


~ N 2 o*2 =57

5
[l |
3 0602 4

LIBRA .
M’d‘l’ﬂn Staie

. University l

This is to certify that the
dissertation entitled
Structure, Dynamics and Superconducting
Correlations of Layered Solids

presented by
Wei Jin

has been accepted towards fulfillment
of the requirements for

Ph.D. degree in Physics

/]
A Mahand

Major professor

Date__August 8, 1989

MSU is an Affirmative Action/ Equal Opportunity Institution o-12m



PLACE IN RETURN BOX to remove this checkout from your record.
TO AVOID FINES return on or before date due.

DATE DUE DATE DUE DATE DUE

| |

MSU Is An Affirmative ActiorvVE qual Opportunity Institution



Structure, Dynamics and Superconducting’

Correlations in Layered Solids
By

Wei Jin

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Physics and Astronomy

1989



PRSI A

ABSTRACT

Structure, Dynamics and Superconducting

Correlations in Layered Solids
By

Wei Jin

In this thesis I study three aspects of layered solids. These are (1) the struc-
ture of intercalated layered compounds, (2) structure and dynamics of molecular
monolayer adsorbed on a substrate, and (3) superconducting correlations in re-

cently discovered high-T, layered oxide superconductors as probed by neutron.

To study the structural properties of randomly intercalated layered solids, I
have set up a harmonic spring model that describes both the layer rigidity and the
size and stiffness of the intercalant species. In certain limiting cases, the model
can be solved exactly. I also give an effective medium solution that reproduces all
the known exact results, and agrees well with numerical simulations in other cases.
These simulations are performed for both one and two-dimensional systems. If the
two intercalant species have the same spring constant, the usual linear behavior,
the well known Vegard’s law, is recovered. I compute the probability distribution
of various interlayer distances and apply the results to two-dimensional alloys of

ternary graphite intercalation compounds.



Using a constant-pressure molecular-dynamics simulation, I have investigated
the structure and dynamics of a two-dimensional molecular monolayer undergoing
ferroelastic and order-disorder phase transitions. Phonons and librons have been
studied below and above the ferroelastic phase transition by both self-consistent
lattice dynamics and molecular-dynamics. Comparison between phonon frequen-
cies for certain symmetry directions obtained by using these two methods clearly
shows the presence of large anharmonicity effects in the paraelastic phase. Time
dependent correlation functions and dynamic structure factors obtained in the
molecular-dynamics simulations are given. Softening of phonon frequencies near

the ferroelastic phase transition is discussed.

Dynamic response and neutron scattering characteristics for paired fermion
and paired spinless charged boson supérconductors are presented. For the paired
fermion system, I show that both orbital and spin currents associated with the
Cooper pairs make equally important contributions to the inelastic scattering, the
former dominating the later in the regime of small wave vector transfer. I suggest
that a direct measurement of the the current-current response function by neutron
scattering may be a diagnostic tool for distinguishing the quasiparticle statistics
as well as determining the superconducting parameters of the new high-T, layered

oxide superconductors.
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Chapter 1

Introduction

A basic aim of theoretical condensed matter physics is to understand and
predict structural, dynamic, transport, electrical and magnetic properties of the
solids starting from a fundamental microscopic basis. There are a large number
of solids such as graphite, boron nitrate, layered dichalogenides, artificial super-
lattices, and the new high-T, oxide superconductors which have layered structure.
These systems show a large anisotropy in their physical properties due to this
layered structure. A common feature of these solids is that the interactions of
atoms or molecules in the same layer is usually much stronger than the interlayer
interaction. Thus a quasi two-dimensional model is a good starting point to probe
different physical properties of these solids even though the interlayer interaction
can not be completely ignored. The scope of this thesis spans the study of the
structure, dynamics and superconducting properties of different types of layerd

solids.

This thesis is divided into three nearly independent parts, the common link
being that each part deals with one particular property of layered solids. The first
part consists of chapter 2 where I study the structure of randomly intercalated
layered solids like ternary intercalation compounds. These systems have recently

become extremely interesting both from experimental and theoretical point of view



2

since the transverse rigidity of the layers can span a broad range, starting from
a rather small value (floppy) for graphite to an extremely large value (rigid) for
complex layered oxides. The second part which consists of chapter 3 deals with
the dynamics of layered solids with particular focus on physisorbed monolayer
molecular systems. My major interest here is to probe the nature of the dynamics
of two-dimensional molecular solids which undergo order-disorder and ferroelastic
plase transitions. In this chapter, I have investigated various dynamic properties of
a model two-dimensional molecular solid which closely resembles oxygen molecular
on graphite surface. In particular, I study the dynamic density correlation function,
dynamic structure factor, phonons and librons in this two-dimensional diatomic
molecular solid both by constant-pressure molecular dynamics simulation and self-
consistent phonon theory. Finally the third part consists of chapter 4 and chapter
5 where I study the dynamic response and neutron scattering characteristics of
paired fermion and paired boson superconductors. I apply this theory to the
recently discovered high-T, oxide superconductors, almost all of which have layered
structure as far as the electronic transpoft is concerned, the only exception being

Ba;_.K.BiO3 which has a three-dimensional structure.

Rather than reviewing the background materials associated with these three
different topics here in chapter 1, each of the following chapters contains a rather
detailed introduction to the problem under investigation. Similary, the references
of different parts are given at the end of each chapter excepting chapters 4 and 5

which have a common reference section, given at the end of chapter 5.



Chapter 2

Rigidity of Randomly
Intercalated Layered Solids

2.1 Introduction

All crystalline solid solutions show a composition dependence of the aver-
age unit cell volume (V) which increase with the concentration of the largest
constituent.! Simple examples of such systems are: binary alloys of the type
A;_.B, and ternary systems of the type A;_;B,;L.! The linear variation of (V)
with z is the well known Vegard’s law,? although most solid solutions do exhibit a
complex nonlinear (superlinear, sublinear, sigmoidal) behavior. The z-dependence
of (V) depends, at the microscopic level, on the competition between local and
global energies associated with forming a solid solution. These energies depend
upon the relative size and compressibility of the different atomic species and over-

all rigidity of the system.

To address the question of the z-dependence of both the average volume (V')
and fluctuations in the unit cell volume from site to site, it is somewhat simpler
theoretically to consider either systems of reduced dimensionality or those with

large anisotropy in physical properties. For example, there is a considerable variety
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of ternary layered intercalated compounds of the form 4;_.B.L, with0 <z < 1,
[B(A) is the larger (smaller) intercalant, L denotes the layer| where the major
expansion takes place along the direction perpendicular to the layers, denoted as

the c-axis, 3—11

In the past, several attempts have been made to study the nonlinear x-
dependence of the c-axis expansion within two quite distinct types of models. One,

referred to as the rigid layer model®’

in which the layers are assumed to be flat
i.e. perfectly rigid against transverse distortions. In this model the nonlinearity
in the c-axis expansion arises from the finite but different compressibilities of the
two intercalants A and B. The second, referred to as the layer rigidity model,12-18
in which the layers are assumed to be deformable but the intercalants are taken to
be perfectly incompressible but having different sizes. This model has been solved
in the case where there are only two allowed heights and gives a simple functional
form that seems to fit the observed layer thickness well in some compounds like
Cs.Rby_.Vermiculite.!?:1415 The second model has also been solved using an elas-

tic continuum approximation!®:!7

in the low-defect concentration limit (i.e. z close
to 0 or 1). Simultaneous inclusion of the effects of both the local ionic compress-
ibility and the finite layer rigidity on the c-axis expansion is the main purpose of

this chapter.®

In this chapter, I set up a spring model that describes both the layer rigidity
and the size and stiffness of the intercalant species. In certain limiting cases,
the model can be solved exactly. I also give an effective medium solution that
reproduces all the known exact results, and agrees well with numerical simulations
in other cases. These simulations are performed for both one and two dimensional

systems. If the two intercalant species have the same spring constant, Vegard’s
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law is recovered. I compute the probability distribution of the various interlayer
distances and apply the results to two dimensional alloys of Li and vacancies in

graphite, and to K and Rb in graphite.

The outline of this chapter is as follows. Secction 2.2 introduces the spring
model and in Sec. 2.3, I present results of exact calculations in certain limiting
cases. In Sec. 2.4, I develop an effective medium theory and test its accuracy by
comparing the results with the exact calculations. In Sec. 2.5, numerical simula-
tions are compared with the effective medium theory results and finally in Sec. 2.6,
I make some general remarks and compare the simulation and effective medium

theory results with available experiments in graphite intercalation compounds.

2.2 The Model

Consider a layered ternary system with composition 4;_,B.L, where L rep-
resents the host layer such as graphite, dichalcogenide or vermiculite. A and B
are two different types of intercalants which are assumed to occupy (randomly) a
set of well defined lattice.sites (see Fig. 2.1). The total energy of the system can
be approximated by a sum of two major contributions; one associated with the in-
teraction between the intercalants and the host atoms and the other between host
atoms themselves. Since I assume the intercalants to be frozen (i.e. quenched),
the direct interaction energy between the intercalants does not play any role in the
layer distortion. In a real ternary which consists of many layers, the experimentally
measured average interlayer spacing will, to some degree, depend on the interlayer
correlation. The latter results from large intercalant ions in the adjacent galleries

repelling each other,® and other similar effects. The qualitative effect of



Fig. 2.1 Top view of a hexagonal lattice host layer where the interaclants
form a triangular lattice
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interlayer correlation has been addressed in Ref. 5 and will not be discussed further
in this thesis. In the present analysis, I neglect this correlation and consider a single
gallery bounded by two host layers with intercalants randomly occupying lattice

sites inside the gallery.

The total energy of the host layer-intercalant system can be written as

B LS A=A+ 3 Knlhn b+ TR | -]
i <i,6> i §
(2.1)

where h; is the gallery height at the site i where an intercalant (either 4 or B)
sits. The angular brackets in the second summation indicate that each bond § is
only counted once. The terms involving the spring constants K1 and K describe

res.pectively the transverse and bending rigidity of the layers. In a continuum

model, these terms would give an energy. density

1[, 262 Kr 262 _Kr

= (=)—(Vh)? + (=—)*—(V?hn)? 2.2

where a is the area per atom, z is the number of nearest neighbors, § is the distance
between the nearest neighbor intercalants, and d is the dimension. This leads to
an equation of motion,

o9? 26 K 262
—h = (=)L V2h — (Z=)2=ZV4h :
p8t2 ( 2d " a ( 2d ) a ’ (2:3)
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where h(r,t) is the height, V is the d-dimensional gradient operato, § is the lattice
constant, and p is the mass density. From Eq. (2.3), we see that the isotropic layer

dispersion relation at long wavelengths is

Kr
wg = () ¢ +

Kr
220F 4

2.4
sy Eeg], (24)
where q is the wavevector. This phonon has propagation direction in the basal
plane but displacements out of plane. When K1 = 0, the positive ¢* term is the

source of anomalous dispersion wg ~ ¢* which is seen in pristine graphite.?

The host-intercalant interaction is approximated by a harmonic spring of
strength Ki(= K4 or Kg) and equilibrium height hi(= h% or AY). In princi-

18,19 Here

ple, K4 and Kpg can be calculated by using density- functional theory.
I regard them as two parameters characterizing the compressibilities of the inter-
calant atoms (ions). The energy associated with host layer deformation has two
types of contributions common to layered solids. The first one, proportional to
K, is the transverse layer rigidity,® and the second one, proportional to K is the

flexural rigidity.!® For binary systems, i.e. AL or BL, all the h's are equal and the

gallery height (or equivalently the interlayer spacing) is h% or h%.

I define a variable o; at each site i by assigning it values +1(—1) if the inter-

calant at that site is B(A). The corresponding probability distribution is
P(oi) = zb(os — 1) + (1 — z)é(0; + 1). (2.5)
{o} is a set of random variables whose joint probability distribution P({o}) is given

by [1; P(e1). Ki and h{ can be expressed as Kj = %(KB + Ka)+ %(KB — K 4)a,
and A} = 2(h" +h%) + 2(h° - h%)a;.
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To obtain various averaged quantities of interest, such as (h), (h4), (hp) where

(h) = %zi:h:, (ha) = —A}—a;hw;’, N, = Nzi:p;’, (2.6)

and where pf(a = A, B) is the projection operator defined by

1
piB’A = 5(1 + oy). (2.7)

We have to minimize the energy E given in Eq. (2.1) with respect to the heights h;
for a given realization of the random variables Ki(= K4, Kp) and h{(= h%,hY).
I can then calculate (h),(ha),(hB), the average energy per site e = (E)/N, the
fluctuations in height ((h — (h))?) etc., as functions of =, K4, Kp,h%,h%y, K1, KF
and the structure of the host lattice by averaging over different configurations,
i.e., integrating over P({o})d{o}. This last configuration average will be denoted

simply as ( )ay. Obviously, (0)av =2z — 1,(0%)ay = 1, and (03)ay = (0)av-

One simplifying aspect of the harmonic model with uniaxial displacements,
which I will refer to as the scalar case, is that I can scale the heights and the energy
by (A% —hY) and (A% — h%)? respectively. If I define® a local dimensionless height
d; such that

B ='hY + di(hy = hY), 0<d<1, (28)

then the energy E can be rewritten as
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E= %(h‘}, - h&)?{ Y. Kr(di—divs)* + ) Kr [Z(d; - di+a)]
5

<i,6> i

+> Kadipf + ) Kp(1- d;)zpiB}. (2.9)
i i

Here the superscripts A and B in the last two summations mean that the sums go
over only the A sites or over the B sites. In the harmonic model the actual value of
the difference (h% — h}) is not relevant for the physical properties of the system as
it scales out. This is because all the displacements are in the same direction. The
diagram accompanying this scaling transformation is shown in Fig. 2.2.  The
particles are attached to the lower or upper surfaces depending on whether they
are A or B. These surfaces are rigidly separated by unit distance and the ;;articles
are constrained to move only in a direction perpendicular to the planes. In more
complex geometries, such as those in three-dimensional mixed semiconductors,®
the arguments leading to Eqs. (2.8) and (2.9) are only correct for small values
of the natural length differences h}y — h%. The average height given in Eq. (2.6)

becomes
1 1 .
(d) = in:d" (da) = ﬁ;?di pi- (2.10)
Note that by defination

(d) = (1 — z)(da) + z(dp). (2.11)

There is no net macroscopic force on the system in equilibrium which leads to the

relation

(1 - Z')KA(dA) = :L‘KB(I - (dg)) (2.12)
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Thus if any one of the three quantities (d),(d4) and (dg) is known, the other two
can be found using Eqs. (2.9) and (2.10). The fluctuations in d and d,, are related
by

(d—(d))?) = (1-2){(da—(da))*) +2z((dB—(dB))*) +2(1-2)((da) - (dB))?, (2.13)
which follows directly from the definitions.

In order to describe correlation between atoms in the same layer, I define a

intralayer correlation function as

1R) = +{ Tl - (@)dhen - (@) (2.14)
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(a)

LSOOG ORISR > V —
b)
( d=1
d=0

Fig. 2.2 Side view of the intercalants from Fig. 2.1, showing a larger B in-
tercalant and two smaller A intercalants. In (a), the separation between the
layeres are given by the variables h;, whereas the diagram associated with the
corresponding dimensionless variables d; is shown in (b)
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2.3 Limiting Cases and Exact Solutions

Completely Floppy and Infinitely Rigid Limits

If the layers are completely floppy towards transverse distortions (K1 = Kf =
0), then the energy E is minimized trivially. In this limit, I have (d) = z; the usual
Vegard’s law? with (d4) = 0 and (dg) = 1. The corresponding fluctuations are
given by ((Ad)?) = (d?) — (d)? = z(1 — z), and the site-specific fluctuations are
zero because all the A sites have dimensionless height zero and all the B sites have

dimensionless height 1.

In the limit of infinite layer rigidity'® (i.e. when K7 and/or Kr — o), the
energy E is mninimized by having all the d; equal (d4 = dp = d). Here the energy
per site

e= %(1 —z)K4d? + %rKg(l - d)? (2.15)

is 1ninimized by

T

d) = (da) = (dB) = 2.16

(@) = (da) = (d5) = T TSR (216)
giving an energy

1 K sKp -

e_iz(l_r)zKA-{-(l—z)KB (2.17)

and fluctuations in all the three heights vanish in this limit. In earlier theoretical

studies dealing with the gallery expansion using discrete lattice models, all the d;’s
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were assumed to be the same (rigid layer model”) even for systems with finite layer
rigidity. In this approximation, the non-Vegard’s law behavior was determined
completely by the compressibility ratio K 4/Kp of the two intercalants. At small
z, Eq. (2.16) becomes (d) = %w. If the larger ion B is highly incompressible
compared to A i.e., Kg >> K,4, one finds a large deviation (superlinear) from
Vegard’s law behavior which continues for all z. On the other hand, if the larger
ion is more compressible than the smaller ion, then (d) shows a deviation from
Vegard’s law but with a sublinear behavior. If K4 = Kp, then one observes a
Vegard’s law behavior even for an infinitely rigid layer. Later, I will show that
within this model, Vegard’s law is obtained for arbitrary layer rigidity as long as

Ks=Kp.

One Dimensional Chain

To calculate the average quantities exactly for the 1D chain, it is slightly more
convenient to work with the h variables, rather than the dimensionless d variables.
One reason for studying the 1D chain problem is that the effective medium theory
to be discussed in Section 2.4 can be worked out analytically for the 1D case and
compared with the exact calculations to test its accuracy. The energy for the 1D

chain is given by

1 1 1
By =3 Z Ki(hi — b)) + 5 Z Kr(hi - hir1)* + 5 Z Krp(2hi — hipy — hiog)?.

(2.18)
Minimizing E,;4 with respect to the h;, I find

Mh = &, (2.19)
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where M is a tridiagonal matrix with random diagonal matrix elements, i.e.

M;; = K; + 2Kt + 6KF,

M, i+1 = —Kr - 4KF, (2.20)
M;i+2 = KF
or
K, +2Kr +6Kp —Kr —-4Kp 0
—~Kr —4Kp Ky, +2Kr+6Kp ... 0
M = Kr —Kr —4KF 0 :
0 0 ... Kn+2Kr+6Kp
(2.21)

and h and ® are two coluom vectors

hy K1 h?
hs Kah

h=| . |, &= , (2.22)
hN KNh?v

In Egs. (2.18)-(2.22), all quantities are real. For a given random configuration of
{c}, let the eigenvalues and eigenvectors of the matrix M be A, and ¢4. Define a
N x N (random) matrix Q by

N

QA {o}) =D 62 — X)o7 4, (2.23)

9=1

then I have

h=M"1® = / d—,\iQ(,\,{a}){m (2.24)
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The linear chain case can be regard as a special realization of a general class
of one-dimensional disorder problem,?? such as, electron localization and electron

21,22 random harmonic

transport properties of one-dimensional disordered system,
chain system.?? This kind of problem can be solved by Green’s function method?*
which needs the solution of certain integral equations,??:21:23:24  When both K;
and h; are random variables, which is the case when Kg # K4, the problem is
difficult to solve analytically. Our numerical solutions in this case will be discussed
in Section 2.4. However when Kg = K4 = K, one can obtain the h;'s by
diagonalizing the M matrix, which is no longer random. The results can be worked
out analytically. In this limit, the cigenvalues and eigenvectors of the matrix M

are given as

¢ = K + 2K7[1 — cos(gb)] + 4KF[1 — cos(gd)]?, (2.25)

and

1 ign
bq(n) = N 1 (2.26)

with ¢ = 27r/N with r =0,1,2,... N — 1. Then I have

0= (T 85) = 5 [UPUN T T FosaI660
i av q i,j

K
= F D (h)aw = chy + (1 — z)hY (2.27)

Thus I find (d) = z for all values of KT and Kr. However the site-specific heights

(dp) and (d4) do depend on the layer rigidity parameters K1, Kr. Consider



Using

I obtain

and similary

(hB)

1 N
= hipB
N:c<lz=; ll),>

av

2

1 K . 140 0
ﬁﬂﬁmmm¥§EMMW( ),

= =TS s (TR
7 im q av
(010n)aw = (22 — 1) 4 42(1 — z)b1n,
(d) =1-(1-=)[1 - W(K)),

(da) = z[1 — W(K)].
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(2.28)

(2.29)

(2.30a)

(2.30b)

The Watson integral W(K) which is a measure of the layer rigidity is discussed and

calculated in the appendix.

Figure 2.3 shows W(K) for linear chain for various

values of Kr/Kr. Note that the expressions in Eq. (2.30) obey the general relation

in Eq. (2.12). As the general expression for W(K) given in the appendix is rather

complex, I give the results here for Kp = 0, i.e.,
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Fig. 2.3 The Watson integral W(K) for the linear chain, for various values

of Kp/Kr.
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1
(dg) =1—-(1—-1z) [1 — m] , (2.31a)

and

(da) =z |1 - (2.31)

=z |l - —————] . .
4 V1+4Kr/K

Clearly when K+ = Kr = 0, i.e. in the floppy layer limit, the results in Egs.
(2.31) become (d4) = 0 and (dg) = 1 and when K7 or Kfp = oo, i.e. in the
infinitely rigid layer limit, (dg) = (d4) = z. Thus, in the limit K4 = Kg, when
(d) shows a Vegard’s law behavior the transverse layer rigidity effects are seen in
the z-dependence of (d4) and (dp). This point will be discussed in more detail

later.

The fluctuations in d,d4 and dp, can also be calculated exactly in this limit.

I have
1 N
(k) = N_z<z”'3h?> (2.32a)
=1 av
/ “{"}”({“})Z P l;ﬂmum ()63(n)65 (m) (AT RORS,
= i E S ;nesq(l)asq ()85 () (m){ (FET)AUAS, ) (2.325)
Using

(Ulonam>av = 6ln6lm(03)av + [6ln(1 - 6lm)(1 - 6nm)

+8im(1 — b1n)(1 — bnm)



+6nm(1 - 6(1:)(1 - 6lm)](0')uv
+(1 = 81a)(1 = &tm )(1 — 8nm)(o) s

=(2z — 1)3 +4z(1 — z)(22 — 1)(bin + 8tm + 6nm — 281nd1m),

I obtain

((ds — (dB))*) = ((da — (da))?*) = (1 — =) [W1(K) — W(K)?]

_o(i- 1 [1+2KT/K 1],

N iKe/K | AT ke K

In addition, I have

((d—(d)?) = =(1 - =)W1 (K),

—:!:(1—2:) 1+2KT/K
B (1 +4K71/K)3/%’
and the average energy
1
e= §K:¢:(1 -z)[1 - W(K)],
= IKa(1-0) [1- |,
2 JiT koK
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(2.33)

(2.34a)

(2.34b)

| (2.35a)

(2.35b)

(2.36a)

(2.36b)

where the explicit results in Eqs. (2.34)-(2.36) have used Kg = 0 for simplicity.

From the above equations we see that the fluctuations are maximum when z = 0.5

and Kr = 0 as would be expected. Note that the expressions for the fluctuations

in Eqs. (2.35) and (2.36) obey the general result Eq. (2.13). The results for a
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linear chain with K4 = Kg = K = Kt and K = 0 are shown in Fig. 2.4 together

with simulation results obtained by the method described in section 2.5.

To calculate the intrachain correlation, I first consider the average

<~11\7 ; hihl+R> =

% / d{o-}’P({a})Z 5 ,\ S ol + RS (m)65 (m)RLRS,

7 Inm

DL [an ba(m)(ALh%)aw (237)
q

2
? n,m

Using Egs. (2.29) and (2.14), I obtain

n(R) = z(1 — 2)W,(K, R), (2.38)
where
K? . n
iq
Wi(K,R) = N /\2 (2.39)

For the linear chain with Kr = 0, I obtain

1 f K? .
W2(K,R) = — ‘R
2(K, R) 27 /dq[K + 2K1(1 — cosq)]? o

B (14+4Kr/K)3/? 1+2K7/K 2K ’
(2.40a)

-R
1+2Kr/K [1+ W] [ +—+—\/1_4TK7"/—K
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V1+4Kr/K R
=W. 1+RY——7F——— /€, .
2(K,0) [1+ LTI ] e (2.40b)
Then the correlation length ¢ can be identified as
K K
-1 _ oA 4a ] =
13 log [1 F 2Ky + 2Ky V1 |-4KT/I&] . (2.41)

Figure 2.5 plots the correlation length for the linear chain. One sees that when
Kr — 0,§ — 0 and when K1 — 00, — 00. £ can also be thought of as a healing

length!?1® whose value is controlled by the transverse layer rigidity.
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Fig. 2.4 Showing (a) average height, (b) fluctuations in height and (c) the
energy in units of } K(h} — h%)? for a one dimensional chain with K4 = Kp.

The solid lines are exact results and the solid dots represent simulation results.
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Fig. 2.5 Correlation length for a one dimensional chain model.
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Two-Dimensional Lattice

The average energy, average heights and the corresponding fluctuations can
also be calculated exactly for the two-dimensional systems in the limit K4 = Kpg =

K. One has to replace A\q in the Watson integrals W(K) used above by
Aq = K + Krz(1 — 7q) + Kr[2(1 — 74)]%, (2.42)

where

1 .
o=~ ) e, (2.43)
r

and z is the number of nearest neighbors (2 = 4 for the square lattice, z = 6
for the triangular net). Clearly the geometry of the lattice will determine Aq and
hence the layer distortion characteristics. The results are formally the same as for
the linear chain, except that the appropriate Watson integrals from the appendix
for two dimensions must be used. We plot the integral W(K) and its derivative
W, (K) for various lattices as a function of K/(z2Kr) in Fig. 2.6 for Kr = 0. For

the 2D system, I obtain

(dg) =1—(1 - z)[1 - W(K)), (2.30a)

(da) = z[1 — W(K))], (2.30b)

(dB — (dB))?) = ((da — (da))?) = 2(1 — 2) [Wi(K) - W(K))],  (2.34a)
((d = (d))?) = z(1 — z)W;(K), (2.35a)

e = -;—K:c(l o)1 - W(K)]. (2.36a)

The average height obeys Vegard’s law in this limit for all the lattices. I will

compare these exact results with numerical simulations in section 2.5.
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Fig. 2.8 The W(K) integral and its derivate W,(K) are shown for various
lattices as a function of K/(zKT) and for Kp = 0, where z is the number of
nearest neighbors. Here z = 2 is the linear chain, z = 4 is the square net and
z = 6 is the triangular net.
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2.4 Effective Medium Theory

In this section I develop an effective medium theory. The work in this section
follows the general ideas of Garboczi.?® The effect of the layer on the intercalant
atom is contained within an effective local spring constant K.. This can be found
by applying a force F to a single site 0 in the non-random system where K =
Ka = Kp as shown in Fig. 2.7(a). The equation of motion is F = —gf—o where
the energy FE is given in Eq. (2.1). The right hand side of this equation is linear

in the {h;} and can be inverted to give the diagonal term
hy = W(K)F, (2.44)

where the effective spring constant for this kind of displacement K, is given by

K

= wmy

(2.45)
and W(K) is the same Watson integral that I have used in the previous sec-
tion. The whole system is now replaced by a single spring K. as shown in Fig.
2.7(b). The problem is now reduced to just two springs in parallel as shown in Fig.
2.8. One of these springs is K,, where a can be either 4 or B with probability

1 — = or z respectively. The other spring is
K!=K.- K, (2.46)

formed by removing the spring K. Later I will identify K as the effective medium
spring constant which will be determined self-consistently. The total energy per

site e for a single impurity is given by

e= %Kg(h — he)® + %K,,(h — B2, (2.47)
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where h. is the effective height which like the effective spring constant K, is to be
determined self-consistently. We are considering only a single impurity spring K
in Eq. (2.47). We minimize the energy e with respect to h and obtain the local

height h
- Klhe + K, h?

TR (2.48)
e a

Substituting this back in Eq. (2.47) gives the energy for a single site a ("impurity”)

K'K,

KK (2.49)

1
€q = E(he - h?x)z
Because the springs have different lengths, the postfactor in Eq. (2.49) comes
from adding the two springs in series. A general energy expression can be written
down by summing over all the different types of "impurities” which in the spirit

of effective medium theory are assumed to be non-interacting.

_ 1 02 KeKa
€ = Zpaea = E z pa(he - h’a) m, (2.50)
a a=A,B e
where
1 A
.= — @ 2.51

The above expression of energy Eq. (2.50) contains two unknown parameters,
the height h, and the spring constant K (or equivalently K. or K). These are
determined by two conditions. For the first I minimize the energy e with respect

to h. to give
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Fig. 2.7 I[lustrating how the equivalent spring K, is determined within effec-
tive medium theory.
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Fig. 2.8 Showing how the local rigidity is determined within effective
medium theory. Here K, = K, — K and a = A, B.
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3 pahlKa/(K} + Ka)

h = AT AR (2.52)

This expression can be regarded as variational because a minimization is involved.
For the second condition, I use the following argument. Apply a force F at the sin-
gle impurity site. This produces a displacement F/( K. -+ K) which when averaged

over all sites is set equal to F/K, to give the self consistency condition
1 1
—— T — 2-’3
Z,, Pe K ¥ K. K.’ (2:53)

which for the case of interest here with two intercalants 4, B can be written as

zK—KB
K!+Kp

K- Kga
l-z)———F— =0. 2.54
A o (254
Various solutions for K from Eqs. (2.45) and (2.54) are shown in Fig. 2.9 for the
triangular net and compared to the virtual crystal result K, = zKp + (1 — z)K,4.
It can be seen that the results used here, which agree very well with simulation
results as discussed in the next section, are very different from the virtual crystal

result. Together Egs. (2.52) and (2.53) provide the effective medium solution to

the problem. Combining the two, I can rewrite Eq. (2.52) as
KK,
he = 2 pebe g K4 Ko (2:55)

which for the case of the two intercalants 4, B of interest here, can be written in

terms of the dimensionless variable d as
Kp
"K'+ K
—_ [4
(d) = - o (o) K (2.56)
K!+ Kp K!+ K,
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After some manipulation Eq. (2.56) can be put into the form

(d) =z + z(1 — z)Fy, (2.57a)
where
K. K (Kp — Ka)
Fy = < . 2.57b
T K(K, + Ka)(K, + Kp) (2.575)
Either directly, or using Eqs. (2.11) and (2.12) I can find (d,), i.e.,
K.K.K,
dg)=1-(1- < 2.58
U (S 9 (e ) (2:58¢)
and
'
KK Kp (2.58b)

[da) == BT Ka)K: ¥ Kp)

The energy can also be found by substituting Eqs. (2.54) and (2.55) back into Eq.

(2.50), and using the probabilities appropriate to two kinds of sites. I find

e = -V/KaKp o(1 - 2)(} — h)°F., (2.59)
and
F, K. KvKaKp (2.59)

T K(K! + Ka)(K! + Kg)

The effective spring constants K, K. = K, + K are determined by Eq. (2.54).

Note that the relation

F; Kp—-Kgu
—_— = ——— 2.60
F.  VEK.Kg' (260)

gives a useful relation as it is independent of any of the effective medium parame-

ters. Although the derivation of Eq. (2.60) is within effective medium theory, it is
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in fact an exact relation as can be proved using the Feynman-Hellman theorem.2®

In the present context, this theorem states that

_6%(5) = <.Z_/€\>, (2.61)

where the energy €(A) = E/N depends on some parameter A. From Eq. (2.1), one
sees that A can be set equal to h} or hY, which leads to Egs. (2.11) and (2.12)
and also allows us to demonstrate that Eq. (2.60) is an exact result. Of course
effective medium results are exact in the limit of single impurities where the linear
terms in ¢ or 1 — z are given correctly for all quantities that I have calculated.

Explicit results in this limit can be found from Eqs. (2.56)-(2.60) and for small =

- (d) == (Kaﬁtl’gA/I—{i)W(KA)’ (2.62a)
(da) = 25 f (;{Z(Ii‘:"‘ﬁ!l{fw/f({;u, (2.62b)

(dp) = - +E§: ;IIEZ)EVS:;()KA)’ (2.62¢)

e %KB o (- K9 (K;/‘er(_KlA))W(KA). (2.62d)

Similar expressions for small 1 — z can be found by replacing z by 1 —z,d by 1 —d,

and interchanging 4 and B in Egs. (2.62).
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The effective medium results derived in this section contain the previous, exact
results as special cases. For infinitely rigid layers, when K1 or Kr are infinite as
discussed in section 2.3, Eq. (2.54) becomes K = zKp + (1 — z)K 4 (see Fig. 2.9)
and the effective medium results of this section reduce to Egs. (2.16) and (2.17).
When K4 = Kp = K, using Eq. (2.45) that relates K. to the Watson integral
W(K), we recover the results of sections 2.3 for (d), (dy) and (e).

The fluctuations cannot be easily calculated within effective medium theory.
However they can be obtained using the Feynman - Hellman theorem Eq. (2.61),
with ) set equal to K4 and Kp respectively. Using the effective medium Eq.

(2.54) and differentiating Eq. (2.50) with respect to K,(a = 4, B), I find

K KpK? 2
K(K, + Ka)(K; + Kp)(K; + Ka)
W(K) (K - Ka)(K - Kp)
Wi(K)-W(K)?  (K.+Ka)(K,+ Kp)

(da = (da))?) = 2(1 — z)

(2.63)

Using Eq. (2.63), the fluctuations in d can be found using Eq. (2:13).

Wi(K) K KpK. 2
2\ _ Wi(K) - W(K)? | K(K. + Ka)(K, + Kp)
(4= (@)) = 2(1 - 2) "= (K=K (k —Ks)
Wi(K) - W(K)? T (K. + Ka) K + Kp)

(2.64)

One notes that in the limit K4 = Kg = K, the exact results Eqs. (2.34a) and
(2.35a) are recovered. Thus the use of the Feynman-Hellman theorem allows me to
extract fluctuations in d. Without the use of this theorem it would not be possible
to obtain these fluctuations in an effective medium theory. In the next section, I

will test how good the effective medium approximation is in general, by comparing
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results with numerical simulations. I stress that in the appropriate limits, the
effective medium results derived in this section, reproduce all the exact results of
section 2.2. In particular, the completely floppy (KT = Kr = 0), the infinitely

rigid (K1 and/or Kr — o0), and the K4 = Kp cases are all given correctly.
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Fig. 2.9 The effective coupling constant K of the effective medium for a tri-
angular lattice is compares to the virtual crystal result zKp + (1 — z)K 4.
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2.5 Numerical Simulation

In this section I describe the numerical simulation procedures and analyze
the results obtained. I will also compare these numerical results with the same
quantities obtained from exact solutions when K4 = Kp and from the effective
medium theory when K4 # Kp. The problem of finding the stable structure of the
random alloy can be regarded as an optimization problem for the energy function
Eq. (2.1). To find the equilibrium structure, the total energy is minimized with
respect to the variables {h;}. At zero temperature, the minimization procedure I
have used is based on the conjugate gradient method.?”'?® I have found that this
method is more powerful in terms of computer time and accuracy compared with
other methods such as direct matrix diagonalization or the relaxation method.?’
However, to study the finite temperature structural properties, the molecular dy-
namics simulated annealing??:3° total energy minimization method?!3? would be

more appropriate.

I have performed extensive studies for the triangular lattice where typical lat-
tice sizes used were N = 50 x 50 = 2500 nodes with periodic boundary conditions.
All the simulations were done on a VAX 8650 computer. The values of our pa-
rameters are chosen to be close to those of Li and vacancies in graphite,®?® and
K and Rb in graphite.!®1! The details of the numerical procedure consist of the

following steps for each concentration z:

(a) First an initial configuration is generated. This was done by gener-
ating a two dimensional triangular network of N nodes with each node
labeled sequentially and assigning vertical springs K4 and local heights

h% to each node. Then I randomly select an A-type node and replace
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it by a vertical spring Kp and local height h% until the total number of
B-type nodes is Ng = zN. All nearest neighbor horizontal springs are

uniform and given by Kt (and Kr).

(b) The system is relaxed using the conjugate gradient total energy min-
imization method and a final configuration characterized by heights {h;}

is obtained.

(c) The average height, fluctuations in height and average energy, etc.,

are obtained for the above equilibrium (minimum energy) configuration.

(d) The above steps are repeated 1000 times to obtain an ensemble aver-

age.

These numerical simulation procedures were carried out for several values of
K,,Kp, and Kt (while keeping Kr = 0). Figure 2.10 shows a typical configu-
ration of the relaxed layer at x = 0.2 and K4 = Kp. One sees the relaxed layer
is not flat, but rather has the appearance of "waves on the ocean”. Figure 2.11
shows a typical configuration of the relaxed layer for K4 # Kpg at z = 0.2. It
also has a lot of fluctuations from site to site. As K1 — oo, the layers do become
flat as discussed in section 2.3. The simulation results of the average heights, av-
erage fluctuations for both the A and B intercalants, and the energy are shown
as solid dots in Figs. 2.12-2.16. These figures are all for the triangular lattice.
In Figs. 2.12 and 2.13, the simulation results are compared to the exact solution.
The agreement ig excellent for all quantities, thereby giving us confidence in our
simulations in that we are using large enough lattices etc. In Figs. 2.14, 2.15 and

2.16, the solid lines are the effective medium results for the above quantities.
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The effective medium results provide excellent fits to the simulation results. Indeed
the quality of the fits is almost as good as for the exact results in Figs. 2.12 and
2.13, except perhaps for the fluctuations in d, (with @ = A, B) where there appear
to be small systematic differences. The effective medium results are exact for small
z and small 1 — z. However effective medium theory is only an approximation in
general.® Nevertheless the quality of the agreement in Figs. 2.14-2.16 is excellent
and means that effective medium theory can be used with considerable confidence

in interpreting experimental data.

When K, = Kp, the average heights (d),(d4),(dg) show straight line be-
havior; with (d) obeying Vegard’s law. The fluctuations and average energy are

symmetric about z = 0.5. The difference

(dp) — (da) = W(K), (2.65)

is independent of z, as can be seen from Eqs. (2.30) and is illustrated in Figs. 2.12
and 2.13. This difference depends only on the transverse layer rigidity parameter
K71 and decreases as the rigidity of the layer increases. In the limit of a single B
impurity in an A host, we have (dg) = W(K) from Eq. (2.30). Thus for rather
stiff layers, as in Fig. 2.12. this intercept is quite small ~ 0.2, whereas for rather
floppy layers, as in Fig. 2.13, the intercept increases to ~ 0.65. For infinitely
rigid layers W(K) = 0 and for perfectly floppy layers W(K) = 1. Thus we can
say that W(K) is, through Eq. (2.60), a direct measure of the "floppiness” of the
lattice with 0 < W < 1. Conversely 1 — W may be regarded as a measure of the
transverse rigidity of the lattice. Note that the strain energy in the lattice e, given

in Eq. (2.36a), is also directly proportional to the rigidity of the lattice. For a
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completely floppy lattice, the strain energy is zero as the lattice can accommodate

any impurity at no cost in energy.

When Kp > K4 (Figs. 2.14, 2.15, 2.16), the average height shows superlinear
behavior and the partial heights associated with the A and B intercalants are no
longer linear. The average energies and fluctuations are peaked at z < 0.5, and
no longer symmetric about z = 0.5. The effective medium theory reproduces the

simulation results quite accurately when K, # Kp.
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Fig. 2.12 Showing (a) average height, (b) fluctuations in height and (c) the
average energy per site in units of K(h} — h%)?, for a triangular net with
K4, = Kg = Kr. The solid lines are exact results and the solid dots repre-
sent simulations results.
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Fig. 2.13 Showing (a) average height, (b) fluctuations in height and (c) the
average energy per site in units of K(hy — h%)?, for a triangular net with
K4 = Kg # Kr. The solid lines are exact results and the solid dots repre-
sent simulations results.



Fig. 2.14 Showing (a) average height, (b) fluctuations in height and (c) the
average energy per site in units of Kg(hy — h%)?, for a triangular net with
K4 # Kp. The solid lines are exact results and the solid dots represent simu-
lations results.
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Fig. 2.18 Showing (a) average height, (b) fluctuations in height and (c) the
average energy per site in units of Kg(hy — h%)?, for a triangular net with
K4 # Kp. The solid lines are exact results and the solid dots represent simu-
lations results.
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K4 # Kpg. The solid lines are exact results and the solid dots represent simu-
lations results.
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The nature of the disorder effect in the structure of random alloy can be better
determined by the partial probability distribution functions of the heights for the A
and B-type intercalants. The height probability distributions P(d),P(dg),P(da)
are defined by

1 N
P(d) = + ‘; §(d — dy), (2.66)
and
P(da) = NL., 3 6(d - di) g5, (a = 4,B). (2.67)

=1

I plot these distribution functions obtained from the simulation in Figs. 2.17-
2.19. Figure 2.17 shows the probability distribution at £ = 0.4 for a system with
K, = Kg = Kr. One sees that P(d4) and P(dp) are symmetric around the
average values (d4) and (dp). The line shapes of the two peaks are close to

Gaussian, since from the simulation results, the moment ratio
(Ada)?)/{((Ada)?)? =2.840.1

which is close to 3.0 which would be obtained for a perfect Gaussian. The re-
sult cannot be exactly a Gaussian, as the distributions are bounded, whereas the
Gaussian distribution is unbounded. When K4 = Kp, it is possible to calculate
the low moments exactly as shown in section 2.3. Figures 2.18 and 2.19 show the
probability distributions at z = 0.4 for systems with K+ = K4 = 0.1Kp (Fig.
2.18) and K4 = 0.1Kp,Kr = 0.05Kp (Fig. 2.19). It is clear that P(dg) and

especially P(d,) are not symmetric when K4 # Kp.



49

“(Ap) pue (Yp) moys saur paysup [monaa sy, ‘suonrinfyuod 0o
1340 padriasw puw suonwMuUIIS o) 1w S)NSAL ISAYL, Ay = V1 yym 20)u]

Teniuetny 0g X 0§ © Jof €p puw Vp'p jo suonnquysp Aypquqorg L1°z Mg

p “ P
1 90 90 %0 20 O ©0 90 %0 20 O0I ©0 900 %0 20 ae
IJJJJlJI].N\I.]JJI_.I_..NI_.I]A T T T |
s 1, S I { > .ﬂl
ﬂ [ [ ] [ ]
s |2 H U 4 : :
— [} . — “o . o
- L . AL ) N
B . — L] ° — 0' ) °
.. I, 1, * :
| e . .
oo— ° .M— [ .M °
- o— * - b -—0‘ - L4 * -
e . - °
° I s.m.u )
¥ | Ty
o | o o
= oo_ JdL _ JdL No -
YO =X of ! v i
ot =%/ I }
o1 =%/ } I .
| 1 1 _ | | | _ 1 [ | | B | | |

£Lymquqoxd



50

‘(9p) pus ( Yp) moys saury P3Ysep [eon194 oy, ‘suoneinSyuos goor
1340 poferarw pue suonwmuls woy 1w symsas 9L, Gy # Vyr yym an)w]
tem3uern gg x (g © 10 8p pue Yp'p jo suonnqiysip fyipqeqosry gr-z “w..m

p “ P

! 90 90 %0 80 01 90 900 %0 20 o1 0 90 %0 20

I

ﬂl—lﬁl..l-l..l

T:T
by

_. 'y j
Vo SN
- .~_o lJ_.. lru...~ -
if g T
° .luﬁ ‘o

i g _ u“". . _ m

h 1.

——WM

| Ny o'
- _ - ld—“ - I'”

_ h Yo=x ||

! 10 = % /3y M
u : 4k 10 = %/ {}¢

I

]

|
0
[ ]
N

5

£ymquqoag



51

(gp) puw (Vp) moys saur] paysep [wa1)134 3y [, ‘suonwrinSyuod 9o
19A0 paSeiaAe pue suolemMUIIS WO 338 SYNS3I a5y L, Ay # VI yym aonyef
1enfuersy gg x g © 10§ p pue Vp'p jo suonnqysip fiqrqosy @1°z g

'p 9p P
80 90 ¥¥0 20 ol 30 90 %0 20 Ot 80 90 %0 20

T 1 |1 C ud KA T T T
w _ %a 1.
R 1.
..._.... 4L _ ]
i |
"l |- |
_ 1. -,
— _. .
_ 1K K. .
_ | vo=-x ||
I AL c0'0 ="M/ || |
| i 10 = "3/ ’
_ q O.Glh! o
qHHr 9=7 4 -
| t *
| |
| | I | 1 P | 1 | | | | | |

Lnqeqodd




52

2.6 Summary

In this chapter, I have set up a model that describes the properties of randomly
intercalated layer materials. This model incorporates both the layer rigidity and
the compressibilities of the intercalants. I have performed computer simulations
for a triangular net geometry.® When K4, = Kp, the model is exactly soluble,
and when K4 # Kp, I have shown that effective medium theory gives very good
agreement with the simulation results.® Vegard’s law is only obtained, within these
models, when K4 = Kp; a situation that rarely occurs in practice. When K4 =

Kp, the effective medium solution reproduces the exact solution.

These 2D alloy systems provide an almost ideal arena for studying competition
between the lattice rigidity and the natural local bond lengths favored by the A and
B atoms. To date there is very little data in layered compounds beyond the mean
c-axis dimension (h) as determined by X-ray scattering.® The two ternary graphite
intercalation systems whose average c-axis separation can be understood within our
model are V;_,Li,Cq (V is a vacarllcy, Ref. 8) and K;_,Rb,Cs (Ref. 10). For the
lithium ternary, where the gallery expands from 3.36 A forz = 0 to 3.78A4 forz = 1,
the A atom is actually a vacancy so that Kg/K 4 >> 1. We have not attempted to
fit the experimental data precisely but a choice of K4/Kp = 0.1, and K7/Kp =
0.1 (see Fig. 2.14a) can semi-quantitatively fit the experimental data excepting for
¢ = 1 where anharmonicity effects may be important. The potassium-rubidium
ternary data, where the gallery expands from 5.47A for z = 0 to 5.684 for ¢ = 1,
shows nearly a Vegard’s law behaviour.!? This can be understood if we assume that
Ka/Kp =~ 1 which seems physically reasonable.’ In this case the strength of the
layer rigidity can only be determined from measurements of local quantities such

as (da) and (dg). We would very much like to see experiments performed that
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couple to these local structural parameters. This could be done using extend x-
ray absorption fine structure spectroscopy (EXAFS)?? or NMR. The experimental
situation is more advanced for mixed semiconducting alloys3* like Ga,In,_,As,
where many compounds have been studied using both X-rays and EXAFS. The
results for (d),(d,),(dp) are remarkably similar to those I have obtained in Fig.
2.13.

The results obtained in this chapter are more general than the simple geome-
tries and force constant models that I have used. These have served our purpose
in illustrating the kinds of behavior to be expected. However, effective force con-
stants can be defined for more complex geometries as illustrated in Fig. 2.20. Here
the intercalant atoms have many springs attached to common points in the layers
above and below. By applying a suitable force field, as illustrated, an effective
force constant K. can be defined that leads to the same local displacements as in
the actual system. This effective spring constant K, can be written in terms of a
suitably generalized Watson integral for the lattice. This integral will contain all
the information that is necessary to describe the rigidity of the lqyers and can be
computed if a suitable force constant model for the layers is available. In practice
the Watson integral W(K) is not very sensitive to such details as can be seen from
Fig. 2.6 which compares W(K) for various lattices. Having obtained the effective
spring constant K, via the Watson integral W(K), the effective medium equations

developed in section 2.4 are quite general.



(a) F F
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(b)

F
% K
F
Fig. 2.20 A illustration of the side view of a more complex lattice than

shown in Fig. 2.4. The equivalent spring K, can be determined within effec-
tive medium theory if appropriate forces F' are applied as shown.
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Appendix

In this appendix, I calculate the Watson integrals W(K) used in the text. In
general W(K) is defined by®

Ky Ly K- 4 <
WK =w zq: Ag  (2n)? /qu+KTz(1 ~7a) + Krl2(1 = 7q)*’

(A1)

where the g-integral is over the first Brillouin and the factor v4 is given in Eq.

(2.43) The dispersion relation for the vibrational modes is

mw: =K + Krz(1 —vq) + Kr[2(1 — 'yq)]z, (A2)

where m is the mass of an atom in the graphite layer. This dispersion relation
corresponds to modes of vibration of the whole sample, containing many layers, in
which the wavevector is in the plane and the displacements are all perpendicular
to the plane. The springs K4 and Kpg are irrelevant for this motion as they are not
stretched. These modes could be seen for example in inelastic neutron scattering

experiments.3% In the limit ¢ — 0,

1 2 2 2
41— = )2 =1-— 2d
EREREPICIDL LY

which gives Eq. (2.4).
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It is convenient to introduce a Green function g(z) defined by

9(z) = %2:, :c_—_z(%—:i—)’ (A3)

from which one can define a spectral weight p(z) by

p(e) = = ~Img(z) = 3= 38l — (1 ~ 7)), (44)
q

where z is real and p(z) is non zero and positive definite within the band 0 < z <
2z. The Watson integral Eq. (A1) can now be written as an integral over this

spectral weight

Kp(z)dz

w = .
(K) K + Kr:c + Kpz?

0

(45)

The integral Eq. (A5) is well behaved as the denominator contains no poles. Note
that for large K >> Kr,KFp
W(K) - 1, (A86)

as we would expect. For small K << K1, Kp the Watson integral is dominated
by the small  behavior, depends only on the ratio K/Kr, and goes to zero as K

goes to zero in the 1D and 2D cases of interest here.

Another related quantity W;(K) that I require, can be found directly from
the Watson integral

CU(K\ [ K, 8 [W(K)
Wl(K)—N;(,\q) =] &+ Kre+ Kra®? _ Kzax[ K ] (47)



57

However, W,(K) in the correlation function Eq. (2.38) is not simply related to
Wi(K) and has to be calculated directly.

One Dimensional Chain

In the case of one dimensional chain, z = 2 and v4 = cosgé, so that

P(x) = T (AS)

and the Watson integral is given by

W(K) = .
V1+4Kr/K + 16K /K
8Kr/K 2
+ £/ : (A9)
1+2Kr/K ++/1+4Kr/K + 16Kp/K
When K is small this result becomes
1 /K

P S i A
V(K = 5\ 7 (410)

independent of K as discussed above. For the case when Kr = 0, the result Eq.

(A9) simplifies to

W(K) = L : (A11)
V14 4K/KT
and when K1 = 0, the result Eq. (A9) becomes
1 1+ i+16K7 /K]
W(K) = V1t 16Kr/ , (A12)
Vv1+ 16K /K 2
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The quantity W;(K) is found by differentiation of Eq. (A9) and for Kp = 0 is
given by
Wi(K) = (1 +2Kr/K)(1 + 4K1/K)™3/?, (A13)

For general values of Kr/Kr, I plot W(K) in Fig. 2.3.

Square Lattice

For two-dimensional square lattice, z = 4, and

N =

Tq = [coa(q,&) + cos(qyJ)] , (A14)

The spectral density can be written as an elliptic integral and leads to a density
of states p(z) given by

ple) = Sk |5 vata=a)| (419)

2

for 0 < ¢ < 4. Here K(z) is the complete elliptic integral of the first kind. In
general the one dimensional integral Eq. (A5) must be done numerically. However

if I put Kp = 0, the integral can be done analytically and I obtain

2 1 4K7/K
4 —_ — .
W(K) = =TT ik /K 'C[1 +4KT/K]’ (416)

If KT >> K, the result Eq. (A16) becomes

K
4Kt

W(K) = In(32Kr/K), (A17)
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For Kr = 0 I also have the result from Eqs. (A7) and (A16)

2 1 4KT1/K
v =—-
Wi(K) =2 1+8Kr/K [1+4KT/K ’ (418)
where £(z) is the complete elliptic integral of the second kind.
Triangular Lattice
For the two-dimensional triangular lattice, z = 6 and
Tq = %[cos(an,&) + 2 cos(ag.96) cos(bqy5)] , (A19)

where a = J and b = 32@ Carrying out the integral for the spectral weight, I
obtain

x x®

() = > / / dzd ! (420)
NREN =02 Y- z[1 — }(cos2z + 2 cosz cosy)] ’

0 0

leading to3®
1
p(z) = 5-( - 3)V4AK(vV1 = 5), (A21)

where

Y [\/z——_§—1]3[\/mjta].

16/ — 3 (422)

In general, the Watson integral Eq. (A5) must be done numerically over the

spectral weight. If Kg = 0, it can be done analytically to give

K
"~ 4nKrp

W(K) GxK %G(Q + K/Kr)'/4], (A23)



where

G =8[\/o+ K/Kr - 1]-3/2 [Vo+K/Kr + 3]_1/2.

If KT >> K, the result Eq. (A24) becomes

K

W(K)= —1
(%) 4TI'KT\/3—

n(72KT/K).

The quantity W;(K) can be found by differentiation.

60

(A24)

(A25)
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Chapter 3

Dynamical Properties of

Two-Dimensional

Molecular-Solids

3.1 Introduction

Molecular solids are composed of molecular units which are clusters of atoms
tightly bound to each other by strong covalent forces. These molecules have both
center-of-mass (c.m.) translational degrees of freedom and orientational degrees
of freedom. One of the important characteristics of molecular solids is the com-
petition between direct and indirect (lattice mediated) intermolecular interactions
which leads to different types of orientational ordering.!? In this chapter, I inves-
tigate the dynamic properties of a model two-dimensional molecular solid using
self-consistent lattice dynamics theory and constant-pressure molecular dynamics
simulation.? The dynamic correlation functions and the dynamic structure factors
have been investigated using the latter.? Furthermore phonon and libron dispersion
relations along different symmetry directions have been calculated and softening

of phonons near structural phase transition (SPT) has been carefully studied.?*®
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When anharmonicity in solids is not weak, structural phase transitions can
take place in which the solids change their crystallographic structure with changes
in temperature.® A common characteristic of the structural phase transition is sym-
metry beraking,” i.e., with decreasing temperature, the system goes from a high
symmetry phase to a low symmetry phase at the transition temperature T,.. Struc-
tural phase transitions can in general be classified into three categories;® these
are displacive, order-disorder, and ferroelastic. In the case of displacive SPT,
the atoms or molecules in the ordered phase are displaced away from the high-
temperature equilibrium positions. A typical example is the cubic-tetragonal tran-
sition in strontium titanate (SrTi0j3, antiferrodistortive).® The order-disorder
type SPT has an ordering of some degrees of fredom wiﬁch are disordered in the
high-temperature phase. Typical examples are the phase transitionsin NaO; (Ref.
9) and NaNO; (Ref. 10) where the appropriate degree of freedom is the orien-
tation of the molecules. The unit cell does not change shape in these two types
of SPTs. Thus there is no strain associated with the pure displacive or the pure
order-disorder SPTs. However, in the ferroelastic SPT, elastic deformation is as-
sociated with the transition.!"'! Most SPTs in solids are ususlly combinations of

the above three.®

In displacive SPT's, there are anomalies in phonons of specific symmetry whose
frequency decreases (or approaches zero) when the temperature approaches some
characteristic temperature (not necessarly the transition temperature) from
above.!? In ferroelastic SPTs, elastic constants of specific symmetry soften.!+13
Because of strong anharmonicity near the structural phase transition, theoretical
understanding of the dynamic properties of molecular solids near the SPT is a

rather difficult problem. In the past, mean-field type theories,®’ renormalization
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group method,!* and molecular dynamics computer simulations'® have been used

to study the physical properties of solids near the structural phase transitions.

The SPTs and dynamics of three-dimensional (3D) molecular solids have heen
widely studied.!® Typical systems are solid nitrogen (N:),'? solid oxygen (O,),®
alkali cyanides (C N ~),!° alkali superoxides (O; )° and alkali nitrates (NO; ).1°
These systems generally exhibit SPTs in conjunction with orientational order-
disorder transitions where both translational and rotational degrees of freedom are
involved.?? For example, in three dimensional KC N, at low temperatures, the
solid has an orthorhombic structure in which all the C N~ molecules are oriented
in one direction. When temperature is raised, it transforms into a cubic structure
in which the C N~ molecules are orientationally disordered.?! However, similar
study of the dynamic properties in two-dimensional (2D) molecular solids have not

been carried out systematically until recently.3—5

In the remaining part of this
section, I will discuss some of the basic features of the two-dimensional molecular
solid,?? introduce our model?'?? and sumarize the ferroelastic phase transition in

this model system obtained from previous MD simulations by Tang, Mahanti and
Kalia (TMK).22

Molecular overlayers adsorbed on a crystalline surface can form the two-
dimensional (2D) molecular solid. Molecular nitrgen (IN;) or oxygen (O2) ph-
ysisorbed on graphite surface serve as typical examples of such a 2D system.?? In
particular, physisorbed oxygen molecule on graphite exhibits a number of different
phases depending on the coverage and temperature.?* There are extensive experi-

5

mental investigations of this system. X-ray diffraction,?® magnetic susceptibility,2®

heat capacity,?” neutron diffraction?® and low-energy electron diffraction (LEED)?®
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measurements have discovered a diverse phase structure in this system. In particu-
lar, there is a low-coverage low-temperature phase (§-phase) in which the molecular
axes are collinear and parallel to the substrate surface. The oxygen lattice in this
§-phase is a centered rectangular (or, isosceles triangular, IT) structure which is
incommensurate with the substrate graphite hexagon. This phase was predicted by
Etters et al.3° by pattern search energy minimization calculation. The zero tem-
perature energy minimization calculation3? wich ignored the substrate corrugation
predicted an IT lattice structure for this low coverage §-phase. Expermentally, this
phase was first found by Heiney et al.?5 and later careful LEED work?® has given
a great deal of information about this phase. Finite temperature properties of the

§-phase have been studied using Monte Carlo simulations.3!

The molecular dynamics simulation is another direct method to study the
structure and phase transitions and in addition it gives information about the
real time dynamics.!® In particular, the constant-pressure molecular dynamics is
an excellent method to study physical properties of systems exhibiting structural
change with temperature or pressure.’? Structural phase transitions in a diatomic
molecular monolayer system has been studied recently by TMK.2? The model in
this study consists of homonuclear diatomic moleculars interacting through an

atom-atom potential of Lennard-Jones (LJ) type, i.e.,

V(r) = 4{(%)" - (g)s} (3.1)

where r is the distance between two atoms. Since the internal virbrational fre-
quency of each molecule is very high due to strong bonding between the two
atoms, the molecules are assuined to be rigid.3® The potential parameters used in

the TMK work are appropriate for the oxygen molecule,3:34 i.e., ¢ = 54.34¢kp and
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o = 3.054 with internuclear distance d = 1.2084. For monolayer density in the
neighborhood of 10 molecules per 100(A)?, this system closely resembles the §-
phase of oxygen molecular monolayer adsorbed on a graphite substrate. However,
more accurate modelling of this §-phase requires the inclusion of other interactions
which may be rather small. For example, the oxygen molecule has a nozero spin
(S = 1) which leads to a magnetic exchange interaction between two molecules.3®
This interaction is responsible for the low temperature (below 11K) antiferromag-
netic structure in the e-phase of the O, on graphite system.*® The corrugation of
the substrate potential is nonzero but small (about 5K).37 In addition, the oxy-
gen molecule has a nonzero but small electric quadrupole moment which leads to
quadrupole-quadrupole interaction between two molecules. All these three small
interactions have been neglected in the present study. Also the out-of-plane mo-
tions of molecules have been neglected, thus all molecules are constrained to be

parallel to the substrate.

The ground state of this system is an IT lattice with ferroelastic (FE) molec-
ular ordering.5:3? The lattice constants are a = 3.332A4 and b = 8.0544; molecules
are all parallel to the y-axis [see Fig. 3.1(a)]. The surface coverage at the
ground state is n = 1.172p9; where py is the coverage of the /3 x /3 struc-
ture on the graphite surface which corresponds to 0.0636 molecules per (A)2.

29,38 it is found that the ground state of the low-density §-phase

Experimentally,
of oxygen monolayer on the graphite has an IT lattice structure with a = 3.254
and b = 7.984. The oxygen molecules lie flat on the substrate surface and are
orientationally ordered along the b-axis. In contrast to oxygen molecules, another

2D diatomic molecular solid, the ground state of the nitrogen (/V2) molecules ad-

sorbed on graphite,’®~4! has herringbone (HB) ordering with ET center of mass
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lattice structure which is commensurate with the graphite hexagon.?®4? However,
for the oxygen system, the energy for the HB ordering is higher than the energy
of the FE-IT structure.’

In the previous constant-pressure MD simulation study by TMK,?? it was
found that the oxygen system undergoes a first order phase transition from an ori-
entationally ordered ferroelastic phase to an orientationally disordered paraelastic
(or plastic) phase at temperature T, = 20.1K.  This order-disorder transition
was accompained by a lattice structure change where the center-of-mass of the
molecules transfrom from an IT structure to a equilateral triangular (ET) struc-
ture. This result is in reasonable agreement with LEED experiment.3® In the
present thesis, I have reinvestigated the above phase transition and have in par-
ticular explored the dynamic correlations as a function of temperature which was
not done by TMK. In the course of this work, I have been able to generalize
the expression for the internal stress tensor first derived by Tang to the case of
polyatomic molecules and have correctly. incorporated the kinetic contribution to

the stress tensor.43

The remaining part of this chapter is organized as follows. In section 3.2, I
introduce a new procedure?? to obtain the internal stress tensor in the constant-
pressure molecular dynamics simulations for anisotropic molecular solids. In par-
ticular, I emphasize the importance of incorporating the rotational contributions
to the internal stress tensor correctly. In section 3.3, I give static structure factor
obtained from the MD simulations. In section 3.4, I use the self-consistent lattice
dynamics to study the phonons and librons in the low temperature ferroelastic
phase. In particular, I emphasize the role of the translational-rotational coupling.

In sections 3.5 and 3,6, I discuss the dynamic density-density correlation function
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and associated dynamical structure factor obtained in the MD simulation. In ad-
dition, I present phonon dispersion curves for temperatures both below and above
the ferroelastic transition. I will also compare these MD results with those ob-
tained by the self-consistent lattice dynamics calcualation (Sec. 3.4) and address
the question of phonon softening near the structural transition. In section 3.7, I

give a brief discussion and a summary of the main results.
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Fig. 3.1 The miniminum energy configurations of a two-dimensional
diatomic molecular solid with the ferroelastic molecular ordering (a) or the
herringbone ordering (b). The ground state of the O, /graphite system has the
ferroelastic molecular ordering with an isosceles triangular lattice structure.
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3.2 Internal Stress Tensor

of Anisotropic Molecular Solids

In recent years, the constant-pressure (in general, constant external stress)
molecular dynamics has been extremely useful to study structural phase transitions
in solids.4* Such studies in molecular solids have elucidated the underlying physics
of ferroelastic phase transitions which are usually accompanied by an orientational

4,5,20,22,45 I constant pressure simulations,?®~4® the

order—disorder transition.
periodically repeating molecular dynamics cell is assigned a fictitious mass and
the volume and the shape of the MD cell are allowed to change, this change being
determined by the internally generated stress tensor and the externally applied

pressure (stress).

For our diatomic molecular system, the orientational dynamics is expected
to play a crucial role in both the structural phase transition involving a shape
change and the dynamic properties of the system. To properly account for the
rotational motion, in this section, I develop a new procedure?? to obtain the
internal stress tensor in the constant-pressure molecular dynamics simulations of
molecular solids. The results presented in this section is quite general and can be

applied to any polyatomic molecular system.

In most of the early works on molecular solids,*® the internal stress tensor
is determined by the positions and the velocities of the molecular center—of-mass.
The molecular orientations only appear indirectly in the calculation of the inter-
molecular forces. It was first shown by Tang?? that orientational degrees of freedom

have significant contributions to the elements of the stress tensor. I will review
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the main idea, generalize to polyatomic molecules and properly take into account
the effect of rotational velocities. In this section, contributions to the stress tensor
Py, which depend explicitly on the molecular orientations and angular velocities are

derived and their significance in the orientationally ordered phase is discussed.

In the constant-pressure (isoenthalpic-isobaric) molecular dynamics of
monoatomic system,?447 the essential idea behind the calculation of the internal
stress tensor that determines the dynamics of the MD cell is to start from the the

Lagrangian £, for the system given by

N
L, = %Z;mi'? =33 Viry) (3.2)

i j(>9)

and scale the coordinate of the particles r; by the vectors a,b in 2D, and a,b,c

in 3D of the parallelogram (parallelepiped) MD cell, i.e.,
r; = hs; , (3.3)
where his a 2 X 2 (in 2D) or 3 x 3 (in 3D) transformation matrix given by
h=(a,b) , or (a,b,c) . (3.4)

All the particles are located inside this cell and the cell is repeated in space by
periodic boundary conditions. The vectors a,b and c are allowed to change in the
simulation. Both the kinetic energy and the potential energy terms in £, are now
expressed in terms of the scaled coordinates and velocities s; and $; respectively
and one usually neglects a term proportional to h in the kinetic energy part.t’
The dynamics of the variables s; and the matrix h are determined by the following

Parrinello-Rahman Lagrangiant’
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- —Zm,s,Gs‘ > Vih(si—s;)] —pef + WTrl'ﬁﬁ ,  (35)

i j(>i)

where the gauge matrix G = h*h (h* is transpose of the matrix h), @ = det(h)
is the area of the MD cell, p. is the externally applied (constant) pressure, and W
is the mass associated with the MD cell. The equations of motion (EOM’s) for h
which determine the dynamics of the MD cell can be obtained from the Lagrangian

equation Wh,, = (-{% which leads to
Wh = (P - p.I)A, (3.6)
where 7 is the identity matrix and

A = Q(h*)"!, (3.7)

In Eq. (3.6), P is the internally generated instantaneous stress temsor. For

monoatomic systems, P is given by*’

Py, = ﬁ zm"‘ Te +Z z (l‘,‘-l’j)" , (3.8)

i j(>9)

where p,v = z,y, z, and F;; = —8V(r;;)/0r;; is the force between atoms 7 and j.

Now I consider a rigid polyatomic molecular system described by the La-

grangian

SED 3 JLICID 35 39 3 ) (39)

i=1 &k ik j(>i) |
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where i,j are the molecular and k,[ are the atomic indices, and r ji = rj; — rix
(see Fig. 3.2). There are two ways of obtaining the internal stress tersor. In the

first one, coordinates of each atom can be separated as
rit = Ri + pu, (3.10)

where R; is the center-of-mass coordinate and p;x is the relative coordinate. Then
the conventional procedure*® to handle the MD cell dynamics is to scale only the
c.m. coordinates R; by h and treat p;; as a constant. In this case the internal

stress tensor in Eq. (3.6) is given by

P, = % ZMR:‘R;' +Y > Fh (R; — R;)"|, (3.11)

ij(>9)

where M =), mi and
F;; = Z zFik,jl , (3.12q)
k I

OV (rik i)

3.12b
Ork ji ( )

Fik it =
is the force between atoms ik and jl. Note that F;; and hence P,, do depend
implicitly on the molecular orientations, although only the center—of-mass coordi-
nates R; and their velocities R; appear in the expression for P,, explicitly. This

approach has been followed by many researches in the past.

A second procedure for calculating the internal stress tensor which I discuss
here?? is to scale the position vectors (rik) of individual atoms of the molecules by
h and then use the rigid molecule conditions through the introduction of fictitions

time dependent forces. There will be additional terms in P,, comming from the
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kinetic energy term of the Lagrangian and these terms will depend upon the an-
gular velocities (w;). The potential energy contribution to P,, now depends upon
the forces acting on the individual atoms of each molecules. In addition to the
extrenal forces, one has to take into account the constraint forces acting on the
atoms. The constraint forces fix the internuclear distance of the molecules. In
systems where intra—atomic vibrations are important, one will have to replace the
constraint forces by the actual forces acting between the atoms of a given molecule.
The constraint force, which in general depends on the angular velocities, can be
obtained from the equation-of-motion of the atomic coordinates. The dynamics

of the MD system is described by the Lagrangian4?

Lp = = Z Z mirSik GSix — z Z Z V(r,k 11) PeSY + WTTh+ (3 13)

ik j(>i)

From the Lagrangian equation for h with £js and adding the constraint force,
I obtain the same equation (3.6) for the dynamics of the MD cell but with the
internal stress tensor given by
1 , , 1 , 1
Pu =5 D max (hia)(hsi)” + Q DD D Fhathat Q > ek s
ik ik j(>i) ik

(3.14)
where f;, is the constraint force acting on the atom ik with the condition ), fix =
0. Through a long algebraic manipulation, Eq. (3.14) can be written in a more

transparent form:

P, = Pcm 9} Z Mik P,kP;k + = Q Z f:;c Pik> (3.15)

where Pl is the stress tensor given in Eq. (3.11); Fik = 3 4;) 221 Fik,jt is the

force acting on the atom tk. The stress tensor given in Eq. (3.15) has translational
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and rotational contributions from both the kinetic (kin) and potential (pot) energy

parts of Lpr. Equation (3.15) is the centeral result of this section. I can formally

write
P = Pkin | prot. (3.16a)
with
pkin _ pkinem + Pkiﬂ."ot, (3.16b)
Ppot — Ppol.cm + PPOt»"Ot, (316C)
and
Pkin.cm + PPOtscm — Pcm . (3.16d)

To illustrate the significence of the above results in MD simulations, I apply the
above results to the system of homonuclear (rigid) diatomic molecules which are
confined to move in a two dimensional plane with their rotational motion confined

to the same plane (see Fig. 3.2).43 The rigid rotor condition yields

Pik = %d fitrir, (3.17)
1 . 1 o

fi] = —Li2 = —[ZMd0,’ + E(F.‘] - F,’z) . r,-,]r,-l, (3.18)
%Mdé,- = F(6)), (3.19)

where F(6;) = (Fi;1 — Fi2) - f;; is the total force acting on the molecule : in the
direction perpendicular to the internuclear axis. Eq. (3.19) is simply the equation-
of-motion for the orientational variable §;. From Eqs. (3.15), (3.17) and (3.18), I

obtain
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Fig. 3.2 A diatomic molecule confined to the XY —plane.
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cm 1 12(aB AV YT 1 1 N
Py, = P + q Z IO?(n:‘ln,-l — ) + q Z 5dF(0,-) i, (3.20)

where I = Md?/4 is the moment of inertia of the molecule. Using 7;; = (cos¥;,
sinb;), and 1y = (—sinb;,cosb;), I find that the rotational kinetic energy contri-
bution to the stress tensor [the second sum on the right-hand-side of Eq. (3.20)]
is

: 1 . —cos26; —sin26;
kin,rot _ ~ 2 1 [
P Y Z I6; (—sin20.' cos26; ) ! (3:21)

and the rotational potential energy contribation [the third sum on the right-hand-
side of Eq. (3.20)) is

—sin26; cos26; — 1) . (3.22)

1 1
pot,rot __ - .
P Y Z 4dF(0') (cos20,- +1 sin26;

The internal pressure is defined by p = TrP. From Egs (3.21) and (3.22), it
is interesting to note that p depends only on P°™, i.e, p = TrP°™. However, the
antisymmetric component A = %(sz — Py;) has important 6;-dependent terms,
ie.,

1, m om 1 1
A= (P -P) - o > SdF(6:). (3.23)
i
We have found® that the last term is extremely important in MD simulation as
it makes a significent contribution towards keeping the total angular momentum

conserved.

Next I consider the strength and the temperature dependence of the rotational

contributions to the stress tensor in Eq. (3.20). To do so, I calculate the ensemble
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average of (P — P°™) and for simplicity I consider the low temperature ferroelastic
phase?? (see Fig. 3.2). As will be shown later in this chapter, at low temperatures,
the rotational motion in this phase is dominated by the libron spectrum. The

rotational hamiltonian can be written as

1 | - -
Hy = EZM‘ + EZJ:DQO(R; — R;)6.4;, (3.24)

with 6; = §; — 90°. Then I can calculate the following averages

(67) = (ksT)’q1, (61) = 3(ksT)*(g2 +g}), (3.25)
and
(166;) = —kpT, (I66%) = —6(kpT)*gs, (3.26)
where
gn = / (%r‘i);[pgg(q)]—", (n=1,2,3,..), (3.27)
and

Dgo(q) = Z e'VR Dgg(R),
R

where the integral being over the first Brillioun zone. Using Eqs (3.21), (3.22),
(3.25) and (3.26), I obtain the thermal-averaged values of P*¥™r°t and PPotrot as

(Pkin,rot) — (n)kBT[l —2g1ksT + 2(g2 + g7 )(ksT)* + .. ] 2., (3.28)

and

(PPotiroty — (n)kBT[—l +4g1kgT + .. ] Z., (3.29)

with

E, = ((1) _01), (3.30)
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where (n) is the average molecular surface density. As can be seen from Egs.
(3.28) and (3.29), the off-diagonal contributions to the stress tensor coming from
the rotational part vanish in the harmonic theory. This is also true if one includes
the effects of linear rotation—translation coupling on the libron dynamics. How-
ever, near the ferroelastic structural phase transition where the harmonic theory
breaks down, these off-diagonal terms are found to be significent in our molecular-

dynamics simulations.?2?

Comming back to the diagonal terms, I give in Fig. 3.3 the temperature
dependence of the zz—components of the internal stress tensor. It is interesting
to note that the linear term in T of (P, — PLT) is identically zero due to a
cancellation between the kinetic and potential contributions and the net result is
a quadratic (T'?) increase. The increase in P! and the corresponding decrease in
P9t with increasing T make physical sense since in the ordered state the molecules

are orientated along the y—direction at T = 0.

In addition to the MD cell dynamics, the MD equation for the scaled coordi-

nates 8; are

d, .. +
m—(Gs:) =h Z Fij, (3.31a)
J#s
i.e.,
ms; = h~! z F,'J' — mG_IGé,-. (3.31b)
J#i

The instantaneous temperature in defined by the kinetic energy, i.e.,
3 1 1
SNkpT(t) = - (vivi+ J8%62), 3.32
o NkpT(t) = 2 ; m + ;4% (3.32)
where v; is the molecular c.m. velocity adjusted to make the total momentum

and angular momentum zero.> In MD simulation, this instantaneous temperature
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should then be adjusted again to the required temperature T' by scaling the veloc-

ities and the angular velocities by a factor [T'/T(¢)]/2.

In summary, I have shown that both the center-of-mass and the rotational
contributions to the stress tensor should be considered in the molecular dynamics
simulations of molecular systems. In particular, the latter can be quite important

near a structural phase transition involving orientational degrees of freedom.



1 | ] A
4  —Kinetic part /A
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<P, ™>/[<n>/(8g,)]

Fig. 3.3 Temperature dependence of the thermal averaged rotational contri-
butions to the internal stress tensor P[2 in the ferroelastic phase. T is mea-
sured in units of 8¢, kg, where g, has the dimension of inverse energy.
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3.3 Static Structure Factor

Before proceeding to the dynamical study, I discuss the static structure of two-
dimensional molecular solids in this section. I first give a brief description of the
MD simulation precudures. Then I discuss new results beyond those obtained by
TMK of the static structure factor, namely, the radial distribution fucntion (RDF)
both below and above the ferroelastic phase transition. The results of dynamic

structure factor will be given in section 3.5.

The equations of motion for a collection of rigid rotors given by Eqgs. (3.6),
(3.19) and (3.31b) with the internal stress tensor given by Egs. (3.11) and (3.28) are
solved numerically by a fifth-order predictor-corrector algorithm.® The potential
parametcrs I use here are the same as those used in TKM’s work.?2? A cutoff
distance of 50 is used for the LJ potential, which is modified so that the potential
and the force are continuous at the cutoff. The periodic boundary condition is
applied to the MD cell. All the importar}t parameters involved in the simulation
are listed in the Table 3.1.

I have carried out a series of simulations®'%°

starting from the ground state
and heating the system slowly. The c.m. positions, velocities, accelerations, ori-

entations, and anuglar velocities etc. are updated with an integration time mesh

2

T =0.01102 = 0.02 x 10" 25¢c.

In calculating the dynamic correlation functions, the data points are ”coarse-
grained” by recording the data each 5 MD time stpes to avoid possibile statistical
correlations between them. At each reduced temperature T'*, 9000 to 10000 MD

time steps are used to equilibrate the system and another 5000 to 20000 MD steps



Table 3.1

Parameters used in the MD sitnulation

Time unit
MD time step
cutoff

N

Pe

parameters value
Length unit o 3.05 A
Mass unit m 15.99 a.u.
Temperature unit €/ kp = 54.34

V22 = 1.815 x 10-12 sec

T =0.02 X 1013 sec = 0.01102
50
400

0.0

mo3
«

86
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are monitored to obtain the dynamic variables. The temperature was adjusted by
scaling both the linear and angular velocities. Near the structural phase transi-
tion, averages of physical quantities are obtained from constant-volume MD after
the constant-pressure MD equilibrium run. This was done to reduce the large
fluctuations occuring near the structural phase transition. Other details of the
MD simulation are similar to those of TMK’s work. All our MD simulations were
performed on a Cyber 170 Model 750 computer to produce the raw data and on a
VAX 8650 computer for extensive data analysis. From this simulation, the order-
disorder transition temperature was found to be T = 0.37 (20.1K), in agreement
with TMK’s previous results.?? The melting transition from the orientationally
disordered plastic phase to an isotropic 2D liquid phase at T}, = 0.70 (38.0K) was
also confirmed. Detail results of thermodynamic quantities have been given in Ref.

5 and will not be repeated here.

The radial-distribution function g(r) is defined by

(n(r?,r? + Ar?))
wAr? '

g9(r) = (3.33)
where (n(r?,r? + Ar?)) is the average number of molecules in a ring with area
wAr? and at a distance r from a given molecule. Results of g(r) obtained from the
MD simulation and corresponding plots of molecular configurations are shown in

figures 3.4-3.10. Some characteristic features of these figures are discussed below.*°

Fig. 3.4 shows g(r) for temperature T* = 0.36 which is just below the fer-
roelastic transition. In this figure, the numbers under the smooth curve indicate
the total numbers of molecules in the successive coordination shells obtained by

integrating g(r) and the numbers marked with arrows give the ideal distribution of
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molecules in the IT lattice structure. One can clearly see two rather sharp peaks
at small r due to the two nearest neighbor molecules and four second neighbor
molecules. The peaks associated with farther neighbors are slightly broadened but
well defined. Fig. 3.5 gives a snapshot of molecular configuration obtained from
the MD simulation at this temperature. One sees that the molecules are ordered

more or less along the y-axis.

Fig. 3.6 shows g(r) at T* = 0.40 when the system is already in the orien-
tationally disordered phase. In this figure, the numbers marked with arrows give
the ideal distribution of molecules in the ET lattice structure. In this case g(r)
has a single peak at small r corresponding to the six nearest neighbors in the ET
structure. The peaks associated with farther neighbors are considerably broadened
indicating a rather short correlation length. Fig. 3.7 gives a snapshot of molec-
ular configuration obtained from MD simulation at this temperature. One sees
clearly that the molecules are oriented randomly but there is some indication of
short range orientational correlations. Fig. 3.8 shows g(r) for three temperatures
T* = 0.36,0.38 and 0.70. Note that there is a gap [g(r) = 0] between the first
six neighbors and the other neighbors in the solid phases. However, at T* = 0.70
there is no such gap and g(r) shows a liquid-like structure. In Fig. 3.9, I give
g(r) and a configuration of the system quenched rapidly (in 500 MD time steps)
from T* = 0.38 which is just above the ferroelastic phase transition temperature
to T* = 0.01. The radial distribution function shows a three-sharp-peak structure
for small r. These three peaks are narrow due to the absence of thermal vibrations
at this low temperature. Among the first three peaks, the middle one reflects the
local ET structure while the other two reflect the local IT structure. This can be

seen from the insert where both local HB and FE orderings can be seen.



89

< &
< N
€ N
€ b

g(r)
)
1

T™ =0.36

€ &
€ N
<« &

2 4 4 6
1 | J1
0.0 2.5 5.0 7.5 10.0 12.5 18.0
l’2/0'2

Fig. 3.4 Radial distribution function at T* = 0.36 obtained from the MD

simulation.
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Fig. 3.5 A snapshot of molecules configuration at T* = 0.36 (below the ori-
entational order-disorder transition) obtained from the MD simulation.
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Fig. 3.6 Radial distribution function at T* = 0.40 obtained from the MD
simulation.
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Fig. 3.7 A snapshot of molecules configuration at T* = 0.40 (above the ori-
entational order-disorder transition) obtained from the MD simulation.
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Fig. 3.9 Radial configuration and the molecular configuration (insert) for a
state quenched to T* = 0.01 from T* = 0.38 in 10 psec.
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3.4 Self-Consistent Phonon and
Translational-Rotational Coupling

in the Ferroelastic Phase

In molecular solids, due to the presence of the translation-rotation coupling,
phonons and librons are combinations of two motions: molecular c.m. trans-
lational vibration and molecular orientational libration.2? In this section I use
the self-consistent lattice dynamics theory®® to explore the dynamics of the two-
dimensional molecular solids at different temperatures below the ferroelastic tran-
sition where the molecules undergo small amplitude translational and librational
motion. I consider small displacements of molecular c.m. and small angle devia-
tions of molecular orientations from their ordered state. The coupling between the
c.m. translational motion and the librational motion is included in the leading or-
der. As will be shown later, the theory works reasonably well up to the ferroelastic
transition temperature if proper allowance of the lattice expansion is made. But
in the high temperature orientationally disordered phase where molecules undergo
orienational diffusion and large amplitude displacements, the anharmonicity and
translational-rotational coupling are very strong. The weak coupling assumption
is not adequate. A proper treatment in this case has to be done following the

theory of Sahu and Mahanti developed for 3D molecular solids.!+!3

In the self-consistent lattice dynamics,®! =33 the equilibrium positions of lat-
tices are determined by the phonons and librons whose frequencies are in turn
determined self-consistently to minimize the total free energy of a crystal. Thus

thermal expansion of solids due to anharmonicity which can affect the phonon and
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libron frequencies at nozero temperatures can be include in a SCLD theory. An-
other important effect of the anharmonicity in the potential is to give the phonons
and librons a finite lifetime and to cause interactions between two or more phonons.
The standard approach to handle this anharmonic effect is to use phonon thermal
Green’s function and Dyson equation.®5! By summing irreducible diagrams one
can calculate the phonon self-energy, whose real part is related to the frequency
and imaginary part to the lifetime of the phonons. However in this section I make
a pseudoharmonic approximation in which the effects of thermal expansion and
renormalization due to the anharmonicity are included but the lifetime of phonons
and librons are assumed to be infinite. This approximation is good when the an-
harmonicity is not strong. Then the phonon and librt;n frequencies are simply
related to the eigenvalues of the dynamic matrix. I combine the SCLD formalism
and the MD simulation to take into account the effects of anharmonicity induced
thermal expansion. In this approach the temperature dependent equilibrium lat-
tice constants entering the elements of the dynamic matrix are taken from MD

simulations.

The total potential energy of the two-dimensional diatomic molecular system

is given by
U= % 3D V(Ira —ral). (3.34)
ik 5,
Let the lattice constants at temperature T < T, be a; and a; with |a;| = a and
a tany = b [see Fig. 3.10(a)]. I expand the potential energy U around this finite
temperature equilibrium position with the ferroelastic ordering. Neglecting the

anharmonic terms, I obtain
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=3 Z D Do (i 1 uu(i)us (5), (3.35)

tj mv
where p,v = z,y,0; uz(i),uy(:) are the c.m. displacements of molecule ¢ and
ug(i) = 6; is the angle between the y-axis and the axis of the molecule i. The
coupling matrix Dy, (¢,j) between molecules ¢ and j is given by the second order

derivate of U with respect to u,(z) and »,(j). The equation of motion for u, are

-mu#(l) = Z Z DPV i,J ‘u,,,(j) + Z Dl‘9 ,1)01, (ﬂ' = m’y) (3'36)

j v=zy
and

—Ié; —ZDgo (3,7)9; +z Z Dgu(2,7)uu(7). (3.37)

J wu==z

For nearest neighbors and next nearest neighbors (see the Table 3.2), the coupling

matrix D(i,7) can be calculated explicitly and are given by®°

Qg 0 0

D(0,nnl)=| 0 & A, (3.38)
0 - @
/i m -

D(0,nn2)=|m v -& |, (3.39)
v & 4
Br -m -

D(0,nn3)= | -m m &L, (3.40)
v =& 4

(23] 0 0
D(O,nn4) - 0 61 —Al y (3.41)
0 M o
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B m ¥
D(O,nn5) = m 71 61 ’ (342)
- =& 4
b1 -m ¥
D(0,nn6)=|-m v -& |, (3.43)
- & 13}
(0% 0 Az
D(0,nnnl)=| 0 62 O |, (3.44)
-A2 0 p
B2 -n—-2
D(0,nnn2) = | -2 2 &, (3.45)
—2 €2 123
(B2 M2 —v2
D(0,nnn3) = | n2 v2 -& |, (3.46)
(Y2 &2 t2 |
-az 0 —Ag 1
D(0,nnn4)=10 & 0 |, (3.47)
Az 0 g2 |
[ B2 —m2 —v2] :
D(0,nnnd) = [ -n2 72 & |, (3.48)
| Y2 &t |
[ 2 n2 Y]
D(0,nnn6) = | 72 v & |, (3.49)
| —%2 -z 2 |

where the parameters a; etc. for the nearest neighbor coupling are given by

o) = 2(12(!11 -+ Ag) + 2(31 + Bz), (350)
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A As+ A
B =a’[7’+ —“:—5] +2B; + B, + Bs, (3.51)
6 =2d*A; + 2(B, + B;), (3.52)
A; A4+ A
v = b? —2—3— + = : 5] +-d*(Aq + As) — bd(Ag — A —5) +2B3 + By + Bs, (3.53)
A Ay + A 1
m = ab[-zi + = i 5] - gad(As — 45), (3.54)
1 o5 1.2
01 = 5(1 d (Al - Az) + -z-d (Bl — Bz), (355)
_122 Ay + As 12 B4 + Bs
ty = 80. d [A3 2 ] + 2d B3 2 , (356)
Al = adzAg, (357)
1, 1 '
1,[’1 = ga d(A4 - As) - 5(1(34 - B5), (358)
1 1,
{] = gﬂbd(.‘Lg - As) - Zad (A4 + As), (359)
and ay etc. for the next nearest neighbor coupling are given by
Q) = ZBQ + B7 + Bg, (360)
9
B2 = Zaz(on 4 Ajo + A1) + 2By + By + By, (3.61)

1
Y2 = Zb’(2A9+Alo+A11)+d’(A,o+A11)+bd(An—Am)+239+310+31h (3.62)
3., 3
Ny = Zb (249 + Ajo + A1) + Ead(All — Aqo), (3-63)

6y = bz(ZAo + A7 + Aa) + dz(A'r + Aa) + Zbd(As - A7) + 2Bg + B7 + Bs, (3.64)

9 1

Yy = Zazd(A“ —Ap + 'z'd(Bn — Byo), (3.65)
3 3

62 = gabd(A” b AIO) + Zad(A“ -+ Am), (366)

1
Az = 5d(By — By), (3.67)
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02 = idz(ﬂ?s — B1 — Bs), (3.68)

9 1
t2 = ﬁdzdz(zAg - A]o - All) + Zdz(ZBD - BIO - Bll)' (369)

The parameters A and B are calculated from

) 1 1
A(Ok;il) = V(o) = 5V"(ro) (3.70)
B(Ok,il) = —~V'(ro), (3.71)
To

where V', V" are the first and second order derivatives of the LJ potential, ry is
the equilibrium distance betwen atom (0k) and atom (il). The values of ro and
associated indices are listed in the Table 3.3. A; to A;; and B; to B;; can be
obtained from Eqs. (3.70) and (3.71) and ry values from the Table 3.3. Note
that the coupling matrix has the permutation symmetry D,,(%,7) = Duu(j,?)-
In addition for a given D(z,7), the elements of this D matrix are symmetric in

the pure translational part but antisymmetric in the part of translation-rotational

coupling.?4:55  Also the self-interaction term can be obtained from the sum rule®s
6 201 + 46, 0 0-
D(0,0) = — ) D(0,nni) = — 0 26, +471 0|, (3.72)
i=1 0 0 T
where
1
T =—-d*(a; + 5,G) + 2d*(B; + B4 + Bs) — bd(B4 — Bs), (3.73)

and only the first six nearest neighbor interactions are include because the next
nearest neighbor interactions fall off by a factor of 27%. The elements of the

dynamic matrix
D(q) = ) D(R)e @}
R

for only nearest neighbor coupling is given by
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D..(q) = —4 [(%al + 61) — %01 cos(gza) — B COB(%qza) cos(%qyb)] ,  (3.74)

! 1
Dzy(q) = Dyz(q) = ~4m sin(5¢za) sin(5qyd), (3.75)

1 1 1 1
Dyy(q) = —4[(551 +71) - 551 cos(gza) — 11 005(5%‘1) COS(Ebe)] , (3.76)

. 1 .1
Dzo(q) = Dg.(q) = —4i ¥, ‘303(5‘12‘1) 3""(5‘Ivb)’ (3.77)
. . .1 1
Dyofa) = Dy (a) = %[ sinlaca) - 261 sin(Fa.a) cos(Ga)] s (278)
Doo(q) = T + 291 cos(qza) + 44 coa(%q,a) cos(%qyb). (3.79)

Also D(q) is hermitian. The translation-rotational couplings are given by D.4(q)
and D,g¢(q). Note that the elements of the translation-translation part.and the
rotation-rotation part of the dynamic matrix are real. However, the element of
the translation-rotation coupling part of the dynamic matrix is pure imaginary.
The eigenvalues and eigenvectors of the dynamic matrix D(q) give the phonon

and libron frequencies and their displacement patterns, i.e.,

De2(q) — mw, D:y(a) D2¢(q)
D.y(q) Dy, (q) - mw? Dye(q) = 0. (3.80)
D34(a) D3o(a) Des(q) — Iw?

The unit vectors of a two dimensional IT lattice are given by [see Fig. (3.10a)]
a; = ai:,
a; = g(i: + tan¢ y), (3.81)

and the corresponding reciprocal lattice vectors are

by = b*(3tang & - 19),
{bz — by, ; (3.82)
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where b* = a—fgﬁ; = 4. The first Brillioun zone (BZ) is shown in Fig. 3.10(b)

along with high syminetry points.

The phonon and libron dispersion curves for T* = 0 and 0.12 calculated
from the secular determinant Eq. (3.80) are shown in Figs. 3.11-3.13. The finite
temperature equilibrium lattice parameters a and b used in the calculation are
given by the MD simulation and listed in the Table 3.4. Figure 3.11 shows the LA
and TA acoustic phonons and the libron dispersions associated with the ground
state without the inclusion of translation-rotational coupling. Figure 3.12 gives
the same dispersions in the presence of translation-rotation coupling. There are
three branches. The coupling causes a splitting of the LA and TA phonon branches,
particularly near the zone boundary N point where the TA phonon frequencies go
down. In the regions where the phonon and libron branches cross, the modes are
admixtures of the translational and rotational motions. Also note that the libron

branch is quite dispersive.

In Fig. 3.13, the LA phonon frequencies at T* = 0.12 are given as the solid
lines. The dots in this figure are the phonon frequencies obtained from the MD
simulation (to be discussed later) which takes into account the thermal expansion
and anharmoncity automatically. One sees that at low temperatures, the SCLD

results are quite good. I will come back to this point again in the next section.

I have also used the SCLD results to calculate the Debye temperature which

can be written as?

Op = hkp\/dmnf {Z<l>}_m, (3.83)

2
e Ve
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where v, is the acoustic sound velocity, n is the density of molecules and f is total
number of modes per molecule. The angular bracket in Eq. (3.83) refer to an
average over directions in q-space. Low temperature heat capacity in the Debye

model is given by

D

2 2
C = 24Nkp cm(%) = 28.8498 <0£> : (3.84)

where ((z) is the Riemann zeta function. If the motion of the molecules perpen-
dicular to the graphite substrate is ignored, I obtain §p ~ 87K. On the other
hand, if the transverse out of plane motion of the molecules are included and it is
assumed to have the same sound velocity as the inplane transverse phonon, then
one obtains §p =~ 78 K. These give low temperature heat capacities which compare

favorably with the experimental values.?”
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Table 3.2

Coordinates of the first six nearest neighbor molecules and the next six neigh-
bor molecules of the molecule at the origin. The integrals m;,m,; denote the
compounts of R along the basis vectors a, and a,.

pair coordinates (mq,m3)
0-nnl (a,0) (1,0)
0-nn2 (3a,3b) (0, 1)
0-nn3 (~1la,1b) (-1, 1)
0-nn4 (—a,0) (-1, 0)
0-nn5 (—3a,—1b) (0, -1)
o6 | (3a,-1b) (1,-1)
0-nnnl (0,b) (-1, 2)
0-nnn2 (—3a,1b) (-2, 1)
0-nnn3 (—3a,-3b) (-1, -1)
0-nnn4 (0,-b) (1, -2)
0-nnn5 (3a,-1b) (2,-1)
0-nnné (3a,3b) (1, 1)




Table 3.3
Equilibrium atomic distances.
index ro
1 a
2 VT E
3 3a seco
¢ | VGey + (36 - ap
s | Ve + (e
6 b
7 |b — d|
8 b+d
9 (Gay + (20
10| /(3a) +(Jb-d
1| /(Za)? + (36 + d)?
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Lattice parameters a and b given by the MD simulation

3.4

T* a/o b/o )
0 1.0924 | 26406 | 67.52
0.12 | 11710 | 1.2889 | 66.87
036 | 11308 | 13210 | 6689
0.40 | 1.32001 | 1.1409 | 59.95
050 | 1.3441 | 1.1487 | 59.67
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(b)

Fig. 3.10 (a). Two dimensional (isosceles) triangular lattice with lattice vec-
tors ay and a3, (a = |a;|). (b). The first Brilliouin zone corresponding to (a)
and the symmetry points.
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3.5 Density Correaltion Function

and Dynamic Structure Factor

The dynamics of molecular crystals in the orientationally disordered phase
is a rather difficult problem. Furthermore, experimentally, only limited data are
available. Neutron scattering which is widely used to study phonon dynamics
and dispersions in 3D molecular crystals®® has not been carried out extensively
for 2D systems. From the theoretical side, one can study the phonon dynamics
using the SCLD. However, this method is only appropriate for the low temperature
orientationally ordered phase where the phonons and librons are well defind and
weakely coupled excitations. MD simulation is a direct probe of the dynamical
properties and in particular; it is quite useful in understanding the dynamics in the
orientationally disorded phase as the effects of strong translation-rotation coupling
and large anharmonicity are automatically included in these calculations.5”—58
Molecular dynamice is perhaps the only viable method available at the present

time to understand strongly coupled translational-rotational dynamics.5?

Dynamical properties can be studied by the time-dependent correlation

functions.®® I have calculated the density-density correlation function defined by

F(q,t) =< pq(t) p—q(0) >, (3.85)

where
15 i ()
palt) = = D i{t), (3.86)

=1

is the space Fourier transform of the density; q is wave vector, x;(t) is the c.m.

position of ith molecule at time ¢. The <> in Eq. (3.85) refers to an ensemble
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average (which equals to the time average in MD). In neutron scattering experi-
ments, F(q,t) is not measured directly, but its time Fourier transform, S(q,w) is

releated to the neutron scattering crossection,?!

S(q,w) = / et F(q,t)dt. (3.87)

Since F(q,t) is an even function of time, S(q,w) is a real quantity. Longitudinal
phonons show up directly in the function F(q,t). To obtain transverse phonons
from F(q,t), a reciprocal lattice vector K which is perpendicular to q should be
added to q. Other types of collective excitations such as librons will affect the

correlation function F(q,t) through their coupling with the phonons.

Using the trajectories of molecules generated by the MD simulation, I com-

puted F(q,t) by
M-1

Flat)= Y - palt +kA)pq(ka), (3.89)

k=0

where M is the total number of configurations of the system used in the calculation;
A is the time between two successive recorded configurations, A = nrt where
7 = 0.02 x 10~ 25¢c. is the (real) time between each intergation step and n = 5.
The total MD steps used is nM (corresponding to T = nMT in real time). To
avoid rapid oscillations in S(q,w) due to finite T, I average S(q,w) with a Gaussian
weight function.®? This is equivalent to multiplying a Gaussian smoothing function

to F(q,t) while carrying out the Fourier transform, i.e.,

T
. 2
S(q,w)lei_n;o /e“"t F(q,t) e~ (t/T)" gt (3.89)
-T
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Thus the frequency resolution Aw becomes

Aw = (2%) : @ (3.90)

I usually choose a between 2 and 6.

MD results for the time dependent correlation functions at temperature T* =
0.12 and wave vectors along the I''V direction are given in Fig. 3.24. This tempera-
ture is well below the ferroelastic phase transition temperature (T = 0.37). These
F(q,t)’s show well defined oscillations with periodicities corresponding to those of
longitudinal acoustic (LA) phonons travelling in the 'V direction. The dynamical
structural factor obtained form any one of these correlation functions shows a sin-
gle peak at finite frequency corresponding to the LA phonon frequency. Fig. 3.15
gives one example of such S(q,w) for q in the I'V direction and magnitude equal
to 0.3|T'N|. The phonon width is primarily determined by the resolution function
in Eq. (3.89). In Fig. 3.16, I give the dynamic structure factors for q parallel to
the 'V direction (see Fig. 3.10b) obtained from the F(q,t) shown in Fig. 3.14.

One can clearly see the LA phonon dispersion.

Fig. 3.13 gives the LA phonon frequencies for T* = 0.12 and q going from
the N point to the zone center (I') and to the K point (solid dots). The solid
lines in this figure are obtained from the SCLD calculations as discussed in the
last section. The overall aggrement between MD results and the SCLD results are

quite good at this low temperature.
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Fig. 3.14 Time dependent density-density correlation function of molecular
center-of-mass at T* = 0.12. The wave vector q increases from the zone center

to the zone boundary (N) point. Curves from top to bottom are for |q| =
0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9 and 1.0 (in units of [T V|).
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3.6 Orientational Disorder and

Phonon Anomaly

The behavior of phonons across the ferroelastic phase transition is a very inter-
esting problem. For example, in molecular solid KC N, ultrasonic measurments®3
have shown that the shear elastic constant (Cy4) softens drastically when the tem-
perature approaches the ferroelastic phase transition temperature. This leads to
a soft transverse acoustic (TA) phonon dispersion which has been seen in neu-
tron scattering measurment.® MD simulation in KCN has also observered this
elastic softening.®® In the present MD simulation, I found that for the 2D molec-
ular system, the LA phonons also soften as one approaches the phase transition

temperature.4® This result will be discussed in detail below.

Fig. 3.17 shows the density-density correlation function F(q,t) at T* = 0.36
and for q along the I' — IV direction in the first Brillioun zone. Again F(q,t) shows
well defined oscilations. This implies that the phonons are still well defined in
the I' — N direction with long life time even near the structural phase transition
temperature. In Fig. 3.18 the phonon frequencires at T* = 0.12,0.36 and for the
wave vector q along the I' NV direction obtained from the MD simulation are shown
as solid dots together with the SCLD calculation results. One sees that the overall
agreement between the the SCLD results and the MD results are very good. This
observation suggests that a strong ferroelastic order is maintained even upto to
T* = 0.36 < T.. This is also consistent with large order parameter and strong
first order phase transition seen in this system.?? The overall phonon softening
with increasing temperature can be clearly seen in Fig. 3.18. Another important

feature in Fig. 3.18 is that thare is a anomalous softening of the long wavelength
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(¢ < |TN|) LA phonons as T' — T.. Although the SCLD theory can account for the
overall phonon softening, the anomalous softening in the low wave vector regime is
beyound the scope of pseudoharmonic approximation in the SCLD. In Fig. 3.19,
I give the phonon dispersion relations at T* = 0.36 and for q vector going from the
zone center (I’ point) to the zone boundary K point and NV point. The agreement
between the SCLD results and the MD results are good in the I' — N direction, but
not as good in the I' — K direction. However, the agreements at T* = 0.12 shown
in Fig. 3.13 are good in both the I' — K and I' — N directions. This suggests that
as one approaches the structural phase transition from below, the anharmonicity

effects are different depending on the directions of the wave vector q.

Figure 3.20 shows the density-density correlation functions at T* = 0.40 and
for q in the 'V direction. Figure 3.21 shows the density correlation and the
corresponding structure factors at T* = 0.36 and T* = 0.40 and for the wavevector
at the N point of the zone boundary. Similar to Fig. 3.17, at T* = 0.36, F(q,t)
is a well defined oscillating function of time and S(q,w) has a single peak. But
at T* = 0.40, F(q,t) shows oscillations with rapid dacay. The structure factor
at T* = 0.40 is considerably more complicated. There is a large central peak
coming from the decaying bahavior of the time correlation function and a broad
peak which can be identfied as a renormalized LA phonon peak. Similary, Fig.
3.22 shows the MD results of F(q,t) and S(q,w) at T* = 0.12,0.36 and 0.40 and
for q half way from the I' point to the N point. One sees that For T* < T,
the density correlation functions have well defined oscilations with sharp phonon
peaks in the corresponding dynamic structure factors. As T > T, the density
correlation function has a decaying envelope in addition to the oscillating behavior

and the dynamic structure factor develops a central peak. Figure 3.23 gives the
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MD results of the density correlation functions at T* = 0.40 and 0.50 and for q
at the K point of the zone boundary. Compared with Fig. 3.14, it is clear that
F(q,t)'’s at T > T, in the I' — K direction are fast decaying functions of time
and there are almost no oscillations. These observations suggest that phonons are
heavily damped in the high temperature orientationally disorded phase. This is
due to the increased importance of the intrinsic anharmonic effect® and the strong
coupling between the translational and rotational degrees of freedom.!?%® In. Fig.
3.24, 1 give the MD results for the LA phonons in the I' — N direction at high
temperatures (T = 0.40,0.50). There is a small hardening of the phonons with
increasing temperature which can be traced to the effect of rotation-translation

coupling.!3

In Fig. 3.25 I show the sound velocity of the LA phonons along the I' — N
direction extracted from the molecular dynamics at several temperatures, both
below and above the ferroelastic phase transition temperature.* It is evident that
the elastic constant softens as the temperature approaches T.. For T << T, I
can use the ground state (T' = 0) values of the lattice parameters to calculate the
phonon velocities.®**  The sound velocities of the LA and TA modes obtained
from the SCLD calculation are (2080.9,905.6)m/sec in the I' — K direction and
(2179.1,1281.8)m/sec in the I' — N direction. The value 2179.1m/sec for the LA
sound velocity in the I' - IV direction is about 10% higher than the T* = 0.12 value,
suggests that our T' = 0 rsults are consistent with the T* # 0 results obtained from

MD and SCLD calculations.
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Fig. 3.17 Time dependent density-density correlation function of molecu-
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Fig. 3.20 Time dependent density-density correlation function of molecu-
lar center-of-mass for T* = 0.40. The wave vector q increases from the zone
center to the zone boundary (N ) point. Curves from top to bottom are for
lq] = 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9 and 1.0 (in units of [T N|).

123



124

1
T* = 0.36

t ]

- 4100

- 7.5

!

b

C 5.0
? E
&b o_—,
-~ - 25
c : S
| b c

° J 1 :
a 40 5 00 =
— a
-}
-— a
= L=
- L )

L .- -
= ' &

A B

i BAASE R

SARAE RAS

-2 1 1 1 1 1 L
(] 1 2 3 40 5 10 15 zo°'°
t (psec) w (10'? Hz)
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3.7 Summary

Using the constant-pressure molecular dynamics simulation, I have investi-
gated the thermodynamics and the dynamics of a two dimensional diatomic molec-
ular monolayer undergoing a ferroelastic phase transition. This system closely re-
sembles the §-phase of oxygen molecule adsorbed on graphite surface. For Lennard-
Jones parameters appropriate for the oxygen molecules, I find a first order tran-
sition from an orientationally ordered distorted trangular structure (ferroelastic
phase) to an orientationally disordered equilateral triangular structure (paraelas-
tic phase). The transition temperature is 20.1K compared to 26K for oxygen
on graphite (coverage ~ 8 molecules per 100 A2?). There is a softening of the
elastic constants near the transition, particularly in the paraelastic phase; this
can be understood in terms of translation-rotation coupling. Comparsion between
plhonon frequencies for certain symmetry directions obtained by using SCLD the-
ory and MD simulation clearly shows the presence of large anharmonicity effects
in the paraelastic phase. A rapid quench from the high temperature phase to very
low temperatures indicates the presence of small clusters (consistenting of 6 to 12
molecules) with both ferroelastic and herringbone ordering. In addition, I find a
large density of equilateral trangular plaquettes. These give rise to a three-peak

structure in the center-of-mass radial distribution function.

Although the intermolecular interaction parameters are those appopriate for
oxygen molecules, there are important differences between the system I have stud-
ied and oxygen molecules adsorbed on graphite. Two significent physical effects
not considered in the present simulation study are (1) orientations of the molecules

away from the graphite plane with a concomitant motion of the center-of-mass
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perpendicular to the graphite substrate, and (2) corrugation of the graphite sub-
strate. For a detailed comparision between the MD results and experiments on

O, /graphite, the above two effects must be taken into account.

Our MD simulations clearly brings out the physics of ferroelastic phase tran-
sition in two dimensional molecular solids. The presence of an intermediate plastic
phase is clear and the physical properties of this phase is dominated by strong
rotational-translational coupling. In contrast to 3D systems, where one of the
many transverse elastic constants soften as a result of the above mentioned cou-
pling, there is ouly one transverse elastic constant (C44 = C;; — Cj2) for a 2D
triangular lattice and this softens as one approaches the ferroelastic transition
temperature from above. The system therefore behaves almost like a liquid al-
though the center-of-mass diffusion is ébsent. In fact, this is perhaps the reason
why in experiment,’? it is not easy to distinguish this intermediate plastic phase
from the usual liquid phase. In addition, I find that the longitudinal acoustic

phonons also soften as T' approaches the ferroelastic phase transition temperature.

The phonons in the plastic phase are strongly damped whereas in the low
temperature ferroelastic phase they are rather well defined and can be understood
within the SCLD theory. A direct experimental observation of the soft phonons
and their behavior as a function of temperature will be of great help in elucidating
the physics of strongly coupled rotation-translation system in 2D. The other sig-
nificant aspect of this study is the possible effect of hydrostatic or uniaxial stress
on the ferroelastic phase transition. As I have disscussed in section 3.2, there are
important orientational coordinate and velocity dependent contributions to the
internal stress tensor whose effect on the thermodynamic and dynamic properties

will be of interest to explore further.
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Chapter 4

Theory of Neutron Scattering
From Paired Fermion

Superconductors

4.1 Introduction

A large number of metals and alloys undergo a transition to a phase called
the superconducting state below a certain critical temperature T,. The spectacu-
lar physical properties of this phase, such as the zero electrical resistance, perfect

diamagnetism and magnetic flux quantization, have made it one of the most fasci-

1

nating area of condensed matter physics.” The basic theory of superconductivity

is the Barden-Cooper-Schrieffer (BCS)?:? theory and it’s strong coupling version
- Eliashberg theory.~1° Recently, a great flurry of activity has been stirred up

by the discovery of superconductors with critical temperature near 100K in the

11-15

layered oxide perovskites. In this chapter, I will develop a theory of inelas-

tic neutron scattering from superconductors and discuss the applicability of this

14,15

theory to the real oxide superconductors as well as layered superconductors in

general.
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In the remaining part of this section, I will briefly review currently known
structural and physical properties of the high-T, oxide superconductors, introduce
different theoretical models which have been proposed for these and present my
motivations to study the problem of inelastic neutron scattering from the gap

excitations in these superconductors.

Structure and Properties

The new high-T,. oxide materials include hole-doped single-layered
La;_:R,CuO4 (R = Ba,Sr,Ca) (also called 214) compound,!! double-layered
Y Ba;Cu307_,(123) compound,'? multi-layered BiCaSrCuO and TICaBaCuO
compounds,’® and cubic Ba;_;K;Bi03; compound.!” In addition, electron-doped
Nd;_.Ce,CuO4 compound has b'een recently discovered.!®  The 123 and 214
compounds are the better investigated materials. The common structural feature
of these high-T, superconductors (with the exception of the cubic compound) is the
presence of one or more planes of copper atoms with four strongly bonded oxygen
atoms in a square planar arrangement (CuO; planes, also called the ab-plane). In
some materials these planes occur in groups with individual planes inside a group
being separated by one Y or Ca layer and the groups being intercalated by a
variable number of CuO (or B:O, etc.) layers. There is a slight orthorhombic dis-
tortion of the tetragonal lattice at low temperatures in both La;_,Sr,CuO4 and
Y Ba;Cu307_,. The quasi-two-dimensional layered character of these compounds
is studied by varieties of experiments such as X-ray and neutron diffraction,®
and is also supported by band-structure calculations?® which reveal an antibond-
ing copper 3d;a_,: and oxygen 2p, , band near the Fermi level with very little

dispersion along the c-axis.
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The most important element in these oxide superconductors is the quasi-two-
dimensional CuO; plane. In the undoped material, each copper site is associated
with one hole. These holes do not move freely but are localized near the individ-
ual copper sites by strong onsite Coulomb repulsion. The spins of the holes are
ordered antiferromagnetically (AF) due to the superexchange interaction between
them,?! and their magnetic properties can be understood very well using the two-

dimensional spin 1/2 Heisenberg model.?%:23

Doping creates additional holes going
into predominatly oxygen 2p orbitals. The local moments are disordered as seen
in Raman scattering, infrared optical?4 and neutron scattering?® experiments and
the system looses the AF order and becomes superconducting at low temperature.
The NMR results?® show that the nuclear relaxation rate of the copper nuclear
spins varies drastically across T, indicating that the holes (or electrons) created
by dopping in the CuO; layers are the bearers of the supercurrent. This picture
is also supported by high-energy spectroscopy such as X-ray absorption near-edge

spectroscopy?’ and electron energy loss spectroscopy.2®

Experimental observations show that the unit of the superconducting cur-
rent in the oxides is twice the electronic charge. These expreriments include flux
quantization?® in units of —;Le, the AC Josephson effect?? showing superconductive
tunneling of charge 2e, and Andreev reflection.3! These observations indicate that
Cooper pairs are still responsible for superconductivity in the new oxide supercon-
ductors. In addition, the observation3? of a DC Josephson tunneling through a
junction between a singlet state superconductor PbSn and Y Ba; Cu3Oy indicates
that the pair state in Y Ba;Cu30;7 has ”s-wave” symmetry, since a Josephson
supercurrent would be forbidden between a singlet s-state superconductor and a

superconductor of different pairing symmetry.3?
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All these layered superconductors are highly anisotropic in their physical
properties®® with London penetration depth in the ab-plane about 15004 which
is much smaller than that in the c-direction. The superconductivity is strongly
type-11,3* with H.; much higher than H. (H.; > 100T). The coherence length £,
the size of a Cooper pair, is short - about 10A in the ab-plane for Y Ba;Cu307,
which is less than twice the average distance between oxygen holes. The coherence
length is also much shorter than the magnetic field penetration depth A. These
last two properties have lead to interesting fluctuation phenomena in these oxide

superconductors, like melting of magnetic flux lattice.35—37

Theoretical Models

In the past, a number of possibile theories have been suggested,’®3® aimed
to explain, in addition to the high-T, itself, the aforementioned properties of these
layered oxides, both in the normal and the superconducting states. These theo-
retical models can be generally divided into two main catagoreies according to the
statistics of the underlying quasiparticles (QP) which form Cooper pairs.!®> One
is the model of superconductivity with paired fermions? although the attractive

39—-50

mechanism is still uncertain. The other is that of paired charged spinless

51-53

bosons. Some essential characteristics of these two types of models are

briefly discussed below.

In the paired fermion models, the carriers in the normal state form a normal
Fermi liquid®* and condensation of these charged carriers near the Fermi level gives
rise to the superconductivity. The quasi-two-dimensional character of the elec-

tronic states with "nesting” of the Fermi surface plays an important role?® in the
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observed large T., although the superconductivity in these layered oxides is strictly
three-dimensional in nature because of weak but finite interlayer coupling.5%:55-57
The source of the electron-electron attraction which results in Cooper pairing can
involve lattice degrees of freedom (phonons) and other attractive forces of electronic

20,39 of T, using strong coupling theory indicates that

origin. However, estimation
the electron-phonon attraction alone is not strong enough to give the observed

high T..

Many theoretical arguments®® and experimental spectroscopic results®® such
as the existence of satellites in the resonant photoemission spectra’® have demon-
strated strong electronic correlation effects in these oxide superconductors. Non-
conventional pairing mechanisms which are purely electronic in origin based on
Coulomb correlations between copper 3d electrons (and oxygen 2p., electrons)
have also been proposed.?® Some of these are base on spin fluctuations, like

43

antiferromagnetic spin fluctuations,*°~4? ferromagnetic spin fluctuations,* and

local-moment fluctuations.** These have been studied using a Hubbard

60—-62

Hamiltonian, usually the single band Hubbard model on a square lattics,

ie, H=—tY .S, chcio+U Y niniy, [ where ¢}, (cis) is the creation (annhi-
lation operator of an electron (or hole) with spin o(=1, ]) at site i, and njs = c} cis
] with nearest neighbor p — d hopping integral ¢ and on-site Coulomb repulsion U
between electrons with opposite spins.>! In the strong correlation limit (U >> t),
this one band model can be expanded as a series in t/U by use of canonical

40,82 and can be written as an effective Hamiltonian for mobile va-

transformation
cancies moving with a hopping integral ¢t through an antiferromagnetic backgroung

with exchange interaction J = 4t?/U between spins S; [where S; = 1cf Gagcig).
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For exact half filling, this is an antiferromagnetic Mott insulator.®282 The pa-
rameters (t ~ 0.1eV,U = 5eV, etc. ) entering into the Hubbard Hamiltonian can

be calculated from the electronic structures using different approximations.3

The other paired fermion models are based on charge fluctuation effects, such

8 49

as excitons?® or plasmons. In the usual "excitonic” superconductivity,’* the
conduction electrons in conducting plane induce virtual electronic transitions on
nearby easily polarizable molecules or atomic complexes, which result in an ef-
fective attractive interaction between conduction electrons. In a different version
of the "excitonic” model,*® the charge transfer excitations between copper and
oxygen atoms in the conducting CuO; planes (Cu?t0?~ — CutO~) serve as

the pairing exchange force. This has be studied*® using an extended Hubbard

Hamiltonian containing copper d,:_,: orbitals and oxygen p. , orbitals.

Next, I will introduce the boson models, where the underlying quasiparticles
are spinless charged bosons. As discussed above, the 3d,:_, 2 copper electrons
and 2p, , oxygen electrons in the CuO; planes are strongly correlated and form
a system which is close to the metal- insulator Mott transition limit.5! Numeri-
cal studies®> find that near the half-filled limit, the one-band Hubbard model can
have antiferromagnetism for a wide range of t/U- as a result of the Coulomb in-
teraction. Increasing U over a critical value U, causes a band spliting and results
in the metal-insulator transition. At exactly half filling, the system is described
by the spin 1/2 antiferromagnetic quantum Heisenberg model. This model has
long range ordered antiferromagnetic ground state in two dimensions. Doping by
a small number of holes introduces frustration into the quantum antiferromag-

net and destabilizes the antiferromagnetic order. The new ground state of the
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doped system was hypothesized®® to be a quantum-spin-liquid-state (or resonat-
ing valence bond state) which can be approximated by an appropriate quantum
mechanical superposition of states where two spins are paired into singlets. On the
basis of the topological considerations, the quasiparticles in the spin-liquid-state
have been conjectured®” to be neutral spin 1/2 fermionic excitations and charged
spinless bosonic excitations. The neutral spin 1/2 fermions are the quasiparticles
of the undoped system. They consist of unpaired electrons moving in the spin-
liquid background with properties analogous to solitons in polyacetylene.®® The
effective mass (m) of these fermions is of the order of A%/(a?J) where a is the
lattice constant constant and J = %1 is the exchange interaction between nearest
neighbor spins. Doping generates holes (removes electron of charge —e and spin
1/2) in the Fermi sea of these neutral fermions. The hole can bind to a neutral
fermion and form soliton-like excitations. These are spinless charged quasiparticles
and obey Bose statistics and have an effective mass of the order of the electron
mass. Thus in this picture, a real electron or a hole (a fermion with charge te
| and spin 1/2) is a composite particle consisting of a neutral spin 1/2 fermion and
a charged spinless boson. These bosons are the charge carriers of -the doped spin-
liquid-state. In addition, any effective attractive boson-boson interaction, which
can be mediated for example through an interlayer Josephson coupling,®® or any
other mechanism will produce pairing of these bosons in quasi two-dimensions.

Condensation of these paired charged bosons results in superconductivity.5?

However, neither the paired fermion nor the boson models have been com-

pletely successful in explaining all the experimental observations.
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Neutron Scattering From Excitations in Superconductor

From the above discussions, we see that the different theories proposed for
high-T, oxide superconductors up to now are only partially successful. In princi-
ple, a proper theory should not only give the high T,, but also explain all other

8% This requirement places

properties and phenomenon of these superconductors.
a strong constraint on the possible theoretical models on high-T. oxide supercon-
ductors. Besides, accurate determination of the superconducting parameters such
as the superconducting order parameter A, symmetry of the order parameter,
the coherence length £ etc., can provide important information about the possi-

ble microscopic mechanisms. Many spectroscopic and scattering experiments have

become more and more useful in this regard.

Some photoelectronic probes,®® like the infrared and optical absorption, Ra-

7 and

man scattering, photoemission, inverse photoemission, x-ray absorption,?
other probes such as positron annihilation and electron energy loss spectroscopy?®
can give information about the temperature dependent spectrum of elementary
excitations in a superconductor, starting from meV to eV energy scales.’® Neu-
trons, due to their magnetic moment, can directly couples to the magnetic fields
produced by these elementary excitations. Thus neutron scattering is an excellent
probe of magnetic correlations.” Neutron scattering has been used in studying the

magnetic excitations and magnetic orderings in heavy-electron superconductors,’

antiferromagnetic superconductors,”” and the high-T, oxide superconductors.?®

There have been primarily three experimental techniques which have been use-

ful in probing the superconducting gap excitations directly. These are tunneling,

73

far-infrared absorption and Raman scattering measurements.”® In this chapter
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and the following one, I will discuss how neutron scattering can directly probe the
gap excitations and other superconducting correlations. In particular, inelastic
and quasielastic neutron scattering from superconductors can directly probe the
order parameter A, the coherence length ¢, and most importantly, the statistics

of the quasiparticles.!41%:7475

The remaining part of this chapter is organized as follows. In section 4.2, I
summarize some most important general formulas about inelastic neutron scatter-
ing from superconductor. In particular, the relation between the inelastic scatter-
ing cross section and transverse current-current response function will be discussed.
In section 4.3, I investigate the dynamic response functions from the paired fermion
superconductor and discuss some important features of inelastic and quasi elastic
neutron scattering from the gap excitations. Analytical and numerical results will
be given in this section. Application of this theory to the high-T, oxide supercon-
ductors will be discussed. Finally in section 4.3 I give a summary. The case of

paired spinless cahrged boson superconductor will be discussed in next chapter.
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4.2 Inelastic Scattering Cross Section

of Neutrons From Superconductors

In this section, the essentials of neutron scattering by supercondutors will
be discussed in order to bring out certain salient features. When a neutron is
scattered by a superconductor, the magnetic moment of the neutron interacts
with the effective local space and time dependent fluctuating magnetic field B

that is intrinsic to the quasiparticle spin, its itinerancy, and also any local magnet

moments in the solid. The interaction can be written as™
H, = —yuna - B(r,t), (4.1)
where & denotes the Pauli matrices, y = —1.91 is the gyromagnetic ratio of the

neutron, and puy = eh/2mpc is the nuclear magneton (m, is the mass of proton).
Note that the circumflex above a letter denotes an operator. The differential
scattering cross section d?c/dS)dE per unit outgoing solid angle 2 and outgoing

energy E within the Born approximation can be written as 7%:7¢

R 2
< XK'¢'|6-B|\ko >| §(hw+Ex—Ex),

Po = ( m” )2 (run)? Y. PP,
d0dE ~ \2nh? kLA

(4.2)

where k(k') and o(o') are initial (final) neutron wave vector and spin, A(A') spec-

ifies the initial ( final) state of the QP in the solid, fiw = A%(k'? — k?)/2my is the

energy transfer (my is the mass of neutron), P, and P, are two probability

weights of the initial QP and neutron states. For unpolarized neutrons, the sum
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over the initial neutron state can be carried out. Then by using an integral rep-
resentation of the energy conservation §-function in Eq. (4.2), the scattering cross

section can be written in terms of a correlation function of the magnetic field.””

The effective microscopic magnetic field B is self-consistently generated ac-
cording to Maxwell’s electrodynamic equations by virtue of the currents produced
in the solid. This current is composed of an orbital paramagnetic part j,, due to
the motion of QP, an intrinstic spin part j,, due to the spin of the moving quasi-
particles, and the orbital diamagnetic current jq4, due to its interaction with the
electromagnetic fields. Using the microscopic Maxwell equations including both
the instantaneous Coulomb field and the effective fluctuating magnetic field,”” and
the fluctuation-dissipation theorem,’® the magnetic field correlation function can
be related to the transverse current-current response function with a diamagnetic
screening factor. Thus in general, the total differential scattering cross section con-
sists of three parts; one, arising from the paramagnetic current; two, a diamagnetic
contribution due to the intrinsic electromagnetic fields in the system and is usu-
ally combined with the first for reasons to be explained later; three, spin current
density contribution due to the intrinsic fluctuating spin moments of the itinerant
QP. In addition, localized magnetic moment, for example those arising from the
Cu** ions in the copper-oxygen complex in the high T, oxide superconductors,
also contribute to the scattering. Here I will only focus on the first three parts,
leading to a possible determination of the superconducting characteristics of the
system over and above the contribution due to the magnetic moments of the fourth
part which may or may not be directly related to the superconducting aspects of

the system and may even be absent in copperless oxide superconductors such as

Ba,_.K,.B:i0;.



148

These contributions together make up the expression for the inelastic differen-

tial scattering cross section in the form of the transverse current-current response

function and can be written as’’

do mp, \? (yun)? k'
“dE = (27r;2> ( 7rh) ;(41r)2[1 + np(hw)]

1
"(Qa“’),

<[ - tmPuae) /@) (43)

where q is the momentum transfer k — k', and ng(hw) is the usual Bose factor
[np(z) = (ef*-1)"1,8 = t>7 is the inverse temperature]. P, (q,w) is the trans-
verse part of the wave vector and frequency dependent current-current response

function, i.e.,
uv

where u, v(= z,y, 2) are cartesian indices and P,,(q,w) is the spatial and temporal

Fourier transform of the total current-current response function P,,(z,t;z’',t'), i.e.,

ddq dw iq(x—x') —iw(t—t'
P“V(z’t;z"tl)sz E BQ( )e (¢ ‘)P“y('q,W). (45)

In the above d(= 2,3) is the spatial dimension. The denominator x(q,w) in Eq.

(4.3) is due to the self-consistent electrodynamic screening effect discussed above

and is given by’""?

4
hc2q?

2
@) = [1- (27 + (227 + Rem(q,w)]

47 2
+ gcz—q?ImPl(q,w)} . (4.6)



149

2

where wp

= 4mne?/m is the plasma frequency, n is the average density of the
quasiparticles and m is the mass of the quasiparticles. The electrodynamic screen-
ing is important”” only at very small ¢ and in our numerical calculations, I omit
this screening effect by putting x(q,w) = 1.  Eq. (4.3) is the basic equation

for studying the inelastic neutron scattering from QP in solids in general and

superconductors in particular.

The current-current response function represents the response of the total
currents to an applied magnetic field in superconductor. Let H be the halimitonian
for the superconductor without the pertubating field and H' = J dzO(z,t)Z(z, t)
be the perturbation due to an applied time-dependent field Z(z, t) (such as electric
field or magnetic field), where O is a physical operator (such as particle density
or electric current operator). Then the'cha.nge in the diagonal matrix element of
the operator O is given by §(O(z,t)) = % j" dt' [ dz' DR(zt,z't') E(2',t'), where
the time retarded correlation function is—;:ﬁned by™®8° DR(g,t;2',t') = —i <
[Ox(z,t),0x(z',t')] > 8(t —¢t').  Here [ ] denotes the commutator, <> stands
for a thermal average in the grand canonical ensemble over the unperturbed total
grand canonical Hamiltonian £ = H — uN (# is the chemical potential, N is
the total particle numbér operator and usually [H, N] = 0), and Ox(z,t) =
eikt/ AO(z)e“’t‘/ A, For superconductor in a magnetic field of vector potential

A(z,t), the induced current is given by

6ju(z,t) = —%Z/d‘z'/dt' P,(z,t;z',t")
2
hfn"a(z —z')8(t - t')6,,,,] A ). (47)

The diamagnetic current contribution to the linear response function is given by

(he*n/m)é(z —z')6(t —t')8,, which is longitudinal to A. The paramagnetic orbital
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current and spin currnt contribution is contained in the following current-current

response function
P, (z,t; 2',t') = —i < [Ju(z,t), J(z',t")] >6(t—t"). (4.8)

where the current operator J for itinerant quasiparticles has contributions from j,

and j,, i.e,

N

J =

Caso>

o+ Ja- (4.9)

Cdto>

The orbital paramagnetic current operator is given by

2m

W@ =Y @) Ve(e) - (WE@)la)],  (410)
=3 (v, - v.) [ 2] (411)
~ 2m z'=z

In Eqs (4.10) ¥} (z) and v,(z) are the creation and destruction operators for
the quasiparticles with spin o(=T, |) at position z which satisfy anticommutation
relations, and v(zt) = eHt/A(z)e=Ht/A = ¢iKt/hij(z)e=iKt/h  In terms of the
momentum space operators ¢k, and ¢, where 1/;,(::) =Y ko cko€'¥®|a), etc., the
spatial Fourier transform of j, can be written as jo(k) = ;;% Qo é:+qaék,(2k +

q). Eq. (4.10) will be used later in this chapter. In addition, the diamagnetic

current operator is given by j4(z) = Za(—;—’c)A(x)ﬁj(z)zﬁA,(z).

If the quasiparticle has spin (1/2), the spin gives rise to a magnetic moment,

which will produce the spin current. Thus the spin current operator is defined by
jo(z) = ¢V x M(z) (4.12)

where the magnetic moment operator is

-~ ~

M(z) = gupS(z) (4.13)
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and S(z) is the spin density operator given by

$(2) = 53 3 $2(@)aabale) (414
a,f

In Eq. (4.13), the gyromagnetic ratio g = 2 if the quasiparticles are electrons or

holes, pg = 2°'::c is the Bohr magneton. I have for the z-compount of the spin

density operator,

S(2) = Z¢z(z 52)asa(2) = 5 [$F(@Nr(2) — ¥ (2Wy(2)]. (415)

If I define 6+ = 6, £ 16y, I have

¥} ()b ()

b7 (=) (=), (4.16)

54(2) = 3 4 ()6 4)apdale) = {
aB

From Eqs. (4.12)-(4.16), I can show that the spin contribution to P, (q,w) equals
(cgpB)*q®x+-(q,w), where x,,(q,w) is the Fourier transform of spin-spin

susecptibility defined by

xuv(zt,2't') = —i < [Sp(zt), S',,(:ct)] >0(t-t), (uv==zy9,2+,—) (4.17)

If spin-orbit interaction is neglected from the total Hamiltonian A of the su-
perconductor, the orbital and spin components can be separated. Then P, (q,w)
is the sum of P, ,(q,w), the orbital contribution and P, ,(q,w), the spin contri-

bution (no cross terms), i.e.,
P.L(q’w) = Po,J.(qaw) + Pc,.L(qaw)

= Po,.L(Qaw) + (Cg”'B)zqu—!»—(q’w)' (4'18)
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However in the presence of the spin-orbit coupling, spin is not a good quantum
number and the current-current response function will get contribution from the

mixing of spin and orbital currents.%!

It can be shown that in the appropriate localized spin approximation, the
above result reduces to the familiar spin correlation function™ usually employed

in neutron scattering experiments in localized magnetic systems.25:72

The differential scattering cross section integrated over all positive energy
transfer can be measured in quasi elastic neutron scattering. From Eq. (4.3), I can

dcfine the quasi elastic scattering cross section by

1
x(q,w)

$(q) = F/d(hw)[1 + ng(hw)][—ImP_L(q,w)/q’] .

= 8,(q) + %,(q) (4.19)

where F is the constant prefactor in Eq. (4.3) (independent of w), and ®,,®, are

orbital and spin contributions, respectively.

The results mentioned above are completely general and independent of the
statistics of the (quasi) particles. Formally they have the same appearance for
both the paired fermion and the paired spinless charged boson superconductors.
In the later case, where the quasiparticles have no spin, the fermion operator 3,
should be replaced by the boson operator ¢ without the spin indix .  In this
case there is no spin current, only the orbital current contributes to the neutron

scattering.
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4.3 Dynamic Response in Paired
Fermion Superconductor

Form the previous section, we know that the important quantity characteriz-
ing the neutron scattering from a superconductor is the current-current response
function defined in Eq. (4.8). In this section, I calculate this quantity by using
the singlet pairing (s-wave) BCS scheme? and a standard self-consistent Gor’kov
factorization method.??:82-84  For simplicity, I will only consider the leading order
Feynman diagrams self-consistently to include the Cooper pair contribution. Thus
the ladder diagrams or vertex corrections are ignored.®3 This kind of framework
has been proved to be quite reliable and has been applied in calculating, for ex-
ample, the Raman scattering from the gap excitations in superconductor.?® As
already discussed in section 4.1, within the fermion QP models, condensation of
paired fermions is still the basis of the superconductivity in these high-T. ox-
ide layered compounds, and the BCS model is the most common paired fermion
model appropriate for a diverse variety of pairing forces. This justifis our using
BCS model for the purpose of exhibiting the important characteristics of neutron

scattering from paired fermion models for these high-T, oxide superconductors.

Consider a many fermion (charge —e, mass m) system in the presence of an
applied magnetic field specified by the vector potential A(z). The total grand

canonical Hamiltonian without spin-orbital coupling is given by
g=rtui =3 [t gr@f [Leav e ) ulie
~ 7 2m c

+% Z//ddzddx' v(m — ml) 12;:(33)1[;;(zl)¢a'($')§£g($). (4.20)

o0
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The pairing interaction of two fermions near the Fermi surface is given by v, whose
microscopic source need not to be specified here. The pairing mechanism may be
one or several combinations of those already mentioned in section 4.1. However, I
will assume that v is a constant interaction, i.e., v(z —z') = -V§(z — 2')(V > 0)
with an energy cutoff hw.. For fermionic superconductors, the chemical potential
p is approximately independent of temperature? and equals to the Fermi energy
er = h*k%/2m. As will be discussed later, this is one major diference between
the fermionic system and bosonic system where the chemical potential depends

strongly on temperature and interactions.!352:53

In order to study the finite temperature response functions, I use the Mat-

subara Green’s-function formalism.20.84:88

I first briefly introduce some basic
formulations of superconductivity to establish our notations. Then I will proceed
to calculate the dynamic response functions. To do so I introduce an imaginary
time operator by substituting ¢ — —i7, i.e., P,(27) = efc’/"zﬁ,(z)e”é'/" and
P} (z7) = eXT/MjF(z)e~KT/% Note that ¥} (z) is hermitian conjugate to ¥,(z),
however )} (z7) is not hermitian conjugate to 9, (z7). For any operator O(z), it’s

e—Kr/h

Heisenberg representation is given by Ox(z7) = eX7/*O(z) , and the ensem-

ble average of O is defined by < O >= Tr[e'ﬁké]/Tre‘p’t. The single particle

Green’s-function is defined by®°
G(z7,2'7") = — < Ty [o(aT)d s ('’ ] >, (4.21)
and two anomalous Green’s functions for superconductor are defined by
F(zr,z't") = — < Ty [$1(er)d (z'7")] >, (4.22)

and

FH(zr,2't) = - < T; [1/3?(2:7')1,[;;'(1:'7")] >, (4.23)
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where T, is Wick chronlogical operator, i.e., 7 is decreasing from left to right. T,
also gives a change of sign (-1) for every permutation of fermion operator. The

pairing amplitude (or the ordre parameter) for superconductor is defined by

A(z) = VF(z,7 + 0;2,7) = V < P, (z)P1 () > . (4.24)
These Green’s functions satisfy the well know Gor’kov equations.®82:84  For a
uniform system one can introduce the Fourier transforms
G(zr,2'r') = Z e~ iwn(r- ")/ d'k e* (=== g(k,w,) (4.25)
’ Bh (2m)d 1Wn)s ‘
and
—twn(T—7 ddk ik-(z—z' +
F*(er,2'7') = 3% Z (r=7) o (z=2") F+(k,wn), (4.26)

where wn = F5(2n +1) (with integer n) is the Matsubara frequency for a fermion.
Then G(k,wn), F(k,wn) and F*(q,wn) can be solved from the Gor’kov equations.
If A is taken to be real and independent of z, the solutions for A = 0 are well

known®® and are given by

ui vk

6(wn) = o —ETR t Tt BB

(4.27)

1 1

—_ T+
Fllowa) = F7(kowa) = —uavn | =—pp = 7R |

(4.28)

In Eqs (4.27) and (4.28), Ex = /€2 + A? (éx = ex — p) is the energy of new
quasiparticle excitations (bogolons®”) in the superconductong state, where ¢y is
the band energy; A is also the energy gap. The coeflicients u, and v, are the

amplitudes of the bogolons and are given by

ui=1(1+5—"), vi:%(1—é—’:), (4.29)
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which satisfy
UpVE = —é—, ul +vi=1, ¥l -k = Sk (4.30)
2E;
G and F,F* can be represented diagrammatically as shown in Fig. 4.1(a) and

4.1(b). The order parameter A is determined by the BCS gap equation

0(hwe — |€kl)- (4.31)

To simplify numerical calculations, in the following I will neglect the detailed
band structure of the CuO; planes and use an effective-mass approximation, i.e.,
ex = h?k?/2m which has been found to be quite reasonable. Then in quasi two-

dimensions, Eq. (4.31) can be written as

huwe tanh[%ﬂ,/& + A’]
E = /d{,,
A VR

(4.32)

where A = Na(ep)V = %:—"{1 is the dimensionless coupling constant. In gereral,
the Fermi energy e is of the order of 1eV, while the gap A(0) at T ~ 0 is about
10meV in the high-T, oxides.” If I take a strong coupling limit A =~ 1 and require
the zero temperature gap A(0) = 0.05¢r, then A(T') has to be solved numerically
from Eq. (4.32) as a function of T'//T.. This numerical solution will be used in the

calculation of the response functions.

In order to calculate any correlation function involving two particle coordi-
nates, like the current-current response function, I first consider a function defined
by

Pu(z,m;2',7') = - < T, [f“(z:‘r)j,,(:c'r')] > . (4.33)
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It can be easily shown that the grand canonical average of T-ordered product of
an even number of fermion operators or boson operators such as in P,, defined
above is periodic in each T variable with period BA in the range 0 < 7 < §k. Thus
the Fourier representation of P, (z7,z7') can be introduced as

1 —iva(r—71' dd iq-(x—x'
Pul(z,m;2',7') = ok Ze n )‘/67’_()1‘1- eTEX) P(q,vn),  (4.34)

where v, = 2n7/Bh with integer n. Using the Gor’kov factorization method,??:82

or Feynman diagrams,® I can calculate P, (z7,z'7') or Py, (q,vs) directly. Then

through analytic continuation (iv, — w + in), the retarded correlation function

P,.(q,w) is related to the thermal function P,,(q,vn) according to the following
prescription®®

Pu(a,w) = Puv(a,va)| | : (4.35)

iva—wtin

In the remaining part of this section, I will use the above formalism to calculate

the orbital current, the spin current and the density response functions of the

paired fermion superconductor, and study the neutron scattering characteristics

by analysing the behavior of these response functions.

Orbital Current Response Function

From Eq. (4.10b) and (4.33), the orbital current contribution to P,,(zt,z't')

can be brought into the form

Prastit) = () o e,

o,0
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x <T, [&:(2)43,(1) “:.(2')1&,,(1')] >} , (4.36)

2=140
=140

where 1 stands for a space-time point (z;,7; ), etc. Using the Gor’kov’s factoriza-
tion procedure,®* the above average of r-ordered product of four fermion operators
can be factorized into a sum of the products of average of pairs of the field op-
erators and in turn can be written in terms of the Green’s functions G, and
F+. After substituting the Furier representations of G,F and ¥+ and doing the

differential operations, one readily obtains

Po (8 ¥n) = 2(:_2)2 / (Z:,l)‘d (k+32),(k+3),

xb-lﬁ' Z [g(k+ q,Vn + Vm)g(k,l/m) +f(k +q, Vn +Vm)}-+(k, Vm)]. (4.37)

The factor 2 comes from the spin summation. This can be represented by Feynman

diagrams as shown in Fig. 4.2. Using the Green’s-functions given in Eqgs (4.27)
iwmn
and (4.28), the m-sumation can be carried out readily,i.e., )" . - ° = Bhf(z)
Wm — T

and f(z)+ f(—z) = 1, where f(z) = (9% +1)~! is the Fermi distribution function.

Then (1) shifting the k variable to (k — 3) and symmetrizing the new k-integral by
adding another integrand of the same form but with k replaced by —k, (2) using
the symmetry e_j = €k, (3) regrouping the various terms in the integrand and (4)

using Eq. (4.35), I obtain

eh\? dik
—) k,k,

Po,w(‘l,w) = h( (2—1;)_‘7

1 £+6- +140°
x{§(1+ B )[f(E-)—f(E+)]

1 1
'(nw+iq—E++E_ _hw+in+E+—E_)

m
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1 € + A2
+§(1— E.E_ )[l_f(E—)—f(E+)]
1 1
.(hw+i7]—E+—E_—hw+in+E++E_>}’ (4.38)

where the subindex + means k + q/2. The factors %(1 + %A—z) in Eq.
(4.38) are the superconducting coherence factors. The first term in the big bracket
in Eq. (4.38) is the contribution arising from scattering of thermally excitated
quasiparticles, whereas the second term is the contribution due to creation or
destruction of two quasiparticles. Note that both the normal and the anomalous
polarization diagrams in Fig 4.2 contribute to each of these two processes. At zero
temperature and A # 0, f(E) = 0, thus the first term vanishes, since there are

no quasiparticles excitated at zero temperature for A > 0. To get the transverse

part, I use the identity

Z(a,w - q“q")k,,k,, _(axk)? (4.39)

o e e

Thus the orbital contribution to P, (q,w) is given by Eq. (4.38) with the factor
k,k, replaced by gq—:,'—‘-L’, and the real and imaginary parts of P, (q,w) are obtained
by using the §-function formula (z +in)~! = P(1)—ir§(z) where P stands for the
principal part. The diamagnetic orbital current does not contribute to the neutron

scattering directly, but indirectly through the dynamic screening and has no effect

when x =~ 1.
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Spin Current Response Function

To calculate the transverse spin-spin susceptibility x4+—, I first consider a
function defined by Xy _(z7,z'7') = — < T [34.(2:1')3_(::'1")] >.  Using Eq.
(4.16) and the Gor’kov factorization, I have

Xoo0,1) = (T [B @RI @)

2=140
=140

= [o,2)9(v,2) + 7+ (2, 2)7(1,11) (4.40)

2=140
¥ =1'40

where 1 = (z;,71). Using the same procedures as in the calculation of the orbital

part, I get the final result:
d’k
xe-(aw) =h [ 25 x5 {2 (1 ¥ ‘—*—%;—'M—) [#(B-) - f(2,)

1 1
'(nw+in—E++E_ _hw+in+E+—E_)

1 E+6- + A2
+§(1 - ————+E+E_ ) [1 - f(E-) - f(E+)]

1 1
’ - 4.41
(hw+in—E+-E_ M+in+E++E’_)}’ (4.41a)
and
P, 1(q,w) = (cgrB)*q’x+-(qyw). (4.41b)
Note that for an isotropic s-wave superconductor, xzz = Xyy = Xzz = %x..._. Eq.

(4.41) together with Eq (4.38) completes our theoretical formula for the transverse
current-current response function whose imaginary part gives the inelastic neutron

scattering from the gap excitations of the paired fermion superconductors.
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Density-Density Response Function

The external electric field (or scalar potential) couples to superconductor via
the local charge density. The induced local charge density is contained in the

retarded density-density response function®®
D(zt,z't') = —i < [6n(=t), dn(z't")] > 6(t — t'), (4.42)

where §7(z) = i(z) — n(z) is the density fluctuation operator, n(z) =

3, ¥+ (z)¥,(z) is the density operator, n(z) =< #(z) >= —2G(z,T;z,T +0) is
the average density. The imaginary part of the Fourier transform of the density-
density response function ImD(q,w) is related to the inelastic electron scattering
cross section from a superconductor.8® Let us first consider the thermal conterpart

D(1,1') [here 1 = (z1,71)] and use the Gor’kov factorization to get

D, 1) = - L(T: [ @b @ )])| = a(an)
- 2[9(1,2')9'(1',2) - }'*(2',2)]-'(1,1')] tee - (4.43)

Fllowing the same procedures used in obtaining P, ,, and P, ;, I obtain

d A2
D(aw) =t [ G {%(1 ¥ %ﬁ‘f'—) (#(8) - £(E.)]

1 1
'(nw+in—E++E_ _hw+in+E+—E_)

A2
+s (1 e ) [1- £(B-) - £(B+)]




162

1 1
.(hw+in—E+—E__hw+in+E++E_)}° (4.44)

Note that this result corresponds to the two ring diagrams in Fig. 4.2 with ap-
propriate vertex functions. The coherence factors In Eq. (4.44) are different from
those in the current-current response function [Eq. (4.38) and (4.41)] by a sign in
front of |A|2. In addition, correction to Eq. (4.44) due to the Coloumb interaction
between the fermions can be obtained by using Dyson equation.? This interaction

also produces collective modes propagating in the superconductor.
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’ — G(z171,2272)

-7'-+($17'1,$27'2)

— 7(3’17‘1,2527'2)
k,w,
> —— G(k,wn)
k,w,
’ F(k,w,)
k,w,
> — F(k,wp)

Fig. 4.1 (a) Diagrams representing the thermal Green’s functions in paired
fermion superconductor. The inward arrow at one end represents destruction
(1) of electron while the outward arrow represents creation (y*) of electron.
Thus F+ represents creation of electrons at the two ends. (b) Diagrams of
Green’s functions in Fourier space for paired fermion superconductor where
each line is labeled by a momentum k and frequency w,. F*(k,w,) and
F(k,wn) represent creation and destration of Cooper pairs.
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k v,
q q
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k+qQ VntVm
k Vn

k+q Un+Vm

Fig. 4.2 Feynman diagrams that contribute to the response functions within
the Gor’kov factorization scheme.
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Normal State Limit

In order to distinguish between the characteristics of scatterings from the
normal and the superconducting states, I first give the results for the normal

state (A = 0). In this limit, ux = 6(&x),vx = 0(—&x). The coherence factor

—;-(1 + |§+§—|) =1 if k; and k_ are on the same side of the Fermi surface and
+ —_

zero otherwise, and %(1 - é+§_|) =1if k4 and k_ are on the different sides of
+ -_—

the Fermi surface and zero otherwise. After considerably long algebra, from Eqs

(4.38) and (4.41), I obtain

{ Po.;w(q"‘") } 5 ddk (%)2 (k + g)“(k + g)u

x+—(2,w) (2m) .

x2 f(€x)1 — f({x+aq)]

1 1
: - ; 4.45
(hw+zn—ek+q+ek hw+m+ek+q——ek)' (4.45)

and D(q,w) = 4x::(q,w). We see that when A = 0, Eqs (4.38) and (4.41)
properly go over to the normal fermi liquid RPA (random-phase-approximation)

response functions corresponding to creation of electron hole pairs.54:3%

At zero temperature, f(£x) = 0(kr — |k|), the k-integral in Eq. (4.45) can be
carried out exactly. In polar coordinates, the angular integral can be done first,
leaving the |k|-integral from kpin to kp.  Then by considering positions of the
two Fermi circles (d = 2) or spheres (d = 3) with their centers separated by q and
relations of the two vectors k and k + q with respect to the two Fermi surfaces,
together with the é-function §(hw — ex4q+ €k ), the lower limit of the k-integral can

be figured out easily for several regions of (q,w) values and are listed in the Table
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4.1. The calculated imaginary parts of the response functions for the normal fermi
liquid are listed in the Table 4.2 for d = 2 and in the Table 4.3 for d = 3 in units

of h(cgup)? Na(er)k%. We see that at small g, the spin and orbital contributions

1 3

to the inelastic scattering cross section are proportional to ¢g~! and ¢, respec-
tively. A comparison of the numerical values of ImP, ,(q,w), ImP, (q,w) and
ImD(q,w) for the normal fermi liquid are given in figures 4.2-4.9. We see that
when w — 0, they all go to zero. There is a g-dependent energy gap for ¢ > 2kp
and no gap for ¢ < 2kp. Also there is a ¢g-dependent maximum (at fiw ~ €f) in
both the spin and orbital contributions. At higher energies (hw ~ 10eF), all the
responses go to zero. These features can show up in the inelastic neutron scatter-
ing from normal metals. In the superconducting state, since A is usually much
smaller than ep, at high energy the responses from the superconducting state will
be very close to their corresponding normal state values for iw >> A. Thus any
significant diference between the A = 0 and the A # 0 results will appear only in

the low energy and/or small q regimes. I will discuss this feature in the later part

of this section again.

Using expressions in the Table 4.2 and 4.3, the quasi elastic scattering [Eq.
(4.19)] can aso be calculated exactly. For three-dimension normal fermi liquid at

zero temperature, I obtain

T [BET +2058) - 1], for g < 2k

8,(q) = So x (4.46)
%1(5:—)2, for ¢ > 2kp ;
and
1(_‘1_) 1-— 3-(.1_)2 for ¢ < 2kF ;
B, (a)=Sox{ = " [+~ B@r) (4.47)

331, for ¢ > 2kF;
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and the total quasi elastic scattering cross section is given by

R34 27 - SaP], fora<2he

8(q) = So x (4.48)
N
where
m k
So = Fh(eh/m)sz(eF)5F§ Na(er) = ok’ Ni(er) = 27:2;:2 )

Eq. (4.48) agrees with the results given by Lovesey’® and is a check on our A — 0
limiting behavious. As ¢ — 0, the spin part goes to zero, but the orbital part goes

to infinity, i.e.,
k
&N
q
(&)

Thus for a normal fermi liquid, the orbital response displays divergence for small

®.(q)
— So X

?r (g —0). (4.49)
®.(q) 2

wave vectors. This divergence is removed upon the proper use of the electrody-

namic screening.””

For electron system, the electron-electron Coulomb interaction will renormal-
ize the above results. The spin part acquires the well-known enhancement factor
whereas the orbital part is suppressed.”®®! This may be understood on physical
grounds by noting that the mutual electron interactions tend to enhance the spin
correlations while suppressing the orbital motions of the itinerant electrons, i.e.,
tend to "localize” the electrons. However this is not necessarily true if one takes
account of other effects such as band structure and correlation effects beyond the

Coulomb interactions.?!
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Table 4.1

Regions of q,w and limits of the k-integral in calculating the normal fermi

liquid response functions. Here q and knin are in units of kp, v = 5"&

q v kmin
I <2 0<v<|3¢’ -4l vVi-2

II| <2 |3¢-qd<v<igd+q| v/g-1q

m| >2 | 3¢ -q<v<jie*+q | v/e-1q




Iinaginary parts of the response functions for a three-dimensional isotropic
normal fermi liquid at zero temperature. Here q is in unit of kp and v =

Table 4.2

Aw

2ep’

4q

—ImP, . (q,w) —ImP, (q,w)
: T-v-G- o] rav
” v 32 » v
I1, 11 [i-(2-1q)] Z[1- (2 - 1g)7]
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Table 4.3

Iinaginary parts of the response functions for a two dimensional isotropic

normal fermi liquid at zero temperature. Here q is in unit of kp and v = .

'-ImPO.-L(q,W)

3/2
I1, 111 %[1 (-t ]
_ImPl.l(q,W)

o B it Ml Gl RO

1/2
I, 111 q[l - ;q)z]

q
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I A =00

i (1) q/ky = 0.5
(2) q/ky = 0.8 ]
i (3) 9/ky = 1.0 -
1.0 - (4) a/ky = 1.2 —

0 1 2 3 4
ho/ep

Fig. 4.3 Imaginary parts of the transverse orbital current-current response
functions for a two dimensional normal fermi liquid at zero temperature in
units of A(cgup)? N2(er)ki.
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A=00
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(2) q@/ky = 0.8
2 (3) ¢/ky = 1.0 _
i (4) q/k' = 1.2 |
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hw/ep

Fig. 4.4 Imaginary parts of the transverse spin current response functions for

a two dimensional normal fermi liquid at zero temperature in units of

Fi(cguB)? N2 (er)k}.
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how/€p

Fig. 4.5 Imnaginary parts of the transverse orbital current-current response
functions for a three-dimensional normal fermi liquid at zero temperature in
units of h(cgup)? N3(er)ki.
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—ImPy(q, w)

Q/kr

Fig. 4.8 Imaginary parts of the transverse current-current response functions
for a three-dimensional normal fermi liquid at zero temperature in units of

h(cgup)? N3(er)k}.
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Fig. 4.7 Iinaginary parts of the transverse spin current response functions for
a three-dimensional normal fermi liquid at zero temperature in units of

h(cgpnp)? N3(er)kE.
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Fig. 4.8 (a). Imaginary parts of the transverse orbital current-current re-
sponse functions for a three-dimensional normal fermi liquid at ¢ = 2.5kp
and zero temperature in units of h(cgup)?N3(er)k. (b). Imaginary parts of
the transverse spin current response functions for a three-dimensional normal
fermi liquid at ¢ = 2.5kr and zero temperature in units of

Megup)? Ns(er)k}.
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ol o 1l
0 0.5 1 1.5 2

hw/ep

Fig. 4.9 Imaginary parts of the density-density response function for a two-
diinensional normal fermi liquid at ¢ = 0.5kr and at zero temperature in units
of AN;z(er).
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37 T ] ;
- d =3
5 A = 0.0

(1) q/kg = 0.5

hw/ep

Fig. 4.10 Imaginary parts of the density-density response functions for a
three-dimensional normal fermi liquid at zero temperature in units of

hNs(er).
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When T < T, and A # 0, the integrations required in Eqs (4.38) and (4.41)

are quite complicated. In order to investigate the effects of superconducting cor-

relation on the neutron scattering, I first give the approximate results for the

dynamic response functions at small g. Then I give results for arbitary q and zero

temperatures from an extensive series of numerical calculations.

Use the following expressions

h2
£k+q =£k+€q+—k'q7
m

A? &
ViEy, = — 2%
h2
Vi ViEx = __é_‘; + (_)zﬁ

I expand Ex.q and f(E.), etc. to second order in ¢. For example,

& 1 2a?
Ek+q = FEyx + [ —k —_— + 5 — E;( q)z'
Then to second order in ¢, I have

E+_E—=__ ' q,

m E

Az
Ey + E_ =2Ey + 2¢4), g‘ + — 2 (_r;) —5(k- q)®,

E+£— + A? - hz Az 2
E.E_ 1_5 m E"(k @

and

f(E+)— f(E-) Of(Ex) , 1 A?
£+—E_ = 8E: +§(_) E

8% f(Ex) 2
BEkk ] (k-a)

(4.50)

(4.51)

(4.52)

(4.53)

(4.54)
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1 (K & [8f(E)
. (;) o | Tap o (4.55)
1(Kh*\>A? | 9g(E
1= 5B - 7(E-) = 98 + 5 () Fr| g |-
LR\ & [9'9(Ew)
+§(;;) e (U (4.56)
where
9(Ex) = 1 — 2f(Ey) = tanh(%ﬁEk). (4.57)
These relations enable me to write the response functions as
2
{ Po,1(q,w) } h(eh)z dik (q:—zk)
P, (q,w) " (am* %qz
K2 Ex 2
X{(—T;)ﬂf(Ek)[l - 1B e D) (o 5)

+§(-’§)29(Ek)%;-(k A (o E_)}. (4.58)

To first order in g, the first term inside the big bracket vanishes because (k- q)
or (k-q)(k x q)? integrated over angle between k and q give zero. The first
term will contribute to second order in q. For T' # 0, this contribution is due to
thermally excited quasiparticles. At very low temperatures, the derivative of the
fermi distribution function vanishes, the first term in the big bracket is close to zero

as T — 0 and only the second term mainly contributes with g(Ex) = 1 —2e PE» x
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1 —2e7Al2l, I can put E; = E_ = Ej in the denominator of the second term,
then the required k-integral can be proformed. It can be shown that for T << T,
and as ¢ — 0, P, ,(q,w) and P, ;(q,w) are functions of the variables ¢¢ and
(hw — 2A)/A only, where ¢ = hvp/A is the coherence length? which represents
the size of a Cooper pair (vp = hkp/m). Also ImP,(q,w) = 0 for hw < 24, i.e.,
one has a threshold behavior at twice the gap energy. However, the gap will be
filled by thermal excitation of the quasiparticles at T > 0 coming primarily from

the first term. I have

{‘I’"Pml(q"")} R / dik (Sq! * %)2
-

d 2
~ImP,,1(q,) srler JBmT ) (L)
F
A2ed [k-a\?
xg(Ex) Eip( kzq) §(hw — 2Ey). (4.59)
k F

where ImP, and ImP, are expressed in units of i(cgup)? N4(er)ki. Note that
the coherence length ¢ defined here is 7€gcs, where égcs is the coherence length

defined in the BCS theory.?

For general wave vector and temperature, I can calculate P, (q,w) and
P, 1(q,w) from Eqs. (4.38) and (4.41) by doing numerical intergations. The nu-
merically calculated resultsin the limit T = 0 are shown in figures 4.11-4.15. Figure
4.11 shows the imaginary parts of P, , (q,w)/q? and P, ;(q,w)/q? for a quasi two-
dimensional superconductor [in units of A(gup)?N2(er)k%] with A(0) = 0.05¢r
and for ¢/kr = 0.5. Figure 4.12 shows the same quantity but with ¢/kr = 1.5.
For a three-dimensional nearely isotropic system like Ba;_.K,Bi0Oj3, the calcu-
lated results are given in figures 4.13 and 4.14. From these figures one can see

the threshold behavior for inelastic scattering at Aiw = 2A. Another important
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feature of these numerical results is that there is a large reduction in the inelastic
scattering at small w in the superconducting state compared to the normal state,
in both the orbital part and the spin part. For example, large reduction of the
scattering in the energy range 0 < fiw < 6A is clearly seen from Figs 4.11 and
4.12. This is quite smilar to that observed in the Raman scattering experiments
in the high T, superconductors Y Ba;Cu3O7 by Cooper et. al.”® For q/kr < 1,
the orbital contribution dominates the spin contribution by orders of magnitude

and should be observable in experiments.!4'74

The quasielastic scattering cross section also gets drastically modified in the
superconducting state in the small g regime. Since A provides a lower energy cutoff,
the corresponding g cutoff would be given by hAvpq ~ A. Clearly the coherence
length ¢ = hvp/A provides a lower cutoff for ¢g~!. Thus the superconducting
correlation removes the divergence in the normal state orbital scattering. In fact,

from Eq. (4.59) I have

k)’
— 0 q* x a(E é_ei k__g . (4.60
8,(q) |  Naler)er J (2m)? 1 9(54) g3 ( k}.) (4.60)
2

The above integrals can be calculated exactly at T = 0. I obtain for a three-

dimensional isotropic system like Ba;_, K. B10j,

8,(q) — %(&) (Ekr)y (g—0), (4.61)

and

.(0) ~ go(eke) 1+ s | (2= 0) (4.62)

(in units of Sp). In particular, as ¢ — 0, the normal state spin contribution

(w/2)(g/kr) becomes (7w/24)(q/kr)?(¢kr). The divergence of the normal state
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orbital contribution (7/2)(kr/q) is removed and becomes (7/60)({kr). These
results are summarised in the Table 4.4. In Fig. 4.16, I plot the quasi elastic
orbital scattering as function of (¢/kr). In Fig. 4.17, I plot ®, as functions of (g¢).
Again one sees the orbital response dominates for small g and it should be possible
to see the effect of the superconducting gap in the neutron scattering experiments.
Also one should be able in principle to obtain the coherence length from the small
g limit of the orbital response. Finally I plot in Fig. (4.18) ®, and &, for a quasi

two-dimensional system.

The reduction in the total scattering cross section in the superconducting
state is proportional to the factor N(ep)W where W is the width of the band
over which the attractive interaction is operative. Typically for a traditional low
temperature superconductor such as lead, N(er) x a few states/eV, W ~ 10 meV
(phonon energy), the gap A ~ 0.8 meV, and the coherence length ¢ ~ 50004. In
contrast, for the high T, system, N(er) is about the same, W is perhaps electronic
in origin and is of order 100 meV, A is estimnated to be of order 8 — 32 meV,
and § ~ 10 — 15A. Thus the scattering strength from the superconducting
pairs is likely to be larger by an order of magnitude in the oxide superconductors.
From these estimates, it 5eems that the neutron scattering experiments may yield
valuable infromation about A and ¢ for the new high T, system as the energy and

momentum parameters are in the accessible experimental range.
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how/A

Fig. 4.11 Orbital contribution to the inelastic neutron scattering from a
quasi two-dimensional paired fermion superconductor (solid line) at zero tem-
perature with A(0) = 0.05¢r and g = 0.5kF as a function of Aw/A in units of
A(cgup)?Na(ep). The dashed line represents the normal state result.
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Fig. 4.13 Spin contribution to the inelastic neutron scattering from a quasi
two-dimensional paired fermion superconductor (solid line) with A(0)

= 0.05¢r, ¢ = 0.5k and at zero temperature as a function of fiw/A in units of
h(cgup)? N3(er). The dashed line represents the normal state result.
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Fig. 4.13 (a) Orbital contribution to the inelastic neutron scattering from

a quasi two-dimensional paired fermion superconductor (solid lines) at zero

temperature with A(0) = 0.05¢p and ¢ = 1.5kr as a function of hw/A for
different g/kr. The dashed line represents the normal state result.
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(b)

—ImP,(q, w)/q?

0 ) 10
hw/A

Fig. 4.13 (b) Spin contribution to the inelastic neutron scattering from a
quasi two-dimensional paired fermion superconductor (solid lines) at zero tem-
perature with A(0) = 0.05¢r and ¢ = 1.5kF as a function of hw /A for differ-
ent q/kp. The dashed line represents the normal state result.
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hw/2A

Fig. 4.14 Orbital contribution to the inelastic neutron scattering from the
three-dimensional s-wave paired fermion superconductor (solid lines) at zero
temperature with A(0) = 0.05¢¢ as functions of Aw/2A for different q/kp, in
units of A(cgup)? N3y(er). The dashed lines represent the normal state results.
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Fig. 4.15 Spin contribution to the inelastic neutron scattering from a three-
dimensional s-wave paired fermion superconductor (solid lines) at zero tem-
perature with A(0) = 0.05¢f as functions of iw/2A for different q/kr. The
dashed lines represent the normal state results.




190

d= 3 -
Normal State

o~ — A = 0.05 €p
g

o 2 A=0.1 €Ep -
Y A

Fig. 4.16 Orbital contributions to the quasi elastic neutron scattering cross
section for a three-dimensional s-wave paired fermion superconductor at zero
temperature with A(0) = 0.05¢r and 0.1cr as functions of ¢/kr in units of
7So. A(0) = 0 corresponds to the normal state.
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Fig. 4.17 Spin current contributions to the quasi elastic neutron scattering
cross section for a three-dimensional s-wave paired fermion superconductor at
zero temperature with A(0) = 0.05f and 0.1er as functions of £q in units of
7So. A(0) = 0 corresponds to the normal state.
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Fig. 4.18 (a) Orbital contributions to the quasi elastic neutron scattering

cross section for a quasi ¢wo-dimensional paired fermion superconductor at
zero temperature in units of *S,.




193

Fig. 4.18 (b) Spin contributions to the quasi elastic neutron scattering cross
section for a quasi two-dimensional paired fermion superconductor at zero
temperature in units of wSy.
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Table 4.4

Comparison of quasi elastic scattering cross section at small q for a three
dimension normal Fermi liquid and a three-dimensional s-wave paired fermion
superconductor at zero temperature. ®, and ®, are expressed in units of Sy, £ is
the choerence length.

Normal state | Superconducting state

®(q) | 3(%) = tkr
w0 3(8) | a(E) e
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4.4 Summary

In summary, I have studied the dynamic response functions and neutron scat-
tering characteristics of paired fermion superconductors. The effects of supercon-
ducting correlations appear both in the orbital and spin parts. Both orbital and
spin currents associated with the Cooper pairs make equally important contribu-
tions to the scattering, the former dominating the latter in the regime of small
wave vector transfer. The calculation presented here is within the BCS scheme
but appropriate estimation of the effects are made for the new high-T. oxide su-
perconductors using the accepted features of the new superconductors. I have
shown that a direct experimental estimation of the superconducting gap A and
the coherence length £ at low temperatures can be made by inelastic and quasi

elastic neutron scattering experiments in the new high T, superconductors.

In the above study, I have assumed that the pairing state has the s-wave sym-
metry and is a spin singlet. As discussed in section 4.1, experimental observations?!
and theoretical arguments®® suggest that the superconductivity in the high-T, ox-
ide superconductors is in the s-state. However, the calculation procedures and
results given in this chapter can be generalized to superconductors with other
pairing symmetry or anisotropic states [where A(k) depends on the direction of k]

® or spin-triplet p-wave state as in superfluid

like heavy-electron superconductors,®
3He (Ref. 90). Recently Joynt and Rice’! examined theoretically the neutron
scattering from anisotropic heavy fermion superconductors using only the spin sus-
ceptibility. They have found that for a singlet state, the spin susceptibilities are
suppressed from the corresponding normal state values. Their analysis is a special

case of our general expression when a spin-only approximation is employed. In this

case the neutron scattering cross section is directly related to the imaginary part
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of the frequency and wave-vector dependent spin susceptibility [see Eq. (4.3)]. As
I have discussed in this chapter, the complete expression for neutron scattering has
orbital contribution which dominates the spin contribution in the regime of small

momentum transfer.

The expressions given in Eqs (4.38), (4.41) and (4.44) can be generalized
to include several bands. In Y Ba;Cu307, where one has chains and planes
contributing to the superconducting property, a corresponding two-band scheme
may be appropriate.’® In that case, one obtains intra- and inter-band contri-
butions even at T' = 0K. These would involve quasi-particle excitations above
2A41,2A2,A1 + Az, and |A; — A;|, where A; and A; are the relevent gaps as-
sociated with the chains and planes. For T # 0K, there is the usual thermal
smearing of the effects mentioned above but also other processes contribute. How-
ever the gap structure will still be exhibited. It is therefore preferable to perform
the experiment at low enough temperatures to probe at these superconducting

parameters.
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Chapter 5

Response Function Characteristics
of Paired Charged Boson

Superconductor

5.1 Introduction

As I have already discussed in chapter 4, section 4.1, one of the theoretical
models suggested to explain the unusual properties of the high-T. oxide super-
conductors is the paired charged spinless boson model.’! =33 In this model the
individual quasiparticles which attract to form the pairs are spinless bosons. In

contrast, in the fermion models, the charge carriers which form pairs are either

1

holes or electrons. These are fermions with charge +|e| and spin 3.

In chapter 4, I have already investigated the dynamic and quasi elastic neu-
tron scattering properties of a fermion superconductor to see how these response
functions can provide a direct experimental estimate of the superconducting gap
A and the coherence length £. There I showed that the scattering from the orbital
currents can be quite important and can dominate the spin current contribution in

the small momentum transfer regime. In the boson models, where the elementary
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excitations do not carry spin degree of freedom, only the orbital currents associ-
ated with these excitations can couple to the neutrons. It is therefore important
to explore how the neutron scattering from these orbital curents change when the

bosons pair in the superconducting state.

Furthermore, the nature of pair correlation and the dynamic response of the
two types of superconductors discussed above are likely to be vastly different. In
this chapter, a careful study of the dynamic response of a charged boson supercon-
ductor is carried out. In particular, I have studied the dynamic current—current
and density—density response functions since the imaginary parts of them are re-
lated to inelastic neutron and electron scattering cross sections, respectively. In
addition, I will compare these results with those for the fermion system given in

the previous chapter.

The remaining part of this chapter is organized as follows. In section 5.2, I
introduce the spinless charged boson model and discuss the nature of quasiparticles
and their energy spectrum. In section 5.3, I study the dynamic current-current
and density-density response functions and discuss the characteristics of inelastic
neutron scattering in this model. In section 5.4, I discuss the quasi elastic neutron
scattering and application to the high temperature oxide superconductors. Finally

in section 5.5, I give a summary.
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5.2. Paired Spinless Charged Boson
Superconductivity

Consider a spinless charged boson gas with attractive interaction. Further-
more, the bosons move only in two spatial dimensions.’! The Hamiltonian for
this system is similar to Eq. (4.20) with the fermion field operator ), replaced
by the boson field operator ¢ without the spin indix. In momentum space, this

Hamiltonian can be written as

. 1
— § : + E : rp+pt
K = . (Ek - [.l.)bk bk - 5 2 V bk b_kb—k’bk" (51)

wiere k) &re € boson creation estration ) operators an > 1§ accracuve
here b/ (b the b tion (destration) operat dV(>0)i ti

(assumed to be a constant) pair interaction. In Eq. (5.1), ex = -'%"5'1 is the boson

kinetic energy and m is the effective mass of the bosons.

The thermal Green'’s functions for the boson system are similar to those de-
fined in Eqs. (4.21)-(4.23). From the corresponding Gor’kov equations, I obtain

the solutions for these thermal Green’s function as

Gp(k,wn) = % (5.2)
B En) = fon — Ex[h  iwn + Ex/R’ '
Fp(k,wn) = Fg(k,wn) = —urvr L - L : (5.3)
’ B™ iwn — Ex/h  iwn + Ex/h

where w, = 2nw/Bh. The new quasiparticles in the superconducting phase have

B = /& - 1aP, (5.4)

energy
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where £ = ex — u, u(< 0) is the chemical potential and A is the superconducting
order parameter. In Eqs. (5.2) and (5.3), ux and v are the amplitudes of the new

quasiparticles in the superconducting state and are given by

1 €k ) 1 €k )
2 _ ° Sk 2 _ (- Sk .
uk—z(l""‘Ek y 'Uk 2( 1+Ek y (55)
which satisfy
A €k
UpVe = E—E;, ui - ‘Uz = 1, 'U.Z + ‘U%{ = -‘E-:. (56)

The temperature-dependent parameters A and u are determined from the following

two equations,

=3 51; [ra(B0) + 3] (5.7)
k

and

n=¥" El;{gk [na(Ex) + 5] - %Ek} (5.8)
k

where n is the density of the bosons and. ng(E) = (ePF —1)~1. The k summation
in Eq. (5.7) is cutoff at an upper limit A (which also defines an energy e;, =
h*A?/2m). One of the fundamental differences between the fermion and boson
systems is the strong temperature and V dependence of the chemical potential
p. For the boson system, one can define a wave-vector scale ky = (4mn)'/? and
an energy scale kgTy = hzkf /2m. In addition, one can define a dimensionless
coupling constant A = ;75V. In two dimensions, when |p| > |A], the k-integral

2

in Eq. (5.8) can be carried out explicitly to give

2kpTy — |u| = —%In [Zsinh(g\/uz - Az)], (5.9)




and Eq. (5.7) can be written as

€A
1 B
= /dek—E:coth(—z—Ek). (5.10)
0

However, if |A| = |p|, the divergent parts in the above integrals must be separated

out. In particular I have

2kgTo — |u| = —Vu? — A% +

dy ﬁy —, (5.11)

Vui-a?
and

2 _ -1 ln] + e -1 |ul
) = cosh [ A } cosh A

8\aFenyi—a7
+ / dz 2 . (5.12)

e* — 1) /z? A)?
o ( )Vz? + (BA)

-1

It can be shown®? that at zero temperature, when A < A, = [ainh‘l(zATb)] x
1.03, the gap E;, = /|u[> — |[A]? is zero whereas when A > A, E; > 0. At
nozero temperatures, there is always a gap in the excitation spectrum.’® Figure
5.1 shows the zero temperature chemical potential (0) and the superconducting
order parameter A(0) as functions of A. A comparison of the basic properties of
paired fermion and paired charged boson superconductors is given in the table 5.1.
A fundamental difference’® between the two models is that for fermions, the gap
E, in the quasiparticle spectrum is identical to |A|, the superconducting order
parameter whereas for the bosons, the gap depends both on the chemical potential

and the superconducting order parameter.
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Comparison of properties of the paired fermion and the paired charged boson

superconductors.

fermion boson
Chemical potential Uep u<o0
Quasiparticle energy \/5,3(-{-_137 & — A3
Gap E, A N/
@ | eR) | s
i | -8 [iees)
ui + v} 1 -g:-
ui — v} o 1
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Fig. 5.1 The chemical potential u and the superconducting order parame-
ter A at zero temperature for a paired boson superconductor as functions of

coupling constant A.
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5.3 Dynamic Response Functions

To study the dynamic response of the paired boson superconductor, I have cal-
culated both the current-current response function P,,(zt;z't') and the density-
density response function D(zt;z't') as already defined in chapter 4. These re-
sponse functions can be obtained by using the corresponding thermal Green'’s
functions and the Gor’kov factorization method.?? I obtain the spatial and tem-

poral Fourier transform of the current—current response function as

v

eh.2
Pudarim) = () Zk:(" +3),(+3)
X glg )3 [-‘J’B(k + q,vn+vm)9B(k,vm)+ Fp(k +q, v,.+u,,.)f;(k,u,,.)] . (5.13)

Using a similar precedure described in section 4.3, I obtain

Pla,w) = (578 [ 225 Lk,
{%(1 + £ B na(E) - na(E.)

1 1
[hw+in—E++E_ _hw+in+E+—E’_]

A2
+3(-1+ B o) 4 na()

1 1
[hw+in—E+—E_—hw+in+E++E_]}' (5.14)

To the lowest order in ring diagrams (see Fig. 4.2), the density-density response

function is given by
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D(q, Vn) = ‘—B% Z Z [gB(k +q,vn + Vm)gB(k7 Vm)
m k

+'7:B(k +q,vn + Vm)]:;(k,'/m)], (5.15)
or after the m-summation

&k 1
(27)? 2

x {% (1 + ﬁ%ﬁ) [n5(E-) - nn(E4)]

D(q,w) =h

1 1
(fw+in—E++E_ 'rw+in+E+—E_)

4-% (— 1+ %—ﬁ) [1 +np(E-) + nB(E+)]

1 1
- 5.16
(fw+in—E+—E_ hw+in+E++E_)}’ (5.16)

where in getting Eqs. (5.14) and (5.16), I have used the relation

T3 o S = —Bhnp(zh) and np(z) + np(-2) = —1.

1 - —|Af?
In Eq. (5.14), the factors —(:tl + ele——l—l—) are the boson supercon-
2 E,E_
ducting coherence factors. The first term in the square bracket in Eq. (5.14)
corresponds to the process of quasiparticle scattering whereas the second term
corresponds to creation or destruction of two quasiparticles. The coherence fac-
tors in Eq. (5.16) for D(q,w) differ from those of P,,(q,w) in Eq. (5.14) by a
sign in the front of |A|?. However physical meanings of the two terms are similar

to those for P,,(q,w). In the gapless regime (A < A), since E1 can be zero when

k = £q/2, the coherence factors have singularity at k = +q/2 ( see Fig. 5.2).
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Fig. 8.2 Coherence factor in the density-density response function at zero
temperature for the paired boson superconductors. © is the angle between k
and q.



207

As will be shown later, this singularity shows up strongly in the density-density
response function D(q,w) and weakly in the transverse current-current response

function P, (q,w).

For a normal boson system the coherence factor (—1+ i*é—;;E'_éﬁ) equals to
zero, thus the second terms in the square brackets of P(q,w) and D(q,w) will not

contribute. The first term becomes the lowest order RPA response function, i.e.,

eh\?2
Py (q,w) _& Z (;) kuky o nB(fk—q/z) - "B(§k+q/2)
D(q,w) - 1 hw + i — €x+q/2 + €k—q/2

. (5.17)
Note that for boson system, ng(E) can be a large number at E = 0. For normal
bosons this condensate contribution should be seperated out and at zero tempera-
ture, only this term contributes.’? Thus I can show that at zero temperature, for
normal boson system the transverse current-current response P, (q,w) = 0 and the
condensate contribution to ImD(q,w) consists of a §-function at energy equals to

eq with strength proportional to the total density (no), i.e.,

€ 2 '
D(q,w) = no o fn;,) myPart (5.18)

This is quite different from the corresponding normal fermion systems as discussed
in section 4.3 where ImD(q,w) gets contribution from particle-hole excitations.
For normal fermion system, when ¢ < kr, ImD(q,w) rises linearly (in three di-

mension) with w and has a peak (see Fig. 4.10).

As in the case of fermions, I find that the superconducting correlations also
modify P,(q,w) and D(q,w) drastically. Care must however be taken in handling

the k—integral since ng(Ex) can be a large number when Ex = 0 in the gapless
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regime (A < Ac). However this zero-momentum state will not contribute to
P, (q,w) because of the factor q x k, but will contribute to D(q,w). For numerical
calculations I consider here an isotropic two dimensional system with q in the same
plane. Fig. 5.3 gives the imaginary part of the transverse current—current response
function at zero temperature for A = 0.5(A/kpT, = 0.85), we see that for all ¢ > 0,

there is a g—dependent threshold at energy

2E,); = 2\/(5q/2 —n)? - A2 = 2\/(%/2)2 + 2|ulegsas (5.19)

. due to the §-function §(hw—E4 — E_) in the imaginary part of P, (q,w). Note that
in the paired fermion superconductor, the threshold is always at twice the energy
gap 2A for all ¢ < 2kr. For the paired boson superconductor, for energies below
2E,/7, ImP,(q,w) = 0. Just above thié threshold, there is a large and broad peak
in ImP,(q,w). Note that the q x k factor in the transverse response function
cancels the coherence factor singularity (i.e., when Eyxiq/; = 0). The imaginary
part of the response function decays rather rapidly with w and goes to zero at high
energies. Also the peak position moves to the higher energies and the peak broad-
ens as g increases. These features will show up in the inelastic neutron scattering
experiment from superconducting boson systems. At finite temperatures, the gap
in ImP, (q,w) will be filled up by thermally excited quasiparticles. However, at
low temperatures, well below the superconducting transition temperature T, the

results will not be quite different from those given above.

For ImD(q,w), three kinds of factors namely the coherence factors, the Bose
distribution functions and the §—functions control the q and w dependence. Let
us first look at the Bose functions. In contrast to the superconducting fermion

system, all the terms involving Bose functions at Ey1q/2 = 0 have to be seperated




209

out. The value of this condensate contribution should be obtained through the
self-consistent particle density equation [Eq. (5.8)] and the gap equation [Eq.
(5.7)]. Secondly, the singularity of the coherence factors will produce a logarithmic
singularity in D(q,w) at energy fiw = E;. Note that E, is large than the threshold
energy 2E,/; in the gapless regime. In Fig. 5.4, I give the imaginary part of the
density—density response function D(q,w) for A = 0.5. at zero temperature. As
expected from the above disscussions, in addition to the g—dependent threshold
at 2E/,, there is a singular peak at a higher energy value Eq. These features will
show up in the inelastic electron scattering from the gap excitations of the charged

boson superconductors.!®
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Fig. 5.3 Imaginary parts of the zero temperature transverse current-current
response functions divided by ¢* in the superconducting state for a paired bo-
son superconductor in units of h(<2)2 N,
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Fig. 5.4 Imaginary parts of the zero temperature transverse density-density
response functions divided by ¢* in the superconducting state for a paired bo-
son superconductor in units of AN3(1/7) .
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5.4 Quasielastic Scattering

Using the results obtained in the last section, I can also obtain the quasi elas-
tic neutron scattering cross section defined by Eq. (4.19). Figure 5.5 gives the
quasielastic scattering cross section at zero temperature as functions of g in both
the gapless and the finite gap regime. We see that ®(gq) decreases rather slowly
with increasing g. This is quite different from the paired fermion superconductors
where the orbital scattering dominated at the small ¢ regime. The supercon-
ducting correlations removed the divergence of $(q) at small g occuring for the
normal fermion state and lead $(g) to decay rapidly with increasing q. These
differences provide important experimentally observable signatures to differentiate
paired fermion from the paired boson models. In addition, for ¢ ~ 0, ®(q) goes
to a A—dependent constant. Its value can be obtained from a small-q expansion of
the coherence factor in Eq. (5.9). Using the identities Eqs (4.50)-(4.54) with the

substitution A — iA, I obtain the ¢ = 0 limit of the boson quasi elastic response

3(0) = = 11 {1 P - 'Apzn["" - 'Al]} (5.19)

2|ullA |l + 14|

[in units of Fh(-‘n—':-)zNngTo]. Thus in the gapless regime where |u| = |A],
the zero momentum transfer quasi elastic scattering is directly proportional to
|A].  The inset in Fig. 5.5 gives $(0) as a function of the coupling constant A.

One sees that it increases rapidly with A and saturates at A ~ 2)..

In the new high temperature oxide superconductors, the important electrons
are those belonging to the CuO; plane. The holes or electrons created by doping
the CuO; plane are the charge carriers. From various experimental measurments

such as AC conductivity and specific heat measurements, the density of holes is




213

estimated®® to be ny =~ 8 x 10cm~2. For the boson model, if I approximate
the density of bosons (n) as nearly the density of holes and the mass of bosons as
roughly 1 ~ 5 electron mass, then ky = (47n)!/?2 ~ 14~! and kpTp =~ 0.1eV which
are not very different from the fermi momentum (kr) and fermi energy (¢r) in the

paired fermion model. Thus physically relevant regime of A is 0.1 — 0.5.

From the above discussion and the results given in chapter 4, I now compare
the neutron scattering from the paired fermion and paired boson superconductors.
In genera_.l, the g—dependence of the inelastic and quasi elastic scatterings are quite
different for the two superconductors. In Fig. 5.6 I have plotted the absolute value
of the difference of the normal and superconducting state inelastic scattering cross
sections as a function of fiw/A for g/kr = 0.5 and 1.5 for the fermi and gq/ks = 0.5
and 1.5 for the bose cases. The peak at iw = 2A for all ¢ in the fermi case
is a consequence of the threshold for scattering of a pair of quasiparticles with
total energy ZA. In contrast, in the bose case, there is a low energy threshold
not directly related to A and a peak structure which are q-dependent moving to
the right as ¢ increases. The values of the cross section difference decrease as ¢

increase in both cases.

For paired fermion supercond;lctors, the chemical potential u(> 0) is always
near the fermi energy er. Both the orbital and spin degree of freedoms con-
tribute to the scattering. The threshold at low temperature inelastic scattering
is always at twice the gap energy, 2A, as long as ¢ < 2kp, from which the su-
perconducting gap parameter can be extracted. The scattering decays to zero
at high energy (above er). The orbital part dominates the quasi elastic scatter-

ing at ¢ < 567!, ®(q) falls off rather rapidly over a characteristic wave vector
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of ~ (1. For the charged spinless paired boson superconductor, the chemi-
cal potential u(< 0) and the order parameter A (which is not the gap for the
boson system) are crucially dependent on the temperature and the coupling con-
stant. Only orbital current contributes to the scattering. The low temperature
inelastic scattering threshold is ¢g—dependent (2E,/;).  ®(q) displays a much
slower fall-off with g on the scale of k; and $(0) is proportional to A in the gapless
regime. This feature is intrinsic to the boson system. A basic comparison™ of the
neutron scattering from the paired fermion superconductor and the paired charged

boson superconductor is given in the Table 5.2.
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Fig. 5.5 Quasi elastic neutron scattering cross section in the superconducting
state in units of F(eh/m)*N;kgT,. Inset gives the zero momentum transfer
quasielastic scattering amplitude as a function of the coupling constant ).
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Fig. 5.8 The absolute value of the difference of the normal and the super-
conucting state inelastic scattering cross sections as a function of hw/A for the
paired fermion superconductor.
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Table 5.2

Comparison of the neutron scattering characteristics from the paired fermion
and paired boson superconductors.

fermion boson

Threshold at 28 for T =0 at 2Eq3 for T =0
smeared for T # 0 smeared for T # 0

q-independent g-dependent

Type of Response Orbital and Spin Orbital only

Small q orbital dominates spin
Peak at ~ ler at ~ 2A
q-dependent q-dependent

Scattering — 0 for hw = eF for Aw = 10A

Quasi elastic

orbital response falls of rapidly with ¢ falls off slowly with ¢
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5.5 Summary

In summary, I have made the first detailed theoretical investigation of the
dynamic current-current and density-density response functions in the charged
spinless paired boson superconductor. I have pointed out in this chapter that the
elastic and quasi elastic neutron scattering from the charged spinless paired boson
superconductor is quite different from a s-wave paired fermion superconductor, and
therefore serve as diagnostic tools for the possibility of characterizing the nature
of the quasiparticles involved in the mechanism of the high-T, superconductors as

well as determining their gap energy and coherence characteristics.
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