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ABSTRACT

NONLINEAR SEISMIC ANALYSIS OF STEEL ARCH BRIDGES

BY

Chung-Hing Lee

This study presents a method for the nonlinear seismic analysis

of steel arch bridges. The effects of either geometric or material

nonlinearity have been taken into account. The effects of such

nonlinearities enter in the analysis through the computation of the

"resistance" of the arch ribs.

The elasto-plastic resistance of a curved beam element has been

derived using the plastic potential theory as applied to stress

resultants. For geometric nonlinearity, a twelve degrees of freedom

incremental stiffness matrix was also derived. A computer program was

prepared for the implementation of the time-history analysis.

Three bridge models: Medium Span Bridge, Short Span Bridge and

Long Span Bridge, based on three prototype bridges, Cold Springs Canyon

Bridge (700 ft), South Street Bridge (193 ft) and New River Gorge Bridge

(1700 ft), respectively, were used to obtain the numerical results.

Three-dimensional models were employed to consider the nonlinear

inelastic effects. Results for nonlinear elastic solution were based on

two-dimensional models. The ground motion used was the artificially

generated motion CIT-A2 with different amplification factors applied to

induce nonlinear effects.



From time histories, it is seen that even for the nonlinear

cases the responses were generally dominated by the "fundamental modes"

(either in-plane or out-of-plane) except at those points where the

fundamental modal response is small. The history curves of nonlinear

elastic responses exhibited different periods of vibration. In general,

the dominant period increased by 5% to 10% from that of the linear

solution.

For the maximum force responses involving material nonlinearity,

plasticity limited the magnitude of the internal force response to that

as defined by the yield function. It follows that if plastic

deformations are allowed, the design forces may be reduced from that

which would be required if the design is to be done on a linearly

elastic basis.

Time histories of work and energy distribution indicated that

the dissipated damping energy (for a 1.5% damping ratio) is over 70% of

the work done for all models. When the damping ratio was varied from

0.25% to 5%, the percentage of damping energy to work done changed from

50% to 96%. These observations emphasize the importance of damping in

the response.
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CHAPTER I

INTRODUCTION

1-1 GENERAL

Bridges form vital links in land transportation systems. The

recent Lama Prieta Earthquake caused the collapse of more than a mile of

elevated highway (essentially bridge-like structures) on I-880 and

serious damage to the Bay Bridge in San Francisco. It again bespeaks the

importance of seismic effects on the safety of bridges. Actually,

significant damage to bridges had occurred in the 1971 San Fernando

. earthquake and highlighted the need for reassessment of existing seismic

design practice for bridges. A series of studies had since been

conducted on the safety of highway bridges under earthquake loads. Those

studies have been reported for long multiple span highway bridges ([16],

[35], [36], and [37]), suspension bridges ([1], [2], [3], [4], [5], and

[17]), and steel deck-type arch highway bridges ([10], [11], [12], and

[13]).

The study reported here represents an effort to develop a method

of analysis for the nonlinear behavior of arch bridges subjected seismic

loading. The two nonlinearities of structural behavior are ”material

nonlinearity” that originates from the plasticity of the material, and

"geometric nonlinearity" (nonlinear elastic effects) which represents

the effects of the distortion of the structure on its response.
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The major objective of the study is to present a method of

analysis for the seismic response of arch bridges that takes into

account the effects of geometric nonlinearity or material nonlinearity.

Included in this objective is the development of a computer program that

carries out the necessary computations for the analysis.

The second objective is to use the computer program to obtain

certain numerical results based on a reasonable modelling of several

real steel deck-type arch bridges subjected to earthquake motions.

Included in this objective is the interpretation of the numerical

results with a view to greater understanding of the seismic behavior of

such bridges. It is hoped that the analysis and the computer program

developed may serve as tools for further research in this area, and the

numerical results presented may point to directions leading to the

development of improved design procedure for such structures.

In Chapter II the structural system is introduced and the method

of analysis is presented. For the analysis, the mass matrix is

formulated by the lumped mass approach and the damping matrix is of the

Rayleigh type. The structure system model features "mixed nodal

coordinate systems”: cartesian coordinates for deck nodes and

curvilinear coordinates for arch rib nodes. In consequence, no

coordinate transformations are needed for the beam elements as their

element coordinates are the same as the system nodal coordinates.

Another means employed to make the computational procedure more

effective is the use of constraints that correspond to the assumption

that the axial stiffnesses of certain members are infinitely large, thus

reducing the number of degrees of freedom.
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The effects of either geometric or material nonlinearity are

included in the analysis. The computational procedures of the nonlinear

I'resistance" for both nonlinearities are derived. For material

nonlinearity, a method of analysis is developed for the elasto-plastic

resistance of a curved beam element based on the “plastic hinge“

concept. The yield function is based on three stress resultants: P

(axial force), M.y (in-plane bending moment) and Mx (out-of-plane bending

moment). For geometric nonlinearity, a twelve degrees of freedom

incremental stiffness matrix is derived.

For the solution of the equations of motion, the method is one

of a step-by-step numerical integration in the time domain coupled with

a Newton-Raphson scheme implying an outer loop of iteration for the

equilibrium of the system. For each elasto-plastic element, an inner

loop of iteration is needed because of the material nonlinearity.

Measures of the inelastic response such as "curvature ductility factors"

and ”plastic work densities" are defined. As a check on the validity of

the procedure, a work and energy balance for the system is considered. A

computer program is prepared to implement the three-dimensional

nonlinear seismic analysis described above.

In Chapter III three real steel deck-type arch bridges: the Cold

Springs Canyon Bridge (CSCB) in California, the South Street Bridge

(SSB) in Connecticut, and the New River Gorge Bridge (NRGB) in West

Virginia are chosen to be the prototypes for the medium span bridge

(MSB), the short span bridge (SSB), and the long span bridge (LSB) used

for numerical studies. The bridges are modelled by using curyed beam

elements for the arch ribs, straight beam.and truss elements for the

deck system, columns, and bracing systems. It should be noted that while



4

CSCB and SSB each has two ribs with a solid box cross-section, NRGB has

a single box rib with each side a truss.

“True" three-dimensional models for MSB and SSB and "one-plane"

three-dimensional model [12] for LSB are used to consider material

nonlinearity. For studies on geometric nonlinearity, only motions in the

vertical plane of the rib(s) are considered and simplified two-

dimensional models used.

The ground motion used is the artificially generated motion

CIT-A2 [18] with amplification factors applied to induce nonlinear

effects. Nonlinear behavior due to material inelasticity is presented

first, followed by behavior due to geometric nonlinearity.

For comparision purposes, numerical results of the linear

response are also obtained. The time history curves are presented for

displacements (horizontal-X, vertical-Y, and lateral-Z), and for

internal forces (axial force P, in—plane bending moment My, and out-of-

plane bending moment Mx) at selected points.

From time histories, it can be seen that even for the nonlinear

cases the responses were generally dominated, as expected, by the

“fundamental modes” (either in-plane or out-of-plane) except at those

points where the fundamental modal response is small. However, the

higher modes, up to the fourth mode, can be significant. For example,

the response of the vertical displacement time history at the crown

point for LSB was primarily in the second and fourth in-plane mode. This

fourth in-plane mode is overall the ninth mode (i.e., counting in-plane

and out-of-plane modes together) for the LSB model.

For the displacement time history curves, the wave patterns for

the linear elastic and nonlinear inelastic cases are quite similar. But
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the wave patterns for geometric nonlinear case differ more (about 9% for‘

the fundamental mode and lower for higher modes) because of the changes

in the natural periods due to stiffness differences. The maximum

displacement responses, obtained by considering either material or

geometric nonlinearity, are not much different from those of the

linearly elastic analysis. For all models, the maximum displacement was

about 1% of the arch height in the horizontal direction, 2.5% in the

vertical direction. In the lateral direction, the maximum displacement

was about 8% of the arch height for MSB and 3% for SSB and LSB.

Although the wave patterns of the internal force (stress

resultants) time histories are quite similar between the elastic and

inelastic cases, the magnitudes of the maximum internal forces differed

considerably. If inelastic behavior is allowed in the structural system,

because of the definition of yield function, the internal forces (P, M

y

and Mx) are bounded by the fully plastic values (PO, and Mx0)' The

“yo

maximum values of such forces were about 20% less than those obtained

from a linearly elastic analysis. This ”force reduction“ was realized at

a price of plastic deformations in the structure. This led to the

consideration that, if one is willing to accept such plastic

deformations, the structure could be idesigned" with a ”reduced load."

For the geometric nonlinear cases, the wave patterns of internal force

time histories, as in the case of displacement time histories, differed

from the linear elastic ones. However, there is no appreciable

difference in the maximum values of the internal forces obtained from

the linear elastic and nonlinear elastic solutions.

During an earthquake energy is fed through the base of the

structure. It is instructive to know how the energy is distributed in
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the structural system during the earthquake loading. The work and energy

balance equation of the system is written by setting the work done by

the support reactions and by gravity loads equal to the sum of the

recoverable strain energy, irrecoverable (plastic) strain energy,

kinetic energy, and the energy dissipated by damping. From the work and

energy distribution time histories, the dissipated damping energy (for

a 1.5% damping ratio) was over 70% of the work done for all cases. When

the damping ratios were varied from 0.25% to 5%, the percentages of

damping energy to work done changed from 50% to 96%. In the inelastic

analyses, about 15% of the work done was dissipated by irrecoverable

strain energy.

1-3 W

A Response of arch ribs (with no deck system) to earthquake

shaking was reported by Thakkar and Arya [33]. The study was limited to

linearly elastic behavior of a single rib subjected to in-plane motion

only. A study of the in-plane strength of deck arch bridges under

longitudinal ground motion was reported by Kuranishi and Nakajima [19].

Dusseau and Wen ([10] and [11]) have reported the elastic

seismic responses of two existing arch bridges: the Cold Springs Canyon

Bridge (CSCB) in California and the South Street Bridge (SSB) in

Connecticut. Free vibration characteristics were studied. Seismic

responses in all three dimensions were estimated from a "normalized rock

spectra” [16] using an input ground acceleration level of 0.50 g and

0.09 g, respectively for the California bridge and Connecticut bridge.

Dusseau and Wen ([12], [13]) have also studied the effects of unequal

motion at the supports of three deck arch bridges: CSCB, SSB, and New
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River Gorge Bridge (NRGB) in West Virginia. In using time history

analysis with step-by-step numerical integration, a ”one-plane model"

was introduced to decrease the number of degrees of freedom. In this

model a transverse cross-section of the arch rib(s) is modelled as that

of a single beam element. Thus for a two rib bridge, in lateral

response, each rib would act as a flange of a beam.

A key factor in the nonlinear dynamic analysis of a bridge is

the structural stiffness. Studies on the material nonlinear static

behavior of a beam-column member by various investigators have been

discussed in a treatise by Chen and Atsuta [6]. In particular, the yield

surface for a cross-section and the behavior of a segment have been

described in some detail. For elasto-plastic statical problems the

..concept of plastic potential theory using stress resultants as

generalized stresses has been adopted by Hodge [15], Morris and Fenves

[21], and others.

A method for the small displacements analysis of three-

dimensional inelastic frames subjected to static loads has been

described by Morris and Fenves [22]. The elements are assumed to be

elastic-plastic and to yield at generalized plastic hinges, the behavior

of which is governed by four dimensional curved yield surfaces. To

insure that the point representing the end forces on any element does

not travel outside the yield surface, when such a point reaches the

surface it is drawn back a small distance and constrained to move

tangent to the surface.

The dynamic response of three dimensional frames with elasto-

plastic elements has been studied by Nigam [23]. The elements are

assumed to yield at generalized plastic hinges governed by two
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dimensional circular yield surfaces. For each load increment the

increments in member and forces at each plastic hinge are constrained to

move in the tangent plane to yield surface, and a new tangent stiffness

is formulated for each load step. Nigam's formulation of the problem was

not in matrix algebra, and consequently the equations involved are

somewhat complex. A concise and general matrix form was presented by

Porter and Powell [26].

A more general form of the stiffness of a beam element was

derived by Wen and Farhoomand [38]. They carried out dynamic analysis of

three dimensional frames in which the yielded regions were assumed to

have finite length. The elasto-plastic elements are assumed to be

governed by a four dimensional parabolic or elliptic plastic potential

function. An iterative procedure was described that would keep the force

vector on the curved yield surface during yielding. To keep the force

point on the yield surface during yielding, several approaches including

iterative procedures [38] and one-step approximate force corrections

[29] have been proposed.

Chang and Kitipitayangkul [7] adopted a different approach from

the plastic potential theory to handle the elasto-inelastic analysis of

building frames. The force-deformation relationship for each pair of

generalized stress and strain was taken to be of the Ramberg-Osgood

hysteretic type. However, the yield values of the various generalized

stresses were governed by appropriate interaction equations such as

given by Tebedge and Chen [31]. The effect of torsional moment was also

included in the interactive behavior on the basis of Von Miss' yield

criterion as was used in Ref. [21]. Powell and his co-workers [28] had

employed two and three parallel elements to represent a single element
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and thus strain hardening effects may be considered.

A number of investigators (See, for example, in [30], [19], and

[42]) had formulated and analyzed the nonlinear problem at the stress,

rather than stress-resultant level. Such approach, although more refined

than the stress-resultant formulation, generally requires considerably

more computational resource for a given physical problem.

For the consideration of geometric nonlinearities, the tangent

stiffness matrix may be formed by adding the initial and geometric

stiffness matrices. Many studies have been reported on the subject

(e.g., [8], [24], [27], [32], and [40]). Among them Oran [24] has

presented the nonlinear elastic tangent stiffness matrix of a straight

beam element which is exact within the framework of the elastic beam-

column theory. The expressions involve the axial force as a parameter

that requires iterations for its determination. A nonlinear elastic

tangent stiffness matrix based on a finite element approach [40] has

been shown to be quite accurate for problems that do not involve very

large displacements (for example, of the order of the dimension of the

structure itself). It would cover the great majority of civil

engineering structures.

A method of analysis for investigating the stability of complex

structures has been described by Toridis and Khozeimeh [34]. The general

approach is based on the finite element method and incremental numerical

solution techniques. This incremental loading approach has been used

with no equilibrium check. In the incremental solution process, the

stiffness properties of the structure are continuously updated in order

to properly account for large changes in the geometry of the structure

(i.e., to take into account the effect of the geometry of the deformed
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structure on the instantaneous stiffness matrix).

Both material and geometric nonlinearities were considered for

the frame structures by Porter and Powell [26]. The geometric

nonlinearity was considered in two-dimensional problems and only static

loads were applied. The elasto-plastic stiffness and geometric stiffness

of straight member have been derived. A general computational procedure

has been described for the collapse load analysis of statically loaded

plane frames and the analysis of dynamically loaded inelastic frames.

For arch buckling analysis, the linear and incremental stiffneSs

matrices of a curved beam element deformable in three dimensional space

have been described by Wen and Lange [39]. In developing a nonlinear

curved beam element of general shape, the geometry of the curved axis of

the element is represented by a fourth-order polynomials in terms of the

inclination angle with the tangent at a member end, and the displacement

functions are approximated by cubic polynomials in the same variable.

The linear stiffness matrix [k] and the first and second order

incremental stiffness matrices, [n1] and [n2] were derived by

differentiating the strain energy.

1.4 NQIAIIQN

The notations shown below has been used in this report:

A - cross-sectional area;

B - width of the cross-section;

b2,b3,b4 - curved beam element geometry coefficients;

[C] - viscous damping matrix;

c - subscript denoting "constrained";

D - depth of the cross-section;
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E - Young's modulus of elasticity;

ED - energy dissipated by damping;

EK - kinetic energy;

ESE - recoverable strain energy;

ESP - irrecoverable (plastic) strain energy;

e - superscript denoting ”elastic part";

e - subscript denoting “elastic part";

Aes - incremental strain energy;

Fe - maximum force by elastic analysis;

F1e - maximum force by inelastic analysis;

Fy - yield stress;

g - gravitational acceleration;

h - time interval;

Ix - moment of inertia about the x-axis;

Iy - moment of inertia about the y-axis;

[J] - Jacobian matrix;

[kt] - elasto-plastic tangent stiffness matrix;

[k]; [k0] - linear elastic stiffness matrix;

[ke] - elastic stiffness matrix;

[M] - lumped mass matrix of the entire structure;

Mi - bending moment about x-axis;

My - bending moment about y-axis;

"x0 - fully plastic bending moment about x-axis;

M&O - fully plastic bending moment about y-axis;

[m] - lumped mass matrix of an element;

[n1] - first order incremental stiffness matrix;

[n2] - second order incremental stiffness matrix;



(P)

(P)

{Q}

{dql

12

axial force;

fully plastic axial force;

superscript denoting “plastic part";

subscript denoting ”plastic part";

external load vector;

external static load (dead load) vector;

member end force vector;

incremental displacement vector;

radius of curvature;

X component of reaction at support 1;

Y component of reaction at support 1;

2 component of reaction at support i;

radii of curvature at ends of an element;

resistance vector;

section modulus about the x-x axis;

section modulus about the y-y axis;

longitudinal axis of curved beam element;

superscript denoting matrix transposition;

time;

thickness of flange;

thickness of web;

beginning and end time of the time interval h;

ground displacement component in x direction for node R;

ground displacement component in y direction for node R;

ground displacement component in z direction for node R;

subscript denoting "unconstrained";

ground motion component;
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displacements along x, y, z axes, respectively;

incremental support or ground displacement vector;

vertical displacement at node D and E;

hinge volume for Mx;

hinge volume for My;

hinge volume for P;

relative displacement vector;

incremental relative displacement vector;

incremental relative velocity vector;

incremental relative acceleration vector;

work done by gravity loads;

work done by support reactions;

total displacement vector for unconstrained degrees of

freedom;

plastic work done by M.x in time interval h;

plastic work done by My in time interval h;

plastic work done by P in time interval h;

dimensionless plastic work quantity;

strain energy per unit volume of material at yield;

incremental displacement vector;

incremental velocity vector;

incremental acceleration vector;

cartesian coordinate system;

ground displacement components in cartesian coordinates;

curvilinear coordinate system;

incremental horizontal ground displacement at support 1;

incremental vertical ground displacement at support i;
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incremental vertical displacement of node point j;

incremental lateral ground displacement at support 1;

parameters used for definition of displacement functions;

constants for Rayleigh type damping matrix;

transformation matrix;

tolerance for yield function;

yield strain;

tolerance vector of force or moment;

tolerance vector of displacement or rotation;

scalar tolerance of work;

angle that the tangent at the node makes with the global X-

axis;

rotations about x, y, z axes, respectively;

plastic rotation about x-axis;

plastic rotation about y-axis;

plastic axial displacement;

flow constant, a positive scalar;

transformation matrix;

curvature ductility factors for out-of-plane bending;

curvature ductility factors for in-plane bending;

ductility factors for axial strain;

yield function;

linear response factor;

angle of the tangent measured with respect to the tangent

at a reference and (Fig. 2-5);

incremental operator;

prefix denoting "gradient";
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column vector;

row vector;

rectagular matrix;

d( )/dt;

d2( )/dt2;



CHAPTER II

ANALYSIS AND METHOD OF SOLUTION

2-1 emu

For purposes of analysis, the bridge structure is modelled by

finite elements: truss, straight beam, and curved beam elements. A

three-dimensional version of the model is shown in Figure 2-1.

Generally, the bridge consists of two arch ribs (modelled by curved beam

elements) and a deck (by straight beam elements) and columns (by truss

elements) between the ribs and deck. The cross-beams between the ribs

and the deck girders are modelled by straight beam elements. The other

bracings are modelled by truss elements.

For the analysis, mass is lumped at the nodes. The system

equation consists of the equations of motion for the unconstrained

degrees of freedom of the nodes. These degrees of freedom are described

in cartesian coordinates for the nodes on the deck, and curvilinear

coordinates for nodes on the ribs. Thus there are two kinds of nodal

coordinates: one cartesian, the other curvilinear (See Figure 2-2).

The analysis considers response due to either geometric or

material nonlinearity that are associated with the curved beam elements.

The straight beam and truss elements are presumed to be linearly

elastic. The method of analysis is one of a step-by-step numerical

integration in the time domain. Within a time increment, the method of

solution is essentially one of the Newton-Raphson type which calls for

16
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an "outer loop" of iteration for the dynamic equilibrium of the nodal

degrees of freedom. In the case of elasto-plastic behavior an "inner

loop" of iteration is necessary to satisfy the constitutive equation of

the element involved.

In this Chapter, in addition to the method of analysis and

solution, certain measures of the inelastic responses, i.e., "plastic

work densities” and ”ductility factors”, are presented. The computation

of work and energy balance is also described.

2.2 W

Let {wu} denote the unconstrained degrees of freedom (generally

those of the interior nodes of the structure) and {we} the constrained

degrees of freedom (generally those of the external nodes or supports

that are constrained to be equal to prescribed ground displacements). As

noted previously, for a node on the deck, the equation of motion is

written in the usual cartesian coordinates, and for a node on the ribs,

it is written in curvilinear coordinates; See Figure 2-2. The assembled

set of equations of motion or dynamic equilibrium may be written as

follows:

[Mllfllfiil [Cllclh'vl {R} {P}

[Mcu] [Moe] {we} [Ccu] [Ccc] {we} {Rc} {Po}

in which the [M]'s are mass submatrices, the [C]'s are damping

submatrices, {Ru} and {Re} are resistances resulting from deformations

of structural elements, {Pu} and {Po} are external loads. The subscripts

"u” and ”c" denote ”unconstrained" and "constrained"; the superscripts

of ”dots" denote time derivatives.
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For lumped mass inertia, the cross submatrices [Muc] and [Men]

are null. It is assumed also that damping is due entirely to the

velocities associated with the unconstrained degrees of freedom, i.e.,

[Cue] - [Ccu] - [0]. Writing [M] for [Maul’ [C] for [Cuu]’ {R} for {Ru},

{P} for (Pu), and (w) for [wfi}, the equations of motion for the

unconstrained degrees of freedom are

[ulna + [61167) + {R} - {Pl - {0) am

In an earthquake response problem, the real dynamic load {P} is

in general null. The driving mechanism is contained in the resistance

term [R] which depends on the and displacements of the structural

members. For members that are connected to the ground, the displacements

at those ends are constrained to be equal to that of the ground motion.

As those member forces change, they would disturb the equilibrium of the

structure.

The detailed procedure of analysis is given in the next section.

2.3 W

The equations of motion for the unconstrained degrees of freedom

may be represented as:

tin" - [mm + [01m + {m - {P} - {0) (2-3)

For a numerical analysis of the problem, consider the solution

involved in a typical time interval h from time t to time t - t + h.
0 l 0

The equations of motion will be integrated numerically using a stable

scheme, e.g., the Newmark fl - 1/4 method.

ml - mo + (h/2)({ii}o + ml)

””1 - mo + (rt/mono + m1) (2-4)

in which the subscripts “0” and "1” denote the beginning and end of the
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time interval. Substituting Eqs. 2-4 into Eq. 2-3 for t - t one
1’

obtains

when,» - [Mlmm - h MONA/1:2) - mo] + [C][2{Aw}/h

- {wlol + (Rio + {AR} - {P10 - {AP} - {0} (2-5)

in which the symbol A is used as a modifier signifying the change of the

modified quantity from t to t thus, {Aw} - {W}1 ' {w}01

o 1‘

{AR} - (R11 - (Rio. and {AP} - {P11 - (Plo-

In order to compute {Aw}, the Newton-Raphson method of iteration

is employed. For the (k+l)th iteration, the procedure calls for a

solution of 8({Aw})k+1 - {Aw)k+1 - {Aw}k from the following linear

equation

.111" 5 11* 26l (l l .{Awl)k] ({Awl)k+1 - -l l k ( ' )

in which [J({H}*,{Aw})k] is the Jacobian matrix of {H}* with respect to

{Aw}. i.e., its i-j entry - 8H*1/6ij with H*i denoting the ith element

of {H)* and Aw} the jth element of {Aw}, evaluated at {Aw} - {Aw}k, and

—[H}*k is evaluated from Eq. 2-5 with {Aw} - {Aw}k. It follows from Eq.

2-5 that

IJ<tm*.tAwm - [ta/hznm + ZICI/h + [Klw] (2-7)

in which [K]ww - dlAR}/6{Aw} - the tangent stiffness matrix.

The solution procedure for the overall problem may thus proceed

as follows:

1. Perform a linear static analysis under initial static load

(Fla.

2. At time t - 0, set {R} - {P}s, i.e., initially the structure

is in equilibrium with such static load as the dead load. Set

{w(0)} - {0}, i.e., the datum of displacement corresponds to

the initial static deflection due to {P}s. The initial
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velocity {w(0)} is presumed known (generally equal to null).

The initial acceleration vector {W(O)} may be thus computed

from Eq. 2-3.

3. For each time step thereafter {w}0 and {w}0 are known. Set

{Aw}k_o equal to the null vector (i.e.,

{w(t1)}k_0 - {w(to)}). For the (k+1)th iteration,

[Klww,k - the tangent stiffness matrix corresponding to {Aw}k

can be updated. (One may also choose to use the "modified

Newton-Raphson method" which avoids such updating but

generally at the expense of more iterations.) The incremental

resistance vector {AR}k are obtained from summing the

incremental resistances of the structural elements.

4. Thus 6({Aw})k+1 can be solved from the set of linear

equations, Eq. 2-6, and {Aw}k+1 is computed as

{Aw}k + 8({Aw})k+1. Convergence is arrived at when

{H}*k+1 5 {:1} and/or mum)“1 s {62} and/or

({H}*k+1)T6({Aw})k+1 s :3 in which {:1} is a tolerance vector

consisting of preset ”small" quantities of force or moment,

and {:2} is a preset tolerance vector of displacement or

rotation, and :3 is a preset scalar tolerance having the

dimension of work.

For seismic analysis, {AP} - {0}. (The case when {AP} is not

null but some prescribed incremental loading vector can be incorporated

in the analysis without difficulty.) Thus, as mentioned previously, the

driving mechanism of the system is contained in {AR} which depends on

{Aw} and {Au}, the incremental support or ground displacement vector.

When the system is linear {AR} - [K]ww{Aw} + [Klwu{Au} in which [K]ww
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and [K]wu are linear stiffness matrices corresponding to the degrees of

freedom as represented by the subscripts. When the system is nonlinear,

the determination of {AR} becomes a major aspect of the problem. It is

discussed in the Section 2.5. The preceding analysis is applicable to

cases in which different supports may undergo different motions.

For the case of uniform ground motion (over space), one may use

ground acceleration directly in lieu of ground displacement as input.

The motion of the unconstrained degrees of freedom are measured relative

to the ground translations (rotational ground motions are not considered

herein). Corresponding to the ith element of {w}, wi, define

v1 - w1 - ui in which 0.1 is the ground motion component expressed in the

same coordinate system as wi. For a node, say, R, in the rib, the ground

displacement components in curvilinear coordinates are (See Figure 2-4)

URx - nginoR - chosoR

U - -Z

Ry -8

U - X coso + Y sin0 (2-8)

R2 g R g R

in which 9R is the angle that the tangent at the node makes with the

cartesian X-axis, and x8' Y8' and 28 are the ground displacement

components in the cartesian coordinates. Thus Eq. 2-3 may be witten as

{H} - [H1131 + [Cltvl + {R} - {P} + [Mlliil + [Clh’n - {0} (2-9)

Taking damping as the Rayleigh type, i.e., [C] - a[M] + fi[K]o,

[K]0 being the linear stiffness matrix, and dropping the term [C]{u}

(signifying an assumption that damping is due only to those motions that

are relative to the ground motion), and following the procedure

described previously when {w} was used as the dependent variable, one

obtains
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- {310 + [BlllAvlk - {Ale (2‘10)

in which [J({H},{Av})k] is the Jacobian matrix of {H} with respect to

{Av} evaluated at {Av} - {Av}k, and

mo - [sumo + [(a + 4mm + ntxlolmo - mo + ms

- [Mlliil (2-11)

[311 - -{[(4/h2) + (zen/hum + (2/h)fill<]ol <2-12)

The Newton-Raphson iteration would begin with {AV}k-O - {0}. The

solution procedure is entirely analogous to that previously described.

2-4W

In order to decrease the number of degrees of freedom of the

structural model, certain constraints may be introduced among the set of

degrees of freedom at a given ”transverse panel” of the bridge (e.g.,

nodes 5, 6, 7, 8 in Figure 2-1). The constraints correspond to the

assumption that the axial stiffnesses of the straight beam and truss

elements involved are infinitely large. Thus, (a) the transverse (Z)

displacements of the floor beam ends (see Figure 2-3) at the deck are

equal, (b) the transverse (y) displacements of the cross beam ends of

the rib bracing system are equal, and (c) the vertical displacements at

the ends of each column are equal.

For a constraint of equality between two degrees of freedom, one

may be chosen as the "master", and the other "slave”. In forming the

system stiffness matrix, the stiffness pertaining to the slave degree of

freedom is added to that of the master degree of freedom. This can be

done routinely for case (a) and (b) as each case involves the same nodal

coordinate system for the two end nodes.

For ease (c) consider Figure 2-4. The nodal coordinates for the
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deck nodes D and E are cartesian, and the rib nodes R and Q are

curvilinear. The constraints correspond to the assumption of rigid

column (with pinned ends) DR and E0, or,

v - -uRcost + w sino

D R R

vE - -uQcos0Q + wQsinOQ (2-13)

in which 0R and 0Q are defined in Figure 2-4. Regarding uR, wR, uQ and

w as the master degrees of freedom, in order to transfer the vertical

Q

stiffness of the deck stringer M, partition the degrees of freedom at

a

the two ends of element M as {d } - L {d1} ; vD vE JT in which {d1}

consists of all degrees of freedom for the element except VD and vE . In

terms of the master degrees of freedom, the degrees of freedom for

. T .
member M is {d} - L {d1} , uR wR uQ wQ J . Using Eqs. 2-13 one can write

a

{d } - [P]{d} , in which the displacement transformation matrix:

[I] [0]

[F] - [0] ~cosoR sinoR 0 0 (2-14)

[0] 0 0 -cosOQ sineQ

 

 

The stiffnesses of M expressed in degrees of freedom of {d} is

[k] - [F]T[k*][1‘1 <2-1s>

in which [k*] is the usual beam stiffness in degrees of freedom {d*}. Of

course, [k] is then assembled into the system stiffness matrix in the

usual fashion.

The constraints also affect the mass matrix. Denoting by {d*}

and [m*] the “old" velocity vector and "old” mass matrix, and {d} and

[m] the "new" velocity vector and “new" mass matrix, let the old and new

velocities be related by the transformation {d*} - {A}{d}. By equating

the kinetic energy expressed in the old system to that expressed in the
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T a

new system, one has [m] - {A} [m ]{A}.

Consider the effect of the lumped mass at D, mD. In this case,

.* . x . . . T T

{d } - VD’ [m ] - ED. {d} - L “R "R J and {A} - L -cos€R sinoR ],

one obtains

2

cos 0R ~sin0RcosOR

[m] - HID 2 (2-16)

-sin0RcosoR sin 0R

This submatrix is assembled into the system mass matrix (to rows and

columns uR and wk). (Hence the system mass matrix is not diagonal.) For

the other constraints involving the same coordinate systems, the masses

of the slave degrees of freedom are added to those of the master degrees

of freedom.

2.5W

2.5.1 cm

In the preceding, a method of analysis has been develOped for

the linear and nonlinear response of a structure in three dimensional

space. In the analysis, the structural resistance vector {R} plays a key

role as it is through this vector that the nonlinear behavior is

accounted for in this study. However, the behavior of straight beam and

truss elements is assumed to be linearly elastic during the entire

loading period. The resistance is

{R} - [R] {q} . (2-17)

in which {q} is the element displacement vector and [k] is the usual

linear elastic stiffness and need not be presented here. In the

following, resistance of the curved beam elements, making up of the

major components of the bridge, is discussed first for linear behavior
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and then for nonlinear elastic and elasto-plastic behavior.

2.5.2W

The curved beam finite element model used is illustrated in

Figure 2-5, in which A and B denote the two and nodes, x, y, and 2

represent the curvilinear coordinates. The stiffness of this element has

been presented in Ref. [39], in which the curved axis of the element was

represented by a fourth order polynomials in d, the angle of the tangent

measured with respect to the tangent at end A. The coefficients of the

polynomial are determined by end slopes and curvatures as well as the

coordinates of end B. Thus at a common node of two elements,

continuities of slopes and curvatures can be maintained. Four

independent displacement functions are considered: u (radial), v

(transverse), w (tangential) translations, and 02 (twist about

tangential axis), each represented by a third order polynomials in ¢-

Each of the four displacement functions involve four

coefficients. The sixteen coefficients were determined by eight degrees

of freedom at each end. For example, at end A, the three translations,

uA, VA’ “A and three rotations oxA’ oyA, 02A plus (ddz/ds)A and

(dw/ds)A. The last two degrees of freedom are "nonessential". The twelve

essential degrees of freedom are illustrated in Figure 2-6.

In this work, the nonessential degrees of freedom are condensed

out before assembling into the system stiffness matrix with the usual

six degrees of freedom per node in three dimensional space behavior.

The linear elastic resistance is of course simply the linear

elastic stiffness (k0) multiplied by the end displacement vector.
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2.5.3W

The resistance of a nonlinear elastic element may be written as

(Ref. [20])

 

+ -— ) {q} (2-18)

in which [n1] and [n2] are the first and second order incremental

stiffness matrices. The matrices [k0], [n1], and [n2] are obtained as

the second derivatives of the quadratic, cubic, and quartic parts,

respectively, of the strain energy expression.

The incremental or nonlinear stiffness matrices [n1] and [n2]

based on the interpolation functions and sixteen degrees of freedom

mentioned previously are also given in Ref. [39]. In this study, the

second order incremental stiffness matrix [n2] is not used because

numerical experience showed that it would make the element too stiff

with unacceptable errors. In order to fit into the twelve degrees of

freedom per node scheme of analysis, the 16 by 16 [n1] matrix need be

condensed to 12 by 12. Since it is linear in the displacement variables,

the condensed matrix is valid only for the displacement state at which

the condensation is executed. For a time history analysis, this means

that a condensation is needed for every time increment.

In order to save computing time, this condensation is avoided

by using a twelve degrees of freedom incremental stiffness matrix. It is

based on third order polynomials for the radial and transverse

displacements and first order polynomials for the tangential

displacement and twist about the tangential axis. They are:

2 3
u - a1 + “2‘ + a3¢ + “4‘
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2 3
v - as + “6‘ + 07¢ + asp

w - a9 + “10‘

(2-19)0 + a

z ' “11 12‘

As mentioned previously, the nonlinear elastic stiffness matrix

[n1] was derived as the second derivatives of the cubic part of the

strain energy expression (now corresponding to the preceding

interpolation functions). Numerical experience (Ref. [39]) also

indicated that in general more accurate results would be obtained if the

terms containing rotations were dropped. The rotation terms include

rotation about y-axis - (du/ds) + (w/R) and rotation about x-axis -

(dv/ds). This modified form of [n1] was used to obtain the numerical

results presented in Section 3.5.

2.5.4 Walkman

2.5.4.1 angxgl

The elasto-plastic resistance is calculated using the plastic

potential theory as applied to stress resultants (Ref. [15]). Material

yielding is assumed to take place only at either or both ends of the

member. This is warranted if there is no load between the ends, and the

offset is small in comparison with the length of the chord. The part of

the element between the two ends would remain linearly elastic.

Although the plastic potential function is defined individually

for each end, the tangential stiffness is derived for the entire member.

The incremental resistance and the elastic and plastic parts of the

deformation are obtained by an iteration process. The details of the

above are given in the following sections.
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2.5.4.2 z1astis_£2tential_£unctien

It is assumed that the material is "associative". Thus the

plastic potential function and the "yield function" are the same. The

yield function defines the combination of the force components necessary

to initiate yielding at a cross-section. A shape factor of 1.0 is

assumed for the end sections, i.e., the cross section is assumed to make

an abrupt transition from a completely elastic state to a plastic state

in which unrestricted plastic flow can occur. Thus plastic yielding is

confined to an individual cross section with zero "hinge length." The

yield function is assumed to remain the same as yielding progresses,

i.e., there is no strain hardening.

For the numerical results presented herein, the yield function O

for a cross-section is written as:

P 2 M 2 Mx2
o-(—)+(—1)+(——)-1-o (2-20)

Po Myo MxO

in which P is the axial force, My the bending moment in the plane of the

rib, M.x the out-of-plane bending moment or moment about the radial axis,

and Po, MyO’ M.x0 are the fully plastic force components corresponding to

P, My, Mx, respectively. For this study, they were computed as:

Po - Fy A

u-rs

yOyyy

“x0 - F& Sxx (2-21)

in which F is the yield stress, A, S , S are the cross-sectional

Y yy xx

area, section moduli about the y-y and x-x axis, respectively. This

yield surface, though quite idealized, provides a convenient



29

approximation for the complex phenomenon of inelastic behavior in the

three dimensional space.

Figure 2-7 shows the spherical yield surface. Thus, in

accordance with the plastic potential theory, if the ”force point"

(P/PO, "y/Myo' Mx/Mxo) is inside the surface, the section is regarded as

linearly elastic. If it is on the yield surface, it is plastic. It

cannot go outside the yield surface.

As mentioned previously, the force-deformation properties at the

end sections are not entirely independent because the elastic parts of

the responses are governed by the member elastic stiffness. The member

elasto-plastic properties are described in the following.

2.5-4-3We

The displacement increment vector at a member end can be

expressed as the sum of an elastic and a plastic part:

(den - {dqe} + {qu1 (Hz)

in which {dqe} is the vector of the elastic part of the member and

displacement increments and {dqp} is the vector of the plastic part of

the increments.

The member end force increments are related to the elastic

member end displacement increments as follows:

{do} - [kelldqel <2-23)

in which {dQ} is the vector of member and force increments and [ke] is

the elastic stiffness matrix.

Following Drucker's normality criterion (Ref. [9]), at a point

on the yield surface the incremental plastic deformation vector has the

direction of the outwardly directed normal.
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{dqp} - A{V¢} <2-24>

in which A is a positive scalar, called the flow constant, which defines

the magnitude of the plastic deformation at the point (plastic hinge);

and {Vi} (gradient of function O) is the outwardly direction normal

vector at the point on the yield surface.

As the force vector can not extend beyond the yield surface, any

force increment vector {dQ} corresponding to a plastic deformation at

the cross section must move on the surface (or on the tangent plane).

This requirement is expressed by the normality condition.

{vstTtdoi - 0 (2-25)

in which the superscrpt T denots "transpose". Substituting Eq. 2-23

into Eq. 2-25, one obtains

tvcileeltdqei - o <2-26)

Then, from Eqs. 2-22, and 2-24, one has

tvciTtkelttdqi-tdqpi> - o <2-27>

{V0}T[k61(ldql-A{V¢l) - o (2-28>

Solve for A:

{veiTtkeltdqi
A - T (2-29)

{vs} [ke]{V§l

 

substituting Eq. 2-29 into Eq. 2-24, one obtains the plastic part of the

incremental displacement as:

{V¢}{V¢}T[ke]
 

{dqp} - {dq} <2-30>

{VfilrlkellVél
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2.5.4.4 Ianssnt_Stiffness_uatrix_cflflemher

The following sequence of equations can be obtained from Eqs.

2-23, 2-22, and 2-24

{d0} - [kelldqel (2-31)

- [ke](tdq}-tdqp}) (2-32)

- [ke]({dq}-A{V¢}) (2-33)

Then, from Eq. 2-30

{V§l{V¢}T[ke]
 {do} - [ke]({dql- {dq}) (2-34)

{V¢}T[k8]{V¢}

{V¢}{V¢}T[ke]
{dQl - [ke]([I]- T )ldq} <2-3s>

(vs) [ke]{V¢}

 

Therefore, the elasto-plastic tangent stiffness matrix is

{V¢l{V¢}T[ke]
 

[kt] - [ke]([I]- > <2-36)
{vetleeltvei

2 5.4.5 Elastis_Retnrn

As a structure is being deformed, a change in load distribution

may cause one or more plastic hinges to unload and become elastic again.

This phenomenon is referred to as an "elastic return.“ It occurs

whenever there is a reversal in the direction of the incremental

displacement at a plastic hinge. It follows from Eq. 2-24 that the

elastic return at any plastic hinge is signalled by a negative flow

constant A at the hinge.
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2.5.4.6WWW

2f_Elea£2;£lsstie_Elemen£

As mentioned earlier, a key step in the solution procedure is

the calculation, for each member, of the new member end force vector

(Q2) and possible incremental plastic deformation vector for a given

current force vector {Q1} and incremental end displacement vector {dq}.

In the Section 2.5.4.4, the tangential stiffness has been

derived. The incremental member forces based on the tangent stiffness

would necessarily violate the yield condition (going out of the yield

surface). The technique of keeping the force point on the yield surface

consists of essentially obtaining, by iteration, a "local secant

stiffness". Corresponding to a given {dq}, none, one or both ends may

yield or return to elastic behavior. The details of the procedures to

treat these complex behavior are given below (Ref. [41]).

Procedure described in this section combines two features.

Firstly, following an iterative process, the new member force vector

would be made to stay on the yield surface as required by the theory of

plasticity. Secondly, the incremental displacement can be large enough

so that the element may undergo the process of changing from a state of

total elasticity to having one yielding end and then on to having both

ends yielding. This feature allows the solution procedure to use

constant load or time increment.

It is assumed that during a load or time increment the change of

the displacement is linear and one may write

{dq} - {dqee} + {dqep} + {dqpp} (2-37)

in which {dqee} is the part of {dq} with both ends elastic, and {dqep}

and {dqpp} are those with one and two yielding ends, respectively. The
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corresponding changes in the member and forces are illustrated in Figure

2-8, in which the notation should be self-explanatory. For example, Q1A

is the current force point and Q2A,ee is the force point at A at the end

of {dqee}. The displacements would take place in the order as given on

the right side of Eq. 2-37. However, any one or two of the three

incremental terms may be null.

Consider the yield surface of a generic yielding end, say C, as

shown in Figure 2-9(a). Let Qlc denote the initial force point,

(Q2C*) - (Q10) + [kec]{dq}, in which [keC] is a 6 by 12 stiffness matrix

(partitioned from [ke], the element elastic stiffness matrix). The

intersection of the vector Q1C-QZC* and the yield surface, point

is a ”general penetration point," given by

**) - (Q10) + 18[kec]{dq} in which 18 is solved from the yield

function §((Q1C) + 18[kec]{dq}) - 0. Illustrated in Figure 2-9(a) is

also a “radial penetration point.” It is the intersection of the vector

O-Q2c* and the yield surface, point QZC,r**’ given by

{Q2C,r**} - 1rthc*}, in which 7r is solved from C(1IIQ2C*}) - 0.

When yielding takes place at only one end, the initial force

point Q1c is on the yield surface. Corresponding to an incremental

displacement {Aq}, the force is (QZC*} - {Qlc} + [kc]{Aq} in which the

stiffness [kc] depends on the element elastic stiffness and the gradient

of Q at Q10, (See Eq. 2-36 and Refs. [22], [25] and [38]). Because of

the convexity of the yield surface, ch* is necessarily not inside the

surface. To keep Q2 on the surface the following iteration procedure is

used (See Figure 2-9(b)).

Let Q2Cj denote the value of Q2C* for the jth iteration. For the

first iteration, {chl) - (Q1C} + [kc1]{Aq} in which [kcl] is based on
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the gradient at QlC’ i.e., Vé - VQ({Q1C}). For j > 1, compute

J- J J -—
{Q2C } {Q10 + [kC ]{Aq} in which [kC ] is based on V¢ VQJ given as

follows:

V735 - 0.5(vo-1'1 + 6634) if ouQZC-j’ln > e (2-38a)

or 66-1 - 0.50%»1 + $334) if ouQZCJ'ln < -5 (2-38b)

1 - V§({Qlc)) and VQJ.1 is the gradient at theIn the preceding, 33

radial penetration point for QZCJ-1’ and e is a tolerance. The iteration

ends when louozcjm s c.

When there are two yielding ends, the procedure is the same

except that the gradients at both ends should be simultaneously treated

as described in the preceding for the formulation of the elasto-plastic

stiffness, and the convergence criterion, of course, applies to both end

force vectors.

The computation procedures of the incremental resistance and

deformations of an elasto-plastic element are:

1. Using the elastic stiffness [ke], compute a tentative end

force increment {dQ*) - [{dQA} {dQB}JT - [ke]{dq}, and a

tentative new force point {Q2*] - {Q1} + {dQ*). (The

superscript ”*" denotes "tentative”.)

2. Compute the values of the yield functions for both ends

corresponding to {Q1} and (Q2*}: “Al - §A((Q1A});

’31 - 95mm»; 52 - ¢A({Q2A*}); s32 - ebuozfn.

3. Locate the general penetration points and compute the

quantities (See Figure 2-9(a)): L.A - ¢A2 - CA1; CA - - CA1;

5A - L - aA; and similarly for LB’A and BB.GB,
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If 5A 5 0 and 5B s 0, the element response is entirely

elastic. Then, {dqee} - {dq}; {dqep} - {dqpp} - null vector,

{Q2} - {Q2*). The resistance computation ends.

Otherwise, compute 11 - minimum (aA/LA, aB/LB)' Assuming

11 - A/LA (otherwise, switch the subscript from A to B),

signifying that end A (or B) yields first. Compute:

{dqee} - Vlldq}; {Q2} - {Q1} + [kelidqee} and

{den - <1 - 11mm - {dqepn + {dqpp}.

Compute the gradient of yield surface at end A,

*

V§A - VQA ({QZA,ee}) and form the corresponding elasto-

plastic tangent stiffness matrix [k*] - [[kA*] [kB*]JT.

c t (Q *) - [{Q *} {Q *}JT
ompu e 2,ep 2A,ep 2B,ep

* _. *

- ‘Q2,ee} + [k ]{dq). If ‘X’BUQZB’ep }) > 6, go to step 9.

Otherwise, end B is still elastic, and if

*

|°A(‘Q2A,ep })| s c, then {dqpp} is null. Set

*

{dqep) - (l - 11)(dq} and {Q2} - {Q2,ep ). The plastic part

of {dqep} is {dq )jT with} - [{dq } {dq

GPA»? ePBsP

epA,p} - AAYCA in which AA is the

ep,p

{dq p) - null, and {dq
epB,

flow constant computed as usual (Eq. 2-29). The resistance

computation ends.

* __

If |§A({Q2A,ep })| > e, compute VQA as per Eqs. 2-38, update

[k*] accordingly, and return to step 7.

* * * *

Compute 12 - aB /LB based on {Q28 ee) and (Q2B ep }

(corresponding to Q1C and QZC* in Figure 2-9(a)). Compute

** k* * d ** 1 h h{Qz’ep ) - {Q2,ee}‘+ [ 112 { CU- {Q23,ep } S t us on t e

yield surface.

If |¢ ** < * **

A({Q2A,ep )>l _ e. set 12 - 12 . {Q2,ep} - {Qz’ep 1,
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{dqep} - 12(1 - 11)ldq}. The plastic part {dqep,p} is

computed as usual. The part of {dq} remaining to be

”accounted for" is [dqpp} - {dq} - {dqee} - {dqep}. Go to

** * .—

step 11. If |°A({Q2A,ep })| > 5, update [k ] using VQA

**

computed as per Eqs. 2-38 (with Q2A ep taking the place of

* O

Q2C ). Co to step 7.

ll. Compute {Q2 *1 - {Q2 ep} + [k*]{dqpp} in which [k*] is

oPP

based on the gradients at Q2 ep' Iterate as described

previously to have Q2 pp on the yield surface for both ends.

*

12. The final stress point is {Q2} - {Q2.ep} + [k ]{dqpp}. The

incremental lastic deformations in d , i.e., d ,

p { q'pp} { qpp.p)

B B

computed as usual based on the lastest gradients. The total

consisting of {dqppA p} - AAVEA and [dqppB p} - A 66 are

incremental plastic deformation is ({dqep p) + {dqpp p}).

The resistance computation ends.

2.6W

The calculation of the plastic part of the incremental element

displacements has been presented above. For purposes of interpreting the

inelastic response characteristics of the structure, it is appropriate

to further define the quantities “plastic work densities" and ”ductility

factors”. They may be considered as approximate measures of “damage" to

the structural elements.

2.6.1 Was

It is assumed that all plastic work is due to the inelastic

straining of the ”longitudinal" fibers of the beam elements. Thus the
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work would be done by the bending moments: Mx’ fly, and the axial force

F. It is further assumed that the beam cross-section has the shape of a

rectangular box with two axes of symmetry (See Figure 2-10.) Thus for

each member end, the plastic work done by each of the stress resultants

in the time interval h may be expressed respectively as:

wxp - E Mxiwxpi

Z Mw - 80

YD 1 y1 ypi

wfip - E Pisapi (2-39)

in which soxp, soyp, and SAP denote the plastic part of the incremental

rotations about x-x and y-y axis and the incremental axial displacement.

The subscript "i” denotes the ith time interval.

Although in the mathematical analysis, the plastic length is

assumed to have zero length, for purposes of engineering interpretation

of the results, it is assumed that the plastic deformations are

distributed for a finite length. Corresponding to the rotation in a

principal plane that length is taken to be the depth of the cross-

section in that plane. Consider the case ”x # 0 (signifying rotation in

the principal plane y-z), My - P - 0. Assuming that there is no

transition to fully plastic moment, i.e., all fibers across the web

thickness tw (see Figure 2-10) yield simultaneously, a "plastic hinge

volume” for M.x may be defined as th - 2thB, in which D and B are

respectively the depth and.width of the section. Similarly, a plastic

hinge volume for My is defined as V - 2thD, in which t
by f

thickness of the flange. For P, a plastic hinge volume, VhA is taken to

is the
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be th + vhy' (If D/B - tf/tw, this volume corresponds to that of the

cross-section area times a length equal to (D + B)/2.)

The strain energy per unit volume of material at yield is wo -

(l/2)F&¢y. The dimensionless measures of the various plastic work

quantities may thus be represented as:

wxp - wxp/(thwo)

w - w V wyp yp/( by 0)

fihp - wAp/(VhAVO) (2-40)

2 6.2 Dustili:x_£assers

As alternative or additional measures of inelastic response,

member and ductilities may be defined as follows. Corresponding to out-

of-plane bending, the "curvature ductility factor" is

"inelastic curvature" 0 /B

- 1 + - 1 + “P (2-41)

elastic limit curvature MxO/(Elx)

  

Il¢x

in which exp is the plastic rotation, B is the plastic hinge length for

out-of-plane bending, MxO’ Ix are the elastic limit moment and moment of

inertia about the x-axis, respectively, and E is the Young's modulus.

Similarly, for in-plane bending, the "curvature ductility

factor" is

9 /D
_ 1 + .yp

“yo/(Ely)

2-42u¢y ( )

in which the meaning of the symbols are entirely analogous to those in

the preceding expression. The "ductility factor" for axial strain, pA,

is defined as the ratio of ”plastic axial strain" to the elastic limit
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strain. The former is taken as the plastic axial displacement, AP,

divided by its ”hinge length." Taking the latter as (D + B)/2, one

obtains

2A

u - P (2-43)

(B + D):y

 

2.7 HQBK_AHD_EHEBQX.DI§IBIEQIIQE_§BE§K

Considering work and energy balance, the following equation

should hold for the system analyzed at all times:

wk + WC — ESE + ESP + BK + ED (2-44)

in which WR and WC denote work done by support reactions and by gravity

loads, respectively, E is recoverable strain energy, E is
SE SP

irrecoverable (plastic) strain energy, ER is kinetic energy and ED is

energy dissipated by damping.

An examination of the variation of these quantities is

instructive. Moreover, it can also serve as a check on the validity of

the analysis and numerical computation. In the following for each time

interval h, each work or energy item, with the exception of the kinetic

energy, is computed as the product of force (taken as the average of

those at the beginning and at the end of the time interval) and the

incremental displacement. The total amount of a given kind of work or

energy at a given time is of course obtained by summing the incremental

quantities over all time intervals preceding it.

The incremental work done by the support reactions is

NS

AWR -1§1( Isuzmi + pYiAyi + RZiAZi ) (2-45)
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in which th, RYi and R21 are the X, Y, 2 components of the reaction

and Axi, AYi, and A21 are the corresponding ground displacements at

support 1, and N8 is the number of supports. The reactions at a support

can be computed from summing the end forces of the structural members

incident to that support.

The incremental work done by gravity loads is

NN

- ~46AVG ng NJ 3 AYJ
(2 )

in which H3 is the lumped mass at a non-support node point j, g is the

gravitational acceleration, A33 is the incremental vertical displacement

of node point j, and NN is the number of free nodes.

For a curved or straight beam element the displacement change

{dq} over h may be, in the general case, decomposed into:

{dq} - {dqee} + {dqep} + {dqpp} (2-47)

in which, as defined in Section 2.5.4.6, {dqee} denotes that part of

{dq} for both ends being elastic, {dqep} for one end elastic and the

other end elasto-plastic, and {dqpp} for both ends plastic. The general

case of force displacement change for a generic end, say end C, is

illustrated in Figure 2-11 in which {Q1} denotes the force vector at the

beginning of h, {Q2,ee}’ {Q2,ep} and {Q2,pp} denote the force vectors at

the end of {dqee}, {dqep} and {dqpp}, respectively. The incremental

strain energy Ae for the single member consists of an elastic part Ae
8 Se

and a plastic part Aesp; i.e.,

Aes - Aese + Aesp (2-48)

with

T T

AeSe - 0.5[<{Q1}+IQ2 eel) ‘dqee’ + ({Qz’ee)+{Q2’ep}) tdqep e}
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+ ({Q2 ep}+{Q2 pp1)T{dqpp,e}1 (2-49)

T

AeSp - 0.5[((Q2’ee}+{Q2’ep}) {dqep p}

T
+ + d 2-50({Qz’ep} {02 pp!) K qpp p11 < >

in which the third subscript "e" or “p” attached to {dq} denotes the

"elastic part“ or “plastic part", i.e.,

{dqep} - {dqep e} + {dqep p} (2-51)

d - d + 2-52

{ qpp) { qpp.e} ‘dqpp.p} ( )

The incremental recoverable strain energy of the system is

AESB - (AeSe)CB + (AeSe)SB + (AeSe)TR (2-53)

in which the subscripts CB denote summing over all curved beam elements,

SB over all straight beam elements, and

(AeSe)TR - Z 0.5(Q1 + oz>dq <2-sa>

denotes the incremental elastic strain energy due to all truss elements,

with Q1 and Q2 representing the axial forces at the beginning and end of

the time interval h, dq is the axial deformation changes taken place in

the interval.

The incremental irrecoverable strain energy is

AESP - (Aesp)CB (2-55)

The incremental kinetic energy over the time interval h is

AER - 0.5<{é1T[m1{é1)t1 - o.s<{&1Ttm1{v})to <2-56>

The incremental energy dissipated by damping is

AED - 0.5[([C]{w))t1 + <[C]!é:>tolT{Aw) <2-s7>
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Figure 2-3. Constraint for Infinitely Large Axial Stiffnesses
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Figure 2-10. Definition of Cross-Section
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Figure 2-11. Typical Bomber End Force Path

For An Elasto-Plastic Element



CHAPTER III

APPLICATIONS AND NUMERICAL RESULTS

3-1 am

This chapter presents the numerical results based on the

analyses described in the preceding chapter. The results were obtained

by use of a computer program that incorporated the method of analysis

presented. They cover three model bridges: one each of short span,

medium span, and long span, and one ground motion.

Nonlinear behavior due to material inelasticity is presented

first, followed by behavior due to geometric nonlinearity (nonlinearly

elastic behavior). In each case, the time histories of displacements,

internal forces (stress resultants) and energy distribution are

discussed.

3-2 W

The computer program was built from one based on linear analysis

using straight beam elements (Ref. [12]). It consists of approximately

6000 lines of FORTRAN statements. The major additions are the nonlinear

curved beam elements (material and geometric).

The bulk of the numerical results was obtained by use of the

Supercomputer CYBERZOS at Purdue University with the linear equations

subroutine written for vector processing. After the National Sciense

Foundation ceased to support the Purdue Supercomputer operation, the

50
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computation was done on a VAX/VMS-ll/750 computer at College of

Engineering, Michigan State University. For a problem solved by both

computers for comparision, the latter was 56 times slower than the

supercomputer. However, the numerical results were within 2% of each

other.

3.3W

Three existing steel deck-type arch bridges: the Cold Springs

Canyon Bridge (CSCB) in California, the South Street Bridge (SSB) in

Connecticut, and the New River Gorge Bridge (NRGB) in West Virginia with

arch spans of 700, 193, and 1700 feet, respectively, were chosen to be

the prototypes for the medium span bridge (MSB), the short span bridge

(SSB), and long span bridge (LSB).

A complete real arch bridge system generally contains a large

number of degrees of freedom. The expense for analysis of such a system

can be kept within reasonable bounds in the case of a linear analysis.

Because of the high cost of nonlinear analysis, it seemed necessary to

use models that have fewer degrees of freedom than those used for linear

analysis. For example, for the CSCB, the number of panels was reduced

from eleven to eight. Nonlinear curved beam elements are used for the

arch ribs. Straight beam and truss elements are used for the deck,

columns, and cross bracing members. They are presumed to be entirely

elastic.

”True” three-dimensional models with the two ribs modelled as

distinct curved beam elements for MSB (Figure 3-1) and SSB (Figure 3-2),

and “one-plane" three-dimensional model (Ref. [12]) with the two ribs

(plus bracing) modelled as a single curved element for LSB (Figure 3-3)
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were used to consider the inelastic effects (material nonlinearity). Yet

a third type of model, i.e., a two-dimensional plane model (Figure 3-4)

was used to study the nonlinear elastic effects. (Results for the three-

dimensional models were obtained on the supercomputer and the latter

two-dimensional models on the VAX.) A complete description of the

properties and boundary conditions for these bridge models is given in

APPENDIX.

There are two differences between the true three-dimensional

model and the one-plane three-dimensional model. Firstly, the axial

force in a rib of a true three-dimensional model would be approximated

by the axial force and the bending stress effects in a one—plane three-

dimensional model. Secondly, the bending response of the individual ribs

in a true three-dimensional model cannot be produced in a one-plane

three-dimensional model.

The natural periods of linear undamped vibration of.the first

four modes for out-of-plane and in—plane motions are listed in Table 3-1

and the mode shapes are shown in Figures 3-5, 3-6, 3-7, 3-8, 3-9 and

3-10. The fundamental out-of-plane natural periods are 3.032, 1.180, and

4.716 seconds for MSB, SSB, and LSB, respectively. The fundamental

in-plane natural periods are 2.247, 1.065, 3.565, and 2.514 seconds for

MSB, SSB, LSB, and the two-dimensional MSB model, respectively.

For this study, the basic ground motion used is an artificially

generated motion, CIT-A2 (Figure 3-11) (Ref. [18]), which is intended to

represent the ground motion near the epi—center of a magnitude 8 shock.

It has a maximum acceleration of 0.39 g, a duration of approximately 120

seconds. In all cases, the first 45 seconds which covers the most

intense part of the ground motion were used. The ground motion in all
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three directions in space were used with the amplitude of the vertical

motion being set equal to 75% of the two horizontal ones. The same

ground motion was applied to all supports of the structure with no phase

difference.

3-4 flAIEBIAL_EQHLIEEAR_EEQBLEES

3.4.1 general

For the material nonlinear studies, the three-dimensional

bridge models were used with ground accelerations applied in all three

directions. In order to induce inelastic response, an amplification

factor (AF) was applied to the basic ground motion as described in

Section 3.3. The typical amplification factors used were 2.0, 1.2, and

2.0 for MSB, SSB, and LSB, respectively. (Using AF - 1.2 for the SSB

model induced as much inelastic response as that for the MSB model with

AF- 2.0.) '

Under the specified ground motion, Figures 3-12, 3-13, and 3-14

indicated for MSB, SSB, and LSB, respectively, the time intervals during

which there was inelastic action (i.e., some elements yielding). One may

observe that the first yielding occurred at 12.22 second for MSB, 7.54

second for SSB and 12.45 second for LSB. For the SSB even the AF used

was 1.2 only, there were many members yielded within the duration of 45

seconds.

3-4-2W

In this section displacement time histories are presented for

three nodes in each bridge model. For each node, three displacement

components are plotted. They are X (horizontal), Y (vertical), and Z
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(lateral; out-of—plane) displacement in the cartesian coordinates

system.

3.4.2.1 fledium Span Bridge (MSB)

The three nodes selected for this bridge are: node 17, 31 and 5

(See Figure 3-1). Node 17 is at the crown of the front arch rib, node 5

is at the 1/8 span of the front arch rib, and node 31 is at the 7/8 span

of the rear arch rib. The results indicate that at both node 5 and 31

there were yielding of the arch ribs.

The horizontal (X) displacement time histories for the three

nodes are shown in Figures 3-15, 3-16, and 3-17. They indicate that the

predominant period is approximately 2.2 seconds. The first in-plane

undamped natural period had been calculated to be 2.247 seconds (See

Table 3-1). Thus the response was then primarily in the first mode.

There were also some contributions, though small, from the third mode

(undamped natural period equal to 0.685 seconds). It may be noted that

the second mode is symmetric (Figure 3-5) which would not be excited by

the horizontal ground motion. Experience indicates that the effects of

horizontal ground motion dominate over those of vertical ground motion.

Because of antisymmetry in mode shapes, the horizontal displacement time

histories of node 5 and 31 are in phase and almost equal. The wave

patterns for the elastic and inelastic responses are quite similar.

The vertical (Y) displacement time histories are shown in

Figures 3-18, 3-19, and 3-20. The predominant period is again

approximately 2.2 seconds for time histories of nodes 5 and 31. As

above, it indicates that the response was mostly in the first in-plane

mode. Similarly, there were appreciable third mode contributions. These
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vertical displacement time histories of node 5 and 31 are out-of-phase

because of antisymmetry in mode shapes. The dominant period for node 17

is approximately 3.0 seconds which corresponds to the first out-of-plane

mode. One can observe from Figure 3-5 that the vertical displacement is

zero at the crown node in the first in-plane mode. Thus the

displacements are apparently excited by the out-of-plane ground motion

(See the first out-of-plane mode shapes in Figure 3-6). The wave

patterns for the elastic and inelastic responses are similar too.

The lateral (Z) displacement time histories are shown in Figures

3-21, 3-22, and 3-23. The predominant period is approximately 3.0

seconds. It indicates that the response was primarily in the first out-

of-plane mode. (Table 3-1 shown the first out-of-plane natural period to

be 3.032 seconds.) One can also observe that the fourth mode with period

equal to 0.942 seconds participated significantly in the overall

response of node 5 (Figure 3-21) and node 31 (Figure 3-23). The lateral

displacement time histories of node 5 and 31 are in phase and almost

equal. The wave patterns for the elastic and inelastic responses are

quite similar too.

3.4.2.2 WE).

For this bridge the nodes chosen for presenting displacement

time histories are the two symmetric points: node 11 and 23. They are at

the 2/7 and the 5/7 span of the rear rib (Figure 3-2), respectively. A

third point chosen is node 13 at the 3/7 span of the front rib.

The displacement time histories in the X, Y, and 2 direction for

these nodes are shown in Figures 3-24 through 3-32. In general, they are

similar in character to those presented above for the MSB. Hence, no
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further discussion will be presented for them.

3.4.2.3W

The displacement time histories for this bridge are shown in

Figures 3-33 through 3-41. They refer to node 18 at the crown, node 12

at the 4/14 span of the arch rib, and node 24 at the 10/14 span of the

arch rib (See Figure 3-3). Node 12 and 24 are symmetric points and there

was yielding near them. These time history results are also similar in

character to those presented for MSB, except for the following point.

For the vertical displacement time history of the crown point

(node 18, See Figure 3-37), the response was primarily in the second in-

plane mode (1.5 seconds) and fourth in-plane mode (1.1 seconds) as

expected. Because the crown node has zero vertical displacement in the

first and third in-plane modes (Figure 3-8). It differs from the

response of MSB because, as mentioned previously, LSB is a one-plane

model. The vertical displacement of the rib in that model corresponds to

that of the center line of the bridge. That displacement is essentially

unaffected by lateral ground motion. To deduce the actually vertical

displacements along the edges of a cross-section of the bridge

represented by a one-plane model, one needs to consider the torsional

response.

3.4.3 mm

For the MSB model, the magnitudes of the maximum displacements

at the above selected nodes (Section 3.4.2.1) and certain additional

nodes are listed in Table 3-2. The odd numbers correspond to nodes on

the ribs and the even numbers on the deck (Figure 3-1). The maximum
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horizontal displacement occurring at the node next to a support

amounts to 1.1% of the arch height (121.25 feet) for the linear elastic

case and 1.13% for the inelastic case. The horizontal displacements in

the deck are smaller. There are no significant differences between the

vertical displacements in the ribs and deck. The maximum vertical

displacement occurred at the mid-span and amounted to 2.02% of the arch

height for elastic case and 2.12% for inelastic case. The maximum

lateral rib displacement also occurred at the mid-span and is

considerably larger, 8.13% of the arch height for elastic case and 7.6%

for inelastic case. The deck nodes all had even larger lateral

displacement. The maximum responses of the rear and front rib were

approximately equal.

The maximum displacements for the SSB model are presented in

Table 3-3. As before, the odd numbers are on the ribs and the even

number are on the deck (Figure 3-2). There are no significant

differences between the rib and deck for horizontal and vertical

displacements. The maximum horizontal displacement was 1.58% of the arch

height (28.398 feet) for the elastic case and 1.43% for the inelastic

case. The corresponding maximum vertical displacements were 3.17% and

3.12%. The corresponding maximum lateral displacements were 3.48% and

3.29%. For this bridge, the inelastic displacement responses were

smaller than the elastic responses. But the differences are relatively

small.

The maximum displacements for the LSB model are listed in Table

3-4. The even numbers are on the rib and the odd numbers are on the

deck (Figure 3-3). The maximum horizontal displacement was 0.98% of the

arch height (370 feet) for the elastic case and 0.95% for the inelastic
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case. The corresponding maximum vertical displacements were 1.65% and

1.61%. The corresponding maximum lateral displacements were 2.73% and

2.54%.

3-4-4 We:

In this section the force time histories are presented for two

rib points in each bridge. At each point, three components are plotted:

Pz (axial force), My (referred to as ”in-plane bending" because the

bending takes place in the plane of the rib), and fix (referred to as

'out-of-plane bending” because the bending causes deformation out of

the plane of the rib).

3.4.4.1W

The two points selected are: and J of member 1 at node 5 (the

1/8 span of the front arch rib) and end I of member 16 at node 31 (the

7/8 span of the rear arch rib) (See Figure 3-1). They are symmetric

points and yielding had been indicated in the inelastic analysis.

The P2 time histories are shown in Figures 3-42 and 3-43. The

predominant period is approximately 3.0 seconds which indicates that the

response was mostly in the first out-of-plane mode. In this mode, the

two ribs essentially act as the two opposite flanges of a beam. One can

also observe that the fourth in-plane mode (with a period equal to

approximately 0.5 seconds.) participated significantly in the overall

response. In this mode, the two ribs would respond identically. Because

of the sign conventions used in the analysis (See Figure 2-6), the two

time histories are seen to be in phase for the first out-of-plane mode

and out-of-phase for the fourth in-plane mode. As it was the case for
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displacement time histories, the wave patterns for the P2 forces for the

elastic and inelastic responses are quite similar.

The in-plane rib bending moment time histories are shown in

Figures 3-44 and 3-45. The predominant period is approximately 3.0

seconds which indicates that the response was again primarily in the

first out-of-plane mode. (Note that in-plane bending of ribs may exist

in an out-of-plane normal mode. See Figure 3-6) Similarly, there was

substantial fourth in-plane mode contribution. The two time histories

are in phase for the first out-of-plane mode and out-of-phase for the

fourth in-plane mode.

The out-of-plane bending time histories are shown in Figures

3-46 and 3-47. The predominant period was measured as 3.0 seconds which

indicates that the response was primarily in the first out-of-plane

mode. The two time histories are out-of-phase.

3.4.4.2 WE).

The two points selected for this structure is and J of member 9

at node 11 (the 2/7 span of the rear arch rib) and end I of member 13 at

node 23 (the 5/7 span of the rear arch rib) (See Figure 3-2).

The results are shown in Figures 3-48 through 3-53. In general,

they are similar in character to those presented above for the MSB.

Hence, no further discussion will be presented for them.

3.4.4.3W

The points selected are end I of member 5 at node 12 (the 4/14

span of the arch rib) and end J of member 10 at node 24 (the 10/14 span

of the arch rib) (See Figure 3-3). They are symmetric points and
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yielding did occur at both points.

The axial force time histories are shown in Figures 3-54 and

3-55. The predominant period is approximately 1.1 seconds which

indicates that the response was mostly in the fourth in-plane mode. It

may be noted from Figure 3-8 that the fourth mode is the lowest mode in

which the axial force dominates (over bending). The wave patterns for

the elastic and the inelastic responses are quite similar.

The in-plane bending time histories are shown in Figures 3-56

and 3-57. The predominant period is approximately 3.5 seconds which

indicates that the response was primarily in the first in-plane mode.

There was also small contributions from higher modes. The two time

histories are in phase for the first in-plane mode and out-of-phase for

the higher modes.

The out-of-plane bending time histories are shown in Figures

3-58 and 3-59. The predominant period is approximately 0.5 seconds which

indicates that the response was primarily in the higher mode. The two

time histories are out-of-phase. The question arose why there was little

first out-of-plane mode response. The time histories of out-of-plane

bending at the two nodes (node 10 and 14) adjacent to node 12 were

obtained and are shown in Figures 3-60 and 3-61. It can be seen that the

responses at both nodes are mostly in the first out-of-plane mode. Thus

it may be concluded that the selected points (node 12 and 24) are very

close to points of inflection (zero moment) for out-of-plane bending in

the fundamental out-of-plane mode.
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3.4.5W

The maximum values of the internal forces: Pz’ My and M.x for the

MSB model are listed in columns 3 and 4 of Table 3-5. It is seen that

they differ considerably for the elastic and inelastic cases (although

the time history wave patterns are quite similar for the two cases). It

may be noted that the maximum values in the inelastic case'are limited

by the fully plastic values (See Eq. 2-20 and Table 3-5). No such limits

exist in the elastic case.

For an elastic design, the design is generally carried out based

on the maximum forces as indicated by the elastic analysis. For an

inelastic design, if the designer would accept the "damage" due to

plastic deformations, the design could be carried out based on the

maximum force as indicated by the inelastic analysis. Assuming that the

material needed is roughly proportional to the design force, it follows

that savings in material are possible if the "inelastic force" is less

than the “elastic force".

Let the term ”force reduction factor" or simply "reduction

factor," be defined as:

Fe - Fie

reduction factor - (3-1)

F
e

 

in which, Fe - maximum force by elastic analysis and F1e - maximum force

by inelastic analysis. The factor may be regarded as a measure of

possible material saving using inelastic design. Its values are listed

in Table 3-5 for the data presented above. It is seen that they are of

appreciable magnitude.

The largest reduction factor for the SSB (listed in Table 3-6)

is 0.223 for in plane bending of member 9 end J. It is less than the
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maximum values of 0.333 of the preceding MSB case. But the latter is

based on a ground acceleration amplification factor AF - 2.0, while for

the SSB model, AF - 1.2. Thus, the reduction factor per unit of AF is

approximately the same for the two cases.

The largest reduction factor for the LSB (See Table 3-7) is

0.137 for in-plane bending of member 10 end J. It is smaller than the

maximum reduction factors for either the MSB or SSB. It may also be

noted that the values of the dimensionless response (displacements) for

LSB model are also smaller than the other two bridges.

3 4.6 Ixnisal_E2rk_and_EneIsx_Distributign_Iims_flist2ries

The work and energy balance equation of the system was presented

in Section 2.7 as:

"g + “c ' ESE + ESP I Ex + En (2’44)

in which, as noted in Chapter II, WR and WG denote work done by support

reactions and by gravity loads, respectively, ESE is recoverable strain

energy, ESP is irrecoverable (plastic) strain energy, BK is kinetic

energy and ED is energy dissipated by damping. During an earthquake

energy is fed through the base of the structure. It is instructive to

know how the energy is distributed among the terms in the work and

energy balance equation. There is no irrecoverable (plastic) strain

energy for a linear elastic case, therefore, for that case the term ESP

should be deleted from the equation.

The equation representing work and energy distribution may be

rewritten from Eq. 2-44 as follows:

ESE ESP Ex ED
+ -———— + +

W W W W

1.0 -
   

(3-2)
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in which W - WR + WG. The equation becomes

1.0-SE+KE+DE+PW (3-3)

where SE - ESE/W, XE - EK/W, DE - ED/W and PW - ESP/W are presented in

the figures of the work and energy distribution time histories. A spline

technique was used in the graphs to connect the discrete points.

The work and energy distribution time histories of the MSB for

the elastic and inelastic cases are shown in Figures 3-62 and 3-63. The

elastic case has a greater percentage of dissipated damping energy

compared to the inelastic case. The dissipated damping energy continued

to increase to 87% of the work done for the elastic case and 74% for the

inelastic case. For both cases the kinetic and recoverable strain energy

remain relatively small throughout the whole 45 seconds and the elastic

case has a greater percentage. For the inelastic case, 18% of the work

done is shown to be dissipated by irrecoverable strain energy after

about 20 seconds. From Figure 3-63, a decrease in PW can be noted. It is

because of the fact that the ratio ESP/W is plotted, i.e., a decrease

signifies that the denominator, the work done, has increased faster than

the numerator.

The work and energy distribution time histories of the SSB for

the elastic and inelastic cases are shown in Figures 3-64 and 3-65. The

dissipated damping energy continued to increase at an almost constant

rate to 88% of the work done for the elastic case and 74% for the

inelastic case. The percentages of the kinetic and recoverable strain

energy were smaller than the corresponding percentages of MSB. According

to Figure 3-65, 17% of the work done is shown to be dissipated by

irrecoverable strain energy after about 15 seconds.

The work and energy distribution time histories of the LSB for
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the elastic and inelastic cases are shown in Figures 3-66 and 3-67. The

dissipated damping energy continued to increase at an almost constant

rate to 85% of the work done for the elastic case and 75% for the

inelastic case. The percentages of the kinetic and recoverable strain

energy were larger than the corresponding percentages of MSB with the

same amplification factor. For the inelastic case, 12% of the work done

is shown to be dissipated by irrecoverable strain energy after about 23

seconds.

3.4.7 . : 9. - 1:71 . : -_ ., 1 . - .,7 'an- ,. :: .

The results of the work and energy distribution time histories,

obtained by using a two-dimensional model of MSB (Figure 3-4) with

different damping ratios, are shown in Figures 3-68 through 3-74. The

. responses are listed in Table 3-8. It is seen that the inelastic

responses and reduction factor decreased when the value of damping ratio

was increased. The amplification factor used is 2.0 for all cases.

There is no inelastic effect when the damping ratio is equal to

5%. In that case, most (96%) of the work done was dissipated by damping.

When the damping ratio is equal to 0.25%, 50% of the work done was

dissipated by damping and 30% of the work done was dissipated by

irrecoverable strain energy. The ratios of irrecoverable strain energy,

kinetic energy and recoverable strain energy to the work done increased

when the damping ratio decreased.

3.4.8

 

For a given bridge model and ground motion, one may carry out a

linear elastic analysis. The quantity 3;, for the case of "spherical
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plastic potential function," is defined as:

- P 2 "I 2 Mx 2
ea - ( ———- ) + ( ) + ( ————‘ ) (3'4)

Po Myo MxO

(The yielding condition is defined by setting 8; - 1 - 0 (Eq. 2-20).) It

is a function of time and position in the structure. Its value can be

greater than 1. Let ea be the maximum value of 5; for all points and

times considered in the linear analysis. It is called the linear

response factor.

For the same bridge model and ground motion, an inelastic

analysis may be carried out. The maximum inelastic response in terms

total plastic work (Eq. 2-39), plastic work density (Eqs. 2-40) and

ductility factor (Eqs. 2-41 through 2-43) may be computed. These

inelastic response quantities may be used to represent measures of

"damages” done to the structure due to inelasticity. They are plotted

for the most severely strained member in the bridge MSB, in Figure 3-75

as a function of oe.

It is seen that the inelastic response quantities generally

increase with the linear response factor. This is expected. Following

the concept of force reduction factor as discussed in Section 3.4.5, one

might use such a graph as follows. If one would accept a certain level

of "damage”, for example, a curvature ductility factor about y-axis

equal to 3.5, the corresponding curve in Figure 3-75 would indicate a

linear response factor equal to 1.88. This factor may be used as a "load

reduction factor“ (to be applied to the "seismic load" based on linear

behavior) or an allowable stress increase factor.

Similar curves are presented for the other two bridge models in

Figures 3-76 and 3-77.
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3.5 W

3.5.1 General

In the preceding the nonlinear effects due to material

inelasticity were considered. In this section numerical results on

nonlinear elastic effects (“geometric nonlinearity”) are presented. For

simplicity, only in-plane behavior is studied. The same bridge models

and earthquake loading considered previously are used with the exception

that the MSB is simplified to a 4-panel model as depicted in Figure 3-4.

The main feature of nonlinear elastic effects is that the axial

compressive force in the arch ribs would lower the stiffness of the

structure (analogous to the case of a beam-column). That would change

the response characteristic and could even lead to instability.

3.5.2W

3.5.2.1W

For this bridge, typical displacement time histories are

presented for node 3 (at the 1/4 point of the rib) and node 5 (at the

crown).

The horizontal displacement time histories are shown in Figures

3.78 and 3-79 for both the linear and nonlinear analyses. The

predominant period for the linear elastic case is approximately 2.5

seconds which corresponds to the first mode (Table 3-1). For the

nonlinear elastic case, the measured period is approximately 2.8 seconds

which represents approximately a 10% increase from the linear case.

This, of course, is due to the effects of the decreased stiffness of the

ribs resulting from dead load compression.

The vertical displacement time histories are shown in Figures
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3-80 and 3-81. For the quarter point (node 3), the predominant period is

that of the first mode (2.5 seconds) for the linear case. The crown

point (node 5) has zero vertical displacement in the first mode (See

Figure 3-10), which explains the fact that the response shows mainly a

combination of second and third modes (1.15 and 0.50 seconds,

respectively). For the nonlinear response, one can again notice an

increase in the values of the dominant period. For the quarter point, it

is approximately 10%, as for the preceding case of horizontal

displacement. For the crown point, the change is from 1.15 seconds to

1.2 seconds representing an increase of about 5% in the second mode.

35-2-2 WEE).

This bridge model has no node at the crown. The displacements

of the two nodes symmetric with respect to it are considered. They are

node 9 (at the 2/7 span) and node 21 (at the 5/7 span) (See Figure 3-2).

The horizontal displacement time histories are shown in Figures

3-82 and 3-83. For the linear elastic case, the predominant period is

approximately 1.1 seconds which corresponds to the first mode. The

period for the nonlinear elastic case is approximately 1.2 seconds which

represents approximately a 9% increase. The responses of the two nodes

are in phase.

The vertical displacement time histories are shown in Figures

3-84 and 3-85. The features of dominant periods of these responses are

similar to those discussed above. The responses of the two nodes are out

-of-phase.
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3.5-2.3mm

For this bridge model, the displacements are considered at node

18 (the crown), and two nodes symmetric to it: node 12 (at the 4/14

span) and node 24 (at the 10/14 span) (See Figure 3-3).

The horizontal displacement time histories are shown in Figures

3-86, 3-87, and 3-88. Again, the response was primarily in the first

mode (with a period of about 3.5 seconds). There was approximately a 8%

increase of the dominant period for the nonlinear elastic case (3.8

seconds) from the linear elastic case.

The vertical displacement time histories are shown in Figures

3-89, 3-90 and 3-91. The responses of the two symmetric nodes, nodes 12

and 24, were mostly in the first mode and there was little contribution

from higher modes. The response of the crown node, node 18, was

primarily in the second mode (1.5 seconds) and fourth mode (1.1

seconds). The change in the dominant period is approximately a 7%

increase for these nodal displacements.

3.5-3 mm

The maximum displacements are listed in Tables 3-9, 3-10 and

3-11 for MSB, SSB and LSB, respectively. The odd numbers represent nodes

on the rib and the even numbers on the deck for MSB and SSB (Figures 3-4

and 3-2). For LSB, the even numbers are on the rib and the odd numbers

are on the deck (Figure 3-3).

In Table 3-9, It can be seen that the maximum horizontal

displacements for MSB are 0.77% of the arch height (121.25 feet) for the

linear elastic case and 0.94% for the nonlinear elastic case. The

maximum vertical displacements are 1.69% of the arch height for the
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linear elastic case and 1.79% for the nonlinear elastic case.

As listed in Table 3-10, the maximum horizontal displacements

for SSB are 1.56% of the arch height (28.398 feet) for the linear

elastic case and 1.19% for the nonlinear elastic case. The corresponding

maximum vertical displacements are 3.22% and 2.59%.

As listed in Table 3-11, the maximum horizontal displacements

for LSB are 0.98% of the arch height (370 feet) for the linear elastic

case and 0.92% for the nonlinear elastic case. The corresponding maximum

vertical displacements are 1.65% and 1.6%.

3-5-4 MW

Two points in each bridge model are selected for presentation of

force time histories. At each point, two components are plotted: Pz

(axial force) and My (in-plane bending).

3.5.4.1W

The two points selected are end J of member 1 at node 3 (the 1/4

span of the arch rib) and end I of member 4 at node 7 (the 3/4 span of

the arch rib) (See Figure 3-4). They are symmetric with respect to the

crown.

The axial force time histories are shown in Figures 3-92 and

3-93. The predominant period is approximately 0.5 seconds which

corresponds to the third mode. As was noted previously in Section

3.4.4.3, this dominance appears to be due to the fact that this third

mode is the lowest mode in which axial force dominates (over bending)

(See Figure 3-10). The wave patterns for the linear elastic and

nonlinear elastic responses are quite similar.
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The in-plane bending time histories are shown in Figures 3-94

and 3-95. In this case, it appears that the responses were mainly in the

first and third modes. (These points, at which the responses are being

considered, appear to be close to points of counter-flexure for the

second mode.)

3.5-4.2 WEB).

The two points selected are and J of member 2 at node 9 (the 2/7

span of the arch rib) and end I of member 6 at node 21 (the 5/7 span of

the arch rib) (Figure 3-2). The results on this bridge are shown in

Figures 3-96 through 3-99. They are generally similar in character to

those presented in the preceding.

However, the in-plane bending response was primarily in its

first mode. Unlike the preceding case of MSB, there was little

contribution from the third mode. It should be noted that the points, at

which the responses are being considered, do not quite correspond for

the two bridge models.

3.5.4.3W

The two points selected are and I of member 5 at node 12 (the

4/14 span of the arch rib) and end J of member 10 at node 24 (the 10/14

span of the arch rib) (See Figure 3-3). They are the same points from

the same ("one-plane") model in Section 3.4.4.3 for material

nonlinearity.

The results on this bridge are shown in Figures 3-100 through

3-103. It can be seen that the results are very close to those presented

in Section 3.4.4.3. While in that section ground motions in three
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directions were applied, here only in-plane motions are applied. These

results thus suggest that the in-plane and out-of-plane responses were

largely uncoupled for this ("one-plane") bridge model.

3.5.5 W

The maximum internal forces are listed in Tables 3-12, 3-13 and

3-14 for MSB, SSB, and LSB, respectively. There is no appreciable

difference between linear elastic and nonlinear elastic solution.

3.5-6 WWW

As was done in Section 3.4.6 for the case of material

nonlinearity, the work and energy distribution time histories of the

linear elastic and nonlinear elastic case of MSB, SSB, and LSB were

calculated and are shown in Figures 3-104 through 3-109.

It may be seen that the differences between the linear and

nonlinear elastic cases are very small for all three bridge models. The

values of the ratios plotted for the kinetic and strain energy of SSB

are larger than those of MSB and less than those of LSB. However, for

both cases the kinetic and recoverable strain energy remain relatively

small throughout the whole 45 seconds. This points to the importance of

the role of damping.

357 111W

The results in Sec. 3.5.3 indicated that a consideration of the

nonlinear elastic behavior increased the maximum displacement by 10% to

20% for MSB. But for the other two bridge models, such effects of the

nonlinear behavior were much smaller (even negative). To consider
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possible instability effects, the static buckling loads were computed as

linear eigenvalue problems. They were found to be 4.415 D.L., 7.185 D.L.

and 8.557 D.L. (D.L. stands for ”dead load" for the respective models)

for MSB, SSB and LSB, respectively.

The seismic responses were computed by increasing the initial

load (initially applied static load) to be a factor times D.L.. No

instability effects were observed until the initial load was closed to

the static buckling load. This is illustrated in Table 3-15, in which

are listed the maximum horizontal displacements at the crown for MSB and

LSB, and at node 7 for SSB. It is seen that the maximum displacements

remain quite moderate until the dead load placed almost reached the

magnitude of the static buckling load. The responses for MSB and SSB

became “infinite" at 99% of the buckling load. However, for LSB (See

also Figure 3-110), even after the initial load exceeded the static

buckling load the responses remained "finite” (but at larger rates of

increase). The reason may lie in the difference in the boundary

conditions between LSB and the other two bridge models (See Figures 3-2,

3-3 and 3-4.)



Table 3-1. Natural Periods of Vibration
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Out-of-Plane (second)

Mode No. MSB SSB LSB

1 3.032 1.180 4.716

2 1.204 1.127 3.677

3 1.174 0.379 2.612

4 0.942 0.370 1.424

In-Plane (second)

Mode No. MSB SSB LSB

1 2.247 1.065 3.565

2 1.276 0.484 1.534

3 0.685 0.304 1.221

4 0.469 0.242 1.094

Two-Dimensional model of MSB (4 panels) (second)

Mode No. 1 2 3 4

MSB 2.514 1.151 0.503 0.173
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Table 3-2. Elastic and Inelastic Maximum Displacements of MSB

 

 

 

 

 

 

 

 

 

 

 

 

 

       

Nodal Displacements(ft)

No. Horizontal Vertical Lateral

No. 1.082 1.637 0.856

5 (1.034) (1.782) ( 0.834)

No. 0.383 1.625 3.747

6 (0.359) (1.795) (3.528)

No. 1.237 1.867 0.856

7 (1.370) (2.073) (0.834)

No. 0.401 1.855 3.747

8 (0.376) (2.049) (3.528)

No. 0.455 2.437 7.772

17 (0.541) (2.267) (7.239)

No. 0.177 2.449 9.858

18 (0.169) (2.267) (9.215)

No. 0.456 2.389 7.772

19 (0.534) (2.558) (7.239)

No. 0.178 2.389 9.858

20 (0.173) (2.571) (9.215)

No. 1.334 2.073 0.867

29 (1.225) (1.976) (0.732)

No. 0.588 2.098 4.765

30 (0.552) (2.001) (4.401)

No. 1.124 1.843 0.867

31 (1.225) (1.855) (0.732)

No. 0.567 1.879 4.765

32 (0.531) (1.843) (4.401)

( ..... ) : Inelastic Displacement
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Table 3-3. Elastic and Inelastic Maximum Displacements of SSB

 

 

 

 

 

 

 

 

 

 

 

 

 

       

Nodal Displacements(ft)

No. Horizontal Vertical Lateral

No. 0.426 0.898 0.520'

9 (0.378) (0.835) (0.503)

No. 0.388 0.900 0.987

10 (0.355) (0.837) (0.922)

No. 0.449 0.884 0.520

11 (0.400) (0.884) (0.503)

No. 0.386 0.886 0.987

12 (0.360) (0.886) (0.922)

No. 0.369 0.686 0.851

13 (0.334) (0.771) (0.804)

No. 0.383 0.689 0.950

14 (0.350) (0.771) (0.893)

No. 0.371 0.726 0.851

15 (0.339) (0.830) (0.804)

No. 0.383 0.729 0.950

16 (0.357) (0.832) (0.893)

No. 0.447 0.830 0.520

21 (0.400) (0.853) (0.487)

No. 0.386 0.835 0.987

22 (0.353) (0.856) (0.933)

No. 0.421 0.835 0.520

23 (0.407) (0.766) (0.487)

No. 0.388 0.837 0.987

24 (0.360) (0.771) (0.933)

( ..... ) : Inelastic Displacement



76

Table 3-4. Elastic and Inelastic Maximum Displacements of LSB

 

 

 

 

 

 

 

 

 

Nodal Displacements(ft)

No. Horizontal Vertical Lateral

No. 3.619 6.068 5.365

12 (3.156) (5.439) (5.180)

No. 2.723 6.105 10.101

13 (2.560) (5.476) (9.250)

No. 2.868 2.320 8.658

18 (2.538) (2.213) (8.362)

No. 2.150 2.331 7.548

19 (2.146) (2.224) (7.141)

No. 3.530 5.883 5.365

24 (3.497) (5.920) (5.254)

No. 2.609 5.920 10.101

25 (2.560) (5.957) (9.398)    
 

( ..... ) : Inelastic Displacement
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Table 3-5. Elastic and Inelastic Maximun End Forces of MSB

 

 

 

 

 

 
 

 

Member Linear Nonlinear Reduction Fully

Plastic

End Elastic Inelastic Factor Force

P2 8907 8635 0.031 10064.34

l-J My 40547 29584 0.270 30034.75

Mx 4369 4989 ' -0.142 12169.45

P2 9088 7890 0.132 10064.34

16-I My 43851 29344 0.331 30034.75

Mx 4381 4077 0.069 12169.45        
Pz : kips ; M& : ft-kips ; Mg : ft-kips

Table 3-6. Elastic and Inelastic Maximun End Forces of SSB

 

 

 

 

 

 
 

        

Member Linear Nonlinear Reduction Fully

Plastic

End Elastic Inelastic Factor Force

P2 2669 2455 0.080 4554.000

9-J M.y 7235 5623 0.223 5696.625

MX 185 193 -0.043 3112.313

P2 2910 2637 0.094 4554.000

13-1 M.y 6779 5577 0.177 5696.625

Mx 185 247 -0.335 3112.313

-Pz : kips ; M? : ft-kips ; M; : ft-kips



Table 3-7. Elastic and Inelastic Maximun End Forces of LSB

 

 

 

 

 

 
 

       

Member Linear Nonlinear Reduction Fully

Plastic

End Elastic Inelastic Factor Force

Pz 68350 67605 0.011 82849

5-1 M.y 1667632 1554821 0.068 1634933

Mx 322119 322119 0.000 2982580

Pz 66610 66610 0.000 82849

lO-J My 1765728 1523757 0.137 1634933

M.x 322119 283643 0.119 2982580

P: : hips ; M& : ft-kips ; M¥ : ft-kips
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Table 3-8. Maximum Responses for Various Values of Damping Ratio

 

 

 

 

 

 

 

        
 

 

 

 

 

 

 

 

 

       

Damping Node 5 Displacement(ft) Ductility Plastic Work Total

ratio Factor Density by Plastic

(%) Horizontal Vertical M.y M.y Work

0.25 0.558 0.825 17.560 527.33 11094

0.5 0.571 0.808 16.049 330.56 6772

1.0 0.761 0.764 14.591 140.72 2599

2.0 0.618 0.732 5.909 56.92 884

3.0 0.557 0.755 2.083 20.31 272

5.0 0.468 0.743 -----------------

Damping Member 1 End J

Ratio Axial Force (Pz) In-Plane Bending (My)

(%) Inelastic Elastic Reduction Inelastic Elastic Reduction

0.25 9197 15420 0.404 48087 112430 0.572

0.5 8922 11841 0.246 48136 98802 0.513

1.0 7972 9982 0.201 48330 79334 0.391

2.0 6870 7724 0.110 44923 61325 0.263

3.0 6182 6499 0.049 45313 52565 0.138

5.0 5259 5259 0.000 43123 43123 0.000  
 

Pz : kips ; M

7

: ft-kips
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Table 3-9. Linear and Nonlinear Elastic Maximum Displacements of MSB

 

 

 

 

 

 

 

  

Nodal Linear Elastic (ft) Nonlinear Elastic (ft)

No. Horizontal Vertical Horizontal Vertical

3 0.918 1.831 1.135 2.037

4 0.409 1.879 0.409 2.086

5 0.650 0.955 0.833 1.135

6 0.663 0.968 0.663 1.146

7 0.935 2.001 1.062 2.134

8 0.832 2.049 0.832 2.170      
Table 3—10. Linear and Nonlinear Elastic Maximum Displacements of SSB

 

 

 

 

 

 

 

  

Nodal Linear Elastic (ft) Nonlinear Elastic (ft)

No. Horizontal Vertical Horizontal Vertical

5 0.443 0.912 0.329 0.684

6 0.389 0.914 0.312 0.687

7 0.378 0.525 0.278 0.491

8 0.386 0.528 0.307 0.491

11 0.437 0.849 0.338 0.733

12 0.389 0.852 0.312 0.736      
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Table 3-11. Linear and Nonlinear Elastic Maximum Displacements of LSB

 

 

 

 

 

 

 

  

Nodal Linear Elastic (ft) Nonlinear Elastic (ft)

No. Horizontal Vertical Horizontal Vertical

12 3.619 6.068 3.414 5.920

13 2.723 6.105 2.542 5.920

18 2.868 2.320 2.642 2.301

19 2.150 2.331 1.865 2.309

24 3.530 5.883 3.230 5.587

25 2.609 5.920 2.290 5.624    
  



Table 3-12. Linear and Nonlinear Elastic Maximum End Forces of MSB

 

Linear Elastic Nonlinear Elastic

 

 

 

 

Member

Axial Force In-Plane Axial Force In-Plane

End Pz Bending M Pz Bending M

kips ft-kips y kips ft-kips y

l-J 8633 67653 8564 71546

4-1 8784 68626 8756 69600    
 

Table 3-13. Linear and Nonlinear Elastic Maximum End Forces of SSB

 

Linear Elastic Nonlinear Elastic

 

 

 

 

Member

Axial Force In-Plane Axial Force In-Plane

End Pz Bending M Pz Bending M

kips ft-kips y kips ft-kips y

2-J 2268 7064 2218 6152

6-I 2026 6551 2077 6665    
 

Table 3-14. Linear and Nonlinear Elastic Maximum End Forces of LSB

 

Linear Elastic Nonlinear Elastic

 

 

 

 

Member

Axial Force In-Plane Axial Force In-Plane

End Pz Bending M Pz Bending M

kips ft-kips y kips ft-kips y

5-1 68350 1667632 68599 1623488

10-J 66610 1765728 69593 1554821    
 

 

 

 



83

Table 3-15. Maximum Displacements for Different Values of Initial Load

 

 

 

 

 

 

     
 

 

 

 

 

 

 

 

 

 

 

  

MSB SSB

(Buckling Load - 4.415 D.L.) (Buckling Load - 7.185 D.L.)

Initial Node 5 Initial Node 7

Load Horizontal Displ. Load Horizontal Displ.

4.300 D.L. 0.3492 ft 7.000 D.L. 0.5992 ft

4.350 D.L. 0.4450 ft 7.100 D.L. 0.4089 ft

4.360 D.L. 0.4729 ft 7.150 D.L. 0.4742 ft

4.365 D.L. 0.4874 ft 7.155 D.L. 0.5311 ft

4.370 D.L. 2.0E+10 ft 7.160 D.L. 6.5031 ft

LSB

(Buckling Load - 8.557 D.L.)

Initial Node 18 Initial Node 18

Load Horizontal Displ. Load Horizontal Displ.

8.45 D.L. 1.2136 ft 8.56 D.L. 2.7454 ft

8.46 D.L. 1.2506 ft 8.57 D.L. 3.7740 ft

8.47 D.L. 1.2987 ft 8.58 D.L. 5.2540 ft

8.48 D.L. 1.3579 ft 8.59 D.L. 7.2890 ft

8.49 D.L. 1.4356 ft 8.60 D.L. 9.5090 ft

8.50 D.L. 1.5281 ft 8.61 D.L. 13.801 ft

8.51 D.L. 1.6428 ft 8.62 D.L. 18.944 ft

8.52 D.L. 1.7760 ft 8.63 D.L. 25.567 ft

8.53 D.L. 1.9499 ft 8.64 D.L. 33.078 ft

8.54 D.L. 2.1645 ft 8.65 D.L. 43.290 ft

8.55 D.L. 2.4235 ft 8.66 D.L. 54.760 ft      
ll
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Figure 3-5. In-Plane Mode Shapes for MSB
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CHAPTER IV

SUMMARY AND CONCLUSION

4.1 m -

This study has presented a method for the nonlinear dynamic

analysis of arch bridges. For the analysis, mass is lumped at the nodes.

The effects of either geometric or material nonlinearity have been taken

into account. The effects of such nonlinearities enter in the analysis

through the computation of the ”resistance" of the arch ribs.

For the inelastic effects. a method of analysis based on the

"plastic hinge” concept has been developed for the elasto-plastic

resistance of a curved beam element in the three-dimensional space. The

yield function is based on the three stress resultants (axial force F,

in-plane bending moment My. and out-of-plane bending moment Mx). For the

analysis of nonlinear elastic effects, a twelve degrees of freedom

incremental stiffness matrix [n1] was also derived.

Other features of the analysis included the use of ”mixed nodal

coordinate systems”: cartesian coordinates for the nodes on the deck,

and curvilinear coordinates for the nodes on the arch ribs, and the use

of various constraints such as those that would result in infinitely

large axial stiffness for the cross-beams and/or columns. All these

features were motivated by a desire to make the model more

computationally effective by reducing the number of degrees of freedom.

For seismic analysis, the load input is a uniform ground acceleration in
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all three directions in space. The system equation consists of the

equations of motion for the unconstrained degrees of freedom of the

nodes.

The method of analysis is one of a step-by-step numerical

integration in the time domain. Within a time increment, the solution is

essentially of the Newton-Raphson type implying an outer loop of

iteration for the equilibrium of the system equation. For each elasto-

plastic element (curved beam element), an inner loop of iteration is

needed because of the material nonlinearity. The validity of the

analysis was corroborated by checking the balance of the various

energies in the system and the work done on the system in each time

increment.

For interpretation of the results on inelastic behavior, the

quantities "ductility factors” and "plastic work densities" are defined.

A computer program has been developed for the implementation of the

three-dimensional nonlinear seismic analyses described above.

Three bridge models, MSB, SSB and LSB, based on three prototype

bridges: CSCB (700 ft), SSB (193 ft) and NRGB (1700 ft), respectively,

were used to obtain the numerical results. Three-dimensional models were

employed to consider the nonlinear inelastic effects. Results for

nonlinear elastic solution were based on two-dimensional models. The

ground motion used were the artificially generated motion CIT-A2 with

different amplification factors applied to the amplitude of the ground

acceleration.

For the maximum displacement responses involving material

nonlinearity, there is no appreciable difference between the linear and

nonlinear analysis. But plasticity limited the magnitude of the internal
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force response to that as defined by the yield function. It follows that

if plastic deformations are allowed, the design forces may be reduced

from that which would be required if the design is to be done on a

linearly elastic basis. For example, this reduction factor, as discussed

in Section 3.4.8 and illustrated in Figures 3-75 through 3-77 and

applied to the linear response factor, would be 1.0/1.88 if the "damage"

represented by a curvature ductility factor of 3.5 was accepted.

Both the maximum displacements and internal forces of nonlinear

elastic responses did not vary a great deal from the linear solution.

The history curves, however, exhibited different periods of vibration.

In general, the dominant period increased by 5% to 10%.

According to work and energy distribution time histories, the

dissipated damping energy (for a 1.5% damping ratio) is over 70% of the

work done for three bridge models. From Section 3.4.7, the results show

that almost 50% of the work done was dissipated by damping if the

damping ratio is equal to 0.25%. There was no nonlinear inelastic

effects if the damping ratio is equal to (or, presumably, exceeds) 5%.

These observations emphasize the importance of damping in the response.

4.2 W

This study as summarized in the previous section has developed a

method of analysis, prepared a computer program and obtained a

significant amount of numerical results that provide much understanding

of the behavior of deck-type arch bridges subjected to earthquake ground

motions.

Because of the capabilities of supercomputer, the arch bridge

structures could be modelled in sufficient detail and subjected to
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strong earthquake ground motions of a realistic duration. The nonlinear

analyses had yielded responses that are more realistic than those

obtainable using linear models of earlier studies, particularly when

applied to models of the true three-dimensional kind.

The method of analysis described herein can provide a good basis

for the development of design procedures. For consideration of design,

the following improvements seem.worthwhile for future study.

The results on nonlinear behavior obtained in this report are

either for geometric nonlinearity (nonlinear elastic effects) only, or

for material nonlinearity (nonlinear inelastic effects) only. Obviously,

it is more realistic to consider both nonlinearities simultaneously.

For applications to the design of steel structures, the

"octahedronal yield surface” (which is linear or consists of planar

surfaces) seems more appropriate than the spherical yield surface. The

latter may over-estimate the strength of the element, and hence could

err on the unconservative side.

The numerical results of this study have concentrated on steel

deck-type arch bridges. They are only one kind of arch bridges. The

other two types of steel arch bridges are tied through and tied half-

through steel arch bridges. The responses of these types of arch bridges

could be quite different from the responses of the deck-type. The

analysis and the computer program developed in this study can, of

course, be applied to these types of arch bridges.

The artificially generated ground motion CIT-A2 was used in this

study. For purposes of design studies, additional ground motions should

be used. A variety of other ground acceleration histories such as the

type B, C and D artificially generated accelerograms (Ref. [18]) and the
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records of actual earthquake ground motion such as the 1941 El Centro

and 1971 San Fernando earthquakes may be used.

Another limitation of the study presented here is the assumption

that the motions of all bridge supports are the same. The validity of

this assumption obviously decreases with an increase in the span length

of the bridge. Thus, effects of non-uniform motion of the supports would

be a significant topic for future study. In Ref. [12], these effects

were presented in a linearly elastic setting. Future work may consider

non-uniform motion of the supports in a nonlinear-response framework.
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APPENDIX

PROPERTIES OF BRIDGE MODELS

Aol am

This appendix includes the description of the three bridge

models in both the three- and two-dimensional cases as depicted in

Figures 3-1 through 3-4. In conjunction with these figures, the data

presented below completely define the bridge models used.

A-2 W

A.2.1 EQDALDAIA

In each line, the first value is node number (see Figure 3-1).

The next six values are the boundary condition codes. (a "0" (zero)

denotes "free" and "1" denotes "restrained".) The order is X

translation, Y translation, 2 translation, rotation about X, rotation

about Y, and rotation about 2 in standard cartesian coordinates system.

The following three values are X, Y, and Z coordinate in feet.

1 1 l l 1 O 0 0.0 0.0 26.0

2 0 O O 1 O O 0.0 133.5 26.0

3 1 1 l l O 0 0.0 0.0 0.0

4 O 0 O 1 O O 0.0 133.5 0.0

5 O 0 O 0 O 0 87.5 53.047 26.0

6 0 0 0 O O 0 87.5 133.5 26.0

7 O O O O O O 87.5 53.047 0.0

8 0 0 0 O 0 0 87.5 133.5 0.0

9 0 0 0 0 0 0 175.0 90.937 26.0

10 0 0 O 0 O 0 175.0 133.5 26.0

11 0 0 0 0 O 0 175.0 90.937 0.0

12 O O 0 0 0 0 175.0 133.5 0.0

13 0 0 0 O O 0 262.5 113.672 26.0

14 0 O 0 0 O 0 262.5 133.5 26.0

15 0 O 0 0 0 0 262.5 113.672 0.0
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16 O 0 O 0 0 0 262.5 133.5 0.0

17 O O O O O 0 350.0 121.25 26.0

18 O 0 0 0 O 0 350.0 133.5 26.0

19 0 0 O O O 0 350.0 121.25 0.0

20 O O O O 0 0 350.0 133.5 0.0

21 O 0 0 0 O 0 437.5 113.672 26.0

22 0 O 0 O O 0 437.5 133.5 26.0

23 O 0 0 0 O 0 437.5 113.672 0.0

24 O 0 0 O 0 0 437.5 133.5 0.0

25 0 O 0 0 0 0 525.0 90.937 26.0

26 O O 0 O O 0 525.0 133.5 26.0

27 0 0 O O O 0 525.0 90.937 0.0

28 0 O 0 0 O 0 525.0 133.5 0.0

29 O 0 0 0 O 0 612.5 53.047 26.0

30 O 0 0 0 0 0 612.5 133.5 26.0

31 0 0 O O O 0 612.5 53.047 0.0

32 0 O 0 O O 0 612.5 133.5 0.0

33 1 1 1 1 O 0 700.0 0.0 26.0

34 O 0 0 1 O 0 700.0 133.5 26.0

35 1 1 1 1 O 0 700.0 0.0 0.0

36 O 0 0 l 0 0 700.0 133.5 0.0

37 1 1 1 1 1 1 0.0 133.5 -20.0

38 1 1 1 1 1 1 700.0 133.5 -20.0

39 1 1 1 1 l 1 -182.0 133.5 26.0

40 1 1 1 1 1 1 -182.0 133.5 0.0

A-2.2 ms.

The four values in each line of this group are element number,

global nodal number of end I, global nodal number of end J, and cross

section area (ft2).

1 2 8 3.78

2 4 6 3.78

3 6 12 3.78

4 8 10 3.78

5 10 16 3.78

6 12 14 3.78

7 14 20 3.78

8 16 18 3.78

9 18 24 3.78

10 20 22 3.78

11 22 28 3.78

12 24 26 3.78

13 26 32 3.78

14 28 30 3.78

15 3O 36 3.78

16 32 34 3.78

17 1 7 0.3881

18 3 5 0.3881

19 5 11 0.3881  
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20 7 9 0.3881

21 9 15 0.3881

22 11 13 0.3881

23 13 19 0.3881

24 15 17 0.3881

25 17 23 0.3881

26 19 21 0.3881

27 21 27 0.3881

28 23 25 0.3881

29 25 31 0.3881

30 27 29 0.3881

31 29 35 0.3881

32 31 33 0.3881

33 37 4 0.00489

34 38 36 0.00489

35 1 2 1.623

36 5 6 0.3264

37 9 10 0.3264

38 13 14 0.3264

39 17 18 0.3264

40 21 22 0.3264

41 25 26 0.3264

42 29 30 0.3264

43 34 33 1.623

44 3 4 1.623

45 7 8 0.3264

46 11 12 0.3264

47 15 16 0.3264

48 19 20 0.3264

49 23 24 0.3264

50 27 28 0.3264

51 31 32 0.3264

52 36 35 1.623

53 14 17 0.0144

54 17 22 0.0144

55 16 19 0.0144

56 19 24 0.0144

57 17 20 0.0144

58 18 19 0.0144

59 39 2 2.44

60 40 4 2.44

A.2.3W

The five values are property set number, axial area (ftz), local

x-x moment of inertia (fta), local y-y moment of inertia (fta), and

torsion constant (fth).

1 0.78 2.18 3.72 1.36

The values in each line are element number, global nodal number
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of end 1, global nodal number of end J, and corresponding property set

number of the straight beam element.

1 2 6 1

2 6 1o 1

3 1o 14 1

4 14 18 1

5 18 22 1

6 22 26 1

7 26 30 1

8 3o 34 1

9 4 3 1

1o 8 12 1

11 12 16 1

12 16 20 1

13 20 24 1

14 24 28 1

1s 28 32 1

16 32 36 1

A-2-4W

In this group of data, every four lines form a set of one kind

of properties for a curved beam element. In each set, the four values in

the first line are property set number, axial area (ftz), local x-x

moment of inertia (fta), local y-y moment of inertia (fth), and torsion

constant (fta). The three values in the second line are axial yield

force (kips), local y-y yield moment (kips-ft), and local x-x yield

moment (kips-ft), respectively equal to P M and Mx in Eq. 2-20. The
0’ yO 0

three values in the third line are local x-x yield rotation, local y-y

yield rotation, and axial yield displacement (ft), respectively equal

to exp, oyp and AP in Section 2.6.2. The two value in the last line are

volume of the plastic hinge (ft3) corresponding to local x-x bending and

that to local y-y bending (ft3), respectively equal to th and Vby in

Section 2.6.1.

1 2.1180 3.4830 23.497 24.70

10064.34 30034.75 12169.45

0.0025102 0.0027548 0.0068276

6.750 4.221
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2 2.5920 3.8020 32.397 25.010

12316.52 39794.21 13770.57

0.0026019 0.0026473 0.0068276

11.250 4.221

3 2.8290 3.9620 36.719 25.170

13442.62 44603.56 14571.13

0.0026422 0.0026179 0.0068276

13.500 4.221

4 2.3550 3.6420 27.990 24.850

11190.43 34937.93 12970.01

0.0025581 0.0026902 0.0068276

9.000 4.221

The values in each of the following lines are element number,

global nodal number of end 1, global nodal number of and J, and

corresponding property set number of the curved beam element.

1 1 5 1

2 5 9 2

3 9 13 3

4 13 17 4

5 17 21 4

6 21 25 3

7 25 29 2

8 29 33 1

9 3 7 1

10 7 11 2

11 11 15 3

12 15 19 4

13 19 23 4

.14 23 27 3

15 27 31 2

16 31 35 1

A.2.5 gas:

The four values in each line are global nodal number, mass in X

direction, mass in Y direction, and mass in 2 direction (kip-

secondz/ft).

2 3.8825 3.8825 3.8825

4 3.8825 3.8825 3.8825

6 7.765 7.765 7.765

8 7.765 7.765 7.765

10 7.765 7.765 7.765

12 7.765 7.765 7.765

14 7.765 7.765 7.765

16 7.765 7.765 7.765

18 7.765 7.765 7.765



20 7.765 7.765

22 7.765 7.765

24 7.765 7.765

26 7.765 7.765

28 7.765 7.765

30 7.765 7.765

32 7.765 7.765

34 3.8825 3.8825

36 3.8825 3.8825

5 5.125 5.125

7 5.125 5.125

9 5.125 5.125

11 5.125 5.125

13 5.125 5.125

15 5.125 5.125

17 5.125 5.125

19 5.125 5.125

21 5.125 5.125

23 5.125 5.125

25 5.125 5.125

27 5.125 5.125

29 5.125 5.125

31 5.125 5.125

A.2.6 W5.
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.765

.765

.765

.765

.765

.765

.765

3.8825

3.8825

.125

.125

.125

.125

.125

.125

.125

.125

.125

.125

.125

.125

.125

.125

\
I
V
N
N
N
N
N

U
'
I
U
'
U
U
I
U
'
U
U
‘
U
'
U
‘
U
‘
U
I
U
'
U
'
U
I

The Rayleigh damping constants c and 8 are equal

respectively, 0.0483000 and 0.0039000.

A-3 W

A-3.1 EQDALDAIA

1 1 1 1 1 0 0 0.0

2 0 0 0 1 0 0 0.0

3 1 1 1 1 0 0 0.0

4 0 0 0 1 0 0 0.0

5 0 0 0 0 0 0 24.0

6 0 0 0 0 0 0 24.0

7 0 0 0 0 0 0 24.0

8 0 0 0 0 0 0 24.0

9 0 0 0 0 0 0 53.0

10 0 0 0 0 0 0 53.0

11 0 0 0 0 0 0 53.0

12 0 0 0 0 0 0 53.0

13 0 0 0 0 0 0 82.0

14 0 0 0 0 0 0 82.0

15 0 0 0 0 0 0 82.0

16 0 0 0 0 0 0 82.0

17 0 0 0 0 0 0 111.0

18 0 0 0 0 0 0 111.0

19 0 0 0 0 0 0 111.0

20 0 0 0 0 0 0 111.0

0.0

30.75

0.0

30.75

13.281

30.75

13.281

30.75

23.509

30.75

23.509

30.75

28.398

30.75

28.398

30.75

28.398

30.75

28.398

30.75

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

c
>
c
>
c
>
c
>
c
>
t
>
c
>
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>
t
>
t
>
c
>
c
>
t
>
t
>
c
>
c
>
t
>
t
>
c
>
c
>

t0,



A.3.2

21 0 0 0 0

22 0 0 0 0

23 0 0 0 0

24 0 0 0 0

25 0 0 0 0

26 0 0 0 0

27 0 0 0 0

28 0 0 0 0

29 1 1 1 1

30 0 0 0 1

31 1 1 l 1

32 0 0 0 1

33 1 1 1 1

34 1 1 1 1

W

1 1 7

2 3 5

3 5 11

4 7 9

5 9 15

6 11 13

7 13 19

8 15 17

9 17 23

10 19 21

11 21 27

12 23 25

13 25 31

14 27 29

15 2 8

16 4 6

l7 6 12

18 8 10

19 10 16

20 12 14

21 14 20

22 16 18

23 18 24

24 20 22

25 22 28

26 24 26

27 26 32

28 28 30

29 13 18

30 14 17

31 15 20

32 16 19

33 1 2

34 5 6

35 9 10

36 13 14

37 17 18

H
H
0
0
0
0
0
0
0
0
0
0
0
0

H
H
0
0
0
0
0
0
0
0
0
0
0
0

.064

.064

.064

.064

.064

.064

.064

.064

.064

.064

.064

.064

.064

.064

.303

.303

.303

.303

.303

.303

.303

.303

.303

.303

.303

.303

.303

.303

.048

.048

.048

.048

0.1662

0.1662

0.1662

0.1662

0.1662

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
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140.

140.

140.
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>
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>
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>
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>
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23.509

30.75

23.509

30.75

13.281

30.75

13.281

30.75

0.0

30.75

0.0

30.75

30.75

30.75

22.

22.

22.

22.

22.

22.

-10.

-10. 0
0
0
0
0
0
0
0
0
0
0
0
0
0

 



A.3.3

A.3.4

38 21 22 0.1662

39 25 26 0.1662

40 30 29 0.1662

41 3 4 0.1662

42 7 8 0.1662

43 11 12 0.1662

44 15 16 0.1662

45 19 20 0.1662

46 23 24 0.1662

47 27 28 0.1662

48 32 31 0.1662

49 14 15 0.303

50 13 16 0.303

51 17 20 0.303

52 18 19 0.303

53 33 4 0.000288

54 34 32 0.000288

W

1 0.746 0.10

1 2 6 1

2 6 10 l

3 10 14 1

4 14 18 1

5 18 22 l

6 22 26 1

7 26 30 1

8 4 8 1

9 8 12 l

10 12 16 1

11 16 20 1

12 20 24 1

13 24 28 1

14 28 32 1

W5.

1 0.9583 0.5465

4554.000 5696.625

0.0027275 0.0026023

1.9201390 0.8229166

1 1 5 1

2 5 9 1

3 9 13 1

4 13 17 1

5 17 21 1

6 21 25 1

7 25 29 1

8 3 7 1

9 7 11 l

10 11 15 1

11 15 19 l

211

0.24

1.726

3112.313

0.0030108

0.0002

1.168
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1.91

1.91

4.21

4.21

4.61

4.61

4.61
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4.61

4.61
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A.4.2

A.4.3

14 0 0 0 0 0 0

15 0 0 0 0 0 0

16 0 0 0 0 0 0

17 0 0 0. 0 0 0

18 0 0 0 0 0 0

19 0 0 0 0 0 0

20 0 0 0 0 0 0

21 0 0 0 0 0 0

22 0 0 0 0 0 0

23 0 0 0 0 0 0

24 0 0 0 0 0 0

25 0 0 0 0 0 0

26 0 0 0 0 0 0

27 0 0 0 0 0 O

28 0 0 0 0 0 0

29 0 0 0 0 0 0

30 0 0 0 0 0 0

31 0 0 0 0 0 0

32 1 1 1 1 1 0

33 0 0 0 0 0 0

34 1 1 1 1 1 1

35 1 1 1 1 1 1

36 1 1 1 1 1 1

W

1 6 7 3.529

2 8 9 3.437

3 10 11 3.395

4 12 13 4.061

5 14 15 4.914

6 16 17 5.922

7 18 19 3.042

8 20 21 5.922

9 22 23 4.914

10 24 25 4.061

11 26 27 3.395

12 28 29 3.437

13 30 31 3.529

14 17 18 1.956

15 18 21 1.956

16 1 2 3.6279

17 33 32 3.6279

18 4 2 0.0028

19 35 33 0.0028

1 1.00 1304.52

2 0.00 0.00

3 3.04 12024.00

1 2 7 1

2 7 9 1

3 9 11 1

607.

.14

728.

728.

850.

850.

.43

.43

1092.

1092.

1214.

1214.

.71

1335.

1457.

.14

1578.

1578.

1700.

1700.
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1700.
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H

11 13

13 15

15 17

17 19

19 21

21 23
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25 27

27 29

29 31

31 33

3 2

33 34

19 18

14.428

103620.0

0.00258

1385.9

13.840

97932.0

0.00254

1328.9

13.080

92643.0

0.00254

1256.0

12.370

87643.0

0.00255

1187.7

11.690

82849.0

0.00255

1122.6

11.040

78198.0

0.00254
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9775.0

3730340.0

0.1054

8823.0

3525540.0

0.1031

7606.0

3335160.0

0.1008

6464.0

3155160.0

0.0984

5378.0

2982580.0

0.0961

4330.0

2815140.0

0.0938

3307.0

2650480.0

0.0915

1355.

1277.

1177.

1083.

994.

908.

824.



A.4.5

A.4.6

A.5

A.5.1

9 20 22 6

10 22 24 5

11 24 26 4

12 26 28 3

13 28 30 2

14 30 32 1

2 30.9315 30.9315

7 61.863 61.863

9 61.863 61.863

11 61.863 61.863

13 61.863 61.863

15 61.863 61.863

17 61.863 61.863

19 61.863 61.863

21 61.863 61.863

23 61.863 61.863

25 61.863 61.863

27 61.863 61.863

29 61.863 61.863

31 61.863 61.863

33 30.9315 30.9315

6 55.963 55.963

8 55.963 55.963

10 55.963 55.963

12 55.963 55.963

14 55.963 55.963

16 55.963 55.963

18 55.963 55.963

20 55.963 55.963

22 55.963 55.963

24 55.963 55.963

26 55.963 55.963

28 55.963 55.963

30 55.963 55.963

0.0406 0.0086

W

EQDALDAIA

1 1 1 1 1 1 0

2 0 0 1 1 1 0

3 0 0 1 1 1 0

4 0 0 1 1 1 0

5 0 0 1 1 1 0

6 0 0 1 1 1 0

7 0 0 1 1 1 0

8 0 0 1 1 1 0

9 1 1 1 1 1 0

10 0 0 1 1 1 0
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11 1 1 1 1 1 1 -182.0 133.5 0.0

A-5-2 W5.

1 1 2 1.623

2 3 4 0.3264

3 5 6 0.3264

4 7 8 0.3264

5 10 9 1.623

6 11 2 2.44

A53W

1 0.78 2.18 3.72 1.36

1 2 4 1

2 4 6 1

3 6 8 1

4 8 10 1

A.5.4

1 2.6559 3.939 35.990 21.01

13768.186 48670.998 14413.960

0.0024828 0.0024828 0.0065172

11.250 4.221

2 2.9058 4.126 41.580 24.75

15063.667 56230.623 15098.248

0.0024828 0.0024828 0.0065172

11.81 4.430

1 1 3 1

2 3 5 2

3 5 7 2

4 7 9 1

A.5.5 MASS

2 7.765 7.765 7.765

3 10.25 10.25 10.25

4 15.53 15.53 15.53

5 10.25 10.25 10.25

6 15.53 15.53 15.53

7 10.25 10.25 10.25

8 15.53 15.53 15.53

10 7.765 7.765 7.765

A.5.6

0.048300 0.0039000


