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ABSTRACT

GLOBAL ACTIVE NOISE CONTROL OF A ONE-DIMENSIONAL

ACOUSTIC DUCT USING A FEEDBACK CONTROLLER

By

Andrew James Hull

Active noise control of acoustic enclosures is a classical engineering problem. The

active noise control of a one-dimensional hard-walled duct with a partially dissipative

boundary condition is addressed in this dissertation. Previous techniques have attacked

this problem by developing adaptive filters to decrease the noise level at a single

measurement location; they ignore the problem of noise reduction at other locations in the

duct. The work presented here applies classical control theory to reduce noise levels in a

one-dimensional acoustic enclosure. Classical control theory provides a basis to reduce the

noise levels in the duct globally, rather than at a single location. This is accomplished by

adding a response measurement microphone and a control speaker to the open loop system.

Pressure measurements are taken at a single location and passed to an observer, which

provides state estimates of the system. Once the state estimates are known, a pole

placement control algorithm is used to lower the noise level. Pole placement produces

noise control globally, rather than at a single location. Experimental result obtained here

show that the noise level in the duct can be reduced by 55% when the system is excited by

random noise excitation.
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Chapter 1. Introduction

1.1. Overview

Active noise control can produce quieter environments that are safer, more

productive, and more comfortable. In work areas such as power plants, factories, and

offices that contain long duct assemblies, reduction of sound energy in the ducts generated

by fans and other machinery is often required. The advantages of reducing noise levels is

evident, and recently more communities have passed legislation to limit excessive noise.

Passive techniques such as the use of absorbent materials have little effect on low

frequency noise, and then active noise controllers are required. Passive techniques are also

difficult if not impossible to install in many acoustic environments.

An active noise control system in a duct usually consists of one or more cancellation

speakers driven by an algorithm designed to reduce noise levels. The duct normally has

one or more signal microphones at some location while noise is driven by excitation

through one end. A variety of different active noise suppression schemes have been

deve10ped in recent years (Swinbanks, 1973; Ross, 1981; Trinder and Nelson, 1983;

LaFontaine and Shepherd, 1983; Tichy et al., 1984; Roure, 1985; M0110 and Bernhard,

1987; Eriksson et al., 1988; Manjal and E1iksson, 1988; Warner et al., 1988). The control

techniques used in these studies are some type of adaptive filter which cancels noise at a

specific measurement location. The response at areas other than the measurement location

is either ignored or not measured and typically is increased. These studies have not used

classical feedback control theory and the wealth of design and stability theorems this theory

provides. Feedback control can provide global noise reduction to the system, unlike



previous studies whose noise reduction has been limited to one point or a small region of

the duct.

1.2. A New Control Technique

The objective of the research discussed here is the application of classical pole

placement to achieve active noise control in a duct. Pole placement modifies the

eigenstructure of the system to increase the dissipation of the 'duct and attenuate duct noise.

This dissertation develops a control technique for a one-dimensional hard-walled duct with

a control speaker at some location, a totally reflective entrance boundary condition, and a

partially absorptive termination boundary condition. The effect of the partially absorptive

boundary condition is to allow propagating and standing wave responses to exist in the

duct simultaneously. These two wave characteristics yield eigenvalues with eigenfunctions

that are not orthogonal on the interval of the length of the duct with respect to the ordinary

inner product. This is unlike previous discretized acoustic models which considered only

idealized reflecting boundary conditions.

Analogous problems which have propagating and standing wave characteristics

coexisting in the system include circular saw blades, large scale space structures, turbine

wheels, robot arms and electrical transmission lines with resistive loads. Understanding

the acoustic problem stated here can lead to a better understanding of these analogous

systems. Additionally, the first step in building any generalized three-dimensional control

system is a thorough understanding the one-dimensional control problem.

1.3. Chapter Summary

Chapter 2 develops the state space model for the acoustic duct. State space model

representation for the system is required to apply classical pole placement to the duct. The



3

model is derived from separation of variables. Due to the nonself-adjoint boundary

condition, traditional methods of orthogonal mode shapes cannot be applied to this

problem. The separation of variables problem is transferred onto a different interval, where

the time and space modes are decoupled. The problem is then transferred back onto the

original interval, where the state space model results.

Chapter 3 describes an experimental verification of the state space model.

Experimental verification of the state space model is essential if real time control is to be

applied to the duct. Steady state verification of end excitation and domain excitation are

presented for a frequency constant termination end. The problem of frequency dependent

terminations is discussed and an experiment incorporating this behavior is shown. The

transient solution to the duct is also experimentally verified.

Chapter 4 develops a measurement technique to determine the boundary condition

on the termination end of the duct. This is accomplished by taking the system eigenvalue

equation and solving the inverse problem for the acoustic impedance. This measurement

technique is experimentally verified and the stability of the measurement method is

discussed.

Chapter 5 develops a state estimation method using observer theory. This is

necessary since the feedback control system needs a knowledge of the system states, which

are not measurable directly. They can be estimated, however, by measuring the pressure at

some location in the duct which is used to drive a state estimator. The state estimator

requires real time integration, and the effects of four different integration routines is

benchmarked and discussed.

Chapter 6 develops a pole placement control algorithm for the duct. Frequency and

time domain simulations are shown. The effects of nonideal control actuators is discussed.

Active noise control is demonstrated experimentally. The effect of control from a
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frequency domain standpoint is shown. Global noise attenuation is verified. System

stability and instability is discussed.

Chapter 7 summarizes this dissertation. Directions for future research are

discussed.



Chapter 2. State Space Model Representation‘

2.1. Introduction

The dynamic response of an enclosed acoustic system is determined by both the

governing differential equations and associated boundary conditions. The modeling of

one-dimensional acoustic response is a classical engineering problem (Rayleigh, 1878).

The response of hard-walled duets with idealized reflecting and/or nonreflecting

terminations to point source excitation has been developed previously (Snowdon, 1971;

Doak, 1973a; Swinbanks, 1973; Trinder and Nelson, 1983; Tichy et al., 1984). Models of

ducts with idealized totally reflective boundary conditions yield self-adjoint differential

operators and are easily discretized from their mutually orthogonal modes. Models of duets

with totally absorbent boundary conditions do not resonate, so wave propagation models

are used.

Actual acoustic systems have non-idealized, partially reflective boundary

conditions, yielding some combination of propagating and standing wave components in

their acoustic pressure response (Davis et al., 1954; Spiekermann, 1986; Spiekermann and

Radcliffe, 1988a, 1988b). Nonreflecting terminations in linear systems result in

propagating wave response while reflecting terminations result in standing wave response.

Currently available analytical model solutions do not take into account the possibility that

the acoustic response could be a combination of standing and propagating waves nor do

they consider the effect of partially absorptive boundary conditions on duct models. The

 

* This chapter is based on the paper “State Space Representation of the Nonself-Adjoint Acoustic Duct

System,” accepted for publication in the ASME Journal of Vibration and Acoustics.

5
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partially absorptive boundary condition produces a nonself-adjoint differential operator.

Traditional methods of orthogonal mode shape discretization for this class of problems

cannot be applied because the eigenfunctions are not orthogonal with the conventional inner

product over the domain of the operator and the conventional eigenfunction inner product

does not decouple the model's state equations. Nonself-adjoint operators may yield non-

conjugate, complex eigenvalues. Physically, the nonself-adjoint model results from energy

propagation down the duct and out the end.

This chapter develops an infinite order, diagonal, state space model of a duct with a

partially absorptive boundary condition. The model is intended for future development of a

time domain control theory since time domain control of high order systems frequently uses

state observers designed from state space system models. The analysis diagonalizes the

state space model; past work (Chait et al., 1988) has shown that diagonalized system

equations provide more accuracy when truncated than models which include off-diagonal

terms. The results here may also contribute to methods for evaluating duct end point

impedances and other issues in the development of duct designs.

2.2. System Model

The system model is of a one-dimensional hard-walled duct excited by a pressure

input at one end, a partially reflective boundary condition at the other end, and an arbitrary

number of mass flow inputs in the domain. This partially reflective boundary condition

allows the acoustic response model to include standing and propagating wave responses

simultaneously. The partially reflective condition in the duct allows some energy to be

dissipated out the end while the rest is reflected back into the system producing a bounded

complex system response from a nonself-adjoint differential operator.





The linear second order wave equation modeling particle displacement in a hard-

walled, one-dimensional duct is (Seto, 1971; Doak, 1973b)

9.22%; 23211014) __ 3 ammo _ k _ 3 M,(t)
atZ C 3X2 — ax p glfio‘ Xi)]at pS (2.1)

 

where u(x,t)=particle displacement (m), c=wave speed (tn/S), x=spatial location (m),

t=time (s), p=density of the medium (kg/m3), Mi(t)=mass flow input in the domain (kg/s),

xi=location of mass flow input (m), S=speaker area driving the mass flow input (m2),

P(t)=pressure excitation at x=0 (N/mz), and 8(x)=the Dirac delta function. The wave

equation assumes an adiabatic system, no mean flow in the duct, uniform duct cross

section and negligible air viscosity effects. The hard-wall assumption models the duct as

having dissipation only at the termination end. The one-dimensional assumption requires

the diameter of the duct to be small compared to its length. The duct's mean flow Mach

number is assumed to be much less than one.

The partially reflective boundary condition model at location x=L is the relationship

between the spatial gradient and the time gradient of particle displacement and is expressed

as (Seto, 1973; Pierce, 1981; Spiekermann and Radcliffe, 1988a)

93(14): _K(l)§}l(1,,t) K at 0+0i, 1+Oi, oo (22)
8x c at

where K=complex impedance of the termination end (dimensionless). Implicit in (2.2) is

the acoustic analogy with electrical systems in which volume velocity is analogous to

current and duct pressure is analogous to voltage. A second formulation called the

reciprocal acoustic mobility analogy is also sometimes used; and if applied to this system,

the parameter K in (2.2) would be the acoustic admittance. When Re(K) equals zero or is

infinity, the termination end of the duct reflects all the acoustic energy and the response is

composed of standing waves only. All other values of K yield some combination of
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propagating and standing wave response (Spiekermann and Radcliffe, 1988a). When

K=1+0i the termination end of the duct absorbs all the acoustic energy and the response is

composed of propagating waves only. In general, the reflection coefficient (1-K)/(1+K)

gives the relative magnitude of the reflected pressure wave. The real part of K (acoustic

resistance) is associated with energy dissipation and is sometimes also called a loss

coefficient, as it is a measure of the amount of energy leaving the duct. The imaginary part

of K (acoustic reactance) is associated with conservative fluid compliance and/or inertia

effects.

The duct end at x=0 is modeled as a totally reflective, open end. This boundary

condition is

330.0 = 0 . (2.3)

This corresponds to an open duct end (or an electrical short circuit). The acoustic pressure

of the system is related to the spatial gradient of the particle displacement by (Seto, 1973)

P(x,t) = —pcziu-(x,t) . (2.4)

fix

The above four equations represent a mathematical model of the duct.

2.3. Separation of Variables

A decoupled series of ordinary differential equations in state space form which

represent the wave equation are now developed. They will incorporate the boundary

conditions (2.2-2.3) as well as initial conditions in the duct.

The eigenvalues and eigenfunctions of the model are found by applying separation

of variables to (2.2-2.3) and the homogeneous version of (2.1). Separation of variables
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assumes each term of the series solution is a product of a function in the spatial domain

multiplied by a function in the time domain:

new 4? ) (233» (2.5)
e

Substituting (2.5) into the homogeneous version of (2.1) produces two independent

ordinary differential equations, each with complex valued separation constant 1., namely

 

 

2
x

d dxg") - fixer) = 0 (2. 6)

and

2

d :2“) - Azczrm = 0 . (2.7)

The separation constant 71:0 is a special case where X(x)=T(t)=1 to satisfy (2.2) and (2.3).

The spatial ordinary differential equation (2.6) is solved for 7&0 using the boundary

condition (2.3) yielding

X(x) = e“ + 6’“ . (2.8)

The time dependent ordinary differential equation yields the following general solution

T(t)=Aem+Be"‘°‘ .‘ (2.9)

Applying boundary condition (2.2) to (2.8) and (2.9) yields B=0 and the separation

constant

1 l—K ntti

7. =—lo — —— , n=0,i1,i:2, ..... 2.10
“ 2L g°[l+K] L ( )

Inserting the separation constant into (2.8) produces complex valued spatial eigenfunctions

(pn(x) where

(9.100 = 6“" + 6'1"“ . (2.11)
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(“1

I

Unless the acoustic impedance K is zero or infinity, the eigenfunctions are not mutually 1

orthogonal, conventional modal analysis of the original model (2.1) is not possible, and the

time response cannot be found.

A typical eigenfunction for K real is shown in Figure 2.1. The solid line is the third

(n=3) eigenfunction for a partially reflective termination (K=0.5+0i), and a duct length of

1.524 m (5 ft) used in previous studies (Spiekermann, 1986; Spiekermann and Radcliffe,

1988a, 1988b). The dashed line is the eigenfunction for the third (n=3) mode with fully

reflective duct termination (K=0+Oi). Note the real value of the eigenfunction with

idealized reflecting termination, K=0+0i, and the complex value of the eigenfunction for

K¢O (or 1+0i). Increasing the real part of K causes a shift in the magnitude of the

eigenfunction near the termination and a rounding of the phase angles associated with

increasing dissipation. A typical eigenfunction for K imaginary is shown in Figure 2.2.

Increasing the imaginary part of K causes a spatial shift of the magnitude and the phase

angle towards the termination. The relative magnitude of the eigenfunction remains

unchanged. Figure 2.3 is an eigenfunction plot for K complex valued. It exhibits both

characteristics of K real and K imaginary.

2.4. Series Solution

Traditional methods of orthogonal mode shapes cannot be applied here due to the

nonself-adjoint operator. However, by extending the problem definition onto a virtual

duct, and then redefining the eigenfunctions over [-L,L], the time and space modes will

decouple and a solution to the problem can be found. This technique is explained below.

The solution to the forced wave equation is now written as a series solution plus a

time dependent term arising from the i=0 eigenvalue
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n=—°O

u(x I): G(t)-I- LXM") (2.12)

where G(t) and an(t) are state variables (generalized coordinates) and (pn(x) are the

eigenfunctions defined in (2.11). The coordinate G(t) will not contribute to the pressure

response in the duct because the pressure response is only dependent on the spatial partial

derivative. To derive the state space representation, the time derivative of the wave

equation is expressed in two different forms. The first uses (2. 12) giving

—(x,I): G(t)+ 2an(t)tpn(x).. (2.13)

nz—oo

The second arises using (2.5) and (2.9) as

2110(3): icxnanfimdx) - (2-14)

nz—oo

Equating (2.13) and (2.14) results in

G(t)+ 21a(t)-— c1,an(t)]tpn(x)= 0 . (2.15)

nz—oo

The assumption is now made that the differentiation will distribute over the summation.

Success with decoupling will validate this assumption. Evaluating the forced wave

equation (2.1) by inserting the second spatial derivative of (2.12) and the first time

derivative of (2. 14) produces

+oo .

21am)—ck.a.(t>1cx.<o.<x>=——a—[-5———(")P(°]- 216(11— wig-1V(”I . (2.16)
n=—oo x i=1 pS

 



15

2.5. A New Inner Product

Independent ordinary differential equations for each generalized coordinate an(t) are

found by differentiating (2.15) with respect to the spatial variable x and multiplying by c.

The result is then added to equation (2. 16) to form

+oo

Elan“)‘CMMOIZCMCW='—
ai[8(—X__)P(t)]"k2150‘-x)]_[M(0]

n='°°
x i=1 pS

x e [0,L] (2.17)

and subtracted from equation (2.16) to yield

 

*°°- _ -}.nx__ _8_ 8(x)P(t) _ _ _(_t)
HEP”) cxnanunzcxne _ Bxl: p ]-i=21[8(xxx9] :[pis]

x e [0,L] (2.18)

respectively. The interval of (2.18) is then changed to [-L,0] by substitution of -x for x

yielding

+°°- _ I...“ 3 8(—x)P(t) k _ (t)
n;£a“(t) ctnan(t)]2c71ne _ BXI p ]+;[8(—x- 1%)]:[éM—S-I

x e [—L,O]. (2.19)

To guarantee the same effect over [-L,0] as [0,L] the mass flow input term

[8(x — xi)] 3Mi(t) / at must be extended as an odd function on [-L,L] because it interacts

with an odd local pressure. For this reason, it undergoes a sign change in (2.19). The

pressure gradient B[8(x)P(t)] / Ex is an even function for the above mentioned reason, so

the sign remains unchanged. Combining (2.17) and (2.19) using (2.10) and breaking the

exponential into terms that contain the index n and terms that do not contain the index 11

results in
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:Xla,(t)— ataMameteL=

rc[__1log_l__-KIX 5 _ k

2L °1+K ( X)P(t) _ _ (t) _

I ail p I?“ x x‘)] BIMpS H ”[120]

I
(2.20)

1—1 —l(

eileg°1+K)[_ aaxIL—(X)P(°]_2[8(x- xinéflp4?” xe[0,L].

An exponential ei‘m‘x/L is now multiplied on both sides of (2.20) and the resulting

 \

equation is integrated from -L to L. The functions on the left hand side of the integral

equation are orthogonal and have a nonzero value only when indices n=m giving

L ' —m1rx imttx

I [am(t)—c3\.nanm(t)]2c7tne ‘- e L dx=

-L

[5mm - cknam(t)]4anL n = m

I (2.21a)

0 n¢m

Using the reflection property of integrals, the right hand side of (2.20) becomes

0 mm c[__--l-—10g I--K]X 8

21. “1+K <—x)P(t) _ (t)

Ire—L— I a—aXI—]+2[5(+n>1§t[—psHM +p

L mm 11 l-K k

T—[2T °g°l—':K) 8<x)P<t) _ _ _ (t)
I e [- aa—x-I p I 2[5(x x,)1 :[ht—S—dx

 

0 i=1

k

—2P<t> + EEI.M._1(‘>]I_1_I_d‘Pn(Xi) . (2.21b)
p i=1 at pS 1'11 (12‘

Equations (2.21a) and (2.21b) can be equated to form

 

 



\ “($4

1. K p

f ) . ”'1 H

r" \‘ A ’

17 ’/

-P(t) 333 Mi(t) ago.)

20)»an i=1 at 4ClinS dX

  (inn) — cknan] = (2.22)

 

This is the ordinary differential equation for each of the state variables an(t).

2.6. State Space Formulation

The infinite order state space formulation is taken directly from (2.22) which is

rewritten in matrix form as

a(t) = Aa(t) + Bm(t) + bpp(t) (2.23)

 

m‘hwfi

where a(t) = the vector of modal wave amplitudes an(t),

A = the diagonal matrix [cln],

B = the matrix 21 dcpn(xi) ,

4ckanS dx

m(t) = the vector of mass flow inputs B[M1.......... Mk]T / at,

 

 

bp = the vector —1 , and

2c7tan

p(t) = the pressure input at x = 0,

P(xm,t) = cTa(t), ' (2.24)

where P(xm,t) = the pressure in the duct at x = xm,

2 d¢n(xm)].

and c = the vector [—pc

dx

A is diagonal because the result of the inner product (2.21) is nonzero only when n=m

along the diagonal. The resulting state space representation is extremely useful since the

individual modes are decoupled from each other and each state's input from each excitation

is explicit.
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The initial conditions on the an(t) coordinates are found using a similar method to

the derivation (2.12) - (2.22), which produces

L

= 1 _ _ dtpn(x)

an(0) 4L7an 0 aau(x,O)(pn(x)dx 4111;?“ Li::X(,———0)dx———dx . (2.25)
  

2.7. Frequency Response

The general form of the transient time response to harmonic pressure excitation at

x=0 is found by solving for each of the states an(t) as

  an(t)= [an(0)-iw d“ n]e°l“‘+ d“ eicot (2.26)

— c)» in) - ckn

P .

ithd = 0 andPt =-P cm".

W n 2&an ( ) O

 

The steady state response of (2.26) is

a (t) — Poem (2 27)
n ' 2canp(im—cxn) ' '

 

Finally inserting the an(t) back into the original series solution and using (2.4) to evaluate

the pressure response produces the following series solution

P(x, t)-— —pc2 :an(t)——d¢“(x) . (2.28)

“z-.. .

Evaluating (2.28) with a finite number of symmetric terms yields the following truncated

series solution

PN(X t)—_ _pC2 +ZNEH(t)—_(kpdnxO‘)

n=-N

(2.29)
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2.8. Accuracy of Truncated Solution

The exact, infinite-order transient response to this duct problem has not been

previously available. The exact series form for the transient solution for pressure excitation

and/or mass flow excitation must be truncated to a finite number of terms for engineering

use. The effect of this truncation on both steady state and transient forms of the exact

series solution will now be examined. The effect of truncation on a control system using a

truncated model is to introduce observation and control spillover which occurs whenever an

unmodeled mode in the system interacts with the control system action. This spillover

typically degrades performance and in extreme cases lead to closed-loop control system

instability.

Quantitative information on the accuracy of a truncated, steady state, series solution

(2.29) is found here by comparing it to an exact, steady state, frequency response. The

exact steady state response for the system described in (2.1-2.3) can be independently

calculated (Spiekermann, 1986; Spiekermann and Radcliffe, 1988) for the special case of

harmonic pressure excitation only with a closed form solution (2.29) as

(0

K 1 iv L)+ K+1 4%”)
P(x,t)=P0( )6 ,0, ( )c ,0, cm” . (2.30)

C

 

~l—X 1 X

(K—l)e ° +(K+1)e

This exact steady state response model is only valid for the special case of pressure

excitation at x=0. It can not model the mass flow excitation in the domain nor does it

model transient responses. It is used here only for comparison with the more general result

(2.28).

Figure 2.4 is a frequency response of a 1.524 m (5 ft) duct at location x=0.4267 m

(1.4 ft) from the pressure excitation at x=O. The impedance is K=0.3+0.2i and a truncated

series model with eleven terms is used to approximate the solution. The solid line is the
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truncated steady state series solution (2.29) and the dotted line is the exact solution (2.28,

2.30). The mean relative error up to the fifth duct resonance is 3.2% (-30 dB). Numerical

simulations suggest the state space model requires one state to model zero frequency

response plus two states per duct resonance. The model yields acceptable accuracy up to

the highest duct resonance modeled

The error of the truncated solution to this acoustic problem is periodic and bounded.

This situation can be demonstrated (Figure 2.5) with the eleven term model (Figure 2.4).

This is unlike typical mechanical systems (Chait et al., 1988) that have a vanishing bound

as the forcing frequency approaches infinity. The impact on a control system is that the

higher frequency modal magnitudes are not small and cannot be ignored. The truncated

state space solution for system frequency response approaches zero as the driving

frequency approaches infinity. The state space solution is exponentially stable

(Kwakernaak and Sivan, 1972). Exponential stability is guaranteed since the real parts of

all the eigenvalues are negative and B and b are bounded.

Figure 2.6 is a frequency response of a 1.524 m duct at location x=0.4267 m from

the end. In this example, the excitation has been moved from x=0 to xi=1.22 m (4 ft)

where it is now a mass flow excitation. The mass flow excitation term is M(t) = -M0e1‘m.

The impedance is K=0.3+0.2i and fifteen terms are used to form the solution. The

previous steady state model (2.30) cannot be compared to this frequency response since it

is only valid for pressure excitation at x=0 and frequency (0. The resonance peaks still

occur at the same frequency as (2.30). This is predicted behavior since the modes are not

dependent on excitation location.
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2.9. Transient Response

The solution to a transient problem is shown in Figure 2.7. The input into the duct

is a harmonic pressure excitation with a frequency of 150 Hertz initiated at t=0. The input

location is x=0 and the response is calculated at location x=0.914 (3 ft). The solid line is

the five term solution and the dotted line is a 51 term solution. The impedance constant is

K=0.3+0.2i. The duct acoustic pressure and particle velocity are zero at time t=0 yielding

zero initial conditions for all model states. Since the state model is diagonal, the response

of the generalized coordinates (states) are independent. Adding additional terms to the state

model does not alter the response of each of the previous states. This behavior does not

occur for coupled state space models with nondiagonal A matrices. Because the states are

decoupled, modal truncation error is reduced and predicted response with only 5 terms is

quite similar to that for 51 terms.

The solution to another transient problem is shown in Figure 2.8. The input into

the duct is a pressure pulse of magnitude one and width of 0.001 seconds. The input

location is x=0 and the response is calculated at location x=0.610 m (2 ft). The impedance

constant is K=0.3+0i. The solid line is the 51 term solution which approximates the exact

solution very well and the dashed line is the 11 term solution which has the same response

in each of the states but lower resolution due to the reduction in state number. The exact

solution pulse magnitude which can be calculated for this simple special case equals one for ‘

the first pulse. Every successive pulse then decreases by 54.8% due to energy escaping

from the end of the duct. The exact solution pulse width is 0.001 seconds and the first one

occurs at t=0.00183 seconds. The truncated series solution has these characteristics.

Because the forcing function is a pulse with infinite Fourier series, adding additional states

in this example helps the accuracy of the solution.
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Chapter 3. Experimental Verification of the State Space Model“

3.1. Model Verification Experiment

The state space model developed in Chapter 2 is experimentally verified for four

different test cases. Open loop verification of the model is essential if real time control is to

be successfully applied to the duct. In all the experiments, the impedance at the end of the

duct was calculated from the experimental system transfer functions. This measurement

technique is discussed in Chapter 4.

3.2. Pressure Excitation, Constant Acoustic Impedance

The first experiment involved pressure excitation at x=0 with a constant, frequency

invariant, acoustic impedance in the termination end. The impedance was produced by

inserting a flat piece of packing foam which had a nearly constant impedance at all

frequencies of interest. The steady state response of (2.23) to harmonic excitation using

the pressure excitation term is

P0eion

—— 3.1

2c2tan(iw — ckn) ( )

an(t) =

where the pressure is evaluated using (2.4), (2.5) and (2.11). The experiment used a 76

mm (3 in) circular PVC schedule 40 duct that was 2.60 m (8.52 ft) long driven by a 254

mm (10 in) diameter speaker (Realistic 40-1331B). Speaker input pressure was measured

in the exit plane of the input speaker with a Bruel and Kjaer Type 4166 half inch

 

* This chapter is based on the paper “Experimental Verification of the Nonself-Adjoint State Space Duct

Model,” submitted for publication to the ASME Journal of Vibration and Acoustics.
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microphone attached to a Hewlett Packard 5423A digital signal analyzer. At a location of

x=0.792 m (2.60 ft) from the speaker, the response of the tube was measured with another

Bruel and Kjaer Type 4166 half inch microphone. The output of the response microphone

was then connected to the signal analyzer (Figure 3.1). Both microphones were calibrated

using a Bruel and Kjaer Type 4230 Sound Level Calibrator. The packing foam had a ~

measured acoustic impedance of approximately K=O.285+0.079i from zero to 400 Hertz.
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Figure 3.1. Laboratory Configuration.

The results of the experiment are shown in Figure 3.2. The measured responses

are marked by X’s and the theoretical response with the measured end impedance is

denoted by a solid line. There is a high degree of accuracy in the magnitude and the phase

data. The disagreement between the experimental data and the theory are possibly due to a

slight nonlinearity of the packing foam impedance.
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3.3. Mass Flow Excitation, Constant Acoustic Impedance

The experiment was rerun with mass flow excitation in the domain. The steady

state response of (2.23) for mass flow excitation is

_Moei0)t I-d‘pn(xi):l

4cAfiLpsam — can)L dx

 a,,(t) = (3.2)

where the pressure is evaluated using the same equations as in experiment 1. A Realistic

102 mm (4 in) speaker was located in the wall of the duct at x1=1.58 m (5.17 ft) using a

schedule 40 test tee. The input signal was measured using a Bruel and Kjaer Type 3544

helium neon laser velocity measurement system attached to the signal analyzer. The laser

measured the velocity of the speaker cone which is proportional to the mass flow. The test

tee had a plexiglass window inserted in its side so the laser could shine on the speaker cone

face to measure it’s velocity. The length of the duct tested was 4.42 m (14.5 ft) and the

response was measured at x=0.762 m (2.50 ft). The foam used in the first experiment was

again used in this experiment. The results of the experiment are shown in Figure 3.3.

3.4. Pressure Excitation, Nonconstant Acoustic Impedance

The acoustic impedance of the systems discussed here is given in (2.2). Equation

(2.2) makes the assumption that the acoustic impedance is constant. For some termination

ends, the impedance is frequency dependent. For these systems, (2.2) is written as

a—u(L,t) = —K(co)(l)§ll(L,t) K at 0+0i, 1+0i, oo . (3.3)

ax c at

Although the separation of variables in Chapter 2 is for K constant, termination ends where

K is a function of frequency can be approximated by

fl(L,t) = —Kn(l)§(L,t) K ¢ 0+0i,1+0i,oo, n = 0,1,2,... (3.4)

EX C at  w=wn (n=mn
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Using this relationship, the state space model derived in Chapter 2 can be used to

approximate systems with frequency dependent terminations. An example is given below.

The third experiment involved pressure excitation at x=0 with a nonconstant

acoustic impedance in the termination end. The nonconstant termination was produced by

placing a hemisphere of foam with a diameter equal to the duct’s diameter in the end of the

duct. The resulting acoustic wave was effected by the foam material as well as the shape of

the material. This produced a nonconstant acoustic impedance. The values are listed in

Table 3.1. They were found by obtaining a frequency response of the system from zero to

800 Hertz and then solving the inverse problem for K at each duct eigenvalue (Chapter 3).

The length of the duct was 1.59 m (5.22 ft) and the response was measured at x=1.09 m

(3.56 ft). The state space model was then assembled using the individual acoustic

impedance measurements of K at each resonant frequency rather than a single value for K.

The eigenvalues of the system are non-conjugate complex values since K is complex. The

results are shown in Figure 3.4. Figure 3.4 demonstrates that for a nonconstant impedance

end the linear state space model is reasonably accurate and can predict resonant peak

locations as well as system phase angles. The errors tend to be minimized near the natural

frequencies and maximized between the natural frequencies. This is because the modal

impedances, Kn, were measured at the natural frequencies. The model does not account

for varying values of the impedance between the modes.
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Table 3.1. Calculated Acoustic Impedance.

 

 

    

Eigenvalue (n) (on (Hertz) RC (Kn) Im (Kn)

1 104.8 0.599 0.066

2 213.8 0.585 0.054

3 314.6 0.594 0.206

4 424.2 0.522 0.198

5 533.5 0.491 0.182

6 645.0 0.508 0.104

7 754.6 0.459 0.081
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3.5. Transient Response

The pressure excitation steady—state responses presented previously can be

computed from previous steady—state solutions (Davis et al., 1954, Spiekermann, 1986) to

the wave equation as well as the state space model investigated here. The general transient

response to pressure and flow excitation has not been available previously and the transient

response of a state model is required to implement modern control methods. This transient

response was verified in the set of experiments below.

The experiment was initiated by attaching a signal generator to the excitation

speaker and caused one cycle of sine wave excitation at approximately 500 Hertz (Figure

3.5). The system input pressure and response pressure were then measured by Bruel and

Kjaer Type 4166 half inch microphones attached to an Apple Computer, Inc. Macintosh lIx

computer running National Instruments Labview software and an NB-MIO-16L analog to

digital converter. The measured time domain experimental data was then compared to

theoretical model response. The length of the duct in this test was 2.44 m (8.00 ft) and the

response was measured at x=0.792 m (2.60 ft). The packing foam used in the first

experiment was also used in this experiment to provide a nonzero acoustic impedance in the

end of the duct.

Figure 3.6 is a plot of the experimental data and theoretical state space model. The

solid line is the experimental data and the dashed line is the theoretical model. The

theoretical model response was computed using a fifth order Adams’ integration method

with 51 states. The forcing function in the Adams’ integration routine was the measured

system input at x=0. The integration step size was At=0.000035 which matched the

Labview sampling rate of 28571 Hertz. There is an excellent match between the theoretical

model and experimental data from t=0 to t=0.015 seconds. After that, the experimental

data and theoretical prediction deviate because the propagating pressure pulse reflects off

the now inactive speaker and is effected by the speakers impedance. The theoretical model
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does not account for impedance" at the speaker, however, Figures 3.1 and 3.3 illustrate that

an active speaker has little effect on the impedance at the source end.

Truncation effects of the state space model are show in Figures 3.7 and 3.8. Figure

3.7 is the experimental data compared to a 21 term state space model and Figure 3.8 is the

experimental data compared to a 15 term state space model. The 51 term state space model

has an error at the pulse peak of less than 1% that increases to an error of 15% for the 21

term state space model and further increases to 40% for the 15 term state space model.

Models with less than 15 terms do not have the bandwidth required to give a reasonable

solution accuracy for the approximately 500 Hertz transient input used in this experiment.

In general, more terms used in the model produces a more accurate solution because the

model bandwidth is increased with the addition of each mode. Most real-time control

schemes cannot incorporate a large number of model terms due to the speed required to

control the system. There is always a trade off between control complexity (model size)

and bandwidth (speed of response) in any control system. These issues are especially

important in distributed parameter control systems (Chait et al.,-1988).
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Chapter 4. Acoustic Impedance Measurement”

4.1. Introduction

Measuring the acoustic impedance of a boundary is important since the acoustic

response of any acoustic system is governed by the acoustic impedance of its boundaries.

Accurate mathematical models of acoustic systems require accurate measurements of

acoustic impedance. The acoustic impedance of boundaries determines the magnitude and

frequency of resonant peaks and the spatial distribution of acoustic response.

A variety of acoustic impedance measurement techniques have been developed in

the past. The first techniques used an impedance tube and a single microphone (Hall,

1939; Beranek, 1940; Morse and Ingard, 1968; Dickinson and Doak, 1970; Pierce, 1981).

They require measurement of maximum and minimum sound pressure levels at an acoustic

resonance in an impedance tube and their spatial locations. These locations and magnitudes

are then used to calculate the corresponding impedance (ASTM Standard C 384, 1.985a).

Identifying the location of maximum and minimum sound pressure levels in an impedance

tube is normally difficult and requires physical changes in microphone position. Two of

the impedance tube measurement methods (Hall, 1939; Beranek, 1940) use approximate

formulas for computing impedance which can also lead to impedance measurement error.

A recent acoustic impedance measurement technique utilizes a two microphone

system (Seybert and Ross, 1977; Chung and Blaser, 1980a, 1980b). This technique

requires two similar, phase calibrated, microphones at some location in the tube with a

 

* This chapter is based on the paper “An Eigenvalue Based Acoustic Impedance Measurement Technique,”

accepted for publication in the ASME Journal of Vibration and Acoustics.
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known distance between them. The acoustic wave response is then mathematically

decomposed into its reflected and incident components using a transfer function between

the acoustic pressure at the two microphone locations. The decomposition allows the

computation of acoustic impedance (ASTM Standard E 1050, 1985b). ASTM 1050 E,

although better than ASTM C 384, requires measurement of the exact distance from the test

sample to the center of the nearest microphone and the exact spacing of the microphones.

Both these physical dimensions can be difficult to measure accurately. The two

microphone method works best with two phase matched microphones and a source whose

transfer function has constant magnitude around the frequency of interest. If the

microphones are not phase matched, then a correction must be included in the computation

of acoustic impedance. These measurement requirements can lead to errors when

measuring acoustic impedance using the two microphone technique.

This chapter develops a method for calculating the acoustic impedance based on the

eigenvalues of a tube with unknown end impedance. A Fast Fourier analyzer is used to

measure complex frequency response from which the eigenvalues of the system are

extracted. Acoustic impedance at each resonance is then computed from these eigenvalues.

The eigenvalue measurement is independent of microphone position and the location of the

response microphone in the tube is arbitrary. The computation of the acoustic impedance

from the duct eigenvalues is a closed form solution based on the same plane wave

assumptions present in previous methods. The only physical constants required are duct

length and the speed of sound in the duct.

4.2. System Model and System Eigenvalues

The system model is of a one-dimensional hard-walled duct excited by a pressure

input at one end and a partially reflective boundary condition at the other end represented by

a complex boundary impedance (Chapter 2). The termination end impedance is a ratio



40

between the pressure and the particle velocity at x=L and is expressed as (Seto, 1971;

Pierce, 1981; Spiekermann and Radcliffe, 1988)

23¢» = —K(%)%%(L,t) . (4.1)

Implicit in (4.1) is the acoustic analogy with electrical systems in which volume velocity is

analogous to current and duct pressure is analogous to voltage. A second formulation

called the reciprocal acoustic mobility analogy is also sometimes used; and if applied to this

system, the parameter K in (4.1) would be the acoustic admittance. The linear second

order wave equation modeling particle displacement in a hard-walled, one—dimensional duct

is (Seto, 1971; Doak, 1973)

82u(x,t) = a [ammo]
2

a U(X,t) _ c2 _

P
BIZ 8x2 3x

  
(4.2)

The one—dimensional assumption is usually valid when f<0.586(c/d) where f is the

frequency (Hertz) and dis the diameter of the tube (m) (Annual Book of ASTM Standards,

1985a; 1985b). The duct end at x=0 is modeled as a totally reflective, open end. This

boundary condition is (Seto, 1971)

§(0,t) = 0 . (4.3)

This corresponds to an open duct end (or electrical short circuit). Equation (4.3) along

with the right hand side of (4.2) model the speaker as a pressure source at x=0. Implicit in

(4.3) is the assumption the source impedance is negligible. If the source impedance is not

small, it can be incorporated into the model (Swanson, 1988). The acoustic pressure of the

system is related to the spatial gradient of the particle displacement by (Seto, 1971)

P(x,t) = -pcza—u(x,t) . (4.4)
EX
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The separation constants of the model were found in Chapter 2. They are

1 1—K ntti
7t =—lo — —— , n=0,il,i2, ..... . 4.5

“ 2L ge[1+K] L ( )

The system eigenvalues An are equal to the separation constant multiplied by the wave

speed c (An=c?tn). An eigenvalue plot is shown in Figure 4.1. These eigenvalues are each

functions of acoustic impedance, K. The inverse function will allow impedance, K, to be

computed from measured eigenvalues.

4.3. Acoustic Impedance Computation

The acoustic impedance K of the end can be determined at each duct resonance from

the eigenvalue at that resonance. This computation assumes the eigenvalues of the system

are known. Measuring these duct system eigenvalues is discussed in the next section.

Directly solving for K in terms of A is very difficult, therefore an intermediate variable [3 is

introduced to simplify the acoustic impedance computation. The variable Bn is related to

the nth eigenvalue An from equation (4.5) as

nrtci

Re(An) + i Im(An) = Z—i-logJReGin) + i Im(Bn)] —T (4. 6)

where Re( ) denotes the real part, Im( ) denotes the imaginary part, and the subscript “n”

denotes the nth term. Equation (4.6) is now broken into two parts, one equating the real

coefficients and the other equating the imaginary coefficients. The complex logarithm on

the right hand side is rewritten as

loge[Re(I3n) + i Im(Bn)] = logelfinl+i arg(|3n) (4.7)

where IBnl is the magnitude of [in and arg(Bn) is the argument of Bu, i.e., the arctangent of

[III] (Bn)/Re(Bn)l-





42

 

 

 

[Imaginaw

0 l- K 301: .
__ +—

X [ZLar-:g(1K] L]1

0 1—K 201:
— — __ +_ '

X [ZLarg[1+K] L]1

c l—K 01:
—-I +-— '

X [2_Lmink] Lil

0 1—K

>< - l-argI—Jli2L 1+K Real

.-

£10;K|1-

2L oge 1+K

' 2L g1+K L 1

0 1—K 201:

X [2L [1+K] Li1

0 1-K 301:

X [2L [1+K] Lil

V

Figure 4.1. System Eigenvalues An, for Constant K.
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The intermediate variable fin is now solved for in terms of the real and imaginary

parts of the eigenvalues. The real part of [in is

l
_ .5

exp(4LRe(An))

0
Re(Bn) = i-

1+ tan2(——2Ld“)

 

(4.8a)

C   -

where c1n = Im(An)+ 31°55- .

The sign of Re(Bn) in (4.8a) is determined by

+1 if 0 SIAIS 0.25

sgn[Re(Bn)] = (4%)

—1 if 0.25 <IA|S 0.50

(a

If the value of A is less than -O.5 or greater than 0.5, the eigenvalue index n is incorrect and

 

where A =

corresponds to an eigenvalue other than the nth one. The value, it, must then be changed to

produce a A between -0.5 and 0.5 which will correspond to the correct eigenvalue index.

Once Re(Bn) is found, Im(Bn) is found by the equation

 Im(Bn) = Re(Bn)m(ztd“) (4.9)

where Re(Bn) is given in (4.8).

The term (1-K)/(1+K) is now equated to the intermediate variable [3n using (4.5)

and (4.6) as
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1- Re(Kn) — i Im(KQ

1+ Re(Kn) + i Im(Kn)

 

Re(B.) +i Im(B.) = (4.10)

where Re(Kn) is the real part of K and Im(Kn) is the imaginary part of K for the nth

eigenvalue. Breaking (4.10) into two equations, and solving for Kn as a function of [in

 

 

yields the acoustic impedance as

2 2

Re(Kn) ___ 1- [R6030]2 - [Im(l3n)l2 (4.11)

[Re(Bn) + 1] + [Im(Bnn

_ '2 Im(Bn) .

MK“) ’ [Re(Bn)+ 1]2 + 11mm“)? (4'12)

Acoustic impedance measurement Kn represents the acoustic impedance at the nth resonant

frequency.

4.4. Acoustic Impedance Measurement Experiment

The viability of the above acoustic impedance method was investigated through

laboratory tests. The test used a 0.0762 m (3 in) circular PVC schedule 40 duct that was

2.94 m (9.65 ft) long driven by a 0.254 m (10 in) diameter speaker (Realistic 40-1331B).

The impedance of a piece of 30 mm thick packing foam inserted in the termination end was

tested. The packing foam will be shown to have acoustic impedance which is nearly

constant with frequency (Table 4.2), allowing for frequency response comparison to

known theory. Speaker input pressure was measured in the exit plane of the input speaker

with a Bruel and Kjaer Type 4166 half inch microphone (input reference microphone)

attached to a Hewlett Packard 5423A digital signal analyzer. The response of the tube was

measured at various locations with another Bruel and Kjaer Type 4166 half inch

microphone (response measurement microphone) attached to the signal analyzer (Figure

4.2). Both microphones were calibrated using a Bruel and Kjaer Type 4230 Sound Level

Calibrator.
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Figure 4.2. Laboratory Configuration.

The impedance measurement technique developed here does not require phase

matched microphones nor does it require compensation for phase mismatched

microphones. Phase mismatch in the microphones is neglected since the measurements are

made at a duct resonant frequency, i.e. the measurements are made when the system phase

angles are changing rapidly through 180 degrees. Microphones operating under 500 Hertz

rarely have phase error greater than 5 degrees (Bruel and Kjaer, 1982). Steady state

eigenvalue measurements are amplitude dominated. The distance between the microphones

is not critical, since the duct eigenvalues are independent of measurement location. This is

unlike previous methods (Seybert and Ross, 1977; Chung and Blaser, 1980a, 1980b)
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where microphone spacing is a required parameter in the analysis and phase matched

microphones (or a compensation function) are necessary because wave propagation across

the microphones is detected. Errors in the method developed here are only a function of

errors associated with measuring the eigenvalues of the duct, the duct length, and the speed

of sound. The computation of acoustic impedance from duct eigenvalues is a closed form

solution. The method uses the input microphone as an amplitude reference and the

excitation speaker does not require a flat response around the frequency of interest, because

the response is normalized by the pressure input reference when the Fast Fourier

Transform is computed.

The 5423A Structural Dynamics Analyzer used here is capable of providing a

number of real time analyses including determining the transfer function (frequency

response) of a system and calculating the corresponding eigenvalues. The 5423A

Structural Dynamics Analyzer does this by curve fitting a single mode vibration model (two

first order states) to the experimental data using the following equation (Hewlett Packard,

1979)

H(w)= Re(An)+iIm(An) + Re(An)—i1m(An)

in) — Re(An) — i Im(An) ico - Re(An) + i Im(An)

  +Blto+B0 (4.13)

where H((o) = the transfer function,

A = the system residue, and

B1 and B0 = compensation constants for overlapping modes.

Included in the single mode vibration model is compensation for other modes which may

be overlapping at that particular frequency. During the curve fitting process, the real and

imaginary parts of the eigenvalues are calculated. It is beyond the scope of this paper to

describe this process, however, there exist additional alternative methods to extract modal

parameters from the transfer function of a system (Hewlett Packard, 1979; Structural
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Dynamics Research Corporation, 1983). Eigenvalue extraction is a common function of

commercial Fast Fourier analyzers.

The first part of the experiment measured the transfer function of the duct with the

foam end impedance. The 5423A Structural Dynamics Analyzer does this by sending a

random noise signal to the speaker and then computing the ratio of the Fast Fourier

Transforms of the input and response signals. Once the transfer function was known, the

eigenvalues of the duct were found using the curve fitting process above (4.13). From the

eigenvalues, the acoustic impedance of the foam was determined using equations (4.5) -

(4.12).

The mean and standard deviation of the measured eigenvalues of the system with

the foam end impedance are shown in Table 4.1. These values are derived from five

independent sets of measurements at x=0.792 m (2.60.ft) through x=1.42 m (4.67 ft) at

0.157 m (0.52 ft) increments. Each individual eigenvalue was measured from a transfer

function composed of 20 averaged Fast Fourier transforms. The calculated acoustic

impedance of the foam is shown in Table 4.2. In this case, the real part of the acoustic

impedance dominates the response. Figure 4.3 shows the measured frequency response at

x=0.792 m (2.60 ft) compared to the theoretical frequency response for K=0.273+0.034i

at the same point. The value of P/PO is the ratio of the response to the input and the

measured responses are marked by X's while the theoretical response is denoted by a solid

line. The impedance, K, used in the theoretical response is the average of the six individual

acoustic impedance measurements taken at different locations along the duct. Figure 4.3

demonstrates that the theoretical model using the measured acoustic impedance of a material

can accurately predict duct response. There is a high degree of accuracy in both the

magnitude and the phase angles.
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The acoustic impedances of the above experiment were calculated by increasing the

magnitudes of both the real and imaginary parts of the measured eigenvalues by one, two

and three standard deviations from their mean values. After these changes, the magnitude

of the calculated impedance K only changed by an average of 1.7%, 3.2%, and 5.0%

respectively. This shows the high stability of the measurement technique, it’s resistance to

error propagation, and the accuracy of acoustic impedances determined using it.

The experiment was repeated for a capped end. The results are shown in Tables

4.3 and 4.4. An ideal closed end would have an impedance of infinity, however, the real

material used here has some absorption. The large impedances shown in Table 4.4 indicate

this trend and the variation of impedance with frequency in this case. Figure 4.4 shows the

measured frequency response compared to a theoretical frequency response calculated

using the measured impedances. The theoretical frequency response was produced by

assembling a state space model which used the measured acoustic impedances at each

eigenvalue. As in Figure 4.3, there is a high degree of accuracy in both the magnitude and

phase angles.

It is important to monitor the value of A when testing extremely reflective ends. It

is possible for eigenvalue computation errors to yield a A greater than 0.50 with the correct

index n for large impedances. From the above measurements, a value of coefficient,

A=.51 was calculated for the one of the eigenvalues. Because the measurements were only

accurate to two significant figures, the coefficient was rounded to A=0.5. For most

materials the reflectivity is not large enough for this to be a concern.

 





Table 4.1. Measured Duct Eigenvalues for the Foam End.
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Eigenvalue Re(An) R“A19 1m(An) 1m(An)

(n) mean, x std. dev., s mean, x std. dev., s

(HertZ) (Hera)

1 -4.955 0.033 57.89 0.045

2 -5.204 0.124 116.3 0.055

3 -5.713 0.091 174.7 0.152

4 -5.755 0.131 233.8 0.259

5 -4.231 0.122 291.7 0.164

6 -5.414 0.117 350.5 0.192     

Table 4.2. Calculated Acoustic Impedance for the Foam End.

 

 

 

 

Eigenvalue (n) Re(Kn) Im(Kn)

1 0.260 0.032

2 0.273 0.037

3 0.298 0.042

4 0.300 0.014

5 0.224 0.046

6 0.283 0.031

mean, x 0.273 0.034

std. dev., 8 0.028 0.011    
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Table 4.3. Measured Duct Eigenvalues for the Capped End.

 

 

 

Eigenvalue (n) Re(An) Im(An) (Hertz)

1 -0.723 29.1

2 -0.847 88.4

3 -1.010 147.2

4 -1.279 206.0

5 -1.419 264.6

6 —0.9 14 324.1

7 -1.038 381.9  
 

Table 4.4. Calculated Acoustic Impedance for the Capped End.

 

 

 

Eigenvalue (n) Re(Kn) Im(Kn)

1 24.37 -5.88

2 15.06 - 10.22

3 11.06 -9.03

4 8.54 -7. 16

5 8.07 -6.38

6 3.32 -7.47

7 6.81 -8.68  
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Chapter 5. State Estimation“

5.1. Introduction

An active noise control system in a duct usually consists of one or more cancellation

speakers driven by an algorithm designed to reduce noise levels in the duct. The duct

normally has one or more signal microphones at some location while noise is driven by

excitation through one end. The goal of the research discussed here is the application of

classical pole placement to the problem of active noise control in a duct. Pole placement

modifies the eigenstructure of the system to increase the dissipation of the duct and

attenuate duct noise. This requires knowledge of the values of the system states. In the

previously developed state space duct model (Chapter 2), the system states in the duct are

not measurable, and a state estimator must be developed.

The observer is a computer model that runs in parallel with the actual duct system

(Luenberger, 1964; Luenberger, 1966) whose input is the input into the actual system plus

an error feedback designed to drive the computer model states to values approaching the

actual system states. The output of the observer are state estimates and a system pressure

estimate. This chapter develops the state estimator (Figures 5.1 and 5.2) for the one-

dimensional hard-walled duct with a speaker at some location, a totally reflective entrance

boundary condition, and a partially absorptive termination boundary condition. The

excitation is a speaker with input signal v(t) that is independent of the dynamics of the duct.

 

"' This chapter is based on “State Estimation of the Nonself-Adjoint Acoustic Duct System,” accepted for

publication in the ASME Journal ofDynamic Systems. Measurement, and Control.
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The next chapter will develop a state space controller to generate v(t) as a noise control

based on state estimates.

 

 

 
 State Estimate II

Figure 5.1. Observer and Duct Diagram (Chen, 1984).
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5.2. Observer Equations

Typical observer structure is shown in the flow chart in Fig. 5.1. The thick lines

represent vector quantities and the thin lines represent scalar quantities. The system input is

a mass flow excitation at location x=xi in the duct or a pressure excitation at x=0. The error

feedback is the comparison between the actual noise field and the estimated noise field at

location x=xm. The state estimates, once available, can be passed to a controller to drive a

compensator. The control objective is to change the eigenvalues of the system so that the

duct is less responsive to external pressure excitation at certain design frequencies.

The duct is an infinite dimensional system. The observer is a finite dimensional

system whose order is based on the truncated state space model. When the state space

formulation is truncated, the truncated model response only converges to the exact response

over a limited frequency range (Chapter 2). Increasing the number of terms 11 in the

truncated solution increases the frequency bandwidth over which the truncated solution

converges to the exact solution. Although many methods have been developed recently to
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suppress the errors associated with model truncation (Chait et al., 1988), observation

spillover error will always occur when an unmodeled mode in the infinite dimensional

system produces an error in the state estimator. The effect of truncation-induced

observation spillover errors will be examined below.

The observer equations for a single input are

a(t) = [A — lcT]a(t) + bv(t) + lP(xm,t) (5.1)

Pest(x,t) = cTa(t) (5.2)

where Pest(x,t)=the observer estimate of the pressure in the duct, v(t)=the system input,

b=the input vector (different depending on if the excitation is in the domain or at the end), I

the observer gain vector, and the superscript T denotes the matrix transpose. Equations

(5.1) and (5.2) are the observer equations for the duct used to provide for a state estimate in

the duct when the states are not measurable.

5.3. Observer Gain Placement

The observer gains form the vector l. Conventional practice is to choose them so

that the real part of the eigenvalues of A-lcT are two to four times the magnitude of the

imaginary part of the eigenvalues of A (Franklin and Powell, 1980). The imaginary part of

the eigenvalues typically remains unchanged. This practice allows the observer to resonate

at the same frequencies as the duct. The algorithm to place the observer gains is listed

below.

1. Find the characteristic equation of A. This is the determinant of [sI-A] and is

written as 5n + Oils".1 + 0L2s“_2 + a3s“_2+. . . .+0tn_ls+ an where the 0t's will be used to
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determine l. The (1's are related to the eigenvalues of A by the elementary symmetric

functions

11

a1: 211i = traceA (Ai = cli)

1:1

a2 = iZIIAiAj = tracezA

i<j

n

(13: zAiAjAk = trace3A

1:

i<j<k

it

an = l—IAi = detA = tracenA

i=1

2. Find the characteristic equation of [A—clT]. This is written as

sn + l31 s"_1 + stn‘2 + I33 sn‘3+. . . .+Bn_ls + [3,, = 0 The [3's are related to the eigenvalues

of [A-clT] in the same manner as the (it's are related to the eigenvalues of A above.

3. Define the intermediate observer vector IIT using the ori and Bi derived above.

lIr=[Bn_an Bn_1-an_1 132—0t1 [SI—a1].

4. Form the modal intermediate observation matrix T. The columns of T are

t,rl = c

tn1=Ac+0tlc

__ 2
tn_2 — A c+a1Ac+a20

_ n-1 n—2

tl—A 0+0tlA c+....+0tn_1Ac+0tnc

and
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5. Invert T and find the observer gains by IT = [IT—1.

Due to the spectral bandwidth of the A's, the matrix T is algorithmically singular when n>5

(L=l.524 m) for matrix inversion using the International Math and Statistical Libraries

(IMSL) linear equation solver with double precision constants. The matrix is column—wise

ill conditioned. Using this knowledge, the matrix can be preprocessed (for 5<n<12) by

dividing each member of each column by a complex number that has the largest real and

imaginary values in that particular column. The modified matrix is then passed to the IMSL

linear equation solver and inverted. The inverted matrix is now rescaled, with the rows

divided by the above complex number. Using this technique, the matrix T can be inverted

for n=1 1. For n>11, the characteristic equations cannot be generated and the matrix T

cannot be constructed on a MicroVAX H. If a computer with more precision is available,

the problem can be solved for larger values of n.

5.4. Closed Form Solution

A closed form solution to (5.1) and (5.2) can be derived by transforming the

equations into orthogonal space. This starts by making the substitution

a(t) = Uz(t) (5. 3)

where U=the eigenvectors of [A-lcT] arranged by columns sorted in order of smallest to

largest imaginary value of the corresponding eigenvalue. Using this substitution, (5.1) and

(5.2) become

U in) = [A — lcT]Uz(t) + bv(t) + IP(xm,t) (5.4)

Pest(x,t) = cTUz(t) . (5.5)
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To transform the equations into an orthogonal space, (5.4) is multiplied on the left side by

the matrix V*, where V*=the conjugate transpose of the eigenvectors of the conjugate

transpose of [A-lcT] arranged by columns sorted in order of largest to smallest imaginary

value of the corresponding eigenvalue. The magnitudes of U and V* are based on the

orthonormal relationship V*U=I. The observer equations in orthogonal space are

V‘U in) = v‘IA — IcTIUztt) + V*[bv(t) + [P(xm,t)] (5. 6)

or

. A

Iz(t) = Dz(t) + b(t) (5.7)

where D = the diagonal matrix [2“],

Zn 2 the observer eigenvalues,

A

and b(t) = the vector {V‘[bv(t) + lP(xm,t)]}.

Equation (5.7) is now composed of decoupled coordinates. The pressure estimate of the

observer is obtained by solving for the zn(t)'s and inserting them into (5.5). The state

estimates are the an(t)'s.

Equations (5.7) and (5.5) were assembled and solved for the case of harmonic

excitation. The zn(t)‘s can be solved for independently as

- _i_ znl _EIL— 10)!
zn(t)—Izn(0) 003—211)} +|:(im—Zn)Ie , (5.8)

where I) = the vector {V*[b + lPs]}

and P5 = steady state amplitude.

The result for a test case of a 5 term observer (—2 s n S 2) and a duct length of

1.52 m (5 ft) is shown in Fig. 5.3. The driving speaker has harmonic excitation at a
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frequency of 92.1 Hertz (579 radls) and is at location xi=0.305 m (1 ft). This corresponds

to resonance at the n=1 natural frequency. The error feedback is measured at location,

x=0.610 m (2 ft). The initial conditions on the z(t) variables are all zero. The solid line is

the real part of the observer pressure and the dashed line is the real part of the duct pressure

(equation 5.2) at location 0.762 m (2.5 ft) from the end of the duct. The real part of the

pressure is the complex pressure fields image on the real axis. It represents the response a

microphone would measure. The duct termination end impedance is K=0.25+0.5i. Figure

5.3 shows the observer nearly converging to steady state system values after only 3 cycles.

This response demonstrates that the observer is operating correctly.
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5.5. Numerical Simulations for Continuous Time Observers

Numerical simulations were performed on (5.7) and (5.5) to test for robustness and

sensitivity to various integration algorithms. Implementation of a real-time observer

requires a stable, noise immune algorithm. Numerical simulations of different algorithms

were used to compare the response of three different integration algorithms: the Euler

Method, the Runga-Kutta Method, and the Hamming Predictor Corrector General Method.

The observer equations were integrated from 0 to 0.1 seconds with varying integration step

sizes. The observer parameters were the same as those listed in the Closed Form Solutions

section except zero initial conditions were set on acoustic states, a(t)'s. The numerical

integrations were done on a MicroVAX 11 running a VMS version 4.7 operating system.

The fastest and most stable integration routine was the fourth order Runga—Kutta

Integration scheme. Stability was determined by the largest time step the integration

algorithm would converge with in this particular problem. The largest step size needed to

get a converging value was 0.001 seconds or 100 integration points on the interval

0 S t s 0.1 seconds. The integration required 4.5 seconds from the central processing unit

(CPU seconds). Figure 5.4 shows the results of this integration. Although similar to

Figure 5.3, Figure 5.4 is an actual system numerically integrated rather than a closed form

solution. The solid line is the real part of the observer pressure at x=0.762 m while the

dashed line is the real part of the duct pressure at the same location. The integrated

observer simulation converges to the correct values in the same number of cycles as the

closed form solution. The Hamming Predictor Corrector General Method was the second

most stable integration routine. It converged to the correct values for a maximum step size

of 0.0002 seconds or 500 integration points on the interval. This required 12.4 CPU

seconds. The least robust integration routine turned out to be the Euler Method. It required

a step size of 0.00002 seconds or 5000 integration points on the interval and took 51.3

CPU seconds. This was an expected result since the Euler Method is a first order method.
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The observer was next tested for response to initial conditions. This is important if

a control scheme is going to attenuate transient noise. The initial conditions of all the

a(t)'s were changed from zero to an(0)=1+li. The results are shown in Figure 5.5. The

integration scheme used was a Fourth Order Runga-Kutta Method with a step size of 0.001

seconds. The observer converges to the system values after 0.1 seconds. The response

changes by over 4 magnitudes in approximately 100 integration steps. Increasing the

values of the initial conditions by 10 (an(0)=10+10i) requires only two additional cycles for

the observer to converge to the system values.
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Numerical simulations suggest the observer requires one state to model zero

frequency response plus two states per duct resonance. For the simulations shown

previously, a three term observer will give the same response since the excitation frequency

is at n=1. Nonresonant excitation behaves in a similar manner. If the duct were excited

between the n=1 and the n=2 natural frequencies, then a five term observer is typically

necessary for reasonable accuracy.

A state estimate is shown in Fig. 5.6. This corresponds to integrated solutions for

zero initial conditions on the an(t)'s. The integration method used is the fourth order

Runga-Kutta scheme. The state estimate shown is a1(t). The solid line is the real part and

the dashed line is the imaginary part. The first state was chosen here because the model is

being forced at its first natural frequency and the first state is dominating the response. The

first state reaches steady state response after approximately 0.025 seconds.
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Truncation induced spillover for the observer and duct only occur if the frequency

of the excitation speaker is greater than the bandwidth of the observer. The bandwidth of

the observer is equal to the imaginary part of the largest eigenvalue. When this occurs, it

produces an unmodeled mode in the duct and as a result the observer cannot converge to

the duct values. This problem is avoided if the bandwidth of the observer is larger than the

excitation frequency. This is desirable behavior by the observer since it is explicit when the

observer will and will not converge. This result is derived from the diagonal state space

model formulation (Chait et al., 1988).

5.6. Numerical Simulations for 3 Discrete Time Observer

A faster observer than the continuous observers listed above is a discrete time

observer. This was investigated since any real-time control system will have to operate

extremely fast to control noise propagating at the speed of sound. To get the discrete time

equations, the continuous time equations (5.1) have to be transformed into discrete time.

The transformation of equation (5.1) into discrete time is (Ogata, 1970)

a(k + 1) = F(T)a(k) + g(T)v(t) + h(T)P(xm,t) (5.8)

where the matrix F(T) and the vectors g(T) and h(T) are dependent on the sampling

period T. When the sampling period is fixed, F(T), g(T), and h(T) are constant. The

matrices F, g, and h are found by solving the continuous time differential equations then

transforming the solution into discrete time (Ogata, 1970). They are

F(T) = eAT (5.9)

g(T) = UOTeA‘dtjb (5.10)
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h(T) = UJeAtdtjl (5.11)

where A, b, and l are from (5.1). Equations (5.9), (5.10) and (5.11) can be solved for on

  

a digital computer by

— _ -1_ °° Ame ~ M Ame

F(T)—InvLapl(sI A) ]_n;[ m! J~I§0£ m! j (512)

°° Ame+l
M Ame+1

T = _
.-.-.

.

g( ) mgtl (1131+1)l)b "12:11 (m+1)g]b
(513)

h(T): Z —— I: 2 -————-—l (5.14)
m=0 (m+l)! m=0 (m+1)!

where InvLap denotes the inverse Laplace Transform, and M+1 is the number of truncated

terms used to form the solution. Once the discrete time equations are solved, the pressure

at time t is found by the equation

Pes,(x,t) = cTa(k + 1) . (5.15)

A discrete time observer simulation was performed on the system described in

Section 5.5. Figure 5.7 is a plot of the results. The estimated pressure nearly matches the

actual pressure, except for a slight phase shift (time delay) associated with the sampling

rate. The simulation took 1.1 CPU seconds on a MicroVAX 11 using a step size of

T=0.001 seconds, which is 75% faster than the fastest continuous observer. The faster

time is a result of the integration being done before the matrices are formed, i.e., the

integration doesn’t have to be executed on-line or in real time. Changing the initial

conditions to an(0)=1+1i produces results similar to Figure 5.5.
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Figure 5.7. Discrete Time Observer Solution and Model Duct Response.



Chapter 6. Active Noise Control‘

6.1. Active Noise Control Using Pole Placement

The control objective is to change the eigenvalues of the system so that the duct is

less responsive to external pressure excitations (disturbances) at certain design frequencies.

This is done by placing the closed loop system poles to the left of the open loop system

poles in the complex plane to enhance the systems stability. Guaranteeing the stability of

an infinite dimensional system over an infinite disturbance bandwidth is not possible with

truncated state space models. When controlling a finite number of modes in an infinite

dimensional system, the problem of an uncontrolled mode going unstable arises. This

instability is called control spillover. The closed loop eigenvalues of the acoustic duct can

only be placed a reasonable distance to the left of the open loop eigenvalues before an

unmodeled mode causes observation or control spillover.

6.2. Controller Equations

The control system of the duct is shown in Figure 6.1 and Figure 6.2. The state

space equations for the duct with a disturbance speaker and a control speaker are

é-(t) = Aa(t) + bld(t) + b2v(t) (6.1)

P(xm,t) = cTa(t) (6.2)

 

* This chapter is based on the paper “Global Active Noise Control of a One-Dimensional Acoustic Duct

Using a Feedback Controller,” manuscript in preparation. to be submitted to ASME Journal ofDynamic

Systems, Measurement, and Control.
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where d(t) is the system disturbance and v(t) is the feedback signal. Placement of the

system disturbance on the end is not necessary, however, this corresponds to most

industrial problems where a disturbance source excites the duct from one of the ends. The

feedback signal is of the form

v(t) = —ka(t) (6. 3)

where k is the control gain vector. When the observer is added to the system (Figure 6.2),

the a(t) becomes the observer output, awest-

6.3. Control Gain Placement

The controller gains form the vector k. They are chosen using the same algorithm

T
used to determine the observer gains 1 (Section 5.3) except that the vector c is replaced

with the vector b (Equation 2.23). (The input vector b is related to the control gains k in

T
the same way the output vector c is related to the observer gains l.)
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6.4. Frequency Domain Simulations

Once the control gains are known, frequency domain simulations can be calculated

for (6.1) and (6.2). Frequency domain simulations predict the closed loop steady state '

response of the system for sinusoidal excitation. The time response of the closed loop

system is found by inserting (6.3) into (6.1) which produces

d(t) = [A — b2k]a(t) + b1d(t) . (6.4)

Computing the Laplace transfer of (6.4) produces

sa(s) = [A — b2 k]a(s) + b1d(s) (6. 5)
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where (6.5) is in the complex 3 plane. Equation (6.5) is solved for at each frequency by

letting s=ic0, and using the following two definitions

d(ico) = Poem” (6. 6)

and

a(iw) = Xeimt (67)

where X is, in general, a complex valued vector. Solving for X yields

X = {i031 - [A — bzk]}'lblP0 . (6.8)

The steady state pressure can then be calculated by inserting (6.8) into (6.2). It represents

a closed loop system whose eigenstructure has been modified through feedback. The

solution to (6.8) assumes that the disturbance dynamics are known and measurable. In

general, there is no way to determine the excitation of the duct. The effect of unknown

disturbances is discussed in the next section. Additionally, the observer is not included in

these frequency domain simulations.

A frequency response of a controlled system is shown in Figure 6.3. The length of

the duct is 3.66 m (12.0 ft), the response is measured at x=0.792 m (2.60 ft), and the

control speaker is at x=3.56 m (11.69 ft). The acoustic impedance at the end is K=0.3+0i.

The number of terms used to form the model was 11. The solid line is the closed loop

response and the dashed line is the open loop response. The real part of the closed loop

eigenvalues are twice the magnitude of the open loop eigenvalues. The imaginary part of

the eigenvalues remain unchanged. Note that the resonant peaks are all reduced by

approximately 50 percent. This is not a generalized result for the placement of the control

speaker at any location. Figure 6.4 is a frequency response of the above system with the

control speaker at x=1.37 m (4.50 ft). A control speaker placed at this location has little

effect on the first mode of the system. Varying the location of the control speaker in
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relation to the reSponse measurement and disturbance input has different effects on the

system. Numerical simulations show that locating the control speaker near the termination

end is the best location for first mode control and a good location for second mode control.

They also show that locating the control speaker near the disturbance is a poor location.

The eigenstructure of the system can still be modified by placing the control speaker near

the disturbance, however, the resulting change in closed loop magnitude response is

minimal.

The closed loop poles of the system can also be altered by changing the imaginary

part of the open loop eigenvalues. This is useful if the disturbance is occurring at or near

an open loop natural frequency. The above system has imaginary eigenvalues at multiples

of 47.1 Hertz (296 Rad/sec) for five duct resonances. If there were a disturbance that had

harmonics around 141 Hertz (888 Rad/sec), the third mode of the duct would be excited

and the response of the system would be large. Figure 6.5 is a plot of the closed loop

system with the imaginary part of the third eigenvalue placed at 169 Hertz (1060 Rad/sec).

The closed loop pole has increased in amplitude in addition to having its frequency content

shifted. If this were a problem, then the real and imaginary parts of the eigenvalues could

both be placed. Although the theoretical closed loop eigenvalues can be placed in any

location, the actual closed loop eigenvalues can only be moved a reasonable distance from

their corresponding open loop values. The further a closed loop pole is moved away from

it’s open loop value, the more likely an unmodeled eigenvalue will create system instability

because the high control gains required for a large eigenvalue shift may destabilize

unmodeled modes.
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6.5. Time Domain Simulations

Time domain simulations predict the response of the system over a finite time.

They are useful in determining the transient response of the controller and the effects of

unmodeled disturbances on the system response. The frequency domain simulations can

not include these effects. A computer program modeling the plant and control system

(Figure 6.2) was written. It allowed the observer the option to model the disturbance or to

leave the disturbance unmodeled. In general, the disturbance is rarely a measurable

quantity available to any control system. Analyzing the effects of modeled and unmodeled

dynamics in simulation does offer additional insight on system performance and control

effectiveness.

A typical time domain simulation is shown in Figures 6.6 and 6.7. The length of

the duct is 3.66 m (12 ft), the response is measured at x=0.792 m, (2.60 ft) and the control

speaker is at 3.56 m (11.7 ft). The impedance at the termination end was K=0.05+0i.

Five terms were used in the model simulations. The simulation time step size was 0.00005

seconds. The simulation excitation was a sine wave at 47.1 Hertz (296 Rad/sec) which

corresponds to the ducts first natural frequency. The observer and controller were both

activated at time t=0.05 seconds. Figure 6.6 is the simulation with the disturbance modeled

while Figure 6.7 is the simulation with the disturbance unmodeled. In both figures, the

solid line is the model duct response while the dashed line is the estimated pressure by the

discrete time observer. The steady state value of the simulation with the disturbance known

is 6.5 and the steady state value of the simulation with the disturbance unknown is 8.7.

Simulations produce similar response for the second mode. These results show that the

control action is not as effective if the disturbance is unmodeled.

 





77

 

 

   

20 —0 792— x— . m

w ‘ Model Duct Response
P .-

0 _

10

0— ‘ . .

-10 . l ‘ .

: Estimated Pressure Response

_20 I I I I I I I I I I I I I I I I I I I I I I I M

0 0.1 0.2 0.3 0.4 0.5

Time (Seconds)

Figure 6.6. Time Domain Response with Modeled Disturbance

 

   

20

x=0.792m

W Model Duct Response
P _.

0 _

10:‘ I I . i I : I : | I I ‘ I I

0—""" 5‘ -' 2 I ' i

‘ I I E I ' '

-10-—- v I I '

: Estimated Pressure Response

‘20 IIIIIIIIIIIIlI—FIIIIIIII

0 0.1 0.2 0.3 0.4 0.5

Time (Seconds)

Figure 6.7. Time Domain Response with Unmodeled Disturbance



78

6.6. Actuator Dynamics

The frequency and time domain simulations presented above assume that there are

no actuator dynamics. This is not a realistic assumption for control compensators of

acoustic systems. The speaker/amplifier actuator system add significant dynamic effects to

the control system. This was not a problem in earlier open loop experiments since the input

was not the voltage to the speaker, but rather the pressure at the speaker face. It is not

possible to ignore the actuator dynamics in the closed loop system since the control system

generates a signal that is to be converted into an (unaltered) mass flow.

Figure 6.8 is the magnitude and phase plots of a Bruel and Kjaer Type 2706 power

amplifier attached to a 101 mm (4 in) diameter (Realistic 40-1022A) speaker. The mass

flow of the speaker was measured with a Bruel and Kjaer Type 3544 helium neon laser

velocity measurement system. The velocity of the speaker face is proportional to mass

flow. The laser was attached to a Hewlett Packard 5423A digital signal analyzer which

measured the values shown in Figure 6.8. The excitation signal was random noise. The

X’s in the figure are the measured transfer function values and the dashed line is the

transfer function for an ideal actuator. Figure 6.8 shows that the transfer function of the

actuator is not close to an ideal actuator transfer function.

There are several options to overcome poor actuator dynamics. The first is to

design a control system for the actuator itself, using a separate controller. The second is to

obtain a number of amplifiers and speakers and test them to determine which has the most

ideal characteristics. The third method is to design the closed loop experiment in a way

such that actuator dynamics are minimized. This is the method used in the experiment in

the next section, choosing a duct length where the first duct natural frequency is around 50

Hertz, an operating region where the actuator has nearly zero phase. This will also provide

an actuator bandwidth wide enough for control of the second mode. Control of the third
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mode will not be possible due to the phase angle associated with the actuator at the ducts

third natural frequency.

6.7. Active Noise Control Experiment

The duct and active noise control system shown in Figure 6.1 were built using 76

mm (3 in) circular PVC schedule 40 tube that was 3.66 m (12.0 ft) long. The actuator

described in section 6.6 was located at 3.56 m (11.7 ft) and the response measurement

microphone was a Bruel and Kjaer Type 4166 half inch microphone located at 0.792 m

(2.60 ft) from the excitation end. The excitation source was a 254 mm (10 in) diameter

speaker (Realistic 40-1331B). The worst case control scenario is an open duct end since it

allows the highest pressure levels in the duct of any termination, therefore an open end was

chosen. At the open end of the duct, the acoustic impedance was measured to be

K=0.04+0i.

The real time numerical calculations (control system) were run on a Spectral

Innovations, Inc. MacDSP64KC digital signal processing (DSP) board that resided in a

Macintosh IIx computer. The DSP board is benchmarked at 24 million floating point

operations per second (MFLOP). Running a five mode model takes 0.00014 seconds for

each data sample, state estimation, control calculation and control output. Attached to the

DSP board was a 128000 Hertz data acquisition card with a digital to analog converter and

an analog to digital converter. The control system program was written in the C

programming language using an AT&T DSP32C C language compiler. Implicit in the

compiler is a translation from C to assembly language which allows the DSP board to

operate at extremely fast speeds (24 MFLOP) compared to conventional computers such as

a MicroVAX or SUN IV.
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Acoustic measurements were made with two additional Bruel and Kjaer

microphones. The first one was a Type 4166 fixed at the exit plane of the speaker and

measured disturbance input pressure. The second one was a Type 4155 and was moved to

various locations to measure system response. Both microphones were attached to a

Hewlett Packard 5423A digital signal analyzer which measured the transfer function of the

system. The excitation of the system was a random noise signal provided by the 5423A

signal analyzer. Although periodic signals are available to excite the system, random noise

is typical of industrial duct noise. The entire measurement and excitation procedures were

independent from the control system. This insured the controller would not be exciting

modeled disturbances, which is not a realistic control system.

Due to the actuator dynamics, it is not possible to place the experimental closed loop

system poles exactly. However, it is possible to move their real values to the left in the

complex plane and obtain a good estimate on where they were placed. This is done by

choosing k such that the closed loop poles are twice the magnitude of the open loop poles.

The system model used in the experiment is a five term model (two modes). The gain on

the actuator amplifier is then increased to a point where the third mode almost lies on the

imaginary axis, or very close to the onset of system instability. The system transfer

function is then measured, and the location of the placed pole is calculated from the peak

values of the closed loop resonant peaks. This method also shows the maximum peak

reduction possible for the described system.

Figures 6.9 and 6.10 are experimental frequency responses at x=2.81 m (9.21 ft).

Figure 6.9 is the open and closed loop transfer functions near the first mode and Figure

6.10 is the open and closed loop transfer functions near the second mode of the duct. The

boxes denote the open loop response and the X’s denote the closed loop response.

Although the slight frequency shift of the peaks was not modeled, it has been observed in
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the control of mechanical systems (Chait, 1988). The small peak in Figure 6.9 near 55

Hertz is a result of the actuators natural frequency being detected by the measurement

instrumentation. Figures 6.11 and 6.12 are plots of the maximum experimental transfer

function values versus the length of the duct. Since the method described here is a global

noise reduction algorithm, these figures are included to verify that the noise reduction is

present everywhere. Figure 6.11 is the open and closed loop maximum values of the first

mode. Measurements at 20 locations yield an average attenuation of 58% along the entire

duct. Figure 6.12 is the open and closed loop maximum values of the second mode. The

average attenuation of the second mode was 55%. From these values, the real part of the

closed loop poles were moved approximately three times their open loop values to the left

in the complex plane (including compensation for unmodeled dynamics).
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Figure 6.9. Experimental Frequency Response, First Mode.
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Chapter 7. Conclusions

7.1. Dissertation Summary

The dynamic response of an enclosed acoustic system with point impedance on one

end can be represented in state space form. A series solution can be implemented to

approximate the exact dynamic response. Furthermore, the state space model is diagonal

so only a small number of terms are required to get a solution that converges to the exact

solution over a limited frequency range. Steady state experiments of pressure excitation

and mass flow excitation correlated well with theory. The theory can be used to

approximate duct ends that have nonconstant acoustic impedance. The transient response

model predicts the measured transient experimental data accurately. The accuracy of the

model’s transient response is predictably reduced by truncating the model’s number of

states.

Calculation of the acoustic impedance of a duct end from experimentally obtained

impedance tube eigenvalues is developed in this dissertation. These eigenvalues are easily

determined from a measured duct transfer function by commercially available Fast Fourier

analyzers. This method has the advantage of stationary microphone positioning at any

location in the impedance tube. The computational step from eigenvalue to acoustic

impedance is a closed form solution. Errors in measured impedance can arise only from

errors in measured system eigenvalues, duct length, and the speed of sound. Experimental

results show that the method is both accurate and insensitive to measurement errors.

An active noise control technique is developed to globally reduce noise levels.

Frequency domain simulations predict that the method will attenuate noise. Time domain
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simulations also predict that the technique will attenuate noise and they show the effects of

unmodeled disturbances on the system. The dynamic response of control actuators is

discussed and the actuators effects are related to the acoustic duct described here. An active

noise experiment is demonstrated in which the ducts noise level is reduced globally by 58%

for the first mode and 55% for the second mode.

7.2. Directions for Future Work

There are several areas for future work or improvement in the method stated in this

dissertation. One of the most obvious extensions would be to move this work into three-

dirnensional enclosures, since most acoustic systems are three-dimensional rather than one-

dimensional. Three-dimensional noise reduction would be extremely useful in aircraft,

factories, and other enclosures that requires human habitation. This is a difficult problem

since the effects of nonuniform boundary conditions are more prevalent than in a one-

dimensional acoustic enclosure.

A topic of improvement in the one-dimensional system is in the area of actuator

dynamics. Better actuator dynamics will give better noise control characteristics. A better

actuator will also increase the control bandwidth, making control of the third and

subsequent modes possible. It might be best to retain the current actuator, and build a

separate control unit for the amplifier and speaker which delivers nearly ideal

characteristics.

Adding additional sensors and control speakers might also enhance the closed loop

systems performance for both the one-dimensional and three-dimensional noise control

problem. It would be possible place the system eigenfunctions, rather than its’

eigenvalues. This may give better noise attenuation and enhance the closed loop systems

stability. One final method noise control method that could be considered is to combine the
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pole placement technique with one of the adaptive filter techniques mentioned earlier. The

two noise control techniques working together might provide better noise attenuation.
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Appendix. Wave Equation Derivation

The derivation of the wave equation is reproduced here. This set of equations can

be found in any good acoustics textbook, however some authors formulate the problem

using pressure as the independent variable rather than particle displacement.

Consider the one-dimensional duct shown in Figure A.1 of length L and uniform

cross-sectional area A. The air in the duct is considered to be an ideal gas with density p.

The ideal gas assumption requires the temperature to be constant throughout the tube and

the air viscosity effects to be negligible. When the duct is excited, the density of the air in

any area (of any section) is time variant. Additionally, the density of the air in the duct

changes spatially. When the duct is excited, the initial section dx and instantaneous section

(dx+du) always contain the same mass of air. This results in

Apdx = A(p + dp)(dx + du) (A.1)

where u is the instantaneous displacement of any cross section dx of the enclosure, (p+dp)

is the instantaneous density of the air, and (dx+du) is the instantaneous length of the

section of air.

Rewriting (A.1) and neglecting the higher order term dpdu yields

d

dp = mg“ . (A2)

The change of pressure due to the change of volume is expressed as
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dP=—Bfl (A.3)

where P is the pressure and B is the bulk modulus of the air. Using (A.2), equation (A.3)

can be rewritten as

dp = _Bill , (A. 4)
dx

When the duct is excited, pressure changes indicated in (A4) will exert dynamic forces on

the section dx. Balancing the inertia force and the pressure forces on the section results in

2 ' 2

Apdxd—:=A(P—Bd—u)—A P—Bd—u—Bd—‘Z‘dx . (A.5)
dt dx dx dx

Equation (A.5) can be simplified, and since the second derivatives of u are both functions

of spatial location x and time t, the derivatives are changed to partial derivatives. This

equation is

azu Zazu

Btz :0 8x2
(A6)

where c2=B/p which is the square of the wave speed in the duct. The excitation the

speakers exert on the system can be added to (A5) on the right hand side as forcing

ll.

functions on the section.

0
L

 

*iH

Figure A.1. Duct with Section dx.
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