
AUTOMATIC VERIFICATION AND REVISION FOR
MULTITOLERANT PROGRAMS

By

Jingshu Chen

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Computer Science - Doctor of Philosophy

2013

ABSTRACT

AUTOMATIC VERIFICATION AND REVISION FOR
MULTITOLERANT PROGRAMS

By

Jingshu Chen

The notion of multitolerance is based on the observation that modern programs are often

subject to multiple faults. And, the requirements in the presence of these faults vary based

on the nature of the faults, their severity and the cost of providing fault-tolerance to them.

Hence, assurance of multitolerant systems is necessary and challenging. This dissertation

proposes to provide such assurance via automated verification and revision.

Regarding verification, we focus on verification of self-stabilization, which is the ability

of the program to recover from arbitrary states. Most of literature on verification of fault-

tolerance focuses on safety property; our work complements it by considering liveness proper-

ties. Hence, we envision verification of multitolerant programs by using existing approaches

for verifying safety and using the results from this dissertation for verifying liveness. We pro-

pose a technique that is based on a bottleneck (fairness requirements) identified in existing

work on verification of stabilization. Our approach uses the effectiveness of fairness along

with symbolic model checking, and hence reduces the cost of verification substantially. We

also propose a constraint-based approach that reduces the task of verifying self-stabilization

into a well-studied problem of constraint solving, so that one can leverage existing highly

optimized solutions (SAT/SMT solvers) to reduce the verification cost.

Regarding revision, we focus on revising existing programs to add multitolerance in an

automatic way. Revising the program manually is expensive since it requires additional

verification steps to guarantee correctness. Also, manual revision may violate existing re-

quirements. For these reasons, we propose an automatic approach to revise a given program

to add multitolerance for the identified faults. We investigate the complexity of automatic re-

vision for adding multitolerance. We also develop algorithms (and heuristics) for automatic

revision for adding multitolerance to existing programs. We implement these algorithms

in a model repair tool for automatically adding multitolerance. Additionally, we build a

lightweight framework for automatically revising UML state diagram to add fault-tolerance.

Specifically, this framework allows designers to revise an existing UML model to add fault-

tolerance without a detailed knowledge of the formalism behind model repair algorithms.

Copyright by
JINGSHU CHEN
2013

ACKNOWLEDGMENTS

First of all, I would like to thank my advisor, Dr. Sandeep Kulkarni, for the incredible

guidance, support and patience he provided during my Ph.D. life. Sandeep introduced me

to the research area of automatic program revision and verification. He was always there for

support whenever I needed some fresh insights about how to improve a paper or a talk.

I am extremely grateful to Dr. Laura Dillon for the valuable guidance from her during

years of my Ph.D. program. I also express my thanks to Dr. Abdol-Hossein Esfahanian and

Dr. Rajesh Kulkarni, for their critical and insightful questions/comments during my defense.

Also, I would like to truly thank the Department of Computer Science and Engineering at

Michigan State University for offering me financial support through teaching assistantships

and fellowships. In particular, I express my thanks to Dr. Eric Torng for approving the

department’s financial support for my Ph.D. education.

Finally, I would like to use this opportunity to thank all the faculties and friends I met

at Michigan State University.

v

TABLE OF CONTENTS

LIST OF TABLES . x

LIST OF FIGURES . xii

Chapter 1 Introduction 1
1.1 Fault-tolerance . 1
1.2 Multitolerance . 3
1.3 Contributions . 4

1.3.1 Automatic Revision for Adding Multitolerance 4
1.3.2 Verification of Stabilization . 5
1.3.3 Using Model Repair to Add Fault-tolerance in UML State Diagram . 5

1.4 Organization . 6

Chapter 2 Preliminaries 8
2.1 Models and Programs . 8
2.2 Specification . 10
2.3 Faults . 12

2.3.1 Fault-Tolerance . 13
2.4 Model Revision for Adding Fault-tolerance 14

Chapter 3 Effectiveness of Transition Systems to Model Faults 16
3.1 Motivation . 16
3.2 A Taxonomy of Faults . 19
3.3 Using Transition Systems to Model Faults 24

3.3.1 Operational, External, Human-made, Persistent, Malicious and Soft-
ware Faults . 24
3.3.1.1 Abstract Model . 25
3.3.1.2 Mapping to Abstract Model - From a Concrete Example . . 26
3.3.1.3 Modeling Variations . 29
3.3.1.4 Modeling Faults from Related Categories 30
3.3.1.5 Effect during Verification of Fault-tolerance 31
3.3.1.6 Effect during Revision for Adding Fault-tolerance 31

3.3.2 Operational, Internal, Natural, Hardware, Non-malicious, Non-deliberate,
Accidental and Persistent Faults . 31
3.3.2.1 Abstract Model . 32
3.3.2.2 Mapping to Abstract Model - From A Concrete Example . . 32
3.3.2.3 Modeling Variations . 34
3.3.2.4 Modeling Faults from Related Categories 34
3.3.2.5 Effect during Verification and Revision of Fault-tolerance . . 35

vi

3.3.3 Operational, External, Natural, Hardware, Non-malicious, Non-deliberate,
Accidental and Transient Faults . 35
3.3.3.1 Abstract Model . 35
3.3.3.2 Mapping to Abstract Model- From A Concrete Example . . 36
3.3.3.3 Modeling Variations . 37
3.3.3.4 Modeling Faults from Related Categories 37
3.3.3.5 Effect during Verification and Revision of Fault-tolerance . 38

3.3.4 Operational, External, Hardware, Non-malicious and Persistent Faults 38
3.3.4.1 Abstract Model . 38
3.3.4.2 Mapping to Abstract Model- From A Concrete Example. . . 39
3.3.4.3 Modeling Variations . 40
3.3.4.4 Modeling Faults from Related Categories 41
3.3.4.5 Effect during Verification and Revision of Fault-tolerance . . 41

3.3.5 Development Faults . 42
3.4 Practicability during Verification and Revision 43

3.4.1 Cost of Modeling Faults during Model Checking 43
3.4.2 Cost of Modeling Faults During Model Revision 45

3.5 Relative Completeness with Recent Literature 46
3.6 Summary . 48

Chapter 4 Automatic Verification of Self-Stabilizing Programs 50
4.1 Introduction . 50

4.1.1 Organization . 52
4.2 Background . 52
4.3 An Approach of Using Symbolic Model Checking to Verify Self-stabilizing

Programs . 53
4.3.1 Modeling Self-stabilizing Program . 54
4.3.2 Case Study 1: K-State Token Ring Program 55
4.3.3 Case Study 2: Ghosh’s Binary Mutual Exclusion Protocol 57
4.3.4 Case Study 3: Hoepman’s Uniform Ring-orientation Program 58
4.3.5 Analysis . 61

4.4 Effect of Fairness in Model Checking of Self-Stabilizing Programs 61
4.4.1 Using Symbolic Model Checking to Verify Self-stabilizing Program Un-

der Unfair Computation . 62
4.4.1.1 Modeling Self-stabilizing Program under Unfair Computation 62
4.4.1.2 Case Study 1: K-State Token Ring Program (Cont’d) 64
4.4.1.3 Case Study 2: Ghosh’s Binary Mutual Exclusion Protocol

(Cont’d) . 66
4.4.1.4 Case Study 3: Hoepman’s Uniform Ring-orientation Program

(Cont’d) . 67
4.4.1.5 Analysis . 75

4.4.2 Utilizing Decomposition to Reduce the Cost of Using Symbolic Model
Checking to Verify Self-stabilizing Program 76
4.4.2.1 Case Study 4: Huang’s Mutual Exclusion in Uniform Rings 79

vii

4.4.2.2 Case Study 5: Self-stabilizing Program based on Raymond’s
Tree algorithm . 81

4.4.2.3 Other Examples and Approaches for Identifying Components 83
4.4.3 Utilizing Weak Stabilization to Improve Scalability of Model Checking

of Self-stabilizing Program . 84
4.5 A Constraint-based Approach . 85

4.5.1 Approach for Verifying Stabilization with SMT Solvers 88
4.5.1.1 Verification of Closure . 89
4.5.1.2 Verification of Convergence 89
4.5.1.3 Resolving Ambiguity by Cycles Detection 91
4.5.1.4 Combining Verification of Convergence and Cycle Detection 92

4.5.2 Experimental Results . 93
4.5.2.1 K-State Token Ring Program 94
4.5.2.2 Ghosh’s Binary Mutual Exclusion Protocol 95
4.5.2.3 Stabilizing Tolerant Version of Tree-based Mutual Exclusion

Algorithm . 96
4.5.3 Verification of Token Ring in Synchronous Semantics 97

4.6 Summary . 100

Chapter 5 Automatic Revision for Adding Weak Multitolerance 104
5.1 Problem Statement . 105
5.2 Illustrating Examples . 106

5.2.1 Failsafe-Failsafe Weak Multitolerance 107
5.2.2 Masking-Masking Weak Multitolerance 110
5.2.3 Failsafe-Nonmasking Weak Multitolerance 114
5.2.4 Masking-Masking Weak Multitolerance 118

5.3 Complexity Analysis of FF Weak Multitolerance 121
5.3.1 Application of Add FF Weakmulti . 126

5.4 Complexity Analysis of MM Weak Multitolerance 128
5.4.1 A Heuristic for MM Weak Multitolerance 133
5.4.2 Application of Add MM Weakmulti 139

5.5 Complexity Analysis of FM Weak Multitolerance 142
5.6 Complexity Analysis of MN Weak Multitolerance 143
5.7 Complexity Analysis of NN Weak Multitolerance 145
5.8 Comparison of Feasibility of Strong Multitolerance and Weak Multitolerance 145

5.8.1 Feasibility Comparison of FF Strong/Weak Multitolerance 147
5.8.2 Feasibility Comparison of MM Strong/Weak Multitolerance and MF

Strong/Weak Multitolerance. 148
5.8.3 Feasibility Comparison of MN Strong/Weak Multitolerance and NN

Strong/Weak Multitolerance. 149
5.9 Discussion . 149
5.10 The Tool RM2: Model Revision for Adding Multitolerance 153

5.10.1 Input Program Language . 154
5.11 Functionality and Output Program . 159

viii

5.11.1 Example 1: Two-Sensors Program . 159
5.11.2 Example 2: Byzantine Agreement . 159

5.12 Summary . 159

Chapter 6 Automatic Revision of UML State Diagrams 166
6.1 Introduction . 166
6.2 Motivating Scenario . 169

6.2.1 Need for Model Revision for Tolerating Sensor Failure 170
6.3 An Overview of UML State Diagram . 172
6.4 Framework Description . 174

6.4.1 Step A: Translating from UML State Diagram to UCM. 174
6.4.2 Step B: Generating Fault Actions, Specification and Invariants from

Parameters specified by Designer . 175
6.4.3 Step C: Model Revision for Adding Fault-tolerance 178
6.4.4 Step D: Translating the Revised Program in UCM to UML state diagram.182

6.5 Case Study 1: The Adaptive cruise control system 182
6.5.1 Fault-intolerant UML model for ACC 183
6.5.2 Application of Step A: Generating UCM of the ACC System 185
6.5.3 Application of Step B: Generating Remaining Inputs for Model Revision187
6.5.4 Application of Step C: Generation of Fault-Tolerant UCM 189
6.5.5 Application of Step D: Generating Fault-tolerant UML model for ACC

System . 190
6.6 Case Study 2: The Altitude Switch Controller 192

6.6.1 Fault-intolerant UML model for ASW 192
6.6.2 Application of Step A: Generating UCM of the ASW Program 194
6.6.3 Application of Step B: Generating Remaining Inputs for Model Revision196
6.6.4 Application of Step C: Generation of Fault-Tolerant UCM 198
6.6.5 Application of Step D: Generating Fault-tolerant UML model for ASW

Program . 199
6.7 Discussion and Lessons Learnt . 200
6.8 Summary . 201

Chapter 7 Related Work 203
7.0.1 Automatic Verification of Stabilizing Programs 203
7.0.2 Automatic Revision for Multitolerant Programs 204
7.0.3 Model Revision of UML State Diagrams for Adding Fault-tolerance . 206

Chapter 8 Conclusion and Future Work 208
8.1 Contributions . 209
8.2 Future Work . 211

BIBLIOGRAPHY . 213

ix

LIST OF TABLES

Table 3.1: Fault classification (1). 20

Table 3.2: Fault classification (2). 21

Table 3.3: Fault classification (3). 22

Table 3.4: Cost of modeling faults during model checking. 44

Table 3.5: Complexity of modeling faults during model revision. 46

Table 3.6: A classification of faults proposed in DSN & ICDCS 2007-2010 (1). . . 47

Table 3.7: A classification of faults proposed in DSN & ICDCS 2007-2010 (2). . . 48

Table 4.1: Verification results for the k-state program. 57

Table 4.2: Verification results for Ghosh’s mutual exclusion program. 59

Table 4.3: Verification results for Hoepman’s ring-orientation program. 61

Table 4.4: Verification results for the k-state program. 66

Table 4.5: Verification results for Ghosh’s mutual exclusion program. 67

Table 4.6: Verification results for Hoepman’s ring-orientation program. 72

Table 4.7: Verification results for Huang’s mutual exclusion program. 80

Table 4.8: Verification results for Raymond-tree based program. 83

Table 4.9: Verification cost of weak stabilization vs. stabilization (1). 86

Table 4.10: Verification cost of weak stabilization vs. stabilization (2). 86

Table 4.11: Verification cost of weak stabilization vs. stabilization (3). 87

Table 4.12: Verification cost of weak stabilization vs. stabilization (4). 87

x

Table 4.13: Verification cost of weak stabilization vs. stabilization (5). 87

Table 4.14: Verification time for Ψv for token ring with unbounded variables. . . . 94

Table 4.15: Verification time for Ψv for token ring with bounded variables. 95

Table 4.16: Verification time for Ψv for token ring with split actions for K0. . . . 95

Table 4.17: Verification results for Ghosh’s program using SMT solver. 96

Table 4.18: Verification results for Raymond tree-based program. 96

Table 4.19: Verification results for token ring under synchronous semantics. 98

Table 4.20: Verification result for cycle detection. 100

xi

LIST OF FIGURES

Figure 4.1: k-state program under unfair computation. 65

Figure 4.2: Ghosh’s mutual protocol under unfair computation (1). 68

Figure 4.3: Ghosh’s mutual protocol under unfair computation (2). 69

Figure 4.4: Ghosh’s mutual protocol under unfair computation (3). 70

Figure 4.5: Hoepman’s ring program under unfair computation (1). 70

Figure 4.6: Hoepman’s ring program under unfair computation (2). 71

Figure 4.7: Hoepman’s ring program under unfair computation (3). 72

Figure 4.8: Hoepman’s ring program under unfair computation (4). 73

Figure 4.9: Hoepman’s ring program under unfair computation (5). 74

Figure 4.10: Hoepman’s ring program under unfair computation (6). 75

Figure 4.11: The algorighm for determing stabilization. 93

Figure 5.1: Model revision for adding FF weak multitolerance. 124

Figure 5.2: Mapping from an instance of the SAT problem. 129

Figure 5.3: Model revision for adding MM weak multitolerance. 136

Figure 5.4: The recovery algorithm. 137

Figure 5.5: Model revision for adding MN weak multitolerance. 144

Figure 5.6: A case of FF Weak multitolerance (not Strong). 148

Figure 5.7: Input file of two-sensors program. 160

Figure 5.8: Output of two-sensors Program. 161

xii

Figure 5.9: Program actions of the Byzantine agreement program. 162

Figure 5.10: Fault actions of the Byzantine agreement program. 163

Figure 5.11: Output of two-sensors program. 164

Figure 6.1: Logic design of the ACC program. 170

Figure 6.2: A case to illustrate modeling program in UML state diagram. 172

Figure 6.3: Model revision for adding fault-tolerance. 181

Figure 6.4: ACC system modeled in UML state diagram. 184

Figure 6.5: Annotation in formal expression. 184

Figure 6.6: The revised ACC program in UML state diagram. 191

Figure 6.7: UML state diagram of the ASW program. 193

Figure 6.8: the ASW program with formal annotation. 194

Figure 6.9: The revised ASW program in UML state diagram. 199

Figure 6.10: The stepwise procedure of MR4UM. 201

xiii

Chapter 1

Introduction

1.1 Fault-tolerance

The past decade has witnessed the increasing deployment of software systems in our daily

lives. Every call we receive, every email we send, every bank transaction we request, operat-

ing systems used for office and study, adaptive cruise control in vehicles, all rely on software

systems. Ensuring the reliability of software systems is more critical than ever before.

Fault-tolerance is crucial to the reliability of software systems. Generally, there are two

main requirements in providing fault-tolerance. The first requirement is that the program

should preserve its safety properties in the presence of faults. The second is that the program

should recover from faults so that its subsequent computation is correct. That is, the program

should meets its safety and livenss properties after recovery. Intuitively, safety states that

nothing bad ever happens in program computations, and liveness states that something good

will eventually occur in every program computation. When both of these requirements are

met in the presence of faults, we denote the corresponding program asmasking fault-tolerant.

1

While masking fault-tolerance is ideal, due to feasibility and/or cost issues, one may

choose to provide a weaker level of tolerance. One weaker level of fault-tolerance is non-

masking. In this level, the program provides recovery but may violate safety during re-

covery. Nonmasking fault-tolerance is desirable when the design of masking fault-tolerance

is either expensive or impossible. For example, in [46], authors provide nonmasking fault-

tolerance to memory safety bugs in Neutron, a version of the TinyOS operating system [147].

In this example, while one could technically design a masking fault-tolerant system, it is

very expensive in terms of human effort. Other examples include algorithms for clock

synchronization [151, 191], where clock values could be corrupted by faults, such as node

failure, random re-starts and initial lack of synchronization. In these examples, it is im-

possible or expensive to guarantee the safety property (e.g., clock drift is always limited).

Hence, nonmasking fault-tolerance is preferred so that the program will eventually recover

to states where clocks remain synchronized. Other examples of nonmasking fault-tolerance

include [47] [78] [215] [214].

Another weaker level of fault-tolerance is failsafe. In this level, the program always satis-

fies its safety properties in the presence of faults, but it may not satisfy its liveness properties.

Failsafe fault-tolerance is applicable in situations where safety is much more important than

liveness (e.g., safety-critical systems). Since liveness is not guaranteed, implementation costs

of failsafe fault-tolerance are typically lower than those of masking fault-tolerance. Failsafe

fault-tolerance is also utilized in systems at the component level, e.g., one may choose to

ensure that in case of faults, a component guarantees its own safety constraints although it

may not satisfy its liveness constraints. Upon noticing this, other components could ensure

that safety and liveness are satisfied for the overall system. Examples of such approach

2

include [222], where the authors present a mechanism to prevent a single faulty node from

monopolizing the communication bus in a distributed hard real-time system. In this ex-

ample, failsafe fault-tolerance is imposed to enforce fail-silent behavior of the node. Other

examples of failsafe systems include [166] [204] [106] [119].

1.2 Multitolerance

A program is often subject to multiple faults. Moreover, the level of expected tolerance to

these faults is different. To illustrate this, consider a simple networking system, in which

nodes communicate with each other by message passing. Two possible faults, message loss

and node failure could affect the program. The program is designed to mask the occurrence

of message loss, i.e., ensure that the program continues to satisfy its specification even if

messages are lost. However, for more serious faults, e.g., node failure, the program may

only provide nonmasking fault-tolerance, where the program eventually reorganizes itself to

legitimate states while some other properties (e.g., safety properties, satisfaction of requests

generated during recovery) may not be met during recovery.

Unfortunately, there exist situations where multiple faults occur simultaneously. By si-

multaneous, we mean that a fault from one class occurs before the system has recovered from

a fault from another class. Considering the above example, clearly, if the program provides

nonmasking fault-tolerance for node failure, it cannot guarantee masking fault-tolerance if

message loss occurs during recovery from node failure. Hence, when these two faults occur

simultaneously, it follows that the best one can do is to ensure that the program eventu-

ally recovers to states from where it satisfies its specification. In other words, the tolerance

provided for the case where faults from both classes occur simultaneously is equal to the

3

‘minimum’ level of fault-tolerance provided to each class of faults. We denote such multi-

tolerance as strong multitolerance. (See Chapter 5.8 for a precise definition.) In the above

example, a strongly multitolerant program would ensure that nonmasking fault-tolerance

would be provided if node failure and message loss occur simultaneously.

Instead of guaranteeing the minimum level of fault tolerance, another possible solution

is to ensure that the program provides an appropriate level of fault-tolerance if faults from

only one class occur. However, it may not provide any tolerance if faults from two classes

occur simultaneously. This scenario is possible when recovery from node failure requires that

message delivery is reliable and no messages are lost. We denote such multitolerance as weak

multitolerance.

1.3 Contributions

The goal of this dissertation is to build a model-based framework that helps to provide

multitolerance in an automatic way. To achieve this, our work addresses two important

problems: (1) automatic program revision for adding multitolerance, and (2) efficient verifi-

cation of multitolerance. Next, we will give a brief overview of the key contributions of this

dissertation.

1.3.1 Automatic Revision for Adding Multitolerance

It is desirable to revise existing program designs for adding multitolerance when faults are

newly identified. Manual revision is expensive because (1) manual revision requires another

round of verification to ensure that the identified errors are fixed, (2) manual revision may

not be successful and may introduce new human-induced errors to the existing program

4

design. It is a tedious and expensive task to repeat verification and manual revision if the

verification step does not succeed. This motivates the need for automating the revision

phase. We address the problem of automatic program revision for adding multitolerance.

We characterize multitolerance and differentiate our proposed multitolerance from previous

approaches. We investigate the complexity of automatic addition for multitolerance, and

develop novel algorithms and heuristics for automatic addition of multitolerance to existing

programs.

1.3.2 Verification of Stabilization

We also investigate the problem of verifying self-stabilization, which is the ability to recover

from arbitrary state. Most of literature on verification of fault-tolerance focuses on guar-

anteeing that a program satisfies its safety properties, our work complements the existing

literature by considering liveness properties. Thus, we envision verification of multitolerant

programs by using existing approaches for verifying safety and using the results from this

dissertation for verifying liveness. One key challenge in verification is how to avoid state

space explosion. The problem of ‘state explosion’ is worsened in verification of stabilizing

programs, because verifying stabilization requires considering all possible states.

1.3.3 Using Model Repair to Add Fault-tolerance in UML State

Diagram

State diagrams in the Unified Modeling language (UML) are used to describe the states as

well as the transitions between states of an object in the software system. Hence, UML

state diagrams is widely used in modeling program behaviors for helping programmers to

5

better understand the intricacies of their codes. Since the language of state diagrams is

not a computational one, using model repair to automatically revise the state diagram is a

challenging task. Furthermore, the use of the model repair technique requires the knowledge

of logic and automated reasoning, which makes it harder for designers to apply the model

repair technique in some degree. Thus it is desirable if the details of model repair are hidden

from designers so that they can enjoy the benefits of applying model revision and continue

to work with a familiar language to specify the artifacts of the system.

With this motivation, we propose a lightweight repair framework for UML state diagrams,

which takes a UML state diagram as input, utilizes the techniques of model repair to revise

UML state diagram, and produces a fault-tolerant UML state diagram. Complicated details,

such as the model repair process, and the transformation between UML state diagram and

underlying computing models, are hidden from users in the framework. This feature reduces

the learning curve for applying model repair in UML state diagram to add fault-tolerance.

To demonstrate the feasibility of this framework, we applied the proposed approach in two

scenarios, including the classic problem of Byzantine agreement and the adaptive cruise

control systems in vehicles.

1.4 Organization

The rest of this dissertation is organized as follows. Chapter 2 is dedicated to formalizing the

preliminary concepts which are used through this dissertation. Chapter 3 investigates the

effectiveness of transition systems to model faults. Chapter 4 presents our approaches for

automatic verification of multitolerant programs. Chapter 5 presents our work on automatic

revision for adding multitolerance. Chapter 6 introduces our work on using the model repair

6

technique to revise UML state diagram for adding fault-tolerance. Finally, in Chapter 7, we

provide concluding remarks and discuss future work.

7

Chapter 2

Preliminaries

This chapter is devoted to formalizing the fundamental concepts through this dissertation,

namely, programs, specification, faults, and fault-tolerance. The notion of programs is

adapted from Kulkarni and Arora [134]. The definition of specification is due to Alpern and

Schneider [7]. The definition of faults and fault-tolerance are from Arora and Gouda [17],

Kulkarni [133] and Bonakdarpour [35].

2.1 Models and Programs

This section formally defines models and programs. A model is described by an abstract

program.

A program, P, is described using a finite set of variables VP = {v0, v1, . . . , vn}, and a

finite set of program actions AP = {ac0, ac1, . . . , acm}, where n ≥ 0 and m ≥ 0. Each

variable, vi ∈ VP , is associated with a finite domain of values, Di. Each action, aci ∈ AP ,

is defined as follows: aci :: gi −→ sti; where gi is a Boolean formula involving program

variables and sti is a statement that updates a subset of program variables.

8

For such a program, we define the notion of state, state space and state predicate.

Definition 2.1.1. (State) A state, s, of program P assigns each variable vi ∈ VP a value

from its respective domain Di.

Definition 2.1.2. (State space) The state space, SP , of a program P is the set of all

possible states of P.

Definition 2.1.3. (State predicate) A state predicate of P is a Boolean expression defined

over the program variables VP . Thus, a state predicate C of P identifies the subset, SC ⊆

SP , where C is true in a state s iff s ∈ SC .

Definition 2.1.4. (Enabled) The action ai:: gi → sti, is enabled in a state s iff gi is

true in s.

Observe that an action ac in a program corresponds to a set of transitions (s0, s1), where

s0 is the initial state and s1 is the next state that is obtained by executing the statement of

the action that is enabled in s0.

Definition 2.1.5. (Computation) A computation of P is a finite or infinite state se-

quence: σ = 〈s0, s1, . . .〉 s.t. the following conditions are satisfied: (1) ∀j : 0 < j <

lengthof(σ) : (sj−1, sj) is a transition of P, (2) if σ is finite and terminates in sf then

there does not exist any state s such that (sf , s) is a transition of P.

A program that is described in terms of its variables VP and actions AP can alternatively

be viewed in terms of its state space and its transitions. In particular, VP and corresponding

domain of each variable identifies the state space, SP . And, each action ac in AP is a

subset of SP × SP . Since the subsequent definitions of specification, fault-tolerance and

9

multitolerance do not consider the structure of the program in terms of its variables and

actions, we define program in an abstract fashion in terms of its state space and transitions.

Definition 2.1.6. (Program) The program P is defined as the tuple 〈SP , ψP〉, where SP

is the state space, ψP ⊆ SP × SP .

Remark 2.1.1. In the above definition, ψP is the transitions of P. In most cases, we need

to refer to transitions of the program as state space is obvious from the context. Hence, we

use P and its transitions ψP interchangeably.

Remark 2.1.2. In describing the program in subsequent chapters, for ease of understanding,

we will describe it in terms of its variables and actions. The conversion from this notation

to state space and transitions is straightforward.

Remark 2.1.3. In our work on verification of multitolerant programs, we need a more

detailed structure of the program transitions. Specifically, we need to split transitions ψP into

set of transitions that correspond to individual actions, ac1, ac1, . . . , such that ac1∪ac2∪. . .

= ψP .

2.2 Specification

In this section, we formally present the notions of specification and the related concepts that

are used in this work.

Definition 2.2.1. (Safety Specification) The safety specification for program P is spec-

ified as a set of bad transitions [133], i.e., for program P, its safety specification is a subset

of SP × SP .

10

We say a transition (s0, s1) violates the safety specification sspec iff (if and only if) (s0, s1) ∈

sspec . A sequence σ = 〈s0, s1, . . .〉 satisfies sspec iff ∀j : 0 < j < lengthof(σ) :

(sj−1, sj) /∈ sspec.

Definition 2.2.2. (Liveness Specification) A liveness specification is specified in terms

of a set of infinite sequences.

A sequence σ = 〈s0, s1, . . .〉 satisfies a liveness specification lspec iff some suffix of σ is in

lspec.

A specification spec for program P is of the form 〈sspec, lspec〉, where sspec is a safety spec-

ification of P, and lspec is a liveness specification of P. A sequence satisfies the specification

spec iff it satisfies the corresponding safety and liveness specification. Hence, for ease of

understanding, we say that a specification is an intersection of a safety specification and a

liveness specification.

We now define what it means for a program P to satisfy a specification.

Definition 2.2.3. (Satisfies) Let P = 〈SP , ψP〉 be a program, S be a state predicate, and

spec be a specification for P. We write P |=S spec and say that P satisfies spec from S iff

(1) S is closed in ψP , and (2) every computation of P that starts from a state in S satisfies

spec.

Assumption 2.2.1. For simplicity of subsequent definitions, if P satisfies spec from S, we

assume that P includes at least one transition from every state in S. If P does not include

a transition from state s then we add the transition (s, s) to P. Note that this assumption

is not restrictive in any way. It simplifies subsequent definitions, as one does not have to

model terminating computations explicitly.

11

Definition 2.2.4. (Invariant) Let P = 〈SP , ψP〉 be a program, S be a state predicate,

and spec be a specification for P. If P |=S spec and S 6= {}, we say that S is an invariant

of P for spec.

Whenever the specification is clear from the context, we shall omit it; thus, “S is an invariant

of P” abbreviates “S is an invariant of P for spec”. Note that Definition 2.2.3 introduces

the notion of satisfaction with respect to computations. In case of computation prefixes

that are not necessarily maximal, we characterize them by determining whether they can be

extended to an infinite computation that satisfies the specification.

Definition 2.2.5. (Maintains) Program P maintains spec from S iff (1) S is closed in

ψP , and (2) for all computation prefixes α of P starting in S, there exists a computation

suffix β such that αβ ∈ spec. We say that P violates spec from S iff P does not maintain

spec from S.

We note that if P satisfies spec from S then P maintains spec from S as well, but the

reverse direction does not hold. We, in particular, introduce the notion of maintains for

computations that a (fault-intolerant) program cannot produce, but the computation can be

extended to one that is in spec by adding recovery (see Section 2.3 for details).

2.3 Faults

Each class of fault f that a program is subject to is systematically represented by a set of

transitions. Formally, a fault class for program P = 〈SP , ψP〉 is a subset of SP × SP . The

effectiveness of this representation is presented in Chapter 3.

12

Definition 2.3.1. (Fault-span) A state predicate T is an f -span (read as fault-span for

f) of P = 〈SP , ψP〉 from S iff the following conditions are satisfied: (1) S ⊆ T , and (2) T

is closed in ψP ∪ f .

Observe that for all computations of P that start from states in S, T is a boundary in the

state space of P up to which (but not beyond which) the states of P may be perturbed by

the occurrence of the transitions in f . Subsequently, as we defined the computations of P,

one can define computations of program P in the presence of faults f by simply substituting

ψP with ψP ∪ f in Definition 2.1.5.

2.3.1 Fault-Tolerance

We now define what it means for a program to be failsafe/nonmasking/masking f -tolerant

(read as fault-tolerant to fault class f).

Definition 2.3.2. (Masking f-tolerance) A program P is masking f -tolerant from S for

spec, iff the following conditions hold:

1. P |=S spec;

2. There exists T such that:

(a) T is an f -span of P from S;

(b) 〈SP , ψP ∪ f〉 maintains spec from T ;

(c) Every computation of 〈SP , ψP〉 that starts from a state in T eventually reaches

a state of S.

Thus, if program P is masking f -tolerant from S for spec then S is closed in ψP and

every computation of P that starts from a state in S satisfies spec in the absence of faults.

13

Additionally, in the presence of faults, there is a fault-span predicate T (S ⊆ T) that is

closed in ψP ∪ f .

Definition 2.3.3. (Failsafe f-tolerance) A program P is failsafe f -tolerant from S for

spec, iff conditions 1, 2a and 2b in Definition 2.3.2 hold.

Definition 2.3.4. (Nonmasking f-tolerance) A program P is nonmasking f -tolerant

from S for spec, iff conditions 1, 2a and 2c in Definition 2.3.2 hold.

Notation. Whenever the specification spec and the invariant S are clear from the context,

we omit them; thus, “f -tolerant” abbreviates “f -tolerant from S for spec”.

2.4 Model Revision for Adding Fault-tolerance

In this section, we define the model revision problem in the context of adding fault-tolerance.

Problem 2.4.1. The Model Revision Problem for Adding Fault-tolerance

Given a program P, a safety specification φ, an invariant I of P from where P satisfies

φ and a set of fault actions F : Does there exist a P′ with an invariant I′ such that

• (C1) I′ ⊆ I,

• (C2) (s0, s1) ∈ P′ ∧ s0 ∈ I′ ⇒ (s0, s1) ∈ P, and

• (C3) P′ is fault tolerant to F from I′ for φ.

Since the goal of this problem is to add fault-tolerance, the revision for adding fault-

tolerance is not permitted to add new behaviors in the absence of faults. To meet this

requirement, we include two constraints C1 and C2. Specifically, constraint C1 states that

14

I′ is a subset of I. If C1 is not true then it implies that the fault-tolerant program could

begin in a state from where the original fault-intolerant program violates its specification.

Hence, we cannot conclude correctness of the program behavior (in the absence of faults) if

it starts from a state in I′ − I. Thus, constraint C1 is required. Likewise, if P′ has new

transitions in I′ then it would imply that P′ could have behaviors that are not in P. In

other words, the computation of P′ may generate new ways to satisfy spec in the absence of

faults. Hence, constraint C2 is required.

Based on the above problem statement, we can view transitions of P′ in two parts:

(1) transitions of P that are preserved and (2) new transitions that are added to provide

recovery from faults. Furthermore, since a transition in a UML model may correspond to

several transitions in the underlying computation model. For this reason, the first part can

be subdivided into transitions that are preserved as is and transitions that are preserved in

part, i.e., they are restricted to execute under certain conditions. Thus, the transitions of

the fault-tolerant program can be partitioned into three types:

1. Original Transitions To. To corresponds to transitions that are preserved as is in the

fault-tolerant program.

2. Strong Transitions Ts. Ts corresponds to transitions of the original program that are

restricted to execute under certain constraints. In other words, these transitions are

strengthened version of the original actions.

3. Recovery Transitions Tr. Tr does not have the counterpart actions in the input pro-

gram. Tr is added by model revision to provide recovery in the presence of faults.

15

Chapter 3

Effectiveness of Transition Systems to

Model Faults

In this chapter, we present an overview of our fault modeling approach, that is, using tran-

sition systems. In particular, we focus on whether/how faults from various categories can

be modeled using transition systems. We also discuss the practicability of such modeling

approach in two contexts: model checking and model repair, which are important techniques

for automatic verification and revision. Besides, we evaluate the completeness of using tran-

sition systems to model faults introduced from recent literatures.

3.1 Motivation

This research has been motivated in part due to questions raised by readers and reviewers

about fault modeling approach used in our (and other similar) work. In particular, the formal

methods community typically takes this approach for granted (e.g., [57, 85, 90, 140, 240]).

However, some researchers argue that this approach would have limited application with

16

respect to different classes of faults. Our goal in this chapter is to answer questions such

as these and identify feasibility of modeling fault-tolerant systems using transition systems.

In particular, we focus on three questions. The first question deals with the feasibility and

limitation of using transition systems to model faults. Specifically, this includes the following

concerns.

• The fault definition in Section 2.3 assumes that faults are a set of new transitions that

are added to the given program. How can faults such as stuck-at faults be modeled

as added transitions that perturb the given program, since stuck-at faults intuitively

remove transitions from the original program. The same question is also extended to

other types of faults such as node failure since these faults do not seem to add any new

transitions to the original program.

• How can faults such as buffer overflow be modeled in terms of new transitions, as these

faults are essentially (intentional or unintentional) bugs in the software.

• A permanent fault such as byzantine fault causes a process to behave arbitrarily. More-

over, this fault is permanent in that the malicious process can perturb the program

several times. How can such faults be modeled using added transitions?

• How to model faults such as physical degradation, which are continuous in nature, and

hence, may not suitable for being modeled as discrete transition systems.

The second question regarding fault modeling is: Even if it is possible to model faults

using transition systems, is it appropriate and reasonable. Specifically, this question compares

the complexity of verification of a fault-intolerant program with the complexity of verification

of the corresponding fault-tolerant program (or the complexity of the corresponding repair

17

for adding fault-tolerance) that uses transition systems to model faults. The answer to this

question will identify circumstances where modeling of faults in terms of transition systems

may be feasible but expensive thereby making it difficult (or impossible) to utilize it.

The third question regarding fault modeling is: How can we know if we have represented

all types of faults that may affect a computer system? This question is crucial since it

characterizes the completeness of transitions systems to be used to model faults. While

answering this question is beyond the scope of formal methods, we can consider this question

in the context of a fault classification for practical systems. In particular, we can begin with

a classification of faults from the perspective of practitioners and then evaluate whether

faults from those models can be effectively represented using transition systems.

Based on these questions, in this work, we focus on the feasibility and practicality of mod-

eling faults as transition systems. We begin with the third question. Specifically, we utilize

the classification from seminal paper by Avizienis et al. [24]. This classification provides

different causes of faults and their effects. Since this classification is based on practitioner’s

viewpoint, it provides the basis for answering the first two questions. Specifically, in this

work, we focus on how/if each category of fault identified here can be modeled in terms of

transitions. From the point of view of formal methods, it is necessary to model the effect of

the fault as opposed to the cause of the fault. Hence, our work will focus on how effect of

faults from each category can be modeled.

Additionally, we also evaluate the complexity introduced by modeling faults as transition

systems. We consider the complexity in terms of two objectives: model checking and model

revision. Specifically, model checking [110, 174] is one of the most successful strategies for

providing assurance for model of hardware and software design. It focuses on deciding

18

whether a given model of system, sayM satisfies the given property pr. Since model checking

computes (directly or indirectly) all computations ofM to determine whether pr is satisfied,

it is especially useful in providing assurance about a system developed from that model. The

related problem of model revision [36,37] focuses on scenarios where model checking produces

a counterexample or where an existing model needs to be revised to add new properties (such

as safety, liveness and timing constraints). Thus, the goal in model revision is to modify the

given model M so that it satisfies the given property pr. Since the revised model is correct

by construction, it can assist us in obtaining a correct model of system when model checking

ends up finding a counterexample.

We view the fault modeling in online setting where faults occur during system execution.

In offline setting, there is often no need to model faults explicitly. This is due to the fact that

in the offline setting, faults have already occurred at the beginning and the goal of the system

is to provide acceptable service even in the presence of faults. Hence, offline setting often

requires us to model a degraded version of the original system itself rather than modeling

faults. In online setting, however, system may initially execute without faults. Then, one or

more faults could occur and change subsequent system behavior. Hence, in online setting, it

is often necessary to model faults explicitly.

3.2 A Taxonomy of Faults

In this section, we recall the terminology of fault classification from [24]. The classification

is based on eight basic viewpoints about faults. Table 3.1, 3.2 and 3.3 illustrate this classifi-

cation as well as results in this chapter about the ability and effect of modeling faults from

the respective category.

19

Fault Characteristics
Categories

1 2 3 4 5 6 7 8

Phase
Development

√ √ √ √ √ √ √ √
Operational

System Boundaries
Internal

√ √ √ √ √ √ √ √
External

Phenomenological Cause
Human-made

√ √ √ √ √ √ √ √
Natural

Dimension
Software

√ √ √ √ √
Hardware

√ √ √

Objective
Non-Malicious

√ √ √ √ √ √
Malicious

√ √

Intent
Non-Deliberate

√ √ √ √
Deliberate

√ √ √ √

Capability
Accidently

√ √
- -

√
Incompetence

√ √
- -

√

Persistence
Persistent

√ √ √ √ √ √ √ √
Transient

Fault Characteristics
Categories

9 10 11 12 13 14 15 16

Phase
Development

√ √ √
Operational

√ √ √ √ √

System Boundaries
Internal

√ √ √ √ √
External

√ √ √

Phenomenological Cause
Human-made

√ √ √ √ √ √ √
Natural

√

Dimension
Software
Hardware

√ √ √ √ √ √ √ √

Objective
Non-Malicious

√ √ √ √ √ √ √ √
Malicious

Intent
Non-Deliberate

√ √ √ √ √ √
Deliberate

√ √

Capability
Accidently

√ √ √ √ √ √
Incompetence

√ √

Persistence
Persistent

√ √ √ √ √
Transient

√ √ √

Table 3.1: Fault classification (1).

20

Fault Characteristics
Categories

17 18 19 20 21 22 23 24

Phase
Development
Operational

√ √ √ √ √ √ √ √

System Boundaries
Internal
External

√ √ √ √ √ √ √ √

Phenomenological Cause
Human-made

√ √ √ √ √ √ √ √
Natural

Dimension
Software

√
Hardware

√ √ √ √ √ √ √

Objective
Non-Malicious

√ √ √ √ √
Malicious

√ √ √

Intent
Non-Deliberate

√
Deliberate

√ √ √ √ √ √ √

Capability
Accidently

√
- - -

Incompetence
√ √ √ √

- - -

Persistence
Persistent

√ √ √ √
Transient

√ √ √ √

Fault Characteristics
Categories

25 26 27 28 29 30 31 -

Phase
Development -
Operational

√ √ √ √ √ √ √
-

System Boundaries
Internal -
External

√ √ √ √ √ √ √
-

Phenomenological Cause
Human-made

√ √ √ √ √ √ √
-

Natural -

Dimension
Hardware -
Software

√ √ √ √ √ √ √
-

Objective
Non-Malicious

√ √ √ √ √
-

Malicious
√ √

-

Intent
Non-Deliberate

√ √ √
-

Deliberate
√ √ √ √

-

Capability
Accidently - -

√ √
-

Incompetence - -
√ √ √

-

Persistence
Persistent

√ √ √
-

Transient
√ √ √ √

-

Table 3.2: Fault classification (2).

21

Section Categories

Effect in Model
Verification and

Revision
Feasibility

Practicability

3.3.5 1-11

Fault prevention is more
suitable.

No need to model faults
Explicitly. Not feasible

3.3.2 12-13

Significant increase in reachable
states.

Need for modeling continuous
behavior.

Feasible
Not Practical

3.3.4
14,17,

20, 27, 30

Small increase in reachable
states.

Potential use for modeling blind
writes.

Feasible
Practical

3.3.1
5,6,
22-25

Small increase in reachable
states.

Need for modeling read/
write restriction.

Feasible
Practical

3.3.3
15-21,
26-31

Small increase in reachable
states.

Feasible
Practical

Table 3.3: Fault classification (3).

Next, we briefly describe the viewpoints considered in this classification.

One viewpoint is based on how the fault occurs. In this viewpoint, there are two possi-

bilities: development faults and operational faults. The former corresponds to the case

where fault occurs due to mistakes during development. This category includes faults such

as buffer overflows, incorrect results of certain floating point division caused by Pentium

FDIV bug etc. The latter corresponds to the case where fault occurs while the system is

deployed.

The second viewpoint is based on whether the fault occurs inside system boundary (in-

ternal faults) or whether it occurs outside system boundary, i.e., in the environment (ex-

ternal faults). The former corresponds to faults such as physical deterioration of brakes in

the vehicle and logic bomb. And, the latter corresponds to faults such as bit flip in memory

caused by cosmic ray and wrong parameter configuration.

22

The third viewpoint is based on the cause of the fault. In this viewpoint, a fault can be

either natural fault or human made fault. The former corresponds to random events

that may occur naturally. Examples of such faults include internet and telecoms connectiv-

ity disrupted by Taiwan earthquake. The latter corresponds to (intentional or otherwise)

mistakes caused by humans. Examples of such faults include development failure of the AAS

system [181].

The fourth viewpoint is based on how the fault affects the system. In this viewpoint, a

fault can be either hardware fault or a software fault. Examples of former include loss

of network switch and deflated car tie whereas examples of latter include Y2038 problem of

software system and Trojan horses.

The fifth viewpoint is based on the objective of the fault. In this viewpoint, the fault can

be either a malicious fault or a non-malicious fault. In the former case, the goal of the

(human responsible for the) fault is to intentionally disrupt the system execution. Examples

of such faults include attacker and worm. In the latter case, there is no malicious objective.

Examples of such faults include physical deterioration and heating/cooling caused by natural

environments.

The sixth viewpoint is based on in the intent of the fault. In this viewpoint, the fault

can be either a deliberate fault or a non-deliberate fault. The former case is due to

bad decisions. Examples of such faults include wrong configuration that can affect security,

networking, storage, middleware, etc [96]. The latter one is caused by mistakes. Examples

of such faults include software flaws and physical production defects.

The seventh viewpoint is based on whether the fault is caused accidently or due to in-

competence. And, finally, the eighth viewpoint is based on whether the fault is a transient

23

fault that occurs occasionally and does not persist for a long duration. Or a persistent

fault where the fault persists for a long time (possibly forever).

3.3 Using Transition Systems to Model Faults

In this section, we discuss modeling of faults from different categories in Table 3.1 - 3.3.

Based on the characteristics of the faults, we partition our discussion among Sections 3.3.1-

3.3.5. For each section, we identify the abstract model of fault from one category first. Then

we introduce how to mapping to the abstract model with concrete example. We also discuss

variations of the same fault that are considered in the literature and evaluate its effect on

modeling that fault. Subsequently, we identify related fault categories, i.e., fault categories

where the modeling would be similar. Finally, we identify the effect of such modeling in

verification and revisions.

3.3.1 Operational, External, Human-made, Persistent, Malicious

and Software Faults

In this section, we focus on faults that are operational, external, human made, persistent,

malicious and software. (This corresponds to category 24 in Table 3.2.) Thus, these faults

occur during the system execution. Generally, they are caused by malicious users or attack-

ers. And they persist permanently (or long enough time). It is expected that the system

will continue to function even when the faults are present. While some attempts may be

made to prevent such faults from occurring, it is possible that such preventions would not be

fully successful. Hence, for assurance in the context of these faults, it is necessary that one

considers the system execution where the faults (exhibited in terms of compromised hosts,

24

malicious users or attacks) continue to occur potentially frequently. Often, in such systems,

assumptions are made about the number of faults that may exist at a given time. These

assumptions ensure that sufficiently many ‘good resources’ are available to solve the problem

at hand.

3.3.1.1 Abstract Model

To capture the impact that this type of fault has on the underlying system state, there are

three types of abstract actions in the model for fault from this category.

• Access Actions. These actions allow user to get knowledge about the current system

state. An example of access action is that an user get the data from remote server

and make a local copy. We use variable v to denote user’s copy of system state and

variable s to denote the value of the current system state. Hence this type of actions

can be modeled as follows:

ACCESS action:

v := s ;

• Update Actions. These actions create a change to the system state. Examples of update

actions include writing data to file in the server and updating value of a flag which is

used to denote whether a file is changed. We use variable v to denote the system state

and x to denote the value which is used to update system state by UpdateActions.

Hence this type of actions can be modeled as follows:

Update action:

25

v := x ;

• Fault Actions. These actions, (which may be conducted by malicious users or attack-

ers), perturb the system to a random state. An example of a fault action is that a

malicious user changes the value of accessible data randomly. We introduce variable

v to denote the state which is corrupted by fault actions. We also introduce an ex-

tra variable m to model whether malicious user exists in the environment. The fault

actions can be modeled as follows:

Fault action 1:

true −→ m := true;

Fault action 2:

m −→ v := random();

3.3.1.2 Mapping to Abstract Model - From a Concrete Example

Now, we discuss how to mapping raw actions in the real example to the abstract actions in

the model described above.

A typical example of the faults from this category occurs in the context of distributed

system where the system is organized as a network of nodes and some of these nodes may not

work as expected and behave arbitrarily because of some reasons, such as attackers. One such

example is Farsite [34]. Farsite is a serverless distributed file system that provides centralized

file-system service. Farsite aims at providing secure, scalable and strongly consistent file

storage service. In Farsite, the concept of servers in the system is virtual and the system

26

actually runs on a network of untrusted PCs some of which may be controlled by a malicious

user. Hence, the whole infrastructure is highly susceptible to a fault that the virtual server

behaves arbitrarily. This fact brings the challenge of guaranteeing the delivery of correct

service in the presence of such faults.

Since our goal is to illustrate the modeling of such fault and not the details of Farsite,

without loss of generality, we describe how one can model operations for a single file, say fl.

In particular, labeling UpdateAction and AccessAction is straightforward. In this example,

for these Read operations that allows users to get the data from servers, we mapping them

as AccessAction whereas we mapping Write operation that allows users to write data to

servers to UpdateAction. In each operation, the client identifies the list of server nodes that

contain (or are likely to contain) a copy of the file. We use index j to quantify over the list of

such servers. Furthermore, we use the term data.j to denote data maintained by the server

j for file fl and the term copy.j to denote local copy of file fl.

In read operation, the client obtains a copy of the file from all (or a subset of) servers.

In write operation, the data is written to the respective servers. In order to capture sys-

tem semantics of fault tolerance mechanism designed in this example, we make extend of

AccessAction in the basic abstract model. There are several copies of stored files. Since

some of the copies may be incorrect due to malicious users, the client performs an agreement

algorithm (e.g., majority computation) first, then return the agreed data to the user who

requests file fl.

Thus, the operations in Farsite can be modeled as shown next.

Acess action:

∀j :: copy.j := data.j ;

27

getResouce := agreement(copy.j);

return getResource;

Update action to write v to file:

∀j :: data.j := v;

Obviously our above model in transition system can capture system semantic of this example.

Observe that the above model only describes the program actions. Next, we show that

the actions of malicious users can also be modeled in terms of faultaction in the abstract

model. In particular, to denote whether process j is malicious, we introduce a variable m.j

that denotes whether j is malicious. The fault actions can be modeled as follows:

Fault action 1:

true −→ m.j := true;

Fault action 2:

m.j −→ data.j := random();

Thus, Fault action 1 denotes that machine j is compromised. Fault action 2 denotes that

the compromised machine can change the local data arbitrarily. Observe that along with

the write action that assumes that data is written to all replicas, the fault action allows the

malicious user to change the data stored in a compromised machine.

Next, we discuss the completeness of this approach. In particular, we argue that this

approach is generic for faults from this category. Specifically, the faults are operational in

nature, i.e., at the time system is created (and deployed), there are no faults perturbing the

system. (Note that this is not true for development faults.) Thus, faults become operational

28

at some point after (possibly, before the system executes even one of its actions) the system

is deployed. Any modeling must include an action by which the malicious components/pro-

cesses appear in the system. In other words, there must be one action (similar to Fault

action 1) where some components/process becomes faulty. Moreover, since the faults are

permanent, it is required that it must be possible for the fault to persist forever. In other

words, the actions modeling faults should be such that they can execute forever (such as

that indicated by the guard of Fault action 2).

Finally, because the fault is human made and malicious, the faulty component/process

can change the data that it controls arbitrarily (as in the statement of Fault action 2). Thus,

any fault that is operational, human made, persistent and malicious, can be modeled using

an approach similar to the one presented earlier.

3.3.1.3 Modeling Variations

There are several possible variations that one may consider in this category of faults, as

follows.

• A malicious user may intend to remain hidden. In this case, Fault action 2 will have

to be changed so that instead of changing the data arbitrarily, it will change it only in

a way that allows prevents it from being discovered.

• The system may have a mechanism to clean up affected nodes (e.g., through antivirus

programs etc.) If such a mechanism exists then it can be modeled by the dual of Fault

action 1 where m.j is changed from true to false.

• Also, often assumptions are made about the number of malicious users that can exist

in the system at a given time. For example, a standard assumption is that the number

29

of malicious replicas is less than a third of the total replicas. If such an assumption

is desired, it can be achieved by changing Fault action 1 so that a node can become

malicious only if the total number of malicious nodes will not exceed the bound. Note

that this will require one to read the value m variable of all nodes. However, this is

acceptable since we are simply recording the assumption.

3.3.1.4 Modeling Faults from Related Categories

Approach similar to the one in this section also applies for faults from other categories. For

example, the above modeling can be applied when the fault is caused by hardware. Also,

if one were to model the fault which persists for some duration and then disappears, we

only need to slightly modify the aboved modeling (the case where fault is permanent (long-

lasting) in nature), by adding the modeling of another fault action (similar to Fault action

1) where m.j changes from true to false. Based on this discussion, we can model faults

from category 22-25 (cf. Table 3.2) using the approach in this section. A special case when

the fault is transient and occurs only once, we can simplify the modeling of faults by the

approach in Section 3.3.3.

Additionally, a similar approach could also be used for modeling malicious and deliberate

development faults (category 5 and 6 in Table 3.1). Examples of faults from these categories

include logic bomb. For faults from these categories, the modeling in this section may be

used if there are several designer teams producing different parts of the system (e.g., with N-

version programming) and sufficient redundancy exists to deal with such faults. However, for

the case where one design team is creating the given system or where sufficient redundancy is

unavailable, the only suitable approach is to use fault prevention where the goal is to ensure

that the fault cannot happen. And, when fault prevention is used, there is no need to model

30

faults explicitly, as proving that fault prevention work requires one to only consider system

behavior in the absence of faults.

3.3.1.5 Effect during Verification of Fault-tolerance

If one were to verify a program that models malicious users in the above fashion, we can

observe that the introduction of the variable m.j increases the state space of the program.

Additionally, to ensure that the variable m.j is not used improperly, we need to syntactically

check the program; specifically, we need to ensure that actions at machine j do not reference

variable m.k, where j 6= k.

3.3.1.6 Effect during Revision for Adding Fault-tolerance

One important characteristic of above formulation is that variable m.j is readable only

to node j. Other nodes cannot read it. If model revision is used for a fault from this

category, it is necessary that this restriction is continued to be satisfied in the revised model.

Additionally, variable m.j cannot be changed by any node; it may be changed only by a fault

action. These restrictions have been shown to increase complexity from P to NP-complete

in some instances [134].

3.3.2 Operational, Internal, Natural, Hardware, Non-malicious,

Non-deliberate, Accidental and Persistent Faults

In this section, we focus on faults that are operational, internal, natural, hardware, non-

malicious, non-deliberate, accidental and persistent. (This corresponds to category 12 (cf.

Table 3.1).)

31

3.3.2.1 Abstract Model

Obviously, the fault from this category occurs during the system execution. Generally, they

occur due to hardware degradation over time. And, it is expected that they last for a

significant duration of time. Similar to the faults from Section 3.3.1, it is expected that the

system will continue to function even when the faults are present. Periodic maintenance

would be used to replace the hardware as necessary to correct this fault.

Taking these impacts that this category of fault has on the underlying system state into

account, we introduce g to denote the hardware state and then the corresponding abstract

action in our model is as follows, where ǫ is a small real number.

Fault action 1:

g ≥ ǫ −→ g := g − ǫ;

3.3.2.2 Mapping to Abstract Model - From A Concrete Example

A typical example from this category occurs in the context of a braking control system

where the brake may wear out due to physical deterioration thus system failures may occur

with accidents and severe damage and human injuries as consequences.

The basic modeling of braking system includes the speed of the vehicle, the status of

brakes (e.g., applied or not) and their reliability.

One such fault in this system can be caused by the case where wear and tear on brakes

(or other factors) reduces their effectiveness. Modeling such fault into abstract action is

straightforward. If we use g to denote the specified level of performance and integrity of the

brake, we can apply abstract action in the basic model directly. To capture system semantics

32

of this example, we assume value of g is in the range [0, 1] where g = 1 corresponds the ideal

brake and g = 0 corresponds to a nonfunctioning brake in this case.

Besides, in order to model program actions, we use variable s to denote the speed of

the vehicle. And, we use a Boolean variable b to denote whether the brake is pressed.

(Similar to g, b could also be modeled as a continuous variable. However, this extension is

straightforward and, hence omitted.) Thus, when the brake is pressed, the vehicle reduces

the speed. We model this as a reduction in speed by a fixed value (denoted as C in the below

program action) that depends on the reliability of brakes. Hence, one possible way to define

such program action in this context is as follows:

Brake Action:

b == true −→ s := MAX(s− g ∗ C, 0);

Next, we discuss the completeness of this approach. In particular, we argue that this

approach is generic for faults from this category. Since the faults are operational in nature,

faults occur at some point after the system is deployed and thus any modeling must include

some action where some component/process becomes faulty. Also considering the faults are

internal, natural, non-malicious and non-deliberate, the fault action should not be triggered

by outsider. In other words, the guard of the fault action should be some status of fault

component or process itself, like Fault action 1. Moreover, since the faults are permanent, it

is required that it must be possible for the fault to persist forever (until the faulty component

loses its capability totally).

Thus, any fault that is operational, internal, natural, hardware, nonmalicious, non-

deliberate, accidental and persistent Faults, can be modeled using an approach similar to

33

the one presented earlier.

3.3.2.3 Modeling Variations

The approach proposed in this section is discrete in nature. It models that when the brake

is pressed, speed reduces by a certain amount. A more accurate model would be to uti-

lize timing based information for modeling both programs as well as faults. Examples of

such approach include the timed automata [9] that combines transition systems with time.

In particular, with such an approach, we could model speed reducing at a particular rate

depending upon the reliability of brakes and the pressure applied on brakes.

3.3.2.4 Modeling Faults from Related Categories

Approach similar to the one in this section also applies for faults from other categories. The

above modeling is for the case where fault is permanent in nature. If the faults persist for

some duration and then disappears then we need to model another fault action (similar to

the above fault action g ≥ ǫ −→ g := g− ǫ) where g can be increased ǫ and reach at most

1 as range required. Based on this discussion, we can model faults from category 12-13 (cf.

Table 3.1) using the approach in this section.

However, similar to Section 3.3.1, for the case where physical elements play a sole role

in the structure of the whole system, when that elements totally loss the functions, e.g. a

deflated tire of car, there is no need to model the fault explicitly. And, the only suitable

approach is to use fault prevention to ensure such faults cannot happen.

34

3.3.2.5 Effect during Verification and Revision of Fault-tolerance

It is expected that the fault from this category will generally require one to consider hybrid

models where both discrete and continuous variables are considered. The effect/effects of

such hybrid model in verification is/are considered in [8]. Regarding revision, revising timed

automata is considered in [35]. However, the cost of such revision is often higher (exponential

in the constants involved in specifying timing constraints).

3.3.3 Operational, External, Natural, Hardware, Non-malicious,

Non-deliberate, Accidental and Transient Faults

In this section, we focus on faults that are operational, external, natural, hardware, non-

malicious, non-deliberate, accidental and transient. (This corresponds to category 15 in

Table 3.1.)

3.3.3.1 Abstract Model

Obviously, the fault from this category occurs during the system execution. Generally, they

occur due to unexpected transient issues that are unlikely to happen again. They are not

malicious in nature but may cause system to behave in an incorrect manner. One approach

for dealing with such faults is self-stabilization [59] where the system is guaranteed to recover

from an arbitrary state to a legitimate state.

Modeling of the fault from this category in terms of transition systems is straightforward

since the fault occurs once (or rarely) and the impact is to change the system state into

random value. Specifically, we introduce x to denote system state then the fault can be

modeled by the following action:

35

true −→ x := random();

3.3.3.2 Mapping to Abstract Model- From A Concrete Example

A typical example from this category includes faults that cause memory to change to an ar-

bitrary state. A possible reason why such errors occur is cosmic rays, for example. Typically,

it is assumed that such faults are not detectable and, hence, the system continues to operate

in spite of them. Another related example in this class includes the use of uninitialized

variables. Such a fault will result in the program starting in an arbitrary state. Moreover,

other types of faults such as crash and message loss can exhibit a behavior that is similar to

a fault from this category. Specifically, in [120], authors have shown that in the presence of

these faults, the program may be (essentially) perturbed to an arbitrary state.

Mapping the raw actions in the real example to the abstract action in the model is

straightforward. First, we map the variable (denoted as v) changed by the raw actions into

x in the abstract action first. Second, we map the actual way to change the value of v to

random() in the abstract action. By these two steps, we can apply the basic abstract model

to model fault actions in the real example directly.

Next, we discuss the completeness of this approach. In particular, we argue that this

approach is generic for faults from this category. Consider the faults are operational in

nature, there must be some fault action (similar to Fault action 1) occuring after the system

is deployed. These faults may affect the entire system or a part of it. Since the faults are

transient, this implies that their effect is temporary and the system continues to execute

its actions after faults occur. Moreover, since the fault is accidental and not deliberate,

the effect of fault on the affected part (like var x in Fault action 1) is random. Thus, any

36

fault that is operational, human made, persistent and malicious, can be modeled using an

approach similar to the one presented earlier.

3.3.3.3 Modeling Variations

There are several possible variations that one may consider in this category. For example,

the most common assumption used in the literature states that the fault will change the

variable to only a value that is legitimate in some configuration. In other words, the fault

will assign the variable a value that is from its domain; intuitively, this assumption is based

on the fact that if the value assigned to the variable is outside the domain then it would be

detected before the variable value is used. Also, often assumptions are made about inability

of the fault to change the code itself, i.e., the fault only changes data. If faults are allowed to

disrupt code then this can be modeled using the approach in Section 3.3.1. Alternatively, it

could also be modeled using the approach in Section 3.3.4 if it is expected that the fault will

render the corresponding component in a state from where it cannot continue its execution.

3.3.3.4 Modeling Faults from Related Categories

The approach similar to the one in this section also applies for faults from other categories.

For example, the above modeling can also be applied when the fault is caused by human

being’s non-malicious action. Also, the modeling can be applied where fault is caused by

software. Hence, we can model faults from category 15-16, 18-19, 21, 26, 28-29, 31 (cf. Table

3.2) using the approach in this section.

37

3.3.3.5 Effect during Verification and Revision of Fault-tolerance

If one were to verify a system that models transient faults in the above fashion, then one

has to consider system execution from arbitrary (respectively, large number of) states. In

particular, if the fault can corrupt all program variables then this corresponds to considering

execution from arbitrary states. The topic of such verification is considered in the context

of self-stabilization; in [225], authors have shown the feasibility of verifying self-stabilization

using model checker SMV [174].

There are no new difficulties introduced when applying model revision to address faults

from this category. This is due to the fact that no auxiliary variables are needed to model

this fault. An example where such fault modeling is used in model revision includes [1].

3.3.4 Operational, External, Hardware, Non-malicious and Per-

sistent Faults

In this section, we focus on the class of faults that are operational, external, hardware, non-

malicious and persistent. (They correspond to category 14, 17 and 20 (cf. Table 3.1 and

3.2).) These categories differ in terms of whether the fault is human-made or natural as

well as whether the fault is deliberate or non-deliberate. However, the exact cause is not

important in modeling effect of such faults.

3.3.4.1 Abstract Model

Unlike the faults from Section 3.3.1, where faults are malicious in nature, the faults in

category 14, 17 and 20 are non-malicious. It is expected that these faults are persistent in

nature. Examples of such faults include failure of nodes, failure of channels etc.

38

Modeling of such fault in terms of transition is similar to that in Section 3.3.1. Specifically,

since the faulty component is permanently ‘killed’ we can model it with an auxiliary variable

C that denotes whether the given component is correct or whether it has failed. Also, let

data denote state of a node (including its buffered messages). Now, the fault action can be

modeled as follows:

Fault action 1:

C = true −→C := false, data := empty;

Additionally, all program actions would have to be modified so that they only execute

when the switch is functioning correctly. In other words, all actions by which one node

communicates with another would have to be modified so that it can occur only if the

respective nodes have not failed.

3.3.4.2 Mapping to Abstract Model- From A Concrete Example.

A typical example of the faults from this category occurs in context of networking systems

where a fault may cause one or more nodes to fail in a manner where it completely stops

working.

One example of such a system is from [206] where authors have focused on developing a

failstop processor: A failstop processor works correctly before a fault occurs and it performs

no actions when it fails. Moreover, data maintained at the failed processor is lost.

Another example is SafetyNet [217]. SafetyNet is a lightweight global checkpoint/recovery

scheme. It aims at providing stable and reliable system services even in the situation of either

dropped coherence messages or the loss of an interconnection network switch (and its buffered

39

messages).

Mapping raw actions in the real example to abstract action in the model described above

is very straightforward. The steps is similar with Section 3.3.3(, and hence omitted).

Next, we discuss the completeness of this approach. In particular, we argue that this

approach is generic for faults from this category. Specifically, considering the faults are

operational, it is required to include in the modeling such an action to denote faulty com-

ponents/processes appear in the system. Also, since faults of this category are persistent, it

is required that it must be possible for the fault to persist forever (such as that indicated

by Fault action 1). Since the fault is external and non-malicious, the occurrence of fault

is due to some change of environment condition and hence there must be some variable to

denote this change in the modeling (like var c in the Fault action 1). Thus, any fault that

is operational, external, persistent, hardware and non-malicious, can be modeled using an

approach similar to the one presented earlier.

3.3.4.3 Modeling Variations

There are several possible variations that one may consider in this category of faults. For

example, a 2D torus topology is considered in [217] to prevent a single point-of-failure by

splitting each switch into two half-switches. Execution may resume after reconfiguration to

route around the lost switch [118] although at reduced bandwidth. In this case, we can use

two variables to denote the link status and buffered data of each half-switch independently.

The link status of the whole switch can be modeled as disjunction of the link status of

each half element. Also often redundancy is used in the networking system. For example,

the configuration of a specific point-to-point path may consist of several available links. If

such an assumption is desired, one can model the fault action for each available switch first.

40

Then, the link status of the whole configuration can be modeled as disjunction value of these

available switches.

The fault modeling from this section assumes that the fault is permanent, i.e., the failed

node remains failed forever. A variation of this model is one where the faulty node is repaired

and integrated in the system. In this case, a dual of the fault action where C is set to true

must be added. Depending upon how such an action restores the node, the data associated

with the node would change. For example, if the restore is equivalent to reboot where the

node starts from some fixed state, data will be changed accordingly.

3.3.4.4 Modeling Faults from Related Categories

Approach similar to the one in this section also applies for faults from other categories. For

example, the above modeling can be used whether faults affect hardware or software. Hence,

we can model faults from category 27 and 30 (cf. Table 3.2) using the approach in this

section.

3.3.4.5 Effect during Verification and Revision of Fault-tolerance

The effect on verification and revision is similar to that in Section 3.3.1. There are some

possible changes depending upon the assumptions about faults. In particular, variable C

introduced in fault actions may or may not be readable by other processes depending upon

whether one assumes that a fault is detectable or not. Furthermore, approaches such as

failure detectors [220] could be used to model more fine tuned assumptions about delectability

of the fault.

41

3.3.5 Development Faults

In this section, we focus on faults that occur during development. This corresponds to

category 1-11 in the Table 3.1. Typical examples of such faults cause software flaws, logic

bombs and hardware errata, etc. If the developer(s) or operator(s) did not realize at the

time that the consequence of their decision was a fault (or conceal faulty actions like logic

bombs with the malicious purpose), and furthermore, design or decision is accepted for use,

these faults can be treated as intrinsic nature of system and the occurrence of the faults is

unavoidable.

A typical example from this category includes Pentium FDIV bug in the Intel P5 Pentium

floating point unit(FPU) that was caused by few missing entries in the lookup table used by

the divide operation. Another example is that of buffer overflows where one copies a longer

string into a shorter string thereby affecting other parts of memory.

We argue that for such faults, formal methods for modeling faults explicitly are either

undesirable or impossible. For such faults, a more practical approach is fault prevention

where the goal is to ensure that the fault does not occur. For example, a thorough analysis

of code could be useful to ensure that logic bombs do not occur. Likewise, analysis of Pentium

FPU with theorem provers [198] has been successful in identifying the missing table entries

in Pentium. Likewise, approaches such as [226] can be used to prevent buffer overflows.

In other words, for faults from this category, one needs to consider fault-free execution

to show that the fault does not occur. Since this requires consideration of only fault-free

execution, it does not require one to model faults explicitly.

That said, in certain instances, one may consider these faults explicitly and tolerate them,

as preventing them may be impossible. In such cases, one needs to consider the effect of

42

the development faults. We expect most such development faults to exhibit themselves as

malicious faults (cf. Section 3.3.1) or as failstop (cf. Section 3.3.4) faults. In particular, we

have discussed modeling of faults from category 5 and 6 in Section 3.3.1.

3.4 Practicability during Verification and Revision

In Section 3.3, we considered the feasibility of modeling faults in terms of transition systems.

In this section, we utilize those results in identifying the practicability of such modeling.

Specifically, our goal is to evaluate the cost of such modeling in two contexts: model-checking

and model revision. In case of model checking, we want to compare the cost of verifying a

fault-intolerant program with that of verifying fault-tolerant program. And, in case of model

revision, we want to compare the cost of verifying fault-intolerant program with that of

revising it to add fault-tolerance. Both these tasks are feasible only if we can model the

faults during the verification and/or revision process.

3.4.1 Cost of Modeling Faults during Model Checking

Model checking focuses on deciding whether a given model of system, say M satisfies the

given property pr. While the cost of model checking depends upon several factors, one

important factor is the state space of the resulting model. Since modeling of faults in terms

of transitions has the potential to increase the state space of the program, we evaluate the

cost in terms of the increased state space. Specifically, we consider the increased cost of

modeling faults from Sections 3.3.1-3.3.4.

Observe that for modeling persistent and malicious faults, in Section 3.3.1, we needed to

add a variable m.j for every user. Essentially, this would double the state space of that user.

43

Faults From

Increased Cost of Modeling Faults
during Model Checking

(in terms of the increased state space)

Section 3.3.1 Increased by a factor of 2n.

Section 4.4.2

Increased by a constant factor
if discrete degradation is considered.

Potentially undecidable
if continuous degradation is considered.

Section 3.3.3 Unchanged in statespace.

Section 3.3.4 Increased by a factor of 2n.

Table 3.4: Cost of modeling faults during model checking.

Moreover, if there are n users in the system, then the total state space will be 2n times more

than that of the fault-intolerant system.

For faults from Section 3.3.2, the cost depends upon whether the physical degradation can

be modeled using discrete values or whether continuous modeling is required. If the physical

degradation is modeled using discrete values as in Section 3.3.2, the total state space will

increase by a constant factor when compared with that of the fault-intolerant system. If the

physical is modeled using continuous values, especially modeling in hybrid automata [8], the

total reachability problem is potentially undecidable.

If one were to verify a system that models transient fault as in Section 3.3.3, then one

has to consider all possible states that could be subtantially larger. However, the total state

space will be unchanged compared with that of fault-intolerant system.

Since the modeling approach of faults from Section 3.3.4 is similar to that in Section 3.3.1,

the increased state space on verification of modeling faults from Section 3.3.4 is similar to

that of Section 3.3.1.

Based on the above discussion, we summarize the increased cost of modeling faults from

Sections 3.3.1-3.3.4 in Table 3.4.

44

According to the results in Table 3.4, we argue that the increased cost due to modeling

faults in 18 categories (identifed in Section 3.3.1, 3.3.3 and 3.3.4) is reasonable. However,

the increased cost due to modeling faults in 2 categories (identified in Section 3.3.2) is high.

3.4.2 Cost of Modeling Faults During Model Revision

Since model checking computes (directly or indirectly) all computations of M to determine

whether pr is satisfied, it is especially useful in providing assurance about a system developed

from that model. The related problem of model revision [36, 37] focuses on scenarios where

model checking produces a counterexample or where an existing model needs to be revised

to add new properties (such as safety, liveness and timing constraints). Thus, the goal in

model revision is to modify the given model M so that it satisfies the given property pr.

Since the revised model is correct by construction, it can assist us in obtaining a correct

model of system when model checking ends up finding a counterexample.

Considering read-write restriction must be continued to be satisfied in the revised model,

for modeling persistent and malicious faults in Section 3.3.1, variable m.j is readable only to

node j. Other nodes cannot read it. Besides, variable m.j cannot be changed by any node;

it may be changed only by a fault action. These restrictions have been shown to increase

complexity from P to NP-complete in some instances [134].

Regarding revision for the modeling of faults from Section 3.3.2, revising timed automata

is considered in [35]. However, the cost of such revision is often higher (exponential in the

constants involved in specifying timing constraints. In some circumstance, the problem is

even undecidable.

For modeling transient faults in Section 3.3.3, it does not introduce new difficulties in

45

Faults from

Complexity of Modeling Faults
during Model Revision

(in terms of the increased state space)

Section 3.3.1
From P to NP-complete
in size of statespace.

Section 3.3.2 Undecidable in certain circumstance.

Section 3.3.3

For centralized system,
unchanged in complexity class.

For distributed system,
conjectured to NP-complete.

Section 3.3.4
From P to NP-complete
in size of state space.

Table 3.5: Complexity of modeling faults during model revision.

model revision. This is due to the fact that no auxiliary variables are needed to model this

fault. An example where such fault modeling is used in model revision includes [2].

Similarly to modeling of faults from Section 3.3.1, the complexity of modeling faults from

Section 3.3.4 is increased from P to NP-complete in certain circumstance.

As discussed above, we summarize the complexity issues caused by modeling faults from

Sections 3.3.1-3.3.4 during model revision in Table 3.5.

Based on these results in Table 3.5, the complexity increases substantially for model

revision. However, efficient heuristics have been found to mitigate the complexity for mod-

eling faults identified in Section 3.3.1, 3.3.3 and 3.3.4. Hence, we argue that model revision

for faults from these categories is practical. And for faults discussed in Section 3.3.2, the

increased complexity may be too high.

3.5 Relative Completeness with Recent Literature

In this section, we evaluate relative completeness of modeling approach proposed in this

dissertation with recent literature. In particular, we study the papers from two premier

46

conferences in the area of fault tolerance: the International Conference On Distributed

Computing Systems (ICDCS) and the IEEE/IFIP International Conference on Dependable

Systems and Networks (DSN) from 2007 to 2010.

Of 135 fault-tolerant relevant papers, we evaluate each paper whether modeling of those

faults is feasible using the approaches mentioned in our work. We find that faults mentioned

from 51 papers can be modeled in the approach proposed in Section 3.3.1. Faults mentioned

from 13 papers can be modeled in the approach proposed in Section 3.3.2. The fault model

in the Section 3.3.3 can be applied to modeling faults from 40 papers. And the fault model in

the Section 3.3.4 can be used in modeling faults from 31 papers.We summarize our evaluation

that how these faults can be modeled in the our proposed approaches in Table 3.6 and 3.7.

Appropriate Model Faults proposed in the publications
from DSN and ICDCS since 2007

Approach in Section 3.3.1

DDoS Attacks in [84], [179]
Selfishness of Node/Host in distributed
system in [45], [178], [155], [219], [212],
[182], [162], [121], [245], [29], [203],
[259], [234], [184], [177], [201], [208],
[108], [27]
Attacks in [161], [239], [99], [170], [40],
[223], [183], [144], [65], [210], [252],
[192], [11], [12], [81], [248], [185], [255],
[127], [129], [218], [44], [230], [4], [250],
[30]
Worms in [242], [82], [241],

Approach in Section 3.3.2
Power degradation of Battery in
MANETs mentioned in [235],
Energy consumption in [207], [153],
[236], [148], [149], [91], [157], [126],
[249], [224], [100],
Aging-related bug in [98],

Table 3.6: A classification of faults proposed in DSN & ICDCS 2007-2010 (1).

47

Appropriate Model Faults proposed in the publications
from DSN and ICDCS since 2007

Approach in Section 3.3.3

Data Incoherency in [32], [28], [160],
[243], [244], [49], [232], [5], [247], [152],
[39], [229], [233], [97], [3], [73], [14], [122]
Noise in WSN [258],
User’s misbehavior in [251], [252], [128],
[253]
Uncertain data in [62], [48], [25], [197],
[187]
Transient bugs in [256], [117], [190],
[202], [211], [257], [195], [13], [109], [95],
[193], [216], [94], [86]

Approach in Section 3.3.4
Message Loss in [231], [75], [176], [180]
Crash Failure in [103], [83], [237], [55],
[165], [238], [104], [124], [196], [209],
[74], [246], [131], [168], [150], [175],
[172], [43], [228], [167], [94]
Disconnection in distributed system in
[28], [112], [254], [205] [221], [154], [105].

Table 3.7: A classification of faults proposed in DSN & ICDCS 2007-2010 (2).

3.6 Summary

The main contributions of this chapter are as follows: i) starting from a taxonomy of faults

in [24], which classifies faults into 31 categories, we showed that, faults from 20 categories of

these 31 categories can be modeled using transition systems. These faults include Byzantine

actions in a networked system, physical deterioration of brake in a braking control system and

so on. And, we showed that faults from 11 categories cannot (or should not be) represented

using transition systems. These include faults such as buffer overflow, hardware errata and

so on. ii) We also investigated the feasibility and practicability of using transition systems

to model faults. We showed that (1) the modeling of faults from 18 categories as transition

systems is practical and feasible and (2) the modeling of faults from 2 categories as transition

systems is not practical although feasible. iii) We investigated the relative completeness of

48

the proposed approach with recent literature.

Our approach for modeling faults is analogous with the approach for modeling fault-

free behavior in model checking, and the latter has been shown to be one of the most

successful strategies for analyzing fault-free models. Also, our approach has been used in

verifying and revising fault-tolerant programs in the context of specific instances of faults.

Hence, we expect the results in this chapter to bridge the gap between theory and practice

in providing assurance about fault-tolerant system design. Moreover, our fault-modeling

approach is beneficial in the situation where the system is subject to multiple faults from

different classes (e.g., node crash, and message loss). In what follows, we are going to use

this fault modeling approach to assist in analyzing the system that is subject to multiple

faults.

49

Chapter 4

Automatic Verification of

Self-Stabilizing Programs

4.1 Introduction

In this chapter, we describe our approach for automatic verification of self-stabilizing pro-

grams. Self-stabilization [60], an ability to converge to a legitimate state from arbitrary

initial state(s), enables a program to automatically recover from the occurrence of (tran-

sient) faults. In particular, if a self-stabilizing program is perturbed by a transient fault

then the program is guaranteed to recover to a legitimate state after faults stop. This prop-

erty is especially useful in a large distributed network, where it is difficult or impossible to

predict the exact dynamic situation. Hence, several algorithms such as routing, leader elec-

tion, mutual exclusion [60, 63, 89] are designed to be self-stabilizing. Also, self-stabilization

is an effective way to accommodate faults from multiple classes. In particular, a stabilizing

design is able to tolerate multiple classes of faults that require nonmasking fault-tolerance.

50

However, verification of self-stabilizing programs is a challenging task [64,189,225]. Con-

trary to traditional verification that considers only a subset of reachable states, verification

of stabilization requires one to consider all possible states that could be substantially larger,

leading to worsening of the fundamental problem of ‘state explosion’.

We explore the automatic verification approach that utilizes the power of model checking,

which is one of the most successful automatic verification techniques and aims at automat-

ically verify whether a given program meets the given property. Previously, Tsuchiya et

al [225] have proposed an approach for model checking of self-stabilizing programs. This

work addresses the problem of state space explosion with the help of symbolic model check-

ing techniques, which use Ordered Binary Decision Diagrams (OBDDs) [41]. This work

demonstrates feasibility of applying model checking for verifying self-stabilizing programs.

Unfortunately, it only works for programs with a small number of processes. To overcome

this limitation, our work identifies a key bottleneck that limits the scalability of model check-

ing of verifying stabilization. Specifically, we propose a novel approach that benefits from

the effectiveness of different fairness schedulers while employing the power of symbolic model

checking.

We also propose a constraint-based approach to analyze stabilizing programs without

introducing fairness scheduler in the program model. The key insight is to reduce the ver-

ification task into a well-studied problem of constraint solving. In turn, this problem can

be solved by many existing highly optimized solutions. Specially, our approach leverages

the power of off-the-shelf SMT solvers that have demonstrated the ability to solve industrial

sized-satisfiability instances. To the best of our knowledge, our research is the first one that

analyzes stabilization with the help of SMT solvers.

51

4.1.1 Organization

The rest of this chapter is organized as follows. Section 4.2 presents the formal definition of

fairness constraints and stabilization. Section 4.3 recalls existing approaches that use model

checking to verify stabilization. In Section 4.4, we propose a verification approach that uses

the power of symbolic model checking as well as the effectiveness of fairness schedulers. In

Section 4.5, we present a constraint-based verification approach that utilizes the power of

the off-the-shelf SMT solver to analyze stabilization.

4.2 Background

A fair computation allows for a fair resolution of non-determinism. Next, we introduce

the definition of weakly-fair computation. Intuitively, in a weakly-fair computation, if a

guard of an action is continuously true then that action must be executed. Thus weakly-fair

computation is defined as follows.

Definition 4.2.1. (Weakly-fair computation) σ = 〈s0, s1, ...〉 is weakly-fair computa-

tion of p iff:

1. σ is a computation of p, and

2. if any action, say ai, of p is enabled in all states sj, sj+1, sj+2 . . . then ∃k : k ≥ j :

sk+1 is obtained by executing sti from state sk.

Remark 4.2.1. Note that Definition 2.1.5 does not consider fairness. Hence, as needed, we

use the term unfair computation to distinguish the computation without fairness from the

one with fairness. The term unfair computation has the same meaning as computation in

Definition 2.1.5.

52

Definition 4.2.2. (Stabilization) Let p be a program and let I be a state predicate of p.

We say that p is self-stabilizing for I iff:

1. closure: if (s0, s1) is a transition of p and s0 ∈ I, then s1 ∈ I;

2. convergence: every computation of p reaches I, i.e., ∀σ : σ is of the form 〈s0, s1, s2, . . . 〉

and σ is computation of p : (∃j :: sj ∈ I).

Note that the above definition can be instantiated with unfair computations or with

weakly-fair computations. In the former case, we say that the program p is self-stabilizing

for I without fairness. And, in the latter case, we say that program p is self-stabilizing for I

under weak fairness. Finally, whenever I or fairness level is clear from the context, we omit

it.

4.3 An Approach of Using Symbolic Model Checking

to Verify Self-stabilizing Programs

In this section, we recall the existing approach of using model checking to verify self-

stabilization proposed in [225]. We evaluate this approach with three classic examples in the

literature on self-stabilization: Dijkstra’s K-state program [59], Ghosh’s mutual exclusion

program [87] and Hoepman’s ring-orientation program [113]. Our case studies demonstrate:

(i) this approach is limited in time performance and only works for programs consisting of a

small number of processes while showing feasibility of using symbolic model checking to ver-

ify stabilizing programs, (ii) the ability of using this approach to verify stabilizing programs

remain essentially the same despite the improvement of hardware.

53

4.3.1 Modeling Self-stabilizing Program

In this section, we review the program model introduced in the approach proposed in [225],

which utilize SMV [174] , a symbolic model checker to verify stabilizing programs.

In a SMV program, the behavior of each process is expressed by a module. Given a

program action g1 −→ st1, we model it inside a module by using keyword ASSSIGN, as

follows:

ASSIGN

init(v) := initial values;

next(v) := case g1: Fst1(v);

1:v;

esac;

where v denotes variable changed in st1 and Fst1 denotes the assignment function used in

st1.

SMV provides each module a special variable running that is true iff the module is

currently being executed. Hence, we can force each process to be selected to run infinitely

often by adding the declaration

FAIRNESS running

to each process. Clearly this models a weakly-fair computation.

54

4.3.2 Case Study 1: K-State Token Ring Program

The K-state program consists of N + 1 processes, numbered from 0 to N . The program

topology is a unidirectional ring. Each process p.i, 0 ≤ i ≤ N , has one variable x.i that

denotes the current state value. Each variable has the domain [0, . . . , K − 1].

The program consists of two types of actions. The first type is for process 0. This action

is enabled when x.0 equals x.N . When p.0 executes its action, it increments x.0 by 1 in

modulo K arithmetic. The second type of action is for process p.i, i 6= 0. This action is

enabled when x.i is not equal to x.(i− 1). When p.i executes its action, it copies x.(i− 1).

Thus, the actions are as follows:

K0:: x.0= x.N −→ x.0 = (x.0 + 1) mod K;

Ki:: x.i 6= x.(i− 1) −→ x.i = x.(i− 1);

Remark 4.3.1. This program is known to be self-stabilizing if K > N . In subsequent

discussion, we let K = N + 1.

The state where x values of all processes is 0 is a legitimate state. In this state, only

process 0 is enabled. After process 0 executes, x.0 changes to 1 and all other x values are

still 0. In this state, only process 1 is enabled. Hence, it can execute and change x.1 to 1.

Continuing this further, eventually, we reach a state where all x values are 1 where process

0 is the only enabled process and process 0 will increment x.0 to 2. The legitimate states of

the K-state program are equal to all the states reached in such subsequent execution.

SMV provides a simple approach for modeling weak fairness. In particular, the behavior

of each process can be instantiated from a specific module. As the program requires, there

55

are two types of actions and hence we use two modules, one for K0 and one for Ki. The

module for K0 specifies variable x.0 and takes one parameter, the x value of its predecessor.

In SMV, the transition (s.0, s.1) for action K.0 is specified by the keyword ASSIGN. Within

ASSIGN, ‘init(x.0) := 0, 1, 2;’ specifies the value of the variable in the source state, i.e., s.0.

Moreover, ‘next(x.0) := case x.0 = x.N : (x.0+ 1) mod 3; 1 : x.0; esac; ’ specifies the value

in the target state, i.e., s.1. If the guard (x.0 = x.N) is true and s.1 is obtained by executing

x.0 = x.0 + 1 mod 3 from state s.0, otherwise the value of x.0 remains unchanged. Thus,

module for action K.0 can be written as follows:

MODULE type K0(x.N)

VAR x.0 : 0, 1, 2;

ASSIGN init(x.0) := 0, 1, 2;

next(x.0) := case (x.0 = x.N) : (x.0 + 1) mod 3 ; 1 : x.0; esac;

FAIRNESS running

Thus, action K0 can be instantiated from module type K0 as follows:

K0 : process type K0(x.N);.

The module for Ki is similar to the one forK0. It specifies variable x.i and takes x.(i−1),

as parameter. The transition (s.0, s.1) for action K.i is specified by the keyword ASSIGN.

Within ASSIGN statement, init(x.i) := 0, 1, 2;, specifies the value of the variable in the

source state. And next(x.i) := case !(x.i = x.j) : x.i = x.(i− 1); 1 : x.i; esac; , specifies the

value in the target state. Hence Action Ki is instantiated from module type Ki as follows:

Ki : process type Ki(x.(i− 1));.

Finally, each process has the declaration FAIRNESS RUNNING to ensure that SMV only

56

Execution time(s)
K=3 K=4 K=5 K=6

weakly-fair 0 0.03 0.63 5.33
results reported in [225] 0.1 0.4 4.6 43.5

approximate state space 101 102 103 104

Execution time(s)
K=7 K=8 K=9 K=10

weakly-fair 34.30 139.10 1276.08 N/A
results reported in [225] 285.2 1836.0 N/A N/A

approximate state space 105 107 108 1010

Table 4.1: Verification results for the k-state program.

considers computation paths where each process executes infinitely often.

We verified the K-state program for 3 ≤ K ≤ 10. Table 4.4 gives the verification time

for model checking the K-state program for different values of K. N/A in this table means

the result was not available within an admissible amount of time (1 hour).

4.3.3 Case Study 2: Ghosh’s Binary Mutual Exclusion Protocol

In this section, we present our second case study, namely, Ghosh’s binary mutual exclusion

protocol [87]. Ghosh’s binary mutual exclusion protocol considers a network system of

2m − 1(m ≥ 2) nodes, numbered from 0 to 2m − 1. The neighbor relation is defined as

follows:

• n0 has one neighbor n1;

• n2i−1(1 ≤ i ≤ m− 1) has three neighbors n2i−2, n2i, and n2i+1;

• n2i(1 ≤ i ≤ m− 1) has three neighbors n2i−2, n2i−1, and n2i+1;

• n2m−1 has one neighbor n2m−2.

57

The state si of each node ni can be either 0 or 1. Each node can read its own state and

the state of its neighbor nodes. The protocol defines the four types of actions as follows:

for n0:

s0 6= s1 −→ s0= 1− s0;

for n2m−1:

s2m−1 =s2m−2 −→ s2m−1 =1− s2m−1;

for n2i−1(1 ≤ i ≤ m− 1):

s2i−2 = s2i−1 = s2i ∧ s2i−1 6= s2i+1

−→ s2i−1 =1− s2i−1;

for n2i(1 ≤ i ≤ m− 1):

s2i−2 = s2i−1 = s2i+1 ∧ s2i 6= s2i+1

−→ s2i =1− s2i;

We model the program and check the self-stabilization property of the protocol using

the same approach as mentioned in Section 4.4.1.2. The verification results for this case are

shown in Table 4.5.

4.3.4 Case Study 3: Hoepman’s Uniform Ring-orientation Pro-

gram

In this section, we present our third case study, namely, Hoepman’s uniform ring-orientation

program [113]. Hoepman’s uniform deterministic ring-orientation program considers a sys-

tem of n nodes, numbered from 0 to n − 1, which are organized as a uniform ring of odd

length. Each node ni has a color, Colori, with domain {0, 1}. To impose a direction, each

58

Execution time(s)
n=8 n=10 n=12 n=14

weakly-fair 0.4 2.93 22.43 138.05
results reported in [225] 3.1 22.9 182.0 1161.5

approximate state space 102 103 103 104

Execution time(s)
n=16 n=18 n=20 -

weakly-fair 693.27 2819.05 N/A -
results reported in [225] N/A N/A N/A -

approximate state space 104 105 - -

Table 4.2: Verification results for Ghosh’s mutual exclusion program.

node stores a phase, Phasei, with domain {0, 1}. A global legitimate state is one where all

the nodes are oriented in the same direction. A ring orientation program is self-stabilizing iff

it reaches a legitimate state from any initial state. To achieve self-stabilization, this program

defines the following four types of actions for each node ni:

Colorneighbor1 = Colorneighbor2

−→ Colori = 1− Colorneightbor1,

Phasei = 1;

Colorneighbor1 = Colori = 1− Colorneighbor2

∧ Phasei = Phaseneighbor2 = 1

∧ Phaseneighbor1 = 0

−→ Colori = 1− Colori,

(Phasei) = 0,

directioni = nneighbor1 →֒ ni →֒ nneightbor2;

Colorneighbor2 = Colori = 1− Colorneighbor1

59

∧Phasei = Phaseneighbor1 = 1

∧Phaseneighbor2 = 1

−→ Colori = 1− Colori,

Phasei = 0,

directioni=nneighbor1 ←֓ ni ←֓ nneightbor2;

(Colorneighbor1 = Colori = 1− Colorneighbor2

∧Phaseneighbor1 = Phasei)

|(Colorneighbor2 = Colori = 1− Colorneighbor1

∧Phasei = Phaseneighbor2)

−→ Phasei = 1− Phasei;

In the above actions, Action 1 requires that if a node has the same color as both its neighbors,

then it inverts its color. This action creates patterns such as 001 and 110 around the ring

since it is of odd length. Actions 2 and 3 require that if one node has the same color and

the opposite phase as one of its neighbors, then the direction is from the node with phase

0 to the node with phase 1. Action 4 requires that if one node has the same color and the

same phase as one of its neighbors, then it inverts its phase.

We model the program and check the self-stabilization property of the protocol using

the same approach as mentioned in Section 4.4.1.2. The verification results for this case are

shown in Table 4.6.

60

Execution time(s)
n=3 n=5 n=7

weakly-fair 0.17 18.23 1113.77
results reported in [225] 1.3 128.1 N/A

approximate state space 101 103 104

Table 4.3: Verification results for Hoepman’s ring-orientation program.

4.3.5 Analysis

From these case studies, we observe that the approach proposed in [225] has limited scala-

bility. In the first case study, in [225], authors have shown the feasibility of verification of

k-state program for upto K = 8 . In particular, the time reported in [225] for K = 8 is

1836.0s whereas the time for the corresponding verification is 139.1s. Since the underlying

tool as well as the program remains the same, this change is due to improved hardware over

last few years. However, what this result does show is that in spite of the improved hard-

ware, the ability to verify under weak fairness remains essentially the same. Specifically, if

we assume a reasonable time constraint permissible (e.g., one hour) for verification then the

change in hardware made it possible to achieve verification for K = 9 as opposed to K = 8.

As discussed in [173], one of the reasons for this is that to model fairness, one needs to

ensure that each process can execute infinitely often. Achieving this increases the OBDD

size for reachable states quadratically.

4.4 Effect of Fairness in Model Checking of Self-Stabilizing

Programs

In this section, we introduce our approach which utilizes the effectiveness of fairness as well

as the power of symbolic model checking to verify stabilizing program. We first present our

61

approach of model checking of stabilizing programs under unfair computation. Then, we

introduce our other two approaches for reducing verification cost purpose, including, (i) de-

composing the program into sub-components and verifying each sub-components separately;

and (ii) verifying a weaker version of stabilizing programs, namely weak stabilization, to

trade-off the cost with precision.

4.4.1 Using Symbolic Model Checking to Verify Self-stabilizing

Program Under Unfair Computation

In this section, we propose an approach of model checking self-stabilization under unfair

computation for the case where weak fairness is not essential for self-stabilization. To com-

pare the verification performance of this approach with the approach under weak fairness

computation mentioned in Section 4.3, we illustrate this approach with the three same case

studies. We perform the experiments in the same hardware setting. The results show that

the approach of model checking self-stabilization under unfair computation is significantly

more scalable.

4.4.1.1 Modeling Self-stabilizing Program under Unfair Computation

Now, we describe how to model self-stabilizing program under unfair computation in SMV.

Recall that a self-stabilizing program P consists of a set of guarded commands of the following

form:

action1 : g1 −→ st1;

action2 : g2 −→ st2;

. . .

62

actioni : gi −→ sti;

. . .

actionn : gn −→ stn;

To model P under unfair computation in SMV, we use the TRANS keyword and model

actioni as follows:

conjunctioni : gi ∧(
∧

sti updates vj

next(vj) = Fsti(vj))

∧(∧

sti does not update vj

next(vj) = vj)

The above formula requires that gi must be true in the initial state. Moreover, if vj

updated by actioni then next(vj) corresponds to the value given by sti. Otherwise, vj

remains unchanged.

Since the use of TRANS in SMV requires the user to explicltly ensure that the transition

relation is total. The transition relation is total if every state has a successor state. Hence,

we add an additional action “¬(∨

i=1,...,n
gi) −→ skip;” to the program. Using the approach

for modeling actions, this action is modeled as follows:

conjunctionaddtional : ¬(
∨

i=1,...,n
gi) ∧ (

∧

next(vj) = vj);

Based on the above modeling, we model the whole program actions as a disjunction of

conjunction1, conjunction2, . . . conjunctionn and conjunctionaddtional, as follows:

63

g1 −→next(v1) = Fst1(v1) &
∧

j=2,...,n
next(vj) = vj

∨g2 −→next(v2) = Fst2(v2) &
∧

j=1,...,n&j 6=2
next(vj) = vj

. . .

∨gi −→next(vi) = Fsti(vi) &
∧

j=1,...,n&j 6=i
next(vj) = vj

. . .

∨gn −→next(vn) = Fstn(vn) &
∧

j=1,...,n−1
next(vj) = vj

∨¬ ∨

i=1,...,n
gi &

∧

j=1,...,n
next(vj) = vj ;

Hence, in the modeling approach under unfair computation, the whole program is mod-

eled as one transition relation in SMV.

4.4.1.2 Case Study 1: K-State Token Ring Program (Cont’d)

In this section, we continue with the verification of K-state program. We first discuss how

we model the K-state program in SMV under unfair computation. Then, we provide the ver-

ification results under unfair computation. We compare these results with the corresponding

verification results under weak computation. The comparison results show that for K-state

program, the verification performance is substantially improved under unfair computation.

Figure 4.1 gives a SMV program of K-state program with k=3 under unfair computation.

As shown in Figure 4.1, x0, x1 and x2 denotes the states of the three processes. Lines 1-6

define x0, x1, x2 and initialize them. Lines 7-9 define x0priv, x1priv and x2priv, that

are used to describe privilege condition for each process. Lines 10-13 define condition1 and

condtion2 to describe the self-stabilization. Line 15 specifies the program action, which is a

64

disjunction of three possible cases. These three cases include: 1)process 0 is privileged, x0

is assigned new value and states of other two processes x1 and x2 remains unchanged; 2)

process 1 is privileged, x1 is assigned new value and states of other two processes x0 and

x2 remains unchanged; and, 3) process 2 is privileged, x2 is assigned new value and states

of other two processes x1 and x0 remains unchanged. Note that if multiple processes are

privileged then one of them is non-deterministically chosen for execution.

MODULE main
VAR

x0 : {0, 1, 2}; (1)
x1 : {0, 1, 2}; (2)
x2 : {0, 1, 2}; (3)

INIT
x0 = {0, 1, 2}& (4)
x1 = {0, 1, 2}& (5)
x2 = {0, 1, 2} (6)

DEFINE
x0priv := (x0 = x2); (7)
x1priv :=!(x1 = x0); (8)
x2priv :=!(x2 = x1); (9)
condition1 := ((x0priv&!x1priv&!x2priv)|

(!x0priv&x1priv&!x2priv)|
(!x0priv&!x1priv&x2priv));

(10)
condition2 := AFx0priv&AFx1priv&AFx2priv; (11)
legitimate := condition1&condition2; (12)

SPEC AF legitimate (13)
TRANS (14)

((x0 = x2)&next(x0) = (x0 + 1)mod3&next(x1) = x1&next(x2) = x2)
|(!(x1 = x0)&next(x1) = x0&next(x2) = x2&next(x0) = x0)
|(!(x2 = x1)&next(x2) = x1&next(x0) = x0&next(x1) = x1)
|(next(x2) = x2&next(x0) = x0&next(x1) = x1)

(15)

Figure 4.1: k-state program under unfair computation.

65

Execution time(s)
K=3 K=4 K=5 K=6 K=7

unfair 0 0 0 0 0.02
weakly-fair 0 0.03 0.63 5.33 34.30

approximate state space 101 102 103 104 105

size of BDD nodes(under unfair) 292 786 2423 4373 8346
size of BDD nodes(under weakfair) 680 3435 11251 17880 42131

Execution time(s)
K=8 K=9 K=10 K=50 K=51

unfair 0.03 0.05 0.08 3466.30 N/A
weakly-fair 139.10 1276.08 N/A N/A N/A

approximate state space 107 108 1010 1084 -
size of BDD nodes(under unfair) 10067 11475 14870 1842498 -
size of BDD nodes(under weakfair) 108723 564794 N/A N/A -

Table 4.4: Verification results for the k-state program.

Table 4.4 gives the verification time for model checking the K-state program for different

values of K, where 3 ≤ K ≤ 9 or K = 50. Here, N/A means that the result is not available

within an admissible amount of time (1 hour).

4.4.1.3 Case Study 2: Ghosh’s Binary Mutual Exclusion Protocol (Cont’d)

In this section, we consider Ghosh’s mutual protocol under unfair computation. We first

describe how we model Ghosh’s mutual protocol in SMV under unfair computation. Then,

we provide the verification results under unfair computations and compare these results with

the corresponding results under weak fair computations. The comparison results show the

scalability of modeling self-stabilizing program under unfair computation for Ghosh’s mutual

protocol.

Figure 4.2 - 4.4 shows a SMV program of Ghosh’s mutual exclusion protocol with n = 8

modeled under unfair computation. As shown in Figure 4.2, xi (i = 0 . . . 7) denotes the

states of the eight processes. Lines 1-4 define and initialize these state variables. Lines 5-12

66

Execution time(s)
n=8 n=10 n=12 n=14 n=16

unfair 0 0 0 0 0.02
weakly-fair 0.4 2.93 22.43 138.05 693.27

approximate state space 102 103 103 104 104

size of BDD nodes(under unfair) 1099 1811 2831 4153 5813
size of BDD nodes(under weakfair) 10082 10483 11693 20786 43294

Execution time(s)
n=18 n=20 n=50 n=100 -

unfair 0.02 0.03 0.35 4.77 -
weakly-fair 2819.05 N/A N/A N/A -

approximate state space 105 106 1016 1031 -
size of BDD nodes(under unfair) 7847 10000 10134 10288 -
size of BDD nodes(under weakfair) 99088 N/A N/A N/A -

Table 4.5: Verification results for Ghosh’s mutual exclusion program.

define xipriv(i = 0 . . . 7), that are used to describe privilege condition for each process. Lines

13-17 define condition1 and condtion2 to describe the self-stabilization. Line 18 specifies the

program action, which is a disjunction of eight possible cases. These possible cases include:

1) process 0 is privileged, x0 is assigned new value and states of other processes remains

unchanged; 2) process 1 is privileged, x1 is assigned new value and states of other pro-

cesses remains unchanged; and so on. Once again, the modeling captures non-deterministic

execution one of the privileged process.

Our case study verified the Ghosh’s mutual protocol for n = 2i where 4 ≤ i ≤ 10 or

i = 25, 50. The verification results are shown in Table 4.5. N/A in this table means the

result was not available within an admissible amount of time (1 hour).

4.4.1.4 Case Study 3: Hoepman’s Uniform Ring-orientation Program (Cont’d)

In this section, we model Hoepman’s uniform ring program under unfair computation in

SMV. We describe the modeling with 3 processes (Figure 4.5 - 4.10).

67

MODULE main
VAR

x0 : {0, 1}; x1 : {0, 1}; x2 : {0, 1}; x3 : {0, 1}; (1)
x4 : {0, 1}; x5 : {0, 1}; x6 : {0, 1}; x7 : {0, 1}; (2)

INIT
x0 = {0, 1}&x1 = {0, 1}&x2 = {0, 1}&x3 = {0, 1}& (3)
x4 = {0, 1}&x5 = {0, 1}&x6 = {0, 1}&x7 = {0, 1} (4)

DEFINE
x0priv := (x0! = x1); (5)
x1priv := ((x1 = x0)&(x1 = x2)&!(x1 = x3)); (6)
x2priv := (!(x2 = x0)&!(x2 = x1)&!(x2 = x3)); (7)
x3priv := ((x3 = x2)&(x3 = x4)&!(x3 = x5)); (8)
x4priv := (!(x4 = x2)&!(x4 = x3)&!(x4 = x5)); (9)
x5priv := ((x5 = x4)&(x5 = x6)&!(x5 = x7)); (10)
x6priv := (!(x6 = x4)&!(x6 = x5)&!(x6 = x7)); (11)
x7priv := (x7 = x6); (12)
condition1 := (

(x0priv&!x1priv&!x2priv&!x3priv&!x4priv&!x5priv&!x6priv&!x7priv)|
(!x0priv&x1priv&!x2priv&!x3priv&!x4priv&!x5priv&!x6priv&!x7priv)|
(!x0priv&!x1priv&x2priv&!x3priv&!x4priv&!x5priv&!x6priv&!x7priv)|
(!x0priv&!x1priv&!x2priv&x3priv&!x4priv&!x5priv&!x6priv&!x7priv)|
(!x0priv&!x1priv&!x2priv&!x3priv&x4priv&!x5priv&!x6priv&!x7priv)|
(!x0priv&!x1priv&!x2priv&!x3priv&!x4priv&x5priv&!x6priv&!x7priv)|
(!x0priv&!x1priv&!x2priv&!x3priv&!x4priv&!x5priv&x6priv&!x7priv)|
(!x0priv&!x1priv&!x2priv&!x3priv&!x4priv&!x5priv&!x6priv&x7priv))

(13)
condition2 := AFx0priv&AFx1priv&AFx2priv&AFx3priv

&AFx4priv&AFx5priv&AFx6priv&AFx7priv; (14)
legitimate := condition1&condition2; (15)

Figure 4.2: Ghosh’s mutual protocol under unfair computation (1).

We verified the Hoepman’s uniform ring program for n = 2i + 1 where 1 ≤ i ≤ 4 and

i = 50, 100, 150 and 200. The verification results for this case are shown in Table 4.6. N/A in

this table means the result was not available within an admissible amount of time (1 hour).

68

SPEC AF legitimate (16)
TRANS
(((x0 =!x1) & next(x0) = x1) & next(x1) = x1

& next(x2) = x2& next(x3) = x3 & next(x4) = x4
& next(x5) = x5 & next(x6) = x6 & next(x7) = x7)

|(next(x0) = x0 & (((x1 = x0) & (x1 = x2) & !(x1 = x3)))
& next(x1) = 1− x1 & next(x2) = x2
& next(x3) = x3 & next(x4) = x4
& next(x5) = x5 & next(x6) = x6
& next(x7) = x7)

|(next(x0) = x0 & next(x1) = x1 & ((!(x2 = x0)
& !(x2 = x1)& !(x2 = x3)) & next(x2) = 1− x2)
& next(x3) = x3 & next(x4) = x4
& next(x5) = x5 & next(x6) = x6 & next(x7) = x7)

|(next(x0) = x0 & next(x1) = x1 & next(x2) = x2)
& (((x3 = x2) & (x3 = x4)
& !(x3 = x5))& next(x3) = 1− x3)
& next(x4) = x4 & next(x5) = x5
& next(x6) = x6 & next(x7) = x7)

|(next(x0) = x0 & next(x1) = x1 & next(x2) = x2
& next(x3) = x3 & ((!(x4 = x2)
& !(x4 = x3) & !(x4 = x5))
& next(x4) = 1− x4) & next(x5) = x5
& next(x6) = x6 & next(x7) = x7)

|(next(x0) = x0 & next(x1) = x1 & next(x2) = x2
& next(x3) = x3 & next(x4) = x4
& (((x5 = x4) & (x5 = x6))
& !(x5 = x7)) & next(x5) = 1− x5
& next(x6) = x6 & next(x7) = x7)

Figure 4.3: Ghosh’s mutual protocol under unfair computation (2).

69

|(next(x0) = x0 & next(x1) = x1 & next(x2) = x2
& next(x3) = x3 & next(x4) = x4
& next(x5) = x5& ((!(x6 = x4)
& !(x6 = x5) & !(x6 = x7))
& next(x6) = 1− x6) & next(x7) = x7)

|(next(x0) = x0 & next(x1) = x1 & next(x2) = x2
& next(x3) = x3 & next(x4) = x4
& next(x5) = x5& next(x6) = x6
& ((x7 = x6) & next(x7) = 1− x7))

|(next(x0) = x0 & next(x1) = x1 & next(x2) = x2
& next(x3) = x3 & next(x4) = x4
& next(x5) = x5& next(x6) = x6 & next(x7) = x7) (17)

Figure 4.4: Ghosh’s mutual protocol under unfair computation (3).

MODULE main
VAR

p0 s : {0, 1}; p0 t : {0, 1}; p0 dir : {B,F}; p0 AP1 pc : {−1, 1}; (1)
p1 s : {0, 1}; p1 t : {0, 1}; p1 dir : {B,F}; p1 AP1 pc : {−1, 1}; (2)
p2 s : {0, 1}; p2 t : {0, 1}; p2 dir : {B,F}; p2 AP1 pc : {−1, 1}; (3)

INIT
p0 s = {0, 1}&p0 t = {0, 1}&p0 dir = {B,F}&p0 AP1 pc = {−1, 1}&(4)
p1 s = {0, 1}&p1 t = {0, 1}&p1 dir = {B,F}&p1 AP1 pc = {−1, 1}&(5)
p2 s = {0, 1}&p2 t = {0, 1}&p2 dir = {B,F}&p2 AP1 pc = {−1, 1} (6)

Figure 4.5: Hoepman’s ring program under unfair computation (1).

70

DEFINE
p0 des := ((p0 dir = B)&(p0 AP1 pc = −1))
|((p0 dir = F)&(p0 AP1 pc = 1)); (7)

p1 des := ((p1 dir = B)&(p1 AP1 pc = −1))
|((p1 dir = F)&(p1 AP1 pc = 1)); (8)

p2 des := ((p2 dir = B)&(p2 AP1 pc = −1))
|((p2 dir = F)&(p2 AP1 pc = 1)); (9)

p0 S1 := case(p0 AP1 pc = −1) : p2 s;
1 : p1 s; esac; (10)

p0 T1 := case(p0 AP1 pc = −1) : p2 t;
1 : p1 t; esac; (11)

p0 S2 := case(p0 AP1 pc = −1) : p1 s;
1 : p2 s; esac; (12)

p0 T2 := case(p0 AP1 pc = −1) : p1 t;
1 : p2 t; esac; (13)

p0 r1 := (p0 S1 = p0 S2); (14)
p0 r2 := (p0 S1 = p0 s)&(p0 S2 =!p0 s)

&(p0 T2 = p0 t)&(p0 T1 =!p0 t)&(p0 t = 1); (15)
p0 r3 := (p0 S2 = p0 s)&(p0 S1 =!p0 s)

&(p0 T1 = p0 t)&(p0 T2 =!p0 t)&(p0 t = 1); (16)
p0 r4 := ((p0 S1 = p0 s)&(p0 S2 =!p0 s)

&(p0 T1 = p0 t))|((p0 S2 = p0 s)
&(p0 S1 =!p0 s)&(p0 T2 = p0 t)); (17)

Figure 4.6: Hoepman’s ring program under unfair computation (2).

71

DEFINE
p1 S1 := case(p1 AP1 pc = −1) : p0 s;

1 : p2 s; esac; (18)
p1 T1 := case(p1 AP1 pc = −1) : p0 t;

1 : p2 t; esac; (19)
p1 S2 := case(p1 AP1 pc = −1) : p2 s;

1 : p0 s; esac; (20)
p1 T2 := case(p1 AP1 pc = −1) : p2 t;

1 : p0 t; esac; (21)

p1 r1 := (p1 S1 = p1 S2); (22)
p1 r2 := (p1 S1 = p1 s)&(p1 S2 =!p1 s)

&(p1 T2 = p1 t)&(p1 T1 =!p1 t)&(p1 t = 1); (23)
p1 r3 := (p1 S2 = p1 s)&(p1 S1 =!p1 s)

&(p1 T1 = p1 t)&(p1 T2 =!p1 t)&(p1 t = 1); (24)
p1 r4 := ((p1 S1 = p1 s)&(p1 S2 =!p1 s)

&(p1 T1 = p1 t))|((p1 S2 = p1 s)
&(p1 S1 =!p1 s)&(p1 T2 = p1 t)); (25)

Figure 4.7: Hoepman’s ring program under unfair computation (3).

Execution time(s)
n=3 n=5 n=7 n=9 n=51

unfair 0 0.03 0.08 0.12 11.95
weakly-fair 0.17 18.23 1113.77 N/A N/A

approximate state space 101 103 104 105 1031

size of BDD nodes(under unfair) 4090 10047 11680 10543 63468
size of BDD nodes(under weakfair) 10425 61570 776284 N/A N/A

Execution time(s)
n=101 n=201 n=301 n=303 -

unfair 95.65 875.23 3420.98 N/A -
weakly-fair N/A N/A N/A N/A -

approximate state space 1060 10121 10181 - -
size of BDD nodes(under unfair) 125809 324420 726620 - -
size of BDD nodes(under weakfair) N/A N/A N/A - -

Table 4.6: Verification results for Hoepman’s ring-orientation program.

72

DEFINE
p2 S1 := case(p2 AP1 pc = −1) : p1 s;

1 : p0 s; esac; (26)
p2 T1 := case(p2 AP1 pc = −1) : p1 t;

1 : p0 t; esac; (27)
p2 S2 := case(p2 AP1 pc = −1) : p0 s;

1 : p1 s; esac; (28)
p2 T2 := case(p2 AP1 pc = −1) : p0 t;

1 : p1 t; esac; (29)

p2 r1 := (p2 S1 = p2 S2); (30)
p2 r2 := (p2 S1 = p2 s)&(p2 S2 =!p2 s)

&(p2 T2 = p2 t)&(p2 T1 =!p2 t)&(p2 t = 1); (31)
p2 r3 := (p2 S2 = p2 s)&(p2 S1 =!p2 s)

&(p2 T1 = p2 t)&(p2 T2 =!p2 t)&(p2 t = 1); (32)
p2 r4 := ((p2 S1 = p2 s)&(p2 S2 =!p2 s)&(p2 T1 = p2 t))
|((p2 S2 = p2 s)&(p2 S1 =!p2 s)
&(p2 T2 = p2 t)); (33)

legitimate := AG(p0 des&p1 des&p2 des)
|AG(!p0 des&!p1 des&!p2 des); (34)

Figure 4.8: Hoepman’s ring program under unfair computation (4).

73

SPEC AF legitimate (35)

TRANS
(((p0 r1&next(p0 s) =!p0 S1)|((p0 r2|p0 r3)&next(p0 s) =!p0 s)
|next(p0 s) = p0 s)

&((p0 r1&next(p0 t) = 1)|((p0 r2|p0 r3|p0 r4)
&next(p0 t) =!p0 t)|next(p0 t) = p0 t)
&((p0 r2&next(p0 dir) = F)|(p0 r3&next(p0 dir) = B)
|next(p0 dir) = p0 dir)&(next(p0 AP1 pc) = p0 AP1 pc)
&next(p1 s) = p1 s&next(p1 t) = p1 t&next(p1 dir) = p1 dir
&next(p1 AP1 pc) = p1 AP1 pc&next(p2 s) = p2 s
&next(p2 t) = p2 t&next(p2 dir) = p2 dir
&next(p2 AP1 pc) = p2 AP1 pc)&(p2 T2 = p2 t));

(36)
| (37)
(((p1 r1&next(p1 s) =!p1 S1)|((p1 r2|p1 r3)
&next(p1 s) =!p1 s)|next(p1 s) = p1 s)

&((p1 r1&next(p1 t) = 1)|((p1 r2|p1 r3|p1 r4)
&next(p1 t) =!p1 t)
|next(p1 t) = p1 t)&((p1 r2&next(p1 dir) = F)|(p1 r3

&next(p1 dir) = B)
|next(p1 dir) = p1 dir)&(next(p1 AP1 pc) = p1 AP1 pc)

&next(p0 s) = p0 s
&next(p0 t) = p0 t&next(p0 dir) = p0 dir

&next(p0 AP1 pc) = p0 AP1 pc
&next(p2 s) = p2 s&next(p2 t) = p2 t

&next(p2 dir) = p2 dir
&next(p2 AP1 pc) = p2 AP1 pc)

(38)

Figure 4.9: Hoepman’s ring program under unfair computation (5).

74

| (39)
(((p2 r1&next(p2 s) =!p2 S1)|((p2 r2|p2 r3)
&next(p2 s) =!p2 s)
|next(p2 s) = p2 s)

&((p2 r1&next(p2 t) = 1)|((p2 r2|p2 r3|p2 r4)
&next(p2 t) =!p2 t)|next(p2 t) = p2 t)
&((p2 r2&next(p2 dir) = F)|(p2 r3&next(p2 dir) = B)
|next(p2 dir) = p2 dir)&(next(p2 AP1 pc) = p2 AP1 pc)
&next(p0 s) = p0 s&next(p0 t) = p0 t
&next(p0 dir) = p0 dir&next(p0 AP1 pc) = p0 AP1 pc
&next(p1 s) = p1 s&next(p1 t) = p1 t
&next(p1 dir) = p1 dir&next(p1 AP1 pc) = p1 AP1 pc) (40)

Figure 4.10: Hoepman’s ring program under unfair computation (6).

4.4.1.5 Analysis

Based on the results in Tables 4.4, 4.5 and 4.6, verification of significantly large system is

possible if we consider unfair computations. As an illustration, consider K-state program:

It was possible to achieve verification for K = 50 in less than 1 hour. And, in this case,

the corresponding state space is 1085. By contrast, verification with weak fairness could not

complete when state space was 1011. This difference in performance can be explained by

observing the size of OBDDs representing state sets in the forward search.

Compared with the approach in [225], the approach presented here has the OBDD size

for the reached states running linearly. The overall time complexity for this approach is

O(n3). As introduced in [173], this performance dues to three factors: a linear increase in

the transition relation OBDD, a linear increase in the state set OBDD, and a linear increase

in the number of iterations required for successful verification.

75

4.4.2 Utilizing Decomposition to Reduce the Cost of Using Sym-

bolic Model Checking to Verify Self-stabilizing Program

The results in Section 4.3 show that verification of self-stabilization under unfair computation

is substantially faster than that under weakly-fair computation. Thus, the natural question

is what can a designer do if the program at hand requires weak fairness to provide self-

stabilization, i.e., the program is not self-stabilizing under unfair computations. Examples

of such programs include [18, 19, 116].

Generally, there are two approaches that can be used when model checking fails due to

lack of sufficient time or space. The first approach is to require the designer to perform

extra work (e.g., abstraction, decomposition, identifying partial order reductions, etc.) that

will reduce the cost of verification. The second approach is to verify a variation of the

model/property such that the variation will still provide a reasonable assurance about the

goal at hand.

In this section, we focus on the first such approach where we show that decomposition of

a self-stabilizing program can provide substantial benefit in reducing the cost of verification.

We note that while decomposition is one of the approaches in reducing cost of verification,

the effect of this approach in model checking of self-stabilizing programs is not addressed.

To address this limitation, in this approach, designer needs to partition the program into

components such that each component satisfies its property without fairness. Subsequently,

we can use existing composition results to show that their composition is correct under

fair execution. There are several such approaches to show that the composed program is

self-stabilizing based on the properties of individual components. Since the focus of our

work is not to identify new strategies of interference freedom, we only consider some of the

76

simple and commonly used approaches and describe them, next. We note, however, that the

subsequent discussion also applies to other approaches [64, 88] for proving self-stabilization

of a program that consists of several components.

Let C1 and C2 be two components (programs) such that variables of C1 and C2 are

disjoint. Let p be the program obtained by combining the actions of C1 and C2. Let

legitimate states of C1 and C2 be I1 and I2 respectively. Then, the wellknown and simple

theorem about such composition is as follows:

Theorem 4.4.1. If

• C1 is weakly-fair stabilizing for I1

• C2 is weakly-fair stabilizing for I2

Then

• C1[]C2 is weakly-fair stabilizing for I1 ∧ I2, where C1[]C2 is the program obtained by

taking union of actions of C1 and C2.

Although straightforward, this theorem can assist in reducing verification time if the

fairness requirement is needed essentially to ensure that both components get a chance

to execute. In other words, if the components themselves are self-stabilizing under unfair

computations then the designer can verify the preconditions of this theorem easily under

unfair computation. Self-stabilization under unfair computations implies self-stabilization

under weak fairness. Hence, preconditions of the theorem can be proven easily. Moreover, the

conclusion of the theorem allows us to ensure that the composed program is self-stabilizing

under weak fairness.

77

There are several such theorems that provide the ability to conclude self-stabilization

property of the composed program by self-stabilization property of the components. Another

wellknown theorem relates to superposition where program p consists of two components C1

and C2, where C1 is superposed on C2. In other words, C1 can only read the variables of

C2 and C2 can neither read nor write variables of C1. Then, the wellknown theorem about

superposition is as follows:

Theorem 4.4.2. If

• C1 is weakly-fair stabilizing for I1

• C2 is weakly-fair stabilizing for I2

• After a state in I2 is reached, no action in C2 is enabled

Then

• C1[]C2 is weakly-fair stabilizing for I1 ∧ I2, where C1[]C2 is the program obtained by

taking union of actions of C1 and C2.

Again, similar to the approach above, we may be able to verify each component without

fairness assumption. However, fairness is required for the composed program to ensure that

each component gets a chance to execute. Again, this will allow us to conclude correctness of

the composed program under weak fairness by expediting the verification time for individual

components.

There are several instances where such superposition or variations thereof are used. In

particular, one variation is that it suffices if C1 ensure convergence to I1 by assuming that

I2 holds already. Also, the third condition (termination of C2) can also be replaced by

78

other non-interference conditions that are less restrictive. Next, we discuss some of these

examples.

4.4.2.1 Case Study 4: Huang’s Mutual Exclusion in Uniform Rings

In [116], authors propose a self-stabilizing mutual exclusion program that consists of two

components: (1) leader election component and (2) token circulation component. The first

component consists of a leader election program on an oriented uniform ring where the

number of nodes is prime. The second component consists of a token circulation component

that requires a unique process (such as process 0 in Case Study 1.) Since verification of the

second component is similar to that in Section 4.4.1.2, we only focus on the leader election

component.

The leader election component maintains a variable v.j at every process j. The actions

of the processes are as follows (left and right denote the left and right neighbor of process

j in the ring):

K1:: v.left = v.j = v.right −→ v.j = (v.j + 1) mod n;

K2:: gap1(left, j) < gap(j, right) −→ v.j = (v.j + 1) mod n;

The above actions require that a node increments its value if either (1) its value equals

that of its left and its right neighbor or (2) gap with the left node is less than the gap with

the right node.

1

gab(a, b) =

{

n if a = b
(b− a) mod n otherwise

79

Execution time(s)
n=3 n=5 n=7 n=11

unfairleader election 0 0 0.05 0.48
unfairtoken circulation 0 0 0.02 0.15
unfairtotal with decomposition 0 0 0.07 0.63

weakly − fairleader election 0 4.15 N/A N/A
weakly − fairtoken circulation 0 0.63 - -
weakly − fairtotal with decomposition 0 4.79 N/A N/A

weakly − fairtotal without decomposition - - - -

weakly − fairtotal without decomposition 0.17 N/A N/A N/A

approximate state space 104 1010 1017 1034

Execution time(s)
n=23 n=29 n=31 -

unfairleader election 47.12 271.05 704.48 -
unfairtoken circulation 14.57 70.18 103.8 -
unfairtotal with decomposition 61.69 341.23 808.28 -

weakly − fairleader election N/A N/A N/A -
weakly − fairtoken circulation - - - -
weakly − fairtotal with decomposition N/A N/A N/A -

weakly − fairtotal without decomposition - - - -

weakly − fairtotal without decomposition N/A N/A N/A -

approximate state space 1093 10127 10138 -

Table 4.7: Verification results for Huang’s mutual exclusion program.

80

This program requires fairness for correctness. Without fairness, leader election com-

ponent may not be able to execute. However, each component can be verified separately

without fairness. Finally, based on Theorem 4.4.2, we can conclude that the overall pro-

gram is self-stabilizing under weak fairness. Table 4.7 gives the verification performance by

utilizing symbolic model checking procedure for verification of leader election component.

From this table, we can see that verification of self-stabilization is significantly more scalable

with decomposition and the use of unfair computation for verifying self-stabilization of each

component. Moreover, the significant benefit in reduction in time is based on the use of

unfair scheduler as opposed to the use of decomposition. (In Table 4.7, ‘-’ denotes that the

experiment was not performed for token circulation since the corresponding experiment for

leader election could not be completed in the permissible time.)

4.4.2.2 Case Study 5: Self-stabilizing Program based on Raymond’s Tree algo-

rithm

This second example is the self-stabilizing program based on Raymond’s tree algorithm for

mutual exclusion [194]. In this program, the processes are arranged in a fixed 2 tree, called

the parent tree. On this fixed tree, a dynamic holder tree is superposed such that the holder

of a node is one of its tree neighbors (including itself). A node j has a token iff its holder

(h.j) equals j. There is one action that allows a node to send the token to its neighbors

(Kpassing). In this action, if node k has a token then it can pass it to its neighbor j by

changing the holder relation of j and k. Additionally, there are three convergence actions.

The first action ensures that the holder of a node is a tree neighbor. The second action

2By fixed, we mean that p.j is fixed and hard coded in the actions themselves and, hence,
cannot be corrupted.

81

ensures that on any edge between j and (p.j), either holder of j is same as p.j or the holder

of p.j is j. And, the third action ensures that holder relation does not have cycles. Thus,

the actions of the self-stabilizing tree program are as shown next:

Kpassing :: h.k = k ∧ h.j = k −→ h.j = j, h.k = j;

Kconvergence::h.j 6= NBR.j ∪ j −→ h.j = p.j;

j 6= p.j ∧ h.j 6= p.j ∧ h.(p.j) 6= j −→ h.j = p.j;

j 6= p.j ∧ h.j = h.(p.j) ∧ h.(p.j) = j −→ h.j = p.j;

This program requires fairness for stabilization; without stabilization, nodes could sim-

ply execute the token passing action (Kpassing) thereby preventing stabilization. However,

correctness of the convergence actions and the correctness of closure actions can be indepen-

dently verified without fairness. Furthermore, the results from [1] can be used to show that

these two components do not interfere and, hence, the overall program is self-stabilizing.

Table 4.18 gives the verification time for each component under unfair scheduler. It also

gives verification time for convergence under weakly-fair scheduler. Since the token passing

component changes the variables from two different nodes, we were not able to implement

it under weakly-fair scheduler. However, it is straightforward to observe that the time for

verification of the composed program (with token passing and convergence actions) will be

more than the time for verification with convergence actions alone. Hence, the benefit of

decomposition and use of unfair scheduler in reducing the cost of verification follows from

the results in Table 4.18.

82

Execution time(s)
n=7 n=15 n=31 n=63

unfairconvergence 0.02 0.10 1.95 N/A
unfairpassing 0 0.10 39.97 N/A

weakly − fairconvergence 0.1 17.67 N/A N/A

approximate state space 105 1017 1046 10113

Table 4.8: Verification results for Raymond-tree based program.

4.4.2.3 Other Examples and Approaches for Identifying Components

Another example is that of distributed reset [18] where the program consists of a tree layer

and a wave layer. The tree layer constructs a tree from the processes that are still up.

Subsequently, the wave layer utilizes this tree to achieve distributed reset. Again, weak

fairness ensures that each component can always execute although the component itself can

be verified without fairness.

For the case where decomposition is not straightforward the proof of stabilization can

assist in identifying the desired decomposition. Specifically, one common way to prove self-

stabilization is to use the the approach of Gouda and Multari [93]. Specifically, in this

approach, the state space itself is partitioned into concentric circles, R0, R1, . . . , Rn, where

R0 corresponds to the entire state space, Rn corresponds to the set of legitimate states and

Ri ⊃ Rj if 0 < i < j < n. It is required that if the program starts in any state in Ri,

0 ≤ i < n then (1) it always stays in states in Ri, and (2) it eventually reaches a state

in Ri+1. Again, fairness can assist in this approach in ensuring that the overall program

is self-stabilizing although one or more convergence requirements can be verified without

fairness thereby reducing the time for verification.

83

4.4.3 Utilizing Weak Stabilization to Improve Scalability of Model

Checking of Self-stabilizing Program

In this section, we focus on the second approach for improving scalability for verification

of self-stabilizing programs. Specifically, if the program at hand requires weakly-fair com-

putations to provide self-stabilization and the time for such verification is prohibitive, the

designer can focus on a variation of self-stabilization, namely weak self-stabilization [92],

where weak stabilization has been demonstrated as a ‘good approximation’ of stabilization.

Furthermore, in [58], Devismes et al have shown how to transform a weak-stabilizing pro-

gram into a probabilistic stabilizing program. Thus, if the assurance of self-stabilization is

not possible, the designer can obtain a slightly lower assurance provided by weak stabiliza-

tion. Moreover, the designer can utilize the transformation in [58] to obtain probabilistic

assurance regarding self-stabilization. Next, we recall the definition of weak stabilization

and a relevant theorem about it from [92].

Definition 4.4.1. (Weak stabilization)

Let p be a program and let I be a state predicate of p. We say that p is weakly stabilizing

for I iff:

1. closure: if (s0, s1) is a transition of p and s0 ∈ I, then s1 ∈ I;

2. weak convergence: for every state s, there is a computation of p that starts at s and

reaches I.

Definition 4.4.2. (Strongly-fair computation)

σ = 〈s0, s1, ...〉 is strongly-fair computation iff:

1. σ is an unfair computation of p, and

84

2. If any state s is included infinitely often in σ and (s, s′) is a transition of p then the

subsequence 〈s, s′〉 must be included infinitely often in σ.

Theorem 4.4.3. A weakly-stabilizing system is also a self-stabilizing system if:

1. The system has a finite number of states, and

2. Every computation is under strong fairness.

We can utilize the above result as follows: If we cannot verify that p is self-stabilizing

due to time/space limitations, we can verify that p is weakly stabilizing. By Definition 4.4.1,

this does not require one to model fairness explicitly. This will allow us to obtain some

assurance (although somewhat weaker) about p. Additionally, the designer can utilize the

transformation from [58] to obtain program p′ that is probabilistically stabilizing.

Next, we revisit case studies 1-5 to evaluate the cost of verifying weak stabilization. Ta-

bles 4.9-4.13 compare the cost of verifying self-stabilization under weak fairness with that of

verifying weak stabilization. As we can see, the cost of verifying weak stabilization is substan-

tially less (and is very close to the cost of verifying self-stabilization without fairness). Also,

verification of weak stabilization is significantly more scalable than that of self-stabilization.

For example, in Dijkstra’s K-state program, it was possible to verify self-stabilization for

only 9 processes (state space 108) whereas it was possible to verify weak stabilization for 50

processes (state space 1084).

4.5 A Constraint-based Approach

The approach in Section 4.3 assumes fairness in the program model. And, modeling of

a (weak) fairness scheduler (if essential) affects the verification performance significantly.

85

K-state Program

Execution Time(s)
Number of Processes 3 4 5
weak stabilization 0 0 0
stablization under weak fairness 0 0.03 0.63

approximate state space 101 102 103

Execution time(s)
Number of Processes 6 7 8
weak stabilization 0 0.02 0.03
stablization under weak fairness 5.33 34.30 139.10

approximate state space 104 105 107

Execution time(s)
Number of Processes 9 10 50
weak stabilization 0.05 0.08 3485.27
stablization under weak fairness 1276.08 N/A N/A

approximate state space 108 1010 1084

Table 4.9: Verification cost of weak stabilization vs. stabilization (1).

Ghosh’s mutual exclusion program

Execution time(s)
Number of Processes 8 10 12
weak stabilization 0 0 0
stablization under weak fairness 0.4 2.93 22.43

approximate state space 102 103 103

Execution time(s)
Number of Processes 14 16 18
weak stabilization 0 0 0.02
stablization under weak fairness 138.05 693.27 2819.05

approximate state space 104 104 105

Execution time(s)
Number of Processes 20 50 100
weak stabilization 0.03 0.35 4.9
stablization under weak fairness N/A N/A N/A

approximate state space 106 1016 1031

Table 4.10: Verification cost of weak stabilization vs. stabilization (2).

86

Hoepman’s ring-oritentation program

Number of Processes 3 5 7
Execution time(s)

weak stabilization 0 0.037 0.08
stablization under weak fairness 0.17 18.23 1113.77

approximate state space 101 103 104

Number of Processes 9 51 101
Execution time(s)

weak stabilization 0.13 11.88 95.9
stablization under weak fairness - - -

approximate state space 105 1031 1060

Number of Processes 201 301 -
Execution time(s)

weak stabilization 881.5 3442.18 -
stablization under weak fairness - - -

approximate state space 10121 10181 10241

Table 4.11: Verification cost of weak stabilization vs. stabilization (3).

Huang’s ring program

Execution time(s)
n=3 n=5 n=7 n=11

weak stabilization 0 0.07 0.63 N/A
stablization under weak fairness 0.17 N/A N/A N/A

approximate state space 104 1010 1017 1034

Table 4.12: Verification cost of weak stabilization vs. stabilization (4).

Raymond-tree based mutual exclusion program

Execution time(s)
n=7 n=15 n=31 n=63

weak stabilization 0 0.12 2.15 N/A
weakly − fairconvergence 0.1 17.67 N/A N/A

approximate state space 1011 1035 1092 10226

Table 4.13: Verification cost of weak stabilization vs. stabilization (5).

87

Moreover, the symbolic model checking approach relies on an optimal variable ordering since

this order could have a significant impact on the size of the BDD graph. Unfortunately, the

problem of finding the best variable ordering is NP-hard. To address these issues, in this

section, we consider a constraint-based approach to analyze stabilization. This approach

does not require modeling fairness and does not assume any order information of variables.

The key insight is to reduce the task of verifying whether a program is stabilizing into a well-

studied problem: constraint solving, which can be solved by many existing highly optimized

solutions. Specifically, our approach leverages the power of the off-the-shelf SMT solvers

that have demonstrated the ability of solving industrial sized-satisfiability instances in the

last decade.

4.5.1 Approach for Verifying Stabilization with SMT Solvers

In this section, we present an constraint approach of verifying self-stabilization properties.

The key idea of this approach is to translate the problem into a formula and then to use

SMT solvers to analyze the formula.

Verification of stabilization consists of two parts: (1) verification of closure and (2) ver-

ification of convergence. In Section 4.5.1.1, we identify the formula whose satisfiability can

be used to determine whether closure property is satisfied. In Section 4.5.1.4, we identify an

algorithm for verifying convergence by using the formulae developed in Sections 4.5.1.2 and

4.5.1.3.

88

4.5.1.1 Verification of Closure

Let P be the given program and let I be the legitimate state predicate used in Definition

4.2.2 to conclude that P is stabilizing. Let T be the predicate that characterizes transitions

of P. Observe that the closure property requires that if (s0, s1) is a transition of program

P and state s0 is a legitimate state then state s1 is also a legitimate state. Thus, this can

be captured by formula ¬Ψl, where

Ψl = (I(s0) ∧ T (s0, s1) ∧ ¬I(s1))

Remark 4.5.1. For compactness, the formula Ψl does not explicitly specify the program or

the set of legitimate states that are inputs in deciding closure. In this dissertation, these

two parameters can be determined based on the context. We use similar approach for other

formulae as well.

Based on whether Ψl is satisfiable or not, we have two scenarios, SC1 and SC2:

1. SC1 : if Ψl is satisfiable then it proves that it is possible to begin in a legitimate state,

execute a program transition and be in a state that is not a legitimate state. This

implies that the closure property is not satisfied. Moreover, in this case, assignment

to s0 and s1 (which in turn includes values of variables of the program in state s0 and

s1) provides a counterexample.

2. SC2 : if Ψl is unsatisfiable then this implies that the closure property is satisfied.

4.5.1.2 Verification of Convergence

To verify convergence, we use approach from bounded model checking [33]. We verify con-

vergence by checking that starting from an arbitrary state, the program, say P, reaches a

89

legitimate state (in I) in k steps, where k is a given parameter used in the verification. Ob-

serve that the convergence property requires us to consider a sequence of states, s0, s1, · · · , sk

such that each successive transitions are program transitions. Moreover, to verify (negation

of) convergence requirement, we require that I(sk) should be false. Additionally, in this ver-

ification, we can utilize the closure requirement to add additional constraints requiring that

I(sj), 0 ≤ j ≤ k, should be false. Additionally, in bounded model checking, one typically

adds constraint about what the initial state should be. However, in convergence, the initial

state can be arbitrary and, hence, there is no corresponding constraint for the initial state.

Thus, the formula used for verifying convergence is as follows:

Ψv = T (s0, s1) ∧ T (s1, s2) ∧ · · · ∧ T (sk−1, sk)

¬I(s0) ∧ ¬I(s1) ∧ · · · ∧ ¬I(sk)

Based on whether Ψv is satisfiable or not, we have the following two scenarios:

1. SC3 : if Ψv is satisfiable, convergence cannot be achieved in k steps. In this case, the

number of steps needs to be increased. If the state space of the program is finite and

k equals the number of states in the program then this implies that the convergence

property is not satisfied. However, a simple cycle detection algorithm (discussed next)

can be used to conclude that the program is not stabilizing for smaller values of k.

2. SC4 : if Ψv is unsatisfiable, then it proves that even if we begin in an arbitrary state,

it is impossible for the program to be in an illegitimate state if it executes for k steps.

In other words, the convergence property is satisfied.

90

4.5.1.3 Resolving Ambiguity by Cycles Detection

As discussed in Section 4.5.1, when Ψv is satisfiable, either the given program is not sta-

bilizing or the value of k is too small. To distinguish between these scenarios, we use an

approach of resolving ambiguity by checking for an existence of a cycle outside legitimate

states. The main idea of this approach is to check whether the given program can run into

a cycle that is outside legitimate states.

To check whether the given program can execute a cycle that is outside legitimate states,

we consider the behavior of the given program for k steps. Hence, we construct a formula

similar to that of Ψv. Additionally, the computation created by Ψv creates a cycle iff some

state is repeated in this path. This can be checked by adding another constraint that two

of the states visited are identical. In other words, the added constraint is that there exists

two states sj and sk, where j < k and sj = sk .

Note that in case of stabilization, the initial state is arbitrary. Hence, if there exists a

cycle where sj = sk then there exists a suffix of the given computation that begins with sj .

In other words, it suffices to check whether state s0 is repeated in the given computation.

Hence, the formula used for detecting cycle is as follows:

Ψy = Ψv∧ (s0
∼= s1) ∨ (s0

∼= s2) ∨ · · · ∨ (s0
∼= sk)

In the above formula, we use (s0
∼= s1). One implementation of this is to require s0 = s1.

However, in certain cases, it may be sufficient to reach a state that is similar to the initial

state. Such similarity is application dependent. One example of this is based on symmetry

of processes and values.

Based on whether Ψy is satisfiable or not, we have two scenarios: SC5 and SC6:

91

1. SC5 : if Ψy is satisfiable then this implies that there is a computation of the given

program that starts in state s0 and revisits state s0 without reaching a legitimate state

in between. This implies that there is a possibility that the program may never reach

a legitimate state. In other words, the given program is not stabilizing.

2. SC6 : if Ψy is unsatisfiable then there are two possibilities: either the given program is

stabilizing and, hence, such a cycle cannot exist or the number of steps is insufficient

to create a cycle.

4.5.1.4 Combining Verification of Convergence and Cycle Detection

Depending upon the satisfiabilty of Ψv and Ψy, we have four possibilities. Considering

these four possibilities, we can determine whether the given program is stabilizing or not. We

illustrate this checking process by Algorithm presented in Figure 4.11. Line 1 first constructs

formula Ψvand Ψy. Then, the algorithm utilizes bounded model checking techniques to check

the satisfiability of the two formulas in the loop starting from Line 2 and ending at Line 12.

If the condition identified in Line 3 is satisfied, the algorithm concludes that the program is

stabilizing. If the condition identified in Line 6 is satisfied, the algorithm concludes that the

program is not stabilizing. And if the condition identified in Line 9 is satisfied, the algorithm

simply increases the value of k and repeat checking the conditions identified in Line 3, 6 and

9.

Note that the above algorithm begins with k = 1. However, a better approach is to

begin with k to be the expected number of steps for convergence. Also, the algorithm can be

tuned in terms of how k is increased. Note that for finite state program, the above program is

guaranteed to terminate. For infinite state programs, however, it may not. This is expected

92

Algorithm 1: Stabilization Verification
Input: P: program to be verified;

I: set of legitimate states.
Construct Ψv and Ψy for P&I. (1)
For {k = 1→ · · ·}{ (2)
IF {Ψv is unsatisfiable } (3)

Print given program is stabilizing. (4)
ENDIF (5)
IF {Ψy is satisfiable } (6)

Print given program is not stabilizing. (7)
ENDIF (8)
// Since Ψy ⇒ Ψl (9)
// it is impossible for Ψy to be satisfiable
// and Ψl to be unsatisfiable.
IF {Ψvis satisfiable and Ψy is unsatisfiable} (10)

increase the value of k (11)
ENDIF (12)
} // endfor (13)

Figure 4.11: The algorighm for determing stabilization.

given that the halting problem can be trivially reduced to verification of stabilization.

4.5.2 Experimental Results

In this section, we present our case studies. These case studies include K-state token ring

program [59] and Ghosh’s mutual exclusion program [87] and Stabilizing Tree based mutual

exclusion [194]. We use the SMT solver Yices [67] to verify the stabilization property. We

note that we have also used Z3 [52]. While the exact numbers associated with Z3 are different,

the observations and conclusions from this section still hold. Hence, the results for Z3 are

not presented in this dissertation.

93

Number of nodes
Number of steps
for convergence

Execution time(s)
for convergence

Execution time(s)
for closure

3 4 0.0044 0.003928
4 14 0.01229 0.004257
5 25 0.209468 0.005399
6 39 154.1079279 0.004608

Table 4.14: Verification time for Ψv for token ring with unbounded variables.

4.5.2.1 K-State Token Ring Program

In this section, we illustrate the proposed constraint-based approach by studying k-state

token ring program. Although the algorithm in Section 4.5.1.4 attempts different values of k

to decide whether the program is stabilizing, in this section, we only focus on the value of k

for which we can conclude that the program is stabilizing (respectively, not stabilizing). This

is due to the fact that several heuristics (e.g., analysis of the program to evaluate expected

number of steps) can be used to limit the values of k used in Section 4.5.1.4. Hence, we only

focus on the value of k for which the algorithm terminates.

Remark 4.5.2. We consider three variations of k-state token ring program: In the first

variation, K is set to N + 1. In the second variation, value of x is unbounded and, hence,

K0 simply increments x.0. Finally, we consider the value of K = 2 in Section 4.5.3.

We evaluate the performance of the token ring program for both bounded and unbounded

setting. Tables 4.14 and 4.15 respectively illustrate the time for verifying the closure and

the convergence property for the bounded and unbounded version of the token ring.

As we can observe, the verification time is significantly lower for unbounded version of

the token ring. In particular, for the case where x values are unbounded, it is possible to

verify the convergence property of a ring with 5 processes in less than a second. However,

the corresponding time for program with bounded x value is 214 seconds.

94

Number of nodes 3 4 5

State space 101 102 103

Number of steps
for convergence 4 14 25

Execution time(s)
for convergence 0.008944 0.494496 214.0957

Execution time(s)
for closure 0.005617 0.005979 0.013349

Table 4.15: Verification time for Ψv for token ring with bounded variables.

Number of nodes 3 4 5

State space 101 102 103

Number of steps
for convergence 4 14 25

Execution time(s)
for convergence 0.005855 0.090116 33.526028

Execution time(s)
for closure 0.005387 0.006480 0.006716

Table 4.16: Verification time for Ψv for token ring with split actions for K0.

One of the reasons for this is that the bounded version utilizes a modulo operation.

One can attempt to revise the token ring program to simplify the mod operation to gain a

substantial benefit. Specifically, Table 4.16 considers the case where action K0 is split into

two actions: The first action executes only if x.0 is not equal to K − 1. And, it increments

the value of x.0. The second action executes only if x.0 equals K − 1. And, it resets x.0 to

0. With this change, the verification time for five processes reduces from 214 seconds to 33

seconds.

4.5.2.2 Ghosh’s Binary Mutual Exclusion Protocol

Table 4.17 gives the performance results of Ghosh’s program. The result demonstrates

that the verification cost (along with number of steps necessary for convergence) increases

95

Number of nodes 8 10 12 14

State Space 102 103 103 104

Number of steps
for convergence 9 16 25 36

Execution time(s)
for convergence 0.040316 0.470958 11.166705 314.851055

Execution time(s)
for closure 0.007433 0.012232 0.009348 0.015544

Table 4.17: Verification results for Ghosh’s program using SMT solver.

Number of nodes 3 7 9

State space 101 105 108

Number of steps
for convergence 5 8 9

Execution time(s)
for convergence 0.007162 1.377709 125.633908

Execution time(s)
for closure 0.005046 0.004943 0.005432

Table 4.18: Verification results for Raymond tree-based program.

substantially when the number of processes is more than 12.

4.5.2.3 Stabilizing Tolerant Version of Tree-based Mutual Exclusion Algorithm

In Table 4.18, we present the performance results for verifying the stabilizing tolerant version

of tree-based mutual exclusion algorithm. The results demonstrate that the verification cost

is very low when the number of processes is no more than 9. The verification cost (along

with number of steps necessary for convergence) increases substantially when the number of

processes is more than 9.

96

4.5.3 Verification of Token Ring in Synchronous Semantics

The computation model we considered in Definition 2.1.5 corresponds to interleaving se-

mantics where in each step one of the actions is executed. Another computation model uses

synchronous semantics. Here, the program actions are partitioned into groups and for every

group there is a corresponding process responsible for executing those actions. Furthermore,

in each step, every process executes one of its enabled actions (unless it has no enabled ac-

tion in that state). Since the number of steps needed for convergence affects the verification

time with SMT solvers significantly, in this section, we consider execution of the program in

synchronous semantics and evaluate its effect on verification.

Verification of the program under synchronous semantics can assist in two scenarios: One

scenario is that one can verify the stabilization property under synchronous semantics. In

this case, the program is guaranteed to reach a legitimate state under synchronous semantics.

One can utilize a program that is correct under synchronous semantics and compose it with

the alternator in [138]. This alternator ensures that given a program that is stabilizing under

synchronous semantics, it transforms into a program that is correct under read/write model.

Specifically, in this case, the process in the transformed program either reads the state of its

neighbor or writes its own state. In other words, the transformed program guarantees that

it will reach a legitimate state even if one process executes at a time, i.e., the transformed

program is stabilizing under interleaving semantics. Hence, in this scenario, we can obtain

a program that is stabilizing. Another scenario is that one can identify a counterexample

(illustrating the lack of stabilization) for the synchronous program. This counterexample

can in turn be transformed into a counterexample for the original program.

We begin with the first scenario, where using synchronous semantics can improve verifi-

97

cation performance. We consider the execution of the token ring protocol under synchronous

semantics. Results from Table 4.5.3 show the verification cost under synchronous semantics.

These results show that the verification under synchronous semantics is substantially faster

for both bounded and unbounded token ring. As discussed above, this can allow us to obtain

a stabilizing program that ensures that a legitimate state is reached even if only one process

executes at a time.

Numbers
of Nodes

Number of Steps
for Convergence

Execution time(s)
for Convergence

(for Bounded Variables)

Execution time(s)
for Convergence

(for UnBounded Variables)
3 3 0.006714 0.005945
4 5 0.049422 0.008152
5 7 0.306879 0.012003
6 9 1.150117 0.018864
7 11 11.837923 0.030548
8 13 7.741610 0.049720
9 15 18.389602 0.077605
10 17 42.7424 0.130185
11 19 789.75117 0.241754
12 21 324.921817 0.907359
17 23 N/A 22.63948

Table 4.19: Verification results for token ring under synchronous semantics.

To illustrate the second scenario, we consider the case where the given program works in

read/write model where in each step, a process can read the state of its neighbor or write

its own state but not both. In such a program, the variables can be partitioned into a

public variables (variables that can be read by more than one process) and private variables

(variables that can be read by only one process. Thus, in read/write model, the read action

corresponds to the case where a process reads public variable(s) of one of its neighbors and

saves a copy of it in its private variable(s). In write action, the process utilizes its own

public/private variables to update them.

98

Observe that if P is a program in read/write model then for each computation of P

in synchronous semantics there is a corresponding computation in interleaving semantics.

Intuitively, in the computation in interleaving semantics, one transition of the program in

synchronous semantics is split into several steps. Hence, if we can find a counterexample to

show that P is not stabilizing under synchronous semantics then it implies that P is not

stabilizing under interleaving semantics either.

To exploit this observation, we consider the execution of the token ring protocol under

read/write model. In this case, x.j is a public variable of process j. The action K0 in Section

4.5.2.1 is not in read/write model since it reads x.N and updates x.0. Read/write model

requires that these two tasks be separated into one read action (of x.N) and one write action

(of x.0). To obtain the corresponding program in read/write model, we introduce y.j that

maintains a copy of the x value of the predecessor. Furthermore, each action is split into

a read action to read the value of the predecessor and a write action that utilizes the local

copy. Thus, the actions of the token ring protocol in read/write model are as follows:

K0r :: y.0 6= x.N −→ y.0 = x.N ; // read x.N

K0w :: x.0 = y.0 −→ x.0 = (x.0 + 1) mod K;

Kjr :: y.j 6= x.(j − 1) −→ y.j = x.(j − 1); //read x.(j − 1)

Kjw :: x.j 6= y.j −→ x.j = y.j;

It is well-known that the above protocol can be thought of as the original token ring

protocol with 2(N + 1) processes, where the variables of these processes are x.0, y.1, x.1,

y.2, · · · , y.N , x.N , y.0.

Now, we consider the execution of the token ring protocol with N processes under inter-

99

Under Interleaving Semantics Under Synchronous Semantics

Numbers
of Nodes

Numbers
of Steps Execution time(s)

Numbers
of Steps Execution time(s)

10 20 0.253376 4 0.009663
20 40 100.605236 8 0.048594
30 N/A N/A 4 0.040200
50 N/A N/A 4 0.103919
100 N/A N/A 8 0.849282
200 N/A N/A 16 9.9811778

Table 4.20: Verification result for cycle detection.

leaving semantics. If we choose K = 2 this program is not stabilizing. We can identify this

by checking that Ψy is satisfiable when it is used in the context of the token ring program

with N processes using interleaving semantics. Alternatively, the lack of stabilization can

also be proved by considering execution of the token ring program with 2N processes under

synchronous semantics.

With this intuition, we evaluate the time for verifying satisfiability of Ψy for different

processes. Table 4.20 shows the verification time with interleaving and synchronous seman-

tics respectively. We observe that for 20 processes under interleaving semantics, it took 40

steps to detect a cycle and the time was 100.605236 seconds. However, the same property

can also be verified under synchronous semantics with 30 processes in 4 steps and the time

was 0.040200 seconds. Moreover, as discussed above, the latter verification suffices to con-

clude that the 20 process token ring program is not stabilizing under interleaving semantics

if K = 2.

4.6 Summary

This chapter focused on automatic verification of self-stabilization. One key challenge is

raised by the prohibitive cost incurred during verification. Contrary to traditional verification

100

that considers only a subset of reachable states starting from some initial state(s), verification

of stabilization must consider all possible states, leading to the fundamental problem of ‘state

explosion. To address this challenge, we leveraged BDD-based symbolic model checking to

overcome the scalability constraint of existing approaches. Also, a novel technique was

proposed to analyze program actions against stabilization, which reduces the verification

problem into a simpler problem called constraint solving, allowing the use of existing highly

optimized solutions to reduce verification cost.

In particular, in Section 4.4, we focused on using symbolic model checking for veri-

fying self-stabilizing algorithms. While a significant percentage of the literature on self-

stabilization routinely assumes weak fairness, where if an action is continuously enabled, it

is guaranteed to be executed, we argued that verification under such weak fairness is not

scalable. Our observation was that in many cases, the assumption of weak fairness is su-

perfluous. And, in these cases, scalable verification of self-stabilization is possible under

unfair computation model. We illustrated this in the context of three case studies, Dijk-

stra’s K-state program, Ghosh’s mutual exclusion program and Hoepman’s ring-orientation

program. In particular, we showed that the time for verification with unfair computations

is approximately 0.001%− 0.1% of that for weakly-fair computations.

For the case where program cannot preserve self-stabilization property under unfair com-

putations, we proposed two approaches, including decomposition and using weak stabilization.

The first approach is to decompose the program into parts where each part can be verified

under unfair computation. Subsequently, composition of these parts can be proved to be

correct using existing theorems in the literature. We showed how this approach can be used

in the context of two case studies, Huang’s mutual exclusion program and self-stabilizing

101

mutual exclusion program based on Raymond’s tree algorithm. In both case studies, scala-

bility of verification increased substantially (e.g., from 104 states to 10138 states for Huang’s

mutual exclusion algorithm.) Also, the approach in [93] can be used to identify layers that

assist in self-stabilization. These layers, in turn, can form the components that one can

verify independently. Since most of reduction in time is obtained by the use of unfair sched-

uler, one can obtain the savings in this manner even if the components themselves are not

substantially smaller than the original program.

The second approach is to utilize weak stabilization that has been proved to be a rea-

sonable implementation of stabilization [92]. We also showed that verification of weak sta-

bilization is substantially more scalable. This validates the suggestion in [92] that weak

stabilization is easier to verify than self-stabilization. However, this suggestion is only valid

for the scenario where weak fairness is necessary for the correctness of stabilization. The

time cost for stabilization verification under unfair computation is essentially equal to that

for weak stabilization when unfair computation is possible. Furthermore, a weak stabilizing

program can be transformed into a probabilistically stabilizing program thereby providing

additional assurance to designer.

In Section 4.5, we proposed a constraint-based approach for verifying stabilizing pro-

grams. In particular, we investigated the effectiveness of SMT solvers in verification of

stabilization. We found that the effectiveness of SMT solvers in this context is mixed.

Specifically, compared with the approach that utilize symbolic model checkers to verify sta-

bilization, the time for verification is larger with SMT solvers. However, BDD based tools

require one to identify the order of program variables for constructing BDDs. An incorrect

ordering of variables can increase the verification time by orders of magnitude making it

102

significantly worse than the corresponding verification time with SMT solvers. Also, the

approach in Section 4.4 only works for verifying finite state programs. By contrast, our

constraint-based approach demonstrated the feasibility of verifying infinite state program.

We also considered execution of the given program under synchronous semantics. We

argued that this has a potential to reduce the cost of verification and utilize a transforma-

tion approach to achieve a program that is stabilizing under interleaving semantics and/or

read/write model. We showed that execution under synchronous semantics can reduce the

time for identifying a counterexample illustrating that the given program is not stabilizing.

103

Chapter 5

Automatic Revision for Adding Weak

Multitolerance

Intuitively, a weak multitolerant program assumes that faults from multiple classes will not

occur simultaneously (By simultaneous, we mean that a fault from one class occurs before

the system has recovered from a fault from another class). Thus, while the program tolerates

multiple classes of faults, it tolerates them ‘one at a time’. It follows that if the program is

subject to fault classes f1, f2, . . . fn and the program is perturbed by fi, (0 ≤ i ≤ n) then

the program provides the desired level of fault-tolerance to fi. However, if faults from fj

(0 ≤ j ≤ n, j 6= i) occur while the program is recovering from fault class fi then the program

may not guarantee fault-tolerance. Thus, a weak multitolerant program that tolerates fault

classes f1, f2, . . . fn provides fault-tolerance to each fi (0 ≤ i ≤ n) respectively.

104

5.1 Problem Statement

In this section, we first present the definition of weak multitolerance. As mentioned in

Section 2.3.1, a fault-tolerant program guarantees a desired level of fault-tolerance (i.e.,

failsafe/nonmasking/masking) in the presence of a specific class of faults. Now, we consider

the case where the program is subject to faults from multiple fault-classes.

Definition 5.1.1. Let fδ = {〈fi, li〉 | 0 < i ≤ n, li ∈ {failsafe, nonmasking, masking}}

where n ≥ 0. Program P is weak multitolerant to fault set fδ from S for spec iff the

following conditions hold:

1. (In the absence of faults) P |=S spec.

2. For each i, 0 < i ≤ n, P is li fi-tolerant from S for spec respectively.

Remark 5.1.1. Whenever the level of fault tolerance to a given fault class is clear from the

context, for brevity, we omit it.

We note that the definition of weak multitolerance can also be used to define intermediate

multitolerance. For example, consider the case where masking fault-tolerance is required

for both f1 and f2. However, if f2 occurs while the program is recovering from f1 then

nonmasking fault-tolerance is provided. For this case, we can model such requirements by

letting fδ = {〈f1, masking〉, 〈f2, masking〉,〈f1 ∪ f2, nonmasking〉}.

Now, using the definition of weak multitolerant programs, we identify the requirements of

the problem of synthesizing a weak multitolerant program P′ with invariant S′ from its fault-

intolerant version P with invariant S. We require that P′ only adds weak multitolerance and

introduces no new behaviors in the absence of faults. This problem statement is a natural

extension of the problem statement in [135] where fault-tolerance is added to a single class

105

of faults. More specifically, we stipulate the following two conditions: (1) S′ ⊆ S, i.e.,

the invariant S′ of the weak multitolerant program P′ is a subset of the invariant S of the

given program P; (2) (s0, s1) ∈ P′ ∧ s0 ∈ S′ ⇒ (s0, s1) ∈ P. Thus, the problem of weak

multitolerance synthesis is as follows:

Problem 5.1.1. The Weak Multitolerance Synthesis Problem.

Given P, S, spec and fδ: Identify P′ and S′ such that

• (C1) S′ ⊆ S,

• (C2) (s0, s1) ∈ P′ ∧ s0 ∈ S′ ⇒ (s0, s1) ∈ P, and

• (C3) P′ is weak multitolerant to fδ from S′ for spec.

We state the corresponding decision problem as follows:

Problem 5.1.2. The Weak Multitolerance Decision Problem.

Given P, S, spec and fδ: Does there exist a program P′, with its invariant S′ that

satisfies the requirements of Problem 5.1.1?

5.2 Illustrating Examples

In this section, we present examples to illustrate the scenarios where weak multitolerance is

used and where weakmultitolerance is essential for feasibility of solution and/or performance.

We present four examples. The first example is a two-sensor agreement protocol that has

the property of failsafe-failsafe weak multitolerance. The second example is a leader election

protocol that provides masking-masking weak multitolerance. The third example is a vertex

coloring protocol where failsafe-nonmasking weak multitolerance is guaranteed. Finally, the

106

fourth example provides masking-masking weak multitolerance and illustrates a case where

strong multitolerance is impossible.

We use the non-deterministic guarded commands language to represent programs. A

guarded command (a.k.a. action) is of the form g −→ st where g identifies constraints under

which the guarded command can be executed and st identifies the effect of such execution.

Thus, guarded commands are suitable for programs that are ‘event-based’ where g identifies

the event and st identifies the action taken by the program while responding to the event.

Guarded commands are also suitable for ‘time-based’ programs where g corresponds to a

clock tick and st denotes the action taken by the program for that clock tick. A guarded

command g −→ st is a compact representation for transitions {(s0, s1)|g is true in s0, s1 is

obtained by atomic execution of st from s0}.

5.2.1 Failsafe-Failsafe Weak Multitolerance

In this section, we present a protocol that consists of two sensors. Each sensor is used

to detect the status of the environment. The program outputs the detected status of the

environment. To model this protocol, we introduce four variables, in, sensor0, sensor1 and

out. The details are as follows:

1. in denotes the real status of the environment. The domain of in in this model is {0, 1}.

2. sensor0 denotes the value detected by the sensor 0. The domain of sensor0 is {0, 1}.

The value of sensor0 should be the same as the value of in when no fault occurs, that

is, the value detected by the sensor 0 should reflect the real status of the environment.

3. sensor1 denotes the value detected by the sensor 1. The domain of sensor1 is {0, 1}.

Again, the value of sensor1 should be the same as the value of in when no fault occurs.

107

4. out denotes the output of the system. The domain of out is {0, 1,⊥}, where ⊥ rep-

resents that the system has not made a decision yet. If the system makes a decision,

the output of the system should be the same as the value of in when no faults occur

in the sensors.

The legitimate states of the program are those where values of two sensors are equal to

the value of the real status in the environment and the output is equal to the value of the

real status in the environment if the output has been decided. Hence, the invariant is as

follows:

Invff = (sensor0 == sensor1 == in) ∧ (out == ⊥ ∨ out == in)

The program includes the following action: when no output has been made by the pro-

gram, i.e., out = ⊥ and both sensor0 and sensor1 have the same values, the output will be

set to the value of sensor0.

out == ⊥ ∧ sensor0 == sensor1 −→ out := sensor0;

Although this example models the values of two sensors in a similar fashion, they could

be providing sensor readings based on different approaches. For example, the altitude switch

controller in [145] utilizes two types of altimeters, a digital and an analog. One of the reasons

for choosing different types of sensing modalities is to ensure that one root cause does not

affect all sensors. Thus, although faults that affect each sensor appear similar, they are

considered as two different types of faults since it is expected that both faults do not occur

in the same computation. In this program, we consider two classes of faults: a transient fault

108

that occurs at sensor 0 and a transient fault that occurs at sensor 1. When this transient

fault occurs at a sensor, it changes its value to the opposite of that of the input. Thus, the

fault actions for this program are as follows:

Action of Fault Class 1: true −→ sensor0 := 1− in;

Action of Fault Class 2: true −→ sensor1 := 1− in;

The safety specification requires the program never reaches a state that the output of

the system is not the same as the real status of the environment. Formally, the safety

specification states that the program should never reach a state where the following formula

is true:

specff = (out == 1 ∧ in == 0) ∨ (in == 1 ∧ out == 0).

The program provides failsafe-failsafe weak multitolerance, which is defined as follows.

1. When no fault occurs, the values of the two sensors sensor0 and sensor1 are equal

and the output is set to the value of sensor0. The output of the system is equal to the

value of real status in the environment.

2. When transient faults corrupt one sensor, failsafe fault-tolerance should be provided.

Since the faults corrupt the value of one sensor, the two values of sensor0 and sensor1

are not equal and, hence, the program action is not executed. That is, the safety

specification is not violated.

3. When both faults occur simultaneously, no guarantee is provided.

109

The case discussed above could be extended to be the one which has three or more sensors.

The agreement is reached by the majority of sensor values. In that case, the program will

have the masking-masking weak multitolerance property. When transient fault corrupts one

of the sensors, the majority agreement will guarantee the final decision will reflect the real

status of the environment.

Although the two fault classes considered here are similar, they are considered separately

due to the source of these faults. The next example illustrates the case where the faults in

different fault classes have different effects.

5.2.2 Masking-Masking Weak Multitolerance

In this section, we present a leader election program that provides masking-masking weak

multitolerance to two types of faults fm1 and fm2. The fault-type fm1 manifests itself as

if the leader leaves, called the leader leave fault, and fm2 denotes the message loss fault.

The program consists of n processes (p1, p2, . . . , pn) that are organized in a connected

network. Each process has an unique ID, numbered from 0, . . . , n−1. One of these processes

is selected as the leader. When no faults occur, there are no actions that are executed.

However, when the current leader leaves, other processes can compete to be the leader.

When a process wants to be the leader, it starts a diffusing computation [61] and declares

itself to be the leader when the diffusing computation completes successfully. If multiple

processes start diffusing computations, then the process with higher ID wins.

A process initiates a diffusing computation when it receives a 〈leave〉 message from the

current leader and if it is not already participating in a diffusing computation. To initiate a

diffusing computation, process j sends a message 〈j〉 to all its neighbors. It also sets its own

110

root value and its parent to be equal to j. The root value keeps track of the initiator of a

diffusing computation and the parent value keeps track of the node that sent this diffusing

computation to j.

When process j receives a diffusing computation message of the form 〈ID〉 from k, it

does the following: If j is already participating in a diffusing computation such that the

initiator of that diffusing computation (stored in root.j) is higher than ID then j ignores

the new message. If the value of root.j is equal to ID then j is receiving the same diffusing

computation twice. Hence, it only replies to k. Otherwise, it forwards this diffusing compu-

tation to all its neighbors. To do so, it forwards the message 〈ID〉 and sets its own parent

variable to k and its own root variable to ID.

Finally, when j receives a reply message from all neighbors except the parent, j sends a

reply to its parent. Moreover, if j is the initiator (p.j == j) then it declares itself to be the

leader. Thus, the actions in this program are as follows:

upon receiving 〈leave〉 message from departing leader

−→//node j sends diffusing computation message

if root.j == −1

send 〈j〉 to nbrs.j,

p.j := j,

root.j := j;

else //ignore

upon receiving 〈ID〉 from k

111

−→if root == ID //duplicate

send reply to k with 〈ID〉;

else if ID > root.j

p.j := k,

root.j := ID,

send 〈ID〉 to all neighbors except k;

else //ignore;

upon receiving reply from all neighbours except p.j with 〈root.j〉

−→root.j := −1;

if p.j 6= j

send reply to p.j with 〈root.j〉;

else

leader.j := true;

The legitimate states of the program include those states where there is a unique leader,

there are no ongoing diffusing computations to elect a leader, and, the root value of every

process is −1.

The program is subject to two classes of faults, fm1 and fm2. fm1 is the one where

the leader node leaves. We assume that when the leader node leaves the network, it notifies

its neighbors. fm2 causes messages to be lost. Variable channeli,j denotes the sequence of

messages in the channel between i and j. Hence, the two types of fault actions are as follows:

fm1 (Leader node leave):

112

leader.j == true

−→send 〈leave〉 to nbrs.j, leader.j := false ;

fm2 (Message loss):

channeli,j 6= 〈 〉 // 〈 〉 denotes an empty channel

−→ channeli,j := tail(channeli,j);

The safety specification requires that in any state there is at most one leader. More

precisely, the program should never reach a state where:

specmm = (∃j, k : j 6= k : leader.j ∧ leader.k)

The program provides maksing-masking weak multitolerance to leader node leave and

message loss. More specifically, it is defined as follows.

1. In the absence of faults, no action is executed. And, there is an unique leader in the

network.

2. When fault fm1 occurs, i.e., the current leader leaves, one or more of its neighbors

initiate a diffusing computation. Among the nodes that initiate the diffusing compu-

tation, the one with highest ID is elected as the leader. Hence, masking fault-tolerance

is guaranteed when fm1 occurs.

3. When fault fm2 causes messages to be lost, there is no effect on the number of leaders.

Thus, there is a unique leader in the network. Hence, masking fault tolerance is

guaranteed when fm2 occurs.

113

4. If fault fm1 and fm2 occur simultaneously, no fault-tolerance is guaranteed. Specif-

ically, if a message is lost during the diffusing computation, it is possible that the

diffusing computation never completes, and hence, no leader is elected.

A more careful analysis of this program shows that if faults fm1 and fm2 occur together,

it causes the diffusing computation to be blocked thereby resulting in states where there is

no leader. In this case, failsafe fault-tolerance is provided. Thus, this is also an instance of

FM weak multitolerance.

Moreover, as one can imagine it is possible to design a fault-tolerant program that pro-

vides masking fault-tolerance to both fm1 and fm2 simultaneously. However, providing

such tolerance is expensive. For example, it requires mechanisms to detect message losses

(or potentially failure of a node). Additionally, it requires an overhead in terms of message

retransmission etc. Also, if such faults are considered during diffusing computation, there

is a need for keeping track of multiple diffusing computations initiated by the same node,

e.g., with the use of sequence numbers. Thus, this example illustrates the case where a

stronger tolerance property is possible although weak multitolerance can provide a slightly

lower assurance at a reduced cost (in terms of complexity of the code, performance, etc.).

The next example illustrates the case where providing weak multitolerance is essential.

5.2.3 Failsafe-Nonmasking Weak Multitolerance

In this section, we present a vertex coloring protocol that provides failsafe-nonmasking

weak multitolerance to Byzantine fault and transient fault, i.e., failsafe fault-tolerance when

Byzantine fault occurs, nonmasking fault-tolerance when transient fault occurs and no guar-

antees when both faults occur simultaneously.

114

The vertex coloring of the program is an assignment of colors to each process of the

system. The goal of the program is that every process is assigned a color and no two

neighboring processes are assigned the same color. One assumption is that the degree of

each process is at most d and d+ 1 colors are to be used.

The legitimate states of the program are those whose colors are assigned appropriately.

The program action for each node j is defined as follows.

color.j == color.k −→ color.j := available color(j) ;

In the above action, color.j denotes the color assigned to process j. available color(j) is

used to denote the method that finds a new color among the available ones and assigns it to

process j. If the color of any process j is the same as one of its neighbors, the above action

is enabled and the color of the process will be assigned another color that does not conflict

with its neighbors. No action is executed in the absence of faults.

In this program, we consider two types of faults: (1) Byzantine faults and (2) transient

faults. Both these faults result in changing the color of the affected process. However,

the main difference between these faults is that the former is a permanent fault, i.e., the

affected process can change the color as often as it desires whereas the latter is a transient

fault where there is a bound on the number of times the color of some process is affected.

Another difference is that the former only affects a subset of (chosen) processes whereas the

latter can affect all processes at once. To model these faults, we introduce a variable b.j that

denotes whether j is Byzantine, variable count.j that denotes the number of times color.j

is affected by transient faults, and MAX that denotes the number of permitted transient

faults. (Note that all these variables are auxiliary variables, i.e., variables used in the proof

115

but not explicitly by the program itself.) Thus, the fault actions are as follows:

ff (Byzantine fault):

b.j == true

−→ colorj := random(0,d); // return a random value from 0 to d;

fn (transient fault):

count.j < MAX

−→ color.j := random(0,d);

The above fault actions may corrupt the color of a process to be the same as that of one

of its neighbors.

The safety specification requires that, any two neighboring nodes that are non-Byzantine

have different colors. Thus, the program should never reach a state in the state predicate

specfn, where

specfn = (∃j, k :: (k ∈ nbrs.j) ∧ (b.j == false)

∧(b.k == false) ∧ (color.j == color.k))

The program provides failsafe and nonmasking weak multitolerance to Byzantine fault

and transient fault, respectively. Specifically, it is defined as follows.

1. In the absence of faults, there is no action. Thus, the program keeps a correct color

assignment to all nodes.

2. When ff corrupts color assignment of the Byzantine node, no non-Byzantine node is

116

affected and hence the safety specification is not violated. Thus, failsafe fault-tolerance

is provided.

3. When fn causes one node to change its color transiently, safety specification may be

violated at that time. Then, the recovery action will reassign its color to be the correct

one and finally the program will recover to a correct assignment to all the nodes. Thus,

nonmasking fault-tolerance is provided.

4. When both faults ff and fn occur simultaneously, safety specification may be violated

due to the occurrence of transient fault. Thus, failsafe fault-tolerance is not guaranteed.

Also the program may not recover to a correct assignment to all nodes since the

Byzantine node is corrupted permanently. Hence, nonmasking fault tolerance is also

not guaranteed.

This example illustrates the need for weak multitolerance. In particular, it is not possible

to provide a uniform tolerance to both types of faults. Specifically, with Byzantine faults, the

faults can prevent the program to recover to legitimate state where the colors of all nodes are

assigned properly, i.e., no two neighboring nodes have the same color. Hence, in this example,

providing masking or nonmasking fault-tolerance to Byzantine faults is impossible. Likewise,

execution of the transient fault itself can violate the safety specification. Thus, providing

failsafe or masking fault-tolerance to transient faults is impossible. For this reason, the only

possible solution is to provide failsafe fault-tolerance to Byzantine faults and nonmasking

fault-tolerance to transient faults.

117

5.2.4 Masking-Masking Weak Multitolerance

This section presents an example scenario where MM weak multitolerance is the best pos-

sible option for designers due to the impossibility of providing MM strong multitolerance.

Intuitively, strong MM multitolerance guarantees that if both faults occur in the same com-

putation (i.e., simultaneously), then masking fault tolerance to both of them will be provided.

(Please see Definition 5.8.1 in Section 5.8 for a more precise definition of strong multitoler-

ance.)

The Agreement Program (AP) includes a general process and three non-general processes.

Initially, all non-generals are undecided. The general casts a decision and each non-general

copies the decision of the general and terminates; i.e., finalizes its decision.

The AP program [141] has to satisfy two safety properties, namely agreement and validity.

Agreement requires that if the general is faulty, then all non-faulty non-generals that have

finalized agree on the same decision. Validity stipulates that if the general is not faulty, then

any non-faulty non-general that has finalized has the same decision as that of the general.

The AP program is subject to two classes of faults: Byzantine and fail-stop. The Byzan-

tine faults can perturb the state of at most one process and make it behave arbitrarily. That

is, if a process is affected by Byzantine faults (i.e., a process is Byzantine), then it can cast

different decisions lying about its decision to different processes. The fail-stop faults could

cause a process to crash in a detectable fashion. A fail-stopped process does not execute any

actions once it crashes. We assume that fail-stop faults only affect the non-general processes.

The set of program variables is {dg, d0, f0, up0, d1, f1, up1, d2, f2, up2}, where (i) dg

denotes the decision of the general, which cou1d be 0 or 1, and di represents the decision of

process i (0 ≤ i ≤ 2), where the domain of di is {0, 1,⊥}, and ⊥ means that process i is

118

undecided; (ii) fi is a Boolean variable representing whether or not process i has finalized

its decision after copying a decision from the general, and (iii) upi is also a Boolean variable

that denotes whether process i has crashed in a detectable fashion; i.e., has fail-stopped.

The actions of process i in the AP program are as follows (⊕ denotes addition in modulo 3):

Ai1 : di = ⊥ ∧ ¬fi ∧ upi

−→ di := dg

Ai2 : (di 6= ⊥ ∧ ¬fi) ∧ (di⊕1 = ⊥ ∨ di = di⊕1) ∧

(di⊕2 = ⊥ ∨ di = di⊕2) ∧ (di⊕1 6= ⊥ ∨ di⊕2 6= ⊥) ∧ upi

−→ fi := true

Ai3 : (di 6= ⊥ ∧ ¬fi) ∧ (di⊕1 6= ⊥) ∧ (di⊕2 6= ⊥) ∧ upi

−→ di := majority(d1, d2, d3))

fi := true

If process i is undecided and not crashed, then it can copy the decision of the general (see

action Ai1). Once decided, process i can finalize its decision if at least another non-general

has made the same decision (action Ai2). If all non-generals have copied a decision from the

general, then process i can finalize by setting di to the majority of decisions (action Ai3).

That is, if di differs from the majority, then process i corrects di by setting it to the majority

of decisions and finalizing. Otherwise, di is equal to the majority and action Ai3 finalizes the

decision of process i. Notice that a crashed process can execute none of its actions because

upi becomes false.

An invariant of the AP program includes states in which validity and agreement are

satisfied and at most one process is faulty.

119

The AP program provides masking-masking weak multitolerance, including the following

properties:

1. In the absence of Byzantine and fail-stop faults, the program AP satisfies both validity

and agreement.

2. In the presence of Byzantine faults, if the general is Byzantine then validity vacuously

holds, and agreement is guaranteed by the majority of decisions. If a non-general has

become Byzantine, then validity holds for non-faulty non-generals, and agreement is

vacuously satisfied. Therefore, the AP program is masking fault-tolerant to Byzantine

faults.

3. In the presence of fail-stop faults, one of the non-generals stops executing (i.e., its up

variable becomes false). Thus, the other non-generals satisfy validity. Agreement is

satisfied as well since a majority of non-generals exists and the general is not faulty.

Therefore, the AP program is masking fault-tolerant to fail-stop faults.

4. When both faults occur, the program may reach a state where a non-general has

crashed and another non-general has become Byzantine. If the fail-stop faults have

occurred before a process makes a decision, then the guard of action Ai3 in the other

two processes is false. Since another non-general has become Byzantine, its decision

may not be the same as the decision of the non-faulty non-general. Thus, the guard

of action Ai2 of the non-faulty non-general is also false. Therefore, the entire program

deadlocks, i.e., masking fault tolerance cannot be guaranteed for Byzantine and fail-

stop faults.

This example demonstrates a case where it is impossible to design a MM strong multitol-

120

erant program, and designing MM weak multitolerance is the next best option. The reason

behind it is that the simultaneous occurrence of both faults may get the AP program to a

state where no majority of decisions exists amongst the non-faulty processes. One approach

for enabling recovery from such a state is to add redundancy by including an additional

non-general process in the AP program, which may not be always feasible. Nonetheless,

before resorting to redundancy, we provide the following options for designers. First, one

can design a MM weak multitolerant program (similar to the AP program) where masking

fault tolerance is guaranteed if the faults occur one at a time. The second option is a FM

weak multitolerant program, where masking fault tolerance to Byzantine faults and failsafe

fault tolerance to fail-stop faults is provided (or vice versa). Notice that the AP program

guarantees FM weak multitolerance as well. Third, we can lower our expectation to pro-

viding FF strong multitolerance to both faults where the program guarantees that in the

presence of both faults, validity and agreement are not violated, however, agreement may

never be reached (i.e., the program never recovers). Therefore, MM weak multitolerance

provides the best remaining option where MM strong multitolerance is impossible using the

available resources; i.e., masking fault tolerance is guaranteed to both classes of faults if they

do not occur simultaneously.

5.3 Complexity Analysis of FF Weak Multitolerance

In this section, we investigate the synthesis problem of programs that are weak multitolerant

to two classes of faults f1 and f2 for which failsafe fault-tolerance is required. That is,

fδ = {〈f1, failsafe〉, 〈f2, failsafe 〉} in Definition 5.1.1. We show that such a FF

(Failsafe-Failsafe) weak multitolerant program can be synthesized in polynomial time in

121

program state space. Towards this end, we present a sound and complete algorithm. We

note that this algorithm can be easily generalized for the case where fδ includes three or

more fault classes for which failsafe fault-tolerance is desired.

Given is a program P, with its invariant S and its specification spec. Let P′ be the

synthesized program with invariant S′ that is weak multitolerant to f1 and f2. By definition,

P′ must maintain spec from every reachable state in the computations of P′∪f1 (respectively,

P′ ∪ f2). To this end, on Line 1 of Algorithm 2 in Figure 5.1, we first identify ms1, a set

of states from where execution of one or more f1 transitions violates safety. Clearly P′

cannot reach a state in ms1 either in the absence of faults or in the presence of f1 alone.

Likewise, we compute ms2 on Line 2. Next, we compute mt to be a set of transitions that

reach ms1∪ms2 or those that violate spec. If there exist states in the invariant such that

execution of one or more fault actions from those states violates spec, we recalculate the

invariant by removing those states. In this recalculation, we ensure that all computations of

P −mt within the new invariant, S′, are infinite. By the constraints of Definition 5.1.1 and

the definition of ms1 and ms2, S
′ must be a subset of S−ms1−ms2. Likewise, P′ cannot

include transitions that begin in S′ and are in mt. Hence, the only transitions P′ can use

inside S′ are a subset of P−mt. Removal of states in ms1∪ms2 or transitions in mt may

create some deadlock states in S−ms1−ms2, i.e., where P′ has no outgoing transitions.

Since P′ cannot deadlock in the absence of faults, we remove such deadlock states recursively

to construct S′ (Line 6 and 7 of Algorithm 2). As shown in Line 8, if the invariant becomes

an empty set after reconstruction, we cannot find a FF weak multitolerant program P′. If

the invariant is not empty, we remove transitions that start in S′ and terminate outside S′;

i.e., violate the closure of S′. Notice that the removal of such transitions does not introduce

122

any deadlock states in S′.

Theorem 5.3.1. The algorithm Add FF Weakmulti is sound and complete.

Proof. To show the soundness of our algorithm, we need to show that constraints C1, C2

and C3 of the Problem 5.1.1 are satisfied.

1. S′ ⊆ S. By the construction of S′, S′ is obtained by removing zero or more states in

S. Thus, C1 is trivially satisfied.

2. (s0, s1) ∈ P′ ∧ s0 ∈ S′ ⇒ (s0, s1) ∈ P. By the construction of P′, P′ does not have

any new transitions in the absence of faults. Therefore, C2 is trivially satisfied.

3. P′ is FF weak multitolerant to spec from S′. Consider a computation c of P′ that starts

from a state in S′: From 1, c starts in a state in S, and from 2, c is a computation of

P. It follows that c satisfies spec. Hence, every computation of P′ that starts from a

state in S′ is in spec, i.e, P′ refines spec from S′. We discuss the following two cases:

(a) Failsafe f1-tolerance to spec from S′. We let the fault-span T1 to be the set of

states reached in any computation of ψP′ ∪ f1 that starts from a state in S′.

Consider a computation prefix c of ψP′ ∪ f1 that starts from a state in T1. From

the definition of T1 there exists a computation prefix c′ of ψP′ ∪ f1 such that c

is a suffix of c′ and c′ starts from a state in S′. If c′ violates the safety of spec

then there exists a prefix of c′, say 〈s0, s1, . . . , sn〉, such that 〈s0, s1, . . . , sn〉

violates the safety of spec. Let 〈s0, s1, . . . , sn〉 be the smallest such prefix, it

follows that (sn−1, sn) violates the safety of spec and hence, (sn−1, sn) ∈ mt.

By construction, P′ does not contain any transition in mt1. Thus (sn−1, sn)

is a transition of f1. If (sn−1, sn) is a transition of f1 then sn−1 ∈ ms1

123

Algorithm 2: Add FF Weakmulti
Input: P:transitions,

f1, f2:faults of two classes
that need failsafe f -tolerance,

S: state predicate, spec: safety specification
Ouput: If successful, a fault-tolerant P ′ with invariant S ′

that is weak multitolerant to f1 and f2
ms1 := {∫0 : ∃∫1, ∫2, . . . ∫n :

(∀j : 0 ≤ j < n : (∫j, ∫j + 1) ∈ f1)∧
(∫n− 1, ∫n) violates spec}; (1)

ms2 := {∫0 : ∃∫1, ∫2, . . . ∫n :
(∀j : 0 ≤ j < n : (∫j, ∫j + 1) ∈ f2)∧
(∫n− 1, ∫n) violates spec}; (2)

mt := {(∫0, ∫1) : ((∫1 ∈ ms1 ∪ms2) ∨
(∫0, ∫1) violates spec)}; (3)

S ′ := S−ms1−ms2; (4)
P1 := P−mt; (5)
WHILE(∃∫0 : ∫0 ∈ S ′ :

(∀∫1 : ∫1 ∈ S ′ : (∫0, ∫1) /∈ P1)) (6)
{S ′ := S ′ − {∫0}} (7)

If(S ′ = {}) (8)
declare no weak multitolerant program P’ exists; (9)
{ Return ∅, ∅} (10)

P ′ := {(∫0, ∫1)|
(∫0, ∫1) ∈ P1, ∫0 ∈ S ′, ∫1 ∈ S ′} (11)

// P ′ only specifies transitions inside invariant S ′;
//P ′ can be modified to include any subset of
// {(s0, s1)|s0 /∈ S ′ ∧ (s0, s1) /∈ mt};
//T= Reachable (S ′,P ∪ f1) ∪
// Reachable (S ′,P ∪ f2), i.e., T be states
// reached by starting from S ′ and using transitions of
// P ∪ f1 (respectively, P ∪ f2);
//P ′ can include any subset of {(s0, s1)|s0 /∈ T};
RETURN P ′, S ′; (12)

Figure 5.1: Model revision for adding FF weak multitolerance.

124

and (sn−2, sn−1) ∈ mt1 and hence, (sn−2, sn−1) is a transition of f1. By

induction, if 〈s0, s1, . . . , sn〉 violates the safety of spec, s0 ∈ ms1, which is a

contradiction since s0 ∈ S′ and S′ ∩ms1 = ∅. Thus, each prefix of c′ maintains

spec. Since c is a suffix of c′, each prefix of c also maintains spec. Thus, ψP′ ∪ f1

maintains spec from T1.

(b) Failsafe f2-tolerance to spec from S′. The argument is similar to part 3a.

Now we show that if a FF weak multitolerant program can be designed for the given

fault-intolerant program then Add FF Weakmulti will not declare failure. Let program P′′

and predicate S′′ solve Problem 5.1.1. Clearly, S′′∩ms1 = ∅; if s0 ∈ (S′′∩ms1) then the

execution of faults alone from s0 can violate the safety of spec. It follows that S′′⊆(S−ms1).

Likewise, S′′⊆(S−ms2). Moreover, P′′|S′′ cannot include any transitions in mt; if P′′|S′′

contains a transition in mt then the execution of this transitions can violate the safety of

spec. Thus, P′′|S′′ ⊆ (P−mt). Finally, every computation of P′′ that starts in a state in

S′′ must be an infinite computation, if it were to be in spec. It follows that there exists

a subset of S such that all computations of P−mt within that subset are infinite. Our

algorithm declares that no solution for the Problem 5.1.1 exists only when there is no subset

of S−ms1−ms2 such that all the computations of P−mt within that subset are infinite.

It follows that our algorithm declares that no FF weak multitolerant program exists only if

the answer to Problem 5.1.2 is false.

Remark 5.3.1. Algorithm Add FF Weakmulti can be extended to design a multitolerant pro-

gram that is subject to 3 or more fault classes. Towards this, we specify ms3 for the third

fault class and msi for the ith fault class. Then, we calculate mt like Line 3 in Algorithm

125

Add FF Weakmulti to specify these transitions that lead to state in
⋃

i=1,...,n
msi (n is the

number of fault classes). Besides, we need to recalculate invariant S′ by removing states in

⋃

i=1,...,n
msi. The remaining steps are similar to Algorithm Add FF Weakmulti.

5.3.1 Application of Add FF Weakmulti

Now we present a simple example to demonstrate how the algorithm Add FF Weakmulti

facilitates automated synthesis of FF weakmultitolerance. We use the example of two-sensors

agreement protocol introduced in Section 5.2. Specifically, we apply the Add FF Weakmulti

algorithm in Section 5.3 to the fault-intolerant version of the input-output program.

In the absence of faults, sensor0 produces the correct value of in. Hence, in this program,

if no decision has been made, i.e., out == ⊥, the output will be set to the value of sensor0.

Hence, the program action is as follows:

Pfi : out == ⊥ −→ out := sensor0;

Remark 5.3.2. The program action could also be out == ⊥ −→ out := sensor1 or non-

determinism execution of both actions, i.e., out == ⊥ −→ out := sensor0|sensor1. For

these cases, a similar analysis can be used to design FF weak multitolerant program.

Next, we show the execution of Add FF Weakmulti with input program Pfi, f1, f2,

Invff and specff . The fault actions f1 and f2 and safety specification specff are defined

in Section 5.2.1.

Specifically, our algorithm works as follows: first, Add FF Weakmulti computes ms1 (Line

1) from where execution of f1 violates safety. Fault f1 changes the value of sensor0. The

126

safety specification is independent of the value of sensor0. Thus, if (s0, s1) is a transition of

f1 then (s0, s1) violates safety iff specff is true in state s0. As such, ms1 = specff where

specff ≡ ((out == 1 ∧ in == 0) ∨ (int == 0 ∧ out == 0)). Likewise, ms2 = specff .

Next, mt = {(s0, s1)|s1 ∈ specff } (Line 3). Since Invff ∩ms1 = ∅ and Invff ∩ms2 =

∅, the new invariant S′ is equal to Invff (Line 4). Then, by removing transitions in mt

(Line 5), we have P1 := “out == ⊥ ∧ sensor0 == in −→ out = sensor0′′, i.e., P1 assigns

the output only when sensor0 is not corrupted.

On Line 9, we compute the transitions of P1 that start and end in S′. Thus, on Line 9,

we get the program, P1 := “out == ⊥ ∧ sensor0 == sensor1 == in −→ out = sensor0”.

Moreover, after computing the fault-span of this program, we observe that a state where

sensor0 is equal to sensor1 but sensor0 is not equal to in is not reached in the presence of

f1 alone (or in the presence of f2 alone). Hence, we can add the transition corresponding

to the following action to P1:

out == ⊥ ∧ sensor0 == sensor1 6= in −→ out = sensor0.

Thus, the FF weak multitolerant program is as follows: (Note that this is the same

program from Section 5.2)

P1 := out == ⊥ ∧ sensor0 == sensor1 −→ out = sensor0.

Remark 5.3.3. The extra transitions (added in Line 9) cannot be executed but are useful in

simplifying the fault-tolerant program. Specifically, in this example, it allowed us to construct

a fault-tolerant program that does not read the value of the variable in. In a more general

setting, to ensure that the synthesized program reads only the variables that it is allowed

to read, one can utilize the approach in [135] to synthesize distributed programs, where the

program consists of multiple processes and each process can read some subset of program

127

variables. Since this paper does not focus on the issue of distribution, we omit details of

modeling read/write restrictions in synthesizing distributed programs.

5.4 Complexity Analysis of MM Weak Multitolerance

In this section, we investigate Problem 3.2 for cases where we want to add weakmultitolerance

for fδ = {〈fm1, masking〉, 〈fm2, masking〉}. We find a surprising result that the MM

(Masking-Masking) weak multitolerant synthesis problem is NP-complete, even though, as

shown in [71], the synthesis problem of the corresponding strong multitolerant program is in

P.

Before we present the formal proof, we give an intuition behind this complexity. Consider

the case where there exists a transition (s1, s2) of fm2 that violates the safety specification.

We have the following two options: (i) ensure that s1 is unreachable in the computations of

P ∪fm2. (ii) allow s1 to be reached only while program is ‘recovering’ from fm1. Moreover,

the choice made for this state affects other similar states. In our proof, we relate the choice

made between these two options to the values of Boolean variables in the SAT formula. This

allows us to reduce the SAT problem to the MM weak multitolerant synthesis problem.

Theorem 5.4.1. The problem of synthesizing MM weak multitolerant programs from their

fault-intolerant version is NP-complete.

Proof. Given a program P, with its invariant S, its specification spec, and two classes

of faults fm1 and fm2, we prove that the decision Problem 3.2 is NP-hard when fδ =

{〈fm1, masking〉, 〈fm2, masking〉}. Illustrating the NP membership of Problem 3.2 is

straightforward; hence omitted.

128

Figure 5.2: Mapping from an instance of the SAT problem.

Now, we present a polynomial-time mapping from an instance of the SAT problem to

a corresponding instance 〈P, S, spec, fm1, fm2〉 of Problem 3.2. An instance of the SAT

problem is specified in terms of a set of literals x1, x2, . . . , xn and ¬x1,¬x2, . . . ,¬xn where

xi and ¬xi are complements of each other. The SAT formula is of the form φ = C1 ∧ C2 ∧

C3 ∧ . . . ∧ Ck, where each clause Ci is a disjunction of several literals. Then we show that

the given SAT formula is satisfiable if and only if there exists a solution for the mapped

instance of Problem 3.2. We construct the mapped instance as follows (see Figure 5.2):

The state space of P is as follows:

• We introduce a state s. This is the only state in the invariant S.

• For each propositional variables xi, 1 ≤ i ≤ n, and its complement ¬xi in the SAT

instance, we introduce the following states: ei, ti, gi, hi, ai and bi.

129

• For each clause Cr, 1 ≤ r ≤ k, we introduce states wr and zr.

• If clause Cr includes literal xi, we introduce a state dri. If clause Cr includes literal

¬xi, we introduce a state d′ri.

The transitions of P|S include only a self-loop (s, s). The transitions of fm1 and fm2

are as follows:

• For each clause Cr, we include the fault transition (s, wr) in fm1 and the fault tran-

sition (s, zr) in fm2.

• If the clause Cr includes the literal xi, then we include the fault transition (dri, ei) in

fm1.

• If the clause Cr includes the literal ¬xi, then we include the fault transition (d′ri, ti)

in fm2.

• For each propositional variable xi and its complement ¬xi, we include the fault tran-

sition (gi, ai) in fm1 and (hi, bi) in fm2.

The safety specification is defined as follows.

• Transitions (gi, ai) and (hi, bi) violate safety.

• Transitions (s, s), (s, wr), (s, zr), (dri, ei) and (d′ri, ti) do not violate safety.

• For each clause Cr, each propositional variable xi and its complement ¬xi, the follow-

ing transitions do not violate safety:

– (wr, zr), (zr, dri), (zr, d
′
ri), (ei, ti), (ti, ei), (ei, gi), (ti, hi), (gi, s), and (hi, s).

130

• All transitions except those identified above (e.g., (zr, wr), (zr, s), etc) violate safety

specification.

Now, we show that the given SAT formula is satisfiable if and only if the answer to Prob-

lem 3.2 for the mapped instance is affirmative where fδ = {〈fm1, masking〉, 〈fm2, masking〉}.

• (=⇒) First, we show if the given SAT formula is satisfiable, then there exists a solution

that meets the requirements of the synthesis problem. Since φ has a satisfying truth

assignment, there exists an assignment of truth values to the literals xi, such that

each Cr evaluates to true. Now, we identify the program P′, that solves MM weak

multitolerant problem.

The invariant of P′ is the same as the invariant of P (i.e., {s}). We derive the transi-

tions of the weak multitolerant program P′ as follows:

– For each disjunction Cr, we include the transition (wr, zr).

– If xi is assigned true:

∗ We introduce (ei, ti), (ti, hi), (hi, s).

∗ For each disjunction Cr that includes xi, we introduce (zr, dri) and (dri, s).

– If xi is assigned false:

∗ We include (ti, ei), (ei, gi) and (gi, s).

∗ For each disjunction Cr that includes ¬xi, we introduce (zr, d′ri) and (d′ri, s).

Thus, in the presence of fm1 alone, P′ provides safe recovery to s through dri, ei, ti, hi.

In the presence of fm2 alone, P′ provides safe recovery to s through d′ri, ti, ei, gi.

Now, we show that P′ is weak multitolerant in the presence of faults fm1, fm2.

131

– (In the absence of faults) P′|S = P|S. Thus, P′ satisfies spec in the absence of

faults.

– Masking fm1-tolerance. If the faults from fm1 occur then the program can

be perturbed to state wr, 1 ≤ r ≤ k. From wr, P′ has only one transition

that reaches zr. Since Cr evaluates to true, there exists i such that either

xi is a literal in Cr and xi is assigned the truth value true or ¬xi is a lit-

eral in Cr and xi is assigned the truth value false. In the former case, P′

can recover to s using the two sequences of transitions, 〈(zr, dri), (dri, s)〉, or

〈(zr, dri), (dri, ei), (ei, ti), (ti, hi), (hi, s)〉. In the latter case, P′ can recover to

s using exactly one sequence of transitions 〈(zr, d′ri), (d
′
ri, s)〉. Note that if xi

is true then P′ cannot reach gi from where it can violate safety specification.

Thus, any computation of P′ ∪ fm1 eventually reaches a state in the invariant.

Moreover, from zr, every computation of P′ ∪ fm1 does not violate the safety

specification. Based on the above discussion, P′ is masking tolerant to fm1.

– Masking fm2-tolerance. The argument is similar to the one showing that P′ is

masking tolerant to fm1.

• (⇐=) Second, we show that if there exists a weak multitolerant program that solves

the instance of the synthesis problem 3.2, then the given SAT formula is satisfiable.

Let P′ be the weak multitolerant program derived from the fault-intolerant program

P. The invariant of P′, S′, is not empty and S′ ⊆ S, S′ must include state s. Thus,

S′=S.

Let Cr be a clause in the given SAT formula. The corresponding states added in the

instance of the synthesis problem are wr and zr. Note that wr can be reached from

132

s by a transition in fm1. Hence, P′ must include the transition (wr, zr). Thus zr is

reached in the computation of P′ ∪ fm1. Hence, P′ must recover to s from zr without

violating spec. Therefore, for some i, P′ has to have a transition of the form (zr, dri) or

(zr, d
′
ri). If P

′ includes (zr, dri), then the clause Cr contains literal xi and we assign

xi the truth value true. Likewise, if P′ includes (zr, d
′
ri) for some i, then the clause

Cr contains literal ¬xi and we assign xi the truth value false. Thus, by construction,

Cr evaluates to true.

Now, to complete the proof, we have to show that the truth values assigned to all

literals are consistent, i.e., it is not the case that xi is assigned true in one clause and

false in another clause. We show this by a proof by contradiction. If xi is assigned

true in clause Cr and false in clause Cq then P′ includes both transitions (zr, dri)

and (zq, d
′
qi). Now, from dri, the program can reach ei by the occurrence of fm1

alone. Hence, the program P′ cannot include the transition (ei, gi), as including this

transition will allow the program to reach gi in a computation of P′ ∪ fm1 and violate

safety by executing (gi, ai). Likewise, P′ can reach ti by the occurrence of fm2 alone.

Hence, P′ cannot include the transition (ti, hi). If both transitions (ei, gi) and (ti, hi)

are not included then P′ cannot recover from ei to the state in the invariant. This

contradicts the assumption that P′ is masking fm1-tolerant. Thus, the truth value

assignment to all literals is consistent.

5.4.1 A Heuristic for MM Weak Multitolerance

The previous result showed that in general, the problem of adding MM weak multitolerance

is NP-hard. In this section, we present a sound (but incomplete) algorithm that adds MM

133

weak multitolerance to a given program P that is subject to two classes of faults fδ =

{〈f1, masking〉, 〈f2, masking〉} in polynomial time. Our algorithm Add MM Weakmulti

takes program actions, faults, invariant and safety specification as input and generates a

MM weak multitolerant program. The basic idea of Add MM Weakmulti is to first construct

the corresponding FF weak multitolerant program that ensures safety. Then we use the fault

span of the FF weak multitolerant program to add recovery. Specifically, let T1 and T2 be

the fault-spans in the presence of f1 and f2 respectively. We ensure that every path from T1

reaches a state in S1, and likewise, every path from T2 reaches a state in S1. Additionally,

we ensure that T1 (respectively, T2) remains closed in transitions of f1 (respectively, f2)

during this revision process.

Given is a program P with its state predicate S and its specification spec. Let P′ be the

synthesized program with invariant S′ that is weak multitolerant to f1 and f2. By definition,

P′ is masking f1-tolerant from S′ for spec if only f1 occurs, and masking f2-tolerant from

S′ for spec if only f2 occurs. To this end, Line 1 of Algorithm 3 identifies ms1, a set of states

from where execution of one or more f1 transitions violates safety. On Line 2, we identify

ms2 that is a set of states from where execution of one or more f2 transitions violates safety.

Next, we compute mt, a set of transitions that reach ms1 ∪ms2 or those that violates spec.

By calling Algorithm 1 in Line 6 of Algorithm 3, we obtain P1 with invariant S1, where P1

is FF weak multitolerant to f1 and f2. In the loop of Lines 7-12, we reconstruct transitions

to ensure that 〈S1,P1 ∪ f1〉 maintains spec from T1, 〈S1,P1 ∪ f2〉 maintains spec from

T2 on Line 9. To guarantee that from each state outside S1 there is a path that reaches

a state in S1 and there are no cycles in states outside S1, we update P1 by calling the

algorithm Ensure Recovery in Lines 10 and 11. Algorithm 4 in Figure 5.4 captures the details

134

of Ensure Recovery. Specifically, Ensure Recovery is defined in such a way that from each

state outside S1 there is a path that reaches a state in S1, and there are no cycles in states

outside S1. As shown in Line 13, if the invariant becomes an empty set after reconstruction,

we cannot find a MM weak multitolerant program P′. Details are as shown in Algorithm 3

in Figure 5.3.

Theorem 5.4.2. The algorithm Add MM Weakmulti is sound.

Proof. To show the soundness of our algorithm, we need to show that constraints C1, C2

and C3 of the Problem 5.1.1 are satisfied.

1. S1 ⊆ S. By the correctness of Add FF Weakmulti, S1 obtained at Line 6 satisfies C1.

Since the following steps do not add any state to S1, C1 is preserved by the final

program P1.

2. (s0, s1) ∈ P1 ∧ s0 ∈ S1 ⇒ (s0, s1) ∈ P. By the correctness of Add FF Weakmulti, P1

obtained at Line 6 of Algorithm 2 satisfies C2. Since the remaining steps do not add

any transition to P1, C2 is preserved by the final program P1.

3. P1 is MM weak fault-tolerant to spec from S1. Consider a computation c of P1 that

starts from a state in S1: From Part 1 of this proof, c starts in a state in S, and

from Part 2, c is a computation of P. It follows that c satisfies spec. Hence, every

computation of P1 that starts from a state in S1 is in spec, i.e, P1 refines spec from

S1. Next, we discuss the following two cases:

(a) Masking f1-tolerance to spec from S1. To show this, we need to show the

following three properties.

135

Algorithm 3: Add MM Weakmulti
Input: P:transitions,

f1, f2:faults of two classes
that need masking f -tolerance,

S: state predicate, spec: safety specification
Ouput: If successful, a fault-tolerant P ′ with invariant S ′

that is weak multitolerant to f1 and f2
ms1 := {∫0 : ∃∫1, ∫2, . . . ∫n :

(∀j : 0 ≤ j < n : (∫j, ∫j + 1) ∈ f1)∧
(∫n− 1, ∫n) violates spec}; (1)

ms2 := {∫0 : ∃∫1, ∫2, . . . ∫n :
(∀j : 0 ≤ j < n : (∫j, ∫j + 1) ∈ f2)∧
(∫n− 1, ∫n) violates spec}; (2)

mt := {(∫0, ∫1) : ((∫1 ∈ ms1 ∪ms2) ∨
(∫0, ∫1) violates spec)}; (3)

T1 := S −ms1 (4)
T2 := S −ms2 (5)
P1, S1 := Add FF Weakmulti(P, f1, f2, S, spec) (6)
WHILE(T ′

1 == T1 ∧ T ′

2 == T2) (7)

{T ′

1 := T1, T
′

2 := T2 (8)

P1 := {(s0, s1)|(s0 ∈ S1
⇒ (s0, s1) ∈ P1)
∧(s0 ∈ T1 ⇒ s1 ∈ T1)
∧(s0 ∈ T2 ⇒ s1 ∈ T2)} −mt (9)

T1, S1,P1 := Ensure Recovery (P1, f1, T1, S1) (10)
T2, S1,P1 := Ensure Recovery (P1, f2, T2, S1)} (11)

IF (S1 6= ∅) (12)
return P1, S1 (13)

ELSE (14)
declare no weak multitolerant program P ′ exists, (15)
return ∅, ∅ (16)

Figure 5.3: Model revision for adding MM weak multitolerance.

136

Algorithm 4: Ensure Recovery
Input: P:transitions,

f :fault actions, S: state predicate, T : state predicate
Goal: Find T ′, P ′ and S ′ such that T ′ ⊆ T ,

S ′ ⊆ S, T ′ is closed in P ′ ∪ f ,
every computation of P ′ from T ′ reaches a state in S ′.

S1, S2 := S, S; (1)
WHILE (S1 == S) (2)
{S1 := S} (3)

//Rank(s0) = length of the shortest computation prefix of
// P from s0 to some state in S.
// Rank(s0) =∞ means S is not reachable from s0.

T := T − {s0|Rank(s0) =∞} (4)
T := T − {s0|∃s1 : (s0, s1)
∈ f, s0 ∈ T, s1 /∈ T} (5)

S := S ∧ T (6)
WHILE(∃s0 : s0 ∈ S :
∀s1 : s1 ∈ S : (s0, s1) /∈ P) (7)
S := S − {s0} (8)

P1 := removeCycles(P, S, T) (9)
//returns P1 such that P1 ⊆ P
//P1|S == P|S,P1|(T − S) is acyclic,
//and ∀s0 : s0 ∈ T : S is reachable from s0 in P1
//There are several possible implementations
//and any one of them is acceptable.
//One possible implementation is to rank each state
//based upon the shortest path from that state to a state inside S,
//and then remove these transitions that do not decrease the rank.
Return P1, S, T (10)

Figure 5.4: The recovery algorithm.

137

• T1 is closed in P1 ∪ f1. Closure of T1 in P1 is by construction. Regarding

closure of T1 in f1, observe that there is no change in the last iteration of the

loop in Lines 7-12 of Algorithm 3. Thus, T1 is closed in f1.

• P1 ∪ f1 maintains spec from T1. We let the fault-span T1 to be the set of

states reached in any computation of P1 ∪ f1 that starts from a state in S1.

Consider a computation prefix c of P1 ∪ f1 that starts from a state in T1.

From the definition of T1 there exists a computation prefix c′ of P1 ∪ f1

such that c is a suffix of c′ and c′ starts from a state in S1. If c′ violates

the safety of spec then there exists a prefix of c′, say 〈s0, s1, . . . , sn〉, such

that 〈s0, s1, . . . , sn〉 violates the safety of spec. Let 〈s0, s1, . . . , sn〉 be

the smallest such prefix, it follows that (sn−1, sn) violates the safety of

spec and hence, (sn−1, sn) ∈ mt. By construction, P1 does not contain

any transition in mt (See Line 9 of Algorithm 2). Thus (sn−1, sn) is a

transition of f1. If (sn−1, sn) is a transition of f1 then sn−1 ∈ ms1 and

(sn−2, sn−1) ∈ mt1 and hence, (sn−2, sn−1) is a transition of f1. By

induction, if 〈s0, s1, . . . , sn〉 violates the safety of spec, s0 ∈ ms1, which

is a contradiction since s0 ∈ S1 and S1 ∩ ms1 = ∅ (Guaranteed by Line 6

of Algorithm 2 since the following steps don’t add any state in S1). Thus,

each prefix of c′ maintains spec. Since c is a suffix of c′, each prefix of c also

maintains spec. Thus, P1 ∪ f1 maintains spec from T1.

• Every computation of P that starts from a state in T1 eventually reaches a

state of S1. The Ensure Recovery algorithm only updates P1 by removing

some transitions from P1 in Steps 4, 5 and 10 of Algorithm 3. By con-

138

struction, Ensure Recovery removes all the deadlock states in Steps 7 and 8

recursively. Also the function RemoveCycles is defined in such a way that

from each state outside S1 there is a path that reaches a state in S1, and

there are no cycles in states outside S1.

(b) Masking f2-tolerant to spec from S1. The argument is the similar as Part 3a.

Remark 5.4.1. Note that Add MM Weakmulti is sound but not complete. One reason for

this is that the function removeCycles has several possible implementations and the choice

of transitions removed in removeCycles(Line 10 of Algorithm 3) for ensuring recovery in

the presence of f1 can prevent recovery in the presence of f2. If one were to consider all

possible choices of removeCycles, then the time complexity would become exponential in the

state space.

Remark 5.4.2. Algorithm Add MM Weakmulti can be extended to design a multitolerant

program that is subject to 3 or more fault classes. Towards this, we specify ms3 for the

third fault class and the corresponding msi for the ith fault class. Then we calculate mt

like Line 3 in Algorithm Add MM Weakmulti to speicify these transitions that lead to state

in
⋃

i=1,...,n
msi (n is the number of fault classes). Moreover, we need to calculate the corre-

sponding Ti for the i
th fault class. In particular, Ensure Recovery (Lines 10−11 of Algorithm

2) will be repeated for each fault class.

5.4.2 Application of Add MM Weakmulti

Now we extend the example used in Section 5.3.1 to demonstrate how the algorithm 3

facilitates automated synthesis of MM weak multitolerance. We extend the program in

139

Section 5.3.1 to be the program which consists of three sensors.

As discussed in Section 5.3.1, the action of the input program is as follows:

Pmi : out == ⊥ −→ out := sensor0;

In this program, we consider three classes of faults: a transient fault that occurs at

sensor 0, a transient fault that occurs at sensor 1 and a transient fault that occurs at sensor

2. When transient faults corrupt one sensor, the sensor changes its value to the opposite of

that of the input. Thus, the fault actions for this program are as follows:

f1: true −→ sensor0 := 1− in;

f2: true −→ sensor1 := 1− in;

f3: true −→ sensor2 := 1− in;

The safety specification requires that the program never reaches a state where the output

of the system is not the same as the real status of the environment. Hence, the safety

specification states that the program should never reach a state where the following formula

is true:

specmm = (out == 1 ∧ in == 0) ∨ (in == 1 ∧ out == 0)

The legitimate states of the program are those where the values of the majority of sensors

are equal to the value of the real status in the environment and the output is equal to the

value of the real status in the environment if the output is decided. Hence, the invariant is

as follows:

140

Invmm =

((sensor0 == sensor1 == in) ∨ (sensor0 == sensor2 == in)

∨(sensor1 == sensor2 == in)) ∧ (out == ⊥ ∨ out == in)

We extend our Add MM Weakmulti algorithm to revise the above input-output program

to be a MM weak multitolerant program with input Pmi, f1, f2, f3, Invmm and specmm.

Specifically, our algorithm works as follows: after executing Add FF Weakmulti in Line 6 of

Algorithm 3, the program actions include:

out == ⊥ ∧ sensor0 == sensor1 −→ out := sensor0;

out == ⊥ ∧ sensor0 == sensor2 −→ out := sensor0;

The following steps of executing Ensure Recovery (Lines 10 and 11 of Algorithm 3) remove

these deadlock states if sensor0 is corrupted and add recovery transition:

out == ⊥ ∧ sensor1 == sensor2 −→ out := sensor1.

Hence, the final program is as follows:

out == ⊥ ∧ sensor0 == sensor1 −→ out := sensor0;

out == ⊥ ∧ sensor0 == sensor2 −→ out := sensor0;

out == ⊥ ∧ sensor1 == sensor2 −→ out := sensor1;

141

5.5 Complexity Analysis of FM Weak Multitolerance

In this section, we investigate the synthesis problem for weak multitolerant programs for the

case where program is subject to two classes of faults f1 and f2 for which respectively failsafe

and masking fault-tolerance is required, that is fδ = {〈f1, failsafe〉, 〈f2, masking〉} in

Definition 5.1.1. This synthesis problem is NP-complete! This result is also surprising since

the corresponding problem for strong multitolerance is in P.

Theorem 5.5.1. The problem of synthesizing FM weak multitolerant programs from their

fault-intolerant version is NP-complete.

Proof. Given is a program P, with its invariant S, its specification spec, and two classes

of faults f1 and f2. Since demonstrating membership to NP is trivial, we only illus-

trate that the synthesis problem identified in Definition 5.1.1 is NP-hard when fδ =

{〈f1, failsafe〉, 〈f2, masking〉}.

We construct the mapping by changing that part of proof for Theorem 5.4.1 as follows:

• Replace fm1 fault transitions with transitions of f2.

• Replace fm2 fault transitions with transitions of f1.

Next, we show that the given SAT formula is satisfiable if and only if there exists a

solution to the FM weak multitolerant synthesis problem.

• (=⇒) By the proof of Theorem 5.4.1, if the given SAT formula is satisfiable then there

exists a program that is masking fault-tolerant to ff1 and fm1. Also, by Definitions

2.3.2 and 2.3.3, a program P that is masking f1-tolerant from S for spec is failsafe

f1-tolerant from S for spec. Hence, if the given SAT formula is satisfiable then there

is a solution to the corresponding instance of the FM weak multitolerance synthesis.

142

• (⇐=) This proof is identical to the corresponding proof for Theorem 5.4.1, hence we

omit it.

5.6 Complexity Analysis of MN Weak Multitolerance

In this section, we present a synthesis algorithm for weak multitolerant programs for the case

where a program is subject to two classes of faults f1 and f2 for which respectively masking

and nonmasking fault-tolerance is required, that is fδ = {〈f1, masking〉, 〈f2, nonmasking〉}

in Definition 5.1.1. We show that such a MN (Masking-Nonmasking) weak multitolerant

program can be synthesized in polynomial time in the state space. This sound and complete

algorithm also can be easily generalized for the case where fδ includes one class of faults for

which masking fault tolerance is desired and two or more fault classes for which nonmasking

fault tolerance is desired. Note that from the results in Section 5.4, if masking fault tolerance

is desired for two or more classes of faults, then the problem is NP-complete.

Given is a program P, with its invariant S and its specification spec. Our objective is

to synthesize a program P′, with invariant S′ that is weak multitolerant to fδ. By def-

inition, P′ must be masking f1-tolerant. P′ must also be nonmasking f2-tolerant. The

algorithm for MN weak multitolerance utilizes the algorithm Add Masking (from [134]) that

adds masking fault-tolerance to a single class of faults. Add Masking returns the synthe-

sized program P′, its invariant S′ and its fault-span T ′ such that P′ is masking fault-

tolerant to S′ and T ′ is the fault-span used to prove this in Definition 2.3.2. The algo-

rithm Add MN Weakmulti only relies on the correctness (i.e., soundness and completeness)

of Add Masking. It does not rely on the actual implementation of Add Masking. (For reader’s

143

Algorithm 5: Add MN Weakmulti
Input: P:transitions,

fδ1 : {〈f1, masking〉, 〈f2, nonmasking 〉}
S: state predicate, spec: safety specification

Ouput: If successful, a fault-tolerant P ′ with invariant S ′

that is weak multitolerant to f1 and f2
P1, S ′, T1 := Add Masking(P, f1, S, spec); (1)
if (S ′ = {})

declare no weak multitolerant program P ′ exists, (2)
return ∅, ∅; (3)

P ′ := P1|T1 ∪ {(∫0, ∫1) : (∫0, ∫1)
∈ P, ∫0 /∈ T1 ∧ ∫1 ∈ T1}; (4)

RETURN P ′, S ′ (5)

Figure 5.5: Model revision for adding MN weak multitolerance.

convenience, the algorithm from [134] is included in the Appendix. However, we note that

the proof of Add MN Weakmulti only relies on the correctness of Add Masking and not on

its details.) Thus, Add MN Weakmulti first invokes Add Masking on Line 1 with parameters

(P, f1, S, spec). As shown in Line 2, if the invariant becomes an empty set after reconstruc-

tion in Line 1, we cannot find an MN weak multitolerant program P′. If the invariant is

not empty, we re-compute the set of program transitions in Line 3. Algorithm 5 in Figure

5.5 describes the details.

Algorithm 5 is the same as that for adding strong multitolerant program [71].

Theorem 5.6.1. The algorithm Add MN Weakmulti is sound and complete.

Proof. By correctness of Add Masking, P1 satisfies the constraints of Definition 5.1.1 for the

case where fδ = {〈f1, masking〉}. Since Step 3 does not add or remove any state of S or

a transition from P|T , these constraints are preserved by the final program P′. Hence, to

complete the proof of this theorem, next, we show that P′ is nonmasking f2-tolerant. By

definition of masking fault-tolerance, every computation of P1 that starts in a state in T1

reaches a state in S′. If f2 perturbs the program to a state outside T1 then the recovery

144

transitions added in Step 3 will recover the program to a state in T1 from where it can utilize

the recovery paths inside P1 to reach S′. Thus, P′ is nonmasking f2-tolerant.

Our algorithm declares that an MN weak multitolerant program does not exist only

when Add Masking does not find a masking f1-tolerant program. Hence, completeness of

Algorithm 5 follows from the completeness of Add Masking.

5.7 Complexity Analysis of NN Weak Multitolerance

The algorithm Add NN Weakmulti for NN (Nonmasking-Nonmasking) weak multitolerant

problem is identical to Algorithm 5, except that instead of invoking Add Masking on Line 1

of Algorithm 5, we call Add Nonmasking(from [134]).

Theorem 5.7.1. The algorithm Add NN Weakmulti is sound and complete.

Proof. Since the proof is similar to the proof of algorithm 5, we omit it.

5.8 Comparison of Feasibility of Strong Multitolerance

and Weak Multitolerance

In this section, we compare the relation between strong multitolerance [71] and weak multi-

tolerance.

Specifically, we point out that if a program is strong multitolerant then it is also weak

multitolerant, although the reverse is not necessarily true. We also identify circumstances

where solvability for adding weak and strong multitolerance differs. In particular, we show

that for high atomicity programs, (i.e., programs that can read all the variables and write all

145

the variables in one atomic step), if adding MN (respectively, NN or FN) weakmultitolerance

to a program is feasible then adding MN (respectively, NN or FN) strong multitolerance is

also feasible. However, the same result does not apply for MM, MF or FF multitolerance.

Definition 5.8.1. Let fδ = {〈fi, li〉 | 0 < i ≤ n, li ∈ {failsafe, nonmasking, masking}}

where n ≥ 0. Program P is strong multitolerant to fault set fδ from S for spec iff the

following conditions hold:

1. (In the absence of faults) P |=S spec;

2. P is masking fm-tolerant from S for spec;

3. P is nonmasking fn-tolerant from S for spec;

4. P is failsafe ff -tolerant from S for spec,

where

• fm =
⋃{fi|〈fi,masking〉 ∈ fδ },

• fn =
⋃{fi|〈fi, nonmasking〉 ∈ fδ ∨ 〈fi,masking〉 ∈ fδ},

• ff =
⋃{fi|〈fi, failsafe〉 ∈ fδ ∨ 〈fi,masking〉 ∈ fδ}.

Observation 5.8.1. If a program P is strong multitolerance to fδ from S for spec, then P

is weak multitolerance to fδ from S for spec.

Observation 5.8.2. It is possible that P is weak multitolerance to fδ from S for spec

however P is not strong multitolerance to fδ from S for spec.

Observation 5.8.3. Program P is weak multitolerant to fault set fδ from S for spec where

fδ = {〈f1, nonmasking〉, 〈f2, failsafe〉} iff P is strong multitolerant to fault set fδ from S

for spec .

146

Similar to Definition 5.1.1, we define the problem of strong multitolerance synthesis as

follows:

Definition 5.8.2. The Strong Multitolerance Synthesis Problem.

Given P, S, spec and fδ: Identify P′ and S′ such that

• (C1) S′ ⊆ S,

• (C2) (s0, s1) ∈ P′ ∧ s0 ∈ S′ ⇒ (s0, s1) ∈ P, and

• (C3) P′ is strong multitolerant to fδ from S′ for spec.

We state the corresponding decision problem as follows:

Definition 5.8.3. The Strong Multitolerance Decision Problem.

Given P, S, spec and fδ: Does there exist a program P′, with its invariant S′ that

satisfies the requirements of Definition 5.8.2?

Now we consider the following question: if the weak multitolerance decision problem for

the given program P is affirmative, then is the strong multitolerance decision problem for

P affirmative?

To demonstrate the answer to the above question, we discuss the feasibility of stepwise

design of weak multitolerant programs and compare it with the feasibility of stepwise design

of strong multitolerant programs in the following combinations.

5.8.1 Feasibility Comparison of FF Strong/Weak Multitolerance

In this section, we show that there are instances where adding FF weak multitolerance is

feasible although adding FF strong multitolerance is not feasible. We can show this with a

147

Figure 5.6: A case of FF Weak multitolerance (not Strong).

simple example illustrated in Figure 5.6. In this example, the input is as follows. The state

space of the input program is {s0, s1, s2}, input program consists of only one transition

(s0, s0) and its invariant contains only one state s0. The transition (s1, s2) violates safety.

The class of fault f1 includes only one transition (s0, s1) and fault f2 includes only one

transition (s1, s2).

Clearly, if faults f1 and f2 occur in the same computation then safety can be violated

from state s0, the only state in the invariant. Hence, adding FF strong multitolerance is

not possible in this example, i.e., the answer to the decision problem 5.8.3 is false. How-

ever, adding FF weak multitolerance is feasible. In fact, the program P itself is FF weak

multitolerant.

5.8.2 Feasibility Comparison of MM Strong/Weak Multitolerance

and MF Strong/Weak Multitolerance.

In this section, we show that there are instances where adding MM (respectively, MF) weak

multitolerance is feasible although adding MM (respectively, MF) strong multitolerance is

not feasible. To illustrate this, we use the input obtained by mapping the SAT formula as

discussed in Section 5.4. As shown in Section 5.4, if we begin with a SAT formula that

is satisfiable, then the answer to the decision problem for adding MM weak multitolerance

148

(Problem 5.1.2) is affirmative. Next, we show that for this input, the answer to the decision

problem for adding MM strong multitolerance (Problem 5.8.3) is always false. To show this

observe that, in Figure 5.2, any recovery path to the invariant must go through either gi or

hi from some i (1 ≤ i ≤ n where n is the number of propositional variables in the instance of

the SAT problem in Section 5.4). If f1 and f2 occur in the same computation, safety will be

violated when either fault transition (gi, ai) or (hi, bi) is executed. Moreover, the agreement

program in Section 5.2.4 is another example of cases where adding strong multitolerance is

impossible while weak multitolerance can be designed.

We note that using a similar argument, we can show that there are instances where

adding MF weak multitolerance is feasible although adding MF strong multitolerance is not

feasible.

5.8.3 Feasibility Comparison of MN Strong/Weak Multitolerance

and NN Strong/Weak Multitolerance.

Since the algorithm that is used to synthesize the MN/NN weakmultitolerance is the same as

that of MN/NN strong multitolerance, the synthesis problem of MN/NN weakmultitolerance

and MN/NN strong multitolerance have the same feasibility property.

5.9 Discussion

In this section, we discuss issues related to the way we model faults, the practical significance

of the proposed work in this chapter and some limitations of our approach.

Our work models the impact of faults on programs as a set of transitions (i.e., a non-

deterministic finite-state machine) that perturbs the program state. Designers can identify

149

the classes of faults dependent upon the domain of application and the requirements of the

system users. To generate a fault-class, first we identify the faults that may perturb the

program at hand. Fault forecasting methods [142] can be useful to achieve this objective.

Then, we formally characterize each of these faults as state perturbations. Finally, we group

the faults into fault classes based on the corresponding level of tolerance required to each

fault-class. The desired level of tolerance is based on the user requirements and feasibility

of providing that level of tolerance under system constraints/resources. As demonstrated in

this dissertation, using this method of fault modeling, one can represent Byzantine, crash,

message loss, input corruption, node leave and transient faults. Moreover, previous work

[15, 71, 163, 164, 186] uses this model to capture other classes of faults such as stuck-at,

omission, disk corruption and sensor failures. However, our fault model cannot capture any

types of faults that cannot be represented as a finite-state machine (e.g., impact of external

disturbances on aircrafts, effect of wing damage on flight control systems, mechanical systems

involving several masses, springs and dampers).

Adding weak multitolerance enables a method for component-based design of multitoler-

ant programs. Specifically, consider an existing program P that provides weakmultitolerance

to the fault classes f1, · · · , fn−1. If designers detect a new fault-class fn after the design

and implementation of P, then it is desirable to have a revised version of P, denoted Pc,

that provides weak multitolerance to f1, · · · , fn−1 and fn. To design Pc, developers have

two options: redesign a new multitolerant program from scratch or simply design a compo-

nent C and compose it with P such that the resulting composition preserves fault tolerance

to faults fi, for 1 ≤ i ≤ n − 1, and enables a specific level of fault tolerance when fn

occurs. In fact, the component C has to ensure that the computations of P ∪ fn meet the

150

requirements of the desired level of fault tolerance; i.e., no guarantees are provided for the

computations of the composed program Pc in the presence of faults f1, · · · , fn−1. While in

our previous work [71] we present stepwise algorithms for the design of strongly multitolerant

programs, there are several cases where strong multitolerance cannot be added. Moreover,

component-based design of weak multitolerance is easier since no guarantees are provided

for the computations in which multiple faults occur.

The proposed approach in this chapter has several practical and methodological signifi-

cance regarding the development of concurrent software. First, we present a paradigm shift

with respect to the traditional design and verification methods, where developers design

fault-tolerant programs first and verify their correctness after the fact. Automated addition

of multitolerance is especially beneficial since it is often difficult to anticipate all classes

of faults in the early stages of design due to the complex and dynamic nature of today’s

systems. Thus, the proposed approach enables a systematic method for automated addition

of fault tolerance to existing programs. Second, automated addition of weak multitolerance

exploits computational redundancy before resorting to resource redundancy. In particular,

the algorithms presented in this chapter enable the design of several intermediate levels of

multitolerance that developers can consider in their risk/cost analysis so using resource re-

dundancy becomes a last-resort option. Third, the notion of weak multitolerance provides

an impossibility test for designers. That is, if a weakly multitolerant version of an existing

program does not exist, then strong multitolerance cannot be added to that program too.

Fourth, our algorithms can be integrated in model checkers to facilitate the detection and

correction of conflicts between several levels of fault tolerance. Last but not least, while our

focus in this chapter is on high atomicity programs, the proposed method can be used for the

151

design of highly resilient network protocols where processing nodes might have read/write

restriction with respect to the variables of other nodes. Thus, this work can significantly

improve the way network protocols are designed.

The approach presented in this chapter has some constraints in terms of the input to the

synthesis algorithms and tool development. First, thus far we have investigated the problem

of adding multitolerance for finite-state programs; i.e., the problem of adding multitoler-

ance to infinite-state programs is still open. Second, during the addition of multitolerance

our algorithms preserve only the properties that can be captured in the linear topological

characterization of specifications by Alpern and Schneider [6]. For instance, if the proper-

ties of the intolerant program are specified in the Computation Tree Logic [76], then we

do not guarantee that they will be preserved in the absence of faults. Third, the input

program should be maximal. That is, from any state, the program should have the max-

imum number of non-deterministic outgoing transitions. The maximality of the intolerant

programs increases the chances of success in adding multiple levels of fault tolerance. For

example, consider the program synthesized in Section 5.3.1. While the guard of the action

out == ⊥∧sensor0 == sensor1 6= in −→ out = sensor0 is never enabled, we included it in

the multitolerant program since such transitions may be useful for adding new levels of fault

tolerance if new classes of faults are detected. Fourth, our model of programs is an abstract

model in that we do not add multitolerance to C/C++/Java programs. Nonetheless, we can

exploit the existing model extraction techniques [50,111,227] that are used in model checking

where a finite model is generated from a C/C++/Java program and then multitolerance is

added to the extracted model. Fifth, we plan to reuse the tools that we have developed for

the addition of a single level of fault tolerance to concurrent programs [72] for the automated

152

design of multitolerant programs. While the time/space complexity of synthesis is a bottle-

neck for tool development, we have developed distributed [68] and symbolic [37] techniques

that increase the scalability of algorithms for the addition of fault tolerance significantly

(e.g., for programs with 2100 reachable states).

Finally, in cases where the algorithms for adding weak multitolerance declare failure,

the design of weak multitolerance becomes impossible under the constraints/resources of the

program at hand. One solution may be to add more redundancy. It is possible to revise

the algorithms in this chapter, so additional redundancy could be introduced automatically.

However, we believe that addition of redundancy should be handled manually, since it re-

quires resources and an automation algorithm cannot determine whether these resources are

reasonable and available. Another possible solution may be to change the expected level of

tolerance. For example, if aMM weak multitolerance is unfeasible, then system may provide

MN weak multitolerance. Again, the choice of this depends upon whether the reduced level

of tolerance is acceptable to system users. As stated in Section 6.1, this involves a tradeoff

between the cost and level of fault tolerance. Automation algorithms, like the ones in our

work, allow designers to identify a fault-tolerant program with the given choices in terms of

redundancy and level of tolerance.

5.10 The Tool RM 2: Model Revision for Adding Mul-

titolerance

In this section, we describe RM2, a tool for Model Revision for adding Multitolerance.

RM2 is an extension of the tool SYCRAFT [37], which is a tool of automatically reparing

153

program for adding fault-tolerance. It augments SYCRAFT to address the problem of

automatically revision for adding multitolerance. In particular, RM2 considers two types

of multitolerance, including strong multitolerance [137] and weak multitolerance proposed

in this chapter. Specifically, given a fault-intolerant program, a set of fault actions and

specifications, the tool generates a fault-tolerant program via a symbolic implementation of

the respective algorithms.

RM2 is written in C++ and the algorithms are implemented based on GLU/CUDD

package [213], which provides functions to manipulate Binary Decision Diagrams (BDDs).

Our tool uses Flex [146] to read the given input files, and employs Bison [56] to parse the

grammar. Flex is a tool for generating scanners: programs which recognized lexical patterns

in text. Bison is a general-purpose parser generator that converts a grammar description for

an LALR(1) context-free grammar into a C program to parse that grammar.

5.10.1 Input Program Language

Similar to SYCRAFT, every input program to RM2 consists of eight modules, including

declarations for program name, constraint, variables, processes, faults, invariant, safety spec-

ification and prohibited transiton predicates. A typical RM2 input program structure is as

follows:

program Program name;

const

. . .

var

. . .

154

process the 1st process name

. . . process actions . . .

process the 2nd process name

. . . process actions . . .

. . .

endprocess

ffault the 1st fault name

. . . fault actions . . .

endffault

sfault the 2nd fault name

. . . fault actions . . .

endsfault

invariant

. . .

specification

. . .

prohibited

. . .

Technically, the input program is defined as follows.

〈prog〉 ::= 〈progdecl〉 〈constdecl〉 〈vardecl〉 〈procdecl〉

〈ffaultdecl〉 〈sfaultdecl〉

〈invariantdecl〉 〈specdecl〉 〈prohibiteddecl〉

155

Module 〈progdecl〉 declares the program name and is defined as follows.

〈progdecl〉 ::= program 〈identifier〉

An identifier can be any combination of alphanumeric characters, starting with an alphabet.

And, case matters.

Module 〈constdecl〉 declares constants.The grammar is defined as follows.

〈constdecl〉 ::= const 〈constlist〉|〈empty〉

〈constdecl〉 ::= 〈concreteconst〉|〈constlist〉〈concreteconst〉

〈concreteconst〉 ::= int 〈identifier〉” = ”〈guard〉”; ”|

boolean 〈identifier〉” = ”〈guard〉”; ”

〈empty〉 :=

〈guard〉 can be any combination of quantified Boolean and arithmetic expressions. An

example of constant declaration is as follows.

const

int N = 2;

int B = 2;

Module 〈vardecl〉 declares variables, which are of two types: integer (nonnegative) and

boolean. Each interger is declared along with its domain, where the lower bound must be

zero. The grammar is defined as follows.

156

〈vardecl〉 ::= var 〈varlist〉

〈constdecl〉 ::= 〈concretevar〉|〈varlist〉〈concretevar〉

〈concretevar〉 ::= 〈booldecl〉|〈intdecl〉

〈booldecl〉 ::= boolean 〈identifier〉”; ”|

boolean 〈identifier〉”.”〈range〉”; ”

〈intdecl〉 ::= int 〈identifier〉” : domain”〈range〉”; ”|

int 〈identifier〉”.”〈range〉” : domain”〈range〉”; ”

〈range〉 ::= 〈rangedelim〉”..”〈rangedelim〉

〈rangdelim〉 ::= 〈guard〉

An example of constant declaration is as follows.

var

boolean bg;

boolean b.0..N;

int i: domain 0..5;

int j.0..N: domain 0..2;

A program consists of a set of processes. Module 〈processdecl〉 declares process, which

includes: (1) a set of actions, (2) a fault section which describes fault actions, (3) a prohibited

section which defines a set of actions that is not allowed to execute, (4) a set of readable

variables and (5) a set of writeable variables. The synatx of both program actions and fault

actions are of form guard→ statement. The grammar is defined as follows.

〈procdecl〉 ::= 〈procstruct〉|〈procdecl〉〈procstruct〉

157

〈procstruct〉 ::= process 〈identifier〉〈procrange〉〈actions〉〈faultdecl〉

〈prohibited〉〈rwrestrict〉〈endprocess〉

〈procrange〉 := ”:” 〈range〉|〈empty〉

In the above definition, 〈rwrestrict〉 defines the set of variables that are allowed to read and

the set of variables that are allowed to write.

Module 〈faultdecl〉 defines faults that the process is subject to. As illustrated in Chapter

3, fault transitions are modeled using guarded commands. Thus, fault transitions have the

same syntax with the program actions. The grammar is defined as follows.

〈faultdecl〉 ::= 〈ffaultdecl〉|〈sfaultdecl〉|〈ffaultdecl〉〈sfaultdecl〉|〈empty〉

〈ffaultdecl〉 ::= ffaults 〈actions〉endffault|〈empty〉

〈sfaultdecl〉 ::= sfaults 〈actions〉endsfault|〈empty〉

Module 〈invariantdecl〉 defines invariant predicate (see Definition 2.2.4) of the given

program. Module 〈specdecl〉 defines safety specification (see Definition 2.2.1). And, module

〈prohibiteddecl〉 defines transitions that are not allowed to execute. The given input program

may not have prohibited transitions. Specifically, rules for these modules are defined as

follows.

〈invariantdecl〉 ::= invariant 〈guard〉”; ”

〈specdecl〉 ::= specification 〈guard〉”; ”|〈empty〉

〈prohibiteddecl〉 ::= prohibited 〈guard〉”; ”|〈empty〉

158

5.11 Functionality and Output Program

RM2 implements algorithms and heuristics of model revision for adding weak multitolerance

proposed in this chapter, as well as algorithms and heuristics for adding strong multitolerance

in [137].

The output of RM2 is a fault-tolerant program in terms of unchanged actions, revised

actions and recovery actions, as defined in Section 2.4.

5.11.1 Example 1: Two-Sensors Program

The details of this example is in Section 5.3.1. The input file is shown in Figure 5.7. After

running RM2 with paramater wff, where w denotes weak and ff denotes failsafe-failsafe, the

output is a fault-tolerant version shown in Figure 5.8.

5.11.2 Example 2: Byzantine Agreement

We now use the Byzantine Agreement problem to describe the functionality of RM2. Figure

5.9 specifies program actions. Figure 5.10 specifies fault actions. After running RM2 with

paramater smn, where s denotes weak and mn denotes masking-nonmasking, the output is

a fault-tolerant version shown in Figure 5.11.

5.12 Summary

In this chapter, we addressed the problem of automatic revision of multitolerant program.

The problem of model revision for adding multitolerance is motivated by the observation

that a program is often subject to multiple classes of faults and the level of tolerance pro-

159

program SensorFF;
const N = 1;
var

int inp.0..N: domain 0..1;
int out: domain 0..2;

process prog
(out == 2) ⇢ out := inp.0;
[]
(out == 2) ⇢ out := inp.1;
read: out, inp.0..N;
write: out;

endprocess

ffault Corruption
true ⇢ (inp.0 := 1) [] (inp.0 := 0);

endffault

sfault Corruption1
true ⇢ (inp.1 := 1) [] (inp.1 := 0);

endsfault

invariant
((out == 2) & (forall p, q in 0..N:: (inp.p == inp.q))) ∣
(exists a, b in 0..N: (a != b):: ((out == inp.a) & (inp.a == inp.b)));

specification
(exists a, b in 0..N: (a != b):: ((inp.(a)’ == inp.(b)’)

& (inp.(a)’ != out’) & (out’ != 2)));
prohibited

(out != 2) & (out != out’);

Figure 5.7: Input file of two-sensors program.

160

UNCHANGED ACTIONS:
————————————————————————————–
————————————————————————————–
REVISED ACTIONS:
————————————————————————————–
1- (inp.0 == 1) & (inp.1 == 1) & (out == 2) ⇢ (out := 1)
2- (inp.0 == 0) & (inp.1 == 0) & (out == 2) ⇢ (out := 0)

————————————————————————————–
NEW RECOVERY ACTIONS:
————————————————————————————–

Figure 5.8: Output of two-sensors Program.

vided to them is often different. The problem of adding weak multitolerance considers the

special case where the faults are independent, i.e., occurrence of faults from multiple classes

are unlikely to happen simultaneously and, hence, it suffices to ensure that the program

provides the required tolerance to each fault-class. By contrast, the strong multitolerance

considered in [71] focuses on scenarios where faults from several fault classes can happen

simultaneously. For this reason, we illustrated that there are several instances where adding

weak multitolerance is feasible although adding strong multitolerance is not feasible.

We investigated the complexity of adding weakmultitolerance, To this end, we considered

five possible combinations MM, FM, FF, MN and NN. In each combination, the first letter

indicates the fault-tolerance level for the first class of faults, denoted f1, and the second letter

indicates the fault-tolerance level for the second class of faults f2. We found a surprising

result that if masking fault-tolerance is desired for f1 and masking (or failsafe) fault-tolerance

is desired for f2, then adding weak multitolerance is NP-hard (in program state space). This

result is counterintuitive since the corresponding problem for adding strong multitolerance

161

program Byzantine Agreement;

const N = 2;

var

boolean bg;
boolean b.0..N;
boolean f.0..N;

int dg: domain 0..1;
int d.0..N: domain 0..2;

process j: 0..N
{non-Byzantine non-general process copies value from the general }
((d.j == 2) & !f.j & !b.j) ⇢ d.j := dg;

[]
non-Byzantine non-general finalizes decision
((d.j != 2) & !f.j & !b.j) ⇢ f.j := true;

ffault Byzantine NonGeneral
(!bg) & (forall p in 0..N:: (!b.p)) ⇢ b.j := true;

[]
(b.j) ⇢ (d.j := 1) [] (d.j := 0) [] (f.j := false) [] (f.j := true);

endffault
sfault Byzantine NonGeneralAnother

true ⇢ (d.j := 1) [] (d.j := 0);
endsfault
prohibited !b.j & !b.(j)’ & f.j & ((d.j != d.(j)’) ∣ !f.(j)’);
read: d.0..N, dg, f.j, b.j;
write: d.j, f.j;

endprocess

Figure 5.9: Program actions of the Byzantine agreement program.

162

ffault Byzantine General

!bg & (forall p in 0..N:: (!b.p)) ⇢ bg := true;
[]
bg ⇢ (dg := 1) [] (dg := 0);

endffault

sfault Byzantine GeneralAnother

true ⇢ (dg := 1) [] (dg := 0);
endsfault
invariant

(!bg & (forall p, q in 0..N:(p != q):: ((!b.p) ∣ (!b.q))) &
(forall r in 0..N:: (!b.r ⇒ ((d.r == 2) — (d.r == dg)))) &
(forall s in 0..N:: ((!b.s & f.s) ⇒ (d.s != 2))))
∣
(bg & (forall t in 0..N:: (!b.t))
& (forall a, b in 0..N:(a != b)::((d.a == d.b)
& (d.a != 2))));

specification

(exists p, q in 0..N: (p != q):: (!b.(p)’
& !b.(q)’ & (d.(p)’ != 2) & (d.(q)’ != 2)
& (d.(p)’ != d.(q)’) & f.(p)’ & f.(q)’)) ∣
(exists r in 0..N:: (!bg’ & !b.(r)’
& f.(r)’ & (d.(r)’ != 2) & (d.(r)’ != dg’)));

Figure 5.10: Fault actions of the Byzantine agreement program.

163

UNCHANGED ACTIONS:
————————————————————————————–
1- (d0 == 2) & !(f0 == 1) & !(b0 == 1) ⇢ (d0 := dg)

————————————————————————————–
REVISED ACTIONS:
————————————————————————————–
2- (b0==0) &(d0==0)& (d1==1) & (f0==0) ⇢ (f0 := 1)
3- (b0==0) &(d0==0)& (d2==0) & (f0==0) ⇢ (f0 := 1)
4- (b0==0) &(d0==0)& (d1==0) & (f0==0) ⇢ (f0 := 1)
5- (b0==0) &(d0==0)& (d2==1) & (f0==0) ⇢ (f0 := 1)

————————————————————————————–
NEW RECOVERY ACTIONS:
————————————————————————————–
6- (b0==0) &(d0==0)& (d1==1) & (d2==1) & (f0==0) ⇢ (d0 := 1)
7- (b0==0) &(d0==0)& (d2==0) & (d2==0) &(f0==0) ⇢ (d0 := 0)
8- (b0==0) &(d0==0)& (d1==0) & (d2==1) &(f0==0) ⇢ (d0 := 1), (f0 := 1)
9- (b0==0) &(d0==0)& (d2==1) & (d2==0) &(f0==0) ⇢ (d0 := 0),(f0 := 1)

Figure 5.11: Output of two-sensors program.

can be solved in polynomial time. We also presented a sound heuristic for designing MM

weakly multitolerant programs. For other combinations FF, MN and NN, we illustrated that

the problem of synthesizing weak multitolerance is in P. To demonstrate this, we presented

a sound and complete algorithm for each combination.

We also investigated the relation between strong multitolerance and weak multitolerance.

Specifically, we argue that if a program is strongly multitolerant then it is also weakly mul-

titolerant, although the reverse is not necessarily true. Moreover, we identify circumstances

where solvability of adding weak and strong multitolerance differs. We show that (1) there

are situations where adding FF weak multitolerance is feasible although adding FF strong

multitolerance is not feasible; (2) there are instances where adding MF weak multitolerance

is feasible although adding MF strong multitolerance is not feasible, and (3) the synthesis

164

problem of MN/NN weak multitolerance and MN/NN strong multitolerance have the same

feasibility property. Besides, we implemented the algorithms for automatically repairing

programs for adding multitolerance in the tool RM2. Our tool augments the exsiting tools

for the problem of model revision for adding multitolerance.

165

Chapter 6

Automatic Revision of UML State

Diagrams

6.1 Introduction

The utility of formal methods in the development of high assurance systems has gained

widespread use in some segments of industry. In general, there are two main approaches

to utilizing formal methods in providing assurance: correct-by-verification and correct-by-

construction. The first approach, correct-by verification, is the most commonly used ap-

proach. In this approach, one begins with an existing model (or program) and a set of

properties (specification), and verifies that the given program meets the given properties of

interest. An embodiment of this approach is model-checking [26,42,110,143]. Model checking

has been widely studied in the literature and proved effective in identifying bugs in system

design. However, a pitfall of this approach is that if the manually designed model does not

satisfy the requirements then it is often unclear how one can proceed further. Hence, for

166

scenarios where an existing model needs to be revised to deal with the new environment,

the new identified faults, or the new requirements, one needs to manually develop the new

model if one needs to obtain assurance via modeling checking.

The second approach, correct-by-construction, utilizes the specification of the desired

system and constructs a model that is correct. Examples of this approach include [10, 16,

22, 77, 139, 169]. These works differ in terms of the expressiveness of the specifications they

permit and in terms of their complexity. This approach has proven effective in constructing

a model that meets the requirements of specification. However, a pitfall of this approach is

the loss of reuse (of the original model) and a potential for significant increase in complexity.

To obtain the benefits of these two approaches while minimizing their pitfalls, one can

focus on an intermediate approach, model revision. Model revision deals with the problem

where one is given a model/program and a property. And, the goal is to revise the model

to meet the requirement of the given property. Applications of model revision include sce-

narios where model checking concludes that the model violates the requirements specified

by the given property. Other applications include scenarios where an existing model needs

to be revised due to changes in requirements and/or changes in the environment. For this

reason, model revision has been studied in contexts where an existing model needs to be re-

vised to add new fault-tolerance properties, safety properties, liveness properties and timing

constraints [35].

Since model revision generates a model through correct-by-construction, it provides as-

surance comparable to correct-by-construction approaches. Also, since it begins with an

existing model, it has the potential to reuse the existing model during the revision process.

Moreover, there are several instances where complexity of model revision is comparable to

167

that of model checking [35].

To permit wider utilization of model revision in practice, it is desirable to reduce the

learning curve faced by the designer in applying it. In particular, it is especially valuable if

the details of the model revision are hidden from the designer so that the designers continue

to work with a framework that they are familiar with.

One challenge of exploring such an approach of applying the model revision on the pro-

gram design is that the current model-based design is often modeled in a non-computational

way, such as UML [199]. UML is a well-known modeling language utilized by industry, with

focus on system architecture as a means to organize computation, communication and con-

straints. Of UML diagram sets, state diagram is especially helpful when designers discuss

the logic architecture and workflow of the whole system with the need of independence from

a particular programming language. Since the UML state diagram is able to illustrate the

high-level overview of the whole system, it is widely used to model program design. With

this motivation, we propose a framework, namely MR4UM, for applying model revision on

program design modeled in the UML state diagram. To overcome the challenge of apply-

ing model revision on UML state diagram, MR4UM proposes an automatic transformation

mechanism from UML state diagram to the corresponding model in the underlying computa-

tional model (UCM). Subsequently, MR4UM applies model revision on the program modeled

in the UCM and generates a revised program modeled in the UCM. Finally, MR4UM con-

verts the revised program modeled in UCM into the corresponding program design modeled

in UML state diagram.

168

6.2 Motivating Scenario

In this section, we present a motivating scenario from automotive industry. An adaptive

cruise control program (ACC) in automotive system is designed to control the distance be-

tween the vehicle and the front vehicle (called leader car) automatically. Figure 6.1 describes

the logic design of the ACC program.

As shown in Figure 6.1, when ACC program is on after initialization, the system enters

one of the three modes: active, ACC active or inactive. In the active mode, the sensor keeps

checking whether a leader car exists within a predefined safe distance and the ACC program

keeps reading the sensor result. In the ACC active mode, the ACC program is working

to control the distance between the leader car and the current car because a leader car is

detected within the predefined safe distance. In the inactive mode, the driver is pressing

the brakes and the adaptive cruise control relinquishes control to driver for manual control

without considering the effect of cruise. By switching among these three modes, the ACC

system targets to ensure that the leader car is at a desired distance away and the relative

speed of the current car is zero with respect to the leader car. Moreover, if the leader car

does not exist then the system resumes the previous speed chosen by the driver.

Initially, when no leader car is detected by the sensor, the program stays in active mode.

If a leader car is detected within the predefined safe distance, the ACC program enters into

ACC active mode. ACC program stays in ACC active mode until the leader car goes away or

the drive takes the brake. If the leader car goes away from the detectable distance, the ACC

system goes back to the active mode. Under ACC active mode or active mode, the ACC

system enters into inactive mode when driver taps the brake. When driver stops tapping the

brake and presses resume button, the ACC system enters into active mode if no leader car is

169

Figure 6.1: Logic design of the ACC program.

detected and ACC active mode if a leader car is detected. (For simplicity, we do not model

the resume action. We simply assume that releasing the break is equivalent to resume.)

6.2.1 Need for Model Revision for Tolerating Sensor Failure

While the ACC program in Figure 6.1 works correctly in the absence of faults, it may result

in undesired behavior if some faults affect the sensor. Specifically, a sensor failure may cause

two problems: false positive and false negative. A false positive sensor may cause the sensor

to detect a non-existing leader vehicle causing the system to change the state from active

to ACC active. This would potentially cause the car to slow down unnecessarily to prevent

collision with a fictitious car.

A more serious error can result in a false negative sensor that fails to detect a leader

170

vehicle. In this scenario, the car would stay in active mode; thereby potentially cause a

collision with the leader car.

For the above reasons, the model in Figure 6.1 needs to be revised to deal with such

false alarms (false positive & false negative). To tolerate the false alarm (false positive and

false negative) caused by the faulty sensor, one typical fault tolerance policy is to provide

redundancy. Thus, if the redundancy policy is chosen to tolerate the sensor failure, the

problem of revising program design to resist false alarm is to modify the previous system

design to utilize the sensor redundancy. After revision, the new system design should get

correct information about whether the leader car exists, even in the presence of the false

alarm of one sensor.

The goal of MR4UM is to facilitate such a revision with minimal overhead to the designer.

Clearly, during such revision process, the designer would need to specify the original (fault-

intolerant) model. Moreover, this model should be in the format they utilize already. This

does not introduce a new overhead since the problem of model revision is applicable in

scenarios where the designer already has a model. The designer also needs to specify the

specific nature of faults. Towards this end, MR4UM provides a mechanism to describe

commonly encountered faults. Subsequently, the designer utilizes MR4UM to generate the

corresponding fault-tolerant model for the ACC program.

Thus, MR4UM is proposed to start with the (fault-intolerant version of) UML state dia-

gram. Then, MR4UM converts the fault-intolerant UML state diagram into the correspond-

ing underlying computational model (UCM) automatically. This conversion is annotated to

facilitate generation of revised UML model in the last step. Additionally, MR4UM facili-

tates the description of faults to minimize the designer overhead. Next, MR4UM applies a

171

Figure 6.2: A case to illustrate modeling program in UML state diagram.

Model Revision algorithm on the program in UCM to add fault-tolerance. Finally, MR4UM

converts the fault-tolerant program in UCM into the corresponding UML state diagram with

the use of annotations from the first steps.

6.3 An Overview of UML State Diagram

UML is a standardized general-purpose modeling language in the field of object-oriented

software engineering. Specifically, UML state diagrams enable us to visualize the program

design. Moreover, UML state diagrams enable us to capture any form of fault-tolerance that

can be expressed in a state machine-based formalism [70]. In this section, we introduces the

background knowledges of UML state diagram involved in our framework.

A UML state diagram is a directed graph. The nodes in this graph denote states, and

the edges in this graph represent transitions. The graph could represent potential execution

scenario. Specifically, the modeling of individual states and transitions include:

1. State. The state is represented as rounded rectangle. The initial state (if any) is

denoted by a filled circle. The final state (if any) is denoted as a hollow circle containing

172

a smaller filled circle. The states may also be hierarchical in nature. In particular, a

hierarchical state can be decomposed into several states. Currently, our framework

only considers the states at the lowest level. However, it can be easily extended to

utilize the hierarchical model and obtain the corresponding states in lower level.

2. Transition. The transition between states is represented with an arrow. Each tran-

sition is associated with a triggering event followed by the list of executed actions.

A special transition, denoted as the initial transition originates from the solid circle

(initial state). It specifies the default state when the model first begins.

As an illustration, the UML state diagram in Figure 6.2 consists of five states: initial state,

s1, s2, s3 and s4, and six transitions, as follows:

1. The transition from initial state to s1;

2. The transition from s1 to s2 (the triggering condition is E1 and action1 happens con-

currently with this transition);

3. The transition from s2 to s3 (the triggering condition is E2 and action2 happens con-

currently with this transition);

4. The transition from s2 to s4 (the triggering condition is E3 and action3 happens con-

currently with this transition);

5. The transition from s3 to s4 (the triggering condition is E4 and action4 happens con-

currently with this transition);

6. The transition from s4 to s2 (the triggering condition is E5 and action5 happens con-

currently with this transition);

173

Remark 6.3.1. The UML state diagram is capable of specifying finite state machines that

are important for event driven programming. And, the UML state diagram has the potential

to cut down on the number of execution paths through the code and simplify switching between

different modes of execution [200].

6.4 Framework Description

The workflow of MR4UM consists of four steps, including: 1) step A, converting the UML

state diagram into the underlying computational model (UCM); 2) step B, identifying the

effect of faults; 3) step C, utilizing model revision to add fault tolerance to program and 4)

step D, converting the revised program in UCM into UML state diagram while utilizing the

annotations generated in Step A.

6.4.1 Step A: Translating from UML State Diagram to UCM.

In order to utilize the underlying model revision machine, we translate the given UML state

diagram into the corresponding UCM model. This step utilizes syntactic transformation of

the UML state diagram. In particular, for every syntactic feature of the UML state diagram,

we convert it into the corresponding UCM. This step is automated with the help of following

rules:

• Rule 1: Translation of states in UML state model. For all the states in the

UML state diagram, we introduce variable STATE with integer domain [0, n−1] where

n is the number of states in the UML. All the states in the UML state diagram are

numbered from 0 to n-1. For each state, it is mapped to a concrete value assignment of

variable STATE. If UML model consists of hierarchical states then this rule is applied

174

to the states at the lowest level. For example, for state 0 in the UML state diagram,

it is mapping into STATE==0 .

• Rule 2: Translation of trigger conditions. For each trigger condition c men-

tioned in the UML state diagram, we introduce one variable Xc with domain {0, 1}.

Xc = 0 denotes the negative of this trigger condition is satisfied. Xc = 1 denotes this

trigger condition is satisfied. Note that the state space is now defined in terms of the

STATE variable declared in the previous rule and the declaration of variables from this

step.

• Rule 3: Translation of transitions. For each transition in the UML state dia-

gram, we introduce one corresponding program transition P . The guard of P is the

conjunction of the corresponding STATE assignment of source state and the corre-

sponding variables of each trigger conditions. The action changes the assignment of

STATE according to the target state of the original transition in the UML.

Observe that the application of these rules will facilitate the translation of the UML

model into the underlying computational model. Since this model is obtained by the above

rules, it is straightforward to observe that it has the same behavior as the original UML

model.

6.4.2 Step B: Generating Fault Actions, Specification and Invari-

ants from Parameters specified by Designer

After Step A, we have program actions modeled in UCM. To revise the program design to

satisfy the new specification, we need (1) fault actions modeled in UCM, (2) specification,

175

that is, requirements in the presence of faults, and (3) states where program should recover

after faults occurs. Moreover, these parameters are closer in spirit to the underlying compu-

tational model. For this reason, asking the designer to generate these in UCM is not desired.

Unfortunately, they cannot be derived automatically either. For this reason, our framework

facilitates modeling of typical faults that one may encounter in the revision process. Next,

we describe how we obtain these inputs in our framework.

1. Fault Actions Modeled in UCM. In our framework, fault actions are automati-

cally generated from parameters which are specified by designer from GUI. From GUI,

designer needs to specify the following parameters:

(a) What type of faults? Currently, there are three types of faults modeled in our

framework: (1) Byzantine, (2) transient and (3) crash (failstop). The Byzantine

fault allows the fault to change the affected component (variables of the com-

ponent) in an arbitrary manner. Moreover, this fault can perturb the program

several times. A transient fault perturbs the component (variables of the compo-

nent) once (respectively, finitely many times where the bnound is known upfront.

And, crash disables certain variables from being updated and, hence, captures the

notion that a component (containing those variables) has crashed. The default

setting of our framework is transient.

(b) Effect of faults on program. Designer needs to specify the variables the fault

affects after specifying types of faults that may occur during the execution: In

particular,

i. Byzantine. For this type of fault, designer needs to specify which variable(s)

may be corrupted by the Byzantine component and the possible value(s). For

176

example, in the motivating scenario (see Section 6.2), the variable represent-

ing the leader is affected by faults. And, this fault can perturb the program to

an arbitrary state. Hence, the default action for this fault is that the variable

can be corrupted to any value in its domain. However, if the likely fault is

only a false positive, then, the fault action could perturb leader value to 1.

ii. Transient. For this type of fault, designer needs to specify which variable is

perturbed to the random value. The default for this fault is that the variable

can be corrupted to any value in its domain. The difference between the

transient and Byzantine fault is that the former perturbs the program once

whereas the latter could perturb the program a finite number of times.

iii. Crash or Failstop. For this type of fault, designer needs to specify which

variables are prevented from update due to the fault. In our framework, we

use the crash faults to denote the fault that is not detectable. By contrast,

failstop is detectable.

(c) Number of occurrences of faults. Designer also needs to specify the occurrences

of the specified faults. In case of Byzantine/crash faults, the number denotes the

number of Byzantine/crashed components. In turn, this determines the required

level of redundancy. Regarding transient faults, the number denotes the occur-

rences of transient faults that may occur during the computation. The default

setting value is 1.

2. Specification, that is, Requirements in the Presence of Faults. In our frame-

work, specification is automatically generated from parameters which are specified by

designer from GUI. Designer needs to specify each state with variables and corre-

177

sponding values. The union of the specified states from GUI are used to generate the

specification automatically.

3. States Where Program should Recover after Fault Occurs. The states where

program should recover after faults occurs are generated automatically from initial

states (by performing reachability analysis) specified in UML state diagram.

6.4.3 Step C: Model Revision for Adding Fault-tolerance

In this step, we utilize the program generated in Step A and the faults, specification and

invariant generated in Step B to obtain a fault-tolerant program in UCM. Since UCM was

chosen due to its compatibility with the synthesis tool [36], we utilize it to obtain the fault-

tolerant program.

Next, we review the model revision algorithm. This algorithm begins with four inputs, p

(original program in UCM). The details of algorithm are shown in Figure 6.3. This algorithm

consists of five steps, as follows:

1. Initialization (Lines 1-3). In this step, we identify state and transition predicates

from where execution of faults alone may violate safety specification. Specifically, if

(s1, s2) is a fault transition that violates safety then the program should never reach

s1. This is due to the fact that if the program reaches s1 then execution of fault action

can violate safety. Furthermore, if (s0, s1) is also a fault transition then s0 should

also not be reached. Otherwise, execution of two fault transitions would violate safety.

Continuing this process (with backward reachability in fault transitions), we obtain the

set ms such that the fault-tolerant program should not reach a state in ms. For the

same reason, the program should not include a transition that reaches ms. Likewise,

178

it should not include transitions that violate safety. Hence, mt denotes the set of these

transitions that the program should not include.

2. Identification of Fault-span (Lines 9-11). In this step, we identify the fault-

span, that is, the reachable states by the program in the presence of faults starting

from the program invariant.

3. Identifying and removing unsafe transition (Line 12-13). In this step, we

identify and remove transitions in mt. It turns out that in several scenarios, the

transitions of the fault-tolerant program need to be executed with partial information.

Consider the example in Section 6.2, the program cannot read the variable that denotes

whether the leader car actually exists. However, such a variable is needed during

modeling so we can verify that the transitions of the adaptive cruise control system are

consistent with each other. Hence, any time a transition is removed/added, we need

to add the corresponding Group of transitions; specifically, this group is obtained by

changing the values of variables that the program cannot read.

Unfortunately, this restriction of adding and removing groups causes the complexity

of model revision. Hence, we utilize the following heuristics.

Heuristic H1: P′ may include (s0, s1), s0 ∈ ms.

Reasoning behind H1. H1 is based on the premise that the algorithm will ensure that

the program never reaches a state in ms. Hence, even if we include such transitions

(e.g., because they are grouped with otherwise useful transitions), it will not cause any

problems. Moreover, such inclusion is helpful to increase the success of model revision

when (s0, s1) is grouped with some other transitions that is desirable in the P′.

179

Heuristic H2: P′ may include (s0, s1) where (s0, s1) ∈ mt and s0 is not reachable by

transitions in P′ starting from I′ in the presence of faults.

Reasoning behind H2. H2 is based on the premise that if the current version of P does

not reach s0 then it is likely to be true in the final program as well. Hence, including

transition (s0, s1) is expected to be acceptable. If at some later point, state s0 is

reachable then this transition may be removed. The fault-span computed in this step

is used to determine whether state s0 is reachable in the presence of faults.

4. Resolving deadlock states (Line 15-18). To ensure that no new finite computa-

tions are introduced to the input fault-intolerant program, we resolve deadlock states

in this step by either adding recovery path or eliminating states. First, we attempt to

add recovery to the invariant. This recovery could be achieved in a single step or in

multiple steps. Only if the recovery is not feasible then we remove transitions so that

the deadlock state is not reached. In this step, we use the following heuristic.

Heuristic H3. Given a deadlock state s, s /∈ I′, P′ either includes a recovery action

(s, sI), sI ∈ I′, or makes s unreachable from I′ without eliminating any invariant

states.

Reasoning behind H3. H3 is based on the principle that P′ would not eliminate any

states and/or transitions unless absolutely required to do so. This is due to the fact

that if we remove several states from the invariant then it may be impossible to satisfy

specification in the absence of faults. Hence, invariant states are removed only as a

last resort.

5. Re-computing the invariant (Line 20). In this step, we recomputed the program

180

invariant due to identifying offending states during state elimination.

The algorithm keeps repeating steps until the three fixpoints in Line 14, 19 and 20 are

reached. The algorithm terminates when no progress is possible in all the steps.

Algorithm 6: Model Revision for Adding Fault-tolerance
Input: P:transitions,f : fault transitions

spec: safety specification , IP : invariant predicate
Ouput: If successful, a fault-tolerant P ′ with invariant S ′

that is fault-tolerant to f
ms:={s0 : ∃s1, s2, . . . sn : (∀j : 0 ≤ jn : (sj, sj + 1 ∈ f)

∧(sn− 1, sn) violates spec}; (1)
mt:={(s0, s1) : ((s1 ∈ ms) ∨(s0, s1) violates spec)}; (2)
I1,fte:= IP - ms, false ; (3)

REPEAT (4)
I2 := I1; (5)
REPEAT (6)
S1,P2 := I1,P1; (7)
REPEAT (8)
S2 := S1; (9)
S1 := FWReachStates(I1, P1 ∨ f); (10)
S1 := S1 - fte; (11)
mt:= mt ∧S1; (12)
P1:= P1 - Group(P1 ∧mt; (13)
UNTIL S1 = S2; (14)
ds := {s0|s0 ∈ S1 ∪ (∀s1 : s1 ∈ S : (s0, s1) /∈ P1}; (15)
P1 := P1∨ AddRecovery (ds, I1, S1, mt); (16)
ds := {s0|s0 ∈ S1 ∪ (∀s1 : s1 ∈ S : (s0, s1) /∈ P1}; (17)
P1, fte:= Eliminate(ds,P1, I1, S1, f, false, false); (18)

UNTIL P1 = P2; (19)
P1, I1 := ConstructInvariant(P1, I1, f te); (20)

UNTIL I1 = I2; (21)
IP = I1, P ′ = P1; (22)
RETURN IP ′ = P ′; (23)

Figure 6.3: Model revision for adding fault-tolerance.

Thus, at the end of this step, we have a fault-tolerant program in UCM that is obtained

by the corresponding input from Steps A and B. Moreover, as mentioned earlier, the output

in this step consists of: (1) original transitions that are preserved as is, (2) original transitions

181

that are strengthened and (3) recovery transitions.

6.4.4 Step D: Translating the Revised Program in UCM to UML

state diagram.

Till now, we have obtained the revised program modeled in UCM, including (1) original

program actions, (2) revised program actions and (3) recovery program actions. In step D,

the fault-tolerant UML state diagram is generated as follows:

1. First, we utilize the revised program actions and recovery program actions to identify

the changed transitions in the original UML state diagram.

2. Second, we re-annotate these transitions in the UML state diagram by the guard

conditions of these revised program actions and recovery program actions.

Thus, after the completion of all four steps, we obtain the fault-tolerant UML state

diagram.

6.5 Case Study 1: The Adaptive cruise control system

In this section, we present the stepwise application of MR4UM on the case of the adaptive

cruise control (ACC) system introduced in Section 6.2. In particular, we begin with the

fault-intolerant UML model for this case study and apply our framework to generate a fault-

tolerant UML model that satisfies Problem 2.4.1. This case study is organized as follows:

First, in Section 6.5.1, we describe UML state diagram for the fault-intolerant ACC program.

In Section 6.5.2, we describe how MR4UM transforms this UML state diagram into program

actions modeled in UCM. In Section 6.5.3, we describe the user inputs for generating the fault

182

model, specification and invariant. Subsequently, in Section 6.5.4, we describe how MR4UM

utilizes model revision algorithm to add fault tolerance to the input program. Finally, in

Section 6.5.5, we show how MR4UM transforms the fault-tolerant program obtained by

model revision into the corresponding fault-tolerant UML state diagram.

6.5.1 Fault-intolerant UML model for ACC

The model of the ACC system design in the UML state diagram includes five states, namely

active, ACC active, inactive, initial and off. The active state captures the status of ACC

system in “active” mode. The ACC active state captures the status of the ACC system in

“ACC active” mode. The inactive state captures the status of the ACC system in “inactive”

mode. The initial state captures the status of the ACC system in the initializing process.

The off state captures the status that the ACC system is turned off.

The state diagram in Figure 6.4 visualizes model design of the ACC system. For better

understanding, Figure 6.5 labels out formal expression of the corresponding annotation. As

shown in Figure 6.4, when the ACC system is turned on, the system will enter into the active

state after initialization if there is no leader car detected. The system will enter into the

ACC active state if the leader car exists according to the information from sensor system.

In other words, existence (or nonexistence) of leader car is the trigger condition to change

system state between active and ACC active. When the brake is applied, irrespective whether

it were in active or ACC active, the ACC system enters into inactive state. When the brake

is released, the system will change from inactive state into active state or ACC active state

depending upon the existence of leader car. The whole ACC system will continue to stay in

one of these three states until the system is turned off.

183

Figure 6.4: ACC system modeled in UML state diagram.

Figure 6.5: Annotation in formal expression.

As one can observe in the absence of faults, this program works correctly. Anytime a

leader car exists, the system enters into ACC active to ensure that the current car maintains

a safe constant distance to the leader car. And, when the leader moves away, the system

enters into active to ensure that the original speed is resumed.

184

6.5.2 Application of Step A: Generating UCM of the ACC System

The UML model for the ACC system is as shown in Figure 6.5. Based on the transformation

rules, the corresponding UCM needs four variables, namely state, on, brake and leader. The

details of these variables are as follows:

1. state. Based on the number of state in the UML state diagram in Figure 6.5, the

domain of state is {0, 1, 2, 3, 4}. This variable models the five states of the ACC system.

state = 0 denotes the initial status of the system when it is turned on. state = 1

denotes the system is in active status. state = 2 denotes the system is in ACC active

status. state = 3 denotes the system is in inactive status. And, state = 4 denotes the

status that the system is turned off.

2. on. The domain of variable on is {0, 1}. It is used to denote whether the ACC system

is turned on. When the ACC system is turned on, the variable on is assigned with 1,

otherwise 0. on = 0 models the trigger condition that causes the ACC system enters

into the stop status.

3. leader. The domain of variable leader is {0, 1}. It is used to model whether a leader

car is detected by the sensor system. leader = 1 denotes that a leader car is detected.

leader = 0 denotes that no leader car is detected.

4. brake. The domain of variable brake is {0, 1}. It is used to denote whether the brake

is applied by the driver. brake = 1 models the event that the brake is applied during

the execution of ACC system. brake = 0 models the event that the brake is released

during the execution of ACC system.

Program actions of the ACC system are generated as follows:

185

1. state = 0 & on = 1 & leader = 0 −→ state := 1;

2. state = 0 & on = 1 & leader = 1 −→ state := 2;

3. state = 1 & leader = 1 −→ state := 2;

4. state = 2 & leader = 0 −→ state := 1;

5. state = 1 & brake = 1 −→ state := 3;

6. state = 2 & brake = 1 −→ state := 3;

7. state = 3 & brake = 0 & leader = 0 −→ state := 1;

8. state = 3 & brake = 0 & leader = 1 −→ state := 2;

9. state = 1 & on = 0 −→ state := 4;

10. state = 2 & on = 0 −→ state := 4;

11. state = 3 & on = 0 −→ state := 4;

In the above program actions, Action 1 models the transition from initial state (state = 0)

to active state (state = 1). The triggering condition of this transition includes: 1) no leader

car exists within the predefined safety distance and 2) the ACC system is on. This condition

is modeled as on = 1&leader = 0. Action 2 models the transition from initial state to

ACC active(state = 2). The triggering condition is that a leader car is detected within the

predefined safety distance when the system is on, that is, on = 1&leader = 1. Action 3

models the transition from active (state = 1) to ACC active (state = 2). The triggering

condition for this action is a leader car is detected within the predefine safety distance.

Action 4 models a reverse transition of action 3, that is, from ACC active (state = 2) to

186

active (state = 1). The triggering condition for this action is no leader car is detected

within the predefined safety distance. Actions 5 and 6 models the transition from active (or

ACC active) to inactive. The triggering condition for both actions is that driver is pressing

brakes, that is, brake = 1. Actions 7 and 8 model the transitions from state inactive to

active (or ACC active). The triggering condition for these two actions is brakes are released

and no leader car is detected within the predefined safety distance. Actions 9−11 model the

transitions from state active, ACC active or inactive to state off(state = 4). The triggering

condition for these three actions is that the system is turned off.

6.5.3 Application of Step B: Generating Remaining Inputs for

Model Revision

In this framework, the faults cause the sensor to provide an incorrect value. This can be

modeled with Byzantine faults. Moreover, the number of occurrences of this fault is at most

1. And, the fault affects the leader variable from Figure 6.5.

Since the Byzantine fault affects at most one leader variable, we need a redundancy

of three, i.e., we need variables, leader1, leader2 and leader3. Observe that since the

redundancy is added for the leader variable, in the absence of faults, all leader values are

equal. Hence, leader1 can be perturbed from such a state. Moreover, since at most one

fault can occur, leader1 cannot be perturbed further. If two occurrences of faults were

permitted, this would need to be changed so that leader1 could be perturbed even if some

other (and only 1) leader variable were corrupted. Observe that by performing this analysis,

it is possible to generate the guard that identifies when leader1 (respectively, leader2 and

leader3) are corrupted. Based on this the fault actions can be modeled as follows:

187

1. leader1 == leader2 == leader3 −→ leader1 := 0[]leader1 := 1;

2. leader1 == leader2 == leader3 −→ leader2 := 0[]leader2 := 1;

3. leader1 == leader2 == leader3 −→ leader3 := 0[]leader3 := 1;

where [] denotes the non-deterministic execution of statement.

We use an auxiliary variable car to denote whether there is a car in front of the current

car. The value of the variable car is only included for modeling purpose. If the value of the

sensors are not corrupted by fault, the value will be equal to the variable car. Based on the

requirement of the ACC, transitions between Active and ACC active must take the status

of car into account. Moreover, this has to be done without utilizing the variable car in the

revised program. Thus, the set of states the program should not reach are as follows:

((car == 1)&(state′! = state)&(on == 1)&(brake == 0)&(state′! = 2))|

((car == 0)&(state′! = state)&(on == 1)&(brake == 0)&(state′! = 1));

The invariant, that is, states where program should recover after fault occurs, is as follows.

Note that the above predicate is generated automatically from the initial state of the UML

model.

(((car == 1)&(on == 1)&(brake == 0)&(state == 2)

(((leader1 == 1)&(leader2 == 1)&(leader3 == 0))|;

((leader1 == 1)&(leader3 == 1)&(leader2 == 0))|;

((leader2 == 1)&(leader3 == 1)&(leader1 == 0))|;

((leader2 == 1)&(leader3 == 1)&(leader1 == 1))));

188

(((car == 0)&(on == 1)&(brake == 0)&(state == 1)

(((leader1 == 0)&(leader2 == 0)&(leader3 == 1))|;

((leader1 == 0)&(leader3 == 0)&(leader2 == 1))|;

((leader2 == 0)&(leader3 == 0)&(leader1 == 1))|;

((leader2 == 0)&(leader3 == 0)&(leader1 == 0))));

6.5.4 Application of Step C: Generation of Fault-Tolerant UCM

In Step C, we utilize the inputs from Sections 6.5.2 and 6.5.3. Since this step utilizes the tool

SYCRAFT [36], we only provide the output of the synthesized program as follows: (Note

that this output is only intended for use in Step D and not meant for designer to analyze it.)

To :

state = 1 & on = 0 −→ state := 4;

state = 2 & on = 0 −→ state := 4;

state = 3 & on = 0 −→ state := 4;

Ts :

state = 0 & on = 1 & leader1 = 0 & leader2 = 0 −→ state := 1;

state = 0 & on = 1 & leader1 = 0 & leader3 = 0 −→ state := 1;

state = 0 & on = 1 & leader2 = 0 & leader3 = 0 −→ state := 1;

state = 0 & on = 1 & leader1 = 1 & leader2 = 1 −→ state := 2;

state = 0 & on = 1 & leader1 = 1 & leader3 = 1 −→ state := 2;

state = 0 & on = 1 & leader2 = 1 & leader3 = 1 −→ state := 2;

state = 1 & leader1 = 1 & leader2 = 1 −→ state := 2;

189

state = 1 & leader1 = 1 & leader3 = 1 −→ state := 2;

state = 1 & leader2 = 1 & leader3 = 1 −→ state := 2;

state = 2 & leader1 = 0 & leader2 = 0 −→ state := 1;

state = 2 & leader1 = 0 & leader3 = 0 −→ state := 1;

state = 2 & leader2 = 0 & leader3 = 0 −→ state := 1;

state = 3 & brake = 0 & leader1 = 0 & leader2 = 0 −→ state := 1;

state = 3 & brake = 0 & leader1 = 0 & leader3 = 0 −→ state := 1;

state = 3 & brake = 0 & leader2 = 0 & leader3 = 0 −→ state := 1;

state = 3 & brake = 0 & leader1 = 1 & leader2 = 1 −→ state := 2;

state = 3 & brake = 0 & leader1 = 1 & leader3 = 1 −→ state := 2;

state = 3 & brake = 0 & leader2 = 1 & leader3 = 1 −→ state := 2;

The action set To denotes the original actions which are from the original program and

unchanged in the fault-tolerant program. The actions in Ts utilize the redundancy of sensors

to tolerate the false alarm (false positive and false negative) caused by an unreliable sensor.

Hence the system can get correct information about whether the leader car exists, even in

the presence of the false alarm of one sensor.

6.5.5 Application of Step D: Generating Fault-tolerant UMLmodel

for ACC System

In this step, we utilize the fault-tolerant UCM into the corresponding UML state diagram.

Observe that some parts of the UML state diagram remain unchanged. For those, we utilize

the corresponding part from the UML state diagram. As an example, this results in that

190

three transitions in the UML state diagram remain unchanged in the fault-tolerant UML

state diagram, that is, the transition that is from state 1 to state 4, the transition that is

from state 2 to state 4 and the transition that is from state 3 to state 4.

Moreover, for revised actions, we strengthen the conditions under which the actions

can be executed. For example, the triggering condition of transition from state 0 to state

1 is revised from on = 1&leader = 0 to on = 1&((leader1 = 0&leader2 = 0)|(leader1 =

3&leader2 = 0)|(leader1 = 0&leader3 = 0)). Thus, the UML state diagram of fault-tolerant

ACC system is shown in Figure 6.6.

Figure 6.6: The revised ACC program in UML state diagram.

191

6.6 Case Study 2: The Altitude Switch Controller

In this section, we show the stepwise application of MR4UM on a simplified version of

an altitude switch (ASW) program from the aircraft altitude controller system. This case

is adapted from [31]. The ASW program monitors a set of input variables coming from

two analog altitude sensors and a digital altitude sensor. And, it generates an output and

activates an actuator when the altitude is less than a pre-determined threshold.

In particular, we begin with UML state diagram of the ASW program that is fault-

intolerant, and, we apply MR4UM to generate UML state diagram of the fault-tolerant ASW

program that satisfies Problem 2.4.1. Specifically, in Section 6.6.1, we describe the fault-

intolerant UML model for the ASW program. In Section 6.6.2, we describe how MR4UM

transforms UML state diagram of the ASW program into program actions modeled in UCM.

In Section 6.6.3, we describe the user inputs for generating the fault model, specification and

invariant. Next, Section 6.6.4 describes how MR4UM utilizes model revision algorithm to

synthesize fault tolerance to the input program. Finally, Section 6.6.5 show how MR4UM

transforms the fault-tolerant program obtained by model revision into the corresponding

fault-tolerant UML state diagram.

6.6.1 Fault-intolerant UML model for ASW

The UML state diagram of fault-intolerant ASW program includes three state, namely,

initialization, awaitActuator and standby. The initialization state captures the status when

the ASW program is initializing. The awaitActuator state captures the status when the ASW

program is waiting for the actuator to power on. The standby state captures the status when

the ASW program is in standby mode.

192

Figure 6.7: UML state diagram of the ASW program.

The state diagram in Figure 6.7 visualizes model design of ASW program. Figure 6.8

provides formal expression of the corresponding annotation in Figure 6.7. As shown in Figure

6.7, the ASW program will enter into the standby state after initialization from initialization

state, and, the flag variable init is set to be 1 to denote the initialization process is done. The

ASW program will reset into the initialization state from standby state if the reset process is

triggered, and, the flag variable reset is assigned 1 to denote the reset process is done. When

the actuator is powered off and actuator power-on is allowed, the ASW program will change

state from standby to awaitActuator, and, the flag variable altBelow will be assigned 1 to

denote that the altitude is below a specific threshold. The ASW program will change from

awaitActuator state to standby state if the actuator is powered on, and, the flag variable

actuatorStatus will be assigned 1 to denote the actuator is powered on. The ASW program

will change from awaitActuator state to initialization state if the program is reset, and, the

flag variable reset will be assigned 1 to denote that the program is reset. This program works

correctly in the absence of faults.

193

Figure 6.8: the ASW program with formal annotation.

6.6.2 Application of Step A: Generating UCM of the ASW Pro-

gram

The UML state diagram of the ASW program is as shown in Figure 6.8. Based on the

transformation rules, the corresponding program actions in UCM needs seven variables,

namely, state, init,reset, inhibit, altBelow, actuatorStatus and altFail. These variables are

defined as follows:

1. state. The domain of variable state is {0, 1, 2, 3}. It is used to denote the four states of

the ASW program. state = 0 denotes the initial status of the system when it is turned

on. state = 1 denotes the system is in Await-Actuator status. state = 2 denotes the

system is in standby status. Plus, state = 3 denotes the system is in faulty status.

2. init. The domain of variable init is {0, 1}. It is used to denote whether the altitude

controller program is initialized. When the program is initialized, the variable init is

assigned 1, otherwise 0.

3. reset. The domain of variable reset is {0, 1}. It is used to model whether the program

is being reset. When the program is reset, the variable reset is assigned 1, otherwise 0.

194

4. inhibit. The domain of variable inhibit is {0, 1}. It is used to model whether the

actuator power-on is inhibited. inhibit = 1 denotes that the actuator power-on is

inhibited. And, inhibit = 0 denotes the actuator power-on is allowed.

5. altBelow. The domain of variable brake is {0, 1}. It is used to denote whether the

altitude is less than a pre-determined threshold. altBelow = 1 models the event that

the altitude is below a specific threshold. altBelow = 0 models the event that the

altitude is not below the threshold.

6. actuatorStatus. The domain of variable actuatorStatus is {0, 1}. It is used to model

whether the actuator is powered on. actuatorStatus = 1 denotes that the actuator is

powered on. And, inhibit = 0 denotes the actuator is not powered on.

7. altFail. The domain of variable brake is {0, 1}. altFail is equal to 1 when analog and

digital altitude meters are failed, otherwise 0.

Hence, the program actions of ASW program in UCM are as follows:

1. state = 0 & init = 1 −→ state := 2; init := 0;

2. state = 2 & reset = 0 −→ state := 0; reset := 1;

3. state = 2 & altBelow = 0 & inhibit = 0 & actuatorStatus = 0 −→ state :=

1; altBelow := 1;

4. state = 1 & actuatorStatus = 0 −→ state := 2; actuatorStatus := 1;

5. state = 1 & reset = 0 −→ state := 0; reset := 1;

195

In the above program actions, action 1 models the program transition from initialization

mode (state = 0) to standby mode (state = 2). This transition triggers the reassignment

of the variable init, that is init = 0 → init = 1 (which denotes the program is done with

initialization process). Action 2 models the transition from standby mode to initialization

mode (state = 0). This transition triggers the reassignment of the variable reset, that is,

reset = 0 → reset = 1 (which denotes the program is done with the resetting process).

Action 3 denotes the transition from standby mode (state = 2) to await-Actuator mode

(state = 1). The triggering condition of this action is the actuator power-on is not inhibited

and the actuator is not powered on. This action triggers the reassignment of the variable

altBelow, that is altBelow = 0 → altBelow = 1 (which denotes that the altitude is below

a specific threshold). Action 4 denotes that transition from await-Actuator (state = 1)

mode to standby mode (state = 2). This action triggers the reassignment of the variable

actuatorStatus, that is actuatorStatus = 0→ actuatorStatus = 1 (which denotes that the

actuator is powered on). Action 5 denotes the transition from await-Actuator (state = 1) to

initialization mode (state = 0). This action triggers the reassignment of the variable reset,

that is reset = 0→ reset = 1 (which denotes the system is reset).

6.6.3 Application of Step B: Generating Remaining Inputs for

Model Revision

The targeted fault-tolerant program is required to tolerate such a faulty status: the altitude

sensors incur malfunction. This type of fault is recognized as transient fault. To model

this fault action in UCM, the designer needs to specify which variable is perturbed and the

possible value of the corrupted variable. In this case, the designer specifies the fault may

196

corrupt variable state into 3, that is, state = 3 denotes the faulty status of the program.

Besides, the designer also needs to specify the triggering condition of the faults. In this case,

the designer specifies three triggering conditions for three different transitions that corrupt

the program into faulty status.

• initFailed = 1. This condition represent the situation where the program stays in the

initialization mode for more than 0.6 second.

• altFailOver = 1. This condition represents the situation where the condition altFail =

1 remains true more than 2 seconds.

• awaitOver=1. This condition represents the situation where the program stays in the

await-Actuator mode for more than 2 seconds.

Hence, MR4UM generates fault actions as following:

1. initFailed == 1 −→ initFailed := 0, state := 3;

2. altFailOver == 1 −→ altFailOver := 0, state := 3;

3. awaitOver == 1 −→ awaitOver := 0, state := 3;

In this case, the designer requires the safety specification, as follows:

• If the altitude sensor are failed, the program does not transfer from standby mode to

await-Actuator mode;

• The program can only go to the initialization mode from the faulty mode;

• The program can recover from the faulty mode if the program is not reset.

197

Hence, the designer specifies the specification from GUI of the framework as follows:

((altFails == 1)&(state == 2)&(state′ == 0))|

((state == 3)&(state == 2)&(state′ == 1))|

((state == 3)&(reset == 1));

The invariant of the program consists of the states where the program is not in the faulty

states, i.e., state! = 3. Hence, the invariant of this program is as follows:

state! = 3

6.6.4 Application of Step C: Generation of Fault-Tolerant UCM

In Step C, MR4UM utilizes the inputs from Section 6.6.2 and 6.6.3. After Step C applies the

symbolic model revision on the input program, the MR4UM generates the revised program

modeled in UCM. Note that this output is only intended for use in Step D and not meant

for designer to analyze it. The obtained fault-tolerant program is as follows:

To :

1). state = 0 & init = 1 −→ state := 2; init := 0;

2). state = 2 & reset = 0 −→ state := 0; reset := 1;

3). state = 1 & actuatorStatus = 0 −→ state := 2; actuatorStatus := 1;

4). state = 1 & reset = 0 −→ state := 0; reset := 1;

Ts :

5). state = 2 & altBelow = 0 & inhibit = 0 & actuatorStatus = 0 & altFail = 0

198

Figure 6.9: The revised ASW program in UML state diagram.

−→ state := 1; altBelow := 1;

Tr :

6). state = 3 & reset = 0 −→ state := 0; reset := 1;

Note that Action 5 has been added a new constraint altFail == 0 which denotes that

the program is allowed to change its state to the await-Actuator mode only when the input

sensors are not corrupted. Action 6 is newly added to the program which denotes that the

program recovers from faulty mode (state = 3) to the initialization mode (state = 0). The

other actions remains the same as the actions of the input program.

6.6.5 Application of Step D: Generating Fault-tolerant UMLmodel

for ASW Program

In this step, MR4UM converts the fault-tolerant program in UCM into the corresponding

model in UML state diagram. The UML state diagram of fault-tolerant ASW program is as

shown in Figure 6.9.

199

6.7 Discussion and Lessons Learnt

In this section, we discuss several questions that are raised by our work as well as lessons

learnt from the case study.

One question is the scalability of the approach of automatic revising the existing program

design proposed in our work. Our framework benefits from the fact that the underlying syn-

thesis engine utilizes OBDDs to mitigate the state explosion problem as well as a heuristic

based algorithm [36] to mitigate the complexity (NP-complete) of model revision. Specif-

ically, this approach has been used to permit model revision of programs with state space

exceeding 10100. Hence, we expect the framework to be able to handle moderate sized

problems.

Another question is about the choice of UML as the front end for our framework. We

chose UML because it is one of the commonly used platforms to specify requirements. And,

although there is an existing work on formalization of UML models, the problem of model

revision has not been addressed in this context. Our approach is also feasible for revising

program design modeling in other approaches (e.g. AADL [80]) by modifying the mapping

mechanism between the model of program design and underlying computational model. It

has also been demonstrated in revising SCR specifications [107].

One of the difficulties in developing this framework lies in the fact that the revised fault-

tolerant model in UCM is BDD based. Although converting the UCM model into UML state

diagram involves some challenges, they can be overcome by understanding (1) the part of

the UML model that will remain intact in the final model, (2) the part of the UML model

where the structure of the original model will remain intact in the final model although

some of the details (e.g., conditions on the arrows) will change, and (3) the part of the UML

200

Figure 6.10: The stepwise procedure of MR4UM.

model that is completely new and added for dealing with recovery from faults. Since BDD

based approaches permit us to check conditions (1) and (2) effectively with negligible cost,

obtaining the revised UML state diagram is feasible. One of the future work in this area is

to optimize the third part that identifies the actions that provide recovery.

6.8 Summary

Our work focuses on reducing the learning curve required for application of formal methods,

specifically model revision, by keeping the formal methods under-the-hood to a large extent.

We chose to apply model revision for UML models since it is one of the popular modeling

techniques. Specifically, in this chapter, we proposed a framework, namely MR4UM, which

allows designers to apply model revision to existing UML models for adding fault-tolerance.

The stepwise-procedure of MR4UM is shown in Figure 6.10. Since the model revision process

of MR4UM is based on BDDs, it has the potential to deal with large state space, e.g., the

underlying synthesis engine has been used to revise models with state space exceeding 10100.

201

We illustrated the stepwise procedure of MR4UM with two case studies. One is the

adaptive cruise controller system (ACC) from automotive systems. The other one is the

altitude switch (ASW) used in the aircraft altitude controller.

202

Chapter 7

Related Work

This chapter is dedicated to illustrate the related work on this dissertation. In particular,

Section 7.0.1 presents the related work on automatic verification of stabilizing programs. In

Section 7.0.2, we present the related work on automatic revision for multitolerant programs.

Section 7.0.3 introduces the related work on model repair of UML state diagrams for adding

fault-tolerance.

7.0.1 Automatic Verification of Stabilizing Programs

Formal verification of stabilizing programs has been studied mainly in two directions, in-

cluding mechanism theorem proving and model checking. Mechanism theorem proving based

approaches [132,188,189] have been demonstrated as a very powerful verification technique,

especially for these infinite systems. Unfortunately, this approach usually requires consider-

able experience in logic reasoning.

Model checking is one of the most successful approaches to verification. However, using

model checking for verification purpose suffers from the ‘state explosion’ problem. To address

203

this issue, researchers have proposed the technique of symbolic model checking, using OBDDs

to obtain a compact representation of programs. Also, Tsuchiya et al [225] have proposed

an approach to verify stabilizing programs based on symbolic model checking. Although this

work has demonstrated the feasibility of using symbolic model checking to verify stabilizing

programs, it only works for programs consisting of a small number of processes. To solve this

bottleneck, we proposed an approach to verify stabilizing programs, that is using effectiveness

of fairness while using symbolic model checking.

With the advancement of model checking techniques, the SAT/SMT based model check-

ing has emerged as an viable alternative to symbolic model checking. In particular, symbolic

model checking requires one to identify the order of program variables when constructing

OBDD representations. An incorrect ordering of variables can increase the verification time.

That motivates our research on investigating the effectiveness of SMT-based model checking

in verifying stabilizing programs.

7.0.2 Automatic Revision for Multitolerant Programs

Automated program revision is studied from different perspectives. One approach (e.g., [23])

focuses on synthesizing fault-tolerant programs from their specification in a temporal logic

(e.g., Linear Temporal Logic(LTL) [76], etc.). The word synthesis is also used in the context

(e.g., [53] [101] [158] [114]) of transforming an abstract (such as UML) program into a

concrete (such as C++) program while ensuring that the location of concrete program in

memory, its data flow etc. meet the constraints of an embedded system. By contrast,

our approach focuses on transformation of one abstract program into another that meets

additional properties of interest. Our approach will advance the applicability of this existing

204

work by allowing designers to add properties of interest in the abstract model and then using

existing work to generate concrete program. Hence our approach is desirable when one needs

to extend an existing system by adding fault-tolerance.

Our work is closely related to the work on controller synthesis [20] [21] [38] [66] and game

theory [51] [79] [123]. In control-theoretic approaches, the supervisory control of real-time

systems has been studied under the assumption that the existing program (called a plant)

and/or the given specification is deterministic. Moreover, in both game theory and controller

synthesis, since highly expressive specifications are often considered, the complexity of the

proposed synthesis methods is very high. For example, the synthesis problems presented

in [20] [21] [51] [79] are EXPTIME-complete. Furthermore, deciding the existence of a

controller in [38] [66] is 2EXPTIME-complete. In addition, these approaches do not address

some of the crucial concerns of fault-tolerance (e.g., providing recovery in the presence of

faults) that are considered in the our work. In addition, the high complexity of these methods

is a serious barrier to actually synthesize moderate sized programs. By contrast, our approach

focus only on specifications needed to express properties of interest. Hence, the complexity

of our algorithm is substantially lower.

The algorithms in [134] [136] have addressed the problem of adding fault-tolerance to only

one class of fault. Also the algorithm in [71] is targeted toward the synthesis of programs

that simultaneously tolerate multiple classes of faults whereas we address the synthesis of

programs that provide the appropriate level of fault-tolerance and not to provide any toler-

ance if faults from one class occurs while the program is ‘recovering’ from faults from another

class. The ‘weak’ multitolerance way in this dissertation is necessary especially when it is

impossible to guarantee any level of tolerance in a computation where faults from two classes

205

occur.

7.0.3 Model Revision of UML State Diagrams for Adding Fault-

tolerance

Previous work in [125,130,156] addresses the problem of formalization of UML state diagram.

Specifically, these approaches define operational semantics of the UML state diagram and

then utilize it for simulation, verification and/or code generation. The first step in our

framework is inspired by these approaches. However, unlike the previous work, in our work

the translations of UML model needs to be annotated so that we can subsequently obtain a

revised UML model after adding fault-tolerance. Another important difference between our

work and these works is that our work focuses on the problem of model revision whereas

they focus on the problem of model checking. Thus, our work is complementary to previous

work in that our framework can be applied in scenarios where the given UML model fails to

satisfy the given property.

Our work is orthogonal to related work (e.g., [54, 102, 115, 159, 171]) that focuses on

transforming an abstract UML model into a concrete (such as C++) program while ensuring

that the location of concrete program in memory, its data flow etc. meet the constraints

of the underlying system. In particular, our work focuses on revising the given model into

another UML model that satisfies the fault-tolerance property. Thus, our work will advance

the applicability of this existing work by allowing designers to add properties of interest in

the abstract model and then using existing work to generate concrete program.

Approaches in [69,70] develop corrector pattern for specifying nonmasking fault-tolerance

and failsafe fault-tolerance respectively. These proposed analysis methods are validated in

206

terms of UML diagrams. While these works simplify and modularize fault-tolerance concerns

and facilitate to analyze the functional and fault-tolerance concerns and their mutual impact,

application of a synthesis tool in automatically adding fault-tolerance is an on-going direction

of these works. Our work utilizes the synthesis tool [37] to automate the revision process for

adding fault-tolerance.

The work in [2] proposes an approach of automating and formalizing the translation from

high level design models, specifically, Software Cost Reduction (SCR) [31], to a format that

can be used by the automated revision/synthesis tools of example. SCR is a set of formal

methods for constructing and verifying requirements specification document. By contrast,

our work focuses on issues of automatic revision of UML state diagram for adding fault-

tolerance.

207

Chapter 8

Conclusion and Future Work

This dissertation focused on the problem of automatic verification and revision of multitol-

erant programs. In particular, our goal was to build a model-based framework that helps

to build multitolerant programs in an automatic way. To this end, we have developed new

theory, algorithms as well as tools to advance the state-of-the-art research. First, we have

investigated the effectiveness of our fault modeling approach, that is, using transition sys-

tems to model faults. Then, leveraging model repair techniques, we proposed approaches

to efficiently verify the fault-tolerance properties (stabilization) provided by programs. The

proposed approaches mitigate the fundamental challenge of ‘state explosion’, the key problem

that limits the scalability of previous approaches to verify stabilization. We also investigated

the complexity of automatic program revision for adding multitolerance. And, we have de-

veloped novel model repair algorithms for revising programs to add multitolerance. We have

implemented these algorithms as a tool. We also have demonstrated the applicability of

model repair techniques in a lightweight framework, where the given UML state diagram is

automatically revised to add fault-tolerance.

208

In what follows, we summarizes the contributions of this dissertation in Section 8.1.

Then, in Section 8.2, we discuss possible directions of future work.

8.1 Contributions

The main results of this dissertation are as follows.

1. We investigated the effectiveness of transition systems to model faults. Starting from a

taxonomy of faults that is based on practitioner’s point of view [24], we showed that: (i)

faults from 20 categories of all 31 categories can be modeled using transition systems.

These faults include Byzantine actions in a networked system, physical deterioration

of brake in a braking control system and so on. And, (ii) faults from 11 categories

cannot (or should not be) represented using transition systems. These include faults

such as buffer overflow, hardware errata and so on. We also investigated the feasibility

and practicability of using transition systems to model faults. We showed that (i) the

modeling of faults from 18 categories as transition systems is practical and feasible

and (ii) the modeling of faults from 2 categories as transition systems is not practical

although feasible. Besides, We identified the relative completeness of the proposed

approach with recent literature.

2. We identified one bottleneck involved in existing automatic verification of self-stabilization.

In particular, we investigated the issues of fairness and its effects on the performance

of verifying self-stabilizing programs. We showed that if self-stabilization is possible

with unfair computation, then the cost of stabilization verification is substantially re-

duced. In particular, we showed that the time for verification with unfair computation

209

is approximately 0.001%-0.1% of that with weakly fair computation.

3. For the cases where weak fairness is essential for the correctness of stabilization, we

proposed two approaches to improve the scalability of verifying stabilizing programs,

including decomposition and weak stabilization. We showed that using decomposition

would result in a substantial increase for the scalability of verifying stabilization (e.g.,

from 104 states to 10138 states fro Huang’s mutual exclusion algorithm). We also

showed that verification of weak stabilization is substantially more scalable. This

result validates the suggestion in [92] that weak stabilization is easier to verify than

stabilization.

4. We proposed a constraint-based approach to analyze stabilizing programs without in-

troducing fairness scheduler in the program model, and without assuming any order

information of variables. The key insight is to reduce the problem of stabilization veri-

fication into a well-studied problem, named constraint solving, which can be solved by

many existing highly optimized solutions.

5. We investigated the complexity issues in automatic revision of programs for adding

(weak) multitolerance.

6. We presented a counterintuitive result where we showed that the problem of automatic

addition of Masking-Masking (respectively, Masking-Failsafe) weak multitolerance is

NP-complete. This result is especially surprising given that the corresponding problem

can be solved in polynomial time for strong multitolerance.

7. We presented a sound and complete algorithm for automatic program revision to add

Failsafe-Failsafe (respectively, Masking-Nonmasking) weak multitolerance, Also, we

210

presented a polynomial time heuristic for designing Masking-masking weak multitoler-

ant program.

8. We implemented the proposed algorithms for automatic program revision to add mul-

titolerance as a tool.

9. We compared our proposed multitolerance approach, named weak multitolerance with

previous techniques, named strong multitolerance. We also identified circumstances

where solvability for adding weak and strong multitolerance differs.

10. We presented a lightweight framework for automatic revision of UML state diagrams

for adding fault-tolerance.

8.2 Future Work

This section presents some of the problems that we believe are both important and interest-

ing.

Scalability of Static Analysis and Model Revision Techniques. Emerging hardwares and

novel software architectures pose new challenges to the analysis and/or repair techniques

for system. There is a great need for developing novel and effective verification and revi-

sion techniques to analyzing parallel programs and large data space-based software systems.

One such open problem is to exploit the advantages of highly parallel data architectures to

improve the performance of existing DPLL based static analysis techniques.

Analyzing and Improving the Reliability of Software Systems in the Presence of Faults

such as Configure Errors or Hardware Faults. Recent research on system failure shows that

human mistakes (e.g., wrong configurations) and hardware faults, rather than software bugs,

211

are becoming the dominating causes for system’s down time. We are currently conducting a

comprehensive study to understand these problems in real world. Leveraging the techniques

of program analysis, data mining and software engineering, we plan to develop novel config-

uration patterns/suggestions for a software application to eliminate or alleviate the negative

effects of human mistakes, especially misconfiguration. Also, based on the understanding

of real world data, we expect to identify the taxonomy of hardware faults and investigate

corresponding tolerance solutions.

212

BIBLIOGRAPHY

213

BIBLIOGRAPHY

[1] F. Abujarad and S. Kulkarni. Constraint based automated synthesis of nonmasking
and stabilizing fault-tolerance. In Proceedings of the 2009 28th IEEE International
symposium on Reliable Distributed Systems, pages 119–128, 2009.

[2] F. Abujarad and S. S. Kulkarni. Automated addition of fault-tolerance to scr toolset:
A case study. In The Seventh International Workshop on Assurance in Distributed
Systems and Networks (ADSN), in ICDCSW ’08: Proceedings of the 2008 The 28th
International Conference on Distributed Computing Systems Workshops, pages 539–
544, 2008.

[3] M. K. Aguilera, K. Keeton, A. Merchant, K.-K. Muniswamy-Reddy, and M. Uysal.
Improving recoverability in multi-tier storage systems. In Proceedings of the 37th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks,
DSN ’07, 2007.

[4] I. E. Akkus and A. Goel. Data recovery for web applications. In Proceedings of the 40th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks,
DSN ’10, 2010.

[5] S. Al-Kiswany, M. Ripeanu, S. S. Vazhkudai, and A. Gharaibeh. stdchk: A checkpoint
storage system for desktop grid computing. In 28th IEEE International Conference on
Distributed Computing Systems (ICDCS 2008), 2008.

[6] B. Alpern and F. B. Schneider. Defining liveness. Information Processing Letters,
21:181–185, 1985.

[7] B. Alpern and F. B. Schneider. Proving boolean combinations of deterministic prop-
erties. Proceedings of the Second Symposium on Logic in Computer Science, pages
131–137, 1987.

[8] R. Alur, C. Courcoubetis, T. Henzinger, and P.-H. Ho. Hybrid automata: An algo-
rithmic approach to the specification and verification of hybrid systems. In Hybrid
Systems, pages 209–229, 1993.

[9] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science
126:183-235, 1994 (preliminary versions appeared in Proc. 17th ICALP, LNCS 443,
1990, and Real Time: Theory in Practice, 1991.

214

[10] R. Alur, T. Feder, and T. Henzinger. The benefits of relaxing punctuality. Journal of
the ACM, 43(1):116–146, 1996.

[11] K. H. amd Shouhuai Xu. Protecting cryptographic keys from memory disclosure at-
tacks. In Proceedings of the 37th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, DSN ’07, 2007.

[12] Y. Amir, B. A. Coan, J. Kirsch, and J. Lane. Byzantine replication under attack. In
Proceedings of the 38th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN ’08, 2008.

[13] H. Ando, R. Kan, Y. Tosaka, K. Takahisa, and K. Hatanaka. Validation of hardware
error recovery mechanisms for the sparc64 v microprocessor. In Proceedings of the 38th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks,
DSN ’08, 2008.

[14] B. Archive, E. Anderson, X. Li, A. Merchant, M. A. Shah, K. Smathers, J. Tucek,
M. Uysal, and J. J. Wylie. Efficient eventual consistency in pahoehoe–an erasure-
coded key. In Proceedings of the 40th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, DSN ’10, 2010.

[15] A. Arora. A foundation of fault-tolerant computing. PhD thesis, The University of
Texas at Austin, 1992.

[16] A. Arora, P. C. Attie, and E. A. Emerson. Synthesis of fault-tolerant concurrent
programs. Proceedings of the 17th ACM Symposium on Principles of Distributed Com-
puting (PODC), 1998.

[17] A. Arora and M. Gouda. Closure and convergence: A foundation of fault-tolerant
computing. IEEE Transactions on Software Engineering, 19(11):1015–1027, Nov 1993.

[18] A. Arora and M. Gouda. Distributed reset. IEEE Transactions on Computers,
43(9):1026–1038, Sep. 1994.

[19] A. Arora and S. S. Kulkarni. Designing masking fault-tolerance via nonmasking fault-
tolerance. IEEE Transactions on Software Engineering, 24(6):435–450, Nov 1998.

[20] E. Asarin and O. Maler. As soon as possible: Time optimal control for timed automata.
In In Proc. of the 2nd International Workshop on Hybrid Systems: Computation and
Control, pages 19–30, London, UK, 1999. Springer-Verlag.

215

[21] E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthesis for timed au-
tomata. In In IFAC symposium on System Structure and Controller, pages 469–474,
Nantes,France, 1998. Elsevier.

[22] P. Attie and A. Emerson. Synthesis of concurrent programs for an atomic read/write
model of computation. ACM TOPLAS (a preliminary version of this paper appeared
in PODC96), 23(2), March 2001.

[23] P. C. Attie, A. Arora, and E. A. Emerson. Synthesis of fault-tolerant concurrent
programs. ACM Transactions on Programming Languages and Systems, 26(1):125–
185, 2004.

[24] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts and taxonomy
of dependable and secure computing. IEEE Trans. Dependable Secur. Comput., 2004.

[25] L. N. Bairavasundaram, M. Rungta, N. Agrawal, A. C. Arpaci-Dusseau, R. H. Arpaci-
Dusseau, and M. M. Swift. Analyzing the effects of disk-pointer corruption. In Proceed-
ings of the 38th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks, DSN ’08, 2008.

[26] T. Ball, B. Cook, V. Levin, and S. K. Rajamani. Slam and static driver verifier:
Technology transfer of formal methods inside microsoft. In In: IFM. (2004, pages
1–20. Springer, 2004.

[27] N. Banu, T. Izumi, and K. Wada. Doubly-expedited one-step byzantine consensus. In
Proceedings of the 40th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN ’10, 2010.

[28] P. Bergheaud, D. Subhraveti, and M. Vertesi. Fault tolerance in multiprocessor sys-
tems via application cloning. In 27th IEEE International Conference on Distributed
Computing Systems (ICDCS 2007), 2007.

[29] M. Bertier, A.-M. Kermarrec, and G. Tan. Message-efficient byzantine fault-tolerant
broadcast in a multi-hop wireless sensor network. In Proceedings of the 30th IEEE
International Conference on Distributed Computing Systems, ICDCS ’10, 2010.

[30] A. N. Bessani, V. V. Cogo, M. Correia, P. Costa, M. Pasin, F. Silva, L. Arantes,
O. Marin, P. Sens, and J. Sopena. Making hadoop mapreduce byzantine fault-tolerant.
In Proceedings of the 40th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN ’10, 2010.

216

[31] R. Bharadwaj and C. Heitmeyer. Developing high assurance avionics systems with
the scr requirements method. In Proceedings of the 19th Digital Avionics Systems
Conference, pages 1D1/1 – 1D1/8, Philadelphia, PA, 2000.

[32] M. Bhide, K. Ramamritham, and M. Agrawal. Efficient execution of continuous inco-
herency bounded queries over multi-source streaming data. In Proceeding ICDCS ’07
Proceedings of the 27th International Conference on Distributed Computing Systems,
pages 681–688, 2007.

[33] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without bdds. In
In Proc. Of the Workshop on Tools and Algorithms for the Construction and Analysis
of Systems, 1999.

[34] W. J. Bolosky, J. R. Douceur, and J. Howell. The farsite project: a retrospective. In
in ACM SIGOPS Operating Systems Review, 2007.

[35] B. Bonakdarpour. Automated Revision of Distributed and Real-Time Programs. PhD
thesis, Michigan State University, 2008.

[36] B. Bonakdarpour and S. Kulkarni. Exploiting symbolic techniques in automated syn-
thesis of distributed programs. In Proceedings of In IEEE International Conference on
Distributed Computing Systems(ICDCS), ICDCS ’07, pages 3–10, Toronto, Canada,
2007.

[37] B. Bonakdarpour and S. Kulkarni. Sycraft: A tool for automated synthesis of fault-
tolerant distributed programs. In Proceedings of International Conference on Concur-
rency Theory (CONCUR), pages 167–171, Toronto, Canada, 2008.

[38] P. Bouyer, D. D’Souza, P. Madhusudan, and A. Petit. Timed control with partial
observability. Lecture Notes in Computer Science, 2725:180–192, 2003.

[39] A. Brito, C. Fetzer, and P. Felber. Minimizing latency in fault-tolerant distributed
stream processing systems. In Proceedings of the 29th IEEE International Conference
on Distributed Computing Systems, ICDCS ’09, 2009.

[40] J. C. Brustoloni and D. Kyle. Updates and asynchronous communication in trusted
computing systems. In 28th IEEE International Conference on Distributed Computing
Systems (ICDCS 2008), 2008.

[41] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, 35(8), 1986.

217

[42] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic

model checking: 1020 states and beyond. Information and Computation, 98(2):142–
170, 1992.

[43] L. E. Buzato, G. M. D. Vieira, and W. Zwaenepoel. Dynamic content web applications:
Crash, failover, and recovery analysis. In Proceedings of the 39th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, DSN ’09, 2009.

[44] C. Cachin, I. Keidar, and A. Shraer. Fail-aware untrusted storage. In Proceedings
of the 39th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, DSN ’09, 2009.

[45] L. Chen and J. Leneutre. Selfishness, not always a nightmare: Modeling selfish mac
behaviors in wireless mobile ad hoc networks. In ICDCS ’07 Proceedings of the 27th
International Conference on Distributed Computing Systems, 2007.

[46] Y. Chen, O. Gnawali, M. Kazandjieva, P. Levis, and J. Regehr. Surviving sensor
network software faults. In SOSP’09, New York, NY, USA, 2009. ACM.

[47] V. Claesson, H. Lonn, and N. Suri. An efficient tdma start-up and restart synchro-
nization approach for distributed embedded systems. IEEE Transactions on Parallel
and Distributed Systems, 15(8):725–739, 2004.

[48] C. Constantinescu, I. Parulkar, R. Harper, and S. Michalak. Silent data corruption -
myth or reality? In Proceedings of the 38th Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks, DSN ’08, 2008.

[49] R. Curtmola, O. Khan, R. C. Burns, and G. Ateniese. Mr-pdp: Multiple-replica prov-
able data possession. In 28th IEEE International Conference on Distributed Computing
Systems (ICDCS 2008), 2008.

[50] D. Dams, W. Hesse, and G. J. Holzmann. Abstracting C with abC. In 14th Inter-
national Conference on Computer Aided Verification (CAV), pages 515–520, London,
UK, 2002. Springer-Verlag.

[51] L. de Alfaro, M. Faella, T. A. Henzinger, R. Majumdar, and M. Stoelinga. The
element of surprise in timed games. In Internatinal Conference on Concurrency Theory
(CONCUR), Marseille, France, 2003. Springer.

[52] L. M. de Moura and N. Bjorner. Z3: An efficient smt solver. In TACAS 2008, 2008.

218

[53] D. de Niz and R. Rajkumar. Glue code generation: Closing the loophole in model-based
development. In 10th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS 2004). Workshop on Model-Driven Embedded Systems, Toronto,
Canada, 2004. IEEE Computer Society.

[54] D. de Niz and R. Rajkumar. Glue code generation: Closing the loophole in model-based
development. 2nd RTAS Workshop on Model-Driven Embedded Systems, 2004.

[55] C. Delporte-Gallet, H. Fauconnier, and A. Tielmann. Fault-tolerant consensus in un-
known and anonymous networks. In Proceedings of the 29th IEEE International Con-
ference on Distributed Computing Systems, ICDCS ’09, 2009.

[56] A. Demaille, J. E. Denny, and P. Eggert. Bison - gnu parser generator. Technical
report, http://www.gnu.org/software/bison/, 2012.

[57] M. Demirbas, A. Arora, V. Mittal, and V. Kulathumani. A fault local self-stabilizing
clustering service for wireless ad hoc networks. IEEE Transactions on Parallel and
Distributed Systems, 17, 2006.

[58] S. Devismes, S. Tixeuil, and M. Yamashita. Weak vs. self vs. probabilistic stabiliza-
tion. In ICDCS ’08: Proceedings of the 2008 The 28th International Conference on
Distributed Computing Systems, pages 681–688, 2008.

[59] E. Dijkstra. Self stabilizing systems in spite of distributed control. Communications
of the ACM, 17(11):643 – 644, Nov. 1974.

[60] E. Dijkstra. A Discipline of Programming. New Jersey, USA, 1990.

[61] E. Dijkstra and C. Scholten. Termination detection for diffusing computations. Infor-
mation Processing Letters, 11:1–4, 1980.

[62] X. Ding and H. Jin. Efficient and progressive algorithms for distributed skyline queries
over uncertain data. In Proceedings of the 30th IEEE International Conference on
Distributed Computing Systems, ICDCS ’10, 2010.

[63] S. Dolev. Self-stabilizing routing and related protocols. Journal of Parallel and Dis-
tributed Computing, 42(2), 1997.

[64] S. Dolev. Self-Stabilization. MIT Press, 2000.

219

[65] Q. Dong and D. Liu. Adaptive jamming-resistant broadcast systems with partial chan-
nel sharing. In Proceedings of the 30th IEEE International Conference on Distributed
Computing Systems, ICDCS ’10, 2010.

[66] D. D’Souza and P. Madhusudan. Timed control synthesis for external specifications.
In STACS ’02: Proceedings of the 19th Annual Symposium on Theoretical Aspects of
Computer Science, pages 571–582, London, UK, UK, 2002. Springer-Verlag.

[67] B. Dutertre and L. D. Moura. The yices smt solver. Technical report, Computer
Science Laboratory, SRI International, 2006.

[68] A. Ebnenasir. Diconic addition of failsafe fault-tolerance. In Proceedings of the 22nd
IEEE/ACM International Conference on Automated Software Engineering (ASE),
pages 44–53, 2007.

[69] A. Ebnenasir and B. H. C. Cheng. A pattern-based approach for modeling and ana-
lyzing error recovery. In Workshops on Software Achitectures for Dependable systems
(WADS), pages 115–141, 2006.

[70] A. Ebnenasir and B. H. C. Cheng. Pattern-based modeling and analysis of failsafe fault-
tolerance in uml. In Proceedings of the 10th IEEE High Assurance Systems Engineering
Symposium, HASE ’07, pages 275–282, Washington, DC, USA, 2007. IEEE Computer
Society.

[71] A. Ebnenasir and S. Kulkarni. Feasibility of stepwise design of multitolerant programs.
ACM Transactions on Software Engineering and Methodology, 21, 2011. In Press.

[72] A. Ebnenasir, S. S. Kulkarni, and A. Arora. FTSyn: A framework for automatic
synthesis of fault-tolerance. International Journal on Software Tools for Technology
Transfer, 10(5):455–471, 2008.

[73] J. G. Elerath. A simple equation for estimating reliability of an n+1 redundant array of
independent disks (raid). In Proceedings of the 39th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN ’09, 2009.

[74] J. G. Elerath and M. Pecht. Enhanced reliability modeling of raid storage systems. In
Proceedings of the 37th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN ’07, 2007.

220

[75] M. Elhaddad, H. Iqbal, T. Znati, and R. Melhem. Scheduling to minimize the worst-
case loss rate. In 27th IEEE International Conference on Distributed Computing Sys-
tems (ICDCS 2007), 2007.

[76] E. Emerson. Handbook of Theoretical Computer Science: Chapter 16, Temporal and
Modal Logic. Elsevier Science Publishers B. V., 1990.

[77] E. Emerson and E. Clarke. Using branching time temporal logic to synthesize syn-
chronization skeletons. Science of Computer Programming, 2(3):241–266, 1982.

[78] P. D. Ezhilchelvan, F. V. Brasileiro, and N. A. Speirs. A timeout-based message
ordering protocol for a lightweight software implementation of tmr systems. IEEE
Trans. Parallel Distrib. Syst., 15(1):53–65, 2004.

[79] M. Faella, S. Torre, and A. Murano. Dense real-time games. In LICS ’02: Proceedings
of the 17th Annual IEEE Symposium on Logic in Computer Science, pages 167–176,
Copenhagen, Denmark, 2002. IEEE Computer Society.

[80] P. Feiler, B. Lewis, and S. Vestal. The sae architecture analysis and design language
(aadl) standard: A basis for model-based architecture-driven embedded systems engi-
neering. In In Proceedings of the RTAS Workshop on Model-driven Embedded Systems,
pages 1–10, 2009.

[81] J. Fonseca and M. Vieira. Mapping software faults with web security vulnerabilities.
In Proceedings of the 38th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN ’08, 2008.

[82] F. Freitas, E. Marques, R. Rodrigues, C. Ribeiro, P. Ferreira, and L. Rodrigues. Verme:
Worm containment in overlay networks. In Proceedings of the 39th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, DSN ’09, 2009.

[83] V. K. Garg and V. Ogale. Fusible data structures for fault-tolerance. In 27th IEEE
International Conference on Distributed Computing Systems (ICDCS 2007), 2007.

[84] M. Garofalakis, R. Rastogi, and K. Sabnani. Streaming algorithms for robust, real-
time detection of ddos attacks. In Proceeding ICDCS ’07 Proceedings of the 27th
International Conference on Distributed Computing Systems, pages 681–688, 2007.

[85] F. Gartner. Automating the addition of fault-tolerance: Beyond fusion-closed specifi-
cations. Personal Communication.

221

[86] N. J. George, C. R. Elks, B. W. Johnson, and J. Lach. Transient fault models and
avf estimation revisited. In Proceedings of the 40th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN ’10, 2010.

[87] S. Ghosh. Binary self-stabilization in distributed systems. Information Processing
Letter, 40(3), 1991.

[88] S. Ghosh. Distributed Systems: An Algorithmic Approach. CRC Press, 2006.

[89] S. Ghosh and a. Gupta. An exercise in fault-containment: Self-stabilizing leader elec-
tion. Information Processing Letters, 1996.

[90] S. Ghosh, A. Gupta, T. Herman, and S. Pemmaraju. Fault-containing self-stabilizing
distributed protocols. Distributed Computing, 20, 2007.

[91] J. Gong, X. Zhong, and C.-Z. Xu. Energy and timing constrained system reward
maximization on wireless networks. In Proceedings of the 28th International Conference
on Distributed Computing Systems, ICDCS ’08, 2008.

[92] M. G. Gouda. The theory of weak stabilization. In Proceedings of the 5th International
Workshop on Self-Stabilizing Systems, pages 114–123, 2001.

[93] M. G. Gouda and N. J. Multari. Stabilizing communication protocols. IEEE Trans.
Computers, 40(4):448–458, April 1991.

[94] J. Gracia-Moran, D. Gil-Tomas, L. J. Saiz-Adalid, J. C. Baraza, and P. J. Gil-Vicente.
Experimental validation of a fault tolerant microcomputer system against intermittent
faults. In Proceedings of the 40th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, DSN ’10, 2010.

[95] D. Graham, S. R. Per Strid, and F. Rodriguez. A low-tech solution to avoid the severe
impact of transient errors on the ip interconnect. In Proceedings of the 39th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks, DSN ’09,
2009.

[96] J. Gray. Functionality, availability, agility, manageability, scalability – the new priori-
ties of application design. In Proc. Int’l Workshop High Performance Trans. Systems,
2001.

[97] F. Greve and S. Tixeuil. Tixeuil: Knowledge connectivity vs. synchrony requirements
for fault-tolerant agreement in unknown networks. In Proceedings of the 37th Annual

222

IEEE/IFIP International Conference on Dependable Systems and Networks, DSN ’07,
2007.

[98] M. Grottke, A. P. Nikora, and K. S. Trivedi. An empirical investigation of fault
types in space mission system software. In Proceedings of the 40th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, DSN ’10, 2010.

[99] W. Gu, Z. Yang, C. Que, D. Xuan, and W. Jia. On security vulnerabilities of null
data frames in ieee 802.11 based wlans. In 28th IEEE International Conference on
Distributed Computing Systems (ICDCS 2008), 2008.

[100] Y. Gu and T. He. Bounding communication delay in energy harvesting sensor networks.
In Proceedings of the 30th IEEE International Conference on Distributed Computing
Systems, ICDCS ’10, 2010.

[101] Z. Gu and K. G. Shin. Synthesis of real-time implementations from component-based
software models. In RTSS ’05: Proceedings of the 26th IEEE International Real-Time
Systems Symposium, pages 167–176, Washington, DC, USA, 2005. IEEE Computer
Society.

[102] Z. Gu, S. Wang, and K. G. Shin. Synthesis of real-time implementation from uml-rt
models. 2nd RTAS Workshop on Model-Driven Embedded Systems, 2004.

[103] R. Guerraoui, D. Kostic, R. Levy, and V. Quema. A high throughput atomic storage
algorithm. In 27th IEEE International Conference on Distributed Computing Systems
(ICDCS 2007), 2007.

[104] W. He, X. Liu, L. Zheng, and H. Yang. Reliability calculus: A theoretical framework
to analyze communication reliability. In Proceedings of the 30th IEEE International
Conference on Distributed Computing Systems, ICDCS ’10, 2010.

[105] P. E. Heegaard and K. S. Trivedi. Survivability quantification of communication ser-
vices. In Proceedings of the 38th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, DSN ’08, 2008.

[106] J. Heinzmann and A. Zelinsky. A safe-control paradigm for human–robot interaction.
J. Intell. Robotics Syst., 25(4):295–310, 1999.

[107] C. Heitmeyer, M. Archer, R. Bharadwaj, and R. Jeffords. Tools for constructing
requirements specifications: The scr toolset at the age of ten. In International Journal
of Computer Systems Science and Engineering, pages 19–35, 2005.

223

[108] J. Hendricks, S. Sinnamohideen, G. R. Ganger, and M. K. Reiter. Zzyzx: Scalable fault
tolerance through byzantine locking. In Proceedings of the 40th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, DSN ’10, 2010.

[109] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanenbaum. Fault isolation for
device drivers. In Proceedings of the 39th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, DSN ’09, 2009.

[110] G. Holzmann. The spin model checker. IEEE Transactions on Software Engineering,
23(5):279–295, 1997.

[111] G. Holzmann. Logic verification of ansi-c code with spin. In The Sixth SPIN Workshop,
pages 131–147, 2000.

[112] M. Honda, J. Nakazawa, Y. Nishida, M. Kozuka, and H. Tokuda. A connectivity-
driven retransmission scheme based on transport layer readdressing. In 28th IEEE
International Conference on Distributed Computing Systems (ICDCS 2008), 2008.

[113] J. H. Hopeman. Uniform deterministic self-stabilizing ring-orientation on odd-length
rings. Workshop on Distributed Algorithms, 1994.

[114] P.-A. Hsiung and S.-W. Lin. Automatic synthesis and verification of real-time embed-
ded software for mobile and ubiquitous systems. Computer Languages, Systems and
Structures, 34(4):153–169, 2008.

[115] P.-A. Hsiung and S.-W. Lin. Automatic synthesis and verification of real-time em-
bedded software for mobile and ubiquitous systems. Comput. Lang. Syst. Struct.,
34(4):153–169, 2008.

[116] S.-T. Huang. Leader election in uniform rings. ACM Transactions on Programming
Languages and Systems, 15(6):435–450, Jul 1993.

[117] M. Hutle and A. Schiper. Communication predicates: A high-level abstraction for cop-
ing with transient and dynamic faults. In Proceedings of the 37th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, DSN ’07, 2007.

[118] S. Y. J. Duato and L. Ni. Interconnection network. IEEE Computer Society Press,
1997.

224

[119] M. L. James, A. A. Shapiro, P. L. Springer, and H. P. Zima. Adaptive fault tolerance for
scalable cluster computing in space. Int. J. High Perform. Comput. Appl., 23(3):227–
241, 2009.

[120] M. Jayaram and G. Varghese. Crash failures can drive protocols to arbitrary states.
PODC ’96: Proceedings of the fifteenth annual ACM symposium on Principles of dis-
tributed computing, 1996.

[121] K. Jayaraman, W. Du, B. Rajagopalan, and S. J. Chapin. Escudo: A fine-grained
protection model for web browsers. In Proceedings of the 30th IEEE International
Conference on Distributed Computing Systems, ICDCS ’10, 2010.

[122] H. Jin. Checkpointing orchestration for performance improvement. In Proceedings
of the 40th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, DSN ’10, 2010.

[123] B. Jobstmann, A. Griesmayer, and R. Bloem. Program repair as a game. In Computer
Aided Verification (CAV), pages 226–238, Scotland, UK, 2005. Springer.

[124] T. Johnson, S. Mitra, and K. Manamcheri. Safe and stabilizing distributed cellular
flows. In Proceedings of the 30th IEEE International Conference on Distributed Com-
puting Systems, ICDCS ’10, 2010.

[125] T. A. J. Jori Dubrovin. Symbolic model checking of hierarchical uml state machines. In
ACSD: 8th International Conference on Application of Concurrency to System Design,
pages 108 – 117, 2008.

[126] G. Jung, M. A. Hiltunen, K. R. Joshi, R. D. Schlichting, and C. Pu. Mistral: Dy-
namically managing power, performance, and adaptation cost in cloud infrastructures.
In Proceedings of the 30th IEEE International Conference on Distributed Computing
Systems, ICDCS ’10, 2010.

[127] H. Kannan, M. Dalton, and C. Kozyrakis. Decoupling dynamic information flow track-
ing with a dedicated coprocessor. In Proceedings of the 39th Annual IEEE/IFIP In-
ternational Conference on Dependable Systems and Networks, DSN ’09, 2009.

[128] L. Keller, P. Upadhyaya, and G. Candea. Conferr: A tool for assessing resilience to hu-
man configuration errors. In Proceedings of the 38th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN ’08, 2008.

225

[129] K. S. Killourhy and R. A. Maxion. Comparing anomaly-detection algorithms for
keystroke dynamics. In Proceedings of the 39th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks, DSN ’09, 2009.

[130] A. Knapp and S. Merz. Model checking and code generation for uml state machines
and collaborations. In In Dominik Haneberg, Gerhard Schellhorn, and Wolfgang Reif,
editors, Proc. 5th Wsh. Tools for System Design and Verification, pages 59–64, 2002.

[131] K. Kourai and S. Chiba. A fast rejuvenation technique for server consolidation with
virtual machines. In Proceedings of the 37th Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks, DSN ’07, 2007.

[132] S. Kulkarni, J. M. Rushby, and S. Natarajan. A case-study in component-based me-
chanical verification of fault-tolerant programs. InWorkshop on Self-stabilizing System,
pages 33–40, 1999.

[133] S. S. Kulkarni. Component-based design of fault-tolerance. PhD thesis, Ohio State
University, 1999.

[134] S. S. Kulkarni and A. Arora. Automating the addition of fault-tolerance. In Proceedings
of the 6th International Symposium of Formal Techniques in Real-Time and Fault-
Tolerant Systems, page 82, Pune, India, 2000. Springer.

[135] S. S. Kulkarni, A. Arora, and A. Ebnenasir. Adding Fault-Tolerance to State Machine-
Based Designs, volume 19 of Series on Software Engineering and Knowledge Engineer-
ing, pages 62–90. Springer Verlag, 2007.

[136] S. S. Kulkarni and A. Ebnenasir. The complexity of adding failsafe fault-tolerance. In
Proceedings of the 22nd International Conference on Distributed Computing Systems,
page 337, Vienna, Austria., 2002. IEEE Computer Society.

[137] S. S. Kulkarni and A. Ebnenasir. Automated synthesis of multitolerance. The Inter-
national Conference on Dependable Systems and Networks, 2004.

[138] S. S. Kulkarni, C. B. J. Oleszkiewicz, and A. Robinson. Alternators in read/write
atomicity. Information Processing Letters, 2005.

[139] O. Kupferman and M. Vardi. Synthesizing distributed systems. In Proc. 16th IEEE
Symp. on Logic in Computer Science, July 2001.

[140] S. Kutten and D. Peleg. Fault-local mending. Journal of Algorithms, 30(1).

226

[141] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM
Transactions on Programming Languages and Systems, 4:382–401, July 1982.

[142] J.-C. Laprie and B. Randell. Basic concepts and taxonomy of dependable and secure
computing. IEEE transactions on dependable and secure computing, 1(1):11–33, 2004.
Avizienis, Algirdas and Landwehr, Carl.

[143] K. Larsen, P.Pattersson, and W. Yi. UPPAAL in a nutshell. International Journal on
Software Tools for Technology Transfer, 1(1-2):134–152, 1997.

[144] S. B. Lee and V. D. Gligor. Floc : Dependable link access for legitimate traffic in flood-
ing attacks. In Proceedings of the 30th IEEE International Conference on Distributed
Computing Systems, ICDCS ’10, 2010.

[145] N. Leveson. Completeness in formal specification language design for process-control
systems. In IN: PROCEEDINGS OF THE THIRD WORKSHOP ON FORMAL
METHODS IN SOFTWARE PRACTICE, pages 75–87, Portland, Oregon, 2000. ACM.

[146] J. R. Levine, T. Mason, and D. Brown. A freely available version of lex is flex. Technical
report, http://flex.sourceforge.net/, 1992.

[147] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay, J. Hill,
M. Welsh, E. Brewer, et al. TinyOS: An operating system for sensor networks. Ambient
Intelligence, pages 115–148, 2005.

[148] D. Li, Y. Zhu, L. Cui, and L. M. Ni. Hotness-aware sensor networks. In 28th IEEE
International Conference on Distributed Computing Systems (ICDCS 2008), 2008.

[149] D. Li, Y. Zhu, L. Cui, and L. M. Ni. Hotness-aware sensor networks. In Proceedings
of the 28th International Conference on Distributed Computing Systems, ICDCS ’08,
2008.

[150] M.-L. Li, P. Ramachandran, S. K. Sahoo, S. V. Adve, V. S. Adve, and Y. Zhou. Trace-
based microarchitecture-level diagnosis of permanent hardware faults. In Proceedings
of the 38th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, DSN ’08, 2008.

[151] Q. Li and D. Rus. Global clock synchronization in sensor networks. IEEE Trans.
Comput., 55(2):214–226, 2006.

227

[152] W. Li, E. Chan, D. Chen, and S. Lu. Maintaining probabilistic consistency for fre-
quently offline devices in mobile ad hoc networks. In Proceedings of the 29th IEEE
International Conference on Distributed Computing Systems, ICDCS ’09, 2009.

[153] Y. Li, C. Ai, and Y. W. Wiwek P. Deshmukh. Data estimation in sensor networks
using physical and statistical methodologies. In 28th IEEE International Conference
on Distributed Computing Systems (ICDCS 2008), 2008.

[154] Y. Li and Z. Lan. A fast restart mechanism for checkpoint/recovery protocols in
networked environments. In Proceedings of the 38th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN ’08, 2008.

[155] Q. Lian, Z. Zhang, M. Yang, B. Y. Zhao, Y. Dai, and X. Li. An empirical study of
collusion behavior in the maze p2p file-sharing system. In ICDCS ’07 Proceedings of
the 27th International Conference on Distributed Computing Systems, 2007.

[156] J. Lilius and I. P. Paltor. Formalising uml state machines for model checking. In
UML’99 Proceedings of the 2nd international conference on The unified modeling lan-
guage: beyond the standard, pages 430–444, 1999.

[157] M. Y. Lim, F. L. R. III, T. K. Bletsch, and V. W. Freeh. Padd: Power aware domain
distribution. In Proceedings of the 29th IEEE International Conference on Distributed
Computing Systems, ICDCS ’09, 2009.

[158] S. Lin, C. Tseng, T. Lee, and J. Fu. Vertaf: An application framework for the design
and verification of embedded real-time software. IEEE Transactions on Software Engi-
neering, 30(10):656–674, 2004. Member-Hsiung, Pao-Ann and Member-See, Win-Bin.

[159] S.-W. Lin, S.-W. Lin, C.-H. Tseng, T.-Y. Lee, and J.-M. Fu. Vertaf: An application
framework for the design and verification of embedded real-time software. IEEE Trans.
Softw. Eng., 30(10):656–674, 2004. Member-Pao-Ann Hsiung and Member-Win-Bin
See.

[160] Y. Lin, B. Li, and B. Liang. Differentiated data persistence with priority random
linear codes. In 27th IEEE International Conference on Distributed Computing Systems
(ICDCS 2007), 2007.

[161] D. Liu. Resilient cluster formation for sensor networks. In ICDCS ’07 Proceedings of
the 27th International Conference on Distributed Computing Systems, 2007.

228

[162] D. Liu. Protecting neighbor discovery against node compromises in sensor networks.
In Proceedings of the 29th IEEE International Conference on Distributed Computing
Systems, ICDCS ’09, 2009.

[163] Z. Liu and M. Joseph. Transformation of programs for fault-tolerance. Formal Aspects
of Computing, 4(5):442–469, 1992.

[164] Z. Liu and M. Joseph. Specification and verification of fault-tolerance, timing, and
scheduling. ACM Transactions on Programming Languages and Systems (TOPLAS),
21(1):46–89, 1999.

[165] L. Lu, P. Sarkar, D. Subhraveti, S. Sarkar, M. Seaman, R. Jain, and A. Bashir. Carp:
Handling silent data errors and site failures in an integrated program and storage
replication mechanism. In Proceedings of the 29th IEEE International Conference on
Distributed Computing Systems, ICDCS ’09, 2009.

[166] M. Lubaszewski and B. Courtois. A reliable fail-safe system. IEEE Transactions on
Computers, 47(2):236–241, 1998.

[167] J. Luo, C. Huang, and L. Xu. Decoding star code for tolerating simultaneous disk
failure and silent errors. In Proceedings of the 40th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN ’10, 2010.

[168] T. Ma, J. Hillston, and S. Anderson. On the quality of service of crash-recovery failure
detectors. In Proceedings of the 37th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, DSN ’07, 2007.

[169] O. Maler, D. Nickovic, and A. Pnueli. From MITL to timed automata. In Formal
Modeling and Analysis of Timed Systems (FORMATS), pages 274–289, 2006.

[170] P. K. Manna, S. Ranka, and S. Chen. Analysis of maximum executable length for
detecting text-based malware. In 28th IEEE International Conference on Distributed
Computing Systems (ICDCS 2008), 2008.

[171] A. F. Martinez and K. Kuchcinski. Graph matching constraints for synthesis with
complex components. In DSD ’07: Proceedings of the 10th Euromicro Conference on
Digital System Design Architectures, Methods and Tools, pages 288–295, Washington,
DC, USA, 2007. IEEE Computer Society.

229

[172] M. Marwah, S. Mishra, and C. Fetzer. Enhanced server fault-tolerance for improved
user experience. In Proceedings of the 38th Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks, DSN ’08, 2008.

[173] K. McMillan. The smv system for smv version 2.5.4. Technical report, Carnegie Mellon
University, 2000.

[174] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

[175] A. Meixner and D. J. Sorin. Detouring: Translating software to circumvent hard
faults in simple cores. In Proceedings of the 38th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN ’08, 2008.

[176] J. W. Mickens and B. D. Noble. Concilium: Collaborative diagnosis of broken overlay
routes. In Proceedings of the 37th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, DSN ’07, 2007.

[177] H. Moniz, N. F. Neves, and M. Correia. Turquois: Byzantine consensus in wireless ad
hoc networks. In Proceedings of the 40th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, DSN ’10, 2010.

[178] R. Morales and I. Gupta. Avmon: Optimal and scalable discovery of consistent avail-
ability monitoring overlays for distributed systems. In ICDCS ’07 Proceedings of the
27th International Conference on Distributed Computing Systems, 2007.

[179] M. Muthuprasanna and G. Manimaran. Distributed divide-and-conquer techniques for
effective ddos attack defenses. In 28th IEEE International Conference on Distributed
Computing Systems (ICDCS 2008), 2008.

[180] A. R. Ningfang Mi, E. Smirni, and E. Riedel. Enhancing data availability in disk
drives through background activities. In Proceedings of the 38th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, DSN ’08, 2008.

[181] O. of Inspector Genera. Audit report: Advance automation system. Technical Report
Report Av-1998-113, USA Department of Transportation, April 1998.

[182] S. L. Pallemulle, H. D. Thorvaldsson, and K. J. Goldman. Byzantine fault-tolerant
web services for n-tier and service oriented architectures. In 28th IEEE International
Conference on Distributed Computing Systems (ICDCS 2008), 2008.

230

[183] J. C. Park and J. R. Crandall. Empirical study of a national-scale distributed intrusion
detection system: Backbone-level filtering of html responses in china. In Proceedings
of the 30th IEEE International Conference on Distributed Computing Systems, ICDCS
’10, 2010.

[184] U. Paul, S. R. Das, and R. Maheshwari. Detecting selfish carrier-sense behavior in
wifi networks by passive monitoring. In Proceedings of the 40th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, DSN ’10, 2010.

[185] R. Perdisci, M. Antonakakis, X. Luo, and W. Lee. Wsec dns: Protecting recursive
dns resolvers from poisoning attacks. In Proceedings of the 39th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, DSN ’09, 2009.

[186] L. Pike, J. Maddalon, P. S. Miner, and A. Geser. Abstractions for fault-tolerant
distributed system verification. In 17th International Conference Theorem Proving in
Higher Order Logics (TPHOLs), pages 257–270, 2004.

[187] T. Pionteck and W. Brockmann. A concept of a trust management architecture to
increase the robustness of nano age devices. In Dependable Systems and Networks
Workshops (DSN-W), 2010 International Conference on, 2010.

[188] I. Prasetya. Mechanically verified self-stabilizing hierarchical algorithms. In Proceed-
ings of the Third International Workshop on Tools and Algorithms for Construction
and Analysis of Systems, pages 399–415, 1997.

[189] S. Qadeer and N. Shankar. Verifying a self-stabilizing mutual exclusion algorithm. In
IFIP International Conference on Programming Concepts and Methods (PROCOMET’
98), 1998.

[190] A. Rahmati, L. Zhong, M. A. Hiltunen, and R. Jana. Reliability techniques for rfid-
based object tracking applications. In Proceedings of the 37th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, DSN ’07, 2007.

[191] P. Ramanathan, K. G. Shin, and R. W. Butler. Fault-tolerant clock synchronization
in distributed systems. Computer, 23(10):33–42, 1990.

[192] D. Ramsbrock, R. Berthier, and M. Cukier. Profiling attacker behavior following ssh
compromises. In Proceedings of the 37th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, DSN ’07, 2007.

231

[193] L. Rashid, K. Pattabiraman, and S. Gopalakrishnan. Towards understanding the ef-
fects of intermittent hardware faults on programs. InDependable Systems and Networks
Workshops (DSN-W), 2010 International Conference on, 2010.

[194] K. Raymond. A tree-based algorithm for distributed mutual exclusion. ACM Trans-
actions on Computer Systems (TOCS), 7:61–77, 1989.

[195] V. K. Reddy and E. Rotenberg. Coverage of a microarchitecture-level fault check
regimen in a superscalar processor. In Proceedings of the 38th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, DSN ’08, 2008.

[196] R. Riley, X. Jiang, and D. Xu. An architectural approach to preventing code injection
attacks. In Proceedings of the 37th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, DSN ’07, 2007.

[197] E. Rozier, W. Belluomini, V. Deenadhayalan, J. Hafner, K. K. Rao, and P. Zhou.
Evaluating the impact of undetected disk errors in raid systems. In Proceedings of
the 39th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, DSN ’09, 2009.

[198] H. Ruess, N. Shankar, and M. K. Srivas. Modular verification of srt division. Form.
Methods Syst, 14, 1999.

[199] J. Rumbaugh, I. Jacobson, and B. G. The Unified Modeling Language Reference Man-
ual. Pearson Higher Education, 2004.

[200] J. Rumbaugh, I. Jacobson, and B. G. Practical UML Statecharts in C/C++, Second
Edition: Event-Driven Programming for Embedded Systems. Newnes, 2008.

[201] O. Rutti, Z. Milosevic, and A. Schiper. Generic construction of consensus algorithms
for benign and byzantine faults. In Proceedings of the 40th Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks, DSN ’10, 2010.

[202] T. Sakata, T. Hirotsu, H. Yamada, and T. Kataoka. A cost-effective dependable
microcontroller architecture with instruction-level rollback for soft error recovery. In
Proceedings of the 37th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN ’07, 2007.

[203] N. Salatge and J.-C. Fabre. Fault tolerance connectors for unreliable web services. In
Proceedings of the 37th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN ’07, 2007.

232

[204] H. Schiöberg, R. Merz, and C. Sengul. A failsafe architecture for mesh testbeds with
real users. In MobiHoc S3 ’09: Proceedings of the 2009 MobiHoc S3 workshop on
MobiHoc S3, pages 29–32, New York, NY, USA, 2009. ACM.

[205] N. Schiper and S. Toueg. A robust and lightweight stable leader election service for
dynamic systems. In Proceedings of the 38th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks, DSN ’08, 2008.

[206] R. D. Schlichting and F. B. Schneider. Fail-stop processors: an approach to designing
fault-tolerant computing systems. ACM Trans. Comput. Syst, 1983.

[207] C. Sengul and R. Kravets. Heuristic approaches to energy-efficient network design
problem. In ICDCS ’07 Proceedings of the 27th International Conference on Distributed
Computing Systems, 2007.

[208] M. Serafini, P. Bokor, D. Dobre, M. Majuntke, and N. Suri. Scrooge: Reducing the
costs of fast byzantine replication in presence of unresponsive replicas. In Proceedings
of the 40th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, DSN ’10, 2010.

[209] M. Serafini, N. Suri, J. Vinter, A. Ademaj, W. Brandstatter, F. Tagliabo, and J. Koch.
A tunable add-on diagnostic protocol for time-triggered systems. In Proceedings of
the 37th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, DSN ’07, 2007.

[210] Y. Shi and G. Lee. Augmenting branch predictor to secure program execution. In
Proceedings of the 37th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN ’07, 2007.

[211] A. Shye, T. M. andVijay Janapa Reddi, J. Blomstedt, and D. A. Connors. Using
process-level redundancy to exploit multiple cores for transient fault tolerance. In
Proceedings of the 37th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN ’07, 2007.

[212] R. Sion. Strong worm. In 28th IEEE International Conference on Distributed Com-
puting Systems (ICDCS 2008), 2008.

[213] F. Somenzi. Cudd: Cu decision diagram package. Technical report, University of
Colorado at Boulder, 2012.

233

[214] P. Sommer and R. Wattenhofer. Gradient clock synchronization in wireless sensor
networks. In IPSN ’09: Proceedings of the 2009 International Conference on Informa-
tion Processing in Sensor Networks, pages 37–48, Washington, DC, USA, 2009. IEEE
Computer Society.

[215] H. J. Song and A. A. Chien. Feedback-based synchronization in system area networks
for cluster computing. IEEE Trans. Parallel Distrib. Syst., 16(10):908–920, 2005.

[216] W. Sootkaneung and K. K. Saluja. Gate input reconfiguration for combating soft errors
in combinational circuits. In Dependable Systems and Networks Workshops (DSN-W),
2010 International Conference on, 2010.

[217] D. J. Sorin, M. M. K. Martin, M. D. Hill, and D. A. Wood. Safetynet: improving
the availability of shared memory multiprocessors with global checkpoint/recovery.
In ISCA ’02: Proceedings of the 29th annual international symposium on Computer
architecture, 2002.

[218] P. Sousa, A. N. Bessani, W. S. Dantas, F. Souto, M. Correia, and N. F. Neves.
Intrusion-tolerant self-healing devices for critical infrastructure protection. In Proceed-
ings of the 39th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks, DSN ’09, 2009.

[219] A. C. Squicciarini, A. Trombetta, and E. Bertino. Robust and secure interactions
in open distributed systems through recovery of trust negotiations. In ICDCS ’07
Proceedings of the 27th International Conference on Distributed Computing Systems,
2007.

[220] C. T. and T. S. Unreliable failure detectors for reliable distributed systems. Journal
of the ACM, 1996.

[221] G. Tan, S. A. Jarvis, and A.-M. Kermarrec. Connectivity-guaranteed and obstacle-
adaptive deployment schemes for mobile sensor networks. In 28th IEEE International
Conference on Distributed Computing Systems (ICDCS 2008), 2008.

[222] C. Temple. Avoiding the babbling-idiot failure in a time-triggered communication
system. In FTCS ’98: Proceedings of the The Twenty-Eighth Annual International
Symposium on Fault-Tolerant Computing, page 218, Washington, DC, USA, 1998.
IEEE Computer Society.

[223] M. T. Thai, Y. Xuan, I. Shin, and T. Znati. On detection of malicious users using group
testing techniques. In 28th IEEE International Conference on Distributed Computing
Systems (ICDCS 2008), 2008.

234

[224] B. Tong, Z. Li, G. Wang, and W. Zhang. How wireless power charging technology
affects sensor network deployment and routing. In Proceedings of the 30th IEEE In-
ternational Conference on Distributed Computing Systems, ICDCS ’10, 2010.

[225] T. Tsuchiya, S. Nagano, R. B. Paidi, and T. Kikuno. Symbolic model checking for
self-stabilizing algorithms. IEEE Trans. Parallel Distrib. Syst, 12:81–95, 2001.

[226] N. Tuck, B. Calder, and G. Varghese. Hardware and binary modification support for
code pointer protection from buffer overflow. In MICRO 37: Proceedings of the 37th
annual IEEE/ACM International Symposium on Microarchitecture, 2004.

[227] W. Visser, K. Havelund, G. P. Brat, S. Park, and F. Lerda. Model checking programs.
Journal of Automated Software Engineering, 10(2):203–232, 2003.

[228] S. Wan, Q. Cao, C. Xie, B. Eckart, and X. He. Code-m: A non-mds erasure code
scheme to support fast recovery from up to two-disk failures in storage systems. In
Proceedings of the 40th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN ’10, 2010.

[229] W. Wang and C. Amza. On optimal concurrency control for optimistic replication.
In Proceedings of the 29th IEEE International Conference on Distributed Computing
Systems, ICDCS ’09, 2009.

[230] W. Wang, D. Pu, and A. Wyglinski. Detecting sybil nodes in wireless networks with
physical layer network coding. In Proceedings of the 40th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks, DSN ’10, 2010.

[231] Y. Wang, H. Wu, F. Li, and N.-F. Tzeng. Protocol design and optimization for
delay/fault-tolerant mobile sensor. In 27th IEEE International Conference on Dis-
tributed Computing Systems (ICDCS 2007), 2007.

[232] Y. Wang and J. Wu. A nonblocking approach for reaching an agreement on request
total orders. In 28th IEEE International Conference on Distributed Computing Systems
(ICDCS 2008), 2008.

[233] S. Weiss, P. Urso, and P. Molli. Logoot: A scalable optimistic replication algorithm for
collaborative editing on p2p networks. In Proceedings of the 29th IEEE International
Conference on Distributed Computing Systems, ICDCS ’09, 2009.

235

[234] J. Widder, G. Gridling, B. Weiss, and J.-P. Blanquart. Synchronous consensus with
mortal byzantines. In Proceedings of the 37th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks, DSN ’07, 2007.

[235] S.-H. Wu, C.-M. Chen, and M.-S. Chen. An asymmetric quorum-base power saving
protocol for clustered ad hoc networks. In ICDCS ’07 Proceedings of the 27th Inter-
national Conference on Distributed Computing Systems, 2007.

[236] S.-H. Wu, M.-S. Chen, and C.-M. Chen. Fully adaptive power saving protocols for ad
hoc networks using the hyper quorum system. In Proceedings of the 27th International
Conference on Distributed Computing Systems, ICDCS ’08, 2008.

[237] W. Xiao and Q. Yang. Can we really recover data if storage subsystem fails? In 28th
IEEE International Conference on Distributed Computing Systems (ICDCS 2008),
2008.

[238] T. Xie and A. Sharma. Collaboration-oriented data recovery for mobile disk arrays.
In Proceedings of the 29th IEEE International Conference on Distributed Computing
Systems, ICDCS ’09, 2009.

[239] K. Xing, F. Liu, X. Cheng, and D. H.-C. Du. Real-time detection of clone attacks
in wireless sensor networks. In 28th IEEE International Conference on Distributed
Computing Systems (ICDCS 2008), 2008.

[240] Y. Yamauchi, T. Masuzawa, and D. Bein. Preserving the fault-containment of ring
protocols executed on trees. British Computer Journal, 52(4), July 2009.

[241] G. Yan, L. Cuellar, S. Eidenbenz, and N. W. Hengartner. Blue-watchdog: Detect-
ing bluetooth worm propagation in public areas. In Proceedings of the 39th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks, DSN ’09,
2009.

[242] G. Yan and S. Eidenbenz. Modeling propagation dynamics of bluetooth worms. In
ICDCS ’07 Proceedings of the 27th International Conference on Distributed Computing
Systems, 2007.

[243] X. Yang, P. Wang, H. Fu, Y. Du, Z. Wang, and J. Jia. Compiler-assisted application-
level checkpointing for mpi programs. In 28th IEEE International Conference on Dis-
tributed Computing Systems (ICDCS 2008), 2008.

236

[244] Q. Ye and L. Cheng. Dtp: Double-pairwise time protocol for disruption tolerant
networks. In 28th IEEE International Conference on Distributed Computing Systems
(ICDCS 2008), 2008.

[245] M. Young, A. Kate, I. Goldberg, and M. Karsten. Practical robust communication in
dhts tolerating a byzantine adversary. In Proceedings of the 30th IEEE International
Conference on Distributed Computing Systems, ICDCS ’10, 2010.

[246] S. Yu and Y. Zhang. R-sentry: Providing continuous sensor services against random
node failures. In Proceedings of the 37th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, DSN ’07, 2007.

[247] W. Yu, W. Hongyi, L. Feng, and T. Nian-Feng. Protocol design and optimization for
delay/fault-tolerant mobile sensor networks. In Proceedings of the 27th International
Conference on Distributed Computing Systems, ICDCS ’07, 2007.

[248] W. Yu, N. Zhang, X. Fu, R. Bettati, and W. Zhao. On localization attacks to inter-
net threat monitors: An information-theoretic framework. In Proceedings of the 38th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks,
DSN ’08, 2008.

[249] Y. Yue, L. Tian, H. Jiang, F. Wang, D. Feng, Q. Zhang, and P. Zeng. Rolo: A rotated
logging storage architecture for enterprise data centers. In Proceedings of the 30th
IEEE International Conference on Distributed Computing Systems, ICDCS ’10, 2010.

[250] D. Zhang and D. Liu. Dataguard: Dynamic data attestation in wireless sensor net-
works. In Proceedings of the 40th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, DSN ’10, 2010.

[251] L. Zhang and Y. Guan. Detecting click fraud in pay-per-click streams of online ad-
vertising networks. In 28th IEEE International Conference on Distributed Computing
Systems (ICDCS 2008), 2008.

[252] Y. Zhang, Z. M. Mao, and J. Wang. A firewall for routers: Protecting against routing
misbehavior. In Proceedings of the 37th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, DSN ’07, 2007.

[253] Y. Zhang, Z. Zhang, Z. M. Mao, and Y. C. Hu. Hc-bgp: A light-weight and flexible
scheme for securing prefix ownership. In Proceedings of the 39th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, DSN ’09, 2009.

237

[254] Z. Zhang, W. Wu, and S. Shekhar. Optimal placements in ring network for data replicas
in distributed database with majorityvoting protocol. In 28th IEEE International
Conference on Distributed Computing Systems (ICDCS 2008), 2008.

[255] Y. Zhao, S. Vemuri, J. Chen, Y. Chen, H. Zhou, and Z. Fu. Exception triggered dos
attacks on wireless networks. In Proceedings of the 39th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks, DSN ’09, 2009.

[256] Y. Zhou, X. Chen, M. R. Lyu, and J. Liu. Sentomist: Unveiling transient sensor
network bugs via symptom mining. In Proceedings of the 30th IEEE International
Conference on Distributed Computing Systems, ICDCS ’10, 2010.

[257] Q. Zhu and C. Yuan. A reinforcement learning approach to automatic error recovery.
In Proceedings of the 37th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN ’07, 2007.

[258] Y. Zhuang, L. Chen, Xiaoyang, X. S. Wang, and J. Lian. A weighted moving average-
based approach for cleaning sensor data. In 27th IEEE International Conference on
Distributed Computing Systems (ICDCS 2007), 2007.

[259] P. Zielinski. Automatic verification and discovery of byzantine consensus protocols. In
Proceedings of the 37th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN ’07, 2007.

238

