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ABSTRACT

MODELING ARTIFICIAL NEURAL NETWORKS

USING

VHDL

By

Keshavachandra, C.K.

This thesis describes an Artificial Neural Network (ANN) ceprocessor modeled

behaviorally using VHSIC Hardware Description Language (VHDL).

There has been renewed interest in the area of ANN of late. Everyday new ANN models

for new domains are being suggested. There is however a dearth of equal progress in this field as

far as hardware implementation is concerned. This is partially due to limitations posed by the

current technology and it’s orientation towards traditional VonNeuman architectures. It is a logical

step to adopt VHDL as the design test bench for behavioral modeling of Artificial Neural Networks

considering the fact that VHDL is gaining ground as the standard design test bench for hardware

design. It is fast becoming the industry standard for hardware design, simulation and exchange.

One such system modeled in VHDL is described in this report. Even though the system is

aimed at solving dynamic programming problems, it is designed such that any similar ANN can be

modeled using it. The design structure facilitates easy modification in order to incorporate new

features, such as learning, and different models for a neuron. This coprocessor can be used to test

any ANN model and the corresponding energy function.
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Cfiapter 1

Introduction

1.1 Introduction

The past few years have witnessed an increased interest in the area of Artificial Neural

Networks (ANN) [1]. Research in this field, although started in early 60s, could not proceed at the

desired pace due to the limitations posed by available technology. The phenomenal advances in the

fields of computer engineering and IC engineering have given a fresh impetus to this field. These

technological leaps have also Opened up a myriad applications for Artificial Neural Nets [2, 3].

In spite of these factors, research in this area is still impeded by the fact that there is no

standard hardware testbench to test new designs. Simulation and verification of most of the

networks suggested are done on traditional computers in software. Designing and fabricating

hardware that can be used for research is still prohibitively expensive. This problem, when

considered with an academic setup in perspective, appears to be one of the bottlenecks in ANN

research.

Another notable development of the past few years is the emergence ofDesign Automation

(DA) tools, and Hardware Description Languages [4]. VHSIC Hardware Description Language

(VHDL) is fast becoming an industry standard for hardware design and exchange [5]. The merits

of using such a language for hardware design and verification are explained in Chapter 2. Apart

l
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from the immediate advantage ofusing an emerging standard for hardware design, VHDL provides

an economical alternative for hardware design and verification. A premise of this work is that ANN

research, impeded by the huge cost required for physical implementation, will find VHDL ideal for

modeling and verification. Using this approach the actual implementation of these networks can be

separated from much of the research effort.

1.2 Objective

This thesis is an effort in demonstrating VHDL as a viable design test bench for ANN

research. A conscious decision was taken to develop a general purpose ANN coprocessor in VHDL,

even though the primary objective was to model a neural network in VHDL capable of solving

dynamic programming problems. The system is designed as a “coprocessor” similar to a math

coprocessor in the sense that it receives data from the CPU and retums the solution or sends a signal

that it could not converge to a solution within the predefined accuracy. This system can be used to

test any similar network without major changes by describing the size of the network (in terms of

the number of stages and the number of states in each stage) and providing the initial conditions (the

weights on the links in the network). The design is also kept flexible enough for incorporation of

additional features such as learning. One can use subcomponents of the present system in an

alternative design without much eflort. Essentially, this is a skeletal system that can be enhanced

and used for simulation and verification of many types of Artificial Neural Networks.





Cfiapter 2

’VHQDL

2.1 Introduction

Early in the Department of Defence (DoD) Very High Speed Integrated Circuits (VHSIC)

program, a need was felt for a standard medium of expression to communicate the massive amounts

ofdesign data associated with device designs ofthe desired scale and complexity. VHSIC Hardware

Description Language (VHDL) is the outcome of efforts in this direction [6]. It is fast becoming

industry standard for hardware design and exchange [5].

In the present day hardware design environment, where DA tools are used virtually in all

phases of design cycle, hardware description languages are crucial to the design and test of

hardware. They allow incremental development of designs, store design data, and communicate

those data between various design activities. VHDL marks the first coordinated efiort to develop a

common hardware description language, that is being recognized as an industry standard [7].

2.2 Factors Influencing the Development of VHDL

Improving the documentation of electronic systems: Government electronic systems

require stringent documentation because they have long life cycles and are deployed around the

world. Maintaining and upgrading electronic systems while they are an active part of the inventory
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requires detailed, up-to—date, and accurate documentation. Hence there was a need for a precise

hardware description language.

Since VHDL can serve as a design automation tool interface, it can document the electronic

system during (instead of after) the design process. Therefore, VHDL more accurately reflects a

system’s true properties and characteristics.

Decreasing system design time and cost: There is a need for a significant number of custom

ICs to meet performance, reliability, and classification requirements that off-the—shelf ICs won’t

satisfy. Already in the $2 to $5 million range, development costs of advanced ICs must be reduced

to economically meet future IC demands[6]. VHDL can reduce IC development time and expense

by promoting repeated use of previous design investments, and by providing a vehicle for more

efficient management of the design process among individual designers or organizations.

When considering the development of large electronic systems, the paradigm of design as

an iterative process building new designs upon past designs is quite powerful. Similarities between

this process and human learning provide a conceptual basis for knowledge-based design tools that

improve with use. In addition, some business analysts forecast that a “redesign era” will emerge to

fuel the next major semiconductor market, and that equipment manufacturers will upgrade their

products to take advantage of VLSI technology[6].

By allowing for parameterized generic design components, VHDL simplifies the reuse of

designs. Once a generic component has been designed, it can be reused by instantiating its

parameters with values meeting givenapplication requirements - a feature significantly reducing

resources expended in complex electronic system development.

By providing many features to assist in design management and documentation by

configuration control, VHDL helps to establish more structured policies and procedures for

deve10ping electronic systems. Similar to the specification and body concept in Ada, VHDL allows

designers to define specifications representing design component interfaces separately from several

associated bodies representing alternative component implementations. Use of the interface and

associated bodies enables VHDL to support configuration management oftop-down and bottom-up
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design methodologies. In addition, VHDL supports packages, this allows managers to establish

common naming conventions, data types and convenient functions among designers by

encapsulating descriptions with VHDL packages.

2.3 The Language

VHDL provides a standard textual means of description for hardware components at

abstraction levels ranging fiom the logic gate level to the digital system level. It provides precise

syntax and semantics for these hardware components, enabling design transfer both within and

among organizations. The language is designed to be efficiently simulated and natural for hardware

designers. In addition, it allows designers to represent information outside the primary range of

language coverage.

Some of the building blocks and abstractions of the language are explained below. This

section has been written with extensive reference to the paper by JD. Nash and LP. Saunders [7].

2.3.1 Design Entities: A design entity models hardware of any complexity. For example, it may

model a logic gate, a flip-flop, a RAM or a computer system. A design entity is composed of an

interface and one or more alternative bodies. The interface contains a set of definitions common to

alternative bodies. The hardware entity’s external view and specify communication channels

between the design entity and the outside world are captured in such definitions. The entity’s

operating characteristics and conditions may also be described as part of its interface’s definition.

Each alternative body describes an altemative view of the hardware entity. For example, one body

may describe a hardware entity’s behavior while another body may describe its structure,

decomposing the entity in terms of its subcomponent interconnections; a third body may model the

entity’s Operations in terms of register-transfer microoperatons. There are no restrictions on the

number ofways designers can view hardware entities. Altemative structural implementations ofthe

same hardware entity can be modeled so as to enable evaluation ofcost and speed factors. Similarly,

both functional and physical structures of a hardware entity can be modeled. Each alternative body



 



6

is associated with the same interface and can make use of all definitions supplied in the interface.

2.3.2 Interface Description: A design entity’s interface contains information common to its

alternative bodies. A subset of this information (namely, the specification of ports and generics) is

externally visible. When a design entity is used as a subcomponent in a higher level design entity,

its interface must conform to that of the subcomponent. Extemally visible interface information is

used for such consistency checks.

Ports define communication channels between design entities and the outside world. A port

definition involves description of its mode and type. The port’s mode specifies the direction of

infomration flow through the port. A port can be of mode in, out, inout or buffer. A port type

Specifies the set ofvalues a port may assume. Port values may be represented by voltage levels, truth

values, binary digits, or multiple logic values. Each of these sets is a type, and each may be an

abstraction ofthe same underlying electrical phenomenon.

A design entity interface may also define generics. Such a design entity defines a class of

components. When used, a generic design entity is particularized to select one component in the

class. To particularize a generic design entity, desired values are supplied for corresponding

generics. Generics increase a design entity’s reusability. For example, technology dependencies

such as noise margins or power consumption may be captured in generics. When design entities are

used, a particular technology may be specified by supplying the necessary generic values. An

example is given in Figure 2.1.

2.2.3 Body Descriptions: VHDL provides two body description types: architectural bodies and

configuration bodies. Architectural bodies describe how the input and output ports of a design entity

relate, either by expressing the involved input/output data transformation or by connecting those

ports to subcomponents. Such predominantly local information pertains to one design hierarchy

level. On the other hand, a configuration body contains global information such as which design

entities model subcomponents used in an architectural body or how global signals are distributed.



 

entlty Ful|_Adder ls

generlc ( Tlme_Delay : TIME );

port ( X,Y,Cin :IN Bit; Cout,Sum: OUT Bit);

end Fu|I_Adder;

  
 

Figure 2.1. Interface description of an entity.

There are three styles of description within an architectural body: structural, dataflow, and

behavioral. Structural descriptions capture the schematic view ofhardware and consist primarily of

interconnected components. Dataflow descriptions, a little more abstract, specify data transforms

being performed in terms of concurrently executing RTL statements. Behavioral descriptions, the

most abstract, specify data transforms in terms of algorithms for computing output responses to

input changes.

A given architectural body may make use of any combination of these styles of

descriptions, for they are all defined under a common set of semantics. Together, these features

support most hardware design styles. An example is given in Figure 2.2.

Component instances in structural descriptions are placeholders for behavioral information

specified as separately described design entities. In the absence of contrary information, we assume

a separate design entity to have the same characteristics as the component being instantiated (the

same name, for example, plus ports and generics with the same names, types, and compatible

modes). Thus, if a design is being created bottom-up and the user wants to declare a Component

whose instances exhibit a given behavior, he need only copy the name, port declarations, and

generic declarations of an existing design entity exhibiting the required behavior. Similarly, if a

design is being created top-down and the user wants to define a design entity that implements the

behavior required for a given component, he need only copy the name, port declarations, and

generic declarations from that component’s declaration to create the design entity’s interface



 

  

description.

flBehavioral model of a Full Adder \ -- Structural model of a Full Adder \

architecture behavior of Full_Adder is architecture structure of Full_Adder is

begin

Process(A, B, Cin) Component Half_Adder

begin port (I1,l2:in Bit;S,C:out Bit);

Sum <- ( A xor B xor Cin ) after T1me_Delay; and component;

Cout<-(AandB)or(BandCin)or

( Gin and A) after Trme_Delay; Component Or_Gate

end process; port (I1,l2:in Blt;O:out Bit);

and behavior; and component;

Signal 61 ,C1 ,CZ:Bit;

begin

X1 : Hall_Adder port map (X,Y,S1,C1);

X2: Hali_Adder port map (81 ,Cin,Sum,CZ);

X3: Or_Gate port map (C1,CZ,Cout);

end My_Full_Adder;

k J\ j
      
 

Figure 2.2. Difl’erent architectural bodies for the same entity Full Adder.

Configuration specifications provide the ability to override default association rules so that

an architectural body’s component instances may be bound to similar but not identical design

entities. The names and port types may be different, in which case the configuration specification

must identify appropriate type conversion functions. Moreover, additional signals may be

connected to formal design entity ports that do not correspond to ports of the component.

Although configuration specifications may appear in either architectural or configuration

bodies, they become most useful in the latter. A configuration body of a given design entity relates

to an architectural body of the same entity; it’s configuration specifications relate to it’s component

instances.

2.4 Impact of VHDL

The steadily increasing level of integration has motivated a growing emphasis on design

automation and semicustom/custom ICs. The dependency of continued growth of the
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semiconductor industry and the nature of the IC market on the maturation rate of design automation

and semicustom/custom technology, which in turn depend mainly on standardization and legal

copyright protection, indicate that not everything can be or should be standardized. However, the

lack of appropriate standards to guide and focus the growth of a technology can foster costly and

burdensome diversity. Hence, there is a need for design, test, and manufacturing standards to

establish interoperability and required interfaces. VHDL aims at filling this void.

As the electronic design process becomes increasingly dependent on automation tools, IC

designing firms will develop proprietary tools to maintain a competitive edge. Many companies

won’t depend completely on closed and inflexible vendor design automation systems. On the other

hand, most companies cannot attract the expertise or aflord the sizable resources required to

develop their own custom design automation systems.

While existing CAB environments provide excellent capabilities in specialized areas, in

general they do not contribute to custom design automation system integration. By making these

CAE environments provide interfaces with a standard such as VHDL, design exchange and CAE

environment interoperability can be realized.

As the sophistication of the DA Tools being used is increasing, and as VHDL is fast

becoming an industry standard for hardware design and exchange, many CAD vendors are coming

out with compilers which translate the structural design in VHDL to an intermediate format, such

as CIF or EDIF, with which an IC can be fabricated. Although the current versions can accomplish

this only when the design is atleast at the Register Transfer Level (RTL), there are signs of VHDL

growing into a full fledged Silicon Compiler - any hardware designer’s dream.

As IC complexity increases, circuits become more specialized and their broad applicability

decreases. It is estimated that about half the total IC market would be custom and semicustom ICs,

by 1991 [6]. In this scenario, VHDL can play a major role in providing a clearly defined interface

to customers ofvarying experience and sophistication to shorten development cycles, reduce costs,

and avoid expensive legal proceedings resulting fiom design specification misunderstandings

between vendor and customer. It can provide an elegant user documentation method for the difficult
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task of documenting custom/ semicustom designs. Another interesting offshoot is the phenomenon

of design second sourcing.

Historically, design has been an art rather than a science. Starting with sometimes vague

and incomplete specifications, designers go through an iterative series of transformations until

systems can be built within given technologies - or until it is clear that intended functional behavior,

performance goals, or design constraints are not feasible. There is a need for a top—down design

approach, with all the specifications available at the outset and then trying to implement it

physically. It translates to having a behavioral description of a system at the beginning and then

implementing it structurally, in the VHDL design paradigm. Thus, VHDL can play in important role

in advancing electronic system design the above stages to form a science of design by providing a

economical vehicle to do the same.

VHDL has a crucial role to play in an academic environment in terms of educational value,

propagating a science of design, and as an economical hardware design test bench. VHDL serves

as a vehicle for investigating new approaches to design techniques, models, and automation in areas

such as test, synthesis, and simulation. Knowledge about hardware properties and characteristics

applicable to design is the very essence oflanguage constructs comprising VHDL. A system can be

first modeled behaviorally, verifying the correctness of the design, then modeled structurally testing

the feasibility of hardware realization by incorporating the current technology constraints into the

design.

2.5 Suitability of VHDL for ANN Implementations

In order to test various theories and hypotheses propounded in the field of Artificial Neural

Networks, a “true” neural network is needed rather than a software simulation. ICs must be

fabricated with “neurons” and interconnections built-in. (In the cases of programmable

interconnections, the size of the network is dictated by the connectivity). Some of the major

impediments to this are: 1) It is still with an empirical knowledge that a neuron has to be modeled;

2) Costs involved are enormous which is especially critical, considering that major portion of
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current research is being done in Universities; and 3) These ICs cannot be used to model different

networks of realistic size, since a generic network would require complete connectivity with ways

of programming the inter-neuron links.

VHDL merits a closer examination as an alternative for ANN implementations just by the

fact that it is an economical and viable alternative. There is no incremental cost involved in

modeling different networks; it can be made as close to hardware implementation as desired as

against software approach. Limitations imposed by the existing technology can be circumvented by

using VHDL. One need not get lost in problems such as connectivity, die-size, etc. Research effort

will be directed at solving the real problem on hand. These limitations can be looked into when the

system is designed, tested and is ready to be used.

When VHDL is used as the implementation tool for ANN implementations, the research

will have a cumulative effect as the design can be exchanged with out any problem. Earlier designs

can be modified to suit the current needs, a bigger system can be built upon those developed earlier.

This provides a language to the research community in which theories can be propounded, tested.

challenged and verified.

With the idea of VHDL growing into a silicon compiler gaining currency, the ANN

community would be one of the prime beneficiaries by using VHDL for their designs. It does not

appear too far-fetched to imagine having a ANN chip fabricated directly after it is modeled and

tested in VHDL.



 

Chapter 3

@ynamic Trogramming

3.1 Introduction

Dynamic programming is a useful mathematical technique for making a sequence of

interrelated decisions. It provides a systematic procedure for determining the combination of

decisions that maximizes overall effectiveness.

Dynamic programming is a general type of approach to problem solving; the particular

equations used must be developed to fit each individual situation. There does not exist a standard

mathematical forrnulafion of “the” dynamic programming problem.Therefore, a certain degree of

ingenuity and insight into the general structure of dynamic programming problems is required to

recognize when problem can be solved by dynamic programming procedures and how it can be

done.

3.2 Stagecoach Problem

This chapter is with extensive reference to the book by Hillier and Lieberman [8]

The stagecoach problem is an example especially constructed to illustrate the features and

to introduce the terminology of dynamic programming. It concerns a mythical salesman who had

to travel west by stagecoach about 125 years ago when there was a serious danger of attack by

12
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Figure 3.1. The road system for the stagecoach problem.

marauders. Although his starting point and destination were fixed, he had considerable choice as to

which state (or territories that subsequently became states) to travel through en route. The possible

routes are shown in Figure 3.1, where each state is represented by a numbered block. Thus four

stagecoach runs(stages) were required to travel from his point of embarkation in state 1 to his

destination in state 10.

This salesman was a prudent man who was quite concemed about his safety. After some

thought, he came up with a rather clever way ofdetermining the safest route. Life insurance policies

were offered to stagecoach passengers. Because the cost of the policy for taking any given

stagecoach run was based on a careful evaluation of the safety of that run, the safest route should

be the one with the cheapest total life insurance policy. The cost for the standard policy on the

stagecoach run from state i to state j, which will be denoted by egj, is as shown in Table 3.1.The

objective now is to find the route that minimizes the total cost of the policy.

3.3 Solution to the Stagecoach Problem

First note that the shortsighted approach of selecting the cheapest mn oflered by each suc-

cessive stage may not yield an overall optimal decision. Following this strategy would give the
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Table 3.1. The cost for the standard policy on the stagecoach run from state i to state j.
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route 1 - 2 - 6 - 9 - 10 at a total cost of 13. However, sacrificing a little on one stage may permit

greater savings thereafter. For example, 1 - 4 - 6 is cheaper overall than 1 - 2 - 6. One possible ap-

proach to solving this problem is to use trial and error. However, the number of possible routes is

large and having to calculate the total cost for each route is not an appealing task.

Dynamic programming provides a solution with much less effort than exhaustive enumer-

ation. The computational savings are enormous for larger versions of this problem. Dynamic

programming starts with a small portion of the original problem and finds the optimal solution for

this smaller problem. It then gradually enlarges the problem, finding the current optimal solution

from the preceding one, until the original problem is solved in its entirety. For the stagecoach

problem, we start with the smaller problem where the salesman has nearly completed his journey

and has only one more stage (stagecoach run) to go. The obvious optimal solution for this smaller

problem is to go from his current state (whatever it is) to his ultimate destination (state 10). At each

subsequent iteration, the problem is enlarged by increasing by one the number of stages left to go

to complete the journey. For this enlarged problem, the optimal solution for where to go next from

each possible state can be found relatively easily from the results obtained at the preceding iteration.

Let the decision variables xn where n = 1.2.3.4 be the immediate destination on stage n (the

nth stagecoach run to be taken). Thus the route selected is l - x1 - x2 - X3 - x4 where x4 = 10. Let

fn(s,x,,) be the total cost of the best overall policy for the remaining stages, given that the salesman

is in state 3 ready to start stage n and selects 1:1‘ as the immediate destination. Given s and n, let x;

denote the value of xn that minimims fn(s,xn), and let fn.(s) be the corresponding minimum value.
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Thus

fn*(s) = min fn(s,xn) = rn(s,x,,’),

= C3sxn + fn+1 . (Kn).

where the value of csxn is given by the preceding tables for cij by setting i = s (the current state) and

j = xn (the immediate destination). Because the ultimate destination (state 10) is reached at the end

of stage 4, f5*(10) = 0. The objective is to find f1‘(1) and the corresponding route. Dynamic

programming finds it by successively finding f4I(s), f3*(s), f2'(s) for each of the possible states 5

and then using f2*(s) to solve for f1‘(s).

By solving the stagecoach problem using the above algorithm, the optimal routes are found to be

1 - 3 - 5 - 8 - 10

l - 4 - 5 - 8 - 10

1-4-6-9-10

They all yield a total cost of f1‘(l) = 11.



Cfiapter 4

flirtificidMoundNetworfis

4.1 Introduction

Conventional digital computers are extremely good at executing sequences of instructions

that have been precisely formulated for them, with the “stored program” representing the processing

steps that need to be done. The human brain, on the other hand, performs well at such tasks as

vision, speech, information retrieval, and complex spatial and temporal pattern recognition in the

presence of noisy and distorted data - tasks that are very diflicult for sequential digital computers to

do. The brain accomplishes this, even though its “processing elements” (neurons) are significantly

slower than the processing elements of contemporary supercomputers. In fact neurons, which are

electrochemical devices, can reSpond in milliseconds, whereas current, off-the-shelf electronic

technology can switch states in nanoseconds.

Current estimates place the number of neurons in the human brain at 10“[9]. They are

organized in a complex, unknown interconnection structure, and an individual neuron may be

connected to several thousand other neurons. There has been considerable research going on for

quite some time to understand how such a network (biological neural network) is capable of storing

data like images, smell, sensations and thoughts, allowing us to represent, retrieve and manipulate

these data. There has been a concerted effort to duplicate such a network at different abstraction

16
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levels, creating what has come to be known as an Artificial Neural Network (ANN).

4.2 Hopfield - Tank Networks

Many logical problems arising fiom real world situations can be formulated as optimization

problems. It can be described as a qualitative search for the best solution. In their landmark paper,

J.J.Hopfield and D. W. Tank proposed a network topology, that has come to be known as Hopfield-

Tank network. The Hopfield - Tank network consists highly-interconnected nonlinear analog

neurons that can be used for solving Optimization problems[1]. These networks can rapidly provide

a collectively-computed solution (a digital output) to a problem on the basis Of analog input

information. The problems tO be solved must be formulated in terms Of desired Optima, Often subject

tO constraints.

The general structure Of the analog computational networks which can solve Optimization

problems, as suggested by Hopfield and Tank is shown in Figure 4.1. These networks have the three

major forms Of parallel organization found in neural systems: parallel input channels, parallel

output channels, and a large interconnectivity between the neural processing elements. The

processing elements (neurons) are modeled as amplifiers in conjunction with feedback circuits

Inputs

.7 \3.
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Figure 4.1. Hopfield - Tank Network.
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Figure 4.2. Transfer function of a neuron.

comprised Of wires, resistors and capacitors organized so as to model the most basic computational

features of neurons, namely axons, dendrites, and synapses connecting the different neurons.

The amplifiers have sigmoid monotonic input-output relations, as shown in Figure 4.2. The

function V]- = gj(uj) which characterizes this input-output relation describes the output voltage Of

amplifier V,- due to an input voltage uj. The time constants Of the amplifiers are assumed negligible.

However, like the input impedance caused by the cell membrane in a biological neuron, each

amplifierj has an input resistor p,- leading tO a reference ground and an input capacitor C}. These

components partially define the time constants of the neuronsand provide for integrau've analog

summation Of the synaptic input cunents from other neurons in the network. In order to facilitate

both excitatory and inhibitory synaptic connections between neurons while using conventional

electrical components, each amplifier is given two outputs, a normal (+) output and inverted (-)

output. The minimum and maximum Outputs Of the normal amplifier are taken as O and 1, while the

inverted output has corresponding values Of O and -l.

A synapse between two neurons is defined by a conductance Ti}- which connects one of the

two outputs Of amplifierj to the input Of amplifier i. This connection is made with a resistor Ofvalue

R5 = 1/|T,-ll. If the synapse is excitatory (Til > 0), this resistor is connected to the normal (+) output

Of amplifier j. For an inhibitory synapse (Til- < 0), it is connected to the inverted (-) output of
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amplifierj. The matrix T3,- defines the connectivity among the neurons. The net input current to any

neuron i (and hence the input voltage u,-) is the sum Of the currents flowing through the set Of

resistors connecting its input to the outputs Of the Other neurons. Thus the normal and inverted

output for each neuron allow for the construction Of both excitatory and inhibitory connections

using normal (positive valued) resistors; biological neurons do not require a normal and inverted

output since exicitatory and inhibitory synapses are defined by use Ofdifierent receptor/ion channel

combinations.

As indicated in Figure 4.1, these circuits include an externally supplied input current 1,- for

each neuron. These inputs can be used to set the general level Of excitability Of the network through

constant biases, which effectively shift the input-output relation along the u,- axis, or to provide

direct parallel input to drive specific neurons.

Although this “neural” computational circuit is described here in terms Of amplifiers,

resistors, capacitors, etc., it has been shown that networks Of neurons whose output consists Of

action potentials and with connections modeled after biological excitatory and inhibitory synapses

could compute in a similar fashion to this conventional electronic hardware [1].

The equation Of motion describing the time evolution Of this circuit is

ngui/dt) = EEjVj-uglRi-t-li.

IlR;=I/p,~+2T,-j,

and Vi = glint).

where g,- is commonly a monotonically increasing sigmoid function.

The main task in solving a problem using an ANN is finding an energy function

corresponding to the problem at hand, whose minima correspond to the solution tO the problem. The
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Figure 4.3. An example of a 10 - city TSP.

minima of the energy function can be found by using the above network.

4.3 Traveling Salesman Problem

In order to explain the ideas developed in the previous section, the Traveling Salesman

Problem (TSP) is discussed below, explaining how it can be solved using a network similar to the

one described in the previous section[l].

The TSP is a classic example of a difficult Optimization problem. A set of n cities A, B, C,

have (pairwise) distances Of separation dAB, dAc. ..... , dBc, The problem is to find a closed

tour which visits each city once, returns to the starting city, and has a short (or minimum) total path

length. A tour defines some sequence B, F, E, G, , W in which the cities are visited, and the total

path length d Of this tour is

d=dBF+dFE+dEG+ ..... +dw3.

The actual best solution to a TSP problem is computationally very hard - the problem is np-
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complete, and the time required to solve this problem on any given computer grows exponentially

with number Of cities. An example of a lO-city TSP is given in Figure 4.3.

The solution to the n-city TSP problem consists of an ordered list of 11 cities, '11) “map” this

problem onto the computatiOnal network, a representation scheme which allows the digital output

states ofthe neurons Operating in the high - gain limit to be decoded into this list, is needed. Hopfield

and Tank have chosen a representation scheme in which the final location of any individual city is

specified by the output states of a set of n neurons. For example, for a lO-city problem, if city A is

in position 6 of the tour which is the solution to the problem, then this is represented by the sixth

neuron out of a set often having an output with all other outputs at 0.

This representation scheme is natural, since any individual city can be in any one Of the 11

positions in the tour list. For 11 cities, a total of n independent sets Of n neurons are needed to

represent a complete tour. This is a total of N=n2 neurons. The output state of these 112 neurons

which we will use in the TSP computational network is most conveniently displayed as an n x n

square array. Thus, for a S-city problem using a total Of 25 neurons, the neuronal state is shown in

Figure 4.3 would represent a tour in which city C is the first city to be visited, A the second, E the

third, etc. (The total length ofthe 5—city path is dCA + dAE + dEB + dBD + dDC). Each such final state

of the array of outputs describes a particular tour of the cities. Any city cannot be in more than one

position in a valid tour (solution) and also there can be only one city at any position. In the n x n

“square” representation this means that in an output state describing a valid tour there can be only

one “1” output in each row and each column, all other entries being zero. Likewise, any such array

of output values, called a permutation matrix can be decoded to obtain a tour (solution).

To enable the N neurons in the TSP network to compute a solution to the problem, the

network must be described by an energy function in which the lowest energy state (the most stable

state of the network) conesponds to the best path. This can be separated into two requirements.

First, the energy function must favor strongly stable states Of the form of a permutation matrix,

rather than more general states. Second, of the n! such solutions, all of which. conespond to valid

tours, it must favor those representing short paths. An appropriate form for this function can be
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found by considering the high gain limit, in which all final normal (+) outputs will be 0 or 1. The

space over which the energy function is minimized in this limit is the 2Ncomers of the N-

dimensional hypercube defined by V,- = 0 or 1. A suitable energy function would be

E = A/ 2 2X Z 2 VXiVXj+

ijuu‘

372 2 2 shim—t
iXX-t

C/2(>:>:VX,.-n)2+
X i

D/2 2 2 2 dXYVXi(VY,i+I + VYJ-I )

X 1' ex 1'

where A, B, C and D are positive.

The first triple sum is zero if and only if each city row X contains no more than one "’,‘1 the

rest of the entries being zero. The second triple sum is zero if and only if each “position in tour”

column contains no more than one “1” the rest of the entries being zero. The third term is zero if

and only if there are n entries of “1” in the entire matrix. Thus, this energy function evaluated on

the domain of the comers of the hypercube has minima with 13:0 for all state matrices with one “1”

in each row and column. All other states have higher energy. Hence, including these terms in an

energy function describing a TSP network strongly favors stable states which are at least valid tours

in the TSP problem and, and fulfills the first requirement for E. The last term in the above equation

fulfills the second requirement, that E favor valid tours representing short paths. This term contains

information about the length Of the path corresponding to a given tour.

From the above energy fimction, one can deduce the implicitly defined connection matrix,

which is given by:

rxm = - A oxyt 145,1. )

' B 511' (1 ' 5101)

- C

' D dxfl 8j,i+1 + 8j,i-1 )

where Oij = l ifi =j and is 0 Otherwise.
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This model ofTSP has been simulated and verified to yield “reasonably optimal" soluu'on

to the TSP[1].

4.4 An ANN for Solving Dynamic Programming Problems

As discussed in the previous chapter, traditional dynamic programming is a computational

technique which makes a sequence of decisions to define an Optimal policy and path based on the

principle of optimality. The conventional algorithm begins by finding the Optimal path for the last

stage and moves backward stage by stage until the optimal path starting at the source node is found.

An ANN model to solve this is discussed below. This section has been written with extensive

reference to the paper by Chui, Maa and Shanblatt [10].

 

stage 1

stage 2

 
stage 3

 
Destination   
 

Figure 4.4. A 3x6 dynamic programming problem.
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A typical dynamic programming problem is shown in Figure 4.5. A performance measure

is defined as the total length of a valid path from the source node to the destination node. Given the

source and destination nodes, the number of stages m, the number of states in each stage n, and the

metric data d3; (1+1)j' where x is the index of stages, and i and j are the indices of states in each stage,

the problem is to find an Optimal path from source to destination. This Optimal path is measured with

respect to a performance criterion. The conventional approach uses the principle of optimality. It

requires intensive calculations and a huge amount Ofmemory to determine the Optimal solution. In

many dynamic programming applications where a real-time solution is required, the rapid

calculation of near-optimal solutions is more attractive than a slowly computed globally optimal

solution. For example, robot trajectory planning problems, aircraft altitude control problems, and

Optimal control problems that must respond quickly to radically changing environmental conditions

are ofthis type. Following is a dynamic programming ANN that can provide a near-optimal solution

in an elapsed time of only a few characteristic time constants of the circuit

Consider again the 3x6 dynamic programming problem shown in Figure 4.4. The goal of

the DPP is to find a valid path which starts from the source node, visits one and only one state node

in each stage, reaches thedestination node, and has a minimum total lengthamong all possible paths.

To ensure that the ANN dynamic programming algorithm is able to Obtain at least a near-Optimal

solution, the network must be defined ‘by an energy function in which the Optimal solution

corresponds to the lowest energy state of the network. Looking at the characteristics of the optimal

path carefully, two constraints become evident. First, the Optimal path must visit one and only one

state in each stage (structure constraint). Second, the optimal solution must have the minimum total

cost based on the given performance measure (cost constraint). Thus, the energy function has two

requirements. The structural constraint implies that the energy function must converge to stable

states where one and only one state in each stage is active. The cost constraint dictates that the

energy function must converge to stable states representing an optimal path.

Each state node is considered as an individual neuron. Tb develop an appropriate energy

function for the dynamic programming network, take V1,- as the output Of a neuron of the ith state
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in the xth stage, where n is the number of stages and a and b are positive numbers. The following

formal constraints are thus defined.

1. To ensure that one and only one neuron is active in any stage and the number of

active processing elements is equal to the number of stages,

E1=a/2(EEZngxj+(2£vxi-n)2).
ijaei

2. To ensure that the total length of a valid path is minimum.

E2 = b/4 ( Z 2. Zidxi (x+I)j in V(x+1)j + d(x-1)j xi in V(x-1)j ) )0

x r 1

E1 comes from the structure constraint and Fa comes from the cost constraint. For a valid

path, E1 will vanish. For a minimum length path, F4 has the minimum value. Therefore, to retain

the characteristic of a gradient system, the energy function for the dynamic programming network

can be written as

E=a/2(ZZZinij+(Ez‘in-n)2)+
ijati

b/4 ( Z Z 2 (dxi (x+1)j in V(x+1)j + d(Jt-I)jxiinV(1t-1)j ) ) +

I
I i

We

2 2 (1/in) Igi'1(C)dCo
x i 0.5 .

V,-

= 13* + 2 2 (1/in) g,"(C) d5.

1 i 0-5

The quadratic terms in the above equations define the connection weight matrix T and the

linear term defines the bias current vector I of the dynamic programming network.
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Thus, the weight of the connection linking the ith neuron of stage x with thejth neuron of

stage y is

TM: a * 5,, «1-60)- a-b/2 * dx,yj*(5(x+,,y+5(x_1)y)

where

a * Sxy * ( 1-51-1- ) is the inhibitory connection within each stage.

a is the global inhibition,

b/2 * dxiyj * ( 50+1)), + 60-1)? ) is the strength of the metric distance,

l‘ifi=j(x=y).

8‘7 ( or axy ) = { 0 otherwise,

and the input bias current of ith neuron Of stage x is

In: = a II.

It is apparent that Txiyj is equal to Tij; for all x,y,i and j. Moreover, E is positive-definite.

Thus the dynamic programming ANN is a gradient system and the equilibria are bounded in the V

space. With the high-gain limit, the stable states will be close to the minimum states of13* since the

integral term can be neglected.

4.5 An ANN Model for the Stagecoach Problem

Using the above algorithm, an ANN model for the stagecoach problem is constructed as

shown in Figure 4.5.Values chosen for different parameters are as follows:

a = 5

b=5.
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Figure 4.5. An ANN model for the stagecoach problem.

 



 

Cfiapter 5

MoundCoprocessor:

fll BefiumonuMaid

5.1 Introduction

The suitability and advantages Of using VHDL for ANN modeling and simulation have

been discussed in the preceding chapters. We shall see one such system modeled using VHDL.

The immediate objective of this thesis is to model an ANN for solving dynamic

programming problems. The stagecoach problem explained in Chapter 3 is used as a test example

for running the simulation. The ANN model to solve such problems proposed by Chiu, Ma and

Shanblatt[10] has been used for implementing this network.

The larger Objective of this research effort, however, is to demonstrate the suitability and

various advantages one accrues by using VHDL as the vehicle for modeling ANN8. These

advantages include flexibility in design, modularity, and ease of information exchange, and testing

ofdesigns. Hence, the network has been modeled as a general-purpose ANN coprocessor, much like

a math coprocessor. This system can be configured to model any network with very little extra efl’ort

(none in many cases). Hence, this network is not limited to solving this particular example or this

specific kind ofproblem. It can be used as a testbench to simulate and verify different ANN models

28
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for various domains without significant modification.

5.2 Design Methodology

In confirmation with the objective of deve10ping a general-purpose ANN coprocessor, the

design has been made as flexible and as general as possible. At the highest level of the hierarchy,

the whole system can be viewed as a coprocessor which has an input port to get initial conditions

for the ANN, a mechanism to enter the interconnection weight-matrix, and an output port to return

the output values of the neurons. This is shown in Figure 5.1.

This coprocessor is built using various components as explained in the next section. The

design methodology adopted across the system is to make different components independent of the

application. The whole network as applied can be described in a package right at the beginning. In

order to do this, one has to assign values for certain variables such as the number of stages in the

network, number of states in each stage, and connectivity between different neurons in the network.

Fmany, an appropriate test bench can be created to test the system.

This structured design scheme facilitates easy modification as necessary. New features like

learning, or changing the neuron model, for example, can be accomplished without much eflort.

 

 

Initial Cznditions Variable

values

Weight Matrix ANN }

Coprocessor .

     
 

Figure 5.1. The ANN coprocessor.



30

5.3 Design

The top level design of the neural coprocessor is shown in Figure 5.2. The system is

comprised of an ANN at the core, a memory to hold the interconnection weight - matrix, a set of

registers to hold the value of the neurons, and a convergence sensor.

Previous
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Figure 5.2. Top level schematic diagram of the system.
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5.3.1 Network: A schematic Of the composition ofthe network is shown in Figure 5.3. The network

is built using neurons, where every neuron in the network is connected to all the neurons in the

previous, current and the next stage. The very first stage is connected to the very last stage in the

network, making it a ring structure.

As stated earlier, the design is such that the network can be of any size and can be described

by declaring some parameters such as number of stages and number of states per stage. This

description is to be given in the VHDL package declaration called Neural_Package.

Every neuron in the network has available to it the weights and the corresponding stimuli

for it’s links with neurons in the preceding stage and neurons in the same stage (including itself).

Complete connectivity (where every neuron is connected to every other neuron in the network) is

not implemented as it would put unnecessary load on the system. Most of the present day models

are not completely connected. Nevertheless, the system design can be modified to make the network

completely connected if desired . The VHDL code to accomplish this is listed in Figure 5.4.

 

    

 
   

          
   

   
 

           

 

 Neurons   
 

Figure 5.3. Composition of the network for a case of 5 stages with 3 states per stage.
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K
- A network of Neural Elements

use work.Neural_Package.all;

entlty network ls

port (

Network_Stlmulus : ln Stlmulus_Matrlx;

Network_Welghts : ln Welghts_Matrlx;

Network_Output : out Neural_Array);

end network;

archltecture network_structure of network Is

component Neural_Node

port (

Stlmulus : ln Unlt_Array;

Welghts : In Unlt_Array;

Output : out Real := 0.0);

end component;

— Instantlatlon of all Neural_Nodes to the Neural_Element deslgn

unlt

for all : Neural_Node use entlty work.Neural_element(behavlor);

begin

element_generate:

torl In 1 to N_Unlts generate

Nodes : Neural_node

port map (Network_Stlmulusa),

Network_Welghts(l), Network_Output(l) );

end generate; '

end network_structure; ,   
 

Figure 5.4. VHDL code implementing the network.

5.3.2 Neurons: Each neuron in the network is essentially a summation unit. It calculates the inner

product Ofthe weight and stimulus vectors and provides an output value based on this inner product.

The size of these vectors depends on the size of the network. The parameters are read in from the

 



package declaration Neural_Package. The function CalculateSum is described in the package body

ofNeural_Package.

In the present implementation, the sigmoid input - output relation of a neuron as described

in Chapter4 has been approximated by a step function. This is due to the non-availability of certain

mathematical functions in VHDL (such as tanh'1 which is the usual approximation for the sigmoid

function). Approximating the sigmoid with “stair-case” function or a ramp function is is also
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possible. A schematic of a neuron and the corresponding VHDL code is shown in Figure 5.5.
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m
- Model of a Neuron Element

use work.Neural_Package.all;

entlty Neural_element Is

Port (

Stlmulus : In Unlt_Array;

Weights : In Unlt_Array;

Output : out Real);

end Neural_Element;

architecture behavior of neural_element

Is

begln

NeuralProcess:

process(Stlmulus'Transactlon)

variable Sum : Real;

begln

Sum := CalculateSum(Stlmulus,

Welghts) + 10;

It Sum > (0.0) then

Output <= 0.0 after 4 ns;

else

Output <= 0.5 after 4 ns;

end It;

and process;    
Figure 5.5 . Schematic of a neuron and the conesponding VHDL code.
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5.3.3 Memory: The memory component holds the weights to be used in the network. Weights can

be read from this memory only once at the beginning, or iteratively, if a leaming algorithm is

incorporated. Initially, it was desired to read in interconnection weight - matrix values into the

memory from a file, making it possible to run different networks without having to rebqu the

network (as long as their dimension is same). This could not be accomplished as the file I/O

functions available with VHDL are not capable ofhandling such data transfers in the latest version.

Hence, the current implementation has the interconnection weight-matrix built into the memory

(essentially a ROM). If a different system is to be simulated, the corresponding weight matrix is to

be entered into the architecture of the memory and the system has to be rebuilt.

The VHDL code to model this memory is shown in Figure 5.6.

 

x

- This module ls meant to be used as a memory to hold the welghts. A centrallzed

memory ls vlsuallzed as the change required for a different network would be mln-

lmal this way.

use work.Neural_Package.all;

entlty memory ls

port (

memory_output : out Welghts_Matrlx);

end memory;

architecture memory_arch or memory ls

begln

memory_output <= (

(0.0, 0.0, 0.0, .1 00.0, 400.0, -1 00.0), (0.0, 0.0, 0.0, 0.0, 100.0, 0.0), (0.0, 0.0, 0.0, -1 00.0, -100.0, -

100.0),

(0.0, «6.0, 0.0.0.0, 63,-5.0), (0.0, -10.0, 0.0, «5.0.0.0, -5.0), (0.0, ~75, 0.0,-5.0,-5.0, 0.0),

(-1 7.5, -7.5, -10.0, 0.0, -5.0,-5.0), (-10.0, -5.0, o2.5,-5.0,0.0, -5.0),( -1 5.0, -10.0, -12.5,-5.0,-5.0, 0.0),

(4.5, -1 5.0, -7.5,0.0, o5.0,-5.0),(-10.0, -7.5, -7.5,-5.0, 0.0, 6.0), (0.0, 0.0, 0.0,-100.0,-100.0, 0.0),

(0.0, 0.0, 0.0.0.0, -100.0,0.0),(-7.5, -10.0, 0.0, 0.0, 100.0, 0.0), (0.0, 0.0, 0.0, 0.0,-100.0, 0.0));

end memory_arch;   
 

Figure 5.6. VHDL code implementing the memory.
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5.3.4 Convergence Sensor: The convergence sensor is designed to detect convergence of the

network to a set of values. It compares the present neuron-outputs with the previous set of output

values and sends out a signal ifthey are identical. This component is more Ofa hardware abstraction

and has not been used in actual implementation as the VHDL simulator itself senses convergence

if it is run in the interactive mode, and as the neuron model adopted is a step function.

K
- Thls unlt Is used to sense the convergence of the network

to a solution

The schematic and the equivalent VHDL code is shown in Figure 5.7.

 

use work.Neural_Package.all;

entlty conv_sensor Is

port (

Old_Outputs : In Neural_Array;

New_Outputs : In Neural_Array;

Sensor_Out : out Integer);

end conv_sensor;

architecture sensor_behavlor of conv_sensor ls

signal dIfference : Real := 0.0;

begln

loop_process:

process

begln

Sensor_Out <= 1 after 0 ns;

Ioop1: for I In 1 to N_Unlts loop

dlfference <= abs (OId_Outputs(l) - New_Outputs(I));

If dlfference > Tolerence then

Sensor_Out <= 0;

end If;

endlooploopt;

end process;

end sensor_behavlor;    
Figure 5.7. VHDL code to implement the convergence sensor.

5.3.5 Register Set: The Register set is an abstraction with no exact equivalent in the VHDL model.
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5.3.6 Auxiliary Components: Some auxiliary components required to implement this system in

VHDL, namely a package definitions called Neural_Package, a neural processor, where different

components are integrated into one entity, and a test bench to test the system are shown in Figures

5.8. 5.9 and 5.10.

 

K
package Neural_Package Is

constant N_Stages : natural := 5;

constant N_States : natural := 6;

constant States_per_Stage : natural := 3;

constant N_Unlts : natural := 15;

type Neural_Array Is array (Natural range 1 to N_Unlts ) of Real;

type Unlt_Array Is array (Natural range 1 to N_States ) of Real;

type Welghts_MatrIx Is array (Natural range 1 to N_Unlts) of Unlt_Array;

type Stlmulus_Matrlx Is array (Natural range 1 to N_Unlts) of Unlt_Array;

functlon CalculateSum (

Stlmulus : Unlt_Array;

Weights : Unlt_Array)

return Real;

end Neural_Package;

package body Neural_Package Is

functlon CalculateSum (

Stlmulus : Unlt_Array;

Weights : Unlt_Array)

return Real;

Is

varlable Sum : Real := 0.0;

begln

for I In 1 to N_States loop

Sum := Sum + Stlmulus(l) ‘ Welghts(l);

endloop;

return Sum;

end CalculateSum;

end Neural_Package;   
 

Figure 5.8. VHDL code for the Neural_Package.
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- Thls Is the top level assembly of all the sub-components. Dliterent slgnals

are generated and fed to dlfterent parts.

use work.Neural_Package.all;

entlty ann_processor ls

port (

Stlmulus : In Neural_Array;

Output : out Neural_Array);

end ann_processor;

archltecture processor_structure of ann_processor Is

component memory

PO" (

memory_output :Welghts_Matrlx);

end component;

component network

port (

Network_Stlmulus : In Stlmulus_Matrlx;

Network_Welghts : In Welghts_Matrlx;

Network_Output : out Neural_Array);

end component;

slgnal Matrlx_Welghts : Welghts_Matrlx :=

((0.0, 0.0, 0.0, 0.0, 0.0, 0.0), (0.0, 0.0, 0.0, 0.0, 0.0, 0.0). (0.0, 0.0, 0.0, 0.0, 0.0, 0.0),

(0.0, 0.0, 0.0, 0.0, 0.0, 0.0), (0.0, 0.0, 0.0, 0.0, 0.0, 0.0), (0.0, 0.0, 0.0, 0.0, 0.0, 0.0),

(0.0, 0.0, 0.0.0.0, 0.0, 0.0), (0.0, 0.0, 0.0, 0.0, 0.0, 0.0), (0.0. 0.0, 0.0, 0.0, 0.0, 0.0),

(0.0, 0.0, 0.0, 0.0, 0.0, 0.0), (0.0, 0.0, 0.0. 0.0, 0.0, 0.0), (0.0, 0.0, 0.0, 0.0, 0.0, 0.0),

(0.0, 0.0, 0.0, 0.0, o.o,o.o1,ro.o,o.o. 0.0, 0.0, 0.0, 0.0), (0.0, 0.0, 0.0, 0.0, 0.0, 0.0) );

slgnal Matrlx_Stlmulus : Stlmulus_Matrlx :=

((0.0, 0.0, 0.0, 0.0, 0.0, 0.0), (0.0, 0.0, 0.0, 0.0, 0.0, 0.0), (0.0, 0.0, 0.0, 0.0, 0.0, 0.0),

(0.0, 0.0, 0.0, 0.0, 0.0, 0.0), (0.0. 0.0, 0.0, 0.0, 0.0, 0.0), (0.0, 0.0, 0.0, 0.0, 0.0, 0.0),

(0.0, 0.0, 0.0, 0.0, 0.0, 0.0), (0.0, 0.0, 0.0, 0.0, 0.0, 0.0), (0.0, 0.0, 0.0, 0.0, 0.0, 0.0),

(0.0, 0.0, 0.0, 0.0, 0.0. 0.0), (0.0, 0.0, 0.0, 0.0, 0.0, 0.0), (0.0, 0.0, 0.0, 0.0, 0.0, 0.0),

(0.0, 0.0, 0.0. 0.0, 0.0, 0.0), (0.0, 0.0, 0.0, 0.0, 0.0, 0.0), (0.0, 0.0, 0.0, 0.0, 0.0, 0.0) );

for all : network use entlty work.network(network_structure);

for all : memory use entlty work.memory(memory_arch);

 

Figure 5.8. VHDL code implementing the neural coprocessor( Cont’d. on nextpage ).
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begln

procees(Stlmulue'Treneactlon)

varlable tmp1 : Integer := 1;

varlable tmp2 : Integer := 1;

begln

element_loop1 :

for II In 1 to N_Unlts loop

element_loop2 :

for k In 1 to States_per_Stage loop

tmp1 := (II mod States_per_Stage);

II tmp1 = 0 then

tmp1 := N_Stages -1;

end It;

tmp2 := «mm -1) ‘ States_per_Stage )+ k;

Matrlx_Stlmulus(Il)(k) <= Stlmulus(tmp2);

end loop element_loop2;

element_loop3 :

for I In 1 to (N_States - States_per_$tage ) loop

tmp1 := (II mod States_per_Stage);

It tmp1 = N_Stages then

tmp1 := N_Stagee - 1;

endlh

tmp2 := ((tmp1) ' States_per_Stage ) + I ;

Matrlx_Stlmulue(lI)(l + States_per_Stage) <= Stlmulus(tmp2);

end loop element_loop3;

end loop element_loop1;

end process;

read_memory : memory port map ( Matrlx_Welghts);

- teed the Neural Network with these Welghts and the Stlmulus and obtaln the Output

run_network : network port map ( Matrlx_Stlmulus, Matrlx_Welghts, Output);

end processor_structure; 
 

Figure 5.8. VHDL code implementing the neural OOprocessor ( Cont’ d.from previous page ).
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- Thle Ie the tee! bench for teetlng the whole eyetem. Whole eyetem Ie Integrated In ann_prooeeeor.

uee work.Neural_peckege.all;

entlty teet_bench Ie

end teet_bench;

archltecture teet_bench_erch OI teet_bench Ie

component ann_proceeeor

Poul

Stlmulue : In Neural_Array;

Output : out Neural_Array);

end component;

elgnel kln :Neural_Arrey := (0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0);

elgnel kOuI : Neural_Array;

for all : ann_proceeeor uee entlty work.enn_proceeeor(proceeeor_etructure);

begln

teeter :enn_proceeeor port map ( Itln , ItOut );

Proceee(kOut)

begln

kln <= IrOut after 10 ne;

end proceee;

end teet_bench_erch;

 

Figure 5.9. VHDL code implementing the test bench.

5.4 Simulating the Stagecoach Problem

 

As has explained earlier, the neural coprocessor is a general one and has to be customized

to run a particular example. Following are the steps to be taken to mn the network to solve the

stagecoach problem that was discussed in Chapter 3.

1. Since there are 5 stages (counting the point of origin and the destination) and there are

3 states in each stage, the following parameters have to be set in the package declaration

Neural_Package.

constant N_Stages : natural := 5;

constant States_per_Stage : natural := 3;

constant N_States : natural := 6;

constant N_Unlts : natural := 15;
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Note that N_States specifies the number oflinks into a neuron ( including the one to itself)

in the network. States_per_Stage is the number of states in each stage.

2. Since the network modeled in VHDL is a symmetric rectangular network, some neurons

may have to be “deactivated” to represent an assymmetric network. The network used to solve

dynamic programming problems is not rectangular. Therefore, some of the neurons in the network

described in the package declaration have to be isolated from the network. This can be achieved by

making the weights in the interconnection weight matrix corresponding to the inputs Of these

neurons totally inhibitory. Weights conesponding to their output is set to 0. The modified network

is shown in Figure 5.11.

3. The interconnection weight - matrix, after incorporating the above changes would be as

shown in Figure 5. 10. This is to be incorporated in the memory’s architectural description.

This matrix is structured in the form of an my of arrays, where each array represents the

weights for different links for every neuron in the network. The first array corresponds to the first

neuron ( tOp left) and the last one corresponds to the last neuron ( bottom right). A weight of -100

is found to be inhibitory enough to isolate unwanted neurons from the network.

 

(

(0.0. 0.0, 0.0, -1oo.o, 400.0, 400.0), (0.0, 0.0, 0.0, 0.0, 100.0, 0.0), (0.0. 0.0. 0.0, -1oo.o. -1oo.o, 400.0).

(0.0. -5.0. 0.0, 0.0, so -5.0), (0.0. -1o.o, 0.0, so 0.0. -5.0), (0.0, -7.5, 0.0, -5.0, so 0.0).

(-1 7.5, -7.5. 40.0, 0.0, -5.0, -5.0), (-10.0, -5.0, -2.5, -5.0, 0.0, -5.0),( -15.0, -10.0, -12.5, -5.0, -5.0, 0.0),

(-2.5, -15.0, -7.5, 0.0, -5.0,-5.0),(-10.0, -7.5, -7.5,-5.0, 0.0, -5.0), (0.0, 0.0, 0.0,-100.0,-100.0, 0.0),

  
 

Figure 5.10. The interconnection weight - matrix for solving the stagecoach problem.
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Chapter 6

Tost-Simflation flan/sis

6.1 Introduction

The system modeled in VHDL as explained in Chapter 5 was simulated to solve the

stagecoach problem. The initial stimulus values used for these simulations were chosen such that

all possible cases were covered. These simulation runs were monitored for all the transactions for

about lus. The characteristic delay of the whole network was set to about 4 ns and the stimulus

values- output values of the previous iteration, were fed in at the intervals of 10 ns. Outcome of

these simulation runs and an analysis of these results follow.

This system was also used to simulate a diflemm problem to verify that the system designed

is not anecdotal to the stagecoach problem. This was accomplished by adding another stage to the

network. The outcome of these simulation runs are analyzed in Section 6.4.

6.2 Results and Analysis

The simulation results for the stagecoach problem are tabulated in Tablefi. l. The complete

simulation results can be seen in Appendix C.

Some general Observations on the simulation nm data in Table 6.1 follow. All the vectors

shown indicate the values for all the neurons in the complete network discussed in Chapter 5.
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Table 6.1. Simulation results for the stagecoach problem.
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1g Initial Stimulus Final Outcome # of cycles

a (0.1.0.0,1,0.0,0.1,1.0.0.0.1,0) (0.1.0.0.o,1.o,1.0.0.1.0,0.1.0) 6

b (0.1.0,0.0.1.1.0,0.1,0,0,0.1,0) (0.1.0,0,0.1.o.1.0,0,1.0.o.1.0) 5

c (0.1.0,1,0,0,1.0,0,0.0,1,o,1,0) (0.1.0.0.0.1,0.1.0,0.1,0.0.1,0) 7

d (0,1.0,1.0.0.1,0,1,0.1.0.0.1.0) (0,1.0,0,0,1,o,1.0.0.1.o.0.1,0) 7

e (0.1.0.0,0,1,0,1,0.0,1,0,o,1,0) (0,1,0,0,0,1,0,l,0,0,1,0,0,1,0) 1

f (0.1.0.0.1.0.1,o.o.1.o,o,o.1,0) (0,1,0,0.0.1.o.1,0,0.1,o,o.1,0) 4

g (o. o. o, o, o, o, o. o. o, o. o, o. o. 0, 0) D°°f¥§gg°f§3m° -       
1. Runs a and b have an intial stimulus that is a valid solution to the problem, though not

optimal. Both converge to one of the optimal solution in less than 6 cycles.

2. Run c has an input stimulus which has one ofthe deactivated neurons active. But still the

network converges to an optimal solution in 7 cycles.

3. Run d has an invalid neuron state as the input stimulus (two neurons in the same stage

are active). The network converges to an Optimal solution in 7 cycles.

4. Run e has one ofthe Optimal solution itself as the input stimulus. It remains in the optimal

state.

5. Runfhas another optimal state as the input stimulus, and it is observed that the network

converges to a different optimal state.
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6. Run g has a zero input stimulus for all the neurons, and the network toggles between all

the neurons being at zero and all the neurons being at one. The same case is observed when all the

neurons are initially set to one.

Hence, it can be seen that the network converges to an Optimal solution, even when the

input stimulus is a difierent Optimal state, in all cases except when all the neurons are initially set

to ZCI'O 01' one.

6.3 Possible Reasons for the Observed Behavior

Some Of the assumptions and approximations made in the present implementation that

might be responsible for the Observed behavior of the network are listed below:

1. The algorithm proposed by Chiu, Ma and Shanblatt claims that Optimization done

pairwise will lead to a global optimization[10], i.e., every stage in the network need be connected

to only the preceding and succeeding stages, and total connectivity is unnecessary. But this does not

guarantee that this algorithm will lead to all the Optimal solutions. It may lead to only one of the

Optimal solutions which happens to be pairwise optimal too. This could be the reason for the

network converging to the same optimal solution in all the cases (even when the input stimulus is a

difl’erent optimal state).

2. The neuron input-output relation was modeled by a step function in place of a sigmoid

function (due to the unavailability of trigonometric functions in VHDL, at this time). This could be

the reason for the network being not able to move towards a solution when all the neurons are set

to zeros or ones as much of the information gathered in the previous cycle is lost. It behaves like a

memoryless system. Future work is intended to approximate the sigmoid function by a ramp

function, a staircase — like function, etc.

6.4 An Extended Problem

In order to verify that the network designed is not anecdotal to the particular stagecoach

problem and to highlight the ease with which it can be modified to fit a different problem, an



Figure 6.1. The ANN for the extended stagecoach problem.
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and 6.4.

Table 6.2. The changes in the VHDL code to effect the desired changes are listed in Figures 6.2, 6.3

schematic of the extended system is shown in Figure 6.1. The simulation results are tabulated in

It was seen that the network converges to the optimal solution in less than 4 - 5 cycles as expected.A

extended stagecoach problem was developed and was solved using the network modeled in VHDL.
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package Neural_Package is

constant N_Stages : natural := ;

constant N_States : natural z: ;

constant States_per_Stage : natural := 3;

constant N_Unlts : natural := 18;

 
 

Figure 6.2. The modified package declaration for solving the extended stagecoach problem.

X

 

slgnal kln :NeuraLArny := (0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0.0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0

;

slgnal ItOut : Neural_Array;

for all : ann_processor use entlty womann_procouor(procouor_structure);

  
 

Figure 6.3. The modified test bench for solving the extended stagecoach problem.

(0.0. 0.0. 0.0. -100.0. -100.0. -1 00.0). (0.0. 0.0. 0.0. 0.0. 100.0. 0.0). (0.0, 0.0. 0.0. -1 00.0. -100.0. -100.0),

 

(0.0. ~5.0. 0.0. 0.0. 45.0. -5.0). (0.0. 40.0. 0.0. -5.0, 0.0. -5.0). (0.0. -7.5. 0.0. -5.0. -5.0. 0.0).

(47.5, ~75. -10.0. 0.0, -5.0, -5.0). (-10.0. -5.0, -2.5. -5.0. 0.0, -S.0).( -15.0. -10.0. -1 2.5. -5.0. -5.0. 0.0).

(~2.5. 45.0. -7.5. 0.0. -5.0. -5.0). (40.0. -7.5. -7.5. -5.0. 0.0, -5.0).( 42.5. -1 2.5. -2.5. -5.0, -5.0. 0.0).

(47.5. «7.5. -10.0. 0.0. -5.0. -5.0). (42.5. 45.0. -10.0. -5.0. 0.0. -5.0).(0.0. 0.0. 0.0. -100.0. -1 00.0. 0.0),

(0.0. 0.0. 0.0, 0.0. 400.0. 0.0).(-7.5. -10.0. 0.0. 0.0. 100.0. 0.0). (0.0. 0.0, 0.0. 0.0.-100.0. 0.0)

  
 

Figure 6.4. The interconnection weight - matrix for solving the extended stagecoach problem.
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Table 6.2. Simulation results for the extended stagecoach problem.

 

 

 

11; Initial Stimulus Final Outcome # of cycles

a (0.1.0.0.0.1.0.0.1,0.1.0.1.0.0.0.1.0) (0.1.0.0,0.1,0.1.0.0,0.1.1,0.o.0.1.0) 6

b (0.1.0.1.0.0.0.0.1.0.0.1.1.0.0.0.1.0) (0.1.0.0.0.1.0,1.0.0.0.1.1.0.0.0,1.0) 4

c (0.1.0.0.0.1.0.0.1,0.0.1.0.0.1.0.1.0) (0.1.0.0.0.1.0.1.0.0.0.1.1.0.0.0.1.0) 4

d (0.1.0.0.0.1.0.0.1.1.0.1,1.0.0.0.1.0) (0.1.0.0.0.1.0.1.0.0.0.1.1.0,0.0.1.0) 4

e (0.1.0.0.0.1.0.1.0,0,0.1.1.0.0.0.1.0) (0.1.0.0.0.1,0.1.0,0.0.1.1.0.0.0.1.0) 1

f (0.1.0,0.0.1.0,0.1.0.0,1.1.0.0.0.1.0) (0.1.0.0,0.1.0.1.0.0.0.1.1.0,0.0,1.0) 4

g (0, 0. 0. o. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0. 0. 0.0) D°°f¥ggg°fgg°rge -   
 

 



Cfiapter 7

Condusion

7.1 Conclusion

The primary objective of this research effort was to prove the suitability ofVHDL for ANN

modeling and simulation. This has been achieved by modeling a general purpose ANN coprocessor

in VHDL. This system was tested by simulating a dynamic programming problem, namely the

stagecoach problem. This system was simulated with difierent initial conditions. The system

modeled behaved according to expectations and the results are encouraging.

This research effort’s contribution has been in establishing the suitability of VHDL for

ANN modeling. The general purpose ANN coprocessor developed can be used to model different

systems with little extra effort.

7.2 Future Research

As has been explained earlier, the objective of this thesis effort was to prove the suitability

ofVHDL forANNmodeling, with dynamic programming as a sample domain. Hence, although the

system developed is general in nature and flexible enough to model any problem, the particular

example solved is a simple case with very few features. The future research should be directed to
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enhancing the capabilities of the network by incorporating new features such as learning, different

models for the neuron, and complete connectivity between different neurons in the network. A

much larger problem, with a larger solution space is yet to be modeled. These form a framework

and a direction for future research efforts in this area.





APPENDIX I

VHDL CODE LISTING





VHDL CODE LISTING

- Package declaratlon : Neural Package

package Neural_Package ls

constant N_Stages : natural := 5;

constant N_States : natural := 6;

constant States_per_Stage : natural := 3;

constant N_Unlts : natural := 15;

type Neural_Array ls array (Natural range 1 to N_Unlts ) of Real;

type Unlt_Array Is array (Natural range 1 to N_States ) of Real;

type Welghts_Matrlx ls array (Natural range 1 to N_Unlts) of Unlt_Array;

type Stlmulus_Matrlx ls array (Natural range 1 to N_Unlts) of Unlt_Array;

tunctlon CalculateSum (

Stlmulus : Unlt_Array;

Welghts : Unlt_Array)

return Real;

end Neural_Package;

package body Neural_Package ls

tunctlon CalculateSum (

Stlmulus : Unlt_Array;

Welghts : Unlt_Array)

return Real

ls -

varlable Sum : Real := 0.0;

begln

for I In 1 to N_States loop

Sum := Sum + Stlmulus(l) * Welghts(l);

endloop;

return Sum;

end CalculateSum;

end Neural_Package;

50
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- Model of a Neuron Element

use work.Neural_Package.aII;

entlty Neural_element Is

port (

Stlmulus : In Unlt_Array;

Welghts : In Unlt_Array;

Output : out Real := 0);

end Neural_Element;

archltecture behavlor of neural_element Is

begln

NeuralProcess:

process(StImulus'TransactIon)

varlable Sum : Real;

begln

Sum := CalculateSum(Stlmqus, Welghts) + 10.0;

It Sum > (0.0) then

Output <= 1.0 after 4 ns;

else

Output <= 0.0 after 4 ns;

end If;

end process;

end behavlor;

- Thls module Is meant to be used as a memory to hold the Input values

'- ( Welghts ). A centraIIzed memory Is vIsuaIIsed as the change required

— for a dIfterent network would be mlnlmal thls way.

use work.Neural_Package.all;

entlty memory Is

port (

memory_output : out Welghts_Matrlx);

end memory;



52

archltecture memory_arch of memory Is

begln

memory_output <= (

(0.0, 0.0, 0.0, 400.0, 400.0, 400.0), (0.0, 0.0, 0.0, 0.0, 100.0, 0.0), (0.0, 0.0, 0.0, 400.0, 400.0, 400.0),

(0.0, -5.0, 0.0,0.0, -s.0,-s.0), (0.0, 40.0, 0.0, -5.0,0.o, 4.0), (0.0, -7.5, o.o,-5.0,-s.o, 0.0),

(47.5, -7.5, 40.0, 0.0, -s.o,-5.0), (40.0, -5.0, -2.5,-5.0,0.0, -5.0),( 45.0, 4 0.0, 42.5,-5.0,-s.0, 0.0),

(-2.5, 45.0, -7.5,0.0, -5.0,-5.0).(40.0, -7.s, -7.5,-5.0, 0.0, 4.0), (0.0, 0.0, 0.0.4 00.0.4 00.0, 0.0),

(0.0, 0.0, 0.0, 0.0, 400.0,0.0),(-7.5, 4 0.0, 0.0, 0.0, 100.0, 0.0), (0.0, 0.0, 0.0, 0.0.4000, 0.0));

end memory_arch;

- A network of Neural Elements

use work.Neural_Package.alI;

entlty network Is

poflI

Network_Stlmulus : In Stlmulus_Matrlx;

Network_WeIghts : In Welghts_MatrIx;

Network_Output : out Neural_Array);

end network;

archltecture network_structure of network Is

component Neural_Node

poflI

Stlmulus : In Unlt_Array;

Welghts : In Unlt_Array;

Output : out Real := 0.0);

end component;

— Instantlatlon of all Neural_Nodes to the Neural_Element deslgn unlt

for all : Neural_Node use entlty work.NeuraI_eIement(behavlor);

begln

element_generate:

for I In 1 to N_Unlts generate

Nodes : Neural_node

port map ( Network_Stlmulus(l), Network_WeIghts(I),

Network_Output(I) );

end generate;

end network_structure;
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- Thls Is the top level assembly of all the sub-components. Dltferent slgnals are

generated and fed to dltferent parts. In essence, It Is the Test-bench for the whole

system

use work.Neural_PackagealI;

entlty ann_processor Is

For”

Stlmulus : In Neural_Array;

Output : out Neural_Array);

end ann_processor;

archltecture processor_structure of ann_processor Is

component memory

PO" (

memory_output : out Welghts_MatrIx);

end component;

 

component network

POFN

Network_Stlmulus : In Stlmulus_Matrlx;

Network_WeIghts : In Welghts_Matrlx;

Network_Output : out Neural_Array);

end component;

slgnal Matrlx_Welghts : Welghts_Matrlx :=(

(0.0, 0.0, 0.0, 0.0, 0.0, 0.0), (0.0, 0.0, 0.0, 0.0, 0.0, 0.0), (0.0, 0.0, 0.0, 0.0, 0.0, 0.0),

(0.0, 0.0, 0.0, 0.0, 0.0, 0.0), (0.0, 0.0, 0.0, 0.0, 0.0, 0.0), (0.0, 0.0, 0.0, 0.0, 0.0, 0.0),

(0.0, 0.0, 0.0, 0.0, 0.0, 0.0), (0.0, 0.0, 0.0, 0.0, 0.0, 0.0), (0.0, 0.0, 0.0, 0.0, 0.0, 0.0),

(0.0, 0.0, 0.0, 0.0, 0.0, 0.0), (0.0, 0.0, 0.0, 0.0, 0.0, 0.0), (0.0, 0.0, 0.0, 0.0, 0.0, 0.0),

(0.0, 0.0, 0.0, 0.0, 0.0, 0.0), (0.0, 0.0, 0.0, 0.0, 0.0, 0.0), (0.0, 0.0, 0.0, 0.0, 0.0, 0.0));

slgnal Matrlx_Stlmulus : Stlmulus_Matrlx :=(

(0.0, 0.0, 0.0, 0.0, 0.0, 0.0), (0.0, 0.0, 0.0, 0.0, 0.0, 0.0), (0.0, 0.0, 0.0, 0.0, 0.0, 0.0),

(0.0, 0.0, 0.0, 0.0, 0.0, 0.0), (0.0, 0.0, 0.0, 0.0, 0.0, 0.0), (0.0, 0.0, 0.0, 0.0, 0.0, 0.0),

(0.0, 0.0, 0.0, 0.0, 0.0, 0.0), (0.0, 0.0, 0.0, 0.0, 0.0, 0.0), (0.0, 0.0, 0.0, 0.0, 0.0, 0.0),

(0.0, 0.0, 0.0, 0.0, 0.0, 0.0), (0.0, 0.0, 0.0, 0.0, 0.0, 0.0), (0.0, 0.0, 0.0, 0.0, 0.0, 0.0),

(0.0, 0.0, 0.0, 0.0, 0.0, 0.0), (0.0, 0.0, 0.0, 0.0, 0.0, 0.0), (0.0, 0.0, 0.0, 0.0, 0.0, 0.0));

for all : network use entlty work.network(network_structure);

for all : memory use entlty work.memory(memory_arch);
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begln

process(StlmuIus’TransactIon)

varlable tmp1 : Integer := 1;

varlable tmp2 : Integer := 1;

varlable tmp3 : Integer := 1;

begln

tmp3 := (N_States - States_per_Stage );

element_loop1 :

for II In 1 to N_Unlts loop

element_loop2 :

for k In 1 to States_per_Stage loop

tmp1 := (II / States_per_Stage);

If tmp1 = 0 then

tmp1 := N_Stages -1;

end If;

tmp2 := «mm -1) "' States_per_Stage ) + k;

Matrlx_Stlmulus(lI)(k) <= Stlmulus(tmp2);

end loop element_loopz;

 

element_loop3 :

for I In 1 to tmp3 loop

tmp1 := (II I States__per_Stage);

It tmp1 = N_Stages then

tmp1 := N_Stages -1;

end If;

tmp2 := ((tmp1) * States_per_‘_Stage ) + I;

Matrlx_Stlmulus(lI)(I + States_per_Stage) <= Stlmulus(tmp2);

end loop element_loop3;

end loop element_loop1;

end process;

- read the welght values to be used In the network from the memory

memory_read : memory port map (Matrlx_Welghts);

- feed the Neural Network wlth these Welghts and the Stlmulus and get the Output

run_network : network port map ( Matrlx_Stlmulus, Matrlx_Welghts, Output);

end processor_structure;





55

- Thls Is the test bench for testlng the whole system. Whole system Is Integrated In

ann_processor.

use work.Neural_package.alI;

entlty test_bench Is

end test_bench;

archltecture test_bench_arch of test_bench Is

component ann_processor

Port (

Stlmulus : In Neural_Array;

Output : out Neural_Array);

end component;

slgnal kln : Neural_Array := (0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0,

1.0, 0.0);

slgnal kOut : Neural_Array;

 

for all : ann_processor use entlty work.ann_processor(processor_structure);

begln

tester : ann_processor port map ( kln , kOut );

Process(kOut)

begln

kln <= kOut after 10 ns;

end process;

end test_bench_arch;



APPENDIX II

SIMULATION RESULTS

FOR

THE STAGECOACH PROBLEM
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