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ABSTRACT

X-RAY STUDIES OF LAYER RIGIDITY AND C-AXIS EXPANSION

IN INTERCALATED LAYERED SOLIDS

By
Soonil Lee

From X-ray diffraction and Raman active torsional mode frequency

studies the new synthetic vermiculite intercalation compounds,
+ +
[(CHa)aN ]‘[(CH3)3NH ]l_x-Vm, are determined to have a solid solution

type mixed gallery cation distribution.

The x dependence of the normalized basal spacing, dn(x). of ternary

pillared vermiculite [(CH3)4N+]x[(CH3)3NH+]1_x-Vm has been measured and

compared with that of CsxRb x-Vm. Both system exhibit a nonlinear dn(X)

1-
with approximate thresholds of x = 0.2 and 0.5, respectively. A model

wvhich relates dn(x) to layer rigidity and the binding energies of

gallery and defect sites yields excellent fits to the basal spacing data
and to monolayer simulations if collective effects are included.
Ve also have constructed a plot of the normalized basal spacing

versus normalized torsional mode frequency for two vermiculite

+ +
intercalation compounds, CsxRbl_x-Vm and [(CH3)4N ]x[(CHs)sNH ]l_x-Vm.
This plot shows a striking "scaling-like" behavior for the two different
mixed-ion systems. An attempt to understand this behavior based on the

virtual crystal approximation has been made. This mode calculation



reveals a very close relationship between the basal spacing and the
gallery ion-oxygen interaction.

A layer rigidity model which includes the effects of elastic
deformation of the host layers is applied to a variety of layered
intercalation compounds. This model can account for the composition
dependence of the c-axis expansion of the three classes of layered
solids. Rigidity parameters deduced from this model for each of the
three classes of layered solid are reflective of structurally derived
rigidity as are the healing lengths computed on the basis of discrete
and continuum analyses.

Using the continuum elastic theory the attractive intralayer
interaction in intercalation compounds is calculated to show the
contribution of each rigidity constant and the size dependence of the
intercalants. Different staging behavior among different intercalated
layered solids is discussed using Safran's phase diagram.

Ve have constructed a novel Low Temperature X-Ray Diffraction
(LTXRD) system which can be used to study the temperature dependent
properties of solids (i.e. temperature dependent basal spacing
variation). A closed cycle He-cryostat and 4-circle diffractometer have
been modified. Instead of moving the whole cryostat to locate the sample
at the center of the diffractometer as is usually done we employ a small
goniometer inside of the cryostat for easy and accurate sample alignment
and scanning. The combination of two small universal joints and square
cross section sliding shafts makes it possible to control the inside
goniometer from outside the cryostat. Use of a Kapton window allows us
to visualize the inside sample and to reduce the X-ray absorption by the

vindow.
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I. Overview

The term intercalation describes the reversible insertion of guest
species into a host structure with maintenance of the structural
features of the host.1 Even though the term can equally be applied to
one- and three-dimensional solids, it is usually applied to lamellar
solids because of their intrinsic anisotropy. For example in graphite
carbon atoms are covalently bonded into a hexagonal lattice plane with a
carbon-carbon distance of 1.42A, and the carbon planes are then bound by
the Van der Walls interaction with an interplane distance of 3.35A along
the c-axis.2 The weak Van der Valls bond can be easily broken by charge
transfer to or from the graphite carbon layer with the resultant
formation of the so called graphite intercalation compounds (GIC's).z'3

Layered intercalation compounds have been the subjects of much
historical and current interest among scientists in many varied
disciplines. The origin of the intense interest is twofold; layered
solids provide a natural arena for the exploration of
quasi-two-dimensional physical phenomena.2 yet they also exhibit
properties which are of significant practical value. Two dimensional
(2D) melting,a the 2D metal-insulator transition.5 binary alloy

2,

formation in 2D,2'3 anisotropic order-disorder phenomena, unusual

phase transitions and composition dependent unit cell volume changes6
are a few examples of the topics studied using layered intercalation

compounds. Among the practical applicétions of layered intercalation

9,10

compounds are hydrogen storage.7 batteries8 and catalysis vhich have

been studied widely. Recent advances in the intercalation chemistry of

1

pillared clays1 have lead to the realization that these materials are

the most promising precursors to new families of microporous adsorbents



2
and shape selective catalysts since the advent of synthetic Zeolites
several decades ago.
There are a vast number of layered solids which exhibit a high
degree of anisotropy in their physical properties and for which the
interaction forces within layers of atoms are much stronger than the

forces between layers.z'12

There are several ways these layered
materials can be classified but it is most convenient to classify such
materials qualitatively according to the rigidity of their layers with
respect to distortions involving atomic displacements transverse to the
layer plane. Such a classification scheme is shown in Figure I.1 (a)
wvhich depicts schematically the three general classes.13 Class I
contains only two compounds, graphite and boron nitride, which are the
only layered solids that are composed of monatomically thin planes of
atoms. As a result of this unusual structure, the individual layers of
class I solids are "floppy" and can easily sustain long wavelength
deformation which are transverse to the layer planes. Examples of class
II materials are layer dichalcogenides such as TiS2 and Hfsz. FeOCl-type
compounds and metal chlorides such as FeCl2 and CoClz. etc.14 The layers
in class II materials are often composed of three distinct planes of
strongly bonded atoms and present a stiffer structure than the layers of
class I solids. Therefore they are more resistive to transverse
distortions. The prototypical examples of class III materials are the

layered silicate clays15

(e.g. Vermiculite). Because the clay layers can
be many atoms thick (Vermiculite has seven atomic-plane thick layers),
they will be quite "rigid" against transverse layer distortions. In fact
the clay layers are so rigid that they can be propped apart or pillared

by widely-spaced intercalants without sagging.ll



Class 1 Class II Class III

graphite TaSg silicate clays
boron nitride FeOCl
etc.
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Figure I.1 Schematic classifications of (a) pristine layered solids
and (b) the intercalated forms of (a). In (b) the dashed
(solid) lines represent guest (host) layers.
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A vide variety of physical properties seen in lamellar solids are
in large part determined by the transverse rigidity of the host layers.
For example, graphite whose monatomic layers are "floppy" does not form
gel structures in any liquid while layered alumino-silicates whose
multi-atomic layers are "rigid" are excellent gel formers.16 One of the
most interesting phenomena observed in intercalation compounds is the
existence of a long-period one dimensional modulated structure along the
c-axis, namely staging.z The staging phenomena is characterized by a
stage number n which refers to the number of host layers separating two
adjacent intercalant layers as shown in Figure I.2. In Figure I.1 (b)
are illustrated typical staging behavior for each class of layered
solids. The class I layered solids and particularly graphite
intercalation compounds exhibit many different stages including high
stages up ton = 10.3

Note that class I graphite intercalation compounds contain as their
key identifying feature multilayers of host between monolayers of guest.
In class II, certain intercalation compounds of transition metal

dichalcogenides have been shown to form low stagesl7’18'53’54

(mostly
stage 1 and 2). In class III, compounds such as vermiculite have been
found only in a stage 1 state. However clay intercalation compounds have
the unique ability to sustain multilayers of guest between monolayers of

13 It is currently understoodl9 that the competition between

host.
repulsive interplanar interactions and attractive intraplanar
interactions is responsible for staging. However because elastic
interactions in addition to the long-range electrostatic interactionmns

19,20

contribute to the interatomic forces, one can expect to understand

quite distinctive staging behavior among these three different classes
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Figure I.2 Schematic diagram illustrating the staging phenomenon in

graphite-potassium compounds for stages 1-5. Dashed and
solid lines represent, respectively, the potassium layers
and the carbon layers.
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of layered solids only after the layer rigidity of these materials is
understood.
Vhile the physics of type I and type II materials, especially
graphite and graphite intercalation compounds has been and continues to

be heavily studied by many researchets,z'18

the physics of class III
materials, layered silicate clays and clay intercalation compounds has,
to date, received less attention. However if we are to develop a sound
understanding of layered solids, this major extreme subclass cannot be
ignored. Much of the reason that hindered the solid state physics
community from extending its horizon to the class III material lies in
the common misconception about clay. The very name of clay reminds most
solid state physicists of something very messy and disordered. But it is
vell known to inorganic chemists, soil scientists, geologists, and
mineralogists that some clays actually have a very well defined
structure. The structure is so well defined that it has been used to
study a particular type of stacking sequence disorder known as
interstratification which is an intrinsically interesting
phenomena.ls'21

As an example of the excellent crystalline form of some clay, the
(OOL) X-ray diffraction pattern of vermiculite is shown in Figure I.3
together with its mosaic spread and a schematic diagram of its stacking
structure.13 The reflections shown have widths which are
instrument-resolution-limited, and correspond to c-axis correlation
ranges in excess of 5000A. Of equal importance to the study of physical
phenomena in clay intercalation compounds is the mosaic spread in the
degree of alignment of the crystalline c-axes. The rocking curve shown

in Figure I. 3 indicates a mosaic spread22 of approximately 5° which is

considerably higher than that of highly oriented pyrolytic graphite



Figure 3.
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Room temperature (00L) X-ray diffraction pattern of

vermiculite recorded using Mo Ka radiation. Inset shows
rocking-curve of the (007) reflection. The diagram at the
upper right of the figure represents the c-axis
structure.
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(HOPG)23 but comparable to that of graph01124 a material with which much
excellent solid-state physics has been carried out.25

X-ray diffraction is a very suitable tool for the study of
intercalated lamellar solids. First, if there are any structural phase
transitions, such as inplane melting of the intercalant layers or
staging transitions between them which involves a long range c-axis
modulation, they can be very easily observed either by inplane

scattering or by (OOL) scattering,2 respectively. Second, we can study
the layer rigidity of the host layered solids from measurements of the
basal spacing d (= unit-cell length along the c-axis) of the
intercalated layered solids with 2D homogeneous solid solution type
intercalants.

As an example of the latter consider the mixed ion layered solids
of the type Ml-xu'xL’ 0 s x =1 where M and u' represent cations of
different size and L represents the host layers, for example
Vermiculite(= Vm) or Graphite(= C). If we adopt the simplified model in
wvhich the graphite layers are very floppy with respect to transverse
distortions while the vermiculite layers are infinitely rigid, as
illustrated in Figure I.4, then the composition dependence d(x) vs x of
the X-ray derived basal plane spacing of the layers would have the

56’27'30(i.e.

functional form shown in that Figure. The non-Vegard's law
non linear) form of d(x) for graphite is a consequence of the limited
ability of the carbon layers to wrap or pucker around the large ion in
the gallery. In contrast the step-function-like behavior which would be
predicted for d(x) in the vermiculite case reflects the assumption that
as few as three noncolinear large ions could fully prop the clay layers

apart if they were infinitely rigid. The super-linear basal spacing

variation observed in graphite intercalation compounds is the most



GRAPHITE LAYERED SILICATE

floppy rigid
- IS SISNS,
(@ o (@ s Qe o)
SIS IIINIS

Csy_,Rb, Cg Cs4- Rb,V

-1 ¢

d(x) d(x)

Figure I.4 Schematic illustration of the transverse layer
distortions in the mixed layer intercalation compounds
Cs-Rb-graphite, the layers of which are "floppy" and
Cs-Rb-vermiculite, the layer of which are "rigid®". Also
shown are the composition dependences of the
corresponding basal spacings, d(x) vs x.
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common in intercalated layered compounds and it can serve as a starting
point for the understanding of various basal spacing composition
dependencies.26 For example, a linear basal spacing variation (so called
Vegard's law) and step function variations can be interpreted as two
limiting cases of a super-linear basal spacing variation.27 Also it
becomes possible to quantify layer rigidity from the experimentally
measured basal spacing after the super-linear basal spacing variation
due to local deformation is studied.26 Real systems are more complicated
than these simplified pictures and in many cases sigmoidal shaped basal

27,30

spacing variations have been observed. The understanding of the

sigmoidal shape basal spacing variations requires more than a simple

7 Also one can imagine sublinear basal spacing

monolayer model.2
variations to complete the list of possible functional forms of basal
spacing variations, but this hasn't been observed yet. The four types of
basal spacing variations are illustrated in Figure I.S.

Finally the study of class III vermiculite intercalation compound
can be very useful for the following reasons. First because it belongs

3 with "rigid”

to the important extreme subclass of layered solids1
layers we can gain a global understanding of lamellar solids in general
from a comparison of Vermiculite with graphite intercalation compounds
and transition metal dichalcogenide compounds. Second only class III

materials have a fixed layer charge densityls'z1

that does not vary
during intercalation (More appropriately called ion exchange). This
allows us to concentrate mainly on the elastic effects. In contrast
graphite is'amphoteric and the physical properties of its intercalation
compounds are greatly influenced by the charge transfer from and to the

2,3

carbon layers. Third in the vermiculite intercalation compounds

there is a particularly revealing Raman active torsional mode due to the
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Figure I.S Four functional forms of basal spacing variation in

intercalated layered solids. Superlinear, linear
(Vegard's law), sigmoidal, and sublinear variations, top
to bottom, respectively.
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interaction between the intercalant and the terminating oxygen

plane.zg'30

This mode enables us to have insight into the guest-guest
and guest-host interactions in clay intercalation compounds. Fourth, an
understanding of the clay layer rigidity can lead to the improved

synthesis of pillared clays.ll'16

Pillared clays are a recently
developed class of microporous compounds with novel properties as
shape-selective adsorbents and catalysts. The distinguishing feature of
pillared clays is that the gallery cations are robust three-dimensional
species which function in the water free interlayer space as molecular
props. These props pillar the silicate layers and prevent their collapse
in the absence of a swelling solvent. Because the silicate layers are
not infinitely rigid, there must be some limit beyond which increasing
pillar separation causes layer distortions akin to "sagging". Hence the
synthetic design of pillared clay sorbents and catalysts could be

greatly stimulated by the predictive power of a quantitative layer

rigidity model.
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II. Structure of Vermiculite

15,21 are uoa tetrahedra and

M'Osoctahedra vhere M is most commonly Si“+ and occasionally Al3+ or

Fe3+ and M' is a metal ion such as A13+.Fe3+.ugz+ or Li+. Also a number

The building blocks of clay structures

of the oxygen atoms in the H'06 building blocks are frequently replaced
by hydroxyl groups. The replacement of oxygen by hydroxyl in the HO4
building blocks occurs only rarely. The lamellar structure of clay
minerals in general is a manifestation of the ability of HO4 units and
H'06 units to form tetrahedral and octahedral sheets respectively, and
the ability of these sheets to link through a common oxygen plane to
form layers.

Vermiculite is a specific example of a trioctahedral 2:1 layered

silicate.15'21

Its layers are formed from a sheet of edge connected
octahedra which is symmetrically bound to two sheets of corner connected
tetrahedra, thereby the name 2:1, as shown in Figure II.1. Unlike talc21
in which the total positive charge of the tetrahedral and octahedral
cations is exactly balanced by the total anion charge of the 020(08)4
framework, vermiculite bears some amount of net negative charges on the
layer that results from the isomorphic substitutions of the cations by
other lower charged cations. For example, the Si.l'+ ion of the
tetrahedral sheet is often replaced by A13+. The charge density of
vermiculite is between 1.2e - 1.8e per unit formula. This net negative
charge of the clay layer is balanced by the gallery cations which are
ugz+ in natural Llano vermiculite. Note that unlike graphite which is
amphoteric, the clay layers have a fixed negative charge, and the

intercalation process in these compounds is equivalent to ion exchange

and does not involve charge transfer between the guest and host species.



Figure II.1

14

Schematic illustration of the tetrahedral and octahedral
sites in a 2:1 layered silicate. Open circles are oxygen,
closed circles are cations in tetrahedral (Si, Al) and
octahedral (Al, Fe, Mg, Li) positions. Hydroxyl groups
(not distinguished from oxygen in the figure) are located
in the second and third basal planes of oxygens.
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The layers of oxygen atoms which terminate the clay layers are
arranged in a Kagome lattice (See Figure II.2) whose hexagonal pockets
form a triangular lattice of gallery sites that are occupied by guest
cations. There are two gallery sites (hexagonal pockets) and almost two
equivalents of charge per 020(03)4 unit cell in vermiculite.21 This
means that when the interlayer M32+ ions of the pristine compound are
replaced by monovalent cations, every hexagonal cavity is occupied. This
stoichiometric relationship forces the triangular lattice defined by the
monovalent exchange cations to be commensurate with the lattice of the
oxygen layers.

If the tetrahedral and octahedral sheets in typical clays were
separated, the sheets would not have identical in-plane oxygen to oxygen
distances. This mismatch in the common oxygen oxygen plane is
accommodated in the 2:1 layer structure by alternating clockwise and
counter-clockwise rotations of adjacent tetrahedra within the
tetrahedral sheets.21 This rotation is illustrated in Figure II.3, where
arrows indicate the direction of rotation. The rotation angle, a, can
depend on the interlayer cation and these effects can show up in the
cation concentration dependence of the basal spacing and of the

torsional mode frequency.



Figure II.2 The Kagome lattice of oxygen atoms (nodes) which form the
basal planes of the t r e
cell (---) and lattice parameter, a = 5. , of the
undistorted lattice are shown.
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TETRAMEDRAL LAYER ROTATION Q
Q@ *Aare cosin/avi-g,)

Figure II.3

Schematic view of the basal plane showing the distortion
due to alternating clockwise and counter-clockwise
21

rotations of adjacent tetrahedra. The rotation angle is
given as a = cos'l(bm/aJZdT) vhere b and d, are the

distances defined in the figure.



18
III. Layer Rigidity and Collective Effects in Vermiculite Pillared by

Mixed-Alkyl Ammonium Ions

I1II.1 Introduction

15 vhich are commonly referred as "clay"

Layered alumino-silicates
are unique among lamellar solids in their ability to be pillared11 by
robust intercalated guest ions which occupy specific lattice sites in
the lamellar lattices. The resultant pillared clay is characterized by
widely spaced host layers that are propped apart by sparsely distributed
guest species whose interlayer separation can be many times their
diameter. The enormous free volume of accessible interior space that is
derived from such an open structure has significant practical
implications in the field of catalysis and sieving.31 In addition the
microporous structure of pillared clays provides a natural arena for the
exploration of 2D percolation32 processes. "Access" is one of the most
important issues in the application of pillared clay as a catalyst. Here
access refers to the general process by which the species to be
catalyzed traverse the host medium to the chemically active catalytic
site. The concepts of 2D percolation theory are central features of the
access phenomenon in clay intercalation compounds. There are four major
factors influencing access in pillared ions. These are: layer rigidity,
gallery ion distribution, size of the pillaring ions, and the
size(shape) of the species to be catalyzed. Among these four factors,
the first three determine the basal spacing which can characterize the
pore size and shape.

Although it is obvious that layer rigidity and pillaring, which is

a special example of the more general phenomena of intercalation, are
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interrelated, the pillaring mechanism has, to date, been poorly

34,35 constitute the

understood. For instance, rigid layer elastic models
only available theory of the composition dependence of the c-axis repeat
distance in intercalated layered solids. It is not surprising that such
models fail when applied to floppy or moderately rigid hosts such as

35 But they are qualitatively

graphite36 and layer dichalcogenides.
inconsistent with data derived from clay hosts to which rigid layer
models should be most applicable. In this thesis we report the first
successful attempt to quantify and parameterize the relation between
pillaring and layer rigidity. To accomplish this we have carried out X-
ray diffraction studies and computer simulations of the x-dependence of
the basal spacing,d(x), of mixed layer vermiculite (Vm) clays AxBl_x-Vm,
0 = x s 1 where A and B are cations (assume A is larger than B) that are
judiciously chosen to elucidate the physics of pillaring. In a previous
study30 ve examined the CsxRbl_x-Vm system for which the alkali
intercalate species are best characterized as "puny" pillars. Here we
focus on the more robust mixed pillar system tetramethyl
N*)_[ccH

ammonium-trimethyl ammonium -vermiculite ; [(CH NH+]1_x-Vm.

34 3)3
Ve find that the pillaring process is a collective phenomena which
introduces an intrinsic nonlinearity in d(x). While our layer rigidity
model is deduced for clay intercalation compounds it is applicable to
other types of intercalated lamellar solids. The extension of this model
to other lamellar solids and a discussion of elastic theory on which it
is based will be given in Chapter IV.

In ternary clay intercalation compounds many interesting physical
properties which include layer rigidity, structure (such as basal

spacing), and the distribution of intercalant ions in the galleries are

all heavily influenced by the guest-guest and guest-host interactions.



20

33 and other layered

Extensive work on graphite intercalation compoundsz'
solids has shown that Raman spectroscopy is an effective tool with which
to study these interactions.

Among the many Raman-active modes in the clay systems we have

? vhich consists of collective

concentrated on the torsional mode2
rotational motion of SiO4 tetrahedra about vertical Si-O bonds (See
Figure III.1l.) in Sizossheet. The torsional mode29 frequency shift which
is very sensitive to subtle in-plane structural distortions of the
vermiculite host layer is a typical example of the dynamic aspects of
layer rigidity. This mode is easier to study than the other phonon modes
because it does not include bond bending or bond stretching in
tetrahedral and octahedral sheets. Moreover in the torsional mode the

29,30

intercalants are silent ("at rest"). Since the gallery cation is at

rest in the torsional mode, the composition dependent frequency shift in
this mode can be attributed mainly to the effective force constant

changes which result from a contact interaction between the gallery ions

30

and the basal plane oxygens that define its hexagonal pocket. The

magnitude of contact (or envelopment) which is affected by host layer
"sagging" and gallery ion size can be determined from the basal spacing
measurements and we can show the correlation between these dynamic and

static effects of layer rigidity.
ITI.2 Experiment and Results

A naturally occurring single crystal Llano Vermiculite with unit

2+

cell formula Mg, g6 [Al vhich is

0.48M"85 521 (515 g7Aly 13) 0y (0H),
determined from independent chemical analysis is used as the starting

material for the synthesis of our mixed alkylammonium ion clays.16
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Figure III.1 C-axis view of the vermiculite structure where the
eigenvector of the torsional mode is depicted by the
arrovs. The gallery cation in the middle is shown with
oxygens (open circle) and tetrahedral cations (dot).
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To synthesize the specimens studied here the Mg2+ gallery cations
vhich link the layers of natural Llano vermiculite were exchanged for
trimethyl ammonium ions using ethylene diamene tetraacetate (EDTA) as a

solvent. Subsequent exposure of the pure [(CH NH+]-Vm to the proper

33

amount of [(CH N+] yields a solid solution pillared

3y

[(CH N+]x[(CH NH+]1_X-Vm. Values of the gallery ion composition

34 3)3
parameter x were determined from the amount of trimethylamine released
upon dispersing known amounts of mixed ion clay products in 1:1 methanol
vater solutions containing 0.05M NaOH.16

Oriented film samples for X-ray diffraction analysis were prepared
by drying approximately 1 ml of a 1wt clay suspension on glass slides.
The drying process has been done in two steps. First samples are dried
in air at room temperature and then at 100°C in an oven. The air-dried
sample exhibits broad (00L) reflections indicative of an interstratified
system containing a range of basal spacings due to the mixed hydration
state. Upon heating to 100°C, the pattern sharpens dramatically and
multiple orders of reflection are observed. An infrared absorption band
at 1630cm'1 indicated the presence of water in the interstratified
sample dried at room temperature. However, this water affirmation band

vas absent in the oven-dried sample.16

The oven-dried sample which was
exposed to the ambient atmosphere for prolonged periods of several days
did not re-adsorb a considerable amount of water. Free standing clay
samples can be obtained by peeling off clay films from the glass
substrate. Some of the X-ray diffraction studies reported here are all
performed on free standing oven dried samples.

The diffraction patterns reported here were recorded using a 12 KW

Rigaku rotating anode X-ray generator, a molybdenum target, and a

computer controlled Huber 430-440-512 four circle diffractometer
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equipped with a vertically bent graphite monochromator. The (004)
reflection of graphite from the MoKa radiation was used as the incident
X-ray beam for the sample.
The x-dependence of the (00L) X-ray diffraction patterns of
[(CH

N+]x[(CH NH+]1_x-Vm is shown in Figure III.2. The starred

34 3)3
reflections in that figure are from a small concentration of impurity
phase whose 14.48A basal spacing is x-independent as evidenced by the
constant position of the (002)* reflection. Self supporting sedimented
films formed on a glass slide exhibited a mosaic22 spread of 5° = Q = 9°
indicating an oriented morphology with the silicate layers parallel to
to the slide surface (Figure III.3 (a)). Although the multiple orders of
reflection present in the patterns of Figure III.2 provide evidence for
a high degree of c-axis crystalline order relative to typical clay
intercalation compounds, the reflections are far from resolution limited
in width and indicate the effects of limited correlation length along
the c-axis. In addition, the evolution in FVHM (Full Width at Half
Maximum) reflects the differences in the solvation properties of alkyl
ammonium ions in the gallery of the host clay. (See discussion given in
section III.3)

Plots of the order, L, versus the momentum transfer Q = ﬁxﬁ sin 6
of the reflections of the pillared clays present in Figure III.2 are

shovn in Figure III.3 (b). To eliminate zero-point calibration errors,

the basal spacing d is determined by making a chi-square, xz,

2 n
d

obtained d = 12.70A and d = 13.34A for x=0.0 and x=.96 respectively.

minimization of Q = ( ) L + B, which is called a Q-plot.30 Ve have
From the fact that we have a linear Q-plot with a well defined slope
vhich corresponds to the basal spacing =13A, we can exclude the presence

of twvo demixed heteroionic structures among three possible demixed ion
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Figure III.2 Room-temperature (00L) x-ray diffraction patterns of
+ +
[(Cﬂs)au ]x[(CH3)3NH ]l_x-Vm excited by Mo Kax radiation.

The starred reflections which do not change position as a
function of x are from an impurity phase.
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Figure III.3 (a) The rocking curve of the (004) reflection from
+ +
[(CHy) N'] gol(CH3);NH ] 54-Vm.
(b) A plot of the Q values versus the order, L, of
+ +
diffraction peaks for [(CHB)4N ]x[(CH3)3NH ]1_x-Vm. The

slope of the straight line give the d spacing for the
b corresponding compound.
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structures as a candidate for our sample. If the sample consisted of
completely phase-separated (AAAA....; BBBB....) compounds one should
have been able to distinguish two sets of peaks which can contribute two
separate straight lines in a Q-plot. The slope of each of these lines
wvould be composition independent with corresponding basal spacings of
12.70A and 13.34A, respectively. If demixed heteroionic clays are
ordered in a heterostructure form analogous to the synthetic super
lattices (ABABAB.... or AAABBAAABBAAABB..., etc.) there should have been
peaks which correspond to a basal spacing larger than 25A. Such peaks
are not observed. The only demixed heteroionic structure that requires
more careful discussion is the randomly interstratified

21,37,38 ) getailed discussion of this

(ABBAABABBBABAB....) compounds.
possibility will be given in the next chapter.

From a series of Q-plots such as shown in Figure III.3 (b), we have
determined the composition dependence of the normalized basal spacing,
dn(x). (or normalized c-axis repeat distance) of

[ (CH N+]x[(CH3)3NH+]l_x-Vm which is shown in Figure III.4 as open

3)4

circles. Here the normalized basal spacing, dn' is defined as

[d(x) - d(0)]
(d(1) - d(0)])

dn(x) = (III.1)
vhere d(x) is the observed basal spacing. Also shown in Figure III.4 for

comparison are corresponding results for CsxRbl_x-Vm (open diamonds).30

Both the Cs-Rb and tetramethyl-trimethyl systems exhibit a sigmoidal
shape rise in dn(x) vith increasing x, but the rapid increase in basal

spacing occurs at "threshold" values of x, = 0.5 and 0.2, respectively.

t

B. R. York and coworkers have reported the qualitative resemblance

of the x-dependent shift in the torsional mode frequency to the

corresponding x-dependence of dn(x) in CsxRbl_x-Vm.30 The same

resemblance has been observed in the [(033)4N+1x[(°3 NH+]1_I-Vm (See

3)3
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The composition dependence of the normalized basal
+ +

3)4N ]x[(CHs)3NH ]l_x-Vm (open circles)

and CsxRbl_x-Vm (open diamonds). The results of a

Hendricks-Teller simulation which will be discussed in

the next section is given as solid squares. The solid

lines are fits to the data using eq. (III.20) (See the

discussion in III.3). The dashed line is a guide to the
eye.

spacing of [(CH
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Figure III.5). Both the Cs-Rb and [(CH,),N]-[(CH,),NH] systems exhibit a

34 3)3
one-mode behavior and a sigmoidal variation of frequency with

30

composition. However comparing with CsxRbl_x-Vm, vhose typical

torsional mode frequency is 106 cm'l. the torsional mode frequency of

1

alkyl ammonium vermiculite shifts to higher energy, 118 cm ~. This shift

suggests that the interactions between alkyl ammonium ions and the basal

oxygens of the host silicate layers are stronger than that of Cs+ and

rbt.

The observed shift of the torsional mode to higher energy with

increasing x can be interpreted qualitatively by invoking the same

30

encapsulation argument suggested by York and coworkers. Note that

although the masses of the large ions (Cs+ and [(CH3)4N+]) are greater

than the masses of smaller ions (Rb+ and [(CH NH+]). the x = 1.0

3)3
end-members have higher torsional mode frequencies than the x = 0.0

end-members. This is consistent with the fact that the intercalants are

29,30 in the torsional mode so that its frequency does not

"at rest"
depend on the intercalant mass, but rather on the effective force

constant which must necessarily be greater for cst and [(CH3)4N+] than

for Rb* and [(CH,), NH'].
For the similar ion sets, {Cs+ and Rb+} or {[(083)4N+] and
[(CH3)3NH+]}. the difference in the effective force constants can be

understood in terms of the encapsulation parameter & where

6 = (T+H)-d (III.2)
is a measure of the degree to which the cation is enveloped by the
bounding oxygen ions. Here d is the d-spacing corresponding to an
interlayer cation of ionic height H, and T is the thickness of the
silicate layer (See Figure III.6). The larger is 6, the tighter is the

encapsulation of the ion and the larger is its effective force constant
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Figure III.5 The composition dependence of the Raman frequency shift
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d - * -
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f
H

§ =(H+T)-d

Figure III.6 Schematic illustration of encapsulation. Part of the
gallery cation which is encapsulated by the bounding

oxygen planes is depicted by broken lines. T is the
thickness of the pristine host layer.
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of interaction with its oxygen neighbors. From the measured values of
basal spacings, the known values of ion sizes, and the known value of
= 2.15A, 6Rb-Vm =
< 0; This

silicate layer thickness T = 9.34A, ve find §
Cs-Vm

2.07A, and 6[(083)4N]-Vm = 0,.20A. Notice that 6[(033)3

NH+]-Vm has no encapsulation (See Table III.l.).

NH]-Vm
means [(CH3)3

The marked difference in the encapsulation between Cs+xRb+1_x-Vm
and alkyl ammonium vermiculite can be attributed to the size effects of
the intercalant ions. In clay intercalation compounds the intercalants
are sitting on the the hexagonal pockets of an oxygen kagome lattice and
as is well known these oxygen planes are capable of performing torsional
distortions.zl The hexagonal pockets have an edge length of 5.34A which
defines the opening after the diameter, 2.67A, of the constitute oxygen
is considered. For the cations which have lateral dimensions that are
less than or comparable to the pocket size these oxygen layers would
have a torsional distortion which increases 8. By increasing & the
quasi-rigid silicate host layers can accomodate cations with minimum
generation of transverse distortions. But if the cations become too
large, the host layer cannot provide sufficient torsional distortiomn to
accomodate them. Hence the basal spacing change from that of the
pristine sample is far less sensitive to the ion size with the smaller
ion set than with the larger ion set. From the first column of Table
4.0A,

IIT1.1 we find Adcs = 1.23A, Ade-Vm = 0.89A, Ad

-Vm ((CH,),N]-Vm

34
and Ad[(CH3)3NH]-Vm = 3,36A vhere Ad is the net basal spacing increase;
Ad = d - T. The last column of Table III.1 shows 6§/H which is a measure
for relative encapsulation. In the case of "puny" pillars such as Cs, Rb

and Na, almost 702 of gallery cation size is enveloped by the bounding
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Table III.1 Intercalant size effect on encapsulation

Intercalants d(A) H(A) D(A) &(A) 8§/H(Z)
[Me N'] 13.34 4.2 4.8 0.20 4.76
[Me,NE') 12.70 3.2 4.0 <0 —

cst 10.57 3.38 3.38 2.15 63.6
Rb' 10.23 2.96 2.96 2.07 69.9
Na¥ (%) 9.75 1.96 1.96 1.55 79.1

* : from D. R. Hines, N. Wada and M. Suzuki, Bull. Am. Phys. Soc. 32,
559 (1987).

d is the basal spacing of H+-V, H and D are the height and diameter of
cation, and the encapsulation parameter is defined as é=(T+H)-d where
T=9.34(A) is the thickness of the silicate layer.

cf. D(Li*)=1.36(A) and D(Mg*?)=1.30(A)
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Kagome oxygen layers but envelopment of the more robust pillars such as
tetramethyl ammonium and trimethyl ammonium is negligible.

This static torsional distortion, not accidently, is identical to
the eigenvector of the torsional interlayer phonon mode. Thus, we expect
this mode in particular to be sensitive to the composition of the
interlayer cations. This expectation is confirmed by Figure III.5 which
shows an x-dependent shift in the frequency of the torsional mode that
qualitatively mimics the corresponding x-dependence of dn(x).

The correlation between the static deformation and the dynamic
torsional mode frequency is more vividly illustrated in Figure III.7, in
vhich ve have plotted the normalized basal spacing, dn' versus the
normalized torsional mode frequency, L to compare data between two
different sets of mixed cation compounds. The normalized Raman torsional

frequency shift, Vo is defined as

< Ju(x) - v(0)]
vn(x) V(1) = v(0)] (III.3)

Figure III.7 shows striking "scaling-like" behavior in which the data
for two very different mixed-ion vermiculite clays, CsxRbl_x-Vm and
[(CH

N]x[(CH NH]l_x-Vm. fall on the same curve. Also the plot

34 33
clearly shows three characteristic regimes whose underlying physics
could be drastically different. In the first regime, v does not change
with dn' in the intermediate regime Vo increases almost linearly with
dn' and in the third regime Vo increase but dn does not change.

This scaling-like behavior and the qualitative resemblance between
dn(x) and vn(x). all lead to one point; much of the physics in
vermiculite intercalation compounds is governed by a common source,
namely host layer rigidity and the interaction between intercalants and

the host layer. This very important idea will be incorporated into our

discussion of an elastic model of layer rigidity in chapter IV.
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Figure III.7 The normalized torsional mode frequency, L plotted
versus normalized basal spacing, dn’ of CsxRbl_x-Vm (open
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The solid line is a fit using the function discussed in
the section III.3.
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III.3 Discussion

It is important to establish that the [(CH N]x[(CH NH]l_x-Vm

34 33
mixed ion system is indeed homogeneous and that the individual type of
guest ion did not segregate into islands in the same gallery or into
separate galleries to form an interstratified structure. Many arguments
wvhich can confirm the homogeniety of the admixture of gallery ioms in
the [(CH

N]x[(CH NH]l_x-Vm system require use of the X-ray structure

34 3)3
factor GOOL vhich contains c-axis structural information.

In general the structure factor for a given (HKL) reflection GHKL
is obtained by the addition of contributions from each of the atoms in
the unit cell.40 In particular the layer structure factor for the (OOL)
reflections of a layered solid like [(CH3)4]I[(CH3)3NH]1_1-Vm can be
written as

= N .) + i .
GOOL(Q) ? anJcos(QZJ) iz anJsin(QZ (III.4)

j)
The summations are taken over all atoms in the unit cell and nj refers
to the number of atoms of type j that are located parallel to the
ab-plane. The distance Zj is the height of an atomic plane above the
plane that has been selected as the origin of the structure. The symbol
fj is the amplitude scattered by the jth atom and Q is the momentum
transfer along the c-axis, while QOOL = 332 L are reciprocal lattice

vectors. The atomic scattering factors include corrections for

temperature according to

o - Vi(@/em?
fj -f e J (111.5)

vhere the Vj's are the Debye-Waller factors.4°

For centrosymmetric
systems iike vermiculite intercalation compounds.21 the sin-terms in eq.

(I1I.4) vanish and wve are left with
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G(Q) = 2 ? njfjcos(QZj) (III.6)

G is then a positive or negative number and the sign can be determined

from a model calculation. The observed integrated intensity I can be

ooL
directly related to the scattering factor GOOL(Q) after corrections for
the unequal contributions from the two polarization components of the X-

ray beam and geometric effects (Lorenz-Polarization factor) are made

- 1/2
Goor = [STpoL/LP] (III1.7)

vhere S is a scaling factor and LP is the combined Lorentz-polarization
factor.

For our scattering configuration shown in Figure III.8 the LP
factor is given by

1+ c0322¢c08229
(1 + c0322¢)sin29

LP(Q) = (III.8)

vhere ¢ is the (004) Bragg angle setting of the graphite monochrcnnat:or:l‘1

and 6 = gin 'l(QA/bn). Using eqs. (III.6) and (III1.7), the measured
integrated intensities can be fitted to yield the structure factors for
the two end-member compounds of mixed alkylammonium ion vermiculite, x =
0.0 and x = 0.96. In Figure III.9 the calculated relative intensities
(solid lines) are shown with the experimentally measured relative
intensities (open circles and squares) for the two end-member compounds.
The fits are very good and the tesidual42 vhich is the standard measure
used to assess the agreement,

) EllGObsl _ challl

R
2|G°b8|

(III.9)

is R = 0.05 for x = 0.0 and R = 0.06 for x = 0.96 respectively. In this

fitting, the silicate host layer chemical composition was fixed and the
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Figure III.8 A schematic diagram for a (00L) X-ray scan where M is a
graphite monochromator, S is the sample, and D is the

detector. fc'o and fc"are incoming and outgoing X-ray
vavevectors, respectively.
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[(CH;)sNH]-Vm

[(CHg)N]-Vm

Q (&

A plot of the calculated and measured relative integrated
intensities of the X-ray reflections from [(CH3)3NH]-Vm

and [(CH3)aN]-Vm. The open circles and open squares
represent experimentally measured (00L) integrated
intensities of [(CH,),NH']-Vam and [(CH,) N']-Vam,

respectively. The calculated curves are obtained from a
least square fit to the experimental data using egqs.
(II1.6) and (III.7) of the text.
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atomic plane height, Zj’ and Debye-VWaller factor Vj vere allowed to
change.
For the intercalants, instead of using a molecular form factor we
simply summed the atomic form factors of the constituents and used a
single Debye-Waller factor. The best fit of integrated intensity is

obtained when the gallery occupation number (n[(CH N} or n[(CH NH])

34 33
is about 1.2 and the Debye-Waller factors for the intercalants are
respectively W = 30 for x = 0.0 and W = 59 for x = 0.96. Note that the
gallery occupation number of 1.2 is consistent with the known
vermiculite layer charge density.21 even though an independent layer
charge density determination yields a higher charge density. The large
Debye-Valler factor for organic intercalants in clay intercalation
compounds is not uncommon.43 Alkyl ammonium ions in vermiculite
intercalation compounds are known to exhibit a fast spinning top like
motion from inelastic neutron scattering.aa Hence the Debye-Valler
factor wvhich depends on atomic displacements about their equilibrium
positions will be larger for the alkyl ammonium ions.

In addition to the above mentioned scattering factor and
Lorentz-polarization factor, the one dimensional diffraction profile of
a mixed alkylammonium ion vermiculite system also depends on the
interference function which is a broadening factor that accounts for

finite size effects and stacking irregulatities.21

1(Q) = S|G(Q) |2LP(Q)#(Q) (I1I.10)

2

wvhere I is the intensity, S is a scale factor, |G|~ is the squared

scattering factor from the unit cell, and ¢ is an interference function.
For the solid solution type mixed intercalants the interference function

is given by the Bragg expression45
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sinnggdzzz 2 2 2
®(Q) = 3 = IN“exp[-(Q-Q;)“/(T /41n2)] (III.11)
sin”(Qd/2)
vhere I' can be determined from the full width of a (00L) reflection
through the relation4°

' =4 x 1.4 /Lc (III.12)

here Lc = Nd is the correlation length along the c-axis.
The first quantitative mathematical treatment of diffraction
processes by interstratified systems was carried out by Hendricks and

Teller.46 Random interstratification is a process in which two species A
21

and B of basal spacing dA and dB are randomly distributed. The
interference function for random interstratification is given by
2
2P,P_sin“(Q(d,-d,)/2)
*Q) = 4 B_A (I11.13)

l-ZPAPBsinZ(Q(dB-dA)/2)-PAcos(QdA)-PBcos(QdB)

vhere PA and PB refer to the proportion of species A and B of basal
spacing dA and dB respectively, such that PA+ PB =1.

To investigate possible interstratification we have carried out a
series of computer simulations of the X-ray diffraction patterns of the
mixed alkylammonium ion vermiculite system using both of the above
mentioned interference functions and compared them with the
corresponding experimental (0OL) X-ray diffraction patterns. For the
Bragg interference function which is suitable for a solid solution
arrangement of ions for all galleries, a single basal spacing d(x)
measured in the experiment using the Q-plot is used. For the Hendricks-
Teller (HT) interference function, the experimentally measured
end-member basal spacings d(0) and d(1) are used. Following MacEwan's

suggestion21 the "effective" layer scattering factor, given by

P P
2 A B.2
|Gleff = [|GA| IGB| ] (III.14)
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is used with the end-member layer scattering factors determined from the
fitting of the integrated intensity of the experimental X-ray pattern.
Lorentz-polarization corrections were also included. For the Bragg
reflections, a finite sized sample containing 15 clay layers was
assumed. This contributed to the broadening of the calculated Bragg
reflections. For the HT model, an infinite number of layers were assumed
and the broadening of the reflections is intrinsic to the model itself
(i.e. the random demixing of ions into galleries of two different
heights). In Figure III.10 (a) we compare the observed (00L) reflections
with the computer generated Bragg X-ray reflections for x = 0.63. As can
be seen from that figure reasonable agreement is obtained for both the
peak positions and relative intensities. The lower panel illustrates the
comparison between the same observed reflections, x = 0.63, and the
simulated HT X-ray reflections. Clearly, the HT simulations yields an
inferior result. This result strongly suggests a solid solution
arrangement of the ions in mixed alkylammonium ion vermiculite and in
vhich all galleries have the same height.

In Figure II1I.11 a series of simulated HT reflections are shown. Ve
have treated the computer generated (O00L) X-ray diffraction pattern
exactly the same way as we have treated the experimental pattern to
determine the x-dependent basal spacing variation. Unlike the
experimental pattern which exhibits a high degree of linearity in its
corresponding Q-plot, the Q-plot derived from the HT simulation exhibits
a periodic oscillation around the best linear least square fit. The x-
dependent basal spacing of the HT simulation is illustrated in Figure
I1II.4. In comparison with the experimental x-dependent basal spacing of
[(CH3)4N+]X[(CH3)3NH+]1_X. it is not at all similar. For example its

characteristic symmetric step-like change about x = 0.5 with over- (dn >
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Figure III.10 A comparison of the observed (00L) reflections with
computer generated reflections (solid lines) for

+ +
[(CH3)4N ].63[(C33)3NH ].37-Vm. (a) The (00L) reflections

are generated using a Bragg function for a 15-layer
stack. (b) The Hendricks-Teller function for infinite
number of layers is used to calculate the (O0OL)
reflections.
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1.0) and under-shooting (dn<0.0) regions are not observed in the
experimental basal spacing variations. Also unlike the experimental X-
ray patterns, the FWHM of the (004) peaks are wider in the intermediate
x range and narrow as x approaches the x = 0.0 or x = 1.0 limits. This
is further strong evidence against interstratification.

Yet additional evidence against interstratification can be obtained
using the so called Patterson function which is the direct Fourier
transformation method of the observed X-ray pattern developed by A. L.

40,47 The Patterson function which is a Fourier series whose

Patterson.
coefficients are |G|2 is a correlation function giving the position of
every atom relative to every other atom, but not relative to a fixed
origin. The quantity |G|2 vhich is a squared structure factor is
directly obtainable from the measured integrated intensities without
knowledge of the phase. The peaks in the patterson function do not
represent the positions of atoms, but are the terminal points of a set
of vectors, each of which represents the displacement of some atom from
some other atom. As a variation of the Patterson function, HacEvan48'49

defined the function W(R) as the probability of finding a given layer to

layer distance R in a crystal space. The function is given by

I(Qnn )
V(R) = % 0oL 5 o5 (QuoR) (I1I.15)

LP(Qqop,) 1€(Qpqy,) |

vhere the inter-layer distance R is systematically varied typically from
OA to 50A and the sum is taken over all diffraction peaks. By dividing I
by LP and |G|2 ve can extract the effects of the Lorentz-polarization
factor, and reduce the layer transforms to unity. The result is,
ideally, the interference function ¢, which is the quantity of interest.
Summation over all the peaks produces a Fourier series, the components

of which are waves of amplitude I/(LP|G|2), and wvhose phase angles with
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respect to R = 0 are all zero. For the layer scattering factor, the
effective scattering factor defined in eq. (III.14) is used. The
function W(R) has peaks at values of R that denote the relative
abundance W(R) of different inter-layer distances, R. Omission of the
(000) diffraction,which is equal to the total number of electrons per

21 in the transform,

unit cell, causes the appearance of negative values
and complicates a quantitative analysis. However qualitatively this
approach still represents a good way to identify interstratification.
The Patterson functions of interstratified compounds have quite
distinctive features. For example interstratified
[(CH3)4N+]0.63[(CHB)3NH+]O.37-Vm would shov peaks at R = 12.70A, R =
13.34A, R = 25.40A, R = 26.04A, R = 26.68A, etc. with relative heights
vhich are roughly proportional to 0.63, 0.37, 0.14, 0.23, 0.39, etc,
respectively. But for all values of x investigated, only a single vector
distribution corresponding to a unique d(x) value was observed, and
neither peaks corresponding to two different end-member basal spacings
nor the sum of these d values were observed. In Figure II1I.12, the
Patterson functions of [(CH

Ny r(cH,) ,NEY]. _-Vm are shown for x =
x l-x

34 33
0.96, x = 0.63, x = 0.24 and x = 0.0. None of these shows the signs of
interstratification discussed above and all the peaks are at a distance
that is an integer multiple of d(x). Thus interstratification of two
kinds of layers with basal spacings of 13.34A and 12.70A is precluded.
Once interstratification is precluded, the observed line width of
the (00L) reflections can be attributed to the finite correlation length
along the c-axis. From a Gaussian fit to the observed reflections (see
eq. (III.11)), we can determine the FWHM I'. The x-dependent FWHM's

obtained using the (004) reflections are shown in Figure III.13 (a). In

determining the correlation length LC experimentally one must account
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W(R)

W(R)
e

W(R)
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Figure III.12 A Patterson Synthesis. Only a single vector distribution
corresponding to a unique d(x) value was observed. Thus,
segregation of the two ions into separate galleries with
heights d, = 13.34A and dg = 12.70A can be precluded.
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for the instrumental contribution to the observed width. We do this by

making the gaussian deconvolution50
2 2 2
r- - l.'obser:ved - I‘inst‘.rument: (I11.16)
vhere I, is measured using the (220) reflection of Si as a

instrument
standard. The correlation length LC determined after applying the

correction given by eq. (III.16) is illustrated as a function of x in
Figure III.13 (b). Note the dramatic increase of correlation length with
increasing x.

This x-dependent correlation length can be understood in terms of
the differences in the solvation properties of the trimethyl ammonium
and tetramethyl ammonium cations in the galleries of the host clay which

provided the key to the successful synthesis of the mixed ion

16

compounds. The [(CH NH+] and [(CH3)4N+] exchange forms of the clay

33
exhibit very different swelling behavior when water enters the

intercrystalline gallery regions. In the [(CH NH+] exchange form of

33
the clay swelling is extensive and can be observed through gel formation

at a concentration of 10wt clay. In contrast the swelling in the

[(CH N+] exchange form of the clay is negligible due to the lack of

3y

hydration within the clay galleries. Even the wetting of [(CH N+]-Vm

34
with liquid water does not produce any basal spacing change. The

extensive swelling and associated layer exfoliation may result in the

further reduction of the clay platelet's size in [(CH NH+]-rich clay.

3)3

Because the exchange rates of [(CH N+] ions are very slow with or

34
without EDTA, mixed ion clays are synthesized by adding controlled

amounts of the larger size [(CH N+] ions to a [(CH3)3NH+]-Vm

3)4

suspension. The addition of [(CH N+] ions resulted in the immediate

34
flocculation of the suspension and the concurrent replacement of some

[(CH3)3NH+] ions by the desired [(CH3)4N+] ions. Flocculation is so
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rapid that the segregation of the exchange cations into separate
galleries is impeded and the mixed ions become entrapped in the same
gallery. Pinnav31316 has noted that in this synthesis procedure the ion
exchange reaction is under kinetic control rather than thermodynamic
control.

To understand the physical origin of the observed dn(x), we have
simulated a model monolayer system with finite transverse layer
rigidity. For simplicity we assumed that the intercalate ions are hard
spheres. Starting from a twvo-dimensional triangular lattice of lattice

constant a, representing a single gallery with each lattice site

0
occupied by a B ion of height dB’ ve randomly replace the B ions with A
ions of height dA > dB’ The height of a cell within a healing length A,
vhich is defined as the distance required to relax the local deformation

of the A ion is also increased to d,. A second A ion in this region does

A
not affect already expanded cells but expands unexpanded cells within A
of its location. The process of random replacement of the B ions
continues to saturation. If we define a(x) as the fraction of cells with
height dA' then dn(x) = a(x). The simulation results for dn(x) are shown
in Figure III.14 for several different healing lengths. Clearly, in the
floppy-layer limit A = 0, a Vegard's-law behavior obtains whereas the

1

initial slope [dn(x)] approaches infinity as A approaches infinity.

x=0
As can be seen from Figure III.14, there is no percolation threshold
even for finite A because dn(x) depends upon all of the large ions, not
only on those belonging to the infinite percolation cluster. Note that
the nonlineality in dn(x) for A > 0 is a collective effect associated

with the individual interaction between the larger ions through their

distortion fields.
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Monolayer triangular lattice computer simulations (dotted
lines) of the composition dependence of the normalized
basal spacing of a ternary intercalation compound for
several values of the healing length, A, and rigidity
parameter, p. The solid lines are from eq. (III.19) of
the text with (1) p =1, A =0; (2) p=7, A = ays (3) p

=13, A = J3a°; and (4) p = @, A = », Inset: The puckered
region of a triangular lattice with A = a,-. Here the

number of expanded sites is p = Z + 1 = 7 wvhere Z is the
number of nearest neighbors.
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The sublinear x dependence and the rapid rise in dn(x) near x, is
outside the monolayer model. Several mechanisms including the relative
magnitude of host-guest and host-host interactions, interlayer
correlations, and the presence of the defect (d) sites can produce
sublinear behavior in dn(x) but only the latter two can generate
threshold effects. Since the ions of interest here are relatively
incompressible we treat the guest species as hard spheres as noted
above. The interlayer correlation“ mechanism is one in which large ions
locally pucker the bounding layers so that at low x they adopt staggered
lateral positions, i.e. no line joining the centers of any pair of large
ions in adjacent galleries is perpendicular to the silicate layer. This
mechanism is relevant to host materials with low transverse layer
rigidity such as graphite while the defect-site mechanism is more
appropriate to the more rigid layers of clays.

The source of defect sites in our specimens is shown in Figure

I11.15 which is an electron micrograph of (CH NH+-Vm acquired with a

33
Vacuum Generators model HB501 field-emission scanning transmission
electron microscope. The region imaged consists of homogeneously
intercalated areas (g sites) which are bounded laterally by layer edge
dislocations and are capped by free surfaces (d-sites) that bind guest
species without inducing c-axis expansion. Since the clay grains have
typical basal dimensions of a few micrometers, it is clear from the
scale of the micrograph that these free surfaces can represent a
significant fraction of the total surface available to guest species.
Additional minor sources of d sites are the microcracks and folds that
are visible in the micrograph.

We have explored the d-site mechanism by constructing a two site

model in which the basal spacing is assumed to depend upon the gallery
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Figure III.15 A bright-field scanning-tunneling electron micrograph of
[(CH3)3NH+]-Vm acquired at T = -135°C with the electron

beam normal to the layers. Note the free surface between
layer edge dislocations (outline-headed arrows), the
folded region (lozenges), and the microcrack (open headed
arrows). The small dotted grid is an instrumental
artifact.
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A-ion concentration xg vhich itself is a function of the total A-ion
concentration x. The definitions of x and xg are x = ( N: + Ns Yy / «( N8

+ Nd ) and x_ = N: / N8 vhere NA and N are number of A-ions in

g d(g) d(g)
the d(g)-sites and number of total ions in the d(g)-sites respectively.
For simplicity we assume only one type of d-site. The functional
dependence of x8 on x is determined by two parameters, f and A/kT, where
f = Nd/Ng is the fraction of ions in d-sites relative to those in
g-sites and A is the effective binding-energy difference between these
sites, the d-sites have a lower binding energy. For example at T = 0, x

g

= 0 for x < x = f/(1+4f) because wve assumed preferential exchange of

A-ions with B-ions in defect sites and xg-(1+f)x—f for x > x, . A
statistical mechanics calculation gives

xg = 1/(z+1) (II1.17)

x = [1/(1+f)]x8+[f/(l+f)]{l/[zexp(-A/kT)+l]} (I1I.18)
vhere z = exp[(eg-p)/kT] is related to the fugacity and the binding
energy eg of the g-sites. Equation (III.17) and (III.18) can be solved
to obtain xg = ¢(x,f,A/kT) for different values of f and A/kT. 1In
Figure III.16 the gallery concentration xg is plotted versus x for {p =
7.0 ; £f = 2.2} and {p = 8.0 ; £f = 0.5), respectively. The threshold is
quite pronounced at low temperature and x8 becomes more and more linear
with respect to x as the temperature is increased. The temperature
dependence of xgversus x may induce a temperature dependent basal

spacing variation. Physically then for x < x the A ions first

t'
preferentially displace the B ions from the d-sites. This reduces the

gallery A-ion concentration for a given x and yields a sublinear

increase in dn(x). For x > x_ additionally ingested A ions enter the

t

g-sites. The result is a rapid increase in dn(x).
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Using methods developed by Xia and Thorpe51 one can obtain the

following analytic solution for our monolayer simulation:

=]~ - p = =
dn(xg) 1-(1 xg) , 0 xg 1 (III.19)

vhere p is a layer rigidity parameter. This equation fits the simulation
data extremely well as shown by the dotted lines in Figure III.1l4. For
our lattice-gas simulation, p = Z+1 where Z is the number of neighboring
sites that are puckered by the insertion of an isolated A ion (see
insert Figure III.14). In the continuum limit (A >> T, vhere r, is a
radius of intercalant A), p is proportional to (A/rA)z. In equation
(II1.19), the (l-xg)p term means that a certain site can have a height
dB only when it and also its p neighboring sites are occupied by B-ions.
Hence the layer rigidity parameter p is determined by both the healing
length A and the connectivity of the gallery sites. For example when A
is the same with the lattice parameter 85, P = 7 in a triangular lattice
but in a honeycomb lattice p=4. Using eq. (III.19) and xg = ¢(x,f,A/kT),
we obtain

d_(x) = 1-{1-¢(x,£,A/kT)}P (I1I.20)
Note that the slope of dn(x) at x 2 x, is governed by a combination of p
and A/kT while x, is determined primarily by £ for large A/kT.

Ve have used eq. (III.20) to obtain a nonlinear least square fits
to the data of Figure III.4. The parameter values which give very good
fits (solid lines in Figure III.4) for the two clay intercalation
NH+]1_x-Vm and CsxRbl_x-Vm are {p=8.0, £=0.5,

systems [(CH,) ,N']_[(CH

34 33
A/kT=4.3} and {p=7.0, £f=2.2, A/kT=4.1}, respectively. The smaller value
of the rigidity parameter in the Cs-Rb system is consistent with the
fact that alkali ions in clay intercalation compounds can have a large
encapsulation (See Table III.1). The encapsulation of the intercalants

by the host silicate layers causes a reduction of the apparent healing
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length. But the alkyl ammonium ions are much too large and the
encapsulation effect is very small. Thus one expects the {Cs-Rb}-Vm
system to exhibit a lower value of the rigidity parameter p. The £
values deduced for the two systems also reveal interesting properties of
the clay structure. For singly ionized guest species Nj - aAj vhere o is
the layer charge density and Aj is the surface area associated with j

sites, j = d,g. If A = A 6 + Ag then A, = [f/(1+f)]A and

d
= 2. Thus of the surface which

d

(A

a)cs-rb/ (A4 [(cH N]-[(CH,) ,NH]

3y
provides d-sites for small Cs-Rb ions only about half (the portion not
adjacent to edge dislocations, or derived microcracks or folds) can also
NE' ions without inducing basal

accomodate the robust (CH +-(CH

34N 3)3
spacing expansion. Finally, the difference in the A/kT values for the
tvo pairs indicates that the d sites are more attractive for the larger
ions. This makes physical sense because the more spatially demanding
ions prefer the less constrained defect environment to the more
restrictive gallery. We have assumed that the site binding energies in
our model are independent of concentration. This assumption might be
relaxed if the binding energy of the g-sites drops once the galleries
are initially expanded. The resultant transfer of ions from d to g sites
would then contribute to the rapid increases in dn(x) for x 2 x, .

The layer rigidity model which we have developed here should be
directly applicable to other lamellar solids such as zirconium
phosphates and layered niobates which have relatively rigid layers. It
can also give insight into the behavior of intercalation compounds whose

3

host layers have low or moderate rigidity. For example Lixcs 6 and LixTi

8235 exhibit no threshold in dn(x). and therefore contain few if any

defect sites.
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Now let us consider again the Raman active torsional mode frequency
data of Figure III.5. The x-dependence of Raman torsional mode gives
additional strong evidence against interstratification. If we have a
system with segregated gallery ions, instead of a continuous frequency
shift depicted in Figure III.5 we might observe only distinctive
frequencies which correspond to the two end-members, {Cs-Vm and Rb-Vm}
or {[(CH

N]-Vm and [(CH,),NH]-Vm}.

34 3’3
For a mixed ion system, the x-dependence of the guest-host
interaction is of much interest. Usually a vibrational mode can be

2 and

treated as a harmonic oscillation about the equilibrium position
the structure of the solid (e.g. the basal spacing) determines the
static equilibrium conditions of the interaction between constituents.
Hence a study of the torsional mode using a harmonic expansion around
the potential minimum is especially attractive because we already know
the composition dependence of the basal spacing. The following
calculation has been done using the virtual crystal approximation in
wvhich we have neglected the actual cation distribution and have instead
assumed a uniform average basal spacing with an average guest-host
interaction. In addition we have assumed that in the torsional modes the
8104 tetrahedra are undistorted. We have considered only nearest

neighbor interactions with a Lennard-Jones type two-body potential

Ay By
Ui(t) = - F + -1-—12 (III.21)

vhere i = 0-0, Si-0, and M-O (intercalant-oxygen).

In Figure III.17 we showed the configuration of the clay host and
guest ions viewed in the direction (a) along and (b) perpendicular to
the c-axis. The oxygen atom labeled as "0" has ten nearest neighbors and

an equilibrium potential energy given by
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(a) :
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(b) I- s42l .34 1

Qxygen Guest len

Figure III.17 The configuration of the host layer and guest ions viewed
in the direction (a) along and (b) perpendicular to the
c-axis. The arrows indicates the displacements in the
torsional mode.
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0
Veq - Uo_o(l) + U0_0(3) + Uo_o(3) + UO_O(A) + USi-O(S)

+ Usi_o(G) + UM-O(7) + UM-O(B) + UO_O(Q) + UO_O(IO) (III.22)
vhere the integers represent equilibrium positions. In the torsional
mode indicated by the arrows in Figure III.17 (a) there is a rotation of
the Sioa tetrahedra about the Si-0 axis such that the atoms are
displaced from their equilibrium positions by the vector ﬁ. The linear
combination of these vectors shown in Figure III.17 (a) is then the
eigenvector of the torsional mode. For this mode the potential energy is
given by

0 .0
Vs Voot AUy o(7,-m) + AUy (8,1)

2 .2 2,2
0 (n2-7b3) h2-13b 2 4
=V. +[6 - 12 B In” + 0(n")
eq Avoo PO M-0 2,28
0

- Vo * Zkn® + o(n*) (III.23)
vhere h = (d - 6.42)/2 (A) is the distance along the c-axis between the
center of the guest ion and the basal plane and b = 2.67 A is one of the
inplane lattice parameters (See Figure III.17). With the assumption that

the intercalant species reside at the center of the hexagonal pocket and

v
from 5ﬁld = 0 we find
exp

2,,2.3
Bu_o = AH-O(b +h©)7 /2 (III.24)
Then

1, 2 4

2
b 2 4
= 36A, . ———— < + 0(N ) (III.25)
M-0 (12,42,5

Hence the torsional mode frequency v is given as

7202 172, “-0 172

)
4n2mc2 (b2+h2)5

v o= (III.26)

or



60
2 2 §b2+h225 2

AM = 4 mC v (III.27)

-0 2

72b
vhere m is the mass of the oxygen atom and c is the speed of light. In
Figure III.18 the normalized values of AM-O calculated from eq. (III.27)
using the experimentally measured torsional frequencies v and basal
spacings d are plotted as a function of xg for two vermiculite

intercalation compounds. The variation of the normalized A is quite

M-0
similar to the variation of dn (See Figure III.14). Thus we can fit the
normalized AH-O vith the same functional form; 1-(1-xg)q, even though
the exponents q are different from the exponent obtained from fits to
dn(xg). From such a fitting we have obtained q = 5.38 for the Cs-Rb
system (open squares) and q = 5.39 for the alkylammonium system (open
circles). The solid line in Figure III.7 is a fit to the experimental
data using q = 5.39 for CsxRbl_x-Vm vhich is the more appropriate system
for our virtual crystal approximation because of its small size and
small polarizability differences in the questions. The close
relationship between the composition dependence of the basal spacing and
of the gallery ion-oxygen interaction coefficient (AM-O) is very
interesting and clearly indicates the importance of the guest-host

interaction in determination of layer rigidity in the intercalated

layered compounds.
III.4 Summary and Concluding Remarks

In this chapter we have discussed the cation distribution state of
new synthetic vermiculite intercalation compounds. From much evidence
including the continuous x-dependent shift of the torsional mode, a

Patterson synthesis, the evolution of the FWHM, the sigmoidal shape of
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squares) and [(CH3)4N+]x[(CHS)BNH+]1-:'V" (open circles),

calculated from eq. (III.27) using the experimentally
measured torsional mode frequencies and basal spacings,
are plotted versus xg. The solid lines are fits to the
data using the function 1 - (1 - xg)q with q = 5.38

(upper panel) and 5.39 (lower panel), respectively.
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the basal spacing variation, the Q-plot, and a direct comparison of a
computer generated Hendricks-Teller diffraction pattern with
experimental results, we have excluded the possibility of
interstratification. All available evidence supports the solid solution
type of mixed ion distribution in these new compounds.

From the pill-box model computer simulation we have shown
step-like, superlinear, and Vegard's-law type basal spacing variation
for the different limits of healing length A which is the distance
required to relax a local deformation. With the introduction of a
rigidity parameter p we can quantify layer rigidity in terms of the
experimentally measured basal spacing for many different layered
compounds. The application of this layer rigidity model to nonclay
layered compounds will be discussed in the next chapter.

Because of the fixed layer charge density of the silicate layer in
clay intercalation compounds and their high transverse layer rigidity we
suggest that defect sites are the source of sigmoidally shaped basal
spacing change exhibited by the guest species (in vermiculite) discussed
here. Using field emission scanning transmission electron microscopy we
have shown direct evidence of the presence of such defect sites. From
the two site model we have calculated xg. the concentration of A-ions
contributing to the expansion of the basal spacing, as a function of x,f
and A/kT

Finally under the virtual crystal approximation, we have calculated

the guest ion-oxygen interaction coefficients, A in the

M-0'
Lennard-Jones type potential. The similar xg dependence of the
normalized values Au_o(xg) and dn(xg) suggest the importance of the
gallery ion-host interaction in dynamic and static properties of

intercalated layered compounds.
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IV. Elastic Effects in Intercalated Layered Compounds.

IV.1. Introduction

In layered solids many physical properties are determined by the
rigidity of the pristine layers. One typical example is a
composition-dependent basal spacing variation. All crystalline solid

solutions exhibit a composition-dependent unit cell volume which

generally increases with the concentration of the large constituent.55

Vhen this variation is linear the system is said to obey Vegard's lav.56

37 ghich

Most solid solutions exhibit a more complex nonlinear behavior
has been accounted for empirically by augmenting Vegard's law with a
polynomial that represents a composition-dependent mixing volume. In
order to gain a more fundamental understanding of the origin of

35,36,61

non-vegard's law behavior several authors have found it

advantageous to address systems which contain crystalline solid
solutions of reduced dimensionality. For instance, there are a variety

of ternary layered intercalation compounds of the form Al-x Bx L, 0=
g8 8

xgs 1, where B is the larger ion and xg defines the composition of the
ions which actually reside in the gallery and contribute to c-axis
expansion. The guest species, A and B form a 2D commensurate but
compositionally disordered solid solution between the host layers,

58,59,60

L Note that A can represent a vacancy (i.e. A = Va). Because of

the highly anisotropic structural and physical properties of ternary

58,59,60 the dominant change in their

layered intercalation compounds,
cell volume with intercalate composition results from c-axis expansion.
The one dimensional form of Vegard's law is then

c(xg) = (1 - xg)cA + xch (;V.l)
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where c, Cps and cg are the c-axis repeat distances of the mixed and
end-member compounds. But most ternary intercalation compounds exhibit a

35,36,58,59,60 pyen though ternary

superlinear (concave downward) c(xg).
layered intercalation compounds represent the most basic and simplified
(e.g. 1D) systems for studying composition-driven lattice expansion,
attempts to account for their nonlinear response have to date been
markedly unsuccessful. Using the "Layer Rigidity l(odel"27 vhich has been
developed in section III.3, we rectify this deficiency and present in
this chapter a one-parameter model which accounts for the c-axis
expansion of a broad range of ternary layered intercalation compounds. A
healing length A and a rigidity parameter p are used to quantify and
parameterize layer rigidity.

19,61

In Safran’'s model of staging, competition between repulsive

interplanar interactions and attractive intraplanar interactions is

62,63 attributed the

responsible for staging. Safran and Hamann
long-range repulsive interaction in graphite intercalation compounds to
the effective electrostatic repulsion between intercalant layers with
anomalously long-range screening. In contrast to Safran and Hamann, Ohno
and Kamimur364 claimed that this interaction is not so strong because of
the extremely inhomogeneous c-axis charge distribution. They also
suggested the dominance of the stronger but short-ranged elastic
repulsion. The elastic deformation of the host layer by the intercalant
atoms is one source of the attractive intralayer interaction in layered
intercalation compounds. To model these interactions with elastic

20,65,66  eated the intercalant atoms as pairs of

origin, many authors
elastic dipoles which separate the layers. Since each one generates host

layer deformation, it is favorable for two dipoles in the same gallery
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to be adjacent to each other, implying an attractive intralayer
interaction.

Safran19 took the simplest form for the attractive intralayer
interaction as a quadratic function of the in-plane density; U(o) = -
Uoo2 vhere Uo > 0 is an effective two-body interaction obtained in the
mean-field approximation. The model Hamiltonian becomes, after in-plane

averaging,

H=-pZo, -3U,50°+2 3;V1494°; (IV.2)
vhere i1 is a layer index, Vij - Voli-jl'a > 0 is the average interlayer
interaction energy, u is the chemical potential and o is the fractional
occupation of the ith layer, which may take continuous values between 0
and 1. Then one of the main results of Safran's model is the prediction
of a limiting temperature Tm above which only stage 1 is stable. Figure
IV.1 shows Safran's phase diagram plotted as a function of temperature
and concentration. Note that this phase diagram is universal independent
of host because the temperature is scaled by U0 vhich surely depends on
the host properties.19’36

Though Safran's phase diagram was successful in predicting many
features confirmed by experiment, it also showed some features including
the symmetry about x = 1/2 due to the quadratic form for the in-plane
interaction which were not observed in experiments.36 Several attempts
have been made to modify Safran's original lattice-gas model in order to
make it more realistic and physically plausible. For example, Millman

67,68,69 introduced the concentration independent cleavage

energy y for separating the host layers and used U(o) = -eZa2 + 79 where

and Kirczenow

©=1if 0 > 0 and = 0 for 0o = 0, to account for the nonlinear elastic

effects which are important in the intraplanar energy. The modified form

of U(o) used by Divincenzo and Koch70 is U(o) = -anz + AU(o) where
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AU(o) is the "corrugation energy" term. Even though these Hamiltonian's
produced more realistic phase diagrams, surprisingly they have not been
used to account for other physical properties of intercalated layer
solids.
Another modification of the lattice gas model was made by Dahn and

35 includes nearest neighbor

coworkers. The model used by Dahn et al
interactions between intercalant atoms in the same layer and
interactions between atoms intercalated in the first and second
neighboring layers together with a site energy Eo and the elastic
energy. In calculating the elastic energy contribution, Dahn and
coworkers treated the host layers as infinitely rigid undeformable
planes held together by harmonic springs. In Figure IV.2 the springs of
spring constant k with equilibrium length CL and spring constant K with
equilibrium length C0 represent, respectively, the guest-host and the
host-host interactions. Even though they constructed a reasonable phase
diagram in the T-x plane (where x is the intercalant concentration) and
vere able to explain the voltage-charge relation, V(x), and inverse
derivative of the voltage-charge relation, -9x/8dV, of Li/LixTiS2
electrochemical cells from the Monte Carlo simulations of their
Hamiltonian, their model could not quantitatively account for the full
x-dependence of the c-axis repeat distance of any intercalated layered
solid.

In an effort to improve upon the rigid layer model Jin and
Hahantiab introduced a model with nondeformable layers but with
additional springs which represented the finite compressibility of the
guest species. Their model addressed: (a) the different conditions under

vhich one can see Vegard's-law behavior, (b) the different

compressibility ratios of the guest species and the effect on the
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Figure IV.2 The rigid layer model used by Dahn et al. The host layers
are treated as undeformable and the guest-host and
host-host interactions are represented by the harmonic
springs of strength k with length CL and strength K with

length CO' respectively.
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composition dependence of the interlayer spacing, and (c) the interlayer
correlations. Nevertheless, even though this model employed several
parameters, its success was marginal when it was applied to the dual
alkali graphite intercalation compounds of the type nl-xu.xce for which
interlayer correlation should be most pronounced in dn(x). (Ve do not
address the dual-alkali graphite intercalation compounds because the
gallery composition of these materials has not yet been established and
the actual form of dn(xg) is therefore unknown.] Moreover,their
multiparameter model does not provide a satisfactory fit to the data of
Figure 1IV.3.

Another way to model the elastic interaction is by the local
deformation of the host layers. With finite layer rigidity, one can
imagine that when intercalants are introduced, the gallery height
between two host layers will be different from the pristimne host
material because the host layers are locally deformed at an occupied
site. The actual composition dependence of the c-axis repeat distance
will determine how these deformation is relaxed away from the locally
expanded sites. This is our Layer Rigidity Hodel.27

The essential feature of the layer rigidity model is the
deformability of the host layers which in its discrete version is
characterized by a rigidity parameter, p. Here we also introduce a
continuum version which is characterized by a healing length, A and we
derive a relation between p and A which provides an independent test of
the model when the host elastic constants or phonon dispersions are
known. In continuum theory, the intralayer (or inplane) interaction
energy between intercalants, Uo. can be calculated for the commensurate
intercalant system in terms of rigidity constants and the force that

generates layer deformation using mean-field theory. The dependence of
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the intralayer interaction upon the layer rigidity is a key to the
understanding of the different staging behavior among the three
different class of layered solids. Also its dependence on the
deformation generating force can lead us to understand the trends with

intercalant size in a given host.

IV.2 Composition dependent C-axis Expansion

In Figure IV.3 we show the measured composition dependence of the

36 35
normalized basal spacing, dn(xg)' for val-ngixSCG' val-ngingiSZ’

27,30 Ghich represent, respectively, the class I, II and

and Rb Cs_ Vm
l-x x
g g

III layered compounds. All three ternary layered intercalation compounds
exhibit a superlinear non-Vegard's law behavior. Although these three
classes of ternary intercalated layered compounds exhibit a broad range
of physical properties, the graphite, Tis2 and Vermiculite hosts possess

a common structural feature: their guest sites can form a 2D triangular

lattice.
In their effort to explain the c-axis expansion of Val_x Lix TiS2
8 g
employing an undeformable layer with two kinds of spring Dahn and
coworkers35 obtained
dn(x) =x / (a + x) (IV.3)

wvhere a = K/k, by equating the forces between the expansion of the host
layers due to the intercalant which is modeled by a spring of

equilibrium length c, and strength k and the separation of the host

L
layers due to their intrinsic interaction which is modeled by a spring
of equilibrium length o and strength K (hereinafter called the Rigid

Layer Model in contrast of our Layer Rigidity Model). However, this
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lines are fits to the data using the layer rigidity model

and yield the rigidity parameters, p, given in Table

IV.1. The dotted lines are fits to the data using the

rigid layer model with a = 0.05, 0.1, 0.2 and 0.5, top to

bottom, respectively. The straight dash-dotted line

represents Vegard's law and corresponds to p = 1 or a =
1'
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result neglected anharmonicity of the host bonding. Safran61 suggested a
modification of the original rigid layer model to account for anharmonic
softening of the vacancy springs in the presence of the guest springs,
vhich implies that the intercalant has completely weakened the host-host
bonds once there is local separation of adjacent layers. Then the rigid
layer model yields

dn(xg) = x8 /[ (1 - xg)a + xg] (IV.4)

vhich satisfies the boundary conditions dn(O) = 0, dn(l) = 1 and gives
Vegard's law behavior when a = 1. Plots of the modified rigid layer
model for several values of a are shown in Figure IV.3. It is evident
from these plots that the rigid layer model fails to fit the measured

dn(x ) for any of the ternary layered intercalation compounds. This is

g
not surprising for graphite or even for Tis2 since their host layers are

far from rigid. But the model also fails for the Rbl_x Csx Vm system to
g 8

vhich it should be most applicable given its high host layer rigidity.l3

Ve now discuss our layer rigidity model27 introduced in section
III.3. Unlike all previous models this one accounts for the data of
Figure IV.3 and does so with the introduction of only one parameter.
Consider a single gallery bounded by a pair of host layers. Guest ions
vhose relative proportions depend on xg randomly decorate the sites of a
2D triangular lattice. The layers experience a pillbox-like discrete
puckering over the larger B ion. The lateral extent of this puckering is
specified by p which is equal to the total number of puckered lattice
sites for a single B ion.

In Figure IV.3 the solid lines represent fits to the data using eq.

(III.19). With the exception of the Val_x Lix Tis2 system the fits are

g B
excellent and far superior to those obtained using the rigid layer
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model. Even in the case of TiS2 compounds, the deviation of eq. (III.1l9)
from the data is small and the fit is still superior to the rigid layer
model result. The rigidity parameters deduced from the fits to the data
in Figure IV.3 are given in Table IV.1 and as expected increase from
class I to class III ternary layered intercalation compounds.

Our layer rigidity model can account for the four functional forms
of dn(x) namely linear (Vegard's law), superlinear, sublinear and
sigmoidal. The linear and superlinear forms are shown in Figures III.1l4
and IV.3, but the sublinear and sigmoidal forms are outside the
monolayer model. In section III.3, the sigmoidal form exhibited by
vermiculite compounds has been attributed to the defect-site model27 and
in hosts with lov transverse layer rigidity such as graphite to

interlayer correlations.27'34

Examples for each functional form of dn(x)
and the models applied to fit these forms are given in Table IV.2.

To show the stiffness of the host layer with respect to transverse
distortions it is desirable to relate p to a healing length which is a
measure of the lateral range over which a puckered layer returns to its
undistorted form when the large ions are widely separated (x8 = 0). The

healing length, A,, for the discrete layer rigidity model can be simply

d.
estimated from the relation p = (nAdZ)/aA0 vhere the numerator is the

area of the puckered region, a is the ratio of the area per site of the

saturated (x8 = 1) superlattice to the area per host site [for Lix Cc
g

the superlattice is (J3xJ/3)R30° so a = 3]. If a, is the host lattice

6

intersite distance than Ad - [1/(3.63)1/2](aP)1/23 . The values of p, «

0

and a, are given in Table IV.1l where the resultant discrete version

healing lengths are also given; Ad(LixCG) = 3.16A, Ad(LixTiSZ) = 3,.35A
and Ad(Rbl_szme) = 7.42A. The fact that the host layer distortions

fall off slowly in the order of graphite, T182 and Vermiculite is
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Table IV.2 Four types of basal spacing variation of layered solids.

Behavior System Model Comments
*
LixC6 and RL Poor fit
Li_Tis LR Good fit
x 2
RL Poor fit
Superlinear K(NHS)xCZA #RL+E1ectr. Effect Excellent fit
LR Excellent fit
RL Very poor fit
* % -ax .
K(Hz,Dz)xC24 Imperical(l-e ) Excellent fit
LR Excellent fit
t
M, _MC LR + Good fit
-x'x 8
Interlayer corr.
Sigmoidal
*kk
Al B,-Vm LR + Excellent fit
-x X
Defect Sites
Sublinear Not been RL Both could yield
observed LR shape
Yok
Linear M M C Any model Excellent fit
l-x'x 8

Vhere RL and LR represent Dahn's rigid-layer model and our layer
rigidity model, respectively. See ref. 35 and 36 for (*), ref. 28 for
(#), Ref. 74 for (**), Ref 34 for (##) and ref. 27 for (**¥),
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consistent with the intuitive picture of layer stiffness based on the
atomic arrangements of the host layer.

To more precisely quantify the influence of layer deformation on
c-axis expansion we treat the host layers as an elastic continuum in the
form of a deformable plate of finite thickness. For a single point-like
B ion at ;0 in a gallery of vacancies or A ions, the gallery height, V(?

- ;0). is obtained from71'72

>

ov* - kv? + GI(T - 2) = £6(F - 7y (IV.5)

where D is the flexural rigidity, K is the transverse rigidity, G is the
c-axis compressibility, and f0 represents the 6-function like force from
the B ion. The first term in eq. (IV.5) is due to the bending energy of
a plate with a thickness 2H, the third term reflects the attractive
interaction between two parallel plates with a equilibrium separation d
and the second term is the contribution from the transverse shear
modulus whose effects are most dominant in the class III compounds. The
second and third terms are especially sensitive to the guest-host
interaction. Each of the coefficients in the brackets in eq. (IV.5) can
be expressed in terms of the effective layer thickness, 2H, the basal

spacing, d, and the host elastic constants, cij'72 Thus

2 2...3
D 2[(cll - c12 )H ]/3c11, (IV.6)
K= dcaa. (IV.7)
and
G = 2c33/d. (Iv.8)

Equation (IV.4) can be solved to give

£ o 9Jgar/dy)
w(P) = ZHJDG

dq (1v.9)
0 q4 + ZCq2 +1
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vhere p = |; - ;Ol’ 10 = (D/G)]'/4 gives the length scale and g =
K/[2(GD)1/2] =< 1 gives the relative strength of the transverse rigidity.

For a single defect, we can define the healing length /\c as the
distance at which the gallery height relaxes to half its maximum value
i.e. U(Ac) = 1/2[W(0)]. From eq. (IV.9) we obtain Ac(ﬁ) = Z(C)lo vhere
Z(Z) is a slowvly decreasing function of ¢. In Figure IV.4 2(&) is
plotted versus ¢ where 2(0) = 1.302, Z(0.5) = 1.276. One can obtain Ac
from ¢ and 10. These are functions, respectively of D, K, and G the
first two of which can be determined from the in-plane TA dispersion of
layered solids given by wz(q) « Dq" + qu. This phonon dispersion for
small q was previously recognized by Komatsu in his graphite specific
heat study,”‘ and experimentally observed by Nicklow et 3177 and Zabel
et al78 from inelastic neutron scattering. In Figure IV.5 the phonon
dispersion curve of pyrolytic graphite obtained by Nicklow and coworkers
is shown. Since for graphite, K = 0 the transverse acoustic (TA) branch
features an w = Dl/zq2 dependence from which D can be obtained directly.
Alternatively, D can be obtained from the stiffness constants as can K
and G if H is known. For graphite K and G are found from the known basal

spacing and reported ¢y 's. Using Cus™ 0.5 x 1011 dyn/cmz. Cag ™ 3.65 x

j

10]'1 dyn/cmz, and d = 3.35A we estimate K = 931.6 "I(/A2 and G = 1578
°K/A4. Phonon dispersion yields D = 7076 °K. From these values we get 10
= 1.4552, g = 0.1394 and 2(g) = 1.2934. Using A_(3) = 2(Z)4, ve find A_
= 1.88A in reasonable agreement with the value 2.45A obtained from the
experimental value of p (See Table IV.1l and the following discussion).

For most layered materials, neither the elastic constants nor the
phonon dispersions are available. Therefore, it is useful to derive a

relationship between /\c and p by extending the continuum theory to the

case of a dilute distribution of B ions. Using the superposition
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principle, we can obtain the average gallery height, <W>, as a function
of the concentration of xg. In the limit xg << 1 the result for <W>
normalized by the maximum gallery height, W(p = 0) due to a single B ion

yields
4 (x,) = ag(ﬂ)[Acm/aO]ng (IV.10)

vhere g(g) is given by

2.1/2
g(g) = Jig 1 - C_i 7172 (IV.11)
1 - (2/m tan™ [3/(1-8°)"/4)
By comparing eq. (IV.10) with eq. (III.19), we have
A (8) = ao[a‘P/g(C)]l/2 (IV.12)

The values of AC(C) thus evaluated for stage-1 ternary layered
intercalation compounds compare reasonably well with those of Ad (see
Table IV.1). Note that Ac for a defect of finite size should be somewhat
larger than that of a point object. Here the value of ¢ is assumed to be
the same as for graphite (0.14) in the cases of TiS2 and Vermiculite.
The short healing length found for graphite is consistent with the
results of X-ray studies of disordered alkali graphite intercalation
compounds73 which indicate that the host potential is strongly modulated
in the vicinity of a guest ion.

Since the charge on the host layers in class III ternary layered
intercalation compound is fixed their c-axis expansion is purely
elastic. However, the success of the layer rigidity model for the class
I and II intercalation compounds is an indication that charge exchange
has a small effect on host layer stiffness. If this were not so, p would
be composition-dependent and the data in Figure IV.3 could not be fit
with a single parameter. As further evidence of the success of the layer

rigidity model for systems dominated by elastic forces we address the
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case of the physisorption of HZ and D2 into stage-2 KC24 to form the
. - 74
ternaries Vaz_x,(Rz)x,Kcza, 0 sx'=2, R=H, D. [Here we consider
KC to be the host material.] Although the structure of the site

24
superlattice for this is not knovn.58’74

74,75

and there appears to be two
sets of guest sites it is well established that the physisorption

4 does not result in measurable charge backtransfer
58,74

of Hz or D2 into K02

from the host layers to the intercalate layer. Therefore the layer
rigidity model should account well for the c-axis expansion in these
ternary layered intercalation compounds. That this is indeed the case is
evidenced by the normalized basal spacing data shown in Figure IV.6.
This data was derived from the work of Doll et al.74 who fit d(x') with
the arbitrarily chosen function d(x') = 1 - exp(-yx'). To apply our
layer rigidity model to this system we rescaled their data. In layer
rigidity model the composition x is the quantity normalized by the
saturation value (One may consider x as a probability to fill gallery
sites.). Hence x' can be rescaled as x = x'/2 where 0 s x = 1. The
basal spacings are normalized as dn(x) = [d(x) - d(0)] / [d(1) - d(0)].
The same functional form used by Doll et al gives a reasonable fit to
dn(x) (dotted lines in Figure IV.6) after the scaling. Howvever, eq.
(I1I.19) of the layer rigidity model gives an equally good fit for both
D2 and HZ' The reason that the function chosen by Doll et al. works so
well is that eq. (III.19) extrapolates to that function at small x and
the two functions are very similar but do not extrapolate for x -+ 1.

The rigidity parameter obtained from the fits to the data in Figure
IV.6 are given in Table IV.1l. Since the site superlattice structure is

uncertain.ss'74

ve cannot calculate the healing lengths. Nevertheless,
the measured rigidity parameters are large in the case of Dz. Ve suggest

that this apparent enhancement of the rigidity parameter results from
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the presence of two types of gallery sites.74’75

74

of which only one
contributes to c-axis expansion. The fraction of expanding sites can
be estimated from the minimum value of x at which dn(x) = 1 and is
estimated from Figure IV.6 to be ~ 0.2 and 0.7 for D2 and HZ'
respectively. Thus the actual rigidity parameters which correspond to a
rescaling (stretching) of the abscissa in Figure IV.6 are 0.2 x 24.8 =
5.0 and 0.7 x 6.9 = 4.8 (see Table IV.1). The increased rigidity of the

stage-2 KC "host"® relative to that of graphite is a consequence of the

24
fact that the host "layers" in the former contain 3 interconnected
planes of atoms (2 C layers and 1 K layer) whereas those in the latter

are single-atomic sheets

IV.3 Layer Rigidity and Staging

In Safran's model for the staging transition, one of the main

results is the existence of Tm which is the maximum temperature at which

9

stage 2 is stable.1 From the isomorphism of the stage-2 to stage-1

transition to that of a metamagnet in a magnetic field, Safran obtained

1

Tm = Z(UO' Va + Vb) (IV.13)

vhere
-a

Va - VOZ E(a), (IV.14)

Va + Vb = VOE(a), (IV.15)
and

-a
E(a) =8 P77 (IV.16)

For T < Tm' there are many single-phase pure-stage states with a

restricted stable composition range and two-phase regions, while for T >
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T no staged (n > 1) states are possible for all composition ranges

m'
(See Figure IV.1l). After rearrangement, we have

-(x-1)

1
T =% [Uy + Vo&@) {1 -2 1. (IV.17)

Here U_, V_  and &(a) are all positive quantities and usually a > 1 (e.g.

0’ 0

Safran took a = 4). Hence Tm is an increasing function of Uo and Vo. Ve
can address qualitatively the relation between layer rigidity and the
staging transition in terms of the elastic contributions to U0 and Vo.
The elastic contributions to the attractive intralayer interaction and
repulsive interlayer interaction are schematically depicted in Figure
IV.7. As has been discussed by Safran.20 it is favorable for two elastic
strain dipoles in the same plane to be adjacent to each other, implying
an attractive interaction. The magnitude of this attractive interaction,

U_, decreases as the healing length A increases. For example in the case

0’
of a perfectly rigid layer with infinite healing length, there is no
elastic attractive intraplanar interaction at all. Also there is high
interlayer correlation between floppy layers.34 and dipolar strain

fields in the adjacent layers will repel one another, implying a

repulsive interaction, Vo. But for rigid layers, the interlayer

correlation is also very small (almost zero for Vm which is
seven-atomic-planes thick.). Thus there is negligible
intercalant-intercalant interlayer interaction implying a very small

repulsive interaction. Hence for floppy layers, U, and Vo are both

0

large, and for stiff layers both U  and Vo are small. In the case of

0
class III Vermiculite, both UO and Vo must be very small and accordingly

19 1jes well below the

Tm is so low that Safran's phase boundary
intercalation temperature. Therefore only the stage-1 state has been

observed.



(a)

(b)

Figure 1IV.7
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O

A schematic depiction of the attractive intralayer and
repulsive interlayer interaction from an elastic origin.
(a) For floppy layer systems two intercalants in the same
gallery favor adjacent locations, but for rigid layer
systems this attractive interaction is negligible. (b) Imn
floppy layers the high interlayer correlation favors a
staggered position, but in rigid layers the interlayer
correlation is negligible.
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The calculation of the intralayer interaction, Uo, wvhich depends
upon the layer rigidity is straightforward in the continuum elastic
theory. First in the case of a single delta-function-like elastic

dipole, the elastic energy (= self energy) Es becomes

E, =3 /5a3 [ Dv?Pn? + koW + 6] - 2 [fd3 £ 6(DV(E)  (IV.18)

After integrating by parts, and using eq. (IV.5) and the boundary
condition of W = 0 at infinity

E =% /Sds v(D) [ ov'v - xv?W + oV - 2£6() ]

S

&=

1 -
"% fOV(r = 0) (IV.19)

Now in the case of two dipoles, the elastic energy becomes
E=%[fad| D{VZV(?,ﬁl,ﬁz)}z + x{VV(?,il.iz)}z + szc?.il,iz)
-3 ESE-R) +2£6¢3 - B v R LR (IV.20)
vhere
VR LR = v - B VT - R (IV.21)

from the superposition principle. In eq. (IV.20) the diagonal terms are
the self energy for two dipoles (= ZES) and the cross terms are

Y
interaction between two intercalants (= Eint(Rl.ﬁz)).

-')lz-l-bz-’-b l-b-) - 2
E; . = JJds [ 5DV W(F - RHVW(E - R,) + ZK¥w(T - Rl)3w(r - R
1. ... 9 C . | 1. .. » 2 - 9
+ EGV(r - Rl)V(r - R2) - 2f°6(r - Rl)w(r -Rz)
la -
_ £, 8(F - ﬁz)w<r - Kl) ] (IV.22)

Integrating by parts and using eq. (IV.5) and the boundary condition for

V, we find
E, (R.,R.) = ffds 2 [W@EZ -B)(DV* -kv? +G ) wiZ-R]
int (R1°R; 2 [ - R - (r - &)

- - - -
- £,6(F - ﬁl)V( T - Kz) - £,6(F - Kz)v(r - il)]
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1
- -5 £ V(ﬁl - ﬁz) (IV.23)

or

£ W(R, - R

0 1 2) (IV.24)

N

E = 2Es -

Using eq. (IV.23), we can write the intralayer interaction part in the

Hamiltonian for the intercalants forming a triangular lattice as

- > -
U(o) = R.) o(Ri)o(Rj) (IV.25)

1 E, (R
28 i%j Bine(Ryr By
vhere a(ﬁi) is an Ising-like variable which can have either 0 or 1 and

the ﬁi's are triangular lattice vectors. Following Safran19 ve use the

mean-field approximation. After inplane averaging we find

U(o) = (ﬁi - ﬁj) (IV.26)

1 2
28 7 i85 Eine
wvhere o is the average fractional occupancy of the intercalant sites,

vhich may take continuous values between 0 and 1. From eq.'s (IV.9),

(IV.23) and (IV.26) we find

12 1, .3
Ute) = 53 0738, [ - 3 £gV(Ry) ]
2
£ qJ . (qR, /1)
1 2 0 o g(aRy
1.2 . 5, U dq] } (IV.27)
2 anype 120 Uo &+ 22 + 1
or
Ueo) = - % U, o2 (IV.28)—
wvhere
2
f qJ,(qR,/4)
0 > 04 dq) (IV.29)

Uo = Zmype 130 Uo &+ 2242 + 1

Because of { the actual contribution of D to U0 can be evaluated only

after the above sum is actually done, but the contribution of G is
dominant and Uo is a decreasing function of G.

Using eq. (IV.29) we can also discuss the effect of the intercalant

size difference in the same host. In eq. (IV.29) f0 can be directly
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related to the maximum displacement72 vhich is well known to depend on

the intercalant size.z’3

For example the measured basal spacing
increases of stage-1 heavy alkali graphite intercalation compounds
(relative to the spacing in pristine graphite) are 2.002A, 2.304A and
2.590A for Kcs, RBC8 and CsCa. respectively.2 These compounds all have
the same (2x2)R0° superlattice structure. If we assume that their
rigidity parameters are very similar, then the intralayer interaction
energy will be larger for the bigger intercalants and accordingly Tm
will be higher. Unfortunately, experimental data to confirm this
prediction is not available yet. Comparison between Li and the heavy

alkali intercalants (e.g. Cs) is not straightforward. In LiC_, Li has a

6°
(V3x/3)R30° superlattice structure and is known to sustain a strong
corrugation potential which might change the rigidity parameter.
Nevertheless if we apply the above argument to the comparison between Li
and Cs graphite intercalation compounds, we can expect to see higher
stages in Cs compounds at higher temperature. Fisher has reached the
same conclusion and reported76 that the midpoint of a (1 + 2) » (1)
staging transition in Li C. is 440K, wvhile the corresponding

0.876

transition in Cs occurs at 600k.76A1so for T182 intercalation

0.8%
compounds, no staged (n > 1) states are found for Li, while Cs forms

staged states at 3001(.18
IV.4 Summary and Concluding Remarks

In this part we have presented the Layer Rigidity Model which fits
the c-axis expansion of all three classes of layered solid using only
one adjustable parameter p. The rigidity parameter p is related to the

healing length A in both a discrete and continuum version. For the
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continuum version we presented a continuum elastic model, which is the
first successful and consistent theoretical approach to the problem of
gallery expansion in intercalated layered solids. In the continuum
elastic model we were able to relate the rigidity parameter p determined
from the basal spacing measurements to other independently measured
quantities such as the elastic constants and phonon dispersion curves.
Also we provided the first successful explanation of the intriguing data
for the physisorption of Hz and D2 into stage-2 KCZA.

Different staging behavior among different classes of layered
solids has been discussed using Safran's phase diagram. The dependence
of the elastic interlayer and intralayer interaction on layer rigidity
has been discussed qualitatively. From the continuum elastic theory the
mean-field intralayer interaction, Uo, wvas calculated to show the actual
contribution of each rigidity constant. The resultant intralayer
interaction showed a dependence not only on the rigidity parameters but
also on the size of the intercalants. Finally we have discussed the

staging transition of intercalation compounds with the same host and

different intercalants.
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V. A Variable-Temperature X-Ray Cryostat With an Externally Adjustable

Internal Goniometer.
V.1l Introduction

Lowv-temperature X-ray diffraction (LTXRD) is a very useful
technique to study many interesting properties of condensed matter. Some
of the LTXRD experiments mimic the usual XRD experiments that can be
done at room temperature. But by lowering the sample temperature we can
reduce the thermal motion of the atoms within the sample, which will
improve peak-to-background ratios and also make it possible to obtain
more data at high angle (or at high momentum transfer) where
Debye-Valler factor effects are more pronounced at room temperature. As
a result more accurate crystal-structure analysis79 can be done and more
accurate electron-density maps can be acquired. On the other hand, there
are some properties that can be observed only at low temperature.

80 thermal contraction.81 and the

Certain structural phase transitionms,
crystal structures of gases or liquids82 belong to this category.

In most cases the LTXRD apparatus is built as an addition or a
modification to the existing XRD system. Thus in designing an LTXRD
system it is desirable to optimize the compatibility of the
Lov-Temperature part with the existing XRD system with minimal
modification of both existing XRD system and with minimal modification
of the operating procedure. With this "compatibility" in mind one also
has to consider several criteria including the temperature range, the
control and measurement of sample temperature, the absorption of X-rays,

frost prevention, accessibility of the sample, easy and accurate

alignment of the sample, and finally maximum scan range.
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There is a primary difficulty in orienting a sample located inside
of the cryostat. The methods which have be used to orient a sample
either involve moving the entire cryostat.“ using complicated gearing
so that the sample inside the cryostat can be rotated about one or more
axe387 or using the Weissenberg geometry (moving det:ect.or:).88 Our XRD
system has been designed primarily for 6-260 scans, so the Veissenberg
geometry is not suitable. The method of moving the entire cryostat will
result in misalignment between the cryostat axis and the rotation axes
of the 6 and 26 circles which can cause sample misalignment. An attempt
to solve this problem using either an extra supporting system or with a
complicated gearing system is mechanically very demanding, and in many
cases supporting bars and gearing units can cause blind regions. Also
the scan range tends to be limited by the mechanical construction. In
our novel LTXRD system we avoided this problem by putting the externally
adjustable small goniometer inside the cryostat.

There are three different types of cooling mechanism to be used
with LTXRD: gas-stream cooling.83 conduction cooling.m' and immersion
cc:oling.85 Each cooling method has its own merits and shortcomings. One
has to chose the proper cooling method which can satisfy most of the
above criteria. We chose to use conduction cooling. The advantages of
conduction cooling are: minimal use of cryogen, relatively good thermal
equilibrium for a wide range of temperature, and frost free operation.
The use of a closed cycle He-cryostat allows us to achieve temperatures
vell below that of liquid nitrogen with minimum operating cost. Of
course there are some disadvantages with the conduction cooling method
but most of the disadvantages can easily be taken care of with proper

design. For example, blind spots and excessive X-ray absorption are
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typical problems with conduction cooling but these problems can be

solved by proper window design using thin x-ray transparent materials.

V.2 Apparatus

An overall view of our LTXRD system is given in Figure V.1 and a
cut-avay view of the home-made interconnection parts (See the following
discussion) is shown in Figure V.2. The same parts shown in both figures
have common designationms.

Our LTXRD system can be divided into three major components. The
diffractometer: We use a computer controlled Huber 4-circle
diffractometer coupled to Rigaku 12Kw rotating anode MoKa source. The
four circles are the ®-circle (G), ©-circle (H), 26-circle (I), and
X-circle (J). The cryostat: this consists of a CTI-CRYOGENICS model 22
closed-cycle He-refrigerator (A) with a cold finger (L) which can be
cooled down to as low as 9.75K within 50 min in its unmodified
configuration (See discussion of modifications below). Finally we employ
several home-made interconnection parts (See discussion below) including
a multi-purpose vacuum shroud assembly, a sample alignment assembly, a
sample holder assembly, and a radiation shield (K). Among these three
parts, the home made interconnection parts are the most critical.

The multi-purpose shroud assembly consists of a linear ball
bearing (C), vacuum shroud (B), flange (E), and a Kapton window (D). The
vacuum shroud which has a cylindrical shape forms the inner moving
sleeve of the linear ball bearing. A 260° slot was machined into the the
shroud and covered by a Kapton window which was attached with epoxy to

form a vacuum tight seal. The flange is connected to the shroud with an



Figure V.1
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An overall viewv of the LTXRD system: A—closed cycle
He-cryostat; B—cylindrical vacuum shroud; C—linear ball
bearing; D—XKapton window; E—shroud flange; F—sample

chamber; G—<¢ circle; H—O circle; I—20 circle; J—X
circle



Figure V.2
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An cut-away view of the home-made interconnection parts
vhere the same parts shown also in Figure V.1 has same

designation: K—raduation shield; L——cold finger;
M—sample holder; N—Teflon and Vespel spacers; O—end
spring; P—square cross section sliding shaft; Q—small
goniometer; R—moni universal joint; S—vacuum
feedthrough; T—sample chamber flange; U—O-ring;
V—braided Cu wire; ¥—Si-diode temperature sensor.
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O-ring seal (U). To maintain mechanical stability, the vacuum shroud is
made of stainless steel.

The sample alignment assembly consists of a sample chamber (F), a
small goniometer (Q), vacuum feedthroughs (S), and goniometer key
assemblies that include two mini universal joints (R), a square
cross-section sliding shaft (P), and an end-spring (0). There are 5
vacuum feedthroughs on the side wall of the vacuum chamber. Four of
these are used for the key assemblies to control the small goniometer
inside of the vacuum chamber from outside. The remaining one is used for
a thermocouple. The sample chamber is connected to the shroud assembly
vith an O-ring flange (T) and also is supported by the ¢-circle (G).

The sample holder assembly consists of a copper sample holder (M)
vhich is attached to braided copper wire (V) connected to the cold
finger (L). This sample holder can have an arbitrary shape which depends
on the sample shape. It is connected to the small goniometer with Teflon
and Vespel spacers (N) which are very good thermal insulators.

In our design, the 6-degrees of freedom needed to align the sample
are obtained from the combination of the small inside goniometer (Q),
flexible braided copper wire (V), the sliding ball bearing (C) with
shroud (B) and the ¢-circle (G). The small goniometer with braided
copper wire allows 4-degrees of freedom namely the x, y translations and
rotations about the x and y axes. The sliding ball bearing with the
cylindrical shroud permits both up and down motion (z translation) and
rotation about the z axis (¢ angle). Note that the sliding ball bearing
retains the cryostat in a position such that the cryostat axis and the
rotation axes for the 6 and 26 circles are always coincident.

For easy sample alignment one must be able to control the inside

goniometer from outside without breaking the vacuum. This can be done by
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using a vacuum feedthrough (S). The major problem of controlling the
inside goniometer from outside is not the vacuum seal but rather the
fact that turning one goniometer key will cause a change in the position
and orientation of all of the other keys thereby altering their
alignment with the fixed vacuum feedthroughs. To solve this problem we
designed a variable length shaft with mini universal joints. The sliding
square cross sectional shaft (P) allows variable length and makes it
possible to turn the key. The end spring (0) is used to prevent the
turning shaft from slipping out of the goniometer key while the
goniometer key is receding. The sliding shaft with mini universal joint
(R) is capable of transmitting smooth rotational motions for different
relative positions of the goniometer keys and the vacuum feedthroughs.

To reduce X-ray absorption a 5.5u thick Kapton window (D) was used.
The Kapton window can be easily glued to the shroud with epoxy without
using a supporting post which is a usual source of a blind spot. There
are several advantages of a Kapton window relative to a typical
beryllium window. First, Kapton is non-toxic unlike beryllium and is
easy to handle. Second, Kapton is transparent in the visible. One can
see the sample inside the cryostat through the Kapton window, which
makes it very easy to align the sample using a telescope in the usual
vay

The flange connection (E, T) between the vacuum shroud and the
sample chamber allows easy access to the sample. To change the sample
one need not remove the cryostat from the XRD system. One can simply
expose the sample by pushing up the cryostat and attached shroud through
the sliding ball bearing. After the sample change, the cryostat can be

lowered again to its original position. Because of the flexible braided
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copper wire the sample holder does not change its position and
orientation during this cryostat's up and down motion.

For frost free operation a vacuum of 1 torr is sufficient. Also the
closed-cycle refrigerator is designed to operate at a vacuum of better
than 50 microns. With the O-ring seal,vacuum feedthroughs and glued
Kapton window we achieved a vacuum better than 1 micron using only a
rotary pump.

The cold finger temperature was measured and controlled by a Palm
Beach Cryophysics model 4075 thermometer and controller with a Si-diode
sensor (W) placed on the cold finger. The sample holder which is
connected to the cold finger through the braided copper wire usually
operates at a slightly higher temperature than the cold finger and its
temperature was measured by a copper-constantan thermocouple. The Teflon
and Vespel spacer was used to keep the sample holder mechanically
connected to the goniometer but thermally insulated. With this
arrangement sample temperatures of 40K could be achieved with a cool

dowvn time of 60 min.
V.3 Experiment

To test the LTXRD system we studied the (00L) X-ray diffraction
patterns of a highly oriented pyrolytic graphite (HOPG) sample at four
different temperatures. For low temperature measurement, the temperature
controller was set at 200K, 100K, and 10K respectively. The X-ray
diffraction pattern was collected up to q = 8.668A"1 (vhere the momentum
transfer q = (4nsin®)/A) without any blind points. The basal spacing d
can be calculated from the peak positions of the 00L diffraction peaks.

To avoid zero-point calibration errors the slope from the plot of the
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peak positions, QgoL® Versus peak index, L, was used (Q-plot). The
resultant basal spacings are listed with the corresponding temperature
in Table V.1.
To date experimental measurements of graphite c-spacing variation
wvith temperature have been mostly carried out at temperatures higher

89,90 (up to 2600°C). A comparison between the data

than room temperature
reported by various researchers shows the dependence of actual basal
spacings on the material and its stacking faults. However the c-axis
expansion always exhibits a similar linear behavior with a small

89,90,91 Baskin and Meyer81 measured the interlayer

quadratic correction.
spacing of graphite as a function of temperature at low temperature.
They also reported the material dependence of the interlayer spacing:
they measured c-spacings of 3.3538A at 297K and 3.3378A at 78K for
single crystal and 3.3600A at 297K and 3.3392A at 78K for artificial
graphite powder. In addition they reported a noticeable departure of
temperature dependence of the basal spacing from linearity at lowver
temperatures (T < 78K). Steward at el92 attributed this leveling to the
limited contraction due to the repulsion between adjacent layers.
Thermal expansion of the HOPG has also been studied by Yates et
a1.93,Fug et a194' and Hatrisongs. They reported a temperature dependent
thermal expansion coefficient @, vhich is shown in Figure V.3. For
comparison we plotted our data as an average thermal expansion

coefficient, a:ve. versus average temperature, Tave’ in Figure V.3.

Average thermal expansion coefficient is defined as

d, - d
ave 2 1
a . ——— (V.1)
c dl(T2 - Tl)
and Tave = ('1'1 + TZ)/Z. Our data agrees well with reported values in

the temperature range of 40K - 200K. But at higher temperature a:ve
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Table V.1. Basal spacing of HOPG as a function of temperature

Temperature (K) Basal spacing (A)
Si-sensor Thermocouple
295.3 294.8 3.354+.005
199.7 206.0 3.348+.012
99.35 112.4 3.341+.006

11.20 40.8 3.338+.006
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Figure V.3 Temperature expansion of highly oriented pyrolytic
graphite (HOPG); from ref. 96. A from refs. 93 and 94, B
from ref. 95, and open circles are our data.



101
shows a noticeable discrepancy. To settle this discrepancy we need to
extend our measurements to the higher temperature region.

As shown in the Table V.1, there is a difference between the cold
finger temperature measured with the Si-sensor and the sample holder
temperature measured with the copper-constantan thermocouple. It is
eQident that there is a certain temperature gradient in the system and
lovest obtainable temperature is raised from the unmodified
configuration value. For simple and accurate sample alignment we located
the goniometer in the sample chamber and the sample holder is connected
to this goniometer with Teflon and Vespel spacers. Even though Teflon
and Vespel are good thermal insulators the sample holder is not totally
thermally insulated from the outside parts including the sample chamber
wall, the shroud and the 4-circle goniometer. Heat leakage through these
paths still occurs. This is the price we have to pay for the many other
merits and versatility of our new design. Ve intend to improve the

insulation and thus achieve lower temperatures at the sample holder.
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Abstract

We show that a layer rigidity model which includes the effects of
elastic deformations of the host layers can account for the composition-
dependence of the c-axis lattice expansion of a variety of layered
intercalation compounds. Rigidity parameters deduced from this model for
each of the three classes of layered solid are reflective of structurally
derived rigidity as are the healing lengths computed on the basis of
discrete énd continuum analyses. The layer rigidity model provides the
first quantitative explanation for the 1D non-Vegards lawv behavior of a 2D

solid solution.
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All crystalline solid solutions exhibit a composition-dependent unit
cell volume wvhich generally increases with the concentration of the
largest constituent.l Vhen this variation is linear the system is said to
obey Vegard's law .2 Most solid solutions exhibit a more complex nonlinear
behavior3 vhich has been accounted for empirically by augmenting Vegard's
law vith a polynomial that represents a composition-dependent mixing
volume.3 In order to gain a more fundamental understanding of the origin of
non-Vegard's law behavior several ::mr.horsh'6 have found it advantageous to
address systems which contain crystalline solid solutions of reduced
dimensionality. For instance, there are a variety of ternary layered
intercalation compounds (hereinafter called ternaries) of the form

A B_ L, 0 < xg < 1, wvhere B is the larger ion and xg defines the

composition of the ions which actually reside in the gallery and contribute

to c-axis expansion. The guest species, A and B form a 2D commensurate but

compositionally disordered solid solution between the host layers, L.7-9

[Note that A can represent a vacancy (i.e.. A = Va).] Because of the highly

7-9

anisotropic structural and physical properties of ternaries, the dominant

change in their cell volume with intercalate composition results from c-axis
expansion. The one dimensional (1D) form of Vegard's law is then
c(xg) = (1 -x)c, +xc (1)

g A g B

vhere c, A and cg are the c-axis repeat distances of the mixed and end-

member compounds. But most ternaries exhibit a superlinear (concave
downward) c(xg)."-9 Even though ternaries represent the most basic and
simplified (eg. 1D) systems for studying composition-driven lattice

expansion, attempts to account for their nonlinear response have to date

been markedly unsuccessful. In this letter we rectify this deficiency and
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present a cne-parameter model which accounts for the c-axis expansion of a
broad range of ternaries.
Layered solids have been classified into three subgroups on the basis

of their rigidity with respect to out-of plane distortions.? Thus graphite

is the prototypical class I layered solid whose monatomically thin layersll

are "floppy". The three-atom-thick layers of the dichalcogenides12 such as

Tis2 are more "rigid" and render them class II status.lo Finally, the 2:1

layered-silicate clays such as vermiculite (Vm) whose host layers are

13

constructed from seven interconnected planes of atoms are extremely

"rigid" and belong in the class III grouping.lo All of the above mentioned
host systems can be intercalated to form solid solution ternaries. Although
the three resultant classes of ternaries exhibit a broad range of physical
properties, the graphite, Tisz and Vm hosts possess a common structural
feature: their guest sites can form a 2D triangular lattice. We will show
that the c-axis lattice expansions of these.'triangular' ternaries -are
amenable to an analysis which spans their physical diversity.

In Fig.l. we show the measured composition dependence of the normalized

. : 6 . . 4
basal spacing, dn(xg). for Val_x le C6' Val_x Lxx TLSZ. and
g 8 g g
Rbl-x Csx lea vhich represent, respectively, the class I, II and III
g g

"triangular” host systems. Here dn(xg) = (c(xg) - ¢(0)]/(c(1) - c(0)].

All three ternaries exhibit a superlinear non-Vegard's law behavior.

In an attempt to explain the c-axis expansion of Val—x Lix TiS2 Dahn et

g 8
al.a employed a rigid layer model in which the undeformable layers are
coupled by springs of spring constant k and K representing, respectively,
the guest-host interaction and the vacancy or host-host interaction. Safran

modified the original rigid layer model to account for anharmonic softening
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of the vacancy springs in the presence of the guest springs.S Then the

rigid layer model yields dn(xg) - xg/[(l - x )a + xg] vhich satisfies the

8
boundary conditions dn(O) = 0, dn(l) = 1 and gives Vegard's law behavior
vhen @ = 1. Plots of the modified rigid layer model for several values of «
are shown in Fig. 1. It is evident from these plots that the rigid layer
model fails to fit the measured dn(xg) for any of the ternaries. This is

not surprising for graphite or even for Tis2 since their host layers are far

from rigid. But the model also fails for the Rbl_x Csx Vm system to which
g 8

it should be most applicable given its high host layer tigidity.lo

In an effort to improve upon the rigid layer model Jin and Mahanti15
(JM) introduced a model with nondeformable layers but with "additional"
springs which represented the finite compressibility of the guest species.
" Their model also addressed interlayer correlations. Nevertheless, even
though this model employed several parameters, its success wvas marginal when
it was applied to the dual alkali graphite intercalation compounds (GICs) of
the type ul_‘n'xca for which interlayer correlations should be most
pronounced in dn(x). (Ve do not address the dual-alkali GICs because the
gallery composition of these materials has not yet been established and the
actual form of dn(xg) is therefore unknown.] Moreover, the multiparameter
JM model does not provide an acceptable fit to the data of Fig. 1.

Ve now describe our layer rigidity model which unlike all previous
models accounts for the data of Fig. 1 and does so with the introduction of
only one parameter. The essential feature of the layer rigidity model is
the deformability of the host layers which in its discrete version is

characterized by a rigidity parameter, P. Here we also introduce a

continuum version which is characterized by a healing length, A and wve
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derive a relation between P and A which provides an independent test of the
model when the host elastic constants or phonon dispersions are known.

In the discrete embodiment of the model which we introducedla to
explain the sigmoidal form of d, (x) for Vm ternaries, one envisions a single
gallery bounded by a pair of host layers. Incompressible guest ions wvhose
relative proportions depend on xg randomly decorate the sites of a 2D
triangular lattice. The layers experience a pillbox-like discrete puckering
over the larger B ion. The lateral extent of this puckering is specified by
P which is equal to the total number of puckered lattice sites for a single

15

B ion. Computer simulations of the average gallery height, d(xg). yield a

normalized basal spacing which obeys Vegard's law for P = 1 and exhibits

superlinear behavior for larger values of P. These simulation results are

in excellent agreement with an analytical solution of the formla'16

P
d (x ) =1-(1-x , 0 <x < 1. 2
In Fig. 1 the solid lines represent fits to the data using Eq. (2).

Vith the exception of the Va Lix TiS2 system the fits are excellent and

g g
far superior to those obtained using the rigid layer model. The rigidity

l-x

parameters deduced from the fits to the data in Fig. 1 are given in Table I
and as expected increase from class I to class III ternaries.

It is desirable to relate P to a healing length which is a measure of
the lateral range over which a puckered layer returns to its undistorted
form. The healing length, Ad' for the discreée layer rigidity model can be
simply estimated from the relation P = (nAczl)/aAO vhere the numerator is the
area of the puckered region, a is the ratio of the area per site of the

saturated (xg = 1) superlattice to the area per host site [for Lix Ce the
8

superlattice is (J3xJ3)R300 so a = 3]. If a, is the host lattice intersite

distance then Ad - [1/(3.63)1/2](a2)1[2ao (see Table I).
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To more precisely quantify the influence of layer deformations on
c-axis expansion we treat the host layers as a stacked set of elastic
continuua in the form of the deformable plates of finite thickness. For

galleries which each contain single point-like B ions at ;O in a sea of

vacancies or A ions, the gallery height, W(? - ;0). is obtained from”'18
(ov* - kV? + GV(T - 2) = £8(F - ) (3)

wvhere D and K are respectively the flexural rigidity and the transverse
rigidity of the individual plates, and G is the c-axis compressibility of
the stack while fo represents the §-function like force from the B ion.
Each of the coefficients in the brackets in fq. (3) can be expressed in
terms of the effective layer thickness, 2H, the basal spacing, d, and the
host elastic constants, Cij‘ls Thus D = 2[(Cli - 013)83]/3011. K = dCQQ.

and G = 2C33/d. Equation (3) can be solved to give
Vo) = £, = aJy(ap/ly)
P’ = ZnJDG

dq (4)
0 q4 + 26q2 +1

vhere p = I? - ;OI' 10 - (D/G)l/a

K/[Z(GD)I/Z] s 1 gives the relative strength of the transverse rigidity.

gives the length scale and § =

For a single defect, we can define the healing length Ac as the
distance at which the gallery height relaxes to half its maximum value i.e.
V(Ac) = i/Z[W(O)]. From Eq. (4) we obtain Ac(é) = 2(6)10 vhere 2(8) is a
slovly decreasing function of & with 2(0) = 1.302, 2(0.5) = 1.276. One can
obtain Ac from § and 10. These are functions, respectively of D, K, and G
the first two of which can be determined from the in-plane TA dispersion of
layered solids given by wz(q) < an + qu. Alternatively, K and G can be
obtained from the stiffness constants as can D if H is known. For graphite
K = 0 so the TA dispersion yields D directly and K and G are found from the

known basal spacing and reported cij's. Using this approach we find Ac -
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1.88 A in reasonable agreement with the value 2.45A obtained from the
experimental value of P (see Table I and the following discussion).

For most layered materials, neither the elastic constants nor the
phonon dispersions are available. Therefore, it is useful to derive a
relationship between Ac and P by extending the continuum theory to the case
of a dilute distribution of B ions. Using the superposition principle, we
can obtain the average gallery height, <W>, as a function of the
concentration of xg. In the limit xg << 1 the result for <W> normalized by

the maximum gallery height, W(p = 0) due to a single B ion yields

2
dn(xg) = ag(é)[Ac(é)/aol xg (5)
vhere g(6) is given by
2,1/2
. _16 a -89
g(é) 713 7 (6)

1 - (2/m) tan"t(6/(1-6%)
By comparing eq. (S) with eq. (2), we have

]

- 1/2
Ac(é) ao[aP/g(é)] .

(7)
The values of Ac(é) thus evaluated for stage -1 ternaries compare reasonably
vell with those of Ad (see Table I). Note that Ac for a defect of finite
size should be somewhat larger than that of a point object. Here the value
of § is assumed to be the same as for graphite (0.14) in the cases of TiS2
and Vm. The short healing length found for graphite is consistent vith the
results of X-ray studies of disordered alkali graphite intercalation
compounds19 vhich indicate that the host potential is strongly modulated in
the vicinity of a guest ion.

Since the charge on the host layers in class III ternaries is fixed
their c-axis expansion is purely elastic. Howvever, the success of the layer
rigidity model for the class I and II ternaries is an indication that charge

exchange has a small effect on host layer stiffness. If this were not so, P

would be composition-dependent and the data in Fig. 1 could not be fit with
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a single parameter. As further evidence of the success of the layer
rigidity model for systems dominated by elastic forces we address the case

of the physisorbtion of Hz and D2 into stage-2 KC to form the ternaries

24
0 <x' <2, R= H,D.zo (Here we consider KC, to be the

host material.] Although the structure of the site superlattice for this
20

Va, o (Ry) KRGy

has not been definitively clarified,7’ and there appears to be two sets of

20,21

guest sites it is well established that the physisorbtion of HZ or D

2
into KC does not result in measurable charge backtransfer from the host

24
. 7,20
layers to the intercalate layer.

Therefore the layer rigidity model
should account well for the c-axis expansion in these ternaries. That this
is indeed the case is evidenced by the data shown in Fig. 2. This data was

derived from the work of Doll et al.20

wvho fit d(x') with the arbitrary
function d(x') = 1 - exp(-yx'). The same function vhen normalized and
rescaled from x'to x with 0 < x < 1 gives a reasonable fit to dn(x) (dotted
lines in Fig. 2) However, Eq. (2) of the layer rigidity model gives an
equally good fit for both D2 and Hz. The reason that the function chosen by
Doll et al. works so well is that Eq. (2) extrapolates to that function at
small x and the two functions are very similar but do not extrapolate for x
- 1.

The rigidity parameters obtained from the fits to the data in Fig. 2
are given in Table I. Since the site superlattice structure is

. 7,20
uncertain

ve cannot calculate the healing lengths. Nevertheless, the
measured rigidity parameters are large especially in the case of DZ' Ve
suggest that this apparent enhancement of the rigidity parameter results

20,21 of which only one

from the presence of two types of gallery sites
contributes to c-axis expansion.zo The fraction of expanding sites can be

estimated from the minimum value of x at which dn(x) = 1 and is estimated
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from Fig. 2 to be = 0.2 and 0.7 for D2 and Hz. respectively. Thus the
actual rigidity parameters which correspond to a rescaling (stretching) of
the abcissa in Fig. 2 are 0.2x24.8 = 5.0 and 0.7x6.9 = 4.8 (see Table I).
The increased rigidity of the stage-2 KCZQ "host" relative to that of
graphite is a consequence of the fact that the host "layers" in the former
contain 3 interconnected planes of atoms (2 C layers and 1 K layer) whereas
those in the latter are single atomic sheets.

Ve gratefully acknowledge useful discussions with M.F. Thorpe and T.J.

Pinnavaia. This work was supported by the NSF and in part by the MSU CFMR.
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TABLE I. Important Parameters for Several Ternary Layered Intercalation Compounds.

Rigidity Site Intersice Healing
Stage and Parameter Ratio Distance Lengths
Structure Class Sample P a aJ(A) Ad(A) AC(A)
I va, LicC, 2 3 2.46 3.15 2.45
Stage-1
Triangular II Val_‘LLxTLSZ 3.5 1 3.41 3.35 2.60
III Rbl_szme 7 1 5.34 7.62 5.77
1 - 1 - 3
Stage-2 II Va, _(H,) KC, 4.8 (6.9) - J12(2.46) - -
Unknown N 2 s
I va, (D)) RC,, 5.0 (24.8) - JiZ(2.46) - -

1
The class designation of this compound is based on the fact that the KCZA "host
layers" consist of 3 atomic planes (see text).

2
The bracketed number is the measured value and the unbracketed number is the actual
(corrected) value (see text).

3
This value is based on a stoichiometric X,/C ratio of exactly 1/24.
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Figure Captions

The normalized basal spacing vs. expanding site gallery

Co s 14 : .
composition for Rbl_ngsgim (squares)  , Val_nglngLSZ

(circles)a and Val-x Lix 06 (diamonds)s. The solid lines are
g g

fits to the data using the layer rigidity model (see text) and
yield the rigidity parameters, P, given in Table I. The dotted
lines are fits to the data using the rigid layer model (see
text) with « = 0.5, 0.2, 0.1, and 0.05, bottom to top,
respectively. The straight dash-dotted line represents
Vegard's law and corresponds to P = 1 or a = 1.

The normalized basal spacing vs. gross composition for
20

2)xXC24-

lines are fits to the data using Eq. (2) of the text and yield

Val-x(R R = H (squares), D (circles). The solid
the measured rigidity parameters given in Table I. The dotted
lines are fits using the function dn(x) = 1 - exp(-yx) with y =

7.26 and 25.2 for HZ and DZ‘ respectively.
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LAYER RIGIDITY IN INTERCALATED LAYER SOLIDS
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Center for Fundermantal Macurials Reseacch and Department of Physics and
Ascronomy, Hichigan State Universicy, East Lansing, MI 48824-1116

INTRODUCTION

Graphite, layer dichalcogenides, and vermiculice (Vm) are protocypes of
three different groups of layered solids [1]. Graphicte i3 coamposed of
acomically cthin sheects of actoas, layer dichalcogenide compounds are often
composed of three discinctive planes of sctrongly bonded atoms, and
vermiculite layers are thick assemblies of seven planes of strongly bonaed
acoms. These ace all considered layeresd compounds because cthe intcalayer
forces binding the atoms together ars much scronger than the inteclayer
forces. As a cresult, foreign species can be readily intercalated into the
gallerias betveen cthe host layers.

One of the most interesting phenomena observed in intercalation
compouads is cha exiscencs of a long-period one dimensional modulated
scructuce along che c-axis, namely scaging. The staging phenceena i3
characterized by stuge nusber n which refecrs to the nusber of host layers
separating two adjacent intercalant layers. In graphice incercalacion
coupounds, high stages have been prepared, and certain incercalation
coapounds of transitioca secal dichalcogenides have been shown to foca low
stages; but vermiculite has been found only in a stage-1 scate. In Safran's
model of staging (2); compectition bectveen repulsive incecrplanar intecactions
and sttractive latcaplaner incecractions is responsille for staging. Because
elastic interactions 1a addition to cthe long-range electrostacic
interaccions contribuce to the inceratomic forces [2,3), one can expect
quite distinctive staging Lehavior among these layered solids victh diffecent
layer rigidicy vich respect to transvecrse distortions.

In the firsc part of this paper ve introduce s rigidity parameter P and
a healing length A to quancify and parameterize layer rigidity. In the
second part ve Jdiscuss bciefly vhy oaly the stage-1 stace (s obsecrved in
the vermiculite system. .,

LAYER RIGIDITY

Many sctudies of the staging mechaniss have shown thac inctercalanc-
intercalant intecaccions can be msdisted by the elascic sctrain field presenc
in the hose (3). The first attempt to include the elascic energy in lactice
gas sodels of intecrcaiacion systems vas made by Dahn et al. ({4]. 1Ia chairc
scdel, they treaced host layers as infinicely cigid planes held together by
haraonic springs. Even though they vere able to coastruct a reasonable
phase diagram in T-x plane (vhers x is cthe lncurcalant concenccracion) aand
vace able to cecover the V(x) ana -6x/8V behaviocr of LL/LLiTiS, electro-
chemical cealls, their msodel could not guanticatively account for the full x-
dependencs of the c-axis crepeat discance of any incercalacted layerea solid
{4.5). It is not surprising that the perfectly rigid-layer versions of
elastic models fail vhen applied to fluppy or moderately rigid hosts such as
graphite and layer dichalcogenides (S]. Buc they are also qualitacively
inconsistent victh daca derived fros vermiculite hosts to wvhich crigid-layer
sodals should be more applicable [6,9). Another vay to model che elastic
inctecaction is by local defurmacion of the host layers. Vich finite layer
rigidity, one can imagine that vhen intercalsncs are Intruduced the gallery
height Letveen tvo layers will be diffecent from the pcistine host matecial
because the host layers are locally Jeformed at an occupled site. The
acctual posicion dependen of the c-axis repesc discance vill Le governed
by the vay these discortions ace rslaxed avay from the locally expanded
sices [3.9). .

70 understand the observed basal spacing variacions s model sonolayer
sysces vith tinite layer cigidity has been studied by compucer simulaclion
(9). For simplicity ve assuse cthat the intercalant ions ace hacd-spheces.
Staccing from & 2-dimensional lactice (latctice constant s, ). represencing a
single gallery vich each lactice site occupied by & small inteccalant of
height d(0), ve candoaly ceplace the sesll inteccalants vith lacyge
inceccalancs vith heighe d(1l) > d(0). (In Linacy systems, small inceccalsnt
mesns an unoccupied site and d(0) is the pristine host repeat distance.) The

41



125

height of a cell vithin a healing length A from the large intercalant is
also increased to d(1). A second large ton in this region does not affect
already expanded cells buc expands unexpanded cells vithin A of fics
location. Replacement of the small Intercalants continues to saturation.
1f ve define f(x) as the fraction of cells vith haight d(1), then the
normalized interlayer spacing d _(x)=f(x); vhere d _ (x) =(d(x)-d(0))/(d(1)-
d(0)). The sisulacion results fur d (x) ace stdvn in Fig. 1 for several
different healing lengths A. Using effBctive medium arguments (B8], ve can
describe the normalized spacing dn(x) for a sonolayer by the equation

g, = - a0k, ()

vhere P is & layer rigidity parsmeter given by P = 2¢1 for our model; 2 is
the nuaber of neighboring sites that are puckered by the insertion of an
isolated large intercalant (2=7 for a triangular lattice and 3 for a
honeycoab latcice vith healing length A = a ).

Our rigidity sodel cam account for the four functional forms of d (x)
namely linear (Vegard’'s lav), super and sublinear and sigsoidal. Linear and
superlinear forms are shown in Fig.1l, but the sublinear and sigmoidal forams
ace outside the monolayer model [9). Several wechanisas iacluding cthe
relative msagnicudes of host-guest and hosc-host interactions, incerlayer
correlations, and the presence of defect sites can produce sublineac
behavior in d_(x) but only the latter two can generate threshold effects
seen in a u;-&‘uu form. The interlayer correalacion mechaniss is one in
vhich large guest ions locally pucker the bounding layers so that at lov x
they adopt sctaggered lateral positions. This mechanisa is relevant to host
satecrials vith lov transverse layer rigidity such as graphite vhile a defect
(non-gallery-expanding) sites mechanism is more appropriate to the more .
cigid layecs such as vermiculite. Exsaples for eacn functional form of
d (x) and the sodels applied to fit these forms ace given in table 1.

LAYER RIGIDITY AND STAGING

Ve have used Eq.(1) to obtain & fit to the datas of Fig.2. The layer
rigidity pacrameters P vhich give very good fits (solid lines {n Fig.2) are P
= 2 and P = 3.5 respectively for the super lineacr forms of L1 C. and Li TiS
and P - 7 for the sigmoidal form of Cs Bb, _-va. Froa thé Sefinitidn of
the layer rigidicy pacametur, P = 2 + 1, w3 cliXdetermine that A(graphite) <
a,(graphice) = 2.46 A, A(‘Hsz) = a,.(T4S,) = 3.41 A and A(Va) = a, (Va) = 5.34
A7 The fect that host layer dluo%tlun} falls off slowly in tRe order of
graphite, TiS, and Veramiculite is consistent with the intuitive piccure of
layec utttuod based on astomic acrrangeaent. As has been discussed by
Satran (2,)), it is favorable for tvo elastic strain dipoles in the same
pland to be adjaceat to each other, implying an attractive interaction. The
sagnitude of this sttractive interaction, U,, increases as the healing
length A duccesses. (For a perfectly rigid lgy-r vith {nfinite healing
length, there is no elastic incraplanac interaction.) Also there is high
interlayec cocrcelacion in the floppy layers, and dipolar strain fields in
the adjacent layers vill repel one another, implying a repulsive
interaction, V. But for the rigid layers, the interlayer correlation is
also very small (almost zeco for Va vhich is seven atoaic planes thick).
Thus there is negligible intercalant-intercalant interlayer interaction
implying s-very small repulsive interaction (Fig. 3). Hence for the floppy
layers, U, and V ace both large, and for stiff layers boch U, and V are
small. .
In Safran's model for the staging transition, the interlayer attractive
interaction -U_(U. > 0) and interlayer repulsive interaction V contribucte to
the T_ (the ..21.3. temperature at vhich stage tvo is stable) in the same
sannel (2): in other vords T_ 1s ceduced as U, and V Lecome smallur. Hence
for the stiff Vermiculite laylc, boch u, and V acre smsall and accordingly ‘l’.

is low. Safran's phase bLoundry lies vell belov the intercalacion
tempecracuce and, thecrefore, only the stage-1 stacte has bLeen obsecved (6,9).

Our futuce goal is to find the celationship betvsen the healing length
A and elastic constants C of the host material, and express U  and V as
functions of the healing “ngth A. o
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Table I.

Behavior

Superlinear

cecvececaca eccccccce

Sigmoldal

ececccccccccccccccca

Sublinear

RL snd LR represent

respectively.
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FIG. 1. Monolayer trisngular lattice computer simulsations (dotted lines) of
the composition dependence of the nocrmalized basal spacing of a tecrnary
incercalation compound for several values of the healing length, A, and
cigidity paraseter, P. The solid lines are from Eq. (1) of the ctext vith

(1) P=1l, A =0; (2) P=7, Aea_; (3) P=13, 4\-,/?. ; and (4) P=w, Aew, Inset:
The puckered cegion of a e:hnguht lactice vith A=a,. Here the nuaber of
expanded sites is P=l+1<=? vhere Z is the numder of neacfest neighbors.
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FIG. 2. Layer rigidicy model fits (see text) to besal spacing data for
“,‘:a- Ll‘ﬂsz and Cs‘lbl_‘-V- using P values of 2, 3.5 and 7 respectively.

FIG. 3. Inceclayec cocrelations in layered solids: (Left panel) In floppy
layers the high inteclayer correlation favors s staggered position. (Right
panel) In cigid layecs, the interlayec cocrrelatlon is negligilble.
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Layer Rigidity and Collective Effects in Pillared Lamellar Solids

H. Kim."? W Jin.®S. Lee.™ P. Zhou.™ T. J. Pinnavaia.” S. D. Mahanti. and S. A. Solin™

Center for Fundamemial Materrals Research. Michigan Siate Umversuv. East Lansing, Michigan 48824
(Received 18 Navember 1987)

The x dependence of the normalized basal spacing, J.(x). of prilared vermicuiite (Vm) has been mea-
sured for the mixed-layer system [(CH,y)uN ], [(CH1)yNH "],-,-Vm and compared with that of
Cs.Rbi-,.-Vm. Both systems exhibit a nonlinear d.(x) with approximate thresnoids of x =0).2 and 0.5.
respectively. A model which related d.(x) to laver rigidity and the binding energies of gailery and de-
fect sites yields excellent fits to the basal spacing data and to monoiaver simulations if coilective etlects
are included. This model should be applicable to other types of lamellar soiids.

PACS numbers: /8 65.+g

Lameilar solids constitute a class of materials which
exhibit a variety of specific properties. These properties
are in large part determined by the host-layer transverse
rigidity which characterizes its response to out-of-plane
distortions.! For example, graphite, whose monatomic
amphoteric layers are “floppy”™ and thus coilapse around
intercalated guest species, does not sustain a microporous
structure with large internal surface area. In contrast,
layered alumino-silicate “clays,” whose muitiatomic
fixed-charge layers are “rigid.” are unique among lamei-
lar solids in their ability to be pillared? by robust inter-
calated guest ions which occupy specific lattice sites in
the interlayer gaileries.’ The resuitant pillared clay is
characterized by widely spaced host layers that are
propped apart by sparsely distributed guest species
whose intralayer separation can be many times their di-
ameter. The enormous (ree volume of accessible interior
space that is derived [rom such an open structure has
significant practical implications in the fields of catalysis
and selective adsorption (sieving).

Although it is obvious that layer rigidity and piilaring,
which is a special example of the more generai phe-
nomenon of intercalation, are interrelated, the pillaring
mechanism has. to date, been poorly understood. For in-
stance, none of the available elastic models account
quantitatively for the full composition dependence of the
the c-axis repeat distance of any intercalated layered
solid.*™* It is not surprising that the rigid-layer versions
of such models fail when applied to floppy or moderately
rigid hosts such as graphite’ and layer dichalcogenides.’
But they are qualitatively inconsistent with data derived
from clay hosts to which rigid-layer modeis should be
most applicable. Accordingly, we report in this paper
the first successful attempt to quantify and parametrize
the relation between pillaring and layer rigidity. To ac-
complish this we have carried out x-ray and simulation
studies of the x dependence of the basal spacing, d(x),
of mixed-layer vermiculite (Vm) clays A,8)-,-Vm.
0ss x|, where A and B are cations (assume that A is
larger than B8) that are judiciously chosen to clucidate
the physics of pillaring. In a previous study® we exam-

ined the CsRb-,-Vm system for which the aikali in-
tercalate species are best characterized as “puny” pillars
since their ionic diameters are only 3.34 and 2.92 A. re-
spectively. Here we focus on the more robust mixed pil-
lar system tetramethyl ammonium-trimethyl ammoni-
um-vermiculite with effective diameters of 4.8 and 4.0
A. respectively. We find that the pillaring process is a
collective phenomenon which introduces an intrinsic non-
linearity in d(x). While our resuits are deduced for clay
intercalation compounds (CIC's) they shouid aiso be
applicable to other lamellar solids.

Vermiculite is a trioctahedral 2:1 layered silicate. Its
layers are formed from a sheet of edge-connected octahe-
dra (M ¥'=Mg, Al, Fe) which is bound to two sheets of
corner-connected tetrahedra (M 'Y =Si, Al) as shown in
the inset of Fig. . The layers of oxygen atoms which
terminate the clay layers are arranged in a kagome lat-
tice whose hexagonal pockets form a triangular lattice of
gallery sites which here are constrained by the require-
ment of overall charge neutrality to be occupied by the
gallery exchange cation. This occupation imposes a la-
teral registration of adjacent clay layers as indicated in
the inset of Fig. I. To synthesize the specimens studied
here, the Mg-* gallery cations which link the layers
of naturali Llano vermiculite were exchanged for
(CH));NH™* ions with ethylenediaminetetraacetate
as a complexant.” Subsequent exposure of pure
[(CHy);NH *]-Vm to the proper amount of (CH;){N*
yielded a solid-solution pillared CIC

[(CH;)N ’],[(CH}),\NH‘]. -e-Vm.

Self-supporting sedimented films exhibited a mosaic
spread of ==5° with the layers parallel to the substrate.
The x dependence of the (00/) x-ray diffraction pat-
terns of [(CHy)4N*].[(CH;)yNH*];-,-Vm is shown
in Fig. 1. The starred reflections in that figure are from
a smail concentration of an impurity phase whose
14.477-A basal spacing is x independent as evidenced by
the vertical line in Fig. I. The patterns in Fig. | can be
well accounted for by a structure-factor caiculation for a
25-layer stack.” We have also attempted to fit the pat-

2168 © 1988 The American Physical Society
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FI1G. |. Room-temperature x-ray dilfraction patterns of
[(CH )N, [(CHINH *]1=.-Vm excited by Cu Ka radia-
tion (filled circles). Starred reflections are from an impurity
phase. The solid vertical line shows the constant position of the
(002)° reflection. Inset: Schematic structure of a 2:! layered
aluminosilicate clay with the tetrahedrai (T) and octahedrai
(O) sheets which bound intercalated ions (1) (ses text).

terns of Fig. | using a Hendricks-Teller (HT) model® for
an interstratified structure.” The HT calculations yieid-
ed results which were clearly inferior to those based on a
solid-solution arrangement in which ail gaileries have the
same height. Moreover, a one-dimensional Patterson
synthesis’ from the measured peak intensities did not
show any sign of interstratification.

From the data of Fig. |, we have determined the x
dependence of the normalized basal spacing,® 4. (x) (or
normalized c-axis repeat distance), of [(CHy)N*],-
{(CH,)yNH * ] -,-Vm which is shown in Fig. 2 as filled
squares. Here d,(x)=[d(x)—d(0))/ld(1)—=d(0)]
where d(x) is the observed basai spacing. Also shown in
Fig. 2 for comparison are corresponding resuits for
Cs¢Rby--Vm (Ref. 6) (open squares). Both the Cs-Rb
and (CH3)eN*-(CHy);NH"* systems exhibit a non-
Vegard's-law (nonlinear) rapid rise in d.(x) with in-
creasing x at “threshold™ values of x, =0.5 and 0.2, re-
spectively.

To understand the physical origin of the observed
dy(x), we have simulated a model monolayer system
with finite transverse layer rigidity. For simplicity we
assumed that the intercaiate ions are hard spheres.

1.00 F o5

0.7

d(x)
(=]
[
(-]
T

02S

0.00 -

0 0.2 0.4 0.8 0.8 1

FIG. 2. The composition dependence of the normalized
basal spacing of ((CH;)«N*],[(CHy)sNH*)1-(-Vm (filled
squares) and Cs¢Rbi-.-Vm (open squares). The solid lines
are least-squares fits to the data with Eq. (4) of the text. [n-
set: Bright-field scanning-tunneling clectron micrograph of
(CH))yNH *-Vm acquired at T = —135°C with the electron
beam normal to the lavers. Note the free surface between lay-
er edge disiocations (outline-headed arrows), the folded region
(lozenges). and the microcrack (open-headed arrows). The
small dotted grids are an instrumental artifact.

Starting from a two-dimensional triangular lattice of lat-
tice constant aqg representing a singie gallery with eacn
lattice site occupied by a B ion of height dy, we random-
ly replace the B ions with A ions of height d4 > ds. The
height of a cell within a healing length A of the .4 ion is
also increased to d4. A second A ion in this region does
not affect aiready expanded cells but expands unexpand-
ed cells within A of its location. The process of random
replacement of the B ions continues to saturation. [f we
define a(x) as the fraction of ceils with height d,, then
d.(x) =a(x). The simulation resuits for d.(x) are
shown in Fig. 3 for several different healing lengths.
Clearly, in the floppy-layer limit A =0, a Vegard's-law
behavior obtains whereas the initial slope (d.(x)]; =g
— o 3as A— %, As can be seen from Fig. 3, there is no
percolation threshold even for finite A because d,(x) de-
pends upon all of the large ions. not oniy on those be-
longing to the infinite percolation cluster. Note that the
nonlinearity in da(x) for A > 0 is a collective effect asso-
ciated with the individual interaction between the larger
ions through their distortion fields.

The sublinear x dependence and the rapid rise in
da(x) near x, is outside the monolayer model. Several
mechanisms including the relative magnitudes of host-
guest and host-host interactions, interlayer correlations,
and the presence of defect (d) sites can produce sub-
linear behavior in d.(x) but only the latter two can gen-
erate threshold effects. Since the ions of interest here
are refatively incompressible we treat the guest species as
hard spheres as noted above. The interlayer correlation
mechanism is one in which large guest ions locaily puck-

2169
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FI1G. 3. Monolayer tnangular lattice computer simulations
(dotted lines) of the composition dependence of the normalized
basal spacing of a ternary intercalation compound for severul
values of the heuling length, A, and rigidity parameter, p. The
sohid lines are from Eq. (4) of the text with (1) p =1, A =0; (2)
p=7 A=aq (3) p=13, A =v3ag; and (4) p=mos ) =os [nsecl:
The puckered region of a triangular lattice with A =ag. Here
the number of cxpanded sites is p=Z+ 1 =7 where Z is the
number of nearest neighbors. .

er the bounding layers so that at low x they adopt stag-
gered lateral positions, i.c., no line joining the centers of
any pair of large ions in adjacent galleries is perpendicu-
lar to the silicate layer. This mechanism is relevant to
host materials with low transverse layer rigidity such as
graphite while the d-site mechanism is more appropriate
1o the more rigid layers of clays.

Sources of d sites in our specimens are shown in a
scanning tunneling clectron micrograph of (CH;);NH *-
Vm (inset, Fig. 2). The region imaged consists of homo-
geneously intercalated areas (g sites) which are bounded
laterally by layer edge dislocations and are capped by
free surfaces (d sites) that bind guest species without in-
ducing c-axis expansion. Since the clay grains have typi-
cal basal dimensions of a few micrometers, it is clear
from the scale of the micrograph that these free surfaces
can represent a significant fraction of the total surface
available to guest species. Additional minor sources of d
sites are the microcracks and folds that are visible in the
micrograph.

We have explored the d-sitc mechanism by coastruct-
ing a two-site model in which the basal spacing is as-
sumed to depend upon the gallery 4-ion concentration x,
which itself is a function of the total A-ion concentration
x. The functional dependence of x; on x is determined
by two parameters, / and A/kT, where /=Ny/N; is the
fraction of ions in d sites relative to those in g sites and A
is the effective binding-cnergy difference between these
sites, the d sites having a lower binding energy. For sim-

plicity we assume only one type of 4 site. A statistical

2170

mechanics calculation gives
xg=1/(z+1), (1)
x={1/01+/))x,

+U 7+ N/ zexp(=akT)+11, (2)

where z =expl(e; —pu)/kT) is related to the fugacity
and the binding cnergy ¢, of the g sites. Equations (1)
and (2) can be solved to obtain x; =o(x,/,8/kT) for
different values of / and a/AT. Physically then for
x <x,, the A ions first preferentially displace 8 ions
from the & sites. This reduces the gallery A-ion concen-
tration for a given x and yields a sublinear increase in
d.(x). For x > x, additionally ingested A ions enter the
galleries. The result is a rapid increase in d,(x).

Using methods developed by Xia und Thorpe'? one
can obtain the following analytic solution for our mono-
layer simulation:

da(xg)=1=(1=x)?, 0=<x,=<1, (3)

where p is a layer rigidity parameter. This equation fits
the simulation data extremely well as shown by the dot-
ted lines in Fig. 3. For our lattice-gas simulation.
p=Z+!| where Z is the number of ncighboring sites
that are puckered by the insertion of an isolated A 10n
(see inset Fig. 3). In the continuum limit (x>>d,4/2),
p~(20/d4)% Using Eq. (3) and x, =o(x.f,a/kT), we
obtain .

do(x)=1=1{1=9(x,f,a/kT)}?. (4)

Note that the slope of du(x) at x 2 x, is governed by a
combination of p and A/kT while x, is determined pri-
marily by f for large a/kT.

We have used Eq. (4) to obtain a nonlinear least-
squares fit to the data of Fig. 2. The purameter values
which give very good fits (solid lines in Fig. 2) for the
two CIC systems [(CH;)sN*],[(CH;);NH"],-,-Vm
and Cs Rb,-,-Vm are [p =8.0, f=0.5, aA/kT =4.3} and
{p=10, f=22, aA/kT =4.1}, respectively. The smaller
value of the rigidity parameter in the Cs-Rb system is
consistent with the fact that alkali ions in CIC's can par-
tially penetrate the bounding silicate layers. The mecha-
nism which gives rise 10 this penctration is a torsional
in-plane distortion'-® of the tetrahedral sheets which ex-
pands the hexagonal pockets that contain the guest
species. lon penetration of the clay layers causes a
reduction of the apparent healing length. But the
(CH;)sN* and (CH;);NH " ions are much 100 large to
penetrate the clay layer significantly, even in the pres-
ence of torsional distortions. Thus one expects the Cs-
Rb-Vm system to exhibit a lower value of the rigidity
parameter p. The [ values deduced for the two systems
also reveal interesting properties of the clay structure.
For singly ionized guest species N; =g A4, where o is the
layer charge density and A, is the surface area asso-
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ciated with J sites, j=d.g. If A=A4,+1, then
Ag={f/O+)]A and (Ag)cs-re/(Aadicny,-cnyy, =2
Thus. of the surface which provides 4 sites for small Cs-
Rb ions only about half (the portion not adjacent to edge
dislocations, or derived from some microcracks or
folds) can also accommodate the robust (CH:i)sN™-
(CH;y)W\NH ™ ions without inducing basal expansion. Fi-
nally. the difference in the A/kT values for the two pairs
indicates that the d sites are more attractive for the
larger ions. This makes physical sense because the more
spatially demanding ions prefer the less constrained de-
fect environment to the more restrictive gallery.

The laver rigidity model which we have developed
here should be directly applicable to other lamellar solids
such as zirconium phosphates and layered niobates
which have relatively rigid layers. It can also give in-
sight into the behavior of intercalation compounds whose
host lavers have low or moderate rigidity. For example
Li«Cs (Ref. 4) and Li,TiS;'" exhibit no threshold in
d.(x). and therefore contain few il any d sites. Also.
there are conflicting reports of a Vegard's-law d,(x) for
Rb(K,-.Cr prepared from single-crystal graphite'* and
a thresholdlike sublinear behavior for the same com-
pound prepared single-crystal graphite,'? highly oriented
pyrolytic graphite.'® or powder.'S For clay hosts sub-
linear threshold behavior can be reasonably associated
with d sites. But for floppy-layer hosts such as graphite
there is much evidence'? that interlayer correlations and
their associated strain fields dominate the behavior.
Therefore, even though the non-Vegard's-law behavior of
Rb.K;-.Cx (Ref. 12) has been attributed to d sites, we
do not believe that the model addressed here is applic-
able to that compound.

Finally. we have assumed that the site binding ener-
gies in our model are independent of concentration. This
assumption might be relaxed if the binding energy of the
g sites drops once the galleries are initially expanded.

The resultant transfer of ions from 4 to g sites would
then contribute to the rapid increase in d, (x) for x 2 x,.
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LAYER RIGIDITY OF CLAY INTERCALATION COMPOUND: [MeuN‘]1_x[Me3NH‘]x-V

+ » + »
S. Lee , H. Kim , S.A. Solin and T.J. Pinnavaia

Center for Fundamental Materials Research
Michigan State University
East Lansing, MI 4882u-1116

Vermiculite i{s an Alumino-Silicate clays which is one of the layered
materials that can form intercalation compounds [1-3]. The host layer of
Vermiculite is classified as a 2:1 layered silicate due to its structure
[2]. This 2:1 layered silicate is responsible for several of the
distinctive properties of Vermiculite. First, unlike graphite layers
which are charge neutral, 2:1 layered silicate has a negative layer
charge. To compensate this the galleries of Vermiculite are occupied by
cations and in turn this makes the intercalation process in CIC's (Clay
Intercalation Compounds) an ion exchange process. Second, because the
2:1 silicate layers are composed of multiple, cross-linked planes of
atoms, one can expect the clay layers to be relatively rigid to
transverse distortions. The rigidity of the silicate layer is important
not. only for the study of fundamental physical properties of quasi-two
dimensional systems but also for practical applications such as catalysis
(4,5]. 1In any case, it is very important to know how rigid the layer is
and what factors affect layer rigidity.

To answer the above questions we have used the following strategy.
First, we prepared the ternary CIC's: A, _ Bx-v, 0sxS1 with two different
monovalent intercalants where the ionic¢ radious r,6is larger thanr .
Ions A and B are randomly distributed in the gallery and the galler
height is different from that of the pristine host material. Second, we
used x-ray diffraction to measure the c-axis repeat distance between two
successive host layers (basal spacing). The basal spacing is in general
a non-linear function of the intercalant composition x and is governed by
the layer rigidity, intercalant dimensions, the difference in size and
compressibility of the intercalants and the effects of inter-layer
correlation.

For this study [MeuN‘]‘_x[Me3NH‘J -V(ermiculite) was made from Mg-
Vermiculite using an ion exchange “method (6], and the result was compared
with the previous study of (Cs ] _x[ﬂb J -v (7). The x-ray diffraction
experiment was performed with a computer controlled Huber U-circle
diffractometer coupled to a Rigaku 12Kw rotating anode Moka source
through a vertically bent graphite monochrometer.

:Department of Physics and Astronomy
Department. of Chemistry
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The (00L) x-ray diffraction patterns for different compositions (x)
are shown in Fig. 1 together with an insert showing a rocking curve of
the (004) reflection. Vermiculite sample films are the mopological
analog of HOPG and this rocking curve indicates a mosaic spread of -5.25
which is comparable to that of graphoil [8]. From the x-ray diffraction
pattern one can see many orders of peaks and these are used to determine
basal spacing from a Q-plot.

vy
- --
- - E -
Nt e Vrans P,
) SO
1e1 0
.
'.“ :
W A e -
e - v*aw&-.‘f...w’
e 5
= ~ e §7
. R I e
M ~ e 20
B ~
- - e P R
- -
v
s = ve 04
‘. M AR e T
Lo,
1 | P | 'l 1 i 1

L
0 1 Z 3 4 5 6 A

Fig. 1. X-Ray diffraction patterns of [MeuN.]l_x[Me3NH‘]x‘V

The following discussion of the behavior of basal spacing versus
composition is based on the assumption of a mixed heteroionic system,
meaning ions A and B are randomly decorating a 2D Kagomé lattice in each
gallery. On the other hand, it is well known that clays tend to be
interstratificated which means ions A and B can segregate into different
galleries in a sequence units which may be randomly stacked [1,9,10]. To
make it clear which {s the case, a comparison between the experimental x-
ray diffraction patterns and the computer generated patterns {s made. In
generating x-ray diffraction patterns, the Lorentz-polarization factor
and the layer scattering factor are considered with two different
interference functions, a Bragg function and a Hendricks-Teller (HT)
function (1,11]. For the Bragg interference function, 25 layers and for
the HT intereference function infinite number layers are assumed. The
resultant computer generated peaks based on Bragg function give a
superior agreement with experimental data compared to those based on the
HT function. Also no sign of basal spacings on_a scale greater than 20A,
characteristic of e.g. A/B/A/B stacking, has been observed. Hence one
can conclude safely that the intercalants are indeed randomly distributed
in the galleries.
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Fig. 2. Normalized basal spacing of CIC's

To compare the composition dependence of basal spacing between two
different CIC's a normalized basal spacing defined as
d(x) ={d(x) , -d J7/(d___.-d_. ] is used [7]. Here d =d(0 and
dm“'.‘S’("\‘) . o?Re %Pmaliggé bgggl‘ spacings of [MeuN’].’_m‘Tﬁe NH)fxb-s»I are
shown in ?‘qg 3 with that of [Cs ]1_ (Rb ]_-V for corﬁparéson. Both
systems exhibit a composition dependént normalized basal spacing which
does not follow a Vegard's law but rather has a step-like character.
Qualitatively the sharp drop in dnormmeans silicate layers are quite
rigid (12] but the different locations, x=.4 for [(Cs ,Rb ] system and
x=.6 for [HeuN ,Me_NH ] system suggests that intercalant ions are playing
an important role ?n determining basal spacing.

To address the intercalant issue, the encapsulement parameter §
which i{s a measure of the degree to which the cation is enveloped by the
bounding host layers (7] and the sagging limit Ahma which quantifies the
finite rigidity of the host layer are introduced. fn Table 1, relevant
parameters are 11sced. As one can see from the first and secqnd columns
of the table, d(M -V)ob {ncreases with the height of cation M but, there
is a certain descrepagcy between (Cs ,Rb ] ions and [Me N ,Me_NH ] ions
which is more vividly expressed in terms of § in the table. 3In CIC's
intercalants are sitting on the hexagonal pocket of an oxygene kagomé
lattice and {t is well known that these oxygene planes are capable of
performing torsional distortions [1,7,13]. These hexagonal pockets have
an undistorted size of 2.67A and for the cations which have lateral
dimensions that are less than or comparable to the pocket size these
oxygene layers have a torsional distortion which increases §. But if the
cation becomes too large, the host layers cannot provide sufficient
torsional distortion to accomodate them. Hence the dasal spacing change
from that of the pristine sample is far less sensitive to the ion size
with the smaller ion set than with the larger ion set.

For finite rigidity layers we can express the sagging of the host
layer from its maximum height as Ah(x)=ah__ [1-exp(1-L(x)/a)] where ah
is the sagging limit due to fintite layer rigidity (i.e. for tnﬂnitgﬁ
rigid layer Ahma is zero), L (x) is the separation between two nearest
big fons with gfven composition x and a {s the unit length of the kagomé
lattice cell. For x=0 limite (all big ton limit) we have L(0)=a and
Ah(x) becomes zero, for high x limit L>>a and Ah becomes an_ x* Now
compare Ah(x) with Ar, the difference of ion radii. If Ah(x) is Smaller
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TABLE 1. Relevant Parameters

d(R) H(R) D(R) §(R) §/H(Z)
[MeuN ] 13.34 4.2 u.8 0.20 u.76
[HgsNH ] 12.70 3.2 4.0 <0
Cs’ 10.57 3.38 3.38 2.15 63.6
Rb, 10.23 2.96 2.96 2.07 69.9
Na (*) 9.75 1.96 1.96 1.55 79.1
*:ref. 14

d is the basal spacing of H’-V, H and D are height ard diameter of
cation, and encapsulement parameter {3 defined as §=(T+H)-d where
T=9.34(A) is the thickness 95 the silicate layer.

cf. D(Li )=1.36(A) and D(Mg ~)=1.30(A)

than Ar, the smaller {on does not contribute to basal spacing which will
then be determined by d and Ah(x). If Ah(x) is larger than Ar, the
layer sagging is 1im1T33 by the smaller ions and the basal spacing will
be affected by the presence of the smaller ions. Because ah(x) increases
as x increases, one can expect to observe the contribution from the
smaller ion at smq}ler’x for the syatem which has smaller Ar. As shown
in Table 1 Ar(Cs ,Rb ]=.42A and ar{Me /N ,Me NH ]=1.0A, in addition the
torsiqpal distortion of the Kagomé lattice reduces the effective
ar{Cs ,Rb ] even less than .42A as explained in the encapsulement
discussion. This is the reasong why sharp drops in basal spacjing were
observed near x=.4 for [Cs ,Rb ] system and near x=.6 for [MeuN .Me3NH ]
system, respectively.
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