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ABSTRACT
A SYSTEMATIC MEANS FOR ACTIVE FILTER SYNTHESIS
By

Kenneth Vincent Noren

A systematic method of designing new active filters with op-amps is presented.
Active filter synthesis with operational amplifiers is an area of knowledge which has never
been fully completed. Many designs have been presented, but there is no way to generate
circuits with a set of design rules. Few new designs are being published today. The purpose
of this thesis is to present a systematic way of generating active filters which can then be
constructed fdr practical use. It uses a combination of computer programs which have been
developed over the last decade. Enroute to designing two new circuits, it shows where some

of the major problems with active filter design with op-amps can arise.
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CHAPTER 1

Introduction

1.1 Introduction

In the 1960’s, the advancement of solid state technology introduced a compact and
inexpensive version of the operational amplifier to the electronics world. It is difficult to
imagine a device having a bigger impact on how electronics engineers and technicians
would design and build circuits, than this miniaturized op-amp. It has found its way into
almost every area of applications, from simple amplification to switched capacitor circuits.
Another area, which this thesis will focus on, is active filter synthesis.

In the 1970’s, active filter synthesis using op-amps reached a peak, but it had
many unanswered questions. With the explosion of the digital electronics area, these
questions remained unanswered and somewhat forgotten. This thesis attempts to look at

some of those questions and also provide a framework for the design of active filters.

1.2 Current designs

In the first phase of active RC filter design using op-amps, the initial step is to
realize a circuit with a biquadratic characteristic equation with a suitable filter function at
the output of one or more of the op-amps in the circuit. The op-amps used in this stage
are typically modeled as ideal op-amps. These ideal op-amps have the properties of
having an infinite gain-bandwidth product (gbp), zero output impedance and infinite input

impedance, among other characteristics. Modeling an op-amp with these traits is a fairly
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simple task. One way is to impose upon the op-amp the restrictions that the input current
into either node of the op-amp is zero and also the voltage across the input terminals is
zero. These restrictions seem to model an op-amp well, for if one has ever measured
these two values in a circuit containing op-amps, in comparison to other node voltages and
branch currents, these values are minuscule. Many, if not most circuits fall into the above
category. There are very few ways of approaching the design problem at this stage. It
appears to be somewhat of a trial and error session. Some basic one op-amp building
blocks can be found in many active filter circuits, one of these being the integrator.
Another would be the inverting amplifier. These building blocks are then typically
cascaded together with one or more feedback paths interconnecting the different blocks in
order to realize some filter transfer function. It is noticeable that most active filters
containing two or more op-amps have this topological trait about them. This seems to
limit the number of available topologies. It is perhaps just the easiest way to do the
designing in addition to being more pleasing to the eye. Whatever the strategies used in
designing active filters, there presently does not seem to exist any systematic way of

creating the circuits.

1.3 Op-Amp Relocation

One systematic way of performing active filter design has been developed. It is
called Op-Amp Relocation (OAR) [1]. This method of design will be described in more
detail later in Chapter 2. A key thing to note about OAR is that a number of unique
topologies can be generated from a existing design. OAR provides a systematic way to
generate many circuits in the initial design stage. In fact, the number of circuits generated
from a single topology may be greater than the total number of existing circuits in a

particular category.



1.4 Non-Ideal Effects of Op-Amps

The second stage of active filter design takes into account the fact that very few
op-amps in use today have ideal properties. Slight variations in these properties can lead
to big changes in the circuits performance. The biggest culprit is the frequency
dependence of the gain of an op-amp, or more commonly termed having a gbp of less
than infinity. This occurs because of a pole in the gain versus frequency response of the
op-amp. Furthermore, the op-amp may have higher order poles close to the point at
which its gain approaches unity. The problems which can arise ﬁ'om these poles are at
least three.

First, a filter with a characteristic equation having a specific selectivity, Q, and
center frequency, ®, can have these driven far from the values for which they where
designed for. In fact, Q can become so high as to place the poles of the characteristic
equation into the right half plane in the frequency domain. This is typically caused by the
first pole in the op-amp’s transfer function. Additionally this first pole generates extra
terms in the circuits characteristic equation driving it from a biquadratic to an nth order
equation, where n is two plus the number of op-amps. The new poles generated from
these terms may also be in the right half plane.

The second pole in the response of an op-amp also gives rise to an increase in the
number of poles in the circuit. The added poles here tend to be very large. These will
also be termed parasitic poles due to a two pole model for the op-amp, and they tend to
be more subtle than the first two problems. These poles may also be in the right hand
plane, causing instability.

Taking these problems into account makes the job of active RC filter design in
which a realistic model for the op-amps is used much more complicated. A variety of
ways have been introduced, to reduce these effects on the behavior of the circuit, ranging

from sensitivity analysis to active and passive compensation [8-13]. This is yet, for the
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most part, another unanswered question, for it isn’t really clear which may be the best

way.
1.5 Preview

In Chapter 2, a means for the ideal synthesis stage of design will be given.

In Chapter 3, problems in the second stage of design will be outlined, and they are
the non-ideal factors which come into play, both inband errors and a stability problem.

In Chapter 4, a method for classifying and solving the inband problem will be
given.

Chapter 5 deals with a solution to the high frequency stability problem.

Chapter 6 gives a example of both a newly designed notch filter and a bandpass
fiter. Some of the principles in Chapters 4 and 5 are given.

Chapter 7 gives conclusions and new paths for future research.
1.6 Computer Aided Design Tools

The use of computer tools is a must in active filter design. Without them, the
design of several filters could be a tremendously long process. Some of the tools which
have been developed in universities have proven to be greatly beneficial in the research
for this thesis. |

SLAP (2], Symbolic Linear Analysis Program, written by Vikek Joshi, allows one
to look at the transfer function of the design in terms of the symbolic elements it is
composed of.

ZNAP [6], Zenith Noda} Analysis Program written by James Svoboda, Clarkson
University, allows the user to very quickly look at the poles and zeros of a transfer

function in a circuit.
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OAR [3], Op-Amp Relocation also written by James Svoboda, lets the computer
generate the many available circuits from a given topology. Additionally, it does a
stability check and then shows the poles and zeros of a given transfef function.
PSPICE, the pc version of SPICE, Simulated Program with Integrated Circuit
Emphasis, written by A. Vladimirescu, A.R.Newton, and D.O.Pederson from University of
California, Berkley. PSPICE is put out by MicroSim Corporation. The original SPICE

was written by L. Nagel, also from University of California, Berkley.



CHAPTER 2

Ideal Filter Synthesis

2.1 Introduction

The ideal filter synthesis stage begins with designing a structure which will give
the circuit designer one or more suitable filter functions. At this point in time, this is a
very difficult, if not an impossible chore. There appears to be a limit on the number of
possible topologies and it seems we are close to this limit, as there are few worthwhile
new circuits being published. Noticeably, the existing circuits tend to be quite simple in
appearance. They may have been done by combining basic building blocks together or
using a signal flow charts, among other means. Yet as mentioned before, the designs seem
to have been done more by trial and error rather than systematically. One scheme allows
the designer a methodical way of creating different topologies from an existing structure.

The method is Op-Amp Relocation.

2.2 Why Op-Amp Relocation?

Op-Amp Relocation (OAR) allows one to create new structures. The structures are
created using a very simple set of design rules. It elegantly uses a combination of matrix
theory and graph theory to generate its circuits. The generated circuits can look random
and haphazard, but they have a mathematical order about them. Take the circuit in Figure
2.1, for example. It does not seem likely that one just sits down and creates a circuit like

that. Yet OAR does the job beautifully. In fact, from the circuit, one can generate
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another 383 circuits. There are probably less than 10 four op-amp circuits existing as of
today. This represents more than a 3700% increase. As with any new design, some of
these may be good or bad. OAR gives a larger pool of potentially good circuits to

choose from. This fact alone is alone is justification for the use of OAR.

Figure 2.1 active filter with op-amps

2.3 Op-Amp Relocation

To begin to give the reader an ideal of just what the concept of Op-Amp
Relocation is, a start with some basic fundamental concepts is necessary. The first concept
involves the introduction of two fictitious devices. The devices are shown in Figure 2.2
[4].

The nullator is a two terminal device which is characterized by the property of
having zero current through and zero voltage across its terminals, at all times. The
norator is also a two terminal device, but with the property of having any cument through
it for any given voltage across it, or any voltage across it for any given current through it.

In other words, no constraints. With a moments thought, one can probably conclude that
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Figure 2.2 nullator and norator

no other device, not even an open circuit or a short circuit has these properties in their
entirety.

At first, using these devices can be a little unnerving for the practical designer
who needs to work with real devices! However, as time progresses, one becomes more
and more comfortable with the thought using the nullator and norator as their
mathematical properties become very important. Additionally, many real world devices
can be modeled using nullators and norators, so getting comfortable with them can prove
to be beneficial to the circuit designer.

It was stated earlier that an ideal op-amp has the property of having zero current
through its input terminals and zero voltage across them. The voltage is driven to zero by
means of feedback. Obviously the input of an ideal op-amp may be modeled with a
nullator. Now for the output of the op-amp, one with experience in evaluating op-amp
circuits, notes that the current through the “output of the op-amp is never taken into
consideration. It is not used in the ideal op-amp circuit evaluation because it has no
constraints, causing problems if Kirchoff’s current law at the node or Kirchoff’s voltage

law around a loop containing the output of the op-amp is used. Additionally, the output
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of an ideal op-amp can take on any voltage. Because of these lack of constraints on the
output of the op-amp it can be modeled as a norator. The pair together is termed a nullor
and can be used to model an ideal op-amp. In fact, it has been shown that any infinite-
gain controlled current or voltage source is precisely equal to a nullor [4]. Since the ideal
op-amp is a voltage controlled voltage source with a gain of infinity, this is reassuring.

Using nullators and norators in circuit design introduces some unique mathematical
properties in the analysis of the structure. In this thesis, the chosen method of analysis
will be to.sum currents at each node and form an admittance matrix. One could also use
a loop analysis technique. The former was chosen because SLAP uses it to do its
analysis. It is also easier.

The general matrix equation of a circuit done using the nodal analysis technique

has the form of
I =YxV,

where I is the current column vector, usually consisting of known currents, V is the
voltage column vector, usually consisting of unknown node voltages, and Y is the
admittance matrix, consisting of the admittances of the elements used in the circuit. In
other words, the constraints between the unknown node voltages and the known currents.
Now suppose the circuit contains k nullators, | norators, and m nullors. A look at the two
nodes associated with a nullator, call them e and f for convenience, are shown in Figure
2.3.

There is no curmrent through the nullator, thus the current vector will remain the
same. The admittance matrix contains only elements which can have current flowing
through them via multiplication by a voltage. The nullator does not belong there. The
nullator does add one constraint in the circuit, however. V(e) must be equal to V(f).

Thus, since nodes e and f have been treated as separate nodes, there exists the following
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0
Y
N—
—
0

Figure 2.3 nullator in a circuit

system of equations:

i,

i

Equivalently for this system of equations,



Zi,

S

L - dn-1x1

nx
(n-1))

V(f) can be dropped and column f added to column e immediately after writing the node
equations. If node e or f happens to be the ground node, it is even easier, V(e) = V(f) =
0 and thus columns e of f may be deleted, as it will be multiplied by zero anyway. The
other will not be considered as it is the ground node and no currents are summed there.

Now suppose there is a norator between nodes g and h, as shown in Figure 2.4.

Figure 2.4 norator in a circuit

There are no constraints on the norator, so it can't possibly enter into the admittance
matrix, so an alternative approach is chosen. Labeling the current through the norator as

I, the following current vector exists:

Y MR v

Yi, +1|h|-——-~----- v,
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This will work because the current through it is arbitrary, as is a current source,
for instance. The changes in the current vector occur because current I is leaving node g
and entering into node h. To remove the current I from the system, add the two

equations together, or effectively add row g to row h. This gives

L . L(a-1y L (a1 L ° Jha
x1) xn)

If node g or h is the ground node, simply throw the equation out, or delete the hth or gth
row. This will be the case if the output of an op-amp is being modeled as a norator.
The rationale for doing this is as follows.

The effect of k nullators in a circuit is to reduce the system of equations to n
equations and n-k unknowns, no non-trivial solution to the circuit. The effect of 1 norators
is to leave n-1 equations and n unknowns, that is no unique solution. In an RC circuit
containing op-amps, k and | must obviously be equal (barring the introduction of any
other nullators or norators) to m, since the op-amps are modeled as nullors. If this is the
case, there are n-m equations and n-m unknowns, a solvable system of equations.

From the discussion, an easy algorithm can be developed for evaluating rc circuits
containing op-amps [4]. It is to first treat the circuit as if no nullors where present.
After the admittance matrix is completed, insert the nullors. Secondly, perform the row
and column operations due to the nullors. From here, carry on in a normal fashion in
figuring out the prospective node voltages.

It should be noted from above that in an RC op-amp circuit each norator is

assigned to a specific nullator. In practical terms, the input of an op-amp has an output.
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The nodal analysis routine does not take pairings into account. Consider a two op-amp
circuit. There are two norators and two nullators in the circuit. It makes no difference
whether norator one is paired to nullator one or nullator two in writing the nodal
equations and carrying out the algorithm. So when two op-amps are used to implement
the circuit, choose to connect the inputs of the op-amps to the nodes associated with the
nullators and there are a choice of two nodes of where to connect the output. (One of the
norator nodes must always be grounded, for a practical circuit) The second op-amp’s
output is ;:onnected to the remaining node. Nullator-norator pairing has been achieved.
The end result is always the same for any pairing, as nothing has changed in the RC-
nullor topology. In general, for an n nullor circuit, there are n choices for the first pairing
a norator with a given nullator. Choosing the first pair there are n-1 nullators left.
Choosing another nullator, there are n-1 choices in which to pair it with a norator.
Choosing yields (n-2) nullors left. By the Multiplication Principal of Combinational
Analysis (MPCA), there are nx(n-1) ways of picking two pairs, nx(n-1)x(n-2) ways of
picking three pairs, or nx(n-1)x(n-2)x. . . .x2x1 = n! ways of choosing n pairs. This

leads to property one of OAR [4].

PROPERTY 1:

Given a circuit containing n nullators and n grounded norators, there exists at least n!

equivalent op-amp circuits.

At this point, a definition is needed. An m-nullator tree will be defined to be a
connected nullator network which has m nullators, m+1 nodes and no closed paths.
A nullator tree is shown in Figure 2.5. For an n+1 node, n nullator tree, it is

noted that there are many ways to connect the nodes via n nullators.
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Figure 2.5 nullator tree

In fact, from [5], this leads to property 2.

PROPERTY 2:
Given a connected nullator network, where there are m nullators, there exists (m+1)™" m-

nullator trees.

The effect of a nullator tree is very simple to understand. Take, for example, the

tree shown in Figure 2.6.

Vi

Figure 2.6 nullator tree in a circuit
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The effect this has on the admittance matrix is to add the columns of three of the
nodes to the fourth. It matters not which row chosen. The voltages at each of these nodes
are all equal, since each nullator has a voltage drop of zero across it. Furthermore, a
little work will show that it matters not how the nodes are connected together with
nullators, as long as they are connected by any tree structure. The final outcome is
always the same, the rows all get summed together and the node voltages are all equal.

This leads to Theorem 1 [1].

THEOREM 1:

Given a circuit which contains n nullators and n grounded norators where there are i
i X .

disjoint m-nullator trees, then there exists at least n! [I(m; + 1)~ " equivalent op-amp
j=1

circuits.

Proof: Suppose that an op-amp circuit N, which contains k+1 nodes is given. Insert
nullors for the op-amps. Label the nullator trees 1, 2, . ., i. Label the nodes of the
designated first nullator tree 1, 2, . ., m;+1. Label the nodes of the second designated
nullator tree m,+2, m,+3, . ., m;+m,+2. Label the nodes of the ith nullator tree (m, + m,
+.. +m, +1),. ., (m + m + .. + (m+i)). Define a ground node. Form the
admittance matrix of N,, Y, 4., Now add the columns of the connected nullator trees.
Delete the rows corresponding to the norators. There now exists an admittance matrix
Y, anzay The determinant of this matrix is the characteristic polynomial.

Now consider N,, N,, . ., N, created by forming a different nullator tree where x =
(m+1)™Y.  In forming Y, (nexn add columns 1, 2, . ., m+1 together into one of the
corresponding columns, call it column j. Since all the nodes corresponding to the columns
are all connected via nullators, column j remains unchanged. If one of the nodes had
been the ground node, all the columns are associated with those nodes are deleted as they

would have been previously. Again no change. Thus each admittance matrix
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corresponding to a different tree structure formed by rearranging the nullators in the first
tree are the same. Thus there are (m,+1)®'" equivalent circuits.

The same holds true for each of the remaining i-1 nullator trees. Thus, by using
MPCA the total number of equivalent circuits the product of the number of trees for each
i nullator structure, or equivalently H(m‘ + 1)=-b By property 1, there exists n!
equivalent op-amp circuits for each different nullator-norator network. Again using MPCA

there are n!I'i(mj + 1)™ Y equivalent circuits.
.=
2.4 OAR and ideal filter synthesis

The means to generate circuits from OAR were intended to be used for circuits
having any given transfer function between two nodes, one grounded. This thesis sticks
strictly with a transfer function that takes on a one of four suitable filter functions. In
addition to this, more emphasis will be placed on the band pass filter, although it is not
necessary. These four filter functions are as follows:

1.) high pass function

H,s’

T = s? + s(w/Q,) + w}

2.) low pass function

H, o,

T®) = s’ + s(0/Q,) + W}

3.) bandpass function
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_ Hyy(©0/Q.)s
Te) = s + s(0/Q,) + 2

4.) band reject or notch function

H/(s’ + o)

T® = 77 S(0/Q) + o

2.5 An example of OAR in the generation of a circuit

This section will give an example of Theorem 1 as presented in section 2.3. In
addition it will also introduce a means to sort through the numerous generated circuits via
the OAR program. It is a short example, but very representative of what will happen in a
larger circuit. Consider the circuit Kerwin-Heulsmann-Newcomb (KHN) filter [7] and its
nullor equivalent circuit shown in Figure 2.7.

The circuit exhibits a band-pass filter function at node 6. Let m, be the nullator
tree connected between nodes O, 3, and 4 and let m, be the nullator between nodes 1 and
2. From Property 2, there are (2 + 1)*" = 3 trees associated with m,, Then from
Theorem 1 there are 3! x 3 x 1 = 18 different circuits which can be generated from the
seed circuit above. In addition, there are 2° = 8 different sign configurations which must
be checked out for each circuit. This is 18 x 8 = 144 circuits which can be tested.

From the above example, a circuit designer, to do a complete job, would invest
time in checking out each circuit. A program has been written which will cut this time
down substantially. It is called Op-Amp Relocation (OAR). OAR calculates the transfer
function of a circuit and then does a stability check. If the circuit is unstable, it is thrown
out. If stable, the transfer function is saved, along with the configuration of the op-amps.
As a finale, the total number of stable circuits is given to us at the end of the program.

An example input to OAR is given in Table 2.1.
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Figure 2.7 KHN active filter and equivalent circuit

Table 2.1 example OAR input

O\ O =W A NN — W

w

QOHLWNAITWUIONOCO W

CONAAUNMNOOOOOOCOO

COO0O0OO0OO0OO0COCOOO0OO0

res .3845E+04
res .1000E+04
res .1000E+04
res .5000E+05
res .1000E+04
res .1000E+04
cap .3247E-07
cap .3247E-07
noal .0000E+00
noal .0000E+00
noal .0000E+00
Vs .1000E+01
ocr .0000E+00

.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00

.2000E+06
.2000E+06
.2000E+06

.0000E+00
.0000E+00

.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00

.5100E+07
.5100E+07
S100E+07

.0000E+00
.0000E+00
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The circuit is first configured in the OAR editor. When commanded to save the
circuit, Table 2.1 is the resulting output, saved in a file. The number thirteen at the top
is the number of components in the circuit. The components are then listed below. The
first four columns are the nodes of the devices; then the abbreviation for the device name;
finally component values. Op-Amps are slightly different than the passive two terminal
devices. The chosen op-amp model is the dominant pole model, stated by noal. The user
also has the option of ioa, noa2, or noa3 which depict different models of op-amps. The
first, ioa depicts an ideal op-amp. The second and third, noa2 and noa3, depict two pole
models for the op-amps, with noa2 having the second pole at the gbp and noa3 having the
second pole placed at the choice of the user. The d.c. open loop gain for each op-amp is
200000, indicted by the second column. The gain-bandwidth product is given by
.S100E+07 radians. These numbers are also determined by the user. The above
component values correspond to a center frequency of 2500Hz. and a selectivity, Q, of 50.
The output for the above program is shown in Table 2.2.

By theorem one there were 144 circuits as shown above. OAR then checked out
each circuit for stability and determined that 14 out of these were stable (for the particular
chosen op-amp model). The number of good possibilities has been considerably narrowed
down. The sets of three numbers at the top of each group refers to the op-amps pairings
used in each circuit. The first two numbers show the connection of the nullator, or
equivalently the input terminals to the op-amp. The positive terminal hook-up is shown
first. The last number refers to the connection of the ungrounded norator terminal, or
equivalently the output of the op-amp. There were three op-amps, and hence three sets of
numbers.

Next, it may be necessary to know the poles and zeros of the transfer functions
above. OAR, through another module called poles and zeros (PZ), does this. In addition
to putting out the output shown in Table 2.2, OAR outputs the input to PZ. The output

from PZ, and hence the poles and zeros of the transfer function are shown in Table 2.3.
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Table 2.2 example of an OAR output
GENERAL FORM OF

N@O) *S **N + N()*S**N-1 + N2)*S**N-2 .. + NIN)
DO)*S **N + D(1) *S**N-1 + D2)*S**N-2 .. + DN)
SYSTEM ORDER = §
The scaling factors of the transfer functions are:
Impedance scaling factor: .1414E-03
Frequency scaling factor: .2296E-03
THE STABLE CIRCUITS
( + input, - input, output )
Ground Node : 0
(1,2,5)5(0,3,6);(0,4,7)
N( 0) = .000000D+00 D( 0) = .100000D+01
N( 1) = .000000D+00 D( 1) = .293630D+04
N( 2) = .000000D+00 D( 2) = .275793D+07
N( 3) = -.247208D+07 D( 3) = .808935D+09
N( 4) = -.291218D+10 D( 4) = .582794D+08
N( 5) = -.102342D+06 D( 5) = .104389D+11
(0,3,5):(2,1,6);(0,4,7)
N( 0) = .000000D+00 D( 0) = .100000D+01
N( 1) = -.114799D+04 D( 1) = .120283D+04
N( 2) = -.135448D+07 D(2) = .716982D+06
N( 3) = -.496709D+07 D( 3) = .815089D+09
N( 4) = -.291219D+10 D( 4) = .672305D+08
N( §) = -.102343D+06 D( 5) = .104390D+11
(4,0,5;,(0,3,6); (1,27
N( 0) = .000000D+00 D( 0) = .100000D+01
N( 1) = .000000D+00 D( 1) = .176535D+04
N( 2) = .000000D+00 D( 2) = .138465D+07
N( 3) = .000000D+00 D( 3) = .808878D+09
N( 4) = -.289468D+10 D( 4) = .757594D+08
N( 5) = .000000D+00 D(5) = .104390D+11

Nth ORDER TRANSFER FUNCTION:



(1,2,5);(0,4,6);,(3,0,7)
N( 0) = .000000D+00
N( 1) = .000000D+00
N( 2) = .000000D+00
N( 3) = .000000D+00
N( 4) = -.289468D+10
N( 5) = .000000D+00

(1,2,5);(4,0,6);(0,3,7)
N( 0) = .000000D+00
N( 1) = .000000D+00
N( 2) = . .000000D+00
N( 3) = .000000D+00
N( 4) = -.289468D+10
N( 5) = .000000D+00
(1,2,55;(4,3,6);(0,4,7)
N( 0) = .000000D+00
N( 1) = .000000D+00
N(2) = .000000D+00
N( 3) = -.247208D+07
N( 4) = -.291218D+10
N( 5) = -.102342D+06

(4,3,5,(2,1,6),(0,4,7)
N( 0) = .000000D+00
N( 1) = -.114799D+04
N( 2) = -.135448D+07
N( 3) = -.496709D+07
N( 4) = -.291219D+10
N( 5) = -.102343D+06

(4,0,5);,(4,3,6,(1,2,7)
N( 0) = .000000D+00
N( 1) = .000000D+00
N( 2) = .134423D+07
N( 3) = .247995D+07
N( 4) = -.289467D+10
N( 5) = .000000D+00
(1,2,5);(0,4,6); (3,4, 7
N( 0) = .000000D+00
N( 1) = .000000D+00
N( 2) = .000000D+00
N( 3) = .000000D+00
N( 4) = -.289468D+10
N( 5) = .000000D+00
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.100000D+01
.594401D+03
.138463D+07

.808893D+09

.757595D+08
.104390D+11

100000D+01
'594401D+03
136807D+07

.796646D+09

.400279D+08
.104388D+11

.100000D+01
.293630D+04
.274965D+07
.804072D+09
.493359D+08
.104389D+11

.100000D+01
.120283D+04
.716982D+06
.810241D+09
.582871D+08
.104389D+11

.100000D+01
.176535D+04
.134948D+07
.803965D+09
.668156D+08
.104390D+11

.100000D+01
.176535D+04
.207236D+07
.810158D+09
.757669D+08
.104390D+11



(1,2,5)5;(4,3,6);(0,3,7
N( 0) = .000000D+00
N( 1) = .000000D+00
N( 2) = .000000D+00

N( 3) = -.247208D+07
N( 4) = -291218D+10
N( 5) = -.102342D+06

.000000D+00

000000D+00

) (4,3,6);(1,2,7)
.000000D+00
.000000D+00
.134423D+07
.247995D+07
-.289467D+10
.000000D+00

MW~
vvvvvvo
wwn o n u'

0,

( % (1,26);(3,47)

5
= .000000D+00
N = .114799D+04
N = .135448D+07
N( 3) = .229183D+05
N( 4) = -291216D+10
N( 5) = -.102342D+06

3,
N( 0)
(1
(2)
3)

(1,2,5);(0,3,6); (3,4, 7)
N( 0) = .000000D+00
N( 1) = .000000D+00
N( 2) = .000000D+00
N( 3) = -.247208D+07

N( 4) = -.291218D+10
N( 5) = -.102342D+06

Stable circuits: 14
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.100000D+01
.176535D+04
.206193D+07
.801547D+09
.404062D+08
.104388D+11

.100000D+01
.176535D+04
.138680D+07
.810154D+09
.846819D+08
.104391D+11

.100000D+01
.176535D+04
.661771D+06
.801424D+09
.578857D+08
.104389D+11

.100000D+01

.115692D+04
.134406D+07
.805072D+09

.493417D+08
.104389D+11

.100000D+01
.293630D+04
.275793D+07

.810196D+09
.672017D+08
.104390D+11

144
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Table 2.3 example of a PZ output

( +input, -input, output ) ( +input, -input, output ) ( +input, -input, output )

Unscaled Poles and Zeros

Ground Node : 0

(1,25);(0,3,6);(0,4,7)
-.610809D+02 .156470D+05
-.254981D+07 -.495806D-02
-.514499D+07 -.416336D+02
-.509395D+07 .416338D+02
-.610809D+02 -.156470D+05

-.153062D+00 -.143912D-18
-.513083D+07 .127758D-06

(0,3,5)5;(2,1,6);,(0,4,7)
-.155104D+03 .155867D+05
-.487265D+05 .361881D+07
-.514109D+07 .307989D-02
-.155104D+03 -.155867D+05
-.487269D+0S -.361881D+07

-.401764D+04 .202074D+06
-.153063D+00 -.560860D-12

-.513082D+07 -.193436D+00
-.401764D+04 -.202074D+06

(4,0,5;(0,3,6);(1,2,7)
-.155876D+03 .156470D+05
-.129036D+07 .337891D+07
-.510784D+07 -.223961D+01
-.155876D+03 -.156470D+05
-.129036D+07 -.337891D+07

(1,2,5);(0,4,6),(3,0,7)
-.155870D+03 .156467D+05
-.177768D+0S .511606D+07
-.255301D+07 .461288D-01
-.155870D+03 -.156467D+05
-.177760D+05 -.511606D+07

(1,2,5);(4,0,6); (0,3, 7
-.604185D+02 .157664D+05
-.210475D+05 .508369D+07
-.254666D+07 .425383D-01
-.604185D+02 -.157664D+05
-.210467D+05 -.508369D+07



(1,2,5);(4,36),(0,4,7)
-.369338D+02 .156940D+05
-.254981D+07 .387132D-01
-.551631D+07 -.185549D+01
-.472268D+07 .173713D+01
-.369338D+02 -.156940D+05

-.153062D+00 -.143912D-18
-.513083D+07 .127758D-06

(4,3,5;(2,1,6);(0,4,7)
-.131844D+03 .156334D+05
-.538873D+05 .361158D+07
-.513081D+07 .320775D-02
-.131844D+03 -.156334D+05
-.538877D+05 -.361158D+07

-.401764D+04 .202074D+06
-.153063D+00 -.560860D-12
-.513082D+07 -.193436D+00
-.401764D+04 -.202074D+06

(4,0,5;(4,36),(1,2,7
-.133538D+03 .156948D+05
-.123310D+07 .334620D+07
-.522240D+07 -.183995D+00
-.133538D+03 -.156948D+05
-.123310D+07 -.334620D+07

.198135D+06 -.100672D-07
-.206171D+06 .100672D-07
.000000D+00 .000000D+00

( 19 2’ 5); ( 0) 4v 6);( 39 47 7)
-.131901D+03 .156351D+0S
-.256681D+07 .442778D+07
-.255499D+07 -.178074D-02
-.256682D+07 -.442778D+07
-.131901D+03 -.156351D+05

(1,2,5)5;(4,36),(0,3,7
-.368211D+02 .157184D+05
-.257208D+07 .440546D+07
-.254463D+07 -.152308D-02
-.257209D+07 -.440546D+07
-.368211D+02 -.157184D+05

-.153062D+00 -.143912D-18
-.513083D+07 .127758D-06
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(4,3,5;(0,3,6);,(1,2,7
-.179622D+03 .156346D+05
-.129233D+07 .338268D+07
-.510386D+07 .237847D-03
-.179622D+03 -.156346D+05
-.129233D+07 -.338268D+07

(3,0,55;(4,3,6);(1,2,7
-.133884D+03 .157192D+05
-.234159D+06 .301913D+07
-.722029D+07 -.764917D-01
-.133884D+03 -.157192D+05
-.234158D+06 -.301913D+07

.198135D+06 -.100672D-07
-.206171D+06 .100672D-07
.000000D+00 .000000D+00

(3,0,5;(1,2,6);(3,4,7)
-.863329D+02 .156839D+05
-.843320D+06 .437385D+07
-.335208D+07 -.115147D+01
-.863329D+02 -.156839D+05
-.843322D+06 -.437385D+07

.198135D+06 -.736373D-07
-.206170D+06 .328059D-01
-.513082D+07 -.345856D+00
-.153063D+00 .387565D-13

(1,25)(0,3,6)(3,4,7
-.851202D+02 .156350D+05
-.256560D+07 .107252D+02
-.531469D+07 -.958762D+00
-.490842D+07 .950893D+00
-.851202D+02 -.156350D+0S

-.153062D+00 -.143912D-18
-.513083D+07 .127758D-06

25
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The roots of the denominator determine the actual Q’s and center frequency of the
bandpass filter function. A look at the above output show that they are obviously not the
same. This is because in choosing the design components ideal op-amps were used. In
OAR, non-ideal op-amps are used. This gives way for a wide range of different
frequency responses for the generated circuits. Some of the responses will be closer to
their ideal performance than others.

Consider the original circuit, the very first listed circuit. From pole defining
equations it is seen that it has a center frequency of 2490.32 Hz and a Q of 128.08. Far
from the ideal values of 2500 and 50. This is a -0.38% error in the center frequency and
a 128.08% error in Q. Next consider the third circuit shown. It has a center frequency
of 2490.42Hz., a -0.38% error. The Q of this circuit is 50.19, an error of only 0.38%!
Not perfection, but a vast improvement over the original circuit.

It is up to the circuit designer to choose which circuit best represents the ideal
circuit. This is no easy job. A set of rules in the upcoming chapters will aid the circuit

designer in this task.



CHAPTER 3

Effects of non-ideal op-amps

3.1 Introduction

In the initial stage, the active filter design process consists of recognizing a
transfer function through resistors, capacitors, and op-amps. Typically, the op-amps are
ideal. They are much easier to work with. The non-ideal op-amp has a gain which is
quite frequency dependent. The ideal op-amp has a infinite gain-bandwidth product. The
non-ideal op-amp has a gain of less than infinity, and also several poles along the
frequency spectrum. This is this biggest cause of causing the circuit to deviate from it’s
ideal response. The gain vs. frequency response of a typical op-amp is shown in Figure
3.1

Figure 3.1 non-ideal op-amp response

27
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Frequently, it is sufficient to model the op-amp as a voltage controlled voltage
source with one pole in the frequency response. The controlling voltage is the input to
the op-amp with typically the input impedance taken to be infinite. This is termed the
dominant pole model. The transfer function for the dominant pole model is Vin/Vout =
A 0/(s + ®,) where A, is the dc open loop gain. Typically A, = 100,000~200,000 and ®,
= 5%2n~25x2n rad, for common op-amps. Other characteristics assumed in the model are
infinite input impedance, infinite common-mode rejection ratio, and zero output impedance.
The gain vs. frequency response is a substantial departure from that of an ideal op-amp.
One might have to ask oneself why not just stick to this model in the initial ideal design
process? The answer is that if each and every op-amp from a manufacturer had the same
frequency response, it may be reasonable to do this. However, currently, solid state
technology is not to the point where every op-amp of even the same model can be
modeled identically. Moreover, there are many different models of op-amps with many
different qualities on the market. This makes this approach nearly impossible. It is better
to be able to design a circuit with ideal op-amps and hope that when using non-ideal op-
amps the circuit’s performance will not vary significantly when non-ideal op-amps are
used. There has been extensive work done along these lines. The results of the work are
commonly referred to as making the circuit insensitive to the finite gain-bandwidth product
of the op-amp. This chapter will look at the problem of the varying circuit performance

due to finite gain-bandwidth product of the op-amp.
3.2 The KHN active filter
Consider the ideal KHN circuit shown in Figure 2.7.

When ideal op-amps are used, the circuit has the solution shown in Table 3.1,

where G, = 1/R,
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Table 3.1 SLAP output

DENOMINATOR IS :

-sC2*sC1*G6*G4
-sC2*sC1*G6*G3-sC2*G6*G4*G1-sC2*G5*G4*G1-G5*G4*G2*G1
-G5*G3*G2*Gl1

numerator for VS is :

-sC2*sC1*G6*G3
-sC2*sC1*G5*G3

numerator for V6 is :

sC2*G6*G3*Gl
+sC2*G5*G3*G1

numerator for V7 is :

-G6*G3*G2*G1
-G5*G3*G2*Gl.

The above is courtesy of SLAP. It should be noted from above that the following
filter functions exist in the circuit. At node S there exists a high pass filter. At node 6
there exists a bandpass filter. At node 7, a low pass filter exists. This is a nice package
to have in one circuit.

Suppose that a bandpass filter is desired from the above. Then the transfer
function at node 6 can easily be shown to be equation (3.1). Equations (3.2), (3.3), and
(3.4) give the equations for the center frequency gain H,, the selectivity Q, and the

center frequency f,:

<

6 _ s[R((1/Rs + 1/R)/C,RR(1/R, + 1/R})]

Vo s* + s[R(1R,; + URY/CRR,(IR + 1R)] + [R/C,CRR] (3.1)

HUP = RJ/R, 3.2
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f. = [R/C,CRRR,]¥(1/27) (3.3)

CRRA1R, + IR
CRRR(IR, + IR (3.4)

Q =

Then if the following is selected:
C, = C, = 32.467nF
R1=R;=R,=R,=lm
R, = 3.844kQ
R, = 50k,
this yields an H,, = 50, a Q, = 50, and an f, = 2500Hz. The frequency response is given

in Figure 3.2, which is a SPICE output.

TV gocemeccnonannn 4mecceeeconnes +oeecccceonnan —#eceececccecnn 4cececcocconns -+
0w 4 +
ow } +

Figure 3.2 ideal filter frequency response

The plot in Figure 3.2 has the characteristics that the filter has been designed for..
If, however, a dominant pole model is used the results change drastically. Consider the

comparison of the ideal vs. non-ideal frequency response shown in Figure 3.3.



Figure 3.3 ideal vs. non-ideal filter response

There is.a substantial change in the characteristics at the bandpass output of the
KHN filter. Surprisingly, this is not bad. Many circuits designed with ideal op-amps will
not perform at all, when non-ideal op-amps are used. The large spike in the non-ideal
characteristic represents a great enhancement of the Q,. In many circuits, it is easy to
drive Q, much larger than this. The result can be instability. The complete solution to the
circuit with the one pole model, where A(s) = 1/B,, from SLAP is shown in Table 3.2.

This is a complicated solution. Now, if gi.ven this as a design equation in order to
construct a bandpass filter with the same parameters as before, one could prepare oneself
for a nearly impossible task. Additionally it is evident that because of the different B,
terms there will be many different responses corresponding to the many different op-amps
available on the market, with frequency responses not alike. One solution to the problem
is the Wilson-Bedri-Bowron [8] approximation, as will be shown. The approximation
allows one to get a handle on the immense task at hand, albeit using some constraints.

It is noted in the above solution that the frequency response of the circuit changes
substantially. A quick look through the solution will show that there are many terms

multiplied by one or more 1/A(s) terms and some terms remain untouched by these terms.
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Table 3.2 SLAP output with non-ideal op-amps
DENOMINATOR IS :

sC2*sC1*G6*G4*B3*B2*B1

+sC2*sC1*G6*G4*B3*B2+sC2*sC1*G6*G4*B3*B1
+sC2*sC1*G6*G4*B3+sC2*sC1*G6*G4*B2*B1+sC2*sC1*G6*G4*B2+sC2*sC1*G6*G4*B
1

+sC2*sC1*G6*G4+sC2*sC1*G6*G3*B3*B2*B1+sC2*sC1*G6*G3*B3*B2
+sC2*sC1*G6*G3*B3*B1+sC2*sC1*G6*G3*B3+sC2*sC1*G6*G3*B2*B1
+sC2*sC1*G6*G3*B2+sC2*sC1*G6*G3*B1+sC2*sC1*G6*G3+sC2*sC1*G5*G4*B3*B2*B
1

+sC2*sC1*G5*G4*B3*B1+sC2*sC1*G5*G4*B2*B1+sC2*sC1*G5*G4*B1
+sC2*sC1*GS*G3*B3*B2*B1+sC2*sC1*G5*G3*B3*B1+sC2*sC1*G5*G3*B2*B1
+sC2*sC1*G5*G3*B1+sC2*G6*G4*G1*B3*B2*B1+sC2*G6*G4*G1*B3*B2
+sC2*G6*G4*G1*B3+sC2*G6*G4*G1*B2*B1+sC2*G6*G4*G1*B2+sC2*G6*G4*G1
+sC2*G6*G3*G1*B3*B2*B1+sC2*G6*G3*G1*B3*B2+sC2*G6*G3*G1*B2*B1
+sC2*G6*G3*G1*B2+sC2*G5*G4*G1*B3*B2*B1+sC2*G5*G4*G1*B3
+sC2*G5*G4*G1*B2*B1+sC2*G5*G4*G1+sC2*G5*G3*G1*B3*B2*B1
+sC2*G5*G3*G1*B2*B1+sC1*G6*G4*G2*B3*B2*B1+sC1*G6*G4*G2*B3*B2
+sC1*G6*G4*G2*B3*B1+sC1*G6*G4*G2*B3+sC1*G6*G3*G2*B3*B2*B1
+sC1*G6*G3*G2*B3*B2+sC1*G6*G3*G2*B3*B1+sC1*G6*G3*G2*B3
+sC1*G5*G4*G2*B3*B2*B1+sC1*G5*G4*G2*B3*B1+sC1*G5*G3*G2*B3*B2*B1
+sC1*G5*G3*G2*B3*B1+G6*G4*G2*G1*B3*B2*B1+G6*G4*G2*G1*B3*B2
+G6*G4*G2*G1*B3+G6*G3*G2*G1*B3*B2*B1+G6*G3*G2*G1*B3*B2
+G5*G4*G2*G1*B3*B2*B1+G5*G4*G2*G1*B3+G5*G4*G2*G1+G5*G3*G2*G1*B3*B2*
B1

+G5*G3*G2*Gl1

numerator for V1 is :

sC2*sC1*G6*G3*B3*B2*B1

+sC2*sC1*G6*G3*B3*B2+sC2*sC1*G6*G3*B3*B1
+sC2*sC1*G6*G3*B3+sC2*sC1*G6*G3*B2*B1+sC2*sC1*G6*G3*B2+sC2*sC1*G6*G3*B
1

+sC2*sC1*G6*G3+sC2*sC1*G5*G3*B3*B2*B1+sC2*sC1*G5*G3*B3*B1
+sC2*sC1*G5*G3*B2*B1+sC2*sC1*G5*G3*B1+sC2*G6*G3*G1*B3*B2*B1
+sC2*G6*G3*G1*B3*B2+sC2*G6*G3*G1*B2*B1+sC2*G6*G3*G1*B2
+sC2*G5*G3*G1*B3*B2*B1+sC2*G5*G3*G1*B2*B1+sC1*G6*G3*G2*B3*B2*B1
+sC1*G6*G3*G2*B3*B2+sC1*G6*G3*G2*B3*B1+sC1*G6*G3*G2*B3
+sC1*G5*G3*G2*B3*B2*B1+sC1*G5*G3*G2*B3*B1+G6*G3*G2*G1*B3*B2*B1
+G6*G3*G2*G1*B3*B2+G5*G3*G2*G1*B3*B2*B1+G5*G3*G2*G1

numerator for V2 is :

sC2*sC1*G6*G3*B3*B2

+sC2*sC1*G6*G3*B3+sC2*sC1*G6*G3*B2+sC2*sC1*G6*G3
+sC2*G6*G3*G1*B3*B2+sC2*G6*G3*G1*B2+sC1*G6*G3*G2*B3*B2+sC1*G6*G3*G2*
B3

+G6*G3*G2*G1*B3*B2+G5*G3*G2*G1

numerator for V3 is :

sC2*G6*G3*G1*B3*B2
+sC2*G6*G3*G1*B2+sC2*G5*G3*G1*B3*B2+sC2*G5*G3*G1*B2
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+G6*G3*G2*G1*B3*B2+G5*G3*G2*G1*B3*B2
numerator for V4 is :

-G6*G3*G2*G1*B3
-G5*G3*G2*G1*B3

numerator for V5 is :

sC2*sC1*G6*G3*B3*B2

+sC2*sC1*G6*G3*B3+sC2*sC1*G6*G3*B2+sC2*sC1*G6*G3
+sC2*sC1*G5*G3*B3*B2+sC2*sC1*G5*G3*B3+sC2*sC1*G5*G3*B2+sC2*sC1*G5*G3
+sC2*G6*G3*G1*B3*B2+sC2*G6*G3*G1*B2+sC2*G5*G3*G1*B3*B2+sC2*G5*G3*G1*
B2
+sC1*G6*G3*G2*B3*B2+sC1*G6*G3*G2*B3+sC1*G5*G3*G2*B3*B2+sC1*G5*G3*G2*
B3

+G6*G3*G2*G1*B3*B2+G5*G3*G2*G1*B3*B2

numerator for V6 is :

-sC2*G6*G3*G1*B3
-sC2*G6*G3*G1-sC2*G5*G3*G1*B3-sC2*G5*G3*G1
-G6*G3*G2*G1*B3-G5*G3*G2*G1*B3

numerator for V7 is :

G6*G3*G2*G1
+G5*G3*G2*G1
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If, as in the ideal case, A goes to infinity, all of the B terms drop out and there are a few
remaining terms. These remaining terms are precisely the solution to the circuit when
ideal op-amps are used as shown in the first example of an output from SLAP.

If a one pole rolloff model is used, then A(s) = A, ®0/(s + ®,) = A,0,/s at
frequencies higher tha\n the cutoff frequency, @, Then the s/(A,®,) terms will add three
extra poles to the circuit, one for each op-amp. These will be termed parasitic poles.
The poles located about the ideal design poles will be termed in-band poles. Now if the
ideal equation has the form of as* + as + a, the solution now has the form of
[f(Au0]s* + [f(Auw,)]s* + [f5(A0)]8° + [[(A,0,) + a]s® + [fi(A.0) + a,)s + a, where
each f(A,®,) term is a summation of terms, each with (A,®,),j = 1,2, or 3, term in the
denominator. Thus, each f(A,®,) tends to zero as the gain-bandwidth product, A, tends
to infinity. Now since each term in front of the s’ s and s® does contain one or more
A, 0, terms in the denominator, the coefficients in front of these terms with tend to be
very small in comparison to the coefficients in front of the s’ s', and s° terms. Thus, to a
reasonable approximation, at frequencies about the design frequencies, only the in-band
poles need to be considered. It may be noted that this is a valid approximation provided
that the gain-bandwidth product, and hence A,®,, is fairly large. These poles still tend to
be different then the design poles, since the f(A,w,) terms must be used when calculating
the center frequency and selectivity. At higher frequencies, three extra poles are
introduced into the‘denominator. These are the parasitic poles for the circuit, using a one-

pole model. Most generally, the denominator can be written in the following fashion,
D(s) = (Zas' X &bs') (3.5)

where the coefficients b, are to be determined, the coefficients a, are the in-band
coefficients, k is the order of the ideal polynomial, and n is the number of op-amps. In

order for a circuit to be stable, both sets of these poles must lie in the LHP on the
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frequency domain.

It can be seen that the stability of the parasitic poles depend heavily on the sign of
the op-amp itself, more so than the in-band poles. If, for instance, the polarity of one of
the op-amps in the above equation is changed, this corresponds to the B, term for that
particular op-amp, or in terms of the model, simply changing signs in the voltage
controlled voltage source being used as a model. This has a big impact on the f(A,®,)
terms, which in turn has a big impact in front of the coefficients in for the s°, s*, and s’
terms. It has a lesser impact on the other coefficients as the change is a smaller
percentage of the overall coefficient, as it is dominated by the ideal a, term. These
parasitic poles are thus very dependent on the sign configuration of the op-amp, and result
in probably the biggest cause for instability in a breadboarded circuit. When one tries to
build this seemingly good circuit, noise will push the circuit into instability and the circuit
will lock up at either positive or negative 15 volts. This very subtle problem is one that
still needs to be addressed.

The second source of instability are the in-band poles themselves. It is possible to
drive Q, very high. At the other extreme, it may be possible to drive it negative. The
example of a Q, being driven high was shown in the example of the KHN circuit. A
very high Q can give rise to a very large gain near the center frequency, and the overall
voltage can go beyond the upper limit of the op-amp’s output. It can be so high that it is
possible for noise to actually excite the signal past this limit.

Thirdly, although the effects of a one pole model have been described in this
chapter, a two pole model may more accurately reflect a real op-amp [9]. It will be
shown that if a circuit used to implement a biquadratic equation has n op-amps, then this
model will give rise to a 2n+2 order equation in s, as opposed to an n+2 order equation._
Although the one pole model may reflect accurately the in-band errors, the two pole
model more accurately reflects the stability of the parasitic poles which may arise in the

circuit. Unfortunately, stability of the parasitic poles in a circuit which utilizes a one pole
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model no way insures stability when a two pole model is employed. An even more
complicated situation now arises.

This chapter introduced the problems due to the finite gbp of an op-amp. The
finite gbp then complicates circuit design and gives rise to both inband errors and an
inherent stability problem which arises due to the parasitic poles. The inband problem
will be addressed in the upcoming chapter.



CHAPTER 4

Reduction of in-band errors

4.1 Introduction

It was shown that when a circuit is designed with ideal op-amps, the in-band poles
have a tendency to shift when the circuit is employed using non-ideal op-amps. These errors
are mainly caused by the gain-bandwidth product of the op-amp having a finite value.
Furthermore it was noted that the coefficients in front of the now non-ideal biquadratic
equation describing the in-band poles of the circuit go from just a few terms, to an equation
containing many terms. This new equation is the cause of serious problems for the circuit
designer who is trying to design the circuit with specific parameters. There have been several
approaches to the solution of this problem [8-13]). This chapter introduces one of those
solutions, the Wilson-Bedri-Bowron (WBB) [8] approximation. Additionally, it is shown
where the main causes of deviation in other filter function parameters come from. The
approximation allows one to get a grip on the design process, although a couple of constraints
must be invoked, one of the most important is that matched op-amps are employed, or
equivalently each op-amp has the same gbp, for the approximation to be used in it’s simplest
form. This constraint is impractical if one is trying to match individual chips, of the same
model, each containing one op-amp. It is very practical, however, if all of the op-amps being
used are on the same chip, as it has been shown that this can indeed give rise to 'equivalent’

op-amps.

37
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4.2 The Wilson-Bedri-Bowron approximation [8]

For an arbitrary N op-amp circuit realizing some random second order transfer

function, the denominator polynomial may be written as
D(s) = s’afy,(A) + sPfi(A) + Yfo(A), 4.1)
where the ;:oefﬁcients a, B, and y are the ideal design coefficients of the circuit, and the

fi(A) are functions of the open loop gain and tend to one as A tends to infinity. Then the

center frequency , and the selectivity, Q,, can be written as:

2 _ ‘on(°°)
¢ afy(eo) 4.2)
Q = G'on( °°) fz( °°) .
’ Bfi(s) (4.3)

In general:

d, d, d
fA)=1+35% Sy G
(A =1+47a * gﬁgAAk+ T AA,. A, (4.4)

where A, is the response of the op-amp and all repeated-suffix coefficients are zero due to
the bilinear nature of the circuit. Adopting the dominant pole model for an op-amp, where
A = A,0/(s + ,) is a reasonable approximation, and at reasonable frequencies the higher
order terms in f(A) can be dropped, since A, is typically on the order of 100,000 ~ 200,000.

Then let
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A A (4.5)

using the fact that matched op-amps will be employed. Thus f(A) becomes

d,

(A =1 += (4.6)
Dividing by v, equation 4.1 becomes
D(s) = s’T.(1 + dy/A) + s(T/Q)(1 + d/A) + (1 + dyA), 4.7
where T, = 1/w, = the period of the denominator. Also from (4.5),
d  dis+ )
A A,
_ s, 4
T AW, A, (4.8)
Then from (4.7),
D(s) = T, (1 + sd/gb + dy/A,) + sT/Q,(1 + sd,/gb + d/A,)
+ (1 + sdygb + dyA,), 4.9)

where gb = A w,. Collecting the s terms gives



D(s) =
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s’(T2d,/gb) + s¥(T.: + T, d/A, + T.d,/Q.gb)

+ S(Todl/Qvo + To/Qo + do/gb) + (l + do/Ao)

= §)(Td,/gb) + s’T (1 + dyA, + d/T,Q.gb)

+ s(T/Q)(1 + d/A, + Qdy/Tgb) + (1 + dyA,).

Factoring out (1 + dy/A,) and noting that

1

= (l - d()/Ao)9

(1 + d/A,)

gives

D(s) =

Since /A, >>

D(s)

[1 + dyA,][s(T,*d/gb)(1 - dyA,)
+ ST (1 + dy/A, + d/T,Q.gb)1 - d/A,)
+ 8(T/Q)(1 + di/A, + QdyTgb)(1 - dy/A,) + 1].

1/A %, for large A, equation (4.12) further factors to

[1+ dyA,)[s(Td,/gb) + s'T (1 + dy/A, - d/A, + d,/T.Q.gb)

+ s(T/Q)(1 + d/A, + QdyT.gb - d/A,) + 1

(1 + dyA,)D(s).

410

@l1)

@12

@&13)

@414

Now the poles of D(s) are exactly the poles of D(s). Thus the poles of D(s) will be solved

for to give the center frequency ® and selectivity Q. At frequencies about the design poles,

the coefficient for the s’ term is much smaller than the coefficients in front of the other s
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terms since it is multiplied by the d,/gb term and is negligible inband. Thus D(s) can assume

to have one high frequency pole and two inband poles. D(s) can be rewritten as

D(s)

(5T + 1)(s*T? + (T/Q") + 1)

$’ (1, T + s¥(T + 1,T/Q°) + s(t, + T/Q") + 1, @.15)

where

T is the realized period,

Q’ is the realized selectivity,

1, is defined to be an auxiliary time constant, the reciprocal of which is the higher
frequency pole, and the above quantities need to be determined. Then define, in terms of the

ideal design parameters, the following

T, @416)

which is the fractional change in T, and

AQ,) |
(1/Q.) @

which is the fractional change in the inverse of Q,. Then it is easy to write the realized

period and inverse selectivity in terms of changes in the design parameters as

T = T,(1 + At) and 4.18)

1/Q" = 1/Q1 + Aqg), @.19
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or equivalently,
£ =f/(1 + At) = f(1 - At) 420)
Q' = QJ(1 + Aq) = Q(1 - Aq) @21)

for small At and Aq. Now

Af,
f= “2)
AQ,
A = - e——
Q. @)

Substituting in the values for T" and Q" into (4.15) gives

D = (s1, + D{S’TX(1 + A} + s(T/Q)(1 + At(l + Aq) + 1}. @24

Since the goal at this point is to minimize the fractional errors, for small deviations the

assumption At,Aq >> (At)?, (Aq)?, and (At)(Aq) can be made, so (4.24) becomes

D(s) = (sTe + D{sT.A(1 + 2At) + s(T/Q)(1 + At + Aq) + 1}

ST TH(1 + 2At) + sY(TH(1 + 2At) + 1(TJ/Q.)(1 + At + Aq)

S(Ty/Qu(1 + At + Aq) + Ty) + 1. @25

+
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There are now two equations for D(s) in equation (4.13) and equation (4.25). Thus the two
can be equated and At, Aq, and 1, can be solved for. Equating the s* coefficients gives

1, TH1 + 2At) = T.X(d,/gb)

T, + T2At = d/gb. 426
For small é, and At, 1, >> 1,2At and

1, = d,/gb. @27
Equating the s? coefficients gives:

1, T/Q, (1 + At + Aq) + T (1 + 2At) = TX1 + dyA, - d/A, + d,/T,Q.gb). @28)
Since 1 >> At, Aq,

T/TQ, + 1 + 2At = 1 + d/A, - dy/A, + d,/T,Q.gb. 429
Subtracting 1 from both sides and substituting d,/gb for 1, gives

At = (1/2)[d/A, - dyA.] + (1/2)(1/Q,T,)[d,/gb - dy/gb] 430)

= (1/2)(wyQ,)[(d, - d;)/gb] 431

= (172)(f/Q.){(d, - d.)/gbp], @32
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showing a fractional error in frequency proportional to the frequency, but inversely
proportional to the design selectivity Q..

Lastly equating the s coefficients gives

TJ/QL1 + At + AQ) + 7T,

T/Q1 + d/A, + Q/Ty(dy/gb) - dJ/A,

(Q/T)ty + 1 + At + Aq = 1 + d/A, + Q/T(dy/gb) - dy/A.. 433

This means
Aq = (d, - do)JA, + QJ/Ty(dy/gb - d,/gb) - At
= l/A(d, - dy) + ©,Q.((d, - d,)/gb) - At 434

= 0,Q.((d, - d,)/gb) - AL 435
Since gb = 2ngbp

Aq = £,Q.[(d, - d,)/gbp)] - At. 436

So from (4.32), if d, = d, can be selected, the deviation from the design frequency
can be reduced substantially. If d, = d, can be selected then the deviation from Q, is
substantially reduced. Ideally d, = d, = d, would give optimal results in terms of the design
parameters, but this is not always possible.

In summary, it should be noted that in the WBB approximation, three important
constraints were used:

i) A, very large

ii) T, is very small, (associated with the above)



45

iii) At and Aq are very small.

The goal is to minimize the errors in the design poles. The closer to minimizing the
errors, the better the approximation will be.

The WBB approximation thus gives a handle on tackling an op-amp problem. By the
proper selection of the resistors and capacitors composing d, ,d,, and d, it is possible to
design an active filter with ideal op-amps and not have the performance stray from the ideal
design.

It i‘s also possible that some of the A’ terms may come into effect. In this situation,
a similar approach may be taken in order to minimize the errors. This could be classified

as yet another problem and will not be touched on here.
4.3 Error approximation for H,, H,,, H,, [17]

In the last section a means to approximate the shifting of the poles of the denominator
was presented. Since transfer functions of five different types of filters are being looked at,
it is necessary to develop a means to evaluate the error in other parameters found in a given
filter function. The parameters which will be addressed here are the deviation from the ideal
low frequency gain for a lowpass filter, the ideal high frequency gain for a highpass filter,
and the ideal center frequency gain for a bandpass filter. The results are reached by applying
a WBB approach.

The ideal lowpass filter has the form of

H,

TO) = Silen T s(lo0) =1 @37

The most general non-ideal transfer function is

s’g,(A) + 5gi(A) + Ahy(A) |

TO) = Safa) + sBiA) + T A) @39




where f(A) is the same as (4.4) and

hA)=1+350 o $8 0, Das .
i= Aj I "AjAk AlAZ,---AN (439)

The g(A) term is a little more special. It tends to zero as A tends to infinity as no

coefficients of s show up in the ideal equation. Then

(A) = Dy M,y T
g’( ) ‘g‘ A, * ‘g ;AjA, ¥ * AA,,. Ay (4«»
and

oy,

A= ZA @41
so that

n.

h(A) * @442

and
—-— mi .
g = A @443)

The n, terms are typically ratios of the passive components and where the m, terms tend to
be the summation of several products of passive admittances, so the distinction between the
two is made. Putting the denominator in the form of (4.15) the characteristic equation

becomes



T(s) =

47

(1) (myA) + s(1)my/A) + Hy(l + nyA)

(1 + dyA,)(sT, + 1) + s/0'Q° + 1)

where the same constraints apply as before. Then with

L R
A A, A,
and
m o _ ms o m,
A A, A,
this gives
s¥(1/y)(m,s/gb + my/A) + s(1/y)(m,s/gb + m/A,)
T(s) = + Hy(1 + ngs/gb + n/A,)

(1 + dJA)GT, + (70" + S0 Q" + 1)

@49

(445)

(446)

@47

In order to find the low frequency gain, it is sufficient to find the magnitude as s — 0. Then

it becomes necessary to define

AH
Ah, = - —E—>
p H\P
so that
H‘,, = H (1 - Ah,)

This leaves

448

(449)
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. H (1 + ny/A)
= = - 7
TE=00 = Hy (1 + d/A) @450
H, = H, @451)
and
Ah,, = 0. 452)

as the n, and d, terms are much too small to consider. Surprisingly, there is no change in
the low frequency gain when non-ideal op-amps are employed.

The ideal highpass filter has the form of

s’(H,/0,’)

T®) = Fion + s(loQ) + 1 @453)

Then when non-ideal op-amps are employed,

s"Ahy(A) + 5gi(A) + go(A)
s'afy(A) + sBfi(A) + ¥fu(A) @54

T(s) =

where h(A) takes the form of (4.42), and g(A) takes the form of (4.43). Then the transfer

function, T(s) takes tHe form of (4.44) and

s’(H.,,/(oj)(l + n,/A) + s(1/)(m/A) + (1/y)(myA)

T6) = (1 + dy/A,)(sT, + 1)(sY/®™ + s/0'Q" + 1)

s*(H,/®,)(1 + snygb + ny/A,) + s(1/y)(sm,/gb + m/A,)
+ (1/y)(smygb + myA,)
(1 + dyA)(5T, + 1)(SY0? + S/0'Q" + 1)
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s’(Hy,n /0 gb) + s’[H/w,* + (Hy/o)(n/A,) + (1/y)(m,/gb)]
+ s[(1/y)(m/A) + (1/7)(my/gb)] + [(1/y)(m/A)]
(1 + dyA)(sT, + 1)(sY/0? + s/ Q" + 1)

Ats = o, sT, << 1, and (1 + nyA,) = 1, and (4.55) becomes

-j0”(H,n/0gb) - o?[Hyw,? + (H/o)(n/A) + (1/¥)(m,/gb)]
+ jo'[(1/y)(myA) + (1/y)(my/gb)] + [(1/y)(my/A)]
1/Q°

T(s) =

= {-j0”(H,n/0,gb) - 0”[H,/w,’ + (Hy/®.)(ns/A,) + (1/¥)(m,/gb)]
+ jo'[(1/y)(my/A) + (1/4)(my/gb)] + [(1/y)(my/A)]}Q".

Then

Hy,' = {-jo”(Hyn/o,'gb) - 0”[Hy/o + (Hy/o)(n/A,) + (1/Y)(m/gb)]
+ jo [(1/y)(my/A) + (1/y)(my/gb)] + [(1/y)(my/A)l},

where the following will be defined

H, = H(1 - Ah,).

The magnitude of (4.57) needs to be found in order to determine H,. At reasonable

frequencies the @™ term is the dominating factor and so

Hy, = 0’[Hy/o,’ + (Hy/w)(n/A,) + m/ygbl.

455)

456)

457)

458)

459

The dominating terms in this equation are H,/w,’ and m,/ygb, so (4.59) further reduces to
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H, = o?*{Hyw + m/ygb]

= 0”’H,/o,} + 0™(m,/ygb)
= H /(1 + AY* + (m,/ygb)(@./(1 + At)})
= H,[1 - 2At + w(m,/ygbH,)(1 - 2A1)]
= Hy[1 + ®(m,/ygbH,,) - 2AY(1 + ,*(m,/ygbH,)]. @40
So
Ah,, = 2A(1 + ®,}(m,/ygbH,))) - ®(m/ygbH,). 461)
The ®,}(m,/ygbH,;) term must be observed, but the important factor is to note the errors are
proportional to 2At.
Lastly, in this section, there is the change in H,, due for the bandpass circuit. The

lowpass and highpass show nothing interesting, but the bandpass should prove to be different.

As before, the ideal bandpass filter has the form of

H,,P(l/(ooQo)s .
s* (/w2 + s(l/w,Q,) + 1 @462)

T(s) =

The most general non-ideal transfer function is

s$°g:(A) + syh(A) + g((A) .
s'afy(A) + sPfi(A) + Y(A) (463)

T(s) =

Then
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S(1/7)8:(A) + s(Hy/0,Qu)h,(A) + 1/78(A)

T = (1 + dJA )T, + )ET@" + 0 Q + 1)

s¥(1/y)(myA) + S(Hq/(ooQo)(l + n/A) + 1/{(myA)
(1 + dyA (5T, + DNEY0? + /0’'Q° + 1)

s’ (1/)(m,s/gb + my/A,) + s(Hy/®w,Q)(1 + n,s/gb+ n/A,)
+(1/7)(mes/gb + myA,)

(1 + d/A (5T, + 1)(sY/0? + s/0'Q" + 1) 4

in the usual fashion. Further factoring, and using the fact that 1 >> d/A, the numerator

and the denominator become

N(s) = s’my/ygb + s’[my/yA, + (H,/0,Q)n/gb] + s[H,/®.Q (1 + n/A,) +

+ my/ygb] + myyA, @465)

D(s) = (5T, + 1)(sY/®™? + s/0’'Q" + 1), 465

and the magnitudes of D(s) and N(s) need to be known to find the gain at the center

frequency ®’. For D(jw"), seeing that 1 >> w1, in band and substituting in the actual w and

Q for the denominator as defined before,

D(j»’) = jo'/w'Q’, @67

so that

D) = 1/Q"-
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_ (+4g)
Q, (468)

For the numerator,

N(s) = -j(@")’m,/ygb - (@) [m,/YA, + (Hy/®,Q)n,/gb] + jo'[Hy/®Q,(1 + n/A,) +

+ myygb] + myYyA,. 469

In looking for the magnitude of the denominator, all the n, and m, terms are sufficiently
small so that they do not come into play at reasonable frequencies. For the bandpass circuits
in this thesis, where f, < 10,000 Hz, all of the terms dropped out. The exception can come
from the -j(®’)’m,/ygb term because of the cubing of the frequency. For bandpass filters of
~ 30,000 Hz or greater, this can have a significant effect and should be considered. In many
good designs, this term does not even exist.

Excluding -j(®’)’m,/ygb, the magnitude of the numerator becomes
ING@)| = @'Hy/0.Q,

H,, .
(1 + AnQ, @

Defining the following

H,, @7)
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H'y = Hy(1 - Ahy) @n

With (4.68) and (4.70), the magnitude of T(jw") becomes

H,, ,

TGl = Hw = 020 + 29) 4m)

and so
Ah, = At + Aq. @79

In practice, the Aq term tends to have the biggest effect on gain at this point. It is noticeable
to many circuit designers that the gain at the center frequency tends to have a deviation from
the desired gain which follows very closely the deviation from the desired Q to the realized

Q. The above gives the reason why.
4.4 Error approximation for notch filters [17]

This section will deal solely with the notch filter. The analysis will deal with the
main causes of deviation in the notch frequency, and the gain of the response at the notch
frequency, which is ideally zero.

The ideal notch filter transfer function is

H/ok (s + ®})

TO) = Fi7en + stioQ) + 1. @75
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At s = jo,, the numerator becomes H/w,}(-0,> + ®,’), and at the notch frequency the signal
has been successfully blocked out. The most general transfer function for a notch filter

realized with non-ideal op-amps is

s’Ah,(A) + sg,(A) + 0hy(A),
stafy(A) + sBf(A) + Y, (A) @476)

T(s) =

In the usual fashion

(H/0,)s*(1 + ny/A) + s(m/yA) + H (@, /@) (1 + njA) |
(1 + d/A)(sTy + 1)(sY0™ + s/0'Q" + 1) @mn

T(s) =

and since the point where the numerator hits a minimum is being sought, only the numerator

will be considered. Thus let T(s) = N(s)/D(s) be defined. Also define

N = Ho,/0/, @mn)

and now

N(s) = $(H/o.)(ny/gb) + s’(HJw,! + (H/w.)(n/A,) + m,/ygb)
+ s(m/YA, + Mnygb) + N(1 + nJ/A,). @)

Factoring out (1 + nyA,), gives N(s) = n(1 + ny/A,)N(s) where

N(s) = (U@, )(ny/gb)(1 - nyA,) + s’[(Va,' + (V@ )(nyA,) + m/mgb)1 - n/A,)]

+ s[(m/MA, + nygb)(1 - ny/A,)] + 1

= $’(nyw,’gb) + s’(l/®,’ + n/A,®,’ + m/Mygb - nyw,’A,)
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+ s(m/A;m + nygb) + 1. (480

To find the minimum of N(s), the minimum of N(s) is found. Similar to the approach of

the denominator poles the numerator may be written in the following form,

N(s) = (st, + 1)(s¥®,? + s/, Q. + 1)

- (st, + 1)(s*T.? + sT,D" + 1), 481)

where the following parameters will be defined
T, = Vw,” = T(1 + An) and @482
D' = 1/Q, = 1/Q, + Ad. @)

Since the ideal parameter for Q, is oo, then

D' = Ad : @84

Also
£’ = f(1 - An) 485
"Q, = l/Ad. 486

Then

N(s) = s¥(t,T,*) + s¥(t,T,')D" + T.,?) + s(7, + T, D) + 1. 480
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Substituting (4.82) and (4.83) into (4.87) gives,
N(s) = (T, Tl + 2An) + s{T,AAT, + T,(1 + 2An)) + s(t, + T,Ad) + 1, 488)

with the same constraints as before, i.e. An, Ad >> AnAd, (An)? (Ad)? again this constraint

is possible 'because the goal is to minimize these terms. Now comparing equations (4.80) and
(4.88) the s® terms can be compared and

1,T2(1 + 2An) = n,T /gb. (489
Since 1, >> 1,2An,

1, = n,/gh. (490
For the s terms,

1, + T,Ad = m/mA, + n/gb

Ad = o,[(m/mMA,) + (n, - n,)/gb] 491)

= w,(n, - n,)/gb. 492)

For the s* terms,

T.? + T/ n/A, + m/mgb = T AdT, + T,((1 + 2An)
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= T} + 2AnT.? + T,AdT,.
So

T,n,/A, + m,/ygb = T,22An + T,AdT,

2T.An = T,j!n,/A, + m,/yngb - T,AdT,

An = 172[n/A, + (m/ygb)w,? - T,Adw,]

= 1/2w,(m,/mygb).

Frequently o, = o,, leaving

An = 12w, (m,/yH,gb).

Thus, for the numerator of the notch:

Q. = l/Ad

fn. = n(‘l - Al'l)

and  An = =nf*(m,/mgbp)

Ad = f((n, - n,)/gbp).

@493)

(G

@%)

459

The gain at the notch frequency tends to be a simpler derivation. Given some non-

ideal center frequency ®’, and some non-ideal notch frequency ®,” and that the numerator

and the denominator are factored in the form of (4.15) and (4.81), then

N + n/A)st, + 1)(s7w,? + s/, Q,” + 1)

T(s) =

Since (sT, + 1) = 1 at the notch frequency, and (1 + n/A), (1 + dyA,) = 1.

(1 + dyA)(sTy + DY + s/0’Q” + 1)

@97

Then at s =
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jw, the transfer function becomes

_ n(1/Qy.)
TO) = o7y + 1 + o oQ)
= NAD[1 - (/) + j(/0 Q)" 498)
Defining

NG = the gain at notch frequency, ideally zero.
Then

NG = [T(s)I

= NAd)[1 - 2(0,"7®")? + (0, /0°)* + (0,70°Q")*]'?

= NAd){1 - 2[w,(1 + AtYw,(1 + An)]* + [w(1 + At)w,(1 + An)]}*

+ [o (1 + A(1 + AQ)(1 + An)(@,Q))]}7, 499

and it stops here. However, in many notch filters ®, = ®,, and this can be used to simplify
the expression. Using this, and that An, At, and Aq, are very small quantities, equation (4.99)

becomes

M(w,) = H,(Ad){1 - 2(1 + 2At - 2An) + (1 + 4At - 4An)

+ 1/Q1 + 2At + 2Aq - 2An)}'?, (4.100)

at this point, this is sufficient to describe the magnitude of the notch at the center frequency.
It is most important to note that if Ad = 0, meaning infinite Q,’, that the magnitude reduces
down to the ideal value of 0. Perhaps simplifying things too much, however used in the

research for this thesis effectively is the further simplification of
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An ~ At, @)

in which case the magnitude reduces further to
NG = H(Ad)[(1 + 249)/Q,’1"* @)
= H(AAQ1 - AQ), )

which can be used to predict the magnitude of the errors, but not to reduce them, as the key
factor is still Ad = 0.
The gain at the notch frequency can be reduced substantially if Ad = 0. This is

somewhat surprising since Ad consists of the n, and n, terms.

4.5 Summary
A final summary of the error terms will be as follows. For the bandpass, highpass

and lowpass filters, there is:

f =f(1-At)

Q‘ = Qo(l - AQ)
H, = Hy(1 - h,)

Hw. = th(l - Ahhp)
H,' = H(1 - Ah,),

where

At = (1/2)(f/Q,)((d, - d.)/gbp]



Aq = foQo[(do - dz)/gbpl - A[
Ah, =0
Ah,, = 2At(1 + 2nf.}(m,/ygbpH,,)) - 2rf*(m,/ygbpH,,)

Ah,, = At + Aq.
Then for the notch filter,

Q. = 1/Ad
fn. = fn(l - An)

NG = H,(Ad)Q.(1 - Aq),
where

Ad = f((n, - n,)/gbp)

An = nf.(m,/mgbp)
4.6 Minimization of the errors

The past sections showed that a circuit has a chance of attaining its ideal performance
if the possibility of selecting d, and n, properly exists. The circuit designer who may have
tried this knows that at this point there is a dilemma to be faced. Most typically, there are
a number of constraints due to the ideal design parameters. Combining these together with
the constraints imposed by the d;, and n, terms makes for still a confusing problem. Although
it is possible that the terms may cancel out naturally, this is not probable. A better method
has been proposed [16]. If resistors could be inserted into the circuit so that they did not
appear in the ideal design equations, but did however appear in the n, and d, terms, the circuit

could then be designed with ideal op-amps using the given original R’s and C’s, and the
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added resistors could then be chosen to satisfy the n, and d, constraints. This is indeed the
case.

The most reasonable place to place the resistors would be in a location where the
resistor drew no current, thus not showing up in the ideal transfer function. The best spot
in a circuit consisting of ideal op-amps, would be between any two nodes on a nullator tree,
as all the nodes have the same voltage. Both nodes must however belong to the same nullator
tree. Obviously then there are a number of places where these resistors can be inserted. The
exact number is m;'[ ? j Where m, is the number of nullators on a given tree and m is the
number of distinct trees. There are other locations, but these gave the best results. There
is, up to this point, no systematic way of knowing exactly where to place these resistors. It
must be done by trial and error. Even so, there is no guarantee that a circuit can be made

to approach its ideal behavior. Some examples will be given shortly.



CHAPTER 5§

Second Pole Effects
5.1 Introduction

It has been shown that using a dominant pole model for an op-amp results in two
critical deviations from an ideal transfer function to a non-ideal transfer function. The first,
is the shifting of the in-band poles which may or may not be driven to instability. The
second is the addition of, in most cases, n poles at higher frequencies, where n is the number
of op-amps. These poles must lie in the left half plane of the frequency spectrum in order
for a circuit to function if the dominant pole model sufficiently models the op-amp. In
practice, it can occur that a circuit which uses the one pole model has in band errors which
are nearly zero and high frequency poles which are stable. Yet, when constructed in lab, the
circuit may not be functional, typically oscillating at some locked in frequency, for example,
for no apparent reason. It is because a one pole model may not suitably model an op-amp
[14]. A real op-amp is more realistically a transfer function consisting of many poles and
zeros. It turns out that other sets of parasitic poles, other than the ones that arise from a
dominant pole, may be important if a designed circuit is to exist physically. This is verified
from experimental results. The poles which will be addressed in this chapter are parasitic
poles due to an op-amp model which depicts the gain vs. frequency response of an op-amp

as a two pole transfer function.
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5.2 Rationale for using a two pole model in filter design

A normal op-amp is actually a many pole and zero device. There are circuits which
perform well in lab, so it seems reasonable that either one of two things can be happening.
Either not all the poles are affecting circuit stability, or the effect of each of the poles is to
induce poles into the circuit all of which are stable. Either way, it is impractical to do any
type of analysis using this model. The two-pole model was chosen solely on the basis that
it agrees w.ith experimental results, in terms of stability, to a very large degree, in all cases
in the research done in this thesis. As was done to solve the preceding in-band error
problems, a suitable model must be chosen to look at the effects of parasitic poles, and
presently it is the two-pole model.

The method of designing the circuits used in this thesis was to first choose a seed
circuit and design it with ideal parameters. Secondly, OAR was used to generate more circuits
out of this seed circuit. A two pole model was used in the OAR run. OAR then produced
a handful of circuits which were stable when this model of the op-amp was employed. The
best circuits were chosen and then constructed in lab. In all cases, the circuits which were
stable when a two pole model was used for the op-amps, performed as well as well as the
in-band errors would allow. At this point, the only justification for using the two-pole model
for in active network synthesis to predict circuit stability, is that it has been successful in the

work done for this thesis.
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