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ABSTRACT

SOLUBILITY OF NONPOLAR GASES IN ORGANIC LIQUIDS AND WATER.

By

Richard Paul Kennan

We have measured the Ostwald solubility L(T), as a

function of temperature in the approximate range

10.0-50.0°C, for 133Xe gas in 45 organic solvents, viz., 16

alkanes, 13 alkanals, 6 carboxylic acids, 4 alkanals, 3

cyclaalkanes, and 3 perfluaroalkanes. From our data for

each salute-solvent system we determine the following

. . . . . *
thermodynamic functions of solution: chemical potential Ana:

-* -¥ * -*

-RTOnL, enthalpy Ah2 , and entropy Asa, where Auz= Ahz-

-¥

TAsz, all based on the number density scale. The average

observed entropy of salvation of Xe is A§:= -4.1 :t 0.5

cal/moi K, remarkably independent of solvent. The results

are analyzed with scaled-particle theory from which we

obtained the effective hard core diameters a‘, and the

cavity energies gcnand enthalpies he" for all the solvents

at 25°C. Thermodynamic perturbation theory is used to find

the total enthalpy of salvation for the Xe-alkane systems.

We generalize the analysis to evaluate the salvation

enthalpy for all of the noble gases in the alkanes. We

discuss the role of configuratianal entropy, as well as

molecular dynamics approaches to calculation of free

energies of salvation. Finally the results are examined

empirically and values are given for the contribution to



chemical potential, enthalpy, and entropy of salvation, of

the six functional groups: CH2 (linear molecules), CH3, OH,

COOH, CHO, and CH2(cyclamalecules).

We have also measured the pressure dependence of the

Ostwald (L) and male-fraction (x2) solubilities for the

nonpolar gases N2, Ar, Kr, and Xe in water at 25.0°C. The

pressure ranges studied for each gas were approximately:

N2(44-116 atm), Ar(22-101 atm), Kr(33-81 atm), and Xe(5-48

atm). For N2, Ar, and Kr we see clear deviations from

Henry’s Law, f2=knx2. The data are analyzed in terms of the

Kirkwaod-Buff solution theory. The role of solvent -induced

(hydrophobic) interactions shall be discussed” For the

Kr-water system we shall compare our experimental results to

recent computer simulation predictions. We also use

statistical mechanics arguments to introduce a new

solubility parameter which is appropriate to high pressure

solubility measurements. Extensions of our analysis to

other gas-liquid data is discussed.
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1 .Introduction

The phase equilbrium problem is ubiquitous to modern (or

any) life. Whether it is the delivery of oxygen from the

lung to the blood stream, or an industrial extraction

process to remove unwanted hydrocarbons from natural gas, or

the removal of a nasty stain from your best sweater; we are

. constantly confronted with the problem of how a substance is

transferred from one medium to another. In general, when two

phases are brought into contact there is an exchange of

matter until the concentration in each each phase attains a

constant value. To understand the physics that determines

this equilibrium state is a difficult, but important task.

The goals of the research outlined in this thesis are to

understand the solubility of gases in liquids and to predict

solubilities in general gas-liquid systems. In pursuit of

this goal we have measured the solubility of simple gases in

various organic solvents and water. The resulting body of

data has been analyzed using current molecular theories

based on thermodynamics and statistical mechanics. By

studying gas solubility one may be able to build a

theoretical and empirical framework that can serve as a

basis for more complicated phase equilibrium systems.

The thesis is divided into two parts. The first section

1



details experiments involving solubility measurements of the

133Xe in several homologous series of organicradioisotope

solvents. The solvents are chosen to range from simple

nonpolar liquids to more complicated hydrogen bonding

liquids. The second section covers experiments on the

pressure dependence of gas solubility in water. The solute

gases are: N2 , Ar, Kr, and Xe. These gases are meant to

represent a series of prototypical nonreactive solutes. The

experimental results are applicable to problems of medical,

industrial, and. environmental interest. Specific examples

will be sited in the introduction to each section.

Gas solubility can also serve as a 'probe in

understanding intermolecular interactions. Due to the

advances in computational techniques it has become possible

1 ’2 The resultingto accurately model pure liquids.

thermodynamic properties obtained are sensitive to the

intermolecular potentials chosen. Optimized potential

functions are determined by varying parameters until the

best results are obtained.3 By extending these ’computer

experiments’ to dilute liquid mixtures it may be possible to

understand the various factors which influence the

potentials and place them on a more sound physical basis.

Accurate experimental data (n1 well chosen solute-solvent

systems would be useful towards this end.



2.1ntroduction: Solubility of Xenon in 45 Organic Solvents.

This section of my thesis describes experiments which

measure the Ostwald solubility (L) as a function of

temperature of’ 133Xe in 45 organic solvents including;

alkanes, alkanols, cycloalhanes, alkanals, carboxylic acids,

and perfluoroalkanes.

A great deal of progress has been made in understanding

the physics of simple liquid-gas systems such as the

solubility of an inert gas in its own liquid, or the

solubility of one inert gas in the liquid phase of another

4 ’ 5 These experimentsinert gas, e.g., Aer, KroXe, etc.

are prototypical in the sense that they are the simplest

gas-liquid systems that one can study.

A logical next step is to look at simple solutes in more

complicated solvents '(the case of simple solvents with

complex solutes isn’t experimentally accessible: Just try

dissolving hexane in liquid nitrogen). To this end we have

chosen the inert gas xenon in the several homologous series

mentioned above.

Some of the reasons why Xe was chosen as a solute are:

All the inert gas elements are monatomic and do not

«basically interact with the solvents under conditions of

' 3



these experiments. Much is known about interactions and

properties of these elements. Xenon has a commercially

33 . .

1 Xe, whose concentrations in theavailable radioisotope,

gas phase can be easily measured.

Liquids are often considered in two groups: water6 (and

aqueous solutions) and other liquids (mainly organic). We

have selected 45 solvents so as to bridge these groups.

Most of our solvents are nonpolar molecules, some are medium

chain length molecules with a polar head group, and CHBOH

and HCOOH are small polar' molecules for' which hydrogen

bonding is important. The obvious motivation for looking at

homologous series is that one can try to spot trends that

can be generalized to other systems.

Practical aspects of this work stem from biological and

industrial applications» IXenon. has several applications

which are dependent on its solubility and diffusion.

Because Xe is highly soluble in fats and relatively

1'33Xe is widelyinsoluble in aqueous solutions, the isotope

used in nuclear’ medicine to study cerebral blood flow,

pulmonary function etc. A further application of Xe is as

an inhalational anesthetic,7 a property associated with Xe

solubility in lipids of cell membranes.8 Since the

mechanism of general anesthesia is not understood some

workers in the field believe that Xe is the prototype

anesthetic to study.9 Also, solubility properties of Xe

under pressure are useful for studying decompression

sickness and inert gas narcosis, two problems of deep sea



diving.10 Finally, there are environmental and safety

1”Xe and other

11,12

questions associated with the emission of

radioactive inert gases from nuclear reactors.

There is presently a great deal of interest in

developing synthetic blood substitutes (now euphemistically

referred to as oxygen carriers in the industry).

Perfluorocarbons and related compounds form the basis of

many' new blood substitute candidates because they carry

oxygen efficiently and do not induce an immune system

response.13 Thus understanding gas solubility in simple

perfluorocarbons and their analogous hydrocarbons would be

quite useful.

While a first principles understanding is beyond the

scope of this work, we hope to develop empirical and

analytic techniques that will allow the prediction of Xe

solubility from knowledge of bulk properties of the solute

and solvent. We aim ultimately to generalize, at least

qualitatively, the solubility parameters obtained for Xe to

solubility of other inert gases.



3 .Theoretical Background

3.1 Phase Equilibria

Chemical potential (u) is a fundamental quantity in the

determination of phase equilibria in multicomponent

systems The most useful definitions for our purposes are:14

a G ' a A

u‘ 3 —— I . 3 (301)

a ntlnr,n' a'ni'ny,n'

where G is the Gibb’s free energy of the system, A is the

 

Helmholtz free energy. n‘ is the number of molecules of type

i,‘T is the absolute temperature, P is the pressure, V is

the volume and N’ represents all other molecules in the

i‘h type.system with the exception of the

Suppose we have a two phase system, for example a liquid

in contact with its own vapor, the condition for

equilibrium at constant T and P is:

”('(TJ’) = u9(T.P) - (3.2)

We shall use the subscript L to denote the liquid phase and

q to denote the gas phase. For low pressures we assume the

gas phase is ideal, ignoring internal degrees of freedom we

have:



p9 = -kT m (pg A3) = -kT On (p9 A3 / kT) , (3.3)

where p9 is the number density of the gas (molecules/unit

volume), It is Boltzmann’s constant and A is called the

thermal wavelength for a particle of mass m; i.e.

A=h/(2nka)1/z-

The chemical potential for the liquid can likewise be

evaluated:

3 *

where pt denotes the number density of the liquid and Ap*is

called the excess chemical potential. It is the

contribution to the free energy from intermolecular

interactions in the liquid. A more detailed derivation of

the above equations is reserved until chapter 6, but for now

we shall content ourselves with these results. Equating.

(3.3) and (3.4) we find:

*

= -kT s 305Au On (p, / pg) ( )

Thus by knowing the vapor pressure and density of the liquid

we can determine its excess chemical potential. Typically,

far from the triple point,a liquid is about 1000 times as

dense as its vapor. This would lead to an excess chemical

potential of about ~17 kJ/mole at room temperature. Although
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this is a reflection of the strong binding energy in the

liquid we must keep in mind that there are also entropic

contributions to the chemical potential. These can play a

large role as we shall see later.

3.2 Two Component Systems

The relations ¢derived in the previous section can

easily be generalized to two component gas-liquid systems.

We now imagine a liquid solvent in equilibrium with a

gaseous solute (Fig. 1). The condition for equilibrium is

that the chemical potential of the dissolved solute equals

the chemical potential of the solute in the gas:

u; = H? . (3.6)

Throughout this thesis the subscript 1 and 2will refer to

the solvent and solute respectively, and superscripts 9 and

C will refer ,respectively, to the gas and liquid, according

to the usual conventions.

The statistical mechanics of solute -solvent mixtures

15,16
starts with a standard partition function from which

one may obtain by standard techniques the following chemical

potential for a single solute molecule in the liquid

solvent14’l7:

u; = -kT a. < exp(-B° / kT ) > + kT on p; A3 .(3.7)
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The key quantity in Eq.(3.7), Bo, is the binding energy of a

single solute molecule to a fixed configuration of the

solute-solvent system. The ensemble average of the

exponential in Eq.(3.7) is taken over all such

configurations. This term is also referred to as the excess

chemical potential for the dissolved solute, All;- The

second term in (3.7) is equivalent to the chemical potential

of an ideal gas at density pf (the number density of solute

molecules dissolved in the solvent).

For the chemical potential of a solute molecule in the

gas (assumed ideal) one has:

pg = kT a. (93 A3) . (3.8)

in which pg is the number density of the gaseous solute

molecules. Equating (3.7) and (3.8) we find:

* _ L 9

M2 - ‘kT 1CD ( pz / 92 ) o , (3.9)

3.3 Ostwald Solubility

In the experiments described in this thesis we directly

measured the Ostwald solubility as a function of temperature

L(T) of xenon gas in various organic solvents. Ostwald

solubility is an intuitive as well as a theoretically

significant measure of solubility. It is defined as the

(equilibrium) ratio of the (volume) concentration of

dissolved gas molecules in the liquid solvent to their
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concentration in the gas phase. If p; , pg are the number

densities of solute 2 in the liquid and gas phases

respectively, then:

L = pg / pg . (3.10)

At 20°C the Ostwald solubility of Xe is about 0.12 in water6

and about 4.4 in n-octane,18’19 a common nonpolar solvent

(see Fig. 2).

One can immediately see the importance of the Ostwald

solubility by substituting Eq. (3.10) into (3.9), which

gives:

Au; = -kT Ln (L) . (3.11)

The Ostwald solubility provides a direct measurement of the

excess chemical potential.

3.4 Solvation Thermodynamics

We start this section by reviewing standard

thermodynamics. The Gibbs free energy for a system can be

expressed in terms of its state variables aszo:

G(T,P,N) = E + PV - TS = H - TS , (3.11s)

l'

G(T,P,N) = Znipi , (3.11b)



 

 

m
(
9
0
0
0

 
Figure 1. Schematic of two

m‘9g95

C)

808%)!

 

 

 

[Xe] =1
gas

 

[Xe}=4

octane

 

[Xe}=0.1

 
water

 
 

11

. solute

o solvent

component solution.

[1 = concentration

(dimensionless)

T=20 ‘2:

Figure 2. Three phase system of xenon gas in

equilibrium with octane and water at 20°C.
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where E is the energy of the system, S is the entropy, H is

the enthalpy (H=E+PV), and n1 is the number of molecules of

type i (of which there are r different species) whose

chemical potential is pi. The differential is:

r

dG = -SdT + VdP + Z “idni . (3.12)

-1

The most important information we shall be concerned with is

the first derivative of the free energy, i.e:

as
s: -[———] , (3.13a)

p

we may then evaluate H in terms of G and its temperature

derivative by using Eq.(3.11a). The partial molar enthalpy

and entropy (h, and s respectively) can be found by

differentiating (3.11b):

[——-—au‘] h T (3 13b)8. = _ , o = u. + S. ’ O

1 a T 1 1 1

where °

r

S = nsSI H = “oh. 0 (3.13C)

.1 1 1 , .1 1 1

Generalizing these, we may find the partial molar enthalpy

and entropy of the solvation process by taking the

temperature> derivative' of the «excess chemical ‘potential,

Aug:
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6 Au
*_- 2 *_ It *

As2 - [ ) , Ah2 - Apz + TAs2 . (3.14)

6 T

It *

We call Ah2 and A32 , respectively, the excess partial molar

enthalpy and entropy. One may also find the Helmholtz free

energy of salvation and the internal energy of solvation.

However these differ from G, and H by a factor of Pv2 (where

vzis the molar volume of the solute in the solvent) which is

usually negligible [see section 3.21 of ref. 14 for a

complete discussion].

3.5 Physical Interpretation of the Salvation Process

In section 3.2 we introduced the concept of the excess

chemical potential, ALI;- I shall now present a physical

interpretation of this quantity developed by Ben-Naim.21 For

simplicity we consider a two component system at temperature

T, and pressure P with N1 and N2 representing the number of

molecules of solvent and solute respectively, Because the

Gibbs free energy is an extensive quantity the mathematical

derivative in equation (3.1) can be replaced by:

“2 = G(T,P,N1,N2+1) - G(T,P,N1,N2) . (3.15)

This statement is valid for a macroscopic system, where the

addition of one molecule may be viewed as an infinitesimal

change in the variable ii In order to interpret various2.

contributions to the chemical potential Ben-Naim introduced
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the concept of the pseudo-chemical potential. It is defined

as:

”Escudo: G(T,P,N

N +1; fio) - G(T,P,N1,N2) . (3.16)
1’2

This corresponds to the chemical potential for placing the

solute atom at a fixed position within the solven. We assume

the solvent is homogeneous and macroscopic so the actual

position no is irrelevant as long as it is within the bulk

of the solvent. By explicitly solving both (3.15) and

(3.16) from partition functions one can show21:

pg = "gum” + kT bu (pg/13) . (3.17)

Therefore it is immediately apparent that the

pseudo-chemical potential is equal to the excess chemical

potential, A“; defined in Eq. (3.7). We may interpret

equation (3.17) as follows. The full chemical potential can

be viewed as a two step process for adding an extra

particle to the solvent. First, we place the molecule at a

fixed position. The change in free energy for this is

“3"“d° (= Au; ). Next, we release the constraint imposed

on the fixed position; this leads to an additional change in

free energy, kam (pzAa). For classical systems 92A3<<1,

thus the free energy resulting from the release of the

particle is always negative. This quantity is referred to

21
as the liberation free energy. An explanation of the
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various factors that make up the liberation free energy

are as follows. When the particle is released it acquires a

translational kinetic energy which leads to a free energy of

kT bn(A3). Also, when the particle is released it may now

wander throughout the volume of the solvent, which gives

rise to a free energy -kT On(V). Finally, once the particle

is released it is indistinguishable from the other N2

particles in the solvent. This adds a free energy

contribution of kT (11(N2). Putting all of these together

forms the liberation free energy. The entire discussion is

outlined in Figure 3.

The important property of equation (3.17) is that it is

generalized for any kind of molecule, whether it be atomic

argon or a complex protein, all that is required is that

classical statistical mechanics be obeyed. Of course there

still is the problem of developing a solid theoretical

calculation of Au; , however we now at least have some feel

for what it is we are dealing with.

3.6 Other Concentration Scales

The Ostwald solubility, which has dominated much of our

previous discussion, is based on the number density scale.

This means that it is dependent on the number density of the

solute in both the liquid and gas phase. However, there are

many other measures of gas solubility. The most popular

alternative is the mole fraction scale. The mole fraction

solubility (xi) is defined as the eqilibrium ratio of the
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Figure 3. Schematic description of the salvation

process. First the center of mass of the solute is

placed at fixed position 30, and then the particle

is released. The contributions to the chemical

potential are indicated next to each arrow.
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number of moles of dissolved solute divided by the total

number of moles of solution:

x. = ——————' . (3.18)

For a two Component solution this reduces to:

= N2 / (N1 + N (3.19)
2) 9

where N2 and N1 are the number of moles of solute and

solvent respectively. Note that unlike the Ostwald

solubility this makes no direct reference to the gas phase

concentration. If the gas phase is ideal we can relate x2

to the Ostwald solubility, L19:

-1
._. 1[ R_T_ . 1] , (3.20)

L

where P2 is the pressure of the solute gas and 171 is the

molar volume of the solvent.

For a dilute solution the chemical potential for

component i may be written as 22:

“i = p: + kT &n(xz) . (3.21)

The quantity u: in equation (3.21) is known as the standard

state of the dissolved solute. It is hypothetical in the
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sense that we cannot give a physical interprtation of it.

For example, one might say that it is the chemical potential

of the pure solute (i.e. x2=1), however equation (3.21) only

holds in the case of very dilute solutions. Despite this

flaw the mole fraction scale is still useful and has many

20’22 Its strength lies in the fact that it canapplications.

be used to describe liquid mixtures and electrolyte

solutions, where knowledge of the vapor phase is often hard

to obtain.

There are of course many other concentration scales that

20 but only the number density scale avoidsare available,

the problem of defining standard states and allows a strict

physical interpretation of the associated chemical

potential.



4. Experimental

4.1 Outline of Method

For the discussion in this section. please refer to

Figure 4. Here we have a two compartment chamber separated

by a valve. The upper chamber contains the solute gas while

the lower chamber contains the liquid solvent and a-stirring

device. An accurate pressure gauge is connected to the gas

volume which will allow us to determine the gas density at

any time through its equation of state. The gas volume in

the upper chamber is denoted V“’, the liquid volume is Vt ,

and the gas space in the lower chamber is V‘z’

8

system is immersed in a constant temperature bath. The

. The entire

(1)
V'

8

amount of gas. This is determined by measuring the initial

procedure of the experiment is to fill with a known

pressure, determine the gas density from it, and multiplying

the density by the initial volume:

(1)

Nuu41.1:"hnieun ' Vg ' (4'1)

We then open the valve and start the stirrer. The pressure

will drop until equilibrium is reached and the solvent is

saturated. We now measure the final pressure and determine

the final density, (For this idealized system we
pfinel.

19
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neglect the vapor pressure of the solvent . In a real

experiment we must take the solvent vapor pressure into

account.) 'The final number’ of solute particles can. be

expressed as:

_ gas (v(1)+ V(2)) + dissolved: V

Nfinel- final)‘ 8 8 pfinel AC ’ (4.2)

where the second density is that of the solute which is in

the liquid. We now can introduce the Ostwald solubility,

which for this system is obviously:

dissolved

 

final

L = 9.. . (4.3)

pflnel

We now substitute L * p9" for p“"°”°d in equation
final final

(4.2). Since the system is closed the number of solute

molecules is conserved, thus we can equate (4.2) with (4.1)

and solve for L:

(I) (‘1 (2)

v v 4 v

L = a -3— - -3——-3- , (4.4)

"’4 V:

where a is the ratio of initial to final gas density,

(pi/pf).

To briefly summarize, we have outlined a simple

technique in which L is obtained by recording the decrease

in pressure during equilibration.
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Figure 4. Idealized solubility apparatus.
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4.2 Radioactive Tracers

There are several problems which come up when actually

measuring the Ostwald solubility as described in the

previous section. First of all, one must be sure to measure

the pressure drop associated with the solute gas. Two

contributions of background gases are, (a) the vapor

pressure of the solvent, and (b) any other gases dissolved

in the liquid. For dilute solutions the vapor pressure of

the solvent does not change significantly from its pure

value,15 so it can be corrected for. The second problem is

overcome by carefully degassing the solvent when loading it

into the apparatus. This can lead to fairly elaborate and

time consuming setup procedures.

Another problem is the necessity of noninvasive pressure

measurement. In other words, we do not want to change the

system by measuring its pressure. Many of the more accurate

pressure gauges and sensors are able to detect changes in

pressure through moving parts such as diaphragms or

Bourdon tubes.23 A result of this is often a small change

in gas volume which must be accounted for due to our need to

know absolute differences in mass (density*volume).

The most difficult problem to overcome is sensitivity

over a wide range of gas concentration. As mentioned

earlier, gas solubility in various solvents can vary by more

6’24 The best reasonably pricedthan factors of one hundred.

transducers and gauges have an uncertainty of 0.05 percent

of the full scale reading. Therefore a 0.05% error at one
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pressure could become a 5% error on another. To get around

this one must use a series of pressure sensors for the range

appropriate to the system being studied. A related

difficulty is that for systems where the Ostwald solubility

is low, the observed change in pressure will be small

compared to the total pressure (or even the vapor pressure).

This can be overcome by using large liquid volumes, however

for some expensive solvents this is not a feasible

alternative.

By using radioactive tracers one can avoid all of these

problems. Since the tracer is the only gas which is

observed, background gases can be ignored. Furthermore, the

tracer can be monitored by external detectors, which are

truly noninvasive. And finally, since radioactive decay has

an uncertainty of (NcmmflJ)-o.5 one can get desired accuracy

over a wide range by simply waiting for enough counts.

Since the goal of this experiment is to look at gas

solubility over a wide range of solvents, the advantages of

using radioactive tracers is apparent.

4.3 Solution Components

The solute gas chosen for our experiments is the

radioisotope Xenon-133. Xenon is one of the noble gases.

Its atomic radius is 2.23A, which qualifies it as the

largest and most polarizable of the 5 inert gases with

stable isotopes, viz.,He, Ne, Ar, Kr, and Xe. The next noble

gas in this series is radon which has no stable isotopes.
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235U fission and is readilyXenon-133 is a byproduct of

available commercially. It is unstable and decays with a

half life of 5.245 days.25 Because of its high solubility

in fats and low solubility in aqueous solutions, 133Xe is

used extensively in nuclear medicine to study cerebral blood

flow pulmonary function, etc.18 The decay process for’133Xe

is as follows: the isotope first decays by beta emission to

an excited state of 133C3, this nuclear excited state then

decays with a half life of 6.3 * 10"9 sec by emiting an 81

keV gamma ray. The beta rays are rapidly attenuated, but

the gamma ray intensity can readilybe quantitatively

133

measured to determine xe concentration.

Xenon-133 was purchased from the Hedi-Physics Company

(Plainfield, N.J.) in 20 millicurie (mCi) aliquots (this is

a recommended human dosage for cerebral blood flow studies).

A typical amount of ‘33Xe used during a run was of the order

of 100 pCi. In practice, one aliquot usually supplied enough

xenon for a month (a: 10 runs). The corresponding partial

pressure of the tracer is appoximately' 1‘ picoatmosphere

(10"12atm), therefore» it’s safe to say that our results

correspond to the limit of infinite dilution. The tracer was

usually mixed with air at 1 atm. In order to make sure the

air did not effect our results control experiments were done

in which' 1”Xe was mixed with naturally occuring

nonradioactive xenon at a total pressure of 1 atm. No

difference was observed. The solvents studied were an

extension of previous work involving n-alkanes and
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n-alkanols26 (the prefix n- means that the molecule is a

straight chain). They include cycloalkanes, alkanals,

carboxylic acids, and perfluoroalkanes.

N-alkanes can be described as straight chains of singly

bonded carbon atoms which are saturated with hydrogen:

H H H

C H 9 H-C-C-eeeoe-C-H e (405)

n 2n+2 H H H

They are composed of n22 acyl groups (CH2) and two methyl

groups (CH3). We studied the alkanes ranging from pentane

(C5) to eicosane (020). The alkanes were purchased from

Humphrey Chemical Co. (New Haven, Conn.), and were all at

least 99% pure.

N-alkanols differ from n-alkanes in the addition of a

hydroxyl (OH) group to a terminal carbon:

, H

"' eeeee " C - 0H s (406)

H“ -

C
nH2n+l 1 2

H H

OH 9 H - C - C

H H

Ethanol was obtained from Aaper Alcohol and Chemical Co,

while the other alkanols were from Aldrich Chemical

(Milwaukee, Wis.). Purities were: 99.9% (methanol), 99+%

(propanol and butanol), 99% (pentanol, octanol, decanol, and

undecanol), 98% (hexanol, heptanol, and dodecanol), 97%

(nonanol and tetradecanol), and 200 proof ethanol.

Carboxylic acids are formed by replacing the terminal

hydrogen with a carboxyl group (COOH):



H H H

on H2n+lcmn ’ H - 1.01,- :2- eeeee "" g“- COOH e (4e?)

Alkanals, also known as aldehydes, have a terminal CHO group

(CnH2n+1CHO)' Cycloalkanes (CnHzn) are similiar to alkanes

except that the carbon atoms form a closed ring; as a

consequence they have no methyl groups. These solvents were

also obtained from Aldrich Chemical. Their purities were

the highest reasonably available: formic acid (95%-99%,

remainder water), acetic acid (>99%), propanoic acid (>99%),

n-butanoic acid acid (>99%), n-pentanoic acid (>99%),

n-heptanoic acid (>99%), propanal (>99%), n-butanal (>99%),

n-pentanal (99%) , n-heptanal (95%), cyclopentane (78%;

99.6% saturated 05 hydocarbons), cyclohexane (>99%), and

cyclooctane (>99%).

Perfluoroalkanes are alkanes with fluorine substituted

for hydrogen (CnF2n+2)° They were obtained from SCM

Specialty Chemicals (Gainesville, FL). Their purities were

also the highest reasonably available: perfluorohexane

(99%, of which 85% is n-CGFIO),

mixed isomers), and perfluorooctane(90% mixed isomers).

perfluoroheptane (97%-99%,

Other perfluoroalkanes were either prohibitively expensive

or not available.

4.4 The Experimental Apparatus

A diagram of the apparatus is shown in Figure 5. The

design is similiar to that used in previous work,26 except
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the upper and lower portions are now held together by an

indium sealed brass flange instead of a threaded brass

connection. The apparatus can be disassembled at the flange

for cleaning and loading. The upper portion of the

apparatus consists of two valves and a brass gas volume.

The lower portion is a pyrex flask which is joined to a

glass-to-metal seal. The brass flange is soldered to this

seal. A small matching groove is cut on both faces of the

flange and is filled with 0.040" diameter indium wire. The

top and bottom are connected by six screws which press the

indium to form‘s reliable seal. The indium can be reused

many times by reforming the wire in a hydraulic press.

The lower volume contains a glass encased stir bar in

order to mix the solvent. Most commercial stir bars are

coated with Teflon because it is non-reactive. We found it

necessary to remove this coating because xenon is very

soluble in Teflon. The stir bar is then encased in glass to

protect it from potentially corrosive solvents.

A ball valve separates the upper and lower volume. The

advantage to using a ball valve is that its volume is well

defined. In other words, once the valve is opened the

volume that is exposed is that of the hole in the ball

regardless of how much you open it. The second valve, a

Hoke valve, is for loading the gas. This does not have any

critical volume requirements because it remains sealed

throughout the entire run.

During a run the apparatus is immersed in a fluid bath
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in order to regulate temperature. The bath was controlled

to $0.1”: by a Lauda/Brinkman K-2/RD circulator. The bath

fluid was a 4:1 mixture of water:ethylene glycol in order to

prevent freeze-up of the circulator cooling coils.

We used Pb sheilding a 1 cm to reduce background

radiation and to isolate the volume Vé1)from the rest of the

apparatus. This is important because we want the detector

to measure the concentration in the gas phase only. Any

scattered gamma emissions from 133Xe in the liquid which

reach the detector will lead to errors. One cm of Pb

6 27
attenuates BlkeV gamma rays by a factor of 10 We

checked the shielding by putting ‘33Xe in V with the
rest

apparatus in the bath and the shielding in place. No counts

were observed above background.

4.5 Volume Determination

One of the° most important criteria for determing

solubility by the method outlined in section 4.1 is the

accurate determination of volumes.‘ The relevant volumes for

the apparatus are indicated in Figure 5. Of these seven

volumes five are the same for every run, namely, V‘1’,V

g rest

(2)

, V;b, Vfib , and V.. . The remaining two , V8 and Vt , are

determined at the start of each new run. Each volume is

described below:

(1)
V

8

= the rest of the gas volume ,

= initial gas volume ,

(2)
V

8
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= total volume excluding V(1) ,
rest 8

Vt = volume of the liquid ,

Vhb = volume of hole in ball valve ,

V“ = volume of stir bar ,

V = volume below the ball valve .

They are related by:

= V + V
(408)

rest ee hb

(2) ’

v8 — rest. vsb VC . (4.9)

To determine V" (ee stands for everything else), we

weigh the apparatus before and after filling V“ with water

at a known temperature. We make a buoyancy correction for

the weight of air displaced by the water. If mob. is the

observed mass, then the true mass,muu.,is:

p
sir,T

mum: mob. / [1 - Fla—7;] , (4.10)

2

where p 'r is the density of x at temperature T. One can

X,

then determine V" by:

Vee= mtrue / pl! 0,1' . (4.11)

The volume of the hole in the ball was calculated from

measurements made on the disassembled valve. We can then
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find V}..t from (4.8). The volume of the glass encased stir

bar, V.b, was found by measuring the water it displaced in a

graduated cylinder.

Once V"... was known , we were able to find v; 1 ) by

performing a dilution run. This consists of loading 1331Xe

in Véi) with V}..t evacuated. Once we determine the

concentration of gas in Vé" , c°(normalized to correct for

radioactive decay), we open the main valve and allow the gas

to expand into Véz’. After several hours the system

equilibrates and we note the final normalized concentration,

ct. Since the amount of xenon is conserved (subject to

radioactive decay) we have:

(i) (1)

cov8 - f(V8 + Vr.‘t) , (4.12)

which in turn gives:

V“’ = V s a / ( 1- a ) , '(4.13)

8 rest
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where a = (C0 / of). For the apparatus used in these

measurements Vuus 250cm3 , and Véus 50cm3.

4.6 Data Acquisition

The electronics are shown in Figure (6). Gamma ray

intensity is monitored by a well -counter NaI(T1)

scintillation crystal connected to a photomultiplier

(Harshaw Chemical Company, type 7SF8). A high voltage power

supply (Power Designs, Inc., model 1570) supplies 1100 volts

for the photomultiplier via the preamp (Ortec model 276).

Signals from the photomultiplier go through the base

preamplifier and a Nimbin mounted amplifier (Ortec Model

485), then through a single channel analyzer (SCA, Ortec

Model 406A), and finally into a microcomputer counter (Micro

Development Tool 1000). The SCA is set with a suitably wide

window (10-90keV) so as to permit passage of ‘33Xe signals

while keeping the system stable and the background low. The

window was set by feeding signals of known amplitudes into

the amplifier and observing the output on a multichannel

analyzer (Northern Electronics model NS633). The resulting

133Xe spectrum . Two t imersoutput was then compared to a

(Ortec Model 719) are supplied a 0.1 sec timing pulse by the

computer.

The computer is programmed to take data and print out

the results. It counts the number of decays in a 400 sec

interval and then waits an additional 200 sec before

counting again (the time intervals are somewhat arbitrary
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and are based on historical reasons). A result is printed

every ten minutes with averages printed every hour.

Two corrections are made to the raw data. Because the

electronics are not perfect, a pulse into the detector is

not recorded if it follows an earlier pulse too closely,

i.e, the detector has a ’dead time’ The dead time can be

measured by sending signals of known frequency into the

electronics and observing the output. In this way, we

determined the dead time for our system to be about t a:

3.33xlo—6 sec.

In order to calculate the dead time correction we must

exploit the random nature of the radioactive decay process.

The probability of k events in a time interval, given a mean

rate of u events in that interval, is described by a Poisson

distributionza:

k
u

p(k) = . (4.14)

kleu

 

We now take the dead time, t, to be our unit of time. Thus

p becomes the mean number of events in time t. The

probability that a single signal occurs within time t of an

earlier signal is given by:

9(1) = u e'" . (4.15)

Since p is small (typically of order 10-3) we can expand the

exponential. To first order this reduces to:
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P(l) u . (4.16)

The actual counting rate is then approximated by:

Nact = Nobs(1 + P(1)) = Nob.“ + u) , (4.17)

where Now. is the observed number of counts over period T.

We approximate u by using the observed counting rate

multiplied by the dead time:

u = ( Nob./ T ) * t . (4.18)

Plugging into (4.17) we have:

Naet = Nob.( 1 + ( Nob./ T ) * t ) . (4.19)

We have programmed the computer to make this correction

using the parameters : T=400sec, and r=3.33x10-63ec.

The second correction we make is to subtract off

background counts. We measure background radiation over

periods of several hours with the evacuated apparatus and

shielding in place. Background is subtracted after the dead

time correction is made. Typical background rates are about

1500 counts/400 sec. During an actual run counting rates

vary from 250,000 counts/400 sec (at the beginning) to

50,000 counts/400 sec (at the end).
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4.7 Experimental Procedure

I shall now outline the experimental procedure to

33 . .

1 Xe in an arbitrarydetermine the Ostwald solubility of

solvent. Referring to Figure (5) may be useful.

The solvents are generally used as purchased, we do not

degas them. Control experiments were done on degassed

solvents and have shown the dissolved gases do not effect

26
xenon solubility ( if we equilibrated the solvent with 1

atm of air, the gas concentration would amount to about 0.01

mole/liter).

With the ball valve closed and the apparatus

(1)
v

8

loading valve (Hoke bellows valve). A trace amount of

disassembled, air is evacuated from volume through the

1’33Xe is allowed to expand into V”’, and then air is let in

8

to bring the total pressure to 1 atm. The loading valve is

then closed.

The glass portion of the apparatus is loaded with about

200 ml of solvent, and is weighed (we make the usual

buoyancy correction).' Using known densitieszg’30 we

calculate the liquid volume. The perfluoroalkanes and

cyclopentane were mixed isomers, so we measured the density

ourselves using a standard volumetric method. This allows us

(2)

8

the stirring bar, the apparatus is assembled (see Section

to calculate gas volume V using (4.9). After putting in

4.5). The apparatus is then mounted rigidly in the

temperature bath so the detector geometry does not change in
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the course of the run.

With the main valve closed, we start the computer and

begin taking data. During a run the initial counting rate,

ci, is measured hourly for six to eight hours. Each value

is corrected for decay, and the mean value is calculated.

(1)

g 9

by a steady counting rate, we open the main valve and start

Once the gas is uniformly distributed in V as indicated

the stirrer. The solubility can then be calculated from a

generalization of equation (4.4):

V(1)+ V(2)

Vr

  

where 1 is the decay constant for 133Xe (l=0.9177x10-4min-1)

and At is the time elapsed between measurement of c1 and

cf. We calculate the Ostwald solubility each hour until L

reaches a constant value. Time to equilibrium is typically

12 hours. We wait an additional 8 to 12 hours to insure

equilibrium has been reached(see Figure 7).

In order to obtain L(T) in these experiments one needs

to know the densities o(T) at each temperature at which L(T)

is measured. The idea is that after charging the apparatus

with solute and solvent and then measuring L at some initial

temperature, say 25°C, one can measure L at a different

temperature by just changing the temperature and waiting for

the new solute-solvent equilibrium. Once the bath

temperature is changed we recalculate equation (4.20) using
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the new liquid and gas volumes, VC and V’Z). This procedure

8

works because the masses of solute and solvent are fixed in

the sealed apparatus. Thus, in a typical determination of

L(T) we measured solubility sequentially at temperatures of

20,30,40,50,10 and, finally, again 20°C (the temperatures we

cycle through depends on the solvent of course). We went

though a cycle like this two times independently for each

solvent.
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Figure 7. Normalized counting rate vs time for a

typical experiment (Figure 2 of reference 18). The

letter A indicates the time the valve was opened,

and the letter B indicates the time a run might

end, about 8 hours after equilibrium has been reached.



5. Results

5.1 Thermodynamic Analysis

Table I gives the results of our experiments for 45

solvents. These include: 16 alkanes, 13 alkanols, 6

carboxylic acids, 4 alkanals, 3 cycloalkanes, and 3

perfluoroalkanes. The first row for each solvent gives the

measured value of L(T) at each temperature. The second row

gives the corresponding chemical potential, Au; (cal/mole),

which is calculated from L(T) by equation (3.11):

Au;=-RTan .

The data given at each temperature are each averages of at

least 2 separate runs. Typical uncertainties for 6L/L are

about 0.015. The uncertainty 6(Au;) = -RT(6L/L) varies from

£6 cal/mole at 278.15K to :10 cal/mole at 323.15K.

Figure 8 shows the Ostwald solubility plotted as a

function of temperature (C) for six representative solvents,

one for each homologous series. They are: n-hexane,

n-hexanol, cyclohexane, n-heptanoic acid, n-heptanal, and

n-perfluorohexane. Each of these solvents has a similiar

backbone with different terminal groups attached (or

hydrogens replaced by fluorines). Figure 9 is a plot of the

40
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corresponding chemical potential versus temperature. For

the solvents illustrated the largest solubility occurs in

hexane, this corresponds to the most negative free energy,

while the lowest solubility occurs in perfluorohexane, which

has the highest free energy. From these figures we can see

the general tendency in the Xewmu- organicwlvmt system

for L(T) to decrease with temperature, while ApZCT)

increases with temperature.

From equation (3.11) it is clear that the sign of Au; is

negative if L is greater than one, as is the case for 44 of

these solvents (HCOOH excluded). For all such solvents a

positive free energy is required to remove a solute molecule

from a fixed position in the solvent to a fixed position in

the gas. Conversely for those in which L is less than one, a

positive free energy is required to place a solute at fixed

position in the liquid.

Over the temperature range we used, the experimental

data for Ap;(T) can be fitted well by a straight line of the

form. Ap;(T)=a+bT. Since the partial molar entropy is

proportional to the temperature derivative of the chemical

*

potential, 3: = -(a"2/6T)p , one can “has.“

-RT on (L) = Au;(T) = All: - ME: , (5.1)
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gable I. Solubility data for experiments with

Xe in 45 organic solvents.

the Ostwald solubility, L(T),

First row gives

and the second

a):

row gives the excess chemical potential A“: =

~RT¢nL. Temperature is in degrees celsius.

 

 

 

 

 

 

 

 

 

 

 

 

Temperature 10 20 30 40 50

alkanes

n-carbon

5 L(T) I 6.41 5.48

Aule) I -1045 -991

6 L(T) I 5.91 5.07 4.55

Au:(T) I -999 -945 -913

7 L(T) I 5.41 4.67 4.13 3.75 3.37

t

AMI(T) I -950 -896 -854 -822 -780

8 L(T) I 4.99 '~4.36 3.90 3.47 3.31

a

Au.(T) I -904 -856 ~820 -774 -769

9 L(T) I 4.70 4.14 3.70 3.32 2.99

s

Aule) I -a71 -828 -788 -747 -703

10 L(T) I 4.42 3.92 3.52 3.14 2.84

t

Auzfl‘) I -836 -796 -758 -712 -670

ll L(T) I 4.16 3.72 3.35 3.00 2.71

8

Aung) I -805 -765 ~728 -684 -640

12 L(T) I 4.03 3.59 3.22 2.90 2.64

a

AM:(T) I -784 -744 -704 -662 -623

13 L(T) I 3.88 3.44 3.09 2.80 2.53

I

Au.(T) I ~763 -720 -679 -641 -596

14 L(T) I 3.76 3.35 3.02 2.72 2.49

a

Au.(T) I -745 -704 -666 -623 -586

15 L(T) I 3.24 2.92 2.64 2.41

c

Au'lT) I -685 -645 -604 ~565



43

 

 

 

 

Table cont.....

16 L(T) 3.14 2.35 2.57 2.35

Aule) -667 -631 -537 -549

17 L(T) 2.75 2.51 2.30

Au:(T) -612 -573 -53s

13 L(T) 2.71 2.47 2.25

Au:(T) -601 -563 -521

19 L(T) 2.42 2.21
.

Au'(T) -550 -509

20 L(T) 2.36 2.17
.

““2‘7’ -534 -493
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Temperature 10 20 30~ 40 50

alkanols

n-carbon

1 L(T) - 2.46 2.20 1.93 1.79

Au:(T) . -507.4 -460.4 -411.5 -362.3

2 L(T) - 2.79 2.47 2.22 ' 2.02 1.35

Au;(r) . -577.9 -527.9 -431.5 -436.0 -395.4

3 L(T) - 3.02 2.65 2.33 2.16 1.93

Au:(T) . -621.3 -567.7 -521.3 -432.2 -439.0

4 L(T) - 3.04 2.63 2.40 2.17 1.93
*

AnalT) - -625.3 -574.7 -527.4 -432.2 -439.0

'5 L(T) - 2.97 2.62 2.36 2.13 1.95
3

Aule) . -613.3 -561.3 -516.5 -467.0 -419.6

6 3(3) . 2.97 2.62 2.34 2.12 '1.92
.

. Auz(T) . -611.9 -559.1 -512.7 -467.0 -419.6

7 3(7) - 2.91 2.57 2.31 2.09 1.91

Ap;(T) - -601.6 -594.4 -503.3 -457.5 -413.5

3 L(T) . 2.36 2.52 2.25 2.05 1.33

Ap;(T) a -590.7 -537.3 -439.6 -445.3 -404.4

9 L(T) - 2.79 2.49 2.24

Au;(T) a -577.5 -530.5 -434.5

10 L(T) . 2.74 2.43 2.20 2.00 1.33

AuZlT) . -567.3 -513.4 -475.5 -432.0 -333.4

11 L(T) . 2.34 2.11 1.92 1.76

Au:lT) - -496.2 -449.3 -406.3 -363.3

12 3(7) - 2.12 1.94 1.73

Au:(r) - -453.5 -410.3 -369.6

14 L(T) - 1.91 1.72

Au;(T) - -404.0 -364.3
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Temperature 10. 20 30 40 50

carboxylic acids

n-carbon

1 3(7) = 0.474 0.456 0.437 0.420 0.414

Au;(T) - 420.1 453.1 493.7 539.3 566.3

2 3(7) . 1.71 1.53 1.47 1.37

Au;(7) - -312.0 -275.2 -239.7 ~204.3

3 3(7) - 2.97 2.66 2.41 2.21 2.04

i

332(7) - -611.7 -570.0 -530.0 -493.2 -456.6

4 3(7) - 3.22 2.39 2.61 2.37 2.16

0

Aule) a -653.7 -613.9 -577.0 -537.5 -494.3

5 ' 3(7) - 3.20 2.34 2.56 2.31 2.11

I

Aule) . -653.9 -607.4 -567.2 -521.3 -473.6

7 3(7) . 3.12 2.73 2.50 2.27 2.07

R

“"2‘T’ - -639.5 -594.9 -553.0 -511.0 -463.1

alkanals .

3 3(7) 2 3.09 2.30 2.55

fl

332(7) - -634.9 -600.0 -564.4,

4 3(7) - 3.47 3.12 2.33 2.56 2.40

*

332(7) - ~700.0 -662.5 -625.6 -535.7 -560.9

5 3(7) - 3.50 3.15 2.34 2.59 2.40

Au;lT) - -705.2 -663.3 -623.4 -592.4 -560.0

7 3(7) . 3.32 2.93 2.70 2.47 2.26

I

332(7) . -675.7 -636.3 -593.4 -561.9 -524.2
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Table 1. cont....

 

 

 

 

 

 

 

 

Temperature 5 10 15 20 25

n-carbon

perfluoroalkanes

6 L(T) I 2.48 - 2.39 2.30 2.20 2.11

Aule) I -501.8 -489.8 -477.9 ~459.3 -442.4

7 L(T) I 2.23 2.16 2.09 . 2.01 1.95

Aule) I -443.3 -433.8 ~423.2 -406.7 -396.3

8 L(T) I 2.15 2.06 2.00 1.92 1.85

*

Aule) I —422.1 -408.0 -396.3 -379.7 -365.8

Temperature 30 40 50

n-carbon

perfluoroalkane

7 L(T) I .l.87 1.76 1.67

e

Ap2(T) I -378.0 -350.4 -327.8

8 L(T) I 1.79 1.67 1.59

a

AM2(T) I -349.4 -318.0 -296.6
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Table I cont.....

 

 

 

 

 

 

 

Temperature 5 10 15 20 25

n-carbon

cycloalkanes

5 L(T) I 6.88 6.49 6.04 5.75 5.33

Ap:(T) - -1066 -1053 -1030 -1019 -991.3

6 L(T) I 5.28 5.00 4.70

Aule) I -952.2 -937.3 -916.8

8 L(T) I 4.26 4.02 3.79

Au:(7i . -329.4 -309.9 -739.7

Temperature 30 40 50

n-carbon

cycloakanes

5 3(7) - 5.04

Ap;(T) a -974.3

 

 

6 3(7) . 4.46 3.93 3.53
‘R

032(7) = -9oo.1 -359.7 -313.5

3 3(7) - 3.53 3.21 2.91

Ap;(T) . -763.3‘ -725.3 -636.2

 

 



O
s
t
w
a
l
d

S
o
l
u
b
i
l
i
t
y
,

L

48

 

  
 

I I I I @ T 1 I I FT T l I I l I I I [ I I fit

: O Alkanes :

_ X Alkanols o 9 3

To Acids ‘j

o

- 0 Cyclo 8 I

: >< Perfluoro :

—+ Aldehydes o -—

I— -l

- 0

_. + ..l

.— D -4

._.- )1 + —-(

.— . D .4

_ X n a 1
4.

— X -(

_ X X x D J»

L— X n .ifl
x

l— .7

.4

l l l L l ' l l J I i L L l I L i L l I l i l i

O 10 20 30 4O 50

Temperature, °C

Figure 8. L(T) for Xe in six representative organic

solvents.
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i.e., the slope of Au;(T) is the negative average entropy

of solvation (AEZ) over the temperature interval, and the

intercept at T=0 (T is the absolute temperature) is the

average enthalpy of solvation (Ahz). One might at first

think that this interpretation ignores the effect of a

strong temperature dependence of the enthalpy having a

strong temperature dependence which could then be seen in

a:

Au2(T), however this is not correct since31

(6H/6T)p" : T(aS/6T)p" . (5.2)

Any temperature dependent contribution from the enthalpy to

the free energy is cancelled by a temperature dependent

contribution from the entropy (provided we take the

derivatives under the proper conditions). This does not

mean that aAh:/8T is meaningless, in fact this quantity is

14 This quantity turnsthe specific heat of solvation, Ac:.

out to be very small, but it may be of interest in more

detailed studies in the future. The tabulated values of

Ah; and 3;: for the 45 solvents studied can be found in

Table II.

5.2 Entropy of Solvation

In viewing Figure 9 one can see the slopes of the

straight line fits are all quite similiar. This means that

the solvation entropies all fall close together. This
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Figure 9. Excess chemical potential, A“2(T) for

six representative organic solvents (Figure 1 of

reference 17).
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Table II. Exggrimental data for excess enthalpy and

entropy for Xe in 45 organic solvents.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   
     
 

 

 

   

alkanes

n-C Afi:(;:t) A§:(%§%x

S ~2582 -5.429

6 -2264 -4.482

7 -2109 -4.121

8 -2109 -4.260

9 -2044 -4.l45

10 -2007 -4.128

11 ~1958 -4.069

12 -1922 ~4.017

13 -1924 -4.104

14 -1879 -4.005

15 -1869 -4.038

16 ~1819 -3.928

17 -1769 -3.820

18 ~1807 ”’ ”.3393—

19' -l762 ~3.875

20 -1727 -3.808

L. -.

cycloalkanes

n-C 36333;) A§;(§§{K‘

5 -2120 -3.77

6 -2065 -3.85

3 -2022 -4.14'  
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Table II. cont .....

 

 

 

 

 

 

 

 

 

 

 

 

 

alkanols

n-C Ah:(§§%) A§:(%§a‘

1 -1330 -4.34

2 -1369 -4.57

3 -1910 -4.57

4 -1943 -4.66

5 -1924 -4.64

6 -1959 -4.77

7 —1922 -4.67

3 -1900 -4.64

9 ‘ -1390 -4.65

10 -1326 -4.45

11 ~1790 -4.41

12 -1720 —4.20

14 -1630 -3.90    
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carboxylic acids

 

 

 

 

 

 

 

46:42:) :<—-
1 -640.2 -3.75

’-2 -1366 -3.60

3 -1702 -3.86

__; -1319 -4.10

5 -1335 -4.35

7 .134, -4.26     
alkanals (aldehydes)

 

 

 

 

     

 

 

 

n-c Alibi-2t) 3%.:

3 -1632 -3.52

4 ~1710 -3.57

5 -1743 -3.67

7 -l742 -3.77

perfluoroalkanes

n-c 9532-3?) 653.53%;

6 —1335 -2.99

7 ~1188 -2.67

8 -1221 -2.87     
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observation is further supported on Table II which indicates

-*

that the values of Asz are all negative and commensurate in

magnitude. The average value of the salvation entropy over

all our solvents is, (A§:)‘v. -4.1t0.5 cal/mol K .

The entropy is associated with the process of taking the

solute from fixed position in the gas and placing it at

fixed position in the solvent. The negative entropy can be

thought of as solvent ordering during this process. We can

conclude from our data that the amount of ordering is more

or less independent of the solvent used. This isn’t too

surprising since our solvents were generally large floppy

molecules compared to the solute. We shall see later that

the salvation entropy is much more dependent on the solute

particle. It is interesting to compare our results to Xe

solubility in water. For the Xe-oHZO system, the

corresponding A52, averaged from 10-40°C is about -18

cal/mol K , calculated from the data of Benson and Xrause.32

This is indicative of a high degree of solvent ordering

upon hydration. This ordering can be associated with the

high polarizability of Xe, hydrogen bonding, dipole-dipole

interactions, and the small relative size of H20 molecules.9

These «combined effects can lead to ice-like structures

9,32
surrounding the solute , and thus decreases the entropy

of the liquid.

5.3 Enthalpy (Energy) of Salvation

Before analyzing the enthalpy a brief reminder, for the
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systems we are looking at the excess enthalpy of salvation

is essentially the same as the excess energy of salvation

since PV is small in a liquid. If we assume the gas phase

is ideal then the salvation enthalpy, Ahz, can be thought of

as the energy required to take the solute from infinity and

put it at a fixed position in the liquid.

One can see from Figure 9 and Table II that for all the

solvents, except HCOOH (formic acid), the salvation process

is enthalpically dominated, i.e. AfileA§:> 1. For these

solvents (excluding HCOOH) we find AhZ/TA§:=1.510.15, also

remarkably constant. The average value of enthalpy for the

same solvents is A52: -1840 :1: 250 cal/mole. Values for

enthalpy are spread more widely than for entropy as one can

see from Figure 9. The alkanes and cycloalkanes tended to

have a large negative enthalpy, while the perfluoroalkanes

and the small polar molecules (such as acetic and formic

acids) have enthalpies of (comparatively’ small. magnitude.

All values of enthalpy were negative. This demonstrates a

net attraction between the solute and the solvent.

Solubility of Xe and other noninteracting gases in water

is entropically dominated. Using the XeIHZO data from

Benson and Krauseaz we find that 36:: -4050 cal/mole,

averaged from 10-40°c, which leads to Afi:/TA§: = 0.75. Even

though the enthalpic contribution is larger in water than in

the organics it is overwhelmed by the entropy caused by

solvent organization. It shouldn’t really be surprising that

the enthalpy in water is high since water has a permanent
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dipole) moment, but the interactions between. other water

molecules are also very strong. This competition is

reflected in the salvation entropy and keeps the solubility

of nonpolar gases in water low. A simple way to think of it

is that water likes the solute, but it likes itself a lot

better and rearganizes to keep as many hydrogen bonds intact

as possible.

5.4 Temperature Dependence of L(T) and Ap;(T)

It is clear from our earlier discussions that the

temperature dependence of the chemical potential is

determined by the entropy. Thus we attribute the positive

slope of the curves of Figure 9 to a negative entropy. We

now ask: What determines the temperature dependence of the

solubility itself, L(T). To illustrate this clearly we

start with the now familiar relation (equation 5.1):

* -* -*

Au2(T) = -RT LniL) = Ah - TAs2 .

Solving for L(T) we have:

  

- 35* 35*

3(7) = exp [ 2 + 2 ) . (5.3)

37 R

Assuming A32 and A3: are essentially constant in the

temperature range of interest we differentiate (5.3) with

repect to temperature:
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-*

3n

LL: 1,—22 . (5.4)

dT R T

33

One can also show:

 

-*

-Ah2 (T-To) )

L(T) = L(To) exp [ . (5.5)

R T T
a

where T is the temperature of interest and To is a chosen

reference temperature. This leads us to the surprising

' result (at least for me it was) that the temperature

dependence of the Ostwald solubility is due to the enthalpy,

while the temperature dependence of the chemical potential

is due to the entropy. We conclude that the experimentally

observed decrease in gas solubility with with increasing

temperature (see Figure 8) is associated with negative

enthalpies of salvation.

5.5 Total Entropy and Enthalpy

Up to this point we have focused on the entropy and

enthalpy associated with the excess chemical potential, 50;.

This is the chemical potential for the fictional process of

placing the solute at fixed postion in the solvent. Its

value in constructing a physical model of salvation has been

discussed earlier. We would now like to look at the total

entropy and enthalpy for the entire (real) salvation

process. Our starting point is the chemical potential for



58

the solute and the equlibrium condition (equations 3.6-3.8):

p9 = kT On (pg A3)
2

u: = kT On (p; A3) + An;

9 _ L

“2"“2 ‘

Taking the temperature derivative at constant pressure and

composition we calculate the total entropy:

tot_ _ _§_ 4 _ 9 _ 3 _ 9
As2 - 8T [(12 112 ); [s2 s2) , (5.6)

where:

8p“

39 = -k on (p9 33) - kT -1— ——2 (5.7)
2 2

pg a'r P

4
6p

3: = -k Ln (9% A3) - kT[ —l— -—E ] +33: - (5.3)

P

For fixed particle number we can write the derivatives of

density as negative derivatives of volume. This allows us to

substitute the isobaric expansivity, a = (1/V)(aV/8T)P into

(5.7) and (5.8). For dilute solutions we assume the

expansivity of the liquid mixture is the same as that of the

pure liquid, at . The gas expansivity, 019 , is easily

derived from the ideal gas equation of state:
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a l / T . (5.9)

Putting all this together, the relationship between the

a

total entropy, As;°t , and the salvation entropy, As2 is

33‘“ = 33* - k can.) - k + kTa2 2 C . (5.10)

We can now find the total enthalpy through equations (2.6)

and (2.13b):

Aug“ = 0 = 311;“ - 733;“ . (5.11)

Therefore:

31);“ = TAs: - 1:73:1(3) - kT + szoi£ , (5.12)

which is equivalent to:

2tot _ * _

Ah.2 - Ah2 + kT kT at . (5.13)

tot

’°’and As2Table III shows Ah2 for the 45 solvents used.
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Enthalpy and entropy of solution.

The second and third columns are the total

entropy and enthalpy of solution.

and fifth columns are the entropy and enthalpy

The fourth

evaluated on the mole-fraction scale.

  

 

 

 

 

 

 

 

 

 

 

 

   

 

      
  

   

 

 

alkanes

ze— e3—
5 —2899 -9.72 —2818 -16.90

6 -2615 -8.77 -2691 -16.37

7 ~2478 -8.31 -2415 -15.36

8 -2493 -8.36 -2429 ~15.34

9 -2440 -8.18 —2378 -15.09

10 -2410 —8.08 -2351 -14.93

11 -2379 —7.98 -2308 -14.74

12 —2348 -7.88 -2278 -14.56

13 -2350 -7.88 -2278 -14.51

14 -2307 -7.74 —2239 -14.30

15 ~2301 —7.72 —2233 -14.23

16 -2253 -7.76 -2188 -l4.00

17 -2206 -7.40 -2154 -13.68

18 -2246 —7.54 -2191 -13.91

‘cycloalkanes

9:633 93:23.3 A5323) 3%..)
5 -2478 ~8.31 —2385 -15.68

6 —2437 ~8.17 -2263 -15.34

8 -2440 -8.18 ~24l7 -1S.84
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Table III cont...

  
 

 

 

 

 

 

 

 

 

 

 

     
 

 

 

 

 

 

 

 

 

alkanols

“72%) A‘s';<:.:t.n A6:<:::> Aé:<:.::.(

1 -2263 -7.59 -2250 -18.82

2 —2268 -7.61 —2257 —17.87

3 -2325 -7.80 -2300 -17.39

4 ~2372 -7.96 -2345 ~17.l3

5 -2361 -7.92 -2331 -l6.79

6 -2397 —8.04 -2364 -l6.64

7 -2359 -7.91 -2317 -16.26

8 -2342 -7.86 -2304 -16.05

9 -2343 -7.86 -2310 -15.90

10 -2272 -7.62 -2234 -15.50

11 -2239 -7.51 -2210 -15.35

carboxylic acids

n-C Arlyfi) A§;(;—:{-K) Ah:(;::) ":(Egt—K

1 -1052 -3.53 —1051 -17.99

2 -1780 -S.97 —l780 -l7.02

3 -2101 -7.05 -2088 -16.67

4 ~2223 -7.46 -2204 -16.49

5 -2301 —7.72 -2287 -16.48

7 -2276 -7.63 -2239 -15.84    
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Table III cont...

 

  
   

 

 

   

 

 

       
 

  

 

 

 

 

alkanals (aldehydes)

-t cal. -!. col. -0 cat -0 col.

n-C Ahz(;3T) A52(mouc) Ah2(;3T)‘Asz(moLK)

3 -1966 -6.60 -l946 -l6.13

4 -2071 -6.95 -2039 —15.83

5 -2115 -7.09 -2076 -15.61

7 -2152 -7.22 “2137 -15.38

perfluoroalkanes

-t. cal. -t cal. -0 col -0 col.

n-C Ah2(;:T) 2(moLK) Ah2(;3T)‘Asz(moLK)

6 -l632 -5.48 -1606 -l3.5

7 -1515 -5.08 -l487 -l3.0

8 -1565 -5.25 -1536 -13.1   
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35,36(we
Expansivity data was obtained from standard sources

measured the expansivity far the perfluoroalkanes and

cyclopentane using our temperature dependent density data,

p(T) ). Although the salvation enthalpy, Ah: is not

accessible to direct measurement, the total salvation

enthaply, Ahgu, is. This is the heat of solution at

constant pressure. The heat of solution has been measured

for various gases in water using calarimetric techniques,

and general agreement is found with solubility derived

34
values. No such measurements have been made to date on

our system.

5.6 Male Fraction Scale

The standard approach to solubility is to calculate

chemical potential on the mole fraction scale Au; (see

discussion in section 3.6) :

o-—

The corresponding enthalpy (A52) and entropy (A3:) are

obtained by writing An; = Ah: - TAEZ and proceeding in a

manner analogous to what we have used. The tabulated

enthalpies and entropies can be found in Table III. Note

that the enthalpy an the sale fraction scale (A52) is very

close to the total enthalpy of salvation (Ah;°t). This fact

has strengthened confidence in the mole fraction scale, but

also note the entr0py (AE2) is not the same as the total
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-*

°‘) or the entropy of salvation (Asz). In factentropy (As;

the mole fraction entropy has no straightforward

interpretation (and,in my opinion, is often misused).



6. Theoretical Analysis

6.1 The Excess Chemical Potential, Au;.

Now that we have experimentally determined the excess

chemical potential, also referred to as the free energy of

salvation, our task is to predict it from as close to first

principles as possible. This goal will constitute the bulk

of this chapter.

The chemical potential is derived from the partition

function. In order to keep things clear we will first work

out the case for a single component, N particle, atomic

liquid in the canonical ensemble (all results are

generalizable to the grand .canonical ensemble). The

classical partition function is:

Q(V.T) a —L—” I 6i" I d3" apt-BIG". i5")! . (6.1)

N! h

where l’is the hamiltonian of the system, ha' (h is Planck’s

constant) accounts for quantum corrections to the

differential volume elements in phase space, N! corrects for

the indistinguishability of the particles, 8 is the

Boltzmann factor (um, and (if-",3” is a paint in the an
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dimensional phase space that describes the system.16 An

important simplification that arises in the classical

appoximation is the separation of potential and kinetic

terms to characterize the liquid state.35 This allows us to

write the Hamiltonian as:

2(3'.B" = K(B”) + U(B") . (6.2)

where K(p') is the kinetic energy of the classical degrees

I

of freedom, K(B')=£ (pf/2m), and 0(3') is the potential

is!

energy. We can now write the partition function as:

 
-

1 an an __ an

Q(V.T) - [m h" Jdr Idp expl B K(p )1] x

-l; I d?" expl-B U(f")] . (6.3)

V .

In writing equation 6.3 we have used the fact that [drul V"

= 1 (note that we now have two integrals over d3"). The

first bracketed term 'is the partition function for an N

particle ideal gas, Qua-1° The second term is referred to

as the configurational partition function , Qcon . 16

Evaluation of the ideal partition function is

straightforward:36

A-au

v” , (6.4) 

ideal- N1
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A denotes the de Broglie wavelength, A=(2uBh2/m)”2. The

Helmholtz free energy, A(N,V,T), is:

A = -kT {n.Q(V,T) . (6.5)

For our partition function this is equivalent to:

A=-kT{mQ -kTOnQ =A +AA , (6.6)
ides co1 n ideal

is the free energy for an ideal gas and AA: is

I

the excess free energy. The corresponding chemical

where A

ideal

potentials are found by differentiating with respect to N,

it therefore becomes obvious that the chemical potential can

be expressed as:

+Ap , (6.7)

where u” = -kT 01(pzA3). To derive an expression for the

eel

excess chemical potential we use identity (3.15):

Au*= AA*(N+1,v,T) - AA*(N,v,T)

. (6.8) 

v econmwm.) )
= kT 6n [

Q (N+1.V.T)
can

The ratio Qc"(N+1,V,T)/Qcon(N,V,T) is given by:



68

Iexpl-flul.1(;"1)l d;u+1

= q . . (6.9)

Qc°n(N.V.T) Iexpt-BUlh'H dr"

Q (N+1,V,T)

can
 

If the potential energy is pair decomposable we may write

the potential energy of the N+1 particle system as:

+N+1 _ 9N

U".1(r ) - Uu(r ) + a0 , (6.10)

where mo is the binding energy of the (N+1)'t particle with

all the others in configuration 3'. Equation (6.9) becomes:

1 exvl-Bool expl-BU'(?')J d?'*‘

= . (6.11)

Qc°n(N.V.T) jexpl-BU'(3')1 a?”

Q (N+1.V.T)
can

 

In a system with translational invariance, the point 1"”

may be taken as the origin 'for the remaining N position

vectors. 'This allows us to integrate over’ 3"‘, ‘which

yields a factor of V. Equation (6.11) reduces to:

Q nmfl’v’”
v I ”pl-3%] eXPI-BU.(I-")l

di’J'

Qc°n(N,V,T) Iexp[-BU.(r')] d?"

 
 

= V <exp(-pqo)> , (6.12)

where the angular brackets denote a canonical ensemble

average over the N particle system. Substitution of (6.12)
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in (6.8) gives:

Au*= -kT 6n <exp(-p¢o)> . (6.13)

For a two component system ‘we can write the partition

function for a simple structureless solute (2) dissolved in

a fluid (1)

Q = Qid..l Qiczleal v-(N‘HNZ) x

Id?"‘j6§'zexp[-p( 01(3"‘) + uigf",?"2) + uzgf'zil. (6.14)

For dilute solutions the contribution from solute-solute

interactions, 022 is negligible.14 Following the same steps

as before one can show that the free energy for adding the

(Nz+1)th particle is:

Au; = - kT 6n<exp(-pso)> , (6.15)

where B0 is the binding energy of the added salute to a

fixed configuration of the solute-solvent system, i.e:

N291 +N2+i - N2 4N2

012 (r- ) — 012(r ) + Bo , (6.16)

and the ensemble average is taken over all coordinates of

the (N1+N2) particles.

Now we can appreciate an important simplification that

occurs by using an inert structurelesss solute like Xe as a



70

probe. If we used a more complicated molecule with internal

degrees of freedom (such as vibrational and rotational) it

is conceivable that the potential energy would be a function

of the solute conformation (shape), we would have to perform

a double ensemble average: one over all spatial

configurations of the (N1+N2) molecules and a second over

all possible configurations of the solute molecule itself,

i.e:

An; = -kT on < <exp(-BB°(P2))> > (6.17)
P i

2

P2 represents the internal coordinates of the solute

L4 A clear example where this would be necessarymolecule.

is the salvation of a polymer in water. By using an inert

gas probe we can focus on free energy changes due to the

liquid solvent and not have to worry about contributions

from the solute.

6.2 Distribution Functions

An alternative approach to describing the liquid state

that has proven to be quite powerful is the distribution

function method. I shall present a brief overview of the

technique, a more complete discussion is given in reference

36. As in the last section I shall work in the limit of an

atomic liquid to keep the development simple,, but the

results are readily generalizable.

The phase space probability distribution function in a



71

classical system is defined as:

expl-Bz(?'.§')l/ Idf'jdfi'eXPt-Bl(3'.3'). (6.18)

The probabilty of a state (3",3') is simply f(?",3")d§'d§".

We have shown earlier that the Hamiltonian factors into

kinetic and potential terms. Therefore we can write the

total phase space distribution function as a momentum

probability distribution, M3"). and a configurational

probability distribution, P(r'). The latter will be

important in this discussion. The configurational

probability distribution tells the probability for observing

the system at configuration space point '1'", it is defined

as:

“-11-, = expt-BUG'H / I dr'expl-BUH’J'H . (6.19)

Note the denominator is equal to (V'x Qcon).

We) can. determine distribution functions for' a small

number' of ‘particles by integrating over (all coordinates

except those pertaining to the particles of interest. The

joint probability distribution for. finding a labelled

particle 1 at 31 and a labelled particle 2 at 32 is:

(ZIN) 4 4 _ a 9 e an

F (r1,r2) .. I dra I dr‘....I dr. P(r ) . (6.20)

Since we cannot label identical particles, a more meaningful
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quantity is the reduced probability distribution function,

(2")(ifi

1

p ,fz). It is defined as the probabilty distribution

for finding any pair of particles at fiand $2:

-) _ _ (21):)» ..
1,rz) - N(N 1) I’ (r‘,r2) . (6.21)

The factor of N(N-1) refers to the fact that there are N

ways of choosing the first particle and (N-l) ways of

choosing the second. Similiarly, the n-particle distribution

function is defined as:

I d?"'" expl-BU(§')]

 

p(n/N)(;n)= N!

(N-n)!

. (6.22)

I d?” expl-BU(?')]

For an homogeneous fluid, the single particle distribution

function is simply the bulk density:

p(1")(;1)= p = N/ v . (6.23)

In the special case of an ideal gas, U(f'")=0 and QC”. 1.

Thus the n-particle distribution function becomes:

N!

p‘"""('§n) = p"m '= p"(1 + O(n/N)) . (6.24)

For example the pair distribution function for an ideal gas

is:
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3 ,3 ) = pz(l - l/N ) a p2 , (6.25)
(ZIN)(

1 2

p

where the last equality depends on N being large; which it

is for any macroscopic system. We now introduce yet another

.9

distribution function , g(f1,r2):

g(f .? ) = p p . (6.26)

which is the fractional deviation of the two particle

distribution from the ideal gas limit. It is essentially a

measure of how much the system deviates from complete

randomness.35 If the system is isotropic as well as

homogeneous, the pair distribution function “3132) is a

function only of the separation between the two particles,

r12: Ifi- 32| ; it is then referred to as the radial

distribution function and simply written as g(r).16 From

our definition of g(r) one may write the following:'

ps(r) = p(p(z’"’(0.i") / p 2) = p ‘2’") p . (6.27)

Since we have already seen 9”“)(31) = p, equation (6.27)

can be interpreted as follows; pg(r) is equivalent to the

conditional probability density that a particle will be

found at 1" given that another is at the origin. This is

based on the well known theorem of statistics: If A and B

are random 'variables *with. joint probability' distribution
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P(AnB), then the conditional probability distribution,

P(AIB), that A occurs if B also occurs 1837:

P(A|B) = P(AnB)/ P(B) , (6.28)

where P(B) is the probability distribution for B. Our

definition of pg(r) can also be stated as follows; pg(r)

gives the average density of particles a distance r from a

particle at the origin. The average number of particles in

volume element dV at distance r is thus:

dN(r) = pg(r)dV . (6.29)

Figure 10 shows g(r) for an atomic solid, liquid and gas.

The radial distribution function plays an important role

in the physics of liquids. There are two main reasons for

this. First, the radial distribution function is directly

measurable by scattering experiments (although it can be

difficult to interpret results for complex molecular
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liquids). Secondly, if the particles interact through

pairwise additive forces, thermodynamic properties of the

fluid can be written in terms of integrals over g(r).

The two thermodynamic functions we shall require in our

analysis are the excess internal energy of salvation, unit,

and the excess free energy of salvation, Ad‘. I shall now

present brief explanations of how these quantities are

determined from g(r). Detailed derivations can be found in

reference 36.

The internal energy of an atomic fluid can be written

I
!
)

u

N
H
»

C
l

NkT + (6.30)

where the first term is the mean kinetic energy (same as for

an ideal gas), and the second term is the mean potential

energy. Using our definition of pg(r) we can easily find 6.

Consider a tagged particle at the origin. If we assume the

intermolecular interactions, u(r), are pairwise additive we

can express the potential energy between the tagged particle

and all other particles at distances between r and r+dr as:

d0 = u(r)dN(r) = u(r)pg(r)dV = u(r)pg(r)4sr2dr (6.31)

The total potential energy of the liquid is found by

integrating over r, and multiplying by N/Z. The factor of N

arises since any particle could be the tagged particle, and
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the factor of two compensates for double counting of pair

interactions. The average potential energy per particle is

therefore:

C
l

l
l

2|
..
. m

= 211p! u(r)g(r)r2dr . (6.31)

o

For the case of a dilute solution (we use the conventional

subscript notation in which 1 refers to the solvent and 2

refers to the salute), the excess internal energy (excluding

kinetic ener8Y) of the solute is:

z

duinr' u12(r12)p1g12(r12)4ur12 driz ’ (6'32)

In Eq. (6.32) the function g12(r12) is the solvent-solute

pair correlation function and p3g12(r) is the number density

of solvent molecules a distance r from the tagged solute.

The excess internal energy for this solute molecule is found

by integrating over r12

0.

uint- 4np1Io g12(r)u12(r)r2dr . (6.33)

This is sometimes called the excess internal energy of

salvation. Note that for a pure liquid, for which ughz}

goes into “hid“, the excess salvation energy is twice the

average excess energy per particle , 3. This is because the

average energy in equation (6.31) is the potential energy to

assemble. the whole liquid, while the salvation energy in



78

equation (6.33) is the potential energy to bring one extra

particle into a pre-assembled system.

In order to calculate the excess free energy of

salvation we must introduce the idea, due to Onsager38 and

Kirkwood,39 of a coupling parameter 5 which can vary from

{=0 to 5:1. We imagine the following process: we would like

to introduce a new particle into the system by turning on

its interaction with the other particles in the system.

When §=0 the new particle does not interact with the system

at all, and when §=1 we have the full intermolecular

interaction u12(r12). This can be expressed as:

u12(§,r12) = Eutzhtz) . (6.34)

To find the excess chemical potential we use equation (6.8):

Ap* = AA*(N+1,V,T) - AA*(N,V,T) .

Since the Helmholtz free energy is related to work in

thermodynamics ‘we can conclude that the excess chemical

potential is the isothermal, reversible work that has to be

done on the system against intermolecular forces in order to

add one more molecule to the system under conditions of

constant volume and temperature.40 In other words Au* is

the work done on the system in going from the initial state

with N molecules coupled with each other and 1 molecule not
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coupled (5:0) to a final state with N+1 molecules fully

coupled (5:1). Following the same steps as before we choose

the new molecule to be at the origin. For an arbitrary

intermediate value of 5 we can write the radial distribution

function about the central molecule as g(r,§). The

potential energy of interaction of the central molecule is

§u(r). This means that u(r)d§ is the work that is done on

the system by this one interaction if E is increased by d5.

The work done on the system when 5 increases by d5, due to

all the molecules between r and r+dr is:

du(r,§) = u(r)d§ pg(r,§) 4nr2dr (6.33)

The total work, Ap*, is the integral of (6.33) over r and

over 5 from 5:0 to 5:1:

* 1 a 2

Au = 4np I I u(r)g(r,§)r drd§ . (6.34)

a a

For a two component system the salvation free energy is:

_ * i a 2

Apz = 4uptj I u12(r)g12(r,§)r drdE . (6.35)

o o

A generalized form of this statement is:

1

Au; = (New: . (6.36)
0
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where U(E) is the spartially averaged coupling energy of the

salute to the rest of the system with the interaction

potential reduced from its full strength by a factor of 5.41

6.3 The Van der Waals Picture of Liquids

One of the fundamental problems in developing a theory

of liquids is that there is no idealized model comparable to

the ideal gas or the harmonic solid; both of which can be

treated exactly.31’42 These provide a reference system from

which one can base perturbation expansions or at least get

an intuitive feel for the physical situation, in order to

develop more sophisticated theories.

The van der Waals picture of liquids has helped a great

deal to overcome this problem. The basic idea is to look at

the different roles of strong short-ranged repulsive

intermolecular forces and longer-ranged attractive forces in

determining the structure and dynamics of a dense fluid.

Though the concept was first utilized by van der Waals in

his treatment of nonideal gases, there have been many other

contributors to our current understanding.43 The renaissance

of this idea was spurred by the discovery from computer

simulations that a system of infinitely hard spheres

(essentially billiard balls, albeit tiny ones) undergoes a

first order fluid-solid phase transition that can be related

to freezing and melting of real materials.44’45

The van der Waals picture asserts that the relative

arrangements and motions of molecules in a liquid are
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determined ‘primarily by packing effects produced by the

short-ranged repulsive interactions. Attractive forces,

since they vary relatively slowly, play a minor role in

structure and to first order can be treated as a mean field

which exerts no intermolecular force but provides the

cohesive energy that holds the system together at fixed

density and temperature.

As an example we shall briefly look at a Lennard-Jones

fluid, which is defined by the intermolecular potential,

u(r) (see Figure 11):

u(r) = 4.:[w/r)12 - (a/r)6] , (6.37)

the collision diameter, a, is the separation of two

particles where u(r)=0, and e is the depth of the potential

well at the minimum in u(r). The properties of, the

Lennard-Jones .fluid are well known from computer

simulations,46 and it serves as an excellent model of atomic

liquids like argon.47 The repulsive (l/r)12 term arises

from electron cloud overlap and Pauli exclusion, and the

attractive (1/r)6 term accounts for induced dipole - induced

dipole interactions. To examine the role of repulsive and
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Figure 11. Lennard-Jones potential, U(r). Lover

diagram shows repulisive portion of U(r) as

determined in WCA theory.
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attractive interactions in determining liquid structure

tests were done to compare g(r), the radial distribution

function for the full potential u(r), to go(r), the radial

distribution function that one would obtain from only the

replusive forces (at the same temperature and density). The

potential used to determine go(r) is (Figure 11):

uo(r) = u(r) + e rsro

u°(r) = 0 r>ro . (6.38)

In Eq.(6.38) ro is the point at which the minimum of u(r)

21/6

occurs; i.e. r = a. Figure 12 shows the strong

a

correlation between g(r) and g°(r) as determined from

computer simulations and analytic theory.48

To take this experiment one step further it was found

that there exists a hard sphere system for which the radial

distribution function, gh.(r), is closely related to the

actual distribution function, g(r) (Figure 12).49 The hard

sphere fluid is characterized by the sphere diameter, d,

which appears in the hard sphere potential (Figure 11):

ii I a rsd

u = 0 r>d . (6.39)

The effective hard sphere diameter is chosen to most closely

reproduce the structural features of the real fluid.

The fact that the attractive forces play a minor role in
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structure was rationalized by Verlet.50 In order to

understand his argument a few new points must be introduced.

The local particle density is defined as:

M?) = 2M '1’- - ii) , (6.40)

where 8(x-xi) is the Kronecker delta function. The average

density at point f is simply <p(?)>, which for a homogeneous

system is the bulk density, p. The Fourier transform of

(6.40) is:

pk: I exp(-ik-f)p(f)df

= S: exp(-k-f'i) , (6-41)

is!

with an autocorrelation function defined as:

I
sat) = T‘ pup > . (6.42)

The function S(k) is called the static structure factor.

For a homogeneous fluid it can be related to the Fourier

transform of g(f) 35:

SHE) = 1 + p I exp(-ik-'f') 3mg): . (6.43)

S(k) can be experimentally determined from scattering
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experiments on the liquid. One can then perform an inverse

Fourier tranform to determine g(f').16

One can show that the limit of S(k) for k40 is 35:

- _ 0

3(0) - kaxT - xT/ xT . (6.44)

where xr is the isothermal compressibility of the liquid:

- 1 23
IT " p [arr] 9 (6.45)

N r

and x: is the isothermal compressibility for an ideal gas:

x2 = 1/ka . (6.46)

If we apply an external field to the fluid with

potential (M3), one can show that this leads to a Fourier

transformed density response, 69* 35:

6pk = -S(R)¢(§)p/k7 , (6.47)

where (HE) is the Fourier transform of Ni"). Equation

(6.47) is a form of the more general fluctuation-dissipation

theorem.

Verlet’s arguement' can now be summarized. Equation

(6.47) shows that the structure factor determines the

density response of a system due to a weak, external field.

If the external potential is associated with the potential
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of a test particle at the origin, the long-range part of

that potential gives rise to a long wavelength response in

density. In the long wavelength limit (k90), the response

is proportional to 8(0) by equation (6.47). By equation

(6.44) we see that 8(0) is proportional to the

compressibility» ‘Eor typical liquids, the compressibility

is very small ( xT/ x: m 0.02 near the triple point).

Therefore, the density change caused by a long wavelength

perturbation is not significant. This phenomenon is

referred to as ’repulsive-force screening’.51 At lower

densities, such as in the critical region, the

compressibility (and hence 8(0)) becomes large . ‘This can

lead to large density fluctuations. In this regime

attractive forces become very important and the van der

Waals model is no longer valid.

6.4 Determination of Au; , ’Hard’ and ’Saft’ Contributions

The success of the van der Waals model in predicting

structure has lead to the development of thermodynamic

perturbation theories. The idea is to split the excess

chemical potential into two parts: a reference term due to

the ’hard’ repulsive interactions, and a perturbation term

due to the ’soft’ attractive interactions:

+ An . (6.48)

:7:

M2 = A“ softhard

To treat the ’soft’ part of the potential we perform energy
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averages using the structural information obtained from the

’hard’ part of the potential (this is analogous to quantum

mechanical perturbation theory where we compute the

expectation value of the energy by employing the wave

function of the unperturbed hamiltonian). In this section we

shall investigate the validity of equation (6.48).

As we saw in the previous section the intermolecular

potential can be written as:

u(r) = uh(r) + u.(r) , (6.49)

where the subscripts h and 8 refer to the ’hard’ and ’soft’

parts of the potential. This simple division assumes the

solute-solvent pair potential is a function of separation r

only. The excess chemical potential is:

Au; = -kan<exp(-BBO)> = -kT6n<exp(-BBh - 88.)) , (6.50)

where Bh and B. are the hard and soft contributions to the

binding energy of the salute to all the solvent molecules in

a specific configuration. If Bh and B. were independent

random variables one could then write:

Au; = -kTOn[<exp(-BBh)><exp(-BB’)>]

= -kT!m<exP("BBh)> - kan<exp(-BB.)> . (6.51)

s

and therefore Auz could be split into two factors. The
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point is that Bh and B. are generally not independent random

variables so equation (6.51) is invalid.

A proper interpretation can be obtained by writing the

average in equation (6.50) as 14:

<exp(-BBh - 3B.)>

I d?" exp[-pU(?F) -th] exp(-BB.)

 

I d?” expl-BU(;") ]

I dr'exp[-BU(;') -th] I df'expl-BU(?') -pah] exp(-BB.)

 

I df'exp[-BU(3') ] I df'exp[-BU(f') — BBh]

= <exp(-BBh)> <exp(-BB.)>h . (6.52)

where the subscript h on the second average refers to a

conditional average. This means the second average is taken

assuming that a hard solute particle already exists in the

liquid. The excess chemical potential is then:

Au; = -kT6n<exp(-8Bh)> -kT.€n.<exp(-BB.>h

= Au: 4» Apt/h . (6.53)

The first term, Au:, is the free energy to add a single,

hard solute molecule at a fixed position. The second term

but,“ is the conditional free energy to couple the soft part

of the solute-solvent interaction given that the hard part

of the potential has already been coupled. This is perhaps



90

better understood using the coupling parameter approach. As

we saw earlier the excess chemical potential can be found by

utilizing a coupling parameter to turn on the potential and

essentially grow the particle in the liquid. Since this

process is carried out reversibly it does not matter what

path we take to couple the particle. One possible way is to

turn on the hard part of the potential first and then turn

on the soft part, this is exactly what we have done in

equation (6.53). (As you may have guessed one could just as

well perform the calculation in the opposite order and

couple the attractive forces first and then calculate the.

conditional averages for the repulsive potential.)

The idea of breaking up the salvation process has been

utilized by many researchers in developing simple models to

predict solubility. The salvation process is normally

modeled by the following physical process: (1) One makes in

the solvent a cavity just large enough to fit a solute

molecule. The free energy associated with this process is

called gc". For this part of the process the solute is

considered to be a hard sphere. (2) One now allows the

solvent and salute to interact with the soft potential; the

52.53,
associated free energy is gint

Au; = g + g . (6.54)

From our previous discussion it is obvious that the cavity

*

free energy is equivalent to A"): and the interaction free
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*

energy is equivalent to Autnv

Equation (6.54) provides the basis for most successful

analytic theories to date on solubility (the term successful

implies both accuracy and flexibility). We shall now adopt

a model, due to Reiss et al.54 and Pierroti,55 in order to

analyze our data. The primary assumption made by these

authors is: Since there is no analytic expression for gun,

in a real liquid one exploits the van der Waals model and

calculates gen for an effective hard sphere system whose

radii are chosen to best reproduce features of the pure

solute and solvent. Although our solute (Xe) qualifies as

spherical, the organic solvents certainly are not. One must

regard this appoximation as, in some sense, averaging over

spatial configurations of the solvent.

e

If we combine our experimental expression for Auz with

equation (6.54) we have:

Au; = mum. = g + g . (6.54a)

Equation (6.54a) can be interpreted in thermodynamic as

well as in statistical mechanical terms. If one calls v2

the partial molar volume of solute atoms in the solvent, v:

the molar volume of solute gas, and mg the volume fraction

of solution occupied by solute, then we have L = (adv: /v2).

Substituting for L in equation (6.54a) gives:

g + g + 127mg - n'ronz/v‘z') = 0 . (6.54b)
cev int
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Equation (6.54b) has the following thermodynamic

interpretation 3: ‘The free energy for transferring at

equilibrium one mole of solute gas into the solution is the

zero sum of four terms. The first two terms are for the

physical process already described. The third term may be

interpreted as the free energy change associated with the

entropy of mixing -R6n¢é bentropy increase, free energy

decrease) in a real solution. Finally the fourth term is

the free energy required for isothermal and reversible

compression of the solute from its volume in the gas to itsv

volume in solution (entropy decrease, free energy increase).

The idea that entropy of mixing depends on volume fraction

in real solutions is supported by the work of

Flory,56Huggins,57 and Longuet-Higgins.58



93

6.5 The Scaled Particle Theory for Hard Spheres

We now must calculate the free energy for introducing a

hard sphere solute with diameter a2 into a hard sphere fluid

with solvent diameter a1. At present there exists no exact

theory even for this simple system , although it can be

solved numericallysg. However the scaled particle theory

(SPT) has proven to be a very good approximation. Details

of this theory are quite lengthy (see refs 60,61) so only a

brief outline will be given below.

The basic idea of the SPT is to calculate the reversible

work to produce a cavity at fixed position in a fluid of

hard spheres. A cavity is defined as a sphere of radius, r,

from which the centers of all fluid particles are excluded.

It is apparent from Figure 13 that a cavity of radius, r, in

a fluid of spheres of diameter, a , is produced by the

1

introduction of a hard spherical solute of diameter, a2,

such that:

r =-—1———£ . (6055)

The equivalence of these two processes allows us to conclude

that the free energy to create a cavity in the fluid is the

same as that to introduce an appropriately chosen hard

sphere solute.
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Figure 13. Definition of a cavity in the SPT.
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We can see from Figure 13 that for r=a1/2 the diameter

of the solute molecule goes to zero. Thus, a cavity with r

= a1/2 corresponds to a point solute. If the cavity is

smaller than a1/2 only one solvent center can occupy it at

any time. The corresponding probability of finding the

center of a molecule in the cavity is:

p (r) = 4 urap r s a /2 (6 56)
l 3 ’ 1 '

where g) is the number density concentration of solvent

molecules. The probability that the cavity is empty is

therefore:

_ _ _‘ _ 4 3

The reversible work theorem is a general theorem of

statistical mechanics which states that the probability of

observing a fluctuation in a system is equal to the

reversible work required to produce the fluctuation divided

by kT.62 Thus the probability of finding in the solvent a

cavity of radius r that is empty is:

p°(r) = exp(-W(r)/kT) . (6.58)

Since we imagine a process of empyting the cavity at

constant N,V,T, we may identify W(r) may with the change in

Helmholtz free energy for the process and write:
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polr) = exp(-AA(r)/kT) - (6.59)

Substituting (6.57) in (6.59) we find:

AA(r) = -kan( 1 - g- ur3p) . r 5 81/2 (6.60)

In the limit of a macroscopic cavity the free energy is just

the thermodynamic work of compression:

AA(r) = PV = P g nr3 , r>>a1 (6.61)

where P is the macroscopic pressure in the liquid. We now

have two exact results for the cavity free energy. In order

to bridge the gap between these two limits we introduce a

new function, p°(r+dr), the probability that a cavity of

radius r+dr is found empty. This may be written as:

poir+drl = po(r)po(dr/r) . (6.62)

where p°(r) was defined earlier and po(dr/r) is the

conditional probability that a spherical shell of width dr

will be empty given that the sphere of radius r already is

empty.

If we expand p°(r+dr) to first order in dr, we obtain:



97

dpo(r)

 po(r+dr) = po(r) + dr . (6.63)

dr

Equating (6.62) with (6.63) gives:

 

dpo(r)

Poirlpo(dr/r) = po(r) + dr

dr

dén Po(r)

Po(dr/r) - 1 = ‘———————— dr . (6.65)

dr

We now introduce the auxiliary function, G(r), defined by:

p4xrzG(r)dr = 1 - po(dr/r) . (6.66)

Substituting into (6.65) we have:

dén p°(r) 2

————————— = -p4nr G(r) , (6-67)

dr

which upon integration, yields:

l'

on p°(r) - 0n po(r=0) = -pI41rlzG(l)dl . (6.68)

0

Since po(0) = 1, equation (6.68) reduces to:

r 2
0n p°(r) = -pI4ul G(l)dl , (6.69)

O
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or, using equation (6.59):

r 2
AA(r) = kTpI4xl cum). . (6.70)

0

The work required to create a cavity of radius, r, is a

scaling process, in that we build up the cavity from l=0 to

l=r. This is the same as building up a hard sphere particle

at a fixed» position in the fluid, hence the name Scaled

Particle Theory.

60
To find AA(r) Reiss gt, :5; used statistical

considerations to suggest a simple analytic form for G(r):

G(r) = A + (B/r) + (C/rz) . (6.71)

The coefficients A, B, C, are determined by using the

limiting forms of G(r):

G(r) = (1 - gnrap)‘1 r s a1/2

G(r) = P/kTp r>>a1 , (6.72)

along with the assumption that AA(r) and its first two

radial derivatives are continuous at aI/Z. The result is:

_ 2 a
AA(r) - K0 + Kir + Kzr + Kar ,

in which the coefficients are:
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K. = kT{ -6n(1-y) + 3 [y/(1-y)]2} - (nPaia/G)

x1 = -(kT/a,){(6y/(1—y)1 + 13[y/(1-y)12} + «9.12

K2 = (kT/612)([12y/(1-y)1 + 13[y,(1_y,]2, - ZuPa1

_ 4
K3 -§7¢P e (6.73)

In Eq. (6.73), y=ua13p/6, is called the packing fraction of

the hard sphere solvent (it is the fraction of space

occupied by the fluid). The salvation free energy, AA(r),

is for a constant T,V,N system, however this is the same as

the Gibbs free energy in a T,P,N system provided the average

volume (V) in the latter is equal to the exact volume V in

the former system.14 We can therefore equate AA(r) with the

cavity energy, gc.v, defined in the previous section.

Figure 14 shows gen/kT as a function of the reduced cavity

radius R’= ant/a2 for a hard sphere solvent with packing

fraction y = 0.5. The open circles are those described by

equation (6.73) while the closed circles are described by

the exact relation (6.60). The cavity free energy increases

monotonically as a function of cavity radius and is always

positive.
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To summarize, the free energy required to create a

cavity large enough to accomodate a hard sphere of diameter

a2 in a hard sphere fluid with particle diameter a1 and

number density p1 is, by rearranging terms in Eq. (6.73):

- - 2 -

Sc“,- kT{[6y/(1 y)][2(r12/al) (rm/an]

+[18y2/(1-y)2][(r12/61)2 - (rm/a!) + 1/4 1 - mum}

I . (6.74)

O
’
H
H

+uPa3[% (rm/a1)3 - 2(r12/a1) + (rizlail -

with r12: (a1+a2)/2 , and y=naaap1/6. ‘The total excess

chemical potential is defined by equation (6.54):

A"; = gcsv+ gint ° (6°54)

An aside for experts: The SPT also leads to an equation

of state for the hard sphere fluid which is exact up to the

third virial coefficient, which agrees over the entire range

of fluid density with the equations of state obtained

through machine computation, and which is identical to the

equation of state obtained by exact solution of the

Percus-Yevick equation.63’35

6.6 Application to Real Liquids

The SPT is extended to the study of real liquids by: (a)

using the actual liquid density of the solvent and (b) using
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a simple model and the heat of vaporization to determine the

optimal hard sphere diameter a1 of the solvent. This model

essentially examines the salvation process for the solvent

in its own liquid. The excess chemical potential per male

for a single component gas-liquid system is given by

equation (3.5):

*

= -RT ,

where 06 and p9 are the molar densities of the liquid and

gas respectively. Assuming the gas phase is ideal, we have:

*

An = -RT 6n ( at RT / P9 ) , (6.75)

where P9 is the vapor pressure of the liquid. We now apply

our model to this system and equate the excess chemical

potential to that of cavity formation plus attractive

interaction:

*

Au=~RTaOn(szT/P9)=g +3 . (6.76)
cav int

It follows from equation (6.76) that:

Ah = h 4-)) As

csv int' cav int

(6.77)H m + W

-*

The excess molar enthalpy. Ah , can be related to the molar

heat of vaporization, AHv as follows:
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-AH ( 1 - Pv / RT) = AE*+ RT - RTza
v 6 L

= h + h - RT + RTzd s -AH (6.78)
t C. vcav in

where the heat of vaporization is defined as, AHV= (H "-

s

H ), a is the coefficient of thermal expansion for the
liquid it

pure liquid, and VI. is the molar volume of the liquid. We

assume ,as usual, that Pvt/RT << 1, so we can neglect it

(see appendix # for a detailed derivation of 6.78).

We shall now look at the interaction term. The molar

energy of vaporization of a normal liquid is approximately

given by:36’64

Q

AU;m -2nNApI u(r)g(r)r2dr , (6.79)

0

where u(r) is the pairwise additive intermolecular potential

, g(r) is the radial distribution function (see Eq.(6.31) ),

and NA is Avogadro’s number. On the other hand, the molar

energy of interaction can be derived from equation (6.33):

Q

“int: 4uprIau(r)g(r)r2dr . (6.80)

Hence, it follows that for such a liquid:

AU = -u / 2 . (6.81)
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Now we invoke the thermodynamic relation:

H = E + Pv = K + U + pv , (6.82)

where E is the total internal energy, and K is the kinetic

energy. We may then reexpress the heat of vaporization as:

AH = H - “C = (Kq- Kl) + (Ug- Ut) + P(Vq- Vt)

a RT + AUv . (6.83)

We have assumed that V§>>Y£, K7“ KL’ and the gas is ideal.

Plugging (6.81) in (6.83) we find:

I1 = 2RT - ZAH . (6.84)

int v

Once again we use the fact that, in a liquid, the PV term is

negligible, hence u‘n{= h .

Finally, by introducing equation (6.84) into (6.78) we

get the following relation for the standard molar enthalpy

of vaporization:

AH =h +6:t RT2+RT . (6.85)
V CIV

This is a general equation which should be satisfied by any

theory which predicts cavity terms. Now we can use this to

determine the effective hard sphere diameter in the SPT.

The enthalpy of cavity formation is found using standard



105

thermodynamics: i.e. he": -T2(a(gc"/T)/8T)P 55:

hm: a, 672 (y/z) [(6/2) + (say/22) + 11 . (6.86)

where z=(1-y), y is the packing fraction, and “L is the

thermal expansivity of the liquid. We have also assumed that

(1/v)(av/6T) = -(l/y)(ay/8T). Putting this result in (6.85)

we find, finally:

2

AB = RT + a, RT2[ (115%) . (6.87)

' (l-y)

The SPT is related to real fluids by using the heat of

vaporization, density, and thermal expansivity to find an

effective hard sphere diameter for the fluid. It is by no

means a first principles theory since it uses the

experimentally measured values for these variables (there is

no theory to date that can predict the density of even

atomic liquids let alone molecular liquids). However, the

SPT is consistent with our current goal of being able to

predict solubility by'knowing only bulk properties of the

solute and solvent. Other techniques exist to determine the

effective hard sphere diameter of the solvent, a‘, but they

require a detailed knowledge of the intermolecular potential

and lots of computer simulation (or very simpLe molecular

43,49
structure). This option was not presently available to

us.
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6.7 Evaluation of the Cavity Term:

Table IV lists the heat of vaporization, number density,

and thermal expansivity for each of the solvents studied.

Since our experiments were generally done in a range of

5-50°C we have chosen an intermediate temperature of 25.0°C

to evaluate a‘. In theory, a1 should be temperature

independent. In order to evaluate the number density we

require the mass density29’30’65 and the molecular weight,

i.e.; p'(mol/cm3) = pu(g/cm3)/M.W.(g/mol).

Table V and Figure 15 show the calculatated values of a1

for the solvents at 25.0°C, we have not included nonadecane,

eicosane, dodecanol, and tetradecanol because they are

normally solids at this temperature. The values of ai were

calculated from solving equation (6.87) for y and using the

known density to solve for a1 by the relation;

a1=(6y/xp1)“3. ’The points on Figure 15 vary monotonically

in each homologous series with number of carbons but they,

bear no simple relation to actual chain lenghts. In

alkanes, for example, the C-C bond length is about 1.5A. Of

the hydrocarbon solvents we studied, the more polar

molecules tend to have a larger effective radius than their

nonpolar analogues. One can obtain values of a1 other ways

besides the one we use here. For example, one can use gas

viscosity,66’67 or second virial coefficient data.68’69

However, for all but a few of the short alkanes (and for

those) molecules the agreement with our 'values of a1 is
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good55) the results are limited by lack of available data.

In order to evaluate go" we use Eq. (6.74). For the

cavity radius we have rm= (a1+ a2)/ 2. For Xe we took the

hard core molecular diameter to be a2= 3.973A; this is the

potential parameter a (or 21161.0) in the Lennard-Jones

(6-12) potential for Xe.73

The calculated values of go" are in Table V and Figure

16a. All the values of go" are positive and range from 2.5

to 9.4 kcal/mole. This shows that for a hard sphere fluid

it always takes a positive amount of work to make a cavity.

The fact that go" is positive means that its contribution

will always tend to lower solubility (L=e-Au/"), therefore,

systems with low solubility are dominated by repulsive

interactions (as intuitively expected). In contrast, the

experimental quantities Au; for these solvents, with the

exception of formic acid, are negative and in the range from

about -0.4 to -l.0 kcal/mole. Since, by equation (6.54),

Au; is just the sum of gen and 81:". these results imply

that g1M must be negative and its magnitude must be a few

to several kcal/mole. This isn’t surpring since one would



Table IV. Heat of Vaporization,
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density, and thermal expansivity for

organic solvents at 25.0°C.

alkanes

n-C AHV(::f:) pntxtogéclattso-gc)

5 6.39 5.19 1.558

6 7.54 4.5788 1.368

7 8.74 4.0852 1.266

8 9.92 3.6851 1.183

9 11.10 3.3535 1.114

10 12.28 3.0740 1.071

11 13.46 2.8399 0.9704

I—12 14.64 2.6378 0.9417

13 15.83 2.4613 0.9432

14 17.01 2.3083 0.9300

15 18.20 2.1706 0.9097

16 19.22 2.0524 0.8986

17 20.6 1.9409 0.879

18 21.7 '1.8434 0.8661

cycloalkanes

n-C AHV(::::) pntxiogécIat(10-3C)

5 6.85 6.1644 1.3298

6 7.90 5.5400 1.2475

8 10.36 4.4702 0.98805
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Table IV. cont .....

alkanols

n-C AHV(::?:) pn(x10§écIa£<io_3C>

1 8.94 14.79 1.189

2 10.18 10.267 1.093

3 11.51 8.0178 1.006

4 12.50 6.5509 0.9265

5 -13.61 5.5443 0.8804

6 15.00 4.8128 0.8720

7 16.20 4.2446 0.8828

8 17.00 3.8043 0.8491

9 18.60 3.4444 0.7875

10 19.82 3.1453 0.8283

11 21.00 2.8988 0.8105

carboxylic acids

n-C AHV(::::) pn<x1036c4atrio—3c>

1 11.03 15.891 1.0249

2 12.49 10.475 1.0114

3 13.7 8.0341 1.0974

4 15.20 6.5163 1.0693

5 16.56 5.5117 0.99941

7 18.1 4.2244 0.91035     
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Table IV. cont .....

alkanals (aldehydes)

 

 

 

 

 

      

 

 

 

n-C AH (kcal) p (xiogécIa (io-3c>

v mole n 3

3 7.09 8.2083 1.4619

4 8.05 6.6543 1.3084

5 9.17 5.6298 1.2474

7 11.40 4.2907 1.0333

perfluoroalkanes

n-C AH (kcal) p (xioiéCIG (iO-3C)
v mole n 5

6 7.606 2.9844 1.6698

7 8.69 2.6978 1.5047

 

     
8 9.77 2.4216 1.4119
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Table V. SPT calculations for organic

solvents. The second column is the effective

hard sphere radius. The third column is

the packing fraction. TEEI£ourth is the

 

 
 

 

 

 

 

 

 

 

 

 

 

 

      
 

 

 

 

cavity free energy for Xe.

alkanes

n-C a‘(A) y gégei/mou

5 5.476 0.44614 3052

I 6- 5.877 0.48656 I 3396

7 6.226 0.51611 3645

8 6.543 0.54055 3861

9 6.838 0.56143 4052

10 7.108- 0.57791 4191

11 7.386 0.59925 4463

12 7.623 0.61176 4577

13 7.836 0.62006 4613

14 8.044 0.62914 4682

15 8.251 0.63838 4765

16 8.436 0.64516 4805

17 8.635 0.65423 4907

18 8.813 0.66075 4958

cycloalkanes

n-C a1(A) y gcéeal/mol)

5 5.286 0.47681 3766

6 5.582 0.50450 4019

8 6.233 0.56678 4775
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Table V. cont....

alkanols

n-C a1(A) y gcé$°"m°"

1 4.082 0.52668 7366

2 4.686 0.55305 6854

3 5.156 0.57554 6703

4 5.580 0.59588 6667

5 5.948 0.61083 6595

6 6.274 0.62238 6508

7 6.567 0.62929 6327

8 6.843 0.63822 6274

9 7.134 0.65467 6521

10 7.358 0.65612 6279

11 7.591 0.66382 6289

carboxylic acids

n-C a‘(A) y gcésaL/moi)

1 4.092 0.57015 9429

2 4.746 0.58623 8143

3 5.189 0.58790 7131

4 5.610 0.60244 6872

5 5.986 0.61891 6854

7 6.606 0.63774 6601     
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Table V. cont....

alkanals (aldehydes)

 

 

 

 

     
 

 

 

 

n-C a1(A) y gcéeal/mol>

3 4.780 .46945 4210

4 5.239 .50109 4337

5 5.623 .52417 4414

7 .6.342 .57316 4821

perfluoroalkanes

n-C a‘(A) y gcésai/moi>

6 6.662 0.46209 2520

7 7.045 0.49389 2740

8 7.417 0.51733 2876     
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polarizability for noble gases in Tetradecane,
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are the SPT predicted values for a hard sphere

solute of 2.58A.
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-24
Polarizability a (10 cma/molecule)

Figure 19. Excess chemical potential 1; solute

polarizability for noble gases in polar solvents

methanol, and ethanol. Filled in points along

ordinate are the SPT predicted values for a hard

sphere solute of 2.58A.
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intuitively expect the attractive interaction to lower the

free energy of solvation and increase the solubility.

Figure 16b shows the experimental values of Au; for Xe in

the alkanes; it is encouraging to note that the SPT has much

of the same systematic behavior.

The physical significance of gc.v is supported by

extrapolation of measured solubilities of inert gases in

55’66’67 In this technique the excess chemicalsolvents.

potential is plotted versus solute polarizability, up, in a

single solvent at fixed temperature. It has been shown that

extrapolation of this data to zero polarizabilty is

equivalent to finding the free energy required to introduce

a hard sphere of diameter 2.58A into the real solvent.55’72

The hard core diameter is determined by extrapolating a plot

of solute diameter versus polarizabilty. Such a curve is

shown in Figure 17 for the inert gases He through. Xe.

Figure 18 shows a plot of -RTlml. versus up for the inert

gases in n-hexane. Extrapolating to ap=0 is equivalent to

writing:

* .

Auz (ap= 0, a2- 2.58A,T) - gc.v(a1,az-2.58A,91,T) . (6.88)

This value can then be compared to the SPT prediction of

equation (6.74) for a solute of diameter 2.5&A. As Figure

18 shows, the predicted gcw agrees to within 2% of the

extrapolated value. Pierotti has used this test on a wide
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variety of non-polar solvents with good results.55 ‘We

performed this test for some of our solvents in order to see

if the SPT was applicable. Even for alkanes as long as

n-Cunao the calculated gc" agrees with the extrapolated

value to within 5x ( we couldn’t test most of our solvents

in this manner due to lack of experimental data). The case

is different for the polar solvents. Figures 19a and 19b

show the extrapolated and SPT results for methanol and

ethanol. Clearly for these solvents there is a discrepancy.

This can be traced back to our derivation of the effective

hard sphere diameter from the solvent heat of vaporization.

We recall that Eq. (6.79):

0

AUva -2nNApI'u(r)g(r)r3dr , (6.79)

o .

holds for normal liquids in which there are only two -body

radial forces. For polar liquids one must account for

many-body correlations. This renders equation (6.79), and

therefore equation (6.87):

2

AB = RT + a:z RT2[ 13131-3?) , (6.87)

' (l-y)

invalid. We can also see that for methanol and ethanol the

descrepancy between the two results decreases as the solvent

chain length increases. Although we can’t test it at this

time; we are confident that for the longer acids, alkanals,
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and alkanals the SPT works much better. It should also be

mentioned that for the highly polar solvents the effective

hard sphere diameter evaluated from solubility data together

with the SPT agrees very well with other experiments; this

involves using the SPT relation for gc‘v to evaluate a1 from

the extrapolated result.72’73 In other words we use a plot

like Figure 19 to find the free energy to dissolve a hard

sphere of 2.58A. The SPT is then applied to this result to

give the effective radius of the solvent a1. This has

proven to be a powerful method for estimating the molecular

diameter of a solvent. Such a technique has even been

applied successfully to water, which is a very complex

11gu1d.7°’73

From the calculated values of gc"(T), we obtain the

enthalpy of cavity formation by the Gibbs-Helmholtz

equation:

h = -'r"’[a(gc"/ T)/ 8T] . (6.89)
OIV P

In this calculation .we again neglect the temperature

54,55
dependence of a‘. Using our previous expression for

g (T), we find:

IVC

36y

(1-y)

 

he": 31.2% Téi [13; [A] + lel + 1] .

where we have used the notation,
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[A] = [ 2(r12/ a1)2 - (r,2/ a1) 1 .and

[B] = [ (r12/ a1)2 - (r12/ a!) + 1/4 1 . (6.90)

This expression reduces to equation (6.86) in the limit

a =a (i.e. r /a =1). Figure 20a shows h (25°C) versus
1 2 12 1 cav

for our solvents. For comparison Figure 20b shows

carbon

-1:

the experimental excess enthalpy of salvation Ahz for these

solvents.

One may obtain the entropies of cavity formation,

s (25°C), from g and h by the thermodynamic relation
ClV CIV 08V

s = (h ' 8 )/ T. The 3 values thus obtained are
CIV CIV CIV 0"

shown on Figure 21a. However, they appear to be unreliable.

They do not have the systematic dependence with series that

one might expect, nor do they correlate with our

experimental results (Figure 21b). In order to check a

possible cause for this we have plotted in Figures 22-24,

respectively, the heats of vaporization (ARV), number

density (pa), and thermal expansivity (5.2) versus carbon

number for our solvents. Of these three input parameters in

the SPT only the thermal expansivity seems to vary roughly

in some of the homologous series. Perhaps better
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Table VI. Cavity enthalpy and entropy.
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alkanes

5 3251 0.67

6 3482 0.29

7 3710 0.22

8 3900 0.13

9 4067 0.05

10 4224 0.11

11 4332 -0.44

12 4467 -0.37

13 4613 -0.002

14 4739 0.19

15 4850 0.28

16 4929 0.41

17 5067 0.54

18 5148 0.64

cycloalkanes

n-C cav(§£§) scav(S£%kl

5 3725 -0.14

6 3980 -0.13

8 4398 -1.26
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Table VI cont....

 

 

 

 

 

 

 

 

 

 

 

alkanols

n-c ...(fi -

l 7760 1.32

2 7027 0.58

3 6675 -0.10

4 6440 -0.76

5 6291 -1.02

6 6336 -0.58

7 .6335 0.03

8 6190 -0.28

9 6289 -0.78

10 6366 0.29

11 6385 0.32     
carboxylic acids

 

 

 

 

 

 

-C g, 3.9}. .

n cav mol. cav mall:

I 9730 1.01

2 8538 1.33

3 8046 3.07

4 7820 3.18

5 7620 2.57

7 7017 1.39     
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Table VI cont.....

alkanals (aldehydes)

 

 

 

 

     

 

 

 

-c 21'.) 32'. ‘

n cav mot cav moLK‘

3 4563 1.18

4 4510 0.58

5 4611 0.66

7 4722 -0.33

perfluoroalkanes

_C 2}. L“. .
n cav moi. cav mot]:J

6 2893 1.25

7 3046 1.03

8 3166 0.97
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measurements of these are required. In any case it appears

as though the son’s are approximately centered on zero,

whereas the total excess entropy, As: , is about -4 cal/mol

it. We conclude that the SPT alone does not adequatly

predict the salvation entropies. This is in sharp contrast

to previous workers, who used the mole fraction scale to

analyze their results.55’67’7o’71’74

A surprising result of these SPT calculations is that

the cavity formation process is almost completely enthalpic

(energetic). Table VI clearly shows that the entropic term

is less than 10% of the enthalpic term (this is even more

enthalpic than our experimental data; recall Ah:/TA§:81.8).

This is in strong contrast to a real hard sphere fluid which

is completely controlled by entropic considerations. The

key difference between these two situations can be seen in

equation (6.90):

36y

(l-y)

 hm: RTza‘c 1%; [If—y [A] + 2[13] + 1] . - (6.90)

If the fluid were truly hard spheres then the thermal

expansivity and hence the cavity enthalpy would be zero. By

putting in the real solvent behavior we are accounting for

the full interaction between solvent molecules. At first

this may seem improper, but if we write out explicitly the

expression for the excess chemical potential due to

a

repulsive interactions Aph from equations (6.52) and (6.53)
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we find:

A“: = _kT m jd¥"exp[-BU(?~") -thl .

h fd?"exp[-BU(;')]

It is clear that in evaluating go" we should include the

full solvent-solvent interaction. It is only the

salute-solvent interaction which is broken up. Whether the

SPT properly accounts for this by using the real expansivity

requires further testing.

To complete our present discussion Figure 25 shows the

calculated values of gc“(T) for six typical solvents, one

from each homologous series. These results were obtained by

applying equations (6.74) and (6.87) at each temperature for

which the calculation is made; i.e., a1(T) values were

obtained from equation (6.87) for each temperature. The

AH"p(T) data for these calculations were obtained from

Watson’s relation and critical temperature (Tc) data 33:

0.38

AHV(T2) = AHV(T‘) [(1- T2/ Tc) / (1- T1/ T9] (6.91)

The calculated temperature dependence of gc"(T) on Figure

25 is in the opposite direction from the observed values on

Figure 9. However the slopes of the lines on Figure 25 are

not the entropies of cavity formation.
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CGV

in 6 representative organic solvents.
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6.8 The Interaction Term

After the cavity is formed in the hard sphere solvent,

one introduces a solute molecule into the cavity and lets it

interact with the solvent molecules; the free energy

associated with this step is glut. The natural next step is

to calculate g1M for Xe in our solvents.

This proves to be very difficult even for our simplest

solvents. Since zinc is a Gibbs free energy one may write

it in terms of enthalpic and entropic contributions as:

glut: hint- Tslnt m uint - Tsint ' (6°92)

This means that the two principal quantities which determine

giM are the potential energy of interaction, ulnt’ and the

entropy of interaction, sint. Both of these are difficult

to calculate.

Solvent reordering, caused by the solute-solvent

interaction, is probably the origin of most of the entropy

of interaction and one therefore expects that sun} 0.54

Neff and McQuarrie75 include a term in their expression for

gun which may account for this entropy; it gives the

contribution to the free energy (due to changes in

solvent-solvent structure when a solute is introduced. This

term [equation (27) of Ref. 74] depends on a derivative of

the solvent-solvent distribution function, g11(r), which is

hard to calculate.

55,71
neglect sint and make theOther workers
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approximation that gins uint. I believe that sun cannot

be neglected, but rather may be commensurate with the

entropy of salvation As:. This contention is supported by

consideration of the entropy of interaction in pure solvents

for which it can sometimes be estimated. For example, Reiss

at al.54 have calculated the heat of vaporization for liquid

Ar at its boiling point using the SPT and thermodynamics.

From their results [equations (4.3)-(4.11) and Table II of

Ref. 54] one finds sin£= -4.6 cal/mol K.

We have made a similiar calculation for other pure

liquids and find sing: -10 cal/mol K for CCl‘ at 25°C, and

sun: -12 cal/mol K for n--CGHH at 25°C. The entropy of

interaction is found by combining equations (2.5), (6.54),

(6.84), and (6.92):

*

A" = -RTm(pAC/pq) = gcav + uint - Tsint

= g + 2(RT - AH ) - Ts
cav v int

sint= [RT&n(pz/ag) + gcav+ 2(RT - AHV)] / T . (6.93)

These sint’s must properly be compared to the salvation

entropies for the pure solvent, A§*,which one finds as

follows: for the pure solvent we plot the excess chemical

potential, Ana“, versus T along the gas-liquid coexistence

line. The temperature derivative is then written as:

(Inf/aw); (emf/aw), + (adu*/8P)T(dP/GT)O . (6.94)
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where the subscript c means the derivative along the

coexistence line. We then utilize the thermodynamic

identity; vi: Ufifi/BP)T , and equation (6.94) reduces to:

a s *

(dAu /dT)c= -As + Av (dP/dT)c . (6.95)

In Eq. (6.95) Av* is the molar volume of salvation, which is

approximately equal to the molar volume of the pure

liquid.16 Values we obtained for the corresponding entropy

defined by equation (6.95) are As*(CCl‘) = -9.1 cal/mol K,

and As*(n-CSH“) = -10.6 cal/mol K., both at 25°C. For

these two solvents we calculated scfl’s of about 2 cal/mol

K. Thus for pure solvents it appears that s1M makes an

important contribution to the total entropy.

The interaction energy for a single solute molecule with

the solvent may be written as:

...a . 9

uint- pLI g12(r) u12(r)dr , . (6.96)

where the terms are as defined previously. Evaluation of

equation (6.96) is difficult for nonspherical solvents. An

approximate method which assumes spherical symmetry has been

55’71 In. this technique aused by’ Pierotti and. others.

Lennard-Jones interaction potential u12(r) is assumed for

u12(;) and the solvent distribution is taken to be uniform,

i.e., 812:1’ outside the cavity radius r12. The integration

is over the solute volume, i.e., from r12 to infinity.This
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is equivalent to an effective Lennard Jones potential with a

hard sphere cuttoff at 012: (01+az)/2, as illustrated in

Figure 26 (this is a more reasonable cutoff than ro because

the actual potential is much steeper for r<o12 and is thus a

better approximation to a hard sphere. Such a perturbation

scheme was first suggested by Barker and Hendersen76).

Lennard-Jones potential parameters are usually chosen to fit

either solubility data or gas phase properties of the pure

solvent and pure solute. However the potentials associated

with the solvent are not consistent with the properties of

bulk solvent liquids.

I shall now outline a model which is more consistent

with our present goal of estimating solubility from

knowledge of bulk properties of the solute and solvent.

This model is presently designed for non-polar solvents, and

will be used to analyze the Xeealkane system. The procedure

is as follows:

1) We treat the molecules effectively as spheres with a

radial Lennard-Jones interaction between molecular centers

and a hard sphere cutoff.(For polar solvents we would have

to include dipole terms in the interaction).

2) The solvent structure is determined solely by the

hard sphere packing (van der Waals picture). Therefore we
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Figure 26. Lennard-Jones potential with hard

sphere cutoff.
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distribution functions for hard sphere fluid.

Packing fraction = 0.5.
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write equation (6.96) as:

m

_ he 2

“int- 4np1Ir g12(r) u12(r) r dr , (6.97)

where: 3:; is 'the radial distribution for a hard sphere

reference system, ro is the cavity radius (a1+ az)/2.

3) Use the SPT to determine the effective hard core

diameter of the solvent.

4) Use known Lennard-Jones potential parameters for the

solute.77’78’79

5) Apply standard mixing rules for the solute-solvent

interaction:35

_ 12_ s

“12- 4€12[ (Caz/r) (aiz/r) )

_ 1/2

512- (£152)

_ _ SPT
012- (01+ 02)/ 2 - (a1 + a2)/ 2 . (6.98)

6) To determine the Lennard-Jones energy parameter for

the solvent, 61, we apply this model to the pure solvent and

use equation (6.33):

o

- _ = ho 2

uint- ZRT ZAHv 4np1Ir 311(r) u11(r) r dr

0

u11(r) = 4‘1[ (at/rliz- (oi/r)6]

_ as”
o 1-- a . (6.99)
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The primary difference between this model and previous

models is that we use the actual hard sphere distribution

function (Pierotti assumed. 812: l), and 'we evaluate the

Lennard-Jones energy parameter for the solvent, 61. from

heat of vaporization data (as opposed to using solubility

data to determine £1).

The hard sphere distribution function for a l-component

system of hard spheres is well known from computer

simulations and is uniquely determined by the density and

diameter of the fluid molecules (when applying this to real

fluids temperature only enters indirectly in that the

density is temprature dependent). We shall employ the

Verlet and Weiss 81expression for g(r). This is a

semi-empirical modification of the Percus-Yevick analytic

solution for g(r) which reproduces numerical results very

80’81 All of their results are in terms of theaccurately.

dimensionless variable x defined by; x=(r/a). Figure 27

shows the Verlet-Weiss pair distribution functions for a

hard sphere fluid with a packing fraction of 0.5. Near x=1

there is significant local structure, i.e., gv'(l)m5.8.

Since the potential drops of rapidly (r's) it is very

important to properly account for nearest neighbor effects.

This is why the assumption of a uniform fluid distribution

outside the cavity will probably greatly underestimate the

interaction energy. It is also clear from Figure 27 that

the fluid correlations fall off rapidly and by the time one

reaches x=3 the fluid is essentially randomized (no long
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range order). We shall therefore adopt the following

convention for g(x), i.e.:

g(x) = 0 x<1

g(x) = g(x) lsx<3
verlet-weiss

g(x) = 1 x23 . (6.100)

The interaction energy for the pure solvent can then be

written as:

3

um=16n,p,af [Ix-1832:) [(1/x)‘°-(1/x)‘] dx

0

+I [(1/x)‘°-(1/x)‘)dx] . (6.101)

x-3

Evaluating the second integral we find:

uint(slksnes)=16fl€1p18: [ (INTI) - (1/81) ] , (6.102)

where INTl is the first bracketed term in (6.101). A

computer program was written to evaluate INTl (listing in

82 We
appendix: ##) using the standard. trapazoidal rule.

generally found good convergence in the integral by using

500 or more steps. Table VII lists the values of INTI for

the alkanes. We used the bulk number densities and SPT

packing fractions from Tables IV and V. Having evaluated

the integral we can apply equations (6.99) and (6.102) to
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find the Lennard-Jones energy parameter, 81’ for the pure

solvent:

These are tabulated in column 4 of Table VII; column 4 lists

the values of 61 one would obtain by assuming g = 1. We can

now use these values to determine the interaction energy for

Xeealkanes. The Lennard Jones potential parameters for Xe

are 77; eZ/k= 221°K, and az=a2=3.973A. To evaluate the

solute-solvent pair correlation function, g:;, we use the

single fluid approximation35 which states that for a

multicomponent system 3 scales with a , i.e.:

~ H” H”

8pv(r/auu) = 3x (r/ax) , (6.104)

for all u,v. For our case this reduces to the statement:

gnu”) = g(x) . (6.105)

where xa2= r/at2 . Therefore we may write equation (6.97)
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Table VII. Parameters to evaluate interaction

energy. Second column is the hard sphere cutoff.

Third column is the energy integral using the

Verlet-Weiss distribution function. Fourth

column is the resulting Lennard-Jones energy

parameter for the pure organic solvent.

 

 

 

 

 

 

 

 

 

 

 

 

alkanes

n-C atéA) INTl 1/k

5 4.7245 0.2731 477

6 4.9250 0.2722 526

7 5.0995 0.2703 585

8 5.2580 0.2677 648

9 5.4055 0.2648 708

10 5.6795 0.2620 773

11 5.6795 0.2576 834

12 5.7980 0.2546 921

13 5.9045 0.2524 973

14 6.0085 0.2498 1044

15 6.1120 0.2470 1115

16 6.2045 0.2448 1177      
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TableasVIII. Predicted enthalpyCof solvation

for aXe in n-alkanes at 25. .

 

 

 

 

 

 

 

 

 

 

 

 

alkanes

n-C int hcav hpred

5 -5069 3251 -1818

6 -5300 3482 -1818

7 -5503 3710 -1793

8 -5654 3900 -1754

9 -5800 4067 -1733

10 -5919 4224 ~1695

11 -6023 4332 -1691

12 -6185 4467 -1718

13 -6214 4613 -1601

14 -6296 4739 -1557

15 ~6373 4850 -1523

16 -6422 4929 -1493 _    
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nint(Xe->alkan00)=161¢€12p18:2 [(INTI) - (1/81) ],

where the bracketed terms are exactly the same as for the

. _ 1/2 _ . .
pure fluid, £12— (5182) , and 812' (a1+ a2)/2 . Combining

this result with equation (6.102) and (6.99) we find:

In

u_ t(Xe-’alkaneo) = (Ci/€2)°'5(a12/a1)3[2RT - ZAHV]. (6.106)

Table VIII shows the values of‘umt for Xe in the alkanes.

6.9 Comparison with Experimental Data

We may now combine our calculated values for he and

IV

lunt to find the total enthalpy (energy) of solvation.

Figure 28 shows a plot of the combined theoretical term, h.=

lunv+ u‘n‘, and the experimentally determined enthalpy, A52.

versus number of carbons, for Xe in alkanes ranging from

hexane (Cs) t0“ hexadecane (016). The theoretical and

experimental data both have the same systematic tendency;

i.e. the enthalpy becomes less negative for the longer chain

alkanes. According to our model this means that the solvent

size dependence, a1, in the cavity term slightly dominates

over the solvent energy dependence, evin the interaction

term. The general agreement between the two sets of data is

within 20%. This points out one of the biggest problems in

calculations of this sort, viz;to describe the total

salvation process we usually calculate
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Figure 28. Calculated and experimental excess

enthalpies of salvation for Xe in alkanes.
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two separate processes which each have characteristic

energies that are opposite in sign and of larger magnitude

than their sum. This puts an extra burden of accuracy in

the calculation of each term. For example the discrepancy

between h. and Ah: for decane is about 16% of the

experimental value which in turn is only 7% of he" or 5% of

uh“. To claim that a model as simple as ours could do

better than this would be an exaggeration. For completeness

Figure 28 also includes the theoretical predictions that one

would obtain by using a random fluid distribution, g11= g =

12

1, throughout the entire calculation of 11 Agreement

int

obtained in this case is not as good as that obtained with

the hard sphere distribution of Verlet and Weiss.81

We expect that equation (6.106) should not just be

applicable to Xe, but should hold for any non-polar solute

with a well defined diameter, a2. In order to test this

hypothesis we have looked at solubility data for the inert

gases He, Ne, Ar, and Kr in several alkanes. Solubility

data was obtained from reference (24). The original data

were quoted on the mole fraction scale. In order to convert

data to the number density (Ostwald solubilty) scale we

inverted equation (3.20):

L(T) = RT / [Pv1(T)[(1/x2(T)) - 11] , (6.107)

where v1 is the molar volume of the solvent and P is the

pressure of the gas (all measurements were at 1 atm). Once
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the temperature dependent solubilities were calculated, we

could easily find the excess chemical potential, enthalpy,

and entropy using standard thermodynamics . Table IX gives

4: -* -*

the values of Apz, Ahz’ and Asz for the inert gases in the

solvents hexane, octane, nonane, decane, dodecane, and

tetradecane. Figures 29a and bshow the predicted and

experimental enthalpies verses 6.01““ for the inert gases

in octane and tetradecane, respectively. The solute

77,78,79
parameters are shown below.

 

 

solute ezlk (oK) az= 82(A)

He 6703_-___—276§——__-

Ne 34.9 2.78

Ar 119.3 3.448

Kr 172.7 3.59 

Table X lists all the relevant theoretical quantities that

we can calculate for the alkanes; i.e. g , ii , s , and

GOV CIV GOV

uint'

Once again our simple theory seems to capture some-of

the general systematics but is not sufficiently accurate to

make reliable predictions. A particular flaw can be seen in

the predicted values of enthalpy for the less polarizable

solutes like Ar, Ne, and He. Experimental data indicates

that for these solutes the enthalpy increases with solvent

size, however the theory predicts just the opposite. This
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Table IX. Excess chemical potential, enthalpy

and entropy for He, Ne, Ar, and Kr in the alkanes,

 

 

 

 

 

 

 

     
 

 

 

 

 

 

 

including: hexane, octane, nonane, dodecane,and

tetradecane.

Helium (20 C)

n-C A633) Ah:(§%t-) :(;:{K)

6 1801 2271 1.602

8 1975 2312 1.150

9 2048 2715 2.274

10 2102 2260 0.537

12 2214 2153 -0.2076

14 2279 1840 -1.496

Neon (20 C)

M 'Mz‘i‘ii" Abbi-3:) Ashfia

6 1587. 1699 0.383

8 1732 2046 1.070

9 1816 1902 0.295

10 1857 1941 0.288

12 2014 2096 0.283

14 2048 1838 -0.715     
 



151

Table IX. cont .....

Argon (20 C)

 

 

 

 

 

 

n-c 41.3%) Ah:(§§-{-) 432133;“)

6 436 -297 -2.501

a 594 301 -o.999

9 631 43.9 -2.002

10 676 53.4 -2.123

12 756 276 -1.636

14 811 79.0 —2.495     
 

 

Krypton (20 C)

 

 

 

 

 

 

 

n-C Au: (:3) A1133) As: (fix)

6 -168 -787 -2.11

a -49.3 -816 -2.62

9 2.86 -716 -2.46

10 44.5 -767 -2.77

12 110 -594 -2.40

14 146 -850 -3.41      
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Table X. 9““. cav, sec“. and “1m for He

Ne, Ar, and Kr in the alkanes, including

pentane through hexadecane

Helium (25 C)

M 9...<.%E> ...fi) ...—.9... 2%)

5 1766 1744 -0.07 -529

6 1965 1857 -0.36 -564

7 2109 . 1971 -0.47 -595

m8 -w-~;;55-« 2065 -0.57 -620

9 2345 2147 -0.66 -644

10 2428 2227 -0.67 -664

11 2580 2273 -1.03 -682

12 2647 2340 -1.03 -706

13 2672 2417 -0.78 -714

14 2715 2482 -0.78 -729

15 2765 2538 -0.76 -742

16 2791 2579 -0.71 -752       
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Table X. cont .....

Neon (25 C)

5 1891 1888 -0.01 -1344

6 2103 2011 -0.31 -1430

7 2258 2136 -0.41 -1506

8 2392 2239 -0.51 -1566

9 2510 2330 -0.61 -1622

10 2598 2416 -0.61 -1671

11 2762 2469 -0.98 -1716

12 2834 2542 -0.98 -1774

13 2860 2625 -0.79 -1794

14 2905 2696 -0.70 -1828

15 2958- 2757 -0.67 -1861

16 2986 2802 -0.62 -1885      
 

\‘
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Table X. cont...

Argon (25 C)

"-0 9... SEE-D ..Jfi’ ... 373%; ...(EZi’

5 2504 2603 0.33 -3137

6 2766 2762 -1.05 -3304

7 2990 2961 -0.10 -3450

6 ' 3167 3110 -0.19 —3563

9 3323 3240 -0.28 -3670

10 3439 3363 -0.25 -3760

11 3659 3445 -0.72 -3840

12 3753 3550 -0.66 -3955

13 3784 3666 -o.40 -3963

14 3842 3766 ~0.26 ~4046

15 3911 3853 -0.19 -4105

16 3945 3915 -0.10 -4144     
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Table X. cont ......

Krypton (25 C)

n-C gcav 51%) cos/(2%) scav 76:31:) 1751(3)

5 2646 2771 0.42 -3958

6 2945. 2964 0.06 -4160

7 3161 3154 -0.02 -4337

8 3347 3314 -0.11 -4472

9 3512 3454 -0.20 -4601

10 3634 3586 -0.16 -4708

11 3868 3674 -0.65 -4803

12 3967 3787 -0.60 -4943

13 4000 3911 -0.30 -4976

14 4060 4017 —0.14 -5050

15 4133 4111 -0.07 -5121

16 - 4£;;—~—-4177 -0.03 -5167     
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seems to indicate that for these salutes we are

overemphasizing the attractive contribution to h . A

I

possible expanation for this lies in our use of the single

fluid approximation for g i.e. g11(r/a) = g12(r/a12). It

12‘

has been shown that this approximation gets worse as the

solute and solvent become more disparate in size. The most

prominent effect is that the main peak in the correlation

function tends to become smaller as the ratio of salute to

solvent size decreases.83 An interesting feature in Figure

29 is that the enthalpy increases as the solute becomes

less polarizable, and crosses over to a positive value at

argon. If we recall equation (5.4):

A)?"
9.1: = 1,..32 , (5.4)

dT a T

we see that for the less polarizable gases the Ostwald

solubility actually increases with temperature. This hs

apposite to our usual experience (when you heat a liquid you

drive it towards the vapor phase!), but is easily understood

from our model, i.e. as the solute becomes less polarizable

it behaves more like a hard sphere, and the SPT shows that

it always takes a positive energy to make a cavity. This

positive energy then leads to our observed temperature

dependence via (5.4).

This seems about as far as we can take a simple model

for explaining gas solubility. The usual recourse at this

point is to introduce solubility parameters that are
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characteristic of the solute-solvent combination. 33 ’ 84

Although this leads to very accuarte predictions over a wide

range of temperature and solute concentration we shall leave

it to the chemical engineers.



7. Empirical Analysis and Predictions

Although analytic techniques give only limited

understanding of these solubility data, as discussed in the

previous section, ’empirical techniques may be applied

usefully to them as we demonstrate now.

The idea underlying our empirical analysis is to

construct the thermodynamic quantities Aug, Ahz, and A3; for

each solvent as the sum of contributions from the functional

groups which make up the solvent molecules. For our 45

solvents we shall attempt to decompose Au; into Xe

interactions with the functional groups: CHz (in linear

molecules), C83, 08, C008, CEO, and CH2 (in cyclomolecules).

Figure 30 is a plot of the excess chemical for 40

solvents verses number of C32 groups at 25°C. At first

glance this does not look like a promising candidate for

separation into functional group contributions. One might

hope that the addition of a Cflz to any molecule might bring

about the same change in excess chemical potential in each

homologous series, but this is clearly not the case since

the slopes for each series are so different. In fact for

the polar molecules Au; turns upward as we approach zero 082

groups, while for the nonpolar alkanes and cycloalkanes the

chemical potential becomes more negative (this holds for the

159
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perfluoroalkanes as well). In order to get some insight

into what is happening we must look at our expression for

*

Apz; i.e. equation (6.35):

2a ’ °°
Aug = I; Io4npigaz(r,l)u12(r)r dr d1 . (6.35)

As one increases the number of CH2 groups there are several

parts of Eq. (6.35) that vary; the solvent number density ,

p1 (as illustrated on Table IV and Figure 23), the pair

correlation function 812’ and the intermolecular potential

u12(r). There is a great deal of evidence from computer

simulations that the pair potential can be broken into group

contributions. If we assume this is true and that the

correlation function changes slowly, we may be able to

appropriately scale our data.

Figure 31 is a plot of the data, for 37 solvents,.fram

which one may obtain group contributions for Aug. The

ordinate is Aug/p1 at 25°C and the abcissa is the number of

CH2 groups in the solvent molecule.

The four sets of points on Figure 31 which give data for

alkanes, alkanals, carboxylic acids, and alkanals, can be

fitted to straight lines which have approximately the same

slopes. This makes empirical analysis possible. One

therefore takes the weighted average slope of these four

lines to be the contribution to Aug/p1 of each CH2 group in

a linear molecule. The analysis omits solvents which have

one or zero CH2 groups, but the data for these are included
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on Figure 31. This quantity, called 6“

(cal/mol)/(mol/liter), is given at the upper left of Table

IX. In like manner the average slope of the curve for

cycloalkanes on Figure 31 gives the corresponding 6 for an

additional CH2 group in a cyclomolecule. The

perfluoroalkanes’ data are not good enough to be analyzed

this way because the samples were mixed isomers. If one

extrapolates on Figure 31 the points for alkanes to the

limit of zero CH2 groups one gets as intercept the

contributions to Aug/p1 of the two CH3 groups; i.e.

2€P(CH3)’ at the ends of these molecules. The intercept on

the ordinate axis obtained by extrapolation of the alkanol

data is €H(CH3) + eu(OH), from which one may obtain £p(OH)

by subtracting off eu(CH3) previously obtained. In similiar

fashion we obtained 6u(COOH) and 6u(CHO). Values for all

six of these en’s are shown in Table XI. The formula by

which one reconstructs an estimated Au; at 25°C is, say, for

an alkanol with, say, m CH2 groups:

* .
Ap2(est) - p1[ eu(CH3') + meu(CH2,lin) + eu(OH) ] , (7.1)

from which L(25°C) may be obtained from Ap;(est)= -RT5n L.

Figure 32 shows values for average enthalpy obtained

from our solubility measurements. The ordinate is MEI/p1

and the abscissa is, as in Figure 31, the number of CH2
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Table XI. Empirical Energy parameters for Xe solubility

37 organic solvents.

 

Group Energy contribution (25°C)

(cal/mol)[(mol[liter)

‘p ‘H ‘76

CH2 (lin) -7.45 -28.02 -20.36

CH3 -47.67 -99.01 -50.21

0“ +18.41 + 4.64 -14.89

COOH +10.16 - 9.57 -20.86

CHO + 7.22 + 3.02 .- 5.32

CHZ (cycl) - 2.98 -22.09 -19.11   
 

solvents at 25.0°C.

 

Table XII. Predicted igugxperimental values of

Ostwald solubility for Xe in selected organic

 

Predicted Experimental

Solvent L (25°C) L (25°C)

n-ClZHZ6 3.50 3.39

n-C7H1308 2.42 2.44

n-CachOOH 2.52 2.70

n-CAH9CHO 2.69 2.99  
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groups in the solvent molecule. For these quantities, as on

Figure 31, the curve for alkanes, alkanals, carboylic acids,

and. alkanals, are approximately' parallel straight lines.

One obtains the enthalpic contribution eh for each of the

six component functional groups by a similiar analysis as

for 6“. The values of Ch obtained in this way are given in

the middle column of Table XI. The formula by which one

constructs AB: is, say for the same alkanol as in equation

(7.1):

Ah:(est) = p1[ eh(CH3) + meh(CH2,lin) + eh(OH) ] . (7.2)

The A52 values predicted by equation (7.2) are averages over

the experimental temperature intervals; nominally they

correspond to about 25°C.

Figure 33 shows values for the average entropy obtained

from our solubility measurements. The ordinate is TA§:/p1.

It has been multiplied by the average temperature T=298.15 K

so that the ordinate’s dimensions will be

(cal/mol)/(mol/liter) the same as on Figures 31 and 32. The

componental entropy contributions 5T8 are shown on table V

for the six functional groups. Values of 518 were obtained

by applying to the data on Figure 33 the same technique as

before. The formula by which one constructs A3: from these

componential contributions is:

A§:(est) = pal T296[€7§CH3) + meT§CH2,lin) + £1§OH)] , (7.3)
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for the same solvent as in equations (7.1) and (7.2).

Finally, one may estimate the temperature dependence of

*

Auz, over the temperature intervals near those for which the

original data apply, from:

It -* -*

Apz(T,est.) = Ah2(est.) - TAsz(est.) . (7.4)

In applying this equation, one uses equations (7.2) and

(7.3) along with eh and 818 values in Table XI, and one

obtains an estimate of solubility L(T) for Xe is whichever

solvent that has been reconstructed.

As a test of the ability of equations like (7.1) to

predict Ostwald solubility, we show on Table XII a

comparison. between. predicted. and, experimental values for

five solvents, each chosen from about the middle of' its

series. The predictions are obtained from L(25°C)

=exp[-Au;(est/RT298)]. The predicted values of L(25°C) are

within 12% of the experimental values for all of our

solvents with two or more CH2 groups. The probable

explanation for deviations at low carbon number is that the

solvents are becoming more ordered and the correlation

function begins to change rapidly at short chain length.

The above test is largely one of consistency rather than

predictability. But if suitable data were available, one

could test whether our 6" values could be used to predict Xe

solubility in, say, dicarboxylic acids, polyalcohols, and
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other solvents .

Finally, Figure 34 shows a plot of (Au; - 3mm)“;1 =

shat/p1 verses number of CH2 groups. An extrapolation of

the cycloalkane data to zero CI-i2 groups gives 81m: 0 , as

one would expect. We note for completeness that the

straight line fits are somewhat better than those in Figure

31.
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8. Conclusions

In conclusion we discuss briefly how this work can be

used to predict and understand solubility data and what

further experimental and theoretical work would be useful

towards these ends.

The empirical results associated with Table XI and

Figures 31.32.33 are suggestive but need testing on other

systems before they can be- relied on for predictions. Some

other C-, H-, and O-containing solvent functional groups for

which the values of e", eh. and 61,8 would be interesting

are, e.g. phenyl and its derivatives, carbonyl,alkoxy, etc.

If solubility predictions from these prove to be robust one

could extend the technique to find contributions of groups

containing other elements, say halogens, N, 8, etc.

A parallel. direction for empirical development is

solubility of other inert gases and, beyond that, gases that

are isaelectronic, or nearly so, to inert gases, etc. We

anticipate that the en’s, en’s, and crs’s empirically found

for different gases with respect to a single solvent

functional group would be simply related to the

Lennard-Jones potential parameters of the solutes.71

Finally there is some indication that the mixed

experiaental-theoretical term (-RT£nL - g°")/ p1, which

according to equation (6.54) equals gun/p , is meaningful
i

for espirical and analytic purposes. As more data become

171
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available, its use for quantitative predictions can be

explored.

There are several interesting reasons 'why' analytical

approaches to these data are difficult. In the following

paragraphs I would like to summarize some of our

observations on this topic.

The quantities which currently lend themselves to

theoretical analysis are the free energy of cavity

formation, g , and its associated enthalpy, h , and

CIV OIV

entropy, s , and the energy of interaction u .

cav . int

Scaled particle theory provides a formal procedure by

which one may calculate g?.v. There are several alternative

theories which predict cavity free energies most notable of

85 Thiswhich is the surface tension theory of Sinanoglu.

approach requires a calculaton of the surface energy

associated with cavity formation in a solvent. The surface

tension’s contribution is modified to take into account the

microscopic cavity size. Recent reviews have shown that

this theory tends to predict cavity energies which are too

high, and is inconsistent with pure liquid heat of

72
vaporization data. In earlier papers we tested it on the

perfluoralkanes and found cavity energies to be 2.5 times

higher than the SPT prediction.65 The general consensus is

that Sinanoglu’s theory can be used to get rough

approximations of the cavity terms but SPT is much preferred

when the parameters necessary to apply the later are known

or can be evaluated.72
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Boublik gt 9;. have developed a version of the SPT for

nonspherical hard. molecules; such. as spherocylinders

(cylinders with spherical endcaps) and other convex

86 At first this may seem like a better alternativebodies.

to describing solubility in alkanes, unfortunatly, this

theory cannot yet account for mixtures of particles of

different shapes.14 More work in this direction may prove

to be useful.

Although scaled particle theory may be well suited to

predict cavity energies there are restrictions to its

application. The solute should be as hard and spherical as

possible and must not have strong directional interactions

with the solvent molecules. An example of an inappropriate

(but important)solute would be a protein, for which a cavity

would be an ill defined quantity. The solvent can be any

real liquid. However,the effective solvent diameter,' a1,

must be determined with great accuracy. For nonpolar

solvents one can evaluate a1 from heat of vaporization data

through equation (6.87). For polar solvents this equation

is invalid and one usually has to use solubility data to

evaluate a1.71 I

The fact that the SPT works at all is actually quite

amazing and. is ‘probably the result. of’ many' errors that

cancel each other out. This means that we should be

cautious when looking at higher order terms; i.e., the

enthalpy and the entropy. We have demonstrated that the SPT

does not predict the entropy of salvation. This is contrary
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to previous thought. The reason this has gone unnoticed in

the past is because most workers choose the mole fraction

55,74
scale. The chemical potential on the mole fraction

scale is determined from [equation (8) from ref.55]:

*

Apz = -RT5nx2 Auz + RT6n(RT/v1) , (8.1)

where v1 is the molar volume of the solvent. To find the

corresponding entropy we take the derivative with respect to

temperature:

-#

As2 = As2 - R + RTcIc - ROn(RT/v1) . (8.2)

The extra terms in equation (8.2) are usually much larger

than A5: but they have no physcial interpretation. For

example, for Xe in hexane we have A§:= -4.4 cal/mol X, but

A32: -15.8 cal/moi K. This excess pseudo-entropy serves to

mask the deficiencies in sc ; i.e., instead of predicting
IV

As = 3391': 0.29 cal/mol K, we would say As: s8". spun“ =

-ll.1 cal/moi K, which doesn’t look so bad when compared to

Asa. This does not necessarily mean that the SPT is wrong;

it is possible that the rest of the entropy could be in the

interaction term, g .

int

To settle these many questions one must turn to computer

simulations. Using equation (6.36) we obtain :

1

mum. = (0(5) dg . (8.3)

O
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Swope and Andersen41 have used molecular dynamics to

evaluate (8.3) for inert gases in water. The idea is to run

your simulation and gradually couple a solute particle into

the solvent. This is done by turning on the solute-solvent

potential in a stepwise manner as suggested by Eq. (8.3) and

calculating the coupling energy, U(g), at each value of 5

until the particle is fully coupled. One can then integrate

the smoothed results to obtain the excess chemical

potential. Once the particle is fully coupled it is

possible to calculate the entropic contribution to the free

energy by simply subtracting off the energetic part; i.e.

a ‘ -:I:

Apz = I 0(5) 65 m U(g=1) - 7432 . (8.4)

o

Jorgensenl has developed interaction site potentials

which predict the properties of pure alkanes and pure

alkanals. These are potentials in which the molecule is

represented by a set of discreet interaction sites that are

commonly, but not invariably, located at the sites of the

atomic nuclei. For the alkane potentials Jorgensen has used

the various functional groups as the interaction sites.

These have also been used to predict the solubility of

various alkanes and alkanols in water.87 While this data is

certainly valuable one must note that solubility in water is

a much more complicated process than in nonpolar solvents

due to the complex structure of liquid water. In principle
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it is possible to do the same calculation for inert gases in

alkanes and alkanols and maybe other solvents.

By' carefully choosing the way the solute - solvent

potential is coupled it may be possible to gain insight into

how repulsive and attractive interactions affect the

salvation entropy. This in turn would clarify the

deficiencies in analytic models and help us to correct them.

To complete our experiment it would be interesting to

look at Xe solubility in the lighter alkanes, i.e.; ethane,

propane, butane and methane (despite the fact that methane’s

boiling point is lower than xenon’s at 1 atm. The trick is

that by using a tracer the solute gas is so dilute that it

will not condense until a significantly lower temperature77

). These are simpler solvents and thus may help bridge the

gap in our understanding of solubility. Also, our

experimental technique offers a unique advantage over other

cryogenic experiments in that we can easily measure

89’90 Thissolubility in the limit of infinite dilution.

makes the subsequent analysis much easier since one can

neglect solute-solute interactions.

Our technique may also prove to be useful in analyzing

solubility near the solvent’s critical point (we again have

an advantage over other methods since we can ignore solvent

vapor pressure effects). A great deal of recent work has

been along the lines of gas solubility near the critical

temperature of watergl; performing complementary experiments

on non-polar and polar systems such as ours could prove to
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be very enlightening.



9.Introduction: Solubility of Nonpolar Gases in Water at

Elevated Pressure.

This section of my thesis reports solubility

measurements of the. gases nitrogen, argon, krypton, and

xenon in water. For each of these gases we measured, at

25.0°C, the dependence of gas solubility on partial pressure

of the solute. The pressure ranges studied were

approximately: 44-116 atm for N2, 22-101 atm for Ar, 33-81

atm for Kr, and 5-48 atm for Xe. The data are analyzed in

terms of molecular theories based on thermodynamics, and

statistical mechanics. These experiments are an extension

of previous work on Xe solubility in organic liquids‘ and

aqueous solutions.”’92

The study of gas solubility in liquids is an. old and

well developed subject in chemistry and physics. For dilute

solutions at sufficiently low pressure, the mole fraction

93
solubility, x2, is well described by Henry’s Law :

P = k x (9.1)

where P2 is the partial pressure of the solute gas and ha is

a constant of proportionality. The so called Henry’s

constant, k”, is characteristic of the solute-solvent system

178
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at a given temperature. At higher pressures Eq.(9.1) must

be modified to account for nonideality of the vapor.

Lewis94 introduced a new form of Henry’s Law in which the

solute partial pressure is replaced by its corresponding

fugacity; f2=kflx2. At still higher pressures the measured

solubility fails to obey this relation as well. It shall be

shown that by measuring deviations from Henry’s Law one can

obtain information on the salvation process.

The importance of understanding the effects of pressure

on gas solubility comes from its many applications. At an

industrial level, extraction and separation processes are

often performed at elevated pressure. In biology and

medicine, interactions of inert gases with living organisms

are also important. For example, the gas mixtures breathed

at high pressure in deep sea diving consist mainly of inert

gases. Interactions between these gases and the diver are

responsible for decompression sickness and inert gas

narcosis.10’95 Solubility limited phenomena are also

relevant in marine biology. Several species of deep water

fish have swim bladders in which partial pressures of

nitrogen up to 10 atmospheres have been observed.96 In

order to determine the mechanisms used by the fish to

inflate its swim bladder, it is important to know the

concentrations of dissolved gases available at a given

depth. Such variation is generally determined by the

hydrostatic pressure.

Another motivation for this research is to look at the
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role of hydrophobic effects on gas solubility. Hydrophobic

interactions are important for understanding the stability

of biologically important macromolecular structures.

Hydrophobic effects are thought to play a key role in

97,98
protein conformation and enzyme specificity. Several

experimental studies have investigated the behavior of

simple polar and nonpolar organic solutes in water.99’100

Inert gases would in some sense be the prototypical

hydrophobic solutes because their interactions with water

are very weak compared to those of water with itself.

The inert gas elements have been studied extensively as

77,78
prototype solids, liquids, and gases, so many of their

interactions are well known. The low pressure solubility of

these gases in water have also been determined

6’32 With the advent of improved analytic73’101

41,102

accurately.

and computational techniques it has become possible to

predict these solubilities with good accuracy. By providing

data in different ranges of temperature and pressure one can

test the robustness of these theoretical predictions and

make appropriate refinements.



10. Experimental

The two most common units of gas solubility are the

Ostwald (L) and mole-fraction (x2) solubilities. They are

defined as:

 

I.) 92 n2

3 fl and X2 3W e (10 a 1)

pz 1 Z

Ostwald solubility is the ratio, at equilibrium, of the

concentration of dissolved gas molecules in the liquid

solvent to their concentration in the gas phase. The mole

-fraction solubility is the equilibrium fraction of solute

molecules in the solvent. In recent literature measurements

in terms of the Ostwald solubility are characterized as

being on the ’number density-scale’.14

Figure 35shows a schematic of the experimental

apparatus. The Figure is divided into two parts to show

each step in the measurement process. First the liquid is

saturated with the solute gas at high pressure as depicted

in 35a. Once equilibrium is attained the liquid is

isolated and the sample cell is transferred to the analysis

system, 35b, where the amount of dissolved solute in the

pressurized liquid is determined. Together, this

181
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constitutes a modified Van Slyke method 103 in which the

sample volume is the entire liquid volume. Our technique is

different from Van Slyke’s in that it allows us to measure

directly the mole -fraction solubility, Ostwald solubility,

and partial molar volume.

We briefly outline some experimental details below. The

sample cell is a 100cm3 stainless steel volume with a ball

valve to isolate the liquid and allow for easy transfer

between the equilibration and analysis stages of the

experiment. The solute gases we used were obtained

commercially. Their purities were: N2(99.99%),

Ar(99.998%), Kr(99.997%), and Xe(99.996%), (N2, Kr, Xe from

Linde Gas Products, Ar from Matheson Gas Products).

At the beginning of the experiment we load the sample

cell with twice distilled water which has been degassed

using standard methods. The water is loaded under vacuum to

prevent air packets from forming. The cell is weighed and

the mass of the water, after making proper .buoyancy

corrections for the weight of displaced air, is denoted mo.

To help prevent gas spaces from developing in the cell upon

liquid compression we add some extra water above the ball

valve. The mass of the additional water is Am+. The cell

is then connected to gas volume V8 and pressurized. Mixing

is achieved with a specially designed magnetic stirrer. Gas

pressure is monitored with an accurate capacitive transducer

(Setra Systems), and. a pressure gauge (Heise Inc.) for

calibration. The sample cell and gas volume are submerged
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throughout the entire experiment in a constant temperature

water bath at 25.0:0.1°c.

After some time, typically 2-3 days depending on

stirring speed and solubility, the pressure readings reach a

steady state. To be sure that equilibrium is attained we

monitor the pressure for an extra 8-12 hours. At this point

we record the final pressure of the solute gas, Peq’ and the

ball valve on the sample cell is closed. The gas volume is

then slowly depressurized. Excess liquid above the ball

valve is collected and weighed. This mass is denoted Am-.

The water remaining in the sample cell is now:

In = m + Am - Am . (10.3)

The analysis system as illustrated in Fig. 35b consists

of a detachable gas volume, V8a , with a pressure transducer

and mercury manometer. The gas volume is variable in the

sense that different sized cells can be attached to the side

arm of the analyzer. We choose the gas volume such that the

pressure of the evolved solute will be within the optimum

range of our sensing devices. This pressure can be

estimated. via Henry’s Law with. well known low pressure

6’32 For the solute gases and pressuresolubility data.

ranges in this experiment we used two analyzer volumes,

namely: slBOcc (N2 and Xe) and s360cc(Ar, Kr, and Xe). To

measure the amount of solute in, the saturated liquid we

connect the sample cell to the analyzer and evacuate the
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upper volume. The main valve is then opened thus releasing

the dissolved gas into V8a shown in Fig. 35b. With stirring

a steady value of pressure is usually reached within 2-6

hours. The final pressure of the solute gas in the

analyzer, Pa’ is found after correcting for the vapor

pressure of the water.79

To calculate the mole-fraction and Ostwald solubilities

we first must find the density of the solute gas, 928(P), at

Pa and Peq' Accurate virial expansions were used in the

appropriate pressure ranges for N2 , 104 Ar , 105 Kr , 106 and

Xe . 107 One can then find the number of moles of gaseous

solute in the analyzer to be:

- 8 a (2)
n2 - p2 (Pa) [Vg + V8 ] , (10.4)

where V;Z)is the extra. gas volume that arises from the

decompression and outgassing of the pressurized liquid.

Assuming the low pressure liquid density is that of pure

water we have:

(2)_ _' a
v8 "V6.14 In"20 /p"20(25.0 C) , (10.5)

where V is the volume of the sample cell and m is

cell H20

defined in Eq.(10.3). To find the total number of moles of

solute we must also account for any remaining in the liquid.

Adding this correction we find for the total amount of

solute in the sample cell at Peq
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n2,total= 928(P8)[ [vga+ V;2)] + Lo(mlIZO/p"2°) ] , (10.6)

where L° is the low pressure limit of the Ostwald solubility

6,32
at 25.0°C. The number of moles of water in the sample

cell, n1, is the mass of the water divided by the molecular

weight, i.e., n1 = IIIn 0(g)/18.01534(g/mol). One can then

2

easily calculate the mole fraction solubility from

Eq.(10.2). At the equilibrium pressure Peq the liquid

volume is fixed to be that of the sample cell, therefore the

number density of solute molecules in the liquid is p21:

Dividing this quantity by the gas numbern / V .
2,total cell

density at peq one obtains the Ostwald solubility, L, as

given in Eq.(10.2). One may also use this technique to

obtain a rough estimate of the solute molar volume by:

325: [Vc.”- [mazo/pnzo(25 C°,1'atm)]exp(-x(P.q- Pa)]/ n2,

(10.7)

where x is the isothermal compressibility of pure water,108

x = 4.571310“5 atm-1, and n2 is given by Eq.(4). Essentially

this expression means that if we take Va”, the known

volume of the pressurized liquid, and subtract off a term

due to liquid compression then the remaining volume, which

is in the square brackets of Eq.(10.7) is due to the solute

molar expansion. Dividing this by the amount of solute in

the liquid gives the molar expansion produced per mole of
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solute added, i.e., 62. Since our solutions are very

dilute, typically xzarIO-‘, we assume in this development

that the density is the same as for pure water. This

assumption is also supported by the fact that our results

agree fairly well with literature values.109’110

We stress that the strength of this technique is that by

fixing both the sample volume and mass, one may easily find

the Ostwald solubility and the molar volume. Other methods

usually sample only a known mass of saturated liquid and

therefore are limited in that they measure only mole

fraction directly. Separate measurements are then needed to

calculate the solubility on the number density (Ostwald)

scale. It has been argued that the number density scale has

certain advantages over the mole fraction scale in analyzing

99 Theresults from a statistical mechanics perspective.

primary weakness of our current technique is that the

measurement takes a relatively long time. A better

alternative wouLd be to use small samples of fixed volume

111,103 This
from a large reservoir of equilibrated liquid.

is a more traditional approach with the important addition

that we know the sample volume at Peq.



11. Results

The experimental results we obtained are shown in Table

XIII. The first column gives the pressure at which the

measurement was made, the second column gives the

corresponding fugacity. The third and fourth columns

tabulate solubilities on the mole fraction and number

density (Ostwald) scale respectively. We also include the

average value obtained for partial molar ‘volume of the

solute. The fifth and sixth columns give the data in terms

of a new solubility parameter which will be discussed below.

Judging from reproducibility and by comparison with other

datas’112 a conservative estimate of our fractional

uncertainty in solubility is about 1-1.5%. The primary

sources of error are pressure measurement(:2.0 psi for high

pressure, $0.5 Torr for low pressure), volume measurement

(t0.l% reproducibility), and microbubble formation in the

pressurized liquid. The first two terms lead to an

uncertainty of less than 0.2% so it seems that the last term

is the main contributor.

Fugacitiea were calculated from volumetric properties of

the real gas via20

P

f = p exp[ 'fi; I [v(p’) - 3%? ldp’ ] . (11.1)

188
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The integral in Eq. (11.1) measures the cumulative deviation

of the real gas volume, v(p’), from that of the

corresponding ideal gas at pressure p’. To obtain v(p’) we

used the virial expansions referred to in the previous

104-107

 

section. The fugacity is related to the chemical

potential per mole of the gas by 126:

12 A3

p29: Run[ J , (11.2)

k T

where f2 is in atmospheres and k=R/NA= cma-atm/molecule-°K

and A=h/(2nka)1/2is the thermal wavelength of the solute.16

Figure 36 shows a plot of the equilibrium fugacity

versus mole-fraction solubility for our data. Also included

is data for N2 in water at 25.0°C from Ref.(112). As one

can see, the agreement with our measurements is good. The

curves in Fig{ 36 have the common feature that the

mole—fraction solubility increases approximately linearly

with fugacity. Table XIII shows that the Ostwald solubility

tends to decrease with f2. If the system was in complete

accord with Henry’s Law we would expect the quantity ku=flx2

to be constant for each gas. Figures 37(a-d) show such

plots with respect to solute concentration. For N2, Ar, and

Kr there is a clear increase in k" by as much as 7-10% in

the concentration range studied. For xenon there appears to

be very little variation in kn' A problem that we

encountered with xenon was that above a pressure of 17
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atmospheres the solubilty decreased rapidly and the molar

volume increased to about 125cm3/mole. The data point from

Table XIII at 23.33 atm seems to be anomalous in the sense

that the solubility has decreased sharply ,compared with

lower pressures, but we did not see a large molar expansion.

We associate this effect with the onset of clathrate

formation.113 This speculation was confirmed in separate

experiments with xenon-water mixtures at Izq>30 atm.

Instead of subjecting the equilibrated sample to analysis we

quickly depressurized the cell and pour the liquid into a

beakeru Several ice-like crystals, as large as 5mm in

diameter, were observed. These melted away within minutes.

We have included on Table XIII the solubility measured

during the clathrate phase but we are not sure that the

results are reliable since it is known that this is a glassy

state which may require very long equilibration times.113

It might be worthwhile to repeat our low pressure xenon

measurements because the pressure ranges we explored were at

the lower end of our sensing accuracy. Our technique using

radioactive tracers which would be useful toward this end.18
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Table XIII. Experimental results for splubility

of N2, Ar, Kr, and Xe in water at 25.0 C. The

second column is the solute partial pressure. The

third column is the solute fugacity. The fourth

and fifth columns are the mole-fraction and Ostwald -

solubilities respectively. The sixth column is

the new solubility parameter r. The seventh column

is the excess chemical potential of the solute in

the liquid. The eighth column is the experimental

average value of partial molar volume.

 

 

 

 

Solute P(atm) ftiatm) x'I-lo‘) I. r 781524151) V'ica'laoi) 1‘:

6' 44.55 44.25 4.902 0.01465’ 0.01501 2466 g

50.46 50.10 5.462 0.01466 0.01464 2495 ,

63.66 63.17 6.609 0.01446 0.01463 2503

77.26 76.63 6.100 0.01423 0.014355 2514 31 z 2 ‘ ’

93.30 92.54 9.562 0.01397 0.014045 2527 ‘“‘

102.19 101.36 10.32 0.01360 0.01363 2536

115.60 114.99 11.46 0.01360 0.01356 2546

Ar 22.505 22.190 5 426 0.0322 0.0331 2019

25.50 25.01 6.136 0.0321 0.0331 2019

36.12 37.24 6.993 0.0313 0.0327 2026

44.36 43.20 10.36 0.0309 0.0325 2030

55.95 54.11 12.61 0.0301 0.0321 2036 ,3 2 1

66.66 66.15 15.41 0.0292 0.0316 2047

71.67 66.73 16.06 0.0293 0.0317 2044

79.19 75.65 17.43 0.0267 0.0313 2053

67.90 63.61 19.06 0.0262 0.0309 2059

101.27 95.70 21.59 0.0276 0.0306 2065

x: 33.30 31.01 13.45 0.0506 0.0566 1679

40.64 37.26 15.91 0.0465 0.0579 1666

41.16 37.69 16.22 0.0461 0.0563 1663

52.14 46.64 20.03 0.0463 0.0562 1665 3° 3 2

56.66 51.93 21.53 0.04345 0.05625 1705

69.73 60.06 25.13 0.0417 0.0567 1700

60.56 67.91 27.67 0.0391 0.0556 1712

60.66 67.99 27.79 0.0369 0.0554 1714

x0 4.791 4.669 3.592 0.0994 0.1041 1340

6.344 6.103 4.716 0.0962 0.1046 1336

6.151 7.600 5.979 0.0950 0.1036 1342

9.415 6.947 6.930 0.0950 0.1046 1336 ,7 g 2

11.25 10.56 6.069 0.0917 0.1034 1345

12.10 11.33 6.750 0.0915 0.1045 1336

14.69 13.55 10.36 0.0660 0.1034 1345

15.74 14.44 11.035 0 0669 0 1034 1345 --_-

x. 23.33 20.46 13.60 0.066 0.090 1426 44

32.76 27.19 17.46 0.057 0 0664 1451 117

33.29 27.52 17.62 0.057 0.0659 1454 125

47.69 35.99 21.17 0.040 0.079 1506 131
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12. Pressure and Concentration Dependence

Deviations in Henry’s Law, such as those shown by our

data, are best analyzed in terms of the solute chemical

potential. In our experiments the vapor pressure of the

solvent, P(azo,zs°c) a 23.76 torr, was small compared to the

solute gas pressures and can be ignored. The chemical

potential per mole of gaseous solute can then be written as:

O fz(T,P)

2 2 p¢

where 112’”) is _the standard chemical potential of the gas

at temperature T and pressure P’. The choice of reference

pressure is such that the gas behave ideally at P’. We

shall follow the usual convention and set P0 equal to 1

20,22
atm. This expression for 112' is identical to Eq.(12.l)

but will prove to be' easier to work with in subsequent

discussions.

The chemical potential of the solute in the liquid, "21’

is completely described by the variables T,P, and x2. At

constant 'I‘ one may express the differential change in ”2‘ as

114
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- auz d auz

- x2 + dP . (12.2)

PT 36 ‘I'

To understand how "21 depends on solute concentration we

use the Kirkwood-Buff (KB) solution theory.115 This is an

exact formal treatment in which the solution properties are

obtained from integrals over 'pair~ correlation functions.

For two components the KB integral is defined as:

m

G = I [g (r) - 1]4ur2dr , (12.3)
ii 0 ii

where g‘j(r) is the orientationally averaged pair

correlation function between species i and j, and depends

only on intermolecular separation r. To relate these

quantities to pZ'CT,P,x2) we use Eq. (22) of Ref. (115):

  

1

1 [ a "2 J = 1 + 91(2612 Ga: 622) ,

R T 0 x2 P,T x2 1 + p1x2(611+ G22- 2G12)

(12.4)

where 91 is the molar concentration of the solvent. For

dilute solutions Eq. (12.4) can be expressed in terms of the

infinite dilution limits of the molar volumes and solvent

isothermal compressibility, x1 26:



196

  

l 6 p i 1 1

__ [ 2 J = —— + O [ -G + V O - 2V 0+ RTX O]

R T a x 9,7 x v 22 1 2 1

2 2 1

+ 0(x2)2 . (12.5)

Throughout this thesis we use the superscript o to refer to

the infinite dilution limit. Integrating Eq. (12.5) and

keeping terms to first order in x2 yields 116:

1 _ o 2
112 (x2.T.P) - 112 (T.P) 7‘ RTlmxz + XZE(T) + 0(x2) . (12.6)

where

O_ _ _ o
g(T)-RT( 622+ v1 2v2 + RTx1°)/v1° , (12.661)

and p20(T,P) is a constant of integration.

The KB integral. 622, plays an important role in

determining the concentration dependence of the chemical

potential. It is a measure of correlations among solute

particles in solution. This can be illustrated by

multiplying 622 by the solute concentration pz:

0

_ _ 2
p2622 - Io pz[ g22(r) 1 ] 4nr dr . (12.7)

This quantity reflects the total average excess (or

deficiency) of solute molecules surrounding a fixed solute
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with respect to a uniform distribution.99 For example, if

622 is positive the solute molecules are more correlated

than if they were distributed randomly. This sort of

solvent induced clustering in aqueous solutions is commonly

referred to as a hydrophobic interaction.97 An exaggerated

example of such a situation would be micelle formation in

detergent solutions.117 A driving force in this example is

the fact that the detergent has both polar and nonpolar

regions which compete to minimize the free energy. The

resulting conformation is that solute molecules cluster

together with polar regions in contact with the water and

the nonpolar regions in contact with each other. This sort

of mechanism plays a vital role in biological process such

118 It isas membrane formation and pmotein conformation.

not obvious that such mechanisms should come in to play for

nonpolar gases, particularly those we have studied, since

these solutes have little structure, i.e., the solutes are

mono- or di- atomic and cannot be divided into polar and

nonpolar regions. It has been shown however that solvent

induced interactions can lead to clustering in hard sphere

mixtures where there are no attractive interactions at

an.119

A more familiar occurence of 622 is through its relation

to the osmotic pressure of a solution. By analogy to the

virial expansion for real gases one can show that the

osmotic pressure ([1) of a two component solution obeys an

equation of the form 22:
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n/RT = p2 + B p + B p + ... . (12.8)

N
*

The second osmotic virial coefficient of the dissolved

solute is 126:

32 = -TG . (1249)

*

The value of 82 is frequently used in statistical theories

of polymer configurations as a measure of the interactions

between segments along the polymer chain.120

The pressure dependence of the chemical potential is

described by the well known thermodynamic relation 20:

6112l

[__) . .2 , (.2...)
BP 71 ‘1'

i!

where v2 is the molar volume of the solute in the solvent.

Applying this to Eq. (12.6) allows us to evaluate pzeas:

P ,

)1 =1 v (p') dP’ + C(T) , (12.11)
0 2

where C is an integration constant which depends only on

temperature. If the solution is well below the critical

temperature of the solvent, the molar volume is weakly

dependent on pressure and can be taken outside the
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integral.121 We then substitute its value at infinite

dilution, v20. Putting this result in Eq. (12.6) gives:

0- 2
p - C(T) + v2 p + mama + ngvr) + 0(x2) . (12.12)

The equilibrium condition between the vapor and the

liquid is “29 = 02'. Using Eq.(12.l) for p29 and Eq.(12.12)

for pal gives:

f (T9?)

02°(T) + RTbn[ z—— ]

x P¢

2

= C(T) + P v20 + ngw) + 0(x2)2.

(12.13)

In the limit of low pressure and infinite dilution the

bracketed term on the left hand side of Eq.(12.13) reduces

to Henry’s constant kuo, so that one may evaluate C(T) -

15¢(T) = RTbn(k"°). This leads to the desired result:

f2(T,P) ] o

x P¢

2

Run[ = amnwf) + Pvz + ngvr) + 0(x22) .

(12.14)

This expression was previously derived in Ref. (116), but we

have filled in some of the steps. The observed deviations

from a constant kno in (f/xz) can be attributed to increased

Pv work in the liquid, and possible solute-solute



200

interactions. In the limit x2§(T)-60 we obtain a well known

result in chemical engineering:

 00(1‘ /x P") =bn(k °) + 2 (12.15)
2 2 H RT

Equation (12.15) is known as the Krichevsky-Kasarnovsky

112’121 For the gas-liquid systems in this paperequation.

(Pv‘o) is typically 20f100 times greater than (szT).

Therefore, by Eq. (12.14), we will only be sensitive to g(T)

if 022 is significantly larger than the molar volumes, i.e.,

g(T) a: XZRT ( C - Gzzlvao)’ where C is of order (-3) for

typical solute molar volumes and solvent compressibilities.



13. Data Analysis

Equation (12.14) can be used to obtain information on

the pressure and concentration dependence of gas solubility.

Figure 38 shows a plot of the quantity [cnlfz/sz¢) -

PvzolRT] m x for each of our solutes. A linear
2

regression fit to the data gives for the ordinate axis

intercept the value of mug) and the slope determines

E(T)/RT. From g(r) and Eq. (12.6a) one may then find 022.

The calculated slope was very sensitive to the choice of

molar volume so that reliable values of 0:2 are difficult to

determine. To illustrate this point, Table XIV lists values

of 622 and 6n(ku°) obtained for each solute at for different

assuemd values of v2°. The values of v2° are taken from

Ref. 109, in which standard literature values are compiled,

along with the authors’ own direct measurements. The values

of Véo given in Table XIV represent the range of generally

acceptable data. A common way to obtain the partial molar

volume of gases in liquids is to use solubility data in

.conJunction with Eq.(12.15). This obviously is not

appropriate to our analysis, which relies on Eq.(12.14),

since the resulting molar volume would give zero for £(T).

o
When possible we have used values of v2 which were

determined directly. and have indicated when otherwise. For

201
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xenon the only direct measurement of molar volume is by

Biggerstaff gt __1.,. at elevated pressure.110 The data on

Figure 38 were fitted using the following intermediate

122
values of molar volume; 32°(N2) = 34.2cm3/mol, 32°(Ar)

32cm3/mol, 32°(Kr) = 32cm3/mol, and 32°(Xe, P<17atm)

43.50m3/mol (the average nitrogen value corresponds to a

measured value in Ref 122). The corresponding values of

respectively.

On Figure 38 we have shown on the ordinate axis using

filled symbols the experimental values of (11(kno) for each

solute at 25.0°C as given in reference 6, viz., kfl°(N2)=

85251, kH°(Ar)=39746, ka°(Kr) = 22252, kn°(Xe) = 12885. The

intercepts of our graphs are much less dependent on choice

of molar volume than the slopes and agree with the known

results very well. Thus, the values of k"0 that one obtains

from our plot are: k"°(N2) 84669, k"°(Ar) = 39875 ,

12925. We also found thatk"°(Kr) = 22261, and ka°(Xe)

the xenon data at higher pressures could be fit to the same

curve as the pre-clathrate data, provided we used our

experimental value of v2°(Xe,P>20atm) a 125cm3.

It is interesting to note what happens when Va0 is

treated as a free parameter which can be varied to obtain

the best straight line fits by chi squared minimization.
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Table XIV. Results of Kirkwood-Buff analysis. The
third column gives the partial molar volumeaof the
solute used in Eq.(12.14). The fourth and fifth
columns give the results for the KB integral Ga:

and the log of ghe infinite dilution limit of Henry's
constant, £n(k" ).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solute T(°C) vaoicm’/mol) 621(cm3/mol) (u(kaoi

N. 25.0 33‘ —236 11.346

35.7‘ -27 11.347

hr 25.0 32"' +169 10.5935

Kr 25.0 33‘ +24 10.010

31' +69 10.011

x: 25.0 41‘ +196 9.4666

46’ +240 9.4669

He 0.0 15.5 -157 11.791

23.7 +927 11.601

29.7 +1720 11.609

He 25.0 ~ 15.5 -22 11.674

23.7 +996 11.661

29.7 +1745 11.666

N: 25.0 33- -4.5 11.360

35.7 +345 11.369

143 50.0 33 -92 11.604

35.7 +330 11.611

Hz 0.0 20 -16.5 10.953

25.2 +262 10.956

26.7 +343 10.960

6: 25.0 20 +7.0 11.170

25.2 +314 11.173

26.7 +403 11.174

14' 50.0 20 +3.0 11.242

25.2 +305 11.245

26.7 +392 11.245

ca‘ 25.0 34.5 -13 10.566

37.4 +223 10.596

c'H‘ 37.6 51 +125 10.595

53 +670 10.609

1
h
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In every case the optimum fit leads to |GZZ|<50cm3/mole.

However the resulting value of the ’effective molar volume’,

vz'”, is often not in agreement with experiment, i.e., we

obtain by this procedure v2“! ( N2 ) =36¢malmol ,

vz'”(Ar)=26cm3/mol , v2°"(Kr)=28cm3/mol,

andvz'”(Xe)=10cm3/mol. The value for Xe is certainly

unphysical since Xe is known to have the largest molar

volume of the four gases studied.

Table XIV also shows the results obtained by application

of this analysis to data of other worker on high pressure

gas solubility in water. These data appear below the double

horizontal line on Table XIV. The systems include

nu25-10006.m;0°c,25°o),123 “2(25-10008tn; 0°o,25°o,50°0)

112 112 124

, N2(25-10003tm; 25°C,50°C), c114 (0-6000psi; 25°C),

125
Czi-i‘5 (0-10,000psi; 37.8°C). For H2 and N2(50°C) the gas

phase fugacities used were those of Demming and Shupe.127

For the remaining gases the fugacities were calculated in

the manner described earlier; the equation of state data we

used to calculate f2 is taken from references 128, 104, 129,

and 130 for He, N2, CH‘, and C2116, respectively. Although

ethane isn’t a spherical solute we include it because of its

similarity to Xe in aqueous solutions; i.e. both gases have

comparable solubilities at 1 atm .and both form aqueous

clathrates at 25.0°c.6’ 1139 131
The analysis uses all the

published solubility data except the first point of the

methane data (P=34lpsia) for which x2 seemed anomalously

high. Once again we see that the calculated values of 622
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are strongly dependent on the choice of molar volume. Molar

volume data are taken from Ref.(109). For He there is no

direct measurement of molar volume. Of the three quoted

values shown in Table XIV, two are obtained from solubility

0 132,96
measurements (v2 = 15 . 5cm3/mol , v2°=29 . 7cm3/mol) and

the other is an estimate from the pure liquid triple point

density.116 These data, also, have the general feature that

one can choose an effective molar volume which leads to the

best fit of the data. The effective molar volumes that one

obtains are: vz'”(i-Ie)=l5.5cm3/mol, v2°"(H2)= 20cm3/mol,

V2.tt ( N2) = 33cm3/mol , v2." ( CH4) = 34cm3/mol , and

vz'"(C2H6)=50cm3/mol. All are close to the experimental

results with the exception of He and H2.

Watanabe and Andersen116 have performed molecular

dynamics simulations of the Kr-water system. Their results

indicated that the Kr solutes tended to undergo ’hydrophobic

repulsion’ in solution. By integrating the solute-solute

correlation function, as evaluated from ,computer

simulations,they found. that. Gé2(Kr) = -1004A3/molecule =

-604cm3/mol. This means the solutes tended to avoid one

another in solution. In the appendix of that paper they

include an analysis of solubility measurements which is

similar to ours. They find a definite correlation between

maxi) for a given solute and its corresponding second

osmotic virial coefficient, B: of Eq. (12.9). The general

tendency was that as max) increased, B: decreased. By

extrapolating experimental results they postulated that
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622(Xe)a -775cm3/mol, 622(Kr)u -362cm3/mol, 622(Ar)a

+16cm3/mol, and G22(Ne)u +821cm3/mol. They assert that the

less soluble gases (large kuo) are less polarizable and tend

to demonstrate hydrophobic clustering. The more polarizable

gases such as Kr and Xe are relatively hydrophilic and

prefer to be surrounded by water. We see no systematic

variation of this type. We believe that the systematic

variation observed in reference 116 for He, N2, H2 and CH4

is attributable to choice of molar volume, and selection of

data (for example, they neglect all nitrogen data above

x2=0.003 at 25°C and above x2=0.004 at 50°C). Our results

do not rule out such behavior, but within the experimental

uncertainty of v2O we cannot support such findings. It is

necessary to point out that the Kr solutions of Watanabe and

116 computer simulation were 5‘10 times more
Andersen’s

concentrated than the solutions we made. It is possible

that at this higher concentration one starts to see

clathrate behavior for krypton such as ‘we observed for

133 which form around the solutexenon. The ice-like cages

in the clathrate phase could provide a mechanism for

’hydrophobic repulsion’ between solutes.

Our results are more consistent with the theoretical

calculations of Pratt and Chandler.101 They developed a

theory of the hydrophobic effect which is based on an

integral equation for the relevant pair correlation

functions of the aqueous solution. The theory is more

accurate than previous analytic attempts because it utilizes
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the experimentally determined oxygen-oxygen correlation

function of pure water as an input parameter. Table V of

Ref. 101 tabulates the calculated values of second osmotic

virial coefficient, B:, for hard spheres in water in and a

hard sphere solvent. Although Pratt and Chandler’s model

predicted some hydrophobic clustering of the solutes, the

resulting values of 622 only ranged from -15 to 96

(cmalmol). SinCe a hard sphere is in some sense the

limiting case of an inert gas solute with zero

polarizability it might be reasonable to expect that 6:;

would be the largest possible value for the inert gases.

Unfortunately no attempt was made by the authors to

calculate G22 for more polarizable gaseous solutes.

To briefly summarize, we found that the solubility data

could be accurately fit by taking account only pressure

effects on the solute chemical potential. The contribution

of solute-solute interactions expected at high

concentrations, is uncertain since the partial molar volumes

v2o are not known accurately enough.

There is evidence, however, that solute concentration

effects may play a role in some aqueous systems. Figure 39

shows solubility data on the systems He-HéO and Nz-HZO, both

at 25.0°C. On Fig. 39 the quantities plotted are the same

as those on Fig 38, i.e. {51(f2/x2P4’) - PVZO/RT w x2.

We show curves representing each value of molar volume

listed on Table XIV. Although the best fit for He is

obtained with v20 = 15.5cm3, this seems too low in relation



to other values
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of the noble gases.
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14. Number Density Scale

So far we have analyzed the high pressure results in

terms of the mole fraction scale. In this chapter we

consider the thermodynamics of solvation on the number

density scale. This scale along with its many advantages

has been put forth by Ben-Naim.134

To illustrate how this applies to our high pressure

solubility data we write the chemical potential (in the

T,P,N ensemble) for the solute in the gas and liquid phases:

112' = RT40n(ngA3) + 12:9 (14.1a)

(12' = maupz’fi) + 0;" . (14.1b)

where A = h/(2xka)“z 18 the thermal wavelength of the

14 The first term on the right hand sidessolute particle.

of Eqs.(l4.la) and (l4.lb) represents the free energy per

mole of an ideal gas at the specified solute density, and

temperature. The second term, 11:, represents the excess

free energy per mole (over the ideal case) due to

intermolecular interactions in the gas and liquid phases.

Formally u: should also include contributions from the

internal partition function of the solute. For simple

solutes like the inert gases these contributions are mostly

electronic and we assume as usual that they do not change

211
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when the solute goes into the solvent. The excess chemical

potential in phase i, p:i, (i= 1 or g) can be interpreted as

avagadros number multiplied by the free energy to take an

extra solute from infinity and place it at fixed positions

in phase i of the assembled system. (see discussion in

Chapter 6 for details.) By equating 1121 with 1129 we find

the equilibrium condition in terms of the Ostwald

solubility, L, to be

It It It

Au=p’-pg=-R'ronL, (14.2)
2 2 2

where L = (pal/p29). The key quantity that one wishes to

understand in developing a theory of solvation is the excess

chemical potential in the liquid, p:l. When the gas phase

s

is at low density it can be treated as ideal, i.e., p29: 0.

l (seeFor this case Eq.(l4.2) gives a direct measure of p:

Eq.(3.1l)). When the gas is at a higher density one must

account for its nonideality. For the nonideal case we use

Eq. (11.2) to find the chemical potential in terms of the

solute fugacity. Using the equilibrium condition we now

find an expression for p21:

*1 92 RT
112 = -m~m[ —] = «7071(3) . (14.3)

f

This introduces the new dimensionless solubility parameter,

1 = (pleT / f2). In the low pressure limit 1 reduces to L.

Equation (14.3) also holds when the solvent vapor pressure
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isn’t negligible, as would apply near the critcal

temperature of the solvent. In that situation Eq.(ll.1) no

longer gives the solute fugacity correctly. Rather one must

then employ standard mixing rules in the gas phase to find

f .121,l3l

2

Because our experimental technique allows for' direct

measurement of pa1 we can easily evaluate L and 1. Columns

5 and 6 of Table 13 lists the results of our solubility

measurements in terms of the parameter 1. Also included are

the values of ”:1 as given by Eq. (14.3).

The statistical mechanics of solute-solvent mixtures

135,16
starts with a standard partition function from which,

as we have shown in chapter VI, one may obtain the excess

chemical potential for a single solute molecule in the

liquid solvent14:

*1

"2
= -kTOn<exp(-Bo/kT)> . (14.4)

The key quantitiy in Eq.(14.4), 30’ is the binding energy of

a single solute to a fixed configuration of the solute

solvent system. The ensemble average of the exponential is

taken over all configurations. In practice Eq.(14.4) is

difficult to evaluate unless one performs some sort of

weighted average which neglects improbable

102,136 1
*

configurations. Another way of writing p2 is to use

a coupling parameter approach:
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*1_ 1

pa - Io 0(1)01 , (14.5)

where the averaged interaction potential between the solute

and the liquid is a function of the coupling parameter,

1.38,39,40
Normally one ignores solute-solute interactions

with this technique. If solute-solute interactions become

important the resulting chemical potential will be a

function of the solute concentration in the liquid, i.e.,

“:1: F(pzl) 'The solute density can then be determined

through Eq.(l4.3).

The pressure and concentration dependence of u:l can be

evaluated in an manner analogous to our earlier derivation.

Starting from Eq. (22) of Ref (115) one can easily show for

dilute solutions:

-Rron(1) = -RT0n(L°) + Pv2° + pz’ RT( -022 - v20 +RTx° )

+0(p2‘)2 (14.6)

where Lois the infinite dilution limit of the Ostwald

solubility,and -RT6n(Lb) is the excess chemical potential in

the same limit.

The number density scale also offers advantages in

studying the temperature dependence of the salvation

process. The excess molar enthalpy and entropy in the

liquid are:



 

€3p*l
*

6T 9,. 2

where pzl is given by Eq. (14.3).

The excess free energy of solution is commonly described

on the mole fraction scale by Henry’s constant via; 11;" =

RTbn(k") , where k": (fa/x2). In this case the term excess

refers to a hypothetical standard state22 and ideal

solution.22 Henry’s constant is related to the solubility

parameter 1 by:

7=(p,‘+ (02’Hi'l‘lkll (14.88)

4: pilRT/k" , when pzl<<p11 . (14.8b)

The corresponding entropy and enthalpy evaluated on the

mole fraction scale includes terms which depend on the

thermal expansivity of the liquid. These terms are

irrelevant in the description of the salvation process on a

statistical mechanical level. A more complete discussion of

this topic is found in chapter III and Ref. (134).

In the limit that solute-solute interactions are

negligible a useful expression for the solvation entropy at

a given pressure P may be obtained by applying Eq.(l4.7) to

Eq. (14.6). The result is:

 

a‘v

3*‘(p) = 3*”°’ - p[ 2 ] , (14.9)
2 Z P n
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t

where 821(0) is the entropy associated with the infinitly

dilute solution at low pressure. This result seems

reasonable since changes in molar volume would be closely

tied to solvent ordering around the solute.

An application of the new solubility parameter 1 is in

the case of gas solubility at temperatures near the solvent

critical point. This subject has become a source of great

interest because of its applications towards industrial

power131 and the study of geological processe8137. For

dilute solutions approaching the solvent critical

temperature the gas pressure is dominated by the solvent

vapor. It has been experimentally observed, for water and

nonaqueous solvents, that Henry’s constant ka passes through

a minimum and then declines as the temperature is raised

from the triple point to the critical point.131 In a recent

article Japas and Sengers91 have noted that for x2<<1 a

linear relation exists between the solution density 91 and

the quantity A=Tbn(k"/f:’), where f1*is the fugacity of the

pure solvent vapor at temperature T.91 For nonpolar gases

in water this correlation exists over a range of more than

150 K below the steam critical point of 647 K (see figures

2-6 of ref 91). We can understand this result by using Eq.

(14.8b) to convert from Henry’s constant to 1. We can then

solve for A in terms of 1:

A = Nana/21*) m T0n(p1'RT/f1*72) = TOnHI/yz), (14.10)
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- l _ i
where 11- (p1 RT/fi) and 12 - (p2 RT/fz). We have also

assumed that for dilute solutions the solvent fugacity f1 is

*

equal to that of the pure solvent f1 . This is probably

4

justified since x2810- . Multiplying Eq. (14.10) by R

gives:

RA a 121mm!) + mama) = 41’,"- u? . (14.11)

Therefore the quantity A is proportional to the difference

in excess chemical potentials between the solvent and the

solute, both evaluated in the liquid phase. In chapter 6 we

derived expressions for the excess chemical potential using

a coupling parameter approach. Applying this to the solute

and solvent we find:

1 m
*1_ 1 9 9 3+ 1

p2 - 4npi‘fo Io u12(r) g12(r,l) d r d1 + O(p2 )

m pilllNT-IZI . (14.128)

“*1: 471131119 11 (1") g (1" 5) d3? d5 + O(p l)

1 1 o o 11 11 ’ 2

01 pilfINT-lll , (14.12b)

where 1 and E are the solute-solvent and solvent-solvent

coupling parameters respectively, and [INT-12] and [INT-ll]

represents 476 times the integrals appearing in 14.12a and

14.12b. Using this result Eq (14.11) can be written as:
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A a p1'([INT-11] - [INT-12] ]/R . (14.13)

For dilute solutions the solvent density p l is

1

approximately equal to the total solution density 91' It is

then apparent that the obseverd linear relation between A

and p1 is a consequence of Eq (14.13). This tells us that

as we approach the critical temperature of the solvent the

integrals [INT-11] and [INT-12] either become weakly

dependent on the solution density or linearly dependent on

the solution density. Why this happens at high temperature

is unknown and merits further study.



15. Conclusions

In conclusion we discuss briefly how this work can be

used to predict and understand solubility data and what

further experiments would be useful towards these ends.

We have found that the solubility of simple nonpolar

gases in water can be adequately predicted as a function of

pressure using Eq.(12.14). Although salute-salute effects

may play some role in the salvation process the change in

chemical potential with pressure is primarily due to the

increased Pv work to place the solute in the solvent. The

possible exceptions to this are He, H2, and perhaps Xe. The

first two cases were discussed earlier.We include Xe in this

list because our experimental technique was not as sensitive

as we would have liked it to be in the pre-clathrate range.

The other reason to study Xe is because it is the mast

polarizable inert gas (excluding radon). If the salvation

properties of He and Xe were known with sufficient

accuracy3one could set limits on the range of expected

hydrophobic behavior of the inert gases.

It is known that gas solubility in non-aqueous liquids

can be dependent on concentration. Fbr example, Hz solute

in N33 solvent shows large deviations from Eq. (12.15) at

121,138
mole fraction concentrations near 10 percent. To
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account for these effects one can use thermodynamic

121
arguments based on a two suffix Margules equation (a

semi-empirical form of the excess free energy)to show that:

u(f/xzp") = an(kfl°) + , (15.1) 

where x1 is the mole fraction concentration of the solvent

and A is a constant. This equation is known as the

Kritchevsky-Ilinskaya equation.139 It is often used in

chemical engineering to model solutions of light gases such

as He or H2 in liquid solvents where the solubility is

appreciable.121 It is only valid if the partial molar

volume of the solute is independent of pressure and

composition over the range studied. If this assumption

holds the constant A can be determined by fitting solubility

data. Equation (15.1) can be understood at a statistical

mechanical level. If the solution is sufficiently dilute we

may substitute (x12-1)s -2xz . By comparison with Eq.

(12.14) the coefficient A is identified as - +§(T). This

allows for convenient transformation of data that has been

21 Further experimentscompiled in engineering journals.1

with nonpolar liquids will be useful for comparison with

aqueous solutions.

We have also argued that the number density scale

provides a better framework to analyze solubility data. For

dilute systems like those discussed in this paper it is
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fairly straightforward to convert from the mole fraction to

the number density scale by Eq. (14.8b). However for more

concentrated solutions one would need a separate measurement

of the total solution density in order to extract the

relevant thermodynamic properties, particularly the enthalpy

and entropy. Our experimental technique automatically

measures the saturated solution density by sampling a fixed

volume of liquid. We feel that present experimental

methodslll’125 could easily be modified to include density

measurement. This may be especially valuable in the study

of gas-liquid mixtures near the solvent critical point,

where the solute molar volumes tend to increase drastically.

110,131,140
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Appendix A: Derivation of Equation (6.78).

For a liquid in equilibrium with its own vapor can

rewrite Eq. (6.76) as:

RTOMPq/RT) - 1!th - go" - 81111 = 0 , (A.1)

where we have assumed the vapor phase to be ideal. We now

take the total derivative of A.l with respect to temperature

along the liquid-gas coexistence curve.

Mung/133) - 20.1% + 111- g, [0099] - 111- %, [mm]

-.. 4. [44.],- 4. (a... + ...]w .

The subscript c refers to the derivative along the

coexistence curve. We note that this along the coexistence

curve the chemical potential in the gas and the liquid are

always equal, which is why Eq.(A.2) is zero. The total

derivative of the chemical potential with respect to

temperature can be written as:

(44); [311,100,800 .
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Using standard thermodynamics Eq. (A.3) becomes:

[31): .. . V131). . ....)

Multiplying Eq. (A.2) by T and using identity (A.4) we have:

2 d 2 d
RTbMPg/RT) - RTlmp‘c + RT 3? [W9] - RT 3'? [MT]

c C

“23'4"” ]c+ Tscv+ Tsim- T(vc"+ vmt)[§%) = 0. (A.5)

Subtracting (A.5) from (A.l) yields an expression for the

enthalpies h .and h :

cav int

_ 2 d _ 2 d 2 d
hcfl+ h1M RT a-T-[bnp‘c]c RT aT[lmRT]c + RT “[m‘i].

- 7'va 3714:0719] = 0 , (A.6)

9 c

where V; = vc"+ V1114. is the molar volume of the liquid

solvent. The Clausius-Clapyeron equation allows us to write

the dervatives of the vapor pressure in terms of the heat of

vaporization (Hv) via:

d[0nP]-H/RT‘°- (A 7)
3T 9 - v ° '

c

Putting this result into Eq.(A.6) and evaluating the other

temperature derivatives in terms of the gas and liquid
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expansivities we find the desired result:

h +11 -RT+RT201
cav int ‘C

+ Hv[ 1 + Pvt/RT ] = O . (A.8)
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Appendix 3: Computer Program to Evaluate 01m

THIS PROGRAM CALClLATES 0! PAIR CORREJTIM

FWCTION FOR A HARD SPHERE FLUID. USING TIE

SBAI-EH’IRICAL APPROXIMATE" BY

VERLET ET AL WTLIIED IN

’EQJILIMIW TI‘EDRY 0F 51101.5 LIMDS

PHYS REV A, VII. 5, W 2, 1972

7445144 750641005 MODIFIES THE 9544015 7244104 501077044 4:044

4444410 594454455, so 74447 17 ms 443454410441 511613171044 DATA.

70 00 74415 It 44.50 44457 use 7445 PERCUS-YEVICK

501071044 BASED 044 1745 75644414105 0447111450 174

‘ANALYTICAL REPRESENTATION 04: 774E PERCIS vsvrcx HARD SPi-ERE mm

01574410471044 WIOR' BY 6.41. 5441744 4443 0.4606150!

4401 PHYS.,1970, V0119, 440 3, 411-416

74415 vensrou 0417 EVALUATE 75mm 4» 70 4116-30 m mucu IE
TAKE 0(X/R)-l.0

666666666ALSO HAS BEEN WIFIED T0 EVALUATE TI-E may w INTERACT!”

Uint FRN 01101 E IILL DETEflIK TI'E Lanna-304:5 PM PM

TEE ME LINID .

O....O............OOCOOOOOOOOOOOOOOO

values ARE DESCRIBE 144 54417445 ms:

mun commerce (0)

01449451044 cm) .69) .0519) .052(3) .639)

014454451044 c1(3).c11 (3)

01449451044 c40(3),cao(3).cs1(3)

011467451044 C62(3),C63(3)

014464451044 01(2)

REAL R.F,I,THIRO.ALPHA,YP,YW,6ETA,VERI.

REAL 00,01,02.03,x44,0707,440u47,4=044,07071

REAL ma,m1~7,um7,sm,wnev,1mm

FIRST 62 BMW”! 7446 746466 ZERO’S 04= 5(6)

unmannemmmecms:

S(t)s((l-N)662)6t663) 6 (6644604060662) 6036064460) 0 (12606062640)

TYPE 6, 'PACRIRO FRACTIM RI’

ACCEPT 6,0 .

......‘OOOOCOOCOOOOOOOCO0....

CMERT REAL PACKIM FRACTIM 70 P.Y. EQUIVALENT PACKING FRACTIM

SEE VERLET pg 461

74-44- 44.44/16)

F IS 0E WIN old I” VERTLET’S ms:

6044-.75.44.4441-.7117444-.114.44.44)/(1-44)..4

......OOOOOO.....OOOOOOOOOOO

VARIM ALOEMAIC “INTI”

SEE SMITH at sl pp 412-413

13834960) 44644

THIRD-i .0/3.0

ALPHA-(1626 (Rm/F) 662) 66 . 8

YP-(loALPHA) 66 (THIRD)

744-.1+(.6.(1-A4.n44\)u(7441440))

TYPE 6,”
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TYPE 6 F

TYPE 6 :ALPHA

TYPE 6 YP

TYPE 6,YM

CJ=CEXP(CHPLX(0.00000,2.09430510))

CJ=EXP(26Ploi/3)

TYPE 6 CJ

CJ2=CJ6CJ

CJ_18CEXP(CMPLX(0. 00000, -2. 09430510))

CJ_2-CEXP(CNPLX(0. 00000, -4. 10879021))

CJl:(CJ)66-l CJ_2x(CJ)66-2

TYPE . ,c42

TYPE 6 ,CJ 2

CXO=(CMPLX(YP. 0. 0000)6CJO) (CMPLX(YN, 0. 0000)6CJ0)

CXI:(CMPLX(YP, 0. 0000)6CJ1)(CMPLX(YH, 0. 0000)6CJ_1)

CX2:(CMPLX(YP,0.0000)6CJ2) (CMPLX(YU, 0. 0000)6CJ_2)

TYPE 6 CXO

TYPE 6:CX1

TYPE 6,CX2

type 6,0hird

BETA=(26N6F)66(third)

CT(1)s(-26N48ETA6CX0)/(l-N)

CT(2)-(-26N+BETA6CX1)/(I-N)

CT(3)s(-26N+BETA6CX2)/(l-N)

'TYPE 6,’00, 01, b2 8’

TYPE .,c7(1),c7(2),c7(3)

THESE ARE THE THREE 4007s 0F 5(6)

4404 46 54444.4. EVALUATE 7446 OTHER 4444440165

446 USE 7446 54446 4407471044 45 5441744 444) 446406445044 EXCEPT

MMWMBMMMEMWJeMWMMfl

4150 CHANGE 54444710445 4-0 70 2 446004465 41.1 70 3

FIRST RE SHALL MAKE SURE THAT OUR ROOTS GIVE S(t)-0

00 IO K21, 3

O3-(1. 0-N)662.0

Q286.06N6(1.0-N)

01818.06N6N

00:12. 06N6(162. 06R)

CS(K)=O36CT(K)6CT(K)6CT(K)6OZ6CT(K)6CT(K)6QI6CT(K)-OO

TYPE 6 ,CS(K)

CONTINUE

NOR EVALUATE OTHER CONSTANTS

DO 100 Kal,3

CL(K)I(I.04(N/2))6CT(K)6(2.06N)41.0

CLI(K)31.06(N/2)

CSI(K)83.06036CT(K)6CT(K)¢2.06026CT(K)+QI

CS2(K)-6.06Q36CT(K)62.06q2

C53(K)86.0603

CAO(K)=CT(K)6CL(K)/CSI(K)

C80(K)I(-l2.06N6CL(K))/(C51(K)6C$I(K))
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681(4)=(1.o-(c7(x)4652(K)/CS1(K))).CL(K).(2.04c7(K)4CL1(K))

C82(K)=CT(K)6CL(K)

c0447144U6

0.44. 44044 446% DEFINED 44.4. 7446 FRICKIN’ VARIABLES 4.675 PLUG 74644

IN 440 EVALUATE Gn(x) n: 1 7o 2

TYPE 6,'HON LARGE IS THE INTERVAL BETWEEN POINTS'

ACCEPT 6 , INTERVAL

TYPE 6,’XR IS EVALUATED STARTING PRO“ 1.0’

XR=I.O

NPOINTSs2/INTERVAL

TYPE 0,'NPOINT$I',NPOINT5

00 2000 KOUNT81,NPOINTS-I

CX01TOT=0.0

CXG2TOT=0.0

OPEN(1,FILE-’PERYEV.DAT’,STATUSI’NEV')

DO 1000 Kal,3

CXGlaCA0(K)6CEXP(CT(K)6(XR-1))

CXGlTOTaCXGlTOToCXOl

cx02acao(x)4(ca1(K).c02(x).(xa-2.0))406xr(c7(x)4(xR-2.0))

cx02707-cx0270740x02

CONTINUE

TYPE 6,CX01TOT

TYPE 6,CX02TOT

c0(1)=cx01707/xa

- C0(2)8CX02TOT[XR

46 ARE 44.44057 0046, 4404 44.4.5 446 0075 74 00 15 EVALUATE cm

566 644 (1) 144 PAPER

IF (XR.GE.3.0) GTOT-REAL(1.0)

IF (XR.LT.3.0) 6TOT=REAL(CG 1).cc(2))

IF (XR.LT.2.0) 0707-464L(60 1))

IF (XR.LT.1.0) 0TOT=REAL(0.0)

IF (XR.EO.1.0) 07071-0707

VERL-24.o.ron.(xn-1)/(u.07071)

0707:0707.(Fou/xn)4c05(venL).6xr(-VERL)

TYPE .,'0707-4,0707,'xa-',xa

STORE 0474 IN FILE FOR 70? DRAWER PERYEV.DAT

IRITE(1,6) xR,0707

0.000.000.00000000000000

EVALUATE THE POTENTIAL ENERGY



1999

2000
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UTOT=0TOT6((XR66-4)-(XR46-10))

IF (MARKER .E0. 0) THEN

MARKER=I

UPREVsUTOT

GO TO 1999

ELSE

SUH=SUN6UTOT+UPREV

UPREV=UTOT

END IF

XR=XR+INTERVAL

CONTINUE

INTEGRALalNTERVALosUN/2

TYPE 6,’INTEORAL=’,INTEORAL

CLOSE(1)

STOP

END

  



9.

10.

ll.

12.

13.

14.

15.

References

W.L. Jorgensen, J.D. Hadura, and C.J. Svenson, J. Am.

Chem. Soc. LQQ, 6638 (1984).

F.H. Stillenger, Science, 291, 451, (1980).

H.P. Allen, and D.J. Tildesley, Gannn§:r_§imulatlona

Q£_Llfln111. (Oxford Universtiy Press, Oxford, 1987).

P.J. Leonard, D. Hendersen, and J.A. Barker, Trans.

Far. Soc., 66, 2439, (1970).

L.L. Lee, and D. Levesque, Hol. Phys., 26, 1351,

(1973). '

E. Wilhelm, R. Battino, and 3.3. Wilcock, Chem. Rev.,

11, 219, (1977).

P. Seeman, Pharmacol. Rev., 11, 583, (1972).

R.H. Peatherstone, and C.A. Muehlbacher, Pharmocol.

Rev., 11, 97, (1963).

L. Pauling, Science, 111, 15, (1961).

P.B. Bennett and D.H. Elliot,eds.,Ing_finx§191%3x_and,

ued101ne_2i_n111ng_and_sgnnressed_nlr_xnr&, 2 ed-,

(Bailliere Tindall,London, 1975).

C.0. Kunz and C.J. Paperiello, Science, 111, 1235,

(1976).

4 - ‘ - 4 ... 4 ' 0'19“"! I: - ‘-‘

5331;, draft WASH-14- 0.3. Atomic Energy Commission,

(Washington D.C., 1974).

7.14.8. Chang and R.P. Geyer, eds., MQW,

(Marcel Deker Inc., New York, 1989).

A- Ben-Nail. aolxatlon_Ihernodxnamlcs, (Plenum: New

York, 1987).

R. Fowler and E.A. Guggenheim, fitfliifltlfiil

, (Cambridge University Press, Cambridge,Inermadxnamics

1939), sec 023.

229



16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

230

0. Chandler. 1nLr9du2t122.12.!2dern_§tetisticel

Mechanics, (Oxford Press, New York, 1987).

G.L. Pollack, R.P. Kennan, J.F. Himm and P.W. Carr, J.

Chem Phys. 20, 6569, (1989).

G.L. Pollack, J. Chem. Phys., 75, 5975, (1981).

G.L. Pollack and J.F. Himm, J. Chem. Phys., _1, 3221

(1982).

R.S. Berry, S.A. Rice, J. Ross, Physics; Chemistry,

(John Wiley & Sons, New York, 1980).

A. Ben—Naim, J. Phys. Chem., 81, 792, (1978).

D. Eisenberg and D. Crothers, Physical Chemishzy with

Applicehiohs to the Life Sciences, (The Benjamin/

Cummings Publishing Co., Menlo Park Ca., 1979).

R.C. Richardson and E.N. Smith, eds., Ezcegimehcel

Te a u , (Addison- Wesley Publishing Co., Redwood

City Ca., 1988).

R. Battino and H.L. Clever, Chem. Rev., 66, 395,

(1966).

C.M. Lederer, J.M. Hollander, and I. Perlman, Iehle_ci

Lscccges, sixth edition, (John Wiley and Sons, New

York, 1967).

J.F. Himm, Ph.D. Thesis, Department of Physics and

Astronomy, Michigan State University, 1986.

K.Siegbahn,ed., - e - -

volume 1, (North Holland, Amsterdam, 1965).

H.G.Cuming and C.J.Anson, Mechemecics and statistics go;

Iechnclcgiscs, (Chemical Publishing Co., New York, 1967).

J-Timmermans, Ehxsisg_£bemica1_sen§tan£§_2£_Eure_9196016

gcmpccnfis, (Elsevier Publishing Co., New York, 1950).

Vol.1

3" :24. 4616-- 4 6' ._021 f 4'4 ['0' ‘ 4- 6°:

Yiertes_flrssnzunssxerk. edited by H.G. Boit (Springer,

Berlin, 1972) Vol.1, Part 1.

K. Huang, Statistlgs1_necnanice, second edition, (John

Wiley and Sons, New York, 1987).

B.B.Benson and D Krause Jr., J. Chem. Phys., si, 689,

(1976).



33.

34.

35.

36.

37.

38.

39.

40.

41.

42

43.

44.

45.

46.

47.

48.

49.

50.

51.

231

R.C.Reid, J.M.Prausnitz and B.E.Poling, The chperties

o£_§ases_end_h100115, fourth edition, (McGraw Hill Book

Co., New York, 1987).

G. Olofsson, A.A. Oshodi, E. Qvarnstrém and I. Wadsé,

J. Chem. Thermodynamics, 16, 1041, (1984).

J.F. Hansen and I.R.McDonald, Ihec;y_c§_fiimple_LiggigéJ

second edition, (Academic Press, London, 1986).

T.L. Hill, S t' ' i , (McGraw Hill Book

Co., Inc. New York, 1956).

L.E, Reichl, A nodezh Cogzse in Statistical Physics,

University of Texas Press, Austin, 1980).

L. Onsager, Chem. Rev., 11, 73, (1933).

J.G. Kirkwood, J. Chem. Phys., 3, 300, (1935).

T-L- H111. at3115112a1_lhermodxnamics4 ( Dover

Publications, Inc., New York, 1986).

W.C. Swope and H.C. Andersen, J. Phys. Chem., J. Phys.

Chem., 88, 6548, (1984).

N.W. Ashcroft and N.D. Mermin, SQlld_§LiL§_Ehl§1§i,

(Holt Rinehart and Winston, New York, 1976).?6).

D. Chandler, J.D. Weeks and H.C. Andersen, Science,

210, 787, (1983).

B.J. Alder and T.E. Wainwright, J. Chem. Phys., 21,

1208, (1957).

H.C. Longuet-Higgins and B. Widom, M01. Phys. 8, 549,

(1964).

L. Verlet, Phys. Rev., 152, 98, (1967).

J.L. Yarnell, M.J. Katz, R.C. Wenzel and S.H. Koenig,

Phys. Rev. A., 1, 2130 (1973).

D. Chandler, J.D. Weeks, Phys. Rev. Lett., 2;, 149,

(1970).

D. Chandler, Ann. Rev. Phys. Chem., 22, 441, (1978).

L. Verlet, Phys. Rev., 161, 201, (1968).

R.C. Andersen, D. Chandler, and J.D. Weeks, Adv. Chem.

Phys., 11, 105, (1976).

 



52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65

66.

67.

68.

69.

70.

71.

232

H.H. Uhlig, J. Phys. Chem. 11, 1215, (1937).

D.D. Eley, Trans. Faraday Soc., 66, 1281, 1421, (1938).

H. Reiss, H.L. Frisch, E. Helfand, and J.L. Lebowitz,

J. Chem. Phys., 6;, 119, (1960).

R.A. Pieroti, J. Phys. Chem., 61, 1840, (1963).

P.J. Flory, J. Chem. Phys., 6, 660 (1941); _6, 51,

(1942). .

M.L. Huggins, J. Chem. Phys., 2, 440, (1941); Ann. N.Y.

Acad. Sci. 3}, 1, (1942).

H.C. Longuet-Higgins, Discuss. Faraday. Soc., 16, 73,

(1953).

N.F. Carnahan, K.E. Starling, J. Chem. Phys. 61, 635,

(1969).

H. Reiss, H.L. Frisch, and J.L. Lebowitz, J. Chem.

Phys., 11, 369, (1959).

H. Reiss, Advances in Chem. Phys. 1, l (1964).

R-C- Tolman. Ihe_Er1ns1n1ea_o£_§tetistical_n:ehanies4

(Dover, New York, 1932)

J.K. Percus and G.J. Yevick, Phys. Rev., 116, 1,(1958).

J.H. Hildebrand, J.M. Prausnitz, and R.L.Scott, Reggie;

' ,(Van Nostrand Reinhold Co.,New

York, 1970).

R.P. Kennan and G.L. Pollack, J.Chem. Phys., 66, 517,

(1988).

Y. Kabatake and B.J. Alder, J. Phys. Chem., 66, 645,

(1962). .

R.A. Pierotti, J. Phys. Chem. 61, 1840, (1963).

J.H. Dymond and E.B. Smith, i

Eure_§ases_and_nirtures, (Clarendon, Oxford, 1980).

J.D. Hirschfelder, C.F. Curtis, R.B. Bird, nclecgls;_

Theory cf fieses and Liguids, (Wiley, New York, 1967).

R.A. Pierotti, Chem. Rev. 16, 717, (1976).

E Wilhelm and R. Battino, J. Chem. Phys., 66, 4012,

(1971).



72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

233

N.M. Desrosiers and J.P. Morel, Can. J. Chem., _§J 1,

(1981).

R.A. Pierotti, J. Phys. Chem., 66, 281, (1965).

M. Lucas, J. Phys. Chem., 66, 359, (1976).

R.C. Neff and D.A. McQuarrie, J. Phys. Chem., _1,

413,(1973).

J.A. Barker and D. Hendersen, J.Chem. Phys., 11,

4714,(1967).

G.L. Pollack, Rev. Mod. Phys., 66, 748, (1964).

M.L. Klein and J.A. Venables, ed., Bil:_§éfi_figliii,

(Academic Press, London, 1976-77), Vols I and II.

A1£_flshghgch,2nd ed., (McGraw-Hill Book Co. New York,

1963). -

E.W. Grundke and D. Henderson, M01. Phys. 11 ,269

(1972).

L. Verlet and J.J. Weis, M01. Phys., 16, 665, (1974).

S-E- Koonin, WW5.) ( The Benjamin/

Cummings Publishing Co., Menlo Park Ca., 1986).

S.H. Chen, H.T. Davis and D.F. Evans, J. Chem. Phys.,

77, 2540, (1982).

D. Dimitrelis and J.M. Prausnitz, Fluid Phase

Equilibria, 31, 1, (1986).

O. Sinanoglu, Theor. Chim. Acta (Berlin) 31, 279 (1974).

T. Boublik, M01. Phys., 11, 415, (1974); and J. Chem.

Phys. 66, 4048, (1975).

W.L. Jorgensen, J. Gao, and C. Ravimohan, J. Chem.

Phys., es, 3470, (1985).

W.L. Jorgensen, J. Am. Chem Soc., 161, 335, (1981).

L.A. Weber, Cryogenics 26, 338 (1985).

A.G. Duncan and M.J. Hiza, Adv. Cryog. Eng. _6, 42

(1970).

91. M.L. Japas and J.M.H. Levelt Sengers, AIChE Journal, 66,

705 (1989).



234

92. R.P. Kennan and G.L. Pollack, J. Chem. Phys. _6, 6529

(1988).

93. W. Henry, Philos. Trans. 93, 29, 274 (1803).

94. G.N. Lewis and M. Randall, revised by K.S. Pitzer and

L. Brewer., Th m ' , (McGraw Hill Book Co., New

York, 1961).

95. J.W. Miller, editor, NCAA 6ivigg MagugL, (U.S. Dept. of

Commerce, U.S. GPO, Washington D.C., 1979).

96. T. Enns, P.F. Scholander, and E.D. Bradstreet, J. Phys.

Chem. 62, 389 (1965).

97. W. Kauzmann, Adv. Protein Chem. 16, 1 (1959).

98. A- Ben-Naim. H2drgnh9bic_lnteractlgns. (Plenum. New

York, 1980).

99. A. Ben-Naim, J. Chem. Phys. 7 4884 (1977).
—’

100. E. Matteoli and L. Lepori, J. Chem. Phys. 66, 2856

(1984).

101. L.R. Pratt and D. Chandler, J. Chem. Phys. 61, 3683

(1977).

102. T.P. Straatsma, B.J.C. Berendsen and J.P.M. Postma, J.

Chem. Phys. 66, 6720 (1986).

103. D.D. Van Slyke, J. Biol. Chem. 66, 347 (1917).

104. A. Michels, R.J. Lunbeck,.and G.J. Wolkers, Physica 11,

801, 1951.

105. A. Michels, Hub. Wijker, and HR. Wijker, Physica _6,

627, (1949).

106. J.A. Beattie, J.S. Brierley, and R.J. Barriault, J.

Chem. Phys. 16, 1613 (1952).

107. A. Michels, T. Wassenaar, and L. Louwerse, Physica 16,

99 (1954).

108. flandb2Qk_2£_thmistrx_§nd_£hxslss. 69nd ed-. (Chemical

Rubber Co., Boca Raton, FL, 1988).

109. J.C. Moore, R. Battino, T.R. Rettlich, Y.P Handa, and E.

Wilhelm, J. Chem. Eng. Data 11, 22 (1982).

110. D.R. Biggerstaff and R.H. Wood, J. Phys. Chem. 61,

1988, (1988).

 



111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

235

L.A. Weber, J. Chem. Eng. Data 6AJ 171 (1989).

I.R. Krichevsky and J.S. Kasarnovsky, J. Am. Chem.

Soc. 61J (1935).

Frost and Deaton, Oil and Gas Jour. 16, 170, (1944).

I. Prigogine, Thg uolggglgr Ihgory o: gglggigng, (North

Holland Publishing Co., Amsterdam, 1957).

J.G. Kirkwood and F.P. Buff, J.Chem. Phys. 16, 774

(1951).

K. Watanabe and-H.C. Andersen, J. Phys. Chem. 66, 795

(1986).

A. W. Adamson, ' C ’ 0 S a , 4th ed.,

(John Wiley & Sons, New York, 1982).

L. Stryer, B och 'st , (W.H. Freeman & Co., San

Fransisco, 1975).

A. Ben-Naim, J. Chem. Phys. 66, 7412 (1989).

P.J. Flory, S a ' ' c ,

(Interscience, New York, 1969).

J.M.Prausnitz, R.N.Lichtentha1er, and E.G. de Azevedo,

Molecular Thermggyggmigs Qfi Eluid Ebagg 3961116113, 2nd

ed., (Prentice-Hall Inc., Inglewaod, N.J., 1986).

N. Bignell, J. Phys. Chem. 66, 5409 (1984).

R. Wiebe and V.L. Gaddy, J. Am. Chem. Soc. 51, 847

(1935).

O.L. Culberson and J.J. McKetta Jr., Trans. Am. Inst.

Min. Metall. Pet. Eng. 161, 223 (1951).

O.L. Culberson and J.J. McKetta Jr., Trans. Am. Inst.

Min. Metall. Pet. Eng. 166, 319 (1950).

W. McMillen Jr. and J.E. Meyer, J. Chem. Phys.

(1945).

3, 276

W.E. Demming and L. Shupe, Phys. Rev. _1, 638 (1931);

Phys Rev 16, 848 (1932).

R. Weibe, V.L. Gaddy, and C. Heins Jr. J. Am. Chem.

Soc. 66, 1721 (1931).

D.R. Douslin, R.H. Harrison, R.T. Moore, and J.P.

McCullough, J. Chem. Eng. Data 6, 358 (1964).



130.

131.

132.

133.

134.

135.

136.

137

138.

139.

140.

236

H.H. Reamer, R.H. Olds, B.H. Sage, and W.N. Lacy, Ind.

Eng. Chem. Ind. Edn. 66, 956 (1944).

R. Crovetto, R. Fernandez-Prini, and M.L. Japas, J.

Chem. Phys. 16, 1077 (1982).

D.D. Eley, Trans. Faraday Soc. 0 184 (1944).
_,

F. Franks, editor, Wgtgzg A Comprehensivg Tgegtisg,

v01. 7, (Plenum Press, New York, 1973).

A. Ben-Naim, J. Phys. Chem. 82, 792 (1978).

R.F0wler and E.A.Guggenheim, S ' ic h
I

(Cambridge University Press, Cambridge, 1939), Sec. 823.

W.L. Jorgensen, J.F. Blake, J.K. Buckner, J.Chem.Phys.

116, 193 (1989).

R.W. Potter and M.A. Clyne, J. 801. Chem. 1, 837

(1978).

R. Wiebe and V.L. Gaddy, J. Am. Chem. Soc. _6, 1984

(1937).

I.R. Krichevsky and A.A. Ilinskaya, Zh. Fiz. Khim. USSR

16, 621 (1945).

R. Fernéndez-Prini and M.L. Japas, J. Phys. Chem. _6,

3802 (1989).


