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ABSTRACT

PROPERTIES OF UNIT ROOT TESTS WITH HETEROGENEOUS

AND DEPENDENT ERRORS

BY

Kiwhan Kim

The properties of unit root tests are considered when

errors follow a generalized autoregressive conditional

heteroskedasticity (GARCH) and a serial correlation in the

variable's autoregressive representation. The standard

Dickey-Fuller tests and various augmented and transformed

versions of unit root tests are conducted. The primary

concern is whether the proportion of rejections under the

null hypothesis agrees with the nominal size of the test.

We also consider the use of different spectral windows

with different numbers of truncation terms in the long run

variance estimate in Phillips-Perron test statistics.

Finally Phillips-Perron tests based on the true values

of innovation variance and long run variance are examined

to help answer the cause of inaccuracies of Phillips-Perron

tests.

Careful cautions in interpreting the results of the

existing unit root tests are suggested and further

theoretical work seems to be necessary.
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CHAPTER I

INTRODUCTION

It is commonly accepted that many economic time series

are nonstationary. There are two very different models of

nonstationarity, trend stationarity and difference

stationarity, that have been considered extensively in both

theoretical and empirical work.

In the trend stationary model, a variable is viewed as

being composed as a deterministic (often linear) trend and a

stationary deviation from the trend. In this case the

variable can be detrended by regressing it on a suitable

function of time, and the residuals of the regression are

considered. as a stationary series. A. trend stationary

variable has a tendency to revert to the trend, following a

shock, and so it is meaningful to talk about the prediction

of the series, even long into the future.

The difference stationary (or stochastic trend) model

sees the variable as an accumulation of stationary

differences. In this case, following Box and Jenkins

(1970), differencing the series yields a stationary series.

A random walk is a leading example of a difference
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stationary model, but a random walk has independently and

identically distributed (iid) differences, and in the general

difference stationary model we require only that the

differences be stationary. In this model a shock to the

variable will persist over time, and.the uncertainty about the

level of the variable grows larger as the horizon of the

forecast increases. A difference stationary series contains

a unit root in its autoregressive representation, and so a

difference stationary series is also said to have a unit

root.

Because the distinction between trend stationarity and

difference stationarity is important both theoretically and

empirically, there~ has been considerable interest in

determining whether common economic time series are

difference stationary or trend stationary. The recent

interest in this empirical question was stimulated by the

work of Nelson and Plosser (1982) and Nelson and Kang (1981,

1984), who questioned the prevailing View (at that time)

that economic time series were trend stationary. In

particular, Nelson and Plosser applied the tests of Dickey

(1976), Fuller (1976) and Dickey and Fuller (1979) to test

the hypothesis of difference stationarity in a large number

of annual U.S. time series. They found strong evidence in

favor of the unit root hypothesis, in that the unit root

hypothesis could not be rejected for 13 out of 14 series

considered.
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The Dickey—Fuller tests will be described in detail in

the next chapter. Briefly, they involve the regression of

the variable on its own lagged value, and testing whether

the coefficient of the lagged value equals unity. The

regression may or may not include an intercept or time

trend. The test does not follow the usual distribution

theory based on the normal or t—distributions, even

asymptotically. Dickey (1976) and Fuller (1976) provide the

necessary' distribution. theory, but ‘under’ the restrictive

assumption that the errors in the regression are iid normal.

More recent work has extended the work of Dickey and

Fuller in many different directions. The proper trearment

of trend (or, more generally, other exogenous regressors) in

the Dickey-Fuller regression has been discussed by Evans and

Savin (1981, 1984), Nankervis and Savin (1985, 1987),

Schmidt (1989) and Schmidt and Phillips (1989), among

others. Tests of joint hypotheses (such as unit root and

intercept equal to zero) have been proposed by Eflckey and

Fuller (1979) and Perron (1988). The robustness of the

Dickey-Fuller tests to non-normality has been studied by

Godfrey and Tremayne (1988) and Schmidt (1989). Extensive

reviews of the unit root literature can be found in Dickey,

Bell and Miller (1986) and Diebold and Nerlove (1989).

In this thesis we are concerned with the consequences

of the failure of the assumption that the errors are iid.

The asymptotic distribution of the Dickey-Fuller statistics
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has been derived by Phillips (1987) and Phillips and Perron

(1988) under assumptions that allow fairly general forms of

heterogeneity and autocorrelationa .An immediate implication

of these.results is that heteroskedasticity and distributional

heterogeneity do not affect the asymptotic validity of the

tests. However, autocorrelation changes the asymptotic

distribution of the test statistics and therefore must be

accommodated in some way. This has been done in two ways in

the literature.

The first way in which autocorrelated errors are

accommodated in Dickey-Fuller tests is to use the so-called

augmented tests of Said-Dickey (1984, 1985) and Solo (1984).

These tests add lagged differences of the variable to the

regression, and are valid asymptotically for series with a

general autoregressive moving average (ARMA) representation.

The second way in which autocorrelated errors are

handled is to find a transformed version of the test

statistic which has asymptotically the standard Dickey-

Fuller distribution. These tests based on transformed

statistics are typically called Phillips-Perron tests, after

Phillips (1987) and Phillips and Perron (1988), and are also

valid asymptotically. They require consistent estimation of

two nuisance parameters, as will be discussed in more detail

in Chapter 4.

The asymptotic properties of the Dickey-Fuller tests in

the presence of heteroskedasticity and autocorrelation are
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therefore well understood. Their finite sample properties

are not well understood, however. In this thesis we use

Monte Carlo methods to investigate the finite sample

properties of Dickey-Fuller tests in the presence of

heteroskedasticity and autocorrelation. We are primarily

concerned with the accuracy of the tests, in the sense of

whether the proportion of rejections under the null

hypothesis agrees at least roughly with the nominal size of

the test. We hope to provide some guidelines as to how well

the various unit root tests can be expected to perform in

practice. We also hope to identify circumstances under

which they can be expected to be accurate and circumstances

under which they cannot.

The plan of the thesis is as follows. Chapter 2

describes the tests to be considered in this thesis and

introduces some necessary notation. Chapter 3 deals with

the unit root tests when errors follow a generalized

autoregressive conditional heteroskedasticity (GARCH)

process. The main interest is to see how the tests perform

in conditions under which the asymptotic theory almost breaks

down; namely, when the GARCI-I process is close to being

integrated and when the intercept in the GARCH process is

close to zero.

Chapter 4 investigates the sensitivity of the Dickey-

Fuller tests to autocorrelated errors. Schwert (1989),

Godfrey and Tremayne (1988) and Phillips and Perron (1988)
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have shown that the Dickey-Fuller tests and their Phillips—

Perron corrected versions are rather inaccurate, even for

very large sample sizes, when the errors are highly

autocorrelated. Their experiments used estimates of the

"long run variance" parameter based on the method of Newey

and West (1987), which basically amounts to the Bartlett

(1950) window in the spectral estimation literature. We

also consider the use of the Parzen (1961) and Bohman (1961)

windows, with different numbers of terms in the sum defining

the long run variance estimate, to see whether the use of a

different spectral window can improve the Phillips-Perron

tests.

In Chapter 5 we consider Phillips-Perron tests based on

the true values of the innovation variance and the long run

variance (which would be unknown in actual applications) to

see whether the inaccuracies of the Phillips-Perron tests

are due primarily to problems in estimation of these

nuisance parameters, or whether they are intrinsic to the

asymptotic theory for the tests. Finally, Chapter 6

contains our concluding remarks.



CHAPTER II

VARIANTS OF THE DICKEY-FULLER TESTS

In this chapter we present the Dickey-Fuller tests and

their transformed versions which will be employed in the

following chapters in investigating the reliability of unit

root tests. The tests based on White's (1980) covariance

matrix correction, the augmented Dickey-Fuller tests (Said-

Dickey (1984)) and the Phillips-Perron tests (Phillips (1987)

and Phillips-Perron (1988)) are introduced, as well as the

standard Dickey-Fuller tests (Fuller (1976) and Dickey

(1976)). The main interest in this thesis is the performances

of the standard Dickey-Fuller tests and their various

modifications under different error processes. We now

describe these tests. All of the tests are based on either

regression (l) or regression (2) below.

(1) -Yt=a+BYt-,+ut t=1, ...,T,

(2) Yt=av+ BY,_,+6t+ut t=1, ...,T.

Regression (1) is a regression of the variable , say "Y", on

intercept and its lagged value, while regression (2) adds a

time trend. In either case the unit root hypothesis

corresponds to B = 1.
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(a) The standard Dickey—Fuller p“ test is based on the

statistic T(B-1), where B is the OLS estimate of B in

regression (1), while the 2, test is based on the same

statistic except that it uses the OLS estimate B from

regression (2). Similarly, the Dickey-Fuller Tu and TT

tests are based on the t-statistics for the hypothesis 6:1

in regression (1) and (2) respectively, that is T = (fi-

1)/sd(fi) where sd(B) is the standard error of the OLS

estimate 3.

(b) White (1980) presented a covariance matrix

estimator which is consistent in the presence of

heteroskedasticity. Although the asymptotic theory for this

covariance matrix correction does not extend to the case of

a unit root in the variable or in its variance, we expect

that the White tests will help in the conditional

heteroskedasticity error model. We denote these tests with

A

the suffix ".w"; that is, Tuuw and.1,.w. This correction

is not available for the Sn and 2, tests, based on the

estimated OLS coefficients, because these tests do not use

an estimate of the variance of B.

(c) We consider the augmented Dickey-Fuller tests

(Said-Dickey(1984)), including either one or two lagged

changes in Y in the regression. Said and Dickey(1984)

proposed unit root tests using an approximation of an

autoregressive-moving average model by an autoregression.
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They argue that an unknown ARIMA(p,1,q) process can be

approximated by an autoregressive model if the lag length

(2) in the autoregressive model increases with the sample

1“ [i.e. 2 =size T, at a controlled rate less than T

0(TV3)]. However, this rule obviously does not specify the

precise value of z for a given T. Said and Dickey use the

Dickey-Fuller regression t test for a unit root (B = 1) in

the "augmented" model

c

(3) AY = a + BYFJ + E rz.AYv.‘+ u“

where AY, = lit-flit,1 .

The t-statistic for the hypothesis B = 1 in this model has

the same limit distributions as those tabulated by Dickey

(1976) and Fuller (1976) when 2 ~ m in (3) as T ~ m, at the

rate given above. We denote the tests based on the

augmented models with the suffixes ".sdl" and ".sd2",

respectively (e.g. Tu.sd1 is the t-statistic when one lagged

AY is added to the regression (1) above).

(d) Under weakly dependent and heterogeneously

distributed errors, the limiting distributions of the

regression coefficient and the t-statistic are represented in

terms of standard Brownian motion in Theorem 3.1 in Phillips

(1987). The limiting distribution of the test statistic

2
depends on the variance ratio (mi/oz). Here cu is the

2

"innovation variance" and a is the "long run variance",
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defined as follows:

T

(4) of = lim(l/T) 2 var(ua,

T-«n t=1

r

(5) c3 = lim(1/T)var( 2 ug.

T-oo t-l

By using consistent variance estimators SN}, 8“? (for 02)

and Sf, S2 (for of), Phillips (1987) and Phillips and
U

Perron (1988) provide transformed versions of the test

statistics which have the same asymptotic distribution as

the standard Dickey-Fuller statistics. When the innovations

are independently and identically distributed, of:= 02,

transformation of the test statistics would be unnecessary.

Here 2(3u), Z($T), Z(Tu) and Z(TT) denote the transformed

A

statistics for 3“, 2“,1, and.T1, respectively. The new

test statistics they propose are the following.

1'

(6) Z(3,,) = T034) - (1/2) (étf 4,2) / {T'Z 21m - 37V),
. t=

T 2 A A

(7) up.) =- (is-1) { 2 (YM - 9-.) 1 - (1/2)(s,,2 - sf)
t=I

T

[8.41” 2 (Y. WW)".
t=1

A 2 _ 4 T A 2 -1 a T A A A .
where 8,, — T Z ut + 2T 2 ws, 2 utum (ut 1s OLS

1

residuals from regression equation (1).),
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— _ 4
y, — T 2 Yp,,

standard error of regression equation (1),S

B = OLS estimate from equation (1).

(8) u?) = TUE-1) - <1/2)(§.,2 - Efm".

(9) 2m) = (B-l) / {stdcnm} - <1/2)(s.,2 - 8.3)

(gm Mu? ,4,

where c,== first diagonal element of the matrix (X')()'1

(X denotes the Tx3 matrix of explanatory

variables in equation (2).),

B = OLS estimate from regression equation (2),

T l T

~ 2 _ -1 ~ 2 '1 ~ ~ ~ 0

5:: — T E ut + 2T 2: ws 2 ut 11,,s (ut is

t=1 s=1 t=s+1

the OLS residuals from regression equation

(2).).

Sfr= standard error of regression equation (2),

T T

M = (1 - T'2)T’2( 2 Y,"’) - 12(T’5)( 2 “dz +

t=1 t=l

i t

12(T" + T'5)( 2: tY,)( 2 Y.) + (4'1"3 + 6T" +

{=1 t=l

T

2T‘5)( E Y,)2.

t=1
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We consider the so-called Phillips-Perron tests

(equation (6)-(9)), using either one or two terms in the

estimation of the long run variance 02. We denote these

with the suffixes ".ppl" and ".pp2", respectively. Like

the augmented Dickey-Fuller tests, the Phillips-Perron tests

are designed to handle residual autocorrelation.

The regression equations considered in this paper are

equations (1) and (2); that is, one with an intercept and

the other with an intercept and a time trend. The intercept

is sometimes referred to as representing "drift", because

when B = 1 a nonzero intercept implies a deterministic

linear trend in Y. In discussing the effects of drift, it

is important to make a distinction between the data

generating process and the regression equation that

generates the test statistics. The asymptotic and finite

sample distributions of Dickey (1976) and Fuller (1976) were

calculated under the assumption that the data generating

process is a random walk without drift. But as Schmidt

(1989) pointed out, using the Dickey-Fuller critical values

is invalid when the time series process is a random walk

with drift. Schmidt extensively tabulated the critical

values for different values of sample size and drift.

Nankervis and Savin (1985) also provided the distribution of

the t-statistic for the case of unit root with drift.

However, when the regression equation includes a time trend,  
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the distributions of test statistics based on that equation

do not depend on the value of the intercept. Therefore, for

time series that contain drift, tests based on regression

(2) would be a safer choice than tests based on equation

(1).

All simulations in this paper are carried on IBM PC

compatible using double precision on Lahey FORTRAN complier.

The simulations are based on 10,000 replications for each

choice of parameters. Normal random deviates were obtained

from the routine GASDEV (using subroutine RAN3) of Press,

Flannery, Teukolsky and Vetterling (1986). The required

time to compute for a given choice of parameters on a 16 MHz

80386 PC ranged from 1.8 hours for T = 100 to 18 hours for T

= 1000.

 



CHAPTER III

TESTS WITH CONDITIONAL HETEROSKEDASTICITY

In this chapter we consider the unit root tests of

Dickey (1976), Fuller (1976), and Dickey and Fuller (1979,

1981). The tabulated distributions for these tests assume

that the errors in the variable's autoregressive

representation are normal white noise, but we consider the

case that they are conditionally heteroskedastic.

Phillips (1987) has derived the asymptotic distribution

of the Dickey-Fuller statistics under assumptions which

allow for quite general weakly dependent and heterogeneously

distributed errors. The asymptotic distribution of the

Dickey-Fuller statistics depend on two nuisance parameters

2

L, and 02), the innovation variance and the long run(0

variance, that were defined in the last chapter. In the

presence of autocorrelation, the Dickey-Fuller statistics do

not have the same asymptotic distribution as they would

2 2

without autocorrelation because 0' is not equal to 0”, and

adjustments to the tests are necessary. In the case of

heteroskedasticity, however, such adjustments are

2
unnecessary. This is so because a2 and au are equal (as

14  





15

long as they exist), and the standard Dickey-Fuller

distribution is asymptotically correct. Thus the

sensitivity of the Dickey-Fuller tests to heteroskedasticity

can be only a small sample problem.

This problem has been examined by several authors,

including Godfrey and Tremayne (1988), Peters and Veloce

(1988) and Phillips and Perron (1988). Godfrey and

Tremayne investigated the performance of Dickey-Fuller tests

and Phillips-Perron tests in the case of heteroskedastic

errors. Their heteroskedastic innovations were generated

by first obtaining independent drawings from a chi-squared

distribution with 25 degrees of freedom, and then by scaling

an independently drawn standardized Gaussian variate with

the square root of drawings from the chi-squared

distribution. The Dickey-Fuller tests are quite accurate

even for small sample sizes. The Phillips-Perron tests

performed well for T = 250 but poorly for T = 25. Peters

and Veloce (1988) also provide Monte Carlo evidence for the

case in which there is a conditional heteroskedasticity in

the form of a generalized ARCH(GARCH) model of the type

proposed by Bollerslev (1986). In their experiments, the

Dickey-Fuller tests, the augmented Dickey-Fuller tests and

the Phillips-Perron tests all reject too often when the null

hypothesis is true, but not by a large amount.

We consider Dickey-Fuller tests in the presence of

conditional heteroskedasticity of the GARCH form. The
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GARCH model was developed by Bollerslev (1986) as a

generalization of the ARCH model of Engle (1982). The

GARCH model explicitly recognizes the difference between the

conditional and the unconditional variance. In the ARCH

process the conditional variance is specified as a linear

function of past sample innovations, whereas the GARCH

process allows the lagged conditional variances to enter as

well. Specifically; if we letln denote the error in the

Dickey-Fuller regression, and if we let h.t denote its

variance conditional on information available at time t-l

(IP,), the error model is specified as follows.

(10) nt = Inch. + 8.11.42 + 8211.4)”2:

(11) r, ~ IN(0,1),

(12) utllm ~ N(0,h,),

(13) h, = (>0 + §,u,.,2 + 62h,,,.

For ¢2== 0 the process reduces to the ARCH(1) process, and

for 9,:= 92== 0, ut is simple white noise. If °o > 0 and

¢,+-¢g < 1, the unconditional variance of the ut exists and

equals <50 / (1 - <I>, - (>2).

The first aim of this chapter is to examine the

robustness of the Dickey-Fuller tests to an integrated

variance. The necessary condition for the variance process

to be integrated, in the GARCH(1,1) model, is that 0, and 02

sum to one. Because the integrated GARCH (IGARCH) model
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has an infinite unconditional variance, the assumptions of

Phillips (1987) are not satisfied, the limits defining the

2 2

parameters a' and au do not exist, and we should expect the

distribution of the Dickey-Fuller statistics to be affected,

even asymptotically. (Although we will not consider it in

this paper, Hansen (1988) provides another model called the

heteroskedastic cointegrated model (HCI). The HCI model is

quite flexible and does not need to be specified explicitly,

as do the ARCH models.) We conjecture that the accuracy of

the Dickey-Fuller tests in the presence of heteroskedas-

ticity will depend on how close the variance process is to

being integrated.

The GARCH model has proved particularly useful in

describing asset price fluctuations and in modelling time-

varying risk premia, and many researchers have found a near-

integrated variance process in this model. For example,

Engle and Bollerslev (1986) apply the GARCH model to a time

series of weekly data on the exchange rate between the U.S.

dollar and the Swiss franc from July, 1973 through August,

1985, for a total of 632 observations. Other examples can

be found in Baillie and Bollerslev (1989), Domowitz and

Hakkio (1985), Diebold and Nerlove (1989), Engle, Lillien

and Robins (1987), Bollerslev, Engle and Wooldridge (1988),

and Diebold and Pauly (1988).

The second important case to be considered here is the

case which the intercept (To) in the GARCH process has the



18

value of zero. Nelson (1988) has shown that in the IGARCH

(1,1) model with no drift ”’0 = 0) , h, and ut converge to

zero almost surely. We will therefore call a GARCH model

with §0== 0 "degenerate". This is not a proper model for

modelling changing volatility and the persistence of shocks

to volatility unless one's economic model calls for variance

to die out asymptotically. Here we conjecture that the

performance of the Dickey-Fuller tests under GARCH errors

will depend on the closeness of the intercept (To) to zero.

We investigate these two conjectures with a Monte Carlo

experiment. Our errors will follow the GARCH(1,1) process,

so we can control the closeness of the process to being

integrated or degenerate by varying the parameters in the

GARCH process.

For the Dickey-Fuller tests based on t-statistics, we

also consider the test statistics which employ the

heteroskedasticity-consistent covariance matrix estimator

proposed by White (1980). The asymptotic theory for the

White correction does not apply to the case in which the

variable or its variance process is integrated.

Furthermore, the asymptotic theory for the White correction

requires the existence of the fourth moment of the error,

and this condition is violated for some of the values that

we consider for the GARCH parameters. (The condition for

the existence of the unconditional fourth moment is

2 2 .
(14) 3Q, + 20,62 + <I>2 < 1 ,
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see Bollerslev (1986)).

The augmented Dickey-Fuller tests and the Phillips-

Perron tests are also considered in this experiment.

A. Design of the Experiment

In this experiment we will consider the Dickey-Fuller

2“, 21, Tu and T, tests. We will also consider their

Phillips-Perron and Said-Dickey extensions, with z = 1, 2 in

each case. Finally, for the tests based on t-statistics (Tu

and T7) we will consider the White covariance matrix

correction.

Our data generating process will be an integrated

process with GARCH errors. Thus the data generating

process will be of the form of equation (1), with B = 1.

Without loss of generality we set Yo== 0. We assume no

drift; that is, a = 0. Non-zero drift is potentially

relevant, as argued by Schmidt (1989), West (1988) and

others, but will not be considered in this chapter.

As specified in equation (12), the error ut is

distributed as N(0,h,)‘with the conditional variance ht

generated by equation (13). We set the initial variance h0

= 1. This specific choice ofl%,does not affect the

performance of the tests, because the test results are

invariant to different values of h0 as long as {>0 is changed

proportionally so that the ratio of (00,/1%) is held

constant. We therefore need to vary only four parameters
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in the course of our experiments; 4’0! <I>,, {>2 and T.

Three types of experiments are considered. The first

set of experiments (Tables 1-6) varies the extent to which

the process is close to being integrated by varying the sum

of (c,+<1>2). This is done both by varying {>2 for fixed 0,

and vice-versa. In these experiments we set the initial

‘variance be equal to the long-run variance (when it exists)

by setting {>0 = h0(1 - <5, —<I>Z) with h0 = 1. Since only (<I>0 /

ho) matters, this is equivalent to fixing 80 and varying h0

as (e, + 02) varies, except in the integrated case. In

this setup, as ( <I>, + 02) approaches one (as the process

become nearly integrated), Q8 approaches zero (the process

becomes nearly degenerate) too. This mixes two different

types of parameter changes, but it automatically happens if

we set the initial variance equal to the unconditional

variance.

Our second set of experiments (Tables 7-14) fixes 0,

and 92 and varies To. This fixes the degree of near

integration and varies the degree of near degeneracy, and it

therefore implicitly varies the relationship between the

initial and the unconditional variance.

Our third set of experiments (Tables 15-16) follows the

first set in varying the sum (0, + 92), but these

experiments hold Q0 constant. This fixes the intercept and

varies the degree of near—integration, and it also

implicitly varies the relationship between the initial and
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the unconditional variance.

The results of the experiments are the percentages of

rejections for a number of tests, though we also accumulated

frequency distributions and moments for the various test

statistics. Our main interest is in the performance of the

Dickey-Fuller tests (2”, fifl.i1 and T1). However, the tests

using White's (1980) heteroskedasticity-consistent

covariance matrix, the augmented Dickey-Fuller tests (Said-

Dickey (1984)) and the Phillips—Perron tests (Phillips

(1987) and Phillips-Perron (1988)) are also considered.

B. Results of the Experiment

In the first set of experiments we vary (93 + 02) while

setting 90 = h0(1 - 9, - (>2) . In these experiments we set

the initial variance equal to the unconditional variance

(when it exists), and this implies that the progress becomes

nearly integrated at the same time that the value of To

approaches zero. As the degree of near-integrated changes,

the corresponding change in the value of Thlhappens

automatically.

Table 1 reports the proportion of rejections under the

null hypothesis for a 5% lower tail test, for T = 100, 0,:=

.3 and @2:= .30, .60, .65, .69 and .70. The results

generally confirm our expectation that the accuracy of the

tests should depend upon how close the variance process is

to being integrated. For the smaller value of fig the tests
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reject too often, and the rejection rates are significantly

 different from 5%, but the differences from 5% are not

really very large. For example, when 02:: .30, the

proportions of rejections are .059, .069, .059 and .064 for

A A A e e

1' p“ and p1, respectively. However, when the var1ance‘
1
)

u, or,

process is close to being integrated, the overrejection

problem becomes more amd more serious for all tests. For

example, the proportions of rejections for the Tu tests are

.059, .074, .081, .114 and .412 for «>2 = .30, .60, .65, .69

and .70, respectively. Also proportions of rejections for

Q, = .3 and <12 = .70 are .412, .353, .294 and .243 for i“,

T,, 3“ and 2,, respectively. The Phillips-Perron tests and

the Said-Dickey tests behave in a similar manner, although

the problem is a little less severe for the 3 tests than

for the T tests. For instance, for ¢2== .70 the proportions

of rejections for'Tfi.pp1 and Tu.sd1 are .417 and .404,

respectively, while, the proportions of rejections for

Zu.pp1 and 3,-Sdl are .298 and .300, respectively. There is

not much difference in the performance between the ppl and

pp2 tests, or between sdl and sd2 tests. The White

covariance matrix correction helps the performance of the

tests but does not correct the overrejection problem

completely. For instance, the proportion of rejections for

the Tu.w test when §2== .70 is .121 which is much lower than

the proportion of .412 for the unmodified standard Tu

test, although it is still well above the nominal size of
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the tests, 5%. The same pattern occurs for the ;

T

when 02:: .7. The proportion of rejections for'T7.w is

.101 which is much lower than .353 for T7. Similarly, for

the near-integrated case of °2‘= .69, the proportions of

rejections are .114 and .068 for Tu and.Tu;w respectively.

The fourth moment existence condition (14) requires 02 <

.606 when Q,:= .3, but the performance of Tuzw and Tfuw for

§2== .65, .69 and .70, which violate the fourth moment

condition, does not show any discontinuity in the

performance of the tests. The tests using the White

covariance matrix correction are less severely affected in

the integrated case compared to the other tests. The

proportions of rejections for Tu.w and T,.w is still better

than the others for (¢,== .3, ¢2== .3), (.3, .60), (.3, .65)

and (.3, .69), but not by a large amount. In the

integrated case the performances of the standard Dickey-

Fuller tests, the Phillips-Perron tests and the Said-Dickey

tests deteriorate rapidly compared to White's tests. For

example, the proportion of rejections for'Tu deteriorates

from .114 when 92:: .69 to .413 when @2== .7, but only from

.068 to .121 for TV“

Although we have calculated results for upper tail and

two tail tests as well as lower tail tests, we will discuss

only the lower tail tests in detail, since the upper tail

and the two tail tests are typically of little interest.
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Table 2 and 3 report the proportions of rejection for the

upper tail and the two tail tests, respectively, when @,==

.3 and 92‘= .30, .60, .65, .69 and .70. Table 2 shows a

slight overrejection for (.3,.3), (.3,.6), (.3,.65) and

(.3,.69) for all tests and underrejection for the integrated

variance error process. There is a serious problem only in

the integrated case. For example, the proportion of

rejections of T for (.3,.69) is .056, but .007 for
u

(.3,.70). The White covariance matrix correction, the

Phillips-Perron tests and the augmented Dickey—Fuller tests

do not help at all. They do not improve the performance of

the tests compared to the standard Dickey-Fuller tests.

Table 3 generally shows the same pattern as Table 1.

For large values of 92 all tests reject too often and when

the variance process is close to being integrated, the

overrejection problem becomes serious. The White

correction tests work much better than the Phillips-Perron

tests and the Said-Dickey tests, especially for the

integrated variance process.

Table 4 reports the proportions of rejections for the

lower tail test with T = 100, Q,== .1, and er= O, .50, .80,

.85, .89 and .90. We are again manipulating the nearness

to integration of the variance process, but compared to the

case of Table 1 the process has smaller value of 0,. All

the results reported in Table 1 apply here, with only minor

modifications, but the problem is much less severe. For
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example, even in the integrated case (02 = .90) the

proportions of rejections are only in the range of .09 for

T, tests and .07 for the 3 tests. The White covariance

matrix correction is not very useful for the parameter

values in Table 4. It performed well only in the

integrated case and for the T“ test, and for most Qz‘values

it actually made the performance worse. The fourth moment

existence condition holds here for all except the two

largest values of 92. Again we can not find any

discontinuity in the performance of the White tests due to

the failure of the fourth moment existence condition. The

T,.sd tests improve the performance by a small amount,

although all other Phillips-Perron tests and other Said—

Dickey tests do not help at all. It can be pointed out

that T1.sd2 performs better than T,.sd1 for all parameter

values in Table 4.

Table 5 is once again for T = 100 and for the lower

tail test. Now we set ¢2== .30 and let Q,== .30, .60, .65,

.69 and .70. As Q, is increased in this experiment the

variance process is closer to being integrated. The same

patterns that were evident in Table 1 are still evident in

Table 5. For large values of Q,the tests reject too

often. The proportions of rejections are increasing as the

variance process is closer to being integrated. In this

integrated case the results in Table 5 are substantially

worse than the corresponding results in Table 1. For
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example, the proportion of rejection for Tu'with @1,= .70

and ¢2== .3 is .888, whereas the same test with §,== .3 and

§2== .70 is .412. Again Tuuw and szw perform relatively

well and the proportions of rejection stay between .074 and

.053 except in the integrated variance case. The

proportions of rejections of'Tuuw and T1;w in the integrated

process case are well above their nominal size; however,

their performances are still much better than the Phillips-

Perron tests and the augmented Dickey-Fuller tests. The

Phillips-Perron tests and the augmented Dickey-Fuller tests

do not help at all, except that Tu.sd2 and T7.sd2 do

somewhat better than the other tests in the non-integrated

case.

Table 6 reports results of experiments which we

increase the sample size. For the three (9,,02) pairs

(.30,.60), (.30,.65) and (.30,.70), we set T = 100, 500 and

1000. Since the tests are asymptotically valid except in

the integrated case, the performance of the tests would

improve as the sample size increases, at least for the first

two (<I>,,<I>2) pairs. This turns out to be so, but the rate

of improvement is extremely slow. For example, when

(43,02) = (.30,.60) the proportions of rejections for the Tu

test are .074, .070 and .061 for T = 100, 500 and 1000,

respectively. In the integrated case the tests become

worse rather than better as the sample size increases,
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suggesting the need for nonstandard asymptotics in the case

of an integrated variance. In any case, it is clear that

in determining the accuracy of the tests the sample size is

not an extremely important factor, at least over an

empirically relevant range of sample sizes.

Tables 7-14 report the second set of experiments. We

fix 0, and 92 and vary 50. Thus we are fixing the degree to

which the process is nearly integrated, and varying the

value of 00. We are also implicitly varying the

relationship between the initial and the unconditional

‘variance. In Table 7, we fix Q,== .3, ¢2== .65 and h0:= 1.0

and vary To from 0 to 100. The proportions of rejections

for the various tests generally decrease with the increase

in 00. As the values of To increase, the proportions of

rejections are decreasing toward the nominal size.

However, the proportions of rejections remain larger than

the nominal size. The percentages of rejections remain near

.08 for the most of tests even with 80‘: 100. The tests

perform reasonably well for large ‘0 but the overrejection

problem becomes extremely severe as Torapproaches zero. We

can see that the proportions of rejections of Tu.w and T1.w

approach the nominal size most closely when ‘0‘: 100,

compared to the standard Dickey-Fuller tests, the Phillips—

Perron tests and the augmented Dickey-Fuller tests. For

instance, the proportion of rejections of‘Tuzw when To = 100

is .058.
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Table 8 shows the percentages of rejections for the

integrated case; i.e., ¢,== .3 and @2:= .7. The results

are very much similar to the results discussed for the near-

integrated case in Table 7. There is a serious

overrejection problem as the value of ‘0 approaches zero,

but the degree of seriousness is actually less here than in

the near-integrated case in Table 7.

Tables 9 and 10 provide similar results when (0,,92)

(.1,.85) and (0,,92) = (.1,.9) repectively. The same

pattern occurs here as in Tables 7-8 (when Q,== .3). The

tests overreject when 00 is small, and by an amount that

increases as the value of ‘0 approaches zero. The

interesting point here is that the degree of overrejection

depends upon the magnitude of 9,.and the overrejection

problem is less severe in the integrated case rather than

the near-integrated case. For example, Table 9 (§,== .1,

Qz:= .85) and Table 10 (Q, = .1, ¢é== .9) have less severe

problems than Table 7 (9,== .3, 92== .65) and Table 8 (0,==

.3, 02‘: .7) respectively, sometimes even an underrejection

problem shows up for a large value of 00 in Table 10.

Tables 11-14 increase the sample size from T = 100 to

T = 1000 for the same values of 90 (0, .01, 1.0 and 100) and

for the same sets of other parameters (9, = .3, QZ== .65),

(<3, = .3, <1», = .70), (0, = .1, 42 = .85) and (4, = .1, <12 =

.9). In the case when ¢o== 0, increasing the sample size

causes the performance of the tests to deteriorate, with the
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exception of the tests using the White covariance matrix

correction. Actually'Tu;w and.T,;w are better off with the

increase of sample size when To is equal to zero. When 00

is not equal to zero, the increase in the sample size

generally improves the accuracy of the tests, although this

does not always hold true. In cases of improvement, the

rate is often very slow. Increasing the sample size also

tends to make the White correction tests reject too seldom

for large values of To.

The interesting finding in the second set of

experiments is that the important factor in determining the

performance of the unit root tests in the presence of

GARCH(1,1) errors is the intercept parameter *0 in the

variance process. A serious overrejection problem happens

when ‘0 is very small. This problem is even worse the

larger the value of T, is and the larger the sample size is.

The performance of the tests is not much influenced by how

close the variance process is to being integrated.

The final set of experiments (Tables 15 and 16)

confirms the findings of the second set of experiments. In

our first set of experiments we set Qo==t%(1 - 93 - 42).

In this setup as (TH + 02) approaches one, to simultaneously

approaches zero. Therefore the poor performance of the

tests can be caused by either of these factors. However,

from the results of the second set of experiments it is

clear that the important factor in these experiments is the
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change in.Qo, not the change in (§,-+ 02). This evidence is

also supported by the results of the third set of

experiments.

In the third set of experiments we fix 90 and 4,, and

we vary (0% + 92)'by varying 02. In Table 15 and 16 we pick

T = 100, ho== 1.0 and §o== .01. According to the results

of Tables 7-10, ¢0== .01 should correspond to a moderate

degree of overrejection for the Dickey-Fuller tests. It

turns out to be so. In Table 15 we set §,:= .3 and vary 92

from .3 to .7. Unlike the first set of experiments, the

proportions of rejections do not change very much as (0,-+

52) approaches unity. For example, when §,== .3 and with 90

fixed at .01, changing 02 from .65 to .70 hardly changes the

percentages of rejections for the various tests. In Table

16 we set @,== .1 and vary Q2 from 0 to .9. We can also

find a similar patterns of small changes in the performances

of the various tests in Table 16.4 For example, when Q,==

.1, changing 02 from .89 to .9 results in only small changes

in the proportions of rejections for the various tests. It

appears that the extent to which the GARCH error process is

nearly integrated is not as important as the extent to which

the magnitude of 00 is close to zero (that is the extent to

which the variance process is nearly degenerate).
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C. Conclusion

In this chapter we have conducted a Monte Carlo

experiment to investigate the reliability of the various

Dickey-Fuller tests when the errors in the variable's

autoregressive representation follow a GARCH(1,1) process.

Specifically we are interested in whether the proportions of

rejections under the null hypothesis (having a unit root)

agrees with the nominal size of the test.

The standard Dickey-Fuller tests tend to reject too

often in the presence of conditional heteroskedasticity.

The problem seems to be less severe for tests based on the

value of B (2“ and 2,) than for tests based on the t-

statistic (Tu and T1). White's (1980) covariance matrix

correction helps the performance of the Tu and TT'tests most

of time, but does not solve the problem entirely.

Unsurprisingly the Phillips-Perron tests performed poorly

throughout the tests. This is as expected because the

Phillips-Perron corrections are designed to handle

autocorrelation, not heteroskedasticity.

The same pattern of the results also occur for the

augmented Dickey-Fuller tests (Said-Dickey (1984)). Again

we might expect these poor results because this test is also

designed to handle with autocorrelation, not

heteroskedasticity.

In choosing the parameter values for our experiment, we

emphasized how close the GARCH variance process equation
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(13) is to being integrated (§,-+ 0,==1) and how close to

zero the value of To is. We found that the various Dickey-

Fuller tests were seriously unreliable when the variance

process has the value of 0b close to zero or very nearly so.

This was so more or less regardless of how close the

variance process was to being integrated.



CHAPTER IV

TESTS WITH AUTOCORRELATED ERRORS

This chapter consists of two sections. The first

section investigates the reliability of the various unit

root tests in the presence of serially correlated errors.

The second section uses three different lag windows (that

is, Bartlett's, Parzen's and Bohman's lag windows) in the

estimation of the long run variance to see how the Phillips-

Perron tests perform for each different lag window. Also

ten different lag truncation values (from one to ten) are

tried in the estimate of the long run variance to see if

there is a predictable pattern in the performance of the

tests, and hopefully to be able to make some practical

recommendation on the choice of the lag truncation value in

applied work.

A. MA(1) and AR(1) error processes

Fuller (1976), Dickey (1976), Dickey and Fuller (1979,

1981) and Evans and Savin (1981,1984) proposed unit roots

tests based on a first order autoregressive (AR(1)) model,

and Said and Dickey (1984) allowed a more general ARIMA

33
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(p,l,q) progress. All of these authors assumed that the

innovations are iid normal. Independence and homoskedas-

ticity in the error process are quite restrictive

assumptions. It is more realistic to ease these strong

assumptions to allow various forms of serial dependence in

the error structure. The most common autocorrelated error

specification has been the firsr order autoregressive

(AR(1)).

(15) u == put, + 6,, t = 14 ..., T,

where for stationarity Ipl < 1, and the 6t are random

variables with E(€t) = 0, E(€E) = a: and E(6g%) = 0 for

tfs. Although the AR(1) error model has been popular,

there are many instances when moving average errors are

justified by economic theory (for example, Nicholls, Pagan

and Terrell (1975)), and, in addition, models with MA or

ARMA errors may often be a better representation of the data

generating process.

For MA(1) errors, we have

(16) u, = e, + ae,_,, t = 1, T,

where again E(6,) = O, E(e£) = of, E(6g%) = 0 for tfs, and

l6| < 1 for invertibility. This weakened error process was

assumed by several authors, including Schwert (1989),

Phillips and Perron (1988), Peters and Veloce (1989) and

Godfrey and Tremayne (1988). All of them assumed MA(1)

errors in the data generating process.

Schwert (1989) showed that tests for unit roots
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developed by Dickey and Fuller are sensitive to the

assumption that the data are generated by a pure AR process.

Specifically, the distributions tabulated by Dickey (1976)

and Fuller (1976) can be very different when the error in

the data generating process has an MA component.

Furthermore, the tests of Said-Dickey (1984) and Phillips

(1987) do not seem to work well when the MA parameter is

large, even though they should be correct asymptotically.

In particular, the Phillips-Perron tests do not come close

to their asymptotic distributions even for rather large

sample sizes. Godfrey and Tremayne (1988) also addressed

the question of whether or not unit root tests are robust to

the failure of the assumption of iid innovations, and

whether or not the statistics of Phillips (1987) and

Phillips and Perron (1988) designed for such situations

perform satisfactorily in finite samples. They allowed

MA(1) errors with the moving average parameter equal to .5.

They found that the Phillips-Perron tests may need a rather

large sample size to be reliable.

The aim of the first section of this chapter is to

confirm the foundings of Schwert (1989), Godfrey and

Tremayne (1988), and Phillips and Perron (1988) and to

complement their results in the sense that we allow AR(1)

errors in addition to MA(1) errors.
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1. Design of the Experiments

In the experiments we will consider tests based on the

same two regressions as before; that is, equation (1) and

(2). Tests considered here are the standard Dickey-Fuller

tests, the White covariance matrix correction tests, the

Phillips-Perron tests, and the augmented Dickey-Fuller

tests. These tests were explained in Chapter 2.

Our data generating processes are MA(1) errors and

AR(1) errors. Otherwise they follow the regression equation

(1) with B = 1. Without loss of generality we set Yb = 0.

We assume no drift; that is, a = 0. Most of our

experiments are done with a sample size of T = 100. Sample

sizes of T = 200 and T = 500 are considered for selected

parameters. The MA parameter is set equal to -.8, -.5, —.2,

.2, .5, and .8. The same values of p are considered for the

case of AR(1) errors. The "base case" in the tables means

that there is no AR or MA component in the data generating

process, so that in the base case the errors are iid. Each

experiment is replicated 10,000 times to create the sampling

distribution for the test statistics. Although we have

results for frequency distributions and moments, we only

report the proportions of rejections for the lower tail

tests. The lower tail tests are our main concern because

the usual alternative hypothesis is that the process is

stationary (B < 1).
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2. Results of the Experiment

The main concern of the experiments is how close the

proportions of rejections for the various tests are to the

nominal size, 5%. Tables 17-20 report the results for

MA(1) and AR(1) error process.

Table 17 gives the proportions of rejections under the

null hypothesis for a 5% lower tail test for T = 100. It

shows that MA errors affect the performance of the tests

very much. The rejection rates are negatively related to

the MA parameter. All the tests considered reject too often

for negative values of 6 and reject too seldom for positive

value of 6. The degree of departure from the nominal size

is much higher for the negative values of 6 than for the

positive values. The proportions of rejections of all the

tests for 6 = -.8 are close to 1.0. Thus MA errors

definitely affect the performances of the tests. Although

we do not report them here, the 5% quantiles for the test

statistics reflect an extreme skewedness of the

distributions toward negative values. For example, the 5%

quantile for $1.pp2 reaches to -105.87 for 6 = -.8. The

Phillips-Perron tests show much the same pattern as the

uncorrected tests: that is, the percentages of rejections

decrease with an increase in the value of the MA parameters.

The Phillips-Perron corrections seem to improve the

performance of the tests, but the degree of improvement is

very small. For example, the proportion of rejections for
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Tu.pp1 when 6 = -.2 is .105 compared to .132 for T“ and the

proportion of rejections for Tu.pp1 when 6 = -.8 is .985

compared to .997 for T“. Because of the serial dependence

2, we do not expect that thein the error structure, 02 76 0,,

Phillips-Perron tests will have the same distribution as the

standard Dickey-Fuller tests. However, the minimal

improvement in the performance of the Phillips—Perron tests

compared to the uncorrected tests is an unfortunate result.

The augmented Dickey-Fuller tests perform well compared to

the other tests. For example, the Tu.sd2 and T1.sd2 tests

perform somewhat better. However, the percentages of

rejections are still very different from nominal size for

large negative MA parameters. Schwert (1989) pointed out

that the error caused by the approximation of an ARIMA

process by the AR(1) process is large for MA parameters

greater in absolute value than .8. The proportions of

rejections for the Said-Dickey test range from .643 for

Tu.sd2 to .999 for Su.sd1.

The tests based on the White covariance matrix

correction perform worse than the uncorrected tests for

negative MA parameters, and better for positive MA

parameters. It is understandable that the Phillips-Perron

tests and the Said-Dickey tests, which were designed for

residual autocorrelation, outperform the White tests

designed for heteroskedasticity. It is interesting that
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the Said-Dickey tests outperform the Phillips-Perron tests

for all values of the MA parameters, although Tu.sd1 and

T7.sd1 still clearly show the overrejection problem for

6 = -.8. In particular, the performances of Tu.sd2 and

T,.sd2 are reasonably good. For example, the proportions

of rejections for Tu.sd2 are .049, .047 and .038 when 6 =

-.2, .2 and .5, respectively. The proportions of

rejections for the base case are close to the nominal size

as expected. The rejection rates for the base case should

be close to those of the Dickey-Fuller tests because there

is no serial correlation in the error structure, and it

turns out to be so.

In Table 18 we increase the sample size to T = 200 and

T = 500 to investigate the effects of the increase in the

sample size on the performance of the tests when 6 = -.5 or

.5. The results for all tests for the base case converge

to nominal size. When 6 = -.5 the increase in the sample

size actually deteriorates the reliability of all the tests

with the exception of the Phillips-Perron tests. For

example, proportion of rejections for T“ with T = 100 is

.571 compared to .622 with T = 500. Although the increase

in the sample size improves the performance of the Phillips-

Perron tests, the proportions of rejections are still well

above the nominal size. For instance, the proportion of

rejections for Tu.pp1 when 6 = -.8 with T = 100 is .457

compared to .415 with T = 500. When 6 = .5 many of the
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tests' performances deteriorate as the sample size grows,

but by a small amount. It can be pointed out from Tables

17 and 18 that the most important factor determining the

reliability of the tests is the degree of the dependence in

the error structure, not sample size.

In the following we discuss the effects of AR(1) errors

on the performance of tests. We consider same parameter

values with T = 100; that is, p = -.8, -.5, -.2, .2, .5 and

.8. As mentioned earlier, several authors have done Monte

Carlo experiments of the unit root tests for the case of

MA(1) erros, but no one has done these experiments for the

case of AR(1) errors (as far as we know). Remembering that

the AR(1) is a popular error specification, especially for

annual data sets, the results of these experiments are

interesting.

Table 19 reports the rejection rates under the null

hypothesis for a 5% lower tail teSt for T = 100. The test

results show a similar pattern as in the MA(1) error case.

The tests reject too often for negative values of p and

reject too seldom for p = .2 or .5. The degree of

overrejection or underrejection is usually less severe than

in the MA(1) error case. However, for the AR(1) case the

underejection problem for the 2“ and 3, tests when p = .5 or

.8 is more severe than in the case of MA(1) error with 6 =

.5 or .8. Again the Phillips-Perron tests do not seem to

work well. They do better than the standard Dickey-Fuller
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tests, but the degree of improvement is minimal. However,

the Said-Dickey Tu and T, tests perform well. The

proportions of rejections of‘Tu.sd and T,.sd stay around 5%

for all AR parameters. The rejection rates range from .046

to .059. Su.sd and.3,.sd are better than the other 2

tests, but still reject too often for negative AR parameters

and reject too seldom for positive AR parameters.

Comparing the Said-Dickey tests with one and two lagged Ay's

added to the regression equation, the tests using two lagged

Ay's have a tendency to reject less often than those using

one for Tu and T7, and vice versa for Tu and 37. However,

the Phillips-Perron tests with 2 = 2 always reject more

often than the tests with E = 1 regardless of the choice of

tests and the value of the parameters. The White

correction worsens the performance of the various tests for

negative values of the AR parameter and improves their

performance slightly for positive values of the AR

parameter. It is an unexpected result that the White tests

work better than the Phillips-Perron tests when p = .2 or

.5. For example, the proportion of rejections of’Tu.w when

p = .5 is .044 compared to .028 for Tu.pp1.

In Table 20 the sample size is increased to T = 200 and

T = 500 with p = -.5 or .5. All tests generally improve as

the sample size grows, but the degree of convergence to the

nominal size is slow and the proportions of rejections are

still well above 5% when p = —.5 and below 5% when p = .5.
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The augmented Dickey-Fuller T tests are fairly reliable when

p = -.5 or .5.

3. Conclusion

The simulations in this section confirm Schwert's

(1989) results. Including MA(1) or AR(1) errors in the

data generating process can make the critical values

tabulated by Dickey (1976) and Fuller (1976) very

misleading. Generally the proportions of rejections for

the various tests are well above the nominal size for

negative MA or AR parameters and are below the nominal size

for positive MA or AR parameters. The White tests

(designed for heteroskedasticity) do not seem to work well,

which is understandable. However, it is an unexpected

result that the Phillips-Perron corrections do not improve

the performance of tests significantly, because they are

designed for serial dependence in the error structure. The

Said-Dickey augmentations certainly help the performance of

the tests, especially in the AR case. In particular, the

proportions of rejections of the Said-Dickey augmented Tu

and T1 tests are close to the nominal size. The Phillips-

Perron tests seem to be more sensitive to model

misspecification than the Said-Dickey tests. The

performances of all of the tests depend more critically upon

the degree of dependence in the error process than upon the
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sample size.

These simulation results give rise to a warning against

the careless use of the Dickey-Fuller tests in economic time

series when the errors are dependent. There is an obvious

need for tests that are more reliable in the presence of

dependent errors.

B. Lag Windows

Phillips (1987) and Phillips and Perron (1988) provided

transformed statistics which have the same asymptotic

distribution as the usual Dickey-Fuller statistics, even

given autocorrelated or heteroskedastic errors. The

transformed statistics require consistent estimates of two

2

parameters, the innovation variance 0u and the long run

variance 02, defined (as in Chapter 2) by

r r

(17) 0fr= lim (l/T) E var(ua, c3 = lim (l/T) var( 2 ug.

T-oo t=1 T'“D t=1

2

Consistent estimation of 0u is trivial. Phillips suggests

2

as a consistent estimate of 0' the estimator Sufi defined by

t Tr
_ .1 A 2 .1 A A

(18) S“ -—'r E'u + 2T 2 2 u,u,_T

t=1 7.1 t37+1

Here "2" controls how many autocorrelations are used in St,2

and will be called the lag truncation value. Phillips

(1987, Theorem 4.2) shows that consistency of S“? requires
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2 e w as T 4 m but at a controlled rate (e.g. 2 = 0(TV4)).

This procedure assumes that there may be strong dependence

among adjacent events, but events separated by a long

distance are almost independent. Therefore, terms such as

E(unnq) with long lags r > 2 can be ignored in the

consistent estimator, Su?° Although choosing a specific

value of e is an empirical matter, we can obtain a rough

idea of the appropriate value of 2 by examining the sample

autocovariances of ut==yg - y,,. A natural procedure would

be to choose the value of 2 for which the autocovariance

function is insignificantly different from zero for all lags

greater than 2. Although rather crude, it is certainly

preferable to choosing a completely arbitrary value of 2.

However, there is an inherent danger in this approach.

Because the sample autocovariances are themselves

autocorrelated, the sample autocovariance function will

decay more slowly than the theoretical autocovariance

function, as pointed out in Priestley (1981). A problem

with the long run variance estimate 8&2 is that there is a

possibility that large negative serial covariances can make

2 negative. To see how likely this is we calculated the
5a

number of negative values of S“? in our experiments of the

last section, based on 10,000 replications. The experiments

are conducted in the same manner for both AR, MA errors;

that is, we use the parameter values -.8, -.5, -.2, 0,.2,

.5, and .8. We also changed the value of the lag truncation
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term 2 in S“? from 1 through 10 to see how the value of 2

affects the number of negative Suz. For example, in Table

21 the notation pplO indicates the number of negative values

of S“? for the case of 2 = 10. The number of negative

values of S“? increases with the value of 2 for all MA

parameters except 6 = -.2 and for all positive AR

parameters. The base case (iid errors) shows a similar

pattern. When p = -.8 or -.5, the number of negatives is

large for odd values of 2 and small for the even values of

2; however, the number of negatives gradually decreases with

the value of 2. We certainly have evidence in this

experiment that in some cases, for example, 2 = 1 and p = -

.8 or -.5, there are too many negative numbers for the

estimator 8,,2 to be useful.

An appropriate weighting scheme can be used to

guarantee a positive value of Suz. Thus we write

2 T 2 r

s 2 = (l/T) 2 u,2 + (2/T) E E w(i) mat-..

t=l(19) t2 i=1 t-i+1 ‘

For example, Newey and West (1987) suggest w(i) = i/(2+i),

i=1, ..., 2, and this guarantees a positive estimate of 02

(for any 2). Now it is true that the long run variance 02 =

2ng(0) where fu(A) is the spectral density of the error u.

Thus there is a close connection between the problem of

estimating 02 and the problem of estimating the spectral

density function. The choice of a weighting function w(i)
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is equivalent to the choice of a "window" for spectral

density estimation. The Newey—West weighting corresponds to

the well known Bartlett window. But the literature on the

estimation of the spectrum suggests other windows, and they

too guarantee the positive value of the long run variance

estimate. In this section two more lag windows in addition

to Bartlett's window are considered; that is , Parzen's and

Bohman's lag windows.

The first point of this section is to investigate the

performance of the Phillips-Perron tests using Parzen's and

Bohman's lag windows in the estimation of the long run

variance. The second point is to investigate the choice of

the lag truncation value (2). For each lag window we tried

values of 2 from 1 through 10 to see how the value of 2

makes a difference in the performance of the tests.

1. Lag Windows

We know that the true spectral density function is non—

negative. Therefore, it is desirable that the estimate

should share this property. Three lag windows considered

here all guarantee a positive estimate of the spectral

density function. The widely adopted form of the spectral

density estimate is

s=c+1

(20) fun) = (1/27!) 2 1(5) 11(5) cos(sA),

s=-(2+1)
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where 2 is the truncation point. {A(s)} is a sequence of

decreasing weights which is called the 'lag window' and R(s)

is the sample autocovariance. The sequence {A(s)) involves

a truncation point 2 which controls its rate of decay. The

weights given to R(s) decrease with increasing 5. In

particular, suppose that 1(5) is of scale parameter form

(that is, 1(5) = k(s/2), and that 1(5) is a bounded, even

function. Then

(a) A(0) = l,

(b) A(W) = A('W):

(C) k(W) = 0, w > 1.

All three lag window generators considered here have the lag

window of scale parameter form. Variation of the window

parameter 2 simply 'stretches' or 'contracts' the function,

so that 2 acts as a scale parameter.

Bartlett(1950) proposed the lag window having the form

(21) 1(5): 1 - (Isl / 2). Isl s e.

0, '5' > 2.

This is the window used in equation (20) in Phillips (1987).

This lag window applies linearly decreasing weights to the

autocovariance up to lag 2 and zero weights thereafter.

Parzen (1961) suggested the lag window of the following

form
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/

1 - 6(s / (>2 + 6(lsl / 2)3, Isl s 2/2,

(22) A<s> = 2((1 - (lsl / e)>3. (2/2) s Isl s e,

L 0, Isl > 2.

 

Bohman (1961) window is

(23) A(s) = (1 - (lsl / 2)} cos(n(lsl / 2)} +

[sin(n(lsl / 2)) / n].

The properties of the estimate of the spectral density

function depend on the choice of 2 and on the form of the

window. It is not surprising that, even allowing for a

suitable choice of 2, different windows can lead to

estimates with different properties. Priestley (1981)

illustrates various criteria for judging the different

windows from a statistical point of view. However, our

main criterion here is that the lag window should guarantee

the positive estimate of the spectral density function.

All three lag windows mentioned earlier satisfy this

requirement. In addition they satisfy the relationship

A(1) = 0. When 1(1) 9 0, there is a discontinuity in A(s)

at 1. The Parzen window's weighting function has much

sharper peaks which are nearer to w = 0 than Bartlett's lag

window. As Neave (1972) pointed out, the total weight in

the range w > 1/2 is only 18.75 percent in Parzen's window

and 23.9 percent in Bohman's window, compared to about 50
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percent in Bartlett's window. Parzen's window is

satisfactory on the basis of the arguments above. Bohman's

window has not received as much attention, but it is clear

that Bohman's window has properties similar to Parzen's.

More discussions about the spectral analysis and lag

window generators may be found in Priestley (1981) and

Dhrymes (1974).

2. Design of the Experiment

Once again the two types of regression equations

considered are one with a intercept and lagged dependent

variable and the other with a time trend added; that is,

equations (1) and (2), respectively. The data generating

process is equation (1) with B = 1, having first order

moving average or first order autoregressive error processes

with the same set of parameters considered previously (-.8,

-.5, -.2, .2, .5 and .8). The base case is Gaussian white

noise; i.e., p = 6 = 0 as before. Only the Phillips-Perron

tests with different values of 2 are examined here, but the

standard uncorrected Dickey—Fuller tests are also reported

for purposes of comparison. Here the value of 2 is varied

from 1 through 10. As before, the suffix 'ppl' indicates

the Phillips-Perron test with 2 = 1, and similarly for other

values of 2. All simulations are replicated 10,000 times

for sample size T = 100 with each different choice of

parameters. We are mainly interested in comparing the three
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different lag windows in the performance of the Phillips-

Perron type tests. We are also interested in how the lag

truncation value used in S“? affects the performance of the

tests. Although the investigation of the sample autocorre-

lations of utmfill help in selecting an appropriate choice

of 2, the choice of 2 is an empirical matter. As Phillips

(1987) pointed out, we expect that small values of should

be sufficient because the sample autocorrelations of first

differenced economic time series usually decay quickly.

3. Results of the Experiments

Tables 22-27 report the proportions of rejections under

the null hypothesis for 5% lower tail test, for each value

of the MA parameters (-.8, -.5, -.2, .2, .5, .8) and for the

base case. Similarly, Tables 28-33 report the same results

of the experiments for AR parameters (-.8, -.5, -.2, .2, .5,

.8). As pointed out earlier, thePhillips-Perron tests

perform better than the standard Dickey-Fuller tests when

the error process is MA(1) or AR(1), although the degree of

improvement is small. However, as the last columns of the

Tables 22-27 show, for the base case, the performance of the

Phillips-Perron tests deteriorate somewhat as the value of 2

grows.

In general, however, the value of 2 in S“? makes

little difference in the performance of the tests. The

performances of the tests depend mainly on the parameters of
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the error process. The direction of the effect of 2 on the

performance of the tests varies. For some parameters

larger 2 improves the test, but for other parameters vice

versa. Usually the best value of 2 is around five,

depending somewhat upon the lag window used. Parzen's and

Bohman's lag windows generally seem to work somewhat better

than Bartlett's window does, but the difference between them

is minimal. There is a tendency for Parzen's and Bohman's

lag windows to need a larger value of 2 than Bartlett's lag

window to get the best performance in each test. Usually

Parzen's and Bohman's lag windows need 4-6 terms compared to

3-4 terms for Bartlett's lag window. The performance of

the tests depends little on the kind of lag windows employed

in calculating Sag. This is understandable because the

difference between the lag windows is the weight applied to

each of the sample autocovariances. For example, the

weights given to each sample autocovariances for 2 = 10 are

shown in the following table.

2 1 2 3 4 5 6 7 8 9 10

Bartlett 1.82 1.64 1.45 1.27 1.09 .91 .73 .55 .36 .18

Parzen 1.91 1.68 1.35 .99 .65 .38 .19 .08 .02 .00

Bohman 1.92 1.72 1.43 1.11 .79 .50 .28 .12 .04 .00

When comparing lag windows, there is a small variation among

the first three weights of each lag window. After that,
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Parzen's weights decrease more rapidly than the other lag

windows. The Bartlett window's weights appear to decrease

at the slowest rate. Parzen's and Bohman's window add more

weights on the adjacent events and add very little weights

on the events which are separated by the long intervals, for

example 1.91, 1.92 for 2 = 1 and .00 and .00 for 2 = 10,

repectively. However, the weight of Bartlett's window for

2 = 10 is .18 which is large when compared to Parzen's and

Bartlett's window. Parzen's and Bohman's weighting scheme

fit better to the assumption 2.1 (d) in Phillips (1987),

which controls the extent of the dependence in the process

u This explains why Parzen's and Bohman's lag windows,.

perform somewhat better than Bartlett's window. However,

it has to be remembered that the difference in the

performance between three lag windows is small and the

overall performances of all three windows are poor.

4. Conclusion

None of the lag windows employed in the experiments of

this chapter improves the reliabilityof the tests

significantly. Parzen's and Bohman's lag windows generally

perform slightly better than Bartlett's window. Although

choosing the value of 2 is an empirical matter, it was shown

in the experiment that a value of 2 around five would be a

reasonable choice for empirically relevant sample sizes.



CHAPTER V

TESTS USING THE TRUE VALUES OF 02 AND 0,,2

The limiting distributions of T(B-1) and t-statistic

given in Theorem 3.1 in Phillips (1987) depend on the ratio

2

of the unknown nuisance parameters 0u and 02; that is

,

(24) T030) - (1/2) (W(l)2 - (o,2 / 02)) / (Iowa)2 dr).

1 1/2

(25) ’r‘, - (a / 20,) (W(l)‘2 - (a;2 / 02)) / (I W(r)2dr ) ,
0

where W(r) is a standard Wiener process. Phillips (1987)

and Phillips and Perron (1988) provide transformed versions

of these statistics whose asymptotic distributions are the

same as those tabulated by Dickey (1976) and Fuller (1976).

The transformed statistics also depend on the ratio of 0f

and 02. These statistics are not directly useful because

of the unknown values of the nuisance parameters. As

discussed in Chapters 2 and 4, a solution to this problem is

2 and 02 by consistent estimates. However, 02to replace 0U

is not an easy parameter to estimate well. In this chapter

we actually calculate the true value of 03 and 02, for AR(1)

53
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2 2

and MA(1) errors, and we use the true values of 0u and 0

instead of using consistent estimates. We therefore

eliminate the possible inaccuracy of the tests arising from

errors in estimation of (cjfl 02). By taking this approach

we hope to determine whether the inaccuracy of the Phillips-

Perron tests is due to problems in estimating these nuisance

parameters, or whether it is intrinsic to the use of the

asymptotic distribution theory in finite samples. We first

consider MA(1) error case; that 15,1R = 6:4-96t4 with 6,.,

2 2

iid(0,0:). We can calculate the true values of 0u and 0

as follows:

I

2 _ . 2 _ 2 2
(26) 0h -— 11m (l/T) 2 E(u,) - (1 + 6 ) 0‘,

Two t=1

r

(27) 02 = lim (l/T) E ( E u,)2 = (1 + a)"- of.

F0 ta

We next consider the AR(1) error case; that is, ut==

pup, + 6t with et ~ iid(0,0f). Here we obtain

2 T 2 2 2
(28) 0,, = lim (l/T) z E(u,) = 0‘ / (l-p ),

T-oo t=l

2 T 2 2 2
(29) 0 = lim (l/T) E( 210,) = aE / (l-p) .

{no t=

These formulas can be found in Phillips (1987). We then use

(26) and (27) for the case of MA(1) errors and (28) and (29)
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for the case of AR(1) errors, instead of 8,,2 and 5:22 in

equation (21) and (22) in Phillips(1987) and equations (6),

(7), (8) and (9) in Chapter 2 (page 341 in Phillips and

Perron (1988)).

A. Design of the Experiment

The framework of the experiment is basically the same

as in Chapter 4. Two regression equations are considered

here as usual.

(a) Y a + BYP, + u,,
t

(b) Y, = a + BYp, + 6t + u,.

Obviously each corresponds to a regression of Y on lagged Y,

but they differ as to whether they include a time trend.

The data generating process is (1) with a = 0 and B = 1.

An MA(1) error is generated by equation (16) and an AR(1)

error is generated by equation (15).

The parameter values 6 = -.8, -.5, -.2, .2, .5, .8 and

p = -.8, -.5, -.2, .2, .5, .8 are used in the data

generating process, with T = 100. The same experiments

have been done with larger sample sizes, T = 200, 500 and

1000, for the parameter values of -.8, -.5, .5 and .8.

Here again only the lower tail test results are reported.

All simulations are based upon 10,000 replications.
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B. Results of the Experiments

The standard Dickey-Fuller, the Phillips-Perron tests

and the Phillips-Perron true value tests are compared in

Tables 34-39. We denote the Phillips-Perron true value

tests with the suffix 'ppt'. For example, r.ppt denotes

the Phillips-Perron t-statistic (equation (8) and (9) in

Chapter 2 ) using the true value of (02,<af). Table 34

reports the percentages of rejections for the lower tail

test when T = 100. As expected the Phillips-Perron true

value tests outperform the standard Dickey-Fuller tests and

the Phillips-Perron tests. However, the closeness of the

rejection rates to the nominal size still depends strongly

upon the parameter values. For negative values of 6 (-.8

or -.5), the proportions of rejections for the Tu.ppt and

T1.ppt are well above 5%, ranging from .160 to .919. This

overrejection problem is much less severe for Su.ppt and

2,.ppt for the same parameter values. For 6 (-.2, .2, .5,

.8), the proportions of rejections for'Tu.ppt, T1.ppt and

pu.ppt are not very different from the nominal size, but the

rejection rates of 31.ppt ranges from .033 to .075. Thus

2,.ppt performed poorly compared to the other Phillips-

Perron true value tests for positive 6 or small negative 6.

However, the performances of‘Turppt and T1.ppt are much more

sensitive to large negative MA parameters than pu.ppt and

37.ppt. For example, when 6 = -.8, the proportions of

rejections for'Tu.ppt and T1.ppt are .811 and .919
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respectively, compared to .113 and .069 for SuoPPt and

2,.ppt respectively.

Table 35 reports the proportions of rejection for the

lower tail tests for the AR(1) case, with value of p equal

to (-.8, -.5, -.2, .2, .5, .8). A similar pattern of the

results occurs as in Table 34. The performance of the

Phillips-Perron true value tests when p = -.8, -.5 and .8

are poor overall. The proportion of rejections decreases

with the increasing value of the AR parameter, but it then

increases again for p=.8. For example, when p =.8 the

proportions of rejections for Tu.ppt, T,.ppt, Bu.ppt and

31.ppt are .117, .231, .140 and .276, respectively. These

overrejection problems are worse when p = .8 than when 6 =

.8 in the MA(1) model for all ppt tests. But the

overrejection problem of’Tu.ppt and T7.ppt when p = -.5 or

-.8 is less severe than it was inthe MA model when 6 = -.5

or -.8. For example, the proportion of rejections for

T#.ppt with p = -.8 is .376, whereas the proportion of

rejections for the same test with 6 = -.8 is .811.

Tables 36 and 37 provide the percentages of rejections

when 6 = -.8, -.5, .5 and .8 with the increased sample

sizes, T = 200, 500 and 1000. The increase in the sample

size improves the performances of the tests most of time,

but there are some exceptions. For example, 3,.ppt does

worse as T increases. The proportion of rejections when 6
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= -.8 are still well above 5% even for T = 1000. For

instance, the proportions of rejections at T = 1000 for

Tu.ppt, T1.ppt, 3,,.ppt and 3,.ppt are .586, .838, .142 and

.160 respectively. Generally the increase in the sample

size helps the performance when 6 = -.5, .5 and .8, for all

Phillips-Perron true value tests. Their proportions of

rejections are close to 5% with the exception of Tu.ppt and

1,.ppt when 6 = -.5. The proportions of rejections of

Tu.ppt and.r,.ppt when 6 = -.5 are .073 and .093

respectively.

Tables 38 and 39 provide the test results for the AR(1)

case with sample sizes of T s 200, 500 and 1000. All the

proportions of rejections approach the nominal size

reasonably close, except that for all of the .ppt tests the

rejection rates are still well above 5% even with T = 1000

when p = -.8. The proportions of rejections in this case

for Tu.ppt, T7.ppt, Su.ppt and 37.ppt are .155, .244, .094

and .115 respectively. The improvement in performance is

especially noticeable for pu.ppt and.2,.ppt when p = -.8.

The proportions of rejections of 2,, and 2, are 0.000, 0.000

compared to .064 and .067 for Bu.ppt and $1.ppt,

repectively, with T = 1000.

C. Conclusion

The Phillips-Perron tests are considerably more

2 2

accurate when they are based on the true values of 0u and 0
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than when they are based on consistent estimates of these

nuisance parameters. This is not surprising, and it

suggests that it may be possible to improve the Phillips-

Perron tests considerably by finding better ways to estimate

the nuisance parameters. However, the tests still perform

rather poorly when the errors are highly autocorrelated.

The tests are based on asymptotics, and apparently their

convergence to the asymptotic distribution is very slow when

the errors are highly autocorrelated. To find tests that

are accurate in this case will apparently require the use of

more sophisticated distribution theory, or new tests.





CHAPTER VI

CONCLUDING REMARKS

This thesis has considered the properties of unit root

tests when the errors in the variable's autoregressive

representation are heteroskedastic or autocorrelated. We

considered the standard Dickey-Fuller tests and various

augmented and transformed versions of these tests that have

been suggested in the literature. Chapter 2 provided a

detailed description of these tests.

In Chapter 3 we considered heteroskedasticity, in the

form of a generalized autoregressive conditional

heteroskedasticity (GARCH) process. The Dickey-Fuller tests

are known to be robust to heteroskedasticity asymptotically,

but their finite sample robustness to heteroskedasticity is

questionable. The reliability of the tests was found to

depend heavily on how close the intercept in the GARCH

process is to zero. When the intercept equals zero, the

GARCH process asymptotically degenerate (the error process

converges to zero almost surely), and near degeneracy causes

severe problems for the unit root tests. Specifically, the

tests overreject severely in this case. Worse yet, the

60
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sample size is enlarged. The use of the White (1980)

heteroskedasticity-consistent covariance matrix estimator

helps somewhat but does not really solve the problem.

Further research is necessary to provide a test that will

work better in the presence of heteroskedasticity of this

form.

In Chapter 4 we considered the Dickey-Fuller tests and

their Phillips-Perron (1988) extensions when the errors are

AR(1) or MA(1). From Schwert (1987, 1989) and Phillips-

Perron (1988) it is known that the tests overreject severely

when there is strong negative autocorrelation, and they

underreject when there is strong positive autocorrelation.

We confirm these findings. We also considered the use of

different spectral windows in the estimation of the long run

variance parameter that is needed for the Phillips-Perron

corrections. Previous work has used the Bartlett window,

and we also considered the Parzen and Bohman windows. We

found that the Parzen and Bohman windows work better than

the Bartlett window, though the degree of improvement is

discouragingly small. We also experimented with different

values of the truncation term in the long run variance

estimates. Some values worked better than others, but no

value worked satisfactorily. A value of about five seemed

best for sample size 100 and moderate to severe

autocorrelation.

An interesting question is whether the Phillips-Perron
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tests perform poorly because the long run variance estimates

are poor, or whether the problem is intrinsic to the rate of

convergence of the statistics to their asymptotic

distributions. One way to answer this question is to see

how well the tests work if we use the true value of the long

run variance. This was done in Chapter 5. The results are

again discouraging. Using the true value of the long run

variance helps the performance of the tests considerably,

but they are still very unreliable.

Overall, the results of this thesis suggest the need

for considerable caution in interpreting the results of

existing unit root tests. Further theoretical work seems to

be called for to find tests that are more reliable. A

reasonable conjecture is that the problem with the existing

unit root tests is that they are based on ordinary least

squares estimation, and, given heteroskedasticity or

autocorrelation, some form of generalized least squares

estimation would probably be superior. Perhaps tests based

on generalized least squares estimation will be more

accurate in finite samples than the current tests. This

seems to be a direction of research well worth pursuing.



APPENDIX
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TABLE 1

Proportions of Rejections, 5% Lower Tail Test

T = 100, 40 = he (1 - <1», 42)

(4’1: 4’2)

(.3,.30)(.3,.60)(.3,.65)(.3,.69)(.3,.70)

A

I“ .0591 .0735 .0814 .1138 .4125

Iu;w .0650 .0631 .0617 .0679 .1207

Iu.pp1 .0591 .0746 .0838 .1134 .4174

Iu.pp2 .0601 .0745 .0844 .1157 .4214

Iu.sd1 .0564 .0728 .0791 .1084 .4043

1,.562 .0518 .0661 .0726 .0995 .3820

f, .0688 .0829 .0889 .1108 .3531

1,.w .0739 .0698 .0687 .0704 .1011

1,.pp1 .0710 .0849 .0932 .1122 .3602

1,.pp2 .0718 .0872 .0930 .1146 .3632

I,.sd1 .0642 .0795 .0845 .1074 .3457

1,.sd2 .0532 .0642 .0693 .0909 .3171

p, .0589 .0732 .0780 .0954 .2944

p,.pp1 .0600 .0729 .0796 .0972 .2981

pu.pp2 .0611 .0740 .0807 .0988 .2982

pu.sd1 .0612 .0752 .0826 ,.1022 .3009

pu.sd2 .0642 .0782 .0839 .1005 .2941

p, .0637 .0742 .0790 .0914 .2429

p,.pp1 .0675 .0782 .0813 .0964 .2495

p,.pp2 .0680 .0808 .0852 .0997 .2553

p,.sdl .0697 .0843 .0871 .1014 .2502

21.8d2 .0754 .0858 .0910 .1029 .2475
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TABLE 2

Proportions of Rejections, 5% Upper Tail Test

T = 100, 40 = h0(1 - 4, ~42)

(@11 (1’2)

(.3,.30)(.3,.60)(.3,.65)(.3,.69)(.3,.70)

I“ .0496 .0547 .0569 .0557 .0070

IuVW .0495 .0548 .0575 .0558 .0071

Iu.pp1 .0497 .0540 .0572 .0564 .0070

Iu.pp2 .0502 .0530 .0558 .0564 .0073

Iu.sd1 .0489 .0533 .0564 .0564 .0073

Tu.sd2 .0532 .0563 .0604 .0597 .0089

f, .0509 .0525 .0557 .0532 .0119

1,.w .0495 .0592 .0648 .0667 .0226

1,.pp1 .0484 .0512 .0540 .0526 .0110

I,.pp2 .0481 .0500 .0530 .0509 .0100

I,.sd1 .0518 .0541 .0558 .0539 .0119

77.502 .0547 .0571 .0595 .0597 .0136

p“ .0493 .0552 .0562 .0551 .0070

p#.pp1 .0498 .0541 .0571 .0562 .0072

pu.pp2 .0492 .0529 .0560 .0565 .0072

pu.sd1 .0484 .0534 .0562 .0557 .0074

pu.sd2 .0521 .0557 .0594 .0593 .0087

p, .0542 .0556 .0555 .0563 .0169

p,.pp1 .0524 .0548 .0562 .0535 .0156

p,.pp2 .0496 .0523 .0537 .0516 .0147

p1.sd1 .0518 .0534 .0563 .0535 .0157

pT.sd2 .0484 .0557 .0537 .0521 .0162
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TABLE 3

Proportions of Rejections, 5% Two Tail Test

T = 100, 4,, = 11,,(1 - 4, - 42)

(4'1, 4'2)

(.3,.30)(.3,.60)(.3,.65)(.3,.69)(.3,.70)

f“ .0601 .0736 .0815 .1083 .0365

In'w .0628 .0636 .0659 .0745 .0864

Iu.pp1 .0606 .0745 .0827 .1087 .3488

Iu.pp2 .0613 .0759 .0836 .1101 .3513

Iu.sdl .0577 .0737 .0822 .1065 .3393

ru.sd2 .0553 .0705 .0782 .1025 .3233

f, .0660 .0794 .0856 .1050 .2901

1,.w .0691 .0729 .0736 .0779 .0764

I,.pp1 .0640 .0781 .0851 .1028 .2978

I,.pp2 .0643 .0773 .0867 .1056 .3022

I,.sdi .0618 .0747 .0829 .0999 .2874

1,.sd2 .0562 .0687 .0753 .0922 .2646

p“ .0559 .0695 .0777 .0935 .2206

pu.pp1 .0568 .0729 .0794 .0936 .2242

pu.pp2 .0603 .0724 .0814 .0962 .2266

pu.sdl .0591 .0753 .0833 .0953 .2251

pu.sd2 .0639 .0756 .0848 .0996 .2169

p, .0644 .0780 .0810 .0917 .1856

p,.pp1 .0639 .0769 .0827 .0913 .1934

p,.pp2 .0634 .0760 .0846 .0933 .1989

p,.sdl .0650 .0781 .0860 .0918 .1937

p,.sd2 .0682 .0826 .0904 .0976 .1943
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TABLE 4

Proportions of Rejections, 5% Lower Tail Test

T=100,<I>0=h0(1-<I>,-<I>2)

(4’1, 4'2)

(.1,0) (.1,.5) (.1,.8) (.1,.85)(.l,.89)(.l,.9)

in .0472 .0493 .0558 .0568 .0651 .0913

I“.w .0664 .0673 .0658 .0649 .0696 .0768

Iu.pp1 .0490 .0528 .0578 .0592 .0676 .0925

In.pp2 .0507 .0535 .0591 .0616 .0693 .0952

Iu.sd1 .0499 .0516 .0568 .0581 .0665 .0918

ru.sd2 .0462 .0479 .0526 .0547 .0637 .0891

i, .0573 .0591 .0617 .0639 .0680 .0874

172w .0808 .0805 .0804 .0803 .0802 .0847

Ifgppl .0588 .0601 .0653 .0652 .0718 .0911

I,.pp2 .0634 .0644 .0678 .0686 .0749 .0942

1,.sd1 .0531 .0554 .0593 .0595 .0640 .0828

r,.sd2 .0477 .0498 .0509 .0548 .0601 .0784

p, .0495 .0533 .0566 .0575 .0599 .0681

pu.pp1 .0515 .0543 .0579 .0591 .0640 .0707

pn.pp2 .0553 .0572 .0602 .0612 .0648 .0742

pu.sd1 .0568 .0576 .0611 .0635 .0667 .0737

pu.sd2 .0595 .0602 .0631 .0657 .0691 .0782

p, .0536 .0541 .0561 .0568 .0575 .0658

p,.pp1 .0560 .0573 .0605 .0616 .0648 .0712

p,.pp2 .0610 .0611 .0641 .0647 .0674 .0772

p,.sd1 .0608 .0617 .0640 .0645 .0693 .0782

p1.sd2 .0679 .0692 .0727 .0744 .0745 .0835
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TABLE 5

Proportions of Rejections, 5%

u wu.

A“. ppl

1).-PP?-
Iu°5dl

ru.sd2

fl
)
fl
)
‘
l
>

>
fl
)
"
\
>

q
A

S

A, PP1

r .pp2

A .sdl

.sd2

9
!

If

71'

Tu

apppl

@“oPP2

p“.sdl

p#.sd2

2.

2,-PP1

p,.pp2

pf.sd1

p,.sd2

T:

(.30,.3)(.60,.3)(.65,.3)(.69,.3)(.70,.3)

.0591

.0650

.0591

.0601

.0564

.0518

.0688

.0739

.0710

.0718

.0642

.0532

.0589

.0600

.0611

.0612

.0642

.0637

.0675

.0680

.0697

.0754

(81, 82)

.0962

.0562

.0930

.0914

.0860

.0725

.1064

.0578

.1065

.1070

.0961

.0713

.0933

.0904

.0897

.0934

.0899

.0976

.1002

.1003

.1039

.0989

.1032

.0535

.1008

.0988

.0941

.0803

.1155

.0543

.1158

.1167

.1049

.0782

.1017

.0999

.0987

.0999

.0950

.1079

.1097

.1090

.1118

.1061

100, 40 = h0(1 - 4, - 42)

.1142

.0528

.1109

.1091

.1042

.0879

.1285

.0541

.1269

.1271

.1183

.0861

.1100

.1081

.1079

.1094

.1042

.1185

.1209

.1197

.1217

.1167

Lower Tail Test

.8880

.3457

.8902

.8917

.8830

.8570

.8327

.2999

.8335

.8341

.8207

.7895

.8203

.8202

.8159

.8207

.8072

.7249

.7220

.7138

.7255

.7083
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TABLE 6

Proportions of Rejections,

.0858.0714.0644 .0910.

5% Lower Tail Test

40 = 11,,(1 - 4, - 42)

(4,, 42): (.3, .6) (.3, .65) (.3, .7)

T : 100 500 1000 100 500 1000 100 500 1000

in .0735.0698.0607 .0814.0817.0726 .4125.8765.9676

luyw .0631.0463.0454 .0617.0454.0426 .1207.1040.1004

Tu.pp1 .0746.0703.0609 .0838.0809.0714 .4174.8783.9677

Iu.pp2 .0745.0692.0601 .0844.0796.0699 .4214.8776.9687

Tu.sdl .0728.0694.0597 .0791.0782.0725 .4043.8757.9689

ru.sd2 .0661.0639.0578 .0726.0731.0693 .3820.8677.9667

if .0829.0755.0683 .0889.0912.0833 .3531.8138.9374

1,.w .0698.0422.0427 .0687.0371.0355 .1011.0535.0488

1,.pp1 .0849.0747.0682 .0932.0907.0826 .3602.8149.9386

1,.pp2 .0872.0756.0669 .0930.0894.08l4 .3632.8162.9391

1,.sd1 .0795.0732.0676 .0845.0876.0815 .3457.8113.9402

1,.sd2 .0642.0671.0614 .0693.0806.0771 .3171.8000.9352

p” .0732.0684.0641 .0780.0799.0756 .2944.8190.9469

pu.ppl .0729.0678.0633 .0796.0779.0749 .2981.816l.9465

pu.pp2 .0740.0678.0628 .0807.0785.0738 .2982.8138.9461

pu.sdl .0752.0683.0632 .0826.0783.0750 .3009.8165.9457

pu.sd2 .0782.0659.0628 .0839.0790.0731 .2941.8l30.9470

p1 .0742.0733.0655 .0790.0885.0794 .2429.7354.8934

p,.pp1 .0782.0729.0653 .0813.0878.0782 .2495.7329.8945

p,.pp2 .0808.0743.0652 .0852.0850.0774 .2553.7310.8948

p1.sd1 .0843.0744.0651 .0871.0881.0781 .2502.7339.8958

0851.0779 .2475.7273.8932
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TABLE 7

Proportions of Rejections, 5% Lower Tail Test

T= 100, 4, = .3, 42= .65, ho: 1

0 .00001 .0001 .001 .01 .l 1 10 100

.6540 .6010 .4537 .2499 .1185 .0795 .0749 .0743 .0743

.1749 .1586 .1297 .0960 .0722 .0610 .0588 .0584 .0584

.6581 .6032 .4561 .2508 .1202 .0811 .0758 .0747 .0746

.6612 .6075 .4580 .2532 .1199 .0817 .0769 .0762 .0762

.6486 .5920 .4421 .2373 .1136 .0773 .0726 .0722 .0720

.6182 .5500 .4074 .2183 .1015 .0707 .0669 .0663 .0663

.5767 .5393 .4243 .2410 .1183 .0878 .0817 .0810 .0810

.1437 .1378 .1232 .1006 .0788 .0681 .0653 .0649 .0650

.5819 .5448 .4283 .2468 .1213 .0906 .0862 .0854 .0854

.5867 .5486 .4309 .2502 .1234 .0908 .0865 .0861 .0861

.5718 .5298 .4092 .2328 .1127 .0828 .0784 .0775 .0775

.5356 .4891 .3670 .2018 .0944 .0687 .0642 .0639 .0639

.5190 .4639 .3342 .1757 .0956 .0775 .0749 .0747 .0747

.5183 .4659 .3373 .1812 .0985 .0787 .0765 .0761 .0761

.5148 .4643 .3403 .1803 .0996 .0799 .0776 .0775 .0775

.5217 .4610 .3319 .1802 .1010 .0818 .0795 .0792 .0792

.5079 .4426 .3148 .1740 .0990 .0829 .0813 .0808 .0808

.4214 .3868 .2884 .1650 .0954 .0785 .0760 .0758 .0758

.4290 .3924 .2972 .1702 .1004 .0809 .0785 .0782 .0782

.4305 .3933 .3022 .1746 .1025 .0838 .0823 .0820 .0820

.4250 .3870 .2929 .1673 .1023 .0869 .0847 .0846 .0846

.4163 .3705 .2794 .1646 .1033 .0897 .0876 .0874 .0875
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TABLE 8

Proportions of Rejections, 5% Lower Tail Test

T=100,4,=.3,42=.7, h0=1

40 : 0 .00001 .0001 .001 .01 .1 1 10 100

in .4125 .3990 .3484 .2326 .1208 .0774 .0711 .0700 .0699

1 .w .1207 .1173 .1072 .0889 .0684 .0539 .0528 .0521 .0520

T:.pp1 .4174 .4044 .3516 .2362 .1213 .0787 .0710 .0700 .0698

iu.pp2 .4214 .4095 .3542 .2396 .1234 .0804 .0733 .0721 .0721

T .Sdl .4043 .3919 .3409 .2269 .1153 .0736 .0678 .0669 .0668

T:.Sd2 .3820 .3698 .3173 .2092 .1077 .0700 .0637 .0631 .0631

1 .3531 .3441 .3064 .2082 .1165 .0828 .0775 .0766 .0766

,.w .1011 .1004 .0980 .0882 .0701 .0593 .0558 .0550 .0550

A,,.pp1 .3602 .3510 .3109 .2159 .1185 .0843 .0787 .0782 .0782

If.pp2 .3622 .3531 .3155 .2181 .1218 .0865 .0806 .0800 .0800

TT.sd1 .3457 .3374 .2969 .2013 .1138 .0792 .0747 .0740 .0740

T,.Sd2 .3171 .3083 .2678 .1815 .0966 .0676 .0624 .0619 .0618

~
I
>
fi
>
fl
>

p“ .2944 .2850 .2439 .1615 .0992 .0808 .0773 .0772 .0773

pu.pp1 .2981 .2890 .2471 .1665 .1033 .0823 .0794 .0794 .0792

pu.pp2 .2982 .2885 .2483 .1652 .1043 .0855 .0813 .0807 .0806

pu.sdl .3009 .2884 .2461 .1681 .1061 .0850 .0819 .0817 .0817

pu.sd2 .2941 .2812 .2362 .1654 .1066 .0873 .0841 .0837 .0838

p1 .2429 .2358 .2054 .1416 .0946 .0779 .0755 .0753 .0753

p1.pp1 .2495 .2434 .2129 .1488 .0992 .0814 .0796 .0792 .0791

p,.pp2 .2553 .2484 .2197 .1560 .1019 .0847 .0819 .0816 .0816

pf.sd1 .2502 .2433 .2124 .1499 .1029 .0868 .0841 .0836 .0836

21.5d2 .2475 .2397 .2103 .1521 .1047 .0907 .0883 .0878 .0877
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TABLE 9

Proportions of Rejections, 5% Lower Tail Test

T= 100, 4, = .1, 42= .85, h0=1

0 .00001 .0001 .001 .01 .1 l 10

.4220 .4193 .3969 .2671 .1008 .0524 .0464 .0457

.1194 .1187 .1157 .1042 .0823 .0626 .0593 .0590

.4266 .4235 .4022 .2720 .1042 .0538 .0486 .0479

.4322 .4291 .4039 .2762 .1064 .0556 .0497 .0493

.4196 .4167 .3885 .2636 .0986 .0530 .0483 .0476

.3961 .3926 .3661 .2437 .0924 .0505 .0457 .0453

.3521 .3503 .3319 .2350 .0974 .0591 .0556 .0552

.1008 .1014 .1027 .1062 .0968 .0773 .0735 .0728

.3612 .3591 .3397 .2397 .1027 .0618 .0581 .0577

.3657 .3624 .3438 .2438 .1054 .0655 .0605 .0597

.3519 .3500 .3303 .2297 .0918 .0561 .0516 .0510

.3238 .3216 .3007 .2071 .0840 .0509 .0468 .0467

.2690 .2662 .2456 .1565 .0738 .0546 .0534 .0533

.2695 .2663 .2468 .1621 .0761 .0574 .0552 .0548

.2718 .2700 .2510 .1662 .0771 .0593 .1575 .0573

.2731 .2699 .2486 .1604 .0785 .0614 .0596 .0592

.2676 .2643 .2415 .1563 .0812 .0646 .0622 .0621

.2176 .2156 .2033 .1385 .0701 .0555 .0539 .0537

.2292 .2264 .2129 .1465 .0764 .0598 .0589 .0587

.2328 .2316 .2190 .1534 .0818 .0634 .0619 .0618

.2275 .2257 .2134 .1455 .0786 .0639 .0623 .0621

.2296 .2281 .2153 .1504 .0867 .0727 .0708 .0702

100

.0457

.0590

.0479

.0492

.0476

.0452

.0551

.0727

.0576

.0596

.0510

.0465

.0531

.0548

.0573

.0592

.0619

.0536

.0587

.0617

.0621

.0702
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Table 10

Proportions of Rejections, 5% Lower tail

T= 100, 4', = .1, 02=

0 .00001 .0001 .001 .01

.0553

.0612

.0580

.0599

.0563

.0541

.0826

.0737

.0854

.0879

.0828

.0792

.0902

.0766

.0917

.0946

.0908

.0877

.0913

.0768

.0925

.0952

.0918

.0891

.0913

.0769

.0925

.0950

.0918

.0891

.0605

.0739

.0627

.0670

.0572

.0519

.0796

.0843

.0833

.0877

.0757

.0718

.0863

.0849

.0907

.0937

.0814

.0779

.0873

.0847

.0911

.0940

.0826

.0783

.0874

.0847

.0911

.0942

.0828

.0784

.0567

.0590

.0613

.0631

.0647

.0679

.0706

.0733

.0732

.0771

.0653

.0671

.0702

.0703

.0746

.0681

.0707

.0741

.0736

.0780

.0681

.0707

.0742

.0737

.0782

.0536

.0605

.0644

.0654

.0720

.0653

.0710

.0766

.0776

.0830

.0624

.0690

.0736

.0725

.0793

.0657

.0712

.0770

.0780

.0835

.0658

.0712

.0772

.0782

.0835

.9, ho

.1

.0385

.0445

.0391

.0415

.0399

.0371

.0454

.0603

.0471

.0504

.0443

.0397

.0527

.0558

.0581

.0584

.0601

.0504

.0555

.0592

.0612

.0691

= 1

1

.0365

.0420

.0367

.0385

.0364

.0337

.0426

.0556

.0447

.0475

.0418

.0373

.0510

.0552

.0570

.0569

.0593

.0504

.0561

.0607

.0614

.0699

Test

10

.0362

.0419

.0369

.0384

.0361

.0333

.0424

.0552

.0442

.0474

.0415

.0371

.0510

.0550

.0567

.0566

.0593

.0505

.0561

.0609

.0617

.0699

100

.0363

.0417

.0368

.0384

.0360

.0333

.0425

.0550

.0442

.0474

.0415

.0371

.0511

.0550

.0567

.0566

.0593

.0506

.0561

.0608

.0617

.0699
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T :

A

'3“. w
Au

,ppl

T: .pp2

T:.sd1

.sd2

q

S

)
~
!
>
‘
\
)
‘
i
>

q

'
U

’
U H

T: .pp2

T.sdl

T.sd2

Tu

4,.pp1

2,.pp2

pu.sd1

p“.sd2

2.

2,-PP1

2,-PP2

p1.sd1

p7.sd2

§,==

0

100

.6540

.1749

.6581

.6612

.6486

.6182

.5767

.1437

.5819

.5867

.5718

.5356

.5190

.5183

.5148

.5217

.5079

.4214

.4290

.4305

.4250

.4163

1000

.9975

.1616

.9976

.9975

.9973

.9965

.9922

.0957

.9923

.9929

.9922

.9902

.9960

.9966

.9966

.9962

.9957

.9841

.9841

.9852

.9841

.9830

.3,
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Table 11

Proportions of Rejections,

52
=.65,

.01

100

.1185

.0722

.1202

.1199

.1136

.1015

.1183

.0788

.1213

.1234

.1127

.0944

.0956

.0985

.0996

.1010

.0990

.0954

.1004

.1025

.1023

.1033

1000

.0847

.0429

.0829

.0828

.0838

.0792

.0977

.0370

.0965

.0961

.0949

.0912

.0839

.0838

.0830

.0825

.0794

.0892

.0885

.0884

.0880

.0866

ho:

100

.0749

.0588

.0758

.0769

.0726

.0669

.0817

.0653

.0862

.0865

.0784

.0642

.0749

.0765

.0776

.0795

.0813

.0760

.0785

.0823

.0847

.0876

l

1.0

1000

.0701

.0420

.0686

.0672

.0702

.0670

.0782

.0348

.0781

.0764

.0782

.0729

.0735

.0726

.0723

.0729

.0715

.0774

.0760

.0750

.0755

.0758

5% Lower Tail Test

100

100

.0743

.0584

.0746

.0762

.0720

.0663

.0810

.0650

.0854

.0861

.0775

.0639

.0747

.0761

.0775

.0792

.0808

.0758

.0782

.0820

.0846

.0875

1000

.0698

.0421

.0684

.0670

.0700

.0670

.0781

.0346

.0778

.0761

.0780

.0728

.0735

.0725

.0721

.0729

.0713

.0772

.0759

.0750

.0753

.0757
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Table 12

Proportions of Rejections, 5% Lower Tail Test

4, =.3, 42 =.7, h0 =1

40 : 0 .01 1.0 100

T : 100 1000 100 1000 100 1000 100 1000

in .4125 .9676 .1208 .1165 .0711 .0889 .0699 .0886

14‘“ .1207 .1004 .0684 .0360 .0528 .0338 .0520 .0337

1,.pp1 .4174 .9677 .1213 .1149 .0710 .0881 .0698 .0874

Iu.pp2 .4214 .9687 .1234 .1135 .0733 .0880 .0721 .0875

Zu.sd1 .4043 .9689 .1153 .1139 .0678 .0893 .0668 .0889

ru.sd2 .3820 .9667 .1077 .1095 .0637 .0839 .0631 .0835

f, .3531 .9374 .1165 .1387 .0775 .1073 .0766 .1072

I,.w .1011 .0488 .0701 .0235 .0558 .0223 .0550 .0222

I,.ppl .3602 .9386 .1185 .1380 .0787 .1054 .0782 .1051

I,.pp2 .3622 .9391 .1218 .1365 .0806 .1057 .0800 .1053

I,.sd1 .3457 .9402 .1138 .1364 .0747 .1067 .0740 .1060

1,.sd2 .3171 .9352 .0966 .1297 .0624 .1002 .0618 .0996

p“ .2944 .9469 .0992 .1175 .0773 .0989 .0773 .0989

pu.pp1 .2981 .9465 .1033 .1176 .0794 .0988 .0792 .0983

pu.pp2 .2982 .9461 .1043 .1157 .0813 .0979 .0806 .0973

pu.sd1 .3009 .9457 .1061 .1185 .0819 .0990 .0817 .0985

pu.sd2 .2941 .9470 .1066 .1147 .0841 .0963 .0838 .0962

p1 .2429 .8934 .0946 .1298 .0755 .1098 .0753 .1095

p,.pp1 .2495 .8945 .0992 .1306 .0796 .1108 .0791 .1104

p,.pp2 .2553 .8948 .1019 .1289 .0819 .1075 .0816 .1073

p,.sd1 .2502 .8958 .1029 .1313 .0841 .1109 .0836 .1106

21.5d2 .2475 .8932 .1047 .1267 .0883 .1063 .0877 .1061



.2
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Table 13

Proportions of Rejections, 5% Lower Tail Test

40: 0 .01 1.0 100

T: 100 1000 100 1000 100 1000 100 1000

in .4220 .9922 .1008 .0705 .0464 .0500 .0457 .0497

Iu'w .1194 .0967 .0823 .0518 .0593 .0477 .0590 .0475

1,.pp1 .4266 .9926 .1042 .0702 .0486 .0498 .0479 .0497

Iu.pp2 .4322 .9933 .1064 .0702 .0497 .0496 .0492 .0495

Iu.sdl .4196 .9911 .0986 .0688 .0483 .0495 .0476 .0492

Tu.sd2 .3961 .9917 .0924 .0674 .0457 .0483 .0452 .0483

f, .3521 .9758 .0974 .0714 .0556 .0492 .0551 .0490

1,;w .1008 .0467 .0968 .0489 .0735 .0426 .0727 .0425

1,.pp1 .3612 .9773 .1027 .0731 .0581 .0509 .0576 .0506

I,.pp2 .3657 .9786 .1054 .0724 .0605 .0510 .0596 .0508

;,.sdl .3519 .9775 .0918 .0727 .0516 .0501 .0510 .0500

1,.sd2 .3238 .9760 .0840 .0710 .0468 .0501 .0465 .0499

p“ .2690 .9890 .0738 .0640' .0534 .0536 .0531 .0534

pu.ppl .2695 .9892 .0761 .0647 .0552 .0533 .0548 .0529

pu.pp2 .2718 .9894 .0771 .0644 .0575 .0534 .0573 .0534

pu.sd1 .2731 .9893 .0785 .0633 .0596 .0541 .0592 .0539

pu.sd2 .2676 .9894 .0812 .0622 .0622 .0537 .0619 .0538

p, .2176 .9564 .0701 .0571 .0539 .0466 .0536 .0465

p,.pp1 .2292 .9582 .0764 .0581 .0589 .0482 .0587 .0481

p,.pp2 .2328 .9583 .0818 .0597 .0619 .0494 .0617 .0494

p,.sdl .2275 .9599 .0786 .0581 .0623 .0480 .0621 .0477

p,.sd2 .2296 .9591 .0867 .0576 .0708 .0490 .0702 .0489





Ir'ppz

11.5d1

17.5d2

Tu

fiu-Ppl

fiuoPP2

pu.sd1

pu.sd2

2.

73,-ppl

moppz

p1.sd1

p1.sd2

Table 14

76

Proportions of Rejections, 5% Lower Tail Test

100

.0913

.0768

.0925

.0952

.0918

.0891

.0874

.0847

.0911

.0942

.0828

.0784

.0681

.0707

.0742

.0737

.0782

.0658

.0712

.0772

.0782

.0835

‘1

0

1000

.4991

.0533

.5007

.4992

.4973

.4915

.4297

.0247

.4313

.4315

.4315

.4254

.3892

.3905

.3882

.3896

.3882

.3207

.3209

.3214

.3234

.3199

100

.0553

.0612

.0580

.0599

.0563

.0541

.0605

.0739

.0627

.0670

.0572

.0519

.0567

.0590

.0613

.0631

.0647

.0536

.0605

.0644

.0654

.0720

.01

1000

.0569

.0349

.0561

.0572

.0575

.0579

.0648

.0246

.0663

.0658

.0685

.0639

.0697

.0700

.0699

.0704

.0704

.0667

.0684

.0693

.0686

.0684

=.1, 42 =.9, h0 = 1

1.0

100

.0365

.0420

.0367

.0385

.0364

.0337

.0426

.0556

.0447

.0475

.0418

.0373

.0510

.0552

.0570

.0569

.0593

.0504

.0561

.0607

.0614

.0699

1000

.0409

.0276

.0410

.0421

.0416

.0407

.0530

.0216

.0537

.0543

.0545

.0521

.0640

.0632

.0637

.0635

.0636

.0630

.0636

.0639

.0639

.0636

100

100

.0363

.0417

.0368

.0384

.0360

.0333

.0425

.0550

.0442

.0474

.0415

.0371

.0511

.0550

.0567

.0566

.0593

.0506

.0561

.0608

.0617

.0699

1000

.0409

.0276

.0406

.0415

.0412

.0406

.0531

.0217

.0537

.0544

.0544

.0519

.0639

.0632

.0637

.0635

.0637

.0624

.0636

.0639

.0638

.0636
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TABLE 15

Proportions of Rejections, 5% Lower Tail Test

T = 100, h.0 = 1, 40 =.01

(81: 82)

(.3,.30)(.3,.60)(.3,.65)(.3,.69)(.3,.70)

.0591 .0964 .1185 .1229 .1208

.0649 .0710 .0722 .0706 .0684

.0592 .0967 .1202 .1243 .1213

.0601 .0967 .1199 .1261 .1234

.0564 .0906 .1136 .1182 .1153

.0518 .0817 .1015 .1091 .1077

.0688 .1035 .1183 .1196 .1165

.0740 .0776 .0788 .0723 .0701

.0710 .1057 .1213 .1216 ..1185

.0718 .1084 .1234 .1254 .1218

.0642 .1004 .1127 .1158 .1138

.0532 .0813 .0944 .0994 .0966

.0590 .0835 .0956 .1010 .0992

.0600 .0847 .0985 .1037 .1033

.0611 .0857 .0996 .1040 .1043

.0613 .0854 .1010 .1069 .1061

.0642 .0861 .0990 .1055 .1066

.0637 .0848 .0954 .0961 .0946

.0675 .0903 .1004 .1020 .0992

.0681 .0931 .1025 .1044 .1019

.0697 .0931 .1023 .1049 .1029

.0754 .0945 .1033 .1068 .1047





78

TABLE 16

Proportions of Rejections, 5% Lower Tail Test

T = 100, h0 =1, 4,, =.01

(81,82)

(.1, 0)(.1,.5) (.1,.8) (.1,.85)(.1,.89)(.l,.9)

in .0472 .0493 .0885 .1008 .0671 .0553

zurw .0664 .0673 .0809 .0823 .0711 .0612

1'.pp1 .0490 .0528 .0907 .1042 .0692 .0580

1:,pp2 .0507 .0536 .0937 .1064 .0714 .0599

Iu.sd1 .0499 .0516 .0856 .0986 .0693 .0563

ru.sd2 .0462 .0479 .0772 .0924 .0652 .0541

f, .0573 .0591 .0911 .0974 .0700 .0605

I uw .0808 .0808 .0951 .0968 .0810 .0739

I7gpp1 .0588 .0601 .0938 .1027 .0733 .0627

1,.pp2 .0634 .0644 .0974 .1054 .0771 .0670

1,.sd1 .0531 .0554 .0856 .0918 .0653 .0572

17.502 .0477 .0498 .0752 .0840 .0614 .0519

, .0495 .0533 .0693 .0738 .0607 .0567

p:.pp1 .0515 .0544 .0711 .0761 .0638 .0590

pu.pp2 .0553 .0572 .0729 .0771 .0658 .0613

pu.sd1 .0568 .0576 .0735 .0785 .0668 .0631

63.502 .0595 .0602 .0751 .0812 .0698 .0647

p1 .0536 .0541 .0673 .0701 .0581 .0536

p,.pp1 .0560 .0573 .0725 .0764 .0658 .0605

p1.pp2 .0610 .0612 .0781 .0818 .0684 .0644

p,.sdl .0608 .0617 .0749 .0786 .0699 .0654

p1.sd2 .0679 .0692 .0817 .0867 .0748 .0720





fi
)
~
i
>
‘
i
>
~
i
>
‘
i
>
‘
4
>

q
4

'
4

A
a

O

m
R
J
T
S
S

'
0
p
.
)

BASE

.0497

.0683

.0533

.0531

.0492

.0472

.0525

.0805

.0567

.0613

.0517

.0488

.0506

.0524

.0554

.0561

.0600

.0500

.0547

.0611

.0593

.0717

-.8

.9965

.9971

.9848

.9825

.8802

.6425

1.0000

1.0000

1.0000

1.0000

.9799

.8094

.9985

.9899

.9862

.9778

.9370

1.0000

1.0000

1.0000

.9995

.9936
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Table 17

Proportions of Rejections,

T = 100

-.5

.5714

.6076

.4571

.4413

.2025

.0923

.7987

.8344

.7047

.6957

.3046

.1273

.6408

.4938

.4725

.4331

.3510

.8290

.6988

.6933

.6047

.4979

5% Lower Tail Test

-.2

.1324

.1630

.1050

.1031

.0595

.0489

.2009

.2579

.1650

.1643

.0703

.0510

.1604

.1193

.1149

.1126

.1086

.2127

.1617

.1626

.1460

.1461

.2

.0299

.0402

.0361

.0391

.0559

.0465

.0157

.0337

.0252

.0288

.0637

.0472

.0163

.0303

.0342

.0325

.0316

.0092

.0238

.0287

.0304

.0322

.5

.0265

.0345

.0284

.0313

.0861

.0377

.0090

.0179

.0146

.0169

.1177

.0315

.0046

.0194

.0251

.0204

.0107

.0022

.0114

.0151

.0158

.0071

.8

.0270

.0343

.0273

.0290

.1138

.0311

.0081

.0161

.0128

.0148

.1675

.0200

.0026

.0169

.0227

.0172

.0034

.0013

.0088

.0121

.0129

.0025





flu-PP2

p“.sd1

pu.sd2

6.

a..pp1

b,oPP2

p7.sdl

p,.sd2

Proportions of Rejections,

BASE

100 200 500

.0497.0499.0496

.0683.0613.0512

.0533.0505.0505

.0531.0513.0513

.0492.0502.0507

.0472.0472.0490

.0525.0581.0521

.0805.0733.0569

.0567.0600.0528

.0613.0625.0539

.0517.0533.0504

.0488.0495.0485

.0506.0516.0476

.0524.0535.0477

.0554.0557.0494

.0561.0549.0481

.0600.0569.0500

.0500.0456.0501

.0547.0495.0512

.0611.0513.0515

.0593.0515.0520

.0717.0540.0524
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Table 18

-.5

100 200 500

.5714.5976.6216

.6076.6150.6262

.4571.4385.4153

.4413.4010.3451

.2025.2237.2331

.0923.1078.1139

.7987.8356.8492

.8344.8532.8546

.7047.6893.6405

.6957.6534.5643

.3046.3557.3624

.1273.1485.1506

.6408.6646.6834

.4938.4829.4660

.4725.4325.3834

.4331.4457.4499

.3510.3566.3539

.8290.8449.8743

.6988.6736.6618

.6933.63l7.5734

.6047.6005.6245

.4979.4852.5005

5% Lower Tail Test

.5

100 200 500

.0265.0240.0251

.0345.0299.0267

.0284.0296.0305

.0313.0319.0290

.0861.0890.0930

.0377.0346.0373

.0090.0089.0086

.0179.0151.0110

.0146.0192.0199

.0169.0254.0251

.1177.1236.1147

.0315.0318.0311

.0046.0044.0041

.0194.0192.0188

.0251.0269.0267

.0204.0180.0178

.0107.0080.0073

.0022.0019.0014

.0114.0111.0148

.0151.0176.0229

.0158.0127.0147

.0071.0046.0043
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Table 19

Proportions of Rejections, 5%

4
-
:

4
. '
U

'
U
H

-.8

.7981

.8276

.6086

.6838

.0506

.0460

.9580

.0603

.8705

.9137

.0518

.0486

.8444

.5872

.6998

.2336

.2404

.9669

.8380

.9118

.3292

.3448

-.5

.3627

.4038

.2243

.2500

.0505

.0475

.5651

.6273

.4007

.4464

.0514

.0484

.4287

.2309

.2686

.1577

.1645

.5972

.3701

.4391

.2210

.2349

100

-.2

.1144

.1421

.0891

.0908

.0496

.0475

.1727

.2249

.1345

.1415

.0508

.0473

.1386

.0985

.0995

.0929

.0978

.1828

.1309

.1397

.1176

.1281

Lower Tail Test

.2

.0288

.0372

.0317

.0347

.0497

.0483

.0134

.0285

.0195

.0230

.0520

.0489

.0122

.0233

.0285

.0254

.0276

.0062

.0168

.0216

.0218

.0267

.5

.0349

.0440

.0280

.0253

.0520

.0487

.0094

.0162

.0079

.0085

.0544

.0484

.0006

.0031

.0070

.0029

.0036

.0001

.0014

.0029

.0017

.0020

.8

.0941

.1126

.0608

.0468

.0541

.0522

.0358

.0490

.0200

.0142

.0590

.0565

.0000

.0000

.0002

.0001

.0001

.0001

.0001

.0002

.0001

.0001
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Table 20

Proportions of Rejections, 5% Lower Tail Test

1?
);

e
>
s
>
s
>
s
>
e
>
s
>

1
:
5
1
:
5
1
:

'
O
T
S
£

'
U
'
U

k
t
F
‘

t
~
4
4

q

‘
D
W
D
‘
D
‘
D
‘
D
‘
D

a
«

0
1
3
T
5
£

’
U
I
-
'

-.5 .5

100 200 500 100 200 500

.3627 .3764 .3833 .0349 .0342 .0351

.4038 .3946 .3907 .0440 .0393 .0374

.2243 .1951 .1609 .0280 .0255 .0265

.2500 .2155 .1723 .0253 .0235 .0258

.0505 .0494 .0499 .0520 .0495 .0495

.0475 .0475 .0490 .0487 .0470 .0491

.5651 .5898 .5880 .0094 .0085 .0096

.6273 .6186 .6018 .0162 .0131 .0111

.4007 .3416 .2509 .0079 .0078 .0080

.4464 .3827 .2760 .0085 .0099 .0096

.0514 .0541 .0507 .0544 .0545 .0492

.0484 .0518 .0490 .0484 .0512 .0486

.4287 .4432 .4461 .0006 .0003 .0004

.2309 .2058 .1784 .0031 .0027 .0028

.2686 .2314 .1878 .0070 .0071 .0072

.1577 .1637 .1612 .0029 .0025 .0022

.1645 .1661 .1607 .0036 .0025 .0026

.5972 .6011 .6255 .0001 .0001 .0000

.3701 .3058 .2516 .0014 .0007 .0006

.4391 .3550 .2831 .0029 .0027 .0027

.2210 .1987 .1990 .0017 .0011 .0006

.2349 .2065 .2004 .0020 .0009 .0008



ll
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Table 21

Number of Negative Long-run Variance Estimates

(out of 10,000 replications)

T = 100

MA: -.8 -.5 -.2 2 .5 .8 BASE

ppl 0 0 36 0 0 0 0

pp2 0 0 19 0 0 0 0

pp3 0 1 10 2 0 0 0

pp4 1 0 5 5 2 2 2

pp5 10 3 9 11 11 15 14

pp6 12 4 4 6 18 28 31

pp7 34 7 3 19 52 86 101

pp8 58 10 8 18 106 167 188

pp9 78 27 8 37 166 244 275

pp10 109 38 8 40 216 348 405

AR: —.8 -.5 -.2 .2' .5 .8

ppl 6204 1328 O 0 O 0

pp2 0 1 O 0 0 0

pp3 479 27 2 0 0 O

pp4 1 5 2 0 0 0

pp5 54 14 10 8 1 0

pp6 1 1 6 18 8 O

pp7 10 4 17 51 38 2

pp8 3 11 19 104 114 11

pp9 4 9 40 168 195 34

pp10 5 10 44 231 345 68
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Table 22

Proportions of Rejections, 5% Lower Tail Test

Bartlett's Lag Window, T = 100

MA: -.8 -.5 -.2 .2 .5 .8

in .9965 .5714 .1324 .0299 .0265 .0270

Iu.pp1 .9848 .4571 .1050 .0361 .0284 .0273

Iu.pp2 .9825 .4413 .1031 .0391 .0313 .0290

Zfl.pp3 .9834 .4474 .1062 .0392 .0319 .0299

Zu.pp4 .9850 .4626 .1110 .0388 .0320 .0301

I“.pp5 .9872 .4799 .1148 .0382 .0316 .0299

Iu.pp6 .9894 .4960 .1181 .0381 .0305 .0289

Zu.pp7 .9910 .5126 .1225 .0375 .0291 .0277

Iu.pp8 .9928 .5270 .1259 .0367 .0290 .0271

Tu.pp9 .9942 .5396 .1303 .0359 .0279 .0263

Tu.pp10 .9949 .5507 .1328 .0346 .0271 .0255

1.0000 .7987 .2009 .0157 .0090 .0081

.ppl 1.0000 .7047 .1650 .0252 .0146 .0128

.pp2 1.0000 .6957 .1643 .0288 .0169 .0148

IT.pp3 1.0000 .7117 .1725 .0288 .0168 .0148

:1.pp4 1.0000 .7317 .1817 .0274 .0155 .0137

I,.pp5 1.0000 .7510 .1912 .0259 .0138 .0117

If.pp6 1.0000 .7696 .1988 .0237 .0119 .0104

Ir.pp7 1.0000 .7864 .2029 .0216 .0109 .0099

IT.pp8 1.0000 .8011 .2068 .0190 .0104 .0096

IT.pp9 1.0000 .8138 .2101 .0176 .0102 .0093

TT.pp10 1.0000 .8240 .2131 .0158 .0096 .0090

BASE

.0497

.0533

.0531

.0548

.0552

.0556

.0556

.0566

.0556

.0561

.0557

.0525

.0567

.0613

.0632

.0640

.0634

.0609

.0587

.0572

.0547

.0531

 



Proportions of Rejections,

MA:

all.

ppppl

ppppz

2,. pp3

2,.pp4

4,.pp5

Au-pp6

2),.pp7

4,448

2),. pp9
pwpplo

2.

2,-ppl

4,-pp2

2,-pp3

2,-pp4

2,-pp5

2,-pp6

2,.pp7

fi,oPP8

2,.999

85

Table 23

5% Lower Tail Test

Bartlett's Lag Window, T = 100

-.8

.9985

.9899

.9862

.9868

.9885

.9907

.9923

.9941

.9951

.9959

.9966

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

p,.pp10 1.0000

-.5 -.2

.6408 .1604

.4938 .1193

.4725 .1149

.4774 .1191

.4934 .1253

.5113 .1304

.5299 .1376

.5481 .1427

.5637 .1485

.5787 .1528

.5924 .1573

.8290 .2127

.6988 .1617

.6933 .1626

.7122 .1749

.7376 .1879

.7629 .1981

.7826 .2079

.8024 .2165

.8194 .2223

.8336 .2259

.8440 .2285

.0163

.0303

.0342

.0361

.0356

.0348

.0336

.0321

.0303

.0282

.0254

.0092

.0238

.0287

.0294

.0274

.0251

.0206

.0170

.0133

.0108

.0086

.5

.0046

.0194

.0251

.0263

.0265

.0254

.0234

.0210

.0194

.0165

.0138

.0022

.0114

.0151

.0141

.0123

.0104

.0081

.0048

.0035

.0025

.0020

.8

.0026

.0169

.0227

.0242

.0243

.0224

.0206

.0188

.0164

.0144

.0117

.0013

.0088

.0121

.0115

.0100

.0083

.0058

.0033

.0023

.0015

.0011

BASE

.0506

.0524

.0554

.0568

.0581

.0593

.0597

.0596

.0596

.0592

.0575

.0500

.0547

.0611

.0642

.0662

.0657

.0636

.0609

.0571

.0524

.0499
 



Il
l
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Table 24

Proportions of Rejections, 5% Lower Tail Test

Parzen's Lag Window, T = 100

MA: -.8 -.5 -.2 .2 .5 .8 BASE

in .9965 .5714 .1324 .0299 .0265 .0270 .0497

Iu.ppl .9921 .5155 .1183 .0315 .0258 .0249 .0515

Iu.pp2 .9839 .4499 .1032 .0369 .0290 .0280 .0530

I“.pp3 .9805 .4274 .0997 .0398 .0326 .0309 .0541

Iu.pp4 .9801 .4254 .1010 .0407 .0333 .0323 .0545

Iu.pp5 .9815 .4337 .1041 .0404 .0340 .0326 .0551

Iu.pp6 .9826 .4450 .1070 .0402 .0338 .0331 .0552

Iu.pp7 .9844 .4590 .1104 .0403 .0336 .0325 .0560

Iu.pp8 .9863 .4727 .1136 .0404 .0331 .0321 .0562

I#.pp9 .9882 .4863 .1172 .0393 .0319 .0310 .0565

Tu.pp10 .9899 .4988 .1205 .0395 .0314 .0295 .0569

ET 1.0000 .7987 .2009 .0157 .0090 .0081 .0525

If.pp1 1.0000 .7386 .1806 .0195 .0103 .0092 .0548

I1.pp2 1.0000 .6894 .1642 .0258 .0153 .0133 .0577

IT.pp3 1.0000 .6802 .1609 .0303 .0185 .0169 .0609

11.pp4 1.0000 .6896 .1633 .0323 .0198 .0175 .0629

I,.pp5 1.0000 .7078 .1694 .0314 .0188 .0174 .0646

IT.pp6 1.0000 .7262 .1760 .0304 .0161 .0165 .0661

IT.pp7 1.0000 .7431 .1832 .0292 .0164 .0151 .0653

If.pp8 1.0000 .7602 .1897 .0276 .0149 .0137 .0644

:1.pp9 1.0000 .7758 .1963 .0261 .0131 .0119 .0634

TT.pp10 1.0000 .7882 .2023 .0234 .0122 .0112 .0613

 



ll



Proportions of Rejections, 5% Lower Tail Test

MA:

fill-

2),.pp1

4,.pp2

4,.pp3

Au-pp4

4,.pp5

4,.pp6

4,.pp7

4,.pp8

2,.pp9

pu.pp10

2.

2,-ppl

4,.pp2

21,-PP3

2,-PP4

2,-pp5

73,-PP6

2,.pp7

¢,oPP8

4,-pp9

p,.pp10

87

Table 25

Parzen's Lag Window, T = 100

-.8

.9985

.9961

.9882

.9840

.9832

.9847

.9866

.9877

.9893

.9981

.9926

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

-.5 -.2

.6408 .1604

.5713 .1406

.4826 .1161

.4497 .1112

.4473 .1111

.4582 .1138

.4717 .1200

.4845 .1249

.5000 .1288

.5176 .1345

.5316 .1398

.8290 .2127

.7704 .1866

.6919 .1596

.6727 .1562

.6787 .1608

.6975 .1696

.7181 .1807

.7394 .1892

.7591 .1969

.7768 .2053

.7909 .2136

.2

.0163

.0225

.0317

.0366

.0391

.0397

.0402

.0396

.0390

.0378

.0353

.0092

.0154

.0255

.0319

.0339

.0336

.0326

.0302

.0271

.0236

.0199

.5

.0046

.0097

.0211

.0276

.0298

.0311

.0307

.0305

.0291

.0268

.0249

.0022

.0041

.0126

.0181

.0209

.0200

.0176

.0150

.0126

.0099

.0075

.8

.0026

.0074

.0186

.0255

.0286

.0291

.0292

.0283

.0268

.0246

.0230

.0013

.0032

.0094

.0157

.0174

.0172

.0146

.0130

.0107

.0077

.0057

BASE

.0506

.0513

.0531

.0547

.0564

.0576

.0590

.0605

.0614

.0610

.0610

.0500

.0517

.0563

.0615

.0639

.0666

.0677

.0681

.0678

.0665

.0642
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Table 26

Proportions of Rejections, 5% Lower Tail Test

Bohman's Lag Window, T = 100

MA: -.8 -.5 -.2 .2 .5 .8 BASE

in .9965 .5714 .1324 .0299 .0265 .0270 .0497

Iu.pp1 .9905 .4992 .1141 .0329 .0263 .0249 .0516

Iu.pp2 .9826 .4407 .1013 .0377 .0302 .0284 .0530

Iu.pp3 .9797 .4249 .0999 .0403 .0329 .0315 .0540

Iu.pp4 .9804 .4279 .1020 .0406 .0334 .0325 .0547

Iu.pp5 .9822 .4397 .1050 .0405 .0340 .0325 .0554

Iu.pp6 .9839 .4524 .1092 .0403 .0336 .0327 .0560

Iu.pp7 .9856 .4683 .1127 .0404 .0332 .0323 .0561

Iu.pp8 .9877 .4824 .1161 .0397 .0322 .0313 .0563

Zu.pp9 .9897 .4960 .1195 .0396 .0314 .0299 .0572

Tu.pp10 .9908 .5111 .1234 .0387 .0301 .0287 .0577

? 1.0000 .7987 .2009 .0157 .0090 .0081 .0525

f,.pp1 1.0000 .7386 .1765 .0213 .0113 .0098 .0552

1,.pp2 1.0000 .6894 .1622 .0274 .0165 .0142 .0587

IT.pp3 1.0000 .6802 .1618 .0314 .0193 .0172 .0616

IT.pp4 1.0000 .6896 .1664 .0321 .0193 .0175 .0632

I,.pp5 1.0000 .7078 .1728 .0308 .0185 .0173 .0656

IT.pp6 1.0000 .7262 .1801 .0304 .0175 .0155 .0657

I,.pp7 1.0000 .7431 .1886 .0281 .0152 .0143 .0650

TT.pp8 1.0000 .7602 .1948 .0266 .0135 .0127 .0643

1 .pp9 1.0000 .7758 .2013 .0240 .0124 .0114 .0622

r .pp10 1.0000 .7882 .2052 .0216 .0115 .0105 .0598
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Table 27

5% Lower Tail Test

Bohman's Lag Window, T = 100

MA: -.8

pu .9985

p#.ppl .9954

pu.pp2 .9867

pu.pp3 .9831

pu.pp4 .9836

pu.pp5 .9858

p#.pp6 .9874

p#.pp7 .9890

pu.pp8 .9909

pu.pp9 .9923

p#.pp10 .9939

p, 1.0000

p1.ppl 1.0000

p7.pp2 1.0000

pf.pp3 1.0000

p1.pp4 1.0000

p1.pp5 1.0000

pT.pp6 1.0000

p1.pp7 1.0000

pf.pp8 1.0000

p1.pp9 1.0000

p7.pp10 1.0000

.6408

.5508

.4686

.4464

.4512

.4650

.4785

.4951

.5131

.5291

.5448

.8290

.7494

.6830

.6714

.6857

.7069

.7313

.7519

.7721

.7888

.8051

.1604

.1340

.1134

.1099

.1115

.1161

.1230

.1278

.1328

.1392

.1439

.2127

.1806

.1573

.1581

.1642

.1743

.1856

.1960

.2032

.2126

.2193

.0163

.0248

.0336

.0377

.0392

.0406

.0402

.0393

.0385

.0368

.0346

.0092

.0174

.0271

.0335

.0346

.0339

.0315

.0286

.0243

.0206

.0176

.0046

.0119

.0240

.0286

.0308

.0309

.0306

.0298

.0275

.0254

.0237

.0022

.0050

.0150

.0202

.0212

.0194

.0164

.0137

.0111

.0078

.0058

.0026

.0092

.0207

.0266

.0292

.0293

.0290

.0276

.0251

.0231

.0203

.0013

.0038

.0122

.0166

.0183

.0157

.0141

.0113

.0088

.0062

.0045
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Table 28

Proportions of Rejections, 5% Lower Tail Test

Bartlett's Lag Window, T = 100

AR: -.8 -.5 -.2 .2 .5 .8

in .7981 .3627 .1144 .0288 .0349 .0941

Iu.ppl .6086 .2243 .0891 .0317 .0280 .0608

Iu.pp2 .6838 .2500 .0908 .0347 .0253 .0468

In.pp3 .6730 .2574 .0947 .0364 .0254 .0401

Iu.pp4 .7081 .2749 .0985 .0361 .0248 .0366

Iu.pp5 .7176 .2893 .1019 .0351 .0246 .0344

Iu.pp6 .7393 .3038 .1053 .0351 .0253 .0330

Iu.pp7 .7486 .3177 .1077 .0347 .0245 .0315

Iu.pp8 .7639 .3300 .1107 .0344 .0242 .0302

r .pp9 .7749 .3422 .1141 .0338 .0240 .0301

Tu.pp10 .7859 .3524 .1154 .0323 .0235 .0302

f, .9580 .5651 .1727 .0134 .0094 .0358

I,.pp1 .8705 .4007 .1345 .0195 .0079 .0200

I,.pp2 .9137 .4464 .1415 .0230 .0085 .0142

I,.pp3 .9135 .4643 .1510 .0234 .0093 .0113

I,.pp4 .9334 .4955 .1594 .0222 .0091 .0098

I,.pp5 .9394 .5186 .1666 .0215 .0086 .0099

I,.pp6 .9495 .5392 .1729 .0197 .0082 .0094

Z,.pp7 .9547 .5612 .1781 .0174 .0077 .0093

I,.pp8 .9601 .5796 .1808 .0159 .0074 .0092

IT.pp9 .9636 .5955 .1842 .0142 .0073 .0095

T7.pp10 .9666 .6072 .1839 .0130 .0071 .0096



Il
l
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Table 29

Proportions of Rejections, 5% Lower Tail Test

Bartlett's Lag Window, T = 100

AR: -.8 -.5 -.2 .2 .5

p“ .8444 .4287 .1386 .0122 .0006

pu.ppl .5872 .2309 .0985 .0233 .0031

pu.pp2 .6998 .2686 .0995 .0285 .0070

pu.pp3 .6819 .2757 .1047 .0311 .0102

pu.pp4 .7286 .2992 .1102 .0316 .0121

pfi.pp5 .7348 .3157 .1170 .0313 .0123

pu.pp6 .7601 .3366 .1221 .0298 .0111

pu.pp7 .7712 .3542 .1269 .0277 .0107

pu.pp8 .7894 .3699 .1322 .0263 .0095

pu.pp9 .8001 .3839 .1368 .0237 .0084

pu.pp10 .8102 .3976 .1396 .0210 .0061

p1 .9669 .5972 .1828 .0062 .0001

p,.pp1 .8380 .3701 .1309 .0168 .0014

p,.pp2 .9118 .4391 .1397 .0216 .0029

p,.pp3 .9104 .4632 .1507 .0232 .0038

pT.pp4 .9345 .5015 .1624 .0220 .0037

p,.pp5 .9417 .5306 .1752 .0190 .0030

p,.pp6 .9529 .5591 .1836 .0160 .0021

p,.pp7 .9584 .5814 .1884 .0134 .0011

p,.pp8 .9630 .5991 .1934 .0105 .0007

p,.pp9 .9674 .6161 .1965 .0081 .0006

p,.pp10 .9717 .6317 .1986 .0061 .0005

.8

.0000

.0000

.0002

.0009

.0016

.0020

.0022

.0024

.0026

.0023

.0023

.0001

.0001

.0002

.0002

.0003

.0003

.0003

.0001

.0001

.0001

.0001
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Table 30

5%

Parzen's Lag Window,

AR: -.8

in .7981

Iu.ppl .7089

Tu.pp2 .6193

Tu.pp3 .6266

Iu.pp4 .6501

Iu.pp5 .6724

Iu.pp6 .6885

Iu.pp7 .7042

Iu.pp8 .7191

I“.pp9 .7343

Tu.pp10 .7438

f, .9580

I,.ppl .9191

I,.pp2 .8783

TT.pp3 .8859

T .pp4 .9009

11.pp5 .9135

11.pp6 .9259

11.pp7 .9340

11.pp8 .9410

11.pp9 .9483

T1.pp10 .9530

.3627

.2910

.2263

.2232

.2336

.2484

.2620

.2755

.2867

.2995

.3107

.5651

.4799

.4062

.4072

.4289

.4562

.4793

.5014

.5190

.5363

.5539

.1144

.1005

.0889

.0872

.0893

.0924

.0959

.0984

.1012

.1044

.1070

.1727

.1524

.1345

.1346

.1394

.1466

.1538

.1618

.1667

.1717

.1773

Lower Tail Test

T = 100

.2 .5

.0288 .0349

.0292 .0302

.0325 .0276

.0354 .0251

.0376 .0255

.0381 .0254

.0374 .0260

.0375 .0267

.0370 .0269

.0366 .0265

.0365 .0263

.0134 .0094

.0152 .0079

.0204 .0082

.0242 .0088

.0255 .0096

.0261 .0101

.0251 .0103

.0242 .0103

.0232 .0100

.0215 .0093

.0197 .0087

.0941

.0755

.0558

.0468

.0410

.0383

.0351

.0341

.0324

.0310

.0302

.0358

.0251

.0185

.0140

.0116

.0102

.0099

.0098

.0099

.0095

.0096

 



l
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Table 31

Proportions of Rejections, 5% Lower Tail Test

AR:

pa

2,.pp1

4,.pp2

a, . pp3

4,.pp4

2,,- p95

4,.pp6

4,.pp7

4,.pp8

A, - pp9

pu.pp10

2.

2,-PPl

73,-PP2

2,-PP3

2,-PP4

AT-PP5

2,-PP5

2,-PP7

2,-PP8

27~PP9

p,.pp10

Parzen's Lag Window, T = 100

.8444

.7368

.6045

.6150

.6528

.6803

.7010

.7214

.7357

.7520

.7656

.9669

.9203

.8526

.8682

.8910

.9109

.9256

.9360

.9439

.9514

.9573

-.5

.4287

.3317

.2327

.2247

.2405

.2600

.2809

.2964

.3100

.3265

.3449

.5972

.4850

.3785

.3822

.4167

.4515

.4800

.5080

.5321

.5548

.5741

-.2

.1386

.1185

.0974

.0931

.0955

.1005

.1056

.1097

.1157

.1208

.1244

.1828

.1534

.1314

.1312

.1379

.1462

.1564

.1664

.1751

.1833

.1882

.2

.0122

.0177

.0254

.0293

.0332

.0343

.0352

.0355

.0347

.0333

.0318

.0062

.0109

.0183

.0240

.0276

.0273

.0257

.0245

.0227

.0197

.0160

.5

.0006

.0015

.0040

.0072

.0110

.0135

.0145

.0153

.0160

.0158

.0150

.0001

.0005

.0017

.0033

.0044

.0058

.0061

.0061

.0051

.0042

.0030

.0000

.0000

.0001

.0002

.0007

.0013

.0017

.0022

.0024

.0030

.0034

.0001

.0001

.0002

.0002

.0002

.0003

.0003

.0004

.0004

.0004

.0004
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Table 31

Proportions of Rejections, 5%

AR:

Tu

moppl

p,.pp2

2,.pp3

p,.pp4

4,.pp5

4,.pp6

4,.pp7

4,.pp8

4,.pp9

pu.pp10

2.

ppppl

4,.pp2

4,.pp3

4,.pp4

4,.pp5

2,-PP5

4,.pp7

2,.pp8

4,.pp9

p,.pp10

-.8

.8444

.7368

.6045

.6150

.6528

.6803

.7010

.7214

.7357

.7520

.7656

.9669

.9203

.8526

.8682

.8910

.9109

.9256

.9360

.9439

.9514

.9573

-.5

.4287

.3317

.2327

.2247

.2405

.2600

.2809

.2964

.3100

.3265

.3449

.5972

.4850

.3785

.3822

.4167

.4515

.4800

.5080

.5321

.5548

.5741

-.2

.1386

.1185

.0974

.0931

.0955

.1005

.1056

.1097

.1157

.1208

.1244

.1828

.1534

.1314

.1312

.1379

.1462

.1564

.1664

.1751

.1833

.1882

Lower Tail Test

Parzen's Lag Window, T = 100

.0122

.0177

.0254

.0293

.0332

.0343

.0352

.0355

.0347

.0333

.0318

.0062

.0109

.0183

.0240

.0276

.0273

.0257

.0245

.0227

.0197

.0160

.5

.0006

.0015

.0040

.0072

.0110

.0135

.0145

.0153

.0160

.0158

.0150

.0001

.0005

.0017

.0033

.0044

.0058

.0061

.0061

.0051

.0042

.0030

.8

.0000

.0000

.0001

.0002

.0007

.0013

.0017

.0022

.0024

.0030

.0034

.0001

.0001

.0002

.0002

.0002

.0003

.0003

.0004

.0004

.0004

.0004
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Table 32

Proportions of Rejections, 5% Lower Tail Test

.
3

)
fl
)
~
1
)
‘
1
)
~
i
)

q

1
5
%

T
V
U

N
I
-
J

q

.pp3

It’pp4

Ir'pps

11.pp6

Ir'pp7

Zr'pp8

Ir'ppg

q

11.pp10

Bohman's Lag Window, T = 100

-.8

.7981

.6798

.6140

.6376

.6585

.6795

.6979

.7151

.7310

.7424

.7543

.9580

.9063

.8768

.8918

.9061

.9199

.9309

.9387

.9471

.9524

.9577

-.5

.3627

.2713

.2216

.2267

.2397

.2547

.2691

.2836

.2964

.3089

.3209

.5651

.4581

.4009

.4158

.4412

.4671

.4917

.5140

.5323

.5514

.5714

.1144

.0968

.0877

.0878

.0905

.0939

.0972

.1003

.1037

.1066

.1092

.1727

.1476

.1328

.1357

.1429

.1506

.1592

.1657

.1708

.1761

.1818

-.2 .2

.0288

.0298

.0336

.0365

.0381

.0381

.0375

.0376

.0366

.0368

.0359

.0134

.0158

.0218

.0245

.0260

.0260

.0249

.0237

.0224

.0203

.0179

.5

.0349

.0293

.0270

.0251

.0256

.0259

.0265

.0268

.0266

.0264

.0262

.0094

.0077

.0081

.0089

.0099

.0103

.0108

.0100

.0094

.0088

.0083

.8

.0941

.0711

.0532

.0449

.0398

.0362

.0342

.0330

.0312

.0304

.0295

.0358

.0238

.0171

.0129

.0112

.0100

.0100

.0090

.0096

.0096

.0096



Table 33

Proportions of Rejections, 5% Lower Tail Test

AR:

fill

moppl

moppz

4,.pp3

2,-pp4

2,.pps

4,-pp6

4,.pp7

p,.pp8

4,.pp9

4,.pp10

2.

2,oPP1

2,-PP2

AT-PP3

2,-PP4

2,-PP5

b,oPP5

27~PP7

2,-PP8

2,-PP9

p,.pp10

.8444

.6998

.5974

.6330

.6626

.6887

.7134

.7320

.7474

.7629

.7766

.9669

.8990

.8497

.8781

.8986

.9181

.9322

.9413

.9496

.9568

.9603

.4287

.3034

.2227

.2296

.2482

.2703

.2898

.3067

.3221

.3415

.3567

.5972

.4542

.3701

.3936

.4312

.4651

.4961

.5248

.5487

.5710

.5893

.1386

.1127

.0953

.0938

.0976

.1026

.1080

.1143

.1197

.1240

.1280

.1828

.1463

.1297

.1321

.1413

.1522

.1615

.1719

.1815

.1880

.1927

Bohman's Lag Window, T = 100

.0122

.0188

.0268

.0310

.0339

.0346

.0353

.0348

.0342

.0321

.0307

.0062

.0118

.0200

.0257

.0280

.0263

.0252

.0233

.0200

.0166

.0141

.0006

.0017

.0049

.0082

.0128

.0140

.0151

.0160

.0159

.0158

.0140

.0001

.0010

.0020

.0039

.0051

.0062

.0064

.0055

.0044

.0033

.0025

.0000

.0000

.0001

.0004

.0012

.0017

.0022

.0024

.0029

.0034

.0036

.0001

.0001

.0002

.0002

.0002

.0003

.0003

.0004

.0005

.0004

.0003
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Table 34

Proportions of Rejections, 5% Lower Tail Test

T = 100

MA: -.8 -.5 -.2 .2 .5 .8

in .9965 .5714 .1324 .0299 .0265 .0270

Iu.pp1 .9948 .4571 .1050 .0361 .0284 .0273

Tu.ppt .8109 .1598 .0568 .0498 .0511 .0515

f, 1.0000 .7987 .2009 .0157 .0090 .0081

17.pp1 1.0000 .7047 .1650 .0252 .0146 .0128

1,.ppt .9186 .2510 .0655 .0534 .0561 .0570

p“ .9985 .6408 .1604 .0163 .0046 .0026

pu.ppl .9899 .4938 .1193 .0303 .0194 .0169

pu.ppt .1129 .0413 .0426 .0558 .0593 .0602

p1 1.0000 .8290 .2127 .0092 .0022 .0013

p,.pp1 1.0000 .6988 .1617 .0238 .0114 .0088

p1.ppt .0689 .0275 .0327 .0614 .0723 .0754





Proportions of Rejections, 5% Lower Tail Test

5
A
>
q
>
q
>

3
:

“.ppl

4
: '
U

'
U

{
1
'

~
'
I
)
"
I
)
‘
i
>

«
~
4
4

T
3
6

T
I
C

(
1
'
H

‘
0

u

4,.pp1

2),.ppt

T

fif’ppl

pf'ppt

.7981

.6086

.3759

.9580

.8705

.5532

.8444

.5872

.1427

.9669

.8380

.1608
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Table 35

T = 100

-.5 -.2

.3627 .1144

.2243 .0891

.1053 .0561

.5651 .1727

.4007 .1345

.1670 .0660

.4287 .1386

.2309 .0985

.0527 .0451

.5972 .1828

.3701 .1309

.0477 .0400

.0288

.0317

.0521

.0134

.0195

.0580

.0122

.0233

.0580

.0062

.0168

.0697

.0349

.0280

.0659

.0094

.0079

.0936

.0006

.0031

.0752

.0001

.0014

.1162

.0941

.0608

.1171

.0358

.0200

.2306

.0000

.0000

.1395

.0001

.0001

.2755

 





.
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Table 36

Proportions of Rejections, 5% Lower Tail Test

'
0
6

r
t
)
-

-
4
>
-
1
>
-
\
>

-
1
>
-
a
>
-
I
>

a

-
\

1
:

1
:

1
:

.

'
0
’
0

'
O
'
U

r
t

l—
'

q

'
U
'
U

q

D
E
E

W
W

‘
5
)

I
:
F

'
I
:

'
0
6

p
r
o

r
t
)
-

9
q

A

'
0
'
!
)

'
U
'
U

t
'
I
’
l
-
J

-.8 -.5

100 200 500 1000 100 200 500 1000

.9965 .9976 .9992 .9993 .5714 .5976 .6216 .6209

.9948 .9880 .9861 .9875 .4571 .4385 .4153 .3986

.8109 .7830 .6982 .5863 .1598 .1267 .0887 .0726

1.00001.00001.00001.0000 .7987 .8356 .8492 .8572

1.0000 .9999 .9999 .9998 .7047 .6893 .6405 .6319

.9186 .9341 .9048 .8379 .2510 .2010 .1264 .0932

.9985 .9991 .9998 .9996 .6408 .6646 .6834.6849

.9899 .9922 .9912 .9920 .4938 .4829 .4660 .4559

.1129 .1459 .1525 .1421 .0413 .0456 .0489 .0524

1.00001.00001.00001.0000 .8290 .8449 .8713 .8760

1.0000 .99991.0000 .9998 .6988 .6736 .6618 .6511

.0689 .1074 .1551 .1604 .0275 .0345 .0433 .0468

 



 



100

.0265

.0284

.0511

.0090

.0146

.0561

.0046

.0194

.0593

.0022

.0114

.0723

200

.0240

.0296

.0503

.0089

.0192

.0578

.0044

.0192

.0570

.0019

.0111

.0561

Table 37

.5

500

.0251

.0305

.0495

.0086

.0199

.0536

.0041

.0188

.0492

.0014

.0148

.0525

99

1000

.0265

.0319

.0515

.0076

.0197

.0512

.0043

.0199

.0557

.0017

.0143

.0490

100

.0270

.0273

.0515

.0081

.0128

.0570

.0026

.0169

.0602

.0013

.0088

.0754

200

.0248

.0285

.0507

.0076

.0161

.0580

.0025

.0173

.0581

.0004

.0091

.0569

Proportions of Rejections, 5% Lower Tail Test

.8

500

.0265

.0298

.0492

.0079

.0178

.0537

.0025

.0163

.0495

.0009

.0118

.0526

1000

.0263

.0308

.0514

.0070

.0177

.0508

.0026

.0178

.0558

.0009

.0117

.0492

 





q
)

A“

I“.ppl

Tu.ppt

T.pp1

,.ppt‘
i
>
~
l
)
‘
i
)

'
Q

)1.

2,.pp1

2),.th

A.

par'ppl

2,-ppt

100

Table 38

Proportions of Rejections, 5% Lower Tail Test

100

.7981

.6086

.3759

.9580

.8705

.5532

.8444

.5872

.1427

.9669

.8380

.1608

200

.8165

.5285

.3057

.9728

.8136

.4725

.8607

.5106

.1377

.9773

.7574

.1562

-.8

500

.8356

.4045

.2069

.9786

.6741

.3381

.8754

.3992

.1086

.9853

.6341

.1409

1000

.8343

.3234

.1546

.9808

.5683

.2437

.8767

.3286

.0937

.9854

.5322

.1152

100

.3627

.2243

.1053

.5651

.4007

.1670

.4287

.2309

.0527

.5972

.3701

.0477

200

.3764

.1951

.0849

.5898

.3416

.1247

.4432

.2058

.0521

.6011

.3058

.0472

—.5

500

.3833

.1609

.0661

.5880

.2509

.0811

.4461

.1784

.0506

.6255

.2516

.0497

1000

.3809

.1454

.0609

.6000

.2198

.0672

.4463

.1654

.0542

.6338

.2190

.0483
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AT-Ppl
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Table 39

Proportions of Rejections, 5% Lower Tail Test

100

.0349

.0280

.0659

.0094

.0079

.0936

.0006

.0031

.0752

.0001

.0014

.1162

200

.0342

.0255

.0575

.0085

.0078

.0777

.0003

.0027

.0687

.0001

.0007

.0776

.5

500

.0351

.0265

.0519

.0096

.0080

.0586

.0004

.0028

.0532

.0000

.0006

.0596

1000

.0355

.0271

.0533

.0085

.0065

.0533

.0002

.0026

.0568

.0000

.0011

.0540

100

.0941

.0608

.1171

.0358

.0200

.2306

.0000

.0000

.1395

.0001

.0001

.2755

200

.0898

.0576

.0913

.0319

.0185

.1485

.0000

.0001

.1012

.0000

.0000

.1519

.8

500

.0908

.0567

.0640

.0327

.0172

.0827

.0000

.0001

.0702

.0000

.0000

.0871

1000

.0919

.0562

.0595

.0310

.0151

.0662

.0000

.0000

.0643

.0000

.0000

.0674
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