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ABSTRACT

FINITE AMPLITUDE EFFECTS

ON THE DYNAMIC PERFORMANCE

’ OF THE CENTRIFUGAL

PENDULUM VIBRATION ABSORBER

By:

Mehmam Sharif-Bakhtiar

The dynamic response of a centrifugal pendulum vibration absorber is

studied. The thesis consists of two parts. First, the effects of the absorber’s

motion limiting stops on the overall response of the system is

considered. The results of the analysis provide results on the existence and

stability of the nonlinear periodic motions of the absorber mass based on

various system parameters. Several properties which are inherent to the

system are discovered in this analysis which have not been previously

considered, including the coexistence of impacting and non-impacting

motions at the anti-resonance frequency (the frequency for which the

pendulum is designed).



For ranges of system parameters the stability of the symmetric periodic

motions of the absorber mass break down due to pitchfork bifurcations and

successive period doubling bifurcations ensue, leading to chaotic

motions. The effect of detuning of the absorber is also considered.

In the second part of the study the nonlinear dynamic response of the

system with damping in both the primary system and the pendulum is

analyzed using the method of harmonic balance and Floquet

theory. Periodic solutions are approximated by the first harmonic of the

response; the resulting frequency response curves agree well with the

simulations of the full nonlinear equations of motion. Particular attention is

paid to the response at the anti-resonance frequency. Cases are

demonstrated for which there exists more than one stable steady-state

periodic motion of the system in the neighborhood of the anti-resonance

frequency; this particular property of the system is due to nonlinear effects

and cannot be captured through the traditional linear

analysis. Furthermore, it is shown that for ranges Of system parameters, the

only stable periodic response of the system at the anti-resonance frequency is

one of much larger amplitude than predicted by the linear analysis. The

effects of system parameters on the shifting of the anti-resonance frequency

and on the corresponding carrier amplitude are also considered.

The results obtained in the first part of the analysis confirm the

conclusion that motion limiting stops for the absorber can be effectively

employed when placed at amplitudes larger than the steady-state response

predicted from the linearized analysis of the system at the anti-resonance

frequency. The impact dynamics of the CPVA with motion limiting stops

can be quite complicated when the system is subject to excitation frequencies

above the anti-resonance frequency and can include chaotic motions. If the



system is driven out of the region of validity for linearization, nonlinear

effects can lead to catastrophic failures.

The results obtained in the second part of the analysis depict how the

true response of the system can be drastically different than what is

predicted from the linear analysis. Hence, as far as design applications of

the CPVA are concerned, the response of the CPVA obtained through a

linearized analysis of the system should by no means serve as the basis for

the design, but rather as a first trial which is to be modified further through

either experimental or nonlinear analysis of the system. Nonlinear

characteristics of the system such as the shifting of the anti-resonance

frequency and the jump phenomena must be considered in the design of the

CPVA since, if ignored, the absorber’s effectiveness can be reduced or result

in larger oscillatory amplitudes in the primary system.
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CHAPTER 1

INTRODUCTION

1.1- History and Literature Survey

The centrifugal pendulum vibration absorber (CPVA for short), although

patented previously in France, was independently conceived and put into

practice by E. S. Taylor in 1935 in order to eliminate torsional vibrations of

geared radial aircraft-engine—prOpeller systems [1]. This was the first

presentation of pendulous absorbers in the United States. The device,

however, is useful in a broader range of applications for the reduction of

torsional oscillations in rotating shafts of large engines and machinery which

are subjected to torsional disturbances of frequencies proportional to the

nominal speed of the shaft. Due to the relatively short length of the

pendulum required to function as an effective absorber, the device was not

suitable for small engines such as automotive engines until 1942 when the

absorber was modified and incorporated into the design of internal

combustion engines in order to alleviate the torsional vibrations of the crank

shaft. This was done by integrating the absorber with the crankshaft

counterbalance masses [2]. The efiective radius of the pendulum in this case

is the difference between the bushing’s inner radius and the mating pin’s

radius (ie. , the clearance in the journal bearing) which can be made as

small as necessary.



In general, the reduction of torsional vibrations in rotating shafts such as

automotive crank shafts is achieved using one of three different classes of

dampers or absorbers [3]. These are the frictional dampers [4], tuned

absorbers [5], and pendulous absorbers, where the CPVA belongs to this

latter class.

In frictional dampers, the torsional vibration of the crank shaft is damped

uniformly throughout the whole range of operational frequency of the

system. Its effectiveness depends on its moment of inertia and the fluid

viscosity which is used as the damping element. The main disadvantage of

such a device is the substantial increase in the overall weight of the engine

and the need to dissipate the heat generated by the damper. On the other

hand, tuned absorbers, like linear spring-mass absorbers, are effective only

for the fixed, narrow bandwidth of the frequency for which they are designed

and, except in a few specialized cases, tuned absorbers find limited

applications in the design of rotating shafts due to the variation of the speed

of the crank shaft and consequently, the excitation frequency applied on the

shaft.

The CPVA, however, is essentially a tuned absorber whose natural

frequency varies in direct proportion to the rotational speed of the

crankshaft. It also introduces no additional weight increase to the design of

the system in many applications, and hence the CPVA becomes an

attractive alternative to the reduction of torsional vibrations in engines and

it makes the detailed study of its dynamic performance worthwhile.

The centrifugal pendulum vibration absorber has been successfully

employed to overcome induced vibrations on the cabin and cockpit of

helicopters which are due to the transmission of vibration from the main

rotor hub of the craft. W. F. Paul [6] has noted an experiment on



commercial and USAF versions of the Sikorsky S-61 helicopters where an

airframe vibratory stress reduction of as much as 4:1 was achieved, and

cockpit and cabin vibrations of i0.1g were recorded through the use of the

CPVA indicating a substantial improvement over the recorded data of the

operation of the rotor without the absorbers.

After the original idea of E. S. Taylor [1] to devise the CPVA, numerous

research studies have been undertaken in order to exploit the potential

advantages of the centrifugal absorber. A few instances are cited in the

papers discussed below.

Zdanowich [8] presents an alternative approach to describe the mechanics

of reduction of the carrier amplitude to zero at wAR through the notion of

the effective inertia of the carrier. It is shown in [8] that at the anti-

resonance frequency, the effective inertia of the carrier with respect to the

sinusoidal excitation tends to infinity and therefore there will be no

oscillation of the carrier.

Den Hartog [9] observed in 1947 that for a rotor, translational vibration

of the rotor mass center in two orthogonal directions and torsional

vibrations could be simultaneously reduced to zero by employing three

pendula fixed to the rotor and disposed about the circumference of the rotor

at 120 degrees with respect to one another. However, as noted by T. C. Lim

[10], Den Hartog’s analysis is not free of flaws in the sense that, although

the rotor mass center translational acceleration in the direction of the

applied force can be reduced to zero, the rotating pendula will always induce

vibrations transverse to the line of action of the applied force. This problem

may be solved by employing several such sets of pendula along the shaft.



Robert Plunkett [11] has carried out a rather detailed survey on the study

and application of the CPVA along with other modes of vibration

absorption through the appropriate use of the damping characteristics in

materials and vibration isolation. The author is indebted to Plunkett’s

work [11] for providing some of the resources on the subject. Zdanowich

and VV'Ilson [8] present a description of application of CPVA prior to

WWII. Harker [12] gives charts and design guidelines for the use of practical

design; Meyer and Saldin [13] show an application of the absorber to turbine

buckets and Reed [14], like Den Hartog [9], indicates the possibility of

applying the principle to nonrotating machinery.

Some of the credit for the novel application of the idea of the CPVA goes

to Sarazin [15] and to Chilton and Reed [16] who in 1930 proposed the idea

of bifilar pendula as absorbers. Butler [17] elaborates on the notion of

having the absorber’s center of mass in the bifilar construction move on a

noncircular trajectory. H. H. Denman in 1988 illustrated in [18] that such

modification in the design of the absorber can be beneficial to the overall

response of the system. Crossley studies the nonlinear response of the

CPVA due to the wide angle of swing of the absorber in free [19] and the

forced [20] modes of response, respectively. W. L. Miao and T. Mouzakis

[21] present an experimental study on the nonlinear characteristics of the

bifilar absorber mounted on the rotor hub of a helicopter. This idea

originates from Kelly’s work [22] who proposed the notion of application of

CPVA to helicopter rotors to overcome excessive torsional vibrations of the

mainframe of the helicopter. Mouzakis [23] discusses the interesting notion

of a mono/ilar absorber which inherently possesses two distinct frequencies

at which the absorber can be employed effectively.



1 .2- Objectives

One of the major difficulties in the design and application of the CPVA is

excessively large amplitudes of oscillation of the absorber which can occur

during operation [19, 20]. In other words, absorbers that are thought to be

properly designed can exhibit dynamics that are inconsistent with the

original analysis. An example is cited by Newland [7] where an engine was

designed with pendula calculated to swing through 45 degrees. During tests

it was found that the vibration absorbers were not functioning properly and

on dismantling the engine they were found to have been oscillating through

a much larger angle than expected, damaging the stOps which were set at 75

degrees amplitude.

Most of the literature on the subject of CPVA is based on the linear

analysis of the system (see references [1-5], [8], [10] and, [30], for

example). The studies of the nonlinear response are more limited (see

Newland [7], Crossley [19, 20], Paul [6] and, Den Hartog [9]), and there are

many dynamic properties of the system which remain to be explored. The

increasing use of mathematical tools such as bifurcation theory [26] and the

Poincare map [27], to study nonlinear systems, along with the advent of

high speed computing systems, makes it possible to undertake a more

thorough study of the response of the CPVA. This report aims at shedding

light on some of the nonlinear dynamic properties of the CPVA which have

not been considered before.

The study is composed of two parts. In the first, an attempt is made to

alleviate the large amplitude oscillation problem of the absorber by limiting

its maximum angle of swing to a prescribed value. This is carried out by

incorporating rigid constraints in the design of the CPVA. The resulting

dynamics are dealt with in detail in chapter two.



In the second part of the study the objective is to better understand the

dynamics of the CPVA without the constraints. To this effect, higher order

nonlinear and damping terms are retained in the equations of motion of the

system and their effects on the response of the system are studied. This is

covered in chapter three of the thesis. Chapter 4 contains an overview of

the results, some conclusions, and suggestions for further work.

In order to carry out the numerical computations of the analysis, the

following system parameters are used throughout the study:

Crank radius, R - 2.24 in.

Crank polar moment of inertia, J - 772.28 lb. in 2.

Absorber effective length, r = .561 in.

Absorber mass, m =-- 25.6 lbm.

Crank rotational speed, (I = 1000 RPM.

The above dimensions might are chosen to be in the range of practical

applications. ,



1.3- Full Nonlinear Equations of Motion

Figure (1) depicts a schematic view Of the CPVA as applied in

practice. The pendulous absorber is employed as a bifilar pendulum (Figure

2a) in which the absorber is mounted on the carrier through two pivoting

arms. In addition, the absorber itself has a finite moment of inertia which

can effect the dynamics of the system. However, in the following it is

demonstrated that such bifilar configuration can be modeled as a simple

pendulum (Figure 2b) provided certain geometric relations hold [7]. This is

done through a comparison of the equations of motions of the models.

Referring to Figure (2a), which is a schematic view of a bifilar pendulum

absorber, the expression for the velocity of the mass center of the absorber

mass can be written as:

1700 =[(b +h )IP ’ costb-I—l (45 ’ —1,b’ )cos(t/)+¢)]i-+

+l-(b +h )1!) ’ simb+l (<15 ' -t/J’ )sin(1b+¢)J-' . (1.1.1)

Denoting the inertia of the absorber with respect to its center of gravity by

I, , the kinetic energy of the bifilar system can be written as:

XE=%.(1+1, )¢ ' 2+

+—;-m [2p ' 2(1) +12 )2-Hrfi ' —¢' )212—22p ' (<6 ' —¢' )1 (bH )cos¢l (1-1-2)

Lagrange’s equation can be written as:

‘39”:[a—KE:++9554, i=1,2 (1.1.3)_d_

d Bq, aq,

 

where T denotes time, q, and q2 represent the generalized coordinates 1,0 and
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Figure 28 - Schematic view of a CPVA; Bifilar configuration
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Figure 2b - Schematic view of a CPVA; Simple Pendulum Configuration



ll

45, and Qa- , i=1,2 are generalized forces being —C'p¢' for the absorber and

—Cc1[1 ’ +T(1') for the carrier, T(T) represents the torsional excitation on the

carrier and (3'6 and 0,, are the damping values of the carrier and the

absorber, respectively. The effect of gravity on the system is negligible for

even moderate rotational speeds and hence the potential energy is zero,

PE =0. Hence, the equations of motion for the bifilar pendulum vibration

absorber system can be written as:

[(I+Ip )+m (b +h )2+m12+2m (b +h)lcos¢]1b’ '

—ml((b +h )cos¢+l )(b ' ' +

+m (b +h )l¢ ’ 2sin43-2m (b +h )II/J ’ qS ’ sin¢+Cc 1b ' =T(T) (1.1.4a)

—ml ((b +11 )cos¢+l)1b ' ' +m12¢> ' ' +0, d; ' +m (b-l-h )lzp ' 23in¢=0 (1.1.4b)

Referring to Figure (2b), the relation for the absolute velocity of the

absorber mass can be written as:

77c =51: +51) /c

where subscripts c and p stand for the carrier and the pendulum,

respectively. Since

.7, =(R 1/J’sin¢)i-—(R w ' saw);

and,

17p /c =l-r(-¢' +¢ ' )Sin(¢+¢)]7+lr(-¢ ’ +45 ' )COS(¢+¢)17
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then,

.7, =18 «12' simb+rw ' -¢ ' )sin(z/»+¢)17+l—R .1 ' com/2+

+1“ (11) ’ -¢ ’ )COS(1/J+¢)]J—'. (1.1.5a)

and hence,

v,2=R2¢ ' 2+r2(z/2' —¢ ' ream/2' (11' —¢ ' )cosqs (1.1.511)

Thus, the kinetic energy of the system of Figure (2b) can be written as:

1 1
KB=5sz ' HEM},

01‘

KB=—;-(J+mR2)7,/J ' 2+%mr2(1/J’ —¢ ' )2+mRri,b ' (w ' —¢ ' )cosa5 (1.1.6)

where J is the polar moment of inertia of the carrier, m is the absorber

mass, R and r are the effective carrier and the pendulum radii, respectively,

and 1b and d) are the angular displacements of the carrier and the pendulum,

respectively, as denoted in Figure (2).

Neglecting the effects of gravity on the system, and applying Lagrange’s

equation, the equations of motion for the simple pendulum absorber of

Figure (2b) can be written as:

[J+mR 2-I-mr"’+2mRrcos<15]1,b " —mr(R cos¢+r)¢ ” +mRr¢ ’ 23in¢—

—2mRr1/J ’ 43 ’ singb+0cib ’ =T(T) (1.1.7a)

—mr (R cos¢+r )1!) ' ’ +mr2¢ ”+0qu ' +mRr1/) ’ 2sin§b=0 (1.1.7b)

where ( )’ denotes differentiation with respect to time, 1', and T('r)

represents the excitation on the carrier.
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Comparison of equations (1.1.4) and (1.1.7) reveals that the bifilar

pendulum vibration absorber of Figure (2a) can be dynamically modeled as

the simple pendulum vibration absorber of Figure (2b) provided the

following geometric conditions hold:

J=1+1?

1'. e. , the inertia of the carrier in Figure (2b) should be the total inertia of the

carrier and the pendulum. Also,

r=l

R =b +1:

1'. e. , the effective radius of the carrier in Figure (2b) should be the sum of

the distance from the center of the carrier to the line joining the pivot points

of the bifilar absorber, plus the distance from the center of gravity of the

bifilar absorber to the line joining its pivot points (see Figure 2a). This

equivalent modeling of the bifilar absorber by a simple pendulum absorber is

possible primarily due to the fact that there is no rotation of the bifilar

absorber about its center of gravity.

Considering the above analysis, from hereafter the simple pendulum

model of the CPVA will be used for obvious reasons of simplicity, while it is

understood that the necessary geometric conditions hold between the simple

pendulum model used with its corresponding bifilar type.

By referring to the equations of motion for the CPVA (equations 1.1.7)

one can observe that the angular displacement of the carrier, 1b, does not

appear in either of the equations (1.1.7). This renders the variable 1b

ignorable and consequently, when written in first order form, the equations

represent a third order system, ie. , one equation each for 1b, <13 and,

<15. Hence, the solution of the equations of motion yields 1b where upon



l4

integration the angular displacement of the carrier, 11), can be obtained up to

an arbitrary constant.



15

1.4- The Undamped, Linear System

As a first attempt to the solution of the problem under study, the

dynamic response of an undamped, linear system is studied in this

section. Obviously, a true model of the actual system should incorporate the

effects of damping and also the effects of nonlinearities. However, a study of

this simple model provides insight into the overall dynamic response of the

system and yields approximate results to the actual nonlinear, damped

system. Furthermore, a linear undamped model of the CPVA is often a

valid model of the actual system since for very low absorber and carrier

damping values (as is typically the case) and small amplitudes of the

oscillation of the absorber, the CPVAIcan be modeled as a linear, undamped

system with an acceptable degree of accuracy. Also, introduction of

damping and nonlinear effects into the model can be looked upon, in an

asymptotic sense, as perturbations on the linear system.

In order to carry out the linear analysis, certain assumptions are made to

simplify the equations of motion, they are as follows:

1. The angular displacement of the absorber, (b, is small enough that

singb=gb , cos¢=1

2. The dampings in the carrier, 0,, and the pendulum, C are negligible.
p,

3. The excitation is of the form

T(T)=Tosinwr (1.2.1)

4. The motion of the carrier, 11), is a steady-state, constant rotation plus a

small sinusoidal oscillation, i.e. ,
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1b=flr+l9 (1.2.2)

5. Terms involving products Of (b, 6 and their time derivatives are negligible.

Substitution of assumptions 1 through 5 into the equations of motion

(1.1.7 ) results in the undamped, linearized equations of motion as follows:

[J+m (R +r )2]6 ’ ’ —mr (R +r)(b ’ ’ =Tosinwr (1.2.3a)

—mr(R +r )0 ’ ’ +mr2¢ ’ ' +mRr 02¢=0 (1.2.3b)

Now we assume a sinusoidal system response:

¢=¢osinwr (1 .2.4a)

0=i90$inwr (1.2.4b)

where the relative phase (0 or 71') is accounted for in the signs of 90 and

430. Using equations (1.2.2) and (1.2.4), equations for the amplitudes (1)0 and

1% can be obtained:

—[J+m (R +r )2]w21,bo+mr (R +r )w2¢o=T0 (1.2.5a)

mr (R +r)a121/Jo-mr2e12¢0+mRr fl2¢0=0 (1.2.5b)

Equations (1.2.5) are the amplitude relations for the linearized model of the

CPVA. The natural frequencies and mode shapes of the system are

determined to be:

 

 

2

an? 2 /
wl=0 , w2= Jr [J+m(R+r)] (1.2.6)

and

vl= [06°] , c arbitrary, (1.2.7a)

 

_. 1 _-lJ+m(R+r)“’l
122— [II] , Il— mr(R+r) (1.2.7b)
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In words, the mode shape represented by equation (1.2.7a) which

correponds to the w1=0 natural frequency, indicates a rigid-body mode in

which the angular displacement of the carrier tends to infinity while the

absorber retains a finite angle with respect to the <b=0 reference line. The

second mode, equation (1.2.7b), is associated with the nontrivial natural

frequency of the system and corresponds to the case where the carrier and

the absorber are oscillating out of phase.

Note that from equation (1.2.5b), the steady-state amplitude ratio

equation can be written as:

 

 

62—025—
1b
¢° - ’ . (1.2.8)

r .

This implies that if the frequency of the torsional excitation, w, on the

carrier is jfl, j=1,2,3,..., then the pendulum can be tuned such that

j==(R/ r)1/2, thereby reducing the oscillatory amplitude of the carrier to

zero. In fact, such disturbances whose frequencies are multiples of the

rotational speed of the carrier, (I, are typical in internal combustion

engines. This particular frequency for which the absorber is designed is

called the anti —resonance frequency and is denoted by wAR . Hence,

/2

W34) [.11] , (1.2.9)
r

Note that WAR varies in direct proportion to Q, the nominal rotational speed

of the carrier. The term j=(R /r)1/2 is called the order of the engine torque

and in most practical applications, torques of order half the number of

cylinders of the engine are the most dominant ones. For instance, for a four

cylinder, four-stroke automotive engine (the type of engine considered in this
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report), the order j =2 torque, i. e. , the second harmonic Of the excitation,

carries a substantial portion of the overall torque.

Figures (3a) and (3b) illustrate the frequency response of the carrier and

the absorber, respectively, as obtained based on the undamped linearized

CPVA model. Note that at the anti-resonance frequency, (UAR, while the

carrier amplitude of oscillation is reduced to zero, the absorber has a finite

amplitude of oscillation described by

To

mRr 02(R +r)

 

¢0 ICU-(JAR =

At the anti-resonance frequency the torque exerted by the absorber on the

carrier is equal in magnitude and opposite in direction to that of the

external excitation torque, hence resulting in a net zero torque on the carrier.

In order to better understand the dynamics of the CPVA under the given

excitation and damping conditions, and to grasp a general overview of the

mechanics of the system, the next section is devoted to the steady-state

response of the system under various simple but basic excitation and

damping conditions. The solutions presented therein will provide the basis

for further analysis of the system, as the various expansion processes

described in the following chapters will be done about the appropriate

steady-state solutions demonstrated in the next section.
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1.5- Steady-State Dynamics of the CPVA for Various

Combinations of Damping and Nonoscillatory Excitation

In this section the steady—state solutions Of the nonlinear equations of

motion are obtained for various damping and constant torque

conditions. The steady-state response of the system in the absence of any

oscillating component of the torque is presented in the following in order to

provide the nominal operating conditions for the case of no applied periodic

torques. These operating conditions are used as a basis for linearization and

for nonlinear expansions throughout the thesis.

By referring to the equations of motion (1.1.7) and letting T (T)=To, a

constant torque, the equations of motion can be rewritten as

[J+mR2+mr2+2mRr cos¢]1,b ' ' —mr (R cos¢+r)qb ' ’ +mRr¢ ’ 2sincjb—

—2mthb ’ d) ’ sin¢+Cctb ’ =To (1.3.1a)

-mr(R cos¢+r )1/1 ’ ’ +mr2¢ ’ ’ +01, 923 ’ +mth/J ’ 2sin<15=0 (1.3.1b)

Depending on whether 0,, C, or, T0 are taken to be zero in equations

(1.3.1), the following eight different cases can be outlined.

1. c,=c,=o; T0950

This renders the equations of motion (1.3.1) as

[J+mR 2+mr2+2mchos¢]1/J ’ ’ —mr (R cos¢+r)<b " +mRr¢ ’Qsinqb-

—2mRr1/2' <15 ’ sin¢=T0 (1.3.2a)

—mr (R cos¢+r)1,b ’ ' +mr2¢5 "+mRr1b’Qsingb=O (1.3.2b)



I
O

“
'
2

In order to find the steady-state solutions of the CPVA corresponding tO

equations (1.3.2), let

1b ” =a , a=constant

(:5 " =¢ ' =0

Hence, integrating these latter equations with respect to time, 1', yields,

tb ’ =ar+f2

and

=constant

Substitution of these equation into equations (1.3.2) yields,

[J+mR 2+mr2+2mRr cosqb]a=To (1.3.3a)

—mr (R cos¢+r )Oz+mRr(O:r+n)25in¢=0 (1.3.3b)

Assuming 43 is small enough that one can write cos¢=1, equation (1.3.3a)

yields an expression for a as

To
a=

J-I-m (R +r )‘2

 

Note that this case corresponds to the first mode of the CPVA obtained in

equation (1.2.6) and (1.2.7a) implying that the angular displacement of the

carrier, 1b, tends to infinity while the pendulum makes a small but finite

angle with the ¢=0 line (see Figure 2b) at 7'=0. This angle tends to zero as

1b tends to infinity. To be specific, from equation (1.3.3b) one can write

R arzsin¢=R +r

In other words (I) varies in time in such a way that the above relation holds

for all time 7' implying that (IS—t0 as r—boo.

2. Cc =01) =To=0



Under these conditions, by letting

t/J ' ' =0 , 1,!) ’ =fl , (I constant (1.3.4a)

¢ " =45 ’ =0 , ¢=constant (1.3.4b)

equation (1.3.1b) is identically zero and equation (1.3.1a) yields

mRr 023in¢=0

implying

fl=0 , (b arbitrary

or

gb=n7r , II arbitrary.

where the first of these two solutions is the trivial static configuration and

the second corresponds to the case where the carrier is rotating with a

constant angular velocity while the pendulum remains at ¢=0 (¢=7r is

unstable ).

3. CC #0, Cp=TO=O

Using the assumptions outlined in equations (1.3.4), equations (1.3.1a,b)

yield

Ccfl=0 => fl=0 ,

and

mRrflzsin¢=O => ¢arbitrary.

In other words, the carrier comes to a stop with the absorber at an arbitrary

angle.

4. c,,c,+o, T0=0
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Letting

¢"=0 , 1,0 ’ =0 , Q=constant

(25"fl , (b’=gb’0 , ¢0'=constant ,

equation (1.3.1a) yields

II=O

and from (1.3.1b) one obtains

a, 45,, ' +mth1251n¢=o

implying

¢ ’ =0 , =arbitrary.

which is the same as case 3 above.

5. Cpfl) , CC=T0=O

Using the same assumptions as equations (1.3.3), equation (1.3.1a) is

identically zero and equation (1.3.1b) yields

“=0 or ¢=n7r

again implying the same result as that of case 3 above.

6. Cc=0 , 0,3040

Letting

1!) ’ ’ =0: , oz=constant

45 I r =¢ I =0

the solutions turn out to be identical to those considered in the case 1.

7. 0,, =0, 0,, ,Toaéo Using equations (1.3.3), equation (1.3.1a) yields



25

 

and from equation (1.3.1b),

§b=n7r

implying the carrier rotating with a constant angular velocity 0 fixed by the

 0 while the absorber remains at ¢=0 or 7r (the ¢=7r solution is

C

relation fl=

inherently unstable).

8. C, ,0, ,ToaéO

Substitution of assumptions (1.3.3) into equations (1.3.1) yields the

equations of motion identical to those of the previous case 7.

One can readily see (for obvious reasons) that in all the cases considered

above, none admit an oscillatory solution to the problem. Furthermore, one

can see that the carrier damping, Cc, has a significant effect in determining

the rate of steady rotation of the carrier (cases 7 and 8), for in the absence

of 0, (cases 1, 2, 5 and, 6) the carrier’s velocity either tends to zero or

infinity as ‘r—too. Note in cases 3 and 4 that, although 0, is nonzero, the

other determining parameter, namely, To, is set to zero and “=0 results.

The pendulum damping, 0,, does not show any significant effect on the

steady-state response of the system.

It should be noted that in the chapter 2 the linearization of the equations

of motion will be carried out about the system parameters corresponding to

case 6 and the nonlinear expansion of chapter 3 will correspond to the

system parameters outlined in case 8 above.



CHAPTER 2

EFFECT OF MOTION LIMITING STOPS

ON THE DYNAMIC RESPONSE

OF THE CPVA

Figure (4) shows a schematic view of a CPVA with rigid constraints

which are employed in order to limit‘ the maximum allowable amplitude of

oscillation of the absorber to a prescribed value, denoted as H. The objective

of the design is to have the absorber oscillate freely between the two

constraints in normal operatiOn without coming into contact with the stops,

except possibly during transient motions.

In order to achieve this objective, the response of the absorber in relation

to the constraints and the range of parameters for which impacting and/or

non-impacting periodic motions exist is to be considered. In particular, the

possibility of coexistence of linear non-impacting and nonlinear, impacting

motions at the anti-resonance frequency is of interest. Such coexistence can,

in fact, occur and cannot be predicted without a detailed consideration of

impacting motions. An absorber which is thought to be properly designed

(i.e., using only linear analysis and the addition of stops at amplitudes

larger than the steady-state amplitudes predicted by the linear theory) may

encounter impacting steady-state dynamics.

26
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T, cos(cuT)

 
Figure I» - Schematic View of a CPVA with Rigid Constraints
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It is shown in the following that such coexistence occurs only for damping

characteristics of the absorber too large for practical applications of the

absorber. This result cannot be obtained without a detailed investigation to

determine the range of system parameters for which such multi-steady-state

dynamic behavior can occur. Also, should the system be subjected to a

higher frequency disturbance than predicted, the response of the absorber

with constraints can be quite complicated as shown in the following.

In addition, all previous studies of the CPVA have been carried out based

on the assumption that the absorber does not come into contact with

motion-limiting stops. Hence the analysis is done without considering any

possible vibrO-impact behavior in the system, even though such stops (Often

referred to as snubbers) are employed in all practical implementations of the

CPVA.

The aim of this part of the study is to achieve a better understanding of

these issues and to determine the range of system parameters for which a

linear absorber with stops can function satisfactorily.
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2.1- Equations of Motion and Assumptions

The full nonlinear equations of motion, equations (1.1.7) are rewritten

here as

[J+mR 2+mr2+2mRr cos¢]1,b ’ ' -mr (R cos¢+r)¢ ” +

+mRr¢ ' Qsintb—2mRr1/J’ a ' sin¢+c, 1b ' =T(r) (2.1.1a)

—mr(R cos¢+r )zl) ' ' +mr2¢ ' ’ +0, (15 ' +mer/J ’ 2sin<f>=0 (2.1.1b)

where the definition of all of the terms in equations (2.1.1) above can be

found following equations (1.1.7). Equations (2.1.1) are valid for the case

when the pendulum is not in contact with either of the constraints,

i. e. , I¢I<fl.

At impact, [43 I=fi, use is made of the total angular momentum of the

system. The total angular momentum of the carrier is in the direction

perpendicular to the plane of Figure (4), i. e. , out of the paper, and can be

written as

c =—Jt/)’ . (2.1.2a)

The vector angular momentum of the pendulum mass is given by

555me ,

with

6. =IR 1b ' sun/mop ' -¢ ' )sin(¢+¢)l ?+

41—311" COSWTOD' -¢> ’ )COS(¢+¢)] i— .

being the velocity of the pendulum mass and
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“545+?

=[R costb+r cos(1.b+¢)l Iii-[R Sim/1+7 sin(7,b+¢)] 5- ,

being the position vector of the pendulum mass. The angular momentum of

the absorber is also in the [Edirection (outwards, perpendicular to the plane

of the paper) is given by

p =—m (R 2+r2-I-2Rr cos¢)t/2 ’ +mr (R cos¢+r )qS ’ . (2.1.2b)

Consequently, the total angular momentum of the CPVA in the Ic— direction

can be written as:

H=Hc +Hp ,

or

=_[J+m (R 2+r2+2Rr cosrbhb ' +mr (R COS¢+T )¢ ' - (2-1-3)

Assuming that at impact the contact time is small enough that the law of

the conservation of the total angular momentum of the system can be

instantaneously applied, one can write,

H+=H-

or

Imp’ ++k2¢ ’ +=k11/J’ "+k245 ' ' (2.1.4)

where superscripts - and + refer to the times just prior and after impact,

respectively, and,

k 1=—[J+m (R 2+r2+2Rr cosfl)] , (2.1.5a)

k2=mr (R cosfl+r) . (2.1.5b)
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Another relation describing the dynamics of impact can be determined by

the usual definition of the coefficient of restitution, e. This can be written

e =—-;———3— (2.1.6)

where v denotes absolute velocity and subscripts p, c and, n refer to the

points of contact on the pendulum, the carrier and, the direction normal to

the line Of impact, respectively.

To find the expressions for up“ and v6“, reference is made to Figure (5)

which shows the pendulum at impact with one of the constraints. For the

sake of clarity, only one of the constraints is shown. Rewriting equation

(1.1.5a) which is in reference to the (t-, ;) coordinate system of Figure (5),

yields

17, =[R 10' swamp ' —¢ , )sin(1b+¢)] 7+

+[-R 1b ’ cos¢+r (t/J ' —¢ ’ )cos(1b+<b)] j— . (2.1.7)

Equation (2.1.7) can be written in terms Of the (71' , t.) coordinate system as

[2" [=E [:3 ] (2.1.8a)

where R: is the so-called rotation matrix having the form,

'R=[:S“‘ 3,3115, (2.1.8b)

where E=1b+a and where the angle a can be observed from Figure (5) and

its explicit form is presented below. From equations (2.1.7) and (2.1.8) one

Obtains,

vpu=—R it! ' cosa+r(-1/) ’ +45 ’ )cosw-Oz) (2.1.9)
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Figure 5 - Schematic View of a CPVA with the Pendulum at Impact
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similarly, since

5,456

=(pw ' sine) 7—(pz/2' cosE) 7 .

fi=[§cosd)+r cos(z/)+¢)] z'_+[R sin¢+TSin(¢+¢)] ;

E ' =—¢' I?

then

”C“ =—p1p I

(2.1.10a)

(2.1.10b)

(2.1.10c)

(2.1.11)

where p is the magnitude of E and the angle H can be observed from Figure

(5) as well.

Substitution of equations (2.1.9) and (2.1.11) into equation (2.1.6) yields:

6: (k3+p)1,b' ++k4¢ ' +

‘(ks‘i'PW’ ' --k4¢ ' —

 

7

where

k3=—R cosa—r cos(fi—a) ,

k4=r cos(,8-a) ,

rsinfl
__ , d

R +r cosfl ] an

a=tan‘l

 

p=[(R +r cosfl)2+r 2sin2925] ”2

(2.1.12)

(2.1.1321)

(2.1.13b)

(2.1.13c)

(2.1.13d)

Equations (2.1.4) and (2.1.12) can be solved simultaneously, for (b ' "' (or

1b ' +) in terms of the variables prior to impact, i.e. , 1b ’ ‘ and ¢ ’ ‘, to yield,

¢I+=k8¢I-+k9¢l- ,

where

(2.1.14)
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_ klk5(l+e)

8" kaS—m, ’

 

9_ kzks-k1k4

 

k5=k3+p

(2.1.15a)

(2.1.15b)

(2.1.15c)

One can readily observe that equations (2.1.14) in conjunction with

equations (2.1.15) are complicated enough so to obscure the true dynamics of

the absorber and the carrier at impact. An alternative, and more

enlightening, approach employs the geometrical properties of the system to

simplify the equations of impact obtained above. Referring to Figure (5) it

can be seen that

k3+p=—[R cosa+r cos(a—fl)]+P

=—(R cosa+r cosacosfi+rsin015inm+P

Considering

R +r c036
cosaa ,

p

 

. rsinfl
sma— , 

and equation (2.1.l3d), one obtains

k3+p=0 ,

which renders equation (2.1.12) as

 

c=_¢r+ ,

¢”

01'

¢I+=_e¢l—

which is a familiar equation of impact for a single mass system.

(2.1.16)

This simple
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result is a natural consequence of the fact that 45 is a relative coordinate.

Returning to the freeflight (i.e. , non-impacting) mode of the system, the

following assumptions are then made to simplify the free-flight equations of

motion (2.1.1) (see Figure 4):

l. The carrier runs at nearly constant speed 0 with a small time-dependent

variation, i.e. ,

1,!)(7)=flr+0(r) ,

2. The carrier damping is assumed negligible,

Cc=0

3. ¢ is small enough so that sin¢-¢, cos¢-1 are valid approximations.

4. Second and higher order terms of 0, 43 and their derivatives can be

neglected (i.e. , linearize the free-flight equations of motion).

5. The applied torque is sinusoidal in time.

Incorporation of the above assumptins renders the equations of motion

(2.1.1) as,

[J+m (R +r )2]0 ’ ’ —mr(R +r)¢ ’ ' =T(T)=Tlcoswr (2.1.17a)

—mr (R +r )0 ' ’ +mr2¢ "+0? (6 ' +mRrfl2¢=0 (2.1.17b)

Eliminating the 9’ ’ variable between equations (2.1.17a) and (2.1.17b)

one obtains,

er2¢ ’ ’ +0? [J+m (R +r )2]¢ ' +

+mRr02[J+m (R +r )2]¢=mr (R +r)T1cosz (2.1.18)

Rescaling equation (2.1.18) by redefining time and angular displacement

as (see [28] ),

/2

t:— EJ—tjz—[J+m((R +r)2]I 7' (2.1.19a)
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(2.1.19b)

equation (2.1.18) can be put into the following nondimensional form:

Ei+2k13 +3=Kcosnt (2.1.20a)

where

x=c,

 

/2

fig—[Hm (R +r )2] I

is the nondimensional damping ratio,

_ (R '1" )T1

R 02,3[J+m (R +r )2]

 

is the nondimensional excitation amplitude,

1

RR2 2

=w T[J+m (R +1?)

 

is the nondimensional excitation frequency and, an over-dot denotes

differentiation with respect to the rescaled, dimensionless time, t.

As stated previously, equation (2.1.20a) is valid when the pendulum is not

in contact with the constraints, i.e. , Ia: I<1. For impacts, ( Ia: I=l),

equation (2.1.16) is also rescaled to yield equation (2.1.20b) as

+

:i: =—e:i:_ , Ix |=1 . (2.1.20b)

It should be noted that the rescaling (equations 2.1.19) that led to

equations (2.1.20) renders the anti-resonance frequency (equation 1.2.9) as

l

2

,7AR= 1+%(R +r)?) . (2.1.21)

 

This is the nondimensional frequency at which 6:0 for the undamped, linear

response, {.6 , it is the desired operating frequency.
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The original equations of motion (2.1.1) were in coupled form. Use of the

assumptions (1) through (5) with the nonlinear equations of motion resulted

in a set of linear equations (2.1.17) describing the motion of the pendulum

between the constraints which were easily decoupled. In addition, the

impact equations can be expressed in an uncoupled form (equation 2.1.16)

and consequently equations (2.1.20a) and (2.1.20b) fully describe the motion

of the pendulum for a given set of initial conditions and parameter

values. The dynamics of the carrier can then be determined using equations

(2.1.17a) or (2.1.17b). In particular, equation (2.1.17a) yields,

mr(R +r )d) ’ ' +Tlsinwr

J+m (R +r)2

0 ” (2.1.22a) 

and successive integrations with respect to time, 7', results in an expression

for 9’ and 6 as,

T

mr (R +r )¢ ’ —-ZJ-l—coswr

6’: (2 122b)
J-l-m(R+r)2 . .

 

and

(R + >45— T‘ °mr r —smwr

52
6’: . (2.1.22c)

J+m (R +r )2

 

The constants of integration in equations (2.1.22b) and (2.1.22c) are taken to

be zero without any loss of generality since the addition of a nonzero

constant to equation (2.1.22b) would result in a term like or (c a nonzero

constant) whereas 9 in assumption (1) is assumed to be a small variation

about the steady-state rotation, and this component of w is already

accounted for by (I in 1/)=QT+0. Also, the addition of a nonzero constant to

equation (2.1.22c) would indicate a trivial phase shift in the value of 6 and a

simple change of variables would result in the same expression as (2.1.22c).



38

Equation (2.1.20a) can be solved for a set of initial conditions. Such

solutions are valid only for excitation amplitudes which result in amplitudes

of the response (i.e. , mm”) less than unity. In other words, any solution of

equation (2.1.20a) which yields zmax>1 is considered to be invalid since such

condition implies that the absorber is passing through the rigid

constraints. Given a set of initial conditions ($0,to,i:0), the steady-state

amplitude of the linear free-flight equations, X, obtained from the solution

of equation (2.1.20a), can be written as

X— K

[(l_n)2+4>\2n2]1/2

 

Thus, for this solution to be valid, the torque intensity, K must satisfy the

following inequality:

K <19,=[(1-17)2+4Vv?211/2

since Kc, renders X as unity. For K >Kc, the desired steady-state solution

will not exist.
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2.2- Impacting, Periodic Response

2.2.1- Methods of Analysis

In the following, equations are derived for the existence and stability of

certain periodic motions. The type of impacting motions described here are

the symmetric, double-impact periodic motions (SDIP, for short) which have

one impact for everyehalf cycle of the excitation. A brief discussion will also

be presented on the existence of pairs of anti-symmetric double impact

periodic motions which are brought forth as a consequence of the breakdown

of the stability of certain SDIP motions. This will be discussed towards the

end of the chapter.

To study the existence and stability of SDIP motions, it is convenient to

write equations (2.1.20a) in first order form as

i=1]

' =—)\y +Kcos17t (2.2.1)

i=1

where the three variables (x,y,t) determine the state of the system for those

solutions restricted to Ix I<+l in the three-dimensional phase

space. Reference is made to Figure (6), which illustrates the phase trajectory

of a double-impact motion in the (a: , 3]) plane. Starting at point A

(corresponding to the absorber coming in contact with the constraint at

x=+1 with positive velocity), the impact equation (2.1.20b) is used to obtain

the time and velocity at point B in Figure (6), i.e. ,



X=y

 
 

 

 

   
 

Figure 6 - Phase Trajectory of a Double-Impact Motion
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3’3 =—€3IA (2.2.2a)

g=q aazm

(in Figure 6 the trajectory from A to B is actually exactly on z=+l, but is

shown as is for clarity. Likewise for the C to D trajectory at z=—l). The

motion from point B to point C is governed by the free-flight equations

(2.2.1). The solution of (2.2.1) with initial conditions corresponding to point

B is valid until x=—1 again. Since double-impact orbits are of interest

here, it is then assumed that the next impact after point B occurs at point

C with a:=—l as shown in Figure (6). Excluded, for the present, are orbits

that leave the rigid constraints at x-+l and next impact at x=+l

again. For the motion of interest, the time and velocity at point B

(t3, 3<0) uniquely, although implicitly, determine the time and velocity at

point C (tc,yc <0) through the expressions,

$(tc;+1,t3,y3 )=—1 , (2.2.3a)

and,

i (tc;+l,t31y3)=yc (2-2-3b)

where x(t ;+1,t3,y3) is the explicit solution of equation (2.1.20a) with initial

conditions corresponding to the state of the absorber at point B, i.e. ,

x=+1, tatB, y-ByB. Equation (2.2.3a) can be inverted to yield to. as a

function of 03,313), i.e. ,

tc=tc(ta .113) , (2-2-4)

where to is the first root of equation (2.2.3a) for which

tC>tB. Substitution of this equation into equation (2.2.3b) yields an

expression for 310 as a function of (t3,y3 ), i.e. ,

3Ic=3/o(t3,3/3) - (2.2.4b)
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By referring to Figure (6), the motion continues to point D via the

impact rule:

310 =—ey0 (2.2.5a)

t0 =tC . (2.2.5b)

The free-flight motion from point D to point E is again governed by

equation (2.1.20a), where the time and velocity at E are uniquely

determined from those at D, same as the case of the motion from point B

to point 0. Hence, the following conditions can be written:

x(tE;—1,tD ,yD )=+1 (2.2.6a)

and

93(‘1: 3-11tp 1w) )=!lc - (2-2-6b)

and when equation (2.2.6a) is inverted, one obtains,

tE =t1‘.‘(tD 1310) (23-73)

where t3 is the first root of equation (2.2.6a) for which t3 >tD. Then, from

equations (2.2.2a) and (2.2.7a) we have 315 as follows:

yea/£00,310) - (2-2-7b)

In reference to equations (2.2.2) through (2.2.7), one can observe that a

two-impact cycle has been completed taking the motion from one impact at

z=+1 to the next similar impact at $=+l. From these considerations it is

seen that by making use of the equations (2.2.2), (2.2.4), (2.2.5) and (2.2.7)

the time and velocity at point A in the cycle uniquely determines those at

point E, i.e. ,

2:20,. a.) , (2.2.82)

315 =yE(tA ,yA) . (2.2.8b)
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In this sense each excursion from x=+l to z=—l and back is reduced to

the simple recursion relation of equation (2.2.8). This recursion is a natural

consequence of equations (2.1.20a) and (2.1.20b) and it will be used in the

following to study the motions of the absorber. One should note that

explicit expressions for above relations such as equations (2.2.8) are not

available in explicit form since such a task would imply inverting several

transcendental functions, making the process impossible. In spite of this,

explicit solutions for the existence of SDIP motions are obtained in the

following through certain conditions which govern the nature of the SDIP

motions.

The idea of studying dynamical systems using recursion relations, or

maps, has its origins in the works of Poincare‘ [27]. To this effect, the

mapping given by equations (2.2.8) will be referred to as the Poincare‘ Map

for the system being studied. By considering the phase space (z,y,t) with

z_<_l, it is seen that this method determines how points with z==+l, y>0

are eventually mapped back to tea-+1, 31 >0 under the governing equations

of motion. Formalizing this, one can define a Poincare‘Section for this case

as

E={(z,y,t) : x=+1, 31 >0} , (2.2.9)

and the attendant Poincarc‘ Map, P, which is a rule taking points in )3 back

into E, i.e. ,

P=Z-+E ,or equivalently (t,-+l , y,-+1)=P (t; , y,-) , (2.2.10)

where

(t,- , 31,- )62
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Points in the set 2 correspond to those states in which the absorber is

just coming into contact with the constraint at :c=+1. For instance, points

A and E in Figure (6) are in Z . The mapping P is equivalent to equations

(2.2.8) for those points in E which result in excursions like the one shown in

Figure (6). It is noteworthy to mention that some points in 2 may be

mapped back to 2 without any encounter at x=-l, in which case rules

other than those given by equations (2.2.8) must be used. In addition, some

points in 2 may be mapped onto [2: [=1, y=0 in which case discontinuities

in P may arise (see [28,29] for details).

Periodic motions of the absorber mass may be studied using P as

follows. Each iterate of P corresponds to an impact of the absorber mass

with the constraint at x=+l and relates the condition (time and velocity) at

the previous impact to those of the subsequent one. A motion which repeats

itself after lc impacts at :c=+1 necessarily satisfies the condition

27m

1? ,F)=P *(7. 37') (2.2.11)(7+ 

where P " indicates that P has been applied k times (i. e. , defining

PJ.+1( . )=P (P j( . )), P°( . )=( . ) is sufficient to define P"( . ) ). Equation

(2.2.11) corresponds to a 2k impact motion of period 11 in which the 

absorber mass repeats its motion after k impacts at :r=+1, during which n

cycles of the forcing pass. Such a motion is referred to as a

subharmonic of order n. The point (t-J) is referred to as a periodic point

of P.

Such a periodic motion may be either stable or unstable. The stability of

periodic points can be investigated by tracing in time the dynamics of small

perturbations on the initial conditions for the periodic point (2,37). This

procedure can be discretized by observing the effects of perturbations using
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the Poincare map. Consider a small disturbance (E,V), where

(t,y)=(;+E,§/'+V) and [E],]V]<<1, imposed on the periodic point. Its

state is observed after subsequent returns to the Poincaré section, 2. Since

local stability is of interest here, linearizing about (£37) one obtains,

(€,-+1,V,'+1)=DP(6,314) , [E [, [l/ I<<l (2.2.12)

where (E,u) is the perturbation and DP is the first derivative of the Poincaré

map, P, evaluated at the periodic point (7,37). Using the notation employed

in Figure (6), the matrix DP can be written as:

  

lag, at, ]

atA 831A

DP - 83,3 83,3 (2.2.133)

[31,, 8“ iii)

and the above matrix, for convenience, is denoted as

at ,

DP=M (2.2.13b)

30A 1301) t-ji)

 

Hence, the problem of stability of periodic points is reduced to the study

of the eigenvalues of the DP matrix. If both eigenvalues of the DP have

moduli less than one then (2237) is stable. If any of the eigenvalues has a

modulus greater than one, then (t-J) is unstable (see [26, 31, 32] for

example). As system parameters are varied, the periodic point changes

continuously as do its associated eigenvalues, )‘1 and X2. Local Bifurcations

occur as eigenvalues pass through the unit circle in the complex plane, i. e. ,

when [X5 [=1, i=-l,2 [26]. It is shown in the following that the DP matrix

has a determinant with magnitude less than one for motions of interest and

thus only X=il bifurcations are possible. No Hopf bifurcations occur in

which X1 and X2 pass through the unit circle as a complex conjugate

pair. Period doubling, or flip bifurcations occur for >\,-=—1. Bifurcations
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corresponding to >\,'=+1, saddlenode and pitchfork bifurcations, also

occur. These are discussed in the following.
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2.2.2- Symmetric, Double-Impact Motions- Existence

Necessary conditions for the existence of an SDIP motion can be obtained

by matching end conditions which require that a periodic, symmetric,

double-impact motion exist. The conditions to be solved use the known

linear solution for the motion of the absorber during the free-flight motion

and the symmetry of a SDIP motion and are given by

x(t-=--"7;-‘—;+1,'t',—ei)=—1 (2.2.14a)

2(t-+-7%n—;+l,t_,—e37)=—37 (2.2.14b)

]x(t ;+1,t-,—ei/‘) |< 1 for “(RI-+101) (2.2.14c)

where :1: is the explicit solution of equation (2.1.20a). For a SDIP motion

with a corresponding fixed point (t-J) on the Poincare?

section, 2, equation (2.2.14a) states that starting at x=+l and after a time—

lapse equal to exactly % (i. e. , half of the n number of periods of the

excitation), the absorber should be at z=—1 at which point the velocity, by

equation (2.2.l4b), must equal —37. Condition (2.2.14c) merely states that

the mathematical solution of the displacement of the absorber, 1', should

remain within the physical boundaries of the model, i. e., the absorber

cannot penetrate into the constraints.

It is worth mentioning that for very low frequencies of excitation, n, say

n<0.5, the results corresponding to solutions of conditions (2.2.14) are in

fact what are called penetrating motions which are consistent with the

mathematical modeling of the system but are physically not
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realizable. These solutions satisfy conditions (2.2.14a) and (2.2.14b) but

violate (2.2.14c).

Also, note that due to the symmetric nature of the SDIP motion only odd

orders of the subharmonics can exist. The reason for this is that the

excitation that takes the absorber from x=+1 to z=—l should be equal and

opposite in direction to the one that brings the pendulum back to x=+1,

implying n=2i +1 (i integer) periods of the forcing are necessary to sustain

a SDIP motion for one full cycle.

For a typical set of initial conditions ($0,to,yo), such a solution can be

written, for the underdamped case, X< 1.0, as

—).(t-toe )

a: (t :20, to,yo)=——A— [[xo—C’ cos(17t0—c—r)] Acos(A(t —t0))+

+AcosA(t —t0)+()\a:o+yo—C kcos(17to—Ei)+

 

 

+Cnsin(nto-5'))sin(A(t-—to)) ]+C'cos(17t —5) (2.2.15)

where

K

C: , 2.2.16
[(1-77)2+4)\2,72]1 /2 ( a)

5=ta.n-l [ 2X02 ] , (2.2.16b)

1—77

A=V 1->\2 . (2.2.16c)

Equations (2.2.14a,b) can be solved for (ti?) as follows. Substitution of

equation (2.2.15) into (2.2.14a) yields

—i— [(l—Ccn)Ac-+()\—C kc "—837+C nsfl)§]—-Cc n=—1 (2.2.17a)

where
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—Xnn

E=e ’7 (2.2.18a)

c-=cos Arm , s-=sin (2.2.18b)

cn=cos(170'—® , sn=sin(no—57) (2.2.18c)

- 271'

Differentiation of equation (2.2.15) with respect to time, t, yields the

expression for i:(t;zo,to,yo) as:

”Mt-to)

$(t ;Io,to,yo)= e A [[yo+CnASIn(flto—E)]AOOS(A(t —to))+
 

H—xo—xyowcosma-o—cmanna-wanna-to)>)—

—C’nsin(17t—3) (2.2.18e)

Application of condition (2.2.14b) to equation (2.2.18c) results in equation

(2.2.l7b) as

E .. _ _ _

I [[—ey +0178 n]Ac +[-1+>\ey +C'c n—C >073 n]s]+

+Cns,=—37 (2.2.17b)

Any solution (t-,y—) of equations (2.2.17), which is a fixed point of the

Poincare‘ map, P“, corresponds to a SDIP motion in the phase space if

condition (2.2.14c) holds. Equation (2.2.17) can be solved for (£37) by

solving for c" and 8,7, which appear linearly in these equations to yield:

 

cn=cos(n0—5)=%)iy-+IE (2.2.19a)

1

. J2 _
sn=sm(no—a=CnJ y (2.21%)

1

where
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J,=-A(1+E'2+2c‘E'1) (2.2.202)

and

J2=AE"1(1—e)?:'+>\E—l(1+e)§'+AE'2—Ae . (2.2.20b)

Equations (2.2.19a) and (2.2.19b) can be squared and added together using

c3+sg =1 to yield the following quadratic equation which can be used to

solve for if in terms of the system parameters:

 

filers-Q, J22 +2]1+e]s—

  

 

 

 

 

, y+—-—=O 2.2.21a

(E07,)? (0171,)2 130%,02 ( )

The solutions for 37 are:

J1202 _[1+€)3iA1/2

_ 1,0213

y- ( 2)” J2 (2.2.21b)

1+e 3 J2

E2 ' 772

where

(1+e)9§‘2+122 (1— 1 )

2 2 2

A: E ’7 0 (2.2.22)

(110)2

The corresponding phase at impact for this motion can be obtained once

if is known using the definitions of c” and 3,, given in equations (2.2.19).

2.2.3- Symmetric, Double-Impact Motions- Stability

To obtain the stability characteristics of the fixed point (237), the first

derivative of the Poincare map, DP, must be determined. Since explicit,

closed-form expressions for the Poincaré map are not available, the following

implicit differentiation procedure is used to obtain an expression for the
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matrix DP (see [28], for example).

Using the chain rule and the notation defined in equation (2.2.13), one

 

  

can write

8(tEiyE)

DP: Bums/1)];

8(tE’yE) a(tDvyD) 8009310) (tBin)

a 5(T073/D) 3(tc,yc)][a(t3.y3)“QM/1,“)] (2.2.23)

  

By referring to equations (2.2.2) and (2.2.5) it is easily seen that

303,303) 300,310) 1 O
0 _ . (2.2.24)

aT—txWA) 5—00.yc) '3

The remaining two matrices are computed using implicit differentiation as

follows. Differentiating equation (2.2.3a) with respect to t3 one obtains

atc e-XUO-tfl)

BtB = A310 [3’8 A°°S(A( to "43
))+(—1+C cos(nt3 -5[)— 

—)\y3 -2C anin(nt3 —E)—C' n2cos(nt3 —5))sin(A(tC -t3 ))] (2.2.25a)

Differentiating equation (2.2.3a) with respect to 313 yields

atc _e-x(t0"t8) .

ayB = Ayc Slfl(A(tC—t8) (2.2.2513)
 

Noting that,

aye _ 33/0 3‘0 4 dye

613 _ atc 'atB ' dtB

 (2.2.25c)

and

Bye _ 33/0 3‘0 _|_ dye
. T , 2.2.25d

53/3 ate ByB dye ( )

 

the unknown terms on the right-hand-sides of equations (2.2.25c) and
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(2.2.25d) can be computed using equation (2.2.3b) as follows:

 

 

33/0 ..

Btc =$(tc;+1,t3,y3)

=Kcosntc —2>\yC-—1 , (2.2.25c)

and

dyC e-k(t0_t3)

"' [—)\SII1(A(tC _tB ))+XCOS(A(tC —t8 ))] , (2.2.25f)

dyB A

and

dt - A [[9213 +20knsi
n(nt3 —o:_)+1

_

B

 

—CCOS(7]tB -E)+C 772COS(77tB —C—Y)] ACOS(A( t0 —t8 ))+

+(—>\+C Xcos(77t3 —_)+(1—2)\2)y3 +(1—2)\supu 2)C’ nsin(77t3 -—m-

—C’ nsin(17tB —E)—C X112cos(77t3 —5))sin(A( t0 -tB ))] . (2.2.25g)

Furthermore, differentiation of equation (2.2.6a) with respect to t0 and

310 and differentiation of equation (2.2.6b) with respect to lg yields:

BtE e-Mlg-to)

BtD - A [3’0 A°°S(A( tE ‘tp ))+(l+Ccos(17
tD —®_ 

—2C anin(17t3 —3)—C n2cos(17tD —5)yD )xsin(A(tE "tD ))] (2.2.26a)

and

at, —e‘*(‘€“vlsin(A(tE—t,,)

3w) A1115

 (2.2.26b)

respectively. In addition, we have

31/3

at,
 

=Ei(tE;_11tD vyD)
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=KcosntE —2>\yE —1 . (2.2.26c)

employing

831;; _6yg . ate + dyE
(2.2.26d)

at!) at); 61,, dtp

and

By, 33/13 at1? ,dyE ,
(2.2.26c) 

33(1) 3‘13 .530) I dyo

equations (2.2.6a) and (2.2.6b) can be utilized to compute the remaining

unknown terms on the right-hand-sides of equations (2.2.26d) and (2.2.26c)

as

d "Mts-to)

 

dtD A

—C'cos(r]tD ——)+C n2cos(77tD —_))Acos(A(tE -tD ))+()\+

+311) (1—2X2)+(1—172)C>\cos(ntp —5)—2)\23in(ntp -—_—))sin(A( t5 —tD ))] (2.2.26f)

and

(13,5. e-Mts'tol

- [Acos(A(tD —tE))-)ssin(A(tD 43)] . (2.2.26g)
dyD A

 

Substitution of equations (2.2.24) through (2.2.26) into equation (2.2.23)

yields the final expression for matrix DP as,

DP‘ldq-l . i,j=1.2 , (2.2.27)

where

du=plp2-ep3p4 , (2.2.28a)

dl2=-ep1p5+62p3p6 . (2.2.28b)

(121:? 2107—5194198 (22380)
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and

d22=-€P5P 7+€2P 6P8 9 (23-28(1)

where

p1.1%[3—Ccn§'+2C)\nsfl§+eg7AE-+C1726QE—eikg] ,

—E-c-x—2cx--A‘ 2p2_A—37[—s+ ens+ eys- nsns-ey c-cncné‘Tl ,

P3=_—3

Ay

_ E _ _

p 4=(1—2)\y —Kcos17t)p 2+1—[-)\s +CXe "s —

—(1—2>\2)e§/?—237Ax3+(1-2>.2)0nsfl§+2cAxnsnc‘+

+AE—C17803—0Aan—CXnQCflF+C 11112ch ,

P “-Ei-P5 AF 3 9

p6=(1+2)\§'—Kcosnt)p3+—i—(—>\§+AE’) ,

p7=(Kcosnt —2x§—1)p ,+%(x:—cxc,§+ey(1—2x2)s—+

+2e37AN:——(1—2)\2)C 178,78-—2C AknsnE—Ac-+

+Cnsflg+Cnsns—+CAcne-+Ckn26nE—0An2cflF) ,

and

_ E _ _

p 8=(Kcosnt —2)\y —1)p3+K-(-)\s +Ac )

Consequently, the expressions for the eigenvalues of the DP matrix can be

written as

1

x12"; [(d11+d22)il(d11+d22)2+4(d11+d22)(d11d22+d12d21)ll/2i - (2-2-29)
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These calculations involve no approximations in the mathematics.

2.3- Results

2.3.1- Frequency Response

Figure (7) is a typical plot of § vs. 1) depicting the stable and unstable

response branches for n=1, that is, motions with the same period as the

excitation, and Figure (8) depicts a similar plot for n=1 and the

subharmonic orders n=3 and 5. Superimposed on Figure (7) is the non-

impacting, or linear branch of the response curve. This branch depicts the

maximum velocity (at I=0) of motions for which there are no impacts and

the absorber simply oscillates between the two constraints. Figure (9a),

(9b), and (9c) depict the variation of if as system parameters 1?, 3: and, e,

i.e., the excitation amplitude, the damping ratio and, the coefficient of

restitution, respectively, are varied. Figure (10) illustrates the dynamic

behavior of the absorber and the carrier for a typical stable impacting

motion, specifically point A in Figure (7).

By referring to Figure (7) and moving horizontally from the right towards

decreasing values of the frequency, 77, one observes the following. For

excitation frequencies around n=2.25, the only possible motion is the linear

one (or possibly the n=3 subharmonic) up to a point where stable and

unstable SDIP motions with n=1 motions emerge in a saddle-node

bifurcation. This point corresponds to the excitation frequency for which

real roots appear for the quadratic equation in terms of 37', that is,

A=0

where A is as defined in equation (2.2.22). Equivalently, in terms of the

driving amplitude, these saddle-node bifurcations occur at
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Figure 7 - Frequency Response of the Absorber
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Figure 8 - Frequency Response of the Absorber; Subharmonic Orders

and the Primary Response
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'Figure 9a - Variation of the Response of the Absorber with Respect
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(”manage

As the frequency is decreased further, the steady-state amplitude of the

linear branch, ymax, increases to a point where the motion just touches the

constraints at [2: [=1. This occurs in Figure (7) at a frequency denoted by

117‘' at which the linear motion with annual coexists along with an unstable

SDIP motion having i7=0. That these two motions are in fact coincident at

n=n' can be shown as follows. For an SDIP motion with n=l to satisfy

37-0, equation (2.2.21b) yields, using the minus branch,

A1/2+ (1+8 )8-=0

1,02E

or, equivalently,

—(l+e )s_+J102E Al/2=0

If the steady-state amplitude of the linear branch is unity then from

equation (2.2.15) it follows that C'=1. It can be demonstrated that the

above condition holds only for C=1 by using equations (2.2.20a) and

‘ (2.2.22) for J1 and A, respectively, as follows:

J, 0213 Al/Q- [CE [E'2(l+e )252+11‘2Jr§ (1--C‘2)l‘/2 [0-1

=—(l+e )3—

Any further decrease of the frequency results in the merging and

annihilation of the stable linear and the unstable SDIP motions in a

degenerate saddle-node bifurcation at n=17‘.

A point of interest about the transformation of linear motions into

impacting SDIP orbits is that as the amplitude of the oscillation of the

absorber is increased in the linear (non-impacting) range, eventually the
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amplitude, I2: I, will equal 1.0, i. e. , the motion just grazes the stops while

still retaining its linear character. An attempt to further increase the

amplitude of the linear motion of the absorber by changing a parameter will

destroy the non-impacting motion. .However, contrary to what one might

intuitively expect, the transformation from linear to nonlinear orbits will not

be a smooth one and there will be jump discontinuity (see Figure 7). In

other words, a stable SDIP motion with i=6, 0<€<< 1, will not emerge

from the linear motion as n is decreased past 17'. This occurs since the

stable linear motion with zmax=l and an unstable SDIP motion with

37-0 annihilate each other in a saddle-node bifurcation. The overall result is

that as parameters are varied, a linear motion does not smoothly transform

into an SDIP motion.

It is possible for the stable SDIP response to become unstable in a

symmetry-breaking pitchfork bifurcation which results in an anti-symmetric

pair of periodic motions. These motions can, as 17 is decreased further,

undergo period doubling bifurcations which result in chaotic dynamics for

the system. This is described in more detail towards the end of the chapter.

2.3.2- The Response at the Anti-resonance

An extensive study was carried out to determine the possibility of

coexistence of impacting and non-impacting motions at the anti-resonance

frequency. To this effect, a fine grid of points in the parameter (K,X,e)

space was searched to detect the occurrence of such coexistence. Figure (11)

is a plot showing the coexistence points for different values of K in the (>\,C)

space.



 

e K.i.3 214% 1515] 1:; '

0.0q l l l 1 X]
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0.0 0.2 0.4 Oifi 0i8 Tie

Figure 11 - Coexistence of Linear and Nonlinear Motions at the

Anti-resonance Frequency
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The occurrence of coexistence at the anti-resonance frequency is crucial

from a design point of view since the dynamic behavior of the pendulum,

and consequently the carrier, depend on the intial conditions and slight

disturbances could take the motion from non-impacting to impacting

motions and vice versa. As can be observed from Figure (11), coexistence at

the anti-resonance frequency occurs only at unreasonably large values of the

damping ratio, )\>0.7. This places the issue outside the realm of practical

applications. The upper bound for K can be obtained by requiring that a

linear, non-impacting motion exist at the anti-resonance frequency, i.e. ,

031 at 17217,”. Employing the definition of C from equation (2.2.16a),

this implies that the excitation amplitude should be limited as follows:

2 2 2 2 /2
KSKcr(>‘)= (l-nAR) +4>\ 1IAR

for the existence of a linear motion. The function Kc, (k) is bounded above

by 0.50 over the range of realistic damping ratios, 0_<_>\SO.25.

Figure (12) depicts a case revealing the coexistence of all three types of

motions, namely, the stable and unstable SDIP motions and the linear, non-

impacting motion at X=0.80, as a function of the coefficient of restitution, e .

The effect of detuning can also be studied in this context. Detuning refers

to the presence of disturbances with slightly different excitation frequencies

than the frequency for which the absorber is designed. The primary focus of

the study of the detuning in this report is to investigate the sensitivity of

the occurrence of coexistence at the operating frequency. In other words, if

the excitation frequency is not exactly at the anti-resonance frequency, 17,“; ,

will this significantly affect the likelihood of coexistence? Figures (13) and
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(14), which are similar to Figure (11), were obtained in the following

manner. The operating excitation frequency in Figure (13) has a :l:5%

variation from the anti-resonance frequency and that of Figure (14) has a

i10% variation. As can be observed from these Figures, the effect of

detuning has a slight tendency to increase the possibility of

coexistence. However, it still does not lead to coexistence at anti-resonance

frequency for reasonable values of the damping ratio. This lack of

sensitivity implies that tuned CPVA systems should have no problem with

steady-state impacting motions.
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2.4- Other Nonlinear Responses and Chaotic Motions

As mentioned earlier, in addition to the saddle-node bifurcations that

result in the jump phenomena (see Figures 7 to 9), another form of

bifurcation can occur which results in a change of stability of the SDIP

response. For instance, for K=2.0, e=0.95 and X=0.01, the frequency

response is as shown in Figure (15) and it is observed that as the excitation

frequency is decreased from n=2.0 the upper SDIP branch becomes unstable

at about 1721.60; this is indicated as point B in Figure (15). For excitation

frequencies between n=l.60 and n=l.0, where the latter frequency is close to

the anti-resonance frequency (17,”; =0.89), there exists no stable SDIP or

linear, non-impacting preioidic motions. However, a stability study reveals

that as the excitation frequency is decreased past point B, an eigenvalue of

the DP matrix passes out of the unit circle through +1 which renders the

response unstable. At this frequency a super-critical pitchfork bifurcation

takes place in which the stable SDIP motion becomes unstable and a pair of

stable, anti-symmetric, double-impact, periodic orbits are generated. These

motions then can each undergo a succession of period doubling, or flip,

bifurcations, which eventually result in nonperiodic, or chaotic motions. See

Shaw [28] for a more detailed bifurcation analysis for a similar, but simpler

system.

Figure (16) depicts the phase trajectory of an unstable SDIP motion along

with a pair of stable anti-symmetric period-one double-impact motions and

Figure (17) illustrates their corresponding time responses. Plots showing the

succession of period-doublings of similar anti-symmetric motions can be

found in Shaw [28]. Figure (18a) is a Poincare map indicating the existence
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of a strange attractor which corresponds to a chaotic motion; this occurs

after the completion of the period-doubling sequence. Figure (18b) depicts a

portion of a typical time response of the absorber mass for an initial

condition within the strange attractor. It is noteworthy to mention that the

succession of period doubling bifurcations leading to chaos occurred in such

a short interval in the parameter space that actual observation of the period

doubling of the trajectories turned out to be quite difficult [29]. In other

words, such transition in this case does not take place as orderly as the

problem considered by Shaw [28].

While chaotic motions may exist at frequencies close to the anti-resonance

frequency, no chaos was found at anti-resonance for absorbers designed to

operate within the linear range, i.e. , for K<Kcr and k small. However,

other unmodeled disturbances may lead to chaotic responses. In particular,

inputs may lead to chaotic motions near a response curve of subharmonic

order n in frequency ranges from n=n to a point analogous to point B in

Figure (15).

The system is nonlinear and one cannot rule out these types of effects

from disturbances, even if they are small, since superposition does not apply

when impacts occur.
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CHAPTER 3

EFFECTS OF NONLINEARITIES

AND DAMPING ON THE DYNAlVflC

RESPONSE OF THE CPVA

The objective in this chapter is to gain a better understanding of the

nonlinear dynamic response of the CPVA and the effect of damping on the

system. The results enable one to obtain a broader view of the different

nonlinear aspects of the response of the system along with more accurate

guidelines in terms of the limitations of the linear analysis. To this effect,

the nonlinear dynamic response of a centrifugal pendulum vibration absorber

with damping in both the primary system and the pendulum is analyzed

using the methods of harmonic balance and Floquet theory. In section 3.1

the full nonlinear equations of motion are rescaled and put into the proper

form for further analysis and section 3.2 deals with the existence of periodic

solutions of the system and the method of analysis. Section 3.3 is devoted

to the stability analysis of the periodic solutions obtained in section 3.2 and

frequency response results are presented in section 3.4. The final section of

the chapter, section 3.5, describes a study of the response of the system at

the anti-resonance frequency.

82
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3.1- Equations of Motion

Rewriting the full nonlinear equations of motion (1.1.7):

[J+mR 2+mr2+2mRr cosqbltl)’ ’ —mr (R cos¢+r )aS ” +mRr¢~ ’ 25inch—

—2mRr1!J’¢ ’ sin¢+Cctb ’ =T(T) (3.1.1a)

—mr(R cosaS-l-r )1D ' ’ +mr2¢ " +0? 4) ' +mRr¢ ’ 2sinr,15=0 (3.1.1b)

where the terms in equations (3.1.1) are defined following equations

(1.1.7). For simplicity, the following rescaling of the parameters is

defined. Let:

 

  

  

J r
H mR2 , ’Y—E (3.1.23)

.. C .. C

>\ =- ‘ , =- ’ 3.1.2b

° mR2 " mR2 ( )

- T0 .. T1

o- mR2 . Kl- mR2 , (3.1.2c)

This will render the equations of motion (3.1.1) as

(1+u+’72+2’1cos¢)1/2' ' —3(cos ¢+r1)¢" +009 “tines—23W

(fl sin¢+ic1b ’ =Ko+chos(w) (3.1.3a)

-’7(cos¢+’7)1,b ’ ' +7209 ’ +33, 05' +710’ 2sin<75=0 . (3.1.3b)

Note that tb and ¢ are the angular displacements of the carrier and the

absorber, respectively. In addition, as mentioned previously, primes denote

differentiation with respect to time, 1'. We have taken only the first term in

the Fourier series of a general periodic disturbance.
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The variable 10 does not appear in the equations of motion and is

completely arbitrary, i.e., it is an ignorable coordinate. The system has

only one—and—a-half degrees of freedom and if equations (3.1.3) are

written in first order form, only three equations will be required, 1'. e. , one

each for the derivatives of d), d) ' and, 11)’ . Here the system is not reducible

to a second order system since we retain the constant torque and carrier

damping.

As one can see, the method of rescaling of the parameters in this chapter

(equations 3.1.2) is different than the one used in the previous chapter

(relations following equation 2.1.20a). The scaling of chapter 2 resulted in

nondimensional system parameters, while the scaling in equations (3.1.2)

does not yield all the parameters as dimensionless (see equation 3.1.2b

above). However, the latter scaling is employed in order to simplify the

terms in the equations of motion for further

analysis. Nondimensionalization is carried out below.

It is also important to note the lack of a certain symmetry in equations

(3.1.3), which arises due to the damping and constant torque terms. When

these terms are omitted, that is, he =33, =1?0=0, the equations admit

solutions with the following symmetry:

(021,0 -—> (—¢,—w,r+-:—) .

Such solutions represent motions which have zero mean and contain only

odd order harmonics. When K0 is nonzero, such symmetric solutions are

not possible and in general motions will have nonzero mean and contain all

harmonic orders. The physics behind this lack of symmetry is that the

constant torque, K0, and the counteracting damping, Xe, bias the rotation

of the carrier to a preferred direction.
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To account for the fact that the system generally undergoes a gross

rotational motion, we shall break '10 up as follows:

¢(T)=QT+9(T) , ~ =constant ; (3.1.4)

that is, the carrier angular displacement is composed of a nominal steady

rotation and an oscillating part. The average rotational speed, fl, will be

solved for in the course of the analysis. Substitution of equation (3.1.4)

into (3.1.3) and rescaling time yields:

(1 +u-l-’Y2+2’7cos¢)9—’y(cos¢-l¥7)05-+-’7<1323ind)—

—27{laSsin¢—2'y.95¢sin¢+)\c 8=K1cos(17t)+Ko—)\c fl (3.1.5a)

—q(cos¢4q)8h2$+kp Mflzsin¢+

qézsin¢+2rynésin¢=o . (3.1.510)

The rescaled time is defined by

t=wn r

0),, = [—(—+—+*7+2)T

is the nontrivial natural frequency of the carrier-absorber system. This

where

results in the following nondimensional parameters which appear in

Equations (3.1.5):

>
’

It

y
:

'
e

>
’

II

V
I

(
'
5

:
3

ll

3
1

   

8 E

3 a 3



 
 

 

Also, overdots denote differentiation with respect to the rescaled time t. In

equation (3.1.5a), one might be tempted to immediately cancel the Ko and

-m,, terms by setting the average speed to be Q=Ko/)\c. This will be true

to first order, but it is not immediately obvious that there will be no

contribution to n from the terms on the left hand side of the equality in

equation (3.1.5a), due to the inherent asymmetric nature of the oscillations.

Two remarks about the rescaling are in order at this point. First, the

numerical values of the damping ratios kc and X? used in this study are all

between zero and 0.10, and are not as relatively small as one might think.

In fact, if the pendulum damping ratio is greater than 0.01, the system

response is drastically different when) compared to that for lower damping

values. This is demonstrated in section 3.4. Secondly, the numerical values

of the excitation amplitude K1 used in this analysis (typically K1301)

represent reasonable values for the input torque. For instance, for the

particular geometrical dimensions of the system used in this analysis,

K1=O.l corresponds to an excitation amplitude in the system of about

5.0x104 ft. lb.
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3.2- Periodic Response

The method of harmonic balance [32, 33] is employed here in order to

approximate the periodic responses of the CPVA. The harmonic balance

method is chosen since it provides results with relatively uniform accuracy

over a wide range of frequency and is not dependent on small parameter

assumptions for the equations of motion (although such an assumption is

made here in order to limit the number of terms used in predicting the

response; see equation 3.2.1 and the explanation following). This wide

bandwidth uniformity of the results of the harmonic balance method makes

it an attractive tool for analyzing nonlinear systems such as the one

presented here. In fact, the limitations of the method are primarily dictated

by the number of terms that one wishes to include in the analysis and also

by the degree of sophistication of the computing systems at hand. In an

asymptotic sense, the results of the harmonic balance obtained for problems

such as the one presented here converge to the exact result as more terms

are included in the analysis.

The reader should note that the method of averaging, which in its own

right is a powerful method in dealing with nonlinear systems, was employed

first. However, difficulties arose as one tried to obtain periodic solutions for

excitation frequencies that were outside of a small neighborhood of the

resonance frequency. The result was that, although the frequency response

of the pendulum was predicted satisfactorily, inaccuracies in the carrier

response prevented the results of the averaging to be acceptable for further

analysis.
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To apply the method of harmonic balance [32,33], we assume

6=A lsinnt +Blcosnt (3.2.1a)

=a+A zsimyt +82cosnt (3.2.1b)

i.e. , the solution is approximated by its first harmonic plus an offset in (b

which accounts, to the first order, for the asymmetry in the solutions (the

oflset in 1P is given by 01', a constant in 9 would be meaningless).

Substitution of equations (3.1.4) and (3.2.1) into equations (3.1.5) results

in two nonlinear equations in terms of 07, Q, A 1, B 1, A 2, and B2 as follows:

—172[1+u-l-/)12+2'71fc (t )](A lsinnt +B lcosnt )+

+7772l’7+f c (t )] (A 25innt +B2cosnt )+’m2(A 2cosnt —B2sin17t )2f8 (t )—

—2’yfln(A 2cosnt —B23mm )1, (t )—

—2’7772(A lcosnt —Blsin17t)(A 2cosnt —B25in17t )f, (t )—

—)\c n(A1cosnt—Blsinnt)+>\c 0=K1cosnt +Ko , (3.2.2a)

and

”7172h1+/ c (t )] (A lsinnt+Blcosnt )—’72772(A 231nm +Bgcosnt )+

+)\p ”(A 2cosnt --BQSin17t)+ryQ"’f,3 (t )+

44777201 lcosnt —Blsin17t )2], (t )+2'7077(A lcosryt —Blsin17t )f, (t )=0 . (3.2.2b)

where

f, (t )=sin(a+A gsimyt +Bzcosnt) (3.2.3a)

[C(t)=cos(a+A 28innt+Bgcosnt) . (3.2.3b)

As one can see, the above substitution results in composite trigonometric

functions [C(t) and f8(t). Expansion of equations (3.2.3) yields
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f c (t )=sina[cos(A 28mm )cos(Bgcosnt )—sin(A 25mm )sin(Bgcosnt )]+

+cosa[sin(A 25innt )cos(82cosnt )+cos(A 28innt )sin(Bgcosnt) , (3.2.4a)

and

f c (t )=—sina[sin(A 251nm )cos(Bzcosnt )—cos(A 23in77t )sin(82cosnt )] +

+cosa[cos(A gsinnt )cos(82cos77t )—sin(A 2sinnt )sin(Bgcosnt )] . (3.2.4b)

The composite trignometric functions appearing on the right-hand sides of

equations (3.2.4) can be expressed in terms of infinite series of Bessel

functions as follows:

cos(:rsin17t)=-Jo(:t)+2 [J2(:c)cos217t+J4(z)cos4nt+. . . ] , (3.2.5a)

sin(xsin77t )=2 [J1(:r)sinnt +J3(2‘)sin3nt +. . .] , (3.2.5b)

cos(:rcosnt )=Jo($)—2 [J2(x)cos2nt—J4(x)cos417t+. . .] (3.2.5c)

and,

sin(:ccos17t)=2 [1,(z)cosm—J,(z)cos3m+. . .] , (3.2.50)

where $=A2 or B2, and where Jn (2:) is a Bessel function of order n defined

 

0° -1 k a: +2]:

J"(z)=kz_30k!(n+k)! ET . (3.2.6)

(The composite terms such as cos(A,-sinnt), 1' a-l,2 can be expressed as a

power series in A2 and 82. The nonlinear equations will eventually be

truncated at third order, i.e. , only linear, quadratic, and cubic terms in

a, Q, A; and B, are retained; this will capture first order nonlinear

effects.) Utilization of equations (3.2.3), (3.2.5) in equations (3.1.5) yields

two nonlinear equations in terms of the aforementioned variables as follows:
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x, 0+ [~712A1[1+M-+’72+27cosaJo(A 2)JO(BQ)1+

+7772A 2[’y+cosaJ0(A 2)JO(B,,)]+2myB,sinaJo(A ,)JO(B._,)—

—X. 081 lsimwt + [—77231[1+/H"72+27005010(A 2)J0(32)l+

Hn232[’y+cosaJ0(A 2ljolBell-2777A 2531104004 2)J0(B2)+

+>\c 17A 1 }osnt =K0+K1cosnt , (3.2.7a)

and

asinaJoM 2)Jo(32)+ “1112A llv+cosafo(A 2)J0032)] -’1"’712A 2-

-)‘p n82+21003aJo(B2)J1(A 2)—2’7nB lsinaJ0(A 2)JO(BQ) )sinnt +

+ [7772B 1 [7+COSQJO(A 2)J0(Bz)]""’277282+xp 77A 2+

+2’YCOSQJ0(A 2)J1(B2)+2’Y77A lSlnaJ0(A 2)J0(BQ) }:os17t =0 . (3.2.713)

Matching the coefficients of terms multiplied by sinknt and cos/ant for Ic==0

and 1 in equations (3.2.7) yields six equations in terms of 0:, Q, A; and,

B,- , i=1, 2.

The constant order terms result in the following conditions:

kc fl=Ko , (3.2.8a)

and

7013111071 (A ,B)=0 , (3.2.8b)

where

f (A ’3 )=J0(A 2)JO(BQ)

Note that f (A ,B) is a function of A2 and 82 which is nonzero (except for

values of A2 and B? representing large amplitude motions,
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7r . . . . . .
e.g., ¢max>-2—). These conditions immediately give the mean rotational

speed as Q=Ko/>\c and a zero offset in pendulum oscillations, a=0 (the oz=7r

case is inherently unstable and not of interest here). This implies that the

pendulum and the carrier oscillations can be well approximated by a zero

mean, symmetric (in the sense described in section 3.1) oscillation.

The four remaining equations are in terms of the A, and B, and are given

as follows, where we have employed conditions (3.2.8):

—112A 111+u+12+27J01A 2)Jo(32)l+

H0244 2l’7+Jo(A 2)Jo(B2)l->‘c "31:0

”702A il7+JolA 2W0(32)l #7277214 2—

—>‘p ’732+2?”0(32V1(A 2)"'0 (3.2.9b)

—772B 1 ll +fl+’72+2710(A 2)Jo(B 2)] +70232l’7+

+1004 2)Jo(B2)l+)\c "A 1=Ki

77723 1 “+1004 zljolell—WQWQB2+)‘p 77A 2+

+2710(A2)J1(82)=0 . (3.2.10b)

Noting that from equation (3.2.6),

and
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3

x .1:

All the terms in equations (3.2.9) and (3.2.10) are expanded and we keep up

to cubic orders in A, and 35- This results in the following equations:

  

  

 

 

A 2 B 2 A 2 B 2

—n"[1+u+v2+2v(1 2 42 )]A i+n2h2+r111 42 42 )lA2-

—)\c nB1=0 (3.2.11a)

2 B 2 ' A 2 B 2

-n211+u+q2+2v(1 2 ,2 )lBi+n2h2+'v(1 ,2 42 >132—

—)\c "A 1_Klfi) (3.2.11b)

A} B 2

A A B2 A 3
2 02 2 2 2 2 . .

+3 (2 8 10 )=o (3212a)

2 A22 B22 2
7? l’YzWU— 4 _ 4 ”Bi-”1277 BQ—kpnAQ-‘l-
 

32A? 323

8 16
 

2 B2
+2111( 2 )=0 (3.2.12a)

At this stage it is convenient to express 6 and 45 in terms of amplitude-phase

variables as follows:

=alcos(nt—fll) (3.2.13a)

¢=a 2cos(77t —,82) (3.2.13b)

where
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A,~2+B,-2=a,-2 , A,-=a,-sinfi,~ , B,-=a,-cosfl,~ , i=1,2.

Substitution of equations (3.2.11) into equations (3.2.9) and (3.2.10) (with

’ Q=K0/)\c and a=0) results in the following four equations for al, 31, 02,

and ,82:

 

   

22

—7]2 l+u+’722’7[1- a4 ]]alsinfil+

2

2 a2 .

+772 ’7 “Pill-T]LQSinfig—chalcosfilfl , (3.2.14a)

a22

—172 1+it-l-’)122’)1[1——4] lcosfll-l-

2

2 a2 .

+77 7244““?l]4200562+)\c’7“ismfli‘K1=0 1 (3°2'14b)

 

and

a 2

772 [724’7l1—'4il }"13infii“72’72a25infl2-

3

2 a2 . a2 . 2

—)\p no 2cos,32+2’70 ——2—sm,32——8—sm,52cos 32—

023
_.—516in3flz , (3.2.153)

 

a 2

172 [724“7l1-jf—l [10050147277211 goosfi2+

02 a; . 2

Ycosfig——8cosflzsm ,32-

 

+>\p 770 28ln32+2702

3
a

_ 11: c03352]=o , (3.2.150) 
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Of these four equations, it turns out that equations (3.2.14a) and

(3.2.14b) can be solved for al and ,3, in terms of a2 and fig; that is, the

equations uncouple. In terms of 02 and fig, a1 and E, are given by:

a lsinfll=%[1112agsinflz+)\c n(K1—12a2cosflg)] (3.2.16a)

and

a lcos,81=—TI[II(K1-I2a 2cosflQ)—)\c nIQagsinfig] (3.2.16b)

where

2

2 2 “2
11=77 [1+u-l-q1 +27(1——4—)] , (3.2.17a)

. 022
I2=7l‘l'12‘l"‘f(1"T)l , (3-2-17b)

and

D =1,2 +0., 202 . (3.2.17c)

When the two expressions (3.2.16a,b) are substituted into the two equations

(3.2.15a,b), the result is a pair of equations involving only 02 and ,82:

I, , .
—D-[I112a 281n32+kc 17(Kl—I202cosfl2)]-/721720 QSInflQ—Xp nagcosfl2

3 3
a a a

+2’yfl2(—22—sinfl2-Tzsin52c032,82—T§—sin3flg)=0 (3.2.18a)

and,

I

-%[II(I(1_I20 200532)+>\c 77120 25infl2]-’72n2a 2cosfig+

3 3
. a a a 2 .

+>\p na 251nfi2+2702(T2cosBQ—ié—cos3fiQ—T51ngfigcosfig)=0 (3.2.18b)
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This uncoupling simplifies the equations considerably. Equations

(3.2.18a) and (3.2.18b) can be solved for the pendulum amplitude and phase

( 02 and ’62 ) and the latter substituted into equations (3.2.16a) and

(3.2.16b) to yield those of the carrier, namely, 01 and 31. This is carried

out numerically.

The case of zero damping and zero constant torque, )\p =)\c =K0=0, is

useful for certain analyses and is presented here. For this case equations

(3.2.16a,b) and (3.2.18a,b) reduce to:

 

 

I a sin

alsinfll- 2 2 32 (3.2.19a)

Ii

K —I a cosfi

alcosBI=—( l 2 2 2) (3.2.19b)

11

I? . 2 2 .

TlgaQSinfig—q 77 a251n32+

1

3 3
2 a2 . 02 . 2 a2 . 3

+270 (TSinflz—TSInfl2cos 32—Fsm flz)=0 (3.2.19c)

I2 2 2

“‘I—(K1"‘12‘12‘2‘)Sfl2)'—’71 7? 0200532?

1

3 3

:2 3 -222cos £2 8 Sin flgcosfl2)=0 (3.2.19d)
2 a2

+27“ (.2—cos02— 16
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3 .3- Stability Analysis

In this section we consider the dynamic stability of the approximate

solutions which are obtained. This analysis uses Floquet theory (see [32] or

[34]). The idea is to determine the dynamics (actually only the growth or

decay) of small perturbations to a periodic solution. This is accomplished

by linearizing the full equations of motion about the periodic solution and

studying the resulting linear, time varying differential equations.

We denote the periodic solution as (5,3), and let ‘9 and £6 represent small

perturbations of 5 and 3. Substitution of 9=E+9 and ¢=$+€b into equations

of motion (3.1.3a,b), and noting that Sim} and coszb can be approximated by

97> and 1, respectively, one obtains

Il+u+e2+2cos$-&ssin$1(3+5)-[cos$—esin$+e1($+$)+

m<$+3s)2(sin$+ecos$)—2vm$+3>(sin$+$cos$)—

—27(§+3)($+3)(sin$+<i>cos$)+xc(E+E)=K,eesnt , (3.3.1a)

flicosg—éfisinEH](3+3)-Ifl”($+3)+>\p (5+33)+

Mn?(sin$+$cos$)+y(5+§)2(sin$+éseos$)+

+2en(5+§)(sin$+$eos$)=o . (3.3.1b)

Note that, by definition, 5 and a satisfy the equations of motion (3.1.5),

and also keeping only terms linear in the tilde variables in equations (3.3.1),

we obtain:

—273{>sin5§+[1+uH2+27cosgl§H$sin3$-
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—i(i+cos$)25+2v$<issin$—2vnébsin5—

—2qn$&5cos$—2q(?o+$é)sin$+xc§=K1cosnt ,

véfisin33-7h+cos$]5+723+>xp 2b+

H02<3cos$+275~95in5+2705~¢cos$+

+2qnfisin$=o

Solving equations (3.3.2) for '2'} and 23 yields

3=%[72L.H(7+C)L.l

$=%.[L ¢(1+M+’72+2’YC )+’7(7+C )L a]

where

L o=+2v$sinfi—qisin?¢—2v$35sin$+2vn&sin$+

+2vn$ecos5+2v<3e+$é)sin$—x.‘o ,

L ¢=~7§$sin$5->\p (E-q0263cosg—2qb‘fisina—

—27Q:9-¢cos$-2flflgsin$

and

17=72(1+n-cos"’$)

(3.3.2a)

(3.3.2b)

(3.3.3a)

(3.3.3b)

(3.3.43)

(3.3.4b)

(3.3.4c)

Equations (3.3.3a) and (3.3.3b) can be put into first order form to obtain

four first order linear differential equations for 9, 9, 55, and 53 with time-

periodic coefficients. These equations are then numerically integrated

through one period of the forcing with initial conditions equal to successive

columns of the 4X4 identity matrix. The four resulting vectors can be
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assembled to form the 4X4 monodromy matrix. According to the Floquet

theory, a periodic solution (5,.) is stable if all the eigenvalues of its

monodromy matrix, i.e., the Floquet multipliers, have moduli less than

unity; otherwise it is unstable. Bifurcations occur as eigenvalues pass

through the unit circle in the complex plane, and we shall predict post-

stability behavior wherever possible using concepts from bifurcation

theory. We shall use as 5 and 5 our approximate solutions obtained using

harmonic balance.

It must be re—emphasized that the variable 9 appears nowhere in the

governing equations. The system under consideration has actually only

one —and —a —half degrees of freedom and can be represented by three first

order differential equations. The effect of this on the stability analysis is

that one of the four eigenvalues will always be identically one, due to the

inherently neutral nature of 9. Thus, all stability considerations are based

on the remaining three eigenvalues. Another way to see this is to note that

we only need to consider the differential equations for 46, (i3, and 52>, and after

solving them '9 can be obtained by direct integration, i.e. , the Z) dynamics

are uncoupled.

In regards to symmetries, it must be noted that the linearized equations

(3.3.3a,b) are symmetric in the following sense:

($9bat )_’(_$7-99t +%)

leaves the equations unchanged only if the periodic solutions (iii-0.) have the

following symmetry:

(gravt )_*(—$2-§9t +'E;_) -

The original equations of motion do not admit such solutions, but it is
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important to note that our approximate solutions have such a

symmetry. This will be a crucial point used in interpreting the stability

results.
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3.4- Frequency Response

Figures (19a) and (19b) show typical frequency response curves for the

pendulum and the carrier, respectively, and Figure (19c) depicts the

corresponding phase difference of the carrier and the absorber. The solid

lines indicate stable periodic motions and the dashed lines indicate unstable

ones. Superimposed on these plots are the results from simulations of the

full nonlinear equations of motion (3.1.3a) and (3.1.3b), shown as circles.

As can be observed, the results of the harmonic balance agree well with

the simulation results and only when the absorber amplitude response

(Figure 19a) becomes quite large does one see a difference in the analytical

and simulation results. In particular, the results of the analysis start to

diverge from those of the simulation of the equations of motion when the

absorber sweeps through about 90 degrees in each direction during the

steady-state operation, well beyond the range of practical applications.

This is primarily due to the fact that in the harmonic balance analysis, the

solution was assumed to consist of only its first harmonic while the actual

response contains many harmonics, and as the amplitude of the oscillation

grows, the effect of these harmonics becomes more pronounced. Also, the

effects of terms ignored in the series expansions of the Bessel functions may

become non-negligible. As a test of the validity of our approximate

solutions, the Fourier spectrum of the response of the carrier obtained

through the simulation of the full nonlinear equations of motion was

analyzed over a range of frequencies. It was found that at low amplitude,

oscillation energy is primarily stored in the first harmonic, while as the

amplitude grows, the higher harmonics (in fact up to the fourth) acquire
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enough energy to significantly affect the motion of the carrier.

The numerical value of the anti-resonance frequency for the example

system used in this analysis is determined from the linearized system to be

17AR =0.89, which is close to the resonance frequency of the system, n=1.0.

As is shown in section 3.5, the nonlinear anti-resonance frequency for the

damped, nonlinear system will differ from "AR- Figures (20a) and (20b)

illustrate the frequency response of the absorber and the carrier, respectively,

for several values of the excitation amplitude, K1.

The frequency at which the slope of the response curves of the pendulum

and the carrier are vertical is referred to as the turning frequency, 17, . From

Figure (19a) one can observe that the turning frequency should not be too

close to the anti-resonance frequency for a feasible design. Obviously, if the

frequency of the excitation is slightly increased above 17,”; the resulting

response of the system will be drastically different than expected and the

absorber will not function properly.

The initial conditions play a major role in the response of the CPVA in

certain cases. For instance, in Figure (19) one can see that there exists more

than one steady-state periodic solution for the system at the anti-resonance

frequency, mm. In other words, depending on the initial conditions, the

system either responds as predicted by the linear analysis (the lower branch

on Figure 19) or oscillates with much larger amplitude (the upper branch in

Figure 19). The middle branch in Figure (19) represents unstable, and

unobservable, periodic solutions of the CPVA.

The numerical value of the turning frequency can be obtained as

described by Stoker [34] and outlined here. As mentioned earlier, at m the

slope of the frequency response of the pendulum is vertical,

i.e. ,Tgn—=O at n=17t. This property can be exploited to find 17, by

“2
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differentiating equations (3.2.18a) and (3.2.18b) with respect to a2. Two

as follows: equations result in terms of 17,, a2, fi2, and

6a2

—1—2— (w I22a2sin52+2111212’ a,sinB,+I,I,2 sinfl2+1112202fi2’ eosB2+

+)\c 1712' (Kl—I2a 2cosfl2)+)\c 1712(—I2’ a 2cosfi2-I2cosfl2+

+I2a 2fl2’ sinfl2)]D —D’ [1112211 2sinB2+I2kc n(K1-I2a 2cosB2)] ]—

#721728ln32—727720 2fl2’ 00832—Xp "C03fl2+)\p 770 2,82, Sin,82+

3022

+2702[—sinfi2+—fl2' cosfl2-—8—sinfl2cos2E2—

 

023 3 “23 . 2 3a22
-—fi2' COS flew—32’ sm 5200352“ 3511352-8

4
16

3a23 . 2

-n-fle'sn aces/as , (3.4.121)

and

I}; [D II1’ [2(K1—I2a 2cosfl2)+1112' (K1‘12“ 2C03fl2l+

+11I2(—I2’ a 2cosfl2-I2cosfl2-I-I2a 262’ sinfl2)+

+2)» ”1212' a 2sinfl2+bc 77122 sinfl2+kc 77122 a 2:32, cosfl2]—

—D ' [1112(K1—12a200532)+)\e 17122a esiDflel )-

-’72772cos,32«|-’72772a2fl2’ sin,32+>\p nsinfl2+>xp 17a 2fl2’ cosfl2+

a2

  +27fl2[——cosfl2——-,B2' sin,B2-—3 Hoos3fl2+63"82 sinfl2cos2B2—

3a22a231123 3

-—sinzfi2cosfi2-—fl2’ sinfl2cos2fl2+——fl2’ sin B2]=O . (3.4.1b)

8

where



 

11’=-’7172a2 .

II’

I '=
2 2

and

D, =2IlIl’

Equations (3.4.1a,b) along with equations (3.2.18a) and (3.2.18b) form a

system of four nonlinear equations in terms of four unknowns, namely,

(9

(a2, 52, 5-51, 17, ). Here, 02 and ,32 are the absorber’s amplitude and phase,

2

2 is the rate of change of the relative phase of the

602

respectively, at 77, and 

absorber with respect to the absorber amplitude. Given a set of system

parameters such as damping ratios and excitation amplitudes, these

equations can be solved numerically to yield the corresponding turning

frequency, 17, .

Figure (21) shows a plot of the turning frequency versus the amplitude of

the oscillating component of the excitation, K1 (the 77 curve in Figure (21) is

explained in section 3.5). It was found through numerous simulations and

analysis that the damping ratios of the carrier and the pendulum have little

effect on the turning frequency compared to the effect of varying K1. Hence

Figure (21) depicts the result for zero damping with the fact in mind that

similar curves for other sets of damping values (within practical range) all lie

in a small neighborhood of the curve shown in Figure (21). As described in

the next section, the turning frequency 17, can cross over the anti-resonance

frequency, f7, resulting in a drastic change in response.
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There are two dynamic instabilities observed in Figure (19). There exists

one at the turning frequency; this is a straightforward, simple saddle-node

bifurcation (Guckenheimer and Holmes [26]). The more interesting one

occurs on the upper branch of the response curve. It corresponds to an

eigenvalue passing through +1 in an increasing manner as 17 is

decreased. Such a transition corresponds in the generic case to a simple

saddle-node bifurcation, but this does not occur here. The instability results

in a symmetric saddle-node, or pitchfork, bifurcation which results in a pair

of anti-symmetric motions [26]. This bifurcation is predicted from our

analysis, which yields symmetric approximate solutions, which cannot occur

in the actual, nonsymmetric system. By considering a small, unsymmetric

variation in the predicted instability, we predict that near this point a large

deviation from symmetry will occur. That is, solutions will be nearly

symmetric up to the instability, and above the instability the asymmetry of

the solutions will be amplified quite sharply (see section 7.1 of Guckenheimer

and Holmes [26] for a more thorough explanation). Figures (22a,b) show the

K0

kc

variation of the mean values of 9 and (b, that is, deviations from Q: and 

oz=0, as computed from direct simulations of the steady-state solutions of

equations (3.1.5) while following the upper branch of the response

curve. The sharp rise in the mean value of 0 near the instability indicates

that our approximation for Q is breaking down. In Figures (23a,b) we show

a series of periodic motions as limit cycles in the three dimensional phase

space (¢,<I),0) for 17 varying near the point of loss in symmetry; it clearly

shows the breakdown in symmetry as 17 is decreased near the instability.

Another point of interest is that there should exist another branch of

solutions arising via a saddle-node bifurcation near the predicted pitchfork

bifurcation point. We were unable to find any evidence of these motions,
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although they may well, and should, exist. Figure (24) depicts the effects of

small symmetry deviations on a pitchfork bifurcation.

Finally, we remind the reader that the rescaling of time and other system

parameters that led to the equations of motion (3.1.5) results in a scaling

down of the damping values. In Figure (25) we show a set of response

curves corresponding to )\c=>\p =0.1 and K1=0.1. Note that for these

apparently moderate damping values the response has no usual resonance

peak or anti-resonance point. Such response curves were found to occur for

A? greater than about .01 over a wide range of K1 and )2 values. A reason

for this is provided in the following section.
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3.5- The Response at the Anti-resonance Frequency

A study was done on the behavior of the carrier near the predicted anti-

resonance frequency for a range of damping and excitation amplitude

values. The variations of the carrier amplitude at 17,”; as a function of

K1, )‘p and, )\c are shown in Figures (26a), (26b) and, (26c), respectively.

From these Figures one can observe that the carrier amplitude at the anti-

resonance frequency, 17,43, varies almost linearly as a function of the

excitation amplitude, K1- It depends strongly on the pendulum damping

)xp for 03%,, <0.02 and is relatively insensitive for )‘p >0.02. The carrier

amplitude at 1743 remains essentially constant as )\c is varied. The

sensitivity of the response to changes in )\p as shown in Figures (25) and

(26b) indicate that the pendulum damping should be kept as low as possible.

As shown immediately below, the actual desired operating point may vary

away from 17,“; due to nonlinear and/or damping effects. This is crucial

from a design standpoint. Thus, the sensitivity of the value of the anti-

resonance frequency itself to the variation of the system parameters was also

investigated.

A first order approximation of nonlinear effects on the anti-resonance

frequency can be obtained by assuming that the carrier and the pendulum

dampings are small enough so as to be neglected. The absence of damping

implies that the carrier amplitude can be identically zero at a single value of

17, the true anti-resonance frequency, denoted by 57 . This value is exactly at

17AIt only for the linear, undamped system.

The condition for anti-resonance in the undamped system is a1=0, 1'. e. ,

the carrier has no oscillatory response. Imposing a1=0 on the undamped

response conditions (3.2.19) yields the following conclusions. From equation
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(3.2.19a) it is concluded that either a2=0 or ,B2=O or 11’ (I2=0 corresponds to

a2=2 which is beyond the range of our approximation, 1'. e. , ¢max>%)° The

a2=0 solution is unfeasible with al=0. Note that due to the particular

configuration of the directions of the excitation and the rotation of the

carrier and the motion of the absorber (Figure 2b), the fi2=7r solution

represents the upper branch of the response curve and the fl2=0 solution

represents the desired solution on the lower branch of the response curve;

this, in fact, corresponds to the pendulum moving out of phase with respect

to the forcing, as it must in order to act as an absorber. Equation (3.2.19c)

is automatically satisfied for B2=0. Equation (3.2.19b) reduces to

K1_12&2=0 (3.5.13)

where I1 and 12 are as in equatiOns (3.2.17a) and (3.2.l7b), respectively,

with n=f7 and a2=fz2 where (12 is the pendulum amplitude at the anti-

resonance frequency, 17. Equation (3.2.19d) simplifies to the following

expression by imposing al-O, 762:0 and equation (3.5.1a):

a 2

a

222_n2(1——82—)=o (3.5.1b)

Note that if 62 is small, i.e. , if we linearize, then f7=17AR is recovered

from equation (3.5.1b) and (3.5.1a) yields the linear pendulum response

amplitude at 1743 .

Equations (3.5.1) were solved numerically for the unknowns (1‘2 and 17 as a

function of the excitation amplitude K1. Figure (21) illustrates the result of

this analysis for 1"]. As can be observed, the anti-resonance frequency, 17,

decreases in value as the excitation amplitude is increased. According to

Figure (21), for K1>0.12 the anti-resonance frequency is predicted to be

larger than the turning frequency, 77,. When 17, <17 is predicted from our
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approximate analysis, no 17 can actually occur since a1=0 cannot exist at a

frequency above 17, . In such a case no low amplitude carrier motion can

exist, and a steady-state response at n=f7 will occur which corresponds to the

upper branch of the response curve. This effect renders the absorber useless,

and it cannot be captured from a linearized system analysis. Figure (27)

depicts the predicted and simulated carrier response for K=0.5. Note that

in this situation no range of 17 values exists for which the system acts as an

absorber. The conclusion is that these devices will have a limited torque

range.

When damping is taken into account the amplitude of the carrier at the

anti-resonance frequency can be no longer set identically to zero. Instead,

the derivative of the carrier amplitude with respect to the excitation

frequency at the anti-resonance frequency can be set to zero since the carrier

response curve, by definition of the anti-resonance frequency, has a minimum

at that frequency. Accordingly, equations (3.2.16) and (3.2.18) can be

differentiated with respect to the excitation frequency, 17, resulting in four

coupled partial differential equations. The subsequent eight unknowns

(i.e. , a1, a2, 31, 32, and their partial derivatives with respect to 17, with

801

317

using the four equations (3.2.16) and (3.2.18) and the four partial differential

 set to zero, and 17 which is not known) can be solved (in principle)

equations mentioned above. However, the resulting equations are

complicated enough (and are not shown here) that results obtained directly

from the simulation of the equations of motion (3.1.5) proved more

practical. It was found as a general rule that increasing the absorber

damping tends to shift the 17 curve in Figure (21) slightly to the left, while

the carrier damping has no detectable effect on the shifting of the anti-

resonance frequency (for )\c <0.1).
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CHAPTER 4

CONCLUSIONS

The dynamic response of a centrifugal pendulum vibration absorber was

investigated in terms of the effectiveness and range of applications of the

device. The nonlinear methods of l analysis undertaken in this work have

revealed some aspects of the dynamics of the CPVA which have not been

understood before.

4.1- The Efi'ects of Motion Limiting Stops

The main conclusion drawn from the first part of the thesis is that

motion limiting stops can be effectively employed when placed at amplitudes

larger than the steady—state response predicted from the linear system at the

anti-resonance frequency. This is so due to the fact that steady-state

impacting motions can occur at the anti-resonance frequency only if the

damping between the pendulum and the carrier is unreasonably large. The

impact dynamics of the system can be very complicated when it is subjected

to frequencies above anti-resonance; this can include chaotic motions and/or

a variety of periodic responses. The satisfactory performance of the

127
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centrifugal absorber with motion limiting steps is dependent on the

amplitudes of the excitation that is inducing the undesirable vibration on

the primary system (carrier). If the excitation amplitude becomes larger

than the free —flight threshold, the absorber will interact with the stops

resulting in poor, if not damaging, performance.

Recent experiments have been carried out on a simple, non-rotating,

impacting pendulum which is governed by the same equations of motion as

the linearized system with stops (equations 2.1.20a,b). These demonstrated

the existence of SDIP motions, pitchfork bifurcations and chaotic dynamics

[36]. Frequencies near the corresponding anti-resonance frequency were not,

however, attainable in that system since 17 was restricted to be 1.0 or higher

by equipment limitations.

The SDIP motions are a very specific type of periodic motion. An

infinite number of other types of periodic motions exist for this system.

This is known since the presence of chaotic dynamics indicates the existence

of horseshoe sets for the map P which in turn contain this infinity of

periodic motions along with nonperiodic motions [37]. Thus a complete

study of the impacting dynamics is out of the question. However, SDIP

motions are the most common; this has been observed in experiments [36]

and simulations. In addition, they are a good indicator of where other

impacting motions exist since many (although not all) of the other types

arise out of bifurcations which are directly tied to an SDIP motion.

If stops are not employed at all, and the pendulum is allowed to swing

over the top (an extreme situation which is rarely, if ever, seen in

applications), the system can undergo chaotic motions in which the

pendulum undergoes chaotic sequences of clockwise and counter-clockwise

rotations [35].
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4.2- The Effects of Nonlinearities and Damping

In the second part of the study, the nonlinear response of a centrifugal

pendulum vibration absorber was studied using harmonic balance and

Floquet theory. Although specific geometrical dimensions for the model

were used in this report, some general conclusions can be drawn from the

results.

The method of analysis applied to the basic model resulted in sufficiently

accurate results and their agreement with the simulation of the full

nonlinear equations of motion was satisfactory. The results depict how the

true response of the system can be drastically different than what is

predicted from the linear analysis. Hence, it is well advised that when

designing a CPVA that the undamped, linear analysis should be used as a

means of first trial of the required system dimensions and geometric

properties. However, once designed, the model must be analyzed using a

nonlinear method such as the one outlined in this study to account for the

nonlinear and damping characteristics of the system, which affect the

dynamic response of the CPVA. This can be true even in some cases where

one might think that the mere presence of low amplitude motions justifies

using the linear analysis results.

Nonlinear characteristics of the system such as the shifting of the anti-

resonance frequency and the jump phenomena must be considered in the

design of the CPVA since if ignored, the absorber’s efiectiveness can be

reduced, or it might even result in larger oscillatory amplitudes in the

primary system.
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It is often assumed that carrier damping has negligible effect on the

response of the CPVA since, when properly working, the carrier runs at

constant speed, and hence the carrier damping is completely counteracted by

the mean component of the torque. Based on the results indicated in Figure

(23c), it appears that such an assumption is reasonable since the response at

the anti-resonance is quite insensitive to the values of )xc. However, the

anti-resonance response is extremely sensitive to the magnitude of pendulum

damping. It may be possible to lump the carrier damping in with the

pendulum damping, resulting in some increased value for the effective

pendulum damping, due to the system’s insensitivity to )‘c at anti-

resonance.

Several other researchers have investigated the nonlinear dynamic

response of the CPVA. Den Hartog [38], Crossley [20], and Newland [7 , 25]

seem to have contributed the most. A brief comparison is presented here

between the results obtained in this report and those of these

references. The model used in this report is a generalization of the one used

by Crossley [20] except that damping is neglected in [20]. Although the

equations of motion in both reports are equivalent (with the exception of

damping terms), the final expressions for the nonlinear dynamic response of

the pendulum and the carrier are different. Since Crossley models the

system without damping, the equations of motion are integrable and the

result is an expression for the angular displacement of the pendulum in

terms of hyperelliptic functions. Also, no stability analysis was carried out

by Crossley and the subjects of jump phenomena and the turning frequency

were not considered. The conclusion drawn from Crossley’s analysis is that,

due to the wide angle of swing of the absorber, the designed aborber should

never be too long and they should be of a length somewhat shorter than the
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value given by the linear analysis. The results in this report show in a more

detailed manner as to the reason that the pendulum should be designed with

a shorter length than predicted by the linear analysis. This is performed by

the computation of the shifting in the anti-resonance frequency and as

noted, 17AR has a tendency to decrease as K1,, and consequently the

absorber amplitude, is increased. Keeping in mind that the excitation

frequency is fixed at n=jfl, and since the minimum amplitude of oscillation

R /2 R
of the carrier occurs at a value below j= T , then the ratio 7 should

be adjusted in such a manner as to increase the frequency at which the

minimum oscillation amplitude of the carrier takes place, i.e. , the frequency

at which the absorber is most effective. By the virtue of the fact that the

carrier effective radius, R , is essentially fixed, the only parameter over which

the designer can have effective control is the pendulum length, 1'. An

increase in the effective frequency of the absorber (a right-ward shift of the

anti-resonance frequency) then necessarily implies a decrease in the effective

radius of the absorber. This fact, as mentioned earlier, is in agreement with

Crossley’s results.

Den Hartog [38] uses a model equivalent to Crossley’s. The equations are

linearized and the concept of anti-resonance frequency for small angle

displacement is discussed through the definition of the equivalent inertia of

the system. The effects of pendulum damping and nonlinearities are briefly

touched upon and expressions are presented for the dynamic response of the

absorber in terms of hyperelliptic functions. As far as the shift in the anti-

resonance frequency is concerned, remarks similar to those given by Crossley

[20] are presented, indicating an increase in the anti-resonance frequency due

to the wide angle of swing of the pendulum. No stability analysis is
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presented by Den Hartog [38] or Crossley [19, 20].

Newland [7, 25] has presented the most comprehensive study on this

subject. However, his model does not consider the effects of damping.

Newland obtains an approximate solution using the Ritz minimization

method. Some stability analysis is presented in Newland [7] which explains

the unstable nature of the middle branch of the frequency response. The

stability results presented in this report extend those of [7] in the sense that

in addition it has been shown that there can be breakdown in the stability

of the periodic motions on the upper branch of the frequency response

curve. The efi'ect of jump phenomena is dealt with extensively in [25].

In this work it is shown that the method of harmonic balance with

nonlinear terms of up to cubic order yields quite accurate and satisfactory

results when compared to the results obtained from simulations of the full

nonlinear equations of motion (Equations 3.1.1). The method of averaging

[33] was also applied to the present system. This efiort was not fruitful,

however, due to the fact that the low-amplitude carrier response near the

anti-resonance frequency could not be captured using first-order averaging.

4.3- Suggestions for Future Work

A limiting factor in many designs of the CPVA is that the steady-state

pendulum angle amplitudes must become large when the disturbing torque

amplitudes are large. If the system is driven out of the region of validity for

linearization, then nonlinear effects can lead to catastrophic failures [7].

This is currently dealt with by making the effective pendulum path non-

circular. Cycloidal paths are common in helicopter applications; more

optimal paths are currently being worked on in the automotive industry
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[18]. It is found, through research and experiments, that many of the

undesirable nonlinear properties of the conventionaly circular-path CPVAs

(for example, the jump phenomena) can be eliminated by incorporating

non-circular paths in the design of the CPVA. Also worthy of note is the

work of Mouzakis [23] on a monofilar pendulous absorber in conjunction

with helicopter rotor torsional vibrations.

An obvious study complementary to the one presented in this thesis is an

experimental investigation of the response of the CPVA. Further research

can also be carried out on other aspects of the dynamics of the CPVA. For

instance, more detailed analysis of the response of the absorber with respect

to non-circular paths deserves more attention. Also, the use of multiple-

pendula sets on shafts that are subject to excitations with more than one

dominant frequency needs to be investigated. From a design point of view,

one can study the range of system parameters for which an absorber with

optimal performance characteristics can be designed. In particular, one can

study the effects of combining the results of the two parts of this thesis to

obtain guidelines and data for the response of the CPVA with motion

limiting stops with respect to the turning frequency, anti-resonance

frequency and possible interactions with the stops. Also, the dynamic

interactions which result when multiple pendula are used on a shaft is of

interest, as are the efi'ects of the coupling between vibrations due to shaft

flexibility and/or translations of the entire structure. Furthermore, during

simulations of the full nonlinear equations of motion of the CPVA it was

observed that a subharmonic of order two occured near n=0.5 (chapter 3 of

the thesis) and has a significant effect on the response of the system at that

frequency. This characteristic of the CPVA is one which deserves further

study.
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