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ABSTRACT

FINITE ELEMENT ANALYSIS OF HYDROLOGIC RESPONSE AREAS

USING GEOGRAPHIC INFORMATION SYSTEMS

BY

Baxter Ernest Vieux

The methodology developed in this research utilizes a

Geographic Information System and the finite element

Galerkin formulation to solve the kinematic wave equation

for overland flow in a watershed. The watershed studied

was number 4H, located in Webster County, Nebraska, and was

operated by the USDA-Agricultural Research Service.

The one- and two-dimensional forms of the equation were

studied and the resulting outflow hydrograph was compared

to an actual storm event, May 4, 1959. Rainfall excess was

calculated using the Green and Ampt infiltration equation

for an unsteady rainfall.

Hydrologic response areas were formed based on slope

with the aid of the ARC-INFO Geographic Information System

developed by ESRI, Redlands, Ca. A finite element grid

representing streamlines and equipotential lines was formed

such that the direction of slope forms the streamlines of

flow and the elevational contours form the equipotential

lines. This results in nodal slope values perpendicular

and parallel to the sides of the elements. Kinematic shock

was avoided due to the use of nodal slope values. This

formulation allowed solution of the overland flow equations
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for a watershed as a continuum rather than as a series of

independent cascades.

The method developed through this research provides a

more accurate description of the hydrologic processes in a

watershed. Through more accurate description of hydrologic

processes insight is provided into transport phenomena of

agricultural pollution such as pesticides and nutrients in

surface and subsurface water as affected by overland flow

and infiltration for an agricultu
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I . I NTRODUCT ION

Agricultural pollution by pesticides and nutrients

threatens both surface and subsurface waters due to

hydrologic transport of these contaminants. The locations

within a watershed that produce similar contributions to

surface and subsurface waters may be termed hydrologic

response units or areas. To successfully reduce

subsurface water contamination, reduce sedimentation, and'

control erosion, land treatment measures must be focused

on those geographic areas that will yield the greatest

mitigation. Hydrologic modeling has recently been the

subject of more and more attention in addressing watershed

management. Modeling may be mathematical, if described by

a mathematical equation, or physical if a scale model is

built to represent dimensional similitude to the actual

watershed. In either case the model is a conceptualization

of the actual watershed. Mathematical modeling generally

seeks to define the mathematical relation between a set of

independent variables and a response or dependent variable.

The twentieth century has witnessed a rapid

acceleration in the quantitative modeling of physical

processes. The mathematical description of natural

phenomena in the hydrologic cycle is not, however, a child

of this century. The history of quantitative hydrology has
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been marked by important milestones. Achievements of

each scientist have served as the foundation for advances

by the next scientist. 0f the classical period the most

notable treatise (in 66 AD) that makes mention of the

hydrologic cycle was Vitruvius' ”Ten Books of Architecture"

(Morgan, 1960). Vitruvius' description in Book VIII on how

to find water, we read

The valleys among the mountains receive the rains most

abundantly, and on account of the thick woods the snow is

kept in them longer by the shade of the trees and

mountains. Afterwards, on melting, it filters through the

fissures in the ground, and thus reaches the very foot of

the mountains, from which gushing springs come belching‘

out .

Though not without some misconceptions, Vitruvius

essentially understood the origin of springs and

groundwaters. Not until the seventeenth century did

ideas of quantitative hydrology emerge. Biswas (1968)

presented the following matter on the beginnings of

quantitative hydrology.

Pierre Perrault anonymously published the book 23

I'Origine des Fountaines in 1674 (Biswas, 1968). In this

work he calculates the quantity of water that would

accumulate from the rainfall in the catchment of the Seine

River, France. He found that a sixth part of the rain and

snow water is necessary to make the river run continually

throughout the year. For the first time experimental

evidence proved the pluvial origin of rivers. The greatest

contribution of Perrault and other contemporaries--

including Edmond Halley, who calculated the volume of water
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required to supply the rivers in the evaporation-

precipitation cycle, and Edme Mariotte who expanded on the

pluvial origins of rivers--was that they proved their

hypotheses through quantitative methods.

Watershed hydrology can be treated as either a lumped

or distributed parameter model as well as by a stochastic

or a deterministic method. A lumped model tends to utilize

the average of a set of independent variables that

represent a sub-basin or an entire watershed. A

distributed model utilizes the spatial location of the‘

independent variables and computes the dependent variable

directly at the spatial location of each independent

variable. Distributed models represent spatial

distribution as a set of grids or a series of finite

elements, each with its own physical properties. The

degree to which physical properties--e.g., soil

infiltration parameters, surface roughness, or slope-—are

averaged, represents the degree to which the model is

lumped. The direct computation utilizing these parameters

is a deterministic, method as opposed to a stochastic

method.

Scope and Objectives

Early modeling efforts neglected the spatial

variability of the independent variables. Lumping of

these parameters does not allow visualization of the

spatially distributed runoff and infiltration processes.
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Distributed parameter models, which can readily handle

complex geometry and spatial distributions of the

independent variables, have typically used approximations

of the actual watershed by using arbitrary grids, planes or

elements. The observation of the spatial and temporal

distribution of infiltration and runoff is one of the

benefits claimed by proponents of distributed models. In

actual practice, however, the volume of input data

prevented accurate representation of the spatial character

of the input data. Proper location of land treatment

measures required knowing the spatial and temporal'

distribution of the infiltration and runoff processes. In

order to achieve an accurate characterization of the

spatially distributed input parameters, an improved method

of defining hydrologic response areas is needed.

The value of processing a watershed by a Geographic

Information System (GIS) is evident within the context of

the finite element method as shown in Figure l. The GIS

serves as a spatial data management system. Soils maps,

landuse and other geographic data are represented in a

digital media using a common coordinate system. The first

step in the finite element method is to define elements

over which the differential equations of overland flow may

be
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integrated. The efficiency of the Geographic Information

System is realized when areas of like attribute values,

such as infiltration parameters, slope, surface roughness,

and so on, are aggregated within a boundary. This boundary

forms a polygon consisting of vectors or arc segments.

These polygons then become the set of finite elements used

to model the runoff process.

The purpose of this research was to develop a method

that more accurately predicts the outflow hydrograph

resulting from runoff during a rainstorm event for a

watershed with spatially non-uniform parameters. This)

method utilized the finite element method to compute the

runoff rates and a Geographic Information System to more

accurately represent the spatially distributed parameters

for use in the computation of the runoff. The specific

objectives for reaching this goal are as follows:

1) Define hydrologic response areas that exhibit similar

soil infiltration parameters, surface roughness, and

slope.

2) Apply the finite element method to the specific

hydrologic response areas to compute and route the

overland flow to the outlet.

3) Compare the accuracy of the outflow hydrographs to the

actual outflow hydrograph for a given rainstorm event

for the following two cases:



i) A finite element grid that is of an

arbitrary spatial form.

ii) A finite element grid formed from hydrologic

response areas defined by the Geographic

Information System.

It was hypothesized that the combination of the

Geographic Information System and the finite element method

would result in a mathematical model that predicted the.

outflow hydrograph from a finite element grid formed of

hydrologic response areas more accurately than from a

finite element grid that was of an arbitrary spatial form.

Validation of this hypothesis was accomplished if the

method developed through this research more accurately

predicted the actual outflow hydrograph from a watershed of

non-uniform, spatially distributed parameters such as

infiltration parameters, surface roughness, and slope.



i) A finite element grid that is of an

arbitrary spatial form.

ii) A finite element grid formed from hydrologic

response areas defined by the Geographic

Information System.

It was hypothesized that the combination of the

Geographic Information System and the finite element method

would result in a mathematical model that predicted the_

outflow hydrograph from a finite element grid formed of

hydrologic response areas more accurately than from a

finite element grid that was of an arbitrary spatial form.

Validation of this hypothesis was accomplished if the

method developed through this research more accurately

predicted the actual outflow hydrograph from a watershed of

non-uniform, spatially» distributed parameters such as

infiltration parameters, surface roughness, and slope.



II. REVIEW OF THEORY AND LITERATURE

Since the seventeenth century, the science of

hydrology evolved together with mechanical and industrial

developments. The twentieth century and recent decades in

particular, have seen great strides in the science of

hydrology. The industrial age, which :ffected

environmental degradation also necessitated more and

greater strides in hydrologic methods. One such method,

the mathematical model, through recent technical

elaborations has allowed the direct modeling of spatially

distributed hydrologic processes.

Hydrologic processes, when described by physically

based equations, are termed deterministic. This review

expounds the theory in the literature on deterministic

hydrologic models, particularly those utilizing finite

difference and finite element methods to describe the

spatially distributed hydrologic process of a rainfall

storm event over a watershed.

A. Hydrologic Modeling

The physically correct representation of the surface

runoff and infiltration processes in a watershed, field, or

plot depends on many factors. To categorize these factors,

several distinctions should be made in general as to the
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modeling process that seeks to represent the physical

process. Abstraction is the mind's attempt to disengage

the essence of something from that which is non-essential

or only incidental to its make-up (V.E. Smith, 1950). The

order of abstraction required in mathematical modeling is

to consider the mathematical relation between cause and

effect for the abstracted, conceptual model. The

conceptual model strips the processes that are considered

incidental or nonessential. The mathematical model then

describes those essential processes contained in the

conceptual model. Considering the complexity of the real“

world, it is necessary to use a conceptual model in order

to successfully apply the mathematical model. This however

is not without drawbacks, considering the interdependence

of the many hydrologic processes. Modeling a particular

process in the absence of another that is affecting the

modeled process may result in a physically invalid model

and would represent a poor choice of a conceptual model.

These drawbacks notwithstanding, we will examine first

some mathematical models that seek to model

deterministically the physical process of the rainfall

event. This process may include infiltration, overland

flow of the rainfall excess, and channel routing of the

lateral inflow from. the overland flow portion of the

watershed. Smith and Woolhiser (1971) developed a

mathematical model that modeled a coupled system of two

complex, natural processes of an elemental watershed. The
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conceptual model included only infiltration and overland

flow. Channel flow was not considered because the

conceptual model was limited to the upland portion of the

watershed where channel flow is not well established. The

infiltration model provides insight into the process by

which rainfall becomes either runoff or subsurface water.

The kinematic equations provide insight into the depth and

velocity of the runoff as it accelerated down the

watershed. The infiltration and the kinematic equation

were coupled mathematically such that the rainfall excess

as defined by the infiltration model was the boundary.

value for solution of the kinematic equation.

A distributed, deterministic system results when the

inherent spatial nature of the processes are preserved in

the solution method. A model such as Smith and Woolhiser's

provides the opportunity to model the outflow of the

watershed and, more importantly, the spatial and temporal

distribution of the runoff-infiltration process within that

watershed.

1. Distributed Parameter Models

Huggins and Burney (1982) observed that hydrologic

modeling is most differentiated by the manner in which

parameters or input values are handled. Lumping or

averaging certain parameters yields a lumped parameter

model. Distributed parameter watershed models treat the

individual input parameters directly without lumping. Such

models avoid the errors caused by averaging of nonlinear
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variables or threshold values (Huggins and Burney, 1982).

Distributed parameter models are relatively new and

are the subject of intense research. The principal

advantage of distributed models is that the geographical

variation of data within the watershed is preserved.

Furthermore, with measured parameters, ungaged watersheds

may be investigated for the effect of landuse changes.

Finally, water quality simulations on a distributed basis

identify the source areas within a watershed of

hydrodynamic transport of pollutants.

Distributed parameter watershed models are more

complex, require more computing time and increased input

data. The value of the knowledge derived from distributed

models must be considered vis-a-vis the increased time and

costs of developing and using this class of model. High

speed digital computers, however, obviate the restrictions

on increased computing time and complexity allowing more

and more complex, distributed models to be used.

Huggins and Monke (1966) developed the ANSWERS model,

a distributed parameter model that uses a grid as a method

of preserving the geographic heterogeneity of the input

parameters. Each cell of the grid represents the

hydrologic unit over which the model equations are solved

using the finite difference method.

The ANSWERS model uses a fundamental method of

computing distributed processes. The continuum of the

watershed is resolved into discrete elements and
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preserves the spatial heterogeneity of the input

parameters.

2. Hydrodynamic Model Approach

The hydrodynamic approach proposed by C.L. Chen and

Ven Te Chow (1971) considered watershed hydrology as a

distributed continuum, where the hydrodynamic principles of

fluid flow apply. The solution of the hydrodynamic

equations yields a deterministic model capable of defining

distributed flow velocities and depths over the watershed.

The hydrodynamic equations have been derived and)

solved by various methods. There are two distinct

categories of flow in a watershed--overland flow,

characterized by shallow flow, and channel flow,

characterized by well-defined channel geometry. The

boundary between these two flows changes with time and

distance and therefore are modeled with difficulty.

Chen and Chow formulated a comprehensive watershed-

flow model. They classified watershed hydrology by a

molecular approach, a microscopic hydrodynamic approach,

and a macroscopic hydrodynamic approach. The microscopic

and macroscopic hydrodynamic approaches both derive the

Navier-Stokes equation of motion for fluid flow with

suitable boundary conditions. The difference between the

micro- and the macro- approaches is that the latter

utilizes averaging of variables in certain flow directions

in order to simplify the Navier-Stokes equation.
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The approach of Chen and Chow formulated the equations

of continuity and momentum for flow of a Newtonian fluid

in a three dimensional space. A Cartesian coordinate

system is used whereby the average velocity is taken

parallel to the ground surface with the x- and y-

directions along the bottom of the flow. Temperature

variations are not considered, so the fluid is assumed to

be of a homogeneous viscosity. Their derivation is

summarized as follows.

a. Conservation of Mass

The conservation of mass is derived by integrating‘

in the vertical direction such that the differential

variation in flow is considered only in the x- and y-

directions with vertical variation as defined by the depth

of flow h.

ah + 3(uh) + 3(vh) = r - i [1]

TE TIE— ST—

where

:
3
’

I the depth of flow measured in the vertical

axis 2'

u = depth-averaged velocity in the x-direction,

v a depth-averaged velocity in the y-direction,

r a rainfall, and

i a infiltration, positive when moving out of

channel, negative when moving into channel.

The coordinate system used assumes that the primary

flow directions are parallel to the ground surface. This

requires that the z-direction makes an angle 6 inclination
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with the force of gravity. Equation [1] is in terms of

vertically oriented variables h, r, and i. The x- and y-

directions are not orthogonal with the vertical z-axis.

b. Conservation of Momentum

The conservation of momentum is derived by balancing

momentum and forces for an elemental control volume. The

resulting equation is the Navier-Stokes equation and is a

fundamental equation of fluid mechanics. Chen and Chow

(1971) begin with the Navier-Stokes equation and simplify

it according to appropriate boundary conditions and‘

assumptions. This rather convoluted approach yields the

general momentum equation for watershed flow in the x-

direction.

3(AV) + 3(8AV2) - BrrATcosvx - BLVqL

5t t

= gAsinGx - 9%[A(hcoszez + h*)] - gASfx [2]

x

where

ex'y'z - angle with the respective direction,

h a depth of the centroid of the cross-

sectional area,

h a rainfall impact overpressure or induced

head,

A - cross-sectional area of flow,

Sfx a friction slope in x-direction,

8,8L - momentum correction factors for main and

lateral flows,

at - momentum correction factor for raindrop
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terminal velocity,

A a mean terminal velocity of fall of raindrops, and

0x = angle of inclination between the terminal

velocity vector and the vertical axis.

Because they are applicable to both overland and

channel flow, equations [1] and [2] for the conservation of

continuity and momentum, form the description of the

watershed problem. They are the complete dynamic form of

the shallow water equations. The continuity or

conservation of mass and the one-dimensional, conservative

form of the conservation of momentum are commonly known as-

the St. Venant equation derived by St. Venant in 1871. The

general form, ignoring the momentum of the rainfall impact

and overpressure, is expressed by [3] as a set of equations

aav + V3A + 3A = q

3x 5x 5t

and

vav + av + a('A) = g(S - s ) - Vq [3]

5x St % 5x 0 f A

where

cross-sectional flow area,> I

depth of flow,

mean water velocity,

lateral inflow per unit length of channel,

*
<

J
:

<
«
H

u

a distance from the water surface of the centroid,

So = channel slope, and
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Sf = friction slope.

These are the conservation of mass and momentum in the x-

direction.

Abdel-Razaq (1967) applied the finite difference

solution to the above St. Venant equations. Brutsaert

(1971) experimentally verified the solution, and Yen (1973)

recapitulated the open channel flow equations emphasizing

the origin of the St. Venant equations as the special form

of the conservation of mass and momentum. Previous

researchers had simplified these equations before

formulating a mathematical model. The significant-

contribution is that these researchers applied these

equations to a watershed flow domain.

The solution of the partial differential equations

requires initial and boundary conditions. If the flow

domain is considered to be the watershed as a whole, then

only one boundary condition on the watershed divide and one

at the outlet are needed if the flow is subcritical. If

supercritical, then only one boundary condition is required

at the watershed divide to give a unique solution.

If the flow domain is divided artificially into

overland flow and channel flow, then there are two

subdomains separated by an internal boundary. This

boundary is not known prior to the solution yet is required

in the solution. This difficulty may be removed by

estimating a likely location of such an internal divide and

treating the system of channel and overland flow as
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uncoupled. This approach allows the computed values of the

overland flow to act as lateral inflow for the channel flow

equation.

3. Kinematic Wave Equation

A comprehensive treatment of the kinematic wave

equation was examined by Woolhiser (1975) as a means of

computing hydrographs with the assumption of both the Chezy

and Manning equations as friction relations. Grace and

Eagleson (1966) developed the full dynamic equations using

the control volume technique for conservation of momentum

and mass. Normalized equations were then established and

an order of magnitude analysis produced. This approach

allows simplification of the governing equations by

discarding small order terms maintaining similarity between

model and prototype. Brutsaert (1968) obtained an

analytical solution to the shallow water or St. Venant

equations. This was done within a small solution domain

bounded by the forward and backward characteristics and the

x-axis from 0 to L of the plane. The series solution

provides good initial values for numeric analysis of

overland flow in the initial stages of the hydrograph

development. Of importance is that for large slopes, for a

large roughness coefficient of the plane, or for very small

constant lateral inflow, the series solution reduces to

the kinematic wave equation, which is an approximation to

the full dynamic equation.

Following is an illustration of the simplifications that
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i

.can be made to the full dynamic equation, ignoring lateral

inflow:

vav + av + a( A) 8 g (S - Sf) [4]

5:. at irz—x °

or

s . s - 3(yA) — v av - av [51
LIV—J % X '5'; FE

\KINEMATIC J

\r

L DIFFUSION

 

FULL DYNAMIC

The terms in equation [5] represent the possible‘

analogies for the modeling of the momentum equation.

Through simplification or elimination of low order-of-

magnitude terms, the significant terms are used in

computing the fluid's dynamic behavior. The elimination of

these terms in the above analogies introduces an error in

the solution. The magnitude of the error dictates the

acceptability of the analogy used under the physical

conditions of the problem.

Woolhiser and Liggett (1967) examined in depth the

errors introduced by the kinematic wave analogy applied to

the full dynamic equation for the rising hydrograph. They

discovered that the kinematic analogy can be applied within

a certain range of input parameters. To quantify this

range, the equations of continuity and the momentum

equation are first normalized, constituting a nondimensional

form of the full dynamic or shallow water equations. Then,
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the kinematic equation or continuity plus the Chezy

relation is normalized, yielding the equation of motion

without the momentum terms.

Kibler and Woolhiser (1970) described the kinematic

cascade as a hydrologic model. The concept here is to

reduce not only the full dynamic equation momentum to a

simplified form but also the geometry of the watershed to

simple geometric cascades, through which the overland flow

is routed to the outlet of the watershed. This approach

results in a distributed parameter watershed model. The

kinematic equation used is the Chezy equation together)

with the equation of continuity.

u a ch [6]

and

3h + auh = q [7]

If I?"

N = 3/2 for wide channels,

a = CJS, where C is the Chezy roughness

coefficient and S is the slope, and

h = the depth of overland flow.

In order to quantify the range of input parameters for

which the kinematic analogy is applicable, equations [6]

and [7] are normalized or made dimensionless.

Dimensionless Form

Equations [6] and [7] are normalized to yield
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dimensionless equations dividing each term by a

characteristic length or time. The Chezy equation is

substituted into the equation for continuity and then

solved using the method of characteristics. The

dimensionless parametric equation is

N-l

3h* + Bha 3h* a q* [8]

Efe 31*

where

q* a normalized lateral inflow q,

h* = normalized depth,

n

B = N Lk / Z 1i

i=1

11 = length of plane i in feet,

Lk [a normalizing depth for plane k,

N a Chezy parameter defined as above.

The dimensionless characteristic equations derived from the

above normalized, nondimensional equation is

N-l

dX* = Bh* [9]

3E.

and

db: = q* [10]

3E*

The earliest solution method was the method of

characteristics, which had its origins in the nineteenth

century. This method is also related to a separation of

variables technique. In both instances, the partial
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differential equation is reduced to ordinary derivatives.

These are then solved graphically, numerically, or by a

combination of both in the x-t domain (Henderson, 1966).

The value of this method is that it presents information on

the partial differential equation solution. Looking at the

ordinary differential equations for the characteristics, we

obtain a velocity dx/dt at which information can be

transmitted through the system. This velocity leads to the

Courant condition, which states the limit at which a

disturbance can move. This velocity is the celerity of a

gravity wave.

Kibler and Woolhiser (1970) made a thorough analysis

of the kinematic cascade as a distributed parameter

mathematical watershed model. One difficulty they

encountered was the numerical phenomenon of the kinematic

shock. When a disturbance occurs in an open channel

system, its propagation may be described by the method of

characteristics. Simple wave theory explains that when

there is a change in slope between planes in the cascade, a

shock or wave front is propagated within the system. The

shock represents a numeric difficulty in the computation of

the hydrograph. The shock parameter used to predict

occurrence is defined as

P5 = Yk-l “k-l > 1 [11]

wk Gk

w a width of the k and k-l
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_ planes,

a = Chezy coefficient or C S.

Observing the shock parameter inequality will ensure that

shocks will not be propagated along characteristic lines

emanating from the upstream boundary and the line x = 0.

Morris and Woolhiser (1980) re-examined the validity

of the kinematic assumption under partial equilibrium.

They found that the full dynamic or diffusion equations

should be used for flat grassy slopes. The criterion

Folk 3 5

should be observed when using the kinematic analogy. The

physical significance of Folk or SOLO/Ho represents the

ratio between the difference in elevation between the top

and bottom of the plane (SOLO) and the normal flow depth

at the downstream boundary(Ho). This criterion provides a

convenient method of deciding the validity of the kinematic

analogy. Earlier work (Woolhiser and Liggett, 1967)

suggested that at full equilibrium the criterion

k 3 SOLO/HO > 10

should be observed when using the kinematic analogy. If

the kinematic number k is less than 10, then the full

dynamic equations should be used. This condition does not

normally occur in agricultural watersheds but may occur in

urban areas where short, smooth watersheds with low

lateral inflows prevalent.
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4. Infiltration

When modeling overland flow in a pervious watershed,

it is necessary to calculate the rainfall excess that

results when the rainfall intensity exceeds the

infiltration capacity of the soil and the surface storage.

The rainfall excess is treated as lateral inflow in the

overland flow equations. The right-hand side of equation

[7] is the lateral inflow and can be viewed as the forcing

function. In order to characterize an infiltrating natural

watershed, it is necessary that

l. The conceptual model accounts for all processes

of interest, e.g., unsteady rain, snow melt, etc.

2. The mathematical model adequately describes the

conceptual model.

3. Soil properties within the watershed are taken

' into account.

4. Input parameters can be obtained for the domain

of interest and successfully applied towards the

solution.

The USDA-Soil Conservation Service developed a

procedure to estimate direct runoff from ungaged

watersheds. Rallison (1980) gives a detailed synopsis of

the development of this procedure from its inception to

its final form and application to ungaged watersheds. Work

on this procedure began in the mid 19505 in response to the

passage of the Watershed Protection and Flood Prevention

Act (P.L. 83-566). Due to the work authorized by this act,

SCS anticipated the need for a simplified method of

hydrologic computation. Based on extensive analyses of



24 ‘

gaged, experimental watersheds and infiltrometer studies, a

relation between rainfall and runoff was developed

(Andrews, 1954, and Mockus, 1949). The basic relation was

derived by plotting the accumulated natural runoff versus

the accumulated rainfall. It was observed that the

relation is asymptotic to a line at a 45 degree slope.

This shows that the runoff rate approaches rainfall rate as

the accumulation of both continues. Also, the difference

between rainfall and runoff, the maximum retention,

approaches a constant value. Rainfall intensity and the

surface sealing effects of rainfall were not considered in-

the analysis. The basic hypothesis is

5': Q [12]

3 15,,

where

F = actual retention of precipitation during a

storm,

S potential maximum retention,

Q a direct runoff,

Pa - rainfall after initial abstraction.

Curve numbers are related to S by

CN = 1000 . [l3]

STIU

The range of curve numbers for a watershed are due

primarily to variations in storm duration and intensity.

In the original analysis the CN chosen was an average of a
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range of values for the particular soil-cover complex. For

a particular storm, the CN may possibly fall outside the

range originally established. Infiltration patterns are

not accounted for within a storm period since no time

variation was incorporated into the procedure.

Consequently, the curve number method is not applicable to

modeling infiltration under a variable intensity rainfall.

Infiltration equations that respond to variations of

rainfall intensity have since been developed. Mein and

Larson (1971) presented an extensive analysis of

infiltration modeling as it relates to watershed modeling.-

They classified models as being empirical, theoretically

derived algebraic, or soil moisture flow models. The Green

and Ampt equation falls into the category of theoretically

derived algebraic equations. The approach of Mein and

Larson was to predict the time between the inception of

rainfall and the inception of runoff. Their methodology

was to modify the decay function of the infiltration

capacity as defined by the Green and Ampt equation. This

modification is necessary in order to account for the

infiltration that occurs prior to surface ponding. The

result of this effort was a simple model that relates

infiltration to a constant rainfall intensity, homogeneous

soil properties, and uniform initial soil moisture.

Brakensiek and Onstad (1977) presented a parameter

estimation for the Green and Ampt infiltration equation.

They observed that if watershed runoff is to be accurately
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_predicted, an accurate estimation of the infiltration

capacity is needed. The sensitivity of runoff rate and

volume was very sensitive to the fillable porosity and the

hydraulic conductivity. A runoff model using the kinematic

wave equation for direct runoff from a plane predicted the

effect of varying the Green and Ampt parameters. The

volume of runoff, for the conditions modeled, was most

sensitive to fillable porosity. This is termed by some

researchers to be the initial soil moisture deficit. The

sensitivity expressed as a ratio of the dependent to the

independent variable is as follows:

Qv = 5.79

C

gp - 3.47

where

Op peak runoff rate,

Qv = volume of runoff,

C fillable porosity.

For each 1% error in fillable porosity there is a

corresponding 5.79% error in the volume of runoff. The

sensitivity of hydraulic conductivity is

gv a 4.41

x

= 2.68

5%?
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where

Op 8 peak runoff rate,

Qv a volume of runoff,

K a hydraulic conductivity.

The sensitivity of these parameters indicates which

parameters must be estimated with the greatest accuracy.

The sensitivity indicates which parameters most easily

bring the model into agreement with the observed event.

The least sensitive parameter is the wetting front suction

head. This would indicate that in a parameter optimization

scheme, convergence may not be as rapid for the wetting.

front suction head parameter as for the others.

Chu (1978) studied infiltration under an unsteady

rain. His study extended the application of the Green and

Ampt equation to predicting the infiltration under an

unsteady rainfall intensity. During an unsteady rainfall

event, the intensity may recurrently shift from falling

below to exceeding the infiltration capacity. The purpose

of Chu's study was to extend the Green and Ampt equation to

account for variable periods of rainfall intensity. The

accomplished purpose is a transformed time scale that

allows the computation of the infiltration with time under

an unsteady rainfall.

Agricultural management affects the infiltration

process. Rawls, Brakensiek, and Soni (1983) present

guidelines for predicting the effects of tillage on the

Green and Ampt parameters. Using the soil texture data, a
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regression analysis was made to predict the increase in

porosity due to tillage of a given soil. With time, the

increased porosity decreases due to consolidation. The

estimated change in porosity is a basis for estimating the

change in the Green and Ampt parameters of capillary

pressure of the wetting front and the hydraulic

conductivity parameter, which is a fraction of the

saturated hydraulic conductivity. The effect of tillage is

accounted for by this procedure.

Brakensiek and Rawls (1983) presented the effects of

surface sealing or crusting on the Green and Ampt-

parameters. A two layered, hydraulic conductivity is

assumed to represent crusting. The wetting front capillary

head is assumed to be that of the pre-crusted soil. The

crusting thickness is assumed to be 0.5 cm. The effective

hydraulic conductivity is calculated for pre-ponded and

post-ponded periods during a rainfall event. The model

predicts the infiltration to within an order of the effects

of a crust formation under a rainfall simulator.

B. Numerical Solution of the Hydrodynamic Equations

The solution of the full dynamic equations poses

significant problems due primarily to the nonlinearity of

such terms as uau/ax. Such problems give motivation to

identify the domain in which reasonably accurate solutions

to the simplified equations may be obtained. Further

motivation to simplify the full dynamic equations is the
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difficulty to provide the appropriate boundary _conditions

and incorporate them into the solution method.

The finite difference method has achieved extensive

use in the computer solution of the full dynamic and

simplified equations of fluid flow. Abdel-Razaq (1967)

provided a finite difference solution to the surface runoff

problem defined by the conservation of mass and the one-

dimensional conservative form of the conservation of

momentum equations.

The method of characteristics is a semi-graphical

solution of the full dynamic and the simplified equations -

of fluid flow. Henderson (1966) gives an in-depth

procedure for the solution of the full dynamic equation and

the kinematic wave equations for channel flow. The method

of characteristics also yields information on grid spacing

in the finite differencing domain. This is related to the

partial differential equation theory. The goal of these

methods is to reduce the partial differential equations to

ordinary and the ordinary to a linear system of equations

amenable to solution.

1. Finite Difference Method

The finite difference method seeks to replace a

continuum with discrete points between which the

differentials are approximated. By replacing the partial

differential terms with a finite difference approximation,

the continuous domain is replaced by a network of isolated,

discrete points. This procedure reduces a continuous
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problem to an approximating eigenvalue matrix amenable to

solution (Crandall, 1956).

The solution of the finite element formulation in time

is most commonly done by the finite difference method. For

example, the equation

[C]{A} + [K]{Q} = {F} [14]

requires that a temporal solution of the time derivatives

{A}, aA/at be computed. This may be accomplished by

writing the finite difference form of the time derivative.

as

aA(£) A(a) - A(b)

" [15] 

3t At

The mean value theorem indicates that 5 must lie within the

interval of a Z 5 I b

Not knowing where 5 lies within this interval we must

define the parameter

(E - a)

At

and use it as

A(t) = (1-0)A(a) + GA(b) [17]

Substituting [16] into [17] yields the relation for g = t as

A = (l-e)Aa + GAb [18]
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Similarly for the right-hand force vector {F}

F = (l-O)Fa + GFb _ [19]

where the b values are new values at the next time step.

The four common values adopted for e are

6:0, §=a, the forward difference method.

Gal/2, §=At/2, the central difference method.

0:2/3, §=2At/3, the Galerkin's method.

881, 5-b, the backward difference method.

Equations [14] through [19] form the basis for the

finite difference solution in time commonly used in

conjunction with the finite element method

2. Finite Element Method

The solution of the hydrodynamic equations for fluid

flow has encompassed a wide variety of disciplines,

including

1. surface water equations for tidal estuaries,

2. boundary layer equations,

3. Navier-Stokes and St. Venant equations for

closed and free surface fluid systems,

4. meteorological dynamics, and

5. groundwater flow.

The application of the finite element method is used

extensively in fluid mechanics, as evidenced by the large

volume of literature dealing with the solution of the

Navier-Stokes equation especially in mechanical engineering
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applications. The application of the finite element method

to watershed or catchment hydrology is the subject at hand

and is discussed herewith.

C. Finite Element Hydrologic Models

The finite element method was first used by Guymon

(1972) in the solution of the hydrodynamic equations for

free surface water flow. He solved the equations assuming

a constant depth over a region using the variational

principle. He concluded that the finite element method was

a suitably efficient solution technique for surface water)

problems.

Researchers have typically approached the watershed or

catchment problem as a model composed of two distinct

parts--overland and channel flow. Judah (1973) applied

the finite element method to this two-part model. He used

the kinematic simplification of the momentum equation and

the continuity equation and the Manning equation as the

friction relation.

Judah's application of the Galerkin principle utilized

linear shape and weighting functions to approximate depth

and velocity. The element was one dimensional, having an

average slope in the direction of flow. Rainfall excesses

were not modeled because the model was tested for storms

for which the rainfall excess was already known. Several

watersheds, both experimental and natural, were modeled.

Close agreement was generally found in the simulations of
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the outflow hydrographs. It should be emphasized that

rectangular strips (one-dimensional elements with an

average top width) were used to represent the watersheds.

The Rocky Run Branch Watershed in Brunswick County,

Virginia, was subdivided into nine finite elements

representing a total drainage of 555 acres.

Taylor (1974), using a Navier-Stokes formulation for

the momentum equation, derived the two-dimensional form for

watershed flow with the kinematic wave assumption. This

application of the Galerkin method resulted in a coupled

set of equations of the form

[Mltqlt = {Flt [20]

where the vector

{q} = [21]

:
J
‘
<
C

is the vector containing the nodal values of the velocity

u in the x-direction, v in the y-direction, and the flow

depth h. Solution was confined to a one-dimensional

impervious plane. The friction relations used were the

Chezy and Manning equations. When compared to results

for a kinematic cascade presented by Kibler and Woolhiser

(1972), excellent agreement was found for the plane.

Kinematic shocks were observed when two planes of different

slope were treated as one domain. The solution, however,

showed no smoothing, as is often the case when using finite
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difference techniques.

Jayawardena (1976) represented the natural watershed

by a large number or series of variable width strips.

These strips were one-dimensional elements with a width

that varied linearly over the length. Using linear shape

functions the width was approximated by

w(x) = lel + N2W2 [22]

Throughflow and infiltration were also modeled as saturated

processes. Overland and channel flow were treated

separately. An application was made with reasonable'

success to the Plynlimon and Wye catchments in Central

Wales. Significant errors were introduced due to kinematic

shock, which occurred where there was sufficient change in

slope and flow parameters. These errors might be avoided

by using a single set of slope and parameters within a

strip composed of several elements.

Taylor (1976) proposed a two-dimensional,

isoparametric element in the solution of the continuity and

the kinematic equation for overland flow. The friction

equations were the Chezy and the Manning equations. The

finite element formulation used the vector defined by [21]

for the nodal values. Time integration was performed by

the central difference method with successive relaxation.

Only a cascade of two elements was simulated with the two-

dimensional elements. The kinematic equations and full

dynamic equations were compared for a slope change of four
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times. Kinematic shocks were observed, but it was Taylor's

Opinion that they caused no problem. This opinion

conflicted with previous observations showing that

continuity and peak discharge values were in error (cf.

Jayawardena, 1976). The chief manifestation of the shock

is that the profile of the water surface at the change in

slope and the flow rate is discontinuous at this junction.

Judah, Shanholtz, and Contractor (1975) presented a

simulation of a flood hydrograph for the Rocky Run

Watershed in Brunswick County, Virginia. They used the

same Galerkin formulation Judah used in 1973, and the-

watershed was represented by one-dimensional elements with

variable width. The watershed was therefore composed of

strips perpendicular to the contours. The researchers

stated that their ultimate goal was to select sub-areas or

elements that were hydrologically homogeneous. As other

researchers have noted, significant changes in slope

produce errors in shape and peak discharge of the outflow

hydrograph. In the modeling of a surface coal mine,

exaggerated changes in slope occur between benches. It was

these changes that produced errors in the discharge

hydrograph due to kinematic shock. Another problem

encountered was the definition of rainfall excess. The

Stanford Watershed Model was used to calculate rainfall

excess. It was noted that some errors in the outflow

volume were due to inaccurate prediction of rainfall

excess. It should be noted, however, that the author's
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assumption that there was a uniform rainfall distribution

over the entire watershed may hold considerable error.

Jayawardena and White (1979) modeled the Severn and

Wye catchments using the finite element method (cf.

Jayawardena, 1976). The catchment was divided into strips

flowing from the top of each slope to major drainage paths.

These strips were further divided into finite elements.

Each strip was computed separately with the outflow

becoming the inflow boundary condition when the receiving

strip was computed. A global matrix of strips for the

watershed was not formed. This approach was used to avoid

difficulty with kinematic shock. Errors due to inaccurate

rainfall excess computations caused poor correlation of

runoff volumes. Significant errors arose from using

discrete elements to represent a continuum and from

inaccurate parameter values. The former was estimated to

be on the order of 1.5% due to the coarseness of the finite

element representation. The latter, parameter errors,

caused from 7 to 73% rms error in predicting the recorded

hydrograph discharges. All parameters were assumed to be

constant over the watershed.

Taylor and Huyakorn (1978) compared finite element

based solution schemes for overland flow. The mathematical

model they used was the kinematic wave equation for direct

runoff from an impervious plane surface. Previous

researchers encountered instability and excessively small

time steps in the solution with time when solving the
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equations with all terms except the partial derivative in

time on the right hand side. The advent of unsymmetric

matrix solvers has eliminated the need to cast the

equations to be solved in such a manner. Several schemes

were calculated. The implicit Newton-Raphson scheme

resulted in quick and unconditional convergence, though it

required significantly more work in preparing matrices for

the solution. The implicit Newton-Raphson method is more

efficient than both the consistent and lumped mass matrix

explicit iteration schemes. Of the two explicit schemes,

the lumped mass matrix method was most efficient in terms

of computer time since it resulted in an uncoupled system

of equations. The solution schemes were also tested on a

two-plane cascade of slopes 0.04 and 0.01. The Newton-

Raphson was again superior in time of computation.

Morris, Blyth, and Clarke (1980) described the finite

element application to the headwaters of the Wye and Severn

rivers on the slopes of Plynlimon in Central Wales. The

Plynlimon study was motivated by the desire to quantify the

effect of landuse changes to hydrologic processes. For the

objectives of the study, the infiltration process was

modeled along with overland and channel flow.

The watershed was divided into elements of equal slope

representing both overland and channel flow. These

elements were solved separately. Within each element, soil

properties were averaged due to variations but due to the

variations were not subdivided . The assumption was that
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if slope, soil type, and vegetation were used as the

criteria of watershed subdivision, the number of elements

would become too large--presumably too large to handle

efficiently.

The finite element method was applied to the St.

Venant equations for shallow water on a plane surface (one

dimensional) using the kinematic wave assumption. The

rainfall excess was modeled for the soil types using

Richard's equation for infiltration and throughflow. The

paper was merely a suggested methodology and not an actual

application. Their suggested improvement for modeling the:

Plynlimon catchment was that the more sophisticated Richard

infiltration equation would lead to better results than had

been achieved by others using the Darcian flow analogy

(cf. Jayawardena, 1976).

As evidenced by the foregoing review of the finite

element solution of watershed models, the application has

been limited by several difficulties. Though the finite

element method is a promising technique it has been plagued

by problems such as kinematic shock and voluminous input

data. To accurately represent the variation of slope,

soils, and rainfall depth in a watershed, a more efficient

means of subdividing the watershed into discrete elements

is needed. Another implicit limitation of past research

has been the use of one-dimensional elements to represent a

two-dimensional continuum. This limitation has increased

the difficulty in accurately modeling a continuous two-
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dimensional domain such as a watershed.

D. Geographic Information Systems

Geographic Information Systems (6155) have become

highly sophisticated database management systems for

spatially distributed attributes. In the area of natural

resources, these spatially distributed attribute values may

include such things as soils and soil properties, landuse

and cover, rainfall, runoff, infiltration, agricultural

pollutants, and crop yields.

Many computer software products are available that.

provide varied analysis techniques. Spatially distributed

databases used in analyses ensure that the integrated

resource base is accurately portrayed in the final result.

Techniques such as environmental and hydrologic models and

GISs are indispensable to proper landuse and natural

resource planning.

GISs encompass a broad area of research. The scope of

this dissertation and this review of literature and theory

is directed towards the application of such systems to

modeling environmental and hydrologic processes.

Analytic uses of spatially integrated databases for

data analysis and input to environmental and hydrologic

models are being developed. As models and GISs are linked,

their usefulness increases.

Bartholic and Kittleson (1985) observed the spatially

distributed effects of vegetation on temperature and
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reflectance, as well as heat and vapor fluxes. Using

spatially distributed databases the change in the

environment due to landuse changes was detected. Landuse

changes have been found to increase surface temperatures by

as much as 10 to 15 degrees Celsius.

These temperature changes have an impact on the net

radiation balance and consequently the quantity of

evapotranspiration. Such profound changes greatly affect

watershed hydrology. Changes are easily observed using a

618 coupled with remote sensing techniques. To quantify

these changes, a suitable, spatially distributed watershed -

model is needed.

Mathematic modeling of a physical process is enhanced

when spatially distributed data are processed by a

618. The uses of a data value can be generalized into six

categories (Zobrist, 1976):

1. Physical Analog: The pixel value represents a

physical variable such as elevation, rainfall,

smog, density, etc.

2. District Identification: The pixel value is a

numerical identifier for the district and

includes that pixel area.

3. Class Identification: The pixel value is a

numerical identifier for the landuse, landcover,

or other area-classification schemes.

4. Tabular Pointer: -The pixel value is a record

pointer to a tabular record which applies to the

pixel geographic area.

5. Point Identification: The pixel value identifies

a point, or the nearest of a set of lines, or the

distance to the nearest set of points.

6. Line Identification: The pixel value identifies

a point, or the nearest of a set of lines, or the



I I I . METHODOLOGY

A. Research Objective and Approach

The goal of this research has been achieved by

accomplishing the following three objectives and

appropriate approaches.

Objective 1. Define hydrologic response areas that exhibit
 

similar soil infiltration parameters, surface roughness.)

and slope for a given watershed.

Approach: A geographical information system was used to

search, smooth and aggregate areas of similar soil

infiltration parameters, surface roughness, and slope, thus

producing the specific hydrologic response areas.

Objective 2. Apply the finite element method to the
 

specific hydrologic response areas to compute and route the

overland flow to the outlet.

Approach: The rate and volume of infiltration was modeled

by the Green and Ampt infiltration equation. The equation

parameters were calibrated for the watershed using an

arbitrary finite element grid. The rainfall excess thus

defined becomes the lateral inflow for use in solution of

the overland flow equations.

Objective 3. Compare the accuracy of the outflow
 

hydrographs to the actual outflow hydrograph for a given

45
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distance to the nearest of a set of lines.

These categories pertain primarily to grid-based systems

that analyze geographic information by cells or pixels.

Such rectilinear image elements combine to provide the full

image called a raster. Another class of GISs are polygon

based. This class of GIS analyzes directly the polygons

that delineate the geographic element. No conversion

between the input data to a grid-based system is needed.

Band (1986) described a method of partioning a

watershed into areas bounded by drainage divides and stream

channels using a GIS. He used a digital elevation model-

formed from a raster of grid cells. The grid cell

attributes are the elevations. By sequentially examining

each grid cell in a three-by-three cell window, the grid

cell is classified as a linking a stream channel or

drainage divide. Band's technique provides an automated

method of identifying not only the drainage divides and

stream channels but also the drainage areas associated with

them. The map of these drainage areas is useful in

distributed hydrologic models.

The Phase I, Oconee River Basin Flood Plain

Information Scope Study, Savannah District Corps of

Engineers (1973) presents a comprehensive study in which a

GIS serves as a database manager for the hydrologic model

input parameters. The hydrologic model used was the Army

Corps of Engineers HEC-l to calculate and route the

hydrograph downstream. The rainfall excess and unit
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hydrographs are calculated using the USDA-SCS rainfall-

runoff method. By forming landuse, hydrologic soil group,

subbasin boundary, surface slope, and the SCS runoff curve

number grid representations, the effect on the downstream

hydrograph of landuse changes at specified locations were

investigated. 4

Grayman (1975) presented the results of an

environmental management computer system applied to water

quality planning for the James River Basin, Virginia. The

system called ADAPT (Areal Design and Planning Tool)

modeled not only wastewater treatment discharges but also.

the water-borne waStes from land development and nonpoint

source pollution. Such a tool is capable of modeling the

large-scale development effects within a developing river

basin. The spatial data was represented by triangular

subareas. The mathematical model was solved for each

subarea and the result routed downstream to receiving

subareas.

The spatial data management and the mathematical

modeling linked together formed a system capable of

providing the least-cost alternatives for wastewater

treatment plants that met water quality goals. These

goals were established by the 0.8. Environmental Protection

Agency. The conclusions from the study were as follows:

1. The cost of technically feasible systems was

insensitive to system layout or location.

2. The economies of regionalized, large treatment

plants were limited by escalating costs for
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transport of the wastes through undeveloped

areas.

These conclusions seem to contradict each other but

illustrate the decisions that can be reached with the aid

of a model, such as ADAPT, linked to a GIS.

Gupta and Sqlomon (1977) described an information

system for use with a distributed parameter hydrologic

model. Their main argument is that distributed parameter

models provide insight into the hydrologic process in a

river basin. However, one limitation is the large amount

of input data required by such models. The information

system used to store and manipulate the spatial data is the!

means for avoiding this difficulty. The spatial data set

becomes the input data for modeling hydrologic

processes.

E. Synoptic Evaluation of Current Theories

The difficulties encountered in applying a

deterministic, distributed parameter model to watershed

hydrology fall into three categories.

1. Numeric errors--those that arise from the method

itself such as inaccuracies and instability in

the time solution of the finite element method.

2. Model equation errors-~which arise from the

simplification of the full dynamic equation by

the kinematic or diffusion analogy and kinematic

shocks.

3. Parameter estimation errors--arising from

uncertainty and from spatial variation of

infiltration, rainfall, roughness and other

parameters over the watershed domain. These

errors may result from
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a. the assumption that infiltration,

rainfall, roughness and other

parameters are uniform over the entire

watershed.

b. the use of elements that do not

maintain faithful representation of the

hydrologically homogeneous character of

subareas within the watershed.

c. an incomplete knowledge of the

parameters and the variation over the

watershed or with time during the

modeling process. Rainfall excess was

found to be the most significant error-

producing parameter.

These difficulties must be overcome in order to accurately

model the hydrologic response areas within a particular

watershed during an unsteady rainstorm. The first two

difficulties relate to the mathematical model, the third

relates to the spatial data management. The finite element

method holds promise as a mathematical model capable of

accurately and efficiently solving the distributed,

deterministic surface water equations in a watershed. The

Geographic Information System holds promise as an efficient

Ineans of handling the large volume of input data required

Iby distributed, deterministic models.



I I I . METHODOLOGY

A. Research Objective and Approach

The goal of this research has been achieved by

accomplishing the following three objectives and

appropriate approaches.

Objective 1. Define hydrologic response areas that exhibit
 

similar soil infiltration parameters, surface roughness,

and slope for a given watershed.

.Approach: A Geographic information system was used to

search, smooth and aggregate areas of similar soil

infiltration parameters, surface roughness, and slope, thus

jproducing the specific hydrologic response areas.

(Dbjective 2. Apply the finite element method to the
 

.specific hydrologic response areas to compute and route the

overland flow to the outlet.

.Approach: The rate and volume of infiltration was modeled

Iby the Green and Ampt infiltration equation. The equation

jparameters were calibrated for the watershed using an

[arbitrary finite element grid. The rainfall excess thus

(defined becomes the lateral inflow for use in solution of

the overland flow equations.

Objective 3. Compare the accuracy of the outflow
 

hydrographs to the actual outflow hydrograph for a given
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rainstorm event for the following two cases.

a. A finite element grid that is of an arbitrary

spatial form.

b. A finite element grid formed from hydrologic

response areas defined by the Geographic

Information System.

Approach: The rate and volume of runoff was modeled by the

finite difference/finite element method of solving the

kinematic wave equation for overland flow. The excess

rainfall was defined by the infiltration equation. The

outflow hydrograph was calculated for the outlet of the

watershed for the two cases described above. A finite

element model, which is capable of computing the overland

flow equations for geometric elements and routing the flow

to the outlet, was used to perform this modeling. The

validity of the method was checked by comparing the

computed and actual outflow hydrographs.

The modeled watershed is the USDA-ARS research

watershed number 4H, located near Hastings, Nebraska. This

‘watershed was selected because it has been modeled using a

finite element model together with the Green-Ampt equation

for an unsteady rainfall, July 4, 1959 (Peters, Blandford,

and Meadows, 1983). The Geographic Information System was

used as described above to better characterize the

spatially distributed input parameters. The finite element
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modeling was done first for a set of one-dimensional,

linear elements of arbitrary spatial form. The present

research will demonstrate that the proposed methodology

' more accurately predicts the outflow hydrograph when

hydrologic response areas of uniform spatial parameters are

modeled with the finite element method. If it does, then

it will be concluded that the method developed through this

research predicts more accurately than previous methods the

actual outflow hydrograph from a watershed of nonuniform,

spatially distributed parameters such as infiltration

parameters, surface roughness and slope.

B. Theoretical Development

The basic equations to be solved fall into the general

class called the shallow water equations. These are the

continuity of mass and the conservation of momentum. They

are derived using the assumption of shallow water theory,

that the pressure varies hydrostatically in the

vertical direction, or

P = og(h-z), z > 0 [23]

where

the vertical coordinate,N

II

3
‘

II the water depth,

fluid density,‘
0 II

I
O II gravitational acceleration.
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The coordinate system is defined as follows:

x = horizontal direction of primary flow,

parallel to the bottom of the flow surface.

y = horizontal direction perpendicular to primary flow,

parallel to bottom of the flow surface.

2 = vertical direction.

The time averaged local flow velocities in the elemental

volume are:

u t Bu Ax velocity in x-direction on up- and

5x 2— downstream face.

v 1 av %y = velocity in y-direction on up- and

5y downstream face.

The hydrostatic equation is the basic assumption of

the first-order shallow water theory and is prevalent in

engineering applications (Liggett, 1975). The hydrostatic

equation implies that the flow lines possess no curvature.

Other assumptions implied or not listed include:

1. There is no Coriollis acceleration.

2. Streamlines are not curved such that the

pressure variation with depth is linear.

3. Turbulent velocities are time-averaged.

Turbulent fluctuation velocities are not considered

since on time average the‘ net effect is present as

represented in the conservation of mass and momentum

equations by the Reynolds stress 'UTV' (Potter and. Foss,

1982).

In the one-dimensional case, velocities are depth—

averaged, thus suppressing the vertical dimension in the

conservation equations. U is the primary flow velocity and
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is a function of x and t. The x- direction is such that

cose a 1. The control volume and vector convention in

Figure 3, is used in the Reynolds Transport equations.

control surfa ce

 

control v olu me

Figure 3 Control Volume Definition

The Reynolds Transport theorem provides a method of

describing, among other thermodynamic quantities, the

transport of mass and momentum into and out of a control

volume (Potter and Foss, 1982).
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1. Conservation of Mass‘

The Reynolds Transport equation for conservation of

mass requires that

a I an + I (V°n)dA = o [24]

5t cv cs

where

V = velocity vector,

dA = differential element of control volume, cv,

v-n = dot product of the velocity vector to the

normal unit vector of the control surface,

dA = differential element of the control surface, cs.

The mass balance for a differential volume of height h(x,t)

is

(u - au Ax)(h -3h Ax)

5? -2 5i —2

- (u + Bu Ax)(h + 3h Ax) 8 8h Ax [25]

6i ‘2 3i .2 3?

Expanding, summing like terms, and disregarding higher

order terms such as

an ah

5? 3i

yields the discrete form

- 3h Ax — hau Ax = ah Ax , [26]

3? 5? 3?

which is useful in finite difference computational methods.
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The differential form of the conservation of mass equation

is

8h + 3(uh) = 0 [27]

5? fix

for one dimensional, depth-averaged, time-averaged, flow.

2. Conservation of Momentum

The conservation of momentum equation is derived in a

similar manner to the conservation of mass. The Reynolds

Transport equation for momentum requires that

A

a I (ov) dA + I (pV)(V-n)dA = 2F [28]

5t cv cs

where

V = velocity vector,

dA = control volume,

0 = mass density of water,

A

v-n = dot product of the velocity vector to the

normal unit vector of the control surface,

2F a summation of forces acting on control volume.

Substitution of' the velocity components for the depth-

averaged elemental control volume results in

3(pUh)Ax - [U(uh) - 3(U(uh)) 9;] + (U(uh) +

5t 3x

3(U(uh)) Ax ) = ZFx [29]

5x —_2

Upper case variables are vectors and lower case variables
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are scalar values. The term XFx is the vector summation of

forces in the x-direction. These forces are

l. Gravitational, F = pghAxsinex = pgthAx

where ex = angle getween the horizontal axis

and the x-axis. Sinex = tanex for small

slope; Sx = tanex = sine.

h h

2. Pressure, Fp = I pdz = pg f (h-z)dz = pghz/Z

0 0

3. Frictional resistance, Fs = pthfo where Sf

is the frictional slope defined by either of

Manning equations,

u = 1.486R2/3Sf1/2 (english units) , [30]

n

u = l R2/3Sfl/2 (SI units) , [31]

n

or the Chezy equation,

u = C(RSf)l/2 (SI or english units). [32]

Combining these equations using the Manning equation

results in

p(U(uh) - 30(uh)Ax] - p(U(uh) + 3U(uh)Ax)

5x _2 _ 5x .2

+ pghS Ax + 1/2pg(h2 - 3(hz)Ax - (h2 + 8(h2)Ax)]

x ax ‘2 an 7

+ pgthAx = %(pUh)Ax [33]

t

Rearranging and disregarding higher order terms and taking

the limit Ax + 0 yields
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t

hau + uah + ua(uh) + uhau + ghah = gh(Sx- Sf) [34]

8? 5? 5x 5} 5?

By substitution of the differential form of the

conservation of mass,

8h + 3(uh) = 0 [27]

8? 5x

into the above equation [34] the conservative form of the

one-dimensional, depth-averaged, time-averaged,

conservation of momentum equation is obtained

a0 + U8u + gah = g(Sx - Sf) [35]

5? I? 5?

The two-dimensional case is derived similarly except

that momentum in the x-direction may now be transported

into and out of the differential control volume on both the

x- and y-faces. The general form of the Reynolds

Transport equation in the case of conservation of mass is

A

a I dA + I (v-n)dA = o [24]

5t cv cs

where

V = velocity vector,

dA = differential element of control volume, cv,

Von = dot product of the velocity vector to the

normal unit vector of the control surface,

dA = differential element of the control surface, cs.

Substitution of the values for the two dimensional control
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volume results in,

a(ph) - [Uh - 8(uh)Ax] + [Uh + 8(uh)Ax]

5t 3x ‘2 5x _2

- (Vh- 3(vh)A J + (Vh + 3(vh)A ) = 0 [36]

5y ’2 5y .2

Combining terms yields

3h + 3(uh) + 8(vh) = 0 [37]

8? 8x 5y

The Reynolds transport equation applied to the

conservation of momentum yields

A

a I (pv) dA + I (pV)(V-n)dA = 2F [28]

5t cv cs

where

V = velocity vector,

dA = control volume,

p A = mass density of water,

v-n = dot product of the velocity vector to the

normal unit vector of the control surface,

IF '= summation of forces acting on control volume.

Substitution of the velocity components for the depth-

averaged elemental control volume produces

8(Vh) - [v - av A )(uh) + (v + av A )(uh)

at 37.12, 15722

- (U(uh) - 8(U(uh))Ax] + [U(uh) + 3(U(uh))Ax)

5x ‘2 5x -2 [ 1

38



56

i

Simplifying, the x-momentum equation results in

3(uh) + 8(uzh) + 3(uvh) + a(h2) = gh(S -sf) [39]

5t 5x 3y §§x x

and the y-momentum equation becomes

gIvh) + 3(uvh) + 3(v2h) + thZ) = gh(Sy - Sf) [40]

t 5x 5y Y

Incorporating the continuity equation,

au +‘av = 0 , [41]

3337

yields the x-momentum conservative form:

an + uau + v8u+ gah = g(Sx — Sfx) . [42]

5? 5? a; 3?

The y-momentum conservative form is derived similarly as

8v + uav + vav + 98h = 9(S - Sf ) . [43]

a? a7 a7 a? Y y

Assumptions implied in the above derivation include.

1. The above derivations do not include

lateral inflow or other inflow/outflows

such as rainfall or infiltration.

2. The channel is prismatic and of a

rectangular cross-section.

3. Irregular Cross-section

In deriving the above conservation of mass and

momentum equations, the cross-section of the channel was

assumed to be rectangular. However, in the application to
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natural channels, a more general form is needed' in which

the depth h is assumed to vary across the y-direction.

The irregular cross-section is shown in Figure 4.

Chmme

Wafer Surface Bottom

R93"I;

Figure 4 Irregular Cross-section of a Channel.

 

  

In the derivation of the conservation of mass and

momentum the depth h times the unit or differential width

of the control volume was used as the dA in the Reynolds

Transport equation. The Reynolds Transport equation for

conservation of mass requires that

A

a I fill + I (V0n)dA=0 [24]

5t cv cs

where

V = velocity vector,

dx = differential element of control volume cv,

v-n - dot product of the velocity vector to the

normal unit vector of the control surface,

dA - differential element of the control surface cs.

If instead of the depth h times the unit or differential

width in the y-direction, the area A, which is a function of

f(y,z), is replaced, we obtain
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3A + a(ua) = o ' [44]

5? 5x

and

3(UA) + 3(02) + F = gA(S - s ) [45]

5t 3x p x f

The pressure term Fp is the force on the face of the

control volume

h

Fp = g g(h-z)£(z)dz [46]

in which C(z) is the channel width at the height 2 above

the bottom of the channel. The net force in the down-

stream direction is

h

rp - (Fp + -%:pr) = -a g pg(h - z) €(z)dz Ax

3x

[47]

By simplifying the right of [47] using the Leibnitz rule

we have,

b

- a I og(h - z) £(z)dz =

x 0

h

-pg I a [ (h - z)€(z)]dz

0 x

h h

= —pg[ah I £(z)dz + I (h - 2) 35(2) dz]

5x 0 0 5x
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The first integral on the right defines the cross-

sectional area. The second term a§(z)/8x is assumed to be

zero, which is the prismatic channel assumption. If the

channel narrows or widens, then an additional force is

exerted on the channel walls. Therefore, the pressure term

in the conservation of momentum equation is interpreted as

F = 9A an [48]

p a7

and the conservation of momentum equation

3(UA) + a(uz) + F = gA(S - s ) [49]

5t 5x p x f

becomes

8(UA) + 3(02) + gA ah = gA(Sx - Sf) [50]

6t 3x 3?

Using this conservation of mass equation for an irregular

cross-section [50] the conservation of momentum equation

becomes

an + uau + gah = g(sx - Sf) , [51]

5? 5? I?

which is the same as the conservation of momentum for one

dimension. It was assumed that the channel width

variation is negligible so that 3€(z)/ax is zero.

4. Lateral Inflow

Lateral inflow must be incorporated into the

conservation equations, if for example, distributed inflow
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from groundwater, infiltration, tributary inflow, rainfall,

or overland flow occurs. In this derivation inflow is

regarded as positive and outflow as negative. Let the

symbol q represent lateral inflow/outflow with dimensions

of [L’]/[TLz] when used in the one-dimensional equations or

[L’]/[TL] when used in the two-dimensional equations. The

conservation of mass equation incorporating lateral inflow

would be

ah + 3(Uh) = q [52]

6? 5x

for the one-dimensional case and similarly for the two-

dimensional case for rectangular or irregular channel

cross-sections.

The conservation of momentum equation must account for

the momentum entering and leaving the control volume

transported by the lateral inflow or outflow. The

additional momentum entering is pgqux where uq is the

downstream component of velocity of the lateral inflow.

Upon leaving the control volume the velocity of the

lateral inflow is assumed to have the same velocity as the

downstream velocity of the fluid, so that the momentum of

the lateral inflow leaving is quAx:

haU + Uah + U3(uh) + uhgu + ghah =

5? 5? 5x 3x 6?

gh(Sx - Sf) + unq - U) [53]

for the two dimensional conservation of momentum
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equation and

3(UA) + 3(02) + gA ab = ngx - 5f) +

5t 3x 5?

for the two dimensional conservation of momentum equation

for irregular cross-section.

C. Finite Element Model Formulation

The form of the partial differential equations

governing. direct runoff have been derived by use of the

Reynolds Transport theorem. These partial differential

equations are used in the finite element method, Galerkin

formulation of the surface water equations.

The equation of continuity for an incompressible fluid

is written as

8n + 3v + 3w = 0 [55]

5? a? 32

where

u = u(x,y,z,t), velocity in the x-direction,

v = v(x,y,z,t), velocity in the y-direction,

w = v(x,y,z,t), velocity in the z—direction.

On integration in the z—direction and using appropriate

boundary conditions, we obtain:

an + a(fih) + a(Vh) = r - i [56]

3? 5x 5y
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where

depth-averaged velocities,C <

ll

:
3
"

II vertical depth of flow,

rainfall intensity and infiltration rate

respectively.

'
1

H
e

II

The equation of momentum, the Navier-Stokes equation

for two-dimensional flow with appropriate boundary

conditions, is

a1} + uaii' + vafi + gah = g(S - Sf ) - U(r-i) [57]

a? a; a; a7 °" " a

and

g; + “g; + v%% + 9%; = g(Soy - Sfy) - g(r-i) [58]

where Sox and Soy are the slopes of the element in the x-

and y-direction respectively. Sfx and Sfy are the

frictional slopes in the x- and y-direction respectively

(Taylor, 1974).

The continuity and momentum equations form the

governing equations for watershed surface hydrology.

Woolhiser and Liggett (1967) and other researchers have

documented the adequacy of using the kinematic wave

simplifying assumption, where all terms on the left—hand

side of the momentum equation are assumed negligible. The

general form then becomes

V = m h“ [59]
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where m and a are constants such as in the Chezy or

the Manning equation, and v is velocity in the direction

of flow.

If the above assumption is made, then only the

continuity and kinematic wave formulas need to be solved

over each element. This in effect reduces a nonlinear set

of simultaneous, partial differential equations to a

linear set. The validity of this simplifying assumption is

considered only if

Lso > 10 [60]

 

Fozho

where L is the length of domain and F0 and ho are [the

Froude number and depth of flow at the downstream location

end under steady-state conditions. This restriction is

dependent on the finite element grid and hydraulic

parameters used to describe the watershed.

The finite element formulation is applied by writing

approximating functions of the form

n

9e = 2 Ni(x.y)01 [61]

i=1

where 9i are known values of the function 4 at each of the

n nodal points. Ni(x,y) is a shape function, which

approximates the function ¢e based on the n nodal values

(Segerlind, 1984).
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The watershed surface flow variables are approximated

as follows:

n

ue a Z Ni(x,y)fii [62]

i=1

n —

ve = 2 Ni(x,y)vi [63]

i=1

n

he = 2 Ni(x,y)hi [64]

181

where ue, Va and he are the approximate values of the

velocities in the x- and y-directions, and the depth,

respectively, within the finite element domain.

The assembly of the elemental equations into a global

matrix form for the entire domain or watershed constitutes

the system of equations that models overland flow runoff.

Iterative solution procedures are required (such as the

Newton-Raphson technique) to obtain the solution of these

equations in the time domain.

1. Element Equations .

The application of the Galerkin method to the

kinematic equation for overland flow is performed as

follows: The convention of {] representing a vector

quantity and [] representing a matrix quantity will be

used.

For two dimensions:
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IIIan( £3 + a(Bh) + a(6h) - (r - i) )dxdy = o [65]

t 5x 5y

For one dimension:

ItanI ah + 3(6h) - (r - i) )dx = o [66]

5? §§_—_

Applying the kinematic wave assumption, the momentum

equation is reduced to

So a Sf [67]

Utilizing the Manning equation that relates the depth of

flow to discharge for turbulent flow, we have

n

For a wide channel or overland flow, the hydraulic radius

is R = A/P 2 A, so that the discharge relation becomes

n

Recognizing that the cross-sectional area A is, in the case

of overland flow, equivalent to the flow depth defined

above as h, the wide channel assumption of R = h, and the

vector Q in [69] is resolved into its respective

directional components in the x and y direction, with 6 as

the angle with the x-axis results in

Uh = Qx = Q cose [70]
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- I [NJT dxir-i} [72]

and for two-dimensions,

{R}(9) = I [N]T[N]{A]dx + I[N]T[3Ni/3x 8Nj/3x1{Qx}

+ I[N]T[3Ni/ay aNj/aylioyl- I [n1T dx{r-i} .

[73]

It should be observed that the discharge values

1/2

QBX = 1.486 R2/3 SB AB [74]

“8

and

1/2

QBY = 1.486 32/3 58 AB [75]

“B

are the B nodal values. The concept of the nodal discharge

values based on nodal values of slope in the x- and y-

directions and the nodal values of roughness n3 is of

paramount importance if the effects of kinematic shocks

are to be avoided between elements where abrupt changes in

slope or roughness would otherwise occur. By causing the

nodal values of discharge to be computed with nodal values

of slope and roughness, a linear variation over the element

of these values effects a linear variation in Q without

abrupt discontinuities at the inter-element nodes. The

numeric difficulty encountered by other researchers is thus

avoided (personal correspondence with D.A. Woolhiser and

G.A. Blandford). This is due to the elimination of the

diffusion term ah/ax along with the other terms in the
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over the element of these values effects a linear variation

in Q without abrupt discontinuities at the inter-element

nodes. The numeric difficulty encountered by other

researchers is thus avoided (personal correspondence with

D.A. Woolhiser and G.A. Blandford). This is due to the

elimination of the diffusion term ahlax along with the

other terms in the full dynamic equation because of the

kinematic assumption. Because of this, there is no

possibility other than a discontinuity in flow depth at

the inter-element nodes. To avoid this difficulty, the

values that relate h to Q--i.e., the slope and roughness--

must be considered as nodal values. The value of Q is a

vector quantity in the direction of nodal slope

subsequently resolved into x- and y-direction components

according to the orientation of the slope with the global

coordinate system.

NODAL VALUES

 
 

01 02 Q3 Q4

81 s2 S3 84

n1 n2 n3 n4

(1) (2) (3)

2 4

ELEMENT NUMBERS = (1), (2), etc.

NODE NUMBERS = 1, 2, etc.

Figure 5 Element and Node Numbering Convention

The convention illustrated in Figure 5 is the nodal
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representation. by nodal values of the independent

variables. With this methodology, the discontinuities in

function values are avoided at the inter-element nodes.

2. Shape Functions

The shape functions provide the basis of writing the

linear variation across the element of the approximated

functions. The local coordinate system allows easier

integration over an element. For this reason the following

system is defined

5 - x-direction with limits of 0 i s 5 L

for a one-dimensional linear element of length L. The

shape functions are

N1 = 1 - s/L [76]

Nj a s/L [77]

or, in matrix form

[NlT = [l-s/L] [78]

s/L

The partial derivative is computed by taking the partial

derivative of the shape functions, since the approximating

function is

¢(x) = N101 + NjOj [79]

where the nodal values 0 are constants with respect to the

x- or s-space dimension. The derivative is
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i

x- or s-space dimension. The derivative is

a¢(x) = aN-o- + au-o- [80]x 1(5.321 1 5i] 3

The derivatives of the shape functions with respect to x or

s--which are equivalent locally within the e1ement--are

  

3N1 = :1 [81]

5? L

aNj = l [82]

5? L

In matrix form this is

r n ._

3N1 F—l

[beT = 3? = l [83]

aNj L 1

3E

- J - J  
Writing the individual integrals from the residual

{a}(e) = I [N]T[N]{A}dx + I[N]T[3Ni/3x 3Nj/3X]{Q}

- I [N]T dx{r-i} [84]

and integrating over the element length L we have

I [N]T[N]{A}dx = I [1 -s/L] [l-s/L s/L]{A} dx

s/L

= L 2 1 {A}

.[1 2]

= [c]{i} [86]
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The discharge term in the residual is

L

“mum; =1 [1 -s/L] [_-_1 1] {Q}
0 s/L L L

= 1 {-1 1] {Q}

’2 -1 1

= [bx]{Q} [87]

The lateral inflow term is

L L

I [an dx(r-i) = I [1 -s/L] dx(r-i)

O 0 s/L

= (r-i)L l [88]

2 1

Assembling the results of [86], [87], and [88] into the

residual expression, we have

{a}(e) = % [i i] {A} + % [:1 1] {Q} - (r-i)L 1

[89]

The residual {R}(E) in [89] is minimized over the system

of elements only when assembled in the global form.

3. Global Matrix

The global matrix form of the assembled elemental

residuals may be formed by the direct stiffness procedure

when local node numbering schemes are used. An expanded
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form will also be examined, which uses a global nodal

numbering system. The direct stiffness procedure results

in a banded matrix as follows.

Given a three-element, four node system as shown in

Figure 5, it can be seen that node 2 receives contributions

from the elements (1) and (2); node 3 from elements (2) and

(3); and nodes 1 and 4 from elements (1) and (4)

respectively.

Assemblage by the direct stiffness procedure is as

follows for elements of equal length:

    

2 l .1 1.81 -1 l W Q,

L 1 (2+2) 1 A2 + 1 ‘1 (1‘1) 1 Q2

3 1 (2+2) 1 A, E '1 (1-1) 1 Q3

1 2 A“ -1 1 Qt.

L - - -

l

rL 2 [90]

_3 2

l

The nodal values of Q are related to A by the Chezy or

Manning equations, resulting in a nonlinear set of

differential equations with respect to time. Alternately,

with [C], [K], and {F} as defined above in [86-88] without

the (e) elemental designation we have

[club + [bx]{Q} = m [911
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This matrix equation represents the system of

equations to be solved. Note that .the left—hand side

contains the time derivatives of the cross-sectional area

{A}. A solution in time is needed such as a finite

difference scheme. Note also that the discharge values of

Q contain the cross-sectional area A in the Manning

equation. Therefore, at each time step, when A is solved,

a new set of Q's must be computed. Depending on the time

weighting coefficient, an implicit or explicit solution for

A and Q results. The rL values are considered constant

over each element. This results in the form of a forcing

function vector on the right hand side.

The finite difference solution utilizing the form of

equations [14-19] for the time dependent matrix equation

[91] is

[C][A}new = [C]{A}01d - At[bx]((l-9)[Q}01d +

e{Q}new] + At[(1‘9){F}old + e{1"}new]

[92]

The time dependent finite difference form of equation [91]

can be recast into the nonlinear form

[cunnew = W} [931

where {F*} is the combination of the right-hand-side terms

in [93]. The right-hand-side contains terms such as {Q}new

that are functions of the left-hand-side term {A}new- This

forms a set of nonlinear equations requiring special

solution techniques such as a simple iteration scheme or
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The iterative schemes are preferred for large systems

because, unlike the Newton-Raphson Method, no matrix

inverses are required. At each time step the value of the

rainfall excess intensities are placed in {F*}, the old and

new values of {A} are assumed equal. At the first time

step the old values are the initial values. Then the

system of equations are solved by standard methods. The

new values thus solved for become the new values for the

next recursion until the solution converges to within a set

tolerance. This recursion is repeated at the next time

step with the new values from before becoming the old

values for the present time step.

4. Expanded Form

The expanded form of the global system of equations is

as follows for the system of elements depicted in Figure 5.

The approximating shape functions are written for each

element and assembled into the expanded elemental

equations:

¢(1) 3 N1(1)01 + N2(1)02 + 003 + 004

¢(2) . 001 + N2(2)o2 + N3(2)03 + 004

¢‘3’ . 001 + o¢2 + N3(3)O3 + N3(3)o4

or, in matrix notation,

“
N
H

v
v
v

0 N2 N3 0 02 [94]

[N1 N2 0 0 O1

0 0 N3 N4 G3H
a
h
n
-
s

0
0
-
O
-

n
e
w
s
-
w
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It is now possible to combine the elemental equations

into a single region equation (Segerlind, 1976):

2

¢ . z ¢(9) [95]

e-l

'rhis results in the equation

¢ = [N1(1)]01 + [N2(1) + N2(2)]¢2 + [N3(2) +

N3(3)]O3 + [N3(3)]¢4 [96]

The importance uf this region equation is seen when an

element region in two dimensions is formed from simpler

finite elements. For example, a region as follows may form

an element region,

' D2,X2,Y2

 

  

(l) ( )

Dlrxerl 2
---Lc-_‘~

D3,X3,Y3

.;

(5) “" D4,X4,Y4

(3)

(4)

' ‘ Ds.X5:Y5

DGIXGIYG

 

Figure 6 Five-Element Region

Writing the set of element equations, we have
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[¢]E%; DN1 N2 N3 0 0 0 T1

{¢](3) 0 N2 N3 N4 0 0 T2

[¢](4) = 0 0 N3 N4 N5 0 0 T3 [98]

{¢}(5) 0 0 N3 0 N5 N5 04

[¢] N1 0 N3 0 0 N5 ¢5

L. - 06

This regional equation could be considered as an expanded

element defined by triangular elements and area coordinate

shape functions. The utility of such an approach is in the

modeling of irregular patches as defined by the

hydrologically homogeneous areas. By building an expanded

region the irregular patch can be handled.

Substructuring removes the internal node if no nodal

value is desired at that point. This is done after the

global matrix is constructed. By solving the matrix for

removal of a nodal value and associated constants, the

resulting set reflects its contribution but is not present

in the set of equations.

6. Isoparametric Elements

Another technique for representing finite element

regions is one using isoparametric elements. This class of

elements utilizes a coordinate transformation technique

that maps the element in the global coordinate system into

a natural coordinate system. The natural coordinate system

for a linear, one-dimensional element is the i system cor-

responding to the global x—coordinate system. The a

system varies from -1 to +1 with the origin at the center

of the element. The element matrices such as [C], [B], and

{F} are integrated numerically in the 5 coordinate system.
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The coordinate transformation is written in terms of the

same element shape functions as used to represent the state

variables, hence, the name isoparametric. Super- and sub-

parametric elements are those that use higher or lower

order shape functions to perform the transformation.

The transformation is done by writing the global

coordinate system in terms of the nodal coordinates and

the shape functions:

x = N1(€)Xl + N2(€)Xz [99]

where

l/2(1-€) and2

II

N l/2(1+§) .
2

The change of variable in any integral is accomplished by

writing

X‘ +1

I §(x)dx = I 9(5) ( d(x(§)) )dt . [100]
-1 '—_af'

xi

The Jacobian of the transformation is

d(x(€)) = — xi + xj = L [101]

“3€"“ 2 2 2

Jacobian transformations are done similarly for two-

dimensional elements. The four-node quadrilateral has four

Shape functions in g and n. The coordinate transformation

is accomplished by writing the global coordinates in terms
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of 5 and n such that,

and

where

The J

The

N

ll

*
< II

N
I.

acobian

[J]

Jacobian

[J]

N1(£.n)xl + Nz(£.n)xz + N3(£.n)x3 + N~(£.n)x~

[102]

N1(€.n)Yl + N2(€pn)Yz 1 N:(€:U)Y3 + N~(£.n)Y~

= 1/4(1—§)(l-n)

= l/4(1+§)(l-n)

1/4(l+§)(l+n)

1/4(l-£)(1+n)

of the transformation is

3N 3g

TE’ 35‘

1t: 21,
an an

L 

for the linear triangle

iii if

if if.
L z 2-  

35

ea“

35

an3

(x - x ) (Y - Y )

l 3 l

 
  

[103]

BN (X Y '
g” l 1

x Y

8N 2 2

n“ X Y

.1 3 3

x Y
- to 1,3

[104]

finite element is

3

(X - X ) (Y - Y )
2 3 2 3

[105]
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where

, the area coordinate and shape

function l,

5
A

L = A , the area coordinate and shape

A function 2,

lL = - L - L , the area coordinate and shape

3 1 2 function 3,

A, A1 , A2 = total area, and partial areas of

local coordinate.

The isoparametric, linear and quadratic quadrilateral

are useful for representing odd shaped and curved

boundaries. The integration of the element matrices are

performed on the transformed element in the natural

coordinate system. The integration method most commonly

used for integrating functions is the Gauss—Legendre

quadrature. This method replaces the integral with a

summation of the function at mxn integration points

multiplied by mxn weighting coefficients. This represented

by the following equation [106] and is the method used to

integrate the shape functions as used in [86-88].

1 l m n'

I I 9(€.n)d€dn = 2 Z wiwj g(£i.nj) [106]

-1 -1 i=1 j=l

The number of integration points depends on the highest

power of the function to be integrated. This means that a

polynomial of power (Zn-l) may be integrated exactly with n

sampling points at which the element is evaluated
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(Segerlind, 1983). Figure 7 depicts the isoparametric

linear, one-dimensional and two-dimensional triangle and

quadrilateral elements together with the integration points

and weighting coefficients for the highest polynomial power

of 5’ and n2 .



 
 

5
IF

-1 +1

L=l=]/3 w=|/2

 

o '1 O

f f: 17: 2 0.577350 w t 1.0

O 0

Figure 7 Isoparametric Elements and Integration Points.
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7. Consistent Stress Approach

Nodal values of discharge Q, slope S, roughness n, and

rainfall r can be considered either as constants over an

element or as nodal values. It is necessary to maintain

continuity at the inter-elemental nodes. The difficulty

arises whenever the state variable is either

a) known at the nodes and it is required to be

used as an elemental constant, or

b) known as an elemental constant and it is

required to be used as a nodal value.

The consistent stress approach provides the correct method

of computing these values. The form is

[C]{¢] = r{F} [107]

The vector {¢} contains the nodal values, whereas r

represents the constant values over the element (Segerlind,

1976).

In summary, the governing equations have been

developed for use in modeling the overland flow from an

infiltrating watershed using a Galerkin formulation. The

governing equations may be solved for the steady-state and

the time-dependent cases. Computation may be done by hand

for a small number of elements or by a computer program for

larger systems. Before initiation of the computation, a

check should be made on the applicability of the kinematic
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wave approximation to the specific set of variables or

problem. This may be done by using equation [52] to

compute the kinematic number k, which must be larger than

10 for the maximum intensity. In addition, the Froude

number should be computed to determine where the boundary

condition should be applied--upstream or downstream--for

sub- and supercritical flow, respectively.

The time solution requires the selection of a time

step At. This time step must not be larger than the time

during which a gravity wave can travel over the length of

the element. This is the Courant condition and should not

be violated.

Provided these conditions are met, computation of the

time-dependent solution of the overland flow equations may

be performed using the Galerkin finite element formulation.

The method is applicable to both one-dimensional and two—

dimensional finite elements using the assembled form of

equation [91] and solved by any of the standard finite

difference, time-domain solution techniques represented by

equations [14] through [19] as shown in [92] and [93].



IV. RESULTS AND ANALYSIS

The results obtained and analysis performed are

presented in the following order: The finite element

formulation, Geographic Information System analysis, input

parameters, hydrologic response areas. The watershed

modeled was Watershed 4H near Hastings, Nebraska. The

rainstorm event selected was 0.33 cm on May 4, 1959.

A. Finite Element Formulation

The Galerkin finite element formulation was used to

solve the kinematic wave equation. The Green-Ampt

infiltration equation was used to compute the rainfall

excess. The excess rainfall intensity was calculated using

the Green and Ampt runoff model from the USDA-ARS Water

Erosion Prediction Program (WEPP) project (under

development).

The Galerkin formulation of the kinematic wave

equation has been presented in the theoretical development

and will not be repeated here. The elements used for the

arbitrary finite element grid were linear, one-dimensional

elements. The formulation used variable width to represent

trapezoidal areas. The elements used in the hydrologic

response area finite element grid were the linear, two-

dimensional, isoparametric four-node quadrilateral elements

83
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and three-node triangles. The system of equations solved by

time integration for the one—dimensional, arbitrary grid

was

[a]{h} + [b]{Q} = [a]{ie} [108]

where

[a]

T

Iain} ({N]{w}){N]dn ,

[b]

T

I [N]d{N}/dx dn ,

n

{[1}

i = rainfall excess,

{dh/dt],

Q flow rates,

h = flow depth,

w a flow width of the element.

The system of equations solved for the two-dimensional

hydrologic response area grid was

[a]{h} + [bx][Q} + [by]{Q} = i{F} [109]

where

T

[a] = In{N}{N}dn .

and
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T

[bx] = I {N}d{N}/dx d9 .

n

T

[by] = IQ[N}d{N}/dy d9 ,

T

{F} = I {N} dn ,

n

{5} = {dh/dt].

rainfall excess,H
-

I]

Q = flow rates,

flow depth.

Since [109] is a two-dimensional formulation and the

equations are integrated over the two-dimensional element

domain a , no variable width w is needed in the system.

The nodal flow rates are for a unit width.

The system of equations in [108] and [109] may be

solved with any of the common time integration schemes--

Forward Difference

Central Difference

Galerkins

Backward Difference

depending on the time weighting coefficient chosen.

Stability and accuracy of the solution will dictate the

proper time weighting coefficient. The Central Difference

scheme was used in this analysis. This corresponds to a

value of 0 = 1/2. No numeric oscillations were observed,

which may result from choices of time integration schemes
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that are inconsistent with the finite element grid.

A criterion that must be met is the kinematic number

after Woolhiser and Liggett (1967). This comes from the

kinematic approximation to the full momentum equation. The

approximation is accurate to within 10 % if k = Lsog/v2 >

10. The steps used to check this criterion are to

calculate the equilibrium outflow, which is the maximum

rainfall excess, solve for the corresponding flow depth

using the Manning equation, solve for velocity, and check

the Froude number and the kinematic number.

The actual time step used in the time integration

scheme must not be longer than that time during which a

gravity wave front may propagate through the system. This

is known as the Courant condition:

At < Ax/c .

where

At = time step,

Ax = distance increment or element length,

c = speed of a gravity wave or (5/3)V.

If this condition is violated the partial differential

equation theory is violated. This condition arises from

the theory of the Method of Characteristics. A time step

<3f one minute was selected as shown in the Appendix.
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B. Geographic Information System Analysis

The spatial analysis of the ARS Watershed 4H near

Hastings, Nebraska was performed using the ARC-INFO GIS,

version 3.2, developed by Environmental Systems Research

Institute, Inc., Redlands, California. Several layers were

digitized in order to perform an overlay analysis of the

landuse, soils, and slope data. This overlay effects a

delineation of areas containing homogeneous parameters.

In this case, the hydrologic response areas of homogeneous

parameters consisted of only the slope interior to the

watershed boundary.

The landuse was digitized for the watershed according

to the landuse at the time of the May 4, 1959 rainstorm

event. This watershed, like many of the ABS research

watersheds, was under a single crop and tillage practice.

The landuse for this watershed was fallow under good

residue cover at the time of the rainstorm event. Figure

8 depicts the landuse at the time of the event on May 4,

1959.

The soils in this watershed are the Hastings silty

loam, Hastings silty clay loam, and a Colby silt loam.

These soil names are the 1939 soil survey names originally

mapped for this watershed by the USDA-Soil Conservation

Service. Figure 9 shows the three soil delineations for

the watershed. The Hastings silty clay loam is an eroded

profile of the Hastings soil series. The B-horizon

properties were used in the Green and Ampt modeling for
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this mapping unit. The Green and Ampt equation was solved

for this storm and these soils using the soil properties

from soil samples sampled April 21, 1965 by the USDA-Soil

Conservation Service. The location of the Hastings soil

sample was in Webster County, 0.15 miles west and 180 feet

south of northeast corner of Sec. 1, T3N, Blow. The soil

properties were taken from the Hastings Soil No. 565NE—9l-l

data, Sample Nos: 20449-20456. The Colby soil properties

were taken from the Soils-5 data sheet for the series.

This information was contained in the soils data base at

the USDA-Soil Conservation Service, National Soil Survey

Laboratory, Lincoln, Nebraska. The soil properties are

contained in Table 1.

TABLE 1 Soil PrOperties

 

1939 SOIL ‘ > L > fi ‘ BULK PERCENT

 

SURVEY ' DENSITY ORGANIC CEC/

NAME 3 in 010 SAND CLAY GH/CC HATTER CLAY

COLBY

81 L 0 0 10 21 1.40 1.50 0.65

HASTINGS

81 L 0 0 10 24 1.27 2.50 0.79

HASTINGS

81 C L 0 0 8 34 1.26 1.77 0.67



89'

LAND USE

 
How

Figure 8 Watershed 4H Landuse.
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The slope and topography was obtained from two-foot

contour maps provided by the USDA-Soil Conservation Service

in a 1942 plane table survey. Figure 10 shows the

digitized elevation map derived from the 'plane table

survey. The ARC-INFO GIS, utilizing the Triangular

Irregular Network (TIN) subroutine, calculates the slope of

each triangular area from the elevations of the vertices.

The TIN slope map is shown in Figure 11. The slopes

required for the finite element modeling are at the nodes

of the elements. To achieve this, the finite element grid

was overlaid on to the slope map an the slope at the node.

tabulated in the INFO Database for each node. As the

finite elements decrease in size, the elemental slopes tend

toward nodal slopes in the limit. The slope map in Figure

11 shows increased complexity primarily due to the

delineation of not only slope but aspect. The aspect of

the slope is the direction measured in degrees between the

principal slope and the north direction. The aspect and

principal slope are resolved into x- and y-direction slopes

for use in the finite element model. In the kinematic wave

equation the friction relation, Manning or Chezy, contains

the square root of the slope. When modeling the two-

dimensional flow equations, the flow is caluclated in the

direction of and using the principal slope. This flow rate

is then resolved into x- and y-direction flow rates for use

in calculating the 8(uh)/3x and 3(vh)/8y terms. To relate

the orientation of all vector quantities to the watershed
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map, such as velocity or flow rate, the aspect anlge of

the principal slope was used.
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Figure 12 depicts the rainfall excesses for the three

soils as defined by the Green and Ampt equation--no

significant difference was observed. For the purposes of

computing runoff and infiltration, these soils may be

treated as one for the entire watershed. While spatial

nonhomogeneity may exist it is not detected by the soil

mapping units interior to the watershed when considering

infiltration.

Figure 13 illustrates the first case analyzed, a

finite element grid of arbitrary spatial form. That is, a

set of linear elements of variable width. This is the same

finite element grid, slopes and Manning n's as used by

Peters, Blandford and Meadows (1983). Table 2 contains the

arbitrary finite element grid input data.
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Table 2 Arbitrary Grid Finite Element Input Data.

 

 

ELEMENT NODE X- NODAL MANNING WIDTH

NUMBER NUHEER COORD SLOPE n (FEET)

(1) 1 0 0.0406 0.035 353

2 171 0.0406 0.035

(2] 2 171 0.0406 0.035 333

3 342 0.0669 0.035

(3) 4 342 0.0669 0.035 206

4 507 0.0562 0.035
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Figure 13 Finite Element Grid of Arbitrary Spatial Form.
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The topography, in this particular watershed, is the one

parameter of known spatial nonhomogeneity. Slopes defined

by the lO-foot contour intervals, were used to form the

finite element grid. Nodal points were located at the

intersections of the lO-foot contour lines and the

watershed boundary and the stream channel. The slope on a

two-dimensional finite element grid possesses both x- and

y-direction slopes. Even though two nodes lie on a

contour, the element has an x- and/or y-direction slope

due to the skewed spatial form with respect to the

coordinate system. If the slope is spatially

nonhomogeneous within the element then it should be

averaged over the element to obtain the slope for the

element. The scale of the variation defines the scale of

the finite element grid. The lO-foot contour intervals

were used in order to limit the number of elements

representing the watershed. This was done in order that

the -comparison of the arbitrary-grid to the hydrologic-

response-area grid would not be obscured by the increased

_accuracy gained from a large increase in the number of

elements.

In order to model the hydrologic response areas, two-

dimensional elements are required. The elements selected

for this research were the three—node triangle and the

four-node quadrilateral, isoparametric elements. A

computer program was written that performs the coordinate

transformation and computes the partial derivatives and
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other. components of the two-dimensional flow equation

[109]. The nodal coordinates were obtained from the GIS

overlay of the finite element grid over the watershed. The

watershed is represented in the state plane coordinate

system, defined by the plane table survey of 1942 of the

watershed available from the USDA-ARS-Water Data

Laboratory, Beltsville, Maryland. These coordinates are in

Table 3 listed by node number. Each element is represented

by the nodes associated with it. Thus, for Element (8) in

Figure 14, the node numbers 1, 9, and 10 represent the

three-node triangular element.
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Table Hydrologic Response Area Nodal Coordinates and

Slopes

NODE X- Y- X- Y- .

NUMBERSCOORD.COORD.ELEVATION SLOPE ASPECT SLOPE SLOPE

1 1618 1302 1946.00 0.000 0.00 0.000 0.000

2 1610 1345 1950.00 0.081 -177.30 0.004 0.081

3 1707 1467 1960.00 0.049 -119.50 0.043 0.024

4 1897 1529 1970.00 0.063 -110.90 0.059 0.022

S 2079 1538 1978.00 0.032 -76.30 0.031 0.008

6 2111 1309 1976.30 0.022 -127.00 0.018 0.013

7 1977 1309 1970.00 0.064 -113.60 0.059 0.026

8 1841 1313 1960.00 0.159 -159.90 0.055 0.149

9 1710 1320 1950.00 0.086 -75.70 0.083 0.021

10 1625 1274 1950.00 0.118 -29.50 0.058 0.103

11 1739 1188 1960.00 0.089 -75.90 0.086 0.022

12 1931 1161 1970.00 0.033 -91.80 0.033 0.001

13 2077 1160 1975.00 0.016 -91.90 0.016 0.001

1. Coordinates are state plane (feet).

2. Elevation is mean sea level (feet).

3. Aspect is in degrees measured from north: negative is

counter-clockwise from 0 to 180 and positive is

clockwise from 0 to 180.

4. Slopes in the x- and y-direction are the absolute

values of slopes in the polar coordinate system

with zero degrees due east.
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Figure 14 Finite Element Grid Representing Hydrologic

Response Areas based on slope.
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C. Hydrograph Response.

Several cases were investigated to test the accuracy

of the proposed methodology. The first case was a

representation of the watershed using a finite element grid

of arbitrary spatial form. The spatial form of this grid

is shown in Figure 13. The second case was a

representation of the watershed using a hydrologic response

area, finite element grid. Difficulties arose due to the

anisotropic nature of the hydrologic response area grid

which led to consideration of an isotropic finite element

grid.

1. Arbitrary Finite Element Grid Model Calibration.

Several modeling runs were performed in order to

produce an outflow hydrograph that matched the actual

outflow hydrograph. The initial Green and Ampt parameters

were estimated after Brakenseik (1983). After calculating

the runoff intensities for the three soils it was

determined that the soils could be treated as a single soil

possessing spatial homogeneity at the watershed scale. The

total volume of the resulting runoff was 1.31 cm. The

actual runoff reported was 0.38 cm. This indicated that a

combination of increased hydraulic conductivity and

depressional storage would be needed. The range of

hydraulic conductivities due to crusting was estimated as

0.15 cm to 0.06 cm. Values of hydraulic conductivity and

depressional storage were selected such that the peak and

volume were predicted as accurately as possible. The
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depressional storage was estimated as 0.55 cm for a

recently tilled silty clay loam (personal correspondence

from Dr. R.J. Rawls, ARS, Beltsville). The other Green and

Ampt parameters were

Wetting Front suction = 31 cm,

Bulk Density = 1.0 g/ccm.

The resulting hydrograph shown in Figure 15 has a peak

of 0.114 m3/s at 14:31 hours on May 4, 1959. This is

compared to 0.13 m’/s at 14:29 hours. The calculated

hydrograph had a volume of 0.21 cm compared to an actual

volume of 0.55 cm. The tabulated results, outflow at node-

4 and rainfall/runoff intensities are in Table 4.

The hydrograph shown in Figure 15 has a larger volume

than the actual hydrograph. The volume and peak could not

be matched precisely. If sufficient depressional storage

to match the outflow volume was removed, then the intense

part of the storm was removed resulting in very low peak

rates. The final calibration was found by inspection of

the rainfall intensities that resulted from a varying

hydraulic conductivities in the range reported above.

The difficulty in finding a set of depressional

storages and hydraulic conductivities that would produce a

hydrograph suggests that the Green and Ampt model does not

define a unique set of parameters. The formulation of the

arbitrary finite element grid as linear elements with

variable width also affects the resulting calibrated

parameters. The form of the finite element grid affects
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the width of the element. This assumption

results since it makes the assumption of uniform flow

governs

the form of the hydrograph as the rainfall excess is routed

 

 

downstream.

Table 4 Arbitrary Finite Element Grid Outflow.

RUNOFF CALCULATED ACTUAL

TIME RAINFALL INTENSITY OUTFLOV OUTFLOW

(HR) CM/HR FT/S 53/5 H3/S

14.30 0.00 0.00E+00 0.00E+00 0.00E+00

14.32 0.00E+00 0.00E+00 0.00E+00

14.33 0.00E+00 0.00E+00 0.00E+00

14.35 2.67 0.00E+00 0.00E+00 0.00E+00

14.37 0.00E+00 0.00E+00 0.00E+00

14.38 0.00E+00 0.00E+00 0.00E+00

14.40 0.00E+00 0.00E+00 0.00E+00

14.42 12.70 3.608-05 7.18E-04 0.00E+00

14.43 1.30E-04 1.27E-02 3.20E-03

14.45 1.008-04 4.688-02 2.528-02

14.47 3.608-05 8.088-02 8.923-02

14.48 -1.BOE-07 1.028-01 1.28E-01

14.50 7.92 -1.BOE-07 1.13E-01 1.1SE-Ol

14.52 -1.SOE-07 1.14E-01 1.04E-01

14.53 -l.8OE-07 1.088-01 8.828-02

14.55 -1.8OE-07 9.568-02 7.288-02

14.57 -1.8OE-07 8.198-02 6.04E-02

14.58 1.83 -l.80E-07 6.88E-02 4.79E-02

14.60 -1.80E-07 5.73E-02 3.92E-02

14.62 -1.8OE-07 4.77E-02 3.053-02

14.63 -1.80E-07 3.97E-02 2.54E-02

14.65 -1.BOE-07 3.328-02 2.03E-02

14.67 -1.80E-07 2.80E-02 1.74E-02

14.68 0.76 -1.80E-07 2.37E-02 1.44E-02

14.70 -1.80E-07 2.02E-02 1.14E-02

14.72 -1.BOE-07 1.73E-02 9.828-03

14.73 -1.8OE-07 1.508-02 8.218-03
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Figure 16 Comparison of Outflows for the Arbitrary Finite

Element Grid.
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2. Hydrologic Response Area Finite Element Grid.

The finite element grid shown in Figure 14 was formed

using the spatial distribution of slope as defined by the

ten foot elevation contours. The parameters used for this

case were the same as those used in the calibrated,

arbitrary grid model. This was chosen so that differences

would not arise from two different calibrated sets of

parameters. The effect of better defined finite elements

formed from hydrologic response areas was expected to

result in a more accurate prediction of the outflow

hydrograph.

Difficulty in obtaining a solution for the hydrologic

response area finite element grid was encountered. During

the solution, a negative flow depth occurred at node number

eight. This effectively precluded solution since no flow

could pass this element because of the connectivity

associated with the finite element grid.

The cause of this difficulty was investigated through

extensive analysis of the matrices associated with the

Galerkin finite element formulation for the surface water

flow equations. These matrices are the [C], [bx] and [by]

matrices as defined in [109]. The first difficulty

examined was the first derivative term represented by [bx]

and [by]. These matrices are asymmetric and therefore are

difficult to integrate properly when anisotropy exists in

the slope term. Anisotropy in the slope results from the

two dimensional representation of overland flow. The
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control volume in Figures 2 and 3 assume that the flow is

orthogonal to the x-y coordinate system. The Manning

equation relates the total flow Q to the flow depth h as a

function of slope. This slope is the slope in the

principal direction and therefore the flow rate Q is a

vector quantity. The resolution of the flow into the

respective x-y direction components is accomplished after

the computation of the flow in the principal direction.

The flow rates Q in [109] are the respective flow rates per

unit width in the x-y directions.

Due to the derivation from the control volume and the

form of the finite element formulation, each element must

be rotated in a local coordinate system such that the

finite element nodal coordinates are orthogonal to the

principal direction of the slope. This rotation is

performed for each coordinate pair using the rotation

matrix

x' cose sine x

= [110]

y' -sin0 cose y

where

0 = angle of the principal slope in the global

coordinate system.

This rotation must be done before the integration of the

element matrices.

The integration of the element matrices is performed
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numerically for the isoparametric element using the Gauss-

Legendre Quadrature. The Jacobian matrix is calculated in

this integration procedure using the global coordinates.

If anisotropy exists, then the global coordinates must be

rotated as in [111] and the local used in place of the

(global coordinates.

When rotation occurs for a randomly oriented four node

quadrilateral finite element, it becomes unclear as to

which nodal coordinate pair must be the first pair

associated with node i or (-l,-l) in the E-n coordinate

system. This importance can not be over emphasized since

the existence of the solution depends on it. The

difficulty arises when integrating the [bx] and [by]

matrices in [110]. A four node quadrilateral finite

element that is rectilinear and oriented with the g-axis

parallel to the x-axis and the n-axis parallel to the y-

axis would' be integrated such that the lower left node

closest to the origin would be associated with the (-l,-l)

node in the g-n coordinate system. If this principle is

not adhered to then the integrated result represented by

the [b] matrices is not accurate and a solution is not

achieved.

A four node quadrilateral finite element was

investigated to demonstrate the difficulty imposed by

rotation and node ordering when integrating the [b]

matrices. Under a steady rainstorm intensity the

equilibrium value of the outflow equals the product of
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intensity and the surface area of the finite element. The

solution yields unit width nodal flow rates which must be

integrated over the sides of the element in order to

compare the outflow with the inflow. The finite element

modeled is shown in Figure 17. The outflow is 0.4 m3/s for

a 0.00001 m/s intensity over the 200x200 m finite element.

Continuity is achieved since the inflow is the product of

intensity and the surface area or 0.4 m’/s. Note that the

nodal slopes are orthogonal to the global coordinate

system and that no rotation to a local coordinate system

was performed.

The effect of rotation to a local coordinate system

was investigated by observing the effect on the outflow

that the direction of slope has. By assigning slopes of 45

degrees at the nodes and assigning boundary conditions at

the nodes 1,2, and 4, outflow at node 3 results. The

outflow was 0.424 m3/s. The inflow was 0.40 m’ls resulting

in a 6% error. This is not a large error in this case.
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Figure 17 Four Node Quadrilateral Finite Element Outflow.
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A mOre serious error occurs when several finite

elements are combined in a system with slopes that are not

orthogonal to the coordinate system. In Figure 18 two

elements are shown with nodal slopes at 45 degrees. The

outflow totaled 1.155 m’/s whereas the inflow totaled 0.6

m3/s.

These errors arise because of the difficulty in

integrating the [b] matrices. These matrices are shown

below for the four node quadrilateral when successive nodes

are interpreted as node i in the integration. This amounts

to extreme cases of rotation such that different nodes

become the closest node to the global origin. The slope

angle with respect to north and the first node are shown

for each case.

Slope Aspect = 90

  

First Node = 1

-2 2 l -l

[bx] = 200 -l 1 2 -2

I2 -1 l 2 -2

-2 2 l -1

L .

Slope Aspect = 90

First Node = 2

I" q

-l l 2 -2

[bx] = 200 -2 2 1 -l

‘12 -2 2 l -l

I.-1 l 2 -2_I  
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Slope Aspect = 90

  

First Node = 3

'-2 2 1 -11
[bx] = 200 -l 1 2 -2

I2 -1 l 2 -2

-2 2 l -1

Slope Aspect = 90

First Node = 4

[-1 1 2 -2

[bx] = 200 -2 2 l -1

12 -2 2 l -l

-l 1 2 '21

  

Because of the incompatibility of the four node

quadrilateral finite element with the computation of the

[b] matrices when rotation occurs, it should not be used

for the solution of the surface water equations when

anisotropy exists in the slope.
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The three node triangle was investigated in a similar

manner. Figure 19 shows the three node triangle used to

demonstrate the effect of rotation on the outflow and the

integrated value of the [b] matrix. Successive nodes were

used as the node associated with node i or the first shape

function for the triangle finite element. The effect on

the [b] matrices was observed for each of the following

cases.

Slope Aspect = 90

First Node 8 l

-l 0 l

[bx] = 200 -l 0 l

6 -1 O l

Slope Aspect 8 90

First Node = 2

-1 0 l

[bx] = 200 -l 0 l

6 -l 0 l

Slope Aspect = 90

First Node = 3

-l 0 l

[bx] = 200 -l 0 l

6 -l 0 1
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The result is that the node ordering and hence the

rotation has no effect on the magnitude or sign of the [bx]

matrix. This indicates that the triangle is less sensitive

to node ordering and rotation than the four node

quadrilateral finite element in the effect on the [b]

matrices. This fact recommends the use of the triangle for

use in anisotropic surface water flow problems.

Rotation of the three node triangle finite element is

done so that the x'-y' axes are orthogonal to the principal

direction of slope. This is done in the same manner as in

[111]. The boundary conditions are applied to the triangle

as with the quadrilateral. Another difficulty arises,

however, since all three nodes must be specified as

boundary values of zero when the principal slope direction

is in a direction away from two sides as shown in Figure

20. The solution for the triangle shown cannot be

obtained. This is due to the difficulty in specifying the

boundary condition. If only one or two nodes are

specified, then the boundary conditions are under specified

for anisotropic slopes. If three nodes are specified then

the element is a null solution since all nodes are zero for

all time.

The use of the three node triangle finite element for

anisotropic flow requires that the element be oriented in

the global coordinate system such that one side is parallel

to the principal direction of slope. If this is done, then

the triangle may be used with any node ordering and
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orientation in the global coordinate system since rotation

does not result in an invalid integration of the [b]

matrix.
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Figure 20 Three Node Anisotropic Triangle.
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3.. Isotropic Finite Element Grid

Inorder to investigate the hydrologic response of this

watershed using a two-dimensional finite element

configuration it was necessary to create a rectilinear grid

that is oriented such that each element is orthogonal to

the principal direction of slope. Due to difficulties

arising from node ordering and rotation, the slopes derived

from the ARC/INFO TIN slope map in Figure 11 were used with

a realigned aspect of 90 degrees or due west. A new grid

that possesses only isotropic slopes was used. The node

ordering preserves the ordering necessary to achieve

correct integraton of the [b] matrices. This ordering is

preserved since no rotation is necessary due to the

isotropic slopes. Figure 21 shows the isotropic finite

element grid derived from the hydrologic response area grid

and the TIN slope map.
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The hydrologic response from the isotropic finite

element grid is shown in Figure 22. The isotropic finite

element grid yields a hydrograph that exceeds the actual

outflow hydrograph. The peak outflow of 0.18 m3/s compares

to the actual of 0.13 m’ls. The time to peak is at 14:30

which compares to the actual time to peak of 14:29 hours.

The rainfall excesses used were the same as those used for

the arbitrary finite element grid. The tabulated results,

outflow at node 1 and 2 integrated across the edges of

elements (1) and (8) are presented in Table 5.

Table 5 Isotropic Finite Element Grid Outflow.

 

INTEGRATED

OUTFLOW CALCULATED ACTUAL

TIME NODES 1,2 OUTFLOW OUTFLOW

MRS M3/S M3/S

14.400 0.00 0.00 0.00

14.417 0.03 0.00 0.00

14.433 0.60 0.02 0.00

14.450 2.44 0.07 0.03

14.467 4.78 0.13 0.09

14.483 6.31 0.17 0.13

14.500 6.62 0.18 0.12

14.517 6.16 0.17 0.10

14.533 5.31 0.14 0.09

14.550 4.35 0.12 0.07

14.567 3.45 0.09 0.06

14.583 2.71 0.07 0.05

14.600 2.14 0.06 0.04

14.617 1.70 0.05 0.03

14.633 1.37 0.04 0.03

14.650 1.12 0.03 0.02

14.667 0.93 0.03 0.02

14.683 0.78 0.02 0.01

14.700 0.66 0.02 0.01

14.717 0.57 0.02 0.01

14.733 0.50 0.01 0.01

 



F
i
g
u
r
e

2
3

C
O
M
P
A
R
I
S
O
N

O
F

O
U
T
F
L
O
W
S

M
A
Y

4
,
1
N
9
 

0
.
1
8

0
.
1
7

-
I

0
.
1
0

-
‘

0
.
1
0
d

0
.
1
4

'
-

0
.
1
3

0
.
1
2
-

0
.
1
1
-

0
.
1
-

0
.
0
9
-

0
.
0
8
-

0
.
0
7

.
1

0
.
0
0
a

0
.
0
0

-
I

0
.
0
4

0
.
0
3

0
.
0
2

0
.
0
1 o

I
I

I
j

T
T

l
I

T
l

r
I

0
0
.
1
2

0
.
0
4

0
.
“

0
.
0
0

0
.
1

0
.
1
2

A
C
T
U
A
L

O
U
T
F
L
O
W

(
C
U
B
I
C

M
E
T
E
R
S
/
S
E
C
O
N
D
)

I

GNOOII/CHILI)!

124

l LIT  

 
 

OIIDO) “0'11an GILV'IDO‘TV‘D C
o
m
p
a
r
i
s
o
n

o
f

O
u
t
f
l
o
w
s

f
o
r

t
h
e

I
s
o
t
r
o
p
i
c

F
i
n
i
t
e

E
l
e
m
e
n
t

G
r
i
d
.





 

125

I

4. Statistical Comparison of Arbitrary Grid Outflows

The statistical comparison of the arbitrary finite

element grid outflow hydrograph with the actual outflow is

facilitated by plotting the calculated versus the actual

outflows. The close agreement between the calculated and

actual values would result in a line plotted along a 45°

axis. Figure 16 shows close agreement in the rising limb.

Regression analysis presented in the Appendix

represents values for both the ascending and recession

limbs and a correlation coefficient of .92. The regression

analysis was performed with Lotus 1-2-3 release 2.01. The

regression analysis is a measure gf goodness of fit. This

technique does not address the sensitivity of the output

(flow depth) to the input (slope, Manning n, and rainfall

excess) parameters. Nor does it define the uniqueness of

the calibrated parameters in the solution.

The hydrologic response area finite element grid did

not result in an improvment over the arbitrary finite

element grid. The more correct representation of the slope

parameter by GIS analysis may improve the predictive

capability of the finite element model but is not

identyfiable by the approach taken. This approach assumed

that the Green and Ampt parameters calibrated for the

arbitrary finite element grid would result in accurate

results when used with the hydrologic response area finite

element grid. The difficulty with this approach is that

the hydraulic conductivity and depressional storage are not
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unique nor known apriori from measurable characteristics of

the soil-landuse complex. Due to the difficulty in

identifying a unique set of infiltration parameters as well

as others such as Manning n, further calibration or

statistical comparison was not pursued.

D. Discussion

Three cases were investigated, the arbitrary finite

element grid, a hydrologic response area finite element

grid and the isotropic finite element grid for use in

modeling watershed outflow under an unsteady rainfall

event. The arbitrary grid consisted of one-dimensional,

linear elements of variable width. These linear elements

were of the same spatial form as used by Peters, Blandford

and Meadows (1983). This grid was termed arbitrary because

they do not necessarily conform to spatially distributed

parameters. The hydrologic response areas were defined

using a Geographic Information System. The finite element

grid used to represent the hydrologic response areas

conforms to the spatially distributed parameters. The

isotropic finite element grid was investigated because of

significant difficulties in modeling randomly oriented

finite elements that possess anisotropic slope.

1. Input Parameters

The essence of the difficulty lies in the

representation of the watershed topography using finite
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elements. Two dimensional analysis of the surface water

equations was complicated by the use of a four node

quadrilateral for computation of first order derivatives

when anisotropy required rotation to an orthogonal set of

local axes. The rotation caused errors in the integration

of the [b] matrices. The other finite element investigated

was the three node triangle. This finite element could be

rotated to the orthogonal local axes without error in the

[b] matrices integration. However, the proper assignment

of boundary values requires that the triangle be oriented

such that one node lies on a stream line, i.e. an isotropic

finite element grid. I

The arbitrary grid representation of slope, i.e., a

uniformly sloped plane incorrectly represents the flow

paths on a curvilinear surface. The flow paths are always

perpendicular to the elevation contours if inertia is

insignificant as in the kinematic wave equation. This

amounts to a solution of the Laplacian equation for

potential and streamlines. The equipotential lines are in

this case the equi-elevation lines and the streamlines or

orthogonal trajectories are the flow paths. Of course,

depending on the scale of the modeled flow, micro-scale

topography changes may obscure a smooth trend in flow path

across the watershed. Significant difficulties arise when

the element grid is not orthogonal to the principal

direction of the slope as it varies over the watershed

surface.
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In the present watershed, the slope was defined by

the contour intervals from the topographic survey. The

variation of the elevation contours sets the scale of the

spatial variation of the slope parameter. Between the

contour lines, nothing is known of the micro-scale

topography and therefore is assumed to be purely

stochastic. The average slope within this interval was

used to define the slope for the elements. The ARC-INFO,

TIN program was used to determine the slope and aspect at

each node. The TIN program simply determines the slope of

the ground surface as defined by the digitized elevation

contours. As more and more finite elements are used to

represent the curvilinear, spatially nonhomogeneous

watershed, the nodal slopes tend toward elemental

representation of slope, and in the limit, they are the

same.

In the case of the arbitrary grid, the slope is

averaged over the plane by taking several measurements

within the plane. This does not allow accurate

representation of the slope by the finite element grid

since the spatial nonhomogeneity is lost by averaging. The

linear element is not well suited to representing the

curvature of the watershed surface. However, as more and

more linear, one-dimensional elements of decreasing size

are used to represent the watershed, the representation of

topography improves as with any other element. The

difficulty arises from the use of one-dimensional elements
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of variable width to represent two-dimensional,_ spatially

variable, parameters. Difficulties were found when using a

two-dimensional scheme in the modeling of two-dimensional,

spatially variable parameters that are anisotropic. In

such a case the finite element grid must be orthogonal to

the principal direction of slope at each element.

A two-dimensional finite element grid is capable of

more accurately representing the spatial nonhomogeneity of

the spatially variable parameters. The nodal slopes were

determined by the value of the slope and aspect represented

by the TIN Slope map in Figure 11. These slopes vary over

the element in the case of the four-node quadrilateral

because this element is capable of representing a warped

surface.

The average slope could have been determined by

integrating the slope over the element and dividing this

integrand by the area, and the consistent stress method

used to obtain the nodal slope values to be used in the

modeling. This procedure, however, ignores micro-scale

slope variation interior to the finite element. It is

though, responsive to meso-scale 'slope variation

represented by the spatial form of the lO-foot contour

lines. Two-foot contour intervals could have been used but

this would have resulted in considerably more finite

elements than the first case of the arbitrary grid. This

increased fineness in the grid representation would have

increased the accuracy due to the increased number of
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elements not due, solely, to the better finite element

representation of a spatially variable parameter.

Soil properties were found to produce very little

difference in the Green and Ampt parameters and

consequently in the rainfall excess intensities. The

watershed was therefore treated as one soil. The effect of

the lumping of the soils is obscured by the difficulty in

defining a unique set of infiltration parameters. Based on

evidence from other researchers (Brakenseik and Onstad,

1977) the relative error in peak runoff to hydraulic

conductivity is 2.68 percent. If a one percent error

exists in the hydraulic conductivity then a 2.68 percent

error in peak runoff rate results. In this case the

hydraulic conductivities predicted according to the method

of Rawls, Lane and Nicks (1987) method were as follows

Hastings Silt Loam, K = 0.0198 cm/hr,

Hastings Silty Clay Loam, K = 0.0087 cm/hr,

Colby Silt Loam, K = 0.0167 cm/hr,

Average, K = 0.0151 cm/hr

This average was not actually used in the modeling run

since the effect of crusting obscured the range of

different soil hydraulic conductivities. The hydraulic

conductivities are estimated to range from 0.15 to 0.06

cm/hr due to the crusting. This range is estimated by

using the variation of the CEC/Clay ratio from 0.2 to 0.65.

The hydraulic conductivity used in the modeling of the May

4, 1959 rainstorm event, was K = 0.056 cm/hr. This
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corresponds to the CEC/CLAY ratio of 0.65, which was the

high end of the range of data used in the WEPP Model

development (cf. Rawls, Lane and Nicks). The actual

CBC/CLAY ranged from 0.67-0.79.

The Green and Ampt parameters used in both the

arbitrary finite element grid and the hydrologic response

area finite element grid are not a unique set. The

rainfall intensitites used in calibration were found by

inspection from a range of intensities produced by a range

of hydraulic conductivities. Extreme difficulty was

encountered in matching both volume and peak rate of

outflow. When these same rainfall intensities were used

with the hydrologic response area finite element grid a

more accurate solution did not result. In fact a poorer

agreement was found. This suggests that not only are the

Green and Ampt parameters nonunique but the calibration is

dependent on the finite element grid representation of the

watershed domain. Depending on the spatial form of the

finite element grid, different sets of input parameters

will result from the calibration procedure. This

difficulty obscures the advantages of better representation

of spatially nonhomogeneous parameters.

2. Numerical Errors

Numerical errors also result from the mathematical

formulation of the solution. These errors result from

several sources within the finite element method itself.

Other errors in represetation of the physical phenomenon
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have been previously discussed.

Numerical oscillations and stability errors arise from

the size of the eigenvalues in the equation

[c1{i} = {9*} . {112}

The eigenvalues are calculated by solving for the

eigenvector [E],

{A} [31(2} - [113]

or,

{A} [3112} [114]

where,

{z} a solution vector of flow depths.

Writing [114] as

[C][EIIZ} = {F*] [115]

. . ‘1
and multiplying by [E] ,

{u1'ltclts}{é} = {a} {3*} ' [1161‘

-1

The matrices [E] [C][E] form the eigenvector [A],
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Equation [122] does not amplify errors that may occur in

the right-hand side term naAt since it does not contain any

2 terms. Because of this the solution of the kinematic

wave equaitons in general may proceed without numerical

oscillations or stability errors. This is a consequence of

the partial differential equation form and the finite

difference solution in the time domain.

Nonlinearity in the partial differential equation

however can pose difficulties in the solution algorithm.

It is necessary to start with sufficiently close values of

flow depth at each time step such that the iterative

solution converges. If large step increases in rainfall

excess intensities. occurs or large values of rainfall

excesses occur, the iterative solution will not converge

but rather flow depths becomes negative. If initial

estimates of flow depth at each time step are used that are

not the previous solution values, the solution again does

not converge. Convergence was achieved by using the dry

bed initial values at the first time step and the previous-

time flow depths as the beginning values for iterative

solution at succeeding time-steps.

As evidenced in the literature, the difficulties

encountered in applying a deterministic, distributed

parameter model to watershed hydrology fell into three

categories. These categories largely center around the

types of errors encountered in the literature for the type

of modeling performed for this research. These categories
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are numeric errors, model equation errors, and parameter

estimation errors. The approaches taken to meet the

project objectives were performed in order to reach the

overall goal of this research to more accurately predict

the actual outflow hydrograph from a watershed of

nonuniform, spatially distributed parameters. Conclusions

derived from this research follow together with

recommendations and future applications of the method

developed.

Numeric errors are those that arise from the method

itself such as inaccuracies and instability in the time

solution of the finite element method. These errors arise

due to the form of the time dependent equation that is

solved by standard finite difference techniques such as in

equation [92]. Numeric errors can be subdivided into

physical reality, numerical oscillations, accuracy, and

stability.

Physical reality is observed whenever rainfall excess

added to a node causes surrounding nodes to also increase.

In the solution of heat flow and groundwater flow, it is

possible to obtain solutions that for initial time steps

the temperature or pressure head decreases when it should

be increasing (Segerlind, 1984). A physical reality error

results whenever this occurs.

Numerical oscillations occur when at each time step

the solution is first higher then lower than the true

solution thus causing oscillations about the solution.
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Stability errors occur when an incremental error at each

time step grows until the solution deteriorates.

As a result of the equation [116], the solution of the

kinematic wave equation as represented by [106] does not

suffer from stability and oscillation errors prevalent in

other governing equations such as the field equation for

heat flow. The only other possible source of numeric

errors are those arising from the accuracy of the ordinary

differential equations, e.g. the time dependent equation

[105] in representing the partial differential equations,

i.e., the conservation of mass equation [55]. This error

is accounted for by observing the Courant condition. The

Courant condition is a consequence of the partial

differential equation theory, the Method of

Characteristics. It was observed through the choice of the

time step for the maximum rainfall excess and the longest

plane. This choice of time step resulted in a solution

that was accurate and free of oscillations or instability.

The computation of the Courant condition from known

physical parameters allows selection of the time step prior

to modeling using the finite element method. As seen in

Figures 14 and 15, a solution free of instability and

oscillations resulted.

Model equation errors arise from the simplification of

the full dynamic equation by the kinematic or diffusion

analogy and kinematic shocks. The kinematic shocks that

plagued previous researchers were avoided in the method
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developed by this research. The method used here

calculates the nodal flow rates using nodal slopes and

Manning n values. This improvement over previous methods

allowed an accurate solution of the kinematic wave

equations using the finite element method. Both linear

one-dimensional and two-dimensional elements were used

successfully in this solution in the modeling of a two-

dimensional domain of spatially nonhomogeneous slopes.

This two-dimensional domain possessed complex topographical

curvature as represented by the TIN slope map in Figure 11.

This slope map provided the basis for the selection of

nodal slope values that resulted in the solution of the

kinematic wave equation free of kinematic shock.

Parameter estimation errors arise from uncertainty

and from spatial variation of infiltration, rainfall,

roughness and other parameters over the watershed domain.

The spatial variation of the watershed parameters were

represented by the finite element grid by assigning to each

element and 'node the appropriate parameters. Rainfall

excess was assigned as an element constant as well as

assumed constant over the watershed.

Errors in rainfall excess arise from many sources

including the assumption that infiltration, rainfall,

roughness and other parameters are uniform over the entire

watershed. Where the accuracy and the number of sampling

points are sufficient, spatial statistics may be used to

advantage to interpolate with known variance at a specified
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location the value of a parameter. The location of the

parameter is dictated by the finite element grid which in

turn is dictated by the spatial variability of the

parameters. Lack of knowledge apriori of the infiltration

parameters and the inability to select an unique set by

calibration limit the viability of calibrating.

Proper representation arises from the proper selection

or the use of elements that maintain faithful

representation of the hydrologically homogeneous character

of subareas within the watershed. Improper representation

may result from an incomplete knowledge of the parameters

and the variation over the watershed or with time during

the modeling process. The Geographic Information System

allowed proper representation of the spatially

nonhomogeneous parameter, slope. By utilizing the

hydrologic response area, finite-element grid proper

representation occurred.

Accurate modeling of the hydrologic response areas

within the watershed during an unsteady rainstorm is

possible if the infiltration parameters used to define

rainfall excess is sufficiently well known. Better

definition of the rainfall-runoff relation is needed. The

finite element method holds promise as a mathematical model

capable of accurately and efficiently solving the

distributed, deterministic surface water equations in a

watershed. The Geographic Information System holds promise

as an efficient means of handling the large volume of input



139

\

data required by distributed, deterministic models.

The goal of this research has been achieved by

accomplishing the following three objectives using the

following approaches. The objectives and approaches were:

Objective 1. Define hydrologic response areas that exhibit
 

similar soil infiltration parameters, surface roughness,

and slope for a given watershed.

Approach: A Geographic Information System was used to

search, smooth and aggregate areas of similar soil

infiltration parameters, surface roughness, and slope thus

producing the specific hydrologic response areas. '

The approach to Objective 1 utilized the ARC-INFO

GIS to digitize the maps of soils, landuse, and topography.

Based on the infiltration parameters associated with the

soils, the Manning n associated with the landuse, and the

slope calculated from the 2-foot contour elevation map;

hydrologic response areas were produced. Due to the

homogeneity of the soils and landuse, lepe was the only

spatially nonhomogeneous parameter modeled. The ARC-INFO

Triangular Irregular Network (TIN) program was used to

define the slope and aspect from the 2-foot contour

elevation map. From the TIN Slope map, nodal slope values

were determined for each node of each element. The Slope

map shown in Figure 11 was produced for a 1% interval. The

hydrologic response area finite element grid was based on

the lO-foot contour elevations. The GIS proved to be an
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effective means of searching, smoothing and aggregating

values of the slope parameter and thus defining hydrologic

response areas for the anisotropic finite element grid.

The GIS was also used to determine the slopes at the nodes

for the isotropic finite element grid, however, the aspects

were aligned such that the slope was parallel to the sides

of the elements representing streamlines.

Objective 2. Apply the finite element method to the
 

specific hydrologic response areas to compute and route the

overland flow to the outlet.

Approach: The rate and volume of infiltration was modeled

by the Green and Ampt infiltration equation. The equation

parameters were calibrated for the watershed using an

arbitrary finite element grid. The rainfall excess thus

defined becomes the lateral inflow for use in solution of

the overland flow equations.

The approach to Objective 2 utilized the Green and

Ampt infiltration equation. The Green and Ampt parameters

along with the rainfall excess were computed using the WEPP

project programs with the aid of Dr. Walter Rawls, ARS

Water Data Laboratory, Beltsville Maryland. For a

description of the procedures used see Rawls, Lane and

Nicks (1987). The initial estimates of the Green and Ampt

parameters used measured soil properties. The rainfall

excesses computed for the three soils were nearly identical

during the rainstorm event. Due to the similarity, the

watershed was modeled as having one soil.
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Calibration of the Green and Ampt parameters was

performed by varying the hydraulic conductivity and the

initial abstraction until the calculated volume and peak

outflow rate matched as closely as possible the actual

outflow rate. The calibration was performed for the

arbitrary finite element grid. The final values of initial

abstraction and hydraulic conductivity were not determined

directly but rather the rainfall excess intensities were

determined by inspection of several sets of hydraulic

conductivities and initial abstraction values. These

Green and Ampt parameters appear to vary during the storm.

The simply infiltration model was not capable of predicting

the correct Green and Ampt parameters and resulting

rainfall intensities.

After calibrating the Green and Ampt parameters for

the arbitrary finite element grid, the hydrologic response

area grid was modeled using the calibrated rainfall excess.

The purpose for this was to investigate the effect of

better description of the spatial parameters such as slope

by the two dimensional, hydrologic response area grid.

The Galerkin finite element formulation was applied to the

kinematic wave equations producing the flow rate and flow

depth solution. The solution was performed in the time

domain during the unsteady rainstorm event. The time

solution was performed using the central difference, finite

difference form. This formulation resulted in a solution

free from the physical reality, numerical oscillations,
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instability, kinematic shock and accuracy errors

reported previous literature.

It was necessary to form an isotropic finite element

grid such that the solution may be obtained. The resulting

finite element grid was a better representation of the

spatially varying slope and the solution to a spatially

varying flow depth in two-dimensions. The relative

accuracy of the hydrologic response area finite element

grid to the arbitrary finite element grid is unknown due to

uncertainty in the infiltration parameters and resulting

rainfall excesses.

Objective 3. Compare the accuracy of the outflow
 

hydrographs to the actual outflow hydrograph for a given

rainstorm event for the following two cases:

a. A finite element grid that is of an arbitrary

spatial form.

b. A finite element grid formed from hydrologic

response areas defined by the Geographic

Information System.

Approach: The rate and volume of runoff was modeled by the

finite difference/finite element method of solving the

kinematic wave equation for overland flow. The excess

rainfall was defined by the infiltration equation. The

outflow hydrograph was calculated for the outlet of the

watershed for the two cases described above. A finite
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element model, utilizing linear, one-dimensional and two-

dimensional finite elements was used to compute the

overland flow equations. Lotus 1—2-3 release 2.01 was

used for the solution of the linear, one-dimensional finite

element grid. A FORTRAN computer program identical in

algorithm to the Lotus 1-2-3 spread sheet was used for the

linear, two-dimensional finite element grid. The spread

sheet formulas and the computer program are contained in

the Appendix. The validity of the method was checked by

comparing the computed and analytical solution outflow

hydrographs. The validity was checked for a single plane

with the results contained in the Appendix.

The finite element solution of the kinematic wave

equations when solved with nodal rather than elemental flow

rates produces a close approximation to the analytic

solution and resulted in a close approximation of the

actual outflow hydrograph for this rainstorm event. The

flexibility of this method allows modeling of watershed

runoff using spatially nonhomogeneous parameters. The

spatial variability must be lumped interior to the finite

element. Finite elements corresponding to the spatially

nonhomogeneous parameter allow a much more accurate

representation of the parameters. It was not determined

whether the hydrologic response area, finite element grid

produced a better agreement between the calculated and

actual hydrograph due to the uncertainty in the

infiltration parameters.
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The method developed through this research calculates

the two-dimensional solution to the kinematic wave equation

hydrograph for a watershed of nonuniform, spatially

nonhomogeneous parameters such as slope. Further, this

method is free from kinematic shocks which had prevented

earlier researchers from solving the problem as a

continuum.



V. CONCLUSIONS AND RECOMMENDATIONS

The approaches taken to meet the project objectives

were performed in order to reach the overall goal of this

research--to more accurately predict the actual outflow

hydrograph from a watershed of nonuniform, spatially

distributed parameters. Conclusions derived from this

research follow together with recommendations and future

applications of the method developed.

A. Conclusions

The method developed through this research calculates

the two-dimensional solution to the kinematic wave equation

hydrograph for a watershed of nonuniform, spatially

nonhomogeneous parameters such as slope. From this

research it may be concluded that:

l. The GIS was effective in searching, smoothing

and aggregating values of the spatially variable

slope parameter for use in the finite element

model.

2. The Green and Ampt infiltration model used did

not adequately predict the rainfall excess

intensities in order to accurately simulate

runoff from an actual storm using the finite

145
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element model.

3. The finite element model developed through this

research results in a solution free from

kinematic shock for the two-dimensional kinematic

wave equation in a watershed continuum.

B. Recommendations

The ability of the Geographic Information System and

the finite element method to model and display modeled

results of the watershed surface runoff recommends its use

for further research. It is recommended that:

1. Further research is needed to better measure and

describe the spatially variable parameters

affecting - surface flow, particularly

infiltration.

2. The use of geostatistics may provide valuable

information as to the detail required to

accurately model spatially variability in the

input parameters.

3. This research should be extended to consider both

overland and channel flow for larger watershed

systems. This extension should include diffusion

and full dynamic equation modeling.

4. Better calibration techniques should be

investigated that are capable of handling the
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the nodes were used in producing the contours. The peak

‘values occur at different times during the storm runoff

period.

The value of predicting the spatial distribution of

surface flow is realized if the distribution of

concentration of nutrients or pesticides is capable of

being predicted for a watershed. This ability provides

insight into the location and source of contaminants in

overland flow. The flow depth shown in Figure 24 may be

interpreted as the highest concentrations of contaminants.

Since the flow rate over any particular location during a

storm event is related to the flow depth by the Manning or

Chezy equation', the concentration expressed as a mass

fraction of the flow rate will correspond to the flow

depth.

Further research is needed to better describe the

spatially variable parameters affecting surface flow,

particularly infiltration. The method developed through

this research provides a better description of the

hydrologic processes in a two-dimensional domain. It also

' provides insight into the transport phenomena of

agricultural pollution by pesticides and nutrients in

surface and subsurface water as affected by overland flow

and infiltration for an agricultural watershed.
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The following is a listing of the Lotus 1-2-3 work sheet

for the arbitrary finite element grid solution. The cell

formulas are printed unformatted for each section of the

worksheet separated by headings describing the function of

the section.

ELEMENT DATA HEADING

A1: [w12] 'ELEMENT

Bl: 'DATA

H1: [W12] 66

A3: [W12] Aelement

B3: “nodel

C3: [W12] “node2

D3: [W12] “node3

E3: [W12] Anode4

F3: [W12] Aslopel

GB: [W12] “slope2

H3: [W12] “slope3

I3: [W12] “slope4

J3: [W14] “n1

K3: “n2

L3: [W12] “n3

M3: An4

N3: Awidth

O3: “ROLD

P3: [W12] “anew

A4: [W12] “1

B4: 0

C4: [W12] 171

F4: [W12] 0.0406

G4: [W12] 0.0406

J4: [W14] 0.035

K4: 0.035

N4: 353

O4: 0

P4: [W12] 0

A5: [W12] A2

BS: 171

CS: [w12] 342

F5: [W12] 0.0406

GS: [W12] 0.0669

J5: [W14] 0.035

K5: 0.035

N5: 333

A6: [W12] “3

B6: 342

C6: [W12] 507

F6: [W12] 0.0669

G6: [W12] 0.0562

J6: [W14] 0.035

K6: 0.035

N6: 206
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1

ELEMENTAL EQUATIONS or THE FORM [C][A} = [F]

A9:

A10:

C10:

D10:

E10:

F10:

610:

H10:

A11:

Bll:

D11:

Ell:

F11:

Gll:

H11:

Ill:

A12:

B12:

D12:

E12:

F12:

612:

H12:

I12:

A13:

A14:

C14:

D14:

E14:

F14:

Gl4:

H14:

A15:

B15:

D15:

E15:

F15:

615:

H15:

115:

A16:

B16:

D16:

E16:

F16:

Gl6:

H16:

[w12] 'ELEMENT N0 1

[W12] “[C]

[W12] A[Mnew

[W12] '[F}=

[w12] A[c]

[w12] “*[AOLD)

[W12] “DT/2[K]*

[w12] 'QOLD+QNEW

[w12] 2*($C$4-$B$4)*$N$4/6

($C$4-$B$4)*$N$4/6

[w12] +$E$11+$F$11+$G$11+$H$11+$I$11

[W12] 2*($C$4-$B$4)*$N$4*$B$27/6

[w12] ($C$4-$B$4)*$N$4*$B$28/6

[W12] -($B$37/2)*(-1)*((1-$B$38)*$D$27+$B$38*$D$33)

[W12] -($B$37/2)*(1)*((1-$B$38)*$D$28+$B$38*$D$34)

[W12] +$B$37*($C$4-$B$4)/2*((l-$B$38)*$N$4*$O$4+

$B$38*$N$4*$P$4)

[w12] ($C$4-$B$4)*$N$4/6

2*(scs4-SBS4)*$N$4/6

[W12] +$E$12+$F512+$G$12+$H$12+$I$12

[w12] ($C$4-$B$4)*$N$4*$B$27/6

[w12] 2*($C$4-$B$4)*$N$4*$B$28/6

[W12] -($B$37/2)*(-1)*((1-$B$38)*$D$27+$B$38*$D$33)

[W12] -($B$37/2)*(1)*((1-$B$38)*$D$28+$B$38*$D$34)

[w12] +$B$37*($C$4-$B$4)/2*((1-SBS38)*$N$4*$O$4+

$B$38*$N$4*$P$4)

[W12] 'ELEMENT N02

[W12] “[C]

[W12] A[Mnew

[w12] '[F}=

[W12] *[c]

[w12] “*{AOLD)

[w12] “DT/2[K]*

[w12] 'QOLD+QNEW

[W12] 2*($C$5-$B$5)*$N$5/6

($C$5-$B$5)*$N$5/6

[w12] +$E$1s+$F$15+$G$15+$H$15+$I$15

[w12] 2*($C$5-$B$5)*$N$5*$B$28/6

[w12] ($C$5-$B$5)*$N$5*$B$29/6

[W12] ’($B$37/2)*(-1)*((1-$B$38)*$D$28+$B$38*$D$34)

[W12] -($B$37/2)*(l)*((l-$B$38)*$D$29+$B$38*$D$35)

[w12] +$B$37*($C$5-$B$5)/2*((l-$B$38)*$N$5*$O$4+

$B$38*$N$5*$P$4)

[W12] ($C$5-$B$5)*$N$5/6

2*($C$5-$B$5)*$N$5/6

[W12] +$E$16+$F$16+$G$16+$H$16+$I$16

[W12] ($C$5-$B$5)*$N$5*$B$28/6

[W12] 2*($C$5-SB$5)*$N$5*$B$29/6

[W12] -($B$37/2)*(-1)*((1-$B$38)*$D$28+$B$38*$D$34)

[W12] -($B$37/2)*(1)*((1-$B$38)*$D$29+$B$38*$D$35)



 
 

116:

A17:

A18:

C18:

D18:

E18:

F18:

Gl8:

H18:

A19:

B19:

019:

E19:

F19:

G19:

H19:

119:

A20:

820:

D20:

E20:

F20:

G20:

H20:

120:

158

[W12] +$B$37*($C$5-$B$5)/2*((l-$B$38)#$N$5*$O$4+

$B$38*$N$5*$P$4)

[w12] 'ELEMENT N03

[w12] “[C]

[W12] A{h}new

[w12] 'irl-

[w12] “[c]

[w12] “*{AOLD)

[w12] “DT/2[K]*

[w12] 'QOLD+QNEW

[w12] 2*($C$6-$B$6)*$N$6/6

($C$6-$B$6)*$N$6/6

[W12] +$E$l9+$F$l9+$G$19+$H$l9+$I$l9

[w12] 2*($C$6-$B$6)*$N$6*$B$29/6

[w12] ($C$6-$B$6)*$N$6*$B$30/6

[w12] -($B$37/2)*(-l)*((1-$B$38)*$D$29+$B$38*$D$35)

[w12] -($B$37/2)*(1)*((l-$B$38)*$D$30+$B$38*$D$36)

[W12] +$B$37*($C$6-$B$6)/2*((l-$B$38)*$N$6*$O$4+

$B$38*$N$6*$P$4)

[w12] ($C$6-$B$6)*$N$6/6

2*($C$6-$B$6)*$N$6/6

[W12] +$E$20+$F$20+$G$20+$H$20+$I$20

[w12] ($C$6-$B$6)*$N$6*$B$29/6

[w12] 2*($C$6-$B$6)*$N$6*$B$30/6

[W12] -($B$37/2)*(-1)*((1-$B$38)*$D$29+$B$38*$D$35)

[W12] -($B$37/2)*(1)*((l-SB$38)*$D$30+$B$38*$D$36)

[w12] +$B$37*($C$6-$B$6)/2*((1-$B$38)*$N$6*$O$4+

$B$38*$N$6*$P$4)

FLOW DEPTHS AND FLOW RATES AT EACH NODE, BOTH NEW AND OLD

VALUES DEFINED BY THE MANNING EQUATION. INVERSE AND

SOLUTION MACROS ARE PRECEEDED BY '/.

A27:

827:

C27:

D27:

F27:

627:

A28:

B28:

C28:

D28:

F28:

G28:

A29:

829:

C29:

D29:

A30:

B30:

C30:

D30:

[W12] Ahlold

U o

[w12] “Qlold

[w12] 1.486/$J$4*$F$4“0.5*$B$27“(5/3)*$N$4

[w12] 'INVERSE

U [w12] 'SOLUTION\D

[w12] “h201d

U 0.0017120387

[W12] “Q201d

[w12] (1.486/$K$4)*$F$4“0.5*$B$28“(5/3)*($N$4+$N$5)/2

[w12] '/DMI~~~

[w12] '/DMM~~~

[w12] “h301d

U 0.0037515851

[W12] “Q301d

[W12] 1.486/$K$5*$G$5“0.5*$B$29“(5/3)*($N$5+$N$6)/2

[w12] “h4old

U 0.0072532181

[w12] “Q4old

[w12] (l.486/$K$6)*$G$6“0.5*$B$30“(5/3)*$N$6



F32:

G32:

A33:

B33:

C33:

D33:

E33:

F33:

A34:

B34:

C34:

D34:

A35:

B35:

C35:

D35:

A36:

B36:

C36:

D36:

TIME STEP

A37:

B37:

A38:

B38:
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U [w12] 'COPY\C

U [w12] 'NEXT TIME STEP

[w12] “thEW

U 0

[w12] “QlNEW

[w12] 1.486/$J$4*$F$4“0.5*$B$33“(5/3)*$N$4

U [w12] 6

U [w12] '/C$B$34..$B$36~$B$28..$B$30~/C$P$4~$0$4~

[w12] “hZNEW

U 0.0015953261

[w12] “QZNEW

[W12] (1.486/$K$4)*$F$4“0.5*$B$34“(5/3)*($N$4+$N$5)/2

[w12] “h3NEW

U 0.0034417683

[w12] “QBNEW

[W12] 1.486/$K$5*$G$5“0.5*$B$35“(5/3)*($N$5+$N$6)/2

[w12] “h4NEW

U 0.00667484

[w12] ‘Q4NEW

[w12] (1.486/$K$6)*$G$6“0.5*$B$36‘(5/3)*$N$6

IN SECONDS AND TIME WEIGHTING COEFFICIENT

[w12] 'DELTA

60

[w12] 'THETA

0.5

DIRECT STIFFNESS METHOD SUMMING THE ELEMENTAL MATRIX

ENTRIES TOGETHER WITH BOUNDARY CONDITIONS INTO THE GLOBAL

MATRIX

G38:

G38:

C39:

D39:

E39:

F39:

G39:

C40:

D40:

E40:

G40:

C41:

D41:

E41:

G41:

C42:

D42:

E42:

G42:

U [w12] “'{F}

[w12] “'[F]

[w12] \-

[w12] \-

[w12] \-

[w12] \-

[w12] \—

[w12] +812+A15

[w12] +315

[w12] 0

[w12] +D12+D15

[w12] +A16

[w12] +Bl6+A19

[W12] +B19

[w12] +016+D19

[w12] 0

[W12] +A20

[W12] +820

[w12] +020C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
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i

INVERSE OF THE GLOBAL [C] MATRIX MULTIPLIED TIMES THE {F*}

VECTOR FOR THE SOLUTION OF THE NODAL FLOW DEPTHS h2,h3,h4

c4s: U [w12] 0.0000279141

D45: U [w12] -0.0000096409

E45: U [w12] 0.0000048205

C46: U [w12] -o.ooooo96409

D46: U [w12] 0.0000397219

E46: U [w12] ‘0.0000198609

C47: U [w12] 0.0000048205

D47: U [w12] -0.0000198609

E47: U [w12] 0.0000981917

The worksheet solution and methodology was tested for a

single plane consisting of the same input data for element

No. l. The solution was compared to the analytic solution

using the Method of Characteristics. The analytic solution

states that prior to equilibrium the flow depth is

h = i*t

where,

i = rainfall intensity,

t = time since start of the rainfall excess.

h z flow depth.

The flow rate is

q = mha

where,

m = (1.486/n)"'Sl/2

a = 5/3 for overland flow.

The following Figure A1 shows the comparison of the finite

element analysis and the analytic solution for a single

plane. The parameters used for this plane is the upper

plane in the arbitrary grid finite element solution.
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Conputer solution of the hydrologic response- area finite

element grid was performed utilizing the following listing

of FORTRAN code.
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PROGRAM MAINSTRM

This program finds a linear solution to a finite element overland

flow problem for a global system of two-dimensional elements.

Units of measurement are taken from the English System

To avoid internal storage of large amounts of data. this program

reads element and node information from external files as needed.

In the variable listing below, the X-direction is identical to the

direction of flow at a given node.

DELTAT 8 Length (seconds) of time step.

GCHOLD( ) '-' GCM( . ) * GHOLD(2)

GCM( , ) = Global Capacitance Matrix f T

j'bN'z’: ‘hN‘I‘:

GF( ) = Global Force vector

GHNEWU) = Flow depth H (feet) at node I at end of current

time step.

GHOLD(I) = Flow depth H (feet) at node I at end of previous

time step.

GHTRYU) = Flow depth H (feet) at node I tried for solution

iteration. When solution GHNEW is close to GHTRY,

solution is accepted.

GQRU) = Resultant of flow rate per unit width (ftiHZ/sec) in X

and Y directions at node I.

GOX(|) = Weighted flow rate per unit width (ftHZ/sec) in

X-direction at node I for given time step.

GOXNEWH) 3 Flow rate per unit width (ftHZ/sec) in X-direction

at node l at end of current time step.

GOXOLDH) 8 Flow rate per unit width (ftfl2/sec) in X-direction

at node I at tend of previous time step.

GRF( ) = GF 1' 'hweighted rainfall‘h

GSMX( ) = Global Stiffness Matrix for X-direction f T

l'hN'l: 'lsz/dx'b

GSMQX( ) = GSMX 1* GOX

HLOLIM = Negative tolerance for flow depth H (feet).

HUPLIM = Largest expected flow depth H (feet).

INDEXM ) = Index for array of node numbers.

NODE( ) = Array of node numbers.

NP = Total number of nodal pOints being evaluated.

NSOLV = Solution iteration number.

MANNGN = Mannings N.

MAXNOD = Maximum number of nodes assomated With an element in

the system.

MAXSOL = Maximum number of solution iterations expected.

Pl = 3.14159...

ONEW = Flow rate per unit width at a node calculated

from GHTRYU).
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RAlNN Rate of rainfall at end of present time step (ft/sec).

RAINO Rate of rainfall at end of previous time step (ft/sec).

SLOPE Slope (ft/ft) at a node.

SLOPEX == Slope (ft/ft) in X direction at a node.

THETA Weighting coefficient

TIMEN Clock time (seconds) at end of present time step.

TIMEO Clock time (seconds) at end of previous time step.

Tracing definitions:

ILEVEL 8 Tracing level for downstream write statements.

ITRACK = Unit (TRACEOUT) to which results of intermediate

calculations are written.

LEVELT = Tracing level relative to the calling program.

LTRACE = Tracing level for entire program.

COMMON/TRACE/LTRACE.ITRACK

COMMON/MATRIXIGSMX(20. 20).GSMY(20. 20).GCM(20. 20).GF(20)

COMMON/NODES/NP.NBW,NODE(20).INDEXN(20)

DIMENSION GHNEW(20).GHOLD(20).GRF(20).GCHOLD(20).GSUM(20).

+ GQXNEW(20),GOXOLD(20).GQX(20).G$MQX(20).GHTRY(20).

+ GQYNEW(20).GQYOLD(20).GQY(20).GSMOY(20).GORES(20)

INTEGER HOUR

REAL MANNGN

CHARACTERNIO TITLE

DOUBLE PRECISION ASPECT,ASPRAD,PI

DATA THETALSI, MANNGN/0335!. PI/3.141592653589794/

DATA MAXNOD/4/ LEVELT/O/ HUPLIM/IOJ HLOLlMl-O.1E-06/

DATA GHNEW.GOXNEW.GOYNEW/60*O.I

ITRACK = 8

OPEN(1,F|LE ='SY$TEM.IN')

OPEN(3.F|LE='STORM.IN')

OPEN(7.FILE='STREAM.OUT')

OPEN(ITRACK.F|LE='TRACE.OUT')

READ(1,IO) TITLE

FORMAT(4OX.4OA)

WRITE(7,20) TITLE

WRITE(ITRACK.20) TITLE

FORMAT(/.5X.4OA./)

ILEVEL = LEVELT+1

WRITE(6.70)

FORMAT(lX,‘Enter the program tracing (debug) level: ‘)

READ(*.*) LTRACE

WRITE(ITRACK.60) LTRACE

FORMAT(/,10X.'The program tracing level is 212)

WRITE(6.72)

FORMAT(SX.'Executing MAINSTRM: Running main program.')

Determine the total number of elements and nodes in the global system:

CALL COUNT(ILEVEL.NELTOT.NODTOT)
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C Determine which elements and nodes and their coordinates

C are associated with the subsystem selected for analysis:

CALL SUBSYS(ILEVEL.NELTOT.NODTOT)

C Construct the global stiffness and capacitance matrices and the

C force vector:

CALL BUILDG(|LEVEL.NELTOT)

C Modify the global matrices:

Call MODGMOLEVEL)

READ(3,10) TITLE

WRITE(ITRACK,20) TITLE

WRITE(7.20) TITLE

WRITE”. 722) (NODE(I),I= 1,NP)

722 FORMAT(SX. IOOI 10)

ILEV 1 =ILEVEL+ 1

IFlILEV1.LE.LTRACE) WRITEUTRACK, 1 O 2)

102 FORMAT(SX.'Executing time 'oop...')

MAXSOL = NPlIlO

Mama“ BEGIN TIME DEPENDENT CALCULATIONS “*4"..qu

C Read the rainfall at the beginning of the time period:

READ(3,23 7) HOUR.MINUTE,RAINN

237 FORMAT(IZ. 1X.|2,F 10.5)

TSTART = (HOUR*60.+MINUTE)*60

TIMEN ‘4 TSTART

DELTAT=O

WRITE(6,235) HOUR,M|NUTE.RAINN,DELTAT

|F(|LEV1 + 2.LE.LTRACE) THEN

WRITEllTRACK.'(1X)')

WRITE(|TRACK,235) HOUR,MINUTE,RAINN.DELTAT

235 FORMAT(SX.'At ',12,':'.|2,' rain intensity is ‘.

1 EIO.3.' ftlsec DELTAT s ‘, F5.l,‘ sec.‘)

ENDIF

WRITE(7.720) HOUR.MINUTE.(GQRE$(I).| = 1,NP)

WWSTART TIME LOOP annemeauaaamauuuaa

1000 DO 2000 ITlME=1,1000

TIMEO TIMEN

RAINO RAINN

READ(3.237,ERR=3000) HOUR,MINUTE,RAINN

TIMEN = (HOUR'60+MINUTE)*60

DELTAT = TIMEN - TIMEO

IF(DELTAT.LT.O) THEN

WRITE(6.236)

236 FORMAT(IX,'TIME STEPS NOT CONSECUTIVE. PROGRAM STOPPED.')

STOP
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ENDIF

WRITE(6.235) HOUR,MINUTE.RAINN.DELTAT

IF(ILEV1 + 2.LE.LTRACE) THEN

WRITEIITRACK,‘( I XI‘)

WRITEIITRACK.235) HOUR.MINUTE,RAINN.DELTAT

ENDIF

Assign the last computed values to the Cold‘ locations:

00 1030 I = 1,NP

GHOLD(I) 3 GHNEWII)

GQXOLDU) = GOXNEWU)

GQYOLDll) = GQYNEWH)

CONTINUE

Multiply the global capacitance matrix times the old depth values:

DO 497 l=1, NP

GCHOLD(I) = 0.0

00 497 K=1,NP

GCHOLD(I) = GCHOLD(I) + GCM(I.K)*GHOLD(I<)

CONTINUE

NSOLV= O

a H I"! H *I N START SOLUTION LOOP in! H a *4: H in:

300

301

600

610

700

704

WRITE(6.'(1X)’)

ILEV4=ILEV1 +3

NSOLV=N$OLV+ 1

IF(ILEV4.LE.LTRACE) THEN

WRITE(|TRACK.'( 1X)’)

WRITE(|TRACK,3O 1) NSOLV

ENDIF

WRITE(6.301) NSOLV

FORMAT('+‘,4X.'Executing solution iteration number',l4)

Compute the flow in each direction:

IFILE= 1

DO 700 l=1,NP

GHTRYII) 8 GHNEWU)

NSKIP=NELTOT+NODE(II+ 1

CALL SKIP(IFILE,NSKIP)

READIIFILE.610) SLOPE, WIDTH

FORMAT(ZSX.2F 10.3)

GOXNEWU) = 1.486/MANNGN 4* SLOPEflOE It GHTRY(I)*I(5./3.)

IF(WIOTH.GT.O) GOXNEWII) = GOXNEWO) It WIDTH

GQX(I) = (1.-THETA)*GQXOLD(I) + THETA It GOXNEWU)

GQY(I) = (l.-THETA)*GOYOLD(I) + THETA I! GOYNEWII)

GRF(I) = (1.-THETA)*GF(I)*RAINO + THETA It GF(l) It RAINN

CONTINUE

Write intermediate results:

IF(ILEV4+ 1.LE.LTRACE) THEN

WRITE(ITRACK,704)

FORMAT(ISX,’ NODE GHTRY GOXNEW GOYNEW GOX‘.
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1 ' GOY GRF')

WRITE(|TRACK.706) (NODE(I).GHNEW(I).GQXNEW(I).GOYNEW(|).

1 GQX(I),GQY(I).GRF(I).I = 1.NP)

FORMAT(SX.I5.6E 1 2.4)

ENDIF

Multiply the global X-stiffness matrix times the X-flow vector:

00 498 I=1, NP

GSMOXU) 8 0.0

DO 498 K=1,NP

— GSMOXO) 8 GSMQXll) + GSMX(I.K) It GQX(K)

CONTINUE

Multiply the global Y-stiffness matrix times the Y-flow vector:

00 499 Isl. NP

GSMOYII) = 0.0

00 499 K=I,NP

GSMQYII) : GSMOYU) + GSMYII,K) * GOY(K)

CONTINUE

Compute the global SUM vector:

00 900 I=1.NP

GSUM(I) = GCHOLD(I) + DELTAT 4* ( GRF(I)-

I (GSMOXII) + GSMQY(I)) )

CONTINUE

Write intermediate results:

lF(lLEV4.LE.LTRACE) THEN

WRITEIITRACK.904)

FORMAT(ISX.’ NODE CHOLD GSMOX GSMOY GSUM‘)

WRITE(ITRACK.906) (NODE(I),GCHOLD(I).GSMOX(I).GSMOY(I).

1 GSUM(I).I= I,NP)

FORMAT(SX.I5.4E 1 2.4)

ENDIF

Solve the system of equations 'bGCM'hIt‘laGHNEW‘lFVzGSUM'h

N= 20

CALL SLVSYSIGCM.GHNEW.G$UM.NP,N)

Check estimated depth against result

FLAG = 0.

DO 1400 I=1.NP

IF(ABS(GHNEW(I)-GHTRY(I)).LT.1.E-08) GO TO 1400

FLAG = 1.

CONTINUE

If all differences are within tolerance. go to next time step.

IFIFLAGEQOI GO TO 1997

lF(NSOLV.GE.MAXSOL) THEN

WRITE(6.1440) MAXSOL

FORMAT('+',5X.'Solution considered convergent after ',l4,

+ ' iterations.)

GO TO 1930
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ENDIF

I

C Compare solution at each node with upper and lower limits:

DO 1500 I=1.NP

|F(GHNEW(I).LT.0) THEN

lF(GHNEW(l).LT.HLOLIMI THEN

WRITE(ITRACK.7 I 2)

7 1 2 FORMAT(5X.'NODE DEPTH')

WRITE(ITRACK.7 1 5)(NODE(J).GHNEW(J).J= ‘I.NP)

7 1 5 FORMAT(SX,I4.E 1 2.4)

WRITE(ITRACK. 1520)

WRITE(6. 1520)

1520 FORMAT(SX,'SOLUTION FOR FLOW DEPTH IS NEGATIVE. ',

+ 'PROGRAM EXECUTION STOPPED.')

STOP

ELSE

GHNEW(I)=0.

WRITE(6.1521) NODE(I)

1521 FORMAT(SX.'SMALL NEGATIVE FLOW DEPTH AT NODE ',l4,

1 '. 0 DEPTH ASSUMED.'/)

ENDIF

ELSEIHGHNEWO).GT.HUPLIM) THEN

WRITE(ITRACK.7 1 2)

WRITE(ITRACK, 7 1 5)(NODE(J).GHNEW(J).J= 1,NP)

WRITE(6. 1530) HUPLIM.NODE(I)

WRITE(ITRACK. 1530) HUPLIM.NODE(I)

1530 FORMAT(10X'SOLUTION FOR FLOW DEPTH I‘: ‘.I'-'5.1.

1 'AT NODE ',I4.'. PROGRAM EXECUTION STOPPED.')

STOP

ENDIF

1500 CONTINUE

C lterate solution again:

GO TO 300

Hui-tun“ ENDSOLUTIONLOOP «Banana

1997 CONTINUE

1999 IF(ILEV4.LE.LTRACE) WRITE(6.1920) NSOLV

1920 FORMAT(‘+'.5X,'Solution converges after ',I3.' iterations.‘)

C Compute resultant flow for each direction:

1930 DO 1940 I=1.NP

1940 GORES“) 8 SORT(ABS(GOXNEW(I))**2.+ABS(GOYNEW(I))**2.)

|F(|LEVEL+ 1.LE.LTRACE) THEN

WRITE(ITRACK.702)

702 FORMAT(ISX.'NODE DEPTH FLOWX FLOWY TOTAL FLOW')

WRITE(ITRACK.705) (NODE(I).GHNEW(I).

1 GQXNEW(I).GOYNEW(I).GORESO),I= 1,NP)

705 FORMAT(SX,I4,4E12.4)

ENDIF

WRITE(7,720) HOUR. MINUTE. (GORESII).I=I,NP)

720 . FORMAT(3X,I2.':',I2.2X, l 005 10.3)
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2000 CONTINUE ‘

WWEND TIME LOOPW

3000 CONTINUE

3001

WRITE(6.3001)

IF(ILEVEL.LE.LTRACE) WRITE(ITRACK.300 I)

FORMAT(l/.1X,'END OF PROGRAM REACHED')

STOP

END

”WWW
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SUBROUTINE BUILDG(LEVELT.NELTOT)

This subroutine reads the nodal coordinates associated with each

element. rotates the element so that the local X axis lies in the

direction of the element aspect angle.

and sends the transformed coordinates to MATRIC for computation of

element matrices. ASSMBL is called to place the coefficients of

the element matrices into their respective positions in the global

matrices.

Subroutine arguments LEVELT and NELTOT are sent TO this subroutine.

ASPECT = The aspect angle (degrees) for an element

ASPRAD 8 The aspect angle (radians) for an element.

GLOBALI . ) = Global coordinates associated with an element

GTRANI . ) 3 Transformed global coordinates.

LABELE( ) = Array of element numberals associated with subsystem.

MAXNOD = Maximum number of nodes which is associated With any

element in the subsystem.

NELEMS = Number of elements associated with the subsystem.

NELTOT = Total number of elements in the global system.

NNODEU ) 8 Array of nodes associated with an element.

SLOPE( ) = Slope at a node.

TRANSFI . ) = Transformation matrix.

WlDTH(l) = Width of linear element at node I.

COMMON/ELEMS/NELEMS.LABELE(20)

COMMON/TRACE/LTRACE,ITRACK

DIMENSION GLOBAL(4.2).NNODEL(4).W|DTH(4).SLOPE(4)

DIMENSION TRANSF(2.2),GTRAN(4.2)

DOUBLE PRECISION PI,ASPECT,ASPRAD

DATA Pl/3. 141592653589 79400!

DATA MAXNOD/4/

ILEVEL =LEVELT+ 1

WRITE(6. 10)

IF(ILEVEL.LE.LTRACE) WRITE(ITRACK. 10)
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FORMAT(SX.'Executing BUILDG: Building global matrices.)

WRITE(6.1 I) I

FORMATIIX)

DO 600 INDEXE= 1.NELEMS

IFILE=1

NSKIP=LABELEIINDEXEl

CALL SKIP(IFILE.NSKIP)

READ(IFILE. 1 20) NELEM.(NNODEL(J).J= 1.MAXNOD).ASPECT

FORMAT(5I5.F 1 0.2)

WRITE(6.130) NELEM

IF(ILEVEL+2.LE.LTRACE) WRITE(ITRACK.130) NELEM

FORMAT(‘+',4X,'Computing matrices for element number ',I3)

Determine how many nodes are associated with the element:

NODSEL =MAXNOD

DO 160 J=1.MAXNOD _

lF(NNODEL(J).EQ.O) NODSEL=NODSEL- 1

Determine the element matrices:

DO 560 I=1.NODSEL

NSKIP = NELTOT+NNODEL(I)+1

CALL SKIP(|F|LE.NSKIP)

READ(1.540) NODNUM.(GLOBAL(I.J).J= 1.2).SLOPE(|).WIDTH(I)

FORMAT(I5.4F 10.2)

CONTINUE

IF(NODSELEQZ) THEN

CALL LINMAT(ILEVEL,NODSEL.NNODEL.GLOBALWIDTH)

GO TO 599

ENDIF

ASPRAD =Pl/ 180.DO*ASPECT

Compute the coefficents of the transformation matrix:

TRANSFI 1. 1)= DSIN(ASPRAD)

TRANSH 1.2)= DCOSIASPRAD)

IF(ABSIASPECT).EO. 90.) TRANSH I. 2)= 0.

TRANSF(2. 1)- -TRANSF(1.2)

TRANSF(2.2)= TRANSFIIJ)

IF(ILEVEL+2.LE.LTRACE) WRITE(ITRACK.714) ASPECT,ASPRAD

FORMAT(SX,'Element aspect angle is ',F6.2,

' degrees or '.F7.4,‘ radians.‘)

IF(ILEVEL+4.LE.LTRACE) THEN

WRITE(ITRACK.716)

FORMAT(ISX.'Coordinate transformation matrix:')

WRITE(ITRACK. 7 18)((TRANSF(I.J).J= 1,2),l= 1,2)

FORMAT(SX.2E 10.3)

ENDIF

Transform the global coordinates:

DO 730 I=1.NODSEL

DO 726 J=1.2
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GTRANII.J)=0.

DO 726 K=1,2 I

GTRANII.J)=GTRANII.J)+TRANSFIJ.K)OGLOBAL(I.I<I

CONTINUE '

CONTINUE

lFllLEVEL+3.LE.LTRACEI THEN

WRITE(ITRACK,5 I 0)

FORMAT(SX.'The following coordinates are associated with ',

1 'this element'./.5X.' NODE XGLOBAL YGLOBAL'.

2 ' Slope Xlocal Ylocal')

DO 542 I=1.NODSEL

WRITE(ITRACK.550) NNODELIIMGLOBALII.J).J= 1,2).SLOPEII).

1 (GTRAN(|.J).J= 1. 2)

FORMAT(SX.I5,5F I 0.2)

WRITE(ITRACK,'( 1X)')

ENDIF

Determine the element matrices:

CALL MATRIC(ILEVEL.NODSEL.NNODEL.GTRAN)

Add the element matrices to the global matrices:

CALL ASSMBLIILEVELNODSEL,INDEXENELEMSNELEM.NNODEL)

CONTINUE

End element loop.

WRITE(6.660)

IF(ILEVEL+ 1.LE.LTRACE) WRITE(ITRACK.660)

FORMAT(‘+',4X.'Returning from BUILDG: '

1 'Global matrices complete.',/)

RETURN

END

mama"
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SUBROUTINE COUNT(LEVELT,NELEMSNODSYS)

This subroutine determines the total number of nodes and elements

in the major global system data file. This permits subsequent

reading from the correct lines of input data.

The subroutine arguments NELEMS and NODSYS are passed FROM the

subroutine.

NELEMS = The total number of elements in the major global system.

NODSYS = The total number of nodes in the major global system.

COMMON/TRACE/LTRACE,ITRACK

DATA IFILE/ 1/

ILEVEL =LEVELT+ 1

IF(ILEVEL.LE.LTRACE) THEN
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WRITE(ITRACK. 10)

WRITE(6.10) I

10 FORMAT(SX.'Executing COUNT: Counting nodes and elements in '.

1 'global system...)

ENDIF

C Skip the record containing input column headings:

NSKIP=1

CALL SKIP(IFILE. 1)

100 DC 200 IELEM=1,100

READ(1. 1 20.ERR=220) NELEM

1 20 FORMAT(IS)

NELEMS = IELEM

200 CONTINUE

220 NSKIP=NELEMS+2

CALL SKIP(|FILE.NSKIP)

DO 400 lNODE=1,100

READ( 1. 1 20.ERR=420) NODNUM

NODSYS = INODE

400 CONTINUE

420 IF(ILEVEL+2.LE.LTRACE) THEN

WRITE(ITRACK.80) NELEMSNODSYS

80 FORMAT(ISX.'TotaI number of elements in global system= ‘.l3.

1 /5X,‘Total number of nodes in global system= '.l3./)

ENDIF

IF(ILEVEL+1.LE.LTRACE) THEN

WRITE(6.510)

WRITE(ITRACK.510)

510 FORMAT(SX,‘Returning from COUNT: Counting complete.',/)

ENDIF

RETURN

END

WWW
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PROGRAM MAINSTRM

This program finds a linear solution to a finite element overland

flow problem for a global system of two-dimensional elements.

Units of measurement are taken from the English System.

To avoid internal storage of large amounts of data. this program

reads element and node information from external files as needed.

In the variable listing below, the X-direction is identical to the

direction of flow at a given node.0
0
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DELTAT = Length (seconds) of time step.

GCHOLD( ) = GCM( . ) it GHOLD(2) .

GCM( . ) 8 Global Capacitance Matrix f T

j‘lzN'b 'laN‘lz

GFI ) = Global Force vector

GHNEWII) = Flow depth H (feet) at node I at end of current

time step.

GHOLD(I) 8 Flow depth H (feet) at node I at end of previous

time step.

GHTRY(I) 3 Flow depth H (feet) at node I tried for solution

iteration. When solution GHNEW is close to GHTRY,

solution is accepted.

GQRII) = Resultant of flow rate per unit width (ftflZ/sec) in X

and Y directions at node I.

GQXII) = Weighted flow rate per unit width (ftH2/sec) in

X-direction at node I for given time step.

GQXNEWO) = Flow rate per unit width (ftflZ/sec) in X-direction

at node I at end of current time step.

GOXOLDO) = Flow rate per unit Width (ftHZ/sec) in X-direction

at node I at tend of previous time step.

GRF( ) = GF 1* 'bweighted rainfall'lz

GSMX( ) = Global Stiffness Matrix for X-direction f T

j'bN'b Vsz/dx'b

GSMOXI ) = GSMX it GOX

HLOLIM = Negative tolerance for flow depth H (feet).

HUPLIM Largest expected flow depth H (feet).

INDEXNI ) 3 Index for array of node numbers.

NODE( ) 8 Array of node numbers.

NP = Total number of nodal points being evaluated.

NSOLV = Solution iteration number.

MANNGN = Mannings N.

MAXNOD = Maximum number of nodes associated with an element in

the system.

MAXSOL = Maximum number of solution iterations expected.

PI = 3.14159...

ONEW = Flow rate per unit width at a node calculated

from GHTRY(I).

RAINN a Rate of rainfall at end of present time step (ftlsec).

RAINO = Rate of rainfall at end of previous time step (ftlsec).

SLOPE = Slope (ft/ft) at a node.

SLOPEX = Slope (ft/ft) in X direction at a node.

THETA 8 Weighting coefficient.

TIMEN = Clock time (seconds) at end of present time step.

TIMEO = Clock time (seconds) at end of previous time step.

Tracing definitions:

ILEVEL = Tracing level for downstream write statements.

ITRACK = File to which results of intermediate calculations are

written.

LEVELT = Tracing level relative to the calling program.

LTRACE = Tracing level for entire program.

WNW”§QN”W§H§
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SUBROUTINE MATRICILEVELT.NODSEL.NSEND.GLOBAL)

I

This subroutine calculates the stiffness and capacitance matrices

and the force vector for a triangular or 'quadrilateral element

havmg a node at each corner.

Subroutine arguments LEVELT.NODSEL.NSEND,XGLOBL.YGLOBL are sent TO

this subroutine. Coefficients of KX,KY,C.F are sent FROM this

subroutine via COMMON/ELMATS.

B( . ) 8 Matrix containing the derivatives of shape function N

with respect to the global coordinate system

BII. I a ‘lsz/dxlh

8(2. ) = 'thldy'A

CI . ) =- Capacitance matrix for the element = f T

j‘lzN‘l: 'bNI‘:

DNDNAT(I.J) = Array of derivatives of N with respect to KSI (I=1) and

ETA (I=2) in Cnatural' coordinate system.

FI ) = Force vector for the element

GLOBAL( .J) = Array of X (J=1) and Y (J=2) coordinates for an element.

ILEVEL = Tracing level used for debugging this subroutine.

IJACOBII,J) = Inverse of JACOBian matrix.

JACOB(I.J) JACOBian matrix of partial derivatives of global

coordinates with respect to natural coordinates

ETA and KSI.

Kx( . ) =- Stiffness matrix with respect to rotated local direction X.

= f T

j'hNVz Vsz/dx'lz

KY( . ) a II II N I U N I N Y

LEVELT = Tracing level sent from upstream program

NODSEL = Number of nodes associated with the element.

NSENDI ) = Node numerals assocmted with the element

VNII) = Shape function N at node I in Cnatural' coordinate system

for given integration point.

Dhatt. G. and G. Touzot The finite element method displayed

John Wiley and Sons. NY, 1984. 509pp. (See pp. 45, 102.)

n
o

o
n

n
o
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n

0
n
o
n

0
0
0

Segerlind. L. Applied finite element analysis (2nd ed). John Wiley

and Sons. NY, 1984. 427pp. (See pp. 73. 365. 372-374.)

COMMON/ELMATS/KX(4,4).KY(4,4).C(4,4).F(4)

COMMON/TRACE/LTRACE.ITRACK

DIMENSION VN(4).DNDNAT(2, 4).NSEND(4).GLOBAL(4. 2).B( 2. 4)

REAL KX.KY, JACOB(2,2).IJACOB(2,2)

ILEVEL=LEVELT+ 1

IF(ILEVEL.LE.LTRACE) WRITE(ITRACK. 1 2)

12 FORMAT(SX.'Executing MATRIC: Calculating elemental matrices.)
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315
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lFIILEVEL+2.LE.LTRACE) WRITE(ITRACK.16) NODSEL

FORMAT(5X.'There are ',I2.‘ nodes associated with this element)

IF(ILEVEL+3.LE.LTRACE) THEN

WRITE(ITRACK. 1 7)

FORMAT(I 1 2X.'NODE'.8X,'X'. 14X,'Y')

WRITE(ITRACK. 18) (NSEND(I),(GLOBAL(I.J).J= 1.2).|= 1.NODSEL)

FORMAT(4(10X,15.2E15.6./))

ENDIF

Initialize the element matrices:

DO 200 I=1.NODSEL

DO 190 J=1,NODSEL

C(I.J) 8 O.

KX(I,J) 8 O.

KY(I.J) = 0.

CONTINUE

FII) = 0.

CONTINUE

IF(NODSELEQ 4) INTPTS

IF(NODSELEQ. 3) INTPTS II
II

‘

ILEV5=ILEVEL+5

DO 2000 INTPT = 1,1NTPTS

IF(NODSELEQ4) CALL QSHAPE(ILEV5,INTPT,VN,DNDNAT)

IF(NODSEL.EO.3) CALL TSHAPE(VN.DNDNAT)

Calculate the Jacobian matrix: JACOB=DNDNATsGLOBAL

DO 499 I=I.2

DO 499 J=I,2

JACOBII.J) = 0.0

00 499 K=1.NOOSEL

JACOBII.J) = JACOBII.J) + DNDNATII,K) It GLOBAL(K,J)

CONTINUE

Determine the inverse of the Jacobian matrix:

CALL INV2X2(JACOB,IJACOB.DETJAC)

Multiply : IJACOB it DNDNAT 8 8

DO 498 I=1, 2

DO 498 J=1. NODSEL

B(l.J) = 0.0

DO 498 K=1.2

B(l.J) = B(l.J) 4’ lJACOB(I.K)*DNDNAT(K.J)

CONTINUE

IF(ILEVEL + 5.LE.LTRACE) THEN

WRITE(ITRACK.3 i 5)

FORMATI/5X."b—————JACOBIAN----- Ix: l‘z- - - -JACOBIANinv- - -m

00 3 16 I= 1,2

WRITE(ITRACK.318)(JACOB(I.J).J= 1.2).(lJACOB(|,J).J= 1.2)
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3 18 FORMAT(SX.2E10.3.5X,2E10.3)

WRITE(ITRACK.3 10) INTPT

310 FORMAT(ISX.'8 matrix at integration point‘,l2,' :)

WRITE(ITRACK.31 1) (NSEND(J).J= 1.NODSEL)

31 1 FORMAT(SX.I5,5X.I5.5X,l5.5X.l5)

' DO 312 l=1,2

312 WRITE(ITRACK.314) (B(l.J).J=1,NODSEL)

3 1 4 FORMAT(SX.8E10.3)

ENDIF

IF(NODSEL.EQ.3 .AND. ILEVEL+4.LE.LTRACE) THEN

AREA=ABS(DETJAC/2.)

WRITE(ITRACK.510) AREA

510 FORMAT(SX.’Area of triangle = '.E10.4)

ENDIF

C Compute the element matrices:

IF(NODSEL.EQ.4) WC = 1.0

IF(NODSEL.EO.3) WC = O 5

SCALAR = we . ABSlDETJAC)

700 00 800 I=1.NODSEL

710 00 790 J=1.NODSEL

C The capacitance matrix C is the sum over the integration

C points of N'lztranspose * N multipled by a scalar value.

C(|,J) = C(I,J) + VN(I) If VN(J) 1' SCALAR

C The stiffness matrix K is determined for each direction as

C the sum over the integration points of N'lztranspose If B

C multiplied by a scalar value

KX(I.J) = KXII.J) + VN(I) it B(l.J) 9 SCALAR

KYII.J) = KY(I.J) + VN(I) If B(2.J) 4' SCALAR

790 CONTINUE

C The force vector P is the sum over the integration points

C of N multiplied by a scalar value.

HI) = F(l) + VN(I) * SCALAR

800 CONTINUE

2000 CONTINUE

C Write the element matrices:

2010 lFIlLEVEL+4.LE.LTRACE) CALL WRITEM(4,NODSEL,NSEND.I<X,KY,C,F)

IF(ILEVEL+ 1.LE.LTRACE) WRITE(ITRACK,2 1 40)
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2140 FORMAT(5X.'Returning from MATRIC: Elemental matrix complete/J)

RETURN ‘

END

"MWWWWWWWWWW

SUBROUTINE QSHAPE(LEVELT.INTPT,VN,DNDNAT)

For a quadrilateral having a node at each corner. this subroutine

determines the shape functions and the derivatives of the shape

function with respect to the natural (KSI-ETA) coordinate system.

Subroutine argument INTPT is passed TO this subroutine. while

subroutine arguments VN and DNDNAT are passed FROM this subroutine.

INTPT = Number associated with the integration point in the KSI-ETA

coordinate system.

VKSINII) = Value of KSI at node I in chatural' coordinate system.

( = Abscissa of node I " “ " " )

VETAN(I) = Value of ETA at node I “ “ " "

( = Ordinate of node I " " “ " )

XINTEG(I) = Abscissa of integration point in Cnatural‘ coord. system.

YINTEG(I) = Ordinate of integration point in Cnatural' coord. system.0
0

0
0
0
0
0
0
0

0
0

0
0
0

COMMON/TRACE/LTRACE,ITRACK

DIMENSION VKSIN(4).VETAN(4).XINTEG(4).YINTEG(4).VN(4).DNDNAT(2,4)

DATA VKSIN/-1.0. 1.0. 1.0, -1.0/. VETAN/-1.0. -1.0. 1.0. 1.0/

Calculate the location of the integration points in the Cnatural'

KSI-ETA coordinate system for the linear quadrilateral.0
0
0

ILEVEL=LEVELT+ 1

IF(ILEVEL.LE.LTRACE) WRITE(ITRACK. 10)

10 FORMAT(SX.'Executing OSHAPE: Determining shape functions for ‘,

1 ‘an integration point.)

WHERE = .577350

00 100 l=1.4

XINTEG(I) = WHERE it VKSIN(I)

YINTEG(I) = WHERE * VETAN(I)

100 CONTINUE

C At each integration point :

DO 450 I=1,4

C Compute the shape function N at each node I:

VN(I) = 0.25 if (1.+VKSIN(I) it XINTEG(INTPT))

+ * (I.+VETAN(II It YINTEG(INTPTI)

C Compute the derivatives of N wrt natural coordinates:
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DNDNAT(1.I) = 0.25 ii VKSIN(I) . (1+VETANII) . XINTEG(INTPT))

DNDNAT(2.|) = 0.25 i VETAMI) a (1+VKSIN(I) a YINTEG(INTPT))

450 CONTINUE

IF(ILEVEL + 2.LE.LTRACE) THEN

WRITE(ITRACK.460)

460 FORMAT(I,5X,‘INTPT XINTEG YINTEG VN 1 VN2 ',

+ ' VN3 VN4'I

WRITE(ITRACK.4 70)INTPT,XINTEG(INTPT).YINTEG(INTPT).

+ (VNIII,I= 1.4)

470 FORMAT(SX.I3.2X,6F 10.5)

WRITE(ITRACK.52 1)

52 1 FORMAT(ISX.'DNDNAT :')

WRITE(ITRACK.522) ((DNDNAT(I.J).J= 1.4).I= 1.2)

5 2 2 FORMAT(SX.4E 1 0.3)

ENDIF

|F(|LEVEL+ 1.LE.LTRACE) WRITE(ITRACK,6 1 O)

610 FORMAT(SX,‘Returning from OSHAPE.',/)

RETURN

END

WWW

SUBROUTINE TSHAPE(VN.DNDNAT)

DIMENSION VN(4).DNDNAT(2.4)

DO 100 I=1,3

100 VN(I) = 1./3.

DNDNAT( 1, l)

DNDNAT( 1 . 2)

DNDNAT( 1.3)

DNDNAT(Z, I)

DNDNAT(Z. 2)

DNDNAT(Z.3)

4
9
,
-
:

i
i
i
i
i
i
i
i
i
i
i
i

d
o

I

_
a

.
_

.

RETURN

END

HWNWWWNW"*mfl’flfl’fllilfliflfl'iitlfifl{*fl'fiflfltflflm

SUBROUTINE INV2X2(RM. RINV, D)

DIMENSION RM(2.2). RINV(2.2)

FIND THE INVERSE OF A 2 X 2 MATRIX (LE)

-1

VI 3 b 'h 'h d/D -b/D '150
0
0
0
0
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C ‘h 1‘: = V: V:

C V: c d 'I: 'h -c/D a/D '7‘: ‘

C

C

C WHERE

C

C 'Aa 0'}:

C D = det V: V:

C '60 we

C

C AND

C 0 .NE. 0

C

D = RM(1,1) 1' RM(2.2) - RM(2.1) ff RM(1.2)

IF(ABS(D).LT. 0.0001) THEN

WRITE(*.*)'2 X 2 MATRIX IS SINGULAR'

STOP

ENDIF

RlNV(1.1) = RM(2.2) / D

RlNV(1,2) = -RM(1.2) / D

RINV(2,1) = -RM(2.1) / D

RlNV(2,2) = RM(1.1) / D

RETURN

END

flflfliifliiiiflWiifliflifliflflflQSflIIflflflQiflflflflflIflfliflifliflflflfl*flfl*flflfiflfiiflflfllifliiiliiiiiifl

*********fi*****§*****§***************************i!****§***§*****§*****§***fl

SUBROUTINE SKIPIIFILENSKIP)

C This subroutine skips to the selected line in an input file:

REWIND IFILE

DO 100 I=1.NSKIP

100 READ(IFILE.'(1X)‘)

RETURN

END

flfl*flflfli*flfliiflfl*flflflflflfifl!!****flifl*§*fl*fi*fl*flflii***fl***fl*****fl*§***********ii”!i

$1NCLUDE:'COUNT.FOR'

$1NCLUDE:'SUBSYS.FOR‘

$1NCLUDE:'BUILDG.FOR'

$1NCLUDE:'L|NQUIK.FOR'

SINCLUDE:'MATRIC.FOR'

$1NCLUDE:'ASSEMBLE.FOR‘

$1NCLUDE:'MODGM.FOR'

$lNCLUDE:'SLVSYS.FOR'

$lNCLUDE:'WRITEM.FOR'

*****************i*fl*fliflflflfli*Qfli*flflflflflfl*flfiflfiflifl*§*fl*§*§*fiiflifl*§**********§**

SUBROUTINE MODGM(LEVELT)

 



0
0

0
0

10

100

110

190

200

260

310

0
0

181

This subroutine modifies the stiffness and icapacitances matrices

and the force vector for the global subsystem.

Subroutine argument LEVELT is sent TO this subroutine. which refers

to the global matrices Via COMMON/MATRIX

COMMON/MATRIX/GSMX(20. 20).GSMY(20, 20).GCM(20. 20).GF(20)

COMMON/NODES/NODSUB,N8W.NODE(20).INDEXN(20)

COMMON!BOUND]NKNOWN.NBOUND(20).BVALUE(20)

COMMON/TRACE/LTRACE.ITRACK

ILEVEL=LEVELT+ I

IF(ILEVEL.LE.LTRACE) THEN

WRITE(6.10)

WRITE(ITRACK. 10)

FORMAT(SX.'Executing MODGM: Modifying global matrices.)

ENDIF

DO 200 IBOUND=1,NKNOWN

INDEX=INDEXMNBOUNDUBOUND»

DO 190 IJ=1.NODSUB

GSMX(IJ,INDEX)=O.

GSMX(INDEX,|J)=O.

GSMY(IJ.INDEX)=O.

GSMY(|NDEX,|J)=O.

GCM(IJ.INDEX)= O.

GCM(INDEX.IJ)=O.

CONTINUE

GF(|NDEX)=0.

GCM(INDEX.INDEX)= 1.

CONTINUE

IF(ILEVEL+2.LE.LTRACE) THEN

Write the modified global matrices:

WRITE(ITRACK,260)

FORMAT(SX,’The MODIFIED global matricesz')

NDIMSZO

CALL WRITEM(NDIM.NODSUB.NODE,GSMX,GSMY,GCM.GF)

ENDIF

IF(ILEVEL+ 1.LE.LTRACE) THEN

WRITE(6.3 10)

WRITE(ITRACK.3 1 0)

FORMAT(SX,'Returning from MODGM: Modification complete.'./)

ENDIF

RETURN

END

subroutine slvsys(a.x,b,n,np)

physical dim logical dim
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: coeff matrix (np x np) (n x n used)

: soln matrix (an i (n used)

: right hand side of eqn (no) In used)

: physical dimensions of a.x and b (how big it really it is)

: logical dimensions of a,x and b (how much you use)

x
u

3
3
0
'

‘
O

dimension a(np.np),x(np).b(np)

dimension awork(20,20). bwork(20.1)

do 100 i=1.n

do 200 j=1,n

aworkli.j) = all.j)

continue

bwork(1.1) = b(i)

conflnue

call gaussj(awork.n.20,bwork. 1, I)

do 300 i = 1.n

x(i) = bwork(i,1)

conUnue

return

and

SUBROUTINE GAUSSJ(A.N.NP.B.M.MP)

solves the set of matrix eqns:

A'hxl x2 an: = Vzbl b2 ana

to solve for: Ax=b call with:

CALL GAUSSJ(A.N.NP,B. 1, 1)

From:

Press, W.H., B.P. Flannery, S.A. Teukolsky, W.T. Vetterling.

Numerical recipes, the art of scientific computing. Cambridge

University Press. Cambridge. 1986. pp. 19-29.

PARAMETER (NMAX=50)

DIMENSION A(NP.NP).B(NP.MP).IPIV(NMAX).INDXR(NMAX),INDXC(NMAX)

DO 11 J=1.N

IPIV(J)=O

CONTINUE

DO 22 I=1,N

BIG=0.

DO 13 J=1,N

IF(IPIV(J).NE. ”THEN

DO 12 K=1,N

IF (IPIV(K).EQO) THEN

IF (ABS(A(J.K)).GE.BIG)THEN

BIG=ABS(A(J.K))

IROW=J

ICOL=K

ENDIF

ELSE IF (IPIV(K).GT.1) THEN
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PAUSE 'Singular matrix'

ENDIF ,

CONTINUE

ENDIF

CONTINUE '

IPIV(ICOL)=IPIV(ICOL)+

IF (IROW.NE.ICOL) THEN

DO 14 L=I.N

DUM=A(IROW,L)

A(IROW.L)=A(ICOL.L)

A(ICOL.L)=DUM

CONTINUE

DO 15 L=I,M

DUM=B(IROW.L)

B(IROW.L)=8(ICOL,L)

8(lCOL.L)=DUM

CONTINUE

ENDIF

INDXRII)=IROW

INDXC(|)=ICOL

IF (A(ICOL.ICOL).E0.0.) PAUSE 'Singular matnx.’

PIVINV= 1./A(|COL.|COL)

A(ICOL,ICOLI= 1.

DO 16 L=1,N

A(ICOL,L)=A(ICOL,L)*PIV|NV

CONTINUE

DO 17 L=I,M

8(lCOL.L)88(ICOL.L):lPIVlNV

CONTINUE

DO 21 LL=1.N

IF(LL.NE.ICOL)THEN

OUM=A(LL,ICOL)

A(LL.ICOL)=0.

DO 18 L=1,N

A(LL.L)=A(LL.L)-A(ICOL.L)*OUM

CONTINUE

DO 19 L=I,M

8(LL.L)=B(LL,L)-B(ICOL.L)*DUM

CONTINUE

ENDIF

CONTINUE

CONTINUE

DO 24 L=N,1.-1

IF(INDXRIL).NE.INDXCIL))THEN

DO 23 K=1.N

OUM=A(K.INDXR(L))

A(K,INDXR(L))=A(K,INDXC(L))

A(K.|NDXC(L))=DUM

CONTINUE

ENDIF

CONTINUE

RETURN

END

wmaaaaaxumnwmmmm
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SUBROUTINE LINMAT(LEVELT,NODSEL.NNODEL.GLOBAL.W|DTH)

Without integrating, this subroutine supplies the capacitance and

stiffness matrices and the force vector for the given linear

element

See Segerlind 1984, pp. 70-71, 371-372. 375-376.

GLOBAL( I 3 Set of node coordinates associated with the element.

C( . ) 8 Capacitance matrix.

EWIDTH = Width of element

F( ) 8 Force vector.

GLOBAL( . ) 8 Array of global coordinates.

KX( , ) 8 Stiffness matrix.

LENGTH =- Length of element

NNODEL( ) 8 Node numbers associated with the element.

WIDTH( ) = Width at a node.

COMMON/ELMATS/KX(4.4).KY(4,4).C(4.4).F(4)

COMMON/TRACE/LTRACE,ITRACK

DIMENSION GLOBAL(4,2).NNODEL(4).WIDTH(4)

REAL KX.KY.NTN(2.2).NTB(2.2),LENGTH

DATA NTN/2,1,1,2/ NTB/-.5.-.5,.5,.5/

ILEVEL=LEVELT+ 1

IF(ILEVEL.LE.LTRACE) WRITE(ITRACK. 12)

FORMAT(SX.'Executing LINMAT: Calculating elemental matrices.)

lFIlLEVEL+2.LE.LTRACE) WRITE(ITRACK,16) NODSEL

FORMAT(SX.'There are ‘.l2.’ nodes associated With this element)

IF(ILEVEL+3.LE.LTRACE) THEN

WRITE(ITRACK. 1 7)

FORMAT(I 1 2X,’NODE',8X,'X', 1 4X,'Y')

WRITE(ITRACK. 18) (NNODEL(I).(GLOBAL(I,J),J= 1,2),I = 1,NODSEL)

E FORMAT(4(10X,I5, 2E15.6./))

[IDIF

LENGTH 8 SQRT( (GLOBAL(I,1)-GLOBAL(2,1))"2.

1 + (GLOBAL(1.2)-GLOBAL(2.2))**2.)

EWIDTH = (WIDTH(1)+WIDTH(2))I2.

DO 900 l=1.2

DO 890 J=1,2

C(I.J) = NTN(I,J) 1' LENGTH/6. If EWIDTH

KX(I.J) = NTB(I.J)

CONTINUE

F(l) = LENGTH/2. 1* EWIDTH

CONTINUE

RETURN

END
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SUBROUTINE ASSMBLILEVELTNRC.IELEM.NELEMS.NUMEL.NSEND) -

This subroutine places the coefficients of an element’s stiffness

matrices. capacitance matrix. and force vector into the proper

positions in the respective global arrays.

All of the subroutine arguments are passed TO this subroutine.

The element matrices are passed from MATRIC via COMMON/ELMATS. The

global matrices are referenced by COMMON/MATRIX.

ECM( . ) 3 Element Capacitance Matrix.

EF( ) = Element Force vector.

ESMXI . ) 8 Element Stiffness Matrix for X-direction.

ESMYI . ) = Element Stiffness Matrix for Y-direction.

GCM( . ) = Global Capacitance Matrix.

GFI ) = Global Force vector.

GSMX( . ) = Global Stiffness Matrix for X-direction.

GSMY( . ) = Global Stiffness Matrix for Y-direction.

INDEXN( ) = Array nodal indices.

NODE( ) = Array of nodal numerals.

NODSUB = Number of nodes in watershed subsystem.

NRC = Number of rows and columns in element matrices.

NSEND 3 Array of node numerals corresponding to the element.

Tracing constants:

ILEVEL = Local (subroutine) tracing level.

ITRACK = Unit to which intermediate values are written.

LTRACE = Global tracmg level.0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

DIMENSION NSEND(4)

COMMON/ELMATS/ESMX(4,4).E$MY(4.4).ECM(4.4),EF(4)

COMMON/TRACE/LTRACE.ITRACK

COMMON/MATRIXIGSMX(20.20).G$MY(20, 20).GCM(20,20).GF(20)

COMMON/NODES/NODSUB.NBW.NODE(20).INDEXN(20)

ILEVEL=LEVELT+ l

IF(ILEVEL.LE.LTRACE) WRITE(ITRACK,5) NUMEL

5 FORMAT(SXJExecuting ASSMBL: Adding element '.I3. ' matrices '.

I ‘to global matricesz')

IF(ILEVEL+3.LE.LTRACE) THEN

WRITE(ITRACK. 10)

10 FORMAT(IIX,'EIement matrices passed from MATRIC:)

NDIM=4

CALL WRITEMINDIM,NRC,NSEND.ESMX,ESMY,ECM.EF)

ENDIF

DO 30 l= 1.NRC

IROW= |NDEXN(NSEND(I))
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D0 20 J=1.NRC

JCOL=INDEXN(NSEND(J)) ‘

GSMX(IROW.JCOL)=GSMX(IROW.JCOL)+ESMX(I.J)

GSMY(IROW.JCOL)=GSMY(IROW.JCOL)+ESMY(I.J)

GCM(IROW.JCOL) =GCM(IROW.JCOL)+ECM(I,J)

20 CONTINUE

GF(|ROW)=GF(IROW)+EF(I)

3O CONTINUE

C RETURN OPTIONS

IF(ILEVEL+2.LE.LTRA'CE .AND. IELEM.EQ.NELEMS) THEN

WRITE(ITRACK,43)

43 FORMAT(IIX,‘The fully assembled global matricesz')

NDlM= 20

CALL WRITEM(NDIM.NODSUB.NODE.GSMX,GSMY.GCM.GF)

ENDIF

44 IF(ILEVEL+1.LE.LTRACE) WRITE(ITRACK,45)

45 FORMAT(SX,'Returning from ASSMBL‘,/)

100 RETURN

END

SUBROUTINE WRITEM(ND|M,NRC.NSEND.KX,KY,C.F)

This subroutine prints the stiffness. and capacitance matrices and

the force vector.

All the subroutine arguments are passed TO this subroutine.

C( . ) = Capacitance matrix.

F( ) = Force vector.

KX( ) = Stiffness matrix in X direction.

KY( ) = Stiffness matrix in Y direction.

NDIM = Physical storage DlMensions assigned by calling program.

NRC = Number of Rows and Columns in the matrices.0
0
0
0
0
0
0
0

0
0

DIMENSION NSEND(NDIM).C(NDIM.NDIM).F(NDIM)

REAL KX(NDIM,NDIM),KY(NDIM.NDIM)

COMMON/TRACE/LTRACE.ITRACK

C Write matrices to trace file:

2 102 FORMAT(SXBI 10)

WRITE(ITRACK.2 103)

2103 FORMAT(/,1X,'Stiffness matrix KX2')

WRITE(ITRACK.2102) (NSEND(J).J= 1.NRC)

DO 2104 I=1.NRC

WRITE(ITRACK.2105) NSEND(I).(KX(I.J).J= 1.NRC)

2104 CONTINUE

2105 FORMAT(IX.I3.8E10.3.20(/.4X.8610.3))

WRITE(ITRACK.2 1 06)
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FORMAT(/,1X.'Stiffness matrix KYz')

WRITE(ITRACK.2 102) (NSEND(J).J= 1.NRC)

DO 2107 I=1.NRC

WRITE(ITRACK.2 105) NSEND(I).(KY(I.J).J= 1.NRC)

WRITE(ITRACK.2 109)

FORMAT(I, 1X,'Capacitance matrix C:')

WRITE(ITRACK.2 102) (NSEND(J).J= 1.NRC)

DO 2110 I = 1, NRC

WRITE(ITRACK.2 105) NSEND(I).(C(I.J).J' 1.NRC)

WRITE(ITRACK.21 12)

FORMAT(I. 1X.'Force vector F:)

WRITE(ITRACK.2 102) (NSEND(J).J= 1.NRC)

WRITE(ITRACK.21 13) (F(l).|=1,NRC)

FORMAT(4X.8E 1 0.3)

WRITE(ITRACK.2 1 20)

FORMAT( 1 X)

RETURN

END

Wflflfli§fl*fli*iNWMfl”§M§H*§§W"§W“Gfl§

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0

0
0
0

SUBROUTINE SUBSYS(LEVELT.NELEMS.NODSYS)

This subroutine reads the element numbers in the chosen subsystem.

develops an index for the nodes associated with those elements.

and reads the nodal boundary values.

The variables LEVELT,NELEM$.and NODSYS are passed TO the subroutine.

The nodal indexing system and boundary value array are stored in

COMMON arrays.

BVALUE(I) = The boundary value at node I.

INDEXNIII = The INDEX of Node I. This index is developed so that

the global matrices are no larger than needed and no

zeroes are placed in the diagonal.

ITRACK 8 Output dewce to which results of intermediate

caICUlations are written.

LABELEII) = Number of the ELement l in SUBsystem

LEVELT = Debug level to control output

LTRACE = Debug level for entire program.

NBOUNDII) = Node at which BOUNDary value is known.

NELEMS = Number of elements in the major global system.

NELSUB = Number of elements in the subsystem.

NKNOWN = Number of nodes for which the b0undary value is KNOWN.

NODE( ) = Vector containing node numerals associated With subsystem.

NODSUB = Number of nodes associated With the subsystem.

DIMENSION NNODEL(4)

COMMON/ELEMS/NELSUB.LABELE(2 0)

COMMON/TRACE/LTRACE,ITRACK

 



80

85

90

91

92

93

95

299

400

410

420

480

490

500

590
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COMMON/BOUND/NKNOWN.NBOUND(20).BViALUE(20)

COMMON/NODES/NODSUB,NBW.NODE(20).INDEXN(20)

DATA MAXNOD/4/

ILEVEL = LEVELT+1

IF(ILEVEL.LE.LTRACE) THEN

WRITE(ITRACK.80)

WRITE(6.80)

FORMAT(SXJExecuting SUBSYS: Determining range of subsystem.)

ENDIF

Skip to the first line containing a boundary value:

IFILE=1

NSKIP = NELEMS + NODSYS + 3

CALL SKIP(IFILE.NSK|P)

DO 90 I=1.NELEMS

READ(IFILE,85.ERR=91) LABELEU)

FORMAT(IS)

NELSUB=I

CONTINUE

IF(ILEVEL+2.LE.LTRACE) THEN

WRITE(ITRACK,92)

FORMAT(/5X,'Elements chosen in subsystemz)

WRITE(ITRACK,95) (LABELE(|).I= 1.NELSUB)

FORMAT( 1 X. 1 615)

ENDIF

Construct the indexing system for the subsystem nodes:

NSKIP=LABELE( 1)

CALL SKIP(IFILE.NSKIP)

READ(IFILE,299) NELEM,NNODEL(1)

FORMAT( 1 6I5)

NODSUB=1

NODE( 1) ‘3 NNODEL(I)

DO 500 IELEM=1.NELSUB

NSKIP=LABELE(IELEM)

CALL SKIP(IFILE.NSKIP)

READ(IFILE,299) NELEM,(NNODEL(J).J= 1.MAXNOD)

DO 490 J=1.MAXNOD

IF(NNODEL(J).E0.0) GO TO 490

DO 480 I=1.NODSUB

IF(NNODEL(J).EO.NODE(I)) GO TO 490

CONTINUE

NODSUB = NODSUB + l

NODE(NODSUB)=NNODEL(J)

CONTINUE

CONTINUE

Sort nodes

IFLAG=0

 



600

700

800

804

810

100

110

200

210

240

260

280
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DO 700 I=1.NODSUB-l

IF(NODEIII.LE.NODEII+III GO TO 700 ‘

NTEMP=NODEIII

NODE(I)=NODE(I+ 1)

NODE(I + II=NTEMP

IFLAG== l

CONTINUE

IFIIFLAGEQI) GO TO 590

D0 800 l= 1.NODSUB

INDEXN(NODE(I))=I

IF(ILEVEL+3.LE.LTRACE) THEN

WRITE(ITRACK.804)

FORMAT(I. 1 6X.'NODE'.5X.'INDEXN')

WRITE(ITRACK.810) (NODE(I).INDEXN(NODE(I)).I= 1.NODSU8)

FORMAT( 1 0X,2l 10)

ENDIF

Read the boundary values:

IFILE= 1

NSKIP=NELEMS+NODSYS +NELSUB+ 4

CALL SKIP(IFILE.NSKIP)

DO 200 IBOUND=1.NODSYS

READ(IFILE.1 10.ERR=210) NBOUND(IBOUND).8VALUE(IBOUND)

FORMAT(I5.F5. 1)

NKNOWN = IBOUND

CONTINUE

IF(ILEVEL+2.LE.LTRACE) THEN

WRITE(ITRACK.240) NKNOWN

FORMAT(/,5X,'Boundary Values are known at '.I3.‘ nodesz')

WRITE(ITRACK.260) (NBOUND(I).BVALUE(I),I=1.NKNOWN)

FORMAT(8(4X.|5,F5. 1))

ENDIF

IF(ILEVEL+ 1.LE.LTRACE) THEN

WRITE(ITRACK.280)

WRITE(6.280)

FORMAT(SX,‘Returning from SUBSYS: Subsystem determined.’/)

ENDIF

RETURN

END
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Soils data was gathered from microfiche at the National

Soil Survey Laboratory, Soil Conservation Service-USDA,

Lincoln, Nebraska for the Hastings soil and from the SCS

SOILS-5 for the Coly soil series which is the same as the

Colby, 1939 soil series name. The Hastings Silty Clay Loam

was assumed to be an eroded phase of the Hastings Silt

Loam. The Hastings Silty Clay Loam data was taken from the

A12 horizon on the following data sheets.
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set: Classification: Udic Arciustoll. fine, nontoorilltinitic'. neeic

Soil: Iiastines
~ '

Soil ii...: 365101-9l-l ‘ '
fixation: Mobster Oumty. Nebraska. 0.15 oils west and 100 feet south of northcaat corner of Sec. 1, T3", hlw.
Elevation: 1615'} feet. ' ' ' '

Clients: Subhunid.

"capitation and Tommi-attire: 2'0 IIK‘IMS; 52 degrees I'.

Vegetation and Use: Native creases, principally big blue-tee, aideuats arena, Western wheatcrass, blue grass,

Scribner panicina, Kentucky bluegrass, and June grass. Native hay.

Foot. Distribution: Good: no restrictive tones.

Drainage and D:m-:nbility: .‘tvicratoily well drained; spderately slow pcrneability.

Slope and Land Porn: l to 2 percent with cast aspect; stable upper interfluve; dissected uplands.

hrmt f’eterial: Norisn loess.

Collect.“ and Described by: R. If. Jordan and J. 1'. Drew, April 21, 1965.

All 20049 o to 11cm :0 :c 5 inches). Dark gray (torn li/I, dry) to black (lOYR 2/1, moist) :11: loan; srderatc
fine granular structure; soft, friable; roots abundant; noncalcareous; clear smooth boundary.

 

A12 zooso 13 to 25 ca :5 to 10 inches). 0m: grayish-brown (lOYR li/2, dry) t:- .-.7 dark 1mm (10m 2/2. I01“)
silt loan; noderate :‘inc to nedims granular structure; soft. friable; roots abundan'q few insect worn casts M
5 as in disaster; noncalcnrcous; clcar snooth boundary.

:4% a to '41 on llt‘. to 16 inches). Dark grayish-brown (10m “/2, dry) to yery dark grayish-brown (torn 3(2,
noist si ty clay loan; weak fine subansular blocky breaking to aoderate aediua granular structure; soft, friable;

roots plentiful; i'ev insect were cases about 5 an in disaster; noncalcareous; clear «sooth boundary. ,

at». 20452 kl to 58 can (10 to 2‘ inches). Brown (10“! 5/3. dry) to dark brain '.IOY‘R 3/3, moist) with ’40 percent.

M (tray (10‘!!! V1. 4:7) to Very dark gray (l'Jt‘R 3/1, noist) coatings; silty clay; weak to moderate ncdiisa pris-

mtic breaking to moderate nvdiun and fine su‘oangular bloclw structure; hard, firs; roots mart-one; noncalcarcous;

yum snootii boundary. .
.

P‘ 20553 58 to 79 cm (21 to ‘1 inches). Me brown (10?)! 6]}, dry) to grayish-brown (10111 5/2, waist) with 30

Peru!“ 44:1 6:13! {101? IAll. dry) to very iork gray (lOi‘R 3/1, noist) coatings; silty clay loan; weak coarse Pd":
natic breaking to moderate medium and fine angular blocky structure; hard, firs; few roots; nor-calcareous: WV '
radii- to fine distinct settles of bmnish-yellov (10m 6/8, noist) occur at 29 to 31 inches; abrupt snootb -

Clea 204 b to 102 on ( to 140 inches). Very pale brown (1011 7]}. dry) to brown (10!! 5/3. mist) silt loan;
cocoon fine distinct aottles of brownish-yellow (10!! 6/6, noist); very weak coarse pris-tic structure; “ION-Li
bard: friable; con-on tine tubular pores; sons are lined with thin clay filns; few roots; calcareous. carbonate

occurs as soft to slightly hard seer-cations; gram snooth boundary. - -

mg; 2042:-10e mg. ca :40 to 20 ir,chc=).-.¥ltcr.m1t hm~§1913..7/3 .4171!!! rel-.ttmllomflhpml “It;
' 1°“: tors-ion i'ine distinct bottles of brownish-yellow (10m 6 8, mist ; nassive structure; so“, friable; cos-con .

fine tubular pores, a few are lined with clay alaso-fewer than horizon above; a local krotovina-like pocket con- .

tained "onerous cur-lined tubular pores; calcareous. carbonate occurs as soft segregation. fewer than horizon

ON": gradual ssuooth boundary.

c1 ”‘55 127 ‘° 1 2 ‘3“ 45° ‘0 ‘0 Indies). Very psi. brown (lOYR 7/3. dry) to pic brown (10“! 6/3. mini silt- ::
0&2; fr: fine distinct nettle: or brownish-yellow (lOYR 5/8, noist); nasaive structure; soft. friable; cannon fin!

tubular pores; calcareous, occasional soft carbonate segregations.
'

lent-ks: ’.t detailed discussion of the nicronorphology and nineraloa is available in the Master's Thesis: Jordan,
It. It. 190?. Fernation and Transfer of Clay in Hastings Silt loan, A Udic Arciustoll. University of Nebraska.
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Soil Classification: Unite Ar‘iustoll. fine. wont-orillonitic. nesic

Soil: hastinea

foil 2103.: scam-914

location: Webster County, Nebraska. lJIZ-‘(i feet north and 1020 fret wort of ninth-ant rornrr of fee. 31. T'Vf, 10H.

' Small-“Iterated l-II. Central Great Plains Ibrperinental Waternlieiil , USN-ANS. l'astinifs, Nebraska.

\‘erctation and Use: native creases such as blue crana, sides It: arm, hir. bluestcn, etc. Area has been on: for

hay.

Slope and Land Tori: Gently sloping (2 percent slightly convex slope) toward northeast.

Parent Material: Norian leans.

Collected by: 1.. 1'. Alexander. R. I. Gross-an, 0. :1. Ilolpcren. 1.. It. Mitchell. 1!. C. 1min. and Ii. 1:. rat-m.

l'cscribed by: llarry t. hien, September 29, 1%. 0

All 19026 O to 15 on to to 6 inches). Very dark brown (10“! 2/2. mint) silt locus; weak very fine granular struc-

ture; slightly hard when iii-y, friable when insist; clear sneeth bountary.

a1: 1.3357 15 to ‘28 cm (6 to 11 inches). Very dark brown (10111 2/l.5, hoist) silty clay loan; codcrete, very fine

granular structure; slightly hard when dry, friable when moist' clear smooth beundar; .

RI 10958 261m '8 en (1) to 15 inches). \‘cry dark tray (10“! VI. mist) nilty clay loans; mderate. yer; fin-i sub:

angular bloc‘r‘y structure; hard when dry, friable when mist; clear smooth Wary.

l’Qlt 1‘152 \‘I to 61 ca :12 to 2'4 inches). Dark grayish-brown (2.5? ’4/2. hoist) silty slay loan; uni-crate. fine

and very fine subaneular blocky structure; hard when dry, friable when moist; clear moth boundary.

g1 lWIJO 61 to 81 ca (2’4 to 12 inches). Dark grayish-brown (2.1" Islit, soist) all: loan; weak, fine prirenfis

structure separating to weak, nediu: blochy structure; distinct. cows-ion, Indian yellowish-bran {10:7 Sl-‘fi settles

. cover 2 to 20 percent of surface, settles S to 15 use in disaster; scattcrwd nodules if iron; slightly her: when dry,

friable when moist; clear snooth bettfisrzr. '

fl 1010 61 to 102 cajj? to ho inches). Gray-ishobrown (2.51 3.5/2, noist‘. silt lens; weak radios-i prim-rotis-

structuru: faint, few medium yellowish-brown (101? 5/6) nottles cover less than 2 wrt-cat of surface. not the '2 to

15 as in iianeter; slichtly hard when dry, very friable when assist; gradual smooth boundary.

C'2ca 1296? 1% to 139 en (14') to 11 inches). Ci-ayish-brown (10111 $12, mist) silt loan: weak, ‘ccarre prim-nth-

struct'sre; slightly hard when dry, very friable when mist; calcareous; gradual wavy boiuriary.

92a 1°96} 1‘0 to 1:1 as (.21 to 62 inches). Grayish-brwn (tom 5/2. moist) silt loss; weak. coarse prisrr 1c

structure; slightly bard when dry, very friable when noist; calcareous; gradutl wavy bundary.

dos m4: 157 to 162 on (62 to 7‘ inches). Grayish-brovn' (10:1 5/2. insist) silt loan: weak, coarse rrir-wic

structure; sliditiy hard when dry, vers- friable when soist; calcareous; gradual wavy bumdary.

$2 10°C,} 155 to 21"I ca ‘7‘ to 8'4 inches). Grayish-brown (102?. 5/2, mist) silt loan: weak, coarse prisrnti:

structure; slightly hard when dry, very :‘riable when noist; noncalcareous.

 

Resarks: fans scissors distribution as for 363413-914. heir-ting at the top, twenty-three (23) 3:'Ilt¢h cor: :su-

ples of the upper 1: inches were taken along the transect at intervals of 1‘0 feet. for carbon and nitric-gen doe: syn-iss-

tions. This pedon description was written at station m0? 3 on this transect. Z-‘our clods f0.- Iiuliv. densi' cea-

surcents (O-l. lo}, 54-, and 7-9 inch depths) were taken at each even-nursb-we-i station.

1980;. TRANSHC‘!‘ 2) feet rr-th et' Small-Hatershei to": :‘lt’it‘n ::--..- ------ i

in fen”.

“h‘f'l-Q

  

19170_

Elevation . Feet

 
 

l95f __

I 3 I ‘\
Distance - Feet . ‘1‘

193:(‘ l i J l J l l l 1

o :0 100 150 200 250 300 350 l-m -. '2'.

was: "

1_/ Tomi nntrcl 1967.
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“in“ IEWOOS- - -u.1szs.uz.2. sun: nos. iota-loss. ll ' 27"7 L/

0E’7H “00120” I- ' ' . ‘ - ' ‘ ' - ' - ' - 'Afl7ICLE 5120 0N017515. L7 2!". 301. 301A. 3010 - - ' ° ‘ ‘ - - - 10A7IO

FINE I ' - - - - SAND - - - - r - II- ‘ -5117' ’ ' '1 'AIL 1N7! FINE MON— 001

SANO 5117 CLAY CLAY YCOS CORS E505 FNES YEN! COSI FNSI VFSI 7017 II CLAY CO3- 15-

2‘ .05‘ L7 L7 2- 1- .5-1' .259- .10. .05 .02 .005- SANO .2' 7O CLAY 000

.05 .002 .002 .0002 1 .5 .25 .10 .05 ‘.02 .002 .002 2-.1 .02 CLAY 70

C" ‘aa . o c n a c c - - a. - .- .- - - - - - 'ct Lt an o a c C O O O O O - - - ._ - - .- -3 '07 '07 CL"

000-013 011 0.5 07.0 23.! 10.7 .0 .1 .1 .3 0.0 50.0 10.0 3.2 .5 50.0 72 .00

013-025 012 7.5 50.3 33.2 25.0 .0 .0 .1 .1 7.3 01.5 17.0 3.5 .2 00.0 70 .02

025-001 01 5.0 51.0 02.0 33.7 .0 .0 .0 .0 5.0 30.1 17.7 0.2 .0 30.7 70 .30

001-050 027 5.1 50.2 00.7 30.5 .0 .0 .0 .0 5.1 31.0 10.2 5.3 .0 30.1 77 .01

050'070 03 0.0 50.0 30.0 23.0 .0 .0 .0 .1 0.3 35.0 21.2 0.5 .1 02.0 00 .03

. 070-102 C1CA 7.3 00.5 23.2 7.2 .1 .1 .1 .2 0.0 01.1 20.0 700 .5 0001 31 00'

.102'127 CZ 7.0 0702 25a° - 0.0 .0 .0 .0» e1 7.7 0100 25.0 5.0 01 0,00 3. 007

127-152 C3 7.0 00.0 25.0 0.0 .0 .0 .1 .2 0.7 00.0 20.0 0.7 .3 00.0 30 .05

0509070 101 0.0 55.0 37.0 22.5 .0. .0 .1 . .3 0.0 33.0 21.0 0.1 .0 00.0 00 .02

070-102 107 7.3 00.2 32.5 17.3 .0 .0 .1 .3 0.0 37.1 23.1 0.3 .0 00.2 ' 53 .35

102-127 101 7.0 01.0 31.0 10.2 .0 .0 .1 .0 7.1 37.0 23.0 0.7 .5 05.2 52 .30

.127-152 107 7.1 00.1 20.0 15.0 .0 .0 .1 .0 - 0.0 37.0- 20.3 0.0 .5 .00.7 53. .30

0001" 100071010 5120 AN‘LYSIS. NH. 30. 301. 30211 001K OENSI7Y II- - ' -IA7ER CONTENI- r - '1 CAIOON17E 1- -Ph - OI

vet. i- - - - - -‘- ltlcut - - - 9;- - ,-i “to “in! .01 um um as: «C! “it nu scu an!

07 07 75°20 20-5 5-2 L7 20-2 1/3' OVEN COLE 1/10 1’3- 15- '00 l7 1’ 1’1 1’2

.. 2 75 - - .070 .0C7 -000 OIY~ 000 000 010 00’ 2 .002 N20 CACL

CI 'C7 'C7 1’ ‘ ' '07 17 75 - ' f I 1720 CICC GICC 'C7 'C7 'C7 CI 0C7 PC7

000:013 0 0 0 0 0 0 1.22 1.31 .020 25.0 11.0 .10 5.0 5.2

013.025 0 0 0 0 0 0 1.27 1.03 .000 30.5 10.0 .21 50' 5.3

025.001 0 0 0 0 0 0 1.30 1.72 .007 27.0 15.0 .17 0.0 5.0

. “1-030 0 0 0 0 O 0 1.06 1.70 0°02 20.1 1.02 e10 0.. 0.1

050-077 0 0 0 0 0 0 1.00 1.02 .052 20.7 10.0 .15 0 7.1 0.0

070-102 0 0 0 0 0 0 1.20 1.30 .020 20.1 11.3 .22 3 0 5.1 7.2

102‘127 0 0 0 0 0 0 1.20 1.30 .020 20.0 11.0 .23 1 0 0.1 7.3

127.152 0 0 0 0 0 0 1.20 1. .020 20.0 11.3 .23 1 0 0.2 7.3

050-070 ”

070-102

102-127

‘ 121-152 ,

00'7" IOIOANIC IA77E0 1 IRON 'HOS I- -EI7IAC7AILE 'ASES 5000- 01 AC7Y AL ICA7 ESCNI 00710 00710 CA 1005! 3A7!

0110 0010 CIN 0020 051A 0022 0020 002A 002A "1 0K10 0010 5A3A 5AOA 001 003 5' 5C3 5C1

cacu Inc (It won c. at aa a Sun utt set ens and: amt CA in ma mu:

C000 '0 £170 7E0 E07 AC7Y 70 70 NHAC AC7Y

CI '07 '07 '07 'C7 1' 0 - q €.f - r_- - -I00 I 100 0- - - - . - - ¢ ' P I CLAY 00 '07 'C7 'C7

000-013 2.50. .202 13 a, 12.30 3.70 70 1.1 17e1 7.7 20.0 10e2 .70 3.3 ‘00 00

013'025 1.00 e1," 11 .0 15.00 5.70 .1 1.3 22.5 7.7 30a2 22.0 .07 2.7 75 100

023’001 1.20 0122 10 a: 10.70 7.00 .3 1.. 20.0 7.0 20.0 27.2 e“ 2e, 70 105

001-050 .75 e001 0 .0 17.50 0.30 .5 2.0 2003 0.3 0200 200’ O0) :00 .7 00°

.050-070. .30 .. s . . .5 - 10.20 0.10 . .0. .1.0. 20.0...2.0__.___.-2719L_2217- L70-."2a9._;____.-.91 10‘
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NLRAIS): 03.. 7|. 72. 73. 15

RCV . LR. l2-67

TVPIC US‘IMIHENTS. ‘INQ°SILYY. NIAEO (CALCMEWS). NESIC

"OE COLY SERIES CMISYS 0" “(LL WINIO 10 (ICISSIVELV UIAINID SILIY SOILS I'OIMCO IN CALCMKOUS LOTSS (N UPLANOS.

SURFACE tAYER IS GRAYISH m SILI t0”! SURFACE LAYER 4 [MINES 'HICI.

COLV SERIES

ME

ME ME" 0 INCMES 1s HG"! WIS-N GRAY SIU

LOM. THE SUGSYRA‘I’W IS Ltfilfl GRAY SILY LCM. SLOPES RANGE PM 1 10 60 PERCENV. DOS? AREAS ARE USED son MELANO.

 

 
 

 

     
 

 

      

 
    

  
 

 

 

            
 

 

 

 

 
 

 
 

   
 

 

 

 

      

55.1.55. EQML‘E‘SUSE- __-.---____..---. ---

ou-m INACIIPEIICENI or MAIERIAL LESS qulo PLAS-

(1M.) 0504 tsxtuae 0M1r1e0 AASMto ,3 1M| IMAM 3' PASSING SIEVE M0. L1M1t rzcxtv

(DC!) 4 1 10 J 40 1 200 INDEX

0-4 51L. L ML. CL. CL'HL A-4. A-s. 4-7 0 100 100 05-100 05-100 20-45 2-20

0-4 VFSL ML. CL-ML. CL A~4 0 100 100 05-95 50-65 22-35 3-10

4-40 51L. VFSL. L ML. CL. CL-ML A-4. A-6 o 100 100 05-100 05-100 20-40 2-1:

1

ocprn CLAv M0151 BULK PERH£Ao AvA1LAeL£ soxL SALINITY | SMRINK- EROSION M1M0 ORGANIC] coaaos1v11v

(114.) (PCT) ocusnv axurv HATER CAPAcx‘rv REACTION (MOS/CH) SMELL Haring £000. MAttER

(G/CMJ) (1M/Mn) (xulgy) (PM) POTENTIAL x 1 snoop (new) srCEL coucnere

0-4 10-24 1.30-1.50 0.6-2.0 0.20-0.24 7.4-0.4 - L0- .43 5 4L 1-2 HIGH I LO“ _

0-4 0-15 1.10-1.50 0.4-2.0 0.11-0.10 1.4-0.4 . Low .4: s a 1-2

4-40 10-24 1.30-1.50 0.472.0 0.11-0.22 1.4-0.4 - Lou .43

FLoooxua M10M uAtcn YABLE CEMCMrco 94M 1 econocx suasxosMcc Mvo PorCMr'Ll

0£91M Axuo MONTHS OEPIM MA00ME§§10C91M MAnouess 1M11. IOYAL GRP r0051 |

FREQUENCY I OURAYION [MOMrMs (:1) (I!) 1 (1M) (IN) (IN) AC'ION l

NONE l I )6.0 - 1 >60 - a MooenArEI

SANITARY rAc1L111es CONSTRUCYION MATERIAL

1-0x: sL10M1 1-15x: ‘AlR-LOU STRENGIM

szvtxc TANK 0-1sx: HDOERAYE-SLOPE 15-251: FAIR-SLOPE.LOU stMEMCtM

4050091100 154:: SEVERE-SLOFE nvorxLL 25oz: coon-$000:

FIELDS

1-2x: MooeaAtc-SECPACC 1MpnoaAaLe-Excess FINES

scuAcc 2-7z: Mooanrc-seepAce.suoos

LAGOON 1oz: sevgnc-SLovC sAM0

AREAS

l-lx: SUCH! IMPROSABLE-EXCESS FINES

sAuxtAnv 0-1sx: MODERATE-SLOPE

LAM0F1LL 15oz: SEVERE-SLOPE GRAVEL

(taCMCM) '

I

1-01: sLxcMI | 1-ax: 0000 I

SANITARY a-1sx: MooeaArc-sLon: 0-151: rA1a-5Lovc I

LANO‘ILL 15oz: SEVERE-SLOPE TOPSOIL 15oz: POOR-SLOPE I

(AREA) I

1 I

1-az: GOOD

041Lv 0-153: FAIR-SLOPE 041:0 MAMACCMcut

covtn $00 15.4: FOOR-SLOPE 1-31: MooCMAte-sCCPAGE I

LANDFILL noun J-ax: HOOERA!£-S£EPAGE.SL09E |

nesenvoxn 0oz: SEVERE-SLOPE I

AREA I

ggrLotuc $11: ocveLOPMCMt l

1-4x: 5L10Mt scvsne-pxpxnc I

SMALLOH 0-1sx: HOOERATE-SLOPE EHOANKH£NVS I

EXCAVAIIONS 15oz: SEVERE-SLOPE 014:5 AMo l

l stccs I

1-0x: 5L10Mt SEVERE-NO HATER l

cuELL1Mcs a-1sx: MODERAYE-SLOPE EACAVAIEO I

| MxtMout 15ox: SEVERE-SLOPE acuos I

aASCMCMts AOUXFER :20 I

1-0x: SLIGHI 0559 10 MAtER I

0~£LL1M05 0-151: HOOERAYE-SLOPE | I

M11M 15oz: SEVER£°SL09E I 0941MAC£ l

IAseMsuts :

1-41: sL10Mt 1-1: SIL.L: enooes EASILV I

s~4LL 4-0x: HOOEIAIE°SLOP£ so: $11.1: SLOP£.EROO£S (4511' l

I C0MM€MCtAL 04x: SEVERE-SLOPE || IRRIGAIION 1-3: VFSL: (Moots t4$11v.sntL 0L0v1uc I

IIiIItB!"G* I || 3.: vrSL: SLOPE.tHOU(S LASILV.su1L BlOHING :
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'ropography, soils, and landuse were taken from "THE CENTRAL

GREAT PLAINS EXPERIMENTAL WATERSHED, A Summary Report of 30

'Years of Hydrologic Research". The following map and data

are excerpts. from this report and from Plane Table

'ropographic Surveys performed in 1942 by the Soil

Cbnservation Service-USDA under Hugh Hammond Bennet. The

report is available from the Water Data Laboratory,

Agriculutral Research Service-USDA, Beltsville Maryland.

The folio of maps is available for loan from the same

Laboratory.



196

WATERSHED I-H

3.62 acres ,

WATERSHED 3-H

3.95 acres

‘

£543.53“).

836R

.

940 (0:: 7

Area atter III/59. 3.77 00.

Oletance and direcflan

to neareet rain gage.

60qu etatian.

Original waterehed boundary.

Wateretted boundary after III/$9.

Canteen.

Sail baundariee.

Nemeratar is rail type; denamlnatar in

range at top eaII depth.in Inch“.

    

  

 

 

WATERSHED Z-H

. 3.40 acres

 

WATERSHED 4-H

3.84 acres .

Area after

III/59. 3.64 00.

 

SCALE

using-—

30 0 w 00

FEET

Watersheds I-I-I,2-H, B-H, B 4-H.
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Tabla 3 .—Crop and treatment plan for 4-auro untorohcdn for tho poriod of

1958 through 1967

 

Crop and treatment by your: y

 fl

I

watershed 1958 1959 1960 1961 1962 1963 1904 1965 1966 1967

 

1.11 11:1 11:1 11:1 1m 1m ' 11:: s: 801 F1: Um

241 Mm 1m 11:1 11:1 Mn 11:: ' P P P P

22.3 . . 1a- 141: 11: Mr 11: 11:

23-8 11:- 11:- 111- Mr M: 11:

2541 Ha 14:1 ' 1121 Mn 10:

18-11 P P P P P P P P ' P P

341’ Wm Sm m 11m 5111 Fm um - Sm I-‘m 11m

8-H Wm Sm Rn I!m Sm Fm Hm Sm fin Um-

4-3’ Sm Fm Wm Sm I-‘m Wm 501 Pm Hm Sm

7-3’ 501 Fm 11m $01 n: Hm Sm‘ m IIm 5:11

54: Pm Wm 321 Pu Hm Sm Pm m: Sm an

6—8 m Hm Sm Ifin 31:1 8111 he 901 Ste F:

 

3.] Symbols used in columns are: [In . native meadow} Hr - meadow of reseeded

native grasses; St . forage sorghum; S - sorghum in rows for grain; II . wheat;

F - fallow; P . native pasture; m - stubble mulch farmed.



SIIZCTID .0307? EVENTS

ANTeczoeur CONDITXOC

Date 9

(la.I

{-10 .02

{-17 .36

‘-1, 051

5-2 .25

S-J .16

watershed conditions:

fellow good residue

cover.

0

(In.l

.00

.00

.0)

.00

.00
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A75

IAIN'ALL

Onto TAO. lat.

ten/hr!

Event of HA1 6, 1959

RC D-J6-R

5-4 1010 .00

I620 .90

1022 2.10

102‘ 1.60

1426 5.00

1620 3.60

1630 2.40

1632 1.20

1507 .19

1527 .0)

1610 .00

1750 .06

Ace.

Ila.)

.00

‘ 0°,

.22

.60

.52

.60

.66

.75

.76

.76

.06

HATEISHED O-U (66.00.

21n-

1425

1‘27

162’

13‘!

1615

1139

1482

1105

1651

3200

1589

1739

IUNO'?

Iat-

Ila/hr!

.3100

.743

1.2)

.997

0“:

.296

.110

.0657

.0236

.0005

.005!

.0000

Ace.

(tn.)

.0000

Do)

.07

.11

.1,

01‘

.15

.15

.16

.16

.16
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Regression analysis of Table 4 outflows. This analysis was

performed with Lotus 1-2-3 for the actual and calculated

outflows. The pairs of values are at constant time for

which the analysis was performed.

Regression Output:

Constant 2.9OE-01

Std Err of Y Est 3.968—01

R Squared 9.268—01

No. of Observations 2.7OE+01

Degrees of Freedom 2.SOE+01

X Coefficient(s) 3.43E+Ol

Std Err of Coef. 1.94E+00
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