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ABSTRACT 

GENE CONTENT EVOLUTION IN PLANT GENOMES: STUDIES OF WHOLE 
GENOME DUPLICATION, INTERGENIC TRANSCRIPTION AND EXPRESSION 

EVOLUTION IN BRASSICACEAE AND POACEAE SPECIES 
 

By 
 

Gaurav Dilip Moghe 
 
 

 Phenomena that create new genes and influence their diversification are 

important contributors to evolutionary novelty in living organisms. My research has 

focused on addressing the following questions regarding such phenomena in plants. 

First, what are the patterns of evolution of duplicate genes derived via whole genome 

duplication (WGD)? Second, do transcripts originating from intergenic regions constitute 

novel genes? Third, how do expression patterns of orthologous genes evolve in plants? 

I have addressed these questions using comparative genomic and transcriptomic 

analyses of species in the Brassicaceae and Poaceae families. 

 To understand the evolution of WGD derived duplicate genes, we sequenced 

and annotated the genome of wild radish (Raphanus raphanistrum), a Brassicaceae 

species which experienced a whole genome triplication (WGT) event ~24-29 million 

years ago. Through comparative genomic analyses of sequenced Brassicaceae 

species, I found that most WGT duplicate genes were lost over time. Duplicates that are 

still retained were found to undergo sequence and expression level divergence. 

Interestingly, while duplicate copies tend to diverge in expression level, one of the 

copies tends to maintain its original expression state in the tissue studied. Furthermore, 

duplicates that are retained in extant species tend to have higher expression levels, 

greater expression breadth, higher network connectivity and tend to be involved in 



 
 

functions such as transcription factor activity, stress response and development. 

Functional diversification of such duplicates can assist in evolution of novel characters 

in plants post WGD. 

 To understand the nature of intergenic transcription, I analyzed multiple 

transcriptome datasets in Arabidopsis thaliana as well as in species of the Poaceae 

family. My results suggest that plant genomes do not show any evidence of pervasive 

intergenic transcription. Although thousands of intergenic transcripts can be found in 

each species, most of these transcripts have low breadths of expression, tend not to be 

conserved within or between species and show a significant bias in being located very 

close to genes or in open chromatin regions. My results suggest that most intergenic 

transcripts may be associated with transcription of the neighboring genes or may be 

produced as a result of noisy transcription. Properties of intergenic transcripts identified 

in my research will be useful in distinguishing functionally relevant transcripts from 

noise. 

 To understand expression evolution, I analyzed patterns of evolution of 

orthologous genes between Poaceae species and found that sequence divergence is 

strongly associated with level and breadth of expression, and very weakly with 

expression divergence. Both sequence and expression evolution were found to be 

constrained for genes involved in core biological processes such as metabolism, 

transcription, photosynthesis and transport.  

 Overall, the results of this research are broadly applicable to the field of gene 

annotation and increase our understanding of evolution of gene content in plant 

genomes.  
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CHAPTER ONE 

Introduction 
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 What is a gene? Traditionally, a gene has been defined as the unit of heredity. 

However, the definition of a gene has changed several times over the past century, and 

the answer to this question is still under active debate (Pearson, 2006; Gerstein et al., 

2007; Pesole, 2008; Djebali et al., 2012). Understanding which genomic elements 

constitute genes and understanding the evolutionary characteristics of such elements is 

an active area of research. Functional elements in the genome include those producing 

a functional product such as protein-coding and RNA genes, as well as regulatory 

features such as transcription factor binding sites, nucleosome binding sites, DNA 

methylation sites and insulator regions. In addition to these elements, the genome also 

consists of other features with ambiguous functionality such as repeats, pseudogenes 

and unannotated transcribed regions. The advent of high throughput DNA and RNA 

sequencing methods as well as advances in bioinformatics in the last decade have 

provided us with an unprecedented ability to ask questions regarding the characteristics 

and evolution of these elements using comparative genomic and transcriptomic 

approaches. In my thesis, I have made use of such approaches to gain insight into two 

phenomena that potentially influence gene content in the plant kingdom, namely whole 

genome duplication and intergenic transcription.  

ORIGINATION OF NOVEL GENES 

 Acquisition of new genes is an important driver of evolutionary novelty. The 

mechanisms by which new genes arise in a genome have been the focus of research 

since the early 20
th

 century. Pioneering studies in Drosophila (Muller, 1935; Bridges et 

al., 1936) and maize (McClintock, 1950) suggested that novel phenotypes can arise 

through insertion, deletion  and translocation of genomic elements (e.g.: the mosaic 
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color patterns in maize seeds due to transposon hopping), possibly creating new genes 

in the process. However, further research over the next thirty years suggested gene 

duplication as the primary driver of novel gene creation, an argument summarized in 

Susumo Ohno's seminal book Evolution by Gene Duplication (Ohno, 1970). Today, we 

know that novel genes in eukaryotic genomes tend to arise via six principal processes – 

Gene duplication, retroposition (insertion of processed, reverse transcribed RNA back 

into the genome), exon shuffling, trans-splicing (fusion of partial preRNAs of two distant 

genes during RNA processing), horizontal gene transfer and de novo generation (Ding 

et al., 2012). Further discussion, as well as my research, focuses on two of these 

processes – gene duplication and de novo generation.   

Origination via gene duplication 

 Gene duplication is a potent mechanism for creation of novel genes. Duplicate 

genes can arise via four processes – tandem duplication, segmental duplication, 

transposition and whole genome duplication. In the model plant Arabidopsis thaliana, 

there are several examples of lineage-specific gene family expansions caused via 

tandem duplications such as expansions in the Receptor-Like Kinase/Pelle, F-Box and 

Ubiquitin ligase gene families (Hanada et al., 2008). Segmental duplications also occur 

in plants; however, their frequency of occurrence is not clear, and genes arising via 

segmental duplication are significantly less likely to be retained than expected (Cannon 

et al. 2004). The third mode of gene duplication involves duplicating the entire genome 

(also termed polyploidization or whole genome duplication (WGD)). Polyploidization is 

known to occur very frequently in the plant kingdom. Recent research using Expressed 

Sequence Tag (EST) sequences from multiple plants discovered evidence for two 
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ancient duplications – one in the ancestor of all seed plants ~350 million years ago 

(mya) and the other ~230 mya after angiosperms diverged from gymnosperms (Jiao et 

al., 2011), suggesting that all seed and flowering plants have evolved from a polyploid 

ancestor. In addition, 30-50% of the extant flowering plant species are believed to be 

polyploids, and ~15% of angiosperm speciation events are estimated to be due to 

polyploidization (Ramsey and Schemske, 1998; Wood et al., 2009). Polyploidization has 

also been postulated as an answer to "Darwin's abominable mystery" – what caused the 

rapid acceleration in diversification of angiosperms ~100 mya (Friedman, 2009; Jiao et 

al., 2011)? Genes duplicated via such polyploidization events may contribute 

significantly to adaptation and evolution of novel characters in the plant kingdom. 

Duplicate genes are a source of evolutionary novelty because over time, given 

the presence of an extra gene copy, their functions may diverge from each other. The 

evolution of duplicate genes may occur via three routes: 1) they may gain new functions 

(neo-functionalization)(Ohno, 1970), 2) they may partition the functions of the ancestral 

gene between themselves (sub-functionalization)(Force et al., 1999) or 3) one copy may 

lose all functions and may become a pseudogene (pseudogenization)(Li, 1984). Despite 

occurrence of multiple WGD events in the evolutionary history of plants, most plant 

genomes contain only ~25,000-45,000 genes. This indicates that a large proportion of 

duplicated genes are lost through time, and only a fraction of the genes are retained. 

Distinguishing the characteristics of genes that are retained from those that are lost, as , 

understanding whether these characteristics are consistent between different 

polyploidization events and between different lineages derived from the same WGD 

event would contribute significantly to our understanding of plant genome evolution.  
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De novo origination of genes 

Although there has been much skepticism regarding novel genes arising de novo 

(Ohno, 1970; Jacob, 1977), comparative genomics approaches in organisms such as 

yeast (Dujon, 1996), Drosophila (Domazet-Loso and Tautz, 2003) and A. thaliana (Lin 

et al., 2010) have revealed that ~10% of annotated protein-coding genes in each 

species tend to be lineage-specific, with no known homologs outside their lineage. 

Based on recent studies (Birney et al., 2007; Djebali et al., 2012), it seems intergenic or 

intronic transcripts produced by RNA polymerase transcription may likely be a source of 

such novel genes. 

The Human Genome Project released the first version of the human genome 

sequence in 2001 and annotated ~32,000 protein-coding genes (Lander et al., 2001). 

This number was subsequently revised to 24,500 genes (Pennisi, 2003). Compared to 

the human genome, the genomes of Caenorhabditis elegans and Arabidopsis thaliana, 

released around the same time, were found to have 19,000 and 25,498 genes (C. 

elegans Sequencing Consortium, 1998; Arabidopsis Genome Initiative, 2000). The 

similarity in the numbers of annotated protein coding genes despite an observably large 

difference in the organismal complexity led to a debate on whether novel, yet 

unannotated genes with features different from traditional protein-coding genes lay in 

the genomes of more complex organisms, and whether such features could be 

identified based on the transcriptome. Around the same time, global transcriptome 

profiles of mammals (Bertone et al., 2004a; Carninci et al., 2005a), Saccharomyces 

cerevisiae (David et al., 2006) and A. thaliana (Yamada et al., 2003a) revealed a 

complex transcriptional landscape, with several thousand transcripts lying in the introns 
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or in intergenic regions, or possessing alternatively spliced isoforms of the primary 

transcript. Over the past decade, several studies have suggested presence of novel 

types of functional non-coding RNA such as microRNA, long non-coding RNA, piwiRNA, 

vaultRNA etc. (Esteller, 2011) as well as novel small open reading frames (Basrai et al., 

1997; Hanada et al., 2007; Pruitt et al., 2007) in the genomes of multiple species.  

Despite evidence for the existence of several novel genomic features, some of 

which are transcribed, it is not clear whether they contribute to organismal complexity. A 

large proportion of these novel features is not conserved across species and is lineage-

specific. Novel intergenic or intronic transcripts tend to be expressed at very low levels 

(<0.01 transcripts/cell) and have a very narrow breadth of expression (Djebali et al., 

2012). Despite several hundred publications on non-coding RNA in the past decade, 

only a handful of non-coding RNAs, such as Xist, RepA, Air, Hotair, Coldair, have been 

rigorously shown to be functional (Kim and Sung, 2012). Very few studies (Guttman et 

al., 2009; van Bakel et al., 2010) have systematically investigated the relative 

abundance of novel functional transcripts and their characteristics vis-a-vis known 

transcripts. Most of these studies have been conducted in mammalian model systems, 

with the plant kingdom being significantly under-sampled. Hence, the percentage of the 

transcriptome that contributes to evolutionary novelty, especially in plants, is still not 

clearly understood. 

 The questions raised above regarding the patterns of evolution of WGD derived 

duplicate genes and functionality of novel unannotated transcripts can be addressed 

using a comparative genomics/transcriptomics approach.  
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COMPARATIVE GENOMICS AND TRANSCRIPTOMICS AS TOOLS TO STUDY 

GENE CONTENT EVOLUTION  

Comparative analysis of species has been used since historical times to 

understand biological principles. For example, Charles Darwin famously used this 

strategy to illustrate the concept of evolution in his book On The Origin Of Species 

(Darwin, 1859). After the development of the first DNA and protein sequencing 

methods, molecular information in the form of nucleotide and amino acid sequences 

began to be used for understanding relationships between species and even between 

genes. Such data allowed researchers to develop models of sequence evolution, 

techniques for assessing selection acting on sequences (Kimura, 1983; Ohta, 1992; Li, 

1997) and methods of phylogenetic reconstruction (Felsenstein, 1989). Such methods 

can now be used to assess whether a sequence shows a signature of functionality. In 

recent times, comparative genomics and transcriptomics have also received a boost 

with the advent of technologies such as high throughput sequencing and rapid 

advances in computing power. 

Illumina and 454 sequencing – together referred to as next-generation or second-

generation sequencing approaches – have, over the past six years, enabled high-

throughput and economical collection of genome and transcriptome data from 

organisms with or without reference genomes. By 2012, the cost for sequencing using 

Illumina had dropped to $0.5/Mb (Loman et al., 2012), compared to ~$2000/Mb using 

traditional Sanger sequencing (Liu et al., 2012). The ability to sequence cheaply has 

resulted in an explosion of genomic data from a variety of model organisms, permitting 

comparative genomics between different populations of the same species (Weigel and 
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Mott, 2009) and between multiple closely related species. Similarly, the availability of 

transcriptomic data has permitted us to explore gene expression under multiple 

conditions. In my research, I have used both genomic and transcriptomic data combined 

with comparative approaches in the plant Brassicaceae and Poaceae families. to 

address the questions of origination of novel genes and their evolution.  

PLANT FAMILIES OF INTEREST 

In my research, I have conducted comparative genomic and transcriptomic 

analyses on two plant families – Brassicaceae and Poaceae. 

The Brassicaceae family is a large family of flowering plants consisting of ~330 

genera and ~3700 species. The hallmark characteristic of this family is the production of 

glucosinolate compounds, a group of secondary metabolites useful for herbivore 

defense. This family contains the model organism A. thaliana as well as economically 

important crops such as Brassica rapa (canola), B. oleraceae (cabbage), B. napus 

(oilseed rape) and B. nigra (black mustard). The A. thaliana genome, released in 2000, 

was the first plant genome sequenced and was found to contain 25,498 genes. Over the 

past decade, ten updates of the genome assembly have been released taking the gene 

count to 27,416. A wealth of information is available for A. thaliana including several 

RNA expression datasets, DNA methylation and histone maps under specific 

conditions, gene network data, population structure and genomic data for >500 

accessions as well as several experimental tools for genetic manipulation. Hence, A. 

thaliana is an attractive system for comparative genomic and transcriptomic studies.  

In addition to A. thaliana, the genome of B. rapa has also been recently 

sequenced (Wang et al., 2011). The genome sequence, coupled with information from 
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previous studies, suggests that a genome triplication event (termed as the α' WGD 

event) occurred ~25 million years ago (mya), after the lineage separated from the 

Arabidopsis lineage (Chapter 2). To understand the evolutionary patterns of duplicate 

genes and pseudogenes created as a result of the α' WGD event, we sequenced and 

annotated the genome of wild radish (Raphanus raphanistrum), a Brassicaceae species 

closely related to B. rapa and the cultivated radish Raphanus sativus. Given that the α' 

WGD event was common to both B. rapa and R. raphanistrum, the genome sequence 

of these two species allows us to compare and contrast the patterns of evolution of 

duplicate genes in different lineages.  

The second plant family I have studied is the Poaceae family. This monocot 

family, popularly known as the grasses, is the fifth largest plant family, consisting of 

>600 genera and >10,000 species spread over most of earth’s landmass. It is also the 

most economically important family with species such as cultivated rice (Oryza sativa), 

wheat (Triticum aestivum), maize (Zea mays), sorghum (Sorghum bicolor), oats and 

bamboo as members. The genomes of eight Poaceae species have been sequenced so 

far (Sorghum bicolor, Zea mays, Setaria italica, Panicum virgatum, Oryza sativa, 

Brachypodium distachyon, Hordeum vulgare, Triticum aestivum). Although several 

studies have looked into the evolution of genes between Poaceae species (Paterson et 

al., 2009; Schnable et al., 2009; International Brachypodium Initiative, 2010), the 

evolution of gene expression patterns as well as intergenic transcripts in these species 

which have large genome sizes, is poorly understood. In my research (Chapter 4), I 

have made use of high-throughput RNA sequencing data from multiple tissues of four 
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Poaceae species to understand the characteristics and evolution of genic and intergenic 

transcription In Poaceae.  

SIGNIFICANCE 

 Over the past ten years, several plant genomes have been sequenced using 

traditional Sanger-based as well as high-throughput sequencing technologies, revealing 

the extent of the influence of WGD in shaping plant genomes. Such genome sequence 

information can now be used to fill in important gaps in our understanding of duplicate 

gene evolution as a result of large evolutionary distances between sequenced genomes 

or unavailability of data. In my research (Chapter 2), I make use of four closely related 

Brassicaceae species to address fundamental questions regarding duplicate gene loss 

and retention in independent lineages derived from the same WGD event, rates of 

pseudogenization as well as characteristics of retained duplicates, and ask whether 

duplicate gene retention can be predicted using the characteristics of genes. Answers to 

these questions will increase our understanding of duplicate gene evolution in plants. In 

addition, the radish genome sequence and the transcriptomic resources made available 

as part of this study will be useful for geneticists and breeders studying radish as well as 

for comparative genomics in Brassicaceae. 

 In addition to genome sequencing, high-throughput RNA sequencing allows us to 

detect several thousand unannotated intergenic transcripts, but whether these 

constitute novel, functional genes is a matter of intense debate (van Bakel et al., 2010, 

2011; Clark et al., 2011; Dinger et al., 2009). Addressing this question is not only 

important for updating existing gene annotations but also for fine-tuning gene prediction 

programs, which currently have a high success rate in finding canonical protein-coding 
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genes with hallmark features such as translation start and stop codons, easily 

distinguishable intron-exon boundaries, protein domains and dinucleotide bias, but 

perform poorly when identifying small peptides, RNA genes, pseudogenes and other 

non-canonical genomic features. In addition, identifying non-canonical genes is 

important for understanding the nature of the genetic variation that, for example, causes 

a human to appear and behave different from a worm even though both possess a 

comparable number of canonical protein-coding genes. 

 Taken together, this research furthers our understanding of gene content 

evolution in the plant kingdom. My studies of Brassicaceae and Poaceae families, 

reveal principles that are broadly applicable to all flowering plants.  
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CHAPTER TWO 

Genome sequencing of wild radish and the evolution of polyploidy-derived 

duplicate genes and pseudogenes in Brassicaceae
1
 

 

1
The work described in this chapter has been submitted for publication: 

Gaurav Moghe, David Hufnagel, Haibao Tang, Yongli Xiao, Ian Dworkin, Christopher  

Town, Jeffrey K. Conner, and Shin-Han Shiu (submitted) The genome sequence of wild 

radish reveals the patterns of evolution of whole genome duplicate genes and 

pseudogenes in Brassicaceae.  
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ABSTRACT 

Polyploidization events are frequent among flowering plants; however, whether 

duplicates of the same event follow similar evolutionary trajectories in independent 

lineages is not clear. To address this question, we sequenced the genome of wild radish 

(Raphanus raphanistrum), a Brassicaceae species that experienced a whole genome 

triplication event (referred to as α’ WGT), 24-29 million years ago prior to diverging from 

Brassica rapa. We found that ~66% of the orthologous groups experienced gene loss 

since α’ WGT in both species, either via gene deletion or pseudogenization. Although 

gene deletion may occur immediately after polyploidization, we did not find evidence for 

a immediate pseudogenization after α’ WGT. Among retained duplicates, we found 

evidence for both sequence and expression level divergence, with sequence evolution 

being largely consistent between B. rapa and R. raphanistrum. Analysis of expression 

levels between Arabidopsis thaliana and radish flowers suggested that divergence 

among duplicates occurs primarily via decrease in flower expression, however, one of 

the copies still tends to maintain the original expression state. We also asked whether 

the genes whose WGD paralogs were lost had different characteristics than retained 

duplicates and found biases in function, sequence composition, expression patterns, 

network connectivity and rates of evolution. Using a machine learning approach, we 

then created a framework for predicting whether a duplicate would be retained after 

WGD. Overall, our study suggests a convergent pattern of duplicate gene loss and 

retention between B. rapa and R. raphanistrum and provides new insights into mode of 

evolution of duplicate genes post polyploidization.     
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INTRODUCTION 

 Polyploidization is a frequent occurrence in the plant world. Over 70% of 

angiosperms are polyploids or have experienced a polyploidization event in their 

evolutionary history (Ramsey and Schemske, 1998). In addition, ancient polyploidy is 

common to all flowering plant families and is correlated with dramatic increases in plant 

species richness in several angiosperm lineages (Soltis et al., 2009). A polyploidization 

event at least doubles the entire repertoire of a plant's gene content. The duplicated 

genes may remain functionally redundant briefly, but eventually may gain new functions 

(neo-functionalization,(Ohno, 1970)), be retained due to partition of ancestral functions 

(sub-functionalization, (Force et al., 1999)) or be lost via deletion of the gene segment 

or pseudogenization (Li et al., 1981). The mode of evolution of a duplicated gene pair, 

especially those derived from polyploidization, has been shown to be dependent on 

several features, including gene function (Blanc and Wolfe, 2004; Hanada et al., 2008), 

gene complexity (Chapman et al., 2006; Jiang et al., 2013), levels of gene expression 

(Pál et al., 2001), dominance of one of the parental genomes (Schnable et al., 2011) 

and network connectivity (Thomas et al., 2006). Despite correlations of these features 

with duplicate retention, it remains unclear to what extent these features may allow 

prediction of duplicate retention. This issue can be addressed in greater detail in 

Brassicaceae, given the close evolutionary relationship between the Brassiceae tribe 

species including the wild radish Raphanus raphanistrum (RR) and Brassica rapa (BR) 

and the Arabidopsis genus (43 mya, (Beilstein et al., 2010)), the recent hexaploidization 

in the Brassiceae lineage and the availability of a broad range of molecular data in 
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Arabidopsis thaliana (referred to as AT) that can be used to inferred the potential roles 

of Brassiceae duplicates.  

 In Brassicaceae, studies of duplicate genes in AT suggest three rounds of whole 

genome duplication (WGD) after its lineage diverged from the monocot lineage. The 

most recent WGD event (α) occurred 50-65 million years ago (mya) (Bowers et al., 

2003; Beilstein et al., 2010), prior to the divergence of species in the Brassicaceae 

family. Notably, a further hexaploidization event (referred to as the α' whole genome 

triplication (WGT) event) occurred recently in the common ancestor of BR and RR 

(Lagercrantz and Lydiate, 1996; Lysak et al., 2005; Yang et al., 2006; Town et al., 2006; 

Wang et al., 2011). Among Brassiceae species, much of the knowledge about the 

evolution of α' duplicates is derived from species in the Brassica genus, particularly the 

recently sequenced BR genome (Wang et al., 2011). Since the occurrence of a 

hexaploidization event in BR's evolutionary history, >50% of the duplicated genes may 

have been lost via the processes of deletion and pseudogenization (Wang et al., 2011). 

Among retained duplicates, those involved in transcriptional regulation, hormonal 

signaling and response to environmental stresses were found to be over-represented 

(Wang et al., 2011). These findings provide a baseline understanding of WGD duplicate 

evolution. They also led to the question if the pattern of duplicate gene evolution will be 

similar in another Brassiceae tribe species that also experienced the α' event. To 

address this question, we chose to sequence the genome of wild radish, a species 

closely related to the Brassica species (Arias and Pires, 2012).   

RR is a relative of the cultivated radish (R. sativus), a commercially important 

crop consumed primarily in Asia. RR, which is native to the Mediterranean region and 
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likely the ancestor of R. sativus, has evolved a weedy form that has become a serious 

global agricultural pest. RR is difficult to control owing to prolific seed production and 

high levels of resistance to drought and herbicides (Warwick and Francis, 2005). Wild 

radish is also a model system in ecology and evolution  (Conner, 2002; Conner et al., 

2009). Availability of genomic and transcriptomic resources for Raphanus will contribute 

to a better understanding of the molecular basis and evolutionary characteristics of 

weediness as well as aid in improvement of cultivated radish. In addition, these 

resources enables comparisons of two post α' WGT species allowing us to pinpoint 

common and divergent trends in duplicate evolution.  

In this study, we report a draft assembly and annotation of the RR genome. After 

establishing the orthologous relationships between AT, A. lyrata (AL), BR and RR 

genes, we asked three major questions: (1) Did evolution of duplicate genes post α' 

WGT follow similar trajectories in BR and RR? (2) What are the patterns of 

pseudogenization and duplicate gene divergence since the α' WGT event? and (3) 

Comparing properties of duplicates derived from α WGD and α' WGT, can we predict 

which genes would be retained or lost? Our results suggest that the evolution of WGD 

duplicate genes follows similar trends of losses and retention in independent 

descendant species and that the retention process may possess certain biases which 

can be uncovered through computational modeling. 
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RESULTS AND DISCUSSION 

Sequencing and assembly of the wild radish genome 

 As the first step in creating a draft assembly for the RR genome, we estimated 

the genome size of RR using flow cytometry (see Methods). The estimated size of 515 

Mb is comparable to genome size estimates of related species including BR (529 Mb), 

Brassica oleraceae (696 Mb) and Raphanus sativus (573 Mb) (Johnston et al., 2005). 

Because RR is an obligate out-crosser with high heterozygosity, we sequenced the 

genome of a 5
th

 generation inbred plant using paired end Illumina and mate-paired 454 

sequencing strategies at 47X and 2.5X coverage of the estimated genome size, 

respectively. Reads were assembled with a hybrid approach using multiple assembly 

programs (see Methods, Figure 2.1). The final assembly size of 254 Mb represented 

49.3% of the estimated genome size, with a N50 contig size of 10.1 kb (Table 2.1). This 

is comparable to the draft BR genome where the assembly is 283.8 Mb or 53.7% of the 

estimated genome size despite its significantly better sequencing coverage at 72X 

(Wang et al., 2011).  

 The reason that our genome assembly size is only around half of the RR genome 

size is likely because a large proportion of the missed sequence was highly repetitive 

and/or heterochromatic. The size of the euchromatic space in BR is estimated to be 

~220 Mb (Mun et al., 2009). In addition, ~30% of all BR chromosomes are comprised of 

centromeric repeats that occupy ~50% of all heterochromatic domains (Lim et al., 

2007).  Assuming that most of this heterochromatin consists of repetitive, non-genic 

regions and RR is similar to BR in its heterochromatin content, it is likely that we 

captured most of the genic space in our RR assembly. The coverage of the gene space 
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in our RR and the published BR  assemblies was further assessed using Expressed 

Sequence Tags (ESTs) and using the Core Eukaryotic Gene Mapping Approach 

(CEGMA) (Parra et al., 2007). We found that 93.3% and 78.4% of the BR and RR ESTs 

could be mapped on to their  cognate assemblies (see Methods, Table 2.1). In addition, 

the BR and RR assemblies contained complete matches for 248 (100%) and 241 

(97.2%) CEGMA proteins, respectively (Table 2.1). These observations suggest that the 

RR assembly is less complete than BR. However, a significant proportion of the gene 

space in RR is covered in the draft assembly. Using the MAKER annotation pipeline 

(Cantarel et al., 2008), we predicted 38,174 proteins in the RR assembly (see Methods, 

Figure 2.2 AB). Finally, for comparing the gene space across species, we employed a 

combination of similarity-based as well as synteny-based approaches to define 

orthologous groups (OGs) between AT, AL, BR and RR protein-coding genes (see 

Methods).  

 To understand whether duplicate genes in BR and RR have evolved 

independently, it would be important to know the BR-RR speciation time in relation to 

the timing of the α' WGT event. Using our definitions of orthologous and paralogous 

relationships between genes the four Brassicaceae species, we first estimated the 

divergence time between BR and RR.  

Timing the speciation and polyploidization events in Brassicaceae 

 In order to determine the amount of time for which the evolution has been 

occurring independently in BR and RR, we first sought to estimate the timing of the BR-

RR speciation event in the context of the timings of the α' WGT and AT-BR speciation 

events.  Previous studies have suggested a broad range of timings for speciation and 
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Figure 2.1: Pipeline implemented for assembling the RR genome. Software and 

parameters used for each step are noted in red. For interpretation of the references to 

color in this and all other figures, the reader is referred to the electronic version of this 

dissertation.  
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Table 2.1: Comparison between RR and BR assemblies 

 R. raphanistrum 
contigs 

B. rapa contigs B. rapa scaffolds 

Sequencing 
technology and 
coverage 

47X Illumina, 500bp 
PE + 2.5X 454, 3kb 
mate pair 

72X Illumina, multiple insert sizes + 
Sanger BAC-end sequences 

Assembly size 254.6 Mb 264.1 Mb 283.8 Mb 

Number of contigs 68,331 60,521 40,549 

N50 10.1 kb 27.2 kb 1.9 Mb 

Median contig size 1166 bp 173 bp 140 bp 

Completeness of 
highly conserved 

eukaryotic genes
1
 

97.2% NA 100.0% 

% consensus 
transcripts mapping 

to assembly
2
 

78.4% NA 93.3% 

1
 Conservation of 248 Core Eukaryotic Genes (CEGs) in the R. raphanistrum assembly.  

2
 150,524 Raphanus and 85,508 Brassica ESTs were downloaded from NCBI dbEST 

and merged into 83,214 and 79,830 unique consensus transcripts using a custom 
merging pipeline (see Methods). 
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Figure 2.2: Gene prediction pipeline. (A): All protein domains related to repetitive 

elements were discarded in the last step. (B): Distributions of the Annotated Edit 

Distance (AED) values before and after the penultimate filtering step.  
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 the WGT events in the Brassicaceae family (Figure 2.3A, (Yang et al., 1999; Koch et 

al., 2000; Lysak et al., 2005; Town et al., 2006; Mun et al., 2009; Couvreur et al., 2010; 

Beilstein et al., 2010)) and some of these estimates have been revised based on 

availability of new data  (Beilstein et al., 2010). In the absence of consistent times and 

due to the methodological differences between these studies, we re-estimated the 

timing of α' WGT event using most updated data in addition to estimating the timing of 

the BR-RR speciation event.  

 In this study, using a lower limit of AT-BR divergence time of 30 mya (Beilstein et 

al., 2010) as well as a neutral substitution rate of 7*10
-3

 substitutions/site/million years 

(Ossowski et al., 2010), we performed Bayesian dating with a prior of 36 mya for the 

AT-BR divergence time (Town et al., 2006). We also obtained divergence times based 

on the synonymous substitution rate (dS) (Figure 2.4A). Using these two methods, we 

estimated the median divergence time between BR and RR to be 13-19 mya, prior to 

the divergence of AT and AL (10-11 mya) and much later than the divergence time 

between AT-BR lineages (32-36 mya) (Table 2.2). These estimates are significantly 

older than some of the previous estimates (Figure 2.3A), partly due to the prior and the 

lower limit for the divergence between AT and BR/RR lineages set at 36 and 30 million 

years respectively based on most recent fossil data, and partly due to our use of a lower 

neutral substitution rate than that used by Koch et al. (Koch et al., 2000) (Figure 2.3B). 

Our estimates are most similar to three other studies (Town et al., 2006; Couvreur et al., 

2010; Beilstein et al., 2010). Using α' WGT-derived BR and RR duplicates, we 

estimated that the WGT event took place 24-29 mya (Figure 2.4B). Taken together, our 

results suggest that the polyploidization event likely occurred 3 to 12 million years after 



23 
 

 

Figure 2.3: Divergence time estimates (A): Timing of the AT-BR split and the 

triplication event, as per previous studies. (B): Timing of various events based on the 

formula T= dS /(2 x Rate) using a rate of 15x10
-3

 substitutions/site/million years (Koch 

et al., 2000). 
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Figure 2.4: Relationships between Brassicaceae species. (A): Synonymous 

substitution rate (dS) distributions between pairs of orthologs and paralogs in 

Brassicaceae species. (B): Timing of various events, indicated by yellow dots, in the 

Brassicaceae family. The lower number for each time corresponds to the median time  

obtained using the formula T=(dS/2*rate) while the upper number corresponds to the 

median time obtained using a Bayesian dating approach (multidivtime). Thickness of the  

lines corresponds to the estimated genome sizes, assuming an ancestral genome size 

of 200 Mb. The image for A. lyrata is copyrighted (© Ya-Long Guo, Max Planck Institute 

for Developmental Biology) and used with permission.  
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Table 2.2: Descriptive statistics of the speciation and WGD times 

 Multidivtime  Synonymous rate (dS) 

 Mean Median 95% CI of 
mean 

SD  Mean Median 95% CI of 
mean 

SD 

AT-
AL 

11.1 11.3 10.5-11.2 1.3  11.3 10.1 10.2-12.5 46.1
1
 

          

AT-
BR 

36.7 36.5 36.5-36.8 1.6  34.3 31.5 34.0-34.6 13.0 

AT-
RR 

Same as AT-BR  35.2 32.1 34.9-35.6 15.0 

          

BR-
BR 

27.4 28.2 27.1-27.7 4.5  24.5 23.1 24.2-24.6 7.6 

RR-
RR 

27.8 29.0 27.4-28.2 4.9  26.4 24.9 26.1-26.9 11.1 

          

BR-
RR 

19.0 18.8 18.5-19.7 5.4  14.4 13.5 14.3-14.6 7.5 

1
 SD is high due to the large deviation of the AT-AL dS distribution from normality 
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 the separation of the AT-BR lineages, and that the Raphanus genus may have been 

diverging from BR for a longer time than previously estimated (Yang et al., 2002; Lysak 

et al., 2005). In addition, we can also surmise that the α' duplicates may have shared 5-

16 mya of common descent, followed by 13-19 mya of independent evolution in BR and 

RR. Thus, the BR and RR duplicates may be used to assess whether the patterns of 

retention and loss of genes post WGD occur in a similar fashion in related post WGD 

species. 

Patterns of loss and retention of duplicate genes post α' WGT 

 AT and AL have 27,416 and 32,670 annotated genes, respectively. Assuming 

that the common ancestor of AT/AL/BR/RR had ~30,000 genes, the α' event should 

have created ~90,000 genes. Considering that there are 41,174 BR and 38,174 RR 

genes annotated, only ~42-45% genes in the ancestral hexaploid are retained. The 

extent of gene loss is evident at the protein domain level because there are on average 

1.4 times more domain family members in both BR and RR vs AT instead of three times 

more (Figure 2.5A). After the α' event, the BR and RR lineages have evolved 

independently for 13-19 million years. Thus the patterns of gene retention and loss may 

have followed different trajectories in these species. There can be two extreme 

scenarios. The first is a completely random pattern of duplicate retention and loss in 

these two lineages. The second is that a gene retained in BR is always retained in RR. 

To see which scenario better describes lineage-specific evolution of α' duplicates, we 

examined the patterns of duplicate gene retention at the orthologous group (OG) level.  

Each OG specifies one ancestral gene common between AT, AL, BR, and RR. In 

addition, the phylogenetic relationships of genes in an OG provide information of  
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Figure 2.5: Patterns of evolution of α' duplicates. (A): Comparison of PFAM domain 

family memberships between pairs of species. (B): Comparison of orthologous groups 

between the four species, indicating a preponderance of unexpanded or lost OGs 

among all orthologous groups. (C) Schematic representations of Type I and Type II. 

Tree structures which could not be classified into Type I and Type II were classified as 

Type III.  
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speciation and α' duplication nodes that allow inference of whether α' duplicates are 

retained or lost. We identified 16,567 OGs containing high-confidence BR and RR 

genes derived from the α' WGT event (see Methods, Figure 2.5B). Using these OG 

definitions, we first asked whether α' duplicates tend to be lost in parallel between BR 

and RR i.e. in cases where BR duplicates are lost, are the RR duplicate lost too (and 

vice versa)? We found that in 10,521 and 8871 OGs where BR and RR duplicates, 

respectively, returned to a singleton state, 6235 (70.3%) cases were common, 

significantly higher than random expectation (Fisher Exact Test p<1e-16), suggesting 

occurrence of parallel losses in BR and RR.  

 For further analyses, we classified the OGs into three types (Figure 2.5C). The 

first type consists of 4702 OGs where α' duplicates are mostly retained in BR and/or 

RR. Specifically, type I OGs are defined as those with 1 member each from AT and AL 

and 2 or 3 members from BR or RR. The type II OGs (2534) are those with no α' 

duplicate retained: only 1 member from AT and AL and 1 member from BR and RR. The 

number of type II OGs is significantly lower than the common singleton cases reported 

above (6235) because we also excluded OGs where the BR or RR genes had putative 

tandem or segmental duplicates (see Methods). Such OGs were included in type III, 

which consists of the rest of OGs (9331).  BR and RR genes in type I and type II OGs 

are referred to as retained duplicates and singletons, respectively. We found that 

retained duplicates tend be involved in biotic and abiotic stress response, hormonal 

signaling, development as well as regulation of transcription compared to singletons 

(Table 2.3). In contrast, singletons were enriched in processes such as DNA repair, cell 

division, metabolic processes as well as RNA modification and processing (Table 2.3).  
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Table 2.3: Gene Ontology categories over-represented as per Fisher Exact Test  

GO categories over-represented in 
retained duplicates compared to 
singletons 

GO categories over-represented in 
singletons compared to retained 
duplicates 

Response to salt stress Metabolic process 

Response to chitin Oxidation-reduction process 

Response to cadmium ion DNA repair 

Response to cold RNA processing 

Response to wounding RNA methylation 

Defense response to fungus RNA modification 

Response to nematode RNA processing 

Response to water deprivation Transcription initiation, DNA-dependent 

Regulation of transcription Regulation of transcription by RNA Pol II 

Positive regulation of transcription Embryo development ending in seed 
dormancy 

Negative regulation of transcription Cell division 

Response to auxin stimulus Vegetative to reproductive phase transition 
in meristem 

Response to jasmonic acid stimulus Proteolysis 

Response to salicylic acid stimulus Protein peptidyl-prolyl isomerization 

Response to ethylene stimulus Thylakoid membrane organization 

Response to gibberelin stimulus GPI anchor biosynthetic process 

Jasmonic acid signaling pathway  

Auxin efflux 

Cytokinin mediation signaling pathway 

Unidimensional cell growth 

Stomatal movement 

Plant cell wall loosening 

Regulation of timing of reproductive trans. 

Photomorphogenesis 

Multicellular organismal development 

Seed development 

Floral organ abscission 

Seed germination 

Root hair cell development 

Secondary cell wall biogenesis 

Protein phosphorylation 

Small GTPase mediation signal transduc. 

Activation of MAPKK signaling 

MAPK cascade 

Circadian rhythm 

Transmembrane protein transport 

Glycolysis 

Fatty acid biosynthetic process 
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Table 2.3 (cont’d) 

GO categories over-represented in 
retained duplicates compared to 
singletons 

GO categories over-represented in 
singletons compared to retained 
duplicates 

Chlorophyll biosynthesis  

Cellulose biosynthesis 

Carbohydrate biosynthesis 
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Overall, we find that a large percentage of OGs (~70%) experienced losses in BR 

and RR, returning them to a singleton state or deleting the entire gene lineage 

altogether.  Such a behavior may be expected as the polyploid returned to a diploid 

state over the past 25 million years. The process of gene loss may occur via complete 

deletion of the gene segment or via accumulation of mutations leading to pseudogenes 

that can be identified. To better understand the process of gene loss, we identified 

pseudogenes in the BR and RR genomes to address questions regarding the properties 

of pseudogenes and the timing of their pseudogenization.  

Pseudogenization of duplicate genes and timing of pseudogenization 

 Comparison of PFAM domain family sizes and sizes of OGs between BR/RR and 

AT/AL, suggests that extensive gene losses and pseudogenization have occurred after 

the α' WGT in the BR/RR lineage. To estimate the extent of pseudogenization and 

assess the properties of pseudogenes, we identified 39,659 BR and 21,226 RR 

pseudogenes that are fragments of their paralogs and/or contain premature 

stops/frameshifts (Figure 2.6A,B). Overall, the putative pseudogenes in BR and RR had 

significantly higher dN/dS values compared to functional ortholog and paralog pairs (KS 

test p<1e-15, Figure 2.6C), consistent with their assignment as neutrally evolving 

pseudogenes. However, some pseudogenes also had dN/dS values comparable to 

functional duplicate genes. These pseudogenes contain in-frame stops and/or 

frameshifts or are short fragments (Figure 2.6B), suggesting that they are not simply 

false positives but may have been created recently.    
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In addition, when compared to their functional paralogs, we find that 10,778 BR (13.4%) 

and 4898 RR (21.6%) had their dS values between 0.2 and 0.6, the 25
th

 and 75
th

 

percentiles of the duplicate gene dS distributions. These pseudogenes could potentially 

have arisen via the α' WGT event. 

 Studies on synthetic polyploids suggest that newly formed polyploid undergoes 

rapid genomic arrangements in the first few generations, which can result in 

instantaneous loss of several thousand genes from the genome via deletion (Tian et al., 

2010; Matsushita et al., 2012). In addition, nonsense/frameshift/indel mutations may 

also accumulate in the gene body leading to pseudogenization of gene copies. It is not 

known whether pseudogenization of whole genome duplicates, like deletion of genes, 

occurs rapidly after the polyploidization event or whether the fraction of duplicates that 

escapes deletion can be tolerated for some time. To address this question, we 

estimated the timing of pseudogenization for the pseudogenes derived from the α' WGT 

event. 

 Firstly, we stringently defined pseudogenes derived from α' WGT as those lying 

in homeologous regions with their functional paralogs (see Methods).  Thus, 2268 BR 

and 1261 RR pseudogenes were identified as α' derived pseudogenes. To estimate 

timing, we used a previously published method (Chou et al., 2002) with the assumption 

that before pseudogenization, the two duplicate genes experienced the same degree of 

selective constraint and that when one of the duplicates became a pseudogene, the 

pseudogenized copy evolved neutrally (see Methods, Figure 2.7A). Based on these 

assumptions, the estimated timing of pseudogenization indicates that over the past 25-

30 million years, pseudogenization may have occurred gradually or at a steadily 



33 
 

 

Figure 2.6: Patterns of pseudogenization in Brassicaceae species. (A): Number of 

pseudogenes (ᴪ) predicted in each species, before (red) and after (green) correcting for 

the fragmented nature of the genomic assemblies. (B): Comparing selective constraint 

between each pair of functional homologs and between functional gene- pseudogene 

pair shows that pseudogenes are under significantly relaxed constraint than functional 

genes. (C): Timing of pseudogenization (black and gray lines) compared to timing of 

other events. The distribution of the times when the functional ancestors of the 

pseudogenes were duplicated, based on dS, is shown as a dotted black line.  
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Figure 2.7: Patterns of pseudogenization in studied species. (A): Schematic 

representation of the formula used for estimation of timing. The red star represents the 

pseudogenization event. (C-F): Pseudogenization timing distributions using different  
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Figure 2.7 (cont'd) 

criteria for a) choosing WGT derived pseudogenes and b) estimating timing. See 

Methods for more details.  
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increasing rate (Figure 2.6C). The behavior of both BR and RR pseudogenes was very 

similar, suggesting similar selective constraints on genes acting in both species 

independently. We cannot distinguish between a constant pseudogenization rate and a 

steadily increasing pseudogenization rate owing to the errors associated with estimation 

of divergence times using the molecular clock assumption. For example, the lower 

pseudogenization rates observed between 25-35 mya could simply be due to estimation 

errors as opposed to a true low initial pseudogenization rate. In addition, the choice of 

thresholds for defining α' derived pseudogenes was found to affect slightly alter the 

shape of the timing distribution (see Methods, Figure 2.7B-E). However, regardless of 

the thresholds used, we do not see any evidence of rapid pseudogenization 

immediately post α' WGT, suggesting that the triplicated gene content which escaped 

deletion in the neopolyploid ancestor of BR and RR may have been tolerated for some 

time. 

Sequence divergence of duplicate genes post α' WGT  

 Although a large proportion of the triplicated gene content has been lost, ~15% of 

the duplicates are still retained. Given that ~27 million years have elapsed since the α' 

WGT event, these retained duplicates may sub-functionalize or neo-functionalize over 

time via expression or sequence divergence. Such sequence divergence may be the 

consequence of accelerated evolution in one gene over the other. To differentiate 

whether the α’ derived duplicates evolved at a similar or distinct rate, we used relative 

rates test (Goldman and Yang, 1994) to compare BR and RR paralogs using their AT 

ortholog as an outgroup (see Methods). We found that the rate of neutral evolution 

based on synonymous sites at the third codon position was similar between almost all 
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duplicate gene pairs, with only ~4% gene pairs evolving asymmetrically (Figure 2.8A). 

On the other hand, when considering coding and amino acid sequences, 10-13% BR 

and 11-18% RR gene pairs evolved asymmetrically, respectively. Most α' duplicates 

appear to evolve at uniform rates (~83-87% for amino-acids) (Figure 2.8A). We also 

found that distributions of fold-difference between branch-wise dN/dS for the 

asymmetrically evolving pairs was significantly greater than that for the symmetrically 

evolving pairs (KS test p<1e-15) (Figure 2.8B), suggesting that the asymmetry in amino 

acid and nucleotide substitution rates is associated with a significant relaxation of 

selection on one of the branches, similar to observations in yeast (Fares et al., 2006). 

We did not find any functional bias (based on GO biological process categories) among 

gene pairs evolving asymmetrically. However, of the 443 and 491 OGs to which the BR 

and RR asymmetric duplicates belonged to, 159 (36.9%) OGs were the same. The 

overlap was highly statistically significant, since a simulation performed for 100,000 

iterations by randomly picking 443 and 491 OGs could only find a maximum of 16.5% 

overlap across all iterations. This finding suggests that a significantly high number of 

OGs underwent parallel instances of asymmetric evolution in BR and RR, indicating a 

potential bias for some duplicates to evolve asymmetrically. In addition, some gene 

pairs may have undergone asymmetric evolution in the shared lineage of BR and RR. 

In cotton, comparison of 16 duplicated genes between allotetraploid cotton and 

its diploid progenitors found no evidence for aymmetric evolution between duplicates 

post polyploidization (Cronn et al., 1999). Analyses of protein evolution rates in AT 

duplicates derived from the α duplication event also indicated that <20% of the 833 

pairs analyzed were evolving asymmetrically from each other at the sequence level 
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(Blanc and Wolfe, 2004). In contrast, another study in yeast found ~60% of the WGD 

derived duplicates experienced asymmetric rates (Byrne and Wolfe, 2007). Our findings 

that only 15-20% of the α' WGT duplicates evolved asymmetrically are more consistent 

with study in cotton and AT. Such asymmetry coupled with a relaxation of selection on 

one branch may lead to eventual pseudogenization of the gene on the leaf node. 

However, neo-functionalization or, in some cases, sub-functionalization may also be the 

likely fates (He and Zhang, 2005; Hahn, 2009). Which of these scenarios predominate 

among duplicates evolving asymmetrically remains to be understood. On the other 

hand, the >80% of the duplicate gene pairs which did not show asymmetry appear to be 

constrained to a similar extent at the sequence level (Figure 2.8B). These pairs may still 

diverge from each other via accumulation of distinct mutations and/or via expression 

divergence. The fact that they appear to be under more selective constraint than 

asymmetric pairs makes sub-functionalization the most likely scenario for retained 

duplicates, at least at the sequence level, although neo-functionalization or a mixture of 

neo and sub-functionalization cannot be completely ruled out. Also, given the plasticity 

of gene expression, regulatory variation may play a bigger role in functional divergence 

among WGD duplicates than sequence divergence (Blanc and Wolfe, 2004).  

Our comparative analyses of BR and RR gene content indicates that retained 

duplicates in both genomes experienced similar patterns of asymmetric evolution post 

WGD. In addition, the timings of pseudogenization of BR and RR pseudogenes also 

followed similar distributions. Given BR and RR have been evolving independently since 

the past 13-19 mya, these results suggest that process of duplicate gene retention and 

loss may have exhibited similar biases in both BR and RR lineages. 
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Figure 2.8: Relative rate of evolution of α duplicates. (A): Results of relative rates 

test between α' duplicates. Syn3 corresponds to synonymous sites at 3
rd

 codon 

position. See Methods for more details. (B): Distributions of fold differences between 

degrees of constraint on the two branches leading to duplicate genes. 
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Expression divergence between α' duplicates 

 To understand the extent of expression divergence among duplicates, we 

focused on expression level  in a single developmental stage (flower) and asked if, 

compared to their AT orthologs, RR genes showed signatures of expression level 

divergence and whether the patterns were different between 1:1, 1:2 and 1:3 AT:RR 

OGs. Based on the quintiles of the expression distribution of all AT and RR genes, we 

partitioned their expression levels into five states – Very Low (VL), Low (LO), Medium 

(MD), High (HI) and Very High (VH) – as well as a sixth Not Expressed (NE) state, and 

examined transitions between states for pairwise AT:RR comparisons, with the 

assumption that the AT gene expression level represented the ancestral expression 

state of the RR duplicates (see Methods). Our results indicate that for 1:1 OGs, 

expression level is significantly conserved – ~30% of all RR genes show conservation of 

the same state as the AT gene (10<z-score<35; Figure 2.9A). On the other hand, the 

significance of enrichment drops substantially as we move to 1:2 and 1:3 OGs, where 

transitions are more frequent, with more transitions occurring to lower levels of 

expression (Figure 2.9B).  These results suggest that RR genes in 1:2 and 1:3 OGs 

have experienced expression level divergence since the WGT event while those in 1:1 

OGs tend to conserve their expression level in floral tissues. 

 Overall, we find that most instances of expression divergence in 1:2 and 1:3 OGs 

occur via expression loss in one of the branches (Figure 2.9A,B). Based on random 

expectation, expression gain and loss are equally likely, however, more expression loss 

is observed than random expectation (Figure 2.9A,B). Expression loss in 1:2 and 1:3 

OGs is also associated with a higher proportion of RR genes with HI and VH expression 
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states in these OGs than 1:1 OGs and random expectation (Figure 2.9C). Based on our 

previous observations (Figure 2.9A), the expression level in genes that lose expression 

does not go to zero; instead, there is just a decrease in expression level. Assuming 

these RR genes are still functional, the most likely explanation is that they are now 

expressed in some other tissue/condition, resulting in sub- or neo- functionalization. 

Interestingly, we find that one of the copies in 1:2 and 1:3 OGs has divergence similar to 

the copy in 1:1 OG, suggesting that despite a general trend towards divergence, 

expression in flowers may still be conserved in these OGs. Further partitioning 

expression conservation among branches, we find that the AT expression level is 

conserved on at least 1 branch in ~60% and ~70% of 1:2 and 1:3 OGs, respectively. In 

addition, the possibility that all existing copies in RR diverge in expression >2-fold (no 

branch conserved) from AT is highly under-represented in all three OG types (-35 <z-

score< -7). These results suggest that although 1:2 and 1:3 OGs diverge more in 

expression than 1:1 OGs, one of the copies is significantly more likely maintain the 

ancestral expression state while the other copies are free to diverge in expression level 

and perhaps, tissue-specificity. 

Comparing between sequence and expression evolution, we find that most 

divergence between duplicates occurs at the level of expression, since ~70% of the AT-

RR pairs were found to have >two-fold divergence in expression level. On the other 

hand, asymmetric sequence divergence occurs only in ~15% of the duplicates. Although 

the sequence evolution pattern suggests sub-functionalization of retained duplicates in 

BR and RR, a broader expression sampling of multiple tissues would be needed to 

determine the predominant mode of duplicate evolution. 
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Figure 2.9: Expression divergence of α' duplicates. (A): Significance testing of % 

overlaps between AT and RR expression states. To obtain percentages, for each AT 

gene with a given expression state, the number of RR genes having each of the six 

expression states was determined. A distribution of random percentages for each cell in 

the table was obtained using 10,000 replicates of randomized data. The observed 

percentages were compared against the randomized distribution to obtain the z-score  
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Figure 2.9 (cont'd) 

for each observed value.  (B): Observed and expected distributions of FPKM fold 

change in the three OG types. The black horizontal dotted line indicates expected 

divergence between AT and RR expression levels based on the observed divergence in 

1:1 OG type. (C): Expression states of genes in OG branches. For each OG type, RR 

genes along each of the branches and their ancestral expression state were defined as 

noted (see Methods) and were used to estimate the observed frequencies. To calculate 

expected frequencies, we obtained a dataset of the same size as the observed dataset, 

with randomized associations between AT and RR. This dataset was used to calculate 

the expected frequencies. 
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Our comparative analyses of BR and RR gene content indicate that retained duplicates 

in both genomes experienced similar patterns of asymmetric evolution post WGD. In 

addition, the timings of pseudogenization of BR and RR pseudogenes also followed 

similar distributions. Given BR and RR have been evolving independently during the 

past 13-19 mya, these results suggest that process of duplicate gene retention and loss 

may have exhibited similar biases in both BR and RR lineages.    

Predicting duplicate gene retention 

Our results so far indicate that duplicates in ~15% of the OGs may have been 

retained post α' WGT. Such retained duplicates may exhibit functional or other biases 

(Pál et al., 2001; Chapman et al., 2006; Schnable et al., 2011). However, it remains 

unclear whether these characteristics apply to α' WGT duplicates and whether some of 

these features are better predictors of duplicate retention than others.  To address these 

questions, we examined five types of gene features including GO-Slim classification, 

sequence-related features, expression-related features, network-related features and 

conservation-related features (see Methods, Table 2.4). For each feature, we asked if 

the feature values of retained duplicates were significantly different from those of 

singletons. In addition, we compared the properties of α’ retained duplicates and 

singletons against those derived from the α WGD event (Bowers et al., 2003). Because 

the general trends in BR and RR are essentially the same, in all subsequent 

discussions we discuss the joint results of both species. 

We found that, except from inconsistencies between some features (e.g.: protein 

size, gene size), most other features are consistent between the α’ WGT and the α  
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Table 2.4: Datasets used for enrichment and SVM analyses 

No Feature set Source Comments 

GO-Slim and Sequence-related features 
 

1 GO-Slim categories TAIR FTP Only biological process categories were 
used. 

Sequence-related features 
 

1 Protein size 
Gene size 
GC3 content 

Custom 
Python scripts 

Values were obtained by analyzing the 
FASTA and GFF files. 

2 PFAM Domain size HMMER HMM Domains of AT, BR and RR proteins 
were obtained by running HMMER with 
the options –cut_tc –noali and further 
filtering the domains with Evalue<1e-5 

Expression-related features 
 

1 Breadth and level 
of expression 
(NASCarray) 

NASCArray Pearson's Correlation Coefficient was 
calculated between NASCArray datasets 
using the ATH1 chips. Of the datasets with 
> 0.98 PCC, only 1 representative dataset 
was kept. Breadth and level of expression 
were calculated for the remaining 1779 
datasets, after excluding multigene 
probes. Low/Medium/High expression 

levels and breadth were defined as <25
th

 

percentile, 25
th

-75
th

 percentile and >75
th

 

percentile of the entire distribution.  

2 Biotic and abiotic 
responsiveness 

ATGenExpress Previously published data Zou et al, 2011 
was used. Genes showing more than 2X 
upregulation or downregulation in atleast 
one condition were defined as responsive 
to stress. 

3 RNA-seq Previously 
published data 

Data from Moghe et al, 2013 was used for 
this study. Low/Medium/High expression 

levels and breadth were defined as <25
th

 

percentile, 25
th

-75
th

 percentile and >75
th

 

percentile of the entire distribution. 
Low/Medium/High expression breadth was 
defined as expression in 0-3, 3-5 and 5-8 
datasets respectively. 
 
 

ftp://ftp.arabidopsis.org/home/tair/Ontologies/Gene_Ontology/TAIR_GO_slim_categories.txt
http://affymetrix.arabidopsis.info/narrays/static/supercluster.txt.gz
http://www.weigelworld.org/resources/microarray/AtGenExpress/
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Table 2.4 (cont’d) 
 
Network-related features 
 

1 Number of 
interacting partners 

Aranet Number of interactions in the integrated 
Aranet network inference were used.  

Conservation-related features 
 

1 Breadth of 
conservation 
across plants 

Phytozome TBLASTN was performed between AT or 
BR/RR peptide sequences (Query) and 
the genome fasta sequence of all 
Phytozome species (Subject). All hits with 
E>1e-10 were eliminated. Number of 
species with significant hits was 
enumerated. 

2 dN/dS values Custom python 
script 

dN/dS was calculated between orthologs 
using the yn00 function in the PAML 
package. To obtain one dN/dS value for 
each AT gene, the average dN/dS value 
between AT-BR and AT-RR orthologs was 
computed and used for this analysis. 

http://www.functionalnet.org/aranet/download.html
http://www.phytozome.org/
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WGD events (Figure 2.10A,B). For example, among biological functions, retained 

duplicates were most strongly enriched in GO-Slim categories related to transcriptional 

regulation, stress response, signal transduction and transport for both polyploidization 

events (Figure 2.10A,B). Duplicates retained after both polyploidization events tend to 

have larger gene sizes, higher GC3 content (p<1e-9 and p<1e-21, respectively), higher 

expression levels and broader expression profiles (p<1e-25 and p<1e-3, respectively for 

RNA-seq data), responsiveness to biotic and abiotic stresses (p<1e-7 and p<1e-4, 

respectively) and greater network connectivity (p<1e-21 and p<1e-59, respectively) than 

singletons. In addition, retained duplicates tend to have homologues in a higher number 

of land plant genomes (p<1e-45) and show lower dN/dS values with with their AT 

orthologs (p<1e-24) than singletons. It is likely that some features are correlated with 

each other e.g.: higher GC3 content has been shown to be correlated with stronger 

purifying selection, greater codon usage bias and higher frequency of DNA methylation 

(Elhaik and Tatarinova, 2012), and may be associated with expression-related 

characteristics of retained duplicates. Similarly, higher conservation among retained 

duplicates may be associated with their biological roles, network connectivity and 

expression profiles.  

 Overall, our enrichment analyses indicates biases amongst retained duplicates 

and singletons, many of which are consistent between α and α' events. However, what 

is the relative importance of these features, and can they successfully classify retained 

duplicates from singletons? To address this question, we considered all features 

regardless of whether their values differ significantly between retained duplicates and 

singletons.  
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Figure 2.10: Comparison of features between retained duplicates and singletons. 

(A and B): Results of enrichment analysis showing various features classified based on 

their type. Feature IDs are sequential throughout the entire set of features (including A  
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Figure 2.10 (cont'd) 

and B). The value distributions of each feature were divided into four bins corresponding 

to quartiles of the feature distribution, indicated by increasingly darker shade of gray for 

each feature bin in the figure. The colors represent degree of enrichment, from over-

representation (red) to no enrichment (white) to under-representation (blue). 
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Figure 2.10 (cont'd) 
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 and generated predictive models using a machine learning approach called Support 

Vector Machine. The model performance was evaluated using Area Under Curve (AUC,  

area under the curve of true positive rate vs. false positive rate) where a AUC of 1 

indicate a perfect model while 0.5 indicate a model with no merit. Models for the α WGD 

and α' WGT events, as well as randomized data for each WGD event were generated. 

 For the model predicting α' duplicate retention using all features (the full model), 

the average AUC is 0.73 significantly better than the model constructed with 

randomized data (average AUC=0.51, Figure 2.11A,B) or using single sets of features 

("the individual models", average AUC=0.56, Figure 2.12A). The results are similar for α 

duplicates, although, compared to random guesses, the performance in classifying α 

duplicates (average AUC = 0.75) is slightly better than predicting α' duplicates (Figure 

2,11A,B), likely because some features such as GO-Slim, expression related features 

and network related features for the BR and RR genes were inferred from their AT 

orthologs. We also found that excluding one feature set at a time from the full model 

(leave one out models) did not significantly affect the model performance (average AUC 

= 0.72, Figure 2.12A). Our findings suggest that combining multiple features into a 

single model allows for a better classification of retained duplicates from singletons than 

random guesses and single features. In addition, the model trained on the α' dataset 

generated an average AUC of 0.61 when used to classify α duplicates, while the one 

trained on the α dataset generated an average AUC of 0.67 for α' duplicates. While both 

AUCs are better than the individual models and random guesses, it seems that model 

performance is reduced when tested on WGD duplicates from an event it is not trained 

on, possibly due to the noise introduced due to inferring feature values from orthologous 
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genes or due to unique properties of retained duplicates associated with each WGD 

event. 

 To identify consistent and divergent properties between α and α’ events, we used 

the weights obtained by SVM analysis. The SVM weights for each feature correlate with 

how well a feature allows differentiation of retained duplicates and singletons. We found 

that features related to DNA/RNA metabolism (#2), electron transport or energy 

pathways (#5), transcriptional regulation (#11), protein and gene size (#12 and #19, 

respectively), GC3 content (#23) and number of plant genomes with BLAST hits (#56) 

showed consistency between models (Figure 2.12B). These features also are also 

consistent with results of enrichment analyses. On the other hand, some features (e.g.: 

gene size, network interactions) had higher weights in one SVM than the other or 

weights in the opposite direction.  In addition, features related to expression level (#43 

and #45) or breadth of expression (#37 and #48) were not as important in classifying 

both α and α’ duplicates from singletons. These observations suggest that some 

features (e.g.: function, structural composition) may be important during the retention 

process but others (e.g.: expression-related) may play a less significant role.    
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Figure 2.11: SVM analyses results (A and B): The AUC-ROC curves (A) and 

Precision-Recall curves (B) obtained using linear SVM model for α WGD and α' WGT 

events using all features (as noted in Figure 2.10A,B). See Methods for details on how 

the shuffling was performed. (C and D): Increasing the range of soft margin values 

(more C)  or using a model made from pairwise combinations of all 60 features used in 

the original  
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Figure 2.11 (cont'd) 

model (combination) do not increase model performance, as shown in the AUC/ROC 

curve (C) and the P/R curve (D). 
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Figure 2.12: Identifying features most important for classification. (A) The 

"individual" model involved running SVM with only the given set of features, while the 

"leave one out" strategy involved running SVM after excluding only the given set of  
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Figure 2.12 (cont'd) 

features. The dotted and the solid lines correspond to the AUCs of the randomized 

model and the full original model, respectively (B): Comparison of SVM weights for each 

feature between α WGD and α' WGT. Each dot represents values for a single feature. 

Features with significant and consistent weights are colored blue while those with 

significant yet opposite weights are colored red. Numbers in brackets correspond to 

Feature IDs as noted in third column of Figure 2.10A,B.   
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CONCLUSIONS 

In this study, we have sequenced the genome of RR, a wild relative of the 

cultivated crops Raphanus sativus and BR. The 254 Mb assembly encompasses ~49% 

of the estimated genome size, has an N50 of 10.1kb and houses a majority (38,174) of 

the genes in the RR genome. We used these gene models to understand the evolution 

of duplicate genes and pseudogenes in BR and RR post α' WGT. 

The loss of ~60% of the genes in BR and RR in a consistent fashion suggests 

that gene loss is the predominant fate of duplicates post WGD. Such gene loss may 

occur in bursts (e.g.: via deletion in early generations) or gradually (via 

pseudogenization). However, several thousand genes are still retained within the BR 

and RR genomes and may contribute to evolutionary novelty. For example, a recent 

study showed that circadian rhythm regulated genes are over-retained in BR (Lou et al., 

2012), suggesting the possibility of phenological changes in post α' species. In our 

study, retained duplicates were also found to possess functions related to transcriptional 

regulation, stress regulation and development. Diversity in such functions may allow 

conquest of new ecological niches.   

What are the properties of such retained duplicates? Over the past decade, 

several studies have taken advantage of the increased availability of genome sequence 

data and comparative genomic tools to analyze the evolution of WGD derived duplicate 

genes in multiple species, assessing features important for the loss and retention of 

WGD derived duplicate genes (Blanc and Wolfe, 2004; Schnable et al., 2011; Jiang et 

al., 2013). In this study, we started of with the features assessed as important in these 

studies and confirmed their degree of importance in distinguishing α' duplicates from 
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singletons using enrichment analysis and machine learning. Our framework identifies 

features which were consistently important in the loss/retention across the α and α' 

duplicates. The fact that the performance of the full model was good but not complete 

suggests that although existing knowledge is useful, additional features may be 

important for the gene retention process.   We did not include features such as 

subgenome bias or random loss in our model, and further research using such 

additional features would be needed to increase the predictive power of the full model.   

One of the results from our analyses was the high degree of conservation of 

retained duplicates at smaller and larger time scales. This phenomenon has been noted 

before in plants (Jiang et al., 2013), and may indicate similar biases in the retention 

process across multiple WGD events. It has been suggested that retained duplicates 

tend to provide a buffering function against loss of a gene copy, which erodes with time 

due to mutation accumulation but nevertheless contributes to a lower evolutionary rate 

(Chapman et al., 2006). However, given evolution cannot see into the future, this model 

cannot fully explain the observed pattern of lower rates after >25 million years of 

divergence. It is possible that the lower evolutionary rate is simply a function of its 

correlation to other features, such as network connectivity, expression profiles and 

biological function, found to be enriched among retained duplicates in our study. 

Because some duplicates in the neopolyploid possess these features, they tend to 

evolve slowly, allowing accumulation of novel, functionally important changes resulting 

in neo or sub functionalization and eventual retention (Sémon and Wolfe, 2007).  If neo-

functionalization were to be the predominant fate of retained duplicates, it would be 

reflected in an elevated dN/dS ratio or an asymmetric rate of evolution between most 
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duplicate pairs. However, we found that a large majority (~80-85%) of duplicates are 

evolving symmetrically and are under selective constraint. Such a scenario may be 

explained by the sub-functionalization model.  

Our results also suggest a complex pattern of expression evolution between 

retained duplicates in RR that needs to be investigated in more detail using 

transcriptomic data from multiple tissues/conditions.  In addition, in recent years, 

genomic and transcriptomic data from multiple plant species, many of which have 

undergone recent or ancient polyploidization events, are also available. We surmise that 

comparative analyses of pseudogenes and duplicate genes derived via WGD events in 

the plant kingdom will provide a comprehensive picture of the loss/retention process in 

plants. 

MATERIALS AND METHODS 

Genomic DNA and EST Sequencing  

 RR is an obligate out-crosser. To reduce the amount of heterozygosity in the 

genome, RR subspecies raphanistrum (weedy) from the Binghamton population in New 

York was inbred for five generations. Total DNA was extracted from the leaves of the 

5th generation inbred plants using Qiagen DNEasy Maxi kit. The extracted DNA ethanol 

precipitated and assessed for quality using CHEF gel electrophoresis.  For 454 

sequencing, DNA was sheared by Covaris sonication, size selected by gel 

electrophoresis and a 3 kb mate pair library constructed according to manufacturer’s 

instructions (Roche-454). A total of 6 full plates and three half-plates were sequenced 

using the Titanium chemistry. DNA was further sheared and an Illumina fragment library 
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constructed (peak 520 bp). A total of 7 lanes of 100 bp paired-end sequence was 

generated on an Illumina GAII sequence analyzer. 

 ESTs were sequenced from three R. sativus cultivars (convars sativus, caudatus, 

oleifera) and four R. raphanistrum populations (subspecies raphanistrum NY weedy 

population, raphanistrum Central Spain population, maritimus Coastal Spain population 

and landra France population). Total RNA from whole seedlings of Raphanus 

raphanistrum and Raphanus sativus (with 1 set of true leaves), buds, and anthers were 

pooled together. Double strand cDNA were synthesized from pooled RNA using 

SMART technology (Clontech). The prepared cDNA was normalized by cDNA 

denaturation/reassociation, treatment by duplex-specific nuclease (DSN) and 

amplification of normalized fraction by PCR. The normalized cDNA was then digested 

with SfiI, fractioned, directionally ligated into pDNR-LIB (Clontech) and electroporated 

into GC10 competent cell (Gene Choice). Sequences were generated from 5' and 3' 

ends of clones. A total of 185.4 Mb was sequenced. A total of 310,844 EST sequences 

were deposited in NCBI dbEST. 

Genome assembly and quality assessment 

 Before assembly, Illumina reads were trimmed from the 3' end to a Phred quality 

score ≥20 and length ≥50. The 454 reads were split at linker sequences and only reads 

with mate pairs were used for assembly. The filtered Illumina and 454 reads 

represented a 47X and 3X coverage of the estimated 573Mb genome. To assemble the 

RR genome, we explored three different approaches.  We first created an Illumina-only 

assembly using ABySS 1.2.5 (Simpson et al., 2009) with the optimal kmer length 

(k=39). We then split the Illumina contigs into overlapping fragments of 1998bp 
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(maximum size allowed for input to Newbler) with 1000bp step size at a coverage of 

10X per fragment. These split Illumina contig fragments and the quality-filtered 454 

reads were used as input to Newbler 2.5.3 (Margulies et al., 2005) to create a hybrid 

assembly. The following parameters were used for the Newbler assembly: -large -mi 98 

-cpu 1 -ml 80 -ud -rip -m -e 8. The Newbler assembly showed a marginal improvement 

in N50 and total assembly size compared to an Illumina-only assembly (Figure 2.1). In 

the second approach, the RR assembly was generated with the Celera Assembler using 

split 454 reads (sffToCA program, option "-clear 454 -trim chop") and Illumina reads 

trimmed (https://github.com/tanghaibao/trimReads) so the base quality is at least Phred 

20. We ran Celera Assembler version 6.1 with unitigger "BOGART" with kmerSize=30 

(Miller et al., 2008). Finally, we used the program Minimus2 (Sommer et al., 2007, 2) 

from the AMOS 3.1.0 package to merge the ABySS/Newbler and the Celera 

assemblies. The Minimus2 merging step was repeated three times with the merged 

contigs and the unmerged contigs till convergence. The final Minimus2 assembly was 

substantially better than the ABySS/Newbler and the Celera assemblies (Figure 2.1) 

and was used in all subsequent analysis . 

 All the Illumina and 454 reads are currently being deposited in NCBI SRA under 

the accession numbers PRJNA209513 (BioProject), SRX326772 and SRX326773 

(Experiments).  

Structural and functional annotation 

The MAKER 2.10 pipeline (Cantarel et al., 2008) was used to annotate the RR 

assembly detailed in Figure 2.2A. The 74,568 gene models predicted were filtered 

based on their Annotation Edit Distance (AED) values or the presence of a protein 

https://github.com/tanghaibao/trimReads
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domain as predicted by HMM-PFAM (Eddy, 2008). Two sets of gene models with 

different levels of accuracy were created: (1) Set I (41,122 models) consisted of gene 

models with AED≤1, domain E-value<1e-3 and (2) Set II (38,174 models) consisted of 

models with AED<0.5 or (AED>=0.5 and domain E-value<1e-5) (Figure 2.2B). All gene 

models possessing specific transposon-related domains over-represented in RR vs. BR  

(PF03732.12, PF13975.1, PF03384.9, PF03108.10, PF14392.1, PF14111.1, 

PF03078.10, PF00075.19, PF13966.1, PF09331.6, PF13456.1) were also discarded 

from Set II via manual keyword searches. All analyses were performed using Set II 

gene models given their higher level of agreement with evidence. Functional 

annotations of gene models were obtained using BLAST2GO (Conesa et al., 2005). The 

genome sequence and the annotation will be made available for download at the 

following URL: http://shiulab.plantbiology.msu.edu/.  

Timing of speciation and duplication events  

 Previous studies have estimated the timings of the speciation and duplication 

events in Brassicaceae. However, many of these estimates were obtained using a now 

unavailable fossil pollen calibration point placed in the genus Rorippa in Brassicaceae, 

based on synonymous substitution rate derived from two individual loci (Koch et al., 

2000) or assuming a constant rate of evolution across the Brassicaceae family. These 

issues have been reviewed exhaustively in a previous study (Beilstein et al., 2010). 

Based on the relative rate test (Goldman and Yang, 1994), the synonymous substitution 

rate at the third codon position did not increase significantly after the polyploidization 

event, consistent with the molecular clock assumption. Therefore, this rate can be used 

for determining the age of the α' WGT event and the BR-RR speciation event.    

http://shiulab.plantbiology.msu.edu/
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 For determining timing of speciation and duplication events using multidivtime 

(Rutschmann F., 2005), we first assigned Carica papaya (CP) genes to the predicted 

Brassicaceae orthologous group. if a CP gene had a significant hit to ≥1 species in each 

of AT/AL and BR/RR and no hit to any other orthologous group. Synonymous 

substitution rates of singletons at the third codon positions between AT:AL:BR:RR and 

CP (outgroup) were used to determine the times for speciation. The rates of retained 

duplicates were used to estimate the timing of duplication in BR and RR, using the AT 

ortholog as outgroup. A synonymous site substitution rate of 7*10
-3

 

substitutions/site/million years (Ossowski et al., 2010) was used for determining the 

timing of speciation and duplication, with a prior age of 36 mya between the root and the 

tip. Based on findings in a previous study (Beilstein et al., 2010), we fixed the lower 

constraint for AT-BR divergence at 30 million years.  

For determining age, dS was calculated between pairs of singleton genes and 

between pairs of retained duplicates using codeml (Yang, 2007). Divergence time was 

obtained using the formula T= dS/(2*neutral rate). As expected, if dates are estimated 

using the previously used substitution rate of 15*10
-3

 substitutions/site/million years 

(Koch et al., 2000), the median ages of different events are almost halved (Figure 2.3B).  

Prediction of pseudogenes and pseudogenization timing 

A modified version of a previously defined pseudogene pipeline (Zou et al., 2009) 

was used to predict pseudogenes in genomes of all four species under study. These 

pseudogenes are exclusively derived from protein-coding genes and not from non-

coding RNA genes. Specifically, we performed TBLASTN using protein coding genes as 
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query and genomic sequences as the subject using BLAST 2.2.25.  We then filtered the 

output using the thresholds: E-Value < 1e-5, %Identity > 40%, Match Length>30aa and 

Coverage > 5% of the query sequence to obtain pseudo-exon definitions. Pseudo-exons 

in close proximity to each other (based on the 95th percentile of the intron length 

distribution) and having matches to the same protein were then joined together to form 

putative pseudogenes based on their Smith-Waterman score.   Putative pseudogenes 

overlapping with annotated protein coding regions were removed from the dataset.  In 

addition, pseudogenes with significant similarity to known Viridiplantae repeats 

(Cutoff=300, Divergence=30) as determined by RepeatMasker 3.3.0 were discarded.  

Finally, because of the fragmentary nature of the BR and RR genomes, there 

was a high false positive rate due to proteins split between contigs being counted as 

pseudogenes.  To reduce the false positive rate, high confidence pseudogenes were 

determined using a custom python script.   Specifically, a pseudogene is considered a 

high-confidence pseudogene if it contains stop codons or frame-shifts or if it passes a 

particular test.  This test states that a protein is a high confidence pseudogene if XU >= 

YU + Z and XD >= YD + Z , where XU and XD are the absolute distances between the 

pseudogene and the each end of the contig it is on for both sides of the pseudogene, 

upstream and downstream relative to the orientation of the matching protein, 

respectively, and where YU and YD are the absolute distances between the matching 

region on the protein and the end of the protein for both sides of the protein, upstream 

(N-terminal side) and downstream (C-terminal side), respectively, and where Z is the 

95
th

 percentile intron length for the species being tested. 
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The number of detectable pseudogenes is higher in post-α'-polyploidization 

species compared to AT/AL. For each annotated protein-coding gene in AT and AL, 

there are 0.15 and 0.34 pseudogenes, respectively. In contrast, there are 0.96 and 0.56 

pseudogenes/annotated gene for BR and RR, respectively (or, after correcting for the 

fragmentary nature of the BR and RR genomes, 0.82 and 0.35, respectively). The low 

proportion of pseudogenes/annotated gene in RR is likely because of the incomplete 

RR assembly as well as overcorrection. The pseudogene numbers obtained for BR and 

RR are likely to be an underestimate of the actual number of pseudogenes derived from 

transposition events in BR and RR, given that the repetitive genomic fraction was 

largely missed in both the assemblies. In addition, putative pseudogenes resembling 

repeats – 5060 BR pseudogenes and 518 RR pseudogenes – were discarded.  There 

are substantially fewer repeat-related pseudogenes in RR most likely because of the 

lower coverage of the RR genome than the BR genome.  

 To estimate the timing of pseudogenization, we used a published approach 

(Figure 2.7A) (Chou et al., 2002). All estimates ≤ 0 mya were discarded. To determine 

whether the timing was robust to the definition of α' pseudogenes, we used four different 

approaches to define and estimate pseudogenization timing of such pseudogenes: 1) 

definition based on dS only, timing using the entire pseudogene sequence (3300 BR, 

2171 RR pseudogenes, Figure 2.7B), 2) definition based on dS only, timing using only 

the sequence past the first disabling mutation (1266 BR, 924 RR pseudogenes, Figure 

2.7D), 3) definition based on homeology, timing using the entire pseudogene sequence 

(1522 BR, 652 RR pseudogenes, Figure 2.8C), and 4)  definition based on homeology, 

timing using only the sequence past the first disabling mutation (564 BR, 215 RR 
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pseudogenes, Figure 2.7D). Our results are slightly biased towards more recent 

pseudogenization timings if we only use the pseudogenes lying in homeologous 

segments with their paralogs (Figure 2.7C,D).  

 Thresholds for dS with respect to a pseudogene's functional paralog were set at 

0.2 ≤ dS ≤ 0.6. The lower and upper bounds were based on the 25
th

 and 75
th

 

percentiles of the duplicate gene dS distribution (Figure 2.4A). Changing the dS 

threshold to a more stringent one (0.30 ≤ dS ≤ 0.42) for identifying WGD derived 

pseudogenes did not influence the estimates significantly (Figure 2.7E). 

To determine whether our findings are robust to the estimate of the duplication 

time in the timing formula, we defined duplication times using three methods: 1) a fixed 

duplication time of 25 mya, 2) random sampling from a Gaussian distribution with 

mean=25 and sd=7 (based on the functional duplicate gene dS distribution) and 3) 

Calculating the duplication time based on the dS between pseudogene and the parent 

gene. In all cases, the distributions obtained for pseudogenization timing were very 

similar and do not affect our interpretations (data not shown). All timing estimates ≤0 

were discarded. 

Classifying retained duplicates and singletons with machine learning 

 We used the Support Vector Machine (SVM) approach to generate classifiers 

that allow distinguishing retained duplicates and singletons. The feature sets used in 

this study are detailed in Table 2.4 (Kilian et al., 2007; Lee et al., 2010; Goodstein et al., 

2012; Moghe et al., 2013). If the feature values could not be obtained from BR/RR 

directly, values were inferred from the AT orthologs of the BR/RR genes.  
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 For all quantitative features, we binned the values into four quartiles based on 

the feature value distribution across all genes. All other features (GO-Slim categories 

and responsiveness to biotic or abiotic stress) were treated as discrete categories. The 

4702 retained duplicates and 2533 singletons were assigned roughly equally and 

randomly to the training and the test dataset. The random split was repeated ten times. 

SVM-Light (Joachims, 1999) was used to generate classifiers and feature weights. A 

grid search was performed to determine the optimal SVM parameters. Increasing the C 

sampled from 1e-06 to 1000, with 10-fold change or using pairwise combinations of all 

features did not result in any improvement in the AUC and Precision/Recall curves 

(Figure 2.11C,D). Using a radial basis function with varying gamma values from 1e-06 

to 1, with 100-fold change for the next value, also did not result in improved model 

performance (data not shown). This suggests that although the full model performs 

better than random guesses, its performance is reduced when tested on WGD 

duplicates from an event it is not trained on, possibly due to the uniqueness of each 

WGD event or the noise introduced via inferring feature values from orthologous genes. 
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CHAPTER THREE 

Characteristics and significance of intergenic PolyA RNA transcription  

in Arabidopsis thaliana
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ABSTRACT 

The Arabidopsis thaliana genome is the best annotated plant genome. However, 

transcriptome sequencing in A. thaliana continues to suggest the presence of polyA 

transcripts originating from presumed intergenic regions. It is not clear whether these 

transcripts represent novel non-coding or protein coding genes. To understand the 

nature of intergenic polyA transcription, we first assessed its abundance using multiple 

mRNA-sequencing datasets. We found 6,545 Intergenic Transcribed Fragments (ITFs) 

occupying 3.6% of A. thaliana intergenic space. In contrast to transcribed fragments that 

map to protein coding and RNA genes, most ITFs are significantly shorter, are 

expressed at significantly lower levels and tend to be more dataset-specific. A 

surprisingly large number of ITFs (32.1%) may be protein coding based on evidence of 

translation. However, our results indicate that these “translated” ITFs tend to be close to 

and are likely associated with known genes. To investigate if ITFs are under selection 

and are functional, we assessed ITF conservation through cross-species as well as 

within-species comparisons. Our analysis reveals that 237 ITFs, including 49 with 

translation evidence, are under strong selective constraint and relatively distant from 

annotated features. These ITFs are likely parts of novel genes. However, the selective 

pressure imposed on most ITFs is similar to that of randomly selected, untranscribed 

intergenic sequences. Our findings indicate that despite the prevalence of ITFs, apart 

from the possibility of genomic contamination, many may be background or noisy 

transcripts derived from “junk” DNA whose production may be inherent to the process of 

transcription and which, on rare occasions, may act as catalysts for creation of novel 

genes.  
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INTRODUCTION 

The advent of tiling arrays and high-throughput sequencing has led to the 

discovery of a complex transcriptional landscape in eukaryotic genomes. Studies in 

yeast (David et al., 2006), animals (Bertone et al., 2004b; Carninci et al., 2005b) and 

plants (Yamada et al., 2003b; Matsui et al., 2008; Li et al., 2007b) have revealed the 

presence of a large number of unannotated, novel transcripts. These novel transcripts 

may represent alternatively spliced forms of known genes (Filichkin et al., 2010), 

products of antisense (Yamada et al., 2003b) or bidirectional (Xu et al., 2009) 

transcription, retained introns (Ner-Gaon et al., 2004; Filichkin et al., 2010), transcript 

fusions (Ruan et al., 2007) or intergenic transcriptional units (referred to hereafter as 

Intergenic Transcribed Fragments or ITFs). Among these novel transcripts, ITFs are 

unique in that they do not overlap with known genomic features and may represent 

novel genic sequences. The prevalence of intergenic transcription raises the possibility 

that there are many more functional genes yet to be discovered. However, there are two 

outstanding questions regarding ITFs. First, it is not clear what proportion of ITFs code 

for proteins. Secondly, whether or not most ITFs are functional is under debate (Mattick, 

2009; Ponting and Belgard, 2010). 

After ITFs are identified with whole genome tiling arrays or high-throughput 

sequencing, computational methods are used to determine if they display 

characteristics of non-coding RNA (ncRNA) (Li et al., 2007a; Fahlgren et al., 2007; 

Gregory et al., 2008). These methods rely on secondary structure prediction, similarity 

to known ncRNA and conservation between species. The protein coding potential of 

ITFs, on the other hand, is determined based on ab initio gene prediction, open reading 
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frame (ORF) length, evolutionary conservation measures, pairwise alignment scores, 

predicted secondary structure and entropy (Dinger et al., 2008; Nekrutenko et al., 2002; 

Liu et al., 2006). For example, in a global gene expression study in A. thaliana, a 50 

amino acid length threshold was used to define potential protein coding intergenic 

transcripts (Stolc et al., 2005). Similarly, the FANTOM consortium defined putative 

protein coding mRNAs using an open reading frame (ORF) length cutoff of 300 nt 

(Okazaki et al., 2002). Reliance on length cutoffs can result in longer random ORFs 

being falsely annotated as protein-coding and will also lead to the exclusion of true 

small ORFs such as those that have been identified in yeast, humans and A. thaliana 

(Basrai et al., 1997; Pruitt et al., 2007; Hanada et al., 2007). Proteomics and 

polyribosome immuno-precipitation (Zanetti et al., 2005; Sparkes et al., 2006) allow 

more direct identification of potentially protein-coding ITFs than computational 

approaches. Currently, there has yet to be a systematic assessment of ITF protein 

coding potential based on a combination of computational and experimental 

approaches. 

In addition to the question of whether ITFs code for proteins or not, the functional 

relevance of intergenic transcription is not well understood. One hypothesis is that most 

transcripts simply represent transcriptional noise. For example, based on the genome-

wide distribution of RNA polymerase II and TATA-Box binding protein in yeast, ~90% of 

RNA polymerase II transcriptional initiation events were estimated to be the result of low 

polymerase fidelity and may represent transcriptional noise (Struhl, 2007). Consistent 

with the “noise” hypothesis, several studies have shown that ITFs tend to have 

significantly higher evolutionary rates than known genes. For example, the ENCODE 
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consortium found that 93% of the unannotated transcribed regions in the human 

genome show no clear evidence of evolutionary constraint (Birney et al., 2007). The 

alternative hypothesis is that most ITFs are functional (Dinger et al., 2009). Differential 

expression, alternative splicing and/or association with chromatin modification marks 

have been cited as evidence for ITF functionality (Hiller et al., 2009; Guttman et al., 

2009). In addition, the functions of a growing number of novel transcripts have been 

experimentally determined. Examples include Xist, RepA, Air and Hotair, which regulate 

recruitment of Polycomb proteins onto DNA (Mercer et al., 2009) as well as a recently 

discovered long non-coding RNA called COLDAIR shown to be important in regulating 

vernalization responses in A. thaliana (Heo and Sung, 2011). Based on these studies, it 

is clear that some ITFs are functional. The main question is the abundance of functional 

ITFs relative to those derived from noisy transcription. 

To date, most studies of intergenic transcription have focused on the presumably 

non-coding fraction of the transcriptome. In addition, currently there is no published 

study assessing the evolutionary significance of plant intergenic transcription. In this 

study, we focused on intergenic polyA RNA transcripts to gain more insight into the 

nature of plant intergenic transcription by RNA polymerase II. We first analyzed eight 

different A. thaliana messenger RNA-Sequencing (mRNA-seq) datasets from this study 

and two other sources (Jiao and Meyerowitz, 2010; Filichkin et al., 2010) to determine 

the extent of intergenic polyA transcription. We then investigated whether ITFs are likely 

protein coding using (1) ribosome immuno-precipitation data generated in this study as 

well as public datasets (Jiao and Meyerowitz, 2010), (2) proteomics data (Castellana et 

al., 2008; Baerenfaller et al., 2008), and (3) fusion protein expression studies on 
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selected targets. Finally, making use of the polymorphism data from 80 different A. 

thaliana accessions (Cao et al., 2011) and protein coding genes and genome 

sequences of other plants, we explored whether ITFs, especially those that may code 

for proteins, are likely functional based on within and cross-species conservation.  
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RESULTS AND DISCUSSION 

Defining transcribed regions in the A. thaliana genome 

 To explore the functional significance of intergenic transcription further, a 

rigorous definition of transcribed regions within the A. thaliana genome is necessary. To 

this end, we analyzed mRNA-seq data from three different sources: (1) 7-day old 

seedlings generated in this study, (2) whole flower (Jiao and Meyerowitz, 2010), and (3) 

12-day old seedlings grown under six environmental conditions (Filichkin et al., 2010) 

(Table 3.1). We assembled transcript fragments (TxFrags) using two approaches (see 

Methods). In the first approach, contiguous regions in A. thaliana occupied by mapped 

mRNA-seq reads were defined as expressed (Set 1 TxFrags). In the second, more 

stringent, approach, we assembled TxFrags using the transcript assembly program 

Cufflinks (Set 2 TxFrags).  

We first compared the characteristics of Set 1 TxFrags among annotated 

features including protein coding genes, RNA genes, pseudogenes, and transposons. 

Regardless of the genomic feature and dataset, the Set 1 TxFrag length distributions 

are bimodal with the first peaks located near the mRNA-seq single read length, 

indicating most Set 1 TxFrags consist of a single read (Figure 3.1A). Next, the 

Fragments Per Kilobase of exon model per Million mapped reads (FPKM) measure was 

used to assess Set 1 TxFrag expression level. Similar to length distributions, the Set 1 

TxFrag FPKM distributions are bimodal with the first peaks at very low FPKM, mostly 

consisting of single read TxFrags (Figure 3.1B). The likely sources of low FPKM 

TxFrags are: (1) genes with very low level or highly specific expression, (2)  
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Table 3.1. Description of datasets for transcriptome analyses 

Source Stage / 
conditio

n 

Reads 

mapped
2 

Inter-
genic 

reads
3
 

Set 1 

TxFrag
4
 

Set 1 

ITF
5 

Set 2 

TxFrag
4
 

Set 2 

ITF
5 

This 
study 

7d old 
seedlings 

4,783,510  19,963 
(0.4%) 

228,968 5,203 28,611 77 

This 
study 

T87 cells 30,304,063 272,063 
(0.9%) 

NA NA 30,987 1289 

Jiao & 
Meyerowi
tz, 2010 

Stage 4 
flowers 

19,793,325 146,951 
(0.7%) 

223,377 20,556 46,276 334 

Filichkin 
et al. 

2010
1
 

Control 7,841,527 165,976 
(2.1%) 

354,199 56,186 45,681 815 

Cold 5,653,569 151,179 
(2.6%) 

356,418 59,063 45,279 1046 

Salt 4,166,706 208,340 
(5.0%) 

364,001 66,015 32,780 1756 

Heat 5,688,184 84,280 
(1.5%) 

280,182 35,625 30,400 323 

Drought 4,830,498 181,449 
(3.8%) 

364,001 68,429 44,343 2194 

High light 6,645,853 549,639 
(8.2%) 

402,608 91,882 59,905 9363 

1.
 12-day old seedlings. 

2
. To the nuclear genome assembly of Arabidopsis thaliana, TAIR 10 release. 

3
. In parenthesis: percent reads mapped to the genome that are intergenic. 

4.
 TxFrags: transcribed fragments. Set 1 and Set 2 TxFrags were generated with two 

transcript assembly methods without FPKM threshold, see Methods for details. 
5.

 ITF: Intergenic TxFrags without FPKM threshold. 
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“transcriptional noise” representing background genome transcription (Struhl, 2007), or 

(3) low level genomic DNA contamination in the sequenced mRNA sample. If the 

presence of ≥1 Set 1 TxFrags is considered evidence of expression, 78-94% of protein 

coding genes are expressed. However, 19-68% of pseudogenes and 5-69% of 

transposons would be considered expressed based on the same criterion. Given that A. 

thaliana transposons have been documented to be under-expressed (Schmid et al., 

2005) and subject to strong post-transcriptional silencing through DNA methylation 

(Zilberman et al., 2007; Zhang et al., 2006), transposon expression was used as a 

conservative error estimate of expression calls. 

To stringently control for false positives arising from background transcription 

and/or low level genomic contamination, we applied multiple FPKM thresholds defined 

according to the percentage of transposon TxFrags considered expressed (Figure 

3.1C). Comparing percent transposons expressed, we found that the FPKM thresholds 

have significantly different impacts on datasets (Figure 3.1C). For example, an FPKM 

threshold based on the 90th percentile of the transposon expression distribution results 

in a 57.4% reduction of transposon expression in the 12-day seedling drought stress 

dataset compared to no FPKM threshold, but no reduction in the 7-day data (Figure 

3.1C). This difference in the degree of transposon expression due to FPKM threshold 

choice is not simply due to differences in sequencing depth as the numbers of mapped 

reads are both ~4.8x10
6
 (Table 2.1). In addition, this difference cannot be attributed to 

stress treatments as degrees of transposon expression in the stress treatment and 

control samples are similarly regardless of FPKM thresholds (green, Figure 3.1C). We 

note that only 22-38% of reads from the 12-day datasets can be mapped to the A.  
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Figure 3.1: Characteristics of Set 1 and Set 2 TxFrags. (A) Length and (B) 

expression level distributions of various genomic features - proteins (blue), RNA 

(green), pseudogenes (red), transposons (orange) and ITFs (black) - based on Set 1 

TxFrags identified across all eight RNA-seq datasets. Both axes are logarithmically 

scaled with base 10. To emphasize the lower peaks, curves beyond the black dashed  
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Figure 3.1 (cont'd) 

line are truncated. (C) Percent transposons considered expressed based on Set 1 

TxFrags identified from eight datasets at various FPKM thresholds. (D) Length and (E) 

expression level distributions for Set 2 TxFrags. (F) Percent transposons considered 

expressed based on Set 2 TxFrags. Please note that the color legends for (C) and (F) 

are different from those of (A), (B), (D) and (E). 
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thaliana genome compared to 71% and 75% for 7-day old and flower data, respectively. 

Thus, data quality may significantly impact gene expression calls, even after quality 

filtering and mapping the reads to the genome. For comparison, we applied a second, 

more stringent transcript assembly approach using Cufflinks with bias corrections of 

transcript-models based on sequences, positions, and abundance (Trapnell et al., 2010) 

to generate Set 2 TxFrags. Compared to Set 1 TxFrags, Set 2 TxFrags are significantly 

longer (Figure 3.1D, Kolmogrov-Smirnov (KS) test p<2.2e-16) and have significantly 

higher FPKM values (Figure 3.1E, KS test p<2.2e-16). In addition, Set 2 TxFrags length 

and coverage distributions overlap with the right tails of Set 1 TxFrags (Figure 

3.1A,B,D,E), indicating the main difference between these two sets is enrichment for 

longer and more abundant transcripts in Set 2 TxFrags. Increasingly stringent FPKM 

thresholds still have a significant effect on the numbers of transposons considered 

expressed for several 12-day datasets (Figure 3.1F). Nonetheless, the second 

approach (Set II TxFrags) allows for better control in calling transposon expression, 

which we considered to be mostly false positive, than the first, simpler approach.  

Pervasiveness of intergenic transcription in A. thaliana  

 Previous microarray-based studies in A. thaliana have shown that a large 

number of polyA transcripts are produced from the intergenic regions of the genome 

(Yamada et al., 2003b; Matsui et al., 2008). Considering the advantages of RNA-seq 

over microarrays for expression studies (Agarwal et al., 2010), we re-assessed the 

preponderance of intergenic transcription using RNA-seq datasets. Here, TxFrags 

located within intergenic regions are referred to as Intergenic TxFrags (ITFs). We found 

that the analysis method (Set 1 vs. Set 2), FPKM threshold, and dataset significantly  
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Figure 3.2: Percent TxFrags defined as intergenic at different FPKM thresholds 

among datasets. Set 1 TxFrags (A) and Set 2 TxFrags (B) identified as intergenic 

without an FPKM threshold (black) and at progressively more stringent FPKM 

thresholds according to transposon-based False Positive (FP) rates of 1%, 2%, 5%, 7%  
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Figure 3.2 (cont'd) 

and 10%. The X-axis indicates the datasets used to identify TxFrags. The Y-axis 

represents percent true positive TxFrags that are intergenic at each FP threshold. Note 

that the percentage did not monotonically decrease because some TxFrags overlapping 

with annotated features also were filtered out when FP thresholds were applied.
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influence estimates of ITF abundance (Figure 3.2A,B). For example, 9.2% Set 1 

TxFrags from the flower data are considered ITFs when no FPKM threshold is applied, 

but this proportion drops to 3.7% with an FPKM threshold of 1.33, which corresponds to 

a 10% false positive rate (Figure 3.2A). Comparing between datasets by allowing a 10% 

false positive rate, ITF estimates differ by 7 (2.3-16.4%) and 73 (0.2-14.6%) fold based 

on Set 1 and Set 2 TxFrags, respectively. Despite these differences, there are two 

consistent ITF characteristics among datasets that separate Set 1 and Set 2 ITFs. Set 1 

ITFs tend to be significantly shorter than Set 2 ITFs (Figure 3.1AD; KS test p<2.2e-16). 

In addition, Set 1 ITFs expression levels are not significantly different from those of Set 

1 transposon TxFrags (Figure 3.1B, KS test p=0.28) but are significantly lower than 

protein coding gene TxFrags (KS test p<2.2e-16). Set 2 ITFs have significantly lower 

expression levels than protein coding gene TxFrags as well (Figure 3.1E, KS test p<1e-

2), although the pattern is not as pronounced as for Set 1 ITFs, presumably due to the 

bias corrections applied on the dataset by Cufflinks. Our findings are consistent with 

earlier studies in A. thaliana (Matsui et al., 2008; Hanada et al., 2007) and mammals 

(van Bakel et al., 2010; Wang et al., 2004) which found that intergenic sequences tend 

to be lowly expressed. 

 We next focused on Set 2 TxFrags, which represent a more stringently defined 

set of transcripts. Across datasets, 0.2-14.6% of TxFrags are potentially derived from 

intergenic transcription based on a 5% false positive rate (Figure 3.2B). This proportion 

corresponds to 10,511 ITFs across eight RNA-seq datasets, together representing 

6,545 non-overlapping intergenic transcribed genomic regions and spanning 3.6% of 

the assembled intergenic region in A. thaliana. Our ITF estimate is comparable to an 
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earlier tiling array based study in A. thaliana where 7,719 un-annotated transcriptional 

units were defined as novel, non-protein coding RNAs (Matsui et al., 2008). Other 

studies have provided more conservative estimates of A. thaliana intergenic expressed 

regions - from 104 (Stolc et al., 2005) to 2,397 (Yamada et al., 2003b). In mammals, 

however, the ENCODE project as well as other studies have reported significantly more 

pervasive intergenic transcription (Bertone et al., 2004b; Birney et al., 2007; Kapranov 

et al., 2007). The ENCODE project reported that 488,906 (22.6%) TxFrags lie in 

intergenic regions and that 93% of the ENCODE bases have transcription evidence 

(Birney et al., 2007). Compared to A. thaliana (3.6%), a significantly larger proportion of 

the ENCODE region is transcribed, even if we consider Set 1 TxFrags (13.7% at a 5% 

false positive rate) that are not as rigorously defined as Set 2 TxFrags. 

 There are several possible explanations for the differences in ITF pervasiveness 

between plants and humans. First, the ENCODE study analyzed transcripts obtained 

from 31 different cell lines and tissues, which represents a much broader sampling of 

the transcriptome than our study. Second, known issues with tiling arrays used in the 

ENCODE study, particularly cross-hybridization (van Bakel et al., 2010; Agarwal et al., 

2010) may lead to an over estimation of ITFs. Consistent with this possibility, a recent 

RNA-seq study of human 293T cell total RNA found that only ~4% of reads were 

intergenic (van Bakel et al., 2011), similar to our A. thaliana estimate. Third, the 

intergenic space in A. thaliana comprises only ~40% of the genome, compared to ~99% 

in the human genome. If intergenic transcripts are largely derived from noisy 

transcription or genomic contamination, species with larger genomes may have more 

mRNA-seq reads from intergenic space. The fourth reason may be that larger genomes 
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have more functional elements. However, variation in genome sizes can be due to 

extreme proliferation of transposable elements (Hawkins et al., 2006; Piegu et al., 

2006). Thus larger genomes do not necessarily contain more genes.  Finally, elements 

of our experimental design, such as the use of tissue samples with multiple cell types or 

insufficient coverage, may lead to an underestimate of ITFs. To address some of the 

issues concerning our study design, we analyzed cell-type specific transcriptome data 

obtained using directional Illumina sequencing.  

Factors affecting ITF estimates 

The datasets we analyzed have the following limitations that may affect 

estimates of ITF abundance (Clark et al., 2011). First, all datasets were generated using 

complex tissue samples that may render cell-type specific ITFs undetectable. Second, 

the sequencing was performed using single reads without directionality information, 

which may result in mis-assembly of ITFs. Third, the read length and coverage may be 

insufficient for detecting ITFs expressed at low levels. To address these issues, we 

directionally sequenced polyA-selected RNA from T87 suspension culture cells with 

longer reads (72bp) and greater depth (2-9 times more sequenced bases; ~2.3Gb, 

~3x10
7
 reads). We found that 0.9% of reads and 4.2% of TxFrags (identified using the 

same criteria as Set 2 TxFrags) from the suspension culture data are intergenic (Figure 

3.3), consistent with the proportions of intergenic reads and TxFrags identified from 

more complicated tissues (Table 2.1). In addition, in the suspension cell dataset, 3,052 

(9.8%) TxFrags and 170 (13.1%) ITFs overlap with ≥1 other TxFrags and ITFs, 

respectively, that are in the opposite orientation. Thus, lack of read directionality  
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Figure 3.3: Directional sequencing of mRNA from T87 cells. Shown are the 

percentages of total reads mapping to the annotated vs intergenic portions of the A. 

thaliana TAIR v10 nuclear genome. 
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information and mis-assembly can lead to an ~13% under-estimate of ITFs that overlap 

in opposite orientations. 

Another factor affecting the estimate of ITFs is that the datasets we have 

analyzed so far are derived from polyA RNA. Non-polyA RNA may comprise the bulk of 

the transcriptome and significantly contribute to intergenic expression (Xu et al., 2010; 

Armour et al., 2009; Cheng et al., 2005). However, an earlier study focusing on both 

polyA and non-polyA RNAs in A. thaliana found that 3.5% reads are intergenic (Lister et 

al., 2008), which is comparable to the 0.4-8.2% reads that are intergenic in the mRNA-

seq datasets we analyzed (Table 2.1). In addition, a study of human 293T cell rRNA-

depleted total RNA revealed that ~4% reads were intergenic (van Bakel et al., 2011). 

This suggests that our estimates of intergenic transcription in A. thaliana based on 

polyA RNA sequencing are reasonable. Nonetheless, detailed studies of non-polyA 

ITFs will be necessary to estimate the contribution of non-polyA transcripts to intergenic 

transcription.  

Taken together, we have identified 6,545 ITFs (5% false positive rate) that are 

likely novel transcriptional units not previously defined in the A. thaliana genome. Two 

outstanding questions remain. First, because these ITFs are derived from polyA RNAs, 

are they parts of novel protein-coding or non-coding RNA genes? Second, do some of 

these ITFs have clear evidence of selection, therefore suggesting their functionality? To 

address the first question, we assessed the protein coding potential of ITFs by 

analyzing ribosome-associated transcripts and shotgun proteomics datasets. 
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Distinguishing coding from non-coding intergenic transcripts based on ribosome 

association 

Translation initiation is the rate-limiting step in protein translation; therefore, 

transcripts associated with the ribosome are more likely to be translated (Kawaguchi 

and Bailey-Serres, 2002; Bailey-Serres et al., 2009). Studies in A. thaliana (Jiao and 

Meyerowitz, 2010; Branco-Price et al., 2008), mouse (Doyle et al., 2008) and yeast 

(Ingolia et al., 2009) have taken advantage of this property to globally investigate 

translational regulation. To assess whether ribosome association of intergenic 

transcripts is a good measure of their translation potential, we first sequenced 

ribosome-associated transcripts from 7-day old seedlings. After identifying the 

ribosome-associated TxFrags (R-TxFrags), we selected eight genomic regions with 

evidence of ribosome-association and seven without for in vivo translation studies. 

These regions overlap with putative small ORF (sORF) genes that were originally 

computationally predicted from intergenic regions (Hanada et al., 2007). Several of 

these regions have since been annotated based solely on computational predictions 

and/or cDNA evidence. The 5’ UTRs and coding sequences of the sORFs were fused in 

frame to a yellow fluorescence protein (YFP) reporter that lacks a translational start 

codon, and the translation of these sequences in transiently transformed tobacco leaf 

epidermal cells was evaluated (see Methods).  

Of the eight genomic regions with R-TxFrag evidence, five were translated in 

tobacco while only one of the seven regions without R-TxFrag support was translated. 

Thus, there was a significant enrichment of sORFs with R-TxFrag evidence among 

those translated in vivo (Fisher Exact Test, p < 0.05). The observed localization patterns 
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of the protein fusions were largely consistent with signal peptide predictions, indicating 

that the fusion proteins were likely correctly translated and targeted in tobacco. 

However, three sORFs with ribosome association evidence do not appear to be 

translated in the transient expression assay. These sORFs may not be translated or this 

may be an artifact due to the use of a heterologous system (tobacco). One translated 

sORF is an annotated “Other RNA” gene (At1g31935; Table 2.2). In addition, a number 

of annotated "Other RNA" genes have either ribosome association or proteomics 

evidence, which highlights the importance of experimentally evaluating protein coding 

potential.  Overall, based on the findings of our in vivo translation assays, we conclude 

that features with evidence of ribosome association are more likely to be translated than 

those without.  

Translation evidence for ITFs 

Given that ribosome association is a good indicator of translation potential of 

intergenic sequences, we further analyzed R-TxFrags from the 7-day-old seedling data 

to estimate the proportion of ITFs likely to be parts of coding genes. To address 

potential issues due to sequencing coverage or tissue-specific expression and 

translation, R-TxFrags were also identified using ribosome associated transcript data of 

whole flowers and specific floral domains expressing three homeotic genes (Jiao and 

Meyerowitz, 2010). For comparison, we also incorporated shotgun proteomics data from 

two studies examining protein expression in multiple tissues and developmental stages 

(Castellana et al., 2008; Baerenfaller et al., 2008). These data are collectively referred 

to as “translation datasets” and are summarized in Table 3..2. 
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Table 3.2. Description of datasets used for translation analyses 

Source Stage or 
condition 

Data 

type
3 

Read 
length 
(bp) 

Reads 

mapped
4 

TxFrags
5
 

This study
1
 7-day old 

seedlings 
R 36 12,077,020  31,230 

Jiao and 
Meyerowitz, 

2010
2
 

AG domain 
(Stages 4, 6-7) 

R 38 39,325,787 44,686 

AP1 domain 
(Stages 4, 6-7) 

R 38 19,020,560 52,544 

AP3 domain 
(Stages 4, 6-7) 

R 38 42,960,909 46,973 

Flower (Stage 4) R 38 19,814,409 35,280 

Castellana et 
al. 2008 

Multiple tissues 
and 
developmental 
stages 

P NA 176,880 NA 

Baerenfaller et 
al. 2008 

Multiple tissues 
and 
developmental 
stages 

P NA 85,790 NA 

1.
 Reads from three lanes of sequencing of technical replicates were pooled together for 

transcript assembly 
2.

 Reads from Stages 4 and Stages 6-7 were pooled together for transcript assembly for 

each domain 
3.

 R: ribosome associated transcript. P: proteomics. 
4.

 To the nuclear genome assembly of Arabidopsis thaliana, TAIR 10 release. 
5.

 TxFrags generated using Cufflinks. 
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As with mRNA-seq, most R-TxFrags and proteomics tags mapped to previously 

annotated regions in the genome, particularly protein-coding genes. Among ribosome 

immuno-precipitation datasets, 63-73% of protein coding genes have ≥1 R-TxFrags 

(Figure 3.4; Figure 3.5). Similarly, 74% of protein coding genes have ≥1 proteomics tags 

(Figure 3.5). In addition, 62-67% of the R-TxFrags overlap with ≥1 proteomic tags. 

These findings demonstrate that ribosome associated transcripts tend to be translated, 

consistent with our in vivo translation studies. On the other hand, 5-23% of annotated 

ncRNA genes and 7-15% of pseudogenes have uniquely mapped R-TxFrags and/or 

proteomics tags. If all annotated RNA genes are truly non-coding, calling a feature 

translated based on a corresponding R-TxFrag and/or proteomics tag can have a 5-

23% false positive rate depending on the dataset (RNA, Figure 3.5). One anomaly is 

that 34.0% of transposons have proteomic tags, although only 1.9-3.4% have R-

TxFrags (Figure 3.5). This discrepancy is in sharp contrast to our finding that the 

proportions of protein coding genes possessing R-TxFrags and proteomics tags are 

both ~70% (Figure 3.5). This observation, also noted in the original study (Castellana et 

al., 2008), is inconsistent with studies demonstrating reduced transcription of 

transposons (Schmid et al., 2005) and their extensive methylation (Zilberman et al., 

2007; Zhang et al., 2006). Using number of proteomic tags as a proxy of protein 

expression level, transposons with proteomics evidence tend to have significantly fewer 

tags than protein coding genes (Figure 3.6, KS test, p<2.2e-16). In addition, 67.6% of 

transposons with proteomics evidence have only one tag compared with 26.6% of 

protein-coding genes suggesting that if the transposons are expressed and translated, it 

happens at significantly lower levels than protein-coding genes. 



91 
 

 How many ITFs have evidence of translation? Among the 6,545 non-overlapping 

ITFs identified from eight mRNA-seq datasets, 2,107 (32.2%) have ≥1 R-TxFrags from 

≥1 of the translation datasets analyzed (Figure 3.4, Figure 3.5). Unlike protein coding 

genes, there is substantially stronger support for ITF translation from ribosome 

association than from proteomics data (Figure 3.5). Some of the ribosome associated 

ITFs may contain protein coding regions even though there is no proteomics support, 

partly due to the fact that proteomics data tend to be biased toward more abundantly 

translated proteins (Baerenfaller et al., 2008). It is also likely that a significant number of 

ribosome associated ITFs are derived from the un-translated regions (UTRs) of protein 

coding transcripts. Taken together, even if the false positive rate is 23%, ~1,622 ITFs 

are likely parts of transcripts destined to be translated after eliminating potential false 

positives. Thus, a significant number of intergenic transcripts may be part of larger 

protein-coding genes, either as coding sequences or as UTRs. Our finding highlights 

the importance of assessing translational potential of polyA intergenic transcripts before 

defining them as sequences that function solely at the RNA level.  

Relationship between ITFs and neighboring, annotated genes 

Based on analysis of mRNA sequencing data, we uncovered thousands of short, 

low abundance transcripts from intergenic regions. In addition, many of these ITFs are 

supported by translation evidence.  One immediate question is whether these ITFs, 

translated or not, are extensions of previously annotated or novel protein-coding genes. 

To address this question, we assessed whether there is a significant bias in where ITFs 

are located within the A. thaliana genome. Using ITFs identified from eight RNA-seq 

datasets (Table 2.1), we calculated the distance between each ITF and its closest  
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Figure 3.4: Pairwise proportions of ITFs with translation evidence across different 

datasets. Each row represents each mRNA-Seq transcriptome dataset while each 

column represents a unique translation dataset - 5 translatome and 1 proteome. The 

percentage of ITFs in each transcriptome dataset having an overlapping piece of 

translation evidence is noted in the cells. A range of colors from green to blue is used to 

represent high to low percentages. Only uniquely mapping peptide tags were 

considered for overlap analysis when estimating percentages in the last column. 
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Figure 3.5: Percent total features with translation evidence. Percent features with 

overlapping translation evidence was calculated for protein-coding genes, RNA genes 

(excluding Other RNA), pseudogenes, transposons and ITFs obtained from the 7d 

seedling and flower transcriptomes. Ribosome immuno-precipitation data: AG, AP1, 

AP3, flower, and 7-day seedling. Proteomics data: combined data from two studies. 

Only uniquely mapping R-TxFrags and proteomics tags were used as evidence. 
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Figure 3.6: Number of peptides per feature. Distributions of the number of peptide 

tags for protein-coding genes (blue), RNA genes (red), pseudogenes (green) and 

transposons (black).   



95 
 

annotated protein coding gene. We found that although a substantial number of ITFs 

are closer to genes, they are not any closer than intergenic sequences sampled 

randomly based on ITF number and size (Figure 3.7B). This is contrary to the 

expectation that ITFs are predominantly extensions of existing genes.   

Given that ITFs in general are not closer to neighboring genes than randomly 

selected intergenic sequences, do ITFs with translation evidence behave similarly? 

Firstly, we found that translation evidence (proteomic tags and R-TxFrags) tends to lie 

farther away from protein coding genes than random expectation (Figure 3.8A). 

However, ITFs with translation evidence tend to lie closer to genes than ITFs without 

translation evidence (Figure 3.8B), suggesting that most ITFs with translation evidence 

may be parts of neighboring protein-coding genes. If translated ITFs are indeed missing 

parts of annotated genes, ITFs closer to genes with transcription evidence should be 

enriched in the translated set compared to ITFs closer to non-transcribed genes. 

Consistent with this expectation, among the 4,942 ITFs closest to a transcribed 

annotated protein, 37.9% have translation evidence while among the 563 ITFs closest 

to a non-transcribed annotated protein, only 14.2% have translation evidence (Fisher 

Exact Test, p<2.2e-16, Figure 3.7C). These observations suggest that most ITFs with 

translation evidence that are close to annotated genes may be missing parts of those 

genes or associated with the transcription of those genes via an unknown mechanism.  

Taken together, we have demonstrated the presence of ITFs from >6,000 

intergenic regions in A. thaliana from multiple RNA-sequencing datasets. More than 

20% of these ITFs are likely translated or are part of protein coding transcripts. Among 

the 6,545 ITFs, 59.4% are located >300bp away from an annotated gene. Of these, 847 
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(21.7%) have translation evidence. Considering that 300bp is ~90th percentile of both A. 

thaliana intron and UTR lengths, these relatively distant ITFs may be parts of novel 

transcriptional units. However, ITFs, in general, tend to be significantly shorter and 

expressed at lower levels than protein coding genes. We also find that ITFs, in general, 

tend to be expressed narrowly, in a dataset-specific manner, while TxFrags 

corresponding to annotated features are present in multiple datasets (Figure 3.7A). The 

translation of ~32.2% ITFs is supported by ≥1 ribosome immuno-precipitation and/or 

proteomics datasets, compared to 88.0%, 44.6%, and 36.9% for protein coding genes, 

pseudogenes, and transposons, respectively. In terms of translation, ITFs behave 

similarly to pseudogenes and transposons. Previous studies have suggested that 

breadth of expression as well as level of expression can be considered as proxy 

indicators of functionality (Nuzhdin et al., 2004; Subramanian and Kumar, 2004; 

Movahedi et al., 2011). However, genes can have highly specific expression and/or low 

expression levels. Thus, one remaining question is whether these ITFs are parts of 

functional sequences with clear evidence of selection.  

Evidence of natural selection on ITFs at the nucleotide level 

 Intergenic transcripts that are independent transcriptional units may be derived 

from noisy, background transcription or unannotated genes that are functional (Struhl, 

2007; Dinger et al., 2009; van Bakel et al., 2010; Clark et al., 2011; van Bakel et al., 

2011). Transcripts not important to cellular function are expected to accumulate 

mutations much like neutrally evolving sequences. In contrast, functional ITFs should be 

selected for and show signs of non-neutral evolution. To assess whether there is a clear 

signature of natural selection that is indicative of functionality, the ITF nucleotide  
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Figure 3.7: Proximity of ITFs to neighboring genes. (A) Distance distribution of ITFs 

to their nearest protein-coding genes. The boxplots depict distance distributions 

between 10,000 sets of randomly sampled intergenic sequences and their nearest 

protein-coding genes. (B) Percent translated ITFs over all ITFs in the same distance bin 

is shown as a function of distance to the nearest protein coding gene. ITFs neighboring  



98 
 

Figure 3.7 (cont'd) 

proteins with and without transcript evidence are represented by red and blue lines, 

respectively. Boxplots represent the randomly expected proportions in each distance bin 

obtained by permuting the association between distance and presence/absence of 

translation evidence. The medians of random expectations are ~35% because ~35% 

ITFs have ≥1 translation evidence. (C) “Breadth of expression” (as indicated by the 

number of datasets where a feature can be found) of ITFs (black) and TxFrags mapped 

to protein-coding genes (blue), RNA genes (red), pseudogenes (green) and 

transposons(orange).  

 

Figure 3.8: Distances of translation evidence from annotated genes. (A) % of total 

translation evidences (R-TxFrags + peptide tags) (Y-axis) and (B) % of ITFs with (red) 

and without (blue) translation evidence as a function of distance from nearest gene (X-

axis). The boxplots represent median % distribution obtained through a simulation  
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Figure 3.8 (cont'd) 

involving randomly sampled intergenic sequences. The lines represents observed % of 

translation evidence in each distance bin. 
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substitution rates were estimated using syntenic genomic regions of A. thaliana and A. 

lyrata, which diverged from their common ancestor ~10 million years ago (Hu et al., 

2011). We also estimated the four-fold degenerate site substitution rates of protein-

coding orthologs as proxies for neutral evolution rates. Substitution rates for protein 

coding genes, RNA genes and randomly chosen intergenic regions not overlapping with 

ITFs were also estimated for comparison.  

Among 6,545 ITFs, only 1,238 (18.9%) have identifiable syntenic regions for 

substitution rate estimation between the two Arabidopsis species. The proportion of 

syntenic ITFs is significantly lower than those of protein coding genes (90.9%, Fisher 

Exact Test p<2.2e-16), RNA genes (35.7%, p<9.1e-10), and pseudogenes (33.4%, 

p<2.2e-16) but significantly higher than transposons (10.9%, p<1.5e-16). Thus, many 

“orphan” ITFs without putative orthologs likely evolved rapidly with little or no selective 

constraint. For ITFs found within syntenic regions, substitution rates are significantly 

higher than not only those of annotated protein coding genes (KS test, p<2.2e-16; 

Figure 3.9A). On the other hand, ITF substitution rates in general are significantly lower 

than those of four-fold degenerate sites (KS test, p<2.2e-16; Figure 3.9A). These 

observations suggest that ITFs may constitute a mixed population; the first population 

under strong selective constraint and the second one evolving neutrally. Using the 5
th

 

percentile of the four-fold degenerate site rate distribution (rate=0.07) as a threshold, 

only 6.4% of the 6,545 ITFs are likely under strong purifying selection. The remaining 

93.6 % are likely under little or no purifying selection. To control for local rate variation, 

we compared the rate of each ITF to the four-fold site rates of neighboring genes. 
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Based on this approach, a much smaller percentage, 2.7%, of ITFs were found to be 

under selection (Figure 3.9B). 

One issue in comparing any sequence feature to four-fold sites is that there can 

be significant alignment bias. This is because a sequence feature, e.g. an ITF, is 

aligned to its putative ortholog at the nucleotide level whereas four-fold sites are 

identified from nucleotide sites originally aligned based on protein sequences. Given 

that the alignment process involves finding an alignment with the best score, regardless 

of whether the sites are homologous or not, it will tend to make a nucleotide-based 

alignment look more similar than it really is. Thus, the lower substitution rate among 

sequence features compared to four-fold sites can simply be due to this artifact. To 

account for this, we selected random intergenic regions that have no evidence of 

expression and calculated their substitution rates.  Similar to ITFs (6.4%), 7.5% of the 

random intergenic region samples are under strong purifying selection. More 

importantly, there is a small but statistically significant difference in the substitution rate 

distributions between ITFs and random intergenic sequence (Median rates: 0.09 and 

0.08, respectively, KS test, p<2e-05). Therefore, after accounting for potential alignment 

bias, potentially even fewer than 6.4% of ITFs are under significant selective 

constraints. The implication is that the majority of ITFs appear to evolve similar to 

presumably non-functional, non-expressed random intergenic regions between species.     

To assess the possibility that that some ITFs may have a species-specific 

function in A. thaliana making the signature of selection only obvious at the intra-specific 

level, we analyzed genomic sequences of 80 accessions of A. thaliana (Cao et al., 

2011) and estimated the Nucleotide diversity (π) for ITFs, annotated sequence features  
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Figure 3.9: Evolutionary conservation of ITF sequences. (A) Between species 

nucleotide substitution rate distributions of different features and four-fold degenerate 

sites (4x). (B) Substitution rates of ITFs compared with local substitution rates of 4x  
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Figure 3.9 (cont'd) 

sites. Fourfold degenerate sites of up to 60 neighboring protein-coding genes were used 

to determine distributions of local substitution rates. Black circles indicate medians of 

the distributions, gray lines define the interquartile ranges and each filled orange or blue 

circle indicates the substitution rate of the ITF in the given region. The ITFs are 

arranged from low to high z-scores. A filled orange circle indicates a significant z-score 

at p<0.05, while a filled blue circle indicates p≥0.05. 

 

 

Figure 3.10: Distribution of π values for genomic features. The π values were 

calculated using population genomic data of 80 A. thaliana accessions. X-sp: cross-

species. Random intergenic sequences were selected from regions without transcript 

support.
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and randomly selected intergenic sequences not overlapping with ITFs. The π value 

allows us to assess genetic variability of different genomic features among A. thaliana 

populations (Li, 1997). Our findings suggest that ITFs have π values significantly higher 

than coding sequences and RNA genes (KS tests, both p<2.2e-16), but similar to 

random intergenic sequences not overlapping with ITFs (Figure 3.10). We also 

estimated Tajima's D, Fu and Li's D and Fay and Wu's H based on site-frequency 

spectrum to assess if ITFs are under selection. The distributions of all three statistics 

were comparable between ITFs and randomly sampled, unexpressed intergenic 

sequences (KS tests, all p>0.1) but significantly different from those of protein coding 

genes and RNA genes (KS tests, all p<0.001). These findings suggest that there is 

much more relaxed selection within species on ITFs compared to protein coding genes. 

Furthermore, the intensity of selection on ITFs is similar to that on random intergenic 

regions, which are likely largely non-functional and evolve neutrally. 

Selection on ITFs with translation evidence 

Our findings indicate that some ITFs are under strong selective constraint and 

may be functional. However, a much larger number of ITFs do not have clear signatures 

of selection. One immediate question is whether ITFs under strong selective constraint 

tend to be those that are translated given that ITFs with translation evidence tend to be 

located closer to neighboring genes. We performed a similarity search between ITF 

sequences and the genomes of fifteen land plants ranging from a bryophyte to 

angiosperms. For comparison and to address potential annotation issues, we also 

analyzed TxFrags mapping to protein-coding genes and RNA genes. ITFs with 

evidence of translation were slightly more conserved over ITFs with no evidence of 
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translation (compare Figure 3.11A, B), but most ITFs have significant similarities only 

between A. thaliana and A. lyrata, with sequence similarity rapidly declining beyond the 

Arabidopsis genus. On the other hand, there is a significantly higher degree of cross-

species similarity between protein-coding genes – 6,895 of the 10,000 randomly 

selected protein sequences had E-values <1e-5 in >1 species (Figure 3.11C). Even 

RNA genes, which are not expected to be translated, have higher sequence similarities 

than ITFs (Figure 3.11D). Thus, at both the nucleotide and amino acid sequence level, 

relatively few ITFs are under selection based on cross-species comparisons. 

Of the 847 ITFs with translation evidence that are located >300bp away from 

genes, 799 did not show significant conservation. Considering that these ITFs tend to 

be expressed at low levels, such sequences may represent translational noise. But we 

cannot rule out the possibility that they are lineage-specific coding sequences. Of the 49 

ITFs that did show conservation, 16 had similar sequences present in >1 species at the 

amino acid level (E-value<1e-5) and 10 showed overlap with computationally predicted 

small ORFs with high protein coding potential (Hanada et al., 2010). The π value 

distribution of these 49 ITFs is statistically indistinguishable from that of TxFrags 

mapping to protein coding sequences (KS test p=0.2; Figure 3.9B), suggesting that 

these ITFs are under a similar selective constraint as protein coding sequences. These 

ITFs may thus represent novel functional genes. Nonetheless, only ~5% ITFs with 

translational evidence are subject to strong purifying selection among A. thaliana 

ecotypes, reinforce the notion that most of them are products of noisy transcription. 
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Figure 3.11: Evolutionary conservation of ITF sequences. (A-D) Heat maps indicate 

degree of cross-species similarity of ITFs with translation evidence (A) 10,000 randomly 

selected TxFrags mapped to protein coding genes ITFs without translation evidence (B) 

annotated RNA genes, (C) ITFs with translation evidence and (D), ITFs without 

translation evidence. Rows represent features and columns represent the subject 

species for similarity search. The Expect (E)-values were converted to a negative 

logarithmic scale and adjusted to be between 0 to 10, with 0 (blue) indicating E-value ≥1 

and 10  (yellow) indicating an E-value ≤1e-10.  
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CONCLUSIONS 

 In this study, we analyzed the intergenic polyA transcriptome of A. thaliana to 

address the issues of abundance, coding/non-coding nature and functional relevance of 

intergenic polyA transcripts. Our results indicate that ~5% of the TxFrags in the A. 

thaliana transcriptome can be reliably called intergenic.  One limitation of our analyses, 

as we have noted before, is our focus on the polyA fraction of the transcriptome. It is 

likely that the non-polyA fraction of the transcriptome may harbor additional novel non-

coding genes that need to be further investigated. Another limitation is that the read 

lengths of the RNA-seq data we used are short. It is possible that some ITFs belong to 

the same transcriptional units, making the number of ITFs an overestimate. 

Our results indicate that ~3.6% of the intergenic space in A. thaliana is 

transcribed by RNA Pol II, and ~40% of what is transcribed tends to lie within 300bp of 

annotated genes. Around one third of ITFs have translation evidence, and we find a 

significant bias in their distribution; they tend to be closer to transcribed protein-coding 

genes, raising the possibility that some ITFs may in fact be unannotated extensions of 

known genes. Our primary sequence-level evolutionary analysis indicates that a 

relatively low fraction (~5%) of the ITFs have experienced strong purifying selection 

either within-species or between-species. We should emphasize that our criteria for 

evaluating selection is stringent. Furthermore, some ITFs may be more strongly 

constrained at the secondary structural level similar to non-coding RNA genes (Washietl 

et al., 2005) i.e. sequence level changes may be tolerated as long as a functional 

structure is maintained. In addition, some long non-coding RNAs such as Air and Xist 

are poorly conserved (Pang et al., 2006; Ponting et al., 2009), indicating that lack of 
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conservation may not always mean lack of function. Thus, it is likely we will miss some 

ITFs that are under selection or are functional. However, most ITFs are short, and 

unlike the long non-coding RNAs, tend to be dataset specific, and are expressed at a 

very low level compared to annotated genes. In addition, most ITFs have characteristics 

more similar to pseudogenes and transposons than to protein coding and RNA genes. 

Even compared to intergenic sequences without evidence of expression, ITFs tend to 

evolve faster. Taken together, most ITFs bear the hallmarks of neutrally evolving 

sequences, suggesting they are products of noisy transcription as proposed earlier 

(Struhl, 2007).  

The idea of transcriptional noise has been intensely debated over the past few 

years. Some studies support the theory that the transcriptional machinery might be 

error-prone and that many transcripts may be the result of false starts and/or stops 

(Struhl, 2007; Li et al., 2007a; Xu et al., 2009; van Bakel et al., 2010). Such errors may 

occur because it is not possible to regulate any biological process to the point that there 

is no error; noisy transcription may exist simply because it incurs little fitness cost. 

Considering that the vast majority of mutations are neutral or nearly neutral (Ohta, 

1992), this paradigm for gene evolution may also apply to other molecular events, 

including transcription. As has been postulated before, the target of natural selection 

may be the effects of error-prone transcription rather than the transcriptional process 

itself (Hurst, 2009). Another possibility is that the effect of genetic drift, particularly on 

organisms with smaller effective population sizes, may render selection against 

erroneous transcript production ineffective. In either case, the hypothesis is that 

transcriptional errors may not always be subjected to purifying selection. Based on our 
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findings, it would seem that much of the intergenic transcription falls into this category. 

We should emphasize that, for most ITFs, there is little or no evidence to reject the null 

hypothesis that ITFs are non-functional. The reason to consider non-functionality as null 

is simply because only functionality can be experimentally tested (van Bakel et al., 

2010).  

In a recently published series of papers by the ENCODE consortium, 80.4% of 

the human genome was found to have evidence of functionality (Bernstein et al., 2012). 

Functionality of a sequence, in this case, was defined at the biochemical level. That is, a 

functional sequence is presumed to have at least one RNA and/or chromatin-associated 

event, such as transcription factor binding, nucleosome binding, DNA methylation, in at 

least one cell type. However, it remains unclear to what extent these biochemically 

functional sequences may have physiological function, given these biochemical events 

can also be due to noise. As an example, among the novel long intergenic polyA 

TxFrags obtained in the ENCODE study, only 4% of the bases were conserved between 

humans and macaques. Among the 96% bases not conserved, only 6-11% showed 

evidence of lineage-specific constraint in humans, comparable to what we find in A. 

thaliana (Ward and Kellis, 2012). In addition, intergenic TxFrags found in this study 

were found to be present at <0.1 copies/cell (Djebali et al., 2012), consistent with our 

finding that most of the A. thaliana ITFs have a very low expression level.  

Considering the dramatically increased sensitivity and throughput in sequencing, 

noisy transcription and even contaminating sequences, such as trace amount of 

genomic DNA, can be readily detected. Thus, we propose that a transcription event as 

detected by sequencing may not be considered functional by default. Evolutionary 
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constraint acting on novel sequences or other evidence should be demonstrated prior to 

their annotation. The increasing availability of population-wide polymorphism datasets 

and genome sequences of related species provide more robust tools for such 

evolutionary studies, especially those focusing on lineage-specific selection (Ward and 

Kellis, 2012). In addition to the question of functionality, we show that a significant 

number of ITFs are associated with ribosomes and a smaller fraction of them have 

proteomics tags. Thus, novel transcripts should not be regarded as non-coding by 

default without rigorous experimental analysis of their coding potential. Our results also 

suggest the need to have a clearer understanding of the mechanistic aspects of RNA 

polymerase action on how noisy transcription may arise. Use of an integrated approach 

to validate novel RNA predictions and their functionality would be important in this 

regard. For example, a recent study in mouse used an array of approaches including 

identification of conserved histone modification marks, evolutionary analyses of 

promoter regions, gene set enrichment analysis, transcription factor chromatin immuno-

precipitation and RNA interference assays to identify putative functional long non-coding 

RNA (Guttman et al., 2009). We surmise that such an approach will allow us to explore 

more deeply the mechanistic and evolutionary aspects of the transcriptional process in 

plants.  
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MATERIALS AND METHODS 

Plant material and RNA isolation 

For transcriptome and ribosome immuno-precipitation studies, transgenic A. 

thaliana Columbia seeds expressing a His6FLAG-tagged version of the ribosomal large 

subunit protein L18B (35S:HF-RPL18B), were surface sterilized, stratified for three 

days, and sown on 0.5X Murashige and Skoog media containing 1% (w/v) sucrose and 

0.4% phytagel. Seedlings were grown vertically under a 16h day (125 E m
-2

 s
-1

 

photosynthetically active radiation)/8h night cycle for seven days as described 

previously (Branco-Price et al., 2008). Seven-day old seedlings were harvested at the 

end of the light period. Total RNA extraction and ribosome immunoprecipitation were 

done as previously described (Branco-Price et al., 2008) for three biological replicates 

except that the RNeasy Plant Mini Kit purification step was omitted. Total RNA and 

ribosome-immunoprecipitated RNA was quantified using a Nanodrop 

spectrophotometer (Nanodrop Technologies, USA) and RNA quality was assessed 

using an Agilent 2100 Bioanalyzer (Agilent Technologies, USA). 

Illumina RNA-seq and data analysis 

 For each in-house (7-day seedlings) RNA sample, cDNA libraries were 

constructed by first isolating poly-adenylated RNA from three µg of total or ribosome-

associated RNA.  Libraries for RNA-seq were prepared using the Illumina mRNA-seq 

Sample Prep Kit. Briefly, polyA RNA was fragmented and reverse transcribed using 

random primers. Adapters were ligated to double stranded cDNA, and fragments from 

175-225 bp were gel-purified. After PCR amplification, the cDNA libraries were 
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sequenced on an Illumina Genome Analyzer. Each library was loaded onto at least two 

lanes; however, usable sequence was only obtained for one polyA RNA library and two 

ribosome-associated RNA libraries (four lanes total). Three lanes of ribosome-

associated RNA sequencing, corresponding to two biological replicates, were combined 

to give 19,818,643 reads and one lane of polyA RNA yielding 7,028,772 36-bp reads 

was obtained. The original sequencing reads were deposited in NCBI Short Read 

Archive under the accession number SRA053376 

(http://www.ncbi.nlm.nih.gov/Traces/sra).  All public datasets (Tables 2.1, 2.2) were 

downloaded from NCBI Short Read Archive.  The following procedure was commonly 

performed on both the in-house and the public datasets. 

 The short reads, after quality trimming, were mapped to the TAIR10 A. thaliana 

genome using Bowtie v 0.12.7 (Langmead et al., 2009) and TopHat v 1.2.0 (Trapnell et 

al., 2009). The default settings were used except that the maximum combined intron 

size was set at 5,000 bp. The mapped reads were assembled with two approaches. In 

the first approach, reads with overlapping genomic locations were merged into TxFrags 

(Set 1 TxFrags) without considering the possibility that neighboring TxFrags may be 

derived from the same transcriptional units. In the second approach, Cufflinks 0.9.3 

(Trapnell et al., 2010) was used with default parameters except a maximum combined 

intron size was set at 5,000bp (Set 2 TxFrags). All TxFrags overlapping with annotated 

features by ≥1 bp, including introns or UTRs, were flagged as genic transcripts.  

 

http://www.ncbi.nlm.nih.gov/Traces/sra


113 
 

Estimating level and breadth of expression  

 For estimating expression level, the Fragments Per Kilobase of exon model per 

Million mapped reads (FPKM) measure was used. Since Set 1 TxFrags represent a set 

of unique, non-overlapping TxFrags, the entire TxFrag was considered an exon for the 

purpose of FPKM estimation. For Set 2 TxFrags, FPKM values were estimated by 

Cufflinks.  The breadth of expression was calculated for the 6,545 merged ITFs.  For 

comparison, we also measured the expression breadth of TxFrags mapping to 

annotated features. We used the number of datasets in which a particular feature had 

expression evidence (≥ 1 overlapping TxFrag) as a measure of the breadth of 

expression of that feature.  

5’ RACE and transient expression of YFP fusion proteins in tobacco 

These experiments were performed by Dr. Melissa Lehti-Shiu in collaboration 

with Yanni Sun and Dr. Federica Brandizzi.  

The 5’ UTRs of putative coding sORF sequences were identified from publicly 

available cDNA sequences (Aubourg et al., 2007) or were amplified by 5’ RACE (RLM-

RACE kit, Ambion or SMART RACE cDNA amplification kit, Clontech). The 5’UTRs and 

coding sequences of each sORF were amplified from genomic DNA and cloned into the 

TOPO-TA entry vector (Invitrogen). The sequences were then transferred by 

recombination mediated by LR clonase (Invitrogen) into a modified pMDC83 destination 

vector (Curtis and Grossniklaus, 2003), containing the enhanced YFP sequence 

(Clontech), lacking a translational start codon, under the control of the 35S promoter. 

Constructs containing sORFs fused in frame with YFP were transformed into 

Agrobacterium tumefaciens GV3101. Transient transformation was performed to 
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express sORF-YFP fusions in tobacco (Nicotiana tabacum) cells (Sparkes et al., 2006). 

Transgenic A. tumefaciens cells were cultivated overnight, and 200ul of the culture (OD 

A600~1-2) was pelleted and resuspended with sterile water to 0.1 OD. A. tumefaciens 

cells were infiltrated into tobacco leaves, and the infiltrated tobacco was kept under 

constant light for 72 hours.  Infiltrated areas of tobacco leaves were detached, and 

observed under an inverted laser scanning confocal microscope (Olympus Spectral FV 

1000). YFP signals were detected with the 514nm argon laser excitation line with a 

band pass emission filter of 517.5 to 542.5 nm. For visualization of AT_1|-|2|5786755-

5786853 and ERD2 colocalization, equal volumes of A. tumefaciens cultures were 

mixed prior to infiltration.  Fluorescence was visualized after three days with a Meta 

Zeiss confocal using the Argon laser excitation lines of 458 nm and 514 nm, and 

bandpass emission filters 475 to 525 nm and 530 to 600nm for blue shifted GFP and 

YFP, respectively. 

Evolutionary conservation analyses 

 To identify ITFs under selection at the nucleotide level, the A. thaliana ITFs were 

first mapped to the A. lyrata genome using GMAP version 2007-09-28 (Wu and 

Watanabe, 2005) with default settings. Putative ITF orthologs were defined as pairs of 

similar sequences (≥80% coverage, ≥80% identity, ≥40 bp match length) between A. 

thaliana and A. lyrata flanked by ≥1 putative orthologous genes among 10 protein-

coding genes on either side of the ITF. Putative orthologs between these two species 

were identified based on reciprocal best match and synteny information. The 

orthologous ITFs were aligned using Clustal 2.1 (Thompson et al., 1994) and the 

nucleotide substitution rate was calculated using baseml with the HKY substitution 
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model in PAML (Yang, 2007). ITFs with a substitution rate lower than the 95th percentile 

(HKY distance ≤ 0.07) of the fourfold-degenerate site substitution rates of all protein-

coding orthologs were deemed to be evolving under strong purifying selection. To 

control for genome wide variation in local substitution rates, the fourfold-degenerate site 

substitution rates of up to 60 protein coding genes in the vicinity of the ITFs were used 

to determine the 5% significance level using a z test. We did not conduct a Ka/Ks 

analysis for ITFs because (1) most ITFs are short thus the variance of Ka and Ks 

estimates for short sequences tend to be high and (2) it is not clear what the correct 

reading frame is, if these ITFs are translated. Instead, to compare the levels of 

conservation at the coding sequence level, we performed a translated BLAST search 

between ITF/TxFrag sequences and the draft assemblies of fourteen plant species in 

Phytozome 5.0 (http://www.phytozome.org/). The negative logarithm of the E-value of 

the top match in each species was used to plot a heatmap. All negative log values ≥10 

or ≤0 were set to 10 and 0 respectively. 

 For conservation analyses within species, we used polymorphism data in the 

form of a genome matrix file from 80 different A. thaliana accessions (Cao et al., 2011). 

For each genomic feature type, we reconstructed the aligned sequences based on the 

genome matrix file. The aligned sequences were analyzed for π, Tajima's D and Fu and 

Li's D using Variscan (Vilella et al., 2005) with the following parameters: RefPos=1, 

Outgroup=none, RunMode=12, UseMuts=0, CompleteDeletion=0, FixNum=1, 

NumNuc=60. For Fay and Wu's H, we used the orthologs in A. lyrata as outgroups with 

RunMode=22 (Figure 3.12). For comparison, π values for 10,000 randomly chosen 

protein coding genes, RNA genes, transposons, and pseudogenes were also 

http://www.phytozome.org/
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calculated. For features with <10,000 sequences, bootstrap samples were used. To 

determine the background π values, 10,000 random intergenic sequences were 

sampled based on the size distribution of ITFs. Only those intergenic sequences not 

overlapping with any TxFrags were used for analysis. For each sequence in each 

feature type, a π value was estimated. The π distributions were then compared 

statistically. 

 Presence of ambiguous nucleotides or the short size of the ITFs can affect the 

error margins associated with π estimates. To assess whether these factors influence 

our findings, we conducted additional analysis by changing the minimum number of 

sites analyzed (MinLength) and proportion of the aligned length with non-ambiguous 

bases (coverage). We sampled a range of MinLength (0,50,100,150,200) at no 

coverage threshold and a range of coverage (0,0.25,0.50,0.75, and 1) at no MinLength 

threshold. Our analyses suggested that the trend observed in Figure 3.9B is not 

affected by presence of ambiguous nucleotides or the short length of the ITF (data not 

shown). 
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CHAPTER FOUR 

Evolution of genic and intergenic expression patterns in Poaceae species
1
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A portion of the work described in this chapter was published in the following 

manuscript: 

Rebecca Davidson, Malali  Gowda, Gaurav Moghe, Haining Lin,  Brieanne Vaillancourt, 

Shin-Han Shiu et al (2012) Comparative transcriptomics of three Poaceae species 

reveals patterns of gene expression evolution. Plant Journal, 71(3):492-502. 
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ABSTRACT 

The Poaceae family, also known as the grasses, includes agronomically important 

cereal crops such as rice, maize, sorghum, and wheat. Previous comparative studies 

have shown that much of the gene content is shared among the grasses; however, 

functional conservation of orthologous genes as well as the extent and characteristics of 

intergenic transcription in these species have yet to be explored. To gain an 

understanding of the genome-wide patterns of expression evolution, we employed a 

sequence-based approach to compare analogous transcriptomes in species 

representing three Poaceae species including Brachypodium distachyon (purple false 

brome), Sorghum bicolor (sorghum) and Oryza sativa (rice). For analyzing intergenic 

expression, we also analyzed Zea mays (maize). Our transcriptome analyses reveal 

that evolution of gene expression profiles and coding sequences in the grasses may be 

linked. Genes that are highly and broadly expressed tend to be conserved at the coding 

sequence level while genes with narrow expression patterns show accelerated rates of 

sequence evolution. Analyzing patterns of intergenic expression, we show that despite 

the availability of 120-250 Mb of intergenic space, only ~5 Mb is transcribed in all four 

species, ~30% of which occurs near genes. The transcription of intergenic regions is 

more significantly correlated with the transcription of the nearest gene than random 

expectation. In addition, we find that intergenic regions that are expressed tend to be 

more highly associated with open chromatin marks and less associated with repressive 

chromatin marks, compared to untranscribed intergenic regions. These results suggest 

that transcription of intergenic regions may occur due to regulatory influence of 

neighboring genes or due to presence of an open chromatin architecture. Additional 
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analyses would be needed to identify intergenic transcripts with signatures of 

functionality. Overall, our analyses help reveal patterns of genic and intergenic 

expression evolution in Poaceae. 
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INTRODUCTION 

 The Poaceae family of grasses comprises over 600 genera and more than 

10,000 plant species that belong to three major subfamilies, the Pooideae (wheat, 

barley, oat), the Panicoideae (maize, sorghum, sugarcane, switchgrass, and millets), 

and the Ehrhartoideae (rice, cut grass, and veldt grass) (Bolot et al., 2009; Kellogg and 

Buell, 2009). The Poaceae is an attractive group for comparative genomics because it 

includes many agriculturally important cereal crops with diverse native distributions and 

at least 35-fold variation in genome size (e.g. Brachypodium distachyon (hereafter BD) 

= 270 Mb; Triticum aestivum (wheat) = 16,000 Mb]. Although multiple Poaceae 

genomes have been sequenced (International Rice Genome Sequencing Project, 2005; 

Paterson et al., 2009; Schnable et al., 2009; International Brachypodium Initiative, 

2010), comparative expression analyses have yet to be performed in annotated cereal 

genomes, thereby limiting knowledge of the evolution and regulation of the core 

Poaceae transcriptome as well as the proportions of genes that are lineage specific. In 

addition, although the Poaceae genomes vary to a great extent in size, the number of 

genes in each genome are comparable to each other, indicating a large variation in the 

sizes of the intergenic regions in these species. Whether the amount of intergenic space 

transcribed increase with genome size, whether the intergenic transcripts lie close to 

genes as observed in Arabidopsis thaliana and whether any of these transcripts 

constitute novel genes is poorly understood.  

 Next-generation transcriptome sequencing offers advantages over previous 

expression profiling methods and provides the opportunity to fully evaluate global gene 

expression patterns (Marioni et al., 2008; Agarwal et al., 2010; Bernstein et al., 2012). In 
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this study, I analyzed transcriptome data from eight related developmental stages of 

flower and seed, as well as leaves of four Poaceae species including BD, rice (Oryza 

sativa, OS), sorghum (Sorghum bicolor, SB) and maize (Zea mays, ZM) to understand 

the evolution of genic and intergenic expression patterns in Poaceae. These species 

represent three subfamilies within the Poaceae in which BD and OS share the most 

recent common ancestor (~45 mya), SB and ZM share a common ancestor (~25 mya) 

and the last common ancestor of all four species dates to 45–60 Ma (Bowers et al., 

2005; Bennetzen, 2007; Paterson et al., 2009; International Brachypodium Initiative, 

2010). These evolutionary relationships were utilized to address the following questions 

regarding genic and intergenic expression. First, what are the patterns of evolution of 

orthologous genes across these four species? Second, is there a relationship between 

sequence divergence and expression divergence? Third, how pervasive is intergenic 

transcription in these species? And finally, what could be the probable mechanistic 

explanations for intergenic transcription?  
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RESULTS AND DISCUSSION 

Transcriptome sequencing and expression clustering  

 The tissues evaluated in this study include eight structures across flower and 

seed development and one vegetative stage from BD (Pooideae), OS (Ehrhartoideae), 

and SB (Panicoideae). Despite differences in flowering times, floral tissues were 

harvested at visually similar developmental stages including floral pre-emergence from 

the flag leaf (inflorescence-1), post-emergence from the flag leaf (inflorescence-2), and 

anthesis (anther and pistil); leaf and developing seed tissues were harvested at 

prescribed days after sowing and pollination, respectively. ZM (Panicoideae) was not 

used for comparative analysis of orthologous gene expression since its developmental 

stages could not be matched with BS, OS and SB. Reliable expression levels in units of 

fragments per kilobase of exon model per million fragments mapped (FPKM) could be 

estimated for 86, 66, and 73% of annotated genes in BD, OS and SB, respectively. For 

additional details regarding sequencing and transcript assembly, please refer to the 

original publication (Davidson et al., 2012). 

 The normalized transcript abundances for these 27 samples (nine tissues x three 

species) were used for expression clustering using k-means clustering, which detected 

eight co-expression clusters, and an additional cluster with low levels of expression 

(log2FPKM ≤ 2) across all tissues. To assess the functional significance of the genes in 

these clusters, we determined if any Gene Ontology (GO) terms were enriched in co-

expression clusters. Many of the enriched GO categories were consistent with the 

known physiological processes in tissues including Cluster 1 genes that were 

upregulated in anthers and were enriched for the terms ‘sexual reproduction’ and ‘cell 
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wall modification’. Cluster 6 genes exhibited elevated leaf expression and showed 

enrichments in ‘photosynthesis’, ‘cell iron-sulfur cluster’, and ‘cell redox homeostasis’ 

similar to previous observations in maize (Li et al., 2010). Genes in cluster 8 showed 

constitutive expression across tissues and were enriched for GO terms associated with 

primary metabolism such as ‘glycolysis’, ‘ATP synthesis’, and ‘fatty acid biosynthesis’ as 

well as various nucleotide metabolic processes suggestive of roles in core metabolic 

functions(Davidson et al., 2012).  

 The last common ancestor of the three species under study was ~45-60 mya. 

Since then, orthologous genes in these species will have experienced sequence as well 

as expression divergence. We first asked if these modes of divergence were coupled 

over the 45-60 million years of evolution in Poaceae. 

Conservation and diversification in Poaceae orthologs 

 To determine if the evolution of orthologous gene expression is coupled to the 

evolution of their coding sequences, we estimated the non-synonymous (Ka) and 

synonymous (Ks) substitution rates of protein-coding orthologous pairs between the 

three species. There was no significant difference in the Ka/Ks ratio distributions 

between orthologs in all three species pairs, suggesting a similar level of selection 

pressure on protein-coding genes in all three species (Figure 4.1A). However, 

significant differences were observed between OrthoMCL categories, with genes in the 

2xN category having higher Ka/Ks ratios (Figure 4.1A) than genes in other orthologous 

categories. To understand which biological processes were over-represented in the 2xN 

category, we performed a GO enrichment analyses for the 932 2xN genes for which 

GOs could be confidently assigned. In general, 2xN genes with GO annotation tend to 
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be involved in stress-related functions (‘response to biotic stimulus’, ‘defense response’, 

‘apoptosis’), lipid transport, secretion (‘exocytosis’), and general oxidation–reduction 

reactions. Regarding the enrichment in stress-related functions, the observation is 

consistent with previous studies in plants that have shown that genes that are 

responsive to stress tend to experience a higher degree of lineage-specific duplications 

(Hanada et al., 2008). This is also observed in the 1xN category which is similar to 2xN 

in that there are gene losses in one or two species with lineage-specific duplicates.  

 Stress-related GO categories were also enriched in the 3xN category, although 

to a lesser extent. In the 3xN category, several core metabolic functions such as 

‘translation’ (404 genes), ‘ATP biosynthesis’ (101 genes), ‘nucleosome assembly’ (103 

genes), and ‘biosynthetic process’ (119 genes) were found to be overrepresented, along 

with processes such as ‘oxidation–reduction’ (693 genes), ‘response to wounding’ (27 

genes), and ‘sexual reproduction’ (28 genes). The 3xN category contains genes that are 

present in all three species but with different degrees of lineage-specific gains. Some 

will have very limited expansion (e.g. 1:1:2) while the others may have dramatic 

differences (e.g. 1:1:100). Thus, this category includes genes with both essential 

functions as well as genes involved in processes that are known to evolve quickly, 

which may explain why these genes have higher substitution rates than genes in the 

3x3 category, but lower rates than genes in 2xN (Figure 4.1A). Out of 12,497 3x3 

genes, the largest enriched GO categories included essential functions such as 

‘regulation of transcription’ (>1000 genes), ‘protein folding’ (253 genes), ‘intracellular 

protein transport’ (123 genes), and ‘glycolysis’ (91 genes)(Davidson et al., 2012). In the 

2x2 category, only three GO terms were found to be enriched – ‘protein amino acid 
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phosphorylation’ (295 genes), ‘regulation of transcription’ (168 genes) and ‘response to 

oxidative stress’ (64 genes). These GO terms are suggestive of the roles of 2x2 genes 

in transcriptional and protein level regulatory functions.  

 The evolutionary trend visible for the orthologous groups at the coding sequence 

level is mirrored at the expression level. Using Pearson correlation coefficients (PCC) 

as a measure of expression correlation, we found that the 3x3 group has a higher 

proportion of gene pairs (47.8%) with correlated expression (PCC ≥ 0.6) compared with 

the 2x2 (44.1%), 3xN (37.8%), and 2xN (30.7%) groups (Figure 4.1B). These results 

suggest that the 3x3 single-copy genes, which are associated with core metabolic 

functions, have experienced stronger purifying selection in the Poaceae family in 

contrast to the 3xN and 2xN multicopy genes that are undergoing relatively rapid 

diversification not only at the coding sequence level but also at the level of gene 

expression. After examining PCC distributions among species pairs further, we found 

the highest proportions of correlated (PCC ≥ 0.6) gene pairs to be between OS and SB 

in all categories, indicating that these two species are the most transcriptionally similar 

among the three Poaceae species (Figure 4.1B). Interestingly, we observed higher 

proportions of correlated (PCC ≥ 0.6) gene pairs for BD–SB compared with BD–OS in 

all orthologous groups. These results are inconsistent with the phylogenetic 

relationships between these species (Kellogg, 2001; International Brachypodium 

Initiative, 2010) and therefore could reflect developmental differences in flower and 

seed morphologies including BD’s unique floral branching (spike versus panicle), OS’s 

lack of  
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Figure 4.1: Conservation and diversification of OrthoMCL groups. (A): Coding 

sequence divergence. For each OrthoMCL group, non-synonymous (Ka) and 

synonymous (Ks) rates and their ratios (Ka/Ks) were calculated between cross-species  
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Figure 4.1 (cont'd) 

gene pairs. Rate distributions are shown for Rice–Brachypodium (RB), Rice–Sorghum 

(RS) and Brachypodium–Sorghum (BS) comparisons. (B): Relationship between 

Pearson Correlation Coefficient (PCC), a measure of expression similarity, and the 

OrthoMCL groups.   
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awn production, and BD and SB’s shared number of anthers (Kellogg, 2001). These 

trends may also correspond to environmental adaptations of tropical grasses (OS and 

SB) versus a temperate grass (BD).  

 To better understand the link between coding sequence and expression 

divergence of orthologs, we asked if gene pairs under stronger selective constraint have 

a higher correlation in expression. With conflicting results, previous studies have 

explored this question in yeast (Tirosh and Barkai, 2008), Drosophila (Nuzhdin et al., 

2004) and mammals (Jordan et al., 2005; Khaitovich et al., 2005; Liao and Zhang, 

2006). In our dataset, we found a statistically significant enrichment only in highly 

conserved gene pairs (Ka/Ks<0.1; z-test P-value < 0.05) in all orthologous groups; 

however, the effect size was not large and no enrichment was observed at higher Ka/Ks 

(Figure 4.2). This result, similar to that observed for A. thaliana and OS comparisons in 

a recent study (Movahedi et al., 2011), suggests, at best, only a weak relationship 

between coding sequence and expression divergence with the exception of highly 

conserved proteins.  

 Although expression divergence and coding sequence divergence are not highly 

associated with each other, genes which are highly expressed or broadly expressed 

may exhibit some association with sequence conservation. We tested this possibility 

using the expression data and orthlogy inference from this study.  

Coding sequence evolution is related to the level and breadth of expression  

 Previous studies in yeast, vertebrates and A. thaliana have suggested that genes 

with higher expression levels and/or wider breadth of expression are more similar at the 

coding sequence level (Pál et al., 2001; Nuzhdin et al., 2004; Subramanian and Kumar, 
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2004; Wright et al., 2004; Movahedi et al., 2011). We thus asked whether, in the three 

Poaceae species, expression level and/or breadth of expression distinguish highly 

conserved genes from fast evolving genes. Expression levels of orthologous gene pairs 

were categorized into five groups (high, intermediate, low, not expressed, or divergent) 

based on the median FPKM value of each gene. The divergent category was the most 

highly variable between all four groups (Figure 4.3A). We found that 60% (3x3) and 

38% (3xN) of the gene pairs with high expression levels were under strong purifying 

selection (Ka/Ks <0.2) compared with all other groups (Figure 4.3B). In addition, pairs in 

which both genes are not expressed tend to evolve faster than pairs in which both 

genes are lowly expressed (KS test, P<1e-16). Among the multi-taxa orthologous 

groups, the 2xN group had the most gene pairs classified as ‘not expressed’ (Figure 

4.3B). Given that genes in the 2xN group also tend to have high Ka/Ks values, it is 

possible that these genes may be undergoing pseudogenization. A recent study in A. 

thaliana found that lowly expressed genes tend to have a higher Ka and an excess of 

mutations in their promoters as compared with highly expressed genes, a finding that 

may also apply to the 2xN genes (Yang et al., 2011). Other studies have also found a 

link between expression level, Ka/Ks and pseudogenization (Frith et al., 2006; Zou et 

al., 2009). 

 We then explored the relationship between breadth of expression and 

evolutionary rate. We defined breadth of expression into four categories (broad, narrow, 

not expressed, or divergent) based on the number of tissues in which a given gene pair 

is co-expressed. Our results indicate that genes with a broader expression pattern 

(Figure 4.4A) are under higher evolutionary constraint than all other categories of  
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Figure 4.2: Gene pairs under strong evolutionary constraint (Ka/Ks<0.1) tend to 

be correlated in expression. The boxplots indicate random expectation while the red 

line indicates observed percentages. 
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Figure 4.3: Coding sequence evolution vs gene expression level. (A): Divergently 

expressed gene pairs have significantly higher fold-change difference than gene pairs in 

other categories. (B): Rate of evolution as a function of the expression level categories. 

All categories had significantly different Ka/Ks distributions from all other categories (KS 

test P<1e-15). (C): The percentage of gene pairs in each of the expression level 

categories for each OrthoMCL category. 
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Figure 4.4: Coding sequence evolution vs gene expression breadth. (A): Rate of 

evolution as a function of the breadth of gene expression. All categories had 

significantly different distributions from all other categories (KS test P<1e-15)). (B): 

Classification of genes based on expression level and breadth of expression. (C): 

Changing thresholds for defining breadth do not influence the observed patterns.  



133 
 

genes (KS test, P<1e-15). We also observed that gene pairs in which both genes are 

defined as ‘not expressed’ evolve at significantly higher rates than other defined 

categories (Figure 4.4A; KS test, P-value < 1e-16). The observed patterns were robust 

to changing the thresholds for defining the breadth of expression categories (Figure 

4.4B). It is possible that breadth and level of expression are not independent; 99.2% of 

highly expressed genes have broad expression compared with 23.6% of the lowly 

expressed genes (Figure 4.4C).   

 In addition to understanding genic conservation, the global transcriptome profiles 

in BD, OS and SB can also be used to ask questions regarding pervasiveness and 

characteristics of intergenic transcripts. Alongwith these species, we also included RNA-

seq data from ZM. Given its large genome size, analysis of ZM transcriptome may 

provide novel insights into how the characteristics of intergenic expression vary with 

genome size. 

Reannotating the Poaceae genomes 

 The genomes of BD, OS, SB and ZM have been predicted to have 26,552, 

39,049, 27,608 and 39,656 genes respectively. Since these gene models were obtained 

using different strategies, it is likely that some models in one species may escape 

annotation in another. Such absent gene predictions can affect the estimates of 

intergenic transcription. Hence, in order to exclude the possibility of incomplete 

annotation, we predicted potentially missed Unannotated Coding Regions (UCRs) 

present in the intergenic regions using a combination of nucleotide-based and protein-

based similarity searches (see Methods). We also predicted pseudogenes as well as 

repetitive sequences within the Poaceae genomes using previously published strategies 
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(see Methods, Figure 4.5). For the purposes of this study, we defined intergenic regions 

as genomic regions not overlapping with protein-coding genes, UCRs, pseudogenes as 

well as repeats. 

 Our re-annotation revealed that most coding regions in each genome have 

already been successfully annotated (Figure 4.6A). The UCRs accounted for only 

~0.2% of the genome of each species. Repetitive regions occupy a significant 

proportion of the genomic space, ranging from 17.9% in BD to 78.4% in  ZM. The 

percentage of intergenic regions based on the re-annotated assemblies in the Poaceae 

genome varied from 45.5% in the BD genome to 13.2% in the ZM genome (Figure 

4.6A). The amount of intergenic space varied from ~120 Mb in BD and OS to ~150 Mb 

in SB and ~270 Mb in ZM (Figure 4.6B). Thus, there is more space available for 

intergenic transcription in ZM as compared to BD and more space may result in more 

intergenic bases transcribed. However, we also find that intergenic region size does not 

increase linearly with genome size. In addition, whether the percentage of the intergenic 

space transcribed would also increase, whether such transcribed regions are dispersed 

across the genome or clustered near genes and whether some of these intergenic 

TxFrags (ITFs) represent novel gene transcripts is not clear. We addressed these 

issues using RNA-seq expression data obtained from multiple developmental stages in 

all three species. 
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Figure 4.5: Overview of the pipeline for reannotation of the Poaceae genomes. 

See Methods for more details. The table shows the number of features of each type 

identified in each species, alongwith the genome size. 
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Figure 4.6: Genome composition after reannotation. (A): % of bases in the genome 

assemblies occupied by each feature type. UCRs occupy ~0.5% and are not visible. (B): 

Size of intergenic space in each species (C): Number of reads mapped by relaxing the  

 



137 
 

Figure 4.6 (cont'd) 

"number of hits per read" threshold from 1 (unique-mapping) to 20 (mapping to max. 20 

regions in the genome). Analysis was done only for the anther dataset.   
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Extent of transcription for annotated features and intergenic regions 

 In a previous study, we obtained polyA RNA-seq data from nine developmental 

stage matched tissues in BD, OS and SB (Davidson et al., 2012) as well as from 

multiple tissues in ZM (Davidson et al., 2011). Given the abundance of repeats in these 

genomes, we first asked what proportion of the transcriptomic reads arise from 

repetitive regions using the anther dataset as an example. We found that as we relaxed 

the "number of hits" threshold, more reads mapped, and this proportion increased faster 

for SB and ZM (Figure 4.6C). This suggests that a larger percentage of the 

transcriptome is derived from repetitive sequences in the SB and ZM genome. For 

further analysis, however, we employed a conservative approach and only used reads 

that mapped to a unique location in the genome. The choice of unique mapping reads 

may influence the results for repetitive regions to a greater extent than 

genes/pseudogenes/intergenic sequences.  

 The uniquely mapping RNA-seq reads were mapped to their cognate genomes 

and assembled into transcript fragments (see Methods). Our previous study indicated 

that TxFrags obtained using Cufflinks, although not representative of all the reads in the 

transcriptome, represent a set of high-confidence TxFrags (Moghe et al., 2013). For 

these TxFrags, we estimated the expression level in terms of Fragment Per Kilobase of 

exon model per Million mapped reads (FPKM) values. For TxFrags lying in the 

intergenic regions (called Intergenic TxFrags, ITFs), we also assumed that ITFs closer 

than 150bp to each other belong to the same transcriptional unit and joined such 

TxFrags across all developmental datasets, together, denoting the corresponding 

genomic regions as Intergenic Transcribed Fragment Regions (ITFRs). The 150bp 
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threshold was chosen as the 95th percentile of the distance distribution between 

TxFrags which mapped to the same protein-coding exon. In other words, there is only a 

5% chance that TxFrags mapping <150bp away from each other are likely part of 

different coding transcripts, in a given genome at a given sequencing coverage. 

 Based on information from ITFRs, we found that ~5% of the intergenic space (5-8 

Mb) had evidence of transcription, regardless of the genome size or the size of the 

intergenic region of the species (Figure 4.7A,B), suggesting that species with larger 

genomes or larger intergenic spaces do not have more intergenic transcription. These 

ITFRs have been stringently defined using Cufflinks, which is reflected in the their 

FPKM distributions which are comparable to those of genes (Fig. 4.7C). However, 

despite their high expression levels, ~50% of the ITFRs were expressed in only one 

tissue (Figure 4.7D).  In contrast, we found that on an average, 10.6%, 20% and 36% of 

the proteins, UCRs and pseudogenes, respectively, were expressed in only one tissue 

(Figure 4.7D).  

 The low proportion of intergenic space being transcribed suggests absence of 

pervasive intergenic polyA transcription in all Poaceae species. In addition, the fact that 

only ~5 Mb of the intergenic space is transcribed despite there being ~200 Mb of 

intergenic bases available for transcription may indicate some biases in the 

transcriptional process. We tested two hypotheses regarding the identity of ITFRs. First, 

we asked whether the transcription of ITFRs tends to be associated with transcription of 

annotated genes and features. Second, we investigated whether ITFRs tend to lie 

preferentially in areas of open chromatin.  
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A significant proportion of ITFRs lie near genes 

 In a previous study, we had found that >30% of the ITFRs lie close to annotated 

genes, however, the proportion was comparable to random expectation (Moghe et al., 

2013). To understand whether a similar trend holds in genomes with larger intergenic 

regions, we calculated the distance of ITFRs from protein-coding genes and all features 

(protein-coding genes + UCRs + pseudogenes + repeats). We also obtained a random 

expectation of distance by sampling random sequences from the intergenic regions in 

each of the four species (see Methods) and determined whether the observed 

percentage of ITFRs occuring in the neighborhood of a gene was more than the 

percentage randomly expectated.  

 Our results suggest that ~30% of the ITFRs in all species are located <400bp 

away from protein-coding genes (Figure 4.8A). This proportion is much more than 

randomly expected e.g.: in ZM, there are 6X higher number of ITFRs in the 0-200 bp 

neighborhood than expected by chance (Figure 4.8B). On the other hand, although 35-

52% of the ITFRs are located >2000bp away from protein-coding genes, we find that 

such ITFRs tend to be in close proximity to other features (Figure 4.8C). Given the wide 

spread of repeats in the non-genic space in the Poaceae genomes, the pattern 

observed in Figure 4.8C may be expected (Figure 4.8D). Nonetheless, these results 

suggest that there may likely be an association between transcription of the protein-

coding genes and transcription of the intergenic region in their neighborhood.  
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Figure 4.7: Characteristics of intergenic transcripts. (A and B): Proportion (A) and 

total size (B) of intergenic space with evidence of transcription. The observed 

proportions were scaled by factors of 1.1 (BD), 1.2 (OS, SB) and 1.6 (ZM) based on the 

fold increase observed in number of reads mapped to the genome after increasing the g 

threshold in bowtie (Figure 4.6C), to account for missed intergenic reads due to 

duplicate hits. (C): FPKM levels of different features. Pseu=pseudogenes (D): Breadth 

of expression of different features. Inset shows breadth of only those features 

expressed in ≥1 datasets.  
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 There are three possibilities regarding ITFR-neighboring gene association. First, 

the ITFs could be unannotated regions of a gene transcript. Second, the ITFs could be 

produced as a result of transcription of the neighboring gene but are not physically 

linked. Third, ITFs could be completely independent transcripts, not associated with the 

neighboring gene at all. All three scenarios differentiate the mode of generation of the 

ITFs but cannot distinguish functional ITFs from noise. 

 Nevertheless, if the transcription of the ITFRs was occurring through the 

regulatory influence of the nearest protein-coding gene (first two possibilities), we can 

expect ITFRs closer to genes to have a higher correlation with the neighboring gene's 

expression than random expectation. To test this hypothesis, we estimated correlations 

between ITFR expression and that of their neighboring genes for ITFRs expressed in 

>50% of the tissues. Indeed, we found that ITFRs have a higher correlation to their 

nearest protein-coding gene than by chance (KS test p<1e-15, Figure 4.9A). In contrast, 

this influence does not extend to the gene on the other side of the ITFR, which were 

found to behave in a similar fashion as randomly picked pairs of genes (KS test p>0.1 

for all pairs, Figure 4.9B). We also do not see any decay of correlation with distance 

from the gene to at least as far as 1kb (Figure 4.9C). These observations provide 

support to the hypothesis that the nature of association of ITFR expression to its 

neighboring gene expression is stronger than would be observed by pure chance or 

simply due to proximity.  

 Based on these observations, it is possible that the genomic loci where ITFRs 

are located tend to be commonly regulated by some upstream regulator. Such co-

regulation may not only lead to expression of neighboring gene but also transcription of 
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Figure 4.8: Distance of ITFRs from genes and other features (A): For each species, 

ITFR distance from  the nearest gene is shown. (B): Compared to 10,000 randomly 

picked intergenic sequences, ITFRs tend to be much closer to genes (C): ITFR distance 

from the nearest annotated feature, including UCRs, pseudogenes and repeats. (D): 

Fold difference over random expectation 
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Figure 4.9: Expression correlations of ITFs. (A and B): Spearman's correlation 

coefficient (SCC) distributions for ITFR-Neighboring gene (A) and Gene-Neighboring 

gene (B) expression. * represents background expectation obtained by randomly pairing 

ITFRs with genes (A) or gene with gene (B). (C): Expression correlation does not decay 

with expression up to 1.5kb. SCC for ITFRs lying in each 200bp distance bin was 

calculated. For all figures, only ITFRs expressed in >50% of the tissues were used for 

SCC estimation. GSS=Gene Start Site, GTS=Gene Termination Site  
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some bases in the intergenic region between the two genes, creating ITFRs. It is 

possible that ITFR transcription is merely a side-effect of gene transcription, serving no 

real purpose. Alternatively, such transcription may have a functional role in gene 

regulation at the transcriptional or translational level. 

ITFRs are associated with nucleosome free regions  

 While regulatory influence may explain some of the intergenic transcription, the 

fact that up to 50% of the ITFRs lie >2000bp away from genes indicates that there may 

be other explanations too. One hypothesis is that ITFs are produced from intergenic 

regions possessing an open chromatin architecture. A previous study found that ITFs 

were produced from nucleosome free regions in mouse and humans (van Bakel et al., 

2010). To understand whether this hypothesis was true and to assess the degree of 

association of other chromatin marks with ITFRs, we obtained several indicators of 

chromatin structure – DNAse hypersensitive sites (DHS), H3K4me3, H3K9ac and 

H3K27me3 – from previously published datasets in OS seedlings (He et al., 2010; 

Zhang et al., 2012) and tested whether ITFs obtained from OS seedling RNA-seq data 

are significantly associated with any of these chromatin marks than randomly picked, 

untranscribed intergenic regions. 

 Our results suggest that Seedling ITFRs tend to have a higher proportion of DHS 

as well as H3K4me3 and H3K9ac marks than random intergenic sequences (KS test 

p<1e-15; Figure 4.10). While DNAse hypersensitivity correlates well with open 

chromatin structure, H3K4me3 and H3K9ac marks tend to be associated with 

transcribed sequences. We also find that Seedling ITFRs tend to have higher levels of 

H3K27me3 modification than random intergenic sequences(KS test p<1e-15, Figure 
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4.10). H3K27me3 is a mark associated with transcriptional repression, and a previous 

study in rice showed that the ratio between H3K4me3 and H3K27me3 is positively 

correlated with gene expression level (He et al., 2010). In our dataset, we see that 

ITFRs tend to possess higher ratios than random intergenic regions, suggesting that 

their transcription is influenced by chromatin architecture in the region 

 Interestingly, when we analyzed the scale of chromatin marks and DHS for the 

original set of ITFRs, we found similar patterns as with Seedling ITFRs (Figure 4.10) i.e. 

they are more significantly associated with DHS and other chromatin marks than 

random intergenic sequences. Epigenetic marks tend to be tissue specific, hence, it is 

surprising that we see the same trend between ITFRs derived from seedling as well as 

other developmental stages. The most likely explanation for this observation is that 

ITFRs are associated with chromatin regions that tend to be largely open over the 

tested developmental conditions. Additional analyses will, however, be required to 

determine whether the ITF-producing regions are constitutively open. 
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Figure 4.10: Chromatin mark association for each feature type. Y-axis represents 

number of reads mapping to a gene per bp of the gene. DHS=DNAse Hypersensitive 

Sites. Feature labeled only as “ITFR” refers to the original ITFRs discovered by 

combining all RNA-seq datasets in each species. 
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CONCLUSIONS 

 In this study, we asked questions regarding the evolution of genic and intergenic 

expression patterns in Poaceae species. Based on our analyses of expression profiles 

of orthologous genes between BD, OS and SB, we infer that although sequence and 

expression divergence only show a weak relationship with each other, there are other 

aspects of gene expression, namely level of expression and breadth, which show an 

association with sequence evolution. We cannot infer a cause-effect relationship 

between sequence and expression evolution; it is likely that other properties of a gene 

such as its network connectivity,  biological function and extent of redundancy may 

influence both sequence as well as expression evolution. Indeed, from our analyses of 

GO enrichment among ortholog group types (Davidson et al., 2012) as well as those 

from previous studies (He et al., 2010; Zhang et al., 2012), sequence and expression 

conservation may very well be influenced by such properties. 

 In comparative studies between BD, OS, SB and ZM, we focused on 

understanding two questions related to intergenic polyA expression. First, whether the 

genome size of a species and the total size of its intergenic regions influences the 

extent of intergenic transcription. Second, what is the mechanistic basis of intergenic 

transcription? With regards to the first question, we found that ~5% of the intergenic 

region in all species was transcribed, regardless of the genome size or the total 

intergenic space. Around 5Mb of the intergenic space had any evidence of transcription 

in each species, despite there being 25X to 50X more space available for intergenic 

transcription. This result suggested that there may be some mechanistic biases in the 

way intergenic regions are transcribed. 
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 We investigated two possibilities: 1) the ITFs were produced due to the 

regulatory influence of their neighboring genes and 2) that they were produced from 

regions with open chromatin configuration. Our results suggested that there was a 

highly significant influence of the transcription of the neighboring gene on intergenic 

transcription. It is possible that once in a while, the RNA-polymerase extends beyond 

the 3' end or there is antisense transcription from the 5' end of the gene. Previous 

studies in yeast and mammalian cells have pointed to presence of "ripple transcription" 

(Ebisuya et al., 2008), wherein the act of transcription of a gene leads to transcription of 

bases, sometimes, up to 10kb away. Such a phenomenon may be occurring in plant 

genomes too. Thus, ITFRs may either be unannotated parts of annotated transcripts or 

they are produced due to the transcriptional activity in their vicinity. 

 We also find that ITFRs tend to lie in open chromatin regions more frequently 

than expected by chance. Studies in Drosophila suggest that RNA polymerase is poised 

for transcription at the promoter of many genes, especially those involved in stress 

response and development, only to be fully activated by additional transcriptional factors 

at the right time (Muse et al., 2007). Such binding need not be completely inactive and 

spurious activation of RNA polymerase may occur once in a while producing ITFs. In 

addition, regions close to the 5' and 3' ends of a gene tend to be nucleosome free (He 

et al. 2010), possibly enabling spurious transcription by RNA polymerases. We also find 

that ITFRs are expressed in a very tissue-specific manner, despite lying in areas of 

open chromatin. This suggests that open chromatin is not sufficient for ITFR 

transcription and there may be additional factors, such as regulatory influence of 
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neighboring gene or in some cases, the promoter region of the ITFR itself, that may 

cause their transcription. 

  The question that remains largely unanswered in our analyses is whether these 

ITFs are functional transcripts. Preliminary analyses suggested that there may be some 

conservation signal despite millions of years of divergence between the species. 

Specifically, we find that ~25% of the genes that have ITFs in their neighborhood in one 

species tend to have ITFs in the neighborhood of their orthologs in at least one other 

species, with ~200 genes having ITFs in their neighborhood all four species. These 

observations could indicate a propensity for certain genes to produce ITFs in their 

neighborhood, either due to their expression profiles or due to the chromatin structure 

around them. Alternatively, these ITFs could serve some regulatory function. We have 

yet to analyze sequence level conservation of these ITFs; it is a question that will be 

addressed in the future.  Taken together, our analysis of intergenic and genic 

transcription provides a picture of a complex transcriptional landscape of plant genomes 

and identifies some of the players that influence expression evolution. The principles 

regarding intergenic transcription learnt from this study can not only be used as a 

baseline to identify novel, non-canonical genes but also to understand the nature of 

gene boundary transcription that may occur in all plant genomes. 
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MATERIALS AND METHODS 

Biological samples, sequencing strategy and GO enrichment analyses 

 For more details regarding samples and sequencing, please refer to the 

published manuscript (Davidson et al., 2012).  

 We used GO to identify functions enriched within a given k-means cluster and 

OrthoMCL category. For performing enrichment analyses, we obtained the GO 

definitions for each of the three species from the MSU rice annotation website 

(ftp://ftp.plantbiology.msu.edu/pub/data/BFGR/release_3/), which were determined from 

a subset of InterProScan analyses (FPrintScan, HMMPfam, Gene3D, HMMPanther, 

ProfileScan, HMMSmart and superfamily) (Childs et al., 2012). Only the ‘biological 

process’ GOs were used for further analyses. For finding enrichments within different k-

means clusters, only the genes with orthologs were considered. For enrichment tests 

within different OrthoMCL categories all the genes, including the single-taxa genes were 

used. If a gene did not have a GO definition in the three source files, it was excluded 

from further analyses. To determine whether a particular GO category was enriched 

within a given k-means cluster/OrthoMCL category, a Fisher exact test was performed 

with multiple testing correction as defined by Q-value (p≤0.05)(Storey, 2002). 

Evolutionary rate calculations 

 We estimated the synonymous rate (Ks), non-synonymous rate (Ka),and 

evolutionary constraint (Ka/Ks) between pairs of orthologous genes, using the yn00 

package in PAML(Yang, 2007). Only orthologs were used for these comparisons.  
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Definitions of level and breadth of expression  

 To define the level of expression, gene pairs in which both genes had a median 

FPKM≤1 were defined as ‘not expressed’. The following categories were then defined: 

(i) high-expressed (median FPKM of both orthologs ≥ 24), (ii) intermediate-expressed 

(median FPKM of both orthologs between 4 and 24), and (iii) low-expressed (median 

FPKM of both orthologs ≤ 4 and at least one is expressed). If both genes of a pair were 

placed in different categories, they were deemed as divergent. The FPKM thresholds 

were defined based on the 25th percentile (FPKM 4.0) and 75th percentile (FPKM 24.0) 

of all expressed orthologous genes in the dataset. Although some gene pairs in the 

divergent category will have relatively small differences, we should emphasize that the 

median fold FPKM difference for the ‘divergent’ gene pairs is 3.2, which is significantly 

higher than all other categories (KS test, all P-values < 1e-16; Figure 4.5). Thus, gene 

pairs in the ‘divergent’ category have significantly larger expression differences than 

gene pairs within each category. The differences between the Ka/Ks distributions of 

highly expressed versus all other sets of genes were statistically significant (KS test, 

P<1e-16). 

 To define the breadth of expression, all genes with their median FPKM≤1 were 

considered to be not expressed/trace. Broadly expressed gene pairs were defined as 

pairs with both genes expressed in seven or more tissues while narrowly expressed 

gene pairs had both genes expressed in three tissues or fewer. If both genes within a 

gene pair were placed in different categories, they were deemed as ‘divergent’. The 

differences in the medians of Ka/Ks values of broadly expressed versus all other sets of 

genes were statistically significant (KS test, P<1e-16). Changing the definition 
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thresholds to ≥6/≤4 or ≥8/≤2 for broadly expressed versus narrowly expressed did not 

affect the observed trends (Figure 4.7). 

Reannotating the Poaceae genomes and identifying ITFs 

 We used RepeatMasker v open-4.0.0 to identify repeats in the Poaceae 

genomes (--cutoff 225 –divergence 30). The predictions of "simple repeats" and "low 

complexity sequences" larger than 500bp were included in the final set. A previously 

published pipeline was used for identification of pseudogenes (Zou et al., 2009).  

 To identify the UCRs, we first compiled amino acid and transcript sequences 

from all four species. The amino acid sequences were searched against the genome 

sequences of all four species using TBLASTN. Only the hits with E-value ≤ 1e-20, 

coverage ≥ 10% of the query, hit length ≥ 30aa and Identity ≥ 50% were considered 

significant. The transcripts were mapped to the genome using GMAP (Wu and 

Watanabe, 2005) and only the hits with Identity ≥ 70% and coverage ≥ 70% of the query 

were considered significant matches. We then determined the overlap between the 

predicted coding regions (combined predictions of transcript + aa matching) and 

annotated coding regions and found that 100% of the annotated coding regions in each 

species were identified by the predicted coding regions. We discarded all unannotated 

coding regions overlapping with pseudogene or repeat predictions. The final set was 

termed UCRs.  

 All features – protein-coding genes, pseudogenes, repeats and UCRs – were 

then compared against each other using their genomic locations to determine whether 

there were any overlaps between them. If there were overlapping features, they were 
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retained based on the following order of preference: Protein-coding genes > Repeats > 

Pseudogenes > UCRs.  

 The SRA files downloaded from GenBank GEO database were converted to 

fastq format using SRAToolkit. The fastq sequences were filtered by quality (Q≥20) and 

length (L≥20) using FASTX toolkit. The processed reads were mapped to the genome 

using TopHat v1.4.1 and transcript fragments (TxFrags) were obtained using Cufflinks 

v2.1.1. Minimum and maximum intron sizes of 5000 and 50,000 bp were used for both 

TopHat and Cufflinks. Since Cufflinks inflates the FPKM values of TxFrags < 200bp, the 

--frag-len-mean option was changed from the default 200 to 150 to reduce the extent of 

FPKM inflation for smaller TxFrags. 

 TxFrags generated from seven tissues for each species were then compared 

against annotated coding regions, UCRs, pseudogenes and repeat predictions to 

identify feature-specific and intergenic TxFrags. The intergenic TxFrags from multiple 

tissues overlapping with each other were collapsed together into Intergenic Transcribed 

Fragment (ITF) predictions. The FPKM levels of all features in a given tissue was 

defined as the average FPKM of all TxFrags mapping to that feature in that tissue. 

Orthology prediction and chromatin analysis 

 We first performed a protein BLAST (blastp) between protein sequences from A. 

thaliana, Populus trichocarpa, Vitis vinifera and the four Poaceae species. The BLAST 

results were filtered using an E-value < 1e-5 and Identity > 50% and orthologs and 

paralogs were predicted using OrthoMCL (Li et al., 2003). For identifying conserved 

ITFs, we used GMAP to map the nucleotide sequences of the ITFs on the genome of 
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other Poaceae species using thresholds mentioned above. If there were multiple hits, 

only the longest hits were chosen. 

 To assess the tendency of ITFs to be associated with certain chromatin marks, 

we obtained data from two previous publications (He et al., 2010; Zhang et al., 2012). 

Sequence files were downloaded from NCBI SRA, trimmed based on length (L≥20), and 

mapped to the OS genome using MAQ (Li et al., 2008). Only uniquely mapping reads 

were used for further analyses. A custom Python script was used to determine number 

of reads per base of a feature per million mapped reads of a given feature.  
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CHAPTER FIVE 

 

Conclusions and future perspectives  
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 In my research, I have analyzed two mechanisms that contribute to gene content 

evolution in plants using comparative genomic and transcriptomic approaches. In this 

chapter, I will discuss some of the results from my work and describe avenues for future 

research. 

EVOLUTION OF GENOMES POST WHOLE GENOME DUPLICATION 

 In Chapter 2, we performed sequencing, assembly and annotation of the wild 

radish genome and addressed questions regarding the evolution of duplicates derived 

from whole genome duplication. Briefly, we analyzed the patterns of pseudogenization, 

sequence evolution and expression divergence of retained duplicates and arrived at the 

following conclusions: 1) Pseudogenization of duplicate genes does not occur 

immediately post WGT. Instead, it occurs gradually over several million years. 2) At the 

sequence level, most duplicate genes diverge from each other at uniform rates and are 

under a greater level of constraint than those that evolve asymmetrically. 3) Tissue-

specific divergence of expression among retained duplicates occurs mostly via one of 

the copies maintaining its ancestral state of expression and the other copies diverging 

via expression reduction. Thus, the original function of the gene in the tissue is 

preserved, and new functions are created due to sub/neo-functionalization. 4) 

Duplicates that were retained tend to possess specific structural, expression and 

functional characteristics different from genes whose duplicates were lost. Such 

difference in features enabled us to generate a predictive model of duplicate gene 

retention post WGD in plants. In addition to these findings, some questions regarding α' 

WGT and other WGD events remained unanswered in our study, which will be 

discussed here.  
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 The wild radish assembly which we generated had ~68,000 contigs >100bp and 

an N50 of 10.1 kb making it difficult to construct scaffolds representative of 

chromosomes and to identify the order of genes in the genome. The major difficulty in 

creating scaffolds was due to: 1) low coverage of 454 mate pair sequencing and 2) only 

one insert size in Illumina paired end sequencing. Thus, this genome assembly could be 

made better by additional Illumina sequencing, specifically by generating paired end 

reads with larger insert sizes, e.g.: >1kb in length, so that repetitive regions in the 

genome could be assembled with higher confidence. The availability of radish scaffolds 

will significantly aid the ordering of sequence-based markers such as short sequence 

repeats.  

 Studies in Brassica rapa, which has a significantly better genome assembly, 

have suggested that the α' WGT event was, most probably, a two-step event, which has 

resulted in a very biased pattern of gene loss in the chromosomes of the post WGT 

species(Tang et al., 2012). In addition, there is evidence that subgenome bias exists in 

B. rapa, where one gene among the duplicated copies shows the dominant expression 

pattern, mostly in a parent-of-origin manner (Cheng et al., 2012). If the order of radish 

genes could be determined, fractionation bias between independent lineages could be 

studied in more detail. To determine such gene order, additional sequencing of the 

radish genomes with multiple large insert size libraries will be necessary. Additionally, 

availability of transcriptome sequencing data from multiple tissues/conditions may allow 

us to study the modes of divergence of duplicate genes i.e. sub-functionalization/neo-

functionalization in the context of subgenome bias. 
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 In our study, we also analyzed the pseudogene content in Brassicaceae 

genomes. However, we could only identify ~4000 pseudogenes that were derived from 

WGD in Brassica and radish. Assuming the neopolyploid ancestor of the two species 

had ~90,000 genes, given both species have ~40,000 genes today, where are the 

remaining 50,000 genes? One possibility is that most duplicates were lost through 

deletion of the gene segment. Another possibility is that the remaining duplicate genes 

were pseudogenized by insertion of transposable elements. Most of these pseudogenes 

would have been discarded in the pseudogene identification pipeline. The remaining 

duplicates, which were not deleted or do not contain transposon insertions, are what we 

ended up analyzing. Thus, in our study, the extent of pseudogenization occurring due to 

transposon insertion has remained unaddressed.  

 More broadly, one question that needs to be asked is, how does the repeat 

content in the genome behave after polyploidization? How much influence does it have 

in causing double stranded breaks, chromosomal translocations, genomic 

rearrangements and gene loss in polyploids? Does the repeat content increase after 

polyploidization? These questions can be studied in greater detail in synthetic 

neopolyploids, in recently created polyploids belonging to the Tragopogon, Senecio and 

Spartina genera or in genomes of species that recently underwent polyploidization such 

as cotton and maize. 

 Finally, during the process of diploidization of a polyploid genome, several genes 

are deleted. Our study showed that although most duplicates are lost, there is also 

some preferential retention and preferential loss, which is biased by the properties of 

the genes themselves. How does gene loss/retention affect biological networks? There 
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are a few studies suggesting processes such as metabolism and circadian rhythm are 

affected. For example, two gene families encoding transcription factors playing central 

roles in circadian rhythm regulation such as CIRCADIAN CLOCK ASSOCIATED1 

(CCA1) and LATE ELONGATED HYPOCOTYL (LHY) were found be preferentially 

retained post α' WGT (Lou et al., 2012). Documented phenotypic and fitness changes 

have occurred in recent polyploids such as Spartina anglica, Chamerios angustifolium 

and some polyploid accessions of A. thaliana (Ainouche et al., 2009; Baldwin and 

Husband, 2011; Chao et al., 2013). However, we have very little understanding of how 

network remodeling plays a role in such phenotypic transitions and local adaptation. An 

integration of molecular technologies and field biology is needed to address such 

questions. 

FINDING NOVEL GENES AMONG INTERGENIC TRANSCRIPTS 

In Chapters 3 and 4, I analyzed the transcriptomes of A. thaliana, B. distachyon, 

O. sativa, S. bicolor and Z. mays, whose genomes range in size from 140 Mb (A. 

thaliana) to 2000 Mb (Z. mays). The transcriptome datasets analyzed were from 

multiple tissues and/or conditions and thus represented a fairly large proportion of the 

transcriptomic space in each species. Contrary to results from some mammalian 

studies (Birney et al., 2007; Clark et al., 2011), we found no evidence of pervasive 

transcription in the plant genomes. The conflicting result may partly be explained by the 

fact that despite being a broad representation, our RNA-seq datasets might still 

incomplete, and that sampling of additional RNA-seq datasets or non-polyA and 

directional sequencing may yield evidence for more transcription. In addition, we were 

very aggressive in filtering out reads that may constitute genomic contamination and 



161 
 

hence, we may have missed certain true yet lowly expressed intergenic transcripts. If 

more RNA-seq datasets were sampled and if one were very relaxed in defining 

intergenic transcripts, one would indeed be able to identify additional intergenic 

transcripts. But the question is, are these transcripts useful to the cell in any way? 

To address this question, we characterized the nature of intergenic transcripts in 

our five study species. Our results across all species indicate that intergenic transcripts 

are expressed at very low levels and in a very tissue-specific manner. We also found 

that a significant proportion of them lie very close to genes, and as the genome size 

increases they tend to lie closer to genes more often than expected randomly. In other 

words, although there is more space available for intergenic transcription, it still tends 

to be enriched near genes. Interestingly, we also find that for genes that tend to have 

intergenic transcription in their neighborhood, even their orthologs in other species tend 

to have neighborhood transcription, much more than what would be expected by 

chance. Our results suggest two explanations for why intergenic transcription persists, 

especially near genes: 1) intergenic transcripts may be produced due to the regulatory 

influence of the transcription of their neighboring gene or feature, and some genes may 

produce a greater “ripple” of transcription (Ebisuya et al., 2008) than others and 2) 

intergenic open chromatin regions may be more prone to transcription than other 

regions. However, we only found an association with neighboring gene transcription 

and open chromatin regions and not a cause-effect relationship. So we cannot 

conclusively say whether intergenic transcripts constitute noise or not based on these 

data. 



162 
 

Our inference of noise is primarily based on the fact that <5% of the intergenic 

transcripts are conserved within or between species, suggesting that such transcripts 

are transient, are lost quickly through time and may be inconsequential to the fitness of 

the organism. Based on these observations, it seems that most of the intergenic 

transcription is not purposeful and may be occurring in a spurious manner as an 

indirect effect of other molecular phenomena occurring on the DNA molecule. 

What does this mean for annotation of novel genes in currently defined intergenic 

regions? RNA-seq studies continue to find thousands of intergenic transcripts. While 

my studies indicate most of these transcripts are a result of noise, functionally 

important transcripts will also be present. Using machine learning approaches such as 

support vector machines, it may be possible to predict which intergenic transcripts are 

likely novel genes based on their properties such as expression level, breadth of 

expression, length, distance from genes, evolutionary conservation as well as 

properties of the genomic neighborhood such as nucleosome occupancy, chromatin 

marks and expression states of neighboring genes. For example, my preliminary 

studies suggested that there is a direct relationship between length and nucleotide 

diversity in A. thaliana intergenic transcripts. Such measures could aid in finding the 

proverbial “needle in the haystack” of functional among nonfunctional intergenic 

transcripts. 

GENE CONTENT EVOLUTION IN PLANTS: A BROADER PERSPECTIVE   

 In my research, I focused only on genes created via whole genome duplication 

and on intergenic transcripts. However, as outlined in Chapter 1, there are other modes 

of gene origination too, namely retroposition, exon shuffling and trans splicing. The 
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relative contributions of these processes to gene content evolution are unknown. 

Advances in sequencing technologies, however, can help shed light on these 

processes. For example, the ENCODE study found that 74% of the intronic bases in the 

human genome could be assigned a reproducible primary transcript, suggesting 

presence of alternative splice forms, antisense transcripts or intronic genes (Djebali et 

al., 2012). In addition, we only analyzed the polyA fraction of the transcriptome and 

hence, additional non-coding genes not transcribed by RNA polymerase II would not 

occur in this fraction. A meta analysis of several polyA + non-polyA transcriptome 

datasets in A. thaliana can help in addressing the contribution of other modes of gene 

origination. 

 In addition to identifying such features and understanding their characteristics, 

the availability of sequence data from populations also allows us to explore their 

conservation within a species. Several functional RNAs may show functionality for only 

short time intervals and such features can be identified using polymorphism data and 

population genetic tests. Genome data from populations as well as data from multiple 

plant species are now being made available. At the time of this writing, there were at 

least forty plant species with draft, partial or complete genomes available in a 

centralized plant genome data repository  (Goodstein et al., 2012) and more on the way. 

Comparative analyses of gene content across these species can help us understand 

how different novel characteristics came to be present in different lineages in the plant 

world. 
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