
                          
        

 
 
 
 
 
 
 
 
 
 
 
 
    

   

1

2 2

 

'vvw‘vw u

    
      

flu. 2,: .

           

    

.
2
?

.
2
2

.
2

-
.
,
2

..
.

.
2
.

.
1
.
’

I
O

u
.
u

c
2

2
.
.
.
.
.

2
.

I
.

.
6

.
I
I

.
I

2
2
4
.
.
.
.
.
.

I
.

.
..

.
(
a

2...
.
r
.

.
P
2
1
1
2
.

,
.

u
2
.
.
-
”
.

.
U
.
l

5
»
.

$
9
.

2
.
2
.
.

2
.
.
.
:

..
.

.

wi-fi:

2
&
2
.
.
.

l
.

2
.
o

I
.

.
I

.
r

.
.

I
.
v

.
2
-
l

.
.

a
.
.
.

2
2

2
.

.
a
r
.

2
0

.
.
5
.
.
.
-
h
.
.
.
‘

I
n
?

L
v
\
l
2

h
.
.
.
D
‘
d
n
l
h
h
‘
.
'
c
l
f
z

g
s
u
m
h
y
.
b
!
"

Mill's}.
O

      

 

4......
.

 

L'\.|.

 

“\I

  

 

   

 

 

 

     
 

 

 

.
.
v

.
2

.
I

.
.

.
2
.

.
5
1
.
;

i
t
!
I

..
.

2
2

I
.
u
2
|
o
.
I
.
(
.
c
»
.
.
.
.
2
|
.
I
.
.
r
.
r
u
¢
!

e
l
l

.
.

a
2

2
I

.
I

.
9
2
.
?
!
2
.
n
;
r
:
)
.
r
n
f
.
-
I

.
‘
0
.
.
.

.
2

.
.

.
.
I

.
2

2
.
L
3
.
2
.
0
.
3
1
.
.
.
—

-

.
2

.
.

3
.

.
.

.
.
.
2
3
.
2
5
3
.
3
1
.
1
2
2
»

.

.
.

2
2

2
2

2
.

.
.

2
;
2
9
‘

.
2
2
.
:

.
y

.
2

.
2

.

..

2.
2

.
.

.
.

.
.

2
2

2

L
.

2
.
2
2

.
.

.
9

.
.

2
2
2
2

.
.
:

.
2
2
5

,
I
.

2
3
.
1
:
.
.
.
)

..

I
I

2
I
I

‘
a
.
i

2
‘
r

2
2

.
.

.
x
u
w
i
.
u
n
n
.
h
n
.
.
_
.
t
f
b
§
x
'
l
n
t

.
:
‘
a
l
t
i
t
l
h
t
l
‘
a
'

2
I
.

2
2

2
,

i
i
,
l
.
l
i
p
'
2

l
.
‘

I
2

‘
C

V
.
Y
.

.
.

.
2

.
.

.
2
.

2
2

2
L

.
.

r
I
.

2
t

.
.
.

O
.
2

u
2
.

l
2

‘
.
v
-

-
.
L
'

2
2

.
v

2
.
o
:

.

2
.

.
2
.
2
1
.
.
2
.

.
2

2
.

.
.

2
.

.
.

.
.
.
-

.
..

2
.

.

a
.

I
.

.
.
.

.
f
2

.

2
2
v

2
.
:

0
2
.
.
.

I
2
m
.
l
.
2

.
.
.

.
.

a
,

2
o

.
’

.
.

2
.

6
7
.
.

.

.
.

.
1
5
.

i
}
.
f

‘
I
I

c
.

.
,

V
.

I
I
I

v
i
I
’
p
9
2
‘
n
l
t
s

‘
9
‘
.

Z
2
‘

.
r
?

A
‘

.
.

2
f

n
‘
f
‘
l
‘
l
i
n
u
u
‘
4
-
.
I
'
I
I
.
-
\
u
'
£
‘
v
l
-
’

.
I

A
.

l
.

.
5
.
}

M
r
.
.
.

2.
5
.
5
.
1
.
2
3
.
.
.
”

.
1
.
.
.

l

t
.

..,
.
.
v

(
I
.
.
.

I
.
2
1
2
.
{
b
u
t

:
3

1
1
3
'
!
)
-

2
;

.
t

.
I

I
3
2
.
2
4
.
1
2
0
.
5
3
2

f
u
n
”
.
.
.
i
n
f
g
l
1
2
‘

.
.

.
.

:
2

.
0
.
u
t
b
>
i
3

.
I
l
y
l
f
‘
i
i
‘
i
u
.
‘

v
|

o
I

.
2

.
2

1
2
5
5
.
1
3
.
1
5
.

.
\
I

.
r
i
n
g
.

I
.
.
.

2
2

5
.

I
.
1

.
R
u

2
‘
.
U
§
5
§
n
.
.
u
.
3
b
.
:
~
.
7
.
t
r

“
t
o

.
8
.

.
I
r
"
.
‘

.
2

I
2

.
2

.
I
l

.
1
0
.
3
1
2
3
1
!
i
t
]
f
i
t
s

I
l
l

1
I
I
“
.

.
2
2
1

u
.
.
2
|

.
4

I
I

a
.

u
r
n
.
.
.
r
h
l
.
.
.
r
-
~
u
.
u
u
.

[
1
.
.
l
u
a
i
i
t
i
t

.
V
A

.
-
c

:
1
,

(
2
.
1
.
3
.
.

‘
.

‘
I

2
.

.
..

5
.

3
5
5
.
.
.
.
.
.

:
2
-
fl
a
u
i
n
fl
fi
2

I
|

o
H
:

2
1
.
.

.
.
.

.
2

0
1
-
2
.

h
l
,
o
l
.
.
.
.
.
t
|

.
.
2

6
|

.
.

h
.

2
2
.
2
.

2
2

2
.
.
v
.
.
l
;
.
.
.
3

.
v
.

.
o
n
.

8
.
.
.
.
I
V
,

.
1
‘
2
.I
l
b
x
‘

w
.
.
l
)
l
l
l

2
.
i

'
.
.
l
.
2
u
v
2
.
.
l
fl

>
n
h

3
"
.

2
.
.
2
2
.

.
.
.
.
p
:
v
I

I
I

.
2

I
.

2
.
.
.
.

r
.

.
.

»
2
2

1
2
.
7

.
’
2
.
a
n
4
6
2
.
.
'
.

.
.

u
.

.
2

3
%
.
.
.
.
»

b
.
.
.

v
0

u
.
‘

2
.

.
.v

.
.

..
{
)
2

2
2
L
.

.
a
.

.
.

.
.

.
1
.
.

h
.

P
b
!
i
n
!

4
.
.
.
”
.

.
.

2
.
2
7
4
.

.
n
i
l
n
w
n
o
l
.
£
2
U
S
‘
D
,
,
.
:
.
‘
§
$
.
l

«
2
.
.
.
.
.
.
L
:
0
«
i
!

.
.
1
1
.
.

3
.
9
,
.

2

l
’
I
I

2
'

n
2
'
2
2
"
;

’
2
‘
‘
2
}
!

2
I
'
D

i
.

'
1

  
 



«MEN‘S 2 5/ 2.2:; 7M
v

E UNIVERSITY LIBRARIES

2.2;.- 22222222222222
Michigan State

Universal—L

                

 

This is to certify that the

thesis entitled

SIGNAL PROCESSING FOR A mN-CONTACTING

HEARTBEAT DETECTOR AND ESTIMATOR

presented by

Shawn David Hunt

has been accepted towards fulfillment

of the requirements for

 
 

M. S . degree in Electrical Engineering

Major professor

Date—MW

I

0-7639 MSU is an Affirmative Action/Equal Opportunity Institution

._.. v____-_-___~.—--v-_._fi .v - ,7 7, ..__ _ . . fi .i, W. 7. i _ .7—



PLACE IN RETURN BOX to remove this checkout from your record.

TO AVOID FINES return on or before date due.

r_——————=—-————

PATQESDME DATE DUE DATE DUE

 

 

 

 

J

SE2 2 o 2000
 

 

 

 

 
 

.
T

 

 
 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 
 

 

 

 

 

 

     
 

MSU Is An Affirmative Aetlon/Equel Opportunity Institution

 

  



SIGNAL PROCESSING FOR A NON-CONTACTING

HEARTBEAT DETECTOR AND ESTIMATOR

By

Shawn David Hunt

ATHESIS

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Department of Electrical Engineering and System Science

1989



.
1
”

(,
7
a

q

7
.
(
3
/
?

'7
,

V
F

ABSTRACT

SIGNAL PROCESSING FOR A NON-CONTACTING

HEARTBEAT DETECTOR AND ESTIMATOR

By

Shawn David Hunt

An algorithm for a non-contacting heartbeat detector is

described. This algorithm is used in a system consisting of a

microwave transceiver, an analog section and a digital section.

The algorithm is responsible for detection and estimation of a

heartbeat using the microwave return signal. It must be able to

distinguish heartbeats mixed with clutter from clutter alone for

detection. After detection, the signal with heartbeats has neither

a known or constant shape and period. The algorithm used

combines non-linear filtering with partial correlation and

pattern recognition. The non-linear filter is used to produce

non-zero regions where heartbeats are likely. One of the non-

' zero regions is chosen as being most likely to be a heartbeat and

is correlated with the other non-zero regions. If there are non-

zero regions that are similar in shape and almost equidistant,

these regions are said to be heartbeats.
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Introduction

This project is concerned with the remote detection of vital life signs in

human subjects. The purpose is to develop a non-contacting heartbeat

detector. The overall system consists of a microwave transceiver, an analog

section and a digital section. The transceiver generates, transmits and

receives a microwave signal. The analog section amplifies and filters the

microwave return signal. The digital board then samples this signal and

processes it to determine the heart rate. This thesis describes the different

methods tried for solving the detection and estimation problem, and analyses

one of the digital signal processing algorithms used for detection and

estimation.

This research was done under a grant from the United States Navy

which defined the goals of this project. They want a compact, portable

instrument for the detection and estimation of heart rate. This is needed for

military personnel to quickly identify in combat situations the heartbeat of

battle field casualties and estimate it's value.

A microwave signal at 10 GHz is sent out, and after detection, it is band-

pass filtered from four to fifteen Hz and digitized at a 512 Hz sampling rate.

From the return signal, the system must decide if a heartbeat is present, and if

it is, the heartrate. The algorithm works only with the sampled signal, thus

when a heartbeat is referred to, it means the digitized waveform of the return

signal containing a large chest movement due to the heart pulsation. To detect

the heartbeat, the microwave transceiver is aimed at the chest, for details see

[1]. Along with the heartbeat, breathing motion and other physiological

clutter is returned. The heartbeat, if present, must be distinguished from this

noise. This problem is interesting and difficult because of the number of

1
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variables, how the variables change, and the amount they change. This

problem is not new and has been attacked before [2,3].

The returned microwave signal gives information about movement of

the chest wall. The motion of the heart is attenuated and distorted at the chest

surface. Also, the received signal will be different because of differing

physiology. Not only will heartbeats from person to person be different, but

the shape of the waveform from heartbeat to heartbeat of the same person

will be different. The heart is also naturally pseudo-periodic. It may remain

almost constant for some time or it may change period dramatically in a very

short time. The algorithm then must be able to distinguish clutter from the

heartbeat, make a decision of whether a heartbeat is present, and be able to

follow a heartbeat with changing shape, amplitude and period. The qualities

described make the detection and estimation inherently difficult, but the

heartbeat also has features that should help, and can be taken into account

when developing an algorithm. A feature that has been fundamental in the

algorithm implemented, uses the fact that the heart is impulsive in nature.

This helps in distinguishing it from periodic and pseudo-periodic signals that

are slowly varying. The problem in detection and estimation is that a clean

signal with a high signal to noise ratio cannot be guaranteed. This is the main

reason for the effort put forth to develop good filters and processing.

The microwave signal that returns after reflecting off the chest has

information of the heart rate mixed in with ambient as well as physiological

clutter. In this case everything not pertaining to the heart is referred to as

clutter. Because of the clutter and variability, having an algorithm work

under normal conditions without any pre-filtering is difficult. Thus methods

such as peak detection or correlation cannot be used reliably without pre-

filtering. The first thing to be done was to find or develop a filter that can
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reduce the level of clutter while leaving enough heartbeat information in the

signal to make the detection/estimation problem easier to solve.

The organization of the remaining sections is:

(a) A summary of the efforts of others involved in this research before

me, and my own previous efforts.

(b) A summary of the algorithms tested for non-linear filtering.

(c) A description of the derivative filter.

((1) Justification for different parameters.

(e) Detection and estimation after the non-linear pre-filtering.

Different parameter settings are justified and typical results are

given.

(f) Results to compare the final algorithm with four other algorithms.

(g) Conclusions.

The appendices contain the implemented algorithms, written in C, and

some sample four second data segments used for the result section.



Algorithms Previously Investigated

The first algorithm implemented was autoconelation of a four second

segment [4,5]. Because the heartbeats are not purely periodic, and vary in

shape, this method does not perform as well as is needed. An example of a

segment and it's autoconelation are shown below. As is apparent, if the

signal is easy to pick out visually, and is almost periodic, autoconelation will

perform well. However with a poor signal, as that shown in figure 1,the

autoconelation method does not work.
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figure 1: Heart data and it's autoconelation.
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W. Byrne used an adaptive filter approach [6,7]. Pat Mahoney is

presently continuing this work on an adaptive filter algorithm.

G. Hoshal implemented a number of algorithms [8]. One algorithm used

a spectral approach in the frequency domain, one used a comb filter in the

frequency domain [9,10], and another used features to form a multi-

dimensional classification space [11].

The spectral approach uses the Fast Fourier Transform of the input

signal and estimates the heartbeat frequency from that. It was found that the

breathing interfered if the signal was not filtered by a low-pass filter. It was

also found that the return signal due to the heart has many strong harmonics,

but that due to the breathing does not. Because of this, the signal is band-

passed filtered from 4 to 15 Hz. The fundamental component of the heart

signal is blocked out along with the fundamental of the breathing. The heart

signal is detected by it's harmonics. The breathing plays little part because of

it's very small harmonics. This procedure is very effective with a strong

heartbeat present, but is not good otherwise. He took the absolute value of the

signal before performing the FFT.
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figure 2: a) Heart data, b) power spectral density, c) psd of absolute value of

data.
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Another approach Hoshal used was an adaptive comb filter. It used

adaptive signal filtering to select the best fit and from this determine the

heartbeat.

The final approach taken by Hoshal was to select several features as

different dimensions of a classification space. Data from many subjects was

gathered to determine the thresholds for decision regions in this space.Thus,

the input signal could be processed to determine the features and from these a

decision about the presence of a heartbeat is made. Many features were

investigated, such as the average value of the power spectral density, and zero

crossing count.



New Algorithms

Since the previous signal processing techniques were examined, a

number of additional processing methods have been investigated. A statistical

approach using correlation was tried first. This uses two features from the

autocorrelation to form a two dimensional decision space. The two features

selected were the sequential distances between the three largest peaks. The

algorithm however will work with any feature from the autoconelation.

After the two features of the signal autoconelation are selected, these

features are computed from as many heartbeat files as possible. From the

pool of these two sample features, a correlation coefficient and a regression

line was determined. When new data is acquired, it's autoconelation

features are compared with the regression line and a decision is made about

detection. Because the features selected give a heartbeat estimate, both

heartbeat detection and heartbeat estimation were be determined at the same

time. This works reasonably well with a good signal and windowing. The

windows work as follows. If it is decided to detect a heartbeat between 60 and

120 BPM (beats per minute) we can segment, or window, a section of the

autoconelation corresponding to this frequency. The corresponding

frequency for 60 to 120 BPM is 1 to 2 Hz, or a 1 Hz difference. Windows

would be placed at intervals corresponding to every 1 Hz. Separation

between the largest peaks in every window should correspond to the heart

frequency. The drawback in estimation range is immediately apparent. For

non-overlapping windows, the highest frequency estimated is twice that of

the’lowest frequency. For example, if 50 BPM is the lowest frequency, then

100 BPM is the highest. However the largest drawback for this algorithm is

8
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the correlation technique itself. To extract the wanted features, an

autocorrelation must be done before any other processing. Practically, for

autoconelation to work, the signal must be periodic and the noise level must

be small. The heartbeat is not always periodic, and large changes in heartbeat

frequency in a short time can occur. Typically, four seconds of data sampled

at 64 Hz (256 samples) have been taken. If in these four seconds the heartbeat

remains approximately constant, and the signal is relatively noise free, the

correlation will work. These are ideal conditions however, and will not work

satisfactorily in most situations. Typical heartbeat data is shown along with

it's autoconelation in figure 1.

The difficulties with autoconelation required new algorithms to be

developed.

There is a similarity between estimating pitch in speech and estimating

the heart rate. The problem of estimating the fundamental frequency of

speech has been widely studied and the ideas that worked well in that area can

be easily tested to see if they have an application for the heartbeat estimation

problem. Four main algorithms were tested.

Methods using zero crossing count and zero crossing intervals seem

good choices [12,13] because the zero crossing count is lower in the segments

where there is a heartbeat, and the zero crossing interval is almost constant

from heartbeat to heartbeat. An algorithm to determine heartbeat frequency

by zero crossing interval was developed, and the approach had no problem

with aperiodicity. However, it was found that the differences of the intervals

of the signal containing a heartbeat and signal containing no heartbeat did not

lead to a good detection or estimation scheme, as shown in figure 3.
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figure 3: Heart data, zero crossing intervals.

The zero crossing count did appear to lead to a reliable detection

scheme. It was not used because it did not lead to a detection scheme and the

algorithm used now does both detection and estimation.

The cepstrum approach was also tried [14]. The Fourier transform of

the signal is taken. The square root of the power spectral density is taken and

signals that are convolved can be separated if they are separated in the

frequency domain. This approach is good for data where the noise is

convolved with the signal. This was not the case and this approach showed no

improvement over simply looking at the power spectrum.

The zero infinite clipping algorithm with autoconelation was also

investigated [14,15]. First, the mean is taken out of the signal. A threshold is
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then determined, usually some percent of the average signal strength. All the

elements above this threshold are assigned a one and all the elements below

the threshold are assigned a zero. The signal is then autoconelated. Although

this method uses the zero crossing interval to some extent, it performed

poorly because of the use of autoconelation in a signal that is not periodic.

The last technique discussed in this section is a combination of non-

linear filtering and frequency domain pattern recognition. First the 256

samples of the signal are filtered with a non-linear filter. 768 zeros are

inserted after the data to make a segment of length 1024. An FFT is then

taken. After the power spectral density is determined,an autoconelation is

done to detect heartbeat harmonics in the frequency domain. The process is

shown in figure 4.

   

 of PSD
 
  

Median 7 ' 1

Filter Signal Insert ZerosH Compute PSD H Autocorrelation

 
 

 
 

Use threshold

 If heartbeat is present. on autoconelation

determine frequency ‘ to determine if

from autoconelation heartbeat is present

    

figure 4 : Block diagram of algorithm using median-PSD-autocorrelation

The non-linear filter used is the median filter. It's operation and sample

input and output are shown in the next section.

After the filtering, the 256 data elements are zero stuffed to complete

1024 elements. The longer segment is used to give a precision within i0.125
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Hz. An FFT is performed and the power spectral density is determined.

Because the heart is pseudo periodic and impulsive in nature, it has

harmonics that are periodic in the frequency domain. The signal is band-pass

filtered from four to fifteen hertz before it is sampled, so the fundamental

frequency of the heart is almost entirely attenuated before the processing

starts. The heartbeat harmonics remaining are used to determine the

heartbeat frequency. This pre-filtering will eliminate interference with

frequencies near the heartbeat fundamental, such as breathing. If they have

very small or no harmonics above four Hz, they will not interfere with this

detection scheme. The heartbeat harmonics are evenly spaced and the spacing

is the fundamental frequency. An autoconelation is done on the power

spectral density. Looking for the highest peak in the correlation file

corresponding to a fundamental frequency of .5 Hz to 2.5 Hz, a threshold is

used to determine if a heartbeat is present. This method does not appear to

suffer as much from an aperiodic signal as a straight correlation of the time

signal. This change in period between heartbeats in the sampling time will

result in wider harmonic peaks in the power spectral density. This will in

turn lead to a less accurate estimate, but the estimate is still possible,

something not seen in correlation.

An example of the PSD of the original signal and the filtered signal is

shown in figure 5. The difference of the two large peaks in a) of figure 5

correspond to the fundamental heart frequency. Few peaks in the psd mean

fewer peaks in the autoconelation function file and choosing the conect peak

is easier. If the unfiltered signal's psd and thus it's autoconelation has more

peaks, it makes the peak corresponding to the fundamental heart frequency

much more difficult to detect as shown in figure 6.



l3

 

3e-2

3e-2 1

2.2—2 1

.3e-2 4

3e-2 .

De-Z '

 
 

 
 

2e- I

)e-I -

)e-2 -

)e-2 -

)e-2 :

)e-2 -

not) a

O

 
      hr.

1 6 7 10 11 12 13 1415

la
2 3 4 5

frequency (Hz)

figure 5: PSD of median filtered (top) and unfiltered data.
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Pre-Filtering Algorithms

To make the heartbeats easier to detect in the clutter, pre-filtering

algorithms were developed. Like the algorithms previously implemented, the

filtering is done on a four second segment of data. In the analog section, a

band-pass filter from 4 to 15 Hz is used, but the signal is still very cluttered

and any additional linear filtering by the digital section is of little use. Of

course the device cannot extract more information than is present in the

signal,but we want the pre-filtering to reduce the clutter while leaving

enough of the heartbeat signal so the detection and estimation can be done

easier than before. A first try in using a non-linear filter was the median

filter [l6,l7,18,19].

This filter is a special case of the L-filters. It works as shown below. In

figure 7, each element is filtered using the surrounding elements.

Original Signal Order Output

...42975... 429—249 ...477...

LE3 29—279
975-579

figure 7: Median filter operation.

The elements used in the determination fall into a window. This window

is simply the number of elements used in the ordering. The median filter will

preserve discontinuities in the signal if they are long enough, yet eliminate or

greatly attenuate short discontinuities. Thus the window is chosen according

15
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to the width of the peaks to be eliminated.The elements in the window are

ordered in ascending order of magnitude. The element now in the center

replaces the original element. This is done for each element in the data file.

For elements on the end, the missing elements in the window can be chosen as

zeros, or the value of the end element.

The effect of the filter with a window of 3 is shown in figure 8.

 4o

  
 

  
 

I V I U l' v

2 3

time (sec)

0
-
:

5
.
1

figure 8: Heart data, output of median filter.

This filter has the desirable feature that it keeps sharp edges of peaks

wider than some threshold, while reducing peaks narrower than the

threshold. It passes any peak wider than the threshold and it severely distorts

the waveshape as shown. As previously discussed, this filter was used along
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with frequency domain pattem recognition. This pre-filtering did improve

detection and estimation, but the complete algorithm did not perform

adequately. After this attempt, detection and estimation based on shape was

investigated. Because the median filter did not generally make the signal

easier to detect visually, it was not used. It did show that non-linear filters

have promise, and gave reason to pursue them further.

The intent was to filter the signal so it would be easier to detect. It did

not matter if the signal shape was totally changed, as long as it emphasized the

heartbeat signal. Many different methods were tried. The first and simplest

was simply a threshold (peak detection). The next used only the direction of

change not the amplitude. An adaptive filter using the error as the output was

also implemented.

The first method set all the samples smaller than a threshold to zero.The

threshold was determined as a percent of the largest sample in the four

second segment. This method did eliminate a lot of clutter, but it also

eliminated a lot of signal information and small heartbeats. It did not

emphasize the heartbeat over the clutter already present in the signal. An

example of input and output is shown in part b of figure 9.

The next filter only used information of the direction of change from

sample to sample. This filter starts at zero and goes up one unit if the

direction of change from the first sample to the second is up, down one if the

change is down and stays at zero if there is no change. Because there is only a

change of one or zero each time, it removes information of amplitude

change. It continues going up one, down one, or staying equal, according to

the change from sample to sample. An example of this filtering is shown in

part c offigure 9.
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The problem is that the heartbeat can fall in the same range of

frequencies, can have the same magnitude, and have no simple shape

difference from the clutter. The solution found here was to go back to the

basic assumptions about the hearLA feature of the heart is it's impulsive

nature. It also must have enough amplitude to make it distinguishable in the

clutter. We require it to be at least as large as the clutter. Since the derivative

will give information about the impulsive nature, using information from

derivatives seems like a good idea. Both the adaptive filter and derivative

filter do this.

The adaptive filter is based on a difference equation where the

coefficients are determined using the least square error method. Different

order equations were tested, the fourth order was found to perform the best.

Higher order equations did not improve the performance. An example output

is shown in figure 9d.

The final test is how well it performs. The adaptive filter worked well,

but because the derivative filter appeared to perform better, in this report,

the derivative filter was used.

In the next section this derivative filter is discussed.
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Derivatives of a discrete sequence

The derivatives, or the discrete equivalent of a derivative will be used

extensively. To show how the absolute value in the derivative filter relates to

the discrete derivative, the first and second derivatives of a sequence are

shown.

Start with a Power series expansion of a function f(z) about a pornt a

f(z): f(a)+ Lit(a)++S—l-r"(a+) £2_-!.L3f "'(a) +

(1)

(1) can be put into two other forms.

first:

z=x+h h=z-a

x=z-h a=z-h

x = a

substituting into (1)

h 0 hz " "I

f(x+h)=f(x)+ Ff (x)+ 57f (x)+§;f (x)+ . ..

(2)

or:

again substituting into (1)

h , h2 ,, h3 m

f(x-h) = f(x) - If (x) + 271' (x) - yf (x) + . . . (3)

combining these we get:

21
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(2) - (3)

f(x+h) - f(x-h) = 2f '(x) h + 2f "'(x) %?+ . . .

- - 2f '(x) = f(x+h)2hf(x h)_ [ f'"(x) 1:231?+ . . .]

f(x+h) - f(x-h)

= 2b + CW)

(2) + (3)

h2 . h4

f(x+h) + f(x-h) = 2f (x) + 2f "(x) -2-!~+ 2f W(x) 47+. . .

f(x+h) + f(x-h) - 2f(x) . h2
112 -[f1V(x)4-!+...]f "(x) =

f(x+h) + flg-h) - 2f(x) + o(112)

The error terms in our application however are actually not important

since we do not want to estimate the derivative of the function, but merely use

the estimate to make the heart signal easier to detect. Because the output

signal will be used for detection and estimation, it is important to look at the

performance of the proposed filter.

In the following sections, the derivative filter, and two variations will

be introduced. How the filter and the variations reshape the signal is

investigated. The conditions for the heartbeat peak to be higher than the

surrounding noise is derived, and the conditions for the highest peak in the
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pre-filtered signal to be the highest point after filtering (having the peaks be

filter invariant) are determined.



Introduction of the Derivative Filter

Inputsequence

. . .x0xl x2x3x4x5x6...

Output sequence

...y0yl y2y3y4y5y6...

The derivative filter is defined as follows:

yi = Xi * [(Xi+r - Xi) + (Xi - Xi-r)]

The output sequence is uniquely determined by the input sequence.

The first filter used can also be written as:

yi = Xi * [(Xi+1 - Xi) + (Xi - Xi-1)l

= xi * [xi+1 - xi-1] - the present value is weighted by the

difference of the adjoining values

The filter in this form does not work well for 3 main reasons.

1)

xi

xi

. A Xl+l , X1+l

x1—1 Xi-i

figure 1 0

24
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The definition used for the discrete derivative does not take into account the

middle value; the sequences shown in figure 10 have the same difference

multiplier.

2)

X 1

X1- iAxi+ 1

figure 1 l

The difference in figure 11 is zero, leading to a zero output, even though the

value and the change between it and the surrounding values are not zero.

3)

x2

x3

x1 0

\X4

x0

figure 1 2

even if x1 and x3 are both positive,as shown in figure 12, the corresponding

outputs yl and y3 will be of opposite signs.

The absolute value is introduced to help resolve these problems.

yi = Xi * [IXi+1 - Xil + IXi - Xi-rll
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Here the middle value is multiplied by the absolute value of the

surrounding differences or the middle value is multiplied by a factor

determined by the neighboring points.

There exist five possible three point sequences. Taking only direction

of change into account.

A / e e e

<1) <3)(2)

(4) (5)

figure 13

1) if x3<x2 & x2°>xl

lx3-x2l + lx2-xll = x2 - x3 + x2 - x1= 2x2 - x3 - x1

2) if x3>x2 & x2>xl

lx3-x2|+lx2-x1|= x3 - x2 + x2 - x1= x3 - x1

3) if x3 = x2 & x2 = x1

lx3-x21 + lx2-xll = x2-x3+x1-x2 = 0

4) if x3>x2 & x2<x1

lx3-x2|+lx2-xll=x3 -x2+x1-x2=x3+x1-2x2

5) if x3 < x2 & x2 < x1

lx3-x2l + lx2-xll = x2-x3+xl-x2 = xl-x3
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A relative maximum, is weighted by the absolute value of the

second derivative.

Strictly increasing.

This is the same as the original derivative formula.

yr = X*X' = XiIXi+1 - Xi-rl

All values are equal, so the derivative, and output of filter is

zero.

A relative minimum point.

yi = X*X" = Xi[(Xi+1 - Xi)+(Xi-l - Xi)l = Xi[(Xi+1 + Xi—l - 2Xi)l

Using half step points (denoted XiiI/Z). the second derivative can

be calculated as

Xi' = [(Xi+r/2 - Xi) + (Xi - Xi-1/2)l = Xi+1/2 - Xi-rrz

Xi+1/2' = [(Xi+1 - mm) + (Xi+1/2 - Xi)] = Xi+1 - Xi

Xi-rrz' = [(Xi - Xi-1/2) + (Xi-r/z - Xi-1)] = Xi - Xi—l

Xi" = [(X'i+r/2 - X'i) + (X'i - X'i-1/2)l

= [(Xi+1 - Xi) - (Xi+r/2 - Xi-1/2)l +

[(Xi+1/2 - Xi-r/z) - (Xi - Xi-1)l

= Xi+r + Xi-r - 2Xi

Neglecting the h2 factor, this is the same as the second

derivative shown in the previous section. X2 is weighted by the

second derivative.

When strictly decreasing, we have a negative derivative, this is

the negative of the original formula.

yi = -X*X' = -Xi[Xi+1 - Xi-rl = XilXi-r - Xi+1l
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From these five cases it is seen that when the samples are strictly

increasing or strictly decreasing, the output is X, multiplied by the absolute

value of the normal discrete derivative. When it is a relative minimum or

maximum, where the first derivative becomes very small, or goes to zero,

the value is multiplied by a factor of the second derivative. The sample will

not be multiplied by zero even when the first or the second derivative goes to

zero. The only case of a zero will be when three consecutive points are equal,

when both derivatives are zero.
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How the Modified Derivative Filter Reshapes Signals

Two of the five possrhle three point sequences are the inverse of the

other, so only three need to be investigated. Because three consecutive equal

points result in a zero output, this case will not be investigated. To be

determined is what kind of signal, in terms of relative amplitudes and relative

derivatives, is needed for the heartbeat detection and estimation scheme to

work. This criterion will also lead to choosing the best variation of the filter.

Because the intervals between samples is constant, the relative amplitude is

directly related to the derivative.

To get a intuitive feel for the filter, here are some sample of how it

reshapes three common signals.

input

l [.1

r‘Iril m

U U

 

Wit MUU
output

comments:

the filter will severely distorts

not pass regions where

constant levels derivative is small

figure 14

/\/\

V

/\/\

V

constant amplitude

change
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Smooth shapes and constants will not be passed, those with constant change

will not be reshaped.
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Improvements and Modifications of the Filter

We want to emphasize the heartbeat signal. In our signals, the largest

derivatives are where the signal is the smallest. Where the signal is large the

derivative is small. This leads to output signals that look like:

before filter after filter

figure 15

This leads to a trade off. To get a good approximation of the signal, a

high sampling rate must be used. Thus the points with the largest amplitude

will have small derivatives. If a low sampling rate is used, the derivative will

not be small, but the peak might be missed as shown in figure 16.

figure 1 6
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It is possible to improve the situation in two ways. One uses a clever data

reduction scheme, the other uses a new method to calculate the derivative.

The data reduction scheme could be as illustrated below:

figure 1 7

This method attempts to approximate the signal with a piecewise linear

funtion. It would help in the problem of peak reduction, but it is unattractive

because the spacing between the samples may not be equal.

A new method to calculate the derivative is as follows: Use only the

extreme points to calculate the derivative, then multiply all the samples

between these extreme points by the same derivative.



_ yi=xi*a i<i<12

yi=xi*b11<i<18

 
figure 1 8

This method retains much of the waveshape, keeps the spacing equal and

eliminates the dips encountered before. Keeping the spacing of the samples

uniform is necessary for later processing, so only the derivative filter using

the absolute value of the differences of the 2 surrounding points, and the

derivative filter using extreme points to calculate the derivative will be

compared. These will be designated the first and second variation,

respectively. An example of both filtering methods is shown in figure 19.
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figure 19: a) Heart data, b) first variation, c) second variation filter outputs.
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Comparison of two variations of the Derivative Filter

This filter is used to point to the heartbeats in the original unfiltered

segment, so we would like the peaks to be filter invariant.

The first variation: using the absolute value of the surrounding points

Let xi.2 and xi be fixed and let xi.1 move on a vertical line located at -h.

This constraint applies in this system because the interval between samples is

uniform.

Let xi be bounded below and above by x24 and xi . This section will

determine the amplitude constraint on x“ so that xi will be remain higher

after the filter.

L—a

b

’2h "h 0

 

figure 20

If xi.2 (at -2h), xi (at 0), and xi.1 (at -h),all fall on a line, a triangle is

formed, and it has been shown this will pass with only a scaling factor. If xi-1

does not fall on the line formed by xi-2 and X, then

Ixil=a a-b=v

v

lxi-1l=c y=fit+a

lxml = b



For the first variation:

yi = xi * [lxm - xil + lxi - x141] - to find the positive peaks, find the

zeros of the first derivative and

negatives of the second derivative.

. (ym - yi) + (Yr ' Yi-r)

YI = 211

because this derivative never, or almost never, goes to zero, will

define critical points as points where (ym - yr) and (yi - y“) have opposite

signs.

to _ (Yttfiji-l -ZYI)

Y! -' 112

when yi" is negative there is a local maximum and when yi" is positive

there is a local minimum. We would like these local maximums and .

minimums to be the same samples as before, only the relative heights of the

samples changed.

' ' + " ' .. M

._ 9111-1 - Yr) + (Yi- Yi-r) .. _W)

y‘ — 2h Yi " hz
 

considering only positive peak points,

Yi' =\f([xi+l * (IXi+2 - Xi+1| + lxi+1- Xil)l - [Xi-r * (lxi - Xi-rl + IXi-i - Xi-2')],2h)
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case 1

Xi > 11-1 > 11-2

Xi > Xr+l > Xr+2

this extreme point in the x] series will remain the extreme point in the

y] series, if a and b are of different signs.

yi+1 - Yr = [Xi+r(lxi+2 - Xi+r| + IXi+1 - Xi|)] - [Xi(lxi+1 - Xil + lxi - Iii-11)]

= [Xi+r((xi+r - Xm) + (Xi - Xi+1))] - [Xi((Xi - Xi+r) + (Xi - Xi-r))]

= xi+i(xi - xi+2) - Xi(2Xi - Xi+r - Xi-l)

= 2Xi+rxi - inxi - xi+lxi+2 + XiXi-l

Yr - Yr-r = [Xi('Xi+1 - xii + lxi - Iii-11)] - [Xi-1(lxi - xi-ll + lXi-r - xi-2')l

= [Xi((Xi - Xi+1)+ (Xi - Xi-r))] - [Xi-1((Xi - xii) + (Xi-1 - Xi-2))]

= Xi(2xi - Xi+r - Xi-r) - Xi-1(Xi - M2)

= 2Xixi - 2Xixi.r - Xi+1xi+r + Xi-1Xi-2

to get:

(Yi+1 - Yr) < 0

(Yr - Yi-1)> 0

will need:

2Xi+rxi - inxi ' Xi+rxi+2 + XiXi-r < 0

2xixi - inxi-1 - xixm + xi.1xi.2 > 0

2Xi+rXi - 2XiXi - xi+lxi+2 + XiXi.r < 2XiXi - 2XiXi-r - Xi+rXi+1 + Xi-1Xi-2

3Xi+rXi + 3XiXi-r - Xi+rXi+2 - Xi-lXi-Z < 4XiXi (5)

assumed: xi > xi“ > Xi+2

Xi > Xi-r > Xi-2

introducing two more constraints,

xi+1 = xi-l

xi+2 = xi-2
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(5) becomes,

6Xi+1xi - in+rxi+2 < 4Xi2

3Xi+1xi - Xi+1xi+2 < 2Xi2

 

3C3 - Cb - 232 < 0 01‘ 3xi-1xi - xi-1xi-2 < 2Xi2

c(3a - b) - 2a2 < 0 xi.1(3xi - x”) < 2x22

262 .221;
C< 3a - b Xi-l< 3xi-xi-2

-2

So x“ must be less than 3%; for the peak to remain in the same

I ' 1-

place. Of course, the same can be done for xi” the first sample after the peak.

On the negative peaks the inequality is reversed.

It becomes apparent from this equation how nonlinear the process is.

Suppose xi: 10 and xi-2 = 5. xi.1 must be less than 8. If xi = 5 and xi.2 = 0, the

same relative difference, xi.1 must be less than 3.33. Thus, the same

difference is changed in amplitude, the relative difference of xi and xi-1 does

not stay the same.
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50 . 500 10. 110.

1.1 / 1.5 ’ 1.045

40 L 400 o L 100

 
mu1t1p1es produce the same relative differences

v same xi-i values do not

100

1.1

80

figure 21

In the leftmost figure above, if xi-2 = 40 and X, = 50, xi-1 must be

less than 1.1 of xi. Any multiple of these two numbers will have the

same requirement for x“. The same relative differences, such as 0 to

1 0 and 100 to 1 10, do not have the same requirements for x“. In

general, xi-1 must be about on the line formed by xi and xi-2 or below to get

good results. This is very important. With a sampling rate to assure the peak

is recorded, this will not be the case in general.Looking at 41 segments of

typical heart data both filters were used and the results are as follows. Using

only three points to determine the derivative, 78 heartbeat peaks did not

change position, and 41 did. Using the extreme points to calculate the

derivative, 93 heartbeat peaks did not change position and 26 did.

The second variation of the filter: using extreme points to calculate

derivative.



xf

value

of

“N

slope 1325K 33's 23'

f-b

figure 22

 

AT =—?L:—§b' the slope from x1, to Xf

All horizontal distances between the points are the same. Between two

extreme points, all the slopes are either all positive or all negative, and AT is

just the average of all the slopes between these extreme points.

xi - xi-1 _ Axi

h — h

AXf+ AXf-1+. . . + Axb+1 _ Xf- xb

f-b ' f-b

The first variation uses lei+1l + leil for a multiplier, which for high

sampling rates and sinusoidal signals, is smaller than AT giving the second

filter better performance. Also,because Xf is higher by definition than the
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other samples, and all the points between xb and Xf are multiplied by the same

derivative value, Xf will be the highest point after the multiplication.

The Axf and Axb+1 for the sinusoidal signal are smaller than the other

differences and using lei+1l+ leil for the multiplier can make some inner

points larger than the extreme points. This is shown in figure 23.

 10

  
 

first variation

 

 

  
second variation

figure 23zoutput of derivative filter for 6.4 Hz sine wave input

Our main purpose is to increase high derivative high amplitude signals

over low derivative high amplitude or high derivative low amplitude signals.

Using the first variation we would need to sample at least as low as shown

below to get as good results as the second variation.
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figure 24

Because we have a band-pass pro-filter, we can set it at the highest

heart frequency component so no clutter is present of higher frequency, or

has a higher derivative than the heart. There is a trade off in the filter: use a

high sampling rate to assure getting the highest point and then have smaller

derivatives; or use a smaller sampling rate to keep the large changes between

samples and maybe miss the highest point. For square waves or triangle

waves, both variations have the same output, so the higher sampling rate that

can be used with the second variation only assures the peak is obtained. In the

heart signal measurement,we deal with more sinusoidal shapes. In these

waveforms the highest slope is where the signal is smallest; we would like the

slope large for large amplitudes. To make the signal large, the filter is non-

linear. In any sinusoidal signal, with a high enough sampling rate,

XfIAT' > Xf [lAXf+1l + lAXfI]

as was shown in figure 23. This effect, using the first filter, becomes

intolerable at high sampling rates. As seen before, there can be double peaks

produced. The second filter will eliminate double peaks because, by
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definition, the extreme point is higher than the others. In the detection and

estimation algorithm the pre-filter is used to determine places where a

heartbeat is likely to be. So double peaks are tolerable if this algorithm is

better at distinguishing heartbeats from clutter. As shown, however, this is

not the case and the second variation of the filter performs best.
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figure 25: Sample outputs of a) first and b) second variations of the

derivative filter
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Sampling frequency

We need to determine an adequate sampling frequency for the

derivative filter. We have an 8 bit, or 256 level analog to digital converter.

We use at least fifty percent, 128 levels, of these levels for the heartbeat

peaks. Our analog filter cuts off at 15 Hz.

Using a 15Hz sine wave for our analysis, we will determine the

sampling rate needed to discretize a sample within a pre-specified percentage

of the analog peak. From our algorithm, we want to locate the heartbeat

peaks. This means no matter what the phase of the signal is with respect to the

sampling (0-21t) at t=0, we want to be assured of at least having one sample

within 90% of the highest point in the signal.

 

 

192 ?\
128 ) t

128

64 V

T

2

figure 26

for 15Hz signal and a peak to peak sinusoidal signal of 128,
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to changes 1800/31-6sec => 5400:-

0.9(192) = 64 cos(¢) + 128 => 45.570

{KY/Y 90%line

I34 180 225

figure 27

for Nyquist criterion:

SR(samp1ing rate) > 130 sec => 30 Hz SR

for 90% criterion:

45.57o*2 _
——0—- sec => 59.24 Hz SR

5 IOUsec

If we use all 256 levels, the sampling rate for 90% criterion is 73.23

Hz. The 64 Hz sampling rate used is adequate, as shown.
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figure 28: different sampling rates
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Determination of normalizing factor

To make the filtered data easier to process integer normalization is

done. This division factor, 5, is chosen so that some inter-heartbeat clutter is

eliminated. Having some of the data points equal to zero, will make the

detection and estimation easier, only having to look at a finite group of non-

zero areas in each segment of data and determine if these are heartbeats or

noise. Thus we want as many points as possible to be zero after filtering,

without eliminating any heartbeat peaks. The trade off will be a greater

number of zeros vs. reduction in precision. A method for determining this

normalization and the normalization factor must be determined.

First, a method for calculating the normalized output must be

obtained.

In the presentation that follows, 3 is the normalizing factor. The x's

and arithmetic is all integer, which truncates all fractions.

1) The fast method used'is as follows.

To keep as much precision as possible, x, is rounded off to the

nearest 8.

Xi+ sgn(xi)*%

 

S

where sgn(x) = 1 if xi 2 0

-1 if Xi < 0
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With this method, all xi S 13/21 => go to zero. In other words, a factor s

is chosen so that all samples less than half s will be zero and precision will be

reduced by this factor also.

All xi falling within 1 s/2 of some (ks) will be rounded off to the

 

sarnevalue.

xi=skfor sk-s/2 < xi 5 sk+s/2 k=0,1,2,3...

0

-2s -11/2s -s -s/2 s/2 s 11/25 25

l l I I I l | l

-2 -1 O l 2

figure 29 : quantization intervals

2) The second method is simply integer division by s.

...’.‘_i

3

There will be reduction in resolution or precision, but if the s here is the

same as the s in the first quantization method, we will have the same

quantization intervals except around zero, where it will be twice as long. We

need to decide how much loss of resolution can be tolerated.

All xi falling within is/2 of some (ks) will have the same value.

xi=skfor sk<xiSSk+s k=0,1,2,3...
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Negative values will be the mirror image.
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figure 30 : quantization intervals

The trade off is precision vs. eliminating clutter. Examining the

precision of each one:

figure 31 : normalization values

the first method has a maximum quantizing error of .53

S 28
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figure 32 : normalization values
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the second method has a maximum quantizing error of s

The first method has a quantizing error of $.55 and the second an error

of s. The second method however, makes everything from -s to 3 go to zero,

and the first method makes everything from -s/2 to s/2 go to zero. If the

second method is used with s/Z as the normalizing factor, it will have a

quantizing error of s/2 and will make everything from -s/2 to s/2 go to zero.

To get the mean square quantizing error of each [20] (MSQE)

L

MSQE= 2(MSQEi)Pi L is #of levels

i=1

Pi is probability of sample in ilh level

MSQEi= ] (x - 392 p(xli) dx

11

p(xli) = E‘g-i’i Pd(x) - probability density of voltage Bi

quantizing value

MSQE= ] (x - 1302 Pd(x) dx

11

.
m
—

i:

Integral evaluation for the first case:

Using 16 as the normilizing factor, the interval around zero will be

from -8 to 8. All the intervals have the same MSQEi.

8
3

MSQEi= £(x - 0)2 dx = x? =lg—Zi= 341.33
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Integral evaluation for the second case:

Using 16 as normalizing factor, the interval around zero is from --16 to

16, length 32. The other intervals will be of lentgth 16. The MSQEi

shown here is the average of all the MSQEi's.

32 16
1023 2

MSQEl=l-0_251£(x - 16)2dx + T025_1-L(x)2 dx

_1023[g 2 2 16 ]3_2 2 [x_3_ -16

‘1025 3’ x + x16+1025 3 16

=1367.997

Using 8 as the nonnilizing factor, to get same zero region as the first

case,

16 8
2046 2

woes—2050 -g (x - 8)de + 50—50"; (x)2 dx

= 170.667

A Thus the second method has a smaller MSQE for the same zero area. In

s

x+sgn<x>*(§)

s

 

figure 33, the signal was normalized to :8, using x = on top,

and x =% on the bottom. The second normalization method, x =§ has been

chosen for normalization.
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figure 33: Different normalization procedures.

Determining the normalization factor, 3 in the equations above, is a

matter of trial and error. The method used was to use many heartbeat

segments and determine the largest factor that does not eliminate any

heartbeat. Figure 34 shows the output of the filter for different

normalization factors. This is a very good signal, so a small normalization

factor, such as 4 works very well. In general there is a large difference

between heartbeat amplitudes and a larger factor is needed so none of the

heartbeats is normalized to zero. The normalization factor chosen was 8.
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figure 34 : Original signal filtered and normalized using 5 of 100,8,and 4.
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Determination of average number of zeros surrounding

each Nonzero Section

First the signal is filtered. Then the signal is normalized using the

integer division or normalization of the previous section. The normalization

will produce non-zero groups surrounded by zeros. We need to determine

how many zeros in a row will separate non-zero regions.What is desired is to

choose a number of consecutive zeros so that a single heartbeart would not be

split and consecutive heartbeats would not be joined. One or two zeros is too

few, as it was found that one or two consecutive zeros can occur in the

waveform of the same heartbeat. On the other hand there tend to be non-zero

regions close to the heartbeat waveform and ten or twenty zeros is too many.

How many zeros in a row should distinguish two non-zero groups, each

possibly a heartbeat, needed to be determined. A statistical analysis of

heartbeat data was used.

Using 84 segments with heartbeats and 33 with only noise, the average

number of consecutive zeros for heartbeat segments was 6.7 and the average

number of consecutive zeros for noise only was 4.9. Goodness of fit analysis

was performed to determine an adequate model. However, this did not lead to

any useful results. Detection is not performed at this level so the noise did

not come into consideration. It was found that for a signal with a reasonable

signal level,where the heartbeat could be detected, the number of consecutive

zeros in a heartbeat did not exceed four and the nmnber of consecutive zeros

between heartbeats was larger than this. Thus, five consecutive zeros was

chosen as the threshold for two non-zero segments to be considered distinct.



Detection and Estimation Algorithm

A good algorithm for determining if two waveshapes at different times

are close enough in some sense to be called consecutive heartbeats is needed.

When a observer looks at a collection of data, typically four seconds of data,

he is able to determine if a heartbeat is present, and if it is, where each

heartbeat is located, even when the signal to noise ratio is too low for

computer algorithms such as peak detection or correlation to work. The

observer uses pattern recognition for his detection and estimation system.

Without elaborate programming it would be very difficult for a computer to

take four seconds of data and do a similar procedure as the human. This is

because information easily interpreted from a picture is not available to the

computer. Information such as knowing if the heartbeats are there, where

they are, what is their period, what is their shape, and their amplitude. It is

also probable that the period, the shape and amplitude will change between

heartbeats. An observer looking at a graph can easily adjust to these changes,

but it is much harder for a computer working only with numbers. Following

this reasoning, the following algorithm was developed. Unless a good model

for the heart signal is determined, selecting an optimum algorithm cannot be

done. The frame of reference for judging algorithms, is how well it

performs compared to human recognition.

One basic premise is that if a human can look at a four second segment

of data and pick out the heartbeats, if present, an algorithm which can do the

same must exist. We may not be able to determine if a given algorithm is

optimum, but since we are using human recognition as the criterion,if it can

work as well or better than human recognition, it is an acceptable algorithm.
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We want to have a process that can detect the repetition of similar shapes in

the segment. We cannot use typical correlation of the data because the

heartbeats are not periodic. We also cannot use a matched filter because the

shape of the heartbeat is not known and is continually changing. Because it is

a small region that is repeating, if we could take this region and correlate it

with the whole segment, as shown in figure 35, we would get rid of the

problem associated with non-periodicity.

1) I choose a sub-segment

   

 

2)

make a segment of this sub-segment and zeros

 

correlate the segments

 
 

 

 

figure 35
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The problem is finding a subregion to correlate with the whole

segment. Sampling at 64 Hz we have 256 samples in four seconds. A typical

heartbeat is 8 samples. This means there are 248 regions that can be chosen as

a heartbeat. It is too time consuming to use each of the 248 sub segments and

correlate with the whole segment and see which has good correlation at

regular intervals in the segment. This is where the derivative filter plays a

role.The normalization factors of the filters can be set so few heartbeats will

be set to zero by normalization, and will produce zero regions. However, this

will not set all the noise regions to zero. So the filtering and normalization by

itself is not a good criterion for deciding if a heartbeat is present. However,

it will point to non-zero regions that could be chosen for the correlation.

Instead of having the algorithm look at the entire data segment to decide if

there are repeating pseudo periodic regions that are similar in shape, it will

only have to compare a smaller number of intervals produced by the non-

linear filter. Thus a combined system using the derivative filter to segment

the data into possible heartbeats, and a pattern recognition algorithm to get

rid of false detections will be a good detection and estimation scheme.

The output array from the filter contains zero elements separating

non-zero regions as shown in figure 36.
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arrows point to these nonzero regions

2- .1 ‘1

 

J

  «.100 . t . . . I .

0 1 2 3

time (sec)

figure 36 : non-zero segments after filtering

In this algorithm there must be five consecutive zeros to consider

regions distinct and different. For segments containing only heartbeat pulses,

typically the number of non-zero regions in a 4 second segment varies from

three or four,to fifteen or twenty. For noise signals, the number of non-zero

regions typically varies from one to more than twenty. Sample outputs are

shown in figure 37.
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figure 37 : examples of derivative filter output

The objective is determine if these non-zero regions are close enough

in shape, and are pseudo periodic in order to consider them heartbeats. One

way would be to use each sub-region to make a new segment as shown in

figure 35. The correlation of these regions would give an indication of the

period between regions and their similarity in shape. This procedure works

well, but it is also too time consuming because a new segment then

correlation is performed for each sub-region. The procedure chosen selects

one of the regions according to amplitude and derivative as being the most

likely to be a heartbeat and uses this region for correlation. Because the

derivative filter re-shapes the signal, and because the heartbeat waveform
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usually extends beyond the non-zero regions determined by the filter, the

correlation is done using the original unfiltered signal.

40 
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figure 382derivative filter output pointing to possible heartbeats

A 64 Hz sampling rate is high enough to capture the peaks and high

enough for the derivative filter, but is inadequate for correlation. Typically

there are three of four samples per peak and this does not give enough

discrimination between shapes. When doing the shape discrimination visually

using a graph, the points are interpolated and 64 Hz is an adequate sampling

rate. To get finer definition in the correlation, a higher sampling rate, 512

Hz, is used. Because because a 64 Hz sampling rate is high enough for good

peak definition, when doing the correlation on 4 seconds of data using the

512 Hz array (2048 samples), the region is slid over eight samples instead of
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one after each step in the correlation.There are then 256 steps in the partial

correlation.2048/8=256.

An example of a 256 element output correlation file is shown in figure

39.

 

Se+4

4e+4 _,

2e+4 -

)e+o ‘

2w 1

1e+4 -1

  
0 1 2 3 4

time (sec)

figure 39 : correlation output

Using the region boundaries found from the derivative filter, the

highest peaks are found in the corresponding regions of the correlation file.

If there is no value greater than zero in the region, no value is taken for this

region. The final output file is all zero except at these highest points.
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figure 40: derivative filter output determining where to examine correlation

These points are then normalized, the largest becoming 100, using

integers, so that points smaller than 1/100 of the peak go to zero. An example

is shown in figure 41.



64

 1e+2

1e+2-

8e+1-1

6e+1-

 
4e+1-I

26+l a

  
 0400 T A 1

o 1 2 3

time (sec)

figure 41 : peaks of correlation in windows determined by derivative filter

One of the peaks in the correlation is the autocorrelation of the region

selected. This value is taken as a reference for determining likeness in shape.

Looking at i some threshold about this autoconelation value will give the

sub-regions that are similar in shape to the sub-region selected. If there are at

least two peaks within this threshold region, the algorithm will continue. If

there is only one peak, the sub-region selected is said to be dissimilar from

the other sub-regions and the algorithm proceeds to the next 4 second

segment. If there are only two peaks within the threshold region, the distance

or interval of these peaks is determined. If there are peaks separated by this

interval through the 4 second segment, even if the peaks are outside the

threshold region, the segment is said to contain heartbeats . If there are more

than two peaks in the threshold region, each inter-peak interval is

determined. Starting with the shortest interval, proceeding to the longer

ones, if there are peaks in the 4 second segment separated by this interval, the

segment is again said to contain heartbeats.
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figure 42 : correlation output showing threshold and heartbeat peaks

This file of peaks is passed to the final pattern recognition scheme, and

two features are used to determine if heartbeats are present, the amplitude of

the output peaks of the correlation and and their periodicity. The algorithm

followed is shown in figure 43.
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figure 43 : algorithm used for pattern recognition
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A flow chart of the complete algorithm is shown in figure 44.

 

ISample analog signal for 4 seconds. Get 2048 element

array.
 
 

 

Pe-sample to get 256 element array. 1

4 -
Pass small array though derivative filter and

eparate signal into segments.

1
hoose one segment as being most likely to be heartbeat

nd correlate it with the others using large array.

 

 

 

se output of correlation to determine if heatbeats are

resent. Determine heartrate if heartbeats present.

  

   
figure 44 : complete processing algorithm

Samples of complete processing are shown in figure 45 and figure

46. The top figure (a) is the original signal, (b) is the output of the derivative

filter, (c) the correlation output, and (d) the normalized peaks of the

correlation in the intervals determined by the derivative filter.
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figure 45 : example of processing on human data
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figure 46 : example of processing on human data



RESULTS

This section compares this algorithm with new thresholds (l), and old

thresholds (2), with three others by having each classify heart data and noise

(for enumeration and explanation of the thresholds see the programs in

appendix A). One algorithm was developed by Albert Roseiro (3), the next is

simply autoconelation with a threshold (4), the last passes the data through a

median filter then uses the power spectral density for detection and

estimation (5). The results are shown below.

Eighty-four four second segments of heartbeat data and thirty five

segments of noise were classified by the five algorithms. In the table below,

correct detections means that the segments were classified as noise if noise,

and as having a heartbeat if a heartbeat was present. Correct estimations

means of the heartbeat segments correctly classified, the percentage of

correct estimations was calculated. As can be seen, there is a trade-off

between the percentage of correct detections and the percentage of correct

estimations. In general, the higher the correct detections, the lower the

correct estimations. This is expected because the lower number of correct

detections when a heartbeat is present means the algorithm perfonns

estimation only on relatively good segments.
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correct detections (heart) correct estimations correct detections

algorithm (of those correctly detected) (noise)

1 43/84 (51.2%) 27/43 (62.8%) 30/35 (85.7%)

2 25/84 (29.8%) 18/25 (72%) 32./35 (91.4%)

3 20/84 (23.8%) 14/20 (70%) 32/35 (91.4%)

4 27/84 (32.1%) ‘ 11/27 (40.7%) 27/35 (77.1%)

5 65/84 (77.4%) 29/65 (44.6%) 22/35 (62.9%)

Deterministic signals were synthesized to compare the algorithms in a

easily controlled manner. Four different signal structures were used. The

first had one cycle of a sine wave repeated four times at equal intervals as

shown in figure 47. In actual human measurements the heartbeat pulse was

found to contain approximately 80 samples at 512 Hz sampling rate. The sine

wave was chosen to be 6.4 Hz to give 80 points for one cycle of the sine wave.

The peak of the sine wave pulse was 1000. The second structure placed the

four sine wave pulses at different intervals. One was placed to start at sample

2, the next at sample 600 the third at sample 1039 and the last at sample 1551

also shown in figure 47. The third structure was the same as number two,

except the sine wave pulses now had different frequencies.Gaussian noise of

known variance was the added to the first three signal segments. The variance

of the noise was increased until the algorithm could no longer give a conect

estimate. The last segment used was actual heartbeat data with a good signal

to noise ratio. The noise added was data from the microwave unit when this

was pointed at inanimate objects. This noise was then scaled to different

levels and added to the heartbeat data before the processing took place.
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From the results in table 1 and 2, none of the four algorithms had

problems determining the pulse period of the first signal before noise was

added. After the noise was added, correlation and the median filter/power

spectral density did very well. Algorithm 1 is close but came in third.

Correlation does very well because the signal is perfectly periodic with

exactly the same signal repeating. The Median filter/PSD algorithm does well

because the median filter is very good at filtering gaussian noise, and because

the sine wave pulses are placed at equal intervals.

To test these assertions the second segment with unequal intervals

between sine pulses was used. As is seen it has no effect on the algorithm 1,

but has a large effect on the Median/PSD and correlation algorithms. The

correlation algorithm could not give the conect estimate even before noise

was added, so the noise level given is the largest noise variance possible for

the correlation algorithm to give the same estimate it gave before noise was

added.

To try and put algorithm 1 at a disadvantage, the third segment was

synthesized. The sine wave pulses now do not have the same period. Because

algorithm 1 uses a partial correlation, it is very sensitive to zero crossing

intervals. The algorithm was developed after noticing that even though the

period and amplitude of the heartbeat changes dramatically, the zero crossing

interval stays almost constant in actual measurements.

The last segment is an attempt to have a realistic comparison between

the algorithms. Roseiro's algorithm had done poorly with the previous signal

segments. The reason for it's usefulness is demonstrated here. It was, along

with algorithm 1, developed for the noise and heartbeat signals from the

microwave unit.
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The results for the last signal segment are as expected. The results for

the other signal sections were very encouraging, indicating that the algorithm

presented may be used for a variety of signal shapes. This implies the

algorithm could work in many different environments, even if the signal

used for processing did not come from the microwave unit. The table below

shows the maximum variance of the noise that could be added to the

synthesized signal while the algorithm was still able to correctly estimate the

heartrate. The second table shows the values in the first table normalized to

one.
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Table 1

segment

non-periodic heart

periodic non-periodic varying DUlSGS data

210,000 210,000 140,000 0.21

220,000 5,000 5,000 0.0

40,000 30,000 70,000 0.14

230,000 1 10,000 130,000 0.003

Table 2

segment

non-periodic heart

periodic non-periodic varying pulses data

0.9] 1.0 1.0 1.0

0.96 0.01 0.04 0

0.17 0.14 0.5 0.67

1.0 0.52 0.93 0.01    
 

Algorithm 1 : Derivative Filter-Pattern Recognition.

Algorithm 3: Roseiro's Algorithm.

Algorithm 4: Autocorrelaton.

Algorithm 5: Median Filter-Power Spectral Density.
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Below the four deterministic signals before noise was added are

shown.
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figure 47 : the four synthesized signals with no noise added
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figure 48: segment 1 plus maximum noise for algorithm 1



CONCLUSIONS AND RECOMMENDATIONS

The algorithm described here is an attempt to have the computer

simulate the process humans go through when looking for heartbeats in the

microwave return signal. Because the return signal with heartbeats has

neither a known or constant shape and period, normal radar or similar

detection and estimation schemes will not work. This algorithm combines

non-linear filtering with partial correlation and pattern recognition. A four

second, 512 Hz sampling rate, 2048 element array is read in from the analog

board and re-sampled to 256 samples. This small array is passed through the

derivative filter to produce non-zero regions that give an indication of where

the heartbeats are. To determine if there are heartbeats within the non-zero

regions the following procedure is used. One of the regions is chosen as being

the most likely to be a heartbeat, based on derivatives and amplitude. Using

the large array, this region is correlated with the other regions and the output

is used as an indication of similarity in shape. If there are non-zero regions

that are similar in shape and are almost equidistant, these regions are said to

be heartbeats.

As seen from test results, simple correlation will not work well except

with a periodic heartbeat signal with a high signal to noise ratio. To help the

signal to noise ratio, a pre-filtering to accentuate the hearts impulsive

characteristic was developed. The idea for using integers to do the

calculations and nonnalizations, thus producing the zero regions, came from

Albert Roseiro. There is a large improvement using this pre-filter, and

judging from our experience trying many other pre-filters, not much

improvement can be expected in this area.
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To be able to compare shapes adequately, the 512 Hz sampling rate had

to be used.In this algorithm one region is chosen and correlated with the

others to get an estimate of likeness of shape. The disadvantage of doing this

is the possibility of choosing a non-zero segment that is not a heartbeat when

heartbeats are present. Thus the major improvement in this area is a better

technique for selecting the region for correlation. Another possibility is to

use a lower sampling rate and having another method for measuring shape.

This could be done by finding an equation that interpolates the points of the

region, then compare equations of the non-zero regions. This may give a

better estimate of the shape, and it also eliminates the need to select one

region for use in correlation.

Only two features, the correlation output and periodicity are available

for the pattem recognition following the correlation. The algorithm would

be improved by finding more features. Many were tried, such as zero

crossing intervals, but no additional features were found. The next

improvement should be finding a better algorithm to determine if the output

correlation file contains heartbeats.

Another possibility is to combine this algorithm with the one

developed by Albert Roseiro.

As seen in the results presented,the algorithm developed in this report

works well under many conditions, sometimes even outperforming visual

inspection.
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Appendix A

This is the main program. It accepts a 2048 point data

segment, a 4 second segment sampled at 512 Hz. This program

first removes the mean then sub-samples the 2048 point segment

to 256 points, corresponding to a 64 Hz sampling rate. This

segment then calls the processing subroutines for heartrate

detection and estimation in order.

#include <math.h>

#include <stdio.h>

#define St 512

#define seglen 2048

#def‘ine reduc 8

#define threshl 35 /*threshold for acceptance 01‘ \(llUCS

near autocorr*/

#define varthresh 9O /*thresh for variance*

#definc thresh3 10 /*threshold for accepting .rnml:

correlations*/

#define threshS 0.4 /*threshold for window in hiding

subroutine*/

#define thresh6 1.5 /*threshold for ends in hiding

subroutine‘v

#define offend 20 /*threshold for missing subroutine-*r

long data[2050],templ,der[260],w[2050],dat[260]: long llle'llL

int scgmentl,redseg;

int ibeg[260],iend[260],ilargc,numscg,autocorrsegmenu): 3:11'11‘11'02

FILE ‘ifpl,*fopen(),*ofp;

main()

float sr2,fheartrate;

int 5,563 l ,seg2,i,ns,sr l ,c,bit,j,i l,k,store.sr3.hea r t ra tes;

char fil_name[20],fils_name[20],store_l‘il[20].d.d I=""

printf("data file to process:");

scanf("%s",fils_na me);

if((ifpl=fopen(fils_name,"r"))==NULL) exiti l 1:

l‘scanf(ifp l ,"%d,%f,%d,%c%c %c,%c%c

%c\n",&ns,&sr2,&c,&d,&d,&d,&d,&d,&d1;

srlsns/seglen;

printf("\nnumber of samples=%d number of data bloets="ud'.n :.51-1 1;

printf("\nEnter starting and number of segments to he is n12" ;

scanf("%d,%d",&seg l ,&sch);

81
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sr3=(int)sr2;

sr3=sr3/reduc;

redsegsseglen/reduc;

segmentl-se32*(redseg);

588681 *seglen; for(520;j<s;++j){

fscanf(ifpl,"%ld\n”,&data[j]); }

for(s-0;s<segz;++s){ for(jaO;j<seglen;++j){

fscanf(ifpl,"%ld\n”,&data[j]); } printf("\nsegmentatt

%d",s+l); mean-0; for(i-0;i<seglen;++i){

meanamean+data[i]; } mean=mean ”seglen;

for(i-0;i<seglen;++i){

data[i]-data[i]-mean; }

for(j-O,k=0;j<redseg;++j,k=k+reduc){

dat[j]=data[k]; ) derivative(dat,der);

filter(dat,der); segments-segment(dat,dcr);

if(segments>49){goto out;} correlate(dat,der.data):

heartrates=pat(der,autocorr,thresh1); ifiheartrates<19 ||

heartrates>72){

fheartrate-0.0; } else{

fheartrate=(3840.0)/(float)heartrates: }

printf("\nheartratc=%d",(int)fheartrate1;

outz;

}

l‘close(ifp l );

}
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This subroutine accepst a down-sampled version of :he 2018

length to 256 elements. The output is the derivative filtered

signal, normalized to +8.

filter(in,out)

long in[260],out[260];

{

int i,j,k;

long peak,ten=lO,hpeak,f1,f2;

for(i=- l ;i<redseg- l ;++i){

fl-in[i+l]-in[i];

f2-in[i]-in[i- l ];

w[i].f1-f2; ) w[0]=0; w[redseg-l]=0;

for(i-0;i<redseg;++i){

out[i]=in[i]*labs(out[i]);

w[i]-in[i]"labs(w[i]); } for(i=0;i<redscg-2;++i)1

if(w[i] =8 0 && w[i+l] == 0 && w[1+2] == 0'“,

out[i+l]=0;

} } peak-=0; for(i=0;i<redscg;++i){

if(peak<labs(out[i])){

peak=labs(out[i]);

} ) peak=(peak+4)/8; if(peak== ){pezil.=1:;

for(i=-0;i<redseg;++i){

out[i]=out[i]/peak; } for(i=l;i<redseg-l;++i‘1{

if(outli] is 0 && out[i-l] ==0 && outli+ll == 01-:

out[i]=0;

} }

}

derivative(in,out)

long in[260],out[260];

{

int i,j,k,oldi,ncwi;

long diff,oldpeak,newpeak;

newi=0;

newpeak=0;

for(i=0;i<redseg;++i){ out[i]=0;

)

for(i=l;i<redseg-l;++i){ if(in[i]>=in[i-l] && in[i]: :3:1.1i- l1,

Oldi=ncwi;

newi=i;

diff=newi-oldi;

oldpeakzncwpeak;
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newpeak=in[i];

jeva(oldpeak,newpeak,diff,i,oldi1; } else

if(in[i]<-in[i-l] && in[i]<=in[i+l]){

oldianewi;

ncwi=i;

diff-newi-oldi;

oldpeaksnewpeak;

newpeak=in[i];

jeva(oldpeak,newpeak,diff,i.oldi); } else if: iniil==0

&& in[i-1]-=0 && in[i+l]==0){

oldi-newi;

ncwiai;

diff=newi-oldi;

oldpeaksnewpeak;

newpeakainfi];

jeva(oldpeak,newpeak,dii‘i‘,i.oldi‘1: :-

for(i=0;i<redseg-l;++i){ if(out[i] != out[i+l]){

}

}

out[i+l]=(out[i]+out[i+l]+l)/2; }

jeva(oldpeak,newpeak,diff,i 1 ,i2)

long oldpeak,newpeak,diff;

int

{

int

ii;

long slope,magdiff,hdiff;

magdiffalabs(newpeak-oldpeak);

hdiff=(diff+l)/2;

slopc=(magdiff+hdiff)/diff;

for(i=12;i<il;++i){ der[i]=510pe;

}

l
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This subroutine is used in the nornmliznti...~. DIV-c":

a I if the input is positive, a -1 if it is negaizxe.

sign(in)

long in;

if(in<0){return(-l );}

else{return( l );}

( 1 1'1.“ 'll'll
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This subroutine inputs the derivative filter output 1111(1

determines the regions of possible hear-theory 3111! 31-0-05 :5 the

region most likely to be a heartbeat.

int segment(dat,der)

long dat[260],der[260];

{

int i,j,k,iderl,ider2,ider3,corrlen,repeats;

long peak,peak2,peak3,datpeakl,datpeak2,datpcak3:

long diffl,diff2,diff3,avpeakl,avpeak2;

for(i=0;i<redseg;++i){

ibeg[i]-0;

iend[i]-O;

}

/* determine segment boundaries */

peak=0;

for(i-3,numseg-0;i<redseg;++i){

if(der[i-3]-s0 && der[i-2]-=O

&& der[i-l]==0 && ClCl‘[l] . n

ibeg[numseg]=i;

for(;i<redscg-3;++i){

if(der[i]!=0 && dcr[i+3]==0

&& der[i+2|==0 &.’\'- rli- '1. .7,

iend[numseg]=i;

++numscg;

goto out;

1

l

}

out:;

}

il‘(numseg>49){goto end;}

/"' determine segment used in correlation *.

peakao;

pcak2=0;

peak3=0;

for(i=0;i<numseg;++i){

corrlcn-iend[i]-ib¢8[il;

if(corrlcn>5 && corrlen<l7){

for(k-ibeg[i];k<-iend[i];++k){

if(peak<der[k])(

pea k=der[k];

iderlsi;

)

il'(pcak>dcr[k] && pcak2-:der[k| :
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peak2=der[k];

iderZ-i;

)

if(peak>der[k] && peak2>dcr[kl .4 4' or"?- s’cr'T-‘ll

peak3=der[k];

ider3=i;

}

}

l

}

datpeak3=0;

datpeaklao;

datpeastO;

if(peak>0){

for(k=ibeg[iderl];k<=iend[iderl];++k)1

if(datpcakl<dat[k]){

datpeakl=dat[k];

}

)

}

if(peak>0){

for(k=ibeg[ider2];k<=iend[ider2];++k){

if(datpeakl>dat[k] && datpeak2<dat[k]>f

datpeak2=dat[k];

}

}

}

if(peak2>0){

for(k=ibcg[idcr3];k<=icnd[ider3];++kll

if(datpeakl>dat[k] && datpcakbdml»i , ~21 ;‘- ;ll;1t[k]){

datpeak3=dat[k];

}

}

}

ilarges-l;

avpeakl=(peak+peak2+peak3)/3;

avpcak2=(datpeakl+datpeak2+datpeak31 3:

if(avpeakl ==0 ){avpeakl=l;}

if(avpeakZ ==O ){avpeak2=l;}

diffl=(peak/avpcak l )+(datpcak l/avpea k: 1:

diff2=(pcak2/avpeakl)+(datpeak2/avpcak21;

diff3-(peak3/avpeak l )+(datpeak3/avpca R: 1:

if(diffl>=diff2 && diffl>=diff3){ilargc=idc1' l2;

else if(diff2>diffl && diff2>diff3){ilargc=ide1'1}

clsc if(diff3>diffl && diff3>diff2){ilarge=ide:‘E;2

if(ilarge<0){



goto end;

}

end: return(numseg);

}

9O
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This subroutine inputs the original 2048 element segment and

correlates the segment choosen by the segment subrrmtinc with

all the other possible heartbeat regions. The liczrk 61' 1111

correlation in each possible segment is 11:: «nuns-a

correlate(dat,der,data)

long dat[260],der[260],data[2050];

1

int i,j,k,s,corrlen,corrlen2;

long peak,hpeak;

float fpeak;

peakao;

corrlen-iend[ilarge]"reduc-ibeg[ilarge]*rcd u 04-1'11'.‘ -

corrlen2=corrlen/(2*reduc);

for(i=0;i<corrlen2;++i){

dat[i]=Ol;

}

for(i=0,j=ibeg[ilarge]*reduc;i<corrlcn ;+ +1. + +1 1f

Wlil=data[i];

for(s=0,i=0;s<seglen-corrlen;++i,s+=8){

for(j-0,temp l =O;j<corrlen;++j){

temp l +-(data[j+s]*wll]);

}

da t[i+corrlen2]=temp l;

}

for(i=rcdseg-corrlen2;i<rcdscg;++ i ){

dat[i]=0|;

}

for(i=0;i<rcdscg;++i){

der[i]=0;

)

for(i=0;i<numscg;++i){

peak--100000;

for(kaibeg[i];k<iend[i];++k){

if(peak<dat[k]){

pea k=dat[k];

j=|<;

}

)

if(peak>0){

der[jl=peak;

if(i==ilarge){autocorr=j;}

}

fpeak=(float)der[autocorr];

fpcak=(fpcak)/100.0;



92

if(fpeak==0.0){fpeak=1.0;}

for(i=0;i<redscg;++i){

der[i]-(long)((float)der[i]/fpeak);

}

end:;

}
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This subroutine inputs the peaks of the autocorrelation and

uses the peak amplitude and their separation to deternnnc il‘

heartbeats are present.

int pat(der,autocorr,peakthresh)

long der[260];

int autocorr,peakthresh;

{

int i,j,k,corr[50],diff[50],ihigh[50],numpeak.numbe:tt.~:

int avdiff,numdiff,smalldiff,ipeak,imedinn.threshltargedil‘l‘;

int oldipeak,sumbeats;

long x,var,peak;

if(heartrate-=O){heartrate=64;}

for(i=0;i<redseg;++i){

if(der[i]!=0){

printf("\ni=%d.dcr[i]=9’old".i.tler[ill:

}

}

beginz;

for(i=0,numpcak=0;i<rcdscg;++i){

if(dcr[i]>=(l00-pcakthresh) && dcr[i]<=! I'l'IHDCJl ' us 1‘: ;

ihigh[numpeak]=i;

++numpeak;

}

printf("\nnumpeak=%d”,numpeak);

if(numpcak>40 || numpcak<2){

heartrate=0;

goto end;

numdiffanumpeak-l;

l‘or(i=0,avdiff=0,smalldil‘f=lOOO.largtnlil‘I‘=-I- +73 :- i ii '- : ~ - '< ,;

diff[i]=ihigh[i+l]-ihigh[i];

avdiff+=diff[i];

if(smalldiff>diff[i]){smalldiff=dil‘l‘[i];}

if(largedil‘f<diff[i]){largediff=dil‘l‘[i];}

printf("\ndiff[i]=%d ihigh[i]=%d".dil‘f[i].ihighliIV

}

imedian=dif|‘[numdil‘I‘/2];

avdifl‘ /= (numdifl‘);

printf("\navdiff=°/ud smalldil‘l‘=”/ud".avdil‘l‘.sin:t-!

for(i=0,var=0;i<numdil'f;++i){

var+=((diff[i]-avdiff)*(dil‘l‘[i]—avdiI'l'H:

var/=numdiff;
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printf("\nvar=%ld",var);

printf("\nimedian=%d",imedian);

if(var<varthresh){

goto missing;

)

else{

if(avdiff<30){

peakthresh-s3;

if(peakthresh<=0){

heartrate=0;

goto end;

}

goto begin;

}

goto hiding;

}

missingz;

printf("\nmissing");

if( (ihigh[0]-avdiff-ofl‘end)<0 &&

(ihigh[numdiff]+avdil’f-l-ol‘l‘end)>256 l{

heartratc=avdiff;

goto end;

}

else{

goto hiding;

)

hiding:;

printf("\nhiding");

i=autocorr-heartrate;

thresh4=heartrate‘threshS;

printf("\nautocorr=%d",autocorr);

numbeatSIO;

sumbeats=0;

oldipeak-autocorr;

while(i>(thresh4*thresh6)){

printf("\ni-%d heartrate=%d thresh4=%d".i,hea rtl‘11tc.th reshd)

for(j=i-thresh4,peak=0;j<i+thresh4;++j){

if(peak<der[j]){

pea k=der[j];

ipeakaj;

}

printf("\nl peak=%d",peak);

if(peak<thresh3){

goto down;
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}

i=ipeak;

i-=heartrate;

sumbeats+=oldipeak-ipeak;

++numbeats;

oldipeakaipeak;

}

i-autocorr+heartrate;

oldipeak-autocorr;

while(i<255-(thresh4*thresh6)){

printf("\ni=%d heartrate=%d thresh4=%d",i.hea r: witty: 3 v -

for(j=i-thresh4,peak=0;j<i+thresh4;++_i l:

if(peak<der[j]){

peak=der[j];

ipeakaj;

}

}

printf("\nz peak=%d",peak);

if(peak<thresh3){

goto down;

}

i=ipeak;

i+=heartrate;

sumbeats+=ipeak-oldipeak:

++numbeats;

oldipeak=ipea k;

if(numbeats!=0){

heartratezsumbeats/nu mbea ts;

}

endz;

return(heartrate);

down;

printf("\ndown");

if(avdifl‘ != heartrate && nvdil'l' != ("M

hcartratc=avdifl‘;

goto hiding;

}

if(smalldiff != heartrate && smalldil‘l‘ != O){

heartrate=smalldiff;

avdiff=heartrate;

goto hiding;

}

if(largediff la heartrate && largedil‘l‘ != OH

heartrate=largedifl‘;

avdiff=hcartrate;

smalldiff=heartrate;

goto hiding;

}

else{
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heartrate=0;

goto end;
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This program inputs a segment of ASCII up to 512 samples and performs

a median filtering then a FFT on the data. The power specual density

is computed. The interpeak distances of the PSD l‘ilest re determined.

The interpeak distance ocurring with the most frequency is determined

to be the heartbeat period. The mainprogra m below in outs the ASCII

characters and calls the subroutines.

#include <stdio.h>

#include <math.h>

/* median filtering and power spectral density *9

float data[512],templ,mean;

float w[512],YYl[2][2048],YY2[2][2048];

float tp,psdmax,fest,startf,endf;

int segment],sr,seglen,window;

char fil_name[20],fils__name[20],store__l‘iI[20].d.cl i=“".

main()

{

calculate_wind0W();

media n();

psdl);

}
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This subroutine performs the median filtering.

median()

{

int ‘fp,s,segl,seg2,i,ns,c.bit,one,j,i l,k,store:

double sqrt();

float xy,xi,x2,yi,y2,dat[256],rho,EY,EX,sigmax.'sigtn:t)‘.ft.l‘..'nax.min:

FILE *ifp,*ifpI,*fopen(),*ofp;

printf("data file to median filter:");

scanf("%s",fils_name);

if((ifpl=fopen(fils__name,"r"))==-NULL)

exit(l);

printf("\nEnter l to store filtered signal"):

scanf("%d”,store);

if(store == l){

printf(”Name of storing file2"):

scanf("°/os",store__fil);

if((ofp=fopcn(store__fil,"w"))==NU LL l

exit(l);

}

fscanf(ifpl,"%d,%d,%d,%c%c %c.”/oc‘?/nc ”mean".& ns.&sr.emtf..\'(1.8 d.&d.&d,&d,&d);

printf("\nEnter segment lengthz");

scanf("%d”,&seglen);

srsns/seglen;

printf("\nsegment Iength:%d",seglcn);

printf("\nnumber of samplcs=%d number of data blacks-”ltlflnxsr);

printf("\nEnter starting and number of segments In; I‘ .‘"l

scanf("%d,%d",&scgI,&scg2);

printf("\nEnter windowz");

scanf("°/od",&window);

segmentl=se32*(seglen);

printf("\nsegment l =%d",segmentl );

if(store =-- l){

fprintf(ofp,"%d,64,0,%cT %c,%cR ‘Voc\.n".segment l .d l.tl I .d 1. ll :

}

s=segl*scglen;

for(j=0;j<s;++j){

fsca nf(ifp l .""/uf\n".&data[j] l2

}

l'or(s=0;s<scg2;++s){

for(j=0;j<scglcn;++j){

fsca nf(ifp l ,"%f\n",&da ta[j] l:

}

mean=0.0;

for(i=0;i<seglen;++i){

mean=mean+data[i]:

}
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mean=mean/seglen;

for(i-O;i<seglen;++i){

data[i]adata[i]-mean;

}

for(i=--window;i<0;++i){

data[i]=data[0];

for(i=seglen;i<(seglen+window);++i ){

data[i]=data[seglen-I];

}

for(i-O;i<seglen;++i){

for(j-O;j<2*window+ l ;++j){

dat[j]=data[j+i-windOWI;

I

for(j=0;j<2"‘window;++j){

for(k=j+ l ;I<<2"window+ l ;++k ){

if(dat[k] < dat[j])(

temp l =dat[j];

dat[j]=da t[k];

dat[k]=tcmp I;

}

} }

YYl[l][i+l]=dat[window];

}

}

felose(ifpl);

if(store == l){

felose(ofp);

)

}
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This subroutine calculates a hanning window used in 'hc FF'I‘

calculate_window()

{

double cos(),zarg;

float sk,sc,ti;

register int i,nsoff,iend;

sk - 0.5;

nsoff - seglen / 2.0;

i = 0;

iend . seglen / 2.0;

whilc(i < iend){

zarg . tp ‘ i / seglen;

sea sk + sk * cos(zarg);

w[nsoff+ l + i] a sc;

w[nsoff - i] - sc;

i++;

}

w[l] = 0.0;
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This suproutine caclulates the PSD

psd()

{

tp = 6.2831853;

windows();

ff t();

magnitude();

}

windows()

I

register int i;

i =- 0;

while(i < seglen){

i++;

YYl[l][i] = YYl[l][i] * w[i];

YYI[2][i] = 0.0;

YY2[I][i] = 0.0;

YY2[2][i] = 0.0;
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This suproutine caclulates the FFT

fft()

{

int p,k,im,pl l,p22,p33,id,ic,inh,ia,ib;

int il;

float bi,br,ti,zi,zr;

double zsr,q,log2,log(),sin(),cos(),two;

two=2.00; '

log2=log(two);

zsr - seglen;

q . log(zsr);

zsr a q/IogZ;

ti = tp / seglen;

iI= zsr;

ia= seglen / 2;

ib - I;

inh=ia;

p = 0;

while(p < il){

p++;

ic -- O;

id=ia;

k = 0;

while(k < ib){

k++;

q a ti * ic;

zr = cos(q);

zi = - sin(q);

im=ic;

while(im < id){

im++;

pl I=im + id;

p22=im + ic:

p33=im + inh;

br= zr * YYI[|][pl l] - 4i “t ‘: I-lepllf:

bi = zr * YYI[2][pI I] + at [Ill-3! l !:

YY2[I][im] = \’Yl[l][p22j + I»:

YY2[2][im] = YYI[2][p22] + bi;

YY2[l][p33] = YYl[l][p.‘.2 - 1‘3:

YY2[2][D33] = YYI[2][p.2:! - I. i;

}

ic=id;

id=id + ia:

}

ia=ia / 2;

ib = 2 * ib;

im = 0;

while(im < seglen){
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im++;

YYI[I][im] = YY2[I][im]:

YYI[2][im] == YY2[2][im]:
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This suproutine is used by the PSD subroutine

magnitude()

{

register int i;

float sk;

FILE ‘ofp;

ska 2.0 / (sr " seglen);

i :- 0;

printf("\nName of storing psd filez"):

scanf("%s",store_fil);

if((ofp-fopen(store_fil,"w"))==NIJ L L )

exit(l);

fprintf(0fp,"%d,64,0,°/0CT %C,%CR ‘VOC\n",scgmcnt I .tl f.d l .d .d l );

while(i < seglen){

i++;

YY2[l][i] - sk * (YYI[I][i] * YYI[I][i] + x‘s-1321.3 mum);

fprintf(ofp,""/of\n",YY2[l][i]);

}

felose(ofp);
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This suproutine performs the peak search of the PSI) .‘lll es

pcak_search()

{

register int i,imax,il,i2;

float psdmax,fest;

il - startf "‘ seglen / sr;

i2 =- endf "' seglen / sr;

printf("\nstart,finish= %d,%d\n",i l,i2);

psdmax . 0.0;

imam-0;

i il-I;

while(i<i2){

i++;

if(YY2[l][i] > psdmaxll

psdmax = YY2[l][i];

imax a i-l;

}

}

fest = (float)imax * (float)sr / (float)seglen;

}
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This subroutine performs a correlation on an input ASCII segment

and compares the first peak after zero to a threshold. If the peak

is larger than the threshold, the distance from zero to the first

peak is taken as the hearbeat period.

#include <stdio.h>

float dat[260],r[260],threshold;

int sr,ns,lmin,lmax,lrmax,lag,nseg,segnum,numseg,locat.e;

int wsize,cwsize,bmin,bmax,imax,rect,izr,ss,f f,sum:

double sqrt(),var,fabs(),rvar,bvar;

float hrest,bavg,ravg;

char fil__name[20],d,store_fil[20],d12"";

float suml,sum2,sum3,mean,varl,var2,s,rmax,mean2.taper.scale;

FILE *ifp,*fopen(),*ofp;

main()

I

int i,j,k;

bavg=0.0;

bvar=0.0;

war-0.0;

ravg=0.0;

i=0;

izr=0;

wsize=256;

printf("file to correlate:");

scanf("%s",fil_namc);

if((ifpsfopen(fil_name,"r"))==NULL)

exit(l);

fscanf(ifp,"%d,%d,%d,%c%c %c,%c%c %c\n".&ns.&sr.&e.&d.&tl..&*d.&d,&d,&d);

printf("# of samples=°/od # of 256 blocks=%d'\n".ns.ns 'ij;

printf("\nnumber of blocks:");

sca nf("%d,%d”,&nseg);

sum=nseg*256;

printf("Full wave rectify?(I=yes,0=no):");

scanf(”%d",&rect);

printf("rect=%d\n",rect);

lmin=0;

lmax=256;

segnum=0;

mean=0.0;

locat=0;

while(segnum<nseg){

printf("\nsegment#=%d",segnum);

i=0;



108

while (i<256){

i=i+l;

fscanf(ifp,"%f\n",&dat[i]);

}

corr();

i=0;

rmax-O;

i=lmin+l;

segnum-segnum+l;

}

felose(ifp);
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This subroutine performs the autocorrelation of the input file and

compares it to a threshold.

corr()

{

int i,j,k;

float max,dmax,databs;

i=0;

mean-0.0;

while(i<wsizc){

++i;

mean+=dat[i];

}

mean-mean/(float)wsize;

i=0;

suml=0.0;

sum2=0.0;

mean2=0.0;

while(i<wsizc){

i=i+l;

dat[i]=dat[i]-mea n;

databs=fabs(dat[i]);

if(dmax<databs){

dmax=databs;

}

if(rect>izr){

dat[i]=databs;

mean2=mean2+dat[i];

}

}

mean2=mean2/(float)wsize;

if(rect>izr){

i=0;

while(i<wsize){

i=i+l;

dat[i]=dat[i]-mean2:

}

}

cwsize=wsize-lmin;

i=0;

Iag=lmin;

while(lag<lmax+ I ){

sum3=0;

i=0;

j=wsize-lag;

while(i<j){
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i=i+l;

sum3=sun13+dat[i]*da t[i+lag}:

} .

S=J;

s=s"'s;’

r[Iag+I]=sum3;

lag=lag+l;

}

max=0;

for(i-30;i<-lmax;++i){

if(max<r[i]){

max=r[i];

imax=i;

}

}

printf("\nmax=%f dmax=%f",max.dmax);

thresholdamax/dmax;

if(threshold> I 600){

printf(”\nheartrate=%d",3840/ima x );

else{

printf("\nheartratc=0");

}
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