

25920314

This is to certify that the

dissertation entitled

USE OF IMPLAN TO ESTIMATE ECONOMIC IMPACTS STEMMING FROM OUTDOOR RECREATION EXPENDITURES IN THE UPPER LAKE STATES

presented by

Lawrence D. Pedersen

has been accepted towards fulfillment of the requirements for

DOCTOR OF PHILOSOPHY degree in <u>RESOURCE DEVELOPMENT</u>

Cami Chappelle Major professor

Date_May 18, 1990

MSU is an Affirmative Action/Equal Opportunity Institution

0-12771

DATE DUE	DATE DUE	DATE DUE
<u>160</u>	1997 <u>19</u> 97	
(FEB 0 7 1994	(SEP 1213(hgm () (
BUN 1 3 1004		
· · · · · · · · · · · · · · · · · · ·		
DEC. 1 4 1995		
		<u> </u>

•

i.

PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due. 1

ļ

4

MSU is An Affirmative Action/Equal Opportunity Institution stoircidatedue.pm3-p.1

USE OF IMPLAN TO ESTIMATE ECONOMIC IMPACTS STEMMING FROM OUTDOOR RECREATION EXPENDITURES IN THE UPPER LAKE STATES

by

Lawrence D. Pedersen

A DISSERTATION

Submitted to Michigan State University in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Department of Resource Development

ABSTRACT

USE OF IMPLAN TO ESTIMATE ECONOMIC IMPACTS STEMMING FROM OUTDOOR RECREATION EXPENDITURES IN THE UPPER LAKE STATES

By

Lawrence D. Pedersen

The USDA Forest Service's IMPLAN input-output (I-0) has been used to generate estimates of outdoor recreation economic impacts, but the reliability of such estimates is largely unknown. Problems with IMPLAN's regional purchase coefficient (RPC) trade estimates were identified. Alternative RPCs were constructed from a reconciled 1977 Multi-Regional Input-Output (MRIO) database. Comparisons with IMPLAN's current RPCs reveal the alternative RPCs to be more internally consistent and in line with regional economic theory. The 1985 National Survey of Fishing, Hunting, and Wildlife-Associated Recreation (FHW) data were used with alternative IMPLAN models to generate outdoor recreation impact estimates for the upper Lake States region. Variables examined include recreation activity participation levels and spending patterns, sampling errors associated with the FHW activity and spending data, I-O model sectorization schemes, sector spending allocations, and All variables affected the magnitudes of total trade estimates. economic impact estimates. The range of spending estimates constructed to account for FHW sampling error had a large influence on impact magnitudes, indicating that reports of deterministic impact estimates may be misleading. Evidence presented concerning IMPLAN's RPC estimates indicates that improvements in impact estimates could result from estimation of IMPLAN'S RPCs from the reconciled MRIO database.

ii

ACKNOWLEDGEMENTS

Several persons made immense contributions to this study. The research was facilitated through cooperation from the IMPLAN staff. Eric Siverts deserves special mention for patiently helping me and literally hundreds of other IMPLAN users sort through I-O issues and problems. Professor Daniel Chappelle served as my major professor and mentor throughout my years in graduate school. He provided inspiration, financial support, technical guidance on research issues, and editorial assistance. He also imparted much wisdom on a variety of subjects, from research methods through regional economics. Many other MSU faculty and staff also had roles in enabling this research. Professor Larry Leefer's generous gifts of computer use and insights were especially important as were frequent contacts with Professor Dennis Propst. Julie Peeler's word processing and guidance on many other matters was much appreciated. There have also been various compadres, including George Erickcek and Michael Oden, who have made the process more pleasureable. My family and relatives have been continual sources of support. Finally, the person to whom I owe a great debt for making it all possible is my wife, Helen. To all, thanks.

Table of Contents

		<u>Page</u> N	<u>o.</u>
List	of Tables	. vi	
I.	INTRODUCTION	. 1	
	Background	. 1	
	Need	3	
	Use of Outdoor Recreation Date in Impact Analysis	. 5	
	Input-Output Model Influences on Outdoor Represtion	. ,	
	Impact Estimates	7	
	The Concert of Accuracy of The Applies to T.O. Application	. /	
	The concept of Accuracy as it Applies to 1-0 Analysis .	. 19	
	Application of valuation and impact concepts		
	to Recreation Impact Analysis	. 22	
	Terminology	. 22	
	Residents Versus Nonresidents	. 26	
	Comprehensive Impact Analysis	. 28	
	Study Premises and Assumptions Regarding Influences of		
	Variables on Impact Estimates	. 34	
	Study Objectives	. 36	
II.	INPUT-OUTPUT ANALYSIS AND IMPLAN	. 40	
	Introduction	. 40	
	Input-Output Analysis	. 40	
	Nonsurvey L-O: Adaptation of National Coefficients	. 40	
	for Posional Modela	1.3	
		. 45	
		. 44	
	Supply-Demand Pooling	. 45	
	Regional Purchase Coefficients	. 45	
	IMPLAN	. 47	
	IMPLAN Version 2.0's Adaptation of RPC Method	. 50	
	Derivation of IMPLAN's RPCs	. 50	
	IMPLAN Differences from the Stevens Approach	. 51	
	Evidence of Problems with IMPLAN's RPC Estimates .	. 52	
	Nonsurvey Input-Output Model Validation	. 55	
	Procedures for Evaluating IMPLAN's RPCs	. 62	
	Measurement of Outdoor Recreation Economic Impacts	. 63	
	Secondary Sources of Data for Outdoor Recreation I-0	. 68	
ттт	METHODS	70	
		. 70	
	Translustion	70	
		. 70	
	Examination of IMPLAN'S Regional furchase coefficients	. 70	
	Initial Identification of RPC Problems	. 70	
	Development and Comparison of Alternative RPCs	. 71	
	Lake State Outdoor Recreation Economic Impacts	. 82	
	Variables Examined	. 83	
	Activity and Spending Data	. 86	
	Temporal and Spatial Considerations	. 88	
	Different I-O Sectorization Schemes	. 89	
	Allocation of Survey Spending Data to IMPLAN Sectors	91	
	Influence of RPC-Based Trade Estimates	. 93	

	Table of Contents (cont'd.)	
		Page No.
IV.	PREPARATION OF INPUT DATA AND IMPLAN MODELS	94
	Introduction	91
	Converting Fishing, Hunting, and Wildlife-Associated Data	• •
	for Use with IMPLAN	94
	Stage 1: Compile 1985 Recreation Activity Levels for More Heavily Forested Areas of	
	the Lake States	96
	Stage 2: Estimate Study Area Recreation Spending	
		99
	Stage 3: Disaggregate Spending Totals	
	for Bridging with IMPLAN	106
	Stage 4: Allocate Spending to IMPLAN Sectors	108
	Construction of Lake State IMPLAN Models	114
	Development of Alternative RPC Trade Estimates	114
	Different I-O Sectorization Schemes	116
	Different 1-0 Dectorization Denemes	110
v.	RESULTS	119
	Introduction	119
	Examination and Documentation of Problems	
	with IMPLAN's RPCs	119
	Sector Allocation of Outdoor Recreation Spending	130
	Lake State Outdoor Recreation Economic Impacts	138
	Differences Between Lake State IMPLAN Model RPCs	138
	Differences Between Lake State IMPLAN Model	
	Multipliers	142
	Estimates of Lake State Outdoor Recreation	
	Economic Impacts	147
	Range of FHW Impact Estimates	
	hy Major Spending Category	147
	Relationships Among Categories of Lake State	,
	Full Degreation Sponding	150
	Influence of Sectorization Scheme on	150
	Lake State FUL Impacts	150
		152
	Influence of RPUS on Lake State FHW Impacts	154
	comparison to Outdoor Recreation Impact Estimates	
	Prepared for the 1987 Lake State Governors'	157
	Conference on Forestry	156
	Comparison of Recreation Multipliers to	
	"Average" Multipliers	158
VI.	SUMMARY. IMPLICATIONS. AND CONCLUSION	161
	Introduction	161
	Use of Nonsurvey I-O Models	161
	IMPLAN	164
	Outdoor Recreation Economic Impacts	168
	Influences on the Size of Lake State	
	Outdoor Recreation Impacts	170
	Further Recearch Neede	175
	fulchel Research needs	177
		±//

Table of Contents (cont'd.)

•

<u>Page No.</u>

VII. APPENDICES

A. Industry Classification of the Micro-IMPLAN 528 Sector Input/Output Tables
B. Comparison of IMPLAN, REMI, and Corrected MRIO RPCs 188
C. Alternative Lake State RPCs and RPCs Used as Guides for the Estimation of the Lake State RPCs 191
D. IMPLAN Aggregation and Sectorization Schemes 202
E. Lake State Outdoor Recreation Economic Impacts 212
F. Bridge of National Survey of Fishing, Hunting, and Wildlife-Associated Recreation (FHW) Spending to IMPLAN 221
G. FHW Used Equipment Allocation Table
H. Lake State Multiplier Analysis
I. Michigan RPC and Multiplier Analysis

VIII.REFERENCES							•	•					240

.

LIST OF TABLES

1	Michigan RPC and SDP Trade Estimates 17
1.	Monigan Rio and 551 Hade Estimates
2.	1983 and 1985 REMI Motor Vehicles and Equipment RPCs 77
3.	FHW Lake State Study Area % of 3 State Recreation Activity . 99
4.	FHW Lake State Study Area Spending Totals
5.	Comparison of IMPLAN and REMI RPCs for Major Sector Groupings
6.	IMPLAN and Revised State Average Service Sector RPCs and Rankings
7.	Ten Lowest and Highest Revised MRIO Average Service Sector RPCs
8.	Comparison of Recreation-Related Service Sector RPCs for Michigan, New Jersey, New York, and North Dakota 127
9.	Michigan Output Multipliers for Recreation-Related Sectors . 129
10.	Pce I-O Category 9400: Wheel Goods, Durable Toys, Sport Equipment, Boats & Pleasure Aircraft
11.	Contrast of Sector Allocations Based on I-O Category #9400 Versus Small Arms, Optical Goods, and Boat Building & Repair PCE Items within I-O Category #9400
12.	Contrast of Lake State Output Impacts Based on I-O Category #9400 Versus Small Arms, Optical Goods, and Boat Building and Repair PCE Items Within I-O Category #9400
13.	Measurement of Lake State Model RPC Differences
14.	Mean Values of Lake State Model Multiliers
15.	Lake State Multiplier U $_{\rm m}$ (Theil Index Bias) Measurements 146
16.	Lake State Economic Impacts from Upper Lake State Fishing, Hunting, & Wildlife-Associated Recreation, Based on Disaggregated, Adjusted RPCs (BSTLK) IMPLAN Model
17.	Lake State Subcategories of Recreation Spending as a Percent of Total Upper Lake State Fishing, Hunting, & Wildlife- Associated Recreation, Based on Disaggregated, Adjusted RPCs (BSTLK) IMPLAN Model
18.	Impacts of Lake State FHW Recreation Spending for Different Sectorization Schemes as a Percent of the Disaggregated, Adjusted RPCs (BSTLK) IMPLAN Model

LIST OF TABLES (cont'd.)

<u>Page No.</u>

19.	Impacts of Lake State FHW Recreation Spending for Different Sets of RPCs as a Percent of the Disaggregated. Unadjusted						
	(UNCHLK) IMPLAN Model						
20.	Comparison of Estimated Type III Impacts Based on 1987						
	Recreation Spending Profiles						
21.	BSTLK % of 1987 Lake State Outdoor Recreation						
	Impact Estimates						
22.	Contrast of Impacts from Using Average Vs. Sector-Specific Multipliers for Recreation Spending, Based on a 31-Sector						
	Model and Revised (BSTLK) IMPLAN RPCs						

CHAPTER I

INTRODUCTION

Background

State governments have become involved in sponsoring a variety of initiatives to foster economic development in recent years. Fosler (1988) documents this trend in <u>The New Economic Role of American States</u>. Nothdurft (1984) reviews recent state economic initiatives that focus on natural resources. Tourism and recreation have been major areas of emphasis for state economic development efforts.

Reliable estimates of the relative economic impacts from alternative development programs are useful in planning economic development. Knowledge of economic impacts can improve governmental programs aimed at promoting economic growth. An industry's relative economic impacts vis-a-vis other industries are an appropriate consideration in the case of "targeting" a particular industry for special governmental assistance. Other factors to consider include the industry's growth prospects, the comparative advantages for the industry that exist in the state versus elsewhere, and anticipated social benefits.

People recognize the need for better economic data and information on outdoor recreation. This is illustrated by the summary of outdoor recreation key issues and recommendations in Appendix I of <u>Americans</u> <u>Outdoors: The Legacy. the Challenge</u>, (President's Commission on Americans Outdoors, 1987). According to the study, states are reported to have expressed needs for "improved information collection and analysis to provide a better base for decisions" and "better identification of values to help justify actions recommended" (p. 281-282). The report goes on to state: "Most state assessments reference the values of recreation and the outdoors. These concerns about values are often closely related to overall planning and research needs." Two of the three primary areas encompassed by the concerns expressed were "better recognition by and communication to the public about recreation values" and the "need for more research and documentation of quantitative benefits of recreation to the economy..." (p. 282).

Two recent examples of efforts explicitly aimed at improving the quality of outdoor recreation impact analysis are the Public Area Recreation Visitor Survey (PARVS) and the estimation of upper Lake States outdoor recreation economic impacts (Pedersen and Chappelle, 1987). The PARVS effort has involved Federal and State agencies in coordinating surveys of park recreationists in several regions of the United States. The primary objective of PARVS was to "generate spending data needed to determine the economic impacts (jobs, income, etc.) of public agency expenditures for recreation facilities and services" (Propst, 1988, p.4). The estimation of outdoor recreation economic impacts in the upper Lake States (Michigan, Minnesota, and Wisconsin) was part of an effort to measure the contribution of the forest resources to the region.

The funding for these and other similar recreation studies indicates there is a demand for reliable economic impact measurements of outdoor recreation. At the same time, however, reliable recreation economic impact measurement is constrained by many factors. These factors may be viewed as generally falling within three categories: the definition of outdoor recreation, the input data used with the impact

model, and the impact model itself. This thesis focuses on issues relating to outdoor recreation input data and impact models. Brief attention is also given to outdoor recreation definition issues.

The need for this study is further discussed in the following section. Other preliminary concepts and an introduction to the subject are then presented to establish the context of the dissertation research. The chapter concludes with a statement of study objectives.

Need

A plethora of data on outdoor recreation and related statistics on travel and tourism exists, but there has been little effort devoted to comparing and relating such data, especially within the context of recreation economic impact analysis. In the absence of consistency checks across studies and statistical information, regional outdoor recreation participation and spending profiles largely remain untested and unreliable. This, in turn, inhibits the development of credible outdoor recreation economic impact estimates.

There are several reasons why comparisons of recreation data and economic impacts are difficult to undertake, including a lack of consensus concerning outdoor recreation and tourism definitions, the multi-purpose nature of many outdoor recreation trips (recreationists often participate in a mix of activities), and different objectives in conducting outdoor recreation and tourism studies. As stated in the Methodological Notes accompanying the paper presented by Pedersen and Chappelle at the 1987 Lake States Governors' Conference on Forestry (p. 4):

At the time of this study, no complete, consistent, and reliable outdoor recreation data base exists that can be used in an economic impact analysis of a sub-region of a multi-state

area (such as the more heavily forested areas of our three state region). The lack of standardization in data reflects different objectives under which the data were originally collected. For example, outdoor recreation-related data may be gathered to measure tourism, state park attendance, or the multiple demands on lakes or streams. Units of measurement range from simple head counts through trips, "occasions," recreational visitor and activity days, and hours spent in the activity. Studies also include and exclude different types of recreationists, again, depending on their objectives.

There are many other recreation analysis pitfalls. The sheer diversity of activities and recreationists makes impact estimation difficult. Double-counting is a risk when using multiple sources of data as in this study. Fishermen camp and campers fish; separating out what multiple data sources have included may be impossible. Typical spending categories mentioned in studies frequently do not fit the SIC codes used in impact analysis. Examples include: "transportation" and "vehicle-related," which could refer to a myriad of sectors besides gasoline, and "food," which may or may not include restaurants and beverages. Spending will also differ depending on the recreationist's origin and destination, lodging, activities engaged in, and the recreation season.

In addition to the differences between studies noted above, outdoor recreation economic impact studies often differ in their treatment of two categories of economic activity affected by recreation activity: recreation-related equipment purchases and fiscal impacts on various levels of government. Many studies focus only on trip expenditures and do not address either durable equipment spending or the public costs of providing the recreation experience. Comprehensive profiles of outdoor recreation economic impacts might also give consideration to expenditures in the region that occur in preparation for recreation outside the region. There are also more esoteric impact issues such as analyzing changes in personal consumption expenditures for food and other items that stem from successful hunting and fishing. However, budgetary, data, and time constraints often prohibit the development of comprehensive recreation impact analyses. This thesis examines several specific means to refine recreation economic impact estimates generated by the USDA Forest Service's IMPLAN (IMpact analysis for PLANning) model (U.S. Department of Agriculture, 1983). Important issues faced in estimating recreation economic impacts will be illustrated through generating estimates of upper Lake States outdoor recreation economic impacts using Micro IMPLAN (Version 2.0) (Alward et al., 1989).

<u>Use of Outdoor Recreation Data in Impact Analysis</u>

Accurate recreation participation and spending profiles need to be constructed before reliable recreation economic impacts may be estimated. Spending profiles may then be converted into final demand vectors which, in turn, "drive" input-output (I-0) models. Thus, the levels of direct, indirect, and induced sales, value-added, income, or employment impacts generated by a recreation I-0 analysis critically depend on participation and spending estimates.

In order to expand their usefulness and address the myriad of objectives facing state planners, spending profiles and associated final demand estimates would ideally be developed (and, subsequently, be capable of being delineated) according to a number of variables. These variables include recreation activities, types of accomodation used, recreationists' residency status, and, preferably, substate regions and season. Developing distinct spending profiles according to these variables would permit:

- the flexibility to examine issues for different objectives and multiple interests. Among other reasons, such flexibility is desirable with multiple definitions of tourism and recreation existing and private interests often centered around specific

activities (e.g., hunting or fishing);

- improved estimates as new primary and secondary data become available, be they estimates for lodging, recreation activity levels, or other recreation-related variables; and
- more crosschecking of estimates across studies in order to examine their consistency and reliability.

Regarding this last point, outdoor recreation data come from national, state, and local sources. There have been few efforts to contrast participation level and spending pattern estimates across and within different levels of the spatial hierarchy. Conclusions stemming from comparisons of estimates across recreation studies are inhibited by differences in time when studies were conducted, what they measured and the measurement units they used, and low precision caused by small sample sizes in some cases. However, such comparisons may at least give some qualitative impressions of consistency and provide a measure of the reliability of outdoor recreation economic impacts. The reliability of outdoor recreation economic impacts should be questioned if gross inconsistencies between outdoor recreation data are found and not resolved before generating the impact estimates.

In light of the importance of the final demand estimates for inputoutput analysis, the reliability of recreation participation levels and spending profiles are probably at least as important and in need of review as is the input-output model used to generate the economic impact estimates. However, problems with an I-O model may sometimes be identified and rectified, leading to generic changes in the I-O modeling system. Such changes could then help all future users of the I-O modeling system. In addition to possible generic I-O improvements,

refinements in the analysis at the stage of using the I-O model may also sometimes be more easily and quickly achieved. Attention to the I-O model in such cases may be justified on the basis of efficiency. This study will describe where generic improvements may be made in the IMPLAN modeling system and associated IMPLAN user materials, especially as they apply to outdoor recreation economic impact estimation.

Issues and variables encountered throughout the impact estimation process are described, along with their influences on the ultimate impact estimates. This examination provides some indications of where the greatest amount of future research time and effort should be spent. In order to improve the reliability of recreation impact measurements, it may be wise to extrapolate values from other studies for certain variables which have consistent values across studies and to devote more time to those variables with wide ranging values. A savings of time resulting from extrapolating values from other studies could also be spent in developing more comprehensive assessments of impacts through pursuing the often-neglected aspects of outdoor recreation impact analysis mentioned earlier (durable equipment purchases and public fiscal impacts). Despite interest in outdoor recreation impacts, funding for impact studies is limited. Efficient allocation of research resources requires a marginal return approach. This approach would devote the greatest amount of attention to refining measurement of those variables which most affect the precision and reliability of impact estimates.

Input-Output Model Influences on Outdoor Recreation Impact Estimates

Recreation data and I-O models are two major sources of influences on the magnitude of outdoor recreation impact estimates. The quality

X

and consistency of recreation participation and spending data are, at best, untested. In contrast, there have been recent input-output (I-O) improvements in terms of structural I-O techniques used, model accessibility, and user aids for measuring outdoor recreation I-O impacts. This is specifically true with regards to the USDA Forest Service's IMPLAN model. IMPLAN version 2.0 is available in a personal computer (pc) version which allows for faster turnaround and greater user input in model development. It has adopted a new trade estimation technique in place of one which is known to overestimate regional impacts. It also has separate retail and wholesale trade sectors which permit greater precision in measuring impacts from recreation-related expenditures. Additionally, IMPLAN training materials and computer spreadsheet aids have been developed for recreation impact analysis.

The range in size of multipliers provide a further indication that research on recreation participation and spending data may provide greater refinements in generating reliable recreation economic impact estimates. Sectoral multipliers generated by IMPLAN for any given region and type of economic variable tend not to vary from each other by more than a factor of one. If estimated properly, they seldom are outside of a range of one to three. For any given region, most multipliers of the same type (e.g., sales, income, jobs, Type I, or Type III) are within 50%, plus or minus, of the average multiplier for that type.

In contrast to most multipliers, recreation participation and spending estimates are "all over the map." In other words, on a percentage basis, differences betwen multipliers appear to be less than differences between recreation participation and spending estimates.

Therefore, successful efforts at improving the accuracy of participation and spending data are likely to improve the reliability of estimates of total outdoor recreation economic impacts more than refinements in sectoral allocations of spending (the distribution of recreation expenditures across input-output accounts) or improvements in multiplier accuracy. This assumes the objective is to develop reliable recreation economic impact estimates. However, objectives may sometimes be tainted by political motivations to inflate the importance of a particular industry. Also, the objective may be to measure multipliers or assess the distribution of spending across economic sectors, or both, rather than estimate total economic impacts. This second point is further addressed below under the heading, "The Concept of Accuracy as It Applies to I-O Analysis."

Ideally, consistency checks and sensitivity analyses are conducted throughout an entire impact estimation process. Several dimensions at the stage of utilizing IMPLAN may have a significant bearing on final impact results. Addressing some of these issues may be warranted on the basis that they may be more cost effective than improving the quality of recreation participation and spending data. Five specific issues relating to use of the input-output model could be investigated in the Process of conducting sensitivity analysis of economic impacts:

- the sectorization scheme: minimizing aggregation error and testing for sector spending allocation error (this is essentially an extension of checking the consistency of spending profiles across outdoor recreation studies);
- 2) alternative deflators: Appendix D of the IMPLAN Version 1.1 Analysis Guide bridges BLS deflators for 110+ sectors to IMPLAN's (version 1.1) 464. (Updated BLS deflators have also been bridged to version 2.0's 528 sectors and are available to IMPLAN model users.) There are alternative deflators, ranging from gross national or local consumer price indices's (CPIs)

through very narrowly defined, industry-specific producer price indices (PPI). (Regardless of whether deflators form some part of a sensitivity analysis, they should be used to convert data for any year other than 1982 to IMPLAN version 2.0's 1982 base year. Accuracy of the deflators is related to the issue of sectorization and aggregation error.);

- 3) allocation of spending to I-O sectors: "bridging" spending from survey responses to I-O sectors is compounded by ambiquities in survey responses and survey spending categories, and by aggregation or classification differences between survey spending categories and I-O model sectors. The process of converting purchaser prices to producer prices ("margining") must be conducted for most recreation expenditure surveys to correctly use them with I-O tables which are based on producer prices. Appendix E of the IMPLAN Version 1.1 Analysis Guide provides margins for most of the 100+ personal consumption (PCE) categories associated with the 1977 U.S. input-output accounts. Detailed Bureau of Economic Analysis (BEA) worksheets are available which further differentiate these PCE categories into over 1700 PCE items. Use of the margins from the IMPLAN manual may involve aggregation or spending allocation error, while the detailed BEA worksheets tend to be cumbersome and time consuming;
- 4) employment estimates: County Business Patterns (CBP) is a major data source used to formulate IMPLAN's employment estimates. The CBP does not incorporate estimates of self-employed persons and is based on March surveys. Another complication for deriving reasonably accurate estimates of recreation employment is the seasonality and transitory nature of recreation employees. As noted by Propst et al. in <u>Assessing the Secondary Economic Impacts of Recreation and Tourism: Work Team Recommendations</u> (in Propst, compiler, 1985, p. 59), the induced portion of the impact may be overstated if the summer recreation employees do not match average employee spending patterns;
- 5) consistency checks with other secondary economic statistics: the literature on validation of I-O models and estimates has tended to emphasize comparisons with primary models, but there have been several suggestions and some studies made (e.g., Siverts, 1988) which have focused on looking at additional secondary economic data.

A concern related to this fifth issue is the reliability of IMPLAN's trade estimates. Version 1.1 of IMPLAN used a technique called supply-demand pooling to generate trade estimates between a region's industries and the outside world. This approach to trade estimation originated with Isard (1953). Supply-demand pooling is based on a net trade concept. The difference between regional demand and regional supply (output) is assumed to be imported if there is greater demand than supply; if supply exceeds demand, the excess is assumed to be exported. In other words, local supplies are assumed to be exhausted before imports are turned to or, conversely, local demand is filled before exports occur.

The net trade concept ignores crosshauling which is frequently observed in the real world. Imports tend to occur for most goods and services even if local supply is adequate to meet local demand and, similarly, exports tend to occur even if local supply can not meet local demand. This is a general phenomenon across all regions and sectors, although it holds true more for small regions than large, complex (diversified) regions and more so for manufactured goods than services. Also, the degree of crosshauling observed will be affected by the degree of sectorization detail.

The consequence for adopting the supply-demand pooling approach is that economic impacts may easily be overestimated. As stated in "Regional Non-Survey Input-Output Analysis with IMPLAN" (Alward, et al., 1985, page 8), "In general, IMPLAN multipliers tend to be larger... probably due in large part to the maximum trade assumption." This makes intuitive sense. If every time something is purchased locally it generates round after round of purchases of products that are assumed to be produced locally rather than imported, then the estimated impact will be greater. Less "leakage" as it is called, creates larger impacts. This is reflected in inflated multipliers.

Version 2.0 of IMPLAN uses an alternative approach that indirectly accounts for crosshauling and is based on gross trade flows estimated

through the use of regional purchase coefficients (RPCs). The approach has been developed largely through the work of Stevens and his colleagues (Stevens, et al., 1983) and is also used by Regional Economic Models, Inc. (REMI). Basically, the amount of local output purchased to meet local demand is determined econometrically. Independent variables used to estimate the RPCs include such factors as the physical size of the region, transportation and other factor costs such as wages, and the relative share of total regional employment an industry comprises versus the industry's share of total employment on the national level. After estimating the proportion of demand supplied locally, the remainder of demand is assumed to be met through imports, and the difference between total output and the amount of output consumed locally is assumed to be exported.

The estimation of trade between regions has been found to be a critical factor in determining the size of impacts. Richardson (1972, p. 175) has stated, "It is widely known that the effects of changes in trade coefficients, especially in an expanding region, can have a bigger impact on the structure of the regional economy than changes in technological coefficients due to technological change or product mix." While acknowleding some dissent, Stevens et al. (1986, p. 2) contend there appears to be "general agreement" that the accuracy of regional purchase coefficients is "most crucial to the accuracy of any regional I-O model."

In his 1985 review article on input-output and economic base multipliers, Richardson calls the Stevens et al. RPC approach a "welcome change from endlessly repetitive and mechanical location quotient methods..." of trade estimation, but cautions the approach may face

difficulties due to reductions in the Census Bureau's Transportation Survey data collection and dissemination. The RPC approach has relied quite heavily upon an aging 1977 Commodity Transport Survey database. The 1982 Commodity Transport Survey was not released by the Census Bureau because of substantial discrepancies found in subsampling after the Survey was completed.

Theoretically, the RPC approach may generate more realistic trade estimates and subsequent economic impact estimates than the supplydemand pooling technique. This is because it does not automatically assume maximum local trade. However, there is little empirical evidence that the RPC technique is consistently more accurate. Most literature on the performance of alternative nonsurvey trade estimation techniques predates the full development of the econometric RPC approach. Two papers coauthored by Stevens, the originator of the technique, (1983 and 1986) comprise the major evidence on the performance of the RPC technique versus other techniques.

Stevens et al. (1983) reported mixed results when comparing RPCbased I-O models to survey-based models for the states of Washington and West Virginia. The causes of the mixed results were partly attributed to the lack of documentation for the West Virginia survey-based model. The authors also noted that the regression-derived RPCs were, at that time, underestimating true RPCs because they were based on the 1972 Census of Transportation which did not report shipments under 25 miles. Most unreported shipments under 25 miles would be intrastate shipments. As a result of not incorporating shipments under 25 miles, intrastate shipments as a percent of total shipments were underestimated. This would tend to make RPCs based on the 1972 Census underestimates of

actual (real world) regional purchase coefficient values. This problem was eliminated for later versions of RPCs based on the 1977 Census of Transportation which reports shipments under 25 miles.

Another reference to an empirical comparison of trade estimation techniques including the RPC approach is in an unpublished paper by the Regional Science Research Institute (RSRI) (Stevens, et al., 1986). The authors argue that survey-based tables or multipliers may be flawed due to missing data, small sample sizes, and their higher level of aggregation relative to secondary I-O models. Thus, they contend it is dubious to assess the accuracy of nonsurvey I-O models based solely on comparisons with survey-based tables or multipliers. In contrast, the authors adopt a different approach that compares the RPC technique against the supply-demand pooling technique and two other nonsurvey trade estimating techniques (location quotients based on employment and output) in estimating what are termed "known" or "observed" RPCs. These "known" RPCs are "constructed by the Regional Science Research Institute" from a multitude of secondary data sources, instead of being derived from primary surveys. As would be expected on a theoretical basis, the RPC technique outperforms the other techniques.

The statistical comparisons indicate the RPC technique is most accurate for those cases where the actual RPC is small (less than 0.3). Perhaps more interestingly, because of the inconsistency with some other authors' nonsurvey comparisons, the performance of the other three techniques are virtually identical. For example, the RSRI RPC's root mean square error (RMSE) from the "known" RPCs is reported to be 0.223 overall versus between 0.60 and 0.601 for the other three techniques. For small "known" RPCs, the RSRI RPC's RMSE is 0.122 while the other

three techniques are between 0.694 and 0.706. For large "known" RPCs, the RSRI RPC's RMSE is 0.319 while the other three techniques are between 0.423 and 0.432. These results imply both that the RSRI RPC trade estimation technique is superior to the other three techniques and that there is virtually no performance difference between the three alternative techniques. It should be noted that the RMSE, will accentuate large differences more than some alternative statistical measurements such as the mean absolute difference. Thus, the RMSE makes the performance difference between the RSRI RPCs and the other nonsurvey trade estimation techniques appear larger than alternative measurements. However, reported results from Theil's inequality index and regression results also lend evidence to the better performance of the RSRI RPCs and similarity of performance between the other estimation techniques.

In any case, the empirical evidence on the superior performance of the RPC approach to estimating trade is meager, probably due largely to its recent vintage. There have been a number of articles (e.g., Garhart (1985), Ralston et al. (1985), and Garhart and Giarrattani (1987)) that address the error generation created by using a single vector of RPCs to estimate trade (such as is done by REMI, RSRI, and, now IMPLAN) rather than a matrix of RPCs. The articles describe simulation experiments with survey-based models to demonstrate that use of a matrix of RPCs could improve the accuracy of RPC-based trade estimates. This issue is briefly addressed in chapter 2. It has relevance for the comparison of different trade estimation techniques. However, the simulation results reported thus far are not very dramatic. For example, Garhart and Giarratani (1987) report multiplier differences of less than fifteen percent. Such differences are not very significant when contrasted against differences

several magnitudes greater which were found stemming from other variables in this study. Furthermore, the issue is largely beyond the scope of this research study, which is to examine trade estimate used by IMPLAN (i.e., applied across rows).

It is known for other reasons that many of the RPC values currently being generated by version 2.0 of IMPLAN are highly questionable. These RPCs may contribute to significant distortions in economic impact estimates, especially for particular industries, including many sectors affected by recreation. This conclusion was originally reached in the process of preparing economic impact estimates for a 1987 Lake States Governors' Conference on Forestry (Pedersen and Chappelle, 1988). It was based initially on comparisons of RPC estimates generated by IMPLAN to IMPLAN's estimates of output and demand for the same sectors, and on comparisons with RPCs derived from REMI models leased by state governments in the Lake States region.

Table 1 presents some of the questionable IMPLAN RPC values observed for the State of Michigan. These RPC values were generated by IMPLAN and would influence impact estimates unless the model user changed them. IMPLAN estimates of the ratio of local production to local demand appear in the SDP column. The SDP value indicates the maximum potential value the RPC can attain, given IMPLAN's estimates of regional demand and output. The actual RPC may be well below the SDP ratio due to imports and exports. IMPLAN and SDP trade estimates are for 1982. 1985 REMI RPCs for the state of Michigan are also shown.

Table 1 includes only a portion of the Michigan sectors with dubious RPC values. A pattern can be discerned of negligible value RPCs appearing in clusters of sectors. The negligible RPC values for the pulp

Table 1. Michigan RPC and SDP Trade Estimates

IMPLAN

Intraregional Michigan Trade Estimates

#	IMPLAN Sector Name	IMPLAN	SDP	REMI
188	B Paper Mills,exc Bldng Paper	0.00	1.00	0.37
189	Paperboard Mills	0.00	1.00	0.30
190	Envelopes	0.00	0.50	0.04
191	Sanitary Paper Products	0.00	0.42	0.11
192	Building Paper & Bldg Board	0.01	1.00	0.01
193	Paper Coating and Glazing	0.00	1.00	0.26
194	Bags,except Textile Bags	0.00	0.83	0.13
195	Die-cut Paper and Paperboard	0.00	0.97	0.47
196	Pressed & Molded Pulp Goods	0.00	0.58	0.00
197	Stationery, Tablets & Related	0.00	0.57	0.08
198	Cnvrted Paper & Paperbrd, nec	0.00	0.33	0.06
243	Fabricated Rubber Prdcts, nec	0.01	0.22	0.23
244	Misc Plastics Prdcts	0.01	0.85	0.46
245	Rubber & Plastics Hose & Belting	0.01	0.25	0.07
353	Pumps & Compressors	0.00	0.81	0.44
354	Ball & Roller Bearings	0.00	0.35	0.18
355	Blowers & Fans	0.00	0.71	0.32
356	Industrial Patterns	0.00	1.00	0.52
357	' Power Transmission Equip	0.00	0.61	0.37
358	Industrial Furnaces & Ovens	0.00	0.95	0.36
359	General Industrial Machinery, nec	0.00	0.44	0.49
360	Carburetors, Pistons, Rings, Valves	0.00	0.86	0.62
361	. Machinery,exc Electrical,nec	0.00	0.81	0.80
461	. Other Wholesale Trade	0.01	0.88	0.91
478	Misc Repair Shops	0.00	0.75	0.78
479	Svcs to Buildings	0.00	0.64	0.48
480	Personal Supply Svcs	0.00	0.79	0.96
481	. Computer & Data Processing Svcs	0.00	0.71	0.97
482	Management & Consulting Svcs	0.00	1.00	0.89
483	Detective & Protective Svcs	0.00	0.83	0.58
484	Equip Rental & Leasing	0.00	0.74	0.95
485	Photofinishing, Commercial Photography	0.00	1.00	0.95
486	Other Business Svcs	0.00	1.00	0.96
487	Advertising	0.00	0.76	0.96
488	Legal Svcs	0.00	0.91	0.96
489	Engineering, Architectural Svcs	0.00	1.00	0.98
49(Accounting, Auditing, & Bookkeeping, nec	0.00	0.80	0.96
492	Auto Rental & Leasing	0.26	0.89	0.88
493	Auto Repair & Svcs	0.26	0.89	0.95
494	Auto Parking & Car Wash	0.26	0.94	0.86

.

and paper sectors (including sectors 188 through 198 shown in Table 1) were of greatest concern for the 1987 Lake States forestry economic impact study. These industries account for the majority of forest product industry sales in the Lake States region. Their combined sales were in excess of ten billion dollars in 1982. Their negligible IMPLAN RPC values imply that virtually no Michigan demand for pulp and paper products is met by regional production, which is contrary to firsthand knowledge of the industry. Negligible RPCs for the service sectors listed (beginning with sector 461 through the end of the Table 1 list) are perhaps even more at odds with what is known about these sectors. Service industries tend to supply local markets and, overall, are likely to have higher RPCs than manufacturing industries. The magnitude of their RPCs should be expected to be closer to 1.0 (as the SDP and REMI values are for the sectors listed) rather than 0 (as IMPLAN's unchanged RPCs are for the sectors listed).

An extensive examination of IMPLAN-generated RPC values was a major focus of this research in light of these and other observations which raised concerns about IMPLAN'S RPC trade estimates. The objectives related to this phase of the research are to identify and measure the extent of problems with IMPLAN'S RPCs and to propose means of ameliorating these for IMPLAN users. Review and use of alternative RPCs is timely in terms of widespread use of the pc IMPLAN release. Although it has implications for all IMPLAN applications, the RPC analysis relates directly to the reliability of outdoor recreation economic impacts. It will be shown that many of IMPLAN'S RPCs affecting recreation impacts are at odds with regional economic theory.

The Concept of Accuracy as It Applies to I-O Analysis

The degree of accuracy required for input-output estimates will depend, in part, on the purposes of the I-O analysis. Input-output analysis is used by public agencies for at least two distinct purposes. The first of these is to convey a measure of the total or absolute impacts associated with some type of economic activity. The true purpose of such a use of I-O analysis may be to justify the importance or budget of the agency associated with the activity. In such cases, the purpose is to use I-O as a descriptive public relations tool to convey an impression of the importance of a particular economic sector or activity. However, measuring total impacts associated with some types of activity may be appropriate and even required in cases involving major public expenditures of funds or uses of public lands. In these and other cases, the I-O analysis may serve to better illuminate which sectors are affected by particular public or private actions.

The second purpose is to use input-output as an analysis tool for economic development or industrial targeting. Here, the emphasis is likely to be more on establishing the relative merits of different sectors or public assistance strategies. Computing total impacts may not be as important as relative impacts; a comparison of select multipliers or industrial and institutional linkages may be what is needed by decisionmakers. Accuracy in input-output trade estimates and other I-O parameters is critical for reliable evaluations of differences between individual sectors.

It is common to see authors borrow multipliers from other studies or to simply select a number (often 2.0) and multiply it by their estimates of direct sales (or income or jobs) to arrive at estimates of

"total" impacts. Generally, the authors are not claiming to be accurate in such cases and may even admit that their estimation procedures leave much to be desired. However, whether due to funding constraints or other priorities, unique multipliers for the time, space, and activities under consideration could not be calculated. Also, the authors may have believed it inappropriate not to mention that impacts extend beyond the direct impacts measured.

Exaggeration of impact size is a danger when multipliers are borrowed, and such exaggeration could, in turn, contribute to widespread discounting of impact estimates and input-output analyses more generally. However, much recreation planning and many recreation analyses are not critically dependent upon the level of accuracy in the measurement of impacts. Borrowed multipliers may be used simply to indicate that secondary effects from recreation activity occur, rather than to illustrate the exact magnitude of expected impacts associated with the recreation activity being studied. In contrast, accurate impact measures are much more critical in industrial targeting and economic development studies which must assess the relative contributions or potential contributions of economic sectors.

Improved accuracy of input-output estimates also may be addressed in the context of reporting results. Reporting of a range of estimates (even though the range does not constitute a true statistical confidence interval) relates more information and may more accurately convey the level of knowledge regarding likely economic impacts than a single number. Thus, despite what might appear to be a loss of precision, the reporting of impacts in ranges -- based on familiarity with the variability in data and model parameters -- may be less misleading than a single number which falsely connotes a high level of precision.

There has been only limited theoretical and applied work on stochastic and probabilistic I-O models. Jackson (1986), for example, has described the basis of what amounts to a probabilistic specification of technical and trade coefficients which would generate interval multipliers or impact estimates. Aggregations of industries are treated like samples of firms within an industry. Unlike the usual I-O aggregation, the information on the disaggregated industries' technical coefficients and trade are aggregated together into probability functions, weighted on the basis of output. The author notes that, in distinction from a model that is generated at least in part from random influences, his model takes into account "expected systematic variation" observed at the disaggregated data level. The accuracy of the disaggregated data is a critical constraint on the accuracy of such a probabilistic model. Also, estimation of final demands used to drive the model remain critical to the model's results.

Computing hardware continues to advance with each passing year. Further development and applications of stochastic or probabilistic I-O models can be expected to accompany increased computing capabilities. Admittedly, decisionmakers may well prefer singular (point) values, which do not reflect any uncertainty, to interval or range estimates with probabilities attached to them which are more difficult to interpret. However, it remains the analyst's task to avoid oversimplifying or deceptive estimates which do not relate the level of uncertainty encountered.

<u>Application of Valuation and Impact Concepts</u> <u>to Recreation Impact Analysis</u>

a. Terminology

The use of certain terms pertaining to impact analysis is not always consistent in the recreation literature. The dominant, conventional usage is to refer to impacts as "secondary" or "indirect" impacts. On the other hand, the experience felt by recreationists, or their utility from the experience, is generally denoted as the "direct" or "primary" effect. This orientation may stem from the perspective of benefit-cost analysis, which conventionally does not allow for a counting of indirect benefits (defined as market transactions associated with the recreation experience), to be counted as benefits. Thus, Walsh (1986) states,

"Economists distinguish between the primary benefits and secondary impacts of recreation economic decisions... The net benefits of individual consumers represent the social benefits of public recreation programs. The consumer surplus of individual users may not be spent in the region of the recreation site or spent at all, but this does not make it any less real to individual consumers. ... the secondary effects of the actual expenditures by individual consumers and managers of private and public recreation resources...are the regional economic impacts on business output or sales, employment, net income, tax revenues, government spending, and environmental quality. The essential idea is that primary costs to individual consumers and managers become secondary gains, in part, to the regional economy supplying recreation goods and services. Studies of regional economic impact do not measure the value of the project to the primary users of the recreation site but rather the value of the project to those who are involved in supplying the primary users with goods and services."

... "The Water Resources Council guidelines recommend the regional economic impacts should be treated as income transfers in a separate account to distinguish them from benefits which contribute to general welfare or national economic development. Conceptually, employment anywhere in the nation of otherwise unemployed or underemployed resources that results from a project represents a valid benefit. However, they are not counted because of problems of identification and measurement and because unemployment is regarded as temporary. The guidelines allow one major exception to the rule. If the regional economy of a proposed project has substantial and persistant unemployment of labor, then the benefits of the project may include the income (salaries and wages) of otherwise unemployed labor working onsite in the construction or installation of a project or a nonstructural improvement.

... "Most secondary gains to a particular region will be offset by actual or potential losses elsewhere. This means that outdoor recreation programs redistribute income to the regional economy of parks and other recreation sites from other regions and the nation. Whether such redistribution is desirable is a political decision beyond the scope of economics. The essential point is that these changes in the distribution of income represent transfers of income and not social benefits, i.e., not real welfare gains to the nation. What is a gain to the local region may be a loss to another region, and the national Economists refer to such economic welfare may not change. transfers of income as pecuniary impacts to distinguish them from technological impacts where real national secondary benefits occur in regions with long run unemployment, immobility of resources, and economies of large scale."

(pg. 373-376)

This last paragraph contains several misleading statements. It would have been more accurate to note secondary gains to a region <u>may</u> be <u>at least partially</u> offset by actual losses in other (subnational) regions, rather than qualifying the first sentence by acknowledging that the losses "will be offset by actual or <u>potential</u> losses elsewhere." Are the gains and losses perfectly equivalent, such that the gains merely "represent transfers of income" and nothing else? At issue is whether the gains are identically matched by losses elsewhere (within the nation, or system of regions being considered), or only partially so. If regional gains exceed losses elsewhere, the net gain could rightfully be included in an impact analysis of the benefits for the system of regions. This point is not addressed directly, although later in the same paragraph the author does state that gains "<u>may</u> be a loss to another region" (rather than will be), and "national economic welfare <u>may</u> not change" (rather than will not). Generally, it is not known whether regional secondary gains are offset or not by losses elsewhere.

Economics has a role in aiding the understanding of the nature of income redistribution so as to allow for more informed political decisions on the desirability of such redistribution. It is within the scope of economics to objectively measure the redistribution and predict its impacts.

Most (but not all) economists make a distinction between pecuniary and technological impacts, but the distinction is not well conveyed in the last sentence of the last quoted paragraph. Pecuniary effects are monetary (income or wealth) distributional effects stemming from market transactions and changes in prices. Dismissing pecuniary effects as merely distributional impacts rests on the assumption that there are exactly equal gains and losses. This, in turn, is dependent on perfect competition assumptions, or at least full employment of resources in the markets under consideration and any related (complementary or substitute) markets. In contrast, technological effects imply "real" effects on preferences or technological opportunities, presumably affecting aggregate welfare. Resource allocation may be affected in either case.

Technological impacts may occur from many sorts of economic activity, including travel and tourism. An important issue is what is the spatial unit of analysis? New economic activity may create beneficial technological impacts in a depressed area by positively affecting the region's long run unemployment, immobile resources, or untapped potential for economies of scale. In contrast, the same activity may well have only distributional consequences in regions with

full employment, perfectly mobile resources and no remaining economies of scale to tap. As described, new wealth is created in the depressed area whereas there is only income being transferred in the latter regions (assuming regions with such conditions exist). "Real" national secondary benefits may be said to occur in the first circumstance, as opposed to merely "pecuniary" benefits in the latter. It is clear that outdoor recreation can generate "real national secondary benefits" by this perspective, but it depends on the region in which the recreation occurs.

Problems remain with this perspective, however. Neoclassical economics, with its emphasis on the forces of equilibrium and efficiency, tends to ignore situations exhibiting long run ("structural") unemployment and factor immobility. Belief in the workings of Adam Smith's invisible hand could lead one to argue that public or private recreation expenditures in areas of long run, high unemployment may be less economically beneficial than expenditures in areas of low unemployment particularly in terms of price distortions, but also in terms of productivity. Expenditures in low unemployment areas might provide further competitive incentives for resources to be allocated to where they provide their highest return and lead to (or force) technological innovation. In contrast, expenditures in high unemployment areas may not generate the same intensity of incentives and may distort price signals, leading to a loss in efficiency.

The above argument is oversimplified as it does not address a number of social welfare concerns, such as those pertaining to Second Best, inflation, and welfare payments issues. The point is that determining what to consider in regional impact analysis is not as
straightforward as described by Walsh. The basis for counting impacts in areas of high unemployment rests not only on the idea that the nation gains from using resources that would have been wasted otherwise, but also on the concept that better economies of scale may be achieved in such areas, leading to gains in efficiency. (The corollary for low unemployment areas is that there are no further possible resources to be exploited -- this ignores the possibility of importation and the concept of comparative advantage -- nor are there any further economies to be achieved). If there is any basis to the saying that necessity is the mother of invention, then conditions of high resource utilization are likely to lead to technological progress. In contrast, idle resources and slack demand do not generate incentives for innovation.

It is not the purpose here to draw final conclusions about these points of view, but only to contend that the rationale behind accepting or rejecting the legitimacy of impact estimates is not perfectly objective. Guidelines on when to count impacts versus not allowing them are arbitrary and more political than economic.

b. Residents Versus Nonresidents

A related recreation impact issue consists of which recreationists to count. Recreation expenditures within a region by the region's residents are sometimes dismissed because they are assumed to contribute nothing to the regional economy. According to this view, such expenditures are simply a transfer of income from one part of the region to another part. The gain to one area is viewed as perfectly offset by a loss to another area resulting in no net impact. This view ignores distributional consequences relating to the marginal differences in

impacts between different types of activities occuring within the same region. While certainly less significant than entirely new economic activities introduced to a region, changes in economic activity within a region are not the same as economic leakages out of a region. Thus, for example, while more recreation in Michigan by Michigan residents may amount to a loss in other parts of the Michigan economy, the new recreation impacts are not likely to exactly equal reduced impacts elsewhere from the change in spending habits. It is unrealistic to believe they exactly cancel each other out. To contend the impacts are identical is paramount to believing there is no difference in sectoral multipliers. This would, in turn, eliminate much of the justification for differentiating between economic sectors and industrial targeting programs.

Additionally, some recreation expenditures within the region by the region's residents may be a form of import substitution if they take the place of recreation expenditures outside the region. However, accurately differentiating such expenditures would be difficult for it would involve measuring incomes, costs, and preferences over time.

It would be difficult to measure marginal differences in impacts from residents of a region engaging in more regional recreation and less of other activities. A primary problem with such measurement would be to identify the economic sectors of the economy which "lose" from more regional recreation expenditures. Several alternative situations exist. Again using Michigan as an example, any additional Michigan recreationrelated expenditure that occurs exclusively in place of out-of-state recreation spending is pure economic gain to the state. From the perspective of the state, it would be legitimate to count any impacts

from such import substitution and resulting "leakage" reduction. However, it is very possible and perhaps likely that some portion of any observed increase in Michigan recreation-related spending takes the place of other spending in Michigan, or comes out of savings. Tradeoffs occur in such cases. A complete description would account for impacts associated with losses in areas and sectors from which the funds are transferred from, and contrast these to gains in areas and sectors benefiting from greater recreation activity.

One possibility for assessing "true" gains from such transfers of spending within a region would be to offset any increase in new recreation spending by an equal amount in other sectors in proportion to typical personal consumption expenditure (pce) patterns. (Savings and taxes could be figured into these too.) This could provide a comparison of economic impacts associated with recreation relative to average or typical consumer expenditure economic impacts. However, this blunt approach measures average differences rather than true marginal changes in consumption expenditures that would likely occur as a result of increased recreation expenditures. Trend studies of personal consumption expenditures and leisure activity, delineated by income classes, might shed better light on the tradeoffs that are made. These might be used to develop weights of sectors likely to experience reductions from additional recreation activity.

c. Comprehensive Impact Analyses

Conducting more comprehensive impact analyses is related to the issue of examining net impacts. Computation of actual local economic impacts stemming from recreation activity should include an analysis of costs, besides recreationists' expenditures. This would foster a better

understanding of impacts and who is affected by them. It might also improve impact projections which would be useful for planning purposes. However, as Keiner (1985) notes, this point is often ignored in many impact studies which address only expenditures of recreationists. There appears to be a lack of appreciation that costs need to be included in order to present a balanced impact assessment. Other reasons that costs are often ignored include funding constraints, study priorities, and factors relating to the nature of the costs.

Millerd and Fischer (1979, p. 248) review secondary benefits and costs that should be taken into consideration when calculating local economic impacts. Their list provides an indication of the complexity a thorough recreation economic impact assessment would entail. The following description of secondary benefits and costs is an elaboration of Millerd and Fischer's list.

Secondary Benefits

- public expenditures for initial construction, preparation, and operation of recreation facilities; and other public expenditures induced by these (schools, roads, etc.);
- 2) recreationists' trip-related expenditures (e.g. lodging, meals, travel, etc.);
- 3) increased private investment due to recreation facilities (stores, motels, roads, cottages, etc. - including construction and operation of these, and their induced impacts). (Note that tourist spending may make the difference between the success or failure of many marginal businesses, especially in more rural areas);
- 4) external effects from roads/ transportation facilities (better provision of goods and services - for example, the increase in size of a community permitting a large discount store to open, etc.);
- 5) major equipment purchases: boats, recreational vehicles, etc.

<u>Costs</u>

- lost income opportunities (for example, to extraction industries -agriculture, timber, and mining);
- 2) increased local government expenditures -- medical, fire protection and police services for tourists (however, these may be offset by stimulated nonresident recreation home development and the property taxes these provide);
- "various external costs" local residents may substitute other forms of recreation, causing loss of local income opportunities;
- 4) price effects on goods and services locally (higher mark-ups on goods during tourist seasons tend to apply to local residents as well) also possible substitution of imported goods in place of locally produced goods (locally produced crafts replaced by imported crafts).
- 5) environmental costs from recreational use of local environmental resources. These range from litter through soil erosion and noise pollution. Some of these costs may be obvious and have explicit market transactions associated with them; others may not be very discernible nor have any readily apparent monetary values.

The level of analysis detail described above and by Millerd and Fischer is seldom approached in outdoor recreation or other resource economic impact studies. It would require multiple data sources and tools of analysis; an input-output table alone would not be sufficient. The list (and similar ones like it) may serve as an ideal to strive for and provides public agencies with reminders of impact considerations.

Heroic assumptions are often necessary to complete such comprehensive profiles of recreation economic impacts. The value of some recreation variables may never be unambiguously determined if they relate to goods which have joint production costs, are nonexclusionary, or otherwise are produced, traded or consumed in conditions which violate the perfect competition model. Conditions necessary to achieve perfect competition have been enumerated in many different ways. Broader descriptions sometimes refer to well-defined, enforceable property rights, the absence of market barriers, and the absence of Second Best conditions. At a minimum, most lists include perfect information; many rational buyers and sellers operating as price takers; perfectly mobile factors of production and homogenous, perfectly divisible goods.

In the case of joint production costs, the same factors are used for producing multiple goods. This makes it impossible to objectively allocate the costs for producing the goods. The problem is compounded by the goods often being produced at the same time and by indivisible factors (such as often associated with fixed costs). Nonexclusionary goods or services are those from which, due to prohibitive costs or simply the practical impossiblity, persons cannot be excluded. In such cases, persons who benefit cannot be made to pay for their use of a good or service. Outdoor recreation often involves such goods and services. Examples include scenic vistas, appreciation of the presence of wildlife, and multiple uses of waterways such as for fishing, boating, and swimming.

Durable recreation equipment and public costs of providing for recreation experiences are examples of difficult-to-measure variables that affect outdoor recreation impact estimates. As an analog to joint production costs, the economic impact measurement problem with durable recreation equipment might be viewed as joint consumption (purchase) benefits. Such equipment is often used in multiple regions and sometimes even for nonrecreational purposes. Some analysts have elected to include a percentage of the equipment's costs in their impact studies, based on the percentage of recreation trips made to a region or amount of time the equipment is used in a region. However, such approaches are usually quite arbitrary and may be improper depending on a study's objectives.

A few examples will illustrate the influence of a study's objectives on the appropriateness of different techniques for measuring the value of, or impacts from, recreation equipment expenditures. If the analyst is projecting changes in recreation impacts, marginal impacts may well involve a different pattern of durable equipment expenditures than the existing average pattern. Change in recreation activity patterns involve not only a change in the types of equipment used, but also a change in use intensity of recreation equipment. The intensity-of-use issue relates to whether new equipment, used equipment, leased equipment, borrowed, or existing (already owned) equipment will be used. Projected changes in equipment purchases should take these alternatives into account, if durable equipment purchases are an important part of the analysis.

The size of the tourism-recreation industry in a particular region may be defined to include all local durable recreation equipment sales, whether the equipment is used in the region or not. Alternatively, if the objective is to measure the influence of a state's tourism promotion campaign, it may be important to attempt to isolate the proportion of recreation equipment sales to nonresidents only. Again, the appropriate point of view can only be defined in light of a study's objectives.

In addition to the difficulty between allocating public costs of providing for recreation experiences between residents and nonresidents and recreation and nonrecreation purposes, public costs are multifarious. The more obvious costs to include in impact studies are those related to constructing and maintaining recreation facilities. Roads, sewers, fire and police protection in surrounding areas also are necessary for the provision of recreational experiences. Less obvious

are other public functions performed at the state and local levels which affect the recreation experience. For example, these include, but are not limited to, many aspects of planning and management that occurs within state bureaucracies that address natural resource, commerce, transportation, energy, and environmental concerns. Portions of office budgets for these state bureaucracies, including administrative and support staff salaries, reflect costs created by a desire to generate and monitor recreation activity.

Public costs for recreation are not substantially different from public costs for other activities. For example, there are substantial infrastructure costs associated with maintaining agricultural activity in rural areas, not to mention agriculture extension and other agriculture-related government personnel costs. In a similar sense, the activities and associated costs of a state's commerce department may be partly responsible for the expansion of economic activity in a particular industrial sector. Whether public costs for recreation are substantially greater, more diverse, or qualitatively different from public costs associated with other forms of economic activity is not as important as attempting to identify them and linking them to measured benefits.

Federal recreation expenditures are generally perceived as an inflow of funds and a pure gain at the regional level. Taxes (or federal budget deficit) required for the funds are ignored (due again, in part, to the joint production-allocation of costs problem). State expenditures may often similarly be viewed as an inflow of funds for substate regions.

on Impact Estimates

This research examines the variability of economic impact estimates associated with outdoor recreation expenditures. Different data and methods are two primary causes of variability in outdoor recreation economic impact estimates. Data used differ in terms of: 1) the degree to which they can be unambiguously defined or quantified, and their accessibility and ease of manipulation, and 2) perhaps more importantly, their influence on results, in this case, the magnitude of the impact estimates. The same type of data may well vary over space, activity, or time. Different methods and models may also be employed to derive impact estimates. The choices made as to which data, methods, or models are used in impact studies are also influenced by the study's objectives, funding, and expertise of the researchers.

There are economic impact variables whose values could be accurately determined if enough effort is devoted to the task. Variables which fall into this category include industry output, the number of affected employees and their wages, industry-specific deflators, producer margins, and trade. Even with these variables, however, aggregation errors and other types of measurement error not subject to statistical analysis (unlike sampling error which can be estimated by statistical analysis) may occur.

The premises guiding this research are that: 1) sources of high variability in outdoor recreation impact estimates exist and can be identified, 2) it is possible to assess the consistency of this variability and the ease in using ranges of these variables in a sensitivity analysis of impact results, and 3) impact estimates may be refined by efficiently utilizing information displayed by patterns of differences in impact estimates.

More specifically, in the case of outdoor recreation economic impacts, it is assumed that:

1) a source of variability in existing estimates of economic impacts stems from differences in definitions (and, hence, sectoral aggregations) used to classify and measure outdoor recreation. This variability stems not only from what activities to count as outdoor recreation, but also from what spending is considered (e.g. residents or nonresidents only, trip expenditures only or durable equipment purchases too, and costs of providing for the recreation experience).

2) Alternative producer margins and deflators used to convert recreation participation and spending information into input data for an input-output model will generate results which will vary by less than a factor of one from each other. This occurs because alternative producer margins and deflator values fall within a narrow range. Producer shares are generally in the range of 50 to 100% of purchaser prices. Deflators similarly will be expected to fall within 50% of each other, unless the deflation takes place over several decades or is for a period of high inflation like the 1970s. (For this study, the deflators used only cover the period 1982-1985). However, checking and improving the precision of margins and deflators used may be accomplished with relative ease. Substituting more precise margins and deflators to achieve even slight impact precision improvements may prove to be an efficient use of time in impact analysis.

3) The magnitude of RPCs and the nature of the sectorization scheme will generally tend to have larger influences on impact estimates than

deflators or margins. However, the influence of RPC trade estimates and errors due to very aggregated sectorization schemes are less tractable in terms of their effect on impact estimates. The extent to which they differ from the "ideal" ("true" values in the case of RPCs and fully disaggregated schemes in the case of sectorization) will influence their relative magnitude of influence on impact estimates. RPCs, in particular, can be expected to have inconsistent, but potentially large influences (greater than a factor of one) on impact estimates. This supposition is made on the basis of the author's research for the 1987 Lake States Governors' Conference on Forestry (Pedersen and Chappelle, 1988). Also, RPCs are used to convert matrices of intermediate demands (in addition to final demands). This is in contrast to deflators and margins being used to convert a vector of final demands only (representing spending distributed across I-O sectors); they are exogenous in a demand-driven model. Therefore, RPCs influence calculations of indirect and induced impact components, whereas deflators and margins do not. In other words, errors in RPC estimation may be viewed as subject to being compounded by the multiplier effect.

Study Objectives

Refining allocations of recreation spending to input-output sectors and examination of IMPLAN's trade estimates are primary objectives of this dissertation research. Special attention will be devoted to the issue of RPC trade estimates, as they affect all IMPLAN models used to generate economic impacts, whether the impacts relate to outdoor recreation or any other economic activity. Also, because of its applicability as a case study, a detailed description will be presented of the steps followed in preparing 1985 National Survey of Fishing, Hunting, and Wildlife-Associated Recreation data for use with IMPLAN.

Evidence that the trade estimates in the IMPLAN modeling system can be significantly improved and the development of an detailed bridge for allocating recreation spending to IMPLAN sectors are two major products of this research. The study also has implications for several other issues, including: how variability in participation and spending profiles across recreation studies affects resulting impact measurements; how sensitive economic impact estimates are to certain types of errors; where the greatest gaps in data occur; and where improvements in data collection could be made.

The study utilized only secondary sources of data to develop alternative trade estimates and outdoor recreation economic impacts. The only trivial exception to this is subjective opinions obtained from Michigan State University Parks and Recreation Resources Department faculty on minor questions regarding the likely nature of certain types of recreation spending.

Other secondary objectives and steps followed in the process of achieving the study's objectives are as follows:

1) Document problems with RPCs generated by version 2.0 of IMPLAN. Construct alternative RPCs from a "corrected" 1977 Multi-Regional Input-Output (MRIO) accounts database and contrast these with IMPLAN. This comparison will have the purpose of demonstrating that IMPLAN's trade and impact estimates can be improved if this alternative database is used to re-estimate RPCs for the modeling system.

2) Compile 1985 upper Lake State data on fishing, hunting, and wildlife-associated recreation activity and spending. Most recreation

participation data used for the 1987 Governors' Conference on Forestry (Pedersen and Chappelle, 1987) came from Michigan, Minnesota, and Wisconsin State Comprehensive Outdoor Recreation Plans (SCORP) reports. These data were combined with spending profiles from Minnesota to calculate total regional recreation spending. These spending data are contrasted to similar spending estimates generated from the U.S. Department of the Interior, Fish and Wildlife Service's <u>1985 National Survey of Fishing. Hunting. and Wildlife-Associated Recreation</u>.

3) Compile alternative spending profiles. Recreation spending categories are bridged to IMPLAN sectors. This process consists of disaggregating much of the data and converting them to producer prices to conform with the I-O accounting format. They are then deflated to 1982 values and serve as vectors of recreation final demands for use with alternative Lake State IMPLAN models. A range of spending profiles are constructed, reflecting published statistical information and consideration of different types of expenditures. Low and high estimates of spending are developed for trip expenditures only, all spending including durable equipment, all spending except durable equipment, all recreationists, and nonresidents only. These estimates take into account sampling errors only. Additional nonsampling errors which could compound problems associated with sampling errors are usually not directly measureable. They are not addressed in this study.

4) Construct alternative IMPLAN models. The Lake State models will reflect different sectorization schemes and trade estimation assumptions. Alternative sectorization schemes allow one to measure the influence of aggregation error on estimated impacts. Models for the Lake State region (Michigan, Minnesota, and Wisconsin) are the primary focus

of the analysis. Models of the three individual Lake States and several counties in Michigan (Kalamazoo, Kent, and Ottawa) serve to test the general applicability of observations regarding IMPLAN's RPCs.

5) Estimate recreation economic impacts, using the final demands derived in step 3 with type I and type III multipliers derived from the Lake State IMPLAN models. Compile total output, personal income and employment economic impacts.

6) Contrast estimates of total economic impacts. Variables examined include activity participation, spending patterns, and I-O model sectorization schemes, producer margins, and trade estimates. The objective is to measure the reliability of existing recreation and I-O model data, construct a range of estimates in which actual (real world) values likely exist, and derive a corresponding range of economic impacts. (True statistical confidence intervals for the recreation economic impacts cannot be constructed as they represent a synthesis of multiple sources of data without known probability functions).

7) Report results, consisting of:

a) comparisons between alternative sets of activity estimates, spending profiles, margins, sectorization schemes, and RPCs,

b) summary descriptions of resulting changes in multiplier-based impacts from the use of different values for these variables;

b) estimates of economic activity associated with particular definitions of outdoor recreation in the Upper Lake States. Attention to alternative outdoor recreation definitions must be given, as this study relies on two alternative secondary data sources with different delineations of recreation regions and activities.

CHAPTER II

INPUT-OUTPUT ANALYSIS & IMPLAN

Introduction

This chapter presents background material on input-output analysis and the USDA Forest Service's input-output model, IMPLAN. For a good reference text on I-O, see Miller and Blair, <u>Input-Output Analysis</u>; <u>Foundations and Extensions</u> (Prentice-Hall, Inc., 1985). Major publications on IMPLAN include the IMPLAN <u>User's Guide</u> and <u>Analysis</u> <u>Guide</u> (U.S. Department of Agriculture, 1983 and 1985, respectively), More current IMPLAN materials may be available from the IMPLAN Development and Applications Group, Agricultural and Applied Economics Department, University of Minnesota, St. Paul, Minnesota.

Input-Output Analysis

Input-output analysis (I-O) was developed by Wassily Leontief in the United States during the 1930s. I-O can be used to measure effects felt throughout an economy when output of one or more sectors (industries) are increased or decreased. More precisely, this impact analysis tool allows for computation of direct, indirect, and induced effects associated with changes in final demand on an industry-byindustry basis. Final demands refer to consumption sectors of the economy and include government and household institutions and investment, inventory, and export accounts. They involve transactions after which there is no further processing within the region.

I-O tables are mathematical representations of economies. Through a system of linear equations, they serve as both accounting frameworks and impact analysis tools. Sales (receipts) of industries are recorded

across rows while purchases (expenditures) are recorded down columns. Sales are divided into intermediate and final demands, while purchases are divided into intermediate and final payment categories.

Although different symbols are sometimes used, these relationships are often depicted by the following notations: i-ith row sector, j-jth column sector, n-number of sectors in model; X_i -total output (sales) of sector i, X_j -total outlays (purchases) of sector j; x_{ij} is the output of sector i purchased by sector j; Y_i -final demands of sector i, consisting of C_i (personal consumption), I_i (here, investment, including inventories), G_i (government purchases), and E_i (exports). Final payment sectors may be depicted by: V_j -total primary inputs (value added and imports) of sector j, consisting of L (personal income or payments to labor), P (property income), T (indirect business taxes), D (depreciation), and M (imports).

Rows of intermediate and final sales (receipts) may be expressed as follows: $\sum_{i=1}^{n} (x_{i1} + x_{i2} + \dots + x_{in} + C_i + I_i + G_i + E_i = \sum_{i=1}^{n} X_i$ where $X_i = \sum_{i=1}^{n} \sum_{j=1}^{n} x_{ij} + \sum_{i=1}^{n} Y_i$, and $Y_i = \sum_{i=1}^{n} (C_i + I_i + G_i + E_i)$

Columns of intermediate and final payments (expenditures) may be expressed as follows:

$$\sum_{j=1}^{n} (x_{1j} + x_{2j} + \dots + x_{nj} + L_{i} + I_{i} + G_{i} + E_{i}) = \sum_{j=1}^{n} X_{j}$$
where $X_{j} = \sum_{j=1}^{n} \sum_{i=1}^{n} x_{ij} + \sum_{j=1}^{n} V_{j}$, and
 $V_{j} = \sum_{j=1}^{n} (L_{j} + P_{j} + T_{j} + D_{j} + M_{j})$

A helpful accounting feature of an input-output table is that it is balanced; total gross outputs equal total gross outlays. Thus,

$$n \qquad n \\ \sum_{i=1}^{\infty} X_i = \sum_{j=1}^{\infty} X_j.$$

The pattern of sector outlays depicted in the columns can be used to derive a set of fixed, linear production functions after all transactions are accounted for and recorded between sectors. The portion of sector j's purchases attributable to sector i is called a technical coefficient and is noted as:

$$a_{ij} - \frac{X_{ij}}{X_i}$$

The basis for input-output analysis can now be formulated, using the relationships and definitions presented. First, it should be noted that the level of intermediate purchases may be derived by taking the matrix of a_{ij} 's and multiplying them by the vector of total gross outputs, X_i . Dropping the subscripts on vectors to allow for more convenient notation and beginning with the initial condition that total gross outputs are equal to intermediate and final demands, the following manipulations allow total gross output to be derived from knowledge of final demands and technical coefficients:

$$X = AX + Y$$

$$X - AX = AX - AX + Y$$

$$X(I - A) = Y$$

$$X = Y (I - A)^{-1}$$

where I is an identity matrix with ones along its diagonal and zeros elsewhere.

The (I-A)⁻¹ matrix is called the Leontief inverse, after the pioneering economist who was in large part responsible for developing input-output analysis. Multiplying the Leontief inverse by a vector of final demands will produce estimates of output levels required throughout all sectors of an economy to exactly meet the final demands.

Subsequently, the output estimates can be used to generate projections of income, employment, value added or other economic variables by using historical information on sectoral ratios of these variables to output.

Nonsurvey I-O: Adaptation of National Coefficients for Regional Models

Several techniques have been developed through the years to avoid the expense associated with constructing a complete survey-based I-O analysis. Most techniques adjust national level I-O coefficients to the region being analyzed. Employment data are often used to make extrapolations from the national to the regional level, despite problems associated with the practice, because of the ready availability and frequent reporting of employment data. Problems with such extrapolations include:

- 1) regional and temporal productivity differences exist;
- employment data used are often based on employment for one date (in March for County Business Patterns), thus masking seasonal differences and not necessarily representative of an annual average;
- different mixes of full and part-time employment are reported for different sectors and exist in different regions, thus making extrapolations to sales (like the issue of productivity) questionable;
- 4) self-employed persons and certain other categories of workers (owners and administrative personnel) are not reported, underreported, or not reported as working within a particular sector in the same manner as other employees; and,
- 5) disclosure and aggregation issues, affecting comparisons of any data across regions and the nation, affect employment as well.

Regional scientists are divided in opinion over the efficacy of nonsurvey techniques. The Brucker et al. article (1987) reviews five "ready-made" I-O model systems. The article, and subsequent comments on it, attests to the growing use of nonsurvey I-O models, despite reservations about their use. Three nonsurvey techniques are briefly described below. See Miller and Blair (1985) or Richardson (1978 and 1985) for a more complete review of the numerous approaches available and perspectives on their performance.

a. Location Quotients

The location quotient (LQ) is generally specified as follows:

$$\frac{e_{i}^{r} / e^{r}}{e_{i}^{n} / e^{n}}$$

where e_1^r - regional employment in sector i e^r - total regional employment e_1^r - national employment in sector i e^r - total national employment

Alternatively, the mathematical equivalent of this is sometimes specified as: $\frac{e_i^r / e_i^n}{e_i^r / e_i^n}$

The location quotient for any particular industry indicates the relative share of local employment the industry accounts for vis-a-vis the national industry share of employment. If the industry accounts for a larger share of employment on the regional level than it does on the national level, the LQ_i will be greater than one. Conversely, if the industry comprises a smaller proportionate share of local employment than the national industry share, the LQ_i will be less than one.

Many variants on the use of location quotients to transform national coefficients into regional coefficients have been devised. For the Simple Location Quotient technique, if the $LQ_i \ge 1$, then the a_{ij} 's for the ith industry are used. If the $LQ_i < 1$, then the a_{ij} 's for the ith industry are adjusted downward by the value of location quotient. The basic idea behind this approach is that imports will have to occur if the industry is not as present on the local level as it is nationally. On the other hand, excess output is assumed to be exported (rather than consumed in intermediate production) if the industry comprises a larger share of local employment than nationally. This follows from interpreting the a_{ij} 's as technical coefficients and the assumption that regional production processes are the same as national production processes.

b. Supply-Demand Pooling

The supply-demand pooling (SDP) (or commodity balance) technique flows from the simple assumption that, given transportation costs, demand will first be met by local production. Simultaneously, sales of regional output will first go to meet local demand. Thus, imports will only occur after local production is exhausted and exports will only occur after local demand is met. The SDP technique is also sometimes termed a net trade approach. Both imports and exports will not be allowed to occur for the same industry, with the balance between local demand and production determining which will take place.

C. Regional Purchase Coefficients

The original regional purchase coefficient (RPC) approach combined Census Transportation data with other secondary data econometrically to derive regional trade estimates. (The 1983 article by Stevens, Treyz, Ehrlich, and Bower, is one of the earliest descriptions of this nonsurvey technique; their approach will be referred to as the STEB approach.) A number of alternative specifications have been used by the

originators of the RPC approach to trade estimation. The changing of the specification for the RPC estimating equation and the resulting changes in estimated RPCs has caused some degree of consternation for REMI model users. On the one hand, it certainly is worthwhile to improve the specifications used, so as to enhance the reliability of the REMI models. On the other hand, it can be embarrassing to not be able to generate consistent forecasts and impact estimates. An emphasis on determining RPCs on the basis of the relationship of regional to national values has remained throughout changes in the RPC specifications. The reduced log-linear form of the RPC equation indicates this emphasis:

$$\begin{aligned} &\operatorname{RPC}_{i}^{r} = b_{0} / (F_{j}^{r,i}/F_{j}^{n,i})^{b}j; \\ & \text{where } F_{j}^{r} \text{ or } n,i = \text{variable } j, \text{ for commodity } i \text{ in } r \text{ or } n \\ & r = \text{region under consideration} \\ & n = U.S. \\ & b_{0} = a \text{ constant} \\ & b_{j} = \text{elasticity of response of } \operatorname{RPC}_{i}^{r} \text{ to } a \text{ change in} \\ & \text{ratio of variable } i \end{aligned}$$

The first step in the STEB RPC technique involves deriving RPCs for manufacturing industries from the following equation:

the

$$RPC_i = (X_i^r/D_i^r) P_i$$

where X_1^r - the amount of commodity i produced within the region

(based on Census of Manufacturers data),

- D_i^r the amount of commodity i demanded within the region (based on BEA I-O data and other demand calculations),
- P_i the amount of commodity i produced within the region that is also shipped locally (based on the Census of Transportation Commodity Survey).

(Note that P_i can be expressed as $X_i^{r,r}/X_i^r$, where $X_i^{r,r}$ represents regional output shipped locally (intraregionally). Substituting this formulation of P_i into the RPC equation, the X_i^r 's cancel, leaving $X_i^{r,r}/D_i^r$, the ratio of intraregional shipments to total demand, or RPC.) The derived RPCs are then used as dependent variables in a regression equation from which all other RPCs are derived. Richardson (1985, p.623) notes that the following equation has been used, based on fitting an initial sample set of RPCs:

$$RPC_{i} = K(w_{i}^{r}/w_{i}^{n})^{b}1 (e_{i}^{r}/e_{i}^{n})^{b}2 (W_{i}^{n}/V_{i}^{n})^{b}3 (LQ_{i})^{b}4 (A^{r}/A^{n})^{b}5 + e$$

where w = wages, e = employment, W = tonnage of shipments, V = value of shipments, A = land area, i is a subscript for industry, e is an error term, and r and n are superscripts for region and nation.

Fitting the equation for 2-digit SIC manufacturing sectors (and adding seven other dummy variables for particular 2-digit SIC sectors), Stevens et al. (1983, p. 279) report significant t-values for all the independent variables in the equation and an R^2 of .679.

IMPLAN

IMPLAN is maintained by the Forest Service at the U.S. Department of Agriculture's Fort Collins Computer Center. The National Environmental Protection Act of 1970 provided the impetus for impact studies. The Rangeland Renewable Resources Planning Act of 1974 and National Forest Managment Act of 1976 provided further incentive for the development of IMPLAN. IMPLAN is an input-output (I-O) model with // associated data bases. Input-output analysis can be used to measure effects felt throughout an economy when output of one or more sectors (industries) are increased or decreased. More precisely, this impact analysis tool allows for computation of direct, indirect, and induced effects associated with changes in final demand on an industry-byindustry basis. Final demands refer to consumption sectors of the economy and include government and household institutions and investment, inventory, and export accounts. They involve transactions after which there is no further processing within the region.

IMPLAN's data base contains a detailed national interindustry table and estimates of final demand, final payments, gross output and employment for each county in the U.S. A data reduction technique (the RAS method, which is an iterative, balancing process) is used to develop state and county estimates of value added and final demand. These data files can be combined with U.S. interindustry data to to form regional input-output models consisting of aggregations of counties and/or states. Appendix A presents a complete listing of IMPLAN's 528 sectors and their corresponding Standard Industrial Classification (SIC) codes.

The data in version 2.0 of IMPLAN represents 1982 economic relationships. The national interindustry table used in IMPLAN is based on 1977 U.S. input-output tables (U.S. Department of Commerce, 1984) updated to 1982 through the RAS method and related techniques. Use of more current national tables would be desirable to reflect changes that have occurred in the national economy since 1977; however, the 1977 tables are the most current detailed national I-O tables available (through April, 1990).

Miller and Blair (1985, p. 266-316) review evidence regarding the stability of technical coefficients. They interpret the evidence as indicating that, while coefficients change over time, "for aggregate kinds of measures ... the error introduced by using an 'old' table may not be large." (p. 273). Most of the studies cited by Miller and Blair

compared I-O tables that are between four to ten years apart. Nonsurvey models (such as IMPLAN) using the 1977 U.S. I-O tables are facing a gap in excess of twelve years. This larger, more recent time period probably includes greater economic changes than in the smaller period covered by the I-O tables in the comparison studies. Particular sectors have experienced very dramatic changes since 1977 (e.g., computers, service sectors generally, and foreign trade). In this light, Miller and Blair note that larger errors were often found when particular sectors were considered rather than aggregate measures. (p. 273). Thus, a need for a more current set of national tables exists for nonsurvey models such as IMPLAN, depending to some extent on which sectors are involved in its applications. However, IMPLAN and other nonsurvey modelers have little control over when new national I-O tables will be published.

Use of IMPLAN involves running several of the model's modules, including Region, Accounts, Symmetric, Lister, Smash, and Invert. These are described in the IMPLAN <u>User's Guide</u> and <u>Analysis Guide</u> (U.S. Department of Agriculture, 1983 and 1985, respectively). The titles of these modules are not all readily apparent (nor are they important) when operating the pc version of IMPLAN. The different steps allow the user to delineate a region, estimate regional economic activity through combining regional and national data with the use of data reduction techniques, aggregate and name sectors, and derive estimates of multipliers and impacts for the sectors specified.

Numerous descriptions of IMPLAN applications have been published. Two publications of interest here are "Using Socioeconomic Data in the Management of Fishing and Hunting on Public Lands" (Alward et al, 1985)

and "Opportunities for Analyzing the Economic Impacts of Recreation and Tourism Expenditures Using IMPLAN (Alward and Lofting, 1985).

IMPLAN Version 2.0 adaptation of RPC approach

Earlier versions of IMPLAN used the supply-demand pooling approach for trade estimation. Version 2.0 incorporates a modified RPC approach. The IMPLAN adaptation of the RPC approach is described in an unpublished document by Alward and Despotakis (IMPLAN Version 2.0: Data Reduction Methods for Constructing Regional Economic Accounts, no date). Derivation of IMPLAN'S RPCs will be described first, followed by a discussion of how the IMPLAN approach differs from the Stevens RPC technique and initial evidence of problems with the IMPLAN RPC values.

a. Derivation of IMPLAN's RPCs

For IMPLAN, the fitted model is given as:

 $\ln(M_{i}^{nr} / X_{i}^{rr}) = b_{0} + b_{1}\ln(w_{i}^{r}) + b_{2}\ln(e_{i}^{r} / e_{i}^{n}) + b_{3}\ln(LQ_{i}) + b_{4}\ln(A^{r} / A^{n}) + e$ where M_{i}^{nr} = imports into region r from domestic (U.S.) sources, X_{i}^{rr} = output produced and consumed in region r b_{0} = a constant (although different intercept terms are used
for different sectors, to parallel Stevens, et al.) w_{i}^{r} = wage in region r for industry i

 e_i^r / e_i^n - ratio of region to national employment by industry

 LQ_i = the location quotient for industry i

 A^{r}/A^{n} = ratio of region r land area to total U.S. land area e = an error term

A weight-to-value independent variable is not used as unique RPC equations are constructed for each separate commodity sector. Note too, that the lefthand, dependent term is neither the RPC nor the SDR, but rather a region's ratio of domestic imports to output shipped locally. Also, 1982 data is used for the independent variables, while 1977 MRIO data is used for compiling terms for the lefthand side of the equation.

The RPCs for region r and industry i are then calculated as:

$$RPC_{i}^{r} = \frac{1}{1 + M_{i}^{wr} / X_{i}^{rr} + M_{i}^{nr} / X_{i}^{rr}}$$

where M_{i}^{wr} - foreign (non-U.S.) imports to the region, and

 M_{i}^{wr} / X_{i}^{rr} is assumed to be a constant

b. IMPLAN Differences from the Stevens RPC Approach

Two basic differences between the Stevens RPC estimation approach and the approach adopted for the IMPLAN modeling system are the different databases the approaches used to develop RPC values for their initial dependent variables, and the actual dependent variables being estimated. Other differences exist between the two approaches, such as the use of different independent variables, however, most other differences tend to relate to these two differences discussed below. Also, some other differences noted in the Alward and Despotakis paper have been eliminated through evolution in the STEB RPC estimation technique (e.g. foreign trade is accounted for in Treyz and Stevens, 1985).

1. Dependent Variable being estimated

The IMPLAN regression equation actually estimates the natural log of the ratio of domestic trade to intraregional trade, which is a component of a subsequent RPC calculation. The STEB regression equation estimates the natural log of the RPC directly. 2. MRIO vs. Transportation Census

Both databases are of 1977 vintage. The 1977 MRIO data constitute a complete set of U.S. multiregional accounts for the fifty states and the District of Columbia. It is based largely on secondary data, including the Transportation Census, but also numerous other sources that range from readily available to quite obscure. Other than the conversion of this data base from a port-of-entry to a contribution trade orientation, RPC estimates can be derived directly from it for use in a regression equation. (Foreign imports and exports are attributed to the state in which they first are unloaded or loaded in the port-ofentry approach. The contribution approach allocates total national exports and imports according to a state's proportionate share of demand for imports and output for exports.)

STEB needed to use a number of data sources to compile initial RPC sample values. However, most of these data sources are well known governmental data sources that have track records and are published with descriptions of their statistical accuracy. The MRIO database, on the other hand, has not been extensively reviewed. It is known that budgetary constraints prevented some proposed data collection and reconciliation steps from being conducted, and that, as a result, it contains numerous gaps and inconsistencies (Multi-Regional Policy Impact Simulation Project, 1988). Therefore, the Stevens, et al. database is suspected to be more reliable than the original 1977 MRIO database.

There are a number of minor errors in the Alward and Despotakis draft report on IMPLAN'S RPCs. These errors may be important because the report is the only documentation on the derivation of IMPLAN'S RPCs and much of the report is devoted to critiquing the STEB RPC estimation

technique. For example, it is stated that equation 98 provides a ratio which could be used for comparison purposes with the STEB goodness-offit measure; however, the proposed ratio's numerator and denominator are exactly identical, making the ratio equal to one. The statement is made on the following page that, without an additional constraint, "...the estimated RPC may indicate gross <u>imports</u> (underlining added) exceeding the production of a commodity in an application for a particular region." Gross imports may well exceed regional commodity production; an accounting problem arises when gross <u>exports</u> exceed regional commodity production.

Errors also exist in the report's "Appendix A: The Estimation of Regional Gross Trade Flows -- A Literature Survey." One of the more important of these errors is the contention that the STEB approach overestimates RPCs due to the manner in which local demand (D_i) is estimated. It is correctly noted that 1972 BEA U.S. National I-O technical coefficients, incorporating imports, are used by STEB to estimate demand, thus overestimating domestic requirements. This is in line with the conclusion to chapter two in the main text which states, "...the main weakness of the STEB approach is the inconsistency between the definition of RPC and the treatment of foreign trade." However, if D_i is inflated due to the inclusion of imports in the $a_{ij}s$, then the RPCs are underestimated as D_i appears in the denominator of the RPC equation (RPC_i = $(X_i/D_i)P_i$), and a larger denominator will reduce the RPC value.

The conclusion to the STEB article states that the bias of the RPCs is towards underestimation: "In closing, it should be reiterated that most manufacturing RPCs for most states are somewhat underestimated by

the RPC estimating equation. As previously noted, the 1972 Census of Transportation failed to report shipments moving less than 25 miles. A preponderence of such shipments would be to destinations within the state of origin, so the percent of output shipped within each state is underestimated by an amount that will vary among commodities and states." (p. 284). The authors then note the 1977 Census will include "short shipments" and that future RPC equations will be based on the 1977 data.

Ralston et al. (1986) offer another view on the RPC bias issue. They contend that the use of one RPC for an industry (per row in an I-O table), as is done in the STEB and IMPLAN models, leads to inaccuracies, including possible overestimates of multipliers. However, their evidence is a Delaware I-O model estimated by the supply-demand pooling method.

More generally, Stevens (through RSRI) and REMI have adopted several changes in their approach which eliminate many of the concerns (including those about foreign trade) expressed in the Alward and Despotakis report about the STEB technique (see Treyz and Stevens, 1985). Finally, Alward and Despotakis report that it was assumed nonport states (those without foreign borders) have no foreign import values in the MRIO database. This probably contributed to errors in calculations of IMPLAN RPCs. A review of the "corrected" MRIO data -and tables prepared from them -- indicates many nonport states have foreign import values.)

c. Evidence of Problems with IMPLAN RPCs

IMPLAN models generated by this author for the states of Michigan, Minnesota, and Wisconsin, a three-state model of these states, and several Michigan county models, all contained dubious zero-valued RPCs as well as many near-zero RPCs, reducing the size of estimated impacts. The percentage of sectors affected was between ten to thirty. There appeared to be some consistency as to which commodity sectors were affected across the various IMPLAN models. Initial questioning of certain RPC values was on the basis of IMPLAN reporting a zero or nearzero RPC, despite output for the sector being sizeable relative to demand for the sector (as indicated in a large SDP value), and on the basis of comparisons with REMI RPCs.

Nonsurvey Input-Output Analysis Model Validation

Nonsurvey I-O model validation involves three issues: what is to be measured in the validation process, what it is to be measured against, and what measurement tools to use. How to interpret the measurement results could be considered a fourth issue. There is an extensive literature on the subject of nonsurvey I-O accuracy. Over two dozen regional science articles focused on this topic have been published in the last fifteen years. Articles which provide an overview of the work in this area or comment on alternative measurement tools include: Sawyer and Miller (1983); Jensen and McGaurr (1977); Morrison and Smith (1974); Butterfield and Mules (1980); Harrigan, McGilvray, and McNicoll (1981); Round (1983); and Richardson (1985). Comments accompanying the Brucker et al. 1987 article on "ready-made" I-O models also reflect opinions on the topic of nonsurvey I-O accuracy.

A primary choice of what is to be measured has been between cells of technical coefficients versus multipliers (generally output multipliers are used). This choice is related to Jensen's (1980)

distinction between "partitive" and "holistic" accuracy, whereby the former refers to cell-by-cell accuracy and the latter the general accuracy of the table as a whole. Partitive accuracy is much more exacting, while achieving holistic accuracy would more modestly demand that an I-O model merely "represent the size and structure of the economy in general terms" (Jensen, 1980, p. 143). (Jensen goes so far as to note that "Partitive accuracy in regional input-output tables, with existing data sources and research resources, is not an achievable goal." (Ibid., p. 143)).

More recent attention to assessing the accuracy of trade variables, such as the size of imports and exports, or regional purchase coefficients, could presumably be characterized as falling between the extremes of partitive and holistic analysis. Such analysis of only one aspect (trade) of the I-O table is generally conducted on an sector-bysector basis, rather than cell-by-cell. This is in line with the fact that most nonsurvey methods have applied regional adjustments to national technical coefficients on a row-by-row basis. However, the need for partitive accuracy in trade estimates has been raised by Garhart (1985), Garhart and Giarattani (1987), and Ralston, Hastings, and Brucker (1986). These authors have contended that regional purchase coefficients should be determined on a cell-by-cell basis rather than applied across entire rows.

Theoretically and intuitively their argument has appeal. It is highly unlikely regional demand for a particular commodity will be exactly equal across all sectors in a region, but that is the implication of "rows-only" RPCs applied by IMPLAN and the STEB approach. One reason mitigating against exactly equal RPCs for a particular sector

is linked to aggregation error. Any sector in an I-O table is actually comprised of different, but related entities. Various sectors' purchases from a particular sector are often actually purchases of different products and vary to the degree they are likely to be imported. One place to look for RPC differences is between intermediate demand and final demand sectors, just as there are often differences between goods produced for industrial use versus those for consumption in the home. For example, households purchase pick-up trucks while industrial sectors purchase a variety of other trucks, yet the I-O model may have one aggregated truck sector. Also, the capacity and, therefore, propensity to import differs by buyer (as well as by size of region and other factors). Therefore, I-O sectors will naturally differ to the extent by which their demands are met by local supplies (as reflected in RPCs) for any particular sector.

Garhart (1985) and others have reported simulation and survey results which they interpret as lending support to their position that RPCs should be determined on a cell-by-cell basis. However, their results, to this author, do not appear overly compelling. Significant differences in RPCs across rows have been described, but the effect of these differences on multipliers does not appear to be very dramatic. For example, Garhart and Giarratani (1987) conducted simulations of errors introduced into a survey-based state of Washington I-O model. They report mean absolute percentage errors under fifteen percent in multipliers from using rows-only RPCs instead of cell-by-cell RPCs. I believe accuracy within fifteen percent for measuring total impacts or individual sectoral impacts would generally be adequate for most I-O applications.

IMPLAN software allows the user to change cell-by-cell RPC values. However, the issue of row variation of RPC values is not addressed in this study, as the basis for making cell-by-cell distinctions on a completely secondary basis is lacking and beyond the scope of this research. Further research in this area might involve adjusting the rows-only RPCs to cell-specific values by ad hoc assessments of industry characteristics or possibly using some nature of weights based on secondary data (such as the U.S. Transportation Census).

With regards to what is to be measured in model validation efforts, it also should be noted that attention has seldom focused on evaluating the appropriateness or range of final demands that are used to "drive" the I-O model. There have been many articles written on differences between survey and nonsurvey models but few on the variability of input data which serve as final demands for the models. It is a tenet of this study that model validation for practical I-O applications involves examination of the input data at well as review of the I-O model's accuracy.

Whether the choice has been to measure nonsurvey I-O model technical coefficients, multipliers, or trade variables, the standard against which to measure these has been, with few exceptions, estimates from survey-based models. (The few exceptions involve simulation experiments that have measured the results of introducing varying percentages of change to trade or technical coefficients.) Concerns raised about such comparisons include that survey models are frequently rather aggregated, are out-of-date (approaching several decades in age), and contain data gaps or other sampling errors and problems. Despite

these concerns, most efforts at evaluating nonsurvey methods only compare nonsurvey model values against survey model values.

The approach used here to evaluate IMPLAN's RPCs will assess the reasonableness of RPC values in light of alternative secondary data sources (Census data, for example) and their real world implications. "Reasonableness" will be imputed through both mechanistic means and by economic concepts. (The choice of the term "concepts" here is not arbitrary; most judgment on the RPCs will stem from common sense or have a basis in regional economic principles, but it may be argued that the latter are not well-developed enough to warrant "theory" status.) There are no perfect means to assure RPCs developed from secondary sources will conform precisely with true RPCs; in fact, "true" RPCs cannot ever be known with absolute certainty. However, there are several subjective means available to evaluate the overall reasonableness of RPC estimates. One such means is to compare them within and across regions in conjunction with knowledge of the structure of different types of markets and how regional economies operate. As part of this process, it is helpful to contrast one set of RPCs with RPCs developed through alternative methods or from different data sources. This illuminates the implications of the RPC values and enables judgements as to which RPCs are more tenable both for specific sectors and as a set.

A wide variety of measurement tools have been used to measure the accuracy of nonsurvey methods. A partial list of the more popular of these include the Theil inequality (or information) index, regression analysis, the chi square statistic, and correlation coefficients. Additionally, a number of simple comparison measures have been reported which relate absolute or relative differences between nonsurvey and

survey tables or multipliers. These are variations on simple percentage differences, including such measures as the mean absolute percentage error (sometimes referred to as the average absolute percentage error or "MAPE"), the standardized mean absolute difference (or "SMAD"), and the root mean square error ("RMSE").

Opinions conflict as to which of these comparison measures are most appropriate, or if any of them are viable. For example, Miernyk (1976, p. 49), referring to a set of nonsurvey multipliers versus a set of survey-based multipliers, states "there is no way to statistically test the significance of the differences between the two sets of multipliers." A frequently cited problem in this regard is violations of assumptions necessary for the statistical measures (such as known population distribution frequencies and independent observations). For example, Boster and Martin (1972, p. 40) report results using the Wilcoxon signed-rank test, contending, "In analyses of this type, nonparametric techniques (as in the Schaffer and Chu study) have a clear advantage over parametric techniques." However, Round (1983, p. 202) states, "Unfortunately, the Wilcoxon test is also inappropriate, again because the basic assumptions of the test are violated" (independence between the variates being measured). Similarly, Theil's inequality index is apparently chosen as superior to others by Stevens and Trainer (1980), Park et al. (1981), and Stevens et al. (1986), but rejected by Garhart (1985) because of its questionable interpretation.

Another problem with some statistical tools for measuring nonsurvey I-O accurácy is with zero cell values in I-O tables. There usually are a large number of cell values of zero, particularly in I-O survey tables. These create problems for measures that place such zero

values in a denominator (e.g., the chi square statistic and the standardized mean absolute difference) or that give equal weight to them as to other nonzero cells with the result that measurement of differences are arguably reduced (e.g., regression analysis).

There are at least three reasons to use multiple statistical tools in this type of analysis. The first is, as several authors have noted (Harrigan, McGilvray, and McNicoll, 1980 and 1981; Butterfield and Mules, 1980; and Round, 1983), that there is no one "best" measure for contrasting the differences between two vectors or matrices. A related second reason is that different statistical tools will place an emphasis on different factors (for example, variance versus skewness), thus reporting multiple comparison measures will help avoid bias in the analysis. A third reason is to enhance comparisons with previous results reported in the regional science literature. Formerly a major reason not to use multiple comparison measures is the time involved in developing such measures; however, time is less of a factor with widespread use of computer spreadsheets and inexpensive statistical software. For these reasons, despite the slight redundancy due to similarity in the results from several statistical measures, a number of comparison tools will also be used for this study, specifically for measuring the differences between RPC estimates and the corresponding effects of these differences on multiplier estimates.

Emphasis will be placed on measuring the relative influence of alternative RPCs on total outdoor recreation impact estimates. Measures of the differences in RPCs and multipliers for all economic sectors may not be the same as measures of differences between sectors affected by particular economic activity, such as outdoor recreation. In this
regard, it is important to measure how a model performs in terms of policy or study objectives. The particular objective here is accurate measurement of outdoor recreation economic impacts.

a. Procedures for Evaluating IMPLAN's RPC Values

This thesis devotes a disproportionate amount of space to consideration of IMPLAN'S RPCs due to the topical nature of the RPC issue and the opinion expressed frequently in regional science literature (including by Richardson (1985), Stevens and Trainer (1980), and Park et al. (1981)) that trade estimates are critical to the accuracy of I-O models. RPCs can be evaluated on the basis of comparisons with other sets of RPCs and in terms of the RPCs' influence on impact estimates. They can also be evaluated on the basis of related primary or secondary data that provides implications as to what the magnitude of the RPCs should be. These alternative means of evaluation provide different kinds of information regarding RPC reliability, accuracy, and significance. In light of these considerations and the multiple objectives of this thesis, there were four major steps in the analysis of IMPLAN'S RPCs:

- conduct comparisons across sets of RPCs from different sources (IMPLAN, REMI, MRIO);
- check consistency of RPCs with well-established sources of data (specifically, 1982 Census and County Business Patterns data) and any available industry-specific studies;
- 3) measure consistency of RPCs from one source (IMPLAN)
 - a) internal consistency across sectors within one region
 - b) internal sectoral consistency across regions (states and substate regions); and
- 4) measure the impact of alternative sets of RPCs on resulting multipliers and estimated outdoor recreation economic impacts.

There are numerous statistical tools which could be used in these four steps, as indicated in the above descriptions of measures used for evaluating nonsurvey methods. For the most part, the analysis will employ relatively simple comparison measures (mean absolute percentage error, the goodness-of-fit measure - \mathbb{R}^2 , or other standard measures of absolute and relative differences). Exceptions are that the Theil inequality index also is used to measure differences in RPCs and chi square also is used to measure differences in resulting multipliers. These exceptions are made to permit more extensive comparisons to past nonsurvey measurements. Detailed procedures for these steps are described further in the Methods chapter and results are presented in subsequent chapters.

<u>Measurement of Outdoor Recreation Economic Impacts</u>

Economic impacts have been estimated for particular recreation activities, sites, park systems, and states. There have been numerous journal articles on outdoor recreation economic impacts, mostly appearing in the travel and tourism or recreation literature, and at least half a dozen Ph.D dissertations on some aspect of the subject. The approach here is relatively unique, in that it measures how outdoor recreation in the forested areas of a multistate region impacts the entire multistate region.

Studies of outdoor recreation economic impacts using economic base theory or input-output analysis were first conducted in the 1950s. Two of the earliest publications addressing recreation economic impacts remain important texts today: Clawson and Knetsch's <u>Economics of</u> <u>Outdoor Recreation and Tourism and Recreation</u>, by Arthur D. Little, Incorporated. These publications compare the sectoral distribution of

site-specific outdoor recreation spending for nineteen and sixteen different studies, respectively, in addition to reviewing many other dimensions of recreation and associated economic impacts.

At about the same time the Clawson and Knetsch and Little books were being written for a national audience, three books were published which address outdoor recreation economics issues affecting the Lake States. These include <u>The Development of Outdoor Recreation in the</u> <u>Upper Midwest</u>, (Lodge, 1964), <u>Resources and Recreation in the Northern</u> <u>Great Lakes Region</u> (Minnesota Department of Agriculture, no date), and <u>The Economics of Outdoor Recreation in the Upper Midwest</u> (Sielaff, 1963).

Several recent examples of state efforts to develop comprehensive profiles of travel and recreation are available. The Council of State Planning Agencies' report, "The Contribution of Outdoor Recreation to State Economic Development" (Keiner, 1985) reviews a number of these. Holecek (1985) has proposed ongoing monitoring of tourist spending by county in Michigan and for the state as a whole based on extrapolations from lodging sales and use tax data. This approach forms the basis of O'Halloran's 1988 Ph.D. dissertation. Another recent study by Massoud Ahmadi, described in the report, "The Economic Impact of Tourism in Maryland: A Multiregional Analysis," (no date) used the same inputoutput model (IMPLAN, version 2.0) proposed for use here. Ahmadi's report describes the development of tourist profiles for eight subregions of Maryland as a result of participation in nine recreation activities and use of seven types of accommodations. The IMPLAN-based model developed was a 48-sector, interregional model, linking the eight subregions and a model for the overall state of Maryland.

In recent years, Michigan, Minnesota, and Wisconsin have had increased interest in the economic growth potential of recreation activities within their borders. New studies are being generated and there is more state-sponsored data collection. Two recent reports from Michigan are representative of this trend: Building Michigan's Recreation Future: the 1985-90 Michigan Recreation Plan. Appendix B. Recreation in Michigan: Users, Activity, Programs, and Opportunities (no date) and Travel and Tourism in Michigan: A Statistical Profile (Spotts, editor, 1986). The <u>Recreation Plan</u> was prepared by Michigan's Department of Natural Resources as part of Michigan's 1985 State Comprehensive Outdoor Recreation Plan (SCORP). Travel and Tourism was funded by Michigan's Department of Commerce. Wisconsin and Minnesota also have recent SCORP reports indicating type, frequency, location (state subregions), and other aspects of recreation use. Michigan, Minnesota, and Wisconsin SCORP reports contain recreation data for the early 1980s. The primary advantages to using the SCORPs is that there is some degree of conformity in definitions across the three states' reports and they contain recently compiled information by state agencies.

This author has been involved in two previous research efforts related to estimating outdoor recreation impacts that used IMPLAN in conjunction with recreation data. The first was undertaken as a project for an MSU course, Resource Development 960, Simulation Models in Natural Resource Management. This effort involved using a computer spreadsheet to combine estimates of specific recreational activity spending patterns with sector specific deflators and multipliers for the State of Michigan. The sectoral spending patterns were based on a study

conducted by the Regional Science Research Institute (RSRI) for use with the U.S.D.A. Forest Service's IMPLAN model (version 1.1). (See "Tourism Expenditure Translators for Use in Measuring the Regional Economic Impacts of Recreation on Forest Service Lands" by Benjamin H. Stevens, 1984.) The deflators and multipliers were generated using version 1.1 of the IMPLAN model. The computer spreadsheet allowed the user to estimate recreation economic impacts based on selecting different levels and types of fifteen different outdoor recreation activities. Adjustment in any of the program parameters (deflators, multipliers, and sectoral spending allocation) could also be performed by the model user. A major drawback to the spreadsheet model developed is that recreation participation data for the State of Michigan and most other states are not currently collected in as much detail as the categories developed by RSRI and incorporated in the spreadsheet. This limits the usefulness of the spreadsheet model as a practical tool for planners and decisionmakers.

A second major effort by the author consisted of estimating "wildland" recreation impacts in the upper Lake States for the 1987 Lake States Governors' Conference on Forestry (Pedersen and Chappelle, 1988). Following a literature search for recreation participation and spending data, total recreation spending was computed based largely on participation levels published in SCORP reports and reported spending patterns observed in Minnesota. These were used in conjunction with an IMPLAN (version 2.0) 48-sector model to generate economic impacts.

This analysis of outdoor recreation economic impacts provided a profile of outdoor recreation in the more heavily forested areas of the Lake States. (The estimation process and results are described in Pedersen, et al, 1989.) However, as with most other recreation studies, there are several limitations to the analysis. Public costs associated with providing the recreation experience were not assessed, as these were not analyzed for the other two forest resource uses (forest products and wood energy) either. Little was done in the course of the analysis to check the consistency of estimates across data sources and overall sensitivity of results. Another concern with the resulting economic impact estimates is the arbitrary nature of the "wildland recreation" definition (both spatially and activity-wise).

A third concern regarding the economic impact estimates stems from the IMPLAN model's initial RPC values. During construction of this model, RPC values were changed for approximately 10% of the original 528 disaggregated sectors. Initially, these fifty-plus sectors, and others as well, had RPC values equal to zero. Changes in RPC estimates were made on the basis of REMI RPC estimates (Treyz, 1986), and subjective assessments regarding the likelihood a sector had an RPC significantly different from zero. Thus, for example, many service sectors with zero RPCs were changed to conform with REMI estimates, while some mining sectors with zero RPCs were left unchanged. As noted in chapter 1, the most troubling zero RPC values were for twelve pulp and paper sectors, which account for the largest share of forest products economic activity in the Lake States.

Economic impacts would have been underestimated if the RPCs for the 50-plus sectors were not changed. It is not known how frequently IMPLAN generates unwarranted zero RPC values, or other RPC values that are significantly at odds with actual real-world RPC values. However, similar sectoral patterns of clearly erroneous RPC estimates were

observed for three individual state models generated at the same time the three-state regional model was constructed. Also, "Table 2. Observed RPCs for States," of Appendix G -- Regional Purchase Coefficients, in the Micro IMPLAN Software Manual (Alward, 1989) reports values for service and government sectors at the state level used in the pc IMPLAN model. A number of the reported RPC values have questionable zero values. If a pattern can be established, then the source of the estimation errors may be more easily identified and ameliorated. At a minimum, IMPLAN users may more readily avoid generating lower impact estimates than are warranted by knowing which particular sectors deserve attention.

Secondary Sources of Recreation Data for Use in Impact Analyses

The National Survey of Fishing, Hunting, and Wildlife-Associated Recreation (Fish and Wildlife Service, U.S. Department of the Interior) is a major source of recreation participation and expenditure data. The 1985 <u>National Survey</u> data will be used in this study and contrasted to SCORP data. Recreation data used in developing National Forest plans for the three states (U. S. Department of Agriculture, Forest Service, unpublished Recreation Information Management System (RIMS) data, no date) was rejected as being too unreliable for the 1987 Governors' Conference on Forestry. The quality of these data appears to differ from one National Forest to another and over time. Another source of information is Public Area Recreation Visitor Surveys (PARVS) data. However, the only nonproprietary published PARVS report as of summer, 1989 is a report of limited relevance to this dissertation, prepared for the TVA (Cordell, et al. 1987). Two other national sources of data are Charles R. Goeldner's <u>Travel Trends in the United States and Canada</u> (Goeldner, Charles R. and Karen P. Duea, 1984) and <u>Statistics on Outdoor</u> <u>Recreation</u> (Clawson, Marion and Carlton S. Van Doren, editors, 1984). The 1984 edition of <u>Travel Trends</u> is the seventh in a series of informative reports on state travel statistics.

Some additional information is available from states and universities in the form of county level or specific recreation activity studies. Many of the latter are summarized for the state of Michigan in "Travel and Tourism" (Spotts, 1986). MSU's Park and Recreation Resources Department has been involved in a number of specific recreation activity studies, such as research into boating and marinas (Stynes, 1983). Examples of multifaceted, detailed county level reports include "The Economic Impacts of Recreation-Tourism: St. Croix County, Wisconsin" (Rose and Cooper, 1986) and Preliminary Results of Summer, Fall, and Winter (Recreation) Surveys: Tri-County Tourism Research Project (Spotts and Mahoney, 1985).

CHAPTER III

METHODS

Introduction

This chapter describes the variables examined and the methods used to analyze research results presented in chapter 5. Chapter four will present a detailed description of the steps followed to prepare the data and models used in the analysis.

Examination of IMPLAN's Regional Purchase Coefficients

The extent of problems with IMPLAN'S RPCs were documented first. Alternative RPCs were subsequently constructed and compared to IMPLAN RPCs. Problems with IMPLAN'S RPCs are documented through illustrating their inconsistency and dubious values within regions, across regions, and through comparisons with data both internal and external to IMPLAN. Much of the RPC evaluation relies upon subjective impressions of likely industry and regional trade characteristics. These are guided by regional economic concepts. Also personal communications with individuals familiar with the database used to generate IMPLAN's RPCs have confirmed the database was flawed and likely to generate inappropriate trade values.

Initial Identification of IMPLAN RPC Problems

The consistency of dubious RPC values for particular sectors was examined through the construction of IMPLAN models for three counties in Michigan (Kalamazoo, Kent, and Ottawa), the states of Michigan, Minnesota, and Wisconsin, and a Lake State region model consisting of these three states. Confirmation of a pattern of zero or near-zero RPCs, despite sizeable sector output relative to demand, was made on the basis of visual inspection of RPC estimates for these IMPLAN models.

REMI RPC values were available for comparison purposes for the Kalamazoo County and Michigan models. A correlation analysis was conducted between REMI's and IMPLAN's Michigan RPCs. This analysis indicates the extent of correlation between the two sets of RPCs for various groupings of industries, both with and without suspect zero value IMPLAN RPCs. The groupings include major (SIC 1-digit) industries and all industries for which RPCs were available. The goodness-of-fit measure (R^2) was used to establish overall patterns in the comparability and consistency between the REMI and IMPLAN RPCs. Although evaluation of the goodness-of-fit measure is subjective, this author would interpret R^2 values above 0.5 as indicating relatively good correlations between the sets of RPCs and R^2 values below 0.25 as indicating little correlation. As it turned out, no R^2 values exceeded 0.25, as indicated by Table 5, page 118, and the discussion of the correlation analysis in chapter five.

Development and Comparison of Alternative RPCs

Miernyk (1976) and others have argued against overreliance on mechanical nonsurvey I-O techniques. In their development of the RPC technique, Treyz and Stevens considered other approaches but adopted a "subjective" approach for estimating RPCs for non-manufacturing industries (Treyz and Stevens, 1985). 1977 Census of Transportation data, upon which their RPC estimation technique for manufactured goods relies, were only reported for manufactured goods.

More recently, Jensen (1988) and others have focused attention on "holistic" descriptions of economies using input-output tables. These

authors have contended that certain economic structures are predictable across regions, based on comparisons of different regions' I-O tables. Of particular relevance for the analysis of RPCs here is their finding that tertiary activities tend to be found across all regional economies and appear to be fundamentally universal in economic structures. If this is the case, then service sectors and their RPCs should be fairly uniform.

Four approaches were considered which could generate more informed (yet still subjective) judgments regarding the parameters of RPCs. These four approaches would utilize sources of data other than REMI or IMPLAN. For example, it was thought that state tax data might possibly differentiate between in-state and out-of-state sales, such that estimates of exports (both domestic and foreign) on an industry basis could be derived. However, initial investigations indicated this "backdoor" approach to calculating RPCs probably would not be productive, at least in the case of Michigan. Sales and use taxes are not always attributed to the industry selling the product, but rather are sometimes reported by and attributed to the industry buying the product. According to Treasury Department officials, there are no tax records that reflect the level of sales or exports in any kind of systematic fashion across industries. Thus, sales or export extrapolations from Michigan Treasury Department tax records would be highly unreliable.

Another approach examined whether the problem could be with output estimates rather than strictly the RPC estimation. This approach contrasts IMPLAN and REMI estimates of output by sector with published 1982 Census and County Business Pattern (CBP) data. 1982 Census data was

not available in time for use in the 1987 Governors' Conference on Forestry study. Had the 1982 Census data been available, it would have permitted identification of the source and resolution of some REMI and IMPLAN RPC discrepancies.

Use of Census and CBP data may establish on an industry-by-industry basis whether the source of RPC inconsistencies between IMPLAN and REMI stems from RPC estimation alone or arises largely from constraints imposed by REMI or IMPLAN estimates of supply. Differences in RPC values may be due to dramatic differences between REMI and IMPLAN output or demand estimates. This can be seen by recognizing total regional output for a sector, X_1^r , is the ceiling value for intraregional trade, $X_1^{r,r}$. (Sales of local production to local demand cannot exceed local production sales.) In turn, by definition, the supply-demand ratio (SDR) functions as a ceiling value for the RPC. In this light, it would not be surprising if REMI and IMPLAN RPC estimates differ significantly if their estimates of output are dramatically different.

Preliminary analyses indicated output estimates did play a role in the discrepancies between the two sets of RPCs for certain sectors. However, interpreting which output estimate was more accurate remained a problem due to aggregation and disclosure issues. This can be illustrated through a specific example, REMI and IMPLAN RPCs for water supply (SIC 494) and sanitary services (SIC 495).

The 1983 REMI Michigan RPC for a "Water Supply and Sewer Systems" sector was 0.03. This RPC value is constrained by a REMI estimate of the supply to demand ratio (SDR) for this sector being equal to .03. With demand being estimated at \$75 million, this implies supply must be equal to approximately \$2.25 million (-.03 x \$75 million). IMPLAN estimates

for what appears to be the same Michigan sector (#459, Water Supply and Sewerage Systems") are \$442.245 million for demand, \$365.32 for output, and an RPC of .6157, implying \$272.29 million of demand is met by local production. Obviously, one or both of the output estimates (\$2.25 million and \$365.32 million) are grossly inaccurate (as may be the demand and RPC estimates).

Census data for 1982 does not exist for the Transportation, Communication, and Utilities sectors (industries which fall within the SIC 40-499 codes, which includes water supply and sewer systems); however, 1982 County Business Patterns for the State of Michigan reports employment estimates for these sectors. The CBP estimates between 0 and 19 employees were employed in the water supply sector (SIC 494) and 1,835 persons were employed in the sanitary services sector (SIC 495), based on March 12, 1982 employment records. This does not include administrative and auxiliary personnel of which the CBP reports there were 1521 for all of SIC 40 through 499. Based on the water supply and sanitary service sectors accounting for less than 2% of the other employees (about 1850 of the 131,064 total), it is reasonable to assume between 15 and 150 (roughly 1% to 10%) of these administrative and auxiliary personnel could be associated with the water supply and sanitary services sectors. Therefore, combined employment in the water supply and sanitary services sectors can be approximated to be between 1850 and 2000.

Annual payroll for the 1835 sanitary services employees is reported to be \$36.194 million, or very close to \$20,000 per employee. Including administrative and auxiliary personnel, and water supply employees would increase this figure slightly, to result in a rounded annual payroll

between \$36.5 to \$40 million. This payroll range would cast serious doubts upon the REMI production figure of \$2.25 million; it is much more in line with IMPLAN'S \$40 million total income estimate for the water supply and sewer systems sector. However, the 1835 employees and \$36.194 million includes all of sanitary services, SIC 495; the CBP data does not breakout sewerage systems, SIC 4952 which is the only portion of sanitary services REMI and IMPLAN include in their water supply and sewer systems sector. It is not readily apparent what portion of the SIC 495 employment or payroll should be attributed to SIC 4952.

REMI and IMPLAN aggregate the remaining portion of sanitary services (that which is not in 4952) with other sectors, including steam supply, (SIC 496), irrigation systems (SIC 497). This becomes the "sanitary services, steam supply, and irrigation systems sector." The additional sectors have four to forty-four employees. REMI's RPC for this sector is .97; IMPLAN's .6157 RPC remains the same as for the water supply and sewer sector.

In this case, the dramatic differences between REMI's RPCs casts doubt upon one or both of them. Consideration of the type of product (water supply and sewer service) associated with the sector also influences the evaluation. The IMPLAN .62 RPC is viewed as much more reasonable than the REMI .03 RPC for the water supply and sewer systems sector, as this author knows of no out-of-state projects responsible for meeting the vast majority of Michigan water and sewer services demand.

If RPC values are imposed by erroneous output estimates operating as constraints on the RPC values, this may constitute a more serious problem for the I-O model than when the RPC value is merely a product of the RPC estimation equation and output estimates appear sound. Other

facets of the model may be affected in those cases where it is found that output is the source of the RPC discrepancy. Multiplier, employment, and income estimates, and related ratios of output per worker, may be more seriously affected. (This has been illustrated with regards to IMPLAN sectors 461 (other wholesale trade) and 462 (recreational related retail trade). IMPLAN users and staff have noted these sectors acquired much lower output and value added estimates in all regional data files during the course of the development of the pc version from the mainframe version. The low values generate very high erroneous multipliers. This analysis avoided the problems by substituting original mainframe values for sectors 461 and 462 in all state data files.)

Census and CBP data were used to develop "best guess" RPC estimates for both Michigan and the Lake States. The data were largely used to provide direction in choosing between alternative, widely divergent RPC estimates. Census and CBP data were taken into consideration more in the formulation of alternative Michigan RPCs than Lake State RPCs due to time constraints and the difficulty of working with three states' data.

A third approach to generate more informed judgment on RPC values was to conduct a search for prior studies on industry trade flows and secondary trade data for specific industries. It was believed reliable information gained for even a few sectors could serve to establish a performance pattern between alternative sets of RPCs. Unfortunately, no industry-specific data was found that could provide reliable trade information.

Examples of important Michigan industries which have been the subject of extensive research include agriculture, forest products, and

automobiles. Michigan agricultural trade estimates were obtained from the Michigan Department of Agriculture and Michigan State University's Agricultural Economics Department. However, these proved to be based on simplifying trade assumptions rather than primary data. The same proved true of forest product industry data.

The Michigan Commerce Department routinely revises REMI RPC estimates for automobile related sectors, based on their data collection and knowledge of the auto industry in Michigan. However, to this author, their revised RPCs appear to be as questionable as the unrevised estimates. Table 2 contrasts unrevised Michigan motor vehicles and equipment sector 1985 REMI RPCs with 1983 REMI RPCs which have been revised by the Michigan Commerce Department:

Table 2. 1983 and 1985 REMI Michigan Motor Vehicles and Equipment RPCs

<u>SIC</u>	Sector	<u>1983</u>	<u>1985</u>
3711	Passenger Motor Vehicles	. 93	.44
3713	Truck and Bus Bodies	.41	.48
3714	Motor Vehicle Parts & Accessories	.90	. 52
3715	Truck Trailers	.23	.71

The revised 1983 RPC for passenger motor vehicles implies 93% of Michigan demand for passenger motor vehicles was met by Michigan production. This would probably be an overstatement even thirty years ago, let alone today with a larger foreign share of auto sales and auto plants distributed around the U.S. The same skepticism applies to the motor vehicle parts & accessories RPC. (It is noteworthy that the REMI unrevised 1985 RPCs are higher than the 1983 RPCs virtually across all sectors, with the exception of these two motor vehicle RPC values.) The lower truck trailer sector RPC is probably an improvement over the 1985 RPC of .71; one would expect it might be in line with truck and bus bodies (below .5). As there are fewer truck production plants, the RPC for both of these truck sectors may be more easily analyzed by a state commerce department than the other two sectors.

The fourth approach was to closely examine the 1977 MRIO data used as the basis for constructing IMPLAN'S RPCs. Alward et al. (1989) report observed MRIO RPCs for service sectors that have been adopted in IMPLAN as state RPCs. These are reported for all fifty states and Washington, D.C. Means and standard deviations were calculated for each sector and each state. These were calculated both with and without zero-RPC values to examine whether problems were associated only with the zero-RPC values, or if problems existed with the remaining RPCs after the zero-RPCs were removed.

"Corrected" MRIO data was obtained for the purposes of examining the IMPLAN RPC estimates. The "corrected" MRIO data was prepared by the Multi-Regional Policy Impact Simulation (MRPIS) project of the Social Welfare Research Institute at Boston College (1988). Due to budget constraints, several gaps and inconsistencies are known to exist with the original 1977 MRIO data prepared by Jack Fawcett Associates for the Office of the Assistant Secretary for Planning and Evaluation, U.S. Department of Health and Human Services (1983). The "corrected" MRIO data represent an effort by personnel at Boston College's Social Welfare Research Institute to eliminate MRIO data inconsistencies and balance the accounts. Adjustments to the MRIO data were made in consultation with the Jack Fawcett Associates staff who collected the original data.

The MRIO data is compressed in seven computer files. It may be decompressed into seven ASCII files, between 2.3 and 3.3 megabytes each,

which contain 1977 use, trade, and make matrices for 50 states and the District of Columbia. The matrices have detail for 124 sectors which have a perfect correspondence, although at a more aggregated level, with IMPLAN sectors. The documentation accompanying the computer files is brief, but adequate. Crosschecks of accounting identities performed with the data have verified its consistency.

The corrected MRIO data presented this study with several possibilities. An obvious task would be to retrace the estimation of the IMPLAN RPCs. Three difficulties prevent this, however. The first problem is that the input data used in the IMPLAN RPC regression equations for the MRIO commodity sectors (84 of the 124) are not available. Coefficients (which apply across all 51 regions) are published for these sectors as are the actual "observed" service sector RPCs, but the input values of the independent and dependent variables are not. Therefore, it would not be known where mistakes occurred in the original RPC estimation process even if the regression equations were re-estimated.

The second issue is that, regardless of the availability of the IMPLAN data, it would require a massive compilation and crosschecking of data to repeat the RPC estimation process. Essentially, it would involve manipulating approximately 10 or more units of data for 124 sectors in 51 regions (the fifty states and Washington, D. C.) (see the discussion of the IMPLAN RPC estimation process in chapter 2).

The third problem is that the RAS procedure has been applied to both IMPLAN and corrected MRIO data, such that it would be difficult if not impossible to retrace exact values. It should be noted, however, that although the RAS procedure may change values, it should not be the

source of grossly conflicting RPC values between IMPLAN and those derived from the corrected MRIO data. For example, the RAS procedure cannot be held as the basis for the difference between RPCs for those service sectors where the corrected MRIO RPC is calculated as close to 1.0 and IMPLAN has a zero value. The RAS procedure may be viewed as a smoothing technique which does not drastically change overall patterns. For example, only minimum necessary modifications are made as the RAS procedure adjusts the A matrix to be in accordance with sectoral sales and purchase sums. (See chapter eight of Miller and Blair (1985) for detail on the RAS procedure). Thus, despite the RAS procedure being used for both sets of RPCs, one would expect there still should be a nonrandom similarity between IMPLAN's RPCs and RPCs calculated on the basis of the corrected MRIO data.

Only limited uses of the corrected MRIO data were undertaken, due to time constraints. RPCs were calculated from the corrected MRIO data for all service sectors for the fifty states and the District of Columbia. The service sector means and standard deviations were compared with the existing IMPLAN service sector RPC estimates. Average state service sector RPC values were used to rank order the states and evaluate the reasonableness of the RPC values.

The multiregional nature of the MRIO data was also utilized to compile new MRIO commodity and service sector RPCs for the three individual Lake States and the Lake States region based on summing Michigan, Minnesota, and Wisconsin intraregional trade and demand data. These were then contrasted visually with IMPLAN RPC estimates to determine if IMPLAN's questionable zero RPCs were present in the corrected MRIO data set. Next, disaggregated IMPLAN and REMI data for

the state of Michigan were aggregated to conform with the MRIO 124 sector scheme and contrasted. The aggregated data included output, demand, imports, exports, and RPCs. Absolute RPC differences and revised MRIO percentage differences from IMPLAN RPCs provide the basis of the contrasts.

Calculation of RPCs from the corrected MRIO data required adopting the contribution assumption towards foreign imports and exports made by Alward and Despotakis in their original IMPLAN RPC formulation. According to the contribution assumption, for each MRIO sector, a share of total U.S. foreign imports and exports are assigned to a region (the three individual states or the Lake States) corresponding to the region's proportional share of national demand (for allocation of imports) and production (for allocation of exports). (In its unaltered state, MRIO foreign imports and exports are attributed to the "port-ofentry" state from which goods or services are shipped from the U.S. or through which goods first enter the U.S.)

One of the issues that can be addressed in this process is whether it is legitimate to assume there are no foreign imports in the MRIO accounts for states which do not have foreign borders. This was assumed in the estimation of IMPLAN'S RPCs. Foreign imports were supposedly attributed to states on the basis of their port-of-entry in the MRIO accounts; however, this does not appear to be the case across the board. As noted in the Alward and Despotakis draft paper on the IMPLAN RPC estimation process, after equation 90 (the text does not have numbered pages): "Special consideration was given to states with no foreign borders. For such states the diagonal elements of the MRIOA trade-flow matrices already correspond to X_{i}^{LL} : $T_{i}^{LL} = X_{i}^{LL}$. Furthermore, interstate flows between pairs of such states did not involve any imports to or exports from the US. Such flows therefore did not change as a result of the rebalancing process." The text following equation 72 makes a similar reference to the assumption that states without foreign borders have no foreign trade in the MRIO data base. However, a review of the corrected MRIO data by this author reveals many states without foreign borders have foreign imports credited to many sectors. The existence of foreign imports influences the size of RPCs. Therefore, the calculation of IMPLAN's RPCs may have been partially distorted by not taking into account foreign trade credited to states without foreign borders.)

Lake State Outdoor Recreation Economic Impacts

The major components of a recreation economic impact estimation process include the identification of:

- activities (date, type, locality, and quantity) and recreationists (e.g. nonresidents versus residents) to be counted,
- recreation activity spending, bridged to the appropriate impact model sectors;
- 3) the appropriate sector-specific deflators and input-output model or multipliers to combine with the spending, in order to generate economic impacts.

The identification of activities and recreationists to be counted should reflect the impact measurement objectives of the study and is done relatively independent of an I-O model, although the quantities estimated of these obviously influence the input data for the I-O model. Data on recreation spending by sector form a bridge between recreation activity surveys and I-O models. However, spending categories included in surveys are often developed independently of the I-O model and rather aggregated spending categories are frequently used in the interests of survey brevity and achieving higher response rates. This tends to result in mismatches between recreation survey data and the Standard Industrial Classification (SIC)-based sectorization schemes of most I-O models. Thus, for example, surveys may not delineate between food purchased at restaurants and bars versus food purchased at grocery stores. The result of using conflicting classification schemes is that compromises are made to match the survey data to I-O sectors. The consequences of such compromises are largely unexamined and are generally not discussed in the reporting of recreation impacts.

A number of other I-O variables also influence the ultimate impact estimates besides the sectorization scheme and its match with the survey spending categories. These include the deflators used to adjust the input data to the year of the I-O model and the trade estimation, or more broadly, the nonsurvey and reconciliation techniques the model employs. A related concern is how well the model corresponds with other secondary sources of data planners are likely to use.

Variables Examined

Outdoor recreation economic impacts are sensitive to the influence of a large number of variables. Many considerations could be used for selecting which ones are the most important to test in a sensitivity analysis. The basis for selecting variables for this study were:

 The variables had to be of potential importance in terms of ultimate impact results and of importance with regards to outdoor recreation impact analyses, and

2) The variables had to be either of general topical interest (RPCs) or could be relatively easily incorporated into the study (alternative sectorization schemes).

Two objectives of this analysis are to examine the range of values or alternatives within five sets of variables and to measure the relative influences of the variables on impact estimates. The five sets of variables examined are: recreation activity and spending levels, sectorization schemes, bridging of spending to IMPLAN sectors, and I-O model trade estimates. Much of the discussion and results relating to sectorization schemes, bridging of spending, and I-O model trade estimates apply to I-O analysis generally, although they receive particular attention here in the context of recreation impact analysis.

Consideration was also given to examining the use of alternative deflators. However, the impact of alternative deflators is dependent on the number of years covered; for this analysis it is only three years, from 1985 to 1982. Hence, deflators were not extensively considered and will only be briefly addressed.

The remainder of this chapter describes the approach taken for assessing the five sets of variables and their influence on Lake State outdoor recreation economic impact results. A variety of measurements and test statistics will be used in the analysis. Multiple means of measurement are necessitated by the difference in nature of the sets of variables and because both the range of data for the different variables is being examined as well as their influence on impact estimates. Also, there is a degree of arbitrariness as to which comparison measure to use, as some stress the importance of extreme values, while others stress the degree of variance in the data or other factors. The

statistical measures used in this study are standard measures discussed in most statistics and econometrics textbooks (e.g., Pindyck and Rubinfeld, 2nd edition, 1981).

Generally, relative differences between estimates will be expressed as percentages and unchanged IMPLAN parameters will be the basis for the measurement. A number of summary comparison statistics will be employed for relating differences between RPCs and multipliers. In addition to means and standard deviations, other statistics referred to will include the mean absolute difference, the standardized mean absolute difference, the root mean square error, the correlation coefficient (r), the chi square statistic and Theil's inequality index. Formulas for these summary statistics are as follows:

Mean Absolute Difference (MAD):

where i = 1, 2...n and x = variable of interest (RPC, multiplier, etc.)Standardized Mean Absolute Difference (SMAD): $\frac{1}{n} \frac{n}{j} |x_{j}^{*} - x_{j}|$ Root Mean Square Error (RMSE): $\frac{1}{n} \frac{n}{z} \left| \frac{x_{j}^{*} - x_{j}}{x_{j}} \right|$ Correlation Coefficient (r): $\frac{COV(x_{j}^{*})(x_{j})}{\sigma^{x^{*}}\sigma^{x}}$ Chi Square (χ) : $\frac{\Sigma(x_{j}^{*} - x_{j})^{2}}{x_{j}}$ Theil's Inequality Index (or information coefficient): $\frac{\sqrt{1}{1} \Sigma(x_{j}^{*} - x_{j})^{2}}{\sqrt{\frac{1}{n} \Sigma(x_{j}^{*} - x_{j})^{2}}} + \sqrt{\frac{1}{n} \Sigma(x_{j})^{2}}$

The Theil index may be further subdivided into the following "proportions of inequality," which relate the source of differences between two sets of variables: bias, or U : $\frac{(\bar{x} - \bar{x})^2}{\frac{1}{n} \sum (x_i^* - x_i)^2}$

variance, or U :
$$\frac{(\sigma^{X} - \sigma^{X})^{2}}{\frac{1}{n} \Sigma (x_{j}^{*} - x_{j})^{2}}$$
covariance proportions, or U :
$$\frac{2(1 - \rho) \sigma^{X} \sigma^{*}}{\frac{1}{n} \Sigma (x_{j}^{*} - x_{j})^{2}}$$

The bias proportion is indicative of the amount of systematic error, as it measures how much mean values of the variables differ from each other. The variance proportion reflects the degree the two variates' variances are similar. The covariance proportion measures any remaining error. These proportions should sum to 1, where the ideal values would be U, U = 0, and U = 1.

The basis for including these is that they are relatively straightforward, well known statistical measures, they address both relative and absolute differences, they avoid bias stemming from reliance on any single comparison measure, and they have been used in regional science literature to contrast nonsurvey trade estimation techniques. The use of these statistical measures does not assume that the variables measured have particular frequency distributions nor that the sets of variables measured are strictly independent.

Activity and Spending Data

The influence of alternative outdoor recreation definitions will be examined in terms of their influence on the size of estimated economic impacts. Outdoor recreation studies employ different definitions and measure different sets of activities, making comparisons difficult and reported impacts somewhat arbitrary. The outdoor recreation analysis for the 1987 Governors' Conference on Forestry was no different in this regard, reflecting fairly unique objectives. It estimated impacts throughout the Lake States from outdoor recreation activity in a subregion (the more heavily forested area) of the three states. It relied on recreation participation data from state government SCORP reports which use slightly dissimilar recreation classifications. Team sports and attendance at manmade attractions were not included as outdoor recreation activities. It did not include durable equipment expenditures.

The primary analysis relating to recreation activity and spending data here was to measure impacts associated with alternative (restrictive versus inclusive) definitions of spending corresponding to fishing, hunting, and wildlife-associated recreation in the forested areas of the Lake States. The resulting differences in estimated impacts will be contrasted to the earlier Governors' Conference on Forestry estimates.

The level of correspondence in activity and spending patterns across the three states and within their respective forested substate regions will be briefly noted by contrasting the percentages of recreation activity reported in the FHW data. Percentage differences for the activities and spending will be reported.

Participation patterns in various activities such as hunting, fishing, and wildlife observation are expected to be fairly consistent across the forested areas of the three states. (Indeed, assumptions to that effect had to be made to fill in some gaps for the original Governors'Conference analysis.) Climatic and natural resource similarities, and geographic proximity, should promote relatively similar patterns of outdoor recreation. Evaluation of the degree of inconsistency found will be subjective; evaluation of its reasonableness in terms of explanatory variables is beyond the scope of this thesis.

However, differences will be interpreted in light of available sampling statistics. (1985 National Survey of Fishing, Hunting, and Wildlife-Associated Recreation (FHW) reports include statistical parameters; SCORP reports generally do not.) The range of activity implied by the statistics plays an important role in determining the range of impacts.

Temporal and Spatial Considerations

Economic impact estimation must address the aggregation of time, space, and activity. Due to gaps in data, estimates for different time periods must often be employed. For example, recreation participation levels and spending patterns often will not coincide with the year on which the economic impact model is based (for the current version (2.0) of IMPLAN it is 1982). Even the use of sector-specific deflators may leave much to be desired in reconciling such data, as deflators are based on U.S. average sectoral inflation. These may differ from state inflation rates for sectors with the same SIC codes, but comprised of a different mix of industries.

The spatial issue is usually fairly straightforward in terms of delineating the region to be studied based on the study's purpose or as specified by research funding sources. However, input-output models for a particular state or region often do not exist (although these are fairly easy to construct for states or collections of counties if there is access to a nonsurvey input-output model such as IMPLAN). Also, many regions, such as national or state forests, do not follow county political boundaries perfectly; therefore, impacts must be extrapolated from models for regions that do not match the region of interest. Additionally, as previously mentioned, different deflators may be appropriate for use in different regional models. The primary region modelled here exactly follows the regional delineation used for the Governors' Conference, consisting of the states of Michigan, Minnesota, and Wisconsin. In addition, IMPLAN models of other regions were developed to examine the applicability of some of the observations and results from the three-state models. In particular, Michigan IMPLAN models permitted a closer examination of alternative RPCs, subsequent multipliers, and related model validation issues.

Outdoor recreation final demand values should be converted to 1982 values for use with IMPLAN version 2.0. In turn, IMPLAN calculates further direct, indirect and induced impacts generated by the final demands, based on average 1982 economic relationships. Means of testing and evaluating how well IMPLAN's 1982 relationships represent actual relationships for 1982 have been alluded to in the first section of this chapter and will be further described below under the "RPC-based Trade Estimates" section.

<u>Different I-0 Sectorization Schemes</u>

The IMPLAN modeling system contains a user-friendly aggregation module which made it convenient to test for the effects of aggregation error. Stevens (1987, p. 19) argues:

"...it is desirable to maintain the highest possible level of disaggregation in regional I-O model construction if any survey data are to be used. At the same time, there are compelling reasons for avoiding aggregation in nonsurvey models as well because of errors generated in the calculation of impacts from aggregated models in comparison with disaggregated models..."

"...error in the calculation of impacts increases systematically with the level of aggregation of the I-O matrix... ...Furthermore, sectoral aggregation predominately leads to over- rather than underestimation of impacts and multiplier effects. " The number of economic sectors that will be viewed must be determined before multipliers are derived or values are inserted into IMPLAN. In its most detailed, disaggregated form, IMPLAN could provide information on over 500 economic sectors for the three-state region. However, such level of detail may be cumbersome and is seldom utilized in input-output analysis. The tendency is to illuminate those sectors affected by the subject of interest. Thus, sectors that have little or no relation to the economic activities being studied generally are viewed as less important and are more likely to be aggregated.

The 1987 Governors' Conference input-output study (Pedersen and Chappelle, 1988) delineated 48 sectors. In keeping with the study's objectives, the 48 sectors included a greater representation of forest product sectors relative to most other I-O studies. The same I-O sectorization scheme will be maintained in this study, except that the forest product sectors will be aggregated, resulting in a 31 sector model. In addition, four other sectorization schemes will be be devised and contrasted. One will be a more highly aggregated scheme, involving 16 sectors. This more highly aggregated scheme will also serve as a means to measure the influence of improper (or an absence of) margining.

Another more disaggregated scheme will have close to 150 sectors and provide additional detail on sectors affected by recreation spending. A completely disaggregated model, with over 500 sectors, will reflect the greatest level of detail IMPLAN provides for the Lake States' economy. A fifth model will be intermediate between the 150 and 500 sector models and will contain 308 sectors. Percentage differences between estimated Lake State impacts will be used to contrast multipliers generated by models with alternative sectorization schemes.

Allocation of Survey Spending Data to IMPLAN Sectors

Several outdoor recreation researchers (including Clawson and Knetsch, 1966, Arthur D. Little, 1967, and, more recently, Goeldner and Duea, 1984) have noted a consistent pattern in reported recreation or tourism expenditures (e.g., roughly 25% of spending goes to lodging, 25% to food, 25% to travel expenses, and 25% to other miscellaneous items). Archer (1973, p. 60-61) implies identifying tourist expenditure patterns is hindered by "the wide range and different number of expenditure categories used" in various tourist expenditure studies. He goes on to state, "A more useful picture emerges if the spending pattern in each survey is reduced to four headings: food, lodgings, transport and other purchases." He then cites Clawson and Knetsch and Arthur D. Little studies to support his position.

Consideration was given to constructing a composite "average" spending profile which allocates the bulk of spending to sectors corresponding with lodging, travel expenses, and food. Impact consequences from alternative distributions of the remaining spending for miscellaneous items (approximately 25% of total spending) could be estimated by conducting a sensitivity analysis. The sensitivity analysis would consist of combining the miscellaneous category of spending with high and low multipliers generated by I-O models, thus providing a measurement of the likely range of impacts for spending on miscellaneous items.

This approach was dropped in favor of devoting more time to refining detailed allocations of spending to IMPLAN sectors. One of the problems with the approach is that it may fit relatively well with some tourism expenditure measurement objectives, but it does not address

equipment and a wide range of other types of spending associated with outdoor recreation.

The problem of translating the spending into an I-O model's sector classification remains, even if survey spending only covers food, lodging, transportation, and "other" categories. Publications addressing the so-called "bridging" of spending from survey categories to IMPLAN sectors have previously been handicapped by an absence of data and have lacked precision. The availability of Bureau of Economic Analysis (BEA) detailed personal consumption expenditure worksheets has provided the opportunity to improve upon the precision in existing bridge tables (for example, the "Personal Consumption Expenditure Categories" table, Appendix E of the IMPLAN Analysis Guide). More refined bridge tables of FHW spending categories to IMPLAN sectors are a major project of this dissertation research. Details on the bridging are presented in chapter four and appendices associated with the chapter.

Most I-O tables, including IMPLAN, are based on producer prices with trade and transportation margins allocated to separate accounts. Data from recreation expenditure surveys should be converted from purchaser to producer prices in order to develop correct I-O input data. The influence on impact estimates of not using sector-specific pce data to bridge recreation spending data to IMPLAN sectors will be illustrated with a subset of recreation data. This subset includes most categories of recreation equipment. Differences will be examined between sector allocation of spending using the more aggregated pce I-O category versus more narrowly-defined pce items for the recreation equipment. This will illustrate what the potential influence on impact estimates may be if the more aggregated pce categories are used rather than the more detailed, sector-specific pce data.

Influence of RPC-Based Trade Estimates

Five different sets of RPC values were substituted into Lake State IMPLAN models. Five sets of aggregation schemes were used for each set of RPCs. In turn, two types of multipliers, reflecting three types of economic variables multipliers (output, personal income, and employment) were generated and subsequently used to contrast the relative influences of the RPCs at different levels of sector aggregation. The same exact process was repeated for the state of Michigan, except six sets of RPCs were used.

Unmodified IMPLAN RPCs (and their corresponding model multipliers) served as the benchmark for statistical comparisons. This is different from most other analyses of nonsurvey techniques which have used a survey or "true" estimates (RPCs or multipliers) as the benchmark. Alternative sets of RPC values to be used include minimum, maximum, unchanged and "best guess" values. A vector of REMI RPCs were used as well for Michigan models. Summary statistics were calculated, including the mean absolute difference, the standardized absolute difference, and chi square statistic, as well as absolute and percentage differences. For purposes of comparison to Stevens et al. (1986), Theil's information index and the root mean square error will also be calculated for the disaggregated RPCs.

CHAPTER IV

PREPARATION OF INPUT DATA AND IMPLAN MODELS

Introduction

This chapter has two purposes. The first is to describe the stages followed in preparing data from the 1985 National Survey of Fishing, Hunting and Wildlife-Associated Recreation (U.S. Department of the Interior, Fish and Wildlife Service, 1988) to be used as inputs for IMPLAN models. The second purpose is to describe the construction of alternative IMPLAN models using the recreation data. The chapter is divided into two major subsections in line with these purposes.

<u>Converting Fishing. Hunting.</u> and Wildlife-Associated Data <u>for Use with IMPLAN</u>

The 1985 National Survey of Fishing, Hunting and Wildlife-Associated Recreation (FHW) contains both participation and spending data associated with fishing, hunting, and nonconsumptive wildlife recreation; the latter refers to the observation, photographing or feeding of wildlife. The 1985 FHW Survey, conducted by the U.S. Bureau of the Census, consisted of an initial telephone screening sample of almost 111,000 households. Subsequently, over 28,000 interviews were completed with fishermen and hunters and in excess of 26,600 interviews were completed with nonconsumptive recreationists (U.S. Department of the Interior, 1988, p. vii). Survey results are published in individual state reports and a national report. Data used in this analysis were from the Michigan, Minnesota, Wisconsin, and national reports.

The FHW Survey has several advantages as a source of data for outdoor recreation economic analysis. It is the seventh in a series of surveys dating back to 1955 and provides detail for all fifty states. This allows for trend analysis and consistency checks of the data. The substate data the survey provides further enhances its applicability and was of critical importance in this analysis. The Survey employs a classification of spending which enables the segmentation and analysis of particular types; for example, trip-related expenditures. Generally speaking, spending categories in the survey are more numerous and detailed than in most recreation surveys. This reduces the amount of error an analyst may make in translating survey spending categories to an impact model's economic sector classification scheme. The Survey differentiates between spending on used and new equipment, and includes durable equipment spending. These are spending categories some recreation surveys do not address. Finally, the presentation of statistical parameters for use with the reported data provides analysts with one means of measuring the reliability of the FHW estimates.

The 1985 FHW Survey also has limitations. It does not report all spending associated with outdoor recreation. The Survey only applies to wildlife-related recreation and does not address other forms of outdoor recreation in the absence of wildlife-related recreation. Examples of activities not covered by the FHW independently of wildlife recreation include skiing, boating for pleasure, and hiking. Another problem is that many FHW spending categories are too vague or general to use directly with an impact model, as will be further explained below in the discussion on disaggregating FHW spending categories.

Sample sizes for a few categories of FHW data are so inadequate that some values are not reported due to reliability problems. This is especially true for substate region estimates. Other reported values based on small sample sizes may be misleading in light of sampling errors associated with them. For example, for some Michigan, Minnesota, and Wisconsin spending data, one standard error's difference from the spending estimate was equivalent to or greater than the estimate itself. (This finding points to the need to utilize the statistical parameters published with the FHW data to gauge its sampling precision.) Also, a few estimates are reported that are highly suspect in light of other estimates. Problems with dubious estimates might not have been detected had this analysis used only one state's FHW data.

The 1985 FHW Survey remains a valuable source of data for measuring recreation impacts despite its limitations. Alternative sources of secondary data on recreation tend to have equal or greater limitations and primary data collection is often prohibitively expensive. Recognition of the FHW Survey as a valuable source of recreation data is indicated in the IMPLAN Analysis Guide (1985, p. 4-15) and by Alward, Sullivan, and Hoekstra (1985).

FHW data was converted into vectors of final demands and combined with IMPLAN multipliers to measure outdoor recreation economic impacts for the upper Lake States. This process will be described in terms of four major stages.

- <u>Stage 1</u>: Compile 1985 Recreation Activity Levels for More Heavily Forested Areas of the Lake States
 - Step 1. Identify the more heavily forested subregions reported in the FHW state reports corresponding to the region analyzed for the 1987 Governors' Conference on Forestry

Individual state reports for Michigan, Minnesota, and Wisconsin of the 1985 National Survey of Fishing, Hunting and Wildlife-Associated Recreation (FHW) were used to construct recreation activity estimates. These state reports contain recreation activity data for subregions of the states in Table 23, "Fishermen and Hunters, Trips, and Days of Participation, by State Wildlife Management Region: 1985." The table provides estimates of resident and nonresident fishing and hunting activity within each state subregion, in terms of numbers of participants, days of participation, and trips. State subregions were identified which closely corresponded to those in the "wildland" region used in the 1987 Governors' Conference on Forestry. The resulting FHW upper Lake State area differed from the recreation region analyzed for the Governors' Conference. These differences stem from the subregions in the FHW being composed of different combinations of counties than those contained in SCORP data which were the basis of the "wildland" regionalization in the original Governors' Conference recreation study.

The differences between the two regions of analysis in terms of counties contained within them are as follows (with 1980 population figures in parentheses):

- Additional Counties in the FHW Region
 - MI: Isabella (54,110), Midland (73,578), and Bay (119,881)
 - MN: Benton (25,187), Kittson (6,672), Marshall (13,027), Norman (9,379), Pennington (15,258), Polk (34,844), Red Lake (5,471) Sherburne (29,908), and Stearns (108,161)
- <u>Counties in the Governors' Conference Region. but not in the FHW Region</u> WI: Fond Du Lac (88,952), Green Lake (18,370), Marquette (11,672), and Sheboygan (100,935)
Thus, the FHW study area is larger, containing approximately ten percent more land area and population than the Governors' Conference area. FHW recreation activity would, therefore, be expected to be approximately ten percent greater in the area considered in this study.

Step 2. Compile recreation activity data for the identified state subregions and utilize FHW statistical parameters to develop low and high activity estimates

The object of this step was to develop estimates of the proportion of 1985 state recreation activity which took place in the FHW study region. This necessitated compiling FHW data for both the state subregions to be included in the FHW study area and state totals. Statistical parameters for each state from "Appendix B: Sample Design and Statistical Reliability" were used to construct standard errors of the participants, activity days and trips for both the FHW state subregion and each state. Low and high estimates were made on the basis of taking two standard errors from the initial participant, day, and trip data.

Estimates were then summed for the three states. Low and high ratios of the FHW study area totals to the state totals were then constructed. The low ratio values were based on subtracting two standard errors from the FHW study area data and dividing it by the three-state sum data plus two standard errors. The high ratio was formed on the basis of adding two standard errors to the FHW study area data and dividing it by the three-state sum data minus two standard errors. The resulting range of estimates is shown in Table 3, below. This table represents the range of percentages used with state spending data to develop low and high estimates of spending in the FHW study region. Extremely low or negative values for certain cells in the table reflect small sample size. Data in the table imply that, proportionately fewer trips and days are spent in the study region than average, relative to the number of participants.

Table 3. FHW LAKE STATE STUDY AREA & OF 3 STATE RECREATION ACTIVITY

				1	DAYS OF				
	PARTICIPANTS			1	PARTICIPATION		TRIPS		
		ORIGINAL			ORIGINAL			ORIGINAL	
VITY	LOW	ESTIMATE	HIGH	LOW	ESTIMATE	HIGH	LOW	ESTIMATE	HIGH
LS: FISHING	61.92%	74.35%	89.06%	32.60%	45.60%	63.37%	27.82%	38.78%	53.73%
HUNTING	59.88%	78.07%	101.34%	32.17%	54.65%	92.08%	28.43%	47.95%	80.36%
FISHING	59.67%	74.07%	91.62%	28.58%	42.43%	62.36%	24.75%	36.63%	53.72%
HUNTING	58.63%	77.41%	101.70%	30.44%	52.62%	90.06%	27.32%	46.88%	79.84%
Big Game	56.41%	75.95%	101.64%	36.65%	63.82%	109.83%	32.27%	54.87%	92.69%
Small Game	40.13%	60.78%	90.16%	21.79%	45.37%	90.20%	20.80%	43.20%	85.75%
Migratory	25.82%	53.31%	103.00%	12.29%	39.61%	110.88%	13.08%	39.76%	107.98%
Other	3.65%	21.10%	64.73%	-1.48%	13.26%	87.51%	-1.22%	11.76%	77.58%
ES: FISHING	53.00%	75.09%	105.53%	36.25%	66.35%	118.59%	35.21%	61.46%	105.63%
HUNTING	20.75%	56.58%	144.19%	9.98%	51.49%	246.64%	8.16%	35.66%	144.55%
	VITY LS: FISHING HUNTING FISHING HUNTING Big Game Small Game Migratory Other ES: FISHING HUNTING	VITY LOW LS: FISHING 61.92% HUNTING 59.88% FISHING 59.67% HUNTING 58.63% Big Game 56.41% Small Game 40.13% Migratory 25.82% Other 3.65% ES: FISHING 53.00% HUNTING 20.75%	PARTICIPAL ORIGINAL VITY LOW ESTIMATE LS: FISHING 61.92% 74.35% HUNTING 59.88% 78.07% FISHING 59.67% 74.07% HUNTING 58.63% 77.41% Big Game 56.41% 75.95% Small Game 40.13% 60.78% Migratory 25.82% 53.31% Other 3.65% 21.10% ES: FISHING 53.00% 75.09% HUNTING 20.75% 56.58%	PARTICIPANTS ORIGINAL VITY LOW ESTIMATE HIGH LS: FISHING 61.92% 74.35% 89.06% HUNTING 59.88% 78.07% 101.34% FISHING 59.67% 74.07% 91.62% HUNTING 58.63% 77.41% 101.70% Big Game 56.41% 75.95% 101.64% Small Game 40.13% 60.78% 90.16% Migratory 25.82% 53.31% 103.00% Other 3.65% 21.10% 64.73% ES: FISHING 53.00% 75.09% 105.53% HUNTING 20.75% 56.58% 144.19%	PARTICIPANTS I ORIGINAL ORIGINAL VITY LOW ESTIMATE HIGH LOW LS: FISHING 61.92% 74.35% 89.06% 32.60% HUNTING 59.88% 78.07% 101.34% 32.17% FISHING 59.67% 74.07% 91.62% 28.58% HUNTING 58.63% 77.41% 101.70% 30.44% Big Game 56.41% 75.95% 101.64% 36.65% Small Game 40.13% 60.78% 90.16% 21.79% Migratory 25.82% 53.31% 103.00% 12.29% Other 3.65% 21.10% 64.73% -1.48% ES: FISHING 53.00% 75.09% 105.53% 36.25% HUNTING 20.75% 56.58% 144.19% 9.98%	DAYS OF PARTICIPANTS PARTICIPAN ORIGINAL ORIGINAL VITY LOW ESTIMATE HIGH LOW ESTIMATE LS: FISHING 61.92% 74.35% 89.06% 32.60% 45.60% HUNTING 59.88% 78.07% 101.34% 32.17% 54.65% FISHING 59.67% 74.07% 91.62% 28.58% 42.43% HUNTING 58.63% 77.41% 101.70% 30.44% 52.62% Big Game 56.41% 75.95% 101.64% 36.65% 63.82% Small Game 40.13% 60.78% 90.16% 21.79% 45.37% Migratory 25.82% 53.31% 103.00% 12.29% 39.61% Other 3.65% 21.10% 64.73% -1.48% 13.26% ES: FISHING 53.00% 75.09% 105.53% 36.25% 66.35% HUNTING 20.75% 56.58% 144.19% 9.98% 51.49%	DAYS OF DAYS OF PARTICIPANTS PARTICIPATION ORIGINAL ORIGINAL VITY LOW ESTIMATE HIGH LOW ESTIMATE HIGH LS: FISHING 61.92% 74.35% 89.06% 32.60% 45.60% 63.37% HUNTING 59.88% 78.07% 101.34% 32.17% 54.65% 92.08% FISHING 59.67% 74.07% 91.62% 28.58% 42.43% 62.36% HUNTING 58.63% 77.41% 101.70% 30.44% 52.62% 90.06% Big Game 56.41% 75.95% 101.64% 36.65% 63.82% 109.83% Small Game 40.13% 60.78% 90.16% 21.79% 45.37% 90.20% Migratory 25.82% 53.31% 103.00% 12.29% 39.61% 110.88% Other 3.65% 21.10% 64.73% -1.48% 13.26% 87.51% ES: FISHING 53.00% 75.09%	DAYS OF PARTICIPANTS PARTICIPATION ORIGINAL ORIGINAL VITY LOW ESTIMATE HIGH LOW ESTIMATE HIGH LOW LS: FISHING 61.92% 74.35% 89.06% 32.60% 45.60% 63.37% 27.82% HUNTING 59.88% 78.07% 101.34% 32.17% 54.65% 92.08% 28.43% FISHING 59.67% 74.07% 91.62% 28.58% 42.43% 62.36% 24.75% HUNTING 58.63% 77.41% 101.70% 30.44% 52.62% 90.06% 27.32% Big Game 56.41% 75.95% 101.64% 36.65% 63.82% 109.83% 32.27% Small Game 40.13% 60.78% 90.16% 21.79% 45.37% 90.20% 20.80% Migratory 25.82% 53.31% 103.00% 12.29% 39.61% 110.88% 13.08% Other 3.65% 21.10% 64.73% -1.48% 13.26% 87.51% -1.22% ES: FISHING 53.00% 75.09% 105.53% 36.25% 66.35% 118.59% 35.21% HUNTING 20.75% 56.58% 144.19% 9.98% 51.49% 246.64% 8.16%	DAYS OF PARTICIPANTS PARTICIPATION TRIPS ORIGINAL <

<u>Stage</u> <u>2</u>: Estimate Study Area Recreation Spending Totals

Next, statewide spending data was compiled and used in conjunction with the ratios in Table 3 to estimate the amount of recreation spending in the study subregion. Data for this step was drawn from FHW tables 19, "Expenditures in the U.S. by State Residents for Fishing: 1985;" 20, "Expenditures in the U.S. by State Residents for Hunting: 1985;" 21, Expenditures by State Residents for Special and Auxiliary Equipment Purchased Primarily for Fishing or Hunting: 1985;" 22, "In-State Trip-Related Expenditures for Fishing and Hunting: 1985; 30, "Expenditures in the U.S. by State Residents for Nonconsumptive Wildlife-Related Recreation: 1985;" 45, "Trip-Related Expenditures for Fishing, Hunting, and Primary Nonresidential Activities, By State Where Spending Took Place;" and tables in Appendix B: Sample Design and Statistical Reliability.

The following steps were followed to develop spending estimates for the FHW study area:

Step 1. Compile reported statewide estimates for fishing, hunting, and nonconsumptive recreation spending for each state

Data for this step was drawn from FHW tables 19, 20, 21, 22, and 30. For each spending category where it applied, the reported "percent of equipment expenditures for new rather than used items" were used to derive estimates of new equipment purchases. Estimates of the percent of new equipment purchases are not reported for nonconsumptive spending for the U.S. or states. New equipment estimates of 60% for nonconsumptive special equipment and 90% for nonconsumptive auxiliary equipment were adopted, based on the percentages for similar fishing and hunting equipment in the region and U.S. averages. For special and auxiliary equipment, the percentages of new equipment purchases for hunting are 59% and 95%, for fishing they are 64% and 83%, respectively. For the region, fishing and hunting special equipment are reported together as is the auxiliary equipment for the two types of recreation. New special equipment amounted to 50% of total regional special equipment purchases, while 85% of auxiliary equipment purchases were new.

Step 2. Construct low and high estimates of spending

Statistical parameters from Appendix B in the state FHW reports were used to estimate standard errors. In turn, these were used to develop low and high estimates for each spending category reported in the state tables. Low and high estimates were made on the basis of adding and subtracting one standard error from initial spending estimates. The decision to use one standard error here was a relatively arbitrary decision. It was partially predicated on the earlier decision to employ two standard errors for the range of recreation activity. Use

of two standard errors for spending estimates would have generated inappropriate negative low estimates for some spending categories.

Step 3. Estimate the ratios of in-state trip-related spending to resident spending and use these to convert spending estimates to in-state resident and nonresident spending

Detailed expenditure tables for fishing, hunting, and nonconsumptive recreation (tables 19, 20, and 30) include expenditures by residents in other states. Trip-related estimates were adjusted by data contained in tables 22, "In-State Trip-Related Expenditures for Fishing and Hunting: 1985" and table 45, "Trip-Related Expenditures for Fishing, Hunting, and Primary Nonresidential Activities, By State Where Spending Took Place." Due to a lack of data, the assumption was made that all reported equipment expenditures were made within the state of residence.

Step 4. Sum the three states' spending estimates to derive low and high spending estimates for the FHW study region

Statistically, this results in a greater range between low and high estimates than the true range would be for the three state region. This is because standard errors for the three-state region would be based on the sum of the three states' sample sizes, reducing the probable sampling error. However, FHW reports do not present sampling sizes, so standard errors for the three-state region can not be calculated. Adopting the sum of the three states' low and high estimates as the three-state region's estimates may be viewed as a conservative approach to the estimation.

Spending categories were first matched with a ratio of FHW region to total Lake State activity measurement (participation, days, or trips). Thus, for example, equipment and food spending categories were matched with the ratios of participants, whereas transportation was matched with the ratios for days. This was an attempt to reflect that the categories of spending would be more closely associated with particular types of activity measurement. Transportation could have been linked with the FHW region- to-Lake State trip ratios, however the trip ratios are only slightly lower than the day ratios. The measurement ratios were then multiplied by the three states' summed low and high spending amounts to derive low and high estimates of spending by category for the FHW region.

Nonconsumptive recreation activity is not delineated by substate region in the FHW state surveys. Nonconsumptive spending in the study area was assigned low and high ratios of total three state spending slightly lower than the fishing and hunting ratios. Nonconsumptive recreation activity refers to feeding, photographing, or observing fish, birds or other wildlife. The slightly lower ratios reflect the author's general impression that there is likely to be more nonconsumptive activity outside the FHW region relative to fishing and hunting. This impression is partly based on knowledge of bird, fish and wildlife sanctuaries with the three states, but outside of the FHW region.

Auxiliary and special equipment spending also required an extra step. Lump sum amounts for these two categories appear both in the fishing expenditures table (table 19) and in the hunting expenditures table (table 20). Table 21, "Expenditures by State Residents for Special and Auxiliary Equipment Purchased Primarily for Fishing or Hunting: 1985" further delineates subcategories of spending which fall within auxiliary and special equipment classifications, but the table combines both fishing and hunting expenditures for these types of equipment.

Fishing and hunting spending estimates for the FHW study area were calculated with respect to their separate ratios of activity in the study area to total three-state activity. Low and high amounts for special and auxiliary equipment spending from the separate state estimates of special and auxiliary expenditures for fishing (table 19) and hunting (table 20) were used with FHW study area fishing and hunting participant ratios to weight the FHW study area estimates for these spending categories.

These steps generated a complete set of low and high estimates of 1985 spending associated with resident and nonresident fishing, hunting, and nonconsumptive recreation in the FHW study area. Table 4, "FHW Lake State Study Area Spending Totals," presents this data. Table 4. FHW Lake State Study Area Spending Totals

1985 SPENDING ESTIMATES (1985 \$)

S	PENDING CATEGORY				
		RESIDENTS & I	NONRESIDENTS	NONRESID	ENTS ONLY
		LOW	HIGH	LOW	HIGH
Т	OTAL SPENT	1656137192	4606529506	166681860	453756719
			1 7 / 1 0 / 0 7 5 7	1 (((01 0 (0	1 5 3 7 5 (7 1 0
	TRIP-RELATED	/8084/326	1/61962/5/	166681860	453/56/19
	food&lodging	45/326683	963/429/5	9//84/29	242900499
	food	379102799	//0519833	/9653205	189635349
	lodging	78223883	193223142	18131525	53265150
	transportation	156244689	456017744	38294574	142605518
1	other	5578302	26622643	1413705	10204019
	rental& use fees	28810119	56182109	8723119	17738881
	boat fuel	56092174	105726637	9683197	19032785
	boat maintenance	18248782	48701439	1220628	3396978
	bait	49908306	89470997	7775963	14536675
	ice	8638272	15498212	1785944	3341365
F	OUTPMENT & OTHER	875289865	2844566750		
5	guns & rifles	50133145	117295350		
	ammunition	16850942	32745642		
2	other hunting equin	41133645	86426819		
-	field glasses	1295999	6165415		
	hinoculars	7993398	47309958		
	film & dev	11662630	63944055		
	other photo equip	10359849	69644146		
	carrying cases	3067522	19035050		
	and clothing	5007522	27000000		
	bird seed	26427582	142923478		
3	other bird items	4940832	29509077		
4	other noncons equip	4761586	24423050		
•	rods	28483013	55381930		
	reels	15147069	30457776		
	lines books etc	16963921	30236818		
	lures & flies	25659365	47701426		
	tackle boxes	3130878	6294312		
	creels pets	390674	735984		
	bait containers	704546	1267743		
	scales & knives	1053558	2168250		
5	other fishing equin	31155186	64759735		
	foonsos	/3378888	77834072		
S	tamps.Tags&Permits	6502729	14293593		
-					
F	&H AUXIL EQUIP Total	54980767	149843373		
	Camping Equip	10825992	29830741		
	Foul Weather Gear	5071973	12560638	•	
	Spec Clothing	22056471	60699838		
	Rubber Boots/Waders	6345510	16195281		
	Equip Maintenance	938077	4386746		
	Fish or Hunt Boots	5117635	13939228		
6	Other Aux Equip	4625110	12230900		

.

Table 4. (cont'd.)

	SPENDING CATEGORY	RESIDENTS &	NONRESIDENTS
]	F&H SPEC EQUIP Total	265050068	959249150
	Boats & Canoes	129217752	389197274
	Boat Accessories	30245150	78929673
	Boat Trailer&Hitch	9968098	41603430
	Travel or Tent Trailer Pickup, Van, Motor Home, or Cabin	, 67686868	292177683
	Off-Road Vehicles	25028944	150961533
	Ice Chests	2903255	6379557
7	Magazines,Dues,Leases	152477996	378370350
	Nonconsum Magazines	4128112	21959082
	Nonconsum Membership Fe	es 3941310	21625035
8	Nonconsum Spec Equip	41676626	330230391
9	Nonconsum Aux Equip	1838029	12735692

Table 4 Notes

- includes nonconsumptive and hunting expenditures for "equipment rental (boats, camping equipment, etc.) and fees for guides, pack trips, public land use, and private land use."
- 2) "includes bows, arrows, archery equipment, telescopic sights, decoys and game calls, equipment or game cases or carriers, handloading equipment, hunting dogs, hunting knives, and other unspecified hunting equipment."
- 3) includes "nest boxes, bird houses, bird feeders, and bird baths"
- 4) undefined in FHW survey
- 5) "includes electronic fishing devices (depth finders, fish finders, etc.) rod holders and belts, spear fishing equipment, ice fishing equipment and other unspecified fishing equipment."
- 6) "Includes binoculars, field glasses, snow shoes and skis, processing and taxidermy costs and other unspecified equipment."
- 7) "includes magazine subscriptions, membership dues and contributions, and land leasing and ownership" fishing and hunting expenditures.
- 8) "Includes travel or tent trailers, off-the-road vehicles, pickups, campers or vans, motor homes and other unspecified equipment."
- 9) "Includes tents, tarps, frame packs and other backpacking equipment, other camping equipment, snowshoes and skis."

Stage 3: Disaggregate Spending Totals for Bridging with IMPLAN

Data on recreation spending by sector form the link between recreation activity surveys and I-O models. It is beneficial for the sake of precision to have spending categories as narrowly defined as the input-output model with which the spending estimates are to be used. This avoids aggregation error. However, survey spending profiles are often developed independently of the I-O model and rather aggregated spending categories are frequently used in the interests of survey brevity and a higher survey response rate. This sometimes results in mismatches between recreation survey data and the Standard Industrial Classification (SIC)-based sectorization schemes of most I-O models. Thus, for example, surveys may not delineate between food purchased at restaurants and bars versus food purchased at grocery stores. The result of using survey classification schemes which do not correspond with impact model classifications is that compromises must be made to match the survey data to I-O sectors. A consequence of such compromises may be impact estimates having poor reliability.

Substantial effort was devoted to bridging FHW spending data to the appropriate IMPLAN sectors. Publications addressing the bridging of recreation spending data to IMPLAN model economic sectors have tended to treat the subject superficially or in a relatively crude fashion. Much like improved RPCs, refinements in bridging of spending data will lead to improvements in both total impact and specific sectoral impact estimates. They may also help improve survey design to meet impact measurement objectives.

While a number of spending categories were adequately disaggregated, most of the spending items as they appeared in the state

reports could not be directly bridged to IMPLAN sectors. Five approaches were taken to further disaggregate the spending. The first consisted of utilizing available local studies. A second technique was to use ratios of spending from the U.S. FHW report which contains more detail than the state reports for certain spending categories. A third approach involved using extrapolations from national averages cited in other sources. A fourth approach involved reviewing the aggregated spending categories with Michigan State University Parks and Recreation Resources Department personnel for expert opinion as to the possible division of items within these categories. Finally, ad hoc judgment was used for some items.

The further disaggregation used the initial spending categories as control totals and subsequently allocated these totals among subcategories of spending items. FHW state and U.S. reports provide indications of what is included in various spending categories. Specifically, these reports contain a number of footnotes elaborating on the items contained in many spending categories. For example, a footnote for the hunting category, "Trip-related Other," indicates the spending in this category includes hunting expenditures for "...equipment rental (boats, camping equipment, etc.) and fees for guides, pack trips, public land use and private land use." In a number of cases, spending for these items could be identified directly in the corresponding national FHW report and their national ratios adopted for the study here.

FHW "food" spending was the major category for which there was substantial regional data that provided guidance as to how it could be further disaggregated. Four regional recreation studies were identified

that divided food between food for off premise consumption (groceries) and food purchased at restaurants and bars (eating and drinking places). The four studies included studies of recreation in three counties of Michigan's upper peninsula (Spotts and Mahoney, 1986), Michigan state parks (Fridgen, et al, 1986), Michigan state forest campgrounds (Nelson, 1988), and the more heavily forested areas of Minnesota (Kelly and Becker, 1985). Transportation was also divided between private automobiles and other forms of transportation (airlines, railroads, and buses) based on the three states' travel data (Gouldner and Duea, 1984).

National averages were used to allocate private transportation spending between automobile repairs and petroleum and oil. These averages were derived from 1977 U.S. Bureau of Economic Analysis (BEA) detailed personal consumption expenditure (pce) worksheets (1984). The difference between 1982 U.S. personal income and personal consumption expenditures was used to allocate lease payments to regional households' personal consumption expenditure. The "FHW Bridge Table" (Appendix F) includes a column, "Basis of Allocation" which spells out the basis for sector allocations of all spending that required further disaggregation from the original FHW spending categorization.

<u>Stage 4</u>: Allocate Spending to IMPLAN Sectors

Step 1. Margining

Most I-O tables, including IMPLAN's, are based on producer prices. Separate I-O economic accounts distinguish trade and transportation margins from producer goods. Margining refers to the process of converting purchaser prices to producer prices through separating the trade and transportation margins and allocating the remainder to appropriate producer sectors. Data from recreation expenditure surveys must be margined in order to develop correct IMPLAN input data.

Close attention to margining may be very important if an objective is to measure sectoral impacts rather than merely total impacts. A relatively narrow range of multipliers may lead to only a modest difference in total impacts regardless of sector spending allocation. However, there will be dramatic differences in the size of spending for particular sectors -- especially trade sectors -- depending on whether the spending data is properly margined or not.

Margining is also particularly important for any sectors which do not exist in a region being modeled. Spending on items produced by sectors without regional output should still have their margins, representing the proportional amounts of distribution costs, allocated to corresponding regional trade and transportation sectors. In contrast, the producer's share of an expenditure for an item not produced in a region would be considered imported and it would not be included in the measurement of impacts.

It is not perfectly reflective of the real world to allocate all distribution margins to the regional economy in the case of sectors without regional production. For example, the major portion of transportation costs may occur outside of the region. However, the bulk of distribution costs are normally associated with the retail trade sector, and the majority of these costs occur within the region's retail trade industry.

There are numerous other spending allocation considerations. Some service sectors, such as hotels and lodging places and eating and drinking places, do not have trade and transportation margins associated

with them. For these, the recreation spending should be completely allocated to the corresponding sector. Used equipment purchases pose several complications. They do not represent current production and, therefore, no portion of used items should be allocated to the sector corresponding to new production of the equipment. Furthermore, purchases may be made through retail outlets or from other households. If from retail outlets, IMPLAN has specific margins associated with its used and secondhand goods sector which may be appropriate. If the purchase is from other households, the treatment of it should depend on whether the puchase is made by regional residents or nonresidents.

Appendix E of the IMPLAN Version 1.1 Analysis Guide provides national margins for most of 100+ personal consumption expenditure (PCE) I-O categories derived from detailed U.S. Bureau of Economic Analysis (BEA) worksheets. (Appendix B of "Use of IMPLAN with Public Area Recreation Visitor Survey (PARVS) Pretest Data: Findings and Recommendations" (Propst, 1988) contains similar data.)

Computerized files of the detailed BEA worksheets are also available indicating the detailed margins for the 1700+ PCE items within the 100 I-O categories. Use of the margins from the detailed BEA worksheets are too difficult and time consuming to wade through for most IMPLAN users.

The detailed BEA worksheets were utilized to bridge fishing, hunting, and wildlife-associated recreation spending in the FHW study area. The bridging included the process of converting from purchaser to producer prices. The resulting detailed bridging tables and associated computer spreadsheets may prove especially helpful for IMPLAN users measuring recreation impacts based on FHW data. However, the tables may

also be useful for other recreation I-O analyses. They cover a broad range of spending categories, incorporate standard SIC and PCE code numbers and names, and address issues such as used equipment spending.

The two major bridge tables produced are Appendix F: "FHW Bridge Table," and Appendix G: "FHW Used Equipment Sector Allocation Table." There are qualifications to the usefulness of the tables. They have not been extensively reviewed, sector allocations indicated in the tables apply to Lake State FHW recreation spending and may not be appropriate for other regions, and the allocations of FHW spending were sometimes made on the basis of ad hoc judgement with little information. Two examples of the latter include the disaggregation of the FHW spending categories of "camping equipment" and "hunting dogs and associated costs."

Step 2. Develop four different types of spending: trip-related, total, total minus special equipment, and nonresidential

Each of these types of spending contained spending subcategories with low and high estimates. A further distinction was developed on the basis of only allowing for the measurement of nonresidential payments to households. Thus, low and high estimates were further subdivided by a distinction as to whether payments by residents in the region to other residents of the region were counted.

Step 3. Deflate spending

I-O input data and models for different time periods must often be employed because of analysis objectives or gaps in data sets. Recreation participation levels and spending patterns often will not coincide with the year on which the economic impact model is based (for the current version (2.0) of IMPLAN it is 1982). Sometimes analysts have defaulted to using singular price deflators such as the Consumer Price Index (CPI) to using singular price deflators such as the Consumer Price Index (CPI) to adjust their spending data to I-O models. Such an approach involves aggregation error as different economic sectors often experience significantly different rates of inflation. Prices consumers pay for goods will also vary from one region of the country to another.

A standard set of U.S. Bureau of Labor Statistics (BLS) deflators distributed with IMPLAN materials and often adopted by IMPLAN users covers price trends at a 105-sector level of aggregation (see, for example, Appendix D of the IMPLAN Version 1.1 Analysis Guide). Use of these deflators may still involve significant aggregation error as the IMPLAN model database contains 528 sectors. Of course, the potential error grows as the difference between input data and model year increases.

Sector-specific deflators for manufacturing industries are published in the BLS' monthly Producer Price Index (PPI) journal. The PPI provides up to seven-digit SIC detail which is much more than is required to match the maximum level of disaggregation in the IMPLAN database. These may be available in electronic form from the BLS and may be very easy to substitute for a majority of the more aggregated 105-sector deflators.

Admittedly, even the use of more precise sector-specific deflators may leave much to be desired because they will still be based on average inflation rates for the U.S. These may differ from regional inflation rates for sectors with the same SIC codes because of differences in local conditions from U.S. averages. However, regional deflators are also published by the Federal Government and there may be possibilities to use these in conjunction with more detailed sectoral deflators. In

distributed with the IMPLAN model warrants further attention. The 105sector BLS deflators distributed with IMPLAN materials were used in this study as it was assumed the deflation of spending from 1985 to IMPLAN's 1982 base year would not introduce substantial aggregation error.

Step 4. Eliminate spending for sectors not in region

Comparisons of the deflated spending vectors were made to the vectors of sectors IMPLAN reported as existing in the three-state region. Spending for sectors which did not exist in the region were subsequently dropped from the analysis. This is equivalent to assuming the producer's share of expenditures for these sectors was wholly imported into the region, and thus had no impact. In contrast, the distributional margins associated with those sectors found in the region were included in the impact measurement.

Step 5. Aggregate spending to match sectorization schemes

The spending was then aggregated according to the five different sectorization schemes described in the next chapter through the use of computer spreadsheets specifically developed for this purpose.

Step 6. Multiply spending by multipliers to derive impact estimates

The final step was to take the alternative low and high estimates for the four types of recreation spending and combine them with the three sets of multipliers (output, personal income, and employment) for each aggregation scheme. This provided FHW recreation economic impact estimates for the forested study area. Chapter five describes the further analysis of these impact estimates in terms of the influences of variables on the size of the estimates.

. Construction of Lake State IMPLAN Models

Once the FHW data had been converted to 1982 final demands as described in the steps above, it was used in conjunction with a variety of multipliers derived from alternative Lake State IMPLAN models. The discussion below focuses on how the alternative models were developed based on different sets of regional purchase coefficients (RPCs) and alternative sectorization schemes. The following chapter will contrast the alternative I-O models and present outdoor recreation impact results.

Development of Alternative RPC-Based Trade Estimates

Lake State region IMPLAN models were generated using five different sets of RPCs. These are presented in their entirety in Appendix C: "Alternative Lake State RPCs and RPCs used as Guides for the Estimation of the Lake State RPCs." They are identified as "SDP," "FLRLK," ALTFLK," "BSTLK," and UNCHLK" in the Appendix. Additionally, the Appendix table includes five other sets of RPCs which influenced the construction of the Lake State region RPCs. These other five include two sets of Michigan RPCs (one from IMPLAN and one from REMI), Minnesota and Wisconsin IMPLAN RPCs, and a set of RPCs for the Lake States generated from the corrected MRIO data set. Each set includes 528 RPCs, one for each sector in the fully disaggregated IMPLAN model (including about twenty sectors not present in the Lake State region).

Two of the sets of RPCs are standard IMPLAN outputs and required no significant user changes. One of these was a set of unchanged RPCs (UNCHLK) derived directly from IMPLAN and used without any modification. Another set of RPCs was based on the supply-demand pooling (SDP) trade estimation technique. The SDP values serve as ceiling RPC estimates (given the levels of IMPLAN-estimated regional demand and output). The other three sets of RPCs required sector-by-sector examination and modification of RPC values.

A set of RPCs representing minimal or floor values (FLRLK) was generated based on adopting the minimum RPC values from among unchanged Michigan, Minnesota, Wisconsin, and Lake State IMPLAN models, a Michigan REMI model and calculated Lake State RPCs based on the corrected MRIO data for the three states. REMI RPC estimates were not available for all 528 sectors and the RPCs were for a different base year (1983 in contrast to 1982). A limitation on the MRIO data is that it is at a 124 sector level of aggregation.

A fourth set of RPCs was developed as an alternative set of floor RPC values (ALTFLK). The intent behind this set of RPCs was to address the questionable nature of many of the zero and near-zero RPC values found in the IMPLAN models. Alternative minimal RPCs were substituted for FLRLK RPCs for approximately fifty sectors; otherwise, the ALTFLRLK vector of RPCs is identical to the FLRLK vector. The substitution was done on the basis of a sector's FLRLK RPC appearing unreasonably low (generally less than .01) in contrast to the majority of other RPCs, especially the REMI, MRIO, and SDP estimates. While the value was selected on an ad hoc basis, the new ALTFLK RPC value adopted tended to be half the SDP value or the lowest RPC from among the remaining nonzero RPCs.

The fifth set of RPCs (BSTLK) represented the author's best judgement as to the probable magnitude of the RPC. This set was constructed on the basis of subjectively weighting the other sets of

RPCs. In a few instances, consideration was also given to 1982 U.S. Census data for the three states in the region.

<u>Different I-O Sectorization Schemes</u>

The five different sets of RPCs were used with five different sector aggregation schemes. One of the schemes involved no aggregation and resulted in Lake State models with 502 sectors. A second aggregation scheme involved an intermediate amount of aggregation resulting in models with 308 sectors. Part of the motivation behind this sectorization scheme was to reduce the total number of sectors to just below IMPLAN's upper limit (310 sectors) whereby the model can invert the Leontief matrix without partitioning it. IMPLAN's inversion routine slows down for models with more than 310 sectors, although by standards of a few years ago, the speed of the inversion is still quite respectable.

Two rules of thumb were followed in aggregating sectors. The first was to aggregate sectors as they appeared in IMPLAN version 1.1 to enable comparisons of recreation impacts with earlier analysis conducted with version 1.1. Aggregation of sectors is generally more viable than disaggregation. Version 1.1 of IMPLAN had 464 sectors whereas version 2.0 has 528. Version 2.0's 528 sectors can be aggregated in a straightforward fashion to identically match version 1.1 sectors. The second rule of thumb was to aggregate only relatively small and similar SIC sectors which did not have any, or only minimal, recreation spending associated with them (mining sectors, for example).

A third aggregation scheme represents the extreme case of aggregating all less important sectors into a "miscellaneous" (or "other") sector. This third sectorization scheme has 159 sectors, 158 of which are relatively disaggregated. Sectors were first segregated on the basis of whether or not there was recreation spending associated with them. Those that had recreation spending associated with them remained relatively disaggregated. All sectors not associated with recreation spending were aggregated together. The only aggregation for the relatively disaggregated sectors was for the purpose of matching the aggregation scheme of the IMPLAN version 2.0 sectors to the aggregation scheme of version 1.1. The other (159th) sector is "all other". It is an aggregation of 326 sectors which had no recreation spending allocated to them in the 1987 Governors Conference study. The intention behind this aggregation scheme was to examine the issue of what happens when the analyst combines all other sectors together which are not of immediate interest.

The other two sectorization schemes are highly aggregated. One has 31 sectors. This scheme closely approximates a 2-digit SIC delineation which is probably the most common sectorization scheme seen in regional economics literature. It is quite similar to the original Governors' Conference on Forestry model (Pedersen and Chappelle, 1988), except that it lacks sectorization detail for forest product industries. The other aggregation scheme has only sixteen sectors. The major difference between it and the 31 sector model is that most manufacturing sectors and many service sectors have been further aggregated. The exceptions are recreation-related sectors (food, clothing, petroleum, and transportation services). Hotels and Lodging Places (IMPLAN sector 471) and Eating and Drinking Places (IMPLAN sector 491) were left unaggregated for both of these sectorization schemes.

CHAPTER V

RESULTS

Introduction

This chapter describes results of the IMPLAN RPC analysis and subsequent analysis of alternative estimates of Lake State outdoor recreation economic impacts. The RPC analysis will be discussed first, followed by results pertaining to Lake State outdoor recreation economic impacts.

Examination and Documentation of Problems with IMPLAN's RPCs

Concerns regarding IMPLAN's RPCs were first encountered during the construction of a Lake States IMPLAN model (Pedersen and Chappelle, 1988). Between 50 to 60 of the original disaggregated sectors had obviously inappropriate RPC values equal to zero. Initial questioning and subsequent adjustment of RPC values was on the basis of IMPLAN reporting a zero or near-zero RPC, despite output for the sector being sizeable relative to demand for the sector, and on the basis of comparisons with RPCs from REMI models maintained by the three Lake States. Thus, for example, many service sectors with zero RPCs were questioned and subsequently changed, while most mining sectors and some manufacturing sectors with zero RPCs were left unchanged. Also, zero or near-zero RPCs tended to come in clusters and were relatively easy to identify. It was later observed that the basis for the cluster pattern was that IMPLAN's RPCs are initially estimated at a more aggregated level, based on MRIO 124 sector data.

IMPLAN models were subsequently generated for several Michigan counties and the states of Michigan, Minnesota, and Wisconsin. All

models contained dubious zero-valued RPCs as well as many questionable near-zero RPCs, reducing the size of estimated multipliers. For all the models, between ten and thirty percent of sectors with regional output had questionable RPCs at the fully disaggregated level. There appeared to be a high degree of consistency as to which commodity sectors were affected across the various models. Michigan and all Michigan counties had thirteen service sectors (IMPLAN sectors 478 through 490) with RPCs equal to zero, whereas Minnesota and Wisconsin RPCs were all above .5 for the same sectors. Two other categories of sectors had dubious negligible RPCs in all the models, in addition to the commodity sectors listed in Table 1 (p. 17). These were SIC 364, Electric Lighting and Wiring Equipment (including IMPLAN sectors 386, 387 and 388) and SIC 32, Stone and Clay Products (including IMPLAN sectors 257 through 279). Unchanged IMPLAN RPCs for Michigan, Minnesota, and Wisconsin are presented in Appendix C: "Alternative Lake State RPCs and RPCs Used as Guides for the Estimation of Lake State RPCs."

The number of sectors with questionable zero-valued RPCs was higher for the State of Michigan than it was for Michigan counties on an absolute basis. This is because the zero RPC estimates for certain manufacturing sectors at the county level coincided with those sectors not being present in the county, making the zero value the correct RPC value. At the state level, in contrast, the same manufacturing sectors often had substantial levels of output that made a negligible RPC estimate questionable. However, the Michigan county models examined did have a higher percentage (closer to thirty percent) of sectors with questionable zero RPC values than the state (which had between ten and fifteen percent).

This observation provides an indication that IMPLAN's RPC estimation problem may be more serious for substate or small models with relatively few sectors. IMPLAN models may be developed for single or multiple counties, in addition to individual states or multiple states. Smaller regions being modelled with IMPLAN will tend to have more distortion in their trade estimates in terms of the percentage of total model sectors affected. As Jensen (1988) has suggested, service (or "tertiary") sectors appear to be fairly universally found across most economies, large or small. Therefore, service sectors often comprise a greater proportion of the total number of sectors in small economies than in larger economies. Furthermore, RPCs for service industries are generally higher than those for manufactured goods. This reflects demand for service industries often being met by local suppliers in contrast to demand for manufacturing and other goods often being met by production outside a region. Therefore, the magnitude of error for service sectors with zero RPCs is generally greater than manufacturing sectors with zero RPCs.

These problems compound the existing nonsurvey I-O problem of extrapolating from national technical coefficients (the "A" matrix) to the small area economy. Generally, the smaller the region, the less likely the industry mix and production functions will reflect the national average. In sum, if service sector RPCs are in error, these may create worse problems for small economies being modeled than large economies.

A comparison between disaggregated 1983 REMI and IMPLAN (1982) RPCs for the State of Michigan revealed little overall correlation in the pattern of RPCs between these two models. Disaggregated REMI RPCs were

not available for agricultural, construction, or government sectors. The coefficient of multiple determination, R^2 , goodness-of-fit measure was used to indicate the amount of correlation between major sector groupings of disaggregated RPCs. The regression results are shown in Table 5.

Table 5. Comparison of IMPLAN and REMI RPC's for Major Sector Groupings

	Sectors Correlated	Number of <u>Sectors</u>	<u>R</u> ²
*	A11	440	.1578
	Forestry & Fish Prdcts, & Mining	42	.0218
	Mining	38	.0183
	Manufacturing	370	.1527
	Nondurable Manufacturing	158	. 2295
	Food & Kindred Products	49	.1900
	Durable Manufacturing	206	.1063
	Transportation, Communication,		
	and Utilities	14	.0259
	Finance, Insur, & Real Estate	7	.0180
	Other Services	45	.0598

* "All" does not include agriculture, construction and government sectors, as REMI RPCs were not available for these sectors

The above comparison does not indicate IMPLAN's RPCs are of poor quality, but rather simply that there is little correspondence in the overall consistency between REMI and IMPLAN values. While some inconsistency should be expected in light of the different techniques used to derive their RPCs, the low level of correlation was less than what was expected.

Alward et al. (1989) report observed MRIO RPCs for service sectors that have been adopted by IMPLAN. Commodity sector coefficient values for independent variables in the RPC regression equation are published as well, but not corresponding commodity RPC values. The service sector RPCs are reported for all fifty states and Washington, D.C. Close inspection indicates most states have two or more MRIO service sectors (corresponding to aggregations of IMPLAN sectors) with RPC estimates of zero. Many of these zero RPCs appear dubious in light of: 1) the same state having RPCs close to or equal to 1.0 for most other service sectors, 2) most other states having RPCs close to or equal to 1.0 for the same sector, and 3) service sectors are usually oriented towards supplying local markets.

A possible alternative to accepting zero RPC values for a particular service sector would be to substitute the average MRIO RPC observed for that sector in other states. This approach would assume the nonzero service sector RPC values are correct and it does not address questionable nonzero RPC values observed for commodity sectors. Also, an analysis of all service sector RPCs has revealed that there are extensive problems with the nonzero values as well. For example, New York has the lowest overall service sector RPCs -- less than half the average value of all other states -- despite the state being an important regional and national center for finance and other services.

It is not known whether the reported zero RPC values are the result of legitimate estimates from the original MRIO data, miscalculations, or data entry errors. In any case, many nonzero service sector RPCs are suspect as well. The questionable nature of the current IMPLAN service sector RPC estimates will be illustrated in tables 6 through 9. The pattern of IMPLAN's average state RPC values that emerges is not what one would expect to actually occur. For example, the economies of New York, Illinois, South Carolina, New Jersey and Indiana have average service sector RPCs less than 0.60, while Minnesota, Wisconsin, California, Nevada, and North Dakota have averages above 0.95. There is no apparent basis for this pattern in terms of the size of states or their spatial or economic positions relative to surrounding states.

Substituting higher values for the zero RPC service sectors only slightly improves the resulting RPC estimates; a peculiar pattern of RPC values still remains. For example, even after dropping sectors with RPCs equal to zero, New York still has the lowest average service sector RPC. Its average service sector RPC value would remain under 0.37, less than half the average value of all other states.

New RPC estimates were calculated for the service sectors of all fifty U.S. states and Washington D.C. based on corrected MRIO data (see chapter 3, p. 78-81). These are presented as "Revised RPCs" in Table 6. The revised average service sector RPCs for the states have a much smaller standard deviation (0.0361) than the IMPLAN average service sector RPCs (0.1508). Mathematically, the smaller standard deviation for the revised RPC averages stems from there being few zero, near-zero, and unit-value RPCs among the revised service sector RPCs. The narrower range of the revised state service sector RPCs corresponds with observations regarding the similarity of service sector markets across states -- service sector demands are usually met locally.

The revised RPCs also more closely reflect what one would expect from regional economic theory in terms of the magnitude of the average state RPCs relative to each other. This is illustrated by Table 7 which lists the ten states with the lowest and highest revised average service sector RPCs.

.

<u>State</u>	MPLAN RPC	<u>Rank</u>	<u>Revised</u> RPC	Rank
NY	0.3487	1	0.8299	46
IL	0.4471	2	0.8255	43
SC	0.5468	3	0.7777	19
NJ	0.5497	4	0.7938	27
IN	0.5591	5	0.7635	13
AK	0.5825	6	0.7982	29
WV	0.5905	7	0.7240	2
NC	0.5950	8	0.7992	30
PA	0.5978	9	0.8206	39
OH	0.6070	10	0.7639	15
HI	0.6314	11	0.8044	33
MS	0.6418	12	0.7665	17
AL	0.6421	13	0.7649	16
FL	0.6449	14	0.8242	41
СТ	0.6487	15	0.7912	25
MI	0.6666	16	0.7787	20
GA	0.6790	17	0.8310	4/
VT	0.6981	18	0.7518	27
UT	0.6981	19	0.8162	3/
WA	0.7099	20	0.80//	35
NH	0.7109	21	0./3//	0
AZ	0.7162	22	0.8249	42
AK VOZ	0.7283	23	0.7501	12
KY	0.7539	24	0.7520	10
	0.7575	20	0.8295	45
UK	0.7081	20	0./93/	20
WY	0.7751	27	0.7277	5
	0.7833	20	0.0333	22
NM	0.7043	29	0.7009	40
UK	0.7932	21	0.8215	40
	0.8001	32	0.7637	14
	0.0271	22	0.7007	4
3D NF	0.8485	34	0 8158	36
I A	0.8471	25	0.0100	21
	0 8671	36	0.7463	7
MU	0 8807	37	0.8061	34
TN	0 8860	38	0 8034	31
ME	0 9007	39	0.7556	11
VA	0 9040	40	0.8259	44
KS	0.9124	41	0.8042	32
MA	0.9194	42	0.8178	38
MO	0.9215	43	0.8398	49
DE	0.9280	44	0.7311	5
MT	0.9389	45	0.7828	23
IA	0.9438	46	0.7852	24
MN	0.9511	47	0.8380	48
WI	0.9700	48	0.7735	18
CA	0.9722	49	0.8515	50
NV	1.0000	50	0.7944	28
ND	1.0000	51	0.7492	8
Average:	0.7594		0.7884	
Standard Deviation	n: 0.1508		0.0361	

L	owest <u>Average</u>	<u>RPCs</u>	Hig	<u>hest</u> <u>Average</u>	<u>RPCs</u>
Rank	State	RPC	Rank	State	RPC
1	Rhode Island	. 7006	42	Arizona	.8249
2	West Virginia	.7240	43	Illinois	.8255
3	Wyoming	.7277	44	Virginia	.8259
4	South Dakota	.7301	45	Texas	.8295
5	Delaware	.7311	46	New York	.8299
6	New Hampshire	.7377	47	Georgia	.8310
7	Washington D.C.	.7463	48	Minnesota	.8380
8	North Dakota	. 7492	49	Missouri	.8398
9	Vermont	.7518	50	California	.8515
10	Kentucky	.7526	51	Colorado	.8553

Table 7. Ten Lowest and Highest Revised MIRO Average Service Sector RPCs

Table 7 illustrates a discernible, logical pattern to the revised RPCs based on the corrected MRIO data. Small revised average service sector RPCs tend to be characteristic of small and/or relatively isolated states, while higher average RPC values tend to be associated with larger and more highly developed state economies that are regionally dominant.

Table 8 illustrates how revised estimates of RPCs based on the corrected MRIO data compare to current IMPLAN estimates for particular service sectors for the states of Michigan, New Jersey, New York, and North Dakota. There are substantial differences between the two sets of RPCs. Table 8 illustrates the severe distortion an analyst might encounter using version 2.0 of IMPLAN to measure tourism or recreation impacts. Note for example that IMPLAN's current New York Hotel and Lodging sector RPC is .182 (see Table 8). This is less than one-fourth of the average for the fifty states and implies that 80% of demand for temporary lodging within the State of New York is met out-of-state. However, despite consistently appearing to be inappropriately on the low side, IMPLAN's New York service sector RPC estimates at least have a pattern compared to New Jersey's service sector RPC estimates. Consider the transportation and tourism implications of IMPLAN's New Jersey RPCs. Except for private automobiles, IMPLAN's RPCs imply railroads are the only form of transportation New Jersey residents and businesses use. The zero RPCs for MRIO sectors 98 (eating & drinking) and 106 (hotels and lodging) imply state residents never patronize New Jersey restaurants and bars or accomodations.

Table 8. Comparison of Recreation-Related Service Sector RPCsfor Michigan, New Jersey, New York, and North Dakota

MRIO	MI R	PCs	NJ	RPCs	NY	RPCs	ND	RPCs
# SECTOR NAME	IMPLAN	REVISED	IMPLAN	REVISED	IMPLAN	REVISED	IMPLAN	Revised
85 Railroads	0.4440	0.5593	0.9574	0.8362	0.5005	1.0000	1.0000	1.0000
86 Local Transit	0.5506	0.4673	0.0000	0.8000	0.3061	0.7262	1.0000	0.5187
87 Motor Freight	0.3911	1.0000	0.0000	1.0000	0.3574	0.9034	1.0000	0.8477
88 Water Transportation	0.4019	0.6727	0.0000	1.0000	0.3035	1.0000	1.0000	0.0000
89 Air Transportation	0.4228	0.2527	0.0000	0.3496	0.2219	0.4801	1.0000	0.2686
97 Wholesale Trade	0.6044	0.6274	0.2755	0.9704	0.5003	0.9949	1.0000	0.5789
98 Eating & Drinking	0.6020	0.8901	0.0000	0.8084	0.5001	0.8145	1.0000	0.9002
* RETAIL INDUSTRY (AGGD)	0.5596	0.9500	1.0000	0.9500	0.2404	0.9500	1.0000	0.94
106 Hotels & Lodging	0.6252	0.7232	0.0000	0.5205	0.1822	0.5230	1.0000	0.8000
111 Amusements	1.0000	0.8379	0.0000	0.8500	0.2848	0.8500	1.0000	0.8222
Ave All Service Sectors	0.6666	0.7787	0.5497	0.7938	0.3487	0.8299	1.0000	0.7492
STD DEV " "	0.2847	0.2095	0.4358	0.2216	0.1431	0.1789	0.0000	0.2571

* revised retail RPCs are based on aggregating four retail sectors

New York and New Jersey are admittedly extreme illustrations of the problems with IMPLAN's current RPCs. However, all IMPLAN models suffer from poor RPC estimation for some sectors. As illustrated by tables 6 through 8 and more extensive analysis conducted for the Lake States, the RPC estimates could be improved by using the corrected MRIO data to reestimate IMPLAN's RPCs.

How large are the consequences of errors in IMPLAN's RPC estimates on impact estimates? If New York's "true" service sector RPCs are only the average of the other fifty states, then direct service sector impacts may be estimated by IMPLAN at well under half of what they should be. In other words, more than two-thirds of New York demand for services is probably being met by New York service suppliers, rather than approximately only the one-third share IMPLAN currently estimates. In fact, it is likely that New York's true RPCs are higher than average due to its economic size, diversity, and national importance. The revised average based on the corrected MRIO data (.8299, versus IMPLAN's unadjusted estimate of .3487) is much more in line with these factors.

Indirect effects may be subject to worse distortions as the underestimation (or overestimation as is the case for North Dakota and certain other states) is compounded with multiple rounds of spending. At a minimum, indirect and induced portions of multipliers should be expected to have the same sign and somewhat reflect the average differences between RPCs based on the original MRIO data and the corrected MRIO data. Table 9 provides a contrast of State of Michigan multipliers for recreation-related sectors generated by IMPLAN using the two alternative sets of trade estimates. As expected, the resulting relative differences between revised and unchanged multiplier values displayed in Table 9 reflect differences between IMPLAN and revised Michigan RPCs presented in Table 8. For example, the mean Type III service sector output multiplier for the revised RPCs (1.81) is approximately sixteen percent larger than the mean Type III service sector output multiplier for the unchanged RPCs (1.56). This is very similar to the difference between the IMPLAN and revised average RPC for all service sectors (.6666 and .7787, respectively, as indicated in Table 8).

SI	ECTOR NAME	REVISED Type I	RPCs III	UNCHANGEI TYPE I) RPCs III
85	Railroads	1.38	1.74	1.29	1.55
86	Local Transit	1.19	1.61	1.12	1.43
87	Motor Freight	1.27	1.64	1.17	1.44
88	Water Transportation	1.47	1.68	1.32	1.45
89	Air Transportation	1.33	1.58	1.25	1.42
97	Wholesale Trade	1.28	1.44	1.14	1.24
98	Eating & Drinking	1.46	2.23	1.33	1.89
* F	ETAIL INDUSTRY (AGGD)	1.23	1.99	1.11	1.67
106	Hotels & Lodging	1.50	2.43	1.30	1.97
111	Amusements	1.34	1.97	1.21	1.66
Mean for	All Service Sectors:	1.37	1.81	1.24	1.56

Table 9. Michigan Output Multipliers for Recreation-Related Sectors

* revised retail RPCs are based on aggregating four retail sectors

A more complete RPC comparison is presented in Appendix B: "Comparison of IMPLAN, REMI, and Corrected MRIO RPCs." This appendix presents RPCs for all sectors in the three Lake States and the Lake State region based on the corrected MRIO data. It also presents IMPLAN and REMI RPCs based on the MRIO 124-sector aggregation scheme. These RPC calculations confirmed that the corrected MRIO data does not have the zero or near zero RPCs observed in the IMPLAN models and reported for IMPLAN service sector RPC values.

Absolute and percentage differences were calculated between all IMPLAN and MRIO Michigan sectors and are presented in Appendix B. The average RPC difference across all sectors on an output-weighted basis was approximately .14. The corrected MRIO Michigan RPCs were 31.8 percent higher than the IMPLAN RPCs on a weighted average basis.

Regressions were also conducted on the Michigan RPCs to determine the correlation between them at this level of aggregation. Quite surprisingly, the REMI and corrected MRIO RPCs had an R^2 of approximately .54 (with 94 degrees of freedom), while the IMPLAN and corrected MRIO R^2 was close to .23 (with 113 degrees of freedom). Differences in the degrees of freedom stem from RPCs not being available for REMI agriculture, construction, and government sectors. IMPLAN's R^2 with the corrected MRIO data for only those sectors which also had REMI RPCs was .22. These regression results were unexpected as both the IMPLAN RPCs and corrected MRIO RPCs were developed from the same original MRIO database, whereas the REMI RPCs were developed largely from the Transportation Census. These results do not confirm the accuracy of either the REMI or corrected MRIO RPC estimates, but they do imply that these models have similar RPC patterns that are currently not present in the IMPLAN model.

Sector Allocation of Outdoor Recreation Spending

Information from the U.S. Bureau of Economic Analysis (BEA) computer tape "Personal Consumption Expenditures and Gross Private Fixed Investment Item Detail" (1984) was used to bridge FHW recreation spending in this study's forested area of the Lake States. The detail contained on the BEA tape allows much more precise allocation of spending to IMPLAN sectors than the sector allocation bridges in the <u>IMPLAN Analysis Guide</u> (USDA Forest Service, 1985) and published in conjunction with PARVS (Propst, 1988). These two bridge tables are based on approximately one hundred aggregated personal consumption expenditure (pce) categories. In contrast, the BEA tape contains 1,790 different consumption items and their corresponding SIC codes, total 1977 U.S. expenditures, and the breakdown of these expenditures between producer and distribution shares. The pce I-O category #9400, "pce wheel goods, durable toys, sport equipment, boats & pleasure aircraft," will be used to illustrate problems associated with adopting aggregated I-O pce categories to allocate recreation survey spending. Pce I-O category 9400 contains the majority of equipment items associated with outdoor recreation. Table 10 presents a listing of the 108 items contained within the category and their corresponding pce item numbers.

Trade and transportation margins and producer shares of expenditures for all 1790 pce items have been bridged to IMPLAN sectors by IMPLAN personnel. Additionally, these shares have been used to derive the percentage distribution of purchaser spending among producer and margin shares for the pce I-O categories and some subtotals within Table 11 presents the percentage distribution of the categories. spending on specific items within pce I-O category 9400 under the column heading "% OF PCE I-O CATEGORY 9400." Table 11 also shows the distribution of spending among IMPLAN sectors for three subcategories of pce I-O category 9400: small arms (pce item #1481), optical goods (pce items #1534-6), and boat building and repair (pce item #1507). The percentage distribution among IMPLAN sectors for these items was calculated by this author based on the detailed BEA national expenditure data.

Table 11 also presents Lake State Type I and III output multipliers, based on revised (BSTLK) IMPLAN RPCs, for the IMPLAN sectors associated with pce I-O category # 9400.

Table 12 shows the results of combining the percentage distribution estimates and output multipliers for the four types of industry groupings (I-O category 9400, and the three pce item subcategories)

Table 10. Pce I-O Category 9400:Wheel Goods, Durable Toys, Sport Equipment, Boats & Pleasure Aircraft

ITEN # PCE ITEM DESCRIPTION 1481: SMALL ARMS 1482: TEXTILE BAGS 1483: CANVAS PRODUCTS, NSK 1484: CAMPING TENTS 1485: OTHER CANVAS PRODUCTS 1486: FABRICATED TEXTILES, NEC, NSK 1487: SLEEPING BAGS 1488: PARACHUTES 1489: BICYCLE CASINGS&SINGLE TUBE TIRES 1490: BICYCLE INNER TUBES 1491: BOATS, PONTOONS, LIFE RAFTS 1492: LEATHER GOODS N.S.K. 1493: LEATHER NOVELTIES 1494: SADDLERY & HARNESS & ACCOUTERMENTS 1495: DOG COLLARS, LEASHES & OTH PET ACCESS. 1496: OTHER LEATHER GOODS 1497: BEA COVERAGE ADJUSTMENT 1499: POCKET KNIVES &OTHER FOLDING-BLADE KNIVES 1553: BILLIARD AND POOL, TABLES & SUPPLIES 1500: MARINE HARDWARE 1501: STEEL WIRE CAGES 1502: OUTBOARD ENGINES 1503: STORAGE BATTERIES-SLI-AIRCRAFT & MARINE 1504: STORAGE BATTERIES-SLI-AIRCRAFT & MARINE 1505: COMPLETE AIRCRAFT, PERS & UTILITY 1506: YACHTS, UNDER 65 FT 1507: BOAT BUILDING & REPAIRING, NSK 1508: OUTBOARD MOTORBOATS 1509: INBOARD MOTORBOATS, NSK 1510: INBOARD RUNABOUTS 1511: INBOARD CABIN CRUISERS, UNDER 26 FT 1512: INBOARD CABIN CRUISERS, 26 FT AND OVER 1513: HOUSEBOATS 1514: INBOARD-OUTDRIVE BOATS, NSK 1515: INBOARD-OUTDRIVE BOATS, UNDER 20 FT 1516: INBOARD-OUTDRIVE BOATS, 20FT & OVER 1517: BOATS, NEC, NSK 1518: SAILBOATS 1519: OTHER BOATS, NEC 1520: BOAT REPAIR, NONMILITARY 1521: BEA COVERAGE ADJUSTMENT 1522: MOTORCYCLES, BICLES & PARTS, NSK 1523: BICYCLES, COMPLETE 1524: BICYCLE PARTS 1525: MOTORCYCLES AND TRAIL VEHICLES 1526: TRANSPORTATION NEC. NSK. 1527: PARTS FOR SELF-PROPELLED GOLF CARTS 1528: SELF-PROPELLED GOLF CARTS 1529: SELF-PROPELLED SNOWMOBILES 1530: PARTS FOR SELF-PROPELLED SNOWMOBILES 1531: BOAT TRAILERS **1532: ALL-TERRAIN VEHICLES** 1533: PARTS FOR ALL-TERRAIN VEHICLES 1534: OPTICAL INSTRUMENTS&LENSES, NSK

ITEN # PCE ITEM DESCRIPTION 1535: OPTICAL INSTRUMENTS, COMP., LENSES, NSK 1536: BINOCULARS, OPTICAL ALIGNMENT&DISPLAY INSTRUNTS 1537: HAND HELD STILL CAMERAS 1538: FLASH UNITS-ELECTRONIC & NONELECTRONIC 1539: PROJECTORS, SLIDE & STRIP 1540: STILL PICTURE EQUIP, PARTS, ATTACH, &ENLARGERS 1541: 8816 MM MOTION PICTURE CAMERAS 1542: 16MM SOUND & SILENT PROJECTORS 1543: ALL OTHER 8MM PROJECTORS 1544: 8MM SILENT PROJECTORS LESS THAN \$100 1545: PROJECTION SCREENS 1546: 8816HM MOTION PICTURE PARTS, ATTACH, ETC 1547: BABY CARRIAGES AND CHILDREN'S VEHICLES 1548: SPORTING&ATHLETIC GOODS, NEC. NSK 1549: GOLF BALLS AND GOLF CLUBS 1550: GOLF BAGS & OTHER GOLF EQUIPMENT 1551: HOME PLAYGROUND EQUIPMENT 1498: CUTLERY, SCISSORS, SHEARS, TRIMMERS, & SNIPS 1552: HEALTH, PHYSICAL FITNESS&EXERCISING EQUIP 1554: BOWLING BALLS 1555: TEAM SPORTS EQUIPMENT 1556: SIDEWALK AND RINK ROLLER SKATES 1557: ICE SKATES 1558: WATER SKIS AND SURFBOARDS 1559: SNOW SKIS 1560: WINTER SPORTS EQUIPMENT 1561: UNDERWATER SPORTS EQUIPMENT 1562: BEA COVERAGE ADJUSTMENT 1563: MISC. FABRICATED PRODUCTS, NEC., NSK 1564: OTHER MISC. FABRICATED PRODUCTS, NEC., NSK. 1565: MISC. FABRICATED PRODUCTS, NEC. 1566: WELDING REPAIR 1567: HOUSEHOLD FLIGHT INSTRUMENT REPAIR 1568: SNOWMOBILE REPAIR 1569: LOCK SMITHS, GUNSMITHS 1570: REPAIR SERVICE FOR OPTICAL GOODS 1571: MOTORCYCLE REPAIR 1572: HOUSEHOLD TENT REPAIR 1573: SPORTING GOODS INCLUDING BICYCLE REPAIR 1574: CAMERA AND PHOTO EQUIP REPAIR 1575: USED OPTICAL GOODS 1576: USED OPTICAL GOODS 1577: USED SPORTING GOODS 1578: USED SPORTING GOODS 1579: USED MOTORCYCLES THRU USED MERCH. STORE 1580: USED MOTORCYCLES THRU USED MERCH. STORE 1581: USED WHEEL GOODS SPORTS EQUIP, ETC 1582: USED WHEEL GOODS SPORTS EQUIP, ETC 1583: USED WHEEL GOODS SPORTS EQUIP, ETC 1584: USED WHEEL GOODS SPORTS EQUIP, ETC 1585: USED WHEEL GOODS SPORTS EQUIP, ETC 1586: USED PLEASURE BOATS 1587: USED PLEASURE BOATS THRU RETAIL 1588: USED BABY EQUIPMENT

presented in Table 11. For each of the four groupings, this process involved multiplying the two types of output multipliers by any proportional share of spending in each multiplier's corresponding sector. Thus, for example, railroads and related services (IMPLAN #446) multipliers of 1.45 and 1.92 were multiplied by .00069 for I-0 category #9400, .00011 for small arms, 0 for optical goods, and .00065 for boat building and repair, resulting in the corresponding output impacts shown in Table 12. The estimates shown in Table 12's columns may be viewed as depicting the distribution of output impact among sectors per average dollar spent for the four pce groupings of industries.

The sums of the columns at the bottom of Table 12 indicate the total output impacts for each of the four pce industry groupings according to type of multiplier (Type I or III). The corresponding percentage differences in total output impacts from pce I-O category #9400 are shown below the sums for the three pce subcategories.
			Lake s	TATE			X OF	X OF
			BSTLK I	MPLAN	% OF	X OF 1	PCE #1534-6	PCE #1507
			an	PUT	PCE 1-0	PCE #1481	OPTICAL	BOAT BLDG
BEA INDUSTRY			MULTIP	LIERS	CATEGORY	SHALL ARHS	GOODS	& REPAIR
NAME OR NUMBER	IMPLAN INDUSTRY NAME IMPLA	N #	TYPE I	111	#9400 *	(IMP #79)	(IMP #423)	(IMP #409)
								•••••
RAIL MARGIN	RAILROADS AND RELATED SERVICES	446	1.45	1.92	0.069%	0.011%	0.000%	0.065%
TRUCK MARGIN	NOTOR FREIGHT TRANSPORT	448	1.41	1.95	0.580%	0.090%	0.090%	0.717%
WATER MARGIN	WATER TRANSPORTATION	449	1.63	1.91	0.156%	0.000%	0.000%	0.228%
AIR MARGIN	AIR TRANSPORTATION	450	1.45	1.77	0.035%	0.000%	0.090%	0.130%
PIPE MARGIN	PIPE LINES, EXCEPT NAT GAS	451	1.46	1.64	0.000%	0.000%	0.000%	0.000%
WHLSALE MRGN-REC	RECREATION-RELATED WHOLESALE TRADE	460	1.36	1.61	6.269%	11.550%	5.750%	0.000%
WHOLESALE MARGIN	OTHER WHOLESALE TRADE	461	1.36	1.93	1.323%	0.000%	0.000%	7.264%
RETAIL MRGN-REC	RECREATION-RELATED RETAIL TRADE	462	1.30	1.61	27.445%	34.822%	34.861%	0.000%
RETAIL MARGIN	OTHER RETAIL TRADE	463	1.30	2.31	2.659%	0.000%	0.000%	0.000%
INSURANCE MARGIN	INSURANCE CARRIERS	467	1.83	2.50	0.000%	0.000%	0.000%	0.000%
130500	SMALL ARMS	79	1.32	1.91	3.400%	53.536%		
190301	TEXTILE BAGS	154	1.35	1.82	0.264%			
190302	CANVAS PRODUCTS	155	1.21	2.13	1.189%			
190306	FABRICATED TEXTILE PRODUCTS	159	1.24	1.62	0.629%			
320100	TIRES AND INNER TUBES	240	1.39	1.73	0.130%			
320302	FABRICATED RUBBER PRODUCTS	243	1.42	2.03	0.063%			
340305	LEATHER GOODS, N.E.C	254	1.50	2.77	1.08%			
420100	CUTLERY	319	1.57	2.07	0.791%			
420300	HARDWARE, N.E.C.	322	1.36	1.72	0.156%			
420500	MISCELLANEOUS FABRICATED WIRE PROC	325	1.40	1.93	0.032%			
430200	INTERNAL COMBUSTION ENGINES	331	1.57	2.14	1.512%			
580100	STORAGE BATTERIES	396	1.46	1.84	0.024%			
600100	AIRCRAFT	405	1.41	1.84	3.114%			
610100	SHIP BUILDING AND REPAIR	408	1.34	1.78	0.880%			
610200	BOAT BUILDING AND REPAIR	409	1.66	2.06	19.058%			91.596%
610500	MOTORCYCLES, BICYCLES, AND PARTS	411	1.59	1.97	10.058%			
610700	TRANSPORTATION EQUIPMENT, N.E.C.	415	1.53	1.91	1.849%			
630100	OPTICAL INSTRUMENTS AND LENSES	423	1.28	1.58	0.504%		59.209%	
630300	PHOTOGRAPHIC EQUIPMENT AND SUPPLIE	125	1.35	1.65	5.806%			
640301	GAMES TOYS AND CHILDRENS VEHICLE	431	1.48	2.09	1.544%			
640400	SPORTING AND ATH FTIC GOODS N F C	437	1.40	1.89	6.8402			
641200	MAN FACT PING INVESTORES NEC	445	1 42	1.08	0.1002			
730101	NISTELLAMETIK DEDATO SUIDS	479	1 19	1 50	1 9672			
810002	INST AND SECTIONALD COOPS	526	1.00	1.00	0 /4/9			
UIUUE		<i>30</i> 4	1.00	1.00	· •••••			
	Suns:				1.00	1.00	1.00	1.00

Table 11. Contrast of Sector Allocations Based on I-O Category #9400 * Versus Small Arms,Optical Goods, and Boat Building & Repair PCE Items Within I-O Category #9400

* I-O category #9400 is comprised of poe wheel goods, durable toys, sport equipment, boats and pleasure aircraft

•

Table 12. Contrast of Lake State Output Impacts Based on I-O Category #9400 Versus Small Arms, Optical Goods, and Boat Building & Repair PCE Items Within I-O Category #9400

	1	-O CATEG	ORY #9400	SWILL	ARMS	OPTICAL	GOODS	BOAT BLDG	L REPAIR
		алрит	INPACT	CUTPUT	IMPACT	autput	IMPACT	autput	IMPACT
	IMPLAN	BASE	DON	BASE	D ON	BASED	ON	BASED	CN
IMPLAN INDUSTRY NAME	#	TYPE I	TYPE III	TYPE I	TYPE III	TYPE I	TYPE III	TYPE I	TYPE III
				•••••			••••••		
RAILROADS AND RELATED SERVICES	446	0.0010	0.0013	0.0002	0.0002	0	0	0.0009	0.0013
MOTOR FREIGHT TRANSPORT	448	0.0052	0.0113	0.0011	0.0016	0.0013	0.0018	0.0101	0.0140
WATER TRANSPORTATION	449	0.0025	0.0030	0	0	0	0	0.0037	0.0044
AIR TRANSPORTATION	450	0.0005	0.0006	0	0	0.0013	0.0016	0.0019	0.0023
PIPE LINES, EXCEPT NAT GAS	451	0	0	0	0	0	0	0	0
RECREATION-RELATED WHOLESALE TRADE	460	0.0852	0.1007	0.1571	0.1855	0.0782	0.0924	0	0
OTHER WHOLESALE TRADE	461	0.0180	0.0256	0	0	0	0	0.0988	0.1404
RECREATION-RELATED RETAIL TRADE	462	0.3565	0.4410	0.4524	0.5596	0.4529	0.5602	0.0000	0.0000
OTHER RETAIL TRADE	463	0.0345	0.0615	0	0	0	0	0	0
INSURANCE CARRIERS	467	0	0	0	0	0	0	0	0
SHALL ARHS	79	0.0448	0.0651	0.7057	1.0244				
TEXTILE BACS	154	0.0033	0.0048						
CANVAS PRODUCTS	155	0.0144	0.0253						
FABRICATED TEXTILE PRODUCTS	159	0.0078	0.0102						
TIRES AND INNER TUBES	240	0.0018	0.0022						
FABRICATED RUBBER PRODUCTS	243	0.0009	0.0013						
LEATHER GOODS, N.E.C	254	0.0164	0.0302						
OUTLERY	319	0.0124	0.0164						
HARDWARE, N.E.C.	322	0.0021	0.0027						
MISCELLANEOUS FABRICATED WIRE PROC	325	0.0004	0.0006						
INTERNAL COMPUSTION ENGINES	331	0.0238	0.0324						
STORAGE BATTERIES	396	0.0004	0.0004						
AIRCRAFT	405	0.0439	0.0572						
SHIP BUILDING AND REPAIR	408	0.0118	0.0156						
BOAT BUILDING AND REPAIR	409	0.3161	0.3934					1.5191	1.8908
MOTORCYCLES, BICYCLES, AND PARTS	411	0.1595	0.1986						
TRANSPORTATION EQUIPMENT, N.E.C.	415	0.0282	0.0353						
OPTICAL INSTRUMENTS AND LENSES	423	0.0065	0.0079			0.7597	0.9336		
PHOTOGRAPHIC EQUIPMENT AND SUPPLIE	425	0.0784	0.0961						
GAMES, TOYS, AND CHILDRENS VEHICLE	431	0.0228	0.0322						
SPORTING AND ATHLETIC GOODS. N.E.C	433	0.0954	0.1292						
MANUFACTURING INDUSTRIES, N.E.C.	445	0.0014	0.0020						
MISCELLANEOUS REPAIR SHOPS	478	0.0233	0.0295						
USED AND SECONDHAND GOODS	524	0.0046	0.0046						
Suns:		1.43	1.84	1.32	1.77	1.29	1.59	1.63	2.05
% of I-O Category #9400 Impact Sum				92. 2 %	%.4X	90.6X	86.5	114 .5 %	111.7%

.

The percentage differences shown at the bottom of Table 12 indicate that some items within pce I-O category #9400 are associated with sectors that generate larger output impacts than the category as a whole, while other items are associated with sectors that generate smaller impacts. Specifically, boat building and repair has output impacts that exceed #9400's by more than ten percent, while the output impacts for small arms and optical goods are between five and fifteen percent below those for #9400. Thus, if only the pce I-O categories are used to bridge spending data, the error involved in measurement of total impacts will depend on what specific items are being considered.

Pce I-O categories may also include producer sectors not represented in the regional economy. This is especially true for smaller regions. Sectors not represented in the regional economy will have no multiplier impact associated with them beyond what impacts are associated with their distribution margins. Bridging spending to such sectors results in the expenditure being eliminated from the subsequent impact analysis. Use of the pce I-O categories can err in both directions. Spending may be distributed to a range of sectors in the region when, in reality, the spending should go to a sector not in the regional economy (i.e., imports). Alternatively, spending may be distributed among a range of sectors not represented in the region when, in reality, it should all be allocated to an existing regional sector. Using the pce I-O categories to allocate spending invites errors of this In contrast, use of the detailed pce items will enable more nature. precise allocation of spending to sectors, whether they exist in the region or not. It should be noted, however, that bridging based on the detailed pce items assumes national margins are appropriate for the

sectors and region being modelled. This may not always be the case, but regional data on margins is seldom available to use in place of the national margins.

Tables 10, 11 and 12 illustrate that it is essential to use the detailed pce item information if measurement of differential impacts among sectors is important. Different items have different margins associated with them and the pattern exhibited by the overall pce I-O category may vary greatly from individual items within the category. For example, there is no boat building and repair retail margin, while the margin for pce I-O category #9400 as a whole is above twenty-seven percent for recreation-related retail trade and over two percent for other retail trade (see Table 11). The direct impact to the boat building and repair sector would be understated by close to thirty percent if the I-O category's margins were used in place of the BEA detailed margins for boat building and repair. Total impacts for the sector would be understated by an even greater amount, as the boat building and repair sector has larger output multipliers than the recreation-related retail trade sector. (See Table 11).

Allocating the producer's share of expenditures to the proper sectors is especially important from the standpoint of sectoral impacts. The producer's share of consumer expenditures usually exceeds the combined share of distribution margins. (Table 11 indicates the approximate producer's share of small arms is 54%, for optical goods it is 59%, and for boat building and repair it is 92%.) The use of pce I-O categories distributes this producer's share of spending among a range of sectors which may not be at all associated with the particular spending under consideration, or worse, not exist in the region. Appendices E and F, ("FHW Bridge Table" and "FHW Used Equipment Allocation Table," respectively) represent the work devoted in this research to more narrowly define the sector allocations of FHW spending to IMPLAN sectors. These tables and the computer spreadsheets they are based on may help to make the task of bridging spending to I-O sectors more accurate and less time-consuming. They need to be further reviewed and refined for greater ease of use however, as time constraints prohibited extensive review and refinement prior to the completion of this research.

Lake State Outdoor Recreation Economic Impacts

Differences Between Lake State IMPLAN Model RPCs

Five sets of RPCs were used to develop Lake States IMPLAN models. The models and what they represent are as follows:

- SDP trade estimates are based on the supply-demand pooling trade estimation technique; these represent ceiling values for the IMPLAN RPCs
- FLRLK = RPCs are based on the minimum RPC values for the three Lake States, including questionable low RPCs
- ALTFLK RPCs are the same as for FLRLK except for those RPCs which appeared highly contradictory to SDP, MRIO, REMI, and Census estimates. ALTFLK RPCs represent a more accurate set of minimum RPCs.
- BSTLK this author's best judgment of the approximate value of Lake State RPCs, based on MRIO and unchanged IMPLAN RPC values for the three individual Lake States and the Lake States as a whole, REMI RPC values for Michigan, and Lake State SDP and ALTFLK RPC values.

UNCHLK - IMPLAN (version 2.0) RPC estimates, without changes

It should also be noted that, with the exception of UNCHLK, all the models required adjustment to IMPLAN sectors 461 (other wholesale trade)

and 462 (recreation-related retail trade). These sectors have inappropriately low value added and output estimates in the microcomputer version of IMPLAN. (The problem with sector 461, which is of greater magnitude than the problem with sector 462, has been noted by IMPLAN personnel and has been communicated to IMPLAN users in IMPLAN News, September, 1989, p. 3). Following changes to sectors 461 and 462, some SDP RPC values were below the UNCHLK RPCs. This was particularly true for service sectors, where SDP values subsequently were often several percentage points below the UNCHLK RPCs. In this light, the SDP RPCs represent ceiling values for Lake State models with modifications to sectors 461 and 462.

A more inexplicable occurrence was the generation of a few unchanged Lake State RPCs that were lower than any of the RPCs for the states of Michigan, Minnesota, and Wisconsin. This was true for sectors 162, 224, 401 and 402, although the differences for sectors 224 and 401 are only slight and can be discounted as possible rounding errors (see Appendix C). Theoretically, this should not be possible. Demand for the region can not be greater than the sum of the individual state's demands, whereas the region's intraregional trade can be greater than the sum of each state's intraregional trade. The intraregional trade value comprises the numerator of the RPC, while regional demand is the denominator. Thus, with the only possibility of change being an increase in the numerator (intraregional trade) value, Lake State RPCs should not be smaller than all three of the individual state's RPC values. This can be represented for any sector i as follows:

> Lake State intragregional trade - $X_i^{1,1}$, Michigan intraregional trade - $X_i^{mi,mi}$,

Minnesota intraregional trade - $X_i^{mn,mn}$, Wisconsin intraregional trade - $X_i^{wi,wi}$,

The first superscript represents the producing region and the second represents the purchasing region; 1 - Lake States, mi - Michigan, mn - Minnesota, and wi - Wisconsin. Lake State intraregional trade includes trade that occurs between the Lake states, in addition to the intraregional trade within the individual states depicted above. Thus, Lake State intraregional trade, $X_i^{1,1}$, encompasses:

x ^{mi,mi}	x ^{mi,mn}	x ^{mi,wi}
x ^{mn,mn}	x ^{mn,mi}	x ^{mn,wi}
X ^{wi,wi}	X ^{wi,mi}	x ^{wi,mn}

In contrast, there is no additional demand (D_i) for the Lake States region beyond the sum of the individual states' demands:

$$D_i^l = D_i^{mi} + D_i^{mn} + D_i^{wi}$$
.

The RPC for any Lake State sector is equal to $X_1^{1,1}/D_1^1$. As the sum of any positive proportions cannot be less than the least of those proportions, no Lake State RPC should be less than the least of the three RPCs for the individual Lake States. There were only four Lake State sectors exhibiting the lower RPCs. The sectors were not important sectors for this study and the discrepancies were not large.

A number of statistical tools were used to measure differences betweeen the RPCs. These were described in chapter three (pages 80-81). Results of these measurements are presented in Table 13. Table 13. MEASUREMENT OF LAKE STATE MODEL RPC DIFFERENCES

Dependent variable = UNCHLK (unchanged IMPLAN RPCs)

Model:	SDP	FLRLK	ALTFLK	BSTLK	UNCHLK
<u>Measure</u>					
MEAN	0.6467	0.1699	0.2266	0.4435	0.4362
SQUARE ERROR	70.4155	73.6130	59.8931	11.1668	
MEAN SQUARE ERROR (MSE)	0.1334	0.1394	0.1134	0.0211	
ROOT MEAN SQUARE ERROR (RMSE)	0.3652	0.3734	0.3368	0.1454	
CORRELATION COEFFICIENT (r)	0.6497	0.6791	0.6716	0.9133	
STANDARD DEVIATION	0.3573	0.2240	0.2332	0.3150	0.3558
ROOT MEAN SQUARE (RMS)	0.7389	0.2812	0.3252	0.5440	0.5629
MEAN ABSOLUTE DIFFERENCE (MAD)	0.2168	0.2695	0.2491	0.0649	
THEIL'S INEQUALITY INDEX (U)	0.2805	0.4424	0.3792	0.1314	
Um, bias	0.3323	0.5086	0.3872	0.0025	
Us, variance	0.0000	0.1245	0.1324	0.0785	
Uc, covariance	0.6677	0.3669	0.4804	0.9190	
U sum (-1.000)	1	1	1	1	

The measurement indices reported in Table 13 provide several indications of the differences between the alternative RPCs and unchanged IMPLAN Lake State (UNCHLK) RPCs. These indices consistently indicate the vector of BSTLK RPCs is the most similar to the UNCHLK RPCs. This is indicated by the close proximity of their means (and RMS values) to each other relative to the other three sets of RPCs. Their means fall almost exactly between the mean of .2266 for ALTFLK and the mean of .6467 for SDP.

The small difference between UNCHLK and BSTLK RPCs is further indicated by several measures of distance between the alternative sets of RPCs and UNCHLK. These distance measures, including the MSE, RMSE, and MAD, have values for BSTLK RPCs that are less than half the other RPC sets' values. The similarity between BSTLK and UNCHLK is also indicated by their correlation coefficient value of .9133 versus correlation coefficients closer to .65 for UNCHLK and the other sets of RPCs. The SDP, FLRLK, and ALTFLK RPCs appear quite similar in terms of

their absolute differences versus the UNCHLK RPCs on the basis of their MSE, RMSE, and MAD values.

Theil's Inequality Index and its components conform to the results provided by the other measures. The closer to zero the U index is, the lower the inequality between the variables being measured. The BSTLK RPCs appear distinctively closer to the UNCHLK RPCs than the other sets of RPCs on the basis of its Theil Index. The BSTLK U value (.1314) is less than half of the SDP value (.2805), which is the next lowest U value. The U_m component reflects differences in mean values; FLRLK has the greatest difference in mean value from UNCHLK and also the highest U_m value. The U_s component reflects variance differences; SDP and UNCHLK standard deviations are virtually identical and, therefore, the SDP U_s value is zero (rounded to the nearest ten-thousandths). Finally, the BSTLK value for the U_c component would be expected to be highest as this component relates random error not accounted for by bias and variance sources of differences.

Differences Between Lake State IMPLAN Model Multipliers

It is important to what extent the differences between the sets of RPCs are reflected in subsequent multiplier and impact estimates. Differences between sets of multipliers were examined across the five different Lake State aggregation schemes used and two types of multipliers (IMPLAN's type I and III) for each of three types of economic variables (output, personal income, and employment). Additionally, two other measures, chi square and standardized mean absolute differences, were used in measuring multiplier differences. Overall results were quite similar to those found for the RPCs. Only mean values and general indications of the differences are reported here; a complete set of the measurement values generated is presented in Appendix H: "Lake State RPC and Multiplier Analysis." Table 14 presents mean multiplier values for the five different aggregation schemes, five different sets of RPCs and three different economic variables.

BSTLK multipliers tended to be the most similar to the UNCHLK multipliers across all aggregation schemes and types of multipliers. Means and root mean square values were similar to the results for the RPCs. The BSTLK and UNCHLK values were closer to each other than values for the other models and fairly equidistant between the two minimum sets of multipliers (FLRLK and ALTFLK) and the SDP multipliers.

Measures relating the distance between the vectors of UNCHLK multipliers and the corresponding sector multipliers for the other RPC models further indicate BSTLK multipliers were closest to UNCHLK multipliers. This is true also for the two additional measures not used with the RPCs, chi square and SMAD. BSTLK multipliers generally had distance measures less than half the value of the other models. There were inconsistencies. For example, the ALTFLK type I personal income multipliers have slightly lower MAD, SMAD, and chi square values than BSTLK for the completely disaggregated model, but not for any of the other aggregated models. Sometimes the SDP values were closest to BSTLK's distance measure values, more often the ALTFLK values were.

Most correlation coefficients between the other sets of multipliers and UNCHLK are higher than they were for the RPCs. They tend to be close to or above .90 with BSTLK correlation coefficients being the highest. This represents a significant increase for the UNCHLK, FLRLK AND ALTFLK models over their RPC correlation coefficient values which were in the neighborhood of .65.

Table 14. Mean Values of Lake State Model Multipliers

,

Mult	iplier:		OL	ΙΤΡυτ τη	PE I					OUTPUT TYPE III		
	Model:	SDP	FLRLK	ALTFLK	BSTLK	UNCHLK	SDP	FLRLK	ALTFLK	BSTLK	UNCHLK	
Aggr	<u>egation</u>						•					
502	Sector	1.61	1.19	1.26	1.49	1.40	2.31	1.44	1.54	2.07	1.94	
308	Sector	1.70	1.17	1.23	1.48	1.41	2.44	1.39	1.48	2.03	1.93	
159	Sector	1.72	1.17	1.24	1.50	1.43	2.51	1.40	1.50	2.06	1.97	
31	Sector	1.65	1.17	1.23	1.45	1.40	2.37	1.38	1.48	1.99	2.01	
16	Sector	1.64	1.18	1.24	1.47	1.44	2.45	1.44	1.53	2.09	2.23	
Mult	iplier:		PERSON	IAL INCOM	ІЕ ТҮРЕ	I		PERSONA	L INCOME	TYPE I	11	
	Model:	SDP	FLRLK	ALTFLK	BSTLK	UNCHLK	SDP	FLRLK	ALTFLK	BSTLK	UNCHLK	
<u>nppA</u>	<u>egation</u>											
502	Sector	1.74	1.27	1.37	1.65	1.50	2.53	1.57	1.72	2.34	2.10	
308	Sector	1.94	1.23	1.33	1.66	1.52	2.84	1.50	1.65	2.32	2.13	
159	Sector	2.15	1.30	1.40	1.82	1.67	3.28	1.60	1.74	2.61	2.38	
31	Sector	1.81	1.19	1.28	1.56	1.49	2.57	1.42	1.55	2.13	2.07	
16	Sector	1.89	1.24	1.30	1.65	1.60	2.81	1.51	1.61	2.34	2.38	
Mult	iplier:		EMPL	OYMENT	TYPE I			EMPLO	YMENT TY	PE III		
	Model:	SDP	FLRLK	ALTFLK	BSTLK	UNCHLK	SDP	FLRLK	ALTFLK	BSTLK	UNCHLK	
Aggr	<u>egation</u>											
502	Sector	1.82	1.27	1.38	1.69	1.57	2.63	1.57	1.72	2.38	2.20	
308	Sector	2.03	1.27	1.38	1.74	1.65	2.98	1.55	1.71	2.45	2.33	
159	Sector	2.16	1.29	1.44	1.83	1.73	3.20	1.56	1.72	2.57	2.43	
31	Sector	1.89	1.20	1.31	1.63	1.57	2.75	1.46	1.61	2.27	2.20	
16	Sector	1.98	1.26	1.33	1.73	1.70	2.89	1.53	1.63	2.41	2.39	

.

As would be expected, multipliers generated from the two sets of minimum RPCs had the lowest standard deviations, reflecting their lower RPC values and resulting lower multiplier values.

Theil's U Index results conform with the results provided by the other measures, indicating BSTLK multipliers were closest to the UNCHLK multipliers. However, there were inconsistencies across the various sectorization schemes and economic variables. For example, the U_m value (reflecting bias) varied from a high of .5585 for the disaggregated BSTLK type I output multipliers to a low of .2766 for the same multipliers at a 16-sector aggregation scheme. For corresponding multipliers, FLRLK and ALTFLK U_m values moved in the opposite direction, increasing from .7414 to .8462 and from .5681 to .7720 respectively. Similarly, the BSTLK U_m value went from .3536 for the disaggregated type I employment multiplier to .0345 for the same multiplier at the 16-sector aggregation value of .4603. These results and other U_m estimates are presented in Table 15.

In summary, the measures used to analyze the sets of multipliers tended to conform with the RPC results. Differences between the RPC and multiplier measurements were more of quantity than quality. BSTLK multipliers appear to be closer to UNCHLK multipliers than the other multipliers. However, they do not appear uniformly across all sectorization schemes and sets of multipliers to be as dramatically close to UNCHLK multipliers as BSTLK RPCs are to UNCHLK RPCs.

Mult	iplier:		OUTPUT	TYPE I			OUTPUT	TYPE II	Ľ
	Model:	SDP	FLRLK	ALTFLK	BSTLK	SDP	FLRLK	ALTFLK	BSTLK
Aggr	<u>egation</u>								
502	Sector	.6778	.7414	.5681	. 5585	.7967	.6800	. 5829	.1583
308	Sector	.7415	.7566	.6201	.5161	.7505	.7957	.7299	.1988
159	Sector	. 8007	.7454	.6320	. 5808	.7413	.7581	.6898	.1247
31	Sector	.6336	.8618	.7781	.4585	.2463	.5391	.4614	.0008
16	Sector	.6367	.8462	.7720	.2766	.0675	. 5232	.4667	.0355
Mult	iplier:	PE	RSONAL	INCOME T	YPE I	PER	SONAL I	NCOME TY	(PE III
	Model:	SDP	FLRLK	ALTFLK	BSTLK	SDP	FLRLK	ALTFLK	BSTLK
Aggre	egation								
502	Sector	. 5281	.4728	.2861	.4219	. 5495	. 5525	.4448	.3586
308	Sector	. 5744	.5067	. 3799	.4332	. 5986	. 5911	.5138	. 3857
159	Sector	. 5056	. 3933	.2947	. 3865	. 5449	.5330	.4697	.3391
31	Sector	. 5760	.4357	.3138	. 3981	.4057	. 5425	.4627	.0171
16	Sector	.5181	. 3832	. 3173	.2158	. 2470	. 5549	. 5124	.0043
Mult	iplier:		EMPLOYM	ENT TYP	ΈI	E	MPLOYME	NT TYPE	III
	-								
	Model:	SDP	FLRLK	ALTFLK	BSTLK	SDP	FLRLK	ALTFLK	BSTLK
Aggre	egation								
502	Sector	.1779	.2989	.1888	.3536	. 2240	.4589	. 3848	.3899
308	Sector	.4474	.3795	.2967	.2864	. 5204	.5124	.4671	.2529
159	Sector	.4330	.3553	.2778	.2328	.4867	.4810	.4313	.2337
31	Sector	.5132	. 3067	. 2234	.1978	.5712	.4607	.4005	.1499
16	Sector	.4603	. 2358	. 2008	.0345	. 5133	.3551	. 3273	.0162

Table 15. Lake State Multiplier U_m (Theil Index Bias) Measurements

146

•

Theil Index results, along with similar changes in other measures, indicate the level of aggregation can influence results from the measurement indices across models, across economic variables, and between RPCs and their corresponding multipliers. This implies it would be appropriate to use a battery of statistical measures (as most nonsurvey I-O researchers have) at different aggregation levels and with different economic variables to avoid spurious measurement results and to cover a wide range of possible I-O model applications.

Estimates of Lake State Outdoor Recreation Economic Impacts

A complete listing of estimated economic impacts are presented in Appendix E: "Lake State Outdoor Recreation Impacts." The discussion here will summarize the estimates and differences between them according to variables considered in the analysis. Those variables include: the range and types of spending, I-O model sectorization schemes, I-O model RPCs, comparison with spending estimates generated for the 1987 Governors' Conference on Forestry, resident versus nonresident impacts, and recreation sectoral multipliers versus average multipliers.

Range of FHW Impact Estimates by Major Spending Category

Table 16 presents Lake State disaggregated BSTLK economic impacts for different categories of FHW spending. The impacts result from combining recreation spending profiles for the spending categories with BSTLK disaggregated model multipliers. The resulting pattern shown in Table 16 reflects the relative magnitudes of impacts across spending categories for other models as well. Spending categories other than "Nonresidents Only" include both resident and nonresident spending.

Table 16. Lake State Economic Impacts from Upper Lake State Fishing, Hunting, & Wildlife-Associated Recreation, Based on Disaggregated, Adjusted RPCs (BSTLK) IMPLAN Model *

OUTPUT (millions of 1982 \$)

Estimate:	I	wo	High			
Multiplier:	Type I	Type III	Type I	Type III		
Spending Category			• -			
Nonresidents Only	241	355	659	950		
Trip Spending Only	1,180	1,664	2,547	3,703		
Total less Spec Equip	1,720	1,638	4,046	5,779		
Total	2,078	2,915	5,906	8,117		

.

PERSONAL INCOME (millions of 1982 \$)

Estimate:	L	wo	High		
Multiplier:	Туре І	Type III	Type I	Type III	
Spending Category	• •	• •	• •		
Nonresidents Only	59	91	158	242	
Trip Spending Only	278	427	621	947	
Total less Spec Equip	451	655	1,120	1,608	
Total	595	831	1,714	2,337	

EMPLOYMENT (thousands of full and part-time jobs)

.

Estimate:	L	ωM	High		
Multiplier:	Type I	Type III	Type I	Type III	
Spending Category	• -	• -			
Nonresidents Only	5	6	12	17	
Trip Spending Only	21	30	47	66	
Total less Spec Equip	29	41	70	99	
Total	34	48	89	126	

* Direct payments by region residents to other residents are not included in any of the spending categories

Low impact estimates were consistently less than half the size of high impacts. This was true for all four spending categories and is in accordance with the differences between the initial low and high FHW spending estimates shown in table 4. Low to high ratios differed little by model aggregation, economic variable, or type of multiplier (I or III). The ratios differed somewhat by spending category. Across all economic variables, model aggregations, and types of multipliers, they averaged about 37% for nonresident spending, 46% for trip spending, 43% for total spending less special equipment, and 37% for total spending.

It is significant that the high impact estimate exceeded the low impact estimate by more than the size of the low estimate. This was not an unexpected finding in light of the difference in the initial spending range estimates discussed in chapter 4; however, the impact estimates make the ramifications of the spending range more apparent. For example, estimates in Table 16 imply between 3 billion and 8 billion dollars of sales (in 1982 dollars) were generated in the Lake States by 1985 FHW recreation in the more heavily forested areas of the region, based on IMPLAN's type III multipliers. Decisionmakers are not likely to be satisfied with such a broad range and people may be hesitant to report it. There was not an overly conservative bias in the use of FHW statistical parameters; the range of impacts reflects underlying data sample sizes and associated uncertainty in activity and spending levels. These should not be ignored. For the activity and area examined in this study, more intensive sampling is required or, at a minimum, crosschecks with other studies and secondary data sources would need to be utilized, to reliably report sales estimates in a narrower range than the 3 to 8 billion dollars reported here.

Relationships Among Categories of Lake State FHW Recreation Spending

Several points may be highlighted regarding relationships among the four categories of Lake State FHW recreation spending. Table 17 presents the percentage impacts for the three subcategories of spending comprise of total (resident and nonresident) Lake State FHW spending impacts. These are based on the disaggregated BSTLK model and are representative of the pattern for other models.

An important point illustrated by Table 17 is the degree to which impacts will differ depending upon what spending is being measured. Comparisons across studies are made difficult by the studies not including the same types of spending in their analyses. Substantially different impact measurements may be developed depending upon the spending being considered.

For example, one objective may be to measure gains to the economic base of the Lake States as indicated by nonresident FHW expendituress. Table 17 indicates such impacts are only between nine and fourteen percent of the total impacts associated with both resident and nonresident FHW recreation expenditures. (A qualification on this is that, due to lack of data, equipment expenditures are assumed to occur in recreationists' state of residence. Therefore, estimates of nonresident expenditures are biased downward.) If only trip spending is considered, then the nonresident share of spending is between twenty and twenty-five percent. This can be derived from Table 17 by dividing nonresident percentages by trip spending only percentages. The analysis for the 1987 Governors' Conference on Forestry did not include major durable equipment expenditures (such as boats and vehicles). This is quite comparable to Table 17's "Total less Spec Equip" (total spending

Table 17. Lake State Subcategories of Recreation Spending as a Percent of Total Upper Lake State Fishing, Hunting, & Wildlife-Associated Recreation, Based on Disaggregated, Adjusted RPCs (BSTLK) IMPLAN Model *

OUTPUT (millions of 1982 \$)

Estimate: %	of Low 1	Disag BSTLK Sum	<pre>% of High Di</pre>	sag BSTLK Sum
Multiplier:	Type I	Type III	Type I	Type III
Spending Category	-		-	
Nonresidents Only	11.64%	12.19%	11.10%	11.70%
Trip Spending Only	54.53%	57.09%	43.12%	45.61%
Total less Spec Equip	78.84%	81.00%	68.51%	71.20%
Total	100.00%	100.00%	100.00%	100.00%

PERSONAL INCOME (millions of 1982 \$)

Estimate: %	of Low Disag BSTLK Sum		<pre>% of High</pre>	Disag BSTLK Su	m
Multiplier:	Type I	Type III	Type I	Type III	
Spending Category					
Nonresidents Only	9.95%	10.97%	9.26%	10.34%	
Trip Spending Only	46.68%	51.44%	36.24%	40.51%	
Total less Spec Equip	75.78€	78.78%	65.33%	66.81%	
Total	100.00%	100.00%	100.00%	100.00%	

EMPLOYMENT (thousands of full and part-time jobs)

Estimate: %	of Low Dia	sag BSTLK Sum	% of High Di	isag BSTLK Sum
Multiplier:	Туре І	Type III	Type I	Type III
Spending Category				
Nonresidents Only	13.56%	13.56%	13.30%	13.30%
Trip Spending Only	63.45%	63.45%	52.27%	52.27%
Total less Spec Equip	86.35%	86.35%	78.37%	78.37%
Total	100.00%	100.00%	100.00%	100.00%

* Direct payments by region residents to other residents are not included in any of the spending categories

minus special equipment) category, of which nonresident spending comprises about fifteen percent.

Measured impacts also differ depending upon what economic variable and type of multiplier are being considered. For example, trip spending accounts for less than 40% of the high estimate for personal income type I impacts, in contrast to it accounting for over 60% of the low estimate for employment type I impacts.

Influence of Sectorization Scheme on Lake State FHW Impacts

Table 18 expresses as percentages the ratios of BSTLK impact sums for the various sectorization schemes relative to the impact estimates for the completely disaggregated, 502 sector BSTLK model. Percentage figures presented in Table 18 indicate the various sectorization schemes used in this analysis had little effect on most impact estimates. Part of the differences may stem from the aggregation of recreation trade sectors with other trade sectors to conform with the 1987 Governors' Conference study. This was done for all aggregation schemes other than the fully disaggregated scheme. The unchanged IMPLAN model has errors associated with its "other wholesale trade" and "recreational related retail trade" sectors, as mentioned previously. The adjustments to these may have affected the resulting aggregated wholesale and retail trade sector multipliers relative to the disaggregated multipliers.

The only other minor note on the influence of the sectorization schemes is the difference between the low and high estimates. In particular, the 159 sector model, which consists of many relatively disaggregated sectors and one large "all other" sector, has lower "high" output and personal income multipliers. However, overall, the different aggregation schemes tended to produce quite similar results.

Table 18. Impacts of Lake State FHW Recreation Spending for Different Sectorization Schemes as a Percent of the Disaggregated, Adjusted RPCs (BSTLK) IMPLAN Model *

OUTPUT (millions of 1982 \$)

Estimate:	<pre>% of Low</pre>	Disag BSTLK	<pre>% of High 1</pre>	Disag BSTLK
Multiplier:	Type I	Type III	Type I	Type III
Aggregation Scheme		• -		• -
308 Sectors	98.81%	101.21%	98.87%	101.88%
159 Sectors	98.78%	101.54%	86.35%	90.62%
31 Sectors	99.90%	102.10%	92.31%	96.37%
16 Sectors	100.67%	101.20%	91.42%	94.09%

PERSONAL INCOME (millions of 1982 \$)

	Estimate:	<pre>% of Low 1</pre>	Disag BSTLK	<pre>% of High I</pre>	Disag BSTLK
Μι	ltiplier:	Туре І	Type III	Type I	Type III
Aggrega	ation <u>Scheme</u>				
308	Sectors	99.39%	101.55%	99.35%	102.13%
159	Sectors	97.53%	101.87%	86.01%	91.39%
31	Sectors	101.38%	102.90%	98.83%	100.84%
16	Sectors	94.17%	96.77%	90.48%	93.56%

EMPLOYMENT (thousands of full and part-time jobs)

Estimate:	<pre>% of Low D</pre>	isag BSTLK	<pre>% of High I</pre>	Disag BSTLK
Multiplier:	Туре І	Type III	Type I	Type III
Aggregation Scheme				
308 Sectors	108.91%	108.25%	111.72%	111.05%
159 Sectors	107.67%	107.00%	101.34%	100.71%
31 Sectors	109.41%	107.95%	109.04%	107.58%
16 Sectors	104.31%	103.13%	103.01%	101.85%

* Direct payments by region residents to other residents are not included in any of the spending categories

Influence of RPCs on Lake State FHW Impacts

RPC influences were very similar across the four major spending categories. Table 19 shows the percentage differences of total impact estimates for the alternative RPC disaggregated models from disaggregated, unadjusted IMPLAN (UNCHLK) total impacts. The most extreme percentage differences for any of the four spending categories were incorporated into the table. Thus, Table 19 indicates BSTLK impact estimates ranged between ninety percent and one hundred and seven percent of the UNCHLK impact estimates across all spending categories, economic variables, and multipliers.

The percentage figures in Table 19 indicate impacts associated with supply-demand pooling (SDP) trade estimates were consistently the largest, while impacts associated with FLRLK were consistently the lowest. This is what was expected in light of the RPC and multiplier statistical analysis (e.g. SDP means were highest, while FLRLK's were lowest). ALTFLK model impacts were slightly higher than FLRLK impacts, reflecting increases in approximately ten percent of the RPCs from their zero or near-zero FLRLK values.

BSTLK impacts were slightly higher than the unchanged IMPLAN impacts, except for type III output and personal income impacts. (The lower type III BSTLK output and personal income impacts are due to the errors associated with unadjusted IMPLAN trade sectors described previously.) The relative closeness of BSTLK and UNCHLK impacts could have been predicted on the basis of their close RPCs and multipliers. In this regard, it is important to point out that IMPLAN's unadjusted RPCs for the Lake States are not as suspect as they are for many other states and for smaller regions within the Lake States. For example, Michigan,

Table 19. Impacts of Lake State FHW Recreation Spending for Different Sets of RPCs as a Percent of the Disaggregated, Unadjusted (UNCHLK) IMPLAN Model *

OUTPUT (millions of 1982 \$)

Estimate: Multiplier:	۶ of Lov Type I	v UNCHLK Type III	% of High Type I	UNCHLK Type III
S: SDP	116.85%	109.37%	119.11%	111.15%
FLRLK	79.50%	61.07%	79.55%	60.75%
ALTFLK	83.13%	64.81%	83.21%	64.49%
BSTLK	103.44%	91.25%	103.79%	90.14%
	Estimate: Multiplier: S: SDP FLRLK ALTFLK BSTLK	Estimate: % of Low Multiplier: Type I S: SDP 116.85% FLRLK 79.50% ALTFLK 83.13% BSTLK 103.44%	Estimate: % of Low UNCHLK Multiplier: Type I S: SDP FLRLK 79.50% 61.07% ALTFLK 83.13% BSTLK 103.44% 91.25%	Estimate: % of Low UNCHLK % of High Multiplier: Type I Type III Type I S: SDP 116.85% 109.37% 119.11% FLRLK 79.50% 61.07% 79.55% ALTFLK 83.13% 64.81% 83.21% BSTLK 103.44% 91.25% 103.79%

PERSONAL INCOME (millions of 1982 \$)

Estimate: % of Low			J UNCHLK	% of Hi	<pre>% of High UNCHLK</pre>		
Μι	ultiplier:	Type I	Type III	Type I	Type III		
RPCS:	SDP	117.97%	110.68%	120.18%	112.51%		
	FLRLK	84.17%	63.71%	83.80%	62.89%		
	ALTFLK	89.71%	68.97%	89.42%	68.15%		
	BSTLK	105.47%	92.80%	105.48%	91.52€		

EMPLOYMENT (thousands of full and part-time jobs)

	Estimate:	% of Low	JUNCHLK	€ of Hi	gh UNCHLK
	Multiplier:	Type I	Type III	Type I	Type III
RPCS	: SDP	114.93%	120.18%	117.89%	123.28%
	FLRLK	88.48%	77.77%	87.72%	77.11%
	ALTFLK	93.10%	82.91%	92.96%	82.79%
	BSTLK	105.45%	106.29%	106.25%	107.09%
	BSTLK	105.45%	106.29%	106.25%	107.09%

* Direct payments by region residents to other residents are not included in any of the spending categories

and subregions within the state of Michigan, will have greater differences in impacts for adjusted RPCs than were found for the Lake States, corresponding with proportionally greater numbers of sectors having erroneous (zero and near-zero) RPCs.

Comparison to Outdoor Recreation Impact Estimates Prepared for the 1987 Lake State Governors' Conference on Forestry

a. Updated 1987 estimates

Profiles of nonresident and combined resident and nonresident outdoor recreation spending were used for the 1987 Governors' Conference on Forestry (Pedersen, Chappelle, and Lothner, 1989). These were converted from their original disaggregated IMPLAN version 1.1 format to four of the version 2.0 aggregation schemes used in this study. The profiles were not converted to the fully disaggregated sectorization scheme as to do so would have required making several arbitrary assumptions regarding how to disaggregate the IMPLAN version 1.1 sectors to the version 2.0 sectors. The translation of the profiles to the aggregated schemes was based on a perfect correspondence between the version 1.1 sectors which were aggregated and the resulting version 2.0 sector.

Changes in the IMPLAN modeling system and different sectorization schemes resulted in modest changes in total estimated impacts from those reported in Pedersen et al. (1989). The original estimates and BSTLK re-estimated estimates are presented in Table 20. The impacts reported are based on IMPLAN's type III multipliers. The re-estimated BSTLK impacts were quite similar across the four sectorization schemes. They differed from each other by less than five percent; Table 20 presents their average.

Fable	20.	Comparison	of	Estimated	Type	III	Impacts	Based	on	1987
		Recreation S	Spen	ding Profile	es					

	OUTPUT (million	PERSONAL INCOME 1982 \$)	EMPLOYMENT (thousand jobs)
<u>Nonresidents Only</u> Original 1987 Gov. Conf. Est.	1223	340	25.5
Re-estimated Average	1399	369	25.6
<u>Total</u> Original 1987 Gov. Conf. Est	4245	1143	85.2
Re-estimated Average	4729	1274	88.1

b. Comparison of Governors' Conference and FHW Impact Estimates

Table 21 relates the four FHW spending impacts to the re-estimated 1987 Governors' Conference impacts in terms of the former's percentage of the latter. The FHW nonresident category is stated as a percentage of the Governors' Conference nonresident impacts, whereas the other three categories'impacts are related as a percent of the total resident and nonresident Governors' Conference impacts.

There are several differences between the FHW recreation economic spending data and the 1987 Governors' Conference data. The latter incorporated many more types of recreation than the FHW data, but for an area in the Lake States that was about ten percent smaller than the FHW study area. Major durable equipment expenditures were not included in the 1987 data; however, there were some nonresident equipment expenditures in the area that were included. Also, the 1987 analysis used point estimates rather than a range of estimates.

The range of FHW impact estimates appear reasonable relative to the 1987 estimates, given the differences between the 1987 analysis and the FHW data used here. FHW nonresident impacts range between 25% to about 65% of the 1987 nonresident spending. The lower FHW estimates are due to three factors. The 1987 data included more recreation activities; it included some nonresident expenditures on equipment; and the nonresident share of FHW activities was lower than the 20% to 25% share of recreation activities attributed to nonresidents in the 1987 study.

The FHW spending category which best mirrors the spending items included in the 1987 analysis is the category of total spending minus special equipment. (The FHW "special" equipment category is largely comprised of major durable equipment expenditures.) This FHW category ranges from a low estimate of about 50% of the 1987 total recreation economic impact estimate, to a high estimate above the 1987 estimate. This illustrates that fishing, hunting, and wildlife-associated recreation comprise a large share of outdoor recreation in the forested areas of the Lake States.

Table 21. BSTLK % of 1987 Lake State Outdoor Recreation Impact Estimates

	OUTPUT		PERSONAL	INCOME	EMPLOYMENT		
	Low	High	Low	High	Low	High	
Nonresidents Only	25€	67%	25%	65%	25%	64%	
Trip Spending Only	35%	77%	34%	75%	33%	73€	
Total less Spec Equip	50%	123%	53%	130%	498	116%	
Total	63%	176%	68%	193%	59%	158%	

Comparison of Recreation Multipliers to "Average" Multipliers

Multipliers associated with recreation spending were compared to average multipliers in order to relate recreation spending impacts to average sectoral impacts. Average sales, employment, and personal income multipliers for the BSTLK, 31-sector model were derived and then multiplied by four categories of recreation spending. The four categories included both types of spending considered in the 1987 Governors' Conference analysis (nonresident spending only and both resident and nonresident spending) and low and high estimates of nonresident FHW spending. The resulting impact estimates were then compared to the sums that resulted by multiplying sector-specific spending by sector-specific multipliers for the same four recreation spending categories.

Table 22 presents a comparison of the impact estimates. The comparison includes absolute impact magnitudes and the impacts derived from sector-specific spending and multipliers expressed as a percentage of the impacts derived from total spending and average multipliers. This ratio of impacts provides an indication of the size of outdoor recreation impacts relative to the average for the rest of the economy. The results conform with the expectation that outdoor recreation generates many more jobs than the average sector, but lower amounts of personal income. This is due to the disproportionate amount of outdoor recreation spending in service sectors which typically employ more people, but at lower wages. It is worth noting, however, that the personal income type III impacts are higher than the average sector impacts (see Table 22). This implies the induced effect associated with recreation sectors more than offsets the relatively lower direct and indirect personal income. Slightly more output than average was generated by the sector-specific outdoor recreation impact estimates, but the difference was not not appreciable.

Differences between the impacts associated with using sectorspecific multipliers versus average multipliers also illustrate the error that may be introduced by borrowing "average" multipliers from other studies, or applying the same multiplier across different economic variables (e.g. using a sales multiplier for employment or income impact estimates).

Table 22. Contrast of Impacts from Using Average Vs. Sector-Specific Multipliers for Recreation Spending, Based on a 31 Sector Model and Revised (BSTLK) IMPLAN RPCs

1987 GOV CONF	1987 GOV CONF	FHW LOW EST	FHW HIGH EST
NONRESIDENTS ONLY	BOTH RES & NONRS	NONRESIDENTS ONLY	NONRESIDENTS ONLY
TYPE I TYPE III	TYPE I TYPE III	TYPE I TYPE III	TYPE I TYPE III

(1982 million \$) OUTPU		τ ουτρυτ		OUTPUT		OUTPUT		
MULTIPLIERS USED	1							
AVERAGE:	896	1224	3062	4184	224	306	613	838
SECTOR SPECIFIC:	958	1404	3195	4741	243	356	657	955
RATIO OF SECTOR-								
SPECIFIC TO AVERAG	E:106.9%	114.7%	104.3%	113.3%	108.3%	116.2%	107.1%	114.0%

(1982 million \$) PERSONAL INCOME PERSONAL INCOME PERSONAL INCOME PERSONAL INCOME MULTIPLIERS USED 911 90 183 245 AVERAGE: 267 358 1225 67 SECTOR SPECIFIC: 245 370 852 1285 60 92 164 247 RATIO OF SECTOR-SPECIFIC TO AVERAGE: 91.8% 103.1% 93.5% 104.9% 90.4% 102.4% 89.6% 100.7%

(jobs) EMPLOY		MENT	ENT EMPLOYMENT		EMPLOYMENT		EMPLOYMENT	
MULTIPLIERS USED	I							
AVERAGE:	13471	18792	46035	64222	3368	4699	9221	12864
SECTOR SPECIFIC:	18310	25544	63476	88554	4632	6463	12240	17075
RATIO OF SECTOR-								
SPECIFIC TO AVERAG	E:135.9%	135.9%	137.9%	137.9%	137.5%	137.5%	132.7%	132.7%

CHAPTER VI

SUMMARY, IMPLICATIONS, AND CONCLUSION

Introduction

This study has addressed issues relating to nonsurvey I-O models, estimation of outdoor recreation economic impacts using IMPLAN, and specific factors influencing the size of Lake State outdoor recreation economic impacts. Implications of this study for nonsurvey I-O models and specifically for the IMPLAN modelling system will be summarized first. This is followed by a presentation of conclusions regarding the measurement of outdoor recreation impacts, as illustrated by the measurement of impacts for the Lake States. Several further research needs are summarized at the end of the chapter.

<u>Use of Nonsurvey I-O Models</u>

The nature of the debate regarding nonsurvey models is conveyed in Jensen's comments regarding the five "ready-made" modeling systems reviewed by Brucker et al. (1987, p. 21):

"In the evaluation of any method of economic model compilation there can, at the bottom line, be only two fundamental questions of concern, namely does the method produce a model which is representative of reality within professionally acceptable limits and do the results of the model have professionally acceptable levels of integrity in the real world?"

Jensen goes on to pose a series of eight questions specifically aimed at nonsurvey models. None of these eight questions, nor his "two fundamental questions of concern" address whether nonsurvey models will be used -- let alon'e experience an increase in use -- or whether they can be improved. Most literature on nonsurvey I-O does not address these questions. The answer to both of these unaddressed questions is "yes."

Nonsurvey models will be increasingly used partly because of advancements in computer hardware and partly due to improvements in input-output model software. The speed at which computer developments have occurred was not envisioned even as recently as 1985, when Richardson predicted the future lay with hybrid (partial survey) I-0 models. The high costs, in terms of both time and money, for conducting surveys are additional negative factors mitigating against their use. It now appears the greatest number of I-0 applications will not entail developing I-0 models using a mix of survey and nonsurvey methods. Future I-0 applications largely will be done entirely with nonsurvey models due to the advent of high speed, powerful computers and inexpensive, user-friendly modeling systems.

Relatively inexpensive, "ready-made," input-ouput modeling systems are now available that operate on personal computers. A prime example is the USDA Forest Service's IMPLAN model which is receiving wider and wider use. At a cost of only a few hundred dollars, regional economic models can often be generated with IMPLAN software in under a few hours. In the face of a proliferation of nonsurvey models, the practical issue for regional economists is how to improve these models and their use, not whether survey I-O tables are superior to nonsurvey tables. The issue of survey model superiority is essentially moot if funding is not available for them and nonsurvey models and nonsurvey applications are proliferating. The gap is likely to increase between the costs of conducting primary surveys and the costs of simply using a nonsurvey model. At the same time, decisionmakers generally will not be concerned or knowledgeable enough to distinguish between the sources of impact estimates, nor be able to differentiate between experienced I-O analysts and I-O novices.

The paramount role regional economists can play in this situation is to help refine the reliability of I-O models that will be used. Advice from regional economists is also appropriate on how to best utilize scarce survey funding to supplement or crosscheck nonsurvey model estimates. For example, subject to funding constraints, priorities for surveying should include sectors which are the focus of the study (e.g.- hotels and lodging or eating and drinking establishments for recreation and tourism studies), sectors which account for large proportions of the region's economic activity, and sectors which have peculiar values in the nonsurvey model relative to other sectors in the model or relative to the same sector in other regions or studies (e.g. the zero-RPC sectors in the current IMPLAN model). It is also appropriate to encourage surveys in the case of modeling small regions, such as cities or counties. It is generally more feasible to survey a smaller region's establishments and there is a greater likelihood of error in nonsurvey I-O extrapolations from national averages to small regions. However, advice on expeditious surveys should be accompanied by research and advice on other means to improve nonsurvey models and their use.

Questions such as Jensen's "do the ready-made methods satisfactorily fulfill our professional obligations and standards in producing reliable and high quality advice?" (Ibid., p. 21) miss the point that nonsurvey models and methods are not static. The current performance of nonsurvey models is not the only practical concern; there is evidence that the models may be made more reliable. The focus of attention should be on how the models and their use can be improved, especially if it is true that many or most I-O applications will be carried out on ready-made models by persons without extensive I-O knowledge. Regional economists' "professional obligations," to the extent they exist, are not static. Nor do they exist in a vacuum. Regional economists should be responsive to and help mold the direction applications are proceeding. This would be a more substantial contribution to furthering I-O analysis than comments on the current status of I-O models or bemoaning the fact that certain ideals (e.g. all I-O models be based on surveys) will not be achieved.

IMPLAN

Nonsurvey methods are being refined. Richardson (1985, p. 623) noted that the RPC approach was "a welcome change from endlessly repetitive and mechanical location quotient methods..." The adoption of an alternative RPC estimation procedure in the IMPLAN modeling system represented a further advancement in terms of breaking new ground. There are many other developments associated with the IMPLAN modeling system that have enhanced its use as an impact measurement tool. The personal computer version incorporates a wide array of user-friendly features. To name just a few of these, they include: the ability to generate a vast array of user-selected reports; a fast, user-friendly sector aggregation module and data editing software; and the disaggregation of sectors that are particularly useful for specific applications (recreation-related retail and wholesale trade, for example). In addition, there are continually-improving training workshops and materials for first-time users. These include the provision of sectorspecific deflators and personal consumption expenditure data.

Another development with the IMPLAN model is that it is being converted to a social accounting matrix (SAM) format. Adelman and Robinson (1986) explain the distinction between SAM and I-O accounting formats in the following manner:

"A standard input-output model includes the intersectoral flows of intermediate inputs, and so captures one major source of linkages in the economy. However, the input-ouput model ignores the flows from producing sectors to factors of production (value added), and then on to entities such as government and households, and finally back to demand for goods. A Social Accounting Matrix (SAM) expands the inputoutput accounts to include a complete specification of the circular flow in the economy." (p. 4)

Adoption of the SAM format will permit better illumination of transfers between institutions and facilitate analyses that are constrained by the traditional I-O accounting framework.

Along with continually increasing enhancements in computing power and storage capabilities, the IMPLAN modeling system has made it relatively easy to generate economic impact estimates in very short periods of time. However, there are many problems remaining with the reliability and interpretation of such estimates for regional economists to address. These problems stem from both the accuracy of input data used with IMPLAN and the construction of the modeling system itself.

Input data pitfalls are substantial, especially for outdoor recreation applications. Problems include the very basic delineation of activities that constitute outdoor recreation and identification of sector-specific spending associated with those activities. Accurate recreation participation and spending profiles need to be constructed before reliable recreation economic impacts may be estimated. Spending profiles may then be converted into final demand vectors which, in turn, "drive" input-output (I-0) models. Thus, the levels of direct, indirect, and induced sales, value-added, income, or employment impacts generated by a recreation I-O analysis critically depend on participation and spending estimates.

As noted in the first chapter, the reliability of recreation participation levels and spending profiles are probably at least as important and in need of improvement as the input-output model used to generate the economic impact estimates. The examination here for tFHW activity participation and spending support this contention. The greatest range in economic impacts for the Lake States (besides the issue of what spending categories were included in the impacts) stemmed from low and high estimates of spending which reflected limited survey sample sizes. This is an acute problem for many recreation studies.

On the other hand, problems with an I-O model sometimes may be identified and rectified, resulting in universal improvements for future users of the I-O model system. It is argued here that potentially large in improvements in the accuracy of IMPLAN impact estimates can be achieved if by making more detailed sector allocation bridge tables available to implan users and by re-calculating trade estimates used in the IMPLAN if model system. More narrowly defined sector-specific deflators are a possible further enhancement.

Bridge tables devised as part of this research are preliminary and of need further review and refinement before they are widely distributed. if However they, or other sector allocation schemes based on BEA's detailed es pce worksheets, will be far superior to other bridge tables that are aggregated at the pce I-O category level. Many sectors unrelated to the red spending being bridged will likely be included at the gross I-O category ici level, reducing the precision of sector spending allocation and c

subsequent impacts. Simply removing the obviously inappropriate sectors does not address their influence on distribution margins. The solution is to use disaggregated, detailed pce items and aggregate these where necessary to fit survey spending categories. This issue is further discussed and illustrated in a paper by Propst and Siverts (1990).

Many RPC values currently being generated by IMPLAN are highly questionable and may lead to significant distortions in economic impact estimates. This is especially true for particular industries, including many sectors affected by recreation. The extent of distortion and sectors affected differ from state to state. Current and alternative IMPLAN RPC estimates were examined for different sectors and regions. Alternative trade estimates were developed and used in the generation of IMPLAN models for different-sized regions. The influence of trade values on impact estimates was then observed. Results indicate IMPLAN's trade estimates should be revised, incorporating data from the reconciled 1977 MRIO database. New trade estimates can be calculated for the entire IMPLAN modeling system with little difficulty. This was illustrated by calculations of RPCs for the service sectors of all fifty states and for all economic sectors in the Lake States.

It should be noted that, for any particular region, means probably do not exist to establish which industries will have high or low RPCs on a completely objective, secondary basis. Differences in regional economies, trade relations, and other variables prevent any possibility of establishing an absolutely precise nonsurvey means for determining RPCs. It will always be appropriate for impact analysts to review their estimates carefully and take advantage of opportunities to crosscheck the estimates against other data sources. Industry associations, state

and local government personnel, and other federal or private information sources may provide additional direction for the task of improving RPCs and subsequent impact estimates. Similar qualifications apply to the use of standardized bridge tables and sector-specific deflators.

Outdoor Recreation Economic Impacts

Several points originally presented in chapters one and two warrant review here. The size of estimated outdoor recreation impacts will depend on a number of factors besides the quality of the input data and I-O model. A major influence will be the objectives of the study which, in turn, will determine the definition of outdoor recreation and what recreation activities are included in an analysis.

Two types of objectives may be differentiated. One type of objective is to estimate economic impact benefits (sometimes mistakenly identified as total impacts) associated with recreationists' spending. The purpose of impact analysis under this objective is to quantify the economic effects associated with recreation, but only as narrowly defined by resident and nonresident recreationists' expenditures. Such an analysis should not be considered as providing a comprehensive description of recreation's contribution to a regional economy. It only describes economic impacts associated with a particular configuration of economic sectors linked to recreationists' spending.

A second type of objective is to gain insight into the contributions of outdoor recreation to a region's economic development. This objective entails a more difficult, challenging undertaking for it requires more extensive analysis. Following economic base theory, which maintains that exports provide the basis of a region's economic growth,
the analysis may only include nonresidents' recreation expenditures. However, excluding the examination of resident spending may be a mistake. There may be significant impact differentials between sectors and between subregions within the region being analyzed from the transfer of spending by resident recreationists. Also, the issue of import substitution -- in this case, recreating more within the region rather than outside of it -- may also be important.

In any case, the objective of analyzing recreation's economic development potential requires more of a comparative analysis or net benefit approach. Costs incurred to provide the recreation experience need to be considered and compared to benefits. These costs encompass a myriad of governmental costs. Opportunity costs to extractive industries and other affected private interests should also be considered. A truly comprehensive effort will address social costs, such as analyzing changes in the size and composition of a community and impacts relating to community identification. Resource and institutional constraints may also be important. Consideration should be given to distributional effects. These may be partly analyzed within the context of an I-O analysis if the household sector is disaggregated according to income (as it is within version 2.0 of IMPLAN). In sum, simply using an I-O model to express economic impacts stemming from recreationists' $\frac{1}{2} \frac{1}{2} \frac{1}{2}$ spending is inadequate if the goal is to assess the economic development contribution of outdoor recreation.

The use of social accounting matrices ("SAMs") also will not provide a comprehensive picture of economic development issues. IMPLAN's SAM format will present a greater elaboration of economic flow relationships between institutions. It will offer more insights into

some distributional and governmental spending issues than a standard I-O table. It will remain limited, however, due to data constraints. The more extensive SAM format will use data currently incorporated in IMPLAN's I-O format, plus additional secondary data on transfers between institutions. In this author's opinion, the SAM's greater elaboration of economic relationships between institutions will be based on data that are probably less reliable than data used as the basis for IMPLAN's current nonsurvey I-O tables. For example, secondary data on transfers between institutions are more limited and less subject to crosschecking than data on sales and employment. At a minimum, the more elaborate SAM framework entails more opportunity for error. Also, extensive examination of the economic relationships depicted in SAM models, such as those between value added and final demand sectors, will not be forthcoming for some time. Furthermore, the SAM, like I-O tables generally, will only depict market transactions. Important nonmarket factors, including those that feed back upon markets such as amenity influences on business location decisions, will remain outside the models.

Influences on the Size of Lake State Outdoor Recreation Impacts

Some of the results of this study apply only to the Lake States and particular recreation activities in the study's designated forested area of the Lake States. In particular, many of the results regarding Lake State outdoor recreation impacts may not apply to other regions or models with different economic structures and sector aggregations. However, influences on the size of Lake State outdoor recreation impacts may also influence impacts for other regions. An examination of these

influences will indicate their relative importance for consideration by recreation analysts.

The results presented in chapter five indicated that the small sample size of recreation participants contributed to the greatest variability in impact measurement. Another critical issue was the specific categories of spending being considered. For example, there was a significant difference found between trip-related spending versus spending which included equipment expenditures as well. Trip-related spending was less than half of total FHW-reported spending.

The influence of RPCs was not large for the Lake States. This was indicated by several statistical measures of differences between the unadjusted (UNCHLK) and adjusted (BSTLK) multipliers and small differences between these two models' summary impact estimates. Wisconsin and Minnesota had relatively high unadjusted service sector RPCs, while Michigan's were not extremely low either. Differences between multipliers based on alternative trade estimates were found for individual sector impacts. However, multiplier differences between the unaltered RPC model and the "best" RPC model were not substantial.

Errors in IMPLAN'S RPCs for the Lake States model involve both underestimation and overestimation. The overestimated and underestimated RPCs will partially negate each other when multipliers are derived. Larger RPC influences were found for the State of Michigan. The evidence presented on average service sector RPCs indicates much greater RPC influences on impacts are likely to be found for other states, such as New York and New Jersey, which have RPC estimation error more uniformly underestimated or overestimated.

IMPLAN models of small, substate areas may also have more bias introduced to their multipliers from inaccurate RPC estimates. Small. substate economies will tend to have a greater representation of service sectors as a proportion of the total number of sectors in their economies. Errors in IMPLAN's RPC estimates appear to be more pronounced with service sectors than commodity sectors. This is true in part because a higher proportion of service sector demands are generally met by local production than are commodity demands. This means that average service sector RPCs should be expected to be higher than average commodity sector RPCs. Therefore, zero or near-zero service sector RPCs are more divergent from true, real-world values than zero or near-zero commodity RPCs. Differences in the derivation of IMPLAN's RPCs may account for there appearing to be more dubious service sector RPCs than commodity sector RPCs. Commodity sector RPCs were derived econometrically, service sector RPCs were adopted directly from the original Jack Faucett Associates 1977 MRIO data.

Aggregation of sectors also did not appear to significantly affect impact results. Differences between impact sums were generally under ten percent. The only slight exception to the lack of any pattern being observed was with regards to the aggregation scheme which lumped all nonessential sectors into one large "miscellaneous" or "other" sector. This aggregation scheme tended to overestimate impacts relative to alternative aggregation schemes, even in comparison to models with fewer sectors.

 \mathbf{i}

1.1

The results regarding aggregation should be interpreted in light of available software and hardware and user ease of incorporating different practices relating to input data or IMPLAN model parameters. Although

model aggregation did not appear to affect Lake State impact results dramatically, greater model size generally does not pose computer difficulties or significant additional computing time requirements. This should be interpreted as lending support to the contention that it is best for impact analysts to work at the most disaggregated level possible. The availability of computer spreadsheet software significantly minimizes the required time to aggregate results for further interpretation and presentation to other interested parties.

The large range in Lake State FHW spending estimates suggests that recreation economic impact studies should more prominently address the precision implications of sample sizes and related qualifications regarding the variability of impact estimates. This author was told by FHW report staff that there are seldom inquiries about or discussion of the statistical parameters appearing in FHW reports. It was their impression that the FHW sampling statistics are almost universally ignored.

This is not unique to recreation studies; most economic impacts are presented as deterministic point estimates. The excuse for multipliers and other outputs from nonsurvey models is that sampling and nonsampling errors are unknown, in part due to such models employing a variety of data sources and reconciliation procedures in their construction. For example, the "corrected" MRIO data employed the RAS procedure to eliminate data errors and balance the original Jack Faucett data which, in turn, was based on reconciling many sources of secondary economic data. It is difficult, if not impossible, to say how precise the corrected MRIO data are, although it can be said that its I-O accounts have been balanced and appear consistent. Also, from a regional

economic perspective, trade estimates derived from the corrected MRIO data appear much more reasonable than those contained in IMPLAN.

It is misleading to only present point estimates when information on sampling errors is available. Sampling errors are often known or may be derived for recreation data that are used as final demand inputs for These may be used to derive ranges of impacts based on I-O models. these sampling errors. In contrast, the precision of many I-O model parameters are likely to remain unknown; however, an examination of parameter values may reveal impact estimates (or RPCs, multipliers, etc.) are likely to fall within certain ranges. For example, this study developed floor, ceiling, and "best estimate" multipliers based on crosschecking estimated RPCs against RPC values for other regions and alternative secondary data sources. Presentation of recreation economic impacts in the form of ranges may be important not only to reflect what is known about the estimates' precision, but also to draw attention to the reliability of such estimates. Larger FHW samples or improved sample design appear necessary to improve the precision of recreation spending estimates for substate areas.

The ease of examining and incorporating more detailed sector allocations and refined RPCs also implies a sizeable savings of time and energy can be achieved if this is done at the modeling system level rather than by users. Most IMPLAN users do not have a fraction of the time this author took to research the RPC issue or develop a detailed sector allocation bridge. Many IMPLAN users may not even have the knowledge or experience to evaluate the need to perform such tasks. Generic changes in RPC estimates should take place with the IMPLAN modeling system and materials supplied in conjunction with its use. This would assure some improvement in the model's use which otherwise may not take place if left up to IMPLAN model users.

Further Research Needs

Several points have been made throughout this thesis regarding further research needs. These may be summarized in terms of the IMPLAN modeling system and the measurement of outdoor recreation economic impacts.

The foremost conclusion of this research is that adequate evidence exists to indicate IMPLAN'S RPCs should be re-estimated using the corrected MRIO database. This should be done with the econometric procedures utilized in the original IMPLAN RPC estimation process, although alternative independent variables could be considered. Reestimation of RPCs would improve the reliability of IMPLAN's impact estimates for most regional models and sectors. Efforts to re-estimate IMPLAN RPCs with alternative independent variables alone will not enhance the quality of the RPC estimates as long as a faulty database (the original MRIO data) is used to generate initial RPC dependent variable values.

Another major emphasis of this research has been to refine the allocation of reported FHW recreation spending to IMPLAN's sectors. The resulting detailed bridge tables represent an improvement over past bridge tables that were based on aggregated pce I-O categories. However, the tables prepared as part of this research are in need of further review. Also, improvements could be made to their design to enhance their use by a wider audience, especially for non-FHW applications and I-O models other than IMPLAN. There is little hope for standardizing outdoor recreation definitions and measurements. This is due to the diverse nature of outdoor recreation and its association with a broad array of resources and interests. These range from tourism and leisure studies through environmental and land or water use issues. Accurate, universally applicable spending profiles of recreationists are virtually precluded by these factors. What activities are counted in outdoor recreation studies will always be somewhat arbitrary, reflecting a study's particular objectives and data availablity.

This does not mean that contrasts across studies can not be made. Contrasts of comprehensive efforts at recreation economic impact assessment may be especially helpful. Comparisons of existing studies across states and regions, such as Keiner's 1985 report, are invaluable in terms of indicating how methods and data may be improved. They enable progress in identifying better secondary data sources and the treatment of particular issues. They foster standardization in the proper identification and description of what is actually measured. For example, studies focusing only on recreationists' expenditures are often referred to as being economic development studies or "total" recreation economic impact studies. Comparisons of different studies will illustrate that studies of economic development or total impacts from recreation encompass cost factors and other issues besides merely recreationists' expenditures.

Public costs for recreation deserve further research to help balance the usual presentation of recreation economic benefits. A major benefit and advancement in measuring outdoor recreation economic impacts could come from identification and examination of data sources

pertaining to public costs for recreation. A further extension of research on public costs would be to convert them for use with IMPLAN when the modeling system is fully converted to the SAM format.

<u>Conclusion</u>

Three major findings stem from this analysis. The first is that IMPLAN's Version 2.0 RPCs are seriously flawed and can be significantly improved by being re-estimated using a corrected 1977 MRIO database. The second is that point (deterministic) estimates of outdoor recreation economic impacts are misleading because they ignore variability implied by sampling errors. A third finding is that estimates of recreationists' spending impacts may vary by a factor of several multiples, depending on what categories of spending are included. Recreation impacts that include all equipment expenditures may be more than twice the size of impacts which only include trip expenditures.

Advancements in computer speed and capacities along with improvements in I-O software design can be expected to continue. Impact analysis that previously took weeks, if not months, of work may now be accomplished in minutes. For example, once familiarity with IMPLAN is achieved (which only takes a matter of a few days training or construction of a few models), the time it takes from selecting a region through printing out sets of multipliers may be under an hour. (This author completed such a process for Kalamazoo County, Michigan in under twenty minutes, despite bugs in an early version of Micro IMPLAN being used at the time.)

Fast turnaround in generating impact estimates provide the opportunity for abuse, partly because the more software is "user friendly" the less care and knowledge is required to use it. Also, the time devoted to the task of preparing and reviewing the impacts may decrease commensurately with the faster generation of the impact estimates. Some savings in time may be applied to more crosschecking and sensitivity analysis if impact analysts are made aware of the efficacy of engaging in these tasks.

Most IMPLAN users will probably continue to take their impact results and IMPLAN materials at face value without extensive examination. It is important for the modeling system to maximize its precision while minimizing potential user error in these circumstances. Prospects for improving the IMPLAN model system identified in this thesis merely reduce the potential problems from accepting the model as is and provide its users with a more solid basis upon which to further improve impact estimates. Additional improvements, let alone the proper use of the model and correct interpretation of the results, ultimately depend upon model users and the regional science profession. APPENDICES

•

.

APPENDIX A: INDUSTRY CLASSIFICATION OF THE MICRO-IMPLAN 528 SECTOR INPUT/OUTPUT TABLES*

APPENDIX N. Industry Classification of the Micro-IMPLAN 528 sector Input/Output tables

No.	Sector Name	BEA Commodity	Standard Industry Classification (SIC)
1	DAIRY FARM PRODUCTS	(1.0100)	0241
2	POULTRY AND EGGS	(1.0200)	Also : pert of 0191, 0259, 0291 0251 0252 0253
1	BANCH EED CATTLE	(1 0311)	net of 1101 1212 1210 1250 1201
2	BANCE EED CATTLE	(1.0317)	pert of 0191, 0212, 0219, 0239, 0291
- 2	CATTLE EEENINTE	(1.03/2)	DULT OF UTAT, UETE, UETA, UEDA, UEAT
	CALLE FEEDLOIS	(1.0313)	
4		/ 1 071/1	ALSO I DEFT OF UTAT, UZTA, UZDA, UZAT
	SHEEP, LANSS AND WURTS	(1.0314)	
-			ALSO : PETT OT UIVI, UZIV, UZV, UZVI
'	HUGS, FILS AND SHINE	(1.0313)	
			ALSO : pert of 0191, 0219, 0259, 0291
	UTHER REAT ANIMAL PRODUCTS	(1.0316)	pert of 0191, 0219, 0259, 0291
Y	MISCELLANEOUS LIVESTOCK	(1.0502)	0271 0272
			ALSO : part of 0191, 0219, 0259, 0279, 0291
10	COTTON	(2.0100)	0131
			ALSO : POPT OF U191, 0219, 0259, 0291
11	FOOD GRAINS	(2.0201)	0111 0112
			Also : part of 0191, 0219, 0259, 0291
12	PEED GRAINS	(2.0221)	0115
			ALSO : pert of 0139, 0191, 0219, 0259, 0291
13	NAT AND PASTURE	(2.0222)	pert of 0139, 0191, 0219, 0259, 0291
14	GRASS SEEDS	(2.0203)	pert of 0139, 0191, 0219, 0259, 0291
13	TOBACCO	(2.0300)	0132
• •			ALSO : DET OT 0191, 0219, 0259, 0291
10	PRUITS	(2.0401)	0171 0172 0174 0175
			ALSO : pert of 0179, 0191, 0219, 0259, 0291
		(2.0402)	pert of 0173, 0179, 0191, 0219, 0259, 0291
10	AFRE LABLES	(2.0501)	0134 0161
10		() (60)	Also : pert of 0119, 0139, 0191, 0219, 0259, 029
1.	SUGAR LIKUPS	(2.0302)	
20	N18081 LANEOUR CROBE	(3 0503)	ALSO : DEFT OF U191, U219, U239, U291
21		(2.0303)	pert of 0119, 0139, 0191, 0219, 0239, 0291
21	UIL BEAKING LKUPS	(2.0000)	
22		(3.0701)	ALSO I DEFT OF UTTY, UT39, UT75, U219, U239, U29
21	CREENINGUER AND INIDEEDY DECOURTS	(2.0701)	pert of 0181, 0191, 0219, 0299, 0291
6	WEENHOUSE AND WORSERT PRODUCTS	(2.0/02)	
24		(1 0001)	ALSO : DET OT UIDI, UIVI, UZIV, UZV, UZVI
25		(3.0001)	
26	ACRICINE FISHING	(3.0002)	UTIU 0710 0730 0750 0740 0357 0850 0030
	MANTODETONNE, FONESTNI, FISHENT SERVICES	(4.0001)	
27		(4 0002)	A (80 : pert of U2/9
28	IPON OPES	(\$ 0100)	1011
20	FERRALLOY OPES EXCERT VANADILM	(5.0700)	1011
30	COPPER OFFS	(4.0100)	1021
31	LEAD AND ZINC OPES	(4.0201)	1021
32	GOLD ORES	(6.0202)	1041
33	SILVER ORES	(6.0202)	1044
34	BAUXITE AND OTHER ALLMINUM ORES	(6 0204)	1051
35	NETAL MINING SERVICES	(6.020%)	1081
34	NERCURY ORFS	(6 0304)	1007
37	LIRAN TUN- PAD TUN- VANAD TUN OPER	(A 0207)	1004
U.	METAL OPES NOT ELSUNERE CLARSTETED	(4 0208)	1099
39	ANTHRACITE AND ANTHRACITE MINING REPUICER	(7.0100)	1111
•••		(Alen a part of 1112
40	BITUNINGUS AND LIGHTTE MINING SERVICES	(7.0200)	1211
			Also t part of 1213
41	NATURAL GAS	(8.0101)	Caution + 1310 is solit between & 0101 and & 0102
42		(8.0102)	1310
			Caution : 1310 is solit between 8.0101 and 8.0102
43	NATURAL GAS LIQUIDS	(8.0200)	1321
44	DIMENSION STONE	(9.0100)	1411
45	CRUSHED AND BROKEN LIMESTONE	(9.0201)	1622
46	CRUSHED AND BROKEN GRANITE	(9.0202)	1423
47	CRUSHED AND BROKEN STONE. M. E. C.	(9.0203)	1429
48	CONSTRUCTION SAND AND GRAVEL	(9.0301)	1442
49	INDUSTRIAL SAND	(9.0302)	1446

N-1

No.	Sector Name	SEA Connodity	Standard Industry Classification (SIC)
•••	•••••	••••	•••••••••••••••••••••••••••••••••••••••
50	BENTONITE	(9.0400)	1452
51	FIRE CLAY	(9.0500)	1453
52	FULLER'S EARTH	(9.0600)	1454
53	KAOLIN AND BALL CLAY	(9.0700)	1455
54	CLAY, CERAMIC, REFRACTORY MINERALS, N.E.C.	(9.0800)	1459
55	NONMETALLIC MINERALS (EXCEPT FUELS) SERVICE	(9.0900)	1481
56	GYPSUN	(9.1000)	1492
57	TALC, SOAPSTONE, AND BORATE HINERALS	(9.1100)	1496
58	MISC. NONMETALLIC MINERALS, N.E.C.	(9.1200)	1499
59	BARITE	(10.0100)	1472
60	FLOURSPAR	(10.0200)	1473
61	POTASH, SODA, AND BORATE HINERALS	(10.0300)	1474
62	PHOSPHATE ROCK	(10.0400)	1475
63	ROCK SALT	(10.0500)	1476
64	SULFUR	(10.0600)	1477
65	CHEMICAL, FERTILIZER MINERAL MINING, N.E.C.	(10.0700)	1479
00	NEW RESIDENTIAL STRUCTURES	(11.0100)	1521 1522 1530
			In reality : pt. of the corresponding SICs
67	NEW INDUSTRIAL AND COMMERCIAL BUILDINGS	(11.0200)	1541 1542
			In reality pt. of the corresponding SICs
65	NEW UTILITY STRUCTURES	(11.0300)	1623
			ALSO : pert of 1629
64	NEW HIGHMATS AND STREETS	(11.0600)	1611 1622
70	NEW PARM STRUCTURES	(11.0500)	
2	NEW MINERAL EXTRACTION FACILITIES	(11.0600)	pert of 108, 1112, 1213, 136, 148
12	NEW GOVERNMENT FACILITIES	(11.0700)	1627
			In reality pt. of 1629
73	MAINTENANCE AND REPAIR, RESIDENTIAL	(12.0100)	/ p> or 1700/
	MAINTENANCE AND REPAIR OTHER PACILITIES	(12.0200)	
13	MAINTENANCE AND REPAIR OIL AND GAS WELLS	(12.0215)	T380
74			In reality pt. of 138
10	COMPLETE GUIDED MISSILES	(13.0100)	3/61
	ANNONITION, EXCEPT FOR SMALL ARMS, N.E.C.	(13.0200)	3463
10	TARKS AND TARK CORPORENTS	(13.0300)	3/93
19		(13.0500)	3484
81	ATHER ORDNANCE AND ACCERCOISE	(13.0000)	3462
87	MEAT DACKING DIANTE	(13.0700)	3467
11	CALIFACER AND CTHES SPESADED MEATE	(14.0101)	2011
Ň	POLITRY DEFERING DI ANTE	(14.0102)	2013
85	POLITEY AND EGG PROCESSING	(14.0105)	2010
86	CREAMERY BUITTER	(14.0200)	2021
87	CHEESE NATURAL AND PROCESSED	(14.0300)	2022
88	CONDENSED AND EVAPORATED MILK	(14.0400)	2023
89	ICE CREAN AND EROZEN DESSERTS	(14.0500)	2024
90	FLUID MILK	(14.0600)	2024
91	CANNED AND CURED SEA FOODS	(14.0700)	2091
92	CANNED SPECIALTIES	(14.0800)	2032
93	CANNED FRUITS AND VEGETABLES	(16.0900)	2033
94	DENYDRATED FOOD PRODUCTS	(14,1000)	2034
95	PICKLES, SAUCES, AND SALAD DRESSINGS	(14,1100)	2035
96	FRESH OR FROZEN PACKAGED FISH	(14,1200)	2092
97	FROZEN FRUITS, JUICES AND VEGETABLES	(14.1301)	2037
98	FROZEN SPECIALTIES	(14.1302)	2038
99	FLOUR, AND OTHER GRAIN HILL PRODUCTS	(14.1601)	2041
100	CEREAL PREPARATIONS	(14.1402)	2043
101	BLENDED AND PREPARED FLOUR	(14.1403)	2045
102	DOG. CAT. AND OTHER PET FOOD	(14.1501)	2047
103	PREPARED FEEDS. N.E.C	(14.1502)	2048
104	RICE MILLING	(14.1600)	2044
105	WET CORN HILLING	(14,1700)	2046
106	BREAD, CAKE, AND RELATED PRODUCTS	(14.1801)	2051
107	COOKIES AND CRACKERS	(14.1802)	2052
108	SUGAR	(14,1900)	2061 2062 2063
109	CONFECTIONERY PRODUCTS	(14.2001)	2065
110	CHOCOLATE AND COCOA PRODUCTS	(16.2002)	2066
111	CHEWING GUM	(14.2003)	2067
112	MALT LIQUORS	(14.2101)	2082

N-2

NO.	Sector Name	BEA Commodity	Standard Industry Classification (SIC)
•••		•••••	***************************************
113	MALT	(14.2102)	2083
114	WINES, BRANDY, AND BRANDY SPIRITS	(14.2103)	2084
115	DISTILLED LIQUOR. EXCEPT BRANDY	(14.2104)	2085
116	BOTTLED AND CANNED SOFT DELINKS	(14.2200)	2086
117	FLAVORING EXTRACTS AND SYRUPS. N.F.C	(14.2300)	2087
118	COTTONSEED OIL MILLS	(14.2400)	2074
110	SOVREAN OIL MILLE	(14 2500)	2075
120	VECETABLE OIL MILLE N.E.P	(14.2400)	2073
121	ANIMAL AND MABINE BATE AND OTLE	(14.2000)	2077
122	ANIMAL AND MAKINE FAIS AND UILS	(14.2700)	2005
138		(14.2000)	2073
123	SHORIERING AND LOOKING DILS	(14.2900)	20/9
124	MANUFACTURED ICE	(14.3000)	2097
122	MALAKUNI ANU SPAGNEIII	(14.3100)	2090
120	FOOD PREPARATIONS, N.E.L	(14.3200)	2044
127	CIGARETTES	(15.0101)	2110
128	CIGARS	(15.0102)	2120
129	CHEWING AND SHOKING TOBACCO	(15.0103)	2130
130	TOBACCO STERMING AND REDRYING	(15.0200)	2140
131	BROADWOVEN FABRIC WILLS AND FINISHING	(16.0100)	2210 2220 2230 2261 2262
132	NARROW FABRIC MILLS	(16.0200)	2240
133	YARN MILLS AND FINISHING OF TEXTILES NEC	(16.0300)	2269 2281 2282 2283
134	THREAD MILLS	(16.0400)	2284
135	FLOOR COVERINGS	(17.0100)	2270
136	FELT GOODS, N.E.C	(17.0200)	2291
· 137	LACE GOODS	(17.0300)	2292
138	PADDING AND UPHOLSTERY FILLING	(17.0400)	2293
139	PROCESSED TEXTILE WASTE	(17.0500)	2294
140	COATED FABRICS, NOT RUBBERIZED	(17.0600)	2295
141	TIRE CORD AND FABRIC	(17.0700)	2296
142	CORDAGE AND TWINE	(17.0900)	2298
143	NONVOVEN FABRICS	(17, 1001)	2297
144	TEXTILE GOODS. N.E.C	(17,1002)	2200
145	WOMENS HOSTERY, EXCEPT SOCKS	(18.0101)	2251
166	HOSIERY. N.E.C	(18.0102)	2252
147	KNIT CUTERIFAR MILLS	(18.0201)	2263
148	KNIT UNDERWEAR MILLS	(18.0202)	2754
140	KNITTING MILLS N.F.C	(18 0203)	2250
150	KNIT FARRIC MILLS	(18 0300)	2267 2268
151	APPAREL MADE FROM RUPCHARED MATERIALS	(18.0400)	2810 2820 2880 2840 2860 2840 2870 2880
	ALLANDE LAND LANDER MUCHAN	(10.0400)	
167		(10.0100)	ALSO : DEFL OF 3777
152	NOUCEEUDNICHIMCE N E P	(19.0100)	2202
184	TEVTILE AACE		2372
155	TANVAR BRANDETE	(19.0301)	2373
184		(19.0302)	
120	PLEATING AND STITCHING	(19.0303)	2393
137	AUTOHUTIVE AND APPAREL TRIMMINGS	(19.0304)	2396
120	SUNIPPI MAUNINE EMORUIDERIES	(19.0305)	2397
124	TABRICATED TEXTILE PRODUCTS, H.E.C	(19.0306)	CJAA
100	LOGGING CAMPS AND LOGGING CONTRACTORS	(20.0100)	2410
101	SAWHILLS AND PLANING HILLS, GENERAL	(20.0200)	2421
162	HARDWOOD DIMENSION AND FLOORING MILLS	(20.0300)	2426
103	SPECIAL PRODUCT SAMMILLS, N.E.C	(20.0400)	2429
164	HILLWORK	(20.0501)	2431
165	WOOD KITCHEN CABINETS	(20.0502)	2434
166	VENEER AND PLYWOOD	(20.0600)	2435 2436
167	STRUCTURAL WOOD HEMBERS, N.E.C	(20.0701)	2439
168	PREFABRICATED WOOD BUILDINGS	(20.0702)	2452
169	WOOD PRESERVING	(20.0800)	2491
170	WOOD PALLETS AND SKIDS	(20.0901)	2448
171	PARTICLEBOARD	(20.0902)	2492
172	WOOD PRODUCTS, N.E.C	(20.0903)	2499
173	WOOD CONTAINERS	(21.0000)	2441 2449
174	WOOD HOUSEHOLD FURNITURE	(22.0101)	2511
175	HOUSEHOLD FURNITURE, N.E.C	(22.0102)	2519
176	WOOD TV AND RADIO CARINETS	(22.0103)	2517
177	UPHOLSTERED HOUSEHOLD FURNITURE	(22.0200)	2512
178	NETAL HOUSEHOLD FLIGHTTIDE	(72 0300)	2514
170	MATTRESSES AND REDERING	(22.0300)	2515
		\66.V=UU)	6313

N·3

No.	Sector Name	BEA Commodity	Standard Industry Classification (SIC)
•••	••••••	•••••	•••••••••••••••••••••••••••••••••••••••
180		(23 0100)	2621
181	METAL OFFICE FURNITURE	(23.0200)	2522
182	PUBLIC BUILDING FURNITURE	(23.0300)	2531
183	WOOD PARTITIONS AND FIXTURES	(23.0400)	2541
184	METAL PARTITIONS AND FIXTURES	(23.0500)	2542
185	BLINDS, SHADES, AND DRAPERY HARDWARE	(23.0600)	2591
187	PURNITURE AND PIXTURES, N.E.C.	(23.0700)	2599 2410
188	PAPER MILLS. EXCEPT BUILDING PAPER	(24.0200)	2610
189	PAPERBOARD NILLS	(24.0300)	2630
190	ENVELOPES	(24.0400)	2642
191	SANITARY PAPER PRODUCTS	(24.0500)	2647
192	BUILDING PAPER AND BOARD MILLS	(24.0602)	2660
194	BAGS. FYCEPT TEYTILE	(24.0707)	2001
195	DIE-CUT PAPER AND BOARD	(24.0703)	2645
196	PRESSED AND HOLDED PULP GOODS	(24.0704)	2646
197	STATIONERY PRODUCTS	(24.0705)	2648
198	CONVERTED PAPER PRODUCTS, N.E.C	(24.0706)	2649
200	PAPERSOARD CONTAINERS AND BORES	(25.0000)	2650
201	PERIODICALS	(28.0100)	2710
202	BOOK PUBLISHING	(26.0301)	2731
203	BOOK PRINTING	(26.0302)	2732
204	MISCELLANEOUS PUBLISHING	(26.0400)	2740
205	COMMERCIAL PRINTING	(26.0501)	2751 2752 2754
200	LITHOGRAPHIC PLATEMAKING AND SERVICES	(26.0502)	2795
208	BLANKBOOKS AND LODSELEAF BINDERS	(26.0607)	2782
209	GREETING CARD PUBLISHING	(26.0700)	2770
210	ENGRAVING AND PLATE PRINTING	(26.0801)	2753
211	BOOKBINDING AND RELATED WORK	(26.0802)	2789
212	TYPESETTING	(26.0803)	2791
213	FIGTERTYPING AND STEPERTYPING	(20.0504)	2793
215	INDUSTRIAL INORGANIC, ORGANIC CHEMICALS	(27.0100)	2810 2845 2849
		(2	In reality only pt. of 2819
216	NITROGENOUS AND PHOSPHATIC FERTILIZERS	(27.0201)	2873 2874
217	FERTILIZERS, MIXING ONLY	(27.0202)	2875
210	AGRICULIURAL CHEMICALS, N.E.C	(27.0300)	2579
220	ADHESIVES AND SEALANTS	(27.0601)	2801
221	EXPLOSIVES	(27.0403)	2892
222	PRINTING INK	(27.0404)	2893
223	CARBON BLACK	(27.0405)	2895
224	CHEMICAL PREPARATIONS, N.E.C	(27.0406)	2899
226	SYNTHETIC BURBER	(28.0100)	2821
227	CELLULOSIC MAN-MADE FIBERS	(28.0300)	2823
228	ORGANIC FIBERS, NONCELLULOSIC	(28.0400)	2824
229	DRUGS	(29.0100)	2830
230	SOAP AND OTHER DETERGENTS	(29.0201)	2841
232	SUBSACE ACTIVE ACENTS	(29.0202)	2842
233	TOILET PREPARATIONS	(29.0203)	2093
234	PAINTS AND ALLIED PRODUCTS	(30,0000)	2850
235	PETROLEUM REFINING	(31.0101)	2910
236	LUBRICATING OILS AND GREASES	(31.0102)	2992
257	PETROLEUM AND COAL PRODUCTS, N.E.C.	(31.0103)	2999
230	ASPHALT FELTS AND COATINGS	(31.0200)	1 CV3
240	TIRES AND INNER TUBES	(32,0100)	5776 3010
241	RUBBER AND PLASTICS FOOTWEAR	(32.0200)	3020
242	RECLAIMED RUBBER	(32.0301)	3030
243	FABRICATED RUBBER PRODUCTS, N.E.C	(32.0302)	3060
244	MISCELLANEOUS PLASTICS PRODUCTS	(32.0400)	3070
243 264	RUBBER AND PLASTICS HOSE AND BELTING	(32.0500)	3040
240	SERVICE CARRING AND FIRIDRING	(33.0001)	טוונ

N-4

No.	Sector Name	BEA Commodity	Standard Industry Classification (SIC)
•••		•••••	•••••••••••••••••••••••••••••••••••••••
247	FOOTWEAR CUT STOCK	(34.0100)	3130
248	SHOES, EXCEPT RUBBER	(34.0201)	3143 3144 3149
249	HOUSE SLIPPERS	(34.0202)	3142
250	LEATHER GLOVES AND MITTENS	(54.0301)	5150
251	LUGGAGE	(34.0302)	3180
253	PERSONAL LEATHER COODS	(34.0304)	3172
254	LEATHER GOODS. N.E.C	(34,0305)	3190
255	GLASS AND GLASS PRODUCTS, EXC CONTAINERS	(35.0100)	3210 3229 3230
256	GLASS CONTAINERS	(35.0200)	3221
257	CEMENT, HYDRAULIC	(36.0100)	3240
258	BRICK AND STRUCTURAL CLAY TILE	(36.0200)	3251
237	CLAY DEEDACTODIES	(36.0300)	3233 1365
261	STRUCTURAL CLAY PRODUCTS. N.E.C	(36.0500)	3259
262	VITREOUS PLUMBING FIXTURES	(36.0600)	3261
263	VITREOUS CHINA FOOD UTENSILS	(36.0701)	3262
264	FINE EARTHENWARE FOOD UTENSILS	(36.0702)	3263
265	PORCELAIN ELECTRICAL SUPPLIES	(36.0800)	3264
260	CONCRETE BLOCK AND BRICK	(30.0900)	3287 3371
268	CONCRETE PRODUCTS. N.E.C	(36,1100)	3277
269	READY-MIXED CONCRETE	(36.1200)	3273
270	LIME	(36.1300)	3274
271	GYPSUN PRODUCTS	(36.1400)	3275
272	CUT STONE AND STONE PRODUCTS	(36.1500)	3280
275	ASRASIVE PRODUCTS	(30.1000)	3291
275	GASKETS, PACKING AND SEALING DEVICES	(36, 1800)	3203
276	MINERALS, GROUND OR TREATED	(36.1900)	3295
277	MINERAL WOOL	(36.2000)	3296
278	NONCLAY REFRACTORIES	(36.2100)	3297
279	NONMETALLIC MINERAL PRODUCTS, N.E.C.	(36.2200)	3299
281	FLEAT FURNALES AND SIEEL HILLS	(37.0101)	3312 3313
282	STEEL WIRE AND RELATED PRODUCTS	(37.0103)	3315
283	COLD FINISHING OF STEEL SHAPES	(37.0104)	3316
284	STEEL PIPE AND TUBES	(37.0105)	3317
285	IRON AND STEEL FOUNDRIES	(37.0200)	3320
280	IRON AND STEEL FORGINGS	(37.0300)	3462
288	PRIMARY METAL PRODUCTS IN F C	(37.0601)	3370 7200
289	PRIMARY COPPER	(38,0100)	3331
290	PRIMARY LEAD	(38.0200)	3332
291	PRIMARY ZINC	(38.0300)	3333
292	PRIMARY ALUNINUM	(38.0400)	3334
201		(78.0500)	Also pert of 2819
294	SECONDARY NONFERROUS METALS	(38.0600)	3320
295	COPPER ROLLING AND DRAWING	(38,0700)	3351
296	ALUMINUM ROLLING AND DRAWING	(38.0800)	3353 3354 3355
297	NONFERROUS ROLLING AND DRAWING, N.E.C	(38.0900)	3356
298	NONFERROUS WIRE DRAWING AND INSULATING	(38.1000)	3357
300	ALUMINUM CASTINGS	(38.1100)	3361
301	NONFERROUS CASTINGS N.F.C.	(30.1200)	3362 1140
302	NONFERROUS FORGINGS	(38, 1400)	3463
303	METAL CANS	(39.0100)	3411
304	METAL BARRELS, DRUMS AND PAILS	(39.0200)	3412
305	METAL SANITARY WARE	(40.0100)	3431
306	PLUMBING FIXTURE FITTINGS AND TRIM	(40.0200)	3432
307	REALING EQUIPMENT, EXCEPT ELECTRIC FARDICATED STRUCTURAL METAL	(40.0300)	3433
309	NETAL DOORS, SASH, AND TRIM	(40.0500)	344.7
310	FABRICATED PLATE WORK (BOILER SHOPS)	(40,0600)	3443
311	SHEET METAL WORK	(40.0700)	3444
312	ARCHITECTURAL METAL WORK	(40.0800)	3446
313	PREFABRICATED METAL BUILDINGS	(40.0901)	3448

N•5

No.	Sector Name	BEA Commodity	Standard Industry Classification (\$1C)
314	HISCELLANEOUS METAL WORK	(40.0902)	3449
315	SCREW MACHINE PRODUCTS AND BOLTS, ETC	(41.0100)	3450
316	AUTOHOTIVE STAMPINGS	(41.0201)	3465
317	CROWNS AND CLOSURES	(41.0202)	3466
318	METAL STAMPINGS, N.E.C.	(41.0203)	5409 3/ 31
319	LUILERT NAND EDGE TOOLS ME C	(42.0100)	3421
320	HAND SAUS AND SAU BLADES	(42.0201)	3423 34.25
322	HARDWARE, N.E.C.	(42.0300)	3420
323	PLATING AND POLISHING	(42.0401)	3471
324	METAL COATING AND ALLIED SERVICES	(42.0402)	3479
325	MISCELLANEOUS FABRICATED WIRE PRODUCTS	(42.0500)	3495 3496
326	STEEL SPRINGS, EXCEPT WIRE	(42.0700)	3493
327	PIPE, VALVES, AND PIPE FITTINGS	(42.0800)	3494 3498
328	METAL FOIL AND LEAF	(42.1000)	3497
329	FABRICATED METAL PRODUCTS, N.E.C.	(42.1100)	3499
330	SIEAM ENGINES AND TURBINES	(43.0100)	3511
112	THICKNAL CURBUSITUM ENGINES, N.E.C.		32 I Y 76 37
777	IAUN AND CARDEN FOILDMENT	(44.0007)	3723 8894
334	CONSTRUCTION MACHINERY AND EQUIPMENT	(45.0100)	7571
335	MINING MACHINERY, EXCEPT OIL FIELD	(45.0200)	3532
336	OIL FIELD MACHINERY	(45.0300)	3533
337	ELEVATORS AND MOVING STAIRWAYS	(46.0100)	3534
338	CONVEYORS AND CONVEYING EQUIPMENT	(46.0200)	3535
339	HOISTS, CRANES, AND MONORAILS	(46.0300)	3536
340	INDUSTRIAL TRUCKS AND TRACTORS	(46.0400)	3537
341	MACHINE TOOLS, METAL CUTTING TYPES	(47.0100)	3541
342	PACHINE TOOLS, METAL FORMING TYPES	(47.0200)	3342
343	SPECIAL DIES AND TOOLS AND ACCESSORIES	(47.0300)	3366 3367 7644
345	ROLLING MILL MACHINERY	(47.0401)	3740 1817
346	METALWORKING MACHINERY, M.E.C.	(47.0403)	3540
347	FOOD PRODUCTS MACHINERY	(48.0100)	3551
348	TEXTILE MACHINERY	(48.0200)	3552
349	WOODWORKING MACHINERY	(48.0300)	3553
350	PAPER INDUSTRIES MACHINERY	(48.0400)	3554
351	PRINTING TRADES MACHINERY	(48.0500)	3555
352	SPECIAL INDUSTRY MACHINERY, N.E.C.	(48.0600)	3559
333	PORPS AND CORPRESSORS	(49.0100)	3361 3363
355	BIONERS AND FANS	(49.0200)	3302 1844
356	INDUSTRIAL PATTERNS	(49.0500)	3300
357	POWER TRANSMISSION EQUIPMENT	(49.0500)	3544 3548
358	INDUSTRIAL FURNACES AND OVENS	(49.0600)	3567
359	GENERAL INDUSTRIAL MACHINERY, N.E.C.	(49.0700)	3569
360	CARBURETORS, PISTONS, RINGS, VALVES	(50.0001)	3592
361	MACHINERY, EXCEPT ELECTRICAL, N.E.C.	(50.0002)	3599
362	ELECTRONIC COMPUTING EQUIPMENT	(51.0101)	3573
363	CALCULATING AND ACCOUNTING MACHINES	(51.0102)	3574
304	SCALES AND BALANCES	(51.0300)	3576
305	ANTOMATIC MERCHANDICING MACHINER	(51.0400)	32/2 33/4 32/2 33/4
347	COMMERCIAL LAUNDRY CONTRMENT	(52.0100)	3701
368	REFRIGERATION AND MEATING EDUIDMENT	(52.0200)	3702 7846
369	MEASURING AND DISPENSING PLMPS	(52.0400)	3505
370	SERVICE INDUSTRY MACHINES. N.E.C.	(52:0500)	3589
371	INSTRUMENTS TO MEASURE ELECTRICITY	(53.0100)	3825
372	TRANSFORMERS	(53.0200)	3612
373	SWITCHGEAR AND SWITCHBOARD APPARATUS	(53.0300)	3613
374	MOTORS AND GENERATORS	(53.0400)	3621
375	INDUSTRIAL CONTROLS	(53.0500)	3622
376	WELDING APPARATUS, ELECTRIC	(53.0600)	3623
377	CARBUN AND GRAPHITE PRODUCTS	(53.0700)	3624
3/8	ELECTRICAL INDUSTRIAL APPARATUS, N.E.C.	(53.0800)	3027
3/9	HOUSEHOLD COURING EQUIPTENI	(34.0100)	3031
381	HOUSEHOLD LAUNDRY FOLIIOMENT	(54.0200)	3036 8488
	•		

.

•

No.	Sector Name	BEA Commodity	Standard Industry Classification (SIC)
•••	••••••••	•••••	
			7/7 /
382	ELECTRIC HOUSEWARES AND FANS	(54.0400)	3034 3436
363	REUING MACHINER	(54.0600)	3033 3636
385	HOUSEHOLD APPLIANCES, N.E.C.	(54.0700)	3639
386	ELECTRIC LAMPS	(55.0100)	3641
387	LIGHTING FIXTURES AND EQUIPHENT	(55.0200)	3645 3646 3647 3648
388	WIRING DEVICES	(55.0300)	3643 3644
389	RADIO AND TV RECEIVING SETS	(56.0100)	3651
390	PHONOGRAPH RECORDS AND TAPE	(56.0200)	3652
391	RELEPHONE AND TELEGRAPH APPARATUS	(50.0300)	3001
393	ELECTRON TURES	(57.0100)	1471 1477 1473
394	SEMICONDUCTORS AND RELATED DEVICES	(57.0200)	3674
395	ELECTRONIC COMPONENTS, N.E.C.	(57.0300)	3675 3676 3677 3678 3679
396	STORAGE BATTERIES	(58.0100)	3691
397	PRIMARY BATTERIES, DRY AND WET	(58.0200)	3692
398	X-RAY APPARATUS AND TUBES	(58.0300)	3693
200	ENGINE ELECTRICAL EQUIPHENT	(38.0400)	3676
401	TRUCK AND BUS BODIES	(59.0100)	3713
402	TRUCK TRAILERS	(59.0200)	3715
403	MOTOR VEHICLES	(59.0301)	3711
404	MOTOR VEHICLE PARTS AND ACCESSORIES	(59.0302)	3714
405	AIRCRAFT	(60.0100)	3721
406	AIRCRAFT AND MISSILE ENGINES AND PARTS	(60.0200)	3724 3764
407	AIRCRAFT AND MISSILE EQUIPMENT, N.E.C.	(60.0400)	3728 3769
400	BOAT BUILDING AND REPAIRING	(61.0100)	3/31
410	RAILROAD FOULPMENT	(61.0200)	3732
411	NOTORCYCLES, SICYCLES, AND PARTS	(61.0500)	3750
412	TRAVEL TRAILERS AND CAMPERS	(61.0601)	3792
413	MOBILE HOMES	(61.0602)	2451
414	NOTOR HOMES	(61.0603)	3716
415	TRANSPORTATION EQUIPMENT, N.E.C.	(61.0700)	3799
410	ENGINEERING AND SCIENTIFIC INSTRUMENTS	(62.0100)	3811
418	AUTOMATIC TEMPERATURE CONTROLS	(62.0200)	3063 3064 3067 1877
419	SURGICAL AND MEDICAL INSTRUMENTS	(62.0600)	3841
420	SURGICAL APPLIANCES AND SUPPLIES	(62.0500)	3842
421	DENTAL EQUIPMENT AND SUPPLIES	(62.0600)	3843
422	WATCHES, CLOCKS, AND PARTS	(62.0700)	3870
423	OPTICAL INSTRUMENTS AND LENSES	(63.0100)	3830
424	OPHINALNIC GOODS	(63.0200)	3850
426	JENELBY DECLORE METAL		3000 1011
427	JEVELERS MATERIALS AND LAPIDARY WORK	(64.0102)	3015
428	SILVERWARE AND PLATED WARE	(64.0104)	3914
429	COSTUME JEWELERY	(64.0105)	3961
430	MUSICAL INSTRUMENTS	(64.0200)	3930
431	GAMES, TOYS, AND CHILDRENS VEHICLES	(64.0301)	3944
432		(64.0302)	3942
433	SPORTING AND ATHLETIC GOODS, N.E.C.	(64.0400)	3949
435	IFAD PENCILS AND ART COORS	(04.0501)	373 I 1053
436	MARKING DEVICES	(64.0503)	1051
437	CARBON PAPER AND INKED RIBBONS	(64.0504)	3955
438	ARTIFICIAL TREES AND FLOWERS	(64.0600)	3962
439	BUTTONS	(64.0701)	3963
440	NEEDLES, PINS, AND FASTENERS	(64.0702)	3964
441	BROOMS AND BRUSHES	(64.0800)	3991
442	HARD SURFACE FLOOR COVERINGS	(64.0900)	366
443	BURIAL LASKETS AND VAULTS	(64.1000)	2002
445	MANUFACTURING INDUSTRIES M & C	(64.1200)	3773 1000
	Internetating imposition at 210	(04.1600)	in reality pt. of 3000
446	RAILROADS AND RELATED SERVICES	(65.0100)	4010 4040 4740
-			Also pert of 4789
447	LOCAL, INTERURBAN PASSENGER TRANSIT	(65.0200)	4110 4120 4130 4140 4150 4170

.

N•7

No.	Sector Name	SEA Commodity	Standard Industry Classification (SIC)
•••	••••••	•••••	•••••••••••
448	MOTOR FREIGHT TRANSPORT AND WAREHOUSING	(65.0300)	4210 4220 4230
			Also part of 4789
449	WATER TRANSPORTATION	(65.0400)	4410 4420 4430 4440 4450 4460
450	AIR TRANSPORTATION	(65.0500)	4510 4520 4580
451	PIPE LINES, EXCEPT NATURAL GAS	(65.0600)	4610
452	TRANSPORTATION SERVICES	(65.0701)	4710 4723 4780
			In reality pt. of 4780
453	ARRANGEMENT OF PASSENGER TRANSPORTATION	(65.0702)	4722
454	COMMUNICATIONS, EXCEPT RADIO AND TV	(66.0000)	4810 4820 4890
455	RADIO AND TV BROADCASTING	(67.0000)	4830
456	ELECTRIC SERVICES	(68.0100)	4910
			Also pert of 493
437	GAS PRODUCTION AND DISTRIBUTION	(68.0200)	4920
			Also pert of 493
428	MATER SUPPLY AND SEMERAGE SYSTEMS	(68.0301)	4940 4952
437	SANTIART SERVICES AND STEAM SUPPLY	(05.0302)	4733 4737 4960 4970
440		//D 0101>	ALSO DEFT OF 493
460	ATHER LINCLEGALE TRADE		
442	DECDEATIONAL DELATED DETAIL TRADE	(07.0102)	5010 5020 5030 5042 5050 5080 5070 5080 5090 5100
443	ATHER DETAIL TRADE	(07.0201)	2321 2301 2741 2740 2747 2740 5300 5300 5700 5510 5520 5530 5570 5570 5500 5700
		(07.0202)	5200 3300 3400 3310 3320 3330 3340 3370 3390 3600
			2/00 2710 2720 2730 2742 2743 2744 2743 2744 2760
444	BANKING	(70.0100)	5700 5770 /370 QUAL
465	CREDIT AGENCIES	(70.0200)	4100 4710 4720 4783 4780
666	SECURITY AND COMMODITY BROKERS	(70.0300)	
467	INSURANCE CARRIERS	(70.0400)	4300
468	INSURANCE AGENTS AND BROKERS	(70.0500)	4400
469	CHNER-OCCUPIED DHELLINGS	(71.0100)	••••
470	REAL ESTATE	(71.0200)	4500 4400
-		(*********	Also pt. of 1531 . Excluding pt. of 4552
471	NOTELS AND LODGING PLACES	(72.0100)	7000
472	LAUNDRY, CLEANING AND SHOE REPAIR	(72.0201)	7210 7250
473	FUNERAL SERVICE AND CREMATORIES	(72.0202)	7260
474	PORTRAIT AND PHOTOGRAPHIC STUDIOS	(72.0203)	7220 7290
475	ELECTRICAL REPAIR SERVICES	(72.0204)	7620
476	WATCH, CLOCK, JEWELRY AND FURNITURE REPAIR	(72.0205)	7630 7640
477	BEAUTY AND BARBER SHOPS	(72.0300)	7230 7240
478	HISCELLANEOUS REPAIR SHOPS	(73.0101)	7690
479	SERVICES TO BUILDINGS	(73.0102)	7340
480	PERSONNEL SUPPLY SERVICES	(73.0103)	7360
481	COMPUTER AND DATA PROCESSING SERVICES	(73.0104)	7370
482	MANAGEMENT AND CONSULTING SERVICES	(73.0105)	7391 7392 7397
483	DETECTIVE AND PROTECTIVE SERVICES	(73.0106)	7393
484	EQUIPMENT REPAIR AND LEASING	(73.0107)	7394
48 2	PHOTOFINISHING, COMPERCIAL PHOTOGRAPHY	(73.0108)	7332 7333 7395
400	DIMER BUSINESS SERVICES	(73.0109)	7320 7331 7339 7350 7399
40/	AVVERIJJAG	(73.0200)	7310
400	LEGAL SERVICES	(73.0301)	8110
407	ENGINEERING, AKCHITECTURAL SERVICES	(73.0302)	8910
401	ACCOUNTING, ACOITING AND BOOKKEEPING	(73.0303)	8930 8990
471	ENTING AND DETRETHE PERCES	(/4.0000)	
407		/ TE 0004 .	Also pert of /0
472	AUTONOBILE REMINE AND REPUICER	(75.0001)	
101	AUTOMORTIE REPAIR AND CAR MARM	(75.0002)	7330 7349
405	NOTION PICTURES	(75.0003)	7360 7346
496	DANCE HALLS, STUDIOS AND SCHOOLS	(76.0200)	7010
497	THEATRICAL PRODUCERS, BANDS ETC.	(76.0201)	7020
498	BOWLING ALLEYS AND POOL HALLS	(76.0202)	7930
499	COMMERCIAL SPORTS EXCEPT RACING	(76.0203)	7941
500	RACING AND TRACK OPERATION	(76.0204)	7948
501	MEMBERSHIP SPORTS AND RECREATION CLIME	(76.0205)	7997
502	AMUSEMENT AND RECREATION SERVICES. NEC	(76.0207)	7992 7993 7996 7999
503	DOCTORS AND DENTISTS	(77.0100)	8010 8020 8030 8041
504	HOSPITALS	(77.0200)	8060
505	NURSING AND PROTECTIVE CARE	(77.0301)	8050
506	OTHER MEDICAL AND HEALTH SERVICES	(77.0302)	0740 8049 8070 8080 8090

N-8

No.	Sector Name	SEA Commodity	Standard Industry Classification (SIC)
•••	••••••	•••••	•••••••••••••••••••••••••••••••••••••••
507	ELEMENTARY AND SECONDARY SCHOOLS	(77,0401)	8210
508	COLLEGES, UNIVERSITIES, SCHOOLS	(77.0402)	8220
509	OTHER EDUCATIONAL SERVICES	(77.0403)	8230 8240 8290
510	RUSINESS ASSOCIATIONS	(77.0501)	8610 8620
511	LABOR AND CIVIC ORGANIZATIONS	(77.0502)	8630 8640
512	RELIGIOUS ORGANIZATIONS	(77.0503)	8440
\$13	OTHER NONPROFIT OFCANIZATIONS	(77 0504)	8400 8450 8400 4737 8027
514	RESIDENTIAL CARE	(77 0800)	
515	SOCIAL SERVICES N.E.C.	(77 0900)	8721 8700 8771 8761
516	IL C POSTAL SERVICE	(78.0100)	411
\$17	FEDERAL ELECTRIC LITILITIES	(78.0200)	
518	ATHER EELECTRIC CITETILES	(78.0200)	pert or evi
510	I OCAL COVERNMENT DARRENCER TRANSIT	(70.0400)	
317	LUCAL GUVERNMENT PASSENGER TRANSIT	(74.0100)	pert of 41
320	STATE AND LUCAL ELECTRIC UTILITIES	(79.0200)	pert of 491
521	OTHER STATE AND LOCAL GOVT ENTERPRISES	(79.0300)	••
522	NONCOMPARABLE IMPORTS	(80.0000)	••
523	SCRAP	(81.0001)	••
524	USED AND SECONDHAND GOODS	(81,0002)	••
525	GOVERNMENT INDUSTRY	(82.0000)	••
526	REST OF THE MORIO INDUSTRY	(83.0000)	
527	NOUSENOLD INDUSTRY	(84 0000)	8800
528	INVENTORY VALUETION AS NOTMENT		0000
760	THATEHICKT ANTONI NO TOSTHERT	(63.0000)	••

*Source: Alward, Gregory S. et al. (1989). Micro IMPLAN Software Manual. Appendix N. Industry Classification of the Micro-IMPLAN 528 sector Input/Output tables.

N-9

.

APPENDIX B: COMPARISON OF IMPLAN, REMI, AND CORRECTED MRIO RPCS

(Sectors in capital letters are unaggregated)

				MICHIGAN		MICH DI	FFERENCES			LAKE
MRI	0					IMPLAN	IMP-MRIO	WISCONSIN	MINNESOTA	STATES
SEC	TOF	* # NAME, CORRESPONDING IMPLAN #s	IMPLAN	remi	MRIO	- MRIO	/IMP (%)	HRIO	MRIO	MRIO
		-								
	1 0	WAIRY FARM PRODUCTS, 1	0.9839		0.9689	0.0151	2%	0.9965	0.9923	0.9912
	2ι	ivestock, 2-9	0.4423		0.5168	-0.0744	-17%	0.5419	0.9465	0.7184
	3 (Cotton, Grain, Tobacco, 10-15	0.4594		0.7706	-0.3112	-68%	0.3635	0.4712	0.5256
	4 1	lisc Crops, 16-23.26	0.5714		0.8089	-0.2374	-42%	0.5210	0.9106	0.7813
*	5 F	Forestry Products, 24	0.7272	0.97	0.3465	0.3807	52%	0.7676	0.3145	0.4719
*	6 (Commercial Fishing, 25	0.0393	0.85	0.1975	-0.1581	-402%	0.0390	0.1723	0.1415
**	71	Iron Ones Mining, 28-29	0.0006		0.4802	-0.4796	-75620%	0.0000	0.7742	0.5490
	8 1	ionferrous Ores. 30-38	0.4242		0.7405	-0.3163	-75%	0.4024	0.0944	0.5456
	9 ($\frac{1}{2}$	0.0322	0	0.0000	0.0323	100%	0.0000	0.0000	0.0000
	10	CRUDE PETROLEUM, 41	0.0429	•	0.252	-0.2102	-489%	0.0055	0.0000	0.1287
	11	Natural Gas 42-43	0.5444		0.1265	0.4180	774	0.0042	0.0000	0.0778
	12	Stone Clay Minima 44-58	0 7205		0.3872	0.3423	47%	0.5385	0.5509	0.4575
	17	Chemical Minerals 50-65	0.0010		0.0000	0.0020	1002	0.0000	0,0000	0.0000
	14	Construction 66-76	0.0017	0.87	1 0000	-0.0251	-32	1,0000	1.0000	1.0000
	20	Ondernee 77-81	0.7/77	0.2097	0.0519	-0.0519		0.0376	0 2230	0 6404
	20	Most Deaducto 92-95	0 4514	0.2907	0.7510	0.9510	724	0 2950	0.4773	0 4504
	21	President Products, 62-60	0.2004	0.3713	0.470/	-0.0059	-14	0.3079	0.7088	0.7558
	~	Denned & Farmer Farth Of CR	0.1290	0.4499	0.1354	-0.0006	- 1/6	0.1710	0.7005	0.7751
	25	Canned & Frozen Foods, 91-96	0.1000	0.30%0	0.1104	0.04/3	<i>C1</i> %	0.3030	0.2/0/	0.2751
	<i>0</i> 4 ~	Grain Hill Products, 99-105	0.3335	0.35//	0.0235	-0.2901	-0/%	0.3003	0.302	0.4/08
	0	Bakery Products, 105-107	0.7262	0.4505	0.7298	-0.0015	-0%	0.7044	0.3494	0.7004
	20 	Sugar & Confectionery, 108-111	0.4546	0.2405	0.2090	0.1856	41%	0.2000	0.1/05	0.202
	Z 7	Beverages, 112-117	0.4967	0.3558	0.5390	-0.0423	-9%	0.5518	0.7495	0.5/61
	28	Other Food Products, 118-126	0.4324	0.3198	0.2716	0.1608	37%	0.1883	0.5466	0.3308
	29	Tobacco Products, 127-130	0.0007	0.0050	0.0000	0.0008	100%	0.0000	0.0000	0.0000
	30	Fabric, Yarn, Thread, 131-134	0.0069	0.0330	0.1038	-0.0969	-1404%	0.1320	0.1218	0.1139
	31	Floor Coverings, 135-144	0.1228	0.1145	0.1711	-0.0483	-39%	0.3929	0.0368	0.2014
	32	Hosiery & Knit Goods, 145-6,150	0.0205	0.0029	0.0000	0.0205	100%	0.7138	0.5365	0.3360
	33	Apparel, 147-8,151	0.0479	0.0656	0.1104	-0.0624	-130%	0.1878	0.1670	0.1414
	34	Other Fab. Products, 149,152-9	0.6269	0.4112	0.7384	-0.1114	- 18%	0.2025	0.4206	0.6289
	35	Logging & Lunber, 160-163	0.4191	0.3548	0.2104	0.2087	50%	0.2573	0.1489	0.2125
	36	Wood Products, 164-7,9-173	0.5942	0.4397	0.3800	0.2142	36X	0.4865	0.4259	0.4277
	37	Prefab Bldg&Mbl Home,168,413	0.0053	0.2573	0.2536	-0.2482	-4616%	0.9697	0.6393	0.5608
	38	Household Furniture, 174-179	0.3936	0.1938	0.2346	0.1591	40%	0.6111	0.3123	0.3440
	39	Other Furniture, 180-186	0.8222	0.3969	0.4477	0.3746	46%	0.4809	0.2245	0.4088
**	40	Paper Products, 187-198	0.0009	0.2304	0.2519	-0.2510	-25923%	0.4362	0.3262	0.3430
	41	PAPERBOARD CONTAINERS, 199	0.7866	0.2924	0.5612	0.2254	29%	0.7124	0.8707	0.6708
	42	Newspaper, Other Printing, 200-214	0.3740	0.5751	0.5940	-0.2199	-59%	0.5439	0.5410	0.5680
	43	INDUSTRIAL CHEMICALS, 215	0.5131	0.4192	0.3431	0.1700	33%	0.2248	0.0477	0.2617
	4	Agricultural Chemicals, 216-8	0.1131	0.0333	0.3115	-0.1984	-175%	0.1457	0.1224	0.1892
	45	Other Chemicals, 219-224	0.7825	0.2722	0.0624	0.7201	92%	0.0490	0.0994	0.0652
	4	Plastics & Synthetics, 275-228	0.4865	0.3327	0.4836	0.0029	1%	0.2607	0.3204	0.4045
	47	DRUSS 229	0,1277	0.260	0.5170	-0.3001	-305%	0.1859	0,1500	0.3788
	 2.9	Comptice Cleaning Druhts 220-222	0 5547	0 1531	0.1401	0.3877	702	0.4315	0.3287	0.2718
	-0 40	DATATE AND ALLED DOMLE 22/	0 2492	0 3952	0 7287	-0	-1722	0.5414	0.2447	0.6177
	77 50	Detrolan Defining 275-720	0 2140	0 17/1	0 1190	0.0072	/5¥	0.0875	0 4395	0 2017
**	50	Deben & Mice Disseites 240-245	0.00/4	0.1/41	0.1107	-0 2274	*\^^	0.29/0	0.249/	0.24.00
~~	21	RUDDET & HISC. FLOSTICS, 240-245	0.0040	0.3000	0.2017	-0.22/1	-47046	0.2049	0.2004	0.2470
	Z	Leather & Leather Procts, 246-254	0.5489	0.1849	0.2122	0.1567	37%	0.3004	0.2304	0.5051

.

MRIO no. Name, IMPLAN sector numbers MI IMPLAN REMI MRIO IMP-MRIO DIFF/IMP% WI MRIO MN MRIO LKST MRIO

	53	Glass & Glass Procts, 255, 256	0.1997	0.3810	0.2310	-0.0313	-16%	0.1378	0.2497	0.2087
**	54	Stone & Clay Products, 257-279	0.0588	0.4581	0.7156	-0.6568	-1116%	0.7065	0.7488	0.7224
**	55	Iron & Steel Forging 280-1.3.4.6-8	0.1333	0.2656	0.3223	-0.1890	-142%	0.2146	0.1183	0.2867
**	54	IRON AND STEEL FOLMORIES 285	0.0045	0.4180	0.4539	-0.4494	-9885%	0.6325	0.6904	0.4976
	57	Primary Nonferrous Metal 289-302	0.1811	0.1344	0.2199	-0.0388	-21%	0.2413	0.1658	0.2191
	58	Metal Containers 282, 303-4, 319-29	0.3961	0.3538	0.4758	-0.0797	-20%	0.4201	0.4091	0.4520
	59	Structural Metal Process 305-14	0.1943	0.3489	0.5028	-0.3084	-159%	0.6296	0.5565	0.5516
	60	Screw Machine Products, 315-318	0.6347	0.5712	0.7820	-0.1472	-23%	0.4853	0.5348	0.7316
	61	Engines & Turbines, 330,331	0.7565	0.5671	0.4792	0.2774	37%	0.6166	0.0953	0.4887
	62	Farm & Lawn Equipment, 332,333	0.8352	0.4830	0.2315	0.6038	72%	0.4608	0.4816	0.3901
	63	Construction Wining Fault, 334-6	0.0792	0.2623	0.3355	-0.2562	-323%	0.4745	0.5067	0.4183
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Materials Handling Equip. 337-340	0.6247	0.4890	0.6131	0.0116	2%	0.5917	0.6685	0.6151
	65	Metalworking Equipment, 341-346	0.6580	0.5219	0.6626	-0.0045	-1%	0.5688	0.0251	0.6036
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Special Mechinery 347-352	0.5716	0.3257	0.1447	0.4269	75%	0.5807	0.3452	0.2937
**	67	Other Nonelect, Equipment 353-361	0.0001	0.5192	0.3172	-0.3170-	285025%	0.3813	0.4180	0.3424
	48	Office & Computing Equip 362-365	0 1962	0.1708	0.1725	0.0237	12%	0.262	0.3189	0.2419
	40	Service Mechinery 366-370	0.4410	0.4078	0 3018	0.3393	532	0.2500	0.1764	0.2766
	20	Electrical Equipment 371-378	0 31/2	0 1546	0.3078	0 0104	32	0.1279	0.1490	0.2282
	71	Harsehold Aroliance 370-395	0.2050	0.1710	0.4946	-0 2896	-1412	0.6315	0.4664	0.5284
	7	Electric Lighting 394-398	0.000	0.0587	0 1823	-0 1714	-15442	0 1981	0.0952	0.1717
	72	Electric Lighting, 300-300	0.0107	0.1906	0.0653	0.0605	61%	0 1035	0.0647	0.0794
	73	Receiving sets, records, 307,370	0 312/	0.0055	0.1101	0.0075	62%	0 1067	0 3310	0 2097
	74 75	Electronic Componento 202-205	0.3124	0.0433	0.2474	-0.0136	-57	0.1965	0 3315	0 3133
	13 74	Electronic Colponents, 395-395	0.230	0.0077	0.2250	-0.0130	- 24	0.502	0.1750	0.2637
	/0 77	Uther Electrical Equip., 390-400	0.2215	0.2/30	0.2250	-0.0055	-26	0.4572	0.0731	0.4050
	// 70	Motor venicles & Parts, 401-404	0.4375	0.4///	0.4001	-0.6774	-04	0.231	0.0001	0.3766
	10	AIKUKAFI, 400	0	0.01	0.3730	-0.2/30		0.000	0.3004	0.5/00
	-	M2	•	0.0407/	0.00/4	0.00/4		0.0000	0 2277	0 0/.99
	79	Missiles & Parts, 76, 407	0	0.21834	0.0046	-0.0046	~	0.0000	0.2273	0.0488
	79 80	Missiles & Parts, 76, 407 AIRCRAFT AND MISSILE ENG, 406	0.8083	0.21834	0.0046	-0.0046 0.7247	90X	0.0000	0.2273	0.0488
	79 80 81	Missiles & Parts, 76, 407 AIRCRAFT AND MISSILE ENG, 406 Other Transp. Equip,408-12,414-15	0 0.8083 0.1895	0.21834 0.33707 0.31751	0.0046 0.0836 0.3729	-0.0046 0.7247 -0.1834	90% -97%	0.0000 0.5166 0.1212	0.2273 0.0323 0.4715	0.0488 0.1106 0.3356
	79 80 81 82	Missiles & Parts, 76, 407 AIRCRAFT AND MISSILE ENG, 406 Other Transp. Equip,408-12,414-15 Scient.&Photo Equip,416-18,422,425	0 0.8083 0.1895 0.0664	0.21834 0.33707 0.31751 0.07801	0.0046 0.0836 0.3729 0.2866	-0.0046 0.7247 -0.1834 -0.2201	90% -97% -331%	0.0000 0.5166 0.1212 0.7046	0.2273 0.0323 0.4715 0.6522	0.0488 0.1106 0.3356 0.4591
	79 80 81 82 83	Missiles & Parts, 76, 407 AIRCRAFT AND MISSILE ENG, 406 Other Transp. Equip,408-12,414-15 Scient.&Photo Equip,416-18,422,425 Medical Equipment, 419-21,423-4	0 0.8083 0.1895 0.0664 0.3765	0.21834 0.33707 0.31751 0.07801 0.07757	0.0046 0.0836 0.3729 0.2866 0.3507	-0.0046 0.7247 -0.1834 -0.2201 0.0258	90% -97% -331% 7%	0.0000 0.5166 0.1212 0.7046 0.0593	0.2273 0.0323 0.4715 0.6522 0.4971	0.0488 0.1106 0.3356 0.4591 0.3165
	79 80 81 82 83 84	Missiles & Parts, 76, 407 AIRCRAFT AND MISSILE ENG, 406 Other Transp. Equip,408-12,414-15 Scient.&Photo Equip,416-18,422,425 Medical Equipment, 419-21,423-4 Other Manuf. Prdcts, 426-445	0 0.8083 0.1895 0.0664 0.3765 0.0640	0.21834 0.33707 0.31751 0.07801 0.07757 0.19348	0.0046 0.0836 0.3729 0.2866 0.3507 0.1073	-0.0046 0.7247 -0.1834 -0.2201 0.0258 -0.0433	90% -97% -331% 7% -68%	0.0000 0.5166 0.1212 0.7046 0.0593 0.0785	0.2273 0.0323 0.4715 0.6522 0.4971 0.3576	0.0488 0.1106 0.3356 0.4591 0.3165 0.1554
	79 80 81 82 83 84 85	Missiles & Parts, 76, 407 AIRCRAFT AND MISSILE ENG, 406 Other Transp. Equip,408-12,414-15 Scient.&Photo Equip,416-18,422,425 Medical Equipment, 419-21,423-4 Other Manuf. Prdcts, 426-445 RAILROADS AND RELATED SE, 446	0 0.8083 0.1895 0.0664 0.3765 0.0640 0.4440	0.21834 0.33707 0.31751 0.07801 0.07757 0.19348 0.295	0.0046 0.0836 0.3729 0.2866 0.3507 0.1073 0.5621	-0.0046 0.7247 -0.1834 -0.2201 0.0258 -0.0433 -0.1181	90% -97% -331% 7% -68% -27%	0.0000 0.5166 0.1212 0.7046 0.0593 0.0785 0.8452	0.2273 0.0323 0.4715 0.6522 0.4971 0.3576 1.0089	0.0488 0.1106 0.3356 0.4591 0.3165 0.1554 0.7168
	79 80 81 82 83 84 86 86 1	Missiles & Parts, 76, 407 AIRCRAFT AND MISSILE ENG, 406 Other Transp. Equip,408-12,414-15 Scient.&Photo Equip,416-18,422,425 Medical Equipment, 419-21,423-4 Other Manuf. Prdcts, 426-445 RAILRONDS AND RELATED SE, 446 Local Transit, 447, 519	0 0.8083 0.1895 0.0664 0.3765 0.0640 0.4440 0.5505	0.21834 0.33707 0.31751 0.07801 0.07757 0.19348 0.295 0.2375	0.0046 0.0836 0.3729 0.2866 0.3507 0.1073 0.5621 0.4673	-0.0046 0.7247 -0.1834 -0.2201 0.0258 -0.0433 -0.1181 0.0833	90% -97% -331% 7% -68% -27% 15%	0.0000 0.5166 0.1212 0.7046 0.0593 0.0785 0.8452 0.7999	0.2273 0.0323 0.4715 0.6522 0.4971 0.3576 1.0089 0.7999	0.0488 0.1106 0.3356 0.4591 0.3165 0.1554 0.7168 0.6501
	79 80 81 82 83 84 85 85 85 87	Missiles & Parts, 76, 407 AIRCRAFT AND MISSILE ENG, 406 Other Transp. Equip,408-12,414-15 Scient.&Photo Equip,416-18,422,425 Medical Equipment, 419-21,423-4 Other Manuf. Prdcts, 426-445 RAILROADS AND RELATED SE, 446 Local Transit, 447, 519 MOTOR FREIGHT TRANSPORT, 448	0 0.8083 0.1895 0.0664 0.3765 0.0640 0.4440 0.5505 0.3911	0.21834 0.33707 0.31751 0.07801 0.07757 0.19348 0.295 0.2375 0.46	0.0046 0.0836 0.3729 0.2866 0.3507 0.1073 0.5621 0.4673 1.0000	-0.0046 0.7247 -0.1834 -0.2201 0.0258 -0.0433 -0.1181 0.0833 -0.6089	90X -97X -331X 7X -68X -27X 15X -156X	0.0000 0.5166 0.1212 0.7046 0.0593 0.0785 0.8452 0.7999 1.0000	0.2273 0.0323 0.4715 0.6522 0.4971 0.3576 1.0089 0.7999 0.9043	0.0488 0.1106 0.3356 0.4591 0.3165 0.1554 0.7168 0.6501 0.9753
	79 80 81 82 83 84 85 85 86 87 88	Missiles & Parts, 76, 407 AIRCRAFT AND MISSILE ENG, 406 Other Transp. Equip,408-12,414-15 Scient.&Photo Equip,416-18,422,425 Medical Equipment, 419-21,423-4 Other Manuf. Prdcts, 426-445 RAILROADS AND RELATED SE, 446 Local Transit, 447, 519 MOTOR FREIGHT TRANSPORT, 448 WATER TRANSPORTATION, 449	0 0.8083 0.1895 0.0664 0.3765 0.0640 0.4440 0.5505 0.3911 0.4019	0.21834 0.33707 0.31751 0.07801 0.07757 0.19348 0.295 0.2375 0.466 0.215	0.0046 0.0836 0.3729 0.2866 0.3507 0.1073 0.5621 0.4673 1.0000 0.7873	-0.0046 0.7247 -0.1834 -0.2201 0.0258 -0.0433 -0.1181 0.0833 -0.6089 -0.3854	90% -97% -331% 7% -68% -27% 15% -156%	0.0000 0.5166 0.1212 0.7046 0.0593 0.0785 0.8452 0.7999 1.0000 1.2121	0.2273 0.0323 0.4715 0.6522 0.4971 0.3576 1.0089 0.7999 0.9043 1.2760	0.0488 0.1106 0.3356 0.4591 0.3165 0.1554 0.7168 0.6501 0.9753 1.0213
	79 80 81 82 83 84 85 85 85 85 85 85 85 85 85	Missiles & Parts, 76, 407 AIRCRAFT AND MISSILE ENG, 406 Other Transp. Equip,408-12,414-15 Scient.&Photo Equip,416-18,422,425 Medical Equipment, 419-21,423-4 Other Manuf. Prdcts, 426-445 RAILROADS AND RELATED SE, 446 Local Transit, 447, 519 MOTOR FREIGHT TRANSPORT, 448 WATER TRANSPORTATION, 449 AIR TRANSPORTATION, 450	0 0.8083 0.1895 0.0664 0.3765 0.0640 0.4440 0.5505 0.3911 0.4019 0.4227	0.21834 0.33707 0.31751 0.07801 0.07757 0.19348 0.295 0.2375 0.246 0.215 0.215	0.0046 0.0836 0.3729 0.2866 0.3507 0.1073 0.5621 0.4673 1.0000 0.7873 0.2569	-0.0046 0.7247 -0.1834 -0.2201 0.0258 -0.0433 -0.1181 0.0833 -0.6089 -0.3854 0.1659	90% -97% -331% 7% -68% -27% 15% -156% -96%	0.0000 0.5166 0.1212 0.7046 0.0593 0.0785 0.8452 0.7999 1.0000 1.2121 0.1260	0.2273 0.0323 0.4715 0.6522 0.4971 0.3576 1.0089 0.7999 0.9043 1.2760 0.4799	0.0488 0.1106 0.3356 0.4591 0.3165 0.1554 0.7168 0.6501 0.9753 1.0213 0.3105
	79 80 81 82 83 84 85 86 87 88 89 90	Missiles & Parts, 76, 407 AIRCRAFT AND MISSILE ENG, 406 Other Transp. Equip,408-12,414-15 Scient.&Photo Equip,416-18,422,425 Medical Equipment, 419-21,423-4 Other Manuf. Prdcts, 426-445 RAILROADS AND RELATED SE, 446 Local Transit, 447, 519 MOTOR FREIGHT TRANSPORT, 448 MATER TRANSPORTATION, 449 AIR TRANSPORTATION, 450 PIPE LINES, EXCEPT NAT GAS, 451	0 0.8083 0.1895 0.0664 0.3765 0.0640 0.4440 0.4440 0.45505 0.3911 0.4019 0.4227 0.4227	0.21834 0.33707 0.31751 0.07801 0.07757 0.19348 0.295 0.2375 0.246 0.215 0.215 0.325	0.0046 0.0836 0.3729 0.2866 0.3507 0.1073 0.5621 0.4673 1.0000 0.7873 0.2569 0.2733	-0.0046 0.7247 -0.1834 -0.2201 0.0258 -0.0433 -0.1181 0.0833 -0.6089 -0.3854 0.1659 0.1659	90% -97% -331% 7% -68% -27% 15% -156% -96% 39% 42%	0.0000 0.5166 0.1212 0.7046 0.0593 0.0785 0.8452 0.7999 1.0000 1.2121 0.1260 0.0000	0.2273 0.0323 0.4715 0.6522 0.4971 0.3576 1.0089 0.7999 0.9043 1.2760 0.4799 1.0000	0.0488 0.1106 0.3356 0.4591 0.3165 0.1554 0.7168 0.6501 0.9753 1.0213 0.3105 0.4207
	79 80 81 82 83 84 85 86 87 88 89 90 91	Missiles & Parts, 76, 407 AIRCRAFT AND MISSILE ENG, 406 Other Transp. Equip,408-12,414-15 Scient.&Photo Equip,416-18,422,425 Medical Equipment, 419-21,423-4 Other Manuf. Prdcts, 426-445 RAILRONDS AND RELATED SE, 446 Local Transit, 447, 519 MOTOR FREIGHT TRANSPORT, 448 WATER TRANSPORTATION, 449 AIR TRANSPORTATION, 450 PIPE LINES, EXCEPT NAT GAS, 451 Transportation Services, 452-3	0 0.8083 0.1895 0.0664 0.3765 0.640 0.4440 0.5505 0.3911 0.4019 0.4227 0.4695 0.4430	0.21834 0.33707 0.31751 0.07801 0.07757 0.19348 0.295 0.2375 0.46 0.215 0.215 0.225 0.325 0.325	0.0046 0.0836 0.3729 0.2866 0.3507 0.1073 0.5621 0.4673 1.0000 0.7873 0.2569 0.2733 0.7000	-0.0046 0.7247 -0.1834 -0.2201 0.0258 -0.0433 -0.1181 0.0833 -0.6089 -0.3854 0.1659 0.1963 -0.2570	90% -97% -331% 7% -68% -27% 15% -156% -96% 39% 42% -58%	0.0000 0.5166 0.1212 0.7046 0.0593 0.0785 0.8452 0.7999 1.0000 1.2121 0.1260 0.0000 0.6993	0.2273 0.0323 0.4715 0.6522 0.4971 0.3576 1.0089 0.7999 0.9043 1.2760 0.4799 1.0000 0.7000	0.0488 0.1106 0.3356 0.4591 0.3165 0.1554 0.7168 0.6501 0.9753 1.0213 0.3105 0.4207 0.6999
	79 80 81 82 83 84 85 86 87 88 89 90 91 92	Missiles & Parts, 76, 407 AIRCRAFT AND MISSILE ENG, 406 Other Transp. Equip,408-12,414-15 Scient.&Photo Equip,416-18,422,425 Medical Equipment, 419-21,423-4 Other Maruf. Prdcts, 426-445 RAILRONDS AND RELATED SE, 446 Local Transit, 447, 519 MOTOR FREIGHT TRANSPORT, 448 WATER TRANSPORTATION, 449 AIR TRANSPORTATION, 450 PIPE LINES, EXCEPT NAT GAS, 451 Transportation Services, 452-3 COMMLNICATIONS, EXCEPT RADIO, 454	0 0.8063 0.1895 0.0664 0.3765 0.0640 0.4440 0.4440 0.4440 0.4455 0.4019 0.4227 0.4695 0.4430 0.6292	0.21834 0.33707 0.31751 0.07801 0.07757 0.19348 0.295 0.295 0.2375 0.246 0.215 0.215 0.215 0.215 0.325 0.94063 0.395	0.0046 0.0836 0.3729 0.2866 0.3507 0.1073 0.5621 0.4673 1.0000 0.7873 0.2569 0.2733 0.7000 0.5601	-0.0046 0.7247 -0.1834 -0.2201 0.0258 -0.0433 -0.0433 -0.1181 0.0833 -0.6089 -0.3854 0.1659 0.1963 -0.2570 0.0691	90% -97% -331% 7% -68% -27% -58% -96% -96% -96% -96% -96% -58% -11%	0.0000 0.5166 0.1212 0.7046 0.0593 0.0785 0.8452 0.7999 1.0000 1.2121 0.1260 0.0000 0.6993 0.4797	0.2273 0.0323 0.4715 0.6522 0.4971 0.3576 1.0089 0.7999 0.9043 1.2760 0.4799 1.0000 0.7000 0.4995	0.0488 0.1106 0.3356 0.4591 0.3165 0.1554 0.7168 0.6501 0.9753 1.0213 0.3105 0.4207 0.6999 0.5257
	79 80 81 82 83 84 85 86 87 88 89 90 91 92 93	Missiles & Parts, 76, 407 AIRCRAFT AND MISSILE ENG, 406 Other Transp. Equip,408-12,414-15 Scient.&Photo Equip,416-18,422,425 Medical Equipment, 419-21,423-4 Other Maruf. Prdcts, 426-445 RAILRONDS AND RELATED SE, 446 Local Transit, 447, 519 MOTOR FREIGHT TRANSPORT, 448 WATER TRANSPORTATION, 449 AIR TRANSPORTATION, 450 PIPE LINES, EXCEPT NAT GAS, 451 Transportation Services, 452-3 COMUNICATIONS, EXCEPT RADIO, 454 RADIO AND TV BRONDCASTING, 455	0 0.8083 0.1895 0.0664 0.3765 0.0640 0.4640 0.5505 0.3911 0.4019 0.4227 0.4695 0.4430 0.6292 0.4926	0.21834 0.33707 0.31751 0.07801 0.07757 0.19348 0.295 0.295 0.2375 0.46 0.215 0.215 0.215 0.215 0.215 0.225 0.94063 0.395 0.395	0.0046 0.0836 0.3729 0.2866 0.3507 0.1073 0.5621 0.4673 1.0000 0.7873 0.2569 0.2733 0.7000 0.5601 0.4132	-0.0046 0.7247 -0.1834 -0.2201 0.0258 -0.0433 -0.1181 0.0833 -0.6089 -0.3854 0.1659 0.1963 -0.2570 0.0691 0.0794	90X -97X -331X 7X -68X -27X 15X -156X -96X 397X -58X 11X 16X	0.0000 0.5166 0.1212 0.7046 0.0593 0.0785 0.8452 0.7999 1.0000 1.2121 0.1260 0.0000 0.6993 0.4797 0.4326	0.2273 0.0323 0.4715 0.6522 0.4971 0.3576 1.0089 0.7999 0.9043 1.2760 0.4799 1.0000 0.7000 0.4995 0.4383	0.0488 0.1106 0.3356 0.4591 0.3165 0.4591 0.7168 0.6501 0.9753 1.0213 0.3105 0.4207 0.6999 0.5257 0.4236
	79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94	Missiles & Parts, 76, 407 AIRCRAFT AND MISSILE ENG, 406 Other Transp. Equip,408-12,414-15 Scient.&Photo Equip,416-18,422,425 Medical Equipment, 419-21,423-4 Other Manuf. Prdcts, 426-445 RAILROADS AND RELATED SE, 446 Local Transit, 447, 519 MOTOR FREIGHT TRANSPORT, 448 WATER TRANSPORTATION, 449 AIR TRANSPORTATION, 449 AIR TRANSPORTATION, 450 PIPE LINES, EXCEPT NAT GAS, 451 Transportation Services, 452-3 COMMUNICATIONS, EXCEPT RADIO, 454 RADIO AND TV BROADCASTING, 455 Electric Utilities,456,517,520	0 0.8083 0.1895 0.0664 0.3765 0.0640 0.5505 0.3911 0.4019 0.4227 0.4695 0.4430 0.6292 0.4430 0.6292 0.4926 0.5260	0.21834 0.33707 0.31751 0.07801 0.07757 0.19348 0.275 0.2375 0.2375 0.246 0.215 0.215 0.215 0.215 0.215 0.215 0.325 0.94063 0.395 0.865	0.0046 0.0836 0.3729 0.2866 0.3507 0.1073 0.5621 0.4673 1.0000 0.7873 0.2569 0.2733 0.7000 0.5601 0.5601 0.4132 0.9653	-0.0046 0.7247 -0.1834 -0.2201 0.0258 -0.0433 -0.1181 0.0833 -0.6089 -0.3854 0.1659 0.1963 -0.2570 0.0691 0.0794 -0.4392	90X -97X -331X 7X -68X -27X 15X -156X -96X -96X 397X -58X 11X 16X -83X	0.0000 0.5166 0.1212 0.7046 0.0593 0.0785 0.8452 0.7999 1.0000 1.2121 0.1260 0.0000 0.6993 0.4797 0.4326 0.7339	0.2273 0.0323 0.4715 0.6522 0.4971 0.3576 1.0089 0.7999 0.9043 1.2760 0.4799 1.0000 0.4799 1.0000 0.4995 0.4383 0.7867	0.0488 0.1106 0.3356 0.4591 0.3165 0.4591 0.554 0.6501 0.9753 1.0213 0.3105 0.4207 0.5257 0.4236 0.8655
	79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95	Missiles & Parts, 76, 407 AIRCRAFT AND MISSILE ENG, 406 Other Transp. Equip,408-12,414-15 Scient.&Photo Equip,416-18,422,425 Medical Equipment, 419-21,423-4 Other Manuf. Prdcts, 426-445 RAILROADS AND RELATED SE, 446 Local Transit, 447, 519 MOTOR FREIGHT TRANSPORT, 448 MATER TRANSPORTATION, 449 AIR TRANSPORTATION, 450 PIPE LINES, EXCEPT NAT GAS, 451 Transportation Services, 452-3 COMMLNICATIONS, EXCEPT RADIO, 454 RADIO AND TV BROADCASTING, 455 Electric Utilities,456,517,520 GAS PRODUCTION & DISTRIBUTION, 457	0 0.8083 0.1895 0.0664 0.3765 0.0640 0.4400 0.5505 0.3911 0.4019 0.4227 0.4695 0.4430 0.6292 0.4430 0.6292 0.5260 0.5540	0.21834 0.33707 0.31751 0.07801 0.07757 0.19348 0.295 0.2375 0.246 0.215 0.215 0.215 0.215 0.215 0.325 0.94063 0.395 0.85 0.9685 0.9523	0.0046 0.0836 0.3729 0.2866 0.3507 0.1073 0.5621 0.4673 1.0000 0.7873 0.2569 0.2733 0.7000 0.5601 0.4132 0.9653 0.9465	-0.0046 0.7247 -0.1834 -0.2201 0.0258 -0.0433 -0.1181 0.0833 -0.6089 -0.3854 0.1659 0.1963 -0.2570 0.0691 0.0794 -0.4392 -0.3355	90X -97X -331X 7X -68X -27X 15X -96X 39X 42X -58X 11X 16X -83X -59X	0.0000 0.5166 0.1212 0.7046 0.0593 0.0785 0.8452 0.7999 1.0000 1.2121 0.1260 0.0000 0.6993 0.4797 0.4326 0.7339 0.9539	0.2273 0.0323 0.4715 0.6522 0.4971 0.3576 1.0089 0.7999 0.9043 1.2760 0.4799 1.0000 0.4799 1.0000 0.4795 0.4383 0.7867 0.9745	0.0488 0.1106 0.3356 0.4591 0.3165 0.4591 0.7168 0.6501 0.9753 1.0213 0.3105 0.4207 0.4236 0.8655 0.9525
	79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96	Missiles & Parts, 76, 407 AIRCRAFT AND MISSILE ENG, 406 Other Transp. Equip,408-12,414-15 Scient.&Photo Equip,416-18,422,425 Medical Equipment, 419-21,423-4 Other Manuf. Prdcts, 426-445 RAILRONDS AND RELATED SE, 446 Local Transit, 447, 519 MOTOR FREIGHT TRANSPORT, 448 WATER TRANSPORTATION, 450 PIPE LINES, EXCEPT NAT GAS, 451 Transportation Services, 452-3 COMMUNICATIONS, EXCEPT RADIO, 454 RADIO AND TV BRONDCASTING, 455 Electric Utilities,456,517,520 GAS PRODUCTION & DISTRIBUTION, 457 Water Supply & Sanitary Svcs, 458-1	0 0.8083 0.1895 0.0664 0.3765 0.4440 0.4440 0.4440 0.4440 0.4419 0.4019 0.4227 0.4695 0.4430 0.6292 0.4926 0.5940 90.6156	0.21834 0.33707 0.31751 0.07801 0.07757 0.19348 0.295 0.2375 0.246 0.215 0.215 0.215 0.215 0.215 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.355 0.355 0.355 0.9685 0.9523 0.7069	0.0046 0.0836 0.3729 0.2866 0.3507 0.1073 0.5621 0.4673 1.0000 0.7873 0.2569 0.2733 0.2569 0.2733 0.7000 0.5601 0.4132 0.9465 1.0000	-0.0046 0.7247 -0.1834 -0.2201 0.0258 -0.0433 -0.0433 -0.1181 0.0833 -0.6089 -0.3854 0.1659 0.1963 -0.2570 0.0691 0.0794 -0.4392 -0.3525 -0.3843	90X -97X -331X 7X -68X -27X 15X -156X -96X 397X 42X -58X 11X 16X -59X -62X	0.0000 0.5166 0.1212 0.7046 0.0593 0.0785 0.8452 0.7999 1.0000 1.2121 0.1250 0.0000 0.6993 0.4797 0.4326 0.7339 0.9539 1.0000	0.2273 0.0323 0.4715 0.6522 0.4971 0.3576 1.0089 0.7999 0.9043 1.2760 0.4799 1.0000 0.4799 1.0000 0.4795 0.4383 0.7867 0.9745 1.0000	0.0488 0.1106 0.3356 0.4591 0.3165 0.4591 0.7168 0.6501 0.9753 1.0213 0.3105 0.4207 0.6999 0.5257 0.4236 0.8655 0.9525 1.000
	79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97	Missiles & Parts, 76, 407 AIRCRAFT AND MISSILE ENG, 406 Other Transp. Equip,408-12,414-15 Scient.&Photo Equip,416-18,422,425 Medical Equipment, 419-21,423-4 Other Maruf. Prdcts, 426-445 RAILRONDS AND RELATED SE, 446 Local Transit, 447, 519 MOTOR FREIGHT TRANSPORT, 448 WATER TRANSPORTATION, 449 AIR TRANSPORTATION, 450 PIPE LINES, EXCEPT NAT GAS, 451 Transportation Services, 452-3 COMMUNICATIONS, EXCEPT RADIO, 454 RADIO AND TV BROADCASTING, 455 Electric Utilities,456,517,520 GAS PRODUCTION & DISTRIBUTION, 457 Water Supply & Sanitary Svcs, 458-9	0 0.8063 0.1895 0.0664 0.3765 0.0640 0.4440 0.5505 0.3911 0.4019 0.4227 0.4695 0.4430 0.6292 0.4926 0.5260 0.5940 90.6156 0.0420	0.21834 0.33707 0.31751 0.07801 0.07757 0.19348 0.295 0.2375 0.246 0.215 0.215 0.215 0.215 0.325 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.3550000000000	0.0046 0.0836 0.3729 0.2866 0.3507 0.1073 0.5621 0.4673 1.0000 0.7873 0.2569 0.2733 0.7000 0.5601 0.4132 0.9653 0.9465 1.0000 0.6274	-0.0046 0.7247 -0.1834 -0.2201 0.0258 -0.0433 -0.1181 0.0833 -0.6089 -0.3854 0.1659 0.1963 -0.2570 0.0691 0.0794 -0.4392 -0.3525 -0.3843 -0.5854	90% -97% -331% 7% -68% -27% -156% -96% -96% -96% -96% -85% -85% -62% -139%	0.0000 0.5166 0.1212 0.7046 0.0593 0.8452 0.7399 1.0000 1.2121 0.1260 0.0000 0.6993 0.4797 0.4326 0.7339 0.9539 1.0000 0.7691	0.2273 0.0323 0.4715 0.6522 0.4971 0.3576 1.0089 0.7999 0.9043 1.2760 0.4799 1.0000 0.4799 1.0000 0.4995 0.4383 0.7867 0.9745 1.0000 0.9955	0.0488 0.1106 0.3356 0.4591 0.3165 0.1554 0.7168 0.6601 0.9753 1.0213 0.3105 0.4207 0.6999 0.5257 0.4236 0.8655 0.9525 1.0000 0.7321
	79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98	Missiles & Parts, 76, 407 AIRCRAFT AND MISSILE ENG, 406 Other Transp. Equip,408-12,414-15 Scient.&Photo Equip,416-18,422,425 Medical Equipment, 419-21,423-4 Other Manuf. Prdcts, 426-445 RAILRONDS AND RELATED SE, 446 Local Transit, 447, 519 MOTOR FREIGHT TRANSPORT, 448 WATER TRANSPORTATION, 449 AIR TRANSPORTATION, 450 PIPE LINES, EXCEPT NAT GAS, 451 Transportation Services, 452-3 COMMUNICATIONS, EXCEPT RADIO, 454 RADIO AND TV BRONDCASTING, 455 Electric Utilities,456,517,520 GAS PRODUCTION & DISTRIBUTION, 457 Water Supply & Sanitary Svcs, 458-5 Wholesale Trade, 460,461 EATING AND DRINKING PLACES, 491	0 0.8063 0.1895 0.0664 0.3765 0.0640 0.4440 0.5505 0.3911 0.4019 0.4227 0.4695 0.4430 0.4226 0.4430 0.6292 0.4926 0.5560 0.5540 0.5540 0.0420 0.6020	0.21834 0.33707 0.31751 0.07801 0.07757 0.19348 0.2375 0.2375 0.246 0.215 0.215 0.215 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.9665 0.9523 0.7069 0.909 0.7575	0.0046 0.0836 0.3729 0.2866 0.3507 0.1073 0.5621 0.4673 1.0000 0.7873 0.2569 0.2733 0.7000 0.5601 0.4132 0.9653 1.0000 0.6274 0.8901	-0.0046 0.7247 -0.1834 -0.2201 0.0258 -0.0433 -0.04333 -0.6089 -0.3854 0.1659 0.1963 -0.2570 0.0691 0.0794 -0.3525 -0.3843 -0.5854 -0.2880	90X -97X -331X 7X -68X -27X 15X -96X -96X -96X -96X -96X -96X -96X -96	0.0000 0.5166 0.1212 0.7046 0.0593 0.8452 0.7999 1.0000 1.2121 0.1250 0.0000 0.6993 0.4797 0.4326 0.7399 0.9539 1.0000 0.7691 0.9000	0.2273 0.0323 0.4715 0.6522 0.4971 0.3576 1.0089 0.7999 0.9043 1.2760 0.4799 1.0000 0.4799 1.0000 0.4995 0.4383 0.7867 0.9745 1.0000 0.9955 0.9000	0.0488 0.1106 0.3356 0.4591 0.3165 0.4591 0.7168 0.6601 0.9753 1.0213 0.4207 0.6999 0.5257 0.4236 0.8655 0.9525 1.0000 0.7521 0.8950
. 99	798888888888999999999999999999	Missiles & Parts, 76, 407 AIRCRAFT AND MISSILE ENG, 406 Other Transp. Equip,408-12,414-15 Scient.&Photo Equip,416-18,422,425 Medical Equipment, 419-21,423-4 Other Maruf. Prdcts, 426-445 RAILRONDS AND RELATED SE, 446 Local Transit, 447, 519 MOTOR FREIGHT TRANSPORT, 448 WATER TRANSPORTATION, 449 AIR TRANSPORTATION, 450 PIPE LINES, EXCEPT NAT GAS, 451 Transportation Services, 452-3 COMUNICATIONS, EXCEPT RADIO, 454 RADIO AND TV BRONDCASTING, 455 Electric Utilities,456,517,520 GAS PRODUCTION & DISTRIBUTION, 457 Wholesale Trade, 460,461 EATING AND DRINKING PLACES, 491 2 Other Retail Trade, 462-463	0 0.8063 0.1895 0.0664 0.3765 0.0640 0.5505 0.3911 0.4019 0.4227 0.4695 0.4430 0.4226 0.4430 0.5260 0.5260 0.5940 90.6156 0.0420 0.6020 0.5002	0.21834 0.33707 0.31751 0.07801 0.07757 0.19348 0.295 0.2375 0.246 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.2463 0.395 0.395 0.395 0.395 0.395 0.395 0.7069 0.909 0.7575 0.8455	0.0046 0.0836 0.3729 0.2866 0.3507 0.1073 0.5621 0.4673 1.0000 0.7873 0.2569 0.2733 0.7000 0.5601 0.4132 0.9653 1.0000 0.6274 0.8901 0.9469	-0.0046 0.7247 -0.1834 -0.2201 0.0258 -0.0433 -0.1181 0.0833 -0.6089 -0.3854 0.1659 0.1963 -0.2570 0.0691 0.0794 -0.4392 -0.3525 -0.3843 -0.5854 -0.2880 -0.4467	90X -97X -331X 7X -68X -27X 15X -156X -96X -96X -96X -96X -58X 11X -58X -58X -58X -59X -62X -1393X -62X -85X -85X	0.0000 0.5166 0.1212 0.7046 0.0593 0.0785 0.8452 0.7999 1.0000 1.2121 0.1260 0.0000 0.6993 0.4797 0.4326 0.7399 0.9539 1.0000 0.7691 0.9000 0.9288	0.2273 0.0323 0.4715 0.6522 0.4971 0.3576 1.0089 0.7999 0.9043 1.2760 0.4799 1.0000 0.4799 1.0000 0.4995 0.4383 0.7867 0.9745 1.0000 0.9955 0.9000 0.9425	0.0488 0.1106 0.3356 0.4591 0.3165 0.4591 0.554 0.6501 0.9753 1.0213 0.3105 0.4207 0.4236 0.4237 0.4236 0.8655 0.9525 1.0000 0.7321 0.8950 0.9425
99	798888888888999999999999999999999991010	Missiles & Parts, 76, 407 AIRCRAFT AND MISSILE ENG, 406 Other Transp. Equip,408-12,414-15 Scient.&Photo Equip,416-18,422,425 Medical Equipment, 419-21,423-4 Other Manuf. Prdcts, 426-445 RAILROADS AND RELATED SE, 446 Local Transit, 447, 519 MOTOR FREIGHT TRANSPORT, 448 WATER TRANSPORTATION, 449 AIR TRANSPORTATION, 450 PIPE LINES, EDCEPT NAT GAS, 451 Transportation Services, 452-3 COMMUNICATIONS, EXCEPT RADIO, 454 RADIO AND TV BROADCASTING, 455 Electric Utilities,456,517,520 GAS PRODUCTION & DISTRIBUTION, 457 Water Supply & Sanitary Svcs, 458-4 Unolesale Trade, 460,461 EATING AND DRINKING PLACES, 491 2 Other Retail Trade, 462-463 3 Banking, Credit Agencies, 464-466	0 0.8083 0.1895 0.0664 0.3765 0.0640 0.4400 0.5505 0.3911 0.4019 0.4227 0.4695 0.4430 0.4226 0.4430 0.4226 0.4430 0.5260 0.5402 0.5940 90.6156 0.0420 0.5002 0.5002 0.5952	0.21834 0.33707 0.31751 0.07801 0.07757 0.19348 0.295 0.2375 0.245 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.2463 0.395 0.395 0.395 0.365 0.9685 0.9685 0.7059 0.7059 0.8555 0.8455 0.8573	0.0046 0.0836 0.3729 0.2866 0.3507 0.1073 0.5621 0.4673 1.0000 0.7873 0.2569 0.2733 0.7000 0.5601 0.4132 0.9653 1.0000 0.6274 0.9465 1.0000 0.6274 0.9901 0.9469 0.5512	-0.0046 0.7247 -0.1834 -0.2201 0.0258 -0.0433 -0.1181 0.0833 -0.6089 -0.3854 0.1659 0.1859 0.1963 -0.2570 0.0691 0.0794 -0.4392 -0.3525 -0.3843 -0.5854 -0.2880 -0.4467 0.0440	90X -97X -531X -68X -27X 156X -27X -156X -27X -156X -27X -258X -58X -58X -58X -58X -62X -62X -62X -637X -637X -637X -637X -637X -637X -27X -27X -27X -27X -27X -27X -27X -2	0.0000 0.5166 0.1212 0.7046 0.0593 0.0785 0.8452 0.7999 1.0000 1.2121 0.1260 0.0000 0.6993 0.4797 0.4326 0.7339 0.9539 1.0000 0.7691 0.9000 0.9288 0.5701	0.2273 0.0323 0.4715 0.6522 0.4971 0.3576 1.0089 0.7999 0.9043 1.2760 0.4799 1.0000 0.4795 0.4383 0.7000 0.4995 0.4383 0.7867 0.9745 1.0000 0.9955 0.9000 0.9425 0.6665	0.0488 0.1106 0.3356 0.4591 0.3165 0.4591 0.554 0.6501 0.9753 1.0213 0.3105 0.4207 0.5257 0.4236 0.8555 0.9525 1.0000 0.7321 0.8950 0.9425 0.5831
99	79 88 88 88 88 88 89 99 99 99 99 99 99 99	Missiles & Parts, 76, 407 AIRCRAFT AND MISSILE ENG, 406 Other Transp. Equip,408-12,414-15 Scient.&Photo Equip,416-18,422,425 Medical Equipment, 419-21,423-4 Other Manuf. Prdcts, 426-445 RAILROADS AND RELATED SE, 446 Local Transit, 447, 519 MOTOR FREIGHT TRANSPORT, 448 WATER TRANSPORTATION, 449 AIR TRANSPORTATION, 449 AIR TRANSPORTATION, 450 PIPE LINES, EXCEPT NAT GAS, 451 Transportation Services, 452-3 COMMUNICATIONS, EXCEPT RADIO, 454 RADIO AND TV BROADCASTING, 455 Electric Utilities,456,517,520 GAS PRODUCTION & DISTRIBUTION, 457 Water Supply & Sanitary Svcs, 458-5 Wholesale Trade, 460,461 EATING AND DRINKING PLACES, 491 2 Other Retail Trade, 462-463 3 Banking, Credit Agencies, 464-466 4 Insurance, 467-468	0 0.8083 0.1895 0.0664 0.3765 0.0640 0.5505 0.3911 0.4019 0.4227 0.4695 0.4430 0.6292 0.4526 0.5260 0.5260 0.5540 90.6156 0.0420 0.5002 0.5002 0.5952 0.4909	0.21834 0.33707 0.31751 0.07801 0.07757 0.19348 0.2275 0.2375 0.246 0.215 0.215 0.215 0.215 0.325 0.325 0.3465 0.395 0.395 0.395 0.395 0.395 0.365 0.9685 0.909 0.7575 0.8455 0.8455 0.8657 0.8573 0.5120	0.0046 0.0836 0.3729 0.2866 0.3507 0.1073 0.5621 0.4673 1.0000 0.7873 0.2569 0.2733 0.7000 0.5601 0.4132 0.9653 0.9465 1.0000 0.6274 0.8901 0.9469 0.5512 0.5702	-0.0046 0.7247 -0.1834 -0.2201 0.0258 -0.0433 -0.1181 0.0833 -0.6089 -0.3854 0.1659 0.1963 -0.2570 0.0691 0.0794 -0.4392 -0.3525 -0.3843 -0.5854 -0.2880 -0.4467 0.0440 -0.0793	90X -97X -331X -68X -27X 156X -27X -156X -27X -25X -25X -25X -25X -25X -25X -25X -25	0.0000 0.5166 0.1212 0.7046 0.0593 0.0785 0.8452 0.7999 1.0000 1.2121 0.1260 0.0000 0.6993 0.4797 0.4326 0.7339 0.9539 1.0000 0.7691 0.9000 0.9288 0.5701 0.7057	0.2273 0.0323 0.4715 0.6522 0.4971 0.3576 1.0089 0.7999 0.9043 1.2760 0.4799 1.0000 0.4799 1.0000 0.4795 0.4383 0.7867 0.9745 1.0000 0.9955 0.9000 0.9425 0.6665 0.7116	0.0488 0.1106 0.3356 0.4591 0.3165 0.4591 0.554 0.6501 0.9753 1.0213 0.3105 0.4207 0.5257 0.4236 0.8655 0.9525 1.0000 0.7321 0.8950 0.9425 0.5831 0.6398

•

MRIO no. Name, IMPLAN sector numbers MI IMPLAN REMI MRIO IMP-MRIO DIFF/IMPX WI MRIO MN MRIO LKST MRIO

	106 HOTELS AND LODGING PLACE, 471	0.6251	0.118	0.7232	-0.0980	-16%	0.7754	0.7302	0.7386
	107 Personal, Repair Svcs, 472-77	0.6111	0.8524	0.9000	-0.2888	-47%	0.8226	0.8823	0.8761
##	108 Misc. Svcs & Advertising, 478-487	' O	0.8833	0.7316	-0.7316		0.6634	0.7998	0.7301
##	109 Misc. Professional Svcs, 488-490	0	0.9616	0.8014	-0.8014		0.6490	0.7670	0.7551
	110 Auto Rental, Repair, 492-494	0.2554	0.9401	0.8784	-0.6230	-244%	0.8995	0.9000	0.8877
	111 Amusements, 495-502	0.7021	0.6003	0.8366	-0.1345	- 19%	0.8364	0.8487	0.8393
	112 DOCTORS AND DENTISTS, 503	1.0000	0.9699	0.9500	0.0500	5%	0.9252	0.9500	0.9437
	113 Hospitals, 504, 505	0.9840	0.9596	0.9000	0.0841	9%	0.9000	0.8892	0.8977
	114 OTHER MEDICAL AND HEALTH, 506	0.9945	0.9747	0.9000	0.0945	10%	0.6530	0.6399	0.7761
	115 Educational Services, 507-509	1	0.4001	0.7734	0.2266	23%	0.7941	0.7910	0.7840
	116 Nonprofit Organizations, 510-513	0.9560	0.8459	0.7990	0.1571	16X	0.7363	0.7991	0.7818
	117 Other Social Services, 514, 515	1.0000	0.9512	1.0000	0.0000	CK.	1.0000	1.0000	1.0000
	118 Fed Govt. Enterprises,516,518	0.9635		0.5612	0.4023	42%	0.7279	0.7501	0.6475
	119 OTHER STATE AND LOCAL GOV, 521	0.9488		1.0000	-0.0511	-5%	1.0000	1.0000	1.0000
	120 NONCOMPARABLE IMPORTS, 522	0.0002		1.0000	-0.9998-4	418708%	1.0000	1.0000	1.0000
	121 SCRAP & SECONDHAND GOODS, 523-4	0.9698		0.3222	0.6477	67%	0.2011	0.3106	0.2954
	122 GOVERNMENT INDUSTRY, 525	0.9803		1.0000	-0.0197	-2%	1.0000	1.0000	1.0000
	123 HOUSEHOLD INDUSTRY, 527	0.9999		1.0000	-0.0000	-0%	1.0000	1.0000	1.0000
	weighted averages for RPCs:	0.4378	0.5822	0.5772	-0.1394	-32%	0.6422	0.6460	0.5971
	unweighted averages for RPCs:	0.4256	0.4219	0.4930	-0.0674	-16%	0.4964	0.5030	0.5052

* signifies imperfect REMI comparison (REMI RPCs are not available for sectors left blank)

** signifies sectors for which IMPLAW's Michigan RPCs are zero or near zero
despite sizeable SDP ratios

,

APPENDIX C: ALTERNATIVE LAKE STATE RPCS AND RPCS USED AS GUIDES FOR THE ESTIMATION OF THE LAKE STATE RPCS

IMPL	AN						MICHIGAN	RPCS	UNCHED	IMPLAN	
SECT	OR					UNCHNOD	UNCHED	1983	MINN	WISC	LICST
No.	SECTOR NAME	<u>902</u>	FLRLK	ALTFLRLK	<u>BSTLK</u>	INPLAN	INPLAN	REMI	RPCs	<u>RPCs</u>	MRIO
1	Dairy Farm Prdcts	1	0.9840	0.9840	0.9994	0.9994	0.9840		0.9966	0.9987	0.9912
2	Poultry & Eggs	0.8132	0.4750	0.4750	0.8132	0.8132	0.4750		0.9245	0.8501	0.7184
3	Ranch Fed Cattle	1	0.4255	0.4255	0.9300	0.9300	0.4255		0.9690	0.9627	0.7184
4	Range Fed Cattle	1	0.4066	0.4066	0.9282	0.9282	0.4066		0.9690	0.9603	0.7184
5	Cattle Feedlots	0.4935	0.2748	0.2748	0.4935	0.4935	0.3898		0.7893	0.2748	0.7184
6	Sheep,Lambs, and Goets	0.5476	0.3003	0.3003	0.5476	0.5476	0.3825		0.8853	0.3003	0.7184
7	Hogs,Pigs,& Swine	1	0.5147	0.5147	0.9569	0.9569	0.5147		0.9856	0.6707	0.7184
8	Other Meet Animals	0.8241	0.5371	0.5371	0.8241	0.8241	0.5371		0.8207	0.8837	0.7184
9	Misc Livestock	0.8255	0.4834	0.4834	0.8255	0.8255	0.4834		0.6011	0.8998	0.7184
10	Cottan	0	0	0	0	0	0		0	0	0.5256
11	Food Grains	0.5161	0.1086	0.1086	0.5161	0.5161	0.2491		0.6646	0.1086	0.5256
12	Feed Grains	1	0.5256	0.5256	0.7220	0.7220	0.5379		0.7170	0.5964	0.5256
13	Hay & Pasture	0.9113	0.5184	0.5184	0.7661	0.7661	0.5184		0.6927	0.7414	0.5256
14	Grass Seeds	0.2804	0.0742	0.0742	0.2804	0.2804	0.0967		0.5013	0.0742	0.5256
15	Tobacco	1	0	0	0.2453	0.2453	0		0	0.3272	0.5256
16	Fruits	0.4158	0.0488	0.0488	0.4158	0.4158	0.5418		0.0488	0.3758	0.7813
17	Tree Nuts	0	0	0	0	0	0		0	0	0.7813
18	Vegetables	0.9391	0.6952	0.6952	0.7253	0.7253	0.6977		0.6952	0.7429	0.7813
19	Suger Crops	1	0.0285	0.0285	0.9198	0.9198	0.8131		0.9775	0.0285	0.7813
20	Misc Crops	0.5937	0.3218	0.3218	0.5937	0.5937	0.4976		0.8130	0.3218	0.7813
21	Oil Bearing Crops	1	0.3915	0.3915	0.8487	0.8487	0.5252		0.9614	0.3915	0.7813
22	Forest Procts	0	0	0	0	0	0		0	0	0.7813
23	Greenhouse & Nursery Pr	0.7626	0.4446	0.4446	0.6807	0.6807	0.7553		0.4446	0.5263	0.7813
24	Forestry Prdcts	0.7552	0.2550	0.2550	0.7552	0.7559	0.7272	0.96	0.2550	0.7772	0.4719
25	Commercial Fishing	0.0322	0.0237	0.0237	0.0322	0.0322	0.0393	0.96	0.0294	0.0237	0.1415
*	Aari, For, & Fish Svcs	0.674	0.2274	0.2274	0.3409	0.3409	0.2274	0.72	0.4262	0.4505	0.7813
27	Lanscape & Hortic Svcs	0.7546	0.2624	0.2624	0.3163	0.3163	0.3413	0.72	0.3396	0.2624	0.7813
28	Iron Opes	1	0.0018	0.5490	0.6000	0.0018	0.0007	0.57	0.0015	0.0001	0.5490
20	Fermal lay Ones	0.3622	0.00.0	0.1800	0.2000	0.00001	0.0002	0.57	0	0	0.5490
30		1	0.0975	0.0975	0.9617	0.9617	0.9626	0.57	0.9493	0.0975	0.5456
31	Legel & Zinc Ores	0.0263	0.07.2	0.07.12	0.0263	0.0263	0.1238	0.57	0	0	0.5456
8	Cold Ones	0 0013	0	0	0.0013	0.0013	0.0021	0.57	0	0	0.5456
x	Silver Ones	0.028	0	0	0.0280	0.0280	0.0448	0.57	0	0	0.5456
	Rewite 2 Other Alum	0.000	0	0	0	0	0	0.57	0	0	0.5456
*	Netal Minima Suce	1	0 5456	0 5456	0 00060	0.9960	0.9956	0.57	0.9974	0.9956	0.5456
x	Menor Inv Ones		0.7.20	0	0.//.00	0	0	0.57	0	0	0.5456
77	Herculy Ores Licenium Padium Vanadium	0 0005	0 0005	0.0005	0.0005	0.0005	0.0005	0.57	0	0.0008	0.5456
78	Netel Ones nor	0.000	0.000	0.000	0.000	0.0000	0.0000	0.57	0	0	0.5456
20	Anthrecite Minim	0	0	0	0	0	0	0.01	0	0	0
	Principal Principalita	0.0516	0	0	0 0218	0 0218	0 0327	0.01	0.0006	0 000	n n
40	On the Detector on	0.1397	0	0	0.0210	0.0206	0.0430	0.01	0.0000	0.0007	0.0778
41	Net rel Can	0.1203	U ^	0	0.0200	0.0200	0.54.1	0.22	0 0		0.1287
+C /7	Notural Cas I for Jah	0 3270	0 0547	0.0647	0.200	0.307	0.201	0.20	1.0547	0.1074	0.0778
• D	Nourol uns Liquids	0.23/0	0.0000	0.0003	0./100	0 4100	0.34004	0.52	0 3027	0.7774	0.4575
444 / E	Dimension Stone	U.4105 4	0./200	0.2000	0.4100	0.4100	0.047%	0.60	0 4720	0.8162	0.4575
47	Carabad & Broken Linest	0.75/1	0.4639	0.4637	0.7203	0.7503	0.70/4	0.45	0.9155	0.2400	0.4575
40	Urushed & Broken Granit	0.3041	0.0100	0.0100	0.3341	0.3041	0.0100	0.00	0.6772	0.2470	0.4575
41	urusned & Broken Stone,	0.785	0.43/3	0.43/3	0.7880	0.7000	0.4010	0.45	0.0132	0.7450	0.4575
40	CONSTRUCTION SAND & Gra	1	0.43/5	0.4373	0.9509	0.9309	0.9214	υ.Φ	0.4090	0.1009	0.47/7

SEC NO. SECTOR NAME RPC: SDP	FLRLK	ALTFLR	BSTLK	UNCHED	MI: INP	remi	nn inp	WI IMP	lk hrio
49 Industrial Sand 1	0 1378	0 1378	0 9634	0 9634	0 9728	0.65	0.1378	0.8792	0.4575
50 Bentonite 0.1203	0.15/0	0.15/0	0.1203	0.1203	0.0000	0.65	0.0289	0.8402	0.4575
51 Fire Clay 1	0	0	0.9361	0.9361	0.9663	0.65	0	0.0026	0.4575
52 Fuller's Earth 0	0	0	0	0	0	0.65	0	0	0.4575
53 Kaolin & Ball Clay 0.0003	0.0003	0.0003	0.0003	0.0003	0.0008	0.65	0	0	0.4575
54 Clay, Ceramic, & Refractor 1	0	0	0.9129	0.9129	0.9454	0.65	0	0	0.4575
55 Normetallic Minerals Sv 0.8061	0.2125	0.2125	0.8061	0.8061	0.7050	0.65	0.2125	0.69767	0.4575
56 Gypsum 0.2158	0	0	0.0069	0.0069	0.0070	0.65	0	0	0.4575
57 Talc, Soepstone, & pyrophi 0.0032	0.0032	0.0032	0.0032	0.0032	0.0062	0.65	0	0	0.4575
58 Misc Normetallic Minera 0.4429	0.0269	0.0269	0.3000	0.4429	0.6088	0.65	0.0269	0.0587	0.4575
59 Barite 0	0	0	0	0	0	0.65	0	0	0
60 Flourspar 0.0007	0.0001	0.0001	0.0001	0.0001	0.0000	0.65	0	0.00002	0
61 Potash,Soda,& Borate Mi 0	0	0	0	0	0	0.65	0	0	0
62 Phosphate Rock 0	0	0	0	0	0	0.65	0	0	0
63 Rock Salt 1	0	0.0270	0.2000	0.0270	0.0115	0.65	0.00014	0.0001	0
64 Sulfur 0.2147	0	0.0019	0.0019	0.0019	0.0012	0.65	0.00003	0.0001	0
65 Chemical, Fertilizer Min 0	0	0	0	0	0	0.65	0	0	0
66 New Res Structures 1	0.8564	0.8564	1.0000	1.0000	1.0000		1	0.8564	1
67 New Industrial & Comm B 1	0.8719	0.8719	1.0000	1.0000	1.0000		1	0.8719	1
68 New Utility Structures 1	0.7863	0.7863	1.0000	1.0000	1.0000		1	0.7863	1
69 New Highways & Streets 1	0.5971	0.5971	1.0000	1.0000	1.0000		1	0.5971	1
70 New Farm Structures 1	0.7195	0.7195	1.0000	1.0000	1.0000		0.71945	1	1
71 New Mineral Extraction 1	0.3181	0.3181	1.0000	1.0000	1.0000		0.3181	1	1
72 New Military & Norbldg 1	1.0000	1.0000	1.0000	1.0000	1.0000		1.0000	1	1
73 Maintenance & Repair, R 0.8368	0.7412	0.7412	0.8368	0.8368	0.7412		0.7900	1	1
74 Maintenance & Repair, 0 1	0.9271	0.9271	1.0000	1.0000	1.0000		1.000	0.9271	1.0000
75 Maintenance & Repair, 0 1	0	1.0000	1.0000	1.0000	1.0000		0	0	1
76 Complete Guided Missile 0	0	0	0	0	0	0	0	0	0.0485
// Ammunition,exc small ar 1	0	U	0.5000	0	0	0 44	0	0	0.0404
78 Tanks & Tank Components T	0	0	0.5000	0	0	0.04	0	0	0.6404
79 Small Arms U.U/49	0	0 5000	0 5000	0	0	0	0	0	0.6404
au Small Ann Andri Lion 1	0	0.5000	0.5000	0	0	0.01	0	0	0.6404
82 Mast Decking Diants 1	0 3400	0 3400	0 0181	0 0181	0.4472	0.01	0 0180	0 0116	0.4594
St Sausse & Other Downsi 1	0.4100	0.3000	0.9101	0.9101	0.007/2	0.41	0.0162	0.9261	0.4594
84 Poultry Dression Plants () 7628	0 1807	0 1807	0.7628	0.7628	0.1807	0.33	0.9459	0.4193	0.4594
85 Paultry & Fag Processin 1	0.1300	0.1300	0.9141	0.9141	0.1729	0.13	0.9504	0.5147	0.4594
86 Creemery Butter 1	0.0200	0.0200	0.9624	0.9624	0.8763	0.02	0.9550	0.9584	0.7558
87 Cheese, nat & processed 1	0.1392	0.1392	0.9349	0.9349	0.1392	0.16	0.9143	0.9386	0.7558
88 Condensed & Evacorated 1	0.5400	0.5400	0.9558	0.9558	0.9220	0.54	0.9513	0.9514	0.7558
89 Ice Cream & Frozen Dess 1	0.2300	0.2300	0.9180	0.9180	0.7667	0.23	0.8925	0.8980	0.7558
90 Fluid Milk 1	0.4400	0.4400	0.9438	0.9438	0.8875	0.44	0.9262	0.9329	0.7558
91 Canned & Cured Seafoods 0.0536	0	0	0.0536	0.0536	0.0302	0.00	0.0920	0.0432	0.2751
92 Carned Specialties 1	0.1746	0.1746	0.3572	0.3572	0.2379	0.34	0.2543	0.1746	0.2751
93 Canned Fruits & Vegs 1	0.1476	0.1476	0.3149	0.3149	0.1476	0.33	0.2271	0.2209	0.2751
94 Dehydrated Food Procts 0.5585	0	0.2750	0.3357	0.3357	0.2235	0.00	0.1473	0.2293	0.2751
95 Pickles, Sauces, & Salad D 0.9826	0.1820	0.1820	0.3640	0.3640	0.2386	0.40	0.1820	0.233	0.2751
96 Fresh or Frozen Pckgd F 0.0982	0.0449	0.0449	0.0983	0.0983	0.0449	0.06	0.0659	0.1027	0.2751
97 Froz Fruits, Juices, &Veg 1	0.1738	0.1738	0.2978	0.2978	0.1847	0.27	0.1937	0.1738	0.2751
98 Frozen Specialties 1	0.1915	0.1915	0.4181	0.4181	0.1915	0.29	0.3574	0.2543	0.2751

sec no.	SECTOR NAME	RPC:	SDP	FLRLK	ALTFLR	BSTLK	UNCHED	MI: IMP	REMI	NN IMP	WI IMP	LK HRIO
99 FLo	ur & Other Grain	Mil	1	0.4071	0.4071	0.625	0.6225	0.4491	0.48	0.5310	0.4071	0.4708
100 Cer	eal Preserations		1	0.0830	0.0830	0.7076	0.7076	0.6221	0.44	0.5365	0.0830	0.4708
101 Ble	nded & Prepared F	้เฉม	1	0,1800	0,1800	0.6109	0.6109	0.4956	0.18	0.4602	0.4052	0.4708
102 Dog	.Cat.&Other Pet F	iaad 0.	8095	0,1500	0,1500	0.5432	0.5432	0.1516	0.15	0.4037	0.4141	0.4708
103 Pre	cared Feeds.nec	0	.506	0.2600	0.2600	0.5060	0.5060	0.2958	0.26	0.4380	0.4072	0.4708
104 Ric	e Milling	0.	2264	0	0	0.2264	0.2264	0.0038	0.00	0.3698	0.0011	0.4708
105 Wet	Corn Milling	0.	1072	0	0	0.1072	0.1072	0.1840	0.00	0.1136	0.0299	0.4708
106 Bre	ad,Cake,&Related	Prd 0.	6961	0.3700	0.3700	0.6961	0.6961	0.6485	0.37	0.5975	0.8834	0.7064
107 Coo	kies & Crackers	0.	6861	0.2427	0.2427	0.6861	0.6861	0.9891	0.30	0.2427	0.4743	0.7064
108 Sug	ar	0.	7143	0.0874	0.0874	0.5000	0.7143	0.4650	0.10	0.8139	0.0874	0.2502
109 Con	fectionery rdcts	0.	7664	0.2502	0.2502	0.5000	0.7664	0.4417	0.29	0.9842	0.7978	0.2502
110 Cho	colate & Cocoa Pr	det 0.	5505	0.0000	0.2700	0.4000	0.5505	0.1413	0.00	0.3890	0.7599	0.2502
111 Che	wing Gum		1	0.1200	0.1200	0.6000	0.9855	0.9825	0.12	0.1771	0.1860	0.2502
112 Mal	t Liquor		1	0.5300	0.5300	0.7664	0.7664	0.6406	0.53	0.5319	0.6847	0.5761
113 Mal	t		1	0.1158	0.1158	0.7500	0.8763	0.1158	0.13	0.7889	0.8364	0.5761
114 Win	es,Brandy,& Brand	y s 0.	1336	0.025	0.0225	0.1336	0.1389	0.2127	0.09	0.0225	0.1103	0.5761
115 Dis	tilled Liquor,exc	Br O.	3077	0.0887	0.0887	0.3077	0.3133	0.4102	0.43	0.0887	0.0929	0.5761
116 Bot	tled & Canned Sof	t D	1	0.4300	0.4300	0.6697	0.6697	0.5111	0.43	0.5350	0.5104	0.5761
117 Fla	voring Extracts &	sy 0.	6241	0.1100	0.1100	0.6241	0.6241	0.5239	0.11	0.5355	0.3473	0.5761
118 Cot	tonseed Oil Mills	0.	1992	0	0	0.1992	0.1992	0.2389	0.00	0.3142	0.0463	0.3308
119 Sov	been Oil Mills	0	.672	0	0.3700	0.5000	0.6720	0.1867	0.00	0.8564	0.0469	0.3308
120 Veg	etable Oil Mills,	nec	1	0.0200	0.0200	0.4000	0.5572	0.1473	0.02	0.6079	0.2908	0.3308
121 Ani	mal & Marine Fats	8	1	0.3308	0.3308	0.8122	0.8122	0.7973	0.36	0.8364	0.8438	0.3308
122 Roa	sted Coffee	0.	2436	0.0730	0.0730	0.2436	0.2436	0.1743	0.15	0.5822	0.0730	0.3308
123 Sho	rtening & Cooking	0i 0.	7016	0.3300	0.3300	0.7016	0.7016	0.3427	0.33	0.8146	0.7085	0.3308
124 Mari	ufactured Ice	0.	4789	0.0200	0.0200	0.4789	0.4925	0.6023	0.02	0.4658	0.3007	0.3308
125 Mac	aroni & Spaghetti		1	0.1500	0.1500	0.7892	0.7892	0.8106	0.15	0.8395	0.4267	0.3308
126 Foo	d Preparations, ne	с 0.	7514	0.3300	0.3300	0.7514	0.7514	0.5797	0.33	0.7361	0.8166	0.3308
127 Cig	arettes	0.	0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.00	0.0003	0.0002	0
128 Cig	ers	0	.003	0.0030	0.0030	0.0030	0.0030	0.0035	0.00	0.0001	0.0048	0
129 Che	wing & Smoking To	bac 0.	0382	0.0382	0.0382	0.0382	0.0382	0.0070	0.00	0.0746	0.0649	0
130 Tab	acco Stemming & R	edr	1	0	0.5000	0.5000	0.9583	0.9583	0.00	0.9583	0.9583	0
131 Bro	adwoven Fabric Mi	lls O.	2712	0.0054	0.0054	0.0142	0.0142	0.0054	0.03	0.0155	0.0139	0.1139
132 Nar	row Fabric Mills	0.	0569	0.0100	0.0100	0.0415	0.0415	0.0232	0.01	0.0573	0.0187	0.1139
133 Yan	n Mills & Finishi	ng 0.	1777	0.0116	0.0116	0.0200	0.0200	0.0116	0.20	0.0195	0.0171	0.1139
134 Thr	eed Mills	0.	0077	0.0062	0.0062	0.0062	0.0062	0.0045	0.00	0.0054	0.0044	0.1139
135 Flo	or Coverings	0.	0246	0.0054	0.0054	0.0246	0.0246	0.0382	0.01	0.0054	0.0071	0.2014
136 Fel	t Goods,nec	0.	3026	0.0522	0.0522	0.1581	0.1581	0.1239	0.09	0.0522	0.2232	0.2014
137 Lao	e Goods	0.	2921	0	0	0.0779	0.0779	0.1312	0.00	0.0002	0.0003	0.2014
138 Pad	ding & Upholstery	Fi 0.	7307	0.0654	0.0654	0.4000	0.2024	0.2873	0.80	0.0654	0.0808	0.2014
139 Pro	cessed Textile Wa	ste 0.	4678	0.0300	0.0300	0.1545	0.1545	0.1671	0.03	0.1719	0.0321	0.2014
140 Coa	ted Fabrics, not r	ubb 0.	3167	0.0863	0.0863	0.2529	0.2529	0.2800	0.55	0.0863	0.1731	0.2014
141 Tin	e Cord & Fabric	0.	0134	0.0042	0.0042	0.0042	0.0042	0.0009	0.00	0.0026	0.0077	0.2014
142 Con	dage & Twine	0	.332	0.0559	0.0559	0.1787	0.1787	0.2510	0.42	0.0798	0.0559	0.2014
143 Norn	woven Fabrics	0.	3619	0.0737	0.0737	0.2096	0.2096	0.1083	0.18	0.0737	0.3268	0.2014
144 Tex	tile Goods,nec	0.	9252	0.0254	0.0254	0.0937	0.0937	0.0254	0.16	0.0369	0.1676	0.2014
145 Warn	ens Hosiery, exc s	ock 0.	0246	0	0	0.0246	0.0246	0.0200	0.00	0.0066	0.0561	0.3360
146 Hos	iery,nec	0.	2132	0.0053	0.0053	0.1000	0.2132	0.0185	0.01	0.0053	0.7945	0.3360
147 Kni	t Outerwear Mills	i.	0	0	0	0	0	0	0.04	0	0	0.1414
148 Kni	t Underweer Mills	i	0	0	0	0	0	0	0	0	0	0.1414

197 Stationery, Tablets & Re 0.779

198 Onvrted Paper & Paperbr 0.6028

0.0012

0.0008

0.0500

0.0600

0.2500

0.3000

0.0012 0.0036

0.0008 0.06 0.0042 0.0111 0.3430

SEC NO. SECTOR NAME RPC: SDP FLRLK ALTFLR BSTLK UNCHOD MI: INP REMI NN INP WI INP LK MRIO 149 Knitting Mills.nec 0 ۵ ٥ n 0 ۵ Û 0 0 0.6289 0.4292 0.9231 0.3360 150 Knit Fabric Mills 0.4292 0 0.2200 0.4306 0.0216 0.00 0.2759 151 Apparel from Purchased 0.6671 0.0200 0.0200 0.0730 0.0730 0.0480 0.02 0.0763 0.1364 0.1414 152 Ourtains & Draperies 0.3604 0.0200 0.0200 0.3604 0.3604 0.2768 0.02 0.4498 0.4294 0.6289 153 Housefurnishings, nec 0.1449 0 0.1449 0.0000 0.01 0.3026 0.2810 0.6289 0 0.1449 154 Textile Bags 0.6144 0.0100 0.0100 0.6144 0.6144 0.0637 0.01 0.9577 0.8518 0.6289 155 Canvas Prdcts 1 0.0900 0.0900 0.9169 0.9169 0.9514 0.09 0.5979 0.9364 0.6289 156 Pleating & Stitching 0.1857 0.0677 0.0677 0.1857 0.1857 0.3072 0.09 0.0677 0.0848 0.6289 0.0498 0.0498 0.9995 0.62 0.2044 0.0498 0.6289 157 Auto & Apparel Trimming 1 0.8000 0.9985 0.0406 0.00 0.0010 0.1143 0.6289 158 Schiffi Machine Embroid 0.0276 0.0276 0.0276 0.0276 0.0276 159 Fabricated Textile Prdc 0.0575 0 0 0.0575 0.0579 0 0.23 0.4203 0.7326 0.6289 160 Logging Camps & Contrac 0.4958 0.2125 0.2125 0.4954 0.4934 0.4838 0.56 0.6494 0.3772 0.2125 161 Saumills & Planing Mill 0.3156 0.2125 0.2125 0.3156 0.3156 0.3702 0.28 0.2152 0.3555 0.2125 162 Hardwd Dimensions & Flo 0.6639 0.2125 0.2125 0.5000 0.4481 0.5439 0.50 0.5021 0.6643 0.2125 163 Special Prdct Sawmills, 0.4042 0.0400 0.0400 0.2692 0.2692 0.1355 0.04 0.0425 0.4748 0.2125 0.7746 0.40 0.9182 0.9191 0.4277 164 Millwork 0.4000 0.4000 0.8967 0.8967 1 0.3900 0.3900 0.8232 0.39 0.8928 0.8341 0.4277 165 Wood Kitchen Cabinets 1 0.8518 0.8518 166 Hand & Softwd Veneer & 0.419 0.0808 0.0808 0.4190 0.4190 0.2848 0.11 0.0808 0.7822 0.4277 0.3800 0.3800 0.8451 0.8205 0.38 0.8840 0.8239 0.4277 167 Structural Wood Members 1 0.8451 0.0269 0.0269 0.3000 0.0861 0.0269 0.39 0.3788 0.0910 0.5608 168 Prefabricated Wood Buil 1 0.3803 0.1549 0.35 0.4776 0.7896 0.4277 169 Wood Preserving 0.1549 0.1549 0.3803 0.3803 170 Wood Pallets and Skids 0.4277 0.4277 0.8897 0.8897 0.9087 0.53 0.7733 0.9063 0.4277 1 171 Particleboard 1 0.4277 0.4277 0.8316 0.8316 0.8405 0.50 0.7778 0.8468 0.4277 172 Wood Products, nec 0.4277 0.4277 0.7706 0.7706 0.7663 0.61 0.7606 0.7878 0.4277 1 0.2947 0.24 0.7091 0.7493 0.4277 173 NidBLk Wd Boxes & Conta 0.688 0.2400 0.2400 0.6000 0.7044 0.4943 0.24 0.1402 0.6580 0.3440 174 Non-upholstrd Wd Hshld 0.5413 0.1402 0.1402 0.5177 0.5177 0.0200 0.0200 0.2811 0.1627 0.02 0.2479 0.3979 0.3440 175 Household Furniture, nec 0.3264 0.2811 176 Wd Cabinets: Tv, Sewing M 0.685 0 0.3400 0.4435 0.4435 0.4945 0.00 0.4104 0.6059 0.3440 0.1561 0.04 0.0594 0.5445 0.3440 0.0400 0.0400 0.2297 0.2297 177 Upholstrd Wd Hshold Fur 0.2297 178 Metal Hshld Furniture 0.5963 0.0700 0.0700 0.5692 0.5692 0.6460 0.07 0.4469 0.4738 0.3440 0.1400 0.1400 0.5736 0.5736 0.3893 0.14 0.5691 0.7338 0.3440 179 Mattresses and Bedsorin 0.6457 180 Wood Office Furniture 1 0.3200 0.3200 0.6000 0.8263 0.9247 0.32 0.4110 0.4755 0.4088 181 Metal Office Furniture 0.1453 0.1453 0.7000 0.9226 0.9716 0.57 0.1453 0.6172 0.4088 1 0.2900 0.2900 0.6879 0.7142 0.29 0.4732 0.7015 0.4088 182 Public Building Furnitu 0.9672 0.6879 0.2300 0.2300 0.8076 0.8076 0.8731 0.23 0.8104 0.7452 0.4088 183 Wood Partitions & Fixtu 1 0.3200 0.3200 0.6641 0.7735 0.32 0.7260 0.5696 0.4088 184 Metal Partitions & Fixt 1 0.6641 185 Blinds, Shades, & Drapery 0.1579 0.1579 0.6000 0.6957 0.7019 0.18 0.1579 0.8638 0.4088 1 186 Furniture & Fixtures, n 0.1700 0.1700 0.6708 0.6708 0.7269 0.17 0.5884 0.7497 0.4088 1 0.0003 0.00 0.0002 0.0016 0.3430 187 Pulp Mills 0.2764 0 0.0005 0.1500 0.0005 188 Paper Mills, exc Bldng P 0.0007 0.2900 0.6000 0.0027 0.0007 0.29 0.0012 0.0089 0.3430 1 0.0039 0.19 0.0014 0.0037 0.3430 189 Paperboard Mills 1 0.0014 0.2000 0.4000 0.0028 190 Envelopes 1 0.0004 0.0100 0.4000 0.0011 0.0004 0.01 0.0028 0.0015 0.3430 0.0000 0.0600 0.2500 0.0003 0.06 0.00004 0.0085 0.3430 191 Sanitary Paper Products 1 0.0021 192 Building Paper & Bldg B 0.0037 0.0600 0.4500 0.0129 0.0076 0.06 0.0399 0.0037 0.3430 1 0.0005 0.5500 0.0005 0.17 0.0405 0.0030 0.3430 193 Paper Costing and Glazi 1 0.1700 0.0076 194 Bags, except Textile Bag 0.8655 0.0003 0.0600 0.2500 0.0011 0.0003 0.06 0.0009 0.0042 0.3430 0.5000 0.0009 0.35 0.0038 0.0012 0.3430 195 Die-cut Paper and Paper 0.0009 0.3500 0.0015 1 196 Pressed & Molded Pulp G 0.5861 0 0.0017 0.2500 0.0017 0.0011 0.00 0.0001 0.0054 0.3430 0.0012 0.05 0.0013 0.0019 0.3430

sec no.	Sector Name	RPC: SDP	FLRLK	ALTFLR	BSTLK	UNCHED	MI: IMP	remi	nn imp	WI IMP	lk Mrio
199 Par	enand Boxes & Cont	ai 0.8347	0.2100	0.2100	0.6000	0.8527	0.7866	0.21	0.8391	0.9426	0.6708
200 Ne		0.82	0.5146	0.5146	0.5672	0.5672	0.5214	0.72	0.5146	0.5285	0.5680
201 Per	idicals	0.327	0.1848	0.1848	0.3270	0.3371	0.1848	0.22	0.5358	0.3550	0.5680
202 Box	k Publishing	0.4491	0.1140	0.1140	0.4491	0.4496	0.1140	0.24	0.5505	0.5250	0.5680
203 800	k Printing	1	0.4436	0.4436	0.5899	0.5899	0.5445	0.56	0.4436	0.5776	0.5680
204 Mis	c Publishing	0.9597	0.4909	0.4909	0.5791	0.5791	0.5688	0.59	0.4909	0.5061	0.5680
205 Con	mercial Printing	1	0.5061	0.5061	0.5851	0.5851	0.5061	0.62	0.5710	0.5381	0.5680
206 Lit	hographic Platemak	in 0 .9748	0.4500	0.4500	0.5747	0.5747	0.5226	0.45	0.5241	0.5389	0.5680
207 Mar	nifold Business for	ms 0.7596	0.4697	0.4697	0.5581	0.5581	0.5143	0.54	0.4697	0.5384	0.5680
208 Bla	nikbooks & Looselee	ıf 1	0.4626	0.4626	0.5317	0.5317	0.4837	0.48	0.5124	0.4626	0.5680
209 Gre	eting Card Publish	nin 0.0977	0.0600	0.0600	0.0977	0.0977	0.0810	0.06	0.1194	0.1126	0.5680
210 Eng	raving & Plate Pri	int 0.6349	0.2593	0.2593	0.5819	0.5819	0.2593	0.27	0.6203	0.4408	0.5680
211 Boo	kbinding & Related	W 0.4866	0.3247	0.3247	0.4866	0.4870	0.4714	0.39	0.3247	0.4646	0.5680
212 Typ	resetting	0.9143	0.4200	0.4200	0.5594	0.5594	0.5272	0.42	0.5246	0.4678	0.5680
213 Pho	otoengraving	0.6172	0.1500	0.1500	0.5561	0.5561	0.4908	0.15	0.4238	0.5632	0.5680
214 Ele	ctrotyping & Stere	ot 0.8291	0	0.4000	0.5482	0.5482	0.4438	0.00	0.5778	0.4303	0.5680
215 Inc	ustrial Inorganic,	or 0.5178	0.2617	0.2617	0.5179	0.5179	0.5131	0.34	0.4559	0.5490	0.2617
216 Ni1	rogenous & Phospha	ti 0.1954	0.0060	0.0060	0.1708	0.1708	0.0881	0.01	0.1491	0.1402	0.1892
217 Fer	tilizers, Mixing C	nl 0	0	0	0	0	0	0.11	0	0	0.1892
218 Agr	icultural Chemical	s, 0.2825	0.0100	0.0100	0.2174	0.2174	0.1579	0.01	0.1036	0.2066	0.1892
219 Gui	a & Wood Chemicals	0.4354	0	0.2000	0.4354	0.4354	0.2212	0.00	0.4217	0.9015	0.0652
220 Adt	esives & Seelants	0.6783	0.0652	0.0652	0.6783	0.6790	0.8548	0.16	0.2510	0.7140	0.0652
221 Exp	losives	0.4472	0	0.2000	0.3000	0.4472	0.0653	0.00	0.9228	0.1328	0.0652
222 Pri	inting Ink	0.693	0.0500	0.0500	0.6930	0.6930	0.6798	0.05	0.9111	0.5158	0.0652
223 Car	ton Black	0.136	0	0	0.1360	0.1360	0.0250	0.00	0	0.3546	0.0652
224 Che	mical Preparations	s,n 1	0.0652	0.0652	0.8846	0.8846	0.8927	0.29	0.8947	0.8857	0.0652
225 Pla	stics Materials &	Re 0.4437	0.2300	0.2300	0.4437	0.4437	0.5023	0.23	0.3575	0.4047	0.4045
226 Syr	thetic Rubber	0.3501	0.1700	0.1700	0.3501	0.3501	0.3351	0.17	0.2803	0.3901	0.4045
227 Cel	lulosic Man-Made F	ib 0.2562	0	0.1200	0.2562	0.2562	0.1252	0.00	0.2334	0.3028	0.4045
228 Org	penic Fibers,noncel	lu 0.2229	0	0.1200	0.2229	0.2229	0.6868	0.00	0.1336	0.0788	0.4045
229 Dri	Q S	0.6611	0.0497	0.0497	0.2000	0.1138	0.1278	0.21	0.0497	0.0925	0.3788
230 Soe	p & Other Deterger	nts 1	0.2718	0.2718	0.6500	0.9387	0.9341	0.29	0.6185	0.6370	0.2718
Z31 Pol	ishes & Sanitation	n G 1	0.0300	0.0300	0.6000	0.8855	0.7091	0.03	0.6359	0.8748	0.2/18
232 Sur	face Active Agents	0.6564	0	0.2700	0.6564	0.6564	0.3969	0.00	0.9160	0.7965	0.2/18
233 Toi	let Preparations	0.52	0	0.2700	0.5200	0.5200	0.2254	0.00	0.8552	0.2072	0.2/18
234 Pat	nts & Allied Proct	s 0.862	0.1595	0.1395	0.3594	0.3594	0.2685	0.0	0.1395	0.2400	0.0133
255 Pet	roleum Refining	0.2599	0.1/44	0.1/44	0.200	0.2031	0.1995	0.19	0.439/	0.1744	0.2013
256 Lut	nicating Dils & Gr		0.2015	0.2013	0.49/8	0.5185	0.5525	0.22	0.3330	0.4310	0.2013
237 Pet	roleum & Coal Proc	ts 0.882/	0	0.200	0.6000	0.8527	0.9625	0.00	0.9027	0.3218	0.2013
258 Pan	Ang Mixtures & Blo	CK 0.64/1	0.1000	0.1000	0.5000	0.64/1	0.3422	0.10	0.3071	0.9044	0.2013
259 ASP	nalt Felts & Costi	ng 0.4099	0.0400	0.0400	0.3000	0.4099	0.1027	0.04	0.96/5	0.2010	0.2013
240 111	ves & inner ludes	0.2309	0.0005	0.0/00	0.0017	0.0017	0.0019	0.07	0.0005	0.0025	0.2490
241 RUE	THE FLASTICS FOO	λω 1 0 77770	0	0.000	0.2000	0.0007	0.0015	0.00	0.0001	0.0214	0.2490
247 F-1		0.3232	0.0000	0.0025	0.1000	0.0025	0.0010	0.00	0.0000	0.0023	0.2470
261 CHO	Disseits Design	0.0000		0.1300	0.1000	0.0044	0.0059	0.13	0.0020	0.004/	0.24.02
244 F18	RE PLESCICS PTOCTS	0.90/9	0.0077	0.2500	0.3300	0.0057	0.002	0.30	0.005/	0.0000	0.2470
247 KUE	AJET & PLESTICS HOS	e U.2004	0.000	0.0200	0.0003	0.003	0.00//	0.02	0.0004	0.7972	0.200
240 100	iuler lenning & P10 shase Out Steel	113 I 0.1677	0.2100	v.2100	0.12/1	0.1977	0.047%	0.52	0.000	0.1002	0.3081
241 FOC		0.4530	0 1900	0 1900	0.1022	0.1022	0.00/4	0.00	0.000	0 4/.29	0 3081
<i>2</i> 40 STK	res, exc kudder	v.co/co	0.1000	v. 1800	U.400/	U.42D/	U.4U21	v. 10	0.40/0	V.44CD	0.3001

SEC NO.	SECTOR NAME	RPC:	SDP	FLRLK	ALTFLR	BSTLK	UNCHED	MI: IMP	REMI	MN IMP	WI IMP	lk Nrio
249 Hau	se Slippers	0.	1358	0	0	0.1358	0.1358	0.0304	0.00	0.0175	0.5008	0.3081
250 Lea	ther Gloves & Mi	tten	1	0.2700	0.2700	0.5594	0.5594	0.4489	0.27	0.5400	0.5907	0.3081
251 Lug	0000	0.	1418	0.0200	0.0200	0.1418	0.1470	0.0507	0.02	0.1034	0.4134	0.3081
252 Wom	ens Handbags & Pi	uses 0.	0297	0.0186	0.0186	0.0297	0.0297	0.0186	0.04	0.0222	0.0628	0.3081
253 Per	sonal Leather Go	ods 0.	.8637	0	0.3080	0.4500	0.6299	0.1874	0.00	0.4307	0.6974	0.3081
254 Lee	ther Goods, nec	0.	1697	0.0886	0.0886	0.1697	0.1734	0.1294	0.10	0.0886	0.33%	0.3081
255 Gla	ss & Glass Procts	s,ex 0.	235	0.2087	0.2087	0.235	0.2543	0.2271	0.43	0.3391	0.2941	0.2087
256 Gla	ss Containers	0.	1759	0.1007	0.1007	0.1759	0.1779	0.1007	0.14	0.4569	0.1110	0.2087
257 Cem	ent,Hydraulic	0.	.8475	0.0003	0.4200	0.7000	0.0158	0.0414	0.70	0.0003	0.0008	0.7224
258 Bri	ck & Structural (Clay O.	1692	0.0001	0.1600	0.1500	0.0050	0.0088	0.16	0.0034	0.0001	0.7224
259 Cen	amic Wall & Floo	r Ti O.	.0543	0.0000	0.0100	0.0014	0.0014	0.0018	0.01	0.0023	0.00001	0.7224
260 Cla	y Refractories	0.	.0717	0.0001	0.0400	0.0013	0.0013	0.0012	0.04	0.0001	0.0023	0.7224
261 Str	uctural Clay Proi	cts, 0.	2064	0.0039	0.0800	0.1000	0.0455	0.0739	0.08	0.0248	0.0039	0.7224
262 Vit	recus Plumbing F	ixtu	1	0	0.5000	0.1484	0.1484	0.0034	0.00	0.00002	0.4749	0.7224
263 Vit	recus China Food	Ute 0.	.0115	0.0004	0.0004	0.0004	0.0004	0.0002	0.00	0.00001	0.0009	0.7224
264 Fin	e Earthenware Fo	∞d U 0.	.0563	0	0.0563	0.0563	0.0563	0.0987	0.00	0.0019	0.0001	0.7224
265 Pon	celain Electrica	l Su	1	0.0008	0.4700	0.4500	0.7214	0.0992	0.47	0.0008	0.8422	0.7224
266 Pot	tery Prdcts,nec	0.	2505	0.0068	0.0268	0.2000	0.0268	0.0167	0.30	0.0068	0.0436	0.7224
267 Con	crete Block & Br	ick	1	0.0359	0.5000	0.4000	0.0732	0.0359	0.50	0.0612	0.0780	0.7224
268 Con	crete Prdcts,nec		1	0.0306	0.5000	0.4500	0.0681	0.0306	0.53	0.0859	0.0499	0.7224
269 Rea	dy-Mixed Concret	e 0.	9456	0.0147	0.4700	0.6000	0.0314	0.0147	0.65	0.0233	0.0373	0.7224
270 Lim	e	0.	4363	0.0009	0.2200	0.3500	0.0233	0.0101	0.38	0.0009	0.0628	0.7224
271 Бур	sum Proicts	0.	.0915	0.0003	0.0203	0.0203	0.0203	0.0562	0.55	0.0005	0.0003	0.7224
272 O.t	Stone & Stone Pr	ndct	1	0.0185	0.2200	0.2000	0.0619	0.0185	0.22	0.1351	0.0605	0.7224
273 Abr	asive Procts		1	0.0417	0.1639	0.3500	0.1639	0.1136	0.37	0.2335	0.0417	0.7224
274 Asb	estos Proicts	0.	1409	0.0041	0.0041	0.0041	0.0041	0.0020	0.00	0.0008	0.0117	0.7224
275 Gas	kets,Packing & S	eali O.	5456	0.0239	0.1310	0.3000	0.1310	0.1445	0.31	0.0239	0.1095	0.7224
276 Min	erals,Ground or 1	irea ().	9426	0.0065	0.4700	0.5500	0.0324	0.0209	0.58	0.0065	0.0817	0.7224
277 Min	eral Wool	0.	4341	0.0099	0.2200	0.3500	0.0623	0.0089	0.37	0.1875	0.0462	0.7224
278 Non	clay Refractorie	s 0.	5424	0.0030	0.2700	0.4500	0.0597	0.1032	0.48	0.0030	0.0304	0.7224
279 Nori	metallic Mineral	Prd 0.	3922	0.0790	0.2100	0.2000	0.3886	0.5029	0.21	0.0978	0.0790	0.7224
280 Bla	st Furnaces & Sto	æl O.	4575	0.0407	0.0826	0.3000	0.0826	0.1174	0.35	0.0407	0.0611	0.2867
281 Ele	ctrometallurgica	l Pr 0.	.0892	0.0252	0.0346	0.0346	0.0346	0.0465	0.05	0.0296	0.0252	0.2867
282 Ste	el Wire & Related	d Pr	1	0.1200	0.1200	0.3000	0.4584	0.5093	0.12	0.3031	0.3819	0.4520
283 Col	d Finishing of S	teel	0	0	0	0	0	0	0.28	0	0	0.2557
284 Ste	el Pipe & Tubes		0	0	0	0	0	0	0.13	0	0	0.2557
285 Ira	n & Steel Foundr	ies 0.	9591	0.0017	0.3600	0.4500	0.0026	0.0046	0.56	0.0017	0.0018	0.49/6
286 Iro	n & Steel Forgin	3 6	1	0.0/51	0.3800	0.3500	0.2595	0.228	0.58	0.0/51	0.3011	0.2007
287 Met	al Heat Treating		1	0.1624	0.1624	0.2150	0.2150	0.221	0.18	0.1024	0.2100	0.2007
255 Pri	mary Metal Proct	s, n 0.	4974	0.0500	0.0600	0.1642	0.1042	0.215/	0.05	0.0/30	0.15/4	0.2007
259 Pr1	mery Copper	0.	.5448	U	0.1021	0.1021	0.1021	0.1404	0.00	0.0008	0.0007	0.2191
290 Pri	mery Leed	υ.	1400	U	0.15/4	0.15/4	0.15/4	0.1/08	0.00	0.1043	0.0/7/	0.2191
2971 Pri		0.	7417	U	0.0059	0.4077	0.0039	0.1774	0.00	0.05/0	0.04/0	0.2191
272 Pri	mery Aluminum	U.	3015	U 0.0777(0.105/	0.1057	0.1057	0.1230	0.00	0.0049	0.0242	0.2101
20% Cr-	mery Nonterrous I	тета 0. Ма	1404	0.0230	0.0230	0.029/	0.029/	0.0405	0.00	0.0230	0.0202	0.2101
205 0		n ne muja A	U 6007	0.04.27	U 0.04.272	U 0 19/.7	U 0 19/.7	0 2777	0.07	0.0427	0.2044	0.2101
204 41.	rea nutting GrU⊓ minum Pollice ≯f	аянн V. Эсец О	311Z	0.0023		0.1451	0.1451	0 2020	0 11	0.0007	0,0088	0.2101
207 Mar	ferme Pollion	/ 0001 U. 2. Dec 10	75 82	0.0705	0.0700	0 1417	0.1417	0 1760	0.02	0.0494	0,1493	0.2191
208 Mar	ferme Line Dow	zvi∪. Jirro∩	2441	0.0200	0.0059	0 1199	0 1188	0 1530	0.10	0.0959	0.1340	0.2191
ENO MUL		.		v.u.0	v.u.0	v. 1100	0.1100		w. 10			

259 Aluminum Castings 1 0.1700 0.2441 0.2441 0.2742 0.17 0.2100 0.3325 0.2733 300 Bress, Bronze, & Copper Ca 1 0.0300 0.2373 0.2270 0.2271 0.13 0.1467 0.3330 0.2133 301 Morderrous Castings, nec 1 0.1300 0.2270 0.2271 0.13 0.1467 0.3330 0.2161 0.0411 0.2461 0.2265 0.34 0.1700 0.2173 0.143 0.0411 0.401 0.3010 0.2265 0.340 0.0411 0.050 0.411 0.051 0.3792 0.0411 0.050 0.3597 0.2261 0.44 0.050 0.551 305 Metal Senitary Mene 1 0.0256 0.0250 0.3569 0.2269 0.1419 0.2218 0.453 0.413 0.218 0.551 306 Pabricated Metal 1 0.1852 0.1826 0.3269 0.2261 0.419 0.2218 0.419 0.2218 0.450 0.453 0.218 0.419 0.251 0.153 302 Metal Metal Metal 1 0.2129 0.2218 0.2367 </th <th>SEC NO. SECTOR NAME R</th> <th>C: SDP</th> <th>FLRLK</th> <th>ALTFLR</th> <th>BSTLK</th> <th>UNCHED</th> <th>MI: IMP</th> <th>remi</th> <th>nn inp</th> <th>WI IMP</th> <th>lk Mrio</th>	SEC NO. SECTOR NAME R	C: SDP	FLRLK	ALTFLR	BSTLK	UNCHED	MI: IMP	remi	nn inp	WI IMP	lk Mrio
300 Breas, Bronze, Abopper Ca 1 0.0300 0.2733 0.2713 0.2712 0.165 0.1583 0.2193 301 Nenferrous Castings, nec 1 0.1300 0.2270 0.2270 0.2734 0.13 0.1687 0.2193 302 Nenferrous Forgings 0.7725 0.0671 0.0781 0.3000 0.2266 0.2262 0.34 0.0781 0.1690 0.2193 305 Metal Senitary Ware 1 0.0265 0.0260 0.2770 0.161 0.0576 0.449 0.525 305 Metal Senitary Ware 1 0.0265 0.0260 0.7704 0.2227 0.140 0.218 0.551 306 Fabricated Metal 1 0.1825 0.1826 0.2686 0.1825 0.284 0.1933 0.218 0.551 306 Fabricated Metal 1 0.1262 0.2262 0.2376 0.1826 0.489 0.180 0.1780 0.2376 0.2861 0.36 0.4190 0.551	299 Aluminum Castings	1	0.1700	0.1700	0.2461	0.2461	0.2274	0.17	0.2100	0.3125	0.2191
301 Nonferrous Castings, nec 1 0.1300 0.2270 0.2270 0.2270 0.2270 0.2270 0.2270 0.2270 0.2270 0.2270 0.2272 0.2270 0.2272 0.2272 0.2272 0.2272 0.2272 0.2272 0.2471 0.0100 0.2163 303 Hetal cares 0.77164 0.0000 0.01000 0.3119 0.3317 0.10 0.2275 0.4277 0.4257 0.4273 0.4273 0.4273 0.4273 0.4273 0.4273 0.4273 0.4273 0.4273 0.4273 0.4273 0.4273 0.4273 0.4273 0.4273 0.4273 0.4273 0.4273 0.4281 0.2271 0.248 0.2281 0.228 0.4283 0.3251 0.551 307 Heating Equipmit, exc EL 0.9971 0.4169 0.4169 0.4268 0.3266 0.3267 0.2287 0.2287 0.4287 0.2280 0.453 0.355 0.551 305 0.551 305 0.551 0.551 315 0.4182 0.4280 0.320 0.1802 0.1802 0.1801 0.551 0.551 315 5.4164 0.4070 <td>300 Brass, Bronze, &Copper C</td> <th>n 1</th> <td>0.0300</td> <td>0.0300</td> <td>0.2733</td> <td>0.2733</td> <td>0.2912</td> <td>0.03</td> <td>0.1687</td> <td>0.3383</td> <td>0.2191</td>	300 Brass, Bronze, &Copper C	n 1	0.0300	0.0300	0.2733	0.2733	0.2912	0.03	0.1687	0.3383	0.2191
302 Nonferrous Forgings 0.9728 0.0781 0.0781 0.3000 0.2025 0.34 0.0781 0.1700 0.219 303 Metal cares 0.7186 0.0411 0.010 0.3179 0.3179 0.3171 0.3572 0.0411 0.05 0.3569 0.4780 0.452 305 Metal Sanitary Mare 1 0.0266 0.0266 0.3500 0.7704 0.2221 0.24 0.026 0.0266 0.3500 0.7704 0.221 0.24 0.026 0.0265 0.3500 0.7704 0.2221 0.24 0.0266 0.551	301 Nonferrous Castings, ne	: 1	0.1300	0.1300	0.2270	0.2270	0.2734	0.13	0.1941	0.2487	0.2191
303 Metal cans 0.7186 0.0411 0.0411 0.3792 0.0411 0.05 0.3568 0.4794 0.452 304 Metal Barrels, Druns, & P 0.4498 0.1000 0.3119 0.3119 0.3317 0.10 0.2275 0.4527 0.4527 0.4527 0.4527 0.4527 0.4527 0.4527 0.4527 0.4527 0.4526 0.6560 0.3559 0.3569 0.2774 0.18 0.0876 0.3569 0.2781 0.185 0.4537 0.451 0.451 0.4119 0.2278 0.439 0.228 0.439 0.2181 0.551 305 Fabricated Metal 1 0.1425 0.1425 0.3267 0.2287 0.229 0.4397 0.2250 0.551 310 Fabricated Netal Mork 1 0.2129 0.2017 0.3407 0.2749 0.320 0.1707 0.1747 0.3576 0.2861 0.36 0.1747 0.3576 313 Prefabricated Metal Bid 0.4092 0.1000 0.1700 0.3273 0.2371 0.2371 0.2379	302 Nonferrous Forgings	0.9728	0.0781	0.0781	0.3000	0.2066	0.2825	0.34	0.0781	0.1900	0.2191
304 Metal Barrels, Drums, & P 0.4098 0.1000 0.3119 0.3119 0.3517 0.10 0.2573 0.1457 0.452 305 Metal Sanitary Ware 1 0.0256 0.5000 0.7744 0.2221 0.24 0.025 0.8569 0.2751 0.181 0.0255 0.5591 0.2791 0.18 0.0875 0.5517 0.180 0.1825 0.453 0.2781 0.1825 0.463 0.5131 0.551 305 7533 0.2751 0.1805 0.452 0.456 0.452 0.456 0.4531 0.551 305 555 0.551 305 0.551 305 0.551 0.551 305 0.551 305 0.4531 0.256 0.456 0.1405 0.1405 0.3456 0.1537 0.25 0.2510 0.551 315 313 512 Architectural Metal Mor 1 0.1747 0.1747 0.1747 0.1747 0.1752 0.1057 0.77 0.1797 0.551 313 155 513 0.4561 0.400 0.300 0.2510 0.1557 0.0177 0.1797 0.1797 0.551	303 Metal cans	0.7186	0.0411	0.0411	0.3792	0.3792	0.0411	0.05	0.3568	0.4794	0.4520
305 Metal Sanitary Hare 1 0.0256 0.5000 0.7704 0.2221 0.24 0.0256 0.6571 306 Plunbing Fixture Fittin 1 0.0676 0.3569 0.3569 0.2778 0.2278 0.1419 0.235 0.1439 0.2118 0.551 307 Heating Equipmet, exc EL 0.9771 0.1419 0.2278 0.2278 0.1419 0.235 0.1439 0.235 0.551 307 Heati Loors, Sash, & Trim 1 0.1825 0.1428 0.3455 0.3267 0.2267 0.2279 0.235 0.1408 0.4190 0.2514 0.551 310 Fabricated Metal 1 0.1727 0.1747 0.3376 0.3376 0.2549 0.32 0.2129 0.551 313 Prefabricated Metal 0.4072 0.1700 0.1702 0.1782 0.1627 0.0177 0.0777 0.253 0.551 313 Prefabricated Metal 0.4092 0.1300 0.2510 0.2510 0.1652 0.1491	304 Metal Barrels, Drums, & /	0.4498	0.1000	0.1000	0.3119	0.3119	0.3517	0.10	0.2373	0.1437	0.4520
306 Plunbing Fixture Fittin 1 0.0876 0.3569 0.3569 0.2791 0.18 0.0876 0.3519 307 Heeting Equipmet, exc El 0.9971 0.1419 0.1419 0.2278 0.2278 0.1419 0.23 0.1439 0.2118 0.551 308 Fabricated Metal 1 0.1825 0.1822 0.2668 0.2668 0.1825 0.240 0.1935 0.2055 0.551 309 Metal Doors, Sash, & Trim 1 0.1922 0.1220 0.3407 0.3247 0.32 0.1240 0.1408 0.1408 0.4468 0.4566 0.1537 0.23 0.2120 0.3407 0.32407 0.32 0.2120 0.3217 0.3477 0.230 0.2120 0.351 313 Meter Metal Mort 1 0.2129 0.3207 0.3407 0.3207 0.320 0.2110 0.177 0.551 0.551 313 Prefabricated Metal Bid 0.4396 0.0700 0.1782 0.1767 0.1767 0.1767 0.1767 0.1767 0.1767 0.1767 0.1763 0.1422 0.1701 0.551 0.551	305 Hetal Sanitary Ware	1	0.0256	0.0256	0.5000	0.7704	0.2221	0.24	0.0256	0.8640	0.5516
307 Heeting Equipmet, exc El 0.9971 0.1419 0.1419 0.2278 0.2278 0.1419 0.23 0.1439 0.2118 0.551 308 Fabricated Metal 1 0.1825 0.1825 0.2688 0.2888 0.1825 0.2877 0.2877 0.2877 0.2877 0.2877 0.2877 0.2877 0.2377 0.2377 0.2377 0.2377 0.2377 0.2377 0.2379 0.2308 0.1408 0.4190 0.551 310 Fabricated Netal Work 1 0.1727 0.1777 0.3396 0.3396 0.3396 0.3667 0.1777 0.799 0.551 311 Sheef Metal Mork 1 0.1777 0.1772 0.1782 0.1767 0.0707 0.799 0.551 314 Mice Metal Mork 0.4092 0.1000 0.1700 0.2510 0.1867 0.130 0.4219 0.218 0.1747 0.579 0.551 315 Screw Machine Products & 1 0.2002 0.2010 0.1662 0.1662 0.1667 0.070 0.1731 0.1429 0.2010 0.731 0.1729	306 Plumbing Fixture Fittin	n 1	0.0876	0.0876	0.3569	0.3569	0.2791	0.18	0.0876	0.3511	0.5516
308 Fabricated Metal 1 0.1825 0.1825 0.2688 0.2688 0.1825 0.2897 0.2897 0.2897 0.2897 0.2897 0.2897 0.2897 0.2897 0.2897 0.2897 0.2897 0.2897 0.2897 0.2897 0.2897 0.299 0.1892 0.1981 0.551 310 Fabricated Plate Work 1 0.2129 0.2129 0.3407 0.2349 0.32 0.2129 0.2290 0.551 311 Sheet Metal Work 1 0.1777 0.1747 0.3396 0.3396 0.2881 0.36 0.1747 0.1782 0.1551 0.157 0.176 0.1747 0.1782 0.1557 0.327 0.1287 0.1367 0.1747 0.1782 0.1551 0.1561 0.551 0.351 0.561 0.361 0.1767 0.1782 0.1557 0.327 0.4191 0.37 0.2229 0.551 0.551 315 Metal Mork 0.4092 0.1000 0.1000 0.2510 0.2510 0.2510 0.2510 0.2510 0.2510 0.2511 0.2511 0.2511 0.2511<	307 Heating Equipment, exc E	0.9971	0.1419	0.1419	0.2278	0.2278	0.1419	0.23	0.1439	0.2118	0.5516
309 Metal Doors, Sash, & Trim 1 0.1892 0.1892 0.3257 0.2857 0.2867 0.2897 0.1892 0.1892 0.1981 0.551 310 Fabricated Plate Work 1 0.2129 0.2129 0.3407 0.2349 0.22 0.2129 0.2398 0.2396 0.2396 0.2397 0.239 0.22 0.2129 0.2511 312 Architectural Metal Work 1 0.1747 0.1747 0.3396 0.2396 0.2391 0.077 0.1782 0.1782 0.1787 0.077 0.077 0.1799 0.551 313 Frefabricated Metal Btd 0.4396 0.0700 0.1700 0.1782 0.1787 0.1857 0.1857 0.187 0.178 0.1787 0	308 Fabricated Metal	1	0.1825	0.1825	0.2688	0.2688	0.1825	0.24	0.1933	0.2055	0.5516
310 Fabricated Plate Work (0.7866 0.1408 0.1408 0.3456 0.1537 0.23 0.1408 0.4190 0.551 311 Sheet Metal Work 1 0.2129 0.2129 0.3407 0.2349 0.32 0.2129 0.2908 0.551 312 Architectural Metal Wor 1 0.1747 0.1747 0.3396 0.2396 0.2881 0.36 0.1747 0.2529 0.551 313 Prefabricated Metal Bld 0.4396 0.0700 0.1762 0.1762 0.1057 0.07 0.0747 0.1939 0.551 314 Misc Metal Work 0.4092 0.1300 0.2510 0.2510 0.1867 0.17 0.2032 0.2738 0.731 315 Screw Machine Prdcts & 1 0 0.2050 0.5813 0.5813 0.4191 0.37 0.232 0.2738 0.731 316 Automotive Stampings 1 0 0.2050 0.4662 0.4162 0.2214 0.25 0.6650 0.1651 317 Crowns & Losures 0.4092 0.0100 0.1000 0.1946 0.1234 0.11 0.543 0.11 0.543 0.11 0.5	309 Metal Doors, Sash,& Trin	n 1	0.1892	0.1892	0.3257	0.3257	0.2687	0.29	0.1892	0.1981	0.5516
311 Sheet Metal Mork 1 0.2129 0.2429 0.3407 0.2349 0.32 0.2129 0.2908 0.551 312 Architectural Metal Mor 1 0.1747 0.1747 0.3396 0.3396 0.2881 0.36 0.1747 0.5259 0.551 313 Prefabricated Metal Bld 0.4396 0.0700 0.1782 0.1782 0.1057 0.07 0.0747 0.1939 0.551 314 Misc Metal Mork 0.4092 0.1300 0.2510 0.2510 0.1867 0.13 0.1422 0.1731 0.1747 0.2392 0.2373 0.4191 0.37 0.2032 0.2738 0.731 316 Automotive Stampings 1 0 0.500 0.5813 0.5813 0.7239 0.56 0 0.1101 0.731 316 Metal Stampings, nec 1 0.2800 0.2800 0.3802 0.3802 0.3411 0.28 0.3257 0.5270 0.5270 0.5270 0.5270 0.5270 0.5270 0.5270 0.5270 0.5273 0.4252 0.4523 0.4522 0.4523 0.4523 </td <td>310 Fabricated Plate Work</td> <th>0.7866</th> <td>0.1408</td> <td>0.1408</td> <td>0.3456</td> <td>0.3456</td> <td>0.1537</td> <td>0.23</td> <td>0.1408</td> <td>0.4190</td> <td>0.5516</td>	310 Fabricated Plate Work	0.7866	0.1408	0.1408	0.3456	0.3456	0.1537	0.23	0.1408	0.4190	0.5516
312 Architectural Metal Mor 1 0.1747 0.1747 0.3396 0.3396 0.2881 0.36 0.1747 0.2529 0.551 313 Prefabricated Metal Bid 0.4396 0.0700 0.0700 0.1782 0.1782 0.1767 0.07 0.0747 0.1939 0.551 314 Misc Metal Mork 0.4092 0.1300 0.2012 0.3273 0.2173 0.4191 0.3 0.1422 0.1951 0.551 315 Screw Machine Prdcts & 1 0.2032 0.2032 0.3273 0.4191 0.3 0.2032 0.2738 0.7101 0.711 0.731 316 Automotive Stampings 1 0 0.2000 0.4562 0.462 0.464 0.2244 0.25 0.0650 0.4513 318 Metal Stampings,nec 1 0.2000 0.4000 0.1642 0.4411 0.20 0.4527 0.3247 0.3247 0.3247 0.3247 0.3247 0.3247 0.3247 0.3247 0.3247 0.5270 0.5144 0.4394 0.4394 0.4394 0.4394 0.4394 0.4394 <td< td=""><td>311 Sheet Metal Work</td><th>1</th><td>0.2129</td><td>0.2129</td><td>0.3407</td><td>0.3407</td><td>0.2349</td><td>0.32</td><td>0.2129</td><td>0.2908</td><td>0.5516</td></td<>	311 Sheet Metal Work	1	0.2129	0.2129	0.3407	0.3407	0.2349	0.32	0.2129	0.2908	0.5516
313 Prefabricated Metal Bid 0.4396 0.0700 0.0700 0.1782 0.1782 0.1077 0.0777 0.1939 0.551 314 Misc Metal Work 0.4092 0.1300 0.1300 0.2510 0.2510 0.1867 0.13 0.1422 0.1951 0.551 315 Screw Machine Prdcts & 1 0.2032 0.2032 0.3273 0.4191 0.57 0.2032 0.2738 0.731 316 Autonotive Stampings 1 0 0.5000 0.5813 0.5813 0.729 0.55 0 0.1101 0.731 317 Crowns & Closures 0.4092 0.0650 0.0650 0.1662 0.1662 0.2214 0.25 0.0650 0.4131 318 Metal Stampings,nec 1 0.2000 0.2000 0.4102 0.3417 0.20 0.4692 0.452 320 Hand & Edge Tools,nec 1 0.2000 0.2000 0.4102 0.3101 0.00 0.2697 0.5373 0.452 321 Hand Saws & Saw Blades 0.3382 0 0.3100 0.5149 0.5149 0.5149 0.543 0.41 0.4283 0.452 0.452 <td>312 Architectural Metal Wo</td> <th>• 1</th> <td>0.1747</td> <td>0.1747</td> <td>0.3396</td> <td>0.3396</td> <td>0.2881</td> <td>0.36</td> <td>0.1747</td> <td>0.2529</td> <td>0.5516</td>	312 Architectural Metal Wo	• 1	0.1747	0.1747	0.3396	0.3396	0.2881	0.36	0.1747	0.2529	0.5516
314 Misc Metal Work 0.4092 0.1300 0.1300 0.2510 0.2810 0.1867 0.13 0.1422 0.1951 0.551 315 Screw Machine Prdcts & 1 0.2032 0.2032 0.3273 0.3273 0.4191 0.7 0.2032 0.731 316 Automotive Stampings 1 0 0.5000 0.5813 0.5813 0.729 0.56 0 0.1101 0.731 317 Crowns & Closures 0.4092 0.0650 0.0650 0.1662 0.1662 0.2214 0.25 0.0650 0.4131 318 Metal Stampings,nec 1 0.2000 0.2800 0.3802 0.3411 0.28 0.3895 0.4602 0.731 319 Outlery 0.1929 0.0100 0.0100 0.1000 0.1946 0.1234 0.01 0.0607 0.4527 0.4527 0.4527 320 Hand & Edge Tools,nec 1 0.3020 0.2020 0.4102 0.3101 0.00 0.4597 0.5373 0.452 322 Harding & Polishing 1 0.4100 0.5149 0.5149 0.5149 0.5433 0.41 0.4283	313 Prefabricated Metal Blo	0.4396	0.0700	0.0700	0.1782	0.1782	0.1057	0.07	0.0747	0.1939	0.5516
315 Screw Machine Prdcts & 1 0.2032 0.2032 0.3273 0.3273 0.4191 0.37 0.2032 0.731 316 Automotive Stampings 1 0 0.5000 0.5813 0.5813 0.729 0.56 0 0.1101 0.731 317 Crowns & Closures 0.4092 0.0650 0.0650 0.1662 0.1662 0.2214 0.25 0.0650 0.4071 318 Metal Stampings,nec 1 0.2000 0.2800 0.3802 0.3401 0.28 0.3895 0.4602 0.731 319 Outlery 0.1929 0.0100 0.0100 0.1000 0.1946 0.1234 0.01 0.6607 0.452 320 Hard & Edge Tools,nec 1 0.2000 0.2000 0.4102 0.3417 0.20 0.4394 0.3993 0.452 321 Hard Saas & Saw Blades 0.3382 0 0.3100 0.3023 0.3023 0.1301 0.00 0.452 0.452 0.452 0.452 322 Hard Saas & Saw Blades 0.3380 0.3500 0.5248	314 Misc Metal Work	0.4092	0.1300	0.1300	0.2510	0.2510	0.1867	0.13	0.1422	0.1951	0.5516
316 Autonotive Stampings 1 0 0.5000 0.5813 0.5813 0.7239 0.56 0 0.1011 0.731 317 Crowns & Closures 0.4092 0.0650 0.0650 0.1662 0.1662 0.2214 0.25 0.050 0.1931 0.731 318 Metal Stampings,nec 1 0.2800 0.3802 0.3802 0.3441 0.28 0.3845 0.4602 0.731 319 Outlery 0.1929 0.0100 0.0100 0.1946 0.1234 0.01 0.2607 0.2674 0.452 320 Hand & Edge Tools,nec 1 0.2000 0.4102 0.4102 0.3417 0.20 0.4394 0.3993 0.452 322 Hand Saws & Saw Blades 0.3382 0 0.1700 0.3223 0.3023 0.1301 0.00 0.2927 0.2931 0.452 322 Hand Saws & Saw Blades 0.3382 0 0.5270 0.5524 0.46 0.3247 0.533 0.452 325 Plating & Polishing 1 0.4100 0.5149 0.5453	315 Screw Machine Procts &	1	0.2032	0.2032	0.3273	0.3273	0.4191	0.37	0.2032	0.2738	0.7316
317 Crowns & Closures 0.4092 0.0650 0.0650 0.1662 0.2214 0.25 0.0650 0.731 318 Metal Stampings,nec 1 0.2800 0.3802 0.3802 0.3441 0.28 0.3845 0.4602 0.731 319 Outlery 0.1929 0.0100 0.0100 0.1000 0.1946 0.1234 0.01 0.6577 0.2674 0.452 320 Hand & Edge Tools,nec 1 0.2000 0.2000 0.4102 0.4102 0.3417 0.20 0.4393 0.452 321 Hand Saws & Saw Blades 0.3382 0 0.1700 0.3023 0.3023 0.1301 0.00 0.2927 0.2931 0.452 322 Harckare,nec 1 0.4100 0.4100 0.5149 0.5149 0.5453 0.41 0.4258 0.4322 0.452 324 Metal Coeting & Allied 0.7628 0.3500 0.3503 0.5248 0.5149 0.5433 0.41 0.4258 0.452 325 Misc Fabricated Wire Pr 0.8777 0.2883 0.2863 0.4135 0.4437 0.322 0 0.3955 0.452	316 Automotive Stampings	1	0	0.5000	0.5813	0.5813	0.7239	0.56	0	0.1101	0.7316
318 Metal Stampings,nec 1 0.2800 0.3802 0.3802 0.3441 0.28 0.3845 0.4602 0.731 319 Outlery 0.1929 0.0100 0.0100 0.1000 0.1946 0.1234 0.01 0.0607 0.2674 0.452 320 Hand Edge Tools,nec 1 0.2000 0.4102 0.4102 0.3417 0.20 0.4394 0.3893 0.452 321 Hand Saws & Saw Blades 0.3382 0 0.1700 0.3023 0.3023 0.1301 0.00 0.2977 0.2931 0.452 322 Handware,nec 1 0.3247 0.5270 0.5270 0.5324 0.46 0.3247 0.5373 0.452 325 Plating & Polishing 1 0.4100 0.4100 0.5149 0.5453 0.41 0.4288 0.4322 0.452 326 Metal Coeting & Allied 0.7628 0.3500 0.5248 0.5147 0.33 0.4713 0.4999 0.452 325 Steel Springs,exc Wire 0.3291 0.6000 0.6400 <td>317 Crowns & Closures</td> <th>0.4092</th> <td>0.0650</td> <td>0.0650</td> <td>0.1662</td> <td>0.1662</td> <td>0.2214</td> <td>0.3</td> <td>0.0650</td> <td>0.1931</td> <td>0.7316</td>	317 Crowns & Closures	0.4092	0.0650	0.0650	0.1662	0.1662	0.2214	0.3	0.0650	0.1931	0.7316
319 Outlery 0.1929 0.0100 0.0100 0.1000 0.1946 0.1234 0.01 0.0607 0.2674 0.452 320 Hand & Edge Tools,nec 1 0.2000 0.2000 0.4102 0.4102 0.3417 0.20 0.2399 0.452 321 Hand Saws & Saw Blades 0.3382 0 0.1700 0.3023 0.3023 0.1301 0.00 0.2977 0.2573 0.452 322 Hardware,nec 1 0.3247 0.3247 0.5270 0.5270 0.5324 0.46 0.3247 0.573 0.452 324 Metal Coating & Allied 0.7628 0.3500 0.3500 0.5248 0.5117 0.35 0.4713 0.4999 0.452 325 Misc Fabricated Wire Pr 0.8777 0.2883 0.4135 0.4135 0.4439 0.29 0.2883 0.452 326 Steel Springs,exc Wire 0.3291 0.3500 0.4174 0.4174 0.4373 0.32 0 0.3975 0.452 328 Metal Foil & Leaf 0.5288 0 0.2600 0.4140 0.4174 0.4373 0.32 0 0.3715 0.452 </td <td>318 Metal Stampings.nec</td> <th>1</th> <td>0.2800</td> <td>0.2800</td> <td>0.3802</td> <td>0.3802</td> <td>0.3441</td> <td>0.28</td> <td>0.3845</td> <td>0.4602</td> <td>0.7316</td>	318 Metal Stampings.nec	1	0.2800	0.2800	0.3802	0.3802	0.3441	0.28	0.3845	0.4602	0.7316
320 Hand & Edge Tools, nec 1 0.2000 0.2000 0.4102 0.4102 0.3417 0.20 0.4394 0.3893 0.452 321 Hand Saws & Saw Blades 0.3382 0 0.1700 0.3023 0.3023 0.1301 0.00 0.2927 0.2931 0.452 322 Hardware, nec 1 0.3247 0.3247 0.5270 0.5270 0.5324 0.46 0.3247 0.5373 0.452 323 Plating & Polishing 1 0.4100 0.4100 0.5149 0.5453 0.41 0.4288 0.4322 0.452 324 Metal Coating & Allied 0.7628 0.3500 0.3500 0.5248 0.5149 0.5453 0.41 0.4288 0.4322 0.452 325 Misc Fabricated Wire Pr 0.8777 0.2883 0.2883 0.4135 0.4135 0.4439 0.29 0.2883 0.452 326 Steel Springs, exc Wire 0.3291 0.0600 0.0600 0.3291 0.3292 0.3136 0.66 0.2448 0.3158 0.452 328 Metal Foil & Leef 0.5288 0 0.2600 0.4174 0.4174 0.4373	319 Outlery	0.1929	0.0100	0.0100	0.1000	0.1946	0.1234	0.01	0.0607	0.2674	0.4520
321 Hand Saws & Saw Blades 0.3382 0 0.1700 0.3023 0.3023 0.1301 0.00 0.2927 0.2931 0.452 322 Hardware, nec 1 0.3247 0.3247 0.5270 0.5270 0.5324 0.46 0.3247 0.5373 0.452 323 Plating & Polishing 1 0.4100 0.4100 0.5149 0.5453 0.41 0.4288 0.4322 0.452 324 Metal Coating & Allied 0.7628 0.3500 0.5248 0.5149 0.5453 0.41 0.4288 0.4322 0.452 325 Misc Fabricated Wire Pr 0.8777 0.2883 0.2883 0.4135 0.4135 0.4439 0.29 0.2883 0.452 326 Steel Springs, exc Wire 0.3291 0.0600 0.0600 0.3291 0.3292 0.3136 0.06 0.2448 0.3158 0.452 327 Pipe, Valves, & Pipe Fitt 0.7096 0 0.3500 0.4174 0.4174 0.4373 0.32 0 0.3975 0.452 328 Metal Foil & Leaf 0.5288 0 0.2600 0.4140 0.4140 0.2970 0.0	320 Hand & Edge Tools.nec	1	0.2000	0.2000	0.4102	0.4102	0.3417	0.20	0.4394	0.3893	0.4520
322 Hardware, nec 1 0.3247 0.3247 0.5270 0.5270 0.5324 0.46 0.3247 0.5373 0.452 323 Plating & Polishing 1 0.4100 0.4100 0.5149 0.5149 0.5453 0.41 0.4258 0.4322 0.452 324 Metal Coating & Allied 0.7628 0.3350 0.3500 0.5248 0.5149 0.5453 0.41 0.4258 0.4322 0.452 325 Misc Fabricated Wire Pr 0.8777 0.2883 0.2893 0.4135 0.4135 0.4439 0.29 0.2883 0.3759 0.452 326 Steel Springs, exc Wire 0.3291 0.0600 0.0600 0.3291 0.3292 0.3136 0.06 0.2448 0.3158 0.452 327 Pipe, Valves, & Pipe Fitt 0.7096 0 0.3500 0.4174 0.4174 0.4373 0.32 0 0.3995 0.452 328 Metal Foil & Leef 0.5288 0 0.2600 0.4140 0.4174 0.4373 0.32 0 0.3715 0.452 330 Steem Engines & Turbine 0.2859 0.0600 0.6600 0.	321 Hand Saws & Saw Blades	0.3382	0	0.1700	0.3023	0.3023	0.1301	0.00	0.2927	0.2931	0.4520
323 Plating & Polishing 1 0.4100 0.5140 0.5149 0.5453 0.41 0.4258 0.4322 0.452 324 Metal Coating & Allied 0.7628 0.3500 0.5248 0.5248 0.5117 0.35 0.4713 0.4999 0.452 325 Misc Fabricated Wire Pr 0.8777 0.2883 0.2883 0.4135 0.4439 0.29 0.2883 0.3759 0.452 326 Steel Springs, exc Wire 0.3291 0.0500 0.0600 0.3291 0.3292 0.3136 0.06 0.2448 0.3158 0.452 327 Pipe, Valves, & Pipe Fitt 0.7096 0 0.3500 0.4174 0.4174 0.4373 0.32 0 0.3955 0.452 328 Metal Foil & Leaf 0.5288 0 0.2600 0.4140 0.4174 0.4373 0.32 0 0.3975 0.452 329 Fabricated Metal Prdcts 0.7872 0 0.3900 0.4053 0.4053 0.3991 0.38 0 0.3715 0.452 330 Steam Engines & Turbine 0.2859 0.0600 0.2869 0.2859 0.2053 0.66 <td< td=""><td>322 Hardware.nec</td><th>1</th><td>0.3247</td><td>0.3247</td><td>0.5270</td><td>0.5270</td><td>0.5324</td><td>0.46</td><td>0.3247</td><td>0.5373</td><td>0.4520</td></td<>	322 Hardware.nec	1	0.3247	0.3247	0.5270	0.5270	0.5324	0.46	0.3247	0.5373	0.4520
324 Metal Coating & Allied 0.7628 0.3500 0.3500 0.5248 0.5248 0.5117 0.35 0.4713 0.4999 0.452 325 Misc Fabricated Wire Pr 0.8777 0.2883 0.2883 0.4135 0.4135 0.4439 0.29 0.2883 0.3759 0.452 326 Steel Springs, exc Wire 0.3291 0.0600 0.600 0.3291 0.3292 0.3136 0.06 0.2488 0.3158 0.452 327 Pipe, Valves, & Pipe Fitt 0.7096 0 0.3500 0.4174 0.4174 0.4373 0.32 0 0.3955 0.452 328 Metal Foil & Leaf 0.5288 0 0.2600 0.4174 0.4174 0.4373 0.32 0 0.3955 0.452 329 Fabricated Metal Prdcts 0.7872 0 0.3900 0.4053 0.4053 0.3991 0.38 0 0.3715 0.452 330 Steam Engines & Turbine 0.2859 0.0600 0.0600 0.2859 0.2063 0.06 0.2479 0.5960 0.488 331 Internal Conbustion Eng 1 0.2942 0.2942 0.7000 0.8893 0.	323 Plating & Polishing	1	0.4100	0.4100	0.5149	0.5149	0.5453	0.41	0.4258	0.4322	0.4520
325 Misc Fabricated Wire Pr 0.8777 0.2883 0.2883 0.4135 0.4439 0.29 0.2883 0.452 326 Steel Springs, exc Wire 0.3291 0.0600 0.3291 0.3292 0.3136 0.06 0.2483 0.452 327 Pipe, Valves, & Pipe Fitt 0.7096 0 0.3500 0.4174 0.4174 0.4373 0.32 0 0.3955 0.452 328 Metal Foil & Leaf 0.5288 0 0.2600 0.4140 0.4174 0.4373 0.32 0 0.3955 0.452 329 Fabricated Metal Prdcts 0.7872 0 0.3900 0.4053 0.4053 0.3991 0.38 0 0.3715 0.452 330 Steem Engines & Turbine 0.2859 0.0600 0.0600 0.2859 0.2063 0.60 0.2479 0.5960 0.488 331 Internal Conduction Eng 1 0.2942 0.2942 0.7000 0.8393 0.58 0.2942 0.8393 0.488 332 Fam Machinery & Equip 1 0.3900 0.6000 0.8863 0.8003 0.39 0.3900 0.4688 333 Lawn & Garden E	324 Metal Coating & Allied	0.7628	0.3500	0.3500	0.5248	0.5248	0.5117	0.35	0.4713	0.4999	0.4520
326 Steel Springs, exc Wire 0.3291 0.0600 0.0500 0.3291 0.3292 0.3136 0.06 0.2448 0.3158 0.452 327 Pipe, Valves, & Pipe Fitt 0.7096 0 0.3500 0.4174 0.4174 0.4373 0.32 0 0.3955 0.452 328 Metal Foil & Leef 0.5288 0 0.2600 0.4140 0.4174 0.4373 0.32 0 0.3955 0.452 329 Fabricated Metal Prdcts 0.7872 0 0.3900 0.4053 0.4053 0.3991 0.38 0 0.3715 0.452 330 Steem Engines & Turbine 0.2259 0.0600 0.0240 0.2859 0.2053 0.06 0.2479 0.5960 0.488 331 Internal Combustion Eng 1 0.2942 0.2942 0.7000 0.8393 0.58 0.2942 0.8993 0.488 332 Farm Machinery & Equip 1 0.3900 0.4000 0.8863 0.8003 0.39 0.3909 0.8864 0.390 333 Lawn & Garden Equip 1 0.3901 0.3901 0.7000 0.9829 0.9644 0.40 0.8022 0.9830 0.3	325 Misc Fabricated Wire P	0.8777	0.2883	0.2883	0.4135	0.4135	0.4439	0.29	0.2883	0.3759	0.4520
327 Pipe, Valves, & Pipe Fitt 0.70% 0 0.3500 0.4174 0.4174 0.4373 0.32 0 0.3955 0.452 328 Metal Foil & Leaf 0.5288 0 0.2600 0.4140 0.4174 0.4373 0.32 0 0.3955 0.452 329 Fabricated Metal Prdcts 0.7872 0 0.3900 0.4053 0.4053 0.3991 0.38 0 0.3715 0.452 330 Steam Engines & Turbine 0.2259 0.0600 0.0600 0.2859 0.2859 0.2063 0.60 0.2479 0.5960 0.488 331 Internal Conduction Eng 1 0.3900 0.4000 0.8893 0.8893 0.58 0.2942 0.8993 0.4883 332 Farm Machinery & Equip 1 0.3900 0.4000 0.8863 0.8003 0.39 0.8864 0.390 333 Lawn & Garden Equip 1 0.3901 0.3900 0.6000 0.8863 0.8003 0.39 0.8864 0.390 334 Construction Machinery 1 0.1010 0.3904 0.4500 0.3069 0.9246 0.52 0.124 0.4313 0.418 </td <td>326 Steel Springs, exc Wire</td> <th>0.3291</th> <td>0.0600</td> <td>0.0600</td> <td>0.3291</td> <td>0.3292</td> <td>0.3136</td> <td>0.06</td> <td>0.2448</td> <td>0.3158</td> <td>0.4520</td>	326 Steel Springs, exc Wire	0.3291	0.0600	0.0600	0.3291	0.3292	0.3136	0.06	0.2448	0.3158	0.4520
328 Metal Foil & Leaf 0.5288 0 0.2600 0.4140 0.4140 0.2970 0.00 0.4907 0.3628 0.452 329 Fabricated Metal Prdcts 0.7872 0 0.3900 0.4053 0.4053 0.3991 0.38 0 0.3715 0.452 330 Steam Engines & Turbine 0.2259 0.0600 0.0600 0.2859 0.2859 0.2053 0.06 0.2479 0.5960 0.488 331 Internal Combustion Eng 1 0.2942 0.2942 0.7000 0.8393 0.8393 0.58 0.2942 0.3909 0.4883 332 Farm Machinery & Equip 1 0.3900 0.6000 0.8863 0.8003 0.39 0.3909 0.8864 0.3900 333 Lawn & Garden Equip 1 0.3901 0.3900 0.6000 0.8863 0.8003 0.39 0.8864 0.390 334 Construction Machinery 1 0.1010 0.3900 0.2853 0.1010 0.39 0.1784 0.3690 0.418 335 Mining Machinery, exc oi 0.9984 0.0924	327 Pipe, Valves, & Pipe Fit	0.7096	0	0.3500	0.4174	0.4174	0.4373	0.32	0	0.3955	0.4520
329 Fabricated Metal Prdcts 0.7872 0 0.3900 0.4053 0.4053 0.3991 0.38 0 0.3715 0.452 330 Steem Engines & Turbine 0.2259 0.0600 0.0600 0.2859 0.2859 0.2063 0.06 0.2479 0.5960 0.488 331 Internal Combustion Eng 1 0.2942 0.2942 0.7000 0.8393 0.8033 0.58 0.2942 0.3900 0.4683 332 Farm Machinery & Equip 1 0.3900 0.3900 0.6000 0.8863 0.8003 0.39 0.3909 0.8664 0.3900 333 Lawn & Garden Equip 1 0.3901 0.3901 0.7000 0.9829 0.9644 0.40 0.8022 0.9830 0.3900 334 Construction Machinery 1 0.1010 0.1010 0.3500 0.2853 0.1010 0.390 0.418 335 Mining Machinery, exc oi 0.9984 0.0924 0.4500 0.3069 0.0924 0.52 0.1224 0.4313 0.418	328 Metal Foil & Leaf	0.5288	0	0.2600	0.4140	0.4140	0.2970	0.00	0.4907	0.3628	0.4520
330 Steam Engines & Turbine 0.2859 0.0600 0.0600 0.2859 0.2859 0.2053 0.06 0.2479 0.5960 0.488 331 Internal Combustion Eng 1 0.2942 0.2942 0.7000 0.8393 0.8393 0.58 0.2942 0.488 332 Farm Machinery & Equip 1 0.3900 0.3900 0.6000 0.8863 0.8003 0.39 0.3909 0.8864 0.390 333 Lawn & Garden Equip 1 0.3901 0.3901 0.7000 0.9829 0.9644 0.40 0.8022 0.9830 0.390 334 Construction Machinery 1 0.1010 0.1010 0.3500 0.2853 0.1010 0.390 0.418 335 Mining Machinery, exc oi 0.9984 0.0924 0.0924 0.4500 0.3069 0.0924 0.52 0.1224 0.4313 0.418	329 Fabricated Metal Prdct	0.7872	0	0.3900	0.4053	0.4053	0.3991	0.38	0	0.3715	0.4520
331 Internal Combustion Eng 1 0.2942 0.2942 0.7000 0.8393 0.58 0.2942 0.8393 0.488 332 Farm Machinery & Equip 1 0.3900 0.3900 0.6000 0.8863 0.8003 0.39 0.3909 0.8864 0.390 333 Lawn & Garden Equip 1 0.3901 0.3901 0.7000 0.9829 0.9644 0.40 0.8022 0.9830 0.390 334 Construction Machinery 1 0.1010 0.1010 0.3500 0.2853 0.1010 0.390 0.418 335 Mining Machinery, exc oi 0.9984 0.0924 0.0924 0.4500 0.3069 0.0924 0.52 0.1224 0.4313 0.418	330 Steen Engines & Turbin	0.2859	0.0600	0.0600	0.2859	0.2859	0.2063	0.06	0.2479	0.5960	0.4887
332 Farm Machinery & Equip 1 0.3900 0.3900 0.6000 0.8863 0.8003 0.39 0.3909 0.8864 0.3900 333 Lawn & Garden Equip 1 0.3901 0.3901 0.7000 0.9829 0.9644 0.40 0.8022 0.9830 0.3900 334 Construction Machinery 1 0.1010 0.1010 0.3500 0.2853 0.1010 0.390 0.418 335 Mining Machinery, exc oi 0.9984 0.0924 0.4500 0.3069 0.0924 0.4213 0.418	331 Internal Conduction En	1	0.2942	0.2942	0.7000	0.8393	0.8393	0.58	0.2942	0.8393	0.4887
333 Lawn & Garden Equip 1 0.3901 0.3901 0.7000 0.9829 0.9644 0.40 0.8022 0.9830 0.390 334 Construction Machinery 1 0.1010 0.1010 0.3500 0.2853 0.1010 0.39 0.1784 0.3690 0.418 335 Mining Machinery, exc oi 0.9984 0.0924 0.4500 0.3069 0.0924 0.52 0.1224 0.4313 0.418	332 Farm Machinery & Equip	1	0.3900	0.3900	0.6000	0.8863	0.8003	0.39	0.3909	0.8864	0.3901
334 Construction Machinery 1 0.1010 0.1010 0.3500 0.2853 0.1010 0.399 0.1784 0.3690 0.418 335 Mining Machinery, exc oi 0.9984 0.0924 0.4500 0.3069 0.0924 0.52 0.1224 0.4313 0.418	333 Lawn & Garden Equip	1	0.3901	0.3901	0.7000	0.9829	0.9644	0.40	0.8022	0.9830	0.3901
335 Mining Machinery, exc oi 0.9984 0.0924 0.0924 0.4500 0.3069 0.0924 0.52 0.1224 0.4313 0.418	334 Construction Machinery	1	0,1010	0.1010	0.3500	0.2853	0.1010	0.39	0.1784	0.3690	0.4183
	335 Mining Machinery.exc of	0.9984	0.0924	0.0924	0.4500	0.3069	0.0924	0.52	0.1224	0.4313	0.4183
336 Oil Field Mechinery 0.1047 0 0.0373 0.0373 0.0373 0.0223 0.00 0.0533 0 0.418	336 Oil Field Machinery	0.1047	0	0.0373	0.0373	0.0373	0.0223	0.00	0.0533	0	0.4183
337 Elevators & Moving Stai 0.6892 0.2400 0.2400 0.4140 0.4140 0.2700 0.24 0.5000 0.4266 0.615	337 Elevators & Moving Sta	0.6892	0.2400	0.2400	0.4140	0.4140	0.2700	0.24	0.5000	0.4266	0.6151
338 Conveyors & Conveyor Eq 1 0.4216 0.4216 0.6457 0.6457 0.6950 0.52 0.4216 0.4963 0.615	338 Conveyors & Conveyor Er	1	0.4216	0.4216	0.6457	0.6457	0.6950	0.52	0.4216	0.4963	0.6151
339 Hoists Cranes & Monorai 1 0.2400 0.2400 0.6301 0.6301 0.5026 0.24 0.7206 0.5183 0.615	339 Hoists.Cranes.& Monoral	1	0.2400	0.2400	0.6301	0.6301	0.5026	0.24	0.7206	0.5183	0.6151
340 Industrial Trucks & Tra 1 0.3768 0.3768 0.6166 0.6166 0.6598 0.42 0.5172 0.3768 0.615	340 Industrial Trucks & Tr	1	0.3768	0.3768	0.6166	0.6166	0.6598	0.42	0.5172	0.3768	0.6151
341 Machine Tools, Metal Cut 1 0,4189 0,4189 0,5541 0,5541 0,5705 0.42 0,4189 0,5271 0,603	341 Machine Tools.Metal Cur	: 1	0.4189	0.4189	0.5541	0.5541	0.5705	0.42	0.4189	0.5271	0.6036
342 Machine Tools, Metal For 0.5584 0.2500 0.2500 0.4000 0.5584 0.6165 0.25 0.4134 0.3319 0.603	342 Machine Tools.Metal For	0.5584	0.2500	0.2500	0.4000	0.5584	0.6165	0.3	0.4134	0.3319	0.6036
343 Special Dyes & Tools & 1 0.5285 0.5285 0.6000 0.7777 0.8197 0.53 0.5285 0.6457 0.603	343 Special Dives & Tools &	1	0.5285	0.5285	0.6000	0.7777	0.8197	0.53	0.5285	0.6457	0.6036
344 Power Driven Hand Tools 0.3514 0.0500 0.0500 0.3514 0.3514 0.1485 0.05 0.2498 0.5298 0.603	344 Power Driven Hand Tools	0.3514	0.0500	0.0500	0.3514	0.3514	0.1485	0.05	0.2498	0.5298	0.6036
345 Rolling Mill Machinery 0.1848 0.0300 0.0300 0.1848 0.1848 0.1681 0.03 0.1771 0.2492 0.603	345 Rolling Mill Mechinery	0.1848	0.0300	0.0300	0.1848	0.1848	0.1681	0.03	0.1771	0.2492	0.6036
346 Metalworking Machinery. 1 0.3900 0.3900 0.7178 0.7178 0.7233 0.39 0.5619 0.7343 0.603	346 Metalworking Machinery	1	0.3900	0.3900	0.7178	0.7178	0.7233	0.39	0.5619	0.7343	0.6036
347 Food Protets Machinery 1 0.2937 0.2937 0.6000 0.7572 0.4471 0.33 0.7568 0.7576 0.293	347 Food Procts Machinery	1	0.2937	0,2937	0.6000	0.7572	0.4471	0.33	0.7568	0.7576	0.2937
348 Textile Machinery 0.0752 0.0100 0.0100 0.0752 0.0752 0.0705 0.01 0.0779 0.0829 0.293	7/9 Tentile Machines	0.0752	0.0100	0.0100	0.0752	0.0752	0.0705	0.01	0.0779	0.0829	0.2937

SEC NO.	SECTOR NAME	RPC: SD	P FLRLK	ALTFLR	BSTLK	UNCHED	MI: IMP	REMI IN IMP	WI IMP	LK MRIO
340 Um	viuncking Machine	~	1 0.1500	0.1500	0.7500	0.9577	0.4954	0.15 0.9421	0.9294	0.2937
350 Par	ver Industries New	''' Thin	1 0 1400	0.1400	0.4500	0.8061	0.4613	0.14 0.1648	0.8061	0.2937
351 Pri	intim Trades Mad	hine 0.44	2 0 1300	0.1300	0.4400	0.4420	0.2306	0.13 0.4636	0.7760	0.2957
352 800	cial Industry Na	chin 0.984	4 0.2937	0.2937	0.7500	0.9203	0.9199	0.37 0.9200	0.9204	0.2937
353 Put		0.797	1 0.0003	0.3400	0.4000	0.0001	0.0000	0.35 0.0001	0.0005	0.3424
354 Bal	L & Roller Beeri	nos 0.242	7 0.00003	0.2000	0.2000	0.0001	0.0002	0.20 0.00003	0.0001	0.3424
355 Blo	wers & Fans	0.857	8 0,0001	0.2500	0.3000	0.0001	0.0002	0.25 0.0001	0.0001	0.3424
356 Inc	ustrial Patterns		1 0.0002	0.3400	0.4000	0.0001	0.0001	0.39 0.00002	0.0002	0.3424
357 Pou	er Transmission (Equi	1 0.0002	0.2600	0.3000	0.0002	0.0003	0.26 0.0004	0.0002	0.3424
358 Ind	Listrial Furnaces	20	1 0.0001	0.2700	0.3000	0.0002	0.0003	0.27 0.0001	0.0002	0.3424
359 Ger	eral Industrial I	tech 0.254	5 0.00001	0.1200	0.2000	0.0002	0.0002	0.39 0	0.0001	0.3424
360 Car	buretors, Pistons,	,Rin 0.802	8 0.00001	0.3400	0.5500	0.00003	0.0001	0.52 0.00001	0.0001	0.3424
361 Mac	hinery,exc Electi	rica 0.958	2 0.0001	0.3400	0.7500	0.0001	0.0001	0.74 0.0001	0.0002	0.3424
362 Ele	ctronic Computin	9 Eq	1 0.1600	0.1600	0.3000	0.9518	0.1736	0.16 0.9518	0.1928	0.2419
363 Cal	culating & Accou	ntin 0.554	8 0.00001	0.2400	0.4000	0.5548	0.6445	0.00 0.4677	0.4280	0.2419
364 Sca	les & Balances	0.547	7 0.00001	0.2400	0.4000	0.5485	0.2602	0.00 0.9076	0.2508	0.2419
365 Typ	xeuriters & Offici	e Ma 0.143	5 0.0300	0.0300	0.1435	0.1436	0.0763	0.03 0.3063	0.1508	0.2419
366 Aut	omatic Merchandis	sing 0.904	8 0.0200	0.0200	0.6000	0.9114	0.0840	0.02 0.9795	0.9794	0.2766
367 Con	mercial Laundry I	Equi 0.476	7 0.0500	0.0500	0.3000	0.4767	0.3117	0.05 0.7230	0.6326	0.2766
368 Ref	rigeration & Heat	ting 0.854	6 0.2766	0.2766	0.5500	0.8688	0.6056	0.44 0.9723	0.9724	0.2766
369 Mee	suring & Dispens	ing 0.594	6 0.1900	0.1900	0.4000	0.5956	0.6435	0.19 0.9237	0.2121	0.2766
370 Ser	vice Industry Ma	chin	1 0.2766	0.2766	0.7000	0.9999	0.9999	0.38 0.9998	0.9999	0.2766
371 Ins	struments to Measu	ure 0.485	9 0.0600	0.0600	0.3460	0.3460	0.2993	0.06 0.4340	0.2921	0.2282
372 Tra	insformers		1 0.0600	0.0600	0.3909	0.3909	0.1653	0.06 0.2172	0.5557	0.2282
373 Swi	tchgeer & Switch	ooar 0.602	7 0.0400	0.0400	0.3250	0.3250	0.2473	0.04 0.2572	0.4324	0.2282
374 Mot	ors & Generators		1 0.1200	0.1200	0.4730	0.4730	0.3621	0.12 0.4567	0.5517	0.2282
375 Ind	lustrial Controls		1 0.0900	0.0900	0.5512	0.5512	0.3585	0.09 0.2923	0.7056	0.2282
376 Wel	ding Apparatus, I	Elec	1 0.2000	0.2000	0.5328	0.5328	0.5664	0.20 0.3104	0.5354	0.2282
377 Car	bon & Graphite Pi	rdct 0.961	8 0.1300	0.1300	0.3977	0.3977	0.3721	0.13 0.4637	0.3234	0.2282
378 Ele	ctrical Industria	al A 0.483	6 0.0300	0.0300	0.2110	0.2110	0.1739	0.03 0.2641	0.2023	0.2282
379 Hou	mehold Cooking Ed	quip	1 0.0685	0.0685	0.1864	0.1864	0.1620	0.14 0.0844	0.0685	0.5284
380 Hou	sehold Refrigera	tors	1 0.0155	0.0155	0.4000	0.6551	0.6880	0.10 0.1996	0.0155	0.5284
381 Hou	isehold Laundry Ed	quip	1 0.0254	0.0254	0.2681	0.2681	0.2528	0.09 0.0254	0.1428	0.5284
382 Ele	ectric Housewares	& F	1 0.0078	0.0078	0.0943	0.0943	0.0078	0.01 0.0113	0.1748	0.5284
383 Hou	sehold Vacum Clo	eene	1 0.0116	0.0116	0.2339	0.2339	0.1344	0.13 0.3141	0.0116	0.5284
384 Ser	ring Machines	0.217	4 0.0000	0.0175	0.0175	0.0175	0.0016	0.00 0.0447	0.0015	0.5284
385 Hou	aehold Appliance	s,ne	1 0.0618	0.0618	0.3000	0.1897	0.1108	0.25 0.0618	0.1708	0.5284
386 Ele	ctric Lamps	0.165	7 0.0000	0.0107	0.0107	0.0107	0.0032	0.00 0.0100	0.0163	0.1717
387 Lig	hting Fixtures a	nd E 0.40	7 0.0052	0.0052	0.1000	0.0075	0.0153	0.02 0.0052	0.0068	0.1717
388 Wir	ing Devices	0.890	8 0.0066	0.0066	0.1500	0.0108	0.0066	0.07 0.0085	0.0263	0.1717
389 Rad	tio & Tv Receiving	g Se 0.085	7 0.0084	0.0084	0.0857	0.0859	0.0957	0.11 0.0084	0.1223	0.0794
390 Pho	nograph Records (4 Ta 0.275	6 0.0794	0.0794	0.2756	0.2756	0.3119	0.12 0.1973	0.2637	0.0794
391 Tel	ephone & Telegrap	ch A 0.095	z 0.0000	0.0952	0.0952	0.0952	0.0267	0.00 0.2910	0.0607	0.2097
392 Rad	tio Tv Communicat	tion 0.478	5 0.0400	0.0400	0.3000	0.4785	0.5516	0.04 0.3939	0.5209	0.2097
393 Ele	ctron Tubes	0.077	1 0.00001	0.0771	0.0771	0.0771	0.0610	0.00 0.0825	0.0809	0.5155
394 Sen	nconductors & Re	late 0.132	9 0.00001	0.1329	0.1329	0.1329	0.1652	0.00 0.1345	0.0687	0.3155
395 Ele	ictranic Caliponeni	ts,n 0.615	5 0.0250	0.0250	0.3500	0.5016	0.3399	0.05 0.6414	0.2043	0.5155
396 Sto	rage Batteries	0.672	6 0.1200	0.1200	0.6726	0.6792	0.2090	0.12 0.9528	0.8985	0.2057
397 Pri	mary Batteries, I	0.732	2 0.0275	0.0275	0.7522	0.7522	0.0840	0.04 0.0275	0.8935	0.205/
398 X-r	ray Apparatus & Ti	lbes	1 0.0700	0.0700	0.8569	0.8569	0.0924	0.07 0.8617	0.8605	0.2637

399 Engine Electrical Equip. 0.2818 0.2800 0.2818 0.2823 0.2841 0.22 0.4300 0.3915 0.3537 400 Electrical Equip.ne 0.7666 0.1000 0.1000 0.2800 0.3712 0.772	sec no.	SECTOR NAME	RPC: SI	ip flrlk	ALTFLR	BSTLK	UNCHOD	MI: IMP	Remi	HN INP	WI IMP	lk Mrio
400 Electrical Equip.nec 0.7665 0.0100 0.2000 0.3731 0.3762 0.1791 0.3201 0.	399 Eng	ine Electrical Ec	uip 0.28	8 0.2200	0.2200	0.2618	0.2823	0.2541	0.22	0.4290	0.3915	0.2637
401 Truck & Bus Bodies 0.5823 0.1449 0.1449 0.1464 0.1464 0.1464 0.4679 0.2413 0.4679 402 Truck Traiters 0.0022 0.1851 0.1861 0.0281 0.0336 0.4568 0.58	400 Ele	ctrical Equip,ned	 : 0.76	5 0.0100	0.0100	0.2500	0.3731	0.3762	0.01	0.3804	0.3011	0.2637
462 Truck Trailers 0.902 0.1851 0.1851 0.1851 0.4261 0.4268 0.4258 <td>401 Tru</td> <td>ck & Bus Bodies</td> <td>0.58</td> <td>3 0.1449</td> <td>0.1449</td> <td>0.3000</td> <td>0.1449</td> <td>0.1694</td> <td>0.41</td> <td>0.1591</td> <td>0.2413</td> <td>0.4059</td>	401 Tru	ck & Bus Bodies	0.58	3 0.1449	0.1449	0.3000	0.1449	0.1694	0.41	0.1591	0.2413	0.4059
433 Notor Vehicle Barts & A 1 0.0891 0.0891 0.0300 0.3316 0.4582 0.093 0.02219 0 0.3766 406 Altroart & Hissile Ergi 0.9490 0.00001 0.2550 0.3000 0.4372 0.00219 0 0.0016 405 Altroart & Hissile Ergi 0 0 0 0 0.0150 0.2540 0.3005 0.4361 0.2540 0.1161 0.5540 0.2151 0.5540 0.2151 0.5540 0.2151 0.5540 0.2151 0.554 0.554 0.554 0.554 0.554 0.554 0.554 0.554 0.554 0.554 0.554 0.554 0.555 0.554 0.555 0.5	402 Tru	ck Trailers	0.90	2 0.1861	0.1861	0.1861	0.1861	0.2228	0.23	0.2136	0.2854	0.4059
406 Motor Vehicle Parts & A 1 0.1145 0.4500 0.500 0.4572 0.90 0.10219 0	403 Mot	or Vehicles		1 0.0891	0.0891	0.5000	0.3316	0.4508	0.93	0.0891	0.2306	0.4059
405 Aircraft 0 0 0 0 0 0 0.00211 0	404 Mot	or Vehicle Parts	& A	1 0.1145	0.1145	0.4500	0.3000	0.4372	0.90	0.1145	0.2768	0.4059
406 Alrcraft & Hissile Ergi 0.4000 0.250 0.300 0.6245 0.408 0.1165 0	405 Ain	craft		0 0	0	0	0	0	0	0.02219	0	0.3766
407 Aircraft & Missile Equi 0<	406 Ain	craft & Missile E	ingi 0.94	9 0.00001	0.2550	0.3000	0.6245	0.8083	0.26	0.1186	0	0.1106
408 Ship Building & Repairi 1 0.0540 0.2043 0.2043 0.1061 0.25 0.0540 0.2115 0.3356 409 Baat Building & Repairi 1 0.1971 0.3306 0.3305 0.3305 0.0540 0.1971 0.3356 411 Notorcycles, Bicycles, & 0.5662 0.0640 0.1812 0.1812 0.0453 0.04 0.0305 0.3005 0.040 0.0356 0.3356 0.440 0.3356 0.3305 0.440 0.0354 0.3305 0.440 0.0356 0.3305 0.340 0.0405 0.111 0.0035 0.3356 0.440 0.0002 0.0002 0.0002 0.0001 0.0018 0.0005 0.111 0.0035 0.3354 <td< td=""><td>407 Ain</td><td>craft & Missile E</td><td>iqui</td><td>0 0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0.31</td><td>0</td><td>0</td><td>0.0488</td></td<>	407 Ain	craft & Missile E	iqui	0 0	0	0	0	0	0.31	0	0	0.0488
409 Boat Building & Repairi 1 0.1991 0.1392 0.3305 0.2361 0.258 0.2580 0.1991 0.3355 410 Ratiroad Equip 0.3325 0.0644 0.0464 0.2166 0.0464 0.110 0.5356 0.3356 411 Motoroccles, Bicortes, B. 0.6060 0.000 0.0000 0.0000 0.0000 0.0006 0.110 0.0356 0.3356 413 Motor Homes 0.6279 0.0022 0.0020 0.2020 0.2024 0.2035 0.3464 0.228 0.028 0.3356 0.0356 0.0356 0.013 0.013 0.0264 0.028 0.228 0.228 0.228 0.228 0.228 0.228 0.2356 0.3564 0.4591 0.3356 415 Transportation Equipse 0.9406 0.0200 0.2200 0.228 0.228 0.228 0.2384 0.2810 0.3466 0.228 0.2384 0.4591 0.3165 0.4591 0.3165 0.4591 0.3165 0.4591 0.3165 0.4591 0.3165 0.4591 0.3165 0.4591 0.4591 0.451 0.577 0.356 0.591	408 Shi	p Building & Repa	niri	1 0.0540	0.0540	0.2043	0.2043	0.1061	0.3	0.0540	0.2115	0.3356
410 Railroad Equip 0.3223 0.0614 0.0142 0.1248 0.0644 0.11 0.1326 0.1336 411 Motorcycles, Bioycles, B 0.0554 0.0556 0.1356 0.1356 0.3359 0.3359 0.4359 0.4203 0.0356 0.3356 413 Motile Hames 0.4402 0.0002 0.0203 0.0018 0.0006 0.11 0.002 0.3264 0.226 0.3364 0.226 0.3364 0.226 0.3364 0.226 0.3354 0.3461 0.22 0.3354 0.3356 416 Ergineering & Scientifi 1 0.0001 0.4000 0.2000 0.222 0.2281 0.22 0.3345 0.4571 0.4571 0.4501 0.4571 0.4501 0.4501 0.4501 0.4501 0.4501 0.4551 0.4511 0.3161 0.4511 0.3161 0.4511 0.3161 0.4511 0.3161 0.4511 0.4511 0.3161 0.4511 0.4511 0.4511 0.4511 0.4511 0.4511 0.4511 0.4511 0.4511 0.4511 0.4511 0.4511 0.4511 0.45	409 Boa	t Building & Repa	niri	1 0.1991	0.1991	0.3305	0.3305	0.2451	0.58	0.2510	0.1991	0.3356
411 Notarcycles, Bicycles, & 0.6902 0.6000 0.1812 0.1812 0.0483 0.040 0.2394 0.3356 412 Travel Trailers & Campe 0.5554 0.1356 0.1356 0.3309 0.3359 0.411 0.0003 0.0005 0.1000 0.0016 0.111 0.0030 0.0036 0.3243 0.3245 0.3246 0.2344 0.0248 0.0248 0.0281 0.223 0.3345 0.4241 0.0240 0.3355 416 Erginnering & Scientifi 1 0.1003 0.0001 0.2200 0.2046 0.0005 0.100 0.100 0.220 0.2345 0.2354 0.2354 0.2479 0.3554 0.4791 0.221 0.2364 0.00 0.201 0.2021 0.2364 0.00 0.201 0.2021 0.2364 0.00 0.201 0.2021 0.3564 0.07 0.112 0.222 0.2364 0.201 0.2015 0.4571 0.407 0.315 0.326 0.3761 0.3761 0.3761 0.3761 0.3761 0.3761 0.3761 0.3763 0.3761 0.3761 0.3761 0.3761 0.3761	410 Rai	lroad Equip	0.32	3 0.0614	0.0614	0.2168	0.2168	0.0614	0.11	0.1636	0.1302	0.3356
412 Trevel Trailers & Campe 0.5364 0.1356 0.1360 0.3809 0.3569 0.41 0.2428 0.1356 0.3356 413 Motor Homes 0.5729 0.002 0.0020 0.2000 0.2006 0.2383 0.3343 0.3441 0.22 0.3535 0.3541 0.22 0.2353 0.3451 0.22 0.3543 0.3451 0.22 0.3543 0.3451 0.22 0.3534 0.3451 0.22 0.3535 0.3545 0.4666 0.466 0.4665 0.4667 0.4667 0.4667 0.4667 0.4667 0.4667 0.4667 0.4667 0.4667 0.4667 0.4677 0.356 0.4757 0.3564 0.3765 0.3765 0.3765 0.3765 0.3765 0.3765 0.3765 0.3765 0.3765 0.3765 0.3765 0.3765 0.3765 0.3765 0.3765 0.3765 0.3765 0.3765	411 Mot	orcycles,Bicycles	, & 0.6 9	2 0.0400	0.0400	0.1812	0.1812	0.0483	0.04	0.0490	0.2034	0.3356
413 Mobile Homes 0.4402 0.0003 0.0003 0.1000 0.0018 0.0005 0.11 0.0003 0.0133 0.5668 414 Motor Homes 0.5729 0.0082 0.0284 0.3283 0.3243 0.3241 0.22 0.02354 0.0285 0.0284 0.0285 0.0284 0.0285	412 Tra	vel Trailers & Ca	mpe 0.53	4 0.1356	0.1356	0.3809	0.3809	0.3559	0.41	0.2428	0.1356	0.3356
414 Notor Nomes 0.5729 0.0082 0.3243 0.3243 0.3441 0.245 0.0246 0.0246 0.2334 0.2354 0.4591 417 Nechnical Meesuring De 0.8046 0.0000 0.2220 0.1222 0.128 0.026 0.4591 0.4561 0.4561 0.4591 0.4561 0.4591 0.4561 0.4561 0.4591 0.456	413 Mob	ile Homes	0.44	2 0.0003	0.0003	0.1000	0.0018	0.0006	0.11	0.0003	0.0133	0.5608
415 Transportation Equip,ne 1 0.2200 0.4006 0.2381 0.22 0.2381 0.2353 0.2353 0.2353 0.2353 0.2353 0.2353 0.2353 0.2353 0.2353 0.2353 0.2353 0.2353 0.2353 0.2353 0.2353 0.2491 417 Mechanical Messuring De 0.8048 0.0000 0.0200 0.2202 0.2222 0.1281 0.02 0.2203 0.4391 418 Automatic Temperature 0.9406 0.0000 0.6000 0.6000 0.6070 0.0767 0.3564 0.051 0.5171 0.356 422 Suprical Instruments & L 0.6271 0.0600 0.6070 0.0787 0.036 0.6371 0.0800 0.6477 0.03 0.656 0.7357 0.508 0.3366 0.3757 0.508 0.3366 0.3757 0.508 0.3366 0.4571 0.08 0.5711 0.070 0.2277 0.4677 0.33 0.7357 0.508 0.3366 0.3756 0.3366 0.3756 0.3366 0.3756 0.3366 0.3756 0.3035 0.554 0.3165 0.2277	414 Mot	or Homes	0.57	9 0.0082	0.0082	0.3243	0.3243	0.3461	0.26	0.0246	0.0082	0.3356
416 Engineering & Scientifi 1 0.1003 0.1003 0.2046 0.2003 0.121 0.121 0.122 0.1221 0.121 0.122 0.419 417 Mechanical Mesuring De 0.8046 0.00001 0.4000 0.5000 0.5000 0.5070 0.079 0.00 0.7586 0.00 0.5564 0.00 0.5564 0.00 0.5564 0.00 0.5564 0.00 0.5564 0.01 0.5564 0.01 0.5564 0.01 0.5564 0.01 0.5564 0.01 0.5564 0.01 0.5564 0.02 0.5564 0.556 0.336 0.5564 <	415 Tra	nsportation Equip	o,ne	1 0.2200	0.2200	0.4006	0.4006	0.2381	0.22	0.3534	0.2813	0.3356
417 Hechanical Measuring De 0.8048 0.0200 0.2222 0.2221 0.1281 0.02 0.4286 0.4203 0.4591 418 Automatic Temperature C 0.9466 0.0000 0.5000 0.5760 0.7756 0.00 0.7611 0.5705 0.4591 419 Surgical & Medical Inst 0.7794 0.0700 0.0000 0.7767 0.5564 0.0760 0.3564 0.0760 0.3564 0.0760 0.3564 0.0760 0.3564 0.0760 0.3564 0.0760 0.3564 0.0760 0.3564 0.0760 0.3564 0.0760 0.3564 0.0760 0.3564 0.0760 0.3564 0.0760 0.3564 0.0760 0.3564 0.0760 0.3564 0.0760 0.3564 0.0760 0.3564 0.0760 0.3655 0.3165 422 Matches,Clocks, & Parts 0.4507 0.0000 0.0100 0.1120 0.0227 0.00 0.3005 0.3165 423 Optical Instruments 4.1 0.6277 0.0000 0.0000 0.0163 0.6183 0.618 0.618 0.618 0.618 0.618 0.618 0.618 0.618 0.618 0.6164 0.614 0.0144	416 Eng	ineering & Scient	ifi	1 0.1003	0.1003	0.2046	0.2046	0.1003	0.17	0.2149	0.3543	0.4591
418 Autometic Temperature C 0.9406 0.00001 0.4600 0.5000 0.0779 0.00 0.7681 0.6751 0.3584 0.05 0.3785 0.3584 0.05 0.8791 0.3165 420 Surgical Appliances & S 0.7649 0.0700 0.0700 0.4000 0.4797 0.3564 0.0766 0.3764 0.7777 0.3564 0.0766 0.3767 0.3564 0.7777 0.3564 0.7777 0.3564 0.7777 0.3564 0.7777 0.3564 0.7777 0.3564 0.7777 0.3564 0.7777 0.3564 0.7777 0.3564 0.7777 0.356 0.7777 0.356 0.7777 0.356 0.7777 0.356 0.7777 0.356 0.7777 0.356 0.7777 0.356 0.7777 0.356 0.7777 0.356 0.7777 0.356 0.7777 0.356 0.7777 0.356 0.7777 0.356 0.7777 0.300 0.7777 0.4677 0.30 0.7777 0.300 0.7777 0.2001 0.0167 0.1017 0.1120 0.1271 0.1010 0.1120 0.1271 0.1010 0.1075	417 Med	hanical Measuring	De 0.80	8 0.0200	0.0200	0.2222	0.2222	0.1281	0.02	0.3486	0.2203	0.4591
419 Sungical & Medical Inst 0.7394 0.0600 0.0500 0.7365 0.3364 0.06 0.8159 0.8120 0.3165 420 Sungical Appliances & S 0.7649 0.0700 0.0700 0.4000 0.7677 0.3364 0.07 0.9113 0.8157 0.3165 421 Dental Eqrip & Supplies 0.4993 0.0400 0.4000 0.4273 0.1123 0.128 0.02 0.0100 0.2271 0.4577 0.356 0.7350 0.3165 422 Optical Instruments & 1.06271 0.0300 0.0300 0.6201 0.4677 0.03 0.6205 0.5751 0.000 0.221 0.4579 426 Optitalmic Goods 0.5711 0 0 0.500 0.5171 0.4277 0.00 0.625 0.554 0.3165 426 Optitalmic Goods 0.5771 0.0201 0.0243 0.0243 0.0243 0.0164 0.014 0.0014 0.0104 0.0164 0.0164 0.0164 0.0164 0.0164 0.0164 0.0164 0.0164 0.0164 0.0164 0.1253 0.1251 0.1251 0.1261 0.1261 0.1251 0.1261 0.1261 0.126	418 Aut	omatic Temperatur	e C 0.94	6 0.00001	0.4600	0.5000	0.6070	0.0799	0.00	0.7681	0.6705	0.4591
420 Surgical Appliances & S 0.7669 0.0700 0.0700 0.6000 0.7677 0.3564 0.07 0.9113 0.8517 0.3165 421 Dental Equip & Supplies 0.4993 0.0800 0.0000 0.4903 0.4451 0.86 0.3265 0.7264 0.3165 422 Optical Instruments & L 0.6271 0.0300 0.0300 0.4000 0.6271 0.03 0.7377 0.03 0.7377 0.03 0.7377 0.03 0.7377 0.03 0.7377 0.03 0.7377 0.03 0.7377 0.03 0.7377 0.03 0.7377 0.03 0.7377 0.03 0.7307 0.010 0.1120 0.1277 0.00 0.6627 0.0171 0.2777 0.00 0.6627 0.0171 0.2021 0.0287 0.01 0.3053 0.0164 0.4574 426 dpthtelmine Goods 0.0777 0.0200 0.1023 0.1024 0.0144 0.0144 0.018 0.0818 0.088 0.08 0.0000 0.0546 0.554 0.554 0.1554 427 besters Materials & L 0.0759 0.0001 0.0176 0.0176 0.0146 0.0148 0.081	419 Sur	gical & Medical 1	inst 0.73	4 0.0600	0.0600	0.5500	0.7365	0.3584	0.06	0.8159	0.8120	0.3165
421 Dental Equip & Supplies 0.4993 0.0800 0.04000 0.4993 0.4451 0.08 0.3665 0.7824 0.3165 422 Vatches, Clocks, & Parts 0.4507 0.0160 0.1263 0.1263 0.1128 0.02 0.0160 0.2021 0.4591 425 Optical Instruments & L 0.6271 0.0300 0.0000 0.6271 0.4677 0.03 0.7575 0.5008 0.3165 426 Optitalmic Goods 0.5711 0.0100 0.0100 0.1120 0.0287 0.01 0.3564 0.5711 0.2275 0.020 0.6271 0.4277 0.02 0.2283 0.0187 0.0100 0.0157 0.1167 0.0187 0.0287 0.0223 0.0287 0.0281 0.0184 0.0273 0.0281 0.018 0.0287 0.0281 0.0000 0.1554 425 Interret Materials & La 0.0792 0.0001 0.0144 0.0144 0.0144 0.014 0.000 0.0121 0.0555 0.0554 0.0546 0.2051 0.2051 0.0288 0.00 0.0175 0.1574 0.175 0.175 0.1755 0.1756 0.335 0.0	420 Surg	gical Appliances	& S 0.76	9 0.0700	0.0700	0.6000	0.7677	0.3564	0.07	0.9113	0.8517	0.3165
422 Watches, Clocks, & Parts 0.4507 0.0160 0.0160 0.1263 0.1128 0.02 0.0160 0.2021 0.4571 425 Optical Instruments & L 0.6271 0.0300 0.4000 0.5711 0.2277 0.00 0.6635 0.5524 0.3166 425 Optical Instruments & L 0.3377 0.0100 0.0100 0.1120 0.0287 0.01 0.3003 0.6435 0.5524 0.3165 425 Photographic Equip & Su 0.3377 0.0001 0.0200 0.1057 0.1057 0.020 0.0287 0.01 0.3003 0.6435 0.5754 0.3165 426 Jewelry, Precious Metal 0.3377 0.0001 0.0200 0.1263 0.0283 0.0188 0.01 0.0201 0.0243 0.0144 0.01 0.0263 0.0184 0.021 0.0264 0.1554 427 Jewelers Materials & L 0.0752 0.0176 0.0176 0.1209 0.1209 0.1391 0.23 0.1021 0.0263 0.0164 0.0164 0.0164 0.0164 0.0164 0.0164 0.0164 0.0164 0.0163 0.1201 0.0175 0.1350	421 Dem	tal Equip & Suppl	ies 0.49	0.0800	0.0800	0.4000	0.4993	0.4451	0.08	0.3665	0.7824	0.3165
423 Optical Instruments & L 0.6271 0.0300 0.0300 0.6271 0.6277 0.03 0.7357 0.508 0.3165 424 Opthtalmic Goods 0.5711 0 0 0.3500 0.5711 0.2727 0.00 0.6635 0.5524 0.3165 426 Apthtalmic Goods 0.5711 0 0.0100 0.1120 0.1120 0.0287 0.01 0.3003 0.6435 0.5524 0.3165 426 Jestelry, Precious Metal 0.2377 0.0001 0.0203 0.0243 0.0243 0.0185 0.02 0.2241 0.2251 0.1554 427 Jestelers Materials & La 0.0792 0.0001 0.0144 0.0444 0.0444 0.0444 0.0444 0.0444 0.0444 0.0444 0.0444 0.0444 0.0444 0.0444 0.0444 0.0444 0.0444 0.0444 </td <td>422 Wat</td> <td>ches,Clocks,& Par</td> <td>ts 0.45</td> <td>0.0160</td> <td>0.0160</td> <td>0.1263</td> <td>0.1263</td> <td>0.1128</td> <td>0.02</td> <td>0.0160</td> <td>0.2021</td> <td>0.4591</td>	422 Wat	ches,Clocks,& Par	ts 0.45	0.0160	0.0160	0.1263	0.1263	0.1128	0.02	0.0160	0.2021	0.4591
424 Opthalmic Goods 0.5711 0 0.3500 0.5711 0.2727 0.00 0.6635 0.5524 0.3165 425 Photographic Equip & Su 0.3397 0.0100 0.0100 0.1120 0.0287 0.01 0.3003 0.0814 0.4591 426 Jewelry, Precious Metal 0.2377 0.0200 0.0203 0.1057 0.0315 0.02 0.2241 0.0223 0.1554 427 Jewelers Materials & La 0.0792 0.00001 0.0243 0.0243 0.0188 0.018 0.018 0.018 0.0144 0.0144 0.0144 0.0144 0.0144 0.0144 0.0144 0.0144 0.0144 0.0144 0.0146 0.0168 0.0283 0.0283 0.000 0.01554 429 Costume Jewelry 0.345 0.0001 0.0176 0.0176 0.1209 0.1391 0.223 0.0176 0.1554 430 Musical Instruments 0.7554 0.0564 0.2051 0.0201 0.000 0.0303 0.0574 0.1554 433 Sprting & Athletic Good 0.5497 0.1010 0.1715 0.1566 0.33 0.0100 0.1554	423 Opt	ical Instruments	& L 0.62	1 0.0300	0.0300	0.4000	0.6271	0.4677	0.03	0.7357	0.5008	0.3165
425 Photographic Equip & Su 0.3397 0.0100 0.1120 0.1120 0.0287 0.01 0.3003 0.0814 0.4591 426 Jewel ry, Precious Metal 0.2377 0.0200 0.0200 0.1057 0.0315 0.02 0.2241 0.0223 0.1554 427 Jewel ers Materials & La 0.0792 0.00001 0.0243 0.0243 0.0188 0.001 0.0154 0.0144 0.0144 0.0144 0.0144 0.0144 0.0140 0.0100 0.01554 428 Silvernaer & Plated War 0.0556 0.00001 0.0181 0.0181 0.0283 0.0283 0.00 0.0100 0.1554 430 Musical Instruments 0.7059 0.0176 0.0176 0.1201 0.1391 0.23 0.0176 0.954 432 Dolls 0.3951 0 0.1476 0.1476 0.1476 0.2011 0.0101 0.1313 0.1554 433 Sprting & Athletic Good 0.5453 0.0209 0.0293 0.0281 0.03 0.0278 0.3050 0.1554 433 Pens & Mechanical Perci	424 Oph	thalmic Goods	0.57	1 0	0	0.3500	0.5711	0.2727	0.00	0.6635	0.5524	0.3165
426 Jawelry, Precious Metal0.23770.02000.02000.10570.10570.03150.020.22410.02230.1554427 Jawelers Materials & La0.07920.000010.02430.02430.02430.01440.01440.010.00000.01554428 Silvernare & Plated War0.5650.000010.01440.01440.01440.01440.000.00400.01400.1554429 Costure Jawelry0.34450.000010.01760.01760.12090.12090.13910.230.01760.0554431 Games, Toys, & Childrens0.55610.05640.05460.20510.20510.05640.2230.01760.1554432 Dolls0.395100.14760.14760.14760.14760.02010.000.03040.03330.1554435 sprting & Athletic Good0.99770.10100.11710.17150.17150.15860.330.10100.1514436 Pens & Mechanical Penci0.62430.02990.02990.03930.03930.02810.030.02780.35500.1554437 Carbon Paper & Inked Ri0.58630.05910.05420.01520.01520.01520.01620.01640.1554438 Artificial Trees & Flow 0.412800.05240.05630.05630.05630.05690.07680.05640.05420.0900.1554437 Carbon Paper & Inked Ri0.35830.05910.05240.05220.05220.05220.0563 <td>425 Pho</td> <td>tographic Equip &</td> <td>su 0.339</td> <td>0.0100</td> <td>0.0100</td> <td>0.1120</td> <td>0.1120</td> <td>0.0287</td> <td>0.01</td> <td>0.3003</td> <td>0.0814</td> <td>0.4591</td>	425 Pho	tographic Equip &	su 0.339	0.0100	0.0100	0.1120	0.1120	0.0287	0.01	0.3003	0.0814	0.4591
427 Jewelers Materials & La 0.0792 0.0001 0.0243 0.0243 0.0148 0.01 0.01350 0.0080 0.1554 428 Silvenware & Plated Mar 0.0565 0.0001 0.0144 0.0144 0.0144 0.0144 0.01 0.0140 0.0154 0.0555 429 Costume Jewelry 0.3445 0.0001 0.0818 0.0818 0.0818 0.0288 0.00 0.1021 0.0955 0.1554 430 Musical Instruments 0.7069 0.0176 0.1207 0.1209 0.1391 0.23 0.0176 0.1554 431 Games, Toys, & Childrens 0.5651 0.0546 0.2051 0.0546 0.201 0.00 0.3004 0.0533 0.1554 432 Dolls 0.3951 0 0.1476 0.1476 0.1476 0.1476 0.1630 0.009 0.001 0.1333 0.1554 433 Sprting & Athletic Good 0.2437 0.1010 0.1715 0.1755 0.1586 0.33 0.1010 0.1514 434 Pens & Mechanical Penci 0.6245 0 0.0209 0.0393 0.0281	426 Jeu	elry,Precious Met	al 0.23	7 0.0200	0.0200	0.1057	0.1057	0.0315	0.02	0.2241	0.0223	0.1554
428 Silvenaare & Plated War 0.0565 0.00001 0.0144 0.0144 0.0144 0.00 0.0040 0.0140 0.1554 429 Costume Jewelry 0.3445 0.00001 0.0818 0.0818 0.0818 0.0288 0.00 0.1021 0.0955 0.1554 430 Musical Instruments 0.7069 0.0176 0.0176 0.1209 0.1209 0.1391 0.23 0.0176 0.1554 431 Games, Toys, & Childrens 0.5551 0.0566 0.2051 0.0566 0.25 0.3951 0 0.1476 0.1476 0.1476 0.0176 0.0201 0.00 0.3004 0.0333 0.1554 433 Sprting & Athletic Good 0.9497 0.1010 0.1170 0.1715 0.1586 0.33 0.1010 0.1574 435 Lead Pencils & Art Good 0.2683 0.0209 0.0393 0.0393 0.0281 0.03 0.0278 0.3050 0.1554 435 Lead Pencils & Art Good 0.2683 0.0209 0.0393 0.0393 0.0281 0.03 0.0471 0.1554 436 Marking Devices <t< td=""><td>427 Јен</td><td>elers Materials &</td><td>La 0.07</td><td>0.00001</td><td>0.0243</td><td>0.0243</td><td>0.0243</td><td>0.0188</td><td>0.00</td><td>0.0350</td><td>0.0080</td><td>0.1554</td></t<>	427 Јен	elers Materials &	La 0.07	0.00001	0.0243	0.0243	0.0243	0.0188	0.00	0.0350	0.0080	0.1554
429 Costume Jeweiry 0.3445 0.00001 0.0818 0.0818 0.0288 0.00 0.1021 0.0995 0.1554 430 Musical Instruments 0.7099 0.0176 0.0176 0.1209 0.1209 0.1391 0.23 0.0176 0.1554 431 Genes, Toys, & Childners 0.5551 0.0546 0.2051 0.2051 0.0266 0.23 0.3049 0.0333 0.1554 432 Dolls 0.39951 0 0.1476 0.1476 0.1476 0.0201 0.00 0.3004 0.0333 0.1554 433 Sprting & Athletic Good 0.9497 0.1010 0.1170 0.1715 0.1586 0.33 0.1010 0.1554 434 Pens & Mechanical Penci 0.6253 0.0209 0.0293 0.0393 0.0281 0.02 0.0278 0.3050 0.1554 435 Leed Pencils & Art Good 0.2553 0.0209 0.0395 0.0393 0.0281 0.03 0.0291 0.1554 436 Marking Devices 1 0.0900 0.2036 0.2036 0.0591 0.0542 0.0991 0.1554 437 Carbon Paper & Inked Ri	428 Sil	verware & Plated	War 0.05	5 0.00001	0.0144	0.0144	0.0144	0.0144	0.00	0.0040	0.0140	0.1554
430 Musical Instruments0.70690.01760.01760.12090.12090.13910.230.01760.09610.1554431 Gemes, Toys, & Childrens0.56510.05660.05660.20510.05660.250.34950.06780.1554432 Dolls0.395100.14760.14760.14760.14760.02010.000.30040.03330.1554433 Sprting & Athletic Good0.99770.10100.10100.17150.17150.15860.330.10100.1554435 Lead Pencils & Art Good0.26830.02090.02090.03930.09930.02810.030.02780.30500.1554436 Marking Devices10.09000.02060.20360.01450.090.19840.21480.1554437 Carbon Paper & Inked Ri0.35830.05910.05910.06120.06120.06120.03520.000.05640.01960.1554438 Artificial Trees & Flow0.164300.01520.01520.01520.00420.000.01900.1554440 Needles, Pins, & Fastere0.259900.05460.05460.05460.01470.000.00790.1554443 Burial Caskets & Yaults0.40220.02320.05330.01330.01330.01330.01520.0260.02710.1554444 Signs & Advertising Dis10.01520.05430.01330.01330.01520.0260.09730.2190.1554444	429 Cos	tume Jewelry	0.34	5 0.00001	0.0818	0.0818	0.0818	0.0288	0.00	0.1021	0.0895	0.1554
431 Games, Toys, & Childrens0.56510.05460.02540.20510.020540.2250.34950.08780.1554432 Dolls0.395100.14760.14760.14760.02010.000.30040.03330.1554433 Sprting & Athletic Good 0.94970.10100.10100.17150.17150.15860.330.10100.13130.1554434 Pens & Mechanical Penci0.628500.14300.14300.00390.000.02780.30500.1554435 Leed Pencils & Art Good0.26830.02090.02090.02930.03930.02810.030.02090.04710.1554436 Marking Devices10.09000.20360.20360.10450.090.19840.21480.1554437 Carbon Paper & Inked Ri0.35830.05910.065910.06120.06120.03520.000.05640.1554438 Artificial Trees & Flow 0.412800.05120.01520.01520.00420.000.01960.1554443 Bacane, Pins, & Fastene0.166300.05260.05640.01470.000.01990.1554444 Needles, Pins, & Fastene10.07290.02320.02550.20450.09830.2250.09210.29730.1554444 Barcane & Brushes10.07920.02320.05330.05630.03550.050.02320.07610.1554444 Surface Floor Cove0.709900.19380.01830.0	430 Mus	ical Instruments	0.70	9 0.0176	0.0176	0.1209	0.1209	0.1391	0.23	0.0176	0.0961	0.1554
432 Dolls0.395100.14760.14760.14760.14760.02010.000.30040.03330.1554433 Sprting & Athletic Good 0.94970.10100.10100.17150.17150.15860.330.10100.13130.1554434 Pens & Mechanical Penci 0.624500.14300.14300.14300.00390.000.02780.30500.1554435 Lead Penci & Art Good 0.26830.02990.02900.03930.03930.02810.030.02090.04710.1554436 Marking Devices10.09000.20360.20360.10450.090.19840.21480.1554437 Carbon Paper & Inked Ri 0.35830.05910.05910.06120.05120.05220.00520.00790.05420.08900.1554438 Artificial Trees & Flow 0.412800.05120.05120.05220.00420.000.01980.1554439 Buttons0.166300.05210.05420.00420.000.01990.11950.1554441 Brooms & Brushes10.09210.02450.20450.09830.2550.09210.20730.1554443 Burial Caskets & Vaults 0.45020.0220.0220.05330.16330.01550.05630.05750.050.02320.07610.1554444 Signs & Advertising Dis10.10750.10750.16750.2660.07630.2060.16720.21640.1554445 Marufacturing Industrie 0.7801<	431 Gem	es,Toys,& Childre	ns 0.56	0.0546	0.0546	0.2051	0.2051	0.0546	0.3	0.3495	0.0878	0.1554
433Sprting & Athletic Good 0.94970.10100.10100.17150.17150.15860.330.10100.13130.1554434Pens & Mechanical Penci 0.624500.14300.14300.14300.00390.000.02780.30500.1554435Lead Pencils & Art Good 0.26830.02090.02090.03930.03930.02810.030.02090.02780.30500.1554436Marking Devices10.09000.20360.20360.10450.090.19840.21480.1554437Carbon Paper & Irked Ri 0.35830.05910.05910.07680.07680.05990.070.05910.06600.1554438Artificial Trees & Flow 0.412800.06120.06120.06120.03520.000.01860.01890.1554439Buttons0.166300.01520.01520.01520.00420.000.01960.11990.1554440Needles, Pins, & Fastene 0.259900.05460.05460.01470.000.00790.12190.1554441Brooms & Brushes10.09210.02320.02350.02350.09230.2230.05430.01380.01220.000.00300.01640.1554443Burial Caskets & Vaults 0.45020.02320.02320.05630.05630.03750.050.02320.07610.1554443Burial Caskets & Vaults 0.45020.02520.02520.0563	432 Dol	ls	0.39	61 0	0.1476	0.1476	0.1476	0.0201	0.00	0.3004	0.0333	0.1554
434 Pens & Mechanical Penci 0.624500.14300.14300.14300.00390.000.02780.30500.1554435 Lead Penci Is & Art Good 0.26830.02090.02090.03930.03930.02810.030.02090.04710.1554436 Marking Devices10.09000.09000.20360.20360.10450.090.19840.21480.1554437 Carbon Paper & Inked Ri 0.35830.05910.05910.07680.07680.05990.070.05910.06600.1554438 Artificial Trees & Flow 0.412800.05120.01520.01520.03520.000.01960.01890.1554439 Buttons0.166300.05460.05460.05460.01470.000.01960.01890.1554440 Needles, Pins, & Fastene 0.259900.05460.05460.01470.000.00790.12190.1554441 Brooms & Brushes10.09210.02220.20450.09830.250.09210.29730.1554443 Burial Caskets & Vaults 0.45020.02320.02320.05630.05630.03750.050.02320.07610.1554444 Signs & Advertising Dis10.107630.07630.12830.12830.07630.220.1570.1554443 Burial Caskets & Vaults 0.45020.07630.19990.19990.10150.290.16720.21640.1554444 Signs & Advertising Dis10.07630.07630.1283	433 Spr	ting & Athletic (iccod 0.94	0.1010	0.1010	0.1715	0.1715	0.1586	0.33	0.1010	0.1313	0.1554
435 Lead Pencils & Art Good 0.26830.02090.02090.03930.03930.02810.030.02090.04710.1554436 Merking Devices10.09000.9000.20360.20360.10450.090.19840.21480.1554437 Carbon Paper & Inked Ri 0.35830.05910.05910.07680.07680.05990.070.05910.06600.1554438 Artificial Trees & Flow 0.412800.05910.06120.06120.03520.000.05420.08900.1554439 Buttons0.166300.01520.01520.01520.00420.000.01960.18990.1554440 Needles, Pins, & Fastere 0.259900.05640.05640.05660.01470.000.00790.12190.1554441 Brooms & Brushes10.09210.02220.20450.20450.09830.250.09120.29730.1554443 Burial Caskets & Vaults 0.45020.02220.02320.05630.05630.03750.050.02320.07610.1554444 Signs & Advertising Dis10.10150.19390.19390.10150.290.16720.21640.1554445 Manufacturing Industrie 0.78010.07630.07630.12830.12830.07630.200.16040.11270.1554446 Railroads & Related Svc 0.99210.30000.30000.80000.99780.44400.300.89620.90340.7168445 Menufacturing Industrie 0.7801	434 Pen	s & Mechanical Pe	nci 0.62	50	0.1430	0.1430	0.1430	0.0039	0.00	0.0278	0.3050	0.1554
436 Marking Devices10.09000.09000.20360.20360.10450.090.19840.21480.1554437 Carbon Paper & Inked Ri 0.35830.05910.05910.07680.07680.05990.070.05910.06600.1554438 Artificial Trees & Flow 0.412800.06120.06120.06120.03520.000.05420.08900.1554439 Buttons0.166300.01520.01520.01520.0020.000.05420.08900.1554440 Needles, Pins, & Fastere 0.259900.05540.05640.05640.01470.000.00790.12190.1554441 Brooms & Brushes10.09210.05220.20450.08830.250.09210.29730.1554443 Burial Caskets & Vaults 0.45020.02320.02320.05630.05630.03750.050.02320.07610.1554445 Manufacturing Industrie 0.78010.07630.07630.12830.12830.12830.10150.29970.16400.11270.1554446 Railroads & Related Svc 0.99210.30000.30000.80000.99780.44400.300.89620.90340.7168447 Local, Interurban Passen 0.86390.29000.70000.89930.5560.290.89111.00000.6561448 Motor Freight Transport10.39110.90001.00000.39110.440.77921.00000.9753	435 Lea	d Pencils & Art (ood 0.26	3 0.0209	0.0209	0.0393	0.0393	0.0281	0.03	0.0209	0.0471	0.1554
437 Carbon Paper & Inked Ri 0.3583 0.0591 0.0591 0.0768 0.0768 0.0599 0.07 0.0591 0.0660 0.1554 438 Artificial Trees & Flow 0.4128 0 0.0512 0.0612 0.0612 0.0352 0.00 0.0542 0.0990 0.1554 439 Buttons 0.1663 0 0.0152 0.0152 0.0152 0.0042 0.00 0.0196 0.0198 0.1554 440 Needles, Pins, & Fastene 0.2599 0 0.0546 0.0546 0.0546 0.0147 0.00 0.0079 0.1219 0.1554 441 Brooms & Brushes 1 0.0921 0.052 0.2045 0.0983 0.25 0.0921 0.2973 0.1554 442 Hard Surface Floor Cove 0.0709 0 0.0138 0.0138 0.0138 0.0122 0.00 0.0030 0.0164 0.1554 443 Burial Caskets & Vaults 0.4502 0.0232 0.0232 0.0563 0.0563 0.0375 0.05 0.2322 0.0763 0.1939 0.1015 0.1939 0.1015 0.299 0.1574 0.444 0.1574 0.445 0.1574 0.4563 0.	436 Mar	king Devices		1 0.0900	0.0900	0.2036	0.2036	0.1045	0.09	0.1984	0.2148	0.1554
438 Artificial Trees & Flow 0.4128 0 0.0612 0.0612 0.0612 0.0352 0.00 0.0542 0.0890 0.1554 439 Buttons 0.1663 0 0.0152 0.0152 0.0152 0.0042 0.00 0.0196 0.0196 0.1554 440 Needles, Pins, & Fastene 0.2599 0 0.0546 0.0546 0.0546 0.0147 0.00 0.0079 0.1554 441 Brooms & Brushes 1 0.0921 0.0546 0.0546 0.0183 0.0122 0.0070 0.1554 442 Hard Surface Floor Cove 0.0709 0 0.0138 0.0138 0.0138 0.0122 0.00 0.0030 0.0164 0.1554 443 Burial Caskets & Vaults 0.4502 0.0232 0.0232 0.0563 0.0653 0.0375 0.05 0.0232 0.0761 0.1554 444 Signs & Advertising Dis 1 0.1015 0.1939 0.1939 0.1015 0.293 0.264 0.1574 0.1574 0.1554 445 Marufacturing Industrie 0.7801 0.0763 0.0763 0.1283	437 Carl	bon Paper & Inked	Ri 0.35	3 0.0591	0.0591	0.0768	0.0768	0.0599	0.07	0.0591	0.0660	0.1554
439 Buttons 0.1663 0 0.0152 0.0152 0.0152 0.0042 0.00 0.0196 0.0189 0.1554 440 Needles, Pins, & Fastene 0.2599 0 0.0546 0.0546 0.0546 0.0147 0.00 0.0799 0.1219 0.1554 441 Brooms & Brushes 1 0.0921 0.0921 0.2045 0.2045 0.0983 0.25 0.0921 0.2973 0.1554 442 Hard Surface Floor Cove 0.0709 0 0.0138 0.0138 0.0138 0.0122 0.00 0.0030 0.0164 0.1554 443 Burial Caskets & Vaults 0.4502 0.0232 0.0232 0.0563 0.0563 0.0375 0.05 0.0232 0.0764 0.1554 444 Signs & Advertising Dis 1 0.1015 0.1939 0.1939 0.1015 0.29 0.1574 0.1574 0.1574 445 Manufacturing Industrie 0.7801 0.0763 0.0763 0.1283 0.1283 0.1783 0.290 0.1604 0.1127 0.1554 446 Railroads & Related Svc 0.9921 0.3000 0.3000 0.8000 0.9978 0.4440 0.30 0.8	438 Art	ificial Trees & I	low 0.41	28 0	0.0612	0.0612	0.0612	0.0352	0.00	0.0542	0.0890	0.1554
440 Needles, Pins, & Fastene 0.2599 0 0.0546 0.0546 0.0147 0.00 0.0079 0.1219 0.1554 441 Brooms & Brushes 1 0.0921 0.2045 0.2045 0.0983 0.25 0.0921 0.2973 0.1554 442 Hard Surface Floor Cove 0.0709 0 0.0138 0.0138 0.0138 0.0122 0.00 0.0030 0.0164 0.1554 443 Burial Caskets & Vaults 0.4502 0.0222 0.0252 0.0563 0.0663 0.0375 0.05 0.0232 0.0764 0.1554 444 Signs & Advertising Dis 1 0.1015 0.1939 0.1939 0.1015 0.29 0.1015 0.29 0.2122 0.1672 0.1672 0.1554 445 Menufacturing Industrie 0.7801 0.0763 0.0763 0.1283 0.1283 0.1783 0.290 0.1640 0.1127 0.1554 446 Railroads & Related Svc 0.9921 0.3000 0.3000 0.8000 0.9978 0.4440 0.30 0.8962 0.9034 0.7168 446 Railroads & Related Svc 0.9921 0.3000 0.2900 0.7000 0.8993 0.5506 <	439 But	tons	0.16	3 0	0.0152	0.0152	0.0152	0.0042	0.00	0.0196	0.0189	0.1554
441 Brooms & Brushes 1 0.0921 0.0921 0.2045 0.0983 0.25 0.0921 0.2973 0.1554 442 Hard Surface Floor Cove 0.0709 0 0.0138 0.0138 0.0138 0.0122 0.00 0.0030 0.0164 0.1554 443 Burial Caskets & Vaults 0.4502 0.0232 0.0232 0.0563 0.0563 0.0375 0.05 0.0232 0.0761 0.1554 444 Signs & Advertising Dis 1 0.1015 0.1015 0.1939 0.1015 0.28 0.0232 0.0763 0.1939 0.1015 0.29 0.1672 0.2164 0.1554 445 Manufacturing Industrie 0.7801 0.0763 0.0763 0.1283 0.1283 0.0763 0.29 0.1604 0.1127 0.1554 446 Railroads & Related Svc 0.9921 0.3000 0.3000 0.8000 0.9978 0.4440 0.30 0.8962 0.9034 0.7168 447 Local, Interurban Passen 0.8639 0.2900 0.7000 0.8993 0.5506 0.29 0.8911 1.0000 0.6501 448 Motor Freight Transport 1 0.3911 0.3911 0.900	440 Nee	dles,Pins, & Fast	ane 0.25	% 0	0.0546	0.0546	0.0546	0.0147	0.00	0.0079	0.1219	0.1554
442 Hand Surface Floor Cove 0.0709 0 0.0138 0.0138 0.0138 0.0122 0.00 0.0030 0.0164 0.1554 443 Burial Caskets & Vaults 0.4502 0.0232 0.0252 0.0563 0.0563 0.0375 0.05 0.0232 0.0761 0.1554 444 Signs & Advertising Dis 1 0.1015 0.1939 0.1939 0.1015 0.293 0.1672 0.2164 0.1554 445 Manufacturing Industrie 0.7801 0.0763 0.0763 0.1283 0.1763 0.20 0.1664 0.1127 0.1554 446 Railroads & Related Svc 0.9921 0.3000 0.3000 0.8000 0.9978 0.4440 0.30 0.8962 0.9034 0.7168 447 Local, Interurban Passen 0.8639 0.2900 0.7000 0.8993 0.5506 0.29 0.8911 1.0000 0.6601 448 Motor Freight Transport 1 0.3911 0.9000 1.0000 0.3911 0.44 0.7792 1.0000 0.9753	441 Bro	ans & Brushes		1 0.0921	0.0921	0.2045	0.2045	0.0983	0.35	0.0921	0.2973	0.1554
443 Burial Caskets & Vaults 0.4502 0.0232 0.0232 0.0563 0.0563 0.0375 0.05 0.0232 0.0761 0.1554 444 Signs & Advertising Dis 1 0.1015 0.1015 0.1939 0.1939 0.1015 0.29 0.2122 0.1554 445 Manufacturing Industrie 0.7801 0.0763 0.0763 0.1283 0.1283 0.1075 0.29 0.1672 0.2164 0.1554 446 Railroads & Related Svc 0.9921 0.3000 0.3000 0.8000 0.9978 0.4440 0.30 0.8662 0.9034 0.7168 447 Local, Interurban Passen 0.8639 0.2900 0.7000 0.8993 0.5506 0.29 0.8911 1.0000 0.6501 448 Motor Freight Transport 1 0.3911 0.9000 1.0000 0.3911 0.44 0.7792 1.0000 0.9753	442 Har	d Surface Floor (ove 0.07	9 0	0.0138	0.0138	0.0138	0.0122	0.00	0.0030	0.0164	0.1554
444 Signs & Advertising Dis 1 0.1015 0.1015 0.1939 0.1939 0.1015 0.29 0.2164 0.1554 445 Manufacturing Industrie 0.7801 0.0763 0.0763 0.1283 0.1283 0.1015 0.29 0.1672 0.2164 0.1554 446 Railroads & Related Svc 0.9921 0.3000 0.3000 0.8000 0.9978 0.4440 0.30 0.8962 0.9034 0.7168 447 Local, Interurban Passen 0.8639 0.2900 0.7000 0.8993 0.5506 0.29 0.8911 1.0000 0.6501 448 Motor Freight Transport 1 0.3911 0.3900 1.0000 0.3911 0.440 0.792 1.0000 0.9753	443 Bur	ial Caskets & Va.	ults 0.45	2 0.0232	0.0232	0.0563	0.0563	0.0375	0.05	0.0232	0.0761	0.1554
445 Manufacturing Industrie 0.7801 0.0763 0.0763 0.1283 0.1283 0.0763 0.20 0.1604 0.1127 0.1554 446 Railroads & Related Svc 0.9921 0.3000 0.3000 0.8000 0.9978 0.4440 0.30 0.8962 0.9034 0.7168 447 Local, Interurban Passen 0.8639 0.2900 0.2900 0.7000 0.8993 0.5506 0.29 0.8911 1.0000 0.6501 448 Motor Freight Transport 1 0.3911 0.3911 0.9000 1.0000 0.3911 0.44 0.7792 1.0000 0.9753	444 Sig	ns & Advertising	Dis	1 0.1015	0.1015	0.1939	0.1939	0.1015	0.29	0.1672	0.2164	0.1554
446 Railroads & Related Svc 0.9921 0.3000 0.3000 0.8000 0.9978 0.4440 0.30 0.8622 0.9034 0.7168 447 Local, Interurban Passen 0.8639 0.2900 0.2900 0.7000 0.8993 0.5506 0.29 0.8911 1.0000 0.6501 448 Motor Freight Transport 1 0.3911 0.3911 0.9000 1.0000 0.3911 0.44 0.7792 1.0000 0.9753	445 Mari	ufacturing Indust	rie 0.78	0.0763	0.0763	0.1283	0.1283	0.0763	0.20	0.1604	0.1127	0.1554
447 Local, Interumban Passen 0.8639 0.2900 0.2900 0.7000 0.8993 0.5506 0.29 0.8911 1.0000 0.6601 448 Motor Freight Transport 1 0.3911 0.3911 0.9000 1.0000 0.3911 0.44 0.7792 1.0000 0.9753	446 Rai	Iroads & Related	SVC 0.997	0.3000	0.3000	0.8000	0.9978	0.4440	0.30	0.8962	0.9034	0.7168
448 Motor Freight Transport 1 0.3911 0.3911 0.9000 1.0000 0.3911 0.44 0.7792 1.0000 0.9753	447 Loc	al, Interurban Pas	isen 0.86	9 0.2900	0.2900	0.7000	0.8993	0.5506	0.29	0.8911	1.0000	0.6501
•	448 Mot	or Freight Transp	xort	1 0.3911	0.3911	0.9000	1.0000	0.3911	0.44	0.7792	1.0000	0.9753

SEC NO. SECTOR NAME RPC: SDP	FLRLK	ALTFLR	BSTLK	UNCHED	MI: IMP	REMI	HN IHP	WI IMP	LK HRIO
449 Water Transportation 0 6292	0.1600	0.1600	0.6222	0.6335	0.4019	0.16	0.5927	0.7617	1,0000
450 Air Transportation 0.7732	0.1900	0.1900	0.6000	0.7641	0.4228	0.19	0.9755	0.3339	0.3105
451 Pipe Lines.exc Natural 0.6522	0.3200	0.3200	0.5500	0.6658	0.4696	0.32	0.7413	0.9223	0.4207
452 Freight Forwarders & Ot 0.7392	0.4430	0.4430	0.7390	0.9135	0.4430	0.91	0.7634	0.4514	0.6999
453 Arrangement of Passenge 1	0.4430	0.4430	0.9000	1.0000	0.4430	0.94	0.8030	1.0000	0.6999
454 Communications.exc Radi 0.7485	0.4400	0.4400	0.6500	0.7908	0.6292	0.44	0.7514	0.6662	0.5257
455 Radio & Tv Broadcasting 0.8791	0.4236	0.4236	0.7500	0.8792	0.4926	0.87	0.9980	0.9027	0.4236
456 Electric Svcs 0.8711	0.5261	0.5261	0.8711	0.8969	0.5261	0.97	0.8152	0.8575	0.8655
457 Ges Production & Distri 1	0.5941	0.5941	1.0000	1.0000	0.5941	0.95	0.9681	0.8139	0.8525
458 Water Supply & Sewerage 0.912	0.0300	0.0300	0.9120	0.9150	0.6157	0.03	0.9592	1.0000	1.0000
459 Sanitary Svcs, Steam & 0.9866	0.6157	0.6157	0.9866	1.0000	0.6157	0.97	0.8855	1.0000	1.0000
460 Recreational Related Wh 0.7343	0.4955	0.4955	0.7343	0.7421	0.4955	0.78	0.9983	0.8597	0.7321
461 Other Wholesale Trade 0.9007	0.4955	0.4955	0.7300	0.0085	0.0083	0.78	0.0109	0.0069	0.7321
462 Recreational Related Re 0.9472	0.5597	0.5597	0.7500	0.2099	0.2019	0.75	0.2212	0.2167	0.9425
463 Other Retail Trade 0.9566	0.5597	0.5597	0.9566	0.9584	0.5597	0.75	0.9539	0.9778	0.9425
464 Banking 0.8307	0.5831	0.5831	0.8307	0.8562	0.6045	0.83	0.9931	0.7231	0.5831
465 Credit Agencies 0.872	0.5831	0.5831	0.8720	0.8757	0.6045	0.86	0.9931	0.7165	0.5831
466 Security & Commodity Br 0.6862	0.4980	0.4980	0.6862	0.6966	0.5368	0.76	0.9931	0.4980	0.5831
467 Insurance Carriers 0.8474	0.3900	0.3900	0.8475	0.8681	0.4909	0.39	0.9665	1.0000	0.6398
468 Insurance Agents & Brok 0.9289	0.4909	0.4909	0.9289	0.9289	0.4909	0.96	0.9950	0.6265	0.6398
469 Owner-Occupied Dwelling 1	0.6006	0.6006	1.0000	1.0000	0.6006	0.62	0.9159	0.9164	0.6969
470 Real Estate 0.8989	0.6006	0.6006	0.8989	0.9323	0.6006	0.62	0.9159	0.7620	0.6969
471 Hotels & Lodging Places 0.6813	0.1100	0.1100	0.6813	0.7138	0.6252	0.11	0.7123	0.8808	0.7386
472 Laundry, Cleaning & Shoe 0.9856	0.6112	0.6112	0.9856	0.9984	0.6112	0.81	0.9857	0.9282	0.8761
473 Funeral Svc & Crematori 1	0.6112	0.6112	1.0000	1.0000	0.6112	0.92	0.9857	1.0000	0.8761
474 Photo Studios & Misc Pe 1	0.6112	0.6112	1.0000	1.0000	0.6112	0.93	0.9857	1.0000	0.8761
475 Electrical Repair Shops 0.8537	0.6112	0.6112	0.8537	0.8661	0.6112	0.83	0.7963	0.8600	0.8761
476 Watch, Clock, Jewelry, Fur 1	0.5100	0.5100	1.0000	1.0000	0.6112	0.51	0.9857	1.0000	0.8/61
477 Beauty & Barber Shops 1	0.6100	0.6100	1.0000	1.0000	0.6112	0.61	0.9857	1.0000	0.8/61
478 Misc Repair Shops 0.6773	0	0.6773	0.6773	0.7227	0	0.92	0.5883	0.7296	0.7501
479 Svcs to Buildings 0.6593	0	0.6593	0.6593	0.6922	0	0.67	0.7778	0.0005	0.7501
480 Personal Supply Svcs 0.8377	0	0.8377	0.83//	0.9263	0	0.95	0.9600	1.000	0.7301
481 Computer & Data Process U.7253	U	0.7255	0.7255	0.7522	0	0.90	0.712	0.6401	0.7301
482 Management & Consulting 1	U	0.7300	0.8000	1.000	0	0.80	0.55/1	0.72/0	0.7301
485 Detective & Protective 0.7104	U	0.7104	0.7104	0.7001	0	0.00	0.5341	0.7301	0.7301
464 Equip Kental & Leasing 0.0009	0	0.0009	0.0079	1.0000	0	0.0	0.0054	0.919/	0.7301
460 Photorinishing, commerci 0.9962	0	0.7300	0.7302	1.000	0	0.90	0.9020	0.7544	0.7301
400 Uther Business SVCS 0.9900	0	0.7300	0.9796	1.000	0	0.90	0.0727	1 000	0.7301
40/ Advertising 0.0/00	0	0.7300	0.8676	0.9007	0	0.90	0.8005	0.8670	0.7551
400 Legal SVCS 0.00/0	0	0.7300	0.8500	0.9001	0	0.70	0.5270	0.5328	0.7551
407 Erginizer ing, Artitica & B 0 8409	0	0.7300	0.8400	1 0000	n	0.95	0.9370	1.0000	0.7551
491 Fetim & Drickim Place	0 6021	0 4021	0 9000	1 0000	0.6021	0.71	0.9953	1.0000	0.8950
402 Auto Rental & Lessing 1	0.2554	0.2554	0.9000	1.0000	0.2554	0.82	0.9912	0.9583	0.8877
403 Auto Repair & Sure 0 ROKS	0.2554	0.2554	0.8945	0.9652	0.2554	0.90	0.9912	0.9616	0.8877
494 Auto Parking & Car Linch 0.0374	0.2554	0.2554	0.9000	1.0000	0.2554	0.67	0.9850	1.0000	0.8877
495 Motion Pictures 0.6128	0.4400	0.4400	0.6128	0.6469	0.7238	0.44	0.6180	0.4951	0.8383
496 Dance Halls, Studios & S 0.7987	0.6100	0.6100	0.7987	0.7987	0.7506	0.61	0.7675	0.8630	0.8383
497 Theatrical Producers.Ba 0.6018	0.4500	0.4500	0.6018	0.6417	0.5241	0.45	0.9015	0.5295	0.8383
498 Bowling Alleys & Pool H 0.837	0.7997	0.7997	0.8370	0.8370	0.7997	0.97	0.8177	0.9194	0.8383

SEC NO. SECTOR NAME R	PC:	SDP	FLRLK	ALTFLR	BSTLK	UNCHOD	MI: IMP	REMI	nn inp	VI IMP	LK MRIO
499 Commercial Sports,exc	R 0.	8766	0.8383	0.8383	0.8766	0.8956	0.8524	0.96	0.8741	0.9666	0.8383
500 Racing & Track Operation	o 0.	8002	0.4600	0.4600	0.8002	0.8051	0.8495	0.46	0.4679	0.6535	0.8383
501 Membership Sports & Re	c 0.	8295	0.8290	0.8290	0.8295	0.8879	0.8625	0.95	0.8751	0.9702	0.8383
502 Amusement & Rec Svcs,n	e 0.	6306	0.5300	0.5300	0.6306	0.6309	0.6015	0.53	0.6167	0.6969	0.8383
503 Doctors & Dentists		1	0.9437	0.9437	1.0000	1.0000	1.0000	0.97	0.9889	1.0000	0.9437
504 Hospitals	0.	9963	0.8436	0.8436	0.9963	0.9963	1.0000	0.96	0.8436	1.0000	0.8977
505 Nursing & Personal Can	e	1	0.8977	0.8977	1.0000	1.0000	0.9007	0.95	0.9902	1.0000	0.8977
506 Other Medical & Health		1	0.7761	0.7761	1.0000	1.0000	0.9946	0.96	0.9535	0.9743	0.7761
507 Elementary & Secondary		1	0.7400	0.7400	1.0000	1.0000	1.0000	0.74	0.9624	1.0000	0.7840
508 Colleges, Universities,	L.	1	0.3100	0.3100	0.8000	1.0000	1.0000	0.31	0.9624	1.0000	0.7840
509 Other Educational Svcs		1	0.4600	0.4600	1.0000	1.0000	1.0000	0.46	0.9624	1.0000	0.7840
510 Business Associations	0.	8221	0.7395	0.7395	0.8221	0.8730	0.9610	0.74	0.8138	0.7395	0.7818
511 Labor & Civic Organiza	t 0.	9916	0.7818	0.7818	0.9916	0.9916	0.9687	0.94	0.9294	0.9599	0.7818
512 Religious Organization	6	1	0.7818	0.7818	1.0000	1.0000	0.9687	0.95	0.9294	1.0000	0.7818
513 Other Manbership Organ	i 0.	8595	0.5100	0.5100	0.8595	0.8624	0.8572	0.51	0.8703	0.8618	0.7818
514 Residential Care		1	0.5729	0.5729	1.0000	1.0000	1.0000	0.91	0.5729	1.0000	1.0000
515 Social Svcs, nec		1	0.5729	0.5729	1.0000	1.0000	1.0000	0.91	0.5729	0.9914	1.0000
516 U.S. Postal Service		1	0.6475	0.6475	1.0000	1.0000	1.0000		0.9678	0.9209	0.6475
517 Federal Electric Utili	t	0	0	0	0	0	0		0	0	0.8655
518 Other Federal Gov Enter	r 0.!	5921	0.5182	0.5182	0.5921	0.5921	0.6283		0.5182	0.6099	0.6475
519 Local Gov Passenger Tra	8	0	0	0	0	0	0		0	0	0.6501
520 State & Local Electric		0	0	0	0	0	0		0	0	0.8655
521 Other State & Local Go	v 0.	8599	0.7704	0.7704	0.8599	0.8766	0.9489		0.8519	0.7704	1.0000
522 Noncomparable Imports	0.0	0004	0.0004	0.0004	0.0004	0.0004	0.0002		0.0005	0.0005	1.0000
523 Scrap	0	.954	0.2954	0.2954	0.9540	0.9540	0.9049		0.9065	0.7850	0.2954
524 Used & Secondhand Good	s	1	0.2954	0.2954	1.0000	1.0000	1.0000		0.9065	1.0000	0.2954
525 Government Industry		1	0.5730	0.5730	1.0000	1.0000	0.9803		0.9806	0.5730	1.0000
526 Rest of the World Indu	5	0	0	0	0	0	0		0.9414	0	1.0000
527 Household Industry		1	1.0000	1.0000	1.0000	1.0000	1.0000		0.9975	0	1.0000
528 Inventory Valuation Ad	i	1	0	0	0	0	0		0	0	1.0000
	-	-	-	-	-	-	-		_		
Average RPC for 528 sectors:	: 0.6	6467	0.1699	0.2266	0.4435	0.4362	0.3301	0.28	0.3832	0.3966	0.4688
STANDARD DEVIATION:	0.3	5572	0.2240	0.2332	0.3150	0.3557	0.3219	0.28	0.3621	0.3523	0.2496

APPENDIX D: IMPLAN AGGREGATION AND SECTORIZATION SCHEMES

The four aggregation and sectorization schemes used for Lake State models are listed below. Their names and the number of sectors they contain (in parentheses) are as follows: UNAGMN (308), AGMN (158), AG30 (31), AG16 (16). The aggregation schemes are presented first. They appear in the exact format by which they were used as aggregation templates with IMPLAN; therefore, only aggregated sectors are shown. The format involves two lines for each aggregated sector. On the first line, the first number is the lowest IMPLAN sector number of all the IMPLAN sectors that are to be aggregated together to form a new aggregated sector. The next number on the same line indicates how many other sectors are to be aggregated to form the new sector. The name for the new aggregated aggregated sector completes the data on the first line. The next line below these data lists the remaining IMPLAN sector numbers for the other sectors which comprise the new aggregated sector. As an example, the first two lines for the UNAGMN models aggregation scheme indicate sector 3 is being aggregated with six other sectors (4 through 9) to form a new sector called "Neat Animals & Misc. Livestock." The first line for the AGMN aggregation scheme indicates 326 sectors are being aggregated with sector 1 to form a sector called "All Other."

The sectorization schemes list all model sectors which result from the aggregation schemes. Aggregated sectors are indicated by the abbreviation "AGG;" unaggregated sectors are indicated by all capital letters. Appendix A lists all 528 IMPLAN sectors.

Aggregation Scheme for UNAGMN models

3 6Meat Animals & Misc. Livestock 4 5 6 7 8 9 11 3Food, Feed Grains & Grass Seed 12 13 14 16 1Fruits & Tree Nuts 17 18 2Vegs, Sugar & Misc. Crops 19 20 22 1Forest, Grnhs & Nursery Prdcts 23 24 1Agri, Forstry, & Fish Prdcts 25 26 1Agri, For, & Fish Svcs 27 28 11ron & Ferroalloy Ore Mining 29 31 7Nonferrous Ore Mining, exc copper 32 33 34 35 36 37 38 39 1Coal Mining 40 44 5Dim,Crshd,Constr Stone & Ind Sand 45 46 47 48 49 50 15Misc. Nonmetallic Minerals, nec 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 6New Construction 67 68 69 70 71 72 73 2Maintenance & Repair Construction 74 75 76 4Militay Ordnance

Aggregation Scheme for UNAGMN models (cont'd.)

331 334 2Construction & Mining Machinery 335 336 337 3Material Handling Mach & Equip 338 339 340 353 8Gen Indstries Machinery & Equip 354 355 356 357 358 359 360 361 362 30ffice Computing&Acctng Machines 363 364 365 366 4Service Industry Machinery 367 368 369 370 389 3Radio, Tv & Communications Equip 390 391 392 434 3Marking Devices 435 436 437 452 1Freight Forwrdrs & Other Transp 453 458 1Water Supply & Sanitary Svcs 459 460 10ther Wholesale Trade 461 462 10ther Retail Trade 463 524

464 2Banking & Other Finance Institut 465 466 469 1Real Estate 470 472 40ther Personal & Repair Svcs 473 474 475 476 478 80ther Business Svcs 479 480 481 482 483 484 485 486 488 2Misc. Professional Svcs 489 490 492 2Auto Repair & Svcs 493 494 496 6Amusement & Rec Svcs, nec 497 498 499 500 501 502 505 10ther Medical & Health Svcs 506 507 2Educational Svcs 508 509 510 3Nonprofit Organizations 511 512 513 523 1Scrap, Used & Secondhand Goods

Aggregation Scheme for AGMN models
Aggregation Scheme for AGMN models (cont'd.)

235 2Petro Refining & Misc Petro Prdcts	492 2Auto Repair & Services
236 237	493 494
460 10ther Wholesale Trade	496 6Amusement & Rec Svcs, nec
461	497 498 499 500 501 502
462 10ther Retail Trade	507 2Educational Svcs
463	508 509
472 4Pers & Repair Svcs,exc auto&beauty	510 3Nonprofit Organizations
473 474 475 476	511 512 513
478 80ther Business Services	523 1Scap, Used & Secondhand Goods
479 480 481 482 483 484 485 486	524

Aggregation Scheme for AG30 models

Aggregation Scheme for AG30 models (cont'd.)

454 1Communications
455
456 3Public Utilities
457 458 459
460 1Wholesale Trade
461
462 1Retail Trade
463
464 6Finance, Insur, Real Estate
465 466 467 468 469 470

472 35Nisc. Services, nec
473 474 475 476 477 478 479 480 481 482
483 484 485 486 487 488 489 490 492 493
494 495 503 504 505 506 507 508 509 510
511 512 513 514 515
496 6Amusement & Rec Services
497 498 499 500 501 502
516 5Federal & State Gov.
517 518 519 520 521
522 60ther Gov, Hshld, World Industry
523 524 525 526 527 528

Aggregation Scheme for AG16 models

1 2	26Fai	m Pi	roduc	ts						
2	3	4	5	6	7	8	9	10	11	400 401 402 403 404 405 406 407 408 409
12	13	14	15	16	17	18	19	20	21	410 411 412 413 414 415 416 417 418 419
22	23	24	25	26	27					420 421 422 423 424 425 426 427 428 429
28 3	57Mir	ning								430 431 432 433 434 435 436 437 438 439
29	30	31	32	33	34	35	36	37	38	440 441 442 443 444 445
39	40	41	42	43	44	45	46	47	48	82 48Food & Kindred Prdcts
49	50	51	52	53	54	55	56	57	58	83 84 85 86 87 88 89 90 91 92
59	60	61	62	63	64	65				93 94 95 96 97 98 99 100 101 102
66	900	nstru	uctio	n						103 104 105 106 107 108 109 110 111 112
67	68	69	70	71	72	73	74	75		113 114 115 116 117 118 119 120 121 122
7628	360tl	ner H	lanut	facti	uring	9				123 124 125 126 127 128 129 130
77	78	79	80	81	160	161	162	163	164	131 28Textiles & Apparel
165	166	167	168	169	170	171	172	173	174	132 133 134 135 136 137 138 139 140 141
175	176	177	178	179	180	181	182	183	184	142 143 144 145 146 147 148 149 150 151
185	186	187	188	189	190	191	192	193	194	152 153 154 155 156 157 158 159
195	196	197	198	199	200	201	202	203	204	235 4Petroleum Production
205	206	207	208	209	210	211	212	213	214	236 237 238 239
215	216	217	218	219	220	221	222	223	224	446 7Transportation Services
225	226	227	228	229	230	231	232	233	234	447 448 449 450 451 452 453
240	241	242	243	244	245	246	247	248	249	454 480ther Services
250	251	252	253	254	255	256	257	258	259	455 456 457 458 459 464 465 466 467 468
260	261	262	263	264	265	266	267	268	269	469 470 472 473 474 475 476 477 478 479
270	271	272	273	274	275	276	277	278	279	480 481 482 483 484 485 486 487 488 489
280	281	282	283	284	285	286	287	288	289	490 492 493 494 495 503 504 505 506 507
290	291	292	293	294	295	296	297	298	299	508 509 510 511 512 513 514 515
300	301	302	303	304	305	306	307	308	309	460 1Wholesale Trade
310	311	312	313	314	315	316	317	318	319	461
320	321	322	323	324	325	326	327	328	329	462 1Retail Trade
330	331	332	333	334	335	336	337	338	339	463
340	341	342	343	344	345	346	347	348	349	496 6Amusement & Rec Services
350	351	352	353	354	355	356	357	358	359	497 498 499 500 501 502
360	361	362	363	364	365	366	367	368	369	516 5Federal & State Gov.
370	371	372	373	374	375	376	377	378	379	517 518 519 520 521
380	381	382	383	384	385	386	387	388	389	522 60ther Gov,Hshld, World Industry
390	391	392	393	394	395	396	397	398	399	523 524 525 526 527 528

UNAGMN 308 Sectorization Scheme

1 DAIRY FARM PRODUCTS 2 POULTRY AND EGGS **3 AGG Meat Animals & Misc. Livestock** 11 AGG Food, Feed Grains & Grass Seed 15 TOBACCO 16 FRUITS 18 AGG Vegs, Sugar & Misc. Crops 21 OIL BEARING CROPS 22 AGG Forest, Grnhs & Nursery Prdcts 24 AGG Agri, Forstry, & Fish Prdcts 26 AGG Agri, For, & Fish Svcs 28 IRON ORES 30 AGG Nonferrous Ore Mining, exc copper 40 BITUMINOUS AND LIGNITE MINING, SERVI 41 NATURAL GAS 42 CRUDE PETROLEUM 43 NATURAL GAS LIQUIDS 44 AGG Dim, Crshd, Constr Stone & Ind Sand 50 AGG Misc. Nonmetallic Minerals, nec 66 AGG New Construction 73 AGG Maintenance & Repair Construction 76 AGG Militay Ordnance 79 SMALL ARMS 80 SMALL ARMS AMMUNITION 81 OTHER ORDNANCE AND ACCESSORIES 82 MEAT PACKING PLANTS 83 SAUSAGES AND OTHER PREPARED MEATS 84 POULTRY DRESSING PLANTS 85 POULTRY AND EGG PROCESSING 86 CREAMERY BUTTER 87 CHEESE, NATURAL AND PROCESSED 88 CONDENSED AND EVAPORATED MILK 89 ICE CREAM AND FROZEN DESSERTS 90 FLUID MILK 91 CANNED AND CURED SEA FOODS 92 CANNED SPECIALTIES **93 CANNED FRUITS AND VEGETABLES** 94 DEHYDRATED FOOD PRODUCTS 95 PICKLES, SAUCES, AND SALAD DRESSINGS 96 FRESH OR FROZEN PACKAGED FISH 97 AGG Frozen Fruits, Juices,& Vegs 99 FLOUR AND OTHER GRAIN MILL PRODUCTS 100 CEREAL PREPARATIONS 101 BLENDED AND PREPARED FLOUR 102 DOG, CAT, AND OTHER PET FOOD 103 PREPARED FEEDS, N.E.C 104 RICE MILLING 105 WET CORN MILLING 106 BREAD, CAKE, AND RELATED PRODUCTS 107 COOKIES AND CRACKERS

108 SUGAR 109 CONFECTIONERY PRODUCTS 110 CHOCOLATE AND COCOA PRODUCTS 111 CHEWING GUM 112 MALT LIQUORS 113 MALT 114 WINES, BRANDY, AND BRANDY SPIRITS 115 DISTILLED LIQUOR, EXCEPT BRANDY 116 BOTTLED AND CANNED SOFT DRINKS 117 FLAVORING EXTRACTS AND SYRUPS, N.E.C. 119 SOYBEAN OIL MILLS 120 AGG Other Fats, Oils, & Oil Mills 122 ROASTED COFFEE 123 SHORTENING AND COOKING OILS 124 MANUFACTURED ICE 125 MACARONI AND SPAGHETTI 126 FOOD PREPARATIONS, N.E.C 128 AGG Tobacco 131 BROADWOVEN FABRIC MILLS AND FINISHING 132 NARROW FABRIC MILLS 133 YARN MILLS AND FINISHING OF TEXTILES 135 AGG Other Misc. Textl Gds&Flr Cvrngs 142 CORDAGE AND TWINE 145 WOMENS HOSIERY, EXCEPT SOCKS 146 HOSIERY, N.E.C 147 KNIT OUTERWEAR MILLS 148 KNIT UNDERWEAR MILLS 149 KNITTING MILLS, N.E.C 150 KNIT FABRIC MILLS 151 APPAREL MADE FROM PURCHASED MATERIAL 152 CURTAINS AND DRAPERIES 153 HOUSEFURNISHINGS, N.E.C. 154 TEXTILE BAGS 155 CANVAS PRODUCTS 156 PLEATING AND STITCHING 157 AUTOMOTIVE AND APPAREL TRIMMINGS 158 SCHIFFI MACHINE EMBROIDERIES 159 FABRICATED TEXTILE PRODUCTS, N.E.C 160 AGG Wood Prdcts, exc furniture&paper 174 WOOD HOUSEHOLD FURNITURE 175 HOUSEHOLD FURNITURE, N.E.C 176 WOOD TV AND RADIO CABINETS 177 UPHOLSTERED HOUSEHOLD FURNITURE 178 METAL HOUSEHOLD FURNITURE 179 MATTRESSES AND BEDSPRINGS 180 AGG Office Furniture 185 BLINDS, SHADES, AND DRAPERY HARDWARE 186 FURNITURE AND FIXTURES, N.E.C. 187 PULP MILLS 188 PAPER MILLS, EXCEPT BUILDING PAPER

UNAGMN 308 Sectorization Scheme (cont'd.)

189 PAPERBOARD MILLS 190 ENVELOPES 191 SANITARY PAPER PRODUCTS 192 BUILDING PAPER AND BOARD MILLS 193 PAPER COATING AND GLAZING 194 BAGS, EXCEPT TEXTILE 195 DIE-CUT PAPER AND BOARD 196 PRESSED AND MOLDED PULP GOODS 197 STATIONERY PRODUCTS 198 CONVERTED PAPER PRODUCTS, N.E.C. 199 PAPERBOARD CONTAINERS AND BOXES 200 NEWSPAPERS 201 PERIODICALS 202 BOOK PUBLISHING 203 BOOK PRINTING 204 MISCELLANEOUS PUBLISHING 205 COMMERCIAL PRINTING 206 LITHOGRAPHIC PLATEMAKING AND SERVICE 207 MANIFOLD BUSINESS FORMS 208 BLANKBOOKS AND LOOSELEAF BINDERS 209 GREETING CARD PUBLISHING 210 ENGRAVING AND PLATE PRINTING 211 BOOKBINDING AND RELATED WORK 212 TYPESETTING 213 PHOTOENGRAVING 214 ELECTROTYPING AND STEREOTYPING 215 INDUSTRIAL INORGANIC, ORGANIC CHEMIC 216 NITROGENOUS AND PHOSPHATIC FERTILIZE 217 FERTILIZERS, MIXING ONLY 218 AGRICULTURAL CHEMICALS, N.E.C. 219 GUM AND WOOD CHEMICALS 220 ADHESIVES AND SEALANTS 221 EXPLOSIVES 222 PRINTING INK 223 CARBON BLACK 224 CHEMICAL PREPARATIONS, N.E.C 225 AGG Plastics & Synthetic Materials 229 DRUGS 230 SOAP AND OTHER DETERGENTS 231 POLISHES AND SANITATION GOODS 232 SURFACE ACTIVE AGENTS 233 TOILET PREPARATIONS 234 PAINTS AND ALLIED PRODUCTS 235 AGG Petro Refining & Misc. Petro Prd 238 PAVING MIXTURES AND BLOCKS 239 ASPHALT FELTS AND COATINGS 240 TIRES AND INNER TUBES 241 RUBBER AND PLASTICS FOOTWEAR 242 RECLAIMED RUBBER 243 FABRICATED RUBBER PRODUCTS, N.E.C

244 MISCELLANEOUS PLASTICS PRODUCTS 245 RUBBER AND PLASTICS HOSE AND BELTING 246 LEATHER TANNING AND FINISHING 247 FOOTWEAR CUT STOCK 248 SHOES, EXCEPT RUBBER 249 HOUSE SLIPPERS 250 LEATHER GLOVES AND MITTENS 251 LUGGAGE 252 WOMENS HANDBAGS AND PURSES 253 PERSONAL LEATHER GOODS 254 LEATHER GOODS, N.E.C 255 GLASS AND GLASS PRODUCTS, EXC CONTAI 256 GLASS CONTAINERS 257 AGG Stone & Clay Prdcts 280 AGG Primary Iron & Steel Manufacturng 289 AGG Primary Nonferrous Metals Manuf 303 AGG Metal Cans 305 AGG Heating, Plumbing, & Fab. Metal Prdc 315 SCREW MACHINE PRODUCTS AND BOLTS, ET 316 AUTOMOTIVE STAMPINGS 317 CROWNS AND CLOSURES 318 METAL STAMPINGS, N.E.C. 319 CUTLERY 320 HAND AND EDGE TOOLS, N.E.C. 321 HAND SAWS AND SAW BLADES 322 AGG Other Fabricated Metal Prdcts 330 AGG Engines & Turbines 332 FARM MACHINERY AND EQUIPMENT 333 LAWN AND GARDEN EQUIPMENT 334 AGG Construction & Mining Machinery 337 AGG Material Handling Mach & Equip 341 MACHINE TOOLS, METAL CUTTING TYPES 342 MACHINE TOOLS, METAL FORMING TYPES 343 SPECIAL DIES AND TOOLS AND ACCESSORI 344 POWER DRIVEN HAND TOOLS 345 ROLLING MILL MACHINERY 346 METALWORKING MACHINERY, N.E.C. 347 FOOD PRODUCTS MACHINERY 348 TEXTILE MACHINERY 349 WOODWORKING MACHINERY 350 PAPER INDUSTRIES MACHINERY 351 PRINTING TRADES MACHINERY 352 SPECIAL INDUSTRY MACHINERY, N.E.C. 353 AGG Gen Indstries Machinery & Equip 362 AGG Office Computing&Acctng Machines 366 AGG Service Industry Machinery 371 INSTRUMENTS TO MEASURE ELECTRICITY 372 TRANSFORMERS 373 SWITCHGEAR AND SWITCHBOARD APPARATUS 374 MOTORS AND GENERATORS

UNAGMN 308 Sectorization Scheme (cont.'d)

375 INDUSTRIAL CONTROLS 376 WELDING APPARATUS, ELECTRIC 377 CARBON AND GRAPHITE PRODUCTS 378 ELECTRICAL INDUSTRIAL APPARATUS, N.E.C. 433 SPORTING AND ATHLETIC GOODS, N.E.C. 379 HOUSEHOLD COOKING EQUIPMENT 380 HOUSEHOLD REFRIGERATORS AND FREEZERS 381 HOUSEHOLD LAUNDRY EQUIPMENT 382 ELECTRIC HOUSEWARES AND FANS 383 HOUSEHOLD VACUUM CLEANERS 384 SEWING MACHINES 385 HOUSEHOLD APPLIANCES, N.E.C. 386 ELECTRIC LAMPS 387 LIGHTING FIXTURES AND EQUIPMENT 388 WIRING DEVICES 389 AGG Radio, Tv & Communications Equip **393 ELECTRON TUBES** 394 SEMICONDUCTORS AND RELATED DEVICES 395 ELECTRONIC COMPONENTS, N.E.C. **396 STORAGE BATTERIES** 397 PRIMARY BATTERIES, DRY AND WET 398 X-RAY APPARATUS AND TUBES 399 ENGINE ELECTRICAL EQUIPMENT 400 ELECTRICAL EQUIPMENT, N.E.C. 401 TRUCK AND BUS BODIES 402 TRUCK TRAILERS 403 MOTOR VEHICLES 404 MOTOR VEHICLE PARTS AND ACCESSORIES 405 AIRCRAFT 408 SHIP BUILDING AND REPAIRING 409 BOAT BUILDING AND REPAIRING 410 RAILROAD EQUIPMENT 411 MOTORCYCLES, BICYCLES, AND PARTS 412 TRAVEL TRAILERS AND CAMPERS 413 MOBILE HOMES 414 MOTOR HOMES 415 TRANSPORTATION EQUIPMENT, N.E.C. 416 ENGINEERING AND SCIENTIFIC INSTRUMEN 417 MECHANICAL MEASURING DEVICES 418 AUTOMATIC TEMPERATURE CONTROLS 419 SURGICAL AND MEDICAL INSTRUMENTS 420 SURGICAL APPLIANCES AND SUPPLIES 421 DENTAL EQUIPMENT AND SUPPLIES 422 WATCHES, CLOCKS, AND PARTS 423 OPTICAL INSTRUMENTS AND LENSES 424 OPHTHALMIC GOODS ' 425 PHOTOGRAPHIC EQUIPMENT AND SUPPLIES 426 JEWELRY, PRECIOUS METAL 427 JEWELERS MATERIALS AND LAPIDARY WORK 428 SILVERWARE AND PLATED WARE 429 COSTUME JEWELERY

430 MUSICAL INSTRUMENTS 431 GAMES, TOYS, AND CHILDRENS VEHICLES 432 DOLLS 434 AGG Marking Devices 438 ARTIFICIAL TREES AND FLOWERS 439 BUTTONS 440 NEEDLES, PINS, AND FASTENERS 441 BROOMS AND BRUSHES 442 HARD SURFACE FLOOR COVERINGS 443 BURIAL CASKETS AND VAULTS 444 SIGNS AND ADVERTISING DISPLAYS 445 MANUFACTURING INDUSTRIES, N.E.C. 446 RAILROADS AND RELATED SERVICES 447 LOCAL, INTERURBAN PASSENGER TRANSIT 448 MOTOR FREIGHT TRANSPORT AND WAREHOUS 449 WATER TRANSPORTATION 450 AIR TRANSPORTATION 451 PIPE LINES, EXCEPT NATURAL GAS 452 AGG Freight Forwrdrs & Other Transp 454 COMMUNICATIONS, EXCEPT RADIO AND TV 455 RADIO AND TV BROADCASTING 456 ELECTRIC SERVICES 457 GAS PRODUCTION AND DISTRIBUTION 458 AGG Water Supply & Sanitary Svcs 460 AGG Other Wholesale Trade 462 AGG Other Retail Trade 464 AGG Banking & Other Finance Institut 467 INSURANCE CARRIERS 468 INSURANCE AGENTS AND BROKERS 469 AGG Real Estate 471 HOTELS AND LODGING PLACES 472 AGG Other Personal & Repair Svcs 477 BEAUTY AND BARBER SHOPS 478 AGG Other Business Svcs 487 ADVERTISING 488 AGG Misc. Professional Svcs 491 EATING AND DRINKING PLACES 492 AGG Auto Repair & Svcs **495 MOTION PICTURES** 496 AGG Amusement & Rec Svcs, nec 503 DOCTORS AND DENTISTS 504 HOSPITALS 505 AGG Other Medical & Health Svcs 507 AGG Educational Svcs 510 AGG Nonprofit Organizations 514 RESIDENTIAL CARE 515 SOCIAL SERVICES, N.E.C. 516 U.S. POSTAL SERVICE 517 FEDERAL ELECTRIC UTILITIES

UNAGMN 308 Sectorization Scheme (cont.'d)

518	OTHER FEDERAL GOVERNMENT ENTERPRISES	525	GOVERNMENT INDUSTRY
519	LOCAL GOVERNMENT PASSENGER TRANSIT	526	REST OF THE WORLD INDUSTRY
520	STATE AND LOCAL ELECTRIC UTILITIES	527	HOUSEHOLD INDUSTRY
521	OTHER STATE AND LOCAL GOVT ENTERPRIS	528	INVENTORY VALUATION ADJUSTMENT

AGMN 158 Sectorization Scheme

1 AGG ALL OTHER 2 POULTRY AND EGGS 11 AGG Food, Feed Grains&Grass Seeds 16 FRUITS 18 AGG Veggies, Sugar & Misc. Crops 21 OIL BEARING CROPS 22 AGG Forest, Grnhs & Nursery Prdcts 24 AGG Forestry & Fishery Prdcts 26 AGG Agri, Forestry & Fish Svcs 80 SMALL ARMS AMMUNITION 82 MEAT PACKING PLANTS 83 SAUSAGES AND OTHER PREPARED MEATS 84 POULTRY DRESSING PLANTS 85 POULTRY AND EGG PROCESSING 86 CREAMERY BUTTER 87 CHEESE, NATURAL AND PROCESSED 88 CONDENSED AND EVAPORATED MILK 89 ICE CREAM AND FROZEN DESSERTS 90 FLUID MILK 91 CANNED AND CURED SEA FOODS 92 CANNED SPECIALTIES 93 CANNED FRUITS AND VEGETABLES 94 DEHYDRATED FOOD PRODUCTS 95 PICKLES, SAUCES, AND SALAD DRESSINGS 96 FRESH OR FROZEN PACKAGED FISH 97 AGG Froz Fruits, Juices & Vegs 99 FLOUR AND OTHER GRAIN MILL PRODUCTS 100 CEREAL PREPARATIONS 101 BLENDED AND PREPARED FLOUR 102 DOG, CAT, AND OTHER PET FOOD 103 PREPARED FEEDS, N.E.C 104 RICE MILLING 105 WET CORN MILLING 106 BREAD, CAKE, AND RELATED PRODUCTS 107 COOKIES AND CRACKERS 108 SUGAR 109 CONFECTIONERY PRODUCTS 110 CHOCOLATE AND COCOA PRODUCTS 111 CHEWING GUM 112 MALT LIQUORS 114 WINES, BRANDY, AND BRANDY SPIRITS 115 DISTILLED LIQUOR, EXCEPT BRANDY

116 BOTTLED AND CANNED SOFT DRINKS 117 FLAVORING EXTRACTS AND SYRUPS, N.E.C 119 SOYBEAN OIL MILLS 122 ROASTED COFFEE 123 SHORTENING AND COOKING OILS 124 MANUFACTURED ICE 125 MACARONI AND SPAGHETTI 126 FOOD PREPARATIONS, N.E.C 131 BROADWOVEN FABRIC MILLS AND FINISHIN 132 NARROW FABRIC MILLS 133 YARN MILLS AND FINISHING OF TEXTILES 137 LACE GOODS 142 CORDAGE AND TWINE 145 WOMENS HOSIERY, EXCEPT SOCKS 146 HOSIERY, N.E.C 150 KNIT FABRIC MILLS 151 APPAREL MADE FROM PURCHASED MATERIAL 152 CURTAINS AND DRAPERIES 153 HOUSEFURNISHINGS, N.E.C 156 PLEATING AND STITCHING 157 AUTOMOTIVE AND APPAREL TRIMMINGS 158 SCHIFFI MACHINE EMBROIDERIES 159 FABRICATED TEXTILE PRODUCTS, N.E.C 174 WOOD HOUSEHOLD FURNITURE 175 HOUSEHOLD FURNITURE, N.E.C 177 UPHOLSTERED HOUSEHOLD FURNITURE 178 METAL HOUSEHOLD FURNITURE 179 MATTRESSES AND BEDSPRINGS 186 FURNITURE AND FIXTURES, N.E.C 191 SANITARY PAPER PRODUCTS 198 CONVERTED PAPER PRODUCTS, N.E.C 200 NEWSPAPERS 201 PERIODICALS 202 BOOK PUBLISHING 204 MISCELLANEOUS PUBLISHING 205 COMMERCIAL PRINTING 215 INDUSTRIAL INORGANIC, ORGANIC CHEMIC 224 CHEMICAL PREPARATIONS, N.E.C 229 DRUGS 230 SOAP AND OTHER DETERGENTS 233 TOILET PREPARATIONS 235 AGG Petro Refining & Misc Petro Prdc

AGMN 158 Sectorization Scheme (cont.'d)

243 FABRICATED RUBBER PRODUCTS, N.E.C 244 MISCELLANEOUS PLASTICS PRODUCTS 245 RUBBER AND PLASTICS HOSE AND BELTING 250 LEATHER GLOVES AND MITTENS 251 LUGGAGE 252 WOMENS HANDBAGS AND PURSES 253 PERSONAL LEATHER GOODS 254 LEATHER GOODS, N.E.C 255 GLASS AND GLASS PRODUCTS, EXC CONTAI 282 STEEL WIRE AND RELATED PRODUCTS 288 PRIMARY METAL PRODUCTS, N.E.C. 315 SCREW MACHINE PRODUCTS AND BOLTS, ET 319 CUTLERY 320 HAND AND EDGE TOOLS, N.E.C. 321 HAND SAWS AND SAW BLADES 332 FARM MACHINERY AND EQUIPMENT 333 LAWN AND GARDEN EQUIPMENT 341 MACHINE TOOLS, METAL CUTTING TYPES 344 POWER DRIVEN HAND TOOLS 346 METALWORKING MACHINERY, N.E.C. 349 WOODWORKING MACHINERY **372 TRANSFORMERS** 374 MOTORS AND GENERATORS 378 ELECTRICAL INDUSTRIAL APPARATUS, N.E 382 ELECTRIC HOUSEWARES AND FANS 386 ELECTRIC LAMPS 387 LIGHTING FIXTURES AND EQUIPMENT 396 STORAGE BATTERIES 400 ELECTRICAL EQUIPMENT, N.E.C. 414 MOTOR HOMES 415 TRANSPORTATION EQUIPMENT, N.E.C. 417 MECHANICAL MEASURING DEVICES 419 SURGICAL AND MEDICAL INSTRUMENTS 420 SURGICAL APPLIANCES AND SUPPLIES 422 WATCHES, CLOCKS, AND PARTS 423 OPTICAL INSTRUMENTS AND LENSES 425 PHOTOGRAPHIC EQUIPMENT AND SUPPLIES 426 JEWELRY, PRECIOUS METAL

427 JEWELERS MATERIALS AND LAPIDARY WORK 429 COSTUME JEWELERY 431 GAMES, TOYS, AND CHILDRENS VEHICLES 432 DOLLS 433 SPORTING AND ATHLETIC GOODS, N.E.C. 438 ARTIFICIAL TREES AND FLOWERS 439 BUTTONS 440 NEEDLES, PINS, AND FASTENERS 441 BROOMS AND BRUSHES 445 MANUFACTURING INDUSTRIES, N.E.C. 446 RAILROADS AND RELATED SERVICES 447 LOCAL, INTERURBAN PASSENGER TRANSIT 448 MOTOR FREIGHT TRANSPORT AND WAREHOUS 449 WATER TRANSPORTATION 450 AIR TRANSPORTATION 451 PIPE LINES, EXCEPT NATURAL GAS 454 COMMUNICATIONS, EXCEPT RADIO AND TV 460 AGG Other Wholesale Trade 462 AGG Other Retail Trade 468 INSURANCE AGENTS AND BROKERS 471 HOTELS AND LODGING PLACES 472 AGG Pers & Repair Svcs, exc auto&beau 477 BEAUTY AND BARBER SHOPS 478 AGG Other Business Services 491 EATING AND DRINKING PLACES 492 AGG Auto Repair & Services 495 MOTION PICTURES 496 AGG Amusement & Rec Svcs, nec 507 AGG Educational Svcs 510 AGG Nonprofit Organizations 514 RESIDENTIAL CARE 515 SOCIAL SERVICES, N.E.C. 521 OTHER STATE AND LOCAL GOVT ENTERPRIS 525 GOVERNMENT INDUSTRY 526 REST OF THE WORLD INDUSTRY 527 HOUSEHOLD INDUSTRY 528 INVENTORY VALUATION ADJUSTMENT

AG30 Sectorization Scheme

1	AGG Farm Products	371 AGG Instruments&Misc Manufacturing
24	AGG Agri, For & Fish Prdcts	372 AGG Electric&Electronic Equipment
28	AGG Mining	401 AGG Motor Vehicles
66	AGG Construction	446 AGG Transportation Services
76	AGG Other Transport Vehicles	454 AGG Communications
77	AGG Fabricated Metals Manufactur	ing 456 AGG Public Utilities
82	AGG Food & Kindred Prdcts	460 AGG Wholesale Trade
131	AGG Textiles & Apparel	462 AGG Retail Trade
160	AGG Forest Products	464 AGG Finance, Insur, Real Estate
200	AGG Printing & Publishing	471 HOTELS AND LODGING PLACES
215	AGG Chemicals	472 AGG Misc. Services, nec
235	AGG Petroleum Production	491 EATING AND DRINKING PLACES
240	AGG Rubber,Leather&Misc Plastics	496 AGG Amusement & Rec Services
255	AGG Stone,Clay&Glass Prdcts	516 AGG Federal & State Gov.
280	AGG Primary Metals Manufacturing	525 AGG Other Gov,Hshld, World Industry

AG 16 Sectorization Scheme

•

1 AGG Farm Products

330 AGG Machinery & Equipment

- 28 AGG Mining
- 66 AGG Construction
- 77 AGG Other Manufacturing
- 82 AGG Food & Kindred Prdcts
- 131 AGG Textiles & Apparel
- 235 AGG Petroleum Production
- 446 AGG Transportation Services

- 454 AGG Other Services
- 460 AGG Wholesale Trade
- 462 AGG Retail Trade
- 471 HOTELS AND LODGING PLACES
- 491 EATING AND DRINKING PLACES
- 496 AGG Amusement & Rec Services
- 516 AGG Federal & State Gov.
- 525 AGG Other Gov, Hshld, World In

APPENDIX E: LAKE STATE OUTDOOR RECREATION IMPACTS

The following tables present estimated outdoor recreation economic impacts for the Lake States FHW study area. The estimates are stated in terms of millions of 1982 dollars for output and personal income, and numbers of jobs for employment. They are presented according to type of recreation spending, aggregation scheme, trade estimate, and multiplier type (I or III) they are associated with

The five sets of trade estimates used in deriving impacts and which appear as column headings include:

- SDP trade estimates based on the supply-demand pooling trade estimation technique; these represent ceiling values for IMPLAN RPCs and generate the largest multipliers
- FLRLK RPCs are based on the minimum RPC values for the three Lake states, including questionable low RPCs
- ALTFLK RPCs are the same as for FLRLK except for those FLRLK RPCs which appeared highly contradictory to a combination of SDP, MRIO, REMI, and Census estimates; ALTFLK RPCs represent a more accurate, or reasonable set of minimum RPC values.
- BSTLK RPCs based on other RPCs, secondary data, and this author's judgment
- UNCHLK unchanged IMPLAN (version 2.0) RPC estimates

Model aggregation and type of recreation spending are indicated in row headings. The aggregations are identified by the following prefix abbreviations:

disaggregated (502 sector) model - "DIS" minimally aggregated (308 sector) model - "UNAG" all nonrecreation aggregation (159 sector) model - "AGLK" highly aggregated (31 sector) model - "LK30" most aggregated (16 sector) model - "LK16"

Four types of recreation spending categories are indicated by abbreviations used as suffixes in row headings as follows:

nonresident spending only - "NONRES" trip spending only - "TRIP" total spending less special equipment - "-SPEC" total spending - "TOTAL"

Two sets of low and high estimated impacts are presented. One set includes recreation spending encompassing transfers from one set of Lake State residents to another set of Lake State residents. The other set does not include such intraregional transfers, but does include payments from nonresidents to resident households. An exception to this is that "NONRES" rows are different. Nonresident outdoor recreation economic impacts stemming from the 1987 Governors' Conference on Forestry study are presented with the "LOW w/res pces" impacts; total impacts stemming from the 1987 study are presented with the "LOW nonres pces." FHW low nonresident impacts are presented with the "HIGH w/res pces" impacts and FHW high nonresident impacts are listed with the "HIGH nonres pces." No impacts based on the 1987 study are listed with the disaggregated model because 1987 spending categories could not be objectively disaggregated.

	LAKE ST	ATE OUTDOO	R RECREAT	ION ECONOR	IC IMPACT	is: Low, w	/res pces	(1982	million 1	;)
OUTPUT	SDPLK TYPE I	SOPLK TYPE III	FLRLK Type I	FLRLK TYPE III	ALTFLK TYPE I	ALTFLK TYPE 111	BSTLK Type I	BSTLK TYPE III	UNCHLK TYPE I	UNCHLK TYPE III
D I SNONRES										
DISTRIP	1,246.0	1,915.8	881.8	1,116.5	922.0	1,185.0	1,137.7	1,670.3	1,108.9	1,827.7
DIS-SPEC	1,850.7	2,789.6	1,334.1	1,658.2	1,405.3	1,771.5	1,687.6	2,429.4	1,645.0	2,656.5
DISTOTAL	2,401.2	3,515.0	1,677.8	2,043.5	1,771.1	2,187.2	2,127.3	2,983.3	2,057.2	3,216.6
UNAGNONRES	1,036.3	1,605.0	738.2	927.4	777.9	991.0	948.1	1,393.1	938.0	1,484.8
UNAGTRIP	1,237.3	1,896.7	865.3	1,082.5	905.0	1,148.3	1,123.2	1,635.8	1,104.2	1,719.1
UNAG-SPEC	1,839.6	2,822.8	1,311.4	1,635.2	1,381.0	1,745.6	1,667.7	2,430.4	1,638.1	2,594.5
UNAGTOTAL	2,388.8	3,598.3	1,647.7	2,030.7	1,739.3	2,172.1	2,102.3	3,017.6	2,049.5	3,195.8
AGLKNONRES	1,048.8	1,665.9	735.0	922.9	776.6	990.1	944.5	1,402.3	928.5	1,475.8
AGLKTRIP	1,241.8	1,954.6	861.1	1,077.0	902.7	1,146.6	1,114.4	1,641.3	1,089.7	1,705.1
AGLK-SPEC	1,864.4	2,910.5	1,309.3	1,624.9	1,382.0	1,740.7	1,667.2	2,437.4	1,627.7	2,570.9
AGLKTOTAL	2,353.5	3,616.5	1,639.7	2,014.3	1,732.7	2,159.6	2,080.8	3,000.9	2,022.8	3,150.9
LK30NONRES	1,049.2	1,624.3	743.8	931.0	784.4	996.7	958.0	1,404.0	947.4	1,494.2
LK30TRIP	1,253.4	1,934.2	875.5	1,096.0	916.9	1,165.7	1,138.1	1,664.4	1,119.7	1,744.8
LK30-SPEC	1,870.3	2,865.1	1,327.9	1,649.1	1,397.0	1,761.0	1,694.3	2,460.6	1,659.3	2,613.3
LK30TOTAL	2,397.9	3,610.9	1,655.6	2,035.0	1,749.5	2,181.9	2,116.9	3,033.0	2,055.4	3,196.5
LK16NONRES	1,061.5	1,635.9	743.5	929.4	784.0	991.3	957.4	1,398.2	945.5	1,486.9
LK16TRIP	1,275.3	1,936.0	882.1	1,092.9	922.8	1,157.2	1,149.0	1,653.9	1,130.9	1,735.2
LK16-SPEC	1,937.4	2,900.0	1,337.4	1,640.5	1,407.6	1,746.2	1,719.6	2,446.7	1,678.4	2,593.2
LKIGIUIAL	2,433.8	3,602.7	1,658.3	2,020.1	1,752.5	2,158.1	2,127.5	2,999.6	2,060.2	3,150.2
DEDCONAL	6001 K	60.01 K			AL TELM		BETLY	BETIK		
INCOME	TYPE I	TYPE III	TYPE I	TYPE.III	TYPE I	TYPE III	TYPE I	TYPE III	TYPE I	TYPE III
DISNONRES	70/ 0	(222.0	20/ 4	777 /	710 7	270.0	/20.1	344 E	149 E
DISIRIP	504.0	409.9	790 1	274.0 (70.1	201.4 105.4	518.7	2/9.0	429.1	204.3 444 3	401.3
DISTOTAL	681 2	000.4	200.1	4/7.1	520.2	510.0 457 R	404.1	840 4	578 1	805 7
DISIONE		770.4	473.3		<i>JE7.E</i>	077.0	000.2		270.1	073.1
UNAGNONRES	258.5	417.1	186.9	243.8	201.5	266.7	236.7	362.0	230.3	381.0
UNAGTRIP	305.0	488.8	218.7	284.0	233.3	307.7	277.1	421.4	266.6	435.9
UNAG-SPEC	506.3	780.3	374.9	472.3	400.3	511.8	462.1	676.7	447.5	710.9
UNAGTOTAL	685.5	1,020.6	485.0	603.2	521.4	655.8	604.8	862.4	581.7	597.4
AGLKNONRES	272.8	450.8	189.1	246.1	202.7	267.3	245.0	379.3	238.0	395.3
AGLKTRIP	319.0	524.5	220.1	285.5	233.5	307.4	285.6	440.1	274.9	451.7
AGLK-SPEC	517.5	819.2	369.7	465.3	392.8	501.3	465.0	690.9	449.1	720.1
AGLKTOTAL	661.9	1,026.1	469.7	583.2	499.1	628.2	588.8	858.7	567.0	891.1
LK30NONRES	268.5	427.6	191.2	246.4	206.2	270.0	244.8	369.5	239.5	389.1
LK30TRIP	312.5	500.8	220.6	285.6	236.0	310.7	283.5	430.7	274.8	445.8
LK30-SPEC	514.4	789.5	375.4	470.1	400.7	510.1	467.8	682.1	453.2	714.2
LK30TOTAL	693.9	1,029.4	492.9	604.7	527.1	657.1	614.9	871.2	591.2	903.5
LK16NONRES	268.9	429.6	190.0	244.7	200.8	261.4	242.4	367.6	236.4	386.5
LK16TRIP	297.7	482.5	205.4	267.4	216.2	284.7	267.2	410.6	258.2	425.8
LK16-SPEC	498.3	767.7	350.2	439.4	369.0	467.9	442.7	649.3	425.9	679.5
LK16TOTAL	651.9	979.0	454.5	560.9	479.7	598.2	571.6	819.3	546.3	850.1

-

	LAKE STATE	OUTDOOR	RECREATION	ECONOMIC	IMPACTS:	LOW, W/M	is poes	(cont'd.)		(jobs)
EMPLOYMENT	SOPLK	SOPLK	FLRLK	FLRLK	ALTFLK	ALTFLK	BSTLK	BSTLK	UNCHLK	UNCHLK
	TYPE 1	TYPE II	I TYPE I	TYPE III	TYPE I	TYPE III	TYPE I	TYPE III	TYPE I	TYPE III
DISNONRES										
DISTRIP	22,627	33,1%	18,615	22,954	19,347	24,172	21,495	30,393	20,782	29,154
DIS-SPEC	31,704	46,511	25,688	31,676	26,940	33,659	29,927	42,317	28,737	40,315
DISTOTAL	37,615	55,183	28,990	35,748	30,604	38,237	34,536	48,833	32,766	45,967
UNAGNONRES	19,227	28,191	15,765	19,256	16,470	20,382	18,254	25,654	17,975	25,397
UNAGTRIP	22,292	32,684	18,094	22,102	18,798	23,262	21,030	29,556	20,727	29,286
UNAG-SPEC	33,237	48,732	26,969	32,943	28, 174	34,865	31,284	43,968	30,733	43,424
UNAGTOTAL	40,889	59,951	31,894	38,958	33,446	41,389	37,547	52,770	36,706	51,862
AGLKNONRES	19,575	29,044	15,734	19,049	16,409	20,114	18,357	25,794	18,065	25,380
AGLKTRIP	22,613	33,551	18,074	21,883	18,746	22,978	21,124	29,683	20,826	29,260
AGLK-SPEC	33, 189	49,244	26,432	32,001	27,566	33,790	30,881	43,393	30,294	42,561
AGLKTOTAL	40,069	59,452	31,369	37,979	32,799	40,205	36,890	51,837	36,076	50,684
LK30NONRES	19,393	28,262	15,614	18,921	16,373	20,152	18,310	25,544	17,984	25,217
LK30TRIP	22,958	33,457	18,398	22,296	19,176	23,601	21,606	30,142	21,172	29,688
LK30-SPEC	33,547	48,888	26,800	32,478	28,068	34,546	31,455	43,883	30,646	42,974
LK30TOTAL	40,907	59,613	31,658	38, 365	33, 339	41,034	37,609	52,468	36,499	51,180
LK16NONRES	19,250	28,129	15,497	18,757	16,008	19,573	18,101	25,305	17,775	24,970
LK16TRIP	22, 152	32,369	17,584	21,283	18,099	22,129	20,743	29,000	20,317	28,540
LK16-SPEC	32,263	47,143	25,270	30,586	26,139	31,960	29,861	41,747	29,014	40,758
LK16TOTAL	39,180	57,250	30,163	36,508	31,313	38,286	35,818	50,074	34,623	48,638

LAKE	STATE	OUTDOOR	RECREATION	ECONONIC	IMPACTS:	LOW,	nonres pces	(1982 million \$)

OUTPUT	SDPLK TYPE I	SDPLK TYPE III	FLRLK TYPE I	FLRLK TYPE III	ALTFLK TYPE I	ALTFLK TYPE III	BSTLK Type I	BSTLK TYPE III	UNCHLK TYPE I	UNCHLK TYPE III
DISNONRES										
DISTRIP	1,241.0	1,908.6	8/8.1	1,112.1	918.1	1,180.2	1,133.2	1,664.0	1,104.5	1,820.9
DIS-SPEC	1,797.0	2,711.4	1,293.9	1,609.7	1,363.1	1,719.9	1,638.2	2,360.7	1,596.7	2,582.2
DISTURAL	2,347.4	3,430.8	1,037.0	1,995.0	1,728.9	2,155.5	2,077.9	2,914.5	2,008.9	3,142.3
UNAGNONRES	3,475.1	5,426.2	2,496.8	3,152.1	2,633.9	3,371.8	3,180.4	4,709.8	3,150.5	5,005.6
UNAGTRIP	1,232.4	1,889.6	861.6	1,078.2	901.2	1,143.7	1,118.7	1,629.6	1,099.7	1,712.6
UNAG-SPEC	1,785.9	2,744.8	1,2/1.7	1,587.7	1,339.3	1,695.0	1,618.7	2,362.5	1,589.8	2,523.5
UNAGIUTAL	2,355.1	3,520.3	1,605.0	1,985.2	1,097.6	2,121.6	2,053.2	2,949.8	2,001.3	5,124.9
AGLKNONRES	3,532.2	5,654.0	2,488.7	3,139.3	2,631.6	3,370.8	3,179.4	4,756.2	3,129.7	4,989.6
AGLKTRIP	1,238.9	1,950.0	859.1	1,074.4	900.5	1,143.9	1,111.8	1,637.4	1,087.2	1,701.0
AGLK-SPEC	1,853.1	2,801.4	1,287.0	1,597.2	1,358.5	1,711.0	1,639.1	2,396.0	1,600.2	2,526.4
AGLEIUIAL	2,322.3	3,70/.4	1,017.5	1,900.0	1,709.2	2,129.8	2,052.7	2,939.3	1,993.3	3,106.3
LK30NONRES	3,493.0	5,479.4	2,504.8	3,160.0	2,644.5	3,387.8	3,195.2	4,741.5	3,166.6	5,030.6
LK30TRIP	1,249.3	1,928.1	872.4	1,092.3	913.7	1,161.7	1,134.3	1,659.2	1,116.0	1,739.2
LK30-SPEC	1,825.7	2,799.5	1,294.2	1,608.6	1,361.4	1,717.7	1,653.2	2,403.3	1,618.7	2,552.5
LK30TOTAL	2,353.3	3,545.4	1,621.8	1,994.4	1,713.9	2,138.6	2,075.8	2,975.8	2,014.8	3,135.6
LK16NONRES	3,533.7	5,502.7	2,503.5	3,148.8	2,642.1	3,361.8	3,191.4	4,707.0	3,157.1	4,989.9
LK16TRIP	1,271.1	1,929.9	879.0	1,089.2	919.6	1,153.3	1,145.2	1,648.7	1,127.2	1,729.6
LK16-SPEC	1,891.8	2,833.1	1,303.3	1,599.5	1,371.8	1,702.6	1,678.1	2,388.9	1,637.6	2,531.9
LK16TOTAL	2,394.7	3,544.8	1,628.8	1,984.4	1,721.3	2,119.9	2,091.8	2,949.5	2,025.0	3,102.3
PERSONAL	SOPLK	SOPLK	FLRLK	FLRLK	ALTFLK	ALTFLK	BSTLK	BSTLK	UNCHLK	UNCHLK
INCOME	TYPE I	TYPE III	TYPE I	TYPE III	TYPE I	TYPE III	TYPE I	TYPE III	TYPE I	TYPE III
DISNONRES										
DISTRIP	302.7	488.0	221.9	293.4	236.3	317.3	277.8	427.4	263.4	459.7
DIS-SPEC	489.9	743.8	369.2	465.6	394.0	504.3	450.9	654.6	431.6	701.6
DISTOTAL	666.9	969.4	484.5	593.7	517.6	643.3	595.0	830.8	565.3	875.9
UNAGNONRES	888.8	1,432.6	647.0	844.1	697.4	923.2	814.2	1,244.6	794.1	1,305.0
UNAGTRIP	303.6	486.8	217.7	282.8	232.2	306.4	275.9	419.7	265.4	434.1
UNAG-SPEC	491.6	758.9	364.0	459.0	388.6	497.4	448.7	658.0	434.4	691.5
UNAGTOTAL	668.8	999.2	477.1	589.9	509.7	639.4	591.4	843.7	568.6	878.0
AGLKNONRES	932.9	1,544.8	651.1	848.3	697.8	921.5	838.4	1,300.9	816.4	1,350.9
AGLKTRIP	318.1	523.2	219.4	284.7	232.9	306.5	284.8	439.0	274.1	450.5
AGLK-SPEC	508.2	804.7	362.8	456.8	385.5	492.1	456.5	678.6	440.9	707.0
AGLKTOTAL	652.6	1,011.6	462.8	574.7	491.7	619.0	580.4	846.4	558.7	878.0
LK30NONRES	931.4	1,480.9	673.7	866.8	725.6	948.9	852.3	1,284.7	837.2	1,347.2
LK30TRIP	311.3	499.1	219.7	284.5	235.0	309.5	282.5	429.2	273.7	444.3
LK30-SPEC	501.6	771.0	365.7	458.4	390.4	497.4	456.1	665.9	441.7	697.2
LKSUTOTAL	661.1	1,010.9	483.2	593.0	516.8	644.4	603.2	854.9	579.7	886.4
LK16NONRES	924.8	1,475.8	662.2	852.1	699.4	909.6	836.1	1,266.7	818.2	1,326.3
LK16TRIP	296.5	480.8	204.5	266.3	215.3	283.5	266.1	409.1	257.2	424.2
LK16-SPEC	485.2	748.6	340.3	427.4	358.5	455.2	430.8	632.7	414.2	662.1
LK16TOTAL	639.7	961.5	445.0	549.6	469.7	586.2	560.3	804.0	535.2	833.9

•

	LAKE STATE OUTDOOR RECREATION ECONOMIC IMPACTS: LOW, nonres poes (cont'd.)									
EMPLOYMENT	SDPLK TYPE I	SDPLK TYPE III	FLRLK TYPE I	FLRLK TYPE 111	ALTFLK TYPE I	ALTFLK TYPE III	BSTLK Type I	BSTLK TYPE III	UNCHLK TYPE I	UNCHLK TYPE III
DI CHANDER										
DISTOIRES	22 552	77 085	18 555	22 880	10 287	24 007	21 424	30 204	20 713	20 058
DI 31KIP	20,332	JJ,00J	36,333	22,000	17,205	29,073	20,424	30,274	20,713	29,000
DISTOTAL	30,071	43,310	20,001	30,000	20,249	32,190	27,100	41,251	32 022	37,212
DISIONE	30,002	33,771	20,333	34,730	27,713	31,314	33,700	41,140	32,023	44,724
UNAGNONRES	65.957	96.706	54.577	66.665	57.020	70.561	62.738	88.172	62,163	87.831
INAGTRIP	22 217	32 574	18 034	22 029	18 735	23 185	20 959	29.456	20.658	29,188
INAG-SPEC	32 416	47 527	26 310	32 148	27 489	34 017	30 515	42 887	20 076	42 354
INAGTOTAL	40 067	58 746	31 243	38 143	32 761	40 542	36,515	51 688	35 040	50 792
	40,001	20,140	51,245	30,103	52,101	40,542	30,	31,000	33,747	30,172
AGLKNONRES	67,315	99.875	54.487	65.967	56,812	69.639	63,220	88,835	62,606	87,957
AGLKTRIP	22,561	33.473	18.032	21.831	18,701	22.924	21.075	29.614	20.778	29, 192
AGLK-SPEC	32.621	48.400	25,972	31.445	27.088	33,203	30.348	62.644	29.774	41.830
AGLKTOTAL	39,501	58,609	30,910	37.423	32,321	39,618	36.357	51,088	35,556	49,954
			••••							•
LK30NONRES	66,988	97,620	54,672	66,255	57,303	70,529	63,476	88,554	62,570	87,738
LK30TRIP	22.894	33,363	18.346	22,233	19,121	23.534	21.545	30,057	21,112	29,604
LK30-SPEC	32,842	47.861	26,235	31.794	27.469	33,809	30,792	42,958	29,992	42,056
LK30TOTAL	40,202	58,585	31,093	37,680	32,741	40,297	36,946	51,543	35,844	50,262
LK16NONRES	65.996	96.433	53.808	65, 127	55.562	67.935	62.246	87.020	61.311	86,127
KIATRIP	22 078	32 261	17 527	21 214	18 040	22 057	20 675	28 904	20 250	28.446
IK16-SDEC	31 547	46 007	26 404	20 801	25 542	31 230	20 101	40 809	28 353	30 820
I KIATOTAI	38 540	54 328	20 440	35 885	30 777	37 630	35 224	40,007	34 037	47 814
LK IUIUIAL	JU, J77	~,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	27,047		30,111	37,000	33,664		J-7,007	

.

•

LAKE STATE OUTDOOR RECREATION ECONOMIC IMPACTS: HIGH, w/res pces (1982 million \$)

OUTPUT	SOPLK TYPE I	SDPLK TYPE III	FLRLK TYPE I	FLRLK TYPE III	ALTFLK TYPE I	ALTFLK TYPE III	BSTLK Type I	BSTLK TYPE 111	UNCHLK TYPE I	UNCHLK TYPE III
DISNONRES	264.7	407.1	187.8	237.9	196.5	252.5	242.0	355.4	236.0	389.5
DISTRIP	2,802.7	4,264.1	1,987.4	2,497.3	2,078.7	2,650.6	2,557.4	3,717.5	2,497.7	4,101.0
DIS-SPEC	4,574.8	6,833.3	3,304.0	4,078.7	3.487.5	4.365.5	4,168.1	5,949.0	4.067.3	6.547.7
DISTOTAL	6,910.7	9,902.7	4,761.9	5,712.0	5,037.6	6,125.2	6,028.0	8,287.1	5,809.8	8,918.7
UNAGNONRES	263.3	404.1	184.6	231.0	193.2	245.3	239.4	349.0	235.5	367.2
UNAGTRIP	2,785.5	4,230.6	1,952.5	2,426.5	2,043.1	2,574.7	2,528.2	3,650.1	2,490.0	3,858.4
UNAG-SPEC	4,548.3	6,909.1	3,250.1	4,022.5	3,428.9	4,301.1	4,121.5	5,949.3	4,051.7	6,375.4
UNAGTOTAL	6,879.8	10,201.3	4,677.8	5,703.8	4,948.3	6,112.6	5,960.4	8,437.6	5,791.1	8,951.3
AGLKNONRES	266.7	421.0	185.0	231.8	194.1	247.0	239.3	353.4	234.2	367.3
AGLKTRIP	2,764.3	4,316.2	1,919.9	2,387.3	2,013.1	2,542.1	2,481.5	3,627.1	2,431.9	3,794.8
AGLK-SPEC	4,392.8	6,825.7	3,096.3	3,828.6	3,274.2	4,108.4	3,935.8	5,727.7	3,852.1	6,095.3
AGLKTOTAL	5,880.1	9,032.5	4,080.3	5,012.1	4,318.3	5,381.4	5,169.7	7,458.8	5,032.5	7,963.0
LK30NONRES	266.8	412.5	186.8	234.1	195.7	249.1	242.7	355.6	239.2	373.2
LK30TRIP	2,582.7	4,027.5	1,828.0	2,301.8	1,917.1	2,451.9	2,353.2	3,474.8	2,324.8	3,686.5
LK30-SPEC	4,124.2	6,411.2	2,971.8	3,721.1	3,134.0	3,983.9	3,751.1	5,521.2	3,683.0	5,940.2
LK30TOTAL	6,376.1	9,595.0	4,369.6	5,368.1	4,638.1	5,780.5	5,554.0	7,964.8	5,373.5	8,456.2
LK16NONRES	270.5	412.6	187.8	233.4	196.6	247.3	244.3	353.1	240.8	370.9
LK16TRIP	2.555.1	3.927.0	1.795.4	2.240.7	1.881.6	2.376.8	2.313.5	3.368.0	2.287.2	3.584.1
LK16-SPEC	4,203.1	6.374.0	2.938.8	3.633.6	3,102.4	3.879.1	3,738.1	5,385.3	3,655.5	5,790.4
LK16TOTAL	6,341.7	9,408.5	4,327.4	5,278.2	4,593.7	5,662.5	5,501.4	7,780.3	5,308.9	8,255.2
	SUDI K	SUDI K			AL TEL M	AL TELY		RETIK		
INCOME	TYPE I	TYPE III	TYPE 1	TYPE 111	TYPE 1	TYPE 111	TYPE I	TYPE 111	TYPE I	TYPE III
DISNONRES	64.4	104.0	47.3	62.6	50.4	67.7	59.2	91.2	56.2	98.2
DISTRIP	681.2	1,087.0	497.6	653.3	530.5	707.4	623.8	950.7	592.7	1,031.9
DIS-SPEC	1,22.9	1,879.7	943.2	1,179.7	1,008.5	1,279.8	1,152.1	1,653.8	1,105.1	1,784.5
DISTOTAL	1,987.7	2,818.2	1,416.5	1,706.6	1,516.0	1,852.2	1,746.1	2,382.6	1,656.0	2,507.6
UNAGNONRES	64.4	103.7	46.2	60.2	49.3	65.3	58.6	89.5	56.5	92.7
UNAGTRIP	681.3	1,084.1	486.3	628.8	519.5	682.2	617.8	933.5	595.3	972.2
UNAG-SPEC	1,257.3	1,915.4	930.5	1,162.7	995.2	1,262.0	1,146.9	1,661.3	1,112.3	1,752.2
UNAGTOTAL	1,993.5	2,919.3	1,394.6	1,703.1	1,492.8	1,849.0	1,735.7	2,432.8	1,665.1	2,535.5
AGLKNONRES	68.2	443 7	17 0					•• •	50 O	07 1
AGLKTRIP	····	112./	47.0	01.2	49.9	65.9	61.1	94.5	20.0	7/.1
ACI K-SDEC	702.7	1,150.2	482.2	61.2 623.8	49.9 512.4	65.9 672.5	61.1 628.3	94.5 964.4	58.8 606.2	997.9
AULK-JPEL	702.7	1,150.2	482.2 879.2	623.8 1,101.2	49.9 512.4 935.6	65.9 672.5 1,188.0	61.1 628.3 1,104.0	94.5 964.4 1,629.6	58.8 606.2 1,069.4	997.9 1,714.0
AGLKTOTAL	702.7 1,225.6 1,685.3	1,150.2 1,927.2 2,594.4	482.2 879.2 1,198.3	623.8 1,101.2 1,480.7	49.9 512.4 935.6 1,273.3	65.9 672.5 1,188.0 1,594.9	61.1 628.3 1,104.0 1,494.9	94.5 964.4 1,629.6 2,166.4	58.8 606.2 1,069.4 1,443.0	997.9 1,714.0 2,285.1
AGLKTOTAL	702.7 1,225.6 1,685.3 66.2	1,150.2 1,927.2 2,594.4 106.6	47.0 482.2 879.2 1,198.3 46.8	61.2 623.8 1,101.2 1,480.7 60.8	49.9 512.4 935.6 1,273.3 50.1	65.9 672.5 1,188.0 1,594.9 66.2	61.1 628.3 1,104.0 1,494.9 60.3	94.5 964.4 1,629.6 2,166.4 91.8	58.8 606.2 1,069.4 1,443.0 58.5	997.9 1,714.0 2,285.1 95.2
AGLKTOTAL LKSONONRES LKSOTRIP	702.7 1,225.6 1,685.3 66.2 669.8	1,150.2 1,927.2 2,594.4 106.6 1,069.4	47.0 482.2 879.2 1,198.3 46.8 480.1	61.2 623.8 1,101.2 1,480.7 60.8 619.8	49.9 512.4 935.6 1,273.3 50.1 513.3	65.9 672.5 1,188.0 1,594.9 66.2 674.0	61.1 628.3 1,104.0 1,494.9 60.3 610.9	94.5 964.4 1,629.6 2,166.4 91.8 924.5	58.8 606.2 1,069.4 1,443.0 58.5 596.2	997.9 1,714.0 2,285.1 95.2 968.8
AGLK-SPEC AGLKTOTAL LK30NONRES LK30TRIP LK30-SPEC	702.7 1,225.6 1,685.3 66.2 669.8 1,197.2	1,150.2 1,927.2 2,594.4 106.6 1,069.4 1,829.8	47.0 482.2 879.2 1,198.3 46.8 480.1 890.8	61.2 623.8 1,101.2 1,480.7 60.8 619.8 1,111.6	49.9 512.4 935.6 1,273.3 50.1 513.3 950.5	65.9 672.5 1,188.0 1,594.9 66.2 674.0 1,205.9	61.1 628.3 1,104.0 1,494.9 60.3 610.9 1,096.2	94.5 964.4 1,629.6 2,166.4 91.8 924.5 1,591.2	58.8 606.2 1,069.4 1,443.0 58.5 596.2 1,067.8	997.9 1,714.0 2,285.1 95.2 968.8 1,685.5
AGLK-SPEC AGLKTOTAL LK3ONONRES LK3OTRIP LK3O-SPEC LK3OTOTAL	702.7 1,225.6 1,685.3 66.2 669.8 1,197.2 1,961.3	1,150.2 1,927.2 2,594.4 106.6 1,069.4 1,829.8 2,851.7	482.2 879.2 1,198.3 46.8 480.1 890.8 1,390.6	61.2 623.8 1,101.2 1,480.7 60.8 619.8 1,111.6 1,684.8	49.9 512.4 935.6 1,273.3 50.1 513.3 950.5 1,488.5	65.9 672.5 1,188.0 1,594.9 66.2 674.0 1,205.9 1,831.8	61.1 628.3 1,104.0 1,494.9 60.3 610.9 1,096.2 1,722.4	94.5 964.4 1,629.6 2,166.4 91.8 924.5 1,591.2 2,396.6	58.8 606.2 1,069.4 1,443.0 58.5 596.2 1,067.8 1,655.9	997.9 1,714.0 2,285.1 95.2 968.8 1,685.5 2,499.3
AGLK-SPEC AGLKTOTAL LK30NONRES LK30TRIP LK30-SPEC LK30TOTAL LK16NONRES	702.7 1,225.6 1,685.3 66.2 669.8 1,197.2 1,961.3 63.7	1,150.2 1,927.2 2,594.4 106.6 1,069.4 1,829.8 2,851.7 103.5	47.0 482.2 879.2 1,198.3 46.8 480.1 890.8 1,390.6 44.2	61.2 623.8 1,101.2 1,480.7 60.8 619.8 1,111.6 1,684.8 57.6	49.9 512.4 935.6 1,273.3 50.1 513.3 950.5 1,488.5 46.6	65.9 672.5 1,188.0 1,594.9 66.2 674.0 1,205.9 1,831.8 61.4	61.1 628.3 1,104.0 1,494.9 60.3 610.9 1,096.2 1,722.4 57.4	94.5 964.4 1,629.6 2,166.4 91.8 924.5 1,591.2 2,396.6 88.3	58.8 606.2 1,069.4 1,443.0 58.5 596.2 1,067.8 1,655.9	997.9 1,714.0 2,285.1 95.2 968.8 1,685.5 2,499.3 91.7
AGLK-SFEC AGLKTOTAL LK30NONRES LK30TRIP LK30-SPEC LK30TOTAL LK16NONRES LK16TRIP	702.7 1,225.6 1,685.3 666.2 669.8 1,197.2 1,961.3 63.7 626.3	1,150.2 1,927.2 2,594.4 106.6 1,069.4 1,829.8 2,851.7 103.5 1,010.2	47.0 482.2 879.2 1,196.3 46.8 480.1 890.8 1,390.6 44.2 441.9	61.2 623.8 1,101.2 1,480.7 60.8 619.8 1,111.6 1,684.8 57.6 572.9	49.9 512.4 935.6 1,273.3 50.1 513.3 950.5 1,488.5 466.6 464.9	65.9 672.5 1,188.0 1,594.9 66.2 674.0 1,205.9 1,831.8 61.4 609.6	61.1 628.3 1,104.0 1,494.9 60.3 610.9 1,096.2 1,722.4 57.4 566.6	94.5 964.4 1,629.6 2,166.4 91.8 924.5 1,591.2 2,396.6 88.3 866.2	58.8 606.2 1,069.4 1,443.0 58.5 596.2 1,067.8 1,655.9 55.6 552.2	997.9 1,714.0 2,285.1 95.2 968.8 1,685.5 2,499.3 91.7 911.8
AGLK-SFEC AGLKTOTAL LK30NONRES LK30TRIP LK30-SPEC LK30TOTAL LK16NONRES LK16TRIP LK16-SPEC	702.7 1,225.6 1,685.3 666.2 669.8 1,197.2 1,961.3 63.7 626.3 1,146.4	1,150.2 1,927.2 2,594.4 106.6 1,069.4 1,829.8 2,851.7 103.5 1,010.2 1,753.9	47.0 482.2 879.2 1,198.3 46.8 480.1 890.8 1,390.6 44.2 441.9 823.2	61.2 623.8 1,101.2 1,480.7 60.8 619.8 1,111.6 1,684.8 57.6 572.9 1,027.6	49.9 512.4 935.6 1,273.3 50.1 513.3 950.5 1,488.5 46.6 464.9 867.0	65.9 672.5 1,188.0 1,594.9 66.2 674.0 1,205.9 1,831.8 61.4 609.6 1,093.9	61.1 628.3 1,104.0 1,494.9 60.3 610.9 1,096.2 1,722.4 57.4 566.6 1,025.0	94.5 964.4 1,629.6 2,166.4 91.8 924.5 1,591.2 2,396.6 88.3 866.2 1,492.9	58.8 606.2 1,069.4 1,443.0 58.5 596.2 1,067.8 1,655.9 55.6 552.2 991.5	997.9 1,714.0 2,285.1 95.2 968.8 1,685.5 2,499.3 91.7 911.8 1,583.5

•

.

•

.

	LAKE STA	TE OUTDOOR	RECREAT	ION ECONOMI		: HIGH, I	i/res pces	(cont'o	1.)	(jobs)
EMPLOYMENT	SOPLK	SOPLK	FLRLK	FLRLK	ALTFLK	ALTFLK	BSTLK	BSTLK	UNCHLK	UNCHLK
	TYPE I	TYPE III	TYPE I	TYPE III	TYPE I	TYPE III	TYPE I	TYPE III	TYPE I	TYPE III
DISNONRES	4,813	7,061	3,968	4,893	4,126	5,155	4,578	6,473	4,430	6,215
DISTRIP	49,369	72,427	40,425	49,848	42,080	52,576	46,818	66,200	45,266	63,502
DIS-SPEC	76,261	111,880	61,401	75,714	64,584	80,692	71,848	101,591	68,988	96,781
DISTOTAL	101,044	148,238	75,317	92,873	80,009	99,963	91,151	128,886	85,843	120,428
UNAGNONRES	4,759	6,978	3,872	4,730	4,025	4,981	4,497	6,320	4,442	6,276
UNAGTRIP	48,854	71,629	39,478	48,222	41,081	50,837	46,019	64,676	45,515	64,309
UNAG-SPEC	79,811	117,018	64,326	78,573	67,399	83,406	74,980	105,379	73,749	104,201
UNAGTOTAL	112,288	164,635	85,448	104,374	89,969	111,335	101,621	142,822	99,213	140,179
AGLKNONRES	4,895	7,263	3,918	4,744	4,064	4,982	4,575	6,429	4,520	6,351
AGLKTRIP	49,237	73,053	39,144	47,392	40,652	49,831	45,930	64,540	45,461	63,870
AGLK-SPEC	77, 185	114,520	61,333	74,255	64,104	78,578	71,843	100,952	70,617	99,211
AGLKTOTAL	100,010	148,388	78,031	94,472	81,691	100,135	91,777	128,963	89,819	126,189
LK30NONRES	4,914	7,162	3,947	4,783	4,116	5,066	4,632	6,463	4,545	6,373
LK30TRIP	48,725	71,006	39,538	47,915	41,227	50,742	46,040	64,230	45,257	63,460
LK30-SPEC	77,127	112,396	62,524	75,770	65,522	80,644	72,662	101,369	70,951	99,490
LK30TOTAL	108,554	158,194	83,311	100,960	88,076	108,404	98,966	138,066	95,943	134,536
LK16NONRES	4,764	6,962	3,802	4,601	3,913	4,785	4,472	6,252	4,386	6,162
LK16TRIP	48,910	71,468	38,827	46.994	39,999	48,906	45,825	64,065	44,950	63,145
LK16-SPEC	72,763	106,322	57,930	70,115	59,961	73,314	67,648	94,574	65,831	92,477
LK16TOTAL	102,788	150, 195	79,284	95,961	82,520	100,897	93,597	130,851	90,267	126,804

LAKE	STATE OUTDOOR	RECREATION	ECONOMIC	IMPACTS:	HIGH.	nonres	DCes	(1982	million	\$)
							pece	``		-,

OUTPUT	SDPLK TYPE I	SOPLK TYPE III	FLRLK TYPE I	FLRLK TYPE III	ALTFLK TYPE I	ALTFLK TYPE III	BSTLK Type I	BSTLK TYPE III	UNCHLK Type I	UNCHLK TYPE III
DISNONRES	717.7	1,087.9	510.9	640.2	534.5	679.6	655.8	949.9	641.4	1,053.8
DISTRIP	2,791.0	4,247.2	1,978.7	2,486.8	2,069.6	2,639.5	2,546.8	3,702.6	2,487.3	4,084.9
DIS-SPEC	4,442.1	6,640.1	3,204.8	3,958.8	3,383.2	4,237.8	4,046.1	5,779.2	3,948.1	6,364.2
DISTOTAL	6,778.0	9,709.5	4,662.7	5,592.1	4,933.4	5,997.5	5,906.0	8,117.3	5,690.5	8,735.2
UNAGNONRES	714.5	1,081.9	502.7	623.3	526.2	661.7	649.8	935.3	640.9	992.8
UNAGTRIP	2,773.9	4,213.8	1,943.9	2,416.2	2,034.1	2,563.8	2,517.6	3,635.4	2,479.6	3,843.1
UNAG-SPEC	4,415.6	6,716.5	3,152.0	3,905.1	3,325.9	4,176.2	4,000.3	5,781.8	3,932.5	6,200.1
UNAGTOTAL	6,747.1	10,008.7	4,579.7	5,586.4	4,845.3	5,987.7	5,839.1	8,270.0	5,671.8	8,775.9
AGLKHONRES	718.1	1,117.3	498.9	618.7	523.4	659.2	644.3	938.7	632.1	985.1
AGLKTRIP	2,757.5	4,305.5	1,915.0	2,381.2	2,008.0	2,535.7	2,475.4	3,618.1	2,425.9	3,785.1
AGLK-SPEC	4,315.1	6,703.5	3,040.9	3,759.7	3,215.6	4,034.4	3,865.8	5,624.8	3,783.7	5,984.6
AGLKTOTAL	5,802.3	8,910.3	4,024.9	4,943.1	4,259.7	5,307.4	5,099.7	7,355.8	4,964.1	7,852.2
LK30NONRES	720.5	1,105.6	507.6	632.3	532.2	673.2	656.9	955.0	649.3	1,010.5
LK30TRIP	2,573.0	4,013.3	1,820.6	2,293.0	1,909.4	2,442.5	2,344.3	3,462.3	2,315.9	3,673.3
LK30-SPEC	4,013.1	6,248.3	2,887.9	3,620.4	3,045.6	3,876.2	3,648.9	5,378.9	3,582.2	5,789.2
LK30TOTAL	6,265.0	9,432.1	4,285.7	5,267.3	4,549.7	5,672.9	5,451.8	7,822.6	5,272.7	8,305.1
LK16NONRES	727.3	1,101.7	509.4	629.4	533.4	667.0	658.7	945.7	651.4	1,001.7
LK16TRIP	2,545.3	3,912.6	1,788.0	2,231.8	1,873.9	2,367.4	2,304.6	3,355.6	2,278.5	3,570.9
LK16-SPEC	4,090.4	6,208.6	2,854.6	3,532.4	3,013.8	3,771.4	3,635.6	5,242.4	3,554.6	5,639.0
LK16TOTAL	6,229.5	9,243.6	4,243.5	5,177.3	4,505.4	5,555.1	5,399.2	7,638.0	5,208.3	8,104.3
DEDCONAL		SUDI K			AL TELK	AL TELY	BSTI K	RSTIK		INCHIK
INCOME	TYPE I	TYPE III	TYPE I	TYPE III	TYPE I	TYPE III	TYPE I	TYPE III	TYPE I	TYPE III
DI SNONDES	173 1	275.0	126 5	166 0	135 0	170 0	158 7	261 6	151 0	263 9
DISTRIC	678 2	1 082 5	405.2	450 4	528 0	704. 2	620.0	046 7	580 0	1 027 7
DIS-SPEC	1 217 4	1 827 0	014 2	1 1/4 /	070 8	1 244 0	1 110 5	1 408 0	1 073 6	1 735 6
DISTOTAL	1 052 4	2 744 4	1 390 5	1 473 3	1 497 3	1 814 3	1 713 5	2 334 8	1 624 5	2 458 7
DISIONE	1,752.4	2,700.4	1,307.3	1,0/3.3	1,407.3	1,010.3	1,713.3	2,330.0	1,024.5	2,4,0.1
UNAGNONRES	172.5	274.9	122.9	159.2	131.6	173.0	156.6	236.9	151.1	248.0
UNAGTRIP	678.1	1,079.4	483.9	625.9	517.0	679.1	614.9	929.5	592.5	968.0
UNAG-SPEC	1,221.1	1,862.4	903.4	1,129.8	966.3	1,226.5	1,113.7	1,615.1	1,079.9	1,704.4
UNAGTOTAL	1,957.2	2,866.3	1,367.5	1,670.2	1,464.0	1,813.4	1,702.5	2,386.6	1,632.8	2,487.7
AGLKNONRES	181.1	296.2	123.6	159.9	131.6	172.6	161.6	248.0	156.1	257.6
AGLKTRIP	700.7	1,147.1	480.7	622.0	510.9	670.5	626.5	961.7	604.4	995.0
AGLK-SPEC	1,202.5	1,891.2	862.1	1,079.9	917.5	1,165.2	1,082.9	1,598.9	1,049.0	1,681.4
AGLKTOTAL	1,662.2	2,558.4	1,181.1	1,459.4	1,255.1	1,572.1	1,473.8	2,135.6	1,422.5	2,252.5
LK30NONRES	179.7	286.2	127.1	163.9	136.3	178.6	163.6	247.0	159.6	258.5
LK30TRIP	667.0	1,065.4	478.0	617.2	511.1	671.3	608.3	921.0	593.8	965.2
LK30-SPEC	1,165.7	1,784.0	866.8	1,082.7	924.9	1,174.5	1,067.2	1,551.0	1,039.3	1,643.2
LK30TOTAL	1,929.8	2,805.8	1,366.6	1,655.9	1,462.9	1,800.4	1,693.4	2,356.4	1,627.3	2,457.1
LK16NONRES	172.4	277.2	120.2	155.5	126.5	165.6	155.6	237.1	151.5	248.7
LK16TRIP	623.5	1,006.1	439.8	570.3	462.7	606.8	564.0	862.6	549.7	908.1
LK16-SPEC	1,114.1	1,706.8	798.6	998.0	841.3	1,062.6	995.4	1,451.9	962.6	1,540.5
LK16TOTAL	1,773.8	2,617.3	1,248.1	1,522.8	1,318.4	1,625.1	1,550.3	2,186.4	1,481.9	2,284.9

.

	LAKE ST	ATE OUTDOO	R RECREAT	ION ECONOR	IC IMPACT	'S: HIGH,	nonres po	es (cont	'd.)	(jobs)
EMPLOYMENT	SOPLK	SOPLK	FLRLK	FLRLK	ALTFLK	ALTFLK	BSTLK	BSTLK	UNCHLK	UNCHLK
	TYPE I	TYPE III	TYPE I	TYPE III	TYPE I	TYPE III	TYPE I	TYPE III	TYPE I	TYPE III
DISNONRES	12,504	18,344	10,251	12,641	10,677	13,341	11,869	16,783	11,486	16,113
DISTRIP	49, 194	72,170	40,283	49,673	41,930	52,389	46,652	65,966	45,105	63,277
DIS-SPEC	74,253	108,934	59,778	73,713	62.878	78,560	69,952	98,911	67,151	94,205
DISTOTAL	99,036	145,292	73,694	90,872	78,302	97,832	89,256	126,206	84,007	117,852
UNAGNONRES	12,420	18,210	10,048	12,274	10,465	12,951	11,714	16,464	11,628	16,430
UNAGTRIP	48,677	71,369	39,338	48,051	40,933	50,654	45,853	64,443	45,352	64,078
UNAG-SPEC	77,783	114,044	62,719	76,610	65,707	81,312	73,079	102,708	71,879	101,559
UNAGTOTAL	110,259	161,661	83,841	102,411	88,277	109,241	99,721	140, 151	97,344	137,538
AGLKNONRES	12,667	18,794	10,038	12, 153	10,434	12,790	11,803	16,585	11,723	16,469
AGLKTRIP	49,113	72,870	39,045	47,271	40,548	49,703	45,814	64,377	45,348	63,711
AGLK-SPEC	75,774	112,428	60,194	72,877	62,918	77,123	70,522	99,096	69,327	97, 399
AGLKTOTAL	98,599	146,294	76,892	93,093	80,504	98,680	90,455	127, 106	88,529	124,376
LK30NONRES	12,986	18,925	10,401	12,604	10,866	13,373	12,240	17,075	12,032	16,871
LK30TR1P	48,572	70,783	39,416	47,766	41,098	50,583	45,896	64,029	45,115	63,261
LK30-SPEC	75,378	109,848	61,126	74,075	64,039	78,820	71,018	99,075	69,329	97,216
LK30TOTAL	106,805	155,646	81,912	99,266	86,594	106,580	97,322	135,772	94,321	132,262
LK16NONRES	12,551	18,340	10,006	12,111	10,312	12,608	11,788	16,480	11,584	16,272
LK16TRIP	48,737	71,215	38,692	46,831	39,859	48,735	45,665	63,841	44,793	62,923
LK16-SPEC	70,994	103,738	56,511	68,398	58,486	71,510	65,992	92,258	64, 198	90,183
LK16TOTAL	101,024	147,617	77,867	94,246	81,047	99,096	91,944	128,541	88,637	124,514

•

	***** See notes at end of table. *****		Allo-
FIW Spending Category		Basis of	cation
(New Items Only)	Further Allocation; PCE Item, 1-O Category, SIC Code, +/or IMPLAN Sector	Allocation *	USED
TRIP-RELATED			
foodLlocging			
food	Groceries (I-O 1110, Food Purch.for Off-Premise Consump; also I-O 1500, tobacco)	Regional Rec	0.4
	Restaurants (I-0 1120, Purchased Heals & Beverages)	studies	0.6
ladging	all spanding to IMPLAN # 471		
transportation	Public transportation	85 FHM	0.08
	Air travel (IMPLAN #450)	Gauldher's	0.05
	Railroads (IMPLAN #446)	Travel	0.01
	Blass (IHPLAN #K47)	Trends	0.02
	Private transportation (Automobiles)	Ntl PCEs	0.92
	Gas & oil (1-0 8140)		0.62
	Auto repair (1-0 8130; more narrowly, PCE 1358 & 1359, IMPLAN #493)		0.3
1 other Hunt & Noncons	Equipment rental (PCE 1722-1724, IMPLAN 502(?))	85 FHM	0.14
trp-ritd costs	Guide fees (IMPLAN 502)		0.132
•	Pack trips (IMPLAN 502)		0.359
	Public land use (Fed, St, & Loc Gov, no multiplier)		0.164
	Private land use		0.205
	commercial (SIC 0971, marginad IMPLAN #24; or 502)	ad hoc, local	0.02
	household (distribute through PCE vector; see note on PCE vector)	studies/apinio	r10.185
other Fishing	Equipment rental (PCE 1722-1724, IMPLAN 502(?))	85 FIN	0.238
trp-ritd costs	Boat Launching (IMPLAN 502)		0.174
	Guide fees (IMPLAN 502)		0.078
	Pack trips (IHPLAN 502)		0.221
	Public land ume (Fed, St, & Loc Gov, no multiplier)		0.151
	Private land use		0.158
	commercial (SIC 0971; PCE 51, 1705-7; margined IMPLAN #24)	ad hoc, local	0.05
	household (distribute through PCE vector; see note on PCE vector)		nu.158
boat fuel	gas & oil (1-0 8140)		
bost moor/stor/main	t bost scoring & storing (PCE 1652, 1HP #449)	ad hoc, local	0.24
	bost Maintenence (PCE 1507 & 1520, IMP #5752 as Mangined)	sturies/opinio	n U.76
beit	(SIC 0279, INPLAN #26)		
ice	(SIC 2097, PCE 153, IHPLAN #124 as margined)		

APPENDIX F: BRIDGE OF NATIONAL SURVEY OF FISHING, HUNTING, AND WILDLIFE-ASSOCIATE RECREATION (FHW) SPENDING TO IMPLAN

Equipment & other

HINTING	
guns & rifles	(PCE 1481, IMPLAN #79 as mangined)
amunition	(PCE 1441-1444, IMPLAN #80 as margined)

FHA SPENDING CATEGORY FURTHER ALLOCATION; PCE ITEN, 1-O CATEGORY, SIC CODE, +/OR INPLAN SECTOR ALLOCATION BASIS ALLOCATION

2 other hunt equip	Archery equipment (SIC 3949, I-0 9300, PCE 1472, IMPLAN #K33 as margined) 85 FHW	0.2
	Telescopic sights (SIC 3832, 1-0 9400, PCE 1534-36, IMPLAN 423 as margined)	0.12
	Decoys & game calls (SIC 3949, I-0 9300, PCE 1466 & 1471, IMPLAN #433 as margined)	0.04
	Equip or game casesicarriers (SIC 3949, 1-0 9400, PCE 1548, IMPLAN 433 as margined)	0.06

Hand Loading equip (SIC 3949, 1-0 9300, PCE 1466 & 1471, IMPLAN 433 as mangined)	0.11
Hunting dogs & assoc.costs	0.33
dog purchase (SIC 0279 & 0752, PCE 1704-5 & 1709-10, IMPLAN #26 as PCEs are marginad)	0.05
food (SIC 2047, PCE 94-5, IMPLAN 102 as margined)	0.2
vetarinary (SIC 0742, PCE 1734, IMPLAN #506 as marginad)	0.07
equipment (SIC 3199, PCE 1495, IMPLAN #254 as margined)	0.01
Hunting knives (SIC 3421, PCE 1498, IMPLAN #519 as manginad)	0.06
Unspecified other (** SIC 3949, 1-0 9300 & 9400, IMPLAN #K33 as margined)	0.08

NONCONSUMPTIVE

field gl asses	SIC 3832, I-0 9400, PCE 1534-36, IMPLAN 423 as mangined		
binoculars	SIC 3832, 1-0 9400, PCE 1534-36, IMPLAN 423 as mangined		
film & dev.	film (SIC 3861, PCE 1462, IMPLAN #425 as margined)	ad hoc	0.4
	developing (SIC 7395, PCE 1726-27, IMPLAN #485 as mangined)		0.6
other photo equip	SIC 3861 (but also pt. 3832 & 3641), IMPLAN #425 as margined)		
carrying cases[clothing	Luggage (SIC 3161, POE 471-77 & 1589, JHPLAN #251)	ad hoc	0.5
	clothing (SIC 232, IMPLAN 151 as margined)		0.5
bird seed	SIC 2047, PCE 97, INPLAN #102 as margined		
3 other bird items	Nood bird boxes, feeders, houses (SIC 2499, PCE 762, INPLAN #172 as margined)	ad hoc	0.9
	Ceramic bird baths (SIC 325-7, PCE 776-7, IMPLAN #266 (or 261) as margined)		0.1

4 other noncons equip SIC 3949, PCE 1467, IMPLAN #433 as margined

	FISHING			
	rods	SIC 3949, PCE 1467, IMPLAN #433 as marginad		
	reels	SIC 3949, PCE 1467, INPLAN #433 as margined		
	lines, hooks,etc.	lines (SIC 2298, PCE 1445(alternatively, PCE 889-90, IMPLAN #142 as margined)))	0.7
		hooks,etc. (SIC 3949, PCE 1467, IMPLAN #433 as margined)		0.3
	lures & flies	SIC 3949, PCE 1467, IMPLAN #433 as marginad		
	tackle boxes	SIC 3949, PCE 1467, IMPLAN #433 as marginad		
	creels, nets	creels (SIC 3949, PCE 1467, IMPLAN #K33 as mangined)	ad hoc	0.2
	·	nets (SIC 2298 (& 2399), PCE 888-9(383,468,909,1486); INPLAN #142 (159) as man	(benig	0.8
	bait containers	SIC 3949, PCE 1467, IMPLAN #433 as mangined		
	scales & knives	scales (SIC 3576, PCE 795-6, IMPLAN #364 as marginad)		0.1
		knives (SIC 3421, PCE 1498-9, INPLAN #519 as marginad)		0.9
5	other fish equip	depth & fish finders & other elec. fish devices (SIC 3662, IMPLAN #592)	85 FHW	0.52
	• •	other fishing equip (** SIC 3949, I-0 9300 & 9400, IMPLAN #433 as mangined)		0.48

FINI SPENDING CATEGORY FURTHER ALLOCATION; POE ITEM, I-O CATEGORY, SIC CODE, +/OR IMPLAN SECTOR ALLOCATION BASIS ALLOCATION

ALKILIARY EQUIPMENT

	Fish & Hunt Aux Equip			
6	Camping Equip	camping & outdoor cooking equip (SIC 3469, PCE 694, IMPLAN #518 as mangined)	ad hoc	0.15
		tents & tarps (SIC 2394, PCE 1483-5, INPLAN #155 as margined)		0.35
		sleeping bags (SIC 2399, PCE 1487, IMPLAN #159)		0.3
		lanterns & other lighting equip(SIC 3648, PCE 806-810, IMPLAN #587 as mangined)		0.15
		back packs, duffle bags, etc.(textile bags - SIC 2395, PCE 1482, IMPLAN #154)		0.1
	Foul Weather Geer	SIC 2385,PCE 455-6 & 469, INPLAN #151 as margined		
	Spec Clothing	SIC 2320, IMPLAN #151 as margined		
	Rubber Boots/Maders	SIC 3021, PCE 299, IMPLAN #241 as margined		
	Equip Maintenance	SIC 7699 (3732 too?, PCE 1569, 1572-4, 1720, IMPLAN #478 as marginad		
	Fish or Hunt Boots	SIC 3143, PCE 499, INPLAN #248		
7	Other F&H Aux Equip	binoculars, field glasses (SIC 3832, I-0 9400, PCE 1534-36, INPLAN 423 as margined	85 FHM	0.36
		anow shoes & skis (SIC 3949, PCE 1559, IMPLAN #433 as mangined)		0.02
		processing, taxidermy costs (SIC 7699, PCE 1573, IMPLAN # 478 as margined)		0.58
		unapacified other (** SIC 3949, 1-0 9300 & 9400, IMPLAN #433 as mangined)		0.04
S	PECIAL EQUIPHENT			
	Fish & Hunt Spec Equi	p		
	Bosts & Canoss	SIC 3732, PCE 1507-21 (& 1491?), IMPLAN #409 as marginad		
	Bost Accessories	outboard motors (SIC 3519, PCE 1502, IMPLAN 331)	85 FIN	0.74
		elec. trolling motors (SIC 3621, PCE 873 (2874) IMPLAN #574)		0.09
		other bost accessories (** bost cushions=SIC 2392, IMP #153;Life preservers=SIC 30	69 2 3842,	0.17
		INP #243 & 420; tarpe=SIC 2394; ETC default to INP #433 as mar	gined)	
	Boat Trailer&Hitch	SIC 3799, PCE 1531, INPLAN #415 as margined		
	Bost Trailer&Hitch Travel or Tent Traile	SIC 3799, PCE 1531, IMPLAN #415 as margined r travel or tent trailer (SIC 3792, PCE 1297-1301, IMPLAN #412 as margined)	85 FHM	0.12
	Boet Trailen&Hitch Travel or Tent Traile Pickup,Van,Motor Hom	SIC 3799, PCE 1531, IMPLAN #415 as margined r travel or tent trailer (SIC 3792, PCE 1297-1301, IMPLAN #412 as margined) m pickup, camper or van	85 FHW	0.12 0.58
	Bost Trailer&Hitch Travel or Tent Traile Pickup,Van,Motor Hom or Cabin	SIC 3799, PCE 1531, IMPLAN #415 as margined In travel on tent trailer (SIC 3792, PCE 1297-1301, IMPLAN #412 as margined) as pickup, camper on van pickup (SIC 3711, PCE 1291-2, IMPLAN #403 as margined)	85 FHW ad hoc	0.12 0.58 0.29
	Bost TrailenBHitch Travel or Tent Traile Pickup,Van,Motor Hom or Cabin	SIC 3799, PCE 1531, IMPLAN #415 as margined r travel or tent trailer (SIC 3792, PCE 1297-1301, IMPLAN #412 as margined) a pickup, camper or van pickup (SIC 3711, PCE 1291-2, IMPLAN #403 as margined) campers (SIC 3792, PCE 1289-1290, IMPLAN #412 as margined)	85 FHW ad hoc	0.12 0.58 0.29 0.05
	Bost Trailen®Hitch Travel or Tent Traile Pickup,Van,Motor Hom or Cabin	SIC 3799, PCE 1531, IMPLAN #415 as mangined r travel or tent trailer (SIC 3792, PCE 1297-1301, IMPLAN #412 as mangined) a pickup, camper or van pickup (SIC 3711, PCE 1291-2, IMPLAN #403 as mangined) campers (SIC 3792, PCE 1299-1290, IMPLAN #412 as mangined) vers (SIC 3716, PCE 1303-5, IMPLAN #414 as mangined)	85 FHW ad hoc	0.12 0.58 0.29 0.05 0.24
	Boet Treilen&Hitch Travel or Tent Treile Pickup,Van,Motor Hom or Cabin	SIC 3799, PCE 1531, INPLAN #415 as margined r travel or tent trailer (SIC 3792, PCE 1297-1301, INPLAN #412 as margined) a pickup, camper or van pickup (SIC 3711, PCE 1291-2, IMPLAN #403 as margined) campers (SIC 3792, PCE 1289-1290, INPLAN #412 as margined) vans (SIC 3716, PCE 1303-5, INPLAN #414 as margined) motor home (SIC 3792, PCE 1302, INPLAN #412 as margined)	85 FHW ad hoc	0.12 0.58 0.29 0.05 0.24 0.13
	Boet Trailen£Hitch Travel or Tent Traile Pickup,Van,Hotor Hom or Cabin	SIC 3799, PCE 1531, IMPLAN #415 as margined r travel or tent trailer (SIC 3792, PCE 1297-1301, IMPLAN #412 as margined) e pickup, camper or van pickup (SIC 3711, PCE 1291-2, IMPLAN #403 as margined) campers (SIC 3792, PCE 1289-1290, IMPLAN #412 as margined) vers (SIC 3716, PCE 1303-5, IMPLAN #414 as margined) motor home (SIC 3792, PCE 1302, IMPLAN #414 as margined) cabin (new res construction -pt.SIC 1521, 17; IMPLAN #66)	85 FHW ad hoc	0.12 0.58 0.29 0.05 0.24 0.13 0.17
	Boet Treilen&Hitch Travel or Tent Treile Pickup,Van,Motor Hom or Cabin Off-Road Vehicles	SIC 3799, PCE 1531, INPLAN #415 as mangined r travel or tent trailer (SIC 3792, PCE 1297-1301, INPLAN #412 as mangined) m pickup, camper or van pickup (SIC 3711, PCE 1291-2, IMPLAN #403 as mangined) campers (SIC 3792, PCE 1289-1290, IMPLAN #412 as mangined) vers (SIC 3716, PCE 1303-5, INPLAN #414 as mangined) motor home (SIC 3792, PCE 1302, IMPLAN #414 as mangined) cabin (naw res construction -pt.SIC 1521, 17; IMPLAN #66) off road vehicles (SIC 3799, PCE 1525 & 1532, IMPLAN #415)	85 FHW ad hoc 85 FHW	0.12 0.58 0.29 0.05 0.24 0.13 0.17
	Boet Trailen&Hitch Travel or Tent Traile Pickup,Van,Motor Hom or Cabin Off-Road Vehicles	SIC 3799, PCE 1531, IMPLAN #415 as mangined r travel or tent trailer (SIC 3792, PCE 1297-1301, IMPLAN #412 as mangined) a pickup, camper or van pickup (SIC 3711, PCE 1291-2, IMPLAN #403 as mangined) campers (SIC 3792, PCE 1209-1290, IMPLAN #412 as mangined) vens (SIC 3716, PCE 1303-5, IMPLAN #414 as mangined) motor home (SIC 3792, PCE 1302, IMPLAN #414 as mangined) cabin (new res construction -pt.SIC 1521, 17; IMPLAN #66) off road vehicles (SIC 3799, PCE 1525 & 1532, IMPLAN #415) anounobiles (SIC 3799, PCE 1529, IMPLAN #415 as mangined)	85 FHW and hoc 85 FHW	0.12 0.58 0.29 0.05 0.24 0.13 0.17 0.97 0.03
	Boet Treilen&Hitch Travel or Tent Treile Pickup,Van,Motor Hom or Cabin Off-Road Vehicles Ice Chests	SIC 3799, PCE 1531, IMPLAN #415 as margined in travel or tent trailer (SIC 3792, PCE 1297-1301, IMPLAN #412 as margined) is pickup, camper or ven pickup (SIC 3711, PCE 1291-2, IMPLAN #403 as margined) campers (SIC 3792, PCE 1289-1290, IMPLAN #412 as margined) vens (SIC 3716, PCE 1303-5, IMPLAN #414 as margined) motor home (SIC 3792, PCE 1302, IMPLAN #414 as margined) cabin (new res construction -pt.SIC 1521, 17; IMPLAN #66) off road vehicles (SIC 3799, PCE 1525 & 1532, IMPLAN #415) anoumobiles (SIC 3799, PCE 1529, IMPLAN #415 as margined) SIC 3079, PCE 673, IMPLAN #244 as margined	85 FHW ad hoc 85 FHW	0.12 0.58 0.29 0.05 0.24 0.13 0.17 0.97 0.03
	Boet Treilen&Hitch Travel or Tent Treile Pickup, Van, Motor Hom or Cabin Off-Road Vehicles Ice Chests	SIC 3799, PCE 1531, INPLAN #415 as mangined r travel or tent trailer (SIC 3792, PCE 1297-1301, INPLAN #412 as mangined) a pickup, camper or van pickup (SIC 3711, PCE 1291-2, IMPLAN #403 as mangined) campers (SIC 3792, PCE 1289-1290, IMPLAN #412 as mangined) vers (SIC 3716, PCE 1303-5, IMPLAN #414 as mangined) motor home (SIC 3792, PCE 1302, IMPLAN #414 as mangined) cabin (new res construction -pt.SIC 1521, 17; IMPLAN #66) off road vehicles (SIC 3799, PCE 1529, IMPLAN #415 as mangined) SIC 3079, PCE 673, IMPLAN #244 as mangined SIC 3079, PCE 673, IMPLAN #244 as mangined	85 FHW ad hoc 85 FHW	0.12 0.58 0.29 0.05 0.24 0.13 0.17 0.97 0.03
	Boet Treilen&Hitch Travel or Tent Treile Pickup, Van, Motor Hom or Cabin Off-Road Vehicles Ice Chests Nonconsum Spec Equi	SIC 3799, PCE 1531, IMPLAN #415 as mangined r travel or text trailer (SIC 3792, PCE 1297-1301, IMPLAN #412 as mangined) m pickup, camper or van pickup (SIC 3711, PCE 1291-2, IMPLAN #403 as mangined) campers (SIC 3792, PCE 1289-1290, IMPLAN #412 as mangined) vers (SIC 3716, PCE 1303-5, IMPLAN #414 as mangined) motor home (SIC 3792, PCE 1302, IMPLAN #414 as mangined) cabin (new res construction -pt.SIC 1521, 17; IMPLAN #66) off road vehicles (SIC 3799, PCE 1525 & 1532, IMPLAN #415) anouncbiles (SIC 3799, PCE 1529, IMPLAN #415 as mangined) SIC 3079, PCE 673, IMPLAN #244 as mangined p travel or text trailer (SIC 3792, PCE 1297-1301, IMPLAN #412 as mangined) off road vehicles (SIC 3799, PCE 1525, PCE 1297-1301, IMPLAN #412 as mangined)	85 FHW ad hoc 85 FHW	0.12 0.58 0.29 0.05 0.24 0.13 0.17 0.97 0.03
	Boet Treilen&Hitch Travel or Tent Treile Pickup, Van, Motor Hom or Cabin Off-Road Vehicles Ice Chests Nonconsum Spec Equi	SIC 3799, PCE 1531, IMPLAN #415 as margined r travel or tent trailer (SIC 3792, PCE 1297-1301, IMPLAN #412 as margined) m pickup, camper or van pickup (SIC 3711, PCE 1291-2, IMPLAN #403 as margined) campers (SIC 3712, PCE 1299-1290, IMPLAN #412 as margined) vers (SIC 3716, PCE 1303-5, IMPLAN #414 as margined) motor home (SIC 3792, PCE 1302, IMPLAN #414 as margined) cabin (new res construction -pt.SIC 1521, 17; IMPLAN #456) off road vehicles (SIC 3799, PCE 1525 & 1532, IMPLAN #415) anouncbiles (SIC 3799, PCE 1529, IMPLAN #415 as margined) SIC 3079, PCE 673, IMPLAN #244 as margined p travel or tent trailer (SIC 3792, PCE 1297-1301, IMPLAN #412 as margined) off road vehicles (SIC 3799, PCE 1525 & 1532, IMPLAN #415 as margined) sich or tent trailer (SIC 3799, PCE 1525 & 1532, IMPLAN #415) rickup, camper, or van	85 FHW ad hoc 85 FHW	0.12 0.58 0.29 0.05 0.24 0.13 0.17 0.97 0.03
	Boet Treilen&Hitch Travel or Tent Treile Pickup, Van, Motor Hom or Cabin Off-Road Vehicles Ice Chests Nonconsum Spac Equi	<pre>SIC 3799, PCE 1531, IMPLAN #415 as margined r travel or tent trailer (SIC 3792, PCE 1297-1301, IMPLAN #412 as margined) m pickup (SIC 3711, PCE 1291-2, IMPLAN #403 as margined) campers (SIC 3792, PCE 1289-1290, IMPLAN #412 as margined) verms (SIC 3716, PCE 1303-5, IMPLAN #414 as margined) motor home (SIC 3792, PCE 1302, IMPLAN #414 as margined) cabin (new res construction -pt.SIC 1521, 17; IMPLAN #66) off road vehicles (SIC 3799, PCE 1529, IMPLAN #415 as margined) SIC 3079, PCE 673, IMPLAN #244 as margined p travel or tent trailer (SIC 3792, PCE 1297-1301, IMPLAN #412 as margined) off road vehicles (SIC 3799, PCE 1529, IMPLAN #415 as margined) SIC 3079, PCE 673, IMPLAN #244 as margined </pre>	85 FHW ad hoc 85 FHW 85 FHW	0.12 0.58 0.29 0.05 0.24 0.13 0.17 0.97 0.03
8	Boet Trailen&Hitch Travel or Tent Traile Pickup,Van,Motor Hom or Cabin Off-Road Vehicles Ice Chests Nonconsum Spac Equi	SIC 3799, PCE 1531, IMPLAN #415 as margined r travel or tent trailer (SIC 3792, PCE 1297-1301, IMPLAN #412 as margined) m pickup, camper or van pickup (SIC 3711, PCE 1291-2, IMPLAN #403 as margined) campers (SIC 3792, PCE 1289-1290, IMPLAN #412 as margined) were (SIC 3716, PCE 1303-5, IMPLAN #414 as margined) motor home (SIC 3792, PCE 1302, IMPLAN #414 as margined) cabin (new res construction -pt.SIC 1521, 17; IMPLAN #455) off road vahicles (SIC 3799, PCE 1525 & 1532, IMPLAN #415) anounobiles (SIC 3799, PCE 1529, IMPLAN #415 as margined) SIC 3079, PCE 673, IMPLAN #244 as margined p travel or tent trailer (SIC 3792, PCE 1297-1301, IMPLAN #415) pickup, camper, or van pickup (SIC 3711, PCE 1291-2, IMPLAN #403 as margined) campers (SIC 3711, PCE 1291-2, IMPLAN #403 as margined)	85 FHW ad hoc 85 FHW 85 FHW ad hoc	0.12 0.58 0.29 0.06 0.24 0.13 0.17 0.97 0.03
8	Boet Trailen&Hitch Travel or Tent Traile Pickup,Van,Hotor Hom or Cabin Off-Road Vehicles Ice Chests Nonconsum Spac Equi	SIC 3799, PCE 1531, IMPLAN #415 as margined r travel or tent trailer (SIC 3792, PCE 1297-1301, IMPLAN #412 as margined) m pickup, camper or van pickup (SIC 3711, PCE 1291-2, IMPLAN #403 as margined) campers (SIC 3792, PCE 1289-1290, IMPLAN #412 as margined) vers (SIC 3716, PCE 1303-5, IMPLAN #414 as margined) motor home (SIC 3792, PCE 1302, IMPLAN #414 as margined) cabin (new res construction -pt.SIC 1521, 17; IMPLAN #66) off road vehicles (SIC 3799, PCE 1525 & 1532, IMPLAN #415) anounchiles (SIC 3799, PCE 1529, IMPLAN #415 as margined) SIC 3079, PCE 673, IMPLAN #244 as margined p travel or tent trailer (SIC 3799, PCE 1525 & 1532, IMPLAN #415) pickup, camper, or van pickup, (SIC 3711, PCE 1291-2, IMPLAN #403 as margined) campers (SIC 3792, PCE 1299-1290, IMPLAN #412 as margined) verses (SIC 3792, PCE 1299-1290, IMPLAN #413 as margined) verses (SIC 3792, PCE 1299-1290, IMPLAN #413 as margined) campers (SIC 3792, PCE 1299-1290, IMPLAN #413 as margined) verses (SIC 3792, PCE 1299-1290, IMPLAN #413 as margined) verses (SIC 3792, PCE 1299-1290, IMPLAN #413 as margined) verses (SIC 3792, PCE 1299-1290, IMPLAN #414 as margined) verses (SIC 3792, PCE 1299-1290, IMPLAN #415 as margined) verses (SIC 3792, PCE 1299-1290, IMPLAN #414 as margined) verses (SIC 3796, PCE 1299-1290, IMPLAN #414 as margined) verses (SIC 3796, PCE 1299-1290, IMPLAN #415 as margined) verses (SIC 3796, PCE 1299-1290, IMPLAN #414 as margined)	85 FHW ad hoc 85 FHW 85 FHW ad hoc	0.12 0.58 0.29 0.05 0.24 0.13 0.17 0.97 0.03 0.05 0.51 0.37 0.18 0.03 0.16
8	Boet Trailen&Hitch Travel or Tent Traile Pickup,Van,Hotor Hom or Cabin Off-Road Vehicles Ice Chests Nonconsum Spac Equi	SIC 3799, PCE 1531, IMPLAN #415 as margined r travel or tent trailer (SIC 3792, PCE 1297-1301, IMPLAN #412 as margined) m pickup, camper or van pickup (SIC 3711, PCE 1291-2, IMPLAN #403 as margined) campers (SIC 3792, PCE 1289-1290, IMPLAN #412 as margined) vers (SIC 3716, PCE 1303-5, IMPLAN #414 as margined) motor home (SIC 3792, PCE 1302, IMPLAN #412 as margined) cabin (new res construction -pt.SIC 1521, 17; IMPLAN #45) off road vehicles (SIC 3799, PCE 1525 & 1532, IMPLAN #415) anounchiles (SIC 3799, PCE 1529, IMPLAN #415 as margined) SIC 3079, PCE 673, IMPLAN #244 as margined p travel or tent trailer (SIC 3792, PCE 1297-1301, IMPLAN #412 as margined) off road vehicles (SIC 3799, PCE 1525 & 1532, IMPLAN #415) pickup, camper, or van pickup (SIC 3771, PCE 1291-2, IMPLAN #403 as margined) campers (SIC 3792, PCE 1305-5, IMPLAN #412 as margined) vers (SIC 3776, PCE 1305-5, IMPLAN #414 as margined) vers (SIC 3716, PCE 1305-5, IMPLAN #414 as margined)	85 FHW ad hoc 85 FHW 85 FHW ad hoc	0.12 0.58 0.29 0.05 0.24 0.13 0.17 0.97 0.03 0.05 0.51 0.37 0.18 0.03 0.16 0.07

FHW SPENDING CATEGORY FURTH	ER ALLOCATION; POE ITEM,	1-0 CATEGORY,	SIC CODE, +/C	R INPLAN SECTOR	ALLOCATION BASIS ALLOCATION
-----------------------------	--------------------------	---------------	---------------	------------------------	-----------------------------

9	Nonconsum Aux Equip tents & tarps (SIC 2394, PCE 1483-5, INPLAN #155 as mangined)	85 FHN	0.35
	frame packs & bokpoking equip (SIC 2393, PCE 1482, IMPLAN #154)		0.18
	other camping equip	ad hoc	0.28
	sleeping begs (SIC 2399, PCE 1487, INPLAN #159)		0.14
	camping & outdoor cooking equip (SIC 3469, PCE 694, IMPLAN #518 as margined)		0.07
	lanterns & other lighting equip(SIC 3648, PCE 806-810, IMPLAN #587 as margined)		0.07
	anow shoes & skis (SIC 3949, PCE 1559, IMPLAN #433 as manginad)		0.19

OTHER EXPENDITURES

10 F&H Mags,Dues,Leases	magazines (SIC 272, PCE 1421-1430, IMPLAN #272 as mangined)	85 FHM	0.04
	member dues & contributions (SIC 7997, PCE 1678-9, allocate all to IMPLAN #501)		0.04
	land leasing & ownership		0.92
	ownership (property taxas, land improvements)		0.46
	land lessing (public or private)		0.46
	public land use (Fed, St, & Loc Gov, no multiplier)		0.2
	privete land use		0.26
	commercial (SIC 0971; PCE 51, 1706-7; marginad IMPLAN #24)		0.03
	household (distribute through PCE vector, see note on PCE vector)		0.23
F&H Licenses,	CNLY DIRECT RECEIPT (no gov multiplier)		
Stamps, Tage@Permits	CNLY DIRECT RECEIPT (no gov multiplier)		

Other Nonconsumptive

Hegezines	SIC	272,	PCE	1421-1430,	IMPLAN	#272	as mengined
Membership fees	SIC	7997	, PCE	1678-9, 1	llocate	all	to INPLAN #501

NOTES: (extended quotations are from 1985 FHW Survey Reports)

I-O and PCE numbers listed under the "Further Allocation" column correspond to numbers and descriptions from detailed BEA PCE worksheets. If PCE numbers are listed, their margins from the detailed worksheets were used and the IMPLAN sector listed identifies the producer's sector. The exception to this is that IMPLAN sector margins were adopted if the PCE and IMPLAN sector margins were quite similar (within 2% of each other).

A vector of PCE coefficients may be derived from IMPLAN (see the Invert report, for example) and be used to represent household spending, but adjustments should be made for the difference between personal income and personal consumption expenditures. 1982 personal consumption expenditures were about 77.25% of total personal income (Survey of Current Business, p. S-1, table 2.4, May, 1984). Therefore, only 77.25% of the "household" spending allocation from nonresidents is bridged through a PCE vector. Resident payments to households are considered transfers and not counted.

- * The "Basis of Allocation" column indicates the basis of FHW spending allocation used in the study of upper Lake State outdoor recreation. The basis for the allocation between spending categories is the sum of NI, NN, and WI State FHW reports, unless otherwise indicated. "85 FHW" indicates the allocation is based on national spending profiles from the 1985 U.S. FHW report; "Ntl PCEs" indicates the ratio of spending is based on national averages; "ad hoc" indicates the allocation is based on discussions with MSU recreation authorities and the author's subjective opinion.
- ** Due to lack of specificity in FNW survey responses, some spending is reported as "other." These items are identified by two asterisks within the parentheses indicating how an item was allocated. The bridging of these items may warrant further attention; however, they comprised less than 2.5% of total and 4% of equipment spending for the Lake States.
- includes nonconsumptive and hunting expenditures for "equipment rental (boats, camping equipment, etc.) and fees for guides, pack trips, public land use and private land use."
- 2) "Includes bows, arrows, archery equipment, telescopic sights, decoys and game calls, equipment or game cases or carriers, handloading equipment, hunting dogs, hunting knives, and other unspecified hunting equipment."
- 3) includes "nest boxes, bird houses, bird feeders, and bird baths"
- 4) undefined in FHW national and state survey reports
- 5) "Includes electronic fishing devices (depth finders, fish finders, etc.) rod holders and belts, spear fishing equipment, ice fishing equipment and other unspecified fishing equipment."
- 6) "Camping Equipment" is not defined in the FHW survey. Items listed come from discussions with recreation professionals.
- 7) "Includes binoculars, field glasses, snow shoes and skis, processing and taxidermy costs and other unspecified equipment."
- 8) "Includes travel or tent trailers, off-the-road vehicles, pickups, campers or vans, motor homes and other unspecified equipment."
- 9) "Includes tents, tarps, frame packs and other backpacking equipment, other camping equipment, snowshoes and skis."
- 10) "Includes magazine subscriptions, membership dues and contributions, and land leasing and ownership" fishing and hunting expenditures.

APPENDIX G: FHW USED EQUIPMENT ALLOCATION TABLE

The 1985 Fishing, Hunting, and Wildlife-Associated Recreation Survey (FHW) reports the percent of equipment expenditures on new items. The percent spent on used items is equal to 1.00 minus the percent spent on new items. The distinction between used and new items is important in I-O analysis; generally, they affect different sectors and generate different multiplier effects. This table contains information on bridging FHW (or other) used recreation equipment spending to IMPLAN sectors. The identification of spending categories is similar to what is contained in Appendix E. However, the spending allocation for used items is made on the basis of used PCE items in the BEA detailed PCE worksheets, after allowing for used equipment purchases by residents from other residents (households) (these are generally treated as transfers and not counted. Used goods may be purchased from retail outlets or other households, but few surveys have differentiated spending between the two. Thus, the amount of spending on used items from retail outlets is unknown and estimated retail proportions involve guesswork. In contrast, margining used retail recreation equipment is relatively straightforward, as most only have margins. Also, except for cabins, all such equipment is bridged to a recreationrelated retail sector (#462) and used & secondhand goods (#524); "used" cabin purchases are bridged to real estate (#470).

Approximate 5 MAJOR USED RECREATION EQUIPMENT SPENDING CATEGORIES (for used items thru' retail outlets). Rec-Retail (except for cabiny real estate, the remainder goes to IMP 524, used & secondhard goods) Mergin

0.25 off road vehicles & snownobiles (either PCE 1580 or 1309) & tent trailers (PCE 1309)

- 0.14 used trucks & motor veh, excl cars (PCE 1312)
- 0.214 boats (PCE 1586)

carrying cases

& clothing

0 cabin (REAL ESTATE, for used cabins thru' commercial outlets)

0.35 all other u	aed equipment (PCE 1479-80, 1575-1585)		ESTIMATED
		USED	RETAIL
USED RECREAT	ION EQUIPMENT ITEMS (bridging codes for new equipment in parentheses)	PCE CODE	% of used
HINTING		Item #	SPENDING
guns & rifles	(PCE 1481, IMPLAN #79 as margined)	1577	50%
amunition	(PCE 1441-1444, IMPLAN #80 as mangined)	not applic	cable 0%.
other hunt equip	Archery equipment (SIC 3949, I-O 9300, PCE 1472, IMPLAN #K33 as margined)	1480	50%
	Telescopic sights (SIC 3832, I-0 9400, PCE 1534-36, IMPLAN 423 as margined)	1575	50%
	Decoys & gene calls (SIC 3949, I-0 9300, PCE 1466 & 1471, IMPLAN #433 as man	gined) 1480	50%
	Equip or game cases@carriers (SIC 3949, 1-0 9400, PCE 1548, IMPLAN 433 as ma	rgined)1577	50%
	Hend loading equip (SIC 3949, 1-0 9300, PCE 1466 & 1471, IMPLAN 433 as margin	ned) 1480	50%
	Hunting dogs & assoc.costs		
	dog purchese (SIC 0279 & 0752, PCE 1704-5 & 1709-10, IMPLAN #26)	not applic	xable 0%.
	food (SIC 2047, PCE 94-5, IMPLAN 102 as marginad)	not applic	xable 0%.
	veterinary (SIC 0742, PCE 1734, INPLAN #506 as margined)	not applic	xable 0%,
	equipment (SIC 3199, PCE 1495, IMPLAN #254 as margined)	not applic	xable 0%,
	Hunting knives (SIC 3421, PCE 1498, IMPLAN #519 as mangined)	1577	50%
	Unspecified other (** SIC 3949, I-0 9300 & 9400, IMPLAN #433 as margined)	1480	50%
NONCONSUMPTIVE			
field glasses	SIC 3832, 1-0 9400, PCE 1534-36, IMPLAN 423 as marginad	1575	50%
bincculars	SIC 3832, 1-0 9400, PCE 1534-36, IMPLAN 423 as mangined	1575	50%
film & dev.	film (SIC 3861, PCE 1462, IMPLAN #425 as margined)	not applic	xable 0%,
	developing (SIC 7395, PCE 1726-27, INPLAN #485 as manginad)	not applic	xable 0%,
other photo equip	SIC 3861 (but also pt. 3832 & 3641), IMPLAN #425 as margined)	1585	50%

Luggage (SIC 3161, PCE 471-77 & 1589, IMPLAN #251)

clothing (SIC 232, IMPLAN 151 as margined)

1585

1585

50%

50%

Appendix G (cont'd.)		
			ESTIMATED
			REIAIL
USED RELIGEATI	on explored liters (critiging costs for new equiptent in perendiases)		
			SPENDING
bird and	SIC 2047 DCE 97 INPLAN #102 as manajord	not applic	able 014
other bird items	Unorth bird house feetiers houses (SIC 2400 DCE 7/2 INDIAN #172 as mergined)	1585	502
	Commic bird baths, focus 5, focus 6, focus 277, focus 27, focus 27	1585	50%
			200
other noncons equip	SIC 3949, PCE 1467, IMPLAN #433 as margined	1480	50%
FISHING			
rode	SIC 3949, PCE 1467, INPLAN #K33 as manginad	1480	50%
reels	SIC 3949, PCE 1467, IMPLAN #K33 as mangined	1480	50%
lines, hocks, etc.	lines (SIC 2298, PCE 1445(alternatively, PCE 889-90, IMPLAN #142 as margined))	1480	50%
•	hooks.etc. (SIC 3949, POE 1467, IMPLAN #K33 as mangined)	1480	50%
lures & flies	SIC 3949, PCE 1467, IMPLAN #433 as mangined	1480	50%
tackle boxes	SIC 3949, PCE 1467, IMPLAN #433 as mangined	1480	50%
comels, nets	creels (SIC 3949, PCF 1467, IMPLAN #433 as mangined)	1480	50%
	note (SIC 2208 (2, 750)) DCE 888-0(383 448 000 1496). INDI AN \$142 (159) as mos	nd) 1480	50%
hait containers		1490	50%
	and an /S10 3575, For 1965 705.4 THDI AH 4564, an maniparty	1490	50%
	Succes (310 3/0, FC 1/02.0, 11/04 NOV as many since)	1585	50%
ether fich and	Actives (SLC 3421, PLE 1470-7, LPPLAN AS17 as manying)	1/90	50%
omer han equip	Color & Tish Tinders & Ouner elect. Tish Cevices (Sic 3002, 1970, 4072)	1490	50%
	סטופר זוצוווק פקטוף (זוג אאי, זייט אסט צ אוט, ואינש אינס בא אפוקווגט)	1400	
AUKILIARY EQUIPHENT			
Fish & Hunt Aux Equi	p		
Camping Equip	camping & outdoor cooking equip (SIC 3469, PCE 694, IMPLAN #518 as mangined)	1577	50%
	tents & tarps (SIC 2394, PCE 1463-5, IMPLAN #155 as marginad)	1577	50%
	sleeping bags (SIC 2399, PCE 1487, IMPLAN #159)	1577	50%
	lanterns & other lighting equip(SIC 3648, PCE 806-810, IMPLAN #387 as margined) 1577	50X
	back packs, duffle bags, etc.(textile bags - SIC 2393, PCE 1482, IMPLAN #154)	1577	50%
Foul Weather Geer	SIC 2385, PCE 455-6 & 469, IMPLAN #151 as margined	1577	50%
Spec Clothing	SIC 2320, INPLAN #151 as margined	,1577	50%
Rubber Boots/Meders	SIC 3021, PCE 299, IMPLAN #241 as mangined	1577	50%
Equip Maintenance	SIC 7699 (3732 too?, PCE 1569, 1572-4, 1720, IMPLAN #478 as mangined	not applic	able 0%.
Fish or Hunt Boots	SIC 3143. PCE 499. INPLAN #248	1577	50X
Other F&H Aux Fourin	binney and field planses (SIC 3932, 1-0 9400, PCE 1534-36, INPLAN 423 as many	ined) 1575	50%
	annu abras & airis (SIC 3040 DEE 1550 INDIAN #433 as manginari)	1577	50%
	procession taxidaras costs (SIC 7609 DEE 1573 INFI AN # 478 as margined)	not applic	able 0%.
	unprecified other (** SIC 3969, 1-0 9300 & 9600, INPLAN #K33 as mangined)	1577	50%
			• • • •
SPECIAL EQUIPMENT			
Fish & Hunt Spec Equ	ip		
Boets & Cances	SIC 3732, PCE 1507-21 (& 1491?), IMPLAN #409 as margined	1586	50%
Bost Accessories	outboard motors (SIC 3519, PCE 1502, IMPLAN 331)	1586	50%
	elec. trolling motors (SIC 3621, PCE 873 (2874) IMPLAN #574)	1586	50%
	other boat accessories (** boat cushions=SIC 2392, IMP #153; Life preservers=	1585	50%
	IMP #243 & 420; tarps=SIC 2394; ETC default to IMP #433 as margined)		
	•		

mpponeen o (
			EST IMATED
		USED	RETAIL
USED RECREATI	ON EQUIPMENT ITEMS (bridging codes for new equipment in parentheses)	PCE CODE	% of USED
		Iten #	SPENDING
Bost Trailer&Hitch	SIC 3799, PCE 1531, IMPLAN #415 as mangined	1586	50X
Travel or Tent Traile	r travel or tent trailer (SIC 3792, PCE 1297-1301, IMPLAN #412 as margined)	1309	50%
Pickup, Van, Hotor Hom	te pickup, cattpar or van		
or Cabin	pickup (SIC 3711, PCE 1291-2, IMPLAN #403 as mangined)	1312	60%
	campers (SIC 3792, PCE 1289-1290, IMPLAN #412 as margined)	1309	50%
	vans (SIC 3716, PCE 1303-5, IMPLAN #414 as margined)	1312	60%
	motor home (SIC 3792, PCE 1302, IMPLAN #412 as margined)	1312	60%
	cabin (new res construction -pt.SIC 1521, 17; IMPLAN #66)	IMP 470	50%
Off-Road Vehicles	off road vehicles (SIC 3799, PCE 1525 & 1532, IMPLAN #415)	1580	50%
	snownobiles (SIC 3799, PCE 1529, IMPLAN #415 as margined)	1580	50%
Ice Chests	SIC 3079, PCE 673, IMPLAN #244 as marginad	1585	50%
Nonconsum Spec Equip	travel or tent trailer (SIC 3792, PCE 1297-1301, IMPLAN #412 as marginad)	1309	50%
	off road vehicles (SIC 3799, PCE 1525 & 1532, IMPLAN #415) pickup, camper, or ven	1580	50 X
	pickup (SIC 3711, PCE 1291-2, IMPLAN #403 as margined)	1312	60%
	campars (SIC 3792, POE 1289-1290, IMPLAN #412 as margined)	1309	50%
	vens (SIC 3716, PCE 1303-5, IMPLAN #414 as marginad)	1312	60%
	unspecified other (** SIC 3949, 1-0 9300 & 9400, IMPLAN #K33 as margined)	1312	50X
Nonconsum Aux Equip	tents & tarps (SIC 2394, PCE 1483-5, IMPLAN #155 as marginad)	1577	50%
	frame packs & bokpoking equip (SIC 2393, PCE 1482, IMPLAN #154)	1577	50X
	other camping equip	1577	50 X
	sleeping bags (SIC 2399, PCE 1487, IMPLAN #159)	1577	50X
	camping & outdoor cooking equip (SIC 3469, PCE 694, IMPLAN #518 as margined)	1577	50%
	lanterns & other lighting equip(SIC 3648, PCE 806-810, IMPLAN #387 as marging	d) 1577	50%
	snow shoes & skis (SIC 3949, PCE 1559, IMPLAN #433 as marginad)	1577	50%

•

.

Appendix G (cont'd.)

228

Appendix H: Lake State Multiplier Analysis

.

DISAGLK CUTPUT STAT ANALYSIS:		TYPE I CUTPUT MULTIPLIERS TYPE III CUTPUT MULTIPLIERS							iers	
	SOPLK	FLRLK	ALTFLK	BSTLK	UNCHLK	SDPLK	FLRLK	ALTFLK	BSTLK	UNCHLK
Scijare Error	31.2921	31.2365	19.0061	6.1365		86.0665	188.5304	140.3166	49.6995	
HEAN SOLARE ERROR	0.0623	0.0622	0.0379	0.0122		0.1714	0.3756	0.2795	0.0990	
ROOT MEAN SQUARE ERROR (RMSE)	0.2497	0.2494	0.1946	0.1106		0.4141	0.6128	0.5287	0.3146	
CORRELATION COEFFICIENT	0.8178	0.8549	0.8475	0.9354		0.9433	0.7761	0.7781	0.8006	
MEAN	1.6099	1.1896	1.2577	1.4870	1.4043	2.3132	1.4382	1.5399	2.0688	1.9436
STANDARD DEVIATION	0.2463	0.1006	0.1007	0.2063	0.2015	0.5505	0.2050	0.2146	0.4041	0.4807
ROOT HEAN SQUARED	1.6286	1.1958	1.2617	1.5012	1.4187	2.3778	1.4528	1.5548	2.1079	2.0021
HEAN ABSOLUTE DIFFERENCE (NHD)	0.2055	0.2152	0.1499	0.0865		0.3696	0.5054	0.4038	0.1536	
STANDARDIZED MEAN ABS DIFF	0.1488	0.1460	0.0992	0.0633	5	0.1953	0.2467	0.1953	0.078	I
CHI SQUARE	22.8956	19.5706	11.2777	4.5844		45.6302	72.3189	49.4527	12.4403	
THEIL'S INEQUALITY INDEX	0.0819	0.0955	0.0726	0.0379		0.0945	0.1774	0.1486	0.0766	
Un, bias	0.6778	0.7414	0.5681	0.5585		0.7967	0.6800	0.5829	0.1583	
Us,veriance	0.0321	0.1642	0.2683	0.0019		0.0284	0.2025	0.233	0.0593	
Uc, coverience	0.2901	0.0944	0.1635	0.4396		0.1749	0.1175	0.1638	0.7824	
U sum = 1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	
DISAGLK PERS INC STAT ANALYSIS	:	TYPE I PE	RS INC MJ		5	TYPE II	I PERS IN	IC MULTIPL	iers	
	SDPLK	FLRLK	ALTFLK	BSTLK	UNCHLK	SOPLK	FLRLK	ALTFLK	BSTLK	UNCHLK
SILVARE ERROR	55.9916	57.0350	29.9879	27.0539		166.2081	29.5379	168.7184	75.1043	
HEAN SOLARE ERROR	0.1115	0.1136	0.0597	0.0539		0.3311	0.5170	0.3361	0.1496	
ROOT MEAN SOLARE ERROR (RMSE)	0.3340	0.3371	0.2444	0.2321		0.5754	0.7190	0.5797	0.3868	
CORRELATION COEFFICIENT	0.9499	0.9149	0.9561	0.9768		0.9638	0.9253	0.9588	0.9667	
MEAN	1.7405	1.2660	1.3671	1.6486	1.4978	2.5308	1.5698	1.7176	2.3358	2.1042
STANDARD DEVIATION	0.6361	0.3036	0.3415	0.6203	0.4896	1.1713	0.4923	0.5465	1.0784	0.9018
ROOT MEAN SOLINGED	1.8531	1.3019	1.4091	1.7614	1.5758	2.7857	1.6452	1.8024	2.5728	2,2893

		1.3017	1.4071	1.1014		1.000			
HEAN ABSOLUTE DIFFERENCE (NVD)	0.2427	0.2349	0.1442	0.1546	0.4266	0.5347	0.3890	0.2510	
STANDARDIZED NEAN ABS DIFF	0.1566	0.1380	0.0805	0.0945	0.1981	0.2255	0.1600	0.1101	
CHI SQUARE	31.6818	25.4267	12.0454	13.2551	61.8939	79,1880	46.6448	23.2877	
THEIL'S INEQUALITY INDEX	0.0974	0.1171	0.0819	0.0696	0.1133	0.1828	0.1417	0.0796	
Um, bi as	0.5261	0.4728	0.2860	0.4219	0.5495	0.5525	0.4448	0.3586	
Us,veriance	0.1923	0.3046	0.3673	0.3167	0.2195	0.3244	0.3758	0.2084	
Uc, coverience	0.2795	0.2226	0.3467	0.2614	0.2311	0.1231	0.1794	0.4330	
U sum = 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	

DISAGLK EMPLOYMENT STAT ANALYS	ils:	TYPE I B	PLOMENT	MULTIPLIE	FRS	TYPE III	BPLONE	IT MULTIPL	iers	
	SDPLK	FLRLK	ALTFLK	BSTLK	UNCHLK	SDPLK	FLRLK	ALTFLK	BSTLK	UNCHLK
SILVRE ERROR	176.2328	144.0859	94.6109	19.8965		406.4913	430.5600	275.9252	43.9649	
HEAN SOLARE ERROR	0.3511	0.2570	0.1885	0.0396		0.8097	0.8577	0.5895	0.0876	
ROOT HEAN SQUARE ERROR (RMSE)	0.5925	0.5357	0.4341	0.1991		0.8999	0.9261	0.7678	0.2959	
CORRELATION COEFFICIENT	0.9158	0.9123	0.9551	0.9865		0.9158	0.9123	0.9351	0.9885	
MEAN	1.8176	1.2747	1.3790	1.6860	1.5676	2.6251	1.5719	1.7230	2.3840	2.1992
STANDARD DEVIATION	1.1679	0.4339	0.4889	0.9020	0.8077	1.6867	0.5350	0.6108	1.2755	1.1331
ROOT HEAN SILLARED	2.1604	1.3466	1.4631	1.9122	1.7635	3.1208	1.6604	1.8280	2.7058	2.4740
HEAN ABSOLUTE DIFFERENCE (NHD)	0.2499	0.2944	0.1964	0.1234		0.4259	0.6274	0.4772	0.1892	
STANDARDIZED MEAN ABS DIFF	0.1394	0.1495	0.0928	0.0727		0.1729	0.2512	0.1875	0.0800	
CHI SQUARE	49.2184	41.9725	23.5516	9.2979		84.8348	105.5553	65.30%	14.6494	
THEIL'S INEQUALITY INDEX	0.1510	0.1723	0.1345	0.0542		0.1609	0.2240	0.1785	0.0572	
um, bias	0.1779	0.2989	0.1885	0.3536		0.2240	0.4589	0.3848	0.3899	
Us,veriance	0.3695	0.4869	0.5395	0.2244		0.3785	0.4171	0.4629	0.2313	
Uc, coverience	0.4526	0.2142	0.2718	0.4220		0.3975	0.1240	0.1523	0.3788	
U sum = 1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	

UNAGINEK CUTPUT STAT ANALYSIS:		TYPE I OU	TPUT MULT	IPLIERS	•		TYPE III	CUTPUT MU	LTIPLIERS	;
	SDPLK	FLRLK	ALTFLK	BESTLK	UNCHLK	SOPLK	FLRLK	ALTFLK	BESTL	UNCHLK
SILVRE ERROR	34.8953	23.9508	15.4188	3.1041		107.4145	112.4333	82.473	15.5237	
MEAN SOLARE ERROR	0.1133	0.0777	0.0501	0.0101		0.3487	0.3650	0.2678	0.0504	
root mean square error (rmse)	0.3366	0.2787	0.2237	0.1004		0.5905	0.6042	0.5175	0.2245	
CORRELATION COEFFICIENT	0.8045	0.8701	0.8661	0.9489		0.7682	0.8335	0.8357	0.8679	
MEAN	1.6996	1.1673	1.2336	1.4819	1.4098	2.4375	1.3870	1.4838	2.0260	1.9259
STANDARD DEVIATION	0.2872	0.1032	0.1037	0.2190	0.2176	0.4521	0.1792	0.1854	0.3621	0.4039
ROOT MEAN SELARED	1.7257	1.1719	1.2379	1.4980	1.4265	2.4791	1.3985	1.4954	2.0581	1.9678
HEAN ABSOLUTE DIFFERENCE (HND)	0.2899	0.2425	0.1775	0.0766		0.5301	0.5390	0.4421	0.1242	
STANDARDIZED MEAN ABS DIFF	0.2052	0.1636	0.1170	0.0561		0.2791	0.2665	0.2172	0.0646	
CHI SQUARE	25.1924	14.8789	9.1270	2.3417		54.7575	49.5796	34.8712	5.3777	
THEIL'S INEQUALITY INDEX	0.1068	0.1073	0.0840	0.0343		0.1328	0.1795	0.1494	0.0558	
Um, bias	0.7415	0.7566	0.6201	0.5161		0.7505	0.7957	0.7299	0.1988	
Us,veriance	0.0428	0.1683	0.2591	0.0002		0.0067	0.1383	0.1783	0.0346	
Uc, coveriance	0.2157	0.0751	0.1207	0.4837		0.2428	0.0660	0.0919	0.7666	
U sum = 1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	
UNACIANLIK PERS INC STAT ANALYSIS	:	TYPE I PE	RS INC HU		;		TYPE III	PERS INC	MULTIPLIE	RS
	SOPLK	FLRLK	ALTFLK	BSTLK	UNCHLK	SOPLK	FLRLK	ALTFLK	BSTLK	UNCHLK
SQUARE ERROR	94.3441	53.4454	29.7599	12.4257		264.9841	206.8504	138.1436	28.6481	
MEAN SOLARE ERROR	0.3063	0.1735	0.0966	0.0403		0.8603	0.6716	0.4485	0.0930	
root mean solare error (rmse)	0.5535	0.4166	0.3108	0.2009		0.9275	0.8195	0.6697	0.3050	
CORRELATION COEFFICIENT	0.9493	0.9387	0.9601	0.9809		0.9565	0.9423	0.9553	0.9790	
MEAN	1.9443	1.2253	1.3332	1.6570	1.5248	2.8435	1.4958	1.6458	2.3153	2.1259
STANDARD DEVIATION	0.8188	0.2618	0.3071	0.6257	0.5241	1.3758	0.4036	0.4606	1.0242	0.8866
ROOT MEAN SQUARED	2.1097	1.2599	1.3682	1.7712	1.6124	3.1589	1.5493	1.7091	2.5317	2.3034
MEAN ABSOLUTE DIFFERENCE (MAD)	0.4195	0.2966	0.1946	0.1357		0.7299	0.6301	0.4801	0.2054	
STANDARDIZED NEAN ABS DIFF	0.2595	0.1699	0.1067	0.0833		0.3280	0.2681	0.1990	0.0814	
CHI SQUARE	49.1885	23.0059	11.5387	6.2370		95.3850	64.4648	39.7900	9.9015	
THEIL'S INEQUALITY INDEX	0.1487	0.1452	0.1043	0.0594		0.1698	0.2127	0.1669	0.0631	
Um, bias	0.5744	0.5067	0.3799	0.4332		0.5986	0.5911	0.5138	0.3557	
Us,variance	0.2835	0.3964	0.4872	0.2559		0.2782	0.3473	0.4047	0.2055	
Uc, covariance	0.1421	0.0969	0.1329	0.3109		0.1252	0.0615	0.0615	0.4109	
U sum = 1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	
UNAGINER EIPLOMENT STAT ANALYS	ils:	TYPE I EN	PLOMENT I		RS	т	PE III B	PLOMENT	MULTIPLIE	RS
	SOPLK	FLRLK	ALTFLK	BSTLK	UNCHLK	SDPLK	FURLK	ALTFLK	BSTLK	UNCHLK
SQUARE ERROR	94.2044	120.8786	76.3043	9.0755		248.7807	373.0468	27.9773	16.6051	
HEAN SOLARE ERROR	0.3059	0.3925	0.2477	0.0295		0.8077	1.2112	0.8376	0.0539	
ROOT MEAN SQUARE ERROR (RMSE)	0.5530	0.6265	0.4977	0.1717		0.8987	1.1005	0.9152	0.2522	
CORRELATION COEFFICIENT	0.9752	0.9377	0.9639	0.9915		0.9752	0.9577	0.9539	0.9915	
· MEAN	2.0547	1.2666	1.3814	1.7444	1.6525	2.9852	1.5471	1.70%	2.4517	2.3349
STANDARD DEVIATION	1.2290	0.4689	0.5521	0.9822	0.9055	1.8019	0.5727	0.6585	1.3804	1.2/%
ROOT MEAN SQUARED	Z.3770	1.3506	1.4804	2.0019	1.8844	3.4852	1.6497	1.8319	2.8136	2.0024
MEAN ABSOLUTE DIFFERENCE (MAD)	0.3833	0.3865	0.278	0.1054		0.6491	0.7878	0.626	0.1597	
STANDARDIZED MEAN ABS DIFF	0.2120	0.1894	0.1274	0.0601		0.274	0.2965	0.2548	0.0005	
CHI SQUARE	40.7722	57.5367	21.0686	4.2275		75.0744	Y2.1043	37.36/6	5.50%6	
THEIL'S INEQUALITY INDEX	0.1296	0.1957	0.1479	0.0442		0.1462	0.002	0.200	0.0424	
Un, bias	0.4774	0.3795	0.267	0.2004		0.5204	0.5124	0.40/1	0.00	
Us, veriance	0.5421	0.4806	0.362/	0.1999		0.3380	0.4122	0.4002	0.6576	
Uc, coveriance	U.1805	0.1548	0.1406	0.5157		U. 1410	0.0/34	0.0/2/	0.57/0	
U sum = 1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	

ADMILK OUTPUT STAT ANALYSI	S:	TYPE I OUTPUT MULTIPLIERS TYPE III OUTPUT MULTIPLIERS								
	SOPLK	FLRLK	ALTFLK	BESTLK	UNCHLK	SOPLIK	FLRLK	ALTFLK	BESTLK	NCHLK
SQUARE ERROR	16.1323	14.0000	9.0446	1.1905		64.4350	67.6850	50.6442	12.2310	
MEAN SOLARE ERROR	0.1015	0.0961	0.0569	0.0075		0.4053	0.4257	0.3185	0.0769	
ROOT MEAN SQUARE ERROR (RMSE)	0.3185	0.2967	0.2385	0.0865		0.6366	0.6525	0.5644	0.2774	
CORRELATION COEFFICIENT	0.8958	0.8604	0.8715	0.9727		0.7435	0.7543	0.7630	0.8058	
MEAN	1.7158	1.1746	1.2412	1.4967	1.4308	2.5136	1.3975	1.4968	2.0635 1	.9655
STANDARD DEVIATION	0.3072	0.1129	0.1179	0.2415	0.2354	0.4646	0.1853	0.1950	0.3727 0	.4367
ROOT MEAN SOLARED	1.7431	1.1800	1.2468	1.5161	1.4500	2.5562	1.4097	1.5095	2.0969 2	2.0135
MEAN ABSOLUTE DIFFERENCE (NOD)	0.2550	0.2562	0.1899	0.0688		0.5829	0.5681	0.4688	0.1382	
STANDARDIZED MEAN ABS DIFF	0.1995	0.1689	0.125	0.0489		0.2969	0.2754	0.2241	0.0670	
CHI SILLARE	11.2321	8.5712	5.3167	0.8639		30.8349	28.2758	20.1768	3.4995	
THEIL'S INEQUALITY INDEX	0.0998	0.1128	0.0884	0.0292		0.1395	0.1906	0.1602	0.0675	
Um, bias	0.8007	0.7454	0.6320	0.5808		0.7413	0.7581	0.6898	0.1247	
Us,veriance	0.0508	0.1703	0.2427	0.0050		0.0019	0.1485	0.1835	0.0533	
Uc, coveriance	0.1485	0.0843	0.123	0.4143		0.2568	0.0934	0.1268	0.8220	
U sum = 1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	
ADMILK PERS INC STAT ANALYSI	S:	TYPE 1	PERS INC I		RS		TYPE III	PERS INC	ALTIPLIERS	5
	SOPLK	FLRLK	ALTFLK	BESTLK	UNCHLK	SOPLK	FLRLK	ALTFLK	BESTLK U	NCHLK
SQUARE ERROR	74.4314	55.5841	38.7482	9.2869		237.0275	183.1557	136.3765	25.252	
MEAN SELARE ERROR	0.4681	0.3496	0.2437	0.0584		1.4907	1.1519	0.8577	0.1588	
ROOT MEAN SQUARE ERROR (RMSE)	0.6842	0.5913	0.4957	0.2417		1.2210	1.0733	0.9261	0.3985	
CORRELATION COEFFICIENT	0.9843	0.9561	0.9634	0.9920		0.9756	0.9449	0.9511	0.9838	
HEAN	2.1543	1.2970	1.3998	1.8181	1.6678	3.2805	1.5957	1.7445	2.6113 2	.3792
STANDARD DEVIATION	1.3363	0.4785	0.5255	1.0405	0.8962	2.0229	0.6071	0.6708	1.4881 1	.2797
ROOT MEAN SQUARED	2.5351	1.3825	1.4952	2.0949	1.8953	3.8541	1.7073	1.8690	3.0056 2	.7016
MEAN ABSOLUTE DIFFERENCE (MAD)	0.4896	0.3734	0.2729	0.1539		0.9313	0.7865	0.6387	0.25	
STANDARDIZED MEAN ABS DIFF	0.2632	0.1837	0.1260	0.0520		0.3619	0.2929	0.2304	0.1002	
CHI SQUARE	29.0331	17.2548	10.7243	3.6935		66.4091	45.9311	31.9116	7.1421	
THEIL'S INEQUALITY INDEX	0.1545	0.1805	0.1457	0.0606		0.1862	0.2434	0.2026	0.0698	
Un, bias	0.5056	0.3933	0.2947	0.3865		0.5449	0.5330	0.4697	0.3391	
Us,veriance	0.4139	0.4990	0.5637	0.3584		0.3705	0.3927	0.4325	0.2735	
Uc, coveriance	0.0805	0.1077	0.1416	0.2551		0.0846	0.0743	0.0980	0.3875	
U sum = 1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	
ADMILK EMPLOYMENT STAT ANALY	SIS:	TYPE I	BPLOMEN	I MULTIPL	IERS		TYPE III	BPLOMEN		RS
	SDPLK	FLRLK	ALTFLK	BESTLK	UNCHLK	SDPLK	FLRLK	ALTFLK	BESTLK U	NCHLK
Square Error	68.0188	85.8222	61.9568	7.1447		196.1167	247.9253	187.4633	14.1347	
HEAN SILLARE ERROR	0.4278	0.5398	0.3897	0.0449		1.2334	1.5595	1.1790	0.0889	
ROOT HEAN SQUARE ERROR (RMSE)	0.6541	0.7347	0.6242	0.2120		1.1106	1.2487	1.0858	0.2982	
CORRELATION COEFFICIENT	0.9795	0.9198	0.9533	0.9852		0.9795	0.9198	0.9533	0.9882	
HEAN	2.1595	1.2912	1.4001	1.8314	1.7291	3.2041	1.5633	1.7162	2.5754 2	.4275
STANDARD DEVIATION	1.4240	0.4723	0.5358	1.0898	0.9944	2.1127	0.5718	0.6568	1.5300 1	.3971
ROOT MEAN SQUARED	2.5867	1.3748	1.4991	2.1306	1.9947	3.8379	1.6646	1.8376	2.9959 2	
MEAN ABSOLUTE DIFFERENCE (IND)	0.4348	0.4418	0.3341	0.1184		0.7801	0.8715	0.7178	0.1667	
STANDARDIZED MEAN ABS DIFF	0.2156	0.1963	0.1398	0.0501		0.2850	0.3066	0.2474	0.0602	
CHI SOLINE	3.1207	74.382	16.0214	2.865		51.9613	20.1251	34.7724	4.0224	
THEIL'S INEQUALITY INDEX	0.1428	0.2180	0.1787	0.0514		0.1673	0.2795	0.2540	0.0014	
Un, bias	0.4330	0.3553	0.2778	0.2528		0.4867	U.4810	0.4313	U.2357	
Us, veriance	0.4313	0.5051	0.5397	0.1984		0.4152	0.4365	0.4040	0.1988	
Uc, coverience	0.1357	0.1396	0.1825	0.5688		0.0981	0.0522	0.1059	0.30/0	
Li sum = 1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	

AGBOLK CUTPUT STAT ANALYSIS:	т	YPE I OUT	PUT MULTIP	liers		1	MPE III C	NTPUT HUL	TIPLIERS	
	SOPLK	FLRLK	ALTFLK	BESTLK	UNCHLK	SOPLK	FLRLK	ALTFLK	BESTLK	UNCHLK
Square Error	2.9805	2.0181	1.1815	0.2097		16.2088	22.4500	18.7264	9.7934	
HEAN SOLARE ERROR	0.0961	0.0651	0.0381	0.0068		0.5229	0.7242	0.6041	0.3159	
ROOT MEAN SOLARE ERROR (RMSE)	0.3101	0.2551	0.1952	0.0522		0.7231	0.8510	0.7772	0.5621	
CORRELATION COEFFICIENT	0.6839	0.9369	0.9200	0.9554		0.3311	0.4726	0.4927	0.4698	
HEAN	1.6495	1.1658	1.2304	1.4583	1.4026	2.3667	1.3829	1.4798	1.9924	2.0078
STANDARD DEVIATION	0.2567	0.0754	0.0833	0.1710	0.1626	0.3950	0,1600	0.1750	0.3223	0.6359
ROOT NEAN SCHARED	1.668	1.1653	1.232	1.4683	1.4120	2.3004	1.3922	1.4901	2.0183	2,1061
	0.2448	0 2569	0 1722	0.0607		0 5421	0.6268	0.5280	0.1911	
STANDARDIZED NEAN ARE DIEE	0 1765	0 1636	0 1176	0.0637		0 2618	0 2825	0.2328	0.0706	
	2 1524	1 7/45	0.7496	0 1520		6 0000	7 1045	5 5066	2 1150	
	0 1006	0.0000	0.0758	0.0284		0 1405	0 2633	0 2161	0 1363	
INCL'S INCALILIT INCEA	0.1000	0.0707	0.0730	0.0200		0.267	0.5201	0.6161	0.0008	
	0.0336	0.0010	0.1/01	0.4365		0.1110	0.3371	0.4014	0.7112	
	0.0921	0.1141	0.1001	0.0105		0.1110	0.3127	0.3517	0.3112	
UC, COVERTERDE	0.2/45	0.0241	0.0000	0.3311		0.042/	0.1402	0.1009	0.0000	
U sum = 1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	
AG30LK PERS INC STAT ANALYSIS	:	TYPE I I	PERS INC N		RS		TYPE III	PERS INC I		RS
	SOPLK	FLRLK	ALTFLK	BESTLK	UNCHLK	SDPLK	FLRLK	ALTFLK	BESTLK	UNCHLK
Solvre Frace	5.4278	6.4209	4.3752	0.4457		18.685	24.7454	18.6415	5.0306	
HEAN SELARE ERROR	0.1751	0.2071	0.1411	0.0144		0.6029	0.7982	0.6013	0.1623	
ROOT MEAN SCLARE ERROR (RMSE)	0.4186	0.4551	0.3757	0.1199		0.7764	0.8934	0.7755	0.4028	
	0.9633	0.8797	0.9070	0.9818		0.8506	0.8145	0.8337	0.8833	
	1.8054	1.1876	1.2774	1.5635	1.4878	2.5482	1.4156	1.5462	2.1264	2.0736
	0 6717	0 1636	0 1948	0 4901	0.4769	1.1155	0.3102	0.3551	0.8236	0.8296
	1 0263	1 1096	1 2021	1 6382	1 5626	2 8000	1 4492	1 5864	2 2803	2 2534
	0 3176	0 3004	0 2104	0.0871	1.2004	0 6156	0 4590	0 5275	0 1044	
	0.300	0.3004	0 1170	0.0541		0.2701	0.2695	0.2172	0.0646	
	7 2020	2 6044	1 6087	0.0001		7 2784	7 7207	5 4901	1 5152	
	0.1100	0.1449	0.1714	0.000		0 15/7	0 24.24	0 2020	0.0002	
INELL'S INCOLALITY INDEX	0.1199	0.1040	0.1310	0.03/3		0.1343	0.5/35	0.437	0.0072	
Um, Dias	0.5/60	0.4357	0.3136	0.3901		0.4007	0.740	0.402/	0.01/1	
Us, vertance	0.2167	0.4/5/	0.5639	0.0106		0.1556	0.3380	0.3/44	0.0002	
Uc, covertance	0.2073	0.0906	0.1223	0.5915		0.4567	0.1196	0.1629	0.9627	
U sum = 1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	
AG30LK BIPLOMENT STAT ANALYS	IS:	TYPE 1	BPLOMEN		IERS		TYPE III	BIPLOMEN	T MULTIPL	IERS
	SDPLK	FLRLK	ALTFLK	BESTLK	UNCHLK	SDPLK	FLRLK	ALTFLK	BESTLK	UNCHLK
Square Error	6.2305	13.6209	9.5946	0.5055		16.6795	37.2086	27.1865	0.9560	
HEAN SOLWE ERROR	0.2010	0.4394	0.3095	0.0163		0.5380	1.2005	0.8770	0.0306	
ROOT MEAN SQUARE ERROR (RMSE)	0.4483	0.6629	0.5563	0.1277		0.7335	1.0956	0.9365	0.1756	
CORRELATION COEFFICIENT	0.9634	0.8852	0.9290	0.9885		0.9634	0.8852	0.9290	0.9865	
	1.8905	1.2020	1.3062	1.6259	1.5691	2.7547	1.4567	1.6077	2.2683	2.2003
	0.9409	0.2006	0.2591	0.6786	0.7215	1.3712	0.2431	0.3189	0.9464	1.0117
BOOT NEAN SCHARED	2,1115	1.2186	1.3316	1.7618	1.7771	0.7335	1.0956	0.9365	0.1756	2.4218
HEAN ARSOLUTE DIFFERENCE (MID)	0.3212	0.3722	0.2740	0.0867		0.5544	0.7436	0.5946	0,1195	
STANDARDIZED MEAN ARE DIEE	0.2082	0 1674	0.1170	0.0541		0.2701	0.265	0.2172	0.0444	
	3 208/	3 0521	2 6122	0.200		6 2810	0 1414	6.1875	0.3771	
	0 1140	0 2250	0 1910	0 07244		0.2725	0 2116	0.2780	0.0676	
	0.1100	0.22.0	0.7017	0 1079		0 5712	0.4407	0.4005	0.1400	
	0.2132	0.4174	0.4000	0 1170		0.2/12	0.4007	0 54.77	0 12272	
	0.2373	0.01/0		0.1137		0.1987	. 0.04762	0.0522	0.7119	
	U.04/2	v.u/3/	0.000/	0.0003		4.00	4 00	4 00	4 00	
U sum = 1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.W	

AG16LK CUTPUT STAT ANALYSIS:	TYPE I CUTPUT MULTIPLIERS TYPE III CUTPUT MULTIPLIERS							i		
	SDPLK	FLRLK	ALTFLK	BSTLK	UNCHLK	SOPLK	FLRLK	ALTFLK	BSTLK	UNCHLK
Square Error	0.9472	1.2922	0.8308	0.0627		11.1844	19.2128	16.8132	9.4741	
HEAN SILLARE ERROR	0.0592	0.0808	0.0519	0.0027		0.6990	1.2008	1.0508	0.5921	
ROOT MEAN SQUARE ERROR (RMSE)	0.2633	0.2542	0.2279	0.0517		0.8361	1.0958	1.0251	0.7695	
CORRELATION COEFFICIENT	0.8638	0.9529	0.9540	0.9788		0.2705	0.3539	0.3811	0.3590	
MEAN	1.6359	1.1803	1.2415	1.4689	1.4417	2.4525	1.4427	1.5348	2.0903	2.253
STANDARD DEVIATION	0.2799	0.0987	0.1065	0.2122	0.2014	0.4501	0.1916	0.2110	0.3854	0.8030
ROOT NEAN SQUARED	1.6596	1.1844	1.2461	1.4841	1.4557	2.4935	1.4554	1.5492	2.1256	2.3751
NEAN ABSOLUTE DIFFERENCE (MAD)	0.1942	0.2614	0.2002	0.0359		0.5712	0.7926	0.7005	0.2551	
STANDARDIZED NEAN ARS DIFF	0.1331	0.1739	0.1315	0.0267		0.2333	0.3138	0.2709	0.0712	
CHI SCIMPF	0.6556	0.8303	0.5219	0.0298		3.205	5.3708	4.4779	1.9381	
THETL'S INFORM ITY INFO	0.0781	0.1076	0.0863	0.0176		0.1717	0.2861	0.2612	0.1710	
In his	0 6367	0 862	0 7720	0 2766		0.0675	0 5772	0 4670	0.0355	
	0.1000	0 1207	0.1725	0.0417		0.1781	0 3112	0 3335	0 2044	
	0.2502	0 0757	0.05/5	0.4707		0 7544	0 1454	0 1005	0.6701	
	1.00	1.00	1 00	1 00		1.00	1 00	1 00	1.00	
U sum = 1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	
AG16LK PERS INC STAT ANALYSIS	:	TYPE I	PERS INC I		RS		TYPE III	PERS INC		RS
	SOPLK	FLRLK	ALTFLK	BESTLK	UNCHLK	SOPLK	FLRLK	ALTFLK	BESTLK	UNCHLK
Square Error	2.6068	5.5699	4.4434	0.2017		12.1743	21.4446	18.1290	4.6495	
MEAN SILLARE ERROR	0.1629	0.3481	0.2777	0.0126		0.7609	1.3403	1.1331	0.2906	
ROOT MEAN SQUARE ERROR (RMSE)	0.4036	0.5900	0.5270	0.1123		0.8725	1.1577	1.0645	0.5391	
CORRELATION COEFFICIENT	0.9794	0.8880	0.9057	0.9853		0.8528	0.7791	0.7950	0.8654	
HEAN	1.8913	1.255	1.3039	1.6529	1.6008	2.80%	1.5134	1.6139	2.3406	2.3758
STANDARD DEVIATION	0.8797	0.2164	0.2636	0.6526	0.6447	1.4116	0.3822	0.4198	1.0413	1.0320
ROOT MEAN SOLARED	2.0859	1.243	1.3265	1.7771	1.7257	3.1441	1.5609	1.6676	2.5618	2.5903
MEAN ABSOLUTE DIFFERENCE (MAD)	0.2905	0.3653	0.2969	0.0725		0.6706	0.8624	0.7620	0.2463	
STANDARDIZED MEAN ABS DIFF	0.1610	0.1806	0.1389	0.0389		0.2546	0.3074	0.2646	0.0821	
CHI SQUARE	1.2526	1.9270	1.4591	0.0961		3.7957	5.9756	4.9293	1.2921	
THEIL'S INEQUALITY INDEX	0,1059	0.1980	0.1727	0.0321		0.1521	0.2789	0.2500	0.1046	
un, bias	0.5181	0.3832	0.3173	0.2158		0.2470	0.5549	0.5124	0.0043	
University	0.3389	0.5270	0.5795	0.0050		0,1893	0.3150	0.3308	0.0003	
	0.1431	0.0898	0.102	0.7792		0.5636	0.1300	0.1568	0.9954	
	1 00	1 00	1 00	1 00		1.00	1.00	1.00	1.00	
		1.00	1.00	1.00						
AG16LK BIPLOMENT STAT ANALYS	lS:	TYPE I	BPLOMBI	r Miltipl	IERS		TYPE III	BPLONE	T MULTIPL	iers
	SOPLK	FLRLK	ALTFLK	BESTLK	UNCHLK	SOPLK	FLRLK	ALTFLK	BESTLK	UNCHLK
SCLARE ERROR	2.6801	13.1281	10.8069	0.3336		7.843	33.5650	28.2406	0.6679	
HEAN SQUARE ERROR	0.1675	0.8205	0.6754	0.0208		0.4903	2.0978	1.7650	0.0417	
ROOT MEAN SQUARE ERROR (RMSE)	0.4095	0.9058	0.8218	0.1444		0.7002	1.4484	1.3265	0.2043	
CORRELATION COEFFICIENT	0.9904	0.9165	0.9403	0.9952		0.9904	0.9165	0.9403	0.9952	
MEAN	1.9784	1.2609	1.3324	1.7276	1.7007	2.8908	1.5260	1.6291	2.4152	2.3892
STANDARD DEVIATION	1.3155	0.3065	0.3603	0.9867	1.0632	1.9222	0.3709	0.4406	1.3794	1.4936
ROOT HEAN SILLARED	2.3758	1.2976	1.3805	1.9895	2.0057	3.4715	1.5705	1.6577	2.7813	2.8176
HEAN ABSOLUTE DIFFERENCE (HMD)	0.2777	0.4514	0.3873	0.0574		0.5016	0.8631	0.7600	0.1216	
STANDARDIZED MEAN ABS DIFF	0.1459	0.1816	0.1498	0.0481		0.1919	0.2554	0.2441	0.0473	
CHI SQUARE	1.1206	2.9651	2.3581	0.1575		2.2559	6.1830	5.0197	0.2143	
THEIL'S INEQUALITY INDEX	0.0954	0.2742	0.2427	0.0361		0.1113	0.3301	0.2949	0.0365	
Um, bi as	0.4603	0.2358	0.2008	0.0345		0.5133	0.3551	0.3273	0.0162	
Us, verience	0.3799	0.6979	0.7315	0.2812		0.3747	0.6008	0.6282	0.3125	
Uc. coverience	0.1598	0.0663	0.0677	0.6863		0.1120	0.0441	0.0445	0.6713	
U sum = 1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	

APPENDIX I: MICHIGAN RPC AND MULTIPLIER ANALYSIS

This analysis is very similar to the Lake State RPC and multiplier analysis except for the addition of a set of RPCs (REMIMI) based on REMI model RPCs for the state of Michigan. The results indicate that the "best" (BSTMI) and "unchanged" (UNCHMI) RPCs and associated multipliers are less similar for Michigan than they were for the Lake States. This largely reflects the greater number of questionable, zero-value RPCs in the unchanged Michigan RPC set as compared to the unchanged Lake State RPC set. More RPC values were radically changed to arrive at the BSTMI RPC set than were changed to arrive at the BSTLK RPC set.

Differences between the sets of Michigan RPCs are presented below. Differences between sets of multipliers at different aggregation levels are presented on the following pages.

MEASUREMENT OF MICHIGAN MODEL RPC DIFFERENCES

Dependent variable - UNCHMI (unchanged IMPLAN RPCs)

	SDP	FLRMI	ALTFLRMI	BSTMI	REMIMI	UNCHMI
MEAN	0.556	0.209	0.233	0.366	0.318	0.330
SQUARE ERROR (SUM)	73.480	27.394	32.122	19.052	41.864	
MEAN SQUARE ERROR	0.139	0.052	0.061	0.036	0.079	
ROOT MEAN SQUARE ERROR	0.373	0.228	0.247	0.190	0.282	
CORRELATION COEFFICIENT	0.647	0.803	0.710	0.821	0.587	
STANDARD DEVIATION	0.375	0.244	0.240	0.298	0.295	0.322
ROOT MEAN SQUARE	0.671	0.321	0.335	0.472	0.434	0.461
MEAN ABSOLUTE DIFFERENCE	0.227	0.122	0.147	0.091	0.182	
THEIL'S INEQUALITY INDEX	0.330	0.291	0.310	0.204	0.315	
Um, bias	0.367	0.285	0.154	0.035	0.002	
Us, variance	0.020	0.117	0.110	0.016	0.009	
Uc, covariance	0.613	0.597	0.736	0.949	0.989	
U sum (-1.000)	1.00	1.00	1.00	1.00	1.00	

DISAGNI CUTPUT STAT ANALY	SIS:	TYPE I	annur	MULTIPL	iers			TYPE	: III OJ	PUT MULT	IPLIERS	
	SDPMI	FLAMI	ALTFLM	BSTMI	REMIMI	UNCHI	SDPHI	FLIRMS	ALTFL	M BSTN	i remim	I UNCHI
square error	57.9984	4.1795	2.6474	11.0656	11.2596		250.543	3.5742	19.7428	50.6190	46.1913	
NEAN SOLARE ERROR	0.1198	0.0086	0.0055	0.0229	0.0233		0.5177	0.0528	0.0408	0.1046	0.0954	
root mean square error	0.3462	0.0929	0.0740	0.1512	0.1527		0.7195	0.2299	0.2020	0.3234	0.3089	•
CORRELATION COEFFICIENT	0.7553	0.9024	0.8649	0.8958	0.7790		0.9383	0.8152	0.8068	0.8088	0.7831	
MEAN	1.552	1.1611	1.1979	1.3734	1.3632	1.2355	2.2255	1.4110	1.4656	1.8149	1.7896	1.5558
STANDARD DEVIATION	0.2001	0.0988	0.0968	0.1387	0.1270	0.1249	0.5254	0.2138	0.2191	0.3204	0.3101	0.3029
ROOT MEAN SOLARED	1.5661	1.1652	1.2018	1.3803	1.3691	1.2418	2.2667	1.4271	1.4819	1.8430	1.8162	1.5850
MEAN ABSOLUTE DIFFERENCE	0.3177	0.0745	0.0495	0.1383	0.1348		0.6697	0.1448	0.0954	0.2741	0.2524	
STANDARDIZED MEAN ABS DIF	0.375	0.0583	0.0361	0.1128	0.1105		0.4262	0.0574	0.0556	0.1734	0.1604	
CHI SILINE	46:9477	3.0573	1.8963	9.0515	9.2801		150.701	9.6628	6.3056	26.7540	24.2807	
THEIL'S INEQUALITY INDEX	0.1233	0.0386	0.0305	0.0577	0.0585		0.1858	0.0763	0.0659	0.0943	0.0908	
Un, bias	0.8424	0.6423	0.2590	0.8309	0.6995		0.8664	0.3967	0.1992	0.6421	0.5727	
Us, veriance	0.0472	0.0789	0.1438	0.0053	0.0002		0.0756	0.1502	0.1721	0.0029	0.0005	
Uc, coveriance	0.1104	0.2787	0.5971	0.1608	0.3005		0.0380	0.4532	0.6267	0.3549	0.4268	
U sum = 1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	
DISACHI PERS INC STAT AN	LYSIS:	TYPE I P	ERSCHAL			FRS	TYP	e 111 pe	RSCHAL 1	NCOME MU	LTIPLIER	S
	SDPMI	FLAMI	ALTELN	BSTMI	RENIMI	UNCHI	SDPHI	FLANI	ALTFLM	BSTMI	REMIMI	UNCHMI
SILVARE ERROR	118.096	8.7096	5.4543	36.5907	41.0074		450.290	29.5886	18.8662	117.829	118.181	
MEAN SOLARE ERROR	0.2440	0.0180	0.0113	0.0756	0.0847		0.9504	0.0611	0.0390	0.2434	0.2442	
ROOT MEAN SOLARE ERROR	0.4940	0.1341	0.1062	0.2750	0.2911		0.9645	0.2473	0.1974	0.4954	0.4941	
CORRELATION COEFFICIENT	0.9331	0.9655	0.9561	0.95%	0.9127		0.9643	0.95%	0.9562	0.9574	0.9367	
MEAN	1.6725	1.1902	1.2427	1.4886	1.4895	1.2765	2.4405	1.4869	1.5635	2.0362	2.0237	1.6511
STANDARD DEVIATION	0.5541	0.2220	0.2368	0.4405	0.4294	0.2992	1.0581	0.4155	0.4400	0.7848	0.7710	0.5421
ROOT HEAN SOLARED	1.7619	1.2107	1.2650	1.5524	1.5502	1.3111	2.6599	1.5439	1.6263	2.1822	2.1656	1.7378
HEAN ABSOLUTE DIFFERENCE	0.3960	0.0863	0.0538	0.2122	0.2184		0.7894	0.1641	0.0982	0.3954	0.3871	
STANDARDIZED NEAN ABS DIF	0.2956	0.0610	0.0371	0.1569	0.1622		0.4505	0.0896	0.0510	0.2248	0.2206	
CHI SQUARE	77.5638	4.4857	2.5626	23.7038	27.1039		211.317	11.1567	6.2190	54.7398	55.7054	
THEIL'S INEQUALITY INDEX	0.1607	0.0532	0.0412	0.0960	0.1017		0.2195	0.0753	0.0587	0.1259	0.1266	
Um, bias	0.6427	0.4140	0.1017	0.5950	0.5355		0.6698	0.4406	0.1966	0.6091	0.5686	
Us, veriance	0.2663	0.3312	0.3458	0.2640	0.1999		0.2862	0.2619	0.2672	0.2421	0.2146	
Uc, coveriance	0.0910	0.2548	0.5525	0.1410	0.2646		0.0440	0.2975	0.5361	0.1488	0.2167	
U sum = 1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	
UISAGAI EMPLUTAENI SIAI AN	ML1313:						COCHI	ELONI				
	SUPPLI		ALIPUT	30 //51	30 7783		SUPTIL 178 494	PLINU	12 574	631ML		UNLIPE
	130./12	0.000	0.000	0.0400	0 000		⊶c⊃.000	0 0210	0 1/140	0 1752	0 1647	
MEAN SLINE FOUR	0.6245	0.1/70	0.0129	0.0000	0.0000		0.0754	0.0010	0.1675	0.1735	0.1007	
	0.3315	0.14/9	0.1136	0.2407	0.2402		0.9335	0.00%5	0.1075	0.4107	0.075	
	0.9340	1 201/	0.9/3/	1 476	1.440	1 2051	2 7442	1 4718	1 5/78	1 0740	1 0/47	1 6370
	0.70%	0.7262	1.010	0.6360	0.5000	0 4074	1 0414	0 4020	0 4282	0 7078	0 4454	0 5153
	1 800	1 2454	1 2000	1 5451	1 5/91	1 7577	2 5875	1 5257	1 4021	2 1084	2 0574	1 7171
	0 2407	1.2707	0.0590	0 1705	0 1744	1.2017	0 7262	0 1448	0.1021	0.700	0.3110	
	0.30%	0.024	0.000	0.1772	0 4277		0./200	0.0000	0.1001	0.1071	0 1575	
	77 (21)	5 7000	1,000	18 7440	10 8/12		108 409	10 4500	5 2947	17/1	40 7442	
	0 1477	0 0549	0.0420	0.000	0 047		0 2174	0.0404	0.0505	0,1000	0,1040	
INCLUSINGUALITINGA	0.1073	0 4011	0 1//0	0.000	0 4754		0.200	0.5412	0.3158	0.6547	0.6095	
uny Dies ih unsieren	0 1761	0 2872	0 2007	0.2274	0.1441		0.3145	0.75%	0.2704	0.2024	0.1443	
	0.1707	0.3117	0.574	0.22.20	0.3903		0.0810	0,2072	0.4138	0,1427	0.2472	
	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	

UNAGHI CUTPUT STAT ANALYSI	S:	TYPE I	CUTFUT	HULTIPLE	BR		TYPE III CUTPUT MULTIPLIERS							
	SDPHI	FLIME	ALTFLH	SETME	RENING	UICHE	SDPHE	FLINE	ALTFLN	BETHE	REMIME	UNCHIE		
SUME ENGR	53.4188	1.7896	1.3616	0.5585	6.7062		211.920	9.0195	6.7255	5.8041	23.7701			
HEAN SQUARE ENCR	0.1754	0.0058	0.0044	0.0018	0.0218		0.6905	0.0294	0.0219	0.0189	0.0775			
ROOT HEAN SILVINE ERROR	0.4165	0.0762	0.0665	0.0426	0.1476		0.8308	0.1714	0.1481	0.1375	0.2784			
CORRELATION COEFFICIENT	0.7409	0.9120	0.8810	0.9890	0.80621		0.7799	0.8633	0.8531	0.8551	0.82623			
NEAN	1.6239	1.1890	1.2252	1.2756	1.3600	1.2357	2.3264	1.445	1.5025	1.6005	1.7705	1.5459		
STANDARD DEVIATION	0,2328	0.1115	0.1105	0.1429	0.1361	0.1372	0.4396	0.2068	0.2114	0.245	0.2861	0.2590		
ROOT HEAN SILINED	1.6405	1.1942	1.2331	1.255	1.3666	1.265	2.3676	1.4592	1.5175	1.6204	1.7955	1.5692		
HEAN ABSOLUTE DIFFERENCE	0.3551	0.0527	0.0428	0.0570	0.1305		0.7904	0.1050	0.0651	0.0655	0.2416			
STANDARDIZED HEAN ARE DIF	0.3109	0.0405	0.0333	0.0298	0.1055		0.5094	0.0619	0.0384	0.0418	0.1554			
CHI SILME	42.9916	1.2759	0.9798	0.4495	5.4906		133.317	3.8336	2.5689	2.1386	14.0229			
THEIL'S INERLIALITY INDEX	0.1443	0.0512	0.0268	0.0168	0.0565		0.2110	0.0566	0.0480	0.0431	0.0528			
Un, bias	0.8552	0.425	0.0254	0.7481	0.6752		0.8824	0.3504	0.0860	0.1565	0.6511			
Us, verience	0.0526	0.1139	0.1605	0.0175	0.0005		0.0422	0.1317	0.1518	0.0112	0.0037			
Uc, coveriance	0.0955	0.4639	0.8176	0.2378	0.3276		0.0754	0.5180	0.7622	0.8323	0.3452			
U sus = 1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00			
UNAGHE PERS INC STAT ANALY	315:	TYPE I P	ersow.	INCOME P	ULTIPLIE		THP	E III PE	rschil I	HODE H	LTIPLIER	5		
	SCAME	FLINE	ALTFUN	BETHE	NEMEN	UICHE	SDAME	FLINE	ALTFLH	BETHE	REMINE	UNCHAE		
SLIVE ERCR	160.095	2.7646	3.2757	5.0215	27.3501		542.268	8.4360	6.7873	11.86(3	73.8154			
HEAN SLINE ENCR	0.5198	0.0090	0.0105	0.0163	0.0888		1.7663	0.0275	0.0221	0.0357	0.2606			
ROOT HEAN SILVIE ENGR	0.7210	0.0947	0.10 51	0.1 277	0.2980		1.3290	0.1658	0.1487	0.1968	0.4905			
CORRELATION COEFFICIENT	0.9204	0.9993	0.9502	0.9816	0.9208		0.9526	0.9653	0.9602	0.9770	0.953			
HEAN	1.8494	1.2580	1.3174	1.3662	1.5109	1.25%	2.7205	1.5757	1.6632	1.7746	2.0610	1.6567		
STAIDAID DEVIATION	0.7256	0.2552	0.3105	0.3865	0.4453	0.3153	1.265	0.4754	0.5069	0.6291	0.7499	0.5319		
noot hean slinned	1.9670	1.2906	1.33	1.4222	1.5752	1.3255	3.0020	1.6452	1.7368	1.8528	2.1744	1.7400		
HEAN ADDOLUTE DIFFERENCE	0.5620	0.0495	0.0602	0.0505	0.2258		1.0707	0.0928	0.0700	0.1275	0.3940			
STANDANDIZED HEAN AND DIF	0.4092	0.0547	0.0438	0.0574	0.1676		0.6078	0.0509	0.0367	0.0598	0.2263			
CHI SILME	99.4854	1.449	2.0210	2.9554	18.3720		252.005	3.2975	2.8162	5.0944	36.8664			
THEIL'S INEQUALITY INDEX	0.2176	0.0362	0.0365	0.0465	0.1027		0.2805	0.0490	0.0627	0.0543	0.123			
Un, bias	0.6076	0.0968	0.0542	0.3778	0.5625		0.6406	0.2391	0.0019	0.3588	0.6142			
Us, veriance	0.325	0.0819	0.0021	0.3272	0.1905		0.3078	0.1263	0.0251	0.2442	0.1977			
Uc, coveriance	0.0702	0.8266	0.9169	0.2762	0.205		0.0515	0.6366	0.9700	0.3970	0.1851			
U s.m = 1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00			
UNAGEL BPLOMBIT STAT ANA	LYSIS:	TYPE I	BPLONE	NT HALTI				TYPE II	I SPLO		TIPLIERS			
	SPHE	FLINE	ALTFUR			UNCIPIE		FLIME	ALTFUR					
SUNE END	152.659	4.1925	3.1393	2.5050	20.13/1		462.597	10.4209	3./000	4.300	45.889			
PEAR SLIVE BRUR	0.4957	0.0136	0.0102	0.0051	0.0004		1.30/8		0.0125	0.0141	0.17%2			
	0.7061	0.1167	0.1010	0.0902	0.238		1.22/9	0.1863	0.13/1	0.1107	0.0538			
	0.9511	0.9000	0.9/6/	0.9911	0.7365		0.9911	1.000	U.7/0/	1 7484	0.7700	1 4000		
	1.64/0	1.4/780	1.33/4	1.300	1.3130		1 340	1.3(3)	1.00//	1./001	0 7484	0 6020		
	0.000	U.A1/3	0.444		U.3033	U.40/U	3.0577	U.7130	1 744	1 9914	3 1305	1 7000		
	6.0012	1.3460		1.4//3	1.510	1.41/2	6.733	1.0000	1./400	1.0011	6.1373	1./770		
	0.3090		0.0000	0.000	0.1040		0.9012	0.1307	0.0/0	0.0412	0 1740			
		3.45/6	1.724		12 004		210 407		2 447	2 (1913)	24 0012			
	0.348	6.1740		1.3000			0 2584		0.000	0.057	0.1012			
INCLUSION INCLUSION INCLUSION	v.a.5V	U.UNCL	v.u30/	v.ud 14	V. VOID		V	v		المكلية وي	we 19 Md			

un, bias 0.5225 0.2505 0.0000 0.3138 0.4622 Us, verience 0.3649 0.1802 0.0595 0.1717 0.1417

Uc, coverience 0.1159 0.5726 0.9437 0.5177 0.3794

U sum = 1.00 1.00 1.00 1.00 1.00 1.00

•

0.2584 0.0533 0.0587 0.0525 0.1013 0.6127 0.4565 0.0886 0.3439 0.5920 0.3177 0.1852 0.1056 0.1733 0.1461

0.0596 0.3563 0.8058 0.4628 0.2519 1.00 1.00 1.00 1.00 1.00 .

236

237

ACOMMI CUTPUT STAT ANALYS	SIS:	TYPE 1	ann	MILTIPLI	ERS			TYPE	II OUTPL	IT MULTIF	LIERS	
	SDPMI	FLAMI	ALTFUN	BSTMI	REMIMI	UNCHHI	SDPHI	FLRMI	ALTFLN	BSTMI	REMIMI	UNCHMI
SILING ERROR	27.3613	1.0775	0.7878	0.3069	3.1310		131.599	7.3028	5.8452	5.3097	14.5523	
MEAN SQUARE ERROR	0.1754	0.0069	0.0051	0.0020	0.0201		0.8436	0.0468	0.0375	0.0340	0.0933	
ROOT MEAN SQUARE ERROR	0.4188	0.0831	0.0711	0.0444	0.1417		0.9185	0.2164	0.1936	0.1845	0.3054	
CORRELATION COEFFICIENT	0.8273	0.9220	0.9048	0.9909	0.8528		0.7706	0.8158	0.8112	0.8329	0.7921	
YEAN	1.6436	1.2011	1.2395	1.2912	1.3668	1.2530	2.4421	1.4755	1.5353	1.6386	1.8110	1.5869
STANDARD DEVIATION	0.237	0.1272	0.1286	0.1652	0.1495	0.1596	0.5118	0.2333	0.2401	0.2558	0.3257	0.3176
ROOT HEAN SQUARED	1.6631	1.2079	1.2462	1.3017	1.3750	1.2631	2.4951	1.4938	1.5539	1.6635	1.8400	1.6184
HEAN ABSOLUTE DIFFERENCE	0.3906	0.0565	0.0440	0.0383	0.1261		0.8739	0.1145	0.0728	0.0795	0.2547	
STANDARDIZED NEAN ABS DIF	0.3107	0.0425	0.0335	0.0306	0.1023		0.5466	0.0649	0.0398	0.0459	0.1580	
CHI SQUARE	21.6126	0.7435	0.5451	0.2459	2.5502		79.4251	2.7405	1.9966	1.7711	7.8474	
THEIL'S INEQUALITY INDEX	0.1431	0.0336	0.0253	0.0173	0.0537		0.2233	0.0695	0.0610	0.0562	0.0883	
Um, bias	0.8698	0.3899	0.0361	0.7392	0.6452		0.8669	0.2652	0.0712	0.0791	0.5382	
Us, veriance	0.0505	0.1514	0.1901	0.0162	0.0052		0.0447	0.1519	0.1603	0.0297	0.0007	
Uc, coveriance	0.0797	0.4587	0.7737	0.2446	0.3495		0.0854	0.5829	0.7685	0.8913	0.4611	
U sum = 1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	
	VE16.		EBOOMAI			be	100	e 111 DE				•
	SDPM1	FLOWI	ALTELN	RSTMI	2FN1M1	UNCHAT	SDPMI	FLENT	ALTELM	BSTM1	RENIMI	s Unchai
SCLINE FRACE	147.817	6.0786	5.4812	4.0636	18.6182		530.088	11.6726	9.5657	9.8901	52,7321	
MEAN SOLARE ERROR	0.9475	0.0390	0.0351	0.0259	0.1195		3,3980	0.0748	0.0613	0.0634	0.3380	
ROOT MEAN SQUARE ERROR	0.9734	0.1974	0,1874	0,1610	0.3455		1.8434	0.2755	0.2476	0.2518	0.5814	
CORRELATION COEFFICIENT	0.9454	0.9692	0.9658	0.9917	0.9471		0.9578	0.9644	0.9620	0.9835	0.9460	
HEAN	2.0670	1.3421	1.4030	1.4825	1.6268	1.3820	3.2075	1.7156	1.8070	1.9551	2.22	1.8106
STANDARD DEVIATION	1.2843	0.5400	0.5698	0.7504	0.7471	0.6637	1.9800	0.7252	0.7669	0.9889	1.0743	0.8698
ROOT MEAN SOLWRED	2.4335	1.4466	1.5143	1.6616	1.7902	1.5331	3.7694	1.8626	1.9630	2,1910	2.4955	2.0087
MEAN ABSOLUTE DIFFERENCE	0.6851	0.0718	0.0631	0.1007	0.231		1.4094	0.1186	0.1011	0.1633	0.4608	
STANDARDIZED MEAN ABS DIF	0.4502	0.0406	0.0513	0.0662	0.1791		0.7236	0.0543	0.0472	0.0821	0.2486	
CHI SQUARE	71.9502	1.7310	1.9758	2.1762	11.7671		203.064	3.0880	2.8599	3.9497	24.4728	
THEIL'S INEQUALITY INDEX	0.2454	0.0662	0.0615	0.0504	0.1040		0.3190	0.0707	0.0623	0.0600	0.1291	
Un, bias	0.4953	0.0409	0.0126	0.3903	0.5023		0.5742	0.1206	0.0002	0.3295	0.5776	
Us, veriance	0.4064	0.3930	0.2509	0.2898	0.0583		0.3627	0.2797	0.1729	0.2236	0.1237	
Uc, coveriance	0.0983	0.5662	0.7365	0.3199	0.4394		0.0631	0.5997	0.8269	0.4471	0.2987	
U sum = 1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	
					-							
ALDINHI EIPLUTHENT STAT AN	ALTSIS:	SIGHT				1000001	CDD41	ITPE II		DENI PUL DETNI		BACKBET
67 HDC 55070	128 100	FLITEA				UNLINE	304411 7877 284		ALIFUR	83174		
SALINE ERRUR	0 8212	0.0772	4.2255	0.0122	0.0025		2 / 124	7.0422	0.7/30	0.000	0 1072	
BANT NEW STUDE EDOR	0.0212	0.1821	0.02/1	0.1105	0.3625		1 5754	0.2512	0.2115	0.14.27	0.1772	
	0.9002	0.1021		0.0005	0.2573		0.0%	0.2512	0.2115	0.0805	0.0574	
	1 04.14	1 20177	1 3616	1 4212	1 4510	1 3626	2 8215	1 50780	1 4442	1 7814	2 (1318	1 7016
	1 1041	0 4554	0 4877	0 5008	0 6610	0 5470	1 7852	0 5533	0 5060	0 74.06	0.8654	0 6831
	2 2704	1 3900	1 4441	1 5301	1 6860	1 4481	3 3124	1.6778	1.7%00	1 0205	2.2065	1.8556
NEAN ARSOLUTE DIFFERENCE	0.5702	0.0750	0.0675	0.0458	0.1077		1,1100	0.1308	0.0860	0.0990	0.3557	
STANDARDIZED NEAN ARS DIE	0.3443	0.0433	0.0404	0.0470	0.1377		0.5804	0.0458	0.0414	0.0444	0.1898	
	59,1545	1.7620	1.6262	1,1383	8,1513		150.043	2,8840	2.0673	1.5194	15.5387	
THEIL'S INECLIALITY INDEX	0.2418	0.0639	0.0545	0.0367	0.0911		0.3062	0.0715	0.0587	0.0379	0,1099	
Lin. bian	0.4086	0,1038	0.0000	0.2539	0.4355		0,5052	0.2195	0.0279	0.3140	0,5531	
Lis, verianne	0.5100	0.2527	0,1298	0,1575	0,1576		0.4459	0.2672	0.1444	0,1620	0,1685	
Uc. coveriance	0.0814	0.6435	0.8702	0.5587	0.4069		0.0489	0.5134	0.8057	0.5240	0.2785	
U sum = 1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	

AGSOMI CLITPLIT STAT ANALYSIS:

	SDPHI	FLAMI	ALTFLM	BSTMI	REMIMI	UNCHMI	SDPMI	FLRMI	ALTFLM	BSTMI	REMIMI	UNCHMI
square error	5.1306	0.1039	0.0636	0.0277	0.6570		20.5829	4.8788	4.4236	4.3371	5.3325	
MEAN SQUARE ERROR	0.1655	0.0034	0.0021	0.0009	0.0222		0.6640	0.1574	0.1427	0.1399	0.1720	
root mean square error	0.4068	0.0579	0.0653	0.0299	0.1489		0.8148	0.3967	0.3778	0.3740	0.4147	
CORRELATION COEFFICIENT	0.7538	0.9149	0.8807	0.9891	0.8422		0.2404	0.3420	0.3514	0.3218	0.3428	
MEAN	1.5952	1.1839	1.2221	1.2505	1.35%	1.2248	2.2482	1.4187	1.4765	1.5437	1.7442	1.5675
STANDARD DEVIATION	0.2316	0.0709	0.0758	0.1005	0.1169	0.0943	0.3317	0.1465	0.1551	0.1729	0.2102	0.3911
ROOT MEAN SOLARED	1.6119	1.1861	1.2265	1.243	1.3666	1.2284	2.2726	1.4263	1.4846	1.5534	1.7568	1.6156
MEAN ABSOLUTE DIFFERENCE	0.3704	0.0409	0.0259	0.0255	0.1352		0.7752	0.1488	0.1026	0.1115	0.2945	
standardized mean abs dif	0.2983	0.0318	0.0201	0.0206	0.1104		0.4961	0.0715	0.0422	0.0487	0.1735	
CHI SQUARE	4.0990	0.0760	0.0457	0.0223	0.5600		12.7055	1.4836	1.2958	1.2643	2.2616	
THEIL'S INEQUALITY INDEX	0.1432	0.0240	0.0185	0.0120	0.0574		0.2096	0.1304	0.1218	0.1180	0.1230	
Um, bias	0.8290	0.4985	0.0036	0.7257	0.8198		0.6978	0.1407	0.0581	0.0040	0.1815	
Us, veriance	0.1139	0.1621	0.1667	0.0442	0.0232		0.0053	0.3801	0.3905	0.3405	0.1903	
Uc, coveriance	0.0570	0.33%	0.8297	0.2302	0.1570		0.2969	0.4792	0.5514	0.6555	0.6282	
U sum = 1.00	1.00	1.00	1.00	1.00	1.00	•	1.00	1.00	1.00	1.00	1.00	

TYPE I OUTPUT MULTIPLIERS

IS:	TYPE I P	ERSONAL	INCOME M	ULTIPLIE	RS	TYP	E 111 PE	rsonal i	NCOME MJ	LTIPLIER	S
SDPMI	FLRMI	ALTFLM	BSTMI	REMIMI	UNCHHI	SDPHI	FLRMI	ALTFLM	BSTMI	REMIMI	ι
14.6513	1.0296	0.7928	0.1132	1.3154		42.4579	3.6771	3.0444	2.2704	5.4160	
0.4726	0.0332	0.0256	0.0037	0.0424		1.3696	0.1186	0.0982	0.0732	0.1747	
0.6875	0.1822	0.1599	0.0604	0.2060		1.1705	0.3444	0.3134	0.2706	0.4180	
0.9857	0.9616	0.9581	0.9969	0.9715		0.8496	0.8077	0.8102	0.8633	0.8382	
1.7713	1.2205	1.2727	1.3191	1.4554	1.2742	2.4744	1.4643	1.5412	1.6270	1.8742	•
0.8357	0.2146	0.2350	0.3974	0.4034	0.3702	1.1661	0.3218	0.3498	0.5174	0.5774	(
1.9586	1.2391	1.2942	1.3776	1.5105	1.3269	2.7554	1.4992	1.5804	1.7073	1.9611	•
0.4971	0.0543	0.0563	0.0449	0.1812		0.9368	0.1366	0.1025	0.1181	0.3519	
0.3519	0.0279	0.0317	0.0530	0.1420		0.5467	0.0613	0.0422	0.0603	0.2115	
7.8576	0.3369	0.2687	0.0743	0.9952		19.8095	1.2494	1.0344	0.8711	2.8262	
0.2092	0.0710	0.0610	0.0223	0.0726		0.2650	0.1053	0.0961	0.0799	0.1148	
0.5228	0.0875	0.0001	0.5508	0.7755		0.5571	0.1574	0.0363	0.0093	0.4275	
0.4584	0.7266	0.7150	0.2019	0.0260		0.3116	0.3075	0.2706	0.0003	0.0239	
0.0188	0.1838	0.2849	0.2473	0.2005		0.1313	0.5351	0.6952	0.9904	0.5486	
1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	
	IS: SDPHI 14.6513 0.4726 0.6875 0.9857 1.7713 0.8357 1.9586 0.4971 0.3519 7.8576 0.2092 0.5228 0.4584 0.0188 1.00	IS: TYPE I P SDPHI FL8HI 14.6513 1.0296 0.4726 0.0332 0.6875 0.1822 0.9857 0.9616 1.7713 1.2203 0.8357 0.2146 1.9586 1.2591 0.4971 0.0543 0.3519 0.0279 7.8576 0.3369 0.2092 0.0710 0.5228 0.0875 0.4584 0.7288 0.0188 0.1838 1.00 1.00	IS: TYPE I PERSONAL SDPNI FLIRHI ALTFLM 14.6513 1.0296 0.7928 0.4726 0.0332 0.0256 0.6875 0.1822 0.1999 0.9857 0.9616 0.9581 1.7713 1.2203 1.2727 0.8357 0.2146 0.2350 1.9586 1.2591 1.2942 0.4971 0.0543 0.05633 0.3359 0.0279 0.0317 7.8576 0.3369 0.2687 0.2092 0.0710 0.0610 0.5228 0.0875 0.0001 0.4584 0.7288 0.7150 0.4584 0.1538 0.2697 0.1618 0.1538 0.2699	IS: TYPE I PERSONAL INCOME P SDFNI FLIRNI ALTFLN BSTNI 14.6513 1.0296 0.7928 0.1132 0.4726 0.0332 0.0256 0.0037 0.6875 0.1822 0.1999 0.0604 0.9857 0.9616 0.9581 0.9969 1.7713 1.2203 1.2727 1.3191 0.8357 0.2146 0.2350 0.3974 1.9586 1.2991 1.2942 1.376 0.4971 0.0543 0.0543 0.0330 0.4971 0.0543 0.0543 0.0491 0.3359 0.2279 0.3176 0.3330 0.4971 0.0543 0.0543 0.0273 0.2092 0.0710 0.0610 0.0223 0.5228 0.0875 0.001 0.5508 0.4584 0.7288 0.2190 0.2019 0.4584 0.7288 0.2849 0.2473 0.108 0.1838 0.2849 0.2473	IS: TYPE I PERSONAL INCORE MALTIPLIE SDPNI FLINI ALTFLN BSTNI REMINI 14.6513 1.0296 0.7928 0.1132 1.3154 0.4726 0.0332 0.0256 0.0037 0.0424 0.4726 0.1322 0.1599 0.0604 0.2060 0.4726 0.9322 0.1599 0.0604 0.2060 0.4726 0.9322 0.1599 0.0604 0.2060 0.4726 0.9581 0.9969 0.9715 1.3191 1.4554 0.8557 0.2146 0.2350 0.3974 0.4034 0.8557 0.2146 0.2350 0.3974 0.4034 1.9586 1.2991 1.2942 1.3776 1.5103 0.4971 0.0543 0.0563 0.0449 0.1812 0.3359 0.2867 0.0743 0.9952 0.3059 0.0610 0.0223 0.0753 0.5228 0.0875 0.0001 0.5508 0.7755 0.4538	IS: TYPE I PERSONAL INCOME MALTIPLIERS SDFMI FLINI ALTFLN BSTMI RENINI UNCMIN 14.6513 1.0296 0.7928 0.1132 1.3154 0.4726 0.0332 0.0256 0.0037 0.0424 0.4726 0.1322 0.1599 0.0604 0.2060 0.4726 0.1822 0.1599 0.0604 0.2060 0.4726 0.1822 0.1599 0.0604 0.2060 0.9857 0.9616 0.9581 0.9969 0.9715 1.7713 1.2203 1.2727 1.3191 1.4554 1.2742 0.8357 0.2146 0.2350 0.3974 0.4034 0.3702 1.9586 1.2991 1.2942 1.3776 1.5103 1.3289 0.4971 0.0543 0.0563 0.0449 0.1812 0.3369 0.2689 0.0743 0.9952 0.4971 0.0510 0.0223 0.0726 0.2092 0.0701 0.6510 0.2019	IS: TYPE I PERSONAL INCOME MALTIPLIERS TYP SDFMI FLINI ALTFLN BSTMI RENINI UNCMI SDFNI 14.6513 1.0296 0.7928 0.1132 1.3154 42.4579 0.4726 0.0332 0.0256 0.0037 0.0424 1.3696 0.4726 0.1322 0.1599 0.0604 0.2060 1.1703 0.4726 0.9322 0.1599 0.0604 0.2060 1.1703 0.4726 0.2352 0.9581 0.9969 0.9715 0.8696 1.7713 1.2203 1.2727 1.3191 1.4554 1.2742 2.4744 0.8357 0.2146 0.2350 0.3974 0.4034 0.3702 1.1661 1.9586 1.2991 1.2942 1.3776 1.5103 1.3269 2.7354 0.4971 0.0543 0.0563 0.0499 0.1812 0.9368 0.3369 0.2269 0.0743 0.9952 19.8075 0.2092 0.0710 <td< th=""><th>IS: TYPE I PERSONAL INCOME MULTIPLIERS TYPE III PERSONAL INCOME MULTIPLIERS TYPE III PERSONAL INCOME MULTIPLIERS SDFMI FLRMI ALTFLM BSTMI REMINI UNCMI SDFMI FLRMI 14.6513 1.0296 0.7928 0.1132 1.3154 42.4579 3.6771 0.4726 0.0332 0.0256 0.0037 0.0424 1.3696 0.1186 0.4726 0.1322 0.1599 0.0604 0.2050 1.1703 0.3444 0.46575 0.9616 0.9581 0.9969 0.9715 0.8496 0.8077 1.7713 1.2203 1.2727 1.3191 1.4554 1.2742 2.4744 1.4643 0.8357 0.2146 0.2550 0.3976 0.4034 0.3702 1.1661 0.3218 1.9586 1.2591 1.2922 1.3776 1.5103 1.3269 2.7354 1.4992 0.4971 0.0543 0.0563 0.0449 0.1812 0.9368 0.1366 0.4971 0.0543 <td< th=""><th>IS: TYPE I PERSONAL INCOME MALTIPLIERS TYPE I II PERSONAL INCOME MALTIPLIERS SDPMI FLINI ALTFLN BSTNI REMINI UNCMI SDPMI FLINI ALTFLN 14.6513 1.0296 0.7928 0.1132 1.3154 42.4579 3.6771 3.0444 0.4726 0.0332 0.0256 0.0037 0.0424 1.3696 0.1185 0.0982 0.6875 0.1822 0.1599 0.6064 0.2060 1.1703 0.3444 0.3134 0.9857 0.9616 0.9581 0.9969 0.9715 0.8496 0.8077 0.8102 1.7713 1.2203 1.2727 1.3191 1.4554 1.2742 2.4744 1.4643 1.5102 0.8357 0.2146 0.2350 0.3974 0.4034 0.3702 1.1661 0.3218 0.3488 1.9586 1.2991 1.2942 1.3776 1.5103 1.3269 2.7354 1.4692 1.5804 0.4971 0.0543 0.0543 0.0423</th><th>IS: TYPE I PERSONAL INCOME MALTIPLIERS TYPE I II PERSONAL INCOME MALTIPLIERS SDFNI FLINI ALTFLM BSTNI RENINI UNCHNI 42.4579 3.6771 3.0444 2.2704 0.4726 0.0332 0.0256 0.0037 0.0424 1.3696 0.1186 0.0982 0.0732 0.6657 0.9616 0.9581 0.9969 0.9715 0.8496 0.8077 0.8102 0.8633 1.7713 1.2203 1.2727 1.3191 1.4554 1.2742 2.4744 1.4643 1.512 1.6270 0.8357 0.2146 0.2350 0.3777 1.5103 1.3269 2.7354 1.4992</th><th>IS: TYPE I PERSONAL INCOME MALTIPLIERS TYPE I II PERSONAL INCOME MALTIPLIERS TYPE III PERSONAL INCOME MALTIPLIERS SDFNI FLINI ALTFLM BSTNI RENINI UNCMI SDFNI FLINI ALTFLM BSTNI RENINI 14.6513 1.0296 0.7928 0.1132 1.3154 SDFNI FLINI ALTFLM BSTNI RENINI 0.4726 0.0332 0.0256 0.0037 0.0424 1.3696 0.1135 0.0982 0.0732 0.1747 0.6675 0.1822 0.1599 0.0604 0.2060 1.1703 0.3444 0.3134 0.2706 0.4180 0.9857 0.9616 0.9581 0.9969 0.9715 0.8496 0.8077 0.8102 0.8633 0.8382 1.7713 1.2203 1.2727 1.3191 1.4554 1.2742 2.4744 1.4643 1.5412 1.6270 1.8742 0.8357 0.2146 0.2550 0.3974 0.4034 0.3702 1.1661 0.3218 0.3498 0.5174</th></td<></th></td<>	IS: TYPE I PERSONAL INCOME MULTIPLIERS TYPE III PERSONAL INCOME MULTIPLIERS TYPE III PERSONAL INCOME MULTIPLIERS SDFMI FLRMI ALTFLM BSTMI REMINI UNCMI SDFMI FLRMI 14.6513 1.0296 0.7928 0.1132 1.3154 42.4579 3.6771 0.4726 0.0332 0.0256 0.0037 0.0424 1.3696 0.1186 0.4726 0.1322 0.1599 0.0604 0.2050 1.1703 0.3444 0.46575 0.9616 0.9581 0.9969 0.9715 0.8496 0.8077 1.7713 1.2203 1.2727 1.3191 1.4554 1.2742 2.4744 1.4643 0.8357 0.2146 0.2550 0.3976 0.4034 0.3702 1.1661 0.3218 1.9586 1.2591 1.2922 1.3776 1.5103 1.3269 2.7354 1.4992 0.4971 0.0543 0.0563 0.0449 0.1812 0.9368 0.1366 0.4971 0.0543 <td< th=""><th>IS: TYPE I PERSONAL INCOME MALTIPLIERS TYPE I II PERSONAL INCOME MALTIPLIERS SDPMI FLINI ALTFLN BSTNI REMINI UNCMI SDPMI FLINI ALTFLN 14.6513 1.0296 0.7928 0.1132 1.3154 42.4579 3.6771 3.0444 0.4726 0.0332 0.0256 0.0037 0.0424 1.3696 0.1185 0.0982 0.6875 0.1822 0.1599 0.6064 0.2060 1.1703 0.3444 0.3134 0.9857 0.9616 0.9581 0.9969 0.9715 0.8496 0.8077 0.8102 1.7713 1.2203 1.2727 1.3191 1.4554 1.2742 2.4744 1.4643 1.5102 0.8357 0.2146 0.2350 0.3974 0.4034 0.3702 1.1661 0.3218 0.3488 1.9586 1.2991 1.2942 1.3776 1.5103 1.3269 2.7354 1.4692 1.5804 0.4971 0.0543 0.0543 0.0423</th><th>IS: TYPE I PERSONAL INCOME MALTIPLIERS TYPE I II PERSONAL INCOME MALTIPLIERS SDFNI FLINI ALTFLM BSTNI RENINI UNCHNI 42.4579 3.6771 3.0444 2.2704 0.4726 0.0332 0.0256 0.0037 0.0424 1.3696 0.1186 0.0982 0.0732 0.6657 0.9616 0.9581 0.9969 0.9715 0.8496 0.8077 0.8102 0.8633 1.7713 1.2203 1.2727 1.3191 1.4554 1.2742 2.4744 1.4643 1.512 1.6270 0.8357 0.2146 0.2350 0.3777 1.5103 1.3269 2.7354 1.4992</th><th>IS: TYPE I PERSONAL INCOME MALTIPLIERS TYPE I II PERSONAL INCOME MALTIPLIERS TYPE III PERSONAL INCOME MALTIPLIERS SDFNI FLINI ALTFLM BSTNI RENINI UNCMI SDFNI FLINI ALTFLM BSTNI RENINI 14.6513 1.0296 0.7928 0.1132 1.3154 SDFNI FLINI ALTFLM BSTNI RENINI 0.4726 0.0332 0.0256 0.0037 0.0424 1.3696 0.1135 0.0982 0.0732 0.1747 0.6675 0.1822 0.1599 0.0604 0.2060 1.1703 0.3444 0.3134 0.2706 0.4180 0.9857 0.9616 0.9581 0.9969 0.9715 0.8496 0.8077 0.8102 0.8633 0.8382 1.7713 1.2203 1.2727 1.3191 1.4554 1.2742 2.4744 1.4643 1.5412 1.6270 1.8742 0.8357 0.2146 0.2550 0.3974 0.4034 0.3702 1.1661 0.3218 0.3498 0.5174</th></td<>	IS: TYPE I PERSONAL INCOME MALTIPLIERS TYPE I II PERSONAL INCOME MALTIPLIERS SDPMI FLINI ALTFLN BSTNI REMINI UNCMI SDPMI FLINI ALTFLN 14.6513 1.0296 0.7928 0.1132 1.3154 42.4579 3.6771 3.0444 0.4726 0.0332 0.0256 0.0037 0.0424 1.3696 0.1185 0.0982 0.6875 0.1822 0.1599 0.6064 0.2060 1.1703 0.3444 0.3134 0.9857 0.9616 0.9581 0.9969 0.9715 0.8496 0.8077 0.8102 1.7713 1.2203 1.2727 1.3191 1.4554 1.2742 2.4744 1.4643 1.5102 0.8357 0.2146 0.2350 0.3974 0.4034 0.3702 1.1661 0.3218 0.3488 1.9586 1.2991 1.2942 1.3776 1.5103 1.3269 2.7354 1.4692 1.5804 0.4971 0.0543 0.0543 0.0423	IS: TYPE I PERSONAL INCOME MALTIPLIERS TYPE I II PERSONAL INCOME MALTIPLIERS SDFNI FLINI ALTFLM BSTNI RENINI UNCHNI 42.4579 3.6771 3.0444 2.2704 0.4726 0.0332 0.0256 0.0037 0.0424 1.3696 0.1186 0.0982 0.0732 0.6657 0.9616 0.9581 0.9969 0.9715 0.8496 0.8077 0.8102 0.8633 1.7713 1.2203 1.2727 1.3191 1.4554 1.2742 2.4744 1.4643 1.512 1.6270 0.8357 0.2146 0.2350 0.3777 1.5103 1.3269 2.7354 1.4992	IS: TYPE I PERSONAL INCOME MALTIPLIERS TYPE I II PERSONAL INCOME MALTIPLIERS TYPE III PERSONAL INCOME MALTIPLIERS SDFNI FLINI ALTFLM BSTNI RENINI UNCMI SDFNI FLINI ALTFLM BSTNI RENINI 14.6513 1.0296 0.7928 0.1132 1.3154 SDFNI FLINI ALTFLM BSTNI RENINI 0.4726 0.0332 0.0256 0.0037 0.0424 1.3696 0.1135 0.0982 0.0732 0.1747 0.6675 0.1822 0.1599 0.0604 0.2060 1.1703 0.3444 0.3134 0.2706 0.4180 0.9857 0.9616 0.9581 0.9969 0.9715 0.8496 0.8077 0.8102 0.8633 0.8382 1.7713 1.2203 1.2727 1.3191 1.4554 1.2742 2.4744 1.4643 1.5412 1.6270 1.8742 0.8357 0.2146 0.2550 0.3974 0.4034 0.3702 1.1661 0.3218 0.3498 0.5174

AG30MI EMPLOYMENT STAT ANA	LYSIS:	TYPE I	BPLOME	NT MULTI	PLIERS	TYPE III BIPLOMENT MULTIPLIERS							
	SDPMI	FLAMI	ALTFLM	BSTMI	REMINI	LNCHMI	SDPMI	FLAMI	ALTFLM	BSTMI	REMIMI	unchmi	
square error	20.4648	1.6486	1.1267	0.0695	1.5057		59.2921	2.9923	1.8900	0.1195	4.1852		
HEAN SQUARE ERROR	0.6602	0.0532	0.0363	0.0022	0.0486		1.9126	0.0965	0.0610	0.0039	0.1350		
root mean square error	0.8125	0.2306	0.1906	0.0473	0.2204		1.3830	0.3107	0.2469	0.0621	0.3674		
CORRELATION COEFFICIENT	0.9854	0.9703	0.9666	0.9976	0.9786		0.9854	0.9705	0.9666	0.9976	0.9784		
MEAN	1.8359	1.2325	1.2952	1.3370	1.4925	1.3049	2.6261	1.4990	1.5675	1.6748	1.9592	1.6309	
STANDARD DEVIATION	1.0663	0.2635	0.3013	0.4777	0.5194	0.4652	1.5281	0.3205	0.3699	0.5984	0.6817	0.5814	
ROOT MEAN SILLARED	2.1240	1.2604	1.3279	1.4198	1.5803	1.3853	3.0353	1.5329	1.6301	1.7785	2.0744	1.7314	
MEAN ABSOLUTE DIFFERENCE	0.5309	0.0795	0.0592	0.0334	0.1876		0.9952	0.1380	0.0730	0.0450	0.3263		
STANDARDIZED MEAN ABS DIF	0.3532	0.0413	0.0310	0.0255	0.1428		0.5488	0.0653	0.0296	0.0275	0.2003		
CHI SQUARE	9.4133	0.4906	0.3425	0.0521	1.1067		23.2735	0.7639	0.4448	0.0713	2.4222		
THEIL'S INEQUALITY INDEX	0.2315	0.0572	0.0703	0.0169	0.0743		0.2900	0.0952	0.0755	0.0177	0.0965		
Un, bias	0.4270	0.0985	0.0038	0.4613	0.7247		0.5178	0.1801	0.0308	0.5001	0.7986		
Us, veriance	0.5509	0.7646	0.7586	0.0706	0.0504		0.4686	0.7053	0.7336	0.0753	0.0746		
Uc, coveriance	0.0220	0.1369	0.2576	0.4681	0.2149		0.0136	0.1146	0.2356	0.4246	0.1268		
U sum = 1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00		

TYPE III CUTPUT MULTIPLIERS

REMIMI UNCHMI 5.4160 0.1747 0.4180

1.8742 1.6009 0.5774 0.5128 1.9611 1.6810 0.3519

AG16HI OUTPUT STAT ANALYSI	S:	TYPE I	OUTPUT	MULTIPLI	ERS			TYPE I	II OJTPU		LIERS	
	SDPMI	FLAMI	ALTFLH	BSTMI	RENIMI	UNCHI	SDPMI	FLRMI	ALTFLM	BSTMI	REMIMI	UNCHHI
Square Error	2.1993	0.0703	0.0531	0.0109	0.2541		11.4056	4.8123	4.4486	4.3101	4.3125	
MEAN SILVRE ERROR	0.1375	0.0044	0.0033	0.0007	0.0178		0.7129	0.3008	0.2780	0.2694	0.2695	
ROOT MEAN SQUARE ERROR	0.3707	0.0663	0.0576	0.0261	0.1333		0.8443	0.5484	0.5273	0.5190	0.5192	
CORRELATION COEFFICIENT	0.8767	0.9156	0.8728	0.9956	0.8671		0.1701	0.2171	0.2345	0.1965	0.2485	
HEAN	1.5751	1.1926	1.2263	1.257	1.3520	1.2346	2.3098	1.4698	1.5238	1.5990	1.7892	1.6911
STANDARD DEVIATION	0.2369	0.0555	0.0896	0.1226	0.1260	0.1151	0.3656	0.1749	0.1861	0.2052	0.235	0.5098
ROOT MEAN SILINGED	1.5928	1.1955	1.2315	1.2617	1.3579	1.2400	2.3365	1.4801	1.5351	1.6121	1.8071	1.7663
MEAN ABSOLUTE DIFFERENCE	0.3404	0.0421	0.0315	0.0211	0.1187		0.8023	0.2214	0.1750	0.1704	0.3264	
STANDARDIZED HEAN ABS DIF	0.2707	0.0316	0.0238	0.0167	0.0968		0.4759	0.0922	0.0649	0.0628	0.1678	
CHI SQUARE	1.7320	0.0493	0.0372	0.0085	0.2323		6.3474	1.4258	1.2926	1.2369	1.5314	
THEIL'S INEQUALITY INDEX	0.1309	0.0272	0.0233	0.0104	0.0513		0.2057	0.1689	0.1597	0.1536	0.1453	
Um, bias	0.8432	0.4029	0.0121	0.6513	0.7761		0.5369	0.1629	0.1007	0.0315	0.0357	
Us, veriance	0.1079	0.2278	0.1970	0.0530	0.0067		0.0292	0.3728	0.3768	0.3444	0.2437	
Uc, coveriance	0.0489	0.3695	0.7908	0.2657	0.2172		0.4340	0.4643	0.5224	0.6241	0.7206	
U sum = 1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	
AG16HI PERS INC STAT AWALY	SIS:	TYPE I P	ERSONAL	INCOME N	ULTIPLIE	RS	TYP	e III pe	rsonal I	NCOME MU	LTIPLIER	s
	SDPHI	FLAMI	ALTFLM	BSTMI	REMINI	UNCHMI	SDPN1	FLAMI	ALTFLM	BSTMI	REMIMI	UNCHMI
SCLARE ERROR	10.8273	1.1214	0.9213	0.0689	0.4300		31.4252	3.7211	3.2540	2.1218	3.1547	
MEAN SILVRE ERROR	0.6767	0.0701	0.0576	0.0043	0.0269		1.9640	0.2326	0.2034	0.1326	0.1972	
ROOT MEAN SQUARE ERROR	0.8226	0.2647	0.2400	0.0656	0.1639		1.4014	0.4823	0.4510	0.3642	0.4440	
CORRELATION COEFFICIENT	0.9956	0.9773	0.9750	0.9982	0.9892		0.85%	0.7991	0.8014	0.8606	0.8411	
MEAN	1.8712	1.2731	1.3122	1.3995	1.4970	1.3541	2.6979	1.5600	1.6178	1.7599	1.9682	1.7755
STANDARD DEVIATION	1.1718	0.2992	0.3189	0.5704	0.5473	0.5363	1.5795	0.4043	0.4298	0.6962	0.7262	0.6808
ROOT HEAN SOLIARED	2.2078	1.3078	1.3504	1.5113	1.5939	1.4564	3.1261	1.6115	1.6739	1.8926	2.0979	1.8995
MEAN ABSOLUTE DIFFERENCE	0.5171	0.0510	0.0785	0.0454	0.1430		1.0479	0.2134	0.1717	0.1628	0.3499	
STANDARDIZED MEAN ABS DIF	0.3167	0.0316	0.0331	0.0301	0.1095		0.5277	0.0511	0.0504	0.0724	0.18/6	
CHI SQUARE	4.4746	0.3371	0.2792	0.0402	0.3203		11.9579	1.2116	1.0658	0.7999	0.43/8	
THEIL'S INEQUALITY INDEX	0.2265	0.0958	0.0855	0.0221	0.0557		0.2/89	0.15/4	0.1202	0.0960	0.1111	
Um, bias	0.3%2	0.0955	0.0304	0.4/85	0.7605		0.4505	0.1957	0.1189	0.0014	0.1920	
Us, vertance	0.5967	0.8025	0.8208	0.2099	0.0045		0.4110	0.325/	0.30%	0.0018	0.0105	
UC, Covertance	0.0051	0.1042	0.1485	0.015	0.2300		0.1557	0.4/30	0.5/14	0.9900	0.7909	
U sum = 1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	
		TYPE I		-	DI 1696			TYPE II		NENT MIX		1
	SDPMI	FLOWI	ALTELN	BSTMI	REMIMI		SDPHI	FLAMI	ALTELN	BSTMI	REMIMI	UNCHI
SQUARE ERROR	15.9485	1.8566	1.4649	0.0479	0.4691		45.9476	3.2167	2.4717	0.0617	1.4853	
MEAN SOLARE ERROR	0.9968	0.1160	0.0916	0.0030	0.0295		2.8717	0.2010	0.1545	0.0051	0.0930	
ROOT MEAN SOLARE ERROR	0.9986	0.3406	0.3026	0.0547	0.1712		1.6946	0.4484	0.3930	0.0715	0.3050	
CORRELATION COEFFICIENT	0.9941	0.9791	0.9773	0.9983	0.9924		0.9941	0.9791	0.9773	0.9983	0.9924	
HEAN	1.9482	1.2990	1.3406	1.4336	1.5431	1.4012	2.7955	1.5772	1.6375	1.7897	2.0137	1.7450
STANDARD DEVIATION	1.5318	0.3977	0.4320	0.7181	0.7404	0.7042	2.1980	0.4829	0.5277	0.8965	0.9662	0.8769
ROOT MEAN SQUARED	2.4753	1.3586	1.4055	1.6034	1.7115	1.5682	3.5562	1.6495	1.7204	2.0016	2.2335	1.9529
HEAN ABSOLUTE DIFFERENCE	0.5469	0.1167	0.0962	0.0338	0.1418		1.0505	0.1814	0.1354	0.0458	0.2687	
STANDARDIZED MEAN ABS DIF	0.3003	0.0466	0.0379	0.0246	0.1049		0.4983	0.0673	0.0454	0.0266	0.1579	
CHI SILIARE	5.2636	0.4839	0.3852	0.0359	0.3353		13.1749	0.6897	0.5206	0.0483	0.8107	
THEIL'S INEQUALITY INDEX	0.2467	0.1164	0.1017	0.0173	0.0522		0.3076	0.1245	0.1070	0.0181	0.0729	
Un, bias	0.3001	0.0900	0.0402	0.3497	0.6860		0.3843	0.1399	0.0748	0.3912	0.7764	
Us, veriance	0.6872	0.8092	0.8086	0.0649	0.0448		0.6078	0.7721	0.7892	0.0749	0.0858	
Uc, coveriance	0.0127	0.1005	0.1510	0.5854	0.2692		0.0079	0.0879	0.1361	0.5338	0.1378	
U sum = 1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	
LIST OF REFERENCES

LIST OF REFERENCES

Adelman, Irma and Sherman Robinson. (1986). The Application of General Equilibrium Models to Analyze U.S. Agriculture. Working Paper No. 423. California Agricultural Experiment Station and Giannini Foundation of Agricultural Economics. Division of Agriculture and Natural Resources, University of California. 33 pp.

Ahmadi, Massoud. (no date). The Economic Impact of Tourism in Maryland": A Multiregional Analysis. Office of Research, Maryland Department of Economic and Employment Development. 40 pp.

Alward, Gregory S., H. Craig Davis, Kostas A. Despotakis, and Everard M. Lofting. (1985). Regional Non-Survey Input-Output Analysis with IMPLAN. Paper prepared for Southern Regional Science Association Conference, Washington, D.C., May 9-10, 1985. 25 pp.

Alward, Gregory S. and Kostas Despotakis. (no date). IMPLAN Version 2.0: Data Reduction Methods for Constructing Regional Economic Accounts. U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest Experiment Station. 100+pp.

Alward, Gregory S. and Everard M. Lofting. (1985). Opportunities for Analyzing the Economic Impacts of Recreation and Tourism Expenditures Using IMPLAN. Paper prepared for the Regional Science Association Meeting, Philadelphia, PA, November 14-16, 1985. 11 pp.

Alward, Gregory S., B. Jay Sullivan, and Thomas W. Hoekstra. (1985). Using Socioeconomic Data in the Management of Fishing and Hunting on Public Lands. Proceedings of the 49th North American Wildlife and Natural Resources Conference, 1985. 25 pp.

Alward, Gregory S. et al. (1989). Micro IMPLAN Software Manual. Unpublished training materials developed to support the micro version of IMPLAN. Cooperatively prepared by the USDA Forest Service, Timber and Land Management Planning Group, Fort Collins, CO. and the Department of Agriculture and Agricultural Economics, University of Minnesota, St. Paul MN.

Archer, Brian. (1973). The Impact of Domestic Tourism. Bangor Occasional Papers in Economics. No. 2. (Bangor: University of Wales Press). 128 pp. Arthur D. Little, Inc. (1967). Tourism and Recreation. (Washington D. C. : U.S. Department of Commerce). 301pp.

Boster, R. S. and W. E. Martin. (1972). The Value of Primary Versus Secondary Data in Interindustry Analysis: A Study in the Economics of Economic Models. Annals of Regional Science. Vol. 6. pp. 35-43.

Brucker, S. M., S. E. Hastings and W. R. Latham. (1987). "Regional Input-Output Analysis: A Comparison of Five 'Ready-Made' Model Systems." Review of Regional Studies, Vol. 17, No. 2. p. 1-16.

Butterfield, Martin and Trevor Mules. (1980). A Testing Routine for Evaluating Cell by Cell Accuracy in Short-Cut Regional Input-Output Tables. Vol. 20, No. 3. pp. 293-309.

Clawson, M. and J. L. Knetsch. (1966). Economics of Outdoor Recreation. (Baltimore, MD: John Hopkins University Press). 328 pp.

Clawson, M. and C. S. Van Doren (editors). (1984). Statistics on Outdoor Recreation. Part I and Part II. Resources for the Future, Inc. 368 pp.

Cooper, Rollin B., P. Sue Sadowske and Mark D. Kantor. (1979). Winter Recreation Visitor Study: Wisconsin 1979. Recreation Resources Center, University of Wisconsin - Extension. 54 pp.

Cordell, Ken, John Bergstrom, Greg Ashley and Alan Watson. Report on Estimates of Economic Impact of Proposed Recreational Development at Land Between the Lakes: A Final Report of an Economic Assessment Study. (July 31, 1987). Prepared for the Tennessee Valley Authority, Land Between the Lakes. USDA Forest Service, Southeastern Forest Experiment Station, Research Division, The Outdoor Recreation and Wilderness Assessment Group. 35 pp. & appendices

Fosler, R. Scott (editor). (1988). The New Economic Role of American States. (New York: Oxford University Press). 370 pp.

Fridgen, Joseph D. (1986). Michigan State Parks Recreation Study. Michigan Travel, Tourism, and Recreation Resource Center, Michigan State University. pp.7-2 through 7-18.

Garhart, Robert, Jr. (1985). The Role of Error Structure in Simulations on Regional Input-Output Analysis. Journal of Regional Science, Vol. 25, No. 3. pp. 353-366.

Garhart, Rober E. and Giarratani, Frank. (1987). Nonsurvey Input-Output Estimation Techniques: Evidence on the Structure of Errors. Journal of Regional Science. Vol. 27, No. 2. pp. 245-253.

Goeldner, Charles R. and Karen P. Duea. (1984). Travel Trends in the United States and Canada. Business Research Division, Graduate School of Business Administration, University of Colorado. 261 pp. Goeldner, Charles R. (1978). Where to find Travel Research Facts. Journal of Travel Research. Summer, 1978. pp. 3-8.

Harrigan, Frank, J. W. McGilvray, and I. H. McNicoll. (1981). The Estimation of Interregional Trade Flows. Journal of Regional Science. Vol. 21, No. 1. pp. 65-78.

Holecek, Donald F. (1985). Development and Implementation of a Travel and Monitoring System for Michigan and Its Implications for Promotion Evaluation. November 15, 1985 Research Proposal submitted to the Michigan Department of Commerce, Travel Bureau. 5 pp.

Isard, Walter. 1953. Regional Commodity Balances and Interregional Commodity Flows. American Economic Review Papers. Vol. 43. pp. 167-180.

Isserman, Andrew M. (1980). Estimating Export Activity in a Regional Economy: A Theoretical and Empirical Analysis of Alternative Methods. International Regional Science Review. Vol. 5, No. 2. pp. 155-184.

Jackson, Randall W. (1986). The Full-Distribution Approach to Aggregate Representation in the Input-Output Modeling Framework. Journal of Regional Science. Vol 26, No. 3. p. 515-531.

Jensen, R. C. (1980). The Concept of Accuracy in Regional Input-Output Models. International Regional Science Review. Vol. 5, No. 2. pp. 139-154.

Jensen, R. C. 1987). On the Concept of Ready-Made Regional Input-Output Models. Review of Regional Studies, Vol. 17, No. 2. p. 20-25.

Jensen, R. C. and A. D. McGaurr. (1977). Reconciliation Techniques in Input-Output Analysis: Some Comparisons and Implications. Vol. 14. pp. 327-337.

Jensen, R. C., G. R. West and G. J. D. Hewings. (1988). The Study of Regional Economic Structure Using Input-Output Tables. Regional Studies. Vol. 22.3. pp. 209-220.

Keiner, Suellen T. (1985). The Contribution of Outdoor Recreation to State Economic Development. Council of State Planning Agencies. Working Papers series. 73 pp.

Kelly, T. and W. Becker. (1985). The Geographic Distribution of Travel Related Costs for Outdoor Recreation in Minnesota. Office of Planning, Minnesota Department of Natural Resources. 12 pp. and maps.

Link, Doug, Mary Link and Rollin Cooper. (no date). Trends in Wisconsin: Campgrounds 1982-1984, Food Service Establishments 1974-1984, Overnight Lodging Facilities 1971-1984. Recreation Resources Center, University of Wisconsin - Extension. 17 pp. Michigan Department of Natural Resources. (1977). Michigan 1976 Recreation Survey Design and Application. 104 pp.

Michigan Department of Natural Resources. (1978). Out-of-Pocket Recreation Spending: Facts and Policy Implications. Recreation Survey Report #7. 41 pp.

Michigan Department of Natural Resources. (1985). Building Michigan's Recreation Future: The 1985-90 Michigan Recreation Plan, Appendix B: Recreation in Michigan: Users, Activity, Programs, and Opportunities. 125 pp.

Miernyk, William H. (1976). Comments on Recent Developments in Regional Input-Output Analysis. International Regional Science Review. Vol. 1, No. 2. pp. 47-55.

Miller, Ronald E. and Peter D. Blair. (1985). Input-Output Analysis: Foundations and Extensions. (Englewood Cliffs, New Jersey: Prentice Hall). 464 pp.

Millerd, Frank W. and David W. Fischer. (1979). "The Local Economic Impact of Outdoor Recreation Facilities." <u>In</u> Land and Leisure: Concepts and Methods in Outdoor Recreation. Carlton S. Van Doren, George B. Priddle, and John E. Lewis (eds.) Second Edition, Maaroufa Press, Chicago. Chapter 18. (GV 191.4 .F57)

Minnesota Department of Natural Resources. (1985). Minnesota State Comprehensive Outdoor Recreation Plan (1985 Draft). Vol. I & II.

Morrison, W. I. and P. Smith. (1974). Nonsurvey Input-Output Techniques at the Small Area Level: An Evaluation. Journal of Regional Science. Vol. 14, No. 1. pp. 1-14.

Multi-Regional Policy Impact Simulation Project. (1988). The Multiregional Input-Output Accounts for 1977: Technical Documentation for the ASCII Tape. Submitted to the Energy and Materials Program, Office of Technology and Assessment, by the MRPIS Project at the Social Welfare Research Institute, Boston College, MA. (#BC6401). 20 pp.

Nelson, Charles M. (1988). Michigan State Forest Campground Campers in 1987. Department of Park and Recreation Resources, Michigan State University. 47 pp.

Nothdurft, William E. (1984). Renewing America: Natural Resource Assets and State Economic Development. Studies in Renewable Resource Planning. (Washington, D.C.: The Council of State Planning Agencies). 198 pp.

O'Halloran, Robert M. (1988). An Analysis of Michigan County Secondary Data with Recommendations for Utilization by Public and Private Tourism Planners and Managers. Vol. I and II. Dissertation, Michigan State University Department of Parks and Recreation Resources. Park, Se-Hark, Malek Mohtadi, and Atif Kubursi. (1981). Errors in Regional Nonsurvey Input-Output Models: Analytical and Simulation Results. Journal of Regional Science. Vol. 21, No. 3. pp. 321-339.

Pedersen, Larry. (1986). A Computer Program for Estimation of Outdoor Recreation Economic Impacts. (Unpublished term paper for Simulation Models in Natural Resource Management, Course # 960, Resource Development Department, Michigan State University.) 24 pp.

Pedersen, Larry and Daniel E. Chappelle. (1987). The Economic Importance of the Upper Lake States' Forest Resources: Modeling Lake States Forest Products and Services. Methodological Notes. (Unpublished paper prepared for the Great Lakes Governors' Conference on Forestry, April 9-10, 1987, Minneapolis, MN. 5 pp.

Pedersen, Larry and Daniel E. Chappelle. (1988). The Economic Importance of the Upper Lake States' Forest Resources: Modeling Lake States Forest Products and Services. <u>In</u> William E. Shands (editor). The Lake States Forests: A Resources Renaissance. Report and Proceedings of the Great Lakes Governors' Conference on Forestry, April 9-10, 1987, Minneapolis, MN, The Lake States Forestry Alliance, The Conservation Foundation, pp. 167-194.

Pedersen, L., D.E. Chappelle, and D. C. Lothner. (1989). Economic Impacts of Lake States Forestry: An Input-Output Study. Gen. Tech. Rep. NC-136, USDA Forest Service, North Central Forest Experiment Station, St. Paul, MN. 32 pp.

Pindyck, R. S. and D. L. Rubinfeld. (1981). Econometric models and Economic Forecasts. Second edition. (New York: McGraw-Hill, Inc.) 630 pp.

President's Commission on Americans Outdoors. (1987). Americans Outdoors: The Legacy, the Challenge. The Report of the President's Commission. (Washington, D.C.: Island Press). 420 pp.

Propst, Dennis B. (compiler). (1985). Assessing the Economic Impacts of Recreation and Tourism. Conference and Workshop, May 14-16, 1984, held at Michigan State University. U.S. Department of Agriculture, Forest Service, Southeastern Forest Experiment Station. 64 pp.

Propst, Dennis B. (1988). Use of IMPLAN with Public Area Recreation Visitor Survey (PARVS) Pretest Data: Findings and Recommendations. Natural Resources Research Program. Miscellaneous Paper R-88-1, prepared by Michigan State University for the U.S. Army Engineer Waterways Experiment Station, Vicksburg, Miss. 58 pp.

Propst, Dennis B. and Eric Siverts. (1990). Personal Consumption Expenditures (PCE) Tables: Refinements in Assessing the Economic Impacts of Recreation and Tourism. (In Process). Proceedings of the Outdoor Recreation Trends Symposium III: Dialogue for the '90's. March 29-31, Indianapolis, IN. Ralston, Scott N., Steven E. Hastings, and Sharon M. Brucker. (1986). Improving Regional I-O Models: Evidence Against Uniform Regional Purchase Coefficients Across Rows. Annals of Regional Science. Vol. XX, no. 1. March 1986. pp. 65-80.

Richardson, Harry W. (1972). Input-Output and Regional Economics. Weidenfeld and Nicolson, London. 294 pp.

Richardson, Harry W. (1978). The State of Regional Economics: A Survey Article. International Regional Science Review 3(1). pp. 1-48.

Richardson, Harry W. (1985). Input-Output and Economic Base Multipliers: Looking Backward and Forward. Journal of Regional Science 25(4). pp. 607-661.

Rose, Chris and Rollin Cooper. (1986). The Economic Impacts of Recreation-Tourism: St. Croix County, Wisconsin, March 15, 1986. Recreation Resources Center, University of Wisconsin-Extension. 31 pp.

Round, Jeffrey, L. (1983). Nonsurvey Techniques: A Critical Review of the Theory and the Evidence. International Regional Science Review. vol. 8. pp. 189-212.

Sawyer, C. H. and R. E. Miller. (1983). Experiments in Regionalization of a National Input-Output Table. Environment and Planning A. Vol. 15, pp. 1501-1520.

Siverts, Leif E. (1988). Modeling Regional Economic Change at the County Level: An IMPLAN Application. Dissertation, Michigan State University Department of Forestry. 190 pp.

Spotts, Daniel M. and Edward M. Mahoney. (1985). Preliminary Results of Summer, Fall, and Winter Surveys. Tri-County Tourism Research Project. Department of Park and Recreation Resources, Michigan State University. 50+pp.

Spotts, Daniel M. (editor). (1986). Travel and Tourism in Michigan: A Statistical Profile. 1st Edition. Michigan Travel, Tourism and Recreation Resource Center, Michigan State University. 150 pp.

Stevens, Benjamin H. (1984). Tourism Expenditure Translators for Use in Measuring the Regional Economic Impacts of Recreation on Forest Service Lands. Regional Science Research Institute Draft Report to the USDA Forest Service Rocky Mountain Forest and Range Experiment Station. 20 pp.

Stevens, Benjamin H. (1987). Comments on "Ready-Made" Regional Input-Output Model Systems: Model Accuracy and the Value of Limited Survey. Review of Regional Studies, Vol. 17, No. 2. p. 17-20. Stevens, B.H. and G. Trainer. (1980). Error Generation in Regional Input-Ouput Analysis and its Implications for Non-Survey Models. <u>In</u> S. Pleeter (ed.), Economic Impact Analysis. (Amsterdam: Martinus Nijhoff). pp. 68-84.

Stevens, B.H., G.I. Treyz, D.J. Ehrlich and J.R. Bower. (1983). A New Technique for the Construction of Non-Survey Regional Input-Output Models. International Regional Science Review. 8(3):271-286. (Dec.).

Stevens, B. H., G.I. Treyz and M.I. Lahr. (1986). A Note on the Comparative Accuracy of RPC Estimating Techniques. Unpublished November 12, 1986 paper. Regional Science Research Institute. 10 pp.

Stynes, Daniel J. and Edward M. Mahoney. (1986). 1984 Michigan Commercial Campground Marketing Study. Department of Park and Recreation Resources, Michigan State University. 42 pp.

Stynes, Daniel J., Gene L. Brothers, Donald F. Holecek, and Dave Verbyla. (1983). Spending Patterns and Economic Impacts of Michigan Registered Boat Owners. (Ann Arbor, Michigan: Michigan Sea Grant Publications). MICHU-SG-83-210. pp. 102.

Treyz, George I. and Benjamin H. Stevens. (1985). The TFS Regional Modelling Methodology. Regional Studies 19. pp.547-562.

Treyz, George I., David J. Ehrlich, Mario S. Depillis, Jr., Margaret P. Larson, and Sasha N. Page, Jr. (1986). The Michigan Forecasting and Simulation Model (MIFS-53). Regional Economic Models, Inc. 463 pp. (& appendices). (July).

U.S. Department of Agriculture, Forest Service. Unpublished 1981-1985 Recreation Information Management Systems (RIMS) Data for Region 9.

U.S. Department of Agriculture, Forest Service, Systems Application Unit, Land Management Planning. (September, 1983). IMPLAN User's Guide. 200+pp.

U.S. Department of Agriculture, Forest Service, Land Management Planning Systems Section. (July, 1985). IMPLAN Version 1.1 Analysis Guide. 250+pp.

U.S. Department of Commerce, Bureau of Economic Analysis, Interindustry Economics Division. (1984). Description of Computer Tape Containing Detailed Item Purchases by Personal Consumption Expenditures (PCE) and Gross Private Fixed Investment (GPFI) Categories, 1977. 6 pp., plus attachments.

U.S. Department of Commerce, Bureau of Economic Analysis. (1984). The Detailed Input-Output Structure of the U.S. Economy, 1977. Vol. 1, The Use and Make of Commodities by Industries. (Washington D.C.: U.S. Government Printing Office.) U.S. Department of Health and Human Services. (1983). The Multiregional Input-Output Accounts, 1977. Vol.I-VI. Jack Faucett Associates. Reports submitted to the U.S. Department of Health and Human Services, Contract No. HHS-100-81-0057, July 1983. PB83-258582.

U.S. Department of the Interior, Fish and Wildlife Service. (1988). 1985 National Survey of Fishing, Hunting and Wildlife-Associated Recreation. 167 pp.

Van Pelt, Linda L. and Timothy J. Kelly. (1988). Significance of Outdoor Recreation Expenditures to the State and Regional Economies in Minnesota. Office of Planning, Minnesota Department of Natural Resources. 116 pp.

Walsh, Richard G. (1986). Recreation Economic Decisions: Comparing Benefits and Costs. (State College, PA: Venture Publishing, Inc.). 635 pp.

Wisconsin Department of Natural Resources, Bureau of Planning. (1981). 1981 Wisconsin Comprehensive Outdoor Recreation Plan: Assessment and Policy Plan. 150+pp.

Wisconsin Department of Natural Resources. (1985-87). Statewide Comprehensive Outdoor Recreation Plan (SCORP). Volumes I-X.

