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ABSTRACT
QUADRIC REPRESENTATION AND
SUBMANIFOLDS OF FINITE TYPE
By
Ivko Dimitric

For an isometric immersion x : M® — E™ of a Riemannian manifold into a
Euclidean space, one defines the map X = x-x* ( x regarded as column vector) from M into
the set of m x m symmetric matrices, which we call quadric representation of M and
propose to study it .

A smooth map f: M" — E™ is said to be of finite type (k-type) if it can be
decomposed into finitely many ( k, not counting constant vector) eigenvectors of the
Laplacian . In particular, a manifold immersed into a Euclidean space is said to be of
k-type if the corresponding immersion is of k - type.

We prove some general results about the quadric representation, in particular those
related to the condition of X being of finite type. Submanifolds for which X is 1-type map
are classified as totally geodesic spherical submanifolds. We show that for minimal
submanifold of E™ the quadric representation is of infinite type. Further, we classify
compact spherical hypersurfaces which are of 2-type via X as small hyperspheres or
standard products SP(r,) x S"P(r,) with only three different possibilities for (r,, r,). The
main result is classification of compact minimal spherical hypersurfaces which are of 3-type
and mass-symmetric via X in dimensions n < 5. The only such submanifold is the Cartan
hypersurface SO(3)/Z, x Z, . At the end we begin the study of submanifolds of E™ whose
mean curvature vector is harmonic. Such submanifolds are shown to be minimal under

additional assumptions (e.g. for hypersurfaces having at most two distinct principal

curvatures).
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INTRODUCTION

For an isometric immersion x : M" — E™ of a smooth Riemannian manifold M"
into a Euclidean space, one of the first questions one might ask is : " What are the natural
maps related to the immersion x ? " Of course, x itself is one such map and we have rich
submanifold theory of isometric immersions . Another natural map is the Gauss map which
corresponds to each point p of M, the tangent spaceof Matp, p — €,(p)A ... A € (D),
and investigation of this map led to many interesting results. Then each vector field
X € I'(TM) on M defines a map X : M" = E™ and the Hopf index theory handles one
aspect of this map . Also, if we regard x as a column matrix, x(p) = (x;(p), ..., xm(p))t ,
then one defines a map X from M into the set of m x m symmetric matrices ( which is also
a Euclidean space) by X = x-x'. We call this map the quadric representation of M and
propose to study it . The map X is not necessarily an isometric immersion but if X is
assumed to be isometric (or just conformal ) it follows that M must be a submanifold of a
sphere centerted at the origin (Theorems 2.1-2) .

There are several important results about integrals of geometric quantities on a
compact Riemannian manifold M . The classical theorem of Gauss - Bonnet states that
JKdV = 2% x(M), i.e. the integral of the Gauss curvature is a topological invariant - the
Eulcr characteristic. Also the celebrated inequality of Chern and Lashof gives a universal
lower bound (topological) for so called total absolute curvature: TA(x) 2 b(M) , where
b(M) is the total Betti number of M [Ch-L]. Up to late 1970's there were some indications

that one could find estimates for the total mean curvature in terms of the Riemannian



structure of M. Finally, in 1979, B.Y. Chen gave the following best possible estimate for

the total mean curvature [C 2]

% v < [HAV < 2 vam
M

where A.p and kq are two eigenvalues of the Laplacian uniquely determined by the spectral
behavior of the immersion x . Thus we get an invariant [p, q] associated with M where p is
an integer 21 and q is either an integer 2 p or e (in latter case right hand side of the
inequality is o ). A submanifold M (or an immersion x ) is said to be of finite type if q is
finite. Equivalently, M is of finite type if the immersion x decomposes into finitely many

eigenvectors of the Laplacian ,

X = X+ X +..+ X, , where xg=const and Ax;=A;x forallp<t<gq.

If M is compact, the constant vector X is the center of mass of M . A submanifold M is of
k - type if there are exactly k nonzero vectors x,(t > 0) in the decomposition above. The
same definition can be adopted if we do not assume M compact, and also if x is not
necessarily an isometric immersion but simply an arbitrary smooth map from M into E™ .
Since its inception, the theory of finite type submanifolds has become an area of active
research [C 4]. According to the well known theorem of Takahashi [Ta 1], compact 1 -
type submanifolds of E™ are characterized as being minimal in hypersphere and one can
expect that 2 - type and higher type submanifolds are more general. Indeed, the
classification of even 2 - type spherical submanifolds is virtually impossible, but finite type
submanifolds are still "nice" examples of submanifolds.

In Chapter 2 we classify submanifolds x : M" = E™ for which the quadric
representation X is of 1 - type as totally geodesic submanifolds of hypersphere of E™,
While it is relatively easy to construct nonspherical submanifolds for which X is of finite

type, we show that if M is minimal in E™ than its quadric representation is of infinite type



(Theorem 2.4) . Next, in Chapter 3 we study spherical hypersurfaces which are of low
type via quadric representation. Studying submanifolds x : M" = E™ whose quadric
representation is of finite type amounts to studying spectral behavior of products of
coordinate functions x;-x; . We classify spherical hypersurfaces which are of 2 - type via X
as products of two spheres with three different possibilities for the radii, thus generalizing
a result of M. Barros and B.Y. Chen [B-C] . Investigation of 3 - type spherical
submanifold is much more complicated because of the computation of iterated Laplacians
involved. The only known result about spherical submanifolds being of 3 - type via X is
classification of minimal surfaces (n = 2) in sphere which are of 3 - type by M. Barros and
F. Urbano [B-U] (See also [U]). In Chapter 3 we undertake study of minimal
hypersurfaces of sphere which are mass - symmetric and of 3 - type via X . The only such
submanifold in dimensions n < 5 is the Cartan hypersurface SO(3)/Z,xZ, (Theorem
3.2.2). Actually, all minimal isoparametric spherical hypersurfaces with three distinct
principal curvatures are also mass - symmetric and of 3 - type via X (Lemma 3.2.3).

In Chapter 4 we study submanifolds x : M"™ — E™ of a Euclidean space which
satisfy AH =0 , where H is the mean curvature vector of the immersion. This condition
is equivalent to A% = 0. Minimal submanifolds being the trivial solution, the real
problem is to find nonminimal examples, that is, those immersions which are biharmonic
but not harmonic. While the construction of such examples (if they exist) seems difficult,
we show that submanifolds satisfying AH = 0 are necessarily minimal if any of the
following conditions is satisfied

(1) M™ has constant mean curvature .

(2) M" is a hypersurface of E™! with at most two distinct principal curvatures .

(3) M" is a pseudoumbilical submanifold of E™ (n#4)
(4) M" is of finite type .



CHAPTER 1
PRELIMINARIES

The purpose of this introductory chapter is to supply necessary definitions and to
outline ideas and some general techniques used in the subsequent chapters. We deem it
good to have main facts that will be used assembled in one place for easy reference without
having to digress from the main flow later. This overview is by no means supposed to be
exhaustive, but rather to assist a potential reader in reading through the rest of the work
without necessity to turn to the references frequently. Most of the material in this chapter,

however, is well known.
1. Riemannian geometry and submanifolds

Standard references here are [K-N] and [C 1] . We assume elementary notions from
the theory of differentiable manifolds (differentiable functions, vector fields, tensor and
exterior algebras, connections, integration on compact manifolds, ...) known. All
manifolds are real, and (with the possible exception of some Lie groups) will be assumed
connected. A generic manifold is usually denoted by M", where n stands for the
dimension, or simply by M. The word "differentiable” means "C*°- differentiable" and is
synonymous with "smooth". All manifolds and geometric objects will be assumed smooth
unless stated otherwise. The set of real-valued smooth functions on M is denoted by

C>°(M), and the algebra of differentiable functions in the neighborhood of p by C",?(M).
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A differentiable manifold locally looks like a Euclidean space of the same
dimension. A tangent vector X o a manifold M at 3 point p € M is a linear map from

C°p°(M) to R, which is a derivation of the algebra C",?(M) , that is
(1.1.1) X(f)=XDg+f(Xg) |, forevery f,ge CyM) .

The set of all tangent vectors at p, with its natural vector space structure, is called the
tangent space of M at P and is denoted by TpM. It can be visualized as the set of tangent

Vvectors at p to all curves in M Passing through p. The set of all pairs (p,TpM) forms the
tangent bundle TM which is a vector bundle over M. A smooth section of TM is just a
vector field on M, and the set of those is denoted by I'(TM). For two vector fields X, Y,
the bracket [X,Y] is the vector field defined as

(1.1.2) [X,Y] f=X(Yf) - Y(Xf) .

For every function f e C*(M) we can define 1-form df, called the differential of
f, by df(X) = Xf, for every f e I'(TM) . More generaly, foramap f: M — N between
two manifolds and a point P € M we have the induced map (f,)p : ™™ - Tgp)N , called
differential of f ar P, defined as

(f,(X))g:X(g-f) , forevery ge Cfg)(N) and X e TpM .

The pull-back map f* (at f(p)) is the adjoint of this linear map.
An (affine) connection on M isarule V which assigns to each vector field X a

linear map Vx of the vector space I'(TM) into itself satisfying the following two conditions

Vix+gy = fVx +gVy

(1.1.3)
VX (fY) = fVxY+ (XD Y
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The operator Vx is called Covariant differentiation wirh, respect to X. Vx can be

extended to arbitrary tensor fields in a natural Wway to produce derivation of the tensor

algebra that commutes with Contractions , e.g. for covariant 2-tensor T we have

(VXDY, 2) = VX(T(Y,2)) - T( VY, Z) - T(Y, VxZ) .
Given a coordinate neighborhood (U, x1, ..., xn) ofa manifold M™ , we have the

. J
coordinate vector fields 9, = PWEE o, = > o U. In the presence of a connection
X

V', we can define functions rjj called the Christoffel symbols by

(1.1.4) Va®) = ; I3,

Let y:1— M be a curve in M. The tangent vector field to the curve, T@) = 7*((1%) , 18
called the velocity vector field of the curve y. The curve ¥ is called a 8eodesic (of a
connection V) if VIT=0,ie. the velocity vector field is parallel along the curve, Using

the affine connection Von M we define two tensor fields, curvature tensor R and torsion

tensor T by
(1.1.5) RX\)Y) = VXVY - VYvX - V[X,Y]
(1.1.6) TX,)Y) = VxY - VyX - [X,Y] » X, Ye I'(TM)

A Riemannian manifold (M,g) is a differentiable manifold M equipped with a symmetric
positive definite tensor field g of type (0,2), called the Riemannian metric. On a

Riemannian manifold there exists a unique affine connection V which has zero torsion,

T =0, and such that the metric tensor is parallel, Vg = 0 . These two conditions are

equivalent to

(1.1.7) [X.Y] = VxY -VyX



(1-108) VA g(st) = g(vzx ’ Y) + g(x ’ VZY) ’

for every vector fields X, Y, Z . This connection is called the Levi-Civita (or
Riemannian) connection. The Christoffel symbols of this connection are computed in a

local coordinate system (U, x!, ..., xM) as

1
1.1.9 =z : .
(1.1.9) ij =2 oxi oxi oxt

gk (%8, %Bui aiu)
As usual, (Sij) denotes matrix of the metric tensor g and (gij) is its inverse matrix.

For each point p e M and each 2-plane IT< T,M, the sectional curvature K(IT)
of ITis defined by K(IT) = g(R(X,Y)Y, X) , where X, Y are orthonormal vectors which
span IT (it is independent of the choice of such pair X,Y in IT). Given two vectors X and Y
in TyM and an orthonormal basis ey, ..., ey of T,M we define the Ricci rensor S and

the scalar curvature T at p by

(1.1.10) SXY) = Y g(R(X,ep)e; , Y)
i

(1.1.11) T=Y S(ejey)
i

If for a Riemannian manifold (M, g) the sectional curvature K(IT) is constant for all planes
IIc TpM and all points p e M, then M is called a space of constant curvature or a
space form. Standard examples are : Euclidean space E™ (sectional curvature is 0), Sphere
S™(r) (curvature is 1/r2 > 0 ), and hyperbolic space H™ (curvature < 0) . Under additional
topological assumptions (completness, simply connectedness) these are the only ones. A

manifold (M,g) is called (locally) flat if its sectional curvature is 0.



A map f: (M, g) — (N, h) between two Riemannian manifolds is called conformal
if f*h = ¢ g for some positive function ¢ on M . If ¢ is a positive constant f is
homothetic . If ¢ = 1 and f is a diffeomorphism then f is called an isometry. (M,g) is
called conformally flat if there is a metric on M conformal to g with respect to which M is
flat.

Let (M, g) and (N, h) be two Riemannian manifolds. Then one can define a

Riemannian metric g x h on the product manifold M x N in the following way
(gxh XX, Y)=gX;,Y)+h (X5, Yy,

where X=X+ X; and Y=Y+ Y, are the decompositions of X and Y with respect
tothe sum T (M X N) =T ,M @ T,;N.
Given a Riemannian manifold (M, g) and a point p € M . For each vector X in
TpM there is a unique geodesic Yx(t) defined in the neighborhood of O such that yx(0) =p
and y,’((O) = X . We define cxpr as the point in M given by ¥x(1) when ¥x(1) is
defined. The map expyp is called the exponential map at p. For each p e M, there is an
open neighborhood U of 0 e TpM and an open neighborhood U of pe M such that the
exponential map expy, : U - U is a diffeomorphism of U onto U. Let U and U be as
above, and let ey, ..., €, be an orthonormal basis of T)M . Foreach X e U we put
X =xle; +... + xMe, . Then the components x!, ..., x® are called normal coordinates
of the point q = expyX in U (determined by the frame ey, ..., €, ). In the normal
coordinate system (U, x!, ..., x" ) we have gij(p) = &;; and I': () =0, ie. Veiej(p) =0
for every i, j, k. A Riemannian metric is called complete if every geodesic can be extended
indefinitely in both directions, equivalently, if exppX is defined for every point p and
every vector X € TyM .This corresponds to the topological completness of the metric
space M, where the distance between two points is defined as the infimum of the lengths

of curves joining the two points. Every compact Riemannian manifold is complete.
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Amap x:M — M is called an immersion if (x,)p: TyM = TypyM is injective
for each p € M. If, in addition, x itself is injective it is called an embedding . If (M, g) and
(M, g ) are both Riemannian manifolds , x is an isometric immersion if x*§ = g . When
this is the case we say that the metric on M is induced from that of ﬁ, and call M
submanifold of M . We shall identify X with its image x,(X) forany X e TM.
Corresponding to the orthogonal splitting

(1.1.12) TM =TM ®TsM , forevery pe M

we can write for (local) smooth vector fields X and Y on M

~

(1.1.13) VX %Y = x,(VxV) + h(X, V),

where VY tangent to M and h (X, Y) is normal to M. Note that in general symbols with ~
denote objects on M and without ~ objects on M. According to the convention above we
will also supress writing x,, in the sequel. We call V the induced connection of M (it is
actually the Levi-Civita connection of (M, g) ), and normal bundle valued symmetric tensor
field h we call the second fundamental form of the immersion. If h = 0, the submanifold
M is called totally geodesic . An immersion x is said to be full if x(M) does not lie in any
totally geodesic submanifold of M . Let & be a local normal vector field and X a vector
field on M then we have the following orthogonal decomposition

(1.1.14) VXE = - AgX + Dy ,

where - AgX and Dx§ are the tangential and normal components of §x§ respectively.
For every € , Ag is an endomorphism of tangent space of M at every point. It is known as
the Weingarten map or shape operator of & and is related to the second fundamental

form h via
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(1.1.15) EMX, Y),8) = g(AeX,Y) .

ArX is a symmetric operator and as such can be diagonalized over the reals. Its
eigenvectors are called principal directions of § and its eigenvalues, principal
curvatures.

Let €1,.., €;,€p41 - » €q be an adapted frame, i.e. local frame of ortho-
normal vector fields of M along M such that the first n vectors are tangent to M and the
remaining m - n are normal to M . We adopt the following convention about the range of
indices: 1<4,j,k,...<sn , n+1<r5s,..<m and 1<A,B,C,..<m .We
define a normal vector field H by

n m
(1.1.16) H= 2 h(ej,e;) = ;1" 2 (tr Ap)e,
i=1

=1

B

and call it the mean curvature vector field . A submanifold M (or an immersion x ) is
called minimal if H =0 . If we choose e,, to be in the direction of H, e,,; | H, then
H = aeyp,; for some real function o which is called the mean curvature of M. If Ag =p 1
for some function p, we say that & is an umbilical section. If every local normal section is
umbilical, submanifold is called (rorally) umbilical. Equivalently, a totally umbilical
submanifold is characterized by the property h(X, Y) = g(X, Y) H, for every
X,Y € I'(TM) . A submanifold is called pseudoumbilical if Az =p 1. Itis called

quasiumbilical if there exists an orthonormal frame of local normal vector fields

e » €n € TLM such that for every r, all principal curvatures of e, , except

nels o
possibly one, are equal.

The normal part of (1.1.14 ) , D, defines a metric connection in the normal bundle
TiMie. Dx(EEM)) =g OxE,n) +EE, Dxn) . Its curvature will be denoted by RP.

Let e),..., ey be alocal orthonormal frame of vector fields defined on an open
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set U of a Riemannian manifold M™ . Denote by ol, .., @M the dual frame, and

define m? connection 1-forms ®g on U by

m
(1.1.17) Vxea = El 0B (X)ep .

Then o} + w4 =0 , and the following structural equations of Cartan hold

(1.1.18) doA = - of AP
(1.1.19) dod = =Y 0@ Aol + Q8

where Q4 =% 2 RAcp 0°A @P with RAp = E (R(ec, ep) e, €,) - In the space of

constant curvature, M™(c) , we have QA =coAAwB.

Now if M" is a submanifold of M™ and ey, ..., €, €41s - » € 20 adapted
frame, then when the forms @} are restricted to M we see that i are connection 1-forms
of the induced connection V, @} are connection 1-forms of the normal connection D , and

@} determine the second fundamental form h. Moreover, by a lemma of Cartan

(1.1.20) o = Y hfel , where hi=F (h(c;¢)), €.
j

Let x : M® = M™ be an isometric immersion . Then the three fundamental
equations of Gauss, Codazzi and Ricci "determine” immersion x (cf. [C 4], p.120). For the

immersion into a space of constant curvature ¢, x : M" = M™(c) , equations of Gauss,

Codazzi and Ricci are respectively given by

(1.1.21) RX,Y;Z, W) = c{ gX,W)e(Y,Z) - gX,2)g(Y,W))
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+§ X, W), h(Y, 2)) - g (X, 2), h(Y, W)

(1.1.22) (Vxh)(Y,2) = (Vyh)(X,2)

(1.1.23) RPX, Y;E,m) = g ([Ag  Apl X, Y)

Here, V is so called connection of van der Waerden - Bortolotti defined by

(1.1.24) (Vxh)(Y,Z) = Dxh(Y,2) - h(VxY,Z) - h(Y .VxZ) ,

and RX,Y;Z,W) = g(RXX,Y)Z,W) , RP(X,Y;§m) = ERPX, V) m).
If M is a hypersurface of space of constant curvature ¢ we have only Gauss and Codazzi

equations which in this case read as
(1.1.25) RXX,Y) =c(XAY) + AXAAY
(1.1.26) (VxA)YY = (VyA)X

If ey, ..., e, is orthonormal basis of principal directions of A , &, ..., A, respective

principal curvatures and 0)1? corresponding connection forms, then the Codazzi equation is

equivalent to the following system of formulas

(1.1.27) A - M) aie) = ey , i#]

(1.1.28) A - MY ale) = - MY afe) ,  i=jrk=i

and no summation occurs on repeated indices .
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2. Homogeneous spaces

For the basic facts about Lie groups we refer to [Wa]}, [He] and for homogeneous
spaces to [K-N], [Ch-E], [Ch 1], [Be] .

A Lie group G is a smooth manifold (which we do not assume connected), which
has the structure of a group in such a way thatthemap ¢:Gx G — G defined by
&(x, y) = x- y'! is smooth. The identity component of a Lie group is itself a Lie group.
Readily available examples of Lie groups are classical groups GL(n), O(n), SO(n), U(n),
Sp(n), ... etc. Also, the well known result of Myers and Steenrod asserts that the isometry
group of any Riemannian manifold is a Lie group.

A Lie algebra over R is a real vector space V together with a bilinear map (called

bracket) [, 1: VXV > V suchthatforany x,y,ze V

(1.2.1) [x, yl =- [y, x]

(1.2.2) ([x,yl.z] + (ly,zl.x] + [[z,x],y] =0

As an example, set of smooth vector fields on a manifold is (infinite dimensional) Lie
algebra with the bracket operation defined in Section 1.

If a € G , then the left translation by a and the right translation by a are
respectively the diffeomorphisms L, and R, of Gdefinedby L,(x)=ax,R;(x)=xa .
A vector field X on G is called left invariant if foreach ae G, (L;),0X= XoL,.
The set of left invariant vector fields on a Lie group G forms a Lie algebra called the Lie
algebra of G and is denoted by g .If we defineamapa:g = TG by aX)=X(e),
then o is vector space isomorphism, so dim g = dim G. We can define [, ] on T.G by
requiring that o becomes Lie algebra isomorphism , thus identifying the tangent space at
the identity of G with the Lie algebra of G.
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A subspace A of g which is closed under [ ,] is called a subalgebra of g .If h is
a subalgebra of g , then A defines an involutive distribution and the maximal connected
integral manifold H through e is a subgroup of G (which, in general, is not a closed subset
of G ). Conversely, if H c G is a Lie subgroup, then the tangent space & of Hateis a
subalgebra of g .

If we take & to be any 1-dimensional subspace of g, then [h,A]=0c h . The
subgroup corresponding to such an & is called a 1-parameter subgroup. For any X € T.G
we have a natural homomorphism of Lie algebras d¢: R — g with d¢(d/dt) = X, and
hence a Lie group homomorphism ¢ : R — G mapping R onto the integral curve through
the origin of the left invariant vector field determined by X . We denote ¢(1) by exp.X and
this coincides with usual exp defined before for smooth manifolds. The structures of g and
G are related by the exponential mapping, in fact, the Lie algebra determines the Lie group
in the sense that if G and G’ are two simply connected Lie groups which have isomorphic
Lie algebras then G and G’ are isomorphic.

A Lie group G acts on itself on the left by inner automorphisms o, : G5 G ,
g€ G, defined by o (x)= gx g'l. The identity e is a fixed point of any such action.
The map

g— dolT,G=¢

is a representation (i.e. homomorphism) of G into Aut(g) = GL(g) = GL(n). It is called the
adjoint representation and is denoted by Ad : G — Aut(g ). So Ad(g) = dRgodlg.
Define ad: g — gl(g ) to be the differential of the adjoint representation, ad = d(Ad).
Then adX(Y)=[X, Y] forevery X, Y € g , and by Jacobi identity (1.2.2) , adX is a
derivation of the Lic algebrag ,i.e. adX([Y,Z])= [adX(Y),Z] + [Y,adX(Z)] .
Let K be a closed subgroup of a Lie group G, and let G/K denotes the space of
cosets {gK |1 g€ G}. Let n : G = G/K denotes the natural projection n(g) = gK. Then

G/K has a unique manifold structure such that &t : G — G/K is smooth fibration, i.e. 7 is
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smooth and there exist local smooth sections of G/K in G . We call G/K a homogeneous
space . G acts naturally on G/K on the left by g'n(g) = ®(g'g ) and this action is clearly
transitive hence the name homogeneous space .

Leta : G x M — M be a smooth action of a Lie group G on M on the left and
denote 0i(g, p) = 0:g(p). The action is called transitive if for any pair x, y € M there exists
g € G such that oy(x) =y . G acts effectively on Mif ag(p) =p foreverype M
impliesg=¢.Let oe M andlet K={ge Glag(o)=o }. K is a closed subgroup of G
called the isotropy group at o. We now state the following theorem (see [Wa] ) .

Theorem l.2.i. Let a: G XM — M be a transitive action of a Lie group Gon a
manifold M on the left . Let 0 € M, and let K be the isotropy group at o . Define a
mapping B : G/K - M by B(gK) = ay(0) . Then B is a diffeomorphism .

For each k € K (= isotropy groupat o) themap p:K — GL(T M) defined by
pk) = doyl T,M is a representation of K ( [Wa], p.113) called the linear isotropy
representation and the group p(K) of linear transformations of ToM is called the linear
isotropy group at o . Because of the Theorem 1.2.1 we adopt the following definition.

Definition 1.2.1. A Riemannian manifold (M, g) is called (Riemannian)
homogeneous space if the group of isometries I(M) acts transitively on M .

Since there may be more than one Lie group acting transitively on a given
homogeneous space we use the term G - homogeneous if G is a closed subgroup of I(M)

which acts transitively on M. Note that M is compact if and only if G is compact. Since an
isometry f is determined by giving only the image f(o) of a point o and the corresponding
tangent map df |, the linear isotropy representation of a Riemannian homogeneous space
is faithfull (injective) orthogonal representation .

We recall that the projective spaces are homogeneous manifolds

RP" = SO(n+1)/O(n) , CP" = SU(n+1)/S(U(1)U(n)) ,
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QP" = Sp(n+1)/Spm)Sp(1) , CayP?=F/Spin(9) .

A homogeneous manifold M = G/K is called reductive if there is an Ad(K) -
invariant subspace m of g thatis complementarytok, g = k © m , where g and k are
the Lie algebras of G and K respectively. All homogeneous Riemannian manifolds are
reductive ( see e.g. [T-V], pp 19-20 ). For the Levi - Civita connection and the curvature

of a reductive homogeneous space see [K-N] and [Be] . Given a homogeneous space G/K

we can define symmetric Ad(G) - invariant bilinear form B:g xg — R by
BX, Y) = tr (adX o adY) . B is called the Killing - Cartan form of g . For a reductive
homogeneous space G/K , B is negative definite on k but m is not necessarily B
orthogonal to ¥ nor is B definite on m in general. We state the following theorem which
can be found in [Ch], p. 48 or [O'N], p. 311.

Theorem 1.2.2. Let M = G/K be a reductive homogeneous space with Ad(K) -
invariant splitting g = k @ m . Then the linear isotropy group {day |k € K } acting on
ToM corresponds under dr to Ad(K) on m ( & is a natural projection G = G/K) .

Next, we give basic facts about symmetric spaces. For thorough study see [He] .

A Riemannian manifold M is called a symmetric space if for every pointpe M,
there exists an involutive isometry s, with p as an isolated fixed point . Isometry s, is in
fact geodesic symmetry at p, sp(Y(1) = Y(-1) , for every geodesic 7y through p =Y(0) . Every

symmetric space M is a homogeneous space M = G/K , where G = Ij(M) is identity
component of isometry group of M and K is a compact subgroup of G ([He], p. 208 ).

For a symmetric space M = G/K, K isotropy group at o , we define involutive
automorphism 6: G — G by o(g) =s.8s, . Then Gg < K < G; where
Gs={ge Glo(g) =g ) and G is its identity component . Automorphism G induces
involutive automorphism of g (by doiT M) denoted by the same letter 6. We denote by k

and m respectively +1 and -1 eigenspace of 6. Then k is the Lie algebra of K, m can be
identified with T,M, and we have the following direct sum decomposition
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(1.2.3) g =k ®m , with
k. klck ,mmick ,[k,m]lcm.

Decomposition (1.2.3) is called the Cartan decomposition of g with respect to G.

Let (g, k, ©) be a triple such that : (1) g is a Lie algebra (over R) ; (2) 6is an
involutive automorphism of G ; (3) k = F(c, g ), the fixed point set of 6, is compact
subalgebra . Then ( g, k , 0) is called an orthogonal symmetric Lie algebra (o.s.L.a.).

Obviously, for every symmetric space G/K we have an o.s.L.a. associated with it.
Let(g,k,0)bean os.La.withg =k @ m , and let @ be a maximal abelian

subspace of m . Then the dimension of a is called the rank of os.L.a. (g, k&, 0).
Correspondingly, the rank of a symmetric space is the maximal dimension of a flat, totally
geodesic submanifold (flat torus) of M. Compact rank one symmetric spaces are sphere and
projective spaces. Compact symmetric spaces of rank two are used in construction of
isoparametric spherical hypersurfaces ( see section 4 of this chapter).

Lie algebra g is semisimple if the Killing - Cartan form B is nondegenerate. An
os.L.a. (g,k,o0) with g semisimple is said to be of compact type if B is negative

definite. In that case, - B restricted to m defines Ad(G) - invariant inner product .

3. Second standard immersion of a sphere

For a good exposition on this topic see [C 4] . On Euclidean space E™ we have
canonical inner product <, > given by <u, v> =u'v, where vectors u,ve E™ are
regarded as column matrices and u' is the transpose of u . The sphere of radius r centered

at the origin is defined as S™(r) = { x € E® I< x, x> =12 } . Hypersphere of unit

radius centered at the origin will be simply denoted by S™!.
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Let SM(m) = (P € GL(m;R) | Pt= P} be the space of real symmetric m x m
matrices. Since every symmetric matrix Pe SM(m) has m(m+1)/2 independent entries,
SM(m) can be regarded as Euclidean space of dimension N = m(m+1)/2 . Moreover, if
we define metric g on SM(m) by

1.3.1) §P.Q =31 (FQ) , P,Q e SM(m)

then g is identified with the canonical metric on EN. For computational purposes
(multiplication of matrices), however, we view SM(m) as sitting in E""2 . Consider now
the mapping f: ™! — SM(m) defined by f(u) = u-u* where u e $™! c E™ is a column

vector in E™ of unit length . Thus, if u = (u,, ..., u_ )" we have

2
uf wu, ...ougug

2
(13.2) fay = | 21 2 o Ulm

2
WL R VR PO

We sce that f is an isometric immersion by virtue of f,(X) = uX'+Xu' . Itis in fact
second standard immersion of ™! and since f(-u) = f(u) it gives an embedding of RP™!,
Since trf(u) = Zuf = <y, u>=1 and f(u)? = u(u'u)u'=u u' then by comparing the
dimension we see that f(S™!) = (A € SM(m)|A2=A and tr A =1 }. Thus the image
£(S™1) is a real projective space lying fully in a hyperplane E, = {Ae€ SM(m) tr A =1}
of SM(m) = EN. We call f(S™!) a Veronese submanifold. Also we check that

m-1

I I,_1 ITy2_ml
A-p) = A-T) =50

g(A-—~
where I is m x m identity matrix, so f(S™1) lies in a hypersphere S’I’,‘,}(r) of SM(m)

centered at I/m with radiusr = i"ln;l- .The mean curvature vector of f:S™! — SM(m)
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at ue S™!canbe computed ((C4])as H = % (I - mf(u)) which is parallel to the
. I P
radius vector f(u) - m - Thus, f(S™?) is minimal submanifold of a hypersphere Sllj;,}(r) .

Tangent space and normal space of f(S™?) are given respectively by

(1.3.3) TywS™' = (P e SMm) I P f(u) + f(u) P = P},
(1.3.4) TgeS™' = (Pe SMm) | P f(u) = f(u) P } ,

or, equivalently,

(1.3.5) T,(t)s"‘" ={Pe SM(m) |Pu=pu, forsomepe R }.
If G is the second fundamental form of f, then ( see [C 4], [R] )

(1.3.6) X, V)=XY'+ YX - 2<X,Y>fQ), X,Ye T,S™.

It is known that G is parallel ,ie. VG = 0 .
From (1.3.4) we see that both I and f(u) are normal to S™! via f, also, for any
tangent vector X to sphere, X X'is normal to S™! . We prove the following lemma that

will be used in Chapter 3 .

Lemma 1.3.1. For a standard hypersphere u: S™! — E™ , let f be the second

standard immersion f : S™! - SM(m) by f(u) = wut. If €y, ... » €y is alocal
m-1

orthonormal frame of tangent vetors to S™ ! then I = uu'+ ) ee! ,whereIis mxm

i=1

identity matrix.

Proof. Consider the following matrices : uu', e,ef (1< k< m-1), <:iejt + ejeit

(1<i<j<m-1). By (1.3.4) they all belong to the normal space 'I‘l';S“"1 , and there are
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-1 m2-m+2 .
1+ m-1+ ( g ) = 151 of them in number. Also these vectors are linearly

independent ( they are mutually orthogonal ) . On the other hand, dim SM(m) = m(m+1)

2
. . ) 2
and dm"Tusml=m-1,so,d1mTi-sm'1=m“;"'l “m+1- M 1;1+2 e

conclude therefore, that TS™! = Span(y y!, &y €l + eel ) . In particular,
I=a@uY) + (eed) + Y c.(ee! +eel) . Usi it i
b, €y 2. cu(eleJ + eJel) - Using (1.3.1) ,itis easy to see that
1 i<j

¢;=0 and a=bk=lforeveryk,provingthelemma. .

Standard embeddings of projective spaces can be realized in an analogous way
using Hopf fibration . Namely, let F denote one of the fields R of real numbers, C of
complex numbers or skew field Q of quaternions, and let d = d(F) be the dimension of F
over the reals. For a matrix A over F , A and A denote transpose and conjugate matrix
andlet A*=At, M(m; F) is the set of all m x m matrices over F and the set of Hermitian
matrices is Him; F) = {A € M(m; F) | A* = A}. F™ is considered as an md - dimensional
vector space over R with the usual Euclidean inner product <z, w > = Re(z*w) . All
vectors in F™ are regarded as column matrices .

Projective space FP™! is considered as the quotient of the unit hypersphere
$S™1=(ze Fhiz¥z=1) obtained by identifying z with zA where A e F with =1 .
FP™! jg given canonical metric such that & : S FP™! is a Riemannian submersion
with totally geodesic fibers . Note that we have natural action of the unitary group U(m; F)
on FP™! induced from the one on the sphere S™! | Define the map

¢:FP™! S Hm;F) by

oP) = zz*, where ze wl(p) .

This map is well defined and gives an embedding of FP™!into H(m; F) (the first
standard embedding of a projective space). The image of FP™! under this map is given
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as ¢(FP"“1)=[Ae Hm; F)1A2= A and u'A=1]andliesasaminimalsubmanjfoldin

a hypersphere of H(m; F) centered at /m and with radius r = % . The Cayley

projective plane CayP2 cannot be realized via Hopf fibration and is simply defined as
CayP’={Ae Hm; F) IA2= A and trA = 1} . Embedding ¢ was first studied by Tai
[Tai] , who proved that the embedding ¢ is equivariant with respect to and invariant under
the action of U(m; F) . For other properties of this map see also [S], [R], [C 3] and [C4].

4. Isoparametric spherical hypersurfaces

In this section exposition follows essentially [Ce-Ry], [Car 2-5], [M], [F], [N 1-2]

and also uses results of [T-Ta), [T 3], [H], [H-L], [A]).
Originally, a family of hypersurfaces M} in a real space form M™(c) of constant

sectional curvature ¢ is called isoparametric if each M? is equal to level hypersurface
£1(t) where fis a non - constant real valued function on M™!(c) which satisfies system of

differential equations of the form

IVEN2 = ah) , Af = b(f)

for some smooth real - valued functions a, b . Thus, the two classical Beltrami differential

parameters, square of the norm of gradient and Laplacian, are functions of f itself, whence
the name isoparametric. (For the shape operator and mean curvature of such level
hypersurface in terms of a and b see [Ce-Ry] or [Ha] ). Equivalently, an isoparametric
family of hypersurfaces can be characterized as a family of parallel hypersurfaces, each of
which has constant principal curvatures ( [Car 2], [N 2] ). We will adopt the following

definition .
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Definition 1.4.1 A (complete) hypersurface is called isoparamerric if its principal
curvatures (and their respective multiplicities) are constant.

Cartan [Car 2] established the following basic identity for principal curvatures of an
isoparametric hypersurface of a space form M"*!(c) .

Theorem 1.4.1 Suppose that an isoparametric hypersurface M has v distinct
principal curvatures kj, ..., k, with respective multiplicities my, ..., m,, . Then

(14.1) mSHEK o 1<isv .
i G-k

ji

Using this key identity Cartan was able to determine all isoparametric hypersurfaces
in the cases ¢ < 0. Actually if ¢ £ 0, then there are at most two distinct principal
curvatures of M and M is either umbilical (one curvature), or standard spherical cylinder
Sk x E™K (standard product S¥ x H"X) in E™! for ¢ =0 (respectively in hyperbolic
space form H™! for ¢ =-1).

For hypersurfaces of the sphere s+l things are much more interesting, in
particular number of principal curvatures can be greater then two. E. Cartan undertook
study of the spherical isoparametric hypersurfaces in the series of papers [Car 2 - 5] . He
classified isoparametric hypersurfaces of S™1 with two distinct principal curvatures as
standard products of two spheres [Car 2] , and he found that those with three distinct
principal curvatures are precisely the tubes of constant radius over the standard embeddings
of FP2 for F =R, C, Q (quaternions), O (Cayley octaves) in S%, §7, S'3, $2° respectively
[Car 3] . In each isoparametric family of parallel hypersurfaces there is a unique
hypersurface which is minimal in sphere. It is easy to see that the principal curvatures of

minimal isoparametric hypersurfaces with three principal curvatures are ¥3,0,-v3 | i..
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they are roots of the equation x3-3x=0. Namely, from minimality and (1.4.1) with

¢ =1 we have

3kj-k?-2detA =0 , i=1,23

from which k;e {vV3,0, -3 }. We also used the fact that the multiplicities of principal
curvatures for isoparametric spherical hypersurface with three curvatures are the same: 1,
2,4 or 8 in dimensions 3, 6, 12, 24 respectively [Car 3] . Isoparametric spherical
hypersurfaces with three principal curvatures are all homogeneous. They are identified as
SO(3)/Z,xZ, , SUB)YT?, Sp(3)/Sp(1)>, F4/Spin(8) of dimensions 3, 6, 12, 24
respectively (see [H-L], [T-Ta] ). The minimal hypersurface of the type SO(3)/Z,x Z, in
S* we call the Cartan hypersurface .

Cartan showed that any isoparametric family with v distinct principal curvatures of
the same multiplicity can be defined by the equation

F = cosvt (restricted to S™!)

where F is a harmonic homogeneous polynomial of degree v on E™2 satisfying
ligrad FIiZ = v212v-2 |

where r is the distance from the origin and gradient is in E™2 | For example, for

hypersurfaces with 3 principal curvatures polynomial F is given by (cf. [Car 3])

(14.2) F=ul-3u?+ Su®XX+YY - 222)

3‘1— VX -YY)+ 3‘{ (XYZ + Z¥X ) .
In this formula u and v are real parameters, while X, Y, Z are coordinates in the algebra
F=R, C, Q, O respectively for the cases corresponding to the multiplicities m=1,2,4,8
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The sum XYZ + ZYX is twice the real part of the product. In the case m = § ,
multiplication is not associative but the real part of XYZ is the same whether one interprets
the product as (XY)Z or X(Y2).

In [Car 5], Cartan gave examples of two families of isoparametric hypersurfaces in
S5 and S? with four distinct principal curvatures of the same multiplicity ( respectively 1

and2). The onein S° has particularly nice representation by the map
s!x S32 > S5 cES given by

(1.4.3) (0, (xy) — efcost x +isint y)

Here, S3, denotes Stiefel manifold of orthonormal pairs of vectors in E3 and S is the
unit circle . More precisely each isoparametric hypersurface w c S with four principal
curvatures is the immage of the map (1.4.3) which doubly covers M‘: . The minimal one is
obtained when t =n/8 [N 2] . Nomizu used this map to construct infinite family of
isoparametric hypersurfaces Mztn with four principal curvatures of multiplicities 1, n-1,
1 and n-1 . Takagi has shown ([T 3]) that any isoparametric hypersurface with four
curvatures such that the multiplicity of one curvature is 1 is congruent to the example Mzt“
of Nomizu for somenandt.

All examples of isoparametric spherical hypersurfaces known by Cartan are
homogeneous. In fact each is the orbit of a point under an appropriate closed subgroup of
SO(n+2). Of course such orbit hypersurfaces have constant principal curvatures [T - Ta] .
In particular, isbparamctric hypersurfaces with four principal curvatures of the same
multiplicity 1 or 2 mentioned above are SO(2) x SO(3)/Z, , respectively Sp(2)/T2. The
minimal hypersurfaces in these two families have principal curvatures equal to V2 + 1 ,
V2-1,1-42,-42-1 (rootsof x%-6x2+1 = 0) and they can be found in a similar

way as was done in the case of hypersurface with three curvatures, using identity (1.4.1).
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Cartan did not know what the possibilities were for the number v of distinct
principal curvatures, nor whether isoparametric hypersurface is necessarily homogeneous.
Work on isoparametric spherical hypersurfaces was revived by Nomizu [N 1-2] and then
several important results followed. Using classification of [H-L] Takagi and Takahashi
determined all homogeneous hypersurfaces in sphere (including some with 6 curvatures)
and found their principal curvatures [T-Ta]. Ozeki and Takeuchi ([O-T]) produced two
infinite series of isoparametric hypersurfaces which are not homogeneous. Major results in
the theory were obtained by H. F. Minzner . Through a geometric study of the focal
submanifolds of an isoparametric family and their second fundamental form he reproved
Cartan's identity (1.4.1) showing it to be equivalent to the minimality of focal
submanifolds (Left hand side of (1.4.1) is trace of the shape operator of a focal

submanifold.). He also proved the following theorem [M] .

Theorem 1.4.2. If k; >k, > ... > k, are distinct principal curvatures of an

isoparametric spherical hypersurface with respective multiplicities m;, m,, ..., m,, then

k=cot9; , 0<0;<..<0,<n

where 8;=0,+ “in, 1<i<v, with 8,<~ ,
v A\

and the multiplicities satisfy m; =m,,, (subscriptsmodv) .

As a consequence, there are at most two different multiplicities m;, m, for principal
curvatures and if v is odd then all multiplicities must be equal. (Minzner was also able to
show thatif v=6 then m, =m, ). Using delicate cohomological arguments he also proved
the following splendid result .

Theorem 1.4.3. The number v of distinct principal curvatures of an isoparametric

hypersurface satisfies v=1,2,3,40r6.
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Generalizing Cartan's result, Munzner showed that the hypersurfaces of any
isoparametric family with v distinct principal curvatures in S™*! can be represented as open
subsets of level hypersurfaces in S™! of a homogeneous polynomial F of degree v on

E™2 which satisfies the differential equations (on E**?)

ligrad FIi2 = v2 £2v-2
(1.4.4)

AF = _(m_zii‘l;)_ V2

As a consequence, every isoparametric hypersurface is algebraic, and a piece of
isoparametric hypersurface can always be extended to a complete one . Let us state also the

following result of Abresch [A] who used refined techniques of Munzner to prove

Theorem 1.4.4. i) Given an isoparametric hypersurface in S™! with v = 4
principal curvatures , let m; £ m, be (possibly same) multiplicities of curvatures . Then
the pair ( m; , m,) satisfies one of the three conditions below

(a) m, +my + 1 is divisible by 2*:=min {2°12°> m;,0e N }.

(b) m,; ispowerof2,and 2m; divides my+1 .

(¢) m; ispowerof2,and 3m; =2(my+1).

Each condition corresponds to a topologically different kind of examples .

ii) Given an isoparametric hypersurface in S**! with v=6thenm, =mye (1,2} .

Regarding isoparametric hypersurfaces with four curvatures of the same
multiplicity, Cartan asserts , without proof, that they have to be homogeneous [Car 5].
That was proved by Ozeki and Takeuchi if m; = m; =2 [O-T]. However, in the light of
the above theorem of Abresch we can easily prove that statement and moreover completely

classify isoparametric hypersurface with four curvatures of the same multiplicity. Namely,



27

if m; = m, then case (b) of the theorem gives m; = my = 1 and then the results of Takagi

[T 3] and Takagi and Takahashi [T-Ta] classify such hypersurface as SO(2) x SO(3)/Z, .

If case (c) occurs, then m; = m, = 2 hence by the result of Ozeki and Takeuchi [O-T] the

hypersurface is homogeneous and therefore according to the list in [T-Ta] must be
Sp(2)/T2 . Therefore these hypersurfaces are exactly those two found by Cartan in [Car 5] .
Next, we give the list of all isoparametric hypersurfaces in sphere with three or four
distinct principal curvatures of the same multiplicity. As remarked by Hsiang and Lawson
(H-S] , homogeneous isoparametric hypersurfaces in sphere arise from isotropy
representations of the corresponding symmetric spaces of rank 2. For our hypersurfaces,
their isometry groups G, actions y , principal isotropy groups H, common multiplicity of
principal curvatures m and dimension n are given as follows (first four examples in the

table have three curvatures, remaining two have four ).

Table 1. Isoparametric hypersurfaces in sphere with three or
four principal curvatures of the same multiplicity

G v H m | n
SO(3) $2p5 -0 Z,x2; 1 3
SU3) Adsuq) T2 2 6
Sp(3) Alv; -8 sp(1) 4 | 12

Ey 6, Spin(8) 8 24
SO2) x SO(3] p®p3 Z, 1 4
Sp(2) Ad T2 2 8

Let us mention at the end that the theory of isoparametric hypersurfaces continues to

be area of active research. Subsequent investigation exploited equations (1.4.4 ) of
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Miinzner - Cartan and new results were obtained using algebraic tools such as triple
systems , Jordan algebras, Clifford systems (cf. [D-N], [F-K-M], [W 2] ) . For example,
Ferus, Karcher and Miinzner gave a construction of isoparametric hypersurfaces with v =4
using representations of Clifford algebras which included all known examples, except two.
Their method also exibited infinitely many series of infinite isoparametric families with four
constant principal curvatures. However, the main problem of classification of isoparametric
hypersurfaces in sphere still remains open. For isoparametric hypersurfaces in pseudo -
Riemannian space forms see [Ha], (N 3] and [Ma] , and for real hypersurfaces with
constant principal curvature in complex projective or complex hyperbolic spaces see [W 1],
[T 2], [B] . One possible generalization to a submanifolds of higher codimension was dealt

with in [Te] . See also [Pa-T] .

S. Finite type maps and submanifolds

For spectral geometry standard references are [B-G-M] , [Ch 2] and for finite type

submanifolds [C 4] .
Let (M", g) be a Riemannian manifold. Laplacian A acting on smooth functions is

defined as

(1.5.1) Af = ) (Ve -efed] . fe C°(M)
i=1

where {e;} denotes local orthonormal basis of tangent vectors ( A does not depend on the

choice of such basis ). In local coordinates, A has the following expression

(15.2) Af = - L Zaj(gjk\’;akﬂ , Where g =det (gij) .

Vg 5%
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The following property of A acting on the product of two functions is well known

(1.5.3) A@v) = (Auy)v + u(Av) - 2<VyVv> , uve CM) .

The Laplacian is naturally extended to act on E™ - valued maps (componentwise), so the

rule above extends to inner product of vector functions U, V on M as follows

(154) A<U,V>=<AU,V>+ <U,AV> -2Zl:<veiu, Vev>

(1.5.5) A(fU) = (AHU + f(AU) - ZZ (cii)eciU , fe C®M)

Also, if x: M" — E™ is an isometric immersion whose mean curvature vector is H, then

the following formula holds (see e.g. [C 4], p.135)

(1.5.6) Ax = -nH

An eigenvalue of A is any real number A for which there exists a smooth nonzero funcion
f (called an eigenfunction ), so that Af = Af . The set of all eigenfunctions of A , V, ,
forms a vector space and its dimension (need not be finite) is called multiplicity of A .
Clearly, for two different eigenvalues lp » A, we have V, AV, = (0} . The set of all
eigenvalues taken with their multiplicities is called spectrum of M and denoted by Spec(M).

If M is compact, we can define natural L? - inner product (,) by (f,g) = [ fgdV .
In this case Laplacian is self adjoint strongly elliptic operator, all eigenvrlues are
nonnegative and the spectrum is discrete , Spec(M) = { 0 = Ag<A;<A, <. T oo }.
Multiplicity of each A (dim V, ) is finite, dim V= 1, and gvt is dense in C*(M) .

Thus, we can write

(1.5.7) M) = gvt (inL2- sense) .
t=
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This direct sum decomposition is orthogonal with respect to (, ) . According to (1.5.7)
any smooth function fe€ C*°(M) has the following spectral decomposition

(1.5.8) f=1f+ 2 f, (in L2 - sense) ,

where f;, is constant ( Af,=0) and {, is the projection of fonto V,, ie. Af,= A f, .

A map fe C*(M) is said to be finite type map if its spectral decomposition
(1.5.8) has finitely many nonzero terms. More precisely, f is of k - fype if there are
exactly k nonzero terms f, P ftk (2 1,i=1, .., k) in the decomposition (1.5.8).
The set [t;, ..., %] (also [ltl, s ltk] ) is called the order of a map f . If f is not of
finite type, that is, decomposition (1.5.8) has infinitely many nonzero terms, f is of
infinite type .

Note that A can be naturally extended to E™ - valued maps (by taking Laplacian

componentwise), and accordingly, we extend the notion of finite type map as follows. For
asmoothmap x:M"— E™, x=(f,...,f ), we find spectral decomposition (1.5.8)

of each f; and combine them to obtain spectral decomposition of a vector function x as

(1.5.9) X = xp + Zx‘ (in L2 - sense) ,

where, x, = ((f) 5 - » (£ » e Ax = 7\‘ X, . (Some of the (f)'s can be 0). Again,
vector function x is called k - type if there are k nonzero vectors x, (t 2 1) in decomposition
(1.5.9). In particular, a submanifold of E™ is of finite type (k - type) if the corresponding

immersion is so. Xg is always a constant vector, and if x is an isometric immersion of a

compact manifold M, then x,, is the center of massof Min E™ , ie. x,= m fx .
M
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If x: M"— S™!(r) c E™ is an isometric immersion of a compact manifold into a
sphere, then M" is called mass - symmetric in S':"l(r) if xy = ¢, i.e. center of mass of M
coincides with the center of sphere. For an 1 - type immersion x: M" — E™, we have

x =Xxo+ X, with xo=const, Ax;= A, x; .The well known theorem of Takahashi

[Ta 1] can be stated in terms of 1 - type maps as follows
Theorem 1.5.1. Let M be a compact submanifold of E™. Then M is of 1 - type
if and only if M is a minimal submanifold of a hypersphere of E™ .

If x,: M"> E™ and x,: M®— E™ are two isometric immersions, then the
L
V2
are of finite type. Let M be a compact, irreducible symmetric space and p, <p,<..<py

diagonal immersion x =D(x,, X)) = —= (X, X,) is of finite type if and only if both x;,x,
any finite set of natural numbers. Then the diagonal immersion D(xpl, ey ka) of the
standard immersions Xp,» - » Xp, i8 of k - type with order [p,, p, ...,p] . This shows
that there are immersions of arbitrary high type. Also, if M is a compact homogeneous
space which is equivariantly, isometrically immersed in E™, then M is of k - type with
k <m ([C 4], p. 258 ; see also [Ta 2] and [D] ) . A closed curve C in E™ s of finite type if
and only if Fourier series expansion of each coordinate function of C has only finitely
many nonzero terms ([C 4], p.283 ). We give the following criterion for finite type

immersions [C 4] .

Theorem 1.5.2. Let x:M — E™ be an isometric immersion of a compact
Riemannian manifold M into E™. Then M is of finite type if and only if there is a non -

trivial polinomial P(t) such that

(1.5.10) P(A) (x- x5) = 0.

Moreover, M is of k - type if and only if polinomial P is of degree k having exactly k
distinct (positive) roots and for any other polinomial Q that satisfies Q(A) (x - Xp=0,P
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is a factor of Q . The statement of the theorem remains the same if x - x is replaced by the

mean curvature vector H .

Let us note that the notion of finite type map and immersion make perfect sense also

for a noncompact manifold, e.g. an immersion x: M — E™ is of k - type if we can write
(1.5.11) X = xo+xti+ +xtk ,

where x, is a constant vector and Xgyo oo » Xy, 8TE eigenvectors of the Laplacian
corresponding to k different eigenvalues th, s th. If M is noncompact, A's need not
be positive, nor their multiplicities finite. Eigenspace V,, (set of harmonic functions) is
generaly of dimension > 1 (there may be nonconstant harmonic functions). If one of the
eigenvalues Ktl, s X‘k corresponding to the decomposition (1.5.11) is 0, then the
submanifold is said to be of null k - type. In this case x; is not uniquely determined ( for
compact manifold, x, is always center of mass). The cylinder x(8, u) = (cos8, sin6, u)
is an example of noncompact null 2 - type submanifold.

Notions of order of a submanifold and submanifolds of finite type were first
introduced by B.Y. Chen in [C 2] and the theory of finite type submanifolds has become an
area of active reseach (see [C 4]). In particular, there is a problem of classification of low
type submanifolds which lie in a hypersphere. By Theorem 1.5.1, 1 - type submanifolds
are characterized as being minimal in sphere and one can expect that 2 - type and higher
type submanifolds are more general. Indeed classification of even 2 - type spherical
submanifolds seems to be virtualy impossible.( Note, however, that the only compact
2 - type surface in S* is flat torus S'(a) x S'(b), a# b [B-C-G] ). On the other hand,
studying finite type immersions of a spherical manifold into SM(m) via the second standard

immersion of the sphere proved to be more manageable ( see [R], [B-C] ) . In Chapter 3
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we study spherical hypersurfaces which are of 2 - type and those which are of 3 - type and

mass - symmetric via the second standard immersion of the sphere.



CHAPTER 2

QUADRIC REPRESENTATION OF A SUBMANIFOLD

For an isometric immersion x : M" = E™ of a Riemannian manifold into a
Euclidean space, one defines the map X : M" = SM(m) from M into the set of real
symmetric m x m matrices by X = x-x', where x is regarded as a column vector in E™ .

Thus, if x = (x,, ... , x_)' we have

2
X2 XXy ... XX,
2
. XX, X3 XX
X X, X X x2
m™1 xm 2 m

We call X the quadric representation of a submanifold M. In this chapter we establish
some general results about the quadric representation. First we prove a theorem about

quadric representation being an isometric immersion.

Theorem 2.1. Let x : M® - E™ be an isometric immersion of a Riemannian

t

manifold into a Euclidean space. Then X = x-x" is an isometric immersion if and only if

xM™ c S™! ie Mis spherical. (In the case n = 1, a curve is assumed to be complete.)

Proof. First we prove the statement for a complete curve x : C — E™ . Let

X(s) = (x1(9), x5(5), ... , X (8)) be the parametrization of the curve by its arclength . Then

34
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dX ® dX = g(dX ,dX) =

NI'-'

o = 1 ,
tr(dxdx ) = 3 1.2 xlxj + xixj)zds2

Since X is assumed to be an isometry, tangent vector dX/ds must have length 1,

therefore we get

1= % %(xi'xj + xifo)2
= 2(2’&7({)2 + % Z()g'xj - XX ;)2
1 1,)

= 2% + ;- xx)?

i<j

= 2D+ IxAxI2
= ZIKD? + 2 - 7 (P

= IxiZ + %[(uxuz)']z.

Here, A represents the usual wedge operation in the Grassmann algebra over E™. Hence

for v;,v, € E™ we have
viavyl? = det(<v;, v>) = IvyivyIi2 = <vy,v,>2 .

Thus letting u(s) = lIxI? we get the differential equation in u that separates the variables,
u + (1/4)(u’)? = 1 . One obvious solution is u = 1, and there is no solution foru>1. If
u# 1, solving the equation gives u(s)=1-(c + s)2 , where c is an arbitrary constant. This
solution, however, represents decreasing function of s and therefore, u = 2 <0 for
sufficiently large s (curve is assumed to be complete) which is a contradiction. Therefore,

u=1,ie. curve C belongs to the unit sphere centered at the origin.
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Now let X be an isometric immersion for a manifold M™ (n > 1). Since X preserves
the first fundamental form of M, it also preserves the first fundamental form of any curve
of M (isometry property is hereditary to a submanifold). Let p € M be an arbitrary point,
and consider a small smooth loop based at p. Such loop can be chosen as the image of a
circle passing through p in the normal neighborhood in the tangent space T,M via the
exponential map. The restriction of X to this loop is an isometry, and from the above we
conclude that the loop belongs to the unit sphere centered at the origin and the same is true

for point p. Since p is an arbitrary point of M , M is a spherical submanifold. The converse

of the statement is well known. ¢

Actually, we have a similar result under weaker assumptions .

Theorem 2.2. Let x:M"— E™ (n> 1) be an isometric immersion. Then X is
a conformal map if and only if M™ c S™(r), in which case X is homothety.
Proof. Let §and <,> be metrics on SM(m) and M respectively, and Vand V

be Euclidean connections on SM(m) and E™. If weset X = (f;, ..., fy), where

N = dim SM(m) , then

dX (X) = (df}, ... , dfX = @f;(X), ..., AyX)) = (Xfy, ..o, Xfy) = VX .

Since V acts as a derivation on the set of smooth functions on M then the product rule

extends also to themap X =x-x', namely, we have
Uz = Vx(xxh) = Txo) xt+x (Vxx)t = X xt+x X',

If X is a conformal map then X*g = ¢ <, > for some positive function ¢ . In particular,
X maps a pair of perpendicular vectors into a pair of perpendicular vectors. Therefore, if

X LY is a pair of perpendicular vectors of M , we have
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0 = g(%,X,%,Y)
= g(dx (X), dX (Y))
= g(Vxx, VyX)
2.1 =g(Xxt+x X, Yxt+xY!)
=%tr(Xx'+xXt)(Yxt+th)

=<x,X>x<x,Y>+<x,x><X,Y>

<x,X><x,Y>.

If X, Y is a pair of perpendicular unit vectors then X + Y and X - Y are also perpendicular,

and from the equation above we obtain
0=<x,X+Y><x,X-Y> = <x,X>?- <x, Y>2.

Then (2.1) implies <x , X> = 0, for every tangent vector X of M, and therefore

X<x,x> =2<x,X> =0, thatis , <x , x> = P = const, which shows that
x(M) c S™1(r) . Converse is easy, because then g(X, X, X,Y) = <x,x><X,Y>.¢

Now we want to examine some relationships between the map X and the condition
of being of finite type. First, let us fix the notation. Let M" be a submanifold of the
Euclidean space E™. Suppose that e, €5, ... , €, €,,1» - » €, are local orthonormal
vector fields along M such that the first n vectors are tangent to M and the remaining m-n
vectors normal to M. Let g and V be the Euclidean metric and connection of E™, and
denote by V,h,D, Ag respectively, the induced connection , second fundamental form

of M, connection in the normal bundle T*M and the Weingarten endomorphism relative to
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the normal direction &. The connection forms ) and the mean curvature vector H of M in
E™ are defined by V. ¢;= ;mg(ek)c. » H=(1/n)J(trA )e, . Here, indices i, j, k range
from 1 to n and indices r,s range from n+1 to m. As usual, A denotes Laplacian on M .
The metric on SM(m) is given by g(P, Q) = % tr (PQ).

Since an 1-type map is next simplest to being harmonic , we start out by proving a

theorem about X being an 1-type map .

Theorem 2.3. For an isometric immersion x : M" - E™ , X is of 1-type if
and only if M™ is totally geodesic submanifold of the hypersphere S™!(r) ¢ E™.In
particular, if the immersion x is full and M complete, then M = $™1(r) is the standard

sphere.

Proof. Suppose that X is 1-type map . Then we can write X = X, + X, , where

X, is a constant vector and AX, =4, X, , i.e. X is an eigenvector of the Laplacian. Thus,

22) AX = MK, = A(X - %p) .
On the other hand,

AX = A(xxY) = (Ax)x'+x (Ax)' - ZZ(Veix)(Vcix)‘
(2.3) =—n(Hx‘+xH‘)-2fl:qe{ X

Therefore, from (2.2) and (2.3) we have

—nHx'+xH') - 2Xegf = A(X - X;).
1
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Differentiating this relation along an arbitrary vector field X of M, we get

nl(AgX) x' +x (AgX)Y - [(OxH) '+ x DxH)
—nEX+XH) - 23 ofX)ee! + el
1]
-2 [h(X.e)e! + eh(X e

= (X x'+xX")

Note that the first sum is equal to 0, since (oli(X) is antisymmetric in i and j whereas

t t - I
¢+ €€ 1s symmetric in i, j. Also

2IhXede! + eh(X.e)] = YghtXe)e)ee! + eed
1 1,r
= Z g(AX, e)(eiet + ee))
Lr

=Y [(AX)e! + e(AX)] ,

and therefore, for every X € I'(TM) we have

n[(AgX) x' +x (AgX)] — [(DxH)x'+x (DxH)Y]
(2.4) —nHX'+XH) - 2 [(AX)e! + e(AX)"]

= )LP(X x4+ x XY .

We now find el + e ef component of (2.4) , i.e. apply (- , ecl+ee)toit:
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n g(AgX, e) g(x, ¢) — ng(DxH, e) g(x, €)
- n g(Ha cl') g(xr ei) - 2g(A‘)( ’ ei)

= A, 8%, ) glx, €,) .
Letting X = ¢, and summing on i we get
n(trAg) g(x,e) — n g(Dx,H, e) - ng(H, e) — 2rA, = ni g(x,¢e).
If we multiply this relation by ¢, and sum onr, we obtain

(2.5) (rAy - A.p) XN — DxTH = (n+2)H.

Note that in general x is not perpendicular to M so we have normal and tangential

component of x :

N =Yexe), . xp=Yake

Finding e,eﬁ component of (2.4) and summing on r we get

(2.6) <DxH, xy> =0 ie. DyxH L xy forevery Xe TM.

Finding e,e} + eseﬁ component of (2.4) and summing on s (after multiplying by e;) we

obtain

<DxH, e >xy + <x, e>DxH =0 ,

and by (2.6) we have
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2.7 <DxH, €>xy = <x, ¢,>DxH = 0, foreveryrand Xe TM.

Thus, at any given point of M we have
(2.8) xy =0 or xy#0 and DH=0

Next, by comparing e e} components of two sides of the equation (2.4),

multiplying by e, and summing onk we get

(2.9) <nApgX -XPX, x> =0 , forevery Xe T™M ,

and by comparing e} + e e! components, summing on k and taking (2.9) into account

we have

(2.10) [n<ARX, ;> -A<X, ¢>]x; = (nAgX -A X)<x,¢> =0 ,

forevery i=1,2,...,n and every X € TM . Therefore, at any given point of M we

have

(2.11) xr=0 or x;#0 and nAH=lpI.

Let U={pe M| x;#0 atp}.Then U is an open subset of M, and on U we
have by (2.11), trAH=XP.Thcn (2.5) implies Dx-l-H =-(n+2)H onU.NowletV

be an open subset of U definedby V={pe U | xy#0 atp}. By (2.8) we have

DH =0 on V, and from the above we conclude H=0 on V , i.e. V is the piece of M

immersed minimally in E™. Now we compute tr (AX ) on V, noting that Laplacian

commutes with trace since it is a linear operator.
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r(AX) = A(rX) = A<x, x>

2<AX,x> -2Y¥ <e;,e>
1

=-2n <H, x> -2n

= —2n
On the other hand, (2.2) yields
tr (AX) = Ap(rX — wrXy) = A(<xx>-1trXp) .

Therefore, A, (<x,x> — trX,) = —2n , and since obviously A, #0 we have

~

(2.12) <xx> = trx,; — 2n = const

Consequently, x(V) c Sm‘l(r) and hence 0=H=H' —:7(; , where H' is the mean
curvature vector of Vin $™!(r), which is a contradiction because H' Lx andx#0.
Therefore, we must have V=@ ,and henceon U x = Xy is tangential . Now on U as

before we have (note H L x )

r(AX) = -2n <H,x> -2n = -2n = A(<x,x> - tr¥;),

and therefore (2.12) holds again on U . So, x(U) c S“"l(r) but then xy =0 since x is

normal to U for spherical submanifold and this is a contradiction. We conclude U =@

and x = xy is normal to submanifold M. Consequently, x immerses M into a

hypersphere of E™ centered at the origin, x: M® = S™!(r) c E™ . In that case
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X
H=H-37 and DH=DH =DH' . From (2.8) we get DH=D'H = 0 and then
from (2.5) itfollows (Ay -A)x = @+2)@'- 3) . Since H' Lx we see that

H' =0 i.e. M is minimal in the hypersphere .With these identities in effect, equation (2.4)
becomes (we take e =x/r)

m-1
2$‘3r;*—9 Kxt+xXl) - 2 2[(A,X)e: +e(AX)Y = L(Xx+xXY ,

for every X € TM . Therefore, Ap=2(n+ 1) and A, =0 for every s=n+l,..,m-1.
We conclude that M" is totally geodesic in S™!(r), i.e. itis (a piece of ) standard S™(r) in
S™(r).

Conversely, if M" is totally geodesic S™(r) = S™!(r) than it is well known that M™
is minimally immersed via X (after scaling the metric in SM(m) with the factor 1/r2) as a
Veronese submanifold in a hypersphere of SM(m) (see Ch.1, Sect.3). Then the well
known theorem of Takahashi (Theorem 1.5.1) asserts that X is of 1-type. As a matter of

fact we have

X = o+x = ——(xx +r22ce) + n_,_l(nxx —rzze,c,) )

where (xx!+ rzz el ) is a constant vector , actually equal to r’I,,, in SM(m) by
l .
Lemma 1.3.1, and (n xx! - rzz e;el) is an eigenvector of the Laplacian corresponding
1
to the eigenvalue 7\1, = 2(n + 1)/r? . Since this is the second nonzero eigenvalue of the

sphere, it follows that S™(r) is of order [2] . ¢

It is known that a closed curve in E™ is of finite type if and only if its Fourier series
expansion has finitely many nonzero terms (see e.g. [C 4]).There are nonspherical closed

curves in E™ of finite (see [C 4], pp 288 - 289 and [C 5], pp 16 - 18). They are also of
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finite type (X not an isometric immersion) in SM(m) via X since by the product formulas of
trigonometry their Fourier series expansions still have finitely many nonzero terms. Also,
given any finite type spherical submanifold M which is also of finite type via X, translate
M by any vector v , so that v + M again belongs to a sphere (now not centered at the
origin). Quadric representation of such translated manifold will no longer be an isometric

immersion, but it will still be of finite type. We also have the following example

Example 2.1 Given two nonspherical finite type curves C,, C, mentioned above,

consider their product C, x C,. Such product does not belong to any sphere and its
quadric representation is of finite type since the Laplacian of a product splits into the sum of

Laplacians on the component manifolds .

However, we are able to prove the following theorem for minimal submanifolds .

Theorem 2.4. For a minimal immersion x:M" — E™, quadric representation X

is of infinite type .
Proof. Supose X is k-type map where k is finite. Then we can decompose X as

X =X+ X+ Xy, +..+ X, , where X;=const and AX; =1, X, .
Finding successively iterated Laplacians of X we obtain
AXx = ltl xtl + ltz xt2 + ..+ lt’k xlk
A*X = ltl xll + 112 xtz + ..+ th xlk

Eliminating X , X;), ... , X, fromthese k+1 equations we get
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213)  op (X -Xp) + O AR -Ky) +...+ 6 AFY (R -%p) + AKX -%,) = 0

where ©; is the i elementary symmetric function of L My Ay thatis

o1 = —( ltl+...+ l‘k)

Ok.1 = (-l)k‘l z 7‘(1“‘17\“1,'"'3'11: (” denotes omission )
j

O = (DFAy o Ay
As before we find tr (AX) to be

tr(AX )= A(rX) =A <x, x> = 2<Ax, x> - 2. <e,e,> =-2n
1

and by iterating we get tr ( Al ) = 0 for i 22 . Hence if we take trace of (2.13) we

obtain
(2.149) Ok (trX -rX;) —2nop; =0 .

1°. If op#0 i.e. submanifold is not of null k-type then

~ 2nGy.. ~
<X,X> =t(rx = %1 + trx, = const ,

s0  x(M™ < S™!(r). But spherical submanifold cannot be minimal in ambient Euclidean

space , therefore we have a contradiction .
2°. If oy =0, then one eigenvalue, say A, ,must be zero. If k 2 2 we conclude from

(2.14) thatalso ©y_j =0. That implies that another eigenvalue, say Ay, , is zero which is
a contradiction since A, and Ay, are two different eigenvalues. Ifk=1(and 01 =0)
then X =X, + X, with AX =0, so by taking trace , 0 = tr (AX ) =-2n again

contradiction. We conclude that X cannot be finite type map. ¢



If x:M"— E™ is spherical submanifold, i.e. submanifold of the unit
hypersphere centered at the origin, then X is also an isometric immersion by virtue of
XeX)= Xxt+x Xt Itis interesting to see how certain properties of the immersion x are

reflected in the immersion X and vice versa. To that end we prove the following

Theorem 2.5. Let x: M" > S™!c E™ be an isometric immersion and let
X: M"— SM(m) be its quadric representation. Symbols with ~ are related to the
immersion X , those without ~ to the immersion into E™ and symbols with ' relate to
the immersion into S™ . Then
i) R =const < Ilhll=const

NH I =const ¢ IIHIl=const

ii) M" is pseudoumbilical in SM(m) via X <« M" is pseudoumbilical in E™ viax .
iii) DH=0 & h'=0, ie. M" istotally geodesicin S™! .
iv) VR =0 o n=0.

Proof. i) Since X is an isometric immersion we have AX = -nH , and using

(2.3) we get

~ 2
(2.15) H= Hx'+xH)+ 7 Xeg .
Using the fact that H = H' - x , we obtain

o~ ~ 2+n
NH =@, D= g @ = 1HIP+ 2+ 2 wHRs 2D

This proves second equivalence of i) (cf. [C 4], Lemma 4.6.4, p. 152 ). The first

equivalence can be proved using similar reasoning. In fact
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R (X, Y)= %, (X, Y)) + XY'+ YX! - 2<X, Y > xx! |

and hence 1R I2=11h 2+ n2+2n.
ii) We differentiate (2.15) along vector field Xe T™ to get

Vi = Vx@xt+xH) + %;Vx(eie{)

= —[(AgX) x'+ x (AgX)'] + [DxH) x'+ x DxH)']
+ HX'+XH') + % 2 [e(AX) + (A X)e! ]
r=n+l

We simplify this by choosing x =e_,, and observing that H=H'-x we obtain

~

UxA = - [ %A% + 22 5,001

(2.16) + [ (DxH) x'+ x (DxH)'] + (H'X'+X H')

-1

3

2
* 3

™M

l[ e, (AX)' + (A X)e!] .

4

1

On the other hand, ﬁ‘?xﬁ = - Kﬁx + ﬁxﬁ , so by comparing components of

(2.16) which are tangent and normal to M we obtain

n+2

(2.17) Kﬁx = AHX + o X
(2.18) DyxH = [(DxH)x'+ x (DxH)']
m-1
+ H'X'+XH') + % 21[ e(AX)' + (A X)e!] .
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The equation (2.17) proves part ii ). Note that in (2.18) the first line of the right hand side

is the component tangent to the sphere S™! via X and the second line represents the
component of Dy H which is normal to S™! . Therefore, if DxH = 0 , we see that

D'H =0 and

2.19) HX+XHY) + 2 mz. [e(AX)+(AX)el] = 0

m-1

Using H' = % 2 (tr A;)e, and substituting into (2.19) we obtain
r=n+l

=R

(2.20) mz (e, [(tr A)X +2 (A1 + [(tr A[)X + 2 (AX)el} = ,
r=n+
forevery X e TM . From here we have (ir A;)I +2 A, =0 and taking trace of this
relation we get (n +2)tr A, = 0, i.e. tr A, = 0. Putting this back into the relation we
conclude A, =0 for every r =n+l,..,m-1, or equivalently h' = 0, which means
that M™ is totally geodesic in S™!. Conversely, if h'= 0, then X immerses M as a
minimal submanifold of a hypersphere of SM(m) centered at I/m (Veronese submanifold)
sothat H II(X- I/m ) and therefore D H = 0 proving iii ) .

Part iv ) follows from iii ) because Vi = OimpliesD H = 0. Namely,

0= Z (%hye,e) = 2 Dz h(e,e) -2 Z R(Vze;e)

= nDgf -2, wi@hee;e) .
1)

and the second sum is equal to zero.



49

Finally, let us compute second iterated Laplacian of the quadric representation
because it sets the stage for the investigation in Chapter 3 .

Recall that we computed

(2.3) AX = -n(Hx'+xH') - 2F eel .
1

1

Tofind A%X we firstfind - Z A(eel) andthen A(H x'+x H ) . We can assume
i

that at given point p we have (Vekcj )(p) =0 (normal coordinate system ). Then the
Laplacian becomes Af = — 2 eexf atpointp, so we have first
k

Zvek(cieit = z [h(ek,ei) eit + ¢; h(ck,ei)t] ,

and then at p
- 2 Afeel) = quvek(eie;»
- - ; ([Ah(ep.e)ee] € + & [Ance,eeul)
@.21) + ; ([De (e e)le! + ¢; [De, hieye)]')

+ 2 ) h(epe)hleg.e)t
ki
Now we compute each sum separately, first

2 2 h(ck,ci)h(ek,Ci)t = 2 z g(h(cksci)ver) g(h(ck’ci) ’cs) el'c:
k,i k

1T, 8
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2 ; g 8(Acie)g(Ae;ep) e

2 Z z g(Arci’ Asei) erc:
rs 1

2 Y t(AA el

D (AA)eel + eel]
s

then

z ([An(e,.epeid € + € [An(e, e,)el')
k,i

; [8(Aee) (Aee] + g(Are.e) ei(Ae,)']
1L,K,r

2 ; (Ae)Ar)

and finaly, using the Codazzi equation ,

Y. ([De hercle! + ¢ [De heyel')
k,i

= 2 ([(Ve, h)ewe)] ef + €; [ (Ve h)ey.ep]')
1k
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Z ([(Vehepe ef + ¢; [ Teh)ere))

1,

. (Defeelel + ¢ [Depleel!
ki

n D, [(DeH) ef + ¢ (DeH)]

Substituting these formulas into (2.21) and putting it together we see that at point p the

following equation holds
- ZA(cief) = n Z [(De,H) el + ¢ (DeiH)']
i i
(2.22) + Y (AA)eet + eel]
s

-2 t
E (Ag)(Agy)

Neither left hand side nor right hand side of (2.22) depend on the adapted frame chosen,

so the formula is true for any (local) frame at any point of M .
Next we compute A(H x'+x H') using product formula for the Laplacian

AMH x'+x H') = [(AH) x* + x(AH)"] + [H(AX)! +(Ax)H']

22 ) (Ve + (Te0 e
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(2.23) = [(AH) x' + x(AH)Y] - 2n HH!

+2 Z [(Age)e! + e; (Ageyl]

-2 Z [(DeH) f + e (De,H)'
i
combining (2.22), (2.23) and (2.3) we finaly obtain the following formula for A2% .

A’X = - n[(AH) x' +x(AH)Y] + 2n2 HH'

-2n Z [(Age)ef + e; (Age)]
(2.24) + 4n Z [(DeH) e + ¢; (De,H)'

+2 Zutales+ eell - 4 T (Aa)Ae)

Expression (2.24) can be further broken down into components using the following

formula for AH due to B. Y. Chen ([C 4], p. 271)
(2.25) AH= APH +11A,,I’H+ a(H) +tr (VAy) ,

m
where ¢, IIH , APis the Laplacian of the normal bundle, a (H) = z tr(AgA e, is so

r=n+2

called allied mean curvature vector and tr(VAH) = tr(VAy) + tr (Apy) .



CHAPTER 3

SPHERICAL HYPERSURFACES WHICH ARE OF LOW TYPE
VIA THE SECOND STANDARD IMMERSION OF THE SPHERE

In the previous chapter we classified submanifolds of a Euclidean space whose
quadric representation is of 1 - type as those which are totally geodesic in a hypersphere
centered at the origin. Of course the same is true when a submanifold is assumed from the
outset to be a hypersurface of the sphere. In this chapter we consider a hypersurface of the
unit sphere centered at the origin (henceforth called spherical) and study those which are of
2-or3 - type via the second standard immersion of the sphere. Throughout, we generally
assume that the dimension of a submanifold is greater than one. For finite type curves in

general see [C 4], [C-D-V].

1. Spherical hypersurfaces which are of 2 - type via X

In Chapter 2 we derived the formula for the second iterated Laplacian of the quadric
representation X of a submanifold M" (formula (2.24)). If M" is spherical submanifold,

then the Laplacian of the mean curvature vector H of M" in E™ can be computed as ([C 4],

Lemma 6.4.2, p. 273 )

53



54

(3.1.1) AH= APH + gH) + r (VA + (A2 + MH' — naZx |

where, as usual, symbols with ' denote objects and quantities related to the immersion of
M"into the hypersphere S™1, thus, AD'is the Laplacian of the normal connection of Min
S™! and a'(H) is the allied mean curvature vector in S™!, The mean curvature of M® in
E™ is denoted by & and the one in S™! by a’. They are related via a2 = o2+ 1 . Eisa

local unit normal vector field of M in §™! such that & Il H' , hence H' = o't . We also

have
n n

(3.1.2) = Zl (VeiAH)Ci + Z ADciH €
1= i=1

where ey, ..., e, is a local orthonormal frame of tangent vectors of M" .
If M is now spherical hypersurface, then APH' = Aa)E |, a'(H)=0 and by one
result of [C 6] ( see also [C 5], p. 21 ) we have

(3.1.3) r (VAp) =na'Va' + 2 A(Va')

Putting this back into (3.1.1) and combining with (2.24) we have
A% = - n[Ac'+o'(IAIR +3n+4)] Ext + xEL) — n (Wxt+ xwWt

+ 2n (no® +n +2) xx* + 2 (n%0? + 21IAII2) EE
(3.1.4) + 4n [E(Va)' + (Va)Et] - 4(n+1)i2eieit

- 200’ Y [(Acef +e(Ae)] - 4 3, (Ae)(Ae)t
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where A=A; and W= r (VAR) =na'Va' + 2A(Va) .
Suppose that X = xx' is of 2 - type. Then we have X = Xy + ')Ep + )'Eq and hence

2% < -7 =
(3.1.5) AX - (lp+lq)Ax+ Xplq(x—xo) =0.

In order to eliminate constant vector X, from this equation we find the directional derivative

¥V« of (3.1.5) . First, using straightforward but long computation we obtain
X g

Vx(AK) = - n<X,Vp+AW +4Va> (Ex'+x &)
+2n< X, W+ 2na'Va™> xx'
+ <X,4n%a'Va' +4 VIAIZ + 8n A(Va')> EE!
+2(n202+n? +4n+2) (Xx' + x XY
+ n(p+4a) (AX)x' + x(AX)']
+ 4[ AZXOXt + x(AZX)Y - n[ (VW' + x(VxW)']
— np( XE! + EXY + 4n[(Vx(Va))E' + &( Vx(Va))']
(3.1.6)
- 2(n%0? + 2 IAIZ + 2n + 2)[ (AX)E! + E(AX)']
_ ana’l (AZXE + EAZX)Y - 4[(APXE + EAX)']

—n (XW+ WXY) - 4n| (AX)(Va)' + (Va)(AX)']

- <X ,Va> Y [(Ace] + e(Ae))]
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- e 3 [(VxAee! +e(VyAd)

- 2 Y I(VxAde)et +e(VxADe)]

where IIAI? = tr A%, and p = Aa’ + o (IAI? + 3n+ 4). Also, we easily obtain

(3.1.7) V% = Vyx(xxh) = Xxt+ x Xt

(3.1.8) Vx(AZR) =2+ 1) ( Xxt+ x X!) - n<X,Va> (Ext+xEl)
+no' [(AX)x' + x(AX)'] - no (EX'+XE)
- 2[(AX)' + §(AX)Y .

Denote the left hand side of (3.1.5) by Q(X), i.e.

(3.1.9) QX)= A% - Ay +A)AK + AL (K- .

From g(Vx[Q(X)], xx') = 0 using (3.1.6) - (3.1.8) we obtain W + 2no'Vo' =0

and combining with (3.1.3) we have
: 3 U
(3.1.10) AVa') = - 5 na Va' ,
and therefore (3.1.3) yields
(3.1.11) W= tr(VAR) = - 2na'Va' .

From g (Vx[Q(X)], &&') = 0, weget 4n?a'Vo'+ 4 VIAI® + 8n A(Va)=0,

and therefore, using (3.1.10) , we have
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(3.1.12) VIAIZ = 2n? a'Va' |,

or lIAIP= n2q? - ¢ (cis a constant ), which implies that the scalar curvature of Mis
constant, since n® o2~ IAI? = t- n(n+1) by the Gauss equation .

Let U={pe MIV(@')? # 0 at P }. Then U is an open (possibly empty) subset
of M, and on U we obviously have also o'# 0 and Va'# 0 . IfU is nonempty , then

by (3.1.10) we see that Va' is an eigenvector of the shape operator A on U with the

eigenvalue - % na' . Now on U we choose unit tangent vector €, to be in the direction of
Va', ie. e, = Va/llVa'll. We find elél component of VX[Q( X )] on U setting first

X =Va'. Combining (3.1.6) , (3.1.10) and (3.1.11) we get the following by
exploiting §(VX[Q(SE)] ,clc{) =0

0 = 16n% §((Va)Va)', eé) - 2nlVai’< Ae,,e,>
- 2na'< (VygAe, ,e,> - 2< (VygAde, ,e>
= 8 n’wllVa'I? + 3 n2aliVali?
- 2na'< Vyy(Ae)) - A(Vyge)) . >
- 2< Vy(A%) - AX(Vyge)) 6> .

Note that <Vye;»€; > =0, and therefore also < A(Vyqye,), e, >=0 and

<AX(Vyge,), e, > =0 . Hence, the calculation above continues as

0 = 11n2aIiVa'li? + 3n2a'(Va')(@) - %nz (Va)(@?) = sn?a'iVa'll?.

From this we conclude o' =0 or Va' = 0 at any point of U. However, this is a

contradiction, and hence U must be empty. This means that V(a')? = 0 everywhere on
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M, i.e. o' = const . Therefore, a hypersurface of S™*! which is of 2 - type via X must
have constant mean curvature @' in sphere .

Let us remark that in order to find different components of VX[Q( X )] itis not

absolutely necessary to use long formula (3.1.6). We can also find those components
indirectly, for example, EE'- component can be found in the following way . Let

Q(X) = AK — (A, +A)AX+ A\ X . Then

0 = < Vi), &'>

X< Q(X),E'> - <Q(X), VxEgH>

= X<Q(X),EE> + <Q(X),AX)E +EAX)'>
= X(2a? +211AI%) + 4n<Va', AX>

= <X, 2n%a'Va' + 2VIAIZ+ 4n A(Va)> ,

sothat n2a'Voa' + VIAI?+ 2nA(Va') = 0 as before . Similarly for xx'- and

Va)(Va')!- component .

We are ready now to prove the following classification result

Theorem 3.1.1. Let x: M® — S™! be an isometric immersion of a compact

n - dimensional Riemannian manifold M into s™! (n>2).Then X = xxt is of 2 - type

if and only if either
(1) M is a small hypersphere of S™!of radiusr<1, or
(2) M=SP(r,) x S"P(r,) , withthe following possibilities for the radiiry and r; :

Pl +2  2_DP . P 2_Dp+2
l)"2_n+2’ _%2—;")'21=B— - if) 17 =
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The immersions in (1) and (2) are given in a natural way .

Proof. If M is one of the submanifolds described in (1) and (2) , then M is of 2 -
type via the second standard immersion of the sphere as shown in [B-C] . Conversely, let
us assume that for a spherical hypersurface x : M® — S™! the quadric representation X
is of 2 - type. Then (3.1.5) holds, and from the above we see that the mean curvature o' of
X is constant. In that case Va'=W = V JAI2 = Vp = 0, and the formula (3.1.6)

simplifies, so that the part of (3.1.6) which is tangent to M reduces to
2(n%a?+n? +4n+2) (X x' + x XY
+ n(p+4a) (AX)x! + x(AX)]
+ 4[ (AZX)x! + x(AZX)Y

where p = o (IIAI® + 3n+ 4) isconstant.Let e ,k=1,2,..,n bea local
orthonormal vector fields which are eigenvectors of A (principal directions) and let i, be

the corresponding principal curvatures . We set X = e, in (3.1.6) and compute the

component tangential to M . Then from g ( Vek[Q( x)], xci + ckxt) = 0 we obtain

0= [2(%® +n’+4n +2) - 2+ (A, + 1) + Ayl
(3.1.13) ,
+ n[p-(lp+lq)a']uk +4pug .
This is a quadratic equation in , with constant coefficients which do not depend on k and
the equation is not trivial (0 = 0 ) because of the term 4 u{‘: . We conclude, therefore, that
each principal curvature is constant and that there are at most two distinct principal
curvatures . If M has only one principal curvature, i.e. if it is umbilical, then M is a small

hypersphere of S™*!. If M has two distinct (constant) principal curvatures then M is the

standard product of two spheres, M = SP(r;) x $"P(r,) with rf + r% = 1 (see [Car 2], or
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[Ry]) . Then, according to [B-C] (Lemma 3), such product will be of 2 - type via X if and
only if the radii satisfy precisely those three possibilities listed in ) .
Theorem 3.1.1 is a generalization of a result of M. Barros and B.Y. Chen, who

proved a similar theorem assuming M to be mass - symetric (cf. [B-C], Theorem 3 ).

2. Minimal spherical hypersurfaces which are of 3 - type

and mass - symmetric via X

Since computations for the third iterated Laplacian of X become more involved and
considerably more difficult to handle we restrict our investigation to minimal spherical
hypersurfaces which are of 3 - type and mass - symmetric via X . For minimal

hypersurfaces in sphere, calculations from before give

(3:2.1) AR = A(xx') = 2nxx' - 2 Y el
(3.2.2) —A(Yed )= 2nxx' +21AIPEE' - 2 Yeel - 2 z: (Ae)(Aey)
(3.2.3) AEEY = 2 IAIPEEt - 2 ;(Aek)(ma,‘)t

(324)  A’% = 4n(n +1) xx' + 4IAIPEE' - 4(n+1) Yee! - 4§k_‘, (Ae)(Ae)) .

We also have the following lemma, which can be proved by direct computation in a

similar fashion as was done to prove formula (2.22) .

Lemma 3.2.1. Ife,, ..., ¢, is a local orthonormal basis of tangent vector fields of
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n
M,and AA = z [ chiei A - Vei(vciA)] is the trace Laplacian of the shape
i=1
operator, then
—A{ YAe)Ae)) = - Y [((AA))(Ae) + (Ae)(AA))"]
1 1

-2 Y (Ac)Ae) - 2 Y (A%)A%)"

+ 2r A xx' + 2r AHEE' -2 (r A%)(xE'+ Ext)
(3.2.5)
- 2[(rVAY)! + x (rVA2)Y

+ [2@VA3) - AAuVA)IE! + E[2 (VA3 - A2VA)

+2 ) (Ve Aell(Ve Al
ik
Each sum here is independent of the frame { e;} chosen .

One of the results of K. Nomizu and B. Smyth in [N-§] is computation of AA for

spherical hypersurface with tr A = const . Namely,

(3.2.6) AA=(rA2-n)A + (rA)I - (rA)A? .

Because we assume tr A =0 we will have

(3.2.7) AA=(tr A2-n)A

Now taking Laplacian of (3.2.4) and taking into account (3.2.1 - 3) and (3.2.7) we get the

following formula for A3X .

A3% = 8[n(n+ 1%+ rA?]xx
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+ 4[AMrAY) +2 AD2 +2(n+ Dir A2 + 2 tr A4) Eg

- 8 (tr A¥)(xE' + Ex!)
(3.2.8)
- 4[(V(@r AY)x* + x(V(tr A2)]

+ [EvaAd+ nA V@AY e + E[3VrAY) + 12A (V@AY

- 8 +1? Yeel ~16(1+trA?) T (Ae)Ac) ~ 8 Y (A%)(A%,)!

+8 21; (Ve AX][(Ve, Ae]

Each sum in this formula is independent of the frame chosen.

Suppose now that M" is mass - symmetric and of 3 - type via X so that X, = 1—11—2

and
(32.9) A% + aA% + bAR+ c(xdt- =5 ) = 0,

where a, b and c are constants.(They are equal to elementary symmetric functions of three

cigenvalues of the Laplacian which arise from the decomposition X = X, + )’c'p +X +X,.)

Using (3.2.1), (3.2.4) and (3.2.8) we find different components of (3.2.9) such as xx*
component, EE' component, xE* + Ex' component etc. For example, comparing x&' + Ex
components of left and right hand side of (3.2.9) we see easily that tr A3=0. Comparing

t

XX components in (3.2.9) we obtain

8(n(n+ 1)*+ trA%] +4an (n+1) + 2bn+ c(1--1),

and consequently tr A%= const . Similarly, from &&'component of (3.2.9) we have
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4[AMAY +2 (TAD? +2(m+ A2 + 2 wAY +4a IAI% ¢ L -0,

and hence tr A*= const as well. We conclude,therefore, that for the dimension n < 4
minimal spherical hypersurface which is of 3 - type and mass - symmetric via X must be
isoparametric, i.e. its principal curvatures must be constant.

Because of this obvious importance of isoparametric spherical hypersurfaces for

our investigation we consider next some examples.
Example 3.2.1. Cartan hypersurface

According to Cartan theory ( [Car 2, 3] ), there is only one (up to congruences of
the sphere) compact minimal isoparametric hypersurface M> of S* with three principal
curvatures. This hypersurface is a tube about Veronese surface and is usually called the

Cartan hypersurface. It is a homogeneous space of type SO(3)/Z, x Z, and an algebraic

manifold whose equation is
2x2 +3(xf+x%)xS —6(x§+x§)x5+ 3V3(x? - x2)x, +6V3xx)%y = 2,

with fo =1 (see Ch.1, Sect.4 ). The Cartan hypersurface has three distinct principal
curvatulres k,= -3, k,=0and k; = V3 , hence by the Gauss equation the scalar

curvature is equal to 0.
We are now going to show that the Cartan hypersurface M3 = SO(3)/Z, x Z, is an

example of minimal spherical hypersurface which is of 3 - type and mass-symmetric via X.
Let {e;},i=1,2,3 be an orthonormal basis of principal directions. Then, for the Cartan

hypersurface, equations (3.2.1) and (3.2.4) become respectively
(3.2.10) AR = 6xxt — 2 (el + el + eqe})

(3.2.11)  A2XK = 48 xx! +24EE  — 12 (el + el ) — 16 (ee] + ee5 + €5€5) .
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In [Car 2], Cartan also computed the connection of M3, namely

0 =-0

1,0)§=%m2andmf = ,

where the connection forms are computed with respect to the basis {e.} of principal
directions. Substituting this into (3.2.8) we obtain

(3.2.12) AKX = 432xx'+ 624EE" - 408 (e, + eqel) -80(eel + el + eqel)
From Lemma 1.3.1 we have 1= xx'+ EE'+e.e] +esel +esel , and combining with
(3.2.10 - 12) we have

(3.2.13) A3X - 34A%% + 328A% - 960(X-1)=0.

W =

It follows that the Cartan hypersurface is mass - symmetric and of 3 - type via X since it
cannot be of 1- or 2 - type by the classification in Section 1 of this chapter. Moreover, we
easily find the three eigenvalues determining the order tobe A,=6, A, =8 , A, =20 .
As a byproduct, we found three eigenvalues of A for the Cartan hypersurface. As a matter
of fact, the spectrum of the Cartan hypersurface was computed in [M-O-U] , from which

we determine its order via X to be [2, 3, 8] .

Note also that, according to [H-L], the Cartan hypersurface arises from the isotropy
representation of the symmetric space of rank two which in this case is SU(3)/SO(3) .
Namely, the Lie algebra su(3) decomposes into a direct sum of the subalgebra so(3)
and the vector space m which is identified with the set of 3 x 3 real symmetric matrices
with zero trace, m = {iAl Ae SM(3), trA=0).Using <X,Y>= -tr (XY) asan

inner product on su(3) , this decomposition is orthogonal, and SO(3) acts isometrically on
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the Euclidean 5 - space m by inner automorphisms (see [F], [Ko], [M-O-U], [Ce-Ry], p.
298 ). The Cartan hypersurface is the orbit of the point

i 00
x=é 0 -i 0 |em
00O

Example 3.2.2. Minimal isoparametric hypersurface in S°

with 4 principal curvatures

As discussed in Section 4 of Chapter I , there is only one minimal isoparametric

hypersurface M* in S° with four curvatures; it is the image of the following map

S'x 83, S°cES

(3.2.14) 0,xy) > z=¢e9Costx+isinty)

for t = t/8 . In general, (3.2.14) defines the isoparametric family studied by Cartan [Car 3]
and Nomizu [N 1-2] . It is an algebraic family defined as [Car 3]

2
cosdt = (xZ+x2 +..+x2)% - 2(xF —x2 - 2x;x5+ 2x,%¢)

2
=2 (2x3%4 — 2X Xg — 2x2x5)2 , Z x{ =1

To parametrize the Stiefel manifold S3, choose x to be an arbitrary vector of the
sphere s2 ,i.e. x =(cosa cosP , cosa sinP , sina) , and choose vectors u and v of §2
that span the plane perpendicular to x, e.g. u = (-sinB, cosp,0) and v=uxx,
thus v = ( sino cosp , sina sin , - cosa ) . For any vectory L x, y =cosp u +sin¢ v,

so y= (-sinf cos¢ + sina cosp sing, cosP cos¢ + sina sinf sind, - cosa. sind )
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Denote r=cost and s =sint . Then from (3.2.14) and the consideration above we have

the following parametrization of M*

z) =rcosB cosa cosP - s sinB (- sinf cos¢ + sina. cosP sin )
z,=rcos0 cosa sinf — s 5inB (cosP cosd + sina sinP sing )
zy=r cosO sina + s sin® cosa sind
(3.2.15) z,=r15inB cosa cosp + s cosO (- sinf cosp + sinc cosP sing )
zg=rsin0 cosa sin + s cosB (cosP cos¢ + sina sinP sing )

zg=rsind sine — s cosO cosa sind

d ) d d

We differentiate z to get basis vector fields 81=a—e- » Oy = Py 83=£ , Of = 6_4) as
follows
:—9 = ( —rsinB cosa cosp — s cosB (- sin cos¢ + sina cospP sing ),
— rsin® cosa sinB — s cos@ (cosP cos¢ + sina sinf sing)
— rsin@ sint + s cosO cosa sing
(3.2.16) r cosO cosa cosP — s sin@ (- sinP cos¢p + sina cosP sing)

r cosO cosa sin — s sin@ ( cosp cosd + sina sinP sing)

r cosO sina + s sin@ cosa sing ) .

NOtetha aa_e =('Z4,’ZS,"Z69 zl, 22’ z3)

58_ = ( —cosP (rcosd sino + ssin@ cosa sing ) ,
¢ —sinp ( r cos sinoe + s sin@ cosa sind ) ,
r cos@ coso. — s sin@ sina sind ,
(3.2.17) cosp (—rsind sinat + s cosO cosa sind ) ,

sinP (—r sin® sinat + s cosO cosa sind ) ,
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rsin® cosa. - s cosO sino sing ) .

3 = ( sinP (—rcosB cosa + ssind sina sing ) + s sin® cosp cosd ,

— cosP (- rcosB cosa + s sind sino sing ) + s sind sinp cosd , O ,

(3.2.18) ~ sinP ( rsin® cosa + s cosO sina sing) — s cosd cosP cosd ,
cosP ( rsin® cosa + s cos@ sina sing) — s cos® sinf cos¢ , 0 )
% = ( —ssin@ (sinP sing + sina cosP cosd) ,
— §5in@ (- cosP sind + sina sinP cosd) ,
s sin@ cosa cosd ,
(3.2.19) s cosO ( sinP sing + sina cosP cos¢) ,

s cosO (— cosP sing + sinc sinP cosd) ,

— s cosO cosa cosd )

We compute componenets of the metric tensor as g;= < 9, Bj > to get the following

matrix G = ( g; ) of the metric tensor

1 2rs sin¢ -2rs cosa cos¢d 0
2rs sin¢ 2452 sin2¢ -s%cosa cosQ sin¢ 0

. 2.2 2 .
-2rs cosa cosd -s2 cosa cosd sind s2+ cos2a (r2 -s“sin“¢p) -s”sina

0 0 -s2 sino s2
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The determinant of this matrix is computed to be det G = r?s%(1 - 4r’s%)cos’a. . We find
the inverse matrix of G to be G°l =$B ,1.e. g‘“ = “Tlg-bu , where B = (bij ) is symmctric

matrix with the following entries
b!! = s2cos?a , b'%2=b?' = — 2rs%sing cos?ax , b'® = b*! = 2rs>cosat cost
b =b*= 2rs>sina cosa coso , b2 = s%cos?a. [ + s%(1 - 4r%)cos2d)] ,
b2 = b2 =5*(1 - 4r%) cosa cosd sind , b# =b*2= s*(1 - 4r%) sina cosa cosd sing ,
b¥ = 22 + s%(1 - 4)sin%g] , b%* = b = $%sinac [ + sX(1 - 4r)sin’9)]

b# = s2(1 - 4%?) + s¥(dr2- 1) cos? sinZo. + (12 - s2)(1 - 4r%s?) cos’ar .

Next we compute Christoffel's symbols. Nonzero ones are given as follows

. 2. 2
I} = 1t sinmcosd , Lo =1h = ZC5T coso,

3 327 7 1 larks 1 - 4r’s

2
- : . 1 1 1s(r’-s :
; _ s s sina cosa sind 34 =1 4= —-(—;;-“ S cosa sind

33 1-4r"s 1-

.- I -T2 =8

3= 1a1= “f sinmcosy , Lis= 1y = cosd ,

I, =147 —(——észrz's inc si 2, =13 =—s—(—23}2r2's sing cos¢
n=13n= 1 7 sina. singcosp , 1 24 = 1 42 L ars ,

2% s . 2sh .2
I-%3 = sinacosa [ 1+ 2—siﬁ1§?sm2¢] , I7? =n3= - %7:-} sin“¢ cosa. ,

= 1-4r%s
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2 2
I = - 2s - S 1 i - 82 f2°S :
33 - 4% sina sing cos¢p | 334 =] 433 = -—(——;}l ol sin cosd ,

I, =1T%= -tcosp , I} =T% =- sing [s?+ (- s®cosa]

IS cosa
S : .
F:,, = Fﬁl = | tanasing , F;z = - sin¢ cos¢,

15 =1%, =—-—l—[sin2¢ + lﬁ.('%%sinzacoszq)],

cosa

2,2 2 2

S - . -

I “24 =] “‘42 =] 4rss tana. cos?¢ , I 3'3=sm¢ cosdp [ 1- —2—2-1'48 cos?a]
- -4rs

2.2 2
F;, = F:3 = s—%fﬁ- sina sin¢ cosd

1-

We want to find the shape operator A of the hypersurface and the basis of principal

directions . But first we need to find the unit normal direction & . It turns out that § is

obtained by differentiating z with respect to t , i.e. take § = — -g— . So we get
t

E= ( cosP (s cosd cosa +rsin@ sinc sing ) — rsind sinP cos¢ ,
sinP (s cos® coso. + r sin® sina sing ) + rsin® cosP cosé ,
s cosO sinot — rsin® cosa sing
(3.2.20) cosp (s sin® cosa — r cos sina sing ) + rcos@ sinP cosd ,
sinP (s sin® cosa — r cosd sina sing ) — rcosd cosP cosd ,

s sin@ sinot + rcosO cosa sing ) .

For every i,j=1,2,3,4 we can compute < A(9)), ;> =-< Vaié, d; > and find the

matrix of A in the basis {d,} . We get
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f’\(a)=—2—;'2"°‘2 {-2rs0, + singa, - SO
V=1 arks IS 0; + sing d, cosaas-tanacosw‘;},

A(a)= r2'82 { . ) s 2, r2
D= T a2 sm¢1+r(cos¢ 2r')0,

sind cosd 3, +
cosa.

+ 1§. tana sing cos$ d, } .

r2.s2

A@@;) = 1-a%7 {- cosa. cosd 0, + gcosa sin¢ cos$ 0,

+ ;(sinch - 2r2)a3 - ;1; sinou(r? - s2 sin¢) d, }
A@,) =% d

Note that even though A is symmetric operator, the matrix of A in this basis is not

symmetric since {d;} is not an orthonormal basis . Minimal hypersurface in the family

‘JZHE 1 22
2 .

,$=sing = =5

(3.2.14) is obtained when t = 1t/8. In that case r = cos g =

oo

Principal curvatures of minimal M* are given as follows :

kj=V2+1 , k= -v2 -1, ky=v2 -1, k,=1-+2

That follows from the Cartan's identity (1.5.1) or Munzner's Theorem 1.5.2 . Next we

find the orthonormal basis of principal directions by diagonalizing matrix of A in the basis

{9,}. We get the following principal directions corresponding respectively to the curvatures

k), k), ks, k4.
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_V4+2\I_2' ) .. 0 cosp 0 )
€= 2 {ae—SIn¢aa+co_w£ +tanacos¢£} ,
\/4-2\/7 d ., 0 d
om T (g sman ¢ Comag v e )
0 sing o . 0
=V42v2 g , S0 9 9
€, V2 { cosq)a‘Jl o 3B + tana sin % } .

To check if M* is of 3 - type via X or not we find connection coefficients with respect to the

basis {e;}. For example, we compute

wf(c3) =< V%cl, e,>=0, mf(e,,):‘]Z-ﬁ , e €tC.

But combining the equations of Gauss, Codazzi and condition (3) of Theorem 3.2.1 below
it follows that in order that M* be mass - symmetric and of 3 - type via X we must have

[ofteg= (o} =232 , and [ofenl= [odtep’= 252

Therefore, M* is not mass - symmetric and of 3 - type via X .

Now we prove the following characterization of minimal spherical hypersurfaces

which are mass - symmetric and of 3 - type viaX .

Theorem 3.2.1 Let x : M" = S™! be an isometric immersion of a compact
manifold M" as a minimal hypersurface of S"*! . If X is mass - symmetric and of 3 - type
then
(1) wA=wA’=0,

(2) trA? and tr A*are constant ,
B) @ (VxA)? = < A%X, AZX >+ p< AX, AX>+ <X, X>, XeTM

where p and q are constants (depending on the order of M, tr A? and tr A%).
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Conversely, if (1), (2) and (3) hold then M is mass - symmetric and of 1-,2 -, or 3 - type

~

via X .
Proof. Suppose that X is mass - symmetric and of 3 - type so that (3.2.9) holds.
As before, from xE! + Ex! component of (3.2.9) we get tr A3=0, and xx! and EE!

components give respectively

(3.2.21) 8(n(n+1)%+ rA2] + dan(@+1) + 2bn + ¢ 2L =0,

n+2

(3.2.22) 8[(rA®)% + (n+1)(tr A?) + r A% + da(rA?) -c L _o,

n+2

Obviously tr A2 and tr A% are constant, and (3.2.8) simplifies to

A3% = 8[n(m+1)%+ wA2]xx'+ 8[(rAH?+ (n+1)(rA?) + r AYJEE!

(3.2.23) - 8@+ 1)? Yeel —16(1+1rA?) Y (Ae)Ae)'

- 8 (Ak)A%)  + 8 ) [(Ve,Ael[(Ve Al
1 i,k

We readily observe that A3%X ,A%X, AX,I are all normal to hypersphere S™1 ( follows
e.g. from the proof of Lemma 1.5.1 ). Next, we find X Y'+ Y X*'component of (3.2.9)
for arbitrary pair X , Y of vector fields on M. Observe first that

Y 6(Ve, A, X) g((Ve,Aley V) = 2 866 (Te, AX) (e Ve, AY)
ik ik
= Z g(VxA)ex, (VyAley)
k

= tr (VxA)o(VyA)

by the Codazzi equation and symmetry of the operator Ve A
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Now applying g (- , XY'+ YX') to (3.2.9) and taking into account (3.2.1),

(3.2.4) and (3.2.23) we get
- 8n+1)<X,Y>- 16(1+rA) < AX,AY> - 8 < A2X, AZY >
+81r (VxA)o(VyA) - 4a< AX,AY> — da(n+1)<X,Y>

- 26<X,Y> -c = <X,Y> = 0 , fromwhere
(3.2.24) tr (VxA)o(VyA) = < A2X,A2Y >+ p< AX,AY > + ¢< X, Y>,

where p and q are constants given by

(3.2.25) p=35+2(1+wA)

(3.2.26) q

b c
(n+1)%+ %(n+l) * 3t 3 -

It is easy to see that (3.2.24) is equivalent, by linearization, to

(3.2.27) r (VxA)? =< A2X, AZX > + p< AX, AX >+ ¢< X, X> ,

for any X € TM . Therefore, we proved necessity of the conditions (1), (2), (3) .

Conversely, given (1), (2) and (3), we have to show that we can find constants a, bandc

so that (3.2.9) holds . That boils down to solving the system of the following four

equations (3.2.21), (3.2.22), (3.2.25) and (3.2.26) for a, b, c . This system of four linear

equations in three unknowns can be uniquely solved if the eliminate is zero, i.e.
(3.2.28) rA* + prrAZ + qn + (n-wAH)wAZ=0.
But this formula is always satisfied under our conditions (1) - (3), by virtue of

Ar A?) = tr (AA)A - IVAI2

N —

0=
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( cf.[N-S], p. 369) . Therefore P(A) (X -X,) = O, where P(t)= £ +at’+ bt +c.

Note that M need not be exactly of 3 - type, i.e. can be of 1 - or 2 - type, for example if
there is a factor P' of P of degree 1 or 2 so that P'(A) (X-Xy)= 0. ¢

We now prove the following characterization of the Cartan hypersurface .

Theorem 3.2.2. Let x : M™ — S™! be a compact minimal hypersurface of S™*!
of dimensionn <5 . Then X is mass - symmetric and of 3 - type if and only if n =3 and
M3= SO(3)/Z, x Z, is the Cartan hypersurface .

Proof. From the Example 3.2.1. we know that the Cartan hypersurface is mass -
symmetric and of 3 - type via X . Conversely, suppose that X is mass - symmetric and of
3 - type. We will show that M" is necessarily isoparametric. From the computation carried

out before that is already clear for n < 4 . If we compute A(tr A™) we obtain

A(tr A™) = m (tr A2-n )(tr A™)
(3.2.29)

j k
- XX mAc..cAoVeAcAs . cAoVeA0. oA) .
i jk

In particular, for m = 3 we have

(3.2.30) A(r A= 3(rA2-n)(rA®) - 6 E tr[(VeA)2o Al

Since tr A3= 0 by Theorem 3.2.1 , we will have ( {e;} is chosen to be the basis of

principal directions )

0 = Zu[(veiA)%A]
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Y 2(Ve A A &)
i,k

Y (Ve A0y, &)
i,k

z g((VciA)(Xkek), (VeiA)ek) , since VciA is symmetric
ik

= Z Ay g((VciA)ek, (VeiA)ek) , since VeiA is a tensor
ik

Z A 8((Ve Ade;, (Ve Ade) , by Codazzi equation
ik

Zk‘, Aitr (Ve AY

= 3 M(Af + pA2 +q) , by condition (3) of the Theorem 3.2.1
k

=wA’+puAd+ qurA

= tr A’

Therefore, conditions (1) - (3) of the Theorem 3.2.1 imply also tr A’ =0. We conclude
that for n < 5 the hypersurface M has to be isoparametric. If M has only one curvature it
has to be umbilical in S**! and therefore (since it is minimal) great hypersphere which is of
1 - type via X . If M has two distinct principal curvatures and is minimal it must be Clifford
minimal hypersurface M= M, , = SP( E) X S“"’(‘\/%12 ) ([C 1], pp 87, 97 ). But
the product of spheres that satisfies the conditions of our Theorem 3.2.1 must be of 2 -

type as can be seen from the following argument.

Suppose A, and A, are the two principal curvatures of multiplicities m; and m,

respectively . Then trA =tr A®=0 imply mA, + myA, = mlkf + mzx; =0 . Also, we
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have 1 + A,A, =0 (by e.g. (1.4.1) ) . Using this to eliminate m;, m, and A, we obtain
l% =7Lf=q/p.'l'hus, p=q=n22 , A =tlandA,=%1.So, n=p+qhastobe
even,p=n-p, p/n=1/2 and S¥( E) X S“‘P(‘\/% )= SP(‘\/%_) X SP(\/%_) . This
hypersurface is mass - symetric and of 2 - type by Lemma 3 (case II) of [B-C] forn=2p .
If M has three curvatures, then according to the classification of Cartan M is the Cartan
hypersurface which indeed is mass - symmetric and of 3 - type via X . If M has four
principal curvatures, then the result of Takagi [T 3] classifies such hypersurface as the one
considered in Example 3.2.2 which is not of 3 - type via X . Finaly, M cannot have five
principal curvatures by the result of Miunzner (Theorem 1.4.3). This completes the proof of
the theorem. 4
Remark. The proof above does not a priori exclude the case n = 1. Actually, if
n = 1, there are no minimal curves in S2which are of 3 - type in SM(3) via X~ because
such a curve is automatically a great circle of S2 (totally geodesic), and therefore of 1 - type
via X .Namely, if x : C = $2 is a minimal curve parametrized by the arclength s, we
have Ax =x, i.e. x"+x = 0 and hence x(s) = asins + bcoss , a,be E3. From
<x,x>=1 weget lal=Ibl=1 and <a, b> =0 . A spherical curve C with these
properties is the great circle lying in the plane perpendicular to the (constant) vector

X'Xx X =axb.

Theorem 3.2.2 gives a new characterization of the Cartan hypersurface in terms of
the spectrum of its Laplacian . For other characterizations see [P-T], [T 1], [Ki-Na] .

In dimensions greater than S there are other examples of spherical hypersurfaces
which are of 3 - type and mass - symmetric via X . In fact every minimal isoparametric
spherical hypersurface with exactly three different principal curvatures is of 3 - type (see
below). It would be interesting to decide if any spherical hypersurface which is of 3 - type

and mass - symmetric via X is necessarily isoparametric.
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Lemma 3.2.2. If M"c S™! is a compact minimal isoparametric hypersurface

which is mass - symmetric and of 3 - type via X then M" is necessarily homogeneous with
v =3 or 4 distinct principal curvatures.

Proof. First, we saw before, from the proof of Theorem 3.2.2, that if v =1 or 2

then X is not of 3 - type . If there are six distinct principal curvatures, then by Theorem

1.4.2 the curvatures k; have the same multiplicities and they are given as

cote,cot(6+6£) cot(6+ ), cot(6+ ),cot(0+ ),cot(6+ ) .

From minimality condition we obtain 6 = l_nf. and then find curvatures to be (in descending

order)
2+\l§ ’ 19 2-'\/3 ’ _(2_'\/3) ’ -1 ’ —(2+\/-§)

We see that these hypersurfaces satisfy conditions (1) and (2) of Theorem 3.2.1 and to
determine if they are of 3 - type and mass - symmetric via X one needs to check the
condition (3) . It is likely (but still not known) that all isoparametric spherical hypersurfaces
with six curvatures are homogeneous. That is proved when m = 1 ( [D-N 1] ), classifying

such hypersurface as G,/SO(4) , but not yet form =2 .If v=4,then

k,=cot® , k,=cot (8 +§) , ky=cot (0 +§) . ky=cot (6 +37") ,
and there are at most two different multiplicities m, (of k, and k; ) and m, (of k, and k, ).
Then from tr A=0 and tr A>=0 we get respectively

cos 20 sin 20 m
m - =0, ie. tan®20 = -1 |
lsin 20 m2cos 20 my
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c0s26 (4 -5in’26) _  sin20 (3 + sin?20)

T sin20 2 cos%20 =0, from where
m 3 +5in%20 m
621 = tan*20 “sin?20 Let r= 621 . Then from these two equations we get
3+4sin®20 .. 4-3r 2 4-3r
r = r24_ <in226 , which implies sin?20 = T + 1 bhence r =tan“2 = — 3 -

From the last relation we have r= 1, ie. m; =m, so multiplicities of all four curvatures

are equal . We also get 6=g,andfourcurvaturestobe k1=\/§+l , k2=\[§ -1,

ky=1-v2 , k,= - V2 - 1. Therefore, as argued in Sect.4 of Ch.1, Theorem 1.4.4 of
Abresch implies that the common multiplicity of curvatures is 1 or 2 . If the common
multiplicity is 1 than M has to be the hypersurface considered in Example 3.2.2 which is
not of 3 - type via X . If the common multiplicity is 2 , then M? is minimal homogeneous
hypersurface in S of type Sp(2)/I‘2 . In the next lemma we show that all minimal

isoparametric spherical hypersurfaces with v = 3 are indeed of 3 - type via X . )

Lemma 3.2.3. If M"c S™! is a compact minimal isoparametric spherical
hypersurface with exactly three distinct principal curvatures then M" is mass - symmetric
and of 3 - type via X .

Proof. From (1.1.5) and the Gauss equation (1.1.27) we obtain the following for
principal directions e;, €, and corresponding curvatures A, A (i2k)

Re; €, €0, €)= 1+ AA = €(0(e) — ey(0y(e))
+ 2 ofeolte) - 2 oj(e)ole)
) )

(3.2.31)
- Y oleoie) + X oleoie)
j j
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For an isoparametric hypersurface, the Codazzi equation (VeiA)ck = (VekA)ei is

equivalent to the following

(3.2.32) A~ ofe) = A-A)ale) , forevery ijk
and hence

(3.2.33) o) =0 , for A=Aj=h.

Therefore, if A;# A, formula (3.2.31) reduces to
(3234 1+A4k = - X eleie) - X oleie) + X o) -
J J j

All four minimal isoparametric spherical hypersurfaces with three distinct principal
curvatures have curvatures equal to - V3,0 and v3 , and the common multiplicity m
satisfies m € {1,2,4,8) ,sothat r A = tr A3 = 0. In order to prove that these
hypersurfaces are of 3 - type and mass - symmetric it is enough to check condition (3) of

Theorem 3.2.1, which can be also written as

(3.2.35) tr (Ve AP =27 +p Ai+a

where e; is a principal direction ,A; corresponding principal curvature, and p and q

constants. We transform tr (V ciA)z as
(3.2.36) tr (Ve,A) = Z‘, O - A)PLjE))
+)

Let e, ... , €, be the set of principal directions that correspond to - V3 eigenvalue,

€+l » - » €2 the set of principal directions that correspond to O eigenvalue, and



80

€2ms+1s - » €3 those corresponding to V3 eigenvalue. We use the boldface type to denote

the following set of indices

1=(1,..,m}, 2={m+l,..,2m} and 3= {2m+],..,3m} .

Let ie 1, ke 2 be any two indices so that e;, e, are two principal directions
corresponding to the curvatures - V3 , 0 respectively . Then from (3.2.34) using (3.2.33)

we obtain
(237) 1= 1+MA = - Zam{(ei)m;(ek) - Z;m{(ei)og(ej) + goﬂ;(ek)m,i‘(cj) :
j€ j€ je
From Codazzi equation (3.2.32) we get
V3 afe) = -V3 i) . 2V3aie)= V3 , sothat

(3.2.38) wie) = o) . i) = % wf(e)

Now in (3.2.37) we express everything in terms of w‘i‘(cj) using (3.2.38) and simplifying

to get

(3.2.39) Y [oke)? =1 , forevery i€ 1, ke 2
je3

By a similar computation, using expressions for 1 + A;Ay ,where i€ 2, ke 3 and,

respectively, i€ 1, ke 3, we obtain

(3.2.40) Y (e =1 , forevery ie2 ke3
jel

(3.2.41) i)l = + . forevery i 1L ke3 .
€2
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Next, we compute tr (VeiA)2 from (3.2.36) to get forie 1:

r (VoA = 3 25 [P + 12 3 [ake)P
£ P

= 3m+12%‘- = 6m .

Similar computation can be carried out for i€ 2 and ie 3, yielding the same result, so

(32.42) tr(VeA)? = 6m , forevery i=1,..,3m .

Therefore, we see that (3.2.35) is satisfied with p=-3 and q=6m. We conclude that all
minimal isoparametric spherical hypersurfaces with three curvatures are of 3 - type viax .

As a matter of fact we can show that

3~ 2~ ~ ~ _1 =
A°X + aA“Xx + bAX +c(x-3m+2) =0

is satisfied for a = —(10+24m) , b = 4[3m+1)(15m+6)-2] and
¢=-=48m (3m +1)(3m + 2) , so that the three eigenvalues of the Laplacian arising from
the decomposition X = X,+ §p+ iq + X, are Ap = 6m , kq = 2(3m + 1) and
A=40Cm+2) . .
Remark. From the above we know three eigenvalues of any isoparametric
spherical hypersurface with three curvatures. Even though the spectrum of the Cartan
hypersurface is known ( [M-O-U] ), not much information is available about eigenvalues of
the Laplacian for other isoparametric hypersurfaces with three curvatures. Also, it is known
that any minimal spherical hypersurface with tr A2=const has n, tr A%and n+trA? as

three eigenvalues of the Laplacian ( cf. [M-O-U] ). See also [Ko], [Mu] .
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In order to chech which minimal isoparametrtic spherical hypersurfaces (or at least
homogeneous ones) with four or six principal curvatures are mass - symmetric and of 3 -
type via X , one has to check the condition (3) of Theorem 3.2.1 . That can be done (for
homogeneous ones) by the methods of [T-Ta], considering the action of the Lie group
K = Sp(2) or G, on the Euclidean space m arising from the Cartan decomposition
g =k +m of the corresponding orthogonal symmetric Lie algebra (g, k, 0), but the
computations involved are rather long. First, one has to choose a point Pe a (a2-
dimensional abelian subspace of m ) so that the orbit of P under the adjoint action of K is
minimal in sphere. That requires some manipulation with the roots of the Lie algebra
determined by a . Second, one needs to find the principal directions for the shape operator
and compute the connection coefficients. The shape operator of an orbit hypersurface is
givenby AX = -[Y, ] , where & is the unit normal to the hypersurface in sphere
(& is perpendicular to P, and & and P span @ ),and Ye k is a vector such that
X = Yp=[Y,P] (cf.[T-Ta]).

Also, it would be important to resolve if any minimal spherical hypersurface which
is of 3 - type and mass - symmetric via X is necessarily isoparametric. Techniques used in
this chapter can be modified to study hypersurfaces of a projective space which are of low

type via the first standard embedding of a projective space.



CHAPTER 4

SUBMANIFOLDS OF E™ WITH HARMONIC
MEAN CURVATURE VECTOR

In this chapter we discuss certain aspects of the following problem proposed by
B.Y.Chen[CT7].

Problem: Classify or characterize submanifolds x : M" — E™ which satisfy
(4.1) AH=0,

where, as usual, H denotes the mean curvature vector of the immersion and A, the
Laplacian of M acting on smooth functions, naturally extended to act on E™ - valued maps .
Obviously, every minimal submanifold in E™ satisfies AH =0, so the real
problem is if there are other submanifolds, besides minimal, that satisfy this equation. In
view of the formula A x = - n H, the equation (4.1) becomes A% =0, that is, we want to
study immersions which are biharmonic (but not harmonic).
The well known theorem of Takahashi (Theorem 1.5.1) asserts that if Ax = Ax then
M is minimal in E™if A =0, or M is minimal in hypersphere of E™ centered at the origin, if
A >0 (A <0 cannot occur here ). An analogous problem to this would be to consider the
equation AH = AH and see what it implies for submanifold M. In particular, for A =0 we
have the problem above. If M is compact , AH=AH implies A(Ax —Ax)=0 , so we get
Ax — Ax = ¢ = const . Further, if A = 0, by integrating we have ¢ = 0, and therefore

Ax =0, which means that the immersion M is minimal. But it is well known that there are

83
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no compact minimal submanifolds of E™. In case A # 0, we get A( x +¢/A) = A( x +c/)A),
so submanifold is minimal in hypersphere centered at - c/A (i.e.itisof 1-type).Itis
easy to see, using induction, that condition A¥H = 0 ( k nonnegative integer) is possible
only on a noncompact manifold (cf. [C 4], Corollary 8.7.2., p. 302 ), and that is what
makes our problem difficult since analysis on noncompact manifolds is not so well
understood. While constructing examples (if they exist ) of nonminimal submanifolds
which satisfy AH =0 seems to be reasonably difficult , we prove that under various
additional conditions on the immersion x , a submanifold satisfying (4.1) is necessarily
minimal. Let us note that there are known examples of submanifolds in pseudo - Euclidean
spaces satisfying AH = 0 [Ho] . In fact, Houh gave characterization of spacelike surfaces
in pseudo sphere satisfying (4.1) in terms of Weingarten maps.

First we consider a curve case (n =1).

Theorem 4.1. If x: C— E™ is a curve with mean curvature vector H satisfying
AH =0 , then the curve is a straight line, i.e. totally geodesic in E™ .

Proof. Let s be a natural parameter of the curve .4Then the Laplacian becomes
A = - d*ds?, and we have 0 = AH = - A = - g—s;’f- . Hence, x has to be cubic

polynomialins, x = %a s+ %b s2+ ¢s + d ,wherea, b, c,d are constant vectors.

Since s is the natural parameter we have

dx dx

ds *ds”

1=<
= <as’+bs+c,as’+bs+c >
= lals* +2<a,b>s> + (2<a,c>+I1b)s?+2<b,c>s+lcl

On the right hand side we have a polynomial in s, so we must have a=b=0, lcP=1.

In other words, x(s) = cs +d with | ¢ =1, and therefore the curve is a straight line . ¢
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From now on we assume that the dimension n > 2 . We use fundamental formula

(2.25) of B.Y. Chen

(2.25) AH= APH + 1A, IH + a(®) +tr (VAy) ,

where Cn+l IlH , @ (H) = ﬁ tr(AHAt)Cr , and tr (ﬁAH) =fr (VAH) + U'(ADH ) .
r=n+2

{e}, ... s € €n4ps oo » € ) Will denote an adapted frame with the usual range for indices.
The mean curvature o is defined by H=a e, . Now we proceed with the computation of

APH and r (VAy).
n
APH = ) ( Dy, e;H - DeDe;H )
i=1
n
= Z [ Dveiei(aenﬂ) — De¢,De;(aen,1) ]
i=1

n
= Z [(Ax) epyy + @ Dvcicienﬂ - 2(eja) Deien+l -a DeiDcienH] ,
i=1

so that
< APH, €1 > = A0 — Z < De;Den+1s Cnr1>
i

(4.2) = Aa + Y, <De€py» Denr >
A

= Ao + all De,, 2

Also, we have

r (VAp) = tr (VAp) + r (Apy)
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n
= z [(VeAn)e; + Apnsil
=

= Z [(Ve (@A, )€ + Ap,, (0en1)i )
i=1 !
4.3)

n
= Z[ﬂcia)(Anﬂei)+a(VeiAn+l)ci] + oAy,

2A,,(Va) + atrApe  +0 D (VoA )e;
i=1

naVo + 2atrApe  + 2A,,,(Va) ,

by virtue of the Codazzi equation

4.4) (VxADY - (VyADX = Ap e Y — Ap e X .

Namely, for any X € TM we have (see also [C 6])

Z <A(VeAnnle, X> = 2 <ep (Ve An )X >

B ; <e, (VxAp e + ADcilex B ADX“'m‘lci >

= r(VxA,,) + ; <e, ADeianX>

= Vx@rA,,) + <trADen+l,X>

<nVoa + trADcml,X>

Assume now that A H=0 on a manifold. Then by separating off tangential part , normal

part in the direction of e,,,; and normal part perpendicular to e,,,, we get respectively
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tr (VAR =0 ,
<APH,ep > +a A, 17 =0,
t(AgA,) + <APH,e,>=0,r=n+2,..,m ,

or, due to the calculations above we see that the condition AH = 0 is equivalent to the

following system of equations

(4.5) 2A ,,(Va) + noVa + 2oztrADen+1 =0,
(4.6) Aa + o liDey 2 + all Ay, 12 =0,
47) otr(A,,A) + a<APe, ,e>- 2<Dygen.6>=0, r=n+2, .., m

Because of the equation (4.6) we readily obtain the following lemma .

Lemma 4.1. Let x : M® = E™ be an isometric immersion and assume that the
mean curvature o is constant . Than if AH =0 it follows that & = 0 , that is the
submanifold is minimal.

System (4.5) - (4.7) in general is difficult system of PDE's to solve, but if

De,,; = 0 , in particular if M is hypersurface, the system simplifies to (last equation is not

present in hypersurface case )

4.8) A ,(Va)= —gaVa
(4.9) Ao + o ll A,,+1_||2= 0
(4.10) atr(A,,A) =0 , r=n+2,..,m

From the equation (4.8) it follows that on the open (possibly empty) set {Va#0}ofM,
Va is a principal direction of €y, and - % o corresponding principal curvature .
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Theorem 4.2. Let x : M" — E™! be a hypersurface of E™! with at most two
distinct principal curvatures. Then the condition AH =0 implies H =0, that is M is a
minimal submanifold of E™*!.

Proof. For a hypersurface the condition AH =0 is equivalent to the system

4.11) Ao + allAIR=0 ,

(4.12) A(Va) = -7aVa .

Let us also recall the Codazzi equations in the form
(1.1.29) A - M) oie) = )y , %]
(1.1.30) A - M) fe) = - MY af(e) . imjrk#i.

Let U be an open set of M defined by U= {pe M|Vo?#0 atp},andlet {¢;},i=1,..n

be the basis of principal directions on U so that e; = “g—g" is the eigenvector of the shape

operator corresponding to eigenvalue A;=-— 2o . Then e =0 forj=22.If the

multiplicity of A is at least 2, i.e. if A;=A for some i 2 2 then e, = 0. That follows
from the equation (1.1.29) putting j = 1 . In that case o = const , and by Lemma 4.1 we
conclude that o =0 on U and as well on entire manifold M. If the multiplicity of A, is one,

then since there are at most two distinct principal curvatures and since tr A =na. we have

3no
(4.13) M=-70, A=l3=.=k-= TV

In the rest of the proof, all computations will be done on the set U .

n+8)nZa? ,
We compute Il A I2=1tr A% = (—4(—3‘_T . Since A;#A; and e;0 =0 forj2 2,

we get from (1.1.29)
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(4.14) wie) =0, forall j=1,..,n , ie. Vee1=0,

which means that the integral curves of e, are geodesicson U. Forj=1andi22 (1.1.29)

gives (Aq-2y) mli(ei) =eAj, with Aj-A; =— 2?(%21_))2 . Therefore,

(4.15) i) = ehi | _3@®  giss
}'l'li (n+2)x

For j,k22 ,j#k andi=1 wehave Aj-A=0 # M- A so the formula (1.1.30)

yields
(4.16) o) =0 , for jk22,j#k

Combining (4.14), (4.15) and (4.16) we get the expression for 0)'1‘ as follows

4.17) ok = =20 o for k22
(n+2)a

Let us compute now the Laplacian of the mean curvature

A = X, [(Vegda—eeia]

Z[Zk:w‘i‘(ci)cka-qeaa]

= [Z_O){(ei)] €0 — €16

30D (o2 - eea | by @19 .
(n+2)a

Therefore, (4.11) becomes
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2,3
3@l) (cl(x)2 - ee00 + (n+8)n°0” =0

(n+2)a, 4 (n-1) » o
w_ 3@ o n2 _ (n+8)n _
(4.18) o @20 () 4 (n- 1) =0 ,

where ' denotes derivative with respect to e, . Formula (4.17) can be rewritten as

4.17) m+2)aw = 3aa, for k22 .

Differentiating this relation we get

(4.19) @) danel + ) ady = 3dawad® + 3o dot .

Using Cartan structural equations (1.1.20), (1.1.21) and (1.1.22) we have

dol = a"laa’ + gl;mu

A @Ak + Z Z m’(e)mi"(c)(oi/\m'

F2 r=1l

3!12(!2 1 _ 3a 0)' of
=~ Z@Dn? rot (n+2)0. Z;‘ 21: al(e)

and

Fra + wa‘/\m’

do* = imﬂ/\mj =
=1

(n+2)a

Because of these calculations, the left hand side of (4.19) takes the following form

§a—(0/\(0k+(n+2)a[—4(na1)m"mk— Zka(er)(o’/\O)r]

o (n+2)a F2 r=l

and the right hand side of (4.19) reads as
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9a'2
(n+2)a

n n
3a" o' Ak + 322:ej(a')o§/\m"-— o'Ae®+ 30 Y wlaw .
= 2

Now comparing the coefficients of ®! A w* term (k 2 2) of the left and right hand side of

(4.19) we obtain

302 _ 3men’ed . 9a? that
a 4 (n-1) (n+2)a atis
w _ _D+S 2 (n+2)n2 3 _
4.20) o @20 o' + a01) a =0

Eliminating o" = e,e,o from (4.18) and (4.20) we get

2
(4.21) 2‘5.% a? + %5% ot =0

Clearly, if n 2 4 from (4.21) we conclude & = 0 on U which is a contradiction unless U

is empty . In any case we can solve the equations (4.18) and (4.20) explicitly. Namely, for

any equation of the form y" =f(y, y') , we introduce the substitution v =y' , regarding v
as a function of y . Then y" =v g—; , and the equation becomes the first order differential

equation in v(y) . Regarding the equation (4.18) , let z = (&)2. Then from the above we

have

g = 200— = 2o = 20" ,
do

and the equation (4.18) becomes

dz _ 6(n-1) z — nzgn+8) o =0
da (n+2)a 2(n-l) ’

which is first order linear differential equation whose solution is given by
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2 &o-1)
a2 +2
(4.22) z=a?= TN L com, c=const .

Using the same method for solving (4.20) we get

An+$) 2, . n2
(4.23) a2= ka™ - n__(n_+_2£_ o , k = const .

4(o-1)

Considering all possibilities for exponents of a in (4.22) and (4.23) we see that these two

equations contradict each other on the set U, and therefore U must be empty, which means

that the mean curvature o. is constant and hence by Lemma 4.1 submanifold M is minimal.

Corollary 4.1. Any surface in E3 which satisfies AH =0 is minimal.

Corollary 4.2. If M"is a quasiumbilical hyperesurface of E™! which satisfies
AH =0 , then M is necessarily minimal and therefore generalized catenoid (see [BI]).

By a result of Cartan [C 1], a hypersurface MP c E™! is quasiumbilical if and only if it is
conformally flat (for n 2 4 ), so the Corollary 4.2 can be appropriately stated for

conformally flat hypersurfaces ( except when n = 3).

Next we have following theorem for pseudoumbilical submanifolds

Theorem 4.3. Let x: M"—> E™ be a pseudoumbilical submanifold , that is
A ,,=al.If AH=0 andn #4 then M is minimal in E™ .

Proof. From the equation (4.5) and pseudoumbilicity we obtain

(4.24) 11-%ZVm +Ape ,, =0 , foraz0 ,

or, equivalently,



93

42 2 5 3 0 Eh
: Z (@ + Y, Y af(e)hf =0, forevery i=12,..n .
k=1 r=n+2

Using the Codazzi equation (1.1.24) we have

(4.26) (Veh)epe) = (Vehepe) o i#i.

We fix index i€ {1, ... , n} and let r denote any index 2 2 . By comparing terms in the

direction of e,,; on both sides of (4.26) we obtain

n+l

n+1 i i
De(h% € +hjer) = Dej(h{,-e,) ~ oj(e) ™! eny — @& D enn -

1 . .
Note that h“j’Jf = o for any j, and h"i‘;l = 0 for i#]j . Therefore, €,,; components give

(4.27) o) + L hLatle) = L hoTie) . i

n
Summing overall j#i , andobservingthat 0 = trA, = Y. n , thatis
j=1

n

> hi = — hj , we get from 4.27)

i
(n-1) (o) - X hiae) = Y Y hiattlep . thatis
r r
(4.28) @-1) o) + X X Gpnedhg =0 .

k=1 r=n+2

Comparing (4.25) and (4.28) we sec that if n#4 , ¢a =0 forevery i= 1,..,n

which shows that o = const and therefore equal to zero. ¢

Lemma 4.2. Let x: M*— E™ be an isometrically immersed submanifold which

satisfies AH=0 and < x,H>= const. Then M is minimal in E™.
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Proof. By formula (1.5.4) we have

A<x,H>=-n<H,H> +<x,AH>+2tr Ay = —na? + 2na’ = na?.

Therefore, if <x, H>= const ,weget a=0.

As a corollary, any cone in E™ that satisfies AH =0 must be minimal . Namely, without

loss of generality, we can assume that a cone has the vertex at the origin so that

< x,H> = const holds.

Next we show that if AH =0 for a submanifold M c E™ and M is of finite type, then

H =0, so M is minimal again. First, using induction we can easily prove the following

Lemma 4.3. If M is a manifold and A the Laplacian acting on smooth functions of
M, then no eigenfunction ( not identically 0 ) of A can be represented as the sum of k

(k 2 2) other eigenfunctions from k different eigenspaces.

Theorem 4.4. Suppose that A'™H =0 holds for a submanifold x: M"— E™ |

for some positive integer r . If M is of finite type it follows that M is minimal , i.e. of null
1-type.
Proof. Suppose that M is of k - type so that we have

(4.29) X = X+ Xp +ot X
with x,= const and A Xy, = lti X, , i 21.Then taking A™ of (4.29) we have

- — T = ATHly = T+l r+l
0=-nA"H=A"x ltl xtl+...+7\.thtk,

By Lemma 4.3 , this is possible only when there is only one nonzero Xy, in this sum , and
the corresponding eigenvalue )‘ti is zero . This means Ax =0 and the submanifold M is of
null 1 - type (minimal) . ¢
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Corollary 4.3. Suppose that x : M" = E™ is a submanifold such that the
component functions of x are eigenfunctions of the Lapacian. If AH = 0 then M is
minimal.

Proof. If x =(xy, ..., x,) and Ax;= )‘li x; then x is of finite type, actually of
type <m since

x= (x,0,..,0) + (0,x,,..,0) + 0,...,0,x) .

m

Then the Theorem 4.4 proves the claim. .

Surfaces of revolution in E3 which have the property described in previous

corollary were studied in [G] .

In view of Theorem 4.2 it seems probable that a hypersurface of E™ which satisfies

AH = 0 is minimal since there is no "room" in the normal space. (There is also strong
indication that that is so for any 3 - dimensional hypersurface in E*.) If a codimension is

higher, it is possible to have a nonminimal submanifold which satisfies (4.1), but

construction of such submanifolds seems to be difficult. If H = (h;, ..., h)) and AH=0,
then each h; is harmonic. For a harmonic map on a manifold there are Liouville type
theorems. For example, if M is a complete Riemannian manifold of nonnegative Ricci
curvature, then any bounded harmonic function on M is a constant function. The same

conclusion holds if a harmonic map grows slower than linear growth or have a finite
energy (see [Y], [Che]) . So, if such submanifold satisfies (4.1) and the mean curvature o

is bounded then & = 0 . Also a bounded harmonic map on a simple Riemannian manifold is

necessarily constant (see [Hi]) . A manifold M is simple if it is topologically R" with

metric for which A is uniformly elliptic.



SUMMARY

For an isometric immersion x : M® — E™ of a Riemannian manifold into a
Euclidean space, one defines the map X = x-x' ( x regarded as column vector) from M into
SM(m), the set of m xm symmetric matrices, which we call quadric representation of M.
If M is submanifold of the unit hypersphere centered at the origin (henceforth called
spherical), then it is well known that X is an isometric immersion (via 2nd standard
immersion of sphere). It appears, however, that this map has not been studied in general.

A smooth map f: M™ — R is said to be of k-type if it can be decomposed as
f=f+ th (k nonzero terms in the sum) , where f,=const and Af =1 f ie.fs
are eigenfunctions of Laplacian on M. This naturally extends to an E™-valued map. In
particular, a manifold immersed into Euclidean space is of k-type if the corresponding
immersion is so.

In Chapter 2 we proved some general results about quadric representation. First we
showed that X is an isometric immersion if and only if M is spherical. The same conclusion
if X is conformal (n 2 2) (see Theorems 2.1 - 2). Submanifolds for which X is 1-type map
are classified as totally geodesic spherical submanifolds (Theorem 2.3) . While it is
relatively easy to construct nonspherical submanifolds for which X is finite type (Example
2.1), we prove that for minimal submanifold of E™ the quadric representation is of infinite
type (Theorem 2.4 ). For a spherical submanifold, certain relationships between the
immersions x and X can be shown as exemplified by

Theorem 2.5. Let x: M" — S™!c E™ be an isometric immersion and let

96
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X : M" - SM(m) be its quadric representation. Symbols with ~ are related to the
immersion X , those without ~ to the immersion into E™ and symbols with ' relate to
the immersion into S™! . Then
i) RNl =const < Illhll=const ,

NHNl=const < WHI=const
ii) M" is pseudoumbilical in SM(m) via X <> M" is pseudoumbilical in E™ viax.
i) DH=0 e h'=0, ie. M is totally geodesicin S™! .
iv) VR =0 & n=0.

In Chapter 3 we study compact spherical hypersurfaces which are of low type via
the quadric representation. We have the following classification result for those which are

of 2 - type via X , thus generalizing similar result of M. Barros and B.Y. Chen [B-C).

Theorem 3.1.1. Let x: M® — S™! be an isometric immersion of a compact

n - dimensional Riemannian manifold M into S™! (n22).Then X =xx' is of 2 - type
if and only if either
(1) M is a small hypersphere of S™*!of radiusr<1, or

(2) M=S8P(r)) x S"P(r)) , with the following possibilities for the radii r, andr, :

. _p+l 2 _ n-p+l .. _p*2 2_Dhp . .. __pP 2 _ n-p+2
l)r%‘n.,.z'rz‘ n+2 ’“)‘%"n+2 ,r2-n+2,m)r%-n+2 ' 2% T2

The immersions in (1) and (2) are given in a natural way .

Next we compute the third iterated Laplacian and undertake study of minimal

spherical hypersurfaces which are mass - symmetric and of 3 - type via X . We obtain the

following characterization
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Theorem 3.2.1 Let x: M® — S™! be an isometric immersion of a compact
manifold M™ as a minimal hypersurface of S™! . If X is mass - symmetric and of 3 - type
then
(1) wA=wA’=0,

(2) trA? and  A*are constant ,
(3 w(VgA)? = <AXX, AXX >+ p< AX, AX>+ g<X,X>, XeTM
where p and q are constants (depending on the order of M, tr A? and r AY).

Conversely, if (1), (2) and (3) hold then M is mass - symmetricand 1-,2 -, or 3 - type

~

via X .

The main result of Chapter 3 is the classification of compact minimal spherical
hypersurfaces which are of 3-type and mass - symmetric via X in dimensions n < 5, thus
giving a new characterization of the Cartan hypersurface SO(3)/Z, x Z, in terms of its

spectral behavior. Namely,

Theorem 3.2.2. Let x : M™ — S™! be compact minimal hypersurface of $™*! of
dimension 2 <n <5 . Then X is mass - symmetric and of 3 - type if and only if n =3 and
M= SO(3)/Z, x Z, is the Cartan hypersurface .

Actually, all minimal isoparametric spherical hypersurfaces with three distinct

principal curvatures are of 3-type and mass-symmetric via X (Lemma 3.2.3).

In Chapter 4 we study submanifolds x : M® = E™ of a Euclidean space with
harmonic mean curvature vector , i.e. those that satisfy AH =0 , or equivalently A% =0 .
Minimal submanifolds being the trivial solution, the real problem is to find nonminimal

examples, that is, those immersions which are biharmonic but not harmonic. While the
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construction of such examples (if they exist) seems difficult, we show that submanifolds
satisfying AH =0 are necessarily minimal if any of the following conditions is satisfied

(1) M" has constant mean curvature .

(2) M" is a hypersurface of E™! with at most two distinct principal curvatures .

(3) M" is conformally flat hypersurface of E™*! (n#3) .

(3) M" is a pseudoumbilical submanifold of E™ (n#4) .

(4) M" is of finite type .
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