it ' “lllllllllllllllln 1 a 45 I0 ‘6 ”* "If LIBRAML " Mkhigan State University This is to certify that the dissertation entitled nuclear Aromatic Hydrocarbon Compounds in Organized Media 1 Room-temperature Phosphorescence Study of Poly— \ presented by i l Hai-Dong Kim has been accepted towards fulfillment of the requirements for Ph.D. degree in Chemistry fl/M/éwa Major! professor Date September 12, 1989 MS U is an Affirmative Action/Equal Opportunity Institution 0-12771 PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due. DATE DUE DATE DUE DATE DUE MSU Is An Affirmative Action/Equal Opportunity Institution "/1— _‘. .l a. 2‘\ cl .J-t ROOM-TEMPERATURE PHOSPHORESCENCE STUDY OF POLYNUCLEAR AROMATIC HYDROCARBON COMPOUNDS IN ORGANIZED MEDIA By Hai-Dong Kim A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Chemistry 1989 (064'013% ABSTRACT ROOM-TEMPERATURE PHOSPHORESCENCE STUDY OF POLYNUCLEAR AROMATIC HYDROCARBON COMPOUNDS IN ORGANIZED MEDIA By Hai-Dong Kim Room-temperature phosphorescence spectrometry (RTP) is a very convenient method compared to conventional low- temperature phosphorimetry. Although the importance of RTP has been realized in the analytical world.over the last two decades, it still needs a number of improvements to be used in routine chemical analysis. This research was intended to develop a new RTP methodology using a synthetic enzyme model compound, N,N,N’,N’,N",N",N’",N’"-octamethy1-2,11,20,29- tetraaza[3.3.3.3]paracyclophanetetraammonium tetrafluoro- borate (methyl-APO). In the first part of the research, a computer-controlled versatile luminescence spectrometer was develOped with completely menu-driven software for the control of the instrument, data acquisition, and data manipulation on a personal computer. The use of a disk-type chopper gave a number of advantages over the conventional rotating-can type phosphoriscope. Results are presented to show the versatility of the developed instrument. A new decay kinetic model of micellar stabilized RTP (MS- RTP) is proposed based on triplet quenching on the micellar surface. The dependence of MS-RTP lifetimes on environmental conditions was investigated. It was found that heavy atoms were the major contributor in MS-RTP lifetimes. Also, solution temperature and the method of deoxygenation affect observed lifetimes significantly. The potential analytical applicability of methyl-APO in RTP was examined. Methyl-APO showed a very strong binding ability toward anionic and neutral compounds, but did not induce RTP when used alone. The addition of premicellar concentrations of surfactant effectively covered both open ends of the AFC-guest inclusion complex and, thereby, induced RTP. Methyl-APO also showed more selectivity and sensitivity than cyclodextrins due to the hydrophobic and electrostatic interactions involved. ACKNOWLEDGEMENTS It took a long time to realize the true meaning of "That’s " the way of science mentally and physically. Whenever I sank down hopelessly during my research, other fellows in the Lab tried to persuade me how science is difficult by saying "That’s the way of science.". At that time I had no answer for that, but now, I have an answer for that. "But it’s worth to try." I would like to thank sincerely Dr. Stanley R. Crouch and Dr. Matthew J. Zabik for their warm advice and guidance throughout my research. Both of you really inspired me to complete my work. When I joined the Crouch group, there were already eighteen people hanging around to make me dizzy. I was really surprised to see Stan’s ability to manage each kid including me. Dr. Zabik’s Lab was more spacious compared to: the 'Lab in chemistryu Thanks to Dr. Zabik’s special attention, I could complete my research in his Lab. I would like to thank to all group members of both groups. These include, Peter, Jimmy, Mayda, Steve, Larry, Pavlos, Kris, Susan, Mary Ann, Gamal, Glen, Ines, Salah, and everyone else who shared the same adviser. I also thank Dr. Leavitt and his group members who helped me in many ways during my research. Dr. Nelson Herron and Dr. Paul Kraus were the old fellows Who deserve my deep acknowledgement. We were the same funny iv guys who tried to catch the tough fruit, RTP. Also, we were the same guys who shared the same bitterness and fragrance of that fruit. I still remember a loud shouting session when Nelson exchanged punches with the famous, old instrument. A special thanks is reserved for my family: my wife, Sock; our pretty daughter, Suyoun; our baby son, Junyoung; and my parents who prayed and waited patiently for my success. TABLE OF CONTENTS List Of Tables 0.0.000.000...00.00.00.000...0.0.0..0000. List Of Figures 0.0.000.00.00.00000....00000.00000000.00 I. IntrOduction.00.0...00.000.000.0000000000000.00.0.0. References 000.......0.00...000..0.....O0.0000...00.. II. Molecular Luminescence ............................. A. The Absorption and Emission of Light by Molecules . B. The Effect of Molecular Structure ................. C. Medium Effect 0.00.0.00.000.00.00000000 1. Effect of Temperature and Solvent . 2. Effect of pH and Dissolved Oxygen ... 3. Effect of Solute Concentration ...... 4. Effect of Coordination by Metal Ions D. Quenching of Photoluminescence ........ References ............................. III. Room-Temperature Phosphorescence .... A. Conditions for RTP Observation ...... B. Methods for RTP Measurement ......... 1. Solid State RTP ................... 2. Sensitized RTP .................... 3. Micellar Stabilized RTP ........... 4. Cyclodextrin Enhanced RTP ......... 5. Other Methods of RTP .............. C. Deoxygenation Methods ............... vi 0....000... 0.00 0... ix X 12 14 15 15 16 17 18 21 23 25 27 23 so 33 38 41 43 1. Physical Methods of Deoxygenation .............. 2. Chemical Methods of Deoxygenation .............. D. HeavyAtom EffeCts 0.00.00.0000.0000.000.000.00... References 0.00.00.00.00000.0......00.00.00.000000000 IV. Applications of Macrocyclic Compounds in ChemicalAnaIYSis 00.000.000.000.00.00.00.000000000 A. Host-Guest Molecular Inclusion ................... B. Synthetic Enzyme Model Compound: Cyclophanes .... C. Other Macrocyclic Compounds in Chemical Analysis References ......0...0.0....0..00.......000000000000 V. Instrumentation ............................. A. Luminescence Spectrometer ................. 1. Principle of Operation of the Instrument 2. Hardware Construction ................... a. Computer Interfacing to Spectrometer .. b. Light Source Modulation and Detection . c. RTP and RTP Lifetime Measurement ...... 3. Software Development 4. Results and Discussion B. Modification of IBM-DACA board ............ 1. Hardware Modification ................... a. Hardware Triggered ADC Operation ...... b. Modification of Counter/timer Circuit . 2. Software Development .................... 3. Results and Discussion C. Conclusions References 0....00...0.0..000 vii 00.0...000.0000.....0 ooooooooooooo00000000000009.0000... 43 44 45 49 53 55 58 64 70 74 75 76 78 78 82 86 88 90 98 99 99 102 104 107 108 110 VI. Room-temperature Phosphorescence Lifetimes ......... 112 A. Methods for Determining Decay Lifetimes ........... 114 B. RTP Decay Lifetimes of Organic Compounds in Micellar Solutions ................................ 121 1. Decay Kinetics Model for MS-RTP ................. 121 2. Experimental Section. ........................... 124 3. Results and Discussion .......................... 126 C. Conclusions ....................................... 143 References ........................................... 144 VII. RTP of Organic Compounds in Mixed Organized Media: Azaparacyclophane—Surfactant System ........ 146 A. Experimental Section 1. Materials and Methods ........................... 148' ‘ 2. Synthesis of Azaparacyclophane .................. 149 B. Results and Discussion ............................ 156 C. Conclusions ....................................... 173 References ........................................... 170 VIII. Conclusions and Future Prospects ................. 176 A. Luminescence Instrumentation ...................... 176 B. RTP Decay Lifetimes of PAHs in Organized Media .... 178 C. Application of Synthetic Macrocyclic Compounds..... 180 References ........................................... 182 Appendix . A. Source Code of TPLIB .............................. 183 B. Source Code of EMISPEC-II ......................... 196 C. Source Code of IBMDAC ............................. 215 Do source cede Of LS-DATAooooooooo09.000000000000000. 224 viii LIST OF TABLES Table Title Rage 6.1 MS-RTP Spectral Characteristics of PAHs.......... 133 6.2. MS-RTP Lifetimes of Selected Arenes.............. 135 6.3. The Effect of Temperature on RTP of Pyrene....... 138 6.4. The Effect of Heavy Atom on RTP Lifetime......... 139 ix 301'. 3.2. 4.4. 4.5. 5.1. 5.2. 5.3. 5.4 5.5. 506. LIST OF FIGURES 1111: 2:82 Jablonskii diagram of a molecule upon excitation. (A, absorption; F, fluorescence; 10, internal conversion; 180, inter-system crossing; P, phos- phorescence; VR, vibrational relaxation).......... 10 Schematic representation of sensitized phos- phorescence. The analyte (acting as the energy donor) absorbs light, and the acceptor molecule emits phosphorescence. (10, internal conversion; 180, inter-system crossing; Sn, singlet state; Tn, triplet state; Q, quenching)...................... 31 Simplified model representation of the ionic micelle. The electric double layer is composed of a Gouy-Chapman layer outside and a Stern layer inside the shear surface.......................... 35 Simplified representation of B -cyclodextrin StrUCtureoooooooo00000000000000.0000...on...oooooo 39 Diederich’s water-soluble cyclophanes............. 60 Water-soluble heterocyclophanes................... 61 Schematic representations of modified water- soluble heterocyclophanes......................... 63 Some representative crown ethers......§........... 65 Lehn’s cryptands.................................. 68 Block diagram of the luminescence spectrometer.... 77 Schematic representation of the Lab Master board.. 79 Interfacing of the control signals from Lab Master to the Aminco-Bowman spectrometer (SPF-500)....... 81 Circuits built for (A) photodiode light sensor, (B) current-to-voltage convertor(lower)........... 83 Timing diagram of the chopper phase detector. The opto-interrupter output is connected to the multivibrator and the pulse width of the multivib- rator is adjustable with a variable register...... 85 Timing diagram of the counters for RTP and RTP lifetime measurement.............................. 87 X 5.7. 5.8.A 5.9 50100A 5.10.3 5.11. 5.12. 5.13. 6.5. 6.6. Block diagram of the EMISPEC program.............. 89 Fourier smoothing of the luminescence spectrum of naphthalene in micelle (SDS). Degree of smoothing, 9; dot, raw data; line, smoothed data............. 93 Fourier smoothing of the luminescence spectrum of naphthalene in micelle (SDS). Degree of smoothing: 25. dot: raw data; line: smoothed data............ 93 Fourier smoothed luminescence spectrum of naphthalene (1.5x10'5 M). Degree of smoothing: 15. The "end-effect" was corrected at both ends....... 95 Excitation-emission spectrum of pyrene (1.5x10'6 M) in micelle (SDS 0.1 M). Excitation scan range: 280-380 nm; emission scan range: 300-500 nm....... 97 Excitation-emission spectrum of naphthalene at room temperature. Excitation scan range: 180-360 nm; emission scan range: 280-480 nm................... 97 Modification of the timer/counter circuit of the IBM-DACA000000.00000.000.00.00.00.00000000000 101 Jumper board pin layout........................... 103 Sine wave (6250.us/Cycle) captured in mode 0 (A,line), in mode 3 (A,dotted line), in mode 9 with trigger pulse interval of 27.ns (B,dotted line) and 62 us (B,line).......................... 106 Schemetic representation of typical RTP decay curve and data acquisition process................ 115 RTP development of 2-bromonaphthalene with time... 127 The effect of sodium sulfite and SDS on the RTP intensity of naphthalene.......................... 129 Excitation and emission spectra of 2-bromo- naphthalene (A,C) and pyrene (B,D). A and B are excitation spectra and C and D are emission spectra........................................... 131 Excitation and emission spectra of naphthalene (A,C) and biphenyl (B,D). A and B are excitation spectra and C and D are emission spectra.......... 132 MS-RTP decay of 5x10'5 M naphthalene (upper) and pyrene (lower). Solutions were deoxygenated with 0.01 M sodium sulfite, and the concentrations of SDS were 0.05 M for both, the concentrations of T1’ 6.7 7.1 7.5 7.1 70! 7.1. 7.2 7.3 7.4. 7.5. 7.6. 7.7. 7.8. 7.9. 7.10. were 0.04 M for naphthalene and 7.5x10'3 M for Pyrene.‘O.......OOCOOCCO......OOOCOOOOOOOOOCOOO0.0 137 Plot of observed decay rate constant of pyrene versus heavy atom (Tl‘) concentration in SDS micelle....O...00...............OOOOOOOOOOOOOCOOO. 141 Synthesis of N,N,N’,N,’,N",N”,N’",N’"-octamethyl- 2,11,20,29-tetraaza[3,3,3,3]paracyclophanetetra-. ammoniumtetrafluoroborate......................... 151 NMR spectrum N,N’,N",N’"-tetramethyl-Z,11,20,29- tetraaza[3,3,3,3]para cyclophane.................. 154 Mass Spectrum N,N’,N",N’"-tetramethyl-2,11,20,29- tetraaza[3,3,3,3]para cyclophane.................. 155 Simplified structural representation of the host molecule, methyl-APC (upper), and anionic guest meleculeSOOOO0..0..0.00.00........OOOOOOOOOOOOOOOO 157 Fluorescence enhancement of ANS (2.5)(10‘5 M, excitation=375nm, upper spectrum) and TNS (2.5X10‘5 M, excitation=337nm, lower spectrum) on addition of 1X10'4 M of 8 -cyclodextrin (dotted line) and methyl- APC (upper solid line)............................ 160 Double reciprocal plot for methyl-APC-ANS complex..162 RTP spectrum of TNS (2.5x10‘5 M, upper spectrum) and 2-bromonaphtha1ene (2.5x10‘5 M, lower spectrum) upon addition of 0.1 mM of B-CD(dotted line) and methyl-AFC (upper solid line). The lower solid line in both spectra were obtained with SDS'only. Excitation: TNS=337 nm; ANS=293 nm. .............. 164 The effect of host (upper graph) and SDS (lower graph) on the RTP intensity of TNS (2.5x10'5 M)... 167 RTP development of 2-bromonaphthalene (5X10"5 M) with 0.02 M sodium bromide (lower line) and 0.02 M thallium nitrate (upper line). [NazSOa]=0.04 M; [SDS]=5 mM; [APC]=0.1 mM. Excitation=293 nm; emission=525 nm................................... 169 RTP decay of TNS (51(10'5 M) in 5 mM SDS and 0.02 M TlNOa; dotted line, no host; bottom line, on addition of 0.2 mM BeCD;upper line, on addition of 002 mM methYI-APCOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO 172 xii P0P met che det ab: fr< CHAPTER I INTRODUCTION Luminescence spectrometric methods are among the most popular analytical methods. Luminescence spectrometric methods allow a greater sensitivity and selectivity in chemical analysis than absorption spectrometry. Also, luminescence spectrometry provides a lower limit of detection and a larger linear dynamic range compared to the absorption spectrometry. Room-temperature phOSphorimetry (RTP) is quite different from the classic low temperature phosphorescence technique which is typically performed in glass matrices at liquid nitrogen temperature (1). Since the discovery of RTP, numerous techniques have been developed to induce RTP from various molecules. These include solid-state RTP (2), micellar-stabilized RTP (3): sensitized RTP (4), yclodextrin enhanced RTP (5), and colloidal or icrocrystalline RTP (6). The probability for observing RTP (especially in solutions) is enhanced in a rigid molecular nvironment due to reduced quenching by oxygen or other 'mpurities and in the presence of a heavy atom due to an ncrease in the rate of intersystem crossing. Photophysical and photochemical properties of organic olecules included in the cavity of cyclodextrins (CDs) have bee Cyc or: is («11 us CO! am mo. 1i fr az of Va az 20 been of considerable interest in the past decade (7). Cyclodextrins form complexes with hydrophobic organic and organometallic molecules in aqueous solution. Although there is no direct proof for a fixation of the guest molecules within the void space of the cyclodextrin, the complexes are usually regarded as inclusion compounds, host-guest compounds, in which hydrogen bonding, van der Waals forces, and hydrophobic interactions are the main binding forces (8). When lumiphores are included inside the cyclodextrin molecules, the resulting RTP shows enhanced intensity and lifetime because the cyclodextrins protect the lumiphores from quenchers (9). The synthetic macrocyclic enzyme model compounds, azaparacyclophanes (APCs) can act as inclusion hosts capable of molecular organization by forming complexes ,with a variety of hydrophobic molecules (10). Water-soluble azaparacyclophane, N,N,N’,N’,N",N",N’",N’"-octamethyl-2,11, 20,29-tetraaza[3.3.3.31paracyclophanetetraammonium tetra- fluoro-borate (mehtyl-APC), is an excellent inclusion host toward certain organic substrates. A unique substrate specificity was observed due to its cavity size and functionality (11). The macrocyclic cavity is surrounded by he wall which is formed by four benzene rings and four uarternary ammonium residues around the macrocyclic ring. The objectives of this research are divided into three arts. The first objective of this research was to develop a ersatile computer-controlled luminescence instrument for measuring fluorescence, RTP, and RTP lifetimes. The second objective was to study the decay kinetics for micellar stabilized RTP in order to understand the mechanism of triplet quenching in micellar solution. The last objective of this research was to develop a new RTP method using a synthet ic enzyme model compound , methyl-APO . This dissertation presents work performed mainly on these three projects. The entire dissertation is divided into eight chapters plus appendix. Following introductory remarks in this chapter , the fundamental background 0 f molecular luminescence is described in chapter II. This chapter is divided into four main categories: the absorption and emission of light; the effect of molecular structure; the effect of medium condition; and, quenching of luminescence. This background is very important for understanding the RTP phenomenon. In chapter III, recent developments in RTP .are reviewed. Various conditions necessary for the observation of RTP are discussed first. A brief historical survey of RTP and various methods for RTP measurements develOped so far are described in the following part. The last two parts discuss the essential requirements to observe RTP in solution, deoxygenation methods and the heavy atom effect. Applications of macrocyclic compounds in chemical analysis are discussed in chapter IV. The host-guest molecular inCIUSion phenomenon is discussed first. The general overview of synthetic enzyme model compounds, azaparacyclOphanes, in host-guest chemistry and their applications are presented in the second part. The last part reviews various macrocyclic compounds currently used in chemical analysis. The deve10pment of a computerized RTP instrument for this research is described in chapter V. This chapter is divided into two broad parts: the luminescence spectrometer and a modification of the IBM-PC data acquisition board. The first part describes the general principles of the new instrument, computer interfacing, excitation source modulation and detection for time-resolved spectrometry, the use of the instrument for RTP and RTP lifetime measurements, and the software developed. for instrument control and data acquisition are also discussed. The second part describes a modification of the IBM-PC data acquisition board used later in this research with the Perkin-Elmer LS-5B spectrometer. The RTP lifetime measurements and the study of decay kinetics in micellar-stabilized RTP are presented in chapter VI. Various methods for determining RTP lifetimes are discussed first. And then, a new decay kinetics model in micellar stabilized RTP is pmoposed. In the last part, RTP lifetime data for polyaromatic hydrocarbon molecules, pyrene, naphthalene, biphenyl, and 2-bromonaphthalene are presented. Also various factors affecting the observed RTP lifetime are discussed with the experimental data. mix sys aza so] RTE 81‘! 3P1 de< fil dun Chapter VII presents RTP data of organic compounds in mixed organized media: the azaparacyclophane-surfactant system. The strength of molecular association of azaparacyclophane with anionic and neutral compounds in solution is compared to cyclodextrin. The factors affecting RTP in this system as well as an analytical figure of merit are discuSsed along with the experimental data. Conclusions and future prospects on instrumentation, application of synthetic macrocyclic compounds, and RTP decay lifetimes in chemical analysis are described in the final chapter. Source codes for the software developed during this research are presented in the appendix. CHAPTER I REFERENCES (1) Hurtubise, R. J. Anal. Chem. 1983, 55, 669A. (2) Ward, J. L.; Walden, G. L.; Winefordner, J. D. Tulanta 1981, 28, 201. (3) Cline Love, L. J.; Skrilec, M.; Habarta, J. G. Anal. Chem. 1980, 52, 754. (4) Donkerbroek, J. J.; Elzas, J. J.; Goojier, C.; Frei, R. W.; Velthorst, N. Thlanta 1981, 28, 717. (5) Scypinski, S.; Cline Love, L. J. Anal. Chem. 1984, 56, 322. (6) Weinberger, R.; Cline Love, L. J. Appl. Spectrosc. 1985, 39, 516. (7) Ramamurthy, V.; Eaton, D. F. Acct. Chem. Res. 1988, 21, 300. (8) Cramer, F.; Mackensen, G. Angew. Chem. Intern. Ed. Engl. 1966, 5, 601. (9) Turro, N. J.; Bolt, J. D.; Kuroda, Y.; Tabushi, I. Photochem. Phatobiol. 1982, 35, 69. (10) Tabushi, I.; Kuroda, Y}; Kimura, Y. 7btrahedron Lett. 1976, 37, 3327. (11) Tabushi, I.; Kimura, Y.; Yamamura, K. J} Am. Chem. Soc. 981 , 103, 6486 . is Phl ar bi wh re Fl lu Ph Fl ex is ex CHAPTER II MOLECULAR LUMINESCENCB The emission of light by electronically excited molecules is the basis of molecular luminescence spectroscopy. Photoluminescence originates from atoms and molecules that are excited by an external light source, as opposed to bioluminescence, chemiluminescence, and electroluminescence, which are excited by a biological process, by a chemical reaction, and by electrical energy, respectively. Fluorescence and phosphorescence are the two major types of luminescence which occur in molecules as a. result of photophysical process after absorption of light. Fluorescence is a radiative transition from the lowest excited singlet state in: the ground state. Phosphorescence is the result of a radiative transition from the lowest excited triplet state to the ground state. This chapter describes the nature of the photophysical processes of photoluminescence. The theoretical aspect of Photoluminescence is discussedyfirst. The next two parts deal with the dependence of photoluminescence upon molecular structure and. the molecular environments. The last part briefly discusses quenching effects for the two major types of photoluminescence, fluorescence and phosphorescence. ra: mo ab em f i be Th ah e1 e1 A. Absorption and Emission of Light by Molecules. A light wave may be thought of as electromagnetic radiation traveling with a speed of 3.0 x 1010 cm/s. When a molecule is exposed to electromagnetic radiation, it can absorb a photon of that radiation. The absorption or emission process entails the interaction of the electric field associated with the exciting light with the loosely bound p or nonbonded electrons of the absorbing molecule. This interaction distorts the electronic distribution of the absorbing molecule and causes energy to be absorbed from the electric field of the exciting light wave. Electronic absorption entails the promotion of an electron, by the absorption of energy, from an originally occupied bonding or nonbonding orbital to an originally unoccupied molecular orbital. Because 6 electrons are usually bound very tightly by the molecule, a great deal of energy (which is beyond the conventional luminescence spectroscopic region) is required to promote these electrons to vacant molecular orbitals. 0n the other hand, delocalized I electrons are not as tightly bound as J electrons. Hence, their' electronic 'promotion do not 'require higher energy than do the d electrons. The nonbonding electrons are nly slightly lower in energy than atomic valance shell lectrons. As a result, the energy gap between. the n- rbitals and vacant ‘l’ orbitals is very small (1). In most rganic molecules of spectroscopic interest it is only the J lb ele tn the whe tra abs cor uti reg the rat electrons and n electrons which are involved in electronic transition to vacant 1 molecular orbitals. The amount of light absorbed by the molecules is given by the Beer-Lambert law: Po A=log(-——)=&bc (2.1) P where A is the absorbance, Po and P are the incident and transmitted light intensity, respectively, t is the molar absorptivity of the molecule, and c is the molar concentration of the absorber in light path length b. To utilize the above equation properly there are several requirements: the solution must be sufficiently dilute so that changes in the refractive index are negligible, the radiation must be monochromatic, and stray light must be negligible. Quantum mechanically the electronic excitation of particular molecular species occurs only if the exciting radiation energy corresponds to the difference in energy between the electronically excited state and the ground state of the absorber. There are several vibrational levels within each electronic state in molecules. In the ground electronic state, almost all molecules occupy the lowest vibrational level at room temperature. When a molecule absorbs a particular frequency of radiation it can be excited to one of several vibrationally, as well as electronically excited energy levels (Figure 2.1). If the absorbed radiant power by Fig“; inte r813 10 vn —" __ IC vs 8" ”Ag 4 Tm (i ISC1 :‘=—__—- $1 1 IV": ISO 2 _? vn T1 A 3c F vn P 2 F —— Figure 2.1. Jablonskii diagram of a molecule upon excitation. (A, absorption; F, fluorescence; 10, internal conversion;ISC, inter-system crossing; P, phosphorescence; VR, vibrational relaxation). the the chi 11 the molecules is measured as a function of the wavelength of the radiation, a molecular absorption spectrum can be obtained (2). The excess vibrational and electronic energy is then dissipated by rapid (10'13 - 10'12 's) radiationless processes, vibrational relaxation and internal conversion. Vibrational relaxation occurs when ther excited molecule loses vibrational energy within a given electronic state, and internal conversion occurs when the molecule undergoes a radiationless transition from various excited energy levels to the lowest vibrational level of the lowest excited electronic singlet state. The excited molecules may return to the ground electronic state with. emission of radiant energy whose frequency is governed by the gap between the lowest excited singlet state and the ground electronic state. This radiative transition between excited and ground states of the same spin multiplicity occurs in a time frame of 10'11 - 10‘7 s after excitation, and is called fluorescence. Some portion of the molecules in the lowest excited singlet state may deactivate by crossover' to the lowest excited triplet state, a process called intersystem crossing. This crossover entails a change in spin angular momentum. This is, of course, forbidden in absorption quantum mechanically. In the excited singlet state, the Spins of the promoted electrons are still paired with the round state electrons; however, in the triplet state the sp: 1m rat or! ph' wi De in me Dr ex 12 spins of the electrons have become unpaired and are thus parallel with the ground state electron. Molecules in the lowest triplet state can return to the ground state without radiation being emitted by triplet - singlet intersystem crossing, or with radiation being emitted, which is called phosphorescence. Because phosphorescence is spin forbidden process, the lifetime of the triplet state is very long (10" - 10 s) as compared with an average lifetime of 10‘5 - 10'8 s for an excited singlet state (3). Molecules in the excited states which do not deactivate with radiation through either fluorescence or phosphorescence usually deactivate without radiation. Deactivation of an excited electronic state may involve interaction and energy transfer between the excited ‘molecules and the solvent or other solutes (quenchers). This process is called external conversion. The details of external conversion processes are not well understood. External conversion competes so successfully with phosphorescence that phosphorescence could not be observed without reducing the effectiveness of the external conversion. B. The Effect of Molecular Structrue on Photoluminescence. Molecular structure can have a profound effect on the photoluminescence. Both fluorescence and phosphorescence are most often observed in highly conjugated organic molecules wit mo] fr: bet tr: 1m in‘ qu. su to su 1a fr lc ti. 13 with rigid molecular skeletons. Those molecules whose molecular structure have less vibrational and rotational freedom may have high probability that the energy gap between the ground state and the lowest excited singlet or triplet state will be large and require deactivation by luminescence. Typically, aromatic hydrocarbon molecules show intense fluorescence and can give high phosphorescence quantum yield in certain situations. Aromatic hydrocarbon molecules containing freely rotating substituents, or lengthy aliphatic side chains, usually tend to luminescence less intensely than those without those substituents (4). This results from the introduction of a large number of rotational and vibrational degrees of freedom by the exocyclic substituents. The energy difference between the ground state and the lowest excited singlet or triplet states becomes smaller in those molecules which have a more extended conjugated system. Therefore, benzene, naphthalene, and anthracence fluoresce maximally at 262 nm, 320 nm, and 379 nm, respectively. Certain substituents strongly affect fluorescence (5). A substituent that delocalizes the 1 electrons, such as -NH2, ‘OH, -F, -OCH3, and -NHCH3 groups, often enhances fluorescence. These electron-donating substituents tend to increase the transition probability between the lowest excited singlet state and the ground state. NHCO fluo stro incr the stat This chap non: rota of t fern met: and Pro 80m ?7—i 14 Electron-withdrawing groups containing -Cl, -Br, -I, - NHCOCHa, -N02, and -COOH decrease or quench the fluorescence. The influence of halogen substituents is strong. As the atomic number of the halogen substituent increases, the fluorescence of the molecule decreases, and the probability for intersystem crossing to the triplet state increases at the expense of the excited singlet state. This heavy atom effect will be discussed more in detail in chapter III. Molecular rigidity lessens the probability of competing nonradiative transitions by restricting the vibrational and rotational degrees of freedom of the molecule. The influence of the molecular rigidity results in a decreased probability of collisional deactivation and intersystem crossing. The formation of chelates of certain organic molecules with metal ions also promotes fluorescence by promoting rigidity and minimizing internal vibrations. C. Medium Effects. The chemical environment affects the photophysical processes of the molecules to a large extent. The effects of some of these environmental variables are considered briefly in this section. 1. E1 mole: inert imprt COIN! elect eleC' exci' V and in d such effe of 1 m°le sing P0pu lowe flue Pho: 15 1. Effect of Temperature and Solvent. The quantum efficiency of photoluminescence by most molecules decreases with increasing temperature because the increased frequency of collisions at elevated temperatures improves the probability for deactivation by external conversion. Solvent interactions with solute molecules are largely electrostatic. It is usually the differences between the electrostatic stabilization energies of the ground and excited states that contribute to the relative intensities, and spectral positions of fluorescence and phosphorescence in different solvents. Solvents containing heavy atoms, or other solvents with such atoms in their structure, also have a substantial effect on the photoluminescence of solute molecules. Atoms of high atomic number in the solvent cage of the solute molecule enhance spin-orbital coupling in the lowest excited singlet state of the solute (6). This increases the population of the lowest triplet state at the expense of the lowest excited singlet state. Thus, the intensity of fluorescence becomes less intense while that of Phosphorescence becomes more intense in heavy atom solvents. 2. Effect of pH and Dissolved Oxygen. Many aromatic compounds containing acidic or basic ring substituents show a dependence on the pH of the medium (7). 0th ionized and nonionized forms of the compound are likely to in Pr: 3e] moi gr in mo Tr hi hi 16 to show different wavelength and intensity dwe to a change in the nature and rates of the photoluminescence. Protonation and dissociation can alter the relative separation of the ground and excited states of the reacting molecules. The protonation of electron-withdrawing groups, such as carbonyl and nitrogen, results in a shift of the luminescence spectra to lower wavelengths, while the protonation of electron-donating groups, such as the amino groups, produces spectral shift to shorter wavelengths. The presence of dissolved oxygen reduces the emission intensity of the photoluminescent molecules. This effect is more severe in phosphorescence than in fluorescence spectra. Triplet state oxygen. and other' paramagnetic species are highly effective in deactivating excited triplet states (8). Micromolar amount of oxygen can completely quench the phosphorescence of most aromatic compounds in solution. Due to the long intrinsic lifetime of the triplet state engendered by the spin-forbidden nature of phosphorescence, there is a comparatively long period for oxygen to interact with excited triplet molecules. 3. Effect of Solute Concentration. At lower solute concentrations, a plot of the photoluminescence of the solution versus concentration of the emitting species is normally .linear. But at higher solute concentrations, there is a tendency for molecules to form aggregates in both ground and excited states. Molecular 8!! of qut f0: sol f r so CO ov of th ab 8! 17 aggregation can substantially affect the photoluminescence of molecules (9). Self—quenching and self-absorption are the two well known quenching effects due to the high solute concentration. The former is the result of collisions between excited state solute molecules. Radiationless transfer of energy occurs from the excited state of the solute molecules to the solvent molecules. Self-quenching increases with solute concentration. Self-absorption occurs when the wavelength of emission overlaps an absorption peak. This is due to the absorption of emitted radiation (secondary absorption) by analyte. But, there is also absorption of the incident radiation (primary absorption) which can cause nonlinearity. These two effects are often called the inner filter effect (3). 4. Effect of Coordination by Metal Ions. Photoluminescence of aromatic ligands can be affected by coordination with metal ions. Nontransition metals will shift the wavelength of fluorescence and phosphorescence of luminescing ligands to which they are coordinated. This results from the positive polarization, caused by the metal ion, at the sites of coordination on the ligand (10). The luminescence of the ligand may be somewhat enhanced or quenched by coordination, depending on the influence of the metal ion has on the nonradiative processes competing with luminescence. Th1 ions much some arom tran tran One heav orbi then M 0013 18 The coordination of aromatic ligands with transition metal ions usually produces electronic spectral shifts which are much greater than the shifts produced by complexation of the same ligands with nontransition metal ions. The fluorescence and phosphorescence of '1uminescing aromatic ligands are usually quenched by complexation with transition metal ions. The reasons for this quenching of transition metal complexes are not completely understood. One of the proposed theories is that the paramagnetic and heavy atqm effects of the transition metal ion cause spin- orbital coupling which populates low lying states which are then deactivated by internal conversion (11). D. Quenching of Photoluminescence. Quenching of luminescence is the result of the interaction of the chromophore, either in ground or excited state, with the various other species present in the system. Quenching processes may be divided into two broad categories depending on the state of the chromophore when it actually interacts to give radiationless deactivation. Static quenching occurs when an interaction takes place between the chromophore and the quencher in the ground state forming a nonluminescent complex. The efficiency of quenching is governed. by the formation constant of the complex as well as the concentration of the quencher. pot lif res que lit anc eqi fol wh. thc pm It qu Yi th qu st 19 In dynamic quenching, the quenching species and the potentially luminescent molecules interact during the lifetime of the excited state of the chromophore with no resulting radiation. As a result, the efficiency of dynamic quenching depends on the viscosity of the solution, the lifetime of the excited state of the luminescent species, and the concentration of the quencher. The Stern-Volmer equation describes this dynamic quenching process as follows: ’P/Po = --------------- (2.2) 1 + kqf [Q] where kq is the bimolecular quenching constant, Po and P are the quantum yields ‘of the luminescence in the abscence and prescence of the quencher [Q], respectively, and 1 is the lifetime of the luminescent molecule in the absence of the quencher. It should be noted that in dynamic quenching, the quantum yields of fluorescence and phosphorescence are governed by the kinetics of the photoreaction. However, in static quenching, they are generally governed exclusively by the strength of ground state complexation. Static and dynamic quenching can be distinguished by arious methods. In static quenching, the observed lifetime f the luminescence is unaffected by the quencher, while it ecreases in dynamic quenching due to a quenching process hich occured during the lifetime of the luminescent pecies. Also, absorption spectra of the possible lumine that f format state. 20 luminescent species are different in static quenching from that. in the absence of the quencher due to a complex formation between lumiphore and quencher in the ground state. 1. Met. Yor 2. bum Int SPe Lot 21. 21 CHAPTER II REFERENCES 1. Schulman, S.G., Mblecular Luminescence Spectroscopy: Methods and Applications; Part 1, Wiley-Interscience, New York, 1985. 2. Winefordner, J. D.; Schulman, S. G.; O’Haver, T. C., Luminescence Spectrometry in Analytical Chemistry, Wiley- Interscience, New York, 1972. 3. Ingle, J. D.; Crouch, S. R., Spectrochemical Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1988. 4. Willard, H. W.; Merrit, L. L.; Dean, J. A.; Settle, F. A., Instrumental Methods of .Analysis, Sixth Ed., D. Van Nostrand Company, New York, 1981. 5. West, W., Chemical Application of Spectroscopy (Techniques of' Organic Chemistry, Vol. IX), Interscience, New York, 1956. 6- Zander, M, Phosphorimetry, Academic Press, N.Y., 1968. 7- Schulman, S. G.; Winefordner, J. D., Talanta 1970, 17, 607. 3. Lower, S. K.; El-Sayed, M. A., Chem. Rev., 1966, 66, 199. 9- Schulman, S. 6., Fluorescence and Phosphorescence Spectroscopy: Physical Principles and .Practice, Pergamon, London, 1977. 10. Bhatnagar, D. C.; Forsta, L. S., Spectrochim. Acta 1965, 21, 1803. 11. Mo Spectr Cliffs 22 11. McGlynn, S. P.; Azumi, T.; Kinoshita, M., Molecular Spectroscopy of the Triplet State, Prentice-Hall, Englewood Cliffs, N.J., 1969. Ph (1) trans molec phos1 Most fluo: life Wher San anal from With Pesc the len, dea< QUE] Pho: “it: 23 CHAPTER III ROOM TEMPERATURE PHOSPHORESCENCE Phosphorescence was identified first by Lewis and Kasha (1) in 1944 as the emission of light as a result of a transition from the lowest excited triplet state of a molecule to the ground state. .A number of features of phosphorescence distinguish it clearly from fluorescence. Most importantly, phosphorescence is distinguished from fluorescence by its much longer lifetime. Fluorescence lifetimes are typically in the range of 10'8 - 10'6 3, whereas phosphorescence lifetimes normally lie between 10" s and 10 8. These long lifetimes are potentially valuable in analysis, as they enable phosphorescence to be distinguished from fluorescence and scattered light. Also phosphorescence with different lifetimes may be distinguished using time- resolved methodology. Unfortunately, long lifetimes are also the principle disadvantage of phosPhorimetry: in these lengthy periods, the excited molecules are normally deactivated by collisions with solvent molecules and other quenchers such as oxygen molecules. As a result, traditional phosphorimetry is performed in rigid media at liquid nitrogen temperature (77 K) to minimize the radiationless deactivation by various quenching effects. inv< fla: the the wil sel bac the lim phc brc Hm of tel 881 We t! l. 24 Sample preparation in low temperature phosphorimetry involves lowering a long capillary cell into a quartz Dewar Elask filled with liquid nitrogen. The rate of cooling of the sample cell, the chemical nature, and the composition of the solvent system will determine whether the cooled matrix will be a clean glass, a cracked glass, or a snow. Thus, the selection of the proper solvent is critical. It should form a clear glass at 77 K and have a low phosphorescence background. Also, the analyte should be readily soluble in the solvent at 77 K. Experimental difficulties and limitations associated with traditional methods in phosphorimetry, have been the primary factors in preventing broader application of low temperature phosphorimetry. However, recent developments have shown that a wide variety ‘of organic compounds exhibit strong phosphorescence at room itemperature when certain conditions are applied to the fsample system (2). t iWalling (4) generalized room temperature phosphorescence Although the studies by Roth (3) and by Schulman and .(RTP) first in an analytical application, perhaps the first fRTP phenomenon was observed by Wiedemann and Schmidt (5) in \ ‘u896. Phosphorescence spectra obtained at room temperature .5 'fire generally similar to those observed at 77 K, but they :Lhow less vibrational fine structure due to increased . \ ’yibrational freedom of the molecule at the higher .temperature. RTP emission peaks are also shifted to slightly Zionger wavelengths at room ‘temperature compared. with low temp: typic inva1 and 1 also RTP MOIGI temp RTP desc nece heav A. C fluj teml Stat brii flu: 5001 Pho the tem 25 temperature phosphorescence spectra, although shifts are typically less than 10 nm (6). RTP lifetimes are almost invariably shorter than phosphorescence lifetimes at 77 K and rarely exceed a few hundred ms (7). RTP intensities are also generally lower than those obtained at 77 K; however, RTP is still capable of low detection limits for certain molecules. This chapter describes several features of room temperature phosphorescence. The conditions necessary for RTP are discussed first, and then various RTP techniques are described. The last two parts cover the most important and necessary conditions in RTP: deoxygenation methods and the heavy atom effect. A. Conditions for the Observation of RTP. Most organic compounds which emit strong fluorescence in fluids, commonly do not give any phosphorescence at room temperature. Because of the long lifetime of the triplet state, collisional deactivation is highly effective in bringing about radiationless decay of triplet states in fluid media. Quenching of the triplet state by a small amount of dissolved oxygen is very efficient in preventing phosphorescence in a liquid solution. As a result, some technique must be used to reduce or to prevent such uenching in order to observe phosphorescence at room emperature. The ‘essential requirements for RTP are; deo: mic: 3am] sail] the mic red it and dis sol gen rec‘ co] anc tri trJ' th Pil or, mi. in cy Co No 26 deoxygenation of the sample solution, a rigid molecular microenvironment, and a heavy atom source. Deoxygenation can be done physically or chemically during sample preparation and emission measurement. By bubbling the sample solution with an inert gas such as nitrogen or argon, the concentration of dissolved oxygen can be reduced below micromolar amounts. Chemical deoxygenation is another way to reduce molecular oxygen in a sample solution by converting it into other species. Sodium sulfite (8), chromium(II) (9), and zinc. (10) have been used successfully to convert dissolved molecular oxygen to other inactive species in solution. It has been observed that, a rigid microenvironment generally increases the phosphorescence intensity by ireducing collisional quenching of the triplet state. Because collisional quenching is very efficient at room temperature and is often considered as the main pathway for loss of triplet state energy, a rigid molecular environment for the triplet state is very important for the observation of the phosphorescence at room temperature. In solid state RTP, the rigid matrix is formed by the hydrogen bonding of ionic organic molecules to hydroxyl groups of the filter paper. In micellar stabilized RTP, sample molecules are confined inside micelles which are semi-rigid organized media. In cVelodextrin RTP, molecules form trimolecular inclusion complex with cyclodextrin and a heavy atom. Because sample molecules are included inside the cyclodextrin cavity, there 27 is less probability for collisional quenching of the triplet state. Although RTP can be observed in deoxygenated rigid media at room temperature, the observed intensity of RTP is generally too low to be useful in analytical work. However, by adding a 'heavy atom such as Tl’, I', or Ag‘, into the sample solution, the intensity of’ RTP can ‘be increased significantly. This is due to an increase in the intersystem crossing rate from excited singlet state to triplet state through spin-orbital coupling induced by the heavy atom. These effects are discussed in more detail later in this chapter. B. Methods for RTP Measurement. Since the introduction of analytical RTP by Roth (3) in 1967, numerous methods for RTP measurement have been developed. These are solid surface RTP, micellar-stabilized RTP, sensitized RTP, cyclodextrin RTP, and collidal or microcrystalline RTP. Though all these different methods of RTP measurement look different from each other, they have many common factors. Each different RTP technique tries to minimize collisional quenching which is believed to be the main pathway for radiationless deactivation of the triplet state, by employing different methods to fulfill the three requirements discussed ix: the above section. This section discusses the major RTP methods developed thus far. 1. on ad: po. am so no so to of ad 11 28 1. Solid Surface RTP. In 1967, Roth (3) reported a new analytical method based on the RTP emission from a variety of organic compounds adsorbed on the filter paper. Schulman and Walling (11) observed strong RTP from salts of a wide variety of polynuclear carboxylic or sulfonic acids, phenols, and amines adsorbed on paper, silica, alumina, and other supports. The observed phosphorescence lifetimes of several molecules ‘were in the range of 100-700 ms, 'which were somewhat shorter than those observed. at .liquid nitrogen temperature. In 1974, Paynter et al (12) reported the range of linearity and detection limits for several compounds adsorbed on filter paper. Calibration curves had a wide linear range, detection limits were in the nanogram region, and precision ranges from about 3% to 10% depending on the solid surface and experimental conditions. In most cases of solid surface RTP, drying of the samples was essential to enhance the RTP signal. It was noted that moisture on the solid substrate caused radiational quenching. It seemed that moisture acts to disrupt any binding of analyte on the solid surface so that the rigid molecular environment becomes loose and aids in the transport of oxygen into the sample matrix. Although no general model has been developed to explain the interactions involved in the production of RTP from compounds adsorbed (n1 filter paper, it seems that hydrogen bond soli rigi imp: intt sol‘ non; fr01 ion rig rad Pap Mos Pho Wav bac 8t frc Wit he: ba< in] him be 29 bonding of ionic organic molecules to hydroxyl groups of the solid surface is the primary mechanism for providing the rigid matrix for RTP. The ionic nature of the analyte molecules plays an important role in producing RTP. While ionic molecules show intense RTP signals when spotted on solid surfaces from solvents containing a large excess of a strong acid or base, nonionic compounds exhibit extremely weak or no RTP even from acidic or basic solutions (11). It is believed that the ionic state of the molecule results in great molecular rigidity via adsorption to the substrate, which reduces radiationless decay due to collisional deactivation (12). The major disadvantage of solid surface RTP using filter paper, is the strong background from the solid substrate. Most grades of paper exhibit substantial background phosphorescence, which is difficult to remove in the wavelength range 400-600 nm. Attempts to reduce the background emission from paper have been described by Ward et al (13). Experiments designed to wash the contaminants from the paper have met with little success (14). Beteh and Winefordner (15) tried to photobleach the lignins or hemicelluloses believed. to be a constituent of the background. They concluded that such a pretreatement improved the absorption characteristics of the filter paper, but did not significantly reduce the phosphorescence background. 0t acet mixt obse acet the cart (I) an. a 8 upo sen ana Sui eff Pat Pr. moi so do Ph 30 Other substrates used for solid surface RTP include sodium acetate, starch, inorganic substances, polymer-salt mixtures, and silica gel. Wandruszka and Hurtubise (16) observed RTP from a number of compounds adsorbed on sodium acetate. The main interaction proposed with this system was the formation of hydrogen bonds of the analyte with the carbonyl group of sodium acetate. 2. Sensitized RTP. Sensitized phosphorescence refers to the process whereby an acceptor (or emitter) having no appreciable absorption in a given region of the spectrum, is made to emit radiation upon excitation as a result of triplet energy transfer from a donor (or sensitizer) molecule. The overall process of sensitized phosphorescence is shown in Figure 3.1. .The analyte is excited by means of light. absorption. Subsequently, these non-fluorescent compounds with a high efficiency of intersystem crossing, deactivate without radiation through intersystem crossing. However, in the presence of an acceptor, the triplet energy of the donor molecule can be transferred to the triplet state of the acceptor molecule, and the excited acceptor molecule deactivates with radiation. There are several requirements for successful sensitized Phosphorescence. In general, a suitable acceptor should have a triplet energy lower than that of the donor, a low molar 82 . Sl FiEur. Phospj abso,‘ PhOsp cross (inane 31 32 +_ [C ' 31 V“ ISC 82 F 31 it La _-.. I, “"I ’ T1 : ' I' [C : Q Q P ISC SO ' J L 30 DONOR MOLECULE ACCEPT OR MOLECUIE Figure 3 . 1 . Schematic representation of sensitized phosphorescence . The analyte (acting as the energy donor) absorbs light , and the. acceptor molecule emits Phosphorescence. (IC, internal conversion; IS inter-system crossing; Sn, singlet state; Tn, triplet state; Q, quenching). abs: str< 88p suf‘ mecl con wid con if max RTE chi . ab: ph< on as Dr de 8.0 bi 32 absorption in the excitation region of the donor, and a strong phosphorescence yield at room temperature. The energy gap between the donor and acceptor triplet state should be sufficiently high so that it prevents the reverse transfer mechanism (2). Biacetyl has favorable properties in this context: its molar absorptivity is exceedingly small over a wide wavelength range (17). For a given analyte concentration, the maximum sensitized RTP signal is reached if the excitation wavelength chosen corresponds to the maximum in the excitation spectrum of the analyte. Donkerbroek et al (18) introduced sensitized and quenched RTP detection for flow injection analysis and liquid chromatography. In sensitized RTP, the analyte, after absorption of l ight , induces biacetyl to emit phosphorescence. The quenched RTP detection method is based on a dynamic quenching process in which the analyte acting as a quencher, reacts with excited biacetyl, thus prohibiting phosphorescence emission. The limits of detection for several substituted aromatic compounds in acetonitrile:water (1:1) were in the range of 10"8 M (19). DeLuccia and Cline Love (20) demonstrated that sensitized biacetyl RTP can be enhanced via molecular organization for many aromatic compounds. Micelles composed of sodium dodecyl sulfate (SDS) and B-cyclodextrin were used to enhance the energy ‘transfer reaction ‘by organizing the reactants in close proximity to one another. Both organized media Provided more favorable environments for induction of 88115 in: 3.] molt pol can hyd car sul pol sol cor mor mi< Spr dil as: by. in Dr 33. sensitized RTP than homogeneous solutions of the reactants in acetonitrile. 3. Micellar Stabilized RTP. Surfactants (Surface Active Agents) are amphiphilic molecules composed of a hydrophobic portion and a charged or polar portion. The hydrophobic backbone of the surfactant can vary in length from eight to twenty carbons and the hydrophilic portion can be a partially' dissociable carboxylate (soap), a fully ionized moiety (such as anionic sulfate or cationic trimethyl ammonium), or an uncharged polar species (such as alcohol). A fascinating feature inherent in. aqueous surfactant solutions is the phenomenon of self-organization. At low concentrations in solution, the surfactants exist mostly as monomers. Above a certain concentration, .the critical micelle concentration (CMC), surfactant molecules associate spontaneously to build up structural entities of collidal dimensions called micelles. The architecture of these agglomerates is such that the interior contains the hYdrophobic alkyl chain of the amphiphile, while the hYdrophilic head groups are located at the surface and are in contact with bulk water. Micelle formation is believed to be the result of three Primary forces: hydrophobic repulsion between the hYdrocarbon chains and the aqueous environment; charge repulsi attract roughly 100 nor Most measure The en solutie the CM( Where incorp The Packin micell solve, toget} Phase, head Illicaali s°1Ve1 34 repulsion. of ionic head. groups; and, the van. der' Waals attraction between the alkyl chains (21). Micelles are roughly spherical in shape and they consist of typically 60- 100 monomers. Most micelles are Optically clear and they do not cause measurable light scattering in conventional spectrometry. The concentration of micelle at various bulk surfactant solution can be calculated from the aggregation number and the CMC [surfactant] - CMC [micelle] = --------------------- (3.1) aggregation number where the aggregation. number is ‘the number' of monomers incorporated into a micelle (22,23). The shape of micelles depends upon the solvent and the packing parameters of the surfactant molecule in the micellar assembly. When surfactants are dissolved in polar solvents, the polar head groups and counterions orient together in an outward fashion in contact with the water phase. However, in apolar solvents the orientation of the head groups and the aliphatic tail is reversed (reversed micelle) such that the hydrophobic tails contact the apolar solvent. Fisu: mice] Chap: Surf; 35 o a o . ”0‘. . . 0 . ”a. . a @ e lo@... .. . 0 Range ol-O‘ f. ‘ ‘ ° shoot Con «doc. 20 - 30 x . -o Inc-Stern layer up to a fur —oe t0- Gouy . Chapman ' layer up to several hundred 7. Figure 3.2._ Simplified model representation of the ionic micelle. The electric double layer is composed of a Gouy- Chapman layer outside, and a Stern layer inside the shear surface. The discus: rough double layer shear surfac outsid contai Mi applic solubi °r8anz as 81 Phase enZYm usefu stabi the a Phase °f ma miCe] deox; The attr 36 The most advanced theoretical model of an ionic micelle discussed so far is a combination of a Stern layer with a rough rather than a smooth sphere and a Gouy-Chapman diffuse double layer (24) as shown in Figure 3.2. The aqueous Stern layer is between the smooth surface of the core and the shear surface, which contains ionic heads of the micellized surfactant ions. The Gouy-Chapman region is immediately outside of the Stern layer and is a diffuse double layer containing unbound counterions. Micelles are responsible for many of the practical applications of detergents, such as enhancement of the solubilities of organic compounds in water, and catalysis of organic reactions. Furthermore, micelles have been proposed as simple model systems for a variety of important "two- phase" systems, such as monolayers, colloids, proteins, enzymes, and membranes. Among the primary reasons for the usefulness of micelles as models are: (a) the thermodynamic stability and reproducibility of many micellar systems; (b) the simplicity of the structure of the micelle; (c) the two— phase nature of the micelle; and (d) the ionic composition of many micellar surfaces (25). RTP of aromatic hydrocarbons was first observed in micelles by Kalyansundaram et a1 (26). The solutions were deoxygenated by bubbling them with nitrogen gas for 30 min. The ready observation of RTP in micellar solution was attributed to the protective screening of the triplet probe from external quenchers by the micelle assembly. Cline Love and (MS deo enh giv sur que We had ti fo th 37 and coworkers (27) further developed micellar-stabilized RTP (MS-RTP) for analytical applications. In addition to deoxygenation by an inert gas, heavy atoms were required to enhance the sensitivity. Thallium counterions were found to give higher signals than silver~ counterions' in 0.15 M surfactant solutions, and about 90 X of the fluorescence was quenched by heavy atoms. The limits of detection were typically in the nanomolar range, and the calibration curves had a wide linear dynamic range for several hydrocarbons. The incorporation of the analyte molecule into the core of a micelle imparts certain advantages (28): (i) The structural conformation of the micelles protects the triplet state of the analytes from external quenchers. (ii) The orientational constraint decreases vibrational deactivation. (iii) The altered. microenvironment can jprovide favorable polarity and acid/base equlibrium for enhanced phosphorescence quantum efficiency. (iv) The micellar solutions can improve the detection limits for hydrophobic species in aqueous solution by increasing their solubility. (v) The proximity’ of interacting species (phosphors and heavy atoms) is increased, and can result in a more effective spin-orbital coupling. 4. Cycle: Cyc] oligosacu starch. glucose 8 ,and 1 moieties hollow i This wat can cut. c°ll|I>osed Elicosic‘ hidrOphc cavities reSpecti FiSure 1 The h trap CO] molecul. inclusi. comi’lex intermo Waals macmcy their 38 4. Cyclodextrin Enhanced RTP Cyclodextrins (CDs) are a series of macrocyclic oligosaccharides produced by the bacterial degradation of starch. The most widely used CDs consist of 6, 7, and 8 glucose monomers arranged in torus shapes and denoted as a , B ,and T CD, respectively (29). The coupling of the glucose moieties gives a rigid, torus molecular structure with a hollow interior that contains one or more water molecules. This water can easily. be displaced by other species which can enter the CD cage. The interior of the cavities are composed of two rings of C-H groups with a ring of glycosidic oxygen in between, allowing them to be hydrophobic in nature. The internal diameters of these cavities are approximately 5.7, 7.8, and 9.5 A , respectively, and the depths are roughly 7.8 A as shown in Figure 3.3. The hydrophobic nature of the cavities enables the CDs to trap compounds, such as aromatic and alkyl halides as guest molecules in their interior, resulting in the formation of inclusion complexes (30). The stability of an inclusion complex depends on the size of the CD cavity and on intermolecular forces such as hydrogen bonding, van der Waals attraction, and hydrophobic interactions. These macrocyclic carbohydrate molecules can be discriminating in their inclusion complexing tendencies toward different structural, positional, or stereomeric molecules. A more “Sure Struct, Figure 3.3. structure. 39 Simplified AP- representation of B -cyclodextrin detailed next cha The CI luminesc enhanced several which 0 revealee inclusie complex They ce aqueous c°mPlet quenche Fol] coworke a“film demonst 9°1Ynue heavy deoxyg, sensit trimol moleCu Phosph baged cuPVes 40 detailed discussion of macrocyclic compounds is given in the next chapter. The CD molecule provides a favorable microenvironment for luminescent probes. Turro et al (31) reported cyclodextrin- enhanced RTP in 1982. They investigated the emission of several 1,3-bichromophoric systems in aqueous solutions which contained various cyclodextrins. In all cases, CDs revealed structural (size and shape) selectivities toward inclusion complex guest molecules. The tight CD-lumiphor complex also showed partial immunity to oxygen quenching. They' could observe RTP of 4-bromo-1-naphthoyl groups in aqueous solution even under 1 atm of oxygen (32). Oxygen completely quenched the fast decay, but only partially quenched the slow decay. Following the work of Turro’s group, Cline Love and coworkers further developed cyclodextrin enhanced RTP for analytical applications. Scypinski and Cline Love (33) demonstrated cyclodextrin enhanced RTP for the analysis of P01ynuclear aromatic hydrocarbons (PAHs). They found that a heavy' atom. source, 1,2-dibromoethane, was :necessary, and deoxygenation with nitrogen gas was required to enhance the sensitivity. The .proposed inclusion complex is a trimolecular complex of CD-lumiphor-heavy atom. Only molecules that can physically enter the CD cavity are Phosphorescent, which provides considerable selectivity based on lumiphor size. Shapes of analytical calibration curves are similar to those obtained for micellar-stabilized RTP. ' range Tl utili RTP o bindi Hurtb on a size betwe level 50 0 A: cond (ii) meth diff mic: PAH: PAH inh the 0f "83 41 RTP. Typical detection limits are in the 10'11 to 10‘13 M range. The unique inclusion. capability of cyclodextrins was utilized in other areas of RTP. Vo-Dinh et a1 (34) reported RTP of anthracene on cyclodextrin treated filter paper. The binding constant of anthracene with BeCD was 32. Bello and Hurtbuise (35) observed RTP of several aromatic hydrocarbons on a solid surface of CD-sodium chloride. By utilizing the size requirements of the CD molecule, they could identify between seven to nine PAHs in the mixtures at nanogram levels. 5. Other Methods of RTP. As mentioned earlier, in order to observe RTP, certain conditions are required: (i) a rigid molecular environment; (ii) deoxygenation; and (iii) a heavy atom source. Other methods of RTP try to fulfill these requirements with different methods. These methods include RTP of colloidal or microcrystalline suspensions and silicalite RTP. Weinberger and Cline Love (36) reported RTP observation of PAHs in colloidal suspensions in water. In this method, the PAH molecule, which is insoluble in the aqueous. media, is injected rapidly into the aqueous solution. This results in the formation of a microcrystalline or colloidal suspension of the sample in the aqueous media. The observed spectrum was very similar in resolution, shape and symmetry to spectra at: to quenchi manner ana pathways minimized. and provic is present oxygen thl immune to Casal e ketones thmphob Phenylpro five 0rd cavities. restricti Channels part of topc’lilflie °f this which are The diam. “088-38. limiting temPErat, Zeolite Effect d 42 spectra observed at 77 K. Also, this system is insensitive to quenching by dissolved oxygen. The microcrystals act in a manner analogous to solid-surface RTP, in that the quenching pathways that normally operate at room temperature are minimized. The microcrystals serve as their own substrate and provide stability to the triplet state. Since the solute is present as a solid in suspension, diffusion of molecular oxygen through the solute is not possible, thus rendering it immune to oxygen quenching (37). Casal and Scaiano (38) observed RTP of several aromatic ketones included in the channels of silicalite, a hydrophobic zeolite. They found that the lifetime of B - phenylpropiophenone at room temperature is enhanced by over five orders of magnitude by inclusion “in silicalite cavities. This enhancement ‘was attributed. to 'the steric restrictions imposed on the included guest molecules in the channels of the silicalite. Silicalite ( 99 2 SiOz) forms part of the class of zeolite molecular sieves with a new topologic type of tetrahedral framework. The channel system of this zeolite consists of near circular zig-zag channels which are cross-linked by elliptical straight channels (38). The diameter of the circular channels is 5.4 A and the free cross-section of the elliptical ones is 6A . Therefore, the limiting size for adsorption is around 6A at room temperature. One of the remarkable properties of this zeolite is its hydrophobicity, which ensures no deactivation effect due to water. C. Deoxyge Oxygen RTP requix solution this sect for solut: 1. Physic; The mos is bubbli as, nitro min with dissolved amounts, °°n3uming in 8 mice Reim (4 0"men. : high ox: 0xYflen t differem Membrane dissolve: 43 C. Deoxygenation Methods. Oxygen quenches RTP so efficiently that every method of RTP requires protection of the triplet state from oxygen. In solution RTP, deoxygenation is a necessary condition. In this section, the deoxygenation methods developed to date for solution RTP are discussed. 1. Physical Methods of Deoxygenation. The most common method for deoxygenation in solution RTP, is bubbling of the sample solution with an inert gas, such as, nitrogen and argon. Ifthe solution is bubbled for 30 min with oxygen-free inert gas, the concentration of dissolved oxygen can be reduced to less than micromolar amounts. The disadvantages of this method are the time consuming process and the fact that it generates excess foam in a micellar solution. Reim (40) used semipermeable membranes to remove dissolved oxygen. Silicon rubber was used as membrane because of its high oxygen permeability and chemical inertness. Since oxygen transport is directly proportional to the pressure difference across the membrane, evacuation around the membrane was necessary. With this method about 95 X of the dissolved oxygen could be removed in 25 min. Other 111 thaw cycle the diffi degassing 2. Chenict In most into inaC‘ Rollie dissolved formed by in contac membrane. Zn(H 4Cr2 Although time rem in RTP. MacCr. disSOlve. column p: (”Ween a 44 Other methods are vacuum degassing and repeated freeze- thaw cycles. However, these methods are not popular due to the difficult and time consuming process involved for degassing of sample solution. 2. Chemical Methods of Deoxygenation. In most chemical methods the dissolved oxygen is converted into inactive other species by a chemical reaction. Rollie and coworkers (41) used chromium(II) to convert dissolved molecular oxygen into water. Chromium(II) is formed by the reduction of chromium(III) with Zn(Hg), and is in contact with the sample solution through a semipermeable membrane. The chemical reaction is as follows: Zn(Hg) + 2Cr3* : Zn2* + 2Cr3* + Hg (3.2) 4Cr2* + 02 + 4H30*-————~r 4Cr3* + 6H20 (3.3) Although this method is effective, the long equilibration time required for the reaction prohibits further application in RTP. MacCrehan and May (42) used a zinc column to remove dissolved oxygen. A sample solution is passed through a column packed with zinc particles and allowed to react with oxygen as follows: Zn+ Zn+ Since zinc a finite 1 Recentl deoxygenat reaction c 2! The react: on the concentra a °°mPlet by the mj and effec D. The He It ha affects heavy on °°lnmon p: of which triDlet as the e 45 Zn + 02 + ZH’ ; Zn“ + H202 (3.4) Zn + H202 + 2 H‘ -————4. Zn2* + 2HzO (3.5) Since zinc is oxydized by the reaction, the zinc column has a finite lifetime. Recently, Diaz Garcia and Sanz-Medel (43) reported a deoxygenation method based on the following chemical reaction of sulfite with oxygen: 28032' + 02 -————+ 28042' (3.6) The reaction time for oxygen consumption showed a dependence on the surfactant concentrat ion in MS-RTP . As the concentration of surfactant increases, it took more time for a complete reaction due to the restriction of ionic movement by the micelles. This method has been shown to be an easy and effective deoxygenation method. D. The Heavy Atom Effect. It has been observed that the presence of heavy atoms affects luminescence significantly.. The use of external heavy atoms to increase phosphorescence yields has become a common practice in RTP. By mixing two chemical species, one of which contains a heavy atom, the probability of singlet- triplet crossover increases. This phenomenon is referred to as the external heavy atom effect (44), in contrast to the internal h chemically intercombi interactic may freque quantum fluoresce] lifetimes without t The heat orbital c The exter one, by c by a 1 distribut ph“Whore rate con: increase: lifetime: "hich de. increase the T1 . and the due to J (49), while orbital 46 internal heavy atom effect, observed when the heavy atom is chemically affixed to the molecular skeleton whose intercombinational transition it perturbs (45). These interactions between the heavy atom and the sample molecule may frequently result in an increase in the phosphorescence quantum yield, and a corresponding decrease in the fluorescence yield. Also, the observed phosphorescence lifetimes with the heavy atom are usually shorter than without the heavy atom. The heavy atom effect has been ascribed to increased spin- orbital coupling induced by the heavy atom perturber (46). The external heavy atom effect may take place in two ways: one, by complex formation with the heavy atom, and another, by a long range interaction through a statistical distribution of the heavy atom molecules around the phosphorescing molecule (47). It has been shown that the rate constants of both 81 -> T1 and T1 -> SO .processes are increased (48). This is evident from the observed RTP lifetimes of probe molecules in micelles with heavy atoms which decrease substantially as the heavy atom concentration increases. Furthermore, it has been also demonstrated that the T1 -> SO radiationless transition is not much enhanced, and the observed reduction of triplet lifetimes is mainly due to an increase in the radiative transition probability (49). While various mechanisms to explain the enhanced spin- orbital interaction and the reduced triplet lifetime of aromatic 1 still not been previ singlet at phosphores the emitti other. Th molecule 1 of the moi Bower several h Paper, an. > pb2+ formation Providing cases. White effect of RTP of ac enhanceme Hence, H In this affect, 1 nonradia1 The ex RTP (56) SOlutiOn r——*-— aromatic hydrocarbon molecules have been proposed, it is still not well understood. The various schemes which have been previously proposed share a common factor in that the singlet states are ultimately responsible for the reduced phosphorescence lifetime (50). That is, the triplet state of the emitting molecule is mixed with the singlet state of the other. The sources of the singlet state can be the same molecule (51), the perturber (52), or charge transfer state of the molecule-perturber complex (53). Bower and Winefordner (54) investigated the effects of several heavy metal ions on the RTP of PAHs adsorbed on paper, and found the following enhancement trend: Tl’ > Ag’ > Pb2+ > ngt. It has been suggested that 1 -complex formation between the heavy metal ions and the PAH might be providing an internal heavy atom effect in some of these cases. White and Seybold (55) have investigated in detail the effect of the addition of various sodium halide salts on the RTP of sodium Z-naphthalenesulfonate adsorbed on paper. The enhancement in RTP follows the trend of I' > Br‘ > 01' > F‘. Hence, the heavier ions induce the greater RTP enhancement. In this study (55), the heavy atom perturber was found to affect the radiative RTP emission rate more than the nonradiative rate. The external heavy atom effect is extensively used in MS- RTP (56). The RTP of many PAHs is not detectable in a 0.1 M solution. of NaLS. However, when thallium(I) is ‘used to replace 30 RTP signal 48 replace 30 X of the sodium counterions in NaLS, an intense RTP signal can be detected. 1. Lewis, L Vo-Dinl Analysis, 3. Roth, 1 4.Schulm 5. Wieden 1896, 58, 5. Miller 7- Cline Chem., 15 3. Diaz ( 103. 9. Rolli 1983, 55 10. MacC 625. 49 CHAPTER III REFERENCES 1. Lewis, G. N.; Kasha, M., J. Am. Chem. Soc. 1944, 66, 2100 2. Vo-Dinh, T. , Room Temperature Phosphorimetry for Chemical Analysis, John Wiley a Sons, N.Y., 1984. 3. Roth, M., J. Chromatogr., 1967, 30, 276. 4. Schulman, E. M.; Walling, 0., Science, 1972, 178, 53. 5. Wiedemann, E.; Schmidt, G. 0., Ann. Phys. (Leipzig), 1896, 58, 103. 6. Miller, J. N., Trends Anal. Chem., 1981, 1, 31. 7. Cline Love, L. J.; Habarta, J. G.; Skrilec, M., Anal. Chem., 1981, 53, 437. 8. Diaz Garcia, M. E.; Sanz-Medel, A, Anal. Chem., 1986, 58, 103. 9. Rollie, M. E.; Ho, C. N.; Warner, I. M., Anal. Chem., 1983, 55, 2445. 10. MacCrehan, W. A.; May, W. 151., Anal. Chem., 1984, 56, 625. 11. Schulman, E. M.; Walling, C. J., J. Phys. Chem., 1973, 77, 902. 12. Paynter, R. A.; Wellons, S. C.; Winefordner, J. D., Anal. Chem., 1974, 46, 736. 13. Ward, J. L.; Bateh, R. P.; Winefordner, J. D., Analyst, 1982, 107, 335. 14. Bateh, R. P.; Winefordner, J. D., Talanta, 1982, 29, 713. 15. Ward, 1981, 28: 16. Wandra 49, 2164. 17. Gooije Chem, 191 18. Banks Velthorst 19. Donke: R. W., An 20. DeLuc 2811. 21. Cline Chem, 19 22- Kalya 23. Hoff: 1988, 371 24. Stig1 25. Turn. Int. Ed. 26' Kaly Ph’s- Le 27' Clin Chem” 1 28. Ing] Prenti“ 50 15. Ward, J. L.; Bower, E.L.Y.; Winefordner, J. D., Talanta, 1981, 28, 119. 16. Wandraszka, R.M.A.; Hurtubise, R. J., Anal. Chem., 1977, 49, 2164. 17. Gooijer, C.; Velthorst, N. H.; Frei, R. W., Trends Anal. Chem., 1984, 3, 259. 18. Donkerbroek, J. J.; Veltkamp, A. C.; Gooijer, C.; Velthorst, N. H.; Frei, R. W., Anal. Chem., 1983, 55, 1886. 19. Donkerbroek, J. J.; Gooijer, C.; Velthorst, N. H.; Frei, R. W., Anal. Chem., 1982, 54, 891. 20. DeLuccia, F. J.; Cline Love, L. J., Anal. Chem., 56, 2811. 21. Cline Love, L. J.; Habarta, J. G.; Dorsey, J. G., Anal. Chem., 1984, 56, 1133A. 22. Kalyanasundaram, K., Chem. Soc. Rev., 1978, 7, 453. 23. Hoffmann, H.; Ebert, G., Angew. Chem. Int. Ed. Ehgl., 1988, 27, 902. 24. Stigter, D., J. Phys. Chem., 1964, 68, 3603. 25. Turro, N. J.; Gratzel, M.; Brawn, A. M., Angew. Chem. Int. Ed. Engl., 1980, 19, 675. 26. Kalyanasundaram, K.; Grieser, F.; Thomas, J. K., Chem. Phys. Lett., 1977, 51, 501. 27. Cline Love, L. J.; Skrilec, M.; Habarta, J. G., Anal. Chem., 1980, 52, 754. 28° Ingle, J. D.; Crouch, S. R., Spectrochemical Analysis, Prentice Hall, Englewood Cliffs, N.J, 1988. 29. Bende: Spring-Vex 30. Saenge 31. Turrc Photobiol 32. Turro 1983, 2, 33. Scypi 322. 34. Vo-Di 35. Bellc 1285. 36~ Weinl 40A, 49. 37. Weinl 516. 33. Case 628. 39' Case 1308. 40' Rein 41' Roll 1983, 5, 42' Mac 625. 43. m. 58: 143 I 51 :9. Bender, M. L.; Komiyama, M., Cyclodextrin Chemistry, Spring-Verlag, Berlin, 1978. 30. Saenger, W., Angew. Chem. Int. Ed. Engl., 1980, 19, 344. 31. Turro, N. J.; Okubo, T.; Weed, G. C., .Photochem. Photobiol, 1982, 35, 325. 32. Turro, N. J.; Cox, G. S.; Li, X., Photochem. Photobiol. 1983, 2, 149. 33. Scypinski, S.; Cline Love, L. J., Anal. Chem., 1984, 56, 322. 34. Vo-Dinh, T.; Alak, A., Appl. Spectrosc., 1987, 41, 963. 35. Bello, J. M.; Hurtubise, R. J., Anal. Chem., 1988, 60, 1285. 36. Weinberger, R; Cline Love, L. J., Spectroch. Acta, 1984, 40A, 49. 37. Weinberger, R; Cline Love, L. J., Appl. Spec., 1985, 39, 516. 38. Casal, H. L.; Scaiano, J. 0., Can. J. Chem., 1984, 62, 628. 39. Casal, H. L.; Scaiano, J. 0., Can. J. Chem., 1985, 63, 1308. 40. Rein, R. 2., Anal. Chem., 1983, 55, 1188. 41. Rollie, R. E.; Ho, C. N.; Warner, I. M, Anal. Chem., 1983, 55, 2445. 42. MacCrehan, W. A.; M87: W. 16., Anal. Chem., 1934, 55. 625. 43. Diaz Garcia, M. E.; Sanz-Medel, A, Anal. Chem., 1986, 58, 1436. 44. Kasha, 45. M00111] 46. 81-38: 47. Ebara Japan, 19 48. Baker 1978, 58, 49. Eisen 42, 794. 50. Chauc 42, 1947. 51. Isubc 32. 5966 52. 8013' 53. Murr- 54- Bowe 1978, 16 55' Tim 2035. 56. 0111 Chem. : 52 14. Kasha, M, J} Chem. Phys., 1952, 20, 71. 45. McClure, D. S., J. Chem. Phys., 1949, 17, 905. 46. El-Sayed, M. A., Acct. Chem. Res., 1968, 1, 8. 47. Ebara, N.; Yajima, Y.; Watanabe, 11.; Bull. Chem. Soc. Japan, 1979, 52, 2866. 48. Baker, R. H.; Moroi, Y., Gratzel, M., Chem. Phys. Lett., 1978, 58, 207. 49. Eisenthal, K. R.; El-Sayed, M. A., J. Chem. Phys., 1965, 42, 794. 50. Chaudhurl, N. K.; El-Sayed, M. A., J. Chem. Phys., 1965, 42, 1947. 51. Isubomura, H.; Mulliken, R. S., J. Am. Chem. Soc., 1966, 82, 5966. 52. Hoijtink, G. J., Moll. Phys., 1960, 3, 67. 53. Murrel, J. N., Mbll. Phys., 1960, 3, 319. 54. Bower, E. L. Y.; Winefordner, J. D., Anal. Chim. Acta., 1978, 102, 1. 55. White, W.; Seybold, P. G., J. Phys. Chem., 1977, 81, 2035. 56. Cline Love, L. J.; Skrilet, M.; Haberta, J. G., Anal. Chem., 1980, 52, 754. APPLICAT There h in the 31 compounds cavities macrocycl interesti ions and the macrt great an been don cOmpared Althou °°mpound been knc deCades °°mP0unc been I macr°cy Polythi numerou natural p°rph91 53 CHAPTER IV APPLICATION OF MACROCYCLIC COMPOUNDS IN CHEMICAL ANALYSIS Theme has been an increasing amount of research interest in the general properties and applications of macrocyclic compounds. Macrocyclic compounds typically contain central cavities ’ringed with long frameworks. Many of these macrocyclic compounds have been shown to possess very interesting and unusual binding properties. Various metal ions and molecules can be encapsulated inside the cavity of the macrocyclic compounds. The complexes thus formed are of great analytical interest. But relatively few studies have been done on the analytical applications of these compounds compared to the fundamental studies performed. Although metal complexes of naturally occuring macrocyclic compounds, such as, porphyrins and certain antibiotics have been known for over 50 years, it is only during the past two decades that a large number of synthetic macrocyclic compounds capable of binding metal ions or molecules have been prepared and investigated (1). These synthetic macrocyclic compounds include cyclic polyethers, polythioethers, polyamines, and cyclophanes. There are numerous publications and patents on applications of naturally occuring macrocyclic compounds, cyclodextrins and Porphyrins (2). The important properties and usefulness of these corn decade (3' Inclusi having a ' and chemi These ul inclusion organic 1 those per Since the hiSh deg: ions ca: sPecific designin aPPr0pri m01ecula Water °°mPOunc “acrocm quaterm Were m. functio have 6. Certain was Obs Th 54 these compounds have become well understood during the past decade (3). Inclusion complexes are formed with macrocyclic compounds having a variety of selectivities, depending on the physical and chemical property of the host macrocyclic compounds. These unique properties of macrocyclic compounds in inclusion complex formation stimulated chemists to devise organic compounds which will perform functions similar to those performed by naturally occuring macrocyclic compounds. Since these macrocyclic compounds are synthetic in nature a high degree of selectivity in binding of guest molecules or ions can be obtained by designing host molecules for specific 'purposes (4). A wide variation. is ‘possible in designing host structures which will have the most appropriate size, shape, and functionality for specific molecular recognition. Water soluble heterocyclophanes are synthetic macrocyclic compounds which have been proposed as enzyme models (5). The macrocyclic ring is composed of a wall of benzene rings and quaternary nitrogens. Several variations of the structure were made to provide host cyclophanes with different functionality and substrate specificity. Heterocyclophanes have been shown to be excellent inclusion hosts toward certain organic substrates. A unique substrate specificity was observed due to their cavity size and functionality. This chapter discusses analytical applications of macrocyclic compounds. In the first part» a brief introduct chemical . of the 3 molecular the curr compounds A. Host-( A b; catalyti driving guest cc Suest mo usually formatic Molecule mOlecul. that c Postula the sa °°mpati SimPle for mu m°iecu1 Vari years I 55 introduction to host-guest chemistry and its usage in chemical analysis is discussed. Next, potential applications of the synthetic enzyme model compounds, cyclophanes, in molecular luminescence are addressed. The last part reviews the current status of applications of other macrocyclic compounds in chemical analysis. A. Host-Guest Molecular Inclusion. A basic understanding of the specific binding and catalytic behavior of enzymes is one of the significant driving forces for studying host-guest chemistry. In a host- guest complex, the host molecule is the larger, and the guest molecule is the smaller of the two. The host molecule usually contains one or several binding sites for,complex formation (inclusion complex) with guest molecules. The host molecule must recognize and complex best_ those guest molecules that contain binding sites and steric features that complement those of the host. The self-evident postulate that two objects cannot occupy the same space at the same time indicates that host and guest must be compatible with respect to shape if they are to complex. The simple electrostatic attraction of opposite charges accounts for' much of the binding forces between host and guest molecules (4). Various investigations have been carried out in recent years on some new synthetic catalysts which show enzyme-like behavior polymers phenomena Micellar site thrc between 5 intra-con effect effectiv: these ca and sub: Thus, t substrat °°mPouné due to 1 (i) T due to nature. (ii) the Sec maCroc; 36bstra (iii 56 behavior (6). Micellar surfactants and water soluble polymers bearing various functional groups have shown phenomenological similarities with enzyme systems (7). Micellar surfactants have ‘been known to form a hydrophobic site through micelle formation. The hydrophobic interaction between substrates and micelles results in the formation of intra-complexes. Additionally, micelles. provide proximity effect by raising local concentrations of substrates effectively. The formation of hydrophobic binding sites in these cases is in dynamic equilibrium with the bulk phase, and subject to the external medium effects, consequently. Thus, these mobile structures may provide a limited substrate specificity. On the other hand, macrocyclic compounds may exhibit several novel and unique characters due to the following effects (8). (i) The macrocyclic cavity provides a stable binding site due to a characteristic ring conformation of hydrophobic nature. (ii) A high substrate specificity can be brought about by the geometric requirements for binding substrates into these macrocyclic cavities, as well as by spatial geometries of substrate molecules incorporated into these cavities. (iii) A high possibility of introducing a charge relay or an electrostatic antenna system, which is provided by spatial arrangements of appropriate functional groups. Consequently, a well-designed macrocyclic compound may exhibit : certain ‘ Subst: specific binding- atoms re for the the spe: guest i1 complex1 hydrogel interac‘ The affecte discrim affecti complex the ri: (iii) . °avity: (V) st chaYSe In triPle e8Peci the in COuld 57 exhibit a unique behavior in inclusion complex formation for certain types of substrates. Substrate specificity is. understood to indicate that a specific substrate has a "best fit" to a unique array of binding-site residues and that the spatial arrangement of atoms relevant to the catalysis is particularly favorable for the stabilization of the transition state (9). Although the specific mechanism and requirements for a stable host- guest inclusion complex formation may be different for each complex, it is known that the main binding forces are hydrogen bonding, van der Waals forces, hydrophobic interaction, and steric and electrostatic interactions (10). The stability of host-guest inclusion complexes can be affected by various forces which are at the core of the discriminative nature of substrate binding. The factors affecting the formation and stability of host-guest complexes include: (i) the type or types of binding sites in the ring; (ii) the number of binding sites in the'ring; (iii) the relative sizes of the guest and the macrocyclic cavity; (iv) the physical placement of the binding sites; (v) steric hindrance in the ring; and (vi) the external charge of the guest (11). In. room-temperature phosphorescence, quenching of the triplet state of a molecule is the most annoying problem especially in solution. Judging from the above discussion, the inclusion behavior of macrocyclic enzyme model compounds could provide an ideal environment for observing room- temperatu reduced 1 cavity of possible requireme Also, si specific guest in of this 3. Synth Since Years 8 selectis developE melecul: the enz; Followi1 innovat supremo (13,14, °°mpoun f°r the In inclusj “Prom 58 temperature phosphorescence. Triplet quenching should be reduced by inclusion of the triplet molecule inside the cavity of the host molecule. At the same time, it might be possible to observe a high degree of selectivity due to the requirements for the host-guest inclusion complex formation. Also, since the host molecule is synthetic in nature, specific host molecules could be tailored for a specific guest in chemical analysis. These are the underlying ideas of this research. B. Synthetic Enzyme Model Compounds: Cyclophanes. Since the discovery of crown ethers by Pedersen twenty years ago, the chemistry of synthetic hosts for the selective complexation of organic and inorganic guests has developed rapidly. Soon after the fundamental studies on molecular complexation by cyclodextrins, Cramer investigated the enzyme-like catalytic properties of these systems (12). Following this, a large variety of stimulating and innovative studies on the catalytic pr0perties of the supramolecules have been conducted by many research groups (13,14,15). Of the fascinating synthetic enzyme model compounds, water-soluble cyclophanes seem quite interesting for the examining possible RTP applications In aqueous solution, cyclOphanes form stoichiometric inclusion complexes with aromatic guest molecules; these can aPproach.«enzyme-substrate complexes in their stabilities (16). D11 soluble c hosts wit residues, introduce showed molecule: Urushi azaparac: Tabushi Of the s N’"-octa tetraamm °°mPlexe and st! molecule in wate quarter, The m cavity benzene Pseudo 312% of NMR Stt molem are per 59 (16). Diederich. and. his coworkers (17) introduced water soluble cyclophanes. For the construction of water-soluble hosts with apolar cavity binding sites shaped by hydrocarbon residues, ionic groups remote from the cavity were introduced as 'shown in Figure 4.1. Complexation studies showed stable 1:1 complexes with various hydrocarbon molecules in solutions of a wide polarity range (18). Urushigawa et al (19) reported the synthesis of various azaparacyclophanes (APCs) containing four benzene rings. Tabushi and his coworkers (20) studied substrate specificity of the water-soluble heterocyclophane, N,N,N’,N’,N",N",N’", N’"-octamethyl-2,11,20,29-tetraaza[3,3,3,3]paracyclophane- tetraammonium tetraborate (methyl-APC). Strong inclusion complexes were formed through hydrophobic, electrostatic, and steric interactions between the host and guest molecules. Solubilization of the host methyl-APO molecules in water was achieved by the introduction .of the four quarternary nitrogens around the macrocyclic ring. The methyl-APO molecule in Figure 4.2-A has a hydrophobic cavity resembling a square box surrounded by a wall of benzene rings that form angles of 60. with respect to a pseudo molecular plane defined by the four N atoms (21). The size of macrocyclic cavity is 5.5-7 A wide and 6 A deep. An NMR study showed that the benzene rings of the methyl-APO molecule favor a "face" conformation, in which benzene rings are perpendicular to the hypothetical molecular plane (22). 15C FiBUre 60 Figure 4.1. Diederich’s water-soluble cyclophanes. FiSUre 61 .. o + / \ cu3 3c o / s /N cu, H3c\ "3 H u\_._/N I A 3 O - 484',” 3 O cu3 + + \ on, on s S" s s" \ CH \ / C C C “a Figure 4.2. Water—soluble heterocyclophanes. Variati to impro* Nitrogen replaced original wide pH 1 in aqueOI its elec The b: hydropho 'shallow With 10! been 1 Specific Cationic favors , having binding Skeleto hYdroca Synthes Thea. Promisi chemic: 11) n. Site t (ii)T 62 Variations of the basic structure of methyl-APO were made to improve the enzyme-like action of the host molecule. Nitrogen atoms in the original structure of methyl-AFC were replaced with sulfur atoms as shown in Figure 4.2-B. The original methyl-APO was more stable in an aqueous media of a wide pH range, while sulfonium heterocyclophane was unstable in aqueous solution above pH 9, where a remarkable change in its electronic spectrum was observed (20). The basic methyl-APO molecule without modifications with hydrophobic substituents, containing a relatively small and .shallow cavity for host-guest interactions. APC molecules with long alkyl chains of different functional groups have been introduced (Figure 4.3) to improve substrate specificity further. Anionic APC (Figure 4.3-A) favors cationic guests (23), while cationic: APC (Figure 4.3-B) favors anionic guests (24). Octopus-like APC (Figure 4.3-C) having eight long alkyl chains gives extra hydrophobic binding efficiency (25). By using“ two “rigid macrocyclic skeletons, a capped APC (Figure 4.3-D) with four flexible hydrocarbon chains connecting the macrocycles was synthesized (26). These synthetic enzyme model compounds (APCs) are highly Promising macrocyclic compounds for various applications in chemical analysis. Their most prominent characteristics are: (i) The macrocyclic skeleton may provide a stable binding site through hydrophobic interaction. (ii) The stable binding site may show a high substrate FiSUre Solubl 63 /‘..——-cyc:eumo¢m mg - an I Announce m. / z"""Guoss melted: . '10.! J ”anemone" "‘9 Figure 4.3. Schematic representations of modified. water- soluble heterocyclophanes. specifici requirem (iii) A wall of ‘ Thus, for trij inside quenchin Also, a and char using A} C. Othe: In 19 class c ethers Structu couple, can 31, and no] sTnthe: iOtal attach The p°1Tet Genera 64 specificity due to electrostatic and geometrical requirements for host-guest interaction. (iii) A rigid microenvironment may be obtained due to the wall of benzene rings. Thus, the APCs may provide a favorable microenvironment for triplet state molecules. Triplet molecules included inside the macrocyclic cavity may be protected from quenching by dissolved oxygen or impurities in the solution. Also, a high selectivity in RTP is expected due to the size and charges of the APC. In this research, the possibility of using APC molecules in RTP was examined. C. Other Macrocyclic Compounds in Chemical Analysis. In 1967, Charles Perdesen reported the synthesis of a new class of macrocyclic compounds called crowns (27). Crown ethers are cyclic polyethers having various sizes and structures. These compounds have the ability to selectively complex metal ions, and in particular, the alkalies. They can also solubilize inorganic and organic solutes in polar and nonpolar solvents. Over 60 cyclic polyethers have been synthesized with ring structures containing from 9 to 60 total atoms, from 3 to 20 oxygen atoms, and from 1 to 4 attached hydrocarbon rings (28). The nomenclature recommended by Perdesen for his cyclic Polyether compounds does not follow complicated IUPAC rules. Generally, the groups attached to the crown are mentioned Figure 65 J J [U B U 32'9"“ moneys-12mm Figure 4.4. Some representative crown ethers. first, t "crown" . Examples been fou with a I indicati the met formed. of the I 0n the structul cYclic sandwic] P01yeth. Crown membran related Prepare ionic a In 19 ligands metal central cation °°ntai1 becOme Smalle 66 first, then the number of atoms in the ring, followed by "crown" and then by the number of oxygen atoms in the crown. Examples are given in Figure 4.4. The cyclic polyethers have been found to form primarily 1:1 polyether:metal complexes with a large array of metal ions. However, there are some indications that, depending on the ratio of the cavity to the metal ion. diameter» 2:1 and 3:2 complexes are also formed. The 1:1 complexes are generally assumed to consist of the metal ion bound in the cavity of the polyether ring. On the other hand, 2:1 complexes are "sandwich" type structures, in which the metal ion is located between two cyclic polyether' molecules. The 3:2 complexes are "club sandwich" types, in which two metal ions are located between polyethers. Crown ethers have been used in extraction studies (29,30), membrane transport (31,32), ion-selective electrodes and related electrochemical procedures (33), ion-exchange resin preparation (34), and liquid chromatographic separation of ionic and neutral species (35,36). In 1967, Lehn and his coworkers introduced the macrocyclic ligands called cyrptands (37). Cryptands form complexes with metal ions, in which the metal ion is located within the central cavity (crypt). In the cryptates, the complexed cation is completely enclosed in three dimensions by ligands containing 0 or N which bind to the cation. Thus, the ion becomes isolated from external species if it fits, or is smaller than the diameter of the cavity. The cavity is hydrophi] outside 1 solvents which he hydrocar The importan earth i macrocyc 2.1.1., imports: The u crown e metal determi using c ion-exc Rec: Chemica applic; Chapte; f°rmat (44) , Cycl ooluum SePhad adVant 67 hydrophillic, and hydrophobic hydrocarbon groups form the outside envelope to make cryptands quite soluble in organic solvents. Thus, the cryptand is a three-dimensional ether, which has a hydrophillic cavity and hydrophobic exterior hydrocarbon groups (38,39). The cryptands promise to become of great analytical importance, as their' complexes with. alkali and alkaline earth ions are much more stable than those with other macrocyclic compounds, such as crown ethers. The cryptands, 2.1.1., 2.2.1, and 2.2.2. (Figure» 4.5), .are .analytically important and readily available. The usage of cryptands in chemical analysis is similar to crown ethers. Kirch and Lehn (40) used cryptands in alkali metal ion extraction. Czerwenka and Scheubeck (41) determined sodium and potassium by potentiometric titration using cryptands. Cryptands were used for the preparation of ion-exchange resins (42). Recently, cyclodextrins have been used extensively in chemical, analysis. The structure, properties, and their application in luminescence are discussed in the previous chapter. Mueller and Rodin (43) studied inclusion complex formation of cyclodextrins with metal ions. Cramer et al (44) studied cyclodextrins as enzyme model system. Cyclodextrin polymers are used as filling materials for column chromatography (45). When compared with customary Sephadex, it is apparent that cyclodextrin polymers have the advantage in that they strongly retard molecules of an Fizur Cryptand 2.2.2 Figure 4.5. Lehn’s cryptands. appropri even isc 446,47) chromatc difficul and pea accompl Recen of cycl solubil increas (50,51) and s1 certail m0dlfil 69 appropriate size. Molecules with similar molecular weight or even isomers can be separated. Armstrong and his coworkers (46,47) used cyclodextrins extensively in liquid chromatographic separations. They demonstrated that many difficult separations, such as enantiomers, diastereomers, and positional, geometric, and structural isomers can be accomplished (48). Recently, an attempt was made to increase the solubility of cyclodextrins in ‘the aqueous 'phase. Using ‘urea, the solubility of cyclodextrins in aqueous solution was increased up to 10 times (49). Tabushi and his coworkers (50,51) modified cyclodextrins to provide more functionality and structural rigidity. Considerable enhancement of a certain elementary recognition interaction was observed with modified cyclodextrins. 1. Keith 2. Saeng 3. Tabu: 1439. 4. Cram1 5. Tabu: 6. Jenc McGraw-E 7. Fend Macrame 3. Murz Bull. ( 9. Tab! 1981, , 10. Ch: 1971, 11. Cr 1966, 12. Cr 13~ Mu 144 B: 15' K: 16. u. 70 CHAPTER IV REFERENCES 1. Kolthoff, I. M., Anal. Chem., 1979, 51, 1R. 2. Saenger, W., Angew. Chem. Int. Ed. Engl., 1980, 19, 344. 3. Tabushi, I. M.; Mizutani, T., Tetrahedron, 1987, 43, 1439. 4. Cram, D. J.; Cram, J. M., Science, 1974, 183, 803. 5. Tabushi, I, Tetrahedron, 1984, 40, 269. 6. Jencks, W. P., Catalysis in Chemistry' and .Enzymology, McGraw-Hill, New York, 1969. 7. Fendler, J. E.; Fendler, E. J., Catalysis in Micellar and Macromolecular Systems, Academic Press, New York, 1975. 8. Murakami, Y.; Sunamoto, J.; Okamoto, H.; Kawanami, K., Bull. Chem. Soc. Japan, 1975, 48, 1537. 9. Tabushi, I; Kimura, Y; Yamamura, K, J. Am. Chem. Soc., 1981, 103, 6486. 10. Christensen, J. J.; Hill, J. 0.; Izatt, R. M., Science, 1971, 174, 459. Ed. Ehgl., 11. Cramer, F; Mackensen, G., Angew. Chem. Int. 1956, 5, 601. 12. Cramer, F., Angew. Chem., 1961, 73, 49. 13. Murakami, Y., Top. Curr. Chem., 1983, 115, 107. 14. Breslow, R., Science, 1982, 218, 532. 15. Kellogg, R. M., Angew. Chem., 1984, 96, 769. 16. Murakami, Y., J. Inclusion Phenom. 1984, 2, 35. 17. Die: 362. 18. Diet 8024. 19. Uru: Japan, 20. Tel Soc., 1 21. Tai Higuchi 22. Ta 1975, . 23. Mu Chem. 24- Mu Chem. 25. Mu Lett., 26. M Chem. 27. p. 28. c‘ Rev., 29. v Micrc 30, r] 71 17. Diederich, F., angew. CHem. Int. Ed. Ehgl., 1988, 27, 362. 18. Diederich, F.; Dick, K., J. Am. Chem. Soc., 1984, 106, 8024. 19. Urushigawa, Y.; Inazu, T.; Yoshino, T., Bull. Chem. Soc. Japan, 1971, 44, 2546. 20. Tabushi, I.; Kimura, Y.; Yamamura, K., J2 Am. Chem. Soc., 1981, 103, 6486. 21. Tabushi, I.; Yamamura, K.; Nonoguchi, H.; Hirotsu, K.; Higuchi, T., J. Am. Chem. Soc., 1984, 106, 2621. 22. Tabushi, I.; Yamada, H.; Kuroda, Y., J) Org. Chem., 1975, 40, 1946. 23. Murakami, Y.; Nakano, A.; Miyata, R.; Matuda, Y., J. Chem. Soc. Perkin I, 1979, 1669. 24. Murakami, Y.; Nakano, A.; Akiyoshi, K., Fukuya, K., J. Chem. Soc. Perkin I, 1981, 2800. 25. Murakami, Y.; Kikuchi, J.; Suzuki, M.; Takaki, T., Chem. Lett., 1984, 2139. 26. Murakami, Y.; Kikuchi, J.; Tenma, H., J. Chem. Soc. Chem. Commun., 1985, 753. 27. Perdesen, C. J., J. Am. Chem. Soc., 1967, 89, 7017. 28. Christensen, J. J.; Eatough, D. J.; Izatt, R. M., Chem. Rev., 1974, 74, 351. 29. Vasilikiotie, G. S.; Papadoyannis, I. N.; Kovimtzis, A., Microchem. J., 1984, 29, 556. 30. Tsay, L.; Shih, J.; Wu, S. 0., Analyst, 1983, 108, 1108. 31. Lam Christen 32. Tent 33. Meye 54, 278. 34. Fer] 1980, 5. 35. Kim‘ 36. 818 163. 37. Die Lett., 38. Let 39. Lel 40. Ki 1975, 41. C2 34. 42. St 43. M COMmut 44- CI 45' H< 46- A: 22: 4‘. 47. A 1985, 72 )1 . Lamb, J. D. ; Izatt, R. M. ; Robertson, P. A. ; 3hristensen, J. J., J. Am. Chem. Soc., 1980, 102, 2452. 32. Tsukube, H., Tetrahedron Lett., 1982, 23, 2109. 33. Meyerhoff, M. E.; Franticelli, Y. M., Anal. Chem., 1982, 54, 27R. 34. Fernando, L. A.; Miles, M. L.; Bowen, L. H., Anal. Chem. 1980, 52, 1115. 35. Kimura, K.; Shono, T.; J. Liq. Chromatogr. 1982, 5, 223. 36. Blasius, E.; Janzen, K. P., Top. Curr. Chem., 1981, 98, 163. 37. Dietrich, B.; Lehn, J. M.; Sawvage, J. P., Tetrahedron. Lett., 1969, 2885,2889. 38. Lehn, J. M., Pure & Appl. Chem., 1977, 49, 857. 39. Lehn, J. M., Acct. Chem. Res., 1978, 11, 49. 40. Kirch, M.; Lehn, J. M., Angew. Chem. Int. Ed. Engl., 1975, 14, 555. 41. Czerwenka, G.; Scheubeck, L., Z. Anal. Chem., 1975, 276, 34. 42. Stefanak, 2.; Simon, W., Chimica, 1966, 20, 436. 43. Mueller, P.; Rodin, D. 0., Biochem. .Biophys. Res. Commun., 1967, 26, 398. 44. Cramer, F., Angew. Chem. Int. Ed. Engl., 1966, 5, 601. 45. Hoffman, J. L., Anal. Chem., 1970, 33, 209. 46. Armstrong, D. W., DeMond, W., J. Chromatogr. Sci., 1984, 22, 4110 ' 47, Armstrong, D. w.; DeMond, W.; Czech, B. P., Anal. Chem., 1985, 57, 481. 48. Arms 49. Phat Anal. Ch 50. Tabu Fujita, 51. Tab Soc., 1! 73 .8. Armstrong, D. W., Anal. Chem., 1987, 59, 84A. 19. Pharr, D. Y.; Fu, Z. S.; Smith, T. K.; Hinze, W. 4nal. Chem., 1989, 61, 275. 50. Tabushi, I.; Shimokawa, K.; Shimizu, N.; Shirakata, Fujita, K., J. Am. Chem. Soc., 1976, 98, 7855. 51. Tabushi, I.; Yamamura, K.; Nabeshima, T., J} Am. Chem. Soc., 1984, 106, 5267. Altho over tl instrum: instrum needs d (1) des RTP wit (2) con c°mPone Nithipz for det The acquis labora acquis other acquis cons“n finely: °f ti exPer: than . 74 CHAPTER V INSTRUMENTATION Although RTP has grown as an important analytical.method over the last two decades, there are few commercial instruments available for RTP. Modifications to commercial instruments for RTP studies have been made to aid individual needs depending on the RTP technique employed. Vo-Dinh et a1 (1) designed an automatic phosphorimeter for solid-surface RTP with a continuous filter paper device. Cline Love et al (2) constructed a phosphorimeter from commercially available components and used it in micellar—stabilized RTP studies. Nithipatikom and his coworkers (3) designed a spectrometer for determining single and multiple RTP lifetimes. The use of microcomputers for instrument control and data acquisition has become a common tool in scientific laboratories. In many cases, experimental control and data acquisition require complex timing and synchronization with other experimental conditions. Instrument control, data acquisition, complex timing and synchronization, time consuming event monitoring, tedious calculations, and data analysis can be done with a personal computer. This ability of the personal computer has enabled scientists to do experiments easier with more sophisticated instrumentation than previously possible. In thi controll fluoresc acquisit modificz adaptor Perkin-I A. Lumi In t 500) w: Person: and da lumine: Comput The Xenon monoch mm fo emissi °Ptim4 °°ntr4 allow. monoC sPect the m 75 In this chapter, the construction of a versatile computer controlled luminescence spectrometer for measuring fluorescence, RTP, and RTP lifetimes with comprehensive data acquisition and analysis software is described. Also, the modification of an IBM-PC data acquisition and control adaptor board is presented. This board was used for the Perkin-Elmer LS-5B spectrometer later in this research. A. Luminescence Spectrometer. In this work, an Aminco-Bowman spectrofluorometer (SPF- 500) was modified and interfaced to the IBM-KT compatible personal computer for keyboard control of the instrument, and data acquisition. This instrument allows semiautomatic luminescence data acquisition and analysis on a personal computer. The Aminco-Bowman spectrofluorometer (SPF-500) contains a Xenon lamp which produces an intense 250 W Xenon arc. The monochromators are single-pass Czerny-Turner tYPe With a 250 mm focal length and f/4 aperature. Both excitation and emission monochromators use 600 line/mm gratings blazed for optimal wavelength response. These monochromators are controlled by precision 500 step/rev stepping motors. This allows precise control of position and scanning rate of both monochromators. The interface connector at the back of the spectrometer contains all the necessary control lines for the monochromator control. 1. Princ In th monochrc sample without shown i used as modulat allows has dec For acQuisi Ohio) s °UIPuts monoch; Turbo contro A : excite beam, adiust adjust °06nt4 Th ConVe. 1. Principle of Operation of the Instrument. In this work, the Optical unit, excitation and emission monochromators, PMT, xenon lamp with power supply, and sample compartment unit of the spectrometer, were used without modification. A block diagram of the instrument is shown in Figure 5.1. A continuous Xe-arc lamp (250W) was used as an excitation source. The exciting radiation was modulated by a rotating single-disk type chopper. This allows phosphorescence to be measured after any fluorescence has decayed. For data acquisition and monochromator control, a data acquisition board (Lab Master, Scientific Solution, Solon, Ohio) was used with an IBM-XT compatible computer. Digital outputs from the Lab Master board controlled both monochromators for scanning. Menu driven software written in Turbo Pascal and Macro Assembler was used for instrument control, data acquisition, and data manipulation. A photodiode was placed at the opposite side of the excitation beam to sense the modulation of the excitation beam. The pulsed signal from the Optointerrupter was adjusted to be in-phase with photodiode signal. This adjusted chopper signal ‘was used to trigger' the AM9513 counter/timer for time-resolved data collection. The current signal from the PMT (Hamamatsu R928) was converted into a voltage signal, and a variable gain 77 i Opts-Memphi- 1m chopper l _; = ——> Scope [ fin-llono ...... I Sample 4 u .. Hester E Photo Diode Variable Gain C” ——> ““3 Personal j Computer --' _ I l ' [Mime l ‘r—— 1" Figure 5.1. Block diagram of the luminescence spectrometer. amplifie input V4 converts filter w between amplifie decay c4 2. Hard (a) Com The digital multipj two 12 Channe 5.2, . counte insta] Scannj signa: The 1/0 m chann range Was U 78 amplifier (AD507, Analog Device) was used to get the desired input voltage signal (0-10 V) for the analog-to-digital converter (ADC). To reduce high frequency noise, a low-pass filter was used for fluorescence and RTP measurements placed between the current-to-voltage converter and the main amplifier. .It was turned off by a manual switch when RTP decay curves were to be measured. 2. Hardware Construction. (a) Computer Interfacing to Spectrometer. The Lab Master board (4) contains a 12 bit analog-to- digital converter (ADC) with a built-in 16 channel multiplexer (MP 6812), a 24 bit parallel port (Intel 8255), two 12 bit digital-to-analog converters (DACs), and a five channel 16 bit counter/timer, AM9513, as shown in Figure 5.2. The AM9513 LSI chip is one of the most powerful counter/timers (5). The Lab Master data acquisition board installed on the IBM-XT compatible computer controlled the scanning module of the spectrometer, and digitized analog signals from the spectrometer. The Lab Master board address was set to 1808 (decimal) and I/O mapped. The last channel of the multiplexer was set to channel 15. Input mode was set to pseudo-differential 0-10 V range, and no interrupts were used. Channel 15 of the ADC was used for luminescence data read, and channel 13 and 14 FiEUI bOQrd 79 24 bit Parallel Port ta] l/O .4 .. l+—* 4 5 channel ,___. —[(“9 Counter )tlmer 4____, Counter l/O IBII Board BUS h- control late 1 Int: 1 ... mp ml logic control t p _—+ i 12 hit an in l + <— 0: 9n .___. (I? 6612) DAC 7 12 Mt Anal tp l 0; on u (ch so) ’ Figure 5.2. Schematic representation of the Lab Master board. were u: Pin 24 interf: ADC cl wavele: l monoch latch turns contro approp output monoch scanni excite select An 1 Progre Port monocl latch modull °°nneq In COUnt. after 80 were used for reading positions of the both monochromators. Pin 24 (analog output of excitation wavelength) of the interface connector of the spectrometer must be connected to ADC channel 13, and pin 23 (analog output of emission wavelength) must be connected to ADC channel 14. For control of both excitation and emission monochromators, a parallel output was used along with a latch (74LS75). The direction of rotation and the number of turns of the monochromator to scan wavelength were controlled by the software. This was done by sending the appropriate digital outputs to the latch inputs, whose outputs were connected to the control lines of both monochromators. This allowed total computer control of the scanning modes (emission , excitation , synchronous , excitation-emission) and automatic initial wavelength selection of both monochromators. An Intel 8255-5 parallel I/O port on Lab Master board was programmed to work in mode 0, and digital data bits 0-5 of port A were used to send control pulses for both monochromators. Data bits 1-4 were latched by a 74LS75 quad latch in order to keep each control signal of the scanning module until next operation. Each digital signal and latch connection is shown in Figure 5.3. In the phosphorescence mode, counter 5 of the AM9513 counter/timer was used to trigger the ADC start conversion after a given delay time. In the RTP lifetime mode, counter 4 was used to control the delay time after lamp excitation, F18n: Mast 81 ADC channel 11255-5 m am Mt [ 1a 14 o 1 z a 4 51 Computer ride ‘ I r Q 16 15 10 Spectrometer [ 22 23 43 43 44 so I interface connector I l l . W l l l E! El Scan El 8! Scan lamp Invelength Pd“ Iotor clutch dlrectlon lgnltlon analog output) ‘ To control so ennlneufumodul ebdlrectly loom pin 83 (motor 111 hold and pint auto lmtllrectlon enable) must be connected to pln tnrn.)( Figure 5.3. Interfacing of the control signals from Lab Master to the Aminco-Bowman spectrometer (SPF-500). and con ADC. 0U GATE4 a order t of the extern: order betwee operat sectic (b). 1 Se‘ Aminc excit rota) freq! dete most solu give 11v: Sen: or ter and 82 and counter 3 was used to control the sampling rate of the ADC. OUT4 of the counter/timer must be connected to GATE3. GATE4 and GATE5 must be connected to the chopper signal in order to count the delay time in microseconds. 0UT3 and OUTS of the counter were connected to the control pin of the external start conversion of ADC through a rotary switch in order to select external start conversion signals of ADC between 0UT3 and OUTS. More detailed explanations about the operation of the counter/timer will be shown later in this section. (b). Light source Modulation and Detection. Several commercial spectrophosphorimeters, including the Aminco-Bowman (SPF-500), use a rotating can to modulate the exciting light source. The major disadvantage of the rotating-can type phosphoriscope is that the modulation frequency of the excitation source, and the luminescence detection time window are limited. But the RTP lifetimes of most organic phosphors are very short, especially in solution. As a result, the rotating-can type phosphoriscope gives very low or negligible luminescence signals for short- lived phosphors. The short delay time will increase the RTP sensitivity of the short lived phosphors. A pulsed source, or a single-disk type chopper, gives better performance in terms of flexibility for selecting appropriate delay times and gate times for the experimental requirements. Fieu (B) 10H Figure 5.4. Circiuts built for (A) photodiode light sensor, (B) current-to-voltage converter. In replace disk wa diamete was d1 control types . were u lifeti static beam, choppe The accomj inter trigg chop; {GEHE Plan: was : Phot diSp out; int: Sim 84 In this design, the Xe-arc lamp was modulated by a replaceable rotating single-disk type chopper. The chopper disk was constructed with a stiff, thin plastic blade (10 cm diameter) and coated with non-glare black paint. The chopper was driven by a synchronous motor, and its speed was controlled by a variable, precision DC power supply. Two types of disks, which have a different number of open slots, were used depending on the type of experiment (RTP or RTP lifetime). When fluorescence ‘was measured, the disk was stationary with its open slot facing the incoming excitation beam, so that all the exciting light could pass through the chopper disk. The phase detection of the rotating chopper was accomplished through the use of a photodiode and an opto- interrupter. A photodiode (EG&G UV-lOOBQ) with a Schmitt trigger (74LSl4) was placed on the opposite side of the chopper across the sample cell, and an opto-interrupter (GEHZlBl) with monostable multivibrator (74L8121N) was placed under the chopper blade. The phase detection signal was adjusted in the visible range as described below. At the beginning of the experiment, signals from photodiode circuit and opto-interrupter circuit ,were displayed concurrently on a dual-trace oscilloscope. The output of the photodiode circuit is the true chopped signal of the excitation source, whereas the output from the opto- interrupter circuit is not the true source chopping signal, since its signal depends on the mounting position of the mm Photo Mode lull- Vibrator Fig‘. The null adj- 85 luliivlhrntor .3. ‘ Q .4. 7412111 H— - .—L— Q -.5. 14! 7l1oLc 511 ' , um I :AM 3(203) 1.1__l ' | mp1. (1) 1 l l l— iiulti- ‘ . . . Vibrator Figure 5.5. Timing diagram of the chopper phase detector. The opto-interrupter output is connected to the multivibrator and the pulse width of the multivibrator is adjustable with a variable register. opto-in pulse c by a ‘ falling opto-ii (c). R For AM9515 ‘ choppe 500 H signa. conne PPOSI‘ board outpt Conve exci For simu rOte Cour Out] Out 86 opto-interrupter under the chopper blade. The low-going pulse output of the opto-interrupter was adjusted manually by a variable register of the multivibrator, until the falling edges of both signals from the photodiode and the opto-interrupter were exactly matched (Figure 5.5). (c). RTP and RTP Lifetime Measurement. For RTP and RTP lifetime measurements, a timer/counter, AM9513, on the Lab Master board was used. A single-disk type chopper with four opening slots was rotated to obtain a 200- 500 Hz modulated source for RTP measurements. The chopper signal from the one-shot of the phase detector circuit was connected to gate 1 of the counter 1, and counter 1 was Programmed to generate a pulse at the terminal count. The on board 1.000 MHz clock was used as the clock source. The output of counter 1 was connected to the ADC external start conversion pin. By varying the count number of the counter 1, data can be acquired at different time delays after excitation for time-resolved phosphorimetry (Figure 5.6). For RTP lifetime measurement, two counters were used simultaneously. A chopper with one or two open slots was rotated to obtain a 5-10 Hz modulated source. Gate 1 of the counter 1 was connected to the chopper signal, and the output of the counter 1 was connected to gate 2 of counter 2. The analog-to-digital conversion was triggered by the output of counter 2. At the falling edge of the chopper t Counter Gilt Counter Count 1 Count: count Fig} 111. 87 Counter F— Gate _. Counter 1 'i'enninal Count 1 Counter 2 Terminal Count 2 Figure 5.6. Timing diagram of the counters for RTP and RTP- lifetime measurement. hahle Counter (ho 11.22” Delay Gate liietime signal, time a1 edge 1 initia repeti At eac read 1 delay starti minim: read j At the wavel CVCIE POini The C0111 3. s PAS( ASS] lum XT EMI 7;— 88 time and generates a pulse at the terminal count. The rising edge of the terminal count signal of counter 1 then initiates counter 2 to count down for a given gate time, repetitively, to generate pulses at each gate time interval. At each terminal count pulse of counter 2, an RTP signal was read to obtain a decay signal. The delay time is the time delay from the falling edge of the chopper signal to the starting point of the data reading. The gate time (33 .113 minimum) is the time interval between the successive data read points. At the beginning of each experiment, the user can specify the number of data points to read at each emission wavelength for RTP measurement, or the number of decay cycles to repeat per experiment, and the number of data points per each decay cycle for RTP lifetime measurement. The final data. are obtained. by signal averaging of ‘the collected raw data in real time. 3. Software Development. A menu driven program, EMISPEC,.was developed using TURBO PASCAL (Version 4.0, Borland International) and MACRO ASSEMBLER (Version 4.0, MicroSoft) for instrument control, luminescence data acquisition, and manipulation on the IBM- XT compatible computer. A block diagram of the program, EMISPEC, is shown in Figure 5.7. There are six items in the signal, counter 1 starts the count down for a given delay. File . load . Save .. list Lies! Fig' 89 ' MSPEC-II I I_ i | t I 1 File | Data ] Set-up J Graph J Lifetime’J ToolsJ .. load _ Display _ Set-up _ Screen Plot .. Calc LTil .. Help 1.. Save .. Print _ lode .. Printer Plot _ Simulate LTii _ Change Par-m .. List _ Smoothing .. Plotter Plot L. Semilog Plot l. Test Data Read _ Dos Shell _ Start Read .. Plotter File _ llulPlot Figure 5.7. Block diagram of the EMISPEC program. main 1 For n1 transi devel< node scan wavel scan emiss spect nonoc ways The : an E rout soft 4-i inf: the Inca Var 00C (7: 90 main menu: File, Data, Set-up, Plot, Tools, and Lifetime. For noisy data, smoothing can be employed using a Fourier transformation technique, according to the unique algorithm developed by Eric E. Aubanel (6). Set-up parameters include mode (Fluorescence, RTP, RTP Lifetime), initial setting and scan ranges for both monochromators, number of data per wavelength or number of decay cycles for signal averaging, scan mode (emission, excitation, synchronous, excitation- emission), delay time, and gate time. Fluorescence and RTP spectrum data are plotted on the screen in real time as the monochromator scans. The plot routine plots data in five ways: screen plot, printer plot, plotter plot, plotter file. The spectrum drawn on the screen can be printed with either an EPSON printer or an HP plotter. Data plot can also be routed into a file in HPGL format for use with other software. 4. Results and Discussion. The primary output of any experiment in which chemical information is to be extracted, is the signal which measures the phenomenon under observation. In most cases the signal measured has some superimposed noise which arises from various sources. Noise can be distinguished from the signal by its frequency characteristics and by the time of occurrence or phase coherence of their frequency component (7). The removal of noise can be performed by hardware and software. The thrl moving-aver In the mo replaced by on either 1 it is very first and ‘ degree as ' n neighbor Signal nor The less you Specif distances The advan Statistics d°es not 1 intervals, Senerates bad data Spread th F°uPier best meth and elimi usually j c°"‘P°nent 91 software. The three most common methods for smoothing data are moving-average, least-squares, and Fourier transformation. In the moving-average method (8), each data point is replaced by the average of itself and n neighboring points on either side of it. The advantage of this method is that it is very easy to program. The disadvantage is that the first and the last data points are not smoothed to the same degree as the rest of the data set, because they don’t have n neighbors on each side of them. This method flattens the signal more than the other methods. The least-squares method identifies the line of the order you specify which minimizes the sum of the squares of the distances between the data points and the calculated line. The advantages of this method are that it generates statistical information on the goodness of the fit, and it does not require that the data be collected at regular time intervals. The disadvantage of this method is that it generates disappropriately biased data by one or two very bad data points, because it will twist the line of fit to spread the error over the entire data set. Fourier transformation and inversion (9) is probably the best method, since it lends itself naturally to identifying and eliminating noise. The reason for this is that noise is usually present at high frequencies, whereas, the signal components are usually present at low frequencies. Fourier transformation produces the frequency spectrum. By eliminating performing a the original In this s smoothing me frequency 10 converter an fluorescence long time decay signa lifetime w averaging s enhance the If the noiSI the noise '1: signal is r improved by Also, by 1 reduce nois of Fourier Transforms iii. In t smoothing) 92 eliminating the high frequency portion of the spectrum and performing an inverse Fourier transformation, one can obtain the original data without much of—the noise. In this system, we employed both hardware and software smoothing methods. A simple passive low-pass filter (cut-off frequency 10 Hz) was placed between the current-to-voltage converter and the variable gain amplifier (10) for RTP and fluorescence measurements. Because the low-pass filter has a long time constant which can affect the phosphorescence decay signal, it was turned off by a manual switch when RTP lifetime was being measured. Two other methods, signal averaging and Fourier smoothing, were used to further enhance the signal to noise ratio (S/N) of the measurement. If the noise is random and the number of measurements is N, the noise is proportional to the square root of N, while the signal is proportional to N. As a result, the S/N will be improved by the square root of N with signal averaging (11). Also, by performing Fourier smoothing, one can further reduce noise components from the measured data. The method of Fourier smoothing used is a modified Discrete Fourier Transformation (DFT), which runs much faster than regular DFT. In this method, the user can control the degree of smoothing, and the data size is not limited to a multiple of 2, which is the limiting factor of the Fast Fourier Transformation (FFT). The effect of the degree of smoothing of the data is well- demonstrated in Figure 5.8. A typical luminescence data set natal m m m -M t“ agate-ea 93 I000 .00 .0. , I o: . . . g :3 ..s.. - '°° ’ ~" . . p H o o O . 3 m . 0. ° . ...... g . o . :O.:‘..~ ...: . .2 . . 0’s 0 ' ' a son - - - . ;’ . .. e- \ . . '. a . - - ,. ' ' s e' ' ~o. o .: ...-00:00 m ’ . . . a... o .. 01 o 0.. 9 . so .. 0 . m P O ". ‘ s ’ 0'0 .0. s. . o . ... .... O .. ° .... . o o . . .3 - o ’v. . .°. :00 g: . ..so.”o o o ‘50. i s .... . .0. o L I I I I I I I I 300 325 350 375 400 425 450 475 500 525 immanent 000 5,3, A. .Fourior ssoothinn of the lusinsscencs spectrum of Naphthajgng in missusiSOSI . Degree of smoothing: 9. new data: dot. smoothed data: line. j V E 3.... E :3 tune» a“. goo. zoo-' m. o -... soc .‘.' ° ° 0 . . O. o o. O O. o o. s s .... s I 0‘ s. 0. ..~ . o 0 . \ s o ' o ..' o o . .. s. . .0 Os 0. . o ' o o O. ... O. . . O . . o 0 .gs: . O o ' . o o 0. ° ... . O . Q 0 o C. . . ~. .0 . . O s o .. o 0‘... o. I, 0...... . 0. ....‘~. I .. s s g s 0....... .. ... .0 ~ { 0.0 O O _I I L I I _I I I I 325 350 375 400 4a 450 475 500 525 “V3.85?" M 3.3. Fourier- ssoothing of the Inslnescsncs spectrum of Naphthalene in sicsnslSOSl .Deares of smoothing: 25. new dots: dot. smoothed data: line. in Figure 5. naphthalene solution. Pea above 400 nm dots in F smoothing, a Fourier smoo Figure 5. smoothing o undersmoothe Choosing the and error. smoothed (18‘ Figure 5.8, which the f i This end ei beginning a1 data as per points are Figure 5.9, line method The gene phosphoriu Fisher and 94 in Figure 5.8 was obtained with an aqueous solution of naphthalene in a sodium dodecyl sulfate (SDS) micellar solution. Peaks below 400 nm are fluorescence, and the peaks above 400 nm are phosphorescence at room temperature. The dots in Figure 5.8 are the raw data 'without signal smoothing, and the solid line is the smoothed data after Fourier smoothing. Figure 5.8.A shows oversmoothed data with a degree of smoothing of 9, while with a degree of smoothing of 25, undersmoothed data were obtained as shown in Figure 5.8.3. Choosing the right degree of smoothing is a matter of trial and error. With a degree of a smoothing of 15, properly smoothed data were obtained as shown in Figure 5.9. In Figure 5.8, both smoothed data sets show "end effects" in which the first and last part of the data set are distorted. This end effect is due to the discontinuity between the beginning and the end of the data set. The DFT treats the data as periodic; that is, it assumes that the last data points are followed by replicas of the initial points. In Figure 5.9, this "end effect" was corrected by the straight line method (6). The general principles and applications of time-resolved phosphorimetry were well demonstrated by Winefordner (12). Fisher and Winefordner (13) showed a detailed comparison of the pulsed source and continuous mechanical phosphoriscope system in. phosphorimetric instrumentation. The major advantage of pulsed source phosphorimetry over the rotating .nuco cyan an oouuoacou ma .uuoaaotocm. och .m« "acacuoosm no cocoon A: nrmm.3 oconmzucamz .3 33.5028 oucmunocaeaa umzuooEn cannon“. .m.n nnnmE .zzezhmzw4w> I. I. ”Z.” ...-I . cm a 0.0 he‘d I I ah dud!- 10.00 r—-"".‘"" >PIIAZM'II’II * 1-00 (Adina), in I Pulse interval 0 0 0 0. 1‘1‘3i4i a‘i‘a’l‘oi'id : .ll.‘.. III}! 0". . dollliloa. o I II II t 11 4 1 1 4 44 14 O .. u m ._ , m u ” ...,v.wu...m.. .u u u 1 u . a T/ u u . a n 2 m .... "...U a. m m m m H m __ .m m ....m m . m . .H n. .-. .-. . u u u n . u . a u r. .. 2 . .m 5............ m m . l a m m X“. ... fl . ... o r . . 1..-... L .. .w...3p.m.. ...muudaw... m .u - . a”: .L ..... a ..... m. .......... ....pv.\.;_ .......... ......l . fl 1“ m m T.; m . .... m m . ... m a... a e . ,m.....L..-..-m ..M. m m .... .. . o .m .m ...... m m. - m u m i m u ...... r S n t l ...........MML m m w w... . ... w a n .. I k I w’nav 0‘. I l.”.ufli.ha’ao.| 4“ 0. Jo. L O 00000 .u ..... A 0 w OU‘OOIOEA I lttfihvo I .fi 1. IL .1 h B ..u u n ..a u u S u s“ \ _ l w t ( m m ..- .u n 7 m . m .... _ .. a .. s . ill! MIDI 5| “393.. m .. ..m m m m .\.Q m \\. u . m w n . c u u ...u u u . . u \u n 5....” . . . n u u l W . w max . . V. n 9 2 o o. .l c. u n o u . v .a n a 6 ..... manalahvlll voOOOolein'wuul.IWI am- L O IIIOJOIIII‘COIOOW‘OV’HM‘IOIILO O A 0 W. Urinal A". A S w a m. ... m m m m a m U 3... m w u m m a o d u _ cl I. o oafoa‘o o o n. n ' H u .. v A c m n . . . ... .. u . u . x a. . . . a u . -.n---n.m...n... " . u _ w.. n . . l 0 " "....-. u u u. u . u .. . " ... u .. S ... n \I m ... u u " ...“ . u m . .... m ....u . . . e i e a .3. a o c.~..lo,uw.0|.a.n..u .....m. -m. . mifl o ...... ..... a . .:.orno.u..o.v u..lh..._o.ooow o o L a... 1 n . " “......rr . . n O .. a u .. . _ m c a .... n u ..... u “1 .m H u l S mu. .... u .1... 1 v. \I 1 v u n u D co." n . . B .m 4.4.4 m “..I c e . .. u “ 1.0.va u u . Mu .. I... u. ...! / n d 6 small. a u u . U . .-.; J . u s i e m .... u m m . l u u . ...“, . . u 1 t O 00! «Jolie .000 .0 a. 01.. . .0 a .0 I!) O l... .IOOIO llllllllllll L. ..... g 000000000 w OOOOOOOO I. O . _ w ........r m ... .. . e .. A . / . . n a o d m. n . -...-r: ..u . . 3 A . . . l . ... 5 e d . u o u i u o c To u. u l A t 9 .U.. o (I. u e A . . or . D 2 a! cot... o c .01.... o . l 6 t B . . "...-.. u n n D . . l \ 5 o .. . .. 1“... n n . u . .s l. .1 . ..ao... «0 o o o u . n \Y L 7 d e so. u n u u u . a O a a. I L» a o a 0. la; ccccc A aaaaa grew-...Ionu.oa}'dno.loaona I ”a a F Inaa. .1 aaaaa Lall A-.. = 0.. a w..OU\\lm_ao.~ ~ “ g o e A s . 1.-..-. r .. .u. .. n n a 5 _ m s. s. _ a S v .1 u u . m "......m.-...m m m l 2 . _ u m a 7 m m m m .u. cm W m > .m n m. w... _ . m m w 3 2 m m n u . ......ui. . u u u R .n _ _ ...a .u m. . " ... ( e u a “ titan m m u m I v. c m a . ... m\. m . u . s. n e f ..m a .wntl .. m m. .m. u ..m... L . ....s. ..... w ..... _m.\...1sm... ..m. L....-.m. ... m g ”a. mm M O u m m {me -n m n . . 3 m . . . n n m m m 1 m m m ...... m .. m x m u m i . n n m m m m m M.,-..e . A m ... m m u m u . r o u .. a . o o o . ...... .... c . o . . o . u o o o o 0 II. c 0.. 313-5....” 0 o. a n o u 0 . o . O o b m D . .lr 0. O ’ t fair-..-pll—isLhu. .........o..—...,.f.-p-.br1 ......I. P-,-1L1}... 0. -.i—vi-ILWIrLtatw. — — e b O 0 cl 5 \l m o o I. 0 o o o e o O O O 0 O O 0 O O 0 O . .oommmooooa ommmooemaam “my. o .0 O a o a C a .0 o I Q 0 o 0 O 0‘ u . l 6420. the nultivib: The use channels. A other than u each timer) operation. individual 1' operation a operation counters a1 modes can independen‘ graphics m with Epson 3. Results To test sine ane mode 0 ( meXimum 5 line). I! use high SamPles/ board ti in Count the ADc the multivibrator. The user can also program the three timer/counter channels. A timer/counter set up window will pop up if modes other than mode 0 are selected so that the users can program each timer/counter channel for their desired mode of operation. Each counter/timer of the Intel 8253-5 is individually programmed by writing a desired mode of operation and a count number. There are six modes of counter operation for each. counter/timer. But if more than two counters are cascaded, then very complex and sophisticated modes can be obtained. The plotting routine employs device independent graphics to plot data on various types of graphics monitor. The hard copy of the plot can be obtained with Epson printer. 3. Results and Discussion. To test the performance of the modified IBM-DACA we used a sine wave of 160 Hz (6250.»s/cycle) as the input source. In mode 0 (software trigger of the ADC start conversion) a maximum speed of 2130 samples/s was obtained (Figure 5.13.A line). In the hardware trigger modes (modes 2-8) which still use high level language for data read, a throughput of 2500 samples/s was obtained (Figure 5.13.A dotted line). The on- board timer/counter output, which was programmed to operate in counter mode 2, was used as a hardware trigger source for the ADC start conversion. A 400.ps pulse interval gave the fastest and most satisfactory performance. In mode 9 read data conversion, maximum spet output with source (Fig‘ accurate t because if samples/s i with true obtained . throughput C. Conclus In cone for lumin. 0f the pu disadvant mechanics i“Strumer )1) Flue] the sac m°difiCa (2) Unli there is 108 In mode 9, which uses an assembly language subroutine to read data and a hardware trigger source for the ADC conversion, the throughput was increased dramatically. A maximum speed of 18520 samples/s was obtained when a timer output with a 27 ..us pulse interval was used as the trigger source (Figure 5.13.8 dotted line). But this data has no accurate timing relationship with the trigger source, because if each pulse is used for ADC trigger then 37037 samples/s throughput must be obtained. An optimum speed, with true timing relationship with trigger source, was obtained with a 62 ,ys pulse interval, which gave a throughput of 16130 samples/sec (Figure 5.13.3 line). C. Conclusions. In conclusion, the instrument designed in our laboratory for luminescence measurements shares most of the advantages of the pulsed source phosphorimeter, but does not share the disadvantages of the conventional rotating-can type mechanical phosphoriscope. The major advantages of this instrument over the conventional phOSphorimeters are: (1) Fluorescence, RTP, and RTP lifetimes can be measured on the same instrument without additional instrumental modification. (2) Unlike the rotating-can type mechanical phosphoriscope, there is no limitation on the time discrimination procedure. Delay time 1 without adjl (3) It is 1 frequency , detector de accurately. (4) It gi lifetime m lived phos rotation 5 window can (5) It giv than a pul (6) Final IBM-KT co: aCquired : The 111, digital . 30ftWare. this mod three Ch utiliZed 109 Delay time and gate time can be easily changed by software without adjustment of the rotation speed of the chopper. (3) It is less dependent on the precision of the modulation frequency of_ the excitation source. The chopper phase detector detects every closing edge of the exciting source accurately. (4) It gives equally good. performance in RTP and RTP lifetime measurements for short-lived phosphors and long- lived phosphors. By changing the delay time, gate time or rotation speed of the chopper, an optimum detection time window can be obtained. (5) It gives higher reproducibility and less RF interference than a pulsed source, due to a chopped continuous source. (6) Finally, this instrument is controlled by a low cost IBM-XT compatible personal computer. Luminescence data are acquired and manipulated easily on site. The modified IBM-DACA allows initiation of analog-to- digital conversion by a hardware trigger as well as by software. A dramatic increase in throughput was observed by this modification. using the hardware trigger. .Also, all three channels of the on-board timer/counter can be fully utilized by the user for complex modern data acquisition. 1. Vo-Dinh Chem., 1971 2. Cline 1 Chem., 198 3. Nithipa 39, 109. 4. Lab Me Ohio, 1984 5. Wiegan Instrumen 6- Aubane 7. Hieftj 3- Savit: 1627. 9~ Brifl Prentice. 10» Malm f°r Scie CA. 1981 11. Ingl Prehtice 12~ Win1 13. Fig 44. 948 110 CHAPTER V REFERENCES 1. Vo-Dinh, T.; Walden, G. L.; Winefordner, J. D., Anal. Chem., 1977, 49, 1126. 2. Cline Love, L. J.; Skrilec, M.; Habarta, J. G., Anal. Chem., 1980, 52,754. 3. Nithipatikom, K.; Pollard, B. D., Appl. Spectrosc., 1985, 39, 109. 4. Lab Master User’s Guide, Scientific Solutions, Solon, Ohio, 1984. 5. Wiegand, P. M.; Trischan, K. K.; Crouch, S. R., Anal. Instrumentation, 1985, 14(2), 127. 6. Aubanel, E. E.; Oldham, K. 8., Byte, 1985, Ebb., 207. 7. Hieftje, C. M., Am. Lab., 1988, Oct., 110. 8. Savitzky, A.; Golay, M. J. E., Anal. Chem., 1964, 36, 1627. 9. Brigham, E. 0., The Fast Fourier Transformation, Prentice-Hall, Englewood Cliff, N.J., 1975. 10. Malmstadt, Enke, Crouch, Electronics and Instrumentation for Scientist, The Benjamin/Cummings Publishing, Menlo Park, CA, 1981. 11. Ingle, .1. D.; Crouch, S.R., Spectrochemical Analysis, Prentice-Hall, Englewood Cliff, N.J., 1988. 12. Winefordner, J. D., Acct. Chem. Res., 1969, 2, 361. 13. Fisher, R. P.; Winefordner, J. D., Anal. Chem., 1972, 44, 948. 14. IBM Pe Adaptor TecI 15. Data Ac 1984. 16. Micros Peripherals 1985. 111 14. IBM' Personal Computer Data .Acquisition and Control Adaptor Technical Manual, IBM Corp, New York, 1984. 15. Data Acquisition Databook, Analog Device, Norwood, MA, 1984. 16. Microsystem component Handbook Microprocessors and Peripherals, Intel Corp, Santa Clara, CA, 1985. The phos state is associated chemical s is a chara environmer diagnostic character: Since t] known to f0110wing Where I : Where It The Pho require, 112 CHAPTER VI ROOM-TEMPERATURE PHOSPHORESCENCE LIFETIMES The phosphorescence decay lifetime of the excited triplet state is important in studies of kinetic processes associated with the triplet state of compounds in a given chemical system. The lifetime of the excited triplet state is a characteristic property of a molecule and its molecular environment. Phosphorescence lifetimes frequently provide a diagnostic tool since compounds having very similar spectral characteristics can have greatly different lifetimes. Since the phosphorescence decay of any single component is known to be first order, it can be represented by the following equation: dI/dt = -kI (6.1) where I is the phosphorescence intensity and k is the decay rate constant. Integration of equation 6.1 yields I = Io exp(-kt) (6.2) where Io represents the phosphorescence intensity at t=0. The phosphorescence lifetime, 1 , is defined as the time required for the intensity of phosphorescence emission to decrease t excitation given by and the phc of its ini' However, contains equation 6 The backg: current, signal, e 818118.13. The temperat, 1ifetime: temperat' State by minimize TheSe phospho: descrip1 113 decrease to l/e of its initial intensity following excitation (1). As a result, the phosphorescence lifetime is given by 1’ = l/k (6.3) and the phosphorescence intensity at this time equals to 1/e of its initial intensity. However, experimentally observed phosphorescence intensity contains a finite background or blank intensity as in equation 6.4. I(t) = Io exp(-kt) + B (6.4) The background signal is a convolution of the detector dark current, instrumental offset, ground loops, light scatter signal, etc., with solvent or substrate and sample impurity signals. The phosphorescence lifetimes of compounds at low temperature (77 K) have been well studied compared to RTP lifetimes. In the frozen state at liquid nitrogen temperature, collisional quenching processes of the triplet state by molecular oxygen and other impurities is greatly minimized, and the temperature of the sample is constant. These conditions give reliable and consistant Phosphorescence lifetimes which can be used as a qualitative descriptor of the luminescent species. However, RTP lifetimes environment Because th dependent a type, dies the are 1 system. This ch determinat finally, a RTP) spect A. Method: The a< constant lifetime common me monitorir exciting After starts t USUally, instanta entails requirec' SOUTCQ 1 114 lifetimes of compounds are extremely sensitive to environmental conditions, especially for solution RTP. Because the phosphorescence decay lifetime is strongly dependent on the molecular environment (temperature, solvent type, dissolved oxygen, other concomitant species, -etc.), the RTP lifetimes of compounds can vary from system to system. This chapter describes general methods of RTP lifetime determination, a new proposed decay kinetics model, and finally, experimental data of nficellar-stabilized RTP (MS- RTP) spectra and the decay kinetics experiment of PAHs. A. Methods for Determining Decay Lifetimes. The accurate measurement of the phosphorescence decay constant and the subsequent calculation of the corresponding lifetime of the triplet state is very important. The most common methods for measuring excited state lifetimes involve monitoring the time dependence of the sample emission while exciting it with a pulsed or modulated source. After source excitation, the phosphorescence intensity starts to decay exponentially according to equation 6.2. Usually, the source excitation function is not an instantaneous impulse as shown in Figure 6.1. Instead, it entails a rather smooth lagged tail. A delay time is required to discriminate phosphorescence signal against this source tail, stray light, and fluorescence. Actual sampling Figure ( 115 i u I ' ’ 1t , 10 l , 1(t) = 10 End-kt) 1:» t. t+ ‘6 Time Figure 6.1. Schematic representation of typical RTP decay curve and data acquisition process. of the phos time, ta, 3 There luminescenc detection 1 (PMTs) are photodiode: For oscillosco was the st photon cor with micrc The de luminescer detector, affect. o' luminesce caPRCitor carefully fast enou Amrlifie, reSPOnSe Phosp] data re< deCay l imPTOper t° error 116 of the phosphorescence decay signal is done during the gate time, tg, after delay time ta. There are many different methods for measuring luminescence decay with variations in excitation source, detection device, and display. Generally, photomultipliers (PMTs) are used to measure the luminescence signal, but photodiodes may be usedif an intense laser source is used. For recording the luminescence decay signal, an oscilloscope coupled with a camera or photosensitive paper, was the standard choice until recently. But nowadays, single photon counting instruments and transient digitizers along with microcomputers are more common. The detection-display system may distort the observed luminescence decay (2). Distortions are introduced by the detector, cabling, amplifiers, etc. These distortions may affect' observed lifetimes seriously when a short-lived luminescence signal is to be measured. Resistors and capacitors used in PMTs and amplifiers must be chosen carefully. The RC time constants of these systems must be fast enough to trace the fast decaying luminescence signal. Amplifiers must have a high slew rate and wide bandwidth response characteristics. Phosphorescence lifetimes also depend on the method of data reduction and deconvolution for the calculation of decay lifetimes. Many' of the simple techniques such as improper background correction and signal sampling can lead to erroneous interpretation of the data. Popular methods for the determ exponential the Gugger recently, The line popular or following The decay In I(t) v from the Ideally lime f0; indicatix Criteriol linear 1. infinity experime function function imPUTitj deCay s Therefm SUbtrac. 117 the determination of phosphorescence lifetimes from single exponential decays involve the linear least-squares method, the Guggenheim method, the phase-plane method, and more recently, the rapid lifetime determination (RLD) method. The linear least-squares method (3) is probably the most popular one. By taking the logarithm of equation 6.2, the following equation is obtained. In I(t) = -kt + 1n Io (6.5) The decay constant, k, can be obtained from the slope of the ln I(t) vs time plot, and the decay lifetime is calculated from the negative reciprocal of the slope. Ideally, a plot of In I(t) vs time should yield a straight line for single component decay. The straight line indicating a single exponential decay can be used as a criterion to judge the validity of the obtained data. The linear least-squares method assumes that as time approaches infinity, the observed signal level decreases to zero. But experimentally, the observed signal level is not only a function of phosphorescence signal intensity, but also a function of dark current, amplifier offsets, emission from impurities, etc. As a result, the experimentally observed decay signal always contain a finite value of background. Therefore, low noise, a stable base line, and background subtraction are required for good results. ¥ For simp] background: method, met such that t dt. If backgr< taking the backgrounc A Plot 0 the slope initial j The Gu1 need £01 -However’ The fit1 aCCUrate Should I accurac3 acquisi1 118 For simple exponential decays with a constant but unknown background, the Guggenheim method (4) is popular. By this method, measurements of decay signal are performed in pairs such that each pair is separated by a constant time interval dt. It = Io exp(-kt) + B (6.6) It+dt = Io exp{-k(t+dt)} + B (6.7) If background is constant in both intensity values then by taking the difference in intensity values one can remove the background term. It - Itedt = Io exp(-kt) {1-exp(-kdt)} (6.8) ln(It - Itedt) = -kt + ln{Io(l-e'kdt)} (6.9) A plot of ln(It-It.at) versus time should be. linear. From the slope and intercept values one can obtain lifetime and initial intensity values. The Guggenheim method is popular because it eliminates the need for acquiring base line, and is simple and fast. However, the Guggenheim method has several disadvantages. The fitting region and dt must be properly selected for accurate results. Margerison (5) suggested that the decay should be followed'over 3-4 lifetimes, depending on the accuracy of the individual measurements. If the data acquisition period is shorter than 3-4 lifetimes, smaller dt values mus‘ reconstruC' equation 6 available. Bacon a the treatn plane me intensity. phase-pla1 and the Additiona selection guess of The ma] (8) is a an31YSis. time int Start-to. into 12hr obtained from the Where N deCay d 119 values must be used (6). Also the linear fit I(t) and the reconstruction of I(t) using the best fit parameters and equation 6.4 is complicated since the base line B is not available. Bacon and Demas (7) modified the phase plane method for the treatment of luminescence lifetimes. The modified phase- plane method permits direct calculation of initial intensity, base line, and decay lifetimes. Furthermore, the phase-plane method is more forgiving in the fitting ranges and the noise levels than the Guggenheim method. Additionally, the phase plane method requires no operator selection of optimum fitting parameters, and no initial guess of the parameters is required. The more recent rapid lifetime determination (RLD) method (8) is a significantly faster method allowing for real time analysis. In the RLD method the data are collected at equal time intervals, and all data points from the- experimental start-to-stop time must be used. The decay data are divided into three equal parts, and the sums; SO, S1, and 82 are obtained from each portion. Decay lifetime can be calculated from the following equations: Y = ($1 - $2) / (SO - SI) (6.10) Lifetime = -N dt / ln(Y) (6.11) whene N is the number of data in each divided part of the decay data, and dt is the fixed time interval between data points. Ba: from the ft Ballow RLD methoc The RLD m squares m found to calculate reconstru errors. 1 “0 warni Parameter In thh method p method Spectrom the less 120 points. Base line and initial intensity can be calculated from the following equations. A = ($0 - Sl)2 / (SO - 281 + 82) (6.12) Io = A (1 - Y1/3) / (1 - Y) (6.13) B = (SO - A) / N (6.14) Ballow and Demas (9) performed an error analysis of the RLD method for the evaluation of single exponential decays. The RLD method was comparable to the weighed linear least- squares method in terms of precision and accuracy, and was found. to be 10-800 times faster. Also, the .RLD method calculates the base line and initial intensity for ready reconstruction of a decay curve, and calculation of fit errors. The disadvantage of the RLD method is that it gives no warning of more complex decays or no statistical parameters for the evaluation of the goodness of the fit. In this research, both linear least-squares method and RLD method were used for RTP lifetime determination. The RLD method was primarily used with home-built luminescence spectrometer, and linear least-squares method was used with the less noisy and stable Perkin-Elmer LS-5B spectrometer. B. RTP De« Solutions. 1. Decay K Studies the quencl solution. RTP is pr several a (i) The 1 located i RTP cannc (ii) Que] mainly a This ass Which a Observed If QUen< the tri quenche, c“Cent: limitin assumpt (iii) 1 miCella 121 B. RTP Decay Lifetimes of Organic Compounds in Micellar Solutions. 1. Decay Kinetics Model for Micellar Stabilized RTP. Studies of micelle dynamics were performed to understand the quenching and decay kinetics of luminescence in micellar solution. In this section, a new decay kinetic model of MS- RTP is proposed. To successfully apply this proposed model, several assumptions are made as follows. (i) The detectable RTP comes mainly from triplet molecules located inside the micelle. This assumption is valid because RTP cannot be observed without the micelle. (ii) Quenching of the triplet state of the molecule occurs mainly at the micellar surface and in the aqueous phase. This assumption is based on our experimental results in which as the concentration of quencher increases the observed triplet lifetime approaches a steady-state value. If quenching occurs mainly inside or outside the micelle, the triplet lifetime must decrease continuously as the quencher concentration, increases. But with a fixed micelle concentration the micellar surface area is also fixed to a limiting value for triplet quenching. This supports the assumption of micellar surface quenching. (iii) The probe molecules must be far more soluble in the micellar phase than in the aqueous phase. This condition is necessary (iv) The c that self- The p partitioni phase and where P‘ outside mainly c: the micel Triplet Surface A3 a re ‘dIMP'1 122 necessary for application of the steady-state approximation. (iv) The concentration of the phosphorescent probe is so low that self-quenching of the excited state is unimportant. The proposed decay model is shown as follows. The partitioning of a phosphorescent probe P‘ between an aqueous phase and micelle (M) is given by MP‘ ;::::2 M + P‘ (6.15) where P‘ and MP‘ denote the triplet probe located inside and outside the micelle, respectively. The triplet emission mainly comes from the phosphorescent probe located inside the micelle. MP‘ —————+ MP + hv (6.16) Triplet quenching by' quencher Q' occurs at the micellar surface and in the aqueous phase. As a result, the rate of disappearance of MP'I is given by -d[MP"]/dt = k-[MP'1-k+[MllP’]+k-p[MP‘]+k-q[MP‘][Q] (6.19) and the ra‘ -d[P‘]/dt If the phi micellar s [P'], the From equa [P Substitu1 'dIMP‘]/. Thus. th Process, of m», 1..., This e« micelle COncent 123 and the rate of disappearance of P‘ is given by -d[P‘]/dt = k.[M][P‘] + kqlP'JIQ] - k-[MP‘] (6.20) If the phosphorescent probe P" is far more soluble in the micellar solution than in aqueous phase, such that [MP‘] >> [P’], the steady-state approximation can be applied. -d[P‘]/dt = 0 (6.21) From equation 6.20 and 6.21 we obtain [P*] = k-[MP'] / (k+[M] + kq[Ql) (6.22) Substitution of equation 6.22 into 6.19 yields *dEMP‘l/dt=[MP‘][k-+k-p+k-q[Q]'{k’k-[Ml/(k*[M]+kq[Q] (6.23) Thus, the disappearance of MP' follows a first-order kinetic process. Therefore, the observed disappearance rate constant of MP‘, ko, which is reciprocal of lifetime 1 is given by k0 = 1/1 = k_+k.p+k.q[Q]-{k+k-[M]/(k+[M]+kq[Ql)} (6.24) This equation shows that at a fixed concentration of micelle, the observed lifetime decreases as.the quencher concentration increases until [Q] reaches the saturated value [Q]: concentrat to the de inside the 2. Experi: Reagents: Sodium water (0 (99.99%, sodium d. grade, E] in this Baker), (J.T. B: ethanol. sample I Apparfitl RTP a1 inStrum. °Perati detail aequisi Spectrc IBM-pg 124 value [Q13 at the micellar surface. At a very low quencher concentration, the observed rate Constant ko will be equal to the decay rate constant of the triplet probe located inside the micelle, k-p. 2. Experimental Section. Reagents: Sodium sulfite (J.T. Baker) was recrystallized from warm water (0.5 ml/g) by cooling to 0 C. Thallium(I) nitrate (99.99%, Aldrich), sodium bromide (99.9%, J.T. Baker), sodium dodecyl sulfate, SDS (99%, Sigma), and methanol (GR grade, EM Science) were used as received. The analytes used in this research, naphthalene (Eastman), pyrene (J.T. Baker), 2—bromonaphthalene (97%, Aldrich), and biphenyl (J.T. Baker), were all recrystallized once from absolute ethanol. Distilled and deionized water was used for RTP sample preparation throughout the experiment. Apparatus: RTP and RTP lifetimes were measured by both the home-built instrument and. the iPerkin Elmer' LS-SB spectrometer. The operation of the home-built instrument is described in detail in chapter V. For the Perkin Elmer LS-SB data acquisition“ the chart recorder output (1V max) of the spectrometer was amplified 10 times and digitized by the IBM-PC data acquisition board (see chapter V) which was installed for this P and analys measuremen Sample Pre Stock 3 bromonaph‘ of analyt. volume wi thallium dodecyl s micellar was used An. a1 into a 11 a minimu: made by , thallium ml V01um final V0 After Cuvette °xY8en intensi1 aPPI‘Opr; installed on an IBM-XT compatible computer. Software written for this purpose was used for luminescence data acquisition and analysis. The range of delay time and gate time for RTP measurements were 0.03 - 0.05 ms and 1-3 ms, respectively. Sample Preparation and General Procedure: Stock solutions of naphthalene, pyrene, biphenyl, and 2- bromonaphthalene were made by dissolving appropriate amounts of analytes into 10 ml methanol and diluted to 100 ml final volume with water» For the external heavy’ atom source, thallium nitrate stock solution (0.25 M) was used. A sodium dodecyl sulfate stock solution (0.5 M) was prepared for the micellar solution, and sodium sulfite stock solution (0.4 M) was used for deoxygenation of the sample solution. An aliquot of methanolic analyte solution was pipetted into a 10 ml volumetric flask and solvent was evaporated to a minimum volume using nitrogen gas. Sample solutions were made by adding the appropriate amounts of stock solutions of thallium nitrate, SDS, and sodium sulfite into previous 10 ml volumetric flask. These solutions were diluted to 10 nfl. final volume with the distilled and deionized water. After thorough maxing, the solution was transferred to a cuvette with a Teflon stopper. The progress of chemical oxygen scavenging was monitored by measuring the RTP intensity development at the emission maximum with the appropriate excitation wavelength on the spectrometer. Spectra we: state and 3. Results Micell method f0 solution because a process t deoxygena Air Tighi A tigh' 0f air w; shows RT 0f a. ch sample s heavy at After t solutio, the emi: 3 minut The into th AS fre 126 Spectra were obtained after the RTP intensity reached steady state and remained the same for at least 5 minutes. 3. Results and Discussion. Micellar stabilized RTP (MS-RTP) is the most popular method for solution RTP. Deoxygenation of the surfactant solution was the most troublesome aspect of the MS-RTP, because of a lot of foam formed during the deoxygenation process by inert gas. This can be eliminated by chemical deoxygenation using sodium sulfite. Air Tight Capping of the Cuvette. A tight seal of the sample cuvette to prevent any leakage of air was necessary throughout RTP measurements. Figure 6.2 shows RTP development of 2-bromonaphthalene after addition of a chemical scavenger, sodium sulfite, into a micellar sample solution. The concentrations of surfactant (SDS) and heavy atom (TlNOa) were 0.05 M and 1.5x10'2 M, respectively. After the addition of 0.01 M sodium sulfite into the solution, the development of RTP intensity was monitored at the emission maximum for 20 min. RTP began to show up after 8 minutes and reached a steady-state maximum after 15 min. The dotted line of Figure 6.2 shows the leakage of air into the sample solution with no capping the sample cuvette. As fresh oxygen enters into the solution, RTP fluctuates 127 cm mu sud: osoacnasmoGOEOAQIN «0 on 25.: mth v" 1.1 Nu On acoEQoA0>op mam .osau 0“ 9” “hamflh I can can OQM 06V 095 com . com coo“ AlflafinNIENUITEM sinusoidall oxygen and sample cuv very stabl Optimum C: Variou solution atom (Tl‘ sulfite SDS and RTP inter The opt: 0.8x1o-2 603. Be] decrease reaction intensit which a' micella: The Eff The ; (CMC) screenf expect, SOluti. 128 sinusoidally, indicating a new chemical equilibrium by oxygen and sodium, sulfite. With an air tight seal of the sample cuvette with a Teflon‘tOp, the RTP intensity remained very stable with time. Optimum Concentration of Sodium sulfite. Various amounts of sodium sulfite were added into a solution of a fixed amount of naphthalene, SDS, and heavy atom (Tl‘), to find an optimum concentration of sodium sulfite for chemical deoxygenation. The concentrations of SDS and Tl’ were 3.5x10‘2 M and 1.5x10‘2 M, respectively. RTP intensities were measured 15 min after solution mixing. The optimum concentration range of sodium sulfite was 0.8x10"2 - 1.2x10“2 M, as shown in the upper graph of Figure 6.3. Below this optimum concentration, the RTP intensity decreased due to the incomplete and slow deoxygenation reaction. Above this optimum concentration range, the RTP intensity decreased due to high sodium ion concentrations, which at such levels could displace thallium ions from the micellar surface. The Effect of SDS Concentration on RTP Intensity. The reported value of the critical micelle concentration (CMC) of SDS is 8.2x10'3 M (10). Thus, the effective screening of the triplet sample molecules by the micelle is expected at surfactant concentrations above the CMC. Into a solution of a fixed amount of Tl‘, sodium sulfite, 800' '1. l 4 ( 6 e s xtmcmufi 0>320m m. m 8 t i n F 01 0 < 0 0 0 6 4 2 xfimcuacm o>52om 129 800- 600- 400‘ Relative intensity 200m 0 w’ l *1 ‘T OJ) (L4 (18 r’ r* ' l ' ‘T 1.2 1.6 2.0 Sodium sulfite conc.(x100,M) 800- 600- 400- Relative intensity 2004 O I I T r r F 0.0 1.0 2.0 3fo ' do ' 5:0 ' {a r 7fo t are 3.0 [305] x100,M Figure 6.3. The effect of sodium sulfite and SDS on the RTP intensity of naphthalene. naphthalen optimum cc in the 1 intensity 4.5x10‘2 1 The red be explai of heav: concentra concentr: will re31 singlet : dynamic affect t that ‘th. more dii less co more po higher MS-RTP Exci biphen. 6.5. T- avoid cOncen 9“<1 0. 130 naphthalene, various amounts of SDS were added to find the optimum concentration of SDS. The maximum RTP was observed in the 1.5x10'2 - 4.5x10"2 M concentration range. RTP intensity began to decrease at SDS concentrations above 4.5x10"2 M, as shown in the lower graph of Figure 6.3. The reduced RTP intensity at a high SDS concentration can be explained in several ways. It is expected that the number of heavy atoms per micelle» ‘will decrease as the concentration of SDS increases. As a result, the effective concentration of the heavy atom will be decreased, which will result in reduced spin-orbital interaction between the singlet molecules and heavy atoms. Also the size, shape, and dynamic motion of the micelle ‘will change, which could affect the stability of triplet molecules. It was reported that the removal of dissolved oxygen by sodium sulfite is more difficult at a higher surfactant concentration than at less concentrated SDS concentration (11). Also, there are more possibilities of RTP quenching by impurities of SDS at higher SDS concentration. MS—RTP Spectra of Polyaromatic Hydrocarbon Molecules. Excitation and emission spectra of naphthalene, pyrene, biphenyl, and 2-bromonaphthalene are shown in Figure 6.4 and 6.5. The concentrations of lumiphors are kept at 5x10'5 M to avoid any undesired quenching processes due to high sample concentrations. MS-RTP spectra were obtained in 0.05 M SDS and 0.01 M sodium sulfite with 15 mM TlNOa. 430 Figure bromont excita‘ mmama a 190 O 230 242 254 mmm >5 ufllflhln U>nbu r4... RELAY IVE INTENSI I" RELAY IVE INTENSITY ‘n‘fl 131 A AAA 450 evvv i lvvv I goo , l 900 r- 000 - 600 -' 3: 700 a 700 '- E .2 sec ‘5‘ coo 300 ~ g 300 .00 l- ‘3 400 .1 300 - 3 zoo 200 l- 200 - 100 - 200 230 2‘2 2:: 266 :7! 2190 302 31‘ 326 3;. 350 230 270 290 310 330 330 370 3190 410 430 HAVELD‘THOOI) UAW“! (NM 900 - 900 - 600 i- no P 700 v- I): :2; 700 )- soo b E.‘ coo )- 2 50° L g :00 - 4 aoo {- 3 300 _ 1°° ‘ zoo i no 439 450 490 :20 sea can no w m m 53° :50 51,0 5;” 5:0 :3. “a a. duo 7‘“ ammo.» “mm“, Figure 6 . 4 . Exc itat ion and emission spectra of 2- bromonaphthalene (A,C) and pyrene (B,D). A and B are excitation .spectra and C and D are emission spectra. 730 0 «u M S e - 2 Q r \I d IO. M u c n n... «mmmommmmm Rana >hnguulu $321..”- ommmmmmmm .‘ ’Dd‘IUFz- "IF‘|¢ ""l 1 "'7 7 90° . ”or ‘ ; coo coo- \ t: t i I ‘E 700 = 700 f ‘ z goon Scoot- - 3 l 1: 50° 7' 300 P = .>. ! 340°. Eml. 3300- 3300';- 200' 2001- 200 P 100 ¥ __ L l—.—L_;—-L l ‘ 0 $41. L L A 230 260 270 260 290 300 310 320 330 3‘0 15° 23° 24; 254 255 27' ago 302 3:4 325 33g IAVELENGTHTNNT A--- I"' IAVELEN‘THTNII A B 500 L RELATIVE INTENSITY 100 - 330 ISLATTVI TNTINIITV L 400 423 ‘30 Figure 6.5. ‘75 $00 $23 550 573 600 625 630 NAVILEN‘flNOOO c D Excitation and emission spectra of naphthalene (A,C) and biphenyl (B,D). A and B are excitation spectra and C and D are emission spectra. Z-Bromo 527, and 5 has two d showed bromonaph and blue showed f Excitatic polyaromz 6.1. Table 6. Com] Nap] “Suns Alt] Soluti 133 2-Bromonaphthalene showed three broad RTP peaks at 497, 527, and 562 nm. Pyrene strongly absorbs light at 337 nm and has two distinct RTP peaks at 595 and 653 nm. Naphthalene showed a very similar spectral response as 2- bromonaphthalene. RTP peaks of naphthalene are more sharp and blue shifted than that of 2-bromonaphthalene. Biphenyl showed featureless broad peaks at 450, 474, and 504 nm. Excitation and emission spectral characteristics of polyaromatic hydrocarbon compounds are summarized in Table 6.1. Table 6.1. MS-RTP Spectral Characteristics of Selected PAHs. Compound Name Excitation (nm) Emission peaks (nm) Naphthalene 293 481, 513, 552 Pyrene 337 595, 655 2-Bromonaphthalene 298 497, 527, 567 Biphenyl 281 450, 474 MS~RTP Lifetimes of Polyaromatic Hydrocarbon Molecules. Although triplet lifetimes of organic compounds at low temperature are well established, RTP lifetimes in micellar solution may vary from system to system. This is attributed to the fac in dynami quenchers be used f better, i decay kin Almgrer micellar It was strongly core of from SD assumed in the l Bol ihospho: length 3(News was a PrObe a Clln1 analyt. failed due t, cases. in the DOne 134 to the fact that triplet molecules in micellar solution are in dynamic equilibrium with various sources of triplet quenchers. This is a serious problem if RTP lifetimes are to be used for analytical purposes. To understand this problem better, it was necessary to study the microenvironment and decay kinetics associated with the triplet state. Almgren et al (12) proposed a decay kinetic model in the micellar system using SDS and nitrate as triplet quencher. It was found that the phosphorescence lifetime depends strongly on the exit rate of the probe molecule from the core of the micelle. The exit rate of 1-bromonaphthalene from SDS micelle was determined as 2.5x10‘4 3‘1. They assumed that the main quenching of the excited state occurs in the bulk aqueous phase. Bolt and Turro (13) studied the exit rates of phosphorescent detergent probes with varying hydrocarbon length from host micelles using Co(III) hexamine as an aqueous soluble triplet quencher. The log of the exit rate was a linear function of the number of methylene in the probe alkyl chain. Cline Love et a1 (14) extended a kinetic model of micelle- analyte interactions to several limiting cases. But they failed to present experimental data to support their model due to experimental difficulties involved in the limiting cases. The limiting cases of their model involved quenching in the bulk aqueous phase as well as inside the micelle. But none of the previous models accounts for the quenching process a external 1 MS-RTP sensitive PAHs are concentre concentr: increase Table 6. Compor Napht Z-Bro Biphe PYrel * All [Nazso calcul Coeffi 135 process at the micellar surface and the effect of the external heavy atom source. MS-RTP lifetimes of PAHs in micellar solution are very sensitive in: environmental conditions. MS-RTP lifetimes of PAHs are found to increase as increasing surfactant concentration up to 0.05 M. At higher surfactant concentrations, they decreased indicating the possible increase in impurities in surfactant solution. Table 6.2. MS-RTP Lifetimes of Selected Arenes. Compound Excitation(nm) Emission(nm) Lifetime(ms)‘ Naphthalene 290 511 1.25:0.07 2-Bromonaphthalene 293 527 0.82:0.08 Biphenyl 280 475 1.12:0.07 Pyrene 337 595 8.31:0.05 * All sample concentrations were 5x10'5 M, [SDS] = 0.05 M [NazSOa] = 0.02 M, [TlNOa] = 0.025 M. Above lifetimes were calculated with linear least-squares method and correlation coefficients were above 0.998 in all cases. MS-RTP lii MS-RTP li: are shown These M reported RTP 1ife1 several < Kalyanasr lifetime: Their re ms range values. The systems to envi1 oxygen, sample Figur and FY: lines . line, used t: 33 can over t naphth With ( RTP lj 136 MS-RTP lifetimes of PAHs were measured at room temperature. MS-RTP lifetimes of selected PAHs under optimum conditions are shown in Table 6.2. - These MS—RTP lifetimes are considerably longer than other reported lifetime values. Cline Love et al (15) reported MS- RTP lifetimes of selected PAT-Is. Their reported values for several compounds rarely exceed 1.2 ms. On the other hand, Kalyanasundaram et al (16) observed much longer MS-RTP lifetimes of several PAHs in various surfactant solutions. Their reported MS-RTP lifetime values lie between 1.2 - 20 ms range, which are, in some cases, much longer than our values. The differences in MS-RTP lifetimes among different systems indicates that RTP lifetimes are extremely sensitive to environmental conditions. The concentrations of dissolved oxygen, heavy atom, temperature, and other impurities in the sample solution directly affect the observed RTP lifetime. Figure 6.6 shows triplet decay data of naphthalene (upper) and pyrene (lower). Dotted lines are raw data and solid lines are simulated data. The RLD method generates base line, decay lifetime, and initial intensity which can be used to simulate the decay data. The RLD method works well, as can be judged visually in the overlapped data plotted over the noisy raw data. The calculated RTP lifetime of naphthalene in 0.02 M SDS and 0.04 M TlNOs was 0.486 ms. But with decreased concentrations of heavy atoms, much longer RTP lifetimes were observed (Table 6.2). The RTP lifetime of scum W Pyren, fer napht 137 U summons" 0 assassins: a at 9 8 8 7% i E '8 '3 WWW §t§§§§§ “ 8 I l 4 J. J L ”00 I“ m me 15600 woo woo woo we m Figure 6.6. MS-RTP decay of 5x10’5 M naphthalene (upper) and pyrene (lower). Solutions were deoxygenated with 0.01 M sodium sulfite, and the concentrations of SDS were 0.05 M for both, the concentrations of T1’ were 0.04 M for naphthalene and 7.5x10‘3 M for pyrene. pyrene in ms, which five time The e' investiga lifetime The RTP the RTP . as tempe‘ 6.3. Table 6. Temp 15 20 25 30 35 * Sam] sulfit 0.035 138 pyrene in 0.03 M SDS and 7.5x10'3 M Tl‘ solution was 11.2 ms, which is 10 times (longer than Cline Love’s value, but five times shorter than Kalyanasundaram’s value. The effect of temperature on the MS-RTP lifetime was investigated. The changes in RTP intensity and triplet lifetime were monitored at different solution temperatures. The RTP intensity of pyrene decreased from 656 to 468, and the RTP lifetime also decreased by 19% from 6.02 to 4.89 ms as temperature increased from 15.0 to 35 h as shown in Table 6.3. Table 6.3. The effect of temperature on RTP of pyrene. Temp. (C) RTP intensity RTP lifetime (ms)‘ 15 656 6.02:0.03 20 590 5.3630.04 25 532 5.02t0.04 30 502 4.9310.06 35 468 4.8920.06 * Sample solutions were deoxygenated with 0.02 M sodium sulfite and concentrations of SDS and Tl‘ were 0.05 M and 0.035 M, respectively. Excitation=337 nm, emission=595 nm. These . intensity consistan control c The eff was also source. ' micellar sensitiv lifetime measured Table 6 ‘ [Tl*]x 139 These data shows that temperature affects both the RTP intensity and the lifetime significantly. For accurate and consistant RTP lifetime data, it seems that temperature control of the sample solution is a necessary condition. The effect of the external heavy atom on the RTP lifetime was also investigated using thallium ions as the heavy atom source. The use of an external heavy atom is very common in micellar stabilized RTP. Usually, heavy atoms increase the sensitivity of RTP but decrease the observed triplet lifetimes. The RTP intensity and lifetime of pyrene were measured as increasing the thallium ion concentration. Table 6.4. The Effect of Heavy Atom on RTP Lifetime. [Tl*]x102(M) RTP Intensity Lifetime(ms) ko(=1/lifetime,s‘1) f 0.75 345 11.7030.04 86 1.50 488‘ 9.35:0.05 107 2.25 635 8.30:0.05 121 3.00 717 7.0110.07 143 3.75 - 763 5.8530.07 171 4.50 783 5.65:0.08 177 * [Pyrene] = 5x10'5 M, [SDS] = 0.05 M, [NaZSOB] = 0.025 M. The RTP concentra‘ rapidly ( thallium, other ha continuoc trend we. lifetime: concentr‘ did not was for: sulfite It w functior lifetimt (Figure atom is interce 2560 a1 Other 1 It h lifetil and or even i m°tion intere inter; 140 The RTP intensity increased up’ to 0.06 M thallium ion concentration, while the fluorescence intensity decreased rapidly (Table 6.4). At higher concentrations above 0.06 M thallium, precipitation took place in the solution. On the other hand, the RTP lifetimes of pyrene decreased continuously up to 0.05 M thallium concentration. The same trend was observed with naphthalene even though the RTP lifetimes were rather unstable at lower heavy atom concentrations. The use of silver ion instead of thallium did not work due to a very low solubility of AngOa, which was formed by the reaction of dissolved silver ions and sulfite ions. It was found that the decrease in RTP lifetime is a function of heavy atom concentration. The plot of reciprocal lifetime, ko, versus thallium ion concentration, is linear (Figure 6.7) according to the equation 6.24, where the heavy atom is treated as a triplet quencher. From the slope and intercept of the plot, k-q and k-p were calculated to be 2560 and 65, respectively. This result is very similar to other triplet quenchers, such as nitrite (12). It has been known that heavy atoms reduce phosphorescence lifetimes through spin-orbital interactions (17). The spin and orbital motions of the electrons are not independent, even in atoms with very small nuclear charge. The orbital motion of. the electron induces a magnetic field which interacts with its spin magnetic momentum. This spin-orbital interaction leads to a change in the direction of the spin-' 141 .oAHoo«s mam :« cauadaucoocoo A.Hsv Baud h>aog nsmuo> ocouha no acoumcoo oven usurp po>uomno «o coda .u.c ousmam 8 $32.69; m a. n N . w 0 Fl _ . _ . Pt . L t iuoisuoo 940.: 1(0er angular m state int The exi one, by 1 a long r of the l (18). It T1 and 1 from th' high he been de not enh lifetim transit Whil orbital been p: Variou common respon lifeti Molecx Sourc. the l molec 142 angular momentum of one electron, thereby changing a singlet state into triplet state, and vice versa. The external heavy atom effect may take place in two ways: one, by a complex formation with heavy atom, and another, by a long range interaction through a statistical distribution of the latter molecules around the phosphorescing molecule (18). It has been shown that the rate constants of both 81 + T1 and T1 9 So processes are increased (19). This is evident from the reduced RTP lifetimes of the probe molecules at high heavy atom concentrations. Furthermore, it has also been demonstrated that T1 9 So radiationless transition is not enhanced much and the observed reduction in the triplet lifetimes is mainly due to an increase in the radiative transition probability (20). While various mechanisms to explain the enhanced spin- orbital interaction and the reduced triplet lifetime have been proposed, they are still not well understood (21). The various schemes which have been previously proposed share a common factor in that the singlet state is ultimately responsible for introducing reduced phosphorescence lifetimes. That is, the triplet state of the emitting molecule is mixed with the singlet state of the other. The source of the singlet state can be the same molecule (22), the perturber (23), or* a. charge transfer state of the molecule-perturber complex (24). 4. Conclu RTP 111 of vario1 magnitud heavy at temperat results experime analytiq The quenche treated atoms surface reactic Place decay and ot very d condi1 It lifet diffe drast emplc in u 143 4. Conclusions. RTP lifetimes of PAHs in micellar solution were a function of various environmental factors. A major contributor to the magnitude of the observed RTP lifetimes was the external heavy atom. Also, the method of deoxygenation and solution temperature affect observed RTP lifetime significantly. This results in. different RTP lifetimes under' different experimental conditions, which is undesirable from an analytical point of view. The similar behavior of heavy atoms to other triplet quenchers was striking since heavy atoms are not usually treated as triplet quenchers. It is not clear whether heavy atoms actually’ quench 'triplet molecules at the micellar surface, but it seems quite probable that a main contact reaction between the probe molecule and the heavy atom takes place at the micellar surface. We tried to test the proposed decay kinetics model using other heavy atoms such as silver and other triplet quenchers without heavy atoms. But it was very difficult to obtain consistant RTP data under the above conditions. It is recommended that the use of hp instead of RTP lifetime will give a more valid criterion in identifying different compounds in MS-RTP. The MS-RTP lifetimes may vary drastically" depending on that experimental conditions employed, but knp, which is the triplet decay rate constant in the micelle will give rather consistent values. 1. Winefc 2. Dema: Academic 3. Bouti 51, 1384 4. Gugge 5. Marge C. H., T 6. Laid New Yor 7. Baco 8. Woo. Chem., 9- Bal. 10. 01 Chem., 11. Di 58, 14 12 Al Soc., 13. 1 4029. 14. ¢ Chem 144 CHAPTER VI REFERENCES 1. Winefordner, J. D., Acct. Chem. Res., 1969, 2, 361. 2. Demas, J. N., Ekcited State Lifetime Measurements, Academic Press, New York, 1983. 3. Boutilier, G. D.; Winefordner, J. D., Anal. Chem., 1979, 51, 1384. 4. Guggenheim, E. A., Philos. Mag., 1926, 2, 538. 5. Margerison, D., Comprehensive Chemical Kinetics, Banford, C. H., Tipper, C. F. H., Eds.; Elsevier, New York, 1969. 6. Laidler, K. J., Chemical Kinetics, 2nd Ed.; McGraw-Hill, New York, 1965. 7. Bacon, J. B.; Demas, J. N., Anal. Chem., 1983, 55, 653. 8. Woods, R. J.; Scypinski, S.; Cline Love, L. J., Anal. Chem., 1984, 56, 1395. 9. Ballew, R. M.; Demas, J. N., Anal. Chem., 1989, 61, 30. 10. Cline Love, L. J.; Habarta, J. G.; Dorsey, J. G., Anal. Chem., 1984, 56, 1132A. 11. Diaz Garcia, M. E.; Sanz-Medel, A., Anal. Chem., 1986, 58, 1436. 12 Almgren, M.; Grieser, F.; Thomas, J. K., J. Am. Chem. Soc., 1979, 101, 279. 13. Bolt, J. D.; Turro, N. J., J. Phys. Chem., 1981, 85, 4029. 14. Cline Love, L. J); Habarta, J. G.; Skrilec, M., Anal. Chem., 1981, 53, 437. 15. Skril 1559. 16. Kalya Phys. Lei 17. McGy Chem. Ph. 18. Ebar Japan, 1 19. Hum Lett., 1 20. E181 42, 794 21. Cha 42, 194 22. let 32, 596 23. Ho: 245 M“ 145 15. Skrilec, M.; Cline Love, L. J., Anal. Chem. 1980, 52, 1559. 16. Kalyanasundaram, K.; Grieser, F.; Thomas, J. K., Chem. Phys. Lett., 1977, 51, 501. 17. Mcnynn, S. P.; Sunseri, H.; Christodouleas, N., J. Chem. Phys., 1962, 37, 1818. 18. Ebara, N.; Yajima, Y.; Watanabe, H., Bull. Chem. Soc. Japan, 1979, 52, 2866. 19. Humphry-Baker, K. R.; El-Sayed, M. A., Chem. Phys. Lett., 1978, 58, 207. 20. Eisenthal, K. B.; El-Sayed, M. A., J. Chem. Phys., 1965, 42, 794. 21. Chaudhurl, N. K.; El-Sayed, M. A., J. Chem. Phys., 1965, 42, 1947. 22. Isubomura, H.; Mulliken, R. S., J. Am. Chem. Soc., 1966, 82, 5966. 23. Hoijtink, G. J., Mol. Phys., 1960, 3, 67. 24. Murrel, J. N., Mel. Phys., 1960, 3, 319. Room-‘ from th: 'which i nitrogel numerou various micelle cYclode microc1 lespec: enviro: other to an Ph: molec\ been I cy0104 °P8an is no withi USua] 146 CHAPTER VII ROOM-TEMPERATURE PHOSPHORESCENCE 0F COMPOUNDS IN MIXED ORGANIZED MEDIA: SYNTHETIC ENZYME MODEL-SURFACTANT SYSTEM Room-temperature phosphorimetry (RTP) is quite different from the classic low temperature phosphorescence technique 'which is typically performed in glass matrices at liquid nitrogen temperature (1). Since the discovery of RTP, numerous techniques have been developed to induce RTP from various molecules. These include solid-state RTP (2), micellar-stabilized RTP (3), sensitized RTP (4), cyclodextrin-enhanced RTP ( 5 ) , and colloidal or microcrystalline RTP (6). The probability of observing RTP (especially in solutions) is enhanced in a rigid molecular environment due to a reduced quenching effect.by oxygen or other impurities, and in the presence of a heavy atom, due to an increase in the rate of intersystem crossing. ‘Photophysical and photochemical properties of organic molecules included in the cavity of cyclodextrins (CDs) have been of considerable interest in the past decade (7). Cyclodextrins form complexes with hydrophobic organic and organometallic molecules in aqueous solution. Although there is no direct proof for a fixation of the guest molecules within the void space of the cyclodextrin, the complexes are usually regarded as inclusion compounds, host-guest compounds and hydrt (8). Whe1 molecule: lifetime from que The azaparac capable a vari: azapara' 2,11,20 tetrafl host tc Specifi functiq the we quarte In t naPhtt bromo: methyj bindi forma molec surf: 147 compounds, in which hydrogen bonding, van der Waals forces, and hydrophobic interactions are the main binding forces (8). When lumiphores are included inside the cyclodextrin molecules, the resulting RTP shows enhanced intensity and lifetime because the cyclodextrin protects the lumiphores from quenchers (9). The synthetic macrocyclic enzyme model compounds, azaparacyclophanes (APCs), can also act as inclusion hosts capable of molecular organization by forming complexes with a variety of hydroPhobic molecules (10). Water-soluble azaparacyclophane (APC), N,N,N’,N’,N",N",N’",N’"-octamethy1- 2,11,20,29-tetraaza[3.3.3.3]paracyclophanetetraammonium tetrafluoroborate (methyl-APO), is an excellent inclusion host toward certain organic substrates. A unique substrate specificity was observed due to its cavity size and functionality (11). The macrocyclic cavity is surrounded by the wall, which is formed by four benzene rings and four quarternary ammonium residues around the macrocyclic ring. In this chapter, RTP results of anionic, 6-(p-toluidiny1)- naphthalene-Z-sulfonate (TNS) and the neutral compound, 2- bromonaphthalene in premicellar surfactant solutions using methyl-APO and cyclodextrin as host, _ are described. The binding ability and selectivity of methyl-APO in complex formation with anionic and neutral polyaromatic hydrocarbon molecules in a mixed organized media, methyl-AFC - surfactant, are also discussed. A. EXPERI 1. Materi Reagents Sodiun water. bromide (99%, S: l-napht] 6-tolui' (Aldric Methano Purific sample Th tereph tetraf methyl used Distij SYnth. APpar A Spec1 Spec‘ 148 A. EXPERIMENTAL SECTION 1. Materials and Methods. Reagents: Sodium sulfite (J.T. Baker) was recrystallized from warm water. Thallium(I) nitrate (99.999%, Aldrich), sodium bromide (99.9%, J.T. Baker), sodium dodecyl sulfate, SDS (99%, Sigma), 2-bromonaphtha1ene (97%, Aldrich), 8-anilino- l-naphthalene sulfonic acid, ANS, ammonium salt (Aldrich), 6-toluidino—2-naphtha1ene sulfonic acid, TNS, potassium salt (Aldrich), and B-cyclodextrin(Sigma) were used as received. Methanol (GR grade, EM Science) was used without further purification. Distilled and deionized water was used for RTP sample preparation. The compounds, d ,a‘-dibromo—p-xylene(98%, Aldrich), terephthaloyl chloride (97%, Aldrich), trimethyloxonium tetrafluoroborate (Aldrich), LiAlH4 (Aldrich), and methylamine (40% in water, Matheson Coleman 8:. Bell) were used to synthesize the methyl-APO as described below. Distilled. benzene was ‘used as a solvent throughout the synthesis experiment. Apparatus: All spectra were obtained with a.IPerkin-Elmer LS-SB spectrometer. The chart recorder output (1 V maximum) of the spectrometer was amplified 10 times and digitized by an IBM- PC data a computer. luminesce The rang 0003-000 Sample I The m highly < ,by Tabu deoxyge M) to t To a lumiphc solutic distil soluti and th With Spectl RTP 11 for a 2. s! In °Cta1 149 PC data acquisition board installed on the IBM-KT compatible computer. Laboratory' written software was used for the luminescence data acquisition and data manipulation (12). The range of delay and gate times for RTP measurements was 0.03-0.05 ms and 1-3 ms, respectively. Sample Preparation and General Procedure. The macrocyclic compound, methyl-APO, was synthesized in highly dilute conditions according to the reported procedure ,by Tabushi et a1 (11). The sample solutions for RTP were deoxygenated by adding sodium sulfite solutions (0.01 - 0.04 M) to the sample solution as reported by Garcia et a1 (13). To a 10 mL volumetric flask, appropriate aliquots (of lumiphor, sodium sulfite, heavy atom, and surfactant solutions were added and diluted to 10 mL final volume with distilled and deionized water. After thorough mixing, the solution was transferred to a cuvette with a Teflon stopper, and the RTP intensity was monitored at the emission maximum with the appropriate excitation wavelength on the spectrometer. Uncorrected spectra were obtained after the RTP intensity reached the steady state and remained the same for at least 5 minutes. 2. Synthesis of Azaparacyclophane. In this research a simple APC , N,N,N’,N’,N",N",N’",N’"- octamethyl-Z,11,20,29-tetraaza[3,3,3,3]paracyclophanetetra- ammonium model has dimethyl' Macrocyc dimethyl dilute c EM360 n: were US! N,N’-Di Ga: methyla througi L thre‘ Thus t‘ (150 g P-xyle gentle 2 h s evapo: 30% a times drOpp combj Salt' °bta. “ate 150 ammonium tetrafluoroborate (methyl-APO), was chosen as a model host compound. For the synthesis of methyl-APO, N,N’- dimethyl-p-xylenediamine was synthesized first (Figure 7.1). Macrocyclic ring was obtained by the condensation of N,N’- dimethyl-p-xylene with terephthaloyl chloride in a highly dilute condition. For the analysis of the compounds, Varian EM360 nmr spectrometer and Nermag RIO-10 mass spectrometer were used. N,N’-Dimethy1-p-xy1enediamine (1). Gaseous methylamine generated by dropping aqueous methylamine solution (40 %) into the solid KOH, was passed through a drying tube (KOH) and trapped as a liquid in the 2 L three-neck flask which was cooled by dry ice in acetone. Thus trapped methylamine solution was collected up to 200 mL (150 g). To this methylamine solution, 66 g (0.25 mole) of p-xylene bromide in 600 mL of THF was slowly added under gentle stirring for 6 h at -15 - -20'C. After an additional 2 h stirring, THF and excess amounts of methylamine were evaporated, and the residue was made strongly alkaline with 30% aqueous NaOH solution. The product was extracted three times with 200 mL ether. The HCl gas, which was generated by dropping conc. H2804 into conc. HCl, was introduced into the combined ether solution to obtain the precipitate (2HCl salt) of N,N’-p-xy1enediamine. The final product was obtained by recrystalization from the 3:1 (v/v) ethanol- water solution (yield 62 X). The N,N’-p-xylenediamine was en, en, use piElite '2 . 11 , tetrai 151 CHzflr CH, NHCH; o T" + ZCHSNH2 CHzBr ' CH 2NHCH; 1 :0: CHINHCHs COCI Benzene 20 + CHzNHCHs 600! .0? , o 0 2 LIAIH lDloxone 1 , 00 \ /N' on, H,c _ Me308F4 4ar4 cu ,clz /CH3 H3cx' N+ N* / \ use ca, “3 "3 4 3 Figure 7.1. Synthesis of N,N,N’,N’,N".N".N.’".N’"-octamethy1 -2,11,20,29-tetraaza[3,3,3,3lparacyclophanetetraammonium tetrafluoroborate. recovered strong a ether. 1 product N,N’ ,N". azal3,31 Ring prevent was pl stirrir 8. 0.0( in eac hot be mainta couple The r« 0f d: colle was 0 mg c7011 a 25 0.7g ref] 152 recovered when needed by dissolving it into water under strong alkaline (pH 12) and by extraction with anhydrous ether. Evaporation of the solvent gives a yellow oily product 1. N,N’,N",N’"-Tetramethy1-1,12,19,30,tetraoxo-2,11,20,29-tetra aza[3,3,3,3]paracyclophane (2). Ring closing was done under highly dilute conditions to prevent unwanted polymer byproducts. Distilled benzene (2 L) was placed in a three-neck flask and refluxed under stirring. Reactant solutions of terephthaloyl chloride (1.5 g, 0.007 mole) and N,N’-p-xylenediamine (2.5 g, 0.015 mole) in each 250 mL dropping funnel were added dropwise to the hot benzene solution for 8 h, whose dropping rates were maintained as equally as possible. After this addition was complete, the mixture was refluxed for an additional 2 h. The resulting hot solution was filtered to remove the salt of diamine and evaporated under vacuum. Residues were collected using chloroform. The final product 2(white solid) was obtained by recrystalization in dioxane (yield 11 %). N,N’,N",N’"-Tetramethyl-Z,11,20,29-tetraazal3,3,3,3]para cyclophane (3). A mixture of 200 mL dioxane and 2.2 g LiA1H4 was placed in a 250 mL flask and refluxed under stirring. To this mixture 0.7821 g of 2 was added in small portions for 30 min and refluxed for 2 days. To the reaction mixture, 3 mL NaOH 153 (15%) and 6 mL water were added slowly to convert the excess LiAlHe into Li(OH)2, which is a white solid in dioxane. After an additional 1 h refluxing, solution was filtered to remove the white solid. The final product 3 (white crystals) was obtained by recrystalization in methylene chloride (yield 20 %). The nmr and mass spectrum of 3 are shown in Figure 7.2 and Figure 7.3, respectively. N,N,N’,N’,N",N",N’",N’"-Octamethyl-Z,11,20,29-tetraaza [3,3,3,3]paracyclophanetetraammonium tetrafluoroborate (4). 0.32 g of 3 and 0.4 g of trimethyloxonium tetrafluoborate were dissolved in a 200 mL dioxane and stirred for 6 h at room temperature. The product precipitated from the solution as a white powder and was filtered and combined with additional crop, which was obtained by the concentration of the filtrate solution one fifth by volume. Recrystalization from 1:1 (v/v) acetonitrile-water gave a colorless crystal of 4 (yield 55%). .ocmfim0a0hodhoamm.m.m.macwoohucu -mm.o~.as.mnassumesnuueu=.z.=z..z.z ssnuoonm mzz m.s enemas c 64 Oh oh ed sis an ...... 154 ....... fix.- .e-v'nm‘; once e . . .. ..u .qs ”w. .....W. a. o~ o. ..... 0.0.... 0......- 00...... .................. a ..qu e ..- . . ...... ...- .. 00-. o n o O lasts 3 . .e e . e . . . e .. e on u”. e. “ eee . e . , u o 155 263 26:“ .o:s:ao~oaoouoann.n.n.nacuadhaoa -a~.o«.a_.~-~»euosanaoe-:.z.=z..z.z asaaooaa can: a.» ensues «.5» 3r. .... e 09 J... m). a an" Dub D D D F. bl. D .- D b D Pin F b b - .1?!th h D L D b P b»! n b -h n D b r. p rhlb! I . :n a... . m 2.. :0 “mM.-4&4 l A .. __ a I «a .../soil . . . .oxfi 1 fl @ . r 4 . . J5\~/ul©l\~/O.z on. L -oea. 2 .. ES... 8. E a. 4 2. a; n.ao:so an .8 . . an“ a... use a. .32 53 .288“ as. 156 B. RESULTS AND DISCUSSION The interesting characteristics of enzymes have stimulated chemists to design and‘ synthesize various kinds of enzyme models which can show enzyme-like behavior (14). Substances capable of functioning as enzyme models or receptors should have binding sites or molecular cavities and functionalities so as to be able to form inclusion complexes. The substrate specificity of enzymes is controlled largely by the specific reaction pathways, the geometry of the substrate, and the shape and size of the substrate. The methyl-APO molecules used in this study have a cavity surrounded. by four jpositively charged. active sites. The unique molecular shape of methyl-APO resembles a "square box" (Figure 7.4), and the cavity size is 5.5-7 A wide and 6 A deep (15). The box-like opening of the methyl-APO can vary in size, due to the single-bond character .of’ the four quarternary nitrogen atoms and adjacent hydrocarbon chains, to include guest molecules of various size by "induced—fit binding” (16). Association constant or complex formation constant between host and guest molecules can be measured from steady-state fluorescence intensities. The underlying theory for employing steady-state fluorescence intensities to calculate equilibrium constants have been reported by Benesi (17) and Bright (18). For a simple 1:1 host-guest complex, an equilibrium will exist between the fluorescent substrate, S, 157 -035;er co 2.6-TNS 1.8-ANS Figure 7.4. Simplified structural representation of host molecule, methyl-AFC (upper), and anionic guest molecules. 158 and the host macromolecule M. M + S :::::: MS (7.1) The equilibrium constant, K, is expressed as K = [MS] / [M][S] (7.2) Substituting mass balance expressions for S and M, one obtains K = [M8] / {([Mli-[MS])([S]1-[MS])} (7.3) where [M11 and [$11 are the initial concentrations of the host and substrate, respectively. If the condition is made so that [M]1 >> [[MS] then equation 7.3 can be written as K = [MS] / [M]1([S]1-[MSl) (7.4) We assume that the fluorescence enhancement of the probe in the observed spectrum, after addition of host, is due only to the presence of the MS complex. The quantum yield expression for the complex is given by Q = F / k[MS] (7.5) 159 where Q is the quantum yield for complex MS, F is the fluorescence intensity of MS, and k is an instrumental constant. By substitution of equation 7.5 into equation 7.4 and rearrangement, one obtains following final relation. [S]: / F = (kQ)‘1 + (KkQ)'1([M]1)"1 (7.6) This equation is now in the form, y=ax+b. Thus, a reasonable estimation of K can be obtained from a plot of [S]1/F versus l/[M]1, by simply dividing the intercept by slope. Fluorescence Enhancement of Lumiphors by APC. The fluorescence probe molecules, ANS and TNS, are substituted naphthalene family that have found extensive use as fluorescence probes due to their highly sensitive nature towards hydrophobic binding (Figure 7.4). They normally show very weak fluorescence in aqueous solutions, but are highly fluorescent when bound to bovine serum albumin or to several proteins (19). The binding ability of the methyl-APO molecule was tested with ANS and TNS in aqueous solutions. Figure 7.5 shows the change in fluorescence spectrum of guest molecules on addition of the host molecule, methyl- APC. The fluorescence intensity of TNS (2.5X10‘5 M) in water was negligible (bottom), but it increased by a factor of twenty upon the addition of B-cyclodextrin (1X10" M) with an emission maximum at 470 nm. Upon addition of methyl-AFC (1X10‘4 M), the fluorescence intensity of TNS was enhanced 160 1000 900 - 700 - 500 - RELATIVE INTENSIIV 400 5 two - f- a x‘ \ zoo » p“ . “~e“ 100 r ’3‘ 400 425 450 47s :00 525 550 575 600 525 WAVELENGTH M 650 m1 700 - 600 b 300 e RELATIVE INTENSITY 400 _ s... 300 1- 2° 0 ’ ...: e\ we - f o ‘ ’ ...l. 17 l ._J_.._____L______..L .... 330 377 40‘ ‘31 43. ‘35 512 339 588 393 MANELENEHHOOQ Figure 7 . 5 . Fluorescence enhancement of ANS (2 . 5X1 0‘ 5 M , excitation=375nm, upper spectrum) and TNS (2.5X10‘5 M, excitation=337nm, lower spectrum) on addition of 1X10" M of b-cyclodextrin (dotted line) and methyl-AFC (upper solid line). 161 more than twice that with R-cyclodextrin (B-CD), and the peak maximum blue shifted to 460 nm. Also with the methyl- APC, the fluorescence peak became narrower than that with B-CD. The same trend was observed when ANS was used as a guest molecule instead of TNS. Upon addition of B‘CD (1X10" M) to the ANS (2.5){10‘5 M) solution the fluorescence intensity of ANS increased by a factor of two, but when the same concentration of methyl-APC was added, the fluorescence intensity increased by a factor of five. The fluorescence peak blue shifted 8 nm with K-CD, and 25 nm with methyl-APC when compared to the emission maximum of ANS alone. Plotting the fluorescence intensity of guest molecules against the reciprocal of the concentration of APC according to the equation 7.6, produces a straight line as shown in Figure 7.6. The association constant of ANS was calculated from the slope and intercept value to give 1.6X104/mole. This value was much greater than the association constant of ANS with B-CD. The association constant of ANS with B’CD was reported recently by Catena et a1 (20) to be 110/mole at 25 ‘c. The spectral changes are due to the changes in the microenvironment of the ANS or TNS molecules. In both cases, methyl-APO showed a larger blue shift and a greater fluorescence enhancement than B-CD. These data suggest that methyl-AFC molecules provide stronger and more hydrophobic binding sites for TNS and ANS molecules than B—CD. 162 .xoaaaoo om< I «24 you noun «ecosmwoos cannon .c.p ousuum $12.70 3 8a,? _ ON 9. ow m a P. ~ b — n h L — in o ION r -3 1W 1 N rem B / . l: .8 ) t w 0 10°F 0 .. 6 ( [one to: r 163 RTP Enhancement of Lumiphors by Host. If the host. molecules. can. provide an. environment to protect excited triplet state molecules from quenching, it is expected that the resulting phosphorescence will increase. Sample solutions were made for the observation of RTP with various amounts of methyl-APO or B-CD. The TNS solutions for RTP were deoxygenated with sodium sulfite (0.04 M) and, thallium nitrate (0.02 M) was used as an external heavy atom source. With the above conditions we could not observe any RTP of TNS. However, RTP of TNS began to show up when premicellar concentrations of SDS were added to the solution mixture. RTP enhancement of TNS (2.5X10'5 M) are shown in the upper spectrum of Figure 7.7. The RTP intensity of TNS increased by a factor of two when methyl-APO (0.1 mM) was added to the sample solution. containing the premicellar concentration of SDS (5 mM), but it decreased slightly when the same concentration of B-CD was added to the solution. There were no noticeable spectral changes of the resulting phosphorescence when either host was added. In the case of .2-bromonaphthalene under the similar experimental conditions, except for the heavy atom source (NaBr was used instead of TlNOa), the RTP intensity of 2- bromonaphthalene also increased on addition of the host molecules. But again, the methyl-APO showed better RTP enhancement as shown in the lower spectrum of Figure 7.7. _‘ 164 1000 we no r 700 '- RELAIIVE INIENSIIY --...-J \ _ J ._ ’ 450 400 510 540 570 600 630 660 880 720 750 MAVwCTH m 1000 900 P 000 '- = 700 » H 5 E 600 r H In 2 mm p’\g : '- s .-"\/‘ .. 400 P 3.. mo - \\\\ ... 1 .. \\' 'x 100 ~ 0 n 4 L L J l_ ' 400 so ‘0 ‘90 can 330 5.0 '10 W 070 700 HAVELDIGTM M Figure 7.7. RTP spectrum of TNS (2.5x10'5 M, upper spectrum) and 2-bromonaphthalene (2.5x10'5 M, lower spectrum) ‘upon addition of 0.1 mM solutions of fl-CD (dotted line) and APC (upper solid line). The bottom solid lines in both spectra were obtained with SDS only. Excitation: TNS=337; ANS=293nm. 165 The RTP of 2-bromonaphthalene could be observed without an external heavy atom ‘by careful sample purification and solution deoxygenation, but the RTP intensity in_that case was much weaker than that with additional external heavy atom. Although the fluorescence of ANS was enhanced by the addition of nmmhyl-APC, we could not observe any RTP from ANS under similar experimental conditions.’ The critical micelle concentration (CMC) for’ SDS is reported to be 8X10"3 M (21). Also, the CMC of SDS was found to increase on addition of B-CD in aqueous solution due to the association of the SDS molecules with 8~CD. This results in a decrease in the amount of available surfactant monomers for micelle formation (20). The concentration of SDS employed was 5 mM, so we eXpect some premicellar aggregates of SDS in a solution without any host. However, we should not expect any micelles in the above solutions containing host molecules. Although methyl-APC was not the only substance responsible for the observation of RTP, it appears that methyl-APC enhances RTP by efficient organization of lumiphors and SDS. The RTP of TNS at SDS concentrations above the CMC still showed enhanced intensity with methyl- APC. The enhancement of RTP intensity on the addition of methyl-APC, strongly indicates that SDS molecules aggregate around the TNS-APC complex through electrostatic and hydrophobic interaction. This provides a favorable microenvironment that stabilizes the triplet state of TNS 166 molecules. It is quite surprising that the RTP of TNS decreased even though fluorescence of TNS increased in the aqueous solution on addition of B-CD. It is believed that the decrease in phosphorescence intensity of TNS on addition of B-CD is due to a preference for the aqueous bulk phase over the neutral cyclodextrin by TNS molecules. Also, the number of available surfactant monomers for TNS in aqueous bulk phase is expected to decrease due to the aggregation of surfactant molecules around the B-CD. The Effect of Host, Heavy Atom, and SDS on RTP. The effect of host concentration on RTP was studied at fixed concentrations of SDS, lumiphor, heavy atom, and sodium sulfite. The concentration of host was varied from 0 to 0.6 mM and the concentration of SDS was maintained at 5 mM. As increasing the concentration of methyl-APC, the RTP intensity of TNS steadily increased up to. 0.3 mM and decreased thereafter. The same trend was observed with 2- bromonaphthalene. On the other hand, the RTP intensity of TNS continuously decreased when increasing the B-CD concentration as shown in the upper graph of Figure 7.8. The decrease in RTP intensity of TNS above 0.3 mM may be due to an impurity of methyl-APC and decrease in the number of SDS molecules available for methyl-APC molecules. The increase in the SDS concentration with the fixed amount of heavy atom and sodium sulfite enhanced the RTP intensity of lumiphors up to an SDS concentration of 0.1 M. 167 700? ...: 5004 .00: soo~ 200d Relative RTP intensity 100‘ x—x CO H APC l ' T ' r ' r r 0 10 20 30 40 50 60 [HOST] (x1 05.14) 400- 350- J 300- 250d 200- 150- Relative RTP intensity 100- 50- 0 '7 f T I 1' r g g T T I' r I T Y F t T rfi o , so . 100 150 200 [303] (x103.M) Figure 7.8. The effect of host (upper graph) and SDS (lower graph) on the RTP intensity of TNS (2.5x10f5 M). 168 Beyond this the RTP intensity began to decrease. This type of change in RTP intensity was also observed in micellar stabilized RTP of many PAHs. But, the inflection point of SDS concentration at which RTP intensity starts to decrease normally lies in the 0.04-0.05 M range, which are much lower than that of methyl-APC - SDS mixed organized system. The exact mechanism of these RTP changes is not clear at this time, but it seems that the aggregation of SDS around the methyl-APC plays a major role. Adsorption of surfactant monomers on a hydrophilic solid surface such as silica has been observed by studying the fluorescence decay of pyrene dissolved in surfactant-silica media (23). The preposed models on the basis of the adsorption data admit the existence of condensed (or organized) molecular assemblies on the surface, either in the form of micellar-like aggregates (hemimicelles) or in the form of a more extended lamellar phase (24). The effects of heavy atoms on the RTP were quite interesting. No RTP of TNS was observed from anionic TNS with bromide ions as an external heavy atom source. In the case of nonionic 2-bromonaphthalene, both Br' and Tl‘ enhanced RTP, but the bromide ions ‘enhanced the RTP intensity more than twice that of thallium ions as shown in Figure 7.9. These data indicate that the effective enhancement of RTP by heavy atoms through intersystem crossing requires a closer approach of heavy atoms to the lumiphors. It is expected that thallium ions cannot approach 169 .3: macadOammwso ME: «mauGOMHusoxm .23 H.ou_omop mam .m.b ouswam 2;. mat. on hm vm «w on n« N« a a n o _ I. . . . . _ _ - "1 H. l r)?! '- 2: nan 02‘ .39 ops .3o 25 coo“ meals: zany-1'31 170 close to the methyl-APC due to the electrostatic repulsions between positively charged sites of the methyl-APC and thallium ions. However, anionic bromide ions can approach closely to the methyl-APC due to attractive forces between them. It is worth noting in Figure 7.9 that the RTP development of 2-bromonaphthalene by bromide ions took more time than with the thallium ions due to the electrostatic interactions of bromide ions with. anionic SDS molecules around the methyl-APC. Sodium sulfite has proven to be an excellent oxygen scavenger in solution (13) even. though the reaction of sulfite ions with oxygen is a slow process in this system. The RTP development with time directly indicates the oxygen consumption process in the sample solution. It appears to be a two-step process in both the bromide and the thallium system. These can be also observed in a highly concentrated micellar solution. The oxygen consumption by‘sulfite ions should be a diffusion controlled process. Also the diffusion process of oxygen in the bulk phase and inside the SDS-APC- lumiphor complex will be different. These data suggest that the solution is composed of two different microenvironments for lumiphors. RTP Decay of Lumiphors. Since the RTP lifetime is extremely sensitive to a molecules’s microenvironment, information about the 171 molecular interaction of the lumiphors in the APC-surfactant mixed media can be obtained from the RTP decay lifetimes. RTP lifetimes of TNS and 2-bromonaphthalene were measured in aqueous solutions containing a heavy atom and 5 mM SDS. RTP lifetimes were calculated with the linear least-squares method. Figure 7.10 shows the change in RTP decay of TNS on addition. of the host. The, RTP lifetime of TNS in SDS solution without any host was 124122.us with a correlation coefficient of 0.999 (dotted curve). In the 0.2 mM B'CD solution, the RTP lifetime of TNS was decreased slightly (lower curve) to 117122 us, as expected from the decreased RTP intensity upon addition of B-CD. But when 0.2 mM methyl- APC was added to the TNS solution, the RTP lifetime of TNS increased (upper curve) to 406120 .113 with a correlation coefficient of 0.999. The RTP decay of 2-bromonaphthalene under similar experimental conditions except for the heavy atom (Br' instead of T1‘), showed increased lifetime on addition of host. The RTP lifetime of 2-bromonaphtha1ene was increased from 412:11,us to 455312.us upon addition of 0.1 mM B'CD and increased further to 5293.36 us with 0.1 mM methyl-APC. Differences in decay lifetimes can generally be attributed to changes in the deactivation pathways of the excited state or changes in the interaction of the excited state with the surroundings (25). The increase in RTP lifetime of lumiphors on the addition of methyl-APC indicates that the microenvironment of lumiphors in the methyl-APC - surfactant 172 .om< :3 «.0 mo sodadpps so .ocwa some. "Quiz... «5 no codeword co .ocwa soupon “poo: o: .o:«~ poauop “AOZas z «°.o us. new as u 5 .2 .538. 2... to 226 a2 .34. 8:62 72.3.3.3... at: 8' a: as. can in 2.. em... a... on. 3 on o ....m....”. . a 1 J . 1 - ............ 4e: .8... ... noon .. . cow 9 o 0 mm mural n 8. 173 mixed media stabilizes the excited triplet state of molecules. D. CONCLUSIONS The comparative RTP study of anionic and neutral lumiphors in a mixed organized media, surfactant-host, has demonstrated that synthetic enzyme model molecules can provide a favorable microenvironment for lumiphors through electrostatic and hydrophobic interactions. Since the host enzyme model molecules are synthetic in nature, a highly selective microenvironment can be obtained by designing host molecules for specific purposes. Consequently, the synthetic enzyme model molecules could open a new avenue for chemical analysis due to their inherent potential for controlled specific host-guest interaction. In the future, such synthetic enzyme model molecules may find appl ications in luminescence , chromatography , biological immunoassay, flow injection analysis, and many other research areas. 174 CHAPTER VII REFERENCES (l) Hurtubise, R. J. Anal. Chem. 1983, 55, 669A. (2) Ward, J. L.; Walden, G. L.; Winefordner, J. D. Thlanta 1981, 28, 201. (3) Cline Love, L. J.; Skrilec, M.; Habarta, J. G. Anal. Chem. 1980, 52, 754. (4) Donkerbroek, J. J.; Elzas, J. J.; Goojier, C.; Frei, R. W.; Velthorst, N. Talanta 1981, 28, 717. (5) Scypinski, S.; Cline Love, L. J. Anal. Chem. 1984, 56, 322. (6) Weinberger, R.; Cline Love, L. J. Appl. Spectrosc. 1985, 39, 516. (7) Ramamurthy, V.; Eaton, D. F. Acct. Chem. Res. 1988, 21, 300. (8) Cramer, F.; Mackensen, G. Angew. Chem. Intern. Ed. Engl. 1966, 5, 601. (9) Turro, N. J.; Bolt, J. D.; Kuroda, Y.; Tabushi, I. Photochem. Photobiol. 1982, 35, 69. (10) Tabushi, I.; Kuroda, Y.; Kimura, Y. Tetrahedron Lett. 1976, 37, 3327. (11) Tabushi, I.; Kimura, Y.; Yamamura, K. J. Am. Chem. Soc. 1981, 103, 6486. (12) Kim, Haidong.; Zabik, M. J.; Crouch, S. R., Appl. Spectrosc. 1989, 43, 608. 175 (13) Diaz Garcia, M. E.; Sanz-Medel, A. Anal. Chem. 1986, 58, 1436. (14) Tabushi, Iwao Tetrahedron 1984, 40(2), 269. (15) Tabushi, I.; Yamamura, K.; Nonoguchi, H.; Hirotsu, K.; Higuchi, T. J. Am. Chem. Soc. 1984, 106, 2621. (16) Murakami, Y.; Nakano, A.; Akiyoshi, K.; Fukuya, K., J. Chem. Soc. Perkin Trans I, 1981, 2800. (17) Benesi, H. A.; Hildebrand, J. H., J. Am. Chem. Soc., 1949, 71, 2703. (18) Bright, F. V.; Keimig, T. L.; McGown, L. 8., Anal. Chim. Acta, 1985, 175, 189. (19) Brand, L.; Gohlke, J. R. Ann. Rev. Biochem. 1972, 41, 843. (20) Catena, G. C.; Bright, F. V., Anal. Chem, 1989, 61, 905. (21) Cline Love, L. J.; Habarta, J. G.; Dorsey, J. G. Anal. Chem. 1984, 56, 1132A. (22) Georges, J.; Desmettre, S. J. Colloid. Interface Sci. 1987, 118, 192. (23) Levitz, P.; Van Damme, H. J. Phys. Chem. 1986, 90, 1302. (24) Cases, J. M. Bull. Mineral 1979, 102, 684. (25) Nelson, C.; Patonay, 6.; Warner, I. M. Appl. Spectrosc. 1987, 41, 1235. 176 CHAPTER VIII CONCLUSIONS AND FUTURE PROSPECTS The ultimate goal of this research was to develop a new RTP methodology using the synthetic enzyme model compounds, the azaparacyclophanes. To carry out this goal two additional areas had to be studied. These were luminescence instrumentation for RTP and RTP lifetime measurements, and the decay kinetics study of triplet state molecules. In this final chapter, the three major research projects are reviewed to draw conclusions. Luminescence instrumentation is discussed first, then the RTP lifetime study of PAHs in micellar solution follows. Finally, the RTP study of PAHs in mixed organized media, APCtSDS system, is described. Also in each section, future prospects for that particular research area is discussed. A. Luminescence Instrumentation. The intended goal of this instrumentation, was to modify a commercial spectrofluorometer, and to develop a computer- controlled, versatile, and flexible luminescence data acquisition and analysis system. This would allow semiautomatic luminescence data (fluorescence, RTP, RTP lifetime) acquisition and analysis with minimal cost. 177 These goals were carried out successfully (1,2), and the details are documented in chapter V. This luminescence instrument shares most of the advantages of the pulsed source phosphorimeter, but does not share the disadvantages of the conventional rotating-can type mechanical phosphoriscope. The major advantages of this instrument over the conventional phosphorimeters are: (1) Fluorescence, RTP, and RTP lifetimes can be measured on the same instrument without additional instrumental modifications. (ii) Unlike the rotating-can type mechanical phosphoriscope, there is no limitation on the time discrimination procedure. Delay time and gate time can be easily changed by software, without adjustment of the rotating speed of the chopper. (iii) This instrument gives equally good performance in RTP land RTP lifetime measurements for short-lived and long-lived phosphors. By changing the delay 'time, gate time, or rotational speed of the chopper, one can obtain an optimum detection time window. (iv) This instrument gives a more reliable reproducibility and less RF (radio-frequency) interference than a pulsed source, due to a chopped continuous source. (V) Finally, this instrument is controlled by a low-cost IBM-XT compatible personal computer. Luminescence data are acquired and manipulated easily on site. The biggest and most persistent problem of this instrument was an unstable Xenon-arc lamp. In the worst case, the —; 178 source intensity fluctuated up to 20% of its maximum intensity. We could not replace the source because that spectrofluorometer model (SPF-500) had been discontinued by the manufacturer. Also, the use of the slow ADC board and a computer did not allow the measurement of fluorescence lifetimes. The instrument designed for this research can be improved in several ways with extra investment. Replacement of the unstable high pressure lamp with a high power pulsed laser will give much more power. Also, a fast ADC board and computer will enable the measurement of fluorescence lifetimes. The PMT can be replaced by photodiode array for a high speed multidimensional luminescence data acquisition. In the software part, a spectral library routine could be added for spectral data base applications, such as, compound identification from the obtained spectrum by spectral peak matching. An ideal intelligent instrument could be build by the incorporation of artificial intelligence (3). B. RTP Lifetimes of PAHs in Organized Media. MS-RTP lifetimes of PAHs measured in this system were found to be significantly longer than those of other literature values. Similar results were obtained by other researchers in this field (4). The reason for these longer RTP lifetimes may be explained in several ways. It was found that the RTP lifetimes of PAHs change from system to system 179 depending on the experimental conditions employed. Any comparisons based on the numerical values of the RTP lifetimes could lead to a serious misinterpretation of the obtained lifetime data. Heavy atoms were found to affect observed RTP lifetimes significantly. Today, the use of heavy atoms in RTP is very common. Heavy atoms usually increase the RTP sensitivity while reducing triplet lifetimes. Since oxygen is such an efficient triplet quencher, the deoxygenation method also affects the observed. RTP lifetimes significantly. Sodium sulfite has proven to be a very efficient oxygen scavenger for RTP solution. Unlike conventional frozen phosphorescence samples, every component in the RTP solution is in dynamic equilibrium. As a result, temperatures showed profound effects on the observed RTP. For accurate and reproducible results, precise temperature control of the sample was necessary. The rapid lifetime determination (RLD) method for the calculation of lifetimes gave good results with an unknown background and noisy' data. Even. though. statistical parameters which can judge goodness of the data fit are not available, regeneration of decay data by simulation with the obtained background, initial intensity, and lifetime value, enables direct comparison of the regenerated data with raw data. This RLD method is very fast, and may be adapted for real-time lifetime analysis. 180 Since RTP lifetimes are highly dependent on the experimental conditions, there should be some kind of normalized conditions for the RTP lifetime experiment. Unless some normalization of the RTP lifetime data which were obtained in different systems is made, the analytical usefulness of RTP lifetimes is questionable. C. Application of Synthetic Enzyme Model Compounds in Chemical Analysis. The importance of organized media has been well understood during the last two decades. The applications of macrocyclic compounds and various ‘types of organized media. are now emerging rapidly in chemical analysis (5,6). Initial attempts were made to synthesize octopus-like azaparacyclophanes which carry negative or positive charges at their long tails. But their synthesis was not easy to accomplish. As a result, basic azaparacyclophane without long tails (methyl—APC) was chosen for testing and evaluating for RTP applications. The basic model compound was found to be an excellent host for anionic as well as neutral compounds. The binding constants of several anionic compounds are several orders higher than that of well known cyclophanes. These were attributed to the strong electrostatic and hydrophobic interactions between APC and PAH. Although methyl-APC strongly binds many PAHs, the open ends at the top and 181 bottom. of the methyl-APC made included lumiphors to be exposed to outside quenchers. This prevented any observation of RTP in the solution. containing only' methyl-APC. The addition of premicellar concentrations of surfactant seemed to cover up both open ends of the APC-PAH complexes, thus inducing RTP. This result suggests that octopus-like compounds might be better for RTP in this sense. It was found that close approach or complex formation of heavy atoms to lumiphors is necessary to induce an analytically useful RTP signal. Also, electrostatic interaction between the heavy atoms and the organized assembly plays a very important role to induce a so-called external heavy atom effect (7). Immediate use of APCs in chemical analysis is prohibited by tedious synthetic process required, because they are not available commercially at this time. The necessity of highly dilute conditions and low yield of the product in the synthesis of azaparacyclophanes required labor intensive devotion. But as more scientists recognize their importance in chemical analysis they will be available commercially sometime in near future. The potential application of water-soluble APCs in analytical chemistry may be wide ranging, including applications in luminescence and. [chromatography. One particularly interesting application of charged APCs would be as a separation medium in capillary electrokinetic chromatography. 182 CHAPTER VIII REFERENCES 1. Kim, Haidong; Zabik, M. J.; Crouch, S. R., Appl. Spectrosc., 1989, 43, 608. 2. Kim, Haidong; Zabik, M. J.; Crouch, S. R., Appl. Spectrosc., 1989, 43, 611. 3. Wade, A. P.; Crouch, S. R., Spectroscopy, 1989, 3, 24. 4. Kraus, P. R., Ph.D. Dissertation Thesis, Dept. of Chemistry, Michigan State University, 1988. 5. Werner, T. C.; Cummings, J. G.; Seitz, W. R., Anal. Chem., 1989, 61, 211. 6. Shaksher, Z. M.; Seitz, W. R., Anal. Chem., 1989, 61, 590. 7. Kim, Haidong, Crouch, S. R.; Zabik, M. J., Anal. Chem., 1989, 61, Nov. 1 issue. APPENDIX A SOURCE CODE OF TPLIB (Library routines for Turbo Pascal) 183 \ “cocoa:—"uccun.eopuoa.~>.~x.—>.—xvxoonc.:3eea ensconcea “caucus. uxae>e.caero.x¢exe.caezo “c.3u.c_ eenpoooea ~>e.~xe.«>e axe u coodoon unuu.umvowp_> ocspoooca peace. e oa>—-.x< “Anemone. " .x ee>vcouuou 93¢ you ouspoooLa «new “Ameocaeuu "cocoa: a coau.¢oa cognac po>a¢ v “cocoa:— « >.x 833:. 35 a.u...._oa.§zpc 3.530509 3.630.... a 2.0.22.3 some; 903m 9 nestle; a [3 “Anna: “ecu a a cone. cuouoo po>eu v "oa>uoo-s_ nouns. “caucus. unceoo.copuoo. >.~x..>.vx.eszuc.3ozouc_aaoa ouncoooua a co.ueeuoac_ custom e>eu v mucous e ace-tun “Ac-0.00. "co_uao “to one. nuceoa.uctonvcoocum..:a euauoooua “new “AL-go ”cu Lo> unn~uc_uuwno.u.— “tououc_H:o¢.LouVscoEL ouspoooca cone»:— ->.~x.p>.px 2538. "Koo-u .3) 3213 338353353... 2308.... p.33. e ensue—9...: .acaoloon ”Loucu ee> “does .0 nooam..—. >auu< e >oua<¢uea “cocoa:— uuctua.ucuua. uncon~.:o¢..ou Anne; ecu :. cone. ceeaouVueecu .o goose..p. >ace< e ea>aooas_ nooocweua ”ado-.09 .aegu ”ens—euoavusac_ oeseoooca “new ..o—oc_auu "co.uw:"moo. “no¢.oc.euu « can. uo~oc.cumuu.:oeoa «caucus—uucLoa.ucL n Eszaop.owaoc_~oa ocspooOca "nowauc.cuu u «us-.09. “...; “so La>V>oqu_cw xu ouspoooua .uooouc_ ”venom. cacao. “€28 ... «.32: Siam-85213053 9533: p.33- e 833.: “Cocoa:— naox..ouv_5: aou >3. 3308.... 35 “coouumououaoa ouspoooua “nomuoc.euu A success “cooeumuxopgem 2303: 833.: up»... up.2col..§.flc3 . “acououc. u~ .~u.—¢.puvuc:u.u canpoooua peace. I embrace-o: «acoaouc— u~¢.wu.p¢.pu.x copeoavuoaolnaoo ouaoouoca “new uo~oc.eua ”anemone. noon :0. «loot u enrol-ueuaetoa co.uuc:a «on». «peanut “wtoaouc_ "~u._u.¢.uc.anooc._oo .Aeoouuc_ “ coauaeso.oco—vaoou “aeoaouc_ fluctua.uceouvuo.ou naumwuc.eaw "Lum>c_voop_>>c_ “Anm~oc.auu " .cooouc_ "n.so¢..oootoucou “noooc_eua «use» «cocoa:— "Lo—ou.3ou..ouVoox “Ac-o.oo. "no.2aoccoto.tau “Louc.oan . «toga» Mumoc.tuu co a::z..uxex.... sett..s ac.aopa m coaoc< cue—ase— euouuoac. “peas“ no.0uxex.»xex. xox.eea.3n oop_> 833:."openness”.ouozieco.eo>Iain..o.>..u.x..u. 3.9.3:.379 “coo.ooau coucu.cOuuooc_.oamoom.x0u.xw.xumooo .gou.3m uoa>—u.xpoooe_u .ouo ..oa oou.>o “moooauosooa egalooa. aux." acou ep< >e.an_ov mnoooanoqoou eu:.oone caucus.“ "scones: 3332 3:82.: .oooowuooomu «unseen. oasuoooe_u wastes: 338... 3a.“ .oeoouuoeocu 0.3.0mn- ou>au uncoocum. a0 “c.3xax.uww»uuu«m A .co_.cae.o souc.a acottau o “ensue.ac.an A ou-xuea o.no.eo> .ano.a v «oa>pcoueox .0 —:_3x-:..—. seeecoeox opozoot.> Louaop cacao..m opus—sum ovoc.aum «mums—cam ocspoooua ocapooota ouapouOLa ouspououa eeapoooea otspououa eeapeooea occau.xup.o £38.: .2:%...%3%.~€.~§;€..6 phonon e 338:8: "2.3:.paop...»xopteucou....xopeouuo..o e o—aoc.eu. uo —~..o_ >ecue u unequse> ....nepugo......xeatoucou....xo_u..... enowaoc.guo .o «a..o. >ocge . u¢:s~.co: .....o.t.>...._o~.to=.o e ”cane-can .o ~—..o_ >055. . acct-ouxep a..c4...eo.:...cluog.oa...csteucou...clnouuoo...cle. o... . .o..c.... .o .4..a. >.t.. a o. .moc.z a..uco.o.g.ou. ...coi..t..ceu....co....ea...uco.x..a ......couulaa..o.v e nvuocvuuo .o an..o. ecc- . auto. u«.oa~nua. .. .oce_»<...ocoxowes...¢u>¢wmwa. .Ozox.ua A x. .32» .23... 833 38 . 32:23; a 2.: . to a on.» e co €385... 3.: .85 3a a 53:33: acoao on coo sonc.3 sexy “cu e c.3xe: acouaso co.ue~..e.u.c_v “on... e ceodoo- « ocean's. uncou «couc.ua.gaeuu.ooa.ucu non: couscous. 3:..— :5 nuuuuuuu ........ u ......... un--u.¢ea>.c= oueuu :eo.go.: .suuo_eogu ac vegans-doc v M s.: ocop_e: an couu.e: w M o.. co..co> w A a < a .u _ a a p v a u AUHHHUUHunuuuuuuuuuuuuuuduaauuuu IIIII II IIIII IIIIU Jami a? . o : lama. jam; 9 inflfi < 2 . . So ....u.~u..u . c...- usououc_ "x.a.. .o> “n.0o0uc_ u~u.'u.g.uc.u-uoc..oa 0.:toooua .............................................................-.-. a . o:.. 0:» so co.u.oa neuuo.ou - nouo_oo w A..-...-.................-.-.............-..-.-...-.-..-..-..... .ucu .acsomo: ..co..o.:a.>c.on ..oco—.u::om c.ooo «agooou¢_ . co.»o.:o.oco»vaoon o.:tooo.m ................................................................u A 0:3 >836...» .0 529.3 ..3 Room w A..-‘.-...'..'.....'-......................'.-.'.............-.. . .ucu “Auc.omv.o.00uxop «AvCLQ-vucao.oxucouxo» - c. o n .o.ou u::o.ao.ow a u::o.o one axon use oncogu u "a.o one. ”1:. u.uc.oov.o.ou o.:tooo.¢ ..........-..'..........................................'..'-..V M catsu- ogu .0 50.00 one-cu v ................................................................v .ucu .....o.ou.x....o.uc:o.oxu...xop u..u«>c.you..3unov.o.oqu0p.Anpvucso.oxooouxo MW e. u 1; ..nn~oc..uu u..m>c..oou.>>c. ..auooo.. ....-..-.-....................................................... a oou.> ...->c_ c. axon a nuc_.s v ......................................................u.......... .ucu ..m.ou..a..xo¢.m >.o ..a.g.aco......ou.»xouoc . . ......) oa . o. p u. _ .o. 2.8.. 335.88 c.uo¢ «gooouc. " _ .a> ages..ou a. cacao. no.0 oc_. o co o:..». a .oucouu «Amm~o:..ua ”a “.0 ac. “a zo-..ou..oucou 0.:uooo.c A...--........o....................-...........o................ a :o...oo u- :«oco. a .o «neg a c.0ucou w A.............................................-...............-.. . . .ucu .muxopvoa..a ...o.ou..o.ouuxo. ..xou .ou.»xo.ow c. o- n so ..ou co.uaoo_ an nuances - ac..¢ v “aoooc..ua uux0~ ..ououc_ ..o.ou.:o:..ou.uux 0.:tooo.m ................................................................. A so...oo a. «no» o»..: v v anus 1o “—.. go) ..ca..oo. .co..no.cogo..:u c.3oooo.. .....-...........................-............................... a ..o .o co .oogno .... co.o..:u u ................-............-.............................-..... 53.2.8303. «ac-c.00-ugo.oc.- «.oocuc_..o.o ...»uuuo.g .uo-g.uo.~n u a..¢auoouavauoouo.c asauaoo.s .Ammw ..uu .. ..o n.0uoac_ ”.0 oo.ou_u.uco. co.uoo._a. .xuuxou.uzo.o 0.:uooo.s macao.oonuu..a «.0 uc_uxal>.c.l>.xoix.c—Ix . >.~x..> .....x<.o..:..o o.:uooo.. ...ooouc_ ”u:.o*.uc. -.~>.~x.p>.vaxoo.oza.o 0.:vooogs .a.coouc_ “go-cu..ou.oa.oac.o 0.:vooo.g «u.oa..:u 0.:vooo.s u..o.ou».:o.oo c.3vooo.g “ac—..«u...o...u.u.ax...mo...o. co..uc:. .uc..um «auooouc.uau.umopuc_ co.uu::. “...... .c>c.x .o>uax .-> 83353395.. Karina-93:33 3352.311.— . 9.308.... “aou>nuouox .coo.ooauoo.o>c..coo.umuc..a o.:uooo.¢ “Ana..uu ».uuouox ..uuc>..o go>vouoxuc<.o>..ouoo 0.:vboo.¢ «on..o.u.c..o o.:uooo.g «cacao.gu.xu 0.:uooo.g new». «Aou¢c*.uu “acoxuup nouxuuz.u.£.uc.. «a 30853.2...ng3 c235. . «ouao “acmoc_wum “ pnau.on:uucaau seam anam.ma:m «can nanm ~¢au —a:u L33... “30:5: 53.533.05.333; 539-: "sou:_:ouo.u 0.:vooo.s nag-oouc_ «sazucwnvco.onooz 0.:uooogm 2.33... 25.65: 18.52.08 9.288.... “aouxnunc.un 3 1E15 A...00 .00.3o.0.00030.0000 .0. .00.. ..s.c..oocc.00x 0. 03.0» 0. 00 “.000.0. . 03.0) .0) ...000.0. .300..0u.033400u4>00 0.30000.. A................................................................ a . 30...00 .0 00.0.0 ..000..03:.000u >0.00.0 . ......-.................-.............................-.-.-...... 0 . m «.0000.....0..3¢.0.00.h»..00ls.0000.0>00 00.. 0: .0000 a...0..300000 ....00 .0000.w>0fl :00. 0005 .. .00.0.0u000x 00.0 03.0300: :0... on. 0 3n. 0:0 83.880.066.030- .000.005 .000! .03 .000.0m0.0.00¢ 0.300000. 4 M.........-........-.......mmmUmu.mmmnm.mmmmnmm.................w ..-.--.-.....-...............-.....-..-.-.....-....-.-........... u . .m0000..h..00|x.0000.....0..3n.0.00.0>0l 00.. 00 .0000 ....00 ..0000.....0..3.0005.0>00 000. 0006 .. .0..0.0.000: 00.0 03....000: 000. on» 0 .onu 000 .000..oooo.000.0“ 0 .000.000 .0000 .0) “000.00.00.0>0u 0.30000.. ........-.......--........-..............--.............-....-... A >.0000 0. 000.00 0.003 0>00 . A..................................-..............-.............. . .00. . .EU ... ......a 00 u o. . .us .0. .....0..xo.oo 0.000 00 N0 0. .00.. .0. ...—0...... 0.00. «.000.:. ...q . .0> .......c. ....~......u.uca..u ..auooo.. a................................................................ A 000.00 00. .0 00...00 00.00.0. 0 .00.. . ................................................................. .00. .........3 .....0...3 00 a 0. .... .0. .........a ......0..xo.oo .00. ...).0...: ....~...xo.oo .00. “.00.0...3 00 a 0. .0.0 .0. 0.... cos. x . . .. ...>.0...: ........xa.oo 0.00. 00 .-~0 0. —+.00.. .0. ...3.0...3..¢0.0...3 00 a 0w .0.. .0. ...:.....a .... .0..xo.oo ....u.«o 0.. .00. m0... 0. 0) mno~0 0. 00 .00.. 0. .. .oo~0 0. .. ....0 0. .3 ..o~0 0. .3 0.000 .... 0:. mo... .. .5 mo... .. 0. ...~. .. .. ....n .. .. ..... .. .a .0... .. .3 0.000 a... . . ..0.o. . 0. 0- ..009 .0). 0.. . ...3. 3 .u0ooncu “2.0 . .0> ...000.0. .~¢.~u..0..u.x..00.00.0000.0300 0.30000.. .--.-..-.--.-..-......................-.......................... . .8. .80.»... . ...... . A....................-...................................-....... 0 . u .300. 0. .00.w0l.0...0 . u “00.02.005.300: ...5 .9007. .0300. .00...“ 0.00. 02.. 0o. v 3.0.2.0.... .. 507.0338. 02.. 00. A 38.2.8. .. .......... .. . .00. «wow-us .00. .. . w.. ... . . . 0 0. . ....0.>000o.......M...0.0.000.....0w.0000..0 .... ...... cog. ..... . ......aoo. 0:. .....c. . 000. .— .v .. 000 .0 0 .n 000 ... .0 0 00 . 0.0300 ....0.000. 0. _ .0. .mmw. ..0us . .........u...o.mvu... . .. .. . 003.73“ ....0 wuvxnou 0. Nu ...0.0.0w0:0.... ..00.0.....0> .~ ....0 .o..000..m.>000 0. .u ......30... 0. 00 «0000.: . ...a. .u ..0~.00...u . nm0..~0_.0 .03 30.00.... 2.0.0.0. 300.00. «.00. . 50:00:10.0. 02.05. ....-..-........................-................................ a .045: .00. 0 .080. . .-........-.-..................................-....-.....-....-. .00. ... ......3 o. u 0. .... .o. .0..xo.o0 ..00....0030.u.000.00.«.0 1E36 .0008 3...“...- .x000 0.30000.0 .00. .05.. .- .80....38 0.000 .00.00 0.30000.0 A-...............-.. 00.30000.0 .000. ..............-...........v .000.000 . 00:00 a.qo.00..0 .000. .0 .00 . . 0.0¢u«o ..000.0. . 03.0>..0. 0 x .0> . 0 0 . ..n0u.0uu0..w.0...0> ..0 0.0. .00. . 00. 0 . .. 300 .00 .0000...0 ...30.00 “.000 .00..0.00..300. 0.30000.0 .........-..-......--..-...............-.-..-...-...-....-.....-. a .300. 0.0.. 000.00 v .......-...-.....-.....-..-....-......-..........-............... . .00. .00. .8225... .. .... ...30.00 a. ..30.00. .00.0. 0. 00.0.. .00.00 0. 00.00 0. 00 00 05....00..00. ...... 0.000 ..0.00...0.00..~0—.00. .0~0:...0...30.00 ..000.:..0:.0..00. 0 03x..0.0..00..00 0.30000.0 ................................................................. M .300. .0. 00.0.. 00..00 w .00. . l .00. liar-KIM”. 0. 0.0.9.0. . Sm .. . a .. 0. 0.0.000. . con ... 0. 0.Me900. . 0 .0 03: 0.0.000. 0.00 0.000 2800.80.80.90. .0>..000.:..ls.l0.0.&.0..0.0.300.|.00 0.20000... ..............................-..-............................... a .300. 00.0000. .0. 00.0.000. . ..--..-.-.......-.................--.......-............--....-.. ......w........ .00. 0.8... ...: .00. . a. . m 0...... .... A e. v u $.0039 ..A. A n. v u oclns9 ..I. A ~. . . 0.0.00 ..v. A w. v u I.I.:9 ".m. A :6. A v u 00.0.59 ..0. A uncut v u 9.3.39 ..-. A new 9 u O.I«£9 ..O. A 0&0: v . 9.0.09 ..9. a ....0. . . ......0 .... . .8. . 5...... .... a ......o. . . ......0 .... 0 30..0... . . 0.0.00 ..2. . 32.0-00 . . ...-.... .... a 30.00.03 . . 0.0.00 ..0. .0 00 000 A00000.0 >0. 0...0000 x0. »» 000. 0. 0 . 20000 0. 0w0 0. 0 ...000 .00 .0>.>0.I..00I.u 0.30000.0 .......-.-........--.....................-........-.....-........ M 0>0. 00...:3. .0000 0. 0.00000. 0000 w .00. . «mum . .00. .2. 123288.30... 8.. ...... ....3..88.38.. 0.... ...-5.. .. 0.0.00.” r . .23 ..23..88.3ix 0... 23 323......850: 0:: ...-...... .. 0. .... .0 0 0000 .0... .3. 9...... 02.. ...-:30. . 0. 00 ..000.0. . 0 .03 ...000 . 0.00:..03:.000u.l3x|00un.00 0.30000.0 A.............-..........o.u-.........o............o.o.......... . .... ...-0. ...-0.30.0 .... w ...-....-.............................-.......................... .00. 000 u .000 .03.. 0.00..000. .....000...000 >>0.... ..0...3A u u 00. ...x3a..00m.>>0.... ..0...a . .0.¢u..000.>>0. 0.00. . e- .000 .00....00..000. .....000...000.>>0. .00. ..mmw..8.uwu~.".a..u.mm«n...“flung" 0.... . .0. 0 O O o u . ... ......z...x=...000.>>0.... . ......a .000.»;o. 0.... . 0.. .000 .03..u.0o..00:......0.0..w000.>>0. u...... ...... "maria... ...... . .0 2.53.3320. ... ......a m....<...oo0.>>0. 0.8. . o0 . .000 .00.0. 0.00..0.0. . ..00..u ...0000..0w0.>>0. 0.000 .0 .000 .00.0. 0.0a..0.0_ ..00... . ..0...) .000.>30. 0.000 . ~n .000 .00.0. 0.00..0.0. «A.x:2.voov.>)c— uA. ... ..0...3 .000.>30. 0.00. . 0 .0 03.0> 0000 .08.. .0858... . 0.. . m ...... .... A o. v u —.0.89 ”.9. A a. v u :.I.£9 u... A A. v u O.I.£9 u.<. A o. v . 0.0.39 ..a. mmoa w<0_m—_0p .OEGco.um 09.00 moo—\~n\nu “000 . . on 187 . .0... .00 ...-3002.0 ... 00..... ....o...8...8ow . 0. 0 000. 31.00.050.000... 000 ..0. .. ..300 .000 .0. 0.000.... 2.6.3.00 .030. 0. 00..... .80. . 00.20.. 0.600.. 2. 20...: 00 70.0.0000 0. . 0... .0. 2.00 0.0.00. .0300 .....0033030310 . 203000 0...... 2.030030...) 3.0.00 20.0 .03.. 0 00..... 2.0.. .300 000 v .0... ..8..08.0:. 0.... .0. Av 00. 000 2.000.. 0 «0030035000... 000 2.2000530... .— . ..0.. 00:05 ...: 02. . .00. .00.0.0.0 0000.00.00 203.8308. 02.. .... c ..0. : 0:. a 0.0003 v 00. ...... 02.. .§¢.50...0I: 000 ...-020.580.. . .0 : 2.00.0 000. 0.000.. 00 ... .. .0... «00020. .0305 00.. 000.031.02.305 000. ..00000.0.000..0 .— .2803... 0.000 ...... 0.00.... 3 x ._ a 08...... 0... . .... 0... . :3... o. .0 . . .00. . .00. .00.0.... 00..... 0 6 0 ....Ssa.>&o.o...::2..0....: ... .3... 3.0 . ..0. .380.00.....0._. . ......0. 0. 0. .- 93.: cat... v Asg’avgug—c“ 0 00.0 00:30. . 0. . 000. 0.00000 0. 00 .h a .2. 00:05. 00.. . 0. 0. 000. 0.0..000. .0... .0 2.000... 0v .0..0300<.0.000..u0»w . .00. ...30.00 0. .03000 .03.. 0. 00.0. .03.. 0. 00..... 3.00 000 .03000 .00 000. 00000. ... 0.000 . .. .0... ...-.0 000. 32.0 .300 ... .03.. 0. 00..... 3.30.00 0. .00-00 000. 00000000 . 0. 00 . x. 2.00 000. ..0.. .80. ... .03.. 0. 00..... . ... .00. .30.. 03030.0 0. .000 00 000 u .03.. 0. 000000 2.00 000. 03.0 0: .. u .03.. 0. 8.... 2.30.00 0. .03000 000. 0000000.. .h 0. 0“ . .. .00 ..0.... .30.....0...33.<.0.000.....Ssa..90.:.... 210.309.380.00 ..000 0 0.0.00 000. .00 .. . 0.000.$.0 . .00. .10 0... 00. ..0.... 2&0.........0020.0.00..=.....ana..0033..0 .00.0.. zinc-0.00.8300 a]. 0.000 0.0. 8.... 000 82.032.30.03.” 3 0 0 I A 0000. .000 ..000 ..0. 0.0.00 v 0.000. 0. .00. «00.00 ..0." A 00.. .0 00.5..000 0. .00030 0.6.. v 0. 00. 0. .00. «00.00 .5800... ...... 00.03.... ._ 2.200.035.032. a 00.. .0 000 0. .0230 0.6.. . Jun“. 0. . .00. £0.00 ..0.: 000. .00 .. ...-..."...00 .3. 20...... 02: ...-00...... J. . ..0...0. . ..0. .0030 020.. . 0. 0. 0. .00. ..0. 2.0-.0 000. 2.9.0.20. .0 30..03000.0.000~.x” n. n ..0... . .00.. .0030 2.0.. u .0 “hug. . A .00... 000. 0.. .. v . 000 .00. . I .0 00 0000 .000 .00 00... 0.5.0. 000 3.600. 0... 3.3.3.... 00- 2.... 000 ...: ...-0. .. ...... .. ..0.... 0.... .8. . ..0. 8...; . ..0. : t I .03.. 0. 00.00 .20.... :00 .0 0.... 00:90.0. .. .000000.00200.0..00.00......0 0 0 0.38.20.000 3.. 000 3.30.000203000 2:30.030...) £0.00 20.01.00.325 :33 ..0.“00 0. 000. 13.30 00 .. 30.0.0230. ...-203000 200.300.03.300 .000 .00. .03.. 0. .0 000. m3 .0 ... .0.0.000..>000 .. 20.0.0.0. 0.000. 0. 0.9.0.. 20.0.000..0.000....0.0.000. .00 0.000 . ... . .29 .00. 2.3.3.5....030; .088 .0 .....uo. 00 . 0.3.0.0 20.003....0...0000..»...uu.....0. .u 280.00.803.038030P ... 0 .9333: .0 .0.00 0000 ..03..0.0000...000 .00—0. 0.3.0.0003 0. .000. A 0.9852. «A... .....0. .0....0.00.0.0 800: 900000.... :3... 0.830000 0.... .0. .. .3000»?- . ........................ 8.0008... .80. 00. ............... . 0 .00. .030 .0800 20.01.0030...) .0300 20.0 ...-..0.. 3.0.8 00.. 033$ 188 «Axe....umacoz...o.==oo....oa . ..-.ou..»xo.oe A... 8.2.9 35¢ 38.325... 3...: u:- go. 5232 32.398 a can.) 33 c. 8...: «3.2.9 2.....- 3...) :v 2.335.: 502.5 .93 . .wwflwnuuw :33 30328.. 33.20 2:02.... «33.333513 359.303....— o.2502.§20 2338.3«339-83333: .e....vg.uco..os.»xoaou u.oo..o «.....»xo.ou a... .858 22.. n3 5 3»: 37.3 up ..u ..353 “new "...—...oucaou._.>aou . ...daco: .....aacox 2. . . ....c:oo.. o saunas: .. ..macou c on on :33... 3 p u» 535...“. .3. m.. .. ...dacox . ... a“ .595: 2.5353 a" :33: «... . ....caou_..>.... .o .. . - ..oucaou_..>.... ..uca 2......caoUW..>._.......o.,....oucaou...>....o.c.ao “CA. 32353: . .33 - 2353.333 a“ 3353: ..SA235085322233; — ...-“53.532233 on 2353: 3 o ..353 I» ..353 ..u I I :83 2. ... ... L5: a3 gm no I“ ..350 c. 3 .8335 . ..353 A 1.3. :5! u 288...: 3 32.2%.:- . . .3595:- u ...»...on «328...: . 35:2. 133.... . €335: 353309 ...> 2.35 28 ...) 33053933: 2335302335.. .33.... ....................................................................v a :co: -.>uu uauod . v n-.....-...-.....-.-.........................................-....... . 35 .033 a" 202.6 I a .9 c e: v “new "on... .3903 :05 5... .3) at: 5 ~53 2 Non.» . uo..xu.puwca “on... in 302.6 3; v3 3:...— 3 302.6 333-3903 I I 500. 55 5: ..-> 33353 2 3353-353 3235 ... 2508.33. 5 .- oo.u - B“ no...“ a» 9353?... n” 29:6 53. c2: ..owcu 2 .93 32 m8... I I “can: nu 333...; you “5.. 52, :3 a” ~53 c2: 5.. ...> «...: v ~53 2 2-253 ..." ~53 8.3!! a» 3525.33.“. 5 n . :2: 5.. a 3033 2 2.35 B....B.8.59:¢.8...8538. 5.3.2.5 “2508.33: 1 3323 w p «thou-.33 «.....Iuoo 3 «.3: -. soc-o .- . Euc- I :3 3.. >393 cofLaFu 2:22»: 2 “.3: .233 “I... so) .2: u“ ~53 “..a..oo....uoc..oa. .. n....>._. on nag...x.x o. . .u . .o. . I I .co p..a. . on>_.:a:_ .. 2.3» 5.. ...» :3 a . 5838.188?) 233 5: ...> ~27..~.~.ov3u§=>a3~ a> .....uou.:a:. a” .n>p. c.~o. “new a coo. ..ofwuuucu 2 75:33:: .33 22.2.5 . 28.. . 33:33 «ugly-o «7353 c...- c...» .... 0 :58... J I I I I c. 3 at 5... ...> no... 3 5c ..3 ...... .2 ..o c. a 3.03:. . _ ...) "coal: ...-3 0.5.83.8 . “new ...5 “3:32 a :58... 288.58.: a; 33:89:.» “388.8. ..~.n...::>&3.§ ....m8 .8 53.33.58...» 288 .5... .33: ..~.—..:2.38:-> «3.32 I» it: 353» I» use. 503 8 ...-838...... 5:. Soon 3:33 .528... “.mnouc. u aw:u.ma.oo I 533.3315: 5.33.5... .3 an... .5: ..0.. 353353.83.— 55233.33 .8223 a 3308*E323 228 . .9239: p33 «528. . 3.3.583 ...> u...: .8... 25:3 "2.83 ...> 3223 8383:2531: 2338.. ..................................................................v n .30: 3.2.23 .3 3!:- Iu... 83 3:9: 3 A...........................-............-.............-........... u — uuou luuua‘ 189 «F ouom a......-........-...................--.............-....-.-.........0 M 5.05o. 300:5: .a.5o .o.uc.:x.5o w 520 A .coa ca...~......:. saga 0 5 .35 .u .coa..c. .o."g.5«upn_a 5m~uu~> 5:50.3550-unu 55.55» «5.5.x c.00- oo n.9uc.a :05: a 5055:. 50.00 50 v «coon» In 5055:. 00m.) 00.u a 5055anocox 05 505 0005 00000 n» 5055:- oon.> c055 5 - 000:050 5» c. 0- 5:5305c. 053300055 A...’...IO........I...I........CO'CI...O.IO.........U.....'....I...v M c00500 50.0g35 0:05530 0g. 00>0a :.:~.c_ w 50:0 «50.30cmo0u.> 50 0002000.). 0. 50.5050000050.0505 00.u 50.40cuo0n.> . 0uoxo0v.>5 -. 50.50ua0u<050.u505 :05» .550 0 £00.30. 5 c. 0 55:00.0055s005305 00v.) 053300055 n.....................................................-............v M 3000 00.5axu000 3.030 00 55o\:o oou.> 0:0 :5:— w 50:» A co.._.o5 .o0 .... x 0 55.5x0o. .5 x A 3o. «a. 5 0 “v.55..z .» 5 A co.u.0oa 500530 000 v 5—0o0AI0>_000.00 05 050 In x c.00- 5 omoouuowoon 003.0050 50000:. 50 .5..o.>0550.u 00m0mlu5u axon:— 0005 oou.> 0:055:05 “Nooouuoeoou 003.0090 0u>n ”0005 0>.00< 50> «550000;.» >.x 50>. 500530I09.x 0500000500 00:. 500530 50 00.0000 00:.00n< 500 v a................................................................... «new 55858.... a 75.2.3500.“ 00.. 550000: a“ 50n00rnc “0:505 a» 0:5o5v ,. “uC5u- 0» uC5onu on 505500.»: 55.: c500. 5005550000: 5 50050000“ > 0 238.58 2003.. 550000:— 53505.!55o..lix55550v00:50o 05200005.. a.....-............................................................0 A 0303:.) 505 050300: 006.500 v ........-......-.-.........-...-....................-......-.......0 50:0 50.985: .z 3.3.3.03“; 50:505 0» 0:5uwu 50:50. a" 0:5000 550050. a" 50‘50nu 5~> 0” ~50 5~x 0“ «00 55> -. 55$ 55x 0” 500 a >0550 00:. co.0c0¢.u 300:5: 050005 c.00- 00 [.9633 5:. c.00- . 5509095.: 5 (.93....) 50> «m0uxnuuC5ou 55003:.”3500.5830.~>.~x.5> 50.535.55.553; 0530005.. AU.................................'...'.................C...'..l.UV a 9003 0:00:53 00:5503 30c.350a w . 50cm . .ucu .5005.0 225.39.850.82...» «auc5o5v5o.ouux0 c. 0 :0gw 03¢5 0 «a «no 5. .50 o... 5 3005.: :.000 uac00.000 «co.una «50000:. «0:505.uC5005c00500..:5 053000055 5 50.00 zone—a 000:0:0 0:0 c0050. 0500.0 00.000 0355 v M ... .. .......mmmmmm-mommmmm.m.mn.mmummm.m.mmm.mmmm...-.-..... ......................-.......-...................................0 . “new .oou.>:o. no av .050.3¢08.:05005 ..uc: 55 0” 5002300 c055 c0.:c0x 5 50.2300 5. «c0.::0x a. 505::00 c055 ' v 500:50 5. 0 0 0 0 0 0 0 008N0°nnv 3 :05. .50. o. x. 0. ~n0 u. a. n50. c. :05 no: 5. 00.5 5055.:c0x.g000o5 :5 500:300 :03. 0 av 5055.:C0:.g0500‘ 5. 5:0 00005 .uCu 5:0.acoz 0“ 500:500 5 o. 5 0“ 500:300 5 o. 55 . 50.5300 .5 500:300 . x..0. «5 9 5005500 0” 500:300 5 ~n..u..o. 5500:300.050.:cox 0“ £00530 0000n5. a u 3.0.3.05: a ..0 555055.. 5.0. .0 50:. no..o55xoa 5. 5502000. a“ :0 5.8.5.38 5. 5500:300.50>..5 5 c.0055: 5.005.0 5.5.305 .0055xopou A... 8: 03.55.20... 53 05.855 3.5.. 2.. ..m5550.o0.x055.o 50:5050J00nux05 5.55oucaou..50055355¢ 550.005x00«An—50:305030000005 xn0 5..00 0 05.000000... 000.00..00300 .5 00 ..0. 2.0.8.0. 05 000.30 0.000 00 05.000.300.300... ..0.... 5. 8. 50002.0. 05.00:... 00050300550... 5003.. .....~ 00 . $3000... A5005a0 550 05:50 .00.0..00500500 0.00. 5500000. 5 55000000303005: . 50> 5.500000. 503.35.)...5050000: 053000055 5........-.-..-....................................................0 o. M 50000: 2000.: 0000 0050000: w 0 5.-~> 05 ~>.0.0.0.“0u 5..~0 05 «0.0.0.0.: A 00.0500 505 :0. < 0 5.0.» 05 ...-.0.0.: . 5.0 u 05 .x.0.0.0.: 5.005050.00500x.5005000.~>.~x . ..0.:«000.:)050 .000 5 05 000000 000: v 5 00.00 . 50 .5 00 A 9 0000 00. 0.6.. 0 5 00.00 . .5 05 .5 A 0.0500 000.5 550 30.550>0 0 5n~ . ~» 05 00hum00 A 000500 0.00005. 550 5. 0 000. .n« 0 ~50 5. . .000 5 co 0000 2.0.0 00o... 0 5 00.00 . 0.. .5 0.. A 0 3000.: 050. 0>0x 0 5 00.00 . .x 05 .x A 0.5.50.0 000.5 550 30.550>0 0 5.00 . ~x. 0. 00.0»00 0. A 000500 50 000.5 550 5. 0 000. .00 0 ~x. 5. 5 000 500500: 0. >...00000.0.:..0000 A 00.0.000 500500 0>00 0 500500: 05 x...00000.0.3..0000 50.0 05 0.0...00000..0000 A 000.000¢.0 000500 0>0m 0 0.000 00 0.: 00.: A 00 003 80; 2.0 00:. 0 5 ......Nw; 5 5055:050.00 n5 0001....00000.x000m 00.0 A 0. 00 5000.00 000 0 5055000000 05 0000....00000..0000 000. 5 0 0002050 5. A 000: 00 000500 0005500 00000..< 0 5..00000.00000.30u 0. 00 00 0.: 00.: 5 0000 0.o>0.o0 000.> 5.0 05:. 0 0 5 ...0.000.> A 000500 50 00000000 0>00 0 A.......-...-....-..-u---...-.........0 «M00 :55: 5.. 0000 000 000000 02000.: ..0..0.00bu”00 00 0 05000200000... 0. 5 5000.00 000.0 .0000500. 0 5.000 000500000.uw:n«n.00.a A 00» 0000 000 5. 00..0.0.0. 0 0000 .00.05 - 00000.¢wm05. 5005050 05 0050?. 5005000 05 005000 55005000 00 5005000 3% .05 w» 59.0 05 ~.. 5.>0 05 .5 5.00 05 .0 .. 0.000 . 30.00050 2000... 0000 00 05.605.000.600... 0.0.300 5003 500505.. 5500000. . 005000.5005000.~> ~x..>.... 50> 5.500000. .5!....300.?.0& 0530005.. 5...........................................................-......0 5 0000:. 0.003.000 0 0000.. 800.1000 w 5000 5.05.50..5..0.0000.a 5.5.03.5: 5.00.00.50 00 m: 0 ... 05 .505 5....00.50 5 ..0 ......5uuw00 5500.0..5: 5.....00v500000 53300.5: 52.72.5300”. 0. 0 00 0» 0. .0. 0. . 505 5.5.00.5... 5353.50 on MI 0 A: I. . 000 53300.5: m mm.0m.m....w§o0....0. 5585.05.05 0.050.000.0000. 5.005035300000. 5...~5...~0....5.7.003%“... 500.0 0. a» “350 0. 0.. 500.0 0. 5. .003 05 .. 550.0 0. 5: 5.0.... 0. .5. mas-.9m33052 .5.50 .0 0. .00.0 .5 .. 0p0p. In L: 00—N‘ I» .3 5000 00.. 0.00.0. 00.0 5 . 000000 . c. 00 50000 500.00.......0:..= 5500000. 5 . 50> 5.000.050.5505 5500000. 500500800500 .~>.~.. .135380023050 052000050 '«30‘ . . o . 191 0.09.20 000000.; 5.0055000500500 .0000... 0000 00,0005 0000 000.0 0.00 5.0 5000050030 APE-0.00 000 0...... 50 0000 5000 A000. 0500000. 505 500005000 000050 5.-~.50005.00 5.0550050505000000... A050.00 0.00500 00 0.000 050.00 000050 20050555300000. 50.0.... 5. .0 .800 . . 5.00 ...... .....0000 5.0.5.05.......20§5.00.50 5........0.0005. 5.0.550..0>0...05050..0000..0. A00.000..00.0 505 050.00 000 00500050 5.0050505>00.50.00000. 2.05.... 0000 000.0523... 5. 500.552.522 0000 .15....“05. 5.0058522050003002: 5.~.x ...xo0ow 0. 00 00 000.05.. 0. . 05 0.... 505 5.0050233500000000. 5.005050053000005 . 0.000 .00.. 08.2.0 2.0 50.0.00. 000. 30.0.00 00.. 50 86:... : 5._:.520.05:o0..05 A035 0000 . .000 A5. 0000 .000 A0000 50 0000 5000 A000.- 0000.00 >00 500000 50055050002200 5 n. 5000 5005. .05 00020.00 50 .. .... 0.000 5 5~ .050. 0005.200 52005005.... 5 8.05 .53. .8550 0.0 57:005.... . 05 A>0.. 00550 03000 5.3.—205.... 5 .00 .053. 0005.80... .75.... 5 n5 .5 50 200.050 0000 5. 50300000005 .00 .>0§00¢05.00 ...... 00.... 00000 0x 5 0. 00 00 3305.80.00 0...! 0.000 00 3030.00 00.. 0....) 30.5.0.0 505 0.0.0 00. 000 00 0500 0000 00 0000 5..-.50~0..00 . 5000 0050.0 05 00505.. 500503 0. 00500.. 0.000 00 70.000.303.600... 00... A500500 550 050.0 5.00.05.00500500 0.000 53.0.5.5 .0 .00.... 5055.. 5 80.005 000.000 5 000......0 550 0 . .00. 00 . 500 0 5.8500331005050530 005 5.. . 500: 0 ~.... ... .500000. 0 005 0.. 50> . 50.5.: 03500.... 50.933.03.00 5.30 04.0 04.0 .590 030 3.0 .530 5500000. 5000.50... 00..-000.330.00.021... 00.005. A...-.-...................................................-..........0 M 000.00.03.00 00.00.... W . 50.50 . 000 A0..5 000.00. 000.0 000 0 A 50 003000000 0000005. 0500.000 50.00 000 000500000 000000.. 0 A 000000 000 00> 0000 00 00.5 .0000... 02.0.0.0. 05.0 550 0500 0 500.05 05 00000.0. 0000 w 0 00000 5. . . 00 00 ... 00000 3:0 0.00.0 00... 0.0. 0 5.0. 0.0 005000. . 90.050.000.00. .0...0 0.00.0 ..0.. 00.0. 0 5. 500 000 0050000. .5300000. .. 7.5 0 . 00 . .7550. . 70.03.50.00- 000; ..0.. A 0003.5000 500500 0.0 000 v n. ”03%;. A 00.0.000 500500 ..0.. 0 5 350.050.55.053 000 000 5000 5.... 0 20000. .0000... #0000... 05.000.50.008 ..~>.0.0 0.0.0.0.. .0 0 50.0.8300... 50.0...00 0.0.0000 05 0.0 A 500500 0.0 000 030.000 0 0.000 . 3.0.0.35 2.0 000000.-.. 0 8 0... ..0... 5.00.80... A 000.. 0.055 000500 00600“ 0 5.2000800000000000; .0 00....0000800000 0. 50.535300 00.0 0000.. . .0000... 00000 0. 505 505.000.. .000 000. 5 0 0000050 5 5. 3.55.00.40.31: A 000500 0000 0500000 0 0. 00 5.2.. ..wuwou m... 0..” 00... . . 550 000; 50.90 4.0.3.0090 5 0. .090 0m 3.22.85 5 0 . 0.000 .095 0. 8.80.03 m 0 .585 0. 0.200005 m 5 .350 5 3500005 .030 0“ 3.000.050 . 0 .090 0“ 8.000.300 n 0 50> 5.5%.... u “wag“ 5 m 5%“ um “mug“ . m 5.5.0.0088 058880 50 0.... 0000 00 000.05.. 0. . 05 ~... 505 A 3000... 000320 0500005 000 0000... 0005500 000.0 0 . . 535.000.313.208 A.....................................................-.........-20 A000... 0000 0 0. ....0 .. 0. .... .00.0. 0. 00000.00 5.0050050505300003. 5000 A50 00 050500.005. 000.) 0050005 0000 ..o 00.. hfluuwxfiufifinu” 5.005300%“00 3.3.55. 0.500505 000.) 0050>05 00.0...“ 5.0 0 00500505005053): 5.0050836850000000? ...-580.05.. 02.. 0. A 8005.. .. 5.005053530008— 2858 0000...». ...520050 :0... . v 80.05.. : 5.5.0.000..50..00.32.0 0. 000.. “05.0....” .30..“ 00.000 000.2300. 000.. 192 .........................-.....-.....-..-.-.--......-..-.--.-...--..0 . 5.0.0 .rxctuou 05 >xo: 5x002000 05 x00: 550.00002000 05 50.0000: 50:0 5:00.00 5..00005055000005055000050.. 550550 00.00050.00.00.50 0.000 0000 2050 0v 000050550 5. .0.000¢00050 05 000050550 5A..0000200050.50>.5o0005o00005u0.0. 5000000 05 50>.500005o 500000500.xma .5 00500.00 500500.00 05 00500.xwu.o 500.05 05 000.>0005.0 0.000 A0000>0 00.00050 00..0.0.0.0 500..0.0.0.50 050000050 .555 500050000.0 500550.083 05 8550.00 0.00. A0000 00.00050 0.000 500000500.xu 050000050 A0500 A.................-....................-..........-................0 A .00000500.0w 00 0000 00.00050 0000 0000 0 A 0000 000 00..0.0.0.50 50050 0000 00 0000 000.0005 00.0005 ..< w A A.................................-...-.....--...--................0 A 000.0000 00.00050 0 A..............-.-........-...........-...........-..............-.0 5.500 A500500 05000050 5.0055000500500 5.8.0050006500050080...105.82.005.05 5.8....0500000 .2 00.00 08 0:0. .0 0000 5000 A000. 05000500 505 500005000 000050 5.-~ 50000.00 5.005000000005 00000000 A050.00 0.00500 00 0000 050.00 000050 5A0050505050.000005 80.... 5. 50 .5000 0.505.500 5.00.... .. .... 050.000.285.308 .. .~.....00..0....00.5.. 0.. 2.0.0.5033... 0. 3.505000020050060. 505 ..00.. ...0.0500000.000.>x0uww00 .052. 00500.00 5.000530 50.50.00 :0... 82.000.058.20. .. .a~0005000000005000000000 A00.000..00.0 505 050.00 000 0000000 5.0050505050.000x05 5.05.... :0... 2005...... .. . 52005205.... .50... .1... 5. 5.... 00520.8...2500058..005....50..00..00.5.. 50055 .5 00000.00 56 0« p—: 0.00. 5 nu A0500 030 .0000 .0000 5000:5203... 0.0.3.2 «00550 000.50 500—.0u5—.x 5 55 A000.>05 30550 050.0 50...:050.x 5 .mpuns .053. 0...... .B .08... . 005.... 505 2.: .8 0 .0050 ..0....05.... 5 50 00 50 A—00505o 0000 U 53020000000520 .>00000¢05—00 0 000 0000 000005 00 5 0. 00 00 .-~.5000000 0..00 0.000 00 00000.00 002 0..00 A>0.00.0 505 00.0 00. 000 00 0500 0000 00 0000 5..-050000.00 500.05.500020.xu 5.05.... 0.0.53.3“... 5.0.0.50... .000 5.0.0.505250500205 ..00.:055.x 00 A. .Av.5.x.000:0050 00¢ ApoAA¢.00020:p0v50v5.:0 0..0: .5.xu5 50~.x.0500o00.000 5A...z.000x0x00000 5A—0~.:.000.nu 0 0005 AA.o.000:0050050v..x0 5. 5.......5.... 00 A. .0...z.000x0050 00¢ .A—0.000:005005000.x0 0..00 A050: 0000 0. 500005000 005 00.00.5 >00 0.00. A0300 0 0. 000.000 000 2.000 00 300.05.7200 0...! 50.55... 5.3%... . 5005......200035 .00....:.0500000 0. 5. .05A0.x 000 0.w0 . 0. A 0.000 000.000 00w 500.0~ 00 a. 00 .0...: 505 5:0 005000 2.0.3.0002..00..30...05000.5.. A 050.00 0.00500 00 00.. 000 500.00 5 00.. 00500000 .A005000000005000000x005A005 505050.000000 50.05.00.050 :0... 0. A 000.05.. 5. A500500 0000..0>0 ...-5000.00... 0005 . 0 000.55.. 5. A 550 5005000 5A00.05000500500 5.0.3.0000550080. 05 05.05.50 5.50.00.13.82... 0.00- 50050 50 .05.... >055< 5 00000.000.0500000.000 55000 50 .0..... 00550 5 000.000 .000.000 0 00000.00 . 552.0 5 500...... .500000. 5 005000 50050 5 0... .... 50> .5.0c.....5..0000 0.000 500»- 5A .500 5000:00— 00... 000.000 000 .50.00.00 0000 00020.00 00.. 5m.“u0v.....5.0..0.5«u 50050500505265 00 30.050.003.300:- 00.0055 0 In A0...... 0000 . 50.50 A...........................................................-..........0 A5. 0000 .000 A 0000500 00.00005 0 .0000 .0 0000 50.50 A..-....-..-........-.............-......................--:.:.....-.0 A00.0> 0005500 000.00 500000 500550500020.xu 5 n— 505 5.80 05 000.. 0.5.0.5031 $30 A v3. 3.: Eon v «Ac—vouxlucoicm A on»: ac.ga neon v «Aouxauc.g¢~ou>¢ucom “oi-Er... no: a“ 0:35.... :05 3.32.: 2 28:58 33:50:32.328 ..u 33......“ 5 on on £93538: 3 o a» .23.... ..3 u.~c...>¢ucom A ouoo .ogucoo euxn ~ neon v uA—cvouxnucom “use 2:85.155 «2 . a » vtuovouxzu .Au-uuou>nucou A anon uc_ga oo.:ncgo c.¢.o uoo.ou v . c_uoa uco “233238333 .Aoowvouxnucoa c.aon :05 p .- etc: A» c. an «ouxn u ou>ouc.sm «goaouc. u .ox.¢x so) A .337... 2.» 3 0:: «5.1 0.8 095° u «oc_aoo 0533000.; A 8.0.3.0). SOdsfl 0.35.0 who... 8 CL:— U Aofluv A one: u:_sn no.3nogo xu.ucou.o.n:ov uou.ou u M 3:»8333 v 3:. “on no u» ou>oaoaguucou 2:28.. . 8 8 a :39 55 .9 Av A.» ac. xuou.. ac. An 5:. x o Au.oo>vooogutnu Ao.».:v 3....»1» c.o¢a «8k. . :- ..iuw o> ....~.e.o.3.~n.$.o~: . :3 3 2.61.2: . .unuoo Ago~.:n c0050. oo.¢nogu 0g. :65. on a uc.uaos >5 ouxa «c.53 - uuaguncou u «cash u Mucuo»c_ . > .xvouxouuasuocou co.auc:‘ 193 A «noguovuooguu. 6.0.03 0.39:0 who... ‘50 653» U AOOQV A cuxaucom v “ace 283. .233... 2.5.3.2238: : 3.3». no I“ 4<.¢oo¢ no a" :<..uouon c «anon-.00. « now. go> A 2.: . ~ .22 8 33:... v 3 . 55.333 «mean A gouc.sa ogu on cash «co econ v “Aouxn u ovcu>nucom ouauouosg - ouam A 0369 .osucou gouc.sa ou>n ~ u “0.5: u ~c .pc A oc.. coo. acoggao 0:» v «sooouc. u 0:.acoou ga> ' 333 n 9.3: 333.3 "3n. £2...» $3.. agitate: .A~ - oou guc. goo coon co 3 o 6... i. :8 8 .. a J a gun. Lon quot oqw >u.ocoo.o.n:gvo:o I n soc. goo ouot o~— m.o oooan.go.: - u 6:. ..8 :8 8. 323.338 . . .— ova: 0.: >.co v_:ogu usoac.sa gonna be no...- xu.oss .usouc.ga u 0 33.9.3 «.33 .3. 2.50.. 3 cacao. 339.5 9 and: Ahflfiflhfiflfi «Ana .caa.oon « ougo>c_vcooguauc.ss ouauouoga A .Axm.x¢.x:vogouc_sa gamma 3..) cacao. ago—snag. Ac unoo 35.: v A ................................................................... v A coagu- uu.anogo .0 unoo use: v A ................................................................... v . “Bu .ucw o .ucu «.23? a 3.38.. . :3 «.uox. ." ..uono: uuo2 ..o.¢u>. .” gamouox . oa .o .uo:za..u o..u . ¢a> u._=ocox—gognouu ouau monoxznoauuoo a» oooxza-go AAgo>.gocn¢gcuooE-zuo>.go I" sumo>.sn c. on 28.3“ 25.3.. 33.323 35.35.233.530 8332; 194 A ou-ouo.s axe: no. u.x< Iago v A..............--.....-..-.....-..............................-...-.v . 3cm ..Lo.ou..aa.oo AA~>.~x.p>.—xva.uccuuou “AneuuAVgo.ouuom AA~>.~x .A..x.... “Ancguo....AV..omvo.>ua.._muoa c.o.o “Au-oeuc_ "ungo‘.u:guo.~>.~x.A>.—xvxo-uuzoga chauOooug A...................................................................v A no. a sage v A-....-......-.....-.....--.......................................-.u «Bu .562a.>xnx.§.:.c.8..a$:>u.mo. Augom..am oszwooosg A..............................................-....-......-.-......v M custom o_og3 0. ago; :0.) you w . «new ..go.ouu.:o.oo «A—>.~>.Ax.~x.o.ovo.ocauooa on «gonzo.> zu.: «Aaboazo_>vooc.uuomao.>uoo 2521.83... adsocoizoczu.“ .AgodoUVso.ouuom c.90- nonxpusogao.>uugoa:c.> uc> “Asooouc. ”50.novgouLo-su3-go ouauouoss M..............mmmm.numm.mmuuumm.nmm.wm.unmumm.nuum.................w A.........0.............................C...............c'...........v . "Bu .Ago_oux-zvgo.ouuoa c.90- uugo.ou..:o.oo ouatoooss A................................................................... A 3.8 3:38 3 528 .8 w A..........-.......-.--..--..............-...-...-.-.....-.........-. 65 “new «we. «wuo.u.ta952-r:mo:-o- 2305......623.2E..=..K§..=.:.za “Auu._a..um . c.oon o..w “new «games: a» gumop_aoa 2:05...~..££3.zu “Nao—z-uz u~uu~a a... ~x.u“~a cog» ov~a A. . . . : can u q n w A «30.5.. ...“ 530:3: . mums «Asuga.—o~zu¢.za:au .. ~.. 3 o n: s. .8 ......mnuu... o In I.” V ‘ . 3 So.- u o .7 .o ... :8 “£38983: .Ax...&.x.:_. c_oo. 3A.: 3.865...% .5. cue. ”~2.Aa a ga> 8......“ 5.:c.......=.=3:3. 8:22 A-........-.-.....--.-............--............-...........-.......v M 8:3 8 .35.. .8- €268 w 65 “a I. unmanag— . A.“ ....o :.oo- «ocAsua "a u.) noc.uuu ”AscoouCA «Juuunopuc_ co.uu::. A...-......--.-....-.-..-...-.-............-.-..............-.......v M . oc...a on gooey:— uuo>cou v -....-..............-....-.........................................v . 35 .A3635>A§333335gaudy-2.x... :2: cavfléiz 2 .o-unxouo I c. . unoccuc..A.oos.lza.c05vaxoz co.uuc:. c .95 B. :3.838.:§§. :2: 35:22:33 : 23.83.9326... :2: 12:23.83... : £03 at 3.05: 3 ...: .3; 22.83.9353: 2:...3.?:§£.... c . «sou-ac. w. go> “A.aos. .->:_:..o>x-x go> Anemone—unu-aaaz u>asgoouoauuaoauaa go>vc_xxczuc.n 0.330905; A................-..-...-....-......-......................-...-..-.~ A 31.58 u:- I‘.xax ac: v A.......-...............-..-...-....-...............................v A 3.8.. v 65 5.3388 283: 8:8 2:38 >.t a «not». ca 0 I. oc.aCauu no. 2 flux-£883.983; .. 2 23558823500333 ... Ac . «38.18:: .23.?883xaa A 8.98. 2: g8_-2~3~ 338 v 2880:9959 Aqouoxosnufiozuoxu 31.3.. 60.: Am I Univ .3 A9 I 030.: §. A 3289. o 5:25 o 8.8.. v ..A 3.. 3x... 1 82. A host... u 58. A oc.uoa. oc_. guz.-o\— noo.oa A 2: .52. o 8 on An A 8: .52. ..x. :8 .o 3.5: .5 A so. once .ogucoo ou>n ~ oc.Iuouoa UV UV A 2:8 v “E. 195 A...................-...................-........................-...... A u.c= n—am» .0 new v A.-........-...............-..-......-..-.....--..-...-.......--.--..... .uc. . .2. . .vcw .26 3328.... .xa:¢.xo> I. pt cog» xuxu_xc» v >u .— .a> I. >3 cusp Au» A.»u. uc< .I.oawu no: .— .Aoc_xc_.uc:o¢ x I. xu 2.389.239:3323.-..» I. B c.uoo on ....I :.o_g o. I. . go. :58 ...: I... o. :8. «fie.o..:..o&.o.§ox «not-.2.» I. .c_ocuos.. cog. IIxI.II» v u:_oa.I... .— .A»I.quIA.I._..ovucao¢.n» I. ac.o4mnm.. AI:.I> Ins xv .~>I I. a» II.u AuxA.»I.~>Ivvuc:O¢.~»I I. n» cos. .I.on.. .— ..»I I. xI:¢.xI> .Ax- I. ax m...I.Ic.5:.3..c.~»Iu I. >I.Ioa .Ac.IxI.xst3>§I.~xI. I. .33. c.oon on 383.2 5:. «7323...... I. 3.05.30... «Agodo v.0.ou.om .2.31.82.9533oz... 323%....- Aauqu .Ia .I>.I.c. xv ..Ioa .o:.x.»o.oom.xo.oom «.3035 ...-5.5».3359... .u>.ax.€.§. . ...-95..qu go) Aoc_. ua...cooI~.oc.. ua..ouI—.oc.. u..oauo .I.».m.0..~ .Acao_ooo..a.on.n ..ouo.:_..o.ou.o.>.m.o.a ...-4...... .>I...x..xuugaaouo Isaabooga A-....---.....-....o.-..u...............-..u-.................-..... ..A 59.3 .8 a...» >5 :93 w A..-.......-..--.-..--..............-.-...................-.......... . ...... . .2. .vcu ......oa....«...3...g...=.....~>..oc......x...:o .Ax.o.a..c>nogwsumop.aoc I. Land-AI. $232.... I. .25.. c.90- 5.» a... 33.5.: 2.323.333... ..o£.~>..2 .... ... .oc.x . .oc.x .c.. 25215.... Itasca-1583...“.- co... 8... 8...... 2 6:8 : ......» 8:3 .352... ... .u 5 .... o a .. 8.: a... 8.. 3 : 2.6.7.582. I. 8:. c.00- A 3.2. x 3 . 8 3 o. o .. . .3. 2.3.8.3...528533252...... y .ucu .2. 23:33.8»..31.a.2....3.5...I:§.Io..8 .A .9.” _I>¢I~v..oo—.oo¢ I. ....IAI. .A .o.uc..qu>. I. do>nad :.uoo A..Iao. > 0...). cos. oIAu no:.wuu.. 2533:235d.7:33»! .... . . ”Auc.> «I u: p .x Ic_. .Ag.v.:i.ox o c.uo..oouo_ .nIc..unuou cos. AouA~ tea ... mc< Am..cv .— . .Auc.» >.I.I cc.» Axvoc.. .N I. >. II.u o I. x. :03» oIAn no: .u .— .Axoo.op>wuc:.» I. 0:.» £2. A ..0.. » o~ v on o~ 0. o I. . go. .A.xo—uoucou.uxopgoucouv>....:aux-Auou ......>.~>. .. >9 no.\....~.. .. nu .Aw>.~x A» Axuo.oca.uoc . 2533.336 cauzofloizoczza 535......8: .. t... 312.5..35 : ...... “Igodou.~:o.oo . u .x-6»I.xot>o .c_I»I.c.¢»I .xnlzI.x-Ixu .c.IxI.c.u2nc .~>I.~>I .~xI.~xI .—>I.A>I upxI.—xu c. .- Ace—«Inco.c. I.xI I>IIv on I.IoI.I< g..: :.uo- . .o~o: ..u ...u one. ..ooo.c_ .uc.”.uc_x.>._x... :8. .€.6..I33£.2..52w.> .AcII_oo-.u..o ..ooo.:_.xus».:.cp.xass.c—Ix J.;...» 3.3.3.32. 9.3.8: A.-..........-......-........-............-.......................... ”mum w finial->0: 2.3.3: o u 3 9.3182356 58. 33- 3.33:3 3 3.29 . 28282982. 53 32.-.25 533:3 3.32:. 9.38093 «new as new . «...»..oa .. .« _<..oa_.....go. .x...u oo.¢ .u ....>..oa “...:a nanny no .u .«ugoa.gng..uwuoa A.zcm~.o.ao..\.o._an my on a op . .u . an «- oo..aouacauu..n< o» — .u . .o‘ .szc-umcqvusoa In noumcuwwo. 833:. 33938 ..-> 33. :3- 3.33.3 G: 3.9 a «3. 0:3 323 a u- xzcaon 82809:. 53...... 3 $393: ongouluogguopac 23. 22899:. .25 2.3.. «22:33.38 9:639... . . u “on???" a. 583-328.“: . u 25:07.52 0 283.36 ... 26:55": a ...: com; o J... 3v 38:3»33533 0 on -. 50:335.. .3 .33 o 3).: x 0 on I. saga ufi¢¢o— «no; a" on» :o.: a at: 35 so. v... v ..n—otusog on 3 30.. .3— . Zoo :25 a 0:3 .25 2.: v 35:23 .3 "no on A co...o>coo a\¢ a...“ v “a .u nag-umua<..gouo c. a a an...“ on You v on em on — a" . ..o. . on 263.3% u..occ.;u.ouoxua<.ua<.o.o¢ uc~. .u ouoxua< Soo- 3-3 3335.5“.5833-3 833.: "5:0 ...> 72:23:33.: 53.59 3:32 ac. 32:me 31323.96 33.395: .0529 2: >3 $2392.. .35.: .32.. 23.59 33.. 829.5. .25 33.2.3935 22223533033... .8395. “van . a—.>..oc “nun-uaua<.uuom a" «one. N8. . «coo ...ca “n.05ucouo5 uo.o¢~ A23 :2: 2.3 a. on 330.. ..3 .280 9.33 no a" 8.332322. A .133 a.occ.go .oo_.m~ ".occogu a" ..occ.gua<..gog “one: ua< .omv nono2u¢< .u ..o..coua<..go¢ mums 5 arm. n .o oo.. ‘- Soo- uuocous 3:.- ._-> ..uo...ooa. ..cc-gu ac. .ooxo .g. 5.3 v.33 52.-.33 33 sou-333 3:... 959.8 .23 .233:— S!!ocu.ovozua$uo.. xco ...g¢ .....u..numo,.~vpxouou .acoz c.-: o. c.:... “ ouu ......n..o.~.»xo.oo a...uc.. uo.¢ coccgu . o. ......au.~.~.»xo.ou “.....o ..mku.ax .o.. . a. .v....:m.ou~.»xo.oc u.. ..o ac... u e‘ ......an.a ~v>xouou a..co..uu .>.a u n. .....Lau.«.~.»xo.oo “A.ua.. ...o a... . ~‘ ...“..a“.n.~.»xo.oc “A.;.os ” .. ......:«.~.~.>xo.oc u.o.co..uoos“...:ouc.:cono Soo- usagu u 5 go> fianczaos in... 5303.38.23: co to .3 on :3 2:59. ...: .520. .5 co 3:80 .... “5...: 2:... 2388.... “new c.90- «iaSES. 2283.5 nuc- ua.-.ca.a.axu .. so 5 on A. *9 .3301 a .o .3.) a 3.5:: ...: «23: 3.3.8.. 5.35. «9.3.3; 332:: 8308.3 335....iii-59.535.333.95 :5 “uu¢m_xu s-.oo.¢ 3033.060an 83 ROCCO.CCCCCOCCCCC...CI.CI.0.0.000...OCCCCCCCCCCCCOCICON”...COO... . «u...o>_c= a...» c...gu.z .x....¢asu .o «cac.gouoa . . u.a uco»..= >9 co....: . O H 33.30.: 5... o.n 83.3) c C . I . ao.»<—u cou ug-uu ua< «cu some..» 0» to»: am .acu.o u guv umxauooa 05300005; «new .oaxpouoo.acaou.go..:nvauoauooc up a" oa>~auoa «auoa=:z a" acaou 2 382983693333... c.ooa 78.13.... a a. 33033 on 3 Sat .0 5085: 2: a. 3.05.. 2: .co.u..on co>_o c u. cant oucouaogoa.~ anon. ogauouoga ..zpv “mamvaoa ogauouoLm n.aos.uo..ann.oucouuogocanogau~.oucouuogoadgupvon>bauoa xmuww»..ooao on was: oa>u aunt gu-w .co.uuo._ou aunt . go. 0300 oooaac-_ oc.guqa a o. oc_u305 ..gpv u.ac.ouxu «.Louou:_uon>».uao.ucaou go) uywaouc_ugo..:n ua>vouanuoou ouavooogg Azua< Adv Q .ucw «on-go>< nu .uouc_.-uoo o..u ooogo>< a» axouc_.—oooCo¢c-umuauao cosh no u u to: aoumcqumxu. uc< .q . onozcuoa. ._ 33.1.3223: \3-953 1 cons-3 $3.33:- 0 3.05» a" 3.95» on 335.. o— p a“ . ..3 3 I. 3.05“ c...- «_aou .oaago><.-uoaaaa go> ~.xou:. >3 uo_._ooao >cggo once one. venou. u. a. o:.-> coon->0 «on gou.< .ooo. ._ co_u.oon a a. vogue..ou on o. aunt .0 genes: 2:5.x-i enh .Lo».:n c. a. no.5: auav nouogo>o ogaoooOEa o.g~v nooa50>odoo_v_x a“ .auoogos_».u.os “5»..00—voa nu H-uoaLoE.~.ugon A .x..oo_.ue_. >..on s..: ..ouczou woody n~. .u ..guugue._.u.o; A.oua5 oc..¢eaa adogucoo ngoucaou "u— so.; o>.uua.c:ou “:30u xgac_n o>.uoaog.uoo. sag. voo.og .ouou ...ooa. o.noo_u.—m .0 nova oc_u.gu «on? I» nouooBoE.—uuuoa A :o uczoo.z came .0 _o>o. zu.g o>.uua.on ..ogucOo «goucaou "no.uoou up czou ucsoo.uc:Ou >uqc_ .ooco unsou.uoo. 60;. voo.os.ouao ...u n odna._u.—u .ov umm~ u" ~auoogoa.—_ugoa Acute uc_o_g co ac:Ou.x cave so. o>_uu9 ou.>_u.co _=o.v “no. .u ....o.oe._.u.og A.ucoeoguc. o.aou_v.>.u convouos gounoxv .o a" ace-0595.».ugoa A.uog ones gouuqi ou gouc.oa aunt womu un~ a" ..gaugos.p.ugom :. on n.nwp¢u on vauooccOu 0: «on: «p39 3:. «even cu vouoccCOu ca aunt .oca.o ovo.uouozn u:- ax< *o co..go>cou usag- dacLOuxo o. vouooccou on was: npao .ucaeogzacoe os.uo... cocoa-obozuuocn so. 5.5.a a: uomv “5.6.~Iu4 agavoooLa Lu «new a a goucaoo woody «on In aduuugas.p.u.oa as»): .ogu g u.ou «aounu._a ., ...-ogas__...og 232.. 3 555593» 3- 33.3 23.30.. ... 7:23.520... an goun.ao. one; woo-omv «mp a» HaguULoE.—.ugoa MApooocooo—cho——*uu» 59.; o>.uoo.cxoo acaoo ucnoo Loc.n coco ucsoo vac. ecu. voo.og.ouou ...ooauv unm~ nu «canon-e.puusoa gods-.mu.¢m .o cove o:.-.; co ac:Ou.mouau .OV . I“ nay-agoE.—.uuoa aomvo so. o>.uu<.m goucaou .o ouoxgoucsou name “a nu n..«Ugus.—.ugos a..oooooooo.ocoom.,.aap u¢. ..o..w.asou . o.nao.v 095:0» —m p a ov.>_n co ~30. “.9 av .no¢ nu .ouao.o£_~uugoa aucosoguc. odnaa_u.auavouox Lou-a: a: uomv . a" any-aLoE.—.usoa aA—ppo—vsouo.oou one: noun-x cu uc.oa o» gouo.oos gouc.og can: a: uoav un~ a» n.5u95oa.».umwa c. a A.co.ogo>cou ago. ax< ecu Loon—so On top: a. u 0.8: wigs-cos con-0.3 8i ...: £33339 :3 oucouoogognoogn go. one: Logo. on you a. sec.» npmo axoxuoo¢ -. go :.oo. gasp . a. a nu .. .>oxu¢o¢ a. g a. c c.oo- «>oxu.oa obnoooouc accumu.c_ many . “new .ucw gonna unoccuguc>me u~ n» .«agog.goauabos n n autos co.uoa.oxmv no. u» .cusoa.gaa_uuoc u ~ nova: co_-..Iuv .o n« n¢ugoa.goa_uuos u — .o unexc.um o..u “nouc.ao.o_uuc.uoo. u.. .u:_uoo. ...n ..... o. «upau ....¢..xu... n.m_vo.x angoao505goocaasuon ouaocoo.ov ue— a" “(ugoa.gog.ugoa agouaEOBguocoa co.o¢.em c-umv «.zzc-umvcoom Aco.uuog.u ongo>o¢u u- I. n.3u..¢.uc:og . acxw ., xzc.uu Ausoa guoco.o>-3 co.oo_cuv may nu .occagu ..zzc-umvcoum Aco.uoo._u oogu>o¢~ uo~ I" ~.:nao..u::o. . acxw ." :zcoom Auuoa guocoao>oa co.uou.oxwv an. n“ .occagu nuanceoLguocmi 50. < 0066 on .x 3.03:. .0 331—2.... «...-u .833... . .o......o.....t c G.~>.wn.—>..x.. .... u . u g .....> Q5303. 9n 3...... 3 .2... 53...)... 5.33.86 ...uaxu .... ...). .0328. ac. 5.5.2,... 5.3.3.... ..0.. a. 35.2..» 3.3.... .... .26 3... 3...... .559. .25 3.8.3.— 3303.... .ucu ....za.ao..<..uxu.....gz.......mo~.o.m..x....:..o ....xa.ao_am.xu.....g:.......oqn.o.~..xou.ax..o “new ........o.n...a..g...:.«...o.._... ....xo..:o ......v we . :38: . m......nee.ucao. a” ... ....c....n.n.uc=o. .. ... ........n~.uc:o. .. ... .. x...scxm.... . . c.o.. . on o. o. o u. . go. ..o.x¢.o.xu.uc:o an“ . «.....3......aux...n.n...a..guv.=.xa.. xv.»..:...:o ...».....e:e..... .82 .6 3.232: ....on..xu.uc:.. u. ... c.n.. ...... x. o. o. o. a a» . go. ASE-35.93.. .2. .3 «new... ..>...3..g.u.3.x...~>u..o..a..g.u.n.x......»x.xo..ao . . “...... .... . ...). ow ~>u o. .c . ....o~..>u «an.» ." ~ c.a.. ...... > v o. o. o... a“ . go. . . . in a 5 ....~ ... ... .....:.. ....» ......n.o..oc.. ..n.n o. ... o...c.. .........c..u.lg.....>cou c.u.- .....c ... u x 833:. . ~€.~xv.. .3... ...> a.53u.a. 2mm .3. .89.... .1... 9n ......3 «gum»... cunt-cog. . “new .>.u...a ..c...o.a ac. .c.cc.uu. “new an..:.o. a: n.o c.0mv ..n.a.c.um . a!“ . «new ...xw «c...om:c.ec..x ....oosau.xw c.o.- cog. .m»~..guugu. .. . out... ." gu c.o.. cog. oo.....>.u .. ......) ...... .....a. ....c.u.oou.x . ..u¢.x.x.uc..ucao. x .. x. ....c.u.ooo-> . ......ou.....c.....a.uc=a..a» .“ >u ..o...><..c ...-u. .ucu .mxgu... « N ....u... u . .o one: .... c...- 2. 3.9.33 3 u a. ...!— .... «on~ a. a» “co -. ax ...ua...o...oa.ooo. .u oc.x .ooo.\.o~.cm~. ." ...... .m......u....\.oo.ooo. u. x...ou ....xa.g..co_.>.a. a...:.... .«.~. m...x...uz..a «m.>...c..c. .o....... ...:a — o . on. m...x...o:..o ...:a..oao..o .......... on. go. a. oo....<.o..a..o .........c..u “la.....>co c. .- .....uc. ..c.o....u..a....o...a>.nx.>t.xv ....a .oc.x >...oo.x...u. ...:u n g. 5.: n.5,... .... ca 33.... .... ...v act-39c. I. p g... a. as. 3... so ...I. .3...— »3: .. ..IZ .... c. :3... .... co 3... .28.... .2... ac. .88....3: 3.... 8.3... .....u 30...“... 33.3.... ..c. .>.g...: . . ...........g:.o..u.o..uo»......o....o.o.. ...:.~ a... o........... on...o...~.oo...x<.o..a..o .........c..c..:.— -. u.v.o....o 38.95.238.395. .. 2.3.. on ...o::: a» — ...wcmo. 38...2—....=:3+=....:3¢5a .u 2:335. on 3.05.. o» p ... - .3. 2.9.3.9.»: 33:333....3. . . ....ccogu .uoxua«.ua<..... ... . u >.u.u .cogsau...u..a..n ~..»xo.ow. : a on €0.05: on . a... .3. 2.335. 3......2: 3 .. 2.33:5. on ...9232 o. — u. — .0. an a. 8.33.. «3.95.. a. .53 . ...:oo...o ..c.....>co :. .- 2... .o .82....»5. ” ......is. 8.93:. . x 50> 6...... .5 :0 v3... ...... V3.3... .... 3... >3... .83....oi.2.$ “3...... 9.3.3.... .ucu ARK—3....35.963.333.33. “u 3 2.533 «3.95.. a. .58 1999 ....oou.:vu< ..3nouo.a . «new ..3.— I" u.u.o..u.o .Ia.u..¢ A..E.. a: a... “5.5..63. a.co....>cou as... ..c...:. ..n...t u:.. an. a“ ..cc.;u 5.3azggouc. ... ac. acusosuc.ou:. ......au no~pnu oooxoa< .c...».c. ...... nu u.u.o..uum.. ............ ogauooogu . . .ucm .03.. u" u.u.o....o .....mg. n.>co. 3.... ..cgoux. ..a.c...ua:....c.v .n— I. ..cc.:u a... we. acaso.uc.o.:. ......uvovos u... .Nn. .muunwuwn“ mc.om..c. ...... I. vou.o..uum.o A...co.. co....>cou ...». ..c...x. ua< .....c.. o. esotucao. 3.... C.;. ac. ..c... ..anog. so. .>..o. .>..o.. .. ...c: ...: ...o ....a u ...cnouu ..ocoo...ozn.oss .53300055 . ..c. ..a.* n" nou.o....a ......g. .... ¢.u....o. cog. ..m. I“ ..cc.gu .u~. .. .uoxua. .c.om..c. ... . u» o ... . . . non. . a c...- A.co..u...ou ...u .ucou...o:.. go. ...a....> .ao...> .........c. .c..:o. ..coo...o:..v ..ocou...o:.. ..nnouo.. «an. .~>.~x..>..x..c.. ...>.nc:o. .. .g...x... c.o.. » . .a a... .... .uCu A...: tea... «a... no .u a... ...u n a. .o.s cos» ....g...x..~ v ~>. ac. ..g.....e~ . .>. .— ....g u.... no... ...u N a” a... co;— ....=...x.sa A ~>. ac. ..g...x..~ v ... .. a..:. .0... a... . .u .o.. cog. ....:...x.s~ v ~>. ac. ..g...x..~ v w”. ._ c. . .... 4' van .wc.u a... ...w e a“ a... c.:— ... an... a o .. c.o.. cou— ..u..oc.¢c.uu. I. .. ...—ou....o..t.>.u::ou -. ~> ...: cou.u::oc .. «u ........o.~n.>.ucao. .” .> ........ ....ucao. .“cflu.. on ...u:.¢c.wu on w I. u so. onset— !!o- .2. 26.2.3.2. 3» 2.6.3-: a .2. c. . .m.u .. >.~...>..x..¢.nc ............uc:o. .. ~> ......... ....ucao. .. ~x ....c.u.ooo.~ o........x.s..u::o. .. .> .......on.uc:o. .. .x a cue. ...>cou. ......».o.~u.o.n.uc=o. .« ...xuu . on ..c.¢c.ou o» p u. . so. cogp .p a .. .. “an. ..o...:.uu . .ucu .ucu . ...xu “c...om:c.ec..x ....uo....xm c...- couu Aoansu. .. u an... a» so u... c.:» v..... .x .— ......><..u 3:... c. n on .oc.¢c.oa o» . u. ..uc. so. ac...u...u 35.x... ....» no a. ....o.......... ...u a...u ....>.. o. In ...v - .. ............g.. c.:— A cos. c... . c.>. ..v o n ~ to: . .. ..oc—.>...o c.o.. on .......c.ouxw\c.om.m.uc:.. o. p a» . ... ~>u o. ac...>.:c. acosouuc. >u..¢..c.v ..>tcoo..c.uc:o. .. nu ax.a. ...asoo o. «cosoguc. >.... a. ..xu\>xu. .. .u “c.0mxw ..a «coeouoc. chuv «AAcoumc.o.xw\c.umxw.\oo.. a» >xv .>...c..c. ac. .:.uuxw. .90... .u u. .......c.u.xw\c.u.xu.\oo.. a" >u Agata 3... no. ...:.n.ooo cooguov ..oc.¢c.om\oon a» xv .>.s.. x... ........c.. .... .u ......N on ea. c. . u” u 5.. ....ouzmuao.lc. ...>cou .xmw..c c. .- “new «>.uu..: .nc. «a...:.umxm >9 ecxu acoeauoc_u ..a.3.c.om.w.c.um cog. .......c.umxu\c.ou.uvuc:.p v . .— ..oo..>.....o. .« ....oa.gca...o. .......:o...o.u u..c....o......ao.c.....a oo .ac.¢c.uu o» p I. e .0. A.... ...u a. .... neon... ......unw.ucoaa< ....u u:.. .ucu A. go. new. . .ucu ....u u:.. .ucu ..>.uc:o..~x..>..x.wupw “ . .~>.~x..~\.~>..>..ucao... \.~x.....uc:o¢.oc.. ..~ .ucso. u" .;...x.s~ c ... u n .ucu .....~>..>..uc:o...~\.«x.»x..uc:o...>..x..c.. .2 .23.. a 2.3.3... c.o.o . ~ «an. ...\.n\m. mummy . ...> ....0 ">00..0.>0...0..0.>... ...... ’0 300.21....“ 2.5 . ..0....0. .... 00 ...0 .0... ....0..5 . .01.... .. . 0.... «>.. .81... 30.50.0000 83.00.... ......0 . ..0 ...> ..0. 2.....5...0.0 3...... 0.... 00 .0... 00. ...0 ..0. .03.. 20 ..0. .83 .000 30.9.00 0.50.00... 20.; 003 000 . 20 ..0. 003 000 . .00. 2.... 003 .000 $005330... .....c:o..~...>....anpw . . ..cw.u.. .~>.~x..~2~>+.>30....0¢2m2~x+.50505.0... 5.00. 0.00 ...0 ..0.. 0.00 0.... ..~ ..cao. .. .......e~ .- 0......>.. .. 0.... u n ... ..............a..~ ”......ou .00. .0 ....><..0 .....~...>..uc:o...~..... ...ucao...>.....c.. _ . . ........ ... .ucao. .. .......Em ........ ..0.. ..0..... .... .... ......a... ...»...o. 0 .0 . N ...0 ... 0 .00. .580. .~>.~...>..x.oc.. .... u. .0... 2.5050. n. 2.0....5 5 .- 5000 u p 030 .0 .05 ...u 00. .000 25.00.. 0.00 0... ..0.. 0.00 0.... ....g 00.... ....0 .0 .. .... .... n .. .... c... .0......... .. 2.2.0.55 v ~>. 00¢ 20.0.0.5 A .3 .. 2. . . 2.3.0.3.... ....g ..... .0... .... ~ .. .... 0... ... .......oo......>¢..0 270.855 . NS 000 20.0.5... v .3 .. 30%... 2.... .0... ...u . .. .0... 0.... 2......- ..0.. .050... ...0 ...... 33.5.3.3...330 ......o..... v ~>. 00. ......x... v >. .. .... .. 0 5 .0 ...u .535. .0. ......... . a. .0: 0... 3n. ... 000.800 0 I. .0... 0.... 70.00.. a 0 .. 23.30.0302. 23.3.5. 3.0 .... 0309......) W 50.0 0.“. 20.35.30”. 7. 30.0.0003 a. .. 5 0 .............0.>.uc=o. .. ~> ....m..x.uc:o. .. ~x a... ........o..0.>.u::o. .. .> ........ ....ucao. .. .. ~ . ..>..... .. 50.. 2 a. .3053 u. 0 23.05550... 00 703%... 0. . a. 0 ..0. 2. 2.30.0350. 0... 0.... 0. 3.0 .0 0 .... 0309.375 2.0.0.050. .... 20.3.3.0: ..> .ax0....0..0m .... 2135.300 2.03.3550... 23.3.0 525.50... 2. 2.2.3... .0 J... .~ .0... .3000: 0040......5 .0... ... .... .0 3.0 0.0.. 00 0.00... 0. . a. . ..0.. 2... 35.0.00 50.. ...u 2.000.030.0302. 23.805.75.00 05.3.... 00. ..~ n.»xo.00.<.:0o...0 .~>.~...>.....c.. c.... 2 2.0.0.0305: .. ~> 2x01736305: .. u. ......230500 .. .> 2.0358050. .. .. 8.030. . 0.35.... 23.50.00. . 0.0 ......003 ......En..0.0.350.. -. ......S ...> .......e~.o._.¢_.c.u... ......0......0..... 50.0 ...... 00 0.00.... 0. . n. . ..0. 0.... . a 0 .. 2.032.000.009- 50.0 0500.0. 50...... .800... 0... 00 ...0 .3050 .550. ...: 00 7.032.003.50935... 0.. . a. 0 ..0. 83... 0.0.0.00... . ...uu..5 2.6 0. .0333... .00.0...05 >. .0303 25.05.3050. a. 8. .00. 0.2.. 0.0980 0. .02....05 0.... 3 2.0.5.0. a. .0 .00. .0..... ... .coeo.uc. ac... .......c.om.u\c.omxu.\o... .. >x0 ..0.... .... . 9.3035 00. 6.00.3320 I. .0...0...0.omxw\0.umxu.\00$ .. >0 “.00.0....0 .0... .~ 2...... ..0.. ..0. 3.50.00. 0...... “0.00.533 n. .0 «03.0.0003. .. . A>.._... ......N 0.2.3.50 .03 a. .0355 .0 .00.. ...u o. .0. o. . n. 0 “duo. 0.... a. «a... 2()1. ..0.. 3.0 60.30.500.00 ..0. 0.... .. ...n.~...0 . ...... 3.... .0.“ 0... 3 w 0.. 00. o 0... 3 0m 0.. 230.0000 r. 10.6.3.5 .. 00.0...000 .0 ..0. .0.0.0000 m~.0 p.00 .....0.. 0. 3 .....000500 8 0.... ....8 .838. is... 5... 3.0 :o. 8:8. ...... “30....... ..30..... . ..0. ....... .....0...... ....0....ea..c.....= .00. ...-...... ...c: ...... 0... ....o..0. .. ...:..0...... ..x..<....eo..c...... .... ..0.........x...........c... .: c... 0 . .. ...... .. .....x......0c:o. .. . 0.0.. o. .-.:.o..... nu..c.o...... .. x ... ...-...... ...c: a. . c... ...»...00 .h. c . ......0. u» x ..> 2.2... 0.... .20. .0. 00 ...0 ......al ..0... “2.....0. ......u......u.0...:x ..30.00.. .00. ......g.......o.......0n~.u...0.............”.....0...... ......g.......o..........oo~. ...c.o........... .ea........z ..000m.... ...0: ...... 0.0. ....0..00 .. ............n..........z..z. . ...>..<............0..-...00. . .......... .... .ea..c.muw.: .00... n. . ......g........n~... ......ea..c...... ....... ... . .c.o...... ......ao..c...... 0.... a. 0. o. 0 .w . ... 0 .u > ...-...... ..00 ...... c... .......0. .. .... .. ...~«..............c...... ......g..x..00.....n.~........0....<........0.muW.a ....x .. x ........u..~........x..0000..................c...... .... ......u 0.....................c.....a c... . . n a .00: .. ...... -... .ea..c...... .....x.0........-x ......ao..c.....a 0.... o. 0. o. 0 .. . .o. ..0....... ...0: ...... 0.0. ....0..00 .. ...... a. x . . . . ......m.....-..u...m.......c.....: ...... . 2.8:... . 8.. ....58....... so... ..0..........0....0....... .040 . .0.0...... .0.. .000.0.....: ....000. .....c.............c.o.................c.....: .....mm..0m~. 00.~.on~........a....sa..c...... .......c.o........:.o.......0cao. .. ... ...xz.=..x...><:. .. x..:: .m.. 00 . “Zoomathz. I» 3.7.5 ..0..........o.....cao. .. 0.. 0.... 0.0— . . .00: .. 0.... ......0. ...x.....0.. ~— 50> ..0.. ...0 .0. ......a saw: .0... 00... 30.0. ...... ...............0........c. ........... .....1..0 ..a0ouo.. .00. .....0....xu .2........0...0..0... . .00. ....xz....z...>.. .0. ...0.......: . n.0...xo.o....a.o.... 0.... ...u ....h. «03.0.3.0.. ...... ...... ..8253.. .00. . ....u £05.92.“ 0.... c... 0.0......0 .0. .h. 0. . «.....0. .0000 ..> ..0....«0... ..30000.. . . mxow. ...”... . .00 ....xz.:.0z...>.a......a...0.....~.0....x...0a..0 .... ......a..z.......03........ou.0....x....m....uuu... ...»...zupz. w>_.<.m......¢a...0...0"..m.......03..0 .2..... ...0: .000 ......uo. .....0....0.0.. ...:c..ooa. 0 .............~.oo...~.0.....<.o..;... .........0..0 .aouc....o.0...0o0.0.0... «a. "2.00 .p ..0.. .0...>.. u... .0. ...:u. u...m.n.ww...x . .0 ...0 0.... .... . 00w ..0..... «.....300. 0.... 0... e . 000:0... .. u.0.....>000 .00. ....u ..0..u:00m 0.... 0.0. 0.0.0....0 .0: .h. 0. . «.....0. .x..00. «..0. u 00 < a t . . o n 2()2 60:» n». I .> w— uan>vouauaa a» . ...xvc.uoo¢ ”a. «aux». so._~ u:o_>oga on quot goguoca ucoan<..xua.-.n.—vocx “nodaugoum o-.m new «n.2u 32.3%...“ "annoyanc— :.ooo can. v - unexcaom .— .ucw cusp... - cacao..uuo.s .— ..«saco_.‘uo.¢.c.uoog “.. ”.5-c o... .o.a gaucu. auc...~.~.u.x c.90- coap o - eazuo.¢ .— "cwuo «a..o<.o.. ..n.d «o..‘uouuo.g ogauouOsQ "new n—sauOBoaooc «souc.:u.o.u ...u .c... uo.g ououcu «annoyanc— uaoeazo..muc.uoo¢ua. “can: o..‘ ou-u goucu..auo.o.m pvnou . on cog» .». n -> .— uaaxvou-ua: a“ a "noxuc.uoo¢ “a. «aux». puo.a aao.>oua on cant Leguoc- ucoaa<..xua...e..vaux “gadget-am oo.m new mu_xw "souc_:oao.u uu0.a_ouo— “annoyanc— OQA. O 0 a O C o 0 95-8503. C‘U.‘.QOQ-V.“: c.ooo . cosh v - «toga-um .. u: auoxuqo¢ a" so c.oo- cogw Ao‘ - guy .— .xoxuaoc a" cu «p xxwu¢a “a..>ox zen conga >3... ._ .gouuo.n xuogu..xuo.¢.n.mpvoux “0:5- .” guano—moo no nu Iaxuo.s “new «u.xu “goggu303u c.oo- cusp too-odouoo «as .h c. on “co. co. .uo g. x «wogu u d ..N ga> Lu “c...uo no.3 s.»¢u..xoo—. n.5voox 3 A 5.33.. :v on; as» «...-3.33; a. .3..qu «*o.>umuo.¢vgouuo.m.ax "an“.puo.¢.<..~uo.. noun “you“..aa..a.go “Louuo.su.c_ «A. 00000000000. .c-Jhoa ....V.UuhauAPPQNwV>XOU°° . oBU ..c.ogu......u..u«.ao.u..~ -. uc_o....d .nuos.;.usauuvc~ I. uc_oAu-s. c. - o._u new 28.23.33.83.yup-:7»:.022t ... 2:92.... «.ouoaxaaos...»g-uuvvucaoc I. u:_o no... Go... 3 7.3055 c. o. :2: n>csgo cunt oz» .5. ac.oguooa.uc.osuos.‘v n u 930: .- «.o.>.nao.¢.c.u.o- u..u .uoo n. ..c.. «o.o.>.. no.3 ...cu ......au.a ~..xo.ou .......o.¢vc.uoo¢u.o.~.»xo.oo «a. « ¢_ao.xv.oao_ oc.. uc~ ocu goqu .uou.ga ..s ~.»xouoo..<..~.o...c.u.o.«.o.~.»xo.oa «a. «Au—x..x..ono. cc . an. cg. goucu ..ou.ga ..m.~.»xououuaaoum.c_uoo. “a. n no.3 o» ac.oa ou-v a... can Loucw .vou_g: a.e.~.»xo.oou.....mvc.u.o. “a. "no.4 cu ac.oa quot oc.ugoa¢ can saucy .vou.uauan.~v»xouou "nun-4.....uos.5.. .. quot ..gu .0 one.» 0gp .vc ou.ga u.~.~.»xo.ouuuoa ...: :.uo- cusp . a n 5.33.. a c. o. «.oo_.c..uu “...—.o .<. ~.o.g “gououc_ «oo.ogo»o.¢.o.>umuo.gguouawag-um 50> n.0901 co..ooccoo woos.a raga coon no u.»:o..coo on “.35 5 no..osucoo u:- uoxuogu .. .osucoo a a x . . o p 203 u.~.~v>xouooua._oadn> ads-.0u on: o. o goucw.vou.ga “A..opvpxououu A.Iuouueagaa co>.u an.) aunt xaoou o...:5.mv “oe.uo..ds.u ..aoooo.g ~ . u “souc.:ooo.uuc.uoonc «...Iac..cau o. >ox «upau ....» .....o...au.o.o..»xo.oo “A“.cooo.. ” .n:...ae< .uoo.....gzu.q.o.v»xouoa nauCJOLuxuon.. u vasesuxuoo.you—gnuan.o.v»xouoo u.os..o..... u .oo.:.oe..o._d.vou..au.~.o.v»xouou “Ap.'v \ anuoxp.»vzoa-—v.u I“ uncouo uuoxnu - —e:mv I" teacuoxuoo 2Q:?~.59«..§8 \ 85¢..Smtca 1 a .n».¢4xnouocouov. I” I6 no..4 «3.5m . 253:9...” . osmium... » 23%;:qu o m5“ 1 55m “SAVES-o o 85m In ~59 .2..qu o :55 I" 36 . on an op ' I" _ 50m ..o In mean .0 I" ~59 .o In 25¢ u.n\I».o_Iuo_.uca.. ." ac “conno.a.a «u.xu cosh n Av Imox .— .uCu “u.xu “Loggu30gm :.uo- cog» wovCOJIuoo no: sh . c. on «..0. " ..».nI:a.~s:«..e:m "uncouc. u no go> ..Iogu ....c< . o..¢n.oon...u .. .>o. .c_.u ... .ucsoguxoon uco ..Ico.I coon .I.u”c. Il.uo.__ ouo.ao.qu .os_uo._4u.au osntooogs . “new non-o ucwv .ucu .ucm «zonc.aouo.u “new «no-ggouuo_s mega ugo>couuouoauaac_ «... no... .“ Isuzu... c.00- oo 3.25.. 3 p I» . ...: Ina-000000.000 2—8L03 09.“...3 .c.ou.e:uc.o~.gauc.ou.ga . No I“ szuo.g :aoocun .ucu uxou._-a “Ao.ou.omvcoogomuc.ga each . I ugogaaauzo .— “new “.....I....g:.ouou....a...o_....u.¢....9uo.. “as. ugo>couuauaouaac_ u... no... I" III:~..3 u— I" Iuou II.u o I“ Icon :03» go I ~ no: .v .— c...- oa II..gs:x o» p I“ . so; . c2: 3 I 3:55.: «2. 2 ...nxzvspuzuau><3..Iu.ca.—.o.o.mo~.omnvuxouguzngo oo.u ...uo.:.ux_......;:...o.o.mo~.omn..xo..oa..o c.;_ I one: .- u..»._mzm_a. u>_pcouuouI0uanc_ u~¢au «I..& I“ Isaac... .In..I.u_c.go «sou:.3ooo.u c_oo- up.o .9 ugomuanano IIIu 3:6 :2: a I 3:55.. 2 "ax-zoo .65 3 o 3.35.. In 3:55.. I.; .xozou ouoo cusp .. I ...uoam...‘ ._ “....uoauo....c.uoasu.. "......voeac I... Iuna ......a c.90- on m on p I" . go. «2.323.326... “A. "Agouuo.s u~ .gouc.s¢ ”u .cocsuu no. a» unnuzo .vou.g: . a: I .5: no I» 3:35.. «no: .39 c.90- ugooou¢_ . ugoguanuao.no..‘saa.Iuou.. «.n..ac.s.a .o .m.... >I.g¢ ” comm...“.> 3.823 .3... A.coogoo Io_gnosu IIII as. :0 Iqu I.n.u~:I Iuo.a no.c.::v .uo.a_:x ogavouoss u uxoa...ncu 2.32.3236.- I32.p.owca&5auaouoz «...»..avux_p. o..gz . o .mo~ canvux...uao.o u...ade..m2u.a..u¢_.Igg.x LI> a».:: no. :. Ivan scoot .uo.sv «no-mood 05390005; “new “souc.:ono_uuum.m «:.Iu«uo.a ouou .Iuaouanc_ “Aosazo._mvc.uoo¢u.. «III: I... cast goucm..qu_-.v.—vonx c.uoa < A x . . oco 2()4 Q IBU .acoxc.Ix . »I:ouc.:oc.»oo .w...» I» non-oaauoa .035» I» anyonuag.» nc2va :2uo- »ucm »o— I .co.»u< ..»c: ..co.»o< IIIu new» .uhwcu »:ouc.aIIo.u II.» Eu »».I=».o»..u ».Ia.».I».g:..uI...cII.o»..3» c.uua co:— .>. I :0 .- »aguvoocuna I» so «xoxuaou I» :u .A. Acx>v hogan 30> ou< .vou252 ».o.xouc.:coao . e no. » »»o»uo— » »n:~um»:ac_ » uadoz » .o ~co_.o< IIIu ua...»................I.Ul0¢ Cuoo anew ...50uuedgcc Out-£0 . :32. ..n.SEo;5ou._2 I» 9833 o— lduum’ a . » . uA:I O e oo- »o in” «uodaooa .n «o§.uo‘.dl-u »~ »II.»I».JI.Iu ». I I .0 ~co.»u< 0.09 u.. .. .. ....uo.& oo._lo ...ol—b o~.a Duo—2|.» . .06: 02.. 33338 ..n 33.83.35 I» 88.00“. » n n »uo.s.:: »m »I._.souuo.g » »uo.agouuo.¢ »n »wo_c»ouc_sc »~ .uo.acoosoa »p .9 ~co.»a< IIIu un...........~....ao.& 0.1.0.38 .....—5 suauoas ...uoat L.uu°.t . .uo.¢ Lowe—gt . ..oc.;»ooaa ...»c..g ...xI.aI.o . »..».Iu .uI.» IIIII» . ».n.=ch::Iu..:I I» ~co.»o< c.ooo .q »g:»oa»auc_ .n a». »IquI»_:uo< .v »I»Iogoa..; »» »Iuoa»c_sg »~ »I»I¢>I.ao.o .p .o ~co.»u< IIIu ........I.taoc whoa. . $823332 I. «822 e no. »~ .ncu u»...-....I ».....Iao.ucIIIau..oIIu .q ..s.auo.a »n .Iu-oI>Iu »~ »I»Iouood .— .o «6070“ ...u I I «A._ .. .. ..... ... ...»s» Ioa . .I..» ...»..H.I»Ia I>Iu . .IuIa III» . e 328.9333...» I» «533 c.oo- ». I .o pea.»o< IIIu I.oo» Is.» I».4 :IIIo aauI» Iqu I... . .qu.-.Iu_g3.s.—vacoxuon I» .co.»o< “cocoa »ccosum:coxc.ox :2oo- »:cotc.ax ouavooo»s . .ucu »aonc_:ouo20»>oxuao¢ I» cu »...o:c.ucoo o» >Ia xca no... .Icoo.you-Ia».o.m—v»xo»ou . ».u::o»oauooo .II.»I..»\.I.IoI_...aIquIcauo.uc:o. I» .....I.Io on ..I»Io.I»o» o» I» 2 go» »»....... uc.x.o:.vI..In»2o -»»xo»oa 32.33 I» uncoufiox— o O .333 2 ».»Icooo»vc.uII.».. » Ina... IuIa II.¢»..I...: »~v.~v»xouoc»uc:ouoxuon— I» teacuoaoan co:— 0 II anaesuauon— .— »Aucao»uxoaopvc.uoo¢»a. » .Ic02o ucaogoqu. goucu..ou.ga »2» ~.»xo.oo»II..I..._ I» II...».. III» a II II..I...» ._ ..oe.»o».4pvc.uoua.». » AoouavIs.»I».4 goucw.vou.ga m wcuIuuumquuIuuaaauqquIlnnuuluuuuquuuamduqmuwa 205 I an:— QIStoooIs :3 3333...” uufioouuu Q 8 U. .2 33.3 n»..3.”go-.muo:§.m"wu“uufl.I8 »S.»..I_.I.an.I:I 2388.... ...xwmomgofi. ”Iowan-“u.“wunuhwnfi.«CB-Iota”. «gnomuootxw "ufifluu I 2.232.337 no I. 0.3.02.5. $3010: on 3:23....“ 9.288...» 2 .zqoon—Iooflunuuonxugxg.IHII .ISIMWEHKHKII »I33I9JMHRI“ I .339... ......«moflmwwfios.5.33329”"fi.tI.I_.II:II . 8.8 I Q Q uerx Q Q . $8—*.° 2.38335. I. . I... 2:: 33 _ . {III I. I . I: III I I: 582 5...»mwwmmmmmfiéfifivu"fimuunzf an» m I..5».2.n.»....w...a.§§x I “AI2¢OS—mNVOI IfiwaolaflIOU.gIan—Oumu—u. ‘ In I “ULOUOCOUIO u 008 I I Q09 u “Infinmmmu.23....»"saggy... mafia». I . .233. 2.3.3: III: 58. £553.. » 3:»: IAI2: $9.532: .2. u 38:? I: .Iuwimfluomugracgfiwu“ :IIu 3.5%“..«w III: I Izaak . I on a o I I I I » 0 ~.. I. II IA. 0 302:”303 OwflflIMIw"”fiIMWmmeknwgfiwuwuu .MHMOWHC— .0 ago'nnnwhfluuu H Mun“ I “AJUCdCI. .u.§ 30. C ”VI—s. "R Dug-LU. ' w III II I I I I wank—3.06 I O IEU “A. III ‘JU: “utmufl I.“ '5 ~ 0' 0* w QQQ . Q Q .28.. . . . I. 232.2 I . I I .5: Is. 6%.: n..=v n .U QJUCdDQ’QOQONQnQ I 302 3..° Iso“‘-Q§U‘U .v 2 o-Qfio- 9:95 »Maoufi.owufi.m.MINNIMIMMIMWISEYIHM »3.3.III»>III052.I»IuI>I.I3 «.mwwfluuwu " smith...“ » I. ... . . . . I .63.»: . 9.28 av “MOunfiIxuonIpInunNIMIMMIwaoB—3QOO M—Nag—sua H figouIit IQ? I..._In.»»».".».»I...Ieasing .22.... as... . 23...»; Q Q “III... a» Iggy... . I I. I I I . a... . .53... a III #3» I 2.393... 23232:... 9.288... mama" u «war: w... I mafia man» I .2552 .2: I .88 53355.9: I III: .39 to 33232 IIJIISHI »..:II.I:8.§<.III£..I «Q:- nsau“ Canny—Ora“ 000.90%.— »00 man E-SaowIIZIJWWI.” uufiuflu“ £25 2:: Iago—oz: 2.60 .. IIIIIIIIIIIIIIIIIII “nu-auouzm 053090 a IIIIIIICIIIIIIIII 2‘ :5 3.: I . sung...» ufiwu II...mfimmfifimmfir ...... 3.3.... ICU. C 0000000000000000000000 u C 0a 05300055 IIIIIIIIIIII «510° C thflnI» 2:88...“ n I I :35 III; 525:. Itéflfiat .5... I fang afloat I I. Is. 88.... B n I I.“- C . SEER?“ “ufiwuu I 2:: o.n :23; u I 055‘ I 0 U cataragoflw Influwfiu I 8:5» :3 3:33:23 : III»... In» CI. mflumwd‘..0 .LngUOHQ ” 00.00....CCCCCCCCCCCCOCCCOCCOOCCCCCOCCCCC 30:00—03 053390.... IIIIIIIIIIIIIIIII 830329 2308...» 2831.... IIBIWIM 30233053: 9.3... Id“... 0 .8 Jun] WIIImflfluleg 0 2(36 ua. . . “00.203.008.200 2.4038 0.8 ..8........08..80.>>£.3~ “3:608 85 80.8 ..83.:.......80.>I...2..~.I::88 500. «50035000 .000.. 2009- .00 0 300 00 9 000 .Mrufiugnwhfiaob . ...... .20 2 9.000 :8 .08.52.08..000.?0..3~...9§800 .... 85 80.0.. L875...2...82>>£. 0.0.2.0008 o—JN sun—30.0300 £000 .00.: 09.05 .— 205 «0:0. I. 00:05 005 00.00 I. 00:05 :05 MI». I ..0. I. 2. 25.3 00>: 00 0:0: 00.. 00. 0015.00. 20000053875: . 280800.002. ......00..8.0:2. 2089.08.38 .03... 258808.002. 20.00.88.002. 2 2 2. 23. 2000953050 20.5.3020 ...-5.0.8... 200058... 20.0030. .300...) «I: 3:. 3n“. Jua. ans. 2. «A. 9 us. 3.. 2:30.000: I. g 0 8300‘ I. 5 . 08.... .30.... 0... 8:32:00 500- 3 .xut..0< 00300000.. .20 0.0.0 >Iqu .0 I..II..2.I~.~I.III 8832.: 8.038.533838 .0832... .509 8...: 0. ~30... 35080 :80 828.03.033.80 258$. :80 00.8.5.0. ~30... .508ch :80 :0. 8.5.3230... 088.02... .... 008000.815 - 30... 038.00... 8 22:00..II.§..~.CII: I 000000003003” 0.»... 8.52.0.8: :80. 8.5.8.3 . . I000..c.oI\IIIa I..I..;:.o..n.IIx . .Ic.:.0cI.I>I: xu.uI..;:H0.“n.IIx .Ic.=.I¢I.I>I0 x0..0..;:.0..nvoax ....n.00.~ m....000:..0..;:.0. nvoI: 050: I.... 00.02 m..n.IIx .00 00o: ca.....=cu< I.Ia ..oon.>>¢. . ......0..xm.ou ..n~uoo.....zouc.a ..I..g: .0... ~ 0~ 00 I. ~.xo.0c.aauun00 2500000 .0: 0030000.. Q I w 2300000002.“: «05 «I. 0“ wo- «I. 0“ pc— ué. I. 00005.. ..0. I. 0000.6. I. >300— ..oo—I I. 00005.. ..0. I. 00020000.. ..0. I. 0000.6 0 «was “.8 . I. 0000.5 I. . I. 000.0000“ I com. I. E05233. I. Sun 0.,. In .3: 0.. In gz.d.& . 500. 00 0° ..0.: 500- «000000. .. 00> 3300009000 00.500000 .0... 28800....0050095230 283..».88.8« 5.0.0.8.. 800380 208.586.... 082.88.... 2588.36.88.80 2500.83.58.38. ..IIIEIuI.3 0.8.2.8.... ...80012803505380 ...-5.... .538. ...-08.3.5808. . 2300.20.30.80 .8020... I. 0000...... :30- 30 Z.» 0:0 003.0) .3000 05000 00000.60 23003:. 00200000.. Q .05 200000000u.>00005...>0009!x.03.0.. 20030003603300...08.00. 200000000u.>0.00—.>0.00..I03.0.. 20000000006000.000qu 0000500503.; 200000003 Sumxm.000mxw.03.0> 200000200.5020.5008.03.... 2000000000 300.3000 300.0000“ . 03 .0> 20080003300952.0505...03.00. m.8000o000u000.§u..8=> "20009000.; 03.6 50.3.0930) .200000000u.000x.000:.03.0> “0.00:0:0I0o I. 00.020...” 0. :03: .3000 00000:. 0000003 2300000000: 00300000 .0... ....00 .20 .800 3.00 .05 .05 3000.6 0 0.0.3 I. 000.. .056 I. 000.0 3000wa.0. I. 00030.: 2000qu I» 09.0.2000 £00. . ~ .05 3000.5 I I33 I. 000. .85 I. 000: 2.80.0.0 I. 8.288 30006 I. 09.0.2000 £083.... .0 000.0000“ 0000 c.00- 00.u 000 «00095.. I. 000300: «0000I2000i5... I >202 I. 000. 20000 00. 0.000 0.0.0000 00003 .0000 0 >302 I. 000.“ .0. 00 00... n I 000.. I. 0.00. “00000002000 00.600000 .0.» .08 2 238:... .2. 38.0.805:33:85.... oat—n}. «was < c t I em. 2()7 3...... 33.3.38. x 3...: 30....— I n ODOJCWWOI «6535.5 E.;-3:365:33 33 ..0. 23....- 32333 >.x 339.803 >o..._223... c.5308... “new . “new "~— on >uuxuocu "—33 “3. n» >oxxuogu «nu. .o— a» >oaxuosu «no. .0 a" >oxxoogu "53‘ no a“ >ox3uogu ”33. as an >oxxoocu "no. "0 nu >oxxuogu "eac an a" >ouxuo3u "no; u¢ a" >oxxuocu n~o§ m» .u >oxxuogu ”.0. .~ nu >oxxoozu "33. mp I” >ouuuogu «am. .0 nu >ouxuocu ".0. .0 >333.) 330 u>bxuaoc I” >ox;u_33 cosh Act 3 u» .— .>oxuao¢ In 39 :03» ton-.5 u .h c. o. «.35 Kongo—3: ...) «can; .~. .aaa. ..3. o.. .o. ... .u. .m ... .. .o.u .o v Aston coo. 333:; 8.53... :05 v3.9... 0. 8. .8395. o 2v “gooey:— ~>oxxoozu co-uoczn «new "souc.:w.o.u u>oxu¢o an 39 a...o:c.ucoo on >ox >co nook; .gOguu cc...xuo.m.n ”wean: .392: 83:333.." 2388.... ..s..cocououncu . o 253%.: Eco- a.oc.3:o._ octane .5 >3 003.0 03 «SI .83... 3 7.33 5.: o: .33 ..3 zone—z 0:. 5:8. v .3263...— 2308.... .Ao—VCOQouomncu 2033095.?!“ 5 on 72.23.. a: :3 2.3 >m. 303.0 .3 :3 .8353 7.33 5.: cars-... ..3 zone”: 02. 5:8.- :33 $33313 9.308.... .S~ Vega-“flu u.o~.:ouc.acoao Eno- o «a... $322035 33a 5339:. 5: .55 so yeast-coo. fiesta»: 2'33 2: >3 $330 .3 a: son: 3 «...-3 3:: 7:. .3. 38:7 3.. 5.3.- Show 5163.3 3330.... g :85..qu «.op aouc.:=oao Eoc- nisuaos 35:3 .5 >3 v3.30 .3 3!..- 30.8.3 13:3.- ..ov 38!... an: :93 .395 530333 2.3313 9.303.... “new «9333...: “3.3..oanzuou cog* asuomuag.. .— ...s: o.o..o.x ..3 >3 ecu. .ga..>aou wow. ....ga o o3...x .n co....o>..ou_§.o.envoux a . z a 3.....gaueun....x ..u._ x u..«. :3 ~ onvo.x .3 u 3.: n .3 gags}; “Loos. .... on ...guao.u ...u.x.3¢~ a.:»..x.u.x «.0 “A.; o . p 4 p a < — ¢ 3 u a u u . _ . u u . .uo «5030.18.95.38 9.3.09... “ecu 3:: ... 9:39.: “83:25.8 .. . . uguoowoosuuu . as o. .u..o... .c. 9 3.34953 Soc :03— 353» 2 . "3.xu ..< fig“ an“ o in . «naoooum.v—n—8.vu§_um: "35.33: a“ >o3933£3 gunman: fins“ o In . a..a.u.u..~.o.x...anc_u.u” .- c03— a.n. .. ovoxgnr: u_¢....>..3 .” »...u_.mo "aoaauou..o—o.a.vague—3.... Enu- cos» fN. I 808.33 .— ..o...>. . . no..coumxw.MNcu o .0 a..a.o.u_.ooooa..uauc_u.u" . :2: a3. I ova-taunJS .— .96 28.33: a“ 58.6 «5.332 n» 50.9w 23.33: 1 oust-um 23.33: .3 3.05.. .3333: 1 855 23.33: ..u 3:6 28.33: a“ 88: 23.33: 1 1.3232 c.uo. on 3 5.: u..n.o.u..ao.oa..uaac_u.._3 “nanom. .5 "Eco “an “(gin—tn “3:“ “.8 oompummug 2()8 .0009003 05300005.. . 50:0 .aouc.:000.u “0:03 .0500535530 NA-IIIIIIII 8"” O“ .U.‘ g.’.”o.¥u.dgbm0~V°': .0003 0000 :03. .. u 050:0... 5. ..05020..5.:.000¢ ... uuo>00 03 00 050: 0... 03. 50ucw..x00.0.~u~vw0x .0: .5 0w .00.0055>05 ...c: a. 0 ....>03 >00 00055 .00>00 >0005.0 0003 000..300.0.m.~vu0u c. 00 :03. 0 0 000::000 5. - .<0300.0.3 0.000 50:00 .03.. a0... 0 00 30.0 :0 0000 0>0av 500000>00 053000055 .000 a+.00 .0..5.:o.0.o.0 .....-500.0..5530.c.ou.5a 00 0003.000» 05 p 0. . 50. 003* 0 v 0001:000 5. . o..55305c.o..5a 5.0.00.05o5 05.5.:o.c_05.5a .....4....5.:o.c....5a..5.5...o....:o.c....5a ..0....zovc.0u.5: ..~o_.5o....5.:o.c..5.5a...o_.50....5.:o.c.o._5n 20.{08.5025320009552331.3.53.5: ..0.-u 0..5uao.c.05.5=..>0.005.0_.55aovc.o..5a 5.50.0coomxm.o..5.:o.:.o..5a ..coumxw.o..55305c..5.5:5.c00050.0..55305c.05.5: 203:3“....50855320233526..558558ta ..ecxw 0..55305:_00.5:..2cxu.o_.55:o.:.0..5a 5.000;.0..553055.00_535.0Eazo_......5uao.:.05.53 «0.xu :03. a av 000U5055w .. 55.30050. .5 0oou5o55u ..0....30... 5:00 ...e-x...5.0....:o.c ...0 55.00 cog. .. u 05.20... 5. 0.000 a..0v ..0.0 :0 0500 00>00 00.0305 0.350 .0003030530 053000055 .050 A..00 .....5c_.o.o.0 :04. 0 v ouoxccou 5. ......uoo....5c_.c.u-ou 03 0503.050. 0. — u“ . 505 :03» w v 00010000 5. . ..0..5c..c.0000 5.05.5...o5.o..5c_.c.u... .....3...55c..c.uao.5...5...0__5c_.:.uao. .mo..5c..c.000¢ ..No..53.0..5c.vc.000¢...3..5o 0..5c..c.0000 ..0..5c.vc.u00¢..>0000232.0_.5c..c.000¢ ".0000 0..5c..c.m00¢..>0.0o..0..50..¢.0000 ..000000000m.0..5c..c.u00¢ ..c0omxu.0..5c.vc.000¢..00005m.0..5c.vc.u000 I 20.8.0580... ...: 2.000020%...530. .5... .50... ..«cxu o.w5c..c_uo.¢..ncxm.o..5c..c.u... 5.000: ....c. 0.00.55.05.20... o..5c.5c.uo.. 55.00 :05. a .v ouou5o55w ._ «0.00050. 0. 00005055u ..0..5c_.00000 ..osaxo..5.0..5c..co...0 «u-xw cosh .. I Isuzud—m owe c. 0 a..0u .0u0ouanc. 053300055 50:. 5.58.3038 .c.u00u .........ac.ucoo 0. 05.20 .0055...00.0.o .o~.0.x «0.00.53.c.00.5: .ucu 5.0.0.5.3000305: .0...ouuxaz .. .ouuxox 00.u 030 “—030.0002 0. 300000z.0 0. .00.00: .0 a. «:50 c. 0 00¢» n - 0:300 5. ...saz.o.c.5.o.05.52..:¢05002 .ou.xoa.»x¢.oo «'00::00 a. 0:000 .ucu «5005.050 0. 0:300 up 0. 30-000z.v I. .000002 “>020000 I. 39 ........0000 000: 50. >03 >30 00054..00.53 .c.00.53.c.0u.5: 0.000 :03. 0. 0 300000: .w0 0. 0 03 o 0 5055m003 0..33 .— 0. 30-000: .0 I. 000002 .0 :5 00300 . 5.05:.“wm.0>.305< 00000..50005.5uc.5 ...... 0. 00..5 :03. .. 0 00000 .5 5. “no: ..0.. .3000.)000.u ..ooa.....5c.u.o. ... .00.. 00 .00000... 030 500:0..300ua ~.~.o0x .00:00.0.3 0.000 .000 05000 . 0.0.5.3 . ..~._uc.5.u “005....5 .500000. «300.00: .003003..::0u 50> u5.8.: 05:0.oo55 50:0 .5.55. ...c.u5oou 5 05.00 5......5.0 .. .~...5o.555< 03 ..0303.000~ 0. o u. . 50. 50c. 5...... . “.5... .5 ......o_5>5< 00 .-050o.0.0. 0. o n“ . 505 c.00- 00; new ..0.-0...... . 5...n55 .u ......o.5>5< 03 ..0.03.0.05 0— o 0. . u” 0 «\IImuum xxxlwmauqumqmunquauuu..5 «mace oom.\.n\w0 mung 209 00 03 03 3 .3 . .0. 3.. 0300 ..33 .3.0 . ..0303 .033 0303 ...0303 .033 0303 0303 .033 0303..303.0.03.53 3.3.3.0303.03 33... 3.3.03.5: 0M 33 0. . 03 . 503 3.03.0.. 3.00.3.0... .300... .....003.. 330033.00.3 ...0. 3.3.0.0..03 . 003. n . 000: .. 3....... 330.03 .3.0 3...... . 3.5.... 330.03 ...0 3.5....3.3.c.03_53 ..~0..30.303.0.03.53333....... 33000000....3.c.03.53 3.00.00... . 3.003 0.. ..3.3.c..3.03 3.3.3.0....533.... 3.3.03.5: 00 03 03 3 .3 . 50. 333.330.03.53 .003 33.03 33000.3..0.0 35055m303u 0.300 0033 3 30 000350553 .- 33.30050. 03 000050553 3.30.30.03.53 ““000000000000000 .U.‘ E*M“wh‘.V.U-L3 . 0..»30300 3.303030300003.. 3 30.03 0300 3.0. 033 5.300.303.53 .30.~.330300 3.35030.c.000333. 330.03 .3.0 00.30.3. .33 5030......53 33n.~..30300 3.300... . ..305.3.. 0. 0300 0.33 .0 03005 03...:MM3.53 3.~.~..30300.<0: ...0 33.00 0.33 0 . 00000.00 .. .003 33.03 3505533030 0.303 003. 0000030303 302 .. 0.30. 3503030. 300035055u.3033.35030 3.800.533 3.030.103.5300: .5033 3 0 50> 35030.53 33.: 0300 30.533 .030330.53 053000053 . 3000 .000500300xc.0: 3.50: 30: ..303 300.03 0. 050: 0033 3.2. 0 03. n» 33.3.000033 .3 3.03.0.00.¢.3. 3.033. 3.000.303.03 ...m3~353u.03.53 03 33 03 . .3.w0m03 0.03.5: 0033 30.033003 . . .. 3.. ...03.oa.3.. ..3...0:MM.....0 3.30309: 3303.0...30. 535.0 3.3.3.9....303 ... .. 30.33.33”: 03 30.03300. 03 30.03305.3 .3.. m0. .00 "30.03305.3 0 .3503m.303030~ .3 30.033003 3.305.3.3503m.0~ 03 30.03305.“ 0. 00 30300 003.033. 0mm.0 0. 300. I‘lmquqqumu.3mauuu..0‘ «nmamllm00.330330 3.0303333503m.3030.300353 0 30.03305.3 .3 30.03300. ..0303\.305.3.35030.300303 .3 30.03305.“ 0. 00 303.0 300.03 0033 n . .00: .. 3>055<030x 3.300~.530..3.03 03 30 03 . .3 . 503 ... 0303 .033 0303 . ..03.3 .033 0303 ...0303 .033 0303 0303 .033 0303..0.03.53 3.330~.530.03.03 03 33 03 . .3 . 503 33.3.0.. 3.00.3.0... .300... ..30..03.. 3.00.3.0... 3......0..3.03 0033 n . 0000 .— 3....... 330.03 ...0 3...... ..3...... 330.03 03.0 3.5....0..3..3 3.00..30.0...M53.20...0.. 330.080.358.53 . .0000... . 3.00. ......c..3_53 30.03.533.33033030.03.00 03 33 03 . .3 . 503 .0.03.5:30.03.53 «5005.033000.3000.0 3.303030.00033.. 3 30.03 0300 300. 033 50303.303.53 .3..~.»00300 3.35030303000033. .30.03 0300 00.35030 033 50303.303.5: 3.300... . ..305.3.. 0. 0300 0.33 .0 00005 03.. 0~u3.53 3.0.0.300300.<.: ”u. .0353 03 050: 33.03 0033 0 0 000x0000 .. 30:0 33.03 3505533030 . 0.300 0033 0000030303 30: .F0 0. 0 3503030. 33030.35030 3.0.00.530 33.300.03.00.000.0 3000.000 3 050: 35033 3 03 50> 3.000500 03 0300 3333303 .0303>0.30.3 053000053 3...... 0 .33330003.5: .3000.300wuw03 30353 03 0000030303 300.03 .3 33300305.. «Iwmu3503003 . 300. .3 3030 33k:— 3........ 30.0 0&5. 0300 30.000. ..30030.nm~330x .0003 0303 0033... 0 000:0... .. .304020....¢.0000 .3. 300000. 03 03 0000 0... 033 50300. 300—“0M3mwu0u . 0"303 3.000 ..0.. 3.. 3 .0300 3x03 50 0300 000500 5033.0 000. 000 053000053 0.3". 0303 fig 0n333 «no—\panm 221(3 "......N. .n ~. ..... .u .. on wuw Op — I“ x 505 .0 In N; “o I" —m un............ [gawacaub onuo>tu CO oc'xgoa .vOu.53uAn.ov>x0uou c. .83 .65 maz\amcnpu>oucnp~=vva In ~83— “new u—uUCUON I“ U “Uta. In m . .3 .u . .3 ......>.u....>.m....= .u . .> ......:.a....>.u....= .. .: .—.—c~ a" a . ¢_o.. oo .q o. . u” . go. ..~\....s..uca.. .. .a .o .. ....s.> .o .. ......a c...- . on .g o. . .n ; so. ...u.u.~ .. u .u...«unm . ..~......o.u......o..o .. . .> ............g.. .u . .: .p.—c~ In a c.50- oo .5 ow — n. a .0. ..u.c.a ." a ..m..ou a. u .2xg..g.~ .. a .~q u" .a c.00- oo ..u o. a u" a .o. c. 23 “new .z\..m....>.u....:.......oo. u" .x.¢ . T .83 “.5 .v-UCUCN luu .00“. I" m .ucw .: a. n .: ......>.o....>.m....a u" . .> ......:.«....>.u....= .. .: .pancu I“ a c_uo- on .a o. . .n _ .o. ..~\....a..uc:.. ." .q no .u ......> .o .u ......a c.00- oa .¢ o. . .u g so. ...u.u.~ .n u .9... .u a .m.........a a. . .> ..~......o¢u.........a .u . .a u ..0N In a on .s 0* p a. a .0. “wave.” a. a ..mvoou n. u .z\~cx..s -. a «~a a. .a . c.00- oa ..w o. a a. x no; uaa~vca\...~a.~.c4.ucae. -. .s . ~x...z..u¢:u. a. ~a .. a. o “axe -. .0.- .ucu .....ouao o o n. u ......x.........a.uc=.. .u ........a :.uo- ~— muug {\mququmquuuumauuudqu. rune: mmmnumnuwmn «mam co ..2 o. o u. _ so. “0 In G .~\3.: . ~\.~x..x. .« n . ..a.:.\..x.~x. .. : .a\~m .. ~x .a\.a... .x Q 02“ ....x...-a.~a ." nu ......c..o..u .u .u c.00- oo w.o o. o a. — so. . .o -. ~u «a u. .n ... ........... Icosqcogp 50.530. co oc.x.oa ......a . ..n.o..xo.oo..a.c.uo.. ... ”ago... ace 0:. noosgou a. case we a as. ...:u .....s: . ..n ~..xo.oo..w.c_uo.¢ ... ..n~...oc.g.oosa .9 ...oou .g. ...:u . ....a ..~.~..ao.oo.‘.a ...o Ceca—ouch I. a 3:6 :2: e a £2.58 : .ucu no.1u «gosguaog c. - cog. conned-an: .oz .h. c . Nd.. u 30““.F‘Qw“.'“Q”.‘§~Q°O~*OFO~*O.‘Q‘ - ... ouc— «ps g.~z.x.~a 's.4 .2 a w.o.a ...«u..u ...¢.>.: u>ass..g< . >. . «~on....n . .g uncou a .co.uu:oog no.0: >ucoaco.. go.g .0. won: .. oc..:o. Igo.¢co.— 50.530. o...u..o ua...uox. ...-oat»... ognuouosm “new .aouc.:..o.u ......c...~.a......c....53 . ... ........a co as o. . .. . go. .ucu .....c....g: cog. .c.o¢.... . .— ......c.....a cos. a u q no: .... .. 2. ...-.33... 3.3.3:... .82: 2.3.9....35 :8. 5:. ..x...9....§ .. . : 8:33..” c . on ac.oauooa o» ac.og..... a... so. .ucu uuc.oauog.. o ...-.u.aouu..~ n. ac.omu.oa «nuns-......a.o~ -. u:.o¢..... c.90- A...v m:¢.a..v num.u .....ox.....w.ao.u..ucao. . .c.o...... .. .c.om.... ..o.-o\...........m..uc:o¢ u. .c.om....m . c. o Ana-u xenon» :03» n.- one: ._ .xa.. n.00.00.00c05. 0.00 50. 00050 50..3n 50..0.5 .0030. A ..u.< 0 ...“..wm O .0 I .000.000 .000500055 :0..0:35 0.5.0:. ...000.0co55< 0... 0:. ..500.0. 5000 ..050:0..5.0.5 .000.: .000 0.000 00g. 0 0 52.0.5 .— c.00- 00.u 00. cc. 00.0 «00.0 0.00. : ...-.5:u .eou.0..53 2.. ....5g0..0ou.o..53 » . E ....x....ea..o..53 .5...o.5 53 0.03. ... .....~.5;...eou.o..53 mac n «mcpc aomv .eau.o..5xo. .... a..eou.x:.co...< n 0. nv+500500 00.0 g..0 ..000 53 .00 . .0 a. 00.00. A“ u$000000 ..n~.0...xo.ou .. 0.00. :0:— 3 0 52.0.5. 0.50 5020.500 £0 0. . .5000.c. .500<.Iou 50> n0:...0.5 50. .20“ 0:0 50..0.n a: 0.00. .50..0.5..c_ 053000055 .05. ...-00.000.u . . . ...»..o~...c. . ~ . 0005..000 . ...~ .. x<.0o. p.200 050.000 v .3 0. xo.00¢ c.00- ..I00050.00¢ 053000055 . .00. .c.voo¢ one—acou 0» >03 >c0 0005; 0000000 ......) ..00..0530..000 20.0.0 00..0.00 50...0..53 ...~.n...xo.ou ....03000 .....5._x. 0.. .50.0.55 1.5.00 .00 0005. 50 50..o.5.....53 ..o~.n..»xo.00 cw «M05 2252.. 2. 5325385. 8...... 85.: .. .5. on 3.5.3.335: ..5..n...xo.ou ...:0...0.3000 0.00 50.00500. .0500 00.:50500000 00.3050:..0..5a ...g..0 .x-05 to. «05.300. ._ . ..n...xo.o0 .. 00..0... 0000000500000 0:0..0..5: .. ..n...xo.00 ...000000050050005.0000000503...0.00 00:000oc.I:. 50. 00: .000..0..53 ...2050055 0.0>.0c0 0:0 :0...0.3000 0.00 0 0. ..0..n...xo.o0 ...0..._:. ......3 .....n...uuwoe . ..0....» ....53..n..x..xo.om. 5. 0 0° 85 Oh n I. I go; ...»..050>.c: 0.0.0 c00.¢0.x .50.:00 00500000 00.0.005 ..0..5: .....n...0o.o .....n.M5aog...x .....53.. ...»..050>.c: 0.0.0 :0 .00.: . nunm....o.oo .0.00go .0 .000.5 ..0..53 ..0..a..»xo.o0...guao50 .... .0.x neon—0: ......3 «a. ...---n-a ...---u--a-..-u-u 80.ndpo ..0..53 ....0...xo.00 . a001.v.u.53 ... o...xo.ou ...0u5u.zu u------.--.--..0..53 . 0 o~.»xo. 0. 0 «5000.0. . 0 50> ..00.0.... 053000055 .05. .3000.3000.0 ......x.0c:o. .. .......00 o ... o. 0 .... 5o. a 00.. .00. . .0...:.....x .. . ... .na0n«u>000——u3v0won0au I. a .58 . ..28 .2. ...0.0.~ .. 0 .0.0.« .. 0 .00. .3 .. ...: ......>.0....>..... 3 o. .0.» ......3o00...>.0....= 0. .3 .poUIN I. J c-oo. on .. o. . .. a .o. . ..~\....u..0ca5. .. .. .o n. ......> .0 u. ......3 0.000 oa .5 o. . u. 5 5o. ....c.. a. a . 0..o. .. 0 .2. ..5.~ .. a . .0... .. .0cu ......._.. n. .0.) ....... .. ...: o~p\u08.p I. m 0.000 on ... a. u. a 5o. 5.5». on ... o. . .. . 5o. .....c.\.n...~.c..u:35. .. .5 ....o... .. .0... ....\.\...~......~..o.. ...hmw.x (a a x . . an I!” ........o. 00.. .000 ..000050.00¢ ......c....o.. ....000.35. .eau.c.....3 0. 0.... .0... .0... up... . ...... .0 0.... .0... ..on.>...0 00.. ......500 .. .0... 0:0. .00. ...35.. eou.c.....3 00.. ..35........~0..05...>....... ..5. .eau.c..wwum . 0 an): 0. .Nx0.en.aN\m~>0p>vv§8 ......~\.~......0¢3¢. ..0. .000.: 0...: ..~>.00300 a. .0. .x0tu 0 000 .00. ..m~\.~>o.>..0030¢..... .~\.~0.....0¢3¢0..05........ 0 ......eau.c 0...: ... .00300 0. .0. .00:~ 0 000 .00. ua~>.. 0. .Nx0.om. .—>.. 0. . x..<¢. 0.80.... an...) ... .0030. I. .0. .x0xu 00 n 00 N o. 0.0.0 . . 1. .0 .... .... 04 .000 ..... new .0... .0 .. ...5 0. 0 n .. .... c... .........:0 . .0. 0:. .......:~ v ... .. ....g ..0.. .0... ..~. ~ .. .... c... ......0...:. v .5. 0:. .3.0...x. . .0. .. ..o.5 ..3.. .... . .. .... 00.. ......0...00 . ... 0:. ....0...:~ . w». .. c. . .m.. 00 . n. .0.5 00.. e 0. .0.5 000. ..000000000 0 0 .. 0.000 00“. .00.000..c.0.. .. .. .....0.0.00.~0.>.00300 0. ~> ..00 0.0.0030. a. ~0 ........0..0.>.0c=o. .. .....0.... ....00000 ..cuuo0 00 ..000000000 0. . 0. 0 50. . . ..00.0.0030¢ 0. g .A€0A—.tv0oo-v§¢ I» x $6173.0an— I. x ...»wu.00 0...0..0.000¢ . .0000 00~ 00. .0 0.00 000.. 00 0 00000 0. p 0. . 50. 0.000 00.0 . 0:. . ..0.5 a... ...:3 ...50. a... ......500 .. ...30. ...... ~0..05..............0...eou.c.....3 ....0...x~ .. .5 ..00....0..~m~..ucao. .. ~. ..0.x0x~ 0. .> ..0000.~m~..00300 0. .0 a0.n 0.0. .50>000. ...0.00x~00w.00-.0030¢ .. .0.x0:~ .......x~.....c..c.0... 0.000 00 000000000 0. . 0. 0 50. o— OM00 00:. . 0 0 .. 0.000 00 ...50.000000..00000 .0035. 0. . 0. 0 50. .00050005. ...03 .0 q 000. 50..0.500 .. a>0 0. .00.0>.300 .0000500. >..000.0.v ...0..0.00300 0. 00 0.0.; 0509.00 0. .00.00500. .0550 .0 0. .30....0. 0. 00 .000... 505 .0000500. 0020. ...00.000000u\000000.\0~o~. 0. >00 a»..000.0. 000.00000...~.n .. 00 ...00.000000w\00000w..000~. .. >0 .000. 0000 505 «0.0.00.05000 50..0.5. .000000000\0n~n 0. 00 ...... ..0. ........c.. .00.. .. .0...x~ 00 000 0... 0. 0 .0. .0.000n00.0 .50..0.5..0. .0 0. 052.0. . 0 .> 0. 00 .50 0.0 .. 055< .00 .5000.0. . .0.5.0.h.w¢0.w0m0.w>. >.~x..0. ...... £6.00..0..0..0.. 50> ..0....5 «n.0s5: ...: 03....5. 0.0 0.. ....5. ..0.5.0.0. 053000055 .00. . .....35...0ou.c.....3 ...»...0......o_5 .0 .0.o.00~....H.0uu.c.....3 ...»...0 ...—.... .......00.. 0...... .000.c.0...0 ......00 ..00.:0......x....ooo~.oon000...eou.c.muw.3 .0000m005. ...0: .0000. 000. 500.0.500 .. .225... ......uxuuaxn: 7.0133500... . . . “atm... 800—08. . . ¢~n0.+80x .6... swig—N . . v~m0.0x 35. —SUVC.O~."5”0. 00 n 0» o 0... 50. . ..n.000mxu.00300 0. .0000 0. 0 ...n.500...xa.00_00_x....n....0n.50...000.¢.0...3 .00. .00.5..... ...:3 .0050. :00. ......000 .. ......g.......¢0...0.... ..50...000.c.....3 . ...xoo.~ . n.....0n~. .05....00.c.....3 0.000 00 0. 0. 0 0. . 50. ..0.\0000¢0000.0030q 0w 0 00 .000 .0 0. 0 .00050005. ...0: .0050. 000. 50..0.500 .. ...n...0.00~....0...~.. n......0ou.c.....3 ....... 5 ..0....5...000.c.0..53 0.000 00 n 0. a. . 50 0 0 0 0 0 0°CF~ In . . . . . . ...0 .....-H m...»...000.0.0..53 ....3500.0 00.0 oo.w 000a 00.w 0.~.0500nm.0n~.35...000.0.0...3 ....0mn. 0n~0 00.~ 0m~.5...50.:.. .000.0.0..53 .0000 3000.0 ..0....o.5.0.0.....0.~ ...... ....00050 00. 50* .000. 00.. 000000 0;. 50.0w..0.0..53 ... ~..xo.ou..<....o.5.c.0...... ......00 ....00050 00. 50. .000. 00.. .05.. 00. 50.0w..0~u...3 ..n.~..xo.00. .... .... n..xo.00 0.000 ..0.. .0....o 5......o.. .50 0.0. . > 0 50> 213 0 ’ ADCR.ASM .0 ’ ;This is a assembly subroutine for EMISPEC.PAS. ;This assembly routine collects spectrum data and stores ;data into Buffer data array. Data type is specified by ;DataType(1=Fluorescence,2-Phosphorescence,3-Lifetime). ’ Code Segment ‘ Assume CS:Code Public ReadData ;Procedure ReadData(Var Buffer:IntBuff; Var Count,DataType:Integer); ReadData Proc Near Push 8? ;Save BP on stack Mov BP,SP ;Now 8? has stack pointer Cli ;Disable interrupt. Les DI,[BP+8] ;Get Count Mov CX,ES:[DI] ;Store it into CX Les DI,[BP+4] ;Get data type 'Mov AL,ES:[DI] ;Move it into AL Les DI,[BP+12] ;Get Buffer address Cmp AL,2 ;If DataType-Z then Je Phs ;Jump to phosphorescence Cmp AL,3 ;If DataType-3 then Fl Je Ltm ;Jump to lifetime routine 5: Nov DX,1814 ;Start conversion by' Nov AL,0 ;writting any byte to Out DX,AL ;A/D start port(1814) FDone: Mov DX,1812 ;Check if data ready In AL,DX ;by checking ADC control Cmp AL,128 ;port. Jb FDone ;Hait until done. Inc DL ;Get lower byte first In AL,DX Mov ES:[DI],AL ;Store it into Buffer Inc DI ;Next location Inc DL ;Get higher byte In AL,DX . Mov ES:[DI],AL ;Store it into Buffer Inc DI ;Next location Loop Fls ;Continue Count times Jmp Exit Phs: Mov DX,1817 ;Start conversion by sending Hov AL,48 ;arm counters command to Out DX,AL ;timer control port PDone: Mov DX,1812 ;Check if data ready In AL,DX ;by checking ADC control Cmp AL,128 ;port. Jb PDone ;Hait until done. Inc DL ;Get lower byte first In AL,DX Mov ES:[DI],AL ;Store it into Buffer 214 Inc DI ;Next location Inc DL ;Get higher byte In AL,DX Mov ES:[DI],AL ;Store it into Buffer Inc DI ;Next location Loop Phs Jmp Exit Ltm: Hov DX,1817 ;Initialize timer OUT4 Hov AL,228 ;to low Out DX,AL Hov DX,1814 ;Send A/D start conversion Mov AL,0 , ;command for reset Out DX,AL Reset: Mov DX,1812 ;Check data ready In AL,DX Cmp AL.128 Jb Reset ;Hait until done Mov DX,1814 ;Reset by inputting In AL,DX ;higher data byte ,Mov DX,1812 ;Now enable A/D external Mov AL,132 ;start conversion. Out DX,AL Hov DX,1817 ;Load and arm Mov AL,108 ;counter 3 and 4. Out DX,AL LDone: Hov DX,1812 ;Check if data ready In AL,DX ;by checking ADC control Cmp AL,128 ;port. Jb LDone ;Hait until done. Inc DL ;Get lower byte first In AL,DX Mov ES:[DI],AL ;Store it into Buffer Inc DI ;Next location Inc DL ;Get higher byte In AL,DX Hov ES:[DI],AL ;Store it into Buffer Inc DI ;Next location Loop LDone ;Repeat DF.NumData times Mov DX,1817 ;Disarm counter 3 Nov AL,196 Out DX,AL Exit: Sti ;Enable interrupts. Pop 8P ;Restore BP Ret 12 ;Three variables(3x4-12). ReadData Endp Code Ends End APPENDIX C SOURCE CODE OF IBM-DACA 33000500300 05300005.. 2000.0. "00000. ..0.. «050150. "0005030051.. 0500000.... ‘ 30200.00— ..0070 300500.00. .000 00 0 . . . . . . u .0.00 9.00.05: . 30 000000 8000...: 25000.0. .000¥.005um.00..5w.0000 02.003. . 5000.0. 232.0300..000000if...”03332.0..000.0090<0<0.00uwufiun . 00.. u .00. 3.. “055““.00 . 0.02”"... . 0 50... 0 .. . 0550 . .Mufiwfluohw . 0 Z . an .2050. . 0.09.3.0. ... .0... ._ .3.0...03... ... x %......0.... ....000000ox.... . c.00- . 00> 2 0 0.3. 0.3.2.0... 80030.06... 0.300000 m0 0 0. n0. «wwqowamuwm Q 0 .U .u x 0.30.0300. ..500. 53.0.0... ...0....3.§.0.0.0..!..mn.. ...wumwu u uwflnufluuga 2.2300033. 000400....”3.0.00.0...pu._00.0n0..§.mw0.u.datum 20.00 000¢.~ 50.0.00. 00300. #3... 0 00.100.000.30 .. ....Mwnwmfivafiw.Mmuwunu"..ufin.u"0...“...“203 3:22... 0...... 3;... .0... . ......zzsx . . . . . . . . . . 05 35.000 00.0... ...... 0 0.. 0.0.0.0 2 230.00 .0. .0300 ...0.00..0........00.0 0..03.~.0.0..00..00 3. ...: . u n! p 50.0 0.. 00.0 . ......0....00..0.«000.:8:.2.3.0.2.: 0.8.0.3.... 30.2.2.3”... a...” .un “”3”" m “flaw ...mmm n 8:30.98". W .0 50.0 000 . 50.. .. ...... 0 50... 00050.0: W. .9.0m50..:00_.00 0.200005. 3 ... n 3.6.. 590.0»... .m. m. 0 50.0.0003:— ,_ A ~— .02 ..0.-.00.. .0450 001.00. mu...» 0 00.303.00.30 . .00. 9000 0.00.0 .0 0005000 0000. .....00 0 00050000390 0 .00. u .300. 00.0.0.2). 30.0100 .00 .. .0 ..aasasaezszo .a§::.?0fiyxs.. 2. . 00050033330303.330 .00 .00 .00u 2. . 2003390330.23.20..:00 .00 2200.... . .0300 ... ..x_000.... .00...0...:.0.0.. .00 .00 ....00.... .0000000.. . . . .0505...00.0.0..03.m.0.0 900:3 . 05000.. .. 03.0.00...» . . .....00..u._0....0..§.:0.0 .00 .00 .0... _ ... . 0000.000...0....0..g:.n.0.0..00 .00 ....00.5.0 . 0000.... 5 ......0030..0..0.m0_3....00...0...s...0.0:05... 2:05.... . ......0 M 2.0.8.038. 000.. .0... 0...... ..0....0e_......m0. 230...... n 0.0. . 23.00.... 3.000.... _m 00 Iwflgudfl £flwuvfl uwh'ugmbum uX-ODCJHdS “.00... “0...... , . 3 ....m u w W 30.029.805.00 05300005.. $300.5.“ . 0.005.. , . G. . 32300000530. “manna“ u $000001... 2 -.0. 500.: . 0. .5300 . . .00.0. .2... ....0....0w.§..u...t. 532.302....“0 0.80. . ....uw: «fixfluuwW .....“unawuwuanw.mawnmnmmnmwwzfiwnwom . .... .fi0.0...0.0 00.80.30 00.... . 0.... ...0 ans...“0.0.0.0000... .... _ . .2 -.0. 0500.. 00..... 00 . . . . . . 23.53031...“ .. .......300....00 0.0.... 0.0.0.. 00...... .. 0%.....00....000... .. . m 0. .3 . . 0.3500338 . . 2. a.“ >50..w§~w0mmum~uwmwuuwwnfiuuwuu M 3.05030: 0.0.0 00020... {..0.-.000 .0 .00.0...0000 w ...0... 0...). .. . ... 0... .... ......0... 0.. Anti}... . 0... 200.... 3 00...... w .0... 0......) .. 0. 0. ......02300 a . ..0.-00> . ... ~ ...... swam... ......wufiufi M . . v . 00 0 2. p .3.0. 0....03 ..0 ...mwfifinuprogofoa 2 0.03 40.0 000...... w 2.00.0.0..§...0 8 q .. $0000.03“: “...:.-..---......-..........-.-.........-.....-...........-...... W 'mqu % 2Ll6 «0.0..5:«0.0..53 0.000 000. 0. 0 000.00: .. 0.000 00 0 0 50550000 0..0: «. 0. 300.002 «0 0. .00.002 «0 0. .0300 . ..0.0_Mwm.0>.00.< 000.0.........0c_. ..0.: In 00.: co..— .. 0 000.00... .— «.n.0050000=«.m.xo00.:0000 .3000.:000.0 «200000....0.000¢ «A. ..0.. 0. .00000... 00. 50.00...00.0 ~.~.00x ....8.83..2$.600.3.005.w00 «000005000 0 0.0.5.0 «.0..0c.5.0 "000.0... «5000.0. «300.002 .00.002..0:00 50> ......0_. 0000000.. .0003... ..000:..0..0...0« . . .0x». .000: .00...0..00u0.00.00: ....000...0.0...0... . .0.0<-...000..”...;a....0.0.: «.0.000...5.0..5:« . . ....<.x..on... ...;0 0......0 ...0cc.cu.0...:... . .n.0..0cc.;0 .000.. 0..g:.0 ..0.: «....00.0.0...0«.. . .:\>..000. 50.00.0..0..02 0.0.0.: «.0000.:00..0..50«.. . .> nx0..00000 .300...0..00”0”n.00x 20.095.33.532. 0 0.00 .0 509.002.3303 a 0.00.. 2000......502. 83.5.. 002.. 0.20.... 00.30.00 00 0..00=.00 g..0 . ..5.0000000= ..0..00..o..0.~..~ 05.0..0..0000.000.0 0.000 «00.000..5: 055000050 0 .000 «00.0. 0. 00.00.05.. «000 «.0. 0. ..0000 ..0. .. 0000.00.. 0.000 00 ...0.00500.— 0..: 00 n 0. . 0. . 50. .000 «.z. 0. 000x000.«.a. 0. >0.00.0 ..00. 0. 0.0¢«.0. 0. .000000 «.>..000.0. 0>..0.0¢. 0« 0.000.... «7.3.5.. 0...... a 0.33.: ..z. 0. 50.00.0 «.0? 0. 00020002300: 0. 0.005.. 0. 0 In 93‘ 0.000 . 00 0.0000... 0..) 0.00. «5000.0. 0 . 50> «..00.000=.00 050000050 000 0 «20000000:.>0.00 0.000 «5000.0. .—.. 50> n.>.0.00.005000 0000000 >0.00. «.5000.0. .0000000x.>0.0000.» 050000050 .000 «.0.0¢\00000.00:0¢ 0. 0000000x>0.00 0.000 2000.0005 0.00 0‘. 0003.00 20000..0>50.0. 00.. >0 00 0.0.30.00. «2 05000:: "ALOOOUC— «CHOCvagotu 0.00 S—ugu 0 “Eu ..0:5..0o5005:0 .>0x000¢ 0« 00 «.........000..000 0. .0. >00 00055 .......0..50«.-.0~..xo.00 . .00..05000 00.53 000 0005 0.00 >00 050.00 00..0.00...0..5: ..0....500000 2. >..005500 0.. .020 05095— 9.000 050.050.. 30 ..0300 0... 0030...... « 0..0.»xo.00 «2.00.050000 00.0.00: 00 .005 05000 00.0.0.0600 0.00 :0. 000 ......0..53 «.0. 0..00.00 «2.-.0050> 000 00.005000 ..a. 50. .05000 00.0.0.0800 0.00 to. 50...0..5: .....0..00.00 «..0000050 0..>.000 000 00.....0000 0.00 0 0. 0.000 .000 000.20. ..0..5: ..0....»00.00 «..0....0>.c= 0.0.0 000.00.: .>....0000 .0 .000.50000..0..Muw.0 0...xo.00 ...000. 0000.0 .0.0...000 aog..0x.0 0 0000.0: .0 .00.. . 0 .0.......: . ..0 0..00.00« .0.. 00.0.0>..0..5:..0 00.»xo.00 ...0 . 0 0 a . 0 0 0 0 0 0 . 0 . .......0....0~.»xo.00 .000.>:o.«....0. 0..g:..u0.0.000.00..=. ......gs..0..0.~”0~ 05u~..0..000¢.020.0 .000.>30...00.0..0w.¢3 «00.0.000500..:. ..0..00 .00.. 0 0 00 0.0.x0000.mnm.0 ....5..000.0...0«...00.»:0.00 ...55..5.0.0...0 .. 00 0~ 0. u a..w0m0. 50..500.0...0«.0~....00.00 55..500.0..50 .......00.00 0.000 00 0s 0. . u. . 50. ......»xa.00 «5005.0«.00.0..000005:0 0.000 «5000.0. . —.. 50> «0005000.... 050000050 .000 «00000. 0. 5055w.0000 .000 .3000.:0.o.0 «>0u0000 0. 00 2. .0:0..000 0. >0. >00 00050 .50550 000..000.0.n.n.00x . «.~.0000000=«2~.0000.30000 .0000050..0u 000» p 0 000:000500 .. 0.000 «00. 0 av 00000. .— .0.:0050. I. 00000. 0.000 121.7 c.oo- cog» A.;.uouoxuo-uv no a.c.nouoxuoouv .— c_o.- ca ...anzuomuuw.a u.o_uo>... u“ 090:“... u.~.¢.>... .« ».wa.d..gu.~_..»... .n m.oa.uu.. . ..n...>._; .. .cnuuUu.._g.>... .. go. .- .nnuuoz: nu 3 7.2.5:: I” 3.05“ c. as ea ...anauuu ¢..: «p:_-u¢a:uom ouou cog» cue-g” - u._xu ..< u.oa.uau..no~ox.v.:ac_u_o.‘ um—ugo>.. u» ouox.cucon:uom ..oa-u.u ..o.oz.v~:ac_u...‘ upc.au¢a:uou n «.u.._*n:..m.c...a Noah» on cs. 9.5.; “...-m a" sou—nu a..n:...a u.xu ......au..o.u..oon.>>c_uwn..«n.»xo.oo u..>g.cu .....a .....cau..o...vooo.>>c_.anp:n.»xo.oo . wont/“...”.- «sooouc_ » . 50> u~c.-o¢a:uom.—c.oo>c.u¢n..mnv»xouou “A.;..cu ....oa ......a...o.&..oon.>>c_..n— mvpxouwwo. cog» .uc.;u .— «oas» nu oucogu o._u ...-m I" soc-go cue» . . n .49 .— ".ms.n n..xu._...c...q. out... .n :9 “a. «.c\>. «o>au 0. ac.) 30> o . ou.:3.n—.m~v a: u.oo n.n_ .u.....:.pumo. “u.xulx.< ogsnooogs n«_nv . .ucu .aonc.ao¢o.uuococ “.....uao...o.u a.....u.¢......:o.c.o..ga oo 3.95.. 3 — ..u _ ..2 «...-oeaz..._;.:o.:.....a 2888533395...335...339:n=o> ”aouox.ouoonauou.o_...:ovc_ou a: u........xo_u on oust oc.>om. uoo...n.muuox uu_xw c.9o- can» 9 av Acvsosguxuogu .— «ao..‘~:o.oa ‘20- “.oeazo..‘.o....:ovc ...< “econ ouoo cusp... - cacao._m ~— . ..oEdzo..*vc.uoo¢ c.9o- u.x._ . .._‘.:o “.n...c...o ~.¢-:.~.. .u-oouc_ ~ . go> «.coa ..n.. n._uv «ouooo>-u 0.3009055 n«_uu .vcu x. 332323853: 5 “A. . ...a .o .one:a_.ou.=a.m..o. .x u.. . . .uoz....an=w.m ...;a.n. .....z .oas» a" conned-ace “zon¢.3uuo.u mao..uc_vooo.u ......»ao .__‘c..c.u... on 3.05: o— p a" _ .3. 2883.5.353...3.95...38§.3.E, Sow-32.33953...3:353: .aouox.ouoanauou.o...c_.c_vooc u........x..u nag. ...u oc.uooa...o... nfimwn.x “u.xu uzovc.:ouo.u ”acne c.90- c.:— o .v .avgo59uxoogu .— «.....c...o..¢ u..¢-z.._..o._.c_vca...< 38.. 88 :2: .. .. 82.3: : u..ea:o..‘.c.uooa ... “gauge. on o. .aoco..* .gu ...cu..xua...~.~...x ....cogcuaosua—vaouc.acuuwo. .siwaqu . whomouc_ ” ~_. 5.) u.caa .on.a .-..v "cu-auooa chat-ocua “new .c_u... u........ac..coo o. .u_.u .......xu....o«.o~...x u:.ou_g:.c~o~_g: . .ucu ..o.c_..a..x.xuc.. a....oo...x .. .oo.... :5 Eu upoaouuxoz a. socuxoxuv nu .ou~xoa «a a” «anon co¢p m - acaou .— u..eaz.o.c_..a.....au.ao-.xoa .ooaxoavpxouou “poucaou a” vegan “new «sung—o“: nu acnou up a" ao-uxoa.e nu .ou.xox u>ouuoo¢ n« so u.......ouoa use: 50. >0; xco au-gs..ou.ua ... uvo>o¢ on cu cacao... on» gaucw..xoo_a ~.~.oux "...:ouc_::oao one; ..u onwmo «coax—nxmo mama 22163 {Illuuumxx u.3335313335355to; a“ 333 so... «..o...oo.uao¢_<.ugom .u ...oo» . «.9ccogu nu nouxogogu.: ogoau_oo¢_guu_<_uuos Ange; oust odnacwv « ugooouc_ «agooou:_ ”ouoncsgvuocuuoo chauOuogc auoog; an» . uncu . .ucw .ucu a...>...a “oo_>oa>s-c.- nu agouu.uo¢oo.>oa.uuoa e no. «>5.¢.. .qu «A—vxc.oa «.occagu nu ~0u>¢g¢g¢.: 9g0uo.oo¢.guu_0 doc< a» ugou-_oo¢oo.>oo~uuo¢ c.wm~ "cod-c< yo pea-o oaou ua—v>a_oo 539:3:— :- 033.3 «a a" 23.32.353.39 c. a «banana. «guu moa no.-c< noo.oav .. .o. ".nxhauca.-.oo 2.5.8582: a“ 23.309.323.33 2.535083 3 23303583353 .ucu «gouo.uo¢~gos.~ I" gr...uocgas.p . ~ “nouo.oo¢,gue.— u“ noun—nougos_p u . «gouo.uo¢ogoe.p an gouo.oo~.os.~ u o no:.-> “c300 voodu .o . oo-u u..v>a.oa no..u acuv "new ao.o...oo «xgoc...n onus..m:\.ud.. ...caou .oo.ouv “..0...onv .“ .oo¢.g.u;oa.»..gog «n «coo..poo u>g.c_... .uau..«x\.«d.. ...caoo .u...uv m..o._.~m. .« .m.....ug.s._..go. «e .o..o..oo a»..:.. n .u55 .mz\.m. . ...caou .o...uv «.qo...~m. .” .m.._.uu.us.._.go‘ "n goo.o_.oo "x“.c...~ one: .mxxom. . so.c:oo you..a. a..o...wm. .n ......uu.os.._agog u~ Ao.ooF.oo “>5-c.... «no: .mxxam... ...caoo .oo..uv “Ace...cm. nu .mo¢_5.u.os.~.ugog up .oooo..oo u»..:...° once .m=\.m. . go.c:ou uuo.ouv «.qo. ooq. a" ~ooc..uu.us.—.ugog no hone: .ouv .o oooxgos.» ...u u.ouou.o..u.g=a.c:ou..czou.........ogos._...> u.ouougo..u..uoxgcs._.ouo:..¢.».........o.¢¢.~.h"»o. on ~ oh 9 .n . go. c.oo- «who: u scan-nocgoE—p “gooey:— . n:a»::¢u..aoxgol.p — go> «...-.33 9.3.8.8 «new . «new .aonc.annw_u . u.~.~.....>... .. .c:ou........oaa.¢.p .a—o~o..g->_.m a. ouoxggt.~.n....ounouou" on on u on o u" . uo‘ "2.313.: 88 c2: .1. . £8 .2. : . ..ooo.>>c.u.o o~.»xo.oc u>oxuoo¢ a" so “a. u.c\>v sou-o o>au..ou.g:.o.o~v a: a..aoo.u..oo.o:...anc.u~... u9... «anus» «caucuses—poc..oo . naucaou.—n.ouoogc§.*vou g: A. ”an“? newton-5.. «9509.333; 3. a: . ..ouoxgofi_p..nuaa-Ogusupvo. g: ... .ooo: .. n..§.~...o... ..~. .3 “aucaou.—~_oucogos_*vou g: ... .223 5.3.3.5.. 359.33.; “8 ... ...uox..5.p._~....o..s.p.o. 5: «A. «one: an ~g.6_~..xoo.- n.~v a: . “aucaou.....u-au.§.*vo.~ga ... immune 23.3.3452 a§ou.£ua.o.~ m3 at . .aouoxuo§.p.n—nouaogoi_»vou a: ... "ova: an puns—p..aoo.¢ ~.~v ox ...—VCOgoooo: u. wrote .. .acuum . :2: ..o. . 82.5.9252 «mum: “new “aopugo>..‘ a“ o... 2&8fin32..3§.3.: «...-.....gau.. "ac.:\...a..... o:.. a. .~.ga.o. «...: c. 0. cos. «A aa.z.uouoxuocuv so a.c.nouoxun-nvu uc< A.a.noaox.ouoon:uomv ‘— “new “noggo>..; a" >0.ao.o u.oa.o.u .oooaa..uaac_u.o.$ . >o.ao.evoa~g3 ~.. ” .c\*.>..a..a .s.....o......g:.n oev .: 22l9 on no.3. nu $3.33... 0.3 03..» ..u tot-33.9 :2: 7:35.. a _ : "$83333 «.......‘.coogum.c..¢ co 3 g. . .gu .— “ out-om a» Eu go,» .ucu u.aou-¢v.ucouo.zx..oa.>..aouw._ .uc “Nu.o¢oaau.u o.oo cosh ..swvggu . .gu. .. $05.2. ..u Eu “you. :2; .33... ox = . «....ga »u.xu..ox.¢.:¢ . .owuuficof ~v§2 a» a 6 c2: ...» a a: B. 59...: . 8.. : . “.oc.x._vucaox x .n xv .3333—73333ng...» 3 a. 23 .ow.3.9.¢3.o>to>couun .7333 3.3.-33.3.3035 a" 3.9.. 85 53. on 73.05: c» o I» . so. . gov “new 352. 3:33.- 5 3x. an an 352. 8:33.. 5 u~>¢ a» a» o..u auxap»..~>.vvnczou.~>. u» a» cusp 38:33.. : 278.55.335.23 5 8:. «.c_t»..x.s».v\ap»o.~».v nu >u..om u.c_cx.-x.6x.v\A—xo.~x.v nu xo_.o« gov c.00- oa ...o..u< g..: u x..noau.¢....on:u.m.ou.ga.w.c.¢.mo~.cn~vuxouguxoua .2.3.:_...:.§.8.3.§ . o w 3. 935.323.. 2.23....» 5..».385.... an... on. 8 8:23:33 ..S::::..5 “new . . n” c.l» .o— n" u.¢> o..m an no: cos— ... . camuhc..3. you : gov c.o.. o..u ucu no. -. x.l> “0,. a. c_l» :.oo. ...u new «a -. x.a> «a. I» c.e> ¢.o.. 5.: ... . c333,...339: : cog» unnc_g.. _. . asv c. .. n..i.u ...; co cunt >..a..au ...u avg new “xouc.ao.o.u “0...; a“ 303.04.».9 ...u coup a" non-04.3.9 cog» .uooazz - . .— . “33.3303 any “new «23.5.9803§.33>.3a£:p :2: 9 932.33 2 3v 3cm «.uaocoa.o.u once cusp ...“..gu . .gu. ._ $362... I” So A3 uno- cof $3.3 on 2 «.wun“....uoo.. ”..... ouaa..o...au.n.n~.»xo.oo “A. ..o..g:u.n.n~v»xo.ou «3— 3.039.533.358 In 2.3.9 immflc cnéo ooozunko 22333339312 1 3.9.. on 3.0th o— . “Juno. I 2..»3. 03 .....a :3. 3.82.58.93.33 238.332.233.308 3 Son“... 3.... #3363933». 3 ...: .. 33.3.3333. : A008 no: «8v O:w 33 .3 “325.86 “3.; 3 v3.33... .ucw 22.8.5:833:38”. 1 2.33 23:33.... In 2.3.9 :2.— o u gauge“ a. on 3.05.. o— p 3 . sou «Rota-000000 .U.° 8’CICSLK...U—§~n.°FV..: 232833.33 : 2.33 on 3.93.. o» p 3 _ .3. ...u a.3533952.333.3~..33 :2: o .. c.8283 ... “Acct-0.00.0000 COCO 2.3... .U.§~M.°wv..x 238.3322m0o3. c. o. :2: f». . 38:23.3..338 ..o ...: .. 35.3.3393... : 88:28 :2: A 8833.. : «3.: a. :2... 35.63:... “3.3 3 59.3383 0.; 3.. 3 3:93.33. :2: ..r...:8...33§28 ..o .. ......8...:39:2 : u389.8333523-95233928..., 23822.5..3:.5..:56.:.§.3:§ 2.39.2.5.3853..Bx.389:2E, u.32233353.33938z; O .u as c. on “>353:— . :33... 3.38. 3:81.33. 2.03:. . ...-3.53.3653 5 3.- 3... . 33.333.333 ...> «8838.33. 53.3.03 .33 28.3.3. 3338... «new 2:36:32....:9335383.§. .: 3.23).” .- 833c-"Coaouc.30.:o.coam:o> 3.0-“3.9.53.3..039 .8395. 88 3.33 . .oS«>.&3.o>.-:Sos : Sgt->5» 5 o. 3332.333:—33306333> “...-«3.933339359 .8395; 38 “3.8.3.3 . 8 in 3.8.55.5 a 2.2.8.“... .9. «3:55 a“ .3333... 13.305.39.322. 33.3.5 2 €828...=u_sra.. “in... 3.3 .331! «c331 3 co on: .333 :3.- a33 ...: .5 no: no... 33 3.3 :2: 3 .. 88163» no: .— «an; 220 “09......899 c3.- 55. v3.3.3.9 no: 3 .9 n. 533.. 9.9.9 332339 33.8.. "a... . ...... ...oo..um§..o_t_.x 2131:5882... cwfihmo. .5 o In c.9ou :2: 37:53. .2. : “Sanction. .3223»; .952; 3.9.3.3.: £53... ......“ a... 2...... ...“.fié. .. . ... . 9.25.9.3—3. 9:9 .33..» .3...» S.; 3.05.. 3 9mm 990 3 99.3.2323... .....u . “o I. 52> an In ......» ...u . .3... cos» .n. - 5.32mi...- ..u ._ ...—9.9 C383 .8 ... :6 Eu “op I" x...» 37 I. ...w ucwum I" .35» um- I. ...—5» £9. :05. .m. I c.9331... you 2 . 8%.:2333 : ...... I. nae—.3339 0.3 2.... . 3 7.38:. :2: A.>.-....oa_9.3.ouaom. ..o T 3.38.93.99.33. : “Aonou..o._..w..u.9:z 3.9534399333; .9." #89 33 — -. .2533. ... .523: :3.- 3.93:. "38.53.59; "c.3009 339.332:— ._.> 2538. 3222398... 33.8... “38:50.39 59.9 :2: 9 9 333.9328 2 £335.35 .53... 3.35... ..3> .605 ... .xu....n...uax ....éoiosxcaoliwu... 215:3 ...... >33 .— .....u “u.nw “093.3393 :30. :2: 330933 um... _”w 2.93:. .....1. ..> .99— .3... u 3.93:... 9.3.3... .3. «zone—3.35 «:5... a. 99 2.52.363 3 >3. >c. ...... .......—.33....53335Pw39 .8. Boa :2: 3.335595: A .. ._ .n: 3 37.63.... 1 .83.... . 5233533.. . .33.... . ton—7:33.. . . on... . 2.3.2.33 . . .... .3... 2303...: 3qu... #:33- ......u an In 103.3: an I. 3qu... ...-33.8.... :3 .35.. :3 .353....u......3.mx "99.. 33......» C. 3.5 . 5 Z .325. .5... I" so 2.2.3.9 3x2. ..3 >3. >5 ...... 2.4.93...) “53.5.5333 :3.- ..o... 9 . 3. 8.. .855... . ... o. .9 3.95: on — a. x .2 :8: ~33... 3.9 .395: 3.9 .85....qo.3...o3.x “n ... .83.... . 9 ... 2.3.9 .085: .03.... 2.39.33.35513352. 3.9.3.3.; ....éiox.3.:o3.io& “2w . In — . go... . .9.” $0350.39 ...:m .3353...) "99' “...-3.32.» "tau :3.- .99— 33 :2: 33355595... A x 2 5.: $3.33... .2. . .A n 9 “N: I. . c. .9 . tn. 7. 3.9.. u . .53.... 1352933.. u 1:33.353...) “.393..— "393......33.32.939.11. . :3.- ...> .9 3.95.. 0* p a. a .3. H2: .33 2. . 33.53.... 3.9 3.9 .3052 3.9 23.3533: “. .9333 3.6.8... 2. $3.53 .5 ... ......33 2:5: ......u .m n. 2. 2. .2. 2.39.23.32.53.- .95...3. 33.; at .13 “atm “coutmaoi3x 3:6 3.33.3.3 M. on... v... .35.... "0:35.: 9399 oootzkep «a: v... =5... "...—23.: onuoo 30:;an 2221 ...:.».ou.ga.xo....cou.um..3. :»909 :09» . . . I >99 ~— .>0x:00u a" .99 ... .:\>. 90.:- ao> 0:< ..0...) ..9..xouc.:cono :.909 n n . .ucu .ucu «90.9.3: u a «99.9.0.:.99 « ~ “no.9:00909 “ . . . *0 ~co.uo< 0009 .... .. ...........o.: 0.9.».ax. .o... .o..o.:. ..o.: ....o.:. ..o.: ...c..¢...uo.¢ coo.ou. .n o.:cox:zo0..:. .. ~co.»u< £009 u e .ucu «new “0.09u:.:9 . n “3009.90.“ . ~ «0.09>0.90.9 u » .o ~90..o< 0.09 ua.....0...........0....um—Ls...v.0¢ uulum.0.>l.au.o. n.o.:cox:xoo..=. .. ~co..o< |:.909 . m “99.09 939:. u w «new . ucw “0......9 . n .0u090>0u . N .0009uoo. u . .o ~:o.»u< 0009 ua.................... ...—n u......0>00...v004. n o.::0::10u..:9 u. ~:o.~o< 5909 a p .o .co.uo< ...u ......u 91..u ...a. ma...» .... . .oa.n.o..ga.a...aco:... .. .co..o< 900909 .c00:om::0::.0: c.90- .::02:.0x 093:00099 0 .ucu 993.090...) «9.30.0993909 :09» 93909.0... .. ...>u.0:0>.:= 0.0a :09.9o.x .>:.0.ao9u .9 9:06.90909 .0... «A».n..>xo.oo u..9u:o:u .¢.mma.90~ :09..0:.0.u 9530.. >9 999. ”99.:>uo . . . .u mov.vou—L3 . ..o o...xo.ou...o.. co...o>..o...a... «n..xo.oo ...o . a o a . < u a u 4 . x . .......s..~.-..xo.ou .....92 .u... ~ 9.0: n.~.xo.uc.aau“mo. “coogom::02:.0x 0.:uooo:9 . a«.0v .ucu “:00:om::o::.0x “onooogmu.xw ..o.o.....coo.um.c... cm“. 9. . ..u .. . 0xu00 n» .99 .ucu ...3....o.: «0:.» a" :030090u09 ¢» Illuuum . ma0...:..0ao.u ......»09 0...:..: :00. 09 0.095.. 0» . a. ..0. 2.08.2858;....e:...:39:3.... 230?...3093393. . .5 .5900. ..0uox.0u099=u0a.0...c..:.u00¢ .ucu ...xu «:00gom::oe:.0: c.0o. cog» 9 .v ....o..u.o.gu .. ......c...o... .....a-uzo........c.vco...< :.909 99 00:95.. 0» » nu . ..0. :09» .9 n 00...:32. no: .. .00....u.:.:9 9309530039 9 00...:3: n. 00...:3: :09. ... - «0.0eucc.... was .. —¢.0¢0:0....:.9009.. «0:0: 0 .. 0.0: 9.0 .0.:w..0..:a o 00:95.. u. 00:55.. :09. .. .. 3.20:3... .2. 2 .n.0:0:0....:.u00¢. . "0:0: 0... 0.0: 3.9 .0ucu..0u.:a 9 00.3.5: 1 00.1.5: :09. ... .- 3.95:3... .2. 2 .~.0:0:0....:.u00 ... .000: 0 .. 0.0: uc~ .0»:u..0u.:a o 00...:3: n“ 00...:3: :09» .. - ...0:0:0.... no: .— ...0:0:0....:.uo0 ... «0:0: 0... 0.0: a.» 909:9..0u.ga «c.0u.:a..9 I“ 032.0.9 O. O. I. O. C. O. C. 0. Av- A0- A0- A0- ....co..ua.= ....xoac.acono c.90- «g090uc. .00...¢:x.... «col-2.... ”oi-:0... ..x0» . 0...:. 90> ......c.... .o .9....>...< . ....zo.nm> . . ...0. .uo.9.:x 0936000.: “0:9 . ...». ..00.0..uo.9 .........c..o «zoo:.:0ao.wu>0uu00m a” 99 ....gn... .x.: .9. no .....u ...... .o._..n o....x . ....coaouo0x..».:ou:.::0ao ...:u :09. 9 Av .9.:o.:w.oo9u .— ......c.o...a .ucw ....” «090000;:o99 c.90- :o9. vouoo.0909 .0: .. ...». c.00- uuo.¢.0u:.:9 093:09099 “new .........o.9 u0~..0.u.:.:9 “new 2 2 2 . .Bu .3 a . v83 .Zwuumsfi . . .. ‘33 “3.: a“ 353““... «gumsuuucoouumozx 3.8.2.3823 Soo- . 3 u .82? 5&5 ~ “338.3839 8: Bu “.....romwnw |muuMl 223 ° Procedure FastRead(Var Data: DataArray; Var NumData, Channel: Integer); This is a assembly subroutine for IBMDAC.PAS and 9 i ; Reads NumData with hardware A/D conversion trigger. 9 LSDATA.PAS. code segment assume cs: code public getfast getfast proc push mov les mov les mov les . cli conv: mov mov out inc mov out dec wait: in and cmp jne inc mov out mov in mov inc inc in mov inc loop sti mov POP ret getfast endp code ends end near bp bp. 59 di,[bp+4] bx,es:[di] di,[bp+8] cx,es:[di] di,[bp+12] dx,02E2H al,1 dx,al dx al,bl dx,al dx al,dx al,l al,0 wait dx al,0 dx,al dx,22E2H al,dx es:[di],al di dx al,dx es:[di],al di conv sp.bp bp 12 ;near call start at 4th byte ;get channel in bx ;variable pointer is 4.bytes ;get numdata in cx ;get data array address in eszdi ;clear interrupt ;AI-ctrl register ;set new data flag to prevent overrun ;by software enabling A/D ;now higher byte ;get channel ;set channel ;set dx to AI-ctrl register ;read A/D status ;mask out all except A/D done ;check A/D conversion done ;wait until done ;point dx to AI-ctrl higher byte ;to skip channel set ;enable data read ;AI-read register ;read lower byte datum ;store into data array ;next data location ;next higher byte ;read higher byte datum ;store into data array ;set next data array location ;repeat NumData times ;restore interrupt APPENDIX D SOURCE CODE OF LS-DATA 2224» a..xnoonoc«.o...caou..N....oaas....u.......ga...u_....c...a . . . ms... a»..a.a..a.x..n.4w.a.x..c: “5.x.oonoc~no. «vegans....~.ou.ocua_~.ao....o..g:.nvu....oc...o ...wa . .e-zo....o.a .e-..... ...:moo~oom~o...caou.......ocae....o....ou.ga.~.v.o...c...a .M..oc.a.a . >..a..o “A.a.oo~oo~.o. «ooze...»._.....aa.e_. a»... ...:a ..v...a.c...o . n ..cxauoo . ...a . c.oo. .mauu .o .om.... oct< . a.» «.... .o .on....>.aa< ” ......ud.u..u. «93.9.363233 9.288.; 23:93...» .0 sniping: . 3.9.1.: .958 u 33953 “new “a. u . «su.ngu.~gu..gu “tau «3 a a $823.23»: a..anoooo~.s ..c .u.xu....o._ga.~..u_o...c...a . «.xop " ..au "$.anoocohoa.. nag .znxo...no._gzuo..u...age...o ..a....... u a». .”.=noo~o~om...4cxoa.xu....o._;:.m..u.o_.oc_..o ao> ...znoaooaoq_..ecau 30....u..ga.q.vu.o.aoc..oo . a..=nOOmo«on.. ecxm.xu... o..g: n..u.o_.oc...o u. n ..x." ..x...gu.= u«.z.ooeo~o~_. nooamc.um.xo...nou.ga.~,vo.o..oc..oo “a . o.>." .u oa>..:.. u$33288. ».onos..a.xuo...o..ga.ovu.o_.oc..oo . "oooau . .u_>ooao..¢< “g..ov .~w-u - a....oo¢u.o._« ...xmoooo~n«»..o....xo... o..ga.svu.o..oc..oo Aou.az\u.u..moaou..uoa .o.>oau u~u~ou . .....oo....u_< a..<.oo~a~n . ..a..o.xu....ou.gauo.u.o...c...a “a. .oa . . .ocucmo ag¢..u u~u~nu . a.“ c.u.o5._ «.«a~oooo~nmo. coamuaac_uxo...uou.cz.mvu.o..oc..oa «a. .o: to“..oo. .~ tea._v «~u~¢u . co... o¢~aos.p ...z.oomo~n«o...occ.gu xu....ou.;:.¢vu.o.aoc...o go .ox tou._oo. . .....u u-~ou . a....oo¢,.os._ “A.zmoo«o~nno...u.o=szuxuo...eu_;:.n.u.o..oc..oa an .oa .....uo- .o a...pv “~u~oa . ......oao..a.— .m.:.oono~n~c...gu.=.xo....o..;:.~.u....oc..oa n. .oa to...o..u «~m~oa . a....o.¢..¢. ...:39~o~n—o..x3.. go... 82: $33.25.. a a .2. :3: a .85: 8.28 u~38 . ...-3:83... Soo- A83 3 >9... «5 «.v....a:..u.c_..o uaauoooca « a.¢.. o_.c<. . .o. «_n~.oc.cau - a... . "new «*n._.c.c.a . at.“ u.. .o_a ...uo.a .....ga. oq...~..a.ua.=..o ..n..c_..u . “a." Ascot ...»o.av "$.9....«..:: .m..n~.n.~n.~¢vsouc.a.uo “new “ace: ..xuu ...u....oa.;:.~.m.mo.m.nq..pvaonc.:.oa m.n.oc...u “ “anon Race: no.av «wo._;2 «a... . « .o m a. ¢¢vaonc.a.oa ..,.oc_.ua “ouoxcos.» Annex xouoov ...“.ga.xu._....o..m.n.on.ovxonc.:.co vacuou - nauumao¢.— Ascot annoy “....ga xo..... o o« n o~.o.aouc.a.oo .ucu 2.9-3» v.30- co_u.n_:uo« 3:: on: «33.553358 332.23 « 53 u.w..¢a aw... ~.¢w as «,.~.~.aonc_a.oa m.n..c...u , scgo.= u.n.oc...u . sexed “ace: ...“. ...u a: xuo.m . a m. n m.o.:ouc.:.oo .~n_ac_..a " ecsu u.n_oc.a.a . scam . . .u.uoc.x moon “ w..¢: uga...m.aouaog.oa «~—.oc...a “vooamccuu u_._uc.a.n “ .noxc.ua u.xoo.a ...;z o~ no a n..n.:ouc.:.oa a...oc...a " coax-uaoumom.oc.a.a a».oa....a “x. ...a >._a..o .....wgauxou_....aouaog.oo ".om.oc...» «x.oa.da.a .....c...» u >..a..o . “..0..a ...g: ~.¢~ o~.o. o....xouc.z..o ..m..:.... a .... u_~..c...a "coamuaac. ... 3: W.; , .....55 2. 93.3853 :32...» u 3.93.. 232:: a .855 «.xuapu o..g: « e~ a« o. ~.n.zouc.s.oo u.¢.oc.auu u x:o.= "....c...« a used a.. ~ xo. _a_a ...w.¢a «on...~.ton-og.oo cacao. . a:.. “gag... ...g:.~ o ow o o~.~.zouc_x..o _ u.. . no. oo...o . ...:3 «0......coo-oe..o u..0......_ca.~.o.no e.~. ..zouc_auu«o. “3.4;..gnoau.unoc.x:<.a..c.aa..oa..au ...: “33... 5.39: 3.625333 9.339... n v . A 3.8.3:: 33a ...-35:. $2235 3 yeast-coo v mug-3...: 303031;... 8339... a I; 9.83... 3 53...: v a v “...-0.8. « ..3.3%o.uota$33.9uomu:iJ30.0328 a n.— 5.23 v .6335 u x9336293.5366”..quoz.3€¢.c.oo a u :ecgo.=.¢czo .ecsw.ecxw.uooamc.om.onozcoom.ouox.~.a a < p < a a a v 63225.: 3:2—.33....952 .oézwiazis a . 33¢ u 93o.§50._uxuau.8:33.m > ->un~>.-> n21}:..---:..--....-...--..-.....-..-.....-.-.--.---...---...v .~>.o~>.2>.2>.2».2>.2>.:>.$6— 3 8 ...-9.. «mum g1 2225 ...ovo ..o....~.-.cx ..Exwiuoaodong u.ououcocaw.uo accom.uo m:.um....ana.om..a> «.onoucogcm.ouo:Coom.ouoxcoom.ouaonauomv_o> m.onouaotaw.ouozauoo.ouoxau.o....aa:.om...> n».onaa..a..uaonauom u" ».oa-.u.g ux_o¢.dapa..u.onauom a" x.oa. ..a .>-. ..0.-u. «on nu >a. u_o “aouougocsw.caa«uaac_.coamu ..auaonauomv.a> “Aououaoacw .occ.gu..occogu....ona.amv..> “Aouomcoecm.ouoc.oua¢...-anzuomv.o> 2333c; anon—53.3.9526u-guong “nououcoaau.x¢a.=.xga_=...-onauomv..> u.ououcocam use..x:o..o..an:.ou.pu»on «nanomuuacuxu ocauooocm s . m “an... I" gnu-auos_nc . «Bu c-°. I” “g“ “.o. I» 0808506. c- o- oo ~._-uaocos.p g..: on n o» . nu.. so; . .Bw enP. In COCO race. a 5...... $89 .. 83.. ..oon. an ace ..oon. a" scam “.3 a» teams-um ..N. a" sci-om .. . a" oooxauoou.>. nu >o.Q¢.o ..o~—. nu ouoau.o. a" .occcgu u.»__«zuhz_ m>_—<4u¢. .n ».on.d..a u.axz. zpuzuaw> 3.333053 9.288.: “new nauoosv>ndco c.00- «coucuc_ .—.. ca> n.>.ou-E_xocaaa oucoooo >-_oau «ac-couc— uoouxv>o.uous_p 05330005; “new “Ana-«\oomomvucaoc a“ oucoooaxxo.oo c.uo. nuuc.vroc oven o¢u cooauoa goo-Ev.o>couc. 93—“ x. on o...:u.ouv .cooou:_ «acooouc_ now-cvuucooou ...: co.uuc:u "new «anaco— uu cogcwxuogu .ncu «zouc.3o.o.u «>oxuaoc nu cu «A. .oac.ucoo on >0: >c- goes; .coccu cac..xoo.-.n.nvunx xxxuuum «-.co..uoo:«.~.aouc.::ono unnouOcau_xw cusp — I onoxcoocou . c. on «asp o xv .uouo. ._ .u.:aoco_ u" uncoo— c.90- ucooouc_ untouc— ca> nou.gn-coaw .uxo—ao “cactus-conv “cououc_ “acoocuc_ nonexcoocuuvcogguxuocu co..o::‘ “new a..aou.ucoaa¢ 23:25 a 2.3 :2: “aogu .nou.u.uu .. a. «a.eau....o. c.90- «uooouc_ ”sicoccu 50> 3.39.53: 3238: - .uCu won.» .“ oooamouca eac» ..ouagu . xo<. co ..n..¢gjuuuuwuwa»« a..o<._uauvc.oa.¢ M .eou...... ..ccu peouuou ca "Anvcgu n» u «0...; I» cooomoocm c.00- «gogo . xu<.wcu 50> A.:o_uo_licoca cant go. coca. 5...:n couuo.a xooguv «coo.oo- «co-among; co.uuc:‘ «new “anovc4.n.axu .« so c. on An 50:05 ecu on too—cc a .o o:.c> - necauoxv «..0. ”..0.. “9.0.30; co.uu::; . "new . p.60vono_u . . . «. ..o~...c_ h N u cocoa—tau v «emu a. x<.oou .«Iau .50»... v .o -. xo.oo¢ c.uo. AA «plouocouoou acavooocm “new «sonc.3uoo.u «xoxvooxuu so «A. .xuaeo .. >osco ou-o.. oo_..n.opvo.x a...cocouoox....:ouc.acuqmo. “coco-0:10;» oasuouocc “new . ua.2moovoomoo..uczou.annoy-oLoI.—uuuo.-.Ou.gaucvv_o.soc_.oa .A.z—06voo~no. ouoxso§.—.—nuauoocoi.p aoc...ou.:3 awn...‘oc..oo nm—\—n\mn “mum, “ca.«cqmmanummumuqqunununuuqflqmm.ImamHummuma 226 n«_av .ucu uxouc.ao-o.uuococ 23.38.33“. u.......o......:o.c_.._aa on 3.05.. o— — nu . ...: animal.........8.58...:2:35...::52585 ..xgo.=.o..a.:ouc.o~.aa u.x:o..o....aovc_o. a: n...........u o. ...u .c.>.m. .u._..m.m“u.x ua_xu “zouc.3uoo.u :_uon cusp o xv .o..o..u.oogu .— . «....auao.o. axe. ...aazo....o_...:o.c ...< “econ ouou cogp .. . oeazo._a ._ nausea»..*vc.uoox .n. "vo>o- on on cacao... oz» soucu.uuoo.- ~.~vunx ....zouc.acoao «an.» . o..au:o u.n..oc.cuu ”cscxo~.. .5. cu:— . . go> “can: ..n.4 a._uv «cu-oo>oa cenuooocs 3% «azuoucu_ga none» on vetoed-ace u28:58:“. m.o_.ac_.o.o.u u._.~ouoo o..ac_vc.ucoc o 3.95.. 3 .. a" _ com “Samba........czc_u.o¢..355...3.2353... ..xgo.:.o..ac_vc.uoog “szoa.o_..c_.c.voo. u........x..u eat. ...u oc_u.o....o... m.~vo.x "new . “u.xu uxouc.3ouo.u «use: :.oo. co:— 9 av .avcoccuxuogu .— «....ac_..o.o¢ “Aoeczo_.u.o._uc_vcn.oa< “econ ouou cog»... . «sax»..u ._ ..oe-zo..*wc_uaou «a. "ton-o. on o« «zone... on“ coucu..ao-.u «.wvooz u...c0couao=«.—.:onc.:nudwo. aux.» "o_.ac_ u.a..oc...n ".2-zo~_. . .cououc_ u . ...) “econ .on-J ~._«v “3.93.. 9.183.... «new N3853.38 mums «¢.uo.. u........ac..coo o. ¢u_xu ...ca..aoo...o .o~.o.x "c.0a.ca.c—ou.c3 .uCu «.o.c_a_o..x.zuc.a "a...ouuxoa .u .ouuxoz oo.u new “wosoxuxoz a” :oxuxoauq a» .ouuxo: no u» ucsou c.90- co¢— m - ucsou .— u.oeaa.o.c_..a.o...aunaoguxoa .ou.xoz.»xo.ou “poucaou n» acaou “new “gumcuuuo a“ «cane up a" scuuxoa.v u“ .oquo: u>oxuooc I» cu ua......ouon axe: so. >0; >co unoc4.vou.c3 ucdou.cz.c.ou_c: c.00- cog» c. a nouuxo: .. c...- oa o - Lobby-on ...;3 “y a. macaw-a a. -. .ouuxcz no on acaou 22:... 2,292 8%....352: «..0.. la ..~.‘ 8" o. . iOCdut .- u n.:oaouo.:u.«.xouc_acooo .xouc no.0.u «goon-...“ :.voo¢ an. .u... on .ooaoo._* osu Logan..uoo_o ~.~vu.x ....coaouaoaua..zou:_:cnqwo. “caucus-ow u o.c_c.a u-¢Huc~cuu ”nouns... “cooou:_ ”so-axe: .ouuxox.u::ou ca> a...a...a ..nuouoaa "new “macea.:....aaua. « ..c...-.d c.g..x can».....g:.o..evo.x . eczoavou.c:ua. u Ancvu_c_4 bozo; caum..ou.:3.s.pvvonz ..eCEmuou.cana. ” guoco.o>oa co.¢..lw..ou.;:.o.—vvaax "asexwvou.caua. a suoco_o>o3 co.uou_oxw..o..z3.m.—wvuux “muooaucaomvo._tau.. . .o ."~ co”.vuooau coon.....;3......a.x ..ouoxcoomv.._czua. . xuuu xu...ouox coon.....g:.n._e.o.x «.ouoxa..g..._aau.. . .gau~.4.u...uox ...o...._ga.~....o.x ..».on....a.o..cs. . " ...x<.»...n.d.....ga... a.a.x a.x.on.g..a.o. cau.. . .._.<.x.. .......==.o..mvonx “...-«.....a... u c.x\...o..... oc.. «.....ga o.n.o.x u.>-.Qo.o.ou_caua. . acx>v>o.aa.o on.» ..ou..ou.g:.s.nvonx «.caamuaac_....czu.. a .> nxc..ouc.. “nae....._ga.o.n.o.x "..0ccagu..u_aau.. . .n.o._.cc.gu .auc......g:.n.n...x "...-9538.52. . :8 .o ..flsx..:.5.e.c2x « £253.52. » .345: .83 :5... 5.2.5.5358: $5833.52. u .585: .3... 3.3.x :3..3.§.~.$oux u.~.coaouo.zu.zo...p..:...~.¢~.o~.~..~.xo.uc.a:u“mo. “nanomou.ca sentence; “new a..uoutoaau.¢cgo.=.ncgo.:....on:..m...> “Aououcoccu.¢::od.uczod.oucanzuom..c> unououcOLsu.a:su.ecsu.oanonauom..o> n—uoo ocopxpn\mu mumm H—«oa Numfiufimuwu 227 “......oozua.._<...og .. ...ao.>n:o. 305.28 a“ ”33.35:. tea-......bgsugoa an... aunt o.no:wv « 39.5353»... going-mace 9.308... “cu—>ooxgoc.u an «.occagu an nou>asogo_: .223. n33 .. .09.). .oc< nu «.ocgouxu Auaosm any . «new .ucu . “new ....»a.oa ngouu_uo¢ou.>0o.ugoc cfioo- ">gac.n .ucu «..vx._oa osou._ooa.guu_oo_ugo¢ e no. “no oc< .o.on>—-uow o-oo “apvxa..o nuuaassouc. ... o.n¢-_au «a nu anon..uo¢guc_.ugom c.90- ugooouc_ u5u3 Mcwmm aunts uc¢.oo >0: oo.cc< noo.ouv a a o. ..n>_...a o.oo 252.503... 1 23.33.36.293; uneazucaouvoa a“ agouo.oo-gcc_*.ugo¢ .ucw «boa..oo¢~goe.» nu gmuo.oo¢.oa.p . “Lou..uo¢.goa._ a“ goaa.oo¢.os.p m — “so“..ooaogoe.» -" gouu.uo¢go¢.— u o ao:.a> uczoo woody .o _ oucu Aoaau new. “new 8858 “E2...“ 38.3233; .358 33.3 "..0...qn. .» .ma....u.au.....og .n “coo...oo .x..c_..e .uos .m:\.a. . .o.c:ou .uo_.mv «mam w..¢.. m .uas .«:\..J.. ...caoo .u..ouv m «o...~m. .. ......»u..e.....o. .n noo.o.—oo .>..c.. m once .ax\.oa._ ...caoo uoo.o.u m co...«n. .. ......uu..s.p...o¢ .u no.5oppoo .>..c...— .uos .mx\.a.._ ...caoo .o...av "flee..+¢n. .. .ao¢_..u.os_._..og .. aooooppoo .x..c.. a once omx\.a... ...caou uuo_ouv u.¢o...ov. u. .uo...~u.a¢.—.u.og no “one: a: .0”. .o ouox.oa__ o..u 288.23.52.59J59. 2.33.9.2... 5.; “aouou.o..u..uox.cu.p..noxgos_p.......uoagcs.p.h"»o. on N an o In — so; c_uo¢ “use: « souo.uo¢gos.» «Loco»:— u n:z~c:ou.ovoxgou.— . go> «gal_»uou osavoooga . .nCu unzucuuoosuxu “new “no’ugo>... a» (cg-.2 unn'.5o>... I. 1:304 . .—e¢_uo>. ‘ an 2¢lu ..np_L->..s a. (:1u ..w....>... .. "econ ...—...)... .. .uoxcau. ..o..¢.>... .. .uoz...au.o...>... .. ..oa-J..; .~a_L->... a“ u_on¢au.cuasuso>_.‘ on can. «—~_gc>..; an >0. o.ounu.so>... n. coamuauc_ .3733: a» .Esu.—n~..a>.: -. 3.05.. n_~_50>._‘ -. xgo_s.—p.go>..m a“ used c...- oo a..on:..n g..a «5.3953 33 .85 soc-5 3 . “u.xu aa< «A.;.u.u .o._oz...:ac_n_o.. "c.oo¢a:uoa u «.u....n:..u.c...o «035— a“ :3. «...; «...-u a. no“ nu 2.9...“ :5 u «8.5.5.?«3 ... a..>..cu .....o u a....... n. «...: . .om....z c.oo¢ «goo-ac. “ . gc> «c.au¢a:uou .QAaa "asuouluanc_ ogauouOga €535 a..a:.uco a_xu . oou..ou_:3.m—. nvoox ...»..cu .....a . o.......;: ». “van" . c o . cog» oocacu .— .oagp a“ eac-go oo_u “......“ soc-go cue» . . - ¢gu .— «Ams n n— xu-.-voc_.oo. caucus -" so «A. n.:\>. ~o>ao on «can 30> o ..ou.:3.np.m~v as «.oo n.n. .o....oc.hwno. ..u Eats: 3303.... 2228 nova.- oaoooucofioofv u not... 3:33.333 « . . ounce . ~ g .n g n F .o ouocouoc oooo ..ccaccuooc...n..ccuo.c uco...cao.o..ca . . .2833 .50.. .. ..u cc.~..coov ..oo..c..cou.x: .n" . ..n..c.c.o .ca.cu.ao.u.cpuco.com.xoa.uooc.oo . n: ...»m "033.392”; .mm.ooo ocauooocc .uco .ucu .c.uooc.....-oouc.c.oo.ca .....ooovz..coo.oooc c.oo- .ca.oocco.c. cocooc no... on c. o. . .. . co. ...cou.oo.o. 392.333.23.29... 8.. .8833”.- ..s..c..oo .o .o..n..>occc . coon: .oooouc. . . so) an»; to.» cunt toosv . uni-ca 9.339.. ... .ucu Cu 6cm “50.9.5513... . «cocoooau.xw .8... 1 v3.33... :5 3.: I. 3.833... co..— 3-95: . . 3 “Nana-0903 “3.3.-350825.... cw“— a. .. .5 3 . 863 a. ...u ao—u .ucu ....I.u>o.oS>-.ooo._m.: .uc .Nuoococooou oooc coc. ...“..co . .co. .. $883. a. Eu “you. :2; v3.9. ca 2 .....c: .u.xu..ox.c.:c . .c~ .. .u coc. c~ v »u ._ .c» .. .u coc. .c» . pa. .. 22.x..2..3§h6¢&x a” .6 .....oomo. ....c.uc:o¢.a. .. .u 23.3.3.9... 303.02.812.33 23333030305 ... 3.9: nopv c.oo- 2. 3.95.. o— — ... . ..o. 3 35 32.2. 02.9.0.0. >33 3». no u 2... ... .... ....335..<.§o.ux3 on 8:. ..c.c.o.xoc»o.\..»o.~»o. .. .o.oom ..c.axo.xocxo.\..xo.~xo. a. xo.ooo .o. c.oo. o nuoou_x< 3:3 ....ono...c.«..cz...o.¢.«c~ ca...xo.cuxocc ....oao.o.c o..c: . c . cw. «......cczocc ..o:...xoc».c.c» xco.= xzo. on~ coo c~ oo.o.xcoo.czocc «on..-.u.c_cc S. n3 ooozflfimo .0. o "> no 0 C'hwu . . c.oo. 3; 95 um I. x!» 3 a. ...: ...:- coc. .n. - cocooauc..ooocn:ooo . C. c. . fir... ..0.. co 3... >393. o3u . ... cc. . .33....)083 .03... 1 30.833... :3 I...» no v8.3.3... :2: 335.. u . 3 “—30:05 am. .ucu 21.233033313— Ao. .ucu ..uoococooou oooc coc. ...“..cu . .cu. .. $80.0: ... 2w. .o. c . cog. coo... on .. ..~.n....o.oc.. ...... oooc..oo.ca..n.n~.»xoooo ... ......a..n.n~..xooou ..c. c«.oooczo....o>oco>cou on ......c ..ouoscucc.uoocoo.oc< .. coon:- an. c. c on 3.05.. on ' ... . ..0. 2...... con 32.. 3.6 3.335....23... ....cocouooz....aouc.acono ... c.... :2: ..a.. ......c. co ..cwo. ...co.c. .. ...... o. o.:o.. .-c<.3... 9' .u as c. on ...-....3... a :3 33 333:. u ..x-I».c.¢».a».nx.5.§.l7 33 33. u 9.5.7.3“ ..0.-um ..-> “wt-0.3908. 238.0903 .33 «3293. 9.288.... .ucu ..coano.o>\.......ooooouuvooocwv.ucsoa -. ooococo>uow . .0 9.33:.25835333063332. 3.3.-39.33.332.00 5395.. .ucu 33:0 - a§q21au.o>o3-9o5 -. 303.3%»: ..13.2.33:—3::o.§am3o> ...-5309.53330289 c335. .ucw .ooocooxazo. o .o .au .oococpacc.x. .. voocuo.mc< .uc 30535 a. 3:223... 9.333.355.339. .cucco.aocu .. ..ooo.ooc..ou.<.oco. .63.. 3a.. 333:- uco>oca 3 co on: .333 Soon ...o. ..c. .co a... coo. coon ooo. coc. .c . ouoccucc. .oa .. 283.35.39.33388055 «..0.. on 33335... «mum 229 2.......3.3..uow.3.05........8333... 23.21.32... . ..0.—.... 2.3.2.3.... . ..0. .3...) £533.... «...... ......«3 33:33:30 230...... .83.... 5.300 ...—8.3.. 3.5 . 0 3 3. $3.383... ...... 28:...3..££ .22.. x33 03 03 0... ”8:53.33 .n .. .65.... .n a .82.... .05.....— 4 a. x...» u: u . ........~.3o... no. I. ......» .2. 2.3.0 .085: 3.0 .31... 3.0 3052133113.... .m a. ......» . m .8. 300 :0... INK... - ..u 3 .0 c8339.. 33 30.3? 86...... a. ...u ..o u. c...» 2.....0... an... ..0. >8. >5 ...... 2.1.03.5 “on. .000 ...u . ... .08 c...» E..3.....c..3.... 3 u u ..0.. 5.20... 3 ......- ..t5.=0... -. 5.30... co... 0 n 3. ..0.. 303...... . c...- c. n 00 3.05.. 0. . a. x ..0. 3.93:. "fine—3......» 2. ....0....~.$u... ...> 2.3... 345.. 3.0 .35.. 3.0 5.85.... ...-.13.... 3 a. 30...... .n a. .08.... 25:8. 33...:330... 8382.. ....éofloxm.«.ao2.xzo. . ...... ...... 3.. . 3.... . . 2.09.5303 ..0....50 2. . 335.3“: .00. .... . .....u .....— 030..3.0 .2. J 2.0. 300 ...... .~\.w.93...u§¢» . x 3 c. .- .“OH In ‘ .NO’ In — u s Q . o . 2.....7..3.0 . u . ......3... 2.03.... .03.... 03. x — . .52.... ......2.3.0.. . 2313.35.35 . 3.. ...... .00. ...... 00 3.95.. 0* — u. a ..0. 2. . 3.35.3.5 «3.93;... 33.00.... 2.3.0 .35.. 3.0 3.0 5.45.. 3... 3.3.5.3.... 2. ......c—ou .... 3cm ... . 5:28... 2:02.. 3.3.8.... 3 ... ...-88.8.0 ...:3 u. . . ... . 233.293.. .8382: ...... £3.82 3.... 398.38.25.53 0.9.2332: «33.3.0.9 «32.30.3905... ...... 2.3.35 .3... xt... 3 .....u u... 0.3.3.5 a... .0... «.33.. ca... 0 Av 330.3328 3 . "n3... 2.3.5.3.... 2.2235533. G. 053.... u... n 2.0... .50... 2....6...3.....3.:0§.. 2.3.3.3 ...... xv... 3 £30.... 50> .026 3230.33.30... c. .- 238.032.22.023; ......u 3.0.33. 3.6.00... 3 .6 ......oiwcm 2.5 5... ..Da.%......n.rfi:§...383... ...... v8.0.3... .02 .. 395.......¢£.n$..5oi.53..<..”.5337... ...: 39.2%.»...33:20.3...39 .883... ...... ..BB..%....2»$.:.U.C325..2.03.3.5 308.3223..20.}...59. 80.3.5 283... . ...... .... 2.....3 35.53.2303 1.30.33. .8. .83 ..8..I:.:....c.u. .53... 308.332.....5§&.8:.3. .883... “3.95.... 33.00.... .05 2...}: 0.....02. .. 22.8. ” ~ . «2w A.;-2 3v ..8. I» flea-um u ' .3258... .0 08.28. :8 £383. a 5 398.322.32.328......-8.3.5 2.62.2.8. 3 >3 3. ...... ....73.53.375.53...) 30— . "new .05 2.00.- 02...qu u... a. 0.00.... . ~ .8. 0.00 co... 3:395:35.— . x J 2.00.. 5.33.86. ..0. u. .00.... u . "no. u. .0 80...... ...u 3.. a 7.7.2:... 1 85.3.. ..93.%.~....n.26308u:=3.2.80.8.5 2.35.333: . .33.... . .2. ~. mum. ml... .....qmfl mg... :30 g]... w Auo.a «you so. gouu0.a g..: each. snag: 3.56. “A...” «nu.puo.g. nuc.uuo.a so. peow ac. souuoda a: nuoav gouuo.su.c_ oust-90.; no~uv .ucu “coaguuncoxz.ox “goouogau.xu ..o.......coo.ou.c... cu». .. . ..u .. . cuv-om -. .gu .ucu ...:....o.. «on.» an weaned-woo , ......c....o.u ......uoa.....c_.c~oooa o 3.95.. o» — ... ..0. 2:13.51:..c..c.u3....:.95...::£.53.... ..xgo.=.o...c..c.u.o¢ ..xao......c..¢hnmo¢ .m.xu “coosomncoec.-x c_oo. cogp o .v ....o..u.uo¢u .— ......c...o.ou ......e-ao........c..c...¢< c.90- oo .335: o» p n» _ ...: cosh .o . .....eaa. .oa .. .o~.-o_u.c.so “zouc.:ooo.u vp \1Immua m. . ......a. u. ......a. c... ... . .n..e-co.... .oa ._ ...“..eaco....c.u... . . .M.. ...u g.“ ...:u......: u— o no..meax u" oo_*masx cos» .. - neuoeoco..mu «ox .— .nnquoeacc__uuc.uoo¢.~ "can: a... cunt can goucu.vou..a : . 35.5.. .u 3.1.5.. 8.: ... . 5235:... .2. : «annuosaco..uvc_uao¢.a. "can: a... cunt van goucw.vou.sa m. + .....253 .. .o._.a:x cog. ... . .~.oeaco.... .oa .— ..—~_oeaco..uvc.noo . . nos-c o .. aunt tau Loucu.vou..3 3 0 3.1.5: In 3.1.52 :2: .. - 3.2.2.023 no: 2 .....oe-co....c.u.a.. . ..su: .... ...u ... ...:u......: .o 1 .523... . “a I» oo._&s:: 9.335 83:52:... «nus-2a... ”cs-:0... .uxap . o...c. ga> “.npuoc..uu .o an...u>ous< - col-aodnux p . ..... ..o...ax:.u. ..auooo.. .ucu . A¢_uv .....omvuo.c «on..-.u.c..e «aouc.:ouo.~u>ouUao nu «...:aogo axe: .ga co g._.uu guess. «no.0.n opvoaz ..pvcoaoooo:.A—vsouc.ncono uu_xu cusp 9 av ongouswxuogu .— «.....c_....a .ucu “u.xu «co-:33...“ 3.0.- cogp non-odou-o no: .— A. av c. .- 339.85.... 3288.... «new «......uuo.g «on..c.w.c..u .ucu “u.xw «on-..oxxogu c.uo- cog» touooaauao no: .. no u. 5.33.. c.00- uuo.acoo.uu asauooosg .ucu “new «consonacaxc.ax uuuooo.;u.xu «.o.oo.o..coogouuc_.a :0 u m. - pan ._ u cuv-ox n. .39 c.90- cogp uo.m.u.:x no: .. Imuuqqnqmequaumuw_u mango momQN—MNwo 2331 c.30- cogp aou.o....o .oz .— c.uoo “caw.oon uuo.mu.xm ...su u o.-> .:.-u.c.uao¢ «a. ..¢\>. puo.a as. o» cunt LozuoCo ucoaa<. xoo.u.n.~.oux ua~pvcocou¢o= ..~puxonc_3cono .uo.au.oum ”c ouox >ca unobn >uoo. .. ..ouuo.a xuogu..xuo.n.~.~.oox . ..N..co.ouaox ..«..zouc.::oao .03.» I" Louuo.aoo . on s::~o.a .ucu «a.xu «coo-nozxocm :.uo. cos— vouco....o «ox .. :.uo- «coo.oo- .uo.au.x “saga . ...) “c.-uumuo.a..oauo.a.:z “Ana—puo.m..m.o.¢.c.uoo. on one; «A. ..c.. .o...>.. .o.a .oucu..o...3..s.~.»xo.ou .....puo...c.uo.¢..o.~.»xouoo ......m.xa.x..o¢o. oc.. uc~ as» .oucu..ou.ua ..n ~.»xo.ou..<....o...c.u¢o...¢.~.»xc.o¢ "A. ....xo-x..oao..ocw. “up as. .oucm..ou..: . ..n ~.»xo.oa..x..c=.c.uoo¢ ... «..xo.x .0» u.:: .oucu..ou..a..~.~.»xouou :.uo. co.— .. .. 52...... : c.oo- ..ao.oc..uu ....»uo.a.<..pwo. .xu.c= ...oouc. ..o.ogu.o.. .. ...o.. ...) n.0noi co.uooccoo cots-o anon oooc no no.3...coo an aunt (“syncs ...cauvoo >5 vo..o.ucoo ac. toxoogu .» .osucoo .8.» :3 63:25.50 ..3 tan: a. £3.33: . 3....» . co .o.n c... 3 c 5.. ac- o 53 3 3 c... 2.325... 15.9.3.5... .- ua.au.~coo on was: gouooccou mung plan ..ouuo.a nu.) ouou.caesoo ..m>_.<.ux-..—.o.o.~. o..u.aoe . . .<.. .aou.c... ...n..gu.x..:=.....n.~..-.. . 3 .82. 33 .3339 Janet... 5.: 3... So... 2.59. .25 “no.5uL-uu ognuouo.m “ecu . . ..zouc.3ono.u ......a...uou.c.....a . ..ag. .cou.c.muw.a ...uoamoo.. ...¢:....ao¢ an.» ....o..ou .. ...:¢.o...pn....x..<....aou.c.o...a ...u ..o.. > . . x .<....aau.c...».: cog. . o . .. .m.o.. ._ ........o.oo..uc:ou .. » c.:»- on na-aaaz op ' u. x .9. .ouanmoo.. ...c: anon». no.» ....o..ou .» c on «sououc. u» x no) age... gauge can. ogu an aunt o.a.u.:u cue... ...-nous. no.>uuuo.s..o.uo.m.:: c.3oouo.a “new . ...n..gu......o.......om~.......<....-ou.¢.....z ...»..gu ...puo..........oo~.......«s...aou.c.....a «oedema... ...c: yucca. cos— ..uuo.soo .. .... ...o. .m..g...»..mzu.z. . ..a . as. . . . . . .oo... .. . ...n..gu » ...mnw.. ...u...aau.c.a...a «a.u—». b . ..0 .ca. —IOUV¢.Ou..3 c...- oo .. o. a .wo. .o» o .u .oooamo... ...ca ..oao. a... ....o..ou ._ .....«.. .....aou.c.....a o n.o.¢...aou.c.o...a .ucu x.a.x n" x ...n..gu..v.....ucao¢.ezzo.wwa..... ..u...uou.c.o...a .... .o...x ......nou.c.o...a c.90- oo o. o» o n. . .o. moo-amoog. ..uc: nova». cog» .ouuo.¢ou .. p .60 ooowxpn~mnp vat; «an oomnummuwa 232 . 3......) .. 2.. 22...... a. n...» ...... o v 3.. : .— >--> I. n~> 3.35.29... ...-..) .. ......) 2335252....2383 I. .~> . ...)...n...... u. 8.. ..2...>...v...3.>.....5....23.»....>..3.>....o5.... ... 2., . “...... o o.> I. 0.) .aoo—xn..v~..m. ..v. I. ...... . . o s.) I. sp> ......3 . .... a 2.. ....w..3..om I. .... .2 ..c. In .... . “—.....a a. . ...n. I. ~_.u~ p o c.) I. e.) H o o—> I. op> 0. AA .. I. o. Pun—F98 n I.-- up an“? a v v n “we. v . on 8.95.. o. .. I. . .0. .........§...._. cc....:o..u..xo..n.—.n—vu.x .332......93:.§x33.x..o.53u68. I. no ..ooa—xxao..uc:oa I. “one In...) no I. o—> 23.63.28... Q a Q o :.u.o “a... ..vm.v. ...oouc. . . ..> ..E......u..u ..avouo.. ...... 2.88.85 «zouc.3..o uu.:.~ I. tou.o....o 395.88.29.58. . 3.3””... «fl—cau..._.x.- 2832.38: ...... . .... ..8..........2.m$:.o.oo 3:383"... .. .....8 .AECO cwvloc In Ice 288.......E..£.u....>2.u8.o... .8833... 21.8.88 .. 232118.88 .. E... 3&5.%...23:...u.....u. ...... 28.—88.8... ...... .35.... . .... .. .3... caused“0 .. . ...eou.....- 398......«2830 9... 38.3.... ....8.%....2...::...:2.. 2.8.8.3 c 0. 0° Inca—5: o» p In . ..Om ... ........m.~....x 392%....28... .... .88....3 398.82.28.88. u... 288...... 39825.52... 2.33.29 . .88.. .... 39.2%...2.u....:2.. . ....8... .... ...8.%...2..:. ...... ”.8........ 308.8828... .3. .83.. .... 22:35.53... ...: 9...... .. ...-...... ... . out... I. so ......ucu ....a ac. o..~ can. xu.gu ......u....m.o.u.x «arson... .3.- .......8.~..88 23118852.... ...... ...... once «zonc.:..o.u «>.xu..¢ I. so ....oac..c0u 0. >0. >:. ....a ......u .......xu....n.n.o.x crou- c... «an. . 2385...... . 2...“... 22.31.3233 83...... .. ...... :3 . 3.. .. .... :3 . 3.. .. 3.. =32... .. ...... ... o no I. ...u ... . on 3.05.. on w I. - .2 2.88.93.....5...93.§:3 .. .22.. a ... ... ...... 282.835.. .. ...... 2.853... . 2.5.3.... ...... 8.113.... u a . ... .uGCap 2.... 8.. .. «-... .3 ..5 ...... 2.3.2.... “8.... a. .. ...—.5382. . 35...... 38.38.1183: 28.5.8.2. . 3...... >...a....o....~.~..... 23.05.35.882. . .... .o .352....o....—.~.o.x 2.8.... .. ... 23.82.38... «us-um c...- u..o.u¢. ..gu.g.. ...so . .u 22...... . I... 23.5... . .... 2.....5... . 8.... ....- ..ca...o ..> ...... ..a.. u>.o.au..c ..auooo.. . «2U . .uc. .c..o. I .> v ... ....un: I. ...o ...».c.u..c 38... 2. .Ac\>. ~.... .30.)... o. ...u ..g..:. ac.uu<...u....n.~.o.x 22.8.8... 2.3.8.2.... ..o.¢u...m .ucu 2.... «a... “souc.=..o. c. o. :03— .o I £80¢uh~0~t .- 2.5.5....o...c.u... ... 3...... .... ...... .35. 33.3.8.3. c...- c...» o . 5...... 2 .c..o<.o.. 22.8.8.2. 22.3.2.2... ...... I. ......sou .o I. .32.... ...... «a... “3.8.5.... «a... ll... :8 .95.... .. 283.222.... m<¢.<»....... . o.3:0:c:00..3. I. ~c0.uwu0. ...... .aac .uc. an. m........ . n 3.30).. ~ 3.26.0. . .0 9.2.3 0.8 ...........u..... .I......>I.....Io.. n 32.08.5323. I. 9.2.3 c.00- . p . .0 .00.... 0.00 ......u .... >I... I... ..-... .... . ..0....0..§.0.C§.02... I. ......u. ..0.... ......03008202 590. II II II II M «a..... N” ua......... 280.92... 0.2.000... . ...... 23.4....) .....m 23.3.0836 3.38093... ...... ..0.; 934...: .— 2.>.....>.c... 0.... 52...... ..0....0 ..0....0. 00.3.3... I. w... 52...... 22...... 32.38.... .82... .5 8...... ... .u 8.. 3...: 128.22.... 5.3.? 3.5.2.3.... 2.20....“ .... m.....«.§~.~...x ......S .0... u o 2 n n 8853...“.- .co..om3..0.t.... 2.6.00... ...... .3853... 288.... .3532... I. 53...... 2.88.382... 23...... I. 58...... 22.38.1235... I. .25... 1.5.3.2.... .xzo.x I. 62;..2 no I. 2230. .o I. x10. ...-.3 88.22:... 2.............83a..I...nso. I. .22.. .03.. I. .00.0....9 ..ucauII0.0.. c. 05......v «new...u.I....3.¢ I. ......o 2.3.3.3....8.5.33.8....... .E...g.....<. : 38.... ... 0. 0. 3.95.. o. I. . ... u........ oc.x.o:.. u..c w.. ..0.: ..cauvc.u.0¢... ......I :0 .c...c00 oc.:uco3a. .0... e. ~.o.: ..cx.:.u.0u.2. ..0..) c. .c...coo o:.cu:030..xu... o.~.o.x .....c.v.0¢... . .0..3 :— .c...c00 >I00....u..n.o.~.a.x 2953......0a2. . ......l ... ......cou >Iu0o....o..u.s.~.o.x 3.3.5832. . .... 083.518.88.88: .....c.u.0¢... . I... ..xw..xu....m.~.oax 2.50.332. . 83.330800 300.53.333.33: ...-9522050030.... I. .3 ...0..9.o30...:.c.u.0.. 2. 82.0003 .0 00"....c0oc00 5.1.x....u..o.n.~.o.x 23.05.3533. . .38 .o .35.......I...~.~.3.. 2 .8. ...2 . . Iv. .32.}?- 3... ..c...:ucl&x0:..x.va.§.uq.05......9. ......c. . . .... ..0....28800. 0.2.000... . ...... Lag—30.0.0 2.50.9.0... .II......28....&...&...93. I. .....38 on 73.95.. 0. o I. . .0. 2......... 2...... I. 33.52.. 3......8 29.35832. .0133?! 800.. 8.5.8...) 2.13.338. 2950.30.35.83... .950..qu .3530...) .3. 3.5.0.... 2...........c.u...2. 200.303.... ...... .02.: 2.. .....x...._.....8....a.......u.. «.80.... .. .... n........l.... ..0.... ...»: ...v :0... 0.33.3 . .00.0....33 0.2.00... 2.... 3...... 2............... 3 .... ...... ....» 32.32.22.338... 2...... 83...... 38.83.322.338... 2.2.8.2... . 852......82.32.13.538. 22.33.... . 83.333...83.32.13.338 .2... \ 2.8.1.833.- I. ...... 282- . ...... I. .523... 233.95.... I... x 859.53.... I. a 2.... .....3... I... .... . 5528...... I. .I ...: 2a.... . .5322... . «.....LW . 2.8.9.8... . .5. I. .5. I—zcozouoo 0 «8.0 I. 85¢ .33.. . .5. I. .5 ... 0. oo :0 o— w In — .35 3 I. 3 2. I. a...» .o I. .5. 22385393.. I. ... 0.00- 33. . c.w.n§a.~§m..§a ..0uo.c_ . . ... ..> 2.30.8 ......< . 2.3.32... .. ...... .....u .0. 6.50.9.0... a... 3...... .0... 1.25.038... 3330.... 2.620.132. 0.3.000... ...... 2.8.5.8.. .>.xu.0¢ I. so 2.33.52. .3: 8.8.)...63.32.1133: ..m~>.0...3... .IIII ...000 :0....0..ou...0....q.n...: ..o~>.0...3... .IIII ....0.....xo....n.m.o.: ..o~\n~>...au I. .> ..v~>...ou I. m~> ..w~>..a< I. .~> cos. a v e~> ._ mums «(54:3— ..0E.co_: 3.00 oooplnkon «a... noxuoo¢ a” ’:u «A. Acx>u «05:. 30> 05¢ .v.».g: .n—vvxouc.:tono smoo- u o . in. 332258 a a 5:53: . . ..o.¢.ouuo.¢ . n .uo.¢.ouc..a . ~ .uo.mcoogoa u . . *0 ~60qu< 0.09 ...... .. ... ... .23.. 33:2... .3: .333... .uo_m guuuo.s. .uo.¢ gou¢.g¢. ..uo.. cookou. a 63333:... 1 ~82: emu... .ucu «no.uoc.u>cooo e u>oooauuo.:l.a u n «gnwuo..ao.ou . ~ .>-u¢nvao¢ . — *o .wcovuu« o..u . «A... . icing—icon? .xauooouofiiau. .3.u3333.. 2700933... 0::cozczou..:a a. ~co.uu< c—oom. 1 I >~r hn'x-‘H" ’\<- .