

23025022

THEST

LIBRARY Michigan State University

This is to certify that the

dissertation entitled

CELLULAR AND HUMORAL IMMUNE RESPONSES IN ONCHOCERCIASIS: CORRELATIONS WITH CLINICAL SIGNS AND INFECTION INTENSITY

presented by

MOHAMED Y. ELKHALIFA

has been accepted towards fulfillment of the requirements for

Ph.D. degree in MICROBIOLOGY

JEFFREY F. WILLIAMS

Major professor

Date MAY 15, 1989

PLACE IN RETURN BOX to remove this checkout from your record.

TO AVOID FINES return on or before date due.

DATE DUE	DATE DUE	DATE DUE

MSU Is An Affirmative Action/Equal Opportunity Institution

CELLULAR AND HUMORAL IMMUNE RESPONSES IN ONCHOCERCIASIS: CORRELATIONS WITH CLINICAL SIGNS AND INFECTION INTENSITY

BY

MOHAMED Y. ELKHALIFA

A DISSERTATION

Submitted to

Michigan State University

in partial fulfilment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

DEPARTMENT OF MICROBIOLOGY AND PUBLIC HEALTH
1989

ABSTRACT

CELLULAR AND HUMORAL IMMUNE RESPONSES IN ONCHOCERCIASIS: CORRELATIONS WITH CLINICAL SIGNS AND INFECTION INTENSITY

BY

MOHAMED Y. ELKHALIFA

Characterizations of circulating lymphocyte subset populations, in vitro lymphocyte responsiveness, serum-mediated effects on lymphocyte proliferation and anti-Onchocerca volvulus antigen antibody recognition patterns were performed on groups of onchocerciasis patients selected from over 200 examined parasitologically and clinically in Sudan and Sierra Leone. These patients manifested a very broad range of clinical signs and infection intensities; some were heavily infected and asymptomatic while at the other extreme were individuals with severe clinical signs, but few or no detectable microfilariae (mf) in their biopsies. Patients from Sudanese foci were worse afflicted than the W. Africans. Lymphocyte subsets in peripheral blood were not remarkably different from those in control samples. Lymphocyte proliferative responses to soluble O. volvulus antigen (sAg) were poor in infected persons; however, mitogen and PPD responses were in the normal range in one group of patients from southwestern Sudan, but were profoundly depressed in a group from Eastern Sudan. The latter were malnourished and in poor physical condition in a drought-stricken zone. Sera from

.

90 patients exhibiting a wide range of clinical signs and parasite burdens had no significant effects on <u>in vitro</u> lymphocyte responsiveness. Proliferative responses and INF- γ production by lymphocytes were very significantly depressed in the presence of live microfilariae and worm secretions/excretions (S/E).

Immunoblotting analyses revealed diverse antibody responses to a wide range of worm antigen bands, with up to 25 recognized by some sera. Subclass specific monoclonal probes revealed a predominance of IgG4 responses, often accounting for almost all the band spectrum seen with IgG reagents. There was, however, no obvious relationship between band number, location or intensity, and the clinical or parasitological status, except that there was an overall trend towards higher clinical severity scores in patients whose sera recognized more and more deeply staining bands. Specific patterns of band recognition with IgG3 probes were not associated with Sowda patient sera, unlike previous reports. Anti IgE probes revealed fewer bands with lesser intensity, compared to anti IgG, and they were also not peculiar to any patient subset.

Overall, <u>O. volvulus</u> infection and clinical consequences were not consistently associated with systemic deficits in cell mediated or humoral immunity. The demonstration of potent suppression of lymphocyte reactivity by mf and S/E <u>in vitro</u> suggests that direct parasite intervention in host cell responses could be taking place <u>in vivo</u>, perhaps at the local micro-environment level.

TO NADIA WITH LOVE AND RESPECT

ACKNOWLEDGEMENT

It is with great appreciation that I would like to express my indebtedness to several individuals who helped me make this work possible.

I am extremely grateful to Professor Jeffrey F. Williams for his enduring and skillful guidance of my Ph.D. program. The opportunities made available through him played an important role in my scholastic development. The scientific and intellectual exchanges we have had over the years, coupled with his consistent high standards will have a lasting impact.

I would like to extend my sincere appreciation for the direction and encouragement of my committee members, Professors: James Bennett, James Jensen and Walter Esselman.

Special thanks are due to Professor Charles D. Mackenzie, who helped in various parts of this project. His expertise in the immuno-pathology of onchocerciasis have helped me develop a better understanding of the disease. Furthermore, I would like to thank Drs. Hashim W. Chalib, Khalid ElSinary, Tracy Cotter and Rick Smith for their assistance in field and laboratory work, and Dr. John McMahon for his invitation to the British Medical Research Unit at Bo, Sierra Leone.

Thanks are also due to Ms. Denise Harrison for the time she so freely and willingly gave preparing this thesis and various manuscripts.

It was with untiring dedication that my wife, Nadia, and my parents Yousif Elkhalifa and Safia Daoud gave their constant and invaluable support. Finally, I want to remember and acknowledge the willing participation of patients in the various remote areas of Africa, without whom these studies would not have been possible. Their endurance and tolerance helped us maintain the proper humanistic perspective in our research.

This work was largely supported by funds from the NIH-Sudan Medical Parasitology Project (NIH grant #AI-16312) and was done in collaboration with the Medical Research Council and the Ministry of Health in Sudan.

TABLE OF CONTENTS

INTRODUCTION	. 1
LITERATURE REVIEW	. 4
Geographical Distribution	. 4
Life Cycle	. 6
Diagnosis	. 9
Clinical Presentation	. 12
Pathogenesis	. 18
Pathology	. 21
Treatment and Management of Onchocerciasis	. 26
Immune Response in 0. volvulus infection	. 33
REFERENCES	. 44
ARTICLE 1 - SUPPRESSION OF HUMAN LYMPHOCYTE RESPONSES TO SPECIFIC	
AND NON-SPECIFIC STIMULI IN HUMAN ONCHOCERCIASIS	. 57
ARTICLE 2 - IMMUNOGLOBULIN RESPONSES IN ONCHOCERCIASIS -	
A COMPARATIVE STUDY OF IMMUNOBLOT PROFILES	.105
APPENDICES	.144
1. CLINICAL EVALUATION OF ONCHOCERCIASIS PATIENTS	.144
2. PATIENTS' DATA RECORD FORM	.163

LIST OF TABLES

ARTICLE 1

TABLE	PA	Œ
1	Clinical and parasitological status of Onchocerca volvulus infected subjects in four distinct foci endemic for onchocerciasis in Sudan and Sierra Leone	'O
2	Peripheral blood lymphocyte subset distribution in onchocerciasis patients and normal controls from Bahr Elghazal, Sudan, and Bo, Sierra Leone 7	'8
3	Blastogenic responses of peripheral blood lymphocytes of <u>O. volvulus</u> infected individuals and non-endemic area controls from Bahr Elghazal and Sundus, Sudan	30
4	Effects of sera from <u>O. volvulus</u> -infected individuals and controls from different geographical areas on lymphocyte blastogenic responses to phytohemagglutinin and concanavilin A	32

LIST OF FIGURES

ARTICLE 1

FIGURE]	PAGE
1	An onchocerciasis patient from the Bo area	•	72
2	Severe onchocercal dermatitis seen in a Sudanese patient	•	74
3	A Sudanese patient with localized limb involvement (Sowda)	•	76
4	Effect of sera from Sudanese O. volvulus infected and non-endemic controls on lymphocyte blastogenic responses to mitogens	•	84
5	Inhibition of blastogenic responses of lymphocytes from <u>O. volvulus</u> infected subjects and non-endemic controls from Sudan in the presence of <u>O. volvulus</u> female Secretory/Excretory products	•	86
6	Effect of O. volvulus microfilariae Secretory/ Excretory products on lymphocyte blastogenic responses to mitogens	•	88
7	Effect of co-cultivation of <u>O. volvulus</u> microfilariae on Sudanese <u>O. volvulus</u> infected patients and controls lymphocyte blastogenic responses to mitogens	•	91
8	Effect of serial dilutions of <u>O</u> . <u>volvulus</u> female Secretory/Excretory products on <u>lymphocyte</u> blastogenic responses to mitogens	•	93
9	Effect of <u>O</u> . <u>volvulus</u> Secretory/Excretory products and skin microfilariae on the production of Interferon Gamma by mitogen stimulated lymphocytes	•	95

ARTICLE 2

FIGURE		PAGE
1	An asymptomatic <u>O</u> . <u>volvulus</u> infected individual with microfilarial intensity greater than 100 mf/mg	.116
2	Discrete papular eruption seen in this patient, confined to the upper back, giving him a clinical score of l	.116
3	Severe onchocercal dermatitis is seen on this patient (clinical score of 3)	.118
4	Acute severe onchocercal dermatitis (score of 3) is seen in this patient mostly in the form of acute papular eruption and excoriation marks	118
5	A "Sowda" patient with extensive dermatitis of the left leg while the right is spared	120
6	Localized onchocercal dermatitis affecting the right arm of this patient	120
7	Total immunoglobulin levels in onchocerciasis patients studied	122
8	SDS-PAGE of O. volvulus antigens and Secretions/	124
9	IgG recognition pattern of <u>O. volvulus</u> antigens separated by SDS-PAGE and electrophoretically transferred onto nitrocellulose filters	126
10	IgE reactivities of the same group of patients in Figure 9A	129
11	O. volvulus antigen recognition patterns by different IgG subclasses	131
12	Total IgG and IgG4 recognition pattern of O. volvulus antigens	133

APPENDIX 1

FIGURE		PAGE
1	An asymptomatic patient with an onchocercal nodule in the pelvic region	.148
2	A patient with localized severe onchocercal dermatitis and femoral lymphadenopathy	.148
3	Severe acute onchocercal dermatitis with papular eruption, excoriation marks and pigmentory changes (score of 3)	.150
4	Discrete papular eruption localized to the upper back (score of 1)	.152
5	Moderate acute changes (score of 2)	.152
6	Another Sowda patient in which the left limb is severely afflicted	.154
7	A patient with generalized severe onchocercal dermatitis	.154
8	Marked atrophy of the skin, a consequence of chronic onchocerciasis	.156
9	Severe secondary bacterial infection in a young boy with <u>O. volvulus</u> infection	.158
10	Classical depigmentory changes seen in both lower legs of this patient	.160
11	Choreoretinal atrophy with focal pigmentation	.162
12	Optic nerve atrophy in an onchocerciasis patient	.162

INTRODUCTION

Onchocerciasis is a chronic parasitic infection caused by the filarial nematode Onchocerca volvulus. This disease afflicts some 20-40 million people world wide, and is considered a major cause of blindness in tropical Africa. Despite the morbidity and consequent economic losses, prevention, treatment and control of onchocerciasis lag behind other infectious conditions in the developing nations, where the disease is exclusively seen. Onchocerca volvulus occurs mostly in remote rural areas where the inhabitants have little political impact on the central decision making establishment.

The loss of manpower because of blindness coupled with the migration of people from fertile lands for fear of blindness has created severe economic difficulties in endemic areas. These factors initiated the implementation of a large control program in the Volta River Basin in West Africa. The program, now 10 years old, is directed towards eradication of the vector, the blackfly. This program has interrupted the transmission cycle, but at a very high price. Sustained financial support is needed, well over the 20 year plan projected initially, in order to insure continued success. In other endemic foci, rudimentary chemotherapeutic regimens from the 1940's are the only available means to combat the disease. Treatment with both the macrofilaricidal drug, Suramin and the microfilaricidal agent

diethylcarbamazine (DEC) have serious, and on occasion, produce fatalities. This has limited their use by concerned medical personnel, and results in their rejection by infected individuals, for fear of the agonizing side effects. The recent introduction of ivermectin as a microfilaricidal drug is encouraging because fewer side effects are associated with it. However, caution is warranted until we have more experience with the drug and its side effects.

At present we are confronted with a disease that carries high morbidity, though seldom fatal, for which there is no suitable treatment for the adult parasites. There is no convincing evidence of acquired resistance and little hope of any vaccine being developed. Prevention of the infection through vector eradication in most areas is impractical, because of the enormous expenditure needed. Exploration of the different immunologic mechanisms involved in the pathology and pathogenesis of <u>O. volvulus</u> infection may bring about better understanding of the biology of the disease, ultimately leading to better treatment and preventive options. Experience from other infectious diseases for which we have developed better chemotherapeutic agents or vaccines, does not give reason for optimism in the fight against onchocerciasis. The logistical difficulties encountered in delivering "magic cures" to patients in remote endemic rural areas remains a challenge.

The work contained in this thesis involved studies on both cell mediated and humoral immunity in onchocerciasis in patients in Sudan and for comparative purposes, in Sierra Leone, W. Africa. The epidemiological and biological background to <u>O. volvulus</u> infection in these regions is reviewed below, along with an overview of the current state

of knowledge of the pathogenesis and host-parasite relationship. A brief account is provided of the problems of chemotherapy and control, and of the most recent findings in the areas of cell-mediated and humoral responses to O. volvulus.

LITERATURE REVIEW

Geographical Distribution

Onchocerciasis occurs throughout the greater part of tropical Africa. It extends from Senegal on the west coast to Ethiopia in the east. Foci endemic for the disease are also seen as far south as Malawi in Africa, and in Central and South America. In the Middle East, the disease is confined to the Arabian peninsula. For the most part, onchocerciasis endemic foci are located in rain forest and Savannah regions. However, occurrence of the disease outside those two climatic regions is becoming recognized now as more careful epidemiological surveys are conducted. One unexpected focus for onchocerciasis is in Abu Hamad in northern Sudan. The disease was discovered in a dry arid region of the Nubian Desert in 1958¹. It is not unlikely that additional foci will be discovered and the disease should be suspected wherever blackflies of the Simulium species are found.

a. Onchocerciasis in Sudan:

Probably the first clinical description of the disease in Sudan was in 1908 by Ensor in Bahr ElGhazal province². Later the disease was termed Jur blindness since it was contracted along the banks of River Jur³. Subsequently, additional foci were discovered in Upper

Nile 4 , Southern Darfur 5 , in Kasala Province in Eastern Sudan 6 , and in Abu Hamad in the Northern province 8 .

Thus, the distribution of onchocerciasis in Sudan is wide, encompassing different climatic regions, from the rain forest in the south to the desert in the north. Each geographical area has its peculiarities regarding the infection intensity and clinical manifestations.

It is estimated that about 1 million Sudanese (5% of the population) are infected with <u>O. volvulus</u>. The disease is most prevalent near seasonal fast running waters which constitute optimal breeding sites for the vector, the blackfly.

The vector in the South and Southwest has been definitively identified as $\underline{\text{Simulium}}$ $\underline{\text{damnosum}}$ \sin^{10} . There is a single report about infected $\underline{\text{S}}$. $\underline{\text{damnosum}}$ from the Abu Hamad areall, however, subsequent workers were unable to substantiate this. No entomological studies to identify the vector along the Atbara River area were carried out.

Clinically, the dermatological manifestations can be seen in all foci, but the Atbara River focus offers the most severe presentation⁷. It is believed that eye lesions, culminating in blindness, are more severe in the southern part of Sudan with exceptionally few cases of eye involvement or blindness in the Abu-Hamad and Atbara River foci. Factors which may contribute to differences in clinical presentations include genetic backgrounds, parasite strain variability, length of the transmission season and intensity of infection.

b. Onchocerciasis in Sierra Leone:

Two important benchmarks in the history of onchocerciasis were established in Sierra Leone. Onchocercal nodules 12, were first described there, and the life cycle of O. volvulus 13 was unravelled.

The ecological system in Sierra Leone was primarily rain forest, but because of the intense deforestation and clearance of land for farming, not much of the original primary forest remains unaltered. Numerous foci of onchocerciasis exist in the Northern, Eastern, and Southern provinces. Around the Bo area, in the South, onchocerciasis is prevalent in villages along the tributaries of the Tabe and Sewa Rivers 14. Detailed entomological, clinical, and epidemiological surveys of this area by the British Medical Research Council staff and the Sierra Leonian Ministry of Health showed an overall prevalence of 68.6% 14. Clinically, there are relatively mild skin and eye lesions, but there is an unusually high rate of blindness (7.5%), the explanation for which is not entirely clear. Four species of the S. damnosum complex are implicated as vectors for the disease in the Bo area.

Onchocerciasis transmission occurs year-round, with a peak during the rainy season (October to December), when 80% of the transmission takes place 14 .

Life Cycle

Onchocerca volvulus is transmitted by blackflies of the genus Simulium which act as an intermediate host. Although closely related parasites are seen in mammals, humans are the only definitive hosts for O. volvulus. Several species of Simulium have been shown to transmit the infection, but, S. damnosum complex members are the main vectors, especially in Africa¹⁵. Others such as S. ochraceum and S.

metallicum play a major role in transmission of the disease in Central and South America¹⁵.

Simulium are small, strongly built flies, the females of which bite preferentially on animals or birds in order to obtain a blood meal needed for oogenesis 16. The male flies do not bite, and hence do not participate in the transmission of the parasite. When the female feeds on an infected individual she ingests skin microfilariae along with the blood. Upon reaching the stomach, microfilariae penetrate the abdominal tissues and go into the thoracic muscles where they undergo maturation and metamorphosis, transforming into the infective larvae. This may take 6-10 days, depending mainly on environmental temperatures 17. The infective larvae then migrate to the proboscis. When the fly bites again, it deposits these infective larvae along with saliva, which contains an anticoagulant. The larvae then probably migrate in the subcutaneous tissue, and develop into mature male or female worms, usually within 12 months 18. The female worms elicit a granulomatous inflammation around them, and with time they become encapsulated within a mesh of fibrous tissue and inflammatory cells forming what is known as the onchocercal nodule.

While the females have relatively restricted mobility within the human body, the male worms are believed to travel from one nodule to the other. Fertilization of eggs occurs following mating of a male and a female worm. The result of this is the periodic release of thousands of microfilariae by the female worms^{9,19}. Microfilariae are found in the skin and subcutaneous tissue and they can travel to the eye. Microfilariae and the inflammatory responses directed against

them, not the adult worms, are believed to be the major cause for the pathologic events seen in the host.

The life span of adult <u>O</u>. <u>volvulus</u>, although not known with certainty, is estimated to be in the range of 15 to 20 years²⁰. The adult female is a white to tan, threadlike, worm, between 25 and 70 cm in length, and 1/3 mm in diameter²¹. The male, though similar in appearance, is much smaller in size, measuring up to 4 cm in length²¹. The microfilariae are 220-360 u long and 5-10 u in diameter²², and their life span is estimated to be about 6 months²³.

Breeding of blackflies takes place in well aerated fresh running waters. The mature female deposits about 200-400 eggs at a time on aquatic plants or submerged rocks and vegetation²⁴. Four to thirty days are needed for the larvae to hatch from eggs, temperature being the major influence¹⁶. The larval stage is the target for control measures against black flies. The larvae then develop into pupae within 10 days, and the pupae mature into adult flies within 2-4 days. The longevity of blackflies is not fully known, although some may live for up to 180 days²⁵. It is suggested that flies infected with overly upon the flight range is variable and can reach >400 miles²⁶, though infected flies are thought to have a much reduced flight range, possibly because the parasite is located within the thoracic muscles. The large flight range has created problems of re-invasion of onchooserciasis control program regions from neighboring uncontrolled areas²⁶.

Besides being responsible for transmission of <u>O. volvulus</u>, blackflies inflict damage on man and animals by their vicious biting

behavior. People easily become sensitized to blackfly bites and on subsequent exposure can develop both immediate and delayed hypersensitivity reactions²⁷. This is thought to contribute to the skin pathology seen in onchocerciasis.

Animals may experience fatal anaphylaxis or bleed to death if bitten by large numbers of blackflies^{27,28}. Thus, the idea of eradicating the vector as a control measure for the spread of onchocerciasis is appealing, since human morbidity and animal mortality caused by blackflies can also be eliminated. However, because of the nature of their breeding sites, often in small seasonal streams over wide geographical areas, control of blackflies has proven difficult and expensive.

Diagnosis

a. Detection of the Parasite:

The most reliable method for the diagnosis of <u>O</u>. <u>volvulus</u> is the demonstration of microfilariae in a bloodless skin snip. The simplest way is by using a needle and a sharp double edge razor to obtain the snip. Care should be taken not to have a bloody specimen since confusion may occur if the blood contains microfilariae of <u>D</u>. <u>perstans</u> or <u>Loa loa</u>. The snip can be incubated in normal saline or tissue culture medium, at ambient temperature, for 1/2 hour to 4 hours. Increasing the incubation period gives a better chance for microfilariae to emerge from the skin snips of patients with low microfilarial densities. ²⁹ The use of a corneoscleral punch is recommended in

research surveys, and in large medical centers because it provides relatively uniform samples. However, because of the expense and the need for frequent sharpening it may not be suitable for use by paramedical staff in remote endemic foci. For diagnostic purposes several skin biopsies from the pelvic and subscapular areas should be obtained. A negative skin snip does not necessarily exclude infection and additional snips should be obtained and tested.

The probability of obtaining a negative skin snip in patients with low microfilarial densities (less than 2.5 mf/mg) is about 50%³⁰. In such patients repetition is recommended. In addition, DEC provocation test have been advocated to confirm clinical impressions in such patients. The test consists of administration of DEC orally or in the form of topical lotion^{29,31}. The patient is then observed for development of the characteristic maculopapular eruption which is part of the Mazzotti reaction, described as a side effect of DEC therapy ³². The latter procedure, since it entails risks, should be reserved for patients who consistently prove to be skin snip negative, but having the characteristic clinical stigmata of onchocerciasis.

Identification of subcutaneous onchocercal nodules constitutes an important part of the clinical and parasitological evaluation of patients. This can be achieved by visual inspection and palpation for the nodules, usually in the pelvic region. Demonstration of $\underline{0}$. $\underline{volvulus}$ adult worms after surgical removal of nodules constitutes definitive diagnosis of $\underline{0}$. $\underline{volvulus}$ infection. Recently, a non-invasive method for detection of $\underline{0}$. $\underline{volvulus}$ nodules using ultrasound $\underline{33}$ has been described. However, the practical utility of such a method remains doubtful.

b. Immunodiagnosis:

It is obvious that detection of microfilariae, though it has a high specificity, is not a very sensitive method. False negatives are seen in prepatent individuals and in patients with low microfilarial densities, either due to low levels of infections or strong immunologic responses resulting in destruction of microfilariae. Scientists have thus explored more sensitive procedures, i.e. immunologic diagno-Different formulations of immunological assays have been listed for detection of anti-onchocercal antibodies. These include hemoglutination³⁴, complement fixation³⁵, radioimmunoassay³⁶, and enzyme linked immunosorbent assays 37, all of which utilize 0. volvulus crude antigenic extracts for the detection of specific anti onchocercal antibodies. Obviously, one major problem of this approach is that it lacks specificity. The extensive cross reactivity between 0. volvulus antigens and other filarial antigens makes it difficult to differentiate between patients infected with O. volvulus from those infected with other filariae or helminths ³⁸. In addition, the mere presence of anti-onchocercal antibodies does not necessarily indicate infection. For example, exposure to the infective stage, which may not develop into an adult worm, can give rise to an antibody response. Because of this, recently the trend has been towards detection of worm antigens in serum, urine and other body fluids 39,40,41. This approach is attractive since the presence of worm antigens is indicative of active infection.

Theoretically, detection of <u>O</u>. <u>volvulus</u> antigens should have high specificity and sensitivity, especially when one utilizes monospecific antisera directed against unique worm antigens. The limited experi-

ence with <u>O. volvulus</u> antigen detection has shown that the sensitivity is interfered with by the presence of host antibodies directed against those unique antigens, thus giving false negatives⁴¹. The use of crude adult worm antigenic extracts⁴² and microfilarial excretory and secretory products⁴³ for skin hypersensitivity reactions did not meet with much success. More work is obviously needed in the area of immunologic diagnosis to come up with an acceptable, reliable, and practical assay.

Recent advances in molecular biology which culminated in the identification of $\underline{0}$. $\underline{\text{volvulus}}$ specific DNA probes are encouraging and may offer more sensitive and specific approaches to the diagnosis of 0. $\underline{\text{volvulus}}$ in the future $\underline{^{44,45}}$.

Clinical Presentation

Infection with <u>O. volvulus</u> results in a spectrum of clinical manifestations. Many variables can affect the outcome of the disease, including host immune response, exposure rate, age and strain variation. Although in most textbooks and publications the disease is often presented in its most severe form, a single visit to an endemic area would convince anyone of the concept of spectrum. Generally the clinical presentation ranges from completely asymptomatic individuals to those who have severe skin and eye manifestations. Different categories exist between these two extremes.

a. Dermal Changes:

Skin changes are best classified into two main categories 46:

1. Acute changes:

One of the early skin changes is the development of a papule, an event signifying an inflammatory reaction around dead or dying microfilaria 47,49. Papules can be discrete and their number and distribution may vary. Sometime, they may coalesce together. The development of papular eruption is usually accompanied by itching, and self inflicted injuries, from excoriation, is a common finding in onchocerciasis. The injured skin surface may get secondarily infected, thus aggravating the initial insult to the skin.

The papules may disappear completely without leaving any mark of their previous existence or they may become indurated, depigmented initially and hyperpigmented later 47,48. Death of large numbers of microfilariae either naturally or secondary to chemotherapy, e.g. Mazzotti reaction 32, leads to the development of large numbers of papules accompanied by edema of the skin. The acute changes seen in onchocerciasis are readily reversible. However, with time, repeated insults to the skin lead to the more characteristic chronic changes.

2. Chronic changes:

These are thought to result from repeated local pathologic events in the skin evoked by dead or dying microfilariae. The chronic clinical stigmata of onchocerciasis include dermal atrophy with loss of elasticity and thinning of the epidermis⁴⁷. The skin becomes wrinkled, assuming the appearance of old age in afflicted patients.

Pigment loss, especially on the skin overlying the tibia is characteristic, giving the name of leopard skin⁵⁰. In some patients marked thickening of the skin (hypertrophy) is seen prior to the development of skin atrophy. The hypertrophied skin may also be edematous and darker in color. This may be an intermediate stage between the acute changes and the more permanent chronic changes. It may result from the continuous, repeated itching which can lead to lichenification of the epidermis. In addition, the inflammatory response in the dermis is often accompanied by increased fibroblastic activity⁵⁰. Thus, thickening of the skin results from thickening of both the epidermal and dermal layers of the skin.

Patients differ in the degree of skin involvement. Both acute and chronic changes can be seen within the same patient, in distinct body areas 49.

Some patients may show predominantly acute changes while others may exhibit only chronic changes. Furthermore, some patients may show no evidence of disease, and can only be diagnosed as <u>O. volvulus</u> infected during routine epidemiological surveys.

An interesting form of onchocercal dermatitis is known as Sowda (Soda), the Arabic word for black pigmentation. This was first described in Yemen⁵¹, but, similar forms exist in virtually all onchocerciasis endemic foci. Sowda is defined as an asymmetric limb involvement, usually of the legs, where pronounced acute and chronic changes are seen. Most prominent changes are edema, papular eruption and hyperpigmentation together with hypertrophy of the skin⁵². This is associated with enlarged non-tender lymph nodes in the region draining the afflicted limb. Skin biopsies from such patients usually

yield no microfilariae, and the diagnosis is often made on clinical grounds. In the author's opinion the definition of Sowda may need some modification from the exclusivity of single limb involvement to a localized severe reaction in one limb not precluding the presence of other milder skin changes in other parts of the body. Our experience with Sowda cases in Sudan shows that most patients demonstrate true papular eruptions in other parts of the body, especially the back, in addition to the presence of severe localized disease in one limb.

Another clinical presentation related to the skin is the hanging groin. This is a consequence of regional lymphedema and skin atrophy leading to loss of the elastic tone of the skin. Consequently the dependent structures in the femoral and inguinal regions gravitate downwards⁵³.

b. Ocular Changes:

<u>O. volvulus</u> microfilariae can invade the human eye, sometimes in large numbers. The ocular changes seen in patients can be divided into temporary and permanent changes. These changes are pathologic consequences to the presence and/or death of microfilariae within the eye. Both anterior and posterior chamber lesions can be seen. Punctate keratitis ("fluffy opacities") are seen in the cornea and are caused by an acute inflammatory reaction around dead or dying microfilariae^{54,55}. This usually resolves within a few weeks with no permanent consequence. A serious and permanent form of eye damage is sclerosing keratitis⁵⁶. This starts in the limbus in the form of haziness and extends into the corneal epithelium accompanied by pigmentary changes. Later it changes into opacification extending into

the central cornea. Soon extensive scarring with neovascularization is seen all over the cornea. At this stage, the transparent cornea is essentially replaced by fibrous tissue which does not permit passage of light. Blindness is inevitable.

Other changes within the anterior chamber include anterior uveitis leading to development of synechiae and iris deformity, iritis and cataract.

Posterior segment changes are becoming more recognized as an important cause of blindness. They vary widely from a few depigmented retinal spots to severe choreoretinal changes. Initial changes secondary to acute inflammation are seen as pale edematous areas⁵⁵. These are followed by focal areas of hypertrophy which precede choreoretinal atrophy and clumping of retinal pigment⁵⁷. Eventually subretinal fibrosis occurs. Reduction in vision is related to the extent of retinal lesions. When the lesions become extensive and confluent total loss of vision occurs. The optic disc and nerve are not spared⁵⁷. Optic neuritis and optic atrophy are commonly seen in onchocerciasis. Many literature reports suggest that optic nerve changes can be consequent to diethylcarbamazine therapy, and that the damage is induced by microfilarial death^{57,58}. However, it is known that DEC induced damage is an acceleration of a biological process, induced by the occasional death of microfilariae. The natural process of optic neuritis and atrophy may already be occurring, but at a slower rate. This concept remains to be investigated.

c. Nodules:

These are firm, subcutaneous tumors composed of adult worms, entrapped and encapsulated within a fibrous stroma. Onchocercal nodules are firm in consistency, rounded and readily movable. They are often found on bony prominences of the pelvic girdle, ribs and cranium. Nodules by themselves do not cause any significant medical problem. However, their removal is clinically justifiable since it will reduce the overall worm burden, and consequently the number of microfilariae produced. Multiple worms can be found within each single nodule and there is a proportional increase in the number of worms within a nodule as the patient's age increases 47.

Although onchocercal nodules are commonly seen within the subcutaneous tissue in association with the musculo-skeletal system, unusual internal locations, such as in the wall of the aorta, have been reported⁵⁹.

d. Lymph Nodes:

Enlarged superficial lymph nodes which may be fibrotic are seen in onchocerciasis patients. These are usually regional lymph glands that drain an affected areas (e.g. limb). They are usually non-tender, except following treatment.

e. Other Manifestations:

Onchocerca volvulus microfilariae were found in many of the deep organs including the liver, kidney, spleen, pancreas, lung, peripheral nerves, and arteries⁵⁹. The significance of such "deep organ

invasion" is not clear, but there is little evidence that it contributes to the clinical picture of the disease. It probably follows DEC therapy.

Microfilariae can also be found in blood⁶⁰, urine^{60,61}, sputum⁶², vaginal secretions⁶³, peritoneal fluid⁶⁴, and cerebrospinal fluid^{65,66}. The latter finding, coupled with clinical observations of epilepsy and dwarfisim, have led to the belief, by some investigators, that microfilariae may invade the brain and pituitary gland^{67,68}. These suspicions, however, remain to be substantiated scientifically.

Pathogenesis

Most host tissue damage is believed to be a consequence to an inflammatory response directed against the microfilariae^{69,46}. The adult worms only elicit localized granulomatous reactions in the subcutaneous tissue resulting in onchocercal nodules. The female worm periodically releases thousands of microfilariae^{9,19} which migrate to the skin and subcutaneous tissue as well as the ocular tissue. Mechanical destruction of host tissue by microfilariae, especially in the eye has been proposed; however, little evidence exists to that effect. Other possible mechanisms of direct tissue damage could be through the production of a collagenase-like substance secreted by the worms⁷⁰. This may play a role in the pathogenesis of skin atrophy where one finds degenerating collagen bundles. The most important pathologic changes, however are due to the inflammatory responses directed

against dead or dying microfilariae, and these are a function of the host immune $\operatorname{system}^{46}$.

Two theories currently exist as to why live microfilariae are protected from the host immune system. The first deals with the masking of microfilarial surface antigens by host proteins 49,71. Microfilariae are then recognized as self by the host immune system, and no inflammatory response would be evoked. However, it has been shown that live microfilariae in vivo have IgE immunoglobulins in their surfaces indicating that host proteins may not mask all the antiquenic sites. Interestingly, the preferential binding of IqE to live microfilariae may play a protective role in microfilarial avoidance of the immune system, since in vitro studies have shown that eosinophil mediated, complement enhanced killing of microfilariae is dependent on IgG and not IgE⁷². The other mechanism of avoidance could be through active suppression of the host immune system. Microfilariae of Brugia produce an immunoinhibitory substance(s) which suppresses lymphocyte responses to antigens and mitogens as well as causing marked reduction in the production of lymphokines⁷³.

DEC and ivermectin do not kill microfilariae in vitro, even at high non-physiologic concentrations 74,75. However, in vivo, they lead to rapid killing and disappearance of microfilariae accompanied by immunologic reactions (e.g. Mazzotti reaction) 32,76. The mechanism of microfilarial killing by these two agents, though poorly understood, is thought to be immunologically mediated. Possibly their mode of action could be through inhibition of suppressor production by microfilariae.

The inflammatory response directed against the microfilariae lead to destruction of microfilarae as well as surrounding host tissue. The killing is mostly by eosinophils where they first attach to the microfilarial surface and then degranulate, expelling their toxic granules into the surface of microfilariae as well as the surrounding host tissue^{73,103}. The degree of pathologic changes seen is a function of the magnitude of the host inflammatory response. Thus, in a philosophical sense, it is better not to mount any inflammatory response. In such a case, both the host and the microfilaria remain viable and relatively healthy.

Another factor that contributes to the pathologic changes seen in the skin is the intense excoriation and itching seen in Onchocerca volvulus infected individuals. This, when repeated, can lead to skin damage. The self inflicted trauma is often followed by secondary bacterial infection which causes more skin damage. The role of blackfly bites in the pathogenesis of skin lesions is becoming more recognized. Blackfly bites cause intense hypersensitivity reactions which may lead to additional disfigurement of the skin^{27,28}. The association of blackfly bites and leopard skin has been noted⁷⁸.

The involvement of immune complexes in the pathogenesis of onchorercal lesions remains unclear 49,79,80 , as does the role of autoantibodies described recently as possible causes of the development of eye pathology 81,82 .

Thus, to summarize, the most important cause of pathologic changes is the host inflammatory response directed against the microfilariae. Excoriation and blackfly bites play additional roles in development

of skin damage. Mechanical damage caused by migrating microfilariae may cause tissue pathology in ocular tissues.

Pathology

a. Skin:

The histopathologic changes seen in onchocerciasis usually parallel the clinical picture. In asymptomatic patients microfilariae are seen in the upper dermis free of any inflammatory infiltrate. At times mild perivascular cuffing composed predominantly of lymphocytes, plasma cells and macrophages is seen around small blood vessels in the upper and deep dermises \$3,84. With acute clinical changes, one sees prominent perivascular cuffing and the cellular infiltrate would include in addition eosinophils and mast cells, some of which may be degranulating \$47,77\$. Dermal edema with separation of collagen bundles as well as hyperkeratosis, focal parakeratosis, and acanthosis have been described \$3\$. Microscopically the papule represents an intraepithelial microabscess containing fragments of microfilariae and varying numbers of lymphocytes, macrophages and eosinophils \$77,85\$. Eosinophils, either intact or degranulating, are seen in close proximity to the microfilariae \$46\$.

In chronic disease there is thinning of the epidermis with flattening of the rete ridges. Collagen in the upper dermis is disrupted and later becomes fragmented. This is accompanied by increased deposition of mucinous ground substances⁸⁵. Increased fibroblasts and fibroblastic activity may be seen in initial chronic

changes; however, in later stages fibrosis may ensue⁸³. Microfilariae then are seen mostly in the deep dermis. Macrophages, laden with melanin pigment may also be noted in the upper dermis^{47,50}.

The clinical entity of Sowda is characterized by an extensive diffuse inflammatory infiltrate involving both the upper and deep dermises. The cellular infiltrate is composed of lymphocytes, macrophages, eosinophils, and plasma cells⁸⁶. The latter is seen predominantly surrounding dermal appendages and blood vessels. Microfilariae are rarely seen in tissue sections taken from Sowda patients⁵². Edema may also be prominent as well as dilatation of lymphatic vessels⁸⁶. The epidermis shows hyperkeratosis and parakeratosis, and increased pigmentation of the basal layer of the epidermis is also seen⁸⁶.

b. The Nodule:

The onchocercal nodule is essentially a granulomatous reaction directed against adult worms, mainly females. The cellular infiltrate in the nodule is composed of mononuclear cells and eosinophils and with time, a thick fibrous capsule develops and the worm becomes entangled within fibrous septae⁴⁷. Death of adult worms within nodules is accompanied by caseous necrosis and the center of the nodule may become liquified.

An intriguing question is how the adult worm derives its nutrients within the nodule and whether the nodule constitutes a barrier that offers protection to the worm from systematically administered chemotherapeutic agents. It was initially postulated that the worms derive their nutrient supply by causing microhemor-

rhages through erosion of blood vessels in the vicinity³⁷. Smith et al.⁸⁸ elegantly demonstrated the fine capillary network surrounding worms within nodules. They found no evidence of extravasation of blood or erosion of blood vessels. Neuvascularization was evident in nodules, suggesting that the worm may be producing an angiogenesis stimulating factor⁸⁸. It is apparent then that the worm gets its nutrients directly from the vascular network surrounding it, likely by passive diffusion. The same mechanism can be responsible for helping the worm excrete its waste products. This intimate contact with the host blood makes the worm vulnerable to chemotherapeutic agents. Chemotherapeutic agents such as chloroquine and ivermectin can readily be found in nodular tissue and worms (Williams, J.F., personal communication). At the same time secreted worm products and shed antigens may have access to the systemic circulation of the host.

c. The Eye:

Pathologic changes in the eye are generally similar to those seen in the skin. These changes are again thought to be a consequence of microfilarial death either naturally or by chemotherapy. Unlike the skin, there is a scarcity in our knowledge about eye pathology and the few scattered reports on eye pathology deal mostly in end stage disease. Two pathologic events can be seen in the cornea. The first is punctate keratitis, where there is focal collection of lymphocytes and eosinophils around dead or dying microfilariae⁸⁹. This localized inflammatory reaction usually resolves without any sequelae within 3 weeks. The second corneal change is sclerosing keratitis. Here

there is development of fibrovascular pannus between the Bowman's membrane and the corneal epithelium which may become hyperplastic^{47,89}. The translucent cornea becomes opacified. Sclerosing keratitis, when advanced, can lead to blindness.

Inflammation of the uveal tract is also seen in onchocerciasis. It can occur as part of the natural disease or following microfilaricidal therapy. It is characterized by the presence of inflammatory cells in the iris and ciliary body accompanied by hyperpigmentation due to increased activity of the iris pigment epithelium⁹⁰. Later depigmentation is seen as well as hyalinization of small arteries and arterioles⁹⁰.

A spectrum of choreoretinal changes can be seen. Focally, one may see collections of inflammatory cells, eosinophils, and plasma cells where the underlying epithelium becomes atrophic⁹¹. Pigmentary changes in the form of pigment migration and clumping may also be seen. In advanced disease, profound choreoretinal atrophy with loss of photoreceptors, bipolar cells and ganglion cells is evident⁸⁹. The latter stages are often accompanied by optic atrophy and severe restriction in vision or total blindness is the usual outcome.

d. Lymph Nodes:

Lymphadenopathy is commonly seen in onchocerciasis patients. Two types of pathologic changes can be seen in lymph nodes. The first is mostly seen in patients with long standing chronic features and include various degrees of fibrosis. This usually begins at the capsular area and gradually extends into the interior of the lymph node⁹². The fibrosis is accompanied by atrophy of the germinal

centers and in some series, up to 80% of the lymphoid tissue is replaced by tough scar tissue⁹². This gives lymph nodes their characteristic discrete rubbery feeling. Microfilariae are commonly seen in such lymph nodes (in 75% of patients), located mainly within the fibrous capsule or interstitial connective tissue.

The second histopathologic feature is an enlarged soft homogenous lymph node which microscopically shows marked follicular hyperplasia, and enlarged germinal centers. This is commonly seen in the acutely reactive patient, and is characteristic of Sowda patients⁹³. Microfilariae are rarely seen in such nodes.

The pathologic events occurring in lymph nodes, though not well understood, are again thought to be precipitated by inflammatory responses, directed against dead or dying microfilariae. The consequence of this, in the long term, is probably fibrous replacement of the lymphoid tissue. This process is mostly seen in inguinal lymph nodes; however axiliary and occipital lymph nodes can show similar pathologic changes. The fibrosis can eventually lead to impediment of lymph drainage which may lead to hanging groin 53 and elephantiasis of the genitalia 94 and limbs 95, seen occasionally in onchocerciasis.

e. Deep Organs:

There is only a single case report documenting the presence of Onchocerca volvulus microfilariae in deep organs at autopsy in a patient who died after Diethylcarbamazine therapy⁵⁹. Sections from

the liver, kidney, pancreas and lungs all showed <u>O</u>. <u>volvulus</u> microfilariae. This is most likely secondary to the effect of DEC in mobilizing microfilariae.

Treatment and Management of Onchocerciasis

a. Symptomatic Treatment and Treatment of Superimposed Secondary Bacterial Infection 96:

Severe pruritus caused by the disease can be relieved by the use of antihistamines. This kind of treatment can reduce self-inflicted injuries. Secondary pyogenic infections of the skin seen in onchocerciasis can be prevented by adequate treatment of infected lesions by antibiotics.

b. Specific Antiparasitic Drug Therapy:

At present, specific drugs available for the treatment of onchocerciasis are not satisfactory 97 . They are often associated with adverse effects, some of which are severe and can be fatal 98 . Ironically, these may be the result of parasite death caused by the effective anthelmintic drug. An important sequel to treatment is the possible deterioration of vision which may ultimately lead to blindness 58 , 99 .

Anti-onchocercal drugs in general, and microfilaricidal drugs in particular are thought to accelerate the natural processes of parasite death 74,96 . Until recently, the anti-onchocercal drugs available had many undesirable side effects, which made them unsuitable for mass treatment in any chemotherapy based control measure.

The recent introduction of ivermectin, with its milder side effects has renewed the hope of combating the disease by specific chemotherapy.

Only 3 antiparasitic drugs are available now for clinical use in the treatment of onchocerciasis. These are diethylcarbamazine (DEC) and ivermectin which are microfilaricidal drugs, and suramin which is a macrofilaricidal drug with some microfilaricidal action.

1. Diethylcarbamazine (DEC):

DEC was discovered in 1947¹⁰⁰. It has considerable activity in killing the microfilariae of Onchocerca volvulus but it has no action against the adult worm¹⁰¹. DEC is given orally and within a few days can lead to elimination of more than 80% of the microfilarial load, and patients often turn from positive to negative on skin snip tests¹⁰². However, the microfilariae start to reappear again within 2-3 months, since the adult worm is still alive and capable of producing new microfilariae ^{101,102}.

The microfilaricidal mode of action of DEC in onchocerciasis is poorly understood. In lymphatic filariasis, DEC leads to mobilization and rapid disappearance of circulating microfilariae from the blood to the liver and spleen^{101,102}. There, the microfilariae are phagocytised by the reticuloendothelial system cells. In onchocerciasis, where microfilariae are found predominantly in the skin and subcutaneous tissue, DEC leads to mobilization of microfilariae from the dermis to the epidermis, blood stream and urine^{60,74}. In vitro studies have shown convincingly that DEC by itself does not kill microfilariae⁷⁴. In vivo DEC may promote cell mediated attack on the

parasites^{77,103}. Addition of DEC to immune serum and white cells leads to increased cell adherence and killing of the microfilariae¹⁰⁴. However, the concentrations of DEC used in these experiments were well above those which are pharmacologically active in vivo.

DEC is a rather safe drug when given to normal individuals. The side effects seen in onchocerciasis are directly related to its microfilaricidal action. In the characteristic Mazzotti reaction seen with DEC treatment 32, the rapid killing of microfilariae in the skin, subcutaneous tissue and the eyes, results in severe allergiclike reactions. Intense itching occurs shortly after drug administration, accompanied with watering of the eyes. Hours later a stronger reaction takes place in the form of urticaria, fine maculopapular rash, and edema of the skin, especially over the buttocks, thighs, and genitalia, together with swelling and tenderness of inguinal lymph nodes. Pyrexia, headache, muscle pains and joint aches, and tachycardia are all common. If onchocercal eye involvement is present it may become worse 58,99. Death of microfilariae in the anterior segment can give rise to punctate keratitis, which is reversible; however, serious, irreversible posterior segment lesions demonstrable by fluorescein angiography can occur⁵⁸.

Different forms of topical application of DEC were tried in an attempt to minimize the side effects of treatment 105,106,107. Lotions, creams and eye drops were used, but, unfortunately, the reactions observed in these experiments were worse than oral administration 106,108.

In spite of all these problems, DEC remains a potent, commonly used microfilaricidal drug. It is cheap and affordable. However,

the occurrence of the Mazzotti reaction makes it less attractive and many of the patients abandon therapy because of the reaction.

2. Suramin:

Suramin is the only available approved macrofilaricidal drug. It is effective in killing adult <u>O. volvulus</u>. Suramin was first discovered in 1920¹⁰⁹. It was then used for the treatment of African trypanosomiasis. It was first used in the treatment of onchocerciasis in 1947.

Suramin is poorly absorbed from the gastrointestinal tract and should only be given intravenously. Intramuscular and/or subcutaneous injection cause intense local irritation, severe pain and possible sloughing and abscess formation at the site of injection. It strongly binds to plasma proteins and is slowly metabolized leading to a long half life (30 days)¹¹⁰. The drug, bound to plasma proteins, is taken up by the reticuloendothelial system cells and proximal convoluted tubules of the kidney. The latter process might be responsible for the frequently observed renal damage in patients treated with suramin¹⁰⁹, 110.

Suramin is a toxic drug. Reactions are more common in malnour-ished people, especially if they have hypoproteinemia. Since excretion of drug is slow, toxicity may be cumulative¹¹⁰. Toxic reactions during therapy are classified by Hawking¹⁰⁹ into:

I. Immediate reactions: These include nausea, vomiting, collapse, shock, sweating and loss of consciousness. These are best avoided by slowly injecting the drug and starting treatment with a small dose.

- II. Late reactions: These occur at 3-24 hours. Signs include pyrexia, photophobia, uveitis, lacrimation, abdominal distension and cutaneous hypoesthesia, and are thought to be due to the nicotinic effect of the drug.
- III. Delayed reactions: These are the most common. The most frequent is albuminuria and cellular casts in urine, due to kidney tubular damage. Because of this serious toxic effect, examination of renal function, at least in the form of a urine-general exam, is essential before administering each weekly dose. Other less common components in the delayed late reaction category include exfoliative dermatitis, stomatitis and rarely jaundice.
- IV. Allergic reactions: Some of these are thought to be due to the microfilaricidal action of the drug, similar to those seen with DEC. They include urticaria and pruritus, accompanied by vesicular rashes. Other reactions, thought to be primarily due to the macrofilaricidal action of the drug include tenderness and swelling around nodules containing the adult worms.

With all these unwanted side effects of Suramin, the drug remains the only available compound that offers cure for onchocerciasis. Almost 40 years have elapsed since it was first used in onchocerciasis, but we still lack knowledge about the pharmacokinetics, tissue distribution and effective blood levels needed for its macrofilaricidal action.

3. Ivermectin:

This is a semisynthetic macrocyclic lactone produced by the actinomycetae, Streptomyces avermitilis. It is extremely active against a wide variety of parasitic nematodes 111,112. Although it has no detrimental effects on adult filariae in general, it proved to be active against 0. volvulus microfilariae 113. When administered orally in a single small dose of 100-200 ug/kg body weight, it can lead to killing of microfilariae and patients can remain microfilariae-negative after treatment for up to 9 months 113. It is claimed that the side effects of the drug are less severe than those of DEC, manifested in the form of a milder "Mazzotti" reaction 114. However, recently, moderate to severe reactions were noted in patients from Sierra Leone 115. In addition, a possible association between ivermectin therapy and coaqulation disorders was suggested in a small number of Sudanese patients 116. Further testing of the drug is needed in order to exclude potentially serious side effects and evaluate efficacy on a larger scale, and in different geographical locations.

The microfilaricidal action of the drug is not well understood. It has been proposed that it acts by potentiation of gamma-aminobutyric acid (GABA) action thus reducing muscle membrane potential of the worm¹¹⁷. In mammals, GABA is a neurotransmitter found only in the central nervous system, while in nematodes GABA is a neuromuscular transmitter. Hence, ivermectin may lead to inhibiton of excitatory and inhibitory post-synaptic potentials and paralyis. This action, however, does not seem to apply to <u>O. volvulus</u> microfilariae in vitro, since the drug, at physiological concentra-

tions does not have readily detectable effects on the motility of microfilariae. Recently, microfilarial emergence from skin snips following ivermectin therapy was assessed 118. No difference in emergence was found between biopsies taken from treated or untreated patients. Thus, the hypothesis of an ivermectin-paralyzing effect on microfilariae is weakened further. Ivermectin has stimulated a lot of enthusiasm since clinical trials started, and the overwhelming success of ivermectin therapy in West Africa prompted the World Health Organization to encourage community based treatment programs. It is expected that large scale use of the drug in the treatment of onchocerciasis will be commence in many endemic areas, with the hope that the use of ivermectin may aid in the interruption of the transmission cycle 121.

c. Nodulectomy:

Surgical removal of onchocercal nodules from patients is a justifiable procedure since it reduces the worm burden in the body. Nodulectomies do not lead to complete cure because nodules may be deeply buried in the muscles and behind big joints 119, where they are inaccessible for surgical removal. In endemic areas, for the procedure to have a measurable effect, new nodules have to be removed yearly. In South America, removal of head nodules is routinely practiced because it is thought to reduce the number of microfilariae invading the eyes.

d. Prophylaxis:

The subject of prophylaxis in onchocerciasis has not received much attention. Studies with <u>Litomosoides carinii</u>, <u>Loa loa</u>, and <u>Brugia malayi</u> have provided some indirect evidence that prophylactic use of DEC can prevent new infections. DEC was shown to be effective in preventing loaisis¹²⁰, but this might not be the case for onchocerciasis. Ivermectin was found to be effective in preventing infection of cattle by <u>O. gibsoni</u>. There was hope that it could serve as a prophylactic drug against <u>O. volvulus</u> infection, but this has not been borne out by recent experiments in chimpanzees.

Immune Response in O. volvulus Infection

Immunological studies of <u>O. volvulus</u> infection are often hampered by the scarcity of parasite material. The lack of a suitable laboratory animal model makes it necessary to obtain the parasites from infected individuals residing in remote, often inaccessible endemic foci. Studies of cell mediated immune responses of patients have proven difficult, since most of the work has to be done on site, where field conditions dictate what can and cannot be performed. Simple tasks, such as <u>in vitro</u> lymphocyte cultures become a major challenge for problems of contamination and the lack of appropriate equipment. Despite all logistical difficulties, investigation of immune responses to <u>O. volvulus</u> infection is progressing at a good pace, and our knowledge about the biology and immunology of the disease has substantially increased during the last 10 years.

Most of the pathologic consequences seen in onchocerciasis are believed to be secondary to inflammatory reactions against microfilariae. Such inflammatory reactions are controlled by the immune system and require participation of both humoral and cellular elements to occur. Even the mode of action of the microfilaricidal drugs in current use is thought to be immunologically mediated. Thus, it is of importance to have a good understanding of the different immunologic mechanisms involved in onchocerciasis and its relationship to the pathogenesis of the disease.

It is often difficult to dissect immune responses to <u>0</u>. <u>volvulus</u> in individuals living in endemic foci, since concurrent parasitic and non-parasitic infections are commonly seen in the majority of patients. Therefore, it is imperative to include appropriate controls to minimize these variables, in any immunologic studies of patients.

a. Antigens of Onchocerca volvulus:

Several approaches to obtain <u>O</u>. <u>volvulus</u> antigenic preparation have been utilized. By far the most common is the preparation of crude somatic antigen extracts from whole worms obtained by surgical removal of nodules. <u>O</u>. <u>volvulus</u> worms may either be dissected or collagenase digested from host tissue¹²² and then homogenized and extracted with buffer. The antigenic preparation obtained this way contains complex water soluble somatic and surface antigens, as well as contaminating host proteins. Another approach is the preparation of secretions/excretions of adult worms and microfilariae. This is achieved through <u>in vitro</u> maintenance of live intact adult <u>O</u>. <u>volvulus</u> or microfilariae in various culture media¹²². The culture supernatant

should contain actively secreted, excreted or shed worm antigens. One of the problems encountered in this approach is that the preparation often contains host proteins. Also it is difficult to maintain the worms in serum-free media, for their survival time is greatly reduced, and consequently only a small amount of antigenic preparation can be obtained. Of course, the advantage of this approach is that the secreted/excreted antigens are likely to be the ones produced in vivo by live worms and which are usually encountered by the host immune system. A third approach is the use of live microfilariae for in vitro assay where the microfilarial surface acts as multiple antigenic epitopes which can be recognized by antibodies and cells 104,123.

Antigenic extracts from <u>O. volvulus</u> worms and microfilariae have been used in <u>in vitro</u> cell mediated responses as well as in testing of immediate and delayed hypersensitivity reactions ¹²⁵. They have also been used extensively for immunoblotting recognition patterns by sera from O. volvulus infected individuals.

Although the antigenic properties and the immunomodulatory effects of worm secretion and excretions were recognized in other filarial and helminth infections 73,124,126, they have received little attention in onchocerciasis. To date, few reports exist on the utility of 0. volvulus microfilariae and adult worms secretions/excretions and in most instances the goal has been immunodiagnosis 127. This lack of investigation of the immunologic role of secretions/excretions, is largely due to the extreme difficulty in obtaining live worms in numbers large enough to produce sufficient amounts of these products for research use.

b. Cell Mediated Immunity:

The data on cell mediated immunity in onchocerciasis are at best confusing. The earlier notions of generalized defects in cellular immunity similar to those seen in lymphatic filariasis are still being cited. Evidence for such defects stems from findings of depressed skin reactivity to the non-related antigens tuberculin and lepromin as well as to 0. volvulus crude antigen 125,128.

The idea of generalized immunodepression was further supported by the <u>in vitro</u> work of Merino and Brand¹²⁹, where they found decreased reactivity to concanavalin A and by Greene et al. They demonstrated depressed reactivity to the bacterial antigen SKSD in a small number of patients and controls¹³⁰. This has lead to acceptance of the concept of generalized immunosuppression among researchers, the clinical relevance of which was suggested by the appearance of a single report of an association between onchocerciasis and the development of lepromatous leprosy¹³¹. Haque and colleagues examined pooled sera from onchocerciasis patients and found that the addition of such sera suppressed lymphocyte responses to mitogens¹³². They postulated that serum inhibitory factors are responsible for "this state of generalized immunodepression in onchocerciasis".

Evidence to the contrary, i.e. lack of generalized immunosuppression is becoming more recognized in recent literature. Onchocerciasis patients living in endemic areas are not more susceptible to other infectious diseases when compared to non-infected endemic controls from the same ethnic and socioeconomic background. Bartlett et al. lack have shown that <u>O. volvulus</u> infected subjects have normal delayed skin reactivity to the non-related antigen of Necator americanus.

Bryceson 133 and Greene 130 found normal lymphocyte blastogenic responses to mitogens in onchocerciasis patients. Lack of generalized immunosuppression is reported by Brattig et al. 134 where they were able to demonstrate normal peripheral blood lymphocyte phenotypes in onchocerciasis patients. In fact, the latter authors found an increase in NK activity among reactive (Sowda) patients. Studies from Venezuela in which the effect of individual patient's sera on lymphocyte blastogenic responses to mitogens was studied, showed mixed patterns where some sera augmented blastogenic responses while others suppressed it 135.

Two recent reports, however, clearly negate the idea of generalized immunodepression in onchocerciasis. In the first by Ward and co-workers 136 they found intact in vitro lymphocyte blastogenic responses in Quatemalan onchocerciasis patients to mitogens and the non-related antigen PPD, when compared to endemic controls. normal lymphocyte proliferative responses were accompanied by normal production of interleukin-2 (IL-2) and Gamma interferon (IFN-Y). Unexpectedly, they also found good lymphocyte blastogenic responses to crude O. volvulus antigen among their patient population. However, they noted decreased IL-2 production by cells from 0. volvulus infected subjects when compared to non-infected, endemic controls. The second report comes from Gallin and her colleagues 137 where they found normal lymphocyte responses to mitogens and the bacterial antigen streptolysin O among Liberian onchocerciasis patients. They also found low reactivity to crude O. volvulus soluble antigen among patients and endemic area controls. The in vitro reactivity to 0. volvulus could be greatly increased in both groups by addition of IL-2. In the above two studies, careful planning to include endemic and non-endemic controls was taken, as well as the utilization of pertinent clinical information to include or exclude participants in their studies. Such characteristics, which were mostly ignored by previous investigators, have proven useful in analysis of results.

However, in all of the studies sited here only crude <u>0</u>. <u>volvulus</u> antigenic extracts were used. These are composed of numerous antigens some of which may not be readily available for recognition by the host immune system before the worm death.

Thus, to summarize, our knowledge of cell mediated immunity does not consistently support the idea of generalized immunosuppression. Intact responsiveness to mitogens and to non-O. volvulus antigens is present. Clinically, O. volvulus patients do not exhibit signs or symptoms of immunodeficiency when compared to their respective endemic controls. Specific hyporesponsiveness to O. volvulus antigen is suggested in some studies by decreased lymphocyte responses to O. volvulus antigen and decreased production of IL-2.

c. Antibody Dependent Cellular Responses:

Sera from <u>O. volvulus</u> infected individuals were shown to promote leukocyte adhesion to and killing of microfilariae of <u>O. volvulus</u> and other animal onchocercal species¹²³, ¹³⁸. Not all <u>O. volvulus</u> infected patients' sera have such capacity, and most of the activity is seen in sera obtained from patients with active acute skin and eye lesions. The cell type involved in the adhesion phenomenon is the eosinophil¹⁰⁴, ¹³⁸; in the presence of sera it adheres to and degranulates onto the surface of live microfilariae. The adhesion is enhanced by

the presence of complement. Purified eosinophils can adhere to microfilariae in vitro, but they are unable to degranulate and kill them, indicating that participation of other cell types and their secreted products is needed for killing to occur. The in vitro finding of eosinophil adhesion is in accordance to what is seen in vivo, where eosinophils and their toxic products are seen in close proximity to dying microfilariae in tissue section 72. Diethylcarbamazine was shown to enhance adhesion of granulocytes to microfilariae in vitro^{74,139}, however the concentrations used in those experiments were much higher than the physiologic therapeutic plasma level. Eosinophilia is a common feature in patients with onchocerciasis, sometimes reaching 70% of all leukocytes 104. Administration of DEC to patients leads to rapid disappearance of eosinophils from peripheral blood to the tissues where they were considered to participate in killing of microfilariae 74. All of these findings suggest an important role for eosinophils in the destruction of microfilariae, and they provide no support for the notion that neutrophils are the major players in the killing of microfilariae 123. The paucity of neutrophils in the inflammatory infiltrate around microfilariae seen on histologic sections of the skin suggests that their role in killing of microfilariae and hence in the pathogenesis of this disease is rather limited.

Antibody dependent cellular cytotoxicity is most likely promoted by antibodies of the IgG class rather than IgE, since in histological sections, IgG can be seen on the surface of dying microfilariae, while IgE is seen on apparently health microfilariae, without any asociated cellular reaction 72 . No work has been done to determine the subclass of IgG responsible for microfilarial killing.

d. Humoral Immune Response

Until recently, most of the studies on humoral immune response in onchocerciasis were directed towards diagnosis. It has been mentioned in the "Diagnosis" section that several immunologic procedures were employed in pursuit of improving the specificity and sensitivity of these tests, but the failure to identify an Onchocerca volvulus specific antigen has severely curtailed efforts for development of a reliable and practical immunologic test. Recently, with the introduction of more sophisticated techniques, it has been shown that low molecular weight 0. volvulus antigens may offer the greatest diagnostic specificity of the disease. These low MW antigens generally lack cross reactivity with other filarial antigens 140. Of these antigens, two seem to offer the most promising potential; A 33 KD and its supposedly 21KD breakdown product 141. These two antigens were shown to react specifically with sera from 0. volvulus infected individuals with a specificity of 100% and sensitivity above 90%. However, more work is needed to refine the techniques for practical diagnostic use and more sera from patients with wider clinical presentations have to be tested to confirm their usefulness.

Detection of circulating <u>O</u>. <u>volvulus</u> specific antigen(s) is an attractive approach, since it can discriminate between patients harboring the infection from those who were exposed, but not infected or those who are cured from the infection, but still serologically positive. The two pieces of work dealing with this issue did not show

greater advantage over the old fashioned method of demonstrating the parasite in skin biopsies. The sensitivity ranged from 31% to 75% in one report⁴⁰ and increased to about 80% in the other after an <u>O</u>. volvulus specific monoclonal antibody was used³⁹. Nonetheless, antigen detection remains an attractive option which can be used to detect parasite products in various biological fluids, Thus minimizing the invasiveness of skin sampling and blood drawing both of which are sometimes opposed by patients.

High levels of total immunoglobulins, notably those of the IgG and IgE classes are usually seen in sera from onchocerciasis patients 142,143,144. Serum levels of immunoglobulins do not usually correlate with the clinical status of patients, perhaps because of the frequent occurrance of other concomittant parasitic infections among onchocerciasis patients. Recently however, it has been shown that significantly higher levels of IgG and IgE are seen in patients with localized onchocerciasis (Sowda), when compared to others with the generalized form 134.

Studies aimed at detection of <u>O. volvulus</u> specific antibody responses have shown that parasite specific IgE can be seen in association with the infection¹⁴³ with up to 70% of patients manifesting high titres¹⁴⁴. The highest levels of specific IgE anti <u>O. volvulus</u> antibodies seem to reflect clinical severity of the disease ¹⁴⁵. Unlike delayed intradermal skin testing where patients' reactivities differ, immediate hypersensitivity reactions to onchocercal antigens are invariably seen in onchocerciasis patients^{122,127}. These findings coupled with findings in lymphatic filariasis ^{146,147,148} bolstered beliefs about the immunobiological significance of IgE in the path-

ogenesis of the disease. In 1982, Weiss and colleagues 149 showed intense IgE reactivities to more than 50 <u>O. volvulus</u> antigenic bands using Western immunoblotting techniques. The above authors, however, used extremely concentrated patients' sera (dilution 1:2) which raises questions as to the specificity of their procedure. Since then no one has attempted to specifically look at IgE reactivities using the Western blotting technique. However, recently Cabrera et al., 150 looking at IgG3 reactivity of Sowda patients to <u>O. volvulus</u> antigens, also examined other immunoglobulin classes reactivities, including IgE. Although they did not comment on IgE recognition pattern to separated <u>O. volvulus</u> antigens the results of their immunoblots clearly show minimal reactivity with IgE. The same authors have shown very restricted patterns of IgE recognition using <u>Onchocerca gibsoni</u> as a source of antigen 151.

Reproducible patterns of <u>O. volvulus</u> antigen recognition by other immunoglobulin classes using Western blotting have been demonstrated by a number of investigators¹⁴¹,150,151,152,153. Differential recognition of worm antigens by antibodies of the IgG immunoglobulin class and its relation to the clinical presentation of patients attracted much attention recently. The emerging pattern is that patients with severe disease tend to recognize more antigenic bands with greater intensity^{152,153}. However, this is a generalization, since on occasion, asymptomatic patients and those with mild disease may recognize a similar or greater number of antigenic bands with stronger intensities^{152,153}. This diversity and lack of consistent antigen recognition patterns in relation to the clinical signs is probably due to the dynamics of the disease, where the immunologic

status of patients may change, without an immediate change in the clinical picture. Patients may revert from a reactive state to non-reactive or vice versa. Most of the immunological studies in onchocerciasis, including those concerned with immune responses, are cross-sectional ones. Better understanding of immunologic responses to the parasite should come from longitudinal studies, where the clinical and immunologic changes can be closely monitored.

In the most recent studies by Cabrera et al. 150 the role of IgG immunoglobulin subclasses in onchocerciasis was studied. The authors looked at IgG3 recognition patterns of O. volvulus antigens by sera from Sowda patients and those with generalized onchocerciasis. They claimed that IgG3 antibodies present in sera obtained from Sowda patients all specifically recognize 72 KD and 9 KD 0. volvulus antigenic bands, while onchocerciasis patients with other forms of the disease failed to recognize either band. They proposed that this IgG3 recognition could serve as a diagnostic test for Sowda patients who are often negative parasitologically. However, their data were unusual in that these two proteins were not recognized when blots were processed with anti-total IqG. No explanation was offered for this unexpected finding. Cabrera et al. 150 also demonstrated the remarkable feature of high anti-onchocercal IgG4 antibodies in patients with different forms of the disease. This is similar to the findings in lymphatic filariasis, where IqG4 is being incriminated as a blocking antibody for IgE mediated killing of the parasite 154,155. Whether this is true for onchocerciasis remains to be explored.

REFERENCES

- 1. Morgan, H.V. 1958. Onchocerciasis in the northern Sudan. <u>J</u>. Trop. Med. Hyg. 61: 145-147.
- 2. Ensor, H. 1908. The advent of craw-craw in the Anglo-Egyptian Sudan J. Roy. Army Med. Corp. 10: 140-143.
- 3. Bryant, G. 1935. Endemic retinochoroiditis in the Anglo-Egyptian Sudan and its possible relationship to O. volvulus. Trans. Roy. Soc. Trop. Med. Hyg. 28: 523-532.
- 4. Kirk, R., H.V. Morgan, M.A. Haseeb, and M.H. Satti. 1958. Onchocerciasis in the Sudan Republic. Ann. Trop. Med. Parasit. 53: 97-102.
- 5. ElSheikh, H., H. Ghalib, S.M. Hussein, V. Barbiero, M.B. Mustafa, and J.F. Williams. 1985. Onchocerciasis in Sudan: The Southern Darfur focus: Trans. Roy. Soc. Trop. Med. Hyg. 80: 902-905.
- 6. Abdalla, R.E., and E. Abu Bakr. 1975. A new focus of onchocerciasis in the Sudan. Trop. Geog. Med. 27: 365-370.
- 7. Ghalib, H.W., J.F. Williams, C.D. Mackenzie, H. ElSheikh, M.Y. ElKhalifa and M. Kron. 1987. Severe onchocercal dermatitis in the Ethiopian border region of Sudan. Ann. Trop. Med. Parasit. 81: 405-419.
- 8. Williams, J.F., A.H. Abu Yousef, M. Ballard, R. Awad, M. ElTayoub, and M. Rasheed. 1985. Onchocerciasis in Sudan: The Abu Hamad focus. Trans. Roy. Soc. Trop. Med. Hyg. 79: 464-468.
- 9. Schulz-Key, H, and M. Karam. 1986. Periodic reproduction of Onchocerca volvulus. Parasitology Today. 2: 284-286.
- 10. Baker, R.H., M.B. Mustafa, and O.M. Abdelnur. 1985. The current status of <u>Simulium</u> species in the <u>Sudan</u> with reference to onchocerciasis. <u>Sudan</u> Med. J. 21(supplement): 19-27.
- 11. Beiram, M.M.A. 1974. Onchocerciasis in the Sudan. M.D. Thesis, University of Khartoum.
- 12. Prout, W.T. 1901. A filaria found in Sierra Leone. Filaria volvulus (Leuckart). Brit. Med. J. 2091: 209-211.

- 13. Blacklock, D.B. 1926. The development of Onchocerca volvulus in Simulium damnosum. Ann. Trop. Med. Hyg. 33: 586-594.
- McMahon, J.E., J.B. Davis, M.D. White, J.M. Goddard, P.A. Beech-Garwood, and B.R. Kirkwood. 1986. Onchocerciasis in Sierra Leone I. Studies on the prevalence and transmission at Goaiima village. Trans. Roy. Soc. Trop. Med. Hyg. 80: 802-809.
- 15. Nelson, G.S. 1970. Onchocerciasis. Advances in Parasit. 8: 173-225.
- 16. Raybould, J., and G. White. 1979. The distribution, bionomics and control of onchocerciasis vectors in Eastern Africa and Yemen. Tropenmed. Parasit. 30: 505-547.
- 17. Duke, B.O.L. 1968. Studies on factors influencing the transmission of onchocerciasis V. The stage of <u>Onchocerca volvulus</u> in wild "forest" <u>Simulium damnosum</u>, the fate of the parasite in the fly, and the age distribution of the biting population. Ann. Trop. Med. Parasit. 62: 107-116.
- 18. WHO. 1987. Expert Committee on Onchocerciasis. World Health Organization. Technical Report Series 752.
- 19. Engelbrecht, J., and H. Schulz-Key. 1984. Observations on adult Onchocerca volvulus maintained in vitro. Trans. Roy. Soc. Trop. Med. Hyg. 78: 212-215.
- 20. Walsh, J., J. Davies, and R. LeBerre. 1979. Entomological aspects of the first five years of onchocerciasis control programme in the Volta River Basin. Tropenmed. Parasit. 30: 328-344.
- 21. Neafie, R.C. 1972. Morphology of Onchocerca volvulus. Am. J. Clin. Path. 57: 574-586.
- 22. Faust, E.C., P.F. Russel, and R.C. Yang. 1970. In: Clinical Parasitology, 8th Ed. Lea and Febiger, Philadelphia, PA, USA.
- 23. Duke, B.O.L., 1981. The sixth disease of WHO: Onchocerciasis. Brit. Med. J. 283: 961-962.
- 24. Bellec, C., and G. Hebrad. 1983. Fecondite des femelles du complex <u>Simulium damnosum</u> en Afrique de l'quest. <u>Cah. Orston Ser. Entomol. Med. Parasit.</u> 21: 251-260.
- 25. Mokry, J.E. 1980. A method for estimating the age of field-collected female <u>Simulium damnosum</u> s.i. <u>Tropenmed</u>. <u>Parasit</u>. 31: 121-127.
- 26. Grams, R., J.F. Walsh, and J.B. Davies. 1979. Studies on the reinvasion of the onchocerciasis control programme in the Volta River Basin by <u>Simulium damnosum</u> s.i. with emphasis on the Southern areas. Tropenmed. Parasit. 30: 345-362.

- 27. Dalmat, H.T. 1955. The blackflies of Guatemala and their role as vectors of onchocerciasis. The Smithsonian Institution, Washington, DC, U.S.A.
- 28. Yang, Y.J., and D.M. Davies. 1974. The saliva of adult female black flies (Simuliidae:Diptera). Can. J. Zool. 52: 749-753.
- 29. Williams, J.F., C.D. Mackenzie, and M.M. Homeida. 1985. Detection and characterization of <u>Onchocerca volvulus</u> in Sudan. <u>Sudan Med. J.</u> 21(supplement): 49-58.
- 30. Langham, M.E., and R. Richardson. 1981. Onchocerciasis diagnosis and the probability of visual loss in patients with skin snips negative for Onchocerca volvulus. Tropenmed. Parasit. 32: 177-180.
- 31. Stingl, P., M. Ross, D.W. Gibson, J. Ribas, and D.H. Connor. 1984. A diagnostic "patch test" for onchocerciasis using topical diethylcarbamazine. Trans. Roy. Soc. Trop. Med. Hyg. 78: 254-258.
- 32. Mazzotti, L. 1948. Posibilidad de utilizar como medio diagnostico auxiliar en la onchocercosis las reacciones allerticas concecuivas a la administracion del "Hetrazan". Rev. Inst. Salubridad y Enfermedades Trop. 9: 235-237.
- 33. Homeida, M.M., C.D. Mackenzie, J.F. Williams and H.W. Ghalib. 1986. The detection of onchocercal nodules by ultrasound technique. Trans. Roy. Soc. Trop. Med. Hyg. 80: 570-571.
- 34. Rose, G., J. Biguet, and F. Rose. 1966. Application d'une reaction d'hemagglutination diagnostic de L'onchocercose. Rev. Hyg. Med. Soc. 14: 383-392.
- 35. Hedge, E.C., and D.S. Ridley. 1977. Immunoflourescence reactions with microfilariae. I. Diagnostic evaluation. <u>Trans. Roy. Soc. Trop. Med. Hyg.</u> 71: 304-307.
- 36. Bryceson, A.D., K. Schillhorn van Veen, A.J. Oduloju, and B.O. Duke. 1976. Antigenic diversity among <u>Onchocerca volvulus</u> in Nigerian and immunologic differences between onchocerciasis in the savana and forest in Cameroon. Clin. Exp. Immunol. 24: 168-176.
- 37. Bartlett, A., D.E. Bidwell, and A. Voller. 1975. Preliminary studies on the application of enzyme immunoassay in the detection of antibodies in onchocerciasis. <u>Tropenmed</u>. <u>Parasit</u>. 26: 370-374.
- 38. Williams, J.F., M.Y. ElKhalfia, C.D. Mackenzie, and B. Sisley. 1985. Antigens of Onchocerca volvulus. Rev. Inf. Dis. 7: 831-836.

- 39. DesMoutis, I., A. Quaissi, J.M. Grzych, L. Yarzabal, A. Haque, and A. Capron. 1983. Onchocerca volvulus: Detection of circulating antigen by monoclonal antibodies in human onchocerciasis. Am. J. Trop. Med. Hyg. 32: 533-542.
- 40. Quaissi, A., L.E. Kouemeni, A. Haque, P.R. Ridel, P. Saint Andre, and A. Capron. 1983. Detection of circulating antigens in onchocerciasis. Am. J. Trop. Med. Hyg. 30: 1211-1218.
- 41. Hamilton, R.G. 1985. Application of immunoassay methods in the serodiagnosis of human filariasis. Rev. Infect. Dis. 7: 837-843.
- 42. Mueller, J.C., D.W. Mitchell, G.A. Garcia-Monza, F.J. Aguilar, and R.G. Scholtens. 1973. Evaluation of a skin test for onchocerciasis in Guatemala. Am. J. Trop. Med. Hyg. 22: 337-342.
- 43. Schiller, E.L., R. D'Antonio, and H.F. Marroquin. 1980. Intradermal reactivity of excretory and secretory products of onchocercal microfilariae. Am. J. Trop. Med. Hyg. 29: 1215-1219.
- 44. Shah, J.S., B. Karam, W. Piessens, and D.F. Wirth. 1987. Characterization of an Onchocerca-specific DNA clone from Onchocerca volvulus. Am. J. Trop. Med. Hyg. 37: 376-384.
- 45. Erttman, K.D., T.R. Unnasch, B.M. Greene, E.J. Albiez, J. Boateng, A.M. Denke. J.J. Ferraroni, M. Karam., H. Schulz-Key, and P.N. Williams. 1987. A DNA sequence specific for forest from Onchocerca volvulus. Nature. 327: 415-417.
- 46. Mackenzie, C.D., J.F. Williams, B.M. Sisley, M.W. Steward, and J. O'Day. 1985. Variation in host responses and the pathogenesis of human onchocerciasis. Rev. Infect. Dis. 7: 802-808.
- 47. Mackenzie, C.D. 1985. Immune response in onchocerciasis and dracunculiasis. In: Soulsby E.J.L., Ed. Immunology, Immunoprophylasix and Immunotherapy of Parasitic Infections. Vol. 1. Boca Raton, FL: CRC Press.
- 48. Ommen, A.P. 1967. Clinical manifestation of onchocerciasis. Ethiop. Med. J. 5: 159-173.
- 49. Mackenzie, C.D., J.F. Williams, R.H. Guderian, and J. O'Day. 1987. Clinical responses in human onchocerciasis: Parasitological and immunological implications. Ciba Foundation Monograph. 127: 46-76.
- 50. Connor, D.H., and R.C. Neafie. 1976. Onchocerciasis. In: Pathology of Tropical and Extraordinary Diseases. Vol. 2. Armed Forces Institute of Pathology, Washington, DC. pp. 360-372.
- 51. Fawdry, A.L. 1957. Onchocerciasis in South Arabia. Trans. Roy. Soc. Trop. Med. Hyg. 51: 253-256.

- 52. Anderson, J., H. Fuglsang, and A. Al-Zubaidy. 1973. Onchocerciasis in Yemen with special reference to Sowda. Trans. Roy. Soc. Trop. Med. Hyg. 67: 30-31.
- 53. Nelson, G.S. 1958. "Hanging groin" and hernia, complications of onchocerciasis. Trans. Roy. Soc. Trop. Med. Hyg. 52: 272-275.
- 54. Anderson, J., and H. Fuglsang. 1977. Ocular onchocerciasis. Trop. Dis. Bull. 74: 257-272.
- 55. O'Day, J., C.D. Mackenzie, and J.F. Williams. 1984. Ocular changes in patients infected with the filarial nematode Onchocerca volvulus in South Western Sudan. Aust. J. Ophthalmol. 12: 211-217.
- 56. Budden, F.H. 1963. Comparative study of ocular onchocerciasis in Savannah and rain forest. Trans. Roy. Soc. Trop. Med. Hyg. 57: 64-68.
- 57. Bird, A.C., J. Anderson, and H. Fuglsang. 1976. Morphology of posterior segment lesions of the eye in patients with onchocerciasis. Brit. J. Ophthalmol. 60: 2-20.
- 58. Bird, A.C., H.A. ElSheikh, J. Anderson, and H. Fuglsang. 1979. Visual loss during oral diethylcarbamazine treatment of onchocerciasis. Lancet. 2: 46.
- 59. Meyers, W.M., R.D. Neafie, and D.H. Connor. 1977. Onchocerciasis: Invasion of deep organs by Onchocerca volvulus. Autopsy findings. Am. J. Trop. Med. Hyg. 26: 650-657.
- 60. Fuglsang, H., and J. Anderson. 1974. Microfilariae of Onchocerca volvulus in blood and urine before, during and after treatment with diethylcarbamazine. J. Helminthol. 48: 93-97.
- 61. Buck, A.A., R.I. Anderson, J.A. Colston, C.K. Wallace. D.H. Connor, L.E. Harman, M.W. Donner, and J.P. Ganley. 1971. Microfilariae in onchocerciasis: A clinical and epidemiological follow-up study in the Republic of Chad. WHO Bull. 45: 353-369.
- 62. Fuglsang, H., and J. Anderson. 1973. Effect of diethylcarbamazine and suramin on <u>Onchocerca</u> volvulus microfilariae in the urine. Lancet. 2: 321-322.
- 63. Thomas, D.B., R.I. Anderson, and A.A. MacRae. 1973. Microfilariae of Onchocerca volvulus in a vaginal irrigation specimen. J. Parasit. 59: 941-942.
- 64. Couzineau, P., P. Bouree, and R. Molimard. 1973. Onchocercose avec microfilaremie et microfilarurie decouverte au cour d'un syndrome nephrotique. <u>Bull. Co. Pathol. Exot.</u> 66: 553-558.

- 65. Mazzotti, L. 1959. Presencia de microfialrias de <u>Onchocerca</u> volvulus en el liquido cefalorraquideo en enfermos tratados con heterazan. Rev. Inst. Salubr. Enferm. Trop. 19: 1-5.
- 66. Hisette, J. 1932. Memoire sur "Onchocerca volvulus Leukart" et ses manifestations oculaires an Congo Belge. Ann. Soc. Belge. Med. Trop. 12: 433-529.
- 67. Jelliffe, D.B., P.R.M. Jones, and C.E. Stroud. 1962. Nekalanga. Notes on the endemic dwarfism of Uganda. Trop. Geogr. Med. 14: 97-104.
- 68. Nelson, G.S. 1958. Onchocerciasis in the West Nile district of Uganda. Trans. Roy. Soc. Trop. Med. Hyg. 52: 368-379.
- 69. Connor, D.H., N.E. Morrison, F. Kedel-Vargas, et al. 1970. Onchocerciasis: Onchocercal dermatitis, lymphadermitis and elephantiasis in the Ubangi territory. Hum. Pathol. 1: 553-571.
- 70. Petralanda, I., L. Yarzabal, and W.F. Piessens. 1986. Studies on filarial antigen with collagenase activity. Mol. Biochem. Parasitol. 19: 51-59.
- 71. Taylor, H.R. 1985. Research priorities for immunologic aspects of onchocerciasis. J. Infect. Dis. 152: 389-394.
- 72. Ghalib, H.W., C.D. Mackenzie, J.F. Williams, B.M. Sisley, and M.Y. ElKhalfia. 1985. Immunology and the development of pathology in onchocerciasis: studies in Sudan. Sudan Med. J. 21 (supplement): 59-64.
- 73. Wadee, A.A., A.C. Vickery, and W.F. Piessens. 1987. Characterization of immunosuppressive proteins of <u>Brugia malayi microfilariae</u>. Acta. Tropica. 44: 343-352.
- 74. Mackenzie, C.D. 1985. Diethylcarbamazine: A review of its action in onchocerciasis, lymphatic filariasis and inflammation. Trop. Dis. Bull. 82: R1-R37.
- 75. Devaney, E., and R.E. Howells. 1984. The microfilaricidal activity of ivermectin in vitro and in vivo. Tropenmed. Parasit. 35: 47-49.
- 76. Orme, M., K. Awadzi, G. Edwards, and A.M. Breckenridge. 1988. Drug treatment of onchocerciasis. Quarterly J. Med. New Series. 66(251): 195-201.
- 77. Kephart, G.M., G.J. Gleich, D.H. Connor, D.W. Gibson, and S.J. Ackerman. 1984. Deposition of eosinophil granule major basic protein onto microfilarie on Onchocerca volvulus in the skin of patients treated with diethylcarbamazine. Lab. Invest. 50: 51-61.

- 78. Fuglsang, H. 1983. "Leopard skin" and onchocerciasis. Trans. Roy. Soc. Trop. Med. Hyg. 77: 881.
- 79. Greene, B.M., H.R. Taylor, E.J. Brown, R.L. Humphrey, and T.J. Lawley. 1983. Ocular and systemic complications of diethylcarbamazine therapy for onchocerciasis; association with circulating immune complexes. J. Infect. Dis. 147: 890-897.
- 80. Sisley, B.M., C.D. Mackenzie, N.W. Steward, et al. 1986. Association between clinical disease circulating antibodies and Clq-binding immune complexes in human onchocerciasis. Parasit.lmmu-nol.9: 447-463.
- 81. Taylor, H.R. 1984. Onchocerciasis. In: Clinical Ophthalmology, Duane D.T., Editor. Philadelphia, Harper and Row. 1-12.
- 82. Donnelly, J.J., Xi Mu-Shi, J.P. Haldar, D.E. Hill, J.B. Lok, M. Khatami, and J.H. Rockey. 1988. Autoantibody induced by experimental Onchocerca infection. Inv. Ophthalmol. Visual Sci. 29: 827-831.
- 83. Buck, A.A. 1970. Onchocerciasis: symptomatology, pathology, diagnosis. World Health Organization, Geneva. pp. 1-80.
- 84. Burchard, G.D., and M. Bierther. 1978. Electron microscope studies on onchocerciasis. I. Mesenchyme reaction in untreated onchocercal dermatitis and ultrastructure of microfilariae. Tropenmed. Parasit. 29: 451-461.
- 85. Gibson, D.W., C. Heggie, and D.H. Connor. 1980. Clinical and pathologic aspects of onchocerciasis. In: Sommers, S.S., and Rosen, P.P.: Pathology Annual. Vol. 15, Part 2. Appleton Century Crofts, New York. pp. 195-240.
- 86. Connor, D.H., D.W. Gibson, R.C. Neafie, B. Merighi, and A.A. Buck. 1983. Sowda onchocerciasis in North Yemen: A clinicopathologic study of 18 patients. Am. J. Trop. Med. Hyg. 32: 1234-137.
- 87. George, G.H., J.R. Palmieri, and D.H. Connor. 1985. The onchocercal nodule: interrelationship of adult worms and blood vessels.

 Am. J. Trop. Med. Hyg. 34: 1144-1148.
- 88. Smith, R.J., T.P. Cotter, J.F. Williams, and R.H. Guderian. 1988. Vascular perfusion of Onchocerca volvulus nodules. Trop. Med. Parasit. 39(supplement IV): 418-421.
- 89. Garner, A. 1976. Pathology of ocular onchocerciasis: human and experimental. Trans. Roy. Soc. Trop. Med. Hyg. 70: 374-377.
- 90. Paul, E.V. and L.E. Zimmerman. 1970. Some observations on the ocular pathology of onchocerciasis. Human Pathology. 1: 581-587.

- 91. Neuman, E., and A.E. Gunders. 1973. Pathogenesis of the posterior segment lesion of ocular onchocerciasis. Am. J. Ophthalmol. 75: 82-89.
- 92. Gibson, D.W., and D.H. Connors. 1978. Onchocercal lymphadermitis: clinicopathologic study of 34 patients. Trans. Roy. Soc. Trop. Med. Hyg. 72: 137-154.
- 93. Abdel-Hameed, A.A., M.S. Noah, J.F. Schacher, and S.A. Taher, 1986. Lymphadenitis in Sowda. Trop. Geogr. Med. 39: 73-76.
- 94. Connor, D.H., and J.R. Palmieri. 1985. Blackfly bites, onchocerciasis and leopard skin. <u>Trans. Roy. Soc. Trop. Med. Hyg.</u> 79: 415-417.
- 95. Wolfe, M.S., J.L. Petersen, R.C. Neafie, D.H. Connor, and D.T. Purtilo. 1974. Onchocerciasis presenting with swelling of limb. Am. J. Trop. Med. Hyg. 23: 361-368.
- 96. ElKhalifa, M.Y., M.M. Homeida, and H.M. Ali. 1985. Treatment and management of onchocerciasis in Sudan. Sudan Med. J. 21(supplement): 73-81.
- 97. Taylor, H.R. 1984. Recent developments in the treatment of onchocerciasis. Bull. WHO 62: 509-515.
- 98. Oomen, A.P. 1969. Fatalities after treatment of onchocerciasis with diethylcarbamazine. <u>Trans. Roy. Soc. Trop. Med. Hyg.</u> 63: 548.
- 99. Bird, A.C., H. ElSheikh, J. Anderson, and H. Fuglsang. 1980. Changes in visual function and in the posterior segment of the eye during the treatment of onchocerciasis with diethylcarbamazine citrate. Brit. J. Ophthalmol. 64: 191-200.
- 100. Hewitt, R.I., S. Kushner, H. Stewart, E. White, W.S. Wallace, and Y. Subbarow. 1974. Experimental chemotherapy of filariasis. III. Effect of 1-diethylcarbamyl-4-methylpiperazine hydrochloride against naturally acquired filarial infection in cotton rats and dogs. J. Lab. Clin. Med. 32: 1314-1329.
- 101. Hawking, F. 1981. Chemotherapy of filariasis. Antibiotics Chemother. 30: 135-162.
- 102. Hawking, F. 1978. Diethylcarbamazine: a review of the literature with special reference to its pharmacodynamics, toxicity and use in the therapy of onchocerciasis and other filarial infections. World Health Organization Document. WHO/ONCHO/78-142.

- 103. Gibson, D.W., D.H. Connor, H.L. Brown, H. Fuglsang, J. Anderson, B.O.L. Duke, and A.A. Buck. 1976. Onchocercal: Ultrastructural studies of microfilariae and host tissues before and after treatment with diethylcarbamazine (Hetrazan). Am. J. Trop. Med. Hyg. 25: 74-87.
- 104. Mackenzie, C.D. 1980. Eosinophil leukocytes in filarial infections. Trans. Roy. Soc. Trop. Med. Hyg. 74: 51-58.
- 105. Langham, M.E., Z.D. Traub, and R. Richardson. 1978. A transepidermal chemotherapy of onchocerciasis. Tropenmed. Parasit. 29: 156-162.
- 106. Taylor, H.R., M.E. Langham, E.M. deStahl, L.N. Figueroa, and F. Beltran. 1980. Chemotherapy of onchocerciasis: A controlled trial of topical diethylcarbamazine (DEC) in Guatemala. Tropenmed. Parasit. 31: 357-364.
- 107. Hutchinson, D.G.A., H.A. ElSheikh, B.R. Jones, J. Anderson, H. Fuglsang, and C.D. Mackenzie. 1979. Adverse reactions to cutaneous diethylcarbamazine in onchocerciasis. Lancet. 2: 46.
- 108. Anderson, J., and H. Fuglsang. 1978. Further studies on the treatment of ocular onchocerciasis with diethylcarbamazine and suramin. Trans. Roy. Soc. Trop. Med. Hyg. 62: 450-457.
- 109. Hawking, F. 1978. Suramin: with special reference to onchocerciasis. Adv. Pharmacol. Chemotherapy. 15: 289-322.
- 110. Hawking, F. 1978. Suramin: A review of the literature with special reference to its pharmacodynamics, toxicity and use in the therapy of onchocerciasis. World Health Organization Document. WHO/ONCHO/78:143.
- 111. Campbell, W.C. 1981. Efficacy of avermectins against filarial parasites: A short review. <u>Vet. Res. Comm.</u> 5: 251-262.
- 112. Aziz, M.A. 1986. Ivermectin vs. onchocerciasis. Parasitology Today. 2: 233-235.
- 113. Aziz, M.A., S. Diallo, I.M. Diop, M. Laviviere, and M. Porta. 1982. Efficacy and tolerance of ivermectin in human onchocerciasis. Lancet. 2: 171-173.
- 114. Awadzi, K., K.W. Dadzie, H. Schulz-Key, D.R.W. Haddock, H.M. Gilles, and M.A. Aziz. 1985. The chemotherapy of onchocerciasis. X. An assessment of four single dose regimen of MK-933 (ivermectin) in human onchocerciasis. Ann. Trop. Med. Parasitol. 97: 63-78.
- 115. Whitworth, J.A.G., G.H. Maude, and D.W. Taylor. 1988. Community based treatment with ivermectin. Lancet. 2: 97-98.

- 116. Homeida, M.M.A., I.A. Bagi, H.W. Ghalib, H. ElSheikh, A. Ismail, M.A. Yousif, S. Sulaiman, H.M. Ali, J.L. Bennett, and J.F. Williams. 1988. Prolongation of prothrombin time with ivermectin. Lancet. 1: 1346-1347.
- 117. Kass, I.B., A.O.W. Stretton, and C.C. Wang. 1984. The effects of avermectin and drugs related to acetylcholine and 4 aminobutyric acid on neurotransmission in <u>Ascaris suum</u>. <u>Mol. Biochem</u>. <u>Parasit</u>. 13: 213-225.
- 118. Mossinger, J., H. Schulz-Key, and K. Dietz. 1988. Emergence of Onchocerca volvulus microfilariae from skin snips before and after treatment of patients with ivermectin. Trop. Med. Parasit. 39: 313-316.
- 119. Duke, B.O.L. 1970. Onchocerciasis: Deep worm bundles close to hip joints. Trans. Roy. Soc. Trop. Med. Hyg. 64: 791-792.
- 120. Nutman, T.B., K.D. Miller, M. Mulligan, G.N. Reinhardt, B.J. Currie, C. Steel, and E.A. Ottesen. 1988. Diethylcarbamazine prophylaxis for human loiasis. Results of a double blind study. N. Eng. J. Med. 319: 752-756.
- 121. Cupp, E.W., M.J. Bernardo, A.E. Kiszewski, R.C. Collins, H.R. Taylor, M.A. Aziz, and B.M. Greene. 1986. The effect of ivermectin on the transmission of Onchocerca volvulus. Science. 231: 740-742.
- 122. Schulz-Key, H., E. Albiez, and D. Buttner. 1977. Isolation of living adult Onchocerca volvulus from nodules. Tropenmed. Parasit. 28: 428-430.
- 123. Greene, B.M., H.R. Taylor, and M. Aikawa. 1981. Cellular killing of microfilariae of <u>Onchocerca</u> <u>volvulus</u>: Eosinophil and neutrophil-mediated immune serum dependent destruction. <u>J. Immunol.</u> 127: 1611-1615.
- 124. Kaushal, N.A., R. Hussain, T.E. Nash, and E.A. Ottesen. 1982. Identification and characterization of excretory/secretory products of <u>Brugia malayi</u>, adult filarial parasites. J. <u>Immunol</u>. 129: 338-343.
- 125. Bartlett, A., J. Turk, J.L. Ngu, C.D. Mackenzie, H. Fuglsang, and J. Anderson. 1978. Variation in delayed hypersensitivity in dermal onchocerciasis. Trans. Roy. Soc. Trop. Med. Hyg. 72: 372-376.
- 126. Foo, B., M. Nowak, B. Copeman, and M. McCabe. 1983. A low molecular weight immunosuppressive factor produced by Onchocerca gibsoni. Vet. Immunol. Immunopath. 4: 445-451.

- 127. Ngu, J.L., P.M. Ndumbe, V. Titanji, and R. Leke. 1981. A diagnostic skin test for Onchocerca volvulus infection. Tropenmed. Parasit. 31: 165-170.
- 128. Rougemont, A., M. Boisson-Pontal, P. Pontal, and F. Gridel. 1977. Tuberculin skin tests and B.C.G. vaccination in hyperendemic area of onchocerciasis. Lancet. I: 309.
- 129. Merino, F., and A. Brand. 1977. Immunological studies in onchocerciasis patients. Tropenmed. Parasit. 28: 229-234.
- 130. Greene, B., M. Fanning, and J. Ellner. 1983. Non-specific suppression of antigen-induced lymphocyte blastogenesis in Onchocerca volvulus infection in man. Clin. Exp. Immunol. 52: 259-265.
- 131. Prost, A., M. Nebout, and A. Rougemont. 1979. Lepromatous leprosy and onchocerciasis. Brit. Med. J. 1: 589-590.
- 132. Haque, A., A. Capron, A. Quaissi, L. Kouemeni, J. Lejeune, B. Bonnel, and R. Pierce. 1983. Immune unresponsiveness and its possible relation to filarial disease. <u>Contr. Microbiol. Immunol.</u> 7: 9-21.
- 133. Bryceson, A.D.M. 1977. What happens when microfilariae die? Trans. Roy. Soc. Trop. Med. Hyg. 70: 397-401.
- 134. Brattig, N., F. Tischendorf, E. Albiez, D. Buttner, and J. Berger. 1987. Distribution pattern of peripheral lymphocyte subsets in localized and generalized form of onchocerciasis. Clin. Immunol. Immunopath. 44: 149.
- 135. Perez-Rojas, G.E., M. Valderrama, C. Anderson, I. Machado, N. Bianco, and L. Yarzabal. 1983. Immunidad mediada por celulas en la onchocercosis modificaciones por factore sericos. Filariasis Humans en el Territorio Fed. Amazonas. 2: 93-99.
- 136. Ward, D.J., T.B. Nutman, G. Zea-Flores, C. Portocarrero, A. Lujan, and E.A. Ottesen. 1988. Onchocerciasis and immunity in humans: enhanced T-Cell responsiveness to parasite antigen in putatively immune individuals. J. Infect. Dis. 157: 536-543.
- 137. Gallin, M., K. Edmonds, J.J. Ellner, K.D. Ertman, A.T. White, H. Newland, R.H. Taylor, and B.M. Greene. 1988. Cell-mediated immune responses in human infection with Onchocerca volvulus. J. Immunol. 140: 1999-2007.
- 138. Williams, J.F., H.W. Ghalib, C.D. Mackenzie, M.Y. ElKhalifa, J. Ayuya, and M.A. Kron. 1987. Cell adherence to microfilariae of Onchocerca volvulus: A comparative study. Ciba Foundation Monograph. 127: 46-76.

- 139. King, C.H., B.M. Greene, and P.J. Spangicolo. 1983. Diethylcar-bamazine citrate: An antifilarial drug stimulates human granulo-cyte adherence. Antimicrob. Agents Chemo. 24: 453-456.
- 140. Lobos, E., and N. Weiss. 1986. Identification of non-cross-reacting antigens of Onchocerca volvulus with lymphatic filariasis serum pools. Parasitology. 93: 389-399.
- 141. Lucius, R., H. Schulz-Key, D. Buttner, A. Kern, B. Kaltmann, J. Prod-Hon, F. Seeber, R.D. Walter, K.C. Saxena, and H. Diesfeld. 1988. Characterization of an immunodominant Onchocerca volvulus antigen with patient sera and a monoclonal antibody. J. Exp. Med. 167: 1505-1510.
- 142. Buck, A., I.P. Anderson, K. Kawata, and K. Hitchcock. 1969. Onchocerciasis: Some new epidemiological and clinical findings. Am. J. Trop. Med. Hyg. 18: 217.
- 143. Weiss, N., F. Speiser, and R. Hussein. 1981. IgE antibodies in human onchocerciasis. Application of a newly developed radioal-lergosorbent test (RAST). Acta. Tropica. 38: 353-362.
- 144. Somorin, O., D.C. Ajugwo, and D.C. Heiner. 1977. Immunoglobulin E in adult Americans and Nigerians. Am. J. Trop. Med. Hyg. 26: 872-876.
- 145. Kowemeni, L., A. Haque, and A. Capron. 1982. Detection of IgE antibodies in onchocerciasis. Possibility of using allergens from Dipetalonema viteae extracts that cross-react with allergenic determinants in crude extracts of Onchocerca volvulus. Clin. Exp. Immunol. 50: 541-548.
- 146. Hussain, R., R.G. Hamilton, V. Kumaraswami, N. Franklin Adkinson, and E.A. Ottesen. 1981. IgE responses in human filariasis. I. Quantitation of filarial-specific IgE. J. Immunol. 127: 1623-1629.
- 147. Hussain, R., and E.A. Ottesen. 1983. IgE responses in human filariasis. II. Quantitative characterization of filariaspecific IgE. J. Immunol. 131: 1516-1521.
- 148. Hussain, R., and E.A. Ottesen. 1985. IgE responses in human filariasis. III. Specificities of IgE and IgG antibodies compared by immunoblot analysis. J. Immunol. 135: 1415-1420.
- 149. Weiss, N., M. Gualzata, T. Wyss, and B. Betschart. 1982. Detection of IgE binding Onchocerca volvulus antigens after electrophoretic transfer and immuno-enzyme reaction. Acta. Tropica. 39: 373-377.

- 150. Cabrera, Z., D.W. Buttner, and R.M.E. Parkhouse. 1988. Unique recognition of a low molecular weight <u>Onchocerca</u> <u>volvulus</u> antigen by IgG3 antibodies in chronic hyper-reactive <u>oncho-dermatitis</u> (Sowda). Clin. Exp. Immunol. 74: 223-229.
- 151. Cabrera, Z., M.D. Cooper and R.M.E. Parkhouse. 1986. Differential recognition patterns of human immunoglobulin classes to antigens of Onchocerca gibsoni. Trop. Med. Parasit. 37: 113-116.
- 152. Lucius, R., J. Prod-Hon, A. Kern, G. Hebrard, and H.J. Diesfeld. 1987. Antibody responses in forest and savana onchocerciasis in Ivory Coast. Trop. Med. Parasit. 38: 194-200.
- 153. Lucius, R., D.W. Buttner, C. Kirsten, and H.J. Diesfeld. 1986. A study on antigen recognition by onchocerciasis patients with different forms of disease. Parasitology. 92: 569-580.
- 154. Ottesen, E.A., V. Kumaraswami, R. Paranjape, R.W. Poindexter, and S.P. Tripathy. 1981. Naturally occurring blocking antibodies modulate immediate hypersensitivity responses in human filariasis. J. Immunol. 127: 2014-2020.
- 155. Hussain, R., and E.A. Ottesen. 1986. IgE responses in human filariasis. IV. Parallel antigen recognition by IgE and IgG4 subclass antibodies. J. Immunol. 136: 1859-1863.

SUPPRESSION OF HUMAN LYMPHOCYTE RESPONSES TO SPECIFIC AND NON-SPECIFIC STIMULI IN HUMAN ONCHOCERCIASIS

Mohamed Y. ElKhalifa and Jeffrey F. Williams

Department of Microbiology and Public Health, Michigan State
University, East Lansing, MI 48824

ABSTRACT

Characterizations of circulating lymphocyte subset populations, in vitro lymphocyte responsiveness, and the serum-mediated effects on lymphocyte proliferation were performed on groups of onchocerciasis patients selected from over 170 examined parasitologically and clinically in Sudan and Sierra Leone. These patients manifested a very broad range of clinical signs and showed widely divergent parasite intensities; some were heavily infected and asymptomatic while at the other extreme were individuals with severe clinical signs, but few or no detectable microfilariae (mf) in their biopsies. Relationships between parasite burden and clinical severity varied; in Sierra Leone severity increased with detectable mf numbers, but the reverse was true in one group in Sudan. Patients from Sudanese foci were, on the whole, more badly afflicted than the W. Africans. Lymphocyte subsets in peripheral blood were not remarkably different from those in samples from endemic area and non endemic area controls, except in regard to a significant increase in NK cells in infected W. Africans. Lymphocyte proliferative responses to soluble Onchocerca volvulus antigen (sAg) were poor in infected persons, however, mitogen and PPD responses were maintained in the normal range in one group of patients from southwestern Sudan, but were profoundly depressed in a group from Eastern Sudan. The latter were malnourished and in poor physical condition in a drought-stricken zone. Sera from 90 Sudanese and W. African patients exhibiting a wide range of clinical signs and parasite burdens had no significant effects on responsiveness in vitro of lymphocytes from either normal or infected subjects. However, proliferative responses and IFN-y production by lymphocytes were very significantly depressed

in the presence of live microfilariae of O. volvulus or secretions/excretions (S/E) from microfilariae or from females, but not male adult parasites. Lymphocyte responses were maintained near normal when exogenous IL-2 was added to the cultures. The results indicate that overall O. volvulus infection and clinical consequences are not consistently associated with systemic deficits in immune cell populations or responsiveness, or circulating suppressive factors; however, lowered lymphocyte responses can be a feature when health problems are perhaps exacerbated by prolonged malnourishment. Specific lymphocyte responsiveness to O. volvulus sAg was poorly manifested in all patients examined. The demonstration of potent suppression of lymphocyte reactivity by mf and S/E in vitro suggests that direct parasite intervention in host cell responses could be taking place in vivo, perhaps at the local micro-environment level, mediated by effects on IL-2 production. A hypothesis is presented concerning the consequences of anti-microfilarial therapy in vivo, and its potential effect on disruption of local immunosuppression.

INTRODUCTION

Modulation of host immune responses is considered a major factor in the disease course followed by patients infected with the filarial nematode Onchocerca volvulus^{1,2}. Clinical manifestations may range from a complex of massive acute and chronic inflammatory changes in the skin and eyes of those infected, to mild pruritus or even asymptomatic infections at the other extreme. Acute exacerbations are generally associated with chemotherapy³, and, increasingly, death of microfilarial forms in tissues is becoming recognized as a significant event in the pathogenesis of onchocercal lesions in skin and ocular tissues ^{4,5}.

In spite of the clinicopathological and parasitological evidence to support this interpretation of onchocerciasis and its natural history, immunological determinants and correlates of disease stages have proven very difficult to identify. By analogy with findings in chronic lymphatic filariasis^{6,7,8}, specific and non-specific immunosuppressive mechanisms have been sought in onchocerciasis patients, but the evidence is conflicting about their contributions to the outcome of the host-parasite interaction. Both within and between patient groups there is a great deal of heterogeneity with regard to lymphocyte responses to O. volvulus antigens, mitogens and bacterial antigenic stimuli^{9,10,11}, and to the presence of circulating suppressors or enhancers in the sera of infected subjects 12,13. Variables such as age, chemotherapeutic history, and geographic strain of parasite have recently been shown to have important bearing on immunological response patterns 14, 15, and the need to include endemic area "normals" in such studies has been emphasized²⁵.

In developing a comparative account of onchocerciasis in several distinct geographic foci we have had the opportunity to examine the influence of patients' sera and parasite products and antigens on the in vitro lymphocyte responses of controls and of patients with differing clinical manifestations and <u>O. volvulus</u> infection intensities in a variety of epidemiological contexts. Our results confirm the occurrence of in vivo suppressive changes in some patient subgroups, and demonstrate the production of inhibitory factors for human lymphocyte proliferation by live adult females and microfilariae of <u>O. volvulus in vitro</u>. The effects of these inhibitors could be largely overcome by addition of exogenous IL-2, raising the possibility that direct intervention by the parasite into the immunoregulatory pathways of the host's immune system may be a component of suppression mechanisms in vivo.

MATERIALS AND METHODS

Study Areas. Patients from four different geographical areas endemic for onchocerciasis were studied. Three are in Sudan, and each shows some slightly different characteristics in the prevailing form of the disease: Abu-Hamad in the North¹⁶; Sundus in the East^{4,17}, and Bahr El Ghazal in the Southwest¹⁸. An additional group of patients was examined and sampled in Bo, Sierra Leone, West Africa ¹⁹.

Patients and Control Selection. 174 patients were examined: 109 from Sudan and 65 from Sierra Leone. From each focus individuals representing the fullest possible range of clinical manifestations and parasite burdens were included. Subject ages ranged from 12-70 years, (mean, 32.8), with 120 males and 54 females. Two groups of non-infected controls were included: the endemic area controls were 13 (eight males and five females) individuals living in onchocerciasis endemic areas, but clinically and parasitologically not identifiable as onchocerciasis patients. The normal (non-endemic area) controls were 32 (22 males and 10 females) individuals living in Khartoum, Sudan, where the disease is not established. These people were similar in ethnic make-up and in their socioeconomic background to the Sudanese infected patients. Ages of both control groups ranged from 18 to 63 years (mean, 33.8).

Clinical Examination. All participants were given a complete physical examination with special attention given to the palpation of O. volvulus nodules, and to the evaluation of skin and eye changes consistent with O. volvulus infection. The clinical history taken included details of any antifilarial treatment received and of surgical removal of nodules. Details of the examination procedure and the

assessment of lesions are described elsewhere^{4,5}. As a result of physical findings, individuals were classified primarily on the basis of the type, distribution and severity of skin changes, using a point scale of 0-3, with 3 being most affected. For the purposes of comparison 3 groups of symptomatic patients emerged from this scheme; those with mild disease (score of 1), moderately affected people (score of 2) and those severely afflicted (score of 3). Asymptomatic patients with no signs or symptoms of onchocerciasis, but with microfilariae in their tissue biopsies were given a score of 0.

Parasitological Examination: To determine the microfilarial intensity of O. volvulus infection in each individual, bilateral skin biopsies (snips) were taken from the iliac crest using a Walser corneoscleral punch. Skin snips were then incubated in tissue culture medium RPMI 1640 (Sigma Chemical Co., St. Louis, MO) for 4 hours. Emerging microfilariae were counted and the wet weight of the snips was determined. Microfilarial intensity was expressed as the number of microfilariae per milligram of skin (mf/mg). Urine, stool and blood samples from patients in Abu-Hamad and Bo were examined for other parasites by conventional techniques.

Lymphocyte Subset Phenotyping of Patients and Controls. Anti-leu 2a, leu 3a, leu 4, leu 11b, and leu 12 mouse monoclonal antibodies were purchased from Becton Dickinson (Mountain View, CA). These probes recognize, respectively, human lymphocyte surface antigens, CD8, CD4, CD3, CD16, and CD19. Colloidal gold-conjugated goat anti-mouse antibody (Geometric Data, Wayne, PA) was used as detector for the primary mouse monoclonal antibody bound on lymphocyte surfaces.

The test procedure was similar to that described by the manufacturer. Briefly, from each individual a buffy coat suspension was obtained from EDTA-treated blood. Aliquots of buffy coats were first incubated 30 minutes with one of the primary monoclonal antibodies, then with the second, conjugated antibody for another 30 minutes. Cells were washed with phosphate buffered saline after each incubation. Finally, a thin film was made, fixed in methanol and counter-stained with modified Wright's stain. Enumeration of lymphocyte subtypes was done microscopically by counting the number of positive cells per 200 lymphocytes. Cells considered positive had at least four gold particles on their surfaces.

Preparation of O. volvulus Adult Worm Secretions/Excretions (S/E) and Soluble Antigen (sAg). Intact nodules were surgically excised from patients under local anesthesia. To obtain live female parasites, nodules were digested in collagenase using the method described by Schulz-Key²⁰. Trimmed excised nodules were incubated in culture medium RPMI 1640 containing 10% pooled normal human serum, penicillin, 100 U/ml, streptomycin, 100 ug/ml (Gibco Laboratories, Grand Island, NY) and collagenase type IV (Sigma Chemical Co.) at a concentration of 2 mg/ml. Digestion was carried out at 37°C for 12 hours after which female parasites were recovered by gentle dissection. O. volvulus males were obtained either by collagenase digestion or from gently minced nodular tissue. Isolated adults were thoroughly washed in serum-free RPMI 1640 with antibiotics.

All <u>O</u>. <u>volvulus</u> female and male worms were maintained individually at 37°C in RPMI 1640 supplemented with antibiotics for 24-48 hours. For active males, the culture period was extended up to 96 hours. Culture

supernatants were dialyzed at 4° C against three changes of 1,000 volumes of RPMI 1640 using Spectrapor membrane tubing (Spectrum Medical Industries Inc., Los Angeles, CA), with a molecular weight cut off of 10,000 Daltons. Supernatants were then filter-sterilized, aliquoted and stored at -70° C. The protein concentration in supernatants was measured using the Lowry method 21° .

Isolated O. volvulus female worms were homogenized in phosphate buffered saline, pH 7.2 and extracted overnight at 4° C. Particulate material was pelleted by centrifugation at 5,000 x g/30 minutes and the supernatant was further clarified at 100,000 x g/1 hour. The final supernatant was dialyzed against RPMI 1640 and processed as for O. volvulus S/E products.

Preparation of O. volvulus Skin and Nodular Microfilariae (mf) and Their Secretions/Excretions. Live skin mf were obtained by incubating skin biopsies obtained from O. volvulus patients in RPMI 1640 and antibiotics for 4 hours. Nodular mf were obtained by teasing excised tissues containing O. volvulus female worms. The tissues were then incubated in RPMI 1640 with antibiotics for 1 hour. Emerging microfilariae from skin or nodular tissues were purified using the agar gel technique²².

Preparation of O. volvulus mf S/E. Microfilariae obtained either from biopsies or nodular tissues were maintained at a concentration of 1×10^3 mf/ml in RPMI 1640 plus antibiotics at 37°C for 48 hours. Mf culture supernatants were then processed as for those of O. volvulus adult worm S/E.

Lymphocyte Stimulation. Peripheral blood was drawn from patients and controls into heparinized vacutainers (Becton Dickinson, Ruther-

ford, NJ). Peripheral mononuclear cell (PMNC) separation was achieved by centrifugation on Ficol-Hypaque density gradients (Pharmacia, Piscataway, NJ) 23 . Unless otherwise specified, washed PMNC were cultured in triplicate at a concentration of 2 x 10 cells/well in U bottom 96 well microtitre plates (Corning Glass Works, Corning, NY), in 0.2 ml of RPMI 1640 supplemented with antibiotics and 10% human serum.

Lymphocyte responses to mitogens. To measure lymphocyte blastogenic responses, PMNC were cultured with either phytohemagglutinin (PHA) or concanavalin A (Con A) (Sigma Chemical Co.) at concentrations of 5 and 10 ug/ml, respectively. All cultures were maintained at 37°C in a humidified atmosphere containing 5% Co₂. 18 hours prior to harvesting, cells were pulsed with 1 uCi of H³ thymidine (New England Nuclear, Boston, MA) per well (specific activity of 6.7 mC/mol). Cells were then harvested onto glass fibre filters using a Bellco harvester (Bellco Glass Inc., Vineland, NJ). The incorporated radioactivity in counts per minute (cpm), was read in a Beta Scintillation Counter.

Eymphocyte responses to 0. volvulus sAg and a non-related antigen.

PMNC were cultured in the presence of <u>O</u>. <u>volvulus</u> sAg or purified protein derivative (PPD), each at a concentration of 20 ug/ml. These cultures were maintained for a total of 144 hours and harvested 18 hours after addition of 1 u Ci of H³ thymidine.

Effects of O. volvulus adult worms S/E and mf S/E on lymphocyte blastogenic responses to mitogens. PMNC were cultured with either PHA or Con A, in the presence or absence of S/E from O. volvulus females, males or mf. Similar experiments were carried out in which O. volvulus S/E was replaced by either O. volvulus sAg or PPD. O. volvulus S/E, O. volvulus sAg and PPD were all used at concentrations of 20 ug/ml.

Serial dilutions of <u>O</u>. <u>volvulus</u> female S/E were also tested. Cultures were maintained for 72 hours, and harvested 18 hours after pulsing. The percentage inhibition caused by addition of <u>O</u>. <u>volvulus</u> derived materials was calculated using the following formula:

Effect of cocultivation of live skin and nodular 0. volvulus mf on lymphocyte blastogenic responses to mitogens. PMNC were cultured with either PHA or Con A in the presence or absence of live mf. 30 skin mf/well and concentrations of 30, 50 and 120 nodular mf/well were tested. Cultures were harvested at 72 hours.

Effect of Interleukin-2 addition. To assess the effect of exogenous Interleukin-2 (IL-2) on the blastogenic response of PMNC cultured in the presence of mitogens and serial dilutions of O. volvulus S/E, IL-2 (Cellular Products Inc., Buffalo, NY) was added to the test cultures at a concentration of 20 units per ml.

Effects of patient sera on lymphocyte blastogenic responses to mitogens. PMNC obtained from a normal donor were cultured with 20% heat inactivated individual patient or normal control serum in the presence of either PHA, 5 ug/ml or Con A, 10 ug/ml. Cultures were harvested at 72 hours.

Gamma Interferon (IFN- γ) Production. The effect of <u>O</u>. <u>volvulus</u> female worms S/E and <u>O</u>. <u>volvulus</u> live mf on the production of IFN- γ , was measured by culturing 1 x 10⁶ PMNC/ml with PHA in the presence or

absence of <u>O. volvulus</u> female S/E, 20 ug/ml, or <u>O. volvulus</u> skin mf, 150 mf/ml. Cultures were incubated at 37°C for 24 hours and the resultant culture supernatants were stored at -196°C or -70°C. To some cultures IL-2 was added at the beginning of the incubation at a concentration of 20 units per ml. Concentrations of IFN-Y in the supernatants were measured in international units per ml (IU/ml) using an IMRX solid phase monoclonal antibody-based radio-immunoassay (Centocor Inc., Malvern, PA).

<u>Statistical analysis</u>. All statistical analyses were based on the unpaired Student's 't' test.

RESULTS

Clinical and Parasitological Results. The parasitological findings on the skin snip examinations of the four subgroups of O. infected individuals are shown in Table 1. volvulus intensity was highest in Bo, Sierra Leone, whereas markedly lower numbers of parasites were evident in biopsies from patients from Abu-Hamad and Sundus, Sudan. Physical examinations revealed striking differences in disease manifestations, both between and within patient populations. In Sundus there was generally an inverse relationship between parasite intensity and the severity of clinical disease, but in Bo, Sierra Leone, there was a trend toward increasing severity with greater mf intensity (Table 1). The severely affected patients in Bo had the highest mf counts; in Sundus those severely affected had the lowest mf counts. None of the patients included in the study had a history of antifilarial chemotherapy; however, almost 50% of Bo patients had experienced surgical removal of onchocercal nodules within the past two years.

Overall, the clinical manifestations of onchocerciasis were milder in Bo, and only 14 (22%) of the patients fell into the categories of moderate to severe onchocerciasis (Figure 1), compared to 71 (65%) of the Sudanese (Figure 2). In Abu-Hamad, infection intensities were low, generally in the 1-2 mf/snip range, even though clinical manifestations were present and often severe. Four <u>O. volvulus-infected individuals</u> in Sudan had predominantly an asymmetric severe limb involvement (Figure 3), but none of the individuals seen in Sierra Leone showed this pattern. The overall clinical presentations and microfilarial

TABLE I

Clinical and parasitological status of Onchocerca volvulus infected subjects in four distinct foci endemic for onchocerciasis in Sudan and Sierra Leone.

Status of O. volvulus		Bi Sierra (n=	BO, Sierra Leone (n = 65)	Su Su (n=	Sundus, Sudan (n = 58)	Abu-Hamad, Sudan (n = 43)	amad, Ian 43)	Sudan Sudan (n=8)	lan (8)
Infected Subjects	Score	Š	No. mf/mg	No.	No. mf/mg	Š	No. mf/mg	Š.	No. mf/mg
No signs or symptoms	0	59	11.0	∞	6.6	တ	e 	0	1
Mild skin disease	-	22	4.6	13	13 3.4	9	+	0	ļ
Moderate skin disease	8	10	30.0	25	5.0	=	+	4	13.7
Severe skin disease	က	4	57.0	12	12 0.67	+ 11 +	+	4	5.5

"In a previous survey of >200 patients" the average microfilarial intensity in Abu-Hamed was 2.7 mf/mg, and there was no evident relationship between intensity and disease severity.

<u>Figure 1</u>. An onchocerciasis patient from the Bo area. Note the mild fine papular erruption seen on the upper back. The clinical presentation of this patient is seen in the majority of Bo patients.

Figure 2. Severe onchocercal dermatitis seen in a Sudanese patient.

Note areas of hypo and hyperpigmentation, papular erruption and excoriation marks.

Figure 3. A Sudanese patient with localized limb involvement (Sowda).

intensities were not influenced by age or sex, however, in the Sundus group, younger patients had more pronounced acute changes⁴.

No other filarial infections were diagnosed by examination of blood from patients in Bo, Sundus and Abu-Hamad, but one of the eight individuals from Bahr El Chazal had Mansonella perstans. Malaria was most prevalent in patients from Sundus; despite being sampled in the dry season, 30% were blood film positive for either P. falciparum or P. vivax or both. In contrast, only one individual from Bo, Sierra Leone was positive for P. falciparum infection. Intestinal helminthiasis was prevalent among individuals examined in Bo, where 52% of onchocerciasis patients and 42% of the endemic area controls had intestinal nematode infection detected in a single fecal sample. Patients from Abu-Hamad were essentially free of parasitic infections other than O. volvulus. Endemic area controls were asymptomatic and had no demonstrable 0. volvulus microfilariae in skin biopsies. However, they showed similar prevalence rates for other endemic parasitic infections (e.g. malaria, intestinal helminthiasis). Non-endemic area control subjects had no remarkable characteristics on physical examination, negative skin biopsies and were free of intercurrent parasitic infections.

Lymphocyte Subset Phenotypes. Peripheral lymphocyte subset phenotyping was done on 30 $\underline{0}$. volvulus patients and 8 endemic area controls from Bo, Sierra Leone, and on 8 $\underline{0}$. volvulus patients from Bahr El Ghazal and 17 non-endemic area controls from Khartoum, Sudan. The only significant differences seen (P = < 0.03) was an increase in natural killer (NK) cells in infected individuals from Sierra Leone when compared to endemic area controls (Table 2). The NK cells were not counted in samples from Sudanese subjects. No significant differ-

TABLE II

Peripheral blood lymphocyte subset distribution in onchocerciasis patients and normal controls from Bahr Elghazal, Sudan and Bo, Sierra Leone.

	B cells (CD19)	Total T cells (CD3)	Helper T cells (CD4)	Suppressor T cell (CD8)	CD4/CD8	NK cells (CD16)
Patients, Bo (n-30)	19.0 ± 8.4	61.5 ± 10.6	43.3 ± 9.2	31.1 ± 8.7	1.4 ± 0.2	18 ± 6.2ª
Endemic area controls (n-8)	15.2 ± 2.3	64.8 ± 2.6	41.7 ± 2.7	28.2 ± 2.2	1.4 ± 0.15	12.1 ± 2.3
Patients, Bahr Elghazal (n-8)	27.5 ± 8.1	60.6 ± 10.6	43.7 ± 6.6	36.7±11.8	1.33 ± 0.1	ů
Normal controls (n-17)	23.9 ± 5.3	64.4 ± 10.3	43.6 ± 7.0	26.1±4.5	1.73 ± 0.4	ND

"Statistically significant difference between Bo patients and controls (p<0.03)

[&]quot;NK cells analysis was not done (ND) in Bahr Elghazal patients.

ence in T-helper to T-suppressor ratio was seen between patients and controls and the absolute counts of both phenotypes were similar in the two groups.

Lymphocyte Responses to Mitogens. Lymphocytes from eight 0. volvulus infected individuals from Bahr El Chazal responded normally to PHA, Con A and PPD. There were no significant differences in lymphocyte blastogenic responses to PHA, Con A and PPD between the 15 nonendemic area controls and these O. volvulus infected individuals (Table O. volvulus soluble antigen caused only slight stimulation of peripheral blood lymphocytes of O. volvulus infected subjects and controls; however, there was no significant difference in the blastogenic responses between the groups (Table 3). The O. volvulus infected patients showed infection intensities from 2.0 to 56.0 mf/mg; four had moderate (score of 2) and four had severe generalized (score of 3) dermal lesions. Although those eight O. volvulus infected subjects were originally from Bahr El Ghazal, they had been residing in Khartoum for at least one year. When similar experiments were carried out on twelve O. volvulus infected subjects from Sundus the results were different. These patients were generally in poorer physical condition than those from Bahr El Ghazal; they had been residing in a remote area and subsisting on an inadequate plane of nutrition. Their mf intensities ranged from 0.5 to 46 mf/mg, and the clinical scores assigned were as follows: seven had a score of 1; three had a score of 2; and two had a score of 3. These individuals showed much reduced responsiveness to PHA and PPD compared to controls, and they had the same very slight response to the presence of O. volvulus sAq as did patients from Bahr El Ghazal.

TABLE III

Blastogenic responses of peripheral blood lymphocytes of O. volvulus infected individuals and non-endemic area controls from Bahr Elghazal and Sundus, Sudana.

	Group 1	-	Group 2°	2°
Mitogen [*] or antigen	O. <i>volvulus</i> patients (Bahr Elghazal) n=8	Non-endemic area controls n = 15	O. <i>volvulu</i> s patients (Sundus) n=12	Non-endemic area controls n = 5
РНА	146,215± 7,362	146,816± 16,050	9,918± 1,947	49,351± 18,300
Con A	93,645 ± 10,871	96,038 ± 9,538	νΩ	Q
РРД	10,833 ± 4,977	9,703± 6,405	13,620 ± 13,398	33,510± 16,500
O.v. sAg	5,605 ± 1,361	4,438± 1,054	4,943± 9,103	3,165± 2,380

'Data is expressed as mean cpm ± SD.

^{&#}x27;Different batches of mitogen and antigen were used for the 2 groups of patients and their respective controls.

For Group 2, 5 x 10⁴ cells/well were used. "ND Not done.

Mitogens. Sera from 90 O. volvulus infected subjects and 30 endemic and non-endemic area controls were examined individually for their ability to modulate blastogenic responses of lymphocytes from a single donor to mitogens. Although sera differed slightly in their capacities to augment or reduce lymphocyte responses to PHA and Con A, this was not related to the presence, absence or intensity of O. volvulus infection, or to the severity of clinical manifestations of onchocerciasis (Table 4, Figure 4).

Sex, age and geographical location of the serum donors were not significant as variables influencing the effects of the sera in these experiments.

Effect of O. volvulus S/E on Blastogenic Responses of Lymphocytes from O. volvulus Infected Individuals and Normal Controls. Addition of pooled O. volvulus S/E to lymphocyte cultures virtually abrogated blastogenic responses to mitogens (Figure 5). Inhibition was no different with cells from either non-endemic area controls or O. volvulus-infected Sudanese patients. However, not all S/E preparations were equally effective, and when S/E from individual females were tested, some had no inhibitor effects. We examined S/E from a series of 83 O. volvulus females and 18 caused more than 50% inhibition at 20 ug/ml.

None of the 27 <u>O. volvulus</u> male S/E examined caused inhibition, nor did the addition of <u>O. volvulus</u> sAg or PPD influence blastogenic responses. <u>O. volvulus</u> mf S/E also caused inhibition of lymphocyte blastogenic responses to mitogens (Figure 6). At 20 ug/ml, skin mf S/E was more potent than nodular mf S/E. Co-cultivation of live O.

TABLE IV

Effects of sera from O. volvulus-infected individuals and controls from different geographical areas on lymphocyte blastogenic responses to phytohemagglutinin and concanavilin A.ª

	Lymphocyte Blastogenic Responses to PHA	genic	Lymphocyte Blastogenic Responses to Con A	ogenic A
	In presence of sera from O. volvulus patients	In presence of sera from controls	In presence of sera from O. volvulus patients	In presence of sera from controls
Snpuns	(n = 36)	(n = 11)	(n = 36)	(n = 11)
	142,963 ±	147,726 ±	91,296 ±	74,053 ±
	19,031	58,299	29,610	13,052
Abu-Hamad	(n = 42)	(n = 12)	(n = 42)	(n = 12)
	168,509 ±	164,197 ±	81,103 ±	71,387 ±
	18,770	6,988	33,554	20,921
Во	(n = 12)	(n = 7)	(n = 12)	(n = 7)
	134,799 ±	135,089 ±	69,475 \pm	78,873 ±
	14,272	18,089	20,248	36,407

Data represent mean cpm ± SD.

<u>Figure 4.</u> Effect of sera from Sudanese <u>O. volvulus</u> infected and non-endemic controls on lymphocyte blastogenic responses to mitogens.

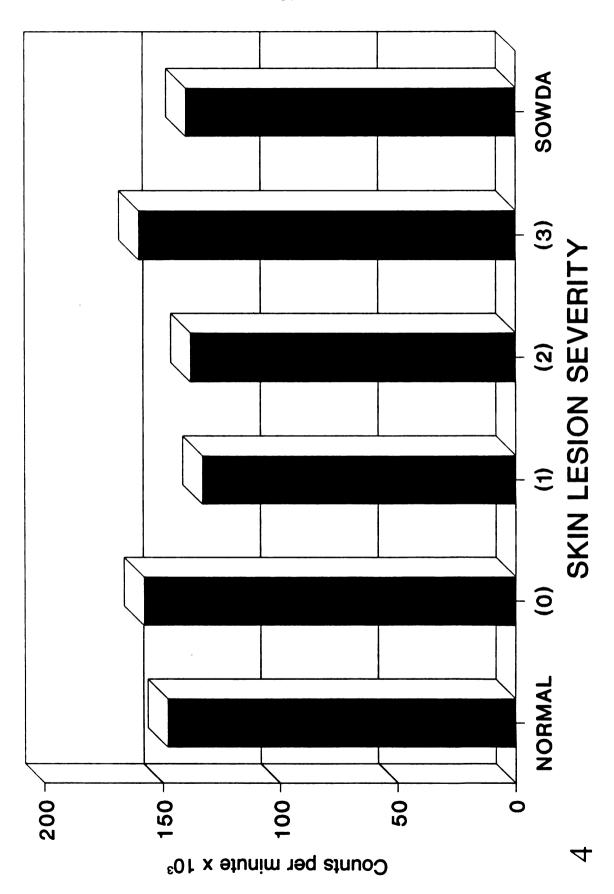


Figure 5. Inhibition of blastogenic responses of lymphocytes from \underline{O} . $\underline{volvulus}$ infected subjects and non-endemic controls from Sudan in the presence of \underline{O} . $\underline{volvulus}$ female Secretory/Excretory products. Concentrations of \underline{O} . $\underline{volvulus}$ S/E, O.v. sAg and PPD were 20 ug/ml.

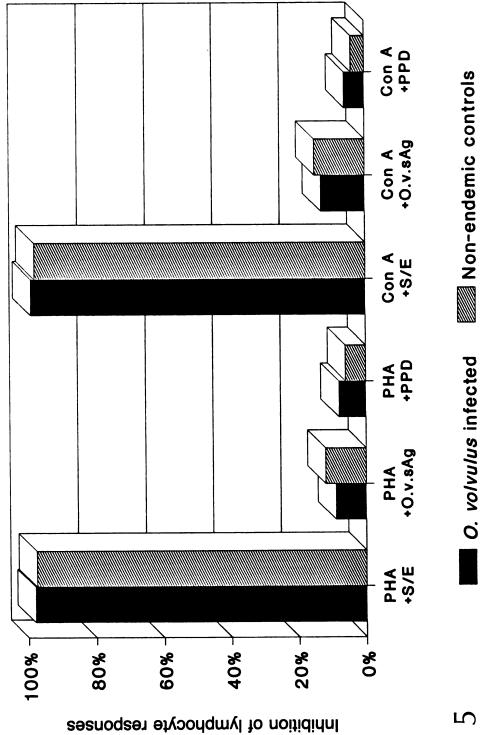
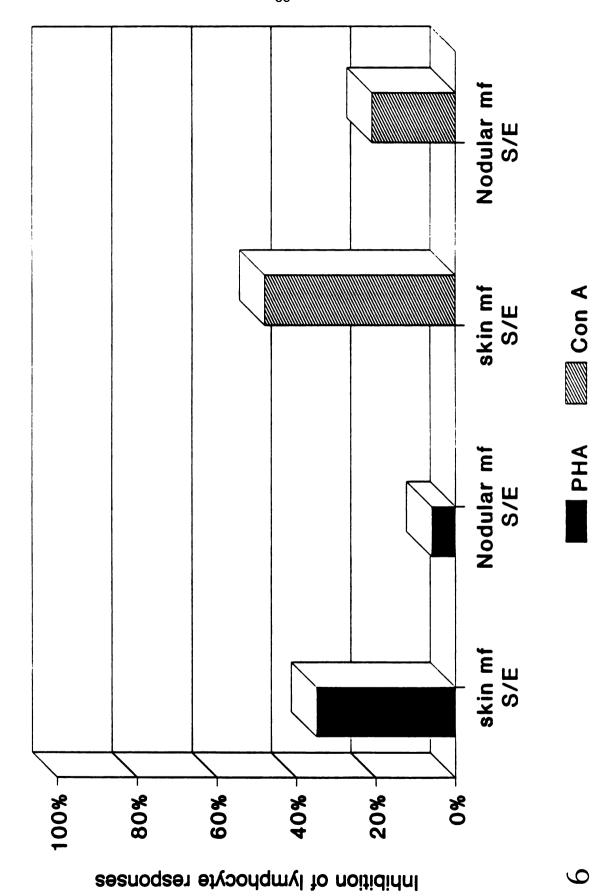
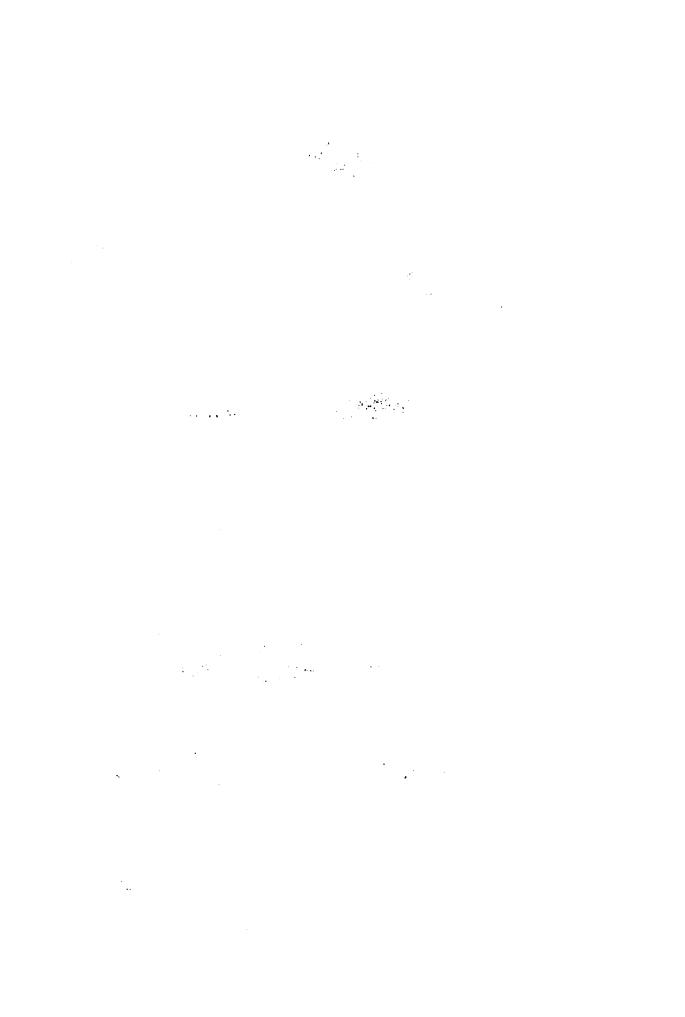
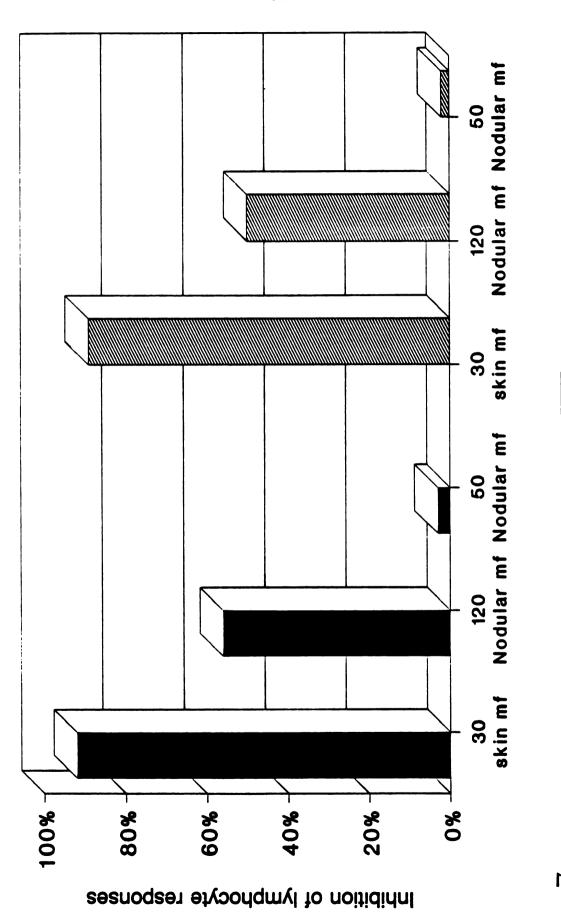




Figure 6. Effect of O. volvulus microfilariae Secretory/Excretory products on lymphocyte blastogenic responses to mitogens.



<u>volvulus</u> mf with PMNC, also caused inhibition of lymphocyte responses. When 30 skin mf were added to each well there was almost complete inhibition of PHA and Con A responses (Figure 7), but when the mf from nodules were used, higher numbers were needed to cause significant inhibition. Nodular mf at 50 mf per well had no effect. Inhibitory effects were not different when either <u>O. volvulus</u> infected individuals or non-endemic normal controls were the donors of PMNC.

Cell viability in the presence of all S/E preparations was maintained at greater than 90% for up to 6 days. The inhibitory effect of O. volvulus female S/E was concentration dependent, (Figure 8) declining to undetectable levels at 1.2 ug/ml. The activity of S/E from either source was not lost on dialysis (M.W. cut-off 10,000) and was stable on prolonged storage at -70°C and on exposure to 56°C for 30 minutes. Addition of exogenous IL-2 (20 iu/ml) partially overcame the O. volvulus S/E inhibitory effects at 20 ug/ml, while at lower S/E concentrations, the inhibitory effect was not detectable in the presence of IL-2 (Figure 8).

The amount of IFN- γ produced from mitogen stimulated cells was substantially reduced when PMNC were cultured with either <u>O. volvulus</u> female inhibitory S/E or <u>O. volvulus</u> skin mf. In the presence of 20 u/ml IL-2, IFN- γ production was improved, but not to control levels in either case (Figure 9).

Figure 7. Effect of co-cultivation of <u>O</u>. <u>volvulus</u> microfilariae on Sudanese <u>O</u>. <u>volvulus</u> infected patients and controls lymphocyte blastogenic responses to mitogens.

■ PHA Con A

•

Figure 8. Effects of serial dilutions of <u>O</u>. <u>volvulus</u> female Secretory/Excretory products on lymphocyte blastogenic responses to mitogens. Addition of interleukin-2 at 20 U/ml partially overcame the inhibition.

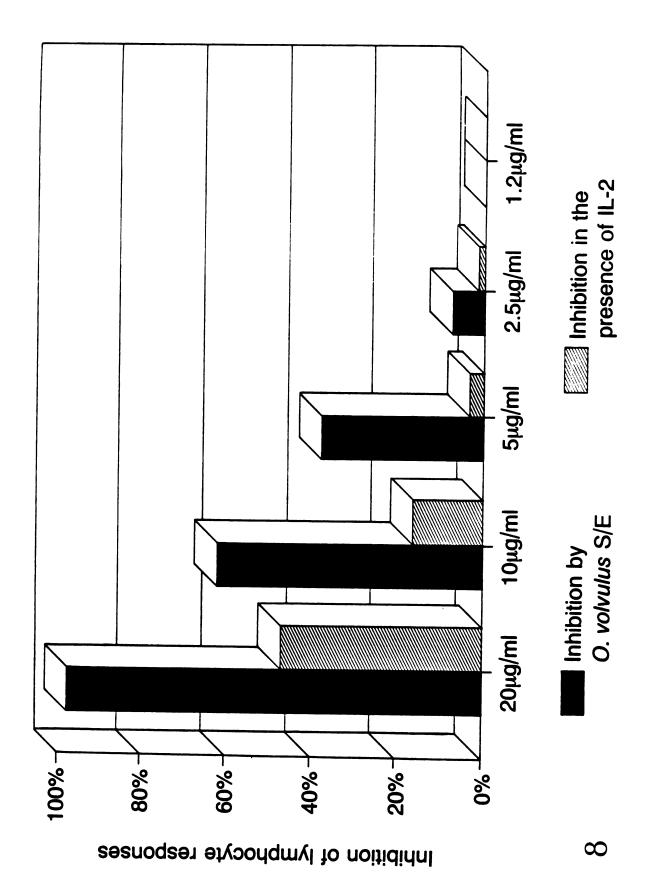
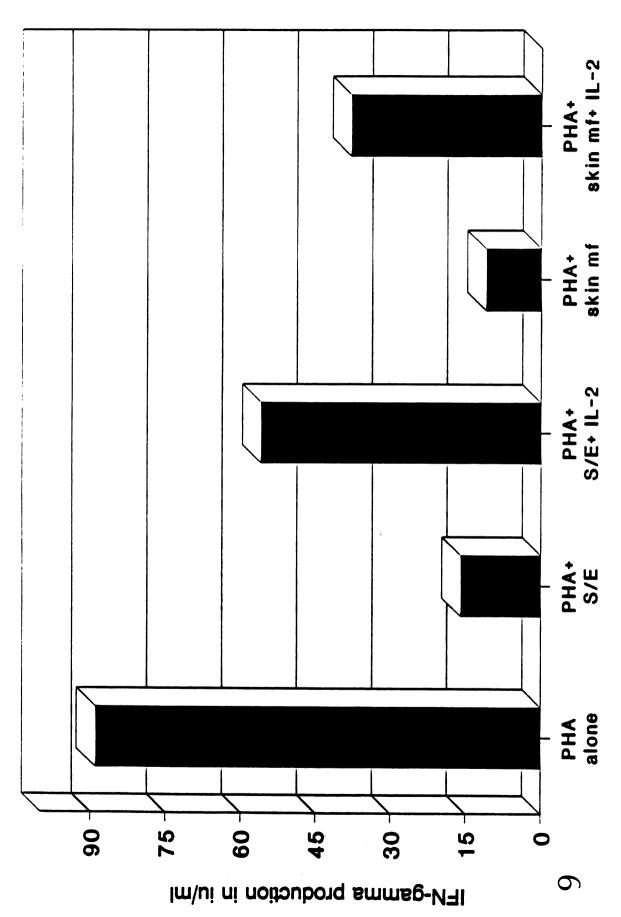



Figure 9. Effect of $\underline{0}$. volvulus Secretory/Excretory products and skin microfilariae on the production of Interferon Gamma by mitogen stimulated lymphocytes.

DISCUSSION

The relationships between the intensity of microfilarial infection and the extent of clinical manifestations in patients in our study groups illustrate very well the complexity of onchocerciasis. High numbers of live microfilariae in biopsy samples reflect high degrees of exposure, but they are not necessarily an indicator of the severity of pathological change. Of the subsets of patients we examined, those in Bo were the least afflicted clinically, even though their mf/mg counts were highest. Since the most disfiguring skin changes were in patients from Sundus whose skin snips yielded the lowest numbers of mf/mg, variables other than live parasite concentration in skin tissue must be important as determinants of infection outcome. Immunological responsiveness and its influence on the nature of host inflammatory reactions seems likely to be at least one contributing factor.

While our results have not identified any immunopathogenic processes that may account for the differences between patient groups, they do emphasize the heterogeneity that confounds extrapolation of findings from one endemic region to another, and from one subset of patients to another. For the most part patients in all clinical categories showed little evidence of a generalized immunological deficits, either in terms of disruption of peripheral lymphocyte phenotype populations, presence of circulating immune inhibitory or enhancing factors or deficient responsiveness to stimuli such as mitogens or PPD. The poor in vitro responses of lymphocytes from Sundus patients provide an exception to this finding. Unfortunately, because of the circumstances prevailing in the remote rural areas where most of these patients were examined, it was not possible to collect

uniform sets of samples for a comprehensive comparison in all tests. Transportation conditions and patient cooperation, for example, were factors governing what could be collected for processing. The surprising difference we found between the mitogen and PPD responses in Sudanese patients from Bahr El Ghazal and those from Sundus illustrates how important this type of comparison can be.

Neither of those two groups, however, showed very remarkable responsiveness to 0. volvulus soluble antigenic extract, and this observation is in accord with several recent reports from other groups The suggestion that O. volvulus specific cell-mediated mechanisms are subdued in this infection 9,11,24,26 is therefore corroborated, though again the relationship to clinical picture is not obvious. Patients from Sundus whose lymphocytes were examined in vitro were poorly nourished and not in good physical condition, yet, by virtue of their clinical signs and low parasite numbers, they might be interpreted as more reactive to the presence of microfilariae than other patient subsets. In contrast, Brattiq et al. 27 recently reported that Sowda patients showed a high degree of immunologic responsiveness as evidenced by increased helper T to suppressor T-cell ratio, activated T-cells and increased antifilarial antibodies. They argued that these individuals, badly afflicted, but with low mf/mg counts, were indeed quite reactive to 0. volvulus antigens. Obviously, further exploration of these relationships is necessary in our Sundus patients. Significant increases in responses to O. volvulus antigen and to PHA and PPD quickly followed ivermectin microfilaricidal treatment in these subjects (unpublished observations), again suggesting that parasitemediated suppression may be operating in this infection.

A hypothesis to explain this phenomenon can be proposed based on our observation of the inhibitory effects of O. volvulus secretions/excretions on human lymphocyte reactivity towards mitogenic and antigenic (PPD) stimuli. The suppressive factors were not cytotoxic or dialyzable, suggesting that they may be macromolecular, rather than low molecular weight substances comparable to those described for 0. gibsoni²⁸. Since extracts of females were ineffective, the suppressor(s) may not be stored intact. S/E from males had no such effects, and females varied in their output, perhaps reflecting their reproductive status, known to be cyclical 29, and their output of microfilariae. Whether or not the suppressor substances in adult female 0. volvulus are related to those released by microfilariae remains to be seen. The greater potency of skin microfilariae in causing inhibition compared to those derived from homogenized nodular and worm tissues, possibly results from the mixture of mf in the latter source, which probably contains many immature embryos. Microfilariae are known to acquire important biological traits in their migration to the skin 30, and potency in affecting local lymphocyte reactivity could be an additional As few as 5 skin mf/well suppressed lymphocytes characteristic. significantly in some cases (data not shown). Normal and patient lymphocytes were equally affected, so there does not seem to be a prerequisite for specific sensitization for this factor to be effective.

Microfilariae of <u>Brugia malayi</u> have been shown to produce a lymphocyte suppressive factor that inhibits proliferative responses and causes a significant decrease in IL-2 production³¹. Our results with <u>O. volvulus</u> are quite similar, because addition of exogenous IL-2

overcame suppression to mitogenic stimuli and partially restored IFN- γ production in our cultures. Depletion of adherent cells from PMNC (data not shown) did not alter significantly the suppressive effects of O. volvulus S/E on lymphocytes, suggesting that a direct effect on T-cells is involved. Because of the concentration of O. volvulus microfilariae in skin, their suppressive effects in vivo may be localized in that microenvironment, rather than systemically.

Our patients showed no obvious predisposition to intercurrent infection which might result from generalized immunological deficiency, and even though they were from areas renowned for leprosy, we did not see any obvious relationship between this infection and O. volvulus. Previous workers had reported a positive association, potentially attributable to defective immune responses 32. Other reports on immunological suppression have provided conflicting sets of observations. Circulating non-specific suppressors were present in Cameroonian sera studied by Hague et al. 12, but were absent in plasma samples from Liberian patients examined by Greene et al.9. Potent inhibitors of lymphocyte proliferative responses were present in the majority of sera from Venezuelan Indians examined by Perez-Rojas et al. 13, but some of their sera contained substances that caused very significant enhancement of proliferative responses. These varied outcomes may be a function of infection intensity, parasite strain, exposure patterns or even of host capacity to neutralize parasite-derived inhibitory factors.

The latter might be an important element in the balance of hostparasite relationships. If neutralizing ability, whether humoral or cellular in origin, were an acquired trait, then hosts would vary in their ability to respond to the presence of microfilariae or even to attack and kill them. Neither of the two currently used microfilaricidal drugs in use for onchocerciasis, D.E.C. and ivermectin, has detrimental effects on the parasites in vitro. Yet, both result in microfilaricidal effects in vivo. Their modes of action are unknown, but if they were to disrupt microfilarial abilities to produce immune modulators, this could account for their chemotherapeutic efficacy in vivo.

Identification of determinants of host capacity to influence the effects or release of parasite suppressive substances can be proposed as an important goal in dissecting apart the dynamics of parasite survival or death <u>in vivo</u>. It may be a key element in the heterogeneity of host responses in this infection, contributing to the remarkable clinical spectrum. Immune responses in experimental filariasis have recently been shown to be influenced by maternal infection history 33, and prenatal and post-natal exposure to <u>O. volvulus</u> antigens are known to occur³⁴. Such components of the host's immunological experiences with <u>O. volvulus</u> are likely to be valuable indicators of the prognosis and response to therapy in infected individuals.

ACKNOWLEDGEMENTS

This work was supported by grants from NIH Grant #AI-16312, Fogarty International Fellowship #1F05TW03637 and the Wolfson Foundation. Particular thanks are due to the many cooperating patients and medical staff in Sudan provincial villages and at the MRC Center, Bo Sierra Leone who made this study possible.

REFERENCES

- 1. Piessens, W.F., and C.D. Mackenzie. 1982. Immunology of lymphatic filariasis and onchocerciasis. In: Immunology of Parasitic Infections, 2nd Ed. (Ed. S. Cohan and Warren, K.S., Blackwell, Oxford. Chapter 18, pp. 622.
- 2. Mackenzie, C.D., J.F. Williams, R.H. Guderian, and J. O'Day. 1987. Clinical responses in human onchocerciasis: Parasitological and immunological implication. Ciba Fdn. Symposium. 127:46.
- 3. Mazzotti, L. 1948. Posibilidad de utilizar como medio diagnostico auxiliar en la Onchocercosis las reacciones alergicas concecutivas a la administracion del'hetrazan'. Rev. Inst. Saubridad Y Enfermedades Trop. 9:235.
- 4. Ghalib, H., C. Mackenzie, J. Williams, H. El Sheikh, M. Elkhalifa, and M. Kron. 1987. Severe onchocercal dermatitis in the Ethiopian border region of Sudan. Ann. Trop. Med. Parasitol. 81: 405.
- 5. Mackenzie, C., J. Williams, B. Sisley, M. Steward, and J. O'Day. 1985. Variations in host response and the pathogenesis of human onchocerciasis. Rev. Infect. Dis. 7:802.
- 6. Piessens, W., S. Ratiwayanto, S. Titi, J. Palmieri, P. Piessens, I. Koiman, and D. Dennis. 1980. Antigen-specific suppressor cells and suppressor factors in human filariasis with <u>Brugia malayi</u>. N. Eng. J. Med. 302:833.
- 7. Piessens, W., F. Partono, S. Hoffman, S. Ratiwayanto, P. Piessens, J. Palmieri, I. Koiman, D. Dennis, and W. Carney. 1982. Antigenspecific suppressor T-lymphocytes in human lymphatic filariasis. N. Eng. J. Med. 307:144.
- 8. Ottesen, E., P. Weller, and L. Heck. 1977. Specific cellular immune unresponsiveness in human filariasis. Immunology. 33:413.
- 9. Greene, B., M. Fanning, and J. Ellner. 1983. Non-specific suppression of antigen-induced lymphocyte blastogenesis in Onchocerca volvulus infection in man. Clin. Exp. Immunol. 52:259.
- Bartlett, A., J. Turk, J. Ngu, C. Mackenzie, H. Fuglsang, and J. Anderson. 1978. Variation in delayed hypersensitivity in onchocerciasis. Trans. Roy. Soc. Trop. Med. Hyg. 72:372.
- 11. Rougemont, A., M. Boisson-Pontal, P. Pontal, and F. Gridel. 1977. Tuberculin skin tests and B.C.G. vaccination in hyperendemic area of onchocerciasis. Lancet. I:309

- 12. Haque, A., A. Capron, A. Quaissi, L. Kouemeni, J. Lejeune, B. Bonnel, and R. Pierce. 1983. Immune unresponsiveness and its possible relation to filarial disease. <u>Contr. Microbiol. Immunol.</u> 7:9.
- 13. Perez-Rojas, G.E., M. Valderrama, C. Anderson, I. Machado, N. Bianco, and L. Yarzabal. 1983. Immunidad mediada por celulas en la onchocercosis modificaciones por factore sericos. Filariasis Humans en el Territorio Fed. Amazonas. 2: 93.
- 14. Lucius, R., J. Prodhon, A. Kern, G. Hebrard, and H. Diesfeld. 1987. Antibody responses in forest and savanna onchocerciasis in Ivory Coast. Trop. Med. Parasit. 38:194.
- 15. Woodruff, A., J. Anderson, L. Pettitt, M. Tukur, and A. Woodruff. 1977. Some aspects of onchocerciasis in Sudan savanna and rainforest. J. Trop. Med. Hyg. 80:68.
- 16. Williams, J., A. Abu Yousif, M. Ballard, R. Awad, M. El Tayeb, and M. Rasheed. 1985. Onchocerciasis in Sudan: The Abu Hamad Focus. Trans. Roy. Soc. Trop. Med. Hyg. 79: 464.
- 17. Abdalla, R., and E. Abu Bakr. 1975. A new focus of onchocerciasis in the Sudan. Trop. Geogr. Med. 27:365.
- 18. Mackenzie, C., J. Williams, J. O'Day, I. Ghalal, H. Flockhart, and B. Sisley. 1987. Onchocerciasis in southwetern Sudan: Parasitological and clinical characteristics. Am. J. Trop. Med. Hyg. 36:371.
- 19. McMahon, J.E., J.B. Davies, M.D. White, J.M. Goddard, P.A. Beech-Garwood, and B.R. Kirkwood. 1986. Onchocerciasis in Sierra Leone I. Studies on the prevalence and transmission at Goaima village. Trans. Roy. Soc. Trop. Med. Hyg. 80:802.
- 20. Schulz-Key, H., E. Albiez, and D. Buttner. 1977. Isolation of living adult Onchocerca volvulus from nodules. Tropenmed. Parasit. 28:428.
- 21. Lowry, O., J. Rosenbrough, A. Farr, and J. Randall. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265.
- 22. Ngu, J., G. Neba, R. Leke, V. Titanji, T. Asonganyi, and P. Ndumbe. 1981. Selective recovery of living microfilariae from Onchocerca volvulus nodules. Acta Tropica 38:261.
- 23. Boyum, A. 1968. Separation of leucocytes from blood and bone marrow with special reference to factors which influence and modify sedimentation properties of haematopoietic cells. Scand.

 J. Clin. Invest. 21 (supplement 97):1.

- 24. Gallin, M., K. Edmonds, J.J. Ellner, K. D. Ertmann, A.T. White, H. Newland, R.H. Taylor, and B.M. Greene. 1988. Cell-mediated immune responses in human infection with Onchocerca volvulus. J. Immunol. 140:1999.
- 25. Ward, D.J., T.B. Nutman, G. Zea-Flores, C. Portocarrero, A. Lujan, and E.A. Ottesen. 1988. Onchocerciasis and immunity in humans: enhanced T-Cell responsiveness to parasite antigen in putatively immune individuals. J. Infect. Dis. 157:536.
- 26. Buck, A., R. Anderson, K. Kawata, and J. Hitchcock. 1969. Onchocerciasis: Some new epidemiologic and clinical findings. Am. J. Trop. Med. Hyg. 18:217.
- 27. Brattig, N., F. Tischendorf, E. Albiez, D. Buttner, and J. Berger. 1987. Distribution pattern of peripheral lymphocyte subsets in localized and generalized form of onchocerciasis. Clin. Immunol. Immunopath. 44:149.
- 28. Foo, B., M. Nowak, B. Copeman, and M. McCabe. 1983. A low molecular weight immunosuppressive factor produced by <u>Onchocerca</u> gibsoni. Vet. Immunol. Immunopath. 4:445.
- 29. Schulz-Key, H., and M. Karam. 1986. Periodic reproduction of Onchocerca volvulus. Parasitology Today. 2:284.
- 30. Lok, J.B., R.J. Pollack, E.W. Cupp, M.J. Bernardo, J.J. Donnelly, and E.J. Albiez. 1984. Development of <u>Onchocerca lienalis</u> and <u>O. volvulus</u> from the third to fourth larval tage in <u>vitro</u>. Tropenmed. Parasit. 35:209.
- 31. Wadee, A.A., A.C. Vickery, and W.F. Piessens. 1987. Characterization of immunosuppressive proteins of <u>Brugia malayi</u> microfilariae. Acta Tropica. 44:343.
- 32. Prost, A., M. Nebout, and A. Rougemont. 1979. Lepromatous leprosy and onchocerciasis. Brit. Med. J. 1:589.
- 33. Haque, A., and A. Capron. 1982. Transplacental transfer of rodent microfilariae indules antigenic-specific tolerance in rats. Nature. 299:361.
- 34. Prost, A., E. Gorim de Ponsay. 1979. Importance epidemiologique du parasitisme neonatal por microfilarials d'<u>Onchocerca volvulus</u>. Tropenmed. Parasit. 30:477.
- 35. Petralanda, I., L. Yarzabal, and W.F. Piessens. 1988. Parasite antigens are present in breast milk of women infected with Onchocerca volvulus. Am. J. Trop. Med. Hyg. 38:372.

IMMUNOGLOBULIN RESPONSES IN ONCHOCERCIASIS
A COMPARATIVE STUDY OF IMMUNOBLOT PROFILES

Mohamed Y. ElKhalifa and Jeffrey F. Williams

Department of Microbiology and Public Health, Michigan State
University, East Lansing, MI 48824

ABSTRACT

Immunoblotting analyses were done on 90 sera collected from onchocerciasis patients in several distinct endemic foci in the Sudan and in Sierra Leone. Human IgG and subclass responses were evaluated in relation to the clinical and parasitological profile of the patients and compared to endemic and non-endemic area controls. Patient lesion severity, type, and distribution were scored according to a previously Included were individuals ranging from heavily reported system. infected but asymptomatic, to those in whom microfilariae were few or undetectable but clinical signs were severe; those included seven with asymmetric lichenification. Total IgG and IgE concentrations were elevated in infected patients. Antibody responses to a wide range of soluble worm antigen bands (MW range 12 kD to >200 kD) were seen, with up to 25 bands recognized by some sera with IgG specific probes. Subclass specific monoclonal probes revealed a predominance of IgG4 responses, often accounting for almost all the band spectrum seen with IgG reagents. Many individuals had little or no evidence of reactivity There was, however, no obvious relationship in other subclasses. between band number, location or intensity, and clinical or parasitological status, except that there was overall more reactivity with Sudanese rather than Sierra Leonean sera. Within Sudanese sera subsets there was a trend towards higher clinical severity scores in patients whose sera recognized more and more deeply staining bands. Specific patterns of band recognition with IgG3 probes were not associated with Sowda patient sera, unlike previous reports. The most intense IgG3 reactivity was observed in an asymptomatic Sudanese patient. Anti IgE probes revealed fewer bands with lesser intensity, compared to anti

IgG, and they were also not peculiar to any patient subset. Antibodies were detected to up to 10 bands in secreted/excreted (S/E) antigens from adult females of Onchocerca volvulus maintained in vitro, but these corresponded in position to bands in soluble worm extracts. Altogether 15 polypeptid S/E bands were labelled with 35 S methionine under these conditions, but the use of these materials does not seem to offer advantages in exploring antibody responses to $_{0}$. volvulus and their procurement is difficult and costly.

INTRODUCTION

Recent explorations of the relationships between the clinical manifestations of human filarial infections and patterns of immune responses have begun to identify potential correlates of pathogenesis In lymphatic filariasis, where categorisation of patient subsets has been based on well established parasitological and clinical criteria, distinct characteristics of immunoblot profiles have emerged in each group that provide insights into mechanisms of disease². In human onchocerciasis immunoglobulin and antibody responses have not been as well examined so far, and the picture is less clear. This may be due in part to the spectral nature of pathologic responses and the complexities of evaluation of a wide range of changes in dermal and ocular tissues. It is also likely to be due in part to the geographic variation of the disease in endemic foci³, perhaps attributable to recently identified genetically distinct "strains" within 0. volvulus Nevertheless, recent reports suggest associations between antibody responses in immunoglobulin subclasses and clinical signs that are of central importance to understanding the nature of onchocercal lesions, and the functions of immunoglobulin subclasses in disease causation⁵.

We have been involved in the epidemiological characterization of onchocerciasis in a number of distinct foci in Sudan where, even within the country, the disease assumes very different forms in each of the provincial foci⁶. We have developed a comprehensive clinical scoring system based on the severity of acute and chronic changes that has proven valuable in classification of lesions and their changes over time in relation to parasitologic status⁷. We report here on immunoblot

profiles in clinically distinct patient subgroups, from savannah and desert regions in Sudan, and some comparative aspects with regard to similarly examined samples from the forest foci of Sierra Leone⁸.

MATERIALS AND METHODS

Study Areas. Patients from four different geographical areas endemic for onchocerciasis were studied. Three are in Sudan, and each shows some slightly different characteristics in the prevailing form of the disease: Abu-Hamad in the North⁹; Sundus in the East⁷, and Bahr El Ghazal in the southwest¹⁰. An additional group of patients was examined and sampled in Bo, Sierra Leone, West Africa⁸.

Individuals Studied. A total of 90 serum samples were collected from groups of 10-20 patients each in Abu Hamed, Bahr El Ghazal, Sundus, and Bo (Sierra Leone). The selection of patients for immunoblot studies was made to ensure representation of the range of prevailing clinical and parasitological features in each focus.

Control patients samples included those from individuals in the endemic areas who were parasitologically negative, and others from Central Sudan, who were resident in a non-endemic region.

Clinical Examination. All participants were given a complete physical examination with special attention given to the palpation of O. volvulus nodules, and to the evaluation of skin and eye changes consistent with O. volvulus infection. The history included details of any antifilarial treatment received and of surgical removal of nodules. Details of the examination procedure and the assessment of lesions are described elsewhere⁷. As a result of physical findings, individuals were classified primarily on the basis of the type, distribution, chronicity, and severity of skin changes, using a point scale of 0-3, with 3 being most affected. For the purposes of comparison 3 groups of symptomatic patients emerged from this scheme; those with mild disease (score of 1), moderately affected people (score of 2) and those sev-

erely afflicted (score of 3). Asymptomatic patients with no signs or symptoms of onchocerciasis, but with microfilariae in their tissue biopsies were given a score of 0.

Parasitological Examination. To determine the microfilarial intensity of O. volvulus infection in each individual, bilateral skin biopsies (snips) were taken from the iliac crest using a Walser corneoscleral punch. Skin snips were then incubated in tissue culture medium RPMI 1640 (Sigma Chemical Co., St. Louis, MO) for 4 hours. Emerging microfilariae were counted and the wet weight of the snips was determined. Microfilarial intensity was expressed as the number of microfilariae per milligram of skin (mf/mg). Urine, stool and blood samples from patients in Abu Hamad and Bo were examined for other parasites by conventional techniques.

Preparation of 0. volvulus Soluble Antigen (sAg) and Secretions/Excretions (S/E). Intact nodules were surgically excised from patients under local anesthesia. To obtain live female parasites, nodules were digested in collagenase using the method described by Schulz-Key¹¹. Trimmed excised nodules were incubated in culture medium RPMI 1640 containing 10% pooled normal human sera, penicillin, 100 u/ml, streptomycin 100 ug/ml (Gibco Laboratories, Grand Island, NY) and collagenase type IV (Sigma Chemical Co.) at a concentration of 2 mg/ml. Digestion was carried out at 37°C for 12 hours after which female parasites were recovered by gentle dissection. Isolated adult females were thoroughly washed in serum-free RPMI 1640 with antibiotics.

O. volvulus female worms were maintained individually at 37°C in RPMI 1640 supplemented with antibiotics for 48 hours. Culture supernatants were dialyzed at 4°C against three changes of 1,000 volumes of

phosphate buffered saline, pH 7.2 using Spectrapor membrane tubing (Spectrum Medical Industries Inc., Los Angeles, CA), with a molecular weight cut off of 10,000 Daltons. Supernatants were then filter-sterilized, aliquoted and stored at -70°C. The protein concentration in supernatants was measured using the Lowry method 12. Additionally, to obtain radiolabeled S/E, live O. volvulus female worms were cultured in RPMI 1640 supplemented with antibiotics in the presence of S35 methionine (DuPont, Boston, MA), specific activity 1086 Ci/mmol, at a final concentration of 80 uCi/ml, for 24 hours. Proteins in the culture supernatants were then precipitated by 5% trichloroacetic acid (TCA).

For sAg preparation, isolated 0. volvulus female worms were homogenized in phosphate buffered saline, pH 7.2 and extracted overnight at 4° C. Particulate material was pelleted by centrifugation at 5,000 x g/30 minutes and the supernatant was further clarified at $100,000 \times g/1$ hour.

Immunoblotting Procedure

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) of <u>O. volvulus</u> sAg, and S/E was performed according to the method of Lammeli et al.¹³, using a 7.5-15% gradient gel. The stacking gel was 3%. The separated proteins were electrophoretically transferred onto nitrocellulose sheets according to the method of Towbin et al.¹⁴. The portion of the nitrocellulose membrane containing molecular wt. standards and <u>O. volvulus</u> sAg was then stained with amido black. The rest of the membrane was cut longitudinally into 0.5 cm strips.

The strips were then reacted with individual patient's sera (90 sera for O. volvulus sAg and 10 Sera for S/E) diluted 1:200 following an overnight blocking with 1% BSA and 0.5% tween 20. After washing with Tris buffer, pH 7.2, the strips were incubated with anti-human IgG, IgG1, IgG2, IgG3, IgG4 or IgE mouse monoclonal antibodies (ICN Immunobiologicals, Lisle, IL, USA), diluted 1:2000. Following washing, the strips were incubated with horse radish peroxidase enzyme conjugated goat antimouse antibody at a dilution of 1:2000. These concentrations were arrived at by bracketing those recommended by the manufacturer in preliminary tests.

Additionally, peroxidase conjugated, affinity purified polyclonal, antihuman IgE (ICN Immunobiologicals) was used. The substrate solution consisted of diaminobenzidine (0.5 mg/ml) and hydrogen peroxide (0.15%) in phosphate buffered saline, pH 7.2. The reaction was stopped after 15 minutes by washing with cold water. Visualization of different protein bands and estimation of band intensity was determined visually.

Analysis of S³⁵ Labeled O. volvulus S/E:

S³⁵ methionine labeled S/E, precipitated by TCA were solubilized in SDS sample buffer and separated by SDS PAGE using the protocol described above. Autoradiographs of dried gels were exposed for 7 days.

Immunoglobulin Quantitation:

Total IgG, IgM, and IgA levels were determined in patient's sera using commercially available radial immunodiffusion plates (Kallestad, Austin, Texas). Total IgE levels were measured by an enzyme immunoassay (Abbot Laboratories, North Chicago, IL).

RESULTS

The parasitological and clinical features of patients in each region were markedly different. Details of the regional characteristics have been described elsewhere, (ElKhalifa et al., submitted) but the patient samples used in this study covered the range, in each area, from infected but clinically unaffected to severely afflicted with onchocercal lesions but with no demonstrable parasites in skin biopsies (Figs. 1-4). There were six affected with the localized asymmetric form of the disease in Sundus patient groups (Figs. 5-6), although this syndrome was seen in all Sudanese regions. Altogether 90 samples from infected individuals including 7 with Sowda syndrome, were examined in the immunoblot system.

Most patient sera showed high concentrations of total IgG, and extremely high IgE titers (Fig. 7). Separation of <u>O. volvulus</u> antigen extracts on SDS-PAGE produced a reproducible pattern of about 25 bands with molecular weights ranging from above 200 kD to 12 kD (Fig. 8 B1). The patterns of IgG responses of the patients varied within the subgroups, both with regard to the numbers and positions of bands recognized and their relative intensity. Sera from normal non-endemic area controls tended to show IgG reactivity with a band in the 50 kD region, and occasionally there were diffuse responses at higher MW levels which were poorly resolved. Reactivity to bands representing virtually the whole spectrum of Mw's visible on the SDS-PAGE profiles was present within each patient sample subgroup. Although, in some instances a trend towards increase IgG reactivity with increased clincal scores was noted in some groups, but for the most part this was lacking in other groups (Fig. 9b). Bands with MW lower than 50kd were consistently more

Figure 1. An asymptomatic <u>O</u>. <u>volvulus</u> infected individual with microfilarial intensity greater than 100 mf/mg. Note the presence of an onchocercal nodule while the adjacent skin is essentially free of any acute or chronic changes except for a single small papule.

Figure 2. Discrete papular eruption seen in this patient, confined to the upper back, giving him a clinical score of 1. The microfilarial intensity in the skin of this patient was 20 mf/mg.

Figure 3. Severe onchocercal dermatitis is seen in this patient (clinical score of 3). Note the macropapular eruption with lichenfication of the skin. Hypo and hyperpigmented, indurated papules are apparent. Some of these papules are excoriated, others are healing, while few have secondary bacterial infection.

Figure 4. Acute severe onchocercal dermatitis (score of 3) is seen in this patient mostly in the form of acute papular eruption and excoriation marks. Note areas of hypo and hyperpigmentation (left upper back).

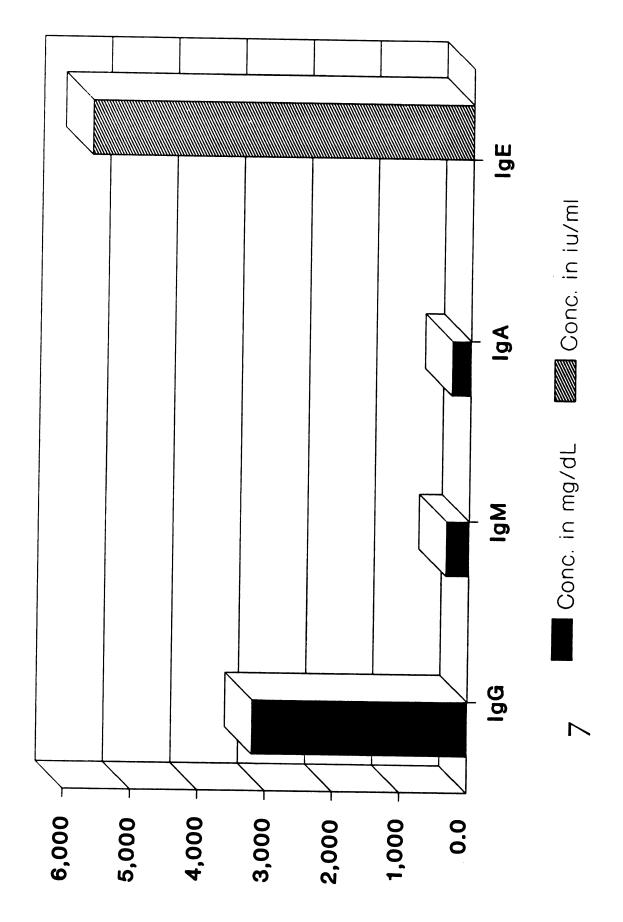


Figure 5. A "Sowda" patient with extensive dermatitis of the left leg while the right leg is spared. Note the hyperpigmented maculo-papular eruption as well as the edema of skin in the left leg. It is worth noting that examination of this patient, one year after taking this photograph, showed remarkable improvement of the dermatitis in her afflicted limb, without any anti-onchocercal therapy.

Figure 6. Localized onchocercal dermatitis affecting the right arm of this patient. Note the maculopapular eruption as well as the thickening and hypertrophy of the skin. The features seen here fits the category of Sowda syndrome, despite the unusual upper arm location.

Figure 7. Total Immunoglobulin levels in onchocerciasis patients studied. Total level of serum IgG is elevated (mean 3202 ± 1288 mg/dL). More notable is the extreme elevation of IgE (5668 ± 5739 iu/ml). These high IgE levels are not associated with any intense recognition of Onchocerca volvulus soluble antigens by Western blotting technique, as shown in Figure 10.

- Figure 8. SDS-PAGE of 0. volvulus antigens and secretions/excretions.
- A. An autoradiograph of SDS-PAGE, S³⁵ methionine labeled, TCA precipitated secretions/excretions of <u>O. volvulus</u> female worms, showing at least 15 distinct protein bands with various molecular weights.
- B.1 SDS-PAGE of adult Onchocerca volvulus PBS soluble extracts stained with Coumassie blue.
- B.2 SDS-PAGE of adult <u>Onchocerca volvulus</u> secretions/excretions stained with Coumassie blue.

Molecular weight markers are seen on the right.

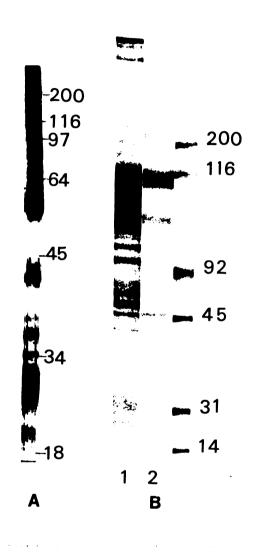
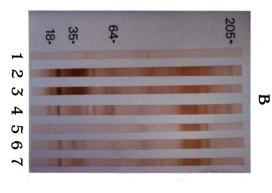
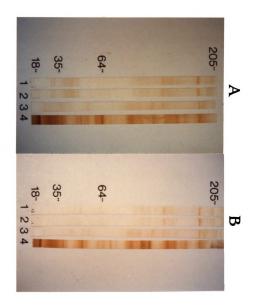



Figure 9. IgG recognition pattern of <u>O</u>. <u>volvulus</u> antigens separated by SDS-PAGE and electrophoretically transferred onto nitrocellulose filters.

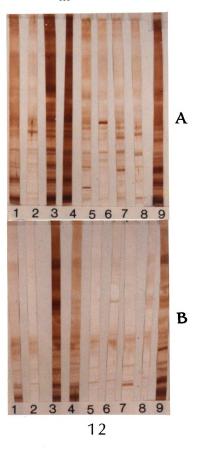
- A. Sera from patients with different clinical presentations as well as controls were used. Lane 1, Non-endemic control; Lanes 2 and 3, endemic controls; Lane 4, asymptomatic; Lanes 5 and 6, mild disease (score of 1); Lane 7, moderate (score of 2); Lane 8, severe disease (score of 3); Lanes 9 and 10, Sowda patients. Note the increase in the number and intensity of the bands recognized with the increase in the severity of the disease. The endemic and non-endemic controls show non specific reactivity at the level of 50 KD as well as high MW bands.
- B. IgG reactivity in another set of <u>O. volvulus</u> patients with a spectrum of clinical manifestations. Lane 1, normal individual; Lanes 2 and 3, patients with a score of 3; Lanes 4 and 5, patients with a score of 2; Lane 6, a patient with a score of 1; Lane 7, an asymptomatic patient.

It is apparent here that the IgG reactivity of those patients does not necessarily correlate with their clinical presentation.

sharply separated. Most prominent among bands commonly recognized were those at MW 43 kD, 33 kD and 21 kD (Fig. 9a and b) where 80% of patients, but none of the endemic controls reacted to them.


Reactivities with anti IgE probes were generally more limited in scope and intensity (Fig 10). These reactions were not enhanced by altering the protocol to include a second (enzyme-labelled) antibody directed against the unlabelled class specific anti IgE probes. Generally less number of bands spanning the MW of 12-220 kD were detected, but with no obvious association with particular patient subgroups or their infection or disease status.

On further analysis of IqG responses with immunoglobulin subclassspecific probes the predominance of IgG4 in the antibody reactivity of sera from patients in all categories was most striking. In many cases bands recognized by IqG1, IqG2, and IqG3 were barely visible (Fig. 11), whereas reactions with the IgG4 probe covered the entire range of those seen with the IgG class-specific second antibody. Repeated absorption of patient's sera with IgG4 specific antibody failed to enhance reactions with other subclass specific probes (data not shown). The IgG4 responses, mirrored those of total IgG regardless of the clinical or prasitological status (Fig. 12), revealing the same marked heterogeneity as with IgG reactivity. No clear evidence emerged of a relationship between the degree of infection or clinical severity and blot profiles with any of the anti IgG reagents; however, there was an overall trend towards greater intensity in blots from Sudanese patients from all foci when compared to sera from forest zone patients in Sierra Leone. There was also a tendency towards more bands with a higher Figure 10. IgE reactivities of the same group of patients in Figure 9A. Although some of those patients have total IgE levels in excess of 18,000 iu/ml, there is an apparent overall reduction in the number and intensity of bands recognized by those patients. Neither the clinical status, nor the level of parasite burdens were related to the recognition patterns.



- Figure 11. 0. volvulus antigen recognition patterns by different IgG subclasses. IgGl (1); IgG2 (2); IgG3 (3); IgG4 (4).
- A. IgG subclass recognition pattern by a serum from an asymptomatic infected patient.
 - B. IgG subclass recognition pattern by a Sowda patient.

Note that most of $\underline{0}$. $\underline{\text{volvulus}}$ antigens are recognized by IgG4 with minimal contribution from the other IgG subclasses. No differences as to the recognition by IgG3 or any other IgG subclass can be identified in those two patients representing extremes of clinical presentations.

- Figure 12. Total IgG and IgG4 recognition pattern of $\underline{0}$. volvulus antigens.
- A. Total IgG recognition pattern by a group of patients with different clinical manifestations.
- B. IgG4 recognition by the same group of patients, reflecting almost identical pattern of the antigenic bands recognized. In most of our patients, the reactivities seen with total IgG can be attributed to IgG4.

intensity of staining with sera of patients with moderate to severe disease rather than with sera from asymptomatic individuals.

Reactivity of IgG antibodies was pursued with particular attention to IgG3 responses in cases showing the asymmetry and lymphadenopathy associated with the Sowda syndrome. In several patients with severe Sowda or early Sowda-like afflictions blot patterns were not distinguishable from those of other patients in their respective subgroups (Fig. 11). Even where IgG3 positivity was present, reactions of the same sera with the anti IgG4 probe were much more intense and directed to a wider range of antigens. Several of the more pronounced IgG3 response patterns, especially to lower molecular weight bands, were seen with sera of patients who were asymptomatic.

SDS-PAGE of <u>O</u>. <u>volvulus</u> S/E showed the presence of 10 protein bands with varying molecular weights (Fig. 8B2). All of the S/E protein bands had corresponding bands of the same MW in the <u>O</u>. <u>volvulus</u> sAg SDS-PAGE preparation. Experiments with S³⁵ labelled methionine incorporation demonstrated that up to 15 labelled polypeptides were produced by adult females maintained in vitro (Fig 8A).

When 10 patient sera were tested against these S/E antigens, 12 bands were recognized. Again, different sera recognized different spectra of antigenic bands and there was no clear influence of the clinical presentation on the band recognition pattern. All of the protein bands appeared to be present in antigenic extracts of the entire worms, so that there did not appear to be any advantage to using the S/E fluids, especially since they were much more difficult to collect in quantity.

DISCUSSION

Patients infected with O. volvulus in endemic areas seem to react in widely disparate ways to the presence of the parasite. In the absence of accurate longitudinal assessment of clinical and pathological changes, it is difficult to construct a picture of the course of the disease. In our groups some individuals were both heavily infected and severely affected, whereas others were heavily infected and asymptomatic; yet others were clinically afflicted with many changes consistent with onchocerciasis, but without demonstrable parasites in their skin tissues. The relationship between infection intensity and disease was different between groups, with a positive correlation between these two factors established in the forest zone patients from Bo, and the reverse being true for the patients examined in Sundus. In the face of this diversity, we were unable to identify any clear traits with respect to band specificity, scope of reactivity, or intensity that could be implicated in pathologic differentiations of subgroups. There was a tendency for those from the forest zone to recognize fewer bands and with less intensity than sera from Savannah regions in Sudan, but this was not marked. Previous workers have noted such differences between groups of patient samples collected from savanna and forest zones of W. Africa³.

Brattig, et al. 1 also examined patients with the asymmetrically localized hyper-reactive form of the disease, referred to loosely as "Sowda" syndrome. They reported that such individuals have higher titers of IgG antibodies in Elisa tests. Our qualitative immunoblot profiles, although showing a trend towards greater IgG reactivity of symptomatic patients' sera, did not reflect this characteristic consis-

tently. On occasion, strong IgG responses similar to those described by Lucius 31 were noted by asymptomatic patients. IgG profiles of Sowda patients and others were marked by one extraordinarily consistent trait: the large contribution of antibodies of the IgG4 subclass to the reactivity seen. In many individuals it appeared that most of the antibodies they had made, regardless of their clinical or parasitological status were of this type. Observations such as these have been made recently in other helminthiases in man, 27,23, and IgG4 responses form one of the hallmarks of antibodies detected in human lymphatic filariasis². There, the hypothesis has been constructed that IgG4 may function in a protective or blocking role, ameliorating reactions potentially generated by the high levels of IgE antibodies to Brugia, or Wuchereria antigen in these patients^{2,15}. Concentrations of IgE are elevated in human onchocerciasis, 16,22 but the blot profiles in our studies showed a rather restricted pattern of reactivities compared to those seen in lymphatic filarial infections 17. The parallel antigenic recognition by IgE and IgG4 reported in lymphatic filariasis 20 was not observed in our study. Moreover, the IgE reactions in our patient groups showed no discernable trends related to clinical signs or parasite burdens. The relatively low number of bands detected in our IgE specific blots, regardless of whether or not direct enzyme-labelled probes were used or an IgE specific enzyme-labelled second antibody was involved, contrasts sharply with the results reported by Weiss et al. 18. They found up to 50 bands detectable with anti IgE in their onchocerciasis serum pools from sub-Saharan regions of W. Africa. It should be mentioned here that the authors' experimental protocol involved high concentrations of patients' sera (sera were diluted 1:2), while we used sera diluted 1:200. It is possible that the majority of parasite specific IgE are present, but at low concentrations and with high dilution they are essentially titrated out. Our results, however, reflect similar findings to those of Nutman et al.³⁰, where high levels of non-specific IgE were prevalent among their loiasis patients population.

We were unable to demonstrate any association between IgG3 reactivity to any bands and the presence of Sowda-like lesions. Recently Cabrera et al. 5 have implicated IgG3 in the pathogenesis of this syndrome, showing that high levels of IgG3 antibodies were exclusively associated with Sowda patients and were directed preferentially against a 72 kD MW antigen and a low MW antigen in the 9 kD region, the latter being most specific. In our immunoblotting system, the lowest identifiable Mw O. volvulus antigenic band was in the 12 KD region, similar to other published reports³¹. Thus, we are unable to comment on the recognition of the 9 KD band and its relation to Sowda. This discrepancy might be due to our use of PBS soluble worm antigenic preparations rather than the detergent solubilized extracts used by the above authors. As for the 72 KD band, sera from Sowda patients in our study were not differentiable by this means. In the Cabrera et al. report, antibody recognition profiles by Sowda patients' serum pool, both the 9KD and the 72 KD bands were strongly recognized by IgG3, but neither band was recognized in the total IqG blots on the same patients' serum; no explanation for this difference was offered. In our series, IgG3 antibody reactivities were weak and when present they were seen equally in individuals with no dermal clinical changes suggestive of onchocerciasis. The reasons for these differences remain to be established, but for the moment generalizations about the involvement of IgG3 responses in this syndrome do not seem justified. Parasite genetic factors, patterns of exposure and host genetic traits may all play a role in these phenomena.

Some of our patients were infected with Mansonella perstans, and those in W. Africa had a higher rate of infection with gastrointestinal helminths than did the Sudanese groups, but these intercurrent parasitic problems did not detectably influence the antibody profile. Possibly some of the antibodies demonstrated in blots may have been against antigens shared with gastrointestinal nematodes because filariae are known to have many antigens in common with major human helminths 19.

Interestingly, some of the most consistent and best resolved areas of reactivity on blots were in the lower molecular weight regions where antigens of greatest <u>O. volvulus</u> specificity have been identified ^{20,21}. Of special interest to us were the 33 KD and 21 KD antigenic bands, the recognition of which has recently been shown to be of greatest specificity and sensitivity (>90%) in the diagnosis of <u>O. volvulus</u> infection ²¹. Although these two bands were recognized by the majority of our patients and by none of the endemic controls, their utility as a specific diagnostic test for <u>O. volvulus</u> infection in our patients series is not evident because of the lower sensitivity (80%) of detection by this means. The prospects for discriminating between subsets of patients with specific diagnostic assay configurations seem dim in the face of the heterogeneity displayed here. Further progress on this and other aspects of the immunology of the host-parasite relationships

in this infection probably will require a focus on purified or rDNAderived defined antigens for more meaningful interpretation.

Our analysis of S/E showed that the antigenic bands seen are similar to those present in <u>O. volvulus</u> soluble antigenic extracts, at least in terms of their molecular weights. These antigens are clearly synthesized by the worm as shown by the ³⁵S methionine incorporation experiments. Although there is evidence from other helminths of advantages in using secreted or excreted antigens in serological studies^{24,25,26}, this was not apparent in our limited analysis. In view of the extreme difficulty of procuring live worms for this purpose and the scanty harvest of material for study it does not appear to offer worthwhile advantages.

ACKNOWLEDGEMENTS

This work was supported by grants from NIH Grant # AI-16312, Fogarty International Fellowship #1FO5TWO3637 and the Wolfson Foundation. Particular thanks are due to the many cooperating patients and medical staff in Sudan provincial villages and at the MRC Center, Bo Sierra Leone who made this study possible.

REFERENCES

- Brattig, N.W., F.W. Tischendorf, E.J. Albiez, D.W. Buttner, and J. Berger. 1987. Distribution pattern of peripheral lymphocyte subsets in localized and generalized form of onchocerciasis. Clin. Immunol. and Immunopathology. 44:149.
- 2. Hussain, R., and E.A. Ottesen. 1985. IgE responses in human filariasis III. Specificities of IgE and IgG antibodies compared by immunoblot analysis. J. Immunol. 135:1415.
- 3. Lucius, R., J. Prod Hon, A. Kern, G. Hebrando, and H.J. Diesfeld. 1987. Antibody responses in forest and savana onchocerciasis in Ivory Coast. Trop. Med. Parasit. 38:184.
- 4. Cianchi, R., M. Karam, M. Henry, F. Villani, S. Kumlien, and L. Bulini. 1985. Preliminary data on the genetic differentiation of Onchocerca volvulus in Africa. Acta Trop. 42:341.
- 5. Cabrera, Z., D.W. Buttner, and R.M.E. Parkhouse. 1988. Unique recognition of a low molecular weight <u>Onchocerca</u> volvulus antigen by IgG3 antibodies in chronic hyper reactive oncho-dermatitis (Sowda). Clin. Exp. Immunol. 74:223.
- 6. Mackenzie, C.D., and J.F. Williams. 1985. Variation in the clinical presentation of onchocerciasis and their relationship to host parasite interactions. Sudan Med. J. 21 (supplement):41.
- 7. Ghalib, H., C. Mackenzie, J. Williams, H. ElSheikh, M. ElKhalifa, and M. Kron. 1987. Severe onchocercal dermatitis in the Ethiopian border region of Sudan. Ann. Trop. Med. Parasitol. 81:405.
- 8. McMahon, J.E., J.B. Davies, M.D. White, J.M. Goddard, P.A. Beech-Garwood, and B.R. Kirkwood. 1986. Onchocerciasis in Sierra Leone. I. Studies on the prevalence and transmission at Goaiima village. Trans. Roy. Soc. Trop. Med. Hyg. 80:802.
- 9. Williams, J., A. Abu Yousif, M. Ballard, R. Awad, M. ElTayeb, and M. Rasheed. 1985. Onchocerciasis in Sudan: The Abu Hamad focus. Trans. Roy. Soc. Trop. Med. Hyg. 79:464.
- 10. Mackenzie, C., J. Williams, J. O'Day, I. Ghalal, H. Flockhart, and B. Sisley. 1987. Onchocerciasis in Southwestern Sudan: Parasitological and clinical characteristics. Am. J. Trop. Med. Hyg. 36:371.
- 11. Schulz-key, H., E. Albiez, and D. Buttner. 1977. Isolation of living adult <u>Onchocerca</u> volvulus from nodules. <u>Tropenmed.</u> Parasit. 28:428.
- 12. Lowry, O., J. Rosenbrough, A. Farr, and J. Randall. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265.

- 13. Lammeli, U.K. 1970. Clearance of structural proteins during assembly of the head of bacteriophage T4. Nature. 227:680.
- 14. Towbin, H., T. Stachelin, and J. Gordon. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets. Procedure and some applications. Proc. Natl. Acad. Sci. 76:4350.
- 15. Ottesen, E.A., U. Kumanaswami, R. Parangape, R.W. Poindexter, and S.P. Tripathy. 1981. Naturally occurring blocking antibodies modulate immediate hypersensitivity responses in human filariasis. J. Immunol. 127:2014.
- 16. Weiss, N., F. Spieser, and R. Hussain. 1981. IgE antibodies in human onchocerciasis. Application of a newly developed radioal-lergosorbent test (RAST). Acta Tropica. 38:353.
- 17. Hussain, R., R.G. Hamilton, V. Kumanaswami, N.F. Adkinson, and E.A. Ottesen. 1981. IgE responses in human filariasis I. Quantitation of filarial specific IgE. J. Immunol. 127: 1623.
- 18. Weiss, N., M. Gualzata, T. Wyss, and B. Betschant. 1982. Detection of IgE binding Onchocerca volvulus antigens after electrophoretic transfer and Immunoenzyme reaction. Acta Tropica. 39:373.
- 19. Ambroise-Thomas, P. 1974. Immunological diagnosis of human filariasis: present possibilities and limitations. Acta Tropica. 38:108.
- 20. Lobos, E., and N. Weiss. 1986. Identification of non-cross-reacting antigens of <u>Onchocerca</u> volvulus with lymphatic filariasis serum pools. Parsitol. 93:389.
- 21. Lucius, R., H. Schulz-key, D.W. Buttner, A. Kern, B. Kaltmann, J. Prod Hon, F. Seeba, R.D. Walter, K.C. Saxena, and H. Diesfeld. 1988. Characterization of an immunodominant Onchocerca volvulus antigen with patients sera and a monoclonal antibody. J. Exp. Med. 167:1505.
- 22. Somorin, A.O., D.C. Heiner, and R.E. Ajugwo. 1977. Immunoglobulin E in Nigerian onchocerciasis. Am. J. Trop. Med. Hyg. 26:872.
- 23. Hofstetter, M., R.W. Poindexter, E. Ruiz-Tiben, and E.A. Ottesen. 1982. Modulation of the host response in human Schistosomiasis III. Blocking antibodies specifically inhibit immediate hypersensitivity responses to parasitic antigens. Immunol. 46:777.
- 24. Mill, C.K., and N.H. Kent. 1965. Excretion and secretions of Trichinella spiralis and their role in immunity. Exp. Parasitol. 161:300.

- 25. Murrell, K.D., W.E. Vannier, and A. Ahmed. 1974. Schistosoma mansoni antigenic heterogeneity of excretions and secretions. Exp. Parasitol. 36:316.
- 26. Kaushal, N.A., R. Hussain, T.E. Nash, and E.A. Ottesen. 1982. Identification and characterization of excretory-secretory products of <u>Brugia malayi</u> adult filarial parasites. <u>J. Immunol.</u> 129:338.
- 27. Iskander, R., P.K. Das, and R.C. Aalberse. 1981. IgG4 antibodies in Egyptian patients with schistosomiasis. Int. Arch. Allergy Applied Immunol. 66:200.
- 28. Mackenzie, C.D., J.F. Williams, B. Sisley, M. Steward, and J. O'Day. 1985. Variation in the host responses and the pathogenesis of human onchocerciasis. Rev. Inf. Dis. 7:802.
- 29. Hussain, R., and E.A. Ottesen. 1988. Parallel recognition of filarial antigens by IgE and IgG4 antibodies. New Eng. Reg. Allergy Proc. 9:51.
- 30. Nutman, T.B., W. Reese, R.W. Poindexter, and E.A. Ottesen. 1988. Immunologic correlates of the hyperresponsive syndrome of loiasis. J. Infect. Dis. 157:544.
- 31. Lucius, R., D.W. Buttner, C.A. Kirsten, and H.J. Diesfeld. 1986. A study on antigen recognition by onchocerciasis patients with different forms of disease. Parasitology. 92:569.

APPENDIX 1

CLINICAL EVALUATION OF ONCHOCERCIASIS PATIENTS

Clinical evaluation of patients included detailed past and present medical history. Special attention was paid to past history of skin problems. History related to previous diagnosis of onchocerciasis and whether treatment was given was also inquired about. Occupation, life style and possible exposure to black fly bites was also investigated.

General physical examination was then performed on all participants. This included examination of head and neck, cardiovascular and respiratory systems, abdomen and limbs. The presence or absence of onchocercal nodules was determined by visual inspection and palpation. Enlargement of superficial lymph nodes was also noted. Special attention was given to examination of the skin and the eyes.

Assessment of Skin Lesions:

The skin of all individuals studied was carefully examined for visible changes and a detailed record of results was kept. Skin changes were divided into acute and chronic lesions:

a. Acute skin changes:

- 1. Pruritus and itching marks
- 2. Papules, either discrete or containing microabscess
- 3. Skin edema

b. Chronic skin changes:

- 1. indurated papules which may be hyper or hypopigmented.
- 2. Hyperkeratosis and lichenification of skin
- 3. loss of turgor (atrophy)
- 4. Confluent depigmentation.

Each acute and chronic change was quantitated using a scoring system. The body is divided into head and neck, arms, torso, pelvic girdle and legs. The absence of acute changes was given a score of 0. Presence of an acute lesion in one or two body areas was given a 1. The presence of a lesion in more than two was given a score of 2. Total scores for acute changes, chronic changes and the overall combined score for skin lesion severity can then be quantitated. Accordingly, 4 groups of patients can be identified. These are:

- a. Asymptomatic patients
- b. Patients with mild skin disease
- c. Patients with moderate skin disease
- d. Patients with severe skin disease

Ocular Changes:

Ocular examination included assessment of visual acuity using an illiterate E. chart. Anterior segment changes i.e. punctate keratitis, uveitis, iritis, and sclerosing keratitis were looked for and in some patients a slit lamp examination was performed. Posterior segment changes (chorioretinal and optic nerve changes) were determined using an ophthalmoscope.

<u>Figure 1</u>. An asymptomatic patient with an onchocercal nodule in the pelvic region.

<u>Figure 2.</u> A patient with localized severe onchocercal dermatitis and femoral lymphadenopathy. This patient fits the classical description of Sowda.

Figure 3. Severe acute onchocercal dermatitis with papular erruption, excoriation marks and pigmentory changes (score of 3).

Figure 4. Discrete papular erruption localized to the upper back (score of 1).

Figure 5. Moderate acute changes (score of 2). Excoriated papules, and early pigmentory changes can be seen.



Figure 6. Another Sowda patient in which the left limb is severely afflicted.

Figure 7. A patient with generalized severe onchocercal dermatitis. Note the indurated hypo and hyper pigmented papules. Some of the skin changes seen on this patient are similar to those seen in the Sowda patient in Figure 6.

Figure 8. Marked atrophy of the skin, a consequence of chronic onchocerciasis.

Figure 9. Severe secondary bacterial infection in a young boy with O. volvulus infection. This is not an uncommon consequence of pruritus, itching, and excoriation.

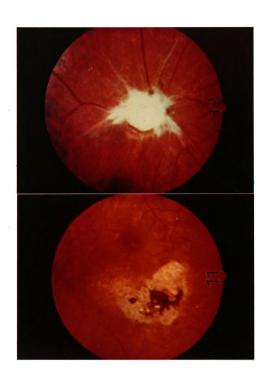


Figure 10. Classical depigmentory changes seen in both lower legs of this patient.

Figure 11. Choreoretinal atrophy with focal pigmentation. These eye changes are not uncommon in onchocerciasis.

Figure 12. Optic nerve atrophy in an onchocerciasis patient.

APPENDIX 2

PATIENTS' DATA RECORD FORM

MICHIGAN STATE UNIVERSITY MEDICAL PARASITOLOGY RESEARCH PROJECT

NAME:	DAT	E:	NO	
AGE: SEX: M	OCCUPATION:			
PRESENT RESIDENCE:				
PREVIOUS RESIDENCE:				
HISTORY OF TRAVEL?	where?		HEN?	
COMPLAINTS: SCRATCHING Y				
FOR HOW LONG?				
ANY SEASONAL VARIATIONS? ALL	YEAR AROUND N	SUMMER Y	N	
		WINTER		
IS IT RELATED TO BLACK FLY BITS DOES SCRATCHING INCREASE BY SWI	EATING? N			
SITE OF SCRATCHING: HEAD	NECK		UPPER LIMBS	
THORAX	ABDOMEN		BACK	
BUTTOCKS	GROIN		HIPS	
HANDS	FEET		LEGS	
DID YOU NOTICE ANY NODULE OR S	WELLING ON YOUR BODY?	Y N		
WHERE?				
ANY FAMILY MEMBER WITH THE SAI	ME CONDITION?]		

NO
HAS YOUR VISION CHANGED SINCE YOU EXPERIENCED THIS CONDITION?
HAVE YOU BEEN DIAGNOSED AS HAVING FILARIASIS?
HAVE YOU HAD TREATMENT FOR IT?
IF YES, WHAT DRUG? SURAMIN N N N N N N N N N
DEC N HOW MANT TABLETS? WHEN?
OTHERS Y N SPECIFY:
DID YOU DEVELOP ANY HYPERSENSITIVITY REACTION?
TO WHAT EXTENT?
ANY ACCOMPANYING IMPAIRMENT OF VISION?
HAVE YOU BEEN DIAGNOSED AS HAVING SCHISTOSOMIASIS?
DID YOU RECEIVE TREATMENT? WHEN?
IS THE COLOR OF YOUR URINE ABNORMAL? Y N IF YES, SPECIFY:
IS YOUR STOOL NORMAL? N IF YES, IS THERE: DIARRHEA MUCUS BLOOD
OTHERS SPECIFY:
HAVE YOU HAD MALARIA?
PHYSICAL EXAMINATION:
PULSE: B.P.:
PALE: CYANOSED:
STATURE: ANOREXIC UNDERWEIGHT WD/WN OVERWEIGHT OBESE
NORMAL COMMENTS ON ABNORMALITY:

						NO
NECK:						
THYROID:	NORMAL	COMMENTS	ON ABNORMAL	ITY:		
CHEST:	NORMAL	COMMENTS	ON ABNORMAL	ITY:		
HEART:	NORMAL	COMMENTS	ON ABNORMAL	ITY:		
ARTERIES:	NORMAL [-	COMMENTS	ON ABNORMAL	TTY:		
VEINS:	NORMAL [COMMENTS	S ON ABNORMAL	JITY:		
ABDOMEN:	NORMAL	COMMENT	S ON ABNORMAI	.ITY:		
MUS-SKEL:	NORMAL	COMMENT	S ON ABNORMA	LITY:		
NAILS:						
COLOR: PA	ALE	PINK	CYANOTIC	OTHER		
LYMPH NOD		COMMENT	IS ON ABNORMA	LITY:		
R. AXI	LLARY: NOR	MAL C	COMMENTS ON A	BNORMALITY: _		
L. AXI	LLARY: NOR	RMAL []	COMMENTS ON A	ABNORMALITY: _		
R. INC	FUINAL: NO	RMAL	COMMENTS ON A	ABNORMALITY: _		
L. INC	JUINAL: NO	RMAL	COMMENTS ON	ABNORMALITY: _		· · · · · · · · · · · · · · · · · · ·
R. POI	PLITEAL: NO	RMAL	COMMENTS ON	ABNORMALITY: _		
L. POI	PLITEAL: NO	RMAL	COMMENTS ON	ABNORMALITY: _		
GROIN EX	AM NORMAL	COMMEN	ITS ON ABNORM	ALITY:		

														ио.		
SKIN LESIONS BODY PARTS	ATROPHY	PAPULES	ACUTE EXCORIATION	CHRONIC EXCORIATION	DEPIGMENTATION	HYPERPIGMENTATION	HYPERKERATOSIS	LICHEN	VESICLES	ULCER	ЕDEМА	KELOID	SCAR	TURGOR	APPEARANCE	OTHER
HEAD		+	-		<u> </u>	-			<u> </u>					-		1
NECK		+	-			-	-	-	-		_	-	-	-		
RIGHT ARM		+	\vdash		<u> </u>		-			-	-	-		-	-	
LEFT ARM		\dagger			<u> </u>	 	-	-		-	-			-	-	
RIGHT FOREARM						-				-			-	-		
LEFT FOREARM													-		-	
CHEST													<u> </u>			
ABD																
UPPER BACK												-		+-		
LOWER BACK							\top					T				
RIGHT BUTTOCKS						\top			1		T		 			
LEFT BUTTOCKS														T		
GROIN									1		1					
RIGHT THIGH											1			1		
LEFT THICH			T										T		1	
RIGHT LEG									\top			1		1	\dagger	
LEFT LEG		T				1	T		T		1		T	1		
HAND										1	1	T		+		
FEET						\top	1		\top		十一	1	1	\dagger	\vdash	

						NO			
SCORING:	ACUTI	E	CHRONIC	PROVISIONAL DIAGNOSIS?					
	P Rx PPRx PRU OED	CP ATR HYK PC		TOTALS					
NODULES, NUM	IBERS								
		SHOULDE	R	TRUNK	ulP				
NONE HEA	ND HECK	L	R A	NT POST	L R	COCCYX			
ПГ				7		1			
ARM		LEG	<u> </u>	_ ;	ا <u>ا</u>				
R L	. R	L O	THER						
					<u> </u>	ζ			
OPHTHALMOLOGICAL EXAMINATION:									
VISUAL ACUI	2 3	4 5		6	7	8	9		
6/6 6/9 6/	/18 6/36	6/60 COUNT F	ETERS OF Han Cht	D MOVEMENT	OF LIGHT	UNDERSTAND TEST, UNCOOPERATIV LEFT			
OCULAR	R L	R	L	R	<u>L</u>	R L			
Hf in AC:			Pupil:		Opt. dis	c:			
Live mf:		Trach:	Iritis	ľ	Ret. ves				
Dead mf:			Pig. o	,	Pig. epi	1			
Coin les: Fl. op cor			Lens:	Į.	C.r.a.:	i			
Scl. ker:	•	IOP:	ATCLE		Rec. do				

							90%		_
R L		R	٠	l.	- /.	BLINDNESS: CAUSE: LOCATION PHOTO:	-		
VISUAL ACUITY:									
LABORATORY RESU	LTS:			RIG	HT _		LEFT		
SKIN SNIP:	SITE	<u>N</u>	UMBER		WEIGHT	NUMBER		WEIGHT	
SKIN SCRAPING: R ESU LTS:	1 2 3 4								
SKIN BIOPSY:	AKEN (NOT TA	LKEN [F	ROM WHERE: _			
BLOOD: MF. PRESENT		NO. E	STIMA	re		וששות	ERENTIAL		
ONCHO. V.		3 2			L		EO	N	В
WUCH. B.		3 2			L	n —	W		_
LOA LOA		3 2			WBC	- 	RBC		
TET. P.		3 2	1	0	PCB				
OTHER D		3 2	,	Λ.	un				

			NO
SERUM:			
TOTAL PROTEIN		VITA	
IGE		ELISA	
IGA		1/ C	
ICM		ADHER. AB.	
IGG		MALARIA AB.	
ICD		OTHER	
BLOOD TRANSFORMATION ASS	SAY USING PATIENT'S	S SERUM:	
INHIBITION	ACTIVATION		NO EFFECT
PMUNOBLOTTING RESULTS:			
	•		
LYMPHOCYTE STIMULATION USING FILARIAL AGS: USING PHYTOHAEMOAGGL CELL TYPING OF PERIPHER T - HELPER: T - SUPPRESSOR: B - CELL: TOTAL LYMPHOCYTES: RATIO OF T-HELPER TO	LUTININ	CON A	OTHERS:
COMMENTS:			
CELL TYPING OF SKIN BI	OPSY:		
T - HELPER:			
T - SUPPRESSOR:			
B - CELL			
TOTAL T AND B CELLS	: :		
RATIO OF T-HELPER T	O T-SUPPRESSOR:		
NO. OF LANGERHANS	ELLS:		
COMMENTS:			

	NO
URINE:	
COLOR:	SPECIFIC CRAVITY:
SED IMENT:	
BIOCHEMICAL ABNORMALITY (SPECIFY):	
STEROID LEVELS:	
PARASITES:	
FECES:	
PARASITES:	
ADDITIONAL COMMENTS:	

