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ABSTRACT

VHDL MODELING TECHNIQUES

AND DESIGN VERIFICATION

By

JIN-HYUNG LEE

A VLSI system can be modeled and simulated for its verification of the function

by using VHDL. In this thesis, some useful modeling techniques in VHDL have been

presented for the efficient modeling of VLSI systems. VHDL semantics for process

statements and functions are described, and delay characteristics are discussed. Design

verification of VHDL descriptions is considered. In combinational circuits, we can ver-

ify the equivalence between the structural description and behavioral description by us‘

ing timing tolerance and assertion statements. A clock adjustment scheme is intro-

duced to verify sequential circuits. A strategy for treating general timing faults with

VHDL is required for the purpose of exact design verification. An improved delay

modeling scheme is described for the analysis and modeling of timing behavior. To

detect timing faults, binary logic in VHDL is extended to use multiple valued logic.

Detection procedures for timing faults are described with VHDL. As a benchmark test

for the VHDL modeling techniques, a bit sync filter chip is chosen and modeled.
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Chapter 1. Introduction

VHSIC (Very High Speed Integrated Circuit) Hardware Description Language

(VHDL) is a language that can be used to express the function and logical organization

of circuits, ranging from simple logic gates to complex digital systems [24,27]. We

can model the behavior of the system and simulate it for design verification. Modeling

in VHDL involves specifying the inputs and outputs of a system or device, and also

describing its behavior (by specifying the output values as functions of the input

values) and structure (in terms of interconnected subcomponents). VHDL allows a

description to incorporate other design descriptions into units [27].

With some useful modeling techniques, VLSI systems can be modeled efficiently

with VHDL. Analysis of VHDL semantics is necessary to get a precise model. Some

critical features in VHDL modeling are selected for detailed investigation (process

statements, functions, and delay characteristics). Semantics on the process statement

provide an interesting feature for system modeling. A logic block can be modeled easi-

ly using this process statement and accompanying wait statement for the flow control

of a VHDL program.

In VHDL, functions define algorithms for computing values or exhibiting

behavior. One of the useful functions is the bus resolution function which defines the

resolution of output values driving a common output signal. Using such a bus resolu-

tion function, signal multiplexing can be modeled for selecting a signal among multi-

ple drivers. Alternative approaches for signal multiplexing are suggested without the

 

 



 

bus resolution function.

VHDL supports two different models of time delay (inertial delay and transport

delay) for modeling switching circuits [26]. However, these models does not reflect the

delay which might be associated with wiring between devices. The delay model in

VHDL should provide an accurate view of the timing associated not only with the log-

ic gate, but also with the delay associated with the input wiring to the device.

A naming convention is described in order to develop VHDL models conveniently and

to document them properly. This convention has been used for VHDL modeling of

the bit sync filter chip in the SINCGARS (SINgle Channel Ground/Air Radio System).

Design verification of logic systems becomes increasingly important in the VLSI

design process as the complexity of VLSI chips increases. Design verification should

be done at the initial stage of the design before implementation, because design

modification costs too much at later stages. The issue of the design verification using

a hardware description language is significant since more designs are carried out by

first modeling their behaviors and then by modeling their structures in VHDL. How-

ever, it is very difficult to determine whether a structural description of a design entity

is equivalent to its behavioral description, since behavioral modeling is much different

from structural modeling. In logic circuits, the correct operation requires proper timing

operation as well as proper logical behavior. In this thesis. design verification stra-

tegies are proposed to determine equivalence between two models in VHDL descrip-

tions by analyzing their timing behavior.

A design is usually verified using simulation, and such a design verification often

requires comparing the simulation result with the design specification. In VHDL, the

design specification is usually described by the behavioral model and is compared with

 

 



 

the structural model for the verification purpose [2]. In order to verify equivalence in

VHDL models, a method is suggested to examine tinting tolerances in digital circuits. .

This verification method can be applied to combinational circuits, but has limitations in

its applications to sequential circuits. A modified strategy is developed, which in-

cludes a new modeling technique in the behavioral description and a clock adjustment

procedure for sequential circuits. All of these strategies involve the assertion statement

in VHDL, which checks if a specified condition is true or not [25].

Design verification involving timing faults is complicated due to the additional

efforts of detecting them and-comparing each model. If a timing fault involves a spike

of small duration, a preprmgsing module could eliminate it, and design verification

can be obtained. If, however, timing faults involve other problems such as hazards or

races, it is not simple to verify them. Such problems should be detected and removed

during the VI—IDL modeling process. A detection strategy for general timing faults

with VHDL is required for the purpose of exact design verification.

In order to detect the abnormal behavior of timing faults, the gap between the

simulation models and the physical circuits should be reduced [21], i.e. the precise de-

lay model and additional features in VHDL is required in the analysis and modeling of

these transient behaviors. An approach to the detection of timing faults is presented for

both combinational and sequential circuits using VHDL. First, an improved delay

modeling scheme is described for the purpose of modeling real situations. Next, the

detection procedure for timing faults is presented based on a ternary logic scheme [8].

Binary logic in VHDL is extended to use multiple valued logic. Detection procedures

for timing faults are described with VHDL.

Chapter 2 describes a survey of VHDL characteristics, and in Chapter 3 some

 



modeling techniques in VHDL are presented. Chapter 4 describes design verification

strategies in VHDL. In Chapter 5, an improved delay modeling scheme and timing

fault detection method involving ternary logic are suggested. As a benchmark test for

the VHDL modeling techniques, a bit sync filter chip, which is an element in

SINCGARS, is chosen and modeled in VHDL. VHDL modeling report for the bit

sync filter chip is included in Appendix 1. Appendix 2 has some examples for tran-

sient analysis with VHDL.
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Chapter 2. VHDL Characteristics

The collection of information describing a particular piece of hardware is called

design entity, which is the primary abstraction element in VHDL. It represents a por-

tion of a hardware design such as a basic ce11,.chip, board, or system that performs a

well defined function [26]. Each design entity is described in two parts; the definition

of the interface between the entity and the outside world, called the entity declaration,

and a design for the function and input/output transformation itself, called the architec—

ture body. The entity declaration describes the design entity’s ports, and contains any

other information which is common to all bodies [27]. An example of an entity de—

claration, which is the full adder, is shown in Figure 2.1.

entity Full_ADDER

(X, Y, Cin : in BIT ;

Cout, Sum : out BIT) is

end FULL_ADDER

Figure 2.1 Entity Declaration in VHDL

The port and local item declared in the entity declaration are made available to all the

bodies associated with this entity. The ports are the signals through which the design

entity communicates with the outside world and it must be declared in the entity de-

claration part. In component instantiation of a block, a formal port of a component

may be associated with a port of an enclosing entity. Generics provide a channel for

static information to be communicated to a design entity from its environment, and it

may be used to specify the timing characteristics of a entity, the size of ports, the



 

number of subcomponents within a entity, or even the physical characteristics of a

design such as temperature, capacitance, location, etc. Among these information of

generics, the timing characteristics is the most useful for the VHDL modeling.

VHDL supports three distinct styles for system modeling and the description of

hardware architectures. The first of these is structural description, in which the archi-

tecture is expressed as a hierarchical arrangement of interconnected components [26].

The second is behavioral description, in which the system model is described in

sequential program statements that look like high level programming language. The

last is data-flow description, in which the architecture is broken down into a set of

concurrent register assignments and each assignment may be under the control of gat-

ing signals. Data flow description implies the style of description embodied in register

transfer languages. The structural style of description displays the decomposition of a

device into components and emphasizes the connections to be made among the com-

ponents. In contrast, the data flow style emphasizes the flow of information between

memory and gating elements. This flow is supervised and directed by control elements

that are logically separate from the data paths. All three styles may be intermixed in a

single architecture description.

A design entity is described in terms of interconnected components. Each instance

of a component represents a portion of the design that may in turn be described by a

lower level design entity built of interconnected components. In this manner, a hierar-

chy of design entities that represents the complete design can be constructed. A com-

ponent is an abstract functional unit and it may represent a structural partitioning of

the design or a functional decomposition of a large system. A designer can choose

 



 

necessary components to build his own system. By using a behavior style of VHDL, a

digital system can be described and modeled with a knowledge for what a device does

(its function) without specifying how it does (its structure). For example, if a designer

may wish to specify the behavior of a subsystem and leave the implementation details

to others, he can model only the function of the system, which is not implementation

technology dependent, by using a behavioral style of description. Implementation at the

level of structural description might be performed by any other modeler.

Two important principles determine the course of simulation in VHDL and make

VHDL suitable for the modeling of a physical system. First, cause always follows

efirecr, a change in a signal value causes the execution of signal assignments that effect

changes in the values of their targets. These effects may, in turn, cause additional

changes, so that a sequence of events results. Many independent sequences of events

can occur simultaneously. Second, changes can be made to take effect after a certain

amount of delay. These principles would appear in a signal assignment statement in

VHDL. A typical signal assignment consists of a driver and a target. A driver of a

signal contains a current value and a waveform representing projected future values.

Waveform elements are appended to a driver whenever a signal assignment is execut-

ed. Each element is stored there until its designated time arrives; it then becomes the

current value of the driver. A driver is a source of the value of a signal. A signal may

have multiple sources. If a signal has more than one source then all the sources partici-

pate in the calculation of the value. Such a signal must be a resolved signal, and the

resolution function calculates one effective value from an array of some values. The

target of a signal assignment is the signal or aggregate on the left hand side of the as-

 



 

signment operator. The simulator creates a driver for each element of the target of

every concurrent signal assignment [25].

There are two kinds of statements in VHDL, which are sequential and concurrent

statements. Sequential statements are used to define algorithms for the execution of a

subprogram or process; they execute in the order in which they appear. But concurrent

statements are used to define interconnected blocks and processes that jointly describe

the overall behavior or structure of a design. Concurrent statements execute asynchro-

nously with respect to each other [20]. The primary concurrent statement is the block

statement, which groups together other concurrent statements defining an internal block

representing a portion of a design. The other concurrent statement is the process state-

ment, which represents a single independent sequential process representing the

behavior of some portion of the design. Within a given simulation cycle, an imple-

mentation may execute concurrent statements in parallel or in some order. The

language does not define the order, if any, in which such statements will be executed.

A description that depends on a particular order of execution of concurrent statement is

erroneous.

Design entities are stored in a file system called the VHDL Design Library

(VLS). The entities in the design library represent self-contained functions, like a col—

lection of hardware components. A design library is an implementation dependent

storage facility for previously analyzed design units. A given implementation may have

any number of design libraries. A library clause defines logical names for design li-

braries in the host environment. A working library is the one into which the library

unit resulting from the analysis of a design unit is placed. Only one library might be

the working library during the analysis of any given design unit [25].



 

Chapter 3. Modeling Techniques in VHDL

3.1 Process Modeling

3.1.1 VHDL Execution in the Process

A process statement defines an independent sequential statement representing the

behavior of some portion of the design [25]. In VHDL, a process defines a sequential

behavior of a design entity. The execution of a process consists of the repetitive execu-

tion of its sequence of the independent sequential statements. After the last statement

in the sequence of statements of a process statement is executed, execution will im-

mediately continue with the first statement in the sequence of statements.

If a sensitivity list appears following the reserved word "process", then the pro-

cess statement is assumed to contain an implicit wait statement as the last statement of

the process statement part. A process with a sensitivity list always waits at the end of

its statement part, and event on a signal named in the sensitivity list will cause such a

process to execute from the beginning of its statement part down to the end, where it

will wait again. Such a process executes once at the beginning of simulation (at time

0) and is suspended at the end when it executes the implicit statements. But a process

without a sensitivity list has an explicit wait statement for the flow control of a state—

ment. We can model the logic block easily using this wait statement.

1. Signal and variable assignment in a process

A signal assignment in a process takes one A time unit, in other words, if the in-
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put changes the value in the signal assignment, then the effect of a signal assignment

occurs after A time unit [6]. However, a variable assignment does not consume any

length of time, and the effect of input changes occurs immediately at the output. Fig-

ure 3.1 shows the difference between signal and variable assignment in a process. X1

and X2 are input signals and F is an output signal.

architecture PROCO of CLO is architecture PROC2 of CLO is

signal Tl : bit := ’0’; begin

begin process (X1, X2)

process (X1, X2) variable T1 : bit;

begin begin

T1 <= not X1 ; T1 := not X1 ;

F <=T1 orX2; F <= T1 orX2;

end process; end process;

end PROCl; end PROC2;

(a) (b)

X]

)(2 —l— —l—

lOns

F ____l— I

lOns + l Ons + I

Figure 3.1 Signal and variable assignment in a process

When X2 goes to 1 from 0 at 10ns, output signal F in the program (a) rises to l at

lOns + 1A, but F in the program (b) goes to l at +lA. The reason is as follows: In

program (a), the process executes once at time 0 ns, and that results will happen at

time +1 A time unit. At 10 ns signal X2 rises to 1, then a process will be activated and

signal F goes to 1. Program (b) shows when a variable is assigned in a process state-

ment. Variable assignment does not take any length of time, and it is assigned at time

0. Then the effect of variable assignment occurs at time +1 A time unit since the first
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process execution is done at time 0 ns by default.

2. Preemption in a process

Since some statements in a process execute repetitively in sequential order, the

second signal assignment preempts the first signal assignment when there are two

different signal assignments for a signal in a process [11]. Same thing happens when

two different values are assigned to one variable. Example programs for two signal

assignments are shown below in Figure 3.2. X1 and X2 are input signals and F is an

output signal for a program. A signal T1 is preempted at the process.

architecture PROCl of CLO is

signal T1 : bit := ’O’;

begin

process (X1, X2)

begin

T1 <= X1 ;

T1 <= not X1;

F <= T1 or X2;

end process;

end PROCl;

Figure 3.2 Signal preemption in a process

3.1.2 Timing Semantics of Process

In VHDL, a process statement calculates its output by using the value from the

previous invocation process, not by using the current changed value. This characteris-

tics of process statement is interesting and different from that of the other program-

ming languages. Some examples make it easy to understand the timing semantics of a

process.

One example would be half adder. The combinational circuit is usually modeled
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by the block statement. However, if we use a process statement instead of block state-

ment in VHDL modeling of the half adder, it causes a problem. Because a process

statement is a repetitive sequential statement using the value from a previous invoca-

tion process, as described before, it generates incorrect results. In Figure 3.3: half-

adder, Ainb and Binb change their values when the input Ain and Bin are entered.

Sum21 and Cout change their value also according to changes in SI and 82. However,

the value of Sum2 signal assignment statement comes from the result of the previously

invoked process, not from the changed value of present process. That is, when 81 or

82 changes its state, the value of Sum2 is not changed and it keep its previous value.

Sum2 value doesn’t go to ’1’ at 20ns+2 and it does not go to ’O’ at 30ns+2 either.

Thus we should use a block statement instead of a process statement, which might

result in incorrect output in such a combinational circuit. The process statement is not

usually suitable for modeling of the combinational circuit, which consists of many

sequential statements.

architecture proc_imp of half_adder is

signal Ainb, Binb, SI, 52 : bit := ’O’;

begin

Gate_imp: process (Ain, Bin)

begin

Ainb <= not Ain ;

Binb <= not Bin ;

Sl <= Ainb and Bin ;

SZ <= Aim and Binb ;

Sum2 <= 81 or $2;

Cout2 <= Ain and Bin ;

end process;

end proc_imp ;
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TIME I SIGNAL NAMES

|

(PS) I A B S C S S

| I I U 0 l 2

| N N M U

| T

|

O I IO, ’0’ ’0, ’0’ I0, ’0’

+1 I *** *** *** *** *** ***

20000000 I *** I1! *** *** *** ***

+1 I *** *** *** *** I1! ***

30000000 I *** I0! *** *** *** ***

+1 I *** *** I1! *** ’0’ ***

40000000 I I1! *** *** *** *** ***

+1 | *** *** '0' *** *** !1!

50000000 I *** I1! *** *** *** ***

+1 I *** *** !1! I1! *** ***

Figure 3.3 Structural description for a Half Adder

Another example is a frequency divider. The frequency divider can be well

modeled by using a process statement. In Figure 3.4, which is a behavioral description

of a divide-by-4 circuit, the process is invoked whenever clk_in is changed. If the in-

put clock has just made a O to 1 transition, the value of f—count is increased. The initial

value of f-count is O, and it increases to 1 after the execution of this statement. When

the next statement is executed, the value of f—count is still 0 because of the semantics

of the process statement, that is, it gets the value from the previous invoked process.

When this block counts 4 times, f-count is set to 0 and a output pulse is generated.

Therefore, the signal f_count, in if clause, should be 3 not 4 in order to count 4 times,

since a process statement defines an independent sequential statement [28].

architecture top04 of divide_by_four is

signal f_count: integer := O ;

begin

process (clk_in)

begin

if (clk_in = ’1’ and not clk_in’stable) then

f_count <= f_count + l ;
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if f_count = 3 then

f_count <= 0 ;

by_four_out <= ’1’ , ’0’ after clk_del;

end if;

end if;

end process;

end top04;

Figure 3.4 Behavioral description for frequency divider

3.1.3 Process Interaction in Multiple processes

When there are two or more process statements in a VHDL program, each pro-

cess statement executes concurrently. If there is more than one signal assignment

statement for a signal in a process, a following assignment preempts the previous one.

However, if there is more than one process in a VHDL model, they execute in a paral-

lel fashion as shown in following example. (X1 and X2 are input signals and F is an

output signal)

architecture PROC3 of CLO is

signal T1 : bit := ’O’;

begin

process (X1)

begin

Tl <= not X1 ;

end process;

process (Tl, X2)

begin

F <= T1 or X2;

end process;

end PROC3;
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Xl

5ns ————

X2

lOns

1 .

Tl +1 +1.

r J
+2 +2 +1

Figure 3.5 Multiple process statements in a VHDL program

1. Signal and variable assignment in multiple processes.

If a signal is declared in the declaration part of an architecture body, each process

shares the value of that signal, and they execute concurrently. Since a signal T1 is a

global signal between two processes, the effect of changing value occurs in the second

process after A time unit in Figure 3.5. The same thing occurs in case of the global

variable assignment.

Suppose there is not any shared signal between two processes, and those processes in-

clude the same variable. Then each variable is a separate one to its own process and

independent to other process. Each process executes independently with each variable.

2. Intercommunication between multiple processes

In order for one process to communicate to other process, there should be shared

variables or signals. Without shared variables or signals the intercommunication

between two processes cannot be made, since each variable to each process is indepen-

dent to the other. By using characteristics of the process statements and the intercom-
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munication among multiple processes, many useful circuit blocks can be modeled. As

an example, consider a clock generator in Figure 3.6. Here, the period of a clock be-

comes different depending on the value of cntl_clk, and then it generates two different

clock periods.

architecture hilow4 of Period_clock4 is

signal cntl_clk , clkenb : bit := ’0’ ;

begin

t_clock: process

begin

wait for 23400 ps;

clkenb <= ’1’ ;

wait for 514800 ps;

cntl_clk <= ’1’ ;

end process ;

main_clk: process (clkenb, cntl_clk, clk_in)

begin

if (clkenb = ’1’) then

if ( cntl_clk = ’O’ ) then

if (clk_in = ’1’) then clk_in <= ’0’ after high_timel;

elsif (clk_in = ’0’) then clk_in <= ’1’ after low_timel;

end if;

elsif ( cntl_clk = ’1’ ) then

if (clk_in = ’1’) then clk_in <= ’0’ after high_time2;

elsif (clk_in = ’0’) then clk_in <= ’1’ after low_time2;

end if;

end if;

elsif (clkenb = ’0’) then clk_in <= ’0’ ;

end if;

end process;

end hilow4;

Figure 3.6 VHDL model for clock generator using multi-process

The implementation of this clock is based on multiple process statements. It is

modeled by two processes, in which one is for generating the control signal and the
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other is for main clock generating routine, depending on the results from first process.

In this circuit, it generates the clock whose period is high_timel plus low_timel before

514800 ps, and high_time2 plus low_time2 after 514800 ps, and it does not generate

any clock during the initial phase before 23400 ps.

3. Same signal assignment in multiple processes

If there is a shared signal among multiple processes and each process has

different signal assignment statements in a VHDL program, this program generates er-

ror since there are multiple sources for this signal that are not resolved [28]. Each pro-

cess executes concurrently and tries to assign two values to the same signal. In com-

parison to Figure 3.2, which has two different signal assignment in a process, that pro-

gram executes in sequential order and the second signal preempts the first signal.

However, same signal assignments in multiple processes do not preempt and this sig-

nal should be resolved. These signals need a bus resolution function and an example

program is shown in Figure 3.7.

architecture PROCS of cm is

signal T1 : bit := ’O’;

begin

process (X1, X2, T1)

begin

T1 <= not X1 ;

G <= T1 or X2;

end process;

process (X1, X2, Tl)

begin

Tl <= X1 after lns;

F <= T1 or X2 after 2ns;

end process;

end PROCS;

Figure 3.7 A VHDL program for multiple processes
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3.2 Functions and Signal Multiplexing

3.2.1 Functions and Packages in VHDL

There are two forms of subprograms in VHDL: procedures and functions. A pro-

cedure call is a statement and a function is an expression and returns a value. In

VHDL, functions defines algorithms for computing values or exhibiting behavior. They

may be used as computational resources to convert between values of different types

and to define the resolution of output values driving a common signal or to define por-

tions of a process. ’

The definition of a function can be given in two parts: a function declaration

defining its calling conventions, and a function body defining its execution [25]. All

functions should be defined within a package. Packages provide a means of defining

these and other resources in a way that allows different design units to share the same

declarations. Function name, parameter list, and return value must be declared in the

package declaration part, and the bodies of any functions declared in the package de-

claration can be contained in a package body. Any package declaration must be

model-generated before its corresponding package body can be model-generated. An

example program for the bus resolution function is shown in Figure 3.8 and 3.9.

package TOOLSZ is

type MVL_VECTOR is array (NATURAL range <> ) of TRISTATE;

function TRISTATE__RESOLUTION ( INPUT : MVL_VEC'I‘OR )

return TRISTATE;

end TOOLSZ;

package body TOOLSZ is

19
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function TRISTATE_RESOLUTION ( INPUT : MVL_VECTOR )

return TRISTATE is

variable RESOLVED_VALUE : TRISTATE ;

begin

for I in INPUT’left to INPUT’right loop

if INPUT (1) /= ’2’ then

RESOLVED_VALUE := INPUT (1);

exit;

end if;

end loop;

return RESOLVED_VALUE;

end TRISTATE_RESOLUTION;

end TOOLSZ;

Figure 3.8 Bus resolution function (1)

3.2.2 Signal Multiplexing

When we model the VLSI circuits, signal multiplexing is necessary in many cases.

Approaches in signal multiplexing with VHDL can be divided largely into two types:

with or without the bus resolution function.

Bus resolution function is used to resolve the values of the drivers into the values

of the signal. It must have previously been declared, and is called whenever the. signal

is referenced [25]. Bus resolution function is application dependent and modeler

should define his own function for each purpose. Note that the bus resolution function

in Figure 3.8 scans the drivers of INPUT and selects the value of the first driver that is

not equal to Z, the assumption being that only one of the drivers is active. However,

this assumption that only one driver is active is certainly not true in all modeling situa-

tions. Some bus lines are required to carry a signal that represents the logical OR of
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the outputs of several bus drivers that are connected along the bus, which is the pro-

perty of the WIRED-OR function. Such a WIRED-OR resolution function is in Figure

3.9.

package busr2 is

function RESOLVE_BIT (DRIVERS : bit_vector) return bit ;

end busr2; '

package body busr2 is

function RESOLVE_BIT (DRIVERS : bit_vector) return bit is

variable COUNT : integer;

variable VALUE : bit;

begin

VALUE := ’0’;

for COUNT in DRIVERS’LOW to DRIVERS’HIGH loop

if DRIVERS(COUNT) = ’1’ then

VALUE := ’1’;

end if;

end loop;

return VALUE;

end resolve_bit;

end busr2;

Figure 3.9 Bus resolution function (2)

l. Guarded Signals

Let us model the multiplexer, which selects one of the input signals according to

the control signal. Assume that, in the logic to be modeled, the value of the control

signal is mutually exclusive in a logic block. The intent of the model is that when a

signal cntl is ’1’ datal will be assigned to S, while when cm! is ’0’ data2 will be as-

signed to S [6]. We can get a model in VHDL as follows :
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architecture top_mux1 of muxl is

signal S: RESOLVE_BIT bit register (bus);

begin

L1: block (cntl = ’1’)

begin

S <= guarded datal ;

end block;

L2: block (cntl = ’0’)

begin

S <= guarded data2 ;

end block;

mux1_out <= S ;

end top_muxl;

Figure 3.10 Multiplexer Implementation in VHDL

To model the problem of the bus resolution combined with guarded signal assign-

ment statements, VHDL provides a special mechanism for signals used in guarded sig-

nal assignments as in the above example. The block whose guard is TRUE will have

its value coming through the bus resolution function [26]. A guarded signal is as-

signed to the values under the control of Boolean-valued guard expressions (or

guards). Whenever a guarded signal designated as being a register or a bus has its

block guard become FALSE, its driver is assumed to be off, i.e. it is ignored by the

bus resolution function. When a given guard becomes false, the drivers of the

corresponding guarded signals are implicitly assigned a null transaction to cause those

drivers to turn off. i For the case where all the block guards are off, if S is of kind re-

gister it will retain its last value, while if S is of kind bus it will be assigned the de-

fault value provided by the bus resolution function.

These representations "register" and "bus" are only used in VHDL with guarded

signals. A signal which is multiple driven, requires a bus resolution function. If, how-
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ever, it is not the object of a guarded signal assignment, it cannot be declared to be'a

kind of bus or register.

2. Alternative Approaches

There are several alternative implementations for multiplexers. Consider the fol-

lowing simple example: The intent of the two processes is to have a signal S got

K20khz when freq_cntl = 0 and K16khz when freq_cntl = 1. This is a signal multi-

plexing problem again, i.e. a simple bus resolution function cannot model this

behavior. One of the feasible solutions is to use a simple when statement as follows:

In this implementation, Muxl_out signal will be multiplexed depending on the value

of freq_cntl.

architecture logicl of muxl is

begin

A: block

begin

Muxl_Out <= KZOKHZ after lns when freq_cntl = ’0’ else

K16KHZ after lns ;

end block;

end logicl;

Another alternative is to use a process statement as follows: We can get multi-

plexed signals by using the process statement instead of the block statement. In some

cases, the process statement is a lot easier than the block statement in VHDL model-

ing, but modelers should be cautious in selecting between a process and a block state-

ment [ll].

architecture logicl of muxl is

begin





 

23

A: process (freq_cntl)

begin

if ( freq_cntl = ’0’ ) then

Muxl_Out <= KZOKHZ after lns ;

elsif ( freq_cntl = ’l’ ) then

Muxl_out <= K16KHZ after lns ;

end if;

end process;

end logicl;

A third alternative is to use a process and when statement. A similar signal multi-

plexing problem can be represented with processes [1]. Processes A and B assign

values to distinct signals 81 and S2 which are then multiplexed. This solution defines

a multiplexer that is external to the processes. In this example, both signals of 81 and

82 cannot be unstable since two conditions of freq_cntl = 0 and l are exclusive to

each other.

A: process(freq_cntl)

begin .

if (freq_cnt1 = ’0’) then 81 <= K20khz after lns;

end process;

B: process(freq_cntl)

begin

if (freq_cntl = ’1’) then 82 <= K16khz after lns;

end process;

S <= 81 when not Sl’stable else

82 when not S2’stable else

3;

All of above solutions do not use the bus resolution function and define a multi-

plexer. These implementations make it easier to understand the VHDL modeling in the
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level of the behavioral description. Signal multiplexing with guarded blocks and

processes shows interesting results and one can make good models on some logic cir-

cuits for the signal multiplexing.



3.3 Delay Characteristics

3.3.1 Delay Models in VHDL

VHDL supports two different models of time delay that correspond to the

different kind of delays encountered in real. world. The inertial Delay is a delay model

for modeling switching circuits [22,26]. This models the time lag between stable inputs

and valid outputs of a semiconductor logic element. The output will appear after the

input has persisted for the indicated delay time, but no change in the output will occur

if the input changes persist for less than the delay time. In other words, a pulse whose

duration is shorter than the switching time of the circuit will not be transmitted. Thus,

the inertial delay model describes the required persistence of inputs and the throughput

delay of an element with a single time value.

Because the inertial delay is so common in the real world, it has been adopted as

the default delay model in VHDL. All of the signal assignment we have used so far in

this thesis exhibit inertial delay. There are, however, some delays in. the real world that

cannot be modeled in this way. For example, the wave propagation delay through a

metal conducting path. If the path can be modeled as a pure resistance, then any

change on the input, no matter how brief, will be reflected on the output after the pro-

pagation delay. The transport delay is a characteristic of hardware devices (such as

transmission line) that exhibits nearly infinite frequency response. This model removes

the requirement for the minimum duration for input pulse. Any changes on the input

can cause an output change and any pulse is transmitted, no matter how brief the input

transient and regardless of the delay [27].
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Consider following VHDL program, to clarify between the inertial delay and tran—

sport delay model.

architecture delay_inert of and_test is

begin

L1: block

begin

AND_OUT <= A and B after 2ns;

end block ;

end delay_inert ;

architecture arc_and of tand is

component c_and_test

port( a , b : in bit; and_out : out bit );

end component;

signal A, B, AND_OUT 2 bit := ’0’;

for L_and_test : c_and_test use entity and_test (delay_inert);

begin

A <= ’1’ after 3 ns, ’0’ after 6 ns;

B <= ’1’ after 5 ns, ’0’ after 8 ns;

L_and_test : c_and_test port map (a, b, and_out );

end arc_and ;

Figure 3.11 A VHDL program for the inertial delay model

The above program does not generate an output signal on the output AND_OUT,

since the duration of the output for AND operation is only lns, which is less than

minimum duration for a signal assignment AND_OUT (2ns). The inertial delay model

checks only after completion of the logical operation. If this signal assignment is based

on the transport delay model, then the output for duration of lns will appear at 6ns in

AND_OUT.
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VHDL has a third delay model called delta delay. This is a special delay model

for modeling the sequencing of events, without considering the actual times at which

they occur. It also can be used to perform unit delay simulation, since each delta delay

between events can be interpreted as taking the same amount of time as every other

delta delay. Delta delay represents an infinitesimal delay, less than any measurable

time (i.e. femto seconds), but still larger than zero. A value assigned with delta delay

will take effect in the future. However, because the delay is infinitesimal, the value

will take effect before any values assigned with any real time delay, no matter how

small. Also, any number of consecutive delta delays will never add up to any real

time.

3.3.2 Wire Delay

Previous models in this section have anticipated only the propagation delay asso-

ciated with the device. These models did not reflect the delay which might be associat-

ed with wiring between devices. In ASIC design especially, the assumption of no wir-

ing delay can be dangerous since many designs of this type might be important if tim-

ing effect from wires is dominant [7].

For example, consider an example in following Figure 3.12.

 

   

>0 ’ C

Figure 3.12 A Circuit representing Wire Delay
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We determine if there is hazard or not in above circuit. If there is no information

about the wire delay, it almost impossible to determine a hazard in a real circuit [4].

For example, when input A changes its state 0 to 1 output C can generate two

different outputs, depending on the length of wire delay as well as the delay of the in-

verter. If the wire delay is larger than the inverter delay then a hazard occurs at output

C. However, if we assume zero delay through all wires and a unit delay through gates

then a hazard does not occur. Similarly, when input A changes its state 1 to O the ha-

zard can be observed at output C depending on wire delay. If the wire delay is much

larger than the inverter delay' then a hazard does not occur. However, if we assume

zero delay on the wire and unit delay on gates as is the case in VHDL, then a hazard

occurs.

Thus we need information about the wire delay as well as gate delay in order to

determine if there is a hazard or not, and the concept of the wire delay is very impor-

tant in the real circuit modeling. The delay model in VHDL should provide an accu-

rate view of the timing associated not only with the logic gate, but also with the delay

associated with the input wiring to the device.



 

3.4 Documentations in VHDL

In order to develop VHDL models efficiently, uniform and consistent naming con-

ventions should be applied [7]. In this thesis, a naming convention is proposed from

my experience. Concerns are about the entity and architecture name, component

name, and label name in component instantiation statements. An entity and architec-

ture name are made according to their characteristics. For example, entity name is

divider_prgm and architecture name is pulse_sw for modeling of the programmable di-

vider, which is a pulse swallower, in appendix A: VHDL modeling for bit sync filter

[6,13]. However, divide-by-4 and divide—by-S circuits are not pulse swallowers but

regular frequency dividers, and then their architecture names are chosen to regular_4

and regular_5 respectively. For a component name, only prefix C is added to an entity

name for simplicity reasons. Similarly, prefix L is added to the entity name for the la-

bel name in the component instantiation statement. The name of the generic constant

and the port should be reasonable and contain information which is associated with its

meaning. These naming conventions will improve readability and consistency of

VHDL models. Figure 3.13 shows an example for a naming convention used in the

modeling of a bit sync filter chip.

for L_divider_prgm: c_divider_prgm use entity divider_prgm(pulse_sw);

for L_divider_41, L_divider_42:

c_divider_4 use entity divider_4(regular_4);

for L_dividerS : c_divider_5 use entity divider_5(regu1ar_5);

for L_muxl : c_muxl use entity muxl(simplel);

for L_in_shot : c_in_shot use entity in_shot(fall_edge_det);

for L_mid_shot : C_mid_shot use entity mid_shot(rise_edge_det);

for L_in_edge_det : c_in_edge_det use entity in_edge_det(inin);

00
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for L_mid_edge_det: c_mid_edge_det use entity mid_edge_det(inmid);

for L_clk_enable : c_clk_enable use entity c1k_enable(synch);

for L_phase_detect: c_phase_detect use entity phase_detect(cntl_updn);

for L_up_down : c_up_down use entity counter(up_down);

for L_mode_select : c_mode_select use entity mode_select(mode_cntl);

for L_mux2 : c_mux2 use entity mux2(simple2);

for L_final_shot : c_final_shot use entity final_shot(muxout);

for L_clk_adjust : c_clk_adjust use entity clk_adjust(p10_adjust);

Figure 3.13 An example for naming convention on VHDL modeling

When a large system is going to be modeled with VHDL, a good and proper do-

cumentation handling method should be required. For example, various versions of

models will be generated during the development of the VHDL model for a system.

There should be a big caution in this version control, and the behavioral description

and structural description for the system must be well maintained. A good document

control method will be a great help for the development of a VHDL model develop-

ment and also a well defined software engineering technique is indispensible in project

management of the VHDL modeling for the VLSI system.



Chapter 4. Design Verification with VHDL

In top down design of a circuit, it is necessary to verify whether a structural

description of a design entity is equivalent to its behavioral description in VHDL

models. However, it has been not easy whether a structural model is equivalent to its

behavioral model. Consider an example for this problem - a half adder, which is

shown in Figure 4.1.

architecture BEHA_HA of HA is

begin

process (Ain, Bin)

begin

if (Ain = Bin) then Suml <= ’0’ ;

if (Ain = ’1’) then Coutl <= ’1’ ;

end if;

else Suml <= ’1’ ;

Coutl <= ’0’ ;

end if;

end process;

end BEHA_HA ;

architecture GATE_HA of HA is

signal Ainb, Binb, SI, 82 : bit I: ’0’ ;

begin

block begin

Sl <= (not Ain) and Bin ;

82 <= Ain and (not Bin) ;

Sum2 <= S1 or $2 ;

Cout2 <= Aim and Bin ;

end block;

end GATE_HA ;

Figure 4.1. : Design Verification Example (1) - A Half Adder

In the structural description GATE_HA of half adder HA, the outputs, Sum2, change

their states at 2 A time, after input change of Ain and Bin. However, in the behavioral
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description BEHA_HA, the value of Suml is changed at l A time after input value

change as shown in Figure 2.2. Thus outputs of two entities are not said to be

equivalent if we compare them using the following assertion statement shown in Fig-

ure 4.3.

 
 

   

  
  

SUM] : __ __

T T T (— ldelto

SUM2 : __ ,—     

Figure 4.2. : Output waveform for behavioral and structural model

Assert ( suml = Sum2 )

report "Simulation result doesn’t match" ;

Figure 4.3 Assertion in VHDL

A method of using timing tolerance is suggested to verify the equivalence

between two descriptions in combinational circuits. This method is extended to the

sequential circuits for their verification, and discusses the limitation of these methods.

4.1 Timing Tolerance in Combinational Circuits

A simple way for verifying the equivalence is inserting a delay on the final output

for two descriptions, thus enforcing the equal delay for the behavioral and the structur-

al descriptions. This approach can be applied to the previous example - half adder in

Figure 4.1. In order to make up this timing difference between two outputs for the
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behavioral and the structural models, a delay can be put on the final output of both

descriptions. The same delay - lns was inserted on the signal assignment statement of '

Sum and Cout for both descriptions, and then each Sum and Cout is changed at the

same time. Now the assertion statement in Figure 4.3 will be satisfied.

However, this method cannot be applied when there are multiple paths from input to

output with different delays (i.e. multiplexer), or when the delay of the gates depends

on the input values (for example, rising/falling delay in a inverter). Also this approach

has a limitation when the complexity of the gates are large.

A method, which is based on the tinting tolerance between the behavioral and the

structural models is suggested. In specification of hardware design, the gate delay in a

circuit usually has a tolerance, and if the other particular design is within this tolerance

we would say two circuits are equivalent. Timing tolerance can be determined in

several ways. For a device, there is a manufacturing tolerance on the tinting

specifications which represents tninimum and maximum value. The exact timing of a

device depends on its environment, namely loading, temperature, and supply voltage.

Timing tolerance might take the form of a maximum set up time or be defined by the

designer.

In the previous example, suppose that the timing tolerance between two descriptions is

N (generally it might be in fs, ps, or ns). The design verification can be obtained by

using assertion statements as shown in following Figure 4.4 (here, h = N/2).

process (Suml, Sum2)

Assert ( not (not Suml’stable(N) and not Sum2’stab1e(N))

or (Suml = Sum2))

report " Simulation result doesn’t match ";

Assert ( (not (not Suml’stable(N) and Suml’stable(N—h))
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or (not Sum2’stable(N+h))) and

(not (not Surr12’stab1e(N) and Sum2’stable(N-h))

or (not Suml’stable(N+h))))

report " Simulation result doesn’t match ";

end process

Figure 4.4 Modified Assertion for Half Adder - Assertion Process Shell

The above process involving assertion statements checks whether Suml and Sum2

behave identically within timing tolerance (here N = 2ps). The first assertion checks

whether Suml and Sum2 have the same value whenever both of them change within

timing tolerance. However, there are some chances that only one of Suml or Sum2

has been stable while the other has been unstable, or both of Suml and Sum2 have

been stable. The second assertion statement checks if Suml has been changed within

the time between N and N-h, then Sum2 must be changed within the timing tolerance

of Suml (between N+h and N-h). We call the above process as Assertion Process

Shell for equivalence check, and this assertion process shell would be used for check-

ing other models. Figure 4.5 shows the stability range for signal Sum2 when Sum 1 is

not stable between -2ps and -lps, in order not to violate second assertion statement.
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Figure 4.5 Stability Range for Suml and Sum2
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Here, Sum2 should be unstable between —3ps and Ops. The meaning of the second

boolean expression of the second assertion is the opposite of the first one.

4.2 Verification in sequential circuits

Our method for design verification is working on most of combinational circuits,

but it has a limitation in its application to sequential circuits. In many sequential cir-

cuits, outputs of circuits resulting from input changes may take more than one clock

period. In this case, our previous method cannot be applied directly.

LD a D Q OUTPUT

CLKTC Q I_, C a __

RESET

 

  

  

 
    
  

  
 

Figure 4.6 : Logic Diagram for Frequency Divider
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Figure 4.7 : Input / Output Waveform for Frequency Divider
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Consider the frequency divider as an example. It is a divide_by_4 circuit (Fig. 4.6),

which is a synchronous sequential circuit. Input/output waveform is shown in Figure

4.7. Figure 4.8 shows the behavioral description for the frequency divider, and the

structural model is straightforward and is not given here.

architecture beha_desp of divide4_1 is

signal count: integer := O ;

begin

process (clk_in)

bcgin

if (clk_in = ’1’ and not clk_in’stable) then

count <= count 4» 1 ;

if count = 0 then by_four_out <= ’1’ ;

elsif count = 2 then by_four_out <= ’0’ ;

elsif count = 3 then count <= 0 ;

' end if;

end if;

end process;

end beha_desp;

Figure 4.8 : Design Verification Example (2) - Frequency Divider

The output from the behavioral description generates the first state at the first ris-

ing edge of the clock, but the output from the structural description generates its first

state at the second rising edge of the clock, as shown in Figure 4.7. The behavioral

model takes 1 A time unit, while the structural model takes lOns + 2 A time unit, if the

delay length in a D-FF is assumed to l A time (A represents a delta delay unit). The

timing difference between two descriptions is 10 ns + l A time, which is longer than

the clock period (lOns). Thus if we apply timing tolerance approach, a timing toler—

ance can be confused with the actual clock period. Therefore, our previous method

cannot be applied to the circuit, in which timing tolerance is longer than the clock

period.
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A modified approach for the sequential circuit is proposed. In most cf the

sequential circuits, the output of circuits are generated after several clock periods. We

can get the number of clock difference between two outputs from the behavioral and

structural description after analysis of two models, for example, as shown in the fol-

lowing Figure 4.9:
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Figure 4.9 : Typical output waveform for behavioral and structural model

In order to make up this clock difference, the amount of clock difference is insert-

ed into the behavioral model, so that both outputs for the structural and behavioral

models are generated in the same clock period. After adjusting the clock difference, we

can check the tinting difference and Figure 4.9 can be modified to Figure 4.10. Now

timing tolerance between two descriptions becomes within some number of delta time

units.
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Figure 4.10 : Modified output waveform for the behavioral and structural models

In summary, design verification procedure for the sequential circuit is formally
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described as follows:

1) Get clock difference between the behavioral and structural models

2) Adjustment of clock difference

3) Verification by the tinting tolerance

This approach is actually a combined method from the simple method and a method

based on timing tolerance. In order to apply this modified approach, it is assumed to

know how many clock periods are required for the real circuit operation. Let us apply

this combined approach to the frequency divider. Its behavioral model generates the

output at the first clock, but the structural model generates at the second clock, i.e.

there is l clock difference between two outputs from these models. A delay of clock

period (10 ns) is inserted on the behavioral model, so that both outputs can be generat-

ed during the same clock period, with difference of l A, which is within the tinting

tolerance.

This design verification procedure can be implemented actually in two ways. One

way is that a generic constant - clk_diff is used for the clock difference in the

behavioral model for the frequency divider. We do not have to change the behavioral

model for each clock difference in this implementation. A new model is shown below.

architecture beha_desp of divide4_1 is

signal count: integer := O ;

begin

process (clk_in)

begin

if (clk_in = ’I’ and not clk_in’stable) then

count <= count + l ;

if count = 0 then by_four_out <= ’1’ after c1k_diff;

elsif count = 2 then by_four_out <= ’0’ after c1k_diff;

elsif count = 3 then count <= 0 ;

end if;
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end if;

end process;

end beha_desp;

Figure 4.11 : Modified Model for the Frequency Divider

 This model can be verified by using the Assertion Process Shell as shown in Figure

4.4, in which Suml and Sum2 is replaced by_four_out and Stru_out respectively.

(Stru_out is the output for structural model).

The other way to implement the verification of a sequential circuit is by using the

verifier, which is a top level VHDL description for the structural and behavioral  models. The verifier performs the actual verification by adjusting the clock difference

for the component of the behavioral model in the top level description. In this imple—

mentation, the behavioral model does not have to be modified and the original model

is used for verification. For example, a verifier is needed in order to verify the fre-

quency divider. Figure 4.12 shows a portion of the verifier.

Beha_out <= by_four_out after clk_diff;

L_beha_freq: c_beha_freq

port map (clk_in, by_four_out);

L_stru_freq: C_stru_freq

port map (CLK_IN, Stru_out);

-- Assertion Process Shell

process (by_four_out, Stru_out)

Figure 4.12 A verifier for frequency divider

Here, c_beha_freq is the behavioral model and c_stru_freq is the structural model of

the frequency divider respectively. The verifier includes the assertion process shell

fr0m Figure 4.4 and it would verify by the timing tolerance method.
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4.3 Timing Faults in Verification

Verification between the behavioral and structural model in VHDL can be ob- -

tained by using our approach on both combinational and sequential circuits. If, how-

ever, there are any tinting faults, i.e. spikes or hazards, in the combinational or sequen—

tial circuit, the circuit behavior becomes complicated. As a simple example, in a half  
adder, if the value of Ain and Bin change their state simultaneously (from 01 to 10),

then O-static hazard, which is that a circuit output goes to 1 when it should remain 0,

is generated on the output Suml for the structural description. But there does not exist

a hazard for the behavioral model of the half adder. Therefore, our verification

methods cannot be applied directly here.

As an another example, consider following two VHDL models.

 

Model 1: Cl <= A or (not B);

Model 2: NB <= not B;

C2 <= A or NB;

 

 

 

3‘ -> I‘— 2delta

 

 

NB:

I
Figure 4.13 : Timing Diagram for Modell and Mode12
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These two models describe the same circuit, but Model 2 uses an intermediate signal

NB and Model 1 involves only one signal assignment. Figure 4.13 shows tinting di-

agram for these models, and a spike can be observed at signal C2 in Model 2.

A spike does not occur in model 1, since (not B) does not take any length of

time. However, a signal assignment for NB consumes one A in model 2. In this case,

it is not easy to verify equivalence between two models due to a spike in model 2. A

preprocessing module for design verification is needed to delete a spike for short dura-

tion. The preprocessing module is based on the inertial delay model, in which a pulse

whose duration is shorter than the switching time of the circuit, will not be transmitted.

If an appropriate amount of inertial delay is provided, a spike could not proceed

through the output gate. In order to perform such a model, an improved inertial delay

model is necessary in the preprocessing module, which blocks tinting faults which

duration is for a very small amount of time. For example, suppose its duration is for

some number of delta time unit. Then the timing fault can be blocked by the follow-

ing statement.

A <= B after N delta ;

Here, N is a small number. If this model is available in VHDL, then the timing faults

for N delta time do not occur in the output and a signal through the preprocessing

module will be spike-free. (However, this model cannot be supported in present VHDL

and it should be provided in the near future.) Now two models can be verified. A

preprocessing module for timing faults check can be implemented in the VHDL as

shown in the following Figure 4.14.

architecture delta_test of prep is

begin
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block begin

delta_out <= delta_in after N delta ;

end block;

end delta_test;

Figure 4.14 : A Preprocessing Module

Here, delta_in is a signal which might contain a timing fault, and delta_out is a spike-

free signal respectively.



 

Chapter 5. VHDL Modeling for the Transient Analysis

In the previous chapter, a verification method for spikes has been described,

which is a special case of tinting faults. If, however, tinting faults involve hazards and

races, the circuit behavior becomes unpredictably complicated and it may cause critical

situations in the digital circuits. Such hazard and race conditions should be detected

and eliminated during the VHDL modeling process. In order to detect tinting errors,

the precise delay model and some additional features in the VHDL is required, which

are useful for analysis and the modeling of these transient operations in digital circuit.

An improved gate delay modeling for tinting behavior and tinting fault detection pro-

cedures with VHDL are described.

5.1 Delay Modeling for Timing Behavior

5.1.1 Survey of Delay Modeling

Several different approaches for delay modeling have been developed [14,21,22].

The first delay model implemented in the event—driven simulators is a nominal delay

model. In that model, a single delay value is assigned to each kind of logic element.

But some devices have different signal rise and fall times due to various electrical

parameters such as its input parameter and load capacitances. Such devices can be

modeled by assigning two delays of tphl for transition from I to 0 and tplh for transi-

tion from O to 1. This model is referred to a rise/fall delay model. In this model, if

the output change caused by the first input change occurs later than that by the later

input change, the events will be preempted, and the output would be assigned to be an
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unpredictable value or an error state. The more precise modeling of delay is called a

delay ambiguity model or a min/max delay model. In this model, the logic circuits

operate with a propagation delay somewhat between a minimum value tpdm and a

maximum value tpm. These delays define an ambiguity region of duration tpdm -

tW and the gate signal changes the value sometime within this region. However, in

this model, since the ambiguity region propagates through the elements in an additive

fashion, the region at the output node widens compared to that at the input. Thus the

model results in a worst-case behavior. Other methods proposed for the delay ambi-

guity modeling are the Monte Carlo simulation, where all combinations of delays can

be considered and the delay distribution can be approximated by the Gaussian curve.

To detect and model the unpredictable state due to spikes, hazards, and races, at least

three value modeling is necessary, including 0, 1, X(unpredictable or unknown), since

such abnormal states cannot be generated and the effect of these states cannot be pro-

pagated with the binary logic simulation model.

A gate is normally evaluated by two basic operations; a delay operation causing

the signal delay and a functional operation to give the output value. There are two pos-

sible ways to set up the gate model [21]. The first model is the input-side delay

model, which applies the delay operation to all of its input initially, and then performs

the functional operation to yield the output. Thus,

2 = F(D(xl,x2, ,xn))

= F(Dl(x1), D2(x2), ,Dn(xn))

where (x1, x2, ..,xn) are the input signals and Z is the output. F is the functional

operation and D is the delay operation of the gate, respectively.

The other model is the output-side delay model, which performs the functional opera-
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tion first and then the delay operation follows, in contrast with the input-side delay

model. Thus

Z = D(F(x1, x2, ..., xn))

These two models perform different behaviors when the input nodes change

simultaneously. In the output-side delay model, the functional operation is performed

first, and this results in the output of the gate being always correct. However, in the

input-side delay model, the delay operation is performed first, which results go to the

function unit. Since the functional operation is performed on the output of the delay

operation, the unpredictable output, such as spikes, might be produced when the iner-

tial delay model is adopted. Therefore, the output-side delay model is better than the

input-side delay model in tinting analysis. The delay model in VHDL (inertial and

transport delay) is based on the output-side delay model.

5.1.2 Improved Delay Modeling for VHDL

The precise delay model for logic circuits is very important, in particular, for

detecting tinting faults, such as spikes, hazards, and races. However, the delay model

in VHDL might not describe the exact circuit behavior in a real situation, and there are

some lintitations in the timing model. An improved gate delay model in VHDL is

proposed for the correct circuit operation.

The timing model of the VHDL provides the inertial delay and transport delay

model [24,26]. In the inertial delay model, the output of a logic function will not

respond to input signals stimulating the gate for less than a specified delay time. The

transport delay model implies that the output of a logic function will respond faithfully

to input signals no matter how briefly the stimulus may be present. In order to
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represent the circuit behavior close to a real situation, we need an improved model.

First, tinting constraints, such as set up time and hold time, should be satisfied at the

inputs. Second, tinting fault at the input signal should be checked and removed. Third,

there should be the stability criterion of the inputs. That is, the inputs must remain

stable for a given amount of time in order for the outputs to change. Fourth, provided

the stability criterion is met, there is a propagation delay associated with the operation

of the gate. Finally, the output line is assigned the value of the function of the gate

operating on the inputs.

Consider an inverter as an example. At first glance, one might represent this as:

B <= not A after T1 ns;

However, this fails to differentiate between the stability and propagation delay - requir-

ing inputs to remain stable longer than necessary. A more accurate description using

our criterion would be:

temp <= not A after T2 ns;

B <= transport temp after T3 ns;

where an inertial delay of T2 is used for the stability criterion, and a transport delay of

T3 is used for the propagation delay of the inputs. For the inertial delay model, T1 =

T2 + T3. However, for the transport delay model T1 = T3, since T2 = O and there is

no requirement for the minimum width. Here, an input signal A should be a filtered

signal from the input block in the improved delay model.

Figure 5.1 shows our improved gate delay model, which consists of an input

block and an output block. The input block is the constraint checker. The timing con-

straints for the input are checked for the set up time and the hold time requirements in

the constraint checker of the gate. The set up time specifies that the input should be
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stable for a duration of time prior to the clock transition that Strobes data into the gate.

The hold time requirement is that the data should be stable for a minimum amount of

time after the clock makes its transition. An assertion to check the set up time

specification would be written as follow:

Assert not (not CLK’stable and CLK and DATA’stable(S))

report "Set up Time Failure";

Thus if the CLK has just made a positive transition, and the data input has not been

stable for the previous S time, a set up time failure will be reported. For the hold time

test, one could also write the following assertion.

Assert not (not CLK’delayed(H)’stable and CLK’delayed(H) and DATA’stable(H))

report "Hold Time Failure";

The output block is composed of three sub-blocks; the inertial filter, the stability filter

and the propagation delay element. The output block checks timing faults and assign

the propagation delay on the signal which is resulted from he logic unit. First, the

minimum duration requirement for the signal, i.e. the stability criterion, is checked in

the inertial filter of the output block. This concept is based on the new delay model as

described in the inverter example, and it checks if there is any spike or a pulse whose

duration is less than the stability criterion. This model is consistent with the VHDL

model, which is on the output—side delay model [24]. In the output block, another im-

portant element is the stability filter, which checks the resultant signal from the logic

unit whether or not there is any hazards or races. In the stability filter, it detects the

abnormal states or timing faults, and prevents that signal from proceeding into the out-
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put of the gate. Thus the tinting faults can be prohibited in the output. The stability

filter is a main concern in this chapter, and it will be described in detail in following

sections. Finally, the resultant signal from the stability filter goes to the propagation

delay block, and the actual output signal is generated.

 

CONST LOGIC INERTIAL STABILTY PROPA-

_ ..., GATION 9

CHECKER UNIT FILTER FILTER DELAY

       

Figure 5.1 : An Improved Gate Delay Model

With this improved delay model in the VHDL, the tinting constraints, stability criterion

and timing faults can be checked, and the functionally correct circuit operation can be

obtained in the logic gate.

In this chapter, tinting fault detection methods are described and these procedures

could be used as an element for the stability filter in my improved gate delay model.

5.2 Timing Faults in Digital Circuit

When input signals of a logic circuit change their value, we can predict the output

signals by looking at its flow table or truth table. If the output signals behave in a

different manner, the circuit is said to have a timing fault i.e. a hazard or race for the

input transition [15,18]. Hazards cause unwanted switching transients at the output of

a circuit because different paths have different propagation delays. There are four pos-

sible hazards, static O—hazard, static l-hazard, dynamic hazard and essential hazard. If
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a circuit output goes to 1 when it should remain 0, it is said that the circuit has a static

O-hazard. And if a circuit output goes to 0 when it should remain 1, it is said that the

circuit has a static l-hazard. The third type of hazard, known as dynamic hazard,

causes the output to change three or more times when it should change from 1 to 0 or

O to 1. The essential hazard is basically a critical race between an input signal change

and a feedback signal change. The static O-hazard and static l-hazard can be detected

by inspecting the diagram of the particular circuit. These two hazards exist because

the change of input results in a different product term covering the two minterms [15].

Whenever the circuit must move from one product term to another, there is a possibili-

ty of a momentary interval when neither term is equal to 1 (0), giving rise to an un-

desirable 0 (1) output. These static O and l-hazards can be elintinated by enclosing

the two minterms in question with another product term that overlaps both groupings.

Thus, these hazards can be eliminated by the addition of redundant gates to the circuit.

A physical circuit corresponding to a configuration with a hazard may or may not mal-

function, depending upon the magnitude and locations of its delays at a particular time.

A hazard-free circuit is one which does not display the type of malfunction regardless

of the value of delays [23]. In a combinational circuit, spurious output pulses may not

be harmful, depending on how the output is used. However, a hazard becomes very

complicated in the sequential circuit, in which, if a momentary incorrect signal, a ha-

zard, is fed back, it may cause the circuit to enter the wrong stable state, thus convert-

ing a transient error into a steady-state error [15].

A race condition exists in an asynchronous sequential circuit when two or more

state variables change their values in response to a change of an input variable. When

unequal delays are encountered, a race condition may cause the state variables to
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change in an unpredictable manner. There are two possible races, noncritical and criti-

cal races. In a combinational circuit, races just make temporary false output. However, i

in an asynchronous sequential circuit, they may cause wrong stable states. In noncriti-

cal races, the final stable state where the circuit reaches, does not depend on the order

in which the state variables change. Noncritical races do not cause any serious problem

functionally. In critical races, it is possible to end up in two or more different stable

states depending on the order in which the state variables change. Critical races make

a circuit work abnormally and they must be eliminated.

5.3 Timing Faults Detection Method

A unified approach to the hazard detection in both combinational and sequential

circuits using ternary logic has been reported [3,9]. Eichelberger’s hazard detection

scheme based on ternary logic [8] is briefly described. A signal 1/2 is used to

represent an indeterminate signal which may be either 1 or 0. The ternary function

G*, of a logic gate that realizes the binary function G, can be defined on {0,1,1/2}. A

combinational logic circuit is said to contain a hazard for an input variable if and only

if (I) the output before the change is equal to the output after the change and (2) dur-

ing the change a spurious pulse may appear on the output. The problem of determin-

ing whether or not a hazard in a sequential circuit can be divided into two parts. The

first part is to determine all the internal signals that may be changing as a result of the

input change, and the second part is to determine whether or not these internal signals

will eventually stabilize in some predetermined state. Through these steps, we can

determine which of the signals will be unstable as an indeterminate state (1/2) for a

result of the changing input variables.
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5.4 VHDL Implementation for Timing Faults Detection

In order to get the transient analysis for digital circuit, a hazard condition should

be checked on both of the combinational circuits or asynchronous sequential circuits

by VI-IDL. Binary logic of VHDL is extended into multiple valued logic and used for

the hazard detection procedures.

The feasible method in making sure for there is no hazard is that various delays

in the circuit are not related to lead to the hazard. This can be achieved by inserting

adequate delay elements into the path, but in practice the estimates of the various de—

lay values often are difficult and even impossible in complex circuits. Thus we need to

apply a simple delay model in order to detect a hazard condition with VHDL. In our

procedures, all of the components in a circuit are assumed to have unit delay, or a del-

ta delay. If we do not have this assumption and apply some other delay model, i.e.

some length of inertial delay and transport delay, then we cannot check if there is any

hazard or not, since the circuit behaviors become different depending on their delay

model. For example, in any event, transient false signals can always be filtered out by

the action of delay elements with the inertial property. The goal is to find the circuit,

which possibly creates a hazard for a particular transition from the design, assuming

delta delay model. It is also assumed that for any circuit, all the effects of one input

change reach all the outputs before any of the effects of the next change reach any of

the outputs. This assumption has essentially the property that the circuit becomes a

steady-state condition before any input signal is changed.

A hazard condition can be recognized by the detection method based on a ternary

logic, which is implemented using VHDL. The first step is to extend the logical

operation in VHDL. In VHDL, the logical operators AND, OR, NOT were defined for
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predefined types BIT and BOOLEAN, not for ternary logic [25]. In order to imple-

ment the detection method based on ternary logic, it is required to extend the logical

operation to include the ternary operation. Extension can be done by defining new

functions and packages about multiple valued logical operations. One typical example

involving multiple-valued AND operation is shown in Figure 5.2. Multiple-valued OR

and INV operation can be described in a similar way.

package wfun2 is

function MVL_AND (DRIVERS : MVL_vector) return MVL ;

subtype WABIT is MVL_AND MVL ;

type WABIT_VECTOR is array (NATURAL range <> ) of WABIT;

end wfun2;

package body wfun2 is

function MVL_AND (DRIVERS : MVL_vector) return MVL is

variable COUNT : integer;

variable VALUE : MVL;

begin

VALUE := ’0’;

for COUNT in DRIVERS’LOW to DRIVERS’HIGH loop

if DRIVERS(COUNT) = ’0’ then VALUE 2: ’0’;

exit;

elsif DRIVERS(COUNT) = ’R’ then VALUE := ’R’ ;

elsif DRIVERS(COUNT) = ’1’ then

if VALUE := ’R’ then VALUE 2: ’R’;

else VALUE 2: ’1’;

end if;

end if;

end loop;

return VALUE;

end MVL_AND;

end wfun2;

Figure 5.2 A Multiple Valued AND function
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In above function, the indeterminate state 1/2 is set as "R".

The following procedure detects the hazard condition in combinational circuits.

Procedure I - Hazard Detection in combinational circuits for specific transition

1) Change the input value as following sequences

A -> R (1/2) -> B

2) Find out the output value

OUT(A) = OUT(B) t R and OUT(R) = R

3) If all of two conditions in 2) are satisfied, this circuit contains the hazard.

Here, A is the initial input state and B is the final state respectively. In this procedure,

we can detect the hazard regardless of the gate delay of the logic circuits. To test the

above condition (2), we need the following process.

process

begin

wait until (not OUT’stable)

Qul <= OUT ;

wait until (not OUT’stable)

Qu2 <= OUT ;

wait until (not OUT’stable)

Qu3 <= OUT ;

Assert (not ( (Qul = Qu3) and not (Qul = ’R’) and Qu2 = ’R’))

report " Hazard Condition Detect " ; ’

end process;

In the above model, each output value OUT will be assigned to Qul, Qu2, and

Q3 whenever its value is changed. Assertion statement executes after the last transac-

tion occurs from OUT to Qu3.

For sequential circuits, we can similarly define the procedure which detects

whether or not a circuit contains hazards for a particular input change.
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Procedure 2 - Hazard Detection in sequential circuits for specific transition

1) Change the input value as following sequences

A -> R (1/2) -> B

2) Find the output value

3) If the output value is stable and R (1/2), this circuit contains the hazard.

The output signal is unstable and may have several intermediate

state during the transition.

Selected example circuits have been tested for hazard detection using above pro-

cedures, and VHDL simulation results show our procedures are working. There are

three examples which have been tried, which are 2 static hazard circuits and 1 hazard-

free circuit. One of those examples is shown in Figure 5.3, and a static hazard appears

in this combinational circuit. A main portion of a VHDL program and its simulation

result is attached. The whole program lists and two other examples are shown in Ap-

pendix 2.
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architecture staticlm of hazardlm is

begin

B: block

signal 81, 82, S3 : MVL := '0' ;

for L_inv: C_inv use entity inv_gate(mul_inv);

for L_andl, L_and2: C_and use entity and_gate(mvl_and);

for L_or : C_or use entity or_gate(mul_or);

begin

L_andl: C_and port map (X1, X2, 82);

L_inv: C_inv port map (X2, 81);

L_and2: C_and port map (81, X3, 83);

L_or : C_or port map (82, S3, Yout);

end block;

end staticlm;

architecture arc_hazardlm of test is

begin

B: block

component C_hazardlm

port (X1, X2, X3 : in MVL;

Yout' : out MVL);

end component;

signal X1, X2, X3 : MVL := ’0' ;

signal Yout : MVL := ’0' ,

signal Qul, Qu2, Qu3 : MVL := ’0' ;

for all: C_hazardlm use entity hazardlm(staticlm);

begin

X1 <= ’1' after Ons ;

X2 <= '1’ after Ons, ’R’ after 50ns, ’0’ after lOOns ;

X3 <= '1' after Ons ;

L_hazardlm: C_hazardlm port map (X1, X2, X3, Yout);

-- Hazard Detection Assert Statement

process

begin '

wait until (not Yout'stable);

Qul <= Yout ;

wait until (not Yout'stable);

Qu2 <= Yout ;

wait until (not Yout’stable);

Qu3 <= Yout ;

Assert (not ( (Qul = Qu3) and

not (Qul = ’R') and Qu2 = ’R’))

report " Hazard Condition Detect " ;

wait until (true=false) ;

end process;

end block;

end arc_hazardlm;
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Figure 5.3 Static hazard in combinational circuit
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Chapter 6. Conclusion and Future Works

The VLSI system can be modeled and simulated for its verification using

VHDL. In this thesis, some useful modeling techniques have been presented for

the efficient modeling of the VLSI systems. VHDL semantics on process state-

ments and functions are described and the delay characteristics are discussed. A

new method for design verification has been proposed in this paper. Using timing

tolerance information supplied by the design, it can be verified that the structural

description is equivalent to the behavioral model. This technique is used to verify

both combinational and sequential circuits. A simple type of timing faults is con-

sidered in the verification. In order to verify VHDL models efficiently, an addi-

tional feature is necessary in VHDL . To model gate delay precisely, an im-

proved gate delay model is required. In order to detect timing faults, such as ha-

zards and races, a detection procedure based on ternary logic has been proposed.

The automatic detection procedure for timing faults with VHDL has been imple-

mented, and hazards can be detected with this procedure.

Further research is suggested to improve the results. First, the proposed ha-

zard detection procedure assumes a delta delay on all gate components in the cir-

cuit. In a real circuit, however, all of the gate components have some amount of

delay length. A general transient analysis algorithm, which is based on a real de-

lay model in the circuit, should be developed to be used for timing analysis of the

digital circuits. Second, if a VHDL reasoning system, which reasons about circuit
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behavior, is available, then this reasoning system could be used to analyze timing

behavior and detect timing faults [9,16,17]. Such a reasoning system would be a

great help in design verification and in transient analysis for digital circuits.
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Appendix A. VHDL Modeling for Bit Sync Filter

1. Bit Sync Filter Circuit Description

The Bit Sync Filter will synchronize a 20 khz or 16 khz clock to a data

stream by inserting or deleting clock pulses on a 320 khz clock. The circuit ad-

justs this clock by the in—phase clock time (falling edge of the clock) and at the

mid-phase clock time (rising edge of the time). If the data transition occurs be-

fore the clock edge, extra clock pulses will be added in order to advance the

clock edge to where the transitions are occuring. Similarily, if the data transition

occurs after the clock edge, pulses will be deleted in order to delay the clock to

the transitions. The circuit also functions in two modes: a coarse mode that ad-

justs the clock immediately, and a fine mode that reduces clock jitter by requiring

a number of transitions on the same side of the clock edge before an adjustment

is made. Figure A.l shows the block diagram of the Bit Sync Filter.

Two major blocks in this chip are the clock generation block and phase

detection/adjust block. The clock generation block consists of a programmable

divide-by-1/2/3 counter and three other counters that generates two symmeuical

clocks at 20 khz and 16 khz. The programmable counter has two inputs, labeled

P1 and P0, that control the divide by rate. The divider works as a pulse swallower

that in the normal divide-by-two mode (P1 = 0, P0 = 1) inhibits every other clock

pulse from appearing on the output. When the clock is to be advanced, the divider

6’)  
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will be placed in the divide-by-one mode (P0 = 0, P1 = 0) for one cycle and the

clock pulse will not be swallowed; when the clock is to be delayed, the divider

will be placed in the divide—by-three mode (P1 = 1, P0 = O) for one cycle and two

clock pulses will be swallowed.

_UUH°

lN_DUHP

-DRYR

RCOTRKI  FH
 

Figure A.1 Block Diagram of the Bit Sync Filter

The phase detection block consists of two edge detectors, up/down counter,

clock adjustment circuit and some random logics. The in-phase and mid-phase

data from an external interface and dump circuit are routed to two edge detectors.

The in-phase data signal is examined for a change in state between two successive

in-phase clock edges in the in-phase edge detector. For the mid—phase edge detec-

tor, the in-phase and the mid-phase data signal are examined for a change

between the mid-phase data signal sampled at mid-phase clock edge and in-phase

data signal at the next in-phase clock edge. If both edge detects are true, it indi-

cates that the clock is leading the data; if the mid-phase edge detect is false while
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the in-phase edge detect is true, it indicates that the clock is trailing the data. The

up/down signal is determined by the state of both edge detect circuits. When the

phase detect signal (up/down) indicates that the clock leads the data, P1 is set

high while P0 is set to low. When the phase detect signal indicates that the clock

lags the data, both P1 and P0 will be set low.

2. VHDL Modeling of Bit Sync Filter

2.1 Functional Block Decomposition

The basic unit in VHDL modeling is a design entity, which can be of any

complexity, from a simple logic gate to a whole Bit Sync Filter chip. The design

entity is composed of two parts: an entity declaration and an architectural body.

An entity declaration describes the interface, such as input and output ports and

generic parameters, of a design entity. An architectural body represents a distinct

view of a design entity. It can be a behavioral or a or structural description of an

design entity. To model the bit sync filter, it has been partitioned into 16 func-

tional blocks. In addition to these block, two clock generation blocks and a bus

resolution function block is needed. Each block, called a component, represents

an entity which performs a well encapsulated function. Each component has been

modeled at the level of behavioral description then merged to a top level model of

bit sync filter. Some critical blocks for the timing has been modeled and verified

at the level of structural description or mixed description of both for the purpose

of the precise modeling. In this section, some modeling techniques for major com-

ponents, such as phase detector, programmable divider, up/down counter, clock
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adjustment, edge detector and multiplexer are described.

2.2 Components Modeling

1. Edge Detector

A clock, selected by a freq_cntl signal, is routed to two edge detectors. The

in-dump and mid-dump signals detect the falling edge and the rising edge of the

selected clock respectively. In order to model edge detector, two process state-

ments are used. One process is for initialization and the other one is for edge

detection. The in_dump signal goes to 1 at sel_clk = ’0’, and go back to ’0’ at

next clock signal. The mid_dump signal goes to ’1’ and back to ’0’ at next clock

signal.

2. Phase Detector

In the phase detector logic, an in-phase detection block checks for data tran-

sition in a clock cycle and the output result is generated in the following clock

cycle. A mid-phase detection block checks for data transition in the first half of

clock cycle and the result is synchronized with in-phase detection result. If a data

transition occurs between two in-dump signals, then the in-phase signal goes to 1

at the following in-dump signal and goes back to O at the next in-dump signal.

For the mid_phase signal, it checks if there is a change between mid_phase data

signal (MID_DET) sampled at mid_dump and in _phase data signal (in_det) sam-

pled at the next in-dump signal. For modeling of in_phase edge detector, two pro-

cess statements and some wait statements are used. One process is for initializa-

tion of phase detect signal and the other process is for main module of phase

detection. In in_phase edge detector model, it checks if two in-phase data signal
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sampled at in_dump signal and following in_dump signal is equivalent or not. If

two signals are same, then in_phase signal goes to ’1’. Otherwise, it goes to ’0’.

This operation can be implemented by the wait statement in a process. The

mid_phase phase detector has been implemented in a similar way.

3. Programmable Divider and Clock Divider

A programmable divider operates in three modes. In the normal divide-by-2

mode, it works as a pulse swallower and allows every other clock pulse. When

the clock is to be advanced, the divider will be placed in divide-by-l mode and

the clock pulse will not be swallowed. When the clock is to be delayed, the divid-

er will be placed in divide-by-3 mode and two clock pulses will be swallowed.

In this VHDL model, the count is a signal for counting pulses. PO and P1 are the

control input for the divide-by rate and K640khz is an input clock signal. In

divide-by-2 mode, whenever input signal make a 0 to 1 transition the value of

count is increased. If this block counts twice, then count is set to O and an output

pulse is generated. Divide-by-3 mode is quite similar to divide-by-Z mode.

The clock dividers, which generates divide—by-l6 and divide-by-ZO signal

from the combination of the divide-by-4 and divide-by-S, has been implemented

in a similar way.

4. Up / Down Counter

In the tracking mode, a clock adjustment is made only when a majority of 30

transitions to one side or the other of the active clock edge is detected. When the

up/down signal is low, the counter will count up by one with each clock. When

the signal is high, the counter will count down. When the up/down counter

counts 30 transitions, then an output pulse is generated to change the divide by
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rate and also preset the counter back to initial state. But setting the preset value

is not simple and depends on the value of the enable signal (PE). When PE is ‘

high, the clock is disabled and the signals outO and out62 are held low. The count

will be held at its current value and will be loaded with a new count on the first

rising edge of the clock after PE goes back low. The value that is loaded depends

on two conditions: the counter value when PE went high, and the state on

up/down signal when this first clock occurs after PE goes back low. The new

counter value is determined as follows:

if the count was even and up/down signal is low, the count is set to 33.

if the count was odd and up/down signal is low, the count is set to 32.

if the count was even and up/down signal is high, the count is set to 31.

if the count was odd and up/down signal is high, the count is set to 30.

VHDL model consists of two processes, in which one is for deciding the enable

signal and the other is for counting the clock pulses.

5. Multiplexer

The multiplexer selects the data clock rate to which the circuit is to be syn-

chronized. It selects 20khz when FREQ_CNTL = 0, and 16khz, otherwise. We

can implement the multiplexer in VHDL in several ways, as described in chapter

2. One implementation is by using the when statement. Another implementation

is using a bus resolution function of the WIRED_OR function. In the bus resolu-

tion function, signal S is a guarded signal of a register, and is multiplexed from a

driver of the block whose guard expression is true.

6. Clock adjustment block

This block controls the programmable divider signals P0 and P1. When the
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final_shot is triggered either by the clock enable or the up/down counter, a clock

adjustment signal is generated to change the divide by rate and also preset the

up/down counter back to initial state. When the up/down signal is ’0’, P1 is set

high while P0 is set low. When the up/down signal is ’1’, both P1 and PO signals

will be set low. When the final_shot is not active, P1 is set low while P0 is set

high.

2.3 Description of VHDL Function blocks

divider_prgm : programmable divider block in the clock generation section

divider_16 and divide_ZO : divider by 16 and 20 circuit

muxl : select K20khz or K16khz depends on freq_cntl signal

in_shot : generates in_dump signal for selected clock

mid_shot : generates mid_dump signal for selected clock

in_edge_det : in_phase detection block

mid_edge_det : mid_phase detection block

clk_enable : clock enable signal generation block

phase_detect : deciding phase depending on in_phase and mid_phase

up_down : up/down counter block

mode_select : acquisition mode or tracking mode selection

mux2 : generate signal for clock adjustment

final‘shot : one-shot from clock enable or up/down counter

clk_adjust : clock adjustment block and generate P1 and P0 signal

peri0d_clock : input clock generator block

period_testclock : test_1 signal generator block



Appendix B:

Examples for Transient Analysis with VHDL
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3. Conclusion

The modeling of bit sync in VHDL/1076 has been carried out successfully.

The behavior of each functional block of bit has been modeled in VHDL. For the

top model of bit sync filter, it has been modeled by using its partitioned com-

ponents. For the purpose of verification, some important blocks have been

modeled in the level of structural or mixed description and they are compared to

behavioral models. VHDL codes for this project can be used as a specification of

bit sync filter circuit. For each functional block, the design can be carried out by

the designer himself, or can be drawn from an existing cell library. Several alter—

natives of the design can exist as long as it is consistent to its behavior. The

VHDL simulation result was compared with simulation results from the Mentor

Graphics circuit simulator. Two simulation results are exactly matching each oth-

61'.
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Figure B.1 : A Circuit for Static Hazard in Combinational Circuit

 

 

 

 

 

Figure 8.2 : A Circuit for Static Hazard in Sequential Circuit
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Figure 8.3 : A Hazard Free Circuit
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—- VHDL Program for Static Hazard in combinational Circuit -—

Example Circuit: Figure B.1

library Work;

use Work.all;

use defs.all;

use wfun1.all;

use wfun2.all;

use’wfun3.a11;

entity hazardlm is

port ( X1, X2, X3 : in MVL ;

Yout : out'MVL );

end hazardlm;

architecture staticlm of hazardlm is

component C_inv

port (Inl : in MVL;

output : out MVL);

end component;

component C_and

port (And_In1, And_In2 : in MVL;

output : out MVL);

end component;

component C_or

port (Inl, In2 : in MVL;

output : out MVL);

end component:

signal 81, 82, S3 : MVL := ’0’ ;

for L_inv: C_inv use entity inv_gate(mu1_inv);

for L_andl, L_and2: C_and use entity and_gate(mvl_and);

for L_or : C_or use entity or_gate(mul_or);

begin

L_andl: C_and port map (X1, X2, 82);

L_inv: C_inv port map (X2, 81);

L_and2: C_and port map (81, X3, 53);

L_or : C_or port map (82, S3, Yout);

end block;

end staticlm;
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entity test is end test;

architecture arc_hazardlm of test is

begin

B: block

component C_hazardlm

port (X1, X2, X3 : in MVL;

Yout : out MVL);

end component;

signal X1, X2, X3 : MVL := ’0’

signal Yout : MVL := '0' ;

signal Qul, Qu2, Qu3 : MVL := ’0' ;

for all: C_hazardlm use entity hazardlm(static1m);

begin

X1 <= ’1’ after Ons ;

X2 <= ’1’ after Ons, ’R’ after 50ns, ’0' after 100ns ;

x3 <= '1' after Ons ;

 

L_hazardlm: C_hazardlm port map (X1, X2, X3, Yout);

—— Hazard Detection Assert Statement

process

begin

wait until (not Yout’stable);

Qul <= Yout I

wait until (not Yout’stable);

Qu2 <= Yout ;

wait until (not Yout'stable);

Qu3 <= Yout ;

Assert (not ( (Qul = Qu3) and

not (Qul = ’R') and Qu = ’R’))

report " Hazard Condition Detect " ;

wait until (true=false) ;

end process;

end block;

end arc_hazardlm;
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Vhdl Simulation Report

Report Name: Report of Static Hazard in Combinational th"

Kernel Library Name: <<LEEJIN>>ARC_HAZARD1M

Kernel Creation Date: MAY-18-1989

Kernel Creation Time: 19:51:30

Run Identifer: 1

Run Date: MAY-18-1989

Run Time: 19:51:30

Report Control Language File: shaz_comlm.rc1

Report Output File : ARC_HAZARD1M.rpt

Max Time: 9223372036854775807

Max Delta: 2147483646

Report Control Language

Simulation_report Simulation_l is

begin

Report_name is "Report of Static Hazard in Combinational th";

Page_width is 80;

Page_length is 50;

Remove_page_id;

Signal_format is horizontal;

Select_start_time 0 ns;

Select_stop_time 1000 ns;

Sample_signals by_event using ’*';

Select_Signal .B: X1, X2, X3, Yout

Select_Signal .B/L_hazard1m.B: $1, 82, S3

end Simulation_l;

Report Format Information

Time is in PS relative to the start of simulation

Time period for report is from 0 F8 to 1000000000 FS

Signal values are reported by event ( ’*’ indicates no event )

TIME

(FS)

0

+1

500000

1000000

50000000

50500000

51000000

100000000

100500000

101000000

101500000

 SIGNAL NAMES |

|

| X X X Y S S S

| 1 2 3 O 1 2 3

| U

| T

l

I '0' ror [O] to; I01 r0: '0'

I ,1, I1! Ill *** *** *** ***

I *** *** *** **~k *** Ill **~k

I *** *** *** ’1’ drink *** *~k*

I *** ’R' *** *** *** *** ***

I *** *** **~k *** IR! [RI ***

I *** *** *** 'R' *** *** 'R'

I *** '0' **~k *** *ir-k *** ***

I *** *** *** *** Ill IOI ***

I *** *‘k‘k *** *~k* *** ink-k ’1'

|
*** *** *** '1' *** *** ***
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—- VHDL Program for Static Hazard in Sequential Circuit --

Example Circuit : Figure B.2

library Work;

use Work.all;

use Defs.a11;

use wfun1.a11;

use wfun2.all;

use wfun3.all;

entity hazard2m is

port ( X1, X2 : in MVL ;

Yout : out MVL );

end hazard2m;

architecture sequenm of hazard2m is

component C_inv

port (Inl : in MVL;

output : out MVL);

_ end component;

component C_and

port (And_In1, And_In2 : in MVL;

output : out MVL);

end component;

component C_or

port (Inl, In2 : in MVL;

output : out MVL);

end component;

signal 81, 82, 83, SS : MVL := ’0’ ;

for L_inv: C inv use entity inv_gate(mu1_inv);

for L_andl, L_and2: C_and use entity and_gate(mv1_and);

for L_or : C_or use entity or_gate(mul_or);

begin

L_andl: C_and port map (X1, X2, 82);

L_inv: C_inv port map (X2, 81);

L_and2: C_and port map (81, SS, S3);

L_or : C_or port map (82, S3, SS);

Yout <= SS after 0.5ns;

end block;

end sequenm;
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entity test is end test;

architecture arc_hazardZm of test is

begin

B: block

component C_hazard2m

port (X1, X2 : in MVL;

Yout : out MVL);

end component;

signal X1, X2 : MVL := ’0’

signal Yout : MVL := ’0’ ;

for all: C_hazard2m use entity hazard2m(sequenm);

begin

X1 <= '1’ after Ons 7

X2 <= '1' after Ons, 'R’ after 50ns, '0' after 100ns;

L_hazard2m: C_hazard2m port map (X1, X2, Yout);

-- Hazard Detection Assert Statement

process

begin

wait for 100ns;

Assert not ( Yout'stable and Yout = ’R’ )

report " Hazard Condition Detect "

wait until (true=false);

end process;

end block;

end arc_hazard2m;
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Vhdl Simulation Report

Report Name: Report of Static Hazard in Sequential Circuit"

Kernel Library Name: <<LEEJIN>>ARC_HAZARD2

Kernel Creation Date: MAY—l7-1989

Kernel Creation Time: 16:13:36

Run Identifer: 1

Run Date: MAY-17—1989

Run Time: 16:13:36

Report Control Language File: shaz_seq.rcl

Report Output File : ARC_HAZARD2.rpt

Max Time: 9223372036854775807

Max Delta: 2147483646

Report Control Language

Simulation_report Simulation_l is

begin

Report_name is "Report of Static Hazard in Sequential Circuit";

Page_width is 80;

Page_length is 50;

Remove_page_id;

Signal_format is horizontal;

Select_start_time 0 ns;

Select_stop_time 1000 ns;

Sample_signals by_event using ’*’;

Select_Signal .B: X1, X2, Yout ;

Select_Signal .B/L_hazard2.B: $1, 82, S3, SS ;

end Simulation_l;

Report Format Information

Time is in PS relative to the start of simulation

Time period for report is from 0 F8 to 1000000000 FS

Signal values are reported by event ( ’*’ indicates no event )

  TIME I SIGNAL NAMES

I

(PS) I X X Y S S S S

I 1 2 O 1 2 3 S

l U

I T

I

0 I '0’ ,0, IO, ’0' ’0’ [OI ’0'

+1 I ll! '1' *** *** *** *** ***

500000 I *** *** *** *** Ill *** ***

1000000 I *** *** *** *** *** *** rlr

1500000 | *** *** '1' *** *** *** ***

50000000 I *** 'R’ *** *** *** *** ***

50500000 [ *** *** *** 'R' IR! *** ***

51000000 I *** *** *** *** *** IR! IR]

51500000 I *** *** ’R' *** *** *** ***

100000000 I *** '0' *** *** *** *** ***

100500000 | *** *** *** ’1' I0! *** ***
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—— VHDL Program for Hazard Free Circuit —-

Example Circuit : Figure B.3

library Work;

use Work.all;

use defs.all;

use wfunl.all;

use wfun2.all;

use wfun3.all;

entity hazard3m is

port ( X1, X2, X3 : in MVL ;

Yout : out MVL );

end hazard3m;

architecture freelm of hazard3m is

begin

B: block

component C_inv

port (Inl : in MVL;

output : out MVL);

end component;

component C_and

port (And_In1, And_In2 : in MVL;

output : out MVL);

end component;

component C_or2

port (Inl, In2 : in MVL;

output : out MVL);

end component;

component C_or3

port (Inl, In2, In3 : in MVL;

output : out MVL);

end component;

signal 81, 52, S3, S4 : MVL := ’0' ;

for L_inv: C_inv use entity inv_gate(mul_inv);

for L_andl, L_and2: C_and use entity and_gate(mvl_and);

for L_orl: C_or2 use entity or_gate(mul_or);

for L_or2: C_or3 use entity or_gate3(mu1_or3);

begin

L_andl: C_and port map (X1, X2, 82);

L_inv: C_inv port map (X2, 81);

L_and2: C_and port map (81, X3, S3);

L_orl: C_or2 port map (X1, X3, S4);

L_or2: C_or3 port map (82, S3, S4, Yout);

end block;

end freelm;
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entity test is end test;

architecture arc_hazfreem of test is

begin

B: block

component C_hazard3m

(X1, X2, X3 : in MVL;

Yout : out MVL);

end component;

port

signal X1

signal Qu

for all: C_hazard3m use entity hazard3m(freelm);

begin

X1 <=

X2 <=

X3 <=

, X2, X3 : MVL := ’0’ ;

signal Yout

1,

Ill

Ill

Ill

MVL := 'O' ;

Qu2, Qu3 : MVL := ’0' ;

after Ons ;

after Ons, 'R' after 50ns,

after Ons ;

L_hazardlm: C_hazard3m port map (X1,

—— Hazard Detection Assert Statement

process

begin

wait until (not Yout’stable);

Qul <= Yout ;

wait until (not Yout’stable);

Qu2 <= Yout ;

wait until (not Yout'stable);

Qu3 <= Yout ;

Assert (not ( (Qul = Qu3) and

not (Qul = 'R') and Qu

report " Hazard Condition Detect

wait until (true=false) ;

end process;

end block;

end arc_hazfreem;

I0!

X2,

o

I

after 100ns

X3, Yout);

IRI))

-

I



Report Name: Report of Static Hazard in Combinational th"

Kernel Library Name: <<LEEJIN>>ARC_HAZFREEM

Kernel Creation Date:

Kernel Creation Time:

Report Control Language File:

Report Output File
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Vhdl Simulation Report

Run Identifer: 1

Run Date:

Run Time: 18:12:12

Max Time:

Max Delta:

Report Control Language

OCT-15-1989

OCT-15—1989

18:12:12

shaz_comlm.rcl

arc_hazfreem.rpt

9223372036854775807

Simulation_report Simulation_l is

begin

2147483646

Report_name is "Report of Static Hazard in Combinational th";

Page_width is 80;

Page_length is 50;

Remove_page_id;

Signal_format is horizontal;

Select_start_time 0 ns;

Select_stop_time 1000 ns;

Sample_signals by_event using ’*';

Select_Signal .B: X1, X2, X3, Yout
-

I

Select_Signal .B/L_hazardlm.B: $1, 82, S3

end Simulation_l;

Report Format Information

Time is in F8 relative to the start

Time period for report is from 0 FS

Signal values are reported by event

TIME

(FS)

0

+1

500000

50000000

100000000

of simulation

-

I

to 1000000000 FS

( '*’ indicates no event )
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