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ABSTRACT

AN ALGORITHM FOR NON-NEGATIVE LEAST ERROR
MINIMAL NORM SOLUTIONS
By
Panagiotis Vasilios Nikolopoulos

In this thesis we consider non-negative solutions of a system of m real
linear equations, Ax = b, in n unknowns which minimize the residual
error when R™ is equipped with a strictly convex norm. Out of these
solutions we seek the one which is of least norm when R" is equipped with
a strictly convex and smooth norm. An implementable iterative algorithm
accomplishing this is given. The algorithm is globally convergent and it does
not require that a non-negative minimal error solution be found first. As a

special case, we test the algorithm for the #—-norms (1 <p< ).

Numerical results are also included.



ACKNOWLEDGMENTS

I would like to express my sincere thanks to Professor V.P. Sreedharan,
without whose direction and encouragement I would not have written this
thesis. I also thank the other members of my committee, Professors C.
Seebeck, C. Weil, D. Dunninger and J. Plotkin. Finally, special thanks are
reserved for Cathy Sparks for typing the final manuscript.



TABLE OF CONTENTS

CHAPTER 1. . . . . . . . e e e 1
CHAPTER 2. . . . . . . o e e e 25
CHAPTER 3. . . . . . . . e 53
REFERENCES . . . ... .. . i i i 76

ii



Table 1
Table 2

LIST OF TABLES

ooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooo

iii



LIST OF TABLES

ooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooo

iii



CHAPTER 1

1.1 INTRODUCTION

In this chapter we assume that the system of m real linear equations
in n unknowns Ax = b has a non—-negative solution. We give an
implementable iterative algorithm converging to the least norm ||-|| solution
of Ax =b, x > 0 for a strictly convex norm ||-]] on R™ This
algorithm is modeled after a similar algorithm in [6]. Before we state the
algorithm we formulate some duality theorems, again analogous to these in
[6). These theorems will be needed to show that the algorithm is convergent
and is properly formulated.

1.2 NOTATION AND SOME PRELIMINARIES

Let ||-] beanormon R% n21 and <:.,-> denote the standard
Euclidean inner product, with ||~||2, the corresponding Euclidean length. For
X,y € R", we write x > y iff X > yj, Vj = 1,...,n where
X = (xl,...,xn) and y = (yl,...,yn), X; ¥j € R. The definition of < is
now clear. In formulating the duality theorems we will need the well known
notion of the dual norm on R™ Given the norm ||-|| on R", we define
the dual norm ||-|' by
(1.21)  lyl' = max {<x , y>|[x|]| = 1, x ¢ R"}.
Given y # 0, we define (see [7], [8]) y' a |-|-dual and y a
I]|'-dual by the equations
(12.2)  ly'll =1, <y, y> = |iyll',
and
(123) Iyl =1, <y, y> = Iyl

The norm ||-|| is said to be strictly conver iff the unit sphere



S = {x ¢ R%|||x|| = 1} has no line segments on it. The norm ||| is
said to be smooth iff through each point of unit norm in R", there passes
precisely one hyperplane supporting the closed unit ball
B = {x ¢ R%|||x|| < 1}. One easily sees that if the norm |-|| is strictly
convex (smooth), then ||-|| (]|-]|')-duals are unique and
(1.24)  x' = x||x| & = x|x[), ¥ x # 0.
Furthermore, the map x |-+ x' (x |- x*) of R"\{0} into the
Il (JI-|I")—unit sphere is continuous, and positively homogeneous of degree
zero.

A non-empty convex subset K of R" is said to be a convezr cone iff

Ay e K, Vy ¢ K and VA > 0.

1.3 SOME DUALITY THEORY
Let aeR". With the primal problem (P)

(P) min{||x-a] |xR®, Ax = b, x > 0}

we associate a "dual" problem (P'):

(P)  max {<yb> - <ATy + £a> |¢R", €2 0, y®™[|ATy + £||' < 1}

where AT denotes the transpose of A.

We have the following basic theorems:

1.3.1 THEOREM. Let ||| be any norm on R". Assume that
K = {xeR"]Ax = b, x > 0} is nonempty. Then the problems (P) and
(P') have the same value.

Proof For any x > 0 such that Ax = b, é¢R™, £ > 0, yR™  with
IATy + €' < 1, we have



<yb> - <ATy + £a> = <y,Ax> - <Ay + £a>

= <Ay x> - <ATy + £a>
< <ATy + £x> - <ATy + £a>
= <ATy + £ x - a>
<Ay + &lI' IIx - all

(1.3.1.1) < Ix - ajl.

This proves that value of (P') < wvalue of (P).

Now value of (P) = d(a,K)

(1.3.1.2) = inf {||x - a|| |xeK},

where K = {xR"|Ax = b, x > 0}.

By the duality theorem of Nirenberg [4], we have

(1.3.1.3) d(a,K) = max (<za> - o(z)),
llz|l *<1

where o is the support function of the polyhedrally convex set K, i.e.

(1.3.1.4) o(z) = sup{<z,x> |xeK}.
So
(1.3.1.5) d(a,K) = max (<z,a> - sup <z,x>).
llz]] ' <1 xeK
Now
(1.3.1.6) - sup{<z,x>|xeK} = inf{<—z,x>|Ax = b,x 2 0}.

The standard linear program on the right of the above equation is feasible by
hypothesis. So by the well known strong duality theorem of linear
programming (3],
(1.3.1.7) inf{<—z,x>|Ax = bx > 0} = max{<y,b>|Ay < -z},
with the convention that maximum over the empty set is —w. Rewriting
(1.3.1.7) and combining it with (1.3.1.6) yields

—sup{<z,x>|xeK} = max {<y,b>|ATy + ¢ = =, yR™,

ER", € 2 0.



Inserting this in (1.3.1.5) we get

(1.3.1.8) d(a,,K)=II tlrlxe').x (<z,a> + max{<y,b>|ATy + £ = —,£ > 0}).
z| '<1

Given z, with ||z||' < 1, if there does not exist yeR™, £R", £ > 0 such
that ATy + ¢ = —z, then the linear program occuring in (1.3.1.8) has the
value —o. Since 0 < d(a,K) < o, we may therefore consider only z's of
the form

(1.3.1.9) z=-ATy — ¢, y®™, R, £€> 0, [|2' < 1.

From (1.3.1.8), we see that there exists z, ||z]|' < 1, such that

(1.3.1.10) d(a,K) = <z,a> + max{<y,b>|ATy + € = =, £ > 0}.

By remarks above, 3 yR™ and ZeR", > 0 such that

(1.3.1.11) z=-ATy-T

and
(1.3.1.12) d(a,K) = <z,a> + <y,b>
=-<ATy + Ta> + <yb>
< max{<yb> — <ATy + £a>|y®R™, ¢R", £ 2 0,
IATy + €' < 1)
(1.3.1.13) = value of (P').

We have now shown that value of (P) < value of (P') and so the theorem

is completely proved.

REMARK. The easy half in the above theorem, viz: value of
(P') < value of (P) will be referred to as the weak duality principle.

1.3.2 THEOREM. Let the norm |-|| on R" be strictly convex.
Assume also that K = {xeR"|Ax = b, x > 0} is nonempty and aeR™\K.
Then XeR"™ solves (P) iff AXx =b,x 20 and IyR™, ¢R”, €20



such that

(1.3.2.1) IATy + €' =1, <yb> - <ATy + £a> > 0,
and

(1.3.2.2) X -a = (<y,b> - <ATy + £a>)(ATy + ¢)'.
Furthermore,

(1.3.2.3) <&x> = 0.

Proof "If" part: We have by (1.3.2.1) and (1.3.2.3)
IX - a|| = <y,b> - <ATy + ¢£,a>,
which by Theorem 1.3.1 shows that ||x — a|| is the value of (P) and so
x solves (P).
"Only if* part: Let ye&R™, £ > 0 be a solution of (P'), so that by
Theorem 1.3.1
IX - a|| = <yb> - <ATy + ¢a> =p > 0.
Now
(1.3.2.4) <ATy + &, x-a> < |ATy + €' |x - a]| = p.
On the other hand,
<ATy + &, x-2a> =<ATy + £x> - <ATy + Ea>
= <ATyx> + <€x> - <ATy + €a>
= <y, AX> + <€x> - <ATy + €a>
= <y,b> - <ATy + £a> + <€x>
(1.3.2.5) =p+ <EX> 2 p,
gince both the vectors ¢ and x are > 0. From (1.3.2.4) and (1.3.2.5)
we see that
(1.3.2.6) <ATy + £, X —a> = p,
and that <¢Xx> = 0, proving (1.3.2.3). Since ATy + €' =1 and
lI(x - a)/p|| = 1, we see from (1.3.2.6)
<(x -a)/p, ATy + & = | ATy + ¢|".



In view of the strict convexity of the norm |||, we get
(x-a)/p=(ATy + €)', or x-a=pATy + €)', which is (1.3.2.2),
completing the proof of the theorem.

1.3.3. If we assume that the norm ||-|| is both smooth and strictly

convex we can get more symmetric results as stated below.

1.34 THEOREM. Let the norm ||| be both smooth and strictly
convex. Assume that K = {xR"|Ax = b, x > 0} is nonempty and
adR"\K. Then xe&R" solves (P) iff AXx =b, x>0 and 3Jyd", (R,
€ 2 0 such that
(1.3.4.1) u = ATy + ¢
where u = x — a, and
(1.34.2) <&x> = 0.

Furthermore, (y,£) solves (P').

Proof "Only if" part: By Theorem 1.3.2, there exists x such that
AX =b,x20 and (y.£) satisfying (1.3.2.1), (1.3.2.2) and (1.3.2.3). By
(1.3.2.2), u = ||ul(ATy + €)', so that 0 = ATy + ¢, due to the
smoothness of |||

"If' part: We shall show that x solves (P) and also (y,£) solves
(P'). Observe that by the strict convexity of the norm |||,

(1.3.4.3) olull = v = (ATy + &)
Now
(1344) 1= o' = ATy + €]

= <(ATy + ¢, ATy + &
By (1.3.4.4) and (1.3.4.3) we see that
(1.3.4.5) [lulf = <u,A’y + &

or



Ix - al =<x-a ATy + &
(1.3.4.6) = <y,b> - <Ay + £a>
due to the calculation in (1.3.2.5) and the fact <¢x> = 0. Equation

(1.3.4.6) in view of Theorem 1.3.1 completes the proof.

1.3.5 COROLLARY. Let x solve (P) under the hypotheses of the
theorem. Then
(1.3.5.1) <y,b> = <u*,)—(>.
Proof By (1.3.4.6),
<yb> = Jjul| + <ATy + £a>
= <Ay + & a + u>, by (1.34.5)
=<ATy + £, x>

* _
= <u, x>.

1.3.6. The special case of Theorem 1.3.4 with ||| = ||-||2, the

standard Euclidean norm, is important for later applications. So we record it

explicitly.

1.3.7 THEOREM. Assume that the set K = {xR"|Ax = b, x 2 0}
is nonempty and that acR™\K. Then X" is the solution of (P), with
-l = -lly iff there exist yeR™, &R, £ > 0 such that

(1.3.7.1) u=ATy + ¢
where

(1.3.7.2) u=Xx- a,
and

(1.3.7.3) lull5 = <y,b> - <u,a>.



Proof By Theorem 1.3.5, x is the solution of (P) iff there exist
— — - * _
yeR™, ZR™, T > 0 such that 0 = ATy + T and <yb> = <u ,x>.

* —
Since [|-]| = l|lly, w = u/ljull. Setting y = |lully, § = [lull§, we see that
(1.3.7.1) and (1.3.7.2) hold and conversely. Also,
<yb> = <|lully,b>
= [ull <y,b>

* _
[[u]] <u ,x>, by (1.3.5.1)
= <u,x>
= <u,u + a>,

which is (1.3.7.3).

1.3.8. Theorems 1.3.1, 1.3.2, 1.3.4 and 1.3.6 correspond to Theorems 3.2,
3.4, 3.7 and 3.8 of [6] respectively. In [6] a simple geometric proof of
Theorem 3.8 of [6] was sketched. In the same spirit, it would be worthwhile,
to give a direct geometric proof of Theorem 1.3.6 without relying on results
for general norms. Let us recall a couple of well known facts.
Fact (i. If K is a nonempty closed convex subset of R" with aeR",
then xeK is the unique point nearest to a in K, for the Euclidean norm
iff
(1.3.8.1) <a-X, x-x>¢<0, VxeK.
Fact (#5). If K is a convex cone in Rn, then its negative polar K° is
defined by
(1.3.8.2) K° = {yR"| <yx> < 0, VxeK}.

It will be convenient to state Theorem 1.3.6 in an equivalent form before

proving it.



1.3.9 THEOREM. Assume that the set K = {xR"|Ax = b, x > 0}
is nonempty with aeR™K. Then X solves (P) for the A-norm (P8
iff AX=1Db,Xx20 and JyR™, R, £ > 0 such that

(1.3.9.1) x-a=ATy + ¢
and
(1.3.9.2) <£€x> = 0.

Proof x solves (P) iff xeK is the point in K nearest to a, for
the Euclidean norm ||-||2. By Fact (3), this is the case iff
(1.3.9.3) <a-Xx,x-x> <0, VxeK.

Now suppose that x solves (P). Let J = {je[l,n]li.i = 0} and
(1.3.9.4) H = (kerA) n {chnlvj > 0, VjeJ}.

Due to the fact that ij > 0, Vj¢J and S('j = 0, VjeJ, one easily sees that
given veH, 33 > 0 such that x + nveK, and so from (1.3.9.3) we see
that <a — x, gv> < 0; i.e.

(1.3.9.5) <a-Xx, v> <0, VveH.

By Fact (i), this means a — xeH°. Again, one easily sees that

(1.3.9.6) H® = (KerA)* + {chnlvj = 0, Vigd, v; < 0, Viel}.

Since (kerA)* = Im(A"), it follows that 3Jy&R™, ¢R™, € > 0, & = 0, VigJ
such that

(1.3.9.7) x-a=ATy +¢

which is (1.39.1). Since & = 0, VjgJ, (1.3.9.2) also holds.

To prove the converse, assume that Ax = b, x > 0 and that (1.3.9.1),
(1.3.9.2) hold. We shall show that (1.3.9.3) holds Vxe¢K, which would prove
that x solves (P). Now VxeK,

<x-ax-x> =<ATy + £¢x - x>
= <ATyx - x> + <€x> - <€x>

= <y,Ax - AX> + <&x>
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= <y,b = b> + <{x>
= <€x> 2 0,
which is (1.3.9.3).

1.3.10 REMARK. The condition (1.3.9.2) is equivalent to each of the

following:

(1.3.10.1) <y,b> = <ux>

and

(1.3.10.2) lull3 = <yb> - <u,a>, where u = X - a.

This is so, since
<ux> = <Ay + &> = <ATy x>
=<y,Ax> = <y,b>,
and
2 _ _ —
lully = <uu> = <ux - a>

= <u,x> - <u,a> = <y,b> - <u,a>.

1.3.11 COROLLARY. For the [2—norm, if Xx,y,§, etc. are as in
Theorem 1.3.9, then (d™'y,d'¢), where d = X - all,, solves the dual
(P') for the A-norm ie.

(P'): max{<z,b> - <Az + ¢a>||A"z + (||, = 1, z2&™,(R",¢ 2 0)

Proof Due to (1.39), |A7(d"y) + d™'¢ll, = 1. By (1.3.10.1) for

=Xx-a, <d~1y,b> = d_1<u,§>, whereas by (1.3.9.1)

(=

<AT(d_1y) + d—lf,a> = dl<x - aa> = d_1<u,a>.
Thus,
<d_1y,b> - <AT(d_ly) + d_lf,a> = d'1<u,§ -a> = d,

which completes the proof.
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14 ALGORITHM

We assume b # 0 and that the system Ax = b, x > 0 is feasible.
Here then is the algorithm for finding x solving (P)
(P): min{||x|||]Ax = b, x > 0}, which corresponds to a = 0 in Section 1.3.

We assume that the norm ||-|| is strictly convex.

1.4.1 ALGORITHM.
Step 1. Fid Xg» the solution of the problem

Ax = b, x 2 0, [|x||, (min).
Set gy = xo/lIxll's By = <gyxp> and k = 0.
Step 2. Define a, = B,g, and find x +1 solving the problem

Ax = b, x 20, |x - ak||2 (min).
Let u = X4l ~ ¥ If y = 0, STOP; X1 solves (P), else
proceed.
Step 3. Let 7y = <up,xp 1> If 7y <0, set Ek = ﬂk/(ﬂk - 7k)

and

GO TO Step 5, else set Ek = 1 and proceed.
Step 4. If

T <ug> 2 Bl
set o =1 and GO TO Step 6, else proceed.
Step 5. Find, if exists, akc(O,Ek) such that

(g + (1 - )B,)

< (oqu + (1 - a)g)' u — g >
= (1 - Bllaggu, + (1 - o )g,lI"

(It will be proven that such an o always exists and it is unique, if
the norm ||-|| is also smooth).

Step 6. Define
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gy1 = (qu + (1 - a)g )/l + (1 - a)glI'
and

Beyr = (gm + (1 = a)B )/ lloguy + (1 - o )gy |l
Increase k by 1 and RETURN to Step 2.

1.4.2 REMARK. As it can easily be seen from the subsequent proof of
convergence of the above algorithm, Step I is only a convenient initialization.
In fact, it can be replaced by

Step 1. Pick any & such that there are yodlm, fodln, 50 > 0 with

& = ATYO + fo» "80"' =1 and <y0’b> > 0.

1.5 FEASIBILITY OF THE ALGORITHM
In this section we show that the various steps in the algorithm are

properly formulated.

1.5.1 LEMMA. Let &g etc. be as in Step 1 of the algorithm. Then
Iy R, R, €y 2 0 such that
gg = ATyg + & llgyll' =1
and
ﬂo = <y0,b> > 0.
Proof By Theorem 1.3.9, 3z&R™, ¢R™, ¢ > 0 such that
X =A"z+ ¢ and <(xp> =0. Let y = z/llxgl' and & = ¢/lixgll"
By Step 1 of the algorithm, & = x0/||x0||' = Aryo + &
Also
By = <8gxg> = Ixgliaflixgl' > 0
and
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= <y0,Ax0> = <y0,b>.
This completes the proof of the Lemma.

1.5.2 LEMMA. In the algorithm Vk > 1, if u # 0, then

au_;, + (1 - a)g,_; #0, Vae0,1].
Furthermore, in this case, if we also assume that o ;, has been
determined, then

Iy, R, § &, & 2 0 such that

8 = Aryk + & "8]("' =1,
and
ﬂk = <ypb>.

Proof We shall prove this lemma by induction on k. Take k = 1.
Since u, # 0, with |lggll' = 1, euy + (1 - a)gy = 0 cannot hold for
a=1 or a=0. So, if 3Jae0,1], such that au, + (1- o:)g0 = 0, then
ace(0,1). Assume that such an a exists. We see that

laglly = llxy = aglly = <x; - agup>

= o1 (@ - 1) <x; - ay,g5>
=al (a = 1) (<x,8p> - <a;,8p>)
o™ (a - 1) (<xpATyy + > - B,
since ay = ﬂog('),
=o' (a-1) (G + <xpbp> — B
since <x1,ATy0> = <bys>,

= ol (a - 1) <x,§> <0,
contradicting our assumption that uy # 0.
Since X; is the solution of the problem
Ax = b, x 2 0, |lx - agll, (min),
by Theorem 1.3.9, JzeR™, ¢(R", ¢ > 0 such that
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Uy = X -3y = ATz + ¢ and <z,b> = <ugX;> = 7%,
Since auy + (1- 01)g0 # 0, Yae|[0,1], and since Steps 4 and 5 of the
algorithm have determined a by assumption, we have
aguy + (1 - o:o)g0 # 0. So Step 6 is well defined. Define yp § by
1.= (a'oz + (1 - ao))’o)/“aouo +(1- 00)50"'
and
§ = (‘1'0< + (1 - a0)£0)/"aﬂu0 +(1- 0'0)80"'-
Then §1 > 0, and
Aryl + El = (0'0“0 +(1- ao)go)/"aouo + (1 - 0’0)80"'~
Furthermore,
<ypb> = (ao<z,b> + (1 - ao)<y0,b>)/||aou0 + (1 - ao)yoll'
= ﬂl, by Step 6 of the algorithm.
Now we have verified the lemma for k = 1. For the general index k, the
argument is identical and is obtained from above by simply replacing Yor €0
gy Up By and xp by vy Gy B p Uyr By and X
respectively. This completes the proof of this lemma.

1.5.3 LEMMA. Let uyeR", 7,0R and
Z = {aR|ou + (1 - a)y = 0}. Alsolet |-|| be a strictly convex norm

on R". Define the function

oa) = (ay + (1 = a)f)/llan + (1 - a)y|'

for adR\Z.

Then, we have for the derivative of ¢

(1.5.3.1) o) = — 2B _ (a7+(1—a)ﬂ)<(au+(1-g)y)',u—y>
| au+(1-a)y]|" llau+(1 —a)yll

for adR\Z.

Now let adR\Z be such that ¢(a) > 0.



15

Then we have

(1.5.3.2) If ¢'(a) 20 then @A) < pla) VA < a, AR\Z.
(1.5.3.3) If ¢'(a) <0 then @A) < pla) VA > a, AR\Z.
If the norm ||-|| is also smooth, then

(1.5.3.4) @A) < ¢(a) in both (1.5.3.2) and (1.5.3.3).

Proof The proof is a straightforward repetition for the above ¢ of
the proofs of Lemmas 5.3, 5.4, 5.5 and 5.6 in Sreedharan [6]. Note that, as
one easily sees, in Lemma 5.5 of [6] we can replace the assumption that y
and h are linearly independent by the weaker one that both y + oh and
y + Ah are nonzero. We have used this weaker assumption for the above
Lemma. (1.5.3.1) corresponds to relation (5.4.3) of Lemma 5.4 in [6] and
(1.5.3.2), (1.5.3.3) correspond respectively to statements (i) and (ii) of Lemma
5.6 in [6).

1.54 LEMMA. Let uyeR", 7,0R. Also let |-]| be a strictly
convex norm on R". Assume that au + (1 - a)y # 0, Yae[0,1]. Then
define

wa) = (a7 + (1 - @)f)/llou + (1 - a)y|' for ace0,1].
Also assume that

¢(0) > 0 and ¢'(0) > 0.
Consider the following algorithm:
(i) f <0 then a= /(-7 and GO TO (iv).

Else proceed.
(ii) a=1
(iii) If

<u’,y> 2 fljull’
set a=1 and STOP. Else proceed.
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(iv) Find a¢(0,a) such that

(ay + (1 - @)f)<(au + (1 - a)y)',u - y> =

=(r-8) llau + (1 - a)y|'

STOP.
Then this algorithm is well formulated and it produces an a which is a
global maximizer of ¢ on the interval [0,1]. Moreover, if the norm ||-||
is also smooth, then ¢ has only one global maximizer on [0,1]. If we
replace the assumption (0) > 0 by ¢0) =0 and 4 > 0 then
the Lemma is still true.

Proof Since ou + (1 — a)y # 0, Yae[0,1], ¢ is continuous over the
compact interval [0,1]; thus a global maximizer exists. From (1.5.3.1) we see
that ' is also continuous over [0,1].

It is easy to verify that the following are true: from the hypothesis that
¢(0) > 0, which is the same as f > 0, and the definition of ¢ we have
that

3 a¢(0,1] such that ¢(a) = 0

iff

7<0.
If this is true, i.e. if v < 0, then a = B/(8 - 7) and it is unique. Using
this and (ii), we see that we always have 0 < a < 1.

From (1.5.3.1) we get that the relation in (iii) is true iff ¢'(1) > 0
and the relation in (iv) is true iff ¢'(a) = 0.

Note that writing (iii) makes sense because the assumption
au + (1 — a)y # 0, Vae[0,1] guarantees that u # 0. Note also that ¢'(1)
is defined iff u # 0. Also the relation in (iv) makes sense for all a¢(0,a)
because 0 < @ <1 and thus au + (1 — @)y # 0. This is the same as
saying that ¢'(a) is defined for all ae(0,a).
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Using the above facts we can rewrite the algorithm of the above Lemma

as follows:
(i) If exists, then find ‘a¢(0,1] such that ¢(a@) = 0 and go to (iv).
If there's no such a, proceed.
(ii) Put a=1
(iii) I ¢'(1) >20,then @ =1 and STOP. If ¢'(1) < 0, proceed.
(iv) Find a¢(0,a) such that
¢'(a) = 0
and STOP.

We distinguish two cases:
Case 1. Suppose IJae(0,1] such that ¢(a) = 0. Since this a is
unique and since ¢(0) > 0, then
(1.5.4.1) oa) > 0, Vae0,a).
If it were true that
¢'(a) 2 0, Vae[0,a], then
¢ would be increasing over [0,a] and thus
0 = ¢(a) > p(0) > 0 which is a contradiction.
So, 3&5[0,5] such that
¢(a) < 0.
Since ¢'(0) > 0, then
Elae(o,t.r) such that ¢'(a) = 0.
Since a < @ ae(0,a). By (1.5.4.1) we also have ¢{a) > 0. Now (1.5.3.2)
and (1.5.3.3) of Lemma 1.5.3 imply that this a is a global maximizer of ¢
on [0,1] and it i8 unique, if the norm ||-|| is smooth, by (1.5.3.4).
Case 2. Suppose there i8 no ae(0,1] such that ¢(a) = 0. Then
a =1 and since 0) > 0, we have

(1.5.4.2) w(a) > 0, VYae0,1].
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Now if ¢'(1) < 0, then
Jae(0,1) such that ¢'(a) = 0

because ¢'(0) > 0. Also ¢(a) > 0 by (1.5.4.2). As in Case 1, we now
conclude that this a is a global maximizer of ¢ on [0,1] and it is unique
if the norm ||-|]| is smooth.
Now suppose ¢'(1) 2 0. From (1.5.4.2) we have ¢(1) > 0. Now (1.5.3.2)
of Lemma 1.5.3 implies that 1 is a global maximizer of ¢ on [0,1). If the
norm ||-|| is smooth, then this global maximizer is unique by (1.5.3.4).

Now suppose that ¢(0) = 0,ie. f =0, and 7 > 0. Then (i) is not
executed and a = 1.
Also ¢(0) = 0 and ¢(a) > 0, Vae(0,1].
Suppose the criterion of (iii) is satisfied, i.e. ¢'(1) 2 0. Since (1) > 0,
we have that 1 i8 a global maximizer of ¢ on [0,1] via (1.5.3.2) of Lemma
1.53. If ¢'(1) < 0, and since ¢'(0) > 0, then 3Jae(0,1) 8.t. ¢'(a) =0
and this a is a global maximizer of ¢ on [0,1] via Lemma 1.5.3. This
a i8 unique if the norm ||-|| is also smooth via Lemma 1.5.3.

So a is picked to be a global maximizer of ¢ on [0,1] and it is

unique if the norm ||| is also smooth, in all cases.

1.55 LEMMA. Let k > 0. Suppose that at the kth iteration of
Algorithm 1.4.1 uy # 0. Then, by Lemma 1.5.2, the function
(o) = (an + (1 - @B)/low + (1 - g ll' where 7, B,
U, 8 are as in Algorithm 1.4.1, is finite over the interval [0,1] since the
denominator does not vanish.
Also assume that g > 0.
Then,
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i)  the a, specified by Algorithm 1.4.1 in the Steps from 3 to 5, is

a global maximizer of ¢, on [0,1]. o, is unique if the norm [I-ll is also
smooth.
i) By > A
Proof. We have @ (0) = B, > 0 by assumption.
Also
(0) = N~ By — By < 8B Uy — >, by (1.5.3.1)

= %~ A < g Yy

= "“k"g > 0 since uy # 0 by assumption.
Now (i) follows from Lemma 1.5.4 and Steps 3,4,5 of Algorithm 1.4.1.
Since a, is a global maximizer of ¢ on [0,1], we have
# (o) 2 ¢, (0) = B; but in addition to this, we know that ¢, (0) > 0
and thus qpk(ak) > <pk(0) = ﬂk From Step 6 of Algorithm 1.4.1 we have
that B 41 = ¥ () and this completes the proof of (ii).

1.5.6 LEMMA. The sequence (B, ) generated by Algorithm 1.4.1 is
positive and strictly increasing.

Proof From Lemma 1.5.5 we have that for U $# 0, if ﬂk> 0 then
ﬂk 41> ﬂk and thus ﬂk 41> 0, too. In other words: ﬂk > 0 implies
Bk 41> 0, unless the algorithm is terminated at the kth iteration. From
Lemma 1.5.1 we have ﬂo > 0. So by induction, the finite or infinite
sequence (ﬂk) is positive and thus, by Lemma 1.5.5 (ii), it is also strictly
increasing. So, if it i3 not a finite sequence, it converges to some limit
which, by Lemma 1.5.2, is less than or equal to the value of problem (P):

min{||x|||Ax = b, x > 0}, or the value of the problem (P') dual
to (P).



1.5.7 THEOREM. If u, at the kth iteration of Algorithm 1.4.1
equals zero, then x ., solves (P):
min{||x|||Ax = b,x > 0}.
Proof If u, = 0, then we have by Step 2 of the algorithm,
Xyl = B8y and Xg41 is feasible for (P).
The last relation via Lemmas 1.5.2, 1.5.5 and 1.5.6 becomes
X1 = <yk,b>(Aryk + &) "Aryk + &' = 1.
Now apply Theorem 1.3.2 for a = 0 to get the result. Take into account
that ,Bk > 0 by Lemma 1.5.6 and that b # 0 which was assumed in
Section 1.4.

1.6 CONVERGENCE OF THE ALGORITHM

We can now prove convergence of Algorithm 1.4.1.

1.6.1 THEOREM. Assume that the norm ||-|| on R"™ is strictly
convex. Then the sequence (x,) generated by Algorithm 1.4.1 either
terminates at or converges to the unique solution of (P) i.e. of the problem
(P): Ax = b, x 2 0, ||x|| (min).

Proof. 1f Algorithm 1.4.1 terminates at x, then u, _, = 0, in which
event this theorem reduces to Theorem 1.5.7. So consider the case when we
have a genuine infinite sequence (xk)' We shall first show that the
sequence (uk) constructed in Algorithm 1.4.1 converges to zero.

Denote by d the value of (P). Then ﬂk = <ypb> < d, Vk. By
Lemma 1.5.6 (8,) is a strictly increasing sequence, and so A 1 8 < d.
Fix x20, with A x =b. We have

g illy € ey = aylly + laylly
< lx = aylly + llaylly
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< lixlly + 2llaylly
= IIxlly + 28, llgLlly
< lixlly + 2AMlig]
= lxlly + 26M.
This shows that the sequence (x;) is bounded.
It follows that the sequence Wo=Xp T8 is also bounded. So if (u;)
does not converge to zero, there is a subsequence (uk.) of (“k)
converging to u # 0.
Observe that
haly = <Xegy - Bev>
= <X, US> <y >
(1.6.1.1) = Y — Be<gpu >
Due to the boundedness of (7% ) and (g ), we can pass to a further
subsequence, again denoted by (k') such that 7, - 7 and g, - g
Since |lgll' = 1, Vk, [igll' = 1 and by the continuity of the map
z |-z on R™{0}, we get from (1.6.1.1), as k' - o,
(1.6.1.2) luliz = 7 - B <g'u>.

We now distinguish two cases.

Case 1. There exist an infinity of indices k' for which Step 5 is
executed. Denote this subsequence by (k') again. Furthermore we may
assume that the sequence (ay.) is such that ay, -+ ae[0,1]. Let us also
assume that ou + (1 — a)g # 0. We shall take care of the possibility
au + (1 — a)g = 0 shortly. Using Step 5 of the algorithm and allowing
k' 4 «, since au + (1 - a)g # 0, (auy,, + (1 - a)gy1)' - (au + (1 - a)g)".
This yields the equation
(1.6.1.3) (ay+ (1 -0a)f) < (cu+ (1 - a)g)',u-g>

=(7-0) llou + (1 - a)gl".



Also by Step 6 of the algorithm

(1.6.1.4) Blau + (1 - a)g|l' = ay + (1 - a)8
Since ou + (1 - a)g # 0, combining (1.6.1.3) and (1.6.1.4), we get
(1.6.1.5) f <(au + (1 - a)g)',u-g>=17-4

Since <(ou + (1 - a)g)', g + o(u — g)> = |lau + (1 -a)g||', we have
(1.6.1.6) a <(au + (1 - a)g)'u —g> = |lau + (1 - a)gl’
- <(au + (1 - a)g)"\g>.
Combining (1.6.1.6), (1.6.1.5) and (1.6.1.4) we get the equation

(1.6.1.7) p=p<(au + (1 - a)g),g>,

ie.

(1.6.1.8) <(ou + (1 - a)g)',g> = 1, since g > 0.

Since |lg||' = 1, with the norm ||-|| strictly convex, (1.6.1.8) imples that
(1.6.1.9) (au + (1 - a)g)' = g

Inserting this in (1.6.1.5) gives us the equation
(1.6.1.10) f <g',u-g>=17-04,
ie.
(1.6.1.11) f <g'.u> = 19, since <g'.g> = 1,
which in view of (1.6.1.2), implies u = 0, a contradiction.

Now suppose that ou + (1 — @)g = 0. Since g# 0, a# 0. So
u= a-l(a - 1)g. By Step 6 of the algorithm

Bogillogug + (1= o)l = apme + (1 + oy )Bye

Allowing k' - o, we get
(1.6.1.12) ay+ (1 -a)f =0.
Writing u = a'l(a - 1)g in equation (1.6.1.2) yields
(1.6.1.13) lul = 7 - fa™ (@ - 1) = 0, by (1.6.1.12),

once more a contradiction.
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Case 2. There exist an infinity of indices k' for which Step 4 of the
algorithm is answered affirmatively. Passing to a subsequence, again denoted
(k'), we assume this to be the case for all k'. Then by Step 6 of the
althorithm,

ﬂk'+1 = 7k'/"uk'""
Since (4, ) is an increasing sequence with limit § > 0, (Ber +1) -+ B Let
N T Then 4 > 0 and
(1.6.1.14) v = Blul'.
Due to Step 4

N < “]'(ngkv> 2 ﬂk'"ukv"',
which in the limit yields

7 <u',g> 2 flull' = 1.
Since v > 0, this shows that <u',g> > 1. But since |[g||' = 1 with
lu']] = 1, we conclude that <u',g> = 1 and hence u' = g'. Using this
in (1.6.1.2) we get

IIuH% = 7 - f<u'u>
(1.6.1.15) =y - Blull' = 0, by (1.6.1.14)
contradicting the assumption u # 0. So we have shown that in all cases
u 0.

To show that (x)) converges to the solution of (P), we first show
that every cluster point x of (x,) is a solution of (P). Then since
solutions of (P) are unique, with (x,) bounded, we can conclude that the
sequence (x,) converges to the unique solution Xx of problem (P). Let
then x be any cluster point of (xk). Then there is a subsequence (k')
such that xp, , - X. Recall that by Lemmas 1.5.2, 1.5.5 and 1.5.6
Iy, R, R, & 2 0 such that
(1.6.1.16) 8 = Aryk + & lgl' =1,
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and
(1.6.1.17) By = <ypb>, Vk.
Furthermore, (ﬂk) converges to § > 0.

By passing to a further subsequence of (k'), if necessary, and denoting
the new subsequence again by (k'), we can assume that
g ° & llgll' = 1. By Step 2 of the algorithm U = X T 3 and so
(1.6.1.18) X = U + 8o = U+ Bg'y
Allowing k' + w, due to the strict convexity of the norm ||, we get
(1.6.1.19) x = fg', lel' = 1.
Since Axk_*_1 = b, with Xep1 2 0, Vk, we gt Ax = b, x 2 0.

If yR™ and ¢R®, € > 0 is such that ||ATy + £||' < 1, by the
weak duality principle,
(1.6.1.20) <y,b> < |x|| = B, by (1.6.1.19).
But as observed above, # > 0 is the limit of the sequence (<yk’b>)’
VR 6 R & 20, ATy, + &' = 1. So equality holds in (1.6.1.20),
showing that X is a solution of (P), thus completing the proof of the

theorem.



CHAPTER 2

2.1 INTRODUCTION

In this chapter we assume that the system of m real linear equations
in n unknowns Ax = b has a non-negative solution. We give another
implementable iterative algorithm converging to the least norm ||-|| solution
of Ax = b, x 2 0 for a strictly convex norm ||-]| on R". This
algorithm is given as a special case of a more general algorithm and it is
analogous to the one of Chapter 1, but it is never used for actually solving
the above problem since the algorithm of Chapter 1 is a better algorithm for
this purpose. We include it because the theorem about its convergence will
be heavily used in Chapter 3 where we prove the convergence of a more
general algorithm. Some Lemmas and Definitions, which will be used in

Chapter 3, are also given.

2.2 NOTATION AND SOME PRELIMINARIES
Besides the notation in Section 1.2 we also need the following:
A convez polytope in R" is the convex hull of a finite (at least one)
number of points in R™.
Let C be a convex cone in R". Then its negative polar, denoted by
C°, is defined by
C° = {yR"|<y,x> < 0, VxeC}.
A finitely generated conver come in R" is a set of the form
{’\1x1+"‘+'\mxm|’\i 20,Vi=1,.m},
where xidln, Vi=1,.m. A finitely generated convex cone is a convex

cone. We also define R} by R} = {x&"|x 2 0}.
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We shall also use the symbol :=. Thus x:= y will mean x is defined
by vy.

2.3 SOME DUALITY THEORY

Let K: = {xeR"]Ax = b, x 2 0}. As already stated, we have assumed
that K is non-empty. Then, according to Theorem 19.1 in [5], K is the
sum of a convex polytope P and a finitely generated convex cone C. We
have the following lemma.

23.1 LEMMA. Let K=P + C with K, P and C as above.
Then C = (KerA) n R_':_, where KerA is the kernel of A. This shows
that in the P + C-representation of K, C is unique and independent of
b.

Proof. Let peP and ceC; then p+ Ace P+ C=K,VA20
and thus peK and p + c ¢ K. By the definition of K we have
(2.3.1.1) Ap = A(p+c) = b
and
(2.3.1.2) P+ Ac20,VA20.

(2.3.1.1) implies ceKerA and (2.3.1.2) implies ¢ > 0. So, C is a subset
of (KerA) nR}.

Conversely, let ke(KerA) n R_':_ and peP. Then peK = P + C. Let
A >0 peK implies Ap=b,p>20. Then p + Ak > 0 and
A(p + Xk) = Ap=>b and thus p + AkeK, VA > 0. Since K=P + C
we see that 3 p,\‘P’ cl\cC such that p + Xk = py + ¢, or

(v
p-p,\=cA—Ak=A(—f‘{-k). Letting A - + = we see that

c c
/\(—:\\- - k) is bounded and thus —i — k has to go to zero. Since
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c
-% € C, VA > 0, we have that keC = C because a finitely generated

convex cone is closed. This completes the proof.

Let us denote by F the negative of the negative polar of the above
cone C, ie. F: = - C° Note that
F = — (KerA n nj‘r)°
= - (ImA" + RY ) = ImA” + R}
= {ATy + (ly&®™, (&, ¢ 20}
and thus F # {0}. We have the following lemma.

2.3.2 LEMMA. Assume that K: = {xR"|Ax = b, x > 0} is
non—empty. Then, the inf{<y,x>|xeK} is finite, i.e. it is8 not - o, if and
only if yeF, in which case the infimum is attained.

Proof Let P,C as in Lemma 23.1. Let yR". let a; and a
be real numbers such that

—w < a < <yp> < < 4o, VpeP.
We have,
a; + inf{<y,c>|ceC} = inf {a; + <y,c>|ceC}
> inf {<y,p+c>|peP,ceC}
= inf {<y,x>|xeK}
> inf {a; + <y,c>|ceC}
= a, + inf{<y,c>|ceC}.
From these relations, it is easy to see that
inf{<y,x>|xeK} is finite, i.e. it i8 not -w, if and only if

inf{<y,c>|ceC} is finite.
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Because C is a cone, we have that
inf{<y,c>|ceC} is finite if and only if <y,c> > 0, VceC, i.e.
if and only if yeF = - C°.
Whenever the infimum is finite, then due to the polyhedral convexity of

the set K, we see that the infimum is actually attained.

2.33. Let |-|| be a norm on R™ and let adR”. With the "primal"
problem (P)

(P) min{||x-a]||xeR", Ax = b, x > 0}
we associate a "dual" problem (P')
(P') max{-<y,a> + min{<y,x>|xd&",Ax = b, x > 0}|yeR", [lyll' = 1, yeF}.
Note that the objective function of (P') makes sense for yeF because of

Lemma 2.3.2. Now we have the following basic theorem.

2.34 THEOREM. Let ||-|| be any norm on R" and aeR™
Assume that K: = {x&"|Ax = b, x > 0} is non-empty and that agK.
Then the above problems (P) and (P') have the same value.

Proof The value of (P) equals inf{||x-a|||x¢K} because K is a
non-empty closed set and the objective function has non-—negative values: so
the inf i3 min. Now from Nirenberg [4, page 39] we have, since K is
convex,

value of (P) = | rlrll?.x (<y,a> - sup{<y,x>|xeK})
yll'<1

= max (<y,a> + inf{<-yx>|xeK})
Iyl *<1

= max (<-y,a> + inf{<yx>|xeK})
Iy ll'<1



= max (<-y,a> + min{<y,x>|xe¢K}) by

IIyII'<1
yeF
Lemma 2.3.2,
(2.3.4.1) = <-y,a> + min{<y,x>|xeK},
for some yeF, [ly|' < 1,
< < -—L a> + min{< —y— x>|xeK} because
Iy ll* Iyl

agK and so the value of (P) is greater than zero,

max (<-y,a> + min{<y,x>|xeK})

Ily Il '=

< max (<-y,a> + min{<y,x>|xeK})

lyll ' <1
yeF
and now the result clearly follows.

2.3.5. i) The part of Theorem 2.3.4 stating that the value of (P')
is not greater than the value of (P) will be referred to as the weak duality
principle. The proof of this is easy and it does not invoke any duality
theorems as the one in Nirenberg [4].

ii) If we omit the condition agK in Theorem 2.3.4, then the
theorem is still true if we modify (P') slightly, namely

(P') max{<-y,a> + min{<y,x>|xR", Ax = b}|yeF, |lyll' < 1}.

This is clear from (2.3.4.1).

2.3.6 THEOREM. Let the norm ||| on R" be strictly convex and
let aeR". Assume that K: = {xeR"|Ax = b, x > 0} is non-empty and
that aeR"™\K. Then Xxe&R™ solves (P) if and only if AX = b, X 20
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and 3 yR", |lyl' = 1 such that the following are true:

(2.3.6.1) - <y, a> + min{<y,x>|xeK} > 0
and
(2.3.6.2) x - a = (—<y,a> + min{<y,x>|xeK})y'.

Proof "If" part: Since (2.3.6.1) is true, then, by Lemma 2.3.2, yeF.
By (2.3.6.2) and (2.3.6.1) we get
Ix - a]| = - <y, a> + min{<y,x>|xeK}.
Now the weak duality principle implies that x solves (P) and y solves
(P").
"Only if" part: Let x solve (P) and y solve (P'). By Theorem
2.34, |x - a]] = <-y,a> + min{<y,x>|xecK}. Note that

<x - a,y> > - <y,a> + min{<y,x>|xeK} because xeK
= |x - a]] > 0.
So,
X-a
—,y>2 1=yl
lIx-all
Since the reverse inequality is also satisfied and the norm ||| is strictly

convex, we get
lIx-all

This completes the proof.

= y' and then (2.3.6.2) clearly follows.

2.3.7. In proving Theorem 2.3.8 we will use (1.3.8.1), which may be
rewritten as:
If K is a non—empty closed convex subset of R" and ad", then xXR"
is the unique point in K nearest to a for the Euclidean norm if and only
if xeK and

(2.3.7.1) <X - a,x> < <x - a,x>, VxeK



31

or

(2.3.7.2) <x - a,x> = min{<x - a,x>|xeK}.

2.38 THEOREM. Let aeR". Assume that the set
K: = {xeR"|Ax = b, x > 0} is non-empty. Then X&R" solves (P) for

the Euclidean norm ||-||2 if and only if Ax = b, x > 0 and the following
relation is true

(2.3.8.1) IX - all3 = - <aX - a> + min{<X - ax>|Ax = b, x 2 0}.
In the case when this is true, we have x — a¢F. Note that we can replace
(2.3.8.1) by

(2.3.8.2) <X - a,x> = min{<x — a,x>|Ax = b, x 2 0}.

Proof We can see that (2.3.8.1) and (2.3.8.2) are identical by writing
IIx - 8||§ = <X - a,Xx — a>. Now the theorem immediately follows from
2.3.7. Finally, if x solves (P) for the Euclidean norm, then x — acF
because of Lemma 2.3.2 and the fact that

min{<x - a,x>|Ax = b, x > 0} is finite.

2.4 ALGORITHMS AND FEASIBILITY

Let ||| be a strictly convex norm on R".

Let by e{Ax|xeR}}, Vk 2 0, with lim b, = b. Then be{Ax|xR}}
too, because any finitely generated convex cone is closed (see Theorem 19.1 in
[5]). Now consider the following Algorithm, which is an infinite one, since

there are no stopping criteria:

2.4.1 ALGORITHM.
Step 0. Let gyeR" be such that gyeF and [iggl' = 1. Recalling

the definition of F, which is given following Lemma 2.3.1, we see that such
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gy exists since F is a cone not equal to {0}. Put k = 0.
Step 1. Calculate
A = min{<g,,x>|Ax = b, x 2 0}.
If Py 2 0, put
Y = §, and ﬂk: = p, and GO TO STEP 3.
If Py < 0, proceed.
Step 2. Pick any Yk such that
YyeF, llyll =1 and
B = min{<y,x>|Ax = by, x 2 0} 2 0.
(A way of doing this is the following:
Let Z) be the solution of the problem
Ax = by, x 2 0, |||, (min).
By Theorem 2.3.8 we have zkcF and
(2.4.1.1) llz ll2 = min{<zx>|Ax = by, x 2 0}.
Let y,: = zk/||zk||' and
B = lizg I3/ lizIl")-
Steps 3 through 10 calculate g, , from y,. Note that for the already
computed y, and B we have
By = min{<yk,x>|Ax = by, x 2 0} > 0.
Step 3. Let & = ,Bky]'(
and let X be the solution of the problem
Ax = by, x 2 0, [x — 8|l (min).
Let up: = x - a.
Step 4. If u = 0, then put N = 0, o = 0, B+1: = Yio
increment k by 1 and RETURN TO Step 1, else proceed.
Step 5. Let 7m: = <ux >. Note that % = ||uk||§ + <up,a;>.
Note also that by Theorem 2.3.8 we have ukcF and
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(2.4.1.2) % = min{<ux>|Ax = by, x 2 0}.
Step 6. If 7 <0, then Hk: = Bk/(ﬂk-'yk) and GO TO Step 9,
else proceed.
Step 7. Ek: = 1.
Step 8. If
7k <u|'(’Yk> 2 Bk"uk""
then oq: =1 and GO TO Step 10, else proceed.
Step 9. Find ¢y in the interval (0,a) such that
(ak7k +(1- ak)ﬂk) < (akuk + (1 - O’k)yk)'a U — Yy
= (71( - ﬂk) "ak"k +(1- ak)yk""
It will be shown that such an oy exists. @ is unique if the norm Il
is also smooth.
Step 10. Let
81t = (qu + (1 - a)yp)/llaguy + (1 - o)y, ll'.
Increment k by 1 and RETURN TO Step 1.

REMARK. Note that Step 2 makes sense: suppose that bk = 0.
Then
P = min{<x,gk>|Ax =0,x 20} <0 by taking x = 0.
If 3x, Ax =0, x >0 such that <x,g > < 0 then
inf{<x,g, >|Ax = 0, x 2 0} = - o, by taking
Ax, A = + «». But since gkcF, A 2 0. So finally P =10 and
after this we see that Step 2 is skipped and
x =0, g +1 = Yk = & So whenever Step 2 is executed, we have
bk#o and thus zk#O.
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2.4.2. We consider the following algorithm which is just Algorithm 2.4.1
for the case when bk = b, Vk = 0,1,.... We are assuming that
be{Ax|xeR",x > 0}. Also, the norm ||-]] on R® is assumed strictly
convex. Everything that is valid for Algorithm 2.4.1 is valid for the

following algorithm too, but not vice versa.

2.4.3 ALGORITHM.
In Algorithm 2.4.1 replace bk by b, Vk = 0,1,... and z) by z, Vk
= 0,1,... where 2z is the solution of the problem

Ax = b, x 2 0, |x[l, (min).
Now we deal with the feasibility of Algorithm 2.4.1.

2.4.4 LEMMA. Suppose that Algorithm 2.4.1 has been able to reach its
kth iteration cycle, k > 0, having produced a g, such that g ¢F and
ligl' = 1. Then all Steps from 1 through 10 are executable and g +1
will be calculated such that g, +1¢F llg), +1||' = 1. If the u  of Step 3
is nonzero, then w and y, are linearly independent and we can define
the function

a0 = (a + (1 - Af)llaw, + (1 - @yl for aclo,1],
and the oy which is calculated in Steps 6 through 9 is a global maximizer
of ¢, on[0,1]. o is unique if the norm ||-|| is also smooth.

Proof From the Algorithm, we can see that Steps I and 2 are
executable—note that p Mmakes sense because g ¢F by assumption—and
a yp will be produced such that [y ||' = 1. Also, we will have y, ¢F
because gkcF by assumption, and zkeF by Step 2. Note that we always
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have B, = min{<y, x>|Ax = b, x 20} 20 and
B2 oy

Now assume u, = Ayk for some real number A. By Step 5, we
have
(2.4.4.1) lu 2 + <up.a> = min{<ug x> |Ax = b, x > 0}.
Using Step 3 and the assumption u = Ayk, the last relation becomes

Aﬂk, for A20
Ny, 12 +8,=
A max{<y, x>|Ax = by, x 2 0}, for A <0
<A B

So, A%lly, I3 < 0 which implies that A = 0 ie. u, = 0. So, if
u # 0 then Yy and u are linearly independent and so ¢ can be
defined. Note that <pk(0) = B 2 0 and, by (1.5.3.1),
(2.4.4.2) ?(0) = 1 = By <upyp> = N - <Yy> = llukllg > 0.
Now apply Lemma 1.5.4 to see that Steps 6 through 9 are properly
formulated and a is a global maximizer of ¢, on [0,1]. ¢ is unique
if the norm ||-|| is also smooth. Note that if B =0, then o =0
and thus % = ||uk||§ > 0 which makes Lemma 1.5.4 applicable.

Now it is clear that the Algorithm will produce a Bk+1 such that
llgy, +1||' = 1, since all Steps are well-formulated. Note also that g, 4166
since Y F and uy ¢F.

Also, we have for u $#0

min{<gk+1,x>|Ax = by, x 2 0} 2 ¢ (o)

(2.4.4.3) > ¢ (0) = B 20, since
9 (0) > 0. Also min{<gk+1,x>|Ax = by, x 2 0} 2 g (1) = 7k/||uk||'.

If u = 0,
(2.4.4.4) min{<gk+l,x>|Ax = by, x 2 0} = B,



So, we always have

(2.4.4.5) min{<gk+l,x>|Ax =b,x20}25 20
and
(2.4.4.6) ||uk||'min{<gk+l,x>|Ax = byx 2 0} > 7k(if w=0,7 = 0).

2.4.5 LEMMA. Algorithm 2.4.1 is feasible and it is generating infinite
sequences (g, ), (y)) such that

gk‘Fa "gk"' = 1’ YkCF’ IIYk"' = 1’ Vk = 0’1’2’""

Proof Follows by a simple induction argument using Lemma 2.4.4 and

Step 0 of the Algorithm.

2.4.6. The sequence (B,), k 2 0, generated by Algorithm 2.4.1 need not

be increasing.

2.4.7. In practice, in order to initialize, we can replace Step 0 of
Algorithm 2.4.1 with the following Steps 0, 01, 02:

Step 0. k = 0.

X
0 , where X0 is the solution of

g

Step 01. If bk # 0, let & =

the problem
Ax = bk» x 20, "X"2 (min)s
and GO TO Step 1, else proceed.
Step 02. Let X} = 0, increment k by 1 and RETURN TO Step
01.

2.4.8. From Steps 1 and 2 of Algorithm 2.4.1, we see that if at some
stage p < 0, then 8k is thrown away and the Algorithm restarts at this
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point, in the sense that no previous information is used except for the
current bk However, the previous information is used in the following

variation of Algorithm 2.4.1.

2.4.9 ALGORITHM.
All the hypotheses of Algorithm 2.4.1 are assumed here also.
Steps 1 through Ie calculate y, from g, and b,.
Step 0. as in 2.4.1.
Step 1. as in 2.4.1.
Step 1a. Let 2 be the solution of

Ax = by, x 20, ||x||2 (min).
Step 1. 1 gy <l ll3 < 2, 8>/l
then put

o = 0y = 7 /lz )l B = liz 3/ lz
and GO TO Step 3, else proceed.

Step 1e. ay: = llzll/(lz iz - lizlI's)-

Step 1d. Find &k in (0,;1]() such that

2 V4
° k
+ (1 - 1 -
(g + (1= o) T e u < (s (ad l(u' T
g2 5
- ( lagg, + (1 - &) —E.
B I T

a

It will be shown that such an o exists and ak is unique, if the norm
[l is also smooth.

Step le. Let
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Z - - -
Tk} ag )/l - @) —E— + agll.

Yp' = (1 - o)
iz I Iz I

Step 2. Calculate
B = min{<y,,x>|Ax = by, x 2 0}.
Steps 8 through 10 are the same as in 2.4.1.
Now we deal with the feasibility of Algorithm 2.4.9.

2.4.10 LEMMA. Suppose that Algorithm 2.4.9 has been able to reach
its kth iteration cycle, k > 0, and that 8y has thus been computed so
that gkcF. Suppose P < 0; if 2y and g, are linearly dependent ,
then the criterion of Step 1b is answered affirmatively.

Proof First note that Py makes sense, since gkcF by assumption.
Suppose g = ,\zk for some real number A. Using Step Ia and relation
(2.4.1.1) which is still valid, we see that the criterion of Step 1b checks if

min{A < z,x>|Ax = by, x 2 0} ¢ Allz I3
=A min {<z,,x>|Ax = b, x 2 0}.
This is clearly true for A > 0 as equality. If A < 0, the left hand side
becomes
A max {<z;,x>|Ax = by, x 2 0} and the above relation is again

found to be true.

2.4.11 LEMMA. Suppose that Algorithm 2.4.9 has been able to reach
its kth iteration cycle, k > 0, and that &y has thus been computed so
that g ¢F and |lg, ' = 1. Also assume that p < 0 and g, 7 are
linearly independent. Then, defining

%
+ ap)/I( - @) 2+ ag, !
TR TR TR
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for ae[0,1], we have that

Steps 1b through Id of Algorithm 2.4.9 are properly formulated and the
resulting &k is a global maximizer of &k on [0,1]. ‘;k is unique if the
norm ||-|| is also smooth.

Proof. zpk is clearly defined because the denominator never vanishes as
a result of the linear independence assumption, and also because Py makes
sense as a result of the g ¢F assumption. Note that ;}k(O) > 0. We can
easily check that the following is true by referring to relation (1.5.3.1): The
Criterion of Step 10 is satisfied if and only if (g)'(0) < 0. If this criterion
is satisfied, then by (1.5.3.3) we get that ‘;k = 0 is a global maximizer of
;’k on [0,1]. é'k is unique if the norm ||| is also smooth by (1.5.3.4).
When the criterion of Step 1b is true, we put y, = zk/llzkll' which is the
same as Step le for é'k = 0.

If the Criterion of Step 1b is not satisfied, then (é»k)'(o) > 0 and it is
clear that Steps Ic and 1d are properly formulated and they produce an ‘;k
with the properties stated, by referring to Lemma 1.5.4 and noting that Py
< 0.

From the above, it is clear that a Yy 18 produced such that
yeF—because z, and g eF—and |y, ||' = 1. Thus the B of Step 2
makes sense, since ykcF. From Step 1le, which is valid even if Evk =0

and Step 2 we get
Z) . '
Il - o) —— + o8 l' B 2

(l—ak)
lz I

min{<z, x>|Ax = by, x 2 0} +

+ ;’k min {<gk,x>|Ax = by, x 2 0}.



But this becomes
B 2 ploy)

: Iz, I3
(2.4.11.1) > ¢ (0) =

LT
Also, B, 2 ple)
(2.4.11.2) 2 g (1) = py.

2.4.12. At the kth iteration cycle of Algorithm 2.4.9, assuming
P < 0, we have the relations
2
B 2 lz 21zl > 0 and B > o
If z,, g, are linearly independent, these are just (2.4.11.1), (24.11.2). If
they are linearly dependent, then
2
B = lzg)i3llIiz ' and by Step 1,
A $ B <z s 8> < Bllzgll llgll' = By

Note that the relations ﬂk > P and ﬂk > 0 are true even if

pkzo.

2.4.13. Lemmas 2.4.10, 2.4.11 and 2.4.4 show that Algorithm 2.4.9 is

feasible.

2.4.14. Now that we know that the Algorithms are feasible, we see that
the assumption of Lemmas 2.4.4, 2.4.10 and 2.4.11 that "the Algorithm has
reached its kth iteration cycle with a g computed such that IngII' =1,

gkcF ", is always true.
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2.5 CONVERGENCE OF ALGORITHM 2.4.3

In this section we are still assuming that ||| is a strictly convex norm
on R™ and that be{Ax|xeR™, x > 0}. We prove that Algorithm 2.4.3
converges to the solution x of the problem
(PO) Ax = b, x 2 0, ||x|| (min).
Note that Algorithm 2.4.3 is infinite because Algorithm 2.4.1 is. The

assumptions regarding Algorithm 2.4.1 are the same as those in Section 2.4.

2.5.1 LEMMA. Consider the functions
f,(c,d): = min{<cx>|Ax = d, x 2 0}
over Fx{Ax|x&R", x > 0} and

f,(a,d): = min{||x - a[|,|Ax = d, x 2 0}
over R"x{Ax|x&R", x > 0}.
Then fl, f2 are continuous over their respective domains.

Proof For the continuity of f, we refer to [1], [9]. Now we prove
that f, is continuous. Let the sequences (a,) and (d;) be such that
a, - a and d -d, where a,ad" and d,, de{Ax|xeR", x > 0}. Let
X be the solution of the problem

Ax = dy, x 2 0, [Ix - akll2 (min)
and thus ||x, - a,ll, = f,(a).d} ).
From 2.3.5 ii) we have that 3 y, ¢F, IkaII2 <1 such that
(2.5.1.1) ||xk - akll2 = <Ypy> + min{<yk,x>|Ax =dp, x 2 0}.
Since (ay), (yy), (d,) are bounded and the functions f, and <-.,-> are
continuous, we get that the right hand side of (2.5.1.1) is bounded. Since

lIixyllg € lIxy = aylly + llaylly, the sequence (x,) is bounded.
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Now let xkj -+ X. By taking further subsequences, we can assume that
ykj Y.
Taking limits in (2.5.1.1) we get
IIx = ally = <-y,a> + min{<yx>|Ax = d, x > 0}
with yecF, liylly €1 and also Ax = d, x > 0. In view of 2.3.5 ii), these
relations imply that X solves the problem
Ax=d,x20, ||x - a,||2 (min)
and thus ||x - a"2 = 2(a,d). Since such a solution is unique, we have
(2.5.1.2) lim x, = X
and thus for k = o,
lim fy(ay,d)) = lim [Ix, - all, = Ix - ally = fy(a,d)

which completes the proof that the function f2 is continuous.

2.5.2. Let f3(a,d) be the minimizer of the problem
Ax=d,x20, |x - a.||2 (min)
where adR" and de{Ax|x > 0}. f3(a,d) is, of course, a vector in R".
Then, due to (2.5.1.2), f; is a continuous function of

R%x{Ax|x > 0} into R".

2.5.3 REMARK. Referring to Algorithm 2.4.1, the following are true
because of Lemma 2.5.1:
(B,) is bounded, since (y,) and (b,) are.
(3) is bounded, since (B, ) is.
(u,) is bounded, since (b,) and (a ) are.
(x,) is bounded, since (v ) and (a,) are.
(%) is bounded, since (v ) and (x,) are.
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(p) is bounded, since (b,) and (g, ) are.
In the same fashion, all sequences appearing in Algorithm 2.4.9 are
bounded, too.

2.54 LEMMA. Consider Algorithm 2.4.1 for a strictly convex norm
-l on R™ and

bk e{AxlxcR_l:_}, k >0, with lim bk = b, b # 0. Assume that the
algorithm is initiated with a given gyeF with ||g0||' = 1. Then,

(i) Every cluster point of (pk), k 2 0, is greater than zero.

(ii) 3 ko such that

Py > 0, Vk> ko.

ko depends on (bk)’ k > 0, and &

Proof Suppose (i) is not true. Then there is a subsequence such that

(254.1) lim pp = lim min{<gk.,x>|Ax =b,x20} <0
J J J
From (2.4.4.5) and (2.4.4.6) we get

(2.5.4.2) min{<gkj,X>|Ax = b(kj)_l’ x 2 0} 2 B(kj)-l 2 0
for all kj > 1, and
Jeks ' i = > > =
(254 3) "u(kj)-lll mln{<gkj,X>|Ax b(kj)_l, X 2 0} 2 7(1(])_1
_ 2
= "ll(kj)_l"2 + <u(kj)_l, a(kj)_l > for all kj 2 1.

By taking further subsequences, we can assume that

g~ & Note that geF, since F is a closed set.
J
By allowing j - o in (2.5.4.2), we get that

lim min{<g, ,x>|Ax = b(k.)—l’ x20} >0
J J
= min{<gx>|Ax = b, x > 0}

= lim p, by (254.1) < 0
J



and so
(2.5.4.4) lim p = 0.
J

By (2.5.4.4) and (2.5.4.2),

lim 8,,,=0,a j- o.

(k;)-1
But then
(2.5.4.5) a(kj)_l = ﬂ(kj)_l yikj)_l + 0, as j = 0.
Moving <“(k.)-1’ a(k.)_1> to the left hand side of (2.5.4.3) and then
J J

taking the lim as j - o, we get

lim u 1 =0, a8 j-

(kj) 1
For this conclusion we have used (2.5.4.4), (2.5.4.5) and the fact that
(u(k.)-l) is a bounded sequence.
J
But
(2.5.4.6) lugg y—1llg = min{llx —a, \ llo/Ax = by 4, x 2 0}.
(kJ) 112 (kj) 1112 (kJ)

Passing to the limit in (2.5.4.6) we get

0 = min{||x - 0f|o|Ax = b, x > 0}
which implies that b = 0. But one of the hypotheses was that b is
nonzero. So (2.5.4.1) cannot be valid and, thus, (i) follows. Now suppose

(ii) is not true. Then there is a subsequence such that

(2.5.4.7) P €0,V i
j

Since (p) is a bounded sequence, (2.5.4.7) contradicts (i).

2.5.5 REMARK. Lemma 2.5.4 implies that, in Algorithm 2.4.1 with
b # 0, there exists k0 such that
(2.5.5.1) B =p >0, Vk2k,
(2.5.5.2) Yk = 8 Vk2k, and
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(2.5.5.3) Step 2 is not executed V k > ko, where ko is the same as
the one of Lemma 2.5.4 (ii).

It is easy to see that the proof of Lemma 2.5.4 applies to Algorithm
2.4.9 as well. So, there is a k(') such that Steps la through (and including)
Step 2 of Algorithm 2.4.9 are not executed for all k > k(') because Py > 0,
V k2 kg

2.5.6 THEOREM. Assume that the norm |-| on R"™ is strictly
convex and that bc{Axlxd!_?_}. Then the sequence (xk) generated by
Algorithm 2.4.3 converges to the solution x of problem (PO):

(P Ax = b, x 2 0, ||x|]| (min).

0)
Proof Assume b # 0. Note that for all k > 0

(2.5.6.1) Pyl = min{<gk+1,x>|Ax =b,x20}25 20
by (2.4.4.5) and the fact that by 41 = by = b. Now (2.5.6.1) implies
that for all k > 1 we have:
(2.5.6.2) By = p, and y, =g,  and Step 2 is not executed.
For k = 0, we have ﬂo 20 and -w < pp < + », as in Algorithm
2.4.1. However, if Py 2 0, then Step 2 is never executed.
(2.5.6.1) also implies that (ﬂk), k > 0, is an increasing sequence of
non—negative numbers:

Bey1= P41 2H20, Vk20
From (2.4.4.3) and (2.4.4.4) it is clear that for k > 0,
(2.5.6.3) By 41 = B, if and only if u, = 0.
Now suppose 3 k such that up = 0. Then

xp = f yp and thus

||xE|| = ﬂF’ since BK >0 (in fact ﬁli > 0 since bp # 0)
(2.5.6.4) = min{<yg,x>|Ax = b, x 2 0}.
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Since yp ¢ F, |lygll' =1 and Axp = b, x¢ 2 0, then (2.5.6.4) together
with 2.3.5(i), i.e. the weak duality principle, imply that xg solves (PO)
and yp solves the dual problem of (P;) defined in 2.3.3 and fp is the
value of the two problems. So, ﬂlE cannot be increased further and we
must have
(2.5.6.5) B =B Vk2k
because (ﬂk), k > 0, is an increasing sequence. (2.5.6.5) and (2.5.6.3) imply
that
y = 0, Vk>k

Let k > k. Since uy =0, the above argument, for k instead of Kk,
shows that x; solves (Po) and y, solves its dual. The solution to
(Po) i8 unique, 80 X, = xr, V k 2 k and thus the sequence (xk)
converges to the solution of (Po) as an eventually constant sequence.
Also, y, solves the dual of (Pg), V k 2 k. So any cluster point of (y,)
also solves (PO)’ because of the continuity of the map
min{<-,x>|Ax = b, x > 0} over F.

Now we can assume that

U #0, YVk>O0.

This implies that (B,), k 2 1, is a strictly increasing positive sequence. Let
lim ﬂk = f. Clearly > 0. Also 8 < + « because (/ik) is a bounded
sequence by Remark 2.5.3.

We will prove that lim u = 0 as k - o

Suppose this is not true. Then, there is a subsequence of
(“k)’ k > 0, denoted by (uk.) such that uy, - u # 0.

By considering further subsequences, and by Remark 2.5.3 we can assume
that yu. =y, Ne = 7 and aq, ael0,1].
From Step 5 of the Algorithm we have
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(2.5.6.6) 7= Il + 8 < uy'>.
Note that the map x |+ x' is continuous on R"\{0} due to the strict
convexity of the norm ||-||.
In Lemma 2.4.4 we showed that if u # 0, then up and yy are linearly
independent. By repeating that argument we can show that u and y are
linearly independent because u # 0. Of course we have to use that

g = min{<y,x>|Ax = b, x > 0}

and

v = min{<u,x>|Ax = b, x > 0}, which result from the
corresponding relations for the indices k'.
Case 1. Assume that
ay # 1, for all k'
Then, by the equation for oy of Step 9 of the Algorithm we get
(ev + (1 - a)fB) <(au + (1 - @)y), u-y>=
(2.5.6.7) = (-0 llou + (1 - a)yl"
From the relations
ﬂk-{»l = min{<gk+1,x>|Ax = b, x > 0} since bk+l = bk = b,
2 g (o) = (4 +Q1 - a)B)/llegu +(1 - o)y, lI' by 2.4.43,
>R 20 by 2.4.4.3,
we get
B2 (ar+ (1 - a)f)/llou + (1 - a)yll'2 8
and thus (2.5.6.7) becomes
(2.5.6.8) < (au+(1-ay),u-y>=7-0
Since
a<(ou+(1-a)y),u-y>=
= llou + (1 - a)y|I'- < (ou + (1-a)y)', y>,
(2.5.6.8) becomes
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ay-af =flleau+ (1-a)yll'-8<(au+ (1-a)y),y>
(2.5.6.9) =ay+ (1 - 0)8 -8 < (au+ (1 - a)y), y>.
Since f # 0, we get from (2.5.6.9)

(2.5.6.10) 1 =< (ou + (1 - a)y)', y>. This implies
(2.5.6.11) (au + (1 - a)y)' = y', because the norm ||-|| is strictly
convex and |ly|' = 1.

Using (2.5.6.11) in (2.5.6.8), we get
(2.5.6.12) B <y'su> = v which, together with (2.5.6.6), implies that
u = 0 which is a contradiction.
Case 2. Assume that
oy = 1, for all k'.
From Step 8 of the algorithm we get
(2.5.6.13) v <uy> 2 B |ull'.
As in Case 1, we still have
Bllow + (1 - ayll' =0ar + (1 - a)p,
which for our case becomes
(256.14) Bl = ~
In particular, this implies that 7 > 0. (2.5.6.13) and (2.5.6.14) imply that

<u,y> > 1, since v > 0.

But
<uly> < Ju'll Iyl = 1.
So,
<u',y> =1 which implies that u' = y' because |ly||' =1 and
the norm ||-|| is strictly convex. Now (2.5.6.6) becomes
vy = ||u||g + B <uu'>
(2.5.6.15) = llull3 + B Jlull".

(2.5.6.15) and (2.5.6.14) imply that u = 0 which is a contradiction.
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It is clear that by taking further subsequences we can assume that either
Case 1 or Case 2 is true for (ay,) and thus we always have a
contradiction. So, u has to be zero and thus lim uy = 0.

Now let x;, » x. By considering further subsequences we can assume

that Y ;'
Taking limits in the relation
b U U X
= X = By
we get
x = (min{<y,x>|Ax = b, x 2 0}) y".

Then ||x|| = # = min{<y,x>|Ax = b, x > 0}. We also have
;eF, ";’"' =1 and Ax = b, x > 0, since the corresponding relations for
the indices k' hold. Now the weak duality principle 2.3.5(i) implies that
x solves (PO)’ ;' solves its dual and that [ is the common value of the
two problems. Since the solution of (P,) is unique, the sequence (%)
converges to the solution of (Py). Also p, the limit of the sequence (B,
i8 the value of (Pj). Now, since
lim B, = lim (min{<y),x>|Ax = b, x 2 0}) = value of the dual of (Pg),
we have that any cluster point of (yk) is a solution of the dual of (PO)’
by continuity of the function min{<-,x>|Ax = b, x > 0} over F.
Now assume b = 0; then x = 0 and
py = min {<gyx>|Ax =0, x 2 0} = 0 since gyeF.
Thus Xp = 0, g = &
Repeating, we get that
gk=go,Vk and xk=0,Vk.
So, indeed

xk-»x=0
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and g ~ & which solves problem
(Pé) max {min{<yx>|Ax = 0, x 2 0}| |ly|l' = 1}
because

min {<y,x>|Ax =0, x > 0} = -, V ygF
0,x20} = 0, V yeF.

min {<y,x>|Ax

2.5.7 DEFINITION. Consider Algorithm 2.4.3 with the norm ||:|| on
R" strictly convex and bc{Ax|xeR_':_}. Let geF such that ||g]|' = 1.
Denote the sequence (4, ), k 2 0, generated by Algorithm 2.4.3 initiating
from & = & by (&), k > 0. By Theorem 2.5.6, we see that
(ﬂi), k > 1, is an increasing positive sequence converging to |[x|| for any
geF, Jigll' = 1, where Xx is the solution of the problem
(Pg) Ax = b, x 2 0, ||x|| (min).

Now consider the following algorithm which is an infinite one.

2.5.8 ALGORITHM.
Assume that the norm ||| on R" is strictly convex. Let b +b
such that b e{Ax|xR}}, V k 2 0.
Step 0. Same as in Algorithm 2.4.1.
Step 1. Calculate
A = min{<g,.x>|Ax = b, x 2 0}.
Step 2. Put
Vi = 8 and ﬂk: = Py
Step 3 — 10. Same as in Algorithm 2.4.1.
We will not worry about the existence of o or about the feasibility of
this algorithm because all we need is the following remark.
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2.5.9 REMARK. Assume b # 0. Apply Algorithm 2.4.1 to
(by), k 2 0, initiating from a go¢F, ||g0||' = 1. Let kj be asin Remark
2.5.5. Then it is clear that from the ko—th iteration onwards, Algorithm
2.4.1 is identical to Algorithm 2.5.8 applied to (bk)’ k 2 ko, and initiated

from 8y - In particular this is true for Algorithm 2.4.3 which is identical
0

to the corresponding Algorithm 2.5.8 after the first iteration.

The same is true for Algorithm 2.4.9 from the ky-th iteration onwards.
So, Algorithms 2.4.1 and 2.4.9 can just be viewed as Algorithm 2.5.8 applied
to a sequence (bk)’ k 2 0, and initiating from a & such that Py 2 0,V
k > 0. It is clear that if this happens, i.e. if P 2 0, Vk>O0, then
Algorithm 2.5.8 is feasible because it coincides with 2.4.1 and 2.4.9 which are
feasible.

Note that Algorithms 2.4.1 and 2.4.9 do not necessarily generate

sequences that eventually coincide.

2.5.10 LEMMA. For Algorithm 2.4.1 under the same set of hypotheses
as in Section 2.4, with b # 0 we have that there is an

io > ko, ko as in Lemma 2.5.4(ii), such that, V k > io,

(2.5.10.1) min{<y, ,x>|Ax=bx > 0}=min{<g, ,x>|Ax = bx 2 0} > 0.
iy depends on (bk)’ k 20, and g,

Moreover,

(2.5.10.2) All cluster points of (min{<y,,x>|Ax = b, x 2 0}),

k>0, (min{<gk,x>|Ax = b, x 2 0}), k 2 0, are greater than zero. The
same Lemma is true for Algorithm 2.4.9 for an ij.

Proof. Via (2.5.5.2), it is enough to consider only g 's.
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Suppose there is a subsequence such that

lim (min{<g, ,x>|Ax = b, x 2 0}) < 0. By taking a further subsequence,
J
we can assume lim g = g. Then,
J
0 > min{<gx>|Ax = b, x 2 0} = lim p,  contrary to Lemma
J

(2.5.4)(i). The rest follows easily.



CHAPTER 3

3.1 INTRODUCTION
We keep the notation introduced in Chapters 1 and 2.
In this chapter we consider Algorithm 2.4.1 with bk-+b,

go¢F, ||g0|l' = 1, and we prove that it converges to the solution x of the

problem
(Py)  Ax=Db,x20, [l (min).
For this we assume smoothness of the norm ||-]] on R® in addition to the

already assumed strict convexity. As an immediate application of this, an
algorithm for nonnegative least error minimal norm solutions is given.

Some numerical results follow.

3.2 CONTINUITY OF THE ﬂl FUNCTIONS
In this section certain functions are defined and then their continuity

proved.

3.2.1 DEFINITIONS. Let B be a closed ball in R™ not containing 0
such that it contains at least one point of {AxlxcR_':_}. B will be considered
fixed. Let ||-|| be a strictly convex and smooth norm on R™ and let
Ty = {(g:b)e(Fn{zek"||z||' = 1}) x ({Ax|xeR}} n B) such that f,(g,b) 2 0},
where f,(g,b): = min{<g,x>|Ax = b, x 2 0}. In Section 2.5.1 we saw that
fl is continuous on the set where it is finite. It is easily seen that
T, is a compact subset of R” x R™. Theset {Ax|xeR",x >0} is closed
because it is a finitely generated convex cone.

Given (g,b) €T, let us perform one iteration of Algorithm 2.4.1 for

k = 0, replacing & by g and b0 by b. This is the same as doing Algorithm

53
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2.5.8 because f,(g,b) 2 0. Then the algorithm will evaluate the following:

Py Yor ﬂo, ag Xgr Ugr Tpr Og» 81 These can be viewed as the values of

corresponding functions at (g,b). Let us denote these functions by

(3:2.1.1) A+ Tg++)s B+ )s Bg(1)s Xg(++)s (1),
70(++)s @g(+1+)s 81(+,) respectively.

Their domain is T,. Note that ag(-,+) is a function because the a; of

Step 9 i8 unique, by the smoothness and strict convexity of the norm ||-||.

So g;(-,*) is a function, too. Also for (8,b)€T and uy(g,b) # 0 define
070(g,b)+ ( 1—(1') ﬂo(g’b)

I auo(g,b ) +( l—a)yo(g,b)ll'
which is defined because, as we know, uo(g,b) and yo(g,b) are linearly

©g(8:b):[0,1] » R such that for ae[0,1], p,(g,b)(a) =

independent.

3.2.2 THEOREM. Assume that ||| is a strictly convex and smooth norm
on R". Then the function gl(- ,*) is continuous over Ty
Proof Let (gk,bk)cTo, Vk
and
(8y+by) - (8,b). Then, of course, (g,b)eT,,.
Note that we have
po(+») =1;(+,*), over T,
By(+») =1,(+,+), over T,
and
Yo(&:b) = 8, V(g,b)eT,
So, py(+5°)s By(+s+)s yo(+»+) are all clearly continuous over T,
Also,
a(+++) = By(++) (g(+»))"

80 ay(+,*) is continuous over Ty
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For (g,b) €Ty, we have
xo(8:b) = f3(a;(g,b),b)

and thus x(-,+) is continuous over T,. uy(:,*) is also continuous over T,
since ug(+,*) = xg(+,+) —ay(+,*). Thesame is true for 7y(-,-), since
70('7') = <ll0(°,’), xo(")>‘

Case 1. Suppose uo(g,b) # 0. Then for all large enough k we have
u,(gy+by) # 0 by the continuity of uo(-,-).

Subcase 1. Suppose (ay(g),by)) were determined using Step 9 for infinitely
many k's in an index set I. Extract a further subsequence kch such that

ao(gkj,bkj) - a, 0 S a S 1.
By taking limits in the relation of Step 9 and using continuity of

70(°,‘), /30(‘,'), uo(-,-), yo(-,-) over TO’ and the fact that
ud(g,b) and yo(g,b) are linearly independent as uo(g,b) is

non—zero, we have
(a1y(g,b)+(1—a)B(g,b)) <(auy(g,b)+(1 — a)yy(8,b))',uy(g,b) — yo(8:b)> =

(3:2.2.1) = "‘mo(gab) +(1- a’)Yo(gab)"' (70(g,b) - ﬂo(gvb))-
But (3.2.2.1) says that
(vp(8:b))' (@) =0.
We know that ao(gk,bk) was chosen to be the global maximizer of wo(gk,bk)
on [0,1] and thus
(‘po(gk’bk))(ao(gk’bk)) 2 (¢0(gkabk))(0) = ﬂo(gk’bk) 2 0.
So, aO(gk’bk) 70(gk’bk) +(1- aO(gk’bk))ﬂO(gk’bk) 2 0.
Allowing j- o in the subsequence (kj) we get
a70(g’b) + (1 - a)ﬂo(g,b) 2 0’
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ie. ¥p(g:b)(a) 2 0.

Let us assume

(3.2.2.2) vp(8:b)(a) = 0.
Then by (3.2.2.1),

(3.2.2.3) 70(&b) = By(&:b).

By (3.2.2.2) and (3.2.2.3),
70(8:0) = By(g,b) = 0.

But f,(g,b) =0 implies a,(g,b) = 0.
Since 79(8:b) = lug(g.bl3 + <ug(g.b), ag(8.b)>,
uo(g,b) = 0 which is a contradiction.
So, ¢y(8:b)(a) > 0. Since also (qpo(g,b))'(a) = 0, then, by Lemma 1.5.3,
a is the global maximizer of ¢;(g,b) on [0,1]. Suchan « is unique because
the norm ||-|| is smooth and strictly convex. But we know that ao(g,b) is the
global maximizer, since uo(g,b) #0. So, a= ao(g,b). It follows that
12 I;l ay(gby) = a= ag(g,b) as the only cluster point.

Subcase 2. Suppose (ao(gk,bk)) were determined using Step 8 for

infinitely many k's in an index set J, so that ao(gk,bk) =1 for these
k's. Taking limits in the Criterion of Step 8 and by the continuity of

70("')’ ﬂo("')a uo('v')a yO("’), we get

(3.2.2.4) 70(8:0) <(uy(8:b))', y4(8,0)> 2 By(&:b) llug(g:b)ll'-
(3.2.2.4) means that
(3.2.2.5) (vy(g:b))'(1) 2 0.

By Step 6, 70(gk’bk) > 0 and thus 70(g,b) 20. If 7,(g,b) =0, then by
(3.2.2.4),0> By(g:,b). But By(gb) =1;(g,b) 2 0 because (g,b)eT,,.

So, ﬂo(g,b) = 0. Asin Subcase 1, we get a contradiction from

70(g,b) =0= ﬂo(g,b). So, 70(g,b) > 0 which means that
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(3.2.2.6) wy(8:b)(1) > 0.

(3.2.2.6) and (3.2.2.5) imply that 1 is the global maximizer of ¥o(8:b)
on [0,1] and thus a,(g,b) =1, since ug(g,b) # 0. So,

lim a,(g,,b,) = lim 1 =1 = a,(g,b).

ked O KK Tgeg 0

Subcases 1 and 2 together imply that

lim ay(g;.,by ) = ay(g,b), 8 k-
and thus from Step 10

lim g, (g}.,b) ) = g,(8:b), 88k -+ e,
since uo(g,b) and yo(g,b) are linearly independent. Also
uo(gk,bk), yo(gk,bk) are linearly independent eventually for all k.

Case 2. Suppose uo(g,b) = 0. Then, g,(g,b) = yo(g,b) and
Xo(8:b) = ag(g,b) = By (g,b)(y4(8:b))'
= (min{<y(g,b),x> |Ax = b, x 2 0}) (y4(8,b))".

Also, f;(g,b) =f,(g,b) 2 0 because (g,b)eT,,.
Also, Ax(g,b)=b and x,(g,b) 2 0.
Suppose fi(g,b) = 0; then x(g,b) = a (g,b) =0. But x,(g,b) is
the solution of the problem min{||x||,|Ax =b, x 2 0} since
ay(g,b) = 0. This implies that b = 0, a contradiction to (g,b)cTo.
S0, fy(g:b) > 0. Since xg(g:b)ll = Ay(8,b) = min{<yy(g;b).x>|Ax = b, x 2 0},
llyo(g,b)ll' = 1, then due to the weak duality principle 2.3.5,
¥o(8:b) solves the problem

(Py) | rlllle'xx (min{<y,x>|Ax = b, x > 0}).
yi'=1
Now let a subsequence (kj) be chosen such that

gl(gk.abk) - gv EfF’ "E"' =L
J )
As we know from (2.4.4.5),
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min{<g, (g ,b) )x>|Ax =b, ,x 20} 2
J ) J
2 min{<y0(gk.,bk.),x>le = bk-’ X 2 0} =
J J
= ﬂo(gkj’bkj) > 0 because (gkj,bkj)cTo.
By taking the limit as j - o, we get
(3.2.2.7) min{<g,x>|Ax = b, x > 0} >
2 min{<y0(g,b),x>|Ax =b,x20} = ﬂo(gvb) 2 0.
(3.2.2.7) can be true only if equality holds and g solves (P(')). Then we
have
xo(gab) = ﬂo(gab) (yO(g,b))'
(3.2.2.8) = ﬂo(g,b) g' as in Theorem 2.3.6.
Since the norm ||-|| is smooth and f;(g,b) # 0, (3.2.2.8) implies
-g- = yo(gvb) SO, lim gl(gkbk) = YO(g,b) = gl(g7b), as k- .

This completes the proof that g,(-,-) is continuous over T,

3.2.3 DEFINITIONS. Let the norm ||-]] on R™ be strictly convex
and smooth. We defined earlier the compact set TO and the functions
g,(,+): Ty~ F 1 {z®||lz]|' = 1)
and
Bo(+1+): Ty = [0, +w).
We have verified earlier that these functions are continuous on Ty Let
{ be an integer, > 1. Suppose we have defined a compact set T -1

subset of R™ x (’™)¢ and a function
8A"s - -0): Ty g 2 F0{zk"||l2]' = 1}
T

which is continuous over T, ,.

Then define the set
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T,={(g.a}5-3pb)|(8)3)5---13p) € Ty ; and b c{AxlxeR_?_} nB
such that fl(g‘(g,al,...,at),b) > 0}.
T, is a subset of Rnx(Rm)‘“.
T, is compact, i.e. closed and bounded, fl(gt(g,al,...,at),b) being
continuous as a function of (g,al,...,al,b) over the set
{(g,a),-2pb) | (8,2,-8)) €Ty, be{AxlxcR_l:_} }.
Noting that for (g,a;,...,apb)eT (gt(g,al,...,at),b)eTo,
we can make the following definitions:

Define the functions

‘Bl(.’ Cet )t Tt-' [0,4+x),
B2
BA8:a s-apb) = B(8A8:31:--18)):b)

=1,(g/8,3),--13)),b)
and
Bepq (e oo ): Ty F 0 2R Jl2]|' = 1}.
2
80y 1(83y5mr8pb) = 8,(8/8:3,>--13)):b),
for (ga,,..,.apb)eT
Clearly, g, +1(-,...,-) is continuous over T, because of the
continuity of g,(-,-) and gl(-,...,-) over Ty and T, ;
respectively. Similarly, ﬂt("""') is continuous over T,

So now we have defined compact sets T | and continuous

functions ﬂl’ i1 for all {=0,1,2,....

3.2.4. Apply Algorithm 2.4.1 to the sequence (b ), k 2 0,
by € {Axlxclli} nB, Vk 2 0, by - b, starting with g¢F, Ilgoll' =1,
and let k0 be as in Lemma 2.5.4, Py >0, Vk> ko. Then,
szko and V>0 we have
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(3.2.4.1) (gk, bk, bk+1,..., bk+[) € Te,
because p; > 0 Vi=k,...k+6

and moreover

(3.2.4.2) ﬂ[gk’ bk. bk"‘l’.”, bk+l) = ﬂk""l’
(3.24.3) gl+1(5k’ by bk+l""’ bk+t) = Ek+Lt1
(8,)» k20,(B,), k20, (p), k20 are the sequences
generated by the Algorithm.

Tl’ ﬂl',...,'), g(+1 (',...,') were deﬁned in 3.2.3.

3.3 CONVERGENCE OF ALTHORITHM 24.1.
In this section we consider Algorithm 2.4.1 for a given sequence
by € {Ax|xeR}}, Vk > 0, with, lim b, =b. Suppose the algorithm starts from
a given gcF, ||g0||' = 1. We keep the assumption that the norm ||:|| on
R" is strictly convex and smooth.
We prove that the algorithm converges to the solution x of the problem
Ax = b, x 2 0, ||x|| (min).
From this and Remark 2.5.9, it is clear that Algorithm 2.4.9, applied to

(Pp)

(b ), k20, and g, also converges to x.

3.3.1 THEOREM. Let ||-]| be a strictly convex and smooth norm on R™.
Let bdtm, b # 0 and assume that Ax = b, x > 0 is feasible. Let
by € {Axlxdt:}, Vk 20, such that lim by, =b. Let gyeF, [lggll' = 1.
Then, the sequence (x,), k > 0, generated by Algorithm 2.4.1 converges to
the solution X of the problem
(Pg) Ax=Db,x20, |[x]| (min).
Proof Let 0 <M < [{b]l, and B = {xek™||x —bl|, < M}.
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Let io as in Lemma 2.5.10 and let kl such that bkcB, Vk > kl.
Let k2 = ma.x{io, kl}' It suffices to prove that Algorithm 2.4.1 applied
to the data g,  and (bk)’ k 2 k,, converges. So, it constitutes
2

no loss of generality in assuming that

beeB, g >0, p = By, yy = &, min{<y, x>|Ax =D, x 2 0} >0,Vk 2 0.

In accordance to this, the ko of 3.2.4 will be taken to be zero. Clearly,
V6> 0,3i(6) dependingon § such that

(3.3.1.1) lIb, —blly < &, Vk 2 i(8).

For each k > 0, we consider Algorithm 2.4.3 for b starting from g, .

Since min {<g;,x>|Ax =b, x 2 0} > 0, we have that
g -
(3.3.1.2) (,Bik), i > 0, is a positive sequence increasing to ||x||.

g
(See 2.5.7 for the meaning of (ﬂik)).
Also, V(> 0,Vk >0,

(g:b ..e,b) €T,
T+T1 times
From 3.2.4, we also have that V{2 0, Vk > 0,

(B Bjor Py 1P ) €T
Let W = (¥, Cgy CpreensCpeT p yeR, ¢;R™, Vi, 0 i < L.
Then define

1y, o el = Iy +iéo"°i"2'
It is easy to verify that |||-||| is a norm on R™ x (Rm)“’l.
Note that T, C K" x @)1
Now let £> 0 be a given integer and let ¢ > 0 be given.
By (*.y*) i8 uniformly continuous over the compact T, and thus
3 n(¢,f) > 0 dependingon ¢ and ¢, such that

Vw,, wyeT, [lw; = woll| < n(e,) we have that
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(3.3.1.3) |Bfw,) — ﬂt(w2)| < ¢/2.
In (3.3.1.1) pick 6 = n{¢,0)/({+1). Then 3 i(6) = i(¢,!) i.e. depending
on ¢ and ¢{ such that
Vk > i(¢,f) we have that
||bk - b||2 < 17(¢,f)/(¢+1) and also
Iby 4 ; —blly < me.H/(E+1),
by 4= blly < Me,0/(¢+1).

Summing up, we get that

I”(gk’ bka bk+19--~1bk+() - (gkab ) --wb) "I < ﬂ(f,l)
I+1 times

and thus, by (3.3.1.3), we have that

Iﬂl(gk’bk’.’bk-i't) - ﬂl(gk’b ’ “'1b )I < 6/2
7+T times
This last relation, via (3.2.4.2) and Definition 2.5.7, is the same as

Bsg= 0711 < <l2.
Summarizing, we have that
VY {20, interger, Ve > 0,
Ji(¢,f) depending on ¢ and ¢ such that

(3.3.1.4) By~ ﬂ§k| < €/2, Yk > i(e,0).
Now define
Ky: = {g¢F such that |jg]|' =1 and f,(g,b) 2 0}.
Kb is compact as closed and bounded, since fl( +,b) is continuous over F.
Note that from 3.2.4 and Algorithm 2.4.3 we have that if geK,, then

(8b,...,b)eT, VE20.
{+1 times
Also note that, in our case, gchb, Vk > 0, since

min{<g, ,x>|Ax = b, x > 0} =f, (g ,b) > 0.
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Now let ¢ >0 and geKy both be given.
In view of 2.5.7,
3k (¢,g) dependingon ¢ and g, such that
(3.3.1.5) "X" - &("g) < (/4.
By uniform continuity of 'Bk( c,g)( yeesy®) OVET Tk( og) e have that
3 n(e,k(e,g)) = n(¢,g) > 0 dependingon ¢ and g, such that
Vw,, w2ch(€,g), |lw; = woll| < m(€,g) we have that
(3.3.1.6) lﬂk(f,g)(wl) - ﬂk(f’g)(w2)| < 6/4.
Now let
yeKp, lly —gll < n(e.8).
Then,
[l(y,b,...,b) = (g,b,..., b) ||| < n{e.):
k(e,g)+1 k(e,g)+1 times

By (3.3.1.6),
|ﬂk(€’g)(g,b,...,b) - ﬂk(‘,g)(y,b,...,b)l < ¢/4
which is the same as
(3.3.1.7) | /%( g~ ﬂK( eg)l <€/t
(3.3.1.7) is true VyeKy n B(e,g) where
B(e,g): = {xeR"| ||x — g]| < 7(e,g)} is an open ball in the ||-|| norm
with center g and radius 7(¢,g). The notation B(e,g) denotes that it
depends on ¢ and g.
From (3.3.1.5) and (3.3.1.7) we get that
Ve>0, V chb,
3 aninteger k(¢,g) and a neighborhood of g,B(e¢,g) such that
(3.3.1.8) x|l = ﬂ{ < ¢/2, Vk2k(eg), YV yeK, N B(e,g).
By summing (3.3.1.5) and (3.3.1.7) we get (3.3.1.8) for k = k(¢,8);
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after this the result is clear because for each y,
(ﬂi), k > 0, increases to ||x||.
Let ¢ > 0. Since K, is compact, 3 lo and gl"“’glo‘Kb such that
)
(3.3.1.9) Ky =ii | (Ky, N B(e.g;))-
Writing (3.3.1.8) for each &;» i= 1,...,10, we get
(3.3.1.10) x|l = ﬁ{ <e€f2, Vk2 k(c,gi), Vye Ky n B(e.g;)-
Let k(e) = max{k(e,g;)|i = 1,...,[0}; k(¢) dependson e.
Combining (3.3.1.9) and (3.3.1.10) we get that
Ve> 0,3 aninteger k(¢) dependingon e, such that
I1x|| = ﬂi < €f2, Vk2k(e), V yeKy.
In particular,
(3.3.1.11) x|l - ﬁf“ < ¢/2, Vi2k(e), Yk 0.
Now let ¢ > 0 be given. By choosing ¢ = k(¢) in (3.3.1.4), we get that
Ji(e,k(€)) = i(¢), i.e. depending on ¢, such that

g :
(3.3.1.12) Besk() ﬂkl(‘c)l < ¢/2, Yk i(e).
From (3.3.1.11) we get
- 8
(3.3.1.13) Xl - ﬂkl(‘c) <€/2, Vk20.
Adding (3.3.1.12) and (3.3.1.13), we conclude that
Y € > 0, 3 non—negative integers k(¢) and i(e¢) such that
| IR = By ()] < & VE2i(6).
Letting j(€): = i(¢) + k(¢), the last statement is the same as
Ye>0, 3j(e) such that
| IRl - 5] < & V2 (0)
i.e.

(3.3.1.14) lim §, = IIx]l.



65

Now assume lim a, =a. By taking further subsequences we can

J
assume that lim Y. = -
J
Then,
lim ﬂk = min{<x,§'>| Ax = b, x > 0}
J
(3.3.1.15) = |Ix|| by (3.3.1.14).

Via the "Only if" part of Theorem 2.3.6 and since b # 0, (3.3.1.15)

implies
(3.3.1.16) x =[xl y.
So,
lim &, =1lim 8y, =[xy’ =%
J J )
and thus
(3.3.1.17) lim a, = X.

From (3.3.1.17) and the continuity of the function f3 defined in 2.5.2, we get
f3(§,b) is the solution of the problem
Ax=Db,x20, |x - )_(ll2 (min).
But the solution is clearly x, since Ax=b,x > 0.
So, lim Xy = X.

Now assume limy, = y By (3.3.1.15) and the weak duality principle
J

2.3.5(i), we have that y is a solution of the problem

(P)  max {min{<yx>|Ax=b,x0}] [lyll' = 1).

By (3.3.1.16) and since the norm ||-|| is smooth, we get that any two
cluster points of (yk) are equal since they both satisfy (3.3.1.16).
Also, any solution of (Pg) satisfies (3.3.1.16) and thus it is unique.

Consequently, (y,) converges to the unique solution of (P6) which is
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dual to (PO) as defined in 2.3.3.

The proof of the theorem is now complete.

3.3.2 THEOREM. Let ||-]| be a strictly convex norm on R". Let
b, e{Ax|xeR_I:_}, Vk20,andlimby, =0. Then the sequence (x,) generated
by Algorithm 2.4.1 converges to zero, which is the solution of the problem
Ax=0,x20, ||x|| (min).
Proof. Let us take a subsequence ,Bkj -+ (. Then £>0.

By taking further subsequences we can assume Y. Y-
J

Then,
B, . = min{<y, ,x>|Ax =b, ,x2 0}
] J ]
implies
f = min {<)-',x> | Ax =0,x >0} <0 by taking x = 0.
So finally, # =0 and thus lim ﬂk =0.
Then lim a = lim ,Bkyl'( = 0.
Consequently,
lim x; = lim f3(a'k’bk) = 13(0,0).
But f3(0,0) is the solution of
Ax=0,x20, [l (min)
which is, of course, 0.

So lim X, = 0.

3.3.3. Theorem 3.3.2 says that Theorem 3.3.1 is still true if we remove
the assumption b non—zero.
Theorems 3.3.1, 3.3.2 are also true for Algorithm 2.4.9 due to Remark 2.5.9.

Note that in these two theorems we also have lim u = 0.



67

3.4 AN ALGORITHM FOR NON-NEGATIVE LEAST ERROR
MINIMAL NORM SOLUTIONS

3.4.1. Let |- ||0 be a strictly convex norm on R™ and ||:|| bea
strictly convex and smooth norm on R". Suppose that the system Ax =b,x2 0
has no exact solution. We are interested in estimating the solution x of
the following problem
(R) Ax=Ax,x20, |ix| (min),
where x is a solution of
(S) x20, ||b— Ax]|, (min).
In other words, x is the minimum norm solution of (S).
One way to do this is the following:
First we use Algorithm 4.1 in Sreedharan [6] to get an estimate of Ax and
then apply Algorithm 1.4.1 to problem (R). This does not require smoothness
of ||-]l. Algorithm 4.1 in [6], if we remove its stopping criterion, is
generating a sequence (A;ck), k > 0, converging to Ax. Applying Algorithm
2.4.1 to this sequence, we get a sequence (x,), k 2 0, converging to X via
Theorems 3.3.1, 3.3.2. An algorithm which implements this idea is given
below and it can be used for estimating x. The norm ||-|| is also required
to be smooth. The algorithm calculates A;ck and if the duality gap for
problem (S) is small enough, then it calculates X After this, A;ck +1

is calculated and so on.

3.4.2 ALGORITHM.
7>0,0<e<e¢ and ¢ >0 aregiven. ||-||0 and |- |[-dual vectors

will not be distinguished notationally.
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Step 0. Let ;(0 be a solution of the problem
x20,|b- Ax||2 (min).
Let rg:=b-— Ax0 and y0 = 0/||r0||0
A more general choice of Yo requires that A < 0 and <b,y0> >0,
|Iy0||0 =1. Let {=0,k=0.
Step 1. Let gyeF, ||g0||' =1. Put k=0.
Step 2. Let by: =b—<by, >y
and ;‘k be a solution of the problem
x>0, ||bk - Ax||2 (min).
Let r: =b, —Ax,.
Step 3. If Dy:=1—(<b,y,>/ ||b— Axkllo) <
put {=1 and GO TO STEP 8, else, proceed.
If Dk < € GO TO STEP 8, else, put B+1' = 8k
increment k by 1 and proceed.
Step 4. If <b rk> <0, then
"‘k = <b’yk> / <b,yk n>
and GO TO STEP 6, else, ak: =1 and proceed.
Step 5. If <b,rk> <'l'(’;'k> > <b,;'k> ||rk||('),
set oy : = 1 and GO TO STEP 17, else, proceed.
Step 6. Find ay,0< o) < Ek such that
<b,a 1) +(1-a) yk> <(akrk +(1- ak)yk) Ty —yk>
= llayry + (1 - ark)ykll0 <br -y >
Step 7. Let
;k+1 _ aqr+ (1- ak);'k_ .
lagry + (1 = o)y llg
Increment k by 1 and RETURN TO STEP 2.
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Step 8. If
- m -
"Axk"f = iill (Axk),'l > €

GO TO STEP 9, else, proceed.
If {=1,STOP; x;: =0 solves (R). Else, proceed.

Put Xp: = 0, Bl = 8 increment k by 1 and GO TO STEP 4.
Step 9. Calculate p: = min{<g,,x>| Ax = A;‘k’ x 2 0}.

If Py 2 0,

ﬂk: = P Vit = By and GO TO STEP 11, else, proceed.

Step 10. Let, 2

be the solution of the problem

Ax = Ax, x 2 0, ||x]l, (min).

5 gl

b K gl
Step 11. Let a: = ﬂkyl'(

Let x) be the solution of

Let y, : =

Ax = Ax,x20, ||Ix — ak||2 (min).
Let Ul = Xy~ 8y
lIxll = B
Step 12. If ———— > 5, GO TO STEP 13, else, proceed.

™
If £=1,x, is taken as the solution of (R) and STOP. Else, proceed.

Put Bk+1' = Yo increment k by 1 and GO TO STEP 4.

Step 13. Let N = <UpoXp>

Step 14. If y <0, let Ek: = ﬂkl(ﬁk—'yk) and GO TO STEP 16,
else, Ek: =1 and proceed.

Step 15. If 7 <up,y> 2 ﬂkllukll', set ay: =1 and GO TO STEP 17, else,
proceed.
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Step 16. Find ay€(0,a)) such that
(qn + (1 —)B) <(oqu, + (1 -0y )yy)', v —y>
= llaguy, + Q1= )y lI' (4 —By)-
Step 17. Let
k1 logu, + (1 = o)yl ) )
If {=0, RETURN TO STEP 4, else, proceed. Axk +1°= Axk and RETURN
TO STEP 9.

and increment k by 1.

This combined algorithm essentially amounts to:
1st) An application of algorithm 4.1 of [6] to problem (S), from which we
get a finite sequence {A;O, A;(l,...,A;ck } with A;(k regarded as A;{, and
0 0

2nd) An application of Algorithm 2.4.1 to some finite sequence
{ijl, ij2,...,ijl, Axko, Axko,...,AxkO}

with 0 ¢ j1 <y <'--<J'15 k0 -1.

It is not apparent which of the two alternative methods, suggested in
this thesis for solving problem (R), is better.

If a "good" & for doing Step 1 is not at hand, we do the following:

1st) change Step 1 as follows:

Step 1. Put & = 0,k=0.

2nd) change Step 9 as follows:

Step 9. If & = 0, GO TO STEP 10, else, proceed.

Calculate p: = min{<gk,x> | Ax = A;(k, x > 0} and the rest of Step 9
is as before.

Instead of this, if A;co satisfies the Criterion of Step 8, we can

replace Step 1 with
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Step 1. Put k=0
and Step 9 with
Step 9. If k =0, GO TO STEP 10, else, proceed.
Calculate p: = min{<gk,x> |Ax = A;ck, x > 0} and the rest of Step 9is

as before.

3.5 NUMERICAL RESULTS
Algorithm 3.4.2 was coded in FORTRAN 77 in double precision for a SUN
computer. The norm ||- ||O was taken to be the ||- "p norm for various
values of p, i.e.
Ielly = (5.2, 1%, 1P,
for x = (xl,...,xn)cltn and 1 < p < w. The dual norm of ||-||p is the
Il q horm for q=p/(p—1). The |- ||p—dual of x # 0 has components
xt = (I%;]/llxll )" sgnx,
for i =1,...,n. (See also [8]).
The other norm ||-|| was taken to be either equal to |||, or dual to it.
As in [6], the problems were done starting from p = 2 and then eventually
increasing or decreasing p. For each new value of p, the ;'0 and &
of Steps 0 and 1 were taken to be the properly scaled terminal values of
;'k and 8 of the problem for the previous p. The ¢ and € of

Step 8 were taken to be 10 and 1073

respectively. The 5 of Step 12 was
1075, The o 's of Steps 6, 16 were calculated using subalgorithms 4.5 and
4.6 of [6] with tolerance 5 = 1079, Steps 2 and 11 were executed using the
NNLS and LDP programs of [2] respectively. The linear programs were done
using the simplex algorithm.
In all the tested examples the algorithm was indeed capable of approximating

the solutions, although convergence was at times very slow. On the same
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examples, the sequential alternative proposed in 3.4.1 was never found to
be inferior to Algorithm 3.4.2 in rapidity of convergence. In some cases,
Algorithm 3.4.2 did much worse than the sequential alternative.

Below we tabulate the results of Algorithm 3.4.5 applied to the

following data:

1 0 0.1 09 2
0 1 0.1 09 2
A= 1 1 02 1.8 and b= 2
1 -1 0 0 1
-1 1 0 0 1
2 0 02 1.8 3

Note that A isnot 1 —1 nor onto, as its rank is 2. The system Ax =b
is seen to be inconsistent. The NNLS solution of Ax = b which was calculated
using the NNLS program of [2], is
(0.0645186, 0., 0., 1.505376)
and the least ||-||2 NNLS solution is
(0.557673, 0.493157, 0.105083, 0.945747).
In this example no A;(k was zero and no Py Was less than zero. That
also was the case with most of the other examples that were tested.
In the table that follows, x = (xl’ Xg) X3, X 4) denotes the terminal
value of Xy for each p. Also,
5, = Ib — Axlly,
sy = Iixl,
kl and k2 denote the number of times that Steps 6 and 16 were executed
respectively.
k3 is the number of times that Step 16 was executed after ¢ was set

equal to 1, and
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ky: =k'—1, where k' is the number of times that the duality gap of
Step 12was < 1.
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(xl 1x27x3ax4)
(.640144, .640047, .463928, .719947)

(.637454, .636924, 445596, .726099)
(.634068, .632974, 423662, .733806)
(.632562, .631062, .413666, .73751
(.630434, .627651, .397171, .744081)
(.624941, .62045, .364158, .757479)
(.62249, .616665, .348717, .764323)
(.618263, .609619, .32252, .776705)
(.608964, .592084, 268588, .805761)
(.592872, .560547, .197272, .853557)

(.5447, 470442, .084868, .975027)
(.504821, .407001, .045666, 1.053866)
(.427267, .303775, .014517, 1.175417)
(.360989, .228195, .005188, 1.260717)
(.269809, .132402, .000901, 1.36654)
(.170894, .031528, .000035, 1.476788)
(.144062, .003817, 0., 1.506606)
(.141133, .000018, 0., 1.509853)
(.141225, .000023, 0., 1.509753)

Case 1. [llg = N-lly -1l = -1
Pk k ky k8 8
6 14 14 0 0 1.145958  .812068
55 12 11 0 1 1.165781 .826833
5 6 6 0 0 1.191253  .844885
4.8 6 6 0 0 1.203523  .853339
4.5 7 6 0 1 1.224784  .867860
4 4 3 0 1 1.270246  .897045
3.8 4 4 0 0 1.293109  .911349
3.5 4 4 0 0 1.334227  .936461
3 3 3 0 0 1.428797  .991904
2.5 2 2 0 0 1.578439  1.07432
1.9 I 1 0 0 1.91694 1.244917
1.7 1 1 0 0 2.109877  1.332154
1.5 3 2 0 1 2.381531 1.437116
1.4 4 3 0 1 2.562909  1.491591
1.3 5 4 1 2 2.789927  1.541485
1.2 8 3 0 4 3.08179 1.580765
1.15 8 6371 6363 0 3.260797  1.595663
1.1 10 1433 1424 0  3.468509 1.610757
1.095 7 6 0 1 3.491111  1.612414
1.09 7 6 0 1 3.514074  1.614101

TABLE 1

(.141309, .000017, 0., 1.509661)

ST
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(X l ,X2,X3,X4)
(.074163, .074066, .000023, 1.400359)
(-0979, .097371, .000069, 1.375106)

(.128449, .127354,

(.142974, .141475,

Case 2. |Illg = Il Il = Il
Pk ky kg Kk, 8 8
6 * 12 0 2 * 1.468659
5.5 9 0 3 1.463255
) 5 0 1 1.455210
4.8 5 0 1 1.451075
4.5 5 0 2 1.443894 (.167815,
4 3 0 1 1.426226 (.216799,
3.8 3 0 1 1.417131 (.239757,
3.5 3 0 1 1.400453 (.278088,
3 3 0 0 1.361760 (.353518,
2.5 2 0 0 1.301961 (.445046,
1.9 1 0 0 1.183322 (.583329,
1.7 1 0 0 1.124865 (.637786,
1.5 3 1 1 1.049213 (.692718,
1.4 3 0 1 1.001097 (.716131,
1.3 4 0 1 .944481 (.734526,
1.2 4 0 3 .880758 (.748566,
1.15 4 0 4 .847235 (.753729, .
1.1 4 0 5 .756889 (.756889, .
1.095 3 0 4 .810186 (.757026, .
1.09 3 0 4 .806876 (.757068, .

* Identical to the corresponding column for Case 1.

TABLE 2

.509071,

165032,
212307,
233932,
269444,
336639,
412721,

539965,
569226,
583337,
597119,
609199,

613484,
615774, .
615824, .
615776, .

.000204, 1.342657)
000313, 1.327424)
.000595, 1.302166)
.001716, 1.251242)
.002614, 1.228037)
.004896, 1.189969)
.013801, 1.1179)

.038351, 1.035466)

.128348, .927275)
191158, .889962)
283527, .850581)
34399, .82847)
415901, .804077)
502064, .77915)
55213, .76785)

608495, .758069)
61457, .757244)
620744, .756514)
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