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ABSTRACT

PREDICTION OF GENETIC CHANGES IN SMALL CLOSED CATTLE POPULATIONS
EMPLOYING MULTIPLE OVULATION AND EMBRYO TRANSFER TECHNIQUES

By

Gwang-Joo Jeon

Breeding schemes employing multiple ovulation and embryo transfer
techniques promise a greater rate of genetic response than current Al
progeny testing schemes. This is due to shorter generation intervals,
higher intensity in selecting cows for replacements, more progeny from
genetically superior females, and potential for more intensive control
on selection criteria relative to large populations such as entire U.S.

This study examined genetic changes and random genetic drift in
three small closed dairy cattle populations using a stochastic
simulation model. Results from the stochastic simulation were compared
to those from the deterministic models.

Two populations with 88 breeding females and one population with
352 breeding females using multiple ovulation and embryo transfer
breeding schemes were generated by stochastic simulation. Selection was
strictly for first lactation milk yield. Ignoring and restricting
inbred matings were also examined for their impact on genetic
responses.

In closed finite populations, effective population size,
inbreeding, and linkage disequilibrium have major influences on genetic

responses and genetic drift. The reduction in genetic variation due to



inbreeding and linkage disequilibrium was taken into account in the
simulation. The results indicated that strict restriction on inbreeding
slowed genetic progress but was less of problem in a larger population.
The smaller population, ignoring inbred matings, showed a rapid rate of
inbreeding. Linkage disequilibrium reduced genetic variation as
significantly as inbreeding in the three populations.

Genetic responses and drift in small closed populations were also
estimated by deterministic models and then compared with those from
stochastic simulation results. In deterministic models, Rendel and
Robertson’s equation and gene flow model were modified to account for
reduced accuracies and heritabilities due to inbreeding and linkage
disequilibrium in each generation. Generally, deterministic models gave
similar estimates to stochastic models for genetic responses.
Reduction of genetic variation due to linkage disequilibrium is as
important as that due to inbreeding. When conservative restriction on
inbreeding was applied in the mating schemes to a small herd,
deterministic methods did not give similar estimates to stochastic

models for genetic responses in later generations.
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1. INTRODUCTION

Traditionally, the main concern of animal breeders have been
maximum improvement of animals’ genetic potential, which returns the
most profit to them. The maximum improvement of genetic potential
requires several factors such as proper statistical procedures to
accurately rank animals and good managerial practices to allow animals
to express their genetic ability. In general, any breeding program
should be judged in several ways, not only the maximum improvement of
the traits but also the monetary returns from the improved traits
(Hill, 1971).

Recently, new technology termed multiple ovulation and embryo
transfer (MOET), has been developed with the potential to a faster
genetic progress than artificial insemination (AI) progeny testing
schemes. From theory of genetic progress formulized by Rendel and
Robertson (1950), which was initially based on the selection index by
Hazel (1943), genetic progress is described as a function of selection
intensity, accuracy of the evaluation, genetic variation, and
generation interval for each transmitting path of genetic materials.
Among these factors, MOET breeding scheme should most benefit selection
intensity and generation interval. A major advantage of MOET is that
several progeny from selected parents utilizing genetically inferior
cows as recipients. As a consequence, the selection intensity of cow to
cow path becomes much higher than the conventional AI progeny testing
scheme.

The study of MOET breeding schemes in comparison to the

conventional AI progeny testing scheme has been done using empirical



simulation by several people. They showed that the genetic progress

from a MOET scheme was much greater than that from the conventional AI

breeding scheme. Many studies using the formula of Rendel and

Robertson’s equation or gene flow model using transition probability

method in estimation of genetic responses has been neglected for the

effect of inbreeding and linkage disequilibrium. The inbreeding and
linkage disequilibrium, however, substantially reduce the genetic
variation depending on the population size and selection intensity.

This may partially explain the discrepancy between the realized and the

estimated genetic changes (Ven Vleck, 1981). Especially, in a small

finite population, inbreeding and linkage disequilibrium should be
closely monitored.
This study was divided into two investigations:

(1) Stochastic simulation modeling of small closed populations using
MOET techniques was studied to examine genetic changes considering
the reduction in variance due to inbreeding and linkage
disequilibrium.

(2) Comparison between stochastic and deterministic models in
estimation of genetic changes with and without consideration

of inbreeding and linkage disequilibrium.



2. BEVIEV OF LITERATURE

2.1 INTRODUCTION: In traditional AI progeny testing breeding
schemes, selection of future parents requires two stages which takes
approximately 6 years on average: In the first stage, parents are
selected based on their pedigree information and in the second stage
they are re-evaluated based on their own or progeny performance. Due to
the limitation of single progeny from females in conventional AI
progeny testing scheme, genetic improvement is achieved mainly through
the use of thousands units of semen from selected sires.

Recently, a new technology called MOET, termed by Nicholas and
Smith (1983), has been developed and implemented in some commercial
herds. MOET schemes have a promising feature based on theory. The main
advantages of MOET application to a population are; 1) more offspring
from selected females 2) reduced generation intervals 3) easier to
transport embryos than adult animals 4) new borns have easier
adaptation to the environment of herds than adult animals 5) quick test
for a carrier of recessive traits due to short generation intervals 6)
reduced risk of disease transmission 7) increase numbers of rare or
endangered species. Several authors (proposed application of MOET
breeding schemes and reported faster genetic responses than
conventional AI progeny testing populations (Nicholas, 1977, Van Vleck,

1977, Nicholas and Smith, 1983, Ruane, 1988).

2.2 MULTIPLE OVULATION AND EMBRYO TRANSFER (MOET): The initial embryo
transfer was conducted in a rabbit as early as 1891. Up to 1971, most

embryo transfer work has been done as a laboratory tool for the study



of reproduction. Since 1975, embryo transfer has become an acceptable
tool for use in cattle breeding (Critser et al., 1980). This
acceptability is partly due to the nonsurgical collection technique.
Multiple ovulation and embryo transfer involves several procedures

(Seidel, 1989).

2.2.1 SUPEROVULATION: When a heifer is born, the ovary contains
about 200,000 oocytes. These oocytes are formed during fetal
development. After birth, no new oocytes are made. those present
degenerate and disappear from the ovary by puberty. This process of
degeneration is called atresia, which continues throughout life.
Superovulation is defined as the treatment of a female with the
hormones that cause more ova to be ovulated at one time than normal.
One hormone used is follicle-stimulating hormone (FSH) which is
secreted by the pituitary gland located at the base of brain. Another
is pregnant mare’s serum gonadotropin (PMSG). Superovulation is also
called multiple ovulation. Timing of superovulation depends on the
estrous cycle which varies from cow to cow. The time to induce
superovulation, for example, is day 15 if a cow will have a 19-day

cycle, or at day 19 if she has a 23-day cycle.

2.2.2 EMBRYO RECOVERY: About 5 days after superovulation with
FSH hormone, artificial insemination is conducted. If the semen and
eggs meet at the proper time fertilization occurs. The fertilized egg
is called an embryo. In cattle, embryos are recovered 6 to 8 days after

estrus. After 9 days, recovery and pregnancy rates are slightly



reduced. Embryo recovery is usually by a nonsurgical method. The
success of embryo recovery depends not only on the age of embryo but
also on the technique and the skill of the technician. About 50 to 80%

of embryos are recovered.

2.2.3 STORAGE OF EMBRYO: I1f recovered embryos must be
immediately transferred, This should be done between 20 min to 24 hr.
In most cases, it is necessary to store embryos until appropriate
recipients are available. To maintain the viability of embryo is
important. For short-term storage, they are usually kept under O to -10
degree Celsius for several days without much loss of viability. For
long-term storage, they are deep-frozen in liquid nitrogen at -196

degree Celsius.

2.2.4 RECIPIENTS: The recipients are not necessarily
genetically inferior cows. They must be in good health including
fertility, conformation, and milking ability. In general, there are

more losses of calves from heifer recipients than cow recipients.

2.3 MOET BREEDING SCHEMES: Ruane (1988) made a good review on
various MOET breeding schemes. In the conventional AI progeny testing
scheme, the bull to bull path contributes most to the genetic
improvement. MOET breeding schemes improve the genetic progress through
the increase in the reproductive rate of the female allowing a larger
emphasis on selection of female candidates. As a consequence, selection

intensity of the cow to bull path increases because fewer cows are



required to obtain the bulls for progeny testing.

Land and Hill (1975) examined the potential genetic progress of
growth rate in beef cattle employing MOET. In their scheme, cows and
bulls were assumed to have the first progeny at 2 years of age and 90 %
of cows calving any year survived to the following year. If the embryo
does not survive, then, the recipient received a second transfer. All
recipients were assumed fertile. The main advantage in the scheme was
the number of calves reared from each donor cow. They repérted that the
growth rate by MOET can be almost twice the conventional performance
testing program.

Petersen and Hansen (1977) studied the MOET aspect in bull to cow
path in dual cattle populations, where selection emphasis was on
butterfat and growth rate. By doubling the number of sons per dam,
which resulted in halving the number of selected cows, there was about
8% increase in butterfat yield.

Nicholas (1979) first examined the potential genetic progress by
MOET in dairy cattle. In his scheme, females were selected based on
their dam’s first lactation record and generation interval was assumed
2 years. This resulted in relatively a lower accuracy of .25. Males
were selected based on their dam’s first lactation record, or a family
index using full-sib, half-sib, and dam’s first record. All schemes
obtained higher genetic responses than the conventional AI progeny
testing scheme.

Following Nicholas’s work (1979), Nicholas and Smith (1983) were
first to examine two MOET schemes that they termed Juvenile and Adult

schemes. The basic principle of the juvenile and adult schemes are



equivalent to the first and second stage selection, respectively, of
conventional AI progeny testing scheme. The generation interval for
juvenile scheme is slightly less than 2 years. This is about one third
that of conventional AI progeny testing scheme. The generation interval
for theilr adult scheme was 3.7 years. The results showed that by using
various numbers of progeny per donor and numbers of donors per sire,
the genetic responses from both juvenile and adult schemes, or
combination of two schemes exceeded the genetic responses from the
conventional AI progeny testing scheme by up to 80 percent.

Powell (1981) studied the effects of embryo transfer resulting in
additional progeny information on evaluation of cows and bulls. He
showed that the repeatability of cow index increased from .43 for a cow
having one daughter to .49 for 10 daughters. He also pointed out that
ET can be used in cow evaluations to increase the number of full-sib
and half-sib records, which eventually shorten the generation interval
because the use of 3 full-sibs and 12 half-sibs gives about the same
accuracy as cow’s own 3 records (Ruane, 1988).

McDaniel and Cassel (1981) investigated the impact of ET on
genetic progress and concluded that ET can increase cow index dollars
up to 17% when 10 offspring per dam were obtained versus one offspring.
For herd replacements, percentage of cows to maintain herd size is
significantly reduced to 3.5 % when 20 offspring per dam is possible.

Juga and Maki-Tanila (1987) studied the effect of various number
of donors per sire and number of sires used. They reported that
selecting only one sire used on all cows obtained less than one percent

of genetic progress more than conventional AI progeny testing breeding



scheme per year. They suggested the optimum breeding design was adult
MOET scheme with selection of 2 sires and 16 donors per sire, which
resulted in 1.26 % increase per year.

Wooliams and Smith (1988) re-examined the work of Nicholas and
Smith (1983), where information on paternal pedigree was not included
in the index. They suggested inclusion of this information increased
the selection response in juvenile scheme 25 to 30%. They also studied
the effect of including indicator traits. Indicator traits are defined
as those traits which give indirect information on the traits being
selected. For example, blood urea nitrogen (BUN) as indicator trait for
milk yield. The value of indicator traits depends on the magnitude of
the co-heritability which is defined as genetic correlation between two
traits times the corresponding heritabilities of the two traits. The
use of indicator traits may also allow earlier selection in both male
and females, which makes the generation intervals shorter.

Bradford and Kennedy (1980) pointed out that there exist some
difficulties in selection of potential bull-dam donors because they are
at the extreme edge of the phenotypic distribution. Cunningham (1976)
mentioned that the underlying genetic distribution of selected bull-
dams may not follow the normal distribution due to the intensive

selection.

2.3.1 ACCUMULATION OF INBREEDING: Since MOET breeding schemes
produce more than one progeny from the selected parents, more full-sibs
and half-sibs are expected than with conventional AI progeny testing

schemes. This increases the rate of inbreeding. The effects of



inbreeding are two: 1) reduction in variance and 2) inbreeding
depression. The higher level of inbreeding in the population causes
animals to be more related and thus, the population is less variable.
Since the variation is key in selection, less variation may slow the
rate of genetic progress. The inbreeding depression refers to the
reduction of mean phenotypic value of the characteristics connected
with reproduction or physiological efficiency. With the usual dominance
model of inbreeding depression, there exist a linear relationship
between inbreeding coefficient and performance in unselected
populations (Hill, 1986). Hill also pointed out that the effect of
population size ranging from 10 to 160 animals are trivial for 5
generations. The rate of inbreeding is directly associated with the
effective population size. This was first introduced by Wright (1931).
The restriction of population size increases the homozygosity within
the population and is introduced in terms of the concept of the
idealized random breeding population, which is known as the effective
population size.

Under selection and artificial insemination, the inbreeding
coefficient in a population is much higher than that estimated from the
random mating population of equal size, because parents do not
contribute to the next generation equally (Toro et al., 1988).
Robertson (1961) pointed out that inbreeding under individual selection
is expected to be much greater than that calculated from the actual
number of parents when both heritability of the trait and selection
intensity is high.

With no selection and random mating of parents, the rate of



10

inbreeding is simply defined as (Falconer, 1980):
AF = 1/(4N;) + 1/(4Ng)
where Nm and Nf are number of selected males and females. Then, the

h

level of inbreeding in the tt generation becomes:

t
F, = 1-(1-AF)

where F. is the average inbreeding in the tth

generation. In reality,
random mating without selection would not be practiced in commercial
herds. Therefore, the inbreeding rate by the formula above is expected
to be much less than the realized inbreeding rate.

Another formula for annual expected inbreeding was given by Hill
(1972):

AF = (1/N, + 1/Ng)/(8xL?)
where L is an average generation interval of males and females. These
two formulae assume that the generations are discrete and selected
parents have the equal probability of contributing to the next
generation. However, the rate of inbreeding in overlapping generations
equals the rate of inbreeding in discrete generations if the the number
of individuals entering the population each generation and the variance
of lifetime family size are equal (Fewson and Nitter, 1987). Johnson
(1977) developed a method for estimation of inbreeding using a
transition probability matrix method (Hill, 1974):

F(t+1) = PF.P' + D
where P is a matrix specifying the path of genes between the different
age groups and has a stochastic nature; and D is a diagonal matrix

whose elements depend on the number of individuals in each age group.

This formula, however, does not take into account the complex situation
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of the four pathways of transmitting genetic materials. Fewson and
Nitter (1987) designed a formula to estimate the rate of inbreeding in
a single cycle selection of the four pathways:
AF = P'QP
- (1/46 1/4 1/46 1/4) |1/2Nmm 1/2Nmf| | 11/4]
:1/2Nmf 1/2Nmf= ° : 11/4]

.
|1/2Nfm 1/2Nff| |1/4]

|
|1/2Nf€  1/2NfE| |1/4]

= 1/32(1/Nmm + 3/Nmf + 1/Nfm + 3/Nff)
where P can be extended such that for an example, male to male (mm)
path can be subdivided into a group of young bulls (q proportion) and
the proven bulls (l-q proportion) and young cows with a proportion of
r and an old cows with a proportion of (l1-r). Then, P’ is redefined as:

P’ = [.25s .25(1-s)| .25q .25(1l-q)| .25] .25r .25(1l-r)]

As a consequence, Q becomes a size of 7x7 matrix.

Toro et al. (1988) examined four different methods of mating
policy for the minimization of inbreeding; 1) random mating (RM) 2)
minimum coancestry (MC) 3) weighted selection (WS) and 4) the
combination of MC and MS (MW). They found the MW system gives the

lowest inbreeding coefficient of the methods.

2.3.2 LINKAGE DISEQUILIBRIUM: Selection in the parental
generation creates a reduction of variance in the progeny generation.
This is known as linkage disequilibrium, or gametic phase

disequilibrium (Falconer, 1981). The consequence of reduced variance
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due to parental selection can be simply viewed as the distribution
theory. Since only the right tail-side of parental population is
selected as parents, the distribution of these selected parents is no
longer the same as the original population. The reduced variance due to
selection can be denoted (Falconer, 1981):

V(p)' = (1-k)V(p)
where V(p)'’ is the phenotypic variance in the selected parents; V(p) is
the phenotypic variance in the whole population; k is the reduction
factor and redefined as 1(i-x), where i is the selection intensity and
X is the deviation of the truncation point from the population mean in
standard deviation units. Then, the reduced genetic variance of V(g)’
equals (l-khz)V(g).

Bulmer (1971) derived the linkage disequilibrium in more detail by
regressing the progeny on parents:

y = a+bP) +DbP) + e
where a is an intercept; b is a regression weight; and e is error.
Taking the variance (V), V(e) is (1-.5(h2)2)v(y), where V(y) is a total
phenotypic variance. The equality of V(e) and (1-.5(h2)2)V(y) is
defined by rewriting the above equation:

y=-a+ b(Pl + P2) + e

By knowing that the covariance between an offspring and one parent
is (1/2)h2V(y), then,

Cov(y,P;+P,) = h2V(y)

V(P1+P2) = 2V(y), therefore,

b = Cov(y,P1+P2)/V(P1+P2)

- .5hn2
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Then, the residual variance can be computed;
V(y) = b2V(P+P,y) + V(e)
V(e) = V(y) - 26%V(y)
- (1-.50*)v(y)
Finally, the variance in progeny generation after selection in
parental generation becomes:
V(y") = b2V(R)) + b2U(B,) + V(e)
- 2b2[V(y) + dV(y)] + V(e)
- V(y) + .5(%)%av(y)
where V(y*) is a new variance after selection in parental generation.
The second term in the RHS of equation above, .5(h2)2dV(y), is the
amount of reduction in variance in progeny generation due to parental
selection, where d is expressed as:
d = V") -V 1750 )
This equation was extended to the situation of selection of several
generations such that:
V(a)i - V(a)o + di
V(y)g = V(y)g + d4
where V(a); and V(y); are additive genetic and phenotypic variance,
respectively, available in the 1th generation; V(a)o and V(y)o are
genetic and phenotypic variances, respectively available in the base
generation; and d;,, 1is .5d1+.5(h2)2dV(y)1.
Bulmer (1971) and Falconer (1981) derivations were restricted to
the single trait. Tallis (1987) extended this to the situation where

more than one trait is considered. His approach is the same ancestral

regression approach as Burmer'’s derivation (1971) but the solution
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involves an iteration method.

2.3.3 RANDOM GENETIC DRIFT: The definition of random genetic
drift is simply the random changes of the gene frequency. In small
finite populations with random mating, the direction of change is
unpredictable (Falconer, 1981). The random genetic drift is a joint
function of effective population size, heritability of the traits, and
selection intensity.

Hill (1974) showed the derivation for estimating the random
genetic drift. For N, males selected from M, and Ny females selected
from Mg, where M, and Hf are total number of males and females,
respectively, available for selection, the random genetic drift
variance, then, can be computed as:

0] = .2502( [1-(1-Cp)h?]/N_+[1-(1-Co)h?]/Ng )
where C, and C¢ are coefficients of order statistics for selected males
and females; Nm and Nf are number of selected males and females.

The importance of random genetic drift can be thought of as how much
difference we can expect between the expected and the realized genetic
responses. All breeders wish to minimize the difference. Nicholas
(1980) reported that for a simple mass selection program with selection
intensity of i and heritability of h2?, the size of population required
for the coefficient of variation of genetic response to be « after t

generations can be approximated by a simple function, 1/(aih)2t.

2.4 PREDICTION OF BREEDING VALUES: Methods of predicting breeding

values have been developed from selection index method with best linear



15

prediction (BLP) to mixed model equation (MME) with best linear
unbiased prediction (BLUP) properties.
In 1937, Smith first developed a selection index for plant design.
In 1943, Hazel (1943) developed a selection index for livestock. In
their initial studies, no statistical properties such as BLP were
defined. Nevertheless, their derivation was proven as BLP, where B
refers to best minimizing expected value of error squared, L refers to
linear combination of records, and P refers to prediction. The property
of BLP for selection index only holds if the records are completely
adjusted for the known fixed effects. However, in Hazel’s paper, the
records were adjusted only for season and line of breed effects.
The selection index is conventionally denoted as:
I =b'x
H=a'g
where I is an estimate of true breeding value, H
b is a vector of unknown index weights
x is a vector of records of relatives adjusted for known fixed
effects
H is a true breeding value
a is a vector of economic weights, or relative economic importance
g is a vector of true breeding values
Then, the index weights, b, are obtained by:
b - plca
where P is a matrix of phenotypic (co)variances among the x
C is a matrix of covariances between x and g

Then, the estimated breeding value of the animal is b’x, which is an
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estimate of H.

Due to its superiority of properties over selection index method,
a mixed model equation of BLUP is currently the most common method for
evaluation of animals’ genetic merit.

In application of MME of BLUP, use of MME has evolved from sire
model to animal model. Among these MME, animal model uses the least
assumptions and is considered an ideal model among all MME of BLUP. The
MME of BLUP was mostly developed by Henderson (1988). A rapid method of
constructing the inverse of relationship matrix by Henderson (1976)
made the model calculations more feasible in practice. The usual
notation of MME is:

y=Xb+ 2Zu + e
where y is a vector of records

b is a vector of unknown fixed effect

u is a vector of unknown random effect

e is a vector of unknown random residual

X and Z are known design matrices

The expectation and variances are:

E|ly| = | Xb| Viy|=-12'6Z+R 26 R |
I I I I B I
| u| 0 | | w| |6’z ¢ 0|
I I I [ |
| e | 10 | |l el |R 0 R |

where G and R are known genetic and residual (co)variances and are

positive definite. Then, the normal equation to solve for b and u are:
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| x'r"1x xR 1z b

| | b
(I O
I R
| Z'R™°X Z'R°"Z + A"°G| | u |
Usually, the problem of MME is the large number of equations due
to the relationship matrix among animals. Thus, it is sometimes
impossible to invert left hand side of the equation and therefore, the
equation should be solved iteratively. In a study of a simulated pig
population, Sorensen (1988) reported that selecting animals based on
MME animal model increased the response about 15% larger than selection
based on selection index, which was more beneficial when heritability

is lower.

2.5 PREDICTION OF GENETIC RESPONSES: Rendel and Robertson (1950)
derived the formula for prediction of genetic response based on
selection index theory (Hazel, 1943). Genetic progress is a function of
accuracy, selection intensity, genetic variability among animals, and
generation interval:

AG = 1 x rry X aa/L
where i is selection intensity, rpp; is accuracy or correlation between
estimated and true breeding values, Oa is additive genetic SD, and L is
generation interval. The assumptions made in the equation above is
quite moderate such that all parameters are kept constant over time and
also the response is only from a single cycle of selection in a steady
state. Therefore, this equation does not tell how many generations are
required to reach the steady state. This problem was overcome by the

gene flow model, which was based on transition probability matrix
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method (Hill, 1974). The gene flow model does take into account the
earlier fluctuation of genetic responses.

Most studies of predicting genetic responses have ignored the
effect of inbreeding and linkage disequilibrium, which leads to
overestimates of the selection responses. Modified equations for these

two factors may considerably increase the accuracy of the prediction.



3. CHAPTER 1 Stochastic Modeling of Multiple Ovulation and Embryo Transfer
(MOET) Breeding Schemes in Small Closed Dairy Cattle Populations

3.1 ABSTRACT

Genetic changes and genetic drift in three small closed dairy
cattle populations were examined by using a stochastic simulation
model. Multiple ovulation and embryo transfer (MOET) and AI techniques
were used in two populations with 88 breeding females and one
population with 352 breeding females. Selection goal was maximum
genetic improvement in milk yield. The reductions in genetic variation
due to inbreeding and linkage disequilibrium were taken into account
in the simulation. Strict restriction on inbred mating was found to
slow genetic progress significantly in the small population but was
inconsequential in the larger population. However, ignoring inbred
mating in the smaller population caused a rapid accumulation of
inbreeding coefficient. Linkage disequilibrium was as important as
inbreeding in reducing genetic variation. Genetic drift was much

smaller in the larger population.

3.2 INTRODUCTION
The techniques of multiple ovulation and embryo transfer (MOET) and
basic considerations of their application in the genetic improvement of
dairy cattle were outlined by Seidel and Seidel (1981) and Van Vleck
(1981). A variety of MOET breeding schemes were suggested for dairy
cattle in literature starting from juvenile and adult systems in closed
populations by Nicholas and Smith (1983) to open systems in large

populations by Christensen and Liboriussen (1986). Recently, Ruane
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(1988) provided a thorough review on the use of MOET techniques in the
genetic improvement of dairy cattle.

Nearly all studies have indicated that breeding schemes employing
MOET techniques promised a greater rate of genetic response than
current AI progeny testing schemes. This conclusion was based on the
argument that MOET would lead to shortened generation intervals, more
progeny from genetically superior females, higher intensity in
selecting cows for replacements, and more focused selection criteria.
However, the comparisons between breeding schemes were based on
empirical results from deterministic models with infinite population
theory. In prediction of genetic responses at low level of inbreeding,
an infinite population theory may be satisfactory in finite populations
(Hill, 1967). However, the main weakness in applying infinite
population theory in a finite population is that genetic sampling
cannot be accounted for. The well-known Rendel and Robertson’s
equation (1950) for the prediction of genetic response does not take
into account inbreeding, linkage disequilibrium, or Bulmer effect
(1971), which would reduce genetic variation substantially in finite
populations. These weaknesses of using deterministic models to compare
breeding schemes, especially infinite populations, can be overcome by
using stochastic models. De Roo (1988) used a stochastic model to study
breeding schemes in a small pig population, and a simulation study for
MOET breeding scheme in dairy cattle was made by Juga and Maki-Tanila
(1987). The stochastic model in our study included several improvements
over previous models. The simulation approximated: realistic biological

and managerial situations in a MOET dairy operation with regard to the
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occurrence of breeding decisions and events, including the selection
and stocking of semen and embryo banks, on monthly bases. Number of
eggs produced per flushing would follow a Poisson distribution. The
matings would not be random, but based on ranking from an animal model.
Accumulation of inbreeding would be closely monitored and considered in
mating decisions.

The specific objectives of this study were to examine genetic
responses and genetic drift in small closed dairy cattle populations
resulting from using breeding schemes which utilize MOET techniques
with milk yield being the sole selection goal. A stochastic simulation
model was used to generate results from MOET breeding schemes which
were compared to current AI progeny testing breeding schemes. The
influences of effective population size, inbreeding, and linkage
disequilibrium on genetic variation, response and drift were also of

interest.

3.3 METHODS

Three MOET breeding schemes in separate closed dairy cattle
nucleus herds were simulated over a period of 144 months. Prior to
that, however, base populations were established by random mating for
13 months. 1In all three schemes, the selection goal was genetic
improvement in milk yield. The three MOET breeding schemes were:

(1) MOET1: A total of six males and 88 females in the population.
No restrictions were imposed to avoid inbred matings;

(2) MOET2: Same population size as in MOET1, but matings that

would produce inbreeding coefficient greater than .0625 for offspring



22

were not made.
(3) MOET3: A total of 24 males and 352 females in the population.
Same restriction on inbreeding as used in MOET2.
Parameters for simulation
The parameters used in all three MOET breeding schemes were:
(1) Trait: milk yield in first lactation;
(2) Average milk production in base population: 7,500 kg;
(3) Phenotypic standard deviation in base population: 1,498 kg;
(4) Heritability: .4;
(5) Conception rate: .7;
(6) Sex ratio: .5;
(7) Survival rate for males and females (from birth to breeding
age): .7;
(8) Number of eggs per superovulation of a cow: A Poisson
distribution with mean five;
(9) Minimum number of eggs in an egg bank: 50;
(10) Mortality: .02 per month amongst cows older than 14 months of
age; and
(11) Maximum number of transferable eggs per selected male: 50.
Each of the three MOET breeding schemes was simulated
stochastically and was randomly repeated five times. The results in
each of the 144 months were used to calculate average genetic changes
and genetic drift, which were compared to genetic change from a
conventional AI progeny testing scheme for a large population.
Theoretical annual genetic gain in a conventional AI population was .02

of population average (Van Vleck, 1981), i.e., 150 kg per year.
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Realized genetic gain was assumed to be a third of the theoretical gain
(Van Vleck, 1977), i.e., 50 kg per year.
Simulation of Records

Records were generated by assuming an infinitesimal model (i.e.,
an infinite number of loci each with a small effect) by

yg = b+ ag + e (1]
where y; = phenotypic lactation milk record of the ith animal; x4 = mean
production of the population; a; = additive genetic effect of the ith
animal; and ey = random residual. The breeding value of animal i if
parents were unknown, a;, was generated by

ay - za,, (2]
where z is a random normal deviate and o, is the assumed additive
genetic standard deviation, or was generated by

ay = .5(31(5) + ai(d)) + M, [3]
where a4 (s) and aj(q) are true breeding values of sire and dam of the
1t animal and M is a deviation due to random mendelian sampling which
was generated as

M = z(.5(1-F))o, (4]
where F is the average inbreeding of the parents, and .5(1-?) accounts
for the reduction of genetic variation due to inbreeding. The
additive breeding value, ay, was generated at the birth of animal i,
and if she is female a phenotypic milk record was generated 12 months
after her first calving. The environmental residual, ey, in equation

[1] was generated as e; = zo, where o, is the assumed residual

e

standard deviation. All the random deviates used in the study were

generated from IMSL STAT/LIBRARY (1987).
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Base population

For each of the three MOET breeding schemes, initial unselected
base populations can be considered as a random sample of a large
unselected dairy population. A base population was generated with a
uniform age distribution ranging from one to 23 months, and in gametic
phase equilibrium state. Four females were generated per each month of
age, and a fixed number of sires was used in the time period for
establishing a base population.

The initial founder animals generated in a base population did not
have lactation records, and selection could not be applied immediately.
Therefore, animals in a base population were random mated for 13 months
to allow them to have records for evaluation and selection. Female
animals that were 14 months or older were mated while father-daughter
matings were avoided. All births resulted in females and no mortality
was allowed. At the conclusion of the 13 months, ages of animals would
range from one to 36 months.

Starting from the 1l4th month, for each of the succeeding 144
months, selection and voluntary culling of animals would be based on
their breeding values from an animal model. The number of founder
animals in a base population was the size of its breeding population
and would be kept constant.

Evaluation of animals
Breeding values were evaluated every month based on their first
lactation records using an animal model:

y= pl +Za + e (5]

where y = a vector of the first lactation records; u = an unknown fixed
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constant; a = a vector of unknown random effects of additive breeding
values for all animals in the population, male and female, with and
without records; e = a vector or random residuals; and 1 and Z =
incidence matrices corresponding to u and a, respectively. The

expectation values and (co)variances were;

- - - - - - -
y pl y ZAZ'ag + Ioe2 ZA Ipze
E al|l=1]0 ,and Var| a | = AZ'ag G (o]
e _0 ] -0- _Iag (0] Ia?ad

where A is an additive relationship matrix for all animals in a
including inbreeding coefficients. Mixed model equations were
constructed using parameter value for aﬁ/aﬁ. The equations were solved
by an iteration method. The solutions for a would be used as selection

criteria.

Selection

The best bull among all young bulls of 14 months of age was
selected in each month. His semen would be stored in a semen bank, and
to be used to fertilize no more than 50 transferable eggs. This
restriction should help to reduce the length of generation interval and
the rate of inbreeding. Then the best bull of all bulls having semen
in storage was used to breed the selected donor females.

The number of donors selected was dependent on the number of
fertilized eggs available in the egg bank. The number of eggs in the
egg bank was kept at a minimum of 50. For example, if the egg bank had

40 embryos, then two donors would be selected from all open cows that
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were 14 months of age or older. The assumption was that the number of
fertilized eggs per each superovulation averaged five but followed a
Poisson distribution. However, even if the egg bank had 50 eggs or
more, still one donor is selected to ensure the availability of
superior genetic potential in that given month.

The selection intensity on either the males or females was
impossible to enumerate, but they were a function of size of the semen
and egg banks, number of eggs per superovulation, number of bulls and
donors selected and number of transferable eggs fertilized per bull.

These values varied from month to month.

Mating

In all MOET breeding schemes, matings were done to maximize
genetic gain in milk yield. However, in MOET2 and 3, those matings
that would have resulted in progeny with inbreeding coefficients
greater than .0625 were avoided.

This was accomplished by computing the inbreeding coefficients for
offspring of all possible matings among selected males and donors. Only
those matings which produced the highest expected breeding values but
with inbreeding coefficients less than .0625 were chosen. Those
conceived donors were flushed, and recovered fertilized eggs were
stored in the egg bank. All embryos were ranked by their predicted
breeding values, i.e., average of sire’s and dam’s breeding values.
Then, top ranked embryos were transferred to all open cows and heifers

each month.
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Culling

Involuntary culling was imposed on those cows that failed to
conceive after three consecutive breedings. Also, a 2% mortality rate
due to diseases and accidents was imposed on cows after completion of
first lactation.

Voluntary culling was then practiced to keep the number of breeding
females in the populations constant. When population size exceeded the
capacity, those open cows that were in second or greater lactations
were culled first. If culling was still needed, heifers were culled.
Within each culling category of females, culling was done by the
magnitude of predicted breeding values in ascending order. Those young
bulls that were not selected at 14 months of age were culled. Selected
bulls were culled after being used to produce 50 transferable eggs.

After the stochastic process in each of the three MOET populations
was simulated over the course of 144 months and repeated for five
times, inbreeding, linkage disequilibrium, and genetic response with

random genetic drift variation were calculated.

3.4 RESULTS
Inbreeding
One consequence of inbreeding is a decrease in production due to
inbreeding depression. The model used in this study did not include
nonadditive genetic effect and thus did not consider inbreeding
depression.
Another consequence is reduced genetic variation which is a direct

proportion of the average inbreeding coefficient in the population. If
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genetic variance is reduced due to inbreeding, the loss would not be
recovered unless foreign genetic material is introduced. The
accumulation of inbreeding over 12 years in the three MOET populations
simulated is presented in Figure 1. MOET1 population with 88 breeding
females without restriction on inbreeding accumulated about 22.5%
inbreeding after 12 years. MOET2 and MOET3 populations both with

restriction on inbreeding reached 4.8% and 3.9%, respectively.
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Figure 1. Accumulation of inbreeding in the three MOET populations for
12 years
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Should MOET1 population be continued beyond 12 years, inbreeding
would soon reach the point where selection would be ineffective due to
severe loss of additive genetic variation. In MOET2 and MOET3
populations, genetically superior animals might not be selected due to
the restriction on inbreeding, thus hindering the progress of genetic
merit in these populations. The breeding scheme in both MOET2 and
MOET3 was the same, but MOET3 had a lower rate of inbreeding simply due
to a larger population size. The rate of inbreeding in all three MOET
populations followed approximately a linear trend.

Linkage disequilibrium

Selection of parents leads to a reduction of variance in the
progeny generation by generating gametic phase disequilibrium, or
linkage disequilibrium (Bulmer, 1971). The effect of linkage
disequilibrium on additive genetic variance at time t was expressed as:

vacey/ 1 Pog0)
where ai(t) was the genetic variation at time t; ”3(0) was the initial
genetic variation in the base population; and F was the average
inbreeding coefficient in the population at time t. With increasing
selection intensity, a larger reduction of genetic variance due to
linkage disequilibrium is expected. The MOET3 population has the
largest number of breeding animals, which gave a higher selection
intensity on males than MOET1 and MOET2. This resulted in the largest
reduction in genetic variance due to linkage disequilibrium of 20.5%
for MOET3. The linkage disequilibrium in MOET1 and MOET2 were 17% and
16.8%, respectively.

The amount of genetic variation in each year varied as shown in
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Figure 2, 3 and 4. In MOET2 and MOET3, if top ranking bulls could not

be used because of restriction on inbreeding in the progeny, bulls from

previous generations, who might not be intensively selected, were used,

hence more genetic variation among progeny. This should explain why

MOET2 showed more fluctuation of genetic variation than MOET1 and
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in genetic variation in MOET1 population for 12 years
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Figure 3. Change in genetic variation in MOET2 population for 12 years
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Figure 4. Change in genetic variation in MOET3 population for 12 years
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Genetic response

The genetic changes from the three MOET schemes were compared to
both theoretical and realized genetic progress from a conventional
progeny testing AI population. The theoretical genetic progress was
assumed to be 2% of pro-duction average or 150 kg per year (Van Vleck,
1981), and realized genetic gain was assumed to be one third of the
theoretical genetic gain (Van Vleck, 1977) or 50 kg per year. The
genetic progress over 12 years are shown in Figure 5, 6, and 7. The
genetic means of MOET1 population followed a smooth linear trend and
fluctuated less than those of MOET2 and MOET3. This was due to no
restriction on inbred matings in MOET1 population. This always allowed
the selection of best genetic material in each month. The selection of
best animals was not always possible in MOET2 in order to meet the
restricted inbreeding criteria, which hindered genetic progress. The
same restriction on inbreeding was imposed in MOET3 population, but its
genetic trend was similar to that of MOET1l. Due to the larger
population size, MOET3 population was less affected by the inbreeding
restriction and had higher probability of selecting animals that were
less related.

The rate of genetic progress in either MOET1l or MOET3 populations
was greater than both theoretical and realized genetic gains from the
current AI progeny testing population. However, the genetic gain in
MOET2 population was less than the theoretical genetic gain from the
current Al progeny testing population. This was because of the small

number of breeding animals and inbreeding restriction in mating.
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Figure 5. Annual genetic mean with genetic drift variation in MOET1
population for 12 years
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Genetic drift

Many factors contribute to random genetic drift, but it is mainly
related to effective population size. The random genetic drift was
described in terms of variation in genetic means over five replications
and was also shown in Figure 5, 6, and 7.

For the coefficient of variation (CV) of response to be a after n
generations, given selection intensity of i and heritability h2?, the
population size required can be approximated by Nicholas (1980):

1/na?2i2h?

Therefore, imposing higher selection intensity on highly heritable
traits for a fixed number of generations would require a smaller
population size. On the other hand, for fixed intensity, heritability
and size, for a to be small, relatively large population size would be
required. Hence, after 24 years, the CV of genetic mean MOET3
population was the smallest, 4.69%. Those in MOET1 and MOET2
populations were 9.68% and 13.38%, respectively. In MOET2 population,
the selection intensity was lower than those in MOET1 and MOET3
populations due to inbreeding restriction and smaller size, thus

resulting in the highest CV of genetic mean.

3.5 CONCLUSIONS
All three MOET breeding schemes studied achieved higher genetic
responses than the realized genetic gain from the current AI progeny
testing population. This was accomplished in populations in spite of
their small sizes, the closed schemes, and in some cases restrictions
on inbreeding. In fact, genetic gains in these MOET populations were

higher than not only the realized but also the theoretical maximum
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genetic gain possible in the current AI progeny testing schemes. This
was true with the exception of the small population with inbreeding
restriction. The small population, without restrictions to avoid
inbreeding, accumulated a high level of inbreeding. No restriction on
inbreeding did not appear to be worthwhile in terms of genetic gain for
the time horizon studied. Beyond that, however, selection would become
futile due to severe reduction in genetic variation because of
inbreeding. Higher selection intensity regardless of population size
lead to higher degree of linkage disequilibrium. The reduction in
genetic variation due to linkage disequilibrium was as significant as
that due to accumulation of inbreeding. Higher selection intensity and
larger population size lead to lower random genetic drift, but genetic

drift was not significant in all the populations studied.
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4. CHAPTER 2 Comparison of Deterministic and Stochastic Modeling for
Genetic Responses in Small Closed Dairy Cattle Populations

4.1 ABSTRACT

Genetic responses and drift in small closed populations were
studied by stochastic and deterministic models. In closed finite
populations, effective population size, inbreeding, and linkage
disequilibrium have major influences on genetic responses and drift.
Three multiple ovulation and embryo transfer breeding schemes covering
a 12 year period were simulated by stochastic models. The results were
compared to those from deterministic models. In deterministic models,
Rendel and Robertson’s equation and Gene Flow model were modified to
account for reduced accuracies and heritabilities due to inbreeding and
linkage disequilibrium in each generation. Selection intensity,
generation interval, and accumulation of inbreeding used in
deterministic models were obtained from stochastic models.

Generally, the modified deterministic models gave estimates of
genetic responses similar to stochastic models. Reduction of genetic
variation due to linkage disequilibrium was as important as that due to
inbreeding. However, in the population with a large accumulation of
inbreeding, accounting for linkage disequilibrium alone was not as
effective as that of inbreeding alone for deterministic models. When
conservative restriction on inbreeding was applied in the mating
schemes to a small size herd, deterministic methods did not give
estimates of genetic responses similar to responses from stochastic

models in later generations.
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4.2 INTRODUCTION

In designing a selective mating plan, an accurate prediction of
genetic gain and an anticipation of genetic drift are essential. The
deterministic equation by Rendel and Robertson (1950) for the
prediction of genetic change in a breeding program is well known and
popularly used. However, it is only asymptotically true when the rate
of genetic change is in a steady state, which may take many
generations. A method to account for the earlier fluctuation of genetic
progress before reaching the steady state is the Gene Flow model using
the probability transition matrix (Hill, 1976). When the rate of
genetic change in a breeding program with a constant selection
intensity over time becomes stable, then the two equations, RRE and
GFM, would give the same result.

In a small finite population, rate of inbreeding and linkage
disequilibrium are major factors that should be closely monitored.
These two factors substantially reduce genetic variation and result in
slower genetic progress. This contributes to the discrepancy between
realized genetic gains in a real population and estimated genetic gains
from RRE and GFM. Also, the random genetic drift is essential in small
finite populations.

Both RRE and GFM are deterministic in nature and their theoretical
formulas do not take into account inbreeding and linkage
disequilibrium, or the Bulmer effect (1971), both of which lead to a
reduction in genetic variation depending on population size, level of
inbreeding, and selection intensity. This may be a partial explanation

why only one third of the predicted genetic response has been achieved
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in dairy populations (Van Vleck, 1981). The deterministic equation for
estimation of random genetic drift given by Hill (1976) also assumes
constant parameters over time, ignoring the reduced variance due to
inbreeding and linkage disequilibrium.

The deterministic models can be improved to avoid simplifying the
assumptions such as heritability, selection accuracy, and variances
kept constant throughout the period of breeding plan. The genetic
changes can be more accurately studied by a stochastic simulation
model. However, the stochastic approach is tedious, costly, and time
demanding.

The objectives of this study were: 1) to illustrate a modification
in estimation equation for random genetic drift by Hill (4), and Rendel
and Robertson’s equation and Gene flow model for genetic response,
which would account for reduced variances due to inbreeding and linkage
disequilibrium; 2) to examine possible improvement in the accuracy of
predicting genetic responses by the modified Rendel and Robertson’s
equation and Gene flow model, and random genetic drift by the modified
Hill’'s equation; and 3) to compare both genetic responses and random
genetic drift from the deterministic and stochastic models in three
small closed dairy cattle populations employing multiple ovulation and
embryo transfer (MOET) technique.

4.3 METHODS
Stochastic model

Breeding events in each of the three multiple ovulation and embryo

transfer (MOET) populations were simulated monthly for a 12 year period

using parameters shown in Table 1. Simulation of each population was
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replicated five times. The structure and details of breeding events of
the three MOET populations, MOET1, MOET2, and MOET3, were previously

described in detail in CHAPTER 3.

Table 1. Parameters used to siTulate the three populations using
MOET breeding schemes .

Trait : milk yield

Heritability (h2) : .4

Phenotypic SD : 1,498 kg
Production mean : 7,500 kg
Survival rate .7

Conception rate .7
Avg. no. eggs/superovulation : 5 (following Poisson distribution)
No. of founder females ( age 14 mo.) : 88 for MOET 1

88 for MOET 2
352 for MOET 3

lRestriction in inbreeding with maximum of .0625 in the progeny was
imposed in mating schemes of MOET2 and MOET3. For MOET 1, inbreeding
was not considered.

An infinitesimal model at an individual animal level was used to

generate records:

yi-p+ai+ei

where yj vas the first lactation record of the 1th animal;
B was a constant overall mean;
a; was an additive genetic value of the ith animal; and
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e; was the random residual corresponding to the 1R record.

For genetic evaluation of animals, an animal model was used with a
known complete relationship matrix. Accumulation of inbreeding, changes
in genetic variance due to inbreeding and linkage disequilibrium, and
genetic responses with drift variation were computed each month. The
average selection intensity (SI), generation interval (GI) and
inbreeding resulting from the stochastic simulation were later used in
deterministic models and are summarized in Table 2.

Table 2. Parameters averaged from the 5 replicates of each simulated
MOET population that were used in the deterministic equations.

population Selection Intensity Generation Interval Inbreeding
male female male female

MOET 1 1.8485 1.488 2.83 3.64 22.5%

MOET 2 1.6865 1.400 3.25 3.45 4.8%

MOET 3 1.6865 1.400 3.25 3.75 3.9%

Deterministic models
Genetic responses. A summary of the alternative deterministic equations

of RRE and GFM used in this study is given in Table 3.
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Table 3. Description of modified Rendel and Robertson’s equations
(RRE) and Gene Flow Models (GFM).

Models description
Unmodified:
Rendel & Robertson Equation (RRE) ignoring inbreeding and
Gene Flow Model (GFM) linkage disequilibrium
Modified:
RRE(F) modified for inbreeding
GFM(F) only
RRE(LD) modified for linkage
GFM(LD) disequilibrium only
RRE(F,LD) modified for both inbreeding
GFM(F,LD) and linkage disequilibrium

(1) Rendel and Robertson’s equation (RRE).

By the selection index theory, Rendel and Robertson’s equation
(1950) is commonly denoted as:

AG/year = zci/ZLi
where AG/year is annual genetic gain; G; is genetic superiority of the
ith pathway; L; is generation interval of the ith pathway; and i=1,2
with 1 being from bull to produce bull and cow and 2 being from cow to
produce bull and cow. For simplification of model calculations, the
genetic superiority of the bull was computed based only on pedigree
information traced back two generations . For the dam, her first
lactation record was also included in addition to the pedigree

information. The genetic superiority of the ith pathway is:

Gi - SIi X (rTI)i X Ua [1]
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where SIi is selection intensity of the 1th pathway; (rTI)i is accuracy
of the ith path, or correlation between estimated and true breeding
values; 9 is additive genetic standard deviation. To compute rprs the
selection index equation for true breeding value, g, was set as:

I=- b'x [2]
where b is a vector of index weights; x is a vector of phenotypic
values adjusted for all fixed effects that were assumed to be of known
magnitude. The relatives’ information in index equation [1] were dam,
dam’s full-sib, dam’s half-sib, sire’s full-sib of females, sire’s
half-sib of females, and paternal grandam. This index has a similar
structure as the one outlined in the paper given by Wooliams and Smith
(1988) except indicator traits were not included. The index weights
were obtained as b-P'IG, where P is the phenotypic covariance matrix of
x; G is covariances between x and g. Then, the accuracy, rry, vwas

computed as:

rTI - J(b'PB; Og

(2) Gene Flow Model (GFM).

The gene flow model (GFM) gives a more exact estimation of
selection responses than RRE because it accounts for earlier
fluctuation of selection responses. The main principle of GFM is to use
a recurrence relationship employing the transition probability matrix
method developed by Hill (1976). The GFM in matrix notation was:

My (e)~TP(My (¢.1)+S (1)) (3]
where Hi(t) is a vector of genetic means of animals at age i at

time (t); Tp is the transition probability matrix that specifies the
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proportion of genes in the animals at time (t) coming from selected
animals at age i at time (t-1); ui(t-l) is a vector of genetic means of
animals at age i at time (t-1), i.e., ui(t) and ui(t-l) are a
recurrence relationship to each other in time t and (t-1) ; S(i) is a
vector of genetic selection differential of selected animals at age 1i.
The unit for age used in GFM was a month in the study. A detail

description of [3] is:

=5m1(t): :0...0 pmm 0...0:0...0 pfm 0...0: ::sml(t_l): : 0 ::
8m2 . . Bm2(t-
I P D e A
. . si
| | l NIy 1100
e I - N I I [ P N
|8k (E) | I 0} Ol llggy¢e-1y1 1011
f------ [ e RREE R [-----eommemmee- lo-------- I+ |---11
l8£1(ey! |0...0 ppg 0...010...0 peg 0...0]  |lBgy(e-1y! | O 1l
18£2(t)! | I 1 Hlegace-1y! 1 - T
L | S 1 B A |
. si
| I | o | I S N | g I
I | - N I I | P
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Taking the first row of equation [4] as illustration:

Bml(t) = Pom(Bmi(t-1)*5mi)*Pem(Bf1(t-1)*S£1)
where Bml (t) is average genetic mean of males at age 1 mo at time (t);
Pum 80d Pgy are proportion of genes in male progeny transmitted from
selected males and females, respectively; Spi and sgq are genetic
superiority of the selected male and female parents at age i, with
genetic means of g ; and g¢;, respectively. In the subscripts for Pom’
Pof' Pfm: and Pff in the transition probability matrix, mm, mf, fm, and

ff denote, respectively, male to male, male to female, female to male,

and female to female pathways of gene transmission.
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The genetic responses estimated by equation [4] were obtained by
restricting s ¢ of [4] in right-hand-side to zero for the initial time
period corresponding to their generation intervals of the three MOET
populations. The restriction was due to the use of sires from base
populations, where all sire were unselected and these unselected sires
were used at least for one generation (i.e., selection superiority=0)

in initial MOET application to the populations.

(3) Modified RRE and GFM to account for inbreeding
Reduction of genetic variance due to inbreeding is directly
proportional to the level of inbreeding according to the function:
od(ey = (1-Fal (o
where Ft is an average inbreeding coefficient in the population at time
t; and °§(t) and 03(0) are genetic variances at time t and in base
generation, respectively. The simulated populations, MOET1l, MOET2, and
MOET3, resulted in 22.5%, 4.8%, and 3.9% inbreedings, respectively,
after 12 years, which were assumed to follow a linear trend. In
computing genetic changes, o, of RRE in [1] and s ; and s¢y of GFM in

[4] were adjusted according to annually reduced variances due to F.

(4) Modified RRE and GFM to account for linkage disequilibrium.
Selection of parental generation induces a reduction in genetic
variance in next generation. This reduction in variance is known as
linkage disequilibrium or Bulmer effect (1971). The theory derives from
a simple regression equation by regressing progeny (y) on both parents

(P1 and P2):
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y=a+b(P +P)) +e
where a is intercept; b is regression weight; and e is error. Taking
the variance (V), V(e) is (1-.5(h?)2)v(y), where V(y) is a total
phenotypic variance. After selection in parents, then the variance in
progeny generation becomes:

V(y*) = b2u(R)) + b2U(Ry) + V(e)

- 262[V(y) + V()] + V(e)

- V(y) + .5%)%av(y) (5]
where V(y*) is a new variance after selection in parental generation.
The second term in the right-hand-side of equation (5], .5(h2)2dV(y) is
the amount of reduction in variance in progeny generation due to
parental selection, where d can be expressed as:

d = [V(y*)-V(y) 1/¢.5()2u(y)
This equation was extended to the situation of selection of several
generations such that:

V(a)i - V(a)o + di

V(y)y = V(y)g + d4
where V(a)i and V(y)i are additive genetic and phenotypic variance,
respectively, available at the 1th generation; V(a)o and V(y)o are
genetic and phenotypic variances, respectively available in the base

generation; and d1+1 is .5di+.5(h2)2dv(y)i.

(5) Modified RRE and GFM for both inbreeding and linkage
disequilibrium.
Reduction in variance due to both F and LD can be incorporated

into equation [1] and [4]. The reduced genetic variance at time t due
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to both F and LD can be expressed as:
2 2
oat) = (1-Flogoye + 944 (6]
where (I-Ft)ag(o) is a reduced additive genetic variance due to
inbreeding and d; is reduction due to linkage disequilibrium by

selection.

Random genetic drift. Random genetic drift is a dispersive process due
to gene sampling. The genetic drift obtained from the simulated
populations was considered as the realized genetic drift and was
expressed in terms of standard deviation among genetic means from five
simulated replicates of each population. For the deterministic
equations, the genetic drift were estimated by the equation given by
Hill (1974).

Hill’s equation was established based on the assumption that
variance and heritability stay constant. The drift variance (a%) is a
function of effective population size and selection intensity:

od = .2502( [1-(1-C)h2]/N +[1-(1-C)h] /Ny ) (7]
where C, and C¢ are coefficients of order statistics for selected males
and females; Ny and Ng¢ are number of selected males and females. The
equation is also unconditional on the selection differential but
assumes a constant selection intensity, which means that selection
intensity is constant from replication to replication but the selection

differential varies from replication to replication. The equation [7]

2

a and h2 due to

was also modified in this study to account for reduced o
both inbreeding and linkage disequilibrium simultaneously i.e., the

reduced variance [6] was used in equation [7] for the estimation of
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genetic drift variance.
4.4 RESULTS
Estimated genetic responses

Unmodified RRE and GFM generally overestimated genetic responses,
which was more apparent after six years in all three MOET populations.

The simulated small population with no restriction on F (MOET1
population) accumulated an average inbreeding coefficient of 22.5% at
year 12. For this population, the equations modified only for reduced
variance due to inbreeding obtained genetic responses (i.e., 2,209 kg
from RRE(F) and 2,320 kg from GFM(F), respectively) closer to the
realized genetic response (i.e., 2,191 kg for stochastic model) than
the equations modified only for linkage disequilibrium. Values of 2,386
kg from RRE(LD) and 2,486 kg from GFM(LD), respectively, are in Figure
8 and 9. The difference between RRE and GFM equations, however, was not
significant.

MOET2 population had the same population size as the MOET1 but
with a strict restriction on F imposed. For MOET2, the estimated
genetic responses from the modified deterministic equations for LD
only, RRE(LD) and GFM(LD), were closer to the realized response than
those from the modified deterministic equations for F only, RRE(F) and
GFM(LD) (Figure 10 and 11). This is due to the fact that a strict
restriction on F lowered the cut off for selecting parents from year to
year. Also, the reduction in variances were largely due to the effect
of linkage disequilibrium rather than inbreeding.

Similar results to MOET2 were found in MOET3 population (Figure 12
and 13). However, the estimated genetic responses in MOET3 population

were closer to the realized genetic response computed from the
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stochastic simulation model than those in MOET2 population. The reason
was that the strict restriction on inbreeding lowered cut off for
selecting parents in MOET2 population more than in the MOET3
population. MOET3 had a larger population size.

After RRE and GFM were modified for reduced variance due to both
inbreeding and linkage disequilibrium, RRE(F,LD) and GFM(F,LD), the
estimated genetic responses were, in general, very similar to the
realized ones computed from the stochastic model for MOET1 and MOET3
populations.

The largest discrepancy between estimated and realized genetic
responses occurred in MOET2 population (Figure 10 and 11). This was due
to selection intensity used in the RRE and GFM equations. By definition
of selection intensity, it results the top certain percent of animals
selected as parents. In MOET2 population, strict restriction on
inbreeding was imposed on the mating scheme. This resulted in selecting
genetically inferior animals to avoid inbreeding. However, the
selection intensity summarized in Table 2 was simply the proportion of
selected animals over total number of animals available, not specifying
a certain percent from the top. The MOET3 population, nevertheless, had
less chance to select inferior animals even with the same mating scheme
as MOET2 because of larger population size. This is one of the main
difficulties in use of deterministic models to estimate genetic
responses unless all the parameters in equations [3] and [8] remain
constant throughout the time horizon of a breeding plan.

Overall, the estimated genetic responses from the modified

deterministic models for both inbreeding and linkage disequilibrium
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were similar to the realized responses from the stochastic simulation
models. This, in part, is because the parameterslused in the
deterministic equations were from the summary of the stochastic
simulation results, and reduction in variance was taken into account

over time.
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Figure 8. Estimated genetic responses by RRE in comparison to realized
genetic responses in MOET1 population
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Figure 9. Estimated genetic responses by GFM in comparison to realized
genetic responses in MOET1 population
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Figure 10. Estimated genetic responses by RRE in comparison to realized
genetic responses in MOET2 population
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Figure 11. Estimated genetic responses by GFM in comparison to realized
genetic responses in MOET2 population
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Figure 12. Estimated genetic responses by RRE in comparison to realized
genetic responses in MOET3 population
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Figure 13. Estimated genetic responses by GFM in comparison to realized
genetic responses in MOET3 population
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Estimated Random Genetic Drift

Along with estimated genetic responses, the estimated genetic
drift variations from the modified deterministic equation [7] closely
approximated the realized genetic drift variations in MOET1 and MOET3
populations (Figure 14 to 16).

In MOET2 population, the estimated genetic drift variation was
much greater than the realized one mainly due to the same reasoning
mentioned in previous section. That is, the strict restriction on
inbreeding hindered the cut off for selecting parents.

Overall, the estimated genetic drift variation from the modified
equation [7] was very similar to the realized ones from the stochastic
simulation models.

4.5 CONCLUSIONS

Both the unmodified Rendel and Robertson’s equation and gene flow
model overestimated genetic responses. However, these deterministic
equations can be used to predict the genetic responses and genetic
drift accurately if the reduction in variance due to inbreeding and
linkage disequilibrium over time is taken into account.

In a large population, inbreeding may not be important due to the
large population size and a planned mating scheme used to avoid
inbreeding. However, linkage disequilibrium created by selection can
not be avoided and should be considered even in a large population.

One of the usual assumptions in the deterministic model
calculations is that breeding events with parameters from year to year
stay constant. However, the parameters such as selection intensity and

generation interval might not be consistent throughout the period of
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breeding plan because of some restrictions imposed such as inbreeding.
This would create some large biases in estimation as occured in MOET2.
This was the main difficulty in the use of the deterministic equation
used in this study. Nevertheless, with a moderate assumption such that
all parameters stay constant from generation to generation,
deterministic model can be an efficient alternative of stochastic
model for estimation of genetic changes if reduced variances are
considered.

If the parameters used in the deterministic models in this study
had not been from stochastic results, the difference between the
estimated and the realized responses from stochastic simulation would

be much greater.
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Figure 14. Estimated random genetic drift SD in comparison to realized
random genetic drift SD in MOET1 population
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Figure 15. Estimated random genetic drift SD in comparison to realized
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5. SUMMARY AND CONCLUSIONS

The use of artificial insemination in cattle populations has made
it possible to improve genetic potential of production animals. New
technology of multiple ovulation and embryo transfer has shown that it
can add to the rate genetic improvement in current AI cattle
populations.

This study examined the potential genetic improvement in three
small closed dairy cattle populations using multiple ovulation and
embryo transfer techniques and is composed of two investigations.

In the first investigation, the genetic changes such as the rate
of inbreeding, linkage disequilibrium, and genetic response along with
random genetic drift was studied by a stochastic modeling approach. The
motivation of using a stochastic approach was that it could more
accurately account for the random nature of populations. It was found
that the MOET breeding scheme without restriction on inbreeding in
consideration of mating design accumulated a rapid inbreeding
coefficient even though considerable genetic response was achieved.
Despite a larger response, this is not recommended in practical
breeding design due to a high level of inbreeding. In the same small
population structure using strict restriction on inbreeding in mating
scheme, responses were not more efficient than conventional AI scheme
as the obtained response was slightly less than the conventional AI
progeny testing scheme. The remedy to improve the selection response
with a strict restriction on inbreeding was found by increasing the
population size.

Several factors influence the genetic progress, population size,

67
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selection intensity, rate of inbreeding, and breeding scheme, and the
variation among animals. Greater variation among animals makes the
selection more efficient. However, this variation can be reduced
depending on inbreeding and linkage disequilibrium. Linkage
disequilibrium was as significant as inbreeding in reducing the
variation among animals.

In the second investigation, the study was focused on improvement
of the deterministic modeling approach for the prediction of genetic
change. Even with a random nature of population, if deterministic
models can predict the genetic change as close as stochastic models,
then, it will save time, costs, and labor. The deterministic models of
Rendel and Robertson’s equation and gene flow model were examined. Both
deterministic equations ignore the reduction in variances due to
inbreeding and linkage disequilibrium in their original formulation.
After reduced variances were taken into account in model calculations,
the predicted genetic responses were similar to the results from the
stochastic modeling approach. However, some difficulties are hard to
overcome in the deterministic approach such as the estimation of level
of inbreeding coefficients. The several estimation methods of
inbreeding, however, were restricted to special cases. This might be,
nevertheless, a smaller problem in a large population. Estimation of
random genetic drift after adjusting for the reduced variances also
gave similar results to stochastic models.

Extension of MOET techniques in open nucleus breeding schemes is
feasible, which would increase selection intensity. Also, the problem

of inbreeding can be reduced due to a large population size.
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