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ABSTRACT

ALGORITHMS AND ARCHITECTURES

FOR ADAPTIVE SET MEMBERSHIP-BASED

SIGNAL PROCESSING

By

Souheil Farah Odeh

This research is concerned with a class of set membership (SM) algorithms for esti-

mating the parameters of linear system or signal models in which the error sequence is

pointwise “energy bounded.” Specifically, it is focused on the set membership weighted

recursive least squares {SM- WRLS’) algorithm which works with bounding hyperel-

lipsoidal regions to describe the solution sets which are a consequence of the error

bounds. SM-WRLS is based on the familiar WRLS algorithm with the SM considera-

tions handled through a special weighting strategy. The original version of SM-WRLS

is applicable to real scalar data. In this work, a generalized SM-WRLS algorithm that

can handle complex vector-input vector-output data streams is developed which ex-

tends the applicability of this algorithm to virtually any signal processing problem

involving parametric models. Further, a significant reduction in computational com-

plexity can be achieved by employing a “suboptimal” test for information content in

an incoming equation. This new strategy can be applied to virtually any version of

the SM-WRLS algorithm to improve the computational complexity. The suboptimal

check is argued to be a useful determiner of the ability of incoming data to shrink

the ellipsoid.

The “unmodified” SM-WRLS algorithm has inherent adaptive capabilities in its

own right. However, it is not possible to depend upon this algorithm to reliably behave

in an adaptive manner, particularly in cases of quickly varying system dynamics. In



this work, explicitly adaptive SM-VVRLS algorithms are developed. Adaptation is in-

corporated into SM-WRLS in a very general way by introducing a. flexible mechanism

by which the algorithm can forget the influence of past data. The general formula! ion

permits the extension of SM-WRLS to a wide range of adaptation strategies.

The various SM-WRLS developments are tested on models derived from real

speech data. Simulation results are presented which illustrate important points about

the various methods and show that the adaptive algorithms yield accurate estimates

using very few of the data and quickly adapt to fast variations in the signals dy-

namics. It is also significant that in preliminary experiments, most of the SM-WRLS

algorithms are found to be robust in small (16-bit) wordlength environments.

Finally, a parallel architecture is developed that implements the various SM-

WRLS algorithms in 0(m) floating point operations per equation using 0(m) cells,

where m represents the number of parameters estimated. A detailed analysis of the

computational complexity issues is carried out.
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Chapter 1

Introduction and Background

 

1.1 General Objectives and Scope

This research is concerned with techniques for estimating the parameters of linear

system or signal models. Set membership (SM) identification refers to a class of

estimation techniques that uses certain a priori knowledge about a linear paramet-

ric model to constrain the solutions to certain sets. Based on certain set-theoretic

checking criteria, SM algorithms select and use only the useful data to update the

parameter estimates and refine the “membership sets” to which the true parameters

must belong. When data do not help refine these membership sets, the effort of up-

dating the parameter estimates at those points can be avoided. The power of SM

algorithms becomes more apparent when implemented using parallel architectures

due to the significant reduction in the computational complexity. Because of their

strong potential for application and theoretical development in virtually any signal

processing problem involving parametric models (such as speech recognition, image

processing, beamforming, spectral estimation, and neural networks), SM algorithms

have been the subject of intense research effort in recent years [1] - [26]. Much of the

recent work on parametric models is closely related to previous papers by Schweppe

[27], Witsenhausen [28], and Bertsekas and Rhodes [29] which study state space sys-

tems in the control and systems science domains.

1



The most widely studied class of SM algorithms involves the case in which the

error sequence, say v(n), is pointwise “energy bounded,”

7(n)v2(n) <1 (1.1)

where the sequence 7(n) is known or can be estimated from the data. It is this problem

with which this research is concerned. (Other interesting variations involve stability

constraints [30], and other noise parameter bounds [31, 32]. Veres and Norton [33]

have also investigated the effects of error bounding on model structure identification.)

In addition to the many advantages of the algorithms to be developed from this

information, the constraint (1.1) minimizes the necessary knowledge of the input. In

particular, it is not necessary to know the form of the density function for v(n).

Constraints of form (1.1), in conjunction with the model and data, imply pointwise

“hyperstrip” regions of possible parameter sets in the parameter space which, when

intersected over a given time range, usually form convex polytopes of permissible

solutions for the “true” parameters. While exact descriptions of these polytopes are

possible [1, 10, 11, 12, 17, 21, 24], algorithms of much lower complexity have been

developed which work with a bounding hyperellipsoid, a tight superset of the polytope

[5, 6, 7, 14, 20]. Such an “optimal bounding ellipsoid” (OBE) algorithm is the focus

of this research. Recently, Deller [5, 6] has reformulated an OBE algorithm of Huang

[3, 8, 14, 19, 20] so that it is exactly the familiar weighted recursive least squares

solution [34, 35] with the SM considerations handled through a special weighting

strategy. This algorithm is referred to as set membership weighted recursive least

squares (SM- WRLS) to distinguish it from the original OBE algorithm. A review of

SM theory and related topics is presented in the next section.

The main objectives of this research are:

1. To generalize the SM-WRLS algorithm to handle complex vector-input vector-

2



output data streams.

2. To reduce the computational complexity of the algorithm.

3. To make the estimator adaptive.

4. To perform simulation studies to research the performance of the SM-WRLS

algorithms.

5. To develop parallel architectures to implement the SM-WRLS algorithms.

The first three objectives which are addressed in Chapter 2 are concerned with

algorithmic developments centered on SM-WRLS identification. Currently, the SM—

WRLS algorithm can be used in the noted application areas if the data are real

numbers. It will be advantageous if this powerful algorithm can be extended to work

with complex numbers. Complex-valued data are encountered in many digital signal

processing and image processing problems (e.g., see [36, Chs. 2 & 8]). The current

version of SM-WRLS cannot handle complex-valued data. Also, SM-WRLS has the

potential for application to a wide range of problems in which the data to be processed

(at each instant of time) may take the form of a vector quantity. For example, a very

important research area is beamforming [37], a spatial filtering task, to which the

SM-WRLS algorithm may be applied. At every time interval, the array of sensors

of a narrowband beamformer provide vector outputs that need to be processed by

the beamformer using complex computations. There is also potential for applying

SM-WRLS to neural networks in which both the input and the output are (complex)

vectors [38]. The theoretical development of a generalized SM-WRLS algorithm that

can handle complex vector-input vector-output data (objective 1) is the subject of

Section 2.2.

The second main objective of this research is to develop a more efficient SM-

WRLS algorithm which uses a suboptimal checking criterion to reduce the computa-

tional complexity of SM-WRLS at the expense of using “suboptimal” weights. This

suboptimal strategy can be applied to any version, adaptive or “non-adaptive,” of



the SM-WltlS algorithm to improve the computational efficiency. The theoretical

development of the suboptimal SM-WRLS algorithm is presented in Section 2.3. Sec-

tion 2.4 demonstrates how to make the SM-WRLS algorithm explicitly adaptive (ob-

jective 3) by introducing a flexible mechanism by which it can “forget” the influence

of past data. It is to be noted, however, that the basic (unmodified) SM-WRLS algo-

rithm is inherently “adaptive” compared with the RLS algorithm. This adaptation

is inherent in the use of data weights which are “optimal” in the SM sense.

Chapter 3 is concerned with objective 4 which discusses simulation studies of

the various suboptimal and adaptive strategies presented in Chapter 2. These studies

illustrate important points about these strategies and about the SM-WRLS algorithm

in general.

One of the advantages of the SM-WRLS formulation (contrasted with Huang’s

OBE algorithm [20]) is that it immediately admits solution by contemporary paral-

lel architectures. This is critical because it reduces the complexity of the algorithm

from 0(m2) to 0(m), where m is the number of parameters to be estimated. The

significant reduction of computational complexity and parallel hardware implementa-

tion of SM algorithms improve their potential for real time applications. Chapter 4 is

devoted to parallel hardware implementations (objective 5) of the SM-WRLS and dis-

cussion of their advantages, particularly with regard to their improved computational

complexity.

Finally, Chapter 5 summarizes the main conclusions and contributions of this

research and suggests possible directions for future research topics in the SM realm.

1.2 Set Membership Theory

A brief background on SM theory is presented in this section which is divided into

three major subsections. The first contains a brief overview of the identification



problem and least squares (LS) estimation. The second gives an overview of the ()lll'l

algorithm. The third presents the “scalar case” of the SM-WRLS algorithm and its

formulation based on Givens rotations (GR ’3). However, the computational com plex-

ities of these algorithms (and others) are presented and compared in Chapter 2.

1.2.1 The Identification Problem and Least Squares Esti-

mation

A well known identification problem is the estimation of the parameters of a general

autoregressive moving average with exogenous input (ARMAX(p,q)) [35] model of the

form

ye) = fawn — 2') + )3th - j) + v(n) (1.2)
i=1 j=0

in which y(n) is a scalar output of the model; w(n) is a measurable, uncorrelated,

input sequence; v(n) is an uncorrelated‘ driving (or error) sequence, known to be

bounded as in (1.1), which is independent of w(n); and a,’s and bj,3 are the parameters

to be identified. For convenience, the following vector notations are employed

3T(n) '-'- [y(n -1)y(n - 2) - - - v(n - P)w(n)w(n - 1) - ' - w(n - 9)] (1-3)

and

93; s [a,a,...a,bob,...b,] (1.4)

and hence,

y(n) -'_: 03::(12) + v(n) . (1.5)

 

1As will be noticed below, the SM-WRLS algorithm has no nominal constraint on v(n) other than

(1.1). However, if v(n) is correlated, one would expect to obtain biased estimates since the solution

is essentially based on the RLS method [35]. The issue of a correlated v(n) with SM processing

remains open for further research.



Note that this model has an important subcase of a purely order p autoregressive

(AR(p)) model which is prevalent in many important applications. The dimension of

00 is defined as the integer m,

m=p+q+1 (1.6)

noting that m should be reduced to simply m = p for the pure AR case.

Consider the LS problem [39]: Given data (or a system of observations) on the

interval i 6 [1,11] (n 2 m), and some set of error minimization weights, say {A(i)},

form the overdetermined system of equations

q

i A(1)y(1) l

\/*(2.)y(2) (1.7)

i A(1)2:T(1) _.

VAC-037(2) -* 00

    shown) -», _ Maw),

denoted

X0090 = v(n) , - (1-8)

A

and find the LS estimate, say 0(n), for the vector 90.

There are well known methods to solve this problem. The first is the “batch”

solution given by [39]

. —1

em = [xT(n)X(n)] xr(..),,(..) (1.9)

with the matrix in brackets playing the role of the weighted covariance matrix, i.e.,

C,(n) = [XT(n)X(n)] = ih(i)z(i)zT(i) . (1.10)

i=1

The second is the recursive matrix inversion lemma (MIL)-based WRLS solution



given by [34, 35]

P(n -1)a:(n)a:T(n)P(n —- 1)

1+ A(n)C(n)

 P(n) = P(n-l)-/\(n) (1.11)

l A

9(n) = 9(n—1)+/\(n)P(n)a:(n)en_1(n) (1.12)

where,

P(n) é C;1(n) (1.13)

G(n) e 2T(n)P(n-1)a:(n) (1.14)

en_1(n) e y(n)-ST(n—l)a:(n) (1.15)

in which C,(n) is the weighted covariance matrix defined above, P(n) is its inverse;

6(n) is the parameter vector estimate using n points of data; en_1(n) is the residual

(or error) at time 71 based on 9(n — 1); and A(n) is some error minimization weight.

These recursions are theoretically equivalent to the batch solution given in (1.9) at

each 12.

1.2.2 The OBE Algorithm

The OBE algorithm is an SM algorithm developed by Fogel, Huang, and colleagues

[3, 8, 14, 19, 20, 23, 25] which can be used to identify a general ARMAX(p, q) model.

An overview of this algorithm and its origin is presented in this section (paraphrased

from [5, 6, 7]).

Let us first present the general idea behind SM algorithms. Consider the case of

a real m-dimensional parameter space; 11'". These algorithms bound the parameters

in a subset of ’R’" as follows: At any given time, the model, incoming datum, and

constraint (1.1) define a pointwise “hyperstrip” region of possible parameter sets in

72’”. Over a given time range, the intersection of these hyperstrips forms a convex



polytope of permissible solutions for the “true” parameters; 00. The description of

this polytope can be greatly simplified (mathematically) when approximated by a

bounding hyperellipsoid, a tight superset of the polytope [5, 6, 7, 14, 20].

By recognizing the relationship between the conventional WRLS and SM identifi-

cation, Fogel [25] showed that there is a membership set (hyperellipsoid) centered on

the unweighted RLS estimate associated with the identification of constant unknown

parameters of a linear system driven by uncorrelated noise, based on constraints of

the form (1.1). Fogel also studied the convergence of the membership set to a single

point. The subsequent papers by Fogel, Huang, and colleagues [3, 8, 14, 19, 20, ‘23]

discuss a weighted approach (i.e., the OBE algorithm) based on the same principle.

This algorithm uses energy constraints of form (1.1) to restrict the solutions of the

linear parameters to ellipsoidal domains. At time n, the estimator, 0(n), is the center

of an ellipsoidal region in R”, of the form

E(n) =°_- {o | [a - é(n)]T<I>-1(n) [o — é(n)] g 1} , o e nm (1.16)

which represents the smallest bounding ellipsoid of possible solutions, 9, to which the

true parameters must belong. <I>“(n) can be interpreted as a weighted covariance

matrix on the observations,

7!

<I>’l(n) = ZA(i)c(i)zT(i) . (1.17)

i=1

The algorithm, in effect, seeks the Mn) which minimizes the “volume ratio” of the

sequential ellipsoids, E(n) and E(n — 1), given the incoming datum, and subject to

scaling of the previous weights. For this reason, the technique is referred to as the

OBE algorithm. Frequently, no such weight exists, indicating that the new datum is

uninformative (in the SM sense) and the effort of updating the parameter estimates

can be avoided.



It is important to note that the OBE algorithm is derived from geometric consid-

erations and is centered on three recursions [20], two of which are remarkably similar

to the conventional MIL-based WRLS algorithm [34]. Careful analysis of OBE reveals

that it is “WRLS with time varying weights.” This is alluded to above. Whereas the

0813’s geometric approach solves a weighted LS problem on a point-by-point basis,

its recursions cannot be exactly interpreted as conventional WRLS because of the

fundamental difference in their development. Recently, Deller [5, 6] has reformulated

OBE into a more conventional WRLS technique referred to as SM-WRLS. The SM-

WRLS formulation, which incorporates SM considerations directly into the standard

WRLS recursions, is treated in the next section.

1.2.3 The SM-WRLS Algorithm

1.2.3.1 MIL-based SM-WRLS Algorithm

In this section, the theoretical development of the basic MIL-based SM-WRLS algo-

rithm is sketched. This algorithm, which is described in detail in [6, 7], accepts only

scalar, real-valued data which makes it applicable to a specific class of problems. A

brief overview of the SM theory and the main results of the basic SM-WRLS algorithm

are summarized below (paraphrased from [6, 7]) to serve as a foundation for general-

izing this algorithm to handle complex-valued vector-input vector-output data. The

theoretical development of the generalized algorithm is presented in Chapter 2.

Suppose that, at time i, y(i), 3(2), and the model of form (1.5) are given. If there

is no other information about the system, the parameter vector 00 can theoretically

take any real vector value. A constraint on v(i) like (1.1), however, restricts the

possible range of values of 90. From (1.1) and (1.5), it is clear that (at time i)

122(1) = [31(1) — 932(i)]’ < 3112—) . (1.18)



 

 

 

 

  

 
 

 

  
Figure 1.1: Local and global membership sets in 2-D.

 

It is assumed that the sequence of numbers, 7(i), is known (or can be accurately

estimated), and therefore, (1.18) restricts possible values of 90 to some range, say w(i),

that is called a “local membership set,” to which 00 must belong at time i. If the data

and the v(i) values are given over a range [1,n], then n local sets w(i), i = 1,2, . . . , n

(one for each observation) can be generated. Each of these takes the form of a

“hyperstrip” in ’R’”, the two-dimensional (2D) case shown in Fig. 1.1. The parameter

vector 90 must simultaneously belong to each of these sets, and therefore, must belong
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to a global membership set given by

11(72): flw(i) . (1.19)

Q(i) will be a monotonically non—increasing set with i, and it will be the minimal

(most restrictive) membership set known under the conditions of the problem. The

global membership set, 0(n), is the intersection of the individual strips w(i) (see

1.19), which takes the form of a convex polytope in ’R'", as illustrated in Fig. 1.1 for

a 2-D case. Note that the individual w(i) does not necessarily help to refine Q(i), i.e.,

it might be true that

Q(i) = fl(i—1)flw(i) = Q(i — l) (1.20)

and the corresponding data are considered “unuseful” in the SM sense. See, for

example, the case of (2(4) in Fig. 1.1.

The set 0(i), which requires high computational complexity algorithms [1, 10,

11, 12, 17, 21, 24] to describe and work with, provides a useful way of determining

which data points are informative and which are not. Note that the center of this set

provides a systematic estimate of the parameter vector 90 which would be expected to

improve as i increases. However, neither 9(i) nor its center is clearly or conveniently

related to the WRLS estimation process of interest. There is, however, a related (but

potentially larger) global membership set associated with the WRLS process at time

n. This is derived from (1.1) and (1.18) by noting that the constraint (1.1) on the

input implies an “accumulated inequality” given by

)5 1(1) [31(1) — (93,‘:.:(.')]2 < )2 3(7) (1.21)

i=1

which holds as long as the set of “weights” used, {A(i)}, are non-negative (see [7,

11



Lemma 1]). This inequality leads to a global membership set, say C(12), to which 00

must belong. Since C(n) (from the discussion above) is the smallest known set, it

must be true that fl(n) Q C(n).

Two fundamental theorems underlie the basic SM-WRLS algorithm [5, 6, 7, 18].

The first indicates how the bounding ellipsoid is related to the conventional WRLS

process and the second indicates how the optimal data weights are chosen. Proofs

are found in [7] for the AR(p) case. The generalization to ARMAX(p,q) is straight-

forward.

 

Theorem 1 [7] Let 0(n) C_: ’R'" be the set of all parameter vectors which are com-

patible with the data fori E [1,n] under constraint (1.1). Then there exists a superset

of C(n), say C(n), a hyperellipsoid in ’R'”, which is closely associated with the WRLS

estimation process:

 

" “ C307“ 7 m

e(n) = {a ([9 — 9(n)]T E(n)) [9 — 0(n)] <1} , o e n (1.22)

where, n A .

an) -- 6T(n>c.(n)é<n) + 3%] (1 - was/2(2)) (1.23)

in which 6(n) is the conventional WRLS estimate of00 at time n using weights {)1(i)}.

 

This theorem, which is derived from (1.21) by replacing 00 with a general vector

9, simply means that there is a hyperellipsoidal domain in ’R’" (i.e., all 9 6 E(n))

which is guaranteed to contain 00, and which is centered on the WRLS estimate 0(n).

The “volume” of the ellipsoid fl(n) is inversely proportional to the determinant

of the matrix C,(n)/s(n), and is a function of only one unknown, z\(n). Therefore, a

logical strategy for the selection of weights is to choose A(n) to maximally shrink the

volume of C(72). If no such weight exists, the data at time n should be “rejected” (A(n)

effectively set to zero), as it does not serve to refine the estimate of the parameters,

12



thereby saving the computational CXpense otherwise necessary to incorporate it into

the estimate.

The ellipsoid volume is proportional to the quantity

det B(n) é det n(n)C;1(n) . (1.21)

A reasonable strategy is to find an optimal weight, A‘(n), at each step that minimizes

the “volume ratio” of the ellipsoids at n and n -- 1:

V(A(n)) = (1:25?” . 

 

Theorem 2 [7] The weight, A‘(n), which minimizes the volume ratio (1.25), is the

most positive root of the quadratic equation

F(A)=ag/\2+alh+ao=0 (1.26)

where,

a; = (m-l)Gz(n)

a. = {2m—1+7(n)c:-.(n)—~(n—1)~1(n)G<n)}G<n)

co = m [1 - v(n) e3.-.(n)] - ~(n - 11702160»)

in which all the quantities are defined above.

 

1.2.3.2 GR-based SM-WRLS Algorithm

In this section, a solution of the SM-WRLS algorithm that is amenable to parallel

hardware implementation is presented, which integrates SM weights with a GR version

of WRLS (paraphrased from [5, 6]).
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The solution is based on the orthogonal triangularization (by GR’s) of the X(n)

matrix of (1.8) [5, 6, 39, 40, 41, 42, 43, 44]. The procedure, in principle, involves the

application of a sequence of orthogonal operators (GR’s) to (1.8) which leaves the

system in the form _

T(n) die) l

90 = (1.27)

0(n—m)xm d2(n)

[- J l. .l    
where the matrix T(n) is an m x m upper triangular Cholesky factor [39] of Cx(n)

(see (1.30) below), and 0,5,,- denotes the i x j zero matrix. The system

T(n)é(n) -_- d,(n) (1.28)

A

is easily solved using back substitution [39] to obtain the LS estimate, 0(n). This

formulation makes possible the solution (in terms of computation and implementa-

tion) of SM-WRLS on contemporary parallel architectures (developed in Chapter 4)

for great speed advantages.

Some computational details need to be examined for future purposes. In computo

ing A‘(n), it is noted that F(A) contains terms involving the inverse covariance matrix

C;1(n), which never occurs elsewhere in the GR—based algorithm. In particular, the

computation of the scalar (see (1.14))

C(n) é 2T(n)C;1(n - 1)a:(n) (1.29)

requires 0(m2) operations which comprise the main computational load in determin-

ing )t‘(n). This problem is easily resolved by noting that

c,(n) = xT(n)X(n) -_- TT(n)T(n) (1.30)
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because T(n) represents an orthogonal transformation on X(n). Therefore,

C(n) = zT(n)T‘1(n—1)T'T(n—1)::(n)

gT(n)g(n) = II 901) n: (1.31)

in which [I 3 [I2 denotes the l2 norm on ’R’”. Since 3(n) = TT(n - 1)g(n), and the

matrix TT(n -— 1) is lower triangular, g(n) is easily found from the available quantities

at time n by back substitution.

A similarly inexpensive procedure for computing n(n) is available in the context

of (1.27). Equation (1.23) can be written

x(n) = éT(n)c,(n)é(n) + E(n) (1.32)

where,

E(n) = 213% (1 - 7(¢)y’(z))

2(n _ 1) + 578—; (1 - 7(n)y2(n)) (1.33)

with 12(0) 2: 0. Also, from (1.27) and (1.30), the first term in (1.32) is easily shown

to be [I d1(n) [[3, and therefore, (1.32) can be written

E(n) = II dd") II; + 76(71) - (1-34)

Figure 1.2 summarizes this GR-based SM-WRLS algorithm.

Finally, the quantity det B(n) can be conveniently monitored within the system

(1.27), since, from (1.24) and (1.30),

log {det B(n)} = m log {s(n)} — 2 log {det T(n)] (1.35)
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lNlTlALlZATlON: Fill (m +1) x (m + 1) working matrix, W, with zeros.

AU): 1, i: 1,2,...,m+l

12(0) = 0

RECURSION: For i = 1,2, . . . ,n,

STEP 1. (Skip° ifi S m +1) Update C(i), e;_1(i).

Solve TT(i - 1)g(i) = a:(i) for g(i) by back substitution.

6(1) -— u g(i) u: T

«4(1): 1(1) — é (1-1)..(1)

STEP 2. (Skip ifi S m +1) Compute optimal Mi), say )t'(i), by finding

most positive root of quadratic (1.26).

STEP 3. (Skip ifi _<_ m +1) If A'(i) S 0, set

31(1) = 31(1- 1)
9(i) = 0(i - l)

E(i = E(i — 1)

and go to STEP 7.

Otherwise, continue.

STEP 4. Update T(i).

Replace bottom row of W by (/z\‘(i) [mT(i) I g(i)].

Rotate this “new equation” into W using Givens rotations,

leaving the result [T(i) | d1(i)] in the upper m rows of W.

These rotations involve the scalar computations [40, 43]

W;k = ijO’ + “4,1,”,de and W:n+1'k = — p.76 + Wm+1’k0’6

for lc=j,j+1,...,m+1 and forj = 1,2,...,m;

where, a = Wjj/p, r = Wm+1,k/p, p = W};- + 6W3,+1,j, 6 is unity"

and ij (Wjik) is the j, k element of W pre- (post-) rotation.

STEP 5. (Skip ifi S m) Update 6(i), solving T(i)6(i) = d1(i) by

back substitution.

STEP 6. Update x(i) and E(i) according to

11(1) = 11(1- 1)+ 171710 - «are»

“(1') = ll 0'10) "3 + 79(1')

Compute and store only E(i) if i S m.

STEP 7. If i S n, increment i and return to Step 1.

 

 

“Generally T(i) does not become nonsingular until i = m + 1.The first g(i) cannot be computed

until i = m + l and the first A‘(i) at i = m + 2. We arbitrarily set Mi) = 1 on the initial range.

'’6 is set to -1 to rotate an equation out of the estimate [40].

Figure 1.2: The SM~WRLS algorithm based on Givens rotations.
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d d tT(n) is easily computed as the product of the diagonal elements of T(n).an e ,
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Chapter 2

New Theoretical Results

and Algorithms

 

2.1 Introduction

This chapter is divided into three major sections. The first is devoted to the theo-

retical development of a generalized SM-WRLS algorithm that can handle complex

vector-input vector-output data.

In the case when it is critical to obtain the solutions of certain problems as fast as

possible, it is essential to have a yet more efficient SM-WRLS algorithm that produces

acceptable solutions faster. The theoretical development of this algorithm, which uses

a suboptimal checking criterion to reduce the computational complexity of SM-WRLS

at the expense of using “suboptimal” weights, is presented in Section 2.3.

Finally, Section 2.4 demonstrates how to make the SM-WRLS algorithm explicitly

adaptive with a very flexible mechanism by which it can “forget” the influence of past

data. Three major subcases are identified and presented. This section also shows that

exponential forgetting factor adaptation can be incorporated into SM-WRLS. The

theoretical development of this algorithm and a discussion explaining why it has not

been found to be effective for adaptation in preliminary experiments are presented.
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2.2 A Generalized “Non-adaptive” SM-WRLS Al-

gorithm

This section is devoted to the theoretical development of the generalized (for complex

vector data) SM-WRLS algorithm. The developments here are guided by the work

of Deller and Luk in [7] on the real scalar case and Deller in [45] on a special vector

(3856.

Consider the general linear model of the form (cf. (1.2))

q

y(n)ziAf’ym—i)+ZB§”w(n—j)+v(n) (2.1)
-

J=0

in which y(n) 6 C” is a complex vector output sequence of the model; w(n) E C” is

a measurable, uncorrelated, complex vector input sequence to the model; v(n) E C”

is an uncorrelated’ complex vector driving (or error) sequence, known to be bounded

(as in (2.18) below), which is independent of w(n); A; E Ckx", i = 1,2,. . . ,p, and

BJ- E Ckx", j = 0,1,. . . , q, are complex matrices of “true” parameters to be identified;

and superscript H is a standard notation for the conjugate transpose (or hermitian).

For convenience in the following, the dimensions of the vectors g(n) and w(n) are

assumed to be equal (more on this below).

The key to generalizing the results of the real scalar case discussed in Chapter 1

is the reformulation of (2.1) as

I:

v(n) = 2963M) + v(n) ( -
l=1

[
\
D

(
\
3

V

in which 9; E me" is a complex matrix of the parameters to be identified which are

 

2Absence of both temporal correlation and component correlation are assumed here. This will

be useful in formulating the energy bounding assumption (2.18) below. Also, see Footnote 1 in

Chapter I.
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associated with the vector 3,02) 6 Cm. For convenience, the following vector/matrix

notations are employed

37(11): fyzfn -1)y1(n - 2) ° ° ° y1(n - let(n)w1(n - 1) - - ' w1(n — q)] (2.3)

and
r .

01.11 01,12 "' 01.11:

02,11 02,12 ° ° ° 02,11:

an 012 an.10. p. p.

91 = (2.4)

50,11 50.12 ' ° ° 50,11:

b1,11 b1,12 51,11:

  [ban 5m b“),
.1

in which w1(n) is the 1‘” element of w(n); and a;,1k’s and bJ-Jk’s are the parameters

to be identified which are associated with the 1‘” vector, 31(72), and the k‘” output

element, yk(n). Figure 2.3 shows (a) the real scalar linear model of (1.2) and (b) the

general complex vector linear model of (2.1). It is to be noted that the matrix A.- in

(2.1) consists of the Us elements, 01.11:, and the matrix B, consists of the lie elements,

ijk (see (2.4) and Fig. 2.3). Note that if the dimensions of the vectors g(n) and w(n)

are not equal, then the corresponding elements in (2.2) are replaced by zeros.

The general model can be written

y(n) = 65,301) + v(n) (2.5)

where,

eg’ a [ofefnef] (2.6)



 

 

y(n)
   

01

02

 

 

X(n) y(n-I) ytn-Z)
      

 

     
ytn) yztn) yztn) - . - Mn)
 

 
   

x101) x201) . . . xk(n) _

         

(b)

Figure 2.3: (a) The real scalar linear model and (b) the general complex vector linear

model.
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and

T(n) i [3T(n)a:'2r(n) - - - $1.01)] . (2-71

Given a vector 3(2) 6 Cm” and an output vector g(i) E C“ on the interval

i E [1,n] (n 2 m), and some set of error minimization weights, say {Mi)), the

LS estimate, say C(n), of the parameter matrix 90 6 kax" is the solution of the

overdetermined system of equations of the form

P WW1) —>i 7 (hence) —-» -

(/1(2)z"(2) -» 90: )(2)y"(2) —+

    

(2.3)

( Mann) —+ . , 1(n)y"(n) —» ,

denoted

x”(n)€-)0 = Y”(n) . (2.9)

The batch solution is given by (39]

out) = [X(n)x"(n)]"]l X(n)Y”(n) (2.10)

with the matrix in brackets called the (weighted) covariance matrix, i.e.,

c,(n) s [X(n)x"(n)] = Z Mi)a:(i)a:”(i) . (2.11)

i=1

The remaining matrix product (in (2.10)) is cross-covariance matrix for the vector

inputs and outputs, denoted Cn(n) and given by

0.,(n) s. [X(n)Y”(n)] = Z Mi):c(i)y”(i) . (2.12)

i=1

The conventional recursions of the MIL-based WRLS solution, which we upgrade
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here to the complex vector case, are given by

 

where,

P(n) a c;1(n) (2.15)

C(n) é m”(n)P(n—1)a:(n) (2.16)

6,,_1(n) s. y(n)—O”(n—l)z(n). (2.17)

As in the real scalar case, it is assumed that the complex vector error sequence,

v(n), is pointwise “energy bounded,” i.e.,

7(n) tr {v(n)v”(n)} < l (2.18)

where the sequence 7(n) is known or can be estimated from the data, and tr {A}

denotes the trace of the matrix A. Since v(n)v”(n) is a hermitian matrix with real

diagonal elements, the sequence 7(n) is real numbers. This is useful in the proof of

Lemma 1 below.

The significance of the bounding sequence on tr {v(n)v”(n)} is that it implies

pointwise “local membership sets” to which any reasonable estimate for 90 must

belong. If the local membership set at time n is w(n), it follows immediately from

(2.5) and (2.18) that

w(n) = {a I 7(71) tr { [y(n) — @Hz(n)] [g(n) — @H2(n)]H} < 1} , 9 E kaxk

(2.19)

where ('9 is a general matrix replacing Go. The interpretation of this set becomes
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clearer when considering a single output, y,(n), the i‘” element of y(n). The related

subset is

w,(n) = {0,- I 7(n) [y,(n) —— 0,”.1:(n)] [31,-(n) -— 9[{x(n)]fl <1} , 0,- E cm}: (2.20)

in which 9,- is the i‘” column of the parameter matrix 9. Each w,(n) takes the form

of a hyperstrip (or degenerate hyperellipsoid) in the parameter subspace 6””. If the

data and the 7(i) values are given over a range [1,n], then it local sets w(i),i =

1,2, . . . ,n (one for each observation) can be generated. The parameter matrix 90

must simultaneously belong to each of these sets, and therefore, must belong to a

“global membership set” given by

51(11): (33(1) . (2.21)

(Mi) will be a monotonically non-increasing set with i, and it will be the minimal

(most restrictive) membership set known under the conditions of the problem.

Following the same arguments as in the real scalar case (see Section 1.2.3.1), a

related (but potentially larger) global membership set associated with the WRLS

process (at time n) can be derived. This is done by noting that the constraint (2.18)

on v(n) implies that an “accumulated inequality” holds:

 

Lemma 1 Condition (2.18) implies

fl

ZMi) tr {v(n)v”(n)} S iii—3 (2.22)

i=1

for any non-negative (real) sequence {Mi)}. The equality can be removed for n 2 i0,

where i0 is the minimum i for which Mi) aé 0.
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Proof of Lemma 1: (Guided by Deller and Luk [7]). That the equality holds for

n < i0 is obvious. At i0

 1 r 1 "1 ”('0)1(0)1{v(0)v (o)}< 7,0

which follows immediately from the positivity of Mia) and (2.18). But

1(1011(1.,)11{ ”=(10)} 21(1) 1111(1){v"(i)} (2.24)

and

= :Mi) . (2.25)

SO, . .

:1(1)1r{v(1)v”(1)} < gig—[3. (2.26)

Also

Adding (2.26) and (2.27)

io+l io+l Z

2; 1(1) 11{1(1)1”(1)} < Z: %1‘j . (2,28)

and so on, by induction. D

It is assumed, for convenience, that M1) 75 0, and therefore, Lemma 1 becomes

ini)t(i)r{v(1)}<):j—E—. (2.29)

i=1 i=1 7

By inserting y(i) — 9512(i) for v(i), inequality (2.29) becomes

2": 1(1) tr [ [v(i) - 93’21(1)] [9(1) — 932(1)]H} < :1: 59-}- . (2.30)

i=1 7(2
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This inequality is a fundamental result which leads to a global membership set, say

8:2(n), to which 90 must belong. Since fl(n) (from the discussion above) is the

smallest known set, it must be true that (Mn) Q E(n). The main result is stated as

a theorem.

 

Theorem 3 Let “(12) Q 0““ be the set of all parameter matrices which are com-

patible with the data fori E [1,n] under constraint (2.18). Then there exists a super-

set of (Mn), say C(n), a hyperellipsoid in Cm“"”, which is closely associated with the

WRLS estimation process:

 fi(n)={® | tr{[G—é(n)]”C’((n)[9- é(n)]}<1} , 966111111).- (2.31)

where,

11(11): 11{o”(n)c n)e(n)}+§: ”(2

i=177(6)

— tr {Cy(n)}. (2.32)

in which 9 is a general matrix replacing Go.

 

As before, the interpretation of the set (Mn) is simple when considering each scalar

component of the output individually. The result is a corollary of the theorem.

 

Corollary 1 Under the conditions of Theorem 3, all possible parameter vectors as-

sociated with output yg, say 9,, are confined to a hyperellipsoidal membership set

which is centered on its current estimate, 0,-(n),

 a.(n)=(9. | [9.— 19,-(11))"C(n)(") [91—12(11)] <1} , 0,-6ka (2.33)

in which 6,-(n) is the WRLS estimate of column i of the parameter matrix @(11) at

time n using error minimization weights {Mi)}.
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This means simply that there is a hyperellipsoidal domain in the parameter sub-

space which contains all possible parameter vectors and which is centered on the

WRLS estimate. Note that the ellipsoid associated with each y,, i = 1,2, . . ..k, is

identical to all others except for its center.

Proofs of Theorem 3 and Corollary 1: (Guided by Deller [45]) It follows imme-

diately from Lemma 1 that (see (2.30))

i: 1(1) 11 I [11(1) — @"x(i)} [11(1) — O”x(i)IH} < i% . (2.311)

This constrains the possible parameter matrices to the set

{(9 | 2: 1(1) 11 I [g(i) — O”x(i)} [11(1) — ®”x(i)IH} < 2:31-38} (2.35)

Expanding the trace term,

{9 l i Mi) tr {v(i)y"(i)- 9”z(i)v”(i) - v(i)z”(i)@ + ®”m(i)w”(i)®}

< Z—(’(I,} (2.36)

i=17(z)

Moving the summation across terms,

W)
{9 I tr {Cy(n) — @"CIy(n)— ny(n)9 + GHC(n)@} < 1:1jig—(0} (2.37)

where, C,(n) and C,y(n) are defined in (2.11) and (2.12), and Cy(n) is defined in

the same way as Cx(n). From (2.10),

Cut”) = Cx(n)é(n)

or Cg(n) = O”(n)Cf(n)=OH(n)Cx(n). (2.38)



This substitution in (2.37) and some simple manipulation yields

{o I 11(9"c.(n)o — e"c,(n)o(n) - e"(n)c,(n)o} < Z 3%} — 111{C,(n))}

i=1

(2.39)

Completing the square on the left side yields

{9 I tr {@"C,(n)@ - GHC;(n)(-:)(n) — é”(n)C,(n)€-) + é"(n)Cx(n)O(n)}

< éié—Z} -— tr {C,,(n)} + tr {9"(n)C,(n)€-)(n)} é n(n)} (2.40)

from which it follows that the set is described by

{O I tr{I@ -- O(n)}H C,(n) [G — é(n)}} < Ic(n)} . (2.41)

If the system is assumed to be stationary then C,(n) is positive definite, and the

left side of this inequality must be a positive number. x(n), therefore, must also be

positive. Dividing both sides by x(n) yields (2.31). D

To prove Corollary 1, it is convenient to write

. H .. "

tr I [e — e(n)] c.(n) [o - 9(n)}} = 21,- (2.42)

i=1

. H 1.

where c,- indicates the 1‘” diagonal element of [G - é(n)I C;(n) I9 — C(11)}. Now

it is clear that

H .

e,- = [9.- - 9101)] c,(n) [9,- — 9,-(n)} (2.43)

for any i, where 9; and 6,(n) are the i‘” columns of G and C(n). It is also true that

all the cj’s are positive since Cx(n) is a positive definite matrix. Therefore,

I:

q<Zc,-<x(n) foranyi=1,2,...,k. (2.44)

1:1
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Dividing through by K(n) yields inequality (2.33). [:1

According to Corollary 1, all possible parameter vectors, 9,, associated with the

output y, are guaranteed to be in a hyperellipsoidal set which is centered on 9,02).

described by inequality (2.33). Further, the ellipsoids are identical for each i except

for the centers. It therefore is reasonable to use Mn) which maximally shrinks this

common ellipsoid if such can be found. Following the same arguments as in the real

scalar case (see Section 1.2.3.1), the quantity

det B(n) .-'= det x(n)C;1(n) (2.45)

is proportional to the volume of ellipsoid (2,-(11) of inequality (2.33). A reasonable

strategy is to find A‘(n) at each step which minimizes the “volume ratio” of the

ellipsoids at n and n — 1:

_ detB(n)

— det B(n - 1) °

 

V(A(n)) (2°46)

 

Theorem 4 The weight, P(n), which minimizes the volume ratio (2.46), is the most

positive root of the quadratic equation

F01) = (12A? + 011)‘ + do = 0 (2.47)

where,

02 = (mlc — 1)G2(n)

a1 = I2mlc - 1 + 7(n) tr{en-1(n)ef_,(n)} — 16(n — l)7(n)G(n)I C(n)

90 = m: [1 — v(n) tr{e.-1(n)ef..(n)}] - n<n — 1)1(n)G(n) .

 

Proof of Theorem 4: (Guided by Deller [45]) Substituting the definition of B(n)



into (2.13) results in

B(n) _ B(n— 1) _ n

x(n) - x(n—l) M )

B(n — l):c(n)a:”(n)B(n -1)

Kzfn - 1) ll + 400001)]

  

 

Defining h(n) i l + Mn)G(n) and r(n) i- K(n)/x(n — 1) yields

_ Wild")
B(n) _ B(n -1)r(n){I - n(n -1)h(n) [B(n —1):c(n)]H} . (2.49) 

So,

 

_ rfnlbfnlzfn)
detB(n) _. detB(n — 1) det {r(n)I-— x(n -1)h(n) [B(n —1)x(n)]H} . (2.50)

Using the matrix identity [46] (for the complex case)

det(cI + yz”) = emf-Me + y”:) (2.51)

where y and z E Cm“ and c is a real number. The term inside the braces becomes

r n n x” n

rink-.101) {T(n) _ EC 23: 1))h(7(1))B(n -1):c(n)} ' (252)

 

Using (2.49), the term in (2.52) can be written as

rm”(n) {1 —W} = :11). (2.53)

M") h(n) '

Therefore, to minimize the volume ratio (2.46) with respect to Mn), (2.53) is differ-

entiated and the result is set to zero.

a (r”"‘(n))

0Mn) h(n)

 0 (2.5.1)
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C(71) E 0 . (2.57))

Since r"""1 (n) # 0,

0r(n)

mkh(n)a/\(n) - r(n)G(n) == 0. (2.66)

The partial derivative of r(n) is further expanded as follows: Inserting the right side

of (2.14) into (2.32) for C(n) gives

* H“1 ” —1(
11(11) = tr{[®(n - 1) + 1(11)P(n )a:(n)e,, (11)} P (n)

[é<n-1)+1(n)P (n) .-’t.(n)]}+2-—[-:.I - 1110161)) (2.57)

= 11 {6”(12 _ 1) [P“(n _ 1) + Mn)a:(n):cH(n)} o(n — 1) +

1(n)e.-1(n)x”<n)©(n - 1) + 1(n)é”(n - 1)c(n)ef.'..(n) +

P(n -1)x(n)x”(n)P(n — 1)
 12999.- (n):c"(n) [P(n — 1) — an) , + A(n)G(n) 2191) 53.19)

+ :fi— tr{C,(n )} (153)

Mn

: n(n—1)+:7-(-;1—}—(ri)()(ri)tr{yyfl(n)}+

n) " 511-1001” ‘1' 511-101) [31(9) - 5n—1(n)lH +(

A2("kn-1("Riff—100301)I

1 + Mn)G(n)

Mn) tr {1961) — 9-19119

fy(n) - 611—162)] 6.7.161) +

  

 (2.61)

31



or,

  

 

r n _ n(n) - )(n) _ Mn) tr [6,,_1(n)c,’,’_,(n)} . .,

( )— n(n—l) _1+ n(n-1)7(n) n(n—1)h(n) ° (2'0‘)

Differentiating this result with respect to Mn) yields

  

3r(n) _ 1 I 1 tr {en-1(n)€n-40‘le (2.63)

aMn) _ x(n - 1) 7(n) — h2(n)

Putting this result in (2.56) and replacing n(n) with the right side of (2.61) yields

mkh(n) { 1 _ tr{€n-1(n)€f—1(n)}}_
 
 

  

n(n -1) v(n) 112(9)

1(1) Mn) 11 {e.-1(n)e.*.’_1(n)} __

{1+ n(n —1)7(n) — n(n -1)h(n) GUI) _ 0 (2.64)

mk [h2(n )— 7(n) tr {en_(n) (n)-}I

[11(11 — 1)7(11)h(11) 1. Mn)h(n) _ 1(11)~,(11) 11 {1,_,11() ,(11)G(11}I

When h(n) is replaced by its definition (see (2.49)), the following result is obtained

after some manipulation

2 n){(mk — 1)02(11)} +

1(11) {2111/1 _ 1+ 7())11{;.,_,(11)1"1,,_,(11)}_ 11(11 _1)(1(1)}G

mkIl-7(n)()tr{en161(n)()7(n}I—xn—l)G(n=) 0 (2.66)

which is the quadratic (2.47).

Finally, it is noted that the 012 coefficient of the quadratic is always positive, so
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that F(A) is concave upward. It follows immediately that the larger real root of

1"(21) = 0 (if it exists) will correspond to a local minimum of V(Mn)). This root must

be real and positive to be a valid weight (see Lemma 1). D

Theorems 1 and 2 can be considered as special cases of Theorems 3 and 4 in

which the data are real scalar quantities. Another special case can also be derived

when the data are complex scalar quantities and the fundamental results are stated

below.

Consider the model of the form

y(n) e 9511(11) + v(n) (2.67)

with the constraint

r(n) I v(n) I2 < 1 (2-68)

and an error term

1.-1(n) i an) — 9% -1)11(..) . (2.69)

All the quantities above are complex except ')(n) which is real.

The hyperellipsoidal membership set associated with this special case is easily

defined by noting that Corollary 1 applies directly to this case with 9; and 9.- re-

placed by 9 and 9, and tr {Cy(n)} (in Theorem 3) by 23;, Mi) I g(i) I2. Similarly,

the quadratic equation (2.47) can be applied with tr {en_1(n)c,’,f_l(n)} replaced by

l 571-101) l2-
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2.3 Suboptimal Tests for Innovation in SM-WRLS

Algorithms

A significant reduction in computational complexity can be achieved by employing

a “suboptimal” test for information content in an incoming equation. The proposed

check is argued to be a useful determiner of the ability of incoming data to shrink the

ellipsoid, but it does not rigorously determine the existence of an optimal SM weight

in the sense described above. The main issue here is to avoid the computations of the

quantities necessary at each step to construct and solve the quadratic (2.47) in cases

in which the quadratic turns out only to be useful for the purpose of checking for the

existence of a meaningful weight. Since most of the time these computations result

in the rejection of incoming data, a more efficient test could significantly reduce the

complexity of the algorithm.

The estimation error matrix at time n can be denoted by

h

o(n) 1; e1, - 9(11) . (2.70)

The following inequality results immediately from (2.31),

é"(n)C,(n)é(n) < n(n) . (2.71)

Using a similar inequality (for the real scalar case), Dasgupta and Huang [14] have

noted that their n(n)-like quantity provides a bound on the error vector (or matrix

for the generalized case) sequence and have suggested minimizing this quantity with

respect to Mn) in an effort to decrease computational complexity. However, this

minimization does not, in general, imply an improvement in the estimate with respect

to previous times, since both sides of the inequality (2.71) are dependent upon Mn).

Further, the nonexistence of a minimum of n(n) with respect to Mn) is not very
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informative in this sense. However, further arguments are presented here to provide

support for this process in the SM-WRLS context.

Consider the usual volume quantity to be minimized at time n, defined in (2.15).

Let us temporarily write the two key quantities there as functions of Mn) : Cr(n, Mn))

and n(n, Mn)). It is assumed that enough equations have been included in the covari-

ance matrix at time n —- 1 so that its elements are large with respect to the data in the

incoming equation. Now the quantity det C,(n,Mn)) is readily shown to be mono-

tonically increasing with respect to Mn) on Mn) 6 [0,00) (see Appendix A), with

C,(n, 0) = C,(n - 1, X'(n —1)), where A‘(n — 1) indicates the optimal weight at time

n — 1. Under the assumption above, det C,(n,Mn)) will not increase significantly

over reasonably small values of Mn). The attempt to maximize det C,(n,Mn)) in

(2.45) causes a tendency to increase Mn) in the usual optimization process. However,

the attempt to minimize n(n, Mn)) generally causes a tendency toward small values

of Mn), unless a minimum of n(n, Mn)) occurs at a “large” value of Mn). To pursue

this idea and further points of the argument, key results about n(n, Mn)) are noted

in the following.

 

Theorem 5 n(n,Mn)) has the following properties:

0 0n the domain Mn) 6 [0,00), n(n,Mn)) is either monotonically increasing or

it has a single minimum.

0 n(n, Mn)) has a minimum on Mn) 6 [0,00) ifl'

tr{£n_1(n)£f_1(n)} > 7’1(n) . (2.72)
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Lemma 2 Let A‘(n — 1) denote the optimal weight in the sense of 'l‘heorem 4 (whirl)

might be zero) at time n — 1. Then

_ . Mn) Mn) tr{e,,_1(n)6£,’_,(n)} . _.

n(n,Mn))_n(n—1,)\ (n_1))+:y_(TII- l+Mn)G(n) . (2.73) 

 

Proof of Lemma 2: See (2.61).

Proof of Theorem 5: The minimum of n(n, Mn)) with respect to Mn) can be found

by differentiating (2.73) and setting the result equal to 0,

 

311(11, A(71)) 2 2 u _
W5)— : G (11)1 (11) + 20(11)1(11) + [1— 7(11) 11 {1.._,(11)1,,_,(11)}I = 0 .

(2.74)

This is a concave upward quadratic function with its minimum at

X(n) = —G"1(n) < 0 . (2.75)

Two real roots of (2.74) always exist,

—1:t n tr 6”. n61 n11101.01) = 1/7( ) { 1( ) 1( )} (2.76)
 

C(n)

the smaller corresponding to a maximum of n(n,Mn)), the larger to a minimum.

Only the larger root can be positive since the lower root is bound to be less than

/\'(n). Therefore, it is only possible for n(n,Mn)) to exhibit a minimum or to be

increasing on positive Mn). It is easy to use (2.76) to verify that the larger root. is

positive if condition (2.72) is met. Cl

With these results, it can be argued that: If det Cx(n,Mn)) is increasing, but

not changing significantly over reasonably small values of Mn), then it is sufficient

to seek Mn) which minimizes n(n, Mn)). If n(n, Mn)) is monotonically increasing on
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Mn) 2 0, this value is Mn) = 0 which corresponds to rejection of the equation at time

n. It suffices, therefore to have a test for a minimum of n(n,Mn)) on positive Mn).

As noted above; a simple test is embodied in condition (2.72). If this test is met, it

is then cost effective to proceed with the standard optimization process centered on

(2.47). Otherwise, the explicit construction and solution of (2.47) can be avoided.

It is to be noted that even if (2.72) is met, it is possible that the optimization

procedure will still reject the datum. Perhaps more importantly, it is also possible

for (2.72) to reject data which would have been accepted by the usual process. These

ideas will be explored in the simulation studies (Chapter 3).

Finally, note that when the simplified test (2.72) accepts the new equation, there

are tools to compute the weight which is “optimal” in the sense of minimizing

n(n, Mn)). In particular, this would be the larger of the roots in (2.76). However,

it clearly makes more sense to compute the optimal weight according to (2.47), since

this computation is not much more expensive. The improvement in the computational

complexity due to “suboptimal checking” is discussed in Chapter 4.

2.4 Adaptive SM-WRLS Algorithms

While the theoretical developments of the previous two sections, in principle, provide

the background for further SM-WRLS developments with general complex vector in-

puts and outputs, it is upon the special case of real scalar data that most of the

remaining work will focus. This special case was necessary in order to initiate a

tractable study of the difficult issues of adaptation, algorithmic behavior, and archi-

tecture development. The work on this simpler case which is to follow, however, will

lay the groundwork for future studies on the more general cases.

37



2.4.1 General Formulation

The adaptive algorithm presented here uses “back rotation” in order to partially

or completely “forget” past information enabling it to track (potentially fast) time

varying signals. Back rotation [40] is a Givens rotation-based technique that removes

(or rotates out) a previously included equation from the system. In this section, the

back rotation technique is modified such that a previous equation can be partially

removed. This will permit a broader class of adaptive strategies. In SM terms,

back rotation causes the ellipsoidal membership set to expand due to the removal of

information. This expansion entices the algorithm to incorporate present data. The

back rotation technique requires that all the weights with the corresponding equations

(for weights other than zero) be stored for later use.

Recalling Fig. 1.2, it is seen that at each step in the SM-WRLS algorithm, the

upper triangular system of simultaneous equations T(n)9(n) = d1(n), is solved (when

data are accepted) to obtain the optimal estimate [6, 7, 9]. Suppose in approaching

time n that the past equation to be (partially) removed is at time 1'. Rotating this

equation out of the system is accomplished by re-introducing it as though it were a new

equation. A weightM, where u is the fraction of the equation to be removed from

the system, is used, and some sign changes in the rotation equations are necessary

[40]. The system of equations with r removed is referred to as the “downdated”

system at time n — 1, and the related quantities are labeled with subscript d, i.e.,

T.(11 — 1)91(n — 1) = 91,.(11 — 1) . (2.77)

The downdated ellipsoid matrix is Cd(n — 1)/nd(n — 1) where

01(11—1) = T§(11—1)Td(n—1), (2.78)

1102 — 1) = 1111.101 —1) 111+ 71102 — 1) . (2.79)
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with

INT) (
lRd(n -— 1) i h(n — 1) — 7(7) - 7(1)y2(1)) (2.80)

in which h(n — 1) represents the updated value of k which includes the equation at

time n — 1. Equations (2.79) and (2.80) follow immediately from the definition of 11

found in (1.23). These relations can be used repeatedly regardless of the number of

equations (partially or completely) removed prior to time 12. If more than one equation

is removed prior to n, E(n — 1) in the right side of (2.80) is replaced by the h(n — 1)

for all downdates after the first one. Following all necessary downdating just prior to

time n, the algorithm uses the downdated system to compute the quantities Gd(n)

and tin-1,1101) which are necessary to compute the optimal weight for the equation at

n. To compute a downdated SM-WRLS estimate, therefore, it is only necessary to

downdate the matrix T(n — l) and the vector d1(n — 1) and to solve for 94(n — 1) prior

to Step 1 in Fig. 1.2, then replace all relevant quantities in Step 1 by their downdated

versions, i.e.,

0101) = Hera-‘01 -1)T1T(n -1)1(.1) = n 9.01) 1):. (2.81)

and

(n-1,d(n) = y(n) - 95(n — 1)x(n) . (2.82)

n(n - 1) and h(n — 1) are downdated according to (2.79) and (2.80). Then A‘(n)

is found in Step 2 using (1.26) with downdated quantities. Note that downdating is

unnecessary if the equation 7' was rejected by SM-WRLS. In this case Td(n — 1) =

T(n — 1) and 9.1(n —- 1) = 9(n - 1). Conversely, when the “new” equation at n is

rejected, then T(n) = Td(n — 1) and 9(n) = 9.1(n - 1).

A wide range of adaptation strategies is inherent in the general formulation de-

scribed above. Three major subcases are identified in the following. In each of these

subcases, the objective (in SM terms) is to expand the ellipsoidal region of possible
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solutions in order to track fast time variations in the signal.

2.4.1.1 Windowing

Windowed adaptation is a special subcase of the general formulation which uses a

sliding window of fixed length, l (l 2 m + 1), so that the estimate at time 77. covers

the range In — l + 1, n]. The windowing technique is made possible by the ability to

completely (i.e., p = 1) and systematically remove equations at the trailing edge of

the window. An illustration of this technique is shown in [5].

This technique implements the same procedure as that of the basic SM-WRLS

algorithm for i = 1, 2, . . . , l, and thus, exhibits similar performance. The initialization

process (for this strategy and all other GR-based SM-WRLS strategies) is also the

same as that of the basic SM-WRLS algorithm; i.e., the working matrix W (or T)

is filled with zeros, Mi) = 1 for i = 1,2,...,m + 1, and 76(0) = 0 (see Fig. 1.2).

Windowed adaptation starts at time 1 +1 and works as follow: Prior to consideration

of the equation at time n (n _>_ I + 1), it is simply necessary to remove the equation

at time 1' = n —l from the system by complete “downdating” as described above. All

the theoretical results of the general formulation are valid with the value kd(n — 1)

given by

1101-1) = . 190—1101121110
i=n—l+l 7 Z)

, Mn —I 2

= n(n — 1) —fl (1 — 7(n - ()3; (n — 1)) (2.83)

in which the value n — l acts like a special 7' for the windowed adaptation.

2.4.1.2 Graceful Forgetting

In this technique, only a fraction, )1 (chosen such that p“ is an integer), of all previ-

ously included equations is removed at each n similarly to the exponential forgetting
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factor conventionally used with WRLS”. This technique has a sliding window of fixed

1
length, )1” , with the effective weights decreasing linearly when moving toward the

trailing edge of the window. Hence, the equation at the trailing edge of the window

 

has an effective weight of ([pMn + 1 -— p") and the equation just rotated in has an

effective weight of I/Mn). Note that although each equation must be partially rotated

out )1" times, only those equations that were previously accepted (in the past 17"

recursions) need to be considered by the algorithm.

2.4.1.3 Selective Forgetting

This technique selectively chooses the equations to be (partially or completely) re-

moved from the system based on certain user defined criteria in order to remove their

influence from the system. The selection process can be, for example, to remove (or

downweight) only the previously heavily weighted equations, to remove the equations

that were accepted in regions of abrupt change in the signal dynamics, or to remove

the equations starting from the first equation and proceeding sequentially. Whatever

the criteria, a fundamental issue is to detect when adaptation is needed to improve

the parameter estimates. This issue is further investigated in Chapter 3.

Therefore, the adaptive SM-WRLS algorithm and its extensions (e.g., the special

subcases described above) are potentially very useful techniques that can be applied

to identify models with fast time varying signals. Due to the flexible nature of this

algorithm, however, various subcases can also be defined and tested. In any subcase,

the objective (as noted above) is always to expand the ellipsoidal region of possible

solutions. This objective can also be achieved in an unconventional but intuitive

method. For example, an ad hoc adaptation strategy may be to inflate the ellipsoid

(i.e., multiply the matrix Cz(n)/rc(n)) by a scale factor, say a (0 < a < 1), when

 

3An exponentially forgetting factor can also be incorporated into SM-WRLS. Although the strat-

egy is computationally very efficient, it has not been found to be effective for adaptation in prelim-

inary experiments. See Section 2.4.2 for theoretical development and discussion.
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there is a need for adaptation.

It is important to note that the general adaptive formulation is amenable to the

suboptimal strategy presented in Section 2.3. The performance of the adaptive,

suboptimal, and adaptive suboptimal techniques are investigated in Chapter 3.

2.4.2 Exponential Forgetting Factor Adaptation

In this section, it is shown that exponential forgetting factor“ adaptation can be

incorporated into SM-WRLS. The theoretical development of this computationally

efficient strategy is presented, followed by a discussion explaining why this method is

not found to be effective for adaptation in simulations to date.

It is possible to make the conventional WRLS solution by GR’s adaptive by mul-

tiplying the existing system of equations of the form T(n)9(n) = d1(n), through by

a “forgetting factor,” [3, where, 0 < B < 1, prior to rotation of the equation at time

n + 1 into the system [40, 43, 44]. Since this process nominally inflates the ellipsoid

size by removing information, the optimization at the next time must be performed

with respect to this “intermediate” system, say

'r.(11)9(11) = 111,.(11) , (2.84)

where Ta(n) = 9T(n) and d1,a(n) = fldl(n). Note that in order to use (1.26),

“ada ted” versions of e, G, and is must be used. It is easy to see that
P

(w(n +1) = 6,,(n +1) (2.85)

 

‘This is a more conventional “forgetting factor” strategy than that suggested by Dasgupta and

Huang in [14].



(since 9(11) is unchanged), and 11111

G.(n +1) = 940(1) +1) . (2.86)

Recalling (1.23) and the alternative expression for 5(a) in (1.34), and noting that

C1.a(n) = TZ(n)Ta(n) = 62TT(n)T(n) = B2Cx(n) , (2.87)

the leading term of 76.,(n) is easily shown to be II d1,a(n) ”3 = 92 II d1(n) “3. To

complete h(n), note the fact that, at time n + 1, this method effectively assigns

weight fln+1“m to the equation at time i, where Mi) is the weight assigned to

the equation when originally rotated into the system [44]. Therefore, using (1.34) and

the discussion above, yields

h(n) = 6’ ll d1(n) H3 + (“n(n) (2188)

where,

 

 

71.01) = 2": WWW") (1 — 109201))
1:, 7(1)

= 921.(n-1)+”7If;)(1-11n)y’(n)). (2.89)

To introduce exponential forgetting factor adaptation into the SM-WRLS algo-

rithm, therefore, it is only necessary to downweight the matrix T(n — 1) and the

vector d1(n — 1) by multiplying through by ,9 prior to Step 1 in Fig. 1.2, then to

replace all relevant quantities in Step 1 by their downweighted versions. xa(n -- 1)

and ka(n — 1) are updated according to (2.88) and (2.89). Then A‘(n) is found in

Step 2 using (1.26) with downweighted quantities.

In preliminary experiments, it has been found that this strategy is not effective
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for adaptation. Actually, this strategy performs well when applied to slow time

varying systems but fails to track fast time variations. To CXplain this behavior, it is

important to understand the effect of the “downweighting” process. As noted earlier,

multiplying the system of equations (at each recursion) by 9 (0 < 5 < 1) inflates

the ellipsoid volume by a factor that is inversely proportional to 6. Therefore, a large

value of 9 causes the ellipsoid volume to increase slightly which lessens the tendency

to accept new equations and the ability to track fast time varying signals. On the

other hand, a small value of 9 causes the ellipsoid volume to increase significantly, and

therefore, a tendency to accept more equationss. However, every time an equation is

accepted, the ellipsoid volume decreases accordingly. Hence, a small value of 9 may

result in “bad” estimates due to the continuously expanding and shrinking ellipsoid

and, more importantly, to the fact that the effective window length is very small.

Therefore, it is desirable to choose 9 to be large but not to the extent of having

insignificant effect on expanding the ellipsoid volume.

To pursue this discussion further, consider the problem of estimating a signal

characterized as having slow time variations everywhere except in a region around

time n at which the signal exhibits fast time variations (see, e.g., Fig. 3.3, where

n = 2000). The fact that the signal is changing very slowly prior to n induces

the algorithm to accept some points which, in turn, causes the ellipsoid volume to

decrease. An increase in the “confidence” of the estimate results. Near time n, the

ellipsoid volume becomes very small. When the signal moves rapidly away from its

current location, it eventually moves outside the ellipsoid which is therefore no longer

a valid bounding ellipsoid. The situation can be described as follows: The signal

parameters are wandering outside of a small ellipsoid, but the incoming equations are

being rejected (because of the high confidence in the existing estimate) until some of

 

5Note that one of the main advantages of SM-WRLS is the use of a small fraction of the data.

Therefore, from the SM point of view, small values of 9 are least desirable.
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the earlier influential equations are downweighted (or suppressed). Remember that

the “downweighting” process is recursively being implemented. Hence, if 5 is large,

it takes a long time to suppress the influence of previously accepted equations, or, in

SM terms, the ellipsoid volume increases at a slow rate which may not be sufficient to

track the fast time varying signal. This explains why the algorithm ceases accepting

new equations for a period of time (which is dependent on B), and therefore, fails to

track the signal.

The adaptive SM-WRLS algorithms (of Section 2.4.1) do not depend on a fixed

factor, such as 9, to expand the ellipsoid volume in order to adapt to the changing dy-

namics of the system. However, these algorithms expand the ellipsoid by (selectively)

removing previously accepted influential equations from the system, either partially

or completely, and therefore, relinquishing their influence from the current ellipsoid,

thereby allowing it to expand and adapt to the changes in the signal dynamics.

2.5 A Survey of the Computational Complexities

of Several Related Sequential Algorithms

The purpose of this section is to compare the computational complexities of several

related sequential algorithms that solve the LS problem. The computational complex-

ities are shown in Table 2.1 in which the first column indicates the algorithm under

study, the second column gives the complexity (in floating point operations (flops)

per equation) required to check for a valid SM weight, where one flop is defined as

one floating point multiplication plus one floating point addition. The third column

gives the complexity required to update (or downdate in the case of back rotation)

the covariance matrix and the LS solution, and the fourth column gives the total

number of flops per equation for a typical example described below.

There are two theoretically equivalent methods associated with conventional LS
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Table 2.1: Computational complexities (in floating point operations (flops) per equa-

tion) for the real scalar sequential algorithms.

 

 

 

 

Covariance and Example

Algorithm Checking Solution Update (flops)

Batch Solution -- 0(m3) > 1000

MIL—based WRLS — 3m2 + 5m + 3 353

MIL-based SM-WRLS m2 + 2111 + 13 2m” + 3m + 7 180

Suboptimal MIL-based SM-WRLS (m + 1) + 453(m2 + m + 12) 2m2 + 3m + 7 47

GR-based SM-WRLS .5m2 + 2.5m + 13 2.5m2 + 10.5m + 5 160

Suboptimal GR-based SM-WRLS (m + 1) + s(.5m3 + 1.5m + 12) 2.5m2 + 10.5m + 5 55    
 

 

solution; the “batch” solution [39] which requires 0(m3) flops per equation, and

the MIL—based WRLS solution [34, 35] which requires 0(m2) flops per equation

(see Section 1.2.1). The SM-WRLS algorithm can also solve the problem in 0(m2)

flops per equation based on MIL (see Section 1.2.3.1), however, a GR-based solution

(outlined in Section 1.2.3.2) is also considered because it is amenable to a systolic

architecture implementation which reduces the complexity of the algorithm to 0(m).

The latter algorithm is the subject of Chapter 4.

Similar computational complexity expressions for the MIL- and GR-based SM-

WRLS solutions can be derived for the suboptimal strategy of Section 2.3, and are

shown in Table 2.1. Note that there is one square root operation associated with each

of the SM-WRLS algorithms but has been dropped from the table since it does not

have any significant effect on the comparison.

A note about the computational complexity of the OBE algorithm [20] is in order.

It was noted by Huang [20] that the complexity of the OBE algorithm is in the order

of m2 multiplications (or flops) for the information evaluations (i.e., checking), while
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updating the estimates requires 6m2 multiplications (or flops). However, a careful

analysis of the OBE algorithm during the course of this work, taking into account the

symmetric properties of some matrices, reveals that the complexity of this algorithm

is m2 + 2m + 3 flops for checking and 2m2 + 3m +16 flops for updating the estimates.

A similar analysis of a “suboptimal” OBE algorithm [14] shows that the complexity

of this algorithm is m + l flops for checking and 3m2 + 4m + 15 flops for updating

the estimates.

If the fraction of the data accepted by the SM-WRLS algorithm is denoted by

r, the fraction of the data accepted by the suboptimal SM-WRLS algorithm by s

(s < r), and the fraction of the data accepted by the SM-WRLS algorithm after

passing the test (2.72) by t (t S s), then the total computational complexities of

the SM-WRLS algorithms shown in Table 2.1 can be defined as follows. For the

MIL-based SM-WRLS algorithm, the total computational complexity is given by

(m2 + 2m +13) + 1' [2m2 + 3m + 7] (2.90)

flops per equation. For the suboptimal MIL-based SM-WRLS algorithm, it is given

by

(m+1)+s[m2+m+12]+t[2m’+3m+7] (2.91)

flops per equation. For the GR-based SM—WRLS algorithm, it is given by

(.5m2 + 2.5m + 13) + r [2.5m2 + 10.5m + 5] (2.92)

flops per equation. Finally, for the suboptimal GR-based SM-WRLS algorithm, it is

given by

(m + 1) + .3 [.5m2 + 1.5m +12] +1 [2.5m2 +10.5m + 5] (2.93)

flops per equation.
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Let us consider a typical example to compare the complexities of the various

algorithms. Assume that the model order m = 10, the fraction of the data accepted

by the SM algorithms (both SM-WRLS and OBE), r, is 0.2, and the fraction of the

data accepted by the suboptimal SM algorithms, 3, is 0.1. To simplify the analysis, it

is assumed that all the equations satisfying condition (2.72) for the suboptimal SM-

WRLS algorithm are also accepted by the SM-WRLS algorithm (3 = t). The total

number of flops (per equation) is shown in the fourth column of Table 2.1. According

to the computational complexities computed here, the OBE algorithm uses 173 flops

and the “suboptimal” OBE algorithm uses 47 flops. The SM algorithms typically

use 45 ~ 50% the number of flops required by the MIL-based WRLS algorithm. The

computational savings are mainly due to the infrequent updating of the covariance

matrix and the LS solution. A suboptimal test which is presented in Section 2.3

can be incorporated in virtually any version of the SM-WRLS algorithms to further

improve the computational efficiency. When the suboptimal strategy is applied to a

given algorithm, it reduces the computational complexity of the algorithm by 60 ~

70%.

The adaptive GR-based SM-WRLS algorithms of Section 2.4.1 use the same com-

putational complexities as those of the “non-adaptive” GR-based SM-WRLS algo-

rithms when performing back substitution to downdate the covariance matrix and

the LS solution. The only exceptions being 7:4 (see (2.80)) which requires one extra

flop per equation for cases when p ;é 1, and the fact that the LS solution needs to be

computed (downdated) only after all necessary downdating of the covariance matrix

and F: at any given time (see Section 2.4.1). If the fractions of the data used by

the adaptive GR-based SM-WRLS algorithms are denoted by the same symbols used

I above, and the fraction of the data removed from the system is denoted by u, then

the total computational complexities of the adaptive SM-WRLS algorithms are as

follows. For the windowed and selective forgetting SM-WRLS algorithms, the total
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computational complexity is given by

(m2 + 2.5m + 13) + r [2.5m2 + 10.5m + 5] + u [2m2 + 10171 +5] (2.9.1)

flops per equation. For the suboptimal windowed and selective forgetting SM-WRLS

algorithms, it is given by

(m + 1) + 3 [.5m2 + 1.5m +12] +t]2.5m2 +10.5m + 5] + u [2m2 + 10m + 5] (2.95)

flops per equation. For the graceful forgetting SM-WRLS algorithm, it is given by

(.5m2 + 2.5m + 13) + r [2.5m2 + 10.5m + 5] + p-lu [2m2 + 10m + 6] (2.96)

flops per equation. Finally, for the suboptimal graceful forgetting SM-WRLS algo-

rithm, it is given by

(m + 1) + 3 [.5m2 +1.5m +12] +1 [2.5m2 +10.5m + 5] + ,rlu [2m2 + 10m + 6]

(2.97)

flops per equation.

Consider the same example with the new assumption that the fraction of the data

removed from the system, 11, is half that of the data accepted (i.e., u = 0.1 for the

SM-WRLS algorithm and 0.05 for the suboptimal strategy). Both the windowed and

the selective forgetting strategies have the same complexity (191 flops per equation)

which is reduced to 67 flops per equation when the adaptive suboptimal strategy is

employed.

Using the same fractions of data and a p value of 0.005, the graceful forgetting

strategy use a total of 6280 flops per equation which is reduced to 2565 flops per

equation for the adaptive suboptimal strategy. This larger number is due to the fact
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Table 2.2: Computational complexities (in complex floating point operations (cflops)

per equation) for the generalized sequential algorithms.

 

 

 

 

j

Covariance and Example

MIL-based Algorithm Checking Solution Update (cflops)

WRLS — 3(mk)’ + (21: + 3)mk + k + 2 32312

SM-WRLS (mic)2 + (I: + 1)ml: + I: + 12 2(mk)’ + (I: + 2)mk + k + 6 15365

Suboptimal SM-WRLS (mi:2 + k) + a [(77%)2 + mk + 12] 2(mlc)2 + (k + 2)mk + k + 6 7276    
 

 

that each equation must be partially rotated out p“ (or 200 in this case) times. Al-

though this technique “forgets gracefully” and quickly adapts to the rapid changes in

the signal dynamics, it is computationally expensive. However, the adaptive systolic

architecture (of Section 4.3) reduces the computational complexity of the “sequential”

adaptive GR-based algorithm by 60%.

In Chapter 4, the GR-based SM-WRLS algorithm is mapped into a systolic ar-

chitecture for speed advantages. The (parallel) complexities of the parallel GR—based

SM-WRLS algorithm and its suboptimal version are discussed in Chapter 4, however,

it is worth noting that, compared to the complexity of the “sequential” GR-based al-

gorithm, the systolic architecture implementation reduces the complexity of this algo-

rithm by about 60%, and when the suboptimal strategy is employed, the complexity

is reduced by 84%.

In order to find the computational complexity of the generalized SM-WRLS al-

gorithm developed in Section 2.2, let us define a complex flop (cflop) as four real

floating point multiplications plus four real floating point additions. The computa-

tional complexities of the MIL-based WRLS, SM-WRLS, and suboptimal SM-WRLS

algorithms are shown in Table 2.2. The fourth column in this table shows the total
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number of cflops (per equation) when using the same example used for the real scalar

case with k = 10. The SM-WRLS algorithm typically uses 45 ~ 50% the number

of cflops required by the MIL—based WRLS algorithm which is consistent with the

real scalar case (see Table 2.1). However, when the suboptimal strategy is applied,

it reduces the computational complexity of the algorithm by 75 ~ 80%. The com-

putational savings for the complex vector case are more than those reported for the

real scalar case because of the fact that the suboptimal strategy performs “scalar”

checking compared with “vector” updating. However, the computational complexity

of the generalized sequential GR—based SM-WRLS algorithm is expected to be worse

than that of the MIL-based algorithm due to the fact that the LS solution matrix has

to be solved for one vector at a time.
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Chapter 3

Simulation Studies

 

3. 1 Introduction

SM algorithms have the potential for application to many real digital signal process-

ing problems such as speech recognition, image processing, beamforming, spectral

estimation, and neural networks. This chapter is concerned with testing the behavior

of the various suboptimal and adaptive SM-WRLS strategies presented in Chapter 2

for the real scalar case. This is done by conducting extensive simulation studies which

illustrate important points about these strategies and about the SM-WRLS algorithm

in general. The simulation studies are performed on models derived from real speech

data. Section 3.2 discusses the results using a model of order two so that the results

can be easily illustrated. The performance of a more realistic model of order 14 is

analyzed in Section 3.3. These simulation studies are carried out on a 322-bit ma-

chine, however, it is important to research the behavior of the SM-WRLS algorithm

on a smaller wordlength. The performance of this algorithm is tested using a 16-bit

wordlength and is discussed in Section 3.4.
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Figure 3.1: The acoustic waveform of the word “four”.

 

3.2 Simulation Results of two AR(2) models

In this section, the identification of two time varying AR(2) models of the form

y(n) = 010090! - 1) + adult/(n - 2) + v(n) (3-1)

is considered. Two sets of AR parameters were derived using linear prediction (LP)

analysis of order two on utterances of the words “four” and “six” by an adult male

speaker. The acoustic waveforms of these two words are shown in Figs. 3.1 and 3.2.

While more meaningful analysis of speech would involve model orders of 10-14 (see,

e.g., [47]), this small number of parameters is used here so that the results are easily

illustrated. The adaptive LP algorithm used to compute these parameters is de-

scribed in [44]. The data were sampled at 10 kHz after 4.7 kHz loxvpass filtering, and
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Figure 3.2: The acoustic waveform of the word “six”.

 

the “forgetting factor” in the LP algorithm (see [44]) was 0” = 0.996. A 7000 point

sequence, y(n), for each case (“four” and “six”) was generated by driving the appro-

priate set of parameters with an uncorrelated sequence, v(n), which was uniformly

distributed on [—1,1]. v(n) in each case was generated using a random number gener-

ator based on a subtractive method [48]. In the simulations below, the conventional,

adaptive, suboptimal, and adaptive suboptimal SM-WRLS algorithms are applied to

the identification of the a.- parameters.

In the following, the simulation results are shown and discussed. In each figure,

there are two diflerent frames, one for each parameter. Each frame shows two curves,

one for the true parameter, the other for the estimate obtained by the algorithm

under study. Additionally, the true parameters for the words “four” and “six” are

shown in Figs. 3.3 and 3.4, respectively. These are provided as a reference in cases
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Figure 3.3: The “true” parameters for the word “four”. (a) Parameter a1 and (b)

Parameter a2.

 

55



 
 

 

 

   ’3 1 Y 1 Y I r

O l, 2 3 ‘0 5, 6. 7

Sample. n (X103)

(9)
 

 ‘3 I r r v r 1

O l 2 3. ‘t 5. 6 7

Sample. n (X103)

(1))

  
3

Figure 3.4: The “true” parameters for the word “six’.

Parameter 02.

(a) Parameter a1 and (b)

 

56



where the true curves are difficult to discern.

3.2.1 Conventional RLS and SM-WRLS Algorithms

The power of the SM-WRLS algorithm is evident when compared with the con-

ventional RLS [35] algorithm. As a basis for further discussion, we first show this

comparison. Figures 3.5 and 3.6 show the simulation results for the word four using

the RLS and the SM-WRLS algorithms, respectively, and Figs. 3.7 and 3.8 show the

simulation results for the word six. It is evident that SM-WRLS outperforms RLS in

terms of its tracking capability, and it is critical to note that this improved perfor-

mance comes with improved computational efficiency. In this case SM-WRLS uses

only 1.86% and 2.16% of the data for the words four and six, respectively, and yet

yields better parameters estimates almost all the time. It is important to note that

SM—WRLS tracks the time varying parameters faster than RLS. This is manifest in

both examples, especially the word six (see Figs. 3.7 and 3.8).

While the main theme of Section 2.4 is the development of adaptive SM-WRLS

methods, it is noted that the “unmodified” SM-WRLS algorithm apparently has

adaptive capabilities in its own right. While SM-WRLS is developed under the as-

sumption of stationary system dynamics, it is capable of behaving in this manner in

certain circumstances because of the special weights used. Recall that these optimal

data weights have the interpretation as parameters which minimize the ellipsoid vol-

ume. Note, however, that these weights multiply the corresponding equations, and

therefore, different equations have diflerent weights. The SM-WRLS algorithm deter-

mines the value of each weight depending on the “amount” of new information (from

the SM point of view) contained in an equation. Hence, an equation with “no new

information” is likely to be rejected ()(n) = 0) whereas an equation with a significant

amount of information (such as in the case of fast changing dynamics) is likely to be

heavily weighted. This intuitively accounts for the inherent adaptation behavior of
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Figure 3.5: Simulation results of the conventional RLS algorithm for the word four.
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Figure 3.6: Simulation results of the SM-WRLS algorithm for the word four. 1.86%

of the data is employed in the estimation process.
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Figure 3.7: Simulation results of the conventional RLS algorithm for the word six.
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the unmodified SM-WRI.S algorithm.

However, as will be seen below, it is not possible to depend upon SM—Wltl..S to

reliably behave in this adaptive manner, particularly in cases of quickly varying system

dynamics. Each time a new equation is accepted, the ellipsoid volume decreases and

the “confidence” in the current estimate increases. In a situation in which the signal

is varying rapidly and the parameters are moving away from their “current” locations.

then the algorithm accepts incoming equations to incorporate the new information

into the estimate, and the ellipsoid volume decreases rapidly, eventually becoming

very small. As the parameters continue to move rapidly away from their current

locations, they eventually move outside the shrinking ellipsoid which becomes an

invalid bounding ellipsoid. This condition indicates that a violation of the theory

has taken place, and therefore, the unmodified SM—WRLS algorithm is no longer

guaranteed to work properly. However, it is noted (empirically) that the unmodified

SM-WRLS algorithm performs well when applied to slow time varying systems.

Next, the simulation results of the several variations on the general adaptive SM-

WRLS algorithm are shown. It is worth reiterating that when it becomes difficult

to distinguish the true parameters from their estimates, the reader can refer to Figs.

3.3 and 3.4 for clarification. Also note that the figure captions will not contain the

description for the two frames for it is implied that frame (a) shows parameter a, and

frame (b) shows parameter a2.

3.2.2 Adaptive SM-WRLS Algorithms

3.2.2.1 Windowing

Figures 3.9 and 3.10 show the simulation results of the windowed SM-WRLS algorithm

for the words four and six, respectively, using a window of length 1000. This strategy

uses only 5.69% and 5.44% of the data for the words four and six, respectively.

Since each equation rotated in is eventually rotated out of the system, this strategy
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Figure 3.9: Simulation results of the windowed SM-WRLS algorithm for the word

four (I = 1000). 5.69% of the data is employed in the estimation process.
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Figure 3.10: Simulation results of the windowed SM-WRLS algorithm for the word

six (I = 1000). 5.44% of the data18 employed1n the estimation process.
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cflectivcly uses about twice the number of equations rotated in. More data than with

the unmodified SM-WRLS algorithm are used, but more accurate estimates result

and the time varying parameters are tracked more quickly and accurately. This can

easily be seen when the parameter dynamics change abruptly near the point 2000 for

the word four (see Fig. 3.9) and near the points 2000 and 4500 for the word six (see

Fig. 3.10).

3.2.2.2 Graceful Forgetting

Figures 3.11 and 3.12 show the simulation results of the graceful forgetting SM-

WRLS algorithm when rotating out 0.1% of each of the equations (p = 10'3) that

was accepted in the past 1000 recursions. This strategy uses only 6.19% and 4.89%

of the data for the words four and six, respectively. Note that this technique uses

comparable percentages of the data to those used by the windowed strategy and yields

smoother estimates. Although the algorithm uses very small percentages of the data,

the value of p used here might not be practical because it means that the algorithm

will rotate out each equation that was initially accepted 1000 times, which is clearly a

computational burden. Therefore, this strategy effectively uses about 1000 (or [1")

times the number of equations rotated in. Depending on the nature of the problem,

practical values of 11 may range from 0.002 to 0.01 with an effective window of length

500 to 100.

3.2.2.3 Selective Forgetting

As noted in Subsection 2.4.1.3, the selective forgetting strategy selects the equations

to be (partially or completely) removed from the system based on user defined crite-

ria. The selection procedure used here is to remove the equations starting from the

first accepted equation remaining in the estimate at a given time, and proceeding

sequentially until some other condition is satisfied. The determination of when to

apply the forgetting procedure and when to stop removing equations at a given time
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the word six (11 = 10‘3). 4.89% of the data is employed in the estimation process.

 

67



is discussed ill the following.

When the true parameters of the word four are inspected (see Fig. 3.3), for ex-

ample, it is noted that they can be characterized as having slow time variations

everywhere except in the region from 2000 to 2300 where they have fast time varia-

tions. The fact that the parameters are changing very slowly in the first 2000 points,

induces the algorithm to accept some points which, in turn, causes the ellipsoid vol~

ume to decrease. An increase in the “confidence” of the estimate results. Near time

2000, the ellipsoid volume becomes very small. When the parameters move rapidly

away from their current location, they eventually move outside the ellipsoid which

is therefore no longer a valid bounding ellipsoid. An “animation” subroutine has

been developed which allows the user to see the locations of the true parameters and

their estimates with respect to the ellipsoid in the 2-D parameter space. When this

condition happens, it eventually leads to a negative value of n(n), (see (1.23)). For

a stationary system, n(n) is always positive [7], so that this condition indicates that

a violation of the theory (in particular, the violation of the assumption of stationary

dynamics) has taken place“. A similar condition was also reported by Dasgupta and

Huang [14] while applying their OBE algorithm to nonstationary systems. In our

simulation studies, it is found that a negative n(n) is an effective indicator of need

for adaptation, and this criterion is used as the prompt to begin selective forgetting.

Whenever accepting an equation causes n(n) to become negative, the algorithm starts

rotating out the equations which are selected based on the selection procedure until

n(n) becomes positive again.

Figures 3.13 and 3.14 show the simulation results of the selective forgetting strat-

egy described here. For the words four and six, respectively, this technique uses only

3.6% and 2.83% of the data, 18.7% and 56.1% of which are rotated out during the

adaptation process, and therefore, when counting the total number of equations r0-

 

6Mathematically, n(n) < 0 indicates an ellipsoid of negative dimensions.
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Figure 3.13: Simulation results of the selective forgetting SM-WRLS algorithm for

the word four. 3.6% of the data is employed in the estimation process.
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Figure 3.14: Simulation results of the selective forgetting SM-WRLS algorithm for

the word six. 2.83% of the data is employed in the estimation process.
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tated into and out of the system, this strategy effectively uses 4.27% and 4.41% of the

data. Compared to the windowed and graceful forgetting adaptive strategies, the sim-

ulation results show that the selective forgetting strategy yields smoother estimates

using even fewer data. It is important to recall that the percentages given in the

windowed and graceful forgetting adaptive strategies represent the total number of

equations used by these techniques, and do not account for the number of equations

rotated out of the system. Detailed complexity comparisons are made in Section 2. 5.

It should be pointed out that n(n) > 0 is only a necessary condition for the

true parameters to be inside the current ellipsoid. The fact that K. goes negative at

a particular time does not precisely determine the point at which system dynam-

ics began to change. In fact, n(n) < 0 indicates a rather severe breakdown of the

process indicating that the “true” parameters have moved well outside of the cur-

rent ellipsoid. However, it is precisely in cases of fast changing dynamics that this

“breakdown” occurs rapidly resulting in “n(n) < 0” in fact being a good locator of

changing dynamics which require “immediate” adaptation to preserve the integrity of

the process. In cases of slowly changing dynamics where the theory can be violated

without the appearance of negative 1:, SM-WRLS seems to be sufficiently robust to

these slow changes to make its own adjustments. The examples of Figs. 3.6 and 3.8

above illustrate this later point.

3.2.3 Suboptimal SM-WRLS

Figures 3.15 and 3.16 show the simulation results of the unmodified SM-WRLS al-

gorithm with suboptimal data selection. In this case, only 1.19% and 1.53% of the

data are used for the words four and six, respectively. Compared to the SM-WRLS

algorithm (see Figs. 3.6 and 3.8), the suboptimal technique uses slightly fewer data

but produces comparable estimates. It is interesting to note that most of the equa-

tions (97.6% for the word four and 94.4% for the word six) that are accepted by
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Figure 3.15: Simulation results of the SM-WRLS algorithm with suboptimal data

selection for the word four. 1.19% of the data is employed in the estimation process.
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Figure 3.16: Simulation results of the SM-WRLS algorithm with subOptimal data

selection for the word six. 1.53% of the data is employed in the estimation process.
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the suboptimal technique are also accepted by the SM-WRLS algorithm. It is also

interesting to note that the equations that are accepted by the suboptimal technique

but not by the SM-WRLS algorithm lie mostly in regions of fast changing dynamics.

3.2.4 Adaptive Suboptimal SM-WRLS

It is noted in Section 2.4.1 that the general formulation of the adaptive SM-WRLS

algorithm is amenable to the suboptimal technique. The simulation results of the

selective forgetting SM-WRLS technique with suboptimal data selection are shown

in Figs. 3.17 and 3.18. This strategy uses only 1.89% and 1.86% of the data, 14.4%

and 48.5% of which are rotated out during the adaptation process, and therefore,

when counting the total number of equations rotated into and out of the system, this

strategy effectively uses 2.16% and 2.76% of the data.

Compared to the selective forgetting strategy (Figs. 3.13 and 3.14), the selective

forgetting technique with suboptimal data selection uses fewer data but produces

comparable estimates. On the other hand, when compared to unmodified SM-WRLS

with suboptimal data selection (Figs. 3.15 and 3.16), the selective forgetting subop-

timal technique uses more data but produces better estimates.

3.3 Simulation Results of an AR(14) model

In this section, the identification of a time varying AR(14) model is considered. The

same procedure of Section 3.2 is used to generate the “true” AR parameters from an

utterance of the word “seven” by an adult male speaker. The acoustic waveform of

this word is shown in Fig. 3.19. In the following, the simulation results are shown and

discussed using the same format as that used in Section 3.2, however, only one true

parameter (04), which is the most challenging parameter for the algorithm to track,

is used for illustration and is shown in Fig. 3.20.
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Figure 3.17: Simulation results of the selective forgetting SM-WRLS algorithm with

suboptimal data selection for the word four. 1.89% of the data is employed in the

estimation process.
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Figure 3.18: Simulation results of the selective forgetting SM-WRLS algorithm with

suboptimal data selection for the word six. 1.86% of the data is employed in the

estimation process.

 



 

 

 

   
                 '2 T fl 1 f 1 1*

o l a. 3 a. s. s. 7.

Sample. n (X103)

Figure 3.19: The acoustic waveform of the word “seven”.
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Figure 3.21: Simulation results of the conventional RLS algorithm for the word seven.

 

3.3.1 Conventional RLS and SM-WRLS Algorithms

Figures 3.21 and 3.22 show the simulation results for the word seven using the RLS

and the SM—WRLS algorithms, respectively. Although both algorithms yield bad

estimates and do not track the time varying parameters, the SM-WRLS algorithm

which uses only 7.93% of the data yields better parameter estimates than those of

the RLS algorithm most of the time.

In contrast with the AR(2) results of Figs. 3.6 and 3.8, the “unmodified” SM-

WRLS algorithm for the AR(14) example shown in Fig. 3.22 fails to track the time

varying parameters. This is expected since the signal is varying rapidly (especially in

the range [2000—6000]) and the algorithm is no longer guaranteed to work properly

(recall the discussion of Section 3.2.1). By inspecting Fig. 3.22 carefully, it is clear

that the SM-WRLS algorithm loses its ability to track the signal in the range when
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Figure 3.22: Simulation results of the SM-WRLS algorithm for the word seven. 7.93%

of the data is employed in the estimation process.

 

the signal is varying rapidly.

3.3.2 Adaptive SM-WRLS Algorithms

3.3.2.1 Windowing

This subsection tests and compares the simulation results of the windowed SM-WRLS

algorithm for the word seven using three different window lengths. Figures 3.23, 3.24,

and 3.25 show the simulation results using windows of lengths 500, 1000, and 1500,

and using 22.1%, 17.04%, and 14.34% of the data, respectively. In all three tests,

more data than with the unmodified SM-WRLS algorithm are used, but much more

accurate estimates result and the time varying parameters (one of which is shown) are

tracked more quickly and accurately. When comparing the effect of the window length
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Figure 3.23: Simulation results of the windowed SM-WRLS algorithm for the word

seven (1 = 500). 22.1% of the data is employed in the estimation process.

 

on the algorithm, it is noted that shorter window lengths use more data, but yield

more accurate estimates (most of the time) and track the time varying parameters

more quickly and accurately. However, if the window length becomes very short

(< 300), the variance of the estimates becomes very large because these estimates

involve a small window length which is effectively even smaller because of the small

fraction of data accepted.

3.3.2.2 Graceful Forgetting

This subsection tests and compares the simulation results of the graceful forgetting

SM-WRLS algorithm for the word seven using three different p values. Recall that

p represents the fraction of the equations removed from the system at each time.

Figures 3.26, 3.27, and 3.28 show the simulation results using p values of 10’3, 2x10‘3,

and 4 x 10‘3 (or effective windows of lengths 1000, 500, and 250), and using 18.66%,
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Figure 3.24: Simulation results of the windowed SM-WRLS algorithm for the word

seven (1 = 1000). 17.04% of the data is employed in the estimation process.

 

27.63%, and 35.59% of the data, respectively. Note that this strategy is initiated at

time 100 to allow for the estimation to stabilize.

It is clear that as the value of )1 increases (or the effective window length decreases),

the algorithm uses more data (as expected), tracks the time varying parameters more

quickly, but yields inaccurate estimates at certain points. The latter point is more

evident in Fig. 3.28 where the effective window length is only 250 points. When com-

paring the results of the graceful forgetting technique with those of the corresponding

windowed technique (for example, compare Figs. 3.24 and 3.26 in which the effective

window length is 1000), it is noted that the graceful forgetting technique uses more

data and yields “comparable” estimates.

3.3.2.3 Selective Forgetting

Using the same selection criterion as that used in Subsection 3.2.2.3, the selective
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Figure 3.25: Simulation results of the windowed SM-WRLS algorithm for the word

seven (1 = 1500). 14.34% of the data is employed in the estimation process.

 

forgetting strategy yields the simulation result shown in Fig. 3.29. This technique uses

only 12.89% of the data, 72.9% of which are rotated out during the adaptation process.

Therefore, it effectively uses (or rotates into and out of the system) 22.29% of the data.

It is noted that this technique slowly tracks the rapidly varying parameters and yields

estimates that are not as accurate as those produced by the other adaptation strategies

but uses fewer data. Recall that this technique produces highly accurate estimates in

the AR(2) examples (see Figs. 3.13 and 3.14), however, the signal variations in these

examples are not as severe as those in the AR(14) example.

3.3.3 Suboptimal SM-WRLSV

Figure 3.30 shows the simulation results of the unmodified SM-WRLS algorithm with

suboptimal data selection which uses only 4.74% of the data. Compared to the SM-
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Figure 3.26: Simulation results of the graceful forgetting SM-WRLS algorithm for

the word seven (p = 10“”). 18.66% of the data is employed in the estimation process.

 

WRLS algorithm (see Fig. 3.22), the suboptimal technique uses fewer data (60% of

the data used by SM-WRLS) but produces comparable estimates. It is noted that

most (91.3%) of the equations that are accepted by the suboptimal technique are also

accepted by the SM-WRLS algorithm. It is also noted that the equations that are

accepted by the suboptimal technique but not by the SM-WRLS algorithm lie mostly

in regions of fast changing dynamics.

3.3.4 Adaptive Suboptimal SM-WRLS

Two adaptive suboptimal techniques are tested in this section. The first technique

is the windowed SM-WRLS algorithm with suboptimal data selection. Figures 3.31

and 3.32 show the simulation results of this technique which uses only 10.93% and

8.71% of the data when using a window of length 500 and 1000, respectively. Compared
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Figure 3.27: Simulation results of the graceful forgetting SM-WRLS algorithm for

the word seven ()4 = 2 x 10‘3). 27.63% of the data is employed in the estimation

process.

 

to the windowed SM-WRLS algorithm (see Figs. 3.23 and 3.24), the corresponding

adaptive suboptimal technique uses fewer data (50% of the data used by the win-

dowed SM-WRLS algorithm), however, it produces estimates that are comparable

to but not as smooth as those of the windowed SM-WRLS algorithm (see Figs. 3.31

and 3.32).

The second technique is the selective forgetting SM-WRLS algorithm with sub-

optimal data selection. The simulation result of this technique is shown in Fig. 3.33

which uses only 8.8% of the data, 63.3% of which are rotated out during the adapta-

tion process, therefore, it effectively uses 14.37% of the data. This technique produces

comparable estimates to those of the selective forgetting SM-WRLS algorithm shown

in Fig. 3.29 using fewer data.
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Figure 3.28: Simulation results of the graceful forgetting SM-WRLS algorithm for

the word seven ([1 = 4 x 10‘3). 35.59% of the data is employed in the estimation

process.

 

3.4 Roundoff Error Analysis

Recently, there has been an increasing interest in the performance of adaptive algo-

rithms in small wordlength environments [8, 49, 50, 51]. Rao and Huang [8] have

investigated the effect of small wordlengths on one of the OBE algorithms presented

in [14]. Their simulation studies were performed in integer arithmetic using a fixed

point implementation of the OBE algorithm. They have shown that the OBE algo-

rithm yields consistently good estimates over a large range of wordlength and performs

better than the conventional RLS algorithm for small wordlengths [8].

Marshall and Jenkins [49] have presented a fast quasi-Newton (FQN) adaptive

filtering algorithm which is quite robust with respect to small wordlength implemen-
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Figure 3.29: Simulation results of the selective forgetting SM-WRLS algorithm for

the word seven. 12.89% of the data is employed in the estimation process.

 

tation and has comparable performance to that of RLS. However, this algorithm is

developed based on the assumption that the input is real and wide-sense stationary

which yields a symmetric and Toeplitz autocorrelation matrix. The FQN algorithm

appears to avoid the numerical problems reported for several fast RLS techniques

[51, 52]. The numerical problems consist of numerical inaccuracy in the results (per-

formance degradation) and numerical instability (overflows or underflows) which are

caused by finite wordlength computations [50].

All the simulations presented in the previous sections are performed by using C

with 32-bit, single precision, floating point arithmetic on a VAX 8600 mainframe

running under a Unix operating system. It is the main purpose of this section to

test the effect of smaller wordlength computations on the performance of the GR-

based SM-WRLS algorithm. The simulations presented here are performed with 16-
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Figure 3.30: Simulation results of the SM-WRLS algorithm with suboptimal data

selection for the word seven. 4.74% of the data is employed in the estimation process.

 

bit, single precision, unnormalized floating point arithmetic. Whenever an overflow

(underflow) occurs, the algorithm sets the detected value to the maximum (minimum)

possible value which is determined by the wordlength used.

The roundoff error analyses are performed on the same AR(2) models used in

Section 3.2. Figures 3.34 and 3.35 show the simulation results of the SM-WRLS algo-

rithm for the words four and six using only 1.96% and 2.17% of the data, respectively.

Compared to the results of the SM-WRLS algorithm for the word four obtained when

using a wordlength of 32-bit (see Fig. 3.6), this algorithm uses slightly more data and

yields slightly better estimates when a 16-bit wordlength is used. The simulation

results for the word six when a 16bit wordlength is used are almost identical to those

obtained when using a wordlength of 32—bit (see Fig. 3.8).

Figure 3.36 shows the simulation results of the windowed algorithm for the word

87



 

 

 

.2 c1

   
Sample. n (x103)

Figure 3.31: Simulation results of the windowed SM-WRLS algorithm with subopti-

mal data selection for the word seven (1 = 500). 10.93% of the data is employed in

the estimation process.

 

four using a window length of 1000 and a wordlength of 16-bit. This strategy uses

slightly fewer data (5.4%) and produces comparable but slightly less accurate es-

timates compared with those of the corresponding results obtained when using a

wordlength of 32-bit (see Fig. 3.9).

Figure 3.37 shows the simulation results of the graceful forgetting SM-WRLS

algorithm when rotating out 0.1%, and using a wordlength of 16-bit. This strategy

uses about half the data (3.27%) but produces unacceptable estimates compared with

those of the corresponding results obtained when using a wordlength of 32-bit (see

Fig. 3.11).

Finally, Figure 3.38 shows the simulation results of the selective forgetting SM-

WRLS algorithm using a wordlength of 16-bit. This technique uses only 3.27% of
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Figure 3.32: Simulation results of the windowed SM-WRLS algorithm with subopti-

mal data selection for the word seven (1 = 1000). 8.71% of the data is employed in

the estimation process.

 

the data, 10.5% of which are rotated out during the adaptation process. Therefore,

it effectively uses (or rotates into and out of the system) 3.61% of the data. This

strategy uses slightly fewer data and produces comparable but slightly less accurate

estimates compared with those of the corresponding results obtained when using a

wordlength of 32-bit (see Fig. 3.13).

Except for the graceful forgetting strategy, the simulation results using a wordlength

of 16-bit are very encouraging. This is due to the infrequent updating behavior inher-

ent in the SM-WRLS algorithms, and hence, slower accumulations of roundoff errors.

Also, note that the orthogonal rotation used in the GR-based SM-WRLS algorithms

is known to be a numerically stable operation under the assumption that the orthog-

onal matrices are produced in the absence of roundoff errors [39, 50]. However, the
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Figure 3.33: Simulation results of the selective forgetting SM-WRLS algorithm with

suboptimal data selection for the word seven. 8.8% of the data is employed in the

estimation process.

 

graceful forgetting strategy requires performing a large number of downdates for each

previously included equation, which has a severe effect in degrading the performance

of the algorithm due to the accumulation of roundoff errors per iteration.

The most widely discussed fast identification algorithm is the Fast Transversal

Filter (FTF) [52] which is a fast RLS algorithm, requiring 8m + 15 flops per iteration

(or 0(m2) for small m) in its more stable form. It includes a “rescue” procedure to

prevent divergence due to finite precision effects, and to ensure numerical stability.

The rescue procedure is a fast initialization procedure, requiring 3m + 10 flops per

invocation, in which all the accumulated quantities are sacrificed.

It is true that roundoff error experiments performed in this section are 0(m2),

however, it is clear from the simulation results presented in Sections 3.2 and 3.3
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Figure 3.34: Simulation results of the SM-WRLS algorithm for the word four using

a 16-bit wordlength. 1.96% of the data is employed in the estimation process.
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Figure 3.35: Simulation results of the SM-WRLS algorithm for the word six using a

16-bit wordlength. 2.17% of the data is employed in the estimation process.
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Figure 3.36: Simulation results of the windowed SM-WRLS algorithm for the word

four (I = 1000) using a 16-bit wordlength. 5.4% of the data is employed in the

estimation process.
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Figure 3.37: Simulation results of the graceful forgetting SM-WRLS algorithm for

the word four (a = 10‘3) using a l6-bit wordlength. 3.27% of the data is employed

in the estimation process.
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Figure 3.38: Simulation results of the selective forgetting SM-WRLS algorithm for the

word four using a l6-bit wordlength. 3.27% of the data is employed in the estimation

process.
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that the suboptimal strategy produces estimates which are not very different from

those of the SM-WRLS algorithm and yet requires only m flops per checking, which

represents a significant computational savings with respect to FTF. Ilowever, it is

essential to note that the suboptimal strategy is used to select points and is not

directly involved in the update procedure. Therefore, the results of the suboptimal

strategy with respect to small wordlength effects are not expected to be significantly

different from those of the SM-WRLS presented in this section. In fact, since even

fewer computations are generally used in the suboptimal strategy, even better finite

precision characteristics could be expected.
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Chapter 4

Architectures and

Complexity Issues

 

4.1 Introduction

It is noted in Chapter 1 that one of the reasons why the GR-based SM-WRLS for-

mulation is desirable is that it is amenable to contemporary computing architectures.

This chapter is devoted to the development of parallel hardware implementations

of the real scalar SM-WRLS algorithm and discussion of their advantages, particu-

larly with regard to their improved computational complexity which improve their

potential for real time applications. Section 4.2 presents a parallel architecture that

implements the SM-WRLS algorithm. Section 4.3 develops an adaptive compact par-

allel architecture that implements virtually any version of the real scalar SM-WRLS

algorithm. Finally, a detailed analysis of computational complexity issues is carried

out in Section 4.4.

4.2 Parallel Architecture for SM-WRLS

The use of a parallel machine benefits the processing in terms of computational com-

plexity by reducing the process to one requiring 0(m) time, rather than 0(m2)
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required for the conventional version of the algorithm [5, 6], where m is the number

of parameters in the system model. This speed-up is due to the parallel processing

inherent in the design.

The main computational requirements of the GR-based SM-WRLS formulation

are a GR processor (to effectively execute orthogonal triangularization) to update the

matrix [T(n) I d1(n)] at each step, and a back substitution (BS) processor to solve

for the scalar C(72) and also for the estimate S(n) at each n. Systolic processors for

these operations, based on the original work of Gentleman and Kung [42] and Kung

and Leiserson [53], are well known. It is the purpose of this section to manifest this

algorithm as a parallel architecture based on these processors.

The SM-WRLS algorithm of Fig. 1.2 is mapped into a parallel architecture. The

need for implementing the SM-WRLS algorithm on a parallel architecture arises from

the fact that portions of the algorithm are compute-bound, specifically, updating the

matrix [T(n) | d1(n)] and computing the value C(11) and the parameter vector 8(a).

The architecture that speeds up the computation of these quantities and satisfies

the desirable characteristics of systolic arrays (SA’s) is shown in Fig. 4.1. Note that

although this architecture is designed based on SA design methodologies, it is used

here to process one equation at a time (more on this below), and therefore, is not

used as a SA. This architecture provides an improvement over that described in [9]

by replacing the global buses with local buses for communication between adjacent

cells. For simplicity of notation, the figure shows a purely autoregressive case with

p=3; AR(3). Once the processor is understood, it should be clear that the architecture

is perfectly capable of handling the general ARMAX(p,q) case. In the discussion

below, the vectors r(n) and 9(n) are used, however, the architecture of Fig. 4.1

uses the vectors y(n) and 5(a) instead to denote the special case AR(S), where

y(n) = ly(n - llyfn - 2)y(n - 3)lT-

The architecture is composed of two SA’s, several memory management units (i.e.,
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Figure 4.1: Systolic array implementation of the Givens rotation-based SM-WRLS

algorithm. For simplicity of notation but without loss of generality, the figure shows

a purely autoregressive case with p=3; AR(3).
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[first-in First-out (FIFO) and Last-in First—out (Lll’O) stacks7), multiply-add units

(M AU’s), multiplexers (MPX’S), and demultiplexers (DMX’S). The first SA is a trian-

gular array that performs orthogonal triangularization using GR’s [42, 43] which are

particularly suitable for solving recursive linear LS problems. The diagonal (circular)

cells perform the “Givens generation” (GG) operations and all other (square) cells in

the triangular array perform the GR operations. There is a delay element at the lower

right-hand corner of the triangular array that is used to synchronize the flow of the

generated entries into the FIFO stacks and to simplify the control of these stacks once

they are filled and ready to output their contents to the BS array. The operations

performed by this array are shown in Fig. 4.2 [42, 43]. Therefore, the triangular array

rotates the new equation into the upper triangular matrix [T(n) I d1(n)], where the

t,,- cells update the matrix T(n) and the right-hand column (dlj) cells update the

vector d1(n). The element t,, denotes the ij‘h element of the matrix T(n) and the

element d1,- denotes the j‘“ element of the vector (h(n).

The second array is a linear array that performs the BS operations shown in

Fig. 4.3 [53]. Note that the same BS array is used to solve for the vectors g(n + 1)

and B(n) with the data provided to the appropriate cells in the required order by the

FIFO and LIFO stacks. The FIFO stacks feed the lower triangular matrix TT(n) to

solve for the vector g(n + 1), and hence, the value G(n + 1). The LIFO stacks feed

the upper triangular matrix T(n) to solve for the parameter vector g(n). The values

C(n + 1) = [I g(n + 1) [[3 and I] d1(n) I]; are generated by the MAU’s shown in

Fig. 4.4. The number of segments in each stack is equal to the number of elements

the stack holds. Therefore, the leftmost stack consists of m segments, whereas the

rightmost stack has only one segment.

 

7Note that the architecture shown in Fig. 4.1 does not include any of the LIFO stacks that

were used to hold the matrix T(n) in the architecture reported in [9]. This is achieved by slightly

increasing the complexity of the cells used in the triangular array so that they can be used as storage

elements as well. This is facilitated by the diagonal interconnections between adjacent cells which

now constitute the LIFO stacks.
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Figure 4.2: The operations performed by the cells used in the triangular array of

Fig. 4.1. (a) The Givens generation (GG) cells, (b) the Givens rotation (GR) cells,

and (c) the delay element.
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Figure 4.4: The multiply-add unit used in Fig. 4.1.

 

The system shown in Fig. 4.1 works as follows. The first m+1 equations (with

appropriate weights) enter the triangular array (from the top) in a skewed order, and

the matrix [T(n) | d1(n)] is generated and stored inside the cells. A shift register with

appropriate feedback connection and data sequencing can be used to hold and feed the

equation to the array. The initial upper triangular matrix residing in the array, and

corresponding to the first m +1 equations, is ready after 3m +1 GG time cycles. The

CO time cycle is that of the triangular array performing the CG operations without

square roots, which is the time required to perform five floating point operations

(flops) [43, 55], where one flop is defined as one floating point multiplication plus one

floating point addition. Note that in order to prevent data collision, the flow of data

in the triangular array moves along a corresponding wavefront and is controlled by

the slowest cells in the array, via, GG cells. Note that the data are fed to the array

one (skewed) equation at a time, therefore, the contents of each cell remain constant
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after the completion of the current recursion. After the new equation is rotated into

the matrix [T(n) I d1(71)], the vectors g(n + 1) and B(n) are computed. All the t,,-

cells in the triangular array load their contents on the to,“ lines (tau. «- ar), and then

pass these elements across the diagonal lines (tau, +— t,,,) (see Figs. 4.1 and 4.2). This

obviates the LIFO stacks. The FIFO stacks are still needed, however, to compute the

vector g(n + 1). The FIFO stacks are filled with the elements of the lower triangular

matrix TT(n) as they are generated. This is done by loading the ti, entry on the

to... line (to... i- 2:) when it is generated. This entry propagates down the diagonal

cells (with the function to,“ +— t,-,,) until it arrives at and fills the appropriate FIFO

stack. For the cells in the right-hand column, which generate the vector d1(n), the

operations are different because it is this column that constitutes the LIFO stack for

the vector d1(n). Hence, after the new equation is rotated into the array, all the cells

in the right-hand column load their contents on the 2:0... lines (mom «— as), and then

they pass these elements down the column (am «- xgn) (see Figs. 4.1 and 4.2). Note

that the output am leaving the bottom cell in this column passes through the delay

element and is routed to both the MAU and the MPX feeding the (11,- elements to

the BS array. Note that the elements d1", and tmm leave the triangular array at the

same time because of this delay element. The timing diagram of the triangular array

is shown in Table 4.1. In this table, the inputs refer to the elements fed to the cells

in the top row. The circle (0) represents the CG cell and the square ([3) represents

the GR cell (see Fig. 4.1). The outputs refer to the elements that are produced in the

array cells and are written column wise; i.e., the first column in the table represents

the first column in the array, and so on.

The BS array is used to solve for the vectors g(n + 1) and 9(a). The vector

g(n +1) is solved using (1.31) and the parameter vector 9(a) using (1.28). Therefore,

the vector g(n + 1) is generated from the matrix TT(n), which is residing in the

FIFO stacks, and the vector :e(n + 1) which is available. The entries are fed to the
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Table 4.1: The timing diagram of the triangular array of Fig. 4.1.
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BS array every other BS time cycle, where the BS time cycle is the time required

to perform one flop. As the 9.- entries are output from the left-end processor of the

BS array, they enter the MAU to generate the value C(n + 1) after 2m + 1 BS time

cycles. Likewise, the parameter vector 9(n) is generated using the matrix T(n) and

the vector (h(n) which are stored in the triangular array. Starting one BS time cycle

after the initiation of the first BS Operation, the appropriate entries (of the second

BS operation) are also fed to the BS array every other BS time cycle. The parameter

vector 9(n) is output from the left-end processor of the BS array in reversed order

and interleaved with the vector g(n +1) as shown in Fig. 4.1. The value [I d1(n) I]: is

generated using a MAU one BS time cycle after the last (m‘h) element of the vector

dl(n) is generated. The timing diagram of the BS array is shown in Table 4.2 in

which the inputs refer to the elements fed to the shown cells, and the outputs refer

to the elements produced by the left-end processor in the array.

The values n(n) and c:(n+ 1) are then computed, and hence, the value An.“ which

determines whether the new equation is to be accepted or not. If the new equation is
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Table 4.2: The timing diagram of the back substitution: array of Fig. 4.1.
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accepted, then the weighted new equation enters the triangular array and the same

procedure described above takes place producing a new [T(n + 1) | d1(n + 1)] matrix

after 2m + 1 CG time cycles, and therefore, an updated C(n + 2), 8(n + 1), and

n(n + 1). On the other hand, if the new equation is rejected, then the triangular

array preserves its contents (hold state), but the value C(n + 2) is updated to make

the decision concerning the next equation. In the latter case, the same TT(n + 1)

matrix is used as the previous TT(n) matrix, and hence, the feedback on the FIFO

stacks. This procedure is repeated for every new equation.

4.3 An Adaptive Compact Parallel Architecture

The basic idea behind the compact architecture is to map the triangular array of

Fig. 4.1 into a linear array (called the GR array), that is, mapping all of the CG cells

into one GG cell and all the GR cells that are on the same diagonal into one GR cell.

This constitutes a permissible schedule because the projection vector, cf, is parallel to
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the schedule vector, .3, and all the dependency arcs flow in the same direction across

the hyperplanes [36, Ch. 3]. In other words, this schedule satisfies the conditions

5%? > 0 (4.1)

and 3‘76 2 0, for any dependence arc E. (4.2)

The compact architecture implementation of the adaptive SM-WRLS algorithm is

shown in Fig. 4.5. The operations performed by this architecture are similar to those

of Fig. 4.1 with the exception that the CG and GR cells are now capable of performing

back rotation (see Fig. 4.6) and are embedded in a slightly more complicated modules

needed for scheduling. These modules are called GG’ and GR’, and are shown in

Fig. 4.7.

This architecture uses 0(m) cells (one GG’ cell and m GR’ cells) compared with

0(m2) cells (m GG cells and ”—2331 CR cells) used in the architecture shown in

Fig. 4.1, and yet has the same computational efficiency (per equation). Note however

that the LIFO stacks that were embedded in the triangular array of Fig. 4.1 are now

needed to hold the matrix T(n).

The system shown in Fig. 4.5 works as follows. Each equation (with its opti-

mal weight) enters the GR array (from the top) in a skewed order, and the matrix

[T(n) I d1(n)] is generated and stored in the appropriate memory units. Note that

the GR array can operate in two modes, forward (6 = +1) and backward (6 = —-l)

rotation modes (see Fig. 4.6). In the backward rotation mode, the equation to be

(partially or completely) removed is re-introduced to the GR array with the appropri-

ate weight (see Section 2.4.1). At the end of each recursion, the FIFO stacks contain

the lower triangular matrix TT(n) needed to solve for the vector g(n +1), and hence,

the value G(n+1). The LIFO stacks contain the upper triangular matrix T(n) needed

to solve for the parameter vector g(n). The values C(n + 1) = II g(n + 1) H?2 and
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Figure 4.6: The operations performed by (a) the CG and (b) the GR cells used in the

modules of Fig. 4.7. 6 = +1 (—1) for rotating the equation into (out of) the system.
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Table 4.3: The timing diagram of the Givens rotation (GR) array of Fig. 4.5.
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|| d1(n) “3 are generated by the MAU’s. Note that the values which were propagating

downward in the triangular array of Fig. 4.1 are now propagating leftward due to

the new scheduling. Note also that the vector d1(n) is treated differently from the

matrix T(n). When the element d1,- is computed, it is stored in an internal register

in the GR’ cell (see Fig. 4.7). After generating and storing the matrix [T(n) I d1(n)],

the processor is ready to compute the vectors g(n + 1) and é(n) using the BS array.

The vector (h(n) is downloaded into the latches which serve as a LIFO stack used in

conjunction with the other LIFO stacks (containing the matrix T(n)) to solve for the

parameter vector é(n). The timing diagram of the GR array is shown in Table 4.3

in which the input (output) columns show the elements that are input (output) to

(from) the corresponding CG (0) or GR (Cl) cells. Compared to the triangular array

of Fig. 4.1, it is noted that the cell utilization per update (or downdate) has increased

by a factor of 2.25 for the case when m = 3, or byW in general. The operations

and timing diagram of the BS array is described in detail in Section 4.2.

The architectures of Figs. 4.1 and 4.5 can also be used for the suboptimal SM-
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WRLS algorithm, however, they are not utilized to the same extent as they are in

the SM-WRLS algorithm because the suboptimal SM-WRLS typically uses fewer

data. The infrequent updating feature of this algorithm (and virtually all SM-WRLS

algorithms) might provide processing advantages in the systolic (and other parallel

processing) schemes by permitting the sharing of processing time and resources.

The complex scalar case can also be implemented using the same architectures of

Figs. 4.1 and 4.5 which now perform complex GG and GR Operations. These opera-

tions are well-defined and are found in [56]. However, the generalized complex vector

case is not readily mapped into similar architectures. The generalized architecture

that efficiently implements this case requires further research.

4.4 Computational Complexities

The computational complexities (in flops per equation) for the scalar sequential GR-

based SM-WRLS algorithm and for that implemented using the architecture of Fig.

4.1 are shown in Table 4.4. Note that the complexities of the parallel GR-based

SM-WRLS algorithm shown in Table 4.4 are parallel complexities in the sense that

they denote the effective number of operations per equation, though many processors

can be performing this number of operations simultaneously. Accordingly the parallel

complexity indicates the time it takes the parallel architecture to process the data

regardless of the total number of operations performed by the individual cells. The

GG and GR operations constitute the main computational load of the algorithm as

shown in Table 4.5. In this table, the number of flops associated with the GR’s is

multiplied by five to account for the CG cycle time (see Section 4.2). These oper-

ations are avoided when the equation is rejected, and thus, a significant savings in

computation time. Since this technique uses 0(m) flops per equation when imple-

mented using the parallel architecture, it is clearly advantageous with respect to the
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Table 4.4: Computational complexities (in flops per equation) for the real scalar

sequential and parallel GR-based SM-WRLS algorithms.

 

 

 

 

Covariance and Example

SM-WRLS Algorithm Checking Solution Update (flops)

Sequential GR-based .5m2 + 2.5m + 13 2.5m2 + 10.5m + 5 160

Sequential Suboptimal GR-based (m + 1) + 8(.5m2 +1.5m + 12) 2.5m2 + 10.5m + 5 55

Parallel GR-based 3m + 14 11m + 10 68

Parallel Suboptimal GR-based (m + l) + 5(2m + 13) 11m + 10 26    

 

 

 

 

Table 4.5: Parallel computational complexities (in flops per equation) for the various

SM-WRLS algorithms using the implementations of Figs. 4.1 and 4.5.
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original 0(m’) sequential formulations [5, 6, 20].

If the fraction of the data accepted by the SM-WRLS is r (r is typically less than

30% [7]), then the total parallel computational complexity is given by

(3m + 14) + r[11m +10] (4.3)

flops per equation.

The adaptive compact architecture of Fig. 4.5, which has slightly more complicated

cells, is as efficient as the architecture of Fig. 4.1. The only difference is that the

architecture can be used to rotate out (part of) an equation which was previously

rotated in. Therefore, the parallel computational complexity (per equation) does not

change. However, in the windowed technique, for example, there might be a need to

go through updating the system twice for a single equation; first to rotate an equation

out (if it was accepted) and then to rotate the new equation in (if it is accepted). The

architecture (of Fig. 4.5) can be visualized as operating in two modes, the first mode

is when it is rotating an equation into the system (6 = +1) and the second mode is

when it is rotating an equation out of the system (6 = —1). Note that the two modes

have the same parallel computational complexity with some addition operations in

one mode replaced by subtraction operations in the other mode (see Fig. 4.6).

The total parallel computational complexities of the general adaptive SM-WRLS

algorithms (see Section 2.4.1) depend on the adaptive strategy employed, the per-

centage of the data accepted, and the number of times the algorithm rotates out an

equation from the system (whether partially or completely). Consider the windowed

adaptation, for example, which effectively slides a window of fixed length through the

data by appropriate sequencing of rotating particular equations into and out of the

system. Suppose that the fraction of the data accepted (rotated in) by the windowed

SM-WRLS algorithm is r and the fraction of the data removed (rotated out) from
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the system is u (u < r), then the total parallel computational complexity is given by

(3m+ 14)+(r+u)[11m+ 10] (4.4)

flops per equation. This expression also holds for the selective forgetting strategy,

however, the graceful forgetting strategy uses the same expression with it replaced by

I
if u. It is important to note that the adaptive techniques typically use more data

but produce better estimates.

To show the computational savings when using the “suboptimal” SM-WRLS al-

gorithm, it is noted in Section 2.3 that at each recursion, we only need to compute

c3,_1(n) and check if following condition holds (written here for the real scalar case)

cf._1(n) > i“(n) , (45)

whereas in the SM-WRLS algorithm, the coefficients of the quadratic (1.26), cf,_1(n),

C(n), and )(n) must be computed before making the decision. In the suboptimal

case, these quantities are computed only if condition (4.5) is met, and then the new

equation is accepted if the optimal weight is positive.

To calculate the total computational complexity for the suboptimal SM—WRLS

algorithm, let us denote the fraction of the data satisfying the condition (4.5) by

s (s < r) and the fraction of the data accepted by the SM-WRLS algorithm after

passing the test (4.5) by t (t S 3). Then the total parallel computational complexity

for the suboptimal algorithm is given by

(m + 1) +s[2m+ 13] +t[11m +10] (4.6)

flops per equation, which clearly shows significant improvement over that of the SM-

WRLS algorithm (cf. (4.3)). The total parallel computational complexity for the
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suboptimal windowed and selective forgetting strategies is given by

(m+1)+s[2m+l3]+(t+u)[llm+10] (4.7)

flops per equation, with u replaced by p’lu for the suboptimal graceful forgetting

strategy.

The fourth column in Table 4.4 shows the total number of flops per equation for

a typical example with m = 10, r = 0.2, and s = t = 0.1. It shows that the parallel

architecture reduces the complexity of the algorithm by about 60%, and when the

suboptimal strategy is employed, the complexity is reduced by 84%.

The performance of the SM-WRLS algorithm in terms of its adaptive behavior

and tracking capability, solution quality, and fraction of data used requires further

research; however, it is important to note that the gain in the computational complex-

ity of the GR-based algorithm, when implemented on a sequential machine, is only

two to three times when compared to that of the MIL-based WRLS (see Table 2.1),

and five to six times when implemented on a parallel machine (see Table 4.4). It is

the suboptimal technique that gives an order of magnitude (13 to 14 times) gain in

the computational complexity when implemented on a parallel machine, and gives six

to seven times gain when implemented on a sequential machine. Therefore, it makes

more sense to use the suboptimal technique for speed advantages since the estimates

are not very different from those of the SM-WRLS algorithm.

The computational complexity of the generalized complex vector case of the SM-

WRLS algorithm developed in Section 2.2 when computed on a sequential machine

is discussed in Section 2.5. However, the parallel computational complexity of the

generalized parallel GR—based algorithm depends on the architectural implementation

of this algorithm which requires further research.
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Chapter 5

Conclusions

and Further Work

 

5.1 Algorithmic Developments

5.1.1 A Generalized SM-WRLS Algorithm

This research has been concerned with a class of SM algorithms for estimating the

parameters of linear system or signal models in which the error sequence was pointwise

“energy bounded.” Specifically, it was focused on the SM-WRLS algorithm which

works with bounding hyperellipsoidal regions to describe the solution sets which are

a consequence of the error bounds. SM-WRLS is based on the familiar WRLS solution

with the SM considerations handled through a special weighting strategy. However,

the original theoretical development of this algorithm made it applicable to real scalar

data. Due to the strong potential for using this powerful algorithm in virtually

any signal processing problem involving parametric models, this algorithm has been

extended to work with a wider range of problems. The theoretical development of a

generalized SM-WRLS algorithm that can handle complex vector-input vector-output

data streams has been presented. The original SM-WRLS algorithm is a special case

of the generalized algorithm.
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5.1.2 Suboptimal Tests for Innovation

A new strategy has been developed which can be applied to virtually any version

of the SM-WRLS algorithm to improve the computational complexity. A significant

reduction in computational complexity is achieved by employing a “suboptimal” test

for information content in an incoming equation. The suboptimal check has been

argued to be a useful determiner of the ability of incoming data to shrink the ellipsoid,

but one which does not rigorously determine the existence of an optimal SM weight

in the SM-WRLS sense. The main issue is to avoid the computations of an 0(m2)

checking procedure required to check for the existence of a meaningful weight. Since

most of the time these computations would result in the rejection of incoming data,

a more efficient test significantly reduces the complexity of the algorithm.

5.1.3 Adaptive SM-WRLS Algorithms

It has been argued that the “unmodified” SM-WRLS algorithm has inherent adaptive

capabilities in its own right. However, it is not possible to depend upon this algorithm

to reliably behave in an adaptive manner, particularly in cases of quickly varying

system dynamics. In this work, explicitly adaptive SM-WRLS algorithms have been

developed. Adaptation was incorporated into SM-WRLS in a very general way by

introducing a flexible mechanism by which the algorithm can forget the influence

of past data. The general formulation permitted the extension of SM-WRLS to a

wide range of adaptation strategies. Three different adaptation techniques have been

presented and tested on models derived from real speech data. Windowing is a simple

way to make the algorithm adaptive by effectively sliding a window of fixed length

through the data by appropriate sequencing of “adding” or “removing” equations.

The Graceful Forgetting technique removes only a fraction of all previous equations

at each time. The Selective Forgetting technique chooses the equations to be (partially

or completely) removed from the system based on certain user defined criteria.
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A survey of the computational complexities of several related sequential algorithms

has been presented which shows the computational savings obtained when using the

SM-based algorithms compared with the conventional WRLS algorithms. The dif-

ferences in the computational complexities among the various SM-based algorithms

have been discussed.

5.2 Simulation Studies

The SM-WRLS algorithms have been tested on models derived from real speech data

representing the words “four,” “six,” and “seven” using an AR(2) model for the first

two words and AR(14) model for the third. The simulation results presented illustrate

important points about the various methods and show that the adaptive algorithms

yield accurate estimates using very few of the data and quickly adapt to fast variations

in the signals dynamics. It is significant that in preliminary experiments, most of the

SM-WRLS algorithms have been found to be robust in small (16-bit) wordlength

environments.

5.3 Architectures and Complexity Issues

The “nonadaptive” SM-WRLS algorithm has been formulated to be run on a parallel

architecture. An architecture has been developed that implements this algorithm

in 0(m) flops per equation. Then, this architecture (which uses 0(m2) cells) was

mapped into a compact architecture in order to increase the cell utilization at the

expense of using slightly more complicated cells (needed for scheduling). The compact

architecture uses only 0(m) cells which is clearly advantageous with respect to the

0(m2) cells architecture. The cells used by the compact architecture were upgraded

to implement the adaptive strategies. It was also noted that the same architectures

could be used to implement the “suboptimal” strategy.
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Finally, a detailed analysis of the computational complexity issues was carried out

which clearly shows the significant computational savings when implementing the SM-

WRLS algorithm using the parallel architectures. The computational complexities of

the adaptive SM-WRLS algorithms depend on the adaptive strategy employed, the

percentage of the data accepted (which is typically more than that of the nonadaptive

algorithms), and the number of times the algorithm rotates out an equation from the

system. The analysis also shows that the suboptimal strategy (whether implemented

sequentially or using the parallel architectures) provides significant improvements in

the computational efficiencies of the various algorithms.

5.4 Further Work

This research has been concerned with problems in which the error sequence was

pointwise energy bounded (see constraint (1.1)). It is of great interest to study other

classes of SM algorithms that use different constraints. Other interesting variations

involve stability constraints [30], and other noise parameter bounds [31, 32].

The optimization criterion used in this research was based on minimizing the

“volume ratio” of the ellipsoids at n and n — 1 (see (1.25)). It might be useful to use

different optimization criteria in order to minimize the ellipsoid volume. For example,

it may be possible to define a strategy that efficiently minimizes the longest axis of

the ellipsoid.

The adaptive SM-WRLS algorithm presented in Section 2.4 works with a very

flexible “forgetting” scheme. Three different techniques were presented and tested,

however, it is possible to define (and test) various other adaptation strategies.

It is true that the SM-WRLS algorithm was tested on models derived from speech

data (since they are available in the Speech Processing Laboratory), however, this

algorithm has the potential for application to a wide range of problems. It is of great



interest and significance to study the performance of this algorithm when applied to

beamforming, neural networks, and other important applications.

Finally, the computational complexity of the GR-based SM—WRLS algorithm can

be further improved by incorporating more parallelism (in hardware) within the cells

of the architectures of Chapter 4. Also, a generalized architecture is needed to effi-

ciently implement the complex vector case.

Souheil F. Ode/z

East Lansing, Michigan

May, 1990
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Appendix A

The Relationship between C$(n) and )(n)

 

The theoretical developments in this appendix are for the real scalar case. The

generalization to the complex vector case is straightforward.

It was noted in Section 1.2.3.1 that the system of equations (1.8) (or (2.9) for the

generalized case) can be reduced to an upper triangular system (1.27) by applying a

sequence of orthogonal operators (GR’s). Suppose that a new equation is accepted

with an optimal weight )(n), it can be rotated into the upper triangular system by

inserting it in the m + 1" row, i.e.,

T(n-1) l d1(n—1)

 

    _,/1(n).r(n.) —g . Amigo)

and applying another sequence of m GR’s leaving the system in the form

_ T(n) dim)

oixm l. dzfn)    b

where the matrix T(n) is an m x m upper triangular Cholesky factor [39] of Cr(n)



(sec (1.30)). This sequence of GR’S is given by

anl=Jme—1°”JzJi (A3)

where J,- denotes an (m + 1) x (m + 1) orthogonal matrix that annihilates element i

of the m + 1” row of (A.l).

It can be shown that Q(n) takes the form

i C1 0 0

  

0 81

-3231 c2 0 0 32c]

—s3c251 —8382 c3 ~-- 0 S3C2C1

-s4c3c231 —S4C332 ~3433 0 s4c3c2c1

-3mCm-1 ' ' ' €231 -8mCm—1"'0332 —3mCm—1 ° ' ' 0483 ° " Cm SmCm—1°'°Ci

L "'CmCm—l ' ' '6231 _Cmcm—1”'C332 -CmCm—1 ' ° ' C483 ' ' ° 3m CmCm—1"°Cl .

in which c,- (s,) is the cosine (sine) term associated with the i‘” rotation. This form

of Q(n) simplifies the generation of the matrix T(n) from T(n - 1) and is useful in

finding det C1.(n) below. Since the matrix T(n) is upper triangular, then

det T(n) = fit,,-(n) (A.4)

and

det C;(n) = [det T(n)]2 = fit?,~(n) (A5)

in which t,,- denotes the i‘“ diagonal element of the matrix T(n).



After some (tedious) algebraic manipulation, it follows that:

Case m =1:

det C,(n) = t¥,(n)

Case m = 2:

detC,(n) = t22(n)tfl(n)

= 13,0. _1)z';‘,(n)+ )(n) [1,,(n -1)$2(n)-t12(n —1)xi(n)l2

Case m = 3:

detsznl = t§3(n)t;2(n)tf1(n)

= t§3(n " llt§2(n)tfl(n) +

)(n) {t22(n — 1) [t11(n — 1):r3(n) — t13(n —1):c1(n)]—

t23(n —1)[tn(n — 1);rg(n) — t12(n —1):r1(n)]}2

Case m = 4:

detcxn) = t:.(n)t§.(n)t§.(n)t:.(n)

= t:.(n - 1)t§.(n)t§.(nit:.(n) +

Mn) {t33(n - 1) {t22(n — 1) [t11(n — l):r4(n)-t14(n -1):r1(n)]—

w(n —1)[tu(n -1)h(n)-t12(n—1)r1(n)l}-

t34(n — 1) {t22(n — 1) [tn(n -— 1):c3(n) — t13(n -1):r1(n)] —

t23(n — 1) [t11(n -- 1)h(n) - t12(n - 1):1:1(n)]}}2
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and so on. Therefore, det C,(n) is a monotonically increasing function of Mn). D
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