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ABSTRACT

INVARIANT MANIFOLDS
FOR FLOWS IN BANACH SPACES

By
Kening Lu

We consider the existence, smoothness and exponential attractivity of
global invariant manifolds for flow in Banach Spaces. We show that every global
invariant manifold can be expressed as a graph of a Ck map, provided that the
invariant manifolds are exponentially attractive.  Applications go to the
Reaction—Diffusion equation, the Kuramoto—Sivashinsky equation, and singlular

perturbed wave equation.
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§1 Introduction

In the study of dynamical systems in finite dimensional spaces or manifolds,
the theory of invariant manifolds has proved to be a fundamental and useful idea.
In recent years, the theory of invariant manifolds has been generalized to flows or
semiflows in Banach spaces. See, for example, Babin and Vishik [2], Bates and
Jones (3], Carr [4], Chow and‘Ha.le [5], Hale [16], [17], Hale and Lin [18], Henry
[21], Marsden and Scheurle [26], Wells [32] and others. On the other hand, it is
known that global compact attractors for many dissipative systems in Banach
spaces have finite capacity or Hausdoff dimensions (see, for example, Mallet—Paret
[23], Mane [25], Hale [17] Constantin, Foias and Temam [9], Babin and Vishik [2],
Hale, Magalhaes and Oliva [19]). Recently, it has been found that in many cases
these global compact attractors actually can be embedded in exponentially
attractive finite dimensional invariant manifolds which we call inertial manifolds
(see, for example, Conway, Hoff and Smoller [16], Constantin, Foias, Nicolaenko
and Temam (8], Doering, Gibbon, Holm and Nicolaenko [11], Foias, Nicolaenko,
Sell and Temam [13], Foias, Sell and Temam [14] and Mallet—Paret and Sell [24]).
This supports the believe that the asymptotic behavior of .;,olutions of many
infinite dimensional dynamical systems resemble the behavior of solutions of finite
dimensional dynamical systems. In most cases, the inertial manifolds are shown to
be Lipschitz continuous. In Mallet—Paret and Sell [24] and Chow, Lu and Sell [7],
it is shown that for a large class of evolution equations in Banach spaces, inertial
manifolds are in fact C with bounded C! norms. This smooth property is very
important in applications. The smoothness proof is not trivial even in finite
dimensional cases for the center manifold theorem (see, for example, van Gils and

Vanderbauwhede [15] and Chow and Lu [6]).
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In this paper, we present a theory of smooth invariant manifolds based on
the classical method of Liapunov—Perron for continuous semiflows in Banach
spaces. Basic hypotheses for these semiflows will be satisfied by semilinear
parabolic equations on bounded or unbounded domains or hyperbolic equations.
Examples of these continuous semigroups from evolution equations may be found
in Bates and Jones [3]. The two basic theorems are stated for nonlinear integral
equations. One is on the existence of smooth invariant manifolds (Theorems 4.4)
and the other is on exponential attractivity of invariant manifolds (Theorem 5.1).
In fact, Theorem 5.1 is related to the squeezing property in Foias Sell and Temam
(14). In §6 and §7, we show how our results are related the center manifold
theorem and theorems on inertial manifolds.

In §8, we consider the question of continuous dependence on parameters for
invariant manifolds or inertial manifolds. Since our existence theorem (theorem
4.4) is proved by using the uniform contraction theorem, the answer to the above
question is obviously true provided the nonlinear equations depend smoothly on
parameters. Hence, the interesting cases must involve equations which depend
singularly on some parameters. As an example, we consider the following two

scalar equations:

(1.1) Pu, +u —u = f(u)
(1.2) u —u. = f(u)

on the interval [0,7] with Dirichlet boundary conditions. We will show that under

certain conditions on the nonlinear term f there are inertial manifolds 4 ; and 4



for equations (1.1) and (1.2) respectively, for all small ¢. Moreover, dim 4 e = dim
Jtp and Jtc "approaches" Jtp as ¢ -+ 0. In our proof, we use an equivalent inner
product in the phase space for the damped wave equation to overcome some
technical difficulties. This inner product was first used by Mora [28] and Mora
and Sola—Morale [29]. Similar convergence results have also been independently
obtained by Mora and Sola—Morales [30]. In Hale and Raugel [20], it is shown that
the global attractor of (1.1) approaches that of (1.2). In fact, their results are valid

for a much larger class of equations in several space variables.



§2. Notation3

Let E,, E, be Banachspaces and U be an open subset of E,. For any

integer k> 0, let
C¥(U,E,) = {f |f: U~ E, k-times differentiable
and sup |D(x)| < for 1 <i <k}

and

k .
f|, =% sup |D'f(x)]
i=o xeU

where Di is the i—th differentiation operator. Let
cOYUE,) = {f | fe CX(U,E,) and

k k
swp IDET(x) — DXi(y)]
x,yGU |X - yl
Xty

<oo}

and £y, = |f], + Lip DX, where

LipD¥t= sup |D f(X) — D¥i(y)]

x #y [x — y]|
x,yeU




Clearly Ck(U,Ez) and Ck’l(U,E2) are Banach spaces with norms |- |, and

| * Ik,l'
Let Lk(El,Ez) be the Banach space of all k multilinear continuous maps

from E, into Ey. For A € LX(E_,E,,),

Al or [|Al
k= ke, By

denotes the norm of A\. For notational simplicity, we will sometimes write ||A|| for
"’\"k provided this will not cause confusion.

Let J CR be an interval (in most cases, we willlet J =R = (— 0] or J =
RT= [0,0)). For any n€R and any Banach space E, we denote by C U(J’E) the
following Banach space

C”(J,E) = {f | f: J- E is continuous and

sup e_mlf(t)lE <w}
teJ
with norm

I£] = sup & T*|f(t)|
C,(JE) ™ tey E



§3. Linear and nonlinear integral equations.
Let X, Y and Z be Banach spaces. Suppose that X C Y C Z, X is
continuously imbedded in Y and Y is continuously imbedded in Z. Let S(t) (t
> 0) be a strongly continuous semigroup of bounded linear operators on Z.

Consider the following assumptions:

(Hl) 1=12,91, where Z, and Z, are invariant

linear subspaces under S(t).

(H,) P.S(t) = S(t)P; i= 1,2,

where Pi is a projection from Z to Zi .
H P.X and P.Y (i = 1,2) are invariant under S(t) and S(t)Y C X,
3 i i
(H,) S(t) can be extended to a group on Z, .
4 1
(H5) | There exist constants a,3,7,7,M and M* such that
a>0,>0,0<y<1,M21,M*20 ,
(3.1) & S(1)Py |y < Me®|y|y for t<0,y €Y,

(3.2) |7 MS(t)Pox| y < MeP¥|x|y for £20 and x X,



(33)  [€™S(1)Poy |y < (METT+MNe Py y for >0 and yeY.

By using (3.1) and (3.2), we have that for any f(t) ¢ Cﬂ(IR_,Y), the
integrals

L:S(t—s)Plf(s)ds and r S(t—s)P2f(s)dS'

-

exist for all t < 0.. Hence, we can define the following linear operator
t t

(3.4) .7f=I S(t-8)Pf(s)ds + I S(t-8)P,f(s)ds .
0 -0

Lemma 3.1 The operator J defined by (3.4) is a bounded linear operator
from C + C(R—,Y) to C n+ c(It-,X) for every ¢ € [0,a) and the operator norm of

J satisfies the following estimate
|71l € K(ate.f-¢,7)
where
(3.5) K(a,67) = M(% + %{116'1”) + M*},

Proof: Obviously J is a linear operator. We will show that J is bounded
and the estimate is valid. By using (3.1), (3.2), and (3.3), we have



| 3’f|C X" sup|e‘(’7+‘)tyf(t)|
bt t
< :1518 {Jole_("*")tS(t—s)Plf(s) | xds + J-w|e_("+€)t8(t—s)P2f(s)| xds
¢ fsup (M1 (s 1 [* (1e) e (A )
t<0 0 -

™ t
+M J —(B-€)8 4 }}Iflcﬁe(“‘—'Y)

-0

< {M[ﬁ + Jf_—es—7ds + rl (ﬂ+e)7e—(ﬂ+ C)Sd&
Ji=r3

R
M J:e sl wy)
< {M[ et 1—1(5-5 'r-l] +M ﬂ__}|f|c [RY)

This completes the proof.

Let F ¢ Ck(X,Y) and ¢ ¢ CO(R_,X). Consider the following nonlinear
integral equation

t t
(3.6)  o(t) = S(t)€ + J'OS(t—s)PlF(cp(s))ds + J S(t~5)P,F((s))ds



Set (& (€))(t) = S(t)¢§ and F(p)(t) = F(p(t)) and rewrite (3.6) in the

following abstract form:

(3.7 p=a (&) + I(F(9) ,
where £ ¢ PIX.

Lemma 3.2 If F ¢ C(X,Y) and K(e,4,7)(Lip F) < 1, then there exists 0
< ¢y < @ such that for each 0< €< ¢ and § € Py X, K(a+e¢,0-¢,7)(Lip F) < 1
and (3.7) has a unique solution (&) € C'H' E(R—,X). Moreover, ¢ : P;X
C . G(R—,X) is Lipschitz and (¢) is independent of ¢ € [0,¢).

Proof: By the continuity of K(a,8,7), there exists ¢ > 0 such that
K(a+¢,0-¢,7)(Lip F) < 1 for every €€ [O,cO]. By (3.1), we have that o is a
bounded linear operator from P;X to C TI+ C(R-,X) for every €€ [0,¢y]. Set

(3.8) HApf) = #(§) + I(F(y)) .

Since ¢ and J are bounded linear operators and F € Cl, for any Y11 ¥y
€ C7I+ 6(l!_,X) and {€P,X, wehave

S1I(F(ey) - 3(5(¢2))|c"+6(m‘,X)
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<1 FN(Lip F) | o= -
TN ) v, 2|Cn+e(R X)
< K(a—¢,4+¢,7)(Lip F)|p,—p -
( N ), 2|C”+€(|R X) .

Since K(a+e¢,0—¢,7)(Lip F) < 1, this implies that _# is a uniform
contraction with respect to the variable . By using uniform contraction theorem,
we have that for any ¢ € P X, F(p,€) has a unique fixed point goe(f) €
Cr,+ e(l!—,X). It is clear that ¢ is Lipschitz continuous. Hence, <pe(§) is

Lipschitz as a mapping from P;X into C c(I!-,X). Since C”+ C(R—,X) C

~
C ﬂ(R_’X)’ by uniqueness of the fixed point of , we have ¢ (£) = ¢,(§) for any

¢ € [0,¢5]. Define p(§) = p,(¢). This completes the proof of Lemma 3.2.

Lemma 3.3 (Fiber contraction theorem) Let E1 and E2 be Banach
spaces and U C E; be a closed subset. Suppose that

j:U"U "
JX:E2-*E2, xeU

and

ﬁ(x,y) = (‘2(’()’ ‘/‘X(Y))a XE€ Ua YE E2

are continuous maps. Suppose that 2 is a contraction and

sup {Lip(.£,):xeU}<1 .
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Let the unique fixed point of 2@ be u and the unique fixed of du be v. Then
(u,v) is an attractive fixed point of #.
Proof: See Hirsch and Pugh [22].

Lemma 3.4 Let k> 1 be an integer and F € CX(X,Y). If < 0, +(k=1)g
> 0 and K(a,0+(k-1)n,7)(Lip F) < 1, then the unique solution ¢(¢) of equation
(3.7) is ck as a mapping from P,X into Ckn(R—,X).

Proof: By the definition of K(a,8,7) there exists >0 such that € <

a and for every ¢ € [0,¢,]
(3.11) K(o+¢,0+(k—1)n—¢,7)(Lip F) < 1.

By using Lemma 3.2, equation (3.7) has a unique solution (&) €

— ) 1 —
CppRX) forany €€ [0,c)] and (¢) is c®! from P)X to Cpp (RX).
We will first show that ¢{€) : Py X + C (R™,X) is in fact cl.

Let %(§) : P;X-C —,X) be continuous. Set

7"*'51('t
t
(F9)06) = | S0P FHEENds, 1 <0

The following smoothness properties are needed. Choose an arbitrary but fixed

infinite sequence :

c1>61>62>--->0.
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Claim 1 If % : PX - Cﬂ+61(R",X) is C!, then Iy : PX -
— . 1
Cpy g, R X) I8 C.
Proof of claim 1: Let #(£) € C,, 5 (R™,X) be fixed. Assume that %(¢) is c!
1

with respect to £. Define

t 1
619 (G000 = [ S, DFHODE- (o)

where (€ P,X and D(£) is the direvative of ¥(£) with respect to £ evaluated at
§ Let £ and o €P X be given. We have

—(1+6y)t
314) I=le 2 (FHE) AT EIAD®) (&) (EN]
SII +I2 .
where

—(-0,y)t ¢
I, = e 2JS

—F(#(5,6,)-DF(%(5.£,)) (DWE,) - (€,~€,))(s)]ds]

Ry JT

2 SESFs)F(45.8)

—DF(¢(S,§2))(D1/)(§2) '(51_52))(3)](15'
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and T < 0 is a fixed constant which is to be chosen later. Since .@i is linear and
continuous in ¢ € P, X, it suffices to show that I = o(|§1—§2|) as |§1-§2| -0. In
other words, it is sufficient to show that for any given ¢ > 0 there exists § > 0
such that I < €| §;—€,| for all [§;—&£,| < & Let € > 0 be given. Choose T < 0 so
that

(6,—6,)T
3_1-52e L2279 IR 19l < e/2 .

Ift2T,itis clea.rthatI=o(|§1—§2|)as |§1—§2| -+0. Lett < T <0. Wehave

(3.15) I, <

1 |Jte(a—62)(t—8)+(5l— 2)32 .

|F|
T 1

IDY(&H)I |§;—€5 | ds]|

LYPX,C,py g, K X)

(,~8))T
5;152«:1 Z20R| 191,166,

<5lé-6l .

Since T < 0 is finite, it is not hard to see that I, < é ]{1—§2| if |§1—§2| is
sufficiently small. This proves the claim.

Claim 2: If ¢ : P/X - Cin+6i(m—’x) is C', then g9 :PX =~
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— 1 i 1 — o e 0
Ci"+5i+1(k ,X) is C for i=1,2, -- k.

Proof of claim 2 We will prove the claim by induction. Assume that for i
= 1,2,---,k—1 the claim is true. By induction, we can compute the (k—1)th
derivative of .9i¢ with respect to &, Dk—l(ﬁiw). It is not hard to see that
Dk_1(8i¢) has the same integral form as ;. Using the same argument, we have
D¥Y(g9) is €' from P X to Cyy®X). This proves the claim.

Let ¥(¢) : P;X - (R™,X) be continuous. Similarly set

C17+€1
t
HUE) = | S(t-9)PyF(p(s,)ds .

Claim3If (¥ is C' from P,X to Cipt 6i(R_,X) then Fp(Y) is C'

from P X to C; (R,X) for 1<i<k.

81

Claim 3 is similar to claim 2 and the proof is omitted.

Now, we will now prove that the unique solution ¢ : P;X - C n(R—,X) is
cl. Since differentiability is a local property, it is sufficient to show that ¢ : B -+
C,(R™X) is C! for any fixed but arbitrary bounded ball in PX. Let E, =
CO(B,CU(R-,X)) and E, = CO(B,LI(PIX,CH(R_,X))). Let p € E; and ¥ € E
Define

9

t t
B(H)(4,E) = SM)E + jo (6P, F(E)ds + | S(t—s)PoF($(€))ds.

-0

and
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A ¥) = S()E + jt S(t-8)P, DF((s,£)) ¥ds + r S(t-8)P,DF(#(s,))¥ds
0 )

In the definition of J¢(W), we assume that for every ( € P.X, ./{w(\ll)-( €
cds,c ;R 7)) and is defined by

¢
(£,(F)-Q(t,€) = S(t)¢ + Io S(t—8)P; DF((£))(¥ - ¢)(s,£)ds

t
+ [ S(t-8)P,DF(HO)(¥- ) (s,6)ds

Since (Lip F)K(a,8,7) < 1, J¢(-) is a uniform contraction. Hence, u‘w(°) has
a unique fixed point ¥ " for every Y € El'

By Lemma 3.2, 2 is a contraction in E,. Let ¢(€) be the unique fixed
point of Zand ® € E, the unique fixed point of € <p(°)' We claim that & =

D £¥ To prove our claim, let
A7) = (2(¢),£(V)) .

By fiber contraction theorem, (p,®) is an attractive fixed point of #. This says
that for every ¢ € E1 and Ve E2, we have

(%) - (,®) asn - w.

where #° denotes the nth iterate of ¥,
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Fixed ¢ € CI(B,CrH_& (®",X)). By claims 2 and 3, I ¢ €
1

cls,c " 52(R_,X)) and
t
(DF4:4)(18) = | S(-s)PDF(HONDHE)- O(s)ds

t
+ | St-9)P,DFUE)DUE-)(s)ds
This implies that DIy € E, because C + 6(R—,X) ccC q(IR—,X) for all § > 0. Thus,
#H,DY) = (2(4),4,D¥) = (2(#).D2(V);

€(BDY) = (3%(¥), 4 9(y°D2(¥) = (2% (VD 2°(v));

and

€ (DY) = (2 (WA _ -6 g(5)°D2(¥) = (27(¥).D2(¥)).

oy’

We note that,

3(¢)°D$(¢) € E2 .
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By the attractivity of the pair (¢,®), we have 2%(%) - ¢ and D2%vy)- ®asn-
®. This implies ® = Dy and pis Cl..
Next we assume the theorem is true up to k—1 and we will use induction.

By claims 1 and 2, we have

D'p(¢) € C°(B,C, (RX)), ; = in{k—i)e,k
1

for i=1, -+ k1. Let EX = CO(B,L“‘I(PIX,C,,(R‘,X))) and EX =

cdB,Lkp x,c K "X))). By differentiating .6 and 2 formally, we define for
we Ell( and € El2‘ the following functions:

t
Ao SO = jo S(t-8)P, DF(4(€))R(€)ds
t
¥ jo S(t-8)P, DZF((£))[(k—1)D{€) )+ €) D( )]s
k-1, [t
+ R +I S(t-8)P,DF(w(€))R(€)ds
t
+ [ S(t-91P D’ F(AOI(k-DDAAE+AODAEIds + Ry ™

and

t
F(0) = | S(-5)P DF(AED(E)ds + R
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where le(——l’ i = 1,2,3, is an appropriate term involving derivatives of ¢ with
respect to £ of order at most k—1. By using the same arguments as in the case k
= 1, we have that Dk_lcp : P X Lk_l(PIX, CO(B,CU(R,X)) is & continuously
differentiable.

This completes the proof of Lemma 3.3.



§4. Invariant manifolds.

Let F ¢ Ck(X,Y). Consider the following integral equation

t
(4.1) x(t) = S(t—tg)x(t) + L S(t—tg)F(x(s))ds
0

where x(t) is a map from an interval JCR to X.

Definition 4.1: If x: J + X is continuous and satisfies (4.1) for all tg L€
J, tg < t, then we call x(t) a solution of (4.1) on J. For X, € X, we denote by
x(t,xo) a solution of (4.1) which equals to Xp at t=0.

Lemma 4.2 Let n < 0. Assume that (Hl)—(H5) are satisfied. Let x(t) be
a solution of (4.1) on R™. Then the following properties are equivalent

(i) P,x(t) e COR™,P,X) .
(ii) x(t) € C,’(R-,X) .
(iii) x(t) can be expressed as

x(t) = S(t)x(0) + J;S(t—s)PlF(x(s))ds + r S(t—5)PyF(x(s))ds .

Proof. First we prove that (i) implies (ii). Since

19
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c"®"X) ¢ C,(R™X)

we have that (i) implies Pox(t) ¢ C ”(R_,X). Since x(t) is a solution of (4.1) on
R, By using (H,) and (4.1) we have

(4.2) P x(t) = S(t)P,x(0) + J:;S(t—s)PlF(x(s))ds .

By using (3.1), we have that P x(t) ¢ C ”(R—,X). Hence (i) implies (ii).
Next we show that (ii) implies (iii). By (4.1), we have (4.2) and

t
(4.3) Pox(t) = S(t—ty)Pyx(ty) + L S(t—8)F(x(s))ds .
0

e‘(ﬂ"‘ ﬂ)(t-to)

(4.4) |S(t~tg)Pox(tg) | < M Ix(tg) I

—(B+n)(t—ty)+nt
<Me O le|cﬂ(n‘,x)

—Bty—(B+m)t
<Me " l"'cﬂ(n‘,X) .

Letting t; - — in (4.3) and using (4.4), we have

Pox(t) = Jt S(t-8)P,F(x(s))ds -

-0
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Hence,

x(t) = S(t)Px(0) + ISS(t-s)PIF(x(s))ds

t
+ I S(t—8)PoF(x(s))ds -
=00
Finally, we show that (iii) implies (i). Since F is bounded, we have

IPyx(t)] < |F|0{Mjt (t—5) 77t B 4 NJt e (t8)(B-n)gg)

< IF|ptM 3L (8-m) 77 + Nz}

Hence,

P,x(t) ¢ C'(R™,P, X).
This completes the proof.

Theorem 4.4. Let 7 < 0. Assume that (Hl)_(Hs) are satisfied. If F ¢
Ck(X,Y), f+(k-1)n > 0 and

K(a,+(k-1)n,7)(Lip F) < 1,

then there exists a Ck invariant manifold 4 for the flow defined by (4.1) and

A satisfies
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(i) K= {xol x(t,xo) is defined for all t ¢ R~ and Pox(t,xg) € CO(!R—,X)}

(i) A= {€+h(€)| € € P X}

where h: P\ X » P,X is ck,
Proof: Let

)= | SE-aPF(AOENE,

where () is the unique solution of (3.7). By using Lemma 3.4, we have h(¢) =
@(£)(0) — S(0)¢ is C¥ from P, X to P,X. To prove that .4 is invariant, let x; ¢

A Since F is globally Lipschitz and x;, € 4, the unique solution x(t,xo) is defined
for all t R and x(+,xg) € C,(R™X). Furthermore, x(t,xg) € 4 for all t < 0. Let

t; > 0.. Since x(t,xo) is a solution of (4.1), y(t) = x(t+t1,x0) satisfies

t
¥(6) = S(itly(ig) + | S-5)F(y(s))ds
0

forall —e <t <t <0. Since x(-,xy) € Cr’(R—,X), y(+) = x(-+t;,x5) € Cn(lR_,X).
Hence, y(0) = x(tl,xo) ¢ A. This completes the proof of the theorem.



§5. Exponential attractivity

In this section, we will prove that the invariant manifold 4 obtained in

Theorem 4.4 is exponentially attractive. More precisely, we have the following.

Theorem 5.1 Let n < 0. Assume (Hl)_(HS) are satisfied. If F ¢
cl(X,Y), K(a,8,7)(Lip F) <1 and

MK(a,8,7)Lip(F)

(5.1) <
1 —K(a,8,7)Lip(F)

*
then for any solution x(t,x;) of (4.1) on [0,@), there exists a unique Xq € K

such that

sup & (x(txp)-x(txg) | < +o -
>

b 3
Proof: By Theorem 4.4, 4 is a C! invariant manifold. Let x and x be
x
any two solutions of (4.1) on (0,) and w = x —x. Hence, w(t) satisfies the

following equation

(5.2) w = S(t—tg)w(ty) + I: S(t—8)(F(w+x)-F(x))ds .
0

As in §4, it can be shown that if w is a solution of (5.2) then w e C n(lR’*',X) if

and only if

23
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w= S(t)w2 + J;S(t—s)P2(F(w+x)-F(x))ds

+ JtS(t—s)Pl(F(w+x)—F(x))ds

where w, = P,w(0) = P2x*(0)—-P2x(0) = {; — o
Let o (w,) = S(t)w, and

t
P (wx) = JOS(t—s)P2(F(w+x)—F(x))ds

+ Jts(t-s)Pl(F(w+x)—F(x))ds-

Clearly o is a bounded linear operator from P,X to C U(R'*',X) and ¥
takes C”(R"',X) into itself. For any w, and w, € cn(uz*,X), we have

1™ # (w)x)= # (W) |

< |emJ;S(t—s)P2(F(wl+x)—F(wl+x)—F(w2+x))ds Ix
t
+| emJOS(t—s)PI(F(w1+x)—F(w2+x))ds Ix

< (ME + LT + MU N (Lip F) [ wy— w,| .
n )
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Hence, .z’(wz,w,x) = (w2) + #(w,x) is a uniform contraction with respect to x
and '?3’2 By using uniform contraction theorem, we have that for any w, € PyX,
and any solution x(t) of (4.1) .7 has a unique fixed point \;v(x,w2).

Furthermore, if w; = Pl\‘v(x,w2)(0), then

(5.3) w = f;S(—s)Pl[F(\;v(x,w2)+x(s))—F(x))]ds = g(x,wy).

Note that g is C* and w = x —x. Let P)x (0) = £ and P;x(0) = £;. Thus,
x*e A if and only if {2 = h({;), where h is given in Theorem 4.4. By using (5.3),
x* ¢ A if and only if

(5.4) €] = & + g(xh(€]) — &) .

Since Lip(g) < 1 and Lip(h) < 1, by using condition (5.1) we have that for every
solution x(t) of (4.1) on [0,) equation (5.4) has a unique solution §I. This proves

the theorem.



§6 Semilinear evolution equations

As a simple application of the results in §4, we will show how one can
obtain Ck global center unstable manifolds for abstract semilinear evolution
equations in Banach spaces. We will not prove the existence of local Ck center
unstable manifolds since they can be obtained by using a cut off function. We
refer the readers to Carr [4] for more detail.

Consider the following semilinear evolution equation in the Banach space Z
= Z10Z2, where Z1 and Z2 are subspaces of Z.

x + Ax = f(x,y)
(6.1)
{ y + By = g(x,y)

where x e Z1 and y ¢ Zz, A and B are linear operator from their domains &
(A) and 9 (B) into Z, and Z, respectively, and f and g are nonlinear
maps. We assume that B is a sectorial operator [21]. For 0 < 7<1,let B7 be
the 7y—fractional power of B. The domain of B7 is & (B7) = Zg. It is well
known that Zg is a Banach Space with norm |x| = |B7x|. Note that Zg =
Z,.

Let 0< 7<1 befixed. Assume thatf:2) xZJ+Z, and g Z; x2J -2,

satisfy the following conditions

f(x.y) = 0(|x|2+|y%) and g(xy) = 0(|x|%+]y|2)

26
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as (x,y) - (0,0). Assume that the spectra o(A) and o(B) of A and B satisfy

the following conditions

{Re(a(A)) <A <0
(6.2)
Re(a(B)) > A5 >0

We also assume
(6.3) A:X -X is bounded.

Let 4 be an invariant manifold of (7.1). 4 is called a global center
unstable manifold if it is the graph of a cl map h: Z; + Z, which satisfies h(0) = 0
and Dh(0) =0.

Since A is bounded and B is sectorial, the linear operator

-A 0

0 -B
generates an analytic semigroup S(t) on Z. Set X =Z, @ Zg and Y =2. It
can be shown [21] that (H,)—(H,) are satisfied. We will see that (H) is also
satisfied. Since (6.2) and (6.3) are true and B is a sectorial operator, there

exists a constant wy > 0 such that for every small w >0 there exists M > 1, such

that

—w,t
(6.4) le A <Me L, t<0
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—wyt
(6.5) le Bl ¢Me 2, t20
—Wot
(6.6) |B7e“B|5M1—7e  t>0 .

t

Let w << uwy, a=1w >0, and 8 = wy—1 > 0. We have that (H5) is
satisfied. By using Theorems 4.4 and 5.1, we have the following center unstable
manifold theorem.

Theorem 6.1: Assume that conditions (6.2) and (6.3) are satisfied. Assume
that 0 < 7 < 1. For any integer k > 1, if

feCX(z, ©2],2,), 8 ¢ C¥(2, ©2], 2,),
kn < wy and K(n-w;,wy—kn,7)(Lip(f) + Lip(g)) <1 ,

then (6.1) has a ck global center unstable manifold 4 Furthermore, if
| Lip(f)+Lip(g)| is sufficiently small, then 4 is exponentially attractive.

Remark 6.2 In Theorem 6.1, we do not require Ck norms of f and g to be
small.



§7 CX inertial manifolds.

Consider the following equation in the Banach Space Z

- 4z , Az +R(z) =0

1
z(0) =z

p
where A is a sectorial operator on Z, R(z) is a nonlinear map from X It

Xp2 where the exponents I and Py satisfy either 1 > p12py >0, or 1>p,2
py 2 0.

An invariant manifold # of (7.1) is called an inertial manifold of (7.1) if it
is a finite dimensional Lipschitz manifold and is globally attractive. In this section
we will applied the results obtained in §4 and §5 to the abstract nonlinear
evolution equations (7.1) to obtain X inertial manifolds. Applications will also
considered.

Assume that the spectrum of A, o(A), satisfies the following conditions
(7.2) a(A) = al(A) u 02(A) ,
(7.3) A

1= sup{ReX: A ¢ al(A)} < inf{Re\X : X ¢ 02(A)} = ,\2 ,

(7.4) o,(A) consists of only eigenvalues with finite,

multiplicities and is a finite set

29
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(1.5) | Rea(A) > 0 .

Let P, be the projection associated with crl(A) and P, =1—P,. Then

there exist constants M > 1, w > 0 and wy > 0 such that

“-’lltl

—At

. < , 1 R

(7.6) |Pe xlpl_Me |x|p2 forall t e
—At Wt

: < : >

(7.7 | Poe xlpl_Me |x|p1 t20
_ Po—py —Wot
(7.8) P Ayl <Mt 2 'le 2|x| , t>0.
2 1 Py

Let w <9< w, a=1w, B = wy=1), and 7 = p1—Py- Then
hypotheses (Hl)—(HS) are satisfied. By using Theorems 4.4 and 5.1, we have

py P
Theorem 7.1: If R e C¥(X 1,X 2) and there exists 7 > 0 such that
w <9< kn < Wos Lip(F)K(a,/~(k-1)1,7) < 1 and

MK(a,B,7)Lip(F)

then (7.1) has a Ck inertial manifold.
Example 7.2 Let Z be a Hilbert space. Consider the following problem [14]:

9) {g% + Au + R(u) =0

u(0) = ug
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where u € Z, A is positive self-adjoint linear operator with domain 2 (A) dense

in Z,
R(u) = Cu + B(u,u) +f

where C is linear, B is bilinear and f ¢ Z is fixed.. Assume A has a compact
inverse A_l. Hence, the spectrum of consists of only eigenvalues ’\i’ i=1.2,...,

satisfying:
AISA2S'.--'SAi"m, a.Si-’m

Let e €Z,i=1.2,.., be the eigenvector of A corresponding to eigenvalues A..
Let N > 0 be an integer and P, Dbe the projection from H into span{e,, ... .en}
and P, = I-P,. Furthermore, we assume f ¢ D(AI/ 2), C and B satisfy the

following conditions
(7.10) |AY2B(uv)| <c;|Aul[Av]| forall uveD(A}/?)
(7.11) |AY2C u] <cylAul  for all ueD(A!/?)

where €1y Gy > 0 are constants.
Since A is a positive self-adjoint operator with compact inverse in the

Hilbert space Z, we have the following properties.

Anltl
o N

(7.12) Pe At ¢ , for teR
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Anlt]
(7.13) |A1/2e-AtP1| < ,\111/2e N , for teR
=A t
(7.14) IPe At e NI for 120
=A t
(7.15) |A1/2P2e_At| < (t_l/2 + ,\lu_%)e N-+1 , for t>0.

For many equations in applications, e.g., 2D Navier—Stokes equations [9],
the flows are dissipative, i.e., there exists a bounded ball in an appropriate
function space such that every solution will eventually enter the bounded ball and
stay there for all future time. Hence, the study of asymptotic behavior of solutions

can be reduced to the study of a modified equation:
(7.16) du | Au+Fu) =0

where

F(u) = 4 (|Au|)R(u), 8,(s) = 0(%), (s) € C‘S(IR) 0<Hs)<1
0(s) =1 for |s| <1, &) =0 for |s]| 2.

and € > 0 is some constant. Since 4 ¢ C‘S(R) and the norm of Hilbert space is

smooth,

F(u) e cX(z!,z1/2)
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for any integer k > 0. For more detail, see [8], [13] and [14].
By Theorem 7.1, equation (7.16) has a ¢! inertial manifold provided

Lip(F)K(a,5,7) < 1.

Since Lip(F) is only a finite number, we need to have K(a,53,7) small. Recall that

we may choose
a=p ’\N+1 )‘N

It is not difficult to see that K(a,3,1/2) - 0 as (Al / 2—,\111/ 2) - 0. This says that if

N+1
the gap (,\1{I _{_%—,\111/ 2) is sufficiently large, then equation (7.16) has a c! inertial
manifold.

Example 7.3 Consider the Kuramoto—Sivashinsky equation [12], [13] and

[27]:

(7.17) %+ig+i%+ WB=o in [o,nR"
M x

with boundary conditions

(7.18) u(0,t) =u(mt) =0

and
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(7.19) (o) = % u(mt) = o

i

ov ou
Let A= , B(u,v) =ux- and Cu = .
ol Blv) =gy P%;

The operator A with boundary condition (7.18), (7.19) has eigenvalues
14 =
A=k, k=123,.. .
It is not hard to see that Example 7.2 is applicable in this example provided

the flow is dissipative.
Example 7.4: Consider the following reaction—diffusion equation

(7.20) y-u = f((u) 0<x<r
with boundary condition
(7.21) u(0,t) = u(mt) =0 .

For simplicity, we assume f € Cl(L2(0,7r),L2(0,7r)). Since the eigenvalues of

2’ n= 1121"',

operator A = —62/ a2 with boundary condition (7.20) are Ap=1
Example 7.2 is again applicable in this case provided the flow (7.20) (7.21) is

dissipative.



§8. Singularly perturbed wave equation.

In this section, we will consider a scalar semilinear parabolic equation in

the interval [0,7]:

Ut'Uxx=f(U) 0<x<r
(8.1) U(t,0) =U(t,7)=0
U(0,x) = Uo(x).

and a singularly perturbed scalar semilinear wave equation in [0,x]:

2
ri’“tt"' up - U = f(u), 0<x <7
(8.2) tu(t,O) =u(t,xr) = 0
u(0,x) = uo(x), ut(O,x) = ul(x) 5

where U € L2(0,1r), u, € H(l)(o,x), u € L2(0,w) and fis C! from R into itself. In
this section, we will show that under some conditions, for sufficiently small € (8.2)
has an inertial manifold A, which "approaches" to an inertial manifold 4 of (8.1)
as ¢ approaches 0. Precise convergence statements are given in Theorems 8.6 and
8.8.

Recently, it is shown by Hale and Raugel [20] and Babin and Vishik [2] that
under some mild conditions on f, for all ¢ > 0 there exists a compact (global)
attractor for equation (8.2). Moreover, for sufficiently small ¢ > 0, these

attractors are uniformly bounded. Thus, we may assume without loss of generality
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that equations (8.1) and (8.2) are modified equations (see §7). Hence, we assume
fe Cl(L2(0.r),L2(0.1r)), i.e, the mapping v(x) = f(v(x)), 0 < x < =, is clasa
mapping from L2(0,7r) into itself and has bounded C! norm.

We will rewrite equation (8.2) as a system of first order equations. For
technical reasons, we consider the following change of variables:

—2

_ -1
u, = — 2¢

u+2¢ v, and w=(u,v).

We can rewrite equation (8.2) as a system:

(8.3) w, = C,w +2¢ i(w),
where
C,=-21+27 [ 0 1], A=-0%/ox® and f(w)= [ 0 ]
f(u
€2-A 0 (w)

Let X = Hy(0,7)xL%(0,7) and N > 0 be an integer. Set
sin px
(8.4) Xy = spa.n{( ) (gin p) F P = N+LN42,.. }

(8.5) Xy = 5pan{ (9 %), M), h e sin )}

Clearly X = Xy @ Xy, Xy is orthogonal to Xy and dim Xy = 2N.. Moreover,
both XN and XI‘; are invariant subspaces of the operator C ¢ We also note that
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the spectrum of C,, consists of only eigenvalues.

Define an equivalent inner product in H(IJ(O,ar) by

1 1
<uv> = ((A+ (%2 —2(N+1)))2, (A+(%2 -2(N+1)2))7v)L2

where ( , )L2 is the usual inner product in L2 By using the above inner product

in H(I)(O,x), we define the following equivalent inner product in the product space
X = H}(0,)=L%(0,x) by

<< W Wo >> =< upup > + (vl,v2)L2

where W, = (ui’vi)’ i = 1,2. The norm induced by <<-,->> will be denoted by
II-1l-

Lemma 8.1 There exist an ¢ dependent decomposition X = XN ® XE ®
X;} with projections Py, PE, P'N" respectively, where X is as in (8.4) and X; C
Xy (see (8.5)) such that

(i) Xy, Xy and X;} are invariant subspaces of C,

—2+2(1-c2(N+1)2)1/ 2,
Ct ) v
@) lle “Pylice . 120

o —242(1-e2(N+1)2)1/2,
¢ ) b
le CPl<IPRle ¢ .20
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—242(1->N?3)1/2,
Ct 2 ’
le €PN <IPflle ¢ , t<0

where || || denotes the operator norm in the Hilbert space (X,<<-,:>>).

(iii) ||PN|| =1 and there exists ¢; > 0 such that for every 0 < ¢ < €0
IPNll €2 and [P <2

Proof We have that X = Xy @ XI":I and XN,leI are invariant subspaces
of X. By restricting C, to Xg‘, we find that the eigenvalues of C, |x 1t1 are:

o = —042(1-€2n2) /2

n 2 !
€

(8.6)

n=12,.,N

and corresponding eigenvectors are

[ sin nx ‘, n=12..N,

+ .
'\n sin nx
Let

X§= spa.n{[ sin nx ] 'n = 1,...,N}

’\n sin nx

X‘N'" = span {

sin nx ] :n=1,..,N} .

+ .
Ansxnnx
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Obviously, XIJ\i = XE ® X§ and XE, X'N*' are invariant subspaces of C . and

(8.7) <<

sinnx],

sin mx }>>=0 for m # n.

+ . + .
’\n sin nx Amsln mx

Note that XE is not orthogonal to X§. Hence, X = X\ @ Xg ® X§ and (i)
holds.

Let PE, and P§ be the corresponding spectral projections [31] and Py be the
unique orthogonal projection onto Xy;. Obviously, we have ||PN|| = 1. By using
(8.7) we have that

—2+2(1—€2(N+1)2) 1/2
C,t g
le € Pyl < IPYlle . for £20

and

—04+2(1—e2N%)1/2 .

C,t €2
lle € P&l < IPFlle , for t<O0.

Now we consider C cl Xy For any we Xy

<<(-Z0-N+1)H/ 2 4 2
€

0 1
—2_A 0

w,W >>

- f (1-2(N+1)2)1/2 [((A+ —2(N+1)%)u,u) (2% () ol
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m’]\nh

+ %2'- (N+)*)(0)

<- 2 (1—62(N+1)2)1/2[<u,u> + (v,v) o)
& L2

+ 2 1-XN+1)P)2

[<uu> + (v,v<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>