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ABSTRACT

TE HAVE EXCITATION AND SCATTERING ON

ASYHNETRIC PLANAR DIELECTRIC WAVEGUIDE

By

Boutheina Kzadri

An asymmetric planar dielectric waveguide is formed by the tri-

layered substrate/film/cover environment, typical of integrated circuits

for millimeter and optical wavelengths. The structure supports surface

waves when the film-layer guiding region has positive index contrast

relative to its surround. An electric Green’s function (believed new)

is constructed for the TB field maintained in the film layer by currents

immersed in that region. Using a direct complex analysis approach. the

Green’s function is expanded in the discrete and continuous

propagation spectrum components for the asymmetric planar waveguide. The

electric Green’s function is exploited to study scattering of TE

surface waves by dielectric obstacles in the film layer.

If the y-axis is normal to the layer interfaces and the waveguiding

z-axis is parallel to them, then an x-invariant TE field, having only an

x component, is excited by the similar component of current. Spectral

analysis in the axial transform domain leads to

Ex(y,z) =.[ Glyly’;z-z’) Jx(y’,z’) dy’dz’

LCS

where LCS designates the longitudinal cross section of the source region

and the Green’s function has a spectral integral representation.

Subsequent to complex transform plane analysis, G(yly’;z-z’) is



decomposed into the superposition of a discrete surface wave, arising

from pole singularities, and a radiative component arising from

integrations about substrate/cover branch cuts. If a dielectric

discontinuity having index contrast 6n2=n:(y,z)-n2
f

film layer, an excess polarization current is excited and maintains a

is immersed in the

scattered field. This current is proportional to the product of the

induced field and the refractive index contrast. Within the obstacle

3-31 235the total field - + consists of the impressed field of an

incident wave augmented by the scattered field. Rearranging leads to

the EFIE

Ex(y,z)—jweo J 5n2(y’,z’) G(yly’;z-z’)Ex(y,z)dy’dz’ = E:(y,z)

LCS

A pulse-Galerkin’s solution leads to the induced field, from which

scattering coefficients are calculated. Extensive numerical results for

various obstacle configurations will be presented.
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Chapter One

INTRODUCTION

The subject of planar integrated optical circuits is of increasing

interest. An asymmetric planar dielectric waveguide is formed by a

tri-layered substrate/film/cover environment. typical of integrated

circuits for millimeter and optical wavelengths. This thesis is

intended to construct an electric Green’s function (believed new) for

the TE field maintained by currents immersed either in the film or the

cover layer. The electric Green’s function is exploited to study

scattering of TE surface waves by dielectric obstacles in the film

layer.

Discontinuities in dielectric waveguides are assuming increasing

importance in the design and development of optical and millimeter wave

components. A discontinuity problem arises in the splicing of two

dielectric waveguides and is relevant to inter-device coupling in

millimeter and optical integrated circuits. Various methods have been

presented recently by several authors for the analysis of discontinuity

problem in slab waveguides [1.2,3,4,S,6]. Analysis of longitudinal

discontinuities in dielectric slab waveguides was treated by Uzunoglo

[5]. His approach was relevant to the symmetric slab waveguide.

Moreover, he exploited Sommerfeld integrals to formulate the electric

Green’s function for the TE field in the film layer.

This thesis uses a direct complex analysis approach to construct

the Green’s function which is represented by a 1-D spectral integral.

The second chapter contains a general statement of the equations



governing fields and Hertz potentials in the asymmetric tri-layered

environment of Figure 1. A Hertz potential Green's function for the

tri-layered background is developed for sources immersed in either the

cover or the film layer. It will be shown that the Hertz potential

Green’s function decomposes into a reflected part augmented by a primary

component. Due to the x-invariance of the fields, this Green's function

is represented by a 1-D spectral integral instead of a 2-D integral

[6].

The propagation mode spectrum is treated in chapter three. A

discrete spectrum is found to be associated with surface waves, while

superposition of the continuous spectrum yields the radiation field. A

polarization EFIE description of slice discontinuities along the

asymmetric slab guiding region is developed in chapter four. Method of

moment (MoM) numerical solutions are obtained for the discontinuity

field, leading to scattering coefficients and radiated power.

Some words about notation here might be helpful. As a convention,

upper case letters denote space domain quantities, while their transform

domain counterparts are designated by lower case letters. The symbol 1

denotes the elementary imaginary number, while J denotes the current

density in the transform domain. Finally, the following assumptions are

valid throughout the thesis:

(1) All media are linear and isotropic unless otherwise specified.

(2) An exp(jwt) time dependence is assumed for the electromagnetic

fields and is suppressed.

(3) All media are non-magnetic with permeability ”o'



Chapter Two

ELECTRONAGNETICS OF ASYNNETRIC LAYERED

DIELECTRICS

2.1 INTRODUCTION
 

This chapter is devoted to the evaluation of electromagnetic fields

in the tri-layered environment of Figure 1. The electric field in the

system is expressed in terms of the electric source density maintaining

the fields, integrated into an appropriate Green ’5 function. Details

of the development of the Green ’3 function for the layered structure of

Figure 1 will be established. In fact, knowledge of this specialized

Green’s function is of primary importance, since it will be used later

in this thesis to formulate the integral equation for the electric

field within discontinuities immersed in the layered dielectric

environment.

Analysis of electromagnetic fields in a layered environment was

first made by Sommerfeld [7] in 1909. The first problem attacked by

Sommerfeld was that of electric dipoles oriented normal or tangential to

an air-earth interface. Integral-transform techniques were used to

obtain integral representations for the fields produced by former

dipoles. These integral expressions are known as Sommerfeld integrals.

The tri-layered environment, typical of integrated circuits at

millimeter and optical wavelengths, is depicted in Figure 1. A uniform

dielectric guiding region (film layer) of refractive index n occupies

f

the region -t < y < 0 ;it is immersed between a substrate region

(y < -t) with refractive index nS, and a cover surround which fills



the space y > 0 and is characterized by a refractive index nc. All

dielectric media are assumed to possess limitingly small dissipation

with Re{nf} > Re{ns} > Re{nc), where Re{'} designates the real part of

the quantity within the braces. The electric current density immersed

in the film region is parallel to the x-axis so it only maintains TE

polarized electromagnetic fields in all three regions.

In the next section, the electric Hertzian potential D for the tri-

layered structure is formulated as a convolution of the impressed

current density 3 with an appropriate Green’s function. The development

of the Green’s function will be detailed. In section 3, a physical

interpretation will be given to explain the y dependence of all the

terms present in the expression for the Green’s function.

2.2 HERTZIAN POTENTIAL GREEN’S FUNCTION
 

Details of the relationship of the Hertz potential to the electric

field, along with the Helmholtz equation for the potential, is reviewed

in Appendix A.

Development of general dyadic electric Green’s functions for

layered structures has been presented by Bagby and Nyquist [8]. The

electric field Green’s dyads are found in terms of associated Hertzian

potential Green’s dyads, developed by an extension of Sommerfeld’s

classic method [9]. The Hertzian potential dyadic Green’s function was

shown to have scalar components expressed as 2-D spatial frequency

integrals of the Sommerfeld type. In the subsequent development, the

analysis in [8] is specialized for the tri-layered structure of Figure 1.

Using the TE symmetry where the fields are invariant with respect to x,

the Green’s function will have only one component expressed in 1-D



region 1: y>0

nc(cover)

region 2: -t<y<0

n(film)
mé——- f -—-)ao

 
 

 

 
 

 

y=-t

region 3: y<-t

ns(substrate)

(a) Sources in the film

X
1

region 1: y>0 o 3

n (cover)
c

=0 xo 1L; 2

y region 2: -t<y<0

m e _ _ nf(film) _ _ 9 ”

y=-t 

region 3: y<-t

ns(substrate)

(b) Sources in cover

Figure 1: Tri-layered structure used as the

background environment for integrated

circuits.



spectral integral representation.

2.2.1 Axial Transform Domain Field Equations

Consider the situation depicted in Figure 1. An impressed current

3 parallel to the x-axis (or an impressed polarization P = 3/yo)

radiates in the film or cover region, generating electric Hertzian

potential in each region of the tri-layered structure. The relations

that relate the electric field and the magnetic field to the Hertz

potential are

[
7
1
b

II

2

(k£+ vv.) fl, (2.1)

3
3
b

ll

2 ’“ezv x fie (2.2)

The Hertzian potentials satisfy the following Helmholtz equation

2 2 fi {37ij1 ,£=1

(V + kl ) l - 0 ,£$‘ (2.3)

in each region (£=s,f,c for substrate, film, cover). Equation (2.3) is

solved for the potential by Fourier transformation on spatial variables

tangential to the layer interfaces. Axial uniformity along the

waveguiding axis (i.e €$€(2) and u*u(z) ) prompts Fourier transformation

on that axial variable. Define the axial transform pair F(2) 69 f(C)

where F(°) and f(°) denote

4‘“

{(c) =J F(z) 9718012

on



40-"

F(z) = Ell-J f(C) ejczdc

As a convention, upper case letters denote space-domain quantities,

while their transform-domain counterparts are designated by lower case

letters. Taking Fourier transforms of equations (2.1) through (2.3)

yields

a _ 2 ~~. 9
el — (kl + VV ) "t

a _ ~ 9
hi - Jwea Vxnt (2.5)

[92— ' P2 ) I" = 1% ' =1
.33;2 e l o 1 ,e==1 (2.6)

where p: = :2- k: and 7 denotes Vt+ ZJC and Vt = y since we have

invariance with respect to x (i.e g; = 0) . Since the electric current

density j is x-directed, it maintains similar Hertzian potential

C
a
l
m

‘
<

(D = Qflx) and hence 6.3 = 0. Equations (2.4) and (2.5) are reduced to

a A 2

ea x klnxt (2.7)

a._ a A A A
ht- 1:95:65 y + 210x X 3

Aanxl A

xi = jw€£("Z—ay + yJCnxz) (2.8)



2.2.2 Green’s Function Decomposition ; Primary Component

The total potential in each layer is the sum of a primary part 39

and a scattered part 38; the primary potential propagates directly from

the source to a field point in either the cover or film layer, whereas

the scattered potential arrives at a field point after being scattered

(reflected or transmitted) from cover and/or film interfaces. The

transform-domain primary potential 3’ in either the cover or film region

satisfies the inhomogeneous Helmholtz equation (2.6) in the transform

domain (2.6). That is

 

62 2

[ " P )“8 (sac) = 0 (2-9)
2 Z x!

8y

2 “J
a 2 _ X

8y i

where i = c for sources in the cover and i = f for sources in the film.

Equation (2.9) has solution

_ s ipy

nxl - wx£(C) e Z

where the coefficient w:£(§) is determined by application of appropriate

boundary conditions. The solution for the primary potential in either

the cover or the film region in terms of the impressed current in the

transform domain is

+00 ,

wa .C)
P _ I, I

nx1(Y.C) -[ $51—— 8§(Y|Y :C ) dy (2.11)



where the transform domain primary Green’s function is determined in

Appendix B and found to be

e-pily-y I
p ., =

Since the transformed current is given by

+1»

Jx = I Jx(y’,z’) e-ch’dz’ (2.12)

an

inversion of the transformed primary potential may be performed and

yields the particular solution to (2.3) with the primary potential in

either the cover or the film region given by

4’”

p _ 1 ch
Ux1(y,z) — 2—"I upx1(y.C) e d;

Replacing the expression of n:1(y,C) with that of equation (2.11) and

writing the expression for the transformed current as in (2.12) the

principal potential in spatial domain may be expressed as

9O

J (y’,z’) ,

P _ 1 X P I, jC(Z'Z ) I I

“XI. (y,z)- 5 [dc [J -_jw—€-1_ g1(y/Y :C) e dy d2

m

where LCS designates the longitudinal cross section of the dielectric

LCS (2.13a)

layer where the current is immersed. Interchanging the spatial

integration with the spectral integration, (2.13a) becomes



p Jx(y’,z’) P
n;1(y,z) = .__j;E;—— G1(y|y :z-z ) dy dz

LCS (2.13)

where the space domain Green’s function G§(y|y’;z-z’) is given by

+Q

Gp(y|y’;z-z’) = 1— gp(y|y’,C) eJC(z-z ) d: (2.14)
1 2n i

-m

2.2.3 Reflected Green’s Function for Sources in the Film Layer

Consider the situation shown in Figure 2. Electric current

density, immersed in the film region, maintains EM fields in each

region. Solution to the homogeneous Helmholtz equation (2.9) in the

transform domain gives the scattered potential in each layer as:

s s i

nx£(y,C) = "gem e W

where u;£(y,C) is representative of either a reflected potential n;(y,C)

or a transmitted potential u:(y,§). Therefore in the cover region

(y > 0), the scattered wave is in the form of a transmitted wave

travelling in the upward direction (+9)

n:c(y.C) = w:c(§) e-pC(C)y

Similarly, in the substrate region (y <-t) the scattered potential is

given by

t (C) e+ps(<)y

t . _

fix.(Y.C) - wxs

which consists of a wave travelling in the downward direction. Finally,

10



in the film region (-t < y < 0) the transformed scattered potential

consists of two reflected waves from the adjacent interfaces propagating

upward and downward. Hence we have

r _ r+ -p (C)Y I" ‘1’ (C)y
ugf(y,§)— wxf(C)e f + wxf(C)e f (2.15)

where w;: and w;; designate the coefficients associated with a wave

travelling upward and downward, respectively. The coefficients wic, w:.

w:: and w:; are determined by satisfying appropriate boundary conditions

[8] across the dielectric interfaces. Note that in writing the

expressions for the above potentials in each region, radiation

conditions as y -+ t m has been taken into account. In fact, for the

transverse wave number p: = gz-ki, the branch that leads to outwardr

propagating or attenuated waves must be chosen . This requires that

Re{p£} > 0 and Im{p£} > 0. The appropriate boundary conditions are

adapted from Sommerfeld’s [7] development of Hertzian potential boundary

conditions. Enforcing continuity of tangential 3 at the interfaces

requires

2

nxc(o’c) Nfcuxf(o'<)

and

2

uxf(-t'§) stuxs(-t’c)

where Nicand N: are the ratio of the film permittivity to the cover

permittivity and the ratio of the substrate permittivity to the film

‘permittivity, respectively. In a similar fashion, continuity of

11



y=—t

region 1: y>O

transmitted wave

 
 

 

nc(cover)

xe > z

:egionm2: -t<y<0 reflected sprimary

f \1Lz‘ 3 A
;e 8 xJ

x

reflected primary

 

region 3: y<-t

ns(substrate)

transmitted wave

Figure 2: Primary and scattered-waves in the tri-layered

structure with current immersed in the film.
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tangential 3 yields

auxc(o,C) 2 anxr(°’<)

6y Nfc 6y

anxf(-t,C) 2 anx.(-t,C)

8y = N“ 6y

where “xi denotes the total Hertzian potential (primary plus scattered)

in the l’th region (£=c,s,f for cover, substrate and film). Note that

the primary Hertz potential is present only in the film region, produced

by current density immersed in that layer.

Application of the above boundary conditions to determine w:: and

r-

wxf is detailed in Appendix C. The results are as follows

“”1 mo
wr+ = I x (R(1)e-pf(y +2t)+ R(2)epf(y -2t)) dy’

xf @prf + +

“Q

and

+""J (y’C)
wr- = I x (R(1)e-pf(y +2t)+ R(2)epfy ) dy’

xf ijcfpf -

2 1()R(

where the reflection coefficients R11), R+ , _ )and R1?)are given as

13



Pft

(pf+pc)(pf-ps) e

 

 

(1)
R =

2
2cosh(pft) [(pf+pcps)tanh(pft)+pf(ps+pc)l

- - P t

R(2)= (pf pspr pc) e f

2
2cosh(pft) [(pf+pcps)tanh(pft)+pf(ps+pc)]

R(1)= R(2)

— +

(p +p )(p —p ) epft
R(2)_ f s f c
 

2cosh(pft) l(p:+pcps)tanh(pft)+pf(ps+pc)l

Exploiting the expressions for w:; and "2; in equation (2.15)

yields

+co

J (VCC)
1‘ __ X r I, I

nxf(Y.C) “I We? 8f(Yly 1C)dy

where the axial Fourier transform reflected Green’s function is

expressed as

(1)e-pf(y+y +2t)

3;(yly’;C) = — [3+
pr

+ R(me-pfw-y +2t)

+ Rineprw-y 'Zt)+ R12)epr(y+y ) ] (2.16)

Proceeding in the same fashion as for the primary Hertz potential,

14



the spatial domain reflected Hertz potential is given as

+00

r Jx(y’,z’) r

fo(y,z) = _—353;_—— Gf(y|y :z—z ) dy dz (2.17)

where the spatial domain reflected Green’s function is expressed as

+@

c;(y|y';z-z') = 5% I g?(y|y':<)e’§‘z'z )dc (2.18)

Finally, the total Hertz potential in the film layer is the sum

consisting of a primary wave augmented by a scattered wave and given as

+m

Jx(y’,z’)

fo(y,z) = __TEE;—_— Gf(y|y ;z-z ) dy dz (2.19)

where the total Green’s function consists of a primary part augmented by

a reflected one and is expressed as

I,_I-p I,_I I‘ I,_I

Gf(y|y ,z z ) - Gf(y|y ,z z ) + Gf(y|y ,z 2 ) (2.20)

2.2.4 Reflected Green’s Function for Sources in the Cover Layer

In this section, the procedure of determining the reflected Green’s

function is outlined for the situation depicted in Figure 3. Source and

field points are situated in the cover region. The primary wave is

reflected or transmitted at the film-cover interface. The reflected

wave in the cover travels in the positive y direction while the

transmitted wave in the film layer propagates in the negative y
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Y=0

y=-t

 
 

 

1’ Sprimary

o 3= 521
x

region 1: y>0 [Jprimary

nc(cover)

x6 > 2

region 2: -t<y<0

nf(film) transmitted wave

reflected

 

region 3: y<-t

ns(substrate)

transmitted wave

Figure 3: Primary and scattered-waves in the tri-layered

structure with current immersed in the cover
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direction. Intuitively, the y-dependent part of the reflected wave

should have a phase of y+y’. In fact, the reflected Green's function

for sources in the cover layer is given as

+fl

G:(y|y’;z-z’) = %E I g:(y|y’;C)eJc(z-zl)dc (2.21)

where the transform domain reflected Green’s function gr(y y’;§) is
c

expressed as

- (y+y’)
r ,. _ R(C)e pc

gc(yly .CJ - ZPCIC) (2.22) 

The reflection coefficient R(§) is given as

2

R(C) = pf(pC-pS)+(pCpS-pf)tanh(pft)

 

2

pf(ps+pc)+(pcps+pf)tanh(pft)

Outlined below is a simple procedure for obtaining the above

reflected Green’s function

1. Solutions to the homogeneous Helmholtz equation (2.9) determines

the scattered potential in each layer as u;¢(y.C) = w:d(C)eip£y which

represents either a reflected wave or a transmitted wave.

2. Taking into account the radiation condition stated earlier, the

potential in the film region consists of standing waves

t _ t- p (C)y 1+ -p (C)y
nx€(y.C) - wx€(§)e f“ + wxf(C)e f

The potential in the cover region consists of a reflected wave

17



traveling in the positive y direction and given as

n” (y.c) = w’ (ne'Pc‘C’Y (2.23)
X6 X0

hence the total potential in the cover region is

nxc(Y9<) = n:c(Y.C) + “:c(y.C)

The potential in the substrate region consists of a transmitted wave

propagating in -y direction

at = wt (Oepsy
X8 XI

::, wt_ and w:. are determined by satisfying3. The coefficients wt, 11

xc xf

appropriate boundary conditions at the cover-film interface and at the

film—substrate interface. Those boundary conditions are expressed as

2

nxc(o’c) "r.“xr(°'§’

2

nxf(-t'c) stnxs(-t'<)

anxc(o.C) 2 anxf(0.C)

fly to fly

anxf(-t,§) 2 anxs(-t,C)

6y sf 6y

  

where lg! denotes the total transformed Hertzian potential (primary plus

scattered). Hence the result is

r °° Jx(y’.c) _p y, .
WXC(C) = W R(C)e C dy

Q

4. Exploiting the expressions for w:c(C) in equation (2.23) yields
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w

J (y’.<) .

r - __x___ -P(Y+y) .nxc(y.§) - I 21 cpc R(§)e c dy

S. Proceeding in the same fashion as for the primary Hertzian potential,

the spatial domain reflected Hertz potential in the cover region is

expressed as

r Jx(y’,z’) r

Finally, the total spatial domain hertz potential in the cover

layer consists of the sum of a reflected wave and a principal wave. It

is expressed in terms of the spatial domain Green’s function as

r Jx(y’,z’)

ch(y,z) = -_TEE;___ GC(y|y ;z-z ) dy dz

where

on

., _ . _ 1_ 1_ -p ly-y’l -p (y+y’)
GC(yIY .z z ) - 2n I 2pc{e c + R(C) e c dC

Q

(2.24)

2.3 A PHYSICAL INTERPRETATION

As seen In Figure 2, a source point at y’ produces a primary

disturbance in the film region which consists of a wave propagating in

either 2y direction. In either case, the primary wave is reflected or

transmitted at the cover-film interface and at the film-substrate

19
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y (1//\\ y,

(a) path length 8 -y-y’

 

Y ¢//\\

(mv '\ y,

(b) path length = y-y’+2t

 

y\Q//y’

(c) path length = y+y’+2t

 

MAW"
(d) path length = -y+y’+2t

Figure 4: The four different path lengths.
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interface. A wave which is reflected from one interface travels towards

the other interface where it experiences transmission and reflection.

In Figure 4, the primary wave traveling in +y direction is reflected at

the film-cover interface to create a reflected wave (1) traveling in -y

direction. This reflected wave (1) is reflected once more at the

substrate-film interface to create a reflected wave (3) traveling in +y

direction . In the same manner, a principal wave traveling in -y

direction is reflected at the substrate-film interface; the result is a

reflected wave (2) traveling in +y direction which is in turn reflected

at the cover-film interface creating a reflected wave (4) traveling in

-y direction. The y dependence of the reflected wave may be correctly

determined by the use of a physical picture. Consider the different

situations shown in Figure 4. It is seen that there are four principal

ways in which a wave traveling from a source point at y’ may arrive, via

reflection, at the observation point at y. From Figure 4, one can

recover the y dependence of the reflected Green’s function by

determining the four distinct phase path lengths. In fact, the

reflected Green’s function is comprised of four terms with phases

associated with these distinct path lengths. Using Figure 4, the

different phase path lengths are: (a) ”Y'Y'; (b) y+y’+2t; (c) y-y’+2t;

and (d) -y+y’+2t.

2.4 SUMMARY

In a tri-layered dielectric environment, The Hertzian potential fix

in a current carrying region decomposes into principal and reflected

components. The principal wave is that wave which propagates directly

:from the source to the observation point. Surface polarization
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currents, which are induced at boundaries of adjacent regions by the

primary wave, account for the reflected part.

Integral representations for "x may be expressed in either spectral

form as

'1’”

1 Jx(y’,z’) p

nx1(Y9Z) = 3 dc WG—1— [81(YIy 3C) +

a LCS

82(ylyl;c) ] eJC(Z-Z )dyldzl

or in more standard form as

Jx(y’.2’)

flXi(y,z) = _w_€1_. G1(y|y;z-z ) dy dz

LCS

where G1 = G: + G: and LCS designates the longitudinal cross section of

the dielectric layer where the current is immersed.

The electric field corresponding to the Hertzian potential is given

2

by Ex1 = kinxi’ where i = cover or film. Hence the electric field can

be written in terms of the spatial domain Hertz potential Green’s

function as

+o

2 Jx(y’,z’)

Exi(y’2) = k1 -—TEE;___ G1(y|y ;z-z ) dy dz

-m

We define an electric Green’s function G:(y|y’;z-z’) such that

w

= I I e I,_I I I

Exi(y’2) J[ Jx(y ,z ) G1(y/y ,z z ) dy dz (2.25)

N

Hence the electric Green’s function C Is defined in terms of the
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Hertz potential Green’s function G as follows

6 I,_I._.._ I__I

Gi(y|y ,z z ) jkOZo G1(y|y ,z z ) (2.26)

where ko and 20 are the free space wavenumber and intrinsic

impedance, respectively.
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Chapter Three

TE PROPAGATION MODE SPECTRUM OF ASYMMETRIC

PLANAR NAVEGUIDE

3.1 INTRODUCTION

Performing the inverse Fourier transform in eqn(2.20) (eqn(2.24))

leads to the identification of the propagation mode spectrum of

asymmetric planar dielectric waveguides (Figure 1), with sources

immersed in the film region (in the cover region). Complex {-plane

analysis facilitates this identification. Use of Cauchy’s theorem for

contour integrals [10] allows the original real line contour of the

inversion integral on the transform domain Green’s function to be

deformed. An appropriate choice of contour deformation reveals that the

field decomposes into two types of modes.

To apply Cauchy’s theorem, we must identify the location of

singularities of the transform domain Green’s function in the complex

C-plane implicated by the inversion integral for G(y|y’;z-z’). Existing

singularities in the c-plane occur near the real C-axis at the location

of surface-wave poles and at the branch points with associated branch

cuts.

Complex plane analysis applied to the spectral integral

representation of the Green’s function for the sources immersed in the

film region will be detailed, whereas the final results will be stated

for the case of sources immersed in cover region.
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3.2 COMPLEX C-PLANE ANALYSIS
 

Recall the expression for the space domain Hertzian potential

Green’s function for sources immersed in the film region

4'”

G(y|y’;z-z’) = %E I g(y|y';§)eJC(Z-zi)dc (3.1)

Q

where

styly’;§) =—1—— e'Pf'Y‘Y | + R‘“ e-pf(y+y +2t)

pr
+

+ R:2)e-pf(y-y +2t)+ R(1)epf(y-y -2t)+ R(2)epf(y+y ) (3.2)

Deformation of this real line integration requires knowledge of the

singularities of the integrand in the complex C-plane. After locating

these singularities, which consist of surface-wave poles and branch

points, a discussion of the appropriate branch out is given. Finally,

Cauchy’s theorem for contour integrals is applied to determine the

appropriate contour used in identifying the propagation spectrum.

3.2.1 Green’s Function c-Plane Singularities

The integrand in (3.1) has a complicated functional dependence on

the multivalued wave number pt= t V qz-k: (£=s,c,f for substrate, cover

and film). The correct sign of the square root is chosen to implement

the radiation condition for Iyl —+ m and ensures the convergence of the

integral. Hence, the branch that leads to outward-propagating or

attenuated waves must be chosen. This requires that
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Reipl) > 0

(3.3)

Im{p£} > 0

The integrand in (3.1) is a multivalued function of C [11] because of

the two branches of the function.pl. Hence, to ensure that the

integrand is analytic, the complex C-plane must be cut by branch lines

emanating from branch points and extending to a point at infinity. The

branch points occur at C = tkz. Branch points at §= tkf are removable

singularities and the branch cuts emanating from them are not

implicated, since the integrand in (3.1) is an even function of pf.

In addition to the branch point singularities, the integrand has a

finite number of isolated pole singularities. In fact, the reflection

(2)

+ o 1)and Rf?) have simple poles associated withcoefficients Ri“, R R:

surface-wave modes supported by the tri-layered environment.

Figure 5 shows the location of the singularities of the integrand

in the complex c-plane. Real and imaginary parts of q are designated gr

and C1» respectively. Practical dielectric media exhibit small losses

which move the poles and the branch points off the real C-axis. It is

subsequently assumed that

k = k + jk
l Zr £1 ; 2r

Hence, all singularities reside in quadrants two and four. At this

stage, branch cuts are chosen arbitrarily as long as they do not cross

the initial real-line contour C. One possible construction for the

branch cut is shown in Figure 5. Subsequent analysis involving contour

26



A55:

4:: -€p 4:. 4r. . . ”t,

 
Figure 5: Complex C-plane singularities of the transform

domain Green’s function with arbitrary branch

cuts.
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deformation demands a particular choice for the branch cuts.

3.2.2 Contour Deformation

Cauchy’s theorem provides a powerful analytic technique for

evaluating certain types of definite integrals. Specifically, Cauchy’s

theorem for contour integrals [10] may be used subsequent to deforming

the initial real line path for inversion integrals.

Consider for now an arbitrary closed contour C’ in the complex

C-plane. The correct contour is determined by considering several

constraints. First, the branches for each pt must be chosen so that the

integrand of (3.1) represents decaying and outward-propagating waves.

As far as the contour C’ is concerned, the branch cuts may be chosen

quite arbitrarily as long as they do not intersect the contour C’.

Second, it must be decided in which half-plane the contour C’ is to be

closed. Therefore, as C is deformed into C’ we have

JC(z-z’)d
G(y|y’;z-z’) = g; [ g(y|y’;§)e C (3.4)

CI

As was stated earlier, the radiation conditions are satisfied when

 

Re{p£} > 0 and Im{p£} > 0. Writing p£= : I/C‘kt 1/§+k£, then for any

paint C along the real C-axis, the phase angle of the two factors

(C-kl) and (C+k£) lies in the range

9

O

< n

< 0

0 < arg(§-k£)

-n < arg(§+k£)

N
i
h
i
-

as Cr ranges from -m to +m. Those angles were determined from Figure 6.
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A careful examination shows that the sum of these arguments satisfies

0 < a: + a; < x . Hence the phase angle of +V§2-k: is always greater

than zero but less than 3. In order to satisfy the specific

requirements on p2 as in eqn (3.3), the positive root or branch must be

chosen. Hence

Pa = “(CZ-k: (3.5)

With this branch, the convergence of the integral (3.4) at infinity is

ensured.

Secondly, the exponential factor ej§(z-z ) appears as part of the

integrand in (3.4). Writing C = Cr+j§‘ the above exponential factor

will be

e1C(z-z’) = e-§‘(z-z’)e)§r(z-z’)

Therefore, in the upper half C-plane (lower half Q-plane) this

exponential is decaying for 2-2’ > 0 (2-2’ < 0) while it increases

exponentially for z-z’ < 0 (2-2’ > 0). Hence, when z>z’ (z<z’), the

contour C must be closed in the upper half C-plane (lower half C-plane).

The correct contour for evaluating (3.4) is thus the one illustrated in

Figure 7 such that C’ = C + Cm+ Cb: .

For z>z’, the contour must be closed in the upper half C-plane.

Since the branch out cannot be crossed, the contour C’ must come back in

from infinity on one side of the branch cut, encircle the branch point

at C = -k£, and recede out to infinity again along the opposite side of

the cut. This contour is illustrated in Figure 7 (dashed) and denoted

i for the branch outby Con for the semicircle at infinity and by Cb

integral.
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5C.

 

  

Figure 6: Determination of the proper branch of each pt.
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Figure 7: Deformation contour C’ on which the transform

domain Green’s function is analytic.
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Since a branch cut was introduced, the integrand in (3.4) is single

valued and Cauchy’s theorem applies [11]. Moreover, by deforming the

i

b

integrand in (3.4) will be analytic and Cauchy’s theorem for contour

closed contour C’ = C + C0° + C around the surface wave poles (tcp), the

integrals leads to

J g(y|y';c)e’§‘z‘z"dg = 0
CI

Note that the closed contour C’ contains the contour around the surface-

+

wave pole c; such that

+ +

C’ = C + C + C‘ + C’
m b p

+ +

where the plus (minus) sign in CB and CB refers to the contour being

in the upper half plane (lower half-plane). The original integration

along C is thus replaced by

J (....) = - J (....) - J +(....) - J + (....) (3.6)

C C C; C-

If the integral along the semicircle Cco in (3.6) vanishes, then the

original integral is equal to the branch out integral plus the surface-

wave pole integral. Hence the space domain Green’s function as given

by (3.1) may be expressed as
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JC(z-z’)d

8(yly’:<)e CC(YIY';z-z’) = $5 {- I

C

_L

The integrand of G(y|y’;z-z’) is an even function of C except for

1C(Z-2’)

O
‘
l
+

3(YIy’;C)e’c(z'z')d< } (3.6.a)

1
3
1
+

proportionality to e , hence the lower half-plane closure can be

combined with the upper half-plane closure. In fact, since we have

performed an upper half-plane closure for z>z’ and a lower half-plane

closure for z<z’, the term e’C(z-z’) can be replaced by eJ|Z-z’I By

consequence, with the above change, performing the integration in the

upper half-plane is sufficient since it combines both cases where

z>z’(upper half-plane) and z<z’ (lower half-plane) into one. Hence

(3.6a) becomes

thly':z-z’) = 2% {- I 8(yly.;c,e1<lz-z’l dc

C;

- g(y|y;c')e’<|z‘z'| dc (3.7)
C+

P

It is now apparent that the Green’s function decomposes into the

sum of two fundamentally different spectral contributions. By

consequence, the electric Hertz potential and the electric field have

the same decomposition. The branch out integral represents the

continuous radiation spectrum, while the pole integral represents the
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discrete surface-wave modes.

The branch out must be chosen more carefully now if the integral

along Con is to vanish. It can be seen that for C e C”, g(y|y’;C)

decreases exponentially for Re{p£} > 0. It was shown earlier that

eJC(z-z’) vanishes at Con by choosing the correct half-plane closure.

Hence, at Can the integrand in (3.4) vanishes provided Re{pt} >0. In

order to ensure that Can remains on the proper branch for which

Re{p£} > 0, the branch out emanating from branch point ikl has to

separate the proper branch of pl for which pbr > 0 from the improper

branch for which plr < 0. The correct branch out lies along the

boundary line between plr > O and ptr < O and is defined by the line

leading to Re{p£} = 0 or larg(p£)| = g.

E

2

arg(p:) = n or (i) Im(pi) = 0 and (ii) Re{p:) < 0. Writing

Observe that when pl satisfies Iarg(p£)l = , p: satisfies

2

kl klr+Jk£i’ pe may be written as

2 _ 2 _ 2 _ 2 _ 2 _

pi - (Cr Ci ) (klr kfli) + J2(crci kirkli)

from which it can be seen that condition (i) is satisfied if and only if

(3.8)

which defines a pair of hyperbolas. Along the hyperbolas defined by

(3.8) we have
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Figure 8: Hyperbolic branch cuts.
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1°C.

 

 

 

Figure 9: Coalesced branch cut.
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In order to satisfy condition (ii), Cr must satisfy the inequality

—k£r < Cr < kzr (3.9)

Conditions (3.8) and (3.9) describe the portions of the hyperbolas shown

in Figure 8. A decrease in the losses associated with the cover and

substrate implies a decrease in kC and k8 In the limit of zero

1 1'

loss, the branch out emanating from tks cancels with part of the branch

out emanating from ikc resulting in the cut depicted in Figure 9. In

either case of moderate loss or limitingly low loss, these branch cuts

guarantee that for all C e Cm, Reipt} > 0 and hence the integration

along Cco vanishes. Thus the validity of (3.7) is ensured.

Now that we have determined the right contour deformation, we

proceed with the analysis of the discrete and continuous spectrum.

3.3 THE DISCRETE SPECTRUM
 

A discrete surface wave mode has been shown to arise from

evaluation of the pole integral in the complex C-plane. The integrand

in (3.4) has poles whenever the reflection coefficients Ril),R:23

(1R_ )

’and 11:2 become infinite. First, identification of those poles will

be performed and then evaluation of the pole integral is presented. We

let Gpole denote the discrete part of the Green’s function in equation

(3.7) , then we have
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c;po l e 411p 4’

+ f

C

P

(yly’;z-2’) 3 _ [ 1 [R(1)e-pf(y+y +212) + R‘f’2)e-pf(y-y 421;)

+ R:i)epf(y-y -2t) + R:2)epf(y+y ) eJC|z-z | dC

(3.10)

Note that we are integrating around the pole in the upper half plane,

that is around C = —Cp .

3.3.1 TE Surface Wave-Poles

Recall the expressions for the reflection coefficients Ril),ll

R”), R12)

from Chapter Two

_ P t

(1) _ (pf + pc)(pf ps) e f
 

 

R -

+ 2

2cosh(pft)[(pf + pcps)tanh(pft) + pf(ps+pc)]

- - p t

R(2) = (pf ps)(pf pc) e f

+ 2

2cosh(pft)[(pf + pcpsltanh(pft) + pf(ps+pc)]

R(1) = R(2)

- +

(p + p )(p -p ) ep:t
R(2) = f s f c
 

2cosh(pft)[(p: + pCpS)tanh(pft) + pf(ps+pc)]

+

(3.

(3.

(3.

(3.

Note that all the reflection coefficients have the same denominator

(1)

hence they are associated with the same simple poles. R+ becomes

38

(2)

11a)

11b)

llc)

11d)

and



infinite when

- 2 —

2(C) - (pf +pcps)tanh(pft) + pf(ps+pc) - O (3.12)

which leads to TE surface-wave poles at C = :Cp . We define the

following parameters

= ,/§2- k2 _._ ”4:-8 = ,x (3. 12a)
pf f

_ 2_ 2 =

PC - C kc z (3.12b)

_ 2_ 2 =

ps — C kS 6 (3.12c)

The condition that 7 of (3.12b) as well as K of (3.12a) are both real

quantities limits the range of C to the following interval [61

kc < ks < cp < kf

which identifies the region that discrete values of the propagation

constant for guided modes can occupy. Using (3.12a) through (3.12c),

2(C) becomes

3(75 - x2) tanKt = -;K(7 + a)

Rearranging leads to the well-known eigenvalue equation for TE modes of

the asymmetric slab

K(7+6)

 tanKt = (3.13)

KZ- 75
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We now proceed to evaluate the pole integral in eqn(3.10)

3.3.2 Pole Integral Evaluation

The function of C that leads to TE surface-wave poles at C = :Cp of

eqn(3.12) can be approximated by a Taylor's series of first degree near

C = th. Hence we can write

d2
2(C) 3 2(th) +.__ (CFCp)

dc C=tcp

since 2(2Cp) vanishes, 2(C) reduces to

z ’ _ ' 3.2(C) Z (+ Cp) (C+Cp) ( 14)

where 2’ denotes the derivative of 2(C) with respect to C.

(2)

+

(1)

Rewriting the reflection coefficients Ril), R , R_ and R12)in

equations (3.11a) through (3.11d) as follows

A1(c)
- P t

+ 27:?”

:
0

l

A (C)
_ 2 p t _ (1)

R+ ‘ 21:)— e f ‘ R-

A3(C)

= p t
R_ met.

the discrete part of the Green’s function in (3. 10) becomes
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dC - I - - ’

(YIY';Z'Z') = 'J 4upr C [A1(C)e pf(y+y +t) + A2(C)e pf(y y +t)

+

C

P

G

pole

+ A2(C)epf(y-y’-t) + A3(C)9pf(y+yl+t)] ejClz-z’|

(3.15)

Making use of the approximation for 2(C) in eqn(3.14), integrating

the first term of Gpole around the upper half plane surface—wave pole

 

 

 

leads to

_ A1(C) e-pf(y+y’+t) eJClz-z’l dC

C+ 4npf2 (-cp)(c+cp)

P

_ _ , _ _ . dC

= A1(€p) e pf(Cp)(y+y +t) e JCPIZ z I J C+C (3.16)

4npr (‘Cp) C+ p

P

dC

The integral -:—— is evaluated in Appendix D and found to be

C, c cp

P

dc

= -2u

, c+cp ’

C

the minus sign in front of an is related to the contour around C= -Cp

loeing directed in the clockwise direction. Hence equation (3.16)

becomes
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+ 4npf2’(-Cp)(C+Cp)

P

_ J A1(C) e-pf(y+y’+t) e-ijlz-z’| dC

C

= 31(Cp) e-pf(Cp)(y+y’+t) e-Jcplz-z’|

where 31(Cp) is the amplitude of surface-wave mode contribution from

(1)

+
R and is expressed as

jA1(Cp)

2pf(Cp)Z’(-Cp)

 B1(Cp) =

In the same fashion, the amplitudes of surface-wave mode contributions

(2) (1)

from R+ , R_ and RiZ) are established as follows

 

 

1A2(Cp)

82(Cp) = 2pf(Cp)Z'(-Cp)

1A (C )

_ 3 p
B3(Cp) -

2pf(€p)2’(-Cp)

Hence, Gole can be written as

p

_ -p (c )(y+y’+t) -p (c )(y-y’+t)
pole - { 31(Cp) e f p + 82(Cp) e f p

+ B (C ) epf(<p)(y-y’-t) + B (C ) epf(cp)(Y+Y'+t) } e'JCplz-z’l

2 P
3 p

(3.17)

\4hich expresses the final form for the discrete Green’s function.

N , h ,ow we ave to evaluate each term A1(Cp) A2(Cp) and A3(Cp) as
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rational functions of pf, pc and ps. The derivative of 2(C) with

respect to C evaluated at C= -Cp has to be established as well. Using

equation (3.12) for tanh(pft), the expression for cosh(pft) can be

evaluated from the following

1

 cosh(pft) =

'J 1-tanh2(pft)

 

This leads to the expression of A1(Cp) as a rational function of pf, pC

and pS as follows

 

2 2 2 2 2

- (pf +pf(pC-pS)-pcpS)Vf(kf-ks)(kf-kc)
 A (C ) =

The coefficients A2(Cp) and A3(Cp) are evaluated in the same fashion.

Recalling the expression for 2(C) from equation (3.12), the

derivative of 2(C) with respect to C is expressed as

I = I I I 2 I

2 (C) (pcpS +pcps +2pfpf ) tanh(pft) +(pcps+pf)tpf tanh (pft)

+pf’(pc+ps)+pf(pc,+psl)

Noting that tanh’(pft) = 1-tanh2(pft) and exploiting equation (3.12).

the derivative of 2(C) with respect to C evaluated at C = -Cp can be

written as

  

2222

z'(-c ) = -Cp(kf-kc)(kf-ks) [ p +

p p (p p +p2)
f c s f
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Note that in evaluating Z’(-C) we made use of the fact that p2 = g—

l

since p: = Cz-k: .

Finally, the amplitudes 81(Cp) through B3(Cp) in the expression for

Gwfle (equation 3.17) are now expressed as

2

+1(pf+pf(pc-ps)-pcps) pops

 

 

 

 

 

B (c ) =
1 p

2222

4Cp V/(kc-kf)(kS-kf) [pc+ps+pcpst]

2

B (c ) = +1(pf-pf(ps+pc)+pspc) pops

2 p
2222

4Cp V/(kC-kf)(ks-kf) [pc+ps+pcpst]

2

_ +)(pf-pf(pc-ps)-pspc) pops

B3(Cp) -
 

2 2 2 2
4Cp V/(kc-kf)(ks-kf) [pc+ps+pcpst]

The mode spectrum, in addition to having a finite number of

surface-wave modes, also possesses a continuum of unguided radiation

modes.

3.4 CONTINUOUS SPECTRUM
 

A continuous mode propagation spectrum has been shown to arise from

i

b

GR(y|y’;z-z’) denote the continuous part of the spatial domain Green’s

integration along the hyperbolic branch cuts C shown in Figure 8. Let

function in equation (3.7).' An examination of the spatially dependent

functions which appear in the integrand of G reveals that G is a

R R

spectral superposition of oscillatory y-dependent waves. Hence, the
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continuous spectrum represents a radiation spectrum.

Recall the expression for GR from equation (3.7)

GR(YIYI;Z-Z’)
= “I 314— [ e-pfly-y I 1* R11) e'Pf(Y+Y +211)

+ "pf

Cb

+R:2) e-pf(y-y +2t)+R:1) epf(y-y -2t)+R:2) epf(y+y )] e1C|z-z | dC

(3.18)

Referring to Figure 10, we can see that c; denotes the branch out

contour associated with branch points at C = -kC and C = -ks. The

branch out emanating from the branch point at C = -k is not significant

f

since the integrand in (3.18) is an even function of pf. Moreover, in

observing Figure 10(a), we can see that the contour above the branch out

emanating from C = -kC cancels with part of the contour below the branch

out emanating from C = -ks. Therefore, in the case of low loss limit

Figure 10(b), both pS and p0 change signs in crossing the branch out

where C > -kc, whereas only pS changes sign in crossing the branch cut

lying between -ks and -kc. In the latter case, pc has the same sign on

both sides of the cut.

The branch cut contour C+ can now be divided to include a real line
b

contour along Cr and an imaginary line contour along C1 as follows

'k 0 m

c

J + dC = J dC r+ I dC r+ J ij 1 (3.19)

Cb -k -k 0

S C

First, we have to determine the sign of'pQ above and below the branch

out along Cr and to the right and to the left of the out along jCi.
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A )9

 

 
(a) Branch cut contour for the case of some losses'.

 

  

  
 

(b) kti —-> 0

Figure 10: Branch cut contour partially cancels for

low loss 1 imit.
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pi = VCz-k: can be written.as

II

0....along C

42 2 :-

Pe=tl -C =t1

....along C1 ll

0

Figure 11 helps in determining the argument of p! along the branch out.

Along the right and lower sides of the upper half plane branch out the

TI

argument of pc is equal to 2 and hence pl is positive; along the left

and upper sides of the cut, the argument of pl is equal to -% showing

that pl is negative there.

Second, we have to determine the behavior of the coefficient R£1L

(2)

+ 9

(1)R_ )

R and R12 in crossing the branch out where C > -kc. Along

this part of the cut, each of pi is purely imaginary. Hence, we define

the following parameters

2 _ _ 2 = _ =

pc - C kc 9 hence pc in

2 _ 2_ 2 = _ 2 =

ps C kS 1 hence pS 31 (3.20)

2 2 2 2 _

Pf - C kf - c hence pf - 5c

Since the argument of each pl is g , they are located along the right

and lower sides of the upper half plane branch out (C > -kC).

Exploiting the expression for p! as in (3.20) in writing the coefficient

Ri“ as in (3.11.a) leads to

02+0‘( -1:)- ‘l.’
(1) = p p

 

20(T+p) coszot +2(O‘2+p1.’) sin2 (rt +21(<r2 +pt-o(t+p))cosotsinot
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J'C-

 

 

 

Figure 11: Evaluation of sign of pc to the left

and right of the cut and along upper

and lower side of the cut.
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which establishes the expression for Ri’) along the right and lower side

of the out. In crossing the branch out (C > -kc), each pl will change

sign leading to pc= ‘JP. PS= -jr and pf= -Jo. Using the form of pl

along the left and upper side of the cut in the expression for R11)

.1

shows that Ri” changes to Ril) in crossing the branch cut, where the

(2)

asterisk refers to complex conjugates. In the same fashion , R+ ,

R:})and R12) are transformed to their complex conjugate in crossing the

branch out from right to left or from lower to upper side.

Consider now the branch cut lying between Cr = -ks and CI- = -kc.

Along this part of the cut, pc is real whereas pS and pf are purely

imaginary and expressed as in (3.20). pc has the same sign on both

sides of the cut. Therefore, pc is defined as follows

p = C -kC = 7 hence pc = 7 = real

The expressions for RF), R12), Rim and R12) are changed to their

complex conjugates in crossing the lower side of the cut to the upper

side. With this in mind, we proceed to evaluate the branch out

integral using (3.19).

As can be seen from equation (3.18) the principal wave component of

the radiation Green’s function does not depend upon pS or pc.

Therefore, the only implicated branch out is that associated with pf.

We have to note that the sum of all the different components of the

integrand in GR is an even function of pf, whereas each individual

component is not. Hence, in integrating along the branch out contour as

in equation (3.19), pf changes sign (the pf branch out is crossed). We

choose a convenient sign of pf since pc and pS have constant signs on
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each different side of the pf branch out.

Consequently, we can write the branch out integral of the principal

wave as

-p ly-y’l O m
I e f eJClz-z | dC = I

C+

 

411pf

b 5

Note that the integral from CI. = -ks to CF = -kC and the integral from

CI. = -kC to Cr = 0 are combined now since the integrand is the same

in both regions. Choosing the sign of pf to be positive along the

right and the lower sides of the cut and negative along the left and

upper side of the cut, we can write

-p ly-y’l _ .
I e f ejC|z z | dC

+ 4np

Cb f

  

O 2 2 , 2_ 2 _ I

_ 1 e-Jng-Cr ly-y I + e JVEf Cr [V y I )Clz-Z’I

_ __ - e dC

4n 2 2 2 2 r

ks J f-Cr -’ f-Cr

  

e—CilZ-z’liji

m 2 2 I 2 2 I

1 I [- e'JV£f+C1 ly-y | + 61V£f+ci Iy-y I

0 My: -)V{:+c:

(3.21.a)

The first integral has two terms in the integrand because we are

considering the lower and upper side of the cut. The minus sign in

front of the first integral accounts for the integration being performed

in the opposite direction of the branch cut. Now, we want to separate

the terms arising from substrate and cover radiation from those arising

SO



from substrate radiation only.

After some manipulation equation (3.21.a) becomes

 

-p ly-y’l _ .
I e f ejC|z z | dC

C

 

 

+ 4np

b f

-k

c: 42 2 ,

J I COS[ f-Cr I Y‘Y I] J< |z_zl I

= 2— , e r dC

n 2 2 r

1‘s f-Cr

0 ‘4; .

J 1 cos[ g-C: ly’y I) it lz-Z’l+ __ e r dC

2n 2 2 r

kc f-Cr

e-C1|z-z’| dCi (3.21b)
 

1 J” cos[¢£:+C: ly-y’l]

2n 7

0 “Q“:

In the region where -ks< Cr < -kc, only substrate radiation is present.

We define the parameter 7 as before where

7 = VCZ-k: (3.22)
I‘

and by convention 1 is a positive real quantity. From this we can

write Cralong the negative real axis of the upper half plane branch out

as
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-k

c

The first integral J (---) dCrcan be conveniently rewritten by

-k
s

changing the integration variable to 7 . From equation (3.22) dCr can

be written as

7

dC =—d7
r Cr

Also, from equation (3.22) we can see that when Cr = -ks and Cr = -kc, 7

is equal to k6Vn:-n: and zero, respectively .

Similarly, in the region C > -kC both substrate and cover radiation

are present. We define the parameter p as before where

2 2 =
kC Cr....alongC1 0

2

c

2 2 2
p =k—c =

k
2 -

+Ci....alongCr-0

(3.23):

The latter two integrals in equation (3.21.b) can be conveniently

combined. The integration variables are changed from Cr and C1 to p in

both cases. From equation (3.23) when CI. is equal to zero and -kc, p is

equal to kC and zero respectively. Hence we have

- kz- for O S S kc p .... p c

j p -k ....for kc s p (a

With all this in mind, rearranging equation (3.21.b) leads to
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-p ly-y’l _ .
e f4 ejC|z z | dC

c+ "pf

 

o "2'“: cos[c( )( - ’)]

f 7 y y e1C(7)|z-z’| 7 d7

2n 0(1) Q 7

O

m cos[o(p)(y-y')] jC(p)|z-Z’I p

’ Mp) e T):p d"
o

where

C(p) = -V72+k: (3.24)

in the first integral term and

- -p ....O S p s kc

C(p) = ,———

+J Pz'k: ....kc s p < w

 

 

(3.25)

in the second integral term. Also, since 02 = ki-C2 we have

0(7) = ka:(n:-n:)-12 ....first integral

0‘:

q(p) = ka:(n:-n:)+p2 ....second integral

(3.26)

The reflected wave component of the radiation Green’s function is

analyzed in the same fashion as for the principal component, taking into

account that the different reflection coefficients are transformed to
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their complex conjugates as the branch out is crossed. Hence, GR can be

expressed as

GR(YIy’;z-z’) = - I [ e'PfIY'Y I + R:1)e-pf(y+y +2t)

+

Cb

I I I JCIZ’ZII

(2) -p (y-y +2t) (1) p (y-y -2t) (2) p (y+y ) e dC
4' R+ e f + R_ e f + R _ e f W

2 2

n -n
o s c I

+ %_ [ { cos 6(7)(Y'Y') + Re{ R(1) e 10(7)(y+y +2t)}
n +

0

+

+ Re{ R’Z) ;)0(7)(y~y’+2t) } + Re{ R:1) ejc(7)(Y'Y’-2t)}

+ Re{ R(2) e10(7)(y+y’)} } eJC(7)|z-z’|¢ 77 277

m

+ J { cos 6(P)(y-Y’) + Re{ R:1)e-J¢(p)(y+y +2t)}

O

, Re{ R:2) ;)o(p)(y-y’+2t) } + Re{ R11) ejG(p)(y-y’-2t)}

+ Re{ R:2) e)o-(p)(y+y’)} } e)C(p)|z—z'|c pp gpp ]

(3.27)

which establishes the final form of the space domain Hertz potential

radiation Green’s function. The parameters C(7), C(p), 0(7) and 6(p)

are expressed as in equations (3.24) through (3.26).
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3.5 COMPLEX PLANE ANALYSIS FOR THE CASE OF SOURCES IMMERSED IN THE COVER

Recall form Chapter Two, the expression of the spectral

representation of the Hertz potential Green’s function with sources

immersed in the cover layer

Q

G(YIYISZ‘Z’) = é—il 5% { e-pcly-yll + R(C) e'Pc(Y+y') } eJC(z-z’ )dc

C

m

where the reflection coefficient R(C) is expressed as

2

R(C) a pf(pc-ps) + (pops-pf) tanh(pft)

 

2

pf(ps+pc) + (pspc+pf) tanh(pft)

Note that the second term of the spectral integral representation of the

Hertz potential Green’s function involving R(C) contributes surface

wave modes associated with simple poles of R(C). Radiation modes

associated with branch cuts of pc and pS are contributed by both terms.

Branch cuts associated with pf are not implicated since the integrand of

G(y|y’;z-z’) is an even function of pf.

Deformation of the real line integration path leads to the same

contour C’as when sources were immersed in the film layer (Figure 7).

In fact, the radiation condition is the same in both cases. Equating

the denominator of R(C) to zero leads to the well known eigenvalue

equation for TE modes of the asymmetric slab as in equation (3.13).

Evaluating the pole integral in complex C-plane gives the discrete part

of the Green’s function as
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(yly’;z-z') = R(Cp) e-pc(Cp)(y’y')e'J§p|z‘z'lG

pole

where 2

JPCPSPf

 B(Cp) =
2 2

Cp(kf-kcl(pc+ps+pcpst)

The evaluation of the branch out integral is similar to the case of

the sources immersed in the film region. R(C) changes to its complex

conjugate in crossing the upper half plane branch out from right to left

or from lower to upper side. The expression for the radiation component

of the Green’s function is then formulated as

V nZ-n2 _ ( ) ,
s c e 1C 1 |z-z |O

, , - - ( + ’)
GR(y|y :z-z ) = g [ Im{R(C) e 7’ Y Y } cm d7

0

°° ‘JC(p) lz-z’ I

- I { cosp(y-y’) + Re{R(C) 3’p(y’y ) }} e {(P) dp ]

o

 

 

where

C(7) = V 72+k: ..... in the first integral term

and

2 2
k -p ....for 0 s p s kC

C

C(p) = J kfi-p’ =

'1V pZ-k: ....for kc s p < m

..... in the second integral term

3.6 SUMMARY

Identification of the propagation mode spectrum of asymmetric

planar slab waveguides may be made by analyzing solutions to (2.20) or
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(2.24) in the complex C-plane. By appropriately deforming the initial

real-line inversion integral of the transform domain Green’s function,

the space domain Green’s function may be expressed as

G(yly':z-z’) = ‘ 25 I 8(y/y’;C) eJCIZ’Z'I at
+

C

P

’ 23 I g(y/y’:<) e’clz'z I at
(:4:

b

+

b

branch out in the upper half plane respectively.

where c; and C are the contour around the pole and the hyperbolic

From eqn (2.25) it can be seen that the electric field decomposes

into a superposition of two types of modes. A discrete mode spectrum

arises from integrating around the surface-wave pole in the complex

C-plane while spectral components of the continuous spectrum are

given by (2.20) or (2.24) along the branch out contour c;.
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e l...’ _ I._I I,_I

Gf(y|y ,z z ) jkozo [ Gpol°(y|y ,z z ) + GR(y|y ,z z ) ]

- -p (C )(y+y’+t) -p (C )(y-y’+t)
1k020[{B1(Cp) e f p + B2(Cp) e f p

+ 82(Qp) epf(Cp)(y-Y"t) + 83(Cp) ePf(Y+YI+t)} e‘JCplz-Z’I

+

n -n
o s c .

+ 2? [ { cos 0(7)(Y'Y') + Re{ R(l) e 10(1)(y+y +2t)}

0

+ Re{ R12) e‘Jo(1)(y-y’+2t)} + Re{ Ria) ejo(7)(y-Y’-2t)}

+ Re{ R12) e’°(7)(Y+Y’)} } eJC(1)|2‘Z'| 7 d1

0(7) C(7)

m

+ I { cos 0(P)(Y‘Y') + Re{ Ril)e-’o(p)(y+y +2t)}

0

+ Re{ R:2) e-10(p)(y-y’+2t)} + Re{ R:2) e)0(p)(Y’Y’-2t)}

+ Re{ R12) e10(p)(y+y’)} eJC(p)|z-z’| 9 d9

0(p) C(p)

(3.28)

This electric Green’s function will be used in next chapter to evaluate

the unknown electric field inside a discontinuity in the film region.
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Chapter Four

APPLICATION TO SCATTERING BY OBSTACLES ALONG

ASYMMETRIC SLAB WAVEGUIDE

4.1 INTRODUCTION

When the geometry of the waveguide is perfect, and if we can

neglect losses in the dielectric material itself, the guided modes will

travel without change and without attenuation. It is, however,

impossible to build dielectric waveguides to such a perfection.

Studying the modes of a perfect waveguide as was done in the previous

chapters is an important first step of determining its properties. In

order to be able to evaluate the performance of a realistic waveguide,

it is necessary to study its behavior if departures from the perfect

geometry occur.

The imperfections of dielectric waveguides occur in many forms: (1)

losses of the dielectric material, (2) departure from perfect

straightness, (3) inhomogeneities of the dielectric material, (4)

departure of the core/cladding interface from a perfect plane in slab

waveguides, and (5) many others. Of all imperfections mentioned, the

influence of inhomogeneities of the dielectric material in the core

region will be analyzed. Waves scattered by such a discontinuity along

the guiding structure can be quantified on the basis of a polarization

electric field integral-equation (EFIE) description of the discontinuity

field.

Various methods have been presented by several authors for the

analysis of discontinuity problems in slab waveguides. Among those is
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Marcuse’s treatment [12,13] which dealt with the abrupt junction between

two dissimilar guides and the interaction of surface waves with small,

distributed surface irregularities. The most rigorous analysis for step

discontinuities is Rozzi’s investigation [1,14] based on a two-

dimensional integral equation formulation for the fields in transverse

discontinuity planes.

A polarization EFIE description of slice discontinuities along a

symmetric-slab waveguide was first exploited by Nyquist and Hsu [2,3].

Subsequent applications of the integral-operator description [4,5]

were based on different representations of the Green’s function

kernel and expansions of the unknown field. The EFIE formulation in

[2] and [3] was generalized [6] to include discontinuities having

arbitrary shapes and complex refractive index profiles along open

boundary dielectric waveguides.

In this chapter, a polarization EFIE description of the

discontinuity region along an asymmetric-slab guide is developed.

Method of moment (MOM) numerical solutions were obtained for the

discontinuity field, leading to scattering coefficients and the

fractional radiated power.

4.2 EQUIVALENT-POLARIZATION DESCRIPTION OF DISCONTINUITY REGION

An equivalent polarization description of the dielectric

discontinuity region is obtained in terms of the contrast of its

refractive index against that of the unperturbed surface waveguide.

Figure 12 indicates a dielectric discontinuity along an open-boundary
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Figure 12: Scattering (reflection, transmission, and

radiation) of an incident TE1 surface-wave

mode by a dielectric -slice discontinuity

along a planar-slab waveguide of arbitrary

shape.
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dielectric waveguide. When a surface-wave mode is incident upon the

discontinuity, it is subsequently scattered; i.e, it is reflected,

transmitted and radiated. Let nu(?) denote the refractive index of

the unperturbed surface waveguide with the decomposition

ns(r) ...at points in the substrate

n = f(r) ...at points in the waveguide core

u nc(?) ...at points in cladding

The discontinuity region V with refractive index nd(?) is that region

d

where the refractive index differs from nu(?). The incident wave E1

induces an equivalent polarization distribution in region Vd’ and this

polarization excites and maintains the scattered field ES.

We know from Ampere’s law at any point in the system

v x fi(?) = 39(?) + jw€(?) E(?)

where C(?) denotes either the unperturbed permittivity eu(?) in the

unperturbed region or cd(?) = n:(?)co in the discontinuity region.

je(?) is the impressed electric current which maintains an impressed

incident field E1. An equivalent polarization current is obtained [15]

by adding and subtracting the displacement current of the unperturbed

current in the Ampere’s law Maxwell equation. We obtain

v x fi(?) = je(?) + jwco(n2-n3) E(?) + jwcon: E(?)

je(?) + jeq(?) + jwcon: E(?)

A "
M
r
V

II

2 2 a

jwco(n nu) E(r)

is the equivalent induced polarization current which describes the
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radiation) of an incident TE1 surface—wave

mode by a dielectric -slice discontinuity

along a planar-slab waveguide of rectangular

shape.

63



discontinuity region V and excites the scattered field ES. The induced
d

current, non vanishing only in the discontinuity region Vd, is

expressed in terms of the total field E(?) in that region as

a _ 2 9 a
jeq(r) - jwcoan (r) E(r)

where 6n2(?] = n§(?)-n:(?) is the refractive index contrast.

We specialize this result to a rectangular discontinuity placed in

the film region as in Figure 13. Since the unperturbed refractive index

nu is now equal to n we have
f,

jeq (3) = jweo(n:-n:) E(3) = choén?(3) E(3) (4.1)

which expresses the excess current of the discontinuity in the film

region and where 3 = 9y + 22 is the 2-D position vector.

4.3 FIELDS MAINTAINED BY IMPRESSED AND INDUCED CURRENTS
 

Total electric field E along the open-boundary surface waveguide

is excited by an effective current 3 = 3e + jeq consisting of both

primary impressed and equivalent induced components. The effective

current 3 is oriented in the Q direction in order to excite TE type

modes.

The total field along the perturbed waveguide system can be

expressed as

___ e I, _ I I I I I

Ex(y,z) LéstWIy ,z z ) Jx(y ,2 ) dy dz

which illustrates the E field maintained by j in terms of the electric
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Green’s function expressed as in chapter three. G:(y|y’;z-z’) is

decomposed into discrete and continuous spectral contributions as

follows

e I,_I=e I,_I e I,__I

Gf(y|y ,z z ) Gpole(y|y ,z z ) + GR(y|y ,z z ) (4.2)

where G; and G:°l°are expressible as in Chapter Three.

Equation (4.2), a representation of the electric Green’s function, is

constructed from complex analysis on the spectral integral

representation of the Hertz potential Green’s function. Some of the

terms in the expression for G: can be combined to emphasize the

reciprocity of the electric Green’s function. In fact, G:(y|y’;z-z’)

can be written as
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-1K(y+y’+t) Kt
G:(y|y’;z-z’) = -]koZO {3,‘Cp’ e +232‘Cp) cosK(y-y’)e-’

+ 83(Cp) e’K(y+y’+t)} e_jcp|z-z I

2 2

n -n
J o s c I

+ 2H [ [k { cos 0(7)(Y'Y )

O

+ Re{ R:1) e-jo(7)(y+y +2t)}

+ 2Re{ R12) e-’o(7)(2t)cosc(7)(y-y’)}

+ Re{ R12) e10(1)(y+)")} eJC(7)|z-z’| 7 d7

0(7) C(w)

m

+ [ { COS 0(p)(y-y’) + Re{ R:1)e-JG(P)(Y+Y +2t)}

O

+ 2Re{ RiZ) e-’0(p)(2t)coso(p)(y-y’)}

+ Re{ R(2) e1c(p)(y+y’)}} ejC(p)|z-z’| p dp

0(9) CW

(4.2a)
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4.4 ELECTRIC FIELD INTEGRAL EQUATION FOR AN UNKNOWN FIELD INDUCED IN THE

DISCONTINUITY REGION
 

The field excited along an open-boundary dielectric waveguide

and within the discontinuity region by impressed and induced currents is

_. e I, _ I e I I I I I

Ex(y.z) -J Gf()'|y .2 z ) [wa .2 ) + Jeqw .2 )] ds

LCS

_ i s

- Ex(y,z) + Ex(y.z) (4.3)

which represents the electric field at any point in the system.

E:(y,z) is the impressed field maintained by a primary impressed current

J: and E:(y,z) is the scattered field maintained by excess polarization

current Jeq induced in the discontinuity region. Rearranging leads to

Ex(y,z) - sin/,2) = E:(y,z) for all mm 6 LCS (4.4)

where

E:(y,z) = jwcoJ 5n2(y’,z’) G:(y|y’;z-z’) Ex(y’,z’) ds’ (4.5)

LCS

is the scattered field maintained by an induced current in the

discontinuity region with longitudinal cross section LCS. Expressing E:

in equation (4.4) in terms of the total field EX within the

discontinuity region by using equation (4.5) leads to the EFIE
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N
'
0
’
?

E (y,z) - J .[ 6n2(y’,z’)Ge(y|y’;z-z’)E (y’,z’)dy’dz’ = E1(y,z)
x I£S f x x

O

for all (y,z) e LCS

(4.6)

where k0 = 1.101060)“2 is the free space wavenumber and 20 = (#080)1/2 is

the associated intrinsic impedance. It is assumed that J: is a remote

source that maintains impressed field E: consisting of a single

principal TE surface wave mode in the region of interest.

4.4.1 TE Surface Waves Supported by Planar Layered Background

We assume that the film thickness t in Figure 13 is chosen such as

to support only the TE1 principal surface-wave mode. The basic

equations for TE-mode guided waves are [13]

2 2 2 _
V hz + (kt-C ) hZ - 0

t

9 _ 2B A 9 (4.7)
et C (ZXht)

"=_J_C_
ht vthz2 2

(kl C )

G

where l = s,f,c (substrate/film/cover) and lower case 3 and 3 denote the

transverse fields. Since the slab waveguide has no field variation in

the x direction, which we express symbolically by the equation

(4.8)

m
l

O
J

X

I]

O

and V2 becomethen the operators Vt t
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V = -—— and V =

f
.
.
.

N n
- ‘
<
>

0
3
'
Q
)

‘
<

We have shown in Chapter three that the discrete values of the

propagation constant C for guided modes is limited to the following

range

kc < ks < gp < kf

which has prompted the definition of the parameters 6, K and 1 as

7
'
:

0
)

II
[I

W
n

W
3
‘

O
N

H
,

'
O
N

3k1 = {p- 0

Solutions of equation (4.7) provides the expressions for hz, hy and ex

in each region (substrate/film/cover). Taking into account the

radiation condition as y—e to the fields in the cover region region are

expressed as

n (y) = A e""y
Z

y>0

1C -1y
h = —— A e

y(y) 1

efl 'Wex(y) 7 A e

which consist of waves attenuating in the upward direction. Similarly,

in the film region (-t<y<0) the fields are given as
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hz(y) B sinKy + C cosKy

hy(y) = %S (B cosKy - C sinKy) -t<y<0

ex(y) 2%23 (B cosKy - C sinKy)

which consist of standing waves. Finally in the substrate layer (y<-t)

the fields consist of downward attenuating waves as follows

hz(y) = D e6y

- :15 6y -hy[y) - 6 D e y< t

.12): 6Vex(y) 6 D e

The coefficients A, B, C and D are determined by satisfying the

appropriate boundary conditions requiring continuity of tangential

electric and magnetic fields at both y = 0 and y = -t interfaces. Thus

we have

+ —

hz(y=0 ) = hz(y=0 )

( ~0’) - ( -o')ex y- - ex y-

+ ..

hz(y=-t ) = hz(y=-t )

+ _

ex(y=-t ) = ex(y=-t )

Solving for the transverse electric field in the film region gives

ex(y) = :2%E§ (cosKy - 7 sinKy) -t<y<0

R
I

Hence, the surface-wave field in the film region is expressed as
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EX(Y.Z) = eX(Y) etijz = JwgB (% sinKy - cosKy) e tijz 

 If we let E0 = jguB be the amplitude of the surface-wave and

assume that the impressed field is the forward TE surface-wave mode,

the final expression for E: is

E:(y,z) = Eo(% sinKy - cosKy)e-J<p (4.9)

which establishes the incident TE surface-wave film field.

4.5 MOMENT-METHOD SOLUTION OF THE EFIE:
 

The previous sections obtained the EFIE for the unknown field in

the discontinuity region as well as the surface-wave field incident

upon the discontinuity. The EFIE in (4.6) can be solved using the

standard method of moments technique. The unknown discontinuity field

Ex(y,z) is first expanded in an appropriately chosen set of basis

functions (en)

Ex(y,z) = ; an en(y,z)

where an are the unknown expansion coefficients. the EFIE (4.6) for

Ex(y,z) is dicretized by substituting the above expansion for unknown

Ex' Then rather than forcing (4.6) to be satisfied for all (y,z), it is

multiplied by a set of M testing functions tm(y,z) and the inner

products are taken.
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2 an I tm(y.z) en(y.z) dydz

n 5

b
4

3
?

o
O

2IIe I,_I I I I I

2 an I tm(y,z) dydz I ,6n.(y ,z )Gf(y|y ,z z ) en(y ,z )dy dz

n s s

= t (y z) E1(y z) dydz
s m ’ x ’

where s,s’ are the longitudinal cross section of the discontinuity

parameterized in field/source coordinates. Rearranging the above EFIE

leads to

ZanA =1“ ...m=1,2,..,N (4.10)

n

where

Amn = Jstm(y,z) en(y,z) dydz

jk
0 2I Ie I...’ ’ ’ ’ ’- _2; Jstm(y,z) dydz [3’6n (y ,z )Gf(y|y .2 Z ) en(y .z )dy d2

and the forcing vector Fm is

i

Fm - Istm(y,z) Ex(y,z) dydz

The integral equation (4.6) has now been reduced to an MOM matrix

equation (4.10). In the next subsection, a pulse Galerkin’s

implementation is applied to establish the matrix Amn and the forcing

vector F .

m
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5.5.1 Pulse Galerkin’s Solution:

The discontinuity region is partitioned into N equal sub-area

elements ASn centered at (xn,yn). The partitioning is defined such that

£/2 O N

dy dz = 2 AS

I1

J:t/z JO-t ”‘1

Each surface element ASn is defined by (Ayn) and (A2“) which represent the

length of the interval spanned by the nth partition along y- and

z-direction respectively. Hence we have

Ay = and A2 =

Z
l
n

2
|
c
~

Y N
where Ny and Nz are total number of partitions along 9 and 2

respectively.

The basis functions en(y,z) and the testing functions tm(y,z) are

chosen to be pulse functions defined as

1 ....for (y,z) e (AS)n

pn(y.z) =

0 ....otherwise

The index contrast is expanded into a pulse function as well giving

6n2(y’,z’) = Z An: pt(y,z]

1

Hence the term 6n2(y’,z’) eh(y’,z’) in the expression of the matrix Amn

becomes

2 I I I I = 2 I I

an (y ,z ) en(y ,z ) Ann pn(y ,z )
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With all this in mind, substituting the expressions for the basis

functions and the testing functions in Amn and Fm gives

jk

O 2 e I._I I I

AInn a amnAS - -2; Ann I dy dz J Gf(y|y ,z z ) dy dz

(AS) (AS)
m n

rm = J E:(y,z) dy dz

(AS)
m

We now proceed in evaluating the above spatial integrals required

in spectral integral representation of MOM matrix elements. Note that

_ 91 A!(AS)n is defined by (yn 2 ) < y < (yn + 2 ) and

_ A2 A2
(2n 2—) < z < (2n + §—). We can see from the expre531on of

G:(y|y’;z-z’) in (4.2) that the integral over the z-coordinate is

 

 

2.42 2.42
mn 2 n 2 C|z-z’|

’2 (c) = dz 5 dz’

2 - 93 z - AZ
m 2 n 2

2(1-cosCAz) eJClzm-zn| ..... for mtn

2

_ C

JZAZ + a; (1- eJCAz) ..... for m=n

C C

The integrals over the y-coordinate are summarized as follows
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yn+ 2 yn 2 a

dy dy cos{K}(ym-yn)

Y ’ 2— Y ' 5-

g
.

‘
3
3

”
9

“
r
d

ll

2(1-cos{:})Ay

= cos c ( - )
K 2m yn

 

<
9
-

»
3

P
M

K
9

H
—
J

I

h
—
—
:

‘
<

:
1
+

N
I

0
.

‘
<

‘
—
-
o

'
<

:
3

+

N
I

Q
.

<
\

O

L
-

7
4
9

A ‘
< +

<
‘

o
2(1-cos{K})Ay 0 ( + )

2 eJ ym yn

o

{.2}

The final form for the spectral integral representation for the MOM matrix

 

Amn can now be written in terms of the above functions as follows
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2 2 mn -jKt

Amn = amnAS - JkoAnn j¢z (-Cp) [B (Cp ) om(--K) e +

mn -jKt mn jKt

282(Cp) ¢y0(K) e + 83(Cp) ¢y1(K) e J

C

“In

+ a [¢yo(c(1))

+ Re{ Rii) ¢$?(-0(7))e-Jzot}

+ 2Re{ R12) ¢$:(0(7))e-’20t}

 

(2) mn mn 1 d1

+ Re{ R_ ¢y1(0‘(7))} ] ¢Z (0(7))W

+ I [oggwmn + Re{ Bi“ o3?(-a(p))e"2°t}

O

+ 2Re{ Riz’ ¢$:(q(p))e-’20t}

+ Re{ afz’omnwmn} ]¢:‘“ (o(p))W

(4.11)

where the coefficients B1, 132, B , R”) R(2)and 1212’ are defined in
3 + ' +

chapter three. The forcing vector Fm is computed in the same way and

found to be

4e‘JC 2

F = -————£—— sin(K—2) sin(CpA2) [ 7m CpK K sin(Kym) - cos(Kym) ]

(4.12)

Once the matrix elements of Amn are known as well as the forcing

vector Fm, the matrix equation (4.10) is inverted numerically to
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quantify the an’s; the unknown induced field Ex(y,z) is subsequently

known. Matrix elements in (4.11) can be calculated analytically in

closed form except for the spatial frequency integration over the

continuous spectrum which must be implemented numerically.

4.5.2 Scattering Coefficients

In this section, the scattering coefficients i.e reflection and

transmission coefficients, are evaluated using the pulse function

expansion for the induced field in the discontinuity region found

previously. In fact, the scattered field (reflected or transmitted) is

given by (4.5). The surface wave scattered field is expanded in terms

of the discrete part of the electric Green’s function as follows

SW = 2 I I I.__I I I I I

Ex (y,z) Jweo Js’dn (y ,z ) Gmflfi(y|y ,z z ) Ex(y ,z ) dy dz

The back scattered field or reflected wave Egsis defined as the

surface scattered wave for source points greater than the field points

along the z-direction, i.e z < all 2’; whereas for the forward scattered

wave we have 2 > all z’. The transmitted wave E; is defined as the

incident wave augmented by the forward scattered wave. The reflection

coefficient is expressed as the back scattered wave divided by the

incident wave, all evaluated at the input plane along the z-direction of

the discontinuity, i.e at z = -£/2. Thus we have

as

E (y,z)
R- x

- —I—_———- [4.13)

The transmission coefficient is expressed as the transmitted wave
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evaluated at the output plane (zed/2), divided by the incident wave

evaluated at the input plane of the discontinuity

_ E;(y,z)|z c/z

 T

E:(y,z)|2 -1/2

Since the surface-wave scattered field E3" depends on the discrete

electric Green’s function, we expect that Gjolohas the same functional

dependence on y as the incident field. This latter derivation is

lengthy and the result is given as

000

A

jk.Z N [

0

e ., _ . =
Giol°(y|y ,z z )p Z sinKy’-cosKy][ Z sinKy-cosKy] e.’cp|z—Z I

K K

(4.14)

where A0 and No are defined as

 

_ 2 2_ 2 2_ 2
A0 - 4Cpk01/(nf nS)(nf nc) (1+6+16t)

41(K‘75+K27531

N _

Vk‘+1262+K2(12+62)

 

O
 

Substituting the pulse function expansion for the discontinuity field

Ex(y,z) and using (4.14) for the discrete Green’s function, in the

expression for the forward and backseattered field leads to the final

expression for the reflection and transmission coefficients as follows
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-4k N

g o 0 -JC l y A2 2 I _ -jC 2
R AoEocpK e ‘p sin(Ké§)sin(Cp—§) An ; an(K sinKyn cosKyn)e p n

T = e—JC t 1- -EE:EB— e-JC tsin(KéZ)sin(C 93) Anal a (1 sinK -cosK )
p Aosogpx p 2 p 2 n n K yn yn

e J cp211]

4.5.3 Numerical Results

A study of scattering parameters (reflection, transmission and

power radiated) permits to know the behavior of the waveguide in the

presence of the discontinuity region. The waveguiding structure is

chosen such that there is a 5% refractive index contrast between film

and substrate, and a 10% contrast between film and cover regions. The

normalized width t/A of the guiding region is chosen such that only the

TE1 surface-wave mode is excited; all other modes are at cutoff. This

specific value of t/A is extracted from the dispersion curve of the

waveguide.

Curves of scattering parameters versus the discontinuity refractive

index are illustrated by Figure 14 and 15. To ensure mono-mode

surface-wave propagation, t/A must be equal to 0.5 and 1.2 for the case

of GaAs film region (nf = 3.2) and glass (nf =1.5), respectively. It is

apparent that for small contrast between the film and the discontinuity

region, we obtain small reflection (less than 20%). As the contrast

An2 gets higher, the reflection coefficient gets bigger (up to 60%).

Figures 16 through 19 show the scattering parameters versus the

normalized length of the discontinuity along the z-axis. It appears

that when the discontinuity gets longer the transmission coefficient

gets lower. This is in agreement with our physical intuition.
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In Figures 20 through 21, relative field amplitude [Ex(y’Z)/Emax|

versus normalized length y/t are shown. We can see that the field

distribution is asymmetric with respect to y a -0.5t axis. This is

expected since we are dealing with an asymmetric slab waveguide.

4.6 SUMMARY

A polarization EFIE description of the discontinuity region along an

asymmetric slab waveguide is developed. An equivalent polarization

description of the dielectric discontinuity is obtained in terms of the

contrast of its refractive index against that of the unperturbed surface

waveguide. Hence we have

a = 2 a a
3eq(r) jwcodn (r) E(r)

The fields excited within the discontinuity consist of the

impressed field of an incident wave augmented by the scattered field

maintained by the equivalent current

E (y z) = Es(y z) + E1(y z)
x ’ x ’ x ’

Rearranging leads to the EFIE

k
0

2IIe I,_I II II=1

Ex(y,z) 1 2;.Ll36n.(y ,z )Gf(y|y ,z z )Ex(y ,z )dy dz Ex(y,z)

where E:(y,z) consists of a single forward propagating TE1 surface-wave

mode and expressed as
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Figure 17: Scattering parameters Vs normalized

length of the slice discontinuity with
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1 = z - -i<Ex(y,z) E°(K sinKy cosKy)e p

The EFIE is solved using the standard method of moments technique.

The unknown discontinuity field is expanded into a pulse function

expansion. The EFIE is reduced to an MOM matrix equation. A pulse

Galerkin’s implementation is used to establish the MOM matrix.
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Chapter Five

CONCLUSIONS

A detailed development of the electric Hertz potential Green’s

function for a tri-layered substrate/film/cover dielectric structure was

presented in chapter two. The electric Green’s function is a constant

multiple of the Hertz potential Green’s function due to the x-invariance

of the fields. This development demanded a mathematically rigorous

treatment and revealed that the electric Green’s function is represented

by 1-D spectral integral, which is alternatively evaluated by contour

deformation.

In chapter three, complex-plane analysis applied to the spectral

integral representation of the electric Green’s function leaded to the

identification of the propagation mode spectrum of the asymmetric planar

dielectric waveguide. A discrete mode spectrum was shown to arise from

integrating around the surface-wave poles, while hyperbolic branch cuts

corresponded to a continuous spectrum. This electric Green’s function

was specialized for the case of symmetric slab. It was found that it

agrees completely with Rozzi’s result [1,14]. In fact, after shifting

the axis and some tedious manipulations, our specialized Green’s

function reduces to the TE even Rozzi’s Green’s function for the

symmetric slab waveguide. This is detailed in appendix E.

Finally, a polarization EFIE description of a discontinuity region

along an asymmetric slab was developed. Standard method of moments(MOM)

numerical solution were obtained for discontinuity field, leading to

scattering coefficients and the fractional radiated power.
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APPENDIX A



APPENDIX A

Electric Hertzian potential

Using V-H = 0 (non existence of magnetic monopoles) the magnetic

field H can be expressed as the curl of a vector potential. In an

electrically homogeneous medium, H may be expressed in terms of the

Hertzian potential H as

E = jwc vxfi (1)

From Faraday’s law we have

VxE = ~10“ H

Substituting (1) into Faraday’s law yields

vXu‘a‘ - 1311) = 0 (2)

where k2= wgpc is the wavenumber in the medium. Equation (2) implies

if = szl — vo (3)

where p is a suitable scalar field. Using (1) and (3) into Ampere’s law

VxH = j + jch

yields

2 2 _-3 .
(v +k)fi-m+v1vfi+o) (4)

where we used the vector identity VxVxx = vv-X - V22. Since a vector

field is uniquely determined through knowledge of its curl and

divergence, by choosing V-fi = -p uniquely determines H. Thus (4)

simplifies to
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2 2

(V +k)fi3fi

which consists of the Helmholtz equation for the Hertzian potential

subject to the Lorentz gauge V-H = -p . Use of this Gauge in (3) yields

E = (k2+ VV-fii

which relates the electric field to the Hertz potential.

92



APPENDIX B



APPENDIX B

Primary Green’s Function

The principal Hertzian potential satisfies the following Helmholtz

equation

azup -j
x1 2 X

2 ‘ Pi“:1‘Y'<’ ‘ 355
 

6y i

"ii can be written in terms of a primary Green’s function in transform

domain

+m

Jx(y.C)

11:1(YoC) =I -—JJ€T- 8‘:(Y|y 3C) dY

where g§(y|y’;C) satisfies

628? 2- p181; = -6(y-y’)
(1)

 

6y2

We perform a Fourier transformation on the y-axis. we define the

Fourier transform pair f(y) e——9 f(n). Hence g§(n.§) and g§(y,C) are

defined as

+00

I g§(y.c1 e'”y dy
~P

81(D.C)

and +m

p 1 ~p iny
81(y.c) - 5; I 81(D.C) e dn (2)

Substitute (2) into (1) yields
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+0

2

[ 9—- - pf ] g; I g§(n.c1 emy dn = —6(y-y')
2

By a

+00

_ -1 in(y-Y’)
- 2; I e dn

0

Rearranging the above equation yields

+00

I { [n2+ Pi] £§tn.<) - e’my } e’"y dn = o (3)

(m

We can see that (3) is the inverse Fourier transformation of the

quantity in brackets.

Since 9;‘{---} = 0 e {...} = 0

-iny’

Hence §§(H.C) = -§-——5— (4)

n + p
1

Use of (2) and (4) Yields to the primary Green’s function in axial

transform domain

dn

+m JD(Y’Y')
p 1 e

2 2

n +P1

dn (5)
 

+m I

1 I ein(y-y )

m (n-1p1)(n+ipii

We apply a deformation of this real line integration and apply Cauchy’s

theorem

J(...) d1, = O

C

+ +

where C = C0 + c; + c; is the deformation contour. Co is the initial

+

real line contour along the Retn) axis. c; is the pole contour. Note
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that the integrand in (5) has two simple poles at n = 11p1 i = f,c for

sources immersed in the film and cover region respectively. We

specialize our solution for y’= 0 since the final result can be shifted

to any y’¢ 0. Hence we can write

+00

iny

g‘i’imi = 712—1: I 9 dn (6)

a (n-Jp1)(n+ip1)

 

JHY
The exponential factor e appears as part of the integrand in

(6). Writing n = nr+jn1 the above exponential factor will be

eJDY = e‘DIY eJDrY

Therefore to ensure convergence of the integrand, we perform an upper

half closure for y > 0 and a lower half closure for y < 0. This is

shown in Figure 22.

J (°-°) dn = 0 since the integrand converges

+
C-

cm

Hence, for y > 0:

+O

 

 

einy einy

d” = 211:] W

2 2 TI _

then

'P Y
p = e i

21(y.C) 291 -y > 0

and for y > 0
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Figure 22: Complex n-plane.
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+O

then

Therefore

 

 

ejny e Jny

dn = -2u1 1—:7——7-

n2+pi n ’pi n = -Jp1

P Y
p = e i

-p lyl

8p(Y.C) = S__£___ for all y
i 2p1

Shifting the result to y’s 0 yields to the final form for the

primary Green’s function in axial transform domain

e-pily-y’l

2p1

 

p _
81(Y.C) -
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Application of Boundary Conditions

Enforcing tangential 3 at the interfaces requires

2

nxc(o’c) Nfcnxfto’c) (1)

2

and nxf(-t,C) N'fnx.(-t.C) (2)

In a similar fashion, continuity of tangential 3 yields

anxc(o,§) N2 anxf(o,C)

fly to fly

(3)

anx€(-t.C) 2 anx'(-t.C)

6y = N“ 6y (4)  

The total potential in the film region consists of the sum of a

primary component augmented by a reflected part and is expressed as

+m I _ _ I

Jx(y .C) e pfly y I

jwef pr

 dy’
= H -py r- py

nxf(y.C) wxfe f +wxfef +1

Apllication of boundary condition (1) at y = 0 interface gives

I

 

dy
xc fc xf X? to jwef pr

4'” I I

2 I wa .C) epfy

We used the fact that |y-y’| = y-y’ since all y > y’ near y = O, that is

all field points are greater than source points. We define Vy(C) as

follows
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+"Jx(y’.() epr’
Vy(C) = jwc 2p dy’

f f

Hence boundary condition (1) yields

2 t r+ r- _

N w - w - "x: - Vy(§) (5)
cf xc xf

In the same fashion boundary condition (2) yields

P _ P

N2 w" 3: (w r - w”) = —£ V (C) (6)
cf xC p xf xf p y

c c

Near y = -t interface all y < y’, hence boundary condition (3) at

y = -t interface yields

wr+ epft - wr- e-pft + szf' e-pst = e-pft W (C) (7)
X! xf If x- y

up"

where Uy(€) is defined as

 

+

coJx(y’.c) e-pr’

W (C) a we 2 dy’
Y J f Pf

0

Similarly, boundary condition (4) gives

pf r+ p t r- -p t 2 t. -p t pf -p t

‘—— (w e f - w e f ) + N it e s = —— e f U (Q) (8)
xf X! at x: ps y

S

First, we eliminate Hie between (S) and (6) leading to

P _ P P

w'* (1- —§ ) + u' (1+ —5 ) = v (c) ( —5 - 1) (9)
xr pC xr pc y pc

Secondly, we eliminate w; between (7) and (8) leading to

P _ P _ P _

w'*(-£+1)eprt+w’ (1-i)eprt=w(c) (i-1)eprt(1o)
xf S xf ps y ps

Combining (9) and (10) and after some manipulations, the
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4. _

expressions for w'‘- and "it are as follows

X

 

 

 

r+ _ (1) -2p t (2) -2p t
"x: --R+ e f Hy(€) +R+ e f Vy(§) (11)

r- _ (1) -2p t (2)

"x: - R_ e f Hy(C) + R_ Vy(§) (12)

where 31‘? Biz? R11)and R12)are defined below

Pft

Rl1)= (pt+pc)(pf-p') e

2
2cosh(pft) [(pf+p§p.)tanh(pft)+pf(ps+pc)l

_ _ P t

R(2)= (pf P'pr pc) 8 f

2
Zcosh(pft) [(pf+p€p')tanh(pft)+pf(p.+pc)]

(1)_ (2)
R_ — R+

(p +p )(p -p ) eptt
R(2)_ f s f c

2cosh(pft) [(p:+pcp.)tanh(pft)+pf(p'+pc)l

Substitute the expressions of Vy(§) and Wy(€) in (11) and (12) gives

the final expressions for w;: and w:; as follows

Xf 2506 p + + y

+onj(,c)

r+ = I x y ’ (R}1)e-pf(y’+2t)+ R(Z) epf(Y'-2t)) d

r r
“N

and

+me(y’.C),. = (1) -p (y’+2t) (2) p y’ .
w I—leep (R_ef +R_ ef )dy
xf

f 1‘

-co
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We would like to evaluate J —9S— . That is, we want to perform

+c+cp

P

C

integration around the upper half plane surface wave pole.

change of variables such that

<+< ’¢II

0 C
D

= J¢

hence dc ’8 e d¢

We make a

where the contour around g = -Cp, 8 and w are shown in Figure 23.

Therefore we have

 

*
5

O
+

W n

'
U

I

d§ _ _ )8 ejw

+ c ejv

-2nj
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Figure 23: Evaluation of integration around the pole.
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Symmetric Slab Specialization

In order to recover Rozzi’s result, we must shift the y-axis as

shown in Figure 24. It will be shown that both the discrete and the

continuous part of the Green’s function specialize to Rozzi’s for the

symmetric slab waveguide. For this case ps - pc, hence the coefficients

81(Cp), 82(Cp) and B3(C) in the expression of the discrete Green’s

function in Chapter Three become

 

- ‘17

81(cp) ’ 4§p12+7t)

83(Cp)

2

2 p 4§p12+1t5

From Figure 24, we define § such that y = § - t/2. We also let

t/Z = d. By doing so, the discrete Green’s function becomes

pol, = 'ZJI‘OZO [31(Cp) + 32(Cp)(c082Kd-Jsin21(d)] [cosKy cosKy cost

- cosK§ sinKy’ sian]

+ [82(c052Kd-jsin2Kd) - Bl][sinKy sinKy’ cost

+ sinKy cosKy’ sian] e-Jcplz-Z I

We use the eigenvalue equation as in Chapter Three specialized for the
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symmetric slab

-27K

7-K2

tan(2Kd) = (1) 

to evaluate cos(2Kd) and sin(2Kd). We found

 

K2- 2

cos(2xd) = 7 (2)
2 2

kf-kc

and

sin(2Kd) = 315———— (3)
2 2

k -k
f c

Using (1) and (2) in the expression of Gmflo and the fact that

 

§' = y’ + t/Z, we have

R Z 7 ,

= o 0 ~ ~, -j§ |z-z |

Gmne 2gp 1+7d cos(Ky) cos(Ky ) e p (4)

In Rozzi’s result, the discrete Green’s function is expressed as

G (§|§'-z-z') = -A2e (37) e (37') e'JCplz'z'I (5)
pole ’ X0 X0

where

exo(y) = A cos(Ky)

and

2 R020
A = 2

ch [ cos7(xd) + d + sinéZKd) ]

Using (1) and (3), cosz(Kd) is found to be

K2

72+K2

cosz(Kd) = (6)

By substituting (3) and (6) in the expression for A, we have
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k 2 1

A2 = o o

2§p(1+7d)

With the above expression for Ag, Gpole in (4) will be the exact replica

of (5).

Similarly, the radiation Green’s function of Rozzi’s is the exact

replica of our specialized continuous Green function. In fact, Rozzi’s

results are

 

 

N

2 (p)

~ ~,, _ , _ _ n: ~ ~. J<(p)lz-2’|
GR(y|y ,2 z ) - I 4 exo(y.p) exo(y ,p) e dp

0

Q

2 (p)

- TE " ~. JC(p)|z-z’|
J 4 exE(y.p) ex£(y .p) e dp

0

where

e (§ p) = A cos(0§)
x: ’ C

e (§,p) = A sin(c;)
xo ~

C

and

A =J27;

a-(p) = /v2+p2

V n -n2 k

2

f c 0

V

 

C(p) = \/1+(v/p)zsinza~d

 

C(p) = \/1+(v/p)2coszo~d

-k 2

Z := o 0

TE C(PI

C(p) is defined as in chapter three for the second integral term.
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Figure 24: Symmetric slab specialization

leading to § = y + t/Z.
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