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ABSTRACT

FINITE ELEMENT ANALYSIS OF HYDROLOGIC RESPONSE AREAS
USING GEOGRAPHIC INFORMATION SYSTEMS

By

Baxter Ernest Vieux

The methodology developed in this research utilizes a
Geographic Information System and the finite element
Galerkin formulation to solve the kinematic wave equation
for overland flow in a watershed. The watershed studied
was number 4H, located in Webster County, Nebraska, and was
operated by the USDA-Agricultural Research Service.

The one- and two-dimensional forms of the equation were
studied and the resulting outflow hydrograph was compared
to an actual storm event, May 4, 1959. Rainfall excess was
calculated wusing the Green and Ampt infiltration equation
for an unsteady rainfall.

Hydrologic response areas were formed based on slope
with the aid of the ARC-INFO Geographic Information System
developed by ESRI, Redlands, Ca. A finite element grid
representing streamlines and equipotential lines was formed
such that the direction of slope forms the streamlines of
flow and the elevational contours form the equipotential
lines. This results in nodal slope values perpendicular
and parallel to the sides of the elements. Kinematic shock
was avoided due to the use of nodal slope values. This

formulation allowed solution of the overland flow equations
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for a watershed as a continuum rather than as a series of
independent cascades.

The method developed through this research provides a
more accurate description of the hydrologic processes in a
watershed. Through more accurate description of hydrologic
processes insight is provided into transport phenomena of
agricultural pollution such as pesticides and nutrients in
surface and subsurface water as affected by overland flow

and infiltration for an agricultuy}l watersheé:
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I. INTRODUCTION

Agricultural pollution by pesticides and nutrients
threatens both surface and subsurface waters due to
hydrologic transport of these contaminants. The locations
within a watershed that produce similar contributions to
surface and subsurface waters may be termed hydrologic
response units or areas. To  successfully reduce
subsurface water contamination, reduce sedimentation, and
control erosion, land treatment measures must be focused
on those geographic areas that will yield the greatest
mitigation, Hydrologic modeling has recently been the
subject of more and more attention in addressing watershed
management. Modeling may be mathematical, if described by
a mathematical equation, or physical if a scale model is
built to represent dimensional similitude to the actual
watershed. In either case the model is a conceptualization
of the actual watershed. Mathematical modeling generally
seeks to define the mathematical relation between a set of
independent variables and a response or dependent variable.

The twentieth century has witnessed a rapid
acceleration in the quantitative modeling of physical
processes. The mathematical description of natural
phenomena in the hydrologic cycle is not, however, a child

of this century. The history of quantitative hydrology has
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been marked by important milestones. Achievements of
each scientist have served as the foundation for advances
by the next scientist. Of the classical period the most
notable treatise (in 66 AD) that makes mention of the
hydrologic cycle was Vitruvius' "Ten Books of Architecture”
(Morgan, 1960). Vitruvius' description in Book VIII on how
to find water, we read

The valleys among the mountains receive the rains most
abundantly, and on account of the thick woods the snow is
kept in them 1longer by the shade of the trees and
mountains. Afterwards, on melting, it filters through the
fissures in the ground, and thus reaches the very foot of
the mountains, from which gushing springs come belching"
out.

Though not without some misconceptions, Vitruvius
essentially understood the origin of springs and
groundwvaters. Not until the seventeenth century did
ideas of quantitative hydrology emerge. Biswas (1968)
presented the following matter on the beginnings of
quantitative hydrology.

Pierre Perrault anonymously published the book De

1'Origine des Fountaines in 1674 (Biswas, 1968). In this

work he calculates the quantity of water that would
accumulate from the rainfall in the catchment of the Seine
River, France. He found that a sixth part of the rain and
snow water is necessary to make the river run continually
throughout the year. For the first time experimental
evidence proved the pluvial origin of rivers. The greatest
contribution of Perrault and other contemporaries--

including Edmond Halley, who calculated the volume of water
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required to supply the rivers in the evaporation-
precipitation cycle, and Edme Mariotte who expanded on the
pluvial origins of rivers--was that they proved their
hypotheses through quantitative methods.

Watershed hydrology can be treated as either a lumped
or distributed parameter model as well as by a stochastic
or a deterministic method. A lumped model tends to utilize
the average of a set of independent variables that
represent a sub-basin or an entire watershed. A
distributed model utilizes the spatial location of the
independent variables and computes the dependent variable
directly at the spatial 1location of each independent
variable. Distributed models represent spatial
distribution as a set of grids or a series of finite
elements, each with its own physical properties. The
. degree to which physical properties--e.g., soil
infiltration parameters, surface roughness, or slope--are
averaged, represents the degree to which the model is
lumped. The direct computation utilizing these parameters
is a deterministic_ method as opposed to a stochastic

method.

Scope and Objectives

Early modeling efforts neglected the spatial
variability of the independent variables. Lumping of
these parameters does not allow visualization of the

spatially distributed runoff and infiltration processes.
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Distributed parameter modeis, which can readily handle
complex geometry and spatial distributions of the
independent variables, have typically used approximations
of the actual watershed by using arbitrary grids, planes or
elements. The observation of the spatial and temporal
distribution of infiltration and runoff is one of the
benefits claimed by proponents of distributed models. In
actual practice, however, the volume of input data
prevented accurate representation of the spatial character
of the input data. Proper location of 1land treatment
measures required knowing the spatial and temporal’
distribution of the infiltration and runoff processes. In
order to achieve an accurate characterization of the
spatially distributed input parameters, an improved method
of defining hydrologic response areas is needed.

The value of processing a watershed by a Geographic
Information System (GIS) is evident within the context of
the finite element method as shown in Figure 1. The GIS
serves as a spatial data management system. Soils maps,
landuse and other geographic data are represented 1in a
digital media using a common coordinate system. The first
step in the finite element method 1is to define elements

over which the differential equations of overland flow may

be
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integrated. The efficiency of the Geographic Information
System 1is realized when areas of like attribute values,
such as infiltration parameters, slope, surface roughness,
and so on, are aggregated within a boundary. This boundary
forms a polygon consisting of vectors or arc segments.
These polygons then become the set of finite elements used
to model the runoff process.

The purpose of this research was to develop a method
that more accurately predicts the outflow hydrograph
resulting from runoff during a rainstorm event for a
watershed with spatially non-uniform parameters. This‘
method utilized the finite element method to compute the
runoff rates and a Geographic Information System to more
accurately represent the spatially distributed parameters
for wuse in the computation of the runoff. The specific

objectives for reaching this goal are as follows:

1) Define hydrologic response areas that exhibit similar
soil infiltration parameters, surface roughness, and

slope.

2) Apply the finite element method to the specific
hydrologic response areas to compute and route the

overland flow to the outlet.

3) Compare the accuracy of the outflow hydrographs to the
actual outflow hydrograph for a given rainstorm event

for the following two cases:



i) A finite element grid that is of an

arbitrary spatial form.

ii) A finite element grid formed from hydrologic
response areas defined by the Geographic

Information System.

It was hypothesized that the combination of the
Geographic Information System and the finite element method
would result in a mathematical model that predicted the
outflow hydrograph from a finite element grid formed of
hydrologic response areas more accurately than from a
finite element grid that was of an arbitrary spatial form.
Validation of this hypothesis was accomplished if the
method developed through this research more accurately
predicted the actual outflow hydrograph from a watershed of
non-uniform, spatially distributed parameters such as

infiltration parameters, surface roughness, and slope.
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would result in a mathematical model that predicted the
outflow hydrograph from a finite element grid formed of
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II. REVIEW OF THEORY AND LITERATURE

Since the seventeenth century, the science of
hydrology evolved together with mechanical and industrial
developments. The twentieth century and recent decades in
particular, have seen great strides in the science of
hydrology. The industrial age, which 2£fected
environmental degradation also necessitated more andl
greater strides in hydrologic methods. One such method,
the mathematical model, through recent technical
elaborations has allowed the direct modeling of spatially
distributed hydrologic processes.

Hydrologic processes, when described by physically
based equations, are termed deterministic. This review
expounds the theory in the literature on deterministic
hydrologic models, particularly those wutilizing finite
difference and finite element methods to describe the
spatially distributed hydrologic process of a rainfall

storm event over a watershed.
A. Hydrologic Modeling

The physically correct representation of the surface
runoff and infiltration processes in a watershed, field, or
plot depends on many factors. To categorize these factors,

several distinctions should be made in general as to the
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modeling process that seeks to represent the physical
process. Abstraction is the mind's attempt to disengage
the essence of something from that which is non-essential
or only incidental to its make-up (V.E. Smith, 1950). The
order of abstraction required in mathematical modeling is
to consider the mathematical relation between cause and
effect for the abstracted, conceptual model. The
conceptual model strips the processes that are considered
incidental or nonessential. The mathematical model then
describes those essential processes contained in the
conceptual model. Considering the complexity of the real’
world, it is necessary to.use a conceptual model in order
to successfully apply the mathematical model. This however
is not without drawbacks, considering the interdependence
of the many hydrologic processes. Modeling a particular
process in the absence of another that is affecting the
modeled process may result in a physically invalid model
and would represent a pobr choice of a conceptual model.

These drawbacks notwithstanding, we will examine first
some mathematical models that seek to model
deterministically the physical process of the rainfall
event. This process may include infiltration, overland
flow of the rainfall excess, and channel routing of the
lateral 1inflow from the overland flow portion of the
watershed. Smith and Woolhiser (1971) developed a
mathematical model that modeled a coupled system of two

complex, natural processes of an elemental watershed. The
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conceptual model included only infiltration and overland
flow. Channel flow was not considered because the
conceptual model was limited to the upland portion of the
watershed where channel flow is not well established. The
infiltration model provides insight into the process by
which rainfall becomes either runoff or subsurface water.
The kinematic equations provide insight into the depth and
velocity of the runoff as it accelerated down the
watershed. The infiltration and the kinematic equation
were coupled mathematically such that the rainfall excess
as defined by the infiltration model was the boundary
value for solution of the kinematic equation.

A distributed, deterministic system results when the
inherent spatial nature of the processes are preserved in
the solution method. A model such as Smith and Woolhiser's
provides the opportunity to model the outflow of the
watershed and, more importantly, the spatial and temporal
distribution of the runoff-infiltration process within that

watershed.

1. Distributed Parameter Models

Huggins and Burney (1982) observed that hydrologic
modeling is most differentiated by the manner in which
parameters or input values are handled. Lumping or
averaging certain parameters yields a lumped parameter
model. Distributed parameter watershed models treat the
individual input parameters directly without lumping. Such

models avoid the errors caused by averaging of nonlinear
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variables or threshold values (Huggins and Burney, 1982).

Distributed parameter models are relatively new and
are the subject of intense research. The principal
advantage of distributed models is that the geographical
variation of data within the watershed 1is preserved.
Furthermore, with measured parameters, ungaged watersheds
may be investigated for the effect of landuse changes.
Finally, water quality simulations on a distributed basis
identify the source areas within a watershed of
hydrodynamic transport of pollutants.

Distributed parameter watershed models are more
complex, require more computing time and increased input
data. The value of the knowledge derived from distributed
models must be considered vis-a-vis the increased time and
costs of developing and using this class of model. High
speed digital computers, however, obviate the restrictions
on increased computing time and complexity allowing more
and more complex, distributed models to be used.

Huggins and Monke (1966) developed the ANSWERS model,
a distributed parameter model that uses a grid as a method
of preserving the geographic heterogeneity of the input
parameters. Each cell of the grid represents the
hydrologic wunit over which the model equations are solved
using the finite difference method.

The ANSWERS model uses a fundamental method of
computing distributed processes. The continuum of the

watershed is resolved into discrete elements and
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preserves the spatial heterogeneity of the input

parameters.

2. Hydrodynamic Model Approach

The hydrodynamic approach proposed by C.L. Chen and
Ven Te Chow (1971) considered watershed hydrology as a
distributed continuum, where the hydrodynamic principles of
fluid flow apply. The solution of the hydrodynamic
equations yields a deterministic model capable of defining
distributed flow velocities and depths over the watershed.

The hydrodynamic equations have been derived and
solved Dby various methods. There are two distinct
categories of flow in a watershed--overland flow,
characterized by shallow flow, and channel flow,
characterized by well-defined channel geometry. The
boundary between these two flows changes with time and
distance and therefore are modeled with difficulty.

Chen and Chow formulated a comprehensive watershed-
flow model. They classified watershed hydrology by a
molecular approach, a microscopic hydrodynamic approach,
and a macroscopic hydrodynamic approach. The microscopic
and macroscopic hydrodynamic approaches both derive the
Navier-Stokes equation of motion for fluid flow with
suitable boundary conditions. The difference between the
micro- and the macro- approaches 1is that the latter
utilizes averaging of variables in certain flow directions

in order to simplify the Navier-Stokes equation.
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The approach of Chen and Chow formulated the equations
of continuity and momentum for flow of a Newtonian fluid
in a three dimensional space. A Cartesian coordinate
system 1is used whereby the average velocity 1is taken
parallel to the ground surface with the x- and y-
directions along the bottom of the flow. Temperature
variations are not considered, so the fluid is assumed to
be of a homogeneous viscosity. Their derivation is
summarized as follows.

a. Conservation of Mass

The conservation of mass is derived by integrating
in the vertical direction such that the differential
variation in flow 1is considered only in the x- and y-
directions with vertical variation as defined by the depth
of flow h.

dh + 3(uh) + 23(vh) = r - i (1]
ot ox 3y
where

h = the depth of flow measured in the vertical
axis z'

u = depth-averaged velocity in the x-direction,
v = depth-averaged velocity in the y-direction,
r = rainfall, and

i = infiltration, positive when moving out of
channel, negative when moving into channel.

The coordinate system used assumes that the primary
flow directions are parallel to the ground surface. This

requires that the z-direction makes an angle © inclination
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with the force of gravity. Equation [1] is in terms of
vertically oriented variables h, r, and i. The x- and y-
directions are not orthogonal with the vertical z-axis.

b. Conservation of Momentum

The conservation of momentum is derived by balancing
momentum and forces for an elemental control volume. The
resulting equation is the Navier-Stokes equation and is a
fundamental equation of fluid mechanics. Chen and Chow
(1971) Dbegin with the Navier-Stokes equation and simplify
it according to appropriate boundary conditions and
assumptions. This rather convoluted approach yields the

general momentum equation for watershed flow in the «x-

direction.
3(AvV) + Q3(BAV2?) - BrrATcos®y - BLVqQL
ot t
= gAsin@y - gd[A(hcos?e, + h*)] - gASfy (2]
x
where

8x,y,z = angle with the respective direction,

h = depth of the centroid of the cross-
sectional area,

h™ = rainfall impact overpressure or induced
head,

A = cross-sectional area of flow,
Sgx = friction slope in x-direction,

8,81, = momentum correction factors for main and
lateral flows,

Br = momentum correction factor for raindrop
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terminal velocity,
A = mean terminal velocity of fall of raindrops, and

&y = angle of inclination between the terminal

yelocity vector and the vertical axis.

Because they are applicable to both overland and
channel flow, equations [1] and (2] for the conservation of
continuity and momentum, form the description of the
watershed problem. They are the complete dynamic form of
the shallow water equations. The continuity or
conservation of mass and the one-dimensional, conservative
form of the conservation of momentum are commonly known as
the St. Venant equation derived by St. Venant in 1871. The

general form, ignoring the momentum of the rainfall impact

and overpressure, is expressed by [3] as a set of equations

AdV + VOA + 9A = @

ax 9x It
and
Vav + 3V + g 3(yA) = g(Sg - Sf) - Vq (3]
9x ot A 9x A
where
A = cross-sectional flow area,

depth of flow,

mean water velocity,

lateral inflow per unit length of channel,

<~ a < i
]

= distance from the water surface of the centroid,

So = channel slope, and
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S¢g = friction slope.

These are the conservation of mass and momentum in the x-
direction.

Abdel-Razaq (1967) applied the finite difference
solution to the above St. Venant equations. Brutsaert
(1971) experimentally verified the solution, and Yen (1973)
recapitulated the open channel flow equations emphasizing
the origin of the St. Venant equations as the special form
of the conservation of mass and momentum. Previous
researchers had simplified these equations before
formulating a mathematical model. The significant
contribution 1is that these researchers applied these
equations to a watershed flow domain.

The solution of the partial differential equations
requires 1initial and boundary conditions. If the flow
domain is considered to be the watershed as a whole, then
only one boundary condition on the watershed divide and one
at the outlet are needed if the flow is subcritical. If
supercritical, then only one boundary condition is required
at the watershed divide to give a unique solution.

If the flow domain 1is divided artificially into
overland flow and channel flow, then there are two
subdomains separated by an internal boundary. This
boundary is not known prior to the solution yet is required
in the solution. This difficulty may be removed by
estimating a likely location of such an internal divide and

treating the system of channel and overland flow as
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uncoupled. This approach allows the computed values of the
overland flow to act as lateral inflow for the channel flow

equation.

3. Kinematic Wave Equation

A comprehensive treatment of the kinematic wave
equation was examined by Woolhiser (1975) as a means of
computing hydrographs with the assumption of both the Chezy
and Manning equations as friction relations. Grace and
Eagleson (1966) developed the full dynamic equations using
the control volume technique for conservation of momentum
and mass. Normalized equations were then established and
an order of magnitude analysis produced. This approach
allows simplification of the governing equations by
discarding small order terms maintaining similarity between
model and prototype. Brutsaert (1968) obtained an
analytical solution to the shallow water or St. Venant
equations. This was done within a small solution domain
bounded by the forward and backward characteristics and the
x-axis from 0 to L of the plane. The series solution
provides good initial values for numeric analysis of
overland flow 1in the initial stages of the hydrograph
development. Of importance is that for large slopes, for a
large roughness coefficient of the plane, or for very small
constant lateral inflow, the series solution reduces to
the kinematic wave equation, which is an approximation to
the full dynamic equation.

Following is an illustration of the simplifications that
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A}

‘can be made to the full dynamic equation, ignoring lateral

inflow:
Vav + 3V + g 3(yA) = g (So - S¢) (4]
Ix It A 9x
or
Sf = So)- g 3(yA) - Vv 3V - av (5]
CE - —2 inx X 3t
\KINEMATICYF )
[47 DIFFUSION

FULL DYNAMIC

The terms in equation [5] represent the possible
analogies for the modeling of the momentum equation.
Through simplification or elimination of 1low order-of-
magnitude terms, the significant terms are wused in
computing the fluid's dynamic behavior. The elimination of
these terms in the above analogies introduces an error in
the solution. The magnitude of the error dictates the
acceptability of the analogy used under the physical
conditions of the problem.

Woolhiser and Liggett (1967) examined in depth the
errors introduced by the kinematic wave analogy applied to
the full dynamic equation for the rising hydrograph. They
discovered that the kinematic analogy can be applied within
a certain range of input parameters. To quantify this
range, the equations of continuity and the momentum
equation are first normalized, constituting a nondimensional

form of the full dynamic or shallow water equations. Then,
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the kinematic equation or continuity plus the Chezy
relation is normalized, yielding the equation of motion
without the momentum terms.

Kibler and Woolhiser (1970) described the kinematic
cascade as a hydrologic model. The concept here 1is to
reduce not only the full dynamic equation momentum to a
simplified form but also the geometry of the watershed to
simple geometric cascades, through which the overland flow
is routed to the outlet of the watershed. This approach
results in a distributed parameter watershed model. The
kinematic equation used is the Chezy equation together.

with the equation of continuity.

N-1
u = ah (6]
and
d3h + 3Juh = q (7]
t Ix

N = 3/2 for wide channels,

a = C\IE, where C is the Chezy roughness
coefficient and S is the slope, and

h = the depth of overland flow.
In order to quantify the range of input parameters for
which the kinematic analogy is applicable, equations [6]

and (7] are normalized or made dimensionless.

Dimensionless Form

Equations [6] and [7] are normalized to yield
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dimensionless equations dividing each term by a
characteristic length or time. The Chezy equation is
substituted into the -equation for continuity and then
solved using the method of characteristics. The
dimensionless parametric equation is
N-1

dhx + Bhs dhx = Qq=x (8]

tx TX=*
where

g* = normalized lateral inflow gq,

hx = normalized depth,

n
B = NLk /I 1lj
i=1

1; = \length of plane i in feet,
Lk - normalizing depth for plane k,
N = Chezy parameter defined as above.
The dimensionless characteristic equations derived from the

above normalized, nondimensional equation is

N-1
dxx = Bhx (9]
dta»
and
dhs = qg* (10]
dt»

The earliest solution method was the method of
characteristics, which had its origins in the nineteenth
century. This method is also related to a separation of

variables technique. In both instances, the partial
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differential equation is reduced to ordinary derivatives.
These are then solved graphically, numerically, or by a
combination of both in the x-t domain (Henderson, 1966).
The value of this method is that it presents information on
the partial differential equation solution. Looking at the
ordinary differential equations for the characteristics, we
obtain a velocity dx/dt at which information can be
transmitted through the system. This velocity leads to the
Courant condition, which states the 1limit at which a
disturbance can move. This velocity is the celerity of a
gravity wave.

Kibler and Woolhiser (1970) made a thorough analysis
of the kinematic cascade as a distributed parameter
mathematical watershed model. One difficulty they
encountered was the numerical phenomenon of the kinematic
shock. When a disturbance occurs in an open channel
system, its propagation may be described by the method of
characteristics. Simple wave theory explains that when
there is a change in slope between planes in the cascade, a
shock or wave front is propagated within the system. The
shock represents a numeric difficulty in the computation of
the hydrograph. The shock parameter used to predict
occurrence is defined as

Ps = Wk-1 0k-1 > 1 (11]
Wk Tk

w = width of the k and k-1
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~ planes,

a = Chezy coefficient or C S.

Observing the shock parameter inequality will ensure that
shocks will not be propagated along characteristic lines
emanating from the upstream boundary and the line x = 0.
Morris and Woolhiser (1980) re-examined the wvalidity
of the kinematic assumption under partial equilibrium.
They found that the full dynamic or diffusion equations

should be used for flat grassy slopes. The criterion
Folk > 5

should be observed when using the kinematic analogy. The
physical significance of Fgo?k or SgLo/Ho represents the
ratio between the difference in elevation between the top
and bottom of the plane (SgLg) and the normal flow depth
at the downstream boundary(Hg). This criterion provides a
convenient method of deciding the validity of the kinematic
analogy. Earlier work (Woolhiser and Liggett, 1967)

suggested that at full equilibrium the criterion
k = SOLO/HO > 10

should be observed when using the kinematic analogy. If
the kinematic number k is less than 10, then the full
dynamic equations should be used. This condition does not
normally occur in agricultural watersheds but may occur in
urban areas where short, smooth watersheds with low

lateral inflows prevalent.
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4. Infiltration

When modeling overland flow in a pervious watershed,
it 1is necessary to calculate the rainfall excess that
results when the rainfall intensity exceeds the
infiltration capacity of the soil and the surface storage.
The rainfall excess is treated as lateral inflow 1in the
overland flow equations. The right-hand side of equation
[7] is the lateral inflow and can be viewed as the forcing
function. 1In order to characterize an infiltrating natural
watershed, it is necessary that

1. The conceptual model accounts for all processes
of interest, e.g., unsteady rain, snow melt, etc.

2. The mathematical model adequately describes the
conceptual model.

3. Soil properties within the watershed are taken
' into account.

4. Input parameters can be obtained for the domain
of interest and successfully applied towards the
solution.

The USDA-Soil Conservation Service developed a
procedure to estimate direct runof f from ungaged
wvatersheds. Rallison (1980) gives a detailed synopsis of
the development of this procedure from its inception to
its final form and application to ungaged watersheds. Work
on this procedure began in the mid 1950s in response to the
passage of the Watershed Protection and Flood Prevention
Act (P.L. 83-566). Due to the work authorized by this act,
SCS anticipated the need for a simplified method of

hydrologic computation. Based on extensive analyses of
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gaged, experimental watersheds and infiltrometer studies, a
relation between rainfall and runoff was developed
(Andrews, 1954, and Mockus, 1949). The basic relation was
derived by plotting the accumulated natural runoff versus
the accumulated rainfall. It was observed that the
relation 1is asymptotic to a line at a 45 degree slope.
This shows that the runoff rate approaches rainfall rate as
the accumulation of both continues. Also, the difference
between rainfall and runoff, the maximum retention,
approaches a constant value. Rainfall intensity and the
surface sealing effects of rainfall were not considered 1in
the analysis. The basic hypothesis is

F= Q (12]

3 B,
wvhere

F = actual retention of precipitation during a
storm,

S

potential maximum retention,
Q = direct runoff,

P = rainfall after initial abstraction.
Curve numbers are related to S by

CN = 1000 . [(13]
S+10
The range of curve numbers for a watershed are due
primarily to variations in storm duration and intensity.

In the original analysis the CN chosen was an average of a
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range of values for the particular soil-cover complex. For
a particular storm, the CN may possibly fall outside the
range originally established. Infiltration patterns are
not accounted for within a storm period since no time
variation was incorporated into the procedure.
Consequently, the curve number method is not applicable to
modeling infiltration under a variable intensity rainfall.

Infiltration equations that respond to variations of
rainfall intensity have since been developed. Mein and
Larson (1971) presented an extensive analysis of
infiltration modeling as it relates to wétershed modeling.
They classified models as being empirical, theoretically
derived algebraic, or soil moisture flow models. The Green
and Ampt equation falls into the category of theoretically
derived algebraic equations. The approach of Mein and
Larson was to predict the time between the inception of
rainfall and the inception of runoff. Their methodology
was to modify the decay function of the infiltration
capacity as defined by the Green and Ampt equation. This
modification 1is necessary 1in order to account for the
infiltration that occurs prior to surface ponding. The
result of this effort was a simple model that relates
infiltration to a constant rainfall intensity, homogeneous
soil properties, and uniform initial soil moisture.

Brakensiek and Onstad (1977) presented a parameter
estimation for the Green and Ampt infiltration equation.

They observed that if watershed runoff is to be accurately
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~predicted, an accurate estimation of the infiltration
capacity is needed. The sensitivity of runoff rate and
volume was very sensitive to the fillable porosity and the
hydraulic conductivity. A runoff model using the kinematic
wave equation for direct runoff from a plane predicted the
effect of varying the Green and Ampt parameters. The
volume of runoff, for the conditions modeled, was most
sensitive to fillable porosity. This is termed by some
researchers to be the initial soil moisture deficit. The

sensitivity expressed as a ratio of the dependent to the

independent variable is as follows:

Qy = 5.79

C

gp = 3,47
where

Qp = peak runoff rate,
Qy = volume of runoff,

Cc

fillable porosity.

For each 1% error in fillable porosity there is a
corresponding 5.79% error in the volume of runoff. The

sensitivity of hydraulic conductivity is

Qv = 4.41
K

= 2,68
P
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where

Qp = peak runoff rate,

Quy = volume of runoff,

K = hydraulic conductivity.

The sensitivity of these parameters indicates which
parameters must be estimated with the greatest accuracy.
The sensitivity indicates which parameters most easily
bring the model into agreement with the observed event.
The least sensitive parameter is the wetting front suction
head. This would indicate that in a parameter optimization
scheme, convergence may not be as rapid for the wetting.
front suction head parameter as for the others.

Chu (1978) studied infiltration wunder an unsteady
rain. His study extended the application of the Green and
Ampt equation to predicting the infiltration wunder an
unsteady rainfall intensity. During an unsteady rainfall
event, the intensity may recurrently shift from falling
below to exceeding the infiltration capacity. The purpose
of Chu's study was to extend the Green and Ampt equation to
account for variable periods of rainfall intensity. The
accomplished purpose is a transformed time scale that
allows the computation of the infiltration with time under
an unsteady rainfall.

Agricultural management affects the infiltration
process. Rawls, Brakensiek, and Soni (1983) present
guidelines for predicting the effects of tillage on the

Green and Ampt parameters. Using the soil texture data, a
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regression analysis was made to predict the increase in
porosity due to tillage of a given soil. With time, the
increased porosity decreases due to consolidation. The
estimated change in porosity 1is a basis for estimating the
change in the Green and Ampt parameters of capillary
pressure of the wetting front and the hydraulic
conductivity parameter, which 1is a fraction of the
saturated hydraulic conductivity. The effect of tillage is
accounted for by this procedure.

Brakensiek and Rawls (1983) presented the effects of
surface sealing or crusting on the Green and Ampt
parameters. A two layerea, hydraulic conductivity is
assumed to represent crusting. The wetting front capillary
head 1is assumed to be that of the pre-crusted soil. The
crusting thickness is assumed to be 0.5 cm. The effective
hydraulic conductivity 1is calculated for pre-ponded and
post-ponded periods during a rainfall event. The model

predicts the infiltration to within an order of the effects

of a crust formation under a rainfall simulator.
B. Numerical Solution of the Hydrodynamic Equations

The solution of the full dynamic equations poses
significant problems due primarily to the nonlinearity of
such terms as udu/3dx. Such problems give motivation to
identify the domain in which reasonably accurate solutions
to the simplified equations may be obtained. Further

motivation to simplify the full dynamic equations is the
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difficulty to provide the appropriate boundary conditions
and incorporate them into the solution method.

The finite difference method has achieved extensive
use in the computer solution of the full dynamic and
simplified equations of fluid flow. Abdel-Razaq (1967)
provided a finite difference solution to the surface runoff
problem defined by the conservation of mass and the one-
dimensional conservative form of the conservation of
momentum equations.

The method of characteristics is a semi-graphical
solution of the full dynamic and the simplified equations
of fluid flow. Henderson (1966) gives an in-depth
procedure fo; the solution of the full dynamic equation and
the kinematic wave equations for channel flow. The method
of characteristics also yields information on grid spacing
in the finite differencing domain. This is related to the
partial differential equation theory. The goal of these
methods is to reduce the partial differential equations to
ordinary and the ordinary to a linear system of equations

amenable to solution.

1. Finite Difference Method

The finite difference method seeks to replace a
continuum with discrete points between which the
differentials are approximated. By replacing the partial
differential terms with a finite difference approximation,
the continuous domain is replaced by a network of isolated,

discrete points. This procedure reduces a continuous



30

problem to an approximating eigenvalue matrix amenable to
solution (Crandall, 1956).

The solution of the finite element formulation in time
is most commonly done by the finite difference method. For

example, the equation

(cl{a} + [K]{Q} = {F} (14]

requires that a temporal solution of the time derivatives
{aA}, 9A/3t be computed. This may be accomplished by
writing the finite difference form of the time derivative

as

A (E) A(a) - a(b)
—_ = (15]

it At

The mean value theorem indicates that § must lie within the

interval of a > & > b

Not knowing where § lies within this interval we must

define the parameter

(g - a)
At
and use it as
A(g) = (1-0)Aa(a) + 6A(Db) (17]

Substituting [16] into [17] yields the relation for § =t as

A = (1-8)a; + OAp (18]
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Similarly for the right-hand force vector {F}
F = (1-0)Fy + OFp _ (19]

where the b values are new values at the next time step.

The four common values adopted for © are

0=0, g=a, the forward difference method.
e=1/2, E=At/2, the central difference method.
0=2/3, £=2At/3, the Galerkin's method.
o=1, E=b, the backward difference method.
Equations [14] through [19] form the basis for the
finite difference solution in time commonly wused in

conjunction with the finite element method

2. Finite Element Method
The solution of the hydrodynamic equations for fluid
flow has encompassed a wide variety of disciplines,
including
1. surface water equations for tidal estuaries,
2. boundary layer equations,
3. Navier-Stokes and St. Venant equations for
closed and free surface fluid systems,
4. meteorological dynamics, and

5. groundwater flow.

The application of the finite element method is used
extensively in fluid mechanics, as evidenced by the large
volume of literature dealing with the solution of the

Navier-Stokes equation especially in mechanical engineering
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applications. The application of the finite element method
to watershed or catchment hydrology is the subject at hand

and is discussed herewith.
C. Finite Element Hydrologic Models

The finite element method was first used by Guymon
(1972) 1in the solution of the hydrodynamic equations for
free surface water flow. He solved the equations assuming
a constant depth over a region using the variational
principle. He concluded that the finite element method was
a suitably efficient solution technique for surface water
problems.

Researchers have typically approached the watershed or
catchment problem as a model composed of two distinct
parts--ovefland and channel flow. Judah (1973) applied
the finite element method to this two-part model. He wused
the kinematic simplification of the momentum equation and
the continuity equation and the Manning equation as the
friction relation.

Judah's application of the Galerkin principle utilized
linear shape and weighting functions to approximate depth
and velocity. The element was one dimensional, having an
average slope in the direction of flow. Rainfall excesses
were not modeled because the model was tested for storms
for which the rainfall excess was already known. Several
watersheds, both experimental and natural, were modeled.

Close agreement was generally found in the simulations of
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the outflow hydrographs. It should be emphasized that
rectangular strips (one-dimensional elements with an
average top width) were used to represent the watersheds.
The Rocky Run Branch Watershed in Brunswick County,
Virginia, was subdivided into nine finite elements
representing a total drainage of 555 acres.

Taylor (1974), using a Navier-Stokes formulation for
the momentum equation, derived the two-dimensional form for
watershed flow with the kinematic wave assumption. This

application of the Galerkin method resulted in a coupled

set of equations of the form
(Ml{q}lt = {Fle (20]

where the vector

[21]

< e

{q} =

is the vector containing the nodal values of the velocity
u in the x-direction, v in the y-direction, and the flow

depth h. Solution was confined to a one-dimensional
impervious plane. The friction relations used were the
Chezy and Manning equations. When compared to results
for a kinematic cascade presented by Kibler and Woolhiser
(1972), excellent agreement was found for the plane.
Kinematic shocks were observed when two planes of different
slope were treated as one domain. The solution, however,

showed no smoothing, as is often the case when using finite
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difference techniques.

Jayawardena (1976) represented the natural watershed
by a 1large number or series of variable width strips.
These strips were one-dimensional elements with a width
that varied linearly over the length. Using linear shape

functions the width was approximated by
w(x) = NjW] + NoWp (22]

Throughflow and infiltration were also modeled as saturated
processes. Overland and channel flow were treated
separately. An application was made with reasonable
success to the Plynlimon and Wye catchments in Central
Wales. Significant errors were introduced due to kinematic
shock, which occurred where there was sufficient change 1in
slope and flow parameters. These errors might be avoided
by using a single set of slope and parameters within a
strip composed of several elements.

Taylor (1976) proposed a two-dimensional,
isoparametric element in the solution of the continuity and
the kinematic equation for overland flow. The friction
equations were the Chezy and the Manning equations. The
finite element formulation used the vector defined by [21]
for the nodal values. Time integration was performed by
the central difference method with successive relaxation.
Only a cascade of two elements was simulated with the two-
dimensional elements. The kinematic equations and full

dynamic equations were compared for a slope change of four



35 ‘

times. Kinematic shocks were observed, but it was Taylor's
opinion that they caused no problem. This opinion
conflicted with ©previous observations showing that
continuity and peak discharge values were in error (cf.
Jayawardena, 1976). The chief manifestation of the shock
is that the profile of the water surface at the change in
slope and the flow rate is discontinuous at this junction.

Judah, Shanholtz, and Contractor (1975) presented a
simulation of a flood hydrograph for the Rocky Run
Watershed in Brunswick County, Virginia. They used the
same Galerkin formulation Judah used in 1973, and the
watershed was represented by one-dimensional elements with
variable width. The watershed was therefore composed of
strips perpendicular to the contours. The researchers
stated that their ultimate goal was to select sub-areas or
elements that were hydrologically homogeneous. As other
researchers have noted, significant changes in slope
produce errors in shape and peak discharge of the outflow
hydrograph. In the modeling of a surface coal mine,
exaggerated changes in slope occur between benches. It was
these changes that produced errors 1in the discharge
hydrograph due to kinematic shock. Another problem
encountered was the definition of rainfall excess. The
Stanford Watershed Model was used to calculate rainfall
excess. It was noted that some errors in the outflow
volume were due to inaccurate prediction of rainfall

excess. It should be noted, however, that the author's
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assumption that there was a uniform rainfall distribution
over the entire watershed may hold considerable error.

Jayawardena and White (1979) modeled the Severn and
Wye catchments using the finite element method (cf.
Jayawardena, 1976). The catchment was divided into strips
flowing from the top of each slope to major drainage paths.
These strips were further divided into finite elements.
Each strip was computed separately with the outflow
becoming the inflow boundary condition when the receiving
strip was computed. A global matrix of strips for the
watershed was not formed. This approach was used to avoid
difficulty with kinematic shock. Errors due to inaccurate
rainfall excess computations caused poor correlation of
runoff volumes. Significant errors arose from | using
discrete elements to represent a continuum and from
inaccurate parameter values. The former was estimated to
be on the order of 1.5% due to the coarseness of the finite
element representation. The latter, parameter errors,
caused from 7 to 73% rms error in predicting the recorded
hydrograph discharges. All parameters were assumed to be
constant over the watershed.

Taylor and Huyakorn (1978) compared finite element
based solution schemes for overland flow. The mathematical
model they used was the kinematic wave equation for direct
runof f from an impervious plane surface. Previous
researchers encountered instability and excessively small

time steps in the solution with time when solving the
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equations with all terms exc;pt the partial derivative in
time on the right hand side. The advent of unsymmetric
matrix solvers has eliminated the need to cast the
equations to be solved in such a manner. Several schemes
were calculated. The implicit Newton-Raphson scheme
resulted in quick and unconditional convergence, though it
required significantly more work in preparing matrices for
the solution. The implicit Newton-Raphson method is more
efficient than both the consistent and lumped mass matrix
explicit iteration schemes. Of the two explicit schemes,
the 1lumped mass matrix method was most efficient in terms
of computer time since it resulted in an uncoupled system
of equations. The solution schemes were also tested on a
two-plane cascade of slopes 0.04 and 0.01. The Newton-
Raphson was again superior in time of computation.

Morris, Blyth, and Clarke (1980) described the finite
element application to the headwaters of the Wye and Severn
rivers on the slopes of Plynlimon in Central Wales. The
Plynlimon study was motivated by the desire to quantify the
effect of landuse changes to hydrologic processes. For the
objectives of the study, the infiltration process was
modeled along with overland and channel flow.

The watershed was divided into elements of equal slope
representing both overland and channel flow. These
elements were solved separately. Within each element, soil
properties were averaged due to variations but due to the

variations were not subdivided . The assumption was that



38 ‘
if slope, soil type, and vegetation were used as the
criteria of watershed subdivision, the number of elements
would become too large--presumably too large to handle
efficiently.

The finite element method was applied to the St.
Venant equations for shallow water on a plane surface (one
dimensional) wusing the kinematic wave assumption., The
rainfall excess was modeled for the soil types using
Richard's equation for infiltration and throughflow. The
paper was merely a suggested methodology and not an actual
application. Their suggested improvement for modeling the
Plynlimon catchment was that the more sophisticated Richard
infiltration equation would lead to better results than had
been achieved By others using the Darcian flow analogy
(cf. Jayawardena, 1976).

As evidenced by the foregoing review of the finite
element solution of watershed models, the application has
been limited by several difficulties. Though the finite
element method is a promising technique it has been plagued
by problems such as kinematic shock and voluminous input
data. To accurately represent the variation of slope,
soils, and rainfall depth in a watershed, a more efficient
means of subdividing the watershed into discrete elements
is neéded. Another implicit limitation of past research
has been the use of one-dimensional elements to represent a
two-dimensional continuum. This limitation has increased

the difficulty 1in accurately modeling a continuous two-
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dimensional domain such as a watershed.
D. Geographic Information Systems

Geographic Information Systems (GISs) have become
highly sophisticated database management systems for
spatially distributed attributes. In the area of natural
resources, these spatially distributed attribute values may
include such things as soils and soil properties, landuse
and cover, rainfall, runoff, infiltration, agricultural
pollutants, and crop yields.

Many computer software products are available that.
provide varied analysis techniques. Spatially distributed
databases used 1in analyses ensure that the integrated
resource base is accurately portrayed in the final result.
Techniques such as environmental and hydrologic models and
GISs are 1indispensable to proper landuse and natural
resource planning.

GISs encompass a broad area of research. The scope of
this dissertation and this review of literature and theory
is directed towards the application of such systems to
modeling environmental and hydrologic processes.

Analytic wuses of spatially integrated databases for
data analysis and input to environmental and hydrologic
models are being developed. As models and GISs are linked,
their usefulness increases.

Bartholic and Kittleson (1985) observed the spatially

distributed effects of vegetation on temperature and
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reflectance, as well as heat and vapor fluxes. Using
spatially distributed databases the change in the
environment due to landuse changes was detected. Landuse
changes have been found to increase surface temperatures by
as much as 10 to 15 degrees Celsius.

These temperature changes have an impact on the net
radiation balance and consequently the quantity of
evapotranspiration. Such profound changes greatly affect
watershed hydrology. Changes are easily observed using a
GIS coupled with remote sensing techniques. To quantify
these changes, a suitable, spatially distributed watershed -
model is needed.

Mathematic modeling of a physical process is enhanced
when spatially distributed data are processed by a
GIS. The uses of a data value can be generalized into six
categories (Zobrist, 1976):

1. Physical Analog: The pixel value represents a
physical variable such as elevation, rainfall,
smog, density, etc.

2. District Identification: The pixel value is a
numerical identifier for the district and
includes that pixel area.

3. Class 1Identification: The pixel value 1is a
numerical identifier for the landuse, landcover,
or other area-classification schemes.

4. Tabular Pointer: -:The pixel value is a record
pointer to a tabular record which applies to the
pixel geographic area.

5. Point Identification: The pixel value identifies
a point, or the nearest of a set of lines, or the

distance to the nearest set of points.

6. Line Identification: The pixel value 1identifies
a point, or the nearest of a set of lines, or the



III. METHODOLOGY

A. Research Objective and Approach
The goal of this research has been achieved by
accomplishing the following three objectives and

appropriate approaches.

Objective 1. Define hydrologic response areas that exhibit

similar soil infiltration parameters, surface roughness,
and slope for a given watershed.

Approach: A geographical information system was used to
search, smooth and aggregate areas of similar soil
infiltration parameters, surface roughness, and slope, thus

producing the specific hydrologic response areas.

Objective 2. Apply the finite element method to the

specific hydrologic response areas to compute and route the
overland flow to the outlet.

Approach: The rate and volume of infiltration was modeled
by the Green and Ampt infiltration equation. The equation
parameters were calibrated for the watershed using an
arbitrary finite element grid. The rainfall excess thus
defined becomes the lateral inflow for use in solution of
the overland flow equations.

Objective 3. Compare the accuracy of the outflow

hydrographs to the actual outflow hydrograph for a given

45
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distance to the nearest of a set of lines.
These categories pertain primarily to grid-based systems
that analyze geographic information by cells or pixels.
Such rectilinear image elements combine to provide the full
image called a raster. Another class of GISs are polygon
based. This class of GIS analyzes directly the polygons
that delineate the geographic element. No conversion
between the input data to a grid-based system is needed.

Band (1986) described a method of partioning a
watershed into areas bounded by drainage divides and stream
channels using a GIS. He used a digital elevation model"
formed from a raster of grid cells. The grid cell
attributes are the elevations. By sequentially examining
each grid cell in a three-by-three cell window, the grid
cell 1is <classified as a linking a stream channel or
drainage divide. Band's technique provides an automated
method of identifying not only the drainage divides and
stream channels but also the drainage areas associated with
them, The map of these drainage areas 1is wuseful in
distributed hydrologic models.

The Phase I, Oconee River Basin Flood Plain
Information Scope Study, Savannah District Corps of
Engineers (1973) presents a comprehensive study in which a
GIS serves as a database manager for the hydrologic model
input parameters. The hydrologic model used was the Army
Corps of Engineers HEC-1 to calculate and route the

hydrograph downstream. The rainfall excess and unit
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hydrographs are calculated using the USDA-SCS rainfall-
runoff method. By forming landuse, hydrologic soil group,
subbasin boundary, surface slope, and the SCS runoff curve
number grid representations, the effect on the downstream
hydrograph of landuse changes at specified locations were
investigated.

Grayman (1975) presented the results of an
environmental management computer system applied to water
quality planning for the James River Basin, Virginia. The
system called ADAPT (Areal Design and Planning Tool)
modeled not only wastewater treatment discharges but also .
the water-borne wastes from land development and nonpoint
source pollution. Such a tool is capable of modeling the
large-scale development effects within a developing river
basin. The spatial data was represented by triangular
subareas. The mathematical model was solved for each
subarea and the result routed downstream to receiving
subareas.

The spatial data management and the mathematical
modeling linked together formed a system capable of
providing the least-cost alternatives for wastewater
treatment plants that met water quality goals. These
goals were established by the U.S. Environmental Protection
Agency. The conclusions from the study were as follows:

1. The cost of technically feasible systems was

insensitive to system layout or location.

2. The economies of regionalized, large treatment
plants were 1limited by escalating costs for
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transport of the wastes through undeveloped
areas.

These conclusions seem to contradict each other but
illustrate the decisions that can be reached with the aid
of a model, such as ADAPT, linked to a GIS.

Gupta and Sqlomon (1977) described an information
system for use with a distributed parameter hydrologic
model. Their main argument is that distributed parameter
models provide insight into the hydrologic process 1in a
river basin. However, one limitation is the large amount
of input data required by such models. The information
system used to store and manipulate the spatial data is the.
means for avoiding this difficulty. The spatial data set
becomes the input data for modeling hydrologic

processes.
E. Synoptic Evaluation of Current Theories

The difficulties encountered in applying a
deterministic, distributed parameter model to watershed
hydrology fall into three categories.

1. Numeric errors--those that arise from the method
itself such as inaccuracies and instability in
the time solution of the finite element method.

2. Model equation errors--which arise from the

simplification of the full dynamic equation by
the kinematic or diffusion analogy and kinematic

shocks.

3. Parameter estimation errors--arising from
uncertainty and from spatial variation of
infiltration, rainfall, roughness and other

parameters over the watershed domain. These
errors may result from
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a. the assumption that infiltration,

rainfall, roughness and other
parameters are uniform over the entire
watershed.

b. the use of elements that do not
maintain faithful representation of the
hydrologically homogeneous character of
subareas within the watershed.

c. an incomplete knowledge of the
parameters and the variation over the
watershed or with time during the
modeling process. Rainfall excess was
found to be the most significant error-
producing parameter.

These difficulties must be overcome in order to accurately
model the hydrologic response areas within a particular
watershed during an unsteady rainstorm. The first two
difficulties relate to the mathematical model, the third
relates to the spatial data management. The finite element
method holds promise as a mathematical model capable of
accurately and efficiently solving the distributed,
deterministic surface water equations in a watershed. The
Geographic Information System holds promise as an efficient
means of handling the large volume of input data required

by distributed, deterministic models.



III. METHODOLOGY

A. Research Objective and Approach
The goal of this research has been achieved by
accomplishing the following three objectives and

appropriate approaches.

Objective 1. Define hydrologic response areas that exhibit

similar soil infiltration parameters, surface roughness,
and slope for a given watershed.

Approach: A Geographic information system was wused to
search, smooth and aggregate areas of similar soil
infiltration parameters, surface roughness, and slope, thus

producing the specific hydrologic response areas.

Objective 2. Apply the finite element method to the

specific hydrologic response areas to compute and route the
overland flow to the outlet.

Approach: The rate and volume of infiltration was modeled
by the Green and Ampt infiltration equation. The equation
parameters were calibrated for the watershed using an
arbitrary finite element grid. The rainfall excess thus
defined becomes the lateral inflow for use in solution of
the overland flow equations.

Objective 3, Compare the accuracy of the outflow

hydrographs to the actual outflow hydrograph for a given

45
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rainstorm event for the following two cases.
a. A finite element grid that is of an arbitrary

spatial form.

b. A finite element grid formed from hydrologic
response areas defined by the Geographic

Information System.

Approach: The rate and volume of runoff was modeled by the
finite difference/finite element method of solving the
kinematic wave equation for overland flow. The excess
rainfall was defined by the infiltration equation. The
outflow hydrograph was calculated for the outlet of the
watershed for the two cases described above. A finite
element model, which is capable of computing the overland
flow equations for geometric elements and routing the flow
to the outlet, was used to perform this modeling. The
validity of the method was checked by comparing the

computed and actual outflow hydrographs.

The modeled watershed 1is the USDA-ARS research
watershed number 4H, located near Hastings, Nebraska. This
watershed was selected because it has been modeled using a
finite element model together with the Green-Ampt equation
for an unsteady rainfall, July 4, 1959 (Peters, Blandford,
and Meadows, 1983). The Geographic Information System was
used as described above to better characterize the

spatially distributed input parameters. The finite element
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modeling was done first f&r a set of one-dimensional,
linear elements of arbitrary spatial form. The present
research will demonstrate that the proposed methodology
* more accurately predicts the outflow hydrograph when
hydrologic response areas of uniform spatial parameters are
modeled with the finite element method. 1If it does, then
it will be concluded that the method developed through this
research predicts more accurately than previous methods the
actual outflow hydrograph from a watershed of nonuniform,

spatially distributed parameters such as infiltration

parameters, surface roughness and slope.
B. Theoretical Development

The basic equations to be solved fall into the general
class called the shallow water equations. These are the
continuity of mass and the conservation of momentum. They
are derived using the assumption of shallow water theory,
that the pressure varies hydrostatically in the

vertical direction, or
P = pg(h-2z), =z >0 (23]

where

the vertical coordinate,

N
[

o
1}

the water depth,

fluid density,

Le)
1]

To]
(]

gravitational acceleration.
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Figure 2 Coordinate System Definition
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The coordinate system is defined as follows:

x = horizontal direction of primary flow,
parallel to the bottom of the flow surface.

y = horizontal direction perpendicular to primary flow,
parallel to bottom of the flow surface.
z = vertical direction.

The time averaged local flow velocities in the elemental

volume are:

u t du Ax = velocity in x-direction on up- and
x 2 downstream face.

v ¢ v %z = velocity in y-direction on wup- and
dy downstream face.

The hydrostatic equation is the basic assumption of
the first-order shallow water theory and is prevalent in
engineering applications (Liggett, 1975). The hydrostatic
equation implies that the flow lines possess no curvature.
Other assumptions implied or not listed include:

1. There is no Coriollis acceleration.

2. Streamlines are not curved such that the
pressure variation with depth is linear.

3. Turbulent velocities are time-averaged.

Turbulent fluctuation velocities are not considered
since on time average the net effect 1is present as
represented 1in the conservation of mass and momentum
equations by the Reynolds stress u'v' (Potter and Foss,
1982).

In the one-dimensional case, velocities are depth-
averaged, thus suppressing the vertical dimension in the

conservation equations. U is the primary flow velocity and
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is a function of x and t. The x- direction is such that
cos® =« 1, The control volume and vector convention 1in

Figure 3, is used in the Reynolds Transport equations.

control surface

control volume

Figure 3 Control Volume Definition

The Reynolds Transport theorem provides a method of
describing, among other thermodynamic quantities, the
transport of mass and momentum into and out of a control

volume (Potter and Foss, 1982).
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1. Conservation of Mass
The Reynolds Transport equation for conservation of

mass requires that

[ dA + [ (ven)da = 0 [24]
cv cs

LY LY
r

where
V = velocity vector,

dA = differential element of control volume, cv,

Ven = dot product of the velocity vector to the
normal unit vector of the control surface,

dA = differential element of the control surface, cs.
The mass balance for a differential volume of height h(x,t)

is

(u - 3u Ax)(h -3h Ax)
Ix 2 Ix 2

- (u + 3u Ax)(h + 3h Ax) = 3h Ax (25]
Ix 2 Ix 2 It

Expanding, summing 1like terms, and disregarding higher

order terms such as

Ju dh
9x 9x

yields the discrete form

- 3h Ax - h3u Ax = 3h Ax , (26]
x X ot

which is useful in finite difference computational methods.
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The differential form of the conservation of mass equation
is

ah + 3(uh) =0 [27]
at x

for one dimensional, depth-averaged, time-averaged, flow.

2. Conservation of Momentum
The conservation of momentum equation is derived in a
similar manner to the conservation of mass. The Reynolds

Transport equation for momentum requires that

A

3 [ (pv) dA + [ (pV)(Ven)dA = EIF (28]
9t cv cs

where
\'4 = velocity vector,

dA = control volume,
p = mass density of water,

Ven

dot product of the velocity vector to the
normal unit vector of the control surface,

IF = summation of forces acting on control volume.
Substitution of the velocity components for the depth-

averaged elemental control volume results in

3(pUh)Ax - (U(uh) - 3(U(uh)) g;) + (U(uh) +

it x
3(U(uh)) Ax ) = IFy (29]
x 2

Upper case variables are vectors and lower case variables
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are scalar values. The term IFy is the vector summation of

forces in the x-direction. These forces are

1. Gravitational, F = pghAxsin®y = pghSyAx
where 04 = angle getween the horizontal axis
and the x-axis. Sin@y = tan®y for small

slope; Sx = tan®y = sin®.

h h
2. Pressure, Fp = f pdz = pog / (h-z)dz = pgh?/2
0 0

3. Frictional resistance, Fg = phgSgAx where Sg¢
is the frictional slope defined by either of
Manning equations,

c
"

1.486R%2/3s¢1/2 (english units) , [30]
n

1 R%/3s¢1/2 (SI units) , [31]
n
or the Chezy equation,

u = C(RSf)l/2 (SI or english units). [32]

Combining these equations wusing the Manning equation

results in

p(U(uh) - 3U(uh)Ax) - p(U(uh) + 3U(uh)Ax)
x 2 x 2

+ pghSyxAx + 1/2pg(h? - 3(h?)Ax - (h? + 3(h?)Ax))
x x 2 Ix 2

+ pghSglx = %(pUh)Ax (33]
t

Rearranging and disregarding higher order terms and taking

the limit Ax + 0 yields
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]

h3u + U3h + U3(uh) + uhdU + ghdh = gh(Sy- S¢) [34]
ot ot 9x 9x 9x
By substitution of the differential form of the

conservation of mass,

oh + a(uh) = 0 [27]
t x
into the above equation [34] the conservative form of the
one-dimensional, depth-averaged, time-averaged,
conservation of momentum equation is obtained
3U + Udu + gdh = g(Sy - S¢) [35]
ot 9x Ix
The two-dimensional case is derived similarly except
that momentum in the x-direction may now be transported
into and out of the differential control volume on both the
x- and y-faces. The general form of the Reynolds

Transport equation in the case of conservation of mass is

~

3 [dr + [ (ven)da =0 [24]
It cv cs
where
\' = velocity vector,
dA = differential element of control volume, cv,
Ven = dot product of the velocity vector to the
normal unit vector of the control surface,
dA = differential element of the control surface, cs.

Substitution of the values for the two dimensional control
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volume results in

3(ph) - (Uh - 3(uh)Ax) + (Uh + 3(uh)Ax)
ot 9x 2 9x 2

- (Vvh- 3(vh)A + (vh + 3(vh)A =0 [36]
( dy °¥] ( Y —¥)

Combining terms yields

dh + 3(uh) + 3(vh) =0 (37]
9t 9x qy

The Reynolds transport equation applied to the

conservation of momentum yields

~

3 f (pv) dA + [ (pV)(Ven)dA = IF [28]
It cv cs
where
\'; = velocity vector,
dA = control volume,

P = mass density of water,

Ven = dot product of the velocity vector to the
normal unit vector of the control surface,

IF ‘= summation of forces acting on control volume.
Substitution of the velocity components for the depth-
averaged elemental control volume produces

a(vh) - (v - av Ay)(uh) + (v + 3v Ay)(uh)
t Y Ty?l

- (u(uh) - 3(u(uh))ax) + (U(uh) + 3(U(uh))Ax)
9x 2 9x 2 (18]
38
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Simplifying, the x-momentum equation results in

3(uh) + 3(u?h) + 3(uvh) + g3(h?) = gh(Sg -S¢) [39]
it x oy x

and the y-momentum equation becomes

%Lvh) + 3(uvh) + 3(v?h) + g3(h?) = gh(sy - S¢) [40]
t x qy Y

Incorporating the continuity equation,

du + av = 0 , (41]
ax 3y

yields the x-momentum conservative form:

du + udu  + vau+ gdh = g(Sy - Sfgy) . [42]
at x Jy 9x
The y-momentum conservative form is derived similarly as

v + uadv + vav +

= g(Sy - Sfy) . [43]
H3 X 3y y © oty

Te]
<

Assumptions implied in the above derivation include.
1. The above derivations do not include
lateral 1inflow or other 1inflow/outflows

such as rainfall or infiltration.

2. The channel is prismatic and of a

rectangular cross-section.

3. Irregular Cross-section
In deriving the above conservation of mass and
momentum equations, the cross-section of the channel was

assumed to be rectangular. However, in the application to



57

|}

natural channels, a more general form is needed in which
the depth h is assumed to vary across the y-direction.

The irregular cross-section is shown in Fiqure 4.

Channe
Water Surface Bolttom

— N
\t__\/f_\/z

Figure 4 Irregular Cross-section of a Channel.

In the derivation of the conservation of mass and
momentum the depth h times the unit or differential width
of the control volume was used as the dA in the Reynolds
Transport equation. The Reynolds Transport equation for

conservation of mass requires that

~

3a [ aaa + [ (ven)da =0 [24]
3t cv cs
where
\ = velocity vector,
dx = differential element of control volume cv,

Ven = dot product of the velocity vector to the
normal unit vector of the control surface,

dA = differential element of the control surface cs.
If instead of the depth h times the unit or differential
width in the y-direction, the area A, which is a function of

f(y,z), is replaced, we obtain
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3A + 3(UA) = 0 ' [44]
3t Ox

and
d(ua) + 3(u?) + Fp = gA(Sy - S¢) [45]
at dx P x £

The pressure term Fp is the force on the face of the

control volume

h
Fp = g g(h-z)g(z)dz [46]

in which g(z) is the channel width at the height 2z above
the bottom of the channel. The net force in the down-

stream direction is

h
Fp - (Fp + 3FpAx) = -3 [ pg(h - z) £(z)dz Ax
P P 5P Ix 0

[47]

By simplifying the right of [47] using the Leibnitz rule

we have,
h
-3 [ pg(h - 2z) g(z)dz =

x 0
h

-pg /] 3 [ (h-2)g(z)]ldz
0 Jx

h h

= -pglah [ €(z)dz + [ (h - z) 3&(z) dz]
3x 0 0 X
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The first integral on the right defines the cross-
sectional area. The second term 23§(z)/3x is assumed to be
zero, which 1is the prismatic channel assumption. If the
channel narrows or widens, then an additional force is
exerted on the channel walls. Therefore, the pressure term
in the conservation of momentum equation is interpreted as

Fp = gA 3h [48]
P Ix

and the conservation of momentum equation

3(uAa) + a(u?) + Fp = gA(Sx - S¢) [49]
t X P X £

becomes
3(ua) + 3(u?) + gA d3h = gA(Sy - S¢) [50]
Tt Ix T x ot

Using this conservation of mass equation for an irregular
cross-section [50] the conservation of momentum equation
becomes
dU + Udu + gdh = g(Syx - S¢) , [51]
at 9x x
which is the same as the conservation of momentum for one

dimension. It was assumed that the channel width

variation is negligible so that 23§(z)/3x is zero.

4, Lateral Inflow
Lateral inflow must be incorporated into the

conservation equations, if for example, distributed inflow
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from groundwater, infiltration, tributary inflow, rainfall,
or overland flow occurs. In this derivation inflow is
regarded as positive and outflow as negative. Let the
symbol q represent lateral inflow/outflow with dimensions
of [L*]1/[TL?] when used in the one-dimensional equations or
[L*]1/[TL] when used in the two-dimensional equations. The

conservation of mass equation incorporating lateral inflow

would be
3h + 3(Uh) = q (52]
It dx

for the one-dimensional case and similarly for the two-
dimensional case for rectangular or irregular channel
cross-sections.

The conservation of momentum equation must account for
the momentum entering and leaving the control volume
transported by the lateral inflow or outflow. The
additional momentum entering is Pguqlx where ugq 1is the
downstream component of velocity of the lateral inflow.
Upon leaving the control volume the velocity of the
lateral inflow is assumed to have the same velocity as the
downstream velocity of the fluid, so that the momentum of

the lateral inflow leaving is pqUAx:

haU + U3dh + U3d(uh) + uhdu + ghdh =
ot t ox X ox

gh(sx - S¢) + qlug - U) (53]

for the two dimensional conservation of momentum
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equation and
a(ua) + 3(U?) + gA dh = gA(Sx - Sf) +

at 9x 9x

for the two dimensional conservation of momentum equation

for irregular cross-section.
C. Finite Element Model Formulation

The form of the partial differential equations
governing. direct runoff have been derived by use of the
Reynolds Transport theorem. These partial differential
equations are used in the finite element method, Galerkin
formulation of the surface water equations.

The equation of continuity for an incompressible fluid

is written as

du + v + aw = O (55]
9x Jdy 9z
where
u = u(x,y,z,t), velocity in the x-direction,
v = v(x,y,2,t), velocity in the y-direction,
w = wix,y,z,t), velocity in the z-direction.

On integration in the z-direction and wusing appropriate

boundary conditions, we obtain:

3h + 3(uh) + 3a(vh) = r - i (56]
ot x dy



62
where

u,v = depth-averaged velocities,
h = vertical depth of flow,

r,i = rainfall intensity and infiltration rate
respectively.

The equation of momentum, the Navier-Stokes equation
for two-dimensional flow with appropriate boundary

conditions, is

3u + udu + vdu + gdh = g(Sgx - Sfx) - ulr-i) [57]
3 3x 3y 3 ox X R

and

v+ udv + vadv + g3h = g(Spy - Sfy) - v(r-i) [58]

ot 9x qy qy h
wvhere Spx and Spy are the slopes of the element in the x-
and y-direction respectively. Sfx and Sfy are the
frictional slopes in the x- and y-direction respectively
(Taylor, 1974).

The continuity and momentum equations form the
governing equations for watershed surface hydrology.
Woolhiser and Liggett (1967) and other researchers have
documented the adequacy of using the kinematic wave
simplifying assumption, where all terms on the 1left-hand
side of the momentum equation are assumed negligible. The

general form then becomes

V =m h® [(59]
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where m and o are constants such as in the Chezy or
the Manning equation, and v is velocity in the direction
of flow.

If the above assumption is made, then only the
continuity and kinematic wave formulas need to be solved
over each element. This in effect reduces a nonlinear set
of simultaneous, partial differential equations to a
linear set. The validity of this simplifying assumption is

considered only if

LS > 10 [60]

Fo’ho

where L is the length of domain and Fo and hg are 'the
Froude number and depth of flow at the downstream 1location
end under steady-state conditions. This restriction is
dependent on the finite element grid and hydraulic
parameters used to describe the watershed.

The finite element formulation is applied by writing

approximating functions of the form

n
de = L Nj(x,y)o; [61]

i=1
where ¢; are known values of the function ¢ at each of the
n nodal points. Nj(x,y) is a shape function, which
approximates the function ¢ based on the n nodal values

(Segerlind, 1984).
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The watershed surface flow variables are approximated

as follows:

n

ue = I Nj(x,yuj [62]
i=1
n —

ve = I Nj(x,y)vi [63]
i=1
n

he = I Nj(x,y)hj [64]
i=1

where ug, Ve and he are the approximate values of the
velocities in the x- and y-directions, and the depth,
respectively, within the finite element domain.

The assembly of the elemental equations into a global
matrix form for the entire domain or watershed constitutes
the system of equations that models overland flow runoff.
Iterative solution proceddres are required (such as the
Newton-Raphson technique) to obtain the solution of these

equations in the time domain.

1. Element Equations ‘

The application of the Galerkin method to the
kinematic equation for overland flow 1is performed as
follows: The convention of {} representing a vector
quantity and (] representing a matrix quantity will be
used.

For two dimensions:
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[1IN1T( gg + g(Gh) + g(vh) - (r - i) )axdy =0 [65]
t X Yy

For one dimension:

JINIT( %g + 3(gh) - (r - i) J)ax =0 [66]
t X

Applying the kinematic wave assumption, the momentum

equation is reduced to
So = S¢ [67]

Utilizing the Manning equation that relates the depth of

flow to discharge for turbulent flow, we have

Qx = 1.49 R2/3 gl/2 4 (68]
n

For a wide channel or overland flow, the hydraulic radius

is R = A/P = A, so that the discharge relation becomes
Q = 1.49 a%/3gl/2 [69]

n

Recognizing that the cross-sectional area A is, in the case
of overland flow, equivalent to the flow depth defined
above as h, the wide channel assumption of R = h, and the
vector Q in [69] 1is resolved 1into its respective
directional components in the x and y direction, with 6 as

the angle with the x-axis results in

uh = Qy = Q cosé@ (70]
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- [ (NIT dx{r-i} [72]

and for two-dimensions,

(r}(®) = [ [NITIN]{A}Ax + [INIT[aN;/ax aNj/ax]{Qx}
+ [INIT(aN; /0y aNj/ayliQy}- [ [NIT ax{r-i} .

[73]
It should be observed that the discharge values
172
Qgx = 1.486 R?/3 557" “ag [74)
ng
and
1/72
Qgy = 1.486 R2/3 sg™" “ag [75]
ng

are the B nodal values. The concept of the nodal discharge
values based on nodal values of slope in the x- and y-
directions and the nodal values of roughness ng is of
paramount importance if the effects of kinematic shocks
are to be avoided between elements where abrupt changes in
slope or roughness would otherwise occur. By causing the
nodal values of discharge to be computed with nodal values
of slope and roughness, a linear variation over the element
of these values effects a linear variation in Q without
abrupt discontinuities at the inter-element nodes. The
numeric difficulty encountered by other researchers is thus
avoided (personal correspondence with D.A. Woolhiser and
G.A. Blandford). This is due to the elimination of the

diffusion term 9h/9x along with the other terms 1in the
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over the element of these values effects a linear variation
in Q without abrupt discontinuities at the inter-element
nodes. The numeric difficulty encountered by other
researchers 1is thus avoided (personal correspondence with
D.A. Woolhiser and G.A. Blandford). This is due to the
elimination of the diffusion term dh/3x along with the
other terms in the full dynamic equation because of the
kinematic assumption. Because of this, there is no
possibility other than a discontinuity in flow depth at
the inter-element nodes. To avoid this difficulty, the
values that relate h to Q--i.e., the slope and roughness--
must be considered as nodal values. The value of Q is a
vector quantity in the direction of nodal slope
subsequently resolved into x- and y-direction components
according to the orientation of the slope with the global

coordinate system.

NODAL VALUES

Q1 Q2 Q3 Q4
S S2 S3 Sq
ny n2 n3 ng
(1) (2) (3)
2 3 4

ELEMENT NUMBERS = (1), (2), etc.

NODE NUMBERS = 1, 2, etc.
Figure 5 Element and Node Numbering Convention

The convention illustrated in Figure 5 1is the nodal
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representation by nodal values of the independent
variables. With this methodology, the discontinuities in

function values are avoided at the inter-element nodes.

2. Shape Functions

The shape functions provide the basis of writing the
linear variation across the element of the approximated
functions. The 1local coordinate system allows easier
integration over an element. For this reason the following

system is defined
s = x-direction with limits of 0 < s <L

for a one-dimensional linear element of length L. The

shape functions are

Nj =1 - s/L (761
Nj = s/L (771

or, in matrix form

(NIT = [l-s/L] [78]
s/L

The partial derivative is computed by taking the partial
derivative of the shape functions, since the approximating

function is
¢(x) = Njdj + Njoj [79]

where the nodal values ¢ are constants with respect to the

x- or s-space dimension. The derivative is
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Xx- or s-space dimension. The derivative is

3¢(x) =  3Nj®; + 3N404 (80]
2 gl =) )

The derivatives of the shape functions with respect to x or

s--which are equivalent locally within the element--are

aN; = -1 (81]
x T
Ny = 1 [(82]
x L

In matrix form this is

aNy -1
(bx1T = [3x = 1 [83]
%Ej L 1
X
L -

Writing the individual integrals from the residual

(r} (&) = [ INIT[N]{A}ax + [INIT[aN;/3x aNj/3x]1{Q}
- [ INIT ax{r-i} [84]

and integrating over the element length L we have

[ (NITINI{A}dx = [1 —s/L] [l—s/L s/L]{A} dx
s/L
= L [2 1] (A}
g |1 2

(86]

[}
(@]
~~—
3> e
A
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The discharge term in the residual is

L
JINITIbl{Q} = [ [1 —s/L] [;; ;] {Q}
0 s/L L L
=1 [-1 1] {0}
) -1 1
= [(bx]{Q} [(87]
The lateral inflow term is
L L
J INIT ax(r-i) = [ [l -s/L] dx(r-i)
0 0 s/L
= (r-i)L i} (88]
2 1l

Assembling the results of [86], [87], and [88] 1into the

residual expression, we have

rp(®) = g 2 1] (A} + 1 [ 1] {0} - (r-i)L J1
6l1 2 2 1 2
The residual {R}{®) in [89] is minimized over the system

of elements only when assembled in the global form.

3. Global Matrix
The global matrix form of the assembled elemental
residuals may be formed by the direct stiffness procedure

when local node numbering schemes are used. An expanded
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form will also be examined, which uses a global nodal
numbering system. The direct stiffness procedure results
in a banded matrix as follows.

Given a three-element, four node system as shown 1in
Figure 5, it can be seen that node 2 receives contributions
from the elements (1) and (2); node 3 from elements (2) and
(3); and nodes 1 and 4 from elements (1) and (4)
respectively.

Assemblage by the direct stiffness procedure 1is as

follows for elements of equal length:

2 1 Al -1 1 Q,
LI 1 (2+2) 1 A,\ + 1 |-1 (1-1) 1 Q,
[ 1 (2+2) 1 A, 2 -1 (1-1) 1])Q,
1 2 A“ -1 1 Qn
L i
1
rL )2 (90]
2732
1

The nodal values of Q are related to A by the Chezy or
Manning equations, resulting in a nonlinear set of
differential equations with respect to time. Alternately,
with [C], [K], and {F} as defined above in [86-88] without

the (e) elemental designation we have

[cl{a} + [bx1{Q} = {F} [91]
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This matrix equation represents the system  of
equations to be solved. Note that the 1left-hand side
contains the time derivatives of the cross-sectional area
{A}. A solution in time is needed such as a finite
difference scheme. Note also that the discharge values of
Q contain the cross-sectional area A in the Manning
equation. Therefore, at each time step, when A is solved,
a newv set of Q's must be computed. Depending on the time
weighting coefficient, an implicit or explicit solution for
A and Q results. The rL values are considered constant
over each element. This results in the form of a forcing
function vector on the right hand side.

The finite difference solution utilizing the form of
equations [14-19] for the time dependent matrix equation

[91] is

[(Cl{A}pew = [Cl{A}lo1g - Atlbx]((1-0){Q}o1q +
0{Q}lnew) + At((1-0){Flo1a + ©{Flnew)

[92]

The time dependent finite difference form of equation [91]

can be recast into the nonlinear form

*

[C]{A}new = {F} (93]

where {F*} is the combination of the right-hand-side terms
in [93]. The right-hand-side contains terms such as {Ql}pew
that are functions of the left-hand-side term {A}ljey. This
forms a set of nonlinear equations requiring special

solution techniques such as a simple iteration scheme or



73

The iterative schemes are preferred for large systems
because, unlike the Newton-Raphson Method, no matrix
inverses are required. At each time step the value of the
rainfall excess intensities are placed in {F*}, the old and
new values of {A} are assumed equal. At the first time
step the o0ld values are the initial values. Then the
system of equations are solved by standard methods. The
new values thus solved for become the new values for the
next recursion until the solution converges to within a set
tolerance. This recursion is repeated at the next time
step with the new values from before becoming the old

values for the present time step.

4. Expanded Form

The expanded form of the global system of equations is
as follows for the system of elements depicted in Figure 5.
The approximating shape functions are written for each
element and assembled 1into the expanded elemental

equations:

o(1) = N1(1)0] + Np(1)0p + 003 + 004
¢(2) = 00) + N2(2)97 + N3(2)03 + 094
$(3) = 007 + 005 + N3(3)03 + N3(3)04

or, in matrix notation,

{o3(1) NI N 0 0 (e
{¢}§2; = [0 N2 N3 0 |Jo7 [94]
{¢3(3 0 0 N3 Ng|)®3
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It is now possible to combine the elemental equations

into a single region equation (Segerlind, 1976):

E
o=z ¢le) [95]
e=1

This results in the equation

¢ = ([N3(1)]07 + [N2(1) + N2(2)1]07 + [N3(2) +
N3(3)]93 + [N3(3)]e,4 (96]

The importance uf this region equation is seen when an
element region in two dimensions is formed from simpler
finite elements. For example, a region as follows may form

an element region,

*UD2.X2,Y2

(1)

Dl,Xl,Yl \ D X ;2)
< 3,843,213

(5) ® D4,Xyq,Yy
(3)

(4)

¢ ® Ds5,Xs,¥5
D6, X6, Y6

Figure 6 Five-Element Region

Writing the set of element equations, we have
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)

Hﬁé%; Ny N N3 0 0 0 ](®]
{¢}(3) 00 N N3 Ng O 0 |]e2
{¢}(4) = |0 0 N3 Ng Ng O 0 |)e3 (98]
{¢}(5) 0 o N3 0 Ng Ng[\?g
{¢} N7 O N3 0 0 Ng||?s
L - 06

This regional equation could be considered as an expanded
element defined by triangular elements and area coordinate
shape functions. The utility of such an approach is in the
modeling of irregular patches as defined Dby the
hydrologically homogeneous areas. By building an expanded
region the irregular patch can be handled.

Substructuring removes the internal node if no nodal
value 1is desired at that point. This is done after the
global matrix is constructed. By solving the matrix for
removal of a nodal value and associated constants, the
resulting set reflects its contribution but is not present

in the set of equations.

6. Isoparametric Elements

Another technique for representing finite element
regions is one using isoparametric elements. This class of
elements utilizes a coordinate transformation technique
that maps the element in the global coordinate system into
a natural coordinate system. The natural coordinate system
for a linear, one-dimensional element is the § system cor-
responding to the global x-coordinate system. The ¢§
system varies from -1 to +1 with the origin at the center
of the element. The element matrices such as [C], [(B], and

{F} are integrated numerically in the § coordinate system.
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The coordinate transformation is written in terms of the
same element shape functions as used to represent the state
variables, hence, the name isoparametric. Super- and sub-
parametric elements are those that use higher or lower
order shape functions to perform the transformation.

The transformation 1is done by writing the global
coordinate system in terms of the nodal coordinates and

the shape functions:
X = Nl(g)x1 + Nz(f;)x2 (991

where

1/2(1-g) and

4
[

N 1/72(1+g) .

2

The change of variable in any integral is accomplished by

writing

X3 +1
Hx)dx = [ g(g) ( d(x(£)) )df . [100]
I I dixig))

Xj
The Jacobian of the transformation is

d(x(g)) = - Xj + Xy = L (101]

dg 2 2 2
Jacobian transformations are done similarly for two-
dimensional elements. The four-node quadrilateral has four
shape functions in £ and n. The coordinate transformation

is 4Ccomplished by writing the global coordinates in terms



of £ and n such that,

and

where

The J

The

X =

77

Nl(E,n)x1 + Nz(&;.n)x2 + Ns(&:.n)xs + Nb(a,n)x~

(102]

y = Nl(t:.n)Y1 + Nz(c,n)Y2 + Ns(g'“)Y, + Nb(ﬁ.n)Y~

4
]

N =
»

acobian

(3] =

Jacobian

(3] =

1/4(1-g)(1-n)

1/4(1+g)(1-n)

1/74(1+E)(1+n)

1/4(1-g) (1+n)

[N
rgl

aN
Lﬁ_n'l

for the linear triangle

aN
g2

aN
'a—nz

14

of the transformation is

oN
'rgl

aN
§_ﬁ3

aN
g‘.

aN
n

finite

(103]

X Y |
1 3
X Y
2 2
X Y
3 3
X Y

L u |

[104]

element 1is

(X -Xx) (y -Y)
1 3 1 3

(X -x)(y -Y)
2 3 2 3

(105]
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where
, the area coordinate and shape
function 1,

A
A
L = A, the area coordinate and shape
A function 2,

1

L = - L -L , the area coordinate and shape
3 ! 2 function 3,
A, Al , Az = total area, and partial areas of

local coordinate.

The isoparametric, linear and quadratic quadrilateral
are useful for representing odd shaped and curved
boundaries. The integration of the element matrices are
performed on the transformed element in the natural
coordinate system. The integration method most commonly
used for integrating functions 1is the Gauss-Legendre
quadrature. This method replaces the integral with a
summation of the function at mxn integration points
multiplied by mxn weighting coefficients. This represented
by the following equation [106] and is the method used to

integrate the shape functions as used in [86-88].

n
I WiWj g(gji,n4) (106]
1 j=1

no~m3

1 1
[ [ g(g,n)dgdn =
-1 -1 i

The number of integration points depends on the highest
power of the function to be integrated. This means that a
polynomial of power (2n-1) may be integrated exactly with n

sampling points at which the element is evaluated
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(Segerlind, 1983). Figure 7 depicts the isoparametric
linear, one-dimensional and two-dimensional triangle and
quadrilateral elements together with the integration points

and weighting coefficients for the highest polynomial power

of £2 and n? .



PN . n=2 §,=+0.577350 W=10

L.sL,=1/3 w=1/2

o M o
r f: n= % 0577350 W= 1.0
—&

[ ] [ ]

Figure 7 Isoparametric Elements and Integration Points.
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7. Consistent Stress Approach
Nodal values of discharge Q, slope S, roughness n, and
rainfall r can be considered either as constants over an
element or as nodal values. It is necessary to maintain
continuity at the inter-elemental nodes. The dffficulty

arises whenever the state variable is either

a) known at the nodes and it is required to be
used as an elemental constant, or
b) known as an elemental constant and it |is

required to be used as a nodal value.

The consistent stress approach provides the correct method

of computing these values. The form is
(cl{e} = r{F} [107]

The vector {¢} contains the nodal values, whereas r
represents the constant values over the element (Segerlind,

1976).

In summary, the governing equations have been
developed for use in modeling the overland flow from an
infiltrating watershed using a Galerkin formulation. The
governing equations may be solved for the steady-state and
the time-dependent cases. Computation may be done by hand
for a small number of elements or by a computer program for
larger systems. Before initiation of the computation, a

check should be made on the applicability of the kinematic
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wave approximation to the specific set of variables or
problem. This may be done by using equation [52] to
compute the kinematic number k, which must be larger than
10 for the maximum intensity. In addition, the Froude
number should be computed to determine where the boundary
condition should be applied--upstream or downstream--for
sub- and supercritical flow, respectively.

The time solution requires the selection of a time
step At. This time step must not be larger than the time
during which a gravity wave can travel over the length of
the element. This is the Courant condition and should not
be violated.

Provided these conditions are met, computation of the
time-dependent solution of the overland flow equations may
be performed using the Galerkin finite element formulation.
The method is applicable to both one-dimensional and two-
dimensional finite elements using the assembled form of
equation [91] and solved by any of the standard finite
difference, time-domain solution techniques represented by

equations [14] through [19] as shown in [92] and [93].



IV. RESULTS AND ANALYSIS

The results obtained and analysis performed are
presented in the following order: The finite element
formulation, Geographic Information System analysis, input
parameters, hydrologic response areas. The watershed
modeled was Watershed 4H near Hastings, Nebraska. The

rainstorm event selected was 0.33 cm on May 4, 1959.
A. Finite Element Formulation

The Galerkin finite element formulation was wused to
solve the kinematic wave equation, The Green-Ampt
infiltration equation was used to compute the rainfall
excess. The excess rainfall intensity was calculated using
the Green and Ampt runoff model from the USDA-ARS Water
Erosion Prediction Program (WEPP) project (under
development).

The Galerkin formulation of the kinematic wave
equation has been presented in the theoretical development
and will not be repeated here. The elements used for the
arbitrary finite element grid were linear, one-dimensional
elements. The formulation used variable width to represent
trapezoidal areas. The elements used in the hydrologic
response area finite element grid were the 1linear, two-

dimensional, isoparametric four-node quadrilateral elements

83
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and three-node triangles. The system of equations solved by
time integration for the one-dimensional, arbitrary grid

was

(al{h} + [bl{Q} = [al{ie} (108]

where

[a]

T
IR{N} ({N}{w}){N}aQ ,

(bl

T
[ {N}d{N}/dx da ,
Q

[ ]

{h}

i = rainfall excess,

{dh/d4t},

Q = flow rates,
h = flow depth,
w = flow width of the element.
The system of equations solved for the two-dimensional

hydrologic response area grid was

(al{h} + [bx]{Q} + [byl{Q} = i{F} (109]

where
T
[a] = IQ{N}{N}dQ ,

and
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.

T
[bx] = [ {N}d{N}/dx d4Q ,
Q

T
[(by] = IQ{N}d{N}/dy daq ,

T
{F} = [ {N} aQ ,
Q

{h} = {dh/dt},

rainfall excess,

[V
(1]

Q = flow rates,

=
]

flow depth.

Since [(109] 1is a two-dimensional formulation and the
equations are integrated over the two-dimensional element
domain f , no variable width w 1is needed in the system.
The nodal flow rates are for a unit width.
The system of equations in [108] and [109] may be

solved with any of the common time integration schemes--

Forward Difference

Central Difference

Galerkins

Backward Difference
depending on the time weighting coefficient chosen.
Stability and accuracy of the solution will dictate the
proper time weighting coefficient. The Central Difference
scheme was used in this analysis. This corresponds to a
value of © = 1/2. No numeric oscillations were observed,

which may result from choices of time integration schemes
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that are inconsistent with the finite element grid.

A criterion that must be met is the kinematic number
after Woolhiser and Liggett (1967). This comes from the
kinematic approximation to the full momentum equation. The
approximation is accurate to within 10 % if k = LSog/V? >
10. The steps used to check this criterion are to
calculate the equilibrium outflow, which is the maximum
rainfall excess, solve for the corresponding flow depth
using the Manning equation, solve for velocity, and check
the Froude number and the kinematic number.

The actual time step used in the time integration
scheme must not be longer than that time during which a
gravity wave front may propagate through the system. This

is known as the Courant condition:

At < Ax/c ,

where
At = time step,
Ax = distance increment or element length,
c = speed of a gravity wave or (5/3)V.

If this condition 1is violated the partial differential
equation theory is violated. This condition arises from
the theory of the Method of Characteristics. A time step

of one minute was selected as shown in the Appendix.
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B. Geographic Information System Analysis

The spatial analysis of the ARS Watershed 4H near
pastings, Nebraska was performed using the ARC-INFO GIS,
version 3.2, developed by Environmental Systems Research
Institute, Inc., Redlands, California. Several layers were
digitized in order to perform an overlay analysis of the
landuse, soils, and slope data. This overlay effects a
delineation of areas containing homogeneous parameters.
In this case, the hydrologic response areas of homogeneous
parameters consisted of only the slope interior to the
watershed boundary.

The landuse was digitized for the watershed according
to the 1landuse at the time of the May 4, 1959 rainstorm
event. This watershed, 1like many of the ARS research
watersheds, was under a single crop and tillage practice.
The landuse for this watershed was fallow under good
residue cover at the time of the rainstorm event. Figure
8 depicts the landuse at the time of the event on May 4,
1959.

The soils 1in this watershed are the Hastings silty
loam, Hastings silty clay loam, and a Colby silt loam.
These soil names are the 1939 soil survey names originally
mapped for this watershed by the USDA-Soil Conservation
Service. Figure 9 shows the three soil delineations for
the watershed. The Hastings silty clay loam is an eroded
profile of the Hastings soil series. The B-horizon

properties were used in the Green and Ampt modeling for
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this mapping unit. The Green and Ampt equation was solved
for this storm and these soils using the soil properties
from soil samples sampled April 21, 1965 by the USDA-Soil
Conservation Service. The location of the Hastings soil
sample was in Webster County, 0.15 miles west and 180 feet
south of northeast corner of Sec. 1, T3N, R10W. The soil
properties were taken from the Hastings Soil No. S65NE-91-1
data, Sample Nos: 20449-20456. The Colby soil properties
were taken from the Soils-5 data sheet for the series.
This information was contained in the soils data base at
the USDA-Soil Conservation Service, National Soil Survey
Laboratory, Lincoln, Nebraska. The soil properties are

contained in Table 1.

TABLE 1 S8So0il Properties

1939 SOIL & > L D S b BULK PERCENT
SURVEY ' DENSITY ORGANIC CEC/
NAME 3 in #10 SAND CLAY GM/CC MATTER CLAY

COLBY

Si L 0 0 10 21 1.40 1.50 0.65
HASTINGS

8i L 0 0 10 24 1.27 2.50 0.79
HASTINGS

8i CL 0 0 8 34 1.26 1.77 0.67
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Figure 8 Watershed 4H Landuse.
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The slope and topograpﬁy was obtained from two-foot
contour maps provided by the USDA-Soil Conservation Service
in a 1942 plane table survey. Figure 10 shows the
digitized elevation map derived from the ‘plane table
survey. The ARC-INFO GIS, wutilizing the Triangular
Irregular Network (TIN) subroutine, calculates the slope of
each triangular area from the elevations of the vertices.
The TIN slope map is shown in Figure 11. The slopes
required for the finite element modeling are at the nodes
of the elements. To achieve this, the finite element grid
was overlaid on to the slope map an the slope at the node.
tabulated in the INFO Database for each node. As the
finite elements decrease in size, the elemental slopes tend
toward nodal slopes in the limit. The slope map in Figure
11 shows increased complexity primarily due to the
delineation of not only slope but aspect. The aspect of
the slope is the direction measured in degrees between the
principal slope and the north direction. The aspect and
principal slope are resolved into x- and y-direction slopes
for use in the finite element model. In the kinematic wave
equation the friction relation, Manning or Chezy, contains
the square root of the slope. When modeling the two-
dimensional flow equations, the flow is caluclated in the
direction of and using the principal slope. This flow rate
is then resolved into x- and y-direction flow rates for use
in calculating the 3(uh)/3x and 3(vh)/3y terms. To relate

the orientation of all vector quantities to the watershed
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map, such as velocity or flow rate,

the aspect anlge of
the principal slope was used.

ELEURTION (feet)

1970

Figure 10 Watershed 4H Elevation Map.
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Figure 12 depicts the rainfall excesses for the three
soils as defined by the Green and Ampt equation--no
significant difference was observed. For the purposes of
computing runoff and infiltration, these soils may be
treated as one for the entire watershed. While spatial
nonhomogeneity may exist it is not detected by the soil
mapping units interior to the watershed when considering
infiltration,

Figure 13 illustrates the first case analyzed, a
finite element grid of arbitrary spatial form. That is, a
set of linear elements of variable width. This is the same
finite element grid, slopes and Manning n's as used by

Peters, Blandford and Meadows (1983). Table 2 contains the

arbitrary finite element grid input data.



95

Table 2 Arbitrary Grid Finite Element Input Data.

ELEMENT NODE X- NODAL MANNING WIDTH
NUMBER NUMBER COORD SLOPE n (FEET)
(1) 1 0 0.0406 0.035 383

2 171 0.0406 0.035
(2) 2 171 0.0406 0.035 333

3 342 0.0669 0.035
(3) 4 342 0.0669 0.035 206

4 507 0.0562 0.035
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The topography, in this particular watershed, is the one
parameter of known spatial nonhomogeneity. Slopes defined
by the 10-foot contour intervals, were used to form the
finite element grid. Nodal points were 1located at the
intersections of the 10-foot contour 1lines and the
watershed boundary and the stream channel. The slope on a
two-dimensional finite element grid possesses both x- and
y-direction slopes. Even though two nodes 1lie on a
contour, the element has an x- and/or y-direction slope
due to the skewed spatial form with respect to the
coordinate System. If the slope is spatially
nonhomogeneous within the element then it should |Dbe
averaged over the element to obtain the slope for the
element. The scale of the variation defines the scale of
the finite element grid. The 10-foot contour intervals
were used in order to 1limit the number of elements
representing the watershed. This was done in order that
the comparison of the arbitrary-grid to the hydrologic-
response-area grid would not be obscured by the increased
accuracy gained from a large 1increase in the number of
elements.

In order to model the hydrologic response areas, two-
dimensional elements are required. The elements selected
for this research were the three-node triangle and the
four-node quadrilateral, isoparametric elements. A
computer program was written that performs the coordinate

transformation and computes the partial derivatives and
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other components of the two-dimensional flow equation
[109]. The nodal coordinates were obtained from the GIS
overlay of the finite element grid over the watershed. The
watershed 1is represented in the state plane coordinate
system, defined by the plane table survey of 1942 of the
watershed available from the  USDA-ARS-Water Data
Laboratory, Beltsville, Maryland. These coordinates are in
Table 3 listed by node number. Each element is represented
by the nodes associated with it. Thus, for Element (8) in
Figure 14, the node numbers 1, 9, and 10 represent the

three-node triangular element.
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Table 3 Hydrologic Response Area Nodal Coordinates and
Slopes

NODE X- Y- X- Y-
NUMBERSCOORD .COORD.ELEVATION SLOPE ASPECT SLOPE SLOPE

1 1618 1302 1946.00 0.000 0.00 0.000 0.000
2 1610 1345 1950.00 0.081 -177.30 0.004 0.081

3 1707 1467 1960.00 0.049 -119.50 0.043 0.024
4 1897 1529 1970.00 0.063 -110.90 0.059 0.022
S 2079 1538 1978.00 0.032 -76.30 0.031 o0.008
6 2111 1309 1976.30 0.022 -127.00 0.018 0.013
7 1977 1309 1970.00 0.064 -113.60 0.059 0.026
8 1841 1313 1960.00 0.159 -159.90 0.055 0.149
9 1710 1320 1950.00 0.086 -75.70 0.083 0.021

10 1625 1274 1950.00 0.118 -29.50 0.058 0.103
11 1739 1188 1960.00 0.089 -75.90 0.086 0.022
12 1931 1161 1970.00 0.033 -91.80 0.033 0.001
13 2077 1160 1975.00 0.016 -91.90 0.016 0.001

1. Coordinates are state plane (feet).

2. Elevation is mean sea level (feet).

3. Aspect is in degrees measured from north: negative is
counter-clockwise from 0 to 180 and positive |is
clockwise from 0 to 180.

4. 8Slopes in the x- and y-direction are the absolute
values of slopes in the polar coordinate system
with zero degrees due east.
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Figure 14 Finite Element Grid Representing Hydrologic
Response Areas based on slope.



102

C. Hydrograph Response.

Several cases were investigated to test the accuracy
of the proposed methodology. The first case was a
representation of the watershed using a finite element grid
of arbitrary spatial form. The spatial form of this grid
is shown in Figure 13. The second <case was a
representation of the watershed using a hydrologic response
area, finite element grid. Difficulties arose due to the
anisotropic nature of the hydrologic response area grid
which 1led to consideration of an isotropic finite element

grid.

l. Arbitrary Finite Element Grid Model Calibration.

Several modeling runs were performed in order to
produce an outflow hydrograph that matched the actual
outflow hydrograph. The initial Green and Ampt parameters
were estimated after Brakenseik (1983). After calculating
the runoff intensities for the three soils it was
determined that the soils could be treated as a single soil
possessing spatial homogeneity at the watershed scale. The
total volume of the resulting runoff was 1.31 cm. The
actual runoff reported was 0.38 cm. This indicated that a
combination of increased hydraulic conductivity and
depressional storage would be needed. The range of
hydraulic conductivities due to crusting was estimated as
0.15 cm to 0.06 cm. Values of hydraulic conductivity and
depressional storage were selected such that the peak and

volume were predicted as accurately as possible. The
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depressional storage was estimated as 0.55 cm for a
recently tilled silty clay loam (personal correspondence
from Dr. R.J. Rawls, ARS, Beltsville). The other Green and
Ampt parameters were

Wetting Front suction = 31 cm,

Bulk Density = 1.0 g/ccm.

The resulting hydrograph shown in Figure 15 has a peak
of 0.114 m®/s at 14:31 hours on May 4, 1959. This is
compared to 0.13 m®/s at 14:29 hours. The calculated
hydrograph had a volume of 0.21 cm compared to an actual
volume of 0.55 cm. The tabulated results, outflow at node-
4 and rainfall/runoff intensities are in Table 4.

The hydrograph shown in Figure 15 has a larger volume
than the actual hydrograph. The volume and peak could not
be matched precisely. If sufficient depressional storage
to match the outflow volume was removed, then the intense
part of the storm was removed resulting in very low peak
rates. The final calibration was found by inspection of
the rainfall intensities that resulted from a varying
hydraulic conductivities in the range reported above.

The difficulty in finding a set of depressional
storages and hydraulic conductivities that would produce a
hydrograph suggests that the Green and Ampt model does not
define a unique set of parameters. The formulation of the
arbitrary finite element grid as linear elements with
variable width also affects the resulting calibrated

parameters. The form of the finite element grid affects
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the width of the element.

This assumption

results since it makes the assumption of uniform

flow

governs

the form of the hydrograph as the rainfall excess is routed

downstream.

Table 4 Arbitrary Finite Element Grid Outflow.

RUNOFF CALCULATED ACTUAL

TIME RAINFALL INTENSITY OUTFLOW OUTFLOW
(HR) CM/HR FT/S M3/8 M3/S

14.30 0.00 0.00E+00 O0.00E+00 0.00E+00
14.32 0.00E+00 O0.00E+00 0.00E+00
14.33 0.00E+00 O0.00E+00 O0.00E+00
14.35 2.67 0.00E+00 O0.00E+00 0.00E+00
14.37 0.00E+00 O0.00E+00 0.00E+00
14.38 0.00E+00 O0.00E+00 0.00E+00
14.40 0.00E+00 O0.00E+00 0.00E+00
14.42 12.70 3.60E-05 7.18E-04 0.00E+00
14.43 1.30E-04 1.27E-02 3.20E-03
14.45 1.00E-04 4.68E-02 2.52E-02
14.47 3.60E-05 8.08E-02 8.92E-02
14.48 -1.80E-07 1.02E-01 1.28E-01
14.50 7.92 -1.80E-07 1.13E-01 1.15E-01
14.52 -1.80E-07 1.14E-01 1.04E-01
14.53 -1.80E-07 1.08E-01 8.82E-02
14.55 -1.80E-07 9.56E-02 7.28E-02
14.57 -1.80E-07 8.19E-02 6.04E-02
14.58 1.83 -1.80E-07 6.88E-02 4.79E-02
14.60 -1.80E-07 5.73E-02 3.92E-02
14.62 -1.80E-07 4.77E-02 3.05E-02
14.63 -1.80E-07 3.97E-02 2.54E-02
14.65 -1.80E-07 3.32E-02 2.03E-02
14.67 -1.80E-07 2.80E-02 1.74E-02
14.68 0.76 -1.80E-07 2.37E-02 1.44E-02
14.70 -1.80E-07 2.02E-02 1.14E-02
14.72 -1.80E-07 1.73E-02 9.82E-03
14.73 -1.80E-07 1.50E-02 8.21E-03
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Figure 16 Comparison of Outflows for the Arbitrary Finite
Element Grid.
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2. Hydrologic Response Area Finite Element Grid.

The finite element grid shown in Figure 14 was formed
using the spatial distribution of slope as defined by the
ten foot elevation contours. The parameters used for this
case were the same as those used in the calibrated,
arbitrary grid model. This was chosen so that differences
would not arise from two different calibrated sets of
parameters. The effect of better defined finite elements
formed from hydrologic response areas was expected to
result in a more accurate prediction of the outflow
hydrograph.

Difficulty in obtaining a solution for the hydrologic
response area finite element grid was encountered. During
the solution, a negative flow depth occurred at node number
eight. This effectively precluded solution since no flow
could pass this element because of the connectivity
associated with the finite element grid.

The cause of this difficulty was investigated through
extensive analysis of the matrices associated with the
Galerkin finite element formulation for the surface water
flow equations. These matrices are the [C], [bx] and [by]
matrices as defined in [109]. The first difficulty
examined was the first derivative term represented by [bx]
and [(by]. These matrices are asymmetric and therefore are
difficult to integrate properly when anisotropy exists in
the slope term. Anisotropy in the slope results from the

two dimensional representation of overland flow. The
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control volume in Figures 2 and 3 assume that the flow is
orthogonal to the x-y coordinate system. The Manning
equation relates the total flow Q to the flow depth h as a
function of slope. This slope is the slope in the
principal direction and therefore the flow rate Q is a
vector quantity. The resolution of the flow into the
respective x-y direction components is accomplished after
the computation of the flow in the principal direction.
The flow rates Q in [109] are the respective flow rates per
unit width in the x-y directions.

Due to the derivation from the control volume and the
form of the finite element formulation, each element must
be rotated in a local coordinate system such that the
finite element nodal coordinates are orthogonal to the
principal direction of the slope. This rotation is
performed for each coordinate pair using the rotation

matrix

x' cos® sin® X
= (110]
y' -sin® cosH Y

wvhere
© = angle of the principal slope in the global
coordinate system.
This rotation must be done before the integration of the

element matrices.

The integration of the element matrices is performed
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numerically for the isoparametric element using the Gauss-
Legendre Quadrature. The Jacobian matrix is calculated in
this integration procedure using the global coordinates.
If anisotropy exists, then the global coordinates must be
rotated as in [111] and the local used in place of the
global coordinates.

When rotation occurs for a randomly oriented four node
quadrilateral finite element, it becomes unclear as to
which nodal coordinate pair must be the first pair
associated with node i or (-1,-1) in the &-n coordinate
system. This importance can not be over emphasized since
the existence of the solution depends on it. The
difficulty arises when integrating the ([bx] and [(by]
matrices in [110]. A four node quadrilateral finite
element that is rectilinear and oriented with the £-axis
parallel to the x-axis and the n-axis parallel to the y-
axis would be integrated such that the 1lower 1left node
closest to the origin would be associated with the (-1,-1)
node in the £-n coordinate system. If this principle is
not adhered to then the integrated result represented by
the [b] matrices is not accurate and a solution is not
achieved.

A four node quadrilateral finite element was
investigated to demonstrate the difficulty imposed by
rotation and node ordering when integrating the (bl
matrices. Under a steady rainstorm intensity the

equilibrium value of the outflow equals the product of
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intensity and the surface area of the finite element. The
solution yields unit width nodal flow rates which must be
integrated over the sides of the element in order to
compare the outflow with the inflow. The finite element
modeled is shown in Fiqure 17. The outflow is 0.4 m®/s for
a 0.00001 m/s intensity over the 200x200 m finite element.
Continuity is achieved since the inflow is the product of
intensity and the surface area or 0.4 m®/s. Note that the

nodal slopes are orthogonal to the global coordinate
system and that no rotation to a local coordinate system
was performed.

The effect of rotation to a local coordinate system
was 1investigated by observing the effect on the outflow
that the direction of slope has. By assigning slopes of 4S5
degrees at the nodes and assigning boundary conditions at
the nodes 1,2, and 4, outflow at node 3 results. The
outflow was 0.424 m®/s. The inflow was 0.40 m®/s resulting

in a 6% error. This is not a large error in this case.
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Figure 17 Four Node Quadrilateral Finite Element Outflow.
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A more serious error occurs when several finite
elements are combined in a system with slopes that are not
orthogonal to the coordinate system. In Figure 18 two
elements are shown with nodal slopes at 45 degrees. The
outflow totaled 1.155 m®/s whereas the inflow totaled 0.6
m3/s.

These errors arise because of the difficulty in
integrating the [b] matrices. These matrices are shown
below for the four node quadrilateral when successive nodes
are interpreted as node i in the integration. This amounts
to extreme cases of rotation such that different nodes
become the closest node to the global origin. The slope
angle with respect to north and the first node are shown

for each case.

Slope Aspect = 90

First Node =1

-2 2 1 -1
[bx] = 200 -1 1 2 -2
12 -1 1 2 -2
-2 2 1 -1
Slope Aspect = 90
First Node = 2
-1 1 2 -2
(bx] = 200 -2 2 1 -1
12 -2 2 1 -1
-1 1 2 -2
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Slope Aspect = 90

First Node = 3
-2 2 1 -1
[bx] = 200 -1 1 2 -2
12 -1 1 2 -2
-2 2 1 -1
Slope Aspect = 90
First Node = 4
-1 1 2 -2
[bx] = 200 -2 2 1 -1
12 -2 2 1 -1
-1 1 2 -2

Because of the incompatibility of the four node
quadrilateral finite element with the computation of the
(b] matrices when rotation occurs, it should not be used
for the solution of the surface water equations when

anisotropy exists in the slope.
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Figure 18 Two Element System Outflow.
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The three node triangle was investigated in a similar
manner. Figure 19 shows the three node triangle used to
demonstrate the effect of rotation on the outflow and the
integrated value of the [b] matrix. Successive nodes were
used as the node associated with node i or the first shape
function for the triangle finite element. The effect on
the [b] matrices was observed for each of the following
cases.

Slope Aspect = 90

First Node = ]

-1 0 1
(bx] = 200 -1 0 1
6 -1 0 1
Slope Aspect = 90
First Node = 2
-1 0 1
[bx] = 200 -1 0 1

6 -1 0 1

Slope Aspect = 90
First Node = 3
-1 0 1

[bx] = 200 -1 0 1
6 -1 0 1



116

0

ord

»

@

|

S

3

—
slope

X-axis g

1 2

flow

Figure 19 Three Node Triangle Isotropic Outflow.



117

The result 1is that the node ordering and hence the
rotation has no effect on the magnitude or sign of the [bx]
matrix. This indicates that the triangle is less sensitive
to node ordering and rotation than the four node
quadrilateral finite element in the effect on the [b]
matrices. This fact recommends the use of the triangle for
use in anisotropic surface water flow problems.

Rotation of the three node triangle finite element is
done so that the x'-y' axes are orthogonal to the principal
direction of slope. This is done in the same manner as in
(111]. The boundary conditions are applied to the triangle
as with the quadrilateral. Another difficulty arises,
however, since all three nodes must be specified as
boundary values of zero when the principal slope direction
is in a direction away from two sides as shown in Figure
20. The solution for the triangle shown cannot be
obtained. This is due to the difficulty in specifying the
boundary condition. If only one or two nodes are
specified, then the boundary conditions are under specified
for anisotropic slopes. If three nodes are specified then
the element is a null solution since all nodes are zero for
all time.

The use of the three node triangle finite element for
anisotropic flow requires that the element be oriented 1in
the global coordinate system such that one side is parallel
to the principal direction of slope. If this is done, then

the triangle may be wused with any node ordering and
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orientation in the global coordinate system since rotation
does not result in an invalid integration of the [b]

matrix.
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Figure 20 Three Node Anisotropic Triangle.
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3. Isotropic Finite Element Grid

Inorder to investigate the hydrologic response of this
watershed using a two-dimensional finite element
configuration it was necessary to create a rectilinear grid
that 1is oriented such that each element is orthogonal to
the principal direction of slope. Due to difficulties
arising from node ordering and rotation, the slopes derived
from the ARC/INFO TIN slope map in Figure 11 were used with
a realigned aspect of 90 degrees or due west. A new grid
that possesses only isotropic slopes was used. The node
ordering preserves the ordering necessary to achieve
correct integraton of the [b] matrices. This ordering is
preserved since no rotation 1is necessary due to the
isotropic slopes. Figure 21 shows the isotropic finite
element grid derived from the hydrologic response area grid

and the TIN slope map.
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The hydrologic responée from the 1isotropic finite
element grid is shown in Figure 22. The isotropic finite
element grid yields a hydrograph that exceeds the actual
outflow hydrograph. The peak outflow of 0.18 m?/s compares
to the actual of 0.13 m®/s. The timé to peak is at 14:30
which compares to the actual time to peak of 14:29 hours.
The rainfail excesses used were the same as those used for
the arbitrary finite element grid. The tabulated results,
outflow at node 1 and 2 integrated across the edges of

elements (1) and (8) are presented in Table S.

Table 5 1Isotropic Finite Element Grid Outflow.

INTEGRATED
OUTFLOW  CALCULATED ACTUAL
TIME NODES 1,2 OUTFLOW OUTFLOW
HRS CFS . M3/s M3/S

14.400 0.00 0.00 0.00
14.417 0.03 0.00 0.00
14.433 0.60 0.02 0.00
14.450 2.44 0.07 0.03
14.467 4.78 0.13 0.09
14.483 6.31 0.17 0.13
14.500 6.62 0.18 0.12
14.517 6.16 0.17 0.10
14.533 5.31 0.14 0.09
14.550 4.35 0.12 0.07
14.567 3.45 0.09 0.06
14.583 2.71 0.07 0.05
14.600 2.14 0.06 0.04
14.617 1.70 0.05 0.03
14.633 1.37 0.04 0.03
14.650 1.12 0.03 0.02
14.667 0.93 0.03 0.02
14.683 0.78 0.02 0.01
14.700 0.66 0.02 0.01
14.717 0.57 0.02 0.01

14.733 0.50 0.01 0.01
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4. Statistical Comparison of Arbitrary Grid Outflows

The statistical comparison of the arbitrary finite
element grid outflow hydrograph with the actual outflow is
facilitated by plotting the calculated versus the actual
outflows. The close agreement between the calculated and
actual values would result in a line plotted along a 45°
axis. Figure 16 shows close agreement in the rising limb.

Regression analysis presented in the Appendix
represents values for both the ascending and recession
limbs and a correlation coefficient of .92. The regression
analysis was performed with Lotus 1-2-3 release 2.01. The
regression analysis is a measure gf goodness of fit. This
technique does not address the sensitivity of the output
(flow depth) to the input (slope, Manning n, and rainfall
excess) parameters. Nor does it define the uniqueness of
the calibrated parameters 1in the solution.

The hydrologic response area finite element grid did
not result in an improvment over the arbitrary finite
element grid. The more correct representation of the slope
parameter by GIS analysis may improve the predictive
capability of the finite element model but is not
identyfiable by the approach taken. This approach assumed
that the Green and Ampt parameters calibrated for the
arbitrary finite element grid would result 1in accurate
results when used with the hydrologic response area finite
element grid. The difficulty with this approach 1is that

the hydraulic conductivity and depressional storage are not
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unique nor known apriori from measurable characteristics of
the soil-landuse complex. Due to the difficulty in
identifying a unique set of infiltration parameters as well
as others such as Manning n, further calibration or

statistical comparison was not pursued.
D. Discussion

Three cases were investigated, the arbitrary finite
element grid, a hydrologic response area finite element
grid and the 1isotropic finite element grid for use in
modeling watershed outflow under an unsteady rainfall
event. The arbitrary grid consisted of one-dimensional,
linear elements of variable width. These linear elements
were of the same spatial form as used by Peters, Blandford
and Meadows (1983). This grid was termed arbitrary because
they do not necessarily conform to spatially distributed
parameters. The hydrologic response areas were defined
using a Geographic Information System. The finite element
grid used to represent the hydrologic response areas
conforms to the spatially distributed parameters. The
isotropic finite element grid was investigated because of
significant difficulties in modeling randomly oriented

finite elements that possess anisotropic slope.

1. Input Parameters
The essence of the difficulty lies in the

representation of the watershed topography wusing finite
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elements. Two dimensional ;nalysis of the surface water
equations was complicated by the use of a four node
quadrilateral for computation of first order derivatives
when anisotropy required rotation to an orthogonal set of
local axes. The rotation caused errors in the integration
of the [b] matrices. The other finite element investigated
was the three node triangle. This finite element could be
rotated to the orthogonal local axes without error in the
(b] matrices integration. However, the proper assignment
of boundary values requires that the triangle be oriented
such that one node lies on a stream line, i.e. an isotropic
finite element grid. |

The arbitrary grid representation of slope, 1i.e., a
uniformly sloped plane incorrectly represents the flow
paths on a curvilinear surface. The flow paths are always
perpendicular to the elevation contours 1if inertia is
insignificant as in the kinematic wave equation. This
amounts to a solution of the Laplacian equation for
potential and streamlines. The equipotential lines are 1in
this case the equi-elevation lines and the streamlines or
orthogonal trajectories are the flow paths. Of course,
depending on the scale of the modeled flow, micro-scale
topography changes may obscure a smooth trend in flow path
across the watershed. Significant difficulties arise when
the element grid 1is not orthogonal to the principal
direction of the slope as it varies over the watershed

surface.
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In the present watersﬁed, the slope was defined by
the contour intervals from the topographic survey. The
variation of the elevation contours sets the scale of the
spatial variation of the slope parameter. Between the
contour lines, nothing 1is known of the micro-scale
topography and therefore 1is assumed to be purely
stochastic. The average slope within this interval was
used to define the slope for the elements. The ARC-INFO,
TIN program was used to determine the slope and aspect at
each node. The TIN program simply determines the slope of
the ground surface as defined by the digitized elevation
contours. As more and more finite elements are used fo
represent the curvilinear, spatially nonhomogeneous
watershed, the nodal slopes tend toward elemental
representation of slope, and in the limit, they are the
same.

In the case of the arbitrary grid, the slope is
averaged over the plane by taking several measurements
within the plane. This does not allow  accurate
representation of the slope by the finite element grid
since the spatial nonhomogeneity is lost by averaging. The
linear element 1is not well suited to representing the
curvature of the watershed surface. However, as more and
more linear, one-dimensional elements of decreasing size
are used to represent the watershed, the representation of
topography improves as with any other element. The

difficulty arises from the use of one-dimensional elements
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of wvariable width to represént two-dimensional, spatially
variable, parameters. Difficulties were found when using a
two-dimensional scheme in the modeling of two-dimensional,
spatially variable parameters that are anisotropic. In
such a case the finite element grid must be orthogonal to
the principal direction of slope at each element.

A two-dimensional finite element grid is capable of
more accurately representing the spatial nonhomogeneity of
the spatially variable parameters. The nodal slopes were
determined by the value of the slope and aspect represented
by the TIN Slope map in Figure 11. These slopes vary over
the element 1in the case of the four-node quadrilaterél
because this element is capable of representing a warped
surface. '

The average slope could have been determined by
integrating the slope over the element and dividing this
integrand by the'area, and the consistent stress method
used to obtain the nodal slope values to be used in the
modeling. This procedure, however, ignores micro-scale
slope variation interior to the finite element. It |is
though, responsive to meso-scale slope variation
represented by the spatial form of the 10-foot contour
lines. Two-foot contour intervals could have been used but
this would have resulted in considerably more finite
elements than the first case of the arbitrary grid. This
increased fineness in the grid representation would have

increased the accuracy due to the increased number of
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elements not due, solely, to the better finite element
representation of a spatially variable parameter.

Soil properties were found to produce very little
difference in the Green and Ampt parameters and
consequently in the rainfall excess intensities. The
watershed was therefore treated as one soil. The effect of
the 1lumping of the soils is obscured by the difficulty in
defining a unique set of infiltration parameters. Based on
evidence from other researchers (Brakenseik and Onstad,
1977) the relative error in peak runoff to hydraulic
conductivity is 2.68 percent. If a one percent error
exists in the hydraulic conductivity then a 2.68 percént
error in peak runoff rate results. In this case the
hydraulic conductivities predicted according to the method
of Rawls, Lane and Nicks (1987) method were as follows

Hastings Silt Loam, K = 0.0198 cm/hr,

Hastings Silty Clay Loam, K = 0.0687 cm/hr,

Colby Silt Loam, K = 0.0167 cm/hr,

Average, K = 0.0151 cm/hr
This average was not actually used in the modeling run
since the effect of «crusting obscured the range of
different soil hydraulic conductivities. The hydraulic
conductivities are estimated to range from 0.15 to 0.06
cm/hr due to the crusting. This range 1is estimated by
using the variation of the CEC/Clay ratio from 0.2 to 0.65.
The hydraulic conductivity used in the modeling of the May

4, 1959 rainstorm event, was K = 0.056 cm/hr. This
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corresponds to the CEC/CLAY‘ratio of 0.65, which was the
high end of the range of data used in the WEPP Model
development (cf. Rawls, Lane and Nicks). The actual
CEC/CLAY ranged from 0.67-0.79.

The Green and Ampt parameters used in both the
arbitrary finite element grid and the hydrologic response
area finite element grid are not a unique set. The
rainfall intensitites wused in calibration were found by
inspection from a range of intensities produced by a range
of hydraulic conductivities. Extreme difficulty was
encountered in matching both volume and peak rate of
outflow. When these same rainfall intensities were wused
with the hydrologic response area finite element grid a
more accurate solution did not result. In fact a poorer
agreement was found. This suggests that not only are the
Green and Ampt parameters nonunique but the calibration is
dependent on the finite element grid repiesentation of the
watershed domain. Depending on the spatial form of the
finite element grid, different sets of input parameters
will result from the calibration procedure. This
difficulty obscures the advantages of better representation

of spatially nonhomogeneous parameters.

2. Numerical Errors

Numerical errors also result from the mathematical
formulation of the solution. These errors result from
several sources within the finite element method itself.

Other errors in represetation of the physical phenomenon
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have been previously discussed.

Numerical oscillations and stability errors arise from

the size of the eigenvalues in the equation

[cl{al = {F*} .

The eigenvalues are calculated by solving

eigenvector [(E],

{a} = [E]{2Z}

or,

(A} = [EI{2}
where,

{z} = solution vector of flow depths.
Writing [114] as
[cl[El{z} = ({(F"}
. . -1
and multiplying by [E] ,

-1 .

(21 'lcltEl(Z} = (E] “(F"}

-1
The matrices [E] [C][E] form the eigenvector [A],

[112]

for the

[(113]

(114]

[115]

[(116]



] ] ) i
A 0 ..... tees.0 VA R*
1 1 1
0 A Oueevso..0 z R*
2 2 2
®

0000 X3 00.00.0 < ?’ > '4 ?’ ?

o.....o L] 0 0 L ] [ ]

0vevuava.0 A of |2 R*
L n n n
k“J ),

For any row i,
[ ]
AiZj = R |
and

Z; = R/

or

zZi [ R*/A; dt = At(R*/A;)

Writing [119] as

the recursive formulation results in
Z = aAt + 2
1 0

Z = aAt + Z = 2alAt + Z
2 1 0

Z = naAt + 2Z .
n o

(117]

(118]

[(119]

(120]

(121]

(122]
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Equation [122] does not amplify errors that may occur in
the right-hand side term naAt since it does not contain any
Z terms. Because of this the solution of the kinematic
wave equaitons in general may proceed without numerical
oscillations or stability errors. This is a consequence of
the partial differential equation form and the finite
difference solution in the time domain.

Nonlinearity in the partial differential equation
however can pose difficulties in the solution algorithm,
It is necessary to start with sufficiently close values of
flow depth at each time step such that the iterative
solution converges. If large step increases in rainfall
excess 1intensities. occurs or large values of rainfall
excesses occur, the iterative solution will not converge
but rather flow depths becomes negative. If initial
estimates of flow depth at each time step are used that are
not the previous solution values, the solution again does
not converge. Convergence was achieved by using the dry
bed initial values at the first time step and the previous-
time flow depths as the beginning values for iterative
solution at succeeding time-steps.

As evidenced 1in the 1literature, the difficulties
encountered in applying a deterministic, distributed
parameter model to watershed hydrology fell into three
categories. These categories largely center around the
types of errors encountered in the literature for the type

of modeling performed for this research. These categories
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are numeric errors, model equation errors, and parameter
estimation errors. The approaches taken to meet the
project objectives were performed in order to reach the
overall goal of this research to more accurately predict
the actual outflow hydrograph from a watershed of
nonuniform, spatially distributed parameters. Conclusions
derived from this research follow together with
recommendations and future applications of the method
developed.

Numeric errors are those that arise from the method
itself such as inaccuracies and instability in the time
solution of the finite element method. These errors arise
due to the form of the time dependent equation that is
solved by standard finite difference techniques such as in
equation [92]. Numeric errors can be subdivided into
physical reality, numerical oscillations, accuracy, and
stability.

Physical reality is observed whenever rainfall excess
added to a node causes surrounding nodes to also increase.
In the solution of heat flow and groundwater flow, it is
possible to obtain solutions that for initial time steps
the temperature or pressure head decreases when it should
be increasing (Segerlind, 1984). A physical reality error
results whenever this occurs.

Numerical oscillations occur when at each time step
the solution 1is first higher then lower than the true

solution thus causing oscillations about the solution.
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Stability errors occur when an incremental error at each
time step grows until the solution deteriorates.

As a result of the equation [116], the solution of the
kinematic wave equation as represented by [106] does not
suffer from stability and oscillation errors prevalent in
other governing equations such as the field equation for
heat flow. The only other possible source of numeric
errors are those arising from the accuracy of the ordinary
differential equations, e.g. the time dependent equation
[(105] 1in representing the partial differential equations,
i.e., the conservation of mass equation [55]. This error
is accounted for by observing the Courant condition. The
Courant condition 1is a consequence of the partial
differential equation theory, the Method of
Characteristics. It was observed through the choice of the
time step for the maximum rainfall excess and the longest
plane. This choice of time step resulted in a solution
that was accurate and free of oscillations or instability.
The computation of the Courant condition from known
physical parameters allows selection of the time step prior
to modeling using the finite element method. As seen in
Figures 14 and 15, a solution free of instability and
oscillations resulted.

Model equation errors arise from the simplification of
the full dynamic equation by the kinematic or diffusion
analogy and kinematic shocks. The kinematic shocks that

plagued previous researchers were avoided in the method
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developed by this research. The method used here
calculates the nodal flow rates using nodal slopes and
Manning n values. This improvement over previous methods
allowed an accurate solution of the kinematic wave
equations using the finite element method. Both linear
one-dimensional and two-dimensional elements were used
successfully in this solution in the modeling of a two-
dimensional domain of spatially nonhomogeneous slopes.
This two-dimensional domain possessed complex topographical
curvature as represented by the TIN slope map in Figure 11.
This slope map provided the basis for the selection of
nodal slope values that resulted in the solution of the
kinematic wave equation free of kinematic shock.

Parameter estimation errors arise from uncertainty
and from spatial variation of infiltration, rainfall,
roughness and other parameters over the watershed domain.
The spatial variation of the watershed parameters were
represented by the finite element grid by assigning to each
element and node the appropriate parameters. Rainfall
excess was assigned as an element constant as well as
assumed constant over the watershed.

Errors in rainfall excess arise from many sources
including the assumption that infiltration, rainfall,
roughness and other parameters are uniform over the entire
watershed. Where the accuracy and the number of sampling
points are sufficient, spatial statistics may be wused to

advantage to interpolate with known variance at a specified
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location the value of a parameter. The location of the
parameter is dictated by the finite element grid which in
turn 1is dictated by the spatial variability of the
parameters. Lack of knowledge apriori of the infiltration
parameters and the inability to select an unique set by
calibration limit the viability of calibrating.

Proper representation arises from the proper selection
or the use of elements that maintain faithful
representation of the hydrologically homogeneous character
of subareas within the watershed. Improper representation
may result from an incomplete knowledge of the parametefs
and the variation over the watershed or with time during
the modeling process. The Geographic Information System
allowed proper representation of the spatially
nonhomogeneous parameter, slope. By utilizing the
hydrologic response area, finite-element grid proper
representation occurred.

Accurate modeling of the hydrologic response areas
within the watershed during an unsteady rainstorm is
possible if the infiltr;tion parameters used to define
rainfall excess 1is sufficiently well known. Better
definition of the rainfall-runoff relation is needed. The
finite element method holds promise as a mathematical model
capable of accurately and efficiently solving the
distributed, deterministic surface water equations in a
watershed. The Geographic Information System holds promise

as an efficient means of handling the large volume of input
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data required by distributed, deterministic models.
The goal of this research has been achieved by
accomplishing the following three objectives using the

following approaches. The objectives and approaches were:

Objective 1. Define hydrologic response areas that exhibit

similar soil infiltration parameters, surface roughness,
and slope for a given watershed.
Approach: A Geographic Information System was used to
search, smooth and aggregate areas of similar soil
infiltration parameters, surface roughness, and slope thus
producing the specific hydrologic response areas. |
The approach to Objective 1 utilized the ARC-INFO
GIS to digitize the maps of soils, landuse, and topography.
Based on the infiltration parameters associated with the
soils, the Manning n associated with the landuse, and the
slope calculated from the 2-foot contour elevation map;
hydrologic response areas were produced. Due to the
homogeneity of the soils and landuse, slope was the only
spatially nonhomogeneous parameter modeled. The ARC-INFO
Triangular Irregular Network (TIN) program was used to
define the slope and aspect from the 2-foot contour
elevation map. From the TIN Slope map, nodal slope values
were determined for each node of each element. The Slope
map shown in Figure 11 was produced for a 1% interval. The
hydrologic response area finite element grid was based on

the 10-foot contour elevations. The GIS proved to be an
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effective means of searchiﬁg, smoothing and aggregating
values of the slope parameter and thus defining hydrologic
response areas for the anisotropic finite element grid.
The GIS was also used to determine the slopes at the nodes
for the isotropic finite element grid, however, the aspects
were aligned such that the slope was parallel to the sides

of the elements representing streamlines.

Objective 2. Apply the finite element method to the

specific hydrologic response areas to compute and route the
overland flow to the outlet.
Approach: The rate and volume of infiltration was modeled
by the Green and Ampt infiltration equation. The equation
parameters were calibrated for the watershed using an
arbitrary finite element grid. The rainfall excess thus
defined becomes the lateral inflow for use in solution of
the overland flow equations.

The approach to Objective 2 utilized the Green and
Ampt infiltration equation. The Green and Ampt parameters
along with the rainfall excess were computed using the WEPP
project programs with the aid of Dr. Walter Rawls, ARS
Water Data Laboratory, Beltsville Maryland. For a
description of the procedures used see Rawls, Lane and
Nicks (1987). The initial estimates of the Green and Ampt
parameters used measured soil properties. The rainfall
excesses computed for the three soils were nearly identical
during the rainstorm event. Due to the similarity, the

watershed was modeled as having one soil.
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Calibration of the Green and Ampt parameters was
performed by varying the hydraulic conductivity and the
initial abstraction until the calculated volume and peak
outflow rate matched as closely as possible the actual
outflow rate. The calibration was performed for the
arbitrary finite element grid. The final values of initial
abstraction and hydraulic conductivity were not determined
directly but rather the rainfall excess intensities were
determined by inspection of several sets of hydraulic
conductivities and 1initial abstraction values. These
Green and Ampt parameters appear to vary during the storm.
The simply infiltration model was not capable of predicting
the correct Green and Ampt parameters and resulting
rainfall intensities.

After calibrating the Green and Ampt parameters for
the arbitrary finite element grid, the hydrologic response
area grid was modeled using the calibrated rainfall excess.
The purpose for this was to investigate the effect of
better description of the spatial parameters such as slope
by the two dimensional, hydrologic response area grid.
The Galerkin finite element formulation was applied to the
kinematic wave equations producing the flow rate and flow
depth solution. The solution was performed in the time
domain during the unsteady rainstorm event. The time
solution was performed using the central difference, finite
difference form. This formulation resulted in a solution

free from the physical reality, numerical oscillations,
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instability, kinematic shock and  accuracy errors
reported previous literature.

It was necessary to form an isotropic finite element
grid such that the solution may be obtained. The resulting
finite element grid was a better representation of the
spatially varying slope and the solution to a spatially
varying flow depth in two-dimensions. The relative
accuracy of the hydrologic response area finite element
grid to the arbitrary finite element grid is unknown due to
uncertainty in the infiltration parameters and resulting

rainfall excesses.

Objective 3. Compare the accuracy of the outflow

hydrographs to the actual outflow hydrograph for a given
rainstorm event for the following two cases:
a. A finite element grid that is of an arbitrary

spatial form.

b. A finite element grid formed from hydrologic
response areas defined by the Geographic

Information System.

Approach: The rate and volume of runoff was modeled by the
finite difference/finite element method of solving the
kinematic wave equation for overland flow. The excess
rainfall was defined by the infiltration equation. The
outflow hydrograph was calculated for the outlet of the

watershed for the two cases described above. A finite
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element model, utilizing lin;ar, one-dimensional and two-
dimensional finite elements was used to compute the
overland flow equations. Lotus 1-2-3 release 2.01 was
used for the solution of the linear, one-dimensional finite
element grid. A FORTRAN computer program identical 1in
algorithm to the Lotus 1-2-3 spread sheet was used for the
linear, two-dimensional finite element grid. The spread
sheet formulas and the computer program are contained in
the Appendix. The validity of the method was checked by
comparing the computed and analytical solution outflow
hydrographs. The validity was checked for a single plape
with the results contained in the Appendix.

The finite element solution of the kinematic wave
equations when solved with nodal rather than elemental flow
rates produces a close approximation to the analytic
solution and resulted 1in a close approximation of the
actual outflow hydrograph for this rainstorm event. The
flexibility of this method allows modeling of watershed
runof f using spatially nonhomogeneous parameters. The
spatial variability must be lumped interior to the finite
element. Finite elements corresponding to the spatially
nonhomogeneous parameter allow a much more accurate
representation of the parameters. It was not determined
whether the hydrologic response area, finite element grid
produced a better agreement between the calculated and
actual hydrograph due to the uncertainty in the

infiltration parameters.
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The method developed through this research calculates
the two-dimensional solution to the kinematic wave equation
hydrograph for a watershed of nonuniform, spatially
nonhomogeneous parameters such as slope. Further, this
method is free from kinematic shocks which had prevented
earlier researchers from solving the problem as a

continuum,



V. CONCLUSIONS AND RECOMMENDATIONS

The approaches taken to meet the project objectives
were performed in order to reach the overall goal of this
research--to more accurately predict the actual outflow
hydrograph from a watershed of nonuniform, spatially
distributed parameters. Conclusions derived from this
research follow together with recommendations and future

applications of the method developed.

A. Conclusions

The method developed through this research calculates
the two-dimensional solution to the kinematic wave equation
hydrograph for a watershed of nonuniform, spatially
nonhomogeneous parameters such as slope. From this

research it may be concluded that:

1. The GIS was effective in searching, smoothing
and aggregating values of the spatially variable
slope parameter for use in the finite element

model.

2. The Green and Ampt infiltration model used did
not adequately predict the rainfall excess
intensities in order to accurately simulate

runoff from an actual storm using the finite

145
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element model.

The finite element model developed through this
research results in a solution free from
kinematic shock for the two-dimensional kinematic

wave equation in a watershed continuum.

B. Recommendations

The

ability of the Geographic Information System and

the finite element method to model and display modeled

results of the watershed surface runoff recommends its use

for further research. It is recommended that:

l.

Further research is needed to better measure and
describe the spatially variable parameters
affecting - surface flow, particularly

infiltration.

The use of geostatistics may provide valuable
information as to the detail required to
accurately model spatially variability in the

input parameters.

This research should be extended to consider both
overland and channel flow for larger watershed
systems. This extension should include diffusion

and full dynamic equation modeling.

Better calibration techniques should be

investigated that are capable of handling the
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the nodes were used in proddcing the contours. The peak
values occur at different times during the storm runoff
period.

The value of predicting the spatial distribution of
surface flow is realized if the distribution of
concentration of nutrients or pesticides is capable of
being predicted for a watershed. This ability provides
insight into the location and source of contaminants in
overland flow. The flow depth shown in Figure 24 may be
interpreted as the highest concentrations of contaminants.
Since the flow rate over any particular location during a
storm event is related to the flow depth by the Manning or
Chezy equation', the concentration expressed as a mass
fraction of the flow rate will correspond to the flow
depth.

Further research is needed to better describe the
spatially variable parameters affecting surface flow,
particularly infiltration. The method developed through
this research provides a better description of the
hydrologic processes in a two-dimensional domain. It also
"~ provides insight into the transport phenomena  of
agricultural pollution by pesticides and nutrients in
surface and subsurface water as affected by overland flow

and infiltration for an agricultural watershed.
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The following is a listing of the Lotus 1-2-3 work sheet
for the arbitrary finite element grid solution. The cell
formulas are printed unformatted for each section of the
worksheet separated by headings describing the function of
the section.

ELEMENT DATA HEADING

Al: [W12] 'ELEMENT
Bl: 'DATA

Hl: [W12] 66

A3: [W12] ~element
B3: “nodel

C3: [W1l2] ~node2
D3: [W12] ~node3
E3: [W12] ~node4
F3: [(W12] ~slopel
G3: [W12] ~slope2
H3: [W12] ~slope3
I13: [W12] ~slope4
J3: [W1l4] ~n1

K3: *n2

L3: [wWl2] ~n3

M3: “n4

N3: ~width

03: ~ROLD

P3: [W12] ~RNEW
Ad: [wW12] ~1

B4: 0

C4: [w12] 171

F4: [W12] 0.0406
G4: [W1l2] 0.0406
J4: [wl4] 0.035
K4: 0.035

N4: 353

O4: 0

P4: [Wl2] O

A5: [wW12] ~2

B5: 171

CS: [wW12] 342

F5: [W12] 0.0406
G5: [w12] 0.0669
JS5: [wWl4] 0.035
KS5: 0.035

NS: 333

A6: [W12] ~3

B6: 342

C6: [wW12] 507

F6: [W12] 0.0669
G6: [W1l2] 0.0562
J6: [wW1l4] 0.035
Ké6: 0.035

N6: 206



157

1)

ELEMENTAL EQUATIONS OF THE FORM [C]{A} = {F}

A9:

AlO0:
Cl10:
D10:
El0:
Fl10:
Gl0:
H10:
All:
Bll:
D11:
Ell:
Fll:
Gll:
Hll:
I11:

Al2:
Bl2:
D12:
El2:
Fl2:
Gl2:
H12:
112:

Al3:
Al4:
Cla:
D14:
El4:
Fl4:
Gl4:
Hl4:
AlS5:
B15:
D15:
E15:
F15:
Gl5:
H15:
I115:

Al6:
Bl6:
D16:
Elé6:
Fl6:
Glé6:
Hl6:

[(W12] 'ELEMENT NO 1

(wi2] ~[cC]

(Wwi2] ~{h}new

(w12] '{F}=

(wi2] ~[C]

(wi2] ~*{a0LD)

[Ww12] ~DT/2([K]*

[W12] 'QOLD+QNEW

[W12] 2*($C$S4-$BS4)*$NS4/6

(SC$4-$BS4) *$SNS4/6

[(W12] +SES$11+$SF$11+$GS11+$HS11+S1IS11

[W12] 2*($C$S4-SBS4)*SNS4*$SBS27/6

[W12] ($C$4-$BS$4)*$SN$S4*$BS28/6

(W12] -($B$37/2)*(-1)*((1-$B$38)*$D$S27+$B$38*$DS$S33)
[W12] -($B$37/2)*(1)*((1-$B$38)*$DS28+$B$38*$DS34)
[W12] +$BS$37*($SC$4-$BS4)/2*((1-$BS$S38)*$NS4*S0S4+
SB$38*$NS4*$PS4)

[W12] ($SC$4-$BS$S4)*$NS4/6

2*($CS$S4-SBS4) *SNS4/6

[(W12] +SES12+SFS12+$GS12+SHS12+S1512

[W12] ($C$4-$BS4)*$N$S4*$BS27/6

[W12] 2*($C$4-$BS4)*SNS4*$BS$S28/6

[W12] -($B$37/2)*(-1)*((1-$B$38)*$D$27+$B$38*$DS33)
(W12] -($B$37/2)*(1)*((1-$B$S38)*$D$S28+$BS38*S$SDS$34)
[W12] +$BS$37*($CS$S4-$BS$S4)/2*((1-$SB$38)*SNS4*S0S4+
$SBS38*SNS4*$SPS4)

[W12] 'ELEMENT NO2

(wi2] ~(cC]

(W12] ~{h}new

(wi2] '{F}=

(wi2] ~(c]

(w12] ~*{AOLD)

(wi2] ~DT/2(K]*

(W12] 'QOLD+QNEW

[W12] 2*($C$5-$BS5)*$NS5/6

($SC$5-$BS$5) *SNS5/6

[W12] +SES15+SFS15+SGS15+SHS15+$IS15

[W12] 2*($SC$S5-$BS$5)*SNS5*$SBS28/6

[W12] ($C$5-$BSS5)*$N$S5*$SBS$S29/6

[(W12] -($B$37/2)*(-1)*((1-$B$38)*$D$28+$B$S38*SDS34)
(W12] -($B$37/2)*(1)*((1-$BS38)*$SD$S29+$BS38*$DS35)
[W12] +$B$37*(SCS5-$BS$S5)/2*((1-$SBS$S38)*SNS5*50S84+
SB$38*SNSS5*$PS4)

[(W12] ($CS$S5-$BS5)*$NS$S5/6

2*(SCS5-$BSS5) *SNS5/6

[W12] +$SES16+S$SFS$16+$G$S16+SHS16+S1316

[W12] ($C$5-$BSS)*SNS5*$SBS$S28/6

[(W12] 2*($CS5-$BS5)*$NSS5*$BS29/6

(W12] -($B$37/2)*(-1)*((1-$SB$S38)*$SD$S28+SBS38*$DS34)
[(W12] -($BS37/2)*(1)*((1-$BS$S38)*$D$29+$B$38*$DS35)



I116:

Al7:
Al8:
Cl8:
D18:
El8:
F18:
G18:
H18:
Al9:
B19:
D19:
El9:
Fl19:
Gl9:
H19:
I119:

A20:
B20:
D20:
E20:
F20:
G20:
H20:
120
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[W12] +$BS$37*(SC$5-$BS$S5)/2*((1-$B$38) *SNS5*S0$4+
SBS38*SNSS*$PS4)
(W12] 'ELEMENT NO3
(w12] ~[cC]
(Ww12] ~{h}new
(wi2] '{F}=
(wi12] ~[cC]
(w12] ~*{AOLD)
(wi2] ~DT/2(K]*
[W12] 'QOLD+QNEW
[W12] 2*($CS$S6-$SB$S6)*SNS6/6
(SCS6-SBS6) *SNS6/6
(W12] +SES$19+SF$19+$GS$S19+$HS19+SI$19
[W12] 2*($SC$6-SBS6) *SNS6*$B$29/6
[W12] (SC$S6-$SBS6)*SNS6*$SBS$S30/6
[(W12] -($B$37/2)*(-1)*((1-$BS$38)*$D$29+$B$38*$DS35)
[W12] -($B$37/2)*(1)*((1-$B$38)*$D$30+$SBS38*$DS$36)
[W12] +$B$37*($SC$6-$BS$S6)/2*((1-$B$38)*SNS6*$S0S4+
SBS$S38*SNS6*$PS4)
[W12] ($C$S6-$BS6)*$NS6/6
2*($SC$6-$BS6) *SNS6/6
[W12] +SE$20+$F$20+3GS$20+SHS20+$1$20
[W12] ($SC$S6-$BS6)*$SNS6*$SBS29/6
[W12] 2*(SC$6-$SBS6)*SNS6*$BS30/6
(W12] -($B$37/2)*(-1)*((1-$BS$38)*$D$29+$BS$S38*$DS35)
[W12] -($B$37/2)*(1)*((1-$B$38)*$D$S30+$SB$S38*$DS36)
[W12] +$B$37*($C$6-$BS6)/2*((1-$B$38)*SNS6*S0$4+
$B$S38*SNS6*$PS4)

FLOW DEPTHS AND FLOW RATES AT EACH NODE, BOTH NEW AND OLD
VALUES DEFINED BY THE MANNING EQUATION. INVERSE AND
SOLUTION MACROS ARE PRECEEDED BY '/.

A27:
B27:

C27:
D27:
F27:
G27:
A28:
B28:
C28:
D28:
F28:
G28:
A29:
B29:
C29:
D29:
A30:
B30:
C30:
D30:

(W12] ~hlold

uo

[Ww1i2] ~Qlold

[W12] 1.486/3J$4*$SF$4~0.5*$B$27~(5/3) *$NS4

[W12] 'INVERSE

U (W12] 'SOLUTION\D

(Ww12] ~h2o01ld

U 0.0017120387

[(Wwi2] ~Q201ld

[W12] (1.486/SK$S4)*SFS$S4~0.5*$B$28~(5/3)*(SNS4+S$SNS5)/2
(W12] '/DMI~~~

(Wwi2] '/DMM~~~

(Ww12] ~h3o01ld

U 0.0037515851

(wl12] ~Q301ld

[W12] 1.486/SK$S5*$GS$S5~0.5*$BS$29~(5/3)*($SNSS5+$NS6) /2
(Wwl12] ~h4old

U 0.0072532181

(wl2] ~Q401d

(W12] (1.486/SKS$S6)*3GS6~0.5*$SBS$30~(5/3)*$NS6



F32:
G32:
A33:
B33:
C33:
D33:
E33:
F33:
A34:
B34:
C34:
D34:
A35:
B35:
C35:
D35:
A36:
B36:
C36:
D36:

TIME STEP

A37:
B37:
A38:
B38:

159
U [w12] 'copy\C
U [W12] 'NEXT TIME STEP
(Wl12] ~hlNEW
Uuo
(W12] ~QI1NEW
[W12] 1.486/$J$4*$F$4~0.5*$B$33~(5/3)*$NS4
U [wW12] 6
U [W12] '/C$B$34..$B$36~$B$28..$B$S30~/CSPS4~$0S$4~
(W12] ~h2NEW
U 0.0015953261
[(W12] ~Q2NEW
[W12] (1.486/$KS$4)*$SF$4~0.5*$B$34~(5/3)*(SNS4+3$NSS) /2
[W12] ~h3NEW
U 0.0034417683
[W12] ~Q3NEW
[W12] 1.486/$3K$5*$GS$5~0.5*$B$35~(5/3) *($SNS5+$NS6) /2
[W12] ~h4NEW
U 0.00667484
(W12] ~Q4NEW
[(W12] (1.486/$K$6)*$GS6~0.5*$BS$36~(5/3)*SNS6

IN SECONDS AND TIME WEIGHTING COEFFICIENT

(W12] 'DELTA
60
(W12] °'THETA
0.5

DIRECT STIFFNESS METHOD SUMMING THE ELEMENTAL MATRIX
ENTRIES TOGETHER WITH BOUNDARY CONDITIONS INTO THE GLOBAL

MATRIX

G38:
G38:
C39:
D39:
E39:
F39:
G39:
C40:
D40:
E40:
G40:
C41l:
D41l:
E41l:
G4l:
C42:
D42:
E42:
G42:

[wi2] ~'{F}
[w12] ~'{F}
[w12] \-

[(Wi2] \-

[Ww12] \-

[w12] \-

(w12] \-

[Ww12] +B12+AlS
(w12] +B15
[wi2] O

[wl12] +D12+D15
[Ww12] +Ale6
[wW12] +B16+Al9
(wl12] +B19
(w12] +D16+D19
(wi2] ©

[wl2] +A20
(wl2] +B20
(wl2] +D20

ccccccccccccacccccacaccaccaccaca
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L}

INVERSE OF THE GLOBAL'[C] MATRIX MULTIPLIED TIMES THE {F*}
VECTOR FOR THE SOLUTION OF THE NODAL FLOW DEPTHS h2,h3,h4

C45: U [wW12] 0.0000279141
D45: U [W12] -0.0000096409
E45: U [(W12] 0.0000048205
C46: U [W12] -0.0000096409
D46: U [W12] 0.0000397219
E46: U [W12] -0.0000198609
C47: U [W12] 0.0000048205
D47: U [W12] -0.0000198609
E47: U [W12] 0.0000981917

The worksheet solution and methodology was tested for a
single plane consisting of the same input data for element
No. 1. The solution was compared to the analytic solution
using the Method of Characteristics. The analytic solution
states that prior to equilibrium the flow depth is

h = i*t
where,
i = rainfall intensity,
t = time since start of the rainfall excess.
h = flow depth.
The flow rate is
q = mh®
where,

(1.486/n)*sl/2 |
5/3 for overland flow.

m
Q

The following Figure Al shows the comparison of the finite
element analysis and the analytic solution for a single
plane. The parameters used for this plane is the upper
plane in the arbitrary grid finite element solution.
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Conputer solution of the hydrologic response area finite
element grid was performed utilizing the following 1listing
of FORTRAN code.
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FHHHHHEHHHEHHHHHHHEHHEHHHHHHHHEHHEHHHHBHHHHOHHHHHHHHHHHHEHHHOHHHHHHHHHEHHH
PROGRAM MAINSTRM

This program finds a linear solution to a finite element overland
flow problem for a global system of two-dimensional elements.

Units of measurement are taken from the English System.

To avoid internal storage of large amounts of data, this program
reads element and node information from external files as needed.

In the variable listing below, the X-direction is identical to the
direction of flow at a given node.

DELTAT = Length (seconds) of time step.
GCHOLD( ) = GCM( , ) # GHOLD(2)

GCM( , ) = Global Capacitance Matrix f T
J%aN'2 aN%
GF( ) = Global Force vector
GHNEWI(I) = Flow depth H (feet) at node | at end of current
time step.
GHOLD(l) = Flow depth H (feet) at node | at end of previous
time step.

GHTRY(l) = Flow depth H (feet) at node | tried for solution
iteration. When solution GHNEW is close to GHTRY,
solution is accepted.

GQRI(1) = Resultant of flow rate per unit width (ft##2/sec) in X
and Y directions at node |
GQx(1) = Waeighted flow rate per umt width (ft*%2/sec) n

X-direction at node | for given time step.

GQXNEWI(I) = Flow rate per unit width (ft#*2/sec) in X-direction
at node | at end of current time step.

GQXOLD(l) = Flow rate per unit width (ft##2/sec) in X-direction
at node | at tend of previous time step.

GRF( ) = GF » aweighted rainfall’%

GSMX( ) = Global Stiffness Matrix for X-direction f T

JaN% ‘AdN/dx's

GSMQX( ) = GSMX #» GQX

HLOLIM = Negative tolerance for flow depth H (feet).

HUPLIM = Largest expected flow depth H (feet).

INDEXN( ) = Index for array of node numbers.

NODE( ) = Array of node numbers.

NP = Total number of nodal points being evaluated.

NSOLV = Solution iteration number.

MANNGN = Mannings N.

MAXNOD = Maximum number of nodes associated with an element in
the system.

MAXSOL = Maximum number of solution iterations expected.

PI = 3.14159..

QNEW = Flow rate per unit width at a node calculated

0000000000000 00 00 O 00

from GHTRY(l).
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RAINN = Rate of rainfall at end of present time step (ft/sec).
RAINO = Rate of rainfall at end of previous time step (ft/sec).
SLOPE = Slope (ft/ft) at a node.

=

SLOPEX Slope (ft/ft) in X direction at a node.

THETA Waeighting coefficient.

TIMEN Clock time (seconds) at end of present time step.
TIMEO = Clock time (seconds) at end of previous time step.

Tracing definitions:

ILEVEL = Tracing level for downstream write statements.

ITRACK = Unit (TRACE.OUT) to which results of intermediate
calculations are written.

LEVELT = Tracing level relative to the calling program.

LTRACE = Tracing level for entire program.

COMMON/TRACE/LTRACE,ITRACK
COMMON/MATRIX/GSMX(20,20),GSMY(20,20).GCM(20,20),GF(20)
COMMON/NODES/NP,NBW,NODE(20),INDEXN(20)

DIMENSION GHNEW/(20),GHOLD(20),GRF(20),GCHOLD(20),GSUM(20),
+  GQAXNEW(20),GQXOLD(20),GAX(20).GSMQX(20),GHTRY(20),
+  GQYNEWI(20).GQYOLD(20).GQY(20).GSMQY(20),GQRES(20)
INTEGER HOUR

REAL MANNGN

CHARACTER#40 TITLE

DOUBLE PRECISION ASPECT,ASPRAD,PI

DATA THETA/.5/, MANNGN/.035/, P1/3.141592653589794/
DATA MAXNOQOD/4/ LEVELT/0/ HUPLIM/10./ HLOLIM/-0.1E~-06/
DATA GHNEW,GQXNEW,GQYNEW/60%0./

ITRACK = 8
OPEN(1,FILE="SYSTEM.IN)
OPEN(3,FILE="STORM.IN)
OPEN(7 FILE="STREAM.OUT')
OPEN(ITRACK FILE='"TRACE.OUT')

READ(1,10) TITLE
FORMAT(40X,40A)
WRITE(7,20) TITLE
WRITE(ITRACK,20) TITLE
FORMAT(/,.5X,40A./)

ILEVEL = LEVELT+1

WRITE(6,70)

FORMAT(1X,'Enter the program tracing (debug) level: ')
READ(» %) LTRACE

WRITE(ITRACK,60) LTRACE

FORMAT(/,10X,'The program tracing level is ',12)

WRITE(6,72)
FORMAT(5X, Executing MAINSTRM: Running main program.’)

Determine the total number of elements and nodes in the global system:

CALL COUNT(ILEVEL,NELTOT,NODTOT)
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c Determine which elements and nodes and their coordinates
C are associated with the subsystem selected for analysis:
CALL SUBSYS(ILEVEL,NELTOT,NODTOT)

Cc Construct the global stiffness and capacitance matrices and the
Cc force vector:

CALL BUILDG(ILEVEL,NELTOT)
(of Modify the global matrices:

Call MOOGM(ILEVEL)

READ(3,10) TITLE

WRITE(ITRACK,20) TITLE

WRITE(7,20) TITLE

WRITE(7,722) (NODE().I=1,NP)
722 FORMAT(6X,100110)

ILEV1=ILEVEL+1
IF(ILEV1.LELTRACE) WRITE(ITRACK,102)
102 FORMAT(5X,'Executing time 20p...")

MAXSOL = NP=10
ettt BEGIN TIME DEPENDENT CALCULATIONS #3056 524344

Cc Read the rainfall at the beginning of the time period:
READ(3,237) HOUR ,MINUTE,RAINN
237 FORMATI(I12,1X,12,F10.5)
TSTART = (HOUR#60.+MINUTE)*60
TIMEN = TSTART
DELTAT=0
WRITE(6,235) HOUR MINUTE,RAINN,DELTAT
IF(ILEV1+2LELTRACE) THEN
WRITE(ITRACK,'(1X))
WRITE(ITRACK,235) HOUR,MINUTE,RAINN,DELTAT
235 FORMAT(SX, At ',12,",12,' rain intensity is ',
1 E10.3’ ft/sec DELTAT = ', F5.1, sec.)
ENDIF
WRITE(7,720) HOUR MINUTE,(GQRES(I).1= 1,NP)

HHHAHHHHHNHHEHEHEEE START TIME LOOP 35635630 3500 35600535 513 36565 3 3
1000 DO 2000 ITIME=1,1000

TIMEO = TIMEN

RAINO = RAINN

READ(3,237,ERR=3000) HOURMINUTE,RAINN

TIMEN = (HOUR#60+MINUTE)*60

DELTAT = TIMEN - TIMEO

IF(DELTAT.LT.0) THEN
WRITE(6,236)

236 FORMAT(1X,'TIME STEPS NOT CONSECUTIVE. PROGRAM STOPPED.)

STOP
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ENDIF

WRITE(6,235) HOUR,MINUTE,RAINN,DELTAT
IF(ILEV 1 +2.LELTRACE) THEN
WRITE(ITRACK,(1X))
WRITE(ITRACK,235) HOUR,MINUTE,RAINN,DELTAT
ENDIF
C Assign the last computed values to the Cold' locations:
DO 1030 1 = 1,NP
GHOLD(l) = GHNEWI(I)
GQAXOLD() = GAXNEWI()
GQYOLD() = GQYNEWI(I)
1030 CONTINUE

(o Muitiply the global capacitance matrix times the old depth values:
DO 497 I1=1, NP
GCHOLD() = 0.0
DO 497 K=1,NP
GCHOLD(l) = GCHOLD(!) + GCM(I,K)*GHOLD(K)
497 CONTINUE

NSOLv= 0

#n e e ww % wn START SOLUTION LOOP  #% s it #% %% ¥
WRITE(6,'(1X))
ILEV4=ILEV1+3
300 NSOLV=NSOLV+1
IF(ILEVA.LE.LTRACE) THEN
WRITE(ITRACK,'(1X))
WRITE(ITRACK,30 1) NSOLV
ENDIF
WRITE(6,301) NSOLV
301 FORMAT('+',4X 'Executing solution iteration number’,14)

C Compute the flow in each direction:
IFILE=1
600 OO 700 I=1,NP
GHTRY(l) = GHNEWI()
NSKIP=NELTOT+NODE()+ 1
CALL SKIP(IFILE,NSKIP)
READ(IFILE,6 10) SLOPE, WIDTH
610 FORMAT(25X,2F 10.3)
GQXNEWI() = 1.486/MANNGN # SLOPE##0.5 # GHTRY(l)#«S5./3.)
IF(WIDTH.GT.0) GAXNEW(I) = GOXNEW() # WIDTH
Gax(n = (1.-THETA®GQXOLD() + THETA # GQXNEWII
GQay(n = (1.-THETA)*GQYOLD(I) + THETA = GQYNEWI(!)
GRF(l) = (1.-THETARGF()*RAINO + THETA # GF(l) # RAINN
700 CONTINUE

Cc Write intermediate results:
IF(ILEVA4 + 1.LELTRACE) THEN
WRITE(ITRACK,704)
704 FORMAT(/5X,’ NODE GHTRY GQXNEW GQYNEW Gax,
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) GQy GRF)

WRITE(ITRACK,706) (NODE(!),GHNEW(1), GQXNEWI(I),GQYNEWA(I),

1
706

GQX(1).GQY(I).GRF(1),1=1,NP)
FORMAT(5X,15,6E12.4)

ENDIF

&

498

499

800

1
900

Multiply the global X-stiffness matrix times the X-flow vector:

DO 498 I=1, NP
GSMQX(l) = 0.0
DO 498 K=1,NP
: GSMQX(l) = GSMQX() + GSMX(I,K) # GQX(K)
CONTINUE

Multiply the global Y-stiffness matrix times the Y-flow vector:
DO 499 I=1, NP
Gsmay( = 0.0
DO 499 K= 1 NP
GSMQY() = GSMQY(l) + GSMY(I,K) # GQY(K)
CONTINUE

Compute the global SUM vector:
DO 900 I=1.NP
GSUM(l) = GCHOLD(l) + DELTAT # ( GRF(I)-
(GSMQAX() + GsmMay(y) )
CONTINUE

Write intermediate results:

IFULEV4.LELTRACE) THEN
WRITE(ITRACK,904)

904

FORMAT(/5X,’ NODE CHOLD GSMQX GsmaQy

WRITE(ITRACK,906) (NODE(I),GCHOLD(),GSMQX(),GSMQY(I),

1
906

GSUM(I),1=1,NP)
FORMAT(5X,15,4E12.4)

ENDIF

Solve the system of equations '2GCMY%#%AGHNEW%="%GSUM%

N=20
CALL SLVSYS(GCM,GHNEW,GSUM.NP,N)

Check estimated depth against resuit:

FLAG = 0.
DO 1400 I=1,NP

1400

IF(ABS{GHNEW(I)-GHTRY()).LT. 1.E-08) GO TO 1400
FLAG = 1.
CONTINUE

If all differences are within tolerance, go to next time step.

IF(FLAG.EQ.0) GO TO 1997

IF(NSOLV.GE.MAXSOL) THEN

1440
+

WARITE(6,1440) MAXSOL

FORMAT(' +',5X,'Solution considered convergent after ‘14,
‘ iterations.’)

GO TO 1930

GSuUM)
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ENDIF

)
C Compare solution at each node with upper and lower limits:
DO 1500 I=1,NP
IF(GHNEW()).LT.0) THEN
IF(GHNEW(I).LT.HLOLIM) THEN
WRITE(TRACK,712)

712 FORMAT(S5X,'NODE DEPTH)
WRITE(ITRACK, 7 1 5SXNODE(J), GHNEW/(J), J= 1,NP)
718 FORMAT(5X,14,E12.4)

WRITE(ITRACK, 1520)
WRITE(6. 1520)
1520 FORMAT(5X,'SOLUTION FOR FLOW DEPTH IS NEGATIVE. ',
+ 'PROGRAM EXECUTION STOPPED.)
STOP
ELSE
GHNEW(I)=0.
WRITE(6.152 1) NODE(I)
1521 FORMAT(5X,'SMALL NEGATIVE FLOW DEPTH AT NODE ‘14,
1 . 0 DEPTH ASSUMED.'/)
ENDIF
ELSEIF(GHNEW(I).GT. HUPLIM) THEN
WRITE(ITRACK,712)
WRITE(ITRACK, 7 1 5XNODE(J),GHNEW(J), J= 1,NP)
WRITE(6, 1530) HUPLIM,NODE(I)
WRITE(TRACK, 1530) HUPLIM,NODE(I)

1530 FORMAT(10X,'SOLUTION FOR FLOW DEPTH % 'F5.1,
1 ‘AT NODE '14,'. PROGRAM EXECUTION STOPPED.')
STOP
ENDIF
1500 CONTINUE
C Iterate solution again:
GO TO 300

e e an e e END SOLUTION LOOP w0 a0 &8 e 3% #4 #s
1997 CONTINUE

1999 IF(ILEVA.LE.LTRACE) WRITE(6,1920) NSOLV

1920 FORMAT('+',5X,'Solution converges after ‘13, iterations.’)

(o} Compute resultant flow for each direction:
1930 DO 1940 I=1,NP

1940 GQRES() = SQRT(ABS(GQXNEWI(1))*#2 + ABS(GQYNEW/(I))*#2.)

IF(ILEVEL + 1.LE.LTRACE) THEN
WRITE(ITRACK,702)
702 FORMAT{/S5X,'NODE DEPTH FLOWX FLOWY TOTAL FLOW")
WRITE(ITRACK,705) (NODE(I),GHNEWI1),
1 GAXNEWI),GQYNEW/(I), GQRES().1= 1,NP)
705 FORMAT(5X,14,4E12.4)
ENDIF

WRITE(7,720) HOUR, MINUTE, (GQRES(I).I= 1,NP)
720 FORMATI(3X,12,,12,2X,100E10.3)
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2000 CONTINUE '

IHHHHEHEHHEHEHEE END TIME LOOP  HHHEHHEHEHEHHEH
3000 CONTINUE

WRITE(6,3001)
IF(ILEVEL.LELTRACE) WRITE(ITRACK,3001)
3001 FORMAT(//,1X,'END OF PROGRAM REACHED"

STOP
END

FHHHHHHHHHHHHHHEHHHHHHHEHHEHHHHHHHHHHHHHHHHHHHHEHEHHHHHHHHHHEHHHHHHHHHH S
SUBROUTINE BUILDG(LEVELT,NELTOT)

This subroutine reads the nodal coordinates associated with each
element, rotates the element so that the local X axis lies in the
direction of the element aspect angle,

and sends the transformed coordinates to MATRIC for computation of
element matrices. ASSMBL is called to place the coefficients of

the element matrices into their respective positions in the global
matrices.

Subroutine arguments LEVELT and NELTOT are sent TO this subroutine.

ASPECT = The aspect angle (degrees) for an element

ASPRAD = The aspect angle (radians) for an element.

GLOBAL( , ) = Global coordinates associated with an element

GTRAN( , ) = Transformed global coordinates.

LABELE( ) = Array of element numberals associated with subsystem.

MAXNOD = Maximum number of nodes which is associated with any
element in the subsystem.

NELEMS = Number of elements associated with the subsystem.

NELTOT = Total number of elements in the global system.

NNODEL( ) = Array of nodes associated with an element

SLOPE( ) = Slope at a node.

TRANSF( , ) = Transformation matrix.

WIDTH(l) = Width of linear element at node |I.

0O00000O000O0O00O0 O 0000000

COMMON/ELEMS/NELEMS, LABELE(20)
COMMON/TRACE/LTRACE,ITRACK

DIMENSION GLOBAL(4,2),NNODEL(4), WIDTH(4),SLOPE(4)
DIMENSION TRANSF(2,2),GTRAN(4,2)

DOUBLE PRECISION PI,ASPECT,ASPRAD

DATA P1/3.141592653589794D0/

DATA MAXNOD/4/

ILEVEL=LEVELT+1

WRITE(6, 10)
IF(ILEVEL.LELTRACE) WRITE(ITRACK, 10)
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FORMAT(5X,'Executing BUILDG: Building global matrices.’)
WRITE(6,11) N
FORMAT(1X)

DO 600 INDEXE= 1,NELEMS

IFILE=1

NSKIP=LABELE(INDEXE)

CALL SKIP(IFILE,NSKIP)

READ(IFILE, 120) NELEM,(NNODEL(J).J= 1, MAXNOD),ASPECT
FORMAT(5I5,F10.2)

WRITE(6, 130) NELEM

IF(ILEVEL +2.LELTRACE) WRITE(ITRACK, 130) NELEM
FORMAT('+',4X,'Computing matrices for element number °,13)
Determine how many nodes are associated with the element:
NODSEL =MAXNQD

DO 160 J=1MAXNOD )

IF(NNODEL(J).EQ.0) NODSEL=NODSEL-1

Determine the element matrices:

DO 560 I=1,NODSEL
NSKIP = NELTOT+NNODEL()+1
CALL SKIP(IFILE,NSKIP)
READ(1,540) NODNUM,(GLOBALI(I,J),J=1,2), SLOPE(I), WIDTH(I)
FORMAT(15,4F 10.2)
CONTINUE

IFINODSEL.EQ.2) THEN
CALL LINMAT(ILEVEL NODSEL NNODEL,GLOBAL,WIDTH)
GO TO 599

ENDIF

ASPRAD=PI/ 180.D0#ASPECT

Compute the coefficents of the transformation matrix:
TRANSF(1, 1)= DSIN(ASPRAD)

TRANSF(1,2)= DCOS(ASPRAD)

IF(ABS(ASPECT).EQ.90.) TRANSF(1,2)=0.

TRANSF(2, 1)=-TRANSF(1,2)

TRANSF(2,2)= TRANSF(1,1)

IF(ILEVEL+2.LELTRACE) WRITE(ITRACK,7 14) ASPECT,ASPRAD

FORMAT(SX,'Element aspect angie is ',F6.2,
' degrees or 'F7.4, radians.’

IF(ILEVEL+4.LELTRACE) THEN
WRITE(ITRACK,7 16)
FORMAT(/5X,'Coordinate transformation matrix:’)
WRITE(ITRACK, 7 18)(TRANSF(I,J),J=1,2),1=1,2)
FORMAT(S5X,2E10.3)

ENDIF

Transform the global coordinates:
DO 730 I=1,NODSEL
DO 726 J=1,2
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GTRAN(I,J)=0.
DO 726 K=1,2 '
GTRAN(I, J)=GTRAN(I, J) + TRANSF(J KIGLOBAL(I.K)
726 CONTINUE ’
730 CONTINUE

IF(ILEVEL+3.LE.LTRACE) THEN
WRITE(ITRACK,510)
510 FORMAT(SX,'The following coordinates are associated with ',
1 ‘this element’,/,.5X,’ NODE XGLOBAL YGLOBAL'
2 ) Slope Xlocal Ylocal')
DO 542 I=1,NODSEL
542 WRITE(TRACK,550) NNODEL(I),(GLOBAL(1,J),J=1,2),SLOPE(I),
1 (GTRAN(I.J).J=1,2)
550 FORMAT(5X,15,5F 10.2)
WRITE(ITRACK,'(1X))
ENOIF

Cc Determine the element matrices:
CALL MATRIC(ILEVEL,NODSEL NNODEL,GTRAN)

C Add the element matrices to the global matrices:
599 CALL ASSMBL(ILEVEL,NODSEL,INDEXE,NELEMS,NELEM,NNODEL)

600 CONTINUE
(o} End element loop.

WRITE(6.660)

IF(ILEVEL + 1.LE.LTRACE) WRITE(ITRACK,660)
660 FORMAT('+',4X,'Returning from BUILDG: '

1 ‘Global matrices complete.’,/)

RETURN

END

IHHHEHHHHHHHHHHHHHHHHHHHEHHHHHHHHEHEHHHHHHHHHHHHHHHHHHHHHHHHHHHHOHHHHHHEHHHH

SUBROUTINE COUNT(LEVELT,NELEMS,NODSYS)

This subroutine determines the total number of nodes and elements
in the major global system data file. This permits subsequent
reading from the correct lines of input data

The subroutine arguments NELEMS and NODSYS are passed FROM the
subroutine.

o0 00 000

NELEMS = The total number of elements in the major global system.
NODSYS = The total number of nodes in the major global system.

COMMON/TRACE/LTRACE,ITRACK
DATA IFILE/ 1/

ILEVEL=LEVELT+1
IF(ILEVEL.LE.LTRACE) THEN
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WRITE(TRACK, 10)

WRITE(6, 10) '
10 FORMAT(5X,'Executing COUNT: Counting nodes and elements in ',
1 ‘global system..)
ENDIF
C Skip the record containing input column headings:
NSKIP=1

CALL SKIP(IFILE, 1)

100 ©DOO 200 IELEM=1,100
READ(1,120,ERR=220) NELEM
120 FORMAT(IS)
NELEMS = IELEM
200 CONTINUE

220 NSKIP=NELEMS+2
CALL SKIP(IFILE,NSKIP)
DO 400 INODE=1,100
READ(1,120,ERR=420) NODNUM
NODSYS = INODE
400 CONTINUE

420 IF(IILEVEL+2.LE.LTRACE) THEN
WRITE(ITRACK,80) NELEMS,NODSYS
80 FORMAT(/SX,'Total number of elements in global system= ',i3,
1 /5X,'Total number of nodes in global system= '13,/)
ENDIF

IF(ILEVEL+ 1.LELTRACE) THEN
WRITE(6,510)
WRITE(ITRACK,510)
510 FORMAT(5X,'Returming from COUNT: Counting complete.’./)
ENDIF
RETURN
END

FHHHHEHEHEHHHHEHHHHHHHHEHHHHHHEHHHEHHHHHHHHHEHHEEHHHHHHHHHHHHHHHHHHHHHHH
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PROGRAM MAINSTRM

This program finds a linear solution to a finite element overiand
flow problem for a global system of two-dimensional elements.

Units of measurement are taken from the English System.

To avoid internal storage of large amounts of data, this program
reads element and node information from external files as needed.

In the variable listing below, the X-direction is identical to the
direction of flow at a given node.

o0 00 O 00 O
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DELTAT = Length (seconds) of time step.
GCHOLD( ) = GCM( , ) » GHOLD(2) '
GCM( , ) = Global Capacitance Matrix f T

j%aN% AN%
GF( ) = Global Force vector
GHNEWI(l) = Flow depth H (feet) at node | at end of current
time step.
GHOLD(l) = Flow depth H (feet) at node | at end of previous
time step.

GHTRY(l) = Fiow depth H (feet) at node | tried for solution
iteration. When solution GHNEW is close to GHTRY,
solution is accepted.

GQR() = Resultant of flow rate per unit width (ft##2/sec) in X
and Y directions at node |.

Gaxm = Weighted flow rate per unit width (ft##2/sec) in
X-direction at node | for given time step.

GQXNEW() = Fiow rate per unit width (ft»#2/sec) in X-direction
at node | at end of current time step.

GQXOLD(l) = Flow rate per unit width (ft#*2/sec) in X-direction
at node | at tend of previous time step.

GRF( ) = GF # aweighted rainfall’s
GSMX( ) = Global Stiffness Matrix for X-direction f T
JaN% ‘AdN/dx‘A
GSMQX( ) = GSMX # GQOX
HLOLIM = Negative tolerance for flow depth H (feet).

HUPLIM Largest expected flow depth H (feet).

INDEXN( ) = Index for array of node numbers.

NODE() = Array of node numbers.

NP = Total number of nodal points being evaluated.

NSOLV = Solution iteration number.

MANNGN = Mannings N.

MAXNQCD = Maximum number of nodes associated with an element in

the system.
MAXSOL = Maximum number of solution iterations expected.
Pl = 3.14159...
QNEW = Flow rate per unit width at a node calculated

from GHTRY(l).
RAINN = Rate of rainfall at end of present time step (ft/sec).
RAINO = Rate of rainfall at end of previous time step (ft/sec).

SLOPE = Slope (ft/ft) at a node.
SLOPEX = Slope (ft/ft) in X direction at a node.

THETA = Weighting coefficient

TIMEN = Clock time (seconds) at end of present time step.

TIMEO = Clock time (seconds) at end of previous time step.

Tracing definitions:

ILEVEL = Tracing level for downstream write statements.

ITRACK = File to which resuits of intermediate calculations are
written.

LEVELT = Tracing level relative to the calling program.

LTRACE = Tracing level for entire program.

IHHHHHAEHHHHHHHHHEHHEHHHHHEHHHHHEHHHEEHEHHEHEEHEHEHEHHEHEEHEHEHEHE R 5
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SUBROUTINE MATRIC(LEVELT,NODSEL,NSEND,GLOBAL)
This subroutine calculates the stiffness and‘ capacitance matrices
and the force vector for a triangular or ‘quadrilateral element
having a node at each corner.
Subroutine arguments LEVELT,NODSEL,NSEND,XGLOBL,YGLOBL are sent TO
this subroutine. Coefficients of KX,KY,C,F are sent FROM this
subroutine via COMMON/ELMATS.

o Uy SO O UUEpEP P U GUp

000 000

8(,) = Matrix containing the derivatives of shape function N
with respect to the global coordinate system
B8(1, ) = %hdN/dx'
B(2, ) = thdN/dy'%
c(.) = Capacitance matrix for the element = f T
j¥aN% 'aN%
DNDNAT(,J) = Array of derivatives of N with respect to KSI (I=1) and
ETA (1=2) in Cnatural' coordinate system.

F() = Force vector for the element
GLOBAL( ,J) = Array of X (J=1) and Y (J=2) coordinates for an element.
ILEVEL = Tracing level used for debugging this subroutine.

IJACOB(I,J) = Inverse of JACOBian matrix.
JACOB(,J) = JACOBian matrix of partial derivatives of global
coordinates with respect to natural coordinates
ETA and KSI.
KX(,) = Stiffness matrix with respect to rotated local direction X
=f T
j¥aN% YadN/dx'A
Ky(,) = " “
LEVELT = Tracing level sent from upstream program.

L " L] " L] " Y

NODSEL Number of nodes associated with the element
NSEND( ) = Node numerals associated with the element.
VN(I) = Shape function N at node | in Cnatural' coordinate system

for given integration point.

Dhatt, G. and G. Touzot The finite element method displayed.
John Wiley and Sons, NY, 1984. 509pp. (See pp. 45, 102)

Segerlind, L. Applied finite element analysis (2nd ed.). John Wiley
and Sons, NY, 1984. 427pp. (See pp. 73, 365, 372-374))

00 00 000000000000 00000000N00N00

COMMON/ELMATS/KX(4,4)KY(4,4),C(4,4),F(4)
COMMON/TRACE/LTRACE,ITRACK

DIMENSION VN(4),DNDNAT(2,4),NSEND(4),GLOBAL(4,2),B(2,4)
REAL KXKY, JACOB(2,2),1JAC0OB(2,2)

ILEVEL=LEVELT+1
IF(ILEVEL.LE.LTRACE) WRITE(ITRACK, 12)
12 FORMAT(S5X,'Executing MATRIC: Caiculating elemental matrices.’)
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IF(ILEVEL+2.LE.LTRACE) WRITE(ITRACK, 16) NODSEL
FORMAT(SX, There are '12,' nodes associated with this element’)

IF(ILEVEL +3.LE.LTRACE) THEN
WRITE(ITRACK, 17)
FORMAT(/ 12X 'NODE’,8X,'X", 14X,'Y’)
WRITE(ITRACK, 18) (NSEND(1).(GLOBAL(IJ),J=1,2).1= 1, NODSEL)
FORMAT(4(10X,15,2E15.6./)
ENDIF

Initialize the eslement matrices:
DO 200 I=1,NODSEL
DO 190 J=1,NODSEL
cuJd) = 0.
KX(LJ) = 0.
KY(LJ) = 0.
CONTINUE
Fh = Q.
CONTINUE

IF(NODSEL.EQ.4) INTPTS
IF(NODSEL.EQ.3) INTPTS

nn
-

ILEVS=ILEVEL+5
DO 2000 INTPT = 1,INTPTS

IF(NODSEL.EQ.4) CALL QSHAPE(ILEVS,INTPT,VN,DNDNAT)
IFINODSEL.EQ.3) CALL TSHAPE(VN,DNDNAT)

Calculate the Jacobian matrix: JACOB=DNDNAT*GLOBAL
DO 499 I=1,2
DO 4399 J=1,2
JACOBI(.J) = 0.0
DO 499 K=1,NODSEL
JACOBI(1,J) = JACOBI(l,.J) + DNDNAT(,K) # GLOBALIK,J)
CONTINUE

Determine the inverse of the Jacobian matrix:
CALL INV2X2(JACOB,IJACOB,DETJAC)

Muitiply : IJACOB # DNDNAT = B
DO 498 I=1, 2
DO 4398 J=1, NODSEL
8(LJ) = 0.0
DO 498 K=1,2
B(LD) = B(LJ) + IJACOBII,K)*ONDNATI(K,J)
CONTINUE

IF(ILEVEL +5.LE.LTRACE) THEN
WRITE(ITRACK,3 15)
FORMAT(/5X, 3=~ ~~~ JACOBIAN=- ===~ % %= ==-JACOBIANinv - = -'4)
DO 316 1=1,2
WRITE(ITRACK, 3 18(JACOBI(I.J),J=1,2).1JACOB(I,J),J=1.2)
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318 FORMAT(5X,2E10.3,5X,2E10.3)
)

WRITE(ITRACK,310) INTPT
310 FORMAT(/5X,'B matrix at integration point,12,’ :)

WRITE(ITRACK,3 1 1) (NSEND(J),J= 1,NODSEL)
311 FORMAT(5X,15,5X,15,5X,15,5X,I5)

* DO 312 1=1,2
312 WRITE(ITRACK,3 14) (B(1,J),J=1,NODSEL)
314 FORMAT(5X,8€10.3)
ENDIF

IF(NODSEL.EQ.3 .AND. ILEVEL+4.LELTRACE) THEN
AREA=ABS(DETJAC/2))
WRITE(TRACK,510) AREA

510 FORMAT(SX,'Area of triangle = 'E10.4)
ENDIF
C Compute the element matrices:

IF(NODSEL.EQ.4) WC = 1.0
IFINODSEL.EQ.3) WC = 0.5
SCALAR = WC » ABS(DETJAC)

700 DO 800 I=1,NODSEL

710 DO 790 J=1,NODSEL

(o The capacitance matrix C is the sum over the integration
o points of N'transpose #* N multipled by a scalar value.

Cl.d) = C0J) + VN() » VN(J) » SCALAR

c The stiffness matrix K is determined for each direction as
Cc the sum over the integration points of N'atranspose # B
Cc multiplied by a scalar value

KX(L,J) = KX{I,J) + VN() #» B(1,)) » SCALAR

KY(,J) = KY(.J) + VN() #» B(2,J) » SCALAR
790 CONTINUE
C The force vector F 1s the sum over the integration points
C of N muitiplied by a scalar value.

F() = F() + VN() » SCALAR

800 CONTINUE

2000 CONTINUE

Cc Write the element matrices:
2010 IF(ILEVEL+4.LE.LTRACE) CALL WRITEM(4 NODSEL NSEND,KX,KY,C,F)

IF(LEVEL + 1.LE.LTRACE) WRITE(ITRACK,2140)
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2140 FORMAT(S5X, Returning from MATRIC: Elemental matrix complete.’,/)
RETURN '
ENOD
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SUBROUTINE QSHAPE(LEVELT,INTPT,VN,DNDNAT)

For a quadrilateral having a node at each corner, this subroutine
determines the shape functions and the derivatives of the shape
function with respect to the naturai (KSI-ETA) coordinate system.

Subroutine argument INTPT is passed TO this subroutine, while
subroutine arguments VN and DNDNAT are passed FROM this subroutine.

INTPT = Number associated with the integration point in the KSI-ETA
coordinate system.

VKSIN(I) = Value of KSI at node | in ¢natural' coordinate system.

( = Abscissa of node | “ “ " “
VETAN() = Value of ETA at node | “ " "

( = Ordinate of node | " " " “ )

XINTEG(l) = Abscissa of integration point in Cnatural’ coord. system.
YINTEG() = Ordinate of integration point in Cnatural’' coord. system.

00 0000000 00 000

COMMON/TRACE/LTRACE,ITRACK
DIMENSION VKSIN(4),VETAN(4),XINTEG(4),YINTEG(4),VN(4),DNDNAT(2,4)
DATA VKSIN/-1.0, 1.0, 1.0, -1.0/, VETAN/-1.0, -1.0, 1.0, 1.0/

Calculate the location of the integration points in the Cnatural’
KSI-ETA coordinate system for the linear quadrilateral.

(eleXse!

ILEVEL=LEVELT+1

IF(ILEVEL.LE.LTRACE) WRITE(ITRACK.10)

10 FORMAT(5X,'Executing QSHAPE: Determining shape functions for °,
1 ‘an integration point.’)
WHERE = .577350

DO 100 1=1,4
XINTEG() = WHERE # VKSIN(I)
YINTEG() = WHERE » VETANI(I)
100 CONTINUE
C At each integration point :
DO 450 1=1,4
C Compute the shape function N at each node I
VN() = 0.25 # (1.+VKSIN() #» XINTEG(INTPT))
+ # (1.+VETAN(I) # YINTEG(INTPT))

(o} Compute the derivatives of N wrt natural coordinates:
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DNDNAT(1.l) = 0.25 # VKSINO) # (1+VETAN() # XINTEGINTPT))
DNDNAT(2,) = 0.25 # VETAN() # (1+VKSIN() # YINTEG(INTPT)
450 CONTINUE

IF(ILEVEL +2.LE.LTRACE) THEN

WRITE(ITRACK,460)
460 FORMAT(/,5X,' INTPT XINTEG YINTEG VN1 VN2
+ ‘ VN3 VN4')
WRITE(ITRACK,470)INTPT, XINTEG(INTPT), YINTEG(INTPT),
+ (VN(D),I=1,4)

470 FORMAT(SX,13,2X,6F 10.5)
WRITE(ITRACK,52 1)
521 FORMAT(/SX,’DNDNAT :)
WRITE(ITRACK,522) ((DNDNAT(LJ).J=1,4),1=1,2)
522 FORMAT(5X,4E10.3)
ENDIF

IF(ILEVEL + 1.LE.LTRACE) WRITE(TRACK,610)
610 FORMAT(5X,'Returning from QSHAPE.,/)

RETURN
END
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SUBROUTINE TSHAPE(VN,DNDNAT)
DIMENSION VN(4),DNDNAT(2,4)

DO 100 1=1,3
100 VN = 1./3.

DNDNAT(1,1)
DNDNAT(1,2)
DNDNAT(1,3)
DNDNAT(2, 1)
DNDNAT(2,2)
DNDNAT(2,3)

|
-0~

NERERR]
-0

)
-

RETURN
END
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SUBROUTINE INV2X2(RM, RINV, D)
DIMENSION RM(2,2), RINV(2,2)

FIND THE INVERSE OF A 2 X 2 MATRIX (L.E)

-1
“a bk % d/D -b/D ‘4

OO0 0n
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(o Y kh = K a
C he dhk % -¢/D a/D % !
(o

¢ .

(o WHERE

C

C ha Dbk

(o D = det % a

o e d%

C

(o AND

Cc D NE. O

o

D = RM(1,1) » RM(2,2) - RM(2,1) # RM(1,2)
IF(ABS(D).LT. 0.0001) THEN
WRITE(#,#Y2 X 2 MATRIX IS SINGULAR'

STOP
ENDIF
RINV(1,1) = RM(2,2) / D
RINV(1,2) = -RM(1,2) / D
RINV(2,1) = -RM(2,1) / D
RINV(2,2) = RM(1,1) / D
RETURN
END

IHHHHHBHHHHHHHHEHHHHHHHHHHHHHHHHHHHHHHHHHHOHHHHHHHHHHHHHEHHHHHHHHHHHHHHHEHHHE
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SUBROUTINE SKIP(IFILE,NSKIP)
C This subroutine skips to the selected line in an input file:
REWIND IFILE
DO 100 I=1,NSKIP
100 READ(IFILE,'(1X))
RETURN
END

FHHHHHEHHHHHEHEHHHHHHEHHHHEHHHHHHHHHHBHHHHHHEHHHHEHHHHHHEHHEHHHEHEHHHHEE

SINCLUDE:"COUNT.FOR'
SINCLUDE:'SUBSYS.FOR'
SINCLUDE:'BUILDG.FOR’
SINCLUDE:'LINQUIK.FOR'
SINCLUDE:'MATRIC.FOR’
SINCLUDE:'ASSEMBLE.FOR'
SINCLUDE:'MODGM.FOR'
SINCLUDE:'SLVSYS.FOR'
SINCLUDE:"WRITEM.FOR’

IHHHHHEHHHHHHHEHHHHHHHHHHREHEHEHEEHEHHEHEHHHBHHEEHEHHEHHHEHHHHEHEEEHEHE 6

SUBROUTINE MODGMI(LEVELT)
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This subroutine modifies the stiffness and .capacitances matrices
and the forge vector for the global subsystem.

Subroutine argument LEVELT is sent TO this subroutine, which refers
to the global matrices via COMMON/MATRIX.

COMMON/MATRIX/GSMX(20,20).GSMY(20,20).GCM(20,20),GF(20)
COMMON/NODES/NODSUB,NBW,NODE(20),INDEXN(20)
COMMON/BOUND/NKNOWN,NBOUND(20).BVALUE(20)
COMMON/TRACE/LTRACE,ITRACK

oo 00

ILEVEL=LEVELT+1
IF(ILEVEL.LE.LTRACE) THEN
WRITE(6,10)
WRITE(ITRACK, 10)
10 £ DF'?RMAT(SX.'Executing MODGM: Modifying global matrices.)
NDI

100 DO 200 IBOUND=1,NKNOWN
INDEX =INDEXN(NBOUND(IBOUND))
110 DO 190 1J=1,NODSUB
GSMX(1J,INDEX)=0.
GSMX(INDEX,1J)=0.
GSMY(I1J.INDEX)=0.
GSMY(INDEX,1J)=0.
GCM(1J,INDEX)=0.
GCM(INDEX,1J)=0.
190 CONTINUE
GF(INDEX)=0.
GCM(INDEX.INDEX)= 1.
200 CONTINUE

IF(ILEVEL+2.LE.LTRACE) THEN
C Write the modified global matrices:
WRITE(ITRACK,260)
260 FORMAT(5X, The MODIFIED global matrices:)
NDIiM=20
ENDC:LL WRITEM(NDIM,NODSUB,NODE,GSMX,GSMY,GCM,GF)
|
IF(ILEVEL+ 1.LE.LTRACE) THEN
WRITE(6.310)
WRITE(TRACK.310)
310 FORMAT(5X,'Returning from MODGM: Modification complete.’./)
ENDIF

RETURN
END

subroutine sivsys(a,x,b,n,np)
physical dim logical dim

o0




000000

200
100

300
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a : coeff matrix (np x np) (n x n used)
x : soln matrix (np) v (n used)
b : right hand side of eqn (np) (n used)

np : physical dimensions of a,x and b (how big it really it is)
n : logical dimensions of a,x and b (how much you use)

dimension alnp,np),x(np),b(np)
dimension awork(20,20), bwork(20,1)

do 100 i=1.n
do 200 j=1,n
awork(i,j) = ai.j)
continue
bwork(i, 1) = bfi)
continue
call gaussj{awork,n,20,bwork,1,1)
do 300i = 1,n
x(i) = bwork(i, 1)
continue
return
end

SUBROUTINE GAUSSJ(A,N,NP,B,M MP)

solves the set of matrix eqns:
A¥x1 x2 .. xn2 = b1 b2 .. bn¥
to solve for: Ax=b call with:

CALL GAUSSJANNP.B, 1,1)

From:

Press, W.H., B.P. Flannery, S.A. Teukolsky, W.T. Vetterling.
Numerical recipes, the art of scientific computing. Cambridge
University Press, Cambridge. 1986. pp. 19-29.

PARAMETER (NMAX=50)
DIMENSION A(NP,NP),B(NP,MP),IPIVINMAX),INDXR(NMAX),INDXC(NMAX)
DO 11 J=1N
IPIV(J)=0
CONTINUE
DO 22 1=1.N
8I1G=0.
DO 13 J=1N
IF(IPIV(J).NE. 1) THEN
DO 12 K=1,N
IF (IPIV(K).EQ.0) THEN
IF (ABS(A(J,K)).GE.BIGITHEN
BIG=ABS(A(J.K)
IROW=J
ICOL=K
ENDIF
ELSE IF (IPIV(K).GT.1) THEN
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PAUSE ‘Singular matrix’
ENDIF .
CONTINUE
ENDIF
CONTINUE
IPIV(ICOL)=IPIV(ICOL)+ 1
IF (IROW.NE.ICOL) THEN
DO 14 L=1N
DUM=A(IROW.L)
A(IROW,L)=A(ICOL,L)
A(ICOL L)=DUM
CONTINUE
0O 15 L=1M
DUM=B(IROW.L)
B(IROW,L)=8(ICOL,L)
B(ICOL,L)=DUM
CONTINUE
ENDIF
INDXR(I)=IROW
INDXC(I)=ICOL
IF (A(ICOL,ICOL).EQ.0.) PAUSE ‘Singular matrix.’
PIVINV=1./A(ICOL,ICOL)
A(ICOL,ICOL)=1.
DO 16 L=1N
A(ICOL,L)=A(ICOL,L)*PIVINV
CONTINUE
DO 17 L=1M
B(ICOL,L)=B(ICOL, L)*PIVINV
CONTINUE
DO 21 LL=1,N
IF(LL.NE.ICOL)THEN
DUM=A(LL,ICOL)
A(LL.ICOL)=0.
DO 18 L=1N
A(LL.L)=A(LLL)-A(ICOL,L)*DUM
CONTINUE
DO 19 L=1 M
B(LL,L)=B(LL,L)-B(COL,L)*DUM
CONTINUE
ENOIF
CONTINUE
CONTINUE
DO 24 L=N,1,-1
IF(INDXR(L).NE.INDXC(L)) THEN
DO 23 K=1,N
DUM=A(K,INDXRI(L)
A(K,INDXR(L)=A(K,INDXC(L)
A(K,INDXC(L))=DUM
CONTINUE
ENDIF
CONTINUE
RETURN
END

WHHHEEHEHEEEHEHEHEE HEE IEHEEHEHEHHHHEHEHHEHHHHAREHEHHHHHHHHEHHHHHHHHHHHHHHHHHHE
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SUBROUTINE LINMAT(LEVELT,NODSEL.NNODEL,GLOBAL,WIDTH)

NNODEL() = Node numbers associated with the element.
WIDTH( ) = Width at a node.

C Without integrating, this subroutine supplies the capacitance and
C stiffness matrices and the force vector for the given linear

C element

C See Segerlind 1984, pp. 70-71, 371-372, 375-376.

C GLOBAL{) = Set of node coordinates associated with the element.
C Cc(.) = Capacitance matrix.

(o} EWIDTH = Width of element

Cc F) = Force vector.

(o GLOBAL( , ) = Array of global coordinates.

(of KX(,) = Stiffness matrix.

g LENGTH = Length of element

Cc

COMMON/ELMATS/KX(4,4) KY(4,4),C(4,4),F(4)
COMMON/TRACE/LTRACE,ITRACK

DIMENSION GLOBAL(4,2),NNODEL(4),WIDTH(4)
REAL KX KY,NTN(2,2),NTB(2,2),LENGTH

DATA NTN/2,1,1,2/ NTB/-.5,-.5,.5,.5/

ILEVEL=LEVELT+1
IF{ILEVEL.LELTRACE) WRITE(ITRACK,12)
12 FORMAT(S5X,'Executing LINMAT: Calculating elemental matrices.’)

IF(ILEVEL+2.LELTRACE) WRITE(ITRACK, 16) NODSEL
16 FORMAT(5X, There are ‘12,' nodes associated with this element.’

IFILEVEL +3.LE.LTRACE) THEN
WRITE(ITRACK, 17)

17 FORMAT(/12X,'NODE".8X,'X", 14X,'Y’)
WRITE(TRACK, 18) (NNODEL(I).(GLOBALI(I,J),J=1,2),1= 1,NODSEL)
18 FORMAT(4(10X,15,2E15.6,/)
ENDIF
LENGTH = SQRT( (GLOBAL(1, 1)-GLOBAL(2, 1))#»2.
1 + (GLOBAL(1,2)-GLOBAL(2,2))%x2))

EWIDTH = (WIDTH(1)+WIDTHI(2))/2.

DO 900 I1=1,2
DO 890 J=1.2
C(LJ) = NTN(LJ) » LENGTH/6. * EWIDTH
KX(LJ) = NTB(,J)
8380 CONTINUE
F(l) = LENGTH/2. # EWIDTH
S00 CONTINUE

RETURN
END
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SUBROUTINE ASSMBL(LEVELT,NRC,IELEM ,NELEMS,NUMEL NSEND)

This subroutine places the coefficients of an element’s stiffness
matrices, capacitance matrix, and force vector into the proper
positions in the respective global arrays.

All of the subroutine arguments are passed TO this subroutine.
The element matrices are passed from MATRIC via COMMON/ELMATS. The
global matrices are referenced by COMMON/MATRIX.

ECM(.) = Element Capacitance Matrix.

EF( ) = Element Force vector.

ESMX( , ) = Element Stiffness Matrix for X-direction.
ESMY( , ) = Element Stiffness Matrix for Y-direction.

GCM( , ) = Global Capacitance Matrix.

GF( ) = Global Force vector.

GSMX( , ) = Global Stiffness Matrix for X-direction.

GSMY( , ) = Global Stiffness Matrix for Y-direction.

INDEXN( ) = Array nodal indices.

NODE( ) = Array of nodal numerals.

NODSUB = Number of nodes in watershed subsystem.

NRC = Number of rows and columns in element matrices.
NSEND = Array of node numerals corresponding to the element.

Tracing constants:
ILEVEL = Local (subroutine) tracing level.
ITRACK = Unit to which intermediate values are written.
LTRACE = Global tracing level.

DIMENSION NSEND(4)
COMMON/ELMATS/ESMX(4,4),ESMY(4,4),ECM(4,4),EF(4)
COMMON/TRACE/LTRACE,ITRACK
COMMON/MATRIX/GSMX(20,20),GSMY(20,20),GCM(20,20),GF(20)
COMMON/NODES/NODSUB,NBW,NODE(20),INDEXN{20)

ILEVEL=LEVELT+1
IFOILEVEL.LELTRACE) WRITE(ITRACK,5) NUMEL
FORMAT(SX, Executing ASSMBL: Adding element ',I3, ' matrices °,
‘to global matrices:")

IF(ILEVEL+3.LELLTRACE) THEN
WRITE(ITRACK, 10)
FORMAT(/ 1X,'Element matrices passed from MATRIC:)
NDIM=4
CALL WRITEM(NDIM,NRC,NSEND,ESMX,ESMY,ECM.EF)
ENDIF

DO 30 1=1,NRC
IROW =INDEXN(NSEND())
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DO 20 J=1,NRC
JCOL =INDEXN(NSEND(J)) b
GSMX(IROW, JCOL)=GSMX(IROW,JCOL)+ESMX(I,J)
GSMY{IROW, JCOL)=GSMY({IROW, JCOL)+ESMY(l,J)
GCM(IROW, JCOL) =GCM(IROW,JCOL)+ECM(I,J)

CONTINUE

GF(IROW)=GF(IROW)+EF(l)

CONTINUE

C RETURN OPTIONS

43

44
45
100

O00O0O00O0O OO0

Cc
2102

2103

2104
2105

IF(ILEVEL+2.LELTRACE .AND. IELEM.EQ.NELEMS) THEN
WRITE(ITRACK,43)
FORMAT(/ 1X,'The fully assembled giobal matrices:")
NDIM=20
CALL WRITEM(NDIM,NODSUB,NODE,GSMX,GSMY,GCM,GF)
ENDIF
IF{ILEVEL+ 1.LE.LTRACE) WRITE(ITRACK,45)
FORMAT(SX,'Returning from ASSMBL',/)
RETURN
END

SUBROUTINE WRITEM(NDIM,NRC,NSEND,KX,KY,C.F)

This subroutine prints the stiffness, and capacitance matrices and
the force vector.

All the subroutine arguments are passed TO this subroutine.
C(.,) = Capacitance matrix.

F() Force vector.
KX( ) = Stiffness matrix in X direction.

KY( ) = Stitfness matrix in Y direction.
NOIM = Physical storage DIMensions assigned by calling program.
NRC = Number of Rows and Columns in the matrices.

DIMENSION NSEND(NDIM),C(NDIM,NDIM),F(NDIM)
REAL KX(NDIM,NDIM),KY(NDIM,NDIM)
COMMON/TRACE/LTRACE,ITRACK

Write matrices to trace file:
FORMAT(3X,8110)
WRITE(ITRACK,2 103)
FORMATI(/, 1X,'Stiffness matrix KX:)
WRITE(ITRACK,2 102) (NSEND(J),J= 1,NRC)
DO 2104 1=1,NRC
WRITE(ITRACK,2 105) NSEND(),(KX(1,J).d= 1,NRC)
CONTINUE
FORMAT(1X,13,8610.3,20(/,4X,8610.3))

WRITE(ITRACK,2 106)



2106

2107

2109

2110

2112

2113

2120
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FORMAT(/, 1X,'Stiffness matrix KY:)
WRITE(ITRACK,2 102) (NSEND(J),J= 1,NRC}
DO 2107 I=1,NRC

WRITE(ITRACK,2 105) NSEND(I),(KY(1,J),J= 1,NRC)

WRITE(ITRACK,2 109)

FORMAT(/, 1 X,'Capacitance matrix C:')
WRITE(ITRACK,2 102) (NSEND(J).J=1,NRC)
DO 21101 = 1, NRC

WRITE(ITRACK,2105) NSEND(1).{C(1,J),J= 1,NRC)

WRITE(ITRACK,2112)

FORMAT(/, 1X,'Force vector F:’)
WRITE(ITRACK,2 102) (NSEND(J),J= 1,NRC)
WRITE(ITRACK,2 1 13) (F(I),1= 1,NRC)

FORMAT(4X,8E10.3)

WRITE(ITRACK,2 120)
FORMAT(1X)

RETURN
END

FHEEHHHEHHHEEHEHEREEEHEE I I 6T I 83 56 3 HIEE 0 I 36 I I I 336 3 3 J36 36 ST 06 3 636
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SUBROUTINE SUBSYS(LEVELT,NELEMS,NODSYS)

This subroutine reads the element numbers in the chosen subsystem,
develops an index for the nodes associated with those elements,
and reads the nodal boundary values.

The variables LEVELT NELEMS,and NODSYS are passed TO the subroutine.
The nodal indexing system and boundary value array are stored in
COMMON arrays.

BVALUE(l) = The boundary value at node |.

INDEXN(I) = The INDEX of Node |. This index is developed so that
the global matrices are no larger than needed and no
zeroes are placed in the diagonal.

ITRACK = Qutput device to which results of intermediate
calculations are written.

LABELE(l) = Number of the ELement | in SUBsystem

LEVELT = Debug level to control output.

LTRACE = Debug level for entire program.

NBOUND(l) = Node at which BOUNDary value is known.

NELEMS = Number of elements in the major global system.

NELSUB = Number of elements n the subsystem.

NKNOWN = Number of nodes for which the boundary value is KNOWN.
NODE( ) = Vector containing node numerals associated with subsystem.
NODSuB = Number of nodes associated with the subsystem.

DIMENSION NNODEL(4)
COMMON/ELEMS/NELSUB,LABELE(20)
COMMON/TRACE/LTRACE,ITRACK




80

85
S0
91
92

93
95

299

400

410
420
480

490
500

590
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COMMON/BOUND/NKNOWN,NBOUND(20).BVALUE(20)
COMMON/NODES/NODSUB,NBW,NODE(20),INDEXN(20)
DATA MAXNOD/4/

ILEVEL = LEVELT+1

IF(ILEVEL.LELTRACE) THEN

WRITE(ITRACK,80)

WRITE(6,80)

FORMAT(5X,'Executing SUBSYS: Determining range of subsystem.’)
ENDIF

Skip to the first line containing a boundary value:
IFILE=1

NSKIP = NELEMS + NODSYS + 3

CALL SKIP(IFILE,NSKIP)

DO 90 I=1,NELEMS
READ(IFILE,85,ERR=91) LABELE(l)
FORMATI(IS)

NELSUB=I

CONTINUE

IF(ILEVEL+2.LE.LTRACE) THEN
WRITE(ITRACK,92)
FORMAT(/5X,'Elements chosen in subsystem:)
WRITE(TRACK,95) (LABELE(I).I=1,NELSUB)
FORMAT(1X, 1615)

ENDIF

Construct the indexing system for the subsystem nodes:

NSKIP=LABELE(1)

CALL SKIP(IFILE,NSKIP)

READ(IFILE,299) NELEM,NNODEL(1)
FORMAT(1615)

NODSuB=1
NODE(1) = NNODEL(1)
DO S00 IELEM=1,NELSUB
NSKIP=LABELE(IELEM)
CALL SKIP(IFILE,NSKIP)
READ(IFILE,299) NELEM,(NNODEL(J),J=1,MAXNOD)
DO 490 J=1MAXNOD
IF(NNODEL(J).EQ.0) GO TO 490
DO 480 I1=1,NODSUB
IF(NNODEL(J).EQ.NODE(I)) GO TO 490
CONTINUE
NODSuUB = NODSUB + 1
NODE(NODSUB)=NNODEL(J)
CONTINUE
CONTINUE

Sort nodes
IFLAG=0




600

700

800

804
810

100
110
200
210
240
260

280
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DO 700 I=1,NODSUB-1

IF(NODE().LE.NODE(I+ 1)) GO TO 700
NTEMP=NODE(I)
NODE()=NODE(I+ 1)
NODE(I + 1)=NTEMP
IFLAG=1

CONTINUE

IFIFLAG.EQ.1) GO TO 590

DO 800 I=1,NODSUB
INDEXN(NODE()) =1

IF(ILEVEL +3.LE.LTRACE) THEN
WRITE(ITRACK,804)
FORMAT(/, 16X,'NODE'",5 X, INDEXN)
WRITE(TRACK,8 10) (NODE(),INDEXN(NODE(N),I=1,NODSUB)
FORMAT(10X,2110)
ENDIF

Read the boundary values:

IFILE=1
NSKIP=NELEMS+NODSYS +NELSUB+4
CALL SKIP(IFILE,NSKIP)

DO 200 IBOUND=1,NODSYS
READ(IFILE, 1 10,ERR=2 10) NBOUND(IBOUND),BVALUE(IBOUND)
FORMAT(IS F5.1)
NKNOWN = IBOUND

CONTINUE

IF(ILEVEL+2.LE.LTRACE) THEN
WRITE(TRACK,240) NKNOWN
FORMAT(/.,5X,'Boundary Values are known at '.13,' nodes:)
WRITE(ITRACK,260) (NBOUND(I),BVALUE(!),1=1,NKNOWN)
FORMAT(8(4X,15,F5.1))

ENDIF

IF(ILEVEL + 1.LE.LTRACE) THEN

WRITE(ITRACK,280)

WRITE(6,280)

FORMAT(SX,'Returning from SUBSYS: Subsystem determined.'/)
ENDIF

RETURN

END
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Soils data was gathered from microfiche at the National
Soil Survey Laboratory, Soil Conservation Service-USDA,
Lincoln, Nebraska for the Hastings soil and from the SCS
SOILS-5 for the Coly soil series which is the same as the
Colby, 1939 soil series name. The Hastings Silty Clay Loam
was assumed to be an eroded phase of the Hastings Silt
Loam. The Hastings Silty Clay Loam data was taken from the
Al2 horizon on the following data sheets.
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Joil Classification: Udic Arciustoll, fine, montsorilldaitié, messc

Soil: Hastings . *

Sofl toe.: 365MK-91-1 ¢ :

lncation: Webster Cuunty, licbraska. 0.15 mile weet and 100 feet south of northeaat cormor of Sec. 1, TIN, KIWW.

Filevetion: 1,205 feet. Ce L

Climate: Subhumid.

Irecipitation and Tewperatura: 2 tachns; 52 degreas TF.

Vegetation anl Use: lative grasses, principelly big bluestem, sidcuats grema, Westarn vheatgrass, blue grame,
Scribner mranicum, Kentucky bluegrass, and June grass. Native hay.

Ro0* Distridution: Sood: no restrictive zones.

Dalnags and Direwablility: uderately well drainnd; spderately slov prrmeability.

S1ope and Land torm: 1 to 2 prrcent with cast aspest; atable upper interfluve; dissected uplands.

Pernt Material: Dorisn loess.

Collecis4 snd Described by: R. N. Jordan and J. V. Drev, April 21, 19GS.

All_20040 0 tv 13 em {0 tc § inches). Dark gray (10YR 4/1, dry) to black (10YR 2/1, motst) silt loam; srderate
fine jranular structurc; colt, friable; roouts sbundant; noncalcareous; clear smooth boundary.

Al2_20450 17 to 25 cm {5 to 10 inches). Dark grayish-brown (10YR 4/2, dry) t~ .<. dark brown (10R 2/2, moist)
641t loam; moderate :ine to mcdiwa cranular structwe; soft, f.iable; roots adbundan.; few {nsect wvora casts about
5 w0 in diancter; noncalcareous; clear smooth boundary.

2120451 25 to Ul cm (10 to 15 fnches). Dark grayish-brown (10YR 4/2, dry) to very dark grayish-brown (101R 3/2,
moist) silty clay loan; wwax {ine subangular blocky breaking "o moderate medium gramilar structure; soft, frisdble;
roots plentiful; fev insec: vorn casus about $ sm in Aiameter; noncelcarecus; clear rmooth boundary. .

B2 20452 L1 to 58 em (16 io 22 inchas). Brown (1OYR 5/3, dry) to dark biowr ,10YR 3/3, solst) vith 4O percent .
dark gray (10 L/1, dry) to very dark gray (10YR 3/1, moist) coatings; silty clay; weak to moderate pedium pris-

oatic breaking to moderate mediunm and fine suoangular blocky structure; hard, firw; roots numecrous; noncalcarcous;
gvedual smooth boundary. . .

P 20453 S8 to 79 cn (23 to 71 inches). Pele brown (10YR 6/3, dry) to grayish-brown (10YR 5/2, moist) vith 30
percent dark cray (10\R L/1, diy) to ver’ dark gray (10YR 3/1, moist) coatings; silty cley loam; weak ccarse pris-
zatic breaking L0 moderate medium and fine angular dlocky structure; hard, (irm; fev roots; noncalcareous; sany
Bedium to fine distinct mottles of brownish-yellow (10YR 6/8, moist) occur at 29 to Il inches; abrupt smooth

Clce 20454 to 102 om to L0 inches). Very pale browm (10YR 7/3, dry) to brecwa (10TR 5/3, moist) silt loam;

common fine distinct mottles of brownish-yellow (10YR 6/8, moist); very vesk coarse prismatic structure; slightly
i friable; common fine tubular pores; some are lined vith thin clay films; few roots; calcareous, carbonate

ocsurs o3 s0{t to slichtly hard segreystions; gradual smooth boundary. . L

- §2_20438. 192 10,127 ca {40 Lo 50 jrches).._Yery_pale hrown, (101, 7/3,. 4rv) "o pale_brown (101 6/3, ootst) i1t

- loam; corzon fine distinct mottles of brownish-yellov (10YR 6 8, moist); massive structure; soft, friadble; coc=oa N
fine tubulur pores, a fcv are lincd »ith clay films--fever than horizon above; & lucal krotovina-like pocket cone- ,
tained mruerous clay-lined tubular pores; calcareous, carbonate occurs as soft segregations, fever than horizon
@above; gradual smooth boundars. .

.

€1_2045¢ 127 2 152 em {50 to €O inches). Very pale brovn (10YR 7/3, dry) to palc brovn (10YR 6/3, mofst) silt ;
i fes fine distinct mottles of Lrownish-yellow (10YR 5/8, moist); massive structure; soft, friadle; comon fioe
tubular pores; calcareous, occasional soft carbonate segregations. )

Rerarks: A detailed discussion of the microorphology and aineralogy ic available in the Master's Thesis: Jordun.
R. H. 195%. Formation and Transfer of Clay in Hastings Silt Loam, A Udic Argiustoll. University of Nebraska.
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Sofl Clascification: Udic Argiustoll, fine, sontmorillonitic, mesic

Soil: Hastings

24l oa.: SME-91-2 .

Locatinn: Wcboter County, Nehraska., 1,070 feet north and 420 feet wart of rm' Hraat corner of fee. M, TR, WA,
* fmall-Whtershed 1-ll, Central Great 11ains kxperimental Wataratndl/, USDA-ARS, Pastincs, Shreaska.

Nesetation and Use: ative grassca cuch as blue grama, sidecite grama, bl '-lmm.e-, 2tc, Area ha3 Lenn 1t for

hay.

Slope and Land Form: Gantly sloping (2 percent slightly convex clepr) toward northeast.

Iarent Materfal: [Norian loass.

Collacta4 Ly: I. T. Alexander, R. N, Jr Q. R, lolmgren, L. E. Kitehnll, W, C. L/mn, and K. €. Talea,

Tesaribed by: liarry €. Malen, Leptember 29, 19G4. .

All_ 1976 O to 1S cr (C to 6 inchea). YVery dark brown (10YR 2/2, mint) silt loaw; weak very fine gramulse rtruse
ture; Slichtly hard viwea diz7, frinble vhen molat; clear smeooth buuniary,

Al12 13957 15 to 23 cm (C to 11 inches). Very dack browm (101X 2/1.5, mcist) silty slay lonam; roderase, ver? fine
granular structure; slightly hard when dry, friable vhen moist; clear smouth brundary .

Rl_199°8 26 to 8 cn (11 to 15 inchea)., Very .dark gray (10YR V1, moizt) nflty clay loan; mdarata, ver: fine cub
engular Llocry stiructure; hard when dry, firriable vhen mofst; clear emooth dbourdary.

o1 17959 8 to 61 ca {15 %0 2L incheal. Dark grayish-dbrowvn (2.5Y 4/2, motst) =ilty 2lay loam; roixrate, Iine
and very fine subangular biocky structum; herd vhen dry, friable vhen moiat; clear smooth boundary.

B 1750 61 to 81 cm (24 to X2 inches). Dark grayish-brown (2.5Y 4/2, soist) sil: loem; veux, fine primasis
structure separsting to veek, mcdiua blocky structure; distinct, common, madiun vellowich-brown {10V $/S° =pecle:z

. cover 2 to 20 percent of surfase, cottles 5 to 15 mu in diamete:; ccattervd nocules f iron; slicshtls Rard «hea dry,
friable vhen moist; clear sowoth boundar:.

€1 _19%1 81 to 102 cn» (2 to O inches!. Crayish-brown (2.5V 4.5/2, moist' zilt leas; veak rediun prirmacis
Ttrucium-s faint, fow oediun yellowish-brown (107R 5/6) mottles cover less than 2 prrzent of surface, ootelzr % %0
15 m 12 Jiameter; slichtly hard vhen diry, very friable vhen coist; gradual zmocth becundery.

C2ca_199G2 102 to 130 cm (U2 to 51 inmhes). Grazish-brown (10VR /2, enist) cilt loan; weak, coArsz prizenc!:

structare; alightly hard vhea dry, very friadle vhen moist; calcArcous; Gradual wvavy boundary.

Clea 10261 170 to 157 cm /51 to 62 inches). Grayish-brown (10R 5/2, moist) silt loa=; weak, coarse prizra‘ic
structurv; sligitly hard vhen dry, very friable whan moist; celcareous; graduill wvavy boundary.

to 1685 cn (G2 to 7Y inch=s). Graylsh-brown’ (10YR $/2, moist) silt loan: vc;-‘x. coarae prir-u°te
strusture; sligh hasd vhen dry, verr friabls vhen soist; calcarecus; cradual vavy boundary.

€5 1035 1569 to 213 ecn (71 to B4 inches). Crayish-brovn (10YR 5/2, moist) silt loam; weak, cearze prisraciz
strusture; slightly m.rd vtml dry, very {riable when moist; noancalcareous.

Rerarks: Jame mcisture am-m.uen ac for Z6LIX.91-1. Becinning at the top, twenty-threa (23) 3'efnch cor: ~am-
ples ©f the cpper ¢ inches vere taken along the ‘ransect at {ntervals of J0 fxet. fcr cerbon and ats~cyen 4o :rrina
tioas. This pedoa descripsion was writsen at station number 3 on this traniwnt. !our cleds for bulr Jdemsis caae
curezeats (0-1, 1-2, 4=€, and 7-9 irsh 32p2hi) were taken at each even-rutbir=d statjea.

1689 TRANSICT 29 fret ro-th o Crall-taterchad Veits scpsien frie-e?
. €0 o

RO D P |
—

fleves.ion - Feet

19504
.
Distance - Fee’. [ ‘] '\\'\
19401 1 1 1 Il 1 1 1 L 1
o ~0 100 150 200 250 300 150 Lo o
Wace -

1/ Terninated 1947,
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CONTY = = = WEBSTER.

Us Se OEPARTMENT OF AGRICULTURE
SOi¢ CONSERVATION SEAVICE maTSC
SQIL SUAVEY INVEST IGATIONS UNIT
LINCOLNy NEBRASKA

GENERAL NETHOOS- = =1A,1820,2A2,28 SANPLE NOS. 20449-20436 // -22-7 L/
OEPTH HORI 20N (o cc oo momceceosaca PAITICLE SIZE ANALYSIS, LT 2MN, 3Al, 3A1A AL = = = = = = = = = RRATIO
FINE ( = = = = = SAND = = = = = = |(= = =SILT= = = =) FARL [INTR FINE NON~- B8OL
SANO SILT CLAY CLAY VvCOS CORS rSOS FNMES VFNS COSI FNSI VFSI TEXT 11 CLAY (03~ 15-
2- «035~ (84 LY 2=~ 1= e5=!" o2%~ 410~ .05 «02 «005= SAND .2~ TO CLAY B8Ar
«03 L0022 .002 .,0002 1 3 28 10 003  oC2 0002 4002 2-.1 <02 CLAY T0
(4] e e e e et cccccnsccccca (Il M e e ceeceeeeeee=e=a=a=) pCT PCT CLAY
000-013 All 9.5 674 23.! 1647 0 ol ol «3 9.0 S50.6 6.8 3.2 «3 59.9 72 Y )
013-02S Al2 Te5 359.3 33.2 2%.9 «0 .0 ol ol Ted 415 17.8 3.3 2 8.9 78 2
025-041 el 5.6 S1.8 42.6 )7 9 0 0 «0 Se8 34,1 17.7 4.2 «0 39.7 19 36
041-058 82t Sel 50e2 4.7 34,8 «0 0 »0 o0 S.1 31.0 19.2 S «0 36.1 7" odl
03”2-079 8l 6.4 S56.8 36.8 23.4 0 0 «0 ol 6.3 335.6 21.2 4.9 o1 42,0 (1] «4)
. 079=102 CciCa Te3 69.3 23.2 7.2 ol ol ol 02 6o 4l.1l 20.4 T.6 «3 481 31 b9
.102-127 c2 7.8 67.2 25.0 . 9.4 «0 «0 «0. ol Te1 4les 25.6 S.8 ol 49.4 s .47
127-152 (%] 7.0 68.0 23.0 9.6 -0 -0 ol o2 6e1 40.0 28.0 6.7 «3 40,9 b1} X}}
038-079 (Y1) 6.8 S5S.¢ 37.8 22.3 «0 ] ol .. o3 64 33.8 2100 sl & 40,4 60 .82
079-102 (a) T.3 0.2 32.5 17.3 0 .0 el %] 6.9 37.1 231 4.) b 44,2 3D o33
102-127 (A) T.6 6le4 31.0 16,2 0 .0 ol X} Tel 37.0 23.6 4.7 o9 43,2 $2 <38
.. 127=152 a) Tel 64.1 28.8 15.4 «0 0 ol b . 6.8 3T7.8 . 260D 4.9 oS 4.7 3 39
DEPTM (FAATICLE SIZE ANALYSIS, MM, 38, 381, 3B21( BULK DENSITY (= = = =WATER CONTENT=- = = =) CARBONATE (- =PN = =)
Vile (= = = = = w'@ YEIGHT = = = = = = =) QALD AALN! 4D1  4BIC 4ABIC 482 aC1 GE1D 3AlA 8Cla 8ClE
GT (14 73-20 20=-3 3-2 LY 20-2 1/3= OVEN COLE /710 /3= 195- WRO LY (9 171 172
.. 2 18 - <074 PCTY 8AR URY BAR 8AR BAR (4,74 2 <002 M20 Calt
(2] rct PCT (= =« PCT LT 7S = = = ) LT20 G/CC G/CC PCT PCT PCT Cm ({41 ({41
000:013 [} 0 [} Q [} (] 1.22 1.31 L02¢ 2%.4 11.0 .18 5.9 S.2
013-023 0 [} (-] 0 0 [} 1e27 163 ,L040 30.3 1e.0 «21 .9 3.3
023041 ] [} ] (] 0 [} led30 1,72 L0807 27.8 13.4 .17 6.0 S.é
. 0Al-088 O J 0 0 0 0 1.46 1.78 .082 20.1 10.2 .l 6.6 4.1
0se-01? ] 0 ] ] [} ] 1le40 1.62 .02 2047 1600 %) 0 T.1 XY}
079102 [} (] [} 0 0 ] 129 1.39 .02¢ 20.1 11.) 022 3 0 .1 Te.2
102-127 0 Q [} [} 0 0 1.20 1.38 ,024 29.8 1ll.08 «23 1 ] 8.2 T.)
12192 [} ] o [} 0 o 1.28 1. 028 29.0 113 «23 1 ] 8.2 7.3
036-079 .
or9-102
1C2-127
T Y2r-182 .
OEPTH (ORCANIC MATTER ) [AON PHOS (= =EXTRACTABLE ’'ASES S04A- .0_) ACTY AL (CAT ExXCM) RATIO RATIO CA (8ASE SAT)
6alA 4814 C/n 6C2A 6S1A GN2E 6020 oP:A 6Q2A UM1A 0G10 SA3A SaAsa 00! 003 SF sC3 13
CRGN  NITG Ext ToTL CA ne NA [ 3 sum  8acL KCL EXT8 NMAC NMMAC CA ST EXT8 NMAS
CARS (43 cxIs TEa Exv ACTY 10 10 NMAC ACTY
(4] rcr rCcY rcY T (e cac=c=cacnfQ /100 CG-==ccoeea=-) CLAY nC rcr ({21 rcr
000-01) 2,948 202 13 93 12.3¢ 3.7C TR 1.1 17,1 7.7 24.8 1802 79 3.) 9 9
013-023 1.80 139 11 b 19.4C 93.7C ol led 22.9 7.7 30,2 22.4 8?7 2.7 1 100
02%-041 1.24 0122 10 o? 10.7C T.6C ] 1.0 28.¢ 1.4 34,0 27.2 'Y 2] 29 7 109
041-0%0 .79 <081 9 ) 17,950 8.3 o3 2.0 28,) 4,.) 32,6 20.) YY) 2.1 [ }) 100
. CIA=QTe. SO0 . . . . 9 . 16,20 6.10 o8 . 1e9. 2060, 200 290 _237. 270 2.0 . _.9 10
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TYPIC USTORTHENTS, FINE-SILTY, MIXED (CALCAREOUS), MESIC

COLY SERIES

THE COLY SERIES CONSISTS OF WELL ORAINCO TO EXCCSSIVELY DRAINCD SILTY SOILS FOMED IN CALCAREOUS LOTSS ON UPLANOS. THE

SURFACE LAYER 1S GRAYISM BROWN SILT LOAM SURFACE LAYER 4 INCHES THICK.

THE MEXT 6 INCHES IS LIGHT BHUWNISH GRAY SILT

LOAM. THE SUBSTRATUM IS LIGHMT GRAY SILT LOAM. SLOPES RANGE FROM 1 TO 80 PERCENT. MOST AREAS ARE USED FOR RANGELANO.

€511MATED SOIL PROFITIES e o R
oLrte |FRACT | PLIRCENT OF MATERIAL LESS  |LIOUID |PLAS-
(m.) USOA TEXTURE UNIFLED AASHTO |»3 In|_THAN 3° PASSING SIEVE NO. | LIMIT |TICITY

j(pcr)] &« | 10 | 40 | 200 INDEX
0-¢ [SIL, L ML, CL, CL-WL A-4, A-6, A-7 | 0 | 100 100 85-100 85-100| 20-45 | 2-20
| 0-4 |vFSL ML, CL-ML, CL A-4 | o | 100 100 85-95 30-65 | 22-35 | 3-10
| e-60|SIL, VFSL, L ML, CL, CL-ML A-4, A6 | o | 100 100 65-100 85-100| 20-40 | 2-1%
| |
| |
1 1
DEPTH|CLAY [MOIST BULK| PERMEA- AVAILABLE SOIL | SALINITY | SHRINK- |EROSION|WIND |ORGANIC|  CORROSIVITY
(IN.) | (PCT)| DENSITY sILITY WATER CAPACITY|REACTION|(/e0S/CH)| SWELL |FACTORS|EROD. |MATTER
(G/CM3) (IN/HR) (IN/IN) POTENTIAL] K | T _|GROUP| (PCT) | STEEL |CONCRETE
0-4 |18-24|1.30-1.5%0 | 0.6-2.0 0.20-0.2¢ - wow  |.43| 5 | au | 1-2 |_miGu | ow
0-4 | 8-15|1.30-1.50 | 0.6-2.0 0.17-0.19 - v [.e3]s| 3 1-2
4-60|18-24|1.30-1.50 | 0.6-2.0 0.17-0.22 |7.4-8.4 - v |.e3
FLOOOING HIGH WATER TABLE |_CEMENTED PaN | B8€0ROCK |SUBSIDENCE |HYD|POTENT L
DEPTM | KIND |MONTHS |DEPTH|HARONESS|DEPTH |MARDNESS|INIT.[TOTAL|GRP| FROST
FRECUENCY |  DURATION _ [HONTHS | (FT) 1 (IN) 1 (IN) LCIN) L (IN) ACTION
NONE 1 | 6.0 | - | »60 | - 8 |MODERATE
SANITARY FACILITIES CONSTRUCTION MATERIAL
1-8X: SUIGHT | 1-15X: FAIR-LOW STRENGTH
SEPTIC TANK | 8-15X: MODERATE-SLOPE | 15-25%: FAIR-SLOPE,LOW STRENGTH
ABSORPTION | 1S+X: SEVERE-SLOPE ROADFILL | 25+X: POOR-SLOPE
FIELOS
1-2%: MODERATE-SEEPAGE IMPROBABLE-EXCESS FINES
SEWAGE 2-7X: MODERATE-SEEPAGE, SLOPE
LAGOON 7¢%X: SEVERE-SLOPE SAND
AREAS
1-8X: SLIGHT IHPROBABLE-EXCESS FINES |
SANITARY | 8-15X: MODERATE-SLOPE |
LANDFILL 15¢X: SEVERE-SLOPE GRAVEL |
(TRENCH) |
Il |
1-6X: SULIGHT | 1-8x: GOOO |
SANITARY | 8-15X: MODERATE-SLOPE | | 8-15%: FAIR-SLOPE |
LANDFILL 15+X: SEVERE-SLOPE || TOPSOIL | 15¢x: POOR-SLOPE |
(AREA) | |
| |
1-8%: GOOO
DAlLY 8-15%: FAIR-SLOPE WATER MANAGEMENT
COVER FOR | 13¢X: POOR-SLOPE 1-3%: MODERATE-SEEPAGE |
LANDFILL POND 3-8%: MODERATE-SEEPAGE,SLOPE |
RESERVOIR | 8¢X: SEVERE-SLOPE |
AREA |
BUILOING STTE OEVELOPMENT |
1-8X: SLIGHT SEVERE-PIPING |
SHALLOW 8-15X: MODERATE-SLOPE EMBANKMENTS | |
EXCAVATIONS | 13+%: SEVERE-SLOPE DIKES anD | |
| LEVEES :
1-8X: SLIGHT SEVERE-NO WATER |
CWELLINGS | B-15%: MODERATE-SLOPE EXCAVATED |
| witmourt 15+%: SEVERE-SLOPE PONDS i
BASEMENTS AQUIFER FED | :
1-8%: SLIGHT OEEP 10 WATER |
OWELLINGS | 8-15X: MODERATE-SLOPE | |
wITH 159+%: SEVERE-SLOPE | ORAINAGE |
BASEMENTS :
1-4X: SLIGHT 1-3% SIL,L: ERODES EASILY |
SeaLL 4-8X: MOOERATE-SLOPE 3¢X SIL,L: SLOPE ERODES £ASILY |
| COMERCTAL | BeX: SEVERE-SLOPE || IRRIGATION | 1-3X VFSL: ERODES EASTLY, SOTL BLOWING |
| wwinepivas | I 3ex VFSL: SLOPE,LWOVES LASILY,SUTL ALOWING :
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Topography, soils, and landuse were taken from "THE CENTRAL
GREAT PLAINS EXPERIMENTAL WATERSHED, A Summary Report of 30
Years of Hydrologic Research". The following map and data
are excerpts. from this report and from Plane Table
Topographic  Surveys performed in 1942 by the Soil
Conservation Service-USDA under Hugh Hammond Bennet. The
report is available from the Water Data Laboratory,
Agriculutral Research Service-USDA, Beltsville Maryland.
The folio of maps is available for loan from the same
Laboratory.
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WATERSHED 1-H WATERSHED 2-H
3.62 acres . e » 3.40 ocres

WATERSHED 4-H
3.84 acres

WATERSHED 3-H
3.95 acres

Area after 171759, 3.77 ac.

/1739, 3.64 ac.

LEGEND
836R Distance and direction
[ (N to neacrest roin goge.

» Gaging station. SCALE
e ——  Originol watershed boundary. 00 0
— = —— Watershed boundary after 1/1/39. FEET
o~ Contours.

" essececcecs Soil boundaries.
3?!_ Numerator is coil typs; denominator is
range of top soll depth, in inches.

Watersheds I-H,2-H,K 3-H, 8 4-H.
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Table } .—Crop and troati:nt plan for 4-acro watoraleds for tho poriod of
1953 turouzh 1967

Crop and treatment by yoars 1/

Watersaed 1958 1959 1960 1961 1962 1983 1964 1965 1966 1967

1-H Mn Kn ln Mn Mn~  Mn st sa Fn Wia
2-H Mn Mn ltn Mn Mn Ma - P P P P

22-H Mr Mr Ur ur Mr Mr
23-H Mr M Mr Mr Mr Mr
25-H Hn Mn Ma Ma ¥n
18-E P P P P P P P PP P

3-&' Wa Sm o Wa Sm 31 Wo Sm Fn Yo
8-H Wa Sa Fa Wm Sm Fa Ha Sm Fm Va
4-11; Sam Fun Wo Sa o Wa sa Fao Ha Sm
7-H Sm Fm Wa Sa Fno Hm Sa Fm Wn Sm
5-H., Fa Wa Sia Fn Ha Sa Fm We Sa Fm
6-H Fu Ha Sa o Wm Sa Fm ¥m Sm Fa

1/ Symbols uczed in coluans a2re: lin = native meadow; Hr = meadow of reseeded
native grasses; Sf « forage sorghum; S « sorghun in rows for grain; W =« wheat;
F = fallow; P = native pasture; m = stubble mulch farmed.,



SELEZCTED RUNOFP EVENTS

ANTECEQENT CONOITION

Date 1 4
(4a.)
4-10 .02
4-17 -4
4-19 .51
$-2 .28
s-) .14

Watershed conditions:
Fallov good residue
cover.

[¢]
(in.)

.00
.00
.03
.00
.00
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ArS
RAINFALL
Date Tine Rate
(an/hc)
tvent of May &, 1959
RC B8-)6-R
$-4 1418 .00
1420 .90
1422 2.10
1424 l.60
1426 5.40
1428 3.60
1439 2.49
1432 1.20
1307 .19
1527 .03
1630 .00
1750 .06

Acc.,
(in.)

.00
v .03

.22
.40

.52
.60
.64
.76

.76
.84

WATERSHED 4-H (44.08)

Tine

RUNOPP

Rate
(ia/nc)

Acc.
(in.)

.0000

.0}
.07
.11

.13
.14
.13
-15
.16

.16
.16
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Regression analysis of Table 4 outflows. This analysis was
performed with Lotus 1-2-3 for the actual and calculated
outflows. The pairs of values are at constant time for
which the analysis was performed.

Regression Output:

Constant 2.90E-01
Std Err of Y Est 3.96E-01
R Squared 9.26E-01
No. of Observations 2.70E+01
Degrees of Freedom 2.50E+01
X Coefficient(s) 3.43E+01

Std Err of Coef. 1.94E+00
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