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ABSTRACT
AN EMPIRICAL STUDY OF THE TYPE I ERROR RATE AND POWER

FOR SOME SELECTED NORMAL-THEORY AND NONPARAMETRIC TESTS
OF THE INDEPENDENCE OF TWO SETS OF VARIABLES

By
Abdul Razak Habib

The present study empirically examined the effect of non-
normality, sample size, number of variables, and degree of dependency
on the Type I error and power properties of five normal-theory and
nonparametric tests of the independence of two sets of variables.
Simulated data representing light-, moderately heavy-, and heavy-tailed
distributions, three sample sizes, three sets of correlations-among-
variables, and three sets of numbers-of-variables were included.

This study yielded the following results. The Type I error rates
of the normal-theory Bartlett and Rao F tests increase subtantially for
the moderately heavy- and heavy-tailed distributions, whereas the Type
I error rates of the nonparametric rank-transform Rao F and the pure-
and mixed-rank tests are not affected by the form of a parent
distribution for moderately-small and moderately-large samples. The
Type I error rates of the Bartlett and Rao F tests increase with
increases in the correlation among predictor and/or dependent
variables, and with increases in the number-of-variables for heavy-
tailed distributions. The Type I error rate of the rank- transform Rao
F test is not affected by the within-set-correiation and the number-of-

variables factors, while those of the pure- and mixed-rank tests are

not affected by the within-set-correlation factor but decrease as the

number of variables increases for all distributions.



The power values of the normal-theory Bartlett and Rao F tests
increase subtantially only for extremely heavy-tailed distributions.
The power values of all three nonparametric tests increase with
increases in the kurtosis values. The power values of all five tests
increase with increases in the sample size and the correlation among
the predictor variables, and decrease with increases in the correlation
among the dependent variables for all distributions. The increments due
to the sample size are higher for the three nonparametric tests. The
power values of the Bartlett, Rao F, and the rank-transform Rao F tests
are not affected by the number of variables, while those of the pure-
and mixed-rank tests decrease as the number of variables increases for
all distributions. However, the reduction in the power values tends to

be compensated for by increases in the sample size.
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CHAPTER I

STATEMENT OF THE PROBLEM

The present study used computer-simulated data to assess the
distributional behavior (i.e., Type I error rate and power) of
selected normal-theory and nonparametric tests of the independence of
two sets of variables. The focus of the investigation was the behavior
of the tests in the presence of non-normal skewness and kurtosis
values. This chapter discusses the (a) role of multivariate analysis in
educational research, (b) normal-theory and nonparametric-multivariate
tests in educational research, (c) purpose of the study, (d) factors
which influence the choice of a normal-theory or nonparametric-
multivariate test, (e) research questions and hypotheses, (f) role of
simulation in distributional studies, (g) significance of the study,
and (h) limitations of the study. The definitions of some statistical

terms are given in Appendix A.

v nal Resea

Multivariate analysis refers to a collection of descriptive and
inferential methods that have been developed for situations where one
or more sets of correlated variables are treated as outcome measures,
predictors, or both (Harris, 1975, P. 5). More specifically,
multivariate methods allow researchers to simultaneously analyze the
interrelationships among many variables. In contrast, univariate
analyses are carried out separately for each outcome variable. One

potential shortcoming of univariate methods is that they may lead to an
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incomplete description of the data since they ignore interrelationships
among predictor and outcome variables.

Multivariate methods have found widespread use in educational
research. A primary reason for their popularity 1is the interest
educational researchers show in testing theories that are multivariate
in character, which implies the use of multiple variables. Because
these variables are chosen to be consistent with the theory under
test, they form a multidimensional system and are expected to be
correlated (Takeuchi, Yanai, & Mukherjee, 1982, p. 54). Testing
theories by collecting data on several variables leads quite naturally
to multivariate data-analytic methods.

Among the inferential multivariate methods used in educational
research are multivariate analysis of wvariance (MANOVA), factor
analysis, discriminant analysis, canonical-correlation analysis, and
multivariate-multiple-regression. These methods have served as
important explanatory tools for researchers attempting to summarize
the information in a data set containing multiple (correlated) outcome
variables.

As noted above, many studies in education involve the analysis
of relationships between multiple outcome and predictor variables.
Canonical-correlation analysis and multivariate-multiple-regression
represent general data-analytic methods that may be used to study such
relationships. The fundamental difference between the two approaches
lies in the nature of the measured relationship. Canonical-correlation
analysis assesses the degree of relationship among two sets of random

variables (Takeuchi et al., 1982, p. 225). Although researchers often
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refer to one set of variables as predictors and the other as outcomes,
the mathematical model underlying canonical correlation makes no such
distinction (Gittins, 1985, p. 19).

The multivariate-multiple-regression model, on the other hand,
simultaneously assesses the degree of relationship between each of the
random outcome variables and the set of fixed and known predictor
variable values (Takeuchi et al., 1982, p. 116). However, predictors
are rarely fixed and known in practice and regression analysis is
routinely performed for predictors that, in essence, are random
variables. An important consequence of this practice is that data-
analytic inferences are limited to predictor values appearing in the
sample (Rogosa, 1980).

As an example of the differing applications of canonical-
correlation and multivariate-multiple-regression in educational
research, consider a study of the relationship between school
organizational climate and teacher job satisfaction. Two well known
instruments in this area are the Teacher Job Satisfaction Questionaire
(Lester, 1983), which measures nine identified factors of teacher job
satisfaction, and the Organizational Climate Description Questionaire
(Kottkamp, Mohlern, & Hoy, 1985), which measures five dimensions of
organizational climate. If the research question focuses on the
interdependence between these two sets of (random) variables, the
relationship between the job satisfaction‘ factors and the
organizational climate dimensions is most properly examined using
canonical-correlation analysis. If one set of variables is

conceptualized as outcomes and the other as predictors, then



4
multivariate-multiple-regression would be appropriate. It is important
to emphasize that these models are conceptually different, yet are
identical with respect to making statistical inferences about the
relationship between two sets of variables. Both of these procedures
are important explanatory tools for educational researchers interested

in testing theories that are multivariate in character.

- - v
in Educational Research
Historically, researchers opting for multivariate methods
have been confronted with the problem of fitting the observed data
into the framework of multivariate-normal-theory procedures. Such
methods have collectively been labelled parametric, and are identified
by their reliance on the assumption that the population distribution
of observations follows a multivariate-normal density function (Puri &
Sen, 1971, p. 1). Yet in many data-analytic situations there is little
doubt that the observations can be characterized as moderately or even
distinctly non-normal (Puri & Sen, 1971, p. 1). Under the assumption of
random sampling from a specified population, this casts doubt on the
normality of the population distribution. For example, educationally-
oriented variables such as the number of days absent from school are
likely to produce (non-normal) data that are badly skewed or slightly
or heavily kurtic.
One approach for dealing with non-normality is to transform the
original data to a form more closely resembling a normal distribution
(see Box & Cox, 1964) and then employ normal-theory methods. This

requires that the wunderlying distribution of the original variable(s)
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be known before deciding which transformation is most appropriate. In
many cases, the distribution of the original variable is not known, and
transformations of this type may be problematic (Kendall & Stuart,
1969, V. 2, p. 487). Another issue is that the transformed variable may
not be interpretable.

A second approach is to transform the original data to ranks (or
some other monotonic transformation) and then employ nonparametric
methods. These methods do not require that the form of the underlying
distribution be known, and are characterized by their relaxation of the
normality assumption. However, the underlying distribution must be
continuous (Kendall & Stuart, 1969, V. 2, p. 487).

In surveying the literature, a number of nonparametric
alternatives to normal-theory, univariate methods are available (e.g.,
Conover, 1980; Gibbons,. 1971; Marascuilo & McSweeney, 1977). This is
not true for the multivariate case, where nonparametric alternatives to
normal-theory multivariate methods exist only in certain areas of
statistical inference.

A primary source of the development of nonparametric-multivariate
methods is the work of Puri and Sen (1969, 1971, 1985). Of special
importance are the tests these authors generated for hypotheses
subsumed under the multivariate general linear model. One is the pure-
rank procedure, in which values of all variables are ranked prior to
any analysis, and the other is the mixed-rank procedure, in which some
but not all variables are ranked. Another nonparametric approach that
is closely related to classical nonparametric methods is the rank-

transform procedure due to Iman and Conover (Conover & Iman, 1981;
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Iman, 1974b; Iman & Conover, 1979). This procedure, which likewise does
not require a normality assumption, involves transforming the original
data to their corresponding ranks and then applying normal- theory
procedures. The pure- and mixed-rank procedures as illustrated by Puri
and Sen, and the rank-transform proceduré of Conover and Iman,
represent the primary nonparametric alternatives to normal-theory

multivariate analysis.

Purpose of the Study

The purpose of the present study was to compare the Type I error
and power properties of two normal-theory (Bartlett, Rao F) and three
nonparametric (rank-transform Rao F, pure-and mixed-rank) tests of the
independence of two sets of variables (i.e., tests of no canonical
correlation or no regression). The distributional properties of these
tests hold exactly only for the asymptotic case (i.e., for very large
samples and/or a parent normal distribution), and hence the focus was
on the behavior of these tests for small samples under a variety of
non-normal skewness and kurtosis conditions.

Other factors examined included the sample size, the correlation
within the set of predictors and within the set of dependent variables,
the correlation among the sets of predictor and dependent variables,
and the number of variables. Since the effects of such factors are
difficult to evaluate analytically (Ito & Schull, 1964; Zwick, 1984, p.
2), a simulation study was performed to investigate the behavior of
the tests. It is anticipated that the results of the present study

will provide educational researchers with guidelines for choosing
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between normal-theory tests of the hypothesis of no relationship among
two sets of variables and their nonparametric counterparts under a

variety of non-normal data and sample-size conditionms.

Wh e o -
a - t s

As a result of theoretical and computational advances a variety
of normal-theory and nonparametric multivariate tests are available to
educational researchers. The question arises of how best to choose
among the two kinds of tests. The application of a normal-theory
procedure to test a statistical hypothesis requires some statistical
assumptions on the observations and the population distribution. For
example, the omnibus test that all population regression coefficients
equal zero in multivariate-multiple-regression assumes that (a) the
population of outcomes, conditional on the predictors, is normally
distributed, (b) the outcomes, conditional on the predictors, have a
common covariance matrix, and (c) the residuals for a given outcome
variable are independent.

Violations of one or more of these assumptions have been shown
to have adverse effects on the Type I error probability and power of
normal-theory multivariate tests under a variety of data conditions
(Ito & Schull, 1964; Mardia, 1971; Olson, 1976). Thus, the use of a
normal-theory test when assumptions are violated may lead to an
incorrect conclusion. For example, a true statistical hypothesis may be
rejected, not because the statistical hypothesis is false but because
one or more of the underlying statistical assumptions are violated

(Conover, 1980, p. 84). Thus, the effect of violating underlying
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statistical assumptions is an important factor in choosing a normal-
theory or nonparametric-multivariate test.

It is important to emphasize that some violations of the
assumptions underlying a statistical test will always occur. This
points to a need for criteria that define the "best" test with respect
to distributional properties when underlying assumptions are violated.
Gibbons (1971, p. 16) defines the "best" test as the test which is
most successful in correctly distinguishing between the conditions as
stated in the null and alternative hypotheses. An equivalent and more
technical definition of the "best" test is given by Ito (1980), who
argues that it is the one which is robust (i.e., insensitive to the
violation of test assumptions) with respect to the Type I error
probability and also most powerful among its competitors.

Unfortunately, the search for the "best" test is complicated by
the variety of assumption violations that can affect the distributional
properties of a test. Fundamental to the comparison of normal-theory
and nonparametric tests is the assumption of normality. As noted
earlier, the application of a nonparametric procedure in testing
statistical hypotheses does not require a normality assumption, and
hence the choice of a normal-theory or nonparametric test in general
depends on the tenability of the normality assumption. It is important
to emphasize that this is the fundamental difference between the
normal-theory and nonparametric tests considered in the present study.
While nonparametric methods may be less sensitive to other assumption
violations than their normal-theory counterparts (e.g., heteroscedesti-

city of variance), it is primarily the lack of a normality requirement
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that distinguishes the two methodologies, and serves as an important
factor influencing the choice of one kind of test rather than another.

Factors other than the tenability of the normality assumption
also influence the Type I error rate and power of tests, and hence
should be considered in the choice of a normal-theory or nonparametric
test. These include the number of variables, their degree of
dependency, and the sample size.

As noted earlier it would be desirable to analytically examine
the effects of all of the above factors on the distributional
properties of these tests. Such analyses are extremely difficult if not
impossible in the multivariate case because the analytic methods rely
on specific statistical assumptions about the underlying distributions
and on the asymptotic distribution of sample statistics. Hence
investigations of the effects of these factors on normal-theory and
nonparametric-multivariate tests have primarily been empirical.

The results of a number of studies suggest that the form of the
underlying distribution plays a key role on the Type I error rate and
power performance of multivariate tests (Arnold, 1964; Chase & Bulgren,
1971; Davis, 1982b; Harwell & Serlin, 1985; Mardia, 1970). The number
of dependent variables has also been found to affect the
distributional behavior of multivariate tests (Ito, 1980; Olson, 1974),
in that the tests tend to become less robust as the number of outcome
variables increases. This result may be explained by the fact that the
degree of non-normality in the joint distribution of the dependent
variables is likely to increase as their number increases (Puri & Sen,

1971, p. 2).
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As implied by' Puri and Sen (1971, p. 176), the degree and
pattern of dependency among variables would also be expected to affect
the power of nonparametric-multivariate tests. For example, high
correlations among variables would (other factors being equal) tend to
produce less powerful tests than low correlations among variables.
Sample size is also an important factor influencing the choice of a
normal-theory or nonparametric test. This occurs because most of the
normal-theory multivariate methods are based on sampling distributions
of test statistics that are derived from large samples. However, the
same is true for nonparametric tests, and hence both normal-theory and
nonparametric tests are expected to be less robust for small samples.

In addition to the form of the underlying distribution, the
number of variables, their degree of dependency, and the sample size
all have been cited as influencing the choice of a normal-theory or
nonparametric test. Consequently, any investigation of normal-theory

and nonparametric-multivariate tests. should consider these factors.
e ch Ques d ese

In comparing the Type I error and power properties of nofmal-
theory and nonparametric tests of the independence of two sets of
variables, special attention was given to the influence of skewness and
kurtosis. Such attention is justified by previous research in both the
univariate and multivariate cases, and has indicated the importance of
these two characteristics' in the performance of a test (Chase &
Bulgren, 1971; Harwell & Serlin, 1985; Mardia, 1970; Olson, 1976). The

questions of particular interest and their related hypotheses are the
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following:

1. Do the skewness and kurtosis values affect the Type I error and
power values of normal-theory and nonparametric tests? Previous
empirical results suggest that increasing skewness results in
normal-theory tests that become liberal (i.e., rejecting a true
null hypothesis more often than expected), while increasing
kurtosis results in tests that become conservative (i.e., rejecting
a true null hypothesis less often than expected) (Chase & Bulgren,
1971; Mardia, 1970; Olson, 1974). Increasing skewness or kurtosis
may also reduce the power of normal-theory tests (Harwell & Serlin,
1985; Olson, 1974). Such effects would not be expected for
nonparametric tests, since these procedures in general do not

depend on the form of the underlying distribution.

2. Does sample size influence the effects of skewness and kurtosis on
the Type I error and power values of normal-theory and
nonparametric tests? The sampling distributions of most normal-
theory and nonparametric test statistics are derived for large
samples. Thus, for small samples neither normal-theory or
nonparametric tests would be expected to be robust with respect to
Type I error rate and power. In particular, for small and moderate
samples departures from normality would be expected to noticeably
affect the Type I error rate and power of the normal-theory tests
(Olson, 1974; Zwick, 1984, p. 2). Similarly, the nonparametric
tests would not be expected to perform well for small samples, but

would be expected to do well for moderate samples. The power values
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of all tests would be expected to increase with increases in the

sample size.

Does the degree of dependency among variables influence the
effects of skewness and kurtosis on the Type I error and power
values of normal-theory and nonparametric tests? As implied by
Puri and Sen (1971, p. 176), the degree of dependency among
variables would be expected to affect the power of some
multivariate tests. However, the results of the study by Harwell
and Serlin (1985) suggested that in general the degree of
dependency among variables would not affect the power of normal-
theory tests, although for extremely skewed data a high degree of
dependency among variables tended to slightly reduce the power of
nonparametric tests. Thus, a high degree of dependency among
variables might be expected to slightly reduce the power of the

nonparametric tests for extremely skewed data.

Does the number of variables influence the effects of skewness and
kurtosis on the Type I error and power values of normal-theory and
nonparametric tests? Previous empirical results suggest that
normal -theory procedures become less robust with respect to Type I
errors and power as the number of outcome variables increases
(Ito, 1980; Olson, 1974). Puri and Sen (1971, p. 2) pointed out
that as the number of variables increases, the degree of non-
normality of their joint distribution might be expected to increase
simply because of the increase in the dimensionality of the

distribution.
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Role of Simulation in Distributjopnal Studies

It has been pointed out that analytic studies of the Type I error
probability and power efficiency of multivariate tests for small
samples are very difficult if not impossible to carry out. An
alternative to analytic methods is the application of computer
simulation in assessing the performance of various statistical tests.
Hartley (1976) argues that computer simulation has become an important
technique for verifying analytic results. For example, such techniques
can be used to find the exact sampling distribution of most statistics
using data that have been drawn from any parent distribution (Tracy &
Conley, 1982, P. 262). Fawcett and Salter (1987) stressed that a
distribution study should not be regarded as complete without the
inclusion of computer simulation for finding the exact distribution of
the statistic used. Although the present study will present analytic
expressions when they exist, it will rely on simulated data to answer
the research questions by examining the distributional behavior of the

selected test statistics under various data conditions.

Significance of the Study

The significance of the present study is related to the
multivariate character of educational research questions and the
empirical tests of these questions. As noted earlier, studies in
education often generate research questions that are multivariate in
character and lead to the use of multiple (correlated) variables. The
multivariate methods used in the analysis of this data typically

assume normality of the underlying distribution. In many practical
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situations, however, there is evidence that the wunderlying
distributions are non-normal (Puri & Sen, 1971, p. 1l). Because such
non-normality can have a deleterious effect on the distributional
properties of normal-theory tests, particularly for studies that
employ small to moderate samples, the use of normal-theory methods
may mnot be appropriate. Under these circumstances, educational
researchers should consider a multivariate-nonparametric alternative.

In studying normal-theory and nonparametric-multivariate tests,
canonical-correlation analysis/multivariate-multiple-regression seem a
natural starting point. Their importance as a general system of
statistical inference has been demonstrated by several authors. For
example, Knapp (1978) showed that many of the commonly used normal-
theory tests can be treated as special cases of the canonical-
correlation model. The same is true in the nonparametric case.

It should be emphasized that the Bartlett, Rao F, and
rank-transform Rao F tests were developed for an omnibus test
involving canonical correlations, while the pure- and mixed-rank tests
to be examined were developed for an omnibus test involving
multivariate-multiple-regression. However, as shown in the next
chapter the models underlying canonical-correlation and multivariate-
multiple-regression are 1identical, and hence these tests are
equivalent with respect to concluding whether two sets of variables
are independent (Gittins, 1985, p. 19).

The choice of the "best"” test depends on a number of factors,
including the form of the underlying distribution, the number of

variables, their degree of dependency, and the sample size. These
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factors were examined in the present simulation study. It is expected
that the results will provide educational researchers with guidelines
for performing either normal-theory or nonparametric canonical-
correlation/multivariate-multiple-regression analysis for a variety of

data conditions.

The findings of the present study are valid only if the between-
set correlation matrix containing zeros is a sufficient indication of
the independence of two sets of non-normal variates. The
generalizability of the results is also limited by the range of

simulation conditions investigated.



CHAPTER II

REVIEW OF THE LITERATURE

A review of the literature pertinent to the present study is
presented in this chapter. The review includes the following areas (a)
defining the normal distribution and some non-normal distributions on
the basis of skewness and kurtosis, (b) methods of dealing with non-
normal data, including transforming the original data to ranks, and (c)
robustness and power results for some normal-theory and nonparametric-

multivariate tests.

aring the No stribut and Some

Non-Normal Distributions
Because of the critical role of skewness and kurtosis in the
present study, these characteristics of a distribution are defined
and illustrated for the normal and some non-normal distributions. In
theory, the shape of a distribution is defined by its probability
distribution function, which is an algebraic expression indicating the
distribution of a variable across all of its possible values. In
practice, an approximate distribution of a variable can be
characterized by its first four central moments (i.e., mean, variance,
skewness, and kurtosis) (Fleishman, 1978). In this scheme, the center
and dispersion of a distribution are determined by the mean and
variance, and its symmetry and tailedness by the skewness and kurtosis
values. Assuming the observations are standardized to have a known
mean and variance, this permits distributions to be classified

according to their skewness and kurtosis values.

16
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Skewness and kurtosis are defined through central moments. For a
continuous random variable X, the r(th) central moment (pr) is defined

as (Kendall & Stuart, 1969, V. 1, p. 55):

- [ ®up" £, ¢8)

Be

where By is the population mean and £(X) 1is the probability
distribution function of X. The population skewness (11) and kurtosis
(12) can be defined in terms of the second (pz), third (y3), and fourth

(pa) central moments (Kendall & Stuart, 1969, V. 1, p. 85):

" - #3/;&;/ 2, (2)
2
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According to expressions (2) and (3), the normal distribution has
skewness and kurtosis values equal to zero. Non-normal distributions
can then be defined as those having skewness and/or kurtosis values
other than zero. Expressions (2) and (3) were used to define the
normal distribution and a variety of non-normal distributions in the
present simulation study.

In general, a distribution is characterized as mesokurtic if its
kurtosis 1is zero, platykurtic if 1its kurtosis 1is negative, and
leptokurtic if its kurtosis is positive (Kendall & Stuart, 1969, V. 1,
pP. 86). Platykurtic distributions are flatter and have lighter tails
(i.e., less extreme values) than the normal distribution. Leptokurtic
distributions on the other hand, are sharply peaked and ha@e heavier
tails (i.e., more extreme values) than the normal distribution. A

distribution is said to be symmetric 1if its skewness is zero, or
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asymmetric (skewed) if it has a negative or positive skewness value.

To 1illustrate the relationship between various skewness and
kurtosis combinations and the shape of the distribution they reflect,
the skewness and kurtosis values of some common (standardized)
univariate distributions are shown in Tabie 1. Most of these
distributions are symmetric or 1leptokurtic (i.e., normal, wuniform,

logistic, double exponential, t). In general, skewness and kurtosis

Table 1

Skewness and Kurtosis Values ofaSome
Univariate Distributions

Distribution 71 2% Shape of Distribution
normal .0 .00 symmetric, mesokurtic
uniform .0 -1.12 symmetric, platykurtic
logistic .0 1.20 symmetric, leptokurtic
double-exp. .0 3.00b symmetric, leptokurtic
t .0 6/(v-4) symmetric, leptokurtic
exponential 2.0 6.00 asymmetric, leptokurtic
-~

Johnson and Kotz (1970, Vols. 1 and 2)

b v = degrees of freedom (v > 4).

values that deviate subtantially from zero indicate a greater degree
of non-normality, although it should be emphasized that the effects of
both skewness and kurtosis must be considered.

Another distribution that is important in simulation studies is
the symmetric, extremely heavy-tailed Cauchy, since it reflects an
extreme in non-normality that can occur in practice. Theoretically,
the Cauchy distribution has an infinite variance, and hence does not
possess a finite kurtosis value. However, in empirical studies a

pseudo-Cauchy distribution can be generated using a zero skewness
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value and a large positive kurtosis value (Harwell & Serlin, 1985).

Although wunivariate measures of skewness and kurtosis are
relatively unambiguous in their interpretation, such is not the case
for their multivariate counterparts. Even so, these measures have been
useful in identifying a particular member of a family of distributions,
in developing a test of normality, and in investigating the robustness
of normal-theory procedures (Mardia, 1970).

Mardia (1970, 1974) developed measures of skewness and kurtosis
for multivariate distributions, details of which appear in Chapter
III. For illustrative purposes, multivariate measures of skewness and
kurtosis for some bivariate distributions in which both variables are
standardized are given in Table 2 (Mardia, 1970). Notice that the
skewness values are zero for all symmetric distributions. In
particular, Mardia (1974) showed that the multivariate-normal
distribution has skewness and kurtosis values of zero. Just as in the
univariate case, any multivariate distribution is considered to be

non-normal for non-zero skewness and/or kurtosis values.

Table 2

Multivariate Skewness and Kurtosis Values of Some
Bivariate Distributions (Mardia, 1970)

Distribution Skewness Kurtosis
normal 0.00 0.00
uniform 0.00 -2.24
double-exponential 0.00 6.00

exponential 8.00 12.00
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Methods of Dealing With Non-Normal Data

As noted earlier, the normality assumption underlying normal-
theory tests is of prime importance in the correct use and
interpretation of these procedures. At the same time, there 1is a
general recognition that data obtained in a variety of settings,
including education, are frequently at least moderately non-normal and
hence the use of normal-theory tests 1is problematic. This has led to
the emergence of two approaches for fitting such data into the
framework of statistical theory (a) transforming the data to an
approximate normal form and then applying a normal-theory procedure
(see Box & Cox, 1964; Kaskey, Kolman, Krishnaiah, & Steinberg, 1980),
or (b) transforming the data to their corresponding ranks, which
removes the normality requirement on the form of the underlying
distribution, and employing nonparametric methods. The focus here is on
(b), and in the following sections the applications of rank methods in
hypothesis testing are discussed.
Nonparametric Methods

Nonparametric methods have a long history in both theoretical
and applied statistics (Noether, 1984). These methods require a
transformation of the original scores such that the resulting
transformed values have known distributional properties. These tests
are often classified as distribution-free, since the methods are based
on (sample) statistics whose sampling distributions do not depend on
the form of the parent distribution from which the sample was drawn
(Gibbons, 1971, p. 3). The valid use of these tests requires that the

distributions underlying the data are continuous and that all
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observations are independently and identically distributed (Puri & Sen,
1985, p. 307).

The principle underlying nonparametric procedures is that under
a postulated statistical hypothesis the joint distribution of the
random variables is invariant under appropriate groups of
transformations (Puri & Sen, 1985, p. 7). It is this invariance that
produces what are called genuinely distribution-free tests. However,
some distribution-free tests are not genuinely distribution-free, and
are usually <classified as asymptotically or permutationally
distribution-free. In general, an asymptotically distribution-free
test can be defined as one which is distribution-free given that the
sample size is infinite (i.e., by virtue of the central limit theorem)
(Conover & Iman, 1981; Hollander & Wolfe, 1973, p. 437), whereas a
permutationally distribution-free test depends only on the set of
permutations of the observations associated with testing a hypothesis,
and not on the wunderlying distribution function (Puri & Sen, 1985, p.
149).

Applications of nonparametric methods in testing univariate
hypotheses are described in detail by Gibbons (1971), Conover (1980),
and Marascuilo and McSweeney (1977). A primary source of nonparametric
methods in testing multivariate hypotheses is the work of Puri and Sen
(1969, 1971, 1985). Multivariate tests presented by these authors
include the single-sample location problem (e.g., sign, signed-rank,
extended signed-rank), the multi-sample location problem (e.g., median,
rank sum), and a number of tests for hypotheses subsumed by the general

linear model.
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Rank-Transform Methods

A related set of nonparametric procedures that are used to test
univariate and multivariate hypotheses are rank-transform methods.
Transforming the original data to their corresponding ranks and
applying the usual normal-theory procedures is an idea championed by
Conover and Iman (1981). This approach generates a class of rank-
transform methods that in many ways are comparable to well known
univariate nonparametric procedures such as the Wilcoxon-Mann-
Whitney, Kruskal-Wallis, Wilcoxon-signed ranks, and Friedman tests
(Conover & Iman, 1976, 1980a, 1982, 1980b; Iman, 1974a, 1974b, 1976;
Iman & Conover 1976, 1978, 1979, 1980a, 1980b). Other applications of
the rank-transform approach include correlation and regression analysis
(Boyer, Palachek, & Schucany; 1983; Hogg & Randles, 1975; Iman &
Conover, 1979). An extension of this approach to tests based on the
multivariate general 1linear model 1is possible by ranking each
quantitative variable separately, and then applying the usual normal-
theory methods. One advantage of this approach is that the resulting
tests can be performed using existing statistical computer packages.

Although the rank-transform approach seems promising, oﬁe
important limitation should be noted. The rank-transform methods rely
on the distributions of the normal-theory test statistics as
approximations to the actual distributions of the rank transformation
statistics. To date, the theoretical distributions of such statistics
have not been established. Consequently their distributional properties
can only be determined empirically through computer simulation studies
and are always restricted by the conditions of a particular simulation

study.
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In sum, the two primary nonparametric methods for handling
non-normal data are the pure- and mixed-rank procedures illustrated in
Puri and Sen (1985, pp. 307-328), and the rank-transform method of
Conover and Iman (1981). Both remove the wunderlying normality
requirement. The major difference between them is that the pure- and
mixed-rank procedures have a known theoretical substructure, which
permits analytic statements about the distributional properties of a

test, while the rank-transform procedure permits no such statements.

owe o N -The
onpa tyic-Multiv t

In comparison to the univariate case, surprisingly little is
known about the robustness and power of multivariate tests when
underlying assumptions are violated (e.g., non-normality). A natural
starting point is the robustness and power properties of univariate
procedures, which have often been found to parallel those of their
multivariate counterparts. A large number of studies comparing the
distributional properties of univariate procedures are available.
Some: of these studies have been analytic, involving asymptotic
approximations, but most have been empirical. The following review will
summarize the robustness and power of some nonparametric-univariate and
-multivariate tests as compared to their normal-theory counterparts.
In reporting these results, the focus will be on the violation of the
normality assumption. Analytic results, where available, will be
presented first, followed by empirical results. The sparseness of
information on multivariate tests clearly indicates the need for

further work in this area.
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- varia

The power of a particular test relative to a competitor is
usually reflected by its asymptotic relative efficiency (A.R.E.),
which is the limiting ratio of the sample size required by one test
relative to that required by a second test such that they have equal
power for the same alternative hypothesis. A test is said to be more
powerful and efficient than another test if the A.R.E. is greater than
1. Details of the computation of the A.R.E. appear in Appendix B. As an
example, some A.R.E. results for nonparametric tests of location
relative to the normal-theory t and F tests are shown in Table 3
(Marascuilo & McSweeney, 1977, p. 87). The nonparametric "normal
scores" tests in Table 3 refer to a rank test applied to normal scores,
which are obtained by transforming the ranks to their standard normal
scale counterparts.

Table 3

Asymptotic Relative Efficiencies of Some Nonparametric
and Normal-Theory Tests of Location.

double-

Test/Distribution normal uniform logistic exponential
One-sample

Sign 0.637 0.333 0.750 2.000

Wilcoxon 0.955 1.000 1.047 1.500
Two-sample

Median 0.637 0.333 0.750 2.000

Mann-Whitney 0.955 1.000 1.047 1.500

Normal -scores 1.000 1.273
K-sample

Median 0.637 0.333 0.750 2.000

Kruskal-Wallis 0.955 1.000 1.047 1.500

Normal-scores 1.000 1.273
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As an example, consider the A.R.E. of the nonparametric two-
sample Mann-Whitney test relative to the t test for a parent normal
distribution. The A.R.E. of .955 implies that the Mann-Whitney test
requires a sample size of 100 in order to have a power equal to that
of the t test using a sample size of approximately 95. In this case,
the £t test is said to be more efficient than the rank test since it
requires a smaller sample size in order to have the same power.

It should be noted that although all four distributions in Table
3 are symmetric, their kurtosis varies from moderate-negative to large-
positive. The results indicate that for the normal, wuniform, and
logistic distributions most of the noﬁparametric tests are as
efficient as their normal-theory counterparts, while for the double
exponential distribution the nonparametric tests are more efficient
than the corresponding normal-theory tests. These findings suggest
that these nonparametric alternatives are, in general, almost as
powerful as the corresponding normai-theory procedures for normal and
near-normal parent distributions, and certainly more powerful for
leptokurtic distributions.

- v te

A.R.E. is a large-sample property of a test which may not be
valid for small to moderate samples (Gibbons, 1971, p. 19). As an
alternative, simulation studies may be used to assess the performance
of two or more tests by comparing their empirical Type I error and
power values for various wunderlying distributions, alternative
hypotheses, and sample sizes. This section summarizes the results of

a number of empirical studies carried out to investigate the effects
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of non-normality on the robustness and power of univariate normal-
theory and nonparametric tests. The studies cover a variety of tests
and were chosen because of their representativeness in comparing
normal-theory and nonparametric tests for parent non-normal
distributions.

In general, empirical studies have suggested that univariate
normal-theory tests are robust to moderate non-normality for large
samples, especially when the underlying distribution is symmetric
(Gaito, 1970; Glass, Peckham, & Sanders, 1972, Kendall & Stuart, V. 2,
p. 484, Scheffe’, 1959, p. 347). However, a number of studies have
suggested that distinct departures from normality in combination with
small samples affect univariate normal-theory tests. For example,
Feir-Walsh and Toothaker (1974) compared the pérformance of the normal-
theory F test and the nonparametric Kruskal-Wallis test when samples
were drawn from an exponential (positively skewed) population. While
the Type 1 error rates were somewhat conservative for both tests, the
Kruskal-Wallis procedure was found to be more powerful then the F test.
Srisukho (1974), in a similar study, found the power of the Kruskal-
Wallis test to be greater than that of the F test when all samples were
drawn from a double exponential (symmetric, leptokurtic) population,
and less than the F test when all samples were drawn from a uniform
(symmetric, platykurtic) population. The Type I error rates for the
Kruskal-Wallis test tended to be closer to the nominal value than
those of the F test for both the double-exponential and uniform

populations.
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Studies that examined the distributional behavior of normal-
theory and rank-transform statistics have shown favorable results for
the latter tests. Boyer, Palachek, and Schucany (1983) studied the
distributional behavior of the Williams’ (1959) test of the equality
P = p given that X, and X
yx, yx, 1 2
are correlated), and its rank-transform alternative. The results

of dependent correlations (i.e., Ho:

indicated that although the power values of both procedures were
similar, the Type I error rates of the rank-transform test were closer
to the nominal alpha level than those of Williams’ test for data that
were drawn from a parent lognormal distribution. Williams’ test,
however, produced higher power values for data that were drawn from a
parent normal distrution. Based on these results, the authors
recommended the use of Williams’ test when normality can be assumed,
and the rank-transform version of Williams’ test when the normality
assumption is not tenable.

Iman (1974b) examined the Type I error and power properties of
the normal-theory F and rank-transform F tests for a two-way ANOVA
problem. The results indicated that the Type I error rate of the rank-
transform F test was similar to that of the F test, and that the rank-
transform F was more powerful when the underlying distribution was
non-normal.

In sum, the smattering of empirical results for univariate tests
presented above suggests that the Type I error rate §f normal - theory
tests is generally not affected by moderate departures from normality
for large samples, particularly when the underlying distribution is

symmetric and light-tailed (e.g., uniform). However, for distinctly
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non-normal populations (e.g., exponential, double-exponential),
nonparametric tests appear to be robust with respect to Type I error
rate, and produce higher power values than their normal-theory
counterparts.
- - - V. e

Normal-theory-multivariate tests depend on the assumption that
the observations are governed by the multivariate-normal density
function. Since departures from this assumption are very difficult to
investigate analytically (Ito & Schull, 1964), empirical methods are
used. The following review summarizes some empirical studies that have
examined the effects of non-normality on the Type I error and power
properties of some normal-theory- multivariate tests.

A number of studies for the one- and two-independent groups case
have been carried out examining the effects of non-normal skewness and
kurtosis and sample size on Hotelling’s I2 statistic. The one-sample

12, like the univariate one-sample t

statistic, is (a) not affected by
small departures from normality, (b) more sensitive to non-normal
skewness than to non-normal kurtosis, (c) produces liberal Type 1
error rates for a large skewness, and (d) produces conservative Type I
error rates for large kurtosis (Chase & Bulgren, 1971; Davis, 1982a;
Mardia, 1970). Similar results for the two-sample location problem
were obtained by Davis (1980, 1982b) for Wilks’s likelihood ratio and
Roy’s largest root tests. Other results have suggested that non-normal
kurtosis has no substantial effect on the two-sample 12 statistic for

large samples (Hopkins & Clay, 1963; Ito, 1980).
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Olson (1974) empirically studied the effects of non-normality
and heterogeneity of covariance matrices on six multi-sample, normal-
theory MANOVA tests (Roy, Hotelling-Lawley, Wilks, Pillai-Bartlett,
Gnanadesikan, and Gnanadesikan-alternative) using small-to-large
sample sizes (5, 10, 50). The empirical Type I error results indicated
that moderate departures from a kurtosis of zero had mild effects on
three tests (Hotelling-Lawley, Wilks, and Pillai-Bartlett), and severe
effects on the remaining tests. The direction of the effect of
positive kurtosis was generally toward conservatism. The results of
this study also suggested that the Gnanadesikan and Gnanadesikan-
alternative tests tended to produce liberal Type I error rates with
increases in the number of outcome variables for non-zero kurtosis
values, especially for small samples crossed with a large number of
groups. The power results indicated that all six tests suffer under
moderate departures from a kurtosis of zero, and that increases in
the number of outcome variables tended to decrease the power of all of
the tests.

In general, the results of the studies that used large samples
suggest that normal-theory tests are robust to non-normality (Zwick,
1984, p. 2). This result is expected for many tests because of the
role of the multivariate analog of the central limit tﬁeorem
(Morrison, 1976, p. 85). This theorem states that any statistic which
can be represented as a linear combination of the observations has a
sampling distribution that can be approximated by the normal
distribution for large samples. Since many test statistics are derived

from some linear function of the observations, the sampling
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distribution of the test statistic can be approximated by the normal
distribution as sample size increases. Consequently the test would be
robust for large samples; this is not necessarily the case for small
or moderate samples.

In sum, these studies suggest that (a) small-to-moderate
departures from normality have only minor effects on normal-theory-
multivariate tests, (b) such effects are more pronounced for small
samples than for 1large samples, (c) increasing skewness tends to
result in liberal Type I error rates, (d) increasing kurtosis tends to
results in conservative Type I error rates, and (e) the distributional
behavior of normal-theory-multivariate tests is affected more by

non-normal skewness than by non-normal kurtosis.

- arame -Multiva e

Analytic results for the distributional properties of
nonparametric-multivariate tests are available for a few special
cases. Available analytic studies on the asymptotic efficiency of
nonparametric-multivariate tests relative to their normal-theory
counterparts have shown results similar to those of the univariate
case (Puri & Sen, 1971, p. 177). For example, the A.R.E. of the
multivariate-nonparametric one-sample test of location with normal-
scores relative to Hotelling's 12 is equal to 1.00 for a multivariate
normal distribution, and sometimes greater than 1.00 for other
multivariate distributions. (Puri & Sen, 1971, p. 177). Recall that
similar results were reported by Marascuilo and McSweeney (1977, p.
87) for the one-sample, normal-scores and t tests in the univariate

case (Table 3).
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Additional results for multivariate tests of location are
available for special cases: (a) the A.R.E. of the rank procedure to
the normal-theory, two-sample test oflocation is always less than 1.00
in the bivariate normal case, (b) the normal-scores test is more
efficient than the normal-theory test for any mixture of multivariate
normal distributions (i.e., a combination of two normal deviates) and
heavy-tailed multivariate distributions, and (c) the normal-scores
test is more efficient for a multivariate distribution with marginal
densities that have 1light tails, a result that parallels the
univariate case (see Zwick, 1984, p. 9). In general, the nonparametric
rank tests for hypotheses subsumed under the multivariate-general-
linear model are asymptotically power-equivalent to the normal-theory
likelihood-ratio test for a parent normal distribution (Puri & Sen,
1985, p. 184). The nonparametric rank tests for location are
asymptotically as efficient as their normal-theory counterparts for a
parent normal distribution and more efficient for a parent non-normal
distribution (Zwick, 1984, p. 27).

The analytic results indicated that multivariate-nonparametric
rank and normal scores tests are more efficient than their normal-
theory counterparts for non-normal distributions, and are almost as
efficient for the normal distribution.

- t -Multiva Case

Surprisingly few simulation studies have been done comparing
the Type I error rate and power of multivariate nonparametric tests
against their normal-theory counterparts. The available results are

presented in some detail since they have important implications for
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the conduct of the present study.

Tiku and Singh (1982) studied the Type I error rate and power
of the two-sample Hotelling’s 12 and rank tests using samples of size
20 drawn from six bivariate distributions [normal, t, two chi-square
(v = 2, 4), and two mixed-normal]. In all cases the two outcome
variables had a correlation of .5. Their results indicated that the
rank test was robust with respect to the Type I error rate for three
distributions [normal, chi-square (v = 2), and one mixed-normal], and
was conservative for the remaining distributions. The IZ test was
robust with respect to Type I error rate for the normal and t
distributions, and conservative for the chi-square and mixed-normal
distributions. The rank test proved more powerful than the 12 test for
all distributions except the normal. The results of Tiku and Singh
suggest that the two-sample rank test should be the procedure of choice
for testing the equality of mean vectors for even moderately non-normal
distributions.

Zwick (1984) studied the empirical Type I error rate and power
of the multivariate-nonparametric two-sample rank and normal-scores
alternatives to the 12 test under mild non-normality and heterogeneity
of variance-covariance conditions. Just as in the univariate case, the
Type 1 error rate was affected mainly by variance-sample size
combinations and not by the parent distribution. Power was affected by
both the variance-sample size combination and parent distribution, with
all tests producing approximately the same power values. In summarizing
the results, Zwick recommended that (a) wunder the conditions of

normality and homogeneity of variance the normal-theory test was the
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best procedure with respect to both Type I error and power, (b) under
normality and heterogeneity of variance with equal sample sizes or
when the larger group had the larger variance the rank test was the
best choice, and (c) for negatively-skewed distributions the normal-
scores test appeared to be the best overall choice except when the
smaller group had the larger variance.

Harwell and Serlin (1985) examined the Type I error rate and
power of the Rao F (1951), the nonparametric rank-transform Rao F
(Conover & Iman, 1981), and the pure- and mixed-rank tests illustrated
by Puri and Sen (1985, p. 312). The simulation conditions included in
this study were form of distribution (normal, uniform, double-
exponential, exponential, Cauchy), sample size (20, 40, 100),
correlation within each set of variables (.3, .7), and correlation
among the two sets of variables (Type I error, power). The Cauchy was
represented by a symmetric distribution with a kurtosis wvalue of
twenty.

The Type I error results suggested that the Rao [ test was
robust with respect to the Type I error for the normal and uniform
distributions, became 1liberal for the Cauchy distribution, and
produced mixed results for the double exponential and exponential
distributions. There was no clear pattern for the liberal Type I error
rates with respect to sample size and within-set correlation. As a
measure of the Type I error behavior of these tests, the Rao F overall
produced 38% liberal Type I error rates, taking into account sampling
error, while the rank-transform Rao F produced only 7% liberal Type I

error rates. The latter test performed most satisfactorily for
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extremely non-normal distributions and poorly for the smallest sample
size and within-set correlation = .3 conditions. In contrast, the
pure- and mixed-rank tests did not produce a single liberal Type I
error rate across all simulation conditions.

With respect to power, the results indicated that under a.normal
or uniform distribution the Rao F test was most powerful across all
within-set correlation and sample size conditions. In general, the
rank-transform Rao F produced the largest power values among the three
nonparametric tests, especially for small samples. However, all four
tests produced similar power values for the sample size of 100. The
power values of all four tests for the double-exponential were
comparable for a sample size of 100, and slightly less for a sample
size of 40. In general the mixed-rank power values were slightly higher
than those of the pure-rank procedure.

The power results for the Cauchy and exponential distributions
showed that the pure- and mixed-rank tests performed poorly for the
sample size of 20 and the .01 level of significance. Once again the
power values for all three nonparametric tests were quite similar for
larger sample sizes. The three nonparametric tests overall produced
power values substantially larger then the reported values of the Rao
F test for the sample size of 100. In general, the mixed-rank test
produced slightly lower power values than the pure-rank test.

Based on the Type I error and power results, the authors
recommended that the Rao F test be used for symmetric, light-tailed
distributions, the rank-transform Rao F for small samples for any of

the non-normal distribution investigated, and the pure- and mixed-rank
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statistics for larger samples and moderate to distinctly non-normal
distributions. The results also confirmed earlier findings that a
normal-theory test is affected by moderate-to-large skewness and by a
large kurtosis.
Dependency Among Variables

Studies that examined the effects of the degree of dependency
among variables on the distributional behavior of multivariate tests
suggest that such dependency affects the power of nonparametric tests.
Bhattacharyaa, Johnson, and Neave (1971) examined the power of the
two-sample Hotelling'’'s '1‘2 and nonparametric rank-sum tests. The
A.R.E.'s of the rank test relative to 12 test for correlation values of
.0, .3, .6, and .9 are .955, .947, .924, and .884, respectively. These
results suggest that the A.R.E. of the rank test to '1'2 decreases as
the degree of dependency among variables increases. Similar results
were found by Puri and Sen (1971, p. 176) for negative correlation
values. The results of Harwell and Serlin (1985) showed that the
nonparametric pure- and mixed-rank tests produced slightly lower power
values for extremely non-normal distributions (e.g., exponential,
Cauchy) as the correlation among outcome and predictor variables
increased from .3 to .7. These studies suggest that a high degree of
dependency among outcome and predictor variables slightly reduces the

power of some nonparametric tests.

summary

The present review of the literature leads to the following
conclusions with respect to the effects of skewness and kurtosis on

Type I error probability and power of normal-theory and nonparametric-
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multivariate statistical tests: (a) the effects of non-normality on
normal-theory-multivariate tests appear to parallel those in the
univariate case, (b) for large samples slight departures from
normality have negligible effects on the Type I error rate and power
of most normal-theory tests, (c) for small samples moderate to large
departures from normality affect the Type I errors and power of these
tests, (d) increasing skewness results in normal-theory tests that
become liberal while increasing kurtosis results in tests that become
conservative (except for the Harwell & Serlin 1985 study in which
increasing kurtosis results in normal-theory tests that become
liberal), (e) normal-theory tests are more sensitive to non-normal
skewness than to non-normal kurtosis, (f) nonparametric tests are
superior at controlling Type I errors within nominal levels and are
asymptotically more efficient compared to their normal-theory
competitors when the underlying distributions are at least moderately
non-normal, and (g) a high degree of dependency among variables
slightly decreases the power of some nonparametric tests.

The review of the literature indicates that most of the studies
on distributional properties of multivariate tests were confined to
the MANOVA procedure. The present study of the tests for canonical-
correlation/multivariate-multiple-regression complements previous
work. The present study also extends the results of Harwell and Serlin
(1985) by including the number-of-variables factor and some additional
parent distributions and within-set correlations. The focus was the
interaction of the form of parent distribution and the sample size, the

within-set correlation, and the number-of-variables.



CHAPTER III

METHODOLOGY

This chapter presents the methodology employed in the present
study. The following topics are discussed (a) multivariate statistical
models, (b) test statistics and their assumptions, (c) data generation
method, (d) simulation conditions, and (e) presentation of simulation

results.

Multivariate Statistical Models

This section describes the multivariate-multiple-regression and
canonical-correlation models and their relationship to the
multivariate general 1linear model. The term general linear model
refers to a family of algebraic models characterized by the linearity
of the parameters of the equations specifying the models (Gittinms,
1985, p. 19). The multivariate-multiple-regression model is a member
of one such family. Let Y be an N x p (i=-1,2,...,N; j=1,2,...,p) data
matrix of N observations on p outcome variables, X an N x gq
(k=1,2,...,q) matrix of regression constants, 8 a p x q matrix of
unknown parameters of the model, and E an N x p matrix of unobserved
random errors. The multivariate-multiple-regression model can be

written:

I -X 8 +E . (4)
Nxp Nxq qxp Nxp

37
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A canonical-correlation model may be conceived of as a special
case of the multivariate-general-linear model (Gittins, 1985, pp.
19-20). Recall that the focus of the present study is testing whether
there is a linear relationship among two sets of variables, and that
testing the hypothesis of independence among two sets of variables is
equivalent to testing the hypothesis of no regression. This linear
relationship may be represented and studied using a canonical-
correlation model (Gittins, 1985, p. 19). The following paragraph
introduces canonical correlation and canonical variables.

Let Yl’ YZ’ vy Yp and Xl, X2, C ey Xq be two sets of random

variables. Define

¢ - h

1Y1 + h2Y2 + ... + hpr (5)
as a weighted linear combination of the Yj variables, and
R=mXx +mX + ... +m X (6)

as a weighted linear combination of the Xk variables. Define also
h' = (hl' h2’ . hp) and @’ = (ml, My, -y mq) as the vectors of
constants that maximize the correlation between the Yj and Xk
variables. The correlation between the canonical variates ¢ and % is
the canonical correlation and h and m are the canonical weights.
Given two sets of variables a total of s = minimum (p, q) pairs of
linear combinations can be constructed, and hence s canonical
correlations can be obtained. The canonical correlations are found as

solutions of a determinantal equation and the canonical weights as

solutions of an eigen equation. The process of obtaining these
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quantities is outlined below (Morrisonm, 1976, pp. 254-257).

Let 2 represents a sample canonical correlation, S the sample

covariance matrix of the Xj variables, Syy the sample covariance
matrix of the Yj variables, and SYX the sample covariance matrix of

the Yj and Xk variables. By definition p2 is given by

2
(b’ m)
)2 - Sy . 7)
@ 5, D@ 5, »

Since we wish to maximize the correlation between the 1linear
combinations ¢ and ﬁ, the problem can be solved by obtaining the
values of h and m that maximizes expression (7). To simplify the
"maximization” process while assuring the uniqueness of h and m the

variance of both linear combinations is set equal to 1:

b S h-w S, m-1. &

Hence we need only to maximize (h' syx m)z subject to the constraint in
(8). This problem can be solved by introducing Lagrangian multipliers

A and 8 as follows:

@ s, w-2@ S h-D - @ s, m-D. (9

The first partial derivatives of expression (9) with respect to
h and m are then taken. Setting these equations equal to zero produces

a homogenous system of two simultaneous matrix equations, namely

- Asyy h + (b’ §yx m)§yx m=0, (10)
(b’ syx m)i},x h-6s, m=0.
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Premultiplication of the first equation by h’ and the second equation

by m’ produces

x-a-(h'swg)z. (11)

Hence each of the Lagrangian multipliers is equal to the squared
maximum correlation between § and 8. 1In order for the equations in
(10) to have a nontrivial solution their determinant must vanish. This

leads to the determinantal equation

1553 Syy 83k S5 - A2l -0, (12)

where 1 is an identity matrix. Morrison (1976, p. 257) shows that the
eigenvalues of equation (12) may also be obtained by replacing the
covariance matrices in equation (12) with their corresponding sum-of-

cross-product (SCP) matrices:

IA;; Ayx al by, - Ml -0, (13)

where Axx is the SCP matrix of the centered Xk variables, Ayy is the
SCP matrix of the centered Yj variables, and Ayx is the SCP matrix of

the centered Yj and Xk variables. The maximum 92 is the largest
eigenvalue () of equation (12) or (13) (Morrison, 1976, p. 256). The

canonical correlations are ordered 1 > Ql > 22 > .. > Qs >0. The
canonical weights are the solutions to the associated eigen equations
(Morrison, 1976, p. 263). Note that each pair of canonical variates is

orthogonal to all other pairs and that the total number of pairs

equals s.
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Iest Statistics and Their Assumptions
Five test statistics will be used to test the hypothesis of no
linear relationship among the two sets of variables (Yj’ X.k). These
tests can be conceived of as a test of the matrix of the regression
parameters § against zero, or, synonomously, as an omnibus test that
all squared population canonical correlations (pi, p%, RN pi) are

simultaneously equal to zero (Gittins, 1985, p. 57). Hence the null

hypothesis for the canonical problem can be written as
2
-...-ps-O. (14)

Retaining H, is equivalent to concluding that there is no Y_, Xk

j

implies the existence of such a

0
relationship, while rejecting H

0
relationship. Each test is performed using the eigen values (squared
canonical correlations) obtained from expression (13).

Two normal-theory and three nonparametric omnibus tests of the
hypothesis of expression (14) will be employed. The normal-theory
tests are the Bartlett (1938) and Rao F (1951) procedures. The
nonparametric tests are the pure- and mixed:-rank procedures discussed
in Puri and Sen (1985, pp. 307-328) and the rank-transform Rao F
(Conover & Iman, 1981). Although all five tests provide tests of an
omnibus statistical hypothesis it is important to emphasize the
differences in the nature of the variables upon which the canonical
correlations are computed. For the normal-theory tests the canonical
correlations are obtained using the original values of the outcome and

Predictor variables; for the pure-rank and rank-transform Rao F the

canonical correlations are obtained using the ranks of the original
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values of the outcome and predictor variables; and for the mixed-rank
test the canonical correlations are obtained using the original values
of the predictors and the ranks of the outcome variables. Note,
however, that the hypothesis being tested involves the raw score
canonical correlations or regression coefficients. The test statistics,
their computations, and assumptions are described below.
Bartlett Statistic

Given two sets of random variables, there exist several measures
that summarize the strength of the relationship among them. The best
known is Wilk’s lambda (A), which is defined as (Anderson, 1958, p.
233)

s
A=T1 (1 - 2), (r=1,2,...,s), (15)
r=1 r

where the Ar's are the solutions (eigenvalues) of expression (13). The
values of A have a range between 0O and 1, with smaller values
indicating a strong relationship between the Xk and Yj variables and
larger values indicating a weak relationship (Marascuilo & Levin,
1983, p. 185).

Given that two sets of variables are independent, Wilk’s A has
been shown to follow Wilk'’s A distribution (Anderson, 1958, p. 242).
Unfortunately, tables of the exact A distribution are needed to
perform the test. To obviate the need for these tables, Bartlett
(1938) 1introduced a large-sample chi-square approximation to the
exact Wilks's A distribution. Under the truth of the hypothesis of

expression (14), Bartlett (1938) showed that Bartlett statistic (BAR)

is asymptotically distributed as a central chi-square variable with pq
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degrees of freedom. The BAR statistic can be computed using the

following formula (Marascuilo & Levin, 1983, p. 185):

2
BAR = -[(N-1) - (p + q + 1)/2)] logeA ~ qu (16)

If BAR exceeds the 100(1 - a) percentile of the chi-square distribution
with pq degrees of freedom, the hypothesis of expression (14) is
rejected (Bartlett, 1938).

The Bartlett procedure assumes that the observations are
independently and identically distributed random variables
(i.i.d.r.v.'’s) with a common (multivariate-normal) distribution
function (Gittins, 1985, p. 242).

Rao F Statistic

A more precise approximation to the exact Wilk’'s A was
developed by Rao (1951) (Marascuilo & Levin, 1983, p. 185). In testing
the independence of two sets of variables, Rao’s procedure yields an
exact test when the smaller of the two sets contains two or less
variables (Marascuilo & Levin, 1983, p. 187). In contrast, no exact
test is possible with the Bartlett test. The Rao F statistic (RAO)

can be computed using the following formula (Marascuilo & Levin, 1983,

p. 186):
1
@ - Ay,
RAO = F , (17)
- Y1' V2 :
Al/b/v2
where vy = Pq, v, = 1 +ab -pq/2, a=(N-1) - (p +q +1)/2, and
b = [(p2q% - #)/(% + q® -5)112. If RAO exceeds the 100(1 - a)
percentile of the F distribution the hypothesis of expression

vis ¥y



(14) is rejected (Rao, 1951). The assumptions of the Rao F procedure
are the same as those of the Bartlett.
Rank-Transform Rao F

The rank-transform approach (Conover & Iman, 198l) involves
transforming the original values of the outcome and predictor
variables into their corresponding ranks and then applying the
normal-theory Rao F procedure. It is important to emphasize that the
theoretical F distribution is used as an approximation to the unknown
distribution of the rank-transform Rao F statistic (RTF). The decision
rule for the rank-transform Rao F is the same as that of the normal-
theory Rao F test. However, unlike the previous two tests the pi of
expression (13) are based on the ranks of the Xk and the YJ variables.
The rank-transform procedure assumes that the observations are
i.i.d.r.v.’s with a common distribution function (Conover & Iman,
1981).
Pure-Rapk Statistic

The nonparametric pure- and mixed-rank statistics illustrated in
Puri and Sen (1985, pp. 307-328), and discussed by Harwell and Serlin
(1985), are used when both predictor and outcome variables are random.
It should be noted that the model originally presented by Puri and Sen
(1969) requires the predictor variables to be known regression
constants. However, since this condition rarely obtains in practice
interest centers on models in which the predictors are assumed to be

random. The pure-rank test is particularly useful when only the ranks

of the predictor or outcome variables are available.
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In the pure-rank model all p outcomes and q predictors are
assumed to be i.i.d.r.v.’'s. To represent the pure-rank test in a
canonical correlation context, let G(Y|X) be the conditional
distribution function of the i(th) subject’s vector of outcomes Ii'
given a vector of predictor values Xi. Recalling the multivariate-
multiple-regression model illustrated in expression (4), the
conditional distribution function of the Xi given the 31 can be

written as:
6, 1% = 6,(x; - X 8. (18)

where G0 is some continuous distribution function. Expression (18)
implies that the conditional distribution function for each subject is
identical, and that this function depends on the observed predictor
values. As noted earlier, this implies that inferences are limited to
subpopulations having the same configuration of predictor values as
those in the sample.

Puri and Sen (1985, pp. 307-328) wused the form given in
expression (18) to write the hypothesis of no relationship among the

two sets of variables as
Hy: 6(X,1%,) = 6,(X))- (19)

Retention of the above hypothesis implies the two sets of variables
are independent, while rejection implies that they are related. In
order to compute the pure-rank statistic (PUR), the N observations for
each of the p outcomes and q predictors must be separately ranked.

Let Rji and Rki represent the rank of the i(th) subject on the j(th)
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outcome and k(th) predictor variables, respectively. Since G(Iilxi) is
assumed to be continuous the theoretical probability of tied Rji or
Rki values is zero. In practice, as long as the proportion of ties is
small, assigning midranks to tied values will have a negligible effect
on the test statistic (Lehmann, 1975, p. 18).
Puri and Sen (1985, pp. 307-312) presented a large-sample form

of the pure-rank statistic based on the SCP matrix S of the centered Rj

and Rk values, with elements

N

S Z Rys 7 R R - R, (20

where Rj and Rk are the rank means for the j(th) dependent and k(th)
predictor variables, respectively. In the construction of the pure-rank
test, Puri and Sen show that the E(§) = Q0 and that the elements of S
are asymptotically multivariate-normal given that the sets of the Xj
and the xk variables are independent. Details of the construction of
this statistic appear in Appendix C.

The form of the pure-rank statistic as presented by Puri and Sen
does not easily permit the use of existing computer software packages.
Harwell and Serlin (1985) provide a form of the pure-rank test that
allows existing computing packages to be used. Details of the
derivation of the alternative form also appear in Appendix C. Assuming
the Xk and Yj have been separately ranked, the ranks are submitted to a
standard computing package (e.g., SAS, 1982), and the canonical

correlations obtained from the output. The form of the PUR statistic

presented by Harwell and Serlin (1985) is
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N
PUR = (N-1) = er , (21)
i=1
where Gr represents the (squared) canonical correlation (eigenvalue)
between the ranks of the Xk and the Y,. These are obtained by replacing

, h|
the SCP matrices based on the original values of the Xk and Y, with the

b

SCP matrices based on their ranks in expression (13). Puri and Sen
(1985, p. 312) showed that under the truth of the hypothesis of
expression (14), the pure-rank statistic is asymptotically distributed
as a central chi-square variable with pq degrees of freedom. The
decision rule for the pure-rank test is to reject the hypothesis of
expression (14) if PUR exceeds the 100(1 - a) percentile of the
chi-square distribution with pq degrees of freedom (Puri & Sen, 1985,
p. 312). Rejection of the hypothesis of expression (14) implies that
the population regression coefficients are not all simultaneously
equal to =zero, or, synonomously, that the population canonical
correlations are not all equal to zero.

The pure-rank test assumes that the Xk and Yj observations are
i.i.d.r.v.’s whose common distribution function 1is G(Xilzi). The
difference in assumptions between the mnormal-theory and pure-rank
procedures is that normality of G(Xilzi) is not required for the
pure-rank test.

Mixed-Rank Statistic

As presented by Puri and Sen (1985, pp. 307-328), and discussed
by Harwell and Serlin (1985), the mixed-rank statistic is computed
using the original Xk values and the ranks of the Y,. This test assumes

3

that all outcomes and predictors are 1i.i.d.r.v.’'s and provides a test
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of the hypothesis that all regression coefficients equal to zero, or,
synonomously, all squared canonical correlations simultaneously equal
to zero. A procedure similar to that of the pure-rank test was employed
by Puri and Sen to obtain a large-sample form of the mixed-rank
statistic. In the mixed-rank case, however, the original xk values are
used instead of their ranks.

The mixed-rank (MIX) test statistic has exactly the same form as
that of the pure-rank test given in expression (21). The decision rule
for the mixed-rank test is the same as that of the pure-rank test, and
rejection of the hypothesis of expression (14) implies that the two
sets of variables are related. The assumptions of the mixed-rank test

are the same as those of the pure-rank test.

Data Generatjon Method

This section outlines the method that was used to generate the
multivariate data for the present study. The data generation and
analysis were performed on an IBM 3090-180 computer at Michigan State
University. The program was coded in FORTRAN V and incorporated a
number of subroutines from the International Mathematical and
Statistical Libraries (IMSL) (1983). A summary of the IMSL subroutines
used in the present study is given in Appendix D. In all cases the
data were in standard form (i.e., p = O, 02 = 1). The Basic Uniform
Number Generator (GGUBS) subroutine of the International Mathematical
and Statistical Libraries (IMSL, 1983) was used to generate random

uniform deviates in the range of (0, 1). GGUBS has been extensively

tested and has been found to produce deviates with good statistical



49
properties (Learmonth & Lewis, 1973).
The resulting uniform deviates were transformed into normal
deviates wusing the Box-Muller (1958) approach. This procedure
transforms a pair of uniform deviates (ul, u2) into a pair of standard

normal deviates (zl, zz) using the following transformations:

z, = (-2 logeul)l/zcos(z x u2), (22)

z, = (-2 logeuz)l/zsin(Z xu

2)-

The resulting variable has (approximately) a mean of 0 and a variance
of 1.

In generating multivariate data the following structure was
assumed to underlie the Y values:

4 -8 X +E , (23)
pxN  pxq gxN  pxN

where the X (predictor) and E (residual) matrices contain random
deviates from a specified distribution. These deviates were generated
by specifying population correlations among the Xk variables and among
the residuals and using the method described below. The Yj values were
then obtained using specified values of the 8 in expression (23).

In generating the multivariate data, a (p+q) x N matrix of
standard normal deviates was initially generated using the transfor-
mation given in (22). The first p rows of this matrix represented the
uncorrelated residuals (E), and the remaining q rows the predictor
values for a sample of size N. In all cases the Xk and Yj variables had

the same distribution. The two matrices of uncorrelated normal deviates

were then separately transformed such that the resulting deviates were
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correlated with a specified distribution. To generate these correlated
deviates the procedure due to Vale and Maurelli (1983) was used.
Details of this procedure, which combines the approaches of Kaiser and
Dickman (1962) and Fleishman (1978), are presented in Appendix B. The
same procedure was followed separately for the predictor and residual
correlation matrices.

The Vale and Maurelli procedure begins by using the Kaiser and
Dickman (1962) method to generate a sample of multivariate-normal
deviates using a matrix decomposition of the desired population
correlation matrix, say P . A matrix Z of multivariate-normal deviates
can be obtained using the following transformation:

Z - F z ’ (24)

(p+q)xN (p+q)x(p+q) (p+q)xN

where F 1is a matrix of principal components (or some other
decomposition) of the population correlation matrix P and z is a
matrix of uncorrelated standard normal deviates. Multiplication of F
and z produces variables with a mean and variance approximately equal
to 0 and 1, respectively, and intervariable correlations approximately
equal to those in P.

To generate non-normal deviates the Vale and Maurelli procedure
combines the Fleishman (1978) and Kaiser-Dickman methods. Fleishman
(1978) developed a technique for generating a (univariate) non-normal

variable, say w by finding the first four central moments (mean,

i ’
variance, skewness, and kurtosis) of the distribution of the

variable. The technique uses a polynomial involving the first three

powers of a standard normal deviate zg:
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2 3
wi-a+bzi+czi +dzi , 1i=1,2, ..., N, (25)

where a, b, ¢, and d are the so-called Fleishman power function
constants. These constants were computed using the nonlinear equation-
solving routine NEQNF (IMSL, 1983). Fleishman’s (1978) procedure has
been shown to produce non-normal deviates with the desired
distributional properties (i.e., mean, variance, skewness, kurtosis)
(Fleishman, 1978).

In generating multivariate non-normal random deviates the
processes of decomposition of the population correlation matrix and the
Fleishman transformation interact, which leads to non-normal deviates
with correlations different from those of the desired population.
Vale and Maurelli (1983) developed a method to counteract this effect
such that the resulting non-normal deviates would possess
(approximately) the desired correlations. Essentially, this method
involves the creation of an intermediate correlation matrix, P*, from
the desired correlation matrix P. The P* matrix is then factored to
obtain the F matrix of expression (24), and the matrix of multivariate-
normal deviates is tr;msformed to non-normal multivariate deviates
using expression (25).

It should be noted that the data-generation process is not based
on the probability density function of any theoretical multivariate
distribution (e.g., multivariate-exponential), and hence the method
does not actually produce data from such a distribution. Rather, the
method produces data that have the same marginal skewness and kurtosis

values as those of a theoretical multivariate distribution. However,
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the Vale and Maurelli (1983) procedure has been shown to produce
multivariate data with (asymptotically) the expected marginal
(univariate) mean, variance, skewness, kurtosis, and correlations (Vale
& Maurelli, 1983). The present study used five univariate summary
measures (i.e., mean, variance, skewness, kurtosis, correlation) to
determine if the simulated data actually possessed the desired
distributional properties. In addition, Mardia’s (1974) measures of

multivariate skewness and kurtosis were computed.
Simulatio dition

As noted earlier there are several factors which are
expected to influence the distributional behavior of the tests. They
include differences in the parent distributions as specified by 7 and
Ty numbers-of-variables, between-set correlations, within-set
correlations, and sample sizes. The simulation factors and their

levels are shown in Table 4 and are discussed in detail below.

Table 4

Simulation Factors

Factor Level
skewness and kurtosis [11. 72] (o, oj, (o, -1.12), (o, 3j), [0, 20],
[.5, 0], [1, .5], [1, 3], [2, 6]
number-of-variables (p, q) (2, 2), (3, 3), (4, &
between-set correlation .0 (Type I error), or >.0 (power)

within-set correlation (py, px) .3, .3), .3, .7, .7, .7

sample size (N) 25, 50, 100
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Data were generated to represent observations from eight selected
distributions representing a range of skewness and kurtosis values. The
(univariate) skewness and kurtosis values of four known distributions
(normal [0,0], uniform ([0, -1.12], double-exponential [0, 3], and
exponential [2, 6]), and four additional distributions were included.
Pairings of skewness and kurtosis values allowed an examination of the
effects of this factor over a broad range of non-normal conditions.
Specifically, the ([0, -1.12], [.5, O], [1, .5]) pairings répresent
three mildly non-normal distributions, ([0, 3], (1, 3]} two moderately
non-normal distributions, and ([2, 6], [0, 20]) two extremely
non-normal distributions. The three combinations of the number-of-
variables used [(2,2), (3,3), (4,4)]) were chosen to examine the effects
of increased dimensionality. Recall that the Rao F test is exactly
distributed as an F variate under the null hypothesis when the smaller
variable set contains two or fewer variables. The (3, 3) and (4, &)
combinations also reflected the increasing non-normality that tends to
be associated with increasing numbers of variables.

The three sets of values of the correlations within the set of
outcome and predictor variables [(.3, .3), (.3, 7, .7, D]
represented a range of correlations encountered in practice. These
combinations of within-set correlations permitted an examination of
the effects of equal and unequal within-set correlation on the
distributional behavior of the tests. For example, the power value of
nonparametric rank tests appears to decrease slightly as the
(absolute) within-set correlation increases for extremely non-normal

data. The within-set correlation values allowed the behavior of the
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tests under these conditions to be examined.

Three different sample sizes (25, 50, 100) were also included in
the present study. This range permitted an examination of the effect
of varying sample size on the tests. Marascuilo and Levin (1983, p.
204) recommended that samples of larger than 10(p+q) should be used in
multivariate studies. According to this recommendation, the chosen
sample sizes represent small, small-moderate, and moderate-large
samples, depending on the numbers of variables used.

Finally, a range of between-set correlations (.0 < pxy < .366)
were included to examine the Type I error and power properties of the
tests. A zero between-set correlation corresponds to the Type I error
case while a non-zero between-set correlation corresponds to the power
case. The between-set correlation for the power case was obtained
analytically using a procedure due to Muller and Peterson (1984) and
the tabled power values of the F test due to Pearson and Hartley
(1951). This procedure uses an approximation involving the non-
centrality parameter of the [ distribution. The non-centrality value
was found such that a power of .8 would be achieved at an alpha level

of .05 for a sample size of 100 and a multivariate-normal distribution.
Present o) t ts

The 8x3x2x3x3 fully-crossed design employed in the present study
generated a total of 432 simulation conditions. Three thousand
replications were carried out for each condition, and the five test
statistics (Bartlett, Rao F, rank-transform Rao F, pure- and mixed-

rank) were calculated for each replication. The resulting Type I error
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and power values were tabulated at three levels of significance
(.01, .05, .10).

The Type I error probability was estimated by the proportion of
the number of rejections of the null hypothesis of expression (14)
when the null condition was true (i.e. data were sampled from a
multivariate population with a between-set correlation equal to zero).
Thé robustness of the Type I error probability of the five tests was
determined using a 95% confidence interval of the Type I error
probability (i.e., a * 1.96/[a(l - «)/3000], where a is the nominal
Type I error probability). The 95% confidence interval of the average
Type I error probability was obtained using the standard error of the
average empirical Type I error rate (i.e., a + 1.96/[a(l - «)/3000n],
where n is the number of the Type I errors involved in computing the
average). A test was considered robust with respect to the Type I error
probability if its empirical Type I error rate fell inside the
confidence interval. Otherwise, the test was considered either
conservative or liberal. The empirical power value was estimated by the
proportion of the number of rejections of the null hypothesis of
expression (14) when the null condition was false (i.e., data were
sampled from a multivariate population with a nonzero between-set
correlation).

Evidence that the data generation method was actually producing
data with the desired distributional characteristics was obtained by
computing five (marginal) summary measures: average mean, variance,
skewness, kurtosis, and correlations. In addition to the marginal

measures, multivariate measures of skewness and kurtosis proposed by
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Mardia (1974) were computed and used to examine the skewness and
kurtosis of the data with a parent multivariate-normal distribution. A
brief description of these measures is given below with a detailed
presentation of the statistics provided in Appendix C.
Let gl, Qz, ey HN be N vectors of random observations on
t = (p + q) variables, U the vector of sample means, and V the matrix

of sample covariances:

- - RN

Uy = Juyy U=y ¥ =1 V2 - V1e (26)
Yoy Y Va1 Va2 ot Var
Yei Ve Yer  Ve2 o Vet

Mardia (1974) proposed the following sample measures of multivariate
skewness (11 t) and kurtosis (12 t) for a multivariate distribution

with t dimensions:

2NN =, ol _ 3
He=¥izE D@ - Dyt - D @7
' i-1,§=1
X PR | = 2
Ty =N 2 - Dy - D17 e e ), (28)
' 1-1

Mardia (1974) showed that these multivariate skewness and
kurtosis values are zero for any multivariate-normal distribution and
nonzero for any other multivariate distribution. However, nonzero
values of expressions (26) and (27) do not permit identification of a

particular non-normal distribution.



CHAPTER IV

RESULTS

The purpose of this study was to empirically evaluate the
distributional behavior of some selected normal-theory and
nonparametric tests of the hypothesis of no relationship among two sets
of variables when the normality assumption is violated. The study also
examined the effects of sample size, within-set correlation, and
number-of-variables on the Type I error and power values of two normal-
theory and three nonparametric tests. The results of the simulation
study are reported in this chapter.

Specifically, this chapter discusses the (a) characteristics of
the simulated data, (b) Type I error and power conditions, (c) main
effects of the parent distribution, sample size, within-set
correlations, and number-of-variables factors, and (d) interaction
effects of these factors. These results are summerized in tables and
figures in this chapter. Detailed results of the simulation study are

presented in Tables E6 through E13 of Appendix E.

c acte c a
Simulated data representing observations from eight multivariate
distributions were used. Frequency distributions for  these
distributions were generated using 10,000 deviates, and are presented
in Table El4 of Appendix E and displayed in Figure 1.
Five sample (univariate) marginal statistics (mean, variance,

skewness, kurtosis, and variable intercorrelations) were computed to
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Figure 1. Frequency Distributions of Simulated Data
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Table 5

Average Mean, Variance, Skewness, Kurtosis, and
Within-Set Correlation of the Simulated Data?

[‘71: ‘72] B 02 71 12 p =3 p =7
(0, 0]
Ave. .0017 .9851 .0025 .0772 .3008 .7005
Std. .0009 .0071 .0050 .0432 .0009 .0006
Min. .0006 .9773 -.0055 .0137 .2992 .6996
Max. .0030 .9959 .0079 .1233 .3020 .7014
[0, -1.12]
Ave, .0003 .9951 -.0011 -1.1156 .2979 .6936
std. .0008 .0087 .0024 .0367 .0010 .0006
Min. -.0007 .9856 -.0040 -1.1625 .2966 .6927
Max. .0015 1.0065 .0033 -1.0630 .2998 .6944
[.5, O]
Ave. .0010 .9845 .5025 .0751 .2994 .6996
Std. .0010 .0080 .0034 .0497 .0011 .0007
Min. -.0009 .9756 .4976 -.0076 .2975 .6986
Max. .0021 .9948 .5084 .1235 .3013 .7007
[1, .5]
Ave. .0009 .9863 1.0094 .5864 .3010 .7002
Std. .0007 .0082 .0054 .0548 .0019 .0008
Min. -.0005 L9771 1.0012 .5120 .2988 .6990
Max. .0019 .9978 1.0155 .6426 .3038 .7011
(0, 3]
Ave. .0006 .9861 .0066 3.1495 .3001 .7000
Std. .0014 .0089 .0129 .0861 .0019 .0013
Min. -.0015 L9772 -.0156 2.9914 .2980 .6981
Max. .0029 1.0012 .0203 3.2639 .3038 .7023
(1, 3]
Ave. .0010 .9867 1.0110 3.1497 .3002 .7000
Std. .0013 .0078 .0149 .1292 .0012 .0008
Min. -.0001 .9780 .9804 2.9300 .2984 .6988
Max. .0044 1.0009 1.0268 3.2697 .3023 .7014
(2, 6]
Ave. -.0004 .9832 2.0288 6.2224 .2989 .6994
Std. .0009 .0086 .0205 .1109 .0009 .0006
Min. -.0016 .9720 1.9951 6.0160 .2978 .6986
Max. .0013 L9971 2.0550 6.3820 .3000 .7004
[0, 20]
Ave. .0007 .9872 -.0116 20.2620 .2997 .7000
Std. .0015 .0107 .0335 .5450 .0014 .0012
Min. -.0019 .9704 -.0555 19.6140 .2969 .6976
Max. .0030 1.0053 .0453 21.2950 .3017 .7016
2 Ave = average, Std = standard deviation, Min = minimum, Max =

maximum value of the sample mean, variance,
within-set correlations.

skewness, kurtosis, and
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assess how well the generated data actually represented the eight
parent distributions. These values were examined for their similarity
to the known population values. The average, standard deviation,
minimum, and maximum values of the five sample statistics are given in
Table 5. The average values for the sample mean, variance, skewness,
and kurtosis were obtained using sample values across all sample-size,
within-set-correlation, and number-of-variables conditions. The average
values for the sample within-set correlations were obtained using
sample values for all within-set-correlation conditions among the YJ
and the Xk variables across all sample-size and number-of-varables
conditions. The values of the five sample statistics for various
sample-size and number-of-variables conditions are presented in Table
E2 of Appendix E.

The statistics in Tables 5 and E2 show excellent agreement
between the mean, variance, and intercorrelations of the resulting
variables and their population values. Similarly, both tables show
good agreement between the skewness values and their population
counterparts across all distributions, sample sizes, and numbers-
of-variables. However, as seen in Table E2 the agreement between the
kurtosis values and their known theoretical counterparts for non-normal
distributions was somewhat poor, even for moderately-large samples.

As a further check on the adequacy of the data generation,
multivariate measures of skewness and kurtosis (Mardia, 1974) were
computed for a sample of N = 100. The sample values proved to be quite

different from their known population counterparts. As an additional

check a number of runs were made using N = 300 and the multivariate-
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normal distribution. The results appear in Table 6. The multivariate
measures of skewness and kurtosis of Mardia (1974) are equal to zero
for the multivariate-normal distribution, and hence deviations from
zero of the sample skewness and kurtosis values suggest non-normality.

Even for a sample size of 300 the results indicate less than
perfect agreement between the sample measures of the multivariate
skewness and kurtosis values and their theoretical values of zero,

especially as the number of variables increases. However tests of

Table 6

Sample Measures of Multivariate Skewnessaand
Kurtosis For the Normal Distribution

Within-set correlation

\' Measure N (.3 .3) (.3.7) .7 .7)
4 Skewness 300 0.3919 0.3919 0.3919
Kurtosis 300 -0.3094 -0.3094 -0.3093
6 Skewness 300 1.0867 1.0867 1.0867
Kurtosis 300 -0.6064 -0.6063 -0.6062
8 Skewness 300 2.3257 2.3257 2.3257
Kurtosis 300 -1.0318 -1.0317 -1.0316

2 The tabled values represent the multivariate skewness and kurtosis
statistics of the simulated data based on a s%gple of size 300 and
3000 replications, V = number of variables, N = sample size.

multivariate normality (Mardia, 1970) on each of the data sets of Table
6 were not significant (at a = .05). These results suggest that the
simulated data may, for a small number-of-variables, be assumed to
approximate that obtained from a multivariate-normal distribution. For

larger numbers-of-variables the results of Table 6 suggest that the

simulated data tended to be positively-skewed and more kurtic than that
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of a normal distribution, and hence the assumption that these data
represent (approximately) a multivariate-normal distribution is less
tenable.
e nd Power Co

Two between-set correlation values were used to generate Type I
error and power conditions. A between-set correlation of zero
(i.e., 8 = 0) was used to establish the Type I error case, meaning
each observation was sampled from a population in which there was no
correlation between the predictors and the dependent variables. Hence
each rejection counted toward the empirical Type I error rate. For the
power case, a non-zero g matrix was obtained analytically using a
procedure due to Muller and Peterson (1984) and the tabled power values
of the F test due to Pearson and Hartley (1951). The regression
coefficients of expression (23) were computed such that a power of .8
would be achieved at an alpha level of .05 using a sample of size 100
and a parent normal distribution. The values of the regression
coefficients and the resulting non-zero, between-set correlations are

presented in Table 7 (see Appendix C for computational details).

Table 7

Regression Coefficients Used for Power Simulations
and the Resulting Between-Set Correlations

Within-set correlation

a
v ﬂjk (.3 .3) (.3.7) «.7.7)
4 .180 .234 .306 .306
6 .138 .221 .331 .331
8 .118 .224 .366 .366

8 ¥ = number of variables.
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In the present study a total of eight distributions x three
sample sizes x three within-set correlations x three numbers-of-
variables = 216 conditions were separately generated for the Type I
error and power cases. For each of these conditions, observations were
selected from populations possessing the requisite properties and the
empirical Type I error rates and power values tabulated for the various
tests across 3000 replications. The robustness of the Type I error
probabilities was determined using a 95% confidence interval. The
intervals for the alpha levels of .01, .05, and .10 were (.0064,.0136),
(.0422, .0578), and (.0893, .1107), respectively. The 95% confidence
intervals for the average Type I error rates (at .05 alpha level) are
presented and displayed (as broken lines) in the following tables and
figures. Type I error rates exceeding the upper limit of these
intervals were considered to be liberal, and values below the lower

limit were considered to be conservative.

era e r and Powe ult

A summary of the empirical Type I error and power values across
the distributions, sample'sizes, within-set correlations, and numbers-
of-variables for the five tests [Bartlett (BAR), Rao F (RAO), rank-
transform Rao F (RTF), pure-rank (PUR), mixed-rank (MIX)] are presented
in Table 8. Because the Type I error and power values for the Bartlett
and Rao F tests were virtually identical, only the Rao F test results
are reported. The overall Type I error and power curves of the various

tests are displayed in Figure 2.
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Table 8

Overall Empirical Type I Error and Power Values?

Type I Error Power
Test .01 .05 .10 .01 .05 .10
BAR .0154 .0587 .1082 .3485 .5265 .6250
RAO .0151 .0579 .1077 L3472 .5250 .6240
RTF .0104 .0505 .1010 .3674 .5460 .6435
PUR .0052 .0376 .0864 .3023 4948 .6081
MIX .0046 .0362 .0839 .2986 .4868 .5995

2 The tabled values represent the average Type I error and power
values across all distributions, sample sizes, within-set
correlations, and numbers-of-variables (n=216, [.0495, .0505]).
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Figure 2. Type I Error and Power Curves by Alpha Level
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The Type I error results of Table 8 and Figure 2 indicate that
the overall Type I error rate was highest for the Rao F test, and
lowest for the mixed-rank test. The rank-transform Rao F produced
empirical Type I error rates closest to the nominal alpha values. Under
the same simulation conditions, the average power values were highest
for the rank-transform Rao F, followed by the Rao F, pure-rank, and
mixed-rank tests. This pattern persisted for all three alpha levels.

The Type I error and power results of Table 9 and Figure 2
indicate that the (a) average Type I error rates of the four tests
increased at approximately the same rate as the alpha level increased
from .01 to .05, and from .05 to .10, (b) average power values of all
four tests increased at approximately the same rate as the alpha level
increased, and (c) rate of change of the power value was greater for
.01 to .05 than for .05 to .10. These results indicate that there was
no interaction of alpha level and test statistic on the Type I error
and power values. On the basis of these results, subsequent Type 1
error and power curves will be displayed only for the .05 level.

The total number of conservative and liberal Type I errors for
the four tests across all simulation conditions are presented in Table
9. These results indicate that the Rao F test had a higher number of
liberal Type 1 errors as compared to the rank-transform Rao F, the
pure-rank, and the mixed-rank tests across all alpha 1levels. The
percentage of liberal Type I errors for the Rao F, rank-transform Rao
F, pure-rank, and mixed-rank tests were 28.2%, 4.5%, .3%, and 0%,
respectively. The corresponding percentages of the number of

conservative Type I errors for these tests were .8%, 2%, 60%, and
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66.5%, respectively.

In general, the (a) Rao F proved to be more liberal than it'’s
nonparametric competitors, (b) pure- and mixed-rank tests were more
conservative than the rank-transform Rao F and Rao F tests, and (c)
number of liberal Type I errors for the Rao F test and the number of
conservative Type I errors for the pure- and mixed-rank tests

decreased as the alpha level increased.

Table 9

Overall Number of Conservat%ve and Liberal
Type I Errors

Alpha level

.01 .05 .10 Total
Test c L c L c L c L
RAO 1 72 2 59 2 52 5 183

RTF 3 9 4 10 6 10 13 29

PUR 140 0 138 0 111 2 389 2

MIX 159 0 143 0 129 0 431 0

2 The tabled values represent overall frequencies of the
conservative (C) and 1liberal (L) Type I errors across all
distributions, sample sizes, within-set correlations, and
numbers-of-variables (216 cases).
ects o ulat o o
The next four sections present the Type I error and power results

categorized by distribution, sample size, within-set correlation, and

number-of-variables.

Distribution

A total of eight parent distributions were included in the

present study to examine the effects of varying skewness and kurtosis
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Table 10

Average Type I Error and Power Values and Number of
Conservative and Liberal Errors by Distribution®

Type I Error Power
[11, 72] .01 .05 .10 (C L) .01 .05 .10
(0, 0]
RAO .0099 .0508 .1000 (0 0) .3286 .5124 .6159
RTF .0100 .0499 1010 (5 2) .3088 .4932 .5980
PUR .0045 .0369 .0869 (52 0) .2512 L4442 .5634
MIX .0047 .0375 .0848 (53 0) .2543 .4469 .5639
[0, -1.12]
RAO .0100 .0509 1020 (1 6) .3183 .5015 .6084
RTF .0103 .0509 1016 (0 2) .2880 L4704 .5779
PUR .0051 .0379 .0868 (45 0) .2330 L4231 .5434
MIX .0045 .0382 .0873 (50 0) .2345 .4263 .5467
[.5, .0]
RAO .0112 .0507 .1008 (0 3 .3268 .5077 .6099
RTF .0108 .0500 1012 (1 2) .3101 .4926 .5950
PUR .0056 .0377 .0860 (46 0) .2512 L4446 .5606
MIX .0051 .0367 .0847 (45 0) . 2496 L4423 .5578
(1, .5]
RAO .0104 .0500 1000 (3 3) .3350 .5149 .6143
RTF .0095 .0500 .1008 (0 2) .3737 .5539 .6511
PUR .0044 .0377 .0863 (52 0) .3070 .5029 .6152
MIX .0043 .0365 .0836 (54 0) .2920 .4788 .5888
(0, 3]
RAO .0121 .0524 .1015 (1 9 L3441 .5258 .6268
RTF .0108 .0501 .0985 (2 2) .3615 .5401 .6397
PUR .0059 .0378 .0848 (45 0) .2973 .4898 .6033
MIX .0050 .0359 .0816 (50 0) .3065 .4967 .6115
(1, 3]
RAO .0119 .0542 1045 (0 14) .3455 .5249 .6237
RTF .0098 .0507 L1007 (1 &) .3573 .5392 .6381
PUR .0049 .0370 .0859 (57 0) .2951 .4875 .6034
MIX .0043 .0359 .0847 (62 0) .2943 .4832 .5952
(2, 6]
RAO .0198 .0651 L1135 (0 67) .3682 .5345 .6255
RTF .0110 .0521 1025 (0 9) .4415 .6153 .7031
PUR .0058 .0388 .0878 (41 0) .3670 .5603 .6669
MIX .0046 .0350 .0838 (55 0) .3318 .5070 .6122
(0, 20]
RAO .0358 .0895 .1393 (0 81) .4112 .5782 .6673
RTF .0110 .0505 .1015 (4 6) .4984 .6628 .7452
PUR .0056 .0374 .0864 (51 2) .4165 .6061 .7085
MIX .0041 .0335 .0804 (62 0) L4257 .6133 .7198

T The tabled values represent the average Type I error and power values
across all sample sizes, within-set correlations, and numbers-of-
variables (n=27, [.0485, .0515]). The number of conservative (C) and
liberal (L) Type I errors are the total across three alpha levels.
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values on the Type I error and power values of the four tests. The
average Type I error and power values and the total number of
conservative and liberal Type I errors are presented in Table 10 and
displayed in Figure 3. The Type 1 error results of Table 10 and Figure
3 indicate that the (a) Type I error rate of the Rao F test increased
subtantially only for the [l1, 3], exponential, and Cauchy
distributions, and (b) Type 1 error rates of the rank-transform Rao F
and the pure- and mixed-rank tests were not affected by distribution.

The conservative and liberal Type I error results of Table 11
indicate that the Rao F test tended to produce more 1liberal Type I
errors for the [1l, 3], exponential, and Cauchy distributions. The
percentage of liberal Type I errors increased from 0% for the normal
distribution to 18% for the [1, 3] distribution, 83% for the
exponential distribution, and 1008 for the Cauchy distribution. In
contrast, the number of liberal and conservative Type I errors for the
rank-transform Rao F and the pure-rank tests did not seem to be
affected by the degree of non-normality.

The power results of Table 10 and Figure 3 indicate that the (a)
power of the Rao F test tended to increase only for the Cauchy
distribution, and (b) power of the rank-transform Rao F, the pure-rank,
and the mixed-rank tests tended to increase with increases in the

kurtosis value of the parent distributions.

Sample Size

Three sample sizes were used to examine the effects of varying
sample sizes on the Type I error and power values of the four tests.

The average Type I error and power values and the total number of
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conservative and liberal Type I errors are presented in Table 11 and

displayed in Figure 4.

the

The Type I error results of Table 11 and Figure 4 indicate that

(a) Type I error rate of the Rao F tended to shrink toward the

nominal alpha level as the sample size increased, (b) Type 1 error

rate of the rank-transform Rao F test did not seem to be affected by

increases in the sample size, and (c) Type I error rates of the pure-

and mixed-rank tests tended to increase subtantially toward the nominal

alpha level with increases in the sample size.

Table 11

Average Type I Error and Power Values and Numberaof
Conservative and Liberal Errors by Sample Size

Type I Error Power

N .01 .05 .10 (¢cC L) .01 .05 .10

25
RAO .0159 .0593 .1088 ( 1 75) .0967 .2395 .3500
RTF .0108 .0515 .1012 ( 0 11) .0938 .2437 .3581
PUR .0026 .0287 .0747 (199 0) .0299 .1611 .2922
MIX .0020 .0264 .0702 (211 0) .0184 .1302 .2566

50
RAO .0150 .0581 .1073 ( 2 50) .2755 L4943 .6182
RTF .0101 .0498 .0986 ( 6 1) .2957 .5253 .6493
PUR .0054 .0390 .0873 (144 0) .2098 .4685 .6159
MIX .0045 .0378 .0862 (159 0) .1881 .4591 .6144

100
RAO .0145 .0564 .1070 ( 2 58) .6694 .8411 .9037
RTF .0103 .0503 .1031 ( 7 17) .7128 .8689 L9231
PUR .0077 .0452 .0970 (46 2) .6671 .8549 .9162
MIX .0073 .0442 .0952 (61 0) .6892 .8711 .9276

The tabled values represent the average Type I error and power
values across all distributions, within-set correlations, and
numbers-of-variables (n=72, [.0491, .0509]). The number of
conservative (C) and liberal (L) Type I errors are the total across
three alpha levels (216 cases).
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The conservative and liberal Type I error results of Table 12
indicate that the (a) number of liberal Type I errors of the Rao F
decreased as the sample size increased, (b) number of liberal Type 1
errors of the rank-transform Rao F was largest for the moderate-large
sample size, and (c) number of liberal Type I errors of the pure- and
mixed-rank tests decreased subtantially as the sample size increased.

The power results of Table 12 and Figure 4 indicate that (a) the
power of all four tests increased subtantially with increases in the
sample size, and (b) the increment in the power values was higher for
the pure- and mixed-rank tests as the sample size increased from

small-moderate to moderate-large.
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Figure 4. Type I Error and Power Curves by Sample Size (a = .05)
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Within-Set Correlation
Three combinations of the within-set correlation among the Y,
variables and among the xk variables were included to examine the
effect of varying correlations on the Type I error and power values of
the four tests. The average Type I error and power values and the total
number of conservative and liberal Type I errors are presented in Table
12 and displayed in Figure 5.
The Type I error results of Table 12 and Figure 5 indicate that
the (a) Type I error rate of the Rao F tended to increase slightly as
the within-set correlation among the Y

]

variables increased, and (b) Type I error rates of the rank-transform

variables and among the Xk

Table 12
Average Type I Error and Power Values and Number of Cogservative
and Liberal Errors by Within-Set Correlations

Type I Error Power
(py, px) .01 .05 .10 (C L) .01 .05 .10
(.3 .3)
RAO .0144 .0568 .1063 ( 3 56) .3007 .4823 .5862
RTF .0106 .0507 .1019 ( 3 14) .3269 .5079 .6092
PUR .0054 .0378 .0869 (127 1) .2672 .4584 .5738
MIX .0046 .0361 .0838 (139 0) .2737 .4615 .5759
.3.7)
RAO .0150 .0579 .1080 ( 1 61) L4354 .6072 .6970
RTF .0103 .0506 .1007 « 7 8 .4537 .6251 L7137
PUR .0053 .0376 .0863 (132 1) .3781 .5698 .6771
MIX .0045 .0359 .0838 (150 0) .3716 .5594 .6666
«.7.7)
RAO .0160 .0591 .1088 ( 1 66) .3056 .4854 .5887
RTF .0102 .0504 1006 (3 7) .3217 .5049 .6077
PUR .0050 .0375 .0858 (130 0) .2616 .4563 .5733
MIX .0047 .0365 .0841 (142 0) .2505 .4396 .5560
a

The tabled values represent the average Type I error and power
values across all distributions, sample sizes, and numbers-of-
variables (n=72, [.0491, .0509]). The number of conservative (C)
and liberal (L) Type I errors is the total across three alpha
levels (216 cases).
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Rao F and the pure-and mixed-rank tests were not affected by the
increment in the within-set correlations.

The conservative and liberal Type I error results of Table 12
indicate that the (a) number of liberal Type I errors of the Rao F was
slightly higher for the largest within-set correlation, and (b) number
of liberal Type I errors of the rank-transform Rao F and the pure- and
mixed-rank tests varied slightly with the values of the within-set
correlation.

The power results of Table 12 and Figure 5 indicate that the (a)
increment in the correlation among the xk variables tended to increase

the power of all tests, (b) the increment in the correlation among the
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Yj variables tended to decrease the power of all tests, and (c) change

in the power values for all tests was approximately the same.

Number of Variables

Three combinations of the number of YJ and Xk variables were
included to examine the effects of varying numbers-of-variables on the
Type I error and power values of the four tests. The average Type I

error and power values and the total number of conservative and liberal

Type 1 errors are presented in Table 13 and displayed in Figure 6.

Table 13

Average Type I Error and Power Values and Number gf Conservative
Liberal Errors by Number-of-Variables

b Type I Error Power

v .01 .05 .10 (C L) .01 .05 .10

4
RAO .0137 .0556 .1031 ( 2 54) .3452 .5302 .6291
RTF .0107 .0506 .1002 ( 6 15) .3650 .5493 .6476
PUR .0065 .0425 .0934 ( 90 2) .3216 .5222 .6342
MIX .0057 .0414 .0913 (100 0) .3342 .5376 .6491

6
RAO .0155 .0584 .1088 ( 2 65) .3423 .5203 .6204
RTF .0102 .0515 .1025 ( 3 7) .3627 .5431 .6408
PUR .0051 .0381 .0874 (135 0) .2974 L4911 .6057
MIX .0045 .0355 .0842 (153 0) .2938 L4814 .5965

8
RAO .0162 .0599 L1112 ( 1 64) .3542 .5245 .6224
RTF .0102 .0496 .1002 ( 4 7) .3746 .5455 .6422
PUR .0041 .0323 .0783 (164 0) .2878 L4711 .5844
MIX .0036 .0316 .0761 (178 0) .2678 .4415 .5529

% The tabled values represent the average Type I error and power

values across all distributions, sample sizes, and within-set
correlations (n=72, [.0491, .0509]). The number of conservative (C)
and liberal (L) Type I errors is the total across three alpha

b levels.

V = number of variables.
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The Type I error results of Table 13 and Figure 6 indicate that
the (a) Type I error rate of the Rao F tended to increase with
increases in the number of variables, (b) Type I error rate of the
rank-transform Rao [ did not seem to be affected by the number of
variables, and (c) Type 1 error rates of the pure- and mixed-rank
tests tended to decrease as the number of variables increased.

The conservative and liberal Type I error results of Table 13
indicate that (a) the number of liberal Type I errors of the Rao F
increased as the number of variables increased, (b) no particular
pattern was found for the number of liberal Type 1 errors of the rank-

transform Rao F, (c) the number of conservative Type I errors of the
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pure-and mixed-rank tests increased substantially as the number of
variables increased.

The power results of Table 13 and Figure 6 indicate that the
power of the Rao F and rank-transform Rao F tests did not vary with
increases in the number of variables, and that the power of the pure-
and mixed-rank tests tended to decrease as the number of variables

increased.

o t ond
The next three sections present the Type 1 error and power
results categorized by distribution and sample size, distribution and
within-set correlation, and distribution and number-of-variables.

Complete results appear in Tables E3, E4, and E5 of Appendix E.

Distribution and Sample Size

The average Type I error and power values and the total number
of conservative and liberal Type I errors categorized by distribution
and sample size for the .05 alpha level are presented in Table 14. The
average Type I error and power values for the normal (thin-tailed),
double-exponential (moderately non-normal/moderate-tailed), and
exponential and Cauchy distributions (extremely non-normal/heavy-
tailed) are displayed in Figures 7 and 8, respectively.

The Type I error results of Table 14 indicate that the (a) Type
I error rate of the Rao F varied only slightly for the normal and
mildly and moderately non-normal distributions and decreased
subtantially for the extremely non-normal distributions as the sample

size increased, (b) Type I error rate of the rank-transform Rao F did
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not vary much with sample size for all distributions, and (c) Type 1
error rates of the pure-and mixed-rank tests increased substantially
toward the nominal alpha level as the sample size increased for all
distributions.

The power results of Table 14 indicate that as the sample size
increased the (a) power values of all four tests increased subtantially
for all distributions, (b) power values of the rank-transform Rao F
and the pure- and mixed-rank tests increased at higher rates for all
non-normal distributions other than the wuniform and the [.5, 0]
distributions, (c) power of the Rao F was largest for the normal,
uniform, and the (.5, O] distributions across all sample sizes, (d)
power value of the rank-transform Rao [ was largest for the [1, .5],
double-exponential, [1, 3], exponential, and Cauchy distributions and
small and small-moderate sample sizes, and (e) the mixed-rank test
produced the highest power value for the double-exponential, (1, 3],

exponential, and Cauchy distributions and moderately-large sample size.
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Table 14.
Average Type I Error and Power Values and Number of Conservative
and Liberal Errors by Distribution and Sample Size (a = .05)a

Type I Error Power
[11, 12] N=25(C L) N=50(C L) N=100(C L) N=25 N=50 N=100
(0, 0]
RAO .0474(0 0) .0539(0 0) .0511(0 0) .2090 .4773 .8509
RTF .0499(0 1) .0500(0 0) .0500(2 0) .2047 .4548 .8202
PUR .0274(9 0) .0394(6 0) .0440(3 0) .1325 .3961 .8039
MIX .0256(9 0) .0423(6 0) .0446(2 0) .1253 .3995 .8159
(0, -1.12]
RAO .0504(0 1) .0532(0 0) .0490(0 0) .1951 .4674 .8420
RTF .0528(0 1) .0515(0 0) .0483(0 0) .1879 .4291 .7924
PUR .0302(7 0) .0404(5 0) .0431(3 0) .1219 .3740 .7734
MIX .0299(7 0) .0409(4 0) .0439(3 0) .1237 .3787 .7764
[.5, .0]
RAO .0521(0 0) .0487(0 0) .0512(0 0) .2041 .4754 .8435
RTF .0517(0 0) .0484(0 0) .0499(0 0) .2023 .4563 .8191
PUR .0287(9 0) .0385(5 0) .0458(1 0) .1299 .4026 .8012
MIX .0277(9 0) .0366(6 0) .0459(1 0) .1182 .3980 .8106
[1, .5]
RAO .0514(1 1) .0503(1 0) .0483(0 0) .2245 .4802 .8401
RTF .0507(0 0) .0501(0 0) .0493(0 0) .2417 .5315 .8885
PUR .0282(9 0) .0399(7 0) .0450(3 0) .1598 .4751 .8739
MIX .0272(9 0) .0385(6 0) .0437(2 0) .1164 .4352 .8849
(0, 3]
RAO .0535(0 0) .0516(0 O0) .0519(0 0) .2279 .5037 .8459
RTF .0494(0 0) .0521(0 0) .0488(0 0) .2319 .5184 .8700
PUR .0279(9 0) .0414(3 0) .0439(4 0) .1515 .4606 .8573
MIX .0259(9 0) .0376(6 0) .0440(1 0) .1339 .4735 .8826
(1, 3]
RAO .0566(0 3) .0503(0 0) .0557(0 4) .2340 .4993 .8415
RTF .0529(0 1) .0472(1 0) .0520(0 2) .2372  .5139 .8665
PUR .0291(9 0) .0357(9 0) .0463(3 0) .1551 .4564 8511
MIX .0264(9 0) .0355(9 0) .0458(3 0) L1253  .4474 8768
(2, 6]
RAO .0665(0 9) .0687(0 9) .0603(0 5) .2799 .5005 .8230
RTF .0515(0 1) .0516(0 0) .0533(0 1) .2951 .6144 .9366
PUR .0287(8 0) .0399(8 0) .0479(0 0) .1980 .5553 .9277
MIX .0250(9 0) .0361(9 0) .0440(2 0) .1074  .4707 .9427
[0, 20]
RAO .0961(0 9) .0884(0 9) .0840(0 9) .3417 .5509 .8420
RTF .0535(0 1) .0471(1 0) .0510(0 2) .3469 .6839 .9577
PUR .0296(7 0) .0366(9 0) .0459(2 0) .2397 .6277 .9510
MIX .0235(9 0) .0351(9 0) .0419(4 0) .1918 .6698 .9784

% The tabled values represent the average and the number of

conservative (C) and liberal (L) Type I error rates and the average
power values across all within-set correlations and numbers-of-
variables (n=9, [.0474, .0526]).
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Distribution and Within-Set Correlation

The average Type I error and power values and the total number
of conservative and liberal Type I errors categorized by distribution
and within-set correlation for the .05 alpha level are presented in
Table 15. The average Type I error and power values for the normal,
double-exponential, exponential, and Cauchy distributions are
displayed in Figures 9 and 10, respectively.

The Type I error results of Table 16 indicate that (a) the Type
I error rates of the rank-transform Rao F and the pure- and mixed-rank
tests were not affected by the within-set-correlation values for all
distributions, and (b) except for the Cauchy in which the Type I error
rate increased with increases in the within-set correlation, the Type I
error rate of the Rao F was minimally affected by the within-set-
correlation values.

The power results of Table 15 indicate that the power of all
four tests increased as the within-set correlation among the predictor
variables increased from .3 to .7, and decreased as the within-set
correlation among the outcome variables increased from .3 to .7 for

all distributions.
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Table

15

and Power Values and Number of Liberal
Errors by Distribution and Within-Set Correlation (a = .05)a

Type I Error Power
[11, 12] (.3 .3)(CL)(.3 .7)(CLY(.7 .7)(CL)Y (.3 .3)C3 .71)C.7.7)
(0, 0]
RAO .0508(0 0) .0508(0 O0) .0508(0 0) .4687 .5999 .4686
RTF .0499(1 0) .0504(0 1) .0494(1 O) L4472 5814 .4511
PUR .0369(6 0) .0369(6 0) .0369(6 0) .4003 .5383 .4039
MIX .0370(6 0) .0370(6 0) .0384(5 0) .4070 .5288 .4050
[0, -1.12]
RAO .0514(0 0) .0502(0 0) .0510(0 1) .4583 .5897 .4565
RTF .0513(0 0) .0507(0 0) .0506(0 1) .4257 .5560 .4296
PUR .0385(5 0) .0373(6 0) .0379(4 0) .3817 .5038 .3838
MIX .0387(4 0) .0377(6 0) .0382(4 0) .3837 .5084 .3866
[.5, .0]
RAO .0505(0 0) .0505(0 0) .0510(0 0) .4653 .5919 .4658
RTF .0496(0 0) .0511(0 0) .0493(0 0) .4461 .5789 .4526
PUR .0378(6 0) .0382(4 0) .0370(5 0) .3997 .5251 .4090
MIX .0369(6 0) .0367(5 0) .0366(5 0) .4027 .5236 .4006
(1, .5]
RAO .0488(2 0) .0495(0 0) .0516(0 1) .4710 .6013 .4725
RTF .0502(0 0) .0494(0 0) .0505(0 0) .5118 .6389 .5111
PUR .0383(5 0) .0374(7 0) .0374(7 0) .4636 .5822 .4631
MIX .0355(5 0) .0370(6 0) .0369(6 0) .4504 .5573 .4288
(0, 3]
RAO .0520(0 0) .0517(0 0) .0533(0 0) .4831 .6087 .4857
RTF .0506(0 0) .0496(0 0) .0501(0 0) .5004 .6208 .4992
PUR .0374(5 0) .0381(6 0) .0377(5 0) .4521 .5652 .4520
MIX .0359(5 0) .0359(6 0) .0357(5 0) .4688 .5697 .4515
(1, 3]
RAO .0543(0 2) .0542(0 2) .0541(0 3) .4821 .6084 .4842
RTF .0511(0 2) .0507(0 0) .0503(1 1) .4976 .6203 .4997
PUR .0373(7 0) .0367(8 0) .0370(6 0) .4482 5646 .4498
MIX .0357(7 0) .0355(7 0) .0365(7 0) .4559 .5571 .4365
(2, 6]
RAO .0623(0 7) .0666(0 8) .0666(0 8) .4922 .6123 .4989
RTF .0514(0 0) .0527(0 0) .0523(0 2) .5868 .6853 .5740
PUR .0385(6 0) .0389(5 0) .0391(5 0) .5318 .6272 .5220
MIX .0354(7 0) .0350(7 0) .0348(6 0) .5019 .5708 .4482
[0, 20]
RAO .0841(0 9) .0898(0 9) .0946(0 9) .5381 .6453 .5513
RTF .0512(0 2) .0502(1 1) .0503(0 0) .6479 .7190 .6216
PUR .0378(7 0) .0371(5 0) .0372(6 0) .5894 .6617 .5672
MIX .0334(8 0) .0321(8 0) .0351(6 0) .6214 .6591 .5594
% The tabled values represent the average and the number of
conservative (C) and 1liberal (L) Type I error rates and the
average power values across all sample sizes and numbers-of-

variables (n=9,

[.0474,

.0526]) .
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The average Type I error and power values and the total number
of conservative and liberal Type I errors categorized by distribution
and number-of-variables for the .05 alpha level are presented in Table
16. The average Type I error and power values for the normal, double-
exponential, exponential, and Cauchy distributions are displayed in
Figures 11 and 12, respectively.

The Type I error results of Table 16 indicate that (a) only for
the exponential and Cauchy distributions did the Type I error rate of
the Rao‘E increased as the number of variables increased, (b) the Type
I error rate of the rank-transform Rao F was not affected by the
number-of-variables factor for all distributions, and (c) the Type I
error rates of the pure-and mixed-rank tests decreased as the number
of variables increased for all distributions.

The power results of Table 16 indicate that the (a) power
values of the Rao F and rank-transform Rao F tests were not affected
by the number-of-variables factor for all distributions, and (b) power
values of the pure- and mixed-rank tests decreased with increases in

the number of variables for all distributions.
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Table 16
Average Type I Error and Power Values and Number of Conservative and

Type I Error Power
[11, 12] V=4(C L) V=6(C L) V=8(C L) V=4 V=6 V=8
(0, 0] :
RAO .0494(0 0) .0528(0 0) .0502(0 0) .5273 .5031 .5067
RTF .0468(2 0) .0526(0 1) .0504(0 0) .4984 4850 .4963
PUR .0386(6 0) .0389(6 0) .0332(6 0) 4719 .4340 4267
MIX .0409(5 0) .0386(6 0) .0329(6 0) .4829 .4354 4224
(0, -1.12]
RAO .0531(0 1) .0512(0 0) .0483(0 0) .5149 .4960 .4937
RTF .0518(0 1) .0519(0 0) .0489(0 0) 4784 4646 .4683
PUR .0439(2 0) .0390(4 0) .0308(9 0) .4526 .4170 .3998
MIX .0444(1 0) .0392(4 0) .0311(9 0O) .4578 .4186 .4023
[.5, .0]
RAO .0515(0 0) .0504(0 0) .0501(0 0O) .5141 .5045 .5044
RTF .0500(0 0) .0526(0 0) .0474(0 0) .4906 .4908 .4963
PUR .0426(3 0) .0393(5 0) .0310(7 0) .4640 .4402 .4295
MIX .0422(3 0) .0363(6 0) .0317(7 0) L4746 4397 4126
[1, .5]
RAO .0503(1 0) .0485(1 0) .0512(0 1) .5223 .5067 .5159
RTF .0494(0 0) .0520(0 O0) .0487(0 0) .5633 .5487 .5497
PUR .0422(5 0) .0387(6 0) .0323(8 0) .5363 .4970 .4755
MIX .0426(3 0) .0357(6 0) .0311(8 0) .5386 .4717 .4262
(0, 3]
RAO .0480(0 0) .0553(0 0) .0539(0 0) .5335 .5233 .5207
RTF .0487(0 0) .0540(0 0) .0476(0 0) .5393 .5394 .5417
PUR .0410(5 0) .0402(3 0) .0320(8 0) .5130 .4879 .4685
MIX .0400(3 0) .0360(7 0) .0316(6 0) .5373  .4929 .4599
(1, 3]
RAO .0541(0 3) .0531(0 3) .0553(0 1) .5260 .5237 .5250
RTF .0510(1 2) .0504(0 0) .0507(0 1) .5355 .5365 .5456
PUR .0426(6 0) .0362(8 0) .0323(7 0) .5083 .4859 .4685
MIX .0419(6 0) .0323(9 0) .0334(6 0) .5244 4820 .4430
(2, 6]
RAO .0590(0 6) .0662(0 9) .0702(0 8) .5320 .5330 .5385
RTF .0526(0 1) .0509(0 0) .0529(0 1) .6247 .6169 .6044
PUR .0441(4 0) .0378(6 0) .0346(6 0) .5954 .5604 .5251
MIX .0394(7 0) .0344(6 0) .0314(7 0) .5970 .5025 .4213
[0, 20]
RAO .0793(0 9) .0894(0 9) .0999(0 9) .5714 .5723 .5909
RTF .0543(0 3) .0474(1 0) .0500(0 0) .6639 .6629 .6617
PUR .0453(4 0) .0344(7 0) .0323(7 0) .6630 .6067 .5756
MIX .0397(6 0) .0314(8 0) .0294(8 0) .6881 .6081 .5439
2 The tabled values represent the average and the number of

conservative (C) and liberal (L) Type I error rates and the average
povwer values across all sample sizes and within-set correlations
[.0474, .0526]).

(n=9,



.08

Value

.
o o
&S (=)

o
~N

Empirical Type I Error

.10

.08

.06

.04

Empirical Type I Error Value

87

Normal D-Exponential

.
o
o

v

.
o
N
L

/

e

<

Empirical Type I Error Value

o
&S

/

==

<

[ L L ']

b. ~

8 6 8
Number 605 Variables Number of Variables

L Exponential 1.00...’//”/”’j::iii///””'RAO

L]
o
(o)

[
o
o
L]

Empirical Type I Error Value

[

MIX
002' oOZb
4 6 8 4 6 8
Nucber of Variables Number of Variables

Figure 11. Type I Error Curves by Distribution and Number-
of -Variables (a =.05)



o

Empirical Power Value
&

.
N

(=

Empirical Power Value
. .

.
N

Normal

2

<Y
HS 3
=< mO

4

6 8
Number of Variables

Exponential

b

6 8
Number of Variables

88

D-Exponential
.8%
Q
7306'

-sRTF
> = = 2RAO
g PUR
o MIX
~al
~—4
B
J
vy
1 9]

o
(=%
=]
=2l
4 6 8
Number of Variables
Cauchy
08'
° —— - RTF
506. %Ag
U
> MIX
b
v
3
s
H.A.
3}
(5]
ord
1]
rd
(=9
g
[¢3]
.2k
4 6

Number of Variables

Figure 12. Power Curves by Distribution and Number-of-
Variables (a =.05)




89

- -of-V

The results from previous sections indicate that the (a) Type I
error rate of the Rao F increased with increases in the correlation
among the Yj and the Xk variables and the number-of-variables,
particularly for the extremely non-normal distributions, and (b) Type
I error and power values of the pure- and mixed-rank tests decreased
with increases in the number-of-variables for all distributions. A
further analysis was carried out to examine the interactions of sample
size, within-set correlation, and number-of-variables.

The average and the total number of conservative and liberal
Type I error rates for the Rao F test categorized by sample size and
within-set-correlation for the .05 alpha level are presented in Table
17. The average and the total number of conservative and liberal Type
1 error rates and the average power values for the Rao F and the pure-

and mixed-rank tests catagorized by sample size and number-of-

variables for the .05 alpha level are presented in Table 18.

Table 17

Average Type I Error and Power Values and Number of
Conservative and Liberal Errors by Sample Size and
Within-Set Correlation For Rao F Test (a = .05)2

N (.3,.3)(C L) (.3,.7)(C L) (.7,.7)(C L)
25 .0579 (1 7) .0589 (0 7) .0609 (0 9)
50 .0570 (1 6) .0584 (0 6) .0591 (0 6)
100 .0554 (0 5) .0565 (0 6) .0574 (0 7)
a

The tabled values represent the average and the number of
conservative (C) and liberal (L) Type I error rates across all
distributions and numbers-of-variables (n=24, [.0484, .0516]).
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The results of of Tables 17 and 18 indicate that the Type I
error rate of the Rao [ was only slightly reduced as the sample size
increased for all combinations of the within-set-correlations and the
number-of-variables. In both cases, the number of 1liberal Type I

errors was only slightly reduced, even for the largest sample size.

Table 18

Average Type I Error and Power Values and Number of Conservative
and Liberal Errors by Sample Size and Number-of-Variab%es
For Rao F and Pure- and Mixed-Rank Tests (a = .05)

Type I Error Power
N V=4 (C L) V=6 (C L) V=8 (C L) V=4 V=6 V=8
25
RAO .0570( 1 7) .0592( 0 9) .0615( 0 7) .2517 .2381 .2288
PUR .0378(19 0) .0281(24 0) .0202(24 0) .2086 .1572 .1174
MIX .0349(22 0) .0253(24 0) .0190(24 0) .1955 .1200 .0753
50
RAO .0565( 0 6) .0575( 1 6) .0605( 0 6) .5060 .4884 .4886
PUR .0429(11 0) .0400(17 0) .0339(24 0) .5061 .4640 .4354
MIX .0430( 9 0) .0369(22 0) .0336(24 0) .5380 .4540 .3853
100
RAO .0533( 0 6) .0583( 0 6) .0576( 0 6) .8328 .8345 .8559
PUR .0468( 5 0) .0461( 4 0) .0427(10 0) .8519 .8522 .8607
MIX .0462( 3 0) .0443( 6 0) .0422( 9 0) .8792 .8701 .8638

% The tabled values represent the average and the number of

conservative (C) and liberal (L) Type I error rates and the average

power values across all distributions and within-set correlations
(n=24, [.0484, .0516]).

The results of of Table 18 indicate that the (a) Type I error

rates of the pure- and mixed-rank tests subtantially increased as the

sample size increased, particularly for the largest number of

variables, whereas the number of conservative Type I errors decreased

subtantially for the largest sample size, and (b) power values of the
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pure- and mixed-rank tests increased subtantially with increases in
the sample size, particularly for the largest number of variables.
These results suggest that increments in the sample size result
in the pure- and mixed-rank tests being less conservative and more
powerful as the number of variables increased, but it did not reduce
the number of liberal Type I errors of the Rao F test for increasing

within-set correlations and numbers-of-variables.



CHAPTER V

SUMMARY

Educational researchers opting for multivariate methods have
historically employed multivarite-normal-theory procedures. The valid
use of these procedures depends on the tenability of the underlying
statistical assumptions (e.g., normality). The importance of satisfying
these wunderlying assumptions can not be overemphasized, since
violations have been shown to affect the distributional properties of
normal-theory tests. The present study focused on the effect of non-
normality of the observations on the Type I error and power properties
of some selected normal-theory and nonparametric-multivariate tests.
This chapter summarizes the (a) research questions, (b) methodology,
(¢c) findings, and (d) implications for data analysis in educational
research. Recommendations for further research in this area are also
presented.

Research Questjons

The following research questions were formulated (a) do varying
skewness and kurtosis values affect the Type I error rate and power of
normal-theory and nonparametric-multivariate tests, and (b) do sample
size, within-set correlation, and number-of-variables influence the
effects of skewness and kurtosis on the Type I error rate and power

of normal-theory and nonparametric-multivariate tests?

t olo
The present study used a computer simulation to empirically
examine the Type I error and power values of the Bartlett, Rao F,

92
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rank-transform Rao F, and the pure- and mixed-rank tests. Computer
simulated data representing skewness and kurtosis values of eight
multivariate distributions were used. Three combinations of
correlations within the sets of predictors and dependent variables,
three numbers-of-variables, and three sample sizes were used. All
combinations of simulation factors were investigated.

The sample statistics of the simulated data showed excellent
agreement between the average marginal mean, variance, intercorre-
lations, and skewness values of the resulting variables and their
population counterparts. The average kurtosis values, however,
indicated that the simulated data came from slightly more kurtic
parent distributions than expected. In addition, Mardia’'s (1974)
multivariate measure of skewness indicated that for a parent normal
distribution increasing numbers-of-variables produced increasingly
skewed data. Thus caution must be exercised in catagorizing the data
as multivariate-normal for a large number of variables. In this case,
approximately-multivariate-normal may be a more appropriate description
of the data.

The robustness of Type I error probabilities was determined
using a 95% confidence interval about a particular (nominal) alpha
level. Empirical Type I error rates exceeding the upper limit of these
intervals were considered to be liberal and the values below fhe lower
limit were considered to be conservative. Empirical power values were
reported for all simulation conditions, even those with a liberal Type

I error rate.
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Findings

A total of five tests were included in the present study.
However, the Type I error and power results of the Bartlett and Rao F
tests were virtually identical, and hence only the results of the Rao F
test were reported. The overall Type I error results showed that the
Rao F test produced the highest proportion of liberal Type 1 errors,
which were mostly confined to the (1, 3), exponential, and Cauchy
distributions. The mixed-rank test produced the highest proportion of
conservative Type I errors. These were mostly confined to the .01
alpha level for the small-sample-size and the largest
number-of-variables conditions.

The overall power results showed that the average power value
was highest for the rank-transform Rao F test, followed by the Rao F,
pure-rank, and mixed-rank tests. However, the difference in the
average power values among the tests was less than 7%. This pattern of
Type I error and power results persisted across all three alpha
levels.

The results of the present study showed that the Type I error
rate of the normal-theory Rao F test increased subtantially for the
[1, 3], exponential, and Cauchy distributions. As expected, the Type I
error rates of the three nonparametric tests were not affected by the
degree of non-normality. The power of the normal-theory Rao F test
increased subtantially only for the Cauchy distribution. The power of
the rank-transform Rao F and the pure- and mixed-rank tests increased

with increases in the kurtosis value.
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The results of previous studies have suggested that the Type 1
error rates of normal-theory tests increase with increases in the
skewness value, but decrease with increases in the kurtosis value. The
present study found that the Type I error rate of the normal-theory Rao
F test increased subtantially for the distributions with large skewness
and kurtosis values. Similar results were found by Harwell and Serlin
(1985). As for power, increasing skewness and/or kurtosis values have
been shown to reduce the power of normal-theory tests.

Sample size has also been shown to affect the distributional
properties of both normal-theory and nonparametric tests. The results
of the present study showed that the Type I error rates of all normal-
theory and nonparametric tests moved toward the nominal alpha level
as the sample size increased. The power values of all five tests
increased subtantially with the sample size. All three nonparametric
tests had a higher increment rate of the power values for distributions
other than the normal, uniform, and the .5 skewness and 0 kurtosis
combination (i.e., [.5, 0] distribution).

With respect to the within-set correlations, the results of the
present study showed that the Type I error rate of the Rao [ test
increased as the correlation among the predictors and/or among the
dependent variables increased only for the Cauchy distribution. The
Type I error rates of the rank-transform Rao F and the pure- and mixed-
rank tests were not affected by the increment in the within-set
correlations for all distributions. The results also showed that the
power values of all normal-theory and nonparametric tests increased

with increases in the correlation among the predictors, and decreased
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with increases in the correlation among the dependent variables for
all distributions. Previous studies suggested that high correlation
among dependent variables tended to reduce the power of only
nonparametric- multivariate tests.

The results of the present study showed that Type I error rate
of the normal-theory Rao F test increased with increases in the number
of variables for the [1, 3], exponential, and Cauchy distributions.
However, its power value was not affected by the number of variables
for all distributions. The Type I error and power values of the
rank-transform Rao F test were not affected by the number of variables
for all distributions. The Type I error and power values of the
pure-and mixed-rank tests decreased as the number of variables

increased for all distributions.

Conclusions

The purpose of this study was to empirically evaluate the Type I
error and power values of five selected normal-theory and nonparametric
tests of the hypothesis of no relationship among two sets of variables
under a variety of distribution, sample size, correlation among the
predictor and dependent variables, and number-of-variables conditioms.
Recalling the research questions given earlier, the results of the
present study lead to a number of conclusions. The generalization of
these conclusions is limited to the simulation conditions examined.

(a) The Type I error rates of the normal-theory Bartlett and Rao
F tests increase subtantially for moderately-heavy and heavy-tailed
distributions. Although the Type I error rates decrease with increases

in the sample size, they remain liberal for heavy-tailed distributions.
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The Type I error rates of the Bartlett and Rao F tests also
increase with increases in the correlation among predictor and/or
dependent variables, and with increases in the number-of-variables for
heavy-tailed distributions.

(b) The Type I error rates of the nonparametric rank-transform
Rao F and the pure- and mixed-rank tests are not affected by the form
of the parent distribution for moderately-small and moderately-large
samples. The Type I error rate of the rank-transform Rao F is slightly
liberal for extremely non-normal distributions, while those of the
pure- and mixed-rank tests are conservative for a small sample across
all distributions. The Type 1 error rates of the pure- and mixed-rank
tests move toward nominal alpha levels as the sample size increases.

(c) The Type I error rate of the rank-transform Rao F test is not
affected by the within-set-correlation and the number-of-variables
factors. The Type I error rates of the pure- and mixed-rank tests are
not affected by the within-set-correlation factor, but decrease as the
number of variables increases for all distributioms.

(d) The power values of the normal-theory Bartlett and Rao F
tests increase subtantially only for extremely heavy-tailed
distributions. The power values of the three nonparametric tests
increase with increases in the kurtosis value. The power values of all
five tests also increase with increases in the sample size and
correlation among predictor variables, and decrease with increases in
the correlation among dependent variables for all distributions. The
increments due to the sample size are higher for the three

nonparametric tests.
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(e) The power values of the Bartlett and Rao F tests are largest
for the light-tailed distributions across all sample sizes. The power
value of the rank-transform Rao F test is largest for moderately-heavy
and heavy-tailed distributions and small to moderately-small samples.
The power value of the mixed-rank test is largest for moderately-heavy
and heavy-tailed distributions for moderately-large samples.

(f) The power values of the Bartlett, Rao F, and the rank-
transform Rao F tests are not affected by the number of variables for
all distributions. The power values of the pure- and mixed-rank tests
decrease as the number of variables increases for all distributions.
However, the reduction in the power values tends to be compensated for

by increases in the sample size.

Based on the Type I error and power results, the following
recommendations are suggested as guidelines for educational
researchers in choosing the "best" test among the normal-theory
Bartlett and Rao F tests and the nonparametric rank-transform Rao F
and pure- and mixed-rank tests in testing the hypothesis of no
relationship among two sets of variables. The criteria used for
recommending a test as "best" are that the Type I error rate of the
test is not liberal and its power is higher than its competitors. In
the spirit of the Neyman-Pearson lemma the "best" test is a test that
minimizes both Type I and Type II errors.

Note that the within-set correlation and the number-of-
variables are not included as factors in determining for the "best"

test because they have similar effects on Type I error and power
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values of the five tests, or their effects depend on the type of

distribution or the sample size. The recommendations are as follows:

(a) The Bartlett and Rao F tests are recommended for all light-tailed
distributions and any sample size.

(b) The rank-transform Rao F test is recommended for moderately-heavy
and heavy-tailed distributions for small and moderately-small
samples.

(c) The pure- or mixed-rank test is recommended for moderately and
extremely heavy-tailed distributions and.moderately-large (or

larger) samples.

Using the percentage of the number of extreme observations (3
standard deviations away from the mean) as a measure of "tailedness" of
a distribution, the simulated data indicated the following order of
"talledness” ("light" to "heavy"): Uniform (0%), normal (.28%), [.5, 0]
(.48%), [1, .5] (.92%), double-exponential (1.41%), [1, 3] (1.45%),
exponential (2.07%), and Cauchy (2.34%).

The results of the present study suggest that the Type I error
rates of the Bartlett and Rao F tests were robust for the light-tailed
distributions (i.e., wuniform, normal, [.5, O], (1, .5]). For the
"heavy-tailed" distributions, the Bartlett and Rao F tests tended to
produce liberal Type 1 error rates and smaller power values than that
of the rank-transform Rao F test. For a moderate-large sample, the
power values of all three nonparametric tests were larger than those of

the two normal-theory tests.
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As noted earlier, educationally-oriented variables are likely to
produce data that are skewed or kurtic. For small to moderate-large
samples (i.e. 25 to 100) the use of the nonparametric rank-transform
Rao F test is recommended, while for larger samples (i.e. 100 or more)
the use of the pure- or mixed-rank test is recommended when the

observed data have more than 1% of the extreme values.

Recommendations for Further Study

The results of a simulation study are 1limited 1in their
generalization to the conditions examined in the study. The present
study confirmed many results from previous simulation studies and
generated a more comprehensive set of guidelines for the appropriate
use of the five tests. However, there is a need to investigate the
effects of data conditions which were not examined in the present
study. Based on the results and the limitations of the methodology used
in the present study, the following recommendations for further

research are suggested:

(a) The present study was limited to the violation of the normality
assumption. The assumptions of homogeneity of the elements of the
covariance matrix and independence of observations have not been
examined. Previous studies have suggested that the normal-theory
and nonparametric procedures are not robust to violations of
these assumptions. Knowledge of the behavior of the normal-theory
and nonparametric tests (of the independence between two sets of
variables) under violations of these assumptions would further help

to determine the utility of these tests.
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(b) The distributional properties of the normal - theory and
nonparametric tests should be examined for non-normal distributions
with large skewness values and a zero kurtosis value. The data
representing these distributions could not be generated for the
present study.

(c) The present study examined the behavior of test statistics using
variables with the same (univariate) marginal distribution. A
further study should be conducted to examine the behavior of these
tests using variables with different marginal distributions.

(d) The distributional properties of the Rao F and the pure- and
mixed-rank tests should be examined using a larger variety of
sample sizes. The results of the present study indicate that the
Type I error rates of these tests move toward the nominal alpha
levels as the sample size increases. However, it would be useful
to examine the behavior of the tests for a wider range of sample
sizes.

(e) The distributional properties of the normal-theory and
nonparametric tests should be examined for normal and non-normal
distributions using various combinations of unequal within-set
correlations among the predictor and dependent variables. The

present study used only a single unequal, within-set correlation.

In conclusion, normal-theory tests of the hypothesis of no
relationship among two sets of variables require the assumptions of
independence, homogeneity of covariance, and normality. When the
assumption of normality is not tenable the use of these tests may

Tesgult in falsely accepting or rejecting a null hypothesis. The



102
development of nonparametric hypothesis-testing frameworks due to
Conover and Iman and Puri and Sen provides alternatives to normal-
theory procedures when the data do not meet the normality assumption.
The results of the present study indicate that the Type I error rates
of these nonparametric tests are not liberal and, for moderate samples,
their power values are almost equal to those of their normal-theory
alternatives for light-tailed distributions and superior for moderately
and extremely heavy-tailed distributions. Hence, the three
nonparametric tests examined should be routinely used by educational

researchers.
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APPENDIX A

DEFINITION OF TERMS

Asymptotic relative efficiency. The asymptotic relative efficiency of
test T, with respect to test T, is the limiting ratio of sample sizes
n2/n1, where n, and n, are the sample sizes required by test T, and
test T respecgively such that both tests achieve equal power against
equal alternatives that are "close to" the null hypothesis (Hollander
and Wolfe, 1973, p. 439).

Canonical-Correlation analysis. A canonical-correlation analysis refers
to a procedure employed to find correlation values (largest to
smallest) among a set of one or more linear functions of two sets of
random variables (Timm, 1975, p. 348). It is also used as a data-
reduction method.

Conservative test. A test 1is conservative if the actual level of
significance is smaller than the stated level of significance (Conover,
1980, p. 90).

Consistent test. A sequence of tests 1s consistent against all
alternatives in the class H, if the power of the test approaches 1.0 as
the sample sizes approaches infinity, for each fixed alternative
possible under Hl (Conover, 1980, p. 86).

Equivalent tests. Two statistical tests of the hypothesis H, are
equivalent if, for each possible set of observations, the decision
reached by one test agrees with the decision reached by the other test
(Hollander and Wolfe, 1973, p. 447).

Hypothesis test. A hypothesis (significance) test is a decision rule
which, on the basis of sample observations, either accepts or rejects
the null hypothesis (Hollander & Wolfe, 1973, p. 450).

Liberal test. A test is liberal if the actual level of significance is
greater than the stated level of significance.

Multivariate analysis of variance (MANOVA). A MANOVA refers to a
procedure which is used to simultaneously compare a set of means of
several outcome variables between several treatment populations (Timm,
1975, p. 369).

Multivariate-multiple-regression analysis. A multivariate-multiple-
regression analysis refers to a procedure which 1is wused to
simultaneously explain the relationships among a set of outcome
variables and a set of predictor variables, and predict a set of
outcome values for a given set of predictor values (Timm, 1975, p.
307).

103
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Most powerful test. A test is said to be most powerful for a specified
alternative if no other test, at the same level of significance, has
greater power against the same alternative (Gibbons, 1971, p. 15).

Power of a test. The power of a test against a specified alternative
is the probability of (correctly) rejecting the null hypothesis when
in fact the alternative is true (Hollander and Wolfe, 1973, p. 456).

Robust. A statistical procedure is said to be robust, with respect to a
particular postulated assumption, if the procedure is relatively
insensitive to (slight) departures from the assumption (Hollander &
Wolfe, 1973, p. 460).

Test statistic. A test statistic is a statistic that determines the
critical region of a hypothesis test (Hollander & Wolfe, 1973, p. 463).

Type I error. A Type I error is a false acceptance of the alternative
hypothesis, that is, a rejection of the null hypothesis when in fact it
is true (Hollander & Wolfe, 1973, p. 463).

Unbiased test. An unbiased test is a test in which the probability of
rejecting H when H, is false is always greater than or equal to the
probability of rejecging H when HO is true (Conover, 1980, p. 86).

Uniformly most powerful test. A test is uniformly most powerful against
a class of alternatives if it is most powerful with respect to each
specific alternative within the class of alternatives (Gibbons, 1971,
pP. 16).



APPENDIX B

PROCEDURES AND ALGORITHMS

Fleishman Procedure

Fleishman (1978) developed a technique for generating a non-
normal deviate using a function involving the first three powers of a
standard normal deviate. The procedure for obtaining the power-
function constants is outlined here.

Let wi be a non-normal deviate and a, b, ¢, and d the
power-function constants [see expression (25) of Chapter III].

Fleishman showed that for any distribution the expected value and

variance of w, are given by:

E(w) = a +c , (29)

Var (v) = b2 + 6bd + 2¢2 + 15d°. (30)

Assuming that the distribution is standardized expressions (29) and

(30) become:

a+c=0, (31)
b2 + 6bd + 2¢2 + 1542 = 1 | (32)

After considerable algebraic manipulation the skewness (71) and
kurtosis (12) values for a desired distribution can be expressed in

terms of b, ¢, and d (Fleishman, 1978):
2 2
v, - 2c(b” + 24bd + 1054" + 2) , (33)

2

v% = 24[bd + c2(1 + b2 + 28bd) + d2(12 + 48bd + 14lc? + 225d%)].  (34)
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The values for b, c, and d can be obtained by simultaneously solving
equations (32), (33), and (34). The value for a can be obtained using

expression (31).

Vale and Maurelli Procedure

Vale and Maurelli (1983) developed a procedure for computing the
intermediate correlations among non-normal variables. The procedure is
outlined below.

Let two standardized variables, Wl and Wz, be distributed as a
bivariate non-normal distribution with a specified population
correlation (pwlwz). Assume also that Wl and W2 have a common density
function and thus possess common skewness and kurtosis values. Hence,
the Fleishman power-function constants for Wl and W2 are identical.

Let z, and z, be two standard normal deviates and Zl and 22 the vectors

containing these deviates to the powers of zero through three:

Zl-ll z, z (35)

NN =N

ZZ =-=[1 z, z ]. (36)

Let D be the vector containing the Fleishman power-function constants

D' = [-c b ¢ d]. (37)

Using Fleishman’s (1978) power function of expression (25), the

non-normal deviates w1 and w2 can be defined as

w; =D *z, w, =D' *2 . (38)

Since Wl and W2 are standardized their correlation is equal to their
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expected cross product

pwlwz - E(Wlwz) (39)
- EQ' Z) Z, D)

= D'ED

where P is the expected matrix product of 11 and 22:

1 0 1 0
0 Pz z 0 3pz z
P = E(Z,Z,) = 1%2 ) 1%2 (40)
1 0 2p +1 0
zZ,2Z
1%2 3
0 3pz z 0 sz z, ¥ 9'oz z
i 1%2 1%2 1%2 |

Returning to the vector and matrix product of expression (40) the

correlation Py W is given by the scalar expression
172

by = P, 2 + 6bd + 942 + 2c2pz .+ 6d2p: , ) (41)
12 1%2 1%2 1%2

The values of Py s obtained by solving the polynomial of expression

12
*
(41) provides the intermediate correlation matrix P .

Multivariate Skewness and Rurtosis

The sample measures of Mardia (1974) multivariate skewness and
kurtosis values are given in expressions (27) and (28) of Chapter III.

The following algorithms were used to compute these values:

N N

-2 3

Te TN dE gE By (42)
G802

Yy " N 1§1 8y - t(t + 2), (43)
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where gij is the (ij)th element of the matrix
(g, - T 1, - B0 - T vy -0 1w, - Doy - T, @8
Nxt txt txN
where Hl’ u2' cees QN and_ﬁ are defined in expression (26) of Chapter
III.
Tests of Multivariate Normality

Mardia (1970) introduced two tests of multivariate normality
based on the sampling distributions of the multivariate skewness and
kurtosis statistics. The null hypotheses for the tests are that both
the population skewness and kurtosis values are equal to zero. The test

statistics are:

2
A= (N71,t)/6 T Xe(t+l) (t42)/6

B - 12’t/J[8t<t+2>/N1 -~ N(O, 1), (46)

(45)

where t is the number of variables.
The sample measures of the multivariate skewness and kurtosis
and the corresponding test-statistic values are given in Table Bl.

Table Bl
Tests For Multivariate Normality (Mardia, 1974)

t?  Measure Nb Value Statistic df€ cvd de®
4 skewness 300 .3919 19.595 20 31.41 NS
kurtosis 300 -.3094 -.387 -1.96 NS
6 skewness 300 1.0867 54.335 56 74 .45 NS
kurtosis 300 -.6064 -.536 -1.96 NS
8 skewness 300 2.3257 116.285 120 124.34 NS
kurtosis 300 -1.0318 -.706 -1.96 NS
a

t = number ,of variables, b N = sample size, € af =degrees of
freedom, cv = critical value, dc = decision, NS = not
significant.
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Computation of Power Value

The power value of the Rao [ test was computed analytically

using a method due to Muller and Peterson (1983) and the tabled power

values of the F test due to Pearson and Hartley (1951). Given the

matrices of regression coefficients (8) and the within-set correlations

among the dependent variables (Rll) and among the predictor variables

(322), the power value of the Rao [ test can be determined using the

following procedures:

(1)

(2)

(3)

Let R be the matrix of intercorrelations among the dependent and

predictor variables

R R
g - { 11 12] %7

Ry Ry2

312, the matrix of between-set correlations of the dependent and

predictor variables, is given by (Timm, 1975, p. 309):

Wilks’ 1lambda (A) can be obtained wusing the ratio of the

determinants of R, and 322 (Anderson, 1958, p. 233)

811’
A = |RI/ZCIRy4 1R, D) (49)

The non-centrality parameter for the Rao F can be obtained using
the formulas given by Muller and Peterson (1983) and Pearson and
Hartley (1951):

A = - INASYIINATY (50)

2)'
$ = (v + 1y1/2 (51)
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where b, vy and v, are given by expressions (17) of Chapter III.

(4) The power value is obtained using the power charts of the F test
(Pearson & Hartley, 1951) and the non-centrality parameter of
expression (51). The power values of the Rao F test are given in
Table B2.

Table B2 a
Theoretical and Empirical Power Values of the Rao F Test

Within-set correlation

Measure (.3, .3) .3, .7) .7, .7)
B .180 .180 .180
312 . .234 .306 .306
A .870 .831 .870
AA 13.798 18.680 13.798
é 1.660 1.933 1.660
Theoretical power .840 .940 .840
Empirical power .815 .910 .815

8 Tabled power values were based on N=100 and t = 4. The empirical
power values were obtained using 3,000 replications for a normal
distribution.

A totic Relatiwv e

The efficiencies of two test statistics can be compared using
their power values for various alternative hypotheses and sample sizes.
However, a single measure of their relative effeciency can be obtained
using the so-called asymptotic relative efficiency (A.R.E.). The
computation of the A.R.E. of the pure-rank test to the normal-theory
likelihood-ratio test for regression (Puri & Sen, 1985, pp. 316-317) is
outlined here.

Let (2' = (X', &) = (Y}, Yp,.n, Y, X, Xohenn, xq)) be a set

P
of random variables with a normal density function (d.f.) F(2), Fl(g)
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be the marginal d.f. for the X variables, and Go(x - Qo - B8'x) be the
conditional d.f. of Y given X = x. Let £(2), fl(x), and go(x) be the
probability distribution functions (p.d.f.’s) corresponding to the F,

Fl’ and G respectively. Then f£(Z) can be written in terms of the

OI

conditional and marginal p.d.f’s as follows:
£(z) = 8o(¥ - 8y - B'R)E; (%) (52)
Under Ho: B = 0, expression (52) becomes

£(2) - gy(x - By)E (%) (53)

The likelihood function can then be written as

n n
LZye Zgooooo Z) = 0 £Zp) = T 8g(Y; -Gy - B'EDE &) (54)
Denoting the maximum likelihood estimator of 8 by ﬁ, the 1likelihood-
ratio statistic is given by

n g, (X,)
A\ - 0™ . (55)

Under Ho (i.e., 8 = 0) -2 log(An) is asymptotically distributed as the
central chi-square distribution with pq degrees of freedom. Under Hl'
the statistic has a noncentral chi-square distribution with pq degrees
of freedom and a noncentrality parameter, say A, . The A.R.E. of the
pure-rank test (L) with respect to An is

eL, ») = %L, (56)

)
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where AL is the noncentrality parameter for the chi-square distribution
for the pure-rank test under Hl. It has been shown that for a parent
multivariate normal population the pure-rank test and the normal-theory
likelihood-ratio test are asymptotically power equivalent (Puri & Sen,
1969). For other forms of continuous distributions the A.R.E. of the

pure-rank test to the likelihood ratio-test is bounded below by 0.864.
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- tatis : and Se

The construction of the pure-rank statistic (Puri & Sen, 1985,

pp. 307-312) is outlined in this appendix. Let [Xi, xi] - [Yli’ YZi’

. Ypi’ xli' x21"' Xqi]' i= 1, 2, .., N, be a vector of random
observations for the i(th) subject on Yl’ Y2,.., Yp dependent and Xl,
Xz,.., Xq predictor variables having an identical (p + q)-variate

continuous distribution function. Let Rji and Rki represent the rank
of the i(th) subject on the j(th) dependent and k(th) predictor
variables, respectively. The original and the rank values of the Yj

and Xk can be represented as matrices H and R, respectively:

311 512 §1N §11 §12 §1N
21 Yo1 2N 21 22 -+ Roy
Y. Y. .. Y R R . R
g - pl "p2 pN R - pl P2 PN (57)
11 X1 XIN Rp+1,1 Rp+l,2 *° Rp+LN
21 %22 0 N p+2,1 "p+2,2 7 p+2,N
X. X. .. X R
ql “q2 gN pH+q,1l Rp+q,2 .. Rp+q,N

Since the N vectors of observations are independent each row of R
represents a permutation of of integers 1, 2,..., N (assuming no ties

by virtue of continuity of the distribution function of the Y, and Xk),

h|

with a total of N! permutations. Since R contains (p + q) rows, under

the truth of the hypothesis of independence of the Yj and xk, the

total number of possible realizations of R is (N!)(p+q)_
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Following Chatterjee and Sen (1964), two rank matrices are said
to be permutationally equivalent if it is possible to obtain the second
matrix by permutations of the columns of the first matrix. Suppose the
columns of R are rearranged in such a way that the first row has the
elements in the natural order 1, 2, ..., N, and denote the
corresponding matrix by R*. R is said to be permutationally equivalent
to R* if it is possible to obtain R* by permutations of the columns of
R. Since there are N columns in R, for a given R* there will be a
total of N! possible realizations of R which are permutationally
equivalent to R*.

In general, the probability distribution of R over (N!)(p+q)
possible realizations of R depends on the joint distribution of the Yj
and Xk. However, given a particular R* the conditional distribution of
R over the N! permutations of the columns of R* is uniform under the
truth of the hypothesis of independence of the Y, and xk. An exact test

3

of independence of Yj and Xk may be computed using the distribution of

R. However, the arithmetic is excessive and a large-sample
approximation is of principal interest.

Puri and Sen (1985, pp. 307-312) presented a large-sample test
based on the sum-of-cross-products vector § of the centered R, and Rk

J

and the covariance matrices M of the R, and C of the Rk with elements

h|
T SIS 8
-1 - - -
my, =N igl(Rji “RO®Ry,y - Ry $3=1 20, (59)

-1 - - '
e ~N AR -RO®R,, SR kk=1,2,.., 9, (60)
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where ij’ ij" Ek’ and i‘k' are the rank means for the j(th) and j’(th)
dependent and k(th) and k’(th) predictor variables, respectively. Puri

and Sen showed that for a large N the expected values of S and §'S

are:
E(8) = 0, (61)
E(8'S) - N4 ® ©), (62)

where (M ® () represents the Kronecker product of M and C (see
Anderson, 1958, p. 347). The large-sample pure-rank statistic (L) is

given by
L-vlis e ot s, (63)

Puri and Sen showed that the L statistic is distributed as a
chi-square variable with pq degrees of freedom when the Yj and Xk
variables are independent. The L statistic is genuinely distribution-
free for p = q = 1, but only (conditionally) permutationally

distribution-free for p > 1 or q > 1.

-Rank Test: Ha e o
Harwell and Serlin (1985) derived a simpler form of the Puri and
Sen L statistic using canonical correlations among the R.J and Rk
values. Defining a -S Q-l, where a is a matrix of sample regression
coefficients based on ranks, Harwell and Serlin showed that the L
statistic has the definitional form:
N N N N

L=z 3 3z g dki'k
jel =1 kel k’=l

sjk sj,k,‘, (64)
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N N N N o
L= 3z 3z 3z o Kk

- S.,,, >
ju=l §'=1 kel k'=1 Jk 37k

where dJk'j'k' represent the elements of the (u-l ® Q-l), and mjj'and
Kk’ represent the elements of u-l and Q'l, respectively.

In this definitional form the elements of § appear as part of a
quadruple sum across products of the elements of M and C, thus making
the computation of expression (64) extremely difficult. In the
derivation of the simpler form of the L statistic, Harwell and Serlin

showed that the summation of expression (64) may be written as the

matrix product:

w11 AMtBo (65)
o Trsctets cuh
w1 T (scts uh

o
]

(N-1) (sum of eigenvalues of resulting matrix).

The eigenvalues (squared canonical correlations) of the resulting
matrix are the eigenvalues among the sets of the R.j and Rk values,

er (r = 1,2,..,s). The L statistic can then be written in the form

s
L=(N-1)Z206 , r=1, 2,..., s. (66)
r
r=1
The L statistic, as shown by Puri and Sen, 1is asymptotically

distributed as a central chi-square variable with pq degrees of freedom

when the Yj and Xk variables are indepenedent.



APPENDIX D

COMPUTER PROGRAMMING

This appendix describes the subroutines of the Statistical
Package for the Social Sciences (SPSSX 2.2) and the International
Mathematical and Statistical Libraries (1983) used in the present
study. The subroutine FACTOR of the SPSSX was used to obtain the
principal component weights of the intermediate correlation matrices.
The following subroutines of the IMSL were used for data generation

and computation of test statistics:

NEQNF To solve a set of simultaneous nonlinear equations for
Fleishman power function constants

GGUBS To generate uniform random deviates

VMULFF To multiply matrices

VMULFM To multiply the transpose of a matrix A by a matrix B
VMULFP To multiply a matrix A by the transpose of a matrix B
LINVIF To compute the inverse of a matrix

NMRANK To rank the generated deviates

EIGRF To compute eigenvalues of a matrix

LINV3F To compute determinant of a matrix

The complete listing of the computer program, which was coded in

FORTRAN V, is given below.

117
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PROGRAM NONPAR

ofed L e e DO L DD L D - e e

CC TYPE I ERROR RUN (NV=4,NP=2,NQ=2,CY¥=0.3,CX=0.3,NS=25,NL=3000).

CC DISTRIBUTION: NORMAL AND UNIFCRM.

CC m-——— I T D 0 S D O S 3 O S O S B O S SRR
INTEGER NL,NS, TS, NP,NQ, NV,AL,NT, WA, BC
PARAMETER (NL=3000,NV=4,NS=25, TS=100,NP=2,NQ=2,AL=3,NT=5,WA=8,

& BC=1)

INTEGER DGT,EJOB,DJCB,DIS,TST,REJB(AL),REJR(AL) ,REJT (AL),
REJP (AL) , REJM (AL) , LOOP, IER, TN, IR(NS)

REAL RB(NQ, NP) ,PE(NP,NP) ,PE1 (NP, NP),PE2 (NP,NP) ,PX (NQ,NQ),
PX1 (NQ, NQ),PX2 (NQ,NQ),PH,EPS, D1, AA, BB,CC, DD, SUMD (NV) ,
SUMD1 (NV), SUMD2 (NV) ,SUMD3 (NV) , SUMD4 (NV) ,AVD (NV),
AVD1 (NV),AVD2 (NV),AVD3 (NV) ,AVD4 (NV) , SUMMS, SUMMK, SUMS,
SUMK, UD(TS) ,ND(TS), UNE (NP, NS) , UNX (NQ, NS) ,MNE (NP, NS) ,
MNX (NQ, NS) , MNNE (NP, NS) , MNNX (NQ, NS) , MBX (NP, NS) ,CY, CX,
MNNY (NP, NS) ,DATD (NV, NS) , VAR (NV) ,DEVD (NV,NS) ,AAA (NV,NV),
COVN (NV, NV) ,COVI (NV,NV) , WK (WA) ,DCV (NS, NV),DCD (NS,NS),
MULS, MULK, TMEAN, TVARN, TSKEW, TKURT, ACOVN (NV, NV) , VARN (NV)
SKEW (NV) , KURT (NV) , OMEAN, OVARN, OUSKW, OUKUR, OCMSKW, OMKUR,
CORR (NV, NV) ,CORL (NV,NV) ,BCR(BC) ,D2, DCOR, RCP (NV, NV) ,
SUMCC (NV, NV)

REAL AYY (NP,NP),AYX (NP, NQ) ,AXX (NQ, NQ),DTA(NS),R(NS),DTR(NS),
S,T,DATR(NV,NS),AVR,DEVR(NV,NS), RRR (NV,NV), RYY (NP, NP),
RYX (NP, NQ) , RXX (NQ, NQ) , DVYR (NP, NS) ,DVXD (NQ, NS) ,
MYX (NP, NQ), AYYI (NP, NP) , AXXI (NQ, NQ),RYYI (NP, NP),
RXXI (NQ,NQ) ,MATD1 (NP, NQ) ,MATD2 (NQ,NP) ,MATD (NP, NP) , Al,
MATR1 (NP, NQ) ,MATR2 (NQ, NP) , MATR (NP, NP) ,MATM1 (NP, NQ) ,B1,
MATM2 (NQ, NP) , MATM (NP, NP) , PED, PER, SER, SEM, B2,V1,V2,V3,
BAR, RAO, RTF,PRN,MRN,CS1,CS2,CS3,CF1,CF2,CF3

COMPLEX ED(NP),ER(NP),Z(NP,NP)

DOUBLE PRECISION DSEED

DSEED =66901.D0

[ o]

Lol BB N B A I BB o)

L B B B B I )

cC (1A) TO SPECIFY REGRESSION COEFFICIENT MATRIX (RB), PRINCIPAL
cC COMPONENT WEIGHTS FOR ERRORS (PE) AND PREDICTORS (PX), WITHIN-
cc SET CORRELATION (CY,CX), PHI(FH), TIE VALUE (EPS) FCR RANKING,
cc PARAMETER VALUES FOR THE INVERSE (DGT), EIGENVALCE (I1Z,IJOB),
cc AND DETERMINAT (D1,DJOB) PROCEDURES.

OPEN(20,FILE='TESTS')

DATA RB / .0, .0, .0

DATA PE1l/ .80623, .80623,

DATA PX1/ .80623, .80623,

CATA PE2/ .81475, .81475,

DATA PX2/ .81475, .81475,

CY=0.3

Cx=0.3

TN=NS*NL

PH=3.1428571

EPS=0.000001

DGT=0

EJOB=0

DJOB=4

D1=1.0
cC (18) TO CBTAIN Al, Bl, B2, V1, V2 FCR COMPUTING TEST STATISTICS
cC AND TO SPECIFY CRITICAL VALUES: F .01, .05, .10 (CF1,CF2,CF3)
ccC AND CHI-SQUARE .01, .05, .10 (CS1,CSs2,Cs3).

Al=(NS-1.)-(NP+NQ+1.)/2.

’ .0 /

.59161, .59161/
.59161, .S59161/
.57981, .57981/
.57981, .57981/
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B1=SQRT ( (NP*NP*NQ*NQ-4.)/ (NP*NP+NQ*NQ-5.))
B2=1./B1
V1=NP*NQ
V2=A1*B1-V1/2.+1.
V3=v2/Vl
IF (V1 .EQ. 4)THEN
CS1=13.277
CS2= 9.488
CS3= 7.779
IF (NS .EQ. 25)THEN
CFl= 3.800
CF2= 2.590
CF3= 2.080
ENDIF
IF (NS .EQ. 50)THEN
CFl= 3.526
CF2= 2.466
CF3= 2.008
ENDIF
IF(NS .EQ. 100) THEN
CFl= 3.416
CF2= 2.422
CF3= 1.972
ENDIF
ENDIF
IF (V1 .EQ. 9)THEN
CS1=21.666
CS2=16.919
CS3=14.684
IF (NS .EQ. 25)THEN
CFl= 2.820
CF2= 2.090
CF3= 1.770
ENDIF
IF (NS .EQ. 50)THEN
CFl= 2.579
CF2= 1.976
CF3= 1.689
ENDIF
IF (NS .EQ. 100)THEN
CFl= 2.491
CF2= 1.924
CF3= 1.657
ENDIF
ENDIF
IF (V1 .EQ. 16)THEN
CS1=32.000
CS2=26.296
CS3=23.542
IF (NS .EQ. 25)THEN
CFl= 2.2359
CF2= 1.841
CF3= 1.604
ENDIF
IF (NS .EQ. SO0)THEN
CFl= 2.145
CF2= 1.727
CF3= 1.528
ENDIF
IF (NS .EQ. 100)THEN



cc

N W

56
cc
cc
CcC
cC

S8
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CFl= 2.065
CF2= 1.682
CF3= 1.494
ENDIF
ENDIF
(18) TO SECIFY FLEISHMAN’S CONSTANTS FOR NORMAL AND UNIFORM DIS.
DIS=1
WRITE (20,1)
FORMAT (/, =======-= 1. NORMAL (0, 0) =====---m=oomcomoccmmeo ")
AA=0.0
BB=1.0
CC=0.0
DD=0.0
DO 2 I=1,NP
DO 3 J=1,NP
PE(I,J)=PE1(I,J)
CONTINUE
CONTINUE
DO 4 I=1,NQ
DO 5§ J=1,NQ
PX(I,J)=PX1(I,J)
CONTINUE
CONTINUE
GOTO 55
WRITE (20,7)
FORMAT ( =====-=== 2. UNIFORM (0, =1.12) ==-c=-——--cmomomee ")
AA=0.0
BB=1.34891701
CC=0.0
DC=-.13265955
DO 8 I=1,NP
DO 9 J=1,NP
PE(I,J)=PE2(I,J)
CONTINUE
CONTINUE
DO 10 I=1,NQ
DO 11 J=1,NQ
PX(I,J)=PX2(I,J)
CONTINUE
CONTINUE
(1C) TO SET THE NUMBER OF REJECTIONS TO ZERO: BARTLETT (REJB),
RAO F (REJR), RANK-TRANSFORM (REJT), PURE-RANK (REJP), AND
MIXED-RANK (REJM) .
DO 56 I=1,AL
REJB(I) =0
REJR(I)=0
REJT(I)=0
RECP (1) =0
RESM(I)=0
CONTINUE
(1C) TO SET SUMS TO ZERO FOR MULTIVARIATE SKEWNESS (SUMMS) AND
XURTOSIS (SUMMK), RAW-SCORE CRCSS PRCDUCTS (SUMCC), RAW SCCRES
(SUMD1), RAW-SCORE SQUARES (SUMD2), RAW-SCORE CUBES (5UMD3), AND
RAN-SCORE DUADS (SUMD4) .
STUMMS=0.0
SUMMK=0.0
DO 57 I=1,NV
DO 58 J=1,NV
STMCC(I,J)=0.0
CONTINUE
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SUMD1(I)=0.0
SUMD2(I)=0.0
SUMD3(I)=0.0
SUMD4 (I)=0.0

57 CONTINUE
CCmmm = e o e e e
CC (2) TO GENERATE DATA

Cc ---------------------------------------------------------------------

cc (2A) TO SET SUM OF LOOP RAW SCORES TO 2ERO (SUMD), GENERATE
cc UNIVARIATE RANDOM UNIFORM DEVIATES (UD), TRANSFORM UD INTO RANDCM
cc NCRMAL DEVIATES (ND), AND FORM A MATRIX OF UNIVARIATE RANDOM
cc NORMAL ERRORS (UNE) AND PREDICTORS (UNX).
LOOP=0
62 LOOP=LOOP+1
IF(LOOP .GT. NL)GOTO 250
DO 64 I=1,NV
SUMD(I)=0.0
64 CONTINUE
SUMS=0.0
SUMK=0.0
CALL GGUBS (DSEED, TS, UD)
DO 65 I=1,TS,2
ND(I) =SQRT(-2.*LOG(UD(I)))*COS(2.*PH*UD(I+1))
ND(I+1)=SQRT(-2.*LOG(UD(I)))*SIN(2.*PH*UD(I+1))
65 CONTINUE
DO 69 I=1,NP
DO 70 J=1,NS
K=(I-1) *NS+J
UNE (I, J)=ND (K)
70 CONTINUE
69 CONTINUE
DO 71 I=1,NQ
DO 72 J=1,NS
K= (NP+I-1) *NS+J
UNX (I, J) =ND (K)

72 CONTINUE

71 CONTINUE

cc (2B) TO OBTAIN MULTIVARIATE NORMAL ERRORS (MNE) AND PREDICTORS
cc (MNX) BY MULTIPLYING PRINCIPAL COMPONENT WEIGHTS (PE,PX) WITH
cc NCRMAL ERRORS AND PREDICTORS (UNE, UNX).

CALL VMULFF (PE,UNE,NP,NP,NS,NP,NP,MNE, N?, IER)

CALL VMULFF (PX,UNX,NQ,NQ,NS,NQ,NQ, MNX, NQ, IER)
cC (2C) TO OBTAIN MULTIVARIATE NCON-NCRMAL DATA (MNNE, MNNX) BY
cc MULTIPLYING EACH SCORE WITH FLEISHMAN CONSTANTS.

DO 81 I=1,NP

DO 82 J=1,NS

MNNE (I, J) =AA+BB*MNE (I,J)+CC*(MNE(I,J) **2) +CD* (MNE(I,J)**3)
82 CONTINUE
81 CONTINUE

DO 83 I=1,NQ

DO 84 J=1,NS

MNNX (I, J) =AA+BB*¥NX(I,J)+CC*(MNX(I,J)**2)«2D* (MNX(I,J)**3)
84 CONTINUE
83 CCNTINUE
cC (2D) TO OBTAIN DEPENDENT DEVIATES (MNNY): Y = B'X + E.

CALL VMULFM (RS,MNNX,NQ,NP,NS,NQ, NQ,6MBX, N2, IER)

DC 85 I=1,NP

DC 86 J=1,NS

MNNY(I,J) = MBX(I,J) + MNNE(I,J)
86 CONTINUZ
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85 CONTINUE
cc (2E)TO FORM A COMBINED DEPENDENT-PREDICTCR DATA MATRIX (DATD).
DO 87 I=1,NP
DO 88 J=1,NS
DATD(I,J)= MNNY(I,J)
88 CCNTINUE
87 CONTINUE
DO 89 I=1,NQ
DO 90 J=1,NS

K=NP+I
DATD (K, J) =MNNX (I, J)
90 CCNTINUE
89 CONTINUE
(O e e
CC (3) TO OBTAIN DESCRIPTIVE STATISTICS OF THE DATA
Cl--mmmmem e m e e e e e e e e e e e e s e mm s e e —e
cc (3A) TO OBTAIN SUM OF RAW SCORES (SUMD,SUMDl), SUM OF RAW-SCORE
cC SQUARES (SUMD2), SUM OF RAW-SCORE CUBES (SUMD3), SUM OF RAW-SCORE
cc QUADS (SUMD4), MEAN (AVD), AND DEVIATION FROM THE MEAN (DEVD).
DO 95 I=1,NV
DO 96 J=1,NS
SUMD (I) =SUMD(I) +DATD(I,J)
SUMD1 (I)=SUMD1 (I)+DATD(I,J)
SUMD2 (I)=SUMD2 (I)+DATD(I,J) **2
SUMD3 (I)=SUMD3 (I)+DATD(I,J) **3
SUMD4 (I)=SUMD4 (I)+DATD(I,J)**4
96 CONTINUE
AVD (I) =SUMD(I) /NS
95 CONTINUE
DO 98 I=1,NV
DO 99 J=1,NS
DEVD(I,J)=DATD(I,J) -AVD(I)
99 CONTINUE
98 CONTINUE
cC (3B) TO FIND SUM OF RAW-SCORE CROSS PRODUCT MTRIX (RCP), SUM OF

cC CROSS PRODUCT MATRX (AAA), SUM OF RAW-SCORE CROSS PRODUCTS (SUMCC;
cC AND COVARIANCE (COVN).

CALL VMULFP (DATD,DATD, NV, NS, NV, NV, NV, RCP, NV, IER)

CALL VMULFP (DEVD,DEVD,NV,NS,NV,NV,NV, AAA, NV, IER)

DO 108 I=1,NV

DO 109 J=1,NV

SUMCC (I, J)=SUMCC(I,J)+RCP(I,J)

COVN(I,J)=AAA(I,J)/ (NS-1.)

109 CONTINUE
108 CONTINUE
cc (3C) TO OBTAIN MULTIVARIATE SKEWNEISS (MULS) AND KURTOSIS (MULK)

cC INVERSE OF COVARIANCE MATRIX (COVI) AND PRODUCT OF THE MATRICES
cC DEVD’ *COVI*DEVD (DCD).

CALL LINVI1F (COVN,NV,NV,COVI,DGT, WK, IER)

CALL VMULFM(DEVC, COVI,NV,NS,NV,NV,NVY,DCV,NS, IER)

CALL VMULFF (DCV,DEVD, NS,NV,NS,NS, NV, DCD, NS, IER)

DO 120 I=1,NS

DO 121 J=1,NS

SUMS=SUMS+DCD (I,J)**3

121 CONTINUE
SUMK=SUMK+DCD (I, I)**2
129 CONTINUE

MULS=SUMS/ (NS**2)
MULK=SUMK/NS-NV* (NV+2.)
SUMMS=5UMMS +MULS
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SUMMK=SUMMK+MULK

cc (4A) ORIGINAL DATA: TO OBTAIN SCP SUBMATRIX FOR Y AND X VARIABLES
cC (AYY,AXX) FROM AAA.

DO 127 I=1,NP

DO 128 J=1,NP

) AYY(I,J)=AAA(I,J)
128 CONTINUE
127 CONTINUE

DO 132 I=1,NP
DO 133 J=1,NQ
AYX(I,J)=AAA(I,NP+J)
133 CONTINUE
132 CONTINUE
DO 136 I=1,NQ
DO 137 J=1,NQ
AXX (I, J)=AAA(NP+I,NP+J)
137 CONTINUE
136 CONTINUE
cC (4B) RANKED DATA: TO RANK ORIGINAL DATA AND OBTAIN MEAN RANK
cc (AVR), SCP MATRIX (RRR) AND SCP SUBMATRICES FOR Y,YX,X VARIABLES
cC (RYY, RYX, RXX) .
DO 140 I=1,NV
DO 141 J=1,NS
DTA (J)=DATD(I,J)
141 CONTINUE
CALL NMRANK (DTA,NS,EPS, IR,R,DTR,S,T)
DO 142 J=1,NS

DATR(I,J)=DTR(J)
142 CONTINUE
140 CONTINUE

AVR= (NS+1.)/2.
DO 145 I=1,NV
DO 146 J=1,NS
DEVR(I, J)=DATR(I,J) - AVR
146 CONTINUE
145 CONTINUE
CALL VMULFP (DEVR, DEVR, NV, NS, NV, NV, NV, RRR, NV, IER)
DO 155 I=1,NP
DO 156 J=1,NP
RYY (I, J)=RRR(I,J)
156 CONTINUE
DO 160 I=1,NP
DO 161 J=1,NQ
RYX(I,J)=RRR(I,NP+J)
161 CONTINUE
DO 165 I=1,NQ
RXX(I,J)=RRR(NP+I,NP+J)

166 CONTINUE
165 CONTINUE
cc (4C) MIXED DATA: TO OBTAIN SCP FCR RANKED Y AND CRIGINAL X (MYX).

DO 170 I=1,NP

DO 171 J=1,NS

DVYR(I,J) =DEVR(I,J)
171 CCONTINUE
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17
17

cc

ccC

cc
ccC

ccC
cC

cC

cc

CONTINUE
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DO 175 I=1,NQ
DO 176 J=1,NS
K=NP+I
DVXD(I, J)=DEVD (K, J)

6 CONT
) CONT

INUE
INUE

CALL VMULFP (DVYR,DVXD, NP, NS, NQ, NP, NQ, MYX, NP, IER)

(S) TO OBTAIN WILKS'’

LAMBDA AND SUM OF EIGENVALUES

(SA) TO OBTAIN THE INVERSES OF AYY,AXX,RYY,RXX.
CALL LINVI1F (AYY,NP,NP,AYYI, DGT, WK, IER)

CALL LINV1F (AXX,NQ,NQ,AXXI,DGT,WK, IER)

CALL LINVIF (RYY,NP,NP,RYYI, DGT, WK, IER)

CALL LINVIF (RXX,NQ,NQ, RXXI, DGT, WK, IER)

(SB) TO OBTAIN PRODUCT OF MATRICES USING ORIGINAL DATA (MATD),
DATA (MATR), AND MIXED DATA (MATM) .
VMULFF (AYYI,AYX, NP, NP, NQ, NP, NP,MATD1, NP, IER)
VMULFP (AXXI, AYX, NQ, NQ, NP, NQ, NP, MATD2,NQ, IER)

RANKED
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

OF (1-EIGENVALUE)

VMULFF (MATD1,MATD2, NP, NQ, NP, NP, NQ, MATD, NP, IER)

VMULFF (RYYI, RYX, NP, NP, NQ, NP, NP,MATR1,NP, IER)
VMULFP (RXXI, RYX, NQ, NQ, NP, NQ, NP, MATR2,NQ, IER)

VMULFF (MATR1,MATR2, NP, NQ, NP, NP, NQ, MATR, NP, IER)

VMULEF (RYYI, MYX, NP,NP,NQ, NP, NP,MATM1,NP, IER)
VMULFP (AXXI,MYX, NQ, NQ, NP, NQ, NP, MATM2,NQ, IER)

VMULFF (MATM1,MATM2, NP, NQ, NP, NP, NQ, MATM, NP, IER)
(SC) TO OBTAIN EIGENVALUES OF MATD (ED) AND MATR (ER),
(PED,PER) AND SUM OF THE EIGENVALUES (SER, SEM)

CALL EIGRF (MATD,NP,NP,EJOB,ED, 2, NP, WK, IER)
CALL EIGRF (MATR,NP,NP,EJOB,ER,Z,NP, WK, IER)

PED=
PER=
SER=
SEM=

1.0
1.0
0.0
0.0

DO 230 I=1,NP
PED=PED*(1.0-ED(I))
PER=PER*(1.0-ER(I))
SER=SER+MATR(I, I)
SEM=SEM+MATM (I, I)

0 CONT

INUE

THE PRODUC'

(6A) TO CCMPUTE BARTLETT (BAR), RAO F (RAO),

TRANSFORM (RTF), PURE-RANK (PRN), MIXED-RANK

= -Al*LOG(PED)

= ((1.-PED**B2)/(PED**B2))*V3

= ((1.-PER**B2)/(PER**B2)) *V3

= (NS-1.)*SER

= (NS-1.)*SEM

(6C) NUMBER OF REJECTIONS FOR ALPHA = .01
IF(BAR .GE.
IF (RAO .GE.
IF (RTF .GE.

RN .GE.
IF (MRN .GE

(5D) NUMBER OF REJECTIONS FCR ALPHA = .05
IF(BAR .GE.
IF(RAO .GE. CF2) REJR(2)=REJR(2)+1

BAR
RAOC
RTF
PRN
MRN

IF (P

CS1) REJB(1)=REJB(1)+1
CFl) REJR(1)=REJR(1)+1
CFl) REJT(1)=REJT(1)+1
CS1) REJP(1)=REJP (1)+1
CS1) REJM(1)=RESM(1)+1

CS2) REJB(2)=REJB(2)+1

RANK-
(MRN) .
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IF (RTF .GE. CF2) REJT(2)=REJT(2)+1
IF(PRN .GE. CS2) REJP(2)=REJP (2)+1
IF(MRN .GE. CS2) REJM(2)=REJM(2)+1
ccC (6E) NUMBER OF REJECTIONS FOR ALPHA = .10
IF(BAR .GE. CS3) REJUB(3)=REJB(3)+1
IF(RAO .GE. CF3) REJR(3)=REJR(3)+1
IF(RTF .GE. CF3) REJT(3)=REJT (3)+1
IF(PRN .GE. CS3) REJP(3)=REJP (3)+1
IF(MRN .GE. CS3) REJM(3)=REJM(3)+1
GOTO 62
CC e e e e e e e e e e e e
CC (7) TO OBTAIN AVERAGE AND OVERALL DESCRIPTIVE STATISTICS
Clmmm e e e e e e
cc (7A) TO OBTAIN AVERAGE AND OVERALL MEAN (AVD1l, OMEAN), VARIANCE
cc (AVARN, OVARN), UNIVARIATE SKEWNESS (SKEW, OSKEW) AND KURTOSIS
cc (KURT, OSKEW) , MULTIVARIATE SKEWNESS (OMSKW) AND KURTOSIS (OMKUR),
cc CORRELATION MATRIX (CORR) AND DETERMINANT OF CORR (DCOR).
250 TMEAN=0.0
TVARN=0.0
TSKEW=0.0
TKURT=0.0
AVD1(I)=SUMD1(I)/TN
AVD2(I)=SUMD2(I)/TN
AVD3(I)=SUMD3(I)/TN
AVD4 (I)=SUMD4(I)/TN
VARN (I)=AVD2(I)-AVD1 (I)**2
SKEW(I)=(AVD3(I)-3.*AVD1(I)*AVD2(I)+2.*AVD1(I)**3)/VARN(I)**1.5
KURT (I)=((AVD4(I)-4.*AVD1(I)*AVD3(I)+6.*(AVD1(I)**2)*AVD2(I)-~
& 3.*AVD1(I)**4)/(VARN(I)**2)) - 3.0
TMEAN=TMEAN+AVD1 (I)
TVARN=TVARN+VARN (I)
TSKEW=TSKEW+SKEW (I)
TKURT=TKURT+KURT (I)
251 CONTINUE
OMEAN=TMEAN/NV
OVARN=TVARN/NV
OUSKW=TSKEW/NV
OUKUR=TKURT/NV
OMSKW=SUMMS /NL
OMKUR=SUMMK/NL
cc (7B) TO OBTAIN CORRELATION MATRIX (CORR) AND DETERMINANT
cc OF CORRELATION MATRIX (DCCR).
DO 260 I=1,NV
DO 261 J=1,NV
ACOVN(I,J)=(SUMCC(I,J)/TN)~-(AVD1(I)*AVD1(J))
261 CONTINUE
250 CONTINUE
DO 262 I=1,NV
DO 263 J=1,NV
CCRR(I,J)= ACOVN(I,J)/SCRT (ACCVN (I, I)*ACOWN(J,J))
CORL(I,J)=CORR(I,J)
263 CONTINUE
262 CONTINUE
CALL LINV3F (CORL, BCR,DJOB,NV,NV,D1,D2, WK, IER)
DCOR=D1*2.*+D2
WRITE (20, 270)NV,NS,NL,CY,CX
270 FORMAT(/,’NV =/,I1,’ NS =’,I3,’ NL =',I4,’ CY =’,F3.1,
& ' CX =',F3.1)
WRITE(20,272)AVD1(1),AVD1(2),AVDl(3),AVD1 (4),CMEAN
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274
276
278
281
280
282
284
286
288

230

126

FORMAT (/, 'MEAN’, 3X,5F11.6)

WRITE (20,274)VARN(1),VARN (2), VARN(3),VARN (4),OVARN
FORMAT (/, ' VARN’, 3X, 5F11.6)

WRITE (20,276) SKEW(1),SKEW(2), SKEW(3),SKEW(4), OUSKW
FORMAT (/, ' USKEW’, 2X,5F11,6)

WRITE (20, 278) KURT (1), KURT (2) , KURT (3), KURT (4) , OUKUR
FORMAT (/, ' UKURT’, 2X, SF11.6)

DO 280 I=1,NV

WRITE (20,281) CORR(I,1l),CORR(I,2),CORR(I,3),CORR(I,4)
FORMAT(/,’CORR’,3X,4F11.6)

CONTINUE

WRITE (20, 282) OMSKW, OMKUR, DCOR

FORMAT(/, " MSKEW =’ ,F11.6,° MKURT =’,Fl11.6,’ DETCOR = ’,F8.6)
WRITE (20,284)

FORMAT (/, ' ALFA(REJ) BART  RAOF RAOR PURR MIXR’)
WRITE (20,286) REJB(1l),REJR(1),REJT(1),REJP(1l),REJM(1)
FORMAT(/,’0.01( 30)’,5(3X,I4))

WRITE (20,288) REJB(2),REJR(2),REJT(2),REJP(2),REJM(2)
FORMAT(/,’0.05(150)’,5(3X,I4))

WRITE (20,290) REJB(3),REJR(3),REJT(3),REJP(3),REIM(3)
FORMAT(/,’0.10(300)’,5(3X,I4),/)

DIS=DIS+1

IF (DIS .EQ. 2) GOTO 6

STOP

END



APPENDIX E

TABLES

Table E1l. Fleishman Constants Used for Data Generatione

" 12 a b c d

.00 0.00 0.00 1.00 0.00 0.00

.00 -1.12 0.00 1.348917 0.00 -0.132660
.50 0.00 -0.092624 1.039946 0.092624 -0.016461
.00 0.50 -0.258525 1.114655 0.258525 -0.066013
.00 3.00 0.00 0.782356 0.00 0.067905
.00 3.00 -0.128397 0.832216 0.128397 0.048032
.00 6.00 -0.313749 0.826324 0.313749 0.022707

.00 20.00 0.00 0.338712 0.00 0.184461

- skewness; Ty = kurtosis; a, b, ¢, d = Fleishman constants.

127
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Table E2. Average Mean, Variance, Skewness, Kurtosis, and
Within-Set Correlations of the Generated Data?

v 2 1y B o> L2 123 p(.3) p(.7)
4 0.00 0.00 .002 .993 .006 .031 .301 .701
0.00 -1.12 -.001 1.006 .000 -1.149 .299 .694
0.50 0.00 .001 .995 .498 -.008 .299 .699
1.00 0.50 .001 .998 1.006 .522 .303 .701
0.00 3.00 .003 1.001 .020 2.991 .304 .702
1.00 3.00 .001 .992 .980 2.930 .298 .699
2.00 6.00 .000 .997 2.015 6.196 .300 .700
0.00 20.00 .003 1.000 .045 20.551 .297 .698
6 0.00 0.00 .003 .992 -.006 .026 .299 .700
0.00 -1.12 .001 1.005 -.003 -1.163 .297 .694
0.50 0.00 .002 .995 .502 .025 .300 .700
1.00 0.50 .002 .996 1.001 .512 .299 .701
0.00 3.00 .001 .999 .020 3.264 .301 .701
1.00 3.00 .004 1.001 1.027 3.156 .299 .700
2.00 6.00 -.001 .991 2.005 6.159 .299 .700
0.00 20.00 .002 1.005 -.040 20.031 .301 .700
8 0.00 0.00 .002 .996 .005 .014 .302 .701
0.00 -1.12 .000 1.001 .000 -1.162 .299 .694
0.50 0.00 .002 .994 .500 .013 .299 .699
1.00 0.50 .001 .996 1.002 .518 .303 .699
0.00 3.00 .001 .992 -.016 3.061 .298 .699
1.00 3.00 .001 .995 .994 2.932 .300 .700
2.00 6.00 -.001 .991 1.995 6.016 .298 .699
0.00 20.00 -.002 .991 -.027 19.985 .300 .701
4 0.00 0.00 .003 .983 .007 .084 .302 .701
0.00 -1.12 .000 .995 .001 -1.124 .300 .694
0.50 0.00 .002 .981 .506 .089 .298 .699
1.00 0.50 .002 .986 1.008 .593 .304 .700
0.00 3.00 .001 .984 .001 3.228 .302 .701
1.00 3.00 .000 .984 1.012 3.190 .301 .700
2.00 6.00 .001 .986 2.034 6.219 .298 .699
0.00 20.00 .000 .985 .000 20.922 .302 .702
6 0.00 0.00 .001 .984 -.003 .090 .301 .701
0.00 -1.12 -.001 .993 .003 -1.113 .297 .693
0.50 0.00 .000 .984 .508 .080 .299 .699
1.00 0.50 .001 .984 1.012 .606 .300 .701
0.00 3.00 .002 .983 .011 3.207 .300 .700
1.00 3.00 .000 .986 1.012 3.270 .302 .701
2.00 6.00 -.001 .982 2.045 6.382 .300 .700
0.00 20.00 -.001 .986 -.056 20.037 .300 .700
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Table E2 (continued)

N v T 128 B o? 12 128 p(.3) »o(C.7)
50 8 0.00 0.00 .003 .984 .008 .085 .300 .700
0.00 -1.12 .002 .992 -.004 -1.103 .298 .694

0.50 0.00 .002 .982 .505 .076 .300 .700

1.00 0.50 .001 .984 1.001 .604 .301 .699

0.00 3.00 -.002 .983 -.009 3.176 .298 .698

1.00 3.00 .001 .985 1.010 3.212 .300 .700

2.00 6.00 .000 .980 2.024 6.185 .298 .699

0.00 20.00 .003 .979 .019 19.879 .299 .699

100 4 0.00 0.00 .002 .978 .006 .021 .301 .700
0.00 -1.12 .001 .986 -.003 -1.077 .298 .694

0.50 0.00 .000 .976 .502 124 .299 .699

1.00 0.50 .001 .979 1.015 .640 .300 .700

0.00 3.00 .000 .979 .009 3.104 .298 .699

1.00 3.00 .001 .980 1.018 3.250 .301 .700

2.00 6.00 -.002 .972 2.040 6.192 .298 .699

0.00 20.00 .001 .970 .011 19.614 .299 .699

6 0.00 0.00 .001 .978 -.003 .120 .301 .700
0.00 -1.12 .001 .987 -.004 -1.063 .298 .694

0.50 0.00 -.001 .977 .502 .120 .301 .701

1.00 0.50 .001 .978 1.014 .640  .300 .701

0.00 3.00 .000 .977 .020 3.181 .300 .700

1.00 3.00 .001 .978 1.021 3.234 .300 .699

2.00 6.00 .001 .977 2.047 6.299 .300 .700

0.00 20.00 .001 .981 -.047 20.647 .300 .701

8 0.00 0.00 .001 .977 .003 .123  .300 .700
0.00 -1.12 -.001 .986 -.001 -1.087 .297 .693

0.50 0.00 .002 .977 .500 .121  .300 .700

1.00 0.50 -.001 .977 1.016 .643 .300 .700

0.00 3.00 -.001 .978 .003 3.136 .300 .700

1.00 3.00 .001 .980 1.013 3.176 .301 .701

2.00 6.00 -.001 .974 2.055 6.354 .299 .699

0.00 20.00 .000 .987 -.010 21.295 .300 .700

The tabled values represent the average mean, variance, skewness,
kurtosis, and within-set correlation values based on 9,000
replications.
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Table E3. Average of the Type I Error and Power Values by
Distribution and Sample size®

Type I Error Power
a= .01 a=.10 a= .01 a=.10
N 25 50 100 25 50 100 25 50 100 25 50 100

(0, 0]

RAO 010 011 009 097 101 102 065 247 675 323 613 913

RTF 010 010 009 099 098 106 069 227 630 313 587 894

PUR 002 005 007 073 088 100 021 153 580 254 551 885

MIX 002 005 008 068 087 099 016 153 594 243 556 893
[0, -1.12]

RAO 011 011 008 101 103 102 063 232 660 311 603 912

RTF 011 011 009 101 102 102 063 210 592 297 563 874

PUR 002 006 007 074 091 095 019 141 539 239 528 864

MIX 002 005 006 074 092 096 020 142 541 243 532 865
[.5, 0]

RAO 012 011 011 101 099 102 071 249 661 318 605 907

RTF 011 010 011 104 095 105 070 234 626 312 583 890

PUR 003 005 009 075 084 099 021 159 574 251 550 881

MIX 002 005 008 073 085 096 017 149 583 233 551 889
(1, .5]

RAO 012 010 010 100 099 100 086 259 661 334 605 905

RTF 010 010 009 101 099 103 090 296 736 361 657 936

PUR 002 005 006 074 088 097 028 209 684 292 624 930

MIX 002 004 007 071 085 095 015 169 692 234 593 940
(0, 3]

RAO 014 011 012 102 101 101 083 273 677 344 631 905

RTF 011 011 012 099 098 099 087 287 711 351 645 924

PUR 003 006 009 074 087 093 028 202 663 283 610 917

MIX 002 005 008 070 084 091 019 195 706 270 629 935
(1, 3]

RAO 013 010 013 105 100 108 089 279 669 346 623 903

RTF 011 009 010 102 098 103 088 282 702 348 643 923

PUR 003 004 008 076 086 096 030 198 657 283 610 917

MIX 002 004 007 072 087 096 019 179 686 249 604 933
(2, 6]

RAO 021 020 018 116 118 107 138 309 658 379 610 887

RTF 010 011 011 101 101 105 124 374 826 414 729 966

PUR 003 007 008 074 090 099 040 272 789 342 697 962

MIX 002 004 008 070 085 097 013 182 801 221 640 975
[0, 20]

RAO 036 037 035 149 136 133 181 358 695 446 657 899

RTF 012 010 012 104 097 103 160 456 880 471 787 978

PUR 003 006 009 076 086 097 054 345 851 392 758 975

MIX 002 004 007 065 083 093 029 336 912 359 810 991

a

cases).

Tabled values represent the average Type I error and power values
across all within-set correlations and numbers-of-variables

9
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Table E4. Average of the Type I Error and Power Values by
Distribution and Within-Set Correlation®

Type I Error Power
a= 01 a= .10 a= .01 a= .10

b
(py,px) 1 2 3 1 2 3 1 2 3 1 2 3

(o,

(o,

0]
RAO 010 010 010 100 100 100 283 419 283 577 694 577
RTF 011 010 010 102 100 101 261 399 266 556 676 563
PUR 005 004 005 089 085 087 211 329 214 520 640 530
MIX 005 005 005 085 085 084 215 334 214 526 639 527
-1.12])
RAO 010 010 010 102 103 102 274 410 271 569 686 570
RTF 010 010 010 102 100 102 244 376 244 534 657 543
PUR 005 005 005 087 086 087 195 309 195 501 620 509
MIX 005 005 004 086 086 089 197 310 197 506 624 510

(.5, 0]

(1,

(o,

(1,

(2,

(0,

RAO 011 011 011 101 100 101 281 420 280 573 686 571
RTF 011 011 011 104 100 100 263 401 267 554 671 560
PUR 006 006 005 087 086 085 209 333 211 520 636 526
MIX 006 005 005 085 085 084 211 333 206 524 631 519
.5]
RAO 011 010 011 099 102 099 288 428 290 575 692 576
RTF 010 010 009 101 102 100 329 466 327 615 727 612
PUR 005 004 005 086 087 085 267 388 265 578 691 577
MIX 004 004 005 082 085 084 260 372 244 559 663 545
3]
RAO 012 012 012 100 102 103 297 434 301 590 699 592
RTF 011 011 011 100 099 097 318 451 316 603 711 605
PUR 006 006 006 086 085 084 257 377 258 567 674 569
MIX 005 005 005 082 081 082 278 382 259 585 68l 570
3]
RAO 011 012 012 104 104 106 299 434 304 585 698 588
RTF 010 010 010 102 100 100 314 448 311 602 710 603
PUR 005 005 005 087 085 085 257 373 255 568 673 569
MIX 004 004 004 085 085 084 265 373 245 569 665 552
6]
RAO 018 020 022 110 115 116 322 452 331 587 696 594
RTF 011 011 011 103 104 101 410 522 393 676 765 668
PUR 006 006 005 087 089 087 339 439 323 640 728 633
MIX 005 004 005 084 085 083 328 398 270 609 670 557
20]
RAO 032 035 040 135 140 144 362 487 385 634 726 642
RTF 011 011 011 102 101 101 478 568 450 734 793 709
PUR 006 006 005 087 086 086 401 476 372 696 756 674
MIX 004 004 004 081 078 082 436 471 370 730 761 669

a

b

Tabled values represent the average Type I error and power values
across all sample sizes and numbers-of-variables (9 cases).
Within-set correlation 1 = (.3, .3), 2 = (.3, .7), 3 =(.7,.7).
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Table ES5. Average of the Type I Error and PoweraValues by
Distribution and Number-of-Variables

Type I Error Power
a= .01 a=.10 a=.01 a=-
v 4 6 8 4 6 8 4 6 8 4 6 8

(0, 0]

RAO 009 011 010 098 101 101 336 318 332 628 608 612

RTF 010 010 010 100 105 098 307 299 321 603 591 600

PUR 005 005 004 093 090 078 267 241 245 590 555 545

MIX 006 005 004 089 089 076 274 246 244 597 555 539
[0, -1.12]

RAO 011 009 009 103 104 100 322 313 320 624 602 599

RTF 011 010 010 100 104 101 287 284 293 587 572 574

PUR 007 005 004 094 089 078 250 228 221 573 538 519

MIX 006 004 003 095 090 077 252 231 221 577 542 522
[.5, 0]

RAO 011 011 012 099 102 101 324 326 331 617 607 606

RTF 011 011 010 099 106 100 301 306 323 596 593 596

PUR 007 006 004 092 089 077 261 250 243 582 558 542

MIX 006 005 004 089 088 077 265 249 235 592 555 527
(1, .5]

RAO 010 010 011 100 099 101 336 328 342 621 609 614

RTF 010 010 009 100 103 100 377 366 378 657 648 648

PUR 006 004 003 092 088 078 333 298 290 644 612 589

MIX 005 004 004 092 085 074 337 285 255 649 584 534
(0, 3]

RAO 011 012 013 094 108 102 348 341 343 632 626 623

RTF 011 011 011 098 104 094 357 357 371 640 639 640

PUR 007 006 005 092 090 073 315 294 282 626 603 581

MIX 006 005 004 087 084 074 336 303 281 647 611 576
(1, 3]

RAO 012 012 012 104 103 106 341 343 352 625 625 621

RTF 009 009 011 099 101 102 350 352 370 638 634 642

PUR 006 004 004 092 086 080 308 291 286 624 601 585

MIX 006 004 003 094 081 079 324 290 269 639 594 552
(2, 6] :

RAO 018 020 021 102 115 124 361 365 379 624 626 627

RTF 011 011 011 103 101 104 447 438 440 710 705 694

PUR 006 006 005 095 086 082 397 361 343 697 670 634

MIX 005 005 004 092 081 079 403 325 267 702 614 521
(0, 20]

RAO 029 038 041 125 139 155 395 405 434 663 661 678

RTF 012 011 011 104 096 105 495 499 502 750 744 742

PUR 008 005 004 098 081 081 441 416 392 737 709 680

MIX 006 004 002 093 077 072 484 422 371 790 718 652

a

Tabled values represent the average Type I error and power values
across all sample sizes and within-set correlations (9 cases).
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Table E6. Empirical Type I Error Rates gnd Power Values For
Distribution [0, O]

Type I Error Power

(py, px) N V BAR RAO RTF PUR MIX BAR RAO RTF PUR MIX
(a = .01)

(.3, .3) 25 4 007 007 012 003- 003- 067 067 064 029- 021-

6 012 011 010 002- 001- 049 048 053 013- 013-

8 Oll 011 012 002- 001- 045 043 049 009- 006-

50 4 011 011 012 007 007 238 239 212 166 169

6 Oll1 010 010 O004- 003- 187 184 164 108- 111-

8 O0ll1 011 010 O004- 004- 176 175 156 080- 083-

100 4 009 009 008 O006- 006- 606 606 552 525- 543-

6 011 011 012 010 011 582 577 537 479 490

8 008 008 010 O005- 005- 610 610 565 487- 500-

(.3, .7) 25 4 007 007 010 003- 003- 095 094 090 040- 035-

6 012 011 009 O001- 001- 090 087 093 025- 020-

8 Oll O0l1l1 Oll 002- 001- 089 084 091 017- 01l0-

50 4 011 011 013 007- 007- 340 340 304 252- 253-

6 011 010 010 004- 003- 324 323 310 209- 209-

8 011 011 009 003- 004- 362 359 350 200- 194-

100 4 009 009 O006- 006- 006- 765 765 710- 683- 709-

6 011 011 010 007 Ol1 830 828 776 733 759

8 008 008 009 O006- 005- 893 893 869 805- 817-

(.7, .7) 25 4 007 007 009 003- 002- 067 067 065 029- 023-

. 6 012 011 010 O001- 002- 049 048 0S5 015- 013-

8§ 011 011 010 002- 001- 045 043 060 O011- 006-

50 4 011 011 012 009 009 238 239 210 162 168

6 O0ll1 010 008 O004- 002- 187 184 171 110- 1l11-

8 011 011 009 002- 004- 176 175 170 091- 082-

100 4 009 009 006- 005- 006- 606 606 553- 521- 541-

6 011 011 010 008 O0l1 582 577 532 481 489

8 008 008 O0l11 007 O006- 610 610 575 503- 495-
(a = .05)

(.3, .3) 25 4 043 043 043 029- 031- 211 211 202 152- 160-

6 052 050 054 028- 027- 180 179 179 110- 103-

8 053 050 051 021- 017- 170 162 155 078- 072-

50 4 057 057 053 046 049 466 466 436 410 421

6 053 053 050 040- 040- 400 399 374 321- 324-

8 052 051 048 032- 036- 386 381 369 282- 287-

100 4 048 048 041 039- 042- 815 814 768 761- 785-

6 055 055 055 050 048 792 791 758 738 752

8 050 050 054 046 043 815 814 784 750 761

(.3, .7) 25 4 043 043 043 031- 031- 270 270 248 203- 205-

6 052 050 058+ 033- 027- 254 252 251+ 164- 151-

8 053 050 052 022- 017- 261 254 251 130- 111-

50 4 057 057 054 048 049 583 584 546 518 531

6 053 053 049 038- 040- 595 595 563 496- 504-

8 052 051 044 030- 036- 626 623 608 507- 501-

100 4 048 048 043 039- 042- 910 910 888 882- 890-

6 055 055 054 046 048 942 942 922 910 920

8 050 050 055 045 043 968 967 956 945 947
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Table E6 (continued)

Type I Error Power
(py, px) N V BAR RAO RTF PUR MIX BAR RAO RTF PUR MIX
(.7, .7) 25 4 043 043 044 027- 029- 211 211 200 156- 154-
6 052 050 054 032- 032- 180 179 186 113- 099-
8 053 050 049 023- 020- 170 162 171 087- 075-
50 4 057 057 057 048 052 466 466 431 405 418
6 053 053 047 037- 040- 400 399 383 324- 320-
8 052 051 046 034- 038- 386 381 383 302- 290-
100 &4 048 048 042- 039- 043 815 814 767 759- 783-
6 055 055 052 045 046 792 791 749 730 747
8 050 050 054 045 047 815 814 790 758 760

(a = .10)

(.3, .3) 25 4 090 090 095 O081- 074- 321 321 306 283- 278-
- 6 100 098 110 084- 076- 286 283 280 220- 210-
8 106 103 094 060- 059- 271 266 255 171- 168-
50 4 104 104 104 100 098 594 594 5S59 549 561
6 099 099 102 090 088- 536 536 513 473 483-
8 101 100 091 077- 080- 540 536 509 448- 455-
100 4 099 099 101 098 095 888 888 860 856 870
6 105 106 111+ 107 106 875 875 848+ 837 852
8 101 102 109 099 092 890 891 871 846 858
(.3, .7) 25 4 090 090 094 078- 074- 397 397 372 346- 343-
6 100 098 105 080- 076- 391 388 363 296- 287-
8 106 103 095 060- 059- 382 378 379 262- 239-
50 4 104 104 104 098 098 699 698 667 656 667
6 099 099 101 088- 088- 723 723 698 663- 665-
8 101 100 089- 072- 080- 761 759 736- 678- 674-
100 4 099 099 101 096 095 953 953 934 933 939
6 105 106 105 100 106 970 970 957 954 961
8 101 102 105 096 092 983 983 976 972 975
(.7, .7) 25 &4 090 090 093 081- 074- 321 321 303 280- 281-
6 100 098 105 076- 069- 286 283 287 234- 211-
8 106 103 099 060- 056- 271 266 269 194- 169-
50 4 104 104 107 103 097 594 594 561 548 562
6 099 099 095 083- 083- 536 536 517 479- 483-
8 101 100 091 077- 073- 540 536 526 467- 452-
100 4 099 099 101 097 099 888 888 864 862 874
6 105 106 108 104 107 875 875 853 839 847
8 101 102 110 100 096 890 891 882 865 862

a

Tabled values represent the proportion of rejections across 3000
replications at a = .01, .05, and .10, where N = sample size,
NV = no. of variables, BAR = Bartlett, RAO = Rao F, RIF = rank-
transform Rao F, PUR = pure-rank, MIX = mixed-rank, "+" indicates
a liberal Type I error rate, and a "-" indicates a conservative
Type I error rate.



Table E7. Empirical Type I Error Rates And Power Values For
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Distribution [0, -1.12)%

Type I Error Power

(py, px) N V BAR RAO RTF PUR MIX BAR RAO RTF PUR MIX
(a = .01)

(.3, .3) 25 4 013 013 012 O004- 004- 062 062 060 025- 029-

6 O0ll1 010 012 001- 003- 054 051 051 013- 015-

8 O0l1 010 010 O001- 001- 049 046 041 007- 010-

50 4 012 012 011 008 007 219 219 192 157 154

6 010 010 010 006- 006- 172 171 157 098- 101-

8 012 012 012 006- 004- 168 167 151 084- 085-

100 4 009 009 009 007 007 586 586 517 481 488

6 009 008 008 007 005- 582 580 510 457 460-

8 008 008 009 006- 004- 580 579 514 432- 430-

(.3, .7) 25 4 014+ 014+ 013 005- 005- 089 089 087 038- 041-

6 010 010 009 003- 002- 084 083 084 023- 024-

8§ 010 010 009 001- 001- 079 076 076 O015- 0l2-

50 4 010 010 Ol11 008 007 316 317 279 228 224

6 009 009 011 006- 006- 321 319 289 185- 191-

8 010 010 011 004- 004- 352 346 317 183- 182-

100 4 008 008 010 008 007 754 754 675 650 651

6 009 009 008 O006- 005- 829 828 755 706- 710-

8 007 007 010 007 O006- 883 882 823 752 752-

(.7, .7) 25 4 O0l4+ 014+ 014+ 005- 003- 063+ 063+ 065+ 030- 030-

6 008 008 011 001- 002- 051 049 052 017- 016-

8 009 008 009 001- 000- 047 045 047 005- 008-

50 4 012 012 012 009 007 222 222 195 155 157

6 011 O0l1l1 O0l11 006- 005- 168 167 154 099- 100-

8 013 013 009 003- 002- 161 159 153 080- 085-

100 4 009 009 011 008 008 583 584 517 488 491

6 011 010 009 007 006- 574 571 500 455 458-

8 006- 006- 009 005- 006- 577- 577- 513 430- 427-
(a = .05)

(.3, .3) 25 4 054 054 055 042- 043 200 200 184 146- 146

6 048 047 050 029- 027- 170 166 162 098- 097-

8 055 050 054 020- 024- 157 151 149 072- 071-

50 4 055 055 051 043 045 454 454 410 383 390

6 051 051 053 044 043 394 394 364 312 310

8 056 054 050 037- 034- 377 374 345 274- 279-

100 4 049 048 049 047 045 804 803 749 741 744

6 057 057 050 046 049 790 789 736 715 719

8 047 046 049 039- 039- 795 794 732 696 698

(.3, .7) 25 4 054 055 057 043 042- 250 251 239 191 196-

6 046 045 052 031- 026- 245 242 225 147- 147-

8 047 045 052 018- 020- 242 235 225 109- 115-

50 4 053 054 048 040- 044 571 571 515 485- 498

6 050 050 051 039- 039- 585 585 531 468- 475-

8 057 056 051 036- 035- 615 610 572 471- 474-

100 4 048 048 045 043 046 909 909 859 854 858

6 053 053 051 043 047 939 938 904 890 891

8 046 045 049 042- 040- 968 968 935 919 921
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Table E7 (continued)

Type I Error Power
(py, px) N V BAR RAO RTF PUR MIX BAR RAO RTF PUR MIX
(.7, .7) 25 4 060+ 060+ 061+ 047 044 195+ 195+ 194+ 156 155
6 050 050 051 028- 027- 172 170 172 105- 105-
8 050 047 043 014- 016- 152 147 156 073- 081-
50 4 053 054 052 044 044 446 447 406 376 386
6 055 055 057 044 047 394 394 358 310 312
8 051 049 050 036- 036- 381 377 362 288- 285-
100 4 049 049 047 046 046 805 804 750 742 747
6 054 053 052 047 048 788 786 729 709 710
8 043 043 043 035- 036- 789 788 739 695- 699-

(a = .10)

(.3, .3) 25 4 104 104 103 089- 085- 318 319 294 267- 275-
6 098 096 100 071- 073- 280 279 261 210- 207-
8 103 101 104 065- 062- 258 250 241 162- 174-
50 4 104 104 100 097 098 585 585 536 522 531
6 099 099 102 090 088- 535 536 493 460 469-
8 104 100 100 083- 083- 513 511 476 424- 429-
100 4 100 101 100 096 096 884 884 839 836 838
6 110 111+ 110 103 104 871 872+ 832 819 821
8 097 098 101 089- 089- 883 884 836 809- 811-
(.3, .7) 25 4 105 105 098 090 085- 383 384 359 331 330-
6 100 098 100 073- 073- 368 364 348 277- 288-
8 103 099 101 059- 058- 365 356 342 239- 247-
50 4 105 104 099 095 097 694 694 647 636 641
6 105 105 103 092 094 717 717 669 632 639
8 108 107 104 088- 085- 754 752 707 639- 646-
100 4 097 097 097 095 096 953 953 925 923 922
6 112+ 113+ 105 099 101 972+ 972+ 948 942 947
8 094 095 096 087- 087- 986 986 970 963- 961-
(.7, .7) 25 4 104 104 102 091 096 320 321 298 271 276
6 101 099 104 074- 075- 271 268 273 218- 222-
8 104 100 096 056- 056- 264 258 253 173- 173-
50 4 107 107 103 098 105 586 586 542 532 536
6 103 103 107 096 095 531 531 496 460 461
8 103 101 102 084- 086- 514 511 503 447- 439-
100 4 097 097 097 095 098 888 888 844 839 842
6 110 111+ 108 099 104 881 881+ 831 821 822
8 094 095 101 090 O087- 883 885 842 819 818-

a

Tabled values represent the proportion of rejections across 3000
replications at a = .01, .05, and .10, where N = sample size,
NV = no. of variables, BAR = Bartlett, RAO = Rao F, RTF = rank-
transform Rao F, PUR = pure-rank, MIX = mixed-rank, "+" indicates
a liberal Type 1 error rate, and a "-" indicates a conservative
Type I error rate.
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Table E8. Empirical Type I Error Rates énd Power Values For

Distribution [.5, 0]

Type I Error Power
(py, px) N V BAR RAO RTF PUR MIX BAR RAO RTF PUR MIX
(a = .01)

(.3, .3) 25 4 011 011 012 005- 003- 071 071 065 029- 026-
6 012 012 013 003- 003- 059 058 053 013- 012-

8 015+ 0l4+ 012 001- 001- 050+ 048+ 052 005- 005-

50 4 011 011 012 006- 007 222 222 201 155- 159

6 012 011 012 007 007 205 204 190 124 116

8 010 010 007 003- 005- 175 173 165 087- 078-

100 4 011 011 011 010 009 576 577 546 514 524

6 013 012 012 009 009 574 572 534 481 494

8 011 010 010 007 008 600 599 557 476 483

(.3, .7) 25 4 010 010 013 005- 003- 100 100 089 046- 036-
6 013 012 009 003- 002- 097 093 092 028- 023-

8 014+ 0l4+ 010 003- 003- 094+ 090+ 102 014- 008-

50 4 011 011 011 009 006- 330 330 297 234 243-

6 010 010 011 005- 006- 353 353 325 238- 230-

8 010 009 006- 002- 004- 360 359 354- 209- 188-

100 4 011 O1l1 011 009 009 742 742 697 671 687

6 011 011 012 009 008 820 818 782 743 762

8 012 012 011 007 007 893 893 871 813 816

(.7, .7) 25 4 010 010 011 003- 002- 071 071 070 028- 027-
6 011 011 012 002- 002- 062 060 055 O014- 010-

8 015+ 014+ 011 O001- 001- 050+ 047+ 055 007- 003-

50 4 011 011 011 007 006- 220 221 204 161 152-

6 011 O0ll 009 005- 004- 202 202 188 124- 104-

8 010 010 008 003- 004- 176 173 182 096- 073-

100 4 012 012 011 009 008 576 577 542 513 530

6 010 010 012 009 007 570 569 537 481 493

8 012 012 011 008 008 601 600 567 478 459

(a = .05)

(.3, .3) 25 4 051 051 051 037- 037- 199 199 198 160- 152-
6 050 048 053 028- 024- 183 181 171 100- 101-

8 060+ 057 046 020- 022- 163+ 156 157 076- 063-

50 4 050 051 053 047 045 451 452 421 392 409

6 050 050 050 041- 038- 420 420 401 345- 345-

8 047 045 045 028- 031- 383 379 363 291- 280-

100 4 052 052 048 046 047 800 799 755 746 769

6 055 055 055 051 046 786 785 758 732 753

8 048 047 046 042- 042- 817 816 791 754- 753-

(.3, .7) 25 4 052 052 055 041- 036- 254 254 245 198- 201-
6 050 049 054 025- 025- 259 255 254 157- 138-

8 059+ 055 054 022- 021- 255+ 247 249 129- 098-

50 4 051 052 050 043 044 570 571 543 512 526

6 049 049 054 043 037- 586 586 571 511 512-

8 046 045 043 031- 030- 622 617 597 502- 485-

100 4 052 052 047 045 048 897 897 872 864 883

6 053 052 056 052 045 934 934 919 909 921

8 050 049 047 043 045 960 965 959 944 947
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Table E8 (continued)

Type I Error Power
(py, px) N V BAR RAO RTF PUR MIX BAR RAO RTF PUR MIX
(.7, .7) 25 4 051 051 051 037- 035- 205 205 193 151- 152-
6 053 052 048 028- 029- 180 178 185 118- 100-
8 059+ 055 053 020- 020- 166+ 162 168 081- 060-
50 4 051 051 049 044 043 450 452 430 407 413
6 049 049 049 039- 033- 422 422 398 347- 340-
8 049 047 043 031- 028- 385 380 382 316- 272-
100 4 053 053 047 044 045 797 797 758 747 1767
6 051 050 054 048 049 782 781 761 742 747
8 051 050 049 043 046 819 817 799 772 754

(a = .10)

(.3, .3) 25 4 099 099 105 089- 081- 310 310 295 272- 271-
6 098 097 106 076- 075- 290 287 278 216- 205-
8 111+ 106 105 061- 062- 267+ 262 253 177- 156-
50 4 097 097 097 091 090 584 584 554 544 561
6 105 105 104 089- 091 548 548 526 494- 500
8 102 099 090 074- 078- 527 525 496 442- 445-
100 4 102 102 101 098 094 874 874 850 846 864
6 105 106 111+ 105 100 867 868 852+ 839 849
8 097 098 112+ 099 093 894 895 881+ 854 862
(.3, .7) 25 4 099 099 097 088- 082- 382 383 360 331- 327-
6 099 097 107 078- 074- 387 384 376 309- 286-
8 111+ 107 104 O061- 063- 378+ 372 372 261- 223-
50 &4 097 097 090 085- 091 689 689 662 652- 669
6 101 101 101 088- 091 714 714 692 656- 659
8 099 097 091 075- 076- 740 737 721 660- 649-
100 4 102 102 101 099 091 947 948 928 926 938
6 107 107 110 105 101 964 964 954 950 953
8 098 098 098 091 095 981 981 977 974 974
(.7, .7) 25. 4 098 098 107 092 086- 309 309 303 278 275-
6 100 099 099 071- 072- 289 287 294 234- 209-
8 113+ 108 104 064- 058- 268+ 265 272 185- 145-
50 4 095 095 092 089- 090 581 580 560 545- 561
6 104 104 099 086- 086- 546 546 522 491- 487-
8 099 097 090 075- 074- 523 520 514 464- 430-
100 &4 104 104 096 094 095 873 874 848 845 861
6 104 104 113+ 105 103 867 868 844+ 832 845
8 099 100 102 094 093 892 893 880 861 855

a

Tabled values represent the proportion of rejections across 3000
replications at a = .01, .05, and .10, where N = sample size,
NV = no. of variables, BAR = Bartlett, RAO = Rao F, RTF = rank-
transform Rao F, PUR = pure-rank, MIX = mixed-rank, "+" indicates
a liberal Type I error rate, and a "-" indicates a conservative
Type I error rate.
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Table E9. Empirical Type I Error Rates énd Power Values For
Distribution (1, .5]

Type I Error Power
(py, px) N V BAR RAO RTF PUR MIX BAR RAO RTF PUR MIX
(a = .01)

(.3, .3) 25 4 011 011 009 003- 002- 079 079 081 032- 021-
6 012 012 013 002- 002- 074 073 066 016- 008-

8 015+ 015+ 010 001- 001- 064+ 062+ 060 009- 004-

50 4 012 012 011 007 007 245 245 284 232 218

6 010 010 010 005- 004- 191 191 220 148- 122-

8 007 007 008 003- 001- 186 183 212 118- 073-

100 4 009 009 007 006- 008 595 595 683 650- 693

6 009 009 011 008 007 555 554 662 602 611

8 013 013 010 007 005- 608 608 690 598 589-

(.3, .7) 25 4 010 010 015+ 004- 004- 105 105 126+ 065- 038-
6 014+ 013 007 001- 002- 116+ 115 122 032- 018-

8 O0l1 009 010 001- 001- 123 120 121 018- 006-

50 4 008 008 009 008 O004- 339 340 382 324 317-

6 010 009 011 O004- 004- 359 359 403 287- 244-

8 010 010 010 002- 004- 389 383 436 280- 178-

100 4 011 011 010 007 009 753 753 816 795 837

6 009 008 008 005- 005- 807 806 868 825- 851-

8 009 009 007 O004- 005- 867 866 917 870- 864-

(.7, .7) 25 4 010 010 010 002- 003- 078 078 090 043- 031-
6 013 013 010 002- 001- 075 074 076 021- 009-

8 015+ 014+ 009 002- 001- 070+ 066+ 065 013- 003-

50 4 010 010 012 008 007 234 234 260 212 199

6 009 009 007 003- 003- 201 201 232 157- 107-

8 013 012 008 005- 005- 193 191 233 126- 061-

100 4 009 009 007 006- 006- 589 589 666 639- 675-

6 009 009 009 006- 006- 577 575 648 594- 591-

8 008 008 009 007 Ol1 600 599 671 581 517

(a = .05)

(.3, .3) 25 & 042- 042- 045 032- 030- 211- 211- 235 191- 169-
6 057 056 055 029- 031- 205 203 206 129- 099-

8 052 050 048 022- 018- 187 182 182 083- 050-

50 4 056 057 053 048 045 462 463 513 493 502

6 042- 042- 048 040- 032- 389- 389- 454 396- 369-

8 047 045 051 032- 031- 397 394 443 364- 287-

100 4 047 047 047 046 044 803 803 859 851 886

6 047 047 050 048 044 781 779 843 824 851

8 055 054 054 048 044 815 814 871 842 842

(.3, .7) 25 4 051 051 055 042- 037- 272 272 310 252- 209-
6 048 047 048 027- 029- 286 283 297 202- 144-

8 055 051 046 019- 017- 285 279 305 152- 087-

50 4 051 052 049 O041- 046 564 565 628 599- 620

6 052 052 056 045 034- 590 590 655 597 566-

8 052 049 049 036- 037- 645 640 682 584- 502-

100 4 053 053 046 046 050 901 901 937 933 953

6 046 046 050 042- 043 926 926 960 954- 968

8 045 045 045 039- 038- 957 957 976 966- 966-
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Table E9 (continued)

Type I Error Power
(py, px) N V BAR RAO RTF PUR MIX BAR RAO RTF PUR MIX
(.7, .7) 25 4 054 054 057 039- 038- 216 216 233 191- 158-
6 052 051 051 024- 024- 195 193 213 140- 082-
8 064+ 061+ 051 020- 020- 188 187 194 098- 050-
50 4 051 051 047 042- 046 469 470 502 471- 474
6 051 051 053 041- 038- 414 414 467 406- 342-
8 054 054 046 033- 037- 400 397 440 366- 256-
100 4 047 047 046 044 046 800 799 853 846 877
6 045 045 057 052 046 783 783 842 826 825
8 053 052 048 041- 038- 801 799 856 824- 796-

(a = .10)

(.3, .3) 25 4 091 091 097 084- 078- 330 330 355 327- 303-
6 103 102 109 079- 078- 299 296 319 257- 209-
8 101 098 102 063- 053- 295 288 298 197- 131-
50 4 103 103 103 096 092 574 574 629 618 639
6 086- 086- 093 081- 078- 520- 520- 596 554- 523-
8 099 098 097 081- 075- 537 531 586 524- 458-
100 4 106 106 100 098 096 883 883 918 916 936
6 099 100 103 098 099 866 867 908 901 921
8 107 107 104 097 092 883 883 925 910 910
(.3, .7) 25 4 099 100 102 089- 087- 385 385 430 403- 372-
6 101 099 096 O071- 068- 405 403 426 347- 287-
8 107 104 093 055- 056- 408 401 441 314- 196-
50 4 099 099 099 094 093 680 679 739 730 752
6 105 105 105 093 091 713 714 773 748 724
8 107 106 104 085- 083- 752 750 801 747- 680-
100 4 105 105 106 103 103 950 950 964 963 978
6 098 099 103 099 099 966 966 982 979 985
8 098 098 105 097 081- 984 984 987 985 991-
(.7, .7) 25 4 096 097 104 091 086- 317 318 342 314 291-
6 103 103 099 074- 068- 299 296 327 261- 190-
8 112+ 108 103 062- 063- 290+ 285 313 212- 129-
50 4 095 095 094 087- 094 591 591 624 614- 630
6 106 106 107 096 086- 549 549 593 565 505-
8 097 095 090 O075- 076- 536 533 568 513- 422-
100 4 098 099 093 090 097 874 875 916 914 938
6 092 092 111+ 104 099 867 868 905+ 898 910
8 096 097 097 090 088- 868 869 916 902 887-

a

Tabled values represent the proportion of rejections across 3000
replications at a = .01, .05, and .10, where N = sample size,
NV = no. of variables, BAR = Bartlett, RAO = Rao F, RTF = rank-

. transform Rao F, PUR = pure-rank, MIX = mixed-rank, "+" indicates

a liberal Type I error rate, and a "-" indicates a conservative
Type I error rate.
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Distribution [0, 3]%

Type 1 Error Power
(py, px) N V BAR RAO RTF PUR MIX BAR RAO RTF PUR MIX
(a = .01)

(.3, .3) 25 4 012 012 013 005- 003- 081 081 081 038- 027-
6 015+ 015+ 009 002- 001- 066+ 064+ 069 018- 012-

8 015+ 014+ 012 003- 003- 060+ 058+ 061 012- Oll-

50 4 011 011 012 008 007 251 252 258 206 224

6 011 011 010 006- 003- 218 216 227 148- 159-

8 012 012 010 O004- 003- 194 190 226 123- 11l4-

100 4 009 009 010 008 009 614 614 647 619 688

6 013 013 Oll1 008 009 601 598 635 582 651

8 013 013 009 008 007 604 603 655 570 618

(.3, .7) 25 4 011 011 011 006- 004- 113 113 111 052- 041-
6 013 013 012 003- 001- 116 111 113 036- 018-

8 018+ 017+ 010 002- 003- 112+ 105+ 119 020- 014-

50 4 012 012 010 007 007 357 357 350 295 319

6 O0l1 010 Ol1 O004- 003- 369 368 390 283- 272-

8 012 012 O0l1 004- 003- 395 393 427 262- 231-

100 &4 009 009 009 007 008 759 760 790 766 817

6 013 012 014+ 012 009 825 823 854+ 826 857

8 014+ 014+ 012 009 006 875+ 875+ 900 850 872

(.7, .7) 25 4 013 013 011 005- 003- 083 082 078 039- 026-
6 013 013 012 002- 001- 068 066 077 024- 011-

8 016+ 015+ 010 002- 002- 066+ 062+ 072 010- 007-

50 4 O0l1 011 O0l1 008 007 256 258 247 204 212

6 010 010 010 006- 006- 227 225 226 162- 136-

8 012 012 012 006- 004- 201 199 234 132- 093-

100 4 009 009 009 007 009 614 615 648 616 668

6 015+ 015+ 013 009 009 601+ 600+ 623 570 608

8 013 013 010 009 008 602 602 643 563 571

(a = .05)

(.3, .3) 25 &4 048 048 054 036- 032- 223 224 215 172- 172-
6 057 057 055 027- 027- 200 197 202 130- 113-

8 059+ 057 048 020- 021- 185+ 179 187 090- 086-

50 4 051 051 056 049 044 479 48O 484 459 504

6 053 053 054 045 040- 441 441 456 393 414-

8 051 050 046 033- 028- 417 412 443 363- 365-

100 4 043 043 045 043 043 817 817 838 829 870

6 054 054 053 046 046 800 793 836 818 856

8 057 056 045 038- 043 806 805 842 815- 839

(.3, .7) 25 4 047 048 049 036- 032- 276 277 274 221- 222-
6 055 055 050 028- 025- 285 284 286 185- 160-

8 059+ 056 047 023- 021- 284+ 274 300 157- 112-

50 &4 051 052 052 044 044 588 589 597 570 613

6 052 052 057 045 038- 614 614 638 577 598-

8 051 048 048 037- 030- 652 649 660 562- 557-

100 &4 044 044 043 O041- 046 898 898 913 910- 933

6 057 056 056 050 042- 935 934 948 942 960-

8 056 056 045 040- 044 959 959 970 962- 971
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Table E10 (continued)

Type I Error Power
(py, px) N V BAR RAO RTF PUR MIX BAR RAO RTF PUR MIX
(.7, .7) 25 4 048 049 044 033- 028- 227 227 216 172- 168-
6 058+ 057 049 027- 023- 208+ 205 208 137- 105-
8 059+ 056 048 022- 025- 190+ 184 199 099- 067-
50 4 052 053 052 047 046 479 480 480 454 491
6 056 056 056 043 037- 444 444 457 398 389-
8 050 050 048 030- 030- 427 424 452 369- 331-
100 4 045 045 044 040- 044 811 811 836 829- 862
6 057 057 057 052 046 798 797 824 8ll1 841
8 057 057 052 046 043 802 801 821 800 812

(a = .10)

(.3, .3) 25 4 091 091 100 088- 076- 333 334 330 304- 312-
6 113+ 112+ 100 075- 070- 320+ 317+ 308 246- 249-
8 107 104 101 061- 066- 291 285 304 204- 192-
50 4 099 099 099 096 092 610 609 614 604 648
6 105 105 105 090 086- 576 576 591 556 575-
8 095 093 096 079- 076- 562 557 580 514- 531-
100 4 090 091 096 093 091 879 879 899 896 919
6 102 102 111+ 105 099 875 875 899+ 893 918
8 105 106 088- 082- 082- 878 880 905- 889- 916-
(.3, .7) 25 &4 089- 090 105 094 074- 403- 404 400 371 381-
6 113+ 113+ 097 072- 070- 412+ 409+ 420 341- 330-
8 108 103 093 056- 061- 409 402 426 304- 254-
50 4 102 101 096 091 092 705 705 718 706 745
6 107 107 103 092 085- 729 730 751 721 750-
8 101 100 094 079- 073- 759 756 768 713- 727-
100 &4 089- 089- 098 095 095 936- 936- 953 951 968
6 103 104 112+ 107 097 966 966 976+ 972 981
8 107 109 089- 082- 083- 978 978 986- 983- 990-
(.7, .7) 25 4 092 092 100 090 077- 334 335 332 305 307-
6 114+ 114+ 098 072- 069- 314+ 311+ 320 257- 232-
8 104 102 095 061- 064- 305 298 315 216- 176-
50 4 101 101 092 087- 093 604 604 612 601- 632
6 108 108 105 094 088- 579 579 592 555 555-
8 099 098 092 073- 073- 569 567 576 523- 501-
100 4 094 095 094 093 092 880 880 899 896 914
6 105 106 106 098 091 871 871 897 886 911
8 107 108 095 084- 086- 879 879 901 882- 897-

a

Tabled values represent the proportion of rejections across 3000

replications
of variables,

NV = no.

at a = .01,

a liberal Type I error rate,
Type I error rate.

.05,

and .10,
BAR = Bartlett,
transform Rao F, PUR = pure-rank, MIX = mixed-rank,
and a "-"

where

N = sample
RAO = Rao F, RTF = rank-
"+" indicates

size,

indicates a conservative
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Table Ell.Empirical Type I Error Rates %nd Power Values For
Distribution [1, 3)

Type I Error Power

(py. px) N V BAR RAO RTF PUR MIX BAR RAO RTF PUR MIX
(a = .01)

(.3, .3) 25 4 011 011 007 003- 003- 089 089 085 038- 030-

6 015+ 014+ 011 003- 003- 073+ 071+ 066 023- 0l12-

8 012 012 015+ 002- 000- 064 060 064+ 010- 006-

50 4 010 010 008 006- 006- 242 242 251 200- 210-

6 008 008 008 004- 001- 227 226 229 154- l44-

8 011 010 010 004- 003- 214 212 219 127- 099-

100 4 014+ 015+ 012 009 008 596+ 597+ 632 607 662

6 012 011 008 008 007 583 581 619 571 615

8 012 012 010 007 006- 613 613 656 582 606

(.3, .7) 25 4 011 Ol1 008 O004- 004- 122 122 110 058- 045-

6 016+ 015+ 010 002- 003- 118+ 113+ 113 039- 020-

8 013 012 013 002- 000- 123 116 129 026- 008-

50 4 011 011 007 006- 005- 333 334 348 286- 303-

6 008 008 009 003- 002- 388 387 385 279- 257-

8 013 013 009 004- 003- 397 393 419 254- 205-

100 4 014+ 0l4+ 013 010 008 746+ 747+ 772 751 799

6 013 013 009 008 006- 821 819 852 811 849

8 013 013 009 006- 006- 872 872 901 855 871

(.7, .7) 25 4 011 011 009 004- 004- 091 091 080 037- 029-

6 015+ 015+ 010 003- 003- 075+ 073+ 076 025- Ol1-

8 013 013 012 001- 000- 068 064 073 014- 005-

50 4 010 010 009 005- 005- 248 249 244 197- 189-

6 009 009 007 002- 002- 240 239 221 156- 124-

8 012 011 009 003- 004- 228 226 221 130- 076-

100 4 013 013 011 010 009 598 598 628 600 647

6 013 013 008 007 006- 584 582 610 562 578-

8 014+ 013 011 008 007 615+ 615 647 575 544
(a = .05)

(.3, .3) 25 4 056 056 050 036- 032- 224 225 218 177- 167-

6 061+ 060+ 051 030- 028- 199+ 198+ 200 124- 111-

8 058+ 055 060+ 024- 019- 194+ 190 195+ 100- 075-

50 4 048 048 047 038- 039- 464 464 476 453- 475-

6 048 048 048 034- 031- 445 445 449 396- 398-

8 056 055 047 034- 034- 422 417 439 347- 329-

100 4 061+ 060+ 058+ 055 055 803+ 803+ 819+ 810 860

6 051 051 047 040- 037- 791 789 833 8l4- 847-

8 056 055 052 045 046 810 808 848 814 841

(.3, .7) 25 4 054 054 050 036- 033- 283 284 278 226- 207-

: 6 062+ 060+ 054 029- 028- 293+ 290+ 284 186- 150-

8 057 055 055 024- 020- 294 289 307 160- 101-

50 4 049 049 046 038- 040- 579 580 590 560- 601-

6 049 049 052 039- 032- 614 614 627 570- 575-

8 057 054 047 030- 034- 640 635 667 574- 520-

100 4 060+ 060+ 057 054 053 894+ 894+ 913 909 936

6 052 051 047 040- 037- 934 933 949 943- 958-

8 056 056 049 040- 044 958 957 967 953 966
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Table E11 (continued)

Type I Error Power
(py, px) N V BAR RAO RTF PUR MIX BAR RAO RTIF PUR MIX
(.7, .7) 25 4 054 054 050 034- 034- 228 228 224 177- 160-
6 061+ 059+ 057 030- 027- 210+ 208+ 215 138- 095-
8 059+ 056 050 018- 018- 203+ 196 214 107- 062-
50 4 047 047 042- 035- 037- 461 463 481- 451- 460-
6 048 048 051 041- 034- 451 451 453 397- 378-
8 054 054 047 032- 038- 428 423 442 361- 291-
100 4 059+ 059+ 060+ 057 054 794+ 793+ 820+ 812 854
6 051 051 047 043 039- 787 785 819 804 827-
8 059+ 058+ 050 043 048 810 810 830 801 802

(a = .10)

(.3, .3) 25 4 107 107 096 083- 085- 326 327 330 306- 296-
6 108 107 108 083- 075- 314 311 304 247- 226-
8 102 100 106 067- 060- 301 296 299 206- 170-
50 4 096 096 096 091 092 589 589 607 595 626
6 099 099 102 091 086- 575 575 587 553 559-
8 104 103 100 O079- 081- 548 545 584 522- 497-
100 4 108 108 108 104 104 877 877 895 892 925
6 102 103 094 089- 085- 872 873 900 892- 912-
8 109 111+ 105 096 098 873 875+ 912 896 908
(.3, .7) 25 4 108 108 093 082- 084- 403 404 398 367- 368-
6 105 104 110 081- 071- 418 414 412 335- 301-
8 105 101 102 065- 055- 414 405 425 307- 220-
50 4 095 095 093 086- 094 692 692 722 711- 734
6 099 099 101 090 086- 726 726 743 710 719-
8 106 104 097 077- 085- 758 757 777 728- 698-
100 4 109 109 108 105 110 940 941 956 954 971
6 102 103 094 088- 085- 962 962 973 971- 979-
8 109 109 103 094 094 977 978 982 979 989
(.7, .7) 25 4 106 107 093 083- 085- 328 328 329 304- 293-
6 107 107 103 076- 073- 320 319 313 260- 213-
8 110 107 104 062- 058- 314 307 320 219- 152-
50 4 099 099 091 085- 086- 593 593 610 599- 619-
6 099 100 101 089- 081- 572 573 581 552- 537-
8 108 107 096 083- 088- 557 554 579 520- 448-
100 4 111+ 111+ 110 106 105 874+ 874+ 894 892 919
6 105 106 096 090 086- 872 872 897 887 901-
8 113+ 113+ 106 095 096 874+ 874+ 902 888 889

a

Tabled values represent the proportion of rejections across 3000
replications at a = .01, .05, and .10, where N = sample size,
NV = no. of variables, BAR = Bartlett, RAO = Rao F, RTF = rank-
transform Rao F, PUR = pure-rank, MIX = mixed-rank, "+" indicates
a liberal Type I error rate, and a "-" indicates a conservative
Type I error rate.
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Distribution [2, 6]a

Type I Error Power

(py, px) N V BAR RAO RTF PUR MIX BAR RAO RTF PUR MIX
(a = .01)

(.3, .3) 25 4 021+ 021+ 014+ 004- 003- 127+ 127+ 122+ 053- 028-

6 021+ 019+ 008 003- 001- 117+ 115+ 104 028- 008-

8 017+ 015+ 008 001- 001- 104+ 101+ 083 013- 001-

50 4 016+ 016+ 009 007 005- 275+ 275+ 365 308 302-

6 018+ 018+ 011 006- 004- 250+ 248+ 311 214- 149-

8 021+ 020+ 0l4+ 007 003- 260+ 259+ 307+ 171 069-

100 4 015+ 015+ 010 008 008 594+ 594+ 787 767 858

6 017+ 017+ 0l4+ 011 010 582+ 580+ 798+ 755 811

8 017+ 017+ 015+ 009 007 601+ 600+ 811+ 746 721

(.3, .7) 25 4 020+ 020+ 012 004- 002- 164+ 164+ 167 083- 039-

6 020+ 020+ 009 003- 001- 173+ 171+ 166 050- 010-

8 024+ 023+ 010 001- 001- 175+ 169+ 151 030- 003-

50 4 017+ 017+ 011 007 O004- 361+ 361+ 461 402 388-

6 022+ 022+ 011 006- 005- 399+ 398+ 485 361- 236-

8 024+ 023+ 013 006- 003- 429+ 428+ 506 330- 121-

100 4 016+ 016+ 010 008 006- 728+ 728+ 885 867 933-

6 019+ 019+ 011 009 010 801+ 799+ 923 901 930

8 019+ 019+ 011 008 006- 849+ 848+ 953 925 919-

(.7, .7) 25 4 021+ 021+ 011 O004- 003- 131+ 131+ 122 056- 020-

6 025+ 024+ 011 002- 002- 135+ 132+ 105 030- 004-

8 026+ 025+ 008 001- 001- 133+ 130+ 095 015- 001-

50 4 017+ 017+ 011 007 006- 277+ 277+ 348 291 246-

6 023+ 022+ 010 006- 005- 266+ 264+ 297 204- 092-

8 027+ 026+ 011 006- 003- 273+ 271+ 289 164- 031-

100 4 016+ 016+ 010 008 006- 590+ 591+ 769 743 815-

6 022+ 022+ 011 008 008 579+ 575+ 748 703 688

8 021+ 021+ 011 006- 009 604+ 604+ 762 697 535
(a = .05)

(.3, .3) 25 4 067+ 067+ 056 042- 039- 259+ 260+ 302 243- 197-

6 060+ 058+ 047 023- 020- 254+ 252+ 263 163- 088-

8 068+ 065+ 043 018- 020- 242+ 237+ 232 113- 037-

50 4 058+ 059+ 048 040- 036- 468+ 468+ 597 569- 605-

6 065+ 065+ 055 042- 038- 441+ 441+ 574 509- 446-

8 078+ 077+ 057 039- 035- 436+ 433+ 540 448- 309-

100 4 050 049 053 051 045 781 779 919 915 964

6 066+ 065+ 052 048 045 775+ 775+ 923 914 949

8 057 056 052 044 041- 786 784 930 912 921

(.3, .7) 25 4 066+ 067+ 057 039- 037- 315+ 316+ 362 299- 236-

6 071+ 070+ 053 027- 019- 334+ 331+ 356 247- 118-

8 071+ 069+ 049 020- 018- 339+ 331+ 349 184- 041-

50 4 060+ 061+ 051 043 038- 565+ 567+ 696 670- 716-

6 067+ 067+ 051 040- 040- 606+ 606+ 732 676- 616-

8 083+ 080+ 054 037- 031- 626+ 623+ 736 644- 446-

100 4 053 053 051 049 042- 881 881 964 963 985-

6 069+ 069+ 051 046 046 912+ 912+ 980 976 990

8 066+ 065+ 057 048 043 944+ 944+ 990 986 990
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Table E12 (continued)

Type I Error Power
(py, px) N V BAR RAO RTF PUR MIX BAR RAO RTF PUR MIX
(.7, .7) 25 4 064+ 064+ 058+ 043 037- 266+ 267+ 290+ 242- 162-
6 069+ 069+ 048 028- 019- 263+ 260+ 266 174- 064-
8 074+ 070+ 052 017- 016- 270+ 266+ 235 117- 023-
50 4 061+ 061+ 048 041- 036- 465+ 466+ 583 556- 558-
6 065+ 065+ 048 039- 037- 453+ 453+ 555 495- 345-
8 086+ 084+ 054 038- 034- 452+ 448+ 515 431- 195-
100 4 051 051 051 049 044 784 784 908 902 949
6 068+ 067+ 053 047 045 769+ 767+ 902 891 906
8 068+ 068+ 059+ 050 045 780+ 780+ 911+ 891 830

(a = .10)

(.3, .3) 25 4 115+ 115+ 111+ 096 090 353+ 354+ 410+ 382 348
. 6 110 110 092 069- 064- 343 345 376 308- 204-
8 117+ 114+ 092 050- 059- 338+ 334+ 339 237- 113-
50 4 100 100 097 091 090 580 580 710 696 755
6 108 108 109 097 085- 559 559 695 664 642-
8 133+ 132+ 110 091 081- 548+ 545+ 673 610 489-
100 4 094 094 101 099 098 861 862 956 954 981
6 110 110 106 097 093 853 853 957 953 980
8 108 108 105 095 093 854 854 968 957 969
(.3, .7) 25 4 113+ 113+ 112+ 099 091 413+ 414+ 483+ 456 405
6 115+ 114+ 098 069- 064- 445+ 443+ 489 408- 256-
8 121+ 119+ 105 061- 056- 449+ 444+ 479 345- 123-
50 4 101 101 098 093 089- 675 674 797 787 836-
6 117+ 117+ 105 092 090 706+ 706+ 831 804 777
8 142+ 141+ 101 089- 079- 729+ 728+ 834 783- 645-
100 &4 092 092 099 096 100 928 928 982 981 994
6 114+ 114+ 105 099 094 949+ 950+ 993 991 998
8 118+ 119+ 112+ 104 099 972+ 972+ 997+ 995 998
(.7, .7) 25 &4 114+ 114+ 109 098 085- 363+ 365+ 406 377 305-
6 126+ 124+ 095 066- 066- 361+ 359+ 382 315- 159-
8 123+ 120+ 095 062- 056- 360+ 356+ 361 249- 076-
50 4 102 102 091 087- 083- 581 580 699 688- 722-
6 116+ 116+ 098 084- 083- 567+ 568+ 679 648- 549-
8 146+ 144+ 102 085- 084- 557+ 554+ 647 591- 348-
100 4 090 090 104 100 102 860 860 950 947 975
6 117+ 118+ 103 099 090 848+ 848+ 942 938 957
8 115+ 116+ 111+ 103 103 852+ 853+ 950+ 941 926

a

Tabled values represent the proportion of rejections across 3000
replications at a = .01, .05, and .10, where N = sample size,
NV = no. of variables, BAR = Bartlett, RAO = Rao F, RTF = rank-
transform Rao F, PUR = pure-rank, MIX = mixed-rank, "+" indicates
a liberal Type I error rate, and a "-" indicates a conservative
Type I error rate.
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Table E13. Empirical Type I Error Rates And Power Values For
Distribution [0, 20]%
Type I Error Power

(py, px) N V BAR RAO RTF PUR MIX BAR RAO RTF PUR MIX
(a = .01)

(.3, .3) 25 4 026+ 026+ 013 004- 003- 158+ 158+ 158 083- 060-

6 039+ 039+ 011 003- 001- 144+ 141+ 137 035- 022-

8 034+ 032+ 013 O001- 000- 144+ 142+ 115 019- 010-

50 4 027+ 027+ 012 007 005- 305+ 305+ 426 364 470-

6 036+ 036+ 008 006- 002- 295+ 294+ 422 314- 338-

8 037+ 037+ 010 004- 003- 303+ 302+ 421 266- 231-

100 4 026+ 026+ 014+ 012 009 628+ 629+ 865+ 848 938

6 029+ 029+ 010 008 009 628+ 626+ 872 842 937

8 037+ 037+ 011 009 O004- 664+ 663+ 886 842 918

(.3, .7) 25 4 030+ 030+ 012 005- 004- 203+ 203+ 195 103- 069-

6 040+ 040+ 012 003- 001- 221+ 217+ 204 064- 022-

8 039+ 037+ 008 001- 000- 231+ 227+ 207 036- Oll-

50 4 027+ 028+ 010 007 004- 399+ 400+ 516 451 541-

6 037+ 036+ 008 006- 003- 430+ 429+ 565 442- 422-

8 043+ 043+ 011 005- 003- 496+ 493+ 588 407- 282-

100 4 029+ 029+ 013 Ol1 010 746+ 747+ 916 906 961

6 035+ 035+ 012 009 007 808+ 806+ 954 938 970

8 037+ 036+ 009 006- 004- 856+ 856+ 964 941 965

(.7 .7) 25 4 032+ 032+ 012 005- 003- 174+ 174+ 145 074- 043-

6 044+ 044+ 012 002- 001- 185+ 182+ 139 046- Ol6-

8 047+ 045+ 010 001- 001- 189+ 186+ 136 024- 009-

50 4 030+ 030+ 009 006- 006- 313+ 313+ 404 336- 378-

6 040+ 040+ 008 004- 004- 323+ 322+ 381 281- 226-

8 055+ 054+ 011 005- 003- 363+ 361+ 377 241- 137-

100 & 030+ 030+ 013 011 010 625+ 626+ 826 809 898

6 041+ 041+ 012 007 007 630+ 627+ 818 781 844

8 048+ 048+ 010 004- 004- 673+ 673+ 821 754- 776-
(a = .05)

(.3, .3) 25 4 082+ 082+ 064+ 045 033- 321+ 321+ 353+ 295 323-

6 090+ 088+ 055 030- 020- 298+ 296+ 318 210- 178-

8 104+ 100+ 051 021- 016- 296+ 289+ 298 139- 096-

50 4 073+ 074+ 047 040- 041- 514+ 515+ 658 636- 762-

6 083+ 083+ 044 034- 035- 489+ 489+ 666 611- 682-

8 096+ 095+ 051 036- 031- 501+ 496+ 667 567- 601-

100 &4 076+ 076+ 058+ 056 047 807+ 807+ 947+ 942 982

6 079+ 078+ 046 040- 037- 809+ 807+ 961 953 988

8 082+ 081+ 045 038- 040- 824+ 823+ 963 952- 981-

(.3, .7) 25 4 090+ 090+ 055 043 034- 385+ 385+ 412 353 358-

6 095+ 093+ 052 029- 020- 386+ 383+ 400 285- 202-

8 111+ 108+ 049 016- 015- 408+ 401+ 399 219- 103-

50 &4 077+ 077+ 048 039- 038- 600+ 601+ 740 716- 827-

6 092+ 092+ 041- 030- 028- 630+ 630+ 775- 726- 777-

8 098+ 097+ 051 037- 034- 683+ 681+ 794 713- 685-

100 4 074+ 074+ 058+ 053 046 877+ 877+ 973+ 971 991

6 085+ 084+ 047 043 038- 915+ 913+ 986 984 994

8 094+ 093+ 051 044 035- 937+ 936+ 992 989 995-
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Table E13 (continued)

Type I Error Power
(py, px) N V BAR RAO RTF PUR MIX BAR RAO RTF PUR MIX
(.7, .7) 25 4 092+ 092+ 054 037- 034- 332+ 333+ 335 282- 264-
6 103+ 102+ 050 027- 023- 331+ 329+ 311 210- 129-
8 115+ 111+ 051 020- 015- 344+ 337+ 296 165- 074-
50 4 075+ 076+ 048 041- 037- 508+ 509+ 626 602- 714-
6 092+ 092+ 044 034- 034- 505+ 505+ 614 558- 559-
8 111+ 110+ 052 036- 038- 537+ 533+ 615 521- 421-
100 4 074+ 073+ 057 054 045 795+ 795+ 932 928 972
6 093+ 093+ 048 044 047 799+ 798+ 934 924 963
8 103+ 102+ 049 043 043 824+ 822+ 932 916 940

(a = .10)

(.3, .3) 25 4 128+ 128+ 107 097 083- 430+ 430+ 482 457 513-
6 144+ 142+ 106 076- 069- 343+ 345+ 376 308- 204-
8 161+ 158+ 104 060- 049- 417+ 409+ 422 285- 240-
50 4 117+ 117+ 088- 085- 090 621+ 621+ 772- 763- 869
6 134+ 134+ 092 080- 077- 598+ 598+ 766 740- 826-
8 151+ 149+ 105 091 078- 611+ 608+ 781 724 782-
100 4 123+ 123+ 119+ 115+ 104 875+ 875+ 972+ 971+ 994
6 127+ 127+ 093 088- 086- 872+ 873+ 981 979- 995-
8 132+ 132+ 104 091 091 887+ 888+ 981 975 994
(.3, .7) 25 4 135+ 136+ 103 090 080- 484+ 484+ 538 509 562-
6 146+ 144+ 104 077- 060- 484+ 481+ 530 448- 401-
8 177+ 173+ 103 058- 045- 518+ 512+ 526 379- 251-
50 4 119+ 119+ 096 092 092 704+ 704+ 836 828 902
6 137+ 137+ 089- 078- 075- 735+ 735+ 860- 835- 892-
8 154+ 152+ 106 088- 080- 773+ 772+ 873 828- 845-
100 4 123+ 124+ 119+ 117+ 105 926+ 926+ 986+ 986+ 996
6 127+ 128+ 089- 083- 086- 955+ 955+ 993- 992- 998-
8 146+ 146+ 101 090 083- 962+ 962+ 996 996 998-
(.7, .7) 25 4 134+ 134+ 099 090 083- 435+ 436+ 458 430 454-
6 155+ 154+ 106 076- 065- 422+ 419+ 425 357- 279-
8 174+ 171+ 106 060- 050- 448+ 441+ 410 298- 172-
50 4 115+ 115+ 095 088- 093 621+ 621+ 742 729- 830
6 143+ 144+ 092 082- 078- 616+ 616+ 728 699- 726-
8 162+ 161+ 110 090 086- 636+ 635+ 725 677 613-
100 4 129+ 129+ 109 106 104 868+ 868+ 961 959 986
6 138+ 138+ 091 087- 093 867+ 867+ 969 964- 983
8 149+ 150+ 103 096 087- 878+ 878+ 962 954 976-

a

Tabled values represent the proportion of rejections across 3000
replications at a = .01, .05, and .10, where N = sample size,
NV = no. of variables, BAR = Bartlett, RAO = Rao F, RTF = rank-
transform Rao F, PUR = pure-rank, MIX = mixed-rank, "+" indicates
a liberal Type 1 error rate, and a "-" indicates a conservative
Type I error rate.
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Table El4. Frequency Distributions of Simulated Data

Interval (O, O] (0,-1.12} [.5, O] (1, .5] (O, 3] (1, 3] [2, 6] [0,20]
<-8.0 O 0 0 0 0 0 0 1
-8.0 -7.0 O 0 0 0 0 0 0 3
-7.0 -6.0 O 0 0 0 1 0 0 5
-6.0 -5.0 O 1 0 0 3 0 0 7
-5.0 -4.0 O 0] 0 0 8 0 0 24
-4.0 -3.0 9 1 0 0 45 4 0 56
-3.0 -2.7 15 0] 0 0 29 7 0 28
-2.7 -2.5 32 0 0 0 30 5 0 24
-2.5 -2.3 38 0 0 0 38 15 0 33
-2.3 -2.1 65 0 0 0 51 35 0 37
-2.1 -1.9 108 0 23 0 87 44 0 52
-1.9 -1.7 149 0 153 0 95 77 0 56
-1.7 -1.5 202 720 258 0 158 136 0 77
-1.5 -1.3 317 575 371 0 186 236 0 119
-1.3 -1.1 384 572 531 1197 316 375 0 119
-1.1 -0.9 508 538 644 1287 377 549 809 214
-0.9 -0.7 596 544 694 896 584 798 1940 303
-0.7 -0.5 630 585 718 770 681 861 1256 447
-0.5 -0.3 782 550 772 674 844 984 1002 820
-0.3 -0.1 727 586 751 681 914 964 873 1469
-0.1 0.1 801 580 783 563 1038 890 724 2151
0.1 0.3 751 591 686 549 935 795 587 1455
0.3 0.5 740 577 629 494 837 630 503 797
0.5 0.7 648 572 564 431 689 561 416 431
0.7 0.9 608 540 514 412 529 429 328 313
0.9 1.1 465 575 415 355 385 328 254 210
1.1 1.3 387 528 343 289 300 273 234 150
1.3 1.5 316 562 280 277 215 219 185 102
1.5 1.7 215 802 230 228 143 169 160 86
1.7 1.9 174 0 164 198 124 116 128 77
1.9 2.1 130 0] 142 160 91 98 87 49
2.1 2.3 66 0 108 134 68 87 95 55
2.3 2.5 56 0 72 121 44 71 74 34
2.5 2.7 42 0 48 99 33 51 53 25
2.7 3.0 20 0 59 93 38 52 85 33
3.0 4.0 17 0 41 92 62 102 118 76
4.0 5.0 2 0 7 0 14 22 59 32
5.0 6.0 O 0 0 0 2 10 16 11
6.0 7.0 © 0 0 0 3 3 7 8
7.0 8.0 O 0 0 0 1 2 3 4
>8.0 O 0 0 0 2 2 4 7
8 Tabled values represent the frequency distributions of the

simulated data using 10,000 deviates.
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