at the peak load (see Figure 2.13). The first case (increasing resistance after
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Figure 2.13 Two Theoretical Types Of SFRC Direct Tensile Behavior in the

Post-Peak Region [26]. -
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peak) can take place if the fiber volume fraction is above a critical volume

needed for maintaining the tensile resistance of the composite material after

cracking bythe pull out action of fibers. This critical fiber volume fracion

depends on the geometry, aspect ratio, orientation, and tensile strength of fibers

in addition to the fiber-matrix interfacial bond characteristics.

For concretcs reinforced with steel fibers in a 3-D random manner and con-

structed with conventional mixing techniques, the volume fractionof fibers that

can be incorporated into concrete within constraints of sufficient workability and

fiber dispersability is normally less than the critical volume fraction. Hence, a

sudden dropping of tensile resistance at peak tensile stress followed by gradual

softening in the post peak region tends to dominate the direct tensile behavior of

SFRC [26]. The tensile resistance is expected to reach zero when the last fiber is

completely pulled out of the matrix, and this takes place at relatively large crack

widths comparable to half the fiber length.

Direct tensile behavior of steel fiber reinforced concrete has been Observed to

be influenced by fiber volume fraction, aspect ratio (length over diameter) and

fiber shape (mechanical deformation) among other factors. A detailed discus-

sion on the efbcts of these factors on the tensile behavior of steel fiber reinforced

concrete is presented in Chapter 3.

2.2.5 Constitutive Models

There are two popular concepts for analytical simulation of the failure

mechanism in fiber reinforced concrete under direct tension: composite material

concept and spacing concept.

The composite material concept attributes the increase in tensile strength of

concrete resulting from steel fiber reinforcement to the mobilization of the fiber-

to—matrix interfacial bond resistance through the pull-out action of steel fibers at
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Figure 2.14 Fiber Reinforced Composite

peak tensile stress [1,3,27-29]. The composite material concept was originally

developed for matrices reinforced with aligned, continuous fibers with perfect

bond to the matrix (Figure 2.14(a)), assuming that the Poisson’s ratios of fibers

and matrix are similar [28,30-33]:

cc = om'-(1- v,)+o, ovf (2.1)

where :

om ' = matrix tensile Strength ;

- fiber tensile Stress at composite failure ;and

L
9 I

fiber volume fraction.<
K
.
.
. II
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In the case of- matrices reinformd with short randomly oriented fibers (Fig-

ure 2.l4(b)), the composite material concept Should be refined to account for: (1)

the randomness Of the orientation and location of fibers with respect to the

failure plane which tends to reduce their efficiency in providing resistance against

the applied tensile stresses; (2) the failure plane crossing short fibers at random

locations along the length, leaving less than half of the fiber length in one side of

the crack to resist pull-out forces; and (3) partial cffictiveness of matrix in con-

Stributing to the tensile resistance at cracks. These factors result in the follow-

ing expression for predicting the tensile strength of steel fiber reinforced concrete:

0. = nt-om't 1 - V, )+ Turbo/v, (2.2)

where :

111 = the fraction of matrix tensile strength efl’ective

at the composite peak tensile stress

= 1.0 [3];

112 = orientation efficiency factor

0.41 for fibers randomly oriented in space [9,12,16];

T13 = fiber location factor

= 0.5 [3];

of' = smaller of the fiber fracture and pull—out strengths

= Z'Tu'If/df S of“ ;

‘tu = average fiber—to-matrix interfacial bond stress at peak

pull-out resistance ;

- fiber tensile strength ;

a
9
fl

I
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fiber length ; and
If

d, fiber diameter .

In the above expression (Equation (2.2)), the values of 111 and I are found

empirically through normalizing expression of Equation (2.2) with respect to

0‘t: n Om'°( 1 " VI )
—= 10 + 2112-1131,, (2.3)

Figure 2.15(a) shows how the above expression fits the test results presented

by Mangat (1976) [3] with m equal to 1.1 and 1:, equal to l Mpa (145 psi) for

concrete reinforced with straight-round steel fibers.

A closer analysis of Figure 2.15(a) indicates that this figure represents the

strong dependence of the composite material tensile Strength on the matrix ten-

sile strength rather than fiber pull-out strength. Contrary to the assumption of

the composite material concept that a relatively large fraction of fiber pull-out

strength should be mobilized at the composite material peak stress, the measured

values of strain and crack width at peak tensile stress in steel fiber reinforced

concrete are not sufficiently large to mobilize the pull-out action of fibers [28].

The discrepancy becomes clear when the increase in tensile strength resulting

from the presence of fibers is directly related to fiber reinforcement properties:

cc - nl-Gm'(1-V,)= an-rb-rqu-lf/d, (2.4)

Assuming a value of 1.1 for Th. 1 Mpa (145 psi) for I“ and 0.34 for

( 2412-113 ) ( derived from Figure 2.15(a) for the same set of data ), considerable
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discrepancies between test results and analytical predictions can be observed in

Figure 2.15(b) compared to Figure 2.15(a). This leads to the conclustion that

composite material concept (Equation (2.2)) can not satisfactorily describe the

trends observed in the tensile strength of cement composites'reinforced with steel

fibers.

The spacing concept for predicting the tensile strength of steel fiber rein-

forced concrete is, on the other hand, based on the assumption that the dom-

inant factor deciding the efbctiveness of fibers in contributing to the tensile

strength of concrete is the number of fibers available in unit volume of the com-

posite to disrupt the propagation of microcracks. Fiber count has been

represented in the literature [34,35] by different measures of the average spacing

of fibers, or by the number of fibers at unit cross sectional area. Once the

parameter representing fiber spacing is defined, test results are used in this so

called "fiber spacing" approach to derive the empirical relationship between the

tensile strength of fiber concrete and this parameter.

Romualdi and Mandel (1964) [34] have derived an expression for average

fiber spacing based on the assumption that the projectiles of ramdomly distri-

buted fibers in the direction parallel to that of tensile stress decide the

effictiveness of fibers in increasing the tensile strength of concrete. The expres-

sion for fiber spacing derived in this reference is an average of the spacings of

projectiles in a plane normal to the tensile stress direction :

s = 13.8-d,/\j fo100 (2.5)

An alternative approach based on the spacing concept has been introduced

by Soroushian and Lee (1989) [36]. This approach suggests that the fibers in

any orientation with respect to tensile stress can play the microcrack-arresting
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role, and the number of fibers ( N 1 ) per unit cross-sectional area in the compo-

site (irrespective of their orientation) is the factor representing the efflectiveness

of fibers in increasing the tensile strength of concrete :

N1 = aton/Af (2.6)

where:

a = orientation factor (depends on the section geometry

and fiber length as described in the next Chapter) and

fiber cross -sectional areab

s
,

l
l

2

Figure 2.16(a) and 2.16(b) present typical relationships between tensile

strength test results (the same ones used in Figure 2.15) and different measures

related to fiber spacing. The correlations between tensile strength test results

and diffirent measures related to fiber spacing in Figures 2.16(a) and 2.16(b)

show that the spacing concept has deficiencies in representing the failure condi-

tions of steel fiber reinforced concrete at peak tensile stress. One factor leading

to these deficiencies is the disregard of the spacing concept for the effects of

fiber-to—matrix interfacial bond characteristics on the composite material perfor-

mance.

It can be concluded from the above discussion that a new approach to the

prediction of SFRC tensile strength is nwded. This approach should take into

account contribution of fibers to tensile strength of the composite through both

microcrack arrest and pull-out action. Steps taken towards this goal in this

investigation are described in the next Chapter.
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2.3 STEEL FIBER REINFORCED CONCRETE UNDER COMPRES-

SION

In compression, fibers improve the post-peak ductility, energy absorption

capacity and, to some extent, the strength of concrete [37]. These improve-

ments result from the arrest of microcrack propagation by fibers as well as the

confinement efbcts of fibers in the cementitious matrix.

This section presents the nature of microcracking in plain concrete, the role

of steel fibers in confining concrete matrices, and the experimentally observed

performance characteristics of steel fiber reinforced concrete under compression.

No literature is available on the microcracking behavior of steel fiber reinforced

concrete under compression.

2.3.1 Microcracking in Mortar and Concrete under Compression

The internal stresses at aggregate-matrix interfaces resulting from external

compressive loading generally consist of components normal to the aggregate

(compressive or tensile) and those acting parallel to the aggregate (i.e. in shear)

[13,38]. Bond cracks at aggregate-matrix interfaces and their propagation,

which lead to the nonlinear behavior of concrete in compression, are thus caused

by either tensile or shear stresses [38].

Under increasing uniaxial compressive Stresses, the extent of microcracking

at stresses below 85% of peak stress in the pre-peak region is limited primarily

to cracks at the interface between the coarse aggregates and mortar matrix

[13.38].

At about 85% of ultimate compressive load, the bond microcracks begin to

increase substantially. This marks the increase in Poisson’s ratio and the devia-

tion of stress-volumetric strain relationship from linearity. Mortar cracks tend
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to bridge between. the nearby bond cracks and the appearance of continuous

microcracks indicates that the so-called critical load is reached, where significant

nonlinearities tend to occur and the volume of compressed concrete starts to

increase rather than continue to decrease. As some load paths become inopera-

tive due to microcracking under compressive stress, alternative load paths (either

entirely through mortar or partly through mortar and partly through aggre~

gates) continue to be available for carrying increasing compressive loads [38].

The decrease in the number of load paths available would eventually bring con-

crete to the post-peak region of behavior when compressive resistance decreases

with extensive continuous microcracking [38].

Just prior to peak and immediately after it, a localimtion of microcracks

seems to take place (Figure 2.17) [39]. This stage is also distinguished by for-

mation of continuous microcracks (in which mortar cracks interconnect the bond

    
 

Figure 2.17 Localization of Microcracks



 

 

  
Figure 2.18 Microcracks in the Post-Peak Region

microcracks). This involves sharp increase in mortar cracks at or near the peak

stress. In the post peak region, microcracks are continuous, uniform and exten-

sive in all directions (Figure 2.18) [39]. The continuous microcracks tend to be

roughly in the loading direction, particularly if the transverse friction forces at

the ends (where external compressive stresses are applied) are completely

removed [39].

A contribution to the ultimate strength might be provided also by mechani-

cal interlocking of the coarse aggregates after cracking. Factors like this might

influence the trends in the effects of coarse aggregates on concrete compressive

behavior.

The idea that microcracks in concrete under compression are the major

cause of nonlinearity has been challenged lately [40]. The nonlinearity of

concrete appears to be highly dependent on the nonlinear softening reponse



30

characteristics of cement paste and mortar (due to submicrocracking) rather

than bond cracks at the coarse aggregate-matrix interface which penetrate into

mortar. More studies are needed to fully understand the nature of failure in

concrete materials under compression.

2.3.2 Compressive Behavior of Steel Fiber Reinforced Concrete

Short, randomly distributed fibers, when added to concrete, confine the

material and delay the crack propagation, thus producing increases in the peak

strength, strain at the peak stress, ductility and energy absorption capacity (Fig-

ure 2.19) [2.5.14]. The strain at peak compressive stress tends to increase in the

the presence of steel fibers [5].

The confinement effect of steel fibers in concrete is shown in Figure 2.20 [41]

which compares the effects of increasing the fiber reinforcement index (Figure

2.20(a)) with the efficts of increasing the confinement of non-fibrous concrete by

transverse reinforcement (Figure 2.20(b)). Soroushian and Lee (1987) [41], using

Coup.
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60

20

 

 
6

8 10 12 16

Conpreeetve Strata (‘10-3)

Figure 2.19 Typical Compressive Stress-Strain Curves for Plain Concrete and

Reinforced with 1% Volume Fraction of Steel Fibers[33]
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Figure 2.20 Efficts of Fiber Reinforced and Confinement by Transverse Steel

on Compressive Behavior of Concrete

the empirical constitutive models presented in Reference 5 for fibrous concrete

and in Reference 42 for confined concrete, showed that the improvements in duc-

tility and energy absorption capacity resulting from the increase in fiber rein-

forcement index are comparable to those resulting from the increased

confinement of non-fibrous concrete by transverse reinforcement. Figure 2.21

[41] shows typical comparison between the compressive constitutive relationships

of the fibrous and equivalent confined concretes.

The behavior of steel fiber reinforced concrete is dependent on the volume

fraction and aspect ratio of steel fibers, mechanical deformation of fibers, matrix

mix proportions and maximum aggregate size, specimen geometry, and loading

versus casting direction [3,5]. The efbcts of these variables on the compressive

behavior of steel fiber reinforced concrete will be discussed in detail in
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conjunction with discussions on compressive constitutive modeling of steel fiber

reinforced concrete in Chapter 4.

2.3.3 Analytical Modeling

Very few analytical Studies on the compressive constitutive behavior of steel

fiber reinforced concrete have been reported in the literature. Reference 5 has

presented a compressive stress-Strain diagram for Steel fiber reinforced mortar,

the details of which are Shown in Figure 2.22. This model consists of two curvi-

linear portions, one for the pre-peak and the other for the post-peak regions.

The constant coefficients in the curvilinear equations have been derived using

some characteristic stress and strain values as the boundary conditions. These

characteristic values have been expressed, using experimental stress-Strain rela-

tionships, as functions of the fiber reinforcement index and the compressive

strength of plain mortar.
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Figure 2.22 The Compressive Constitutive Model of Reference 5
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The model of Reference 5 has been based on an experimental strain meas-

urement technique which has possibly led to Strain values (e.g., at peak Stress)

greater than the typical values reported in the literature. Hence, although this

model compares reasonably well with the test results based on which it has been

developed (Figure 2.23(a), it can not successquy predict the experimental

compressive Stress-Strain relationships reported in the literature (Figure 2.23(b)).

It should also be emphasized that the model of Reference 5 has been developed

for Steel fiber reinforced mortar, which behaves diffirently from Steel fiber rein- ‘

forced concrete
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Figure 2.23 Analytical Model of Reference 5 vs. Test(cont’d)

2.4 STEEL FIBER REINFORCED CONCRETE UNDER FLEXURE

An important advantage of using Steel fibers in concrete is related to the

improvements in fiexural behavior, which result directly from the improvements

in the tensile and compressive behavior of Steel fiber reinforced concrete.

Mechanisms determining the improved fiexural behavior of steel fiber reinforced

concrete are, however, more complex than those responsible for improvements in

the tensile and compressive behavior of the material. This partly illustrates

why the improvements in flexural behavior of concrete resulting from steel fiber

reinforcement are more pronounced than those in tensile and compressive
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behavior.

The experimentally observed behavior of Steel fiber reinforced concrete and

flexural analysis procedures applied to the material will be discussed in the fol-

lowing sections. The main advantage of the use of Steel fiber reinforced concrete is

its high performance related to its fiexural behavior. This benefit is the direct out-

come of improvements in its mechanical properties of tension and compression.

Mechanisms behind the fiexural behavior of Steel fiber reinforced concrete, how-

ever, are quite diffirent from that of plain concrete or conventionally reinforced

concrete. This section will describe experimentally observed behavior of steel

fiber reinforced concrete beam and present reviews on some of the approaches to

analyze it.

2.4.1 Flexural Properties of SFRC

The improvements of SFRC performance in compression and in tension

result in significantly higher improvements in the flexural strength and ductility

of SFRC [43-45]. A typical comparison between the fiexural load-deflection

relationships of plain and Steel fiber reinforced concrete is presented in Figure

2.24.

SFRC exhibits an obvious deviation from linear load—deflection behavior

prior to the peak fiexural load. This point of deviation from linearity has been

called the first-crack load (PC, in Figure 2.24). Beyond the first cracking, the

flexural load continues to increase at a lower Stiffiiess due to the formation and

propagation of a macrocrack at the critical section in matrix until the ultimate

load (Pu) is reached. In plain concrete once the deflection corresponding to the

ultimate fiexural load of plain concrete is exceeded, failure is brittle and the

post-peak load-deflection curve shows a Sharp descending behavior. Steel fiber

reinforced concrete, on the Other hand, is able to sustain a considerable fraction
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Figure 2.24 Flexural Behavior of Steel Fiber Reinforced Concrete Beam under
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Figure 2.25 One Major Crack at Critical Section in Steel Fiber Reinforced Con-

crete Beam
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of its flexural resistance ever at deflections considerably larger than those

corresponding to the peak load.

In the post-peak region, only one major crack occurs at a critical section in

SFRC (see Figure 2.25). This can imply that curvature tends to become con-

centrated at this critical section. The critical section may be subject to severe

distortions and plane sections may no longer remain plane after bending at this

location.

2.4.2 Analysis of Steel Fiber Reinforced Concrete Beams under Flexure

Limited analytical Studies have been reported in the literature on predicting

the flexural behavior of Steel fiber reinforced concrete. Some investigators [46-50]

have assumed hypothetical stress-Strain and Strain distributions across the criti-

cal section at the ultimate condition (see Figure 2.26) in orde' to compute

  

 

-. f.

    

 

2”t"t'u"sls/ds

Figure 2.26 Hypothetical Stress-Strain Distributions [46-50]
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flexural Strength by considering equilibrium conditions at the critical section.

Very limited number of attempts have been made to simulate complete

flexural load-deformation relationship of SFRC [45,51]. Studies in this area

have been typically based on conventional beam theory, which assumes that

plane sections normal to the beam axis remain plane after bending. An overall

flexural analysis of SFRC beams, however, Should account for the opening of a

crack at the critical section, whee fiexural deformation tends to be concentrated.

The nonlinearities occuring in the vicinity of the crack Should also be taken into

300011111.



CHAPTER 3

THE CONSTITUTIVE MODEL FOR STEEL FIBER REINFORCED

CONCRETE UNDER TENSION

3.1 INTRODUCTION

Direct tensile tests on SFRC have Shown that reinforcement of concrete

with short, randomly distributed steel fibers leads to improvements in tensile

strength and tensile ductility of the cementitious material. These improvements

can be attributed to the microcrack-arresting and pull-out actions of fibers

[1,5,10,11,14]. 30th of these actions of Steel fibers in concrete tend to be depen—

dent on the number of fibers crossing unit cross-sectional area in concrete [35].

Consequently, accurate expressions for computing the number of fibers in unit

area are required for the modeling of SFRC under tension.

In spite of the Significances of the tensile behavior in structural applications

of SFRC, very few tensile constitutive models have been developed [24,26,52].

In this chapter, an empirical constitutive model for SFRC under tension is pro-

posed, which reflects our understnding of the physics of SFRC tensile behavior

and also takes advantage of the tensile test results reported by different investi-

gators. The developed model accounts for both of the microcrack-arresting and

pull-out actions of steel fibers in concrete.
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3.2 EFFECTS OF FIBER REINFORCEMENT VARIABLES ON TEN-

SILE BEHAVIOR OF STEEL FIBER REINFORCED CONCRETE

Direct tensile behavior of steel fiber reinforced concrete has been observed to

depend on the fiber volume fraction, aspect ratio and deformation type. The

increase in fiber volume fraction up to a certain limit (beyond which problems

with workability and fiber dispersability Start to dominate the behavior) tends

to increase the direct tensile strength (Figure 3.1(a)), Strain at peak tensile stress

(Figure 3.1(b)) and post-peak energy absorption capacity (Figure 3.1(c)) of steel

fiber reinforced concrete.

At a specified fiber volume fraCtion, the increase in fiber aspect ratio

(defined as the ratio of the fiber length to its diameter) also increases the direct

tensile strength (Figure 3.2(a)). strain at peak stress (Figure 3.2(b)) and also

enegy absorption capacity of steel fiber reinforced concrete [2,24,28,52,53].

Tensile Strength Increase (‘72) Peak Strain Increase (913)
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Figure 3.1 Efficts of Fiber Volume Fraction on Tensile Behavior of Steel Fiber

Reinforced Concrete [52]
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Fibers with high aspect ratios are, however, more difficult to disperse in concrete

and have more pronounwd adverse efficts on fresh mix workability. Hence, at

each fiber volume fraction, there is a limit on aspect ratio beyond which the

problems with fresh mix workability and fiber disperability tend to decide the

tensile behavior of SFRC.

Some limited test results [25] have also indicated that the direct tensile

strength of steel fiber reinforwd concrete increases with decreasing fiber diameter

at a constant aspect ratio (Figure 3.3).

Steel fibers are generally mechanically deformed for achieving a better

mechanical bonding to the matrix. Reference 4 has reported experimental ten-

sile Stress-strain relationships for steel fiber reinforced concrete incorporating

straight-round, hooked and paddled fibers. The results presented in Figure 3.4

are indicative of some differences in the overall tensile stress-Strain relationship

Direct Tensile Strength (Mpa)

3.0
 

Vt=r.8% 

---- Vt=r.2%

—°“' Vt=o.6%

 

Fiber Diameter (mm)  1.0
 

0.2 0.35 0.5

Figure 3.3 Effect of Fiber Diameter on Direct Tensile Strength of SFRC [25].



 
1.5

.__ straight, round: dI=0.38 mm, ”=25 mm, Vf=l.73%

----- hooked: df=0.40 mm, ”=30 mm. Vf=1-73%
- - paddled: df=0.75 mm. ”=50 mm. W=1-7395

c:s:w=l:2.5:0.35 or 0.45

1.0 f n /-"'\._
,.

.
°
0
! l

T
e
n
s
i
l
e
S
t
r
e
s
s
d
i
v
i
d
e
d
b
y

T
e
n
s
i
l
e
S
t
r
e
n
g
t
h

 
Average Strain (x0001)

I .1 . .

4 8 A 12

  
 

Figure 3.4 Effects of Steel Fiber Deformations On Direct Tensile Behavior of

SFRC [4].

of steel fiber reinforced concrete, incorporating fibers with diffirent mechanical

deformations.

3.3 DEVELOPMENT OF EXPRESSIONS FOR THE NUMBER OF

STEEL FIBERS CROSSING UNIT CROSS-SECTIONAL AREA IN

SFRC

Both microcrack-arresting and pull-out action of fibers in concrete which

contribute to the improvements in tensile strength and tensile ductility of Steel

fiber reinforced concrete are dependent on the number of fibers crossing unit

cross-sectional area in concrete [1,5,10,14,35]. In the following discussion,
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theoretical expressions are derived for the numbe of fibers per unit cross sec-

tional area in fiberireinforced concrete, with due consideration given to the efbcts

of the surrounding boundaries. Measurements are made on the number of fibers

per unit cross-sectional area in steel fiber reinforced concrete specimens incor-

porating various volume fractions of fibers of diffirent types. Based on Statisti-

cal evaluation of the measured values, the differences in fibe' concentration at

different locations on the cross section are assessed. The effects of vibration on

reorientation of steel fibers in concrete are investigated through comparisons

between the computed and measured values of number of fibers per unit cross-

sectional area.

3.3.1 Development of Theoretical Expressions

The average number of fibers per unit area may be considered as the total

number of fibers times the possibility of one randomly located fiber crossing the

unit area. This probability can be computed using a so-called fiber orientation

factor (a), which is basically the average ratio, for all possible fiber orientations,

of the projected fiber length in the tensile Stress direction (for cross-sections nor-

mal to the tensile Stress direction) to the fiber length itself.

Given the orientation factor as a, the average number of fibers per unit area

can be obtained as follows:

N 1 = p N (3.1)

V
_ a _f_

A/

where :

p = possibility of one fiber crossing unit cross sectional area
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_alf

_lbf

 

in Figure 3.5 ; and

N = total number offibers

 V’ b h 1 ' F' 3 5= In Igure . .

Ar If

It can be Shown from Equation (3.1) that finding the orientation factor with

reasonable accuracy under different geometric conditions is important in the

development of tensile constitutive models for SFRC.

The value of orientation factor is afficted by diffirent factors: (a) boun-

daries of the Specimen restricting the orientation of fibers (see Figure 3.6); (b)

vibration during concrete construction which may cause reorientation of fibers in

Unit Area
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Figure 3.5 Number of Fibers per Unit Area
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horizontal planes; (c) fiber types; and (d) location in cross section (top vs. bot-

tom) with respect to the casting and vibration directions. Results of analytical

and experimental investigations of these factors are presented in this section.

Steel fibe's when uniformly dispersed in an infinitely large volume of con-

crete, are expected to be randomly orieited, with equal probabilities of being

oriented in difirent directions in Space. The orientation factor in this condition

(a representing a in Equation (3.1)) can thus be expressed as follows (see Figure

3.7, where projectile is taken along the z-direction);

1:12 1:12

In in If cos0cos¢d0d¢

 

a0 =
(3.2)

(m 2ft,

= 0.405

 

 

Projectile

 

 
Figure 3.7 Three Dimensional Fiber Orientation
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Application of steel fibe' reinforced concrete to thin product (e.g., panels)

may practically restrict fibers to a two-dimensional distribution. In a pure 2-D

distribution (Figure 3.8), with two boundaries restricting the orientation of fibers

in the plane, the following equation can be used to derive the orientation factor

(arm ):

rib/213d):

$3.1. forbs If

b/2

041) =* l/2 '

I33 I forb> 1
LL -.L f“b lf/Z + (l b)0'64

 
where ;

Lilf cosGd 0

B3 = 7

ykde

 

and

7-= sin“(3)

’f

 

\

/

  

Figure 3.8 Two Dimensional Orientation of Fibers

(3.3)
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The above expressions give a lower limit for 2-D orientation factor equal to

0.64 when the width (b in Equation (3.3)) becomes infinity, and an upper limit

equal to 1.0 when the width becomes close to zero.

Where two boundaries are present to restrict the fiber orientation (Figure

3.6(a)). the orientation factor (a; representing an in this condition) in the z-

direcrion, which is a typical direction of tensile stresses, can be obtained by con-

sidering the efbcts of these two parallel boundaries:

' h/2

dy
Lsf/zl— for h< lf( Figure 3.9(a))

“,2 = 4 I’l2
(3'4)

1 Z dy 2 ' ' .9% L; [521 + (0.405)(1-lf/h) for h lf( figure 3 (b) )

t f 

where :

[on] 1:1, cosecosod 0d 9

 

Bl " I,(n/2)y

70 = sin"(df/lf)

y = sin"(2y/lf)

The result is shown in Figure 3.10 and it indicates that at thicknesses

smaller than the fiber length, the obtained fiber orientation factor ((12) is very

close to a 2-D condition, and for thickness greater than two times the fiber

length, there is a gradual approach to 3-D fiber orientation.
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In the condition where four boundaries are present (Figure 3.6(c)), the fol-

lowing expressions can be used to derive the orientation factor (a) in the z-

  

 

 

direction:

iflbfi) for both sides (b,h) < If

J,h/2B dy

l
f d/ 1 .
-b-f(lf,h)+ (l-lf/b)—J—hz;-2—— for only one Side (h) s I,

a: < 2 ‘ I,/2 9-”

IL“, I )+ kWh-25L) [wzfiidy + (0.405)(b-If)(h-lf)

bh f ’f bh lf/Z bh

for both sides (b ,h)2 I,

where:

m/2 n/2 Bzdxdy

flm’")- LI’ZLI/Z (m/2)(n/2) ’

7 5

I I If cos0cos¢d0d¢

62: 40-?“ 7 3

lijojyodedo

 

yo: sin-1(dfxzf) ;

y = sin’1(2y/If) ;

5: sin'1(2x/lf) ;and

[31 = given in illustration of Equation (3.4).
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Figure 3.11 presents the effects of cross sectional dimensions on the fiber

orientation factor (a) for typical cases representing conditions having four boun-

daries as shown in Figure 3.12. Three cases with width-to—height (b/ h) ratios

equal to l, 3 and 6 are considered. It may be concluded from Figure 3.11 that

the width-to—height ratio plays an important role in deciding the fiber orienta-

tion factor at cross sectional dimensions close to or smaller than fiber length.

The fiber orientation seems to gradualy approach a 3-D conditions as the cross

sectional dimensions exceed two times the fiber length.

Approximate equations for 2-D and 3-D orientation factors (which are

rather convenient to use) are presented below. These expressions were derived

using Taylor Expansions of exact expressions. Comparisons between exact and

approximate expressions are given in Figure 3.13.
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Figure 3.11 Effects of Cross-Scetional Dimensions on Orientation Factor in

Cases with Four Boundaries



54

 

 

b<I, b>l’ 9/2-I

-15 «IN
III I; b'. I, (I/2

 

 

 

 

    I, /2 j_ .\\.\,/ J
 

 

L .L .L J

l l l l

I, I2 b-I, I, /2

Figure 3.12 Different Conditions with Four Boundaries

r

 

   
 

 

 
 

If2 1
6-—-T - r _
bh 0" (his-1,) 0" «Is-,1

I If for both b,hSl,

a=1-’€--Tangl-R, )-..-(156+0766—) foronlthlf (3.6)

2 6’ for both 12,1: > I,

0.098i—+o.21 {—b-i-h—Honos
bh f bh

r I
wig—L-Ta '1 _

4 b " (Is-1,) forbSl,

“20 = I, for b > I, (3'7)
0.31“;- + 0.64' 



55

orientation factor

 

 

   

 

1.1

:1 —— Exact Expression

. . - - - Simplified Expression

1.0-1

2 ’ II I

Oeg- \ L __|

I r '1

4 b .

0.8::

I \ h/ b

0.7:
0

0...; <24»

3 0.5

0.5::
1.0

0.4 ‘ ....................................................   
b/If

Figure 3.13 Comparisons between Exact and Approximate Expressions of

Orientation Factor in Diffirent Conditions

3.3.2 Experimental Assessment of the Orientation Factor

Orientation of Steel fibers in concrete and consequently the number of fibers

per unit area are influenced not only by the boundaries restricting the random

orientation of fibers, but also by the fact that Steel fibers tend to settle down

and reorient in horizontal planes when fibrous concrete is vibrated during place-

ment. Hence, as a result of vibration, the orientation of Steel fibers in concrete

moves further away from a 3-D condition and tends to approach a 2—D condi-

tion. In order to assess the degree of fiber reorientation during vibration, a

comparison was made between the values for the number of fibers per unit area

obtained theoretically from Equation (3.5) and measured experimentally. This

section presents the results of measurements made in this Study on the number

of fibers per unit area. These results are compared with the theoretical values
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in order to derive more representative expressions for the actual fiber orientation

conditions in concrete.

The measurements of the number of fibers per unit area were performed on

fractured cross-sectional surfaces of 152 mm by 152 mm by 457 mm (6 in. by 6

in. by 18 in.) steel fiber reinforced concrete beams tested in fiexure. The concrete

matrices had a water/ binder ratio of 0.40, fly ash (type F)/ binder ratio of 0.3,

aggregate! binder ratio of 4.0, fine-to-coarse aggregate ratio of 1.0 , and supe-

plasticizer (solid content)/ binder ratio of 0.01 by weight. The fiber volume frac-

tions were 0.5, 1.0, 1.5 and 2.0%, and the fibers were either straight (51 mm =

2 in. length and 0.5 mm = 0.02 in. diameter ) or hooked (51 mm = 2 in. length

and 0.5 mm = 0.02 in. diameter ). The specimens were vibrated externally,

and wee tested in flexure after 28 days of air curing (at 40% Relative Humidity

and 22°C, 72°F). The fiexural loading was continued until complete separation

occurred.

A total of 19 flexural Specimens wee tested in this investigation. For each

specimen, the number of fibers per unit area was measured using a 51 mm (2 in.)

square frame (Figure 3.14(a)), noting that the number of fibers per unit area at a

certain location is the sum total of the number of fibers appearing on one side

and the number of pulled out fibers on the corresponding opposite Side.

Measurements were made at Six locations on each specimen (Figure 3.14(b)).

These locations were categorized as top, middle, and bottom with respect to the

casting direction, as shown in Figure 3.14(b). The measured values of the

number of fibers per unit area were then normalized as follows :
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(a) Measurement Technique

Castlng Direction
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(b) Measurement Location

Figure 3.14 Measurement of the Number of Fibers per Unit Area
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N1
(1: ——

v,/A,
(3.8)

where a, the normalized value, is actually the orientation factor in Equation

(3.1). The theoretical values for a (a0, a2 and a in Equations (3.2),(3.4) and

(3.5), respectively) were influenced only by the boundary conditions, but not the

vibration of concrete. The differences between the measured and theoretical

“values of a will thus mainly represent the consequences of fiber reorientation in

fresh mix under vibration.

Table 3.1 summarizes the measurements made in this study for the number

of fibers per unit cross sectional area in a total of 19 specimens. The means and

Standard deviations of the orientation factors (obtained by normalizing the

number of fibers per unit area following Equation (3.1)) are given in this table

for diffirent locations on cross section and for diffirent fiber types.

In order to verify if [there is any statistically significant diffirence between

the fiber orientation factors, and consequently the number of fibers per unit area,

Table 3.1 Mean Values of Fiber Orientation at Different

Location on Cross Section and for Different Fiber Types

 

 

 

 

 

 

        

Fiber Type Mean and Standard Deviation of alghaLEqB)

. Top Middle Bottom All

(No. of Specrmen)
VI d

Mcan Std. Dev. Mean §td. Dev. Meag Std. Dev. 1 can gt .Eev. .

. Straight

' (16 Specimens) 0.609 0.231 0.587 0.235 0.654 0.240 0.617 0.235

Hooked

(3 Specimens) 0.605 0.211 0.476 0.0773 0.776 0.214 0.619 0.179

All

[19 Specimens) 0.608 0.225 0.569 0.221 0.673 0.237 0.617 0.228   
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at different locations on cross section or for diffirent fiber types, the hypOthesis

that the'e are no efficts of location and fiber type was tested statistically using

the measured values of fiber orientation factor. T-tests [54] indicated that at a

significance level of 0.05, given the measurements made on the available speci-

mens, there are no statistically significant effects of location on cross section (top

vs. bottom) or fiber type (straight vs. hooked) on orientation factor and conse-

quently on the number of fibers per unit area. Hence, the mean and standard

deviation of fiber orientation factor can be derived using all the measurements

made in this Study, irrespective of the location or fiber type. The resulting

values of mean and standard deviation (given in the last two columns of the last

row in Table 3.1) are 0.617 and 0.228, respectively. Figures 3.15(a) and 3.15(b)

compare the frequency and cumulative frequency distributions of the measured

orientation factors with the corresponding normal distribution curves. Some

degree of Similarity between the measured values and normal distribution curves

can be observed.
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Figure 3.15 Measured vs. Normal Distribution (cont’d)

F-tests [54] on measurements made at different locations on cross section and for

diffeent fiber types also showed no statistically significant efficts of location and

fiber type (at 0.05 Significant level) on the Standard deviation of the measured

values of orientation factor.

3.3.3 Theoretical Values vs. Experimental Measurements

The theoretical value of orientation factor obtained from Equation (3.5) for

the parameters chosen in this study ( fiber length of 51 mm = 2 in., and cross

sectional dimensions of 152 mm by 152 mm = 6 in. by 6 in.) is 0.537. The

difference between the measured mean value of fiber orientation (0.617) and the

calculated value of 0.537 is about 4 times the Standard error of the measured
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mean value. This significant difbrence can not be Simply attributed to the vari-

ation of steel fiber concentration inside concrete. The relatively large value of

orientation factor in actual measurements may result from the modification of

fiber orientation during the vibration of fresh mix [55]. Vibration efficts cause a

reorientation of steel fibers inside concrete and encourage a tendency toward 2-D

distribution of fibers in horizontal planes. This efbct of vibration may be used

to illustrate the difference between the measured and theoretical values of

number of fibers per unit area (and orientation factor).

It Should be noted that, for the conditions of test Specimens in this study

(152 mm = 6 in. square section, 51 mm = 2 in. fibe' length), a pure 2-D distri-

bution in horizontal planes (considering the boundary effects), would lead to a

horizontal orientation factor of 0.74 (see section 3.3.1 for theoretical expressions

for 2-D fiber orientation) which is larger than the measured value of 0.617.

Noting that this measured value (0.617) is at the same time larger than the

corresponding 3-D fiber orientation factor of 0.537 obtained theoretically (consid-

ering the boundary effects), it may be concluded that the actual fiber orientation

factor after vibration of concrete is in between the corresponding 2-D and 3-D

orientation factors (calculated considering the boundary efbcts). Approximate

values of orientation factors in Specimens with different geometries and fiber

lengths can be derived from Figure 3.16. This figure shows values for orienta-

tion factors in 2-D conditions with two boundaries (calculated using Equation

(3.3)) and 3-D conditions (with different height-to-width ratios calculated using

Equation (3.5)), in terms of the ratio of specimen width to fiber length. For

each geometric condition, given the specimen width to fiber length ratio and also

the ratio of specimen height to its width, Figure 3.16 can be used to derive

theoretical values of orientation factor for 2-D and 3-D conditions. The experi-

mental results of this study indicate that the actual orientation factor would fall
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Figure 3.16 2-D and 3-D Orientation Factors for Different Geometric Condi-

tions

between the 2-D and 3-D values (an average of the two may be used as a rough

approximation).

3.4 PREDICTION OF TENSILE STRENGTH: "INTERACTION

CONCEPT"

As mentioned earlier, there are two dominant analytical simulations of fiber

reinforced concrete failure mechanism under direct tension. One considers the

pull-out action of fibers as the key mechanism through which fibers contribute to

the tensile strength of material (generally referred to as the composite material

concept or the law of mixture) [l,3,27-29,56]. The second approach (usually

referred to as the spacing concept) suggests that the spacing of fibers,.not their
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bonding to matrix and pull-out behavior, is the key factor which decides the

effictiveness of fibers in concrete [34,35]. One may consider that the spacing

concept is based on the assumption that at the composite peak Stress fibers act

mainly to arrest microcracks (Figure 3.17) rather than to bridge the macro-

cracks, while the opposite applies to the composite material concept.

Figures 2.18(b) and 2.19 presented in Chapter 2 are indicative of shortcom-

ings of the composite material and spacing concepts, respectively, in describing

the performance of steel fiber reinforced concrete at peak tensile Stress. The

deficiencies of the composite material concept may have been caused by disregard

for the microcrack-arresting action of steel fibers (Figure 3.17(a)) and the

inheent assumption at the composite material approach that the pulloout

Microcrack
 

Aggregate

Fiber

   

 

 

    
(b) Bridging of Macrocracks

Figure 3.17 Influences of Fibers on Cracking Characteristics and Tensile

Behavior of Concrete
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resistance of fibers is almost fully mobilized at peak tensile stress (where the

strains and crack openings are insufficient to do so) [28]. The spacing concept,

on the othe' hand, disregards any partial mobilization of bond stresses (Figure

3.17(b)) at peak tensile stress, which could be the key reason for its discrepancies

when compared to test results.

3.4.1 "Interaction Concept"

The formulation presented below for the prediction of SFRC tensile

strength can potentially account for the contributions of both the microcrack-

arresting and partial pull-out actions of steel fibers at the peak tensile stress of

the composite material:

a, = A ~o,,,' + 0.251t-d, -l,-1:-N1 (3.9)

where :

A = 1+ a-N11’3;

1: = interfacial bond stress at the composite peak tensile stress

t'O’m ; and

a , t = coefli cients to be derived empirically.

The contribution of matrix at peak tensile stress in the above equation is

represented by A -o,,,', where A is dependant on the number of fibers per unit

cross-seetional area (N 1). This reflects the fact that a higher number of fibers

(with a smaller fiber Spacing) is more efbctive in arresting microcracks (Figure

3.17(a)) and thus in increasing the contribution of the matrix to the composite

material tensile Strength. Equation (3.8) can be used to derive N 1, with the
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orientation factor (or) being a function of the fiber reinforcement properties

(geometry and volume fraction) and the cross-sectional dimensions of test speci-

men as described in section 3.3 in this Chapter.

The contribution of fiber pull-out at peak tensile stress is represented in

Equation (3.9) by the multiplication of the average fiber interfacial area reSiSting

pull-out (0.251tid, -l,) times the average fraction of bond stress mobilized at the

composite peak tensile stress (1:) times the number of fiber pe' unit area (N 1).

The proportionality of 1: and matrix tensile Strength (om') reflects the fact that

strange matrices may be capable of activating a larger fraction of fiber pull-out

force at peak tensile stress. It is assumed that the inclination of fibers with

respect to the tensile stress direction has a negligible effect on the pull-out action

of fibers. It is worth mentioning that the decisions on the dependence of the

matrix contribution to tensile Strength of the composite on the number of fibers

per unit cross-sectional area (N 1), and also the dependence of the fiber pull-out

contribution on the matrix tensile Strength (6",) were made based on the physics

of the composite material behavior at peak tensile Stress, and also based on an

extensive trial and adjustment verification of different concepts fordescribing the

composite material performance at peak tensile Stress.

The proposed approach to the prediCtion of SFRC tensile Strength accounts

for the physical interactions that exist between fibers and matrix at peak tensile

Stress, and it may thus be referred to as the "interaction concept" for predicting

the tensile Strength of fiber reinforced concrete.

Coefficients a and t of the "interaction concept" in Equation (3.9) have to

be decided empirically using tensile Stress test results. A comprehensive set of

test data was used for this purpose.
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3.4.2 Empirical Coefficients

A total of 50 SFRC tensile strength test results were used to derive the

empirical coefficients of the proposed "interaction concept" equation for the

prediction of SFRC tensile strength (Equation (3.9)). The direct tension test

results used in this study were obtained for mortars reinforced with straight

(round or rectangular) steel fibers [24,25,29,52,57]. These tests were performed

on Specimens with rectangular cross sections of diffirent dimension. Table 3.2

summarizes the following properties of the tension test speciments : (a) cross

sectional dimensions ; (b) fiber reinforcement properties ; and (c) matrix mix pro-

portion and tensile Strength test results.

Least square fitting of the "interaction concept" expression (Equation (3.9))

to the test data. presented in Table 3.2 provided the basis for calculating

coefficients a .and t of Equation (3.9), which were found to be equal to 0.138 and

0.2, respectively. Hence, the proposed "interaction concept" leads to the follow-

ing equation for calculating the tensile Strength of Steel fiber reinforced concrete

a, = om'-( 1+ 0.133-N,1/3 + 0.051t-df-l,-N1) (3.10)

Figure 3.18 Shows the desirable comparisons between predictions of the pro-

posed "interaction concept" (Equation (3.10)) and SFRC tensile strength test

results.

The bond stress mobilized at the composite tensile strength is represented in

Equation (3.9) by t ~o,,, '. An empirical value of 0.20 for t indicates that, for a

typical matrix tensile Strength of 2.41 Mpa (350 psi), the bond stress developed

at the composite material tensile strength is typically 0.48 Mpa (70 psi), which is



Table 3.2 Direct Tensile Test Specimen and Results
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matrix fiber . en size mposste

Ref. tensile strain diameter length Vf widthxdepth tensile strain

czszw strength at peak strength at peak

(Mpa) (110.0001) (mm) (mm) (‘5) (“m " mm) (Mpa) (110.0001)

24 1:2:0.5 2.8 1.74 0.41 25.4 0.5-1.5 76x19 3.0-3.6 1.9-2.2

1:25:06 1.68 ‘ 0.2.5 18.8 1-3 38x51 2.0-2.5 ‘

5 " " " 0.25 12.7 1-3 " 1.8-2.1 ’

" " ‘ 0.25 3.4 1-3 " ' 2.2-2.7 ‘

13:05 3.38 1.43 0.25 19.1 0.6-1.7 102x102 3.7-4.0 1.6-1.8

" " " " 38.1 03-1.7 " 3.5-3.8 1.5-1.9

" " " " 25.4 0.3-1.7 " 3.0-4.3 1.6-2.2

" " " 0.41 13.8 0.6-1.7 " 3.4-3.5 15-l.6

29 " " " " 25.4 06-1.? " 3.6-4.0 1.5-1.8

" " " " 38.1 06-1.? " 3.8-4.5 1.7-2.0

" " " 0.43 15.2 1.7 " 3.7 1.6

" " " '° 30.5 l.2-1.7 " 3.5-4.1 1.7

" " " " 45.7 0.6-1.7 " 3.7-4.6 1.6-1.8

1:20.45 1.74 0.85 0.5 50 0.6-1.8 16x100 1.9-2.6 1.2-2.1

34 " " " 0.35 35 0.6-1.8 " 1.9-2.4 1.1-2.2

" " " 0.25 7.5 0.6-1.8 " 1.6-2.0 0.9-1.7

2.8 0.43 12.7 1-3 127106 3.6-5.3 1.64.4

35 " " 19.1 1-3 " 2.7-4.6 1.2-6.6

" " 25.4 1-3 " 3.5-5.3 1.3-6.0
 

‘ Not Reported
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Figure 3.18 Comparisons of the Proposed "Interaction Concept" with Tensile

Strength Test Results

only about 25% of a typical fiber-to-matrix bond strength of about 2 Mpa

(reported in Reference 28). This result is compatible with the discussion made

earlier on strains and crack openings at the peak tensile stress of the composite

indicating that they are not large enough to fully mobilize the pull-out action

and interfacial bond strength of steel fibers in concrete.

The matrix contribution to tensile strength is represented in Equation (3.9)

by 0,,"( 1 + cerl’3 ). With the empirical value of 0.138 for a, at a typical

value of 0.047 for N 1 (corresponding to a volume fraction of 1% in a direct ten-

sion test specimen with typical cross-sectional dimensions), the contribution of

matrix to the composite material tensile strength is 1.05 times the matrix tensile

strength. This increase in the tensile strength of matrix may be attributed to

the microcrack-arresting aCt ion of fibers inside the matrix which tends to

Strengthen the matrix under the action of tensile stresses.
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3.4.3 "Interation Concept" vs. Composite Material and Spacing Con-

cepts

This section uses tensile strength test results presented in Table 3.2 to per-

form a comparative study on the accuracy of the proposed "interaction concept"

versus thoses of the composite material concept (Equation 2.4 [3])) and the spac-

ing concept (Equation 2.5 [34]) and modified spacing concept (Equation 2.6 [35])

in predicting the tensile strength of SFRC. The comparison between predictions

of the new "interaction concept" and test results is presented in Figure 3.18.

Figures 3.19(a), (b), and (c) compare the same test results with the predictions of

the composite material concept (Equation 2.4), spacing concept (Equation 2.5),

and modified spacing concept (Equation 2.6), respectively. Relatively large

scatters between test results and predictions based on the composite material

and spacing concepts are observed in Figure 3.19. The sum total of the squares

of normalized errors ( the normalimd error represents the diffirence between

theoretical and experimental tensile strength values normalized with respect to

the experimental strength ) for each of the four approaches introduced in Figures

3.18 and 3.19 are as follows : 0.429 for the "interaction concept" (Equation

(3.10)), 0.553 for the composite material concept (Equation (2.4)), 0.567 for the

spacing concept (Equation (2.5)), and 0.551 for the modified spacing concept

(Equation (2.6)). This confirms the favorable comparison of the "interaction

concept" prediction with test results. The average and standard deviation of

errors (differences between normalized theoretical and experimental values) are

presented in Table 3.3. The average error of the "interaction concept" prediction

is observed to be closer to zero and the standard deviation of its errors is also
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Predictions with Tensile Strength Test Results
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Table 3.3 AVG-{380. Standard Deviations. and Sum Total of Squares of Nor-
mahud Errors for Diffirent Concepts

 

 

 

 

 

 

Concept Avg. Std. Dev. Sum Total of Sqrs.

" Interaction Concept " (Ermation 3.10) -0.0014 0.0925 0.429

Composite Material (Equation 2.4) 0.0456 0.0945 0.553

S acing (Equation 2.5) 0.0248 0.104 0.567

Modified Spacingjquuation 2.6) 0.0234 0.102 0.551     
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seen to be the lowest, when compared with those obtained for the other con-

cepts. Hence, Equation (3.10) based on the "interation concept" seems to

predict the direct tensile strength of steel fiber reinforced concretes with a more

reasonable accracy.

3.5 PRES-PEAK CONSTITUTIVE MODELING

The pre-peak tensile behavior of steel fiber reinforwd concrete deviates from

linearity when microcrack propagarion has already occured (see Figure 2.14).

Thus, as shown in Figure 3.20 , the behavior was assumed ( based on the

reported tension test results) to be linear, with a slope equal'to the elastic

modulus of the matrix, up to the matrix tensile strength (6”,). At this point,

due to major microcrack propagation in the matrix, the stiffiiess was assumed to

be reduced, and the stress-Strain relationship was continued linearly up to the

peak tensile stress.

Strain at peak tensile stress was derived empiricaly, using the test data

summarized in Table 3.2, as a function of some fiber reinforcement properties:

a, = Em-(l + 0.3s-Nl-df-1f) (3.11)

where:

8c = composite tensile strain at peak

tensile stress ,' and

8,, = matrix tensile Strain at peak

tensile Stress.
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Figure 3.21 presents the relatively desirable comparison between predictions

of the above equation and the reported test results for strain at peak tensile

stress in steel fiber reinforced mortar.

3.6 POST-PEAK CONSTITUTIVE MODELING

In the pre-peak region the matrix and fibers interact and both contribute to

the tensile resistance of fibrous concrete. Crack opening at the peak load, how-

ever, sharply reduces the contribution of matrix and tends to transfer tensile

loads mainly to the fibers bridging the crack. The matrix contributes to the

post-peak tensile resistance of the composite through its softening behavior.

The tensile behavior of the composite in the post-peak region can thus be simu-

lated by superimposing the pull-out performance of fibers with the matrix

softening behavior.

Due to difficulties in direct tensile testing of concrete only limited experi-

mental data are available in this area. In the interpretation of the direct ten-

sion test results it should be considered that the post-peak deformations in fiber

reinforced concrete tend to localize in one major crack at the critical section.

The tensile behavior of fiber reinforced concrete can thus be represented by a

stress-strain relationship in the pre-peak region, and an average stress vs. aver-

age crack width (deformation) relationship in the softening (post-peak) region

[10,24,58]. An empirical model presented in Reference 10 for the softening

(post-peak) behavior of the matrix was simplified (by a bilinear presentation of

the curvilinear model) to represent the contribution of the matrix to the post-

peak behavior of fiber reinforced concrete:



75

 

1 s, 0 S s Ssc, 3 12

0’”- .s-s sSsSs (')
04' . CO or CO

. Om

scO - scr

L

where:

am = tensile stress (in post—peak region);

Om ' = peak tensile Stress;

s = crack opening;

sc, = crack width at 0),, equal to 0.4-om'

= 0.015 mm ,' and

3c0 = crack opening at cm equal to zero.

The above equation is compared with test results in Figure 3.22. It should

be noted that a more elaborate modeling may require the consideration of fiber

efbms on the matrix post -peak tensile behavior.

Upon the cracking of matrix at the peak tensile strength of the composites a

crack strats to open and the pull-out mechanism of fibers tends to be mobilized.

Typical experimental Now of fiber pull-out versus displacement (slippage) rela-

tionships for straight round steel fibers are given in Figure 3.23. Based on 36

experimental pull-out load-slip relationships reported in References 16,18,19,59-

61, an empirical expression for pull-out behavior was developed in this investiga-

tion (Figure 3.24). The model consists of three straight lines: a linear pre-peak

ascending portion, and a bilinear post-peak descending branch. This trilinear

model includes two characreristic bond values (1,, and t, in Figure 3.24) and

three characteristic pull-out slip values (st , s, and so).
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Figure 3.22 Comparisons of the Average Stress vs. Average Crack Width Rela-

tionship in the Post-Peak Region with Test Results
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Pull-Out Stress (Mpa)

2.62

 0.79 ‘*

 
   

0.025 2.8

Figure 3.24 Model of Pull-Out Load-Deflection Relationship for Straight-

Round Steel Fibers

Table 3.4 Pull-Out Test Conditions and Results [16,18,19,59,60,61]

 

 

 

 

 

 

 

  

matrix fiber avg. bond peak

Ref. czszw diameter em;$1.”! strength displacement

(mm) (mm) (Mpa) (mm)

16 l:4:0.5 0.38 50.8 1.8 ‘

l:2.5:0.55 0.4 12.7 2.62 "'

18 1:25:06 0.25 12.7 2.62 0.51

1:2.5:0.55 0.15 12.7 1.02 "'

" 0.4 12.7 2.25 "

1:3:0.3l 0.4 20. l 2.4 0.04

or 0.4 30. 2.4 ‘

19 0.4 20. 2.4 "

l:3:0.65 0.3 30. 2.4 ‘

0.3 20. 2.3 ‘

59 1:2:0.4 0.64 31 2. l '

1:0:0.31 0.64 50.8 0.64 "

1:0:0.55 0.38 30.3 " 0.203

60 " 0.51 " "' 0.45

" 0.41 " ‘ 0.23

61 1:25:04 0.4 12.5 0.194 0.2

l:2.5:0.6 0.4 12.5 0.42 0.2       
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Figure 3.25 Pull-Out Test Procedure

Several pull-out test results reported in the literature were used to derive

the characteristic bond stress and slip values of the proposed model. Table 3.4

summarizes some fiber and matrix properties and experimental procedures (see

Figure 3.25) as well as test results for the pull-out tests used in this study.

The average characteriStic bond stress values derived from pull-out test

results are as follows:

2.62 Mpa (380psi) ; and (3.13)

:
d II

t, = 0.3'1?“

While the stability of the pull-out test is vital to proper monitoring of the
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fracture behavior and pull-out deformations, most pull-out tests have not been

conducted under stable test conditions [62]. It was pointed out in Reference 62

that with the method of crosshead or overall displacement-controlled tests, very

low initial sitiffi'tesses, and thus large slip values at the peak pull-out load, are

generally recorded. To avoid the problems addressed above, slip-controlled tests

which ensure greater stability during specimen softening were perfomed and the

typical results are shown in Figure 3.26(a) for the pull-out behavior of straight-

round steel fibers. It has been reported in this reference that considerable

scatter observed in the measured peak slip values possibly result from the flat

nature of the load-slip characteristics in the vicinity of the peak-load. Pull-out

test results of Reference 62 are distinguished from others [16.18.19.59-61] by a

much larger initial pull-out stiffness. Based on the test results reported in

Reference 62, the fiber pull-out slip at peak pull-out load (spk) was selected to

Pull-Out Stress (Mpa)

 

 
 

3 r

2 I-

1 1-

Slip (mm)

0 1 1 l l t 1

0.05 0.1 0.15

(a) Pull-Out Test Results in Reference 62

Figure 3.26 Simulation of Pre-Peak Pull-Out Behavior of Straight-Round

Steel Fibers
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(b) Pre-Peak Pull-Out Model vs. Test Results from Reference 62

Figure 3.26 Simulation of Pre-Peak Pull-Out Behavior of Straight-Round

Steel Fibers (cont’d)

be 0.025 mm (0.001 in.) for use in the model of this investigation.. The model is

shown in Figure 3.26(b) to closely simulate the initial pull-out stiffness in the

pull-out test results of Reference 62 (see Figure 3.26(b)). It is worth mentioning

that this value of slip at peak pull-out load is roughly five times the maximum

crack opening at the peak tensile stress of SFRC under direct tension as given in

Reference 28.

With the limited fiber pull-out data available, the other characteristic pull-

out slip value at residual strength (3, in Figure 3.24 corresponding to a bond

strength of 1:, ) was obtained as the average of test results reported in the litera-

ture (s, = 2.8mm) [18.19.6061]. The slip at zero pull-out load (so in Figure

3.24) was assumed to occur when complete pull-out has been made (i.e., when
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the slip value equals half of the fiber length). A summary of the selected values

for characteristic bond stress and slip values is given below:

sp,‘ = 0.025mm (0.001 in. ); (3.14)

s, = 2.8mm (0.11 in. ); and

So: lf/2.

Typical comparisons beween the post-peak branch of the proposed fiber

pull-out model with the above empirical characteristic values of bond stress and

slip and experimental post-peak results are observed in Figure 3.27 to be reason-

ble. In the pull-out tests used in this investigation, except for Reference 62

(where multiple fibers were pulled out simultaneously), a single straight-round

' Pull-Out. Load, N

 

   1

4 8 12 Pull-Out. Distance (mm)

 

Figure 3.27 Comparison of the Experimental Pull-Out Load-DefieCtion Rela-

tionships in the Post-Peak Region with the Empirically Derived

Model of This Study
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steel fiber (which was aligned in the loading direction) was pulled out of the

matrix. In the actual conditions of the composite material, however, fibers are

closely spaced and also randomly oriented. An increase in the number of fibers

per unit cross sectional area has been shown to reduce the pull-out strength of

fibers (Figure 3.28(a)). Another observation has been made by Reference 60

that, as the volume fraction in matrix (and thus the number of fibers per unit

cross sectional area) increases, the pull-out strength of fibres tends to increase

(see Figure 3.28(b)). More comprehensive test results are needed if the e&cts of

the number of fibers per unit cross-sectional area on the pull-out performance of

fibers are to be considered.

Peak Load per Fiber/ Peak Load of One Fiber

 

0 straight, parallel fibers

1,5 J. . fibers at. 60'

1.0 '

0.5 '-

  0 l l

0.03 0.06/mm2

 

(a) Fiber Concentration (No. of Fibers per Area)

Figure 3.28 Effect of Fiber Concentration, Volume Fraction and Orientation

on Pull-Out Strength
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(b) Fiber Volume Fraction

Peak Load, N
 

O df=0.~t mm

0 df=0.25 mm

50" . df=0.15 mm

40
%/
\0
\O

  1 1 1 l 1

20 40 50 Degrees

Angle of Orientation

(c) Fiber Orientation

Figure 3.28 Effect of Fiber Concentration, Volume Fraction and Orienation on

Pull-Out Strength (cont’d)
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As far as the fiber orientation efbcts on pull-out strength are concerned, as

shown in Figure 3.28(c), the increase in fiber inclination (with respect to the

pull-out load direction) first increases the pull-out strength and then starts to

reduce the pull-out resistance. Based on this observation it was assumed that

the pull-out performance of fibers aligned in the direction of pull-out load

roughly represents an average performance for randomly oriented fibers.

The composite material post-peak behavior was simulated assuming that

the fiber slippage in the pre-peak region is negligible. This assumption was

made based on the discussions presented in Reference 28, where it is stated that

the crack opening at peak load is too small to significantly mobilize pull-out

action of fibers. The composite material post-peak behavior may thus be

assumed to depend on the pull-out behavior of fibers crossing the critical section

(with fiber pull-out starting near the peak load) and the matrix softening

behavior in the post -peak region:

0 = of + cm (3.15)

where:

O' = total resistance after peak tensile strength; and

of = average tensile stress provided by the pull-out

resistance offibers across the critical section.

In the use of fiber pull-out behavior for simulating the post-peak behavior

of composite materials, it was assumed that the fiber embedment length is equal

to the statistically derived average value of l,/4. The tensile resistance pro-

vided by fibers can thus be derived through multiplying the average value of

bond stress by the interfacial area of all fibers crossing the cracked section
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assuming an average embedment length of If! 4 :

1
a, = err-d, --£—-N1 (3.16)

where:

t = average intetfacial bond stress.

The value of 1: in the above expression can be obtained, using the proposed

fiber pull-out constitutive model, as a fraction of the crack opening (5) in the

post -peak region:
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The contribution of matrix to post-peak tensile resistance (0",) can also be

expressed as a function of the post-peak crack opening at the critical section

using the proposed softening model for the post-peak constitutive behavior of

the matrix (see Equation (3.12)).
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3.7 COMPARISON WITH TEST RESULTS

Complete tensile Stress-deformation relationships for SFRC (covering bOth

the pre-peak and post-peak regions) have been reported in References 4,24,29

and 63. Table 3.5 presents some key test conditions and Figure 3.29 compares

the experimental tensile stress-deformation relationships with the predictions of

the constitutive model developed in this study.

The proposed model is observed to predict experimental resutls with reason-

able accuracy.

 

 

 

 

 

 

 

Table 3.5 Conditions of Some Direct Tension Test Results of SFRC.

tees matrix fiber specimen composite

Rel tensile unis diameter length V! with depth tensile strain

No- me «1.11.11 .1 peak (m) (111111) (96) (m) (an) strength .1 peak

(Mpa) (11010001) (Mpa) (10.0011)

1 as 1.74 0111 251 as 3.0 1.11

4 2 no.5 ' ' ' ' 1.0 70 10 3.2 20

s ' ' ' " 15 3.0 2.2

e 1.71 0.05 0.5 so 0.01.0 1.0-2.0 1.2.11

0 5 was ' ' 055 35 0.01.0 10 100 1.0-2.1 1.1-2.2

0 ' ' 025 :5 0.0-15 1.0-2.0 0.0-1.7

11 7 1515.11.15 - - 0.50 25 1.75 50 100 as 4

s 1.00 - 0.20 111 1.0 2.00 -

1s 0 112.500 ' - one 10 2.0 50 50 2.17 -

10 ' - 0.20 to 0.0 2.5 -

11 1.00 o 0.15 12.7 1.0 2.1 -

31 12 1:25.00 ' - 0.15 12.7 2.0 so 50 2.2 -

10 ' - 0.15 127 3.0 2.55 -            
 

‘NoeReported
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Figure 3.29 Comparison of Experimental Tensile Stress-Deformation Rela-

tionships with Predictions of the Model Developed in This Study
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Figure 3.29 Comparisons of Experimental Tensile Stress-Deformation Relation-

ships with Predictions of the Model Developed in This Study
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3.0 SUMMARY AND CONCLUSIONS

Theoretical expressions were derived for the number of fibers per unit cross

sectional area in fiber reinforced concrete as a function of fiber volume fraction

and length, assuming that cross sectional boundaries are the only factors dis-

turbing the 3-D random orientation of fibers. Measurements were made on frac-

tured surfaces of Steel fiber reinforced concrete Specimens in order to assess the

actual values for the number of fibers per unit area in steel fiber reinforced con-

crete. Nineteen steel fiber reinforced concrete Specimens incorporating different

fiber volume fractions and different fiber types were considered in this investiga-

tion. Statistical studies were conducted on the measured values of the number

of fibers per unit area for determining the possible efbcts of fiber type and loca-

tion on the number of fibers per unit area. Comparisons were also made

between the theoretical and measured values of the number of fibers per unit

area in order to determine the effects of reorientation of steel fibers inside con-

crete during vibration. Recommendations were made, based on the findings of

this research, for approximating the number of fibers per unit cross sectional

area in steel fiber reinforced concrete.

The following conclusions were derived from the results of this investiga-

tion:

(1) The type of steel fiber (Straight vs. hooked) and the location in cross sec-

tion with respect to the casting direction (top vs. bottom) did not have any sta-

tistically significant effect on the measured value of number of fibers per unit

area.

(2) Vibration of steel fiber reinforced concrete seems to reorient the fibers,

resulting in a tendency towards orienting the fibers in horizontal planes. This

phenomenon illustrates the higher values for number of fibers per unit area in
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actual measurements when compared with theoretical predictions.

(3) The number of fibers per unit cross sectional area in steel fiber reinforced

concrete after vibration is between the theoretical values derived for 3-D and 2-D

random orientation conditions considering the boundary efbcts.

A refined concept ("interaction concept") was proposed for predicting the

tensile strength of SFRC. This concept accounts for the partial mobilization of

the fiber pull-out action (interfacial bond stresses) at the composite material ten-

sile strength, and also considers the microcrack arresting action of fibers and the

consequent strengthening of matrix in the presence of steel fibers. The proposed

"interaction concept" leads to an expression for predicting the tensile strength of

steel fiber reinforced concrete, which incorporates some empirical coefficients to

be determined empirically. These coefficients were decided in this study using a

relatively large number of SFRC tensile Strength test results.

The theoretical predictions based on the proposed "interaction concept",

when compared with those of the composite material and spacing concepts, Show

a reasonable correlation with test results. More importantly, the relative matrix

and fiber contributions to the composite material tensile Strength in the pro-

posed "interaction concept" are representative of the physical performance of the

composite material at peak tensile Stress.

The model used more Stable test results for the post-peak region. Matrix

softening behavior and fiber pull-out actions both expressed in terms of crack

opening and fiber slip, are superimposed to simulate post-peak behavior of the

composite. The comparisons with test results were satisfactory. Further

reaserch, however, is to be needed for the consideration of effect of fibers crossing

the composite cross sect ion.

A constitutive model was also developed for predicting the pre-peak tensile

stress-Strain relationship as well as the post-peak tensile stress-deformation
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relationship of steel fiber reinforced concrete. The developed post-peak constitu-

tive model accounts for the constributions of fibers crossing the critical section

through their pull-out action as well as that of matrix in its post-peak softening

range of behavior. Empirical fiber pull-out load-slip and matrix post-peak con-

stitutive models were combined to derive the composite material post-peak ten-

sile stress-deformation model. The pre-peak constitutive model of the composite

material developed in this Study was an empirical one based on the tension test

results reported in the literature for steel fiber reinforced concrete. The pro-

posed constitutive model is shown to compare reasonably well with tension test

' results performed on steel fiber reinforced concrete in both the pre- and post-

peak region.

 



CHAPTER 4

THE CONSTITUTIVE MODEL FOR STEEL FIBER REINFORCED

CONCRETE UNDER COMPRESSION

4.1 INTRODUCTION

Short, randomly oriented steel fibers, through their crack-arresting action

and confining properties, improve the post-peak ductility, energy absorption

capacity and, to some extent, the Strength of concrete under compression (Figure

2.19). The strain at peak compressive stress also tends to increase in the pres-

ence of fibers [5], but the pre-peak compressive behavior of fibrous concrete is

only Slightly different from that of plain concrete.

In order to develop Structural analysis and design procedures for fiber rein-

forced concrete load-bearing elements, it is important to develop constitutive

models for fiber reinforced concrete.

Very few analytical Studies on the compressive behavior of steel fiber rein-

forced concrete have been reported in the literature. Fanella and Naaman

(1985) [5] have presented a compressive stress-strain diagram for steel fiber rein-

forced mortar (See Figure 2.22). It should be emphasized that this model has

been developed for steel fiber reinforced mortar (the compressive behavior of

which differs from that of Steel fiber reinforced concrete). In particular, fiber

reinforced mortar has a higher Strain at peak-stress, and fibers are more effe01ive

in concrete than in mortar. Soroushian and Lee (1987) [41] have tried to Simu-

late the steel fiber reinforcement efibcts on compressive behavior with the

confinement of concrete by transverse reinforcement.

92
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The research reported herein has used a relatively large number of experi-

mental compressive stress-strain relationships to derive an empirical constitutive

model for compressive behavior of steel fiber reinforced concrete. The developed

model accounts for the efficts of steel fiber volume fraction, aspect ratio and

type (straight vs. hooked), and the concrete compressive strength, on perfor-

mance characteristics of steel fiber reinforced concrete in compression.

4.2 EFFECTS OF VARIABLES ON COMPRESSIVE BEHAVIOR

The improvements in concrete compressive behavior resulting from Steel

fiber reinforcement are dependent on the volume fraction and aspect ratio of

steel fibers, mechanical deformations of fibers, matrix mix proportions, Specimen

geometry (height-to-depth ratio), and the loading versus casting direction

[14,33].

The increase in fiber volume fraction is observed in Figure 4.1(a) to enhance

the Strength and especially post-peak ductility of steel fiber reinforced concrete

under compression. Excessively high fiber volume fractions, however, lead to

harsh mixes with increased air entrapment, and thus damage the compressive

performance of Steel fiber reinforced concrete. Fanella and Naaman (1985) [5]

have found a consistent correlation between this damage and the reducrion in

matrix density (which could be attributed to increased air entrapment) at high

fiber volume fraction 5.

Figure 4.1(b) shows that the improvements in compressive behavior of Steel

fiber reinforced concrete resulting from the increase in fiber aspect ratio are simi-

lar to those obtained with increasing the fiber volume fraction. Excessively high

aspect ratios at a constant fiber volume fraction can adversely influence the fresh
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mix workability and thus hardened material properties of fiber reinforced con-

crete.

Since the increase in fiber volume fraction (V, ) and aspect ratio (If/df)

have Similar efbcts on compressive behavior of steel fiber reinforced concrete,

their multiplication (V, -l,/df ), generally referred to as the fiber reinforcement

index, can be used as a Single variable representing the fiber reinforcement efbcts

on compressive behavior of concrete.

The efficiency of steel fiber actions in concrete tend to be improved when

mechanically deformed fibers are used instead of the straight ones, mainly due

to better mechanical bonding of deformed fibers to concrete (see Figure 4.1(c)).

Steel fibers are also found to be more effective in increasing the compressive

strength of coarse aggregate concrete when compared with fine aggregate mortar.
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Figure 4.1 The Improvements in Concrete Compressive Behavior Resulting

from Steel Fiber Reinforcements (1 Mpa = 145 psi) (cont’d)
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(d) Efbcts of Height-to-Depth Ratio on Compressive Behavior of SFRC

Figure 4.1 The Improvements in Concrete Compressive Behavior Resulting

from Steel Fiber Reinforcements (1 Mpa = 145 psi) (cont’d)

Another factor influencing the compressive ductility and energy absorption

capacity of Steel fiber reinforced concrete under compression is the height-to-

depth ratio of specimens; the greater this ratio, the less desirable would be the

compressive performance of steel fiber reinforced concrete (Figure 4.1(d)).

4.3 EXPERIMENTAL RESULTS

The compression test data used in this Study for empirical modeling of fiber

reinforced concrete constitutive behavior were selected from the literature

[4,6,64,65], and also from the experimental data reported by Soroushian and

Bayasi [4,64-66]. The steel fibers used in the selected test data were straight or
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hooked with different aspect ratios. Table 4.1 presents some information on the

concrete matrices and fiber reinforcement conditions in the selected test data. A

total of ninety eight compression test results on steel fiber reinforced concrete

were used in this Study. The results covered fibrous concretes with wide ranges

of matrix properties and fiber geometries. Only the compressive strength was

reported for some of the fibrous mixtures, while for others the complete stress-

Strain relationships were available (see Figure 4.2 for some typical experimental

results). It should be noted that the compression load in tests used in this

Study were unanimously applied in the direction of casting. This is generally

considered to be a desirable loading condition, because fibers tend to be oriented

horizontally when compacted by vibration, and would thus be more effec1ive in

confining concrete when the compression load is applied normal to the fiber

orientation plane.

All the specimens included in this study were 150 mm (6 in.) in diameter

and 300 mm (12 in.) in height. All the fibrous mixtures incorporated coarse

aggregates with maximum particle sizes ranging from 9.5 mm (3/ 8 in.) to 19 mm

(3/ 4 in.). The specimens were typically air-cured following about 7 days of cur—

ing in a moist environment, and were tested at an age of about 28 days. The

fibers were carbon steel and had a tensile Strength of about 1000 Mpa (145 Ksi).

The compression load was applied quasi-statically.
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Table 4.1 Fiber Reinforced Concrete Mixtures

 

 

 

 

 

 

 

 

 

 

 

Flier No. of matrix niax. fiber mode

canpressive aggregate

R . . . .
ef. Type Tests straigth an aspect alderman compressive stra-

(MP9) (m) Vf ratio aide: strength at peak

0f 40 0” If 40 (M90) (110.0001)

4 straight 8 38.5 16.0 0.012 65.8 0.79 41 2.5

4 55.8 9.5 0.01 59.3 0.593 58.6 ‘

4 55.8 95 0.015 59.3 0.89 61.4 '

4 55.8 9.5 0.13 59.3 1.186 62.1 '

4 55.8 19.1 0135 59.3 1.483 64.8 ‘6 .

”'“h‘ 4 403 19.1 0.01 59.3 0593 552 e

4 48.3 19.1 0.015 59.3 0.89 60 ‘

4 48.3 19.1 0.00 59.3 1.1% 58.6 °

4 48.3 19.1 0.025 59.3 1.483 60 ‘

2 42.0 19.1 0.01 57 0.57 48 2.0

2 42.0 19.1 0.03 37 1.71 48.4 3.5

2 57.2 0.01 83 0.83 53.1 2.6

2 57.2 000 83 1.66 55.2 3.0

2 57.2 0.03 83 2.49 56.5 3.2

2 58.6 0.02 47 0.94 58.6 2.6

2 58.6 0.02 83 1.66 60.7 4.0

2 58.6 0.02 100 2.0 645 5.0

“"381“ 2 62.1 ‘ ' 0.47 62.7 2.6

2 62.1 19 ‘ ‘ ‘ 0.83 63.8 2.8

2 62.1 ' ' ‘ 1.66 64.8 2.9

2 62.1 ‘ ‘ 2.49 67.0 3.0

6‘ 2 07.1 e - 7.00 09.0 4.5

2 4l.4 0.00 ‘ 43 0.86 44.1 2.0

2 41.4 0.01 57 0.57 45.5 24

2 41.4 000 57 1.14 42.7 2.8

2 41.4 0.02 72 1.44 43.4 3.0

2 41.4 0.00 57 1.71 48.2 4.25

2 37.2 19.1 0.01 60 0.6 41.4 2.2

2 37.2 19.1 0.02 60 1.2 45.4 3.0

hooked

2 372 19.1 0.03 60 1.8 60.3 3.8

2 4| .4 19.1 0.105 00 0.3 50.3 3.0

erimped 2 41.4 19.1 0.01 57 0.57 51.7 3.0

2 41.4 19.1 0.00 57 1.14 45.4 3.0

65 straight 4 23.1 9.5 0.013 88.2 1.147 31.1 3.25

, 3 40 19.1 0.00 57 1.14 42.1 2.0

straight

3 40 19.1 0.00 72 1.14 42.8 2.2           
 

’ Not Reported
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4.4 THE CONSTITUTIVE MODEL FOR STEEL FIBER REIN-

FORCED CONCRETE

An empirical model was developed for predicting the complete compressive

stress-strain relationship of concretes reinforced with straight or hooked steel

fibers as a function of the matrix Strength and the reinforcement index of

straight or hooked fibers (Vf-lf/df). The constitutive model, which is a

modified version of the model used earlier for plain concrete by Scott, Park and

Priestley (1982) [67] and Soroushian and Sim (1986) [68] consists of a curvilinear

ascending portion followed by a bilinear descending branch (Figure 4.3) :
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= -f’c .(._e_)2+ 2.f’c .(_E_)

f r E” I

W

 

 

  
 

f'cf .. --'

I

,3 1

iii. '

E. i
g I

g- I
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l

I

f'a "““f""""""""

1

1

(a!
e

compressive Strain

Figure 4.3 General Form of the Compressive Constitutive Model of SFRC

_. ’ ._8_. 2 2. ’ . _8__

fcf(€pr')+ fcflfipr) fo’eserf (41)
z.(e—€pf)+f’cf'>'f’0 for 8) Epf .

where:

f = concrete compressive Stress ;

e = concrete compressive Strain ;

f ’cf = compressive strength of steel

fiber reinforced concrete ;

e” = strain at peak stress; and
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z,f ’0 = coefficients derived empirically in

terms of the compressive Strength and

fiber reinforcement index.

Coefficients z and f ’0, and the stress and strain at peak compressive stress

(f '6] and epf) in this model were derived empirically for different fiber types as

functions of the matix compressive strength and the fiber reinforcement index.

The empirical expressions for different variables of the proposed model are

given below (see Figure 4.3). These expressions have been derived through least

square fitting of curves to experimental results. Figure 4.4 presents comparisons

between the empirical expressions given below and test results.

Compressive Strength, f ’cf (see Figure 4.4(a)) :

f'cf =f’c + aHVfIf/df (4.2)

where ;

3.6 Mpa (515 psi) for straight fibers

or = 6.0 Mpa (872 psi) for hooked fibers

Residual Compressive Strength, f ’0 (see Figure 4.4(b)) :

where ;

B = 11.8 Mpa (1700 psi) for both straight and hooked fibers
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Slope of the Descending Branch, 2 (see Figure 4.4(c)) :

where;

0.66 for straight fibers

7 = 0.70 for hooked fibers

Strain at Peak Stress, Er! (see Figure 4.4(d)) :

2,, = 5p + Wilt/‘1!

where ;

5 {0.0007 for straight fibers

"" 0.0017 for hooked fibers

ep

0.0021

strain at peak stress for plain concrete

(4.4)

(4.5)

It should be mentioned that variations in specimen geometry,-loading versus

casting direction, rate of loading, and maximum aggregate size (e.g. mortar

versus concrete) will modify the compressive constitutive behavior of fibrous con-

crete. More test results are needed in order to refine the developed model for

considering the effects of these factors.
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4.5 COMPARISON WITH TEST RESULTS AND PARAMETRIC

STUDIES

Typical comparisons between the predictions of the constitutive model

developed in this study and the experimental compressive stress-strain relation-

ships for 150 mm by 300 mm (6 in. by 12 in.) concrete cylindrical specimens

reinforced with straight fibers are given in Figures 4.5(a) through 4.5(e). The

experimental results presented in this figure cover wide ranges of fiber reinforce-

ment index (Vf 'If / (1,) and concrete compressive strength. The proposed model

is observed to predict experimental results with a reasonable accuracy. Limited

compression test results on crimped fibers have been reported in Reference 64.

Figure 4.5(0 shows that the model developed for straight fibers satisfactorily

predicts the compressive performance of concretes reinforwd with crimped fibers.
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Compression test results on concretes incorporating hooked steel fibers are also

observed in Figures 4.5(g) and 4.5(h) to be closely predicted by the developed

compressive constitutive model.

The developed compressive constitutive model of steel fiber reinforced con-

crete was also used for a numerical study on the emts of concrete compressive

strength and fiber reinforcement index on the fibrous material behavior under

compression. Figure 4.6(a) shows the overall constitutive performance of steel

fiber reinforced concrete (with straight fibers) as influenced by the variations in

steel fiber reinforcement index and compressive strength of concrete. Figure

4.6(b) shows the effects of these factors on the energy absorption capacity of

fibrous concrete in compression (represented by the total area underneath the

compressive stress-strain curve up to a strain of 0.01). Higher values of fiber
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reinforcement index and concrete compressive strength are observed to produce

significantly higher energy absorption capacities for fiber reinforced concrete.

Figure 4.6(c) shows the tendency in strain at peak compressive stress to increase

with increasing fiber reinforcement index in steel fiber reinforced concretes incor-

porating straight fibers. Finally, Figure 4.6(d) presents typieal improvements in

compressive performance of steel fiber reinforced concrete resulting from the use

of hooked instead of straight fibers.
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4.6 SUMMARY AND CONCLUSIONS

Reinforcement of concrete with randomly oriented short steel fibers increases

the ultimate strength and especially the post-peak ductility and energy absorp-

tion capacity of concrete under compression. The efbctiveness of steel fibers in

enhancing concrete behavior under compression depends on the mix proportions

of the matrix, the volume fraction, aspect ratio and deformation configurations

of fibers, loading versus casrin g direction, specimen geometry, and rate of load-

in g.
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An empirical constitutive model was developed in this study for steel fiber

reinforced concretes loaded in compression. This model accounts for the efficts

of fiber volume fracrion, aspect ratio and type (straight vs. hooked) as well as

the matrix compressive strength on the compressive behavior of steel fiber rein-

forced concrete. The model has been developed using results of ninety eight

compression tests performed on 150 mm (6 in.) by 300 mm (12 in.) cylindrical

concrete specimens with maximum aggregate sizes ranging from 9.5 mm (3/ 8 in.)

to 19 mm (3/ 4 in.), incorporating straight or hooked fibers and loaded quasi-

statically in the direction of casting.

The relatively simple empirical model developed in this study predicts

experimental results (for fibrous concretes with relatively wide ranges of fiber

and matrix variables) with a reasonable accuracy. More test results are needed

for refining the model to consider the effects of maximum aggregate size, speci-

men geometry, loading versus casting direction, and the rate of loading.



CHAPTER 5

FLEXURAL ANALYSIS OF STEEL FIBER

REINFORCED CONCRETE

5.1 INTRODUCTION

The improvements in SFRC behavior under compression and tension result

in significantly higher improvements in the fiexural strength and ductility of

SFRC [24,41,64]. The flexural behavior of SFRC is typically marked by the

formation of only one major crack of a critical section, a phenomenon that dis-

tinguishes the flexural behavior of SFRC beams from that of beams reinforced

with conventional continuous bars (see Figure S.1(a)). This implies that more

damage is done to the cracked critical section and a concentration of curvature

occurs in the vicinity of this section (Figure 5.1(b)). The critical section tends

to suffer severe distortions and, after cracking, plane sections fail to remain plane

in the vicinity of the critical section. As loading continues, the crack at the

critical section begins to widen and this prompts the use of stress-crack relation-

ships rather than stress-strain relationships on the tensile region of bending sec-

tion. None of these features was considered in previous investigations [45-51].

Complete flexural load-deflection relationships are analytically constructed

in this Study through conducting a flexural analysis of the critical section, and

using some assumptions regarding curvature distributions in the vicinity of the

critical section. The predicted fiexural load-deflection relationships are com-

pared with experimental results, and the model is also used to conduct

parametric studies on the effects of different matrix and fiber variables on the

115
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Figure 5.1 Crack Patterns and Possible Curvature Distributions
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fiexural performance of SFRC. The results of these parametric studies are

evaluated using Statistical analysis (by factorial design).

5.2 FLEXURAL AN ALYSIS

The flexural analysis procedures developed for steel fiber reinforced concrete

beams are described in this section. Attempts are made to consider the effects of

cracking at the critical section on the release of tensile strains and the concentra-

tion of compressive strains in the vicinity of the critical section.

5.2.1 Curvature Distributions

Before the cracking the behavior of fiexural beams can be regarded as elas-

tic, and thus conventional beam theories are applieable. With increasing

flexural loads the maximum tensile Strain eventually reaches the tensile strain at

peak tensile stress of steel fiber reinforced concrete, where the crack starts to

open and this marks the first crack strength of the beam (PC, in Figure 2.24).

Up to this stage, the moment and curvature diSIributions are similar in shape

(Figure 5.2(a)). Once one major crack starts to open at the critical section, ten-

sile strains tend to be released near the crack, thus generally preventing the for-

mation of another crack near the first crack. The opening of the crack on the

tensile side will be accompanied by the concentration of compressive strains near

the crack on the compressive side. Hence, upon cracking the distributions of

moment, tensile strains and compressive Strains cease to be similar in shape (see

Figure 5.2(b)). In the post-cracking region, the pull-out action of fibers gen-

erally provides the beam with the capacity to resist increasing loads after crack-

ing, and to maintain large fractions of its peak flexural load at large
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deformations in the post-peak region (Figure 2.24). Further widening of the

crack with increasing deformations further disturbs the beam in the critical

region, leading to increased concentration of compressive strains. The fact that

only one crack appears in most beams subjected to fiexural loads indicates that

at. a distance outside the critical section, where tensile strains drop below the

cracking resistance, the curvature and strain distributions would tend to follow

conventional elastic beam distributions. A region is defined in this investigation

as the critical region (with a length 2°Lc, along the beam span) in which the

external moment along the beam is greater than or equal to the one correspond-

ing to the first crack moment (Ma). Outside the critical region the elastic beam

theory is assumed to be applicable. As the fiexural load increases beyond the

first-crack load, the critical region will Spread outward continuously until the

external load reaches its ultimate value.

The exact distributions of tensile and compressive strains in the critical

region are rather complex. Simplifying assumptions have been used in this

investigation in order to simulate the complex behavior in this region.

Once the beam reaches its ultimate flexural load and resistance starts to

decrease with increasing deformations, the critical region is assumed to stabilize

(in length), with curvature at the boundary assumed to stay constant at the

first-crack value. Increased fiexural deformations in the post-peak region, in

spite of the continuous drop in load, lead to further increase in compressive

strains in the crtical region. Elastic fiexural deformations outside critical region

tend to decrease with drop in load in the post-peak phase of behavior. Hence,

hating that at the boundaries of the critical region, curvatures are assumed to be

constant, there is a tendency in deformations to increasingly concentrate near

the center of the critical region. This concentration takes the form of crack

widening and increased strains in tension and compression regions, respectively.
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5.2.2 Analysis ofthe Critical Section

The crack shape at the critical section is assumed to be linear and sym-

metric about a plane normal to the beam longitudinal axis (see Figure 5.3).

As the crack opens, the tension part of the beam in the critical region can-

tinously relieves its Strains while compressive strains continue to increase. The

increase in compressive Strains after cracking is needed to satisfy the deformation

compatibility requirements which would have been disturbed if, after cracking,

the tensile and compressive strains were still assumed to be comparable (see Fig-

ures 5.4(a) and (b)). Thus, the crack opening angle (BC, in Figure 5.4(b)) can be

obtained by computing the difference in ratations associated with compressive

and tensile strains in the critical region (Figure 5.4(b)):

6cr = 9c - et (51)

LC?

111 (¢c(x)- ¢.<x))dx;

where

06, = crack opening angle ;

L0

be = [o ¢c(x)dx

= rotation of the compressive side of the beam

at the boundary of the critical region ;

LC?

0, = [O ¢,(.t)dt

rotation of the tensile side of the beam

at the bmmdury of the critical region

due to tensile curvature only;
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(a) Actual Crack Shape

 
(b) Assumed Crack Shape

Figure 5.3 Actual and Assumed Crack Shapes
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(a) Compressive Strain = Tensile Strain

 

 
 

  

(b) Compressive Strain > Tensile Strain

Figure 5.4 Deformation Compatibility after Cracking
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¢c1¢, = compressive and tensile side

curvatures , respectively ; and

x = distance from center (cracked section).

The tensile Side curvature is assumed to vary linearly from zero at the crack

to a value equal to the compressive side curvature at the boundary of the critical

region. The assumed post-cracking distributions of compressive Side and tensile

side curvatures in the critical region are thus as follows:

0.0:) = fl ¢.<L..)- ¢.<0) )+ 011(0); (5.2)

 

¢t (I) = Lx '¢g (Lay) ; and

(be (Let) = ¢r (La )

Incorporating the above curvatures into Equation (5.1) yields crack opening

angle (9a,) as well as maximum crack opening (S) at the extreme bottom layer of

the critical section:

9,, = 0.5-¢c(0)-Lc,. ; and (5.3)

S He”.

where:

H = crack depth (Figure 5.4(b)).
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The values of compressive side curvatures, ¢c(0), and crack depth, H, can

be computed using a nonlinear fiexural analysis of the cracked (critical) section,

as described in the next section.

In fiexural analysis of a complete beam, a step-by-step incremental approach

was adopted. In each step, an increment is made in compressive side curvature

at the critical section, 06(0), and then the crack depth (H) is calculated using

critical section nonlinear fiexural analysis procedures (to be described later).

This analysis needs input of crack opening angle (0a,) which depends on L”.

The value of L6,, however, can be computed after the critical section analysis is

completed and the value of bending moment after curvature increment at the

critical section is known. This condition requires a trial and adjustment (itera-

tive) approach in which the analysis starts with the old value of ”LC, at the end

of the previous incremental step, and it would be adjusted until there is a toler-

able diffirence between the starting and final values of LC, in an iteration cycle.

Total fiexural deflection (& is computed by adding those resulting from flexural

deformations, inside and outside of the critical region. Half of the beam span

can be used for this purpose due to symmetry:

L

5: IO c'J‘omqyr((1))do.)dx + 1L:/210w¢c (0))d00dx (5.4)

where:

I
"

ll span of the beam ;

x = distance from the critical section.
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5.2.3 Nonlinear Flexural Analysis of the Critical (Cracked) Section

Curvature at the critical section is input incrementally, and then the equili-

brium of axial forces at the section is satisfied through iterative selection of the

neutral axis'loeation. For any neutral axis location, given the curvature input

value, the strain distributions can be obtained and using the tensile and

compressive constitutive models of SFRC described in earlier Chapters, the ten-

sile and compressive stresses and forces can be calculated. Iteration will be ter-

minated when the calculated tensile and compressive forces balance each other

(with a tolerable error). The informations regarding crack depth and opening,

and other compressive side curvature, obtained from the critical section flexural

analysis, can thus be used in overall analysis of the beam, as discussed in the

previous section.

In the iterative approach to finding the new neutral axis position following

curvature increment, first a lower bound neutral axis position (where the

compressive force at section is larger than the tensile one) and an upper bound

neutral axis position (where the tensile force exceeds the compressive one) are

selected. Starting from the final position at the end of the previous step (Figure

5.5(a)), the lower bound is built by assuming a strain distribution with the new

curvature but the crack depth corresponding to the previous step (Figure S.5(b)).

The upper bound is constructed with the new curvature, assuming an extreme

compressive strain equal to that at the end of the previous step (Figure 5.5(c)).

Once the initial bracket was set up through the selection of lower and upper

bound strain distributions for a given curvature, all the intermediate iterations

leading to the equilibrium condition can be performed using the compressive

strain at the top layer as the variable to be adjuSted (noting that the neutral

axis position can be easily computed if the values of curvatures and compressive

strain at top are known). The iterations, involving the adjustment of the
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Figure 5.5 Estimation of the Initial Strain Configuration
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extreme compressive strain at top for satisfying equilibrium were conducted

using a Modified Regula-Falsi method [69]. In the conventional Regula-Flasi

method (Figure 5.6(a)), the solutions (i.e., the compressive Strain which makes

the sum of tensile and compressive forces equal to zero) is obtained by gradualy

limiting the range within which the answer occurs. One Side of the new range is

the intersection of a line connecting points on the funtion curve corresponding to

previous limits (with opposite signs of the function value) with the horizontal

axis (corresponding to zero sum total of axial forces). In the Modified Regula-

Falsi method (Figure 5.6(b)), however, the new Side of the range within which

the solution occurs is obtained as the intersection is with horizontal axis of a line

connecting a point not on the function curve but at a location with u! times the

SUM OF AXIAL FORCES

REGULA FALSI

 COMPRESSIVE STRAIN

 

 

(a) Regula-Falsi Method

Figure 5.6 Improvements of Regula-Falsi Method
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(b) Modified Regula-Falsi Method

Figure 5.6 Improvements of Regula-Falsi Method (cont’d)

function value (with 0 < 11! s 1.0, taken as 0.5 in this investigation)

corresponding to one side of the previous range, with another point on the func-

tion curve of the other side of the range. With Modified Regula-Falsi method

using ‘1’ equal to 0.5, the number of iterations in finding equilibrium condition

was reduced, when compared with the conventional Regula-Falsi method, by

one-half to two-third. The maximum number of iterations in the Modified

Regula-Falsi method typically varied between four to six.

5.2.4 Comparison with Test Results

The next Chapter provides comprehensive discussions on the correlation of

the proposed flexural analysis procedures for SFRC with test results. Some
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comparisons between the experimental flexural load-deflection curves reported in

the literature and the predictions of the proposed analysis procedure are

presented in this section.

for comparison with analytical results.

Table 5.1 presents informations on the fiexural test conditions considered

Comparisons between experimental and

analytical fiexural load-deflection curves presented in Figures 5.7(a) to 5.7(c) are

observed to be satisfactory.

Table 5.1 Flextural Test Conditions

 

 

 

 

           

matrix fiber specimen

Ref. comp. temile diameter length Vf width depth length loading

strengt strength

(Mpa) (Mpa) (mm) (mm) (96) (mm) (mm) (mm)

45 48 3 ' 0.564 30 1.0 100. 100. 300. 4 pts.

76 50" 2.35' 0.53 31.8 1.0 100. 100. 300. 4 pts.

76 50" 2.35’ 0.51 50.8 1.0 100. 100. 300. 4 pts.
 

‘ Assumed Values
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Figure 5.7 Comparisons between Experimental and Analytieal Flexural Load-

Deflection Curves (cont’d)

5.3 FLEXURAL BEHAVIOR OF CRITICAL (CRACKED) SFRC SEC-

TION

Using the proposed analytical approach, fiexural behavior of the critical sec-

tion is investigated at diffirent loading stages for two diffirent steel fiber volume

fractions (see Figure 5.8). The matrix and fiber properties used in this analyti-

cal study are also presented in Figure 5.8. Figure 5.8 shows that the increase in

volume fraction of fibers from 0.5% to 1.2% increases the fiexural strength and

ductility of SFRC beams under fiexure. Figure 5.9(a) and 5.9(b) Show the

profiles of strain and stress diStributions along the depth of the critical section

for two fiber volume fractions of the peak and post-peak points, respectively,
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Figure 5.8 Typical Load-Deflection Curves (Vf= 0.5% and 1.2%)

which are marked on curves in Figure 5.8. The post-peak point is chosen at a

flexural deflection equal to 0.5 mm (0.02 in.). It is observed that in both cases

the peak flexural load is attained when crack has already opened. Figure 5.8

shows that the load carrying capacity of the beam with 0.5% fiber volume frac-

tion drops suddenly after peak, while the SFRC beam with 1.2% fiber volume

fraction can maintain a major fraction of its peak flexural resistance in the

post-peak region. Figure 5.9(b) shows that at a relatively large deformation in

the post-peak region, where the crack has widened and penetrated deeply into

the beam, the pOSt-peak tensile resistance of SFRC seems to have an important

efbct on performance. At the relatively low fiber volume fraction of 0.5%, the

tensile resistance provided by fibers bridging the crack is relatively small, leading

to low flexural ductility; for the relatively high fiber volume fraction of 1.2%,
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(a) Strain and Stress Distributions at Peak Load

Figure 5.9 Strain and Stress Distributions at the Critical Section
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Figure 5.9 Strain and Stress Distributions at the Critical Section (cont’d)
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however, fibers bridging the crack provide a desirable level of tensile (pull-out)

resistance which give the beam a relatively high flexural ductility (i.e., capacity

to resist major fractions of their flexural strength at relatively large post-peak

deformations).

It is interesting to note, in regard to the stress distributions at peak flexural

load, that flexural Strength is reached in SFRC beams when the tensile behavior

has already reached the post-peak conditions. The flexural strength of SFRC is

thus dependent not only on the tensile strength of the material, but also on its

post-peak tensile behavior. This partly illustrates why the increase in flexural

strength resulting from fiber reinforcement is typically higher than the

corresponding increases in tensile strength. One may also conclude from this

discussion that the modulus of rupture computed using linear-elastic flexural

analysis equations does not actually give a characteristic stress value which

relates to the peak tensile Strength of SFRC.

5.4 A PARAMETRIC STUDY OF SFRC BEAM FLEXURAL

BEHAVIOR

The objective of the parametric study presented in this section is to find the

influential factors which determine the flexural behavior of steel fiber reinforced

concrete. Two groups of factors were considered in this study (Figure 5.10): ten

material-related factors (matrix tensile strength (Om '), matrix compressive

strength (f6'), crack opening at residual matrix Strength in tension softening

region (5”), crack opening at zero matrix stress in tension softening region (Sc 0),

fiber diameter (df ), fiber length (If ), fiber volume fraction (Vf ), fiber peak pull-

out strength (In ), fiber slip at peak pull-out strength (Spk) and fiber slip at
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Figure 5.10 Material-Related and Constitutive Behavior—Related Factors
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residual pull-out strength (S, )) and ten constitutive behavior-related factors (t1

and t2 are parameters of composite peak tensile strength (ac), t3 and t4 are

parameters of matrix softening model, is is a parameter of fiber residual strength

in post-peak pull-out region and c1 through c5 are parameters of compressive

constitutive model).

The parametric study consists of analytically investigating the effects of

changing the values of these factors (from "standard" values) on flexural load-

deflection relationships. The "standard" values of the factors have been chosen

either on the basis of test results or considering practical ranges applicable to

Steel fiber reinforced concrete. These "standard" values of the twenty factors

considered in the parametric study are shown in Tables 5.2 and 5.3 (for

material-related and constitutive behavior-related factors, respectively).

The effects of variations in different factors on the following aspects of the

flexural behavior of SFRC beams were investigated analytically (see Figure 5.11):

(1) peak load (P); (2) ductility (D), defined as the flexural resistance at a

deflection equal to the span length divided by 150, measured from the deflection

at peak load, divided by the peak fiexural resistance; (3) toughness (A), defined

as the area underneath the load-deflection curve in the post-peak region up to a

flexural deflection equal to the span length divided by 150 from the deflection at

ultimate load; and (4) the overall flexural behavior the variations of which (as 3

results of changes in the factors) were measured as:

v = 27,113 (5.5)

where:

< ll overall flexural behavior ;
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Vt

[in-m]

V1: '—P—;
S

weighing coefi‘i cient for each factor ,'

P = peak flexural load (Figure 5.11);

D = ductility

= P/P,( see Figure 5.11 ) ; and

A = toughness

area under load-deflection curve

as defined in Figure 5.11 .'

Considering the fact that v1, v2 and v3 explain discrepancies in pre-peak

behavior, behavior between pre-peak and post-peak, and post-peak behavior,

equal weights (weighing coefficient equal to 1.0) are given to each of these fac-

tors. The definition of ductility and toughness presented above have been

developed based on the assumption that the pre-peak flexural deflection measure-

ments in a number of the available test results have not been reasonably accu-

rate. Large variations between the measured flexural Stiffiiesses provide the

basis for this conclusion.

Conclusions regarding the significance of the effems of different factors on

SFRC flexural behavior have been based on simple observations as well as sta-

tistical analyses based on 2" factorial designs [54]. For simple observations,
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Factors lStandard

 

      
 

 

Variation minimum ‘

Value Peak Ductility Tau Overall

Load Behavior

0.1' 3 2 -4 0298 0.438 0.014 0274

Pa 40 30 . 50 0.045 0.023 0.015 0.002

3.. 0.008 0.003 . 0.02 0.199 p.076 0.064 0.049

s. 0.023 0.01- 0.05 0.0 0.036 0.006 0.001

-d, 05 025 - 1.00 0.151 0.697 0.891 0.457

t, 30 20-40 0.025 0.361 0.361 0.264

V, 0.01 0.005 - 0.02 0.042 0.475 052 0.457

t. 2.62 1.0 - 45 0.02 0.68 0.689 0.939

3:4 0.075 0.01-0.05 0.031 0.015 0.011 0.001

Sr 2.8 1.0 -5.0 0.0 9;; 0322 032

‘ Maximum Normalized Difference 2 Maximum absolute difference in a certain

aspect of flexural behavior divided by ”Standard Value” of that aspect due to

changes in certain factor.

Table 5.3 Effects of Constitutive Behavior-Related Factors

 

 

 

 

Factors lStandard Variation Maximum Normalized Difference I

Vale Peak Dutility Toughness Overall

Load Behavior

t1 0.138 0.069 - 0.207 0.001 0.004 0.002 0.0

t2 0.050 0.025 - 0.075 10.001 0.004 0.002 0.0

13 0.35 0.175 -0.525 10.023 0.059 0.021 0.004

t4 0.40 0.2 - 0.6 0.067 0.028 0.027 0.006

15 0.3 0.15 - 0.45 0.0 0.291 0.097 0.016

cl 3.6 1.8 - 5.4 0.006 0.023 0.01 0.0

02 0.12 0.06 - 0.18 0.0 0.0 0.0 0.0

03 14.8 7.4 - 22.2 0.0 0.0 0.0 0.0

04 0.66 0.33 - 0.99 0.0 0.0 0.0 0.0

c5 0.0007 00004-0002 0.019 0.034 0.008 0.0      
 

‘ Maximum Normalized Difference = Maximum absolute difference in a certain

aspect of flexural behavior divided by ”Standard Value” of that aspect due

to changes in certain factor
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the following strategy was selected; in each run, only one of the factors is varied

and corresponding variations in any of the four aspects of flexural behavior

introduced above were assessed analytically using the flexural analysis procedures

developed in this investigation. Then these values are further normalized with

respect to values corresponding to the "standard" condition, i.e., peak load from

each variation is divided by that from "standard" condition and so on. The

minimum and maximum values of each material-related factor were equal to 0.5

and 2.5 times the "standard" value of that factor, respectively. The lowest and

highest values of the constitutive behavior-related factors were selected as 0.5

and 1.5 times the "standard" values of the factor, repectively. These limits on

material-related and constitutive behavior-related factors were to represent prac-

tical conditions commonly encountered in SFRC.

The results are shown in Table 5.2 for material-related factors and in Table

5.3 for constitutive behavior-related factors. Figures 5.12 through 5.15 Show

typical flexural load-deflection relationships as influenced by variations in

material-related faCtors (comparisons are made with the "standard" condition).

The efECtS of the material—related and constitutive behavior-related factors on

the flexural performance characteristics of SFRC are discussed in the following

using the observations made of flexural load-deflection relationships (Figure 5.12)

and also using statistical techniques based on 2" factorial designs.

The ten material-related factors can be grouped in four different categories

(Figure 5.10): (1) matrix strength (matrix tensile strength (om') and matrix

compressive strength (fC')); (2) matrix softening in tension (crack opening at

post-peak residual tensile strength (5”) and crack opening at post-peak zero ten~

sile stress (Sc0)); (3) fiber dimensions (diameter (df) and length (If )) and volume

fraction (Vf ); and (4) fiber pull-out behavior (peak pull-out strength (In ), slip at

peak pull-out strength (Spk) and slip at residual pull-out stress (5,». The
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influences of factors in each of the above categories are discussed below.

Influence of Matrix Strength: Figure 5.12(a) shows that increase

(decrease) in matrix tensile strength (am') increases (decreases) flexural strength.

It is observed in this Figure, however, that matrix tensile strength has little

influence on flexural toughness of SFRC. This is because in SFRC beam, as

observed in previous section, the peak flexural Strength of SFRC usually occurs

when crack has already opened and has penetrated into the critical section. An

increase in the matrix tensile strength can provide resistance against first crack

opening, but as the crack widens and penetrates into the beam, the pre—peak

behavior and peak tensile strength of steel fiber reinforced concrete tend to play

less significant roles in deciding the post-peak flexural behavior of SFRC than

the pull-out action of fibers bridging the crack.

Figure 5.12(b) shows that the compressive strength of plain concrete (fc.)

has very little influence on the flexural behavior of SFRC. This is because pre-

peak compressive constitutive behavior of SFRC is only partly utilized under

flexure (due to the weak tensile strength of steel fiber reinforced concrete); the

compressive strains at beam failure do not often reach the strain at peak

compressive stress of SFRC.

The above qualitative observations regarding the effects of matrix strength

characteristics are quantitatively verified in the first two rows of Table 5.2 (not-

ing that a larger number is indicative of a larger effect of a certain factor on a

certain aspect of flexural behavior). Comparison of numbers in the last column

for the first two rows of Table 5.2 clearly indicates that the overall flexural per-

formance characteristics of SFRC are much more sensitive to the tensile strength

than to the compressive strength of the material.
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Figure 5.12 Influence of Matrix Strength on Load-Deflection Curve
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Influence of. Matrix Softening in Tension: Figure 5.13(a) shows that

the increase in crack opening at residual matrix tensile strength (Sn) increases

the flexural strength and toughness of SFRC to some extent. Figure 5.13(b), on

the ather hand, shows negligible efbcts on flexural behavior of crack opening at

zero matrix tensile stress (5C0). Contribution of the matrix tensile softening to

flexural strength, ductility and toughness (Figure 5.13(a)) are indicative of rela-

tively small crack openings across a part of the section in practically significant

ranges of flexural behavior.

The above qualitative observations regarding the effects of the matrix ten-

sile softening factors on flexural behavior are confirmed quantitatively in Table

5.2 (see rows 3 and 4).
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Deflection(mm)

(a) Effects of Crack Opening at Residual Matrix Tensile Strength

Figure 5.13 Influence of Matrix Softening in Tension on Load-Deflection Curve
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Figure 5.13 Influence of Matrix Softening in Tension on Load-Deflection Curve

(cont’d)

 

Influences of Fiber Dimensions and Fiber Volume Fraction: The effects of

fiber diameter (df) and fiber length (If) at a fiber volume fraction of 1% are

presented in Figures 5.14(a) and 5.14(b). Figure 5.14(a) shows that as the fiber

diameter decreases, the peak flexural strength, ductility and toughness of SFRC

increase. This may be attributed to the increase in the number of fibers per

unit cross-seetional area and also in the available fiber-to-matrix interfacial bond

area, which have favorable effects on flexural behavior at peak load and in the

post—peak region. The increase in fiber length (Figure 5.14(b)), on the other

hand, influences ductility, toughness but only to a relatively small extent the

flexural strength of SFRC. The increase in fiber length for a given fiber volume

fraction may reduce the number of fibers crossing unit cross-sectional area.

Comparison of the effects of fiber diameter and length on flexural behavior in
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Figure 5.14 Influences of Fiber Dimensions and Fiber Volume Fraction
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(c) Efbcts of Fiber Volume Fraction

Figure 5.14 Influences of Fiber Dimensions and Fiber Volume Fraction (cont’d)

Table 5.2 (rows 5 and 6, respectively) confirms the fact that the flexural behavior

of SFRC is more sensitive to variations in fiber diameter than those in fiber

length.

Figure 5.14(c) illustrates the effects of fiber volume fraction (Vf) on the

flexural behavior of SFRC. The increase (decrease) in fiber volume fraction

increases (decreases) the flexural ductility and toughness, and to some extent the

flexural strength of SFRC. Table 5.2 (row 7) presents quantitative effects of

fiber volume fraction on different aspects of the flexural behavior of SFRC; this

factor is observed to have important effects on flexural behavior.

Influence of Fiber Pull-Out Behavior: Figure 5.15(a) shows that as the

bond strength (In) increases (decreases), the flexural ductility and toughness of

SFRC tend to increase (decrease) significantly. The peak flexural Strength is
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Figure 5.15 Influence of Fiber Pull-Out Behavior
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(c) Efficts of Slip at Residual Fiber Pull-Out Strength

Figure 5.15 Influence of Fiber Pull-Out Behavior (cont’d)

not much influenced by variations in bond Strength. The significant efbct of

bond strength on post-peak flexural behavior of SFRC results from the fact that

the pull-out action of steel fibers dominates the tensile behavior of cracked sec-

tions. Table 5.2 (row 8) quantitatively confirms the significant efbcts of the

fiber-to-matrix bond strength on flexural ductility and toughness (and thus an

the flexural behavior) of SFRC.

Slip at peak fiber pull-out strength (Spk) is observed in Figure 5.15(b) to

have negligible effects on flexural behavior. This suggests that pull-out Stiffiiess

is not an important factor in deciding the flexural behavior of SFRC. Figure

5.15(c) shows that fiber slip at residual pull-out strength (5,) has relatively

important effects on flexural ducrility and toughness, but not on flexural

strength of SFRC. Table 5.2 (rows 9 and 10) quantitatively confirms the above
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observations regarding the efbcts of Slip at peak fiber pull-out bond and at resi-

dual pull-out strength on the flexural behavior of SFRC.

As far as the constitutive behavior-related factors are concerned, Table 5.3

illustrates that factors such as :3 for composite peak tensile strength, t4 charac-

terizing the plain matrix tensile softening behavior, and t5 deciding fiber pull-out

resistance in the post-peak region, are the only factors with important efficts on

the flexural behavior of SFRC. The maximum changes due to variations in

these factors occur in flexural ductility and toughness. Maximum changes, how-

ever, are below one—third of the values corresponding to "standard" conditions.

These changes are relatively small when compared with those resulting from

variations in influential material-related factors (which typically result in 70% to

80% variations in flexural performance characteristics). Table 5.4 summarizes

the results of analyses based on 2" factorial design of Table 5.2 for the influence

of material-related factors on flexural behavior. In Table 5.4, factors

corresponding to higher numerical values are more influential than Others in

deciding a specific aspect of flexural behavior. According to this Table, matrix

tensile strength (am') is most influential in deciding the peak flexural load (P),

while ductility (D), toughness (A) and overall flexural behavior (V) are most

influenced by bond strength (1,, ). Except for factors such as matrix compressive

strength (fc'), slip at peak pull-out Strength (Spk), crack opening at residual

matrix tensile strength (50,) and matrix crack opening at zero stress (Sm), the

rest of material-related factors may be considered to have relatively important

efbcts on the flexural behavior of SFRC.

The results of Table 5.2 and Table 5.4 are summarized in Table 5.5, which

presents, in the order of significance, the influential material-related factors for

each aspect of flexural behavior. This Table also Shows the results obtained

through simple observation of the flexural load-deflection curves.
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Table 5.4 Eieots of Material-Related Factors (2" Factorial Design)

 

 

 

     

Factors f - Values on Different Criteria (x 1000)

1 Peak Load Ductility Toughness Overall Behavior

0,, 1349 38 20712 20.14

re 22 0.32 249 0.19

Sc, 183 1.69 1889 0.08

S 0 0.71 0.0 489 0.02

df 383 161 706830 77

If 147 51 244490 34.4

VI 244 91 425800 54.19

1:1, 343 231 865120 84

Spit 18 0.33 662 0.087

Sr 2.4 145 195130 60  
 

Table 5.5 Effects of Material-Related Factors in Order

 

 

 

 

 

 

  

Criteria Factors Order

1 2 I 3 4 6

Peak s.o . o,’ df Isa vr .............

Load 24: a.’ df t. vr Sr if

Duct- 3.0. ¢_ Sr (11' if vr o_'

lity 2.1: ‘- df Sr VI 11’ a...

Tough- so. or t. I vr if Sr .......

ness 2-1: I“ or vr If Sr °"

Overall so. in or vr Sr 6,, 1f

Behavior 2-k 1'. df Sr Vf 1f 6,.      
 

‘ Most important factor based on the “Simple Observation" of flexural load-deflection

relationships.
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It is interesting to note that generally similar results are obtained for the 2"

factorial design and the simple observation of flexural load-deflection curves.

5.5 SUMMARY AND CONCLUSION

Under flexural loads, one major crack generally forms in steel fiber rein-

forced concrete at the critical section, in the vicinity of which a relief of tensile

stresses occurs. After cracking, the critical section suffirs severe distortions and

thus plane sections do not remain plane in its vicinity. A flexural analysis pro-

cedure was developed which gives due consideration to the behavior at and near

the critical (cracked) section.

The exact distributions of tensile and compressive strains in the critical

region are rather complex. Some simplifying assumptions were made in order to

simulate the flexural behavior at critical region. Before the crack starts to open,

the moment and curvature distributions are similar in shape. As the flexural

load increases beyond the first-crack load, the critical region is assumed to

spread outward, and it stabilizes when the beam reaches its ultimate load, with

curvature at the boundary of the critical region assumed to stay constant at the

first-crack value. In the post-peak region, compressive strains in the critical

region further increase while elastic flexural deformations outside critical region

tend to decrease. This, together with the assumed constant values of curvature

at the boundaries of the critical region, result in a tendency in deformations to

increasingly concentrate near the center (cracked section) of the critical region.

The crack shape at the critical section is assumed to be linear and sym-

metric about a plane normal to the beam longitudinal axis. Assuming linear

variations in compressive and tensile curvatures at the critical region (where the
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tenisle curvature is assumed to vary from zero at the crack to a value equal to

the compressive side curvature at the boundary of the critical region), the crack

opening angle could be obtained by computing the diffirence in rotations associ-

ated with compressive and tensile strains in the critical region. Maximum crack

opening at the extreme bottom layer of the critical section could be obtained

using this crack opening angle and the neutral axis position obtained by satisfy-

ing the equilibrium of tensile and compressive forces at the critical (cracked) sec-

tion.

A step-by-step incremental approach was adopted for flexural analysis of

SFRC beams. In each step, an increment is made in curvature on the compres-

sive side of the cracked section, and numerical techniques (based on the Modified

Regula-Falsi method) were used to iteratively decide the neutral axis position

which satisfies equilibrium conditions. The tensile and compressive constitutive

models of SFRC developed in this study were used in flexural analysis of the

critical section. The assumptions described above were then used to derive the

fiexural behavior of complete beam using the critical section behavior at the end

of each step.

Using the proposed analytical approach, the flexural behavior and stress

profiles at the critical section were investigated at diffirent loading stages with

two different fiber volume fractions (0.5% and 1.2%). The results indicated

that the peak fiexural load at both fiber volume fractions is attained when the

crack at critical section has already opened. This implies that flexural strength

is reached in SFRC beams when the tensile behavior has already reached the

post-peak region. The flexural strength of SFRC, therefore, seems to be depen-

dent not only on the tensile strength of the material, but also on its post-peak

tensile behavior. This further explains why the increase in flexural strength is

typically higher than the corresponding increase in tensile strength for given fiber
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reinforcement conditions. In addition, calculation of modulus of rupture based

on linear-elastic flexural analysis equations does not seem to give a characteristic

stress value which directly relates to the peak tensile strength of SFRC.

While a major fraction of the peak flexural resistance is maintained in the

post-peak region for conditions with 1.2% fiber volume fraction, the load-

carrying capacity with 0.5% fiber volume fraction drops suddenly in the post-

peak regions.

The developed flexural analysis procedure was also used for a numerical

parametric study on the influences of ten material-related and ten constitutive

behavior-related factors on the flexural behavior of SFRC. The significance of

these factors in deciding flexural performance characteristics was examined by

simple obsa'vations of fiexural load-deflection curves and also through statistical

analysis based on 2* factorial design. The aspects of flexural behavior con-

sidered in this study were flexural peak load (P), ductility (D), toughness (A) and

the overall flexural behavior of SFRC (V). The following conclusions could be

derived using the results of this parametric study:

(1) The flexural strength of SFRC was most sensitive to the variation in

matrix tensile strength.

(2) Ductility (D). toughness (A) and overall fiexural behavior (V) are most

influenced by fiber diameter and fiber pull-out strength.

(3) The efficts on fiexural behavior of the matrix compressive strength,

crack opening at which matrix tensile stress diminishes, and fiber slip at peak

pull-out load are negligible.

(4) Fiber dimensions (fiber diameter and fiber length) as well as fiber volume

fraction have almost equally important efficts on flexural behavior.
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(5) While the matrix crack opening at residual matrix tensile strength has

little effict on different aspects of flexural behavior, fiber slip at residual pull-out

strength has relatively important efbcts on flexural ductility and overall flexural

behavior of SFRC.

(6) Fiber-to-matrix bond strength (1,, ), fiber dimensions and volume frac-

tion ((1,, If and Vf ), matix tensile strength (om') and slip at residual pull-out

strength (8,) are the most influential factors deciding the flexural behavior of

SFRC.

(7) Similar observations were derived through analysis using 2" factorial

design and also through simple observation of flexural load-deflection curves.



CHAPTER 6

INTERPRETATION OF FLEXURAL TEST RESULTS

USING ”SYSTEM IDENTIFICATION"

6.1 INTRODUCTION

Flexural load-deflation relationships for steel fiber reinforced concrete are

dependent on the tensile and compressive constitutive behavior of the material,

which may be refined in the presence of strain gradients under flexural loads.

Considering the relatively large amount of fiexural test results available for steel

fiber reinforced concrete, and the relative ease of conducting such tests (e.g., in

comparison with direct tension tests), it seems to be important to develop tech-

niques for interpreting the fiexural test data in order to obtain basic information

on the tensile and compressive constitutive behavior of steel fiber reinforced con-

crete. Obtaining basic information in constitutive behavior of the material from

fiexural test results may be called an "Inverse Problem."

"Inverse Problem" is solved in this investigation by using the method of

"System Identification" ['71]. Experimental test results on flexural load-

deflection relationship are used to derive some material characteristic values

related to the tensile constitutive behavior of SFRC. The derived values are

then compared with analytically, and experimentally obtained values, and some

discussions are made regarding the strain gradient efbcts on constitutive

behavior of steel fiber reinforced concrete.
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6.2 'SYSTEM IDENTIFICATION"

Most engineering problems are referred to as direct because a prediction of

the output of a physical system is sought when the characteristics of the system

and the input are known. In the "Inverse Problem," on the other hand, the

response of the system to a given input is known from experiments and a

mathematical model is to be found which will describe the material behavior.

In order to solve the "Inverse Problem” successfully, the mathematical

models which can simulate both the physical flexural behavior of SFRC and con-

stitutive behavior of the material must be well established. The characteristic

material values in constitutive models are then adjusted until the best possible

correlation is achieved between the predicted and measured response of SFRC

under fiexure. This process of selecting the form of the model and then, using

measured test data, systematically adjusting the parameters based on a

predefined criterion until the best correlation is achieved between the predicted

and measured reponses is called "System Identification."

A mathematical form for error function is needed to measure the correlation

between test results and predictions of the mathematical model for a given set of

characteristic values. The error function should be able to quantify the

diffuences in important flexural characteristics of SFRC. If there are N param-

eters in the model, the error function can be viewed as an N-dimensional surface

in a space with N+l dimensions (see Figure 6.1). "System Identification" deals

with finding the location on the surface with minimum error, the coordinates of

which will be the desired optimizing parameters. With good models of physical

systems, resulting characteristic values of the optimum set will represent true

behavior of the materials under the given loading system ['71].
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A mathematical optimimtion technique is needed to arrive successfully at

this optimum point in error space. The method should be able to find correct

search directions as well as minimum point in that direction with rcasonble

efficiency.

In this study, test results for steel fiber reinforced concrete beams subjected

to fiexural loading have been used to identify characteristic values of the tensile

constitutive behavior of steel fiber reinforced concrete (using the tensile constitu-

tive model of SFRC developed in this investigation which is partly based on a

pull-out load-slip model for steel fibers). In order to simulate the steel fiber

reinforced concrete behavior under fiexural loading, compressive and tensile con-

stitutive models of SFRC derived in previous Chapters were incorporated into

the flexural analysis procedure developed in Chapter 5. An error function simi-

lar to the one defined in Chapter 5 for the measurement of overall flexural

behavior of SFRC was applied to the fiexural load-deflection relationships of

steel fiber reinforced concrete. Three important characteristic parameters of the

tensile constitutive behavior of SFRC were then selected out of the ten material-

related and ten constitutive behavior-related factors related to the constitutive

behavior of SFRC, and these three parameters were then optimized, while Other

factors were kept constants at "standard" values.

In the following sections, the process of "System Identification" will be illus-

trated and discussions will be made on the results of "System Identification”

when applied to the flexural test results for SFRC.
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6.3 DEFINITION OF ERROR FUNCTION

The error function (E) is defined to measure the correlation in overall

flexural behavior beween the experimentally measured and theoretically predicted

load-deflection relationships. Based on discussions made in section 5.4 of

Chapter 5, the characteristic values expressing the flexural behavior of SFRC are

peak fiexural load (P), flexural ductility (D), and flexural toughness (A). The

difbences in these characteristic values set the basis for computing the error

between predicted and expaimental fiexural load-deflection relationships:

3

E = Zaire-2 (6'11)

i= 1

where:

to; = weighing coefli cient for each factor

I .0 in this investigation ,'

"
U

ll ultimate load (Figure 5.11) ;

D = ductility

PlP,(see Figure 5.11);

A = toughness
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= area. under load-deflection curve

as defined in Figure 5.11 .

A desirable match between experimental and theoretical result is achieved

when the value of this error function is minimized.

6.4 METHOD OF OPTIMIZATION

The error function derived in the previous section is an objective measure of

how well the model fits the experimental data. The error function should be

minimized in the N-parametric space. Nonlinear programming techniques

should be used for this purpose. These techniques can be categorized in two

groups: unconstrained and constrained. The nature of the present study sug-

gests that the minimum point lies in the interior of the feasible region of the

parameter space rather than on its boundary, and thus unconstrained nonlinear

programs suit this problem.

An iterative minimization algorithm was used in the related unconstrained

nonlinear programming approach. It starts at some arbitrary point x0 in the

parameter space (small bold letter implies vector in N-dimensional space, and

capital bold letter implies matrix) and chooses a sequence of steps which will be

taken, leading to the global minimum of a given function. The algorithm mu5t

be able to converge to a stationary point in the global sense and should also con-

verge rapidly when it is in the neighborhood of a local minimum [72]. The

iterative minimization approach adopted in this investigation is described below

(see Figure 6.2).



E(X)

 

I63

ERROR SURFACE

 

 
Figure 6.2 The Iterative Minimization Procedure
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Starting from the point in the parameter space selected after It steps (xi),

choose the next point as follows:

xk+1= Xk 4" [I'd (6.2)

where:

d = direction search vector; and

pr = step length.

Individual methods vary in their choice of it and d and this choice in gen-

eral determines the efficiency of the method. Basic Descent Methods, Conjugate

Direction Methods, and Quasi-Newton Methods are the most popular ones used

in iterative minimization algorithm. Basic Descent Methods include Coordinate

Descent, Steepest Descent and Newton’sMethod. Modified Newton Method,

Variable Metric Method and Powell’s Method are examples of Quasi-Newton

Methods. Each of these methods are briefly discussed in the following and the

one which suits the problem in this investigation will be selected.

Steepest Descent Method is one of the oldest and most widely known

method for minimizing a function of several variables. The method is defined by

the following iterative algorithm:

Xk+1 = xk " ak'gk (6.3)

where on, is a non-negative scalar minimizing the function value f (xk - ocgk),

and g,‘ is a gradient of the given function (Vf T ). It can be shown that if f is a

quadratic function, then for any initial point x0, the method converges to the
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unique minimum point of funtion f .

Coordinate Descent, as its name implies, searches in the coordinate direc-

tion. By sequentially minimizing with respect to difizrent components, a rela-

tive minimum of f might be ultimately determined. Convergence rate is, in

general, slower compared to that of Steepest Descent Method.

The idea behind Newton’s Method is that the funciton, f , may be minim-

ized locally by approximating it as a quadratic function, and this approximate

function then is minimimd exactly. Near the point X; funtion f is approxi-

mated by the truncated Taylor series:

f(x) = f(xt)+ Vf(xt)'(x - xi) + %-(x - x107 'F(xt)-(x - n.) (6.4)

Note that Fart) is the Hessian matrix and the right hand side is minimized

at:

Xk+1= Xk '- F(Xk)-l'Vf (Xk)T . (6.5)

This iteration method provides a good local convergence with an order of at

least two ( i.e. lxhl- x' ls Ix,‘ — 1r'l2 ), where x' is a true solution.

Newton’s method is then usually modified properly to accomodate the possible

non-positive definitness at regions remote from the solution.

Conjugate Direction Methods are analyzed mainly for quadratic problems.

These methods have been proved to be extremely efbctive in dealing with general

objective functions and are considered to be the best general purpose methods

presently available. These methods assume the following quadratic function:
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f = -;--x7.'Qx + bTx + c (6-6)

II

where Q is positive definite. Using n-conjugate vectors ( {di } ) with respect

i=1

to Q, minimum of this function is found afta' n steps by generating the follow-

ing sequarce of xk:

Xk+1= Xk + (It'd; ; (6-7)

Plat
at = -— ; and

ded.

Pr = tht - b

Under the assumption that evaluation and inversion of the Hessian matrix

is impractical or costly, the idea underlying Quasi-Newton Method is to use an

approximation to the inverse Hessian in place of the true inverse that is required

in Newtons Method. A basic iterative process takes the form of: '

xtt+1 = *r ' ar'MrSr (6'8)

where;

g,‘ = Vf(x,‘)r ;and

Mk = symmetric n x n matrix

at is chosen to minimim f ("r+1) and Mk is derived to be closer to inverse

of the Hessian matrix.
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All methods described above require the use of the gradient vector, for

which analytical expressions are assumed to exist. However, calculation of the

gradient numerically rather than analytically may be desirable or even necessary.

As the calculation of partial derivatives of f is , in general, at least as compli-

cated as f , a method which avoids the calculation of derivatives has the possi-

bility of being more efficient as well as having the advantage of being more con-

venient to use. One such method has been given by Powell [73]. This method

uses the following two main theorems:

Theorem 1. Let f(x) = -;—~xTSx + bTx + c, where S is a symmetric and

positive definite nxn matrix. Let xj minimize f(x) in the

direction (1 and let 2 be a point that is not on the line

I: xj- + t'd. If zj minimins f(x) on the line I = z + r-d,

then the direction 21- - X} is conjugate to (1.

Theorem 2. Let dk, k= 1,2,...,m ( Sn ), be mutually conjugate. Then the

global minimum of f (x) in m-dimensional space containing x1

and the directions (1,, may be found by searching along each of

these directions once only.

Figures 6.3(a) and (b) illustrate Theorem 1 and Theorem 2, respectively.

Proofs for both theorems are given in Reference 74. The basic Powell’s algo-

rithm chosen for use in this study is presented below and it is followed by intro-

ducing a related modification regarding the choice of direction vectors.
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rrrr-zor‘um 1: (2J - x1) is CONJUGATE 10 d.

d

 
(a) Theorem 1

THEOREM 2: THE GLOBAL MINIMUM OF A FUNCTION CAN BE

FOUND BY SEARCHING ALONG EACH OF THE CONJU-

GATE DIRECTION ONCE ONLY.

> comvcrm-z

>- NON-CONJUGATES

(b) Theorem 2

Figure 6.3 Main Theorems Used in Powell’s Algorithm
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The k"I iteration of this method starts with a current point xk and n direc-

tions, dlw’ , j= 1,2,...,n. At the beginning, x1 and (In are assumed to be given.

1. LEI y“): Xk.

2. Find 7t?1 which minimizes f (yk.j_1 + lei-d”) and let

ykJ = yk_j-1+ 11’2ko fOI' j= 1,2,...,II.

3. LCtfizyk'n—Xk.

4. Find 1,: which minimizesf (ykm + Rafi) and let ka = y,” + KJ-Sk.

5. LC! dk+IJ = dk,j+l’ j: 1,2,...,H'1, and dk+l,n = 5". The dII'CCtIOII ko

is discarded in favor of a new direction 8,,.

6. Go to step 1 and restart for (k + I)” step.

The k‘h cycle which contains (n+1) subcycles for finding minimum along

the given direction is schematically shown in Figure 6.4 for n = 2. In this Fig-

ure, superscripts and subscripts represent the subcycle number and iteration

number in a certain subcycle, respectively.

The above Powell’s algorithm produces n mutually conjugate directions in 11

iterations (i.e., k = n ). The method, however, breaks down when the n direc-

tions for an iteration become linearly dependent. This happens if

(ykfi - yk.0)T °(y,‘.1 - y”) becomes zero. This implies that by discarding d“

for (k + 1)"' step, one of the conjugate directions is lost and thus it never

reaches minimum of the funtion. Powell [74] modified his basic method to

overcome this type of difficulty by allowing a direction Other than d“ to be dis-

carded after the It” iteration. This modification, however, sometimes allows one

of the mutually conjugate direcr ions to be discarded, so that more than n itera-

tions are required in order to find the minimum of a positive definite quadratic
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 SECONDCYCLE

(a) Iterative Procedure

“31,,‘01,
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~~~~~
.......

........
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Ic-
.....

.........

......
.....

........
.....
.....
.....

.....
.......

 GLOBAL MINIMUM IS GUARANTEED BY THEOREM 2.

(b) Conjugacy of Vetors (x3l - x01) and (x32 - x02)

Figure 6.4 Main Theorems in Powell’s Algorithm for N = 2
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function. The direction to be discarded, if any, is chosen using the condition

that by discarding one of du’s, j- 1,2,...,n, the determinant of the matrix, [

dk.1,dk3,...,dk.j-1, a, du,,,...,tt,, 1 is made as large as possible. For It“

iteration, it proceeds as follows :

1. Let “.0 = x, and for j= 1,2,...,n, search from yaw--1 in the direction ko

for a minimum at y”.

2- Find A = Max.lf (I'm-1)" fUrJ)|= If (In-1) " fU'IuQH Whflcq is

the value of j maximizing A in j= 1,2,...,n.

3. Define f, = f (Yea) and f2 = f (3'th ). Then evaluate

f3 = f(2-yt,. ' 3m)-

. 1
4. If either f32 1 or (f,- 2°f2+f3)-(f,-f2- A)22 E-A-(fl— f3)2

then use old directions, d”, j= 1,2,...,n, for (It + l)”' iteration and put

Xtt+1 = y” = “+1.0. Otherwise use rule 5.

5. Determine Xr+1 as in the It“ iteration of Powell’s basic method, but take

the directions of {dk.1,dm,...,dk4-1,dm+1,"..ko A} . The supporting

theorems and proofs are given in References 73 and 74.

In Powell’s method, (n+1) line searches are nwded to generate one conju-

gate direction. Therefore, to find the global minimum point (assuming that the

given function is quadratic and positive definite) a total of n(n+ 1) line searches

are required. Since in the Powell’s method, the error function is being approxi-

mated by a quadratic function, it seems to be appropriate to use quadratic line

search. In the present study, the method of quadratic line search described by

Powell ['73] has been used. This method basically discards one of three points
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which is farthest from the turning point and then obtains a new current point

by taking the specified distance in the given direction such that the function

value is decreasing (see Figure 6.5). The newly found point and two existing

points are then used to fit the quadratic curve, and the same procedures are

repeated until the approximated minimum is within a satisfactory tolerance.

 The Point To be Discarded

  
Quadratic Curve

—\

Current Minimum Point

"0   
 

I‘ First Interval 'l

V Reduced Inverval 7'

Figure 6.5 Quadratic Line Search
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6.5 SELECTION OF PARAMETERS IN ”SYSTEM IDENTIFICA-

TION"

The flexural model contains ten material-related and ten constitutive

behavior-related factors (see Figure 5.10). The variations in some Of these fac-

tors have significant efficts on the behavior of SFRC under flexure, while vara-

tions in other factors result in negligible efhcts on the flexural behavior of

SFRC. Since it is not economical and practical to Optimize all these factors in

the process of "System Identification," factors whose variations result in

significant efficts on the flexural behavior Of SFRC need tO be selected as the

”System Identification " parameters.

Chapter 5 has examined the influence Of each factor on the flexural peak

load (P), flexural ductility (D), flexural toughness (A) and overall flexural

behavior of steel fiber reinforced concrete (V). It was Observed that in the case

of material-related factors, the fiber peak pull-out strength (1,, ), fiber diameter

((1,), fiber length (I, ), fiber volume fraction (V, ), matrix tensile strength (6“,),

and fiber slip at residual pull-out strength (5,) are the most influential factors

deciding the flexural behavior Of SFRC. As far as the constitutive behavior-

related factors are concerned, it was shown in Chapter 5 that their efbcts are

negligible when compared with those of the material-related factors.

Among the six influential material-related factors, those representing fiber

dimensions (i.e., df and If) as well as the volume fraction of fibers (Vf) should

be known inputs while analyzing some flexural test data Obtained for SFRC.

This further reduces the number Of "System Identification" parameters and

leaves only three material-related factors to be entered as parameters in "System

Identificationz" fiber peak pull-out strength (1,, ), fiber slip at residual pull-out

strength (5,) and matrix tensile strength (Om'). It is worth mentioning that
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the tensile strength Of SFRC can be determined once the values of these three

factors are Obtained through analysis Of flexural test results using "System

Identification.”

6.6 RESULTS OF SYSTEM IDENTIFICATION

Table 6.1 summarizes conditions of the SFRC flexural tests considered for

"System Identification," and also presents the Optimized values Of the three main

parameters Obtained from "System Identification." Figures 6.6(a) through

6.6(k) illustrate the comparisons between the experimentally Obtained and

theoretically optimized flexural loadodeflection curves. Satisfactory correlations

are Observed in these Figures. From Table 6.1, the optimized values of three

parameters are found to be larger than the values obtained from direct tension

and material tests (see the comparison presented in Table 6.2). The experimen-

tal data presented in Table 6.2 are the averages Obtained from several direct ten-

sion and fiber pull-out tests performed on materials comparable to those used in

flexural tests. The matrix tensile strength (Om') and performance Of fibers

Obtained from the analysis of flexural‘test results may be improved in com-

parison with those Obtained from direct tension and pull-out tests due to the

strain gradient efficts under flexural loading condition, which generally lead to

improved tensile performance of the material [27]. The improvements in pull-

out performance in flexural test specimens over those Obtained from single fiber

pull-out tests may also be attributed tO the positive efbcts Of fiber reinforcement

at the surrounding matrix (noting that single fiber pull-out tests are generally

conducted using non-fibrous surrounding matrices) in flexural test specimens.

Reference 27, using an analysis Of experimental data, has also reported increase
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Table 6.1 Test Conditions and Optimized Values from System

Ident ificat ion .

Refs. Test Specimen Fiber f'c Opt'd Values Error Itr.

NO,

N°' “WW W 0131' W St

44 1 100 100 300 strt 0.56 30 0.01 (40) 5.032 6.174 2.72 30004000025: 4;

300 strt 0.56 30 0.015 (40) 5.895 5.036 3.441 .

3 1% 18.0 300 strt 0.56 30 0.02 (40) 7.132 4.413 3.447 0.000011 6

100 300 strt 0.56 30 0.01 34.6 3.332 3.831 2.198 0.010869 6

45 ; I% 100 300 strt 0.56 30 0.015 34.6 4.649 3.933 3.121 0.000273 3

6 100 100 300 strt 0.56 30 0.01 48 3.032 5.0 3.0 0.026306 2

7 100 100 300 strt 0.56 30 0.01 24.7 2.564 2.752 2.56 0.000494

100 300 hook 0.5 30 0.01 (40) 3444 9.291 3.085 0.000231 3

75 3 I3 100 300 hook 0.5 30 0.01 (40) 3.831 7.73 6.247 0.000967 4

10 100 100 300 hook 0.5 30 0.01 (40) 3.695 5.371 2.957 0.004180 2

11 100 100 300 hook 0.5 30 0.01 (40) 2.57 6.25 2.887 0.003061 3

Values in parenthesis are assumed ones.
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Table 6.2 Comparison of the Tension Test Results with the Optimum Values

Of Parameters in Analysis of Flexural Test Results Using "System

Identification.”

Refs. Test Fiber 0; Ratios

No. No.

me (1f 1r vr 50.33207) 0.0/ 0.: 3°! 3.. St°l st

44 1 strt 0.56 30 0.01 2.1 2.4 2.35 0.97

2 strt 0.56 30 0.015 2.1 2.8 1.92 1.23

3 strt 056 30 0.02 2.1 3.4 1.68 1.23

45 4 strt 0.56 30 0.01 1.95 1.7 1.45 0.97

5 m 056 30 0.015 1.95 2.4 150 0.11

6 strt 0.56 30 0.01 2.30 1.32 1.90 1.07

7 strt 0.56 30 0.01 1.65 1.55 1.05 0.91

75 8 book 0.5 30 0.01 2.1 1.63 2.07 1.10

9 book 0.5 30 0.01 2.1 1.82 1.72 2.23

10 hook 0.5 30 0.01 2.1 1.76 1.20 1.05

11 hook 0.5 30 0.01 2.1 1.22 1.35 1.03    
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in pull-out strength under flexure when compared with pull-out strength under

tension.

In Table 6.3, the tensile strengths Of SFRC calculated using Equation 3.10

with the Optimized values of parameters Obtained from the analysis Of flexural

test data are compared with the corresponding predictions Of Equation 3.10 with

average values obtained from direct tension and fiber pull-out tests. The com-

posite material tensile strengths Obtained from flexural test results is Observed to

be larger that those obtained from direct tension and pull-out test results. The

ratios of flexure-based to tension-based composite material tensile strengths are

presented in the last column of Table 6.3. It is interesting that the average of

these ratios is 1.82, which is close to the value Of 1.87 Obtained by taking the

e a q a e e

ratro of the matrix modulus of rupture (0.623] [C ) to the matrix direct tens1le
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Table 6.3 Derived Tensile Strengths of Matrices and Composites in Direct

Tension and "System Identification."

 

  

 

   
 

Ref. Test Matrix Tensile Strength Ratios SFRC Tensile Strength (Eq. 3.10) Ratios

No. No.

o_° tr {-0.624 f'c) 6,0/ fr o,° a, o,°/ o,

44 1 5.03 3.92 1.28 6.85 2.87 2.39

2 5.9 3.92 1.505 7.45 2.87 2.59

3 7.13 3.92 1.82 8.42 2.87 2.9

45 4 3.32 3.64 0.91 4.45 2.71 1.64

5 4.65 3.64 1.28 6.4 3.07 2.08

6 3.03 4.29 0.706 4.47 3.08 1.451

7 2.56 3.08 0.83 3.38 2.41 1.407

75 8 3.44 3.92 0.88 6.38 3.54 1.8

9 3.83 3.92 0.98 6.31 3.54 1.782

10 3.7 3.92 0.95 5.47 3.54 1545

1 1 257 3.92 0.65 4.56 3.54 1.288

Averages 1.008 1.82     
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strength (0.3324! .fc'). This suggests that the tensile behavior of steel fiber

reinforwd concrete is also influenced by strain gradient in a manner similar to

the tensile strength of plain concrete.

Large variations in the values of parameters (1,, Om', and 3,) Obtained

from "System Identification" in Table 6.1 suggest that the highly variable (and

unreliable) measurements Of flexural deflections in the pre—peak region have some

influence on the analysis of flexural test data using the "System Identification"

approach. These variations may also partly result from the fact that some

flexural test results reported in the literature were not accompanied by reliable

information on basic material properties and thus some assumptions had tO be

made on thses properties through the course of "System Identification."

6.7 SUMMARY AND CONCLUSION

The complexity and instability involved in testing cementitious materials

under direct tension have led to wide spread use of flexural testing for the assess-

ment Of the tensile performance characteristics of cement-based materials. The

analytical study presented in this Chapter was aimed at analyzing flexural test

results for steel fiber reinforced concrete in order to derive information on the

tensile constitutive behavior Of the material.

An indirect method, "System Identification", was adopted for the analysis Of

flexural teSt results. "System Identification" is a process of selecting the form of

the model (with a number Of unknown parameters), and then systematically

adjusting the parameters until, based on a predefined criterion, the best correla-

tion is achieved between the predicted and measured responses. In this study,

flexural test results were used to adjust characteristic parameters in the
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constitutive model Of SFRC. The flexuaral analysis procedure developed in

Chapta' 5, which incorporates tensile and compressive constitutive models of

SFRC was employed tO predict the flexural behavior of SFRC in the "System

Identification" approach. The characteristic parameters initially considered

consisted of ten material-related and ten constitutive behavior-related factors.

The number Of these parameters was reduced by selecting factors with significant

efficts on the overall flexural behavior of SFRC. These factors (parameters)

were optimized through "System Identification." Based on the study performed

in Chapter 5, six material-related factors (t,,d,,t,,v,,o,,,' and 5,) were

found to dominate the overall flexural behavior of SFRC, and considering the

fact that fiber dimensions (d, and If) as well as the volume fraction of fibers

(VI) are known inputs, the remaining three material-related factors

(ta, Om' and 5,) were entered as parameters in "System Identification."

In order to measure the correlation between the predicted and measured

flexural load-deflection curves, an error function (E) which is defined in a similar

manner as the function (V) measuring the overall flexural behavior Of SFRC in

Chapter 5, was established. The error function (E) takes into account

difhences between predicted and measured values Of peak flexural strength (P),

ductility (D), and toughness (A) of SFRC.

In order to find the optimum set Of "System Identification" parameters

which minimize the value of error function, a nonlinear programming technique

based on Modified Powell’s Method was used together with quadratic line search.

The method iteratively searches for the minimum error point in the n-

dimensional parameter space by producing 11 mutually conjugate directions in n

subcycles and then discarding one Of the mutually conjugate directions to avoid

the linear dependency of direction vectors. The minimum points selected along

these direction vectors eventually lead to the global minimum of a given error
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function. The use of Modified Powell’s Method has advantages ova Other

methods in application to the specific problem Of this study because it does not

require the calculation of gradient vector for which analytical expressions should

exist. The method could successftu produce the optimum set of parameters

which lead to a satisfactory match between the measured and predicted flexural

load-deflection relationships.

The values of parametas Obtained from "System Identification" are, in most

cases, larger than those daived from direct tension tests paformed on SFRC.

An analysis Of the results indicated that:

(1) The matrix tensile strength (0") and pull-out performance of fibas

Obtained from the analysis of flexural test results wae supaior to those Obtained

from direct tension and pull-out tests. This may be attributed to the strain

gradient effects unda flexural loads.

(2) The improvements in pull—out paformance in flexural tests ova those

Obtained from single fiba pull-out tests (whae fibas are genaally pulled out Of

non-fibrous matrices) may also be attributed to the positive effects Of fiba rein-

forcement of the surrounding matrix in flexural test specimens.

(3) Tensile strength Of SFRC Obtained from the analysis of flexural test

results is larga than tensile strength obtained from direct tension tests on

SFRC. The tensile strength of SFRC unda flexure was, on the avaage, 1.82

times the tensile strength of SFRC Obtained fi'om direct tension tests, which is

comparable to the ratio Of the modulus Of rupture to direct tensile strength Of

plain concrete. This suggests that the tensile behavior Of SFRC is influenced by

strain gradient in a manna similar to the tensile strength of plain concrete.

(4) Large variations wae Obsaved in the values Of parametas

(I... 0,”, and S,) Obtained from "System Identification." This could result from

both unreliable measurements of flexural deflections in the pre-peak region in
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some test results reported in the litaature, and also from the lack Of information

on some basic material properties for flexural tests conducted by otha investiga-

lOfS.



CHAPTER 7

SUMMARY AND CONCLUSION

Reinforcement of concrete with randomly oriented short steel fibers

improves the tensile strength, and the tensile and compressive toughness of the

mataial. Fibas in cementitious matrices arrest and deflect the propagating

microcracks. The debonding and pull-out action of fibas under tension, and

the confinement of cementitious matrices by steel fibas under compression, are

also important mechanisms leading to improvements in concrete behavior in the

presence Of steel fibers. Improvements in the flexural paformance of concrete

resulting from steel fiba reinforcement are direct consequences of the correspond-

ing improvements in the tensile and compressive paformance Of the the

mataial.

In orda to develop methods for analysis Of reinforced concrete structures

incorporating steel fibas, reliable tensile and compressive constitutive models are

needed for fiber reinforced concrete. In many applications, SFRC is subjected

to flexural forces and thus it is important to develop analytical techniques for

predicting the flexural behavior Of SFRC which account for the nonlinear stress

distributions and the dominance Of a cracked seCtion in deciding the post-peak

peformance Of SFRC.

This investigation dealt with three aspects Of SFRC behavior: (1) compres-

sive; (2) tensile; and (3) flexural. In the first phase Of this investigation, sum-

marized in Chapters 3 and 4, empirical constitutive models were developed for

predicting the complete stress—deformation relationships of SFRC unda tensile

and compressive stresses. In Chapter 5, an analytical approach was developed

188
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for simulating the flexural paformance of SFRC, which incorporated the tensile

and compressive constitutive models of SFRC developed in Chaptas 3 and 4.

Parametric studies wae conducted using the developed constitutive models and

flexural analysis procedures in orda to assess the efbcts of different fiba and

matrix propaties on the paformance charactaistics of the composite mataial.

Finally, the "System Identification" technique was used togetha with the

developed flexural analysis prmdure and constitutive models in orda to derive

information on the tensile behavior of SFRC using flexural test data.

Diffirent phases of this investigation and the related conclusions are sum-

marized below.

Tensile Constitutive Modeling

Theoretical expressions wae daived for the numba of fibas pa unit cross

sectional area in fiba reinforced concrete as functions of fiba volume fraction

and length, assuming that cross sectional boundaries are the only factors dis-

turbing the 3-D random orientation of fibers. Measurements wae made on frac—

tured surfaces Of steel fiber reinforced concrete specimens in orda to assess the

actual values for the number Of fibas pa unit area in steel fiber reinforced con-

crete. Nineteen steel fiber reinforced concrete specimens incorporating different

fiba volume fractions and different fiber types were considered in this investiga-

tion. Statistical studies were conducted on the measured values of the number

of fibas pa unit area for determining the possible efficts of fiba type and loca-

tion on the number of fibers per unit area. Comparisons were also made

between the theoretical and measured values Of the number Of fibers per unit

area in order to determine the efbcts of reorientation of steel fibers inside con-

crete during vibration. Recommendations were made, based on the findings of

this research, for approximating the number of fibers per unit area in steel fiber
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reinforced concrete.

The following conclusions wae derived from the results Of this investiga-

tion:

(1) The type of steel fiba (straight vs. hooked) and the location in cross sec-

tion with respect to the casting direction (top vs. bottom) did not have any sta-

tistically significant effict on the measured value of numba of fibas pa unit

area.

(2) Vibration of steel fiba reinforced concrete seems to reorient the fibas,

resulting in a tendency towards orienting the fibas in horizontal planes. This

phenomenon illustrates the higha values for numba Of fibas pa unit area in

actual measurements when compared with theoretical predictions.

(3) The numba Of fibas pa unit cross sectional area in steel fiba reinforced

concrete afta vibration is between the theoretical values daived for 3—D and 2-D

random orientation conditions considering the boundary efbcts.

A refined concept ("intaaction concept") was proposed for predicting the

tensile strength of SFRC. This concept accounts for the partial mobilization Of

the fiba pull-out action (intafacial bond stresses) at the peak tensile strength of

composite material, and also considas the microcrack arresting action Of fibers

and the consequent strengthening of matrix in the presence Of steel fibers. The

proposed "intaaction concept" leads to an expression for predicting the tensile

strength of steel fiba reinforwd concrete, which incorporates some unknown

coefficients to be determined empirically. These coefficients wae decided in this

study using a relatively large number Of SFRC tensile strength test results.

The theoretical predictions based on the proposed "interaction concept",

when compared with those of the commonly used composite mataial and spac~

ing concepts, show a reasonable correlation with test results. More importantly,

the relative matrix and fiber contributions to the composite material tensile
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strength in the proposed "intaaction concept" are representative of the physics

of the composite mataial paformance at peak tensile stress.

A constitutive model was also developed for predicting the pre-peak tensile

stress-strain relationship as well as the post-peak tensile stress-deformation rela-

tionship of steel fiba reinforced concrete. The developed post-peak constitutive

model accounts for the constributions of fibers crossing the critical section

through their pull-out action as well as that of matrix in its post-peak softening

range of behavior. Empirical fiba pull-out load-slip and matrix post-peak con-

stitutive models wae combined to daive the composite mataial post-peak ten-

sile stress-deformation model. The pre-peak constitutive model of the composite

mataial developed in this study was an empirical one based on the tension test

results reported in the litaature for steel fiba reinforced concrete. The pro-

posed constitutive model is shown to compare reasonably well with tension test

results paformed on steel fiba reinforced concrete in both the pre- and post-

peak regions.

Compressive Constitutive Modeling

Reinforcement Of concrete with randomly oriented short steel fibas increases

the ultimate strength and especially the post-peak ductility and energy absorp-

tion capacity Of concrete under compression. The effectiveness of steel fibas in

enhancing concrete behavior under compression depends on the mix proportions

Of the matrix, the volume fraction, aspect ratio and deformation configurations

Of fibers, loading versus casting direction, specimen geometry, and rate of load-

ing.

An empirical constitutive model was developed in this study for steel fiber

reinforced concretes loaded in compression. This model accounts for the effects

Of fiber volume fraction, aspect ratio and type (straight vs. hooked), and the
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matrix compressive strength, on the compressive behavior Of steel fiber reinforced

concrete. The model has been developed using results Of ninety eight compres-

sion tests paformed on 150 mm (6 in.) by 300 mm (12 in.) cylindrical concrete

specimens with maximum aggregate sizes ranging from 9.5 mm (3/8 in.) to 19

mm (3/4 in.), incorporating straight or hooked fibas and loaded quasi-statically

in the direction of casting.

The relatively simple empirical model developed in this study predicts

experimental results (for fibrous concretes with relatively wide ranges of fiba

and matrix variables) with a reasonable accuracy. More test results are nwded

for refining the model to consida the efbcts of maximum aggregate size, speci-

men geometry, loading vasus casting direction, and the rate of loading.

Flexural Analysis of Steel Fiber Reinforced Concrete

Unda flexural loads, one major crack genaally forms in steel fiba rein-

forced concrete at the critical section, in the vicinity of which a relief of tensile

stresses occurs. Afta cracking, the critical section sufbrs sevae distortions and

thus plane sections do not remain plane in its vicinity. A flexural analysis pro-

cedure was developed which gives due considaation to the behavior at and near

the critical (cracked) section.

The exact distributions of tensile and compressive strains in the critical

region are ratha complex. Some simplifying assumptions wae made in order to

simulate the flexural behavior at critical region. Before the crack starts to open,

the moment and curvature distributions are similar in shape. As the flexural

load increases beyond the first-crack load, the critical region is assumed to

spread outward, and it stabilizes when the beam reaches its ultimate load, with

curvature at the boundary of the critical region assumed tO stay constant at the

first-crack value. In the post-peak region, compressive strains in the critical
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region furtha increase while elastic flexural deformations outside critical region

tend to decrease. This, togetha with the assumed constant values of curvature

at the boundaries of the critical region, result in a tendency in deformations to

increasingly concentrate near the centa (cracked section) of the aitical region.

The crack shape at the critical section is assumed to be linear and sym-

metric about a plane normal to the beam longitudinal axis. Assuming linear

variations in compressive and tensile curvatures at the critical region (where the

tensile curvature is assumed to vary from zero at the crack to a value equal to

the compressive side curvature at the boundary of the critical region), the crack

Opening angle could be Obtained by computing the difference in rotations associ-

ated with compressive and tensile strains in the critical region. Maximum crack

opening at the extreme bottom laya of the critical section could be Obtained

using this crack Opening angle and the neutral axis position obtained by satisfy-

ing the equilibrium of tensile and compressive forces at the critical (cracked) sec-

tion.

A step-by-step incremental approach was adopted for flexural analysis of

SFRC beams. In each step, an inaernent is made in curvature on the compres-

sive side of the cracked section, and numerical techniques (based on the Modified

Regula-Falsi method) wae used to itaatively decide the neutral axis position

which satisfies equilibrium conditions. The tensile and compressive constitutive

models of SFRC developed in this study wae used in flexural analysis of the

critical section. The assumptions described above were then used to derive the

flexural behavior Of complete beam using the aitical section behavior at the end

Of each step.

Using the proposed analytical approach, the flexural behavior and stress

profiles at the critical section were investigated at different loading stages with

two diffirent fiber volume fractions (0.5% and 1.2%). The results indicated
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that the peak flexural load at both fiba volume fractions is attained when the

crack at critical section has already Opened. This implies that flexural strength

is reached in SFRC beams when the tensile behavior has already reached the

post-peak region. The flexural strength of SFRC, thaefore, seems to be depen-

dent nOt only on the tensile strength of the mataial, but also on its post-peak

tensile behavior. This furtha explains why the increases in flexural strength is

typically higha than the corresponding increase in tensile strength for given fiba

reinforcement conditions. In addition, calculation of modulus of rupture based

on linear-elastic flexural analysis equations does not seem to give a characteristic

stress value which directly relates to the peak tensile strength of SFRC.

While a major fraction of the peak flexural resistance is maintained in the

post-peak region for conditions with 1.2% fiba volume fraction, the load-

carrying capacity with 0.5% fiba volume fraction drops suddenly in the post-

peak regions.

The. developed flexural analysis procedure was also used for a numerical

parametric study on the influences Of ten material-related and ten constitutive

behavior—related factors on the flexural behavior Of SFRC. The significance of

these factors in deciding flexural paformance characteristics was examined by

simple Obsavations of flexural load-deflection curves and also through statistical

analysis based on 2“ factorial design. The aspects of flexural behavior con-

sidaed in this study wae flexural peak load (P), ductility (D), toughness (A) and

the ovaall flexural behavior of SFRC (V). The following conclusions could be

derived using the results of this parametric study:

(1) The flexural Strength of SFRC was most sensitive to the variation in

matrix tensile strength.

(2) Ductility (D), toughness (A) and overall flexural behavior (V) are most

influenced by fiber diameter and fiber pull-out strength.
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(3) The efficts on flexural behavior of the matrix compressive strength,

crack opening at which matrix tensile stress diminishes, and fiba slip at peak

pull-out load are negligible.

(4) Fiber dimensions (fiba diameta and fiba length) as well as fiba volume

fraction have almost equally important efbcts on flexural behavior.

(5) While the matrix crack Opening at residual matrix tensile Strength has

little efficts on different aspects of flexural behavior, fiba slip at residual pull-

out strength has relatively important efficts on flexural ductility and ovaall

flexural behavior Of SFRC.

(6) Fiba—tO-matrix bond strength (1,, ), fiber dimensions and volume frac-

tion (61,, If and Vf)’ matrix tensile strenth (Om') and slip at residual pull-out

strength (S,) are the most influential factors deciding the flexural behavior of

SFRC.

(7) Similar Obsavations were derived through analysis using 2" factorial

design and also through simple Observation of flexural load—deflection curves.

Interpretation of Flexural Test Results Using "System Identification"

The complexity and instability involved in testing cementitious materials

under direct tension have led to wide spread use of flexural testing for the assess-

ment of the tensile performance characteristics Of cement-based materials. The

analytical study presented in this Chapta was aimed at analyzing flexural test

results for steel fiber reinforced concrete in order to derive information on the

tensile constitutive behavior Of the mataial.

An indirect method, "System Identification", was adopted for the analysis of

flexural test results. "System Identification" is a process Of selecting the form of

the model (with a number of unknown parameters), and then systematically

adjusting the parameters until, based on a predefined criterion, the hem



196

correlation is achieved between the predicted and measured responses. In this

study, flexural test results wae used to adjust charactaistic parametas in the

constitutive model Of SFRC. The flexural analysis procedure developed in

Chapta 5, which incorporates tensile and compressive constitutive models Of

SFRC was employed to predict the flexural behavior of SFRC in the "System

Identification" approach. The charactaistic parametas initially considaed

consisted of ten mataial-related and ten constitutive behavior-related factors.

The number Of these parametas was reduced by selecting factors with significant

efbcts on the overall flexural behavior of SFRC. These factors (parameters)

wae optimized through "System Identification." Based on the study paformed

in Chapta 5, six material-related factors (1“,df.lf,Vf, Om, and S,) were

found to dominate the ovaall flexural behavior Of SFRC, and considering the

fact that fiber dimensions (d, and If) as well as the volume fraction of fibas

(Vf) are known inputs, the remaining three mataial-related factors

(1:, , O‘m ' and S,) were entered as parameters in "System Identification."

In orda to measure the correlation between the predicted and measured

flexural load-deflection curves, an error function (E) which is defined in a similar

manner as the function (V) measuring the ovaall flexural behavior of SFRC in

Chapter 5, was eStablished. The error function (E) takes into account

differences between predicted and measured values of peak flexural strength (P),

ductility (D), and toughness (A) of SFRC.

In order to find the optimum set Of "System Identification" parameters

which minimize the value of error function, a nonlinear programming technique

based on Modified Powell's Method was used togetha with quadratic line search.

The method iteratively searches for the minimum error point in the n-

dimensional parameter space by producing 11 mutually conjugate directions in n

subcycles and then discarding one of the mutually conjugate directions tO avoid
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the linear dependency of direction vectors. The minimum points selected along

these direction vectors eventually lead to the global minimum of a given aror

function. The use of Modified Powell’s Method has advantages over otha

methods in application to the specific problem of this study because it does not

require the calculation Of gradient vector for which analytical expressions should

exist. The method could successquy produce the optimum set of parametas

which lead tO a satisfactory match between the measured and predicted flexural

load-deflection relationships.

The values of parametas obtained from "System Identification” are, in most

cases, larga than those daived from direct tension tests paformed on SFRC.

An analysis of the results indicated that:

(1) The matrix tensile strength (0”,) and pull-out paformance Of fibers

Obtained from the analysis of flexural test results wae supaior to those obtained

from direct tension and pull-out tests. This may be attributed tO the strain

gradient effects unda flexural loads.

(2) The improvements in pull-out paformance in flexural tests ova those

Obtained from single fiba pull-out tests (whae fibers are genaally pulled out of

non-fibrous matrices) may also be attributed to the positive efficts of fiba rein-

forcement of the surrounding matrix in flexural test specimens.

(3) Tensile strength of SFRC Obtained from the analysis of flexural test

results is larga than tensile strength Obtained from direct tension tests on

SFRC. The tensile strength Of SFRC unda flexure was, on the avaage, 1.82

times the tensile strength Of SFRC obtained from direct tension tests, which is

comparable to the ratio of the modulus Of rupture tO direct tensile strength of

plain concrete. This suggests that the tensile behavior of SFRC is influenced by

strain gradient in a manna similar tO the tensile strength of plain concrete.
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(4) Large variations wae Obsaved in the values of parametas

(1,, on, and S,) Obtained from "System Identification." This could result from

both unreliable measurements of flexural deflections in the pre—peak region in

some test results reported in the litaature, and also from the lack Of information

on some basic mataial propaties for flexural tests conducted by otha investiga-
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