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ABSTRACT

AN EMPIRICAL STUDY OF THE TYPE I ERROR RATE AND POWER

FOR SOME SELECTED NORMAL-THEORY AND NONPARAMETRIC TESTS

OF THE INDEPENDENCE OF TWO SETS OF VARIABLES

By

Abdul Razak Habib

The present study empirically examined the effect of non-

normality, sample size, number of variables, and degree of dependency

on the Type I error and power properties of five normal-theory and

nonparametric tests of' the independence of’ two sets of ‘variables.

Simulated data representing light-, moderately heavy-, and heavy-tailed

distributions, three sample sizes, three sets of correlations-among-

variables, and three sets of numbers-of-variables were included.

This study yielded the following results. The Type I error rates

of the normal-theory Bartlett and Rao E tests increase subtantially for

the moderately heavy- and heavy-tailed distributions, whereas the Type

I error rates of the nonparametric rank-transfonm Rao E and the pure-

and mixed-rank tests are not affected by the form of a parent

distribution. for' moderately-small and. moderately-large samples. The

Type I error rates of the Bartlett and Rao E tests increase with

increases in the correlation among predictor and/or dependent

variables, and with increases in the number-of-variables for heavy-

tailed distributions. The Type I error rate of the rank- transform Rao

E test is not affected by the within-set-correlation and the number-of-

variables factors, while those of the pure- and mixed-rank tests are

not affected by the within-set-correlation factor but decrease as the

number of variables increases for all distributions.



The power values of the normal-theory Bartlett and Rao E tests

increase subtantially only for extremely heavy-tailed distributions.

The power values of all three nonparametric tests increase with

increases in the kurtosis values. The power values of all five tests

increase with increases in the sample size and the correlation among

the predictor variables, and decrease with increases in the correlation

among the dependent variables for all distributions. The increments due

to the sample size are higher for the three nonparametric tests. The

power values of the Bartlett, Rao E, and the rank-transform Rao E tests

are not affected by the number of variables, while those of the pure-

and mixed-rank tests decrease as the number of variables increases for

all distributions. However, the reduction in the power values tends to

be compensated for by increases in the sample size.
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CHAPTER I'

STATEMENT OF THE PROBLEM

The present study used computer-simulated data to assess the

distributional behavior (i.e., Type I error rate and power) of

selected normal-theory and nonparametric tests of the independence of

two sets of variables. The focus of the investigation was the behavior

of the tests in, the 'presence of’ non-normal skewness and. kurtosis

values. This chapter discusses the (a) role of multivariate analysis in

educational research, (b) normal-theory and nonparametric-mu1tivariate

tests in educational research, (c) purpose of the study, (d) factors

which influence the choice of a normal-theory or nonparametric-

multivariate test, (e) research questions and hypotheses, (f) role of

simulation in distributional studies, (g) significance of the study,

and (h) limitations of the study. The definitions of some statistical

terms are given in Appendix A.

va 1 Educ na esea

Multivariate analysis refers to a collection of descriptive and

inferential methods that have been developed for situations where one

or more sets of correlated variables are treated as outcome measures,

predictors, or both (Harris, 1975, p. 5). More specifically,

multivariate methods allow researchers to simultaneously analyze the

interrelationships among many variables. In contrast, univariate

analyses are carried out separately for each outcome variable. One

potential shortcoming of univariate methods is that they may lead to an



2

incomplete description of the data since they ignore interrelationships

among predictor and outcome variables.

Multivariate methods have found widespread use in educational

research. A. primary reason for their popularity is the interest

educational researchers show in testing theories that are multivariate

in character, which implies the use of multiple variables. Because

these variables are chosen to be consistent with the theory under

test, they form a multidimensional system and are expected to be

correlated (Takeuchi, Yanai, & Mukherjee, 1982, p. 54). Testing

theories by collecting data on several variables leads quite naturally

to multivariate data-analytic methods.

Among the inferential multivariate methods used in educational

research are multivariate analysis of variance (MANOVA), factor

analysis, discriminant analysis, canonical-correlation analysis, and

multivariate-multiple-regression. These methods have served as

important explanatory tools for researchers attempting to summarize

the information in a data set containing multiple (correlated) outcome

variables.

As noted above, many studies in education involve the analysis

of relationships between multiple outcome and predictor variables.

Canonical-correlation analysis and multivariate-multip1e-regression

represent general data-analytic methods that may be used to study such

relationships. The fundamental difference between the two approaches

lies in the nature of the measured relationship. Canonical-correlation

analysis assesses the degree of relationship among two sets of random

variables (Takeuchi et a1., 1982, p. 225). Although researchers often



3

refer to one set of variables as predictors and the other as outcomes,

the mathematical model underlying canonical correlation makes no such

distinction (Gittins, 1985, p. 19).

The multivariate-multiple-regression model, on the other hand,

simultaneously assesses the degree of relationship between each of the

random outcome variables and the set of fixed and known predictor

variable values (Takeuchi et a1., 1982, p. 116). However, predictors

are rarely fixed and known in practice and regression analysis is

routinely performed for predictors that, in essence, are random

variables. An important consequence of this practice is that data-

analytic inferences are limited to predictor values appearing in the

sample (Rogosa, 1980).

As an example of the differing applications of canonical-

correlation and multivariate-mu1tip1e-regression in educational

research, consider a study of the relationship between school

organizational climate and teacher job satisfaction. Two well known

instruments in this area are the Teacher Job Satisfaction Questionaire

(Lester, 1983), which measures nine identified factors of teacher job

satisfaction, and the Organizational Climate Description Questionaire

(Kottkamp, Mohlern, & Hay, 1985), which measures five dimensions of

organizational climate. If the research question focuses on the

interdependence between these two sets of (random) ‘variables, the

relationship between the job satisfaction. factors and the

organizational climate dimensions is most properly examined using

canonical-correlation analysis. If one set of variables is

conceptualized as outcomes and the other as predictors, then
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multivariate-multiple-regression would be appropriate. It is important

to emphasize that these models are conceptually different, yet are

identical with respect to making, statistical inferences about the

relationship between two sets of variables. Both of these procedures

are important explanatory tools for educational researchers interested

in testing theories that are multivariate in character.

“MW

Historically, researchers opting for multivariate methods

have been confronted with the problem of fitting the observed data

into the framework of multivariate-normal-theory procedures. Such

methods have collectively been labelled parametric, and are identified

by their reliance on the assumption that the population distribution

of observations follows a multivariate-normal density function (Puri &

Sen, 1971, p. 1). Yet in many data-analytic situations there is little

doubt that the observations can be characterized as moderately or even

distinctly non-normal (Puri & Sen, 1971, p. 1). Under the assumption of

random sampling from a specified population, this casts doubt on the

normality of the population distribution. For example, educationally-

oriented variables such as the number of days absent from school are

likely to produce (non-normal) data that are badly skewed or slightly

or heavily kurtic.

One approach for dealing with non-normality is to transform the

original data to a form more closely resembling a normal distribution

(see Box 6: Cox, 1964) and then employ normal-theory methods. This

requires that the underlying distribution of the original variable(s)
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be known before deciding which transformation is most appropriate. In

many cases, the distribution of the original variable is not known, and

transformations of this type may be problematic (Kendall & Stuart,

1969, V. 2, p. 487). Another issue is that the transformed variable may

not be interpretable.

A second approach is to transform the original data to ranks (or

some other' monotonic transformation) and then. employ ‘nonparametric

methods. These methods do not require that the form of the underlying

distribution be known, and are characterized by their relaxation of the

normality assumption. However, the underlying distribution must be

continuous (Kendall & Stuart, 1969, V. 2, p. 487).

In surveying the literature, a number of nonparametric

alternatives to normal-theory, univariate methods are available (e.g.,

Conover, 1980; Gibbons, 1971; MarascuiLo & Mwaeeney, 1977). This is

not true for the multivariate case, where nonparametric alternatives to

normal-theory multivariate methods exist only in certain areas of

statistical inference.

A primary source of the development of nonparametric-multivariate

methods is the work of Puri and Sen (1969, 1971, 1985). Of special

importance are the tests these authors generated for hypotheses

subsumed under the multivariate general linear model. One is the pure-

rank procedure, in which values of all variables are ranked prior to

any analysis, and the other is the mixed-rank procedure, in which some

but not all variables are ranked. Another nonparametric approach that

is closely related to classical nonparametric methods is the rank-

transform procedure due to Iman and Conover (Conover & Iman, 1981;
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Iman, 1974b; Iman & Conover, 1979). This procedure, which likewise does

not require a normality assumption, involves transforming the original

data to their corresponding ranks and then applying normal- theory

procedures. The pure- and mixed-rank procedures as illustrated by Puri

and Sen, and the rank-transform procedure of Conover and Iman,

represent the primary nonparametric alternatives to normal-theory

multivariate analysis.

The purpose of the present study was to compare the Type I error

and power properties of two normal-theory (Bartlett, Rao E) and three

nonparametric (rank-transform Rao E, pure-and mixed-rank) tests of the

independence of two sets of variables (i.e., tests of no canonical

correlation or In) regression). The distributional properties of these

tests hold exactly only for the asymptotic case (i.e., for very large

samples and/or a parent normal distribution), and hence the focus was

on the behavior of these tests for small samples under a variety of

non-normal skewness and kurtosis conditions.

Other factors examined included the sample size, the correlation

within the set of predictors and within the set of dependent variables,

the correlation among the sets of predictor and dependent variables,

and the number of variables. Since the effects of such factors are

difficult to evaluate analytically (Ito & Schull, 1964; Zwick, 1984, p.

2), a simulation study was performed to investigate the behavior of

the tests. It is anticipated that the results of the present study

will provide educational researchers with guidelines for choosing
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between normal-theory tests of the hypothesis of no relationship among

two sets of variables and their nonparametric counterparts under a

variety of non-normal data and sample-size conditions.

Wh e o N a -

a - t s

As a result of theoretical and computational advances a variety

of normal-theory and nonparametric multivariate tests are available to

educational researchers. The question arises of how best to choose

among the two kinds of tests. The application of a normal-theory

procedure to test a statistical hypothesis requires some statistical

assumptions on the observations and the population distribution. For

example, the omnibus test that all population regression coefficients

equal zero in multivariate-multiple-regression assumes that (a) the

population of outcomes, conditional on the predictors, is normally

distributed, (b) the outcomes, conditional on the predictors, have a

common covariance matrix, and (c) the residuals for a given outcome

variable are independent.

Violations of one or more of these assumptions have been shown

to have adverse effects on the Type I error probability and power of

normal-theory multivariate tests under a variety of data conditions

(Ito 6: Schull, 1964; Mardia, 1971; Olson, 1976). Thus, the use of a

normal-theory test when assumptions are violated may lead to an

incorrect conclusion. For example, a true statistical hypothesis may be

rejected, not because the statistical hypothesis is false but because

one or more of the underlying statistical assumptions are violated

(Conover, 1980, p. 84). Thus, the effect of violating underlying
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statistical assumptions is an important factor in choosing a normal-

theory or nonparametric-mu1tivariate test.

It is important to emphasize that some violations of the

assumptions underlying a statistical test: will always occur. This

points to a need for criteria that define the ”best" test with respect

to distributional properties when underlying assumptions are violated.

Gibbons (1971, p. 16) defines the "best" test as the test which is

most successful in correctly distinguishing between the conditions as

stated in the null and alternative hypotheses. An equivalent and more

technical definition of the "best" test is given by Ito (1980), who

argues that it is the one which is robust (i.e., insensitive to the

violation of test assumptions) with respect to the Type I error

probability and also most powerful among its competitors.

Unfortunately, the search for the "best" test is complicated by

the variety of assumption violations that can affect the distributional

properties of a test. Fundamental to the comparison of normal-theory

and nonparametric tests is the assumption of normality; As noted

earlier, the application of a nonparametric procedure in testing

statistical hypotheses does not require a normality assumption, and

hence the choice of a normal-theory or nonparametric test in general

depends on the tenability of the normality assumption. It is important

to emphasize that this is the fundamental difference ‘between. the

normal-theory and nonparametric tests considered in the present study.

While nonparametric methods may be less sensitive to other assumption

violations than their normal-theory counterparts (e.g., heteroscedesti-

city of variance), it is primarily the lack of a normality requirement
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that distinguishes the two methodologies, and serves as an important

factor influencing the choice of one kind of test rather than another.

Factors other than the tenability of the normality assumption

also influence the Type I error rate and power of tests, and hence

should be considered in the choice of a normal-theory or nonparametric

test. These include the number of variables, their degree of

dependency, and the sample size .

As noted earlier it would be desirable to analytically examine

the effects of all of the above factors on the distributional

properties of these tests. Such analyses are extremely difficult if not

impossible in the multivariate case because the analytic methods rely

on specific statistical assumptions about the underlying distributions

and on the asymptotic distribution of sample statistics. Hence

investigations of the effects of these factors on normal-theory and

nonparametric-multivariate tests have primarily been empirical.

The results of a number of studies suggest that the form of the

underlying distribution plays a key role on the Type I error rate and

power performance of multivariate tests (Arnold, 1964; Chase & Bulgren,

1971; Davis, 1982b; Harwell & Serlin, 1985; Mardia, 1970). The number

of dependent variables has also been found to affect the

distributional behavior of multivariate tests (Ito, 1980; Olson, 1974),

in that the tests tend to become less robust as the number of outcome

variables increases. This result may be explained by the fact that the

degree of non-normality in the joint distribution of the dependent

variables is likely to increase as their number increases (Puri & Sen,

1971, p. 2).



10

As implied by. Puri and Sen (1971, p. 176), the degree and

pattern of dependency among variables would also be expected to affect

the power of nonparametric-multivariate tests. For example, high

correlations among variables would (other factors being equal) tend to

produce less powerful tests than low correlations among variables.

Sample size is also an important factor influencing the choice of a

normal-theory or nonparametric test. This occurs because most of the

normal-theory multivariate methods are based on sampling distributions

of test statistics that are derived from large samples. However, the

same is true for nonparametric tests, and hence both normal-theory and

nonparametric tests are expected to be less robust for small samples.

In addition to the form of the underlying distribution, the

number of variables, their degree of dependency, and the sample size

all have been cited as influencing the choice of a normal-theory or

nonparametric test. Consequently, any investigation of normal-theory

and nonparametric-multivariate tests. should consider these factors.

Eesgggch Questions and flypotheses

In comparing the Type I error and power properties of normal-

theory and nonparametric tests of the independence of two sets of

variables, special attention was given to the influence of skewness and

kurtosis. Such attention is justified by previous research in both the

univariate and multivariate cases, and has indicated the importance of

these two characteristics. in the performance of a test (Chase &

Bulgren, 1971; Harwell & Serlin, 1985; Mardia, 1970; Olson, 1976). The

questions of particular interest and their related hypotheses are the
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following:

1. Do the skewness and kurtosis values affect the Type I error and

power values of normal-theory and nonparametric tests? Previous

empirical results suggest that increasing skewness results in

normal-theory tests that become liberal (i.e., rejecting a true

null hypothesis more often than expected), while increasing

kurtosis results in tests that become conservative (i.e., rejecting

a true null hypothesis less often than expected) (Chase 6: Bulgren,

1971; Mardia, 1970; Olson, 1974). Increasing skewness or kurtosis

may also reduce the power of normal-theory tests (Harwell & Serlin,

1985; Olson, 1974). Such effects would not be expected for

nonparametric tests, since these procedures in general do not

depend on the form of the underlying distribution.

2. Does sample size influence the effects .of skewness and kurtosis on

the Type I error and power values of normal-theory and

nonparametric tests? The sampling distributions of most normal-

theory and nonparametric test statistics are derived for large

samples. Thus, for small samples neither normal-theory or

nonparametric tests would be expected to be robust with respect to

Type I error rate and power. In particular, for small and moderate

samples departures from normality would be expected to noticeably

affect the Type I error rate and power of the normal-theory tests

(Olson, 1974; Zwick, 1984, p. 2). Similarly, the nonparametric

tests would not be expected to perform well for small samples, but

would be expected to do well for moderate samples. The power values



12

of all tests would be expected to increase with increases in the

sample size.

Does the degree of dependency among variables influence the

effects of skewness and kurtosis on the Type I error and power

values of normal-theory and nonparametric tests? As implied by

Puri and Sen (1971, p. 176), the degree of dependency among

variables would be expected to affect the power of some

multivariate tests. However, the results of the study by Harwell

and Serlin (1985) suggested that in general the degree of

dependency among variables would not affect the power of normal-

theory tests, although for extremely skewed data a high degree of

dependency among variables tended to slightly reduce the power of

nonparametric tests. Thus, a high degree of dependency among

variables might be expected to slightly reduce the power of the

nonparametric tests for extremely skewed data.

Does the number of variables influence the effects of skewness and

kurtosis on the Type I error and power values of normal-theory and

nonparametric tests? Previous empirical results suggest that

normal-theory procedures become less robust with respect to Type I

errors and power as the number of outcome variables increases

(Ito, 1980; Olson, 1974). Puri and Sen (1971, p. 2) pointed out

that as the number of variables increases, the degree of non-

normality of their joint distribution might be expected to increase

simply because of the increase in the dimensionality of the

distribution.
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It has been pointed out that analytic studies of the Type I error

probability and power efficiency of multivariate tests for small

samples are very difficult if not impossible to carry out. An

alternative to analytic methods is the application of computer

simulation in assessing the performance of various statistical tests.

Hartley (1976) argues that computer simulation has become an important

technique for verifying analytic results. For example, such techniques

can be used to find the exact sampling distribution of most statistics

using data that have been drawn from any parent distribution (Tracy &

Conley, 1982, p. 262). Fawcett and Salter (1987) stressed that a

distribution study should not be regarded as complete without the

inclusion of computer simulation for finding the exact distribution of

the statistic used. Although the present study will present analytic

expressions when they exist, it will rely on simulated data to answer

the research questions by examining the distributional behavior of the

selected test statistics under various data conditions.

§igni§ig§n§g of the Stgdy

The significance of the present study is related to the

multivariate character of educational research questions and the

empirical tests of these questions. As noted earlier, studies in

education often generate research questions that are multivariate in

character and lead to the use of multiple (correlated) variables. The

multivariate methods used in the analysis of this data typically

assume normality of the underlying distribution. In many practical
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situations, however, there is evidence that the underlying

distributions are non-normal (Puri 6: Sen, 1971, p. 1). Because such

non-normality can ‘have a deleterious effect on. the distributional

properties of normal-theory tests, particularly for studies that

employ small to moderate samples, the use of normal-theory methods

may not be appropriate. Under these circumstances, educational

researchers should consider a multivariate-nonparametric alternative.

In studying normal-theory and nonparametric-multivariate tests,

canonical-correlation analysis/multivariate—multiple-regression seem a

natural starting point. Their importance as a general system of

statistical inference has been demonstrated by several authors. For

example, Knapp (1978) showed that many of the commonly used normal-

theory tests can be treated as special cases of the canonical-

correlation model. The same is true in the nonparametric case.

It should be emphasized that the Bartlett, Rao E, and

rank-transform Rao E tests were developed for an omnibus test

involving canonical correlations, while the pure- and mixed-rank tests

to be examined were developed for an omnibus test involving

multivariate-multiple-regression. However, as shown in the next

chapter the models underlying canonical-correlation and multivariate-

multiple-regression. are identical, and. 'hence these tests are

equivalent with respect to concluding whether two sets of variables

are independent (Gittins, 1985, p. 19).

The choice of the "best" test depends on a number of factors,

including the form of the underlying distribution, the number of

variables, their degree of dependency, and the sample size. These
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factors were examined in the present simulation study. It is expected

that the results will provide educational researchers with guidelines

for performing either normal—theory or nonparametric canonical-

correlation/multivariate-multiple-regression analysis for a variety of

data conditions .

t 0 ud

The findings of the present study are valid only if the between-

set correlation matrix containing zeros is a sufficient indication of

the independence of two sets of non-normal variates. The

generalizability of the results is also limited by the range of

simulation conditions investigated.



CHAPTER II

REVIEW OF THE LITERATURE

A review of the literature pertinent to the present study is

presented in this chapter. The review includes the following areas (a)

defining the normal distribution and some non-normal distributions on

the basis of skewness and kurtosis, (b) methods of dealing with non-

normal data, including transforming the original data to ranks, and (c)

robustness and power results for some normal-theory and nonparametric-

multivariate tests .

a n t Norm st buti and Some

Ngn-Egmal Distzibutigns

Because of the critical role of skewness and kurtosis in the

present study, these characteristics of a distribution are defined

and illustrated for the normal and some non-normal distributions. In

theory, the shape of a distribution is defined by its probability

distribution function, which is an algebraic expression indicating the

distribution of a variable across all of its possible values. In

practice, an approximate distribution of a variable can be

characterized by its first four central moments (i.e., mean, variance,

skewness, and kurtosis) (Fleishman, 1978). In this scheme, the center

and dispersion of a distribution are determined by the mean and

variance, and its symmetry and tailedness by the skewness and kurtosis

values. Assuming the observations are standardized to have a known

mean and variance, this permits distributions to be classified

according to their skewness and kurtosis values.

16
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Skewness and kurtosis are defined through central moments. For a

continuous random variable X, the r(th) central moment (pr) is defined

as (Kendall 6: Stuart, 1969, V. 1, p. 55):

O

"r - I<X-;u1)r f<X)dX. <1)
-0

where p1 is the population mean and f(X) is the probability

distribution function of X. The population skewness (11) and kurtosis

(12) can be defined in terms of the second (p2), third (u3), and fourth

(“4) central moments (Kendall & Stuart, 1969, V. l, p. 85):

71 - 713/753”. (2)

- 2 3 3

According to expressions (2) and (3), the normal distribution has

skewness and kurtosis values equal to zero. Non-normal distributions

can then be defined as those having skewness and/or kurtosis values

other than zero. Expressions (2) and (3) were used to define the

normal distribution and a variety of non-normal distributions in the

present simulation study.

In general, a distribution is characterized as mesokurtic if its

kurtosis is zero, platykurtic if its kurtosis is negative, and

leptokurtic if its kurtosis is positive (Kendall & Stuart, 1969, V. l,

p. 86). Platykurtic distributions are flatter and have lighter tails

(i.e., less extreme values) than the normal distribution. Leptokurtic

distributions on the other hand, are sharply peaked and have heavier

tails (i.e., more extreme values) than the normal distribution. A

distribution is said to be symmetric if its skewness is zero, or
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asymmetric (skewed) if it has a negative or positive skewness value.

To illustrate the relationship between ‘various skewness and

kurtosis combinations and the shape of the distribution they reflect,

the skewness and kurtosis values of some common (standardized)

univariate distributions are shown in Table 1. Most of these

distributions are symmetric or leptokurtic (i.e., normal, uniform,

logistic, double exponential, g). In general, skewness and kurtosis

Table l

Skewness and Kurtosis Values ofaSome

Univariate Distributions

 

 

Distribution 11 12 Shape of Distribution

normal .0 .00 symmetric, mesokurtic

uniform .0 -1.12 symmetric, platykurtic

logistic .0 1.20 symmetric, leptokurtic

double-exp. .0 3.00b symmetric, leptokurtic

5 .0 6/(v-4) symmetric, leptokurtic

exponential 2.0 6.00 asymmetric, leptokurtic

.3, 

Johnson and Kotz (1970, Vols. 1 and 2)

u - degrees of freedom (u > 4).

values that deviate subtantially from zero indicate a greater degree

of non-normality, although it should be emphasized that the effects of

both skewness and kurtosis must be considered.

Another distribution that is important in simulation studies is

the symmetric, extremely heavy-tailed Cauchy, since it reflects an

extreme in non-normality that can occur in practice. Theoretically,

the Cauchy distribution has an infinite variance, and hence does not

possess a finite kurtosis value. However, in empirical studies a

pseudo-Cauchy distribution can be generated using a zero skewness
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value and a large positive kurtosis value (Harwell & Serlin, 1985).

Although univariate measures of skewness and kurtosis are

relatively unambiguous in their interpretation, such is not the case

for their multivariate counterparts. Even so, these measures have been

useful in identifying a particular member of a family of distributions,

in developing a test of normality, and in investigating the robustness

of normal-theory procedures (Mardia, 1970).

Mardia (1970, 1974) developed measures of skewness and kurtosis

for multivariate distributions, details of which appear in Chapter

III. For illustrative purposes, multivariate measures of skewness and

kurtosis for some bivariate distributions in which both variables are

standardized are given in Table 2 (Mardia, 1970). Notice that the

skewness values are zero for all symmetric distributions. In

particular, Mardia (1974) showed. that the multivariate-normal

distribution has skewness and kurtosis values of zero. Just as in the

univariate case, any multivariate distribution is considered to be

non-normal for non-zero skewness and/or kurtosis values.

Table 2

Multivariate Skewness and Kurtosis Values of Some

Bivariate Distributions (Mardia, 1970)

 

 

Distribution Skewness Kurtosis

normal 0.00 0.00

uniform 0.00 -2.24

double-exponential 0.00 6.00

exponential 8.00 12.00
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As noted earlier, the normality assumption underlying normal-

theory tests is of prime importance in the correct use and

interpretation. of these procedures. At the same time, there is a

general recognition that data obtained in a ‘variety' of settings,

including education, are frequently at least moderately non-normal and

hence the use of normal-theory tests is problematic. This has led to

the emergence of two approaches for fitting such data into the

framework of statistical theory (a) transforming the data to an

approximate normal form and then applying a normal-theory procedure

(see Box & Cox, 1964; Kaskey, Kolman, Krishnaiah, & Steinberg, 1980),

or (b) transforming the data to their corresponding 'ranks, which

removes the normality requirement on the form of the underlying

distribution, and employing nonparametric methods. The focus here is on

(b), and in the following sections the applications of rank methods in

hypothesis testing are discussed.

WM

Nonparametric methods have a long history in both theoretical

and applied statistics (Noether, 1984). These methods require a

transformation of the original scores such that the resulting

transformed values have known distributional properties. These tests

are often classified as distribution-free, since the methods are based

on (sample) statistics whose sampling distributions do not depend on

the form of the parent distribution from which the sample was drawn

(Gibbons, 1971, p. 3). The valid use of these tests requires that the

distributions underlying the data are continuous and that all
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observations are independently and identically distributed (Puri & Sen,

1985, p. 307).

The principle underlying nonparametric procedures is that under

a ‘postulated statistical hypothesis the joint distribution. of the

random variables is invariant under appropriate groups of

transformations (Puri & Sen, 1985, p. 7). It is this invariance that

produces what are called genuinely distribution-free tests. However,

some distribution-free tests are not genuinely distribution-free, and

are usually classified as asymptotically or permutationally

distribution-free. In general, an asymptotically distribution-free

test can be defined as one which is distribution-free given that the

sample size is infinite (i.e., by virtue of the central limit theorem)

(Conover & Iman, 1981; Hollander 6: Wolfe, 1973, p. 437), whereas a

permutationally distribution-free test depends only on the set of

permutations of the observations associated with testing a hypothesis,

and not on the underlying distribution function (Puri & Sen, 1985, p.

149).

Applications of nonparametric methods in testing univariate

hypotheses are described in detail by Gibbons (1971), Conover (1980),

and Marascuilo and McSweeney (1977). A primary source of nonparametric

methods in testing multivariate hypotheses is the work of Puri and Sen

(1969, 1971, 1985). Multivariate tests presented by these authors

include the single-sample location problem (e.g., sign, signed-rank,

extended signed-rank), the multi-sample location problem (e.g., median,

rank sum), and a number of tests for hypotheses subsumed by the general

linear model.



22

W

A related set of nonparametric procedures that are used to test

univariate and multivariate hypotheses are rank-transform methods.

Transforming the original data to their corresponding ranks and

applying the usual normal-theory procedures is an idea championed by

Conover and Iman (1981). This approach generates a class of rank-

transform methods that in many ways are comparable to well known

univariate nonparametric procedures such as the Wilcoxon-Mann-

Whitney, Kruskal-Wallis, Wilcoxon-signed ranks, and Friedman tests

(Conover 6: Iman, 1976, 1980a, 1982, 1980b; Iman, 1974a, 1974b, 1976;

Iman 6: Conover 1976, 1978, 1979, 1980a, 1980b). Other applications of

the rank-transform approach include correlation and regression analysis

(Boyer, Palachek, 6: Schucany; 1983; Hogg & Randles, 1975; Iman &

Conover, 1979). An extension of this approach to tests based on the

multivariate general linear model is possible by ranking each

quantitative variable separately, and then applying the usual normal-

theory methods. One advantage of this approach is that the resulting

tests can be performed using existing statistical computer packages.

Although the rank-transform approach seems promising, one

important limitation should be noted. The rank-transform methods rely

on the distributions of the normal-theory test statistics as

approximations to the actual distributions of the rank transformation

statistics. To date, the theoretical distributions of such statistics

have not been established. Consequently their distributional properties

can only be determined empirically through computer simulation studies

and are always restricted by the conditions of a particular simulation

3tudy .
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In sum, the two primary nonparametric methods for handling

non-normal data are the pure- and mixed-rank procedures illustrated in

Puri and Sen (1985, pp. 307-328), and the rank-transform method of

Conover and Iman (1981) . Both remove the underlying normality

requirement. The major difference between them is that the pure- and

mixed-rank procedures have a known theoretical substructure, which

permits analytic statements about the distributional properties of a

test, while the rank-transform procedure permits no such statements.

3 a d we N - e

oa t'-utvaaeets

In comparison to the univariate case, surprisingly little is

known about the robustness and power of multivariate tests when

underlying assumptions are violated (e.g., non-normality). A natural

starting point is the robustness and power properties of univariate

procedures, which have often been found to parallel those of their

multivariate counterparts. A large number of studies comparing the

distributional properties of univariate procedures are available.

Some- of these studies have been analytic, involving asymptotic

approximations, but most have been empirical. The following review will

summarize the robustness and power of some nonparametric-univariate and

-mu1tivariate tests as compared to their normal-theory counterparts.

In reporting these results, the focus will be on the violation of the

normality assumption. Analytic results, where available, will be

presented first, followed by empirical results. The sparseness of

information on multivariate tests clearly indicates the need for

further work in this area.
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The power of a particular test relative to a competitor is

usually reflected by its asymptotic relative efficiency (A.R.E.),

which is the limiting ratio of the sample size required by one test

relative to that required by a second test such that they have equal

power for the same alternative hypothesis. A test is said to be more

powerful and efficient than another test if the A.R.E. is greater than

1. Details of the computation of the A.R.E. appear in Appendix B. As an

example, some A.R.E. results for nonparametric tests of location

relative to the normal-theory E: and E tests are shown in Table 3

(Marascuilo & McSweeney, 1977, p. 87). The nonparametric "normal

scores" tests in Table 3 refer to a rank test applied to normal scores,

which are obtained by transforming the ranks to their standard normal

scale counterparts.

Table 3

Asymptotic Relative Efficiencies of Some Nonparametric

and Normal-Theory Tests of Location.

 

 

double-

Test/Distribution normal uniform logistic exponential

One-sample

Sign 0.637 0.333 0.750 2.000

Wilcoxon 0.955 1.000 1.047 1.500

Two-sample

Median 0.637 0.333 0.750 2.000

Mann-Whitney 0.955 1.000 1.047 1.500

Normal-scores 1.000 1.273

K-sample

Median 0.637 0.333 0.750 2.000

Kruskal-Wallis 0.955 1.000 1.047 1.500

Normal-scores 1.000 1.273
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As an example, consider the A.R.E. of the nonparametric two-

sample Mann-Whitney test relative to the 3; test for a parent normal

distribution. The A.R.E. of .955 implies that the Mann-Whitney test

requires a sample size of 100 in order to have a power equal to that

of the ; test using a sample size of approximately 95. In this case,

the 5 test is said to be more efficient than the rank test since it

requires a smaller sample size in order to have the same power.

It should be noted that although all four distributions in Table

3 are symmetric, their kurtosis varies from moderate-negative to large-

positive. The results indicate that for the normal, uniform, and

logistic distributions most of the nonparametric tests are as

efficient as their normal-theory counterparts, while for the double

exponential distribution the nonparametric tests are more efficient

than the corresponding ‘normal-theory tests. These findings suggest

that these nonparametric alternatives are, in general, almost as

powerful as the corresponding normal-theory procedures for normal and

near-normal parent distributions, and certainly more powerful for

leptokurtic distributions.

— U v te

A.R.E. is a large-sample property of a test which may not be

valid for small to moderate samples (Gibbons, 1971, p. 19). As an

alternative, simulation studies may be used to assess the performance

of two or more tests by comparing their empirical Type I error and

power values for various underlying distributions, alternative

hypotheses, and sample sizes. This section summarizes the results of

a number of empirical studies carried out to investigate the effects
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of non-normality on the robustness and power of univariate normal-

theory and nonparametric tests. The studies cover a variety of tests

and were chosen because of their representativeness in comparing

normal-theory and nonparametric tests for parent non-normal

distributions.

In general, empirical studies have suggested that univariate

normal-theory tests are robust to moderate non-normality for large

samples, especially when the underlying distribution is symmetric

(Gaito, 1970; Glass, Peckham, & Sanders, 1972, Kendall & Stuart, V. 2,

p. 484, Scheffe', 1959, p. 347). However, a number of studies have

suggested that distinct departures from normality in combination with

small samples affect univariate normal-theory tests. For example,

Fair-Walsh and Toothaker (1974) compared the performance of the normal-

theory E test and the nonparametric Kruskal-Wallis test when samples

were drawn from an exponential (positively skewed) population. While

the Type I error rates were somewhat conservative for both tests, the

Kruskal-Wallis procedure was found to be more powerful then the E test.

Srisukho (1974), in a similar study, found the power of the Kruskal-

Wallis test to be greater than that of the E test when all samples were

drawn from a double exponential (symmetric, leptokurtic) population,

and less than the E test when all samples were drawn from a uniform

(symmetric, platykurtic) population. The Type I error rates for the

Kruskal-Wallis test tended to be closer to the nominal value than

those of the E test for both the double-exponential and uniform

populations.
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Studies that examined the distributional behavior of normal-

theory and rank-transform statistics have shown favorable results for

the latter tests. Boyer, Palachek, and Schucany (1983) studied the

distributional behavior of the Williams' (1959) test of the equality

of dependent correlations (i.e., - p given that X and X

H0: pyx1 yx2 l 2

are correlated), and its rank-transform alternative. The results

indicated that although the power values of both procedures were

similar, the Type I error rates of the rank-transform test were closer

to the nominal alpha level than those of Williams' test for data that

were drawn from a parent lognormal distribution. Williams' test,

however, produced higher power values for data that were drawn from a

parent normal distrution. Based on these results, the authors

recommended the use of Williams' test when normality can be assumed,

and the rank-transform version of Williams' test when the normality

assumption is not tenable.

Iman (1974b) examined the Type I error and power properties of

the normal-theory E and rank-transform E tests for a two-way ANOVA

problem. The results indicated that the Type I error rate of the rank-

transform E test was similar to that of the E test, and that the rank-

transform E was more powerful when the underlying distribution was

non-normal.

In sum, the smattering of empirical results for univariate tests

presented above suggests that the Type I error rate of normal-theory

tests is generally not affected by moderate departures from normality

for large samples, particularly when the underlying distribution is

symmetric and light-tailed (e.g., uniform). However, for distinctly



28

non-normal populations (e.g., exponential, double-exponential),

nonparametric tests appear to be robust with respect to Type I error

rate, and produce higher power values than their normal-theory

counterparts.

- o a - o - v Ca e

Normal-theory-multivariate tests depend on the assumption that

the observations are governed by the multivariate-normal density

function. Since departures from this assumption are very difficult to

investigate analytically (Ito & Schull, 1964), empirical methods are

used. The following review summarizes some empirical studies that have

examined the effects of non-normality on the Type I error and power

properties of some normal-theory- multivariate tests.

A number of studies for the one- and two-independent groups case

have been carried out examining the effects of non—normal skewness and

kurtosis and sample size on Hotelling's 12 statistic. The one-sample

12, like the univariate one-sample t statistic, is (a) not affected by

small departures from normality, (b) more sensitive to non-normal

skewness than. to non-normal kurtosis, (c) produces liberal. Type I

error rates for a large skewness, and (d) produces conservative Type I

error rates for large kurtosis (Chase & Bulgren, 1971; Davis, 1982a;

Mardia, 1970). Similar results for the two-sample location problem

were obtained by Davis (1980, 1982b) for Wilks's likelihood ratio and

Roy's largest root tests. Other results have suggested that non-normal

kurtosis has no substantial effect on the two-sample 12 statistic for

large samples (Hopkins & Clay, 1963; Ito, 1980).
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Olson (1974) empirically studied the effects of non-normality

and heterogeneity of covariance matrices on six multi-sample, normal-

theory' MANOVA tests (Roy, Hotelling-Lawleyy ‘Wilks, Pillai-Bartlett,

Gnanadesikan, and Gnanadesikan-alternative) using small-to-large

sample sizes (5, 10, 50). The empirical Type I error results indicated

that moderate departures from a kurtosis of zero had mild effects on

three tests (Hotelling-Lawley, Wilks, and Pillai-Bartlett), and severe

effects on the remaining tests. The direction of the effect of

positive kurtosis was generally toward conservatism. The results of

this study also suggested that the Gnanadesikan and Gnanadesikan-

alternative tests tended to produce liberal Type I error rates with

increases in the number of outcome variables for non-zero kurtosis

values, especially for small samples crossed with a large number of

groups. The power results indicated that all six tests suffer under

moderate departures from a kurtosis of zero, and that increases in

the number of outcome variables tended to decrease the power of all of

the tests.

In general, the results of the studies that used large samples

suggest that normal-theory tests are robust to non-normality (Zwick,

1984, p. 2). This result is expected for many tests because of the

role of the multivariate analog of the central limit theorem

(Morrison, 1976, p. 85). This theorem states that any statistic which

can be represented as a.linear combination of the observations has a

sampling distribution that can be approximated by the normal

distribution for large samples. Since many test statistics are derived

from some linear function of the observations, the sampling
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distribution of the test statistic can be approximated by the normal

distribution as sample size increases. Consequently the test would be

robust for large samples; this is not necessarily the case for small

or moderate samples.

In sum, these studies suggest that (a) small-to-moderate

departures from normality have only minor effects on normal-theory-

multivariate tests, (b) such effects are more pronounced for small

samples than for large samples, (c) increasing skewness tends to

result in liberal Type I error rates, (d) increasing kurtosis tends to

results in conservative Type I error rates, and (e) the distributional

behavior of normal-theory-multivariate tests is affected more by

non-normal skewness than by non-normal kurtosis.

- ar e c- u va e

Analytic results for the distributional properties of

nonparametric-multivariate tests are available for a few special

cases. Available analytic studies on the asymptotic efficiency of

nonparametric-multivariate tests relative to their normal-theory

counterparts have shown results similar to those of the univariate

case (Puri 5: Sen, 1971, p. 177). For example, the A.R.E. of the

multivariate-nonparametric one-sample test of location with normal-

scores relative to Hotelling's 12 is equal to 1.00 for a multivariate

normal distribution, and sometimes greater than 1.00 for other

multivariate distributions. (Puri 6: Sen, 1971, p. 177). Recall that

similar results were reported by Marascuilo and McSweeney (1977, p.

87) for the one-sample, normal-scores and t tests in the univariate

case (Table 3).
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Additional results for multivariate tests of location are

available for special cases: (a) the A.R.E. of the rank procedure to

the normal-theory, two-sample test oflocation is always less than 1.00

in dhe 'bivariate normal case, (b) the normal-scores test is more

efficient than the normal-theory test for any mixture of multivariate

normal distributions (i.e., a combination of two normal deviates) and

heavy-tailed. multivariate distributions, and (c) the normal-scores

test is more efficient for a multivariate distribution with marginal

densities that have light tails, a result that parallels the

univariate case (see Zwick, 1984, p. 9). In general, the nonparametric

rank tests for' hypotheses subsumed. under’ the multivariate-general-

linear model are asymptotically power-equivalent to the normal-theory

likelihood-ratio test for a parent normal distribution (Puri & Sen,

1985, p. 184). The nonparametric rank tests for location are

asymptotically as efficient as their normal-theory counterparts for a

parent normal distribution and more efficient for a parent non-normal

distribution (Zwick, 1984, p. 27).

The analytic results indicated that multivariate-nonparametric

rank and normal scores tests are more efficient than their normal-

theory counterparts for non-normal distributions, and are almost as

efficient for the normal distribution.

u - et c- u vs C e

Surprisingly few simulation studies have been done comparing

the Type I error rate and power of multivariate nonparametric tests

against their normal-theory counterparts. The available results are

presented in some detail since they have important implications for
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the conduct of the present study.

Tiku and Singh (1982) studied the Type I error rate and power

of the two-sample Hotelling's 12 and rank tests using samples of size

20 drawn from six bivariate distributions [normal, 3;, two chi-square

(v - 2, 4), and two mixed-normal]. In all cases the two outcome

variables had a correlation of .5. Their results indicated that the

rank test was robust with respect to the Type I error rate for three

distributions [normal, chi-square (u - 2), and one mixed-normal], and

was conservative for the remaining distributions. The 12 test was

robust with respect to Type I error rate for the normal and .g

distributions, and conservative for the chi-square and mixed-normal

distributions. The rank test proved more powerful than the 12 test for

all distributions except the normal. The results of Tiku and Singh

suggest that the two-sample rank test should be the procedure of choice

for testing the equality of mean vectors for even moderately non-normal

distributions.

Zwick (1984) studied the empirical Type I error rate and power

of the multivariate-nonparametric two-sample rank and normal-scores

alternatives to the 12 test under mild non-normality and heterogeneity

of variance-covariance conditions. Just as in the univariate case, the

Type I error rate was affected mainly by variance-sample size

combinations and not by the parent distribution. Power was affected by

both the variance-sample size combination and parent distribution, with

all tests producing approximately the same power values. In summarizing

the results, Zwick recommended that (a) under the conditions of

normality and homogeneity of variance the normal-theory test was the
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best procedure with respect to both Type I error and power, (b) under

normality and heterogeneity of variance with equal sample sizes or

when the larger group had the larger variance the rank test was the

best choice, and (c) for negatively-skewed distributions the normal-

scores test appeared to be the best overall choice except when the

smaller group had the larger variance.

Harwell and Serlin (1985) examined the Type I error rate and

power of the Rao E (1951), the nonparametric rank-transform Rao E

(Conover & Iman, 1981), and the pure- and mixed-rank tests illustrated

by Puri and Sen (1985, p. 312). The simulation conditions included in

this study were form of distribution (normal, uniform, double-

exponential, exponential, Cauchy), sample size (20, 40, 100),

correlation within each set of variables (.3, .7), and correlation

among the two sets of variables (Type I error, power). The Cauchy was

represented. by a symmetric distribution 'with a kurtosis value of

twenty.

The Type I error results suggested that the Rao E test was

robust with respect to the Type I error for the normal and uniform

distributions, became liberal for the Cauchy distribution, and

produced. mixed results for the double exponential and. exponential

distributions. There was no clear pattern for the liberal Type I error

rates with respect to sample size and within-set correlation. As a

measure of the Type I error behavior of these tests, the Rao E overall

produced 38% liberal Type I error rates, taking into account sampling

error, while the rank-transform Rao E produced only 7% liberal Type I

error rates. The latter test performed most satisfactorily for
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extremely non-normal distributions and poorly for the smallest sample

size and within-set correlation - .3 conditions. In contrast, the

pure- and mixed-rank tests did not produce a single liberal Type I

error rate across all simulation conditions.

With respect to power, the results indicated that under a normal

or uniform distribution the Rao E test was most powerful across all

within-set correlation and sample size conditions. In general, the

rank-transform Rao E produced the largest power values among the three

nonparametric tests, especially for small samples. However, all four

tests produced similar power values for the sample size of 100. The

power values of all four tests for the double-exponential were

comparable for a sample size of 100, and slightly less for a sample

size of 40. In general the mixed-rank power values were slightly higher

than those of the pure-rank procedure.

The power results for the Cauchy and exponential distributions

showed that the pure- and mixed-rank tests performed poorly for the

sample size of 20 and the .01 level of significance. Once again the

power values for all three nonparametric tests were quite similar for

larger sample sizes. The three nonparametric tests overall produced

power values substantially larger then the reported values of the Rao

E test for the sample size of 100. In general, the mixed-rank test

produced slightly lower power values than the pure-rank test.

Based on the Type I error and power results, the authors

recommended that the Rao E test be used for symmetric, light-tailed

distributions, the ranketransform Rao F for small samples for any of

the non-normal distribution investigated, and the pure- and mixed-rank



35

statistics for larger samples and moderate to distinctly non-normal

distributions. The results also confirmed earlier findings that a

normal-theory test is affected by moderate-to-large skewness and by a

large kurtosis.

1W

Studies that examined the effects of the degree of dependency

among variables on the distributional behavior of multivariate tests

suggest that such dependency affects the power of nonparametric tests.

Bhattacharyaa, Johnson, and Neave (1971) examined the power of the

two-sample Hotelling's T2 and nonparametric rank-sum tests. The

A.R.E.'s of the rank test relative to 12 test for correlation values of

.0, .3, .6, and .9 are .955, .947, .924, and .884, respectively. These

results suggest that the A.R.E. of the rank test to T2 decreases as

the degree of dependency among variables increases. Similar results

were found by Puri and Sen (1971, p. 176) for negative correlation

values. The results of Harwell and Serlin (1985) showed that the

nonparametric pure- and mixed-rank tests produced slightly lower power

values for extremely non-normal distributions (e.g., exponential,

Cauchy) as the correlation among outcome and predictor variables

increased from .3 to .7. These studies suggest that a high degree of

dependency among outcome and predictor variables slightly reduces the

power of some nonparametric tests.

52mm

The present review of the literature leads to the following

conclusions with respect to the effects of skewness and kurtosis on

Type I error probability and power of normal-theory and nonparametric-
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multivariate statistical tests: (a) the effects of non-normality on

normal-theory-multivariate tests appear to parallel those in the

univariate case, (b) for large samples slight departures from

normality have negligible effects on the Type I error rate and power

of most normal-theory tests, (c) for small samples moderate to large

departures from normality affect the Type I errors and power of these

tests, (d) increasing skewness results in normal-theory tests that

become liberal while increasing kurtosis results in tests that become

conservative (except for the Harwell & Serlin 1985 study in which

increasing kurtosis results in normal-theory tests that become

liberal), (e) normal-theory tests are more sensitive to non-normal

skewness than to non-normal kurtosis, (f) nonparametric tests are

superior at controlling Type I errors within nominal levels and are

asymptotically’ more efficient compared. to their' normal-theory

competitors when the underlying distributions are at least moderately

non-normal, and (g) a high degree of dependency among variables

slightly decreases the power of some nonparametric tests.

The review of the literature indicates that most of the studies

on distributional properties of multivariate tests were confined to

the MANOVA procedure. The present study of the tests for canonical-

correlation/multivariate-multiple-regression complements previous

work. The present study also extends the results of Harwell and Serlin

(1985) by including the number-of-variables factor and some additional

parent distributions and within-set correlations. The focus was the

interaction of the form of parent distribution and the sample size, the

within-set correlation, and the number-of-variables.



CHAPTER III

METHODOLOGY

This chapter presents the methodology employed in the present

study. The following topics are discussed (a) multivariate statistical

models, (b) test statistics and their assumptions, (c) data generation

method, (d) simulation conditions, and (e) presentation of simulation

results.

V dc

This section describes the multivariate-multiple-regression and

canonical-correlation models and their relationship to the

multivariate general linear model. The term general linear model

refers to a family of algebraic models characterized by the linearity

of the parameters of the equations specifying the models (Gittins,

1985, p. 19). The multivariate-multiple-regression model is a member

of one such family. Let X be an N x p (i-l,2,...,N; j-l,2,...,p) data

matrix of N observations on p outcome variables, 2; an N x q

(k-l,2,...,q) matrix of regression constants, E a p x q matrix of

unknown parameters of the model, and E an N x p matrix of unobserved

random errors. The multivariate-multiple-regression model can be

written:

X-Xfl+E~ (4)

pr qu qxp pr

37
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A canonical-correlation model may be conceived of as a special

case of the multivariate-general-linear model (Gittins, 1985, pp.

19-20). Recall that the focus of the present study is testing whether

there is a linear relationship among two sets of variables, and that

testing the hypothesis of independence among two sets of variables is

equivalent to testing the hypothesis of no regression. This linear

relationship may be represented and studied using a canonical-

correlation model (Gittins, 1985, p. 19). The following paragraph

introduces canonical correlation and canonical variables.

Let Y1, Y2, ..., Y1) and X1, X2, ..., Xq be two sets of random

variables. Define

9 - lel + h2Y2 + ... + hpr (5)

as a weighted linear combination of the Y variables, and

J

i - mlx1 + m2X2 + ... + quq (6)

as a weighted linear combination of the Xk variables. Define also

I; - (h1’ h2, ..., hp) and m_ - (m1, m2, ..., mq) as the vectors of

constants that maximize the correlation between the Yj and Xk

variables. The correlation between the canonical variates Y and K is

the canonical correlation and h and g are the canonical weights.

Given two sets of variables a total of s - minimum (p, q) pairs of

linear combinations can be constructed, and hence s canonical

correlations can be obtained. The canonical correlations are found as

solutions of a determinantal equation and the canonical weights as

solutions of an eigen equation. The process of obtaining these
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quantities is outlined below (Morrison, 1976, pp. 254-257).

Let 9 represents a sample canonical correlation, S the sample

covariance matrix of the X.j variables, syy the sample covariance

matrix of the YJ variables, and 57x the sample covariance matrix of

the Y3 and KR variables. By definition p2 is given by

2

(hf m)
2

p - 57" . <7)
 

(h' 573' mm' 5“ it)

Since we wish to maximize the correlation between the linear

combinations 9 and 2, the problem can be solved by obtaining the

values of h and m that maximizes expression (7). To simplify the

"maximization" process while assuring the uniqueness of h and m the

variance of both linear combinations is set equal to l:

b' fiyy h - m' §xx m - 1 . (8)

Hence we need only to maximize (h' ny m)2 subject to the constraint in

(8). This problem can be solved by introducing Lagrangian multipliers

A and 9 as follows:

, 2 r _ _ ' -
(h Syx m) - A(b Syy h 1) 0(m fixx a 1). (9)

The first partial derivatives of expression (9) with respect to

h and m are then taken. Setting these equations equal to zero produces

a homogenous system of two simultaneous matrix equations, namely

- Xfiyy h + (h' Syx m)§yx a - Q. (10)

(h' Syx m)§yx h - ofixx m - Q.
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Premultiplication of the first equation by h' and the second equation

by m' produces

l-O-(h'%xm)2. (11)

Hence each of the Lagrangian multipliers is equal to the squared

maximum correlation between Y and K. In order for the equations in

(10) to have a nontrivial solution their determinant must vanish. This

leads to the determinantal equation

I39; fiyx fiii §§x - All - 0. (12)

where L is an identity matrix. Morrison (1976, p. 257) shows that the

eigenvalues of equation (12) may also be obtained by replacing the

covariance matrices in equation (12) with their corresponding sum-of-

cross-product (SCP) matrices:

IAQ; Ayx A;: A§x - All - 0. (13)

where Axx is the SCP matrix of the centered Xk variables, Ayy is the

SCP matrix of the centered Yj variables, and Ayx is the SCP matrix of

the centered Y3 and KR variables. The maximum 92 is the largest

eigenvalue (A) of equation (12) or (13) (Morrison, 1976, p. 256). The

canonical correlations are ordered 1 > 91 > 92 > .. > 95 >0. The

canonical weights are the solutions to the associated eigen equations

(Morrison, 1976, p. 263). Note that each pair of canonical variates is

orthogonal to all other pairs and. that the total ‘number' of ‘pairs

equals a.
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WW

Five test statistics will be used to test the hypothesis of no

linear relationship among the two sets of variables (Yj’ Xk). These

tests can be conceived of as a test of the matrix of the regression

parameters 5 against zero, or, synonomously, as an omnibus test that

all squared population canonical correlations (pi, pg, ..., pi) are

simultaneously equal to zero (Gittins, 1985, p. 57). Hence the null

hypothesis for the canonical problem can be written as

2
-...-pS-O. (14)

Retaining H0 is equivalent to concluding that there is no Yj’ X'k

relationship, while rejecting H implies the existence of such a
0

relationship. Each test is performed using the eigen values (squared

canonical correlations) obtained from expression (13).

No normal-theory and three nonparametric omnibus tests of the

hypothesis of expression (14) will be employed. The normal-theory

tests are the Bartlett (1938) and Rao E (1951) procedures. The

nonparametric tests are the pure- and mixed-‘rank procedures discussed

in Puri and Sen (1985, pp. 307-328) and the rank-transform Rao E

(Conover & Iman, 1981). Although all five tests provide tests of an

omnibus statistical hypothesis it is important to emphasize the

differences in the nature of the variables upon which the canonical

correlations are computed. For the normal-theory tests the canonical

correlations are obtained using the original values of the outcome and

predictor variables; for the pure-rank and rank-transform Rao E the

canonical correlations are obtained using the ranks of the original
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values of the outcome and predictor variables; and for the mixed-rank

test the canonical correlations are obtained using the original values

of the predictors and the ranks of the outcome variables. Note,

however, that the hypothesis being tested involves the raw score

canonical correlations or regression coefficients. The test statistics,

their computations, and assumptions are described below.

W

Given two sets of random variables, there exist several measures

that summarize the strength of the relationship among them. The best

known is Wilk's lambda (A), which is defined as (Anderson, 1958, p.

233)

s

A - H (1 - Ar), (r-l,2,...,s), (15)

r-l

where the it's are the solutions (eigenvalues) of expression (13). The

values of A have a range between. 0 and l, with smaller values

indicating a strong relationship between the Xk and Y3 variables and

larger 'values indicating a weak. relationship (Marascuilo & Levin,

1983, p. 185).

Given that two sets of variables are independent, Wilk's A has

been shown to follow Wilk's A distribution (Anderson, 1958, p. 242).

Unfortunately, tables of the exact A distribution are needed to

perform the test. To obviate the need for these tables, Bartlett

(1938) introduced a large-sample chi-square approximation to the

exact Wilks's A distribution. Under the truth of the hypothesis of

expression (14), Bartlett (1938) showed that Bartlett statistic (BAR)

is asymptotically distributed as a central chi-square variable with pq
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degrees of freedom. The BAR statistic can be computed using the

following formula (Marascuilo 6: Levin, 1983, p. 185):

2

BAR - -[(N-1) - (p + q + 1)/2] loseA ~ qu (16)

If BAR exceeds the 100(1 - a) percentile of the chi-square distribution

with pq degrees of freedom, the hypothesis of expression (14) is

rejected (Bartlett, 1938).

The Bartlett procedure assumes that the observations are

independently and identically distributed random variables

(i.i.d.r.v.'s) with a common (multivariate-normal) distribution

function (Gittins, 1985, p. 242).

B§2_E_§£e£l§£12

A more precise approximation to the exact Wilk's A was

developed by Rao (1951) (Marascuilo 6: Levin, 1983, p. 185). In testing

the independence of two sets of variables, Rao's procedure yields an

exact test when the smaller of the two sets contains two or less

variables (Marascuilo & Levin, 1983, p. 187). In contrast, no exact

test is possible with the Bartlett test. The Rao E statistic (RAO)

can be computed using the following formula (Marascuilo & Levin, 1983,

 

p. 186):

(1 - Al/bm1

~ V1, V2 _

Al/b/u2

Where All ' pq. :12 - 1 + ab - pq/2, a - (N - 1) - (p + q +l)/2, and

b - [(p2q2 - 4)/(p2 + q2 -5)]1/2. If RAO exceeds the 100(1 - 0:)

percentile of the E distribution the hypothesis of expression

”1' ”2
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(14) is rejected (Rao, 1951). The assumptions of the Rao F procedure

are the same as those of the Bartlett.

W

The rank-transform. approach (Conover a Iman, 1981) involves

transforming the original values of the outcome and predictor

variables into their corresponding ranks and then applying the

normal-theory Rao E procedure. It is important to emphasize that the

theoretical E distribution is used as an approximation to the unknown

distribution of the rank-transform Rao E statistic (RIP). The decision

rule for the rank-transform Rao E is the same as that of the normal-

theory Rao E test. However, unlike the previous two tests the p: of

expression (13) are based on the ranks of the XR and the YJ variables.

The rank-transfonm procedure assumes that the observations are

i.i.d.r;v.'s ‘with a common distribution function (Conover' & Iman,

1981).

We

The nonparametric pure- and mixed-rank statistics illustrated in

Puri and Sen (1985, pp. 307-328), and discussed by Harwell and Serlin

(1985), are used when both predictor and outcome variables are random.

It should be noted that the model originally presented by Puri and Sen

(1969) requires the predictor variables to be known regression

constants. However, since this condition rarely obtains in practice

interest centers on models in which the predictors are assumed to be

random. The pure-rank test is particularly useful when only the ranks

of the predictor or outcome variables are available.
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In the pure-rank model all p outcomes and q predictors are

assumed to be i.i.d.r.v.'s. To represent the pure-rank test in a

canonical correlation context, let C(XIX) be the conditional

distribution function of the i(th) subject's vector of outcomes Xi’

given a vector of predictor values Xi. Recalling the multivariate-

multiple-regression model illustrated in expression (4), the

conditional distribution function of the 1 given the E can be
i i

written as:

c<xilxi> - “0‘11 - r, a). (18)

where GO is some continuous distribution function. Expression (18)

implies that the conditional distribution function for each subject is

identical, and that this function depends on the observed predictor

values. As noted earlier, this implies that inferences are limited to

subpopulations having the same configuration of predictor values as

those in the sample.

Puri and Sen (1985, pp. 307-328) used the form given in

expression (18) to write the hypothesis of no relationship among the

two sets of variables as

Ho: C(xilri) - 60(ri>. (19)

Retention of the above hypothesis implies the two sets of variables

are independent, while rejection implies that they are related. In

order to compute the pure-rank statistic (PUR), the N observations for

each of the p outcomes and q predictors must be separately ranked.

Let R31 and Rki represent the rank of the i(th) subject on the j(th)
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outcome and k(th) predictor variables, respectively. Since C(Xilzi) is

assumed to be continuous the theoretical probability of tied Rji or

Rki values is zero. In practice, as long as the proportion of ties is

small, assigning midranks to tied values will have a negligible effect

on the test statistic (Lehmann, 1975, p. 18). V

Puri and Sen (1985, pp. 307-312) presented a.1arge-samp1e form

of the pure-rank statistic based on the SCP matrix 5 of the centered Rj

and RR values, with elements

N

where Rj and RR are the rank means for the j(th) dependent and k(th)

predictor variables, respectively. In the construction of the pure-rank

test, Puri and Sen show that the E(§) - Q and that the elements of E

are asymptotically mmltivariate-normal given that the sets of the Xj

and the xk variables are independent. Details of the construction of

this statistic appear in Appendix C.

The form of the pure-rank statistic as presented by Puri and Sen

does not easily permit the use of existing computer software packages.

Harwell and Serlin (1985) provide a form of the pure-rank test that

allows existing computing packages to be used. Details of the

derivation of the alternative form also appear in Appendix C. Assuming

the XR and Y3 have been separately ranked, the ranks are submitted to a

standard computing package (e.g., SAS, 1982), and the canonical

correlations obtained from the output. The form of the PUR statistic

presented by Harwell and Serlin (1985) is
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N

PUR - (N-l) 2 6r , (21)

i-l

where Dr represents the (squared) canonical correlation (eigenvalue)

between the ranks of the Xk and the Y5. These are obtained by replacing

the SCP matrices based on the original values of the XR and Y3 with the

SCP matrices based on their ranks in expression (13). Puri and Sen

(1985, p. 312) showed. that 'under the truth. of' the ‘hypothesis of

expression (14), the pure-rank statistic is asymptotically distributed

as a central chi-square ‘variable *with. pq degrees of freedom. The

decision rule for the pure-rank test is to reject the hypothesis of

expression (14) if PUR. exceeds the 100(1. - a) percentile of the

chi-square distribution with pq degrees of freedom (Puri & Sen, 1985,

p. 312). Rejection of the hypothesis of expression (14) implies that

the population regression coefficients are not all simultaneously

equal to zero, or, synonomously, that the population canonical

correlations are not all equal to zero.

The pure-rank test assumes that the Xk and Yj observations are

i.i.d.r.v.'s whose common distribution function is G(EiIEi). The

difference in assumptions between the normal-theory and pure-rank

procedures is that 'normality' of" C(Xilzi) is not required for the

pure-rank test.

Mini-We

As presented by Puri and Sen (1985, pp. 307-328), and discussed

by Harwell and Serlin (1985), the mixed-rank statistic is computed

using the original Xk values and the ranks of the Yj' This test assumes

that all outcomes and predictors are i.i.d.r.v.'s and provides a test
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of the hypothesis that all regression coefficients equal to zero, or,

synonomously, all squared canonical correlations simultaneously equal

to zero. A procedure similar to that of the pure-rank test was employed

by Puri and Sen to obtain a large-sample form of the mixed-rank

statistic. In the mixed-rank case, however, the original Xk values are

used instead of their ranks.

The mixed-rank (MIX) test statistic has exactly the same form as

that of the pure-rank test given in expression (21). The decision rule

for the mixed-rank test is the same as that of the pure-rank test, and

rejection of the hypothesis of expression (14) implies that the two

sets of variables are related. The assumptions of the mixed-rank test

are the same as those of the pure-rank test.

ta e

This section outlines the method that was used to generate the

multivariate data for the present study. The data generation and

analysis were performed on an IBM 3090-180 computer at Michigan State

University. The program was coded in FORTRAN V and incorporated a

number of subroutines from the International Mathematical and

Statistical Libraries (IMSL) (1983). A summary of the IMSL subroutines

used in the present study is given in Appendix D. In all cases the

data were in standard form (i.e., p - 0, 02 - l). The Basic Uniform

Number Generator (GGUBS) subroutine of the International Mathematical

and Statistical Libraries (IMSL, 1983) was used to generate random

uniform deviates in the range of (0, 1). GGUBS has been extensively

tested and has been found to produce deviates with good statistical
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properties (Learmonth & Lewis, 1973).

The resulting uniform deviates were transformed. into normal

deviates using the Box-Muller (1958) approach. This procedure

transforms a pair of uniform deviates (ul, u2) into a pair of standard

normal deviates (21, 22) using the following transformations:

z1 - (-2 logeul)1/2cos(2 n u (22)2).

- (-2 logeu2)1/zsin(2 x uz).

22

The resulting variable has (approximately) a mean of 0 and a variance

of 1.

In generating multivariate data the following structure was

assumed to underlie the E values:

I - d X + E . (23)

W mm mm M

where the X (predictor) and ,E (residual) matrices contain. random

deviates from a specified distribution. These deviates were generated

by specifying population correlations among the Xk variables and among

the residuals and using the method described below. The Yj values were

then obtained using specified values of the E in expression (23).

In generating the multivariate data, a (p+q) x N matrix of

standard normal deviates was initially generated using the transfor-

mation given in (22). The first p rows of this matrix represented the

uncorrelated residuals (E), and the remaining q rows the predictor

values for a sample of size N. In all cases the Xk and Yj variables had

the same distribution. The two matrices of uncorrelated normal deviates

were then separately transformed such that the resulting deviates were
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correlated with a specified distribution. To generate these correlated

deviates the procedure due to ‘Vale and. Maurelli (1983) was used.

Details of this procedure, which combines the approaches of Kaiser and

Dickman (1962) and Fleishman (1978), are presented in Appendix B. The

same procedure was followed separately for the predictor and residual

correlation matrices.

The Vale and Maurelli procedure begins by using the Kaiser and

Dickman (1962) method to generate. a sample: of' multivariate-normal

deviates using a matrix decomposition of the desired population

correlation matrix, say E . A matrix Z of multivariate-normal deviates

can be obtained using the following transformation:

a - E z. . (24)

(p+q)xN (p+q)x(p+q) (p+q)xN

where E is a matrix of principal components (or some other

decomposition) of the population correlation matrix E and g is a

matrix of uncorrelated standard normal deviates. Multiplication of E

and g produces variables with a mean and variance approximately equal

to 0 and 1, respectively, and intervariable correlations approximately

equal to those in E.

To generate non-normal deviates the Vale and Maurelli procedure

combines the Fleishman (1978) and Kaiser-Dickman methods. Fleishman

(1978) developed a technique for generating a (univariate) non-normal

variable, say wi , by finding the first four central moments (mean,

variance, skewness, and kurtosis) of the distribution of the

variable. The technique uses a polynomial involving the first three

powers of a standard normal deviate zi:
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2 3

wi - a + bzi + czi + dz1 , i - 1, 2, ..., N, (25)

where a, b, c, and d are the so-called Fleishman power function

constants. These constants were computed using the nonlinear equation-

solving routine NEQNF (IMSL, 1983). Fleishman's (1978) procedure has

been shown. to 'produce ‘non-normal deviates ‘with. the desired

distributional properties (i.e., mean, variance, skewness, kurtosis)

(Fleishman, 1978).

In generating multivariate non-normal random deviates the

processes of decomposition of the population correlation matrix and the

Fleishman transformation interact, which leads to non-normal deviates

with correlations different from those of the desired population.

Vale and Maurelli (1983) developed a method to counteract this effect

such that the resulting non-normal deviates would possess

(approximately) the desired correlations. Essentially, this method

involves the creation of an intermediate correlation matrix, 2*, from

the desired correlation matrix E. The 2* matrix is then factored to

obtain the E matrix of expression (24), and the matrix of multivariate-

normal deviates is transformed. to ‘non-normal. multivariate deviates

using expression (25).

It should be noted that the data-generation process is not based

on the probability density function of any theoretical multivariate

distribution (e.g., multivariate-exponential), and hence the method

does not actually produce data from such a distribution. Rather, the

method produces data that have the same marginal skewness and kurtosis

values as those of a theoretical multivariate distribution. However,
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the Vale and Maurelli (1983) procedure has been shown to produce

multivariate data with (asymptotically) the expected marginal

(univariate) mean, variance, skewness, kurtosis, and correlations (Vale

6x Maurelli, 1983). The present study used five univariate summary

measures (i.e., mean, ‘variance, skewness, kurtosis, correlation) to

determine if the simulated data actually possessed the desired

distributional properties. In addition, Mardia's (1974) measures of

multivariate skewness and kurtosis were computed.

S u at o ditio

As noted earlier there are several factors which are

expected to influence the distributional behavior of the tests. They

include differences in the parent distributions as specified by 71 and

12, numbers-of-variables, between-set correlations, within-set

correlations, and sample sizes. The simulation factors and their

levels are shown in Table 4 and are discussed in detail below.

Table 4

Simulation Factors

 

 

Factor Level

skewness and kurtosis [71, 12] [0, 0], [0, -l.12], [0, 3], [0, 20],

[.5, 0], [1, .5], [1, 3], [2, 6]

number-of-variables (p, q) (2, 2), (3, 3), (4, 4)

between-set correlation .0 (Type I error), or >.0 (power)

within-set correlation (py, px) (.3, .3), (.3, .7), (.7, .7)

sample size (N) 25, 50, 100
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Data were generated to represent observations from eight selected

distributions representing a range of skewness and kurtosis values. The

(univariate) skewness and kurtosis values of four known distributions

(normal [0,0], uniform [0, -l.12], double-exponential [0, 3], and

exponential [2, 6]), and four additional distributions were included.

Pairings of skewness and kurtosis values allowed an examination of the

effects of this factor over a broad range of non-normal conditions.

Specifically, the {[0, -l.12], [.5, 0], [1, .5]} pairings represent

three mildly non-normal distributions, {[0, 3], [1, 3]} two moderately

non-normal distributions, and [[2, 6], [0, 20]} two extremely

non-normal distributions. The three combinations of' the number-of-

variables used [(2,2), (3,3), (4,4)] were chosen to examine the effects

of increased dimensionality. Recall that the Rao E test is exactly

distributed as an E variate under the null hypothesis when the smaller

variable set contains two or fewer variables. The (3, 3) and (4, 4)

combinations also reflected the increasing non-normality that tends to

be associated with increasing numbers of variables.

The three sets of values of the correlations within the set of

outcome and predictor variables [(.3, .3), (.3, .7), (.7, .7)]

represented a range of correlations encountered in practice. These

combinations of within-set correlations permitted an examination of

the effects of equal and unequal within-set correlation on the

distributional behavior of the tests. For example, the power value of

nonparametric rank tests appears to decrease slightly as the

(absolute) within-set correlation increases for extremely non-normal

data. The within-set correlation values allowed the behavior of the
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tests under these conditions to be examined.

Three different sample sizes (25, 50, 100) were also included in

the present study. This range permitted an examination of the effect

of varying sample size on the tests. Marascuilo and Levin (1983, p.

204) recommended that samples of larger than 10(p+q) should be used in

multivariate studies. According to this recommendation, the chosen

sample sizes represent small, small-moderate, and moderate-large

samples, depending on the numbers of variables used.

Finally, a range of between-set correlations (.0 s pxy S .366)

were included to examine the Type I error and power properties of the

tests. A zero between-set correlation corresponds to the Type I error

case while a non-zero between-set correlation corresponds to the power

case. The between-set correlation for the power case was obtained

analytically using a procedure due to Muller and Peterson (1984) and

the tabled power values of the E test due to Pearson and Hartley

(1951). This procedure uses an approximation involving the non-

centrality parameter of the E distribution. The non-centrality value

was found such that a power of .8 would be achieved at an alpha level

of .05 for a sample size of 100 and a multivariate-normal distribution.

P se ta 10 o i at o su ts

The 8x3x2x3x3 fully-crossed design employed in the present study

generated a total of 432 simulation conditions. Three thousand

replications were carried out for each condition, and the five test

statistics (Bartlett, Rao E, rank-transform Rao E, pure- and mixed-

rank) were calculated for each replication. The resulting Type I error
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and power values were tabulated at three levels of significance

(.01, .05, .10).

The Type I error probability was estimated by the proportion of

the number of rejections of the null hypothesis of expression (14)

when the null condition was true (i.e. data were sampled from a

multivariate population with a between-set correlation equal to zero).

The robustness of the Type I error probability of the five tests was

determined using a 95% confidence interval of the Type I error

probability (i.e., a izlu96J[a(l - a)/3000], where a is the nominal

Type I error probability}. The 95% confidence interval of the average

Type I error probability was obtained using the standard error of the

average empirical Type I error rate (i.e., a i l.96/[a(l - a)/3000n],

where n is the number of the Type I errors involved in computing the

average). A test was considered robust with respect to the Type I error

probability if its empirical Type I error rate fell inside the

confidence interval. Otherwise, the test was considered either

conservative or liberal. The empirical power value was estimated by the

proportion of the number of rejections of the null hypothesis of

expression (14) when the null condition was false (i.e., data were

sampled from a multivariate population with a nonzero between-set

correlation).

Evidence that the data generation method was actually producing

data with the desired distributional characteristics was obtained by

computing five (marginal) summary measures: average mean, variance,

skewness, kurtosis, and correlations. In. addition to the marginal

measures, multivariate measures of skewness and kurtosis proposed by
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Mardia (1974) were computed and used to examine the skewness and

kurtosis of the data with a parent multivariate-normal distribution. A

brief description of these measures is given below with a detailed

presentation of the statistics provided in Appendix G.

Let g1, Q2, ..., EN be N vectors of random observations on

t - (p + q) variables, Q the vector of sample means, and y the matrix

of sample covariances:

91 ' l“11 ] fl ' la1 ] y ' lvll v12 V1: 1 (26)

“21 u2 v21 v22 ”2:

L“11:1 J Lut J L"t1 Vt2 " vtt ]
      

Mardia (1974) proposed the following sample measures of multivariate

skewness (11 t) and kurtosis (12 t) for a multivariate distribution

with t dimensions:

11 t - N'2 2 2 [(Q1 - fir y'lm. - EH3 <27)
' i-l,j-l J

-1 N - -1 — 2
vzt-N 2mg, wry (uj -.u>1 - c<c+2). <28)

' i-l

Mardia (1974) showed that these multivariate skewness and

kurtosis values are zero for any multivariate-normal distribution and

nonzero for any other multivariate distribution. However, nonzero

values of expressions (26) and (27) do not permit identification of a

particular non-normal distribution .



CHAPTER IV

RESULTS

The purpose of this study was to empirically evaluate the

distributional behavior of some selected normal-theory and

nonparametric tests of the hypothesis of no relationship among two sets

of variables when the normality assumption is violated. The study also

examined the effects of sample size, within-set correlation, and

number-of-variables on the Type I error and power values of two normal-

theory and three nonparametric tests. The results of the simulation

study are reported in this chapter.

Specifically, this chapter discusses the (a) characteristics of

the simulated data, (b) Type I error and power conditions, (c) main

effects of the parent distribution, sample size, within-set

correlations, and number-of-variables factors, and (d) interaction

effects of these factors. These results are summerized in tables and

figures in this chapter. Detailed results of the simulation study are

presented in Tables E6 through E13 of Appendix E.

C acter st c ated ata

Simulated data representing observations from eight multivariate

distributions were used. Frequency distributions for these

distributions were generated using 10,000 deviates, and are presented

in Table E14 of Appendix E and displayed in Figure 1.

Five sample (univariate) marginal statistics (mean, ‘variance,

skewness, kurtosis, and variable intercorrelations) were computed to

57
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Figure 1. Frequency Distributions of Simulated Data
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Table 5

Average Mean, Variance, Skewness, Kurtosis, and

Within-Set Correlation of the Simulated Dataa

 

 

 

[719 12] ll 02 71 ‘12 P -.3 p -.7

[0. 0]

Ave. .0017 .9851 .0025 .0772 .3008 .7005

Std. .0009 .0071 .0050 .0432 .0009 .0006

Min. .0006 .9773 -.0055 .0137 .2992 .6996

Max. .0030 .9959 .0079 .1233 .3020 .7014

[0, -l.12]

Ave. .0003 .9951 -.0011 -1.1156 .2979 .6936

Std. .0008 .0087 .0024 .0367 .0010 .0006

Min. .0007 .9856 -.0040 -l.1625 .2966 .6927

Max. .0015 1.0065 .0033 -1.0630 .2998 .6944

[.5, 0]

Ave. .0010 .9845 .5025 .0751 .2994 .6996

Std. .0010 .0080 .0034 .0497 .0011 .0007

Min. .0009 .9756 .4976 -.0076 .2975 .6986

Max. .0021 .9948 .5084 .1235 .3013 .7007

[1, .5]

Ave. .0009 .9863 1.0094 .5864 .3010 .7002

Std. .0007 .0082 .0054 .0548 .0019 .0008

Min. .0005 .9771 1.0012 .5120 .2988 .6990

Max. .0019 .9978 1.0155 .6426 .3038 .7011

[0. 3]

Ave. .0006 .9861 .0066 3.1495 .3001 .7000

Std. .0014 .0089 .0129 .0861 .0019 .0013

Min. .0015 .9772 -.0156 2.9914 .2980 .6981

Max. .0029 1.0012 .0203 3.2639 .3038 .7023

[1. 3]

Ave. .0010 .9867 1.0110 3.1497 .3002 .7000

Std. .0013 .0078 .0149 .1292 .0012 .0008

Min. .0001 .9780 .9804 2.9300 .2984 .6988

Max. .0044 1.0009 1.0268 3.2697 .3023 .7014

[2. 6]

Ave. .0004 .9832 2.0288 6.2224 .2989 .6994

Std. .0009 .0086 .0205 .1109 .0009 .0006

Min. .0016 .9720 1.9951 6.0160 .2978 .6986

Max. .0013 .9971 2.0550 6.3820 .3000 .7004

[0, 20]

Ave. .0007 .9872 -.0116 20.2620 .2997 .7000

Std. .0015 .0107 .0335 .5450 .0014 .0012

Min. .0019 .9704 -.0555 19.6140 .2969 .6976

Max. .0030 1.0053 .0453 21.2950 .3017 .7016

a Ave - average, Std - standard deviation, Min - minimum, Max -

maximum value of the sample mean, variance,

within-set correlations.

skewness, kurtosis, and



60

O

assess how well the generated data actually represented the eight

parent distributions. These values were examined for their similarity

to the known population values. The average, standard deviation,

minimum, and maximum values of the five sample statistics are given in

Table 5. The average values for the sample mean, variance, skewness,

and kurtosis were obtained using sample values across all sample-size,

within-set-correlation, and number-of-variables conditions. The average

values for the sample within-set. correlations 'were obtained. using

sample values for all within-sebcorrelation conditions among the YJ

and the X'k variables across all sample-size and number-of-varables

conditions. The values of the five sample statistics for ‘various

sample-size and number-of-variables conditions are presented in Table

E2 of Appendix E.

The statistics in. Tables 5 and E2 show' excellent agreement

between the mean, variance, and intercorrelations of the resulting

variables and their population values. Similarly, both tables show

good agreement between the skewness values and their population

counterparts across all distributions, sample sizes, and numbers-

of-variables. However, as seen in Table E2 the agreement between the

kurtosis values and their known theoretical counterparts for non-normal

distributions was somewhat poor, even for moderately-large samples.

As a further check on the adequacy of the data generation,

multivariate measures of skewness and kurtosis (Mardia, 1974) were

computed for a sample of N - 100. The sample values proved to be quite

different from their known population counterparts. As an additional

check a number of runs were made using N - 300 and the multivariate-
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normal distribution. The results appear in Table 6. The multivariate

measures of skewness and kurtosis of Mardia (1974) are equal to zero

for the multivariate-normal distribution, and hence deviations from

zero of the sample skewness and kurtosis values suggest non-normality.

Even for a sample size of 300 the results indicate less than

perfect agreement between the sample ‘measures of' the multivariate

skewness and kurtosis values and their theoretical values of zero,

especially as the number of variables increases. However tests of

Table 6

Sample Measures of Multivariate Skewnessaand

Kurtosis For the Normal Distribution

 

 

b c Within-set correlation

V Measure N (.3 .3) (.3 .7) (.7 .7)

4 Skewness 300 0.3919 0.3919 0.3919

Kurtosis 300 -0.3094 -0.3094 -0.3093

6 Skewness 300 1.0867 1.0867 1.0867

Kurtosis 300 -0.6064 -0.6063 -0.6062

8 Skewness 300 2.3257 2.3257 2.3257

Kurtosis 300 -1.0318 -l.03l7 -l.0316

 

a The tabled values represent the multivariate skewness and kurtosis

statistics of the imulated data based on a 5%nple of size 300 and

3000 replications, V - number of variables, N - sample size.

multivariate normality (Mardia, 1970) on each of the data sets of Table

6 were not significant (at a - .05). These results suggest that the

simulated data may, for a small number-of-variables, be assumed to

approximate that obtained from a multivariate-normal distribution. For

larger numbers-of-variables the results of Table 6 suggest that the

simulated data tended to be positively-skewed and more kurtic than that
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of a normal distribution, and hence the assumption that these data

represent (approximately) a multivariate-normal distribution is less

tenable.

e and we 0 0

Two between-set correlation values were used to generate Type I

error and power conditions. A between-set correlation of zero

(i.e., fl - Q) was used to establish the Type I error case, meaning

each observation was sampled from a population in which there was no

correlation between the predictors and the dependent variables. Hence

each rejection counted toward the empirical Type I error rate. For the

power case, a non-zero 5 matrix was obtained analytically using a

procedure due to Muller and Peterson (1984) and the tabled power values

of the F test due to Pearson and Hartley (1951). The regression

coefficients of expression (23) were computed such that a power of .8

would be achieved at an alpha level of .05 using a sample of size 100

and a parent normal distribution. The values of the .regression

coefficients and the resulting non-zero, between-set correlations are

presented in Table 7 (see Appendix C for computational details).

Table 7

Regression Coefficients Used for Power Simulations

and the Resulting Between-Set Correlations

 

Within-set correlation

 

V fijk (.3 .3) (.3 .7) (.7 .7)

4 .180 .234 .306 .306

6 .138 .221 .331 .331

8 .118 .224 .366 .366

 

a V - number of variables.
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In the present study a total of eight distributions x three

sample sizes x three within-set correlations x three numbers-of-

variables - 216 conditions were separately generated for the Type I

error and power cases. For each of these conditions, observations were

selected from populations possessing the requisite properties and the

empirical Type I error rates and power values tabulated for the various

tests across 3000 replications. The robustness of the Type I error

probabilities was determined. using a 95% confidence interval. The

intervals for the alpha levels of .01, .05, and .10 were (.0064,.0136),

(.0422, .0578), and (.0893, .1107), respectively. The 95% confidence

intervals for the average Type I error rates (at .05 alpha level) are

presented and displayed (as broken lines) in the following tables and

figures. Type I error rates exceeding the upper limit of these

intervals were considered to be liberal, and values below the lower

limit were considered to be conservative.

Ove a T e E or d Powe Resu t

A summary of the empirical Type I error and power values across

the distributions, sample sizes, within-set correlations, and numbers-

of-variables for the five tests [Bartlett (BAR), Rao E (RAO), rank-

transform Rao E (RTF), pure-rank (PUR), mixed-rank (MIX)] are presented

in Table 8. Because the Type I error and power values for the Bartlett

and Rao E tests were virtually identical, only the Rao E test results

are reported. The overall Type I error and power curves of the various

tests are displayed in Figure 2.
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Table 8

Overall Empirical Type I Error and Power Valuesa

 

 

Type I Error Power

Test .01 .05 .10 .01 .05 .10

BAR .0154 .0587 .1082 .3485 .5265 .6250

RAO .0151 .0579 .1077 .3472 .5250 .6240

RTF .0104 .0505 .1010 .3674 .5460 .6435

PUR .0052 .0376 .0864 .3023 .4948 .6081

MIX .0046 .0362 .0839 .2986 .4868 .5995

 

a The tabled values represent the average Type I error and power

values across all distributions,

correlations, and numbers-of-variables (n-216,
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The Type I error results of Table 8 and Figure 2 indicate that

the overall Type I error rate was highest for the Rao E test, and

lowest for the mixed-rank test. The rank—transform Rao E produced

empirical Type I error rates closest to the nominal alpha values. Under

the same simulation conditions, the average power values were highest

for the rank-transform Rao E, followed by the Rao E, pure-rank, and

mixed-rank tests. This pattern persisted for all three alpha levels.

The Type I error and power results of Table 9 and Figure 2

indicate that the (a) average Type I error rates of the four tests

increased at approximately the same rate as the alpha level increased

from .01 to .05, and from .05 to .10, (b) average power values of all

four tests increased at approximately the same rate as the alpha level

increased, and (c) rate of change of the power value was greater for

.01 to .05 than for .05 to .10. These results indicate that there was

no interaction of alpha level and test statistic on the Type I error

and power values. On the basis of these results, subsequent Type I

error and power curves will be displayed only for the .05 level.

The total number of conservative and liberal Type I errors for

the four tests across all simulation conditions are presented in Table

9. These results indicate that the Rao E test had a higher number of

liberal Type I errors as compared to the rank-transform Rao E, the

pure-rank, and the mixed-rank tests across all alpha levels. The

percentage of liberal Type I errors for the Rao E, rank-transform Rao

E, pure-rank, and mixed-rank tests were 28.2%, 4.5%, .3%, and 0%,

respectively. The corresponding percentages of the number of

conservative Type I errors for these tests were .8%, 2%, 60%, and
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66.5%, respectively.

In general, the (a) Rao E proved to be more liberal than it's

nonparametric competitors, (b) pure- and mixed-rank tests were more

conservative than the rank-transform Rao E and Rao E tests, and (c)

number of liberal Type I errors for the Rao E test and the number of

conservative Type I errors for the pure- and mixed-rank tests

decreased as the alpha level increased.

Table 9

Overall Number of Conservatgve and Liberal

Type I Errors

 

Alpha level

 

 

.01 .05 .10 Total

Test C L C L C L C L

HAD 1 72 2 59 2 52 5 183

RTF 3 9 4 10 6 10 13 29

PUR 140 0 138 0 111 2 389 2

MIX 159. 0 143 0 129 0 431 0

a
The tabled values represent overall frequencies of the

conservative (C) and liberal (L) Type I errors across all

distributions, sample sizes, within-set correlations, and

numbers-of-variables (216 cases).

ai ects of u at Con o s

The next four sections present the Type I error and power results

categorized by distribution, sample size, within—set correlation, and

number-of-variables.

D u 10

A total of eight parent distributions were included. in. the

present study to examine the effects of varying skewness and kurtosis



67

Table 10

Average Type I Error and Power Values and Number of

Conservative and Liberal Errors by Distribution8

 

 

Type I Error Power

[11, 12] .01 .05 .10 ( C L ) .01 .05 .10

[0. 0]

RAD .0099 .0508 .1000 ( 0 0) .3286 .5124 .6159

RTF .0100 .0499 .1010 ( 5 2) .3088 .4932 .5980

PUR .0045 .0369 .0869 (52 0) .2512 .4442 .5634

MIX .0047 .0375 .0848 (53 0) .2543 .4469 .5639

[0, -1.12]

RAD .0100 .0509 .1020 ( l 6) .3183 .5015 .6084

RTF .0103 .0509 .1016 ( 0 2) .2880 .4704 .5779

PUR .0051 .0379 .0868 (45 0) .2330 .4231 .5434

MIX .0045 .0382 .0873 (50 0) .2345 .4263 .5467

[.5, .0]

RAO .0112 .0507 .1008 ( 0 3) .3268 .5077 .6099

RTF .0108 .0500 .1012 ( l 2) .3101 .4926 .5950

PUR .0056 .0377 .0860 (46 0) .2512 .4446 .5606

MIX .0051 .0367 .0847 (45 0) .2496 .4423 .5578

[1, .5]

RAO .0104 .0500 .1000 ( 3 3) .3350 .5149 .6143

RTF .0095 .0500 .1008 ( 0 2) .3737 .5539 .6511

PUR .0044 .0377 .0863 (52 0) .3070 .5029 .6152

MIX .0043 .0365 .0836 (54 0) .2920 .4788 .5888

[0. 3]

RAO .0121 .0524 .1015 ( 1 9) .3441 .5258 .6268

RTF .0108 .0501 .0985 ( 2 2) .3615 .5401 .6397

PUR .0059 .0378 .0848 (45 0) .2973 .4898 .6033

MIX .0050 .0359 .0816 (50 0) .3065 .4967 .6115

[1. 3]

RAO .0119 .0542 .1045 ( 0 14) .3455 .5249 .6237

RTF .0098 .0507 .1007 ( l 4) .3573 .5392 .6381

PUR .0049 .0370 .0859 (57 0) .2951 .4875 .6034

MIX .0043 .0359 .0847 (62 0) .2943 .4832 .5952

[2. 6]

RAO .0198 .0651 .1135 ( 0 67) .3682 .5345 .6255

RTF .0110 .0521 .1025 ( 0 9) .4415 .6153 .7031

PUR .0058 .0388 .0878 (41 0) .3670 .5603 .6669

MIX .0046 .0350 .0838 (55 0) .3318 .5070 .6122

[0, 20]

RAO .0358 .0895 .1393 ( 0 81) .4112 .5782 .6673

RTF .0110 .0505 .1015 ( 4 6) .4984 .6628 .7452

FUR .0056 .0374 .0864 (51 2) .4165 .6061 .7085

MIX .0041 .0335 .0804 (62 0) .4257 .6133 .7198

 

aTThe tabled values represent the average Type I error and power values

across all sample sizes, within-set correlations, and numbers-of-

variables (np27, [.0485, .0515]). The number of conservative (C) and

liberal (L) Type I errors are the total across three alpha levels.
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values on the Type I error and power values of the four tests. The

average Type I error and power values and the total number of

conservative and liberal Type I errors are presented in Table 10 and

displayed in Figure 3. The Type I error results of Table 10 and Figure

3 indicate that the (a) Type I error rate of the Rao E test increased

subtantially only for the [1, 3], exponential, and Cauchy

distributions, and (b) Type I error rates of the rank-transform Rao E

and the pure- and mixed-rank tests were not affected by distribution.

The conservative and liberal Type I error results of Table 11

indicate that the Rao E test tended to produce more liberal Type I

errors for the [1, 3], exponential, and Cauchy distributions. The

percentage of liberal Type I errors increased from 0% for the normal

distribution to 18% for the [1, 3] distribution, 83% for the

exponential distribution, and 100% for the Cauchy distribution. In

contrast, the number of liberal and conservative Type I errors for the

rank-transform. Rao E and. the pure-rank tests did. not seem. to 'be

affected by the degree of non-normality.

The power results of Table 10 and Figure 3 indicate that the (a)

power of the Rao ,E test tended. to increase only for the Cauchy

distribution, and (b) power of the rank-transform Rao E, the pure-rank,

and the mixed-rank tests tended to increase with increases in the

kurtosis value of the parent distributions.

Was

Three sample sizes were used to examine the effects of varying

sample sizes on the Type I error and power values of the four tests.

The average Type I error and power values and the total number of
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conservative and liberal Type I errors are presented in Table 11 and

displayed in Figure 4.

The Type I error results of Table 11 and Figure 4 indicate that

the (a) Type I error rate of the Rao E tended to shrink toward the

nominal alpha level as the sample size increased, (b) Type I error

rate of the rank-transform Rao E test did not seem to be affected by

increases in the sample size, and (c) Type I error rates of the pure-

and mixed-rank tests tended to increase subtantially toward the nominal

alpha level with increases in the sample size.

Table 11

Average Type I Error and Power Values and Numberaof

Conservative and Liberal Errors by Sample Size

 

 

 

Type I Error Power

N .01 .05 .10 ( C L ) .01 .05 .10

25

RAO .0159 .0593 .1088 ( 1 75) .0967 .2395 .3500

RTF .0108 .0515 .1012 ( 0 11) .0938 .2437 .3581

PUR .0026 .0287 .0747 (199 0) .0299 .1611 .2922

MIX .0020 .0264 .0702 (211 0) .0184 .1302 .2566

50

RAO .0150 .0581 .1073 ( 2 50) .2755 .4943 .6182

RTF .0101 .0498 .0986 ( 6 l) .2957 .5253 .6493

PUR .0054 .0390 .0873 (144 0) .2098 .4685 .6159

MIX .0045 .0378 .0862 (159 0) .1881 .4591 .6144

100

RAO .0145 .0564 .1070 ( 2 58) .6694 .8411 .9037

RTF .0103 .0503 .1031 ( 7 17) .7128 .8689 .9231

PUR .0077 .0452 .0970 ( 46 2) .6671 .8549 .9162

MIX .0073 .0442 .0952 ( 61 0) .6892 .8711 .9276

a

The tabled values represent the average Type I error and power

values across all distributions, within-set correlations, and

numbers-of4variables (n-72, [.0491, .0509]). The ‘number' of

conservative (C) and liberal (L) Type I errors are the total across

three alpha levels (216 cases).
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The conservative and liberal Type I error results of Table 12

indicate that the (a) number of liberal Type I errors of the Rao E

decreased as the sample size increased, (b) number of liberal Type I

errors of the rank-transform Rao E was largest for the moderate-large

sample size, and (c) number of liberal Type I errors of the pure- and

mixed-rank tests decreased subtantially as the sample size increased.

The power results of Table 12 and Figure 4 indicate that (a) the

power of all four tests increased subtantially with increases in the

sample size, and (b) the increment in the power values was higher for

the pure- and mixed-rank tests as the sample size increased from

small-moderate to moderate-large.
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W - e t

Three combinations of the within-set correlation among the Y.

variables and among the Xk variables were included to examine the

effect of varying correlations on the Type I error and power values of

the four tests. The average Type I error and power values and the total

number of conservative and liberal Type I errors are presented in Table

12 and displayed in Figure 5.

The Type I error results of Table 12 and Figure 5 indicate that

the (a) Type I error rate of the Rao E tended to increase slightly as

the within-set correlation among the Y variables and among the Xk

J

variables increased, and (b) Type I error rates of the rank-transform

Table 12

Average Type I Error and Power Values and Number of Cogservative

and Liberal Errors by Within-Set Correlations

 

 

 

Type I Error Power

(py, px) .01 .05 .10 ( C L ) .01 .05 .10

(.3 .3)

RAO .0144 .0568 .1063 ( 3 56) .3007 .4823 .5862

RTF .0106 .0507 .1019 ( 3 14) .3269 .5079 .6092

FUR .0054 .0378 .0869 (127 l) .2672 .4584 .5738

MIX .0046 .0361 .0838 (139 0) .2737 .4615 .5759

(.3 .7)

RAO .0150 .0579 .1080 ( 1 61) .4354 .6072 .6970

RTF .0103 .0506 .1007 ( 7 8) .4537 .6251 .7137

PUR .0053 .0376 .0863 (132 l) .3781 .5698 .6771

MIX .0045 .0359 .0838 (150 0) .3716 .5594 .6666

(.7 .7)

RAO .0160 .0591 .1088 ( l 66) .3056 .4854 .5887

RTF .0102 .0504 .1004 ( 3 7) .3217 .5049 .6077

PUR .0050 .0375 .0858 (130 0) .2616 .4563 .5733

MIX .0047 .0365 .0841 (142 0) .2505 .4396 .5560

a
The tabled values represent the average Type I error and power

values across all distributions, sample sizes, and. numbers-of-

variables (n972, [.0491, .0509]). The number of conservative (C)

and liberal (L) Type I errors is the total across three alpha

levels (216 cases).
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Rao E and the pure-and mixed-rank tests were not affected by the

increment in the within-set correlations.

The conservative and liberal Type I error results of Table 12

indicate that the (a) number of liberal Type I errors of the Rao E was

slightly higher for the largest within-set correlation, and (b) number

of liberal Type I errors of the rank-transform Rao E and the pure- and

mixed-rank tests varied slightly with the values of the within-set

correlation.

The power results of Table 12 and Figure 5 indicate that the (a)

increment in the correlation among the XR variables tended to increase

the power of all tests, (b) the increment in the correlation among the
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Y3 variables tended to decrease the power of all tests, and (c) change

in the power values for all tests was approximately the same.

W

Three combinations of the number of Y

.1

included to examine the effects of varying numbers-of-variables on the

and Xk variables were

Type I error and power values of the four tests. The average Type I

error and power values and the total number of conservative and liberal

Type I errors are presented in Table 13 and displayed in Figure 6.

Table 13

Average Type I Error and Power Values and Number 2f Conservative

Liberal Errors by Number-of-Variables

 

 

 

b Type I Error Power

V .01 .05 .10 ( C L ) .01 .05 .10

4

RAD .0137 .0556 .1031 ( 2 54) .3452 .5302 .6291

RTF .0107 .0506 .1002 ( 6 15) .3650 .5493 .6476

PUR .0065 .0425 .0934 ( 90 2) .3216 .5222 .6342

MIX .0057 .0414 .0913 (100 0) .3342 .5376 .6491

6

RAO .0155 .0584 .1088 ( 2 65) .3423 .5203 .6204

RTF .0102 .0515 .1025 ( 3 7) .3627 .5431 .6408

PUR .0051 .0381 .0874 (135 0) .2974 .4911 .6057

MIX .0045 .0355 .0842 (153 0) .2938 .4814 .5965

8

RAO .0162 .0599 .1112 ( l 64) .3542 .5245 .6224

RTF .0102 .0496 .1002 ( 4 7) .3746 .5455 .6422

PUR .0041 .0323 .0783 (164 0) .2878 .4711 .5844

MIX .0036 .0316 .0761 (178 0) .2678 .4415 .5529

a The tabled values represent the average Type I error and power

values across all distributions, sample sizes, and within-set

correlations (n-72, [.0491, .0509]). The number of conservative (C)

and liberal (L) Type I errors is the total across three alpha

b levels.

V - number of variables.
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The Type I error results of Table 13 and Figure 6 indicate that

the (a) Type I error rate of the Rao ,E tended to increase ‘with

increases in the number of variables, (b) Type I error rate of the

rank-transform Rao E did not seem to be affected by the number of

variables, and (c) Type I error rates of the pure- and mixed-rank

tests tended to decrease as the number of variables increased.

The conservative and liberal Type I error results of Table 13

indicate that (a) the number of liberal Type I errors of the Rao E

increased. as the number of 'variables increased, (b) no particular

pattern was found for the number of liberal Type I errors of the rank-

F, (c) the number of conservative Type I errors of thetransform Rao
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pure-and mixed-rank tests increased substantially as the number of

variables increased.

The power results of Table 13 and Figure 6 indicate that the

power of the Rao E and rank-transform Rao E tests did not vary with

increases in the number of variables, and that the power of the pure—

and mixed-rank tests tended to decrease as the number of variables

increased.

tera o t o u a Co d

The next three sections present the Type I error and ‘power

results categorized by distribution and sample size, distribution and

within-set correlation, and distribution and number-of-variables.

Complete results appear in Tables E3, E4, and E5 of Appendix E.

e ze

The average Type I error and power values and the total number

of conservative and liberal Type I errors categorized by distribution

and sample size for the .05 alpha level are presented in Table 14. The

average Type I error and power values for the normal (thin-tailed),

double-exponential (moderately non-normal/moderate-tailed), and

exponential and Cauchy distributions (extremely non-normal/heavy-

tailed) are displayed in Figures 7 and 8, respectively.

The Type I error results of Table 14 indicate that the (a) Type

I error rate of the Rao E varied only slightly for the normal and

mildly and moderately non-normal distributions and decreased

subtantially for the extremeLy non-normal distributions as the sample

size increased, (b) Type I error rate of the rank-transform Rao E did
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not vary much with sample size for all distributions, and (c) Type I

error rates of the pure-and mixed-rank tests increased substantially

toward the nominal alpha level as the sample size increased for all

distributions .

The power results of Table 14 indicate that as the sample size

increased the (a) power values of all four tests increased subtantially

for all distributions, (b) power values of the rank-transform Rao E

and the pure- and mixed-rank tests increased at higher rates for all

non-normal distributions other than the uniform and the [.5, 0]

distributions, (c) power of the Rao E was largest for the normal,

uniform, and the [.5, 0] distributions across all sample sizes, (d)

power value of the rank-transform Rao E was largest for the [1, .5],

double-exponential, [1, 3] , exponential, and Cauchy distributions and

small and small-moderate sample sizes, and (e) the mixed-rank test

produced the highest power value for the double-exponential, [1, 3],

exponential, and Cauchy distributions and moderately-large sample size.
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Table 14.

Average Type I Error and Power Values and Number of Conservative

and Liberal Errors by Distribution and Sample Size (a - .05)a

 

 

 

Type I Error Power

[11, 12] N-25(C L) N-50(C L) N-100(C L) N-25 N-50 N-100

[0. 0]

RAO .0474(0 0) .0539(0 0) .0511(0 0) .2090 .4773 .8509

RTF .0499(0 1) .0500(0 0) .0500(2 0) .2047 .4548 .8202

PUR .0274(9 0) .0394(6 0) .0440(3 0) .1325 .3961 .8039

MIX .0256(9 0) .0423(6 0) .0446(2 0) .1253 .3995 .8159

[0, -l.12]

RAD .0504(0 l) .0532(0 0) .0490(0 0) .1951 .4674 .8420

RTF .0528(0 l) .0515(0 0) .0483(0 0) .1879 .4291 .7924

PUR .0302(7 0) .0404(5 0) .043l(3 0) .1219 .3740 .7734

MIX .0299(7 0) .0409(4 0) .0439(3 0) .1237 .3787 .7764

[.5, .0]

RAO .0521(0 0) .0487(0 0) .0512(0 0) .2041 .4754 .8435

RTF .0517(0 0) .0484(0 0) .0499(0 0) .2023 .4563 .8191

PUR .0287(9 0) .0385(5 0) .0458(1 0) .1299 .4026 .8012

MIX .0277(9 0) .0366(6 0) .0459(1 0) .1182 .3980 .8106

[1, .5]

RAD .0514(1 1) .0503(l 0) .0483(0 0) .2245 .4802 .8401

RTF .0507(0 0) .0501(0 0) .0493(0 0) .2417 .5315 .8885

PUR .0282(9 0) .0399(7 0) .0450(3 0) .1598 .4751 .8739

MIX .0272(9 0) .0385(6 0) .0437(2 0) .1164 .4352 .8849

[0. 3]

RAO .0535(0 0) .0516(0 0) .0519(0 0) .2279 .5037 .8459

RTF .0494(0 0) .0521(0 0) .0488(0 0) .2319 .5184 .8700

PUR .0279(9 0) .04l4(3 0) .0439(4 0) .1515 .4606 .8573

MIX .0259(9 0) .0376(6 0) .0440(1 0) .1339 .4735 .8826

[1. 3]

RAO .0566(0 3) .0503(0 0) .0557(0 4) .2340 .4993 .8415

RTF .0529(0 l) .0472(l 0) .0520(0 2) .2372 .5139 .8665

PUR .029l(9 0) .0357(9 0) .0463(3 0) .1551 .4564 .8511

MIX .0264(9 0) .0355(9 0) .0458(3 0) .1253 .4474 .8768

[2. 6]

RAO .0665(0 9) .0687(0 9) .0603(0 5) .2799 .5005 .8230

RTF .0515(0 1) .0516(0 0) .0533(0 l) .2951 .6144 .9366

PUR .0287(8 0) .0399(8 0) .0479(0 0) .1980 .5553 .9277

MIX .0250(9 0) .036l(9 0) .0440(2 0) .1074 .4707 .9427

[0, 20]

RAO .096l(0 9) .0884(0 9) .0840(0 9) .3417 .5509 .8420

RTF .0535(0 1) .0471(l 0) .0510(0 2) .3469 .6839 .9577

PUR .0296(7 0) .0366(9 0) .0459(2 0) .2397 .6277 .9510

MIX .0235(9 0) .0351(9 0) .04l9(4 0) .1918 .6698 .9784

a The tabled values represent the average and the number of

conservative (C) and liberal (L) Type I error rates and the average

power values across all within-set correlations and numbers-of-

variables (n~9, [.0474, .0526]).
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o W - e

The average Type I error and power values and the total number

of conservative and liberal Type I errors categorized by distribution

and within-set correlation for the .05 alpha level are presented in

Table 15. The average Type I error and power values for the normal,

double - exponential , exponential , and Cauchy distributions are

displayed in Figures 9 and 10, respectively.

The Type I error results of Table 16 indicate that (a) the Type

I error rates of the rank-transform Rao E and the pure- and mixed-rank

tests were not affected by the within-set-correlation values for all

distributions, and (b) except for the Cauchy in which the Type I error

rate increased with increases in the within-set correlation, the Type I

error rate of the Rao E was minimally affected by the within-set-

correlation values.

The power results of Table 15 indicate that the power of all

four tests increased as the within-set correlation among the predictor

variables increased from .3 to .7, and decreased as the within-set

correlation among the outcome variables increased from .3 to .7 for

all distributions.
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Table 15

Average Type I Error and Power Values and Number of Liberal

Errors by Distribution and Within-Set Correlation (a - .05)a

 

 

 

Type I Error Power

[11, 12] (.3 .3)(C L)(.3 .7)(C L)(.7 .7)(C L) (.3 .3)(.3 .7)(.7 .7)

[0. 0]

RAD .0508(0 0) .0508(0 0) .0508(0 0) .4687 .5999 .4686

RTF .0499(1 0) .0504(0 l) .0494(1 0) .4472 .5814 .4511

PUR .0369(6 0) .0369(6 0) .0369(6 0) .4003 .5383 .4039

MIX .0370(6 0) .0370(6 0) .0384(5 0) .4070 .5288 .4050

[0, -l.12]

RAD .0514(0 0) .0502(0 0) .0510(0 l) .4583 .5897 .4565

RTF .0513(0 0) .0507(0 0) .0506(0 l) .4257 .5560 .4296

PUR .0385(5 0) .0373(6 0) .0379(4 0) .3817 .5038 .3838

MIX .0387(4 0) .0377(6 0) .0382(4 0) .3837 .5084 .3866

[.5, .0]

RAD .0505(0 0) .0505(0 0) .0510(0 0) .4653 .5919 .4658

RTF .0496(0 0) .0511(0 0) .0493(0 0) .4461 .5789 .4526

PUR .0378(6 0) .0382(4 0) .0370(5 0) .3997 .5251 .4090

MIX .0369(6 0) .0367(5 0) .0366(5 0) .4027 .5236 .4006

[1, .5]

RAD .0488(2 0) .0495(0 0) .0516(0 l) .4710 .6013 .4725

RTF .0502(0 0) .0494(0 0) .0505(0 0) .5118 .6389 .5111

PUR .0383(5 0) .0374(7 0) .0374(7 0) .4636 .5822 .4631

MIX .0355(5 0) .0370(6 0) .0369(6 0) .4504 .5573 .4288

[0. 3]

RAD .0520(0 0) .0517(0 0) .0533(0 0) .4831 .6087 .4857

RTF .0506(0 0) .0496(0 0) .0501(0 0) .5004 .6208 .4992

PUR .0374(5 0) .038l(6 0) .0377(5 0) .4521 .5652 .4520

MIX .0359(5 0) .0359(6 0) .0357(5 0) .4688 .5697 .4515

[1. 3]

RAD .0543(0 2) .0542(0 2) .054l(0 3) .4821 .6084 .4842

RTF .0511(0 2) .0507(0 0) .0503(1 l) .4976 .6203 .4997

PUR .0373(7 0) .0367(8 0) .0370(6 0) .4482 .5646 .4498

MIX .0357(7 0) .0355(7 0) .0365(7 0) .4559 .5571 .4365

[2. 6]

RAD .0623(0 7) .0666(0 8) .0666(0 8) .4922 .6123 .4989

RTF .0514(0 0) .0527(0 0) .0523(0 2) .5868 .6853 .5740

PUR .0385(6 0) .0389(5 0) .039l(5 0) .5318 .6272 .5220

MIX .0354(7 0) .0350(7 0) .0348(6 0) .5019 .5708 .4482

[0, 20]

RAD .084l(0 9) .0898(0 9) .0946(0 9) .5381 .6453 .5513

RTF .0512(0 2) .0502(l l) .0503(0 0) .6479 .7190 .6216

PUR .0378(7 0) .037l(5 0) .0372(6 0) .5894 .6617 .5672

MIX .0334(8 0) .0321(8 0) .0351(6 0) .6214 .6591 .5594

a The tabled values represent the average and the number of

conservative (C) and liberal (L) Type I error rates and the

average power values across all sample sizes and numbers-of-

variables (np9, [.0474, .0526]).
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The average Type I error and power values and the total number

of conservative and liberal Type I errors categorized by distribution

and number-of—variables for the .05 alpha level are presented in Table

16. The average Type I error and power values for the normal, double-

exponential, exponential, and Cauchy distributions are displayed in

Figures 11 and 12, respectively.

The Type I error results of Table 16 indicate that (a) only for

the exponential and Cauchy distributions did the Type I error rate of

the Rao E increased as the number of variables increased, (b) the Type

I error rate of the rank-transform Rao E was not affected by the

number-of-variables factor for all distributions, and (c) the Type I

error rates of the pure-and mixed-rank tests decreased as the number

of variables increased for all distributions.

The power results of Table 16 indicate that the (a) power

values of the Rao E and rank-transform Rao E tests were not affected

by the number-of-variables factor for all distributions, and (b) power

values of the pure- and mixed-rank tests decreased with increases in

the number of variables for all distributions.



Table 16

86

Average Type I Error and Power Values and Number of Conservative and

Liberal Errors by Distribution and Number-of-Variables (a - .05)a

 

 

 

Type I Error Power

[11, 12] V-4(C L) V-6(C L) V—8(C L) V-4 V-6 V-8

[0. 0] .

RAD .0494(0 0) .0528(0 0) .0502(0 0) .5273 .5031 .5067

RTF .0468(2 0) .0526(0 1) .0504(0 0) .4984 .4850 .4963

PUR .0386(6 0) .0389(6 0) .0332(6 0) .4719 .4340 .4267

MIX .0409(5 0) .0386(6 0) .0329(6 0) .4829 .4354 .4224

[0, -1.l2]

RAD .053l(0 l) .0512(0 0) .0483(0 0) .5149 .4960 .4937

RTF .0518(0 l) .0519(0 0) .0489(0 0) .4784 .4646 .4683

PUR .0439(2 0) .0390(4 0) .0308(9 0) .4526 .4170 .3998

MIX .0444(1 0) .0392(4 0) .03ll(9 0) .4578 .4186 .4023

[.5, .0]

RAD .0515(0 0) .0504(0 0) .0501(0 0) .5141 .5045 .5044

RTF .0500(0 0) .0526(0 0) .0474(0 0) .4906 .4908 .4963

PUR .0426(3 0) .0393(S 0) .0310(7 0) .4640 .4402 .4295

MIX .0422(3 0) .0363(6 0) .0317(7 0) .4746 .4397 .4126

[1, .5]

RAD .0503(1 0) .0485(1 0) .0512(0 l) .5223 .5067 .5159

RTF .0494(0 0) .0520(0 0) .0487(0 0) .5633 .5487 .5497

PUR .0422(5 0) .0387(6 0) .0323(8 0) .5363 .4970 .4755

MIX .0426(3 0) .0357(6 0) .03ll(8 0) .5386 .4717 .4262

[0. 3]

RAD .0480(0 0) .0553(0 0) .0539(0 0) .5335 .5233 .5207

RTF .0487(0 0) .0540(0 0) .0476(0 0) .5393 .5394 .5417

PUR .0410(5 0) .0402(3 0) .0320(8 0) .5130 .4879 .4685

MIX .0400(3 0) .0360(7 0) .03l6(6 0) .5373 .4929 .4599

[1. 3]

RAD .054l(0 3) .053l(0 3) .0553(0 l) .5260 .5237 .5250

RTF .0510(l 2) .0504(0 0) .0507(0 l) .5355 .5365 .5456

PUR .0426(6 0) .0362(8 0) .0323(7 0) .5083 .4859 .4685

MIX .0419(6 0) .0323(9 0) .0334(6 0) .5244 .4820 .4430

[2. 6]

RAD .0590(0 6) .0662(0 9) .0702(0 8) .5320 .5330 .5385

RTF .0526(0 l) .0509(0 0) .0529(0 1) .6247 .6169 .6044

PUR .0441(4 0) .0378(6 0) .0346(6 0) .5954 .5604 .5251

MIX .0394(7 0) .0344(6 0) .03l4(7 0) .5970 .5025 .4213

[0. 20]

RAD .0793(0 9) .0894(0 9) .0999(0 9) .5714 .5723 .5909

RTF .0543(0 3) .0474(l 0) .0500(0 0) .6639 .6629 .6617

PUR .0453(4 0) .0344(7 0) .0323(7 0) .6630 .6067 .5756

MIX .0397(6 0) .03l4(8 0) .0294(8 0) .6881 .6081 .5439

a The tabled values represent the average and the number of

conservative (C) and liberal (L) Type I error rates and the average

power values across all sample sizes and within-set correlations

(II-9. [.0474, .0526]).
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The results from previous sections indicate that the (a) Type I

error rate of the Rao E increased with increases in the correlation

among the Y3 and the XR variables and the number-of-variables,

particularly for the extremely nonrnormal distributions, and (b) Type

I error and power values of the pure- and mixed-rank tests decreased

with increases in the number-of-variables for all distributions. A

further analysis was carried out to examine the interactions of sample

size, within-set correlation, and number-of-variables.

The average and the total number of conservative and liberal

Type I error rates for the Rao E test categorized by sample size and

within-set-correlation for the .05 alpha level are presented in Table

17. The average and the total number of conservative and liberal Type

I error rates and the average power values for the Rao E and the pure-

and mixed-rank tests catagorized by sample size and number-of-

variables for the .05 alpha level are presented in Table 18.

Table 17

Average Type I Error and Power Values and Number of

Conservative and Liberal Errors by Sample Size and

Within-Set Correlation For Rao E Test (a - .05)a

 

 

 

N (.3,.3)(C L) (.3,.7)(C L) (.7,.7)(C L)

25 .0579 (l 7) .0589 (0 7) .0609 (0 9)

50 .0570 (1 6) .0584 (0 6) .0591 (0 6)

100 .0554 (0 5) .0565 (0 6) .0574 (0 7)

a
The tabled values represent the average and the number of

conservative (C) and liberal (L) Type I error rates across all

distributions and numbers-of-variables (n-24, [.0484, .05161).



90

The results of of Tables 17 and 18 indicate that the Type I

error rate of the Rao E was only slightly reduced as the sample size

increased for all combinations of the within-set-correlations and the

number-of-variables. In. both cases, the number of liberal, Type I

errors was only slightly reduced, even for the largest sample size.

Table 18

Average Type I Error and Power Values and Number of Conservative

and Liberal Errors by Sample Size and Number-of—Variabges

For Rao E and Pure- and Mixed-Rank Tests (a - .05)

 

 

 

Type I Error Power

N V-4 (C L) V-6 (C L) V-8 (C L) V-4 V-6 V-8

25 .

RAD .0570( 1 7) .0592( 0 9) .0615( 0 7) .2517 .2381 .2288

PUR .0378(19 0) .0281(24 0) .0202(24 0) .2086 .1572 .1174

MIX .0349(22 0) .0253(24 0) .0190(24 0) .1955 .1200 .0753

50

RAD .0565( 0 6) .0575( l 6) .0605( 0 6) .5060 .4884 .4886

PUR .0429(ll 0) .0400(17 0) .0339(24 0) .5061 .4640 .4354

MIX .0430( 9 0) .0369(22 0) .0336(24 0) .5380 .4540 .3853

100

RAD .0533( 0 6) .0583( 0 6) .0576( 0 6) .8328 .8345 .8559

PUR .0468( 5 0) .0461( 4 0) .0427(10 0) .8519 .8522 .8607

MIX .0462( 3 0) .0443( 6 0) .0422( 9 0) .8792 .8701 .8638

a The tabled values represent the average and the number of

conservative (C) and liberal (L) Type I error rates and the average

power values across all distributions and within-set correlations

(n-24, [.0484, .0516]).

The results of of Table 18 indicate that the (a) Type I error

rates of the pure- and mixed-rank tests subtantially increased as the

sample size increased, particularly for the largest number of

variables, whereas the number of conservative Type I errors decreased

subtantially for the largest sample size, and (b) power values of the
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pure- and mixed-rank tests increased subtantially with increases in

the sample size, particularly for the largest number of variables.

These results suggest that increments in the sample size result

in the pure- and mixed-rank tests being less conservative and more

powerful as the number of variables increased, but it did not reduce

the number of liberal Type I errors of the Rao E test for increasing

within- set correlations and numbers -of-variab1es .



CHAPTER V

SUMMARY

Educational researchers opting for multivariate methods have

historically employed multivarite-normal-theory procedures. The valid

use of these procedures depends on the tenability of the underlying

statistical assumptions (e.g., normality). The importance of satisfying

these umderlying assumptions can not be overemphasized, since

violations have been shown to affect the distributional properties of

normal-theory tests. The present study focused on the effect of non-

normality of the observations on the Type I error and power properties

of some selected normal-theory and nonparametric-multivariate tests.

This chapter summarizes the (a) research questions, (b) methodology,

(c) findings, and (d) implications for data analysis in educational

research. Recommendations for further research in this area are also

presented.

e a c e o

The following research questions were formulated (a) do varying

skewness and kurtosis values affect the Type I error rate and power of

normal-theory and nonparametric-multivariate tests, and (b) do sample

size, within-set correlation, and. number-of-variables influence the

effects of skewness and kurtosis on the Type I error rate and power

of normal-theory and nonparametric-multivariate tests?

Methgdglogy

The present study used a computer simulation to empirically

examine the Type I error and power values of the Bartlett, Rao E,

92
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rank-transform Rao E, and the pure- and mixed-rank tests. Computer

simulated data representing skewness and kurtosis values of eight

multivariate distributions were used. Three combinations of

correlations within the sets of predictors and dependent variables,

three numbers-of-variables, and three sample sizes were used. All

combinations of simulation factors were investigated.

The sample statistics of the simulated data showed excellent

agreement between the average marginal mean, variance, intercorre-

lations, and skewness ‘values of' the resulting ‘variables and. their

population counterparts. The average kurtosis values, however,

indicated that the simulated data came from slightly’ more kurtic

parent distributions than expected. In addition, Mardia's (1974)

multivariate measure of skewness indicated that for a parent normal

distribution increasing numbers-of-variables produced increasingly

skewed data. Thus caution must be exercised in catagorizing the data

as multivariate-normal for a large number of variables. In this case,

approximately-multivariate-normal may be a more appropriate description

of the data.

The robustness of Type I error probabilities was determined

using a 95% confidence interval about a particular (nominal) alpha

level. Empirical Type I error rates exceeding the upper limit of these

intervals were considered to be liberal and the values below the lower

limit were considered to be conservative. Empirical power values were

reported for all simulation conditions, even those with a liberal Type

I error rate.



94

imam

A total of five tests were included in the present study.

However, the Type I error and power results of the Bartlett and Rao E

tests were virtually identical, and hence only the results of the Rao E

test were reported. The overall Type I error results showed that the

Rao E test produced the highest proportion of liberal Type I errors,

which were mostly confined to the (l, 3), exponential, and Cauchy

distributions. The mixed-rank test produced the highest proportion of

conservative Type I errors. These were mostly confined to the .01

alpha level for the small-sample-size and. the largest

number-of-variables conditions.

The overall power results showed that the average power value

was highest for the rank-transform Rao E test, followed by the Rao E,

pure-rank, and. mixed-rank tests. However, the difference in. the

average power values among the tests was less than 7%. This pattern of

Type I error and power results persisted across all three alpha

levels.

The results of the present study showed that the Type I error

rate of the normal-theory Rao E test increased subtantially for the

[1, 3], exponential, and Cauchy distributions. As expected, the Type I

error rates of the three nonparametric tests were not affected by the

degree of non-normality. The power of the normal-theory Rao E test

increased subtantially only for the Cauchy distribution. The power of

the rank-transform Rao E and the pure- and mixed-rank tests increased

with increases in the kurtosis value.
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The results of previous studies have suggested that the Type I

error rates of normal-theory tests increase with increases in the

skewness value, but decrease with increases in the kurtosis value. The

present study found that the Type I error rate of the normal-theory Rao

E test increased subtantially for the distributions with large skewness

and kurtosis values. Similar results were found by Harwell and Serlin

(1985). As for power, increasing skewness and/or kurtosis values have

been shown to reduce the power of normal-theory tests.

Sample size has also been shown to affect the distributional

properties of both normal-theory and nonparametric tests. The results

of the present study showed that the Type I error rates of all normal-

theory and nonparametric tests moved toward the nominal alpha level

as the sample size increased. The power values of all five tests

increased subtantially with the sample size. All three nonparametric

tests had a higher increment rate of the power values for distributions

other than the normal, uniform, and the .5 skewness and 0 kurtosis

combination (i.e., [.5, 0] distribution).

With respect to the within-set correlations, the results of the

present study showed that the Type I error rate of the Rao E test

increased as the correlation among the predictors and/or among the

dependent variables increased only for the Cauchy distribution. The

Type I error rates of the rank-transform Rao E and the pure- and mixed-

rank tests were not affected 'by the increment in the within-set

correlations for all distributions. The results also showed that the

power values of all normal-theory and nonparametric tests increased

with increases in the correlation among the predictors, and decreased
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with increases in the correlation among the dependent variables for

all distributions. Previous studies suggested that high correlation

among dependent variables tended to reduce the power of only

nonparametric- multivariate tests.

The results of the present study showed that Type I error rate

of the normal-theory Rao E test increased with increases in the number

of variables for the [1, 3], exponential, and Cauchy distributions.

However, its power value was not affected by the number of variables

for all distributions. The Type I error and. power 'values of the

rank-transform Rao E test were not affected by the number of variables

for all distributions. The Type I error and power values of the

pure—and mixed-rank tests decreased as the number of variables

increased for all distributions.

Qanclseians

The purpose of this study was to empirically evaluate the Type I

error and power values of five selected normal-theory and nonparametric

tests of the hypothesis of no relationship among two sets of variables

under a variety of distribution, sample size, correlation among the

predictor and dependent variables, and number-of-variables conditions.

Recalling the research questions given earlier, the results of the

present study lead to a number of conclusions. The generalization of

these conclusions is limited to the simulation conditions examined.

(a) The Type I error rates of the normal-theory Bartlett and Rao

E tests increase subtantially for moderately-heavy and heavy-tailed

distributions. Although the Type I error rates decrease with increases

in the sample size, they remain liberal for heavy-tailed distributions.
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The Type I error rates of the Bartlett and Rao E tests also

increase with increases in the correlation among predictor and/or

dependent variables, and with increases in the number-of-variables for

heavy-tailed distributions.

(b) The Type I error rates of the nonparametric rank-transform

Rao E and the pure- and mixed-rank tests are not affected by the form

of the parent distribution for moderately-small and moderately-large

samples. The Type I error rate of the rank-transform Rao E is slightly

liberal for extremely nononormal distributions, while those of the

pure- and mixed-rank tests are conservative for a small sample across

all distributions. The Type I error rates of the pure- and mixed-rank

tests move toward nominal alpha levels as the sample size increases.

(c) The Type I error rate of the rank-transform Rao E test is not

affected by the within-set-correlation and the number-of-variables

factors. The Type I error rates of the pure- and mixed-rank tests are

not affected by the within-set-correlation factor, but decrease as the

number of variables increases for all distributions.

((1) The power values of the normal-theory Bartlett and Rao E

tests increase subtantially only for extremely heavy-tailed

distributions. The power values of the three nonparametric tests

increase with increases in the kurtosis value. The power values of all

five tests also increase with increases in the sample size and

correlation among predictor variables, and decrease with increases in

the correlation among dependent variables for all distributions. The

increments due to the sample size are higher for the three

nonparametric tests.
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(e) The power values of the Bartlett and Rao E tests are largest

for the light-tailed distributions across all sample sizes. The power

value of the rank-transform Rao E test is largest for moderately-heavy

and heavy-tailed distributions and small to moderately-small samples.

The power value of the mixed-rank test is largest for moderately-heavy

and heavy-tailed distributions for moderately-large samples.

(f) The power values of the Bartlett, Rao E, and the rank-

transform Rao E tests are not affected by the number of variables for

all distributions. The power values of the pure- and mixed-rank tests

decrease as the number of variables increases for all distributions.

However, the reduction in the power values tends to be compensated for

by increases in the sample size.

0 at 0

Based on the Type I error and power results, the following

recommendations are suggested as guidelines for educational

researchers in choosing the "best" test among the normal-theory

Bartlett and Rao E tests and the nonparametric rank-transform Rao E

and pure- and mixed-rank tests in testing the hypothesis of no

relationship among two sets of variables. The criteria used for

recommending a test as "best" are that the Type I error rate of the

test is not liberal and its power is higher than its competitors. In

the spirit of the Neyman-Pearson lemma the "best" test is a test that

minimizes both Type I and Type II errors.

Note that the within-set correlation and the number-of-

variables are not included as factors in determining for the "best"

test because they have similar effects on Type I error and power
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values of the five tests, or their effects depend on the type of

distribution or the sample size. The recommendations are as follows:

(a) The Bartlett and Rao E tests are recommendedfor all light-tailed

distributions and any sample size.

(b) The rank-transform Rao E test is recommended for moderately-heavy

and heavy-tailed distributions for small and moderately-small

samples.

(c) The pure- or mixed-rank test is recommended for moderately and

extremely heavy-tailed distributions and moderately-large (or

larger) samples.

Using the percentage of the number of extreme observations (3

standard deviations away from the mean) as a measure of "tailedness" of

a distribution, the simulated data indicated the following order of

"tailedness" ("light" to "heavy"): Uniform (0%), normal (.28%), [.5, 0]

(.48%), [l, .5] (.92%), double-exponential (1.41%), [1, 3] (1.45%),

exponential (2.07%), and Cauchy (2.34%).

The results of the present study suggest that the Type I error

rates of the Bartlett and Rao E tests were robust for the light-tailed

distributions (i.e., uniform, normal, [.5, 0], [1, .5]). For the

"heavy-tailed" distributions, the Bartlett and Rao E tests tended to

produce liberal Type I error rates and smaller power values than that

of the rank-transform Rao E test. For a moderate-large sample, the

power values of all three nonparametric tests were larger than those of

the two normal-theory tests.
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As noted earlier, educationally-oriented variables are likely to

produce data that are skewed or kurtic. For small to moderate-large

samples (i.e. 25 to 100) the use of the nonparametric rank-transform

Rao E test is recommended, while for larger samples (i.e. 100 or more)

the use of the pure- or mixed-rank test is recommended when the

observed data have more than 1% of the extreme values.

e e u

The results of a simulation study are limited in their

generalization to the conditions examined in the study. The present

study confirmed many results from previous simulation studies and

generated a more comprehensive set of guidelines for the appropriate

use of the five tests. However, there is a need to investigate the

effects of data conditions which were not examined in the present

study. Based on the results and the limitations of the methodology used

in the present study, the following recommendations for further

research are suggested:

(a) The present study was limited to the violation of the normality

assumption. The assumptions of homogeneity of the elements of the

covariance matrix and independence of observations have not been

examined. Previous studies have suggested that the normal-theory

and nonparametric procedures are not robust to violations of

these assumptions. Knowledge of the behavior of the normal-theory

and nonparametric tests (of the independence between two sets of

variables) under violations of these assumptions would further help

to determine the utility of these tests.
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(b) The distributional properties of the normal-theory and

nonparametric tests should be examined for non-normal distributions

with large skewness values and a zero kurtosis value. The data

representing these distributions could not be generated for the

present study.

(c) The present study examined the behavior of test statistics using

variables with the same (univariate) marginal distribution. A

further study should be conducted to examine the behavior of these

tests using variables with different marginal distributions.

(d) The distributional properties of the Rao E and the pure- and

mixed-rank tests should be examined using a larger variety of

sample sizes. The results of the present study indicate that the

Type I error rates of these tests move toward the nominal alpha

levels as the sample size increases. However, it would be useful

to examine the behavior of the tests for a wider range of sample

sizes.

(e) The distributional properties of the normal-theory and

nonparametric tests should be examined for normal and non-normal

distributions using various combinations of unequal within-set

correlations among the predictor and dependent variables. The

present study used only a single unequal, within-set correlation.

In conclusion, normal-theory tests of the hypothesis of no

relationship among two sets of variables require the assumptions of

independence, homogeneity of covariance, and normality. When the

aSsumption of normality is not tenable the use of these tests may

result in falsely accepting or rejecting a null hypothesis. The
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development of nonparametric hypothesis-testing frameworks due to

Conover and Iman and Puri and Sen provides alternatives to normal-

theory procedures when the data do not meet the normality assumption.

The results of the present study indicate that the Type I error rates

of these nonparametric tests are not liberal and, for moderate samples,

their power values are almost equal to those of their normal-theory

alternatives for light-tailed distributions and superior for moderately

and extremely heavy-tailed distributions. Hence, the three

nonparametric tests examined should be routinely used by educational

researchers.
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APPENDIX A

DEFINITION OF TERMS

Asymptotic relative efficiency. The asymptotic relative efficiency of

test T with respect to test T is the limiting ratio of sample sizes

nz/nl, where n and n are the sample sizes required by test T and

test T respecfively such that both tests achieve equal power against

equal alternatives that are ”close to" the null hypothesis (Hollander

and Wolfe, 1973, p. 439).

Canonical-Correlation analysis. A canonical-correlation analysis refers

to a procedure employed to find correlation values (largest to

smallest) among a set of one or more linear functions of two sets of

random variables (Tim, 1975, p. 348). It is also used as a data-

reduction method.

Conservative test. A, test is conservative if’ the actual level of

significance is smaller than the stated level of significance (Conover,

1980, p. 90).

Consistent test. A sequence of tests is consistent against all

alternatives in the class H if the power of the test approaches 1.0 as

the sample sizes approaches infinity, for each fixed alternative

possible under H1 (Conover, 1980, p. 86).

Equivalent tests. Two statistical tests of the hypothesis H are

equivalent if, for each possible set of observations, the decision

reached by one test agrees with the decision reached by the other test

(Hollander and Wolfe, 1973, p. 447).

Hypothesis test. A hypothesis (significance) test is a decision rule

which, on the basis of sample observations, either accepts or rejects

the null hypothesis (Hollander & Wolfe, 1973, p. 450).

Liberal test. A test is liberal if the actual level of significance is

greater than the stated level of significance.

Multivariate analysis of variance (MANOVA). A. MANOVA refers to a

procedure which is used to simultaneously compare a set of means of

several outcome variables between several treatment populations (Timm,

1975, p. 369).

Multivariate-multip1e-regression analysis. A multivariate-multiple-

regression analysis refers to a procedure which is used to

simultaneously explain the relationships among a set of outcome

variables and a set of predictor variables, and predict a set of

outcome values for a given set of predictor values (Tim, 1975, p.

307).
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Meat powerful test. A test is said to be most powerful for a specified

alternative if no other test, at the same level of significance, has

greater power against the same alternative (Gibbons, 1971, p. 15).

Power of a test. The power of a test against a specified alternative

is the probability of (correctly) rejecting the null hypothesis when

in fact the alternative is true (Hollander and Wolfe, 1973, p. 456).

Robust. A statistical procedure is said to be robust, with respect to a

particular postulated assumption, if the procedure is relatively

insensitive to (slight) departures from the assumption (Hollander &

Wolfe, 1973, p. 460).

Test statistic. A test statistic is a statistic that determines the

critical region of a hypothesis test (Hollander & Wolfe, 1973, p. 463).

Type I error. A Type I error is a false acceptance of the alternative

hypothesis, that is, a rejection of the null hypothesis when in fact it

is true (Hollander & Wolfe, 1973, p. 463).

Unbiased test. An unbiased test is a test in which the probability of

rejecting H0 when H is false is always greater than or equal to the

probability 0of rejecging Ho when H0 is true (Conover, 1980, p. 86).

Uniformly most powerful test. A test is uniformly most powerful against

a class of alternatives if it is most powerful with respect to each

specific alternative within the class of alternatives (Gibbons, 1971,

p. 16).



APPENDIX B

PROCEDURES AND ALGORITHMS

leisbaan_£rgsedura

Fleishman (1978) developed a technique for generating a non-

normal deviate using a function involving the first three powers of a

standard normal deviate. The procedure for obtaining the power-

function constants is outlined here.

Let wi be a non-normal deviate and a, b, c, and d the

power-function constants [see expression (25) of Chapter III].

Fleishman showed that for any distribution the expected value and

variance of w1 are given by:

E(w) - a + c , (29)

Var (w) - b2 + 6bd + 2c2 + 15d2. (30)

Assuming that the distribution is standardized expressions (29) and

(30) become:

a + c - o , (31)

b2 + 6bd + 2c2 + 1532 - 1 . (32)

After considerable algebraic manipulation the skewness (11) and

kurtosis (12) values for a desired distribution can be expressed in

terms of b, c, and d (Fleishman, 1978):

71 - 2c(b2 + 24bd + 105::2 + 2) , (33)

2 2
‘12 - 24[bd + c2(l + b + 28bd) + d2(12 + 48bd + l4lc + 225d2)]. (34)

105



106

The values for b, c, and d can be obtained by simultaneously solving

equations (32), (33), and (34). The value for a can be obtained using

expression (31).

Ea1a_and_nauralli_£rasadure

Vale and Maurelli (1983) developed a procedure for computing the

intermediate correlations among non-normal variables. The procedure is

outlined below.

Let two standardized variables, W1 and W2, be distributed as a

bivariate non-normal distribution. with a specified. population

correlation (pwlwz). Assume also that W1 and W2 have a common density

function and thus possess common skewness and kurtosis values. Hence,

the Fleishman power-function constants for W1 and W2 are identical.

Let 21 and 22 be two standard normal deviates and 21 and 22 the vectors

containing these deviates to the powers of zero through three:

31 - [ 1 21 z (35)

N
N
H
N

£2 - [ 1 z2 z ]. (36)

Let Q be the vector containing the Fleishman power-function constants

n' - [-c b c d 1. (37)

Using Fleishman's (1978) power function of expression (25), the

non-normal deviates w1 and w2 can be defined as

w' - D' * 11 , w - D' * z . (38)

Since W1 and W2 are standardized their correlation is equal to their
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expected cross product

1 2 ,

- 802' 11 22 12>

- 2'32

where E is the expected matrix product of 11 and 22:

  

l 0 1 0

0 pz 2 0 3P2 2

l 0 2,02 2 + l 0

l 2

0 3p 0 6p + 9p

_ 2122 2122 2122 .

Returning to the vector and matrix product of expression (40) the

correlation pw W is given by the scalar expression

1 2

pw W - p (b2 + 6bd + 9d2 + 2c2pz z + 6d2p: z ). (41)

1 2 2122 l 2 l 2

The values of pz obtained by solving the polynomial of expression
2

l 2
*

(41) provides the intermediate correlation matrix E .

naltizariate_§keznesa_and_surtcaia

The sample measures of Mardia (1974) multivariate skewness and

kurtosis values are given in expressions (27) and (28) of Chapter III.

The following algorithms were used to compute these values:

_2 N N 3

71,: ' N 1E1 j§1 313 ' (“2)

_1 N 2

72,: ' N 1§1 311 ' t(t + 2)’ (43)
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where gij is the (ij)th element of the matrix

1

(In - i] [u - I]..[u - El) 2‘ {[u - I] [u - u]..[u - El). (44)

1 2 N Nxt txt 1 2 N th

where Q1, Q2, ..., EN and-E are defined in expression (26) of Chapter

III.

Iaata_2f.flaltixariata.fl2:malitI

Mardia (1970) introduced two tests of multivariate normality

based on the sampling distributions of the multivariate skewness and

kurtosis statistics. The null hypotheses for the tests are that both

the population skewness and kurtosis values are equal to zero. The test

statistics are:

2
A - (N71,t)/5 “ Xt(t+l)(t+2)/5

B - 12,t//[8t(t+2)/N1 ~ N<0. 1). (46)

(45)

where t is the number of variables.

The sample measures of the multivariate skewness and kurtosis

and the corresponding test-statistic values are given in Table Bl.

Table Bl

Tests For Multivariate Normality (Mardia, 1974)

 

 

 

ta Measure Nb Value Statistic dfc cvd dce

4 skewness 300 .3919 19.595 20 31.41 NS

kurtosis 300 -.3094 -.387 -l.96 NS

6 skewness 300 1.0867 54.335 56 74.45 NS

kurtosis 300 -.6064 -.536 -l.96 NS

8 skewness 300 2.3257 116.285 120 124.34 NS

kurtosis 300 -l.03l8 -.706 -l.96 NS

a

t - number of variables, b N - sam le size, c df -degrees of

freedom, cv - critical value, dc - decision, NS - not

significant.
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WW1»:

The power value of the Rao E test was computed analytically

using a method due to Muller and Peterson (1983) and the tabled power

values of the E test due to Pearson and Hartley (1951). Given the

matrices of regression coefficients (fl) and the within-set correlations

among the dependent variables (311) and among the predictor variables

(322), the power value of the Rao E test can be determined using the

following procedures:

(1)

(2)

(3)

Let E be the matrix of intercorrelations among the dependent and

predictor variables

8 B
11 12

B - [ ] (47)

R21 322

312, the matrix of between-set correlations of the dependent and

predictor variables, is given by (Timm, 1975, p. 309):

Wilks' lambda (A) can be obtained using the ratio of the

determinants of E, R_11, and 322 (Anderson, 1958, p. 233)

A - Isl/(Inullezzh. (49)

The nonrcentrality parameter for the Rao F can be obtained using

the formulas given by Muller and Peterson (1983) and Pearson and

Hartley (1951):

A, - <1 - Al/b)/(A1/b/v2). (50)

d - (AA/v1 + 1)]'/2 (51)
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where b, and v are given by expressions (17) of Chapter III.
”1' 2

(4) The power value is obtained using the power charts of the E test

(Pearson & Hartley, 1951) and. the non-centrality' parameter of

expression (51). The power values of the Rao E test are given in

Table B2.

Table B2 a

Theoretical and Empirical Power Values of the Rao E Test

 

Within-set correlation

 

Measure (.3, .3) (.3, .7) (.7, .7)

fi .180 .180 .180

312 . .234 .306 .306

A .870 .831 .870

AA 13.798 18.680 13.798

d 1.660 1.933 1.660

Theoretical power .840 .940 .840

Empirical power .815 .910 .815

 

a Tabled power values were based on N-100 and t - 4. The empirical

power values were obtained using 3,000 replications for a normal

distribution.

As totic Relat ve Ef enc

The efficiencies of two test statistics can be compared using

their power values for various alternative hypotheses and sample sizes.

However, a single measure of their relative effeciency can be obtained

using the so-called asymptotic relative efficiency (A.R.E.). The

computation of the A.R.E. of the pure-rank test to the normal-theory

likelihood-ratio test for regression (Puri & Sen, 1985, pp. 316-317) is

outlined here.

Let {Z' - (1', z') - (Y1, Y2,..., Y , X1, X2,..., Xq)} be a set

P

of random variables with a normal density function (d.f.) F(;), F1(3)
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be the marginal d.f. for the X variables, and Go(y - £0 - fl'x) be the

conditional d.f. of I given X - 3. Let f(z), f1(x), and go(y) be the

probability distribution functions (p.d.f.'s) corresponding to the F,

F1, and C respectively. Then f(;) can be written in terms of the
0’

conditional and marginal p.d.f's as follows:

f(z) - sou: - £0 - fl'x)f1(x) (52)

Under Ho: 5 - Q, expression (52) becomes

f(z) - 20(2 - 20>£1<2) (53)

The likelihood function can then be written as

n

L(Zl. 1290--o an) - n1

1—

n

f(zi) -iglgo(xi -flo - fl xi)£1(zi)° (54)

Denoting the maximum likelihood estimator of E by a, the likelihood-

ratio statistic is given by

n g (X >

An - n 0 1 . (55>

1-1 30(11 - 2X)

Under Ho (i.e., fl - Q) -2 log(An) is asymptotically distributed as the

central chi-square distribution with pq degrees of freedom. Under H1,

the statistic has a noncentral chi-square distribution with pq degrees

of freedom and a noncentrality parameter, say A The A.R.E. of theA'

pure-rank test (L) with respect to An is

A
e(L, A) - __L_ , (56)

A

A
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where AL is the noncentrality parameter for the chi-square distribution

for the pure-rank test under H It has been shown that for a parent1.

multivariate normal population the pure-rank test and the normal-theory

likelihood-ratio test are asymptotically power equivalent (Puri & Sen,

1969). For other forms of continuous distributions the A.R.E. of the

pure-rank test to the likelihood ratio-test is bounded below by 0.864.



APPENDIX C

Ihg Eggg-Rang Statistig: Egg; and §en Fog;

The construction of the pure-rank statistic (Puri & Sen, 1985,

pp. 307-312) is outlined in this appendix. Let [11, Xi] - [Y11, YZi’

., Ypi’ X11, X21... xqil’ i -. 1, 2, .., N, be a vector of random

observations for the i(th) subject on Y1, Y2,.., Yp dependent and X1,

X2..., Xq predictor variables having an identical (p + q) -variate

continuous distribution function. Let Rji and Rk1 represent the rank

of the i(th) subject on the j(th) dependent and k(th) predictor

variables, respectively. The original and the rank values of the Yj

and Xk can be represented as matrices E and E, respectively:

    

:11 :12 §1N :11 :12 :IN

21 21 2N 21 22 " 2N

Y Y .. Y R R .. R
H _ pl p2 pN B _ p1 p2. pN (57)

:11 £12 filN gp+l,1 §p+1,2 §p+l,N

21 22 '° 2N p+2,l p+2,2 " p+2,N

X X .. X R
ql q2 qN p+q,l Rp+q,2 .. Rp+q,N

Since the N vectors of observations are independent each row of E

represents a permutation of of integers l, 2,..., N (assuming no ties

'by virtue of continuity of the distribution function of the Yj and Xk),

‘With a total of N! permutations. Since 3 contains (p + q) rows, under

the truth of the hypothesis of independence of the YJ. and Xk, the

total number of possible realizations of E is (N!)(p+q).

ll3
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Following Chatterjee and Sen (1964), two rank matrices are said

to be permutationally equivalent if it is possible to obtain the second

matrix by permutations of the columns of the first matrix. Suppose the

columns of R.are rearranged in such a way that the first row has the

elements in the natural order 1, 2, ..., N, and denote the

corresponding matrix by 3*. E is said to be permutationally equivalent

to 3* if it is possible to obtain 3* by permutations of the columns of

E. Since there are N columns in E, for a given 3* there will be a

total of N! possible realizations of E 'which. are permutationally

equivalent to 3*.

In general, the probability distribution of 3 over (N!)(p+q)

possible realizations of 3 depends on the joint distribution of the Yj

and Xk. However, given a particular 3* the conditional distribution of

3 over the N! permutations of the columns of 3* is uniform under the

truth of the hypothesis of independence of the Y and Xk. An exact test

J

of independence of Y and Xk may be computed using the distribution of

J

3. However, the arithmetic is excessive and. a large-sample

approximation is of principal interest.

Puri and Sen (1985, pp. 307-312) presented a large-sample test

based on the sum-of-cross-products vector 5 of the centered R1 and Rk

and the covariance matrices E of the Rj and Q of the Rk with elements

sjk -igl(Rji ’ Rj)(Rki ' R19’ (58)

-1 - -

- " . ' . .'- 3": o 59mjj. N 121011, Rszj.i R1.) 3.3 1.2 p < >

-1 - — '

c... -N Elma-Rammed ...-1,2,..,., <60)
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where R3, R1,, Rk, and Ek' are the rank means for the j(th) and j'(th)

dependent and k(th) and k'(th) predictor variables, respectively. Puri

and Sen showed that for a large N the expected values of E and E'S

are:

3(5) - Q. (61)

E(fi'fi) - N(fl 0 Q). (62)

where (M O Q) represents the Kronecker product of u and Q (see

Anderson, 1958, p. 347). The large-sample pure-rank statistic (L) is

given by

L - N'lts (M e 9'1 3'1. (63)

Puri and Sen showed that the L statistic is distributed as a

chi-square variable with pq degrees of freedom when the YJ and Xk

variables are independent. The L statistic is genuinely distribution-

free for p - q - l, but only (conditionally) permutationally

distribution-free for p > 1 or q > 1.

e - nk Test: a e 1 and Se 0

Harwell and Serlin (1985) derived a simpler form of the Puri and

Sen L statistic using canonical correlations among the Rj and Rk

values. Defining a - E 9-1, where a is a matrix of sample regression

coefficients based on ranks, Harwell and Serlin showed that the L

statistic has the definitional form:

N N N N

L - 2 2 2 2 dJk'j'k'

3-1 j'-1 k-l k'-1

sjk sj,k, , (64)
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N N N N ., ,

L - 2 2 2 2 mJJ ckk S S , , ,

3-1 j'-1 k—l k'-1 3k 3 k

where djk’j'k' represent the elements of the (3.1 0 9:1), and mjj'and

ckk' represent the elements of M-1 and 9'1, respectively.

In this definitional form the elements of 5 appear as part of a

quadruple sum across products of the elements of H and 9, thus making

the computation of expression (64) extremely difficult. In the

derivation of the simpler form of the L statistic, Harwell and Serlin

showed that the summation of expression (64) may be written as the

matrix product:

m4>h(flalfim mm

(N-l) Ir (3 9'1 9'1 3' 2 2'1)

(N-l) Tr < 3 9'1 3' 1(1)

1
" I

(N-l) (sum of eigenvalues of resulting matrix).

The eigenvalues (squared canonical correlations) of the resulting

matrix are the eigenvalues among the sets of the R and Rk values,

J

at (r - l,2,..,s). The L statistic can then be written in the form

3

L - (N-l) 2 9 , r - l, 2,..., s. (66)

r
r-l

The L statistic, as shown by Puri and Sen, is asymptotically

distributed as a central chi-square variable with pq degrees of freedom

when the Y and Xk variables are indepenedent.

J
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APPENDIX D

COMPUTER PROGRAMMING

appendix describes the subroutines of the Statistical

Package for the Social Sciences (SPSSX. 2.2) and. the International

Mathematical and Statistical Libraries (1983) used in. the present

study. The subroutine FACTOR of the SPSSX was used to obtain the

principal component weights of the intermediate correlation matrices.

The following subroutines of the IMSL were used for data generation

and computation of test statistics:

NEQNF

GGUBS

VMULFP

LINVlF

NMRANK

EIGRF

LINV3F

To solve a set of simultaneous nonlinear equations for

Fleishman power function constants

To

To

To

To

To

To

To

To

generate uniform random deviates

multiply matrices

multiply the transpose of a matrix A by a matrix B

multiply a matrix A by the transpose of a matrix B

compute the inverse of a matrix

rank the generated deviates

compute eigenvalues of a matrix

compute determinant of a matrix

The complete listing of the computer program, which was coded in

FORTRAN V, is given below.
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PROGRAM NONPAR

 

CC TYPE I ERROR RUN (NV-4,NP-2,NQ-2,CY-0.3,CX-0.3,NS-25,NL-3000).

CC DISTRIBUTION: NORMAL AND UNIFORM.

cc----------------------------B'-------------------------------------=-

0
‘

fi
b
fl
‘
h
h
m
h
b
h
h
h

h
b
fl
‘
h
fl
‘
fi
h

INTEGER NL,NS,TS,NP,NQ,NV,AL,NT,WA,BC

PARAMETER(NL-3000,NV-4,NS-25,TS-100,NP-2,NQ-2,AL-3,NT-5,WA-8,

BC-l)

INTEGER DGT,EJOB,DJOB,DIS,TST,REJB(AL),REJR(AL),REJT(AL),

REJP(AL),REJM(AL),LOOP,IER,TN,IR(NS)

REAL RB(NQ,NP),PE(NP,NP),PE1(NP,NP),PE2(NP,NP),PX(NQ,NQ),

PXl(NQ,NQ),PX2(NQ,NQ),PH,EPS,D1,AA,BB,CC,DD,SUMD(NV),

SUMDl (NV) , SUMD2 (NV) . SUMD3 (NV) , SUMD4 (NV) ,AVD (NV) ,

AVD1(NV),AVD2(NV),AVD3(NV),AVD4(NV),SUMMS,SUMMK,SUMS,

SUMK,UD(TS),ND(TS),UNE(NP,NS),UNX(NQ,NS),MNE(NP,NS),

MNX(NQ,NS),MNNE(NP,NS),MNNX(NQ,NS),MBX(NP,NS),CY,CX,

MNNY(NP,NS),DATD(NV,NS),VAR(NV),DEVD(NV,NS),AAA(NV,NV),

COVN(NV,NV),COVI(NV,NV),WK(WA),DCV(NS,NV),DCD(NS,NS).

MULS,MULK,TMEAN.TVARN,TSKEW,TKURT,ACOVN(NV,NV),VARN(NV)

SKEW(NV),KURT(NV),OMEAN,OVARN,OUSKW,OUKUR,OMSKW,OMKUR,

CORR(NV,NV),CORL(NV,NV),BCR(BC),D2,DCOR,RCP(NV,NV),

SUMCC(NV,NV)

REAL AYY(NP,NP),AYX(NP,NQ).AXX(NQ,NQ),DTA(NS),R(NS),DTR(NS),

S,T,DATR(NV,NS),AVR,DEVR(NV,NS),RRR(NV,NV),RYY(NP,NP),

RYX(NP.NQ).RXX(NQ.NQ),DVYR(NP.NS)oDVXD(NQ,NS)3

MYX(NP.NQ).AYYI(NP.NP),AXXI(NQ,NQ),RYYI(NP.NP),

RXXI(NQ,NQ),MATDl(NP,NQ).MATD2(NQ,NP),MATD(NP,NP),A1,

MATRl(NP,NQ),MATR2(NQ,NP),MATR(NP,NP),MATMl(NP,NQ),Bl,

MATMZ(NQ,NP),MATM(NP,NP),PED,PER,SER,SEM,B2,V1,V2,V3,

BAR,RAO,RTF,PRN.MRN,C51,CSZ,CS3,CF1,CF2,CF3

COMPLEX ED(NP),ER(NP),Z(NP,NP)

DOUBLE PRECISION DSEED

DSEED -66901.D0

cc--------------------------------------------------------------------

CC (1)

cc--------------------------------------------------------------------

CC

CC

CC

CC

TO SPECIFY SIMULATION CONDITIONS.

(1A) TO SPECIFY REGRESSION COEFFICIENT MATRIX (RB), PRINCIPAL

COMPONENT WEIGHTS FOR ERRORS (PE) AND PREDICTORS (PX), WITHIN-

SET CORRELATION (CY,CX), PHI(PH), TIE VALUE (EPS) FOR RANKING,

PARAMETER VALUES FOR THE INVERSE (DGT), EIGENVALUE (IZ,IJOB).

AND DETERMINAT (D1,DJOB) PROCEDURES.

OPEN(20,FILE-’TESTS')

DATA RB / .0. .0. .0. .0 /

DATA PEl/ .80623, .80623, -.59161, .59161/

DATA PXl/ .80623, .80623, -.59161, .59161/

DATA PEZ/ .81475, .81475, -.57981, .57981/

DATA PXZ/ .81475. .81475, -.57981, .57981/

CY-O.3

CX-0.3

TN-NS'NL

PH-3.1428571

BPS-0.000001

DGT-O

EJOB-O

DJOB-4

Dl-l.0

(13) TO OBTAIN A1, 81, 82, V1, V2 FOR COMPUTING TEST STATISTICS

AND TO SPECIFY CRITICAL VALUES: F .01, .05, .10 (CF1,CF2,CF3)

AND CHI-SQUARE .01, .05, .10 (CSl.CSZ.CS3).

Al-(NS-l.)-(NP+NQ+1.)/2.
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Bl-SQRT((NP‘NP'NQ‘NQ-4.)/(NP‘NP+NQ‘NQ-5.))

BZ-l./Bl

Vl-NP‘NQ

v2-A1*Bl-V1/2.+1.

v3-v2/v1

IF (V1 .EQ. 4)THEN

CSl-13.277

CSZ- 9.488

CS3- 7.779

IF (NS .EQ. 25)THEN

CF1- 3.800

CFZ- 2.590

CF3- 2.080

ENDIF

IF (NS .EQ. 50)THEN

CFl- 3.526

CP2- 2.466

CF3- 2.008

ENDIF

IF(NS .EQ. 100) THEN

CF1- 3.416

CFZ- 2.422

CF3- 1.972

ENDIF

ENDIF

IF (V1 .EQ. 9)THEN

CSl-21.666

C32-16.919

CS3-14.684

IF (NS .EQ. 25)THEN

CFI- 2.820

CFZ- 2.090

CF3- 1.770

ENDIF

IF (NS .EQ. SO)THEN

CFl- 2.579

CPZ- 1.976

CP3- 1.689

ENDIF

IF(NS .EO. 100)THEN

CF1- 2.491

CFZ- 1.924

CF3- 1.657

ENDIF

ENDIF

IF (V1 .EQ. 16)THEN

CSl-32.000

CSZ-26.296

CS3-23.542

IF (NS .EQ. 25)THEN

CFI- 2.2359

CFZ- 1.841

CF3- 1.604

ENDIF

IF (NS .EQ. 50)THEN

CFI- 2.145

CFZ- 1.727

CF3- 1.528

ENDIF

IF(NS .EQ. 100)THEN
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CFl- 2.065

CFZ- 1.682

CF3' 1.494

ENDIF

ENDIF

(18) TO SECIFY FLEISHMAN'S CONSTANTS FOR NORMAL AND UNIFORM DIS.

DIS‘l

WRITE(20,1)

roman/M --------- 1. NORMAL (o, 0) ------------------------ r)

AA-0.0

BB-l.0

CC-0.0

DD-0.0

DO 2 I-1,NP

DO 3 01-1le

PE(I,J)-PEI(I,J)

CONTINUE

CONTINUE

DO 4 I-1,NQ

DO 5 J-loNQ

PX(I,J)-PX1(I,J)

CONTINUE

CONTINUE

GOTO 55

WRITE(20,7)

FORMAT(' --------- 2. UNIFORM (O, -1.12) ------------------ ')

AA-0.0

BB-l.34891701

CC‘0.0

DD--.13265955

DO 8 I-1,NP

DO 9 J'1,NP

PE(I,J)-PEZ(I,J)

CONTINUE

CONTINUE

DO 10 I-leQ

DO 11 J-leQ

PX(I,J)-PX2(I,J)

CONTINUE

CONTINUE

(1C) TO SET THE NUMBER OF REJECTIONS TO ZERO: BARTLETT (REJB),

RAO F (REJR), RANK-TRANSFORM (REJT), PURE-RANK (REJP), AND

MIXED-RANK (REJM).

REJB(I)'0

REJR(I)‘0

REJT(I)'0

REJP(I)‘0

REJM(I)'0

CONTINUE

(1C) TO SET SUNS TO ZERO FOR MULTIVARIATE SKEWNESS (SUMMS) AND

KURTOSIS (SUMMK). RAW-SCORE CROSS PRODUCTS (SUMCC), RAW SCORES

(SUMDI), RAW~SCORE SQUARES (SUMDZ), RAW-SCORE CUBES (SUMD3), AND

RAW-SCORE DUADS (SUMD4).

SUMMS-0.0

SUMMK-0.0

DO 57 I-1,NV

DO 58 J'1,NV

SUMCC(I,J)'0.0

COLTINUE
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69
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SUMDl(I)-0.0

SUMDZ(I)-0.0

SUMD3(I)-0.0

SUMD4(I)-0.0

CONTINUE

(2A) TO SET SUM OF LOOP RAW SCORES TO ZERO (SUMD)p GENERATE

UNIVARIATE RANDOM UNIFORM DEVIATES (UD), TRANSFORM UD INTO RANDOM

NORMAL DEVIATES (ND), AND FORM A MATRIX OF UNIVARIATE RANDOM

NORMAL ERRORS (UNE) AND PREDICTORS (UNX).

LOOP-0

LOOP-LOOP+1

IF(LOOP .GT. NL)GOTO 250

D0 64 I-1,NV

SUMD(I)'0.0

CONTINUE

SUNS-0.0

SUMK-0.0

CALL GGUBS(DSEED,TS,UD)

DO 65 I-1,TS,2

ND(I) -SQRT(-2.*LOG(UD(I)))‘COS(2.*PH‘UD(I+I))

ND(I+1)‘SQRT(~2.*LOG(UD(I)))‘SIN(2.*PH*UD(I+1))

CONTINUE

DO 69 I-I'NP

K'(I-1)*NS+J

UNE(I,J)‘ND(K)

CONTINUE

CONTINUE

DO 71 I-1,NQ

DO 72 J-1,NS

K'(NP+I-1)*NS+J

UNX(I.J)-ND(K)

CONTINUE

CONTINUE

(28) TO OBTAIN MULTIVARIATE NORMAL ERRORS (MNE) AND PREDICTORS

(MNX) BY MULTIPLYING PRINCIPAL COMPONENT WEIGHTS (PE,PX) WITH

NORMAL ERRORS AND PREDICTORS (UNE,UNX).

CALL VMULFF (PE,UNE,NP,NP,NS,NP,NP,MNE,NP,IER)

CALL VMULEE (PX,UNX,NQ,NQ,NS,NQ,NQ,MNX,NQ,IER)

(2C) TO OBTAIN MULTIVARIATE NON-NORMAL DATA (MNNE, MNNX) BY

MULTIPLYING EACH SCORE WITH FLEISHMAN CONSTANTS.

DO 81 I-1,NP

MNNE(I,J)'AA+BB'MNE(I,J)+CC'(MNE(I,J)"2)+DD*(MNE(I,J)'*3)

CONTINUE

CONTINUE

DO 84 J'1¢NS

MNNX(IoJ)'AA+BB'MNX(I.J)*CC'(MNX(I,J)"2)‘3"'(MNX(I,J)'*3)

CONTINUE

CONTINUE

(2D) TO OBTAIN DEPENDENT DEVIATES (MNNY): Y - B’X + E.

CALL VMULFM (RB,MNNX,NQ,NP,NS,NQ,NQ,MBX,NP,IER)

DO 85 I-1,NP

MNNY(I,J) - MBX(I,J) + MNNUIJ)

CONTINUE
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CONTINUE

(2E)TO FORM A COMBINED DEPENDENT-PREDICTOR DATA MATRIX (DATD).

DO 87 I-1,NP

DO 88 J-1,NS

DATD(I,J)- MNNY(I,J)

CONTINUE

CONTINUE

DO 89 I-1,NQ

DO 90 J-1,NS

K-NP+I

DATD(K,J)-MNNX(I,J)

CONTINUE

CONTINUE

(3A) TO OBTAIN SUM OF RAW SCORES (SUMD,SUMDl), SUM OF RAW-SCORE

SQUARES (SUMDZ), SUM OF RAW-SCORE CUBES (SUMD3), SUM OF RAW-SCORE

QUADS (SUMD4), MEAN (AVD), AND DEVIATION FROM THE MEAN (DEVD).

DO 95 I-1,NV

DO 96 J-leS

SUMD(I) ‘SUMD(I) +DATD(I:J)

SUMDl(I)-SUMD1(I)+DATD(I,J)

SUMDZ (I)"SUMD2 (I) +DATD(I,J) **2

SUMD3(I)-SUMD3(I)+DATD(I,J)**3

SUMD4(I)-SUMD4(I)+DATD(I,J)*‘4

CONTINUE

AVD(I) 'SUMD(I)/NS

CONTINUE

DO 98 I'1,NV

DEVD(I:J)'DATD(I,J)'AVD(I)

CONTINUE

CONTINUE

(38) TO FIND SUM OF RAW-SCORE CROSS PRODUCT MTRIX (RCP), SUM OF

CROSS PRODUCT MATRX (AAA), SUM OF RAW-SCORE CROSS PRODUCTS (SUMCCI

AND COVARIANCE (COVN).

CALL VMULPP(DATD,DATD,NV,NS,NV,NV,NV,RCP,NV,IER)

CALL VMULFP(DEVD,DEVD,NV,NS,NV,NV,NV,AAA,NV,IER)

DO 108 I-1,NV

DO 109 J-1,NV

SUMCC(I.J)'SUMCC(I,J)+RCP(I.J)

COVN(I,J)'AAA(I.J)/(NS-1.)

CONTINUE

CONTINUE

(3C) TO OBTAIN MULTIVARIATE SKEWNESS (MULS) AND KURTOSIS (MULK)

INVERSE OF COVARIANCE MATRIX (COVI) AND PRODUCT OF THE MATRICES

DEVD"COVI'DEVD (DCD).

CALL LINVIF(COVN,NV,NV,COVI,DGT,WK,IER)

CALL VMULFM(DEVD,COVI,NV,NS,NV,NV,NV,DCV,NS,IER)

CALL VMULFE(DCV,DEVD,NS,NV,NS,NS,NV,DCD,NS,IER)

DO 120 I'1,NS

SUMS'SUMS+DCD(IoJ)"3

CONTINUE

SUMK‘SUMK+DCD(I,I)"2

CONTINUE

MULS'SUMS/(NS"2)

MULK‘SUMK/NS‘NV'(NV‘2.)

SUMMS‘SUMMS+MULS
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SUMMK-SUMMK+MULK

cc----------------------------------------------------------------------

CC (4) TO OBTAIN SUM OF CROSS PRODUCTS MATRIX AND SUBMATRICES

cc----------------------------------------------------------------------

'123

127

133

132

141

142

140

146

145

156

155

161

160

166

165

CC

(AVR).

(4C)

DO 127 I-1,NP

DO 128 J-1.NP

AYY(I.J)'AAA(I.J)

CONTINUE

CONTINUE

DO 132 I-1,NP

DO 133 J-1,NQ

AYX(I,J)-AAA(I,NP+J)

CONTINUE

CONTINUE

DO 136 I-1.NQ

DO 137 J-1,NQ

AXX(I,J)'AAA(NP+I,NP+J)

CONTINUE

CONTINUE

DO 140 I-1,NV

DO 141 J-1,NS

DTA(J)-DATD(I,J)

CONTINUE

CALL NMRANK(DTA,NS,EPS,IR,R,DTR,S,T)

DO 142 J-IINS

DATR(I.J)-DTR(J)

CONTINUE

CONTINUE

AVR-(Ns+l.)/2.

DO 145 I-1.NV

DO 146 J-1,NS

DEVR(I,J)-DATR(I,J) - AVR

CONTINUE

CONTINUE

CALL VMULFP(DEVR,DEVR,NV,NS,NV,NV,NV,RRR,NV,IER)

DO 155 I-1,NP

DO 156 J-1.NP

RYY(I,J)-RRR(I,J)

CONTINUE

CONTINUE

DO 160 I-1,NP

DO 161 J-1.NQ

RYX(I,J)-RRR(I,NP+J)

CONTINUE

CONTINUE

DO 165 I-1.NQ

RXX(I.J)'RRR(NP+I,NP+J)

CONTINUE

CONTINUE

DO 170 I-1,NP

DO 171 J'1.NS

DVYR(I.J)-DEVR(I.J)

CONTINUE

MIXED DATA: TO OBTAIN SCP FOR RANKED Y AND ORIGINAL X

(4A) ORIGINAL DATA: TO OBTAIN SCP SUBMATRIX FOR Y AND K VARIABLES

(AYY,AXX) FROM AAA.

(48) RANKED DATA: TO RANK ORIGINAL DATA AND OBTAIN MEAN RANK

SCP MATRIX (RRR) AND SCP SUBMATRICES FOR Y,YX,X VARIABLES

(RYY,RYX,RXX).

(MYX).
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170 CONTINUE

DO 175 I-1,NQ

DO 176 J-1.NS

K-NP+I

DVXD(I,J)-DEVD(K,J)

176 CONTINUE

175 CONTINUE

CALL VMULFP(DVYR,DVXD,NP,NS,NQ,NP,NQ,MYX,NP,IER)

CC---------------------------------------------------------------------

CC (5) TO OBTAIN WILKS' LAMBDA AND SUM OF EIGENVALUES

CC---------------------------------------------------------------------

CC (SA) TO OBTAIN THE INVERSES OF AYY,AXX,RYY,RXX.

CALL LINVIF(AYY,NP,NP,AYYI,DGT,WK,IER)

CALL LINV1F(AXX,NQ,NQ,AXXI,DGT,WK,IER)

CALL LINVIF(RYY,NP,NP,RYYI,DGT,WK,IER)

CALL LINVlF(RXX,NQ,NQ,RXXI,DGT,WK,IER)

CC (SB) TO OBTAIN PRODUCT OF MATRICES USING ORIGINAL DATA(MATD),

CC RANKED DATA(MATR), AND MIXED DATA(MATM).

CALL VMULEF(AYYI,AYX.NP,NP,NQ,NP,NP,MATD1,NP,IER)

CALL VMULFP(AXXI,AYX,NQ,NQ,NP,NQ,NP,MATD2,NQ,IER)

CALL VMULFF(MATDl,MATDZ,NP,NQ,NP,NP,NQ,MATD,NP,IER)

CALL VMULFF(RYYI,RYX,NP,NP,NQ,NP,NP,MATR1,NP,IER)

CALL VMULFP(RXXI,RYX,NQ,NQ,NP,NQ,NP,MATR2,NQ,IER)

CALL VMULFF(MATR1,MATR2,NP,NQ,NP,NP,NQ,MATR,NP,IER)

CALL VMULFF(RYYI,MYX,NP,NP,NQ,NP,NP,MATM1,NP,IER)

CALL VMULEP(AXXI,MYX,NQ,NQ,NP,NQ,NP,MATM2,NQ,IER)

CALL VMULFF(MATM1,MATM2,NP,NQ,NP,NP,NQ,MATM,NP,IER)

CC (5C) To OBTAIN EIGENVALUES OF MATD (ED) AND MATR (ER), THE PRODUC'

CC OF (l-EIGENVALUE) (PED,PER) AND SUM OF THE EIGENVALUES (SER, SEM)

CALL EIGRF(MATD,NP,NP,EJOB,ED,Z,NP,WK,IER)

CALL EIGRF(MATR,NP,NP,EJOB,ER,Z,NP,WK,IER)

RED-1.0

PER-1.0

SER-0.0

SEM-0.o

DO 230 I-1,NP

PED-PED'(1.0-ED(I))

PER-PER'(1.0-ER(I))

SER-SER+MATR(I,I)

SEM-SEM+MATM(I,I)

230 CONTINUE

CC---------------------------------------------------------------------

CC (6) To COMPUTE TEST STATISTICS AND To COUNT REJECTIONS.

CC---------------------------------------------------------------------

CC (6A) To CCMPUTE BARTLETT (BAR), RAO F (RAD), RANK-

CC TRANSFORM (RTF), PURE-RANK (PRN), MIXED-RANK (MRN).

BAR - -A1'LOG(P£D)

RAo - ((1.-PED"BZ)/(PED*'82))‘V3

RTF - ((1.-PER**BZ)/(PER*'BZ))~v3

PRN - (NS-1.)*SER

MRN - (NS-1.)‘SEM

CC (6C) NUMBER OF REJECTIONS FOR ALPHA - .01

IF(BAR .63. C51) REJB(l)-REJB(1)+1

I?(RAO .GE. CFl) REJR(1)-REJR(1)+1

IF(RTF .GE. CFl) REJT(1)-REJT(1)+1

IF(PRN .53. C51) REJP(1)-REJP(1)+1

IF(MRN .62. C51) REJM(1)-REJM(1)+1

CC (SD) NUMBER Of REJECTIONS FOR ALPHA - .05

IP(BAR .62. C52) REJB(2)-REJB(2)+1

IE(RAO .GE. CFZ) REJR(2)-REJR(2)+1
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IF(RTF .GE. CF2) REJT(2)-REJT(2)+1

IF(PRN .GE. C32) REJP(2)-REJP(2)+1

IF(MRN .GE. CS2) REJM(2)-REJM(2)+1

(6E) NUMBER OF REJECTIONS FOR ALPHA - .10

IF(BAR .GE. CS3) REJB(3)'REJB(3)+1

IF(RAO .GE. CF3) REJR(3)-REJR(3)+1

IF(RTF .GE. CF3) REJT(3)-REJT(3)+1

IF(PRN .GE. CS3) REJP(3)-REJP(3)+1

IF(MRN .GE. CS3) REJM(3)-REJM(3)+1

GOTO 62

(7A) TO OBTAIN AVERAGE AND OVERALL MEAN (AVDl, OMEAN), VARIANCE

(AVARN, OVARN), UNIVARIATE SKEWNESS (SKEW, OSKEW) AND KURTOSIS

(KURT,OSKEW), MULTIVARIATE SKEWNESS (OMSKW) AND KURTOSIS (OMKUR),

CORRELATION MATRIX (CORR) AND DETERMINANT OF CORR (DCOR).

TMEAN-0.0

TVARN-0.0

TSKEW-0.0

TKURT-0.0

DO 251 I-1,NV

AVD1(I)'SUMD1(I)/TN

AVD2(I)'SUMD2(I)/TN

AVD3(I)'SUMDB(I)/TN

AVD4(I)-SUMD4(I)/TN

VARN(I)-AVDZ(I)-AVD1(I)'*2

SKEW(I)-(AVD3(I)-3.*AVD1(I)*AVD2(I)+2.*AVDl(I)"3)/VARN(I)**1.5

KURT(I)'((AVD4(I)-4.*AVD1(I)*AVD3(I)+6.*(AVD1(I)**2)*AVD2(I)-

3.'AVD1(I)**4)/(VARN(I)**2)) - 3.0

TMEAN-TMEAN+AVDI(I)

TVARN-TVARN+VARN(I)

TSKEW-TSKEW+SKEW(I)

TKURT-TKURT+KURT(I)

CONTINUE

OMEAN-TMEAN/NV

OVARN-TVARN/NV

OUSKW-TSKEW/NV

OUKUR-TKURT/NV

OMSKW-SUMMS/NL

OMKUR-SUMMK/NL

(78) TO OBTAIN CORRELATION MATRIX (CORR) AND DETERMINANT

OF CORRELATION MATRIX (DCOR).

DO 260 I-1.NV

DO 261 J-1,NV

ACOVN(I.J)‘(SUMCC(I.J)/TN)'(AVD1(I)'AVD1(J))

CONTINUE

CONTINUE

DO 262 I-1,NV

DO 263 J-1.NV

CCRR(I.J)' ACOVN(I.J)/SQRT(ACOVN(I,I)'ACOVN(J,J))

CORL(I,J)'CORR(I,J)

CONTINUE

CONTINUE

CALL LINV3F(CORL.BCR.DJOB,NV,NV,D1,DZ,WK,IER)

DCOR-Dl'2.**DZ

WRITE(20,270)NV.NS.NL.CY,CX

FORMAT(/,'NV -’,I1,' NS -',I3,’ NL -',I4,’ CY -',F3.1,

’ CX -’,F3.1)

WRITE(20,272)AVD1(1),AVDI(2),AVDl(3),AVDl(4),CMEAN
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FORMAT(/.'MEAN’,3X,5F11.6)

wRITE(20,274)VARN(1),VARN(2),VARN(3),VARN(4),OVARN

FORMAT(/,'VARN',3X,SF11.6)

WRITE(20,276)SKEW(1),SKEW(2),SKEW(3),SKEW(4),OUSKW

FORMAT(/,’USKEW',2X,5F11.6)

WRITE(20,278)KURT(1).KURT(2),KURT(3),KURT(4),OUKUR

FORMAT(/,’UKURT',2X.5F11.6)

Do 280 I-1,Nv

WRITE(20,281) CORR(I,1),CORR(I,2),CORR(I,3),CORR(I,4)

FORMAT(/.'CORR’,3X,4F11.6)

CONTINUE

WRITE(20,282)OMSKW,OMKUR,DCOR

FORMAT(/,'M5KEW -',F11.6,' MKURT -',F11.6.' DETCOR - ’,F8.6)

WRITE(20,284)

FORMAT(/,’ALFA(REJ) BART RAOF RAOR PURR MIXR')

WRITE(20,286) REJB(1),REJR(I),REJT(1),REJP(1),REJM(1)

FORMAT(/,’0.01( 30)’,5(3X,I4))

WRITE(20,288) REJB(2).REJR(2),REJT(2),REJP(2),REJM(2)

FORMAT(/,'0.05(150)’.5(3X,I4))

WRITE(20,290) RBJB(3),REJR(3),REJT(3),REJP(3),REJM(3)

FORMAT(/,'0.10(300)',5(3X,I4)./)

DIs-DIs+1

IF (DIS .EQ. 2) GOTO 6

STOP

END



APPENDIX E

TABLES

Table E1. Fleishman Constants Used for Data Generatione

 

 

11 12 a b c d

.00 0.00 0.00 1.00 .00 0.00

.00 -1.12 0.00 1.348917 .00 -0.132660

.50 0.00 -0.092624 1.039946 .092624 -0.016461

.00 0.50 -0.258525 1.114655 .258525 -0.066013

.00 3.00 0.00 0.782356 .00 0.067905

.00 3.00 -0.128397 0.832216 .128397 0.048032

.00 6.00 -0.313749 0.826324 .313749 0.022707

.00 20.00 0.00 0.338712 .00 0.184461

 

- skewness; 72 - kurtosis; a,

127

b, c, d - Fleishman constants.
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Table 32. Average Mean, Variance, Skewness, Kurtosis, and

Within-Set Correlations of the Generated Dataa

 

 

V 11 12 u 02 11 72 p( 3) p( 7)

4 0.00 0.00 .002 .993 .006 .031 .301 .701

0.00 -1.12 -.001 1.006 .000 -1.149 .299 .694

0.50 0.00 .001 .995 .498 -.008 .299 .699

1.00 0.50 .001 .998 1.006 .522 .303 .701

0.00 3.00 .003 1.001 .020 2.991 .304 .702

1.00 3.00 .001 .992 .980 2.930 .298 .699

2.00 6.00 .000 .997 2.015 6.196 .300 .700

0.00 20.00 .003 1.000 .045 20.551 .297 .698

6 0.00 0.00 .003 .992 -.006 .026 .299 .700

0.00 -1.12 .001 1.005 -.003 -1.163 .297 .694

0.50 0.00 .002 .995 .502 .025 .300 .700

1.00 0.50 .002 .996 1.001 .512 .299 .701

0.00 3.00 .001 .999 .020 3.264 .301 .701

1.00 3.00 .004 1.001 1.027 3.156 .299 .700

2.00 6.00 -.001 .991 2.005 6.159 .299 .700

0.00 20.00 .002 1.005 -.040 20.031 .301 .700

8 0.00 0.00 .002 .996 .005 .014 .302 .701

0.00 -1.12 .000 1.001 .000 -1.162 .299 .694

0.50 0.00 .002 .994 .500 .013 .299 .699

1.00 0.50 .001 .996 1.002 .518 .303 .699

0.00 3.00 .001 .992 -.016 3.061 .298 .699

1.00 3.00 .001 .995 .994 2.932 .300 .700

2.00 6.00 -.001 .991 1.995 6.016 .298 .699

0.00 20.00 -.002 .991 -.027 19.985 .300 .701

4 0.00 0.00 .003 .983 .007 .084 .302 .701

0.00 -1.12 .000 .995 .001 -1.124 .300 .694

0.50 0.00 .002 .981 .506 .089 .298 .699

1.00 0.50 .002 .986 1.008 .593 .304 .700

0.00 3.00 .001 .984 .001 3.228 .302 .701

1.00 3.00 .000 .984 1.012 3.190 .301 .700

2.00 6.00 .001 .986 2.034 6.219 .298 .699

0.00 20.00 .000 .985 .000 20.922 .302 .702

6 0.00 0.00 .001 .984 -.003 .090 .301 .701

0.00 -1.12 -.001 .993 .003 -1.113 .297 .693

0.50 0.00 .000 .984 .508 .080 .299 .699

1.00 0.50 .001 .984 1.012 .606 .300 .701

0.00 3.00 .002 .983 .011 3.207 .300 .700

1.00 3.00 .000 .986 1.012 3.270 .302 .701

2.00 6.00 -.001 .982 2.045 6.382 .300 .700

0.00 20.00 -.001 .986 -.056 20.037 .300 .700
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Table E2 (continued)

 

 

N V 11 12 n 02 11 12 p(.3) p( 7)

50 8 0.00 0.00 .003 .984 .008 .085 .300 .700

0.00 -1.12 .002 .992 -.004 -1.103 .298 .694

0.50 0.00 .002 .982 .505 .076 .300 .700

1.00 0.50 .001 .984 1.001 .604 .301 .699

0.00 3.00 -.002 .983 -.009 3.176 .298 .698

1.00 3.00 .001 .985 1.010 3.212 .300 .700

2.00 6.00 .000 .980 2.024 6.185 .298 .699

0.00 20.00 .003 .979 .019 19.879 .299 .699

100 4 0.00 0.00 .002 .978 .006 .021 .301 .700

0.00 -1.12 .001 .986 -.003 -1.077 .298 .694

0.50 0.00 .000 .976 .502 .124 .299 .699

1.00 0.50 .001 .979 1.015 .640 .300 .700

0.00 3.00 .000 .979 .009 3.104 .298 .699

1.00 3.00 .001 .980 1.018 3.250 .301 .700

2.00 6.00 -.002 .972 2.040 6.192 .298 .699

0.00 20.00 .001 .970 .011 19.614 .299 .699

6 0.00 0.00 .001 .978 -.003 .120 .301 .700

0.00 -1.12 .001 .987 -.004 -1.063 .298 .694

0.50 0.00 -.001 .977 .502 .120 .301 .701

1.00 0.50 .001 .978 1.014 .640 .300 .701

0.00 3.00 .000 .977 .020 3.181 .300 .700

1.00 3.00 .001 .978 1.021 3.234 .300 .699

2.00 6.00 .001 .977 2.047 6.299 .300 .700

0.00 20.00 .001 .981 -.047 20.647 .300 .701

8 0.00 0.00 .001 .977 .003 .123 .300 .700

0.00 -1.12 -.001 .986 -.001 -1.087 .297 .693

0.50 0.00 .002 .977 .500 .121 .300 .700

1.00 0.50 -.001 .977 1.016 .643 .300 .700

0.00 3.00 -.001 .978 .003 3.136 .300 .700

1.00 3.00 .001 .980 1.013 3.176 .301 .701

2.00 6.00 -.001 .974 2.055 6.354 .299 .699

0.00 20.00 .000 .987 -.010 21.295 .300 .700

 

The tabled values represent the average mean, variance, skewness,

kurtosis, and within-set correlation values based on 9,000

replications.
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Table E3. Average of the Type I Error and gower Values by

Distribution and Sample Size

 

 

Type I Error Power

a - .01 a - .10 a - .01 a - .10

N 25 50 100 25 50 100 25 50 100 25 50 100

[0. 0]

RAO 010 011 009 097 101 102 065 247 675 323 613 913

RTF 010 010 009 099 098 106 069 227 630 313 587 894

PUR 002 005 007 073 088 100 021 153 580 254 551 885

MIX 002 005 008 068 087 099 016 153 594 243 556 893

[0, -1.12]

RAD 011 011 008 101 103 102 063 232 660 311 603 912

RTF 011 011 009 101 102 102 063 210 592 297 563 874

PUR 002 006 007 074 091 095 019 141 539 239 528 864

MIX 002 005 006 074 092 096 020 142 541 243 532 865

[.5, 0]

RAD 012 011 011 101 099 102 071 249 661 318 605 907

RTF 011 010 011 104 095 105 070 234 626 312 583 890

PUR 003 005 009 075 084 099 021 159 574 251 550 881

MIX 002 005 008 073 085 096 017 149 583 233 551 889

[1, .5]

RAD 012 010 010 100 099 100 086 259 661 334 605 905

RTF 010 010 009 101 099 103 090 296 736 361 657 936

PUR 002 005 006 074 088 097 028 209 684 292 624 930

MIX 002 004 007 071 085 095 015 169 692 234 593 940

[0. 3]

RAD 014 011 012 102 101 101 083 273 677 344 631 905

RTF 011 011 012 099 098 099 087 287 711 351 645 924

PUR 003 006 009 074 087 093 028 202 663 283 610 917

MIX 002 005 008 070 084 091 019 195 706 270 629 935

[1. 3]

RAO 013 010 013 105 100 108 089 279 669 346 623 903

RTF 011 009 010 102 098 103 088 282 702 348 643 923

PUR 003 004 008 076 086 096 030 198 657 283 610 917

MIX 002 004 007 072 087 096 019 179 686 249 604 933

[2. 6]

RAD 021 020 018 116 118 107 138 309 658 379 610 887

RTF 010 011 011 101 101 105 124 374 826 414 729 966

PUR 003 007 008 074 090 099 040 272 789 342 697 962

MIX 002 004 008 070 085 097 013 182 801 221 640 975

[0. 20]

RAO 036 037 035 149 136 133 181 358 695 446 657 899

RTF 012 010 012 104 097 103 160 456 880 471 787 978

PUR 003 006 009 076 086 097 054 345 851 392 758 975

MIX 002 004 007 065 083 093 029 336 912 359 810 991

 

a

Tabled values represent the average Type I error and power values

across all within-set correlations and numbers-of-variables

cases).

(9
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Table E4. Average of the Type I Error and Power Values by

Distribution and Within-Set Correlationa

 

Type I Error Power

a - .01 a - .10 a - .01 a - .10
b

(py,px) 1 2 3 1 2 3 1 2 3 1 2 3

 

[0.

[0.

0]

RAD 010 010 010 100 100 100 283 419 283 577 694 577

RTF 011 010 010 102 100 101 261 399 266 556 676 563

PUR 005 004 005 089 085 087 211 329 214 520 640 530

MIX 005 005 005 085 085 084 215 334 214 526 639 527

-1.12]

RAD 010 010 010 102 103 102 274 410 271 569 686 570

RTF 010 010 010 102 100 102 244 376 244 534 657 543

PUR 005 005 005 087 086 087 195 309 195 501 620 509

MIX 005 005 004 086 086 089 197 310 197 506 624 510

{-5. 0]

[1.

[0.

[1.

[2.

[0.

RAD 011 011 011 101 100 101 231 420 230 573 686 571

RTF 011 011 011 104 100 100 263 401 267 554 671 560

PUR 006 006 005 037 036 035 209 333 211 520 636 526

MIX 006 005 005 035 035 034 211 333 206 524 631 519

.5]

RAO 011 010 011 099 102 099 233 423 290 575 692 576

RTF 010 010 009 101 102 100 329 466 327 615 727 612

PUR 005 004 005 036 037 035 267 333 265 573 691 577

MIX 004 004 005 032 035 034 260 372 244 559 663 545

3]

RAO 012 012 012 100 102 103 297 434 301 590 699 592

RTF 011 011 011 100 099 097 313 451 316 603 711 605

PUR 006 006 006 036 035 034 257 377 253 567 674 569

MIX 005 005 005 032 031 032 273 332 259 535 681 570

3]

RAO 011 012 012 104 104 106 299 434 304 535 693 533

RTF 010 010 010 102 100 100 314 443 311 602 710 603

PUR 005 005 005 037 035 035 257 373 255 563 673 569

MIX 004 004 004 035 035 034 265 373 245 569 665 552

6]

RAO 013 020 022 110 115 116 322 452 331 537 696 594

RTF 011 011 011 103 104 101 410 522 393 676 765 668

PUR 006 006 005 037 039 037 339 439 323 640 723 633

MIX 005 004 005 034 035 033 323 393 270 609 670 557

20]

RAO 032 035 040 135 140 144 362 437 335 634 726 642

RTF 011 011 011 102 101 101 473 568 450 734 793 709

PUR 006 006 005 037 086 086 401 476 372 696 756 674

MIX 004 004 004 031 073 032 436 471 370 730 761 669

 

a

b

Tabled values represent the average Type I error and power values

across all sample sizes and numbers-of-variables (9 cases).

Within-set correlation 1 - (.3, .3), 2 - (.3, .7), 3 - (.7..7).



Table E5. Average of the Type I Error and Power Values by
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Distribution and Number-of-Variablesa

 

 

Type I Error Power

a - .01 a - .10 a - .01 -

V 4 6 8 4 6 8 4 6 8 4 6 8

[0. 0]

RAO 009 011 010 098 101 101 336 318 332 628 608 612

RTF 010 010 010 100 105 098 307 299 321 603 591 600

PUR 005 005 004 093 090 078 267 241 245 590 555 545

MIX 006 005 004 089 089 076 274 246 244 597 555 539

[0, -1.12]

RAD 011 009 009 103 104 100 322 313 320 624 602 599

RTF 011 010 010 100 104 101 287 284 293 587 572 574

PUR 007 005 004 094 089 078 250 228 221 573 538 519

MIX 006 004 003 095 090 077 252 231 221 577 542 522

[.5, 0]

RAD 011 011 012 099 102 101 324 326 331 617 607 606

RTF 011 011 010 099 106 100 301 306 323 596 593 596

PUR 007 006 004 092 089 077 261 250 243 582 558 542

MIX 006 005 004 089 088 077 265 249 235 592 555 527

[1. .5]

RAO 010 010 011 100 099 101 336 328 342 621 609 614

RTF 010 010 009 100 103 100 377 366 378 657 648 648

PUR 006 004 003 092 088 078 333 298 290 644 612 589

MIX 005 004 004 092 085 074 337 285 255 649 584 534

[0. 3]

RAO 011 012 013 094 108 102 348 341 343 632 626 623

RTF 011 011 011 098 104 094 357 357 371 640 639 640

PUR 007 006 005 092 090 073 315 294 282 626 603 581

MIX 006 005 004 087 084 074 336 303 281 647 611 576

[1. 3]

RAO 012 012 012 104 103 106 341 343 352 625 625 621

RTF 009 009 011 099 101 102 350 352 370 638 634 642

PUR 006 004 004 092 086 080 308 291 286 624 601 585

MIX 006 004 003 094 081 079 324 290 269 639 594 552

[2. 5] '

RAO 018 020 021 102 115 124 361 365 379 624 626 627

RTF 011 011 011 103 101 104 447 438 440 710 705 694

PUR 006 006 005 095 086 082 397 361 343 697 670 634

MIX 005 005 004 092 081 079 403 325 267 702 614 521

[0. 20]

RAD 029 038 041 125 139 155 395 405 434 663 661 678

RTF 012 011 011 104 096 105 495 499 502 750 744 742

PUR 008 005 004 098 081 081 441 416 392 737 709 680

MIX 006 004 002 093 077 072 484 422 371 790 718 652

 

3

across all sample sizes and within-set correlations (9 cases).

Tabled values represent the average Type I error and power values
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Table E6. Empirical Type I Error Rates 2nd Power

Distribution [0, 0]

Values For

 

 

Type I Error Power

(p , px) N V BAR RAO RTF PUR MIX BAR RAO RTF PUR MIX

(a - .01)

(.3, .3) 25 4 007 007 012 003- 003- 067 067 064 029- 021-

6 012 011 010 002- 001- 049 048 053 013- 013-

8 011 011 012 002- 001- 045 043 049 009- 006-

50 4 011 011 012 007 007 238 239 212 “166 169

6 011 010 010 004- 003- 187 184 164 108- 111-

8 011 011 010 004- 004- 176 175 156 080- 083-

100 4 009 009 008 006- 006- 606 606 552 525- 543-

6 011 011 012 010 011 582 577 537 479 490

8 008 008 010 005- 005- 610 610 565 487- 500-

(.3, 7) 25 4 007 007 010 003- 003- 095 094 090 040- 035-

6 012 011 009 001- 001- 090 087 093 025- 020-

8 011 011 011 002- 001- 089 084 091 017- 010-

50 4 011 011 013 007- 007- 340 340 304 252- 253-

6 011 010 010 004- 003- 324 323 310 209- 209-

8 011 011 009 003- 004- 362 359 350 200- 194-

100 4 009 009 006- 006- 006- 765 765 710- 683- 709-

6 011 011 010 007 011 830 828 776 733 759

8 008 008 009 006- 005- 893 893 869 805- 817-

(.7, .7) 25 4 007 007 009 003- 002- 067 067 065 029- 023-

6 012 011 010 001- 002- 049 048 055 015- 013-

8 011 011 010 002- 001- 045 043 060 011- 006-

50 4 011 011 012 009 009 238 239 210 162 168

6 011 010 008 004- 002- 187 184 171 110- 111-

8 011 011 009 002- 004- 176 175 170 091- 082-

100 4 009 009 006- 005- 006- 606 606 553- 521- 541-

6 011 011 010 008 011 582 577 532 481 489

8 008 008 011 007 006- 610 610 575 503- 495-

(a - .05)

(.3, .3) 25 4 043 043 043 029- 031- 211 211 202 152- 160-

6 052 050 054 028- 027- 180 179 179 110- 103-

8 053 050 051 021- 017- 170 162 155 078- 072-

50 4 057 057 053 046 049 466 466 436 410 421

6 053 053 050 040- 040- 400 399 374 321- 324-

8 052 051 048 032- 036- 386 381 369 282- 287-

100 4 048 048 041 039- 042- 815 814 768 761- 785-

6 055 055 055 050 048 792 791 758 738 752

8 050 050 054 046 043 815 814 784 750 761

(.3, .7) 25 4 043 043 043 031- 031- 270 270 248 203- 205-

6 052 050 058+ 033- 027- 254 252 251+ 164- 151-

8 053 050 052 022- 017- 261 254 251 130- 111-

50 4 057 057 054 048 049 583 584 546 518 531

6 053 053 049 038- 040- 595 595 563 496- 504-

8 052 051 044 030- 036- 626 623 608 507- 501-

100 4 048 048 043 039- 042- 910 910 888 882- 890-

6 055 055 054 046 048 942 942 922 910 920

8 050 050 055 045 043 968 967 956 945 947
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Table E6 (continued)

 

 

Type I Error Power

(py, px) N V BAR RAO RTF PUR MIX BAR RAD RTF PUR MIX

(.7, .7) 25 4 043 043 044 027- 029- 211 211 200 156- 154-

6 052 050 054 032- 032- 180 179 186 113- 099-

8 053 050 049 023- 020- 170 162 171 087- 075-

50 4 057 057 057 048 052 466 466 431 405 418

6 053 053 047 037- 040- 400 399 383 324- 320-

8 052 051 046 034- 038- 386 381 383 302- 290-

100 4 048 048 042- 039- 043 815 814 767 759- 783-

6 055 055 052 045 046 792 791 749 730 747

8 050 050 054 045 047 815 814 790 758 760

(a - .10)

( 3, .3) 25 4 090 090 095 081- 074- 321 321 306 283- 278-

6 100 098 110 084- 076- 286 283 280 220- 210-

8 106 103 094 060- 059- 271 266 255 171- 168-

50 4 104 104 104 100 098 594 594 559 549 561

6 099 099 102 090 088- 536 536 513 473 483-

8 101 100 091 077- 080- 540 536 509 448- 455-

100 4 099 099 101 098 095 888 888 860 856 870

6 105 106 111+ 107 106 875 875 848+ 837 852

8 101 102 109 099 092 890 891 871 846 858

(.3, .7) 25 4 090 090 094 078- 074- 397 397 372 346- 343-

6 100 098 105 080- 076- 391 388 363 296- 287-

8 106 103 095 060- 059- 382 378 379 262- 239-

50 4 104 104 104 098 098 699 698 667 656 667

6 099 099 101 088- 088- 723 723 698 663- 665-

8 101 100 089- 072- 080- 761 759 736- 678- 674-

100 4 099 099 101 096 095 953 953 934 933 939

6 105 106 105 100 106 970 970 957 954 961

8 101 102 105 096 092 983 983 976 972 975

(.7, .7) 25 4 090 090 093 081- 074- 321 321 303 280- 281-

6 100 098 105 076- 069- 286 283 287 234- 211-

8 106 103 099 060- 056- 271 266 269 194- 169-

50 4 104 104 107 103 097 594 594 561 548 562

6 099 099 095 083- 083- 536 536 517 479- 483-

8 101 100 091 077- 073- 540 536 526 467- 452-

100 4 099 099 101 097 099 888 888 864 862 874

6 105 106 108 104 107 875 875 853 839 847

8 101 102 110 100 096 890 891 882 865 862

 

a

Tabled values represent the proportion of rejections across 3000

replications at a - .01, .05, and .10, where N - sample size,

NV - no. of variables, BAR - Bartlett, RAO - Rao F, RTF - rank-

transform Rao F, PUR - pure-rank, MIX - mixed-rank, "+" indicates

a liberal Type I error rate, and a "-" indicates a conservative

Type I error rate.



Table E7. Empirical Type I Error Rates And Power Values For
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Distribution [0, -1.12]8

 

 

Type I Error Power

(py, px) N V BAR RAO RTF PUR MIX BAR RAO RTF PUR MIX

(0 - .01)

(.3, .3) 25 4 013 013 012 004- 004- 062 062 060 025- 029-

6 011 010 012 001- 003- 054 051 051 013- 015-

8 011 010 010 001- 001- 049 046 041 007- 010-

50 4 012 012 011 008 007 219 219 192 157 154

6 010 010 010 006- 006- 172 171 157 098- 101-

8 012 012 012 006- 004- 168 167 151 084- 085-

100 4 009 009 009 007 007 586 586 517 481 488

6 009 008 008 007 005- 582 580 510 457 460-

8 008 008 009 006- 004- 580 579 514 432- 430-

(.3, .7) 25 4 014+ 014+ 013 005- 005- 089 089 087 038- 041-

6 010 010 009 003- 002- 084 083 084 023- 024-

8 010 010 009 001- 001- 079 076 076 015- 012-

50 4 010 010 011 008 007 316 317 279 228 224

6 009 009 011 006- 006- 321 319 289 185- 191-

8 010 010 011 004- 004- 352 346 317 183- 182-

100 4 008 008 010 008 007 754 754 675 650 651

6 009 009 008 006- 005- 829 828 755 706- 710-

8 007 007 010 007 006- 883 882 823 752 752-

(.7, .7) 25 4 014+ 014+ 014+ 005- 003- 063+ 063+ 065+ 030- 030-

6 008 008 011 001- 002- 051 049 052 017- 016-

8 009 008 009 001- 000- 047 045 047 005- 008-

50 4 012 012 012 009 007 222 222 195 155 157

6 011 011 011 006- 005- 168 167 154 099- 100-

8 013 013 009 003- 002- 161 159 153 080- 085-

100 4 009 009 011 008 008 583 584 517 488 491

6 011 010 009 007 006- 574 571 500 455 458-

8 006- 006- 009 005- 006- 577- 577- 513 430- 427-

(a - .05)

( 3, .3) 25 4 054 054 055 042- 043 200 200 184 146- 146

6 048 047 050 029- 027- 170 166 162 098- 097-

8 055 050 054 020- 024- 157 151 149 072- 071-

50 4 055 055 051 043 045 454 454 410 383 390

6 051 051 053 044 043 394 394 364 312 310

8 056 054 050 037- 034- 377 374 345 274- 279-

100 4 049 048 O49 047 045 804 803 749 741 744

6 057 057 050 046 049 790 789 736 715 719

8 047 046 049 039- 039- 795 794 732 696 698

(.3, .7) 25 4 054 055 057 043 042- 250 251 239 191 196-

6 046 045 052 031- 026- 245 242 225 147- 147-

8 047 045 052 018- 020- 242 235 225 109- 115-

50 4 053 054 048 040- 044 571 571 515 485- 498

6 050 050 051 039- 039- 585 585 531 468- 475-

8 057 056 051 036- 035- 615 610 572 471- 474-

100 4 048 048 045 043 046 909 909 859 854 858

6 053 053 051 043 047 939 938 904 890 891

8 046 045 049 042- 040- 968 968 935 919 921
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Table E7 (continued)

 

 

Type I Error Power

(py, px) N V BAR RAO RTF PUR MIX BAR RAO RTF PUR MIX

(.7, .7) 25 4 060+ 060+ 061+ 047 044 195+ 195+ 194+ 156 155

6 050 050 051 028- 027- 172 170 172 105- 105-

8 050 047 043 014- 016- 152 147 156 073- 081-

50 4 053 054 052 044 044 446 447 406 376 386

6 055 055 057 044 047 394 394 358 310 312

8 051 049 050 036- 036- 381 377 362 288- 285-

100 4 049 049 047 046 046 805 804 750 742 747

6 054 053 052 047 048 788 786 729 709 710

8 043 043 043 035- 036- 789 788 739 695- 699-

(a - .10)

(.3, .3) 25 4 104 104 103 089- 085- 318 319 294 267- 275-

6 098 096 100 071- 073- 280 279 261 210- 207-

8 103 101 104 065- 062- 258 250 241 162- 174-

50 4 104 104 100 097 098 585 585 536 522 531

6 099 099 102 090 088- 535 536 493 460 469-

8 104 100 100 083- 083- 513 511 476 424- 429-

100 4 100 101 100 096 096 884 884 839 836 838

6 110 111+ 110 103 104 871 872+ 832 819 821

8 097 098 101 089- 089- 883 884 836 809- 811-

(.3, .7) 25 4 105 105 098 090 085- 383 384 359 331 330-

6 100 098 100 073- 073- 368 364 348 277- 288-

8 103 099 101 059- 058- 365 356 342 239- 247-

50 4 105 104 099 095 097 694 694 647 636 641

6 105 105 103 092 094 717 717 669 632 639

8 108 107 104 088- 085- 754 752 707 639- 646-

100 4 097 097 097 095 096 953 953 925 923 922

6 112+ 113+ 105 099 101 972+ 972+ 948 942 947

8 094 095 096 087- 087- 986 986 970 963- 961-

(.7, .7) 25 4 104 104 102 091 096 320 321 298 271 276

6 101 099 104 074- 075- 271 268 273 218- 222-

8 104 100 096 056- 056- 264 258 253 173- 173-

50 4 107 107 103 098 105 586 586 542 532 536

6 103 103 107 096 095, 531 531 496 460 461

8 103 101 102 084- 086- 514 511 503 447- 439-

100 4 097 097 097 095 098 888 888 844 839 842

6 110 111+ 108 099 104 881 881+ 831 821 822

8 094 095 101 090 087- 883 885 842 819 818-

 

a

Tabled values represent the proportion of rejections across 3000

replications at a - .01, .05, and .10, where N - sample size,

NV - no. of variables, BAR - Bartlett, RAO - Rao F, RTF - rank-

transfomm Rao F, PUR - pure-rank, MIX - mixed-rank, "+" indicates

a liberal Type I error rate, and a ”-" indicates a conservative

Type I error rate.



Table E8. Empirical Type I Error Rates And Power Values For
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Distribution [.5, 0]8

 

 

Type I Error Power

(py, px) N V BAR RAO RTF PUR MIX BAR RAO RTF PUR MIX

(0 - .01)

(.3, .3) 25 4 011 011 012 005- 003- 071 071 065 029- 026-

6 012 012 013 003- 003- 059 058 053 013- 012-

8 015+ 014+ 012 001- 001- 050+ 048+ 052 005- 005-

50 4 011 011 012 006- 007 222 222 201 155- 159

6 012 011 012 007 007 205 204 190 124 116

8 010 010 007 003- 005- 175 173 165 087- 078-

100 4 011 011 011 010 009 576 577 546 514 524

6 013 012 012 009 009 574 572 534 481 494

8 011 010 010 007 008 600 599 557 476 483

(.3, .7) 25 4 010 010 013 005- 003- 100 100 089 046- 036-

6 013 012 009 003- 002- 097 093 092 028- 023-

8 014+ 014+ 010 003- 003- 094+ 090+ 102 014- 008-

50 4 011 011 011 009 006- 330 330 297 234 243-

6 010 010 011 005- 006- 353 353 325 238- 230-

8 010 009 006- 002- 004- 360 359 354- 209- 188-

100 4 011 011 011 009 009 742 742 697 671 687

6 011 011 012 009 008 820 818 782 743 762

8 012 012 011 007 007 893 893 871 813 816

(.7, .7) 25 4 010 010 011 003- 002- 071 071 070 028- 027-

6 011 011 012 002- 002- 062 060 055 014- 010-

8 015+ 014+ 011 001- 001- 050+ 047+ 055 007- 003-

50 4 011 011 011 007 006- 220 221 204 161 152-

6 011 011 009 005- 004- 202 202 188 124- 104-

8 010 010 008 003- 004- 176 173 182 096- 073-

100 4 012 012 011 009 008 576 577 542 513 530

6 010 010 012 009 007 570 569 537 481 493

8 012 012 011 008 008 601 600 567 478 459

(a - .05)

( 3, .3) 25 4 051 051 051 037- 037- 199 199 198 160- 152-

6 050 048 053 028- 024- 183 181 171 100- 101-

8 060+ 057 046 020- 022- 163+ 156 157 076- 063-

50 4 050 051 053 047 045 451 452 421 392 409

6 050 050 050 041- 038- 420 420 401 345- 345-

8 047 045 045 028- 031- 383 379 363 291- 280-

100 4 052 052 048 046 047 800 799 755 746 769

6 055 055 055 051 046 786 785 758 732 753

8 048 047 046 042- 042- 817 816 791 754- 753-

(.3, .7) 25 4 052 052 055 041- 036- 254 254 245 198- 201-

6 050 049 054 025- 025- 259 255 254 157- 138-

8 059+ 055 054 022- 021- 255+ 247 249 129- 098-

50 4 051 052 050 043 044 570 571 543 512 526

6 049 049 054 043 037- 586 586 571 511 512-

8 046 045 043 031- 030- 622 617 597 502- 485-

100 4 052 052 047 045 048 897 897 872 864 883

6 053 052 056 052 045 934 934 919 909 921

8 050 049 047 043 045 960 965 959 944 947
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Table E8 (continued)

 

 

Type I Error Power

(py, px) N V BAR RAO RTF PUR MIX BAR RAD RTF PUR MIX

(.7, .7) 25 4 051 051 051 037- 035- 205 205 193 151- 152-

6 053 052 048 028- 029- 180 178 185 118- 100-

8 059+ 055 053 020- 020- 166+ 162 168 081- 060-

50 4 051 051 049 044 043 450 452 430 407 413

6 049 049 049 039- 033- 422 422 398 347- 340-

8 049 047 043 031- 028- 385 380 382 316- 272-

100 4 053 053 047 044 045 797 797 758 747 767

6 051 050 054 048 049 782 781 761 742 747

8 051 050 049 043 046 819 817 799 772 754

(a - .10)

(.3, .3) 25 4 099 099 105 089- 081- 310 310 295 272- 271-

6 098 097 106 076- 075- 290 287 278 216- 205-

8 111+ 106 105 061- 062- 267+ 262 253 177- 156-

50 4 097 097 097 091 090 584 584 554 544 561

6 105 105 104 089- 091 548 548 526 494- 500

8 102 099 090 074- 078- 527 525 496 442- 445-

100 4 102 102 101 098 094 874 874 850 846 864

6 105 106 111+ 105 100 867 868 852+ 839 849

8 097 098 112+ 099 093 894 895 881+ 854 862

(.3, .7) 25 4 099 099 097 088- 082- 382 383 360 331- 327-

6 099 097 107 078- 074- 387 384 376 309- 286-

8 111+ 107 104 061- 063- 378+ 372 372 261- 223-

50 4 097 097 090 085- 091 689 689 662 652- 669

6 101 101 101 088- 091 714 714 692 656- 659

8 099 097 091 075- 076- 740 737 721 660- 649-

100 4 102 102 101 099 091 947 948 928 926 938

6 107 107 110 105 101 964 964 954 950 953

8 098 098 098 091 095 981 981 977 974 974

(.7, .7) 25- 4 098 098 107 092 086- 309 309 303 278 275-

6 100 099 099 071- 072- 289 287 294 234- 209-

8 113+ 108 104 064- 058- 268+ 265 272 185- 145-

50 4 095 095 092 089- 090 581 580 560 545- 561

6 104 104 099 086- 086- 546 546 522 491- 487-

8 099 097 090 075- 074- 523 520 514 464- 430-

100 4 104 104 096 094 095 873 874 848 845 861

6 104 104 113+ 105 103 867 868 844+ 832 845

8 099 100 102 094 093 892 893 880 861 855

 

a

Tabled values represent the proportion of rejections across 3000

replications at a - .01, .05, and .10, where N - sample size,

NV - no. of variables, BAR - Bartlett, RAO - Rao F, RTF - rank-

transfomm Rao F, PUR - pure-rank, MIX - mixed-rank, "+” indicates

a liberal Type I error rate, and a "-" indicates a conservative

Type I error rate.
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Table E9. Empirical Type I Error Rates And Power Values For

Distribution [1, .5]

 

 

Type I Error Power

(py, px) N V BAR RAO RTF PUR MIX BAR RAO RTF PUR MIX

(a - .01)

(.3, .3) 25 4 011 011 009 003- 002- 079 079 081 032- 021-

6 012 012 013 002- 002- 074 073 066 016- 008-

8 015+ 015+ 010 001- 001- 064+ 062+ 060 009- 004-

50 4 012 012 011 007 007 245 245 284 232 218

6 010 010 010 005- 004- 191 191 220 148- 122-

8 007 007 008 003- 001- 186 183 212 118- 073-

100 4 009 009 007 006- 008 595 595 683 650- 693

6 009 009 011 008 007 555 554 662 602 611

8 013 013 010 007 005- 608 608 690 598 589-

(.3, .7) 25 4 010 010 015+ 004- 004- 105 105 126+ 065- 038-

6 014+ 013 007 001- 002- 116+ 115 122 032- 018-

8 011 009 010 001- 001- 123 120 121 018- 006-

50 4 008 008 009 008 004- 339 340 382 324 317-

6 010 009 011 004- 004- 359 359 403 287- 244-

8 010 010 010 002- 004- 389 383 436 280- 178-

100 4 011 011 010 007 009 753 753 816 795 837

6 009 008 008 005- 005- 807 806 868 825- 851-

8 009 009 007 004- 005- 867 866 917 870- 864-

(.7, .7) 25 4 010 010 010 002- 003- 078 078 090 043- 031-

6 013 013 010 002- 001- 075 074 076 021- 009-

8 015+ 014+ 009 002- 001- 070+ 066+ 065 013- 003-

50 4 010 010 012 008 007 234 234 260 212 199

6 009 009 007 003- 003- 201 201 232 157- 107-

8 013 012 008 005- 005- 193 191 233 126- 061-

100 4 009 009 007 006- 006- 589 589 666 639- 675-

6 009 009 009 006- 006- 577 575 648 594- 591-

8 008 008 009 007 011 600 599 671 581 517

(a - .05)

(.3, .3) 25 4 042- 042- 045 032- 030- 211- 211- 235 191- 169-

6 057 056 055 029- 031- 205 203 206 129- 099-

8 052 050 048 022- 018- 187 182 182 083- 050-

50 4 056 057 053 048 045 462 463 513 493 502

6 042- 042- 048 040- 032- 389- 389- 454 396- 369-

8 047 045 051 032- 031- 397 394 443 364- 287-

100 4 047 047 047 046 044 803 803 859 851 886

6 047 047 050 048 044 781 779 843 824 851

8 055 054 054 048 044 815 814 871 842 842

(.3, .7) 25 4 051 051 055 042- 037- 272 272 310 252- 209-

6 048 047 048 027- 029- 286 283 297 202- 144-

8 055 051 046 019- 017- 285 279 305 152- 087-

50 4 051 052 049 041- 046 564 565 628 599- 620

6 052 052 056 045 034- 590 590 655 597 566-

8 052 049 049 036- 037- 645 640 682 584- 502-

100 4 053 053 046 046 050 901 901 937 933 953

6 046 046 050 042- 043 926 926 960 954- 968

8 045 045 045 039- 038- ’957 957 976 966- 966-
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Table E9 (continued)

 

 

Type I Error Power

(py, px) N V BAR RAO RTF PUR MIX BAR RAO RTF PUR MIX

(.7, .7) 25 4 054 054 057 039- 038- 216 216 233 191- 158-

6 052 051 051 024- 024- 195 193 213 140- 082-

8 064+ 061+ 051 020- 020- 188 187 194 098- 050-

50 4 051 051 047 042- 046 469 470 502 471- 474

6 051 051 053 041- 038- 414 414 467 406- 342-

8 054 054 046 033- 037- 400 397 440 366- 256-

100 4 047 047 046 044 046 800 799 853 846 877

6 045 045 057 052 046 783 783 842 826 825

8 053 052 048 041- 038- 801 799 856 824- 796-

(a - .10)

(.3, .3) 25 4 091 091 097 084- 078- 330 330 355 327- 303-

6 103 102 109 079- 078- 299 296 319 257- 209-

8 101 098 102 063- 053- 295 288 298 197- 131-

50 4 103 103 103 096 092 574 574 629 618 639

6 086- 086- 093 081- 078- 520- 520- 596 554- 523-

8 099 098 097 081- 075- 537 531 586 524- 458-

100 4 106 106 100 098 096 883 883 918 916 936

6 099 100 103 098 099 866 867 908 901 921

8 107 107 104 097 092 883 883 925 910 910

(.3, .7) 25 4 099 100 102 089- 087- 385 385 430 403- 372-

6 101 099 096 071- 068- 405 403 426 347- 287-

8 107 104 093 055- 056- 408 401 441 314- 196-

50 4 099 099 099 094 093 680 679 739 730 752

6 105 105 105 093 091 713 714 773 748 724

8 107 106 104 085- 083- 752 750 801 747- 680-

100 4 105 105 106 103 103 950 950 964 963 978

6 098 099 103 099 099 966 966 982 979 985

8 098 098 105 097 081- 984 984 987 985 991-

(.7, .7) 25 4 096 097 104 091 086- 317 318 342 314 291-

6 103 103 099 074- 068- 299 296 327 261- 190-

8 112+ 108 103 062- 063- 290+ 285 313 212- 129-

50 4 095 095 094 087- 094 591 591 624 614- 630

6 106 106 107 096 086- 549 549 593 565 505-

8 097 095 090 075- 076- 536 533 568 513- 422-

100 4 098 099 093 090 097 874 875 916 914 938

6 092 092 111+ 104 099 867 868 905+ 898 910

8 096 097 097 090 088- 868 869 916 902 887-

 

Tabled values represent the proportion of rejections across 3000

replications at a - .01, .05, and .10, where N - sample size,

NV - no. of variables, BAR - Bartlett, RAO - Rao F, RTF - rank-

. transform Rao F, PUR - pure-rank, MIX - mixed-rank, "+" indicates

a liberal Type I error rate, and a ”-" indicates a conservative

Type I error rate.



Table E10.Empirica1 Type I Error Rates And Power Values For
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Distribution [0, 31a

 

 

Type I Error Power

(py, px) N V BAR RAO RTF PUR MIX BAR RAO RTF PUR MIX

(a - .01)

(.3, .3) 25 4 012 012 013 005- 003- 081 081 081 038- 027-

6 015+ 015+ 009 002- 001- 066+ 064+ 069 018- 012-

8 015+ 014+ 012 003- 003- 060+ 058+ 061 012- 011-

50 4 011 011 012 008 007 251 252 258 206 224

6 011 011 010 006- 003- 218 216 227 148- 159-

8 012 012 010 004- 003- 194 190 226 123- 114-

100 4 009 009 010 008 009 614 614 647 619 688

6 013 013 011 008 009 601 598 635 582 651

8 013 013 009 008 007 604 603 655 570 618

(.3, .7) 25 4 011 011 011 006- 004- 113 113 111 052- 041-

6 013 013 012 003- 001- 116 111 113 036- 018-

8 018+ 017+ 010 002- 003- 112+ 105+ 119 020- 014-

50 4 012 012 010 007 007 357 357 350 295 319

6 011 010 011 004- 003- 369 368 390 283- 272-

8 012 012 011 004- 003- 395 393 427 262- 231-

100 4 009 009 009 007 008 759 760 790 766 817

6 013 012 014+ 012 009 825 823 854+ 826 857

8 014+ 014+ 012 009 006 875+ 875+ 900 850 872

(.7, .7) 25 4 013 013 011 005- 003- 083 082 078 039- 026-

6 013 013 012 002- 001- 068 066 077 024- 011-

8 016+ 015+ 010 002- 002- 066+ 062+ 072 010- 007-

50 4 011 011 011 008 007 256 258 247 204 212

6 010 010 010 006- 006- 227 225 226 162- 136-

8 012 012 012 006- 004- 201 199 234 132- 093-

100 4 009 009 009 007 009 614 615 648 616 668

6 015+ 015+ 013 009 009 601+ 600+ 623 570 608

8 013 013 010 009 008 602 602 643 563 571

(a - .05)

(.3, .3) 25 4 048 048 054 036- 032- 223 224 215 172- 172-

6 057 057 055 027- 027- 200 197 202 130- 113-

8 059+ 057 048 020- 021- 185+ 179 187 090- 086-

50 4 051 051 056 049 044 479 480 484 459 504

6 053 053 054 045 040- 441 441 456 393 414-

8 051 050 046 033- 028- 417 412 443 363- 365-

100 4 043 043 045 043 043 817 817 838 829 870

6 054 054 053 046 046 800 793 836 818 856

8 057 056 045 038- 043 806 805 842 815- 839

(.3, .7) 25 4 047 048 049 036- 032- 276 277 274 221- 222-

6 055 055 050 028- 025- 285 284 286 185- 160-

8 059+ 056 047 023- 021- 284+ 274 300 157- 112-

50 4 051 052 052 044 044 588 589 597 570 613

6 052 052 057 045 038- 614 614 638 577 598-

8 051 048 048 037- 030- 652 649 660 562- 557-

100 4 044 044 043 041- 046 898 898 913 910- 933

6 057 056 056 050 042- 935 934 948 942 960-

8 056 056 045 040- 044 959 959 970 962- 971

 



Table E10 (continued)
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Type I Error Power

 

(py, px) N V BAR RAO RIF PUR MIX BAR RAO RTF PUR MIX

(.7, .7) 25 4 048 049 044 033- 028- 227 227 216 172- 168-

6 058+ 057 049 027- 023- 208+ 205 208 137- 105-

8 059+ 056 048 022- 025- 190+ 184 199 099- 067-

50 4 052 053 052 047 046 479 480 480 454 491

6 056 056 056 043 037- 444 444 457 398 389-

8 050 050 048 030- 030- 427 424 452 369- 331-

100 4 045 045 044 040- 044 811 811 836 829- 862

6 057 057 057 052 046 798 797 824 811 841

8 057 057 052 046 043 802 801 821 800 812

(a - .10)

(.3, .3) 25 4 091 091 100 088- 076- 333 334 330 304- 312-

6 113+ 112+ 100 075- 070- 320+ 317+ 308 246- 249-

8 107 104 101 061- 066- 291 285 304 204- 192-

50 4 099 099 099 096 092 610 609 614 604 648

6 105 105 105 090 086- 576 576 591 556 575-

8 095 093 096 079- 076- 562 557 580 514- 531-

100 4 090 091 096 093 091 879 879 899 896 919

6 102 102 111+ 105 099 875 875 899+ 893 918

8 105 106 088- 082- 082- 878 880 905- 889- 916-

(.3, .7) 25 4 089- 090 105 094 074- 403- 404 400 371 381-

6 113+ 113+ 097 072- 070- 412+ 409+ 420 341- 330-

8 108 103 093 056- 061- 409 402 426 304- 254-

50 4 102 101 096 091 092 705 705 718 706 745

6 107 107 103 092 085- 729 730 751 721 750-

8 101 100 094 079- 073- 759 756 768 713- 727-

100 4 089- 089- 098 095 095 936- 936- 953 951 968

6 103 104 112+ 107 097 966 966 976+ 972 981

8 107 109 089- 082- 083- 978 978 986- 983- 990-

(.7, .7) 25 4 092 092 100 090 077- 334 335 332 305 307-

6 114+ 114+ 098 072- 069- 314+ 311+ 320 257- 232-

8 104 102 095 061- 064- 305 298 315 216- 176-

50 4 101 101 092 087- 093 604 604 612 601- 632

6 108 108 105 094 088- 579 579 592 555 555-

8 099 098 092 073- 073- 569 567 576 523- 501-

100 4 094 095 094 093 092 880 880 899 896 914

6 105 106 106 098 091 871 871 897 886 911

8 107 108 095 084- 086- 879 879. 901 882- 897-

 

a

Tabled values represent the proportion of rejections across 3000

replications

of variables,NV -'no.

at a - .01,

a liberal Type I error rate,

Type I error rate.

.05, and .10,

BAR - Bartlett ,

transform Rao F, PUR - pure-rank, MIX - mixed-rank,

and a.

where N - sample

RAO - Rao F, RTF - rank-

"+" indicates

size,

indicates a conservative



Table E11.Empirica1 Type I Error Rates And Power Values For
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Distribution [1, 31a

 

 

Type I Error Power

(py, px) N V BAR RAO RTF PUR MIX BAR RAO RTF PUR MIX

(a - .01)

(.3, .3) 25 4 011 011 007 003- 003- 089 089 085 038- 030-

6 015+ 014+ 011 003- 003- 073+ 071+ 066 023- 012-

8 012 012 015+ 002- 000- 064 060 064+ 010- 006-

50 4 010 010 008 006- 006- 242 242 251 200- 210-

6 008 008 008 004- 001- 227 226 229 154- 144-

8 011 010 010 004- 003- 214 212 219 127- 099-

100 4 014+ 015+ 012 009 008 596+ 597+ 632 607 662

6 012 011 008 008 007 583 581 619 571 615

8 012 012 010 007 006- 613 613 656 582 606

(.3, .7) 25 4 011 011 008 004- 004- 122 122 110 058- 045-

6 016+ 015+ 010 002- 003- 118+ 113+ 113 039- 020-

8 013 012 013 002- 000- 123 116 129 026- 008-

50 4 011 011 007 006- 005- 333 334 348 286- 303-

6 008 008 009 003- 002- 388 387 385 279- 257-

8 013 013 009 004- 003- 397 393 419 254- 205-

100 4 014+ 014+ 013 010 008 746+ 747+ 772 751 799

6 013 013 009 008 006- 821 819 852 811 849

8 013 013 009 006- 006- 872 872 901 855 871

(.7, .7) 25 4 011 011 009 004- 004- 091 091 080 037- 029-

6 015+ 015+ 010 003- 003- 075+ 073+ 076 025- 011-

8 013 013 012 001- 000- 068 064 073 014- 005-

50 4 010 010 009 005- 005- 248 249 244 197- 189-

6 009 009 007 002- 002- 240 239 221 156- 124-

8 012 011 009 003- 004- 228 226 221 130- 076-

100 4 013 013 011 010 009 598 598 628 600 647

6 013 013 008 007 006- 584 582 610 562 578-

8 014+ 013 011 008 007 615+ 615 647 575 544

(a - .05)

(.3, .3) 25 4 056 056 050 036- 032- 224 225 218 177- 167-

6 061+ 060+ 051 030- 028- 199+ 198+ 200 124- 111-

8 058+ 055 060+ 024- 019- 194+ 190 195+ 100- 075-

50 4 048 048 047 038- 039- 464 464 476 453- 475-

6 048 048 048 034- 031- 445 445 449 396- 398-

8 056 055 ‘047 034- 034- 422 417 439 347- 329-

100 4 061+ 060+ 058+ 055 055 803+ 803+ 819+ 810 860

6 051 051 047 040- 037- 791 789 833 814- 847-

8 056 055 052 045 046 810 808 848 814 841

(.3, .7) 25 4 054 054 050 036- 033- 283 284 278 226- 207-

. 6 062+ 060+ 054 029- 028- 293+ 290+ 284 186- 150-

8 057 055 055 024- 020- 294 289 307 160- 101-

50 4 049 049 046 038- 040- 579 580 590 560- 601-

6 049 049 052 039- 032- 614 614 627 570- 575-

8 057 054 047 030- 034- 640 635 667 574- 520-

100 4 060+ 060+ 057 054 053 894+ 894+ 913 909 936

6 052 051 047 040- 037- 934 933 949 943- 958-

8 056 056 049 040- 044 958 957 967 953 966
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Table E11 (continued)

 

 

Type I Error Power

(py, px) N V BAR RAO RTF PUR MIX BAR RAO RTF PUR MIX

(.7, .7) 25 4 054 054 050 034- 034- 228 228 224 177- 160-

6 061+ 059+ 057 030- 027- 210+ 208+ 215 138- 095-

8 059+ 056 050 018- 018- 203+ 196 214 107- 062-

50 4 047 047 042- 035- 037- 461 463 481- 451- 460-

6 048 048 051 041- 034- 451 451 453 397- 378-

8 054 054 047 032- 038- 428 423 442 361- 291-

100 4 059+ 059+ 060+ 057 054 794+ 793+ 820+ 812 854

6 051 051 047 043 039- 787 785 819 804 827-

8 059+ 058+ 050 043 048 810 810 830 801 802

(a - .10)

( 3, .3) 25 4 107 107 096 083- 085- 326 327 330 306- 296-

6 108 107 108 083- 075- 314 311 304 247- 226-

8 102 100 106 067- 060- 301 296 299 206- 170-

50 4 096 096 096 091 092 589 589 607 595 626

6 099 099 102 091 086- 575 575 587 553 559-

8 104 103 100 079- 081- 548 545 584 522- 497-

100 4 108 108 108 104 104 877 877 895 892 925

6 102 103 094 089- 085- 872 873 900 892- 912-

8 109 111+ 105 096 098 873 875+ 912 896 908

(.3, .7) 25 4 108 108 093 082- 084- 403 404 398 367- 368-

6 105 104 110 081- 071- 418 414 412 335- 301-

8 105 101 102 065- 055- 414 405 425 307- 220-

50 4 095 095 093 086- 094 692 692 722 711- 734

6 099 099 101 090 086- 726 726 743 710 719-

8 106 104 097 077- 085- 758 757 777 728- 698-

100 4 109 109 108 105 110 940 941 956 954 971

6 102 103 094 088- 085- 962 962 973 971- 979-

8 109 109 103 094 094 977 978 982 979 989

(.7, .7) 25 4 106 107 093 083- 085- 328 328 329 304- 293-

6 107 107 103 076- 073- 320 319 313 260- 213-

8 110 107 104 062- 058- 314 307 320 219- 152-

50 4 099 099 091 085- 086- 593 593 610 599- 619-

6 099 100 101 089- 081- 572 573 581 552- 537-

8 108 107 096 083- 088- 557 554 579 520- 448-

100 4 111+ 111+ 110 106 105 874+ 874+ 894 892 919

6 105 106 096 090 086- 872 872 897 887 901-

8 113+ 113+ 106 095 096 874+ 874+ 902 888 889

 

Tabled values represent the proportion of rejections across 3000

replications at a - .01, .05, and .10, where N - sample size,

NV - no. of variables, BAR - Bartlett, RAO - Rao F, RTF - rank-

transform Rao F, PUR - pure-rank, MIX - mixed-rank, "+" indicates

a liberal Type I error rate, and a "-" indicates a conservative

Type I error rate.



Table E12.Empirica1 Type I Error Rates And Power Values For
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Distribution [2, 61a

 

 

Type I Error Power

(py, px) N V BAR RAO RTF PUR MIX BAR RAO RTF PUR MIX

(a - .01)

(.3, .3) 25 4 021+ 021+ 014+ 004- 003- 127+ 127+ 122+ 053- 028-

6 021+ 019+ 008 003- 001- 117+ 115+ 104 028- 008-

8 017+ 015+ 008 001- 001- 104+ 101+ 083 013- 001-

50 4 016+ 016+ 009 007 005- 275+ 275+ 365 308 302-

6 018+ 018+ 011 006- 004- 250+ 248+ 311 214- 149-

8 021+ 020+ 014+ 007 003- 260+ 259+ 307+ 171 069-

100 4 015+ 015+ 010 008 008 594+ 594+ 787 767 858

6 017+ 017+ 014+ 011 010 582+ 580+ 798+ 755 811

8 017+ 017+ 015+ 009 007 601+ 600+ 811+ 746 721

(.3, .7) 25 4 020+ 020+ 012 004- 002- 164+ 164+ 167 083- 039-

6 020+ 020+ 009 003- 001- 173+ 171+ 166 050- 010-

8 024+ 023+ 010 001- 001- 175+ 169+ 151 030- 003-

50 4 017+ 017+ 011 007 004- 361+ 361+ 461 402 388-

6 022+ 022+ 011 006- 005- 399+ 398+ 485 361- 236-

8 024+ 023+ 013 006- 003- 429+ 428+ 506 330- 121-

100 4 016+ 016+ 010 008 006- 728+ 728+ 885 867 933-

6 019+ 019+ 011 009 010 801+ 799+ 923 901 930

8 019+ 019+ 011 008 006- 849+ 848+ 953 925 919-

(.7, .7) 25 4 021+ 021+ 011 004- 003- 131+ 131+ 122 056- 020-

6 025+ 024+ 011 002- 002- 135+ 132+ 105 030- 004-

8 026+ 025+ 008 001- 001- 133+ 130+ 095 015- 001-

50 4 017+ 017+ 011 007 006- 277+ 277+ 348 291 246-

6 023+ 022+ 010 006- 005- 266+ 264+ 297 204- 092-

8 027+ 026+ 011 006- 003- 273+ 271+ 289 164- 031-

100 4 016+ 016+ 010 008 006- 590+ 591+ 769 743 815-

6 022+ 022+ 011 008 008 579+ 575+ 748 703 688

8 021+ 021+ 011 006- 009 604+ 604+ 762 697 535

(a - .05)

(.3, .3) 25 4 067+ 067+ 056 042- 039- 259+ 260+ 302 243- 197-

6 060+ 058+ 047 023- 020- 254+ 252+ 263 163- 088-

8 068+ 065+ 043 018- 020- 242+ 237+ 232 113- 037-

50 4 058+ 059+ 048 040- 036- 468+ 468+ 597 569- 605-

6 065+ 065+ 055 042- 038- 441+ 441+ 574 509- 446-

8 078+ 077+ 057 039- 035- 436+ 433+ 540 448- 309-

100 4 050 049 053 051 045 781 779 919 915 964

6 066+ 065+ 052 048 045 775+ 775+ 923 914 949

8 057 056 052 044 041- 786 784 930 912 921

(.3, .7) 25 4 066+ 067+ 057 039- 037- 315+ 316+ 362 299- 236-

6 071+ 070+ 053 027- 019- 334+ 331+ 356 247- 118-

8 071+ 069+ 049 020- 018- 339+ 331+ 349 184- 041-

50 4 060+ 061+ 051 043 038- 565+ 567+ 696 670- 716-

6 067+ 067+ 051 040- 040- 606+ 606+ 732 676- 616-

8 083+ 080+ 054 037- 031- 626+ 623+ 736 644- 446-

100 4 053 053 051 049 042- 881 881 964 963 985-

6 069+ 069+ 051 046 046 912+ 912+ 980 976 990

8 066+ 065+ 057 048 043 944+ 944+ 990 986 990
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Type I Error Power

(py, px) N V BAR RAO RTF PUR MIX BAR RAO RTF PUR MIX

(.7, .7) 25 4 064+ 064+ 058+ 043 037- 266+ 267+ 290+ 242- 162-

6 069+ 069+ 048 028- 019- 263+ 260+ 266 174- 064-

8 074+ 070+ 052 017- 016- 270+ 266+ 235 117- 023-

50 4 061+ 061+ 048 041- 036- 465+ 466+ 583 556- 558-

6 065+ 065+ 048 039- 037- 453+ 453+ 555 495- 345-

8 086+ 084+ 054 038- 034- 452+ 448+ 515 431- 195-

100 4 051 051 051 049 044 784 784 908 902 949

6 068+ 067+ 053 047 045 769+ 767+ 902 891 906

8 068+ 068+ 059+ 050 045 780+ 780+ 911+ 891 830

(a - .10)

(.3, .3) 25 4 115+ 115+ 111+ 096 090 353+ 354+ 410+ 382 348

6 110 110 092 069- 064- 343 345 376 308- 204-

8 117+ 114+ 092 050- 059- 338+ 334+ 339 237- 113-

50 4 100 100 097 091 090 580 580 710 696 755

6 108 108 109 097 085- 559 559 695 664 642-

8 133+ 132+ 110 091 081- 548+ 545+ 673 610 489-

100 4 094 094 101 099 098 861 862 956 954 981

6 110 110 106 097 093 853 853 957 953 980

8 108 108 105 095 093 854 854 968 957 969

(.3, .7) 25 4 113+ 113+ 112+ 099 091 413+ 414+ 483+ 456 405

6 115+ 114+ 098 069- 064- 445+ 443+ 489 408- 256-

8 121+ 119+ 105 061- 056- 449+ 444+ 479 345- 123-

50 4 101 101 098 093 089- 675 674 797 787 836-

6 117+ 117+ 105 092 090 706+ 706+ 831 804 777

8 142+ 141+ 101 089- 079- 729+ 728+ 834 783- 645-

100 4 092 092 099 096 100 928 928 982 981 994

6 114+ 114+ 105 099 094 949+ 950+ 993 991 998

8 118+ 119+ 112+ 104 099 972+ 972+ 997+ 995 998

(.7, .7) 25 4 114+ 114+ 109 098 085- 363+ 365+ 406 377 305-

6 126+ 124+ 095 066- 066- 361+ 359+ 382 315- 159-

8 123+ 120+ 095 062- 056- 360+ 356+ 361 249- 076-

50 4 102 102 091 087- 083- 581 580 699 688- 722-

6 116+ 116+ 098 084- 083- 567+ 568+ 679 648- 549-

8 146+ 144+ 102 085- 084- 557+ 554+ 647 591- 348-

100 4 090 090 104 100 102 860 860 950 947 975

6 117+ 118+ 103 099 090 848+ 848+ 942 938 957

8 115+ 116+ 111+ 103 103 852+ 853+ 950+ 941 926

 

a

Tabled values represent the proportion of rejections across 3000

replications

of variables,NV - no.

at a - .01,

a liberal Type I error rate,

Type I error rate.

.05, and .10,

BAR - Bartlett ,

transform Rao F, PUR - pure-rank, MIX - mixed-rank,

and a:

where

"+II

N - sample

RAO - Rao F, RTF - rank-

size,

indicates

indicates a conservative
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Empirical Type I Error Rates And Power Values For

 

 

Table E13.

Distribution [0, 20]a

Type I Error Power

(py, px) N V BAR RAO RTF PUR MIX BAR RAO RTF PUR MIX

(a - .01)

(.3, .3) 25 4 026+ 026+ 013 004- 003- 158+ 158+ 158 083- 060-

6 039+ 039+ 011 003- 001- 144+ 141+ 137 035- 022-

8 034+ 032+ 013 001- 000- 144+ 142+ 115 019- 010-

50 4 027+ 027+ 012 007 005- 305+ 305+ 426 364 470-

6 036+ 036+ 008 006- 002- 295+ 294+ 422 314- 338-

8 037+ 037+ 010 004- 003- 303+ 302+ 421 266- 231-

100 4 026+ 026+ 014+ 012 009 628+ 629+ 865+ 848 938

6 029+ 029+ 010 008 009 628+ 626+ 872 842 937

8 037+ 037+ 011 009 004- 664+ 663+ 886 842 918

(.3, .7) 25 4 030+ 030+ 012 005- 004- 203+ 203+ 195 103- 069-

6 040+ 040+ 012 003- 001- 221+ 217+ 204 064- 022-

8 039+ 037+ 008 001- 000- 231+ 227+ 207 036- 011-

50 4 027+ 028+ 010 007 004- 399+ 400+ 516 451 541-

6 037+ 036+ 008 006- 003- 430+ 429+ 565 442- 422-

8 043+ 043+ 011 005- 003- 496+ 493+ 588 407- 282-

100 4 029+ 029+ 013 011 010 746+ 747+ 916 906 961

6 035+ 035+ 012 009 007 808+ 806+ 954 938 970

8 037+ 036+ 009 006- 004- 856+ 856+ 964 941 965

(.7 .7) 25 4 032+ 032+ 012 005- 003- 174+ 174+ 145 074- 043-

6 044+ 044+ 012 002- 001- 185+ 182+ 139 046- 016-

8 047+ 045+ 010 001- 001- 189+ 186+ 136 024- 009-

50 4 030+ 030+ 009 006- 006- 313+ 313+ 404 336- 378-

6 040+ 040+ 008 004- 004- 323+ 322+ 381 281- 226-

8 055+ 054+ 011 005- 003- 363+ 361+ 377 241- 137-

100 4 030+ 030+ 013 011 010 625+ 626+ 826 809 898

6 041+ 041+ 012 007 007 630+ 627+ 818 781 844

8 048+ 048+ 010 004- 004- 673+ 673+ 821 754- 776-

(a - .05)

(.3, .3) 25 4 082+ 082+ 064+ 045 033- 321+ 321+ 353+ 295 323-

6 090+ 088+ 055 030- 020- 298+ 296+ 318 210- 178-

8 104+ 100+ 051 021- 016- 296+ 289+ 298 139- 096-

50 4 073+ 074+ 047 040- 041- 514+ 515+ 658 636- 762-

6 083+ 083+ 044 034- 035- 489+ 489+ 666 611- 682-

8 096+ 095+ 051 036- 031- 501+ 496+ 667 567- 601-

100 4 076+ 076+ 058+ 056 047 807+ 807+ 947+ 942 982

6 079+ 078+ 046 040- 037- 809+ 807+ 961 953 988

8 082+ 081+ 045 038- 040- 824+ 823+ 963 952- 981-

(.3, .7) 25 4 090+ 090+ 055 043 034- 385+ 385+ 412 353 358-

6 095+ 093+ 052 029- 020- 386+ 383+ 400 285- 202-

8 111+ 108+ 049 016- 015- 408+ 401+ 399 219- 103-

50 4 077+ 077+ 048 039- 038- 600+ 601+ 740 716- 827-

6 092+ 092+ 041- 030- 028- 630+ 630+ 775- 726- 777-

8 098+ 097+ 051 037- 034- 683+ 681+ 794 713- 685-

100 4 074+ 074+ 058+ 053 046 877+ 877+ 973+ 971 991

6 085+ 084+ 047 043 038- 915+ 913+ 986 984 994

8 094+ 093+ 051 044 035- 937+ 936+ 992 989 995-
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Table E13 (continued)

 

 

Type I Error Power

(py, px) N V BAR RAO RTF PUR MIX BAR RAO RTF PUR MIX

(.7, .7) 25 4 092+ 092+ 054 037- 034- 332+ 333+ 335 282- 264-

6 103+ 102+ 050 027- 023- 331+ 329+ 311 210- 129-

8 115+ 111+ 051 020- 015- 344+ 337+ 296 165- 074-

50 4 075+ 076+ 048 041- 037- 508+ 509+ 626 602- 714-

6 092+ 092+ 044 034- 034- 505+ 505+ 614 558- 559-

8 111+ 110+ 052 036- 038- 537+ 533+ 615 521- 421-

100 4 074+ 073+ 057 054 045 795+ 795+ 932 928 '972

6 093+ 093+ 048 044 047 799+ 798+ 934 924 963

8 103+ 102+ 049 043 043 824+ 822+ 932 916 940

(a - .10)

(.3, .3) 25 4 128+ 128+ 107 097 083- 430+ 430+ 482 457 513-

6 144+ 142+ 106 076- 069- 343+ 345+ 376 308- 204-

8 161+ 158+ 104 060- 049- 417+ 409+ 422 285- 240-

50 4 117+ 117+ 088- 085- 090 621+ 621+ 772- 763- 869

6 134+ 134+ 092 080- 077- 598+ 598+ 766 740- 826-

8 151+ 149+ 105 091 078- 611+ 608+ 781 724 782-

100 4 123+ 123+ 119+ 115+ 104 875+ 875+ 972+ 971+ 994

6 127+ 127+ 093 088- 086- 872+ 873+ 981 979- 995-

8 132+ 132+ 104 091 091 887+ 888+ 981 975 994

(.3, .7) 25 4 135+ 136+ 103 090 080- 484+ 484+ 538 509 562-

6 146+ 144+ 104 077- 060- 484+ 481+ 530 448- 401-

8 177+ 173+ 103 058- 045- 518+ 512+ 526 379- 251-

50 4 119+ 119+ 096 092 092 704+ 704+ 836 828 902

6 137+ 137+ 089- 078- 075- 735+ 735+ 860- 835- 892-

8 154+ 152+ 106 088- 080- 773+ 772+ 873 828- 845-

100 4 123+ 124+ 119+ 117+ 105 926+ 926+ 986+ 986+ 996

6 127+ 128+ 089- 083- 086- 955+ 955+ 993- 992- 998-

8 146+ 146+ 101 090 083- 962+ 962+ 996 996 998-

(.7, .7) 25 4 134+ 134+ 099 090 083- 435+ 436+ 458 430 454-

6 155+ 154+ 106 076- 065- 422+ 419+ 425 357- 279-

8 174+ 171+ 106 060- 050- 448+ 441+ 410 298- 172-

50 4 115+ 115+ 095 088- 093 621+ 621+ 742 729- 830

6 143+ 144+ 092 082- 078- 616+ 616+ 728 699- 726-

8 162+ 161+ 110 090 086- 636+ 635+ 725 677 613-

100 4 129+ 129+ 109 106 104 868+ 868+ 961 959 986

6 138+ 138+ 091 087- 093 867+ 867+ 969 964- 983

8 149+ 150+ 103 096 087- 878+ 878+ 962 954 976-

 

a

Tabled values represent the proportion of rejections across 3000

replications at a - .01, .05, and .10, where N - sample size,

NV - no. of variables, BAR - Bartlett, RAO - Rao F, RTF - rank-

transform Rao F, PUR - pure-rank, MIX - mixed-rank, "+" indicates

a liberal Type I error rate, and a "-" indicates a conservative

Type I error rate.
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Table E14. Frequency Distributions of Simulated Data

 

 

 

Interval [0, 0] [0,-1.12] [.5, 0] [1, .5] [0, 3] [1, 3] [2, 6] [0,20]

<-8.0 0 0 0 0 0 0 0 1

-8.0 -7.0 0 0 0 0 0 0 0 3

-7.0 -6.0 0 0 0 0 1 0 0 5

-6.0 -5.0 0 1 0 0 3 0 0 7

-5.0 -4.0 0 0 0 0 8 0 0 24

-4.0 -3.0 9 1 0 0 45 4 0 56

-3.0 -2.7 15 0 0 0 29 7 0 28

-2.7 -2.5 32 0 0 0 30 5 0 24

-2.5 -2.3 38 0 0 0 38 15 0 33

-2.3 -2.1 65 0 0 0 51 35 0 37

-2.1 -1.9 108 0 23 0 87 44 0 52

-1.9 -1.7 149 0 153 0 95 77 0 56

-1.7 -1.5 202 720 258 0 158 136 0 77

-1.5 -1.3 317 575 371 0 186 236 0 119

-1.3 -1.1 384 572 531 1197 316 375 0 119

-1.1 -0.9 508 538 644 1287 377 549 809 214

-0.9 -0.7 596 544 694 896 584 798 1940 303

-0.7 -0.5 630 585 718 770 681 861 1256 447

-0.5 -0.3 782 550 772 674 844 984 1002 820

-0.3 -0.1 727 586 751 681 914 964 873 1469

-0.1 0.1 801 580 783 563 1038 890 724 2151

0.1 0.3 751 591 686 549 935 795 587 1455

0.3 0.5 740 577 629 494 837 630 503 797

0.5 0.7 648 572 564 431 689 561 416 431

0.7 0.9 608 540 514 412 529 429 328 313

0.9 1.1 465 575 415 355 385 328 254 210

1.1 1.3 387 528 343 289 300 273 234 150

1.3 1.5 316 562 280 277 215 219 185 102

1.5 1.7 215 802 230 228 143 169 160 86

1.7 1.9 174 0 164 198 124 116 128 77

1.9 2.1 130 0 142 160 91 98 87 49

2.1 2.3 66 0 108 134 68 87 95 55

2.3 2.5 56 0 72 121 44 71 74 34

2.5 2.7 42 0 48 99 33 51 53 25

2.7 3.0 20 0 59 93 38 52 85 33

3.0 4.0 17 0 41 92 62 102 118 76

4.0 5.0 2 0 7 0 14 22 59 32

5.0 6.0 0 0 0 0 2 10 16 11

6.0 7.0 0 0 0 0 3 3 7 8

7.0 8.0 0 0 0 0 1 2 3 4

>8.0 0 0 0 0 2 2 4 7

Tabled values represent the frequency distributions of the

simulated data using 10,000 deviates.
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