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ABSTRACT

A MODEL FOR THE DETERMINATION OF THE LOADS CARRIED BY THE

INTERNAL STRUCTURES OF THE LOWER LIMB: A BIOMECHANICAL

APPLICATION OF OPTIMIZATION THEORY

BY

Lisa Margaret Schutte

This research investigated the loads carried by the

various internal structures of the lower limb during

physical activity. The extent to which these predicted

loads change when different theoretical models are applied

was also determined.

A nonlinear static optimization problem, minimizing the

summation of the muscle stresses cubed, was formulated in

order to solve the redundant biomechanical problem for the

stance phase of running. A three-dimensional model of the

lower limb was developed. Several variations to this model,

accounting for the ligamentous contribution and the point of

bony contact at the knee in different ways, were

investigated. The ligamentous contribution to the total

joint moments and thus its effect on the predicted muscle

forces, was found to be quite small. Distinct differences

in the patterns of muscle activity were seen for each of the

model variations.
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INTRODUCTION

For most physical activities the lower limbs are the

link between external loading and the rest of the human

body. The forces that the ground exerts on the feet are

transmitted through the legs, affecting the knee, hip and

back. Abnormal gait can thus be related to physical

problems or pain in other portions of the body. The legs,

as well as the rest of the body, are made up of ligaments,

muscles, cartilage, and bone, functioning together in order

to support the body and produce desired motions. Active

muscle function is accompanied by passive function of the

joint ligaments and articular surfaces. Even the simplest

of human motions is characterized by patterns of agonistic,

antagonistic and synergistic muscle activity.

An understanding of the distribution of internal loads

and the role the the various elements play is desirable for

many reasons. Information as to how ligaments and muscles

function normally and how their role changes as a

consequence of intervention can be valuable to physicians

and surgeons. Injuries due to ligament tears and muscle

strain are common in many sports activities as well as in.

everyday living. This is especially true for the knee joint,

which due to its exposed position and the large forces that

1
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it is subjected to, is one of the most frequently injured

joints in the body. Information from knee research can

serve to determine possible sources of injury in various

activities, establish extremes to avoid, and suggest

possible means of prevention.

The human body is a complex and often redundant

mechanical system, and the lower limb is no exception.

There are thus many difficulties associated with

understanding and measuring how the various elements

function together. The important structures are generally

inaccessible, making direct in-vivo measurements difficult

and in-vitro testing does not always accurately imitate

function in the living system. Non-invasive techniques such

as EMG can give a measure of muscle activity but this

information is basically qualitative; telling which muscles

are active but not how much force they are producing.

Three-dimensional kinematics can be measured using stero-

cinematography or six degree of freedom goniometers but soft

tissue motion can be a major source of error. Motions out

of the sagittal plane tend to be small, making these

inaccuracies even more significant.

A high degree of variability exists between individuals

both in anthropometric characteristics and in the specific

way various motions are executed. Differences in height,

build ect. result in variations in the moments arms and

lines of action associated with muscle and ligament forces.

Basic mechanical properties of human tissues are also
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subject to variations as a result of age, health and

physical condition.

Even solving mathematically for the loads carried by

the various structures is a source of difficulty due to the

redundant nature to the problem. The redundancy serves to

increase the flexibility of the system, making a wide

variety of motion possible. The number of ligaments and

muscles crossing any one joint is generally greater than the

number of equations that can be written relating these

forces. The system is thus underdetermined and no unique

solution exists.

Load sharing among the structures of the

musculoskeletal system has been studied by a variety of

methods. The redundant nature of the problem has been

handled by simplification to a determinate problem as well

as by use of static and dynamic optimization techniques.

More recently, random stocastic criteria have been applied.

Among the passive structures finite element methods have

been applied as well as geometric compatibility

relationships. For the most part the active elements

(muscles) and the passive elements (ligaments) have either

been treated separately or one emphasized while the other is

treated as a lumped parameter. Since the load transmitted

across any joint is carried by a combination of both types

of structures it seems reasonable that the load carried by

one would not be independent of the load carried by the
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other, but rather that a certain degree of interdependence

would be displayed.

The purpose of this research was to develop a model of

the internal structures, both passive and active, of the

lower limb, especially those crossing the knee joint, in

order to study this interdependence. This involved

determining the locations of the attachments and lines of

actions of the various muscles and ligaments.

Representations of the joint surfaces were also developed in

order to describe the point of joint contact and thus the

relative positions of the bony structures to which the

muscles and ligaments attach. Geometric compatibility

relationships and static optimization techniques were

applied in order to quantify the load carried by the

individual structures. The effect of various alternative

methods of treating ligament contributions to the muscle

optimization problem were also investigated.



SURVEY OF LITERATURE

The human musculoskeletal system can be treated as a

system of rigid articulating links acted on by known and.

unknown forces. Quantities such as ground reaction forces,

weight of the segments or externally applied forces are

usually measurable or in some way derivable. Other forces

such as those associated with the ligaments and muscles

acting on the system are not so easy to quantify. These

internal forces are difficult to measure directly on living

subjects, and the number of these components acting on any

one segment generally exceeds the maximum number of

equilibrium equations or equations of motion that can be

written for the segment. An underdetermined system of

equations, where the number of unknown values exceeds the

number of equations, generally results.

The usual method in engineering applications for

treating statically indeterminate problems is to complement

the equilibrium equations with relationships involving

deformations. By considering the geometry of the problem,

deformation relationships can be found and from known force-

deformation or constitutive equations the load carried by

the elements in the structure can be calculated. This idea

can be applied to the ligamentous structures in the body but

5
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not to the muscles. Because of the unique contractile

mechanisms involved, the muscles present a more difficult

challenge. Unique relationships between deformation and

load cannot be determined. In the case of isometric

contractions, for example, a significant force can be

produced by a muscle which undergoes no change in length.

Since the Weber brothers in 1836 claimed that during

the swing phase of gait, muscular control was not necessary

and that the motion of the leg occurred much like a pendulum

(40), there has been interest in the role that these

internal structures play in gait as well as in other

activities. Early gait work such as that of Elftman(1939)

and Bresler and Frankel(1950) (14,7), as well as many more

contemporary studies, has focused mainly on determining the

total forces and moments transmitted across each joint.

These forces are carried by the individual muscles and

ligaments crossing the joint and the contact force between

the articulating surfaces.

Early attempts to determine the distribution of the

total joint forces among the various components involved

simplification of the underdetermined problem to one that

was determinate. Morrison in 1968 used a three-dimensional

model to predict how the external load transmitted across

the knee was shared by the internal structures (28). He

condensed these structures into three muscle groups-

quadriceps femoris, hamstrings and gastrocnemious, and four

ligaments-two cruciates and two collaterals. He made
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further assumptions based on experimental data such as EMG

measurements to eliminate "inactive" components and further

reduce the problem to one with six equations and six

unknowns.

The intuitively appealing idea that the body uses no

more total muscular force than is necessary and sufficient

to maintain a posture or perform a motion was first proposed

as the "Principal of Minimal Total Muscular Force" by

MacConaill in 1967 (25). This idea suggested the

application of Optimization theory where some criterion--

referred to as the cost function or objective function--

subjected to equality constraints in the form of the

equilibrium equations, is minimized or maximized to solve

the indeterminate problem of muscle loadings. Several

investigators since have applied MacConaill's postulate to

predict a possible distribution of muscle forces by

minimizing the function:

U= 2171

where: Pi = The individual muscle forces.

Barbanel in 1972 applied this cost function to the

loading of the temporal mandibular joint (3), and Seireg and

Arviker in 1973 to the muscles of the lower extremity during

various static postures (35). Penrod in 1974 and Yeo in

1976 applied it to the wrist and elbow, respectively, while

Hardt(1978), Pedotti et al(1978) and Patriarco et al(1981)

applied this criterion to level walking (33, 39, 19, 32,

29).
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Penrod also proposed an objective function to minimize

the total muscle stress (33). This criterion takes into

account the relative size of each of the individual muscles

and is of the form:

U= ZFi/Ai

where Ai is the physiological cross-sectional area of the

muscle, defined to be the volume of the muscle divided by

its length.

Other linear criteria that have been applied include

weighted sums to muscle and ligament moments and forces by

Seireg and Arviker (34) and minimization of the maximum

muscle stress proposed by An in 1984 (1). This later

criterion is based on the idea that since each muscle bundle

has its own energy storage capacity and blood supply,

individual muscle effort rather than the overall system

effort is important. The disadvantage of this criterion is

that if more than one moment equilibrium equation appears as

an equality constraint, a unique solution is not assured.

Bean, Chaffin and Schultz in 1988 improved on this criterion

in reference to the lower back (4). They proposed a two-

fold linear optimization algorithm where the maximum muscle

stress was minimized, and then using that maximum value as

an inequality constraint, a second problem minimizing spinal

compression was solved.

Unfortunately, the linear criteria, in general, do not

always produce results which are physiologically consistent.

When no additional constraints other than equality
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constraints resulting from equilibrium or motion equations

are applied, minimizing the total muscular force becomes

purely a geometric criterion, favoring the muscle with the

longest moment arm. When it is applied to a single joint

planar model, only a single muscle will be predicted to be

active. Since muscles are known to display synergistic as

well as antagonistic activity, this is not a reasonable

result. In order to predict a wider distribution of muscle

loading, the formulation of additional constraints, such as

upper limits on the force or stress in any one muscle, were

advocated by many investigators, including Penrod, Yeo,

Pedotti and Hardt (33, 39, 32, 19). This increases the

number of active muscles from the unconstrained case, but

the total number of muscles involved is still limited. An

additional muscle can become active only when one muscle is

saturated. Since the upper limits on the muscle

capabilities are estimated and not known exactly, the

selected solution is somewhat arbitrary. Crowninshield in

1978 demonstrated the extent to which the solution could be

affected by the choice of this upper limit (9).

Patriarco formulated an additional equality constraint

to enforce synergism between two muscles by assuming equal

stresses (29). A sufficient number of these enforced

synergisms, though, could make the problem deterministic.

At this extreme the problem is not so different from that

solved by Morrison.
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The use of nonlinear objectives is, in general, more

successful in predicting a greater number of active muscles

and thus synergistic behavior. Unfortunately, obtaining a

solution to a nonlinear problem is more difficult, as

convergence to a global optimum is not always assured.

Nonlinear objective functions such as:

U= [(3)2

and U" 2(Fi/Fimax)2

were first proposed by Pedotti in 1978 as criteria which

would use the muscle most efficiently by penalizing large

,individual muscle forces (32). These criteria were an

attempt to find a solution where realistic amounts of

synergistic behavior would be displayed. There was little

real physiological basis behind them. Crowninshield and

Brand later proposed a nonlinear cost function which did

have physiologically supported origins (10). It was related

to maximizing the endurance time of an activity and was of

the form:

U= :(F'i/Ai)ni

where the parameter ni is related to the percentage of slow

twitch fibers in the ith muscle. Since a reasonable value

for n is approximately three for most muscles, this

endurance-based criterion reduced to one of minimizing the

sum of the cubes of the muscle stresses. The fact that this

criterion predicts a greater number of active muscles is

consistent with the idea that the endurance is maximized.

Low individual muscle stresses are achieved by predicting
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activity in a large number of muscles. Since individual

muscle stresses are low, their ability to display prolonged

contractions is increased. Endurance criteria of this type

are applicable for activities that involve sustained or

repetitive muscular contraction such as sitting, standing or

walking. These contractions are fatiguing. The required

mechanical output to produce actions of this sort can only

be maintained for a specific period of time. It is assumed

that the neuromuscular system anticipates this by selecting

a load sharing between muscles such that the endurance time

is maximized and the muscular fatigue minimized. This

concept may be less useful for activities involving quick,

nonrepetitive contractions. The convex nature of this

problem, with a continuous convex objective function and

linear constraints, assures that the only minimum is the

global minimum.

A similar endurance-based criterion was proposed by Dul

et al in 1984 (13). Dul's criterion was to maximize the

minimum of:

Ti=ai(Fix100/Fimax)ni

where a1 and “i are again related to the percentage of slow

twitch muscle fibers.

All of the above-mentioned optimization problems can be

classified into the category known as static optimization.

All of these either involve static situations such as

standing, lifting etc., where motions are insignificant and

static equilibrium equations can be applied, or dynamic
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situations such as gait which are treated in a quasi-static

manner. In the latter case the optimization problem is

solved repeatedly at set time intervals in the motion with

dynamic equilibrium equations based on D'Alembert's

Principle, applied as time-varying equality constraints. No

excitation or contraction dynamics of the muscles are

included in these models. For the dynamics problem this

type of analysis has some disadvantages. For most

optimization criteria, the predicted muscle forces depend

mainly on the geometry of the problem and the applied

external forces. With the exception of the (Fi/Fimax)2

criterion advocated by Pedotti and the endurance criterion

proposed by Dul, which both incorporated the idea that

muscle action depends on the muscle velocity (Fimax is

proportional to the velocity), the current state of the

muscle is not taken into account. This ignores the

reasonable idea that it would be more effective to continue

to stimulate a muscle which is already active than to turn

it off and stimulate another. The muscle action at any

instant is assumed to be independent of actions at all other

times. The problems associated with this are most obvious

with linear optimization criteria which often display large

fluctuations in the results.

Dynamic optimization techniques which involve aspects

of optimal control theory have been proposed by several

investigators including Davey(1987) and Zajac(1984) (12,

42). In general, these problems differ from static
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optimization in that more basic models of muscle excitation

and contraction are involved. Static methods look at the

forces produced, not how they are produced. The .

calculations necessary to solve dynamic problems become very

complex, often limiting the detail of the model that can be

used. Davey's model for gait, for example, was two-

dimensional and only considered nine muscles in the lower

extremity.

An alternative to either static or dynamic optimization

methods was proposed in 1988 by Mikosz, Andriacchi and

Andersson (26). They applied a three-dimensional stochastic

mathematical muscle model of the knee joint in order to

determine the muscular force around-the joint. Their

computational technique involves selection of muscle forces

on a random basis within physiological constraints. The

idea behind this is that the body randomly chooses a

solution from among the infinite number of physiologically

reasonable choices available in the redundant system. This

is in contrast to the assumption made by applying

optimization techniques-—that the body makes the choice

based on some set logical criterion and that the same

pattern of muscle activity will always be used to produce a

given action.

The role of the ligaments in the various optimization

solutions has, in general, been poorly defined. Some

investigators, such as Dul and Barbanel, chose to ignore

their effect completely, concentrating instead on the muscle
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activity (13, 3). Others have included the ligaments in a

more general way, especially at the knee. Crowninshield and

Brand, Seireg et al, Hardt and Pedotti all treated the knee

as a simple hinge joint (10, 35, 19, 32). Although they did

not calculate ligament forces, they did consider the motion

out of the sagittal plane to be constrained by the

ligaments. Crowninshield and Brand modeled this by

requiring the muscles, which were described in three

dimensions, to satisfy only the flexion-extension component

of the moment at the knee (10).

Patriarco took another route by increasing the

tolerances on the equilibrium equations (29). Thus the

contribution of the ligaments to these equations, though not

explicitly included, could be considered in the

optimization. Others such as Seireg et al and Gracovtsky

included ligaments in their objective function (34,16).

Gracovetsky did not mathematically distinguish between

ligaments and muscles, treating them both as unknown

analysis variables to be determined by optimization.

The knee is a very complex joint. The Weber brothers

were the first to notice that knee flexion occurs by a

combination of rolling and sliding between the tibia and

femur and that flexion does not occur in a single plane but

is accompanied by axial rotation of the tibia (40). The

simple hinge joint idea applied in many of the optimization

methods thus does not adequately describe this complex

motion. More complex models of the knee which consider the
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geometry and ligamentous structure of the knee have been

equally lacking in their treatment of muscle activity. As

pointed out by Hefzy and Grood in a 1987 review of knee

models, the complexity of this joint is reflected in the

lack of a comprehensive model (20). Although much

theoretical and experimental work has been done on the knee,

there is still much that remains to be explored. Even a

two-dimensional model that includes both patello-femoral and

tibio-femoral joints does not yet exist, and three-

dimensional models have been limited to the quasi-static

case, and thus cannot adequately predict the effects of

dynamic inertial loads. The experimental work in this area

has often led to conflicting or at least confusing results,

making validation of the various models difficult.

The kinematics of the knee joint have principally been

described by one of two methods: a screw axis formulation

or Euler angles. Various Euler angle descriptions have been

used by investigators to describe the relative rotational

motions between the tibia and femur. Among these are the

joint coordinate system advocated in 1983 by Grood and

Suntay (18). This system prescribed rotations about

anatomically significant axes. It also allowed for the

inclusion of translatory movement, giving the model six

degrees of freedom.

Early mathematical models to describe the kinematics of

the knee include Strasser's 1917 four-bar linkage system

(37). This modeled four principal components of the joint,
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namely the tibia, femur and two cruciate ligaments, as an

interconnected four-bar linkage. This simple model did

account for many basic properties of knee movement,-

including the posterior movement of the tibia-femur contact

point.

Models to determine the forces in the passive

structures of the knee under equilibrium as well as dynamic

conditions have generally followed the basic concept that as

bones are displaced, ligaments are stretched and forces

develop. While, in theory, load can be calculated if the

deformations are known, the relationship between these two

quantities for the ligaments is not completely understood.

The relationship is a nonlinear one, complicated by extreme

.differences between individuals, difficulty in accurately

determining initial lengths of the ligaments and their

attachment points and questions as to the validity of in—

vitro tests. Despite these limitations, several

investigators have developed comprehensive models of the

passive knee structures in order to theoretically predict

this loading. Several of these are described below.

Crowninshield, Pope and Johnson in their 1976

publication developed a model which included thirteen

ligamentous components, each treated as a nonlinear spring

acting in a straight line between the attachment points

(11). Portions of the more complex structures were treated

separately, such as the posterior and anterior portions to

the anterior cruciate. This allowed for the conflicting
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motions seen in these structures and provided a way to

include the twisting motions to these elements. Coordinates

of the attachment points of these ligaments in an unflexed

position were determined from cadaver knees. New

coordinates at given flexion angles were then calculated.

Other displacements such as internal-external rotations and

joint translation were given as a function to flexion angle

based on quantities available in the experimental literature

of that time. Thus the external forces acting on the joint

were not included in the model at all. Once the new

coordinates where known, the difference between the flexed

and unflexed ligament lengths could be easily computed.

Assuming a nonlinear relationship between the strain and the

tensil force in each ligament of the form:

F = 750 A(1 - 1°)2

10

where: A = the cross-sectional area of the ligament in mm2

10 = the slack length of the ligament, assumed to be

95% of the maximum length of the ligament

calculated during normal flexion.

These investigators were able to calculate a force

associated with each ligament. By combining the results for

all ligaments, relative joint stiffnesses were calculated.

Grood and Hefzy in 1982, using a physical model similar

to Crowninshield's, derived an expression for the nonlinear

coupled stiffness characteristics of the knee at a given

joint position (17). They applied a method of matrix
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structural analysis in order to do this, calculating a 36

element stiffness matrix of the form:

dFi/d Xj dFi/ dej-

dMi/axj aMi/aej 1.3' = 1.2.3

Their model did not calculate individual tensile forces in

[S]

the ligaments explicitly but instead related the total joint

loads resulting from the ligamentous structures with the

joint displacements. In a second 1983 paper, Hefzy and

Grood expanded their model to take into account geometric

nonlinearities caused by ligaments wrapping around the bones

and ligaments wrapping around each other (21). This is one

of the few models which take these nonlinearities into

account.

Lew and Lewis in 1977 and 1978 took an approach similar

to Crowninshield's, although they applied an anthropometric

scaling technique in order to determine the rotated

coordinates of the attachments and scale them to the

individual subject (23, 24). Using the locations of four

bony landmarks on the tibia and fibula in cadaver and living

subjects, they calculated a deformation gradient between the

initial configuration in the cadaver and the final

configuration in these living subjects' flexed limbs. The

locations of the attachment points were thus mathematically

transformed from the dissected cadaver limb to the

inaccessible human subject's leg. They concluded from their

testing that the straight line assumption was reasonable but



19

that the very small values of the changes in ligament length

did present a problem in the accuracy of the model.

Wismans et al in 1980 againtreated each of the.

ligaments as a straight, nonlinear spring (41). They also

described the joint surfaces using a mathematical equation

of the form

c=xi+ yi(x,z)j +»zk

They defined the ligament forces as a function of joint

position, and used these relationships, along with

equilibrium equations and contact equations derived from the

mathematical description of the joint surface, to determine

ligament forces, joint position, contact forces and

locations, as a function of flexion angle and the applied

"external forces and moments." These latter quantities

consist of muscle as well as ground reaction forces and

inertial quantities.

Andriacchi and others in 1983 developed a finite

element model of the passive structures of the knee,

treating the ligaments as 21 linear springs, the

menisci(which most other investigators ignore) as two shear

beam elements with shear bending and axial stiffness and the

contact surfaces as ten hydrostatic elements which resist

forces perpendicular to the surface (2). From this model

these researchers were able to calculate total joint

stiffnesses that agreed very well with experimental values.

Again, most of the work in this area has dealt with

static or quasi-static models. One of the few examples of
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dynamic models is the one presented by Moeinzadeh and other

researchers in 1983 (27). This is a two-dimensional

representation involving four ligaments. The dynamic

equations of motion, contract conditions and the geometric

compatibility of the problem are combined to obtain six non-

linear differential equations with six unknowns. These

equations are then solved for two arbitrary but simple

"forcing functions" which represent the external forces and

moments, including the total muscle force, applied to the

system.



ANATOMICAL MODEL

In order to solve the problem of the force distribution

in a joint, values for the attachment positions of the

ligaments and muscles, as well as information concerning the

joint surfaces and the points of joint contact, are

necessary. This information is difficult to obtain due to

the high degree of variability among individuals as well as

the inaccessibility of the internal structures. In the

past, investigators have relied on a variety of methods to

assess these values, ranging from educated "guesses" based

on anatomy texts, to radiographic and cadaver measurements.

For this study, a model was developed based on values

obtained from a variety of sources.

Several simplifying assumptions have been made in the

formulation of the knee joint model. Some of the more basic

of these are outlined as follows:

1) The tibia and fibula are assumed to be a single

rigidly connected body. Any relative motion between them is

ignored. Thus the terms shank, lower leg and tibia will be

used interchangeably to refer to the body segment made up of

these two bones.

2) With the exception of the quadriceps muscles whose

directions are changed by the action of the patella, the

21
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muscles and ligaments are assumed to act in a straight line

between their assumed origins and insertions. The muscle

origins and insertions are defined in such a way that errors

due to this simplification are minimized.

3) The joint contact forces, or the forces at the bony

articulations are assumed to act at a single point for each

joint. Although in reality the area of contact can be a

much larger region and for the knee two separate regions of

contact, one on each condyle, are known to exist, any

distribution of force can theoretically be reduced to a

single equivalent force and moment acting in the same

direction. If this moment is assumed to be negligible,

which is reasonable considering the nature of the force

distribution, a single force acting at a single point is a

valid approximation.

4) While the problem is three-dimensional in nature,

velocities and accelerations of motions out of the sagittal

plane are assumed to be insignificant. This simplifies the

dynamics of the problem without introducing significant

errors since the terms involving these quantities make only

a small contribution to the dynamic equations of motion.

This assumption allows planar motion equations to be applied

and eliminates the need to be concerned with the location of

principal inertial axes or to develop the moment equations

around the center of mass. Since the geometry of the

problem is three-dimensional, with the forces displaying

components in all three dimensions, static equilibrium
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relationships can be used to relate the components in the

remaining directions: i.e. if x points anteriorly, y

laterally and z superiorly the equations of motion can be

written in the form:

:Fx = macmx

:Fy = 0.0

ZFz = macmz

ZMX = 0.0

XMY = IO!

2M2 = 0.0

Locations of muscle origins and insertion were

calculated from data provided by Brand et al (5). This data

was in the form of coordinates of the attachment points of

each muscle in the local right-handed orthogonal reference

frames indicated in Figure l, scaled relative to various

anthropometric measurements. This was nonhomogenous scaling

in the sense that different measurements were used to scale

each direction. Similar measurements taken from individual

subjects could then be used to define a size transformation

matrix to transform these coordinates to the corresponding

coordinate reference frame in the individual.

Portions of muscles with broad origins or insertions

were treated separately in order to account for varying

effects of the various portions of the muscle. EMG data

(Sodenberg and Dostal (36) for example) supports the idea

that various portions function independently. For muscles

which do not act in a straight line such as sartorious and



 
(t)

A l.

\    
(t)

Y(S)

 
(8)

  
(5)

Figure 1. Local Coordinate Systems For the Description of

Muscle Origins and Insertions



25

gracilis, effective origins or insertions were defined where

the estimated centroid of the cross-section of the muscle or

tendon crossed the joint (with the limb in anatomical

position) and had the most realistic effect on the moment

arm predictions.

Brand's scaled origin and insertion coordinates are

shown in Table 1. Thirty—seven muscles or portions of

muscles were included in this model. A comparison of the

assumed muscle model with the actual musculature of the

lower limb can be seen in Figure 2.

Brand's original scaling was based on anthropometric

scale factors determined by radiographs for the pelvis and

external bony landmarks for the femur and tibia. The

measurements used are shown in Table 2. Adjustments were

made to allow these values to be determined exclusively from

external markers, hence the assumptions for the pelvic

cephalic and frontal factors as percentages of the distance

between the right and left ASIS's. Offsets due to soft

tissue were also taken into account both in the

determination of the bony coordinated systems and in

determining scale factors. The details of these

determinations are outlined in "A Three Dimensional Modeling

to the Pelvic Limb" by Pendersen and Brand (31).

The vertical axis in Brand's tibial coordinate system

is defined using the tibial tuberosity and the midpoint

between the medial and lateral malleoli. In order to be

consistent with the coordinate systems used in the remainder
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Biceps Feloris (long head) -0.6206 -0.2370 -0.1888

Gracilis 0.4481 -0.2262 -0.8847

Rectus Polaris 0.4852 0.1638 0.4944

Sartorius 0.7252 0.3231 1.0923

Semimembrunosus -0.5668 -0.2246 -0.1614

Selitendlnosus -0.6844 -0.2235 -0.1595

' Tensor Fasciae Lntae 0.4819 0.4429 1.3515

Gastrocnemius (medial) -0.2635 0.0186 -0.1920

Gastrocne-ius (lateral) -0.2475 0.0116 0.2887

Biceps Femoris(short) -0.0086 0.4563 0.2832

Vostus Inter-adios 0.2888 0.5253 0.3578

Vastus Laterelius 0.0148 0.5392 0.6861

Vastus Medinlius . 0.0483 0.4779 0.1730

Adductor Brcvis 1 0.4611 -0.l927 -0.7865

Adductor Brevis 2 0.4822 '-0.l917 -0.7882

Adductor Longus 0.7266 -0.1629 -0.7862

Adductor Magnus 1 -0.1810 *0.2785 -0.6454

Adductor Magnus 2 -0.1856 -0.2784 -0.6434

Adductor Magnus 3 -0.1850 -0.2776 —0.6447

Glutvus Maxi-us 1 -0.4892 0.6544 -0.3505

Gluteus Mnximus 2 -0.9664 0.4315 -0.5495

Glutvus Maxi-us 3 -l.0937 0.0682 -0.9122

Glutuus Mrdius 1 0.2462 0.4556 1.0205

Glulnus Medias 2 -0.3523 0.5470 0.2392

Glutvus flvdius 3 -0.8096 0.3584 -0.3306

Glutuus Hinimus I 0.3508 0.3079 0.8956

Glutous Hiniuus 2 -0.1228 0.3265 0.3571

Glutcus Minimus 3 -0.4348 0.2092 -0.0657

Ilincus 0.3022 0.2350 0.1228

Psoas 0.4675 0.0567 -0.1279

Interior Gcmelli -0.6331 -0.0811 -0.ll72

Ohturator Externius 0.0821 -0.l4l9 -0.5320

Obturntur lnLcrnius -0.7265 -0.0444 -0.l603

Pcctiueus 0.4725 -0.0501 -0.3798

Pirlfor-is -0.8331 0.2902 -0.4803

Quadratus Femoris -0.4774 -0.2364 -0.2910

Superior Genelli -0.6465 0.0043 -0.2423

Scaled Local Coordinates of Muscle Attachments
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-0.5884 1.0742 0.6863

-0.9692 1.0923 -0.1333

-0.8524 1.1075 -0.3240

-0.9018 1.0521 -0.0886

-0.9478 1.0917 r0.0682

-0.1587 1.1039 0.4869

-0.5649 -0.1371 0.0603

-0.5667 -0.1372 0.0594

~0.5897 1.0746 0.6888

-0.1126 0.7174 0.4125

-0.1451 0.6477 0.4068

-0.0407 0.4858 0.2591

-0.1542 0.6961 0.5411

-0.0463 0.4351 0.3034

-0.0768 0.0419 -0.5723

-0.2023 1.0407 0.7167

-0.2023 0.9262 0.7167

-0.2023 0.7427 0.7167

-0.2329 0.9971 1.0069

-0.2336 0.9977 1.0057

-0.2325 0.9976 1.0046

-0.0053 0.9650 1.0014

-0.0842 0.9650 1.0001

-0.0051 0.9659 1.0010

-0.2200 0.0544 0.2070

-0.2207 0.8548 0.2061

-0.1298 0.9975 0.8385

-0.2963 0.9662 0.7647

-0.1307 0.9969 0.0348

-0.1501 0.7985 0.4674

-0.1829 1.0039 0.9366

-0.2205 0.8766 0.6147

-0.1304 0.9971 0.8321



  

 
Figure 2. Comparison of Muscle Model to Actual Musculature

of the Lower Limb
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Table 2. Muscle Scale Factors

SCALE FACTOR. MEASUREMENT

Pelvic Frontal.............Pelvic Depth, 43.98% of

distance between right and

left ASIS.

Pelvic Cephalic............Pelvic height, 80.67% of

distance between right and

left ASIS.

Pelvic Medial ........... ...Hip Joint center to midline.

Pelvic Lateral.............Hip joint center to ASIS.

Femoral Cephalic...........Femoral length, knee center

to hip joint center.

Femoral Transverse.........Lateral distance from

greater trochanter to hip

joint center.

Femoral Transverse,.. ...... Femoral epicondylar width.

Gastronemius only

Femoral Frontal............Femoral epicondylar width.

Tibial Cephalic............Tibial length, ankle center

to tibial tuberosity.

Tibial Transverse..........Tibial plateau width, 92% of

epicondylar width.

Tibial Frontal.............Tibial plateau width
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of this analysis, which take the axis connecting the center

of the tibial plateau and the ankle center as the

"vertical," Brand's original coordinate data for the tibial

system was rotated by 7 degrees about the medial-lateral

axis. This rotation is based on the assumed location of the

tibial plateau center indicated in Figure 3.

The effect of the patella on knee moment arms was taken

into account by modeling it as a single point at which the

quadriceps muscles insert and the patellar ligament

originates, effectively serving to change the direction of

the action of these muscles. The local coordinates of the

patella in the XY plane are defined for small flexion angles

to be along the arc of a circle of radius 3.9 cm centered at

the midpoint between the femoral epicondyles. The patellar

radius is assumed to be 3.9 cm. At full extension, X = 0.

For larger angles the quadriceps wrap around the femur

maintaining a minimal distance of 2.2 cm from the knee joint

center. For this situation the patella is assumed to be

located at the point of intersection of a line parallel to

and 2.2 cm from the Y axis and the tangent to the circle of

radius 3.9 cm. As a result, in the femoral coordinates, for

a flexion angle 8 > so:

Xp = 2.2

Yp = -3.9sine + (2.2-3.9cose)/tane

and for e < 6G :

Xp = 3.9COSG

Yp = -3.9sine
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4cm

 

Figure 3. Assumed Relationship Between Tibial Tuberosity

and Center of Tibial Plateau
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where 9c is the critical angle, defined to be 2.2 = 3.9coseC

or 9c = 56°.

The Z coordinate of the patella, at all flexion

angles, is assumed to be zero. The insertion of the

patellar ligament on the tibia is located at the tibial

tuberosity which in the tibial coordinate system is located

along the Y axis. Its distance from the origin is the

tibial cephalic scale factor.

It is reasonable to assume that the patella is in

equilibrium. The patella thus exerts a force on the femur

at the point of contact of the patello-femoral joint which

is equal to the resultant of the quadricep and the patellar

ligament force.

(1) FpAT=F3 + F11 + F12 + F13 ' FPL

where: Fpat = The force exerted on the femur by the patella

F3 = The force exerted on the patella by rectus

femoris

F11 = The force exerted on the patella by vasti

intermedius

F12 = The force exerted on the patella by vasti

lateralis

F13 = The force exerted on the patella by vasti

medialis

"FPL = The force exerted on the patella by the

patellar ligament

Since this force acts at the point of insertion of the

quadriceps (and the origin of the patellar ligament), this

known location can be used to calculate the effect that this

force has on the dynamic equations of motion.
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Experimentally it has been shown (Ellis et al in 1980

and Buff et al in 1988 (15, 8)) that a model of this joint

which assumes that the patella acts as a frictionless pulley

with FQ = Fp-—where FQ is the magnitude of the quadriceps

force and PP is the magnitude of the patellar ligament

force, is not accurate for flexion angles greater than 30°.

This difference is dictated by the geometry of the joint.

In a two-dimensional model, PP and FQ being equal would

require that the contact force be along the bisector of the

angle formed by the lines of action of the quadriceps

resultant and the patellar ligament. The contact force must

also pass through the point of contact, which is not

necessarily along the bisector. Both Buff and Ellis

obtained similar experimental results for the ratio of the

magnitudes of these two forces. In keeping with their

findings it was assumed that:

1.0 for e < 30°

(2) S - FQ/FP_ -(0.4/60)e + 1.2 for e > 30°

In order to analyze this problem, it is also necessary

to be able to calculate the stresses in each of the muscles.

This required that values for the cross-sectional area of

each be known. The physiological cross-section, which is

defined as the volume of the muscle divided by its length,

was used. Data for each of the individual muscles based on

cadaver measurements of a 37-year-old subject was referenced

from Brand and Pedersen (6). These values are contained in

Table 3.
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Table 3. Physiological Cross-Sectional Area of Individual

 

Muscles

MUSCLE PCSA (egg;

Biceps femoris(long head) 27.34

Gracilis 3.74

Rectus Femoris 42.96

Sartorius ' 2.90

Semimembranosus 46.33

Semitendinosus 13.05

Tensor Fasciae Latae 8.00

Gastrocnemius(medial) 50.60

Gastrocnemius(lateral) 14.30

Biceps Femoris(Short head) 8.14

Vastus Intermedius 82.00

Vastus Lateralis 64.41

Vastus Medialis 66.87

Adductor Brevis 1 11.52

Adductor Brevis 2 5.34

Adductor Longus 22.73

Adductor Magnus 1 25.52

Adductor Magnus 2 18.35

Adductor Magnus 3 16.95

Gluteus Maximus 1 20.20

Gluteus Maximus 2 19.59

Gluteus Maximus 3 20.00

Gluteus Medius 1 25.00

Gluteus Medius 2 16.21

Gluteus Medius 3 21.21

Gluteus Minimus 1 6.76

Gluteus Minimus 2 8.20

Gluteus Minimus 3 11.98

Iliacus 23.33

Psoas 25.70

Inferior Gemellus 4.33

Obturatior Externus ' 2.71

Obturator Internus 9.07

Pectineus 9.03

Piriformis 20.54

Quadriceps Femoris 21.00

Superior Gemellus 2.13
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The center of mass of the upper and lower leg are

defined in the local coordinate system of the muscles as

follows: The center of mass for each segment is assumed to

lie along the y axis of the local coordinated system. For

the upper leg, where this axis runs from the mid-point

between the epicondyles to the hip joint center, the center

of mass is assumed to be located 60.67% of the distance

between these two points, measured from the distal location.

The lower leg center of mass is taken to be 58.25% of the

segment length. The segment length is taken to be the

projection of the distance from the ankle to the tibial

tuberosity (tibial cephalic scale factor) onto the vertical

axis between the center of the tibial plateau and the ankle,

plus 4 cm. The motivation for this definition can be seen

from Figure 3.

Thirteen ligamentous structures are included in the

model, these being various portions of the collaterals and

cruciates as well as the joint capsule. Experimental

considerations have shown that various portions of the

individual ligaments function separately. Hence anterior

and posterior portions of each cruciate are treated

independently of each other, as are portions of the medial

collateral and the capsule. The actual coordinates used,

defined in coordinate systems associated with the femur and

tibia, respectively, are indicated in Table 4. This data is

based on the work of Crowninshield et al (11).
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Table 4. Local Coordinates of Ligament Attachments.

Femoral i .Iibial..

.......-__.LIGAMENT.._ ...._...... .....1. .- .. ... -.....__. -X- Y Z x Y Z

Lateral Collateral -3.99 3.5 -0.52cm -2.50 4.50 11.27cm

Medial Collateral, posterior fibers -3.79 -3.50 -0.02 ~0.80 -2.00 9.77

Medial Collateral. anterior fibers -2.29 -3.5 -0.02 0.70 -2.00 10.77

Medial collateral oblique -3.29 -3.50 -0.02 -3.00 -3.50 13.77

Deep Medial Collateral -2.99 -3.5 -0.32 0.00 -3.50 13.77

Posterior Crneiate, anterior fibers -2.69 -0.50 -l.02 -2.50 -0.50 14.27

Posterior Urneiate. posterior libcrs ~4.69 -0.5 -l.02 2.50 0.50 14.27

Anterior Crneiate. anterior fibers -3.79 0.70 -0.52 0.50 -0.70 14.77

Anterior Cruciate. posterior libers -3.39 0.50 -0.52 0.20 0.00 14.77

Posterior Capsule. lateral fibers -5.49 2.50 -0.02 -2.50 2.50 11.77

Posterior Capsule. medial fibers -5.49 -2.50 -0.02 -2.50 -‘.50 11.77

Oblique Posterior Capsule No. I -5.49 2.50 -0.02 -2.50 -2.50 11.77

Oblique Posterior Capsule No. 2 -5.49 -2.50 -0.02 —2.50 2.50 11.77

Each ligament was treated as a nonlinear spring with

the constitutive relationship given by Crowninshield et a1

as well as by Grood and Hefzy:

(3) FLi = 750A(1 - 1o 2 N

1o

where: A = the cross-sectional area of the ligament in mm2

(these values are given in Table 5 for each of

the ligaments)

10 = the unstretched or slack length of the ligament

l = the ligament length

Values for 10 for each ligament were adapted from the

work of Wismans et a1 (41). Wismans applied the

relationship:

(4) ej=(lj-lo)/lo

where e- is the strain at full extension and l- is the

3 3
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length of the ligament at the same point. In terms of these

equations:

(5) lo=lj/(1+ej)

The values of ej assumed for this study are contained

in Table 5.

The two-dimensional representations of the joint

surfaces presented by Moeinzadeh et al in 1983 were used in

this analysis (27). In a tibial coordinate system defined

as shown in Figure 4, with its origin at the center of mass

of the segment, the tibial joint surface was represented by

the nonlinear relationship:

(6) y1 = f(x1) = 0.14765 - 0.03156x1 + 0.74282x12

Similarly, the femoral surface was represented by

(7) y2 = f(x2) = 0.02778 - 0.171 5x2 - 4.7673x22

- 187.1483x2 - 5944.2399x24

where the coordinate system, as defined in Figure 4, is

assumed to have its origin at the midpoint of the line

  

Table 5. Ligament Parameters.

LIGAMENT cro - ct j 10-

Lateral Collateral 50.0mm2 5.0% 59.67mm

Medial Collateral, posterior fibers 50.0 - 5.0% 77.52

Medial Collateral, anterior fibers 100.0 -3.0% 73.80

Medial collateral oblique 50.0 5.0% 45.96

Deep Medial Collateral 50.0 5.0% 35.24

Posterior Cruciate, anterior fibers 80.0 -1.0% 37.92

Posterior Cruciate, posterior fibers 80.0 -1.0% 28.37

Anterior Cruciate, anterior fibers 50.0 5.0% 29.97

Anterior Cruciate, posterior fibers 50.0 5.0% 24.94

Posterior Capsule, lateral fibers 40.0 5.0% 57.14

Posterior Capsule, medial fibers 40.0 5.0% 57.14

Oblique Posterior Capsule No. 1 10.0 5.0% 74.38

Oblique Posterior Capsule No. 2 10.0 5.0% 74.38



 

Figure 4.
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connecting the medial and lateral epicondyles. The origins

of both of these coordinate systems correspond with the

origins of the coordinate systems used to define the

location of the ligament attachments. A simple 180°

rotation of the tibial system is all that is necessary to

line up the coordinate axes as well.

In actuality, the tibia and femur have two separate

regions of contact, one associated with each of the

condyles. In order to include this two-dimensional

representation of the joint surface in the three-dimensional

model, the joint contact was assumed to be a single point

and the x and y coordinates of the surface given above were

assumed to hold only in the sagittal plane containing the

contact point. The y coordinate of the contact point was

assumed to be equal to zero in both the tibial and femoral

coordinate system. Any medial-lateral translation of the

tibia relative to the femur was thus ignored.

The single contact point assumed can then be

represented in either the tibial or the femoral coordinate

system such that

(8) {r2} = [Q]{r11 + {Re}

where: (r1) = A column vector representing the coordinates

in the tibial system

{r2} = A column vector representing the coordinates

in the femoral system

(R0) = A vector from the origin of the femoral

system to the origin of the tibial system,

in femoral coordinates.
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[Q] = The rotation matrix describing the

orientation of the tibia relative to the

femur.

Additionally, in the two-dimensional representation the

normal to the surfaces at any point can be expressed by

A

(9) 81 = girllgglg 1 + gr; 2]'1/2 case at; + sine 1

Id l/dx1 | dxl dxl

_ (cose _ sine gil>3]

de

A l

(10) 62:02:22.12-3- 1+ 91522 1/2 0:; i - j
(dzrg/dxg | 8x3 0x2

A 1‘

where i and j are the unit base vectors of the femoral

system and e is the angle of flexion or extension.

At the point of contact the normals must be colinear,

requiring that the cross product of n1 and n2 be zero

(i.e. 31 x 52 = 0 at x1=xc1 and x2=xcz).

This contact condition then takes the form

(11) sine 1 + a; d; — cose d; - d; = 0

( ...g as ...-1- ...g

If the y component of the contact point in both

coordinate systems is specified and the x component of the

tibial contact point is also known, the contact condition

along with the relationship between the two coordinate

systems results in a system of four equations and four

unknowns (Rox'Roy'Roz and xc2)°

The anterior-posterior position of the tibial contact

point as a function of flexion angle was assumed as shown in

Figure 5. This information was obtained from Iseki et al

(22) as referenced by Mikosz et a1 (26).
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Figure 5. Anterior-Posterior Coordinate of Contact Point on

Tibial Surface.

A simple hinge joint model of the knee was also

developed for comparison purposes. For this case, a fixed

rotation point was assumed. The aforementioned relationship

between the representation of the joint contact point in the

femoral and tibial coordinated systems remains applicable

for the simpler model. The RO vector between the origins

of the two systems, though, maintains a fixed magnitude for

this case. Since the joint surface representations have no

meaning for this model, the contact condition (equation 11)

is no longer a valid relationship.

Once the local three-dimensional coordinates of the

muscle and ligament attachments, the segment centers of mass
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and the points of joint contact are known, it is necessary

to transform them into a global or lab coordinate system.

This lab system is defined such that the X axis points

anteriorly, the Y axis laterally and the z axis superiorly.

The transformations can be carried out by:

(12) {R} = [Tllrl + {0}

where: {r} - The local coordinates of the point

(R) a The global coordinates of the point

{0) - The global coordinates of the origin of the

local coordinate system

[T] = the matrix representing the local coordinate

axes system relative to the global system.

(Note: [T ] for the muscular coordinate system

and [T ] Ior the ligament system differ

slight y, due to the way these two reference

frames were defined.)

This transformation gives the original unrotated or

standing locations of these points.

To determine the position of the points with the leg in

a flexed position, additional rotation matrices were defined

to describe the orientation of the distal body segment

relative to the more proximal, of the form:

cone sin 1 -eine sin cosy cos cos Y sine lin‘l +coee eino cost

«line cos (p -sin 9 case can 0

[Q] a [case can Y +ein6 sing einY -coe$ sin? sine c031 -coeesin¢ einY]

where: e = the angle of flexion at the knee and

extension at the hip

QB - the angle of adduction

= the angle of external rotation
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These angles are based on the assumption that in the

standing position there was 0° of flexion, 0° of adduction

and 0° of internal rotation.

In this analysis, the pelvic coordinate system was

assumed to be held fixed in the global coordinate system.

This is equivalent to assuming that the pelvic system

maintains a fixed orientation in space and that the global

coordinate system translates with the body as motion occurs.

The coordinates of the origin of the femoral system were

then rotated about the hip joint center such that:

(13) {02'} = [Qzlloz'ohjcl + {Ohjc}

The location of the femoral coordinates in the flexed

position are then described by:

(14) {R} = [QzllTllrl + {02'}

Since the rotations defined by [Q1] and [Q2] are

relative to the location of the more superior body segment,

points defined in the tibial system were first rotated by

[02] and then by [Q1].

(15) {R} 3 [QlllellTllrl + {01'}

For the more general model, the center of rotation of

the tibia relative to the femur is not a stationary point.

The amount of sliding motion of the tibia relative to the

femur is of interest, and a simple rotation of the

coordinates of the origin of the tibial system about the

origin of the femoral reference frame as was done previously

for the femoral origin would not produce adequate results.

An alternative approach is used. {R0} as previously defined
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is a vector in the femoral coordinate system from the origin

to the center of mass of the tibia. The location of the

origin of the muscular tibial system is then:

(15) {01'} = {02'} + [Q2][T]{Ro} ‘[Q1][Q2][T]{CM1}

where {CM1) is the location of the center of mass of the

lower leg in the tibial coordinate system.

For the ligamentous coordinate system, the analysis

differs only in that the origin is located at the center of

mass, resulting in the new global coordinates of the origin

being defined by:

(17) {01'} = {02'} + [QZ][T1]lRol

With the above analysis, it is thus possible to

calculate the global coordinates of all attachment points,

both muscular and ligamentous, as well as the positions of

other important points such as the segment centers of mass

and joint contact points, in any limb configuration

specified. By knowing the orientations of each of the body

segments, the line of action and points of application of

the various internal forces can be found.



ANALYTICAL METHODS

By treating each segment of the limb as a free body,

subject to the laws of Newtonian mechanics, the total

external joint moments and forces at the ankle, knee and hip

can be determined from the equations of motion. Assuming

that velocities and accelerations outside the sagittal plane

are insignificant, the relationships for planar motion can

be applied. Articulating segments, as represented in

Figure 6, exert equal and opposite forces and moments on

each other, resulting in the following relationships.

For the foot:

(1) FA + FGR - wlf) = m(f)acm(f)

(2) MA + MGR + R(f)xFGR - pcm(f1xw<f) =

I(fo(f) + pcm(f1Xm(f)acm(f)

For the shank:

(3) PK - FA - w(5) = m(S)acm(S)

(4) Mk - MA - R(s)xFA - pcm(slxw(sl =

1(sL‘(s) + pcm(s)xm(s)acm(s)

For the thigh:

(5) PH - FK - w‘t) = m(t)acm(t)

(6) 0H - MK - R(t)xFK - pcm<t1xw(t1 =

1(tL&it) + pcm(tlxm(t)acm(t)

44
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where:

FGR = The ground reaction force as exerted on the foot

MGR = The moment associated with the ground reaction

FA = The total joint force at the ankle

MA = The total joint moment at the ankle

FK = The total joint force at the knee

MK = The total joint moment at the knee

PM = The total joint force at the hip

MH = The total joint moment at the ankle

R = A vector from the proximal to the distal joint

center

pcm = A vector from the proximal joint center to the

center of mass of the segment

W = The weight of the segment, assumed positive

downward

Note: the superscripts (f), (s) and (t) indicate values

associated with the foot, shank and thigh respectively.

The ground reaction forces can be measured using a

force platform and the kinematic variables by means of high-

speed stereo-cine photography. From these relationships it

is then possible to determine the total force and moment

acting at each joint.

Internally these total joint forces and moments are

carried by the individual muscles and ligaments crossing the

joint, as well as by the contact force exerted by the

articulating bony surfaces on each other. Unlike the

ligament and contact forces, even when the muscles are

assumed to act in a straight line between their origin and

insertion, the forces produced by the muscles do not
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necessarily exert equal and opposite forces on the

articulating body segments. This is due to the fact that

many of these structures cross more than one joint and act

on body segments which have no direct articulation with each

other. The muscles acting in the lower limb, excluding the

quadriceps, can be separated as follows into five groups

based on the bony structures between which they act:

those acting between:

1) The foot and the tibia

2) The foot and the femur

3) The tibia and the femur

4) The tibia and the pelvic region

5) The femur and the pelvic region

The total forces produced by each of these

classifications can be represented by F1, F2, F3, F4 and F5

respectively.

The quadriceps muscles, rectus femoris, vastus

medialis, vastus intermedius and vastus lateralis, which act

on the tibia via the patellar tendon, must be treated

separately. The interaction of these muscles on the patella

effectively results in a change in the direction of the

muscle force. In addition, a force, equal to the resultant

of the forces in the quadriceps and the patellar tendon, is

exerted on the femur by the patella. One of the quadriceps,

the rectus femoris, is a two joint muscle, acting on the

patella and the pelvis, while the remainder spans a single

joint. If these two classifications are represented as FQ2
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and FQI' respectively, and if the force carried by the

patellar ligament is represented by Fpl' then the force

exerted on the femur by the patella can be written as:

(7) FPAT = P01 + F02 ' FPL

Since the quadriceps were all assumed to insert at the same

point on the patella, the origin of patellar ligament, FPAT

can also be assumed to act through that point.

Referring to Figure 7, the following equations of

motion can be written. As before, all motions are assumed

to be in the sagittal plane and both the muscles and

ligaments are assumed to act in straight line between their

origin and insertion points.

For the foot:

(8) FLa + Fca + FGR + F1 + F2 - w‘f) = m‘flacm(f)

(9) uLa + MGR + R(f)xFGR + r1(f)xF1 + r2(f)xF2 =

x<ftqfif> + pcm<f)x(m<f)acm<f1 + w(f))

For the shank:

_ _ _ __ S
(10) rLk + Fck FLa Fca F1 + F3 + F4 + FPL wl )

(11) MLk - MLa - R(s)xFLa - R(S)cha - r1(S)xF1

+ r3(s)xF3 + r4(5)xF4 + rPL(S)XFPL =

I<Skxfsi 1 pcm(s)x(m<s)acm<s1 . w(s),

For the thigh:

(12) FLh + Fch - FLk - FCk - F2 -F3 + F5 - FQl + FPAT

- w<t1= mmacmm
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R‘tlerk - R(t)xFCk - r2(t)xF2

t t t t
r3( )XF3 + r5( )XFS " rQ1( )XFQ]. + rPAT( )XFPAT

= 101361;) + Pcm(t)x(m(t)acm(t) + w(t))

The resultant of the force carried by ligaments

at the ankle

The contact force at the ankle

The ground reaction force exerted on the foot

The moment around the point of contact carried

by the ligaments of the ankle

The moment due to the ground reaction

The resultant of the force carried by the

ligaments at the knee

The contact force at the knee

The moment around the point of contact carried

by the ligaments of the knee

The resultant of the force carried by the

ligament at hip

The contact force at the hip

The moment around the hip joint center carried

by the ligaments of the hip

A vector from the proximal joint contact to the

distal

[A vector from the proximal joint contact to a

point along the line of action of an applied

force i

As before, (f), (s) and (t) indicate quantities

associated with the foot, shank and thigh. All forces which

act between

most distal

proximal.

two points are represented as positive at their

point of application and negative at the more

If it is recognized, by comparing equations 1 and 2

with 8 and 9, that the total joint force acting at the ankle
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is equivalent to the sum of FLa' F1, F2 and Fca and, by a

similar comparison, that the total joint moment can be

expressed in terms of MLa' F1 and F2, the following

relationships can be written:

(14) FA = FLa + Fca + F1 + F2

(15) MA = MLa + r1(f)xF1 + r2(f)xF2

Making the substitutions:

(16) FA - F2 = FLa + rca + F1

and recognizing that for any force, F, with a line of action

which can be located relative to two points A and B by rA

and r3, the moment around A can be represented as the sum of

the moment around B and the moment around A caused by an

equivalent force acting at B. In other words, as

represented in Figure 8:

(18) rAxF = RxF + erF

or

(19) rAxF = RxF + MB

From this elementary relationship it can be shown that,

for the problem in question:

(20) ri(S)XFia:dR(S)XFi + ri(f)xFi

t _ t s
(21) ri( )xFi — R( )xFi + ri( )xFi

Equations 10 and 11, thus, reduce to:

s s s '
m( )acm( ) + w( l - Fck + FA

(23) "LR + r2(s)xF2 + r3(s)xF3 + r4(5)xF4

+ rPL(S)XFPL = I(S)d(3) + pcm(s)x(m(s)acm(s)

+ W(s)) + MA + R(S)xFA
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Figure 8. Moment Relationship.

Similarly, for the equilibrium relationships associated

with the thigh segment, if the equations:

(24) FLk + Fck + F2 + F3 = FK -F4 - FPL

(25) MLk + r2(S)xF2 + r3(s)xF3 = MK - r4(s)xF4

“FPL(S)XFPL

are substituted, the following results:

(26) FLh + sch - FK + r, + FPL + F5 - FQl

1 FPAT - w<t1 = m‘t’acm‘t)

(27) MLh - MK - R(t)xFK + r4(t)xF4 + r5(t)xF5

t t t

+ rPL( )XFPL ‘ r01( )XFQl + rPAT( )XFPAT

= 1(tb*(t) + pcm(t)x(m(t)acm(t) + w(t))

The moment contribution of the ligaments at the hip was

assumed to be insignificant, thus MLh = 0. Also, since,
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patellar contact force, is along the line of action of each

of the forces FQl, FQ2 and FPL, and PK and MK can be‘

represented in terms of FA, MA and inertial values as

indicated in equations 3 and 4, the above equations reduce

to :

(28) F4 + F5 + FQZ = m‘tlacm(t) + w(t) + m(s)acm(5)

+ w(5) - Fch + FA

(29) r4(t)xF4 + r5(t)xF5 - rQ2(t)xFQ2 =

I(tL*(t) . pcm(t)x(m(t>acm(t) 1 w(t),

1 11513.62) 1 (poms). R<t1,x(m<s)acm<s) 1 ms),

+ MA + (R(t)+R(s))xFA

The purpose of this analysis is to determine the forces

in the individual structures in the lower limb which cross

the knee joint. The majority of the muscles which cross the

knee also cross the hip. The motions which result from the

excitation of these two joint muscles are somewhat ambiguous

and are affected by the relative positions and actions of

both joints. Treating the knee in a completely isolated

sense is therefore not practical. This is supported by the

equations which have been developed.

As has been shown, if the assumption of straight line

action is made, the muscles which cross only the ankle can

be ignored. Their effect can be completely accounted for in

the total muscle force and moment at the ankle (FA and MA).

This leaves 12 remaining equilibrium equations, relating the

components of the muscle forces and ligament forces.
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Reserving the force equations for the determination of the

unknown components of the contact forces, only the six

moment equations remain, relating the moments carried by the

muscles and ligaments crossing the joint with the external

moments at each joint.

The line of action and the moment arm about the assumed

joint center can be determined from the global coordinates

of the muscle origin and insertions points derived as

outlined in the previous section. From these the unit

moment of each muscle about the joint center can be

calculated. Equations 23 and 29 can then be written in the

  

form:

r-fl -1

(30) K f2 = B

f3

6x38 . 6X1

Lf38..l

38x1

where: K11 = r z - rzy: or 0 if muscle i does not cross

the

x23 or 0

K31 = rxy - ryx: or 0

N

A

u Hyz - rzy: or 0

x2; or 0

K6i = rxy - ryx: or 0

(Note: x, y and z are the direction cosines of the

line of action of each individual muscle)



Bl = pcmy(s)(m(s)acm:?s) + w(S)) + Ry(s)FAz

’ Rz(s)FAy + MAx ' MLx

52 = 1(SL,(S) + pcmz(s)m(s)acmx(s) -

pcmx(s)(m(s)acmz(s) + w(S)) +

Rz‘S)FAx ’ Rx(S)FAz + MAy ' MLy

B3 = ’pcmy(s)m(s)acmx(s) + Rx(s)FAy ' Ry(S)FAx

+ MAz ' MLz

B4 = pcmy(t)(m(t)acmz(t) + w(t))

+ pcmy(s)(m(s)acmz(s) + w(s),

+ (Ry(t) + RY(S))FAZ - (Rz(t) + 122(3))?Ay

+ MAx ' MLx

85 = I<t[,(t1 1 I(s)c,,(s) + pcmz(t)m(t)acmx(t)

- pcmx(t)(m(t)acmz(t) + w(t))

+ pcmz<s1mis1acmx(s) - pcmx1s)(m(s1acmz(s) 1 w<s),

+ (Rz(t) + 142(5))?AX - (Rx(t) + RX(S))FAZ

+ MAy - MLy

36 = -pcmy1t1m1t1acmx(t1 - pcmy<s)m(s>acmx(s1

+ (Rx(t) + RX(S))FAY - (Ry(t) + Ry(s))FAx

+ MAz ' MLz

and the fi's are the individual magnitude of the forces in

the 37 muscles as well as the force carried by the patellar

ligament (f38).

Since the muscle model includes 38 different structures

in addition to the 13 ligamentous components this results in

a highly underdetermined system.
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The individual ligament loading can be calculated in

terms of the joint position, such that:

2 .
750A (1 - 10) 1f 1 > 10

lo ‘

o if 1 5 10

The ligament cross sectional area, in mm2where: A

o The original slack length of the ligamentl

l = The active length of the ligament

 

=1f1<1R>-1T11r1-1Ro11(18)-[T11r1-{Ro111

Note: (R) and (r) are the femoral and tibial ligament

attachments, respectively, and [T] and {R0} are as defined

previously.

The total ligament moment components in equation 30 are

then given by:

(32) MLx = Z(ryz - rzy) FLi

(33) MLY = :(rzx - rxz) FLi

(34) MLz = )3er - ryx) FLi

From the infinite number of combinations of muscle

loadings, the solution which maximizes the endurance time

was chosen. This corresponds to Crowninshield and Brand's

optimization criterion of minimizing the sum of the cubes of

the muscle stresses. The objective function was normalized‘

by taking its cube root. This resulted in the cost function

displaying the units of muscle stress and also prevented

possible errors associated with disproportionately large

objective values.

Additional constraints were also formulated in order to

relate the quadriceps muscle force with the load carried by

the patellar ligament as well as to constrain the knee
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contact force to act normal to the joint surface. These

relations are:

(36) chhear = Fck - (n'Fck) n = 0

where S is the assumed ratio of the patellar ligament load

to the quadriceps force, 8 is found as outlined in the

previous section and Fck is given by rearrangement of

equation 22. The latter constraint was relaxed in this

problem formulation so that the shear component of the

contact force as calculated was simply required to be less

than 10% of the total joint contact force. The value of 10%

was chosen arbitrarily to allow for slight variations in the

joint surface geometry. All muscle forces were also

required to be nonnegative. This constraint is due to the

physiological fact that muscles are only capable of

producing tensile loading. An upper bound corresponding to

a muscle stress of 100 N/cm2 was also placed on each muscle

force.

The statement of this problem is then:

Find‘g that:

(37) minimizes d>(F) ( Z:(fi/Ai)3 )1/3

subject to:

0 < fi/Ai g 100 N/cm2

the equilibrium equations (30)

quadriceps relation (35)

chshearl/IFckI S 0'1
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A generalized reduced gradient algorithm, as outlined

in the appendix, was then used to find the solution to this

problem.



RESULTS AND DISCUSSION

The problem formulated in the previous sections was

solved at discrete time intervals in the stance phase of

gait for a female subject, 16 years of age and weighing 100

pounds. The scale factors, based on anthropometric

measurements, shown in Table 6 were used to transform

Brand's muscle origin and insertion data into the subject's

own local coordinate systems, and develop a realistic

representation of the individual's musculature.

Kinematic and kinetic inputs to the model such as

linear and angular accelerations of the body segments,

ground reaction forces and joint angles were calculated from

three-dimensional film and force data collected as the

subject ran barefooted across a force platform. The

measured ground reaction forces and moments were transferred

to the ankle center, taking into account the inertial

effects of the motion of the foot in the sagittal plane, in

order to obtain values for FA and MA. Figure 9 shows these

moment components acting at the ankle. Knee angles,

representing flexion-extension, abduction-adduction and

internal-external rotation were calculated using a joint

coordinated analysis(18) and are shown in Figure 10. Due to

the lack of data with which to calculate three-dimensional

59



.
-
-
.
-
.
.
-
.
-
.

X
.
.

.
.
.
.
_

Y
_
_
_
_
_

Z

 

1
5
0

 

1
0
0

e

 

60

 

 

.

‘
-
-
d
‘

-
'
J

5
.
-
-
-
‘
5
-

 

’
5
9

1
1

1
1

l
r

1
I

1
1

1
1

1
1

1
1

1
1
‘
1

1
F
Y
I
}

I
1

0
.
0
0

0
.
0
5

0
.
1
0

0
.
1
5

0
.
2
0

0
.
2
5

0
.
3
0

 
 

 
 

 
 

 
F
i
g
u
r
e

9
.

A
n
k
l
e

M
o
m
e
n
t
s



61

Table 6. Actual Subject Scale Factors

 

SCALE FACTOR MEASUREMENT

Pelvic Frontal 11.52 cm

Pelvic Cephalic 21.11

Pelvic Medial 8.15

Pelvic Lateral 4.95

Femoral Cephalic 38.24

Femoral Transverse 4.63

Femoral Transverse,

Gastrocnemius only 8.91

Femoral Frontal 8.91

Tibial Cephalic 31.61

Tibial Transverse 8.20

Tibial Frontal 8.20

hip angles, the orientation of this joint was expressed in

terms of the flexion-extension angles seen in Figure 11

only.

In this model the ligament contribution to the moment

at the knee depends solely on the relative orientation of

the tibia and femur. To demonstrate the model under passive

conditions, for flexion angles between 0° and 50°, the

inherent internal rotation of the tibia associated with the

screw home mechanism of the knee was assumed to be a

function of the fifth root of the angle of flexion. This

relation was based on Crowninshield's observations (11).

The extension ratios at each flexion angle are displayed in

Figure 12. These values are the ratio of the calculated

ligament length in the rotated position and the original

slack length, 10, calculated as outlined in a previous

section. It should be noted that in the cases where this
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ratio becomes less than 1.0, the ligament is considered to

be slack and carries no load. For this situation the

calculated ligament length is simply the distance between

the rotated attachment points.

As can be seen, for most ligaments this model predicts

the greatest loading when the limb is near full extension

with the structures becoming the most slack between 30° and

50° of flexion. This is in general agreement with

experimental observations (27).

The time-varying length patterns during stance phase

are shown in Figure 13. For this case, the angles of

flexion-extension, abduction-adduction and internal-external

rotation discussed earlier were used as the inputs into the

model. As would be expected, the greatest calculated

lengths are seen near heel strike and toe off, corresponding

to the points where the limb is near full extension. The

actual moment contributions arising from these ligament

deformations were found to be quite small. During midstance

where the knee displayed the greatest degree of flexion,

this model predicted no load to be carried by the

ligamentous components.

From the inputed data the relationships between

unknown muscle forces could be develop as outlined in the

previous section, resulting in a series of indeterminate

problems to be solved by optimization at distinct points in

time. Six variations of the problem, using both the simple

hinge joint model and the more general model, allowing for a
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moving contact point, were solved. These corresponded to

various methods that have been used in the past to model the

knee joint. The cases were:

I.

II.

III.

IV.

VI.

Three-dimensional model, with moving joint contact

and ligamentous contribution

Three-dimensional model, with moving joint

contact, no ligamentous contribution

Hinge joint model, no ligaments

Moving joint contact, muscles satisfy only the

flexion-extension moment at knee

Hinge joint model, muscles satisfy only the

flexion-extension moment at the knee

Three-dimensional model, increased tolerances so

that muscles are required to satisfy at least 99%

of the total joint moment, no ligaments

These six cases resulted in six different sets of time-

varying constraints to the optimization problem of

minimizing the sum to the muscle stresses cubed. A

comparison of the results of these six cases at a point in

midstance can be seen in Table 7. No significant ligament

force was computed at this time; therefore, the results of

Cases I and II, with and without ligaments, are identical.

Similarly, Case VI, for which the tolerances on the motion

equations were relaxed, shows only minor variation in the

calculated muscle forces when compared to the first model.

The greatest deviation between the predicted forces is 14.9N

which occurs in the patellar ligament. This difference is

less than 1% of the total force carried by that structure,

though, and is thus quite insignificant.
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Table 7. Results For All Six Cases, 0.12 seconds After Heel

Strike

 

403121.13 L 11 111 IV V VL

Biceps Femoris (long head) 0.0 N 0.0 N 0.0 N 0.0 N 0.0 N 0.0 N

Gracilis 0.0 0.0 0.0 0.0 0.0 0.0

Rectus Femoris 660.6 660.6 171.2 656.6 653.6 665.6

Sartorius 0.0 0.0 0.0 11.6 10.8 0.0

Selilenbrauosus 0.0 0.0 0.0 0.0 126.8 0.0

Semitendinosus 51.6 51.6 0.0 20.5 52.6 50.3

Tensor Fasciae Latae 168.3 168.3 180.3 81.2 82.8 165.1

Gastronemius (ledial) 0.0 0.0 0.0 222.3 0.0 0.0

Gastronemius (lateral) 883.7 883.7 1075.9 32.7 0.0 876.8

Biceps Fenoris(short) 182.6 182.6 115.9 0.0 0.0 181.9

vastus Intermedius 666.1 666.1 886.8 606.5 600.8 656.7

Vastus Lateralius 323.5 323.5 615.6 279.7 617.3 318.3

Vastus Medialius 362.5 362.5 651.3 296.1 661.7 336.9

Adductor Brevis 1 ' 0.0 0.0 0.0 0.0 0.0 0.0

Adductor Brevis 2 0.0 - 0.0 0.0 0.0 0.0 0.0

Adductor Longus 0.0 0.0 0.0 0.6 0.0 0.6

Adductor Magnus 1 0.0 ' 0.0 0.0 0.2 0.0 0.6

Adductor Magnus 2 0.0 0.0 0.0 0.2 0.0 0.3

Adductor Magnus 3 0.0 0.0 0.0 0.1 0.0 0.2

Gluteus Maxi-us 1 0.0 0.0 0.0 0.0 0.0 0.0

Gluteus Maximus 2 0.0 0.0 0.0 0.2 0.0 0.2

Gluteus Maxi-us 3 0.0 0.0 0.0 0.6 0.0 0.7

Gluteus Hedius 1 683.6 683.6 510.5 522.2 529.8 681.1

Gluteus Hcdius 2 0.0 0.0 32.7 0.2 25.6 0.0

Gluteus Medias 3 0.0 0.0 0.0 0.0 0.0 0.0

Gluteus Hint-us 1 70.7 70.7 71.1 76.5 75.7 70.3

Gluteus Minimus 2 20.7 20.7 39.1 38.1 62.7 17.6

Gluteus Mini-us 3 0.0 0.0 0.0 0.0 0.0 0.0

lliocus 167.7 167.7 159.1 177.5 176.5 167.2

Psoas 31.6 31.6 0.0 6.2 0.0 26.2

Inlerior Ccmelli 0.0 0.0 0.0 0.0 0.0 0.0

Obturator thernius 0.0 0.0 0.0 0.0 0.0 0.0

Obturator Internius 0.0 0.0 0.0 0.0 0.0 0.0

Pectineus 0.0 0.0 0.0 0.6 0.0 0.3

Piriformis 0.0 0.0 0.0 0.0 0.0 0.0

Quadratus Fe-oris 0.0 0.0 0.0 0.2 0.0 0.2

Superior Conclll 0.0 0.0 0.0 0.0 0.0 0.0

Patella: Ligament 1566.8 1566.8 2316.6 1629.7 1906.9 1551.9
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The remaining three cases show more pronounced

variations. Most notable are the significant increases in

the load carried by the three vasti muscles in the simple

hinge joint model (III) and the reduction in the predicted

force produced by the lateral gastrocnemius for both cases

where the muscles are only constrained to satisfy the

flexion-extension moment at the knee (IV, V). The former

observation is consistent with the idea that posterior

movement of the contact point allowed by the more complex

model increased the mechanical advantage of the quadriceps

muscles. The required moment can thus be produced by a

smaller muscle force. The reduction in the gastrocnemius

force for cases IV and V indicated that this muscle is being

activated primarily to satisfy either the moments of

abduction-adduction or internal-external rotation.

The effect of including the ligamentous forces and

moments in this model can be seen in Table 8. These results

are taken from a point just prior to toe off where the leg

is nearly fully extended. As noted previously, at all times

during the stance, the ligament contributions are relatively

small. For this case the additions of the ligament moments

to the motion equations were found to be -0.012, 0.124 and

0.032 N‘m. As can be seen from the predicted muscle force,

even this small contribution does have an effect, although

it is minor. The largest variation in the predicted forces

is 8.5N.
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Table 8. Results, With and Without Ligaments, 0.22 seconds

After Heel Strike

.MUSCLE Ligaments No Ligaments

Biceps Femoris (long head) 0.3 N Z

Gracilis

Rectus Femoris

Sartorius

Semimembranosus

Semitendinosus

Tensor Fasciae Latae

Gastronemius (medial)

Gastronemius (lateral)

Biceps Femoris(Short head)

Vastus Intermedius

Vastus Lateralius

Vastus Medialius

Adductor Brevis

Adductor Brevis

Adductor Longus

Adductor Magnus

Adductor Magnus

Adductor Magnus

Gluteus Maximus

Gluteus Maximus

Gluteus Maximus

Gluteus Medius 1

Gluteus Medius 2

Gluteus Medius 3

Gluteus Minimus 1

Gluteus Minimus 2

Gluteus Minimus 3

Iliacus

Psoas

Inferior Gemelli

Obturator Externius

Obturator Internius

Pectineus

Piriformis

Quadratus Femoris

Superior Gemelli

Patellar Ligament
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The patterns of muscle activity predicted for Cases I,

III, IV and V over the complete stance phase are shown in

Figures 14 to 27 for selected muscles. All the muscles

crossing the knee, with the exception of gracilis and

sartorius, which were predicted by this model to carry

insignificant loads, are displayed as well as several

muscles which cross only the hip. Some general trends can

be noted by comparing these results.

Modeling the knee as a simple hinge joint as noted

previously caused an increase in activity in the vasti

muscles (Figures 22 to 24). This increase is in the

magnitude to the forces only, with all cases showing

activity only in the first half of the stance phase. On the

other hand, the rectus femoris (Figure 15), which with the

vasti make up the quadriceps muscle group, shows a decrease

in both the magnitude of its peak forces and the time period

for which it was active. The lateral gastrocnemius (Figure

20) seems to be minimally affected by this simplification

while the medial (Figure 19) displays vastly different

patterns for all four cases shown.

The short head of the biceps femoris (Figure 21) shows

a decrease in activity with the hinge joint model especially

early in the stance. Alternatively, semitendinosus and

tensor fasciae latae muscle (Figures 17 and 18) both display

much higher peaks while semimembranosus (Figure 16) shows

little variation. These latter observations apply only in

comparison of the cases where all six motion equations are
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applied as constraints. The other two cases display almost

identical results for these three muscles, as well as for

several others.

Some variations are also seen in the muscles which

cross only the hip, such as iliacus (Figure 27) and portions

of gluteus medius (Figure 26). Although not directly

effected by the choice of knee model, the existence of two

joint muscles such as rectus femoris and semimembranosus

cause a highly interrelated system to exist and thus

differences would be expected.

The effect of enforcing only the flexion-extension

moment at the knee is most obvious in the lateral

gastrocnemius (Figure 20). A peak force of nearly three

times body weight is predicted when the other moments are

considered, while almost no activity is seen in this muscle

for the case where the muscles are not required to satisfy

the moments of abduction-adduction and internal-external

rotation. The other head of the gastrocnemius muscle

(Figure 19) also displays a vastly different activity

pattern. In a comparison of the two cases involving a

moving joint center, an extra peak in the force is seen at

midstance for the simplified model. A slight reduction in

activity is also seen in the three vasti muscles (Figures 22

to 24). As before, this decrease is in magnitude only, not

in the time to activity. Rectus femoris, on the other hand,

displays little change as a result of this simplification

(Figure 15). The peak of activity early in stance for the
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tensor fasciae latae muscle and semitendinosus (Figures 17

and 18) was greatly decreased for this case while

semimembranosus (Figure 16) displayed an extra peak during

the same time period.

The limitation of this model, that the muscles are

assumed to act along a straight line, is obvious in the time

frame immediately following toe off. At that particular

point a solution within the feasible set allowed by the

constraint equations was not found. When the constraints

setting the upper bound of muscle stresses were removed,

sartorius was predicted to carry loads corresponding to

stresses well over 100 N/cmz. Sartorius, a very long thin

muscle, curves around the leg, from an origin on the

Anterior Superior Iliac Spine to an insertion on the medial

side of the tibia, and is in obvious contrast to the

straight line representation. Also at this point, the joint

contact force drops to an insignificant level due primarily

to the lack of a significant ground reaction force to be

transferred up the limb. This casts doubts on the validity

of the contact condition and thus the relative positions of

the tibia and femur at this point.



CONCLUSION

The purpose of this research was to develop a model of

muscular, ligamentous and bony structures of the lower limb

in order to determine the distribution of the loads that

each of these elements carry during various activities. For

illustrative purposes, this model was applied to running.

The analysis could easily be carried out for any activity

for which the necessary kinetic and kinematic data is

available.

The model included thirteen ligamentous structures at

the knee, 38 muscles crossing the knee and hip and a two-

dimensional representation of the contact surfaces at the

knee. This latter component of the model provided the

capability of modeling the posterior movement of the joint

contact. The effects of various simplifications and

alternative ways to account for the contributions of the

ligaments were also investigated.

For this model the ligament contributions were found to

be minimal. Simply increasing the tolerances on the

equation of motion constraints developed without the

ligaments by 1% and thus requiring the muscles to satisfy

only 99% of the moment components at the knee, produced

80
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results which were comparable to the case where the full

ligament contribution was included.

The knee is not a simple hinge joint. The complex

nature of its motion has been known for years. The results

of this investigation show that treating the knee in this

simplified manner can greatly affect the results.

The actual criteria used by the body in the selection

to muscles is not known. This model assumed an endurance

based criteria, but others have been suggested, including a

random selection process. In reality, the body may use a

combination of these types of criteria or some other

criteria that has not even been considered. Verification of

the results is difficult. Comparison to EMG data can only

be done temporally. Other investigators have demonstrated

that times of muscle activity vary depending on the

optimization criteria selected (30). This research has

shown that these times are model sensitive as well.

Even in the more complete models included in this

study, many simplifications were made which could have major

consequences in the results. Future investigation may focus

on improving the validity of the model. The three-

dimensional nature of the muscle model allowed for the

prediction of synergistic and antagonistic functions of the

various muscles. The two dimensional representation of

joint surfaces and the assumption of a single point of joint

contact, though, present possible sources of error. This

model treats the problem in a quasi-static way and the
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dynamic process is treated as a series of independent

problems at discrete time intervals. It is encouraging to

note, though, that the results show relatively smooth curves

over the time interval studied.

While the ligaments were treated as strictly structural

components, mechano-receptors are known to exist within the

ligaments of the knee. In recent years, the role of these

elements as part of a complex neuromuscular feedback

mechanism has been the subject of an increasing amount of

study. The effect of this alternative role, especially in

light of the relatively insignificant structural

contribution found in this model, is definitely worthy of

further investigation.

The results of this study have benefits to physicians,

therapists and others needing to understand the role played

by muscles and other internal structures. Even with the

modeling compromises made, this work gives insight into the

functioning of the human body. It shows which muscles can

provide the various moment components and offers a possible

solution.
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GENERALIZED REDUCED GRADIENT METHOD

In basic calculus, a function of one variable has a

local internal minimum at the point where its first

derivative is zero and its second derivative is positive.

For the general unconstrained n-dimensional optimization

problem this idea translates into the requirements that for

a point to be a local minimum the gradient of the objective

function must be zero ( §7F(X) = 0) and the matrix of second

partial derivatives of the function with respect to the

design variables must be positive definite. This matrix is

known as the Hessian matrix and positive definiteness means

that it has all positive eigenvalues.

The constrained nonlinear problem presents additional

difficulties since the design must also remain within the

feasible set. This can present a case analogous to the

single variable situation where the minimum is located at an

endpoint of the interval for which the function is defined.

The basic constrained optimization problem can be

written mathematically as:

minimize F(X) x 6 R“

(A1) subject to hk(X) = O k = 1,1

9j(X) S 0 j = 1,m

xiL 5, xi _<_ XiU i = 1,n
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The conditions necessary for a given point to be a

minimum for this problem are that:

(A2) VF(X*) + Z Xi Vgflx“) + Zuj th(x*) = o

and >‘i gi(X*) = 0

A: .>. 0

These are known as the Kuhn-Tucker Conditions.

The generalized reduced gradient method of nonlinear

programing is one algorithm that can be used to locate a

design which satisfies these conditions. The following

description of this method was referenced from Garret N.

Vanderplaats (38).

The aforementioned problem can be simplified to one

involving only equality and side constraints by the

introduction of non-negative slack variables for each of the

m inequality constraints. The resulting problem has a total

of m + n design variables and is of the form:

minimize F(X) X g Rn+m

(A3) subject to hk(X) = 0 k = 1,1

9j(X) + Xj+n = 0 j = 1,m

xiL _<_ xi 5 xi“ 1 = 1,n

xj+n z 0 j = 1,m

By assuming that the upper bounds associated with the slack

variables are set very large, i.e. infinite, and the lower
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bound for each is zero, the problem can be further

generalized to:

minimize F(X) X E Rn+m

(A4) subject to hj (X) = 0 j = 1, m+l

XiL _<_ xi 5 X10 i = 1, n+m

The basic concept of the generalized reduced gradient

method is to recognize that for each equality constraint a

dependent design variable can be defined, thereby reducing

the total number of independent design variables. The

vector representation of the design, X, can be partitioned

into:

(A5) x = (2,3!)T

where: z = the n-l independent design variables

Y = the m+l dependent design variables

Note that there are no restrictions as to which variables

are contained in Z and which are in Y. Now the objective

becomes:

(A6) F(X) = F(Z,Y)

To improve a given design, a direction vector must be

determined which will reduce the objective without violating

any constraints. From equations A3 a generalized reduced

gradient, GR, can be found. This vector is used to define a

search direction, S, for use in the iterative process

defined by: '

(A7) xiq - xiq‘l + o<* sq

where: q = the iteration number
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S = the vector search direction

“*= the step size

At each iteration the value of C&* which gives the

minimum value of the objective, F(X) is found and used to

define the new value of X. This involves a one-dimensional

optimization along the search direction, S.

In its simplest form, the search direction is defined

by:

(A8) 3 = - ER

In order to maintain movement in a feasible direction, i.e.

to prevent violation of the side constraints, this

relationship is modified slightly so that:

- r.
- L U

1 1f 21 < Zi < Z- or r- > 0

(A9) so = 1 1

0 otherwise

where Si and re1 are the individual components of S and GR

respectively.

The algorithm for calculating GR for the general

nonlinear case can best be understood by first considering

the situation where hj(X) = 0 is a linear system of

equations and can be represented by:

(A10) XXr—b

If X is partitioned into dependent and independent variables

as outlined above this expression becomes:

(A11) §y+Ez=b

and the dependent variables, Y, can be found by:

(A12) Y = 8‘1 (b - '5 Z)
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The objective function can then be represented by:

(A13) f(Z) = F(Z,Y) = F(§'1(b-E 2), z)

and by the chain rule:

(A14) sz = VZF + VYF VZY

But ‘72Y = -'§'1‘E, therefore:

(A15) sz = V2? - 3345 VYF

This defines the generalized reduced gradient, GR,

which can be viewed as :7F(X) of the unconstrained function,

f(Z). To extend this analysis to the nonlinear case an

imaginary hyper-plane, H(X) = 0, tangent to the constraint

h(X) = 0 at the initial design X0, is defined by:

(A16) H(X) = h(Xo) + V7Xh (x - x0)

If X0 is feasible, h(Xo) = 0. For some point near Xo, say

X = (Z,Y)T to be feasible, h(Y,Z) must be equal to zero as

well. Assuming that h(Y,Z):3 0, or in other words H(X) = 0,

is satisfactory, equation A16 becomes:

(A17) ‘7xh (X 'Xo) = 0

With Xh a constant for each iteration, this

relationship is equivalent to‘X X = b of before. Thus ‘7kh

and Vzh correspond to E and ’5 and Y = Yo -th'1Vzh(Z-Zo) .

Then as before:

(A18) V215 = VZF - VYF [VYh]’1[Vzh]

This relationship applies for suitably small values of¢K .

For larger step sizes the difference between the values of

H(X) and h(X) becomes significant. During various

iterations the dependent variables, Y, must be updated.

However, since H(X) is simply a linear approximation to the
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original nonlinear problem, the constraints may not be

satisfied for a specific at. A new expression for dY must

then be developed in order to drive h(X) to zero. This

corresponds to Newton's method for solving simultaneous

nonlinear equations.
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