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ABSTRACT

FINITE STATE k-EXTENDED SET COMPOUND

DECISION PROBLEM

By

Chitra Gunawardena

In compound decision theory the usual standard for evaluating

compound decision rules is R(GN), where R is the Bayes enve10pe in the

component problem and GN is the empirical distribution of the component

states Q = (01, ..... ,0N). As introduced by (Johns and ) Swain (1965), a

more stringent standard for evaluating compound rules is Rk(G11\§), where

k k
R game by Gilliland andis the Bayes envelope of a construct called I‘

Hannan (1969) and G11; is the empirical distribution of the overlapping

k—tuples (0 ,....,0k), (0 """0k+1)’ (”N-k+2’°“"0N—1’0 ,01),

(oN—k+3"”"0 ,01,02), ...., (0N—2""’0k-1)' The k+l standard is more

stringent than the k standard and R1(GN) = R(GN).

Ballard's thesis (1974) considered the sequence version of the finite state

finite act compound decision problem with Rk(Gll\§) as its risk standard.

He exhibited procedures which play I‘k Bayes against a delete estimate of

G]; in the 01th component problem, V l 5 a 5 N, and showed that, on the

average risk scale, the excess compound risk over Rk(GllfJ) for his

procedures has rate 0(N‘1/5). Ballard, Gilliland and Hannan (1974)

improved the rate to 0(N—é).



We here consider the set version of the finite state compound decision

problem with Rk(GIl\§) as its risk standard and treat both delete and

k
nondelete procedures which play I‘ Bayes against corresponding estimates of

G113 in each of the component problems. In both cases we show that, on

the average risk scale, the excess compound risk over Rk(G11fI) for our

procedures has rate 0(N_I), when the action space is finite. Similar, but

weaker results are obtained in Section 2.4 when the action space is infinite.

In addition, we characterize extrema of the expected value of a function

of a generalized Binomial random variable, under constant variance; an

analogue to a work of Hoeffding (1956), under constant mean. We show that

extrema are attained at points whose coordinates take on at most four

different values, only two of which are distinct from 0 and l.
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CHAPTER 1

INTRODUCTION TO THE k-EXTENDED

COMPOUND DECISION PROBLEM

This chapter presents the general k—extended compound decision problem.

We begin with the introduction of some notations that will be used

throughout Chapters 1 and 2. In Sections 1.1 and 1.2 we describe the

compound decision problem with its usual standard (1.6) for evaluating

compound procedures. In Section 1.4 we describe a more stringent standard

(1.11) for evaluating compound procedures and with it we introduce the

k—extended compound decision problem. In order to describe the concepts in

Section 1.4 we devote Section 1.3 to present the I‘k decision problem

introduced by Gilliland and Harman (1969).

Notations:

k and N will denote integers with k S N.

The square brackets will be used to denote the indicator function.

If fi are functions defined on some sets Ai for i = 1,2,....,j then

i J

8 fi will denote the function; x 6 A1 x ..... x A. ~~—> II fi(xi) .

i=1 1 i=1

For a sequence 3‘” = (u1,u2,...... ), “i will denote (u1,u2,..... ,ui); the

subscript N will be abbreviated by omission. With indices arithmetic mod

N, V 1 5 Li S N 3i will denote the k—tuple (“i—k+1, ...... ,ui) and ill-j

the (j-i)—tuple (mod N) (ui+1, ...... ,uj) .



1.1 The Component Problem

The component problem has the structure of a usual statistical decision

problem, which is composed of a parameter set 9, indexing a family of

probability measures {P0 : 0 e 9 } over a a—field .2 of a sample space

.3 , an action space .1 , a loss function L : 9 x J -. [0,ao), decision rules

cp : .3 -I .1 such that L(0,cp) is measurable for each 0, with risk

(1.1) W) = E0 Lew)

where E0 denotes the expectation with respect to P 0 .

1.2 The Set Compound Problem

When N independent problems each having the same structure of the

component problem described in Section 1.1 are considered simultaneously, the

N—fold global problem is called a compound decision problem. The loss in

the compound problem is taken to be the sum of the losses in the N

decision problems.

Thus for each N, in the compound decision problem we have the

parameter set 9N indexing the family of probability measures

N

{P0= x P0 : Q 6 ON} over ( .2N,.2N ), the action space AN,

- i=1 i

compound decision rules 59 = (p1,....,¢N) where for each 1 S a S N

«pa : 2N -» J is such that L(0,Ipa) is measurable for each 0 with loss

N

“-2) LN(.Qa_‘£) = 0:1 L(00,¢a) a

nth component risk

(1.3) Rama = I L(0a,¢a) dPg



and compound risk

N

(1.4) mm = 23 name.
oz=l

As standard in compound decision theory, we say that a compound

decision rule 53 is simple symmetric if $00.0 = <p(xa) V x 6 .SN and

V 1 5 a 5 N , for some component decision rule (p. For a simple

symmetric rule g;

N

(1.5) are = 2 R(0a,<p)-
0:1

This is the same as the component problem Bayes risk of (p against the

non—normalized empirical distribution GN of 01, ..... ,0N . Thus, with

R(G) denoting the Bayes risk versus G in the component problem

can be considered as a standard for evaluating compound decision procedures.

D(_Q,5g) is called the modified regret of the compound decision procedure 53

at Q. We say that a rule 59 is asymptoticagly optimal (a.o.) if

(1.7) 815p 2&2) = 0(N).

1.3 I‘k Decision Problem

The decision problem concerning the last component of a k—tuple with

the decision based on independent observations on all k parameters is called a

I‘k decision problem by Gilliland and Hannan (1969). Specifically, for an
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integer k 2 1, the I‘k decision problem has states gk = (01,0 ,..,0k) 6 Ok

k 0 k }

x P : E 9 on

i=1 0i ”k

( .2k,.§‘ ), action space .A' , loss function Lk(gk,a) = L(0k,a), decision

rules (a .56" -+ .1 such that Lk(gk,<p) is measurable for each 6k with

risk when state 9k holds defined by

indexing possible probability measures { P 0 =

~k

(1.8) Rkwkrw) = I L(0k,<p) <1ng-

For a prior Gk on 61‘ the Bayes risk of p against Gk is

(1.9) Rk(Gkr‘P) = I skew) dGRng)

and the I‘k Bayes enve10pe evaluated at Gk is

(1.10) Rk(Gk) = inf Rk(Gk,<p) .

‘P

The decision problem I‘1 is the component game in the compound

decision problem.

One of the important facts about the I‘k decision problem is given by

the Remark (1) of Gilliland and Hannan (1969); which states that if G... is

the marginal of Gk on any ordered subset of the coordinates of

(i1,i2,....,ij) with ij = k then Rk(G“) g Rj(e...). If, in addition, Gk is

the product of G... and the marginal H,.. on the other coordinates then

Rk(Gk) = alter). If Gk is not the product of G... and H... then the

difference between Rk(Gk) and Rj(G*) could be substantial as was

demonstrated by Ballard and Gilliland (1978).



1.4 k—Extended Set Compound Decision Problem

The k—extended version of the compound decision problem was first

introduced by Johns (1967) and has a more stringent standard for the

compound risk than R(GN). Gilliland and Harman (1969) have given the

most general treatment of these standards.

In order to preserve lower case letters for dummy variables under

consideration, w.1.o.g. we will assume that the domain of the random

observations 3 in the compound problem is its range space .ZN. Thus

the Xi will viewed as the coordinate functions of K.

To introduce the k—extended risk standards we consider a compound

decision procedure 39 of the form

2(a) = ($0.51),“ng-----WEN»

for a fixed I‘k decision rule ip. For such 4;) it follows from (1.3) and

(1.4)

N k
131252) = 2 R (flare)

a=1

which is the same as I‘k

empiric CI]; of the N overlapping k—tuples Qi ,1 5 i S N .

Bayes risk of go against the non-normalized

The compound decision problem with Rk(Gll\‘I) as its risk standard is

called the k—extended set compound decision problem. Let

(1.11) DIME = R(flrie) - Rk(GIlfr) 1 s k s N.

Dk(Q,g) is called the modified regret of the compound procedure 53 at Q

in the k-extended compound problem. Since GN is the marginal of (311:I

on the last coordinate, it is immediate from the previously mentioned remark
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of Gilliland and Hannan (1969) that Rk(GllfI) 5 R(GN). Thus Rk(G11fI) is

more stringent than R(GN). Hence producing compound rules satisfying

(1.12) 815p Dkwrse) = 0(N)

is more ambitious than producing rules satisfying (1.7). Set compound rules

59 where ”a plays I‘k Bayes against an estimate of Gllfl in the ath

component problem may provide asymptotic solutions to the k—extended

problem.

1.5 Literature Review

The compound decision problem was introduced by Robbins (1951). In

his featured example involving N independent discriminations between

N(1,1) and N(-1,1), he exhibited a bootstrap compound procedure satisfying

(1.7). The bootstrap refers to the fact that each (pa is component Bayes

against an estimate of G based on all observations. Since Robbins original

paper there has deve10ped a large literature and much of it has dealt with

the construction of bootstrap rules satisfying (1.7) with rates for various

component problems. The most general results available in the literature for

finite 9 are those of Gilliland and Harman (1986,1974) in which they

reduce the problem of ac. of the unextended compound problem to that of

the consistency of the estimates. Vardeman (1980) successfully used these

results to obtain admissible a.o. rules for the k—extended problem. Vardeman

(1980) used a clever separation technique and the concavity of Bayes risk

that allowed direct application of existing unextended results to k-extended

problems.

One of the most important deve10pments in compound decision theory

can be traced back to Hannan (1956, 1957) for the introduction of the



sequence compound problem. The sequence compound problem restricts the

compound rules to Q, where each pa is a function of the first a

observations, 1 S a S N. Harman's procedures in the sequence problem

involves artificial randomization and Van Ryzin (1966a, 1966b) showed that

in many finite state finite act statistical problems the extra randomization is

not necessary. Ballard (1974) in his thesis generalized Van Ryzin's (1966b)

procedures in a finite state finite act statistical setting to achieve k—extended

risk objectives in the sequence version of the compound problem. Ballard

(1974) showed, on the scale of average risk, that the excess compound risk

over Rk(G§) for his procedures has rate O(N—”5). By taking advantage

of the special product structure of the estimator of G11; that was used in

Ballard's (1974) procedures, Ballard, Gilliland and Hannan (1975) improved

’1/2) obtained for the unextendedthe rate of convergence to the rate O(N

case by Van Ryzin (1966b).

In Chapter 2 we consider the set version of this compound problem and

obtain an analogue of the Ballard, Gilliland and Hannan (1975) result thereby

generalizing Van Ryzin (1966a) procedures to produce solutions to the set

version of the k—extended problem.



CHAPTER 2

SET COMPOUND DECISION PROBLEM

WITH m x n COMPONENT

In this Chapter we consider the set version of the k—extended problem in

the finite state finite act statistical setting (as in Ballard (1974)) and exhibit

two compound procedures that satisfy (1.12) with rate O(NI). The chapter

k
is organized as follows. In Section 2.1 we describe our I‘ problem and

establish some useful results related to I‘k Bayes rules (Remark 2.2) and

Pk

risk (Lemma 2.1). In Section 2.2 we give a brief review of the

estimator of GI]; that we use in our procedures. In Section 2.3 we define

our procedures (2.14) and (2.15). In Section 2.4 we prove that they satisfy

(1.12) with rate O(NI). In Section 2.5 we consider the extension to

compact action space and prove that the procedures satisfy (1.12) by adapting

some results in Oaten (1972).

2.1 Preliminaries

We consider a set compound problem as described in Section 1.1 with

G = {l,2,....,m} indexing .9={P1,P2,....,Pm} and .1 = {1,2,....,n}.

Under this set up, the I‘k decision problem has ink x 11 loss matrix Lk

satisfying Lk(gk,j) = L(0k,j) and a randomized I‘k decision rule

(p = (<p1,gp2,....,<pn) is a mapping into .13", the set of probability measures

on .A' such that Lk(~0k,tp) is measurable for each 0k , with risk

k _ n .
W) R (like) — 11,31 L(0kd) ij dng-



m

Let p: 2 P. 05f0$l beadensity of P0 with respect to ,u

i 1 I ’

V 0 E 9 and

( ) f k f v o ok2.2 = o e .

3k j=1 ”j "k

mk '
Also let a = (11+) and uJ be the n—vaiued function with

. . k

(2.3) uék = L(ak,1) fgk v gk e e .

Then the I‘k risk Rk(gk,tp) in (2.1) can be written as

k n j k
(2.4) R (eke) = 1,2 u, ij an .

1:1 ~k

Remark 2.1. With

(2.5) qu = “I _ “j i

for any two I‘k decision rules (p and cp'

.. ,

(2.6) skew) - Rhyme) = 12; a); to, e, «wk
1] ~

I

by writing the tp and Ip integrals as the product integral of the

difference of their integrands.

Let L = sup L(Q,a) . Then

0,.2‘

lulllgffgk V lee ,
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hence

N

(2.7) R.H.S. (2.6) s “I? 1.2; fakII/i w} > monk .

11

Let S g [0,oo)Ink be the risk set of this I‘k problem. Then for each

I‘k decision rule cp we can associate a point 3 in S, with coordinates of

3 given by (2.4). For w e (I and s E S, let us denote the vector

inner product of w and s . We will also identify (01,02,....,0k) E 91‘

with the basis vector in n with 1 in the (01,02,....,0k) position. Thus

if s is the risk vector associated with (p then

Rk(,€ki‘P) = 2kg

and the Bayes risk of (p versus «2 E (I is

I1 .

as :11} qu (pj dpk

1:1

and

aka») = (120(0)) = A as.

863

That is, 0(w) is the risk vector associated with a (p(w) satisfying

(2.3) (0(a)) = o if j is not a minimizer of w u-I.
J

Remark 2.2

For every < wl,w2,xk > e (I x a x .2k and (p satisfying (2.8) ,

(2-9) ‘Pi(w1)(’,$k) ‘pj(“’2)(§k) > 0 only if “11(5k)w1 S 0 S ulj(§k)w2 °
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Let E 0. denote the expectation w.r.t. P 0. and E denote the

.1
-l

expectation w.r.t. P =P0 .

The following lemma gives a useful upper bound for the risk of I‘k Bayes

rules.

Lemma 2.1

If H and H' are mappings from .ZN into 0 and tp(w) is I‘

Bayes against 112 e n, then for all x e s“ and 13k e 91‘

k

(2.10) Egk Lk(£krto(Ha(-))(-)) - some»

5 1:1,; r, [90i(Ha) ease» > 0] dflk ,
1] ~01

Xwith not.) = Hag“, . ,a_N).

Proof

The assertion (2.10) is that of (2.7) in Remark (2.1) with (p and (0'

replaced by tp(Ha(r))(~) and (p(H'(2(_)) respectively. n

2.2 Bootstrap Procedures and Estimation of the Empiric GIIN‘I

Definition 2.1

A set compound rule 53 is called k—order non—delete bootstrap rule

associated with the II-valued estimator WN based on 2; if for each

1 5 a s N wad) = e(wN(x_))(xa) where no) is rk

w. The rule 53 will be called k—order delete bootstrap rule associated with

Bayes against
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the fl—valued estimator awn—k based on axe—k if for each 1 5 a g N

In order to find k—order bootstrap rules in the k—extended compound

problem we need to estimate the empirics G15.

The question of estimating the empiric Gil; has already been solved in

Ballard (1974) in the following sense.

If the estimator h on s" to O: thk) = {hgk(1$k) : 9k E 9k} is

r

E hQSO) 18 ansuch that E. h (I; ) = [Q = i ], then the estimate

Air Air 1‘ k k a=l

unbiased estimate of Gk V 1 5 k S r.
r I

It has been shown that such a function h exists if the set of densities

{fl,f2,....,fm} are linearly independent in L101). One such bounded h can

be obtained by taking bounded unbiased estimators h = (h1,h2,....,hm) of

.2 and defining the mapping h from .Zk to O componentwise by

( ) h k h 0 ok2.11 = o e .

~0k i=1 I91 "1‘

Such an estimator is called a product estimator. Further the covariance

matrix of h has full rank under P0 V le OR if the covariance matrix

~k

of h has full rank under P0 V 0 6 9.

The details of the results stated above and the method of obtaining such

functions h are given in Section 3 of Ballard (1974).

Our theorems concern k—order bootstrap rules based on the bounded

unbiased product estimator h of 51‘ defined in (2.11).
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The estimators of G115, we will be using in our procedures (Definition

2.1) are WN with

N

(2.12) thx) = 021110.50) = HN (say)

for the non-delete rules, awe—k with

a—k

1:0

for the delete rules.

The estimators WN and awe-k has (k-l)—dependent summands for

N > 2k, WN is unbiased for G113 and awn—k is independent of 130

for each a and, on the average scale, is asymptotically unbiased for GIlfI .

2.3 Definition of the Procedurm and a Useful Upper Bound for the Modified

Regret

With HN of (2.12) and aHa—k of (2.13) the set compound

procedures we investigate are

(2.14) 53 with spam) = (p(HN)QV(a) for 1 S a S N

and

* *

(2.15) g with roam) = naHHxxa) for 1 g a s N .

The following lemma gives useful upper bounds for the modified regret of

the k—extended compound problem evaluated at (g and (9* .
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Lemma 2.2.

With WN defined in (2.12) let

(2.16) W§(-) = WN(.X_H, - WEN)-

Then, for (e and (9* defined in (2.14) and (2.15)

(2-17) 121‘(£,se)< AN + BN

and

it! k It! It!

(2-17) 12 (M) .<. AN + BN

where

A —L 2: 2i su‘jwa<o<u‘5H dirk

N a=1 Iij £0 [ N N]

A* =f 2121 E[uijaH <0<uin ]dpk

N a=1 ij £0 a—k - - N

and

B — 11 0“ (am )— «6“»N" N N N -

Proof

For each 15 a 5 N

(2.18) name) = 1:. 12,0 Renews-no»

and

2 at: it! _ k 0

( -18) 114M) — E Ega L (Mid0.1.x )) .

We will apply (2.10) of Lemma 2.1 with H = H' = WN to the inner

integral of the R.H.S. of (2.18) and with *H = aWa—k and H' = WN to

the inner integral of the R.H.S. of (2.18) , noting the abbreviations in (2.12)
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and (2.13) and (2.16), to obtain

(2.19) name) 5 1? s [in3 f0“ [ei(w§)oj(HN) > 0] duk + s garrmN),

(2.19)* satire“) s i: 2 131.3%“ [e(aHa_k) «pl-(FIN) > 0] dflk

+ E Qa 0(HN).

’ < W§( . )tHNi °>

Taking < wl,w2, - > = .

 _<H H
a a—k’ N’°>

in (2.9) of Remark 2.2, we bound each summand in the integrand of the first

term in R.H.S. (2.19) by

f£0 [uU Wfi 5 0 5 u” HN]

and that of (2.19)" by

ij ij
f£a[u aHa—k 5 0 5 u HN].

*

With these bounds substituted in (2.19) and (2.19) , followed by summation

and 1.2;,
1.1

over all a and the interchange of E

N

(2.20) R(M) 5 An + 0315 g, oIHN)

and

* 1! * N

(220) mate) 5 AN + 031st, 0(HN) .
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Since the second term in the R.H.S. of (2.20) and (2.20)* is E G113 0(HN) ,

(2.17) and (2.17)* follow by (1.11). o

2.4 Asymptotic Optimality

Theorem 2.1

Let A0 denote the minimum eigenvalue of the covariance matrix of

h = (hl’h2"°"’hm) under P0 ; Q E 9 and A = min { A0 : 0 E 9}.

Suppose the kernel h of (2.12) and (2.13) is the bounded unbiased product

estimator (2.11) and A defined above is positive. Then, for the compound

procedures (9 and 59* defined in (2.12) and (2.13),

(2.21) \gflkwde) = 0(NI)

and

(2.21)* \3 Dk(£.se*) = O(NI) .

Proof

In view of (2.17) and (2.17)* it is enough to show that AN = O(NI),

*

AN = O(NI) and BN = O(NI). We establish these results in Lemma 2.3

and Lemma 2.4. 13

Lemma 2.3

Assume all the conditions of Theorem 2.1. Fix 35k E .2k and a,b E .1.

Let V010) = f01(xj),....., v0k_l(j) = f0k_l(xj)

voko) -_- f0k(xj) (L(Qk,a) — L(Qk,b)) v j = 1,2,....,k; v 91. e 9“ and

k m

“V” = n (v(j),v(j))* > o , ( 2: h? )I g Ml/k . Then

i=1 i=1
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(2.22) Inabcsk) hI s M llvll

and, for HN, aHa_k, WIS defined in (2.12), (2.13), (2.16) and, for

N > 2k, 3 a constant C1 independent of N and Q such that

(2.23) niche.) was.) s o s nabek) HNl s GIN-i .

(2.24) §[uab(;5k) aHH g o 5 nabqk) HN] _<_ GIN—I .

Lemma 2.4

For HN defined in (2.12)

(2.25) s. steam) — daft» 3 02m .

The proofs of Lemma 2.3 and 2.4 depend on the following Pr0position 1

and the Theorem 2 of Section 4 in Ballard, Gilliland and Hannan (1975).

(B.G.H.) Proposition 1

Let k 2 1 and suppose U1,U2,..... are (k-1)-dependent random

variables. Then

11

Var (2 Ui) 5 knvn

i=1

where vn=max{varUi:l515n}.
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(B.G.H.) Theorem 2

Let v(1),...... ,v(k) be fixed vectors in Rm and h = (hl,....,hm) be an

Rm-valued function on .x the range Space of the independent random

variables X1,X2,.... and (X1,X2,....) ~ Polx P02x.... for Q °° 6 9°° with

k

9 = {1,2,....,m}. Let ira = jg] (v(j),h(Xj+a)) a = 0,1, ..... and

k

”v“ = .II (v(j),v(j))I . Let A0 denote the minimum eigenvalue of the

1:1

covariance matrix of h under P0 , V 0 e 6 and A = min {A0: 0 e 9}.

If A > 0 and (h,h)I 5 Ml/k < as then

n—l

71km“ 3 WaSbISA(I|v||)'1+B n2k,Q°°€O°°

a=0

where A = (irkAk)—I(b—a) and B = 2 2* kM[C(kAk)_I + Mi‘k] ; c is

the Berry Esseen constant in the independent summand case and 7 is the

greatest integer in nk-l.

Proof of Lemma 2.3

Since nab x = v 1 ....v k and h = h e......0 hgk(~k) 91( I 0k( ) 9k 01 0k

(2.26) uab(x )h= 2 (v (1) v (k))(h 6. oh )=§ (v(j) h).

“’1‘ gke 9k ”1 3k I’1 0k j=1 ’

Applying Schwartz inequality to each of the inner products (v(j),h) and

m

using the definition of v with the fact that (.2 h]? )I 5 Ml/k we

J 1

obtain (2.22).
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By (2.12) and (2.26)

N

(2.27) nabtrkmN = (31 vibe.) has.)

N

031 (v(l).h(xa+,)) ..... (v(k).h(xa+k)) .

Similarly, by (2.13) and (2.26)

a—k

(2.28) uab(xk)aHa_k = i=§+k (y(1),h(xi+1)) ..... (v(k),h(Xi+k)) .

Each of (2.27) and (2.28) has (k—1)-dependent summands of the type ra of

(B.G.H.) Theorem 2 . Also,

a+k—1

(2.29) uabtzsk) (HN - was,» = >031.“ nabek) (110.5,) - he,»

with

Z. = [(Xi_(k_1),....,Xa_k ,X1,..Xi_(a_k)) H+1 S i S a

N1 .

(xi+1—a"“ ’xk’xa+1"""xi) 0+1 5 1 5 a+k—1

and,

(230) vibe.) (.H... - Ht) = - “15”“ when 11051) .
i=a+N—k+l

Hence an application of the bound in (2.22) to the R.H.S. of (2.29) and

(2.30) respectively yields

b

(2-31) 113 (15k) (HN - W§(§k)) 2 -4kMIIVI| ,

and

(2.32) uab(xk) (0,11%k — HN) z —4kM||v|| .
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Note that

(2.33) L.H.S. (2.23)

= cutback) (HN - wfiek) s aback) HN .<. 01

and

(2.34) LBS (2.24)

= snakes.) ((aHH1— HN) s tribe.) an“ s 01 .

Replacing the lower bound in each of the integrands in (2.33) and (2.34) by

the bounds in (2.31) and (2.32)

(2.35) R.H.S. (2.33) g E[—4kM|lv|l s uba(;5k)HN s o]

and

(2.36) R.H.S. (2.34) s sI—4kMIIvII s nab(xk)aH 0] .
a—k S

Each of the summands in R.H.S. of (2.35) and (2.36), (cf. (2.27) and (2.28))

are summands of (k—1)—dependent random variables of the type ita in

(B.G.H.) Theorem 2. For x1,..... ,xk such that "v" > 0 we can apply

(B.G.H.) Theorem 2 with a = —4kM||v|| and b = 0 to the R.H.S. of (2.35)

and (2.36), to obtain (2.23) and (2.24) with C1 = (irkAk)—I4kM + B. n
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Proof of Lemma 2.4

. k
Since HN 0(HN) 5 HN 0(GN)

(2.37) G§(U(HN) — 0(G1'é)) 5 (GI; - HNMHN) - omit» .

Taking (p and (p' in (2.6) as tp(HN) and ¢p(GIl(§) and bounding “I;

by L f0 we obtain

~k

k — k
ngomN) — gko(GN)I s L v gk 6 o .

Hence

— k k
(2.38) R.H.S. (2.37) 5 L 2 IGNQ - HNQ | .

~k ~k

gkeo

Integrating both sides of (2.38) with respect to E and using the fact that

HN is unbiased for G113 and the moment inequality, we obtain

- i
(2.39) LBS. (2.25) 5 L 13 k (Var HNQR) .

gkee

N

Since H = 2 h (X ).....h (X is a sum of (k—1)-dependent
Ngk a—l 01 a—k 0k a)

random variables, from (B.G.H.) Proposition 1 and the fact that

(I: h? )i g Ml/k

i=1 1
2 k

VarHNgk5kNM V ngO.

Thus (2.39) yields (2.25) with c2 = ‘13 mk(kM2)i. 1:1
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2.4 Infinite Action Space

In this section we replace the assumption that .1 is finite by

(2.40) .1 is totally bounded in the metric d(a,b) = 315p |L(0,a) — L(Q,b)|

and obtain results analogous to Theorem 2.1.

For each is > 0 let D c = {a1,..... ,ar} C .1 be such that disjoint

. C .AJ __ B 6(a1), 1

the original (henceforth called the J—problem) when we restrict the action

5 j 5 r covers A Consider the problem obtained from

Space to DC.

For any decision rule cp in the J—problem let (oE denote the decision

rule in the sub—problem given by (p; = tp(Aj), i 5 j 5 r.

Then, if e is 3 rl‘ decision rule in the J-problem v gk e g

k _ k 6 _ r _ r 6
IL (gki‘p) L (gki‘p )I —' ljgl AI L(0k’a) “(13) jg] L(0k’aj) 9le

J

k

= Ij-E-l A; (L(0kaa) ‘ L(0k1aj)) “d3”

<6.

By integrating this inequality with respect to E0 ,

~k

(2.41) le(Q ,e) - Rk(gk,e‘)| s e v £1 e 91‘.
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k
In particular, for a I‘ Bayes rule p(w) against a w e O in the

afiproblem and using <p€(w) to denote (tp(w))‘, (2.41) implies

k c k

(2.42) R (the (3)) - g). «(to s c v .41. e s .

where 0 denotes the risk of (72(6)).

The following remark regarding a I‘k Bayes rule tp in the J—problem

is an adaptation from Section 6 of Oaten (1972).

Remark 2.3

For every < wl,w2,xk > 6 (2x Ox 2‘ and, I‘k Bayes rule (a in the

J—problem

(2.43) wf(w1)(ask) ¢§(w2)(25k) > 0 only if

b.b. b.b.

u l J(%$k)wl g 0 g u 1 J(?Sk)w2 for some { bi’bj} E { Ai’Aj}'

Proof

By the definition of (pf, for any on E Q and 95k 6 63k

¢§(w)(95k) > 0 only if (p(w)(§k)(Aj) > 0 .

Since <p(w) is I‘k Bayes versus w in the J—problem

(O(w)(i~ck)(Aj) > 0 only if 3 an bj (a Bayes rule against an) E Aj such that

be

wu1(xk)50 VaeJ.

Using this fact with w = “’1 and w = a)? we obtain (2.43). n
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Theorem 2.2

Consider the compound procedures 59 and 53* defined in (2.14) and

(2.15) but assuming (p(w) is 1‘k Bayes against 111 in the J—problem.

Then, under (2.40) and assumptions of Theorem 2.1

(2.44) $111132) = O(N)

(2441* 12km!) = O(N)-v

2

Proof

With to, = w§(o) (cf. (2.16) ) and 1.12: HN (cf. (2.12) ) in (2.43),

an application of (2.23) of Lemma 2.3 yields

(2.45) 2 I ¢§(W§) e§IHNI > 0] so, N‘i,

and with “’1 = aHa—k (cf. (2.13)) and 1122 = HN in (2.43), (2.24) gives

*

(2.45) E. I 23,1104.) cp§IHNI > o I s c, N‘i.

For any compound decision rule Q = (6 ,....,6N) in the J—problem let

9‘ be the compound rule in the sub—problem given by Q‘ = (6f,...,61§).

Then v seeN and 15a5N

|L(aa,ia) - L(oa,i;)| g e

and, by integrating this with respect to P 0
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(2.46) was - Rad!“ s c v i e 9”.

Express DIME as

(2.47) nk(g,_i) = A1+ A2+ A3+ A4

with

N

A1=;1{Ra(£’9—Ra(£’f)}

A — I31 R 16‘ R” (H2‘3.—.1I a(r_)-E hams)”

N
__ k c _

A3 — 031 E {R (901$ (HN)) ,ea ”(HNH

and

N
k

A4 = 021 E {~00 ”(HN) " gay ”(GNU -

By (2.46) A1 5 Ne. Applying (2.42) with w = HN’ A3 5 N 6.

Note that the proof of Lemma 2.4 remains valid when a is the risk

vector associated with a 1‘1‘ Bayes rule in the J—problem.

Hence, an application of this generalized version of Lemma 2.4 gives

1}
A4 5 C2N .

Since Ra(Q,§‘) = 15; Rk(Qa,6;), on replacing 1p and (p' in (2.7) of

Remark 2.1 by I; and <p‘(HN) and applying Fubini, each summand in

A2 is bounded by

— k
(2.48) L I 1?an s [ a; i c§(HN) > o ] dp .

Taking if = (q in (2.48), we apply (2.45) to the inner integral and bound

the iterated integral by C1 r2 N“; .
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a: *

Similarly, we obtain the same bound by applying (2.45) with Q = (q

in (2.48).

12

Hence A2 5 I: C1 r2 NI when Q =[ *

g .

With these bounds substituted into the R.H.S. (2.47)

234.2)
2.49 ..

( ) 2112.2 )

J52Nr+c2Ni+fclr2N*.

Since the R.H.S. (2.49) is asymptotically equal to 2N6 we have proved

*

(2.44) and (2.44) . n



CHAPTER 3

EXTREMA or Eg(X) FOR GENERALIZED BINOMIAL x

WITH CONSTANT VARIANCE

3.1 Introduction and Statement of the Problem

Let S be the number of successes in n independent trials, and let

p = (p1,p2,....,pn) with pj denoting the probability of success of the jth

trial.

Hoeffding (1956) considered the problem of finding the extremum of

Eg(S), the expected value of a given real valued function g on the range of

S when 2 pi is fixed and proved that extrema are attained when

p1,p2,....,pn take on at most three different values, only one of which is

distinct from 0 and 1. In this chapter we consider the analogous problem of

finding the extrema of Eg(S) when var S = 2 pi(1—pi) = A is fixed and

prove (Corollary 3.2) that extrema are attained when pl’p2"“"pn take on

at most four different values only two of which are distinct from 0 or 1.

The proof basically depends on the functions fn—k,i defined in (3.5) and

the representation of f = Eg given in (3.6). The characterization of

extrema in Theorem 3.3 asserts that if a is an extrema of f and has at

least three unequal coordinates in (0,1) then, any point b E DA (cf. (3.3))

having the same number of zero coordinates and unit coordinates as a and

n n

satisfying .2 bi = 2 a. is also an extrema of f. To prove this

l=l i=1 1 ,

assertion, first we show, inductively (Lemma 3.2), the functions

fIHni(al""’m) in (3.6) with m = # of coordinates of a in (0,1), are

zero V 3 5 i 5 m. Theorem 3.1 covers the case m = 3 and i = 3. Then

II
1
:
4
8

a. with

m

we use the fact that, a E D and b e D and 2 b. =
A A . 1 1 1

1:1 i

27
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fn_m,i(al""’m) = o v 3 g i 5 m, in (3.6), to show f(a) = f(b) (cf. proof

of (3.23)). In Corollary 3.2 we exhibit such a point b 6 DA of the form

stated.

Theorem 3.1 is a corollary to Lemma 3.1 which in turn is a consequence

of the Implicit Function Theorem. Theorem 3.2 depends on a simple basic

result on the intersection of circles and lines, and is helpful in evaluating the

maximum.

3.2 Notations and Preliminaries

The notations used will be consistent with that of Hoeffding (1956).

For a p = (p1,p2,....,pn) with 0 5 pi 5 1

(3.1) 1(1)) = E(s) = 130 600 buyer)

with bn R(p) = P(S = k) given by

3.2 = - - -( ) bn,k(p) n 1'21 pJ (1 DJ)

{i : E i. = k}

i=1 1

where i = (i1,....,in) with ij 6 {0,1}.

For 03152511,

11

(3.3) DA={p|05pi5l,.2 (pi—.5)2=.25n—A}.
1: 1

i ,..,i

For any given a E Rn, a1 111 will denote the (n—m)—dimensional

vector obtained from a by deleting the coordinates i1,...,im.
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For any given a and b E It11 , a(bi ,...,bi ) will denote the vector

1 m

obtained from a when ai ,...,ai is replaced by bi ,...,bi .

1 m 1 m

Since f is symmetric under permutation of its coordinates and

linear in each coordinate, we can write

(34) f(p) = p, f,,_1,1(p‘) + f,,_1,0(p‘) v Isis n

where the functions fn_11 and fn_10 are independent of the index i

and symmetric and linear in the components of pi. In general, we will

define the functions fn—k,i by

fn,0(p) = f(p)

(3.5)

1,...,k+1 ...,k+1)1,

) + fn—k—1,i(p

05i5k;05k5n—1.

1,...,k _

fn—k,i(p I — p1<+1 fn—k—1,i+1(p

By repeated application of (3.5) to the R.H.S. of (3.4)

m

(3'6) f(p) = 20 cmi(p1,°"ipm) fn_rn,i(p H.

where

and,for15i5m

h
cmi(p1,...,pm) = the it symmetric sum of p1,...,pm.
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With (0r,1s) denoting the point in lit-Is whose first r coordinates

are 0 and the remaining 3 coordinates are 1, let

(Plrmrpm) E {(Om—th) : h = 0,1,...,m}.

Evaluating (3.6) at (0M,1h,pl’2""’m) V h = 0,...,i we obtain a

system of linear equations in fn—m h(pl""’m) ; 0 < h 5 1. By solving this

system for fn—m i(pl"°"m)

i . .
(3.7) fn—m,i(p1,...,m) = hEO (_l)l h [111] {(om—h,lh,p1,...,m) .

Evaluating (3.6) at p(a1,...,am) and substracting it from (3.6)

 

m (11 mp )
(3.3) f(p) — f(p(al,...,am)) = £1 [cm’i (a1.....a:) J fn_m,i(p1,...,m) .

In particular when m = 3

(3'9) f(p) - f(p(alia2133) = (P1P2P3 ’ 313233) fn_3,3(p1’2’3)

if

PI+P2+93=31+32+33

and

2 2 2 2 2 2
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3.3 Necessary Conditions for Extrema of Eg

In this section we state and prove two sets of necessary conditions

(Theorem 3.1, Theorem 3.2) for the maxima of Eg. The following lemma is

a consequence of the Implicit Function Theorem and will be used in the

proof of Theorem 3.1.

Lemma 3.1

Let h and k be functions from 113 me It defined by

h(x,y,z) = x + y + z

and

k(x,y,z) = x2 + y2 + 22 .

Suppose a = (al,aj,ak) 6 [0,1]3 is a solution to h = a and k = fl ,

where a and Q are known constants. If ai it aj , then there exists an

interval J containing ak and unique continuous functions tri and uj

defined on J such that V x e J the point

1100 = (11,00. 11,00. x) e [0.113

satisfy h(u(x)) = a and k(u(x)) = Q with u(ak) = (ai, aj, ak).

The interval J has the form

'(ak- 6. akl 10.1)? . {1}

(ak- 6, ak+ 6) if a e « (0,1)3

. Iak. ak+ 6) .(0.1)2 .. {0} .

(3.10) J A
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Proof

The functions h and k have the following properties.

(i) h and k are C1 functions on

136(4) = {x e n3 l IIx—all < t} , r>0.

(ii) h(a) = a k(a) = Q

6(h,k)

Xry

(iii) the Jacobian at a is non zero.

Therefore by Implicit Function Theorem 3 6 such that 0 < 6 < 6

and unique continuous functions ui and uj defined on the interval

(ak-Q, ak+6) such that V x E (ak—Q, ak+é) the point u(x) = (ui(x),

uj(x), x) e B€(a) with h(u(x)) = a, k(u(x)) = [i and ui(ak) = ai,

uj(ak) = aj.

Suppose (ai,aj,ak) e (0,1)3. Then for small enough 6 > 0 ,

B€(a) C (0,1)3. But the fact that 0 < 6 < 6 implies V x E (ak—Q, ak+6),

u(x) e (0,1)3.

Suppose (ai,aj,ak) 6 (0,1)2 x {1} , then for small enough 6 > 0 ,

B((a) C (0,1)2 x (0,1+6) . Therefore V x E (ak-Q, ak+6) the first and

second coordinates of u(x) are in (0,1). Hence V x e (ak-Q,ak],

u(x) E (0,113 .

By a similar argument we can show that V x E [ak,ak+0)

u(x) e [0,1)3 if (al,aj,ak) 6 (0,1)2 x {0} .

Thus, we have shown the existence of an interval J of the form stated

in the lemma. 0
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Remark 3.1

If two of ai, aj, ak are on the boundary of [0,1] the only solutions

in [0,1] for h = a and k = Q are the permutations of ai, aj, ak.

Remark 3.2

As a consequence of (3.10) of Lemma 3.1 for any (al,aj,ak,al) 6 (0,1)4

with o < ai # aj ,t ak< 1, we can always find a (bi’bj’bk) 6 (0,1)3 such

that

erasure

ai+aj+ak=bi+bj+bk

and

a?+a?+a§=b?+b§+bfi.

Theorem3.1

Leta maximizes f on DA andsupposefor i¢j¢k

ai ,I aj it ak with at least two of ai,aj,ak are in (0,1). Then

0 if one of the coordinates is 1

I
V

' ' k . 2
(3.11) fn_3,3(al’1’ ) = 0 1f (ai,aj,ak) 6 (0,1) , ai ,t aj it ak

0 if one of the coordinates is 0.

I
A

Proof

Let a +3 + =0: and a2+a2+ 2=fl
i j 31‘ . i j ak °

Since f is symmetric with respect to the permutation of ai,aj,ak

without loss of generality we will separate the assumptions of the theorem

into the following cases.
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(i) (ai,aj,ak) 6 (0,1)2 x {1} with ai it aj

(ii)0<ai#aj#ak<l

(iii) (ai,aj,ak) 6 (0,1)2 x {0} with ai it aj.

If a maximizes f on DA , then, by (3.6), with fn—3 k(aijk)

abbreviated to fk’ (ai,aj,ak) maximizes

F(x,y,z) = xyzf3 + (xy + yz + zx)f2 + (x + y + z)f1

on

D = [0.1130 New) I x2 2 2 2 2
_ 2 ._

+y +z — ai+aj+ak , x+y+z — ai+aj+ak } .

On D, xy + yz + zx = aiaj + ajak + akai and xyz = (z-ai)(z-aj)(z—-ak).

J={u|u=z with zED}.

Since ai )6 aj, by Lemma 3.1

  

'(ak- 6, akl . (i)

J = « (ak- 6, ak+ 0) if (ai,aj,ak) satisfy . (ii)

. [akr ak+ 5) . (iii) .

Therefore we must have

I 2 0 ’ right boundary point of J0

G'(ak) < = 0 if ak E < J0

. s o _ left boundary point of .10 .  

Since G'(ak) = (ak--ai)(ak—aj)f3 we have shown (3.11). n
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Theorem 3.2

If a maximizes f on DA then for any i#j

(3.12) (ai+aj-.5)fn_2,2(al’-I) + fn_2,l(al’1) . = 0

 I
V

C

(avaj) or (aj,ai) e {0} x (.5,1) U (.5,1) x {1} or 0 < ai = aj < .5

. . 2
1f ai ,1 aj w1th (ai,aj) E (0,1)

(ai,aj) or (aj,ai)e {0} x (0,.5) U (0,.5) x {1} or .5 < ai = aj <1.

Proof

Since f is symmetric with reSpect to the permutation of ai, a.i

without loss of generality we will assume that ai 5 aj .

If a maximizes f on DA , then by (3.6), with fk denoting

fn_2,k(alJ), (ai,aj) maximizes

F(x,y) = xyfg + (x + NH

on

D= [OSXSySl10[(X--5)2+(y--5)2=r2l

with

r2 = (ai — .5)2 + (aj - .5)2 < .5.

On D

2xy=(x+y)2—(x+y)+.5—r2

so that

F(Xri') = G(x + 3')

with

G(z) = .522 f2 + z(f1 - .5f2) + .5(.5 - r2)f2
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on

Z={z|z=x+y with (x,y)€D}.

Next we will show that Z is the union of [1 or 3] closed intervals. The

line x + y = z is a tangent to the circle (x - .5)2 + (y - .5)2 = r2

when 2 = 1 + 2Ir and intersects the circle when 2 E (l - 2*1', 1 + 2*r).

Hence if D c [0,1]2 ; that is, if

z E [l - 2Ir, l + 2Ir].

0 < r2 5 .25 then
3

If .25 < r2 < .5 , then

ze[1—2*r,.5-5]u[.5+ 6, 1.5—610[1.5+6,1+22r]

with 6 = (r2 - .25)I.

 

(13:21

(1°5+8 ,

(1.5-8)

(54-8)

(05-8)

(i-E'r)

+155

   
 

Since Z is the union of [l or 3] closed intervals, with G'(ai + aj)

denoting G'(z)] , we must have
ai+a.
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G'(ai + 3].) = 0

left boundary point of 20

. 0
1f ai + aj E Z

right boundary point of Z0 .

In terms of (ai,aj) E D

5 0

G'(ai + aj) ] = 0

Z 0

(ai,aj) E {0} x (.5,1) U (.5,1) x {1} or 0 < ai : aj < .5

if 0<ai<aj<1

(ai,aj) E {0} x (0,.5) U (0,.5) x {1} or .5 < ai = aj <1.

Since G'(ai + aj) = (ai +aj — .5)f2 + fl the proof of the theorem is

complete. 1:)

Corollary 3.1

If a maximizes f on DA andif 0<a1#a2#a3<1,then

1,2,3 1,2,3) = 0 .
(3.13) (a1 + 3.2 + a3 — .5) fn_3,2(a ) + fn__3,1(a

Proof

Since 0 < a1 it 32 < 1, by (3.12)

(3.14) (a1 + a2 - .5) fn_2,2(a1’2) + fn_2,1(a1’2) = 0 .



38

By (3.5)

1,2 1,2, 1,2,3
(3.15) fn_2,2(a ) = a3 fn_3,3(a 3) + fn_3,2(a )

and

12 12 1,2,3
(3.16) fn_2,l(a 1 ) = a3 in4,2(11 1 13) + fn_3,1(a ) .

3' 1,2,3 _ . .
ince 0 < 31 it a2 it a3 < l, by (3.11) fn—3 3(a. ) — 0. Usmg this

fact in (3.15) and then, substituting for fn—2 2(111’2) and fn_21(al’2) in

(3.14), yields (3.13). n

3.4 Characterization of Extrema

Theorem 3.3.

Suppose a maximizes f on DA and, has at least three unequal

coordinates in (0,1).

(i) If h is any other point in DA with the same number of zero

ll
M
i
: n

and unit coordinates as a and b. = 2 ai , then b also

=1ii1 i

maximizes f on DA'

(ii) If a has exactly r1 unit coordinates and A1: 2 ai

{i|0<ai<1}

then

(3.17) f(a) = .5(1 —11)2 {g(rl) -— 2g(r1 + 1) + g(rl + 2)} + g(r1) .

Lemma 3.3

Let 3 5 m 5 n and Ak denote the statement that

fn—k,i(ak+1"""an) — 0 V 3 5 i 5 k

and
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k

If, 21 ‘ '5) fn—k,2(ak+l"""an) + fn—k,l(a’k+l"""an) = 0 V 1‘ 3 2 1

if a is a maximum of f such that (al,a2,....,am) e (0,1)m with at

least three unequal coordinates and others 0 or 1.

Then Ak holds if 35k5m.

Proof

The proof is by induction. Without loss of generality we will assume

21 9‘ a2 2 23 °

That A3 is true follows from (3.11) of Theorem 3.1 and (3.13) of

Corollary 3.1.

Assume that Ak is true for a k with 3 5 k < m .

Suppose that

3(b1,....,bk) = (b1,....,bk,ak+l,....,an)

satisfy

k k

k k

i=1 i=1

(3.20) 05bi51V1515k.

Then, from (3.18) and (3.20) it follows that a(bl,....,bk) 6 DA , from

(3.18) and (3.19) we obtain

k k

(3.21) 2 b.b. = 2 aa .

{(iiliii} ‘1 {(idIia} ‘1
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From (3.8) with m replaced by k there and the induction hypotheses

(i.e. fn—ki = 0 V 3 5 i < k) we obtain

[
0

31,....,ak

bl,....,bk

(3.22) f(a) - f(a(bl,...,bk)) = .1: [cm

 

J fn-k,i(ak+1"""an)’

V 15i5k.

But (3.19) and (3.21) implies that each of the differences of the

symmetric sums in the R.H.S. (3.22) is zero. Hence

(3.23) f(a) = f(a(bl,...,bk)) for every such a(b1,...,bk) .

Since (al,a2,a3) 6 (0,1)3 with al ,t :12 it a3 , by Remark 3.1 we can

find a (b1,b2,b3) 6 (0,1)3 such that

bl+b2+b3=al+a2+a3

2 2 2_2
bl+b2+b3—al+a2+a3

and

0<b1#b2#b3#ak+l<l.

For such a choice of b1’ b2, b3, h3 = (b1,b2,b3,a4,...,an) 6 DA and

satisfies (3.23). Since f is symmetric with respect to the permutation of its

coordinates, f will also be maximized by the permuted points b5 , bé' of

b3 given by

bé = (ak+1,b2,b3,a4,....,ak,bl,ak+2,....,an)

bé' = (ak+1,b1,b3,a4,....,ak,b2,ak+2,....,aI1) .

The first k coordinates of b], and bé' are in (0,1) with at least

three unequal ( mainly the first three) coordinates. Hence, by the induction
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hypotheses, V35i5k

fn—k,i(b1’ak+2,....,an) = 0

and

fn_k,i(b2,ak+2,....,an) = 0 .

By (3.5) we can write the above two equations as

b1 fn—k—1,i+1(a’k+2"""an) + fn—k—l,i(ak+2"""an) = 0

and

b fn—k—1,i+1(ak+2"""an) + fn—k—1,i(ak+2"""an) = 0 V 3 5 i 5 k.
2

Since b1 it b2, this implies that

fn—k-l,i+l(ak+2""’an) = 0

(3.24)

fn—k—1,i(ak+2’ ....,an) = 0 V i 5 3 5 k.

Also by the induction hypotheses

k

(3.25) (igl ai — .5) fn-k,2(ak+l"“"an) + fn—k,1(ak+1"""an) = 0 .

Applying (3.5) for the functions fn—k,2 and fn—k,1 in (3.25)
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k

(121 2‘i ‘ '5) 21+1 fn—k—l,3(ak+2”""an)

k

(3.26) + (if-1 ai - .5) fn—k—1,2(ak+2,....,an)

+ak+1 fn‘1‘“1r2(ak-l~2"°"’a‘n) + fn—k-l,1(ak+2”°°"an) = 0 '

By (3.24) the first term in the L.H.S. (3.26) is zero and the rest of the

equation simplifies to

k+l

(3.27) (igl ai — .5) fn—k—l,2(3’k+2"""an) + fn—k—l,1(ak+2"""an) = 0 .

(3.24) and (3.27) implies Ak+1 is true, thus proving the lemma. 0

Proof of Theorem 3.3

Suppose a maximizes f over DA with r0 zero coordinates and

m = n — r0 - r1 coordinates in (0,1). We will take a1,....,aIn to be

those coordinates and assume a1 ,1 a2 it a3 . Then with k = m in

Lemma 3.3, AIn holds for any b that satisfies the hypotheses (i) of

Theorem 3.3 and by (3.23) f(a) = f(b) , thus proving (i) of Theorem 3.3.

To prove (ii) of Theorem 3.3 we first observe that

m 2
(3.28) A = A - 2 a.

r r

and we can put a1’°""m = (0 0,1 1).

Then by AIn of Lemma 3.3

ro‘Ii
(3.29) (0 ,1)=0 V35i5mf .

n—m,1
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and

m r0 r1 r0 r1

(3.30) (£1 ai - .5) fn_m,2(0 ,1 ) + fn—m,l(0 ,1 ) = 0 .

Applying (3.29) with (3.6)

0 I1
(3.31) f(a): aiaj fn-m2(0 ,1 )

m r

+ £1 al in_m1(0°,1l) + in_m,0(0 0,1 1).

From (3.28), (3.30) and (3.31) it follows that

2 r0 r1 20
(3.32) f(a) = .5(1 — A1) in__m,2(0 ,1 ) + fn_m,0(0

fn,—m1 11:0

and from (3.1)

so , )=nh+q)

Therefore,

(3.33) f—n—miIOO,11) = hi0 (——1)“11 [1‘1] g(h + r1).

(3.33), with i = 2 gives

1' l'

0 l

fn_.m,0(0 ’1 ) = g(rl)

and, with i = 2 gives
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r0 r1

fn—m,2(0 ,1 ) = g(rl) — 2g(rl + 1) + g(r1 + 2) .

The apprOpriate substitutions from the above two equations into (3.32)

gives (3.17), thus proving (ii) of Theorem 3.3 . 0

Corollary 3.2

Let D0 = { p 6 DA | p1,p2,...,pn take at most four different values

only two of which are distinct from 0 and 1}.

Then, extremum f(p) = extremum f(p) .

p 6 D0 p 6 DA

Proof

Since, Corollary 3.2 is trivially true when A = 0 or A = .25, without

loss of generality we will assume 0 < A < .25 By (i) of Theorem 3.3 f

1 m 1'0 r1
will also be maximized by any point b with b "”" = (0 ,1 ) and

m m

2 bl = 2 ai In the following we show that there exists such a b of

i=1 l=l

n-so—sl-l s0 31

the form (c ,d,0 ,l ) with so 2 r0 and 312 r1.

m m 2

Let Al=13ai sothat 2a.=Al-A.

i=1 i=1 1

Since 0<al<1V15i5m ,m>Al>A1—A>0 and

2
m(A1-A)>A1>Al—A>0.

For a suitably chosen k, 1 < k 5 m we will define

)
k m “‘1

(b1,....,bm) = (c ,d,0 0,1

where

m020,m1=m—(mo+k+l)

c=(Al-ml)(k+1)—1+6, d=c—(k+1)6
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with

i = {(k(k + 1))"1 (Il — 1nl — .1 — (.11 - ml)2(k + 1)‘1)}*.

Then by definition of c and d

(i) kc+d=Al-ml

(ii) kc2+d2=Al-ml-A

(iii) d < c

(iv) c and d are real numbers if

—1
05(A1—m1)2(A1—m1-A) Sk+1

. -1
(v) d>0 if k<(Al—m1)(Al—m1—A)

and (vi) c<1if(Al—m1-k—.5)2+A-.25>0.

The conditions in (iv) — (vi) can be met by choosing

   

. 2 -1 . r
[A1(A1—A) ] 0 m—k—l

k=In—1 ,m1=40 , m0=‘0

‘1 _r—1 Lm-r—l

if

IA_>_.25

<m—1+(1-2A)2<A1<m with A<.25

_Av(r —1+(1—21)*)< Al5r+(1-2A)i with 1<.25 for 

some 15r<m—1.

s s

For these choices of k, m1, m0 the point b = (ck,d,0 0,1 l) with

80 = r0 + m0 and s1 = II + m1 is in DA thus proving the existence

of a point b of the form stated in Corollary 3.2 and hence proving it.
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