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ABSTRACT
NONLINEAR SEISMIC ARALYSIS OF STEEL ARCH BRIDGES
By

Chung-Ming Lee

This study presents a method for the nonlinear seismic analysis
of steel arch bridges. The effects of either geometric or material
nonlinearity have been taken into account. The effects of such
nonlinearities enter in the analysis through the computation of the
"resistance™ of the arch ribs.

The elasto-plastic resistance of a curved beam element has been
derived using the plastic potential theory as applied to stress
resultants. For geometric nonlinearity, a twelve degrees of freedom
incremental stiffness matrix was also derived. A computer program was
prepared for the implementation of the time history analysis.

Three bridge models: Medium Span Bridge, Short Span Bridge and
Long Span Bridge, based on three prototype bridges, Cold Springs Canyon
Bridge (700 ft), South Street Bridge (193 ft) and New River Gorge Bridge
(1700 £ft), respectively, were used to obtain the numerical results.
Three-dimensional models were employed to consider the nonlinear
inelastic effects. Results for nonlinear elastic solution were based on
two-dimensional models. The ground motion used was the artificially
generated motion CIT-A2 with different amplification factors applied to

induce nonlinear effects.



From time histories, it is seen that even for the nonlinear
cases the responses wvere generally doiinntéd by the "fundamental modes"
(either in-plane or out-of-plane) except at those points where the
fundamental modal response is small. The history curves of nonlinear
elastic responses exhibited different periods of vibration. In general,
the dominant period increased by 5% to 10% from that of the linear
solution.

For the maximum force responses involving material nonlinearity,
plasticity limited the magnitude of the internal force response to that
as defined by the yield function. It follows that if plastic
deformations are allowed, the design forces may be reduced from that
wvhich would be required if the design is to be done on a linearly
elastic basis.

Time histories of work and energy distribution indicated that
the dissipated damping energy (for a 1.5% damping ratio) is over 70% of
the work done for all models. When the damping ratio was varied from
0.25% to 5%, the percentage of damping energy to work done changed from
50% to 96%. These observations emphasize the importance of damping in

the response.
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CHAPTER 1

INTRODUCTION

1.1 GENERAL

Bridges form vital links in land transportation systems. The
recent Loma Prieta Earthquake caused the collapse of more than a mile of
elevated highway (essentially bridge-like structures) on I-880 and
serious damage to the Bay Bridge in San Francisco. It again bespeaks the
importance of seismic effects on the safety of bridges. Actually,

significant damage to bridges had occurred in the 1971 San Fernando
.earthquake and highlighted the need for reassessment of existing seismic
design practice for bridges. A series of studies had since been
conducted on the safety of highway bridges under earthquake loads. Those
studies have been reported for long multiple span highway bridges ([16],
[35]), [36], and [37]), suspension bridges ([1], (2], (3], (4], [5]), and
[17]), and steel deck-type arch highway bridges ([10], [11], [12], and
[13]).

The study reported here represents an effort to develop a method
of analysis for the nonlinear behavior of arch bridges subjected seismic
loading. The two nonlinearities of structural behavior are "material
nonlinearity” that originates from the plasticity of the material, and
"geometric nonlinearity" (nonlinear elastic effects) which represents

the effects of the distortion of the structure on its response.



1.2 QOBJECT AND SCOPE

The major objective of the study is to present a method of
analysis for the seismic response of arch bridges that takes into
account the effects of geometric nonlinearity or material nonlinearity.
Included in this objective is the development of a computer program that
carries out the necessary computations for the analysis.

The second objective is to use the computer program to obtain
certain numerical results based on a reasonable modelling of several
real steel deck-type arch bridges subjected to earthquake motions.
Included in this objective is the interpretation of the numerical
results with a view to greater understanding of the seismic behavior of
such bridges. It is hoped that the analysis and the computer program
developed may serve as tools for further research in this area, and the
numerical results presented may point to directions leading to the
development of improved design procedure for such structures.

In Chapter II the structural system is introduced and the method
of analysis is presented. For the analysis, the mass matrix is
formulated by the lumped mass approach and the damping matrix is of the
Rayleigh type. The structure system model features "mixed nodal
coordinate systems": cartesian coordinates for deck nodes and
curvilinear coordinates for arch rib nodes. In consequence, no
coordinate transformations are needed for the beam elements as their
element coordinates are the same as the system nodal coordinates.
Another means employed to make the computational procedure more
effective is the use of constraints that correspond to the assumption
that the axial stiffnesses of certain members are infinitely large, thus

reducing the number of degrees of freedom.
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The effects of either geometric or material nonlinearity are
included in the analysis. The computational procedures of the nonlinear
"resistance" for both nonlinearities are derived. For material
nonlinearity, a method of analysis is developed for the elasto-plastic
resistance of a curved beam element based on the "plastic hinge”
concept. The yield function is based on three stress resultants: P
(axial force), Hy (in-plane bending moment) and Hx (out-of-plane bending
moment). For geometric nonlinearity, a twelve degrees of freedom
incremental stiffness matrix is derived.

For the solution of the equations of motion, the method is one
of a step-by-step numerical integration in the time domain coupled with
a Newton-Raphson scheme implying an outer loop of iteration for the
equilibrium of the system. For each elasto-plastic element, an inner
loop of iteration is needed because of the material nonlinearity.
Measures of the inelastic response such as "curvature ductility factors"
and "plastic work densities" are defined. As a check on the validity of
the procedure, a work and energy balance for the system is considered. A
computer program is prepared to implement the three-dimensional
nonlinear seismic analysis described above.

In Chapter III three real steel deck-type arch bridges: the Cold
Springs Canyon Bridge (CSCB) in California, the South Street Bridge
(SSB) in Connecticut, and the New River Gorge Bridge (NRGB) in West
Virginia are chosen to be the prototypes for the medium span bridge
(MSB), the short span bridge (SSB), and the long span bridge (LSB) used
for numerical studies. The bridges are modelled by using curVed beam
elements for the arch ribs, straight beam and truss elements for the

deck system, columns, and bracing systems. It should be noted that while
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CSCB and SSB each has two ribs with a solid box cross-section, NRGB has
a single box rib with each side a truss.

"True" three-dimensional models for MSB and SSB and "one-plane”
three-dimensional model [12] for LSB are used to consider material
nonlinearity. For studies on geometric nonlinearity, only motions in the
vertical plane of the rib(s) are considered and simplified two-
dimensional models used.

The ground motion used is the artificially generated motion
CIT-A2 (18] with amplification factors applied to induce nonlinear
effects. Nonlinear behavior due to material inelasticity is presented
first, followed by behavior due to geometric nonlinearity.

For comparision purposes, numerical results of the linear
response are also obtained. The time history curves are presented for
displacements (horizontal-X, vertical-Y, and lateral-Z), and for
internal forces (axial force P, in-plane bending moment Hy, and out-of-
plane bending moment Hx) at selected points.

From time histories, it can be seen that even for the nonlinear
cases the responses were generally dominated, as expected, by the
"fundamental modes" (either in-plane or out-of-plane) except at those
points where the fundamental modal response is small. However, the
higher modes, up to the fourth mode, can be significant. For example,
the response of the vertical displacement time history at the crown
point for LSB was primarily in the second and fourth in-plane mode. This
fourth in-plane mode is overall the ninth mode (i.e., counting in-plane
and out-of-plane modes together) for the LSB model.

For the displacement time history curves, the wave patterns for

the linear elastic and nonlinear inelastic cases are quite similar. But
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the wave patterns for geometric nonlinear case differ more (about 9% for
the fundamental mode and lower for higher modes) because of the changes
in the natural periods due to stiffness differences. The maximum
displacement responses, obtained by considering either material or
geometric nonlinearity, are not much different from those of the
linearly elastic analysis. For all models, the maximum displacement was
about 1% of the arch height in the horizontal direction, 2.5% in the
vertical direction. In the lateral direction, the maximum displacement
was about 8% of the arch height for MSB and 3% for SSB and LSB.

Although the wave patterns of the internal force (stress
resultants) time histories are quite similar between the elastic and
inelastic cases, the magnitudes of the maximum internal forces differed
considerably. If inelastic behavior is allowed in the structural system,
because of the definition of yield function, the internal forces (P, M

y

and Hx) are bounded by the fully plastic values (Po, and Mxo). The

%50
maximum values of such forces were about 20% less than those obtained
from a linearly elastic analysis. This "force reduction" was realized at
a price of plastic deformations in the structure. This led to the
consideration that, if one is willing to accept such plastic
deformations, the structure could be 'dosigned" with a "reduced load."
For the geometric nonlinear cases, the wave patterns of internal force
time histories, as in the case of displacement time histories, differed
from the linear elastic ones. However, there is no appreciable
difference in the maximum values of the internal forces obtained from
the linear elastic and nonlinear elastic solutions.

During an earthquake energy is fed through the base of the

structure. It is instructive to know how the energy is distributed in



6
the structural system during the earthquake loading. The work and energy
balance equation of the system is written by setting the work done by
the support reactions and by gravity loads equal to the sum of the
recoverable strain energy, irrecoverable (plastic) strain energy,
kinetic energy, and the energy dissipated by damping. From the work and
energy distribution time histories, the dissipated damping energy (for
a 1.5% damping ratio) was over 70% of the work done for all cases. When
the damping ratios were varied from 0.25% to 5%, the percentages of
damping energy to work done changed from 50% to 96%. In the inelastic
analyses, about 15% of the work done was dissipated by irrecoverable

strain energy.

1.3 EREVIOUS STUDIES

Response of arch ribs (with no deck system) to earthquake
shaking was reported by Thakkar and Arya [33]. The study was limited to
linearly elastic behavior of a single rib subjected to in-plane motion
only. A study of the in-plane strength of deck arch bridges under
longitudinal ground motion was reported by Kuranishi and Nakajima [19].

Dusseau and Wen ([10] and [11]) have reported the elastic
seismic responses of two existing arch bridges: the Cold Springs Canyon
Bridge (CSCB) in California and the South Street Bridge (SSB) in
Connecticut. Free vibration characteristics were studied. Seismic
responses in all three dimensions were estimated from a "normalized rock
spectra” [16] using an input ground acceleration level of 0.50 g and
0.09 g, respectively for the California bridge and Connecticut bridge.
Dusseau and Wen ([12], [13]) have also studied the effects of unequal

motion at the supports of three deck arch bridges: CSCB, SSB, and New
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River Gorge Bridge (NRGB) in West Virginia. In using time history
analysis with step-by-step numerical integration, a "one-plane model"”
was introduced to decrease the number of degrees of freedom. In this
model a transverse cross-section of the arch rib(s) is modelled as that
of a single beam element. Thus for a two rib bridge, in lateral
response, each rib would act as a flange of a bean.

A key factor in the nonlinear dynamic analysis of a bridge is
the structural stiffness. Studies on the material nonlinear static
behavior of a beam-column member by various investigators have been
discussed in a treatise by Chen and Atsuta [6]. In particular, the yield
surface for a cross-section and the behavior of a segment have been
described in some detail. For elasto-plastic statical problems the
.concept of plastic potential theory using stress resultants as
generalized stresses has been adopted by Hodge [15], Morris and Fenves
[21], and others.

A method for the small displacements analysis of three-
dimensional inelastic frames subjected to static loads has been
described by Morris and Fenves [22]. The elements are assumed to be
elastic-plastic and to yield at generalized plastic hinges, the behavior
of which is governed by four dimensional curved yield surfaces. To
insure that the point representing the end forces on any element does
not travel outside the yield surface, when such a point reaches the
surface it is drawn back a small distance and constrained to move
tangent to the surface.

The dynamic response of three dimensional frames with elasto-
plastic elements has been studied by Nigam [23]. The elements are

assumed to yield at generalized plastic hinges governed by two
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dimensional circular yield surfaces. For each load increment the
increments in member end forces at each plastic hinge are constrained to
move in the tangent plane to yield surface, and a new tangent stiffness
is formulated for each load step. Nigam’s formulation of the problem was
not in matrix algebra, and consequently the equations involved are
somevhat complex. A concise and general matrix form was presented by
Porter and Powell [26].

A more general form of the stiffness of a beam element was
derived by Wen and Farhoomand [38]. They carried out dynamic analysis of
three dimensional frames in which the yielded regions were assumed to
have finite length. The elasto-plastic elements are assumed to be
governed by a four dimensional parabolié or elliptic plastic potential
function. An iterative procedure was described that would keep the force
vector on the curved yield surface during yielding. To keep the force
point on the yield surface during yielding, several approaches including
iterative procedures [38] and one-step approximate force corrections
[29] have been proposed.

Cheng and Kitipitayangkul (7] adopted a different approach from
the plastic potential theory to handle the elasto-inelastic analysis of
building frames. The force-deformation relationship for each pair of
generalized stress and strain was taken to be of the Ramberg-Osgood
hysteretic type. However, the yield values of the various generalized
stresses were governed by appropriate interaction equations such as
given by Tebedge and Chen [31]. The effect of torsional moment was also
included in the interactive behavior on the basis of Von Miss’ yield
criterion as was used in Ref. [21]). Powell and his co-workers [28] had

employed two and three parallel elements to represent a single element
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and thus strain hardening effects may be considered.

A number of investigators (See, for example, in [30], [19], and
[42]) had formulated and analyzed the nonlinear problem at the stress,
rather than stress-resultant level. Such approach, although more refined
than the stress-resultant formulation, generally requires considerably
more computational resource for a given physical problem.

For the consideration of geometric nonlinearities, the tangent
stiffness matrix may be formed by adding the initial and geometric
stiffness matrices. Many studies have been reported on the subject
(e.g., [8), [24), [27), [32], and [40]). Among them Oran [24] has
presented the nonlinear elastic tangent stiffness matrix of a straight
beam element which is exact within the framework of the elastic beam-
column theory. The expressions involve the axial force as a parameter
that requires iterations for its determination. A nonlinear elastic
tangent stiffness matrix based on a finite element approach [40] has
been shown to be quite accurate for problems that do not involve very
large displacements (for example, of the order of the dimension of the
structure itself). It would cover the great majority of civil
engineering structures.

A method of analysis for investigating the stability of complex
structures has been described by Toridis and Khozeimeh [34]. The general
approach is based on the finite element method and incremental numerical
solution techniques. This incremental loading approach has been used
with no equilibrium check. In the incremental solution process, the
stiffness properties of the structure are continuously updated in order
to properly account for large changes in the geometry of the structure

(i.e., to take into account the effect of the geometry of the deformed
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structure on the instantaneous stiffness matrix).

Both material and geometric nonlinearities were considered for
the frame structures by Porter and Powell [26]). The geometric
nonlinearity was considered in two-dimensional problems and only static
loads were applied. The elasto-plastic stiffness and geometric stiffness
of straight member have been derived. A general computational procedure
has been described for the collapse load analysis of statically loaded
plane frames and the analysis of dynamically loaded inelastic frames.

For arch buckling analysis, the linear and incremental stiffness
matrices of a curved beam element deformable in three dimensional space
have been described by Wen and Lange [39]. In developing a nonlinear
curved beam element of general shape, the geometry of the curved axis of
the element is represented by a fourth-order polynomials in terms of the
inclination angle with the tangent at a member end, and the displacement
functions are approximated by cubic polynomials in the same variable.
The linear stiffness matrix (k] and the first and second order
incremental stiffness matrices, [nl] and [n2] were derived by

differentiating the strain energy.

1.4 NOTATION

The notations shown below has been used in this report:

A = cross-sectional area;

B = width of the cross-section;

bz,b3,b4 = curved beam element geometry coefficients;
[C] = viscous damping matrix;

c = subscript denoting "constrained";

D = depth of the cross-section;
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E = Young'’s modulus of elasticity;

ED = energy dissipated by damping;

EK = kinetic energy;

ESE = recoverable strain energy;

ESP = {rrecoverable (plastic) strain energy;

e = superscript denoting "elastic part”;

e = subscript denoting "elastic part";

Aes = incremental strain energy;

Fe = maximum force by elastic analysis;

Fie = maximum force by inelastic analysis;

Fy = yield stress;

g = pgravitational acceleration;

h = time interval;

Ix = moment of inertia about the x-axis;

Iy = moment of inertia about the y-axis;

[J] = Jacobian matrix;

[kt] = elasto-plastic tangent stiffness matrix;
[k]; [ko] = linear elastic stiffness matrix;

[ke] = elastic stiffness matrix;

M] = lumped mass matrix of the entire structure;
Hx = bending moment about x-axis;

Hy = bending moment about y-axis;

on = fully plastic bending moment about x-axis;
HyO = fully plastic bending moment about y-axis;
[m] = lumped mass matrix of an element;

[nl] = first order incremental stiffness matrix;

[n2] = second order incremental stiffness matrix;
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P = axial force;
Po = fully plastic axial force;
P = superscript denoting "plastic part";
P = sgubscript denoting "plastic part";
(P) = external load vector;
(P)s = external static load (dead load) vector;
(Q) = member end force vector;
{dq) = incremental displacement vector;
R = radius of curvature;
RXi = X component of reactioh at support i;
RYi = Y component of reaction at support i;
RZi = Z component of reaction at support i;
'RZ = radii of curvature at ends of an element;
{R) = resistance vector;
Sxx = section modulus about the x-x axis;
syy = section modulus about the y-y axis;
s = longitudinal axis of curved beam element;
T = superscript denoting matrix transposition;
t = time;
tf = thickness of flange;
tw = thickness of web;
to ty = beginning and end time of the time interval h;
URx = ground displacement component in x direction for node R;
Ry = ground displacement component in y direction for node R;
URz = ground displacement component in z direction for node R;
u = subscript denoting "unconstrained";

u = ground motion component;
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displacements along x, y, z axes, respectively;
incremental support or ground displacement vector;
vertical displacement at node D and E;
hinge volume for Hx;
hinge volume for My;
hinge volume for P;
relative displacement vector;
incremental relative displacement vector;
incremental relative velocity vector;
incremental reiative acceleration vector;
work done by gravity loads;
work done by support reactions;
total displacement vector for unconstrained degrees of
freedom;
plastic work done by Hx in time interval h;
plastic work done by My in time interval h;
plastic work done by P in timé interval h;
dimensionless plastic work quantity;
strain energy per unit volume of material at yield;
incremental displacement vector;
incremental velocity vector;
incremental acceleration vector;
cartesian coordinate system;
ground displacement components in cartesian coordinates;
curvilinear coordinate system;
incremental horizontal ground displacement at support i;

incremental vertical ground displacement at support i;
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incremental vertical displacement of node point j;
incremental lateral ground displacement at support i;
parameters used for definition of displacement functions;
constants for Rayleigh type damping matrix;
transformation matrix;
tolerance for yield function;
yield strain;
tolerance vector of force or moment;
tolerance vector of displacement or rotation;
scalar toleran;e of work;
angle that the tangent at the node makes with the global X-
axis;
rotations about x, y, z axes, respectively;
plastic rotation about x-axis;
plastic rotation about y-axis;
plastic axial displacement;
flow constant, a positive scalar;
transformation matrix;
curvature ductility factors for out-of-plane bending;
curvature ductility factors for in-plane bending;
ductility factors for axial strain;
yield function;
linear response factor;
angle of the tangent measured with respect to the tangent
at a reference end (Fig. 2-5);
incremental operator;

prefix denoting "gradient";



{)
L]
[]
)
)

column vector;

row vector;
rectagular matrix;
d( )/dc;

a%( y/at?;
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CHAPTER II

ANALYSIS AND METHOD OF SOLUTION

2.1 SGENERAL

For purposes of analysis, the bridge structure is modelled by
finite elements: truss, straight beam, and curved beam elements. A
three-dimensional version of the model is shown in Figure 2-1.
Generally, the bridge consists of two arch ribs (modelled by curved beam
elements) and a deck (by straight beam elements) and columns (by truss
elements) between the ribs and deck. The cross-beams between the ribs
and the deck girders are modelled by straight beam elements. The other
bracings are modelled by truss elements.

For the analysis, mass is lumped at the nodes. The system
equation consists of the equations of motion for the unconstrained
degrees of freedom of the nodes. These degrees of freedom are described
in cartesian coordinates for the nodes on the deck, and curvilinear
coordinates for nodes on the ribs. Thus there are two kinds of nodal
coordinates: one cartesian, the other curvilinear (See Figure 2-2).

The analysis considers response due to either geometric or
material nonlinearity that are associated with the curved beam elements.
The straight beam and truss elements are presumed to be linearly
elastic. The method of analysis is one of a step-by-step numerical
integration in the time domain. Within a time increment, the method of

solution is essentially one of the Newton-Raphson type which calls for

16
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an "outer loop" of iteration for the dynamic equilibrium of the nodal
degrees of freedom. In the case of elasto-plastic behavior an "inner
loop" of iteration is necessary to satisfy the constitutive equation of
the element involved.
In this Chapter, in addition to the method of analysis and

solution, certain measures of the inelastic responses, i.e., "plastic
work densities™ and "ductility factors", are presented. The computation

of work and energy balance is also described.

2.2 EQUATIONS OF MOTION

Let (wu) denote the unconstrained degrees of freedom (generally
those of the interior nodes of the structure) and (wc) the constrained
degrees of freedom (generally those of the external nodes or supports
that are constrained to be equal to prescribed ground displacements). As
noted previously, for a node on the deck, the equation of motion is
written in the usual cartesian coordinates, and for a node on the ribs,
it is written in curvilinear coordinates; See Figure 2-2. The assembled
set of equations of motion or dynamic equilibrium may be written as

follows:

M 1 M 1] [tw ) (c,,J c, 1] [tw,) (R ) (P )

[ uu uc ]{ "u } + [ uu uc ]{ .u } + { u } - { u } (2-1)

M, M 1w, ) (C.,) [C . llUw) (R,) (P}
in which the [M]'’s are mass submatrices, the [C]’s are damping
submatrices, (Ru} and (Rc) are resistances resulting from deformations
of structural elements, (Pu} and (Pc) are external loads. The subscripts

"u”" and "c" denote "unconstrained" and "constrained"; the superscripts

of "dots" denote time derivatives.
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For lumped mass inertia, the cross submatrices [MuC] and [Mcu]
are null. It is assumed also that damping is due entirely to the
velocities associated with the unconstrained degrees of freedom, i.e.,
[Cuc] - [Ccu] = [0]. Writing [M] for [Huu], [C] for [cuu]’ {R) for (Ru),
{P) for (Pu}, and (w) for (wu}, the equations of motion for the
unconstrained degrees of freedom are

[M) (W) + [C](w) + (R} - (P} = {0) (2-2)

In an earthquake response problem, the real dynamic load (P) is
in general null. The driving mechanism is contained in the resistance
term (R) which depends on the end displacements of the structural
members. For members that are connected to the ground, the displacements
at those ends are constrained to be equal to that of the ground motion.
As those member forces change, they would disturb the equilibrium of the

structure.

The detailed procedure of analysis is given in the next section.

2.3 METHOD OF SOLUTION

The equations of motion for the unconstrained degrees of freedom
may be represented as:

()" = [M](#) + [C](¥) + (R) - (P) = (O) (2-3)

For a numerical analysis of the problem, consider the solution
involved in a typical time interval h from time t, to time t) =ty + h.
The equations of motion will be integrated numerically using a stable
scheme, e.g., the Newmark g = 1/4 method.

{ﬁ)l - {Q)o + (h/2)((§)0 + (ﬁll)

(W) = (W) + (h/2)((*)0 + lﬁ)l) (2-4)

in which the subscripts "0" and "1" denote the beginning and end of the
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time interval. Substituting Eqs. 2-4 into Eq. 2-3 for t = t., one

1.
obtains
@ (W) = MI[(aw) - b () ) (4/bD) - (@) + [C][2(aw)/h
- IW)o] + (R)y + (4R} - (P}, - (4P} = (0) (2-5)
in which the symbol A is used as a modifier signifying the change of the

modified quantity from to to t,; thus, (aw) = (w)l - {w)o,

1;
{AR) = (R)1 - (R)o, and (AP) = (P}1 - (P)o.

In order to compute (aw), the Newton-Raphson method of iteration
is employed. For the (k+l)th iteration, the procedure calls for a
solution of 5((Aw))k+1 - (Aw)k+1 - (Aw)k from the following linear
equation

Jam” 5 H)” 2-6

[J({H) .{Av))k] ((AW))k+1 = -{H) K (2-6)
in which [J((H)*,(Aw})k] is the Jacobian matrix of (H)* with respect to
{aw), i.e., its i-j entry = au*i/aawj with H*i denoting the ith element

of (H)* and AwJ the jth element of {(aw}, evaluated at {Aw) = {Aw)k, and
-(H)*k is evaluated from Eq. 2-5 with (aw) = {Aw)k. It follows from Eq.
2-5 that
(™, (aw))) = [u/8)[M] + 2(C1/h + (K] ) (2-7)
in which [K]ww = 3d{aR)/3{aw) = the tangent stiffness matrix.
The solution procedure for the overall problem may thus proceed
as follows:
1. Perform a linear static analysis under initial static load
(P).
2. At time t = 0, set (R) = (P}s, i.e., initially the structure
is in equilibrium with such static load as the dead load. Set

{w(0)) = (0}, i.e., the datum of displacement corresponds to

the initial static deflection due to (P)s. The initial
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velocity (w(0)) is presumed known (generally equal to null).
The initial acceleration vector (w(0)) may be thus computed
from Eq. 2-3.

3. For each time step thereafter {&)o and (G}o are known. Set
(Aw)k_o equal to the null vector (i.e.,
{w(tl))k_o - {w(to))). For the (k+1l)th iteration,
[K]ww,k = the tangent stiffness matrix corresponding to (Aw}k
can be updated. (One may also choose to use the "modified
Newton-Raphson method" which avoids such updating but
generally at the expense of more iterations.) The incremental
resistance vector (AR)k are obtained from summing the
incremental resistances of the structural elements.

4. Thus 8((Aw))k+1 can be solved from the set of linear

equations, Eq. 2-6, and {Aw)k+1 is computed as

(Aw}k + 8((Aw})k+1. Convergence is arrived at when

(H)*k+1 < (el) and/or 6((Aw))k+1 < (ez} and/or
((H}*k+1)T6((Aw})k+1 < €y in which (el) is a tolerance vector
consisting of preset "small" quantities of force or moment,
and (ez) is a preset tolerance vector of displacement or
rotation, and €q is a preset scalar tolerance having the
dimension of work.

For seismic analysis, {AP) = (0}. (The case when {AP) is not
null but some prescribed incremental loading vector can be incorporated
in the analysis without difficulty.) Thus, as mentioned previously, the
driving mechanism of the system is contained in {aR) which depends on
{aw) and {(Au), the incremental support or ground displacement vector.

When the system is linear (AR) = [K]ww(Aw) + [K]wu(Au} in which [K]ww
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and [K]wu are linear stiffness matrices corresponding to the degrees of
freedom as represented by the subscripts. When the system is nonlinear,
the determination of {AR) becomes a major aspect of the problem. It is
discussed in the Section 2.5. The preceding analysis is applicable to
cases in which different supports may undergo different motionms.

For the case of uniform ground motion (over space), one may use
ground acceleration directly in lieu of ground displacement as input.
The motion of the unconstrained degrees of freedom are measured relative
to the ground translations (rotational ground motions are not considered
herein). Corresponding to the ith element of (w}, v define
v, = w, - u, in which u, is the ground motion component expressed in the

i i i i

same coordinate system as w,. For a node, say, R, in the rib, the ground

1

displacement components in curvilinear coordinates are (See Figure 2-4)

URx - nginoR - chosoR
U, = -Z
Ry -8
URz - chost + Ygsin0R (2-8)

in which OR is the angle that the tangent at the node makes with the
cartesian X-axis, and Xg, Yg, and Z8 are the ground displacement
components in the cartesian coordinates. Thus Eq. 2-3 may be witten as

(H) = [M](V) + [C}(V) + (R) - (P) + [M](U) + [C](u) = (O) (2-9)

Taking damping as the Rayleigh type, i.e., [C] = a[M] + ﬂ[K]o,
[K]0 being the linear stiffness matrix, and dropping the term [C]({u)
(signifying an assumption that damping is due only to those motions that
are relative to the ground motion), and following the procedure
described previously when (w) was used as the dependent variable, one
obtains

[JC(HY, (av)) 6CHav), 1 = - (H),
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= (B}, + [B]I(Av}k - (&R}, (2-10)
in which [J((H),(Av})k] is the Jacobian matrix of (H) with respect to
{av) evaluated at (Av) = {Avlk, and
(B)y = [MI{#)g + [(a + &4/h)[M] + B[K]4]1(V)y - (R)g + (P}
- [M] (1) (2-11)
[B], = -([(4/b) + (2a/h)]1(M] + (2/R)BIKI) (2-12)
The Newton-Raphson iteration would begin with (Av)k_o = {0)}. The

solution procedure is entirely analogous to that previously described.

2.4 USE OF CONSTRAINTS AMONG NODAL DEGREES OF FREEDOM

In order to decrease the number of degrees of freedom of the
structural model, certain constraints may be introduced among the set of
degrees of freedom at a given "transverse panel” of the bridge (e.g.,
nodes 5, 6, 7, 8 in Figure 2-1). The constraints correspond to the
assumption that the axial stiffnesses of the straight beam and truss
elements involved are infinitely large. Thus, (a) the transverse (Z)
displacements of the floor beam ends (see Figure 2-3) at the deck are
equal, (b) the transverse (y) displacements of the cross beam ends of
the rib bracing system are equal, and (c) the vertical displacements at
the ends of each column are equal.

For a constraint of equality between two degrees of freedom, one
may be chosen as the "master", and the other "slave". In forming the
system stiffness matrix, the stiffness pertaining to the slave degree of
freedom is added to that of the master degree of freedom. This can be
done routinely for case (a) and (b) as each case involves the same nodal
coordinate system for the two end nodes.

For case (c) consider Figure 2-4. The nodal coordinates for the
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deck nodes D and E are cartesian, and the rib nodes R and Q are
curvilinear. The constraints correspond to the assumption of rigid
column (with pinned ends) DR and EQ, or,

vD - -uRcosaR + wksinﬂk

v, = -u.cosf,. + w.sinéd

E Q Q Q Q
in which OR and 0Q Wpo \.\.Q and

w_. as the master degrees of freedom, in order to transfer the vertical

Q
stiffness of the deck stringer M, partition the degrees of freedom at

(2-13)

are defined in Figure 2-4. Regarding Ups

the two ends of element M as (d*) - L (dl) ' Vp Vg JT in which (dl)

consists of all degrees of freedom for the element except vh and Vg - In

terms of the master degrees of freedom, the degrees of freedom for

. T
member M is (d) = [ (dl) ;o wR uQ wQ J . Using Eqs. 2-13 one can write

(d*} = [T'](d) , in which the displacement transformation matrix:

(1) | (0]

[T] = [0] -c030R sinOR 0 0 (2-14)

[0] 0 0 -cosﬂQ sinOQ

The stiffnesses of M expressed in degrees of freedom of (d) is

(k] = (17 K*yr) (2-15)
in which [k*] is the usual beam stiffness in degrees of freedom (d*). of
course, [k] is then assembled into the system stiffness matrix in the
usual fashion.

The constraints also affect the mass matrix. Denoting by {&*}
and [m*] the "old" velocity vector and "old"” mass matrix, and (d) and
[m] the "new" velocity vector and "new" mass matrix, let the old and new
velocities be related by the transformation (a*) - {(A){d). By equating

the kinetic energy expressed in the old system to that expressed in the
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T *
new system, one has [m] = (A) " [m J(A).
Consider the effect of the lumped mass at D, m,. In this case,
. % . * . . . T T
@) =vy, ] =m, (d)-[_u.R "’RJ and () -[-cosﬂR sinoRJ,
one obtains
coszo -siné cosﬂR

R R

2 (2-16)
-sinﬂRcosoR sin UR

(m] = my
This submatrix is assembled into the system mass matrix (to rows and
columns up and wR). (Hence the system mass matrix is not diagonal.) For
the other constraints involving the same coordinate systems, the masses
of the slave degrees of freedom are added to those of the master degrees

of freedom.

2.5 RESISTANCE OF STRUCTURAL ELEMENTS
2.5.1 GENERAL

In the preceding, a method of analysis has been developed for
the linear and nonlinear response of a structure in three dimensional
space. In the analysis, the structural resistance vector (R) plays a key
role as it is through this vector that the nonlinear behavior is
accounted for in this study. However, the behavior of straight beam and
truss elements is assumed to be linearly elastic during the entire
loading period. The resistance is

(R} = [k] (q) . (2-17)
in which (q) is the element displacement vector and [k] is the usual
linear elastic stiffness and need not be presented here. In the
following, resistance of the curved beam elements, making up of the

major components of the bridge, is discussed first for linear behavior
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and then for nonlinear elastic and elasto-plastic behavior.

2.5.2 Linear Resistance of Curved Beam Elements

The curved beam finite element model used is illustrated in
Figure 2-5, in which A and B denote the two end nodes, x, y, and z
represent the curvilinear coordinates. The stiffness of this element has
been presented in Ref. [39], in which the curved axis of the element was
represented by a fourth order polynomials in ¢, the angle of the tangent
measured with respect to the tangent at end A. The coefficients of the
polynomial are determined by end slopes and curvatures as well as the
coordinates of end B. Thus at a common node of two elements,
continuities of slopes and curvatures can be maintained. Four
independent displacement functions are considered: u (radial), v
(transverse), w (tangential) translations, and ﬂz (twist about
tangential axis), each represented by a third order polynomials in ¢.

Each of the four displacement functions involve four
coefficients. The sixteen coefficients were determined by eight degrees
of freedom at each end. For example, at end A, the three translations,
Ups Voo W, and three rotations oxA’ oyA'
(dw/ds)A. The last two degrees of freedom are "nonessential". The twelve

azA plus (daz/ds)A and

essential degrees of freedom are illustrated in Figure 2-6.

In this work, the nonessential degrees of freedom are condensed
out before assembling into the system stiffness matrix with the usual
six degrees of freedom per node in three dimensional space behavior.

The linear elastic resistance is of course simply the linear

elastic stiffness (ko) multiplied by the end displacement vector.
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2.5.3 Nonlinear Elastic Resistance of Curved Beam Elements

The resistance of a nonlinear elastic element may be written as

(Ref. [20])
[n]  [ny)
(R) = ( [ky) + ——+ —=) (q) (2-18)
2 3

in which [nl] and [n2] are the first and second order incremental
stiffness matrices. The matrices [kol, [n1]. and [n2] are obtained as
the second derivatives of the quadratic, cubic, and quartic parts,
respectively, of the strain energy expression.

The incremental or nonlinear stiffness matrices [nl] and [n2]
based on the interpolation functions and sixteen degrees of freedom
mentioned previously are also given in Ref. [39]. In this study, the
second order incremental stiffness matrix [n2] is not used because
numerical experience showed that it would make the element too stiff
with unacceptable errors. In order to fit into the twelve degrees of
freedom per node scheme of analysis, the 16 by 16 [nl] matrix need be
condensed to 12 by 12. Since it is linear in the displacement variables,
the condensed matrix is valid only for the displacement state at which
the condensation is executed. For a time history analysis, this means
that a condensation is needed for every time increment.

In order to save computing time, this condensation is avoided
by using a twelve degrees of freedom incremental stiffness matrix. It is
based on third order polynomials for the radial and transverse
displacements and first order polynomials for the tangential
displacement and twist about the tangential axis. They are:

2 3
u=-a + a2¢ + a3¢ + °4¢
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vV =ag+ a6¢ + a7¢2 + a8¢3

v = ag + aloé

oz -a), + 012¢ (2-19)

As mentioned previously, the nonlinear elastic stiffness matrix
[n1] was derived as the second derivatives of the cubic part of the
strain energy expression (now corresponding to the preceding
interpolation functions). Numerical experience (Ref. [39]) also
indicated that in general more accurate results would be obtained if the
terms containing rotations were dropped. The rotation terms include
rotation about y-axis = (du/ds) + (w/R) and rotation about x-axis =

(dv/ds). This modified form of [n1] was used to obtain the numerical

results presented in Section 3.5.

2.5.4 Elasto-Plastic Resistance of Curved Beam Elements
2.5.4.1 General

The elasto-plastic resistance is calculated using the plastic
potential theory as applied to stress resultants (Ref. [15]). Material
yielding is assumed to take place only at either or both ends of the
member. This is warranted if there is no load between the ends, and the
offset is small in comparison with the length of the chord. The part of
the element between the two ends would remain linearly elastic.

Although the plastic potential function is defined individually
for each end, the tangential stiffness is derived for the entire member.
The incremental resistance and the elastic and plastic parts of the
deformation are obtained by an iteration process. The details of the

above are given in the following sections.



28

2.5.4.2 Plastic Potential Functjon

It is assumed that the material is "associative”. Thus the
plastic potential function and the "yield function" are the same. The
yield function defines the combination of the force components necessary
to initiate yielding at a cross-section. A shape factor of 1.0 is
assumed for the end sections, i.e., the cross section is assumed to make
an abrupt transition from a completely elastic state to a plastic state
in which unrestricted plastic flow can occur. Thus plastic yielding is
confined to an individual cross section with zero "hinge length." The
yield function is assumed to remain the same as yielding progresses,
i.e., there is no strain hardening.

For the numerical results presented herein, the yield function &

for a cross-section is written as:

P2 "y 2 % 2
e=-(— )+ (L)Y + (=) -1-0 (2-20)
P0 MyO MxO

in which P is the axial force, My the bending moment in the plane of the
rib, Mx the out-of-plane bending moment or moment about the radial axis,
and PO’ MyO’ on are the fully plastic force components corresponding to

P, My, Mx, respectively. For this study, they were computed as:

Py = Fy A

HyO - Fy Syy

on - Fy Sxx (2-21)
in which Fy is the yield stress, A, syy' Sxx are the cross-sectional
area, section moduli about the y-y and x-x axis, respectively. This

yield surface, though quite idealized, provides a convenient
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approximation for the complex phenomenon of inelastic behavior in the
three dimensional space.

Figure 2-7 shows the spherical yield surface. Thus, in
accordance with the plastic potential theory, if the "force point"
(P/Po. Hy/HyO' Hx/on) is inside the surface, the section is regarded as
linearly elastic. If it is on the yield surface, it is plastic. It
cannot go outside the yield surface.

As mentioned previously, the force-deformation properties at the
end sections are not entirely independent because the elastic parts of
the responses are governed by the member elastic stiffness. The member

elasto-plastic properties are described in the following.

2.5.4.3 Plastic Deformation of Member Ends

The displacement increment vector at a member end can be
expressed as the sum of an elastic and a plastic part:

(dq) = (dq%) + (dqP) (2-22)
in which (dqe) is the vector of the elastic part of the member end
displacement increments and (dqp} is the vector of the plastic part of
the increments.

The member end force increments are related to the elastic
member end displacement increments as follows:

(dQ) = [k_](dq%) (2-23)
in which (dQ] is the vector of member end force increments and [ke] is
the elastic stiffness matrix.

Following Drucker’s normality criterion (Ref. [9]), at a point
on the yield surface the incremental plastic deformation vector has the

direction of the outwardly directed normal.
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(dqP) = A(ve) (2-24)
in which ) is a positive scalar, called the flow constant, which defines
the magnitude of the plastic deformation at the point (plastic hinge);
and {V®) (gradient of function @) is the outwardly direction normal
vector at the point on the yield surface.

As the force vector can not extend beyond the yield surface, any
force increment vector (dQ) corresponding to a plastic deformation at
the cross section must move on the surface (or on the tangent plane).
This requirement is expressed by the normality condition.

(v&)T(dQ) = 0 (2-25)
in which the superscrpt T denots "transpose". Substituting Eq. 2-23

into Eq. 2-25, one obtains

(v8)"[k_](dq®) = 0 (2-26)
Then, from Eqs. 2-22, and 2-24, one has

(V&) [k_] ((dq)-(dgP)) = 0 (2-27)

(v8) " [k_]((dq)-2(V8)) = 0 (2-28)

Solve for i:

(V&) [k_] (dq)
A= T (2-29)
(V)" [k ] (ve)

Substituting Eq. 2-29 into Eq. 2-24, one obtains the plastic part of the

incremental displacement as:

(V&) (v8) [k )

(dqP) = (dq) (2-30)

(W}T[ke] (V8)
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2.5.4.4 Tangent Stiffness Matrix of Member

The following sequence of equations can be obtained from Egs.

2-23, 2-22, and 2-24

(dQ) = [k ](dq°) (2-31)
= [k_]((dq}-(dqP)) (2-32)
= [k 1({dq}-A({Ve)) (2-33)

Then, from Eq. 2-30

(V) (v8) [k ]

{dQ) = [ke]((dq)- {dq}) (2-34)

(v8) [k, ] (V@)

(v8) (v8) "k )
(4Q) = [k ]([1]- T ) (dq) (2-35)
{V®) [ke](VQ)

Therefore, the elasto-plastic tangent stiffness matrix is

{VQ){VQ)T[ke]
(k) = [k J([I]- T ) (2-36)
(V8) " [k_] (V@)

2.5.4.5 Elastic Return

As a structure is being deformed, a change in load distribution
may cause one or more plastic hinges to unload and become elastic again.
This phenomenon is referred to as an "elastic return." It occurs
whenever there is a reversal in the direction of the incremental
displacement at a plastic hinge. It follows from Eq. 2-24 that the
elastic return at any plastic hinge is signalled by a negative flow

constant A at the hinge.
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2.5.4.6 Incremental Resistance and Deformations

of Elasto-Plastic Element

As mentioned earlier, a key step in the solution procedure is
the calculation, for each member, of the new member end force vector
{Q2) and possible incremental plastic deformation vector for a given
current force vector {Ql) and incremental end displacement vector (dq).

In the Section 2.5.4.4, the tangential stiffness has been
derived. The incremental member forces based on the tangent stiffness
would necessarily violate the yield condition (going out of the yield
surface). The technique of keeping the force point on the yield surface
consists of essentially obtaining, by iteration, a "local secant
stiffness”. Corresponding to a given {(dq), none, one or both ends may
yield or return to elastic behavior. The details of the procedures to
treat these complex behavior are given below (Ref. [41]).

Procedure described in this section combines two features.
Firstly, following an iterative process, the new member force vector
would be made to stay on the yield surface as required by the theory of
plasticity. Secondly, the incremental displacement can be large enough
so that the element may undergo the process of changing from a state of
total elasticity to having one yielding end and then on to having both
ends yielding. This feature allows the solution procedure to use
constant load or time increment.

It is assumed that during a load or time increment the change of
the displacement is linear and one may write

{dq) = (dqee) + (dqep) + {dqpp) (2-37)
in which (dqee) is the part of {(dq) with both ends elastic, and {dqep)

and {dqpp) are those with one and two yielding ends, respectively. The
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corresponding changes in the member end forces are illustrated in Figure
2-8, in which the notation should be self-explanatory. For example, QlA
is the current force point and Q2A,ee is the force point at A at the end
of [dqee). The displacements would take place in the order as given on
the right side of Eq. 2-37. However, any one or two of the three
incremental terms may be null.

Consider the yield surface of a generic yielding end, say C, as
shown in Figure 2-9(a). Let Qlc denote the initial force point,
(ch*) - (Qlc) + [keC](dq)’ in which [keC] is a 6 by 12 stiffness matrix
(partitioned from [ke]' the element elastic stiffness matrix). The
intersection of the vector QlC-QZC* and the yield surface, point
Q2C.g**' is a "general penetration point," given by
(QZC.g**) - (Qlc) + 1g[keC]{dq) in which 18 is solved from the yield
function Q((Qlc) + 7g[keC](dq}) = 0. Illustrated in Figure 2-9(a) is
also a "radial penetration point." It is the intersection of the vector
O-ch* and the yield surface, point QZC,r**’ given by
(ch,r**; - "r‘ch*" in which v_ is solved from °(”r‘Q2c*” - 0.

When yielding takes place at only one end, the initial force
point Qlc is on the yield surface. Corresponding to an incremental
displacement {Aq), the force is (ch*} - [Qlc) + [kC](Aq} in which the
stiffness [kC] depends on the element elastic stiffness and the gradient
of & at QlC' (See Eq. 2-36 and Refs. [22], [25]) and [38]). Because of
the convexity of the yield surface, Q2C* is necessarily not inside the
surface. To keep Q2 on the surface the following iteration procedure is
used (See Figure 2-9(b)).

Let chj denote the value of ch* for the jth iteration. For the

first iteration, (chl) - (Qlc) + [kCI](Aq] in which [kcll is based on
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the gradient at QlC' i.e., V@ = VO((QIC)). For j > 1, compute
(chj) - (Qlc + [kcj](Aq} in which [kcj] is based on V§ = VEJ given as
follows:
1

v -o.s5vell + WL if o((QZCJ' y > e (2-38a)

or 7 - 0.5(W" + T L) if ¢({Q2CJ'11) < -e (2-38b)

1

In the preceding, " - VQ((QIC}) and VQJ.I is the gradient at the

radial penetration point for chj-l, and ¢ is a tolerance. The iteration
ends when |8((Q,I1)| = .

When there are two yielding ends, the procedure is the same
except that the gradients at both ends should be simultaneously treated
as described in the preceding for the formulation of the elasto-plastic
stiffness, and the convergence criterion, of course, applies to both end
force vectors.

The computation procedures of the incremental resistance and
deformations of an elasto-plastic element are:

1. Using the elastic stiffness [ke], compute a tentative end

force increment (dQ*) - [{dQA) (dQB}JT - [k ]{dq), and a
tentative new force point (Qz*} - {Qll + (dQ*}. (The
superscript "*" denotes "tentative".)

2. Compute the values of the yield functions for both ends

corresponding to (Ql) and (QZ*}: °A1 - QA((QlA));
85 = 9510 p))5 8,, = 8,((Qy, 1); @5, = @,((Qy D).

3. Locate the general penetration points and compute the

Lo = %2 - ®ari oy = - By

pA - LA -, and similarly for LB’ ap, and ﬂB.

quantities (See Figure 2-9(a)):
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If ﬂA < 0 and ﬁB < 0, the element response is entirely
elastic. Then, (dqee} = {dq); (dqep) - (dqpp) = null vector,
(Q2) - {Qz*). The resistance computation ends.
Otherwise, compute 7 - minimum (aA/LA’ aB/LB). Assuming
T - A/LA (otherwise, switch the subscript from A to B),
signifying that end A (or B) yields first. Compute:
(dqee
{dq} = (1 - 11)ldq) - (dqep) + (dqpp)-

Compute the gradient of yield surface at end A,

) = 71{dq); {Qz) - Q) + [ke](dqee) and

*
VéA - V’A ((Q2A,ee}) and form the corresponding elasto-
plastic tangent stiffness matrix [k*] - [[kA*] [kB*]JT.
c * I * * JT
ompute (Qz,ep ) = (QZA,ep ) (QZB,ep )

* *
- {QZ,ee) + [k ]{dq). If QB({QZB,ep })) > €, go to step 9.
Otherwise, end B is still elastic, and if
*
I’A({QZA,ep ))| s e, then (dqpp) is null. Set
*

(dqep) - (1 - 11)(dq} and {Q2} - (QZ,ep ). The plastic part
)JT with

of (dqep) is (dq ) = Ltdq

(dq

epa,p’ (9epB,p

) = AAVGA in which AA is the

ep,p

p) = null, and {dq

epB, epA,p

flow constant computed as usual (Eq. 2-29). The resistance
computation ends.

* J—
1f IQA((QZA,ep })| > €, compute VQA as per Eqs. 2-38, update

[k*] accordingly, and return to step 7.

* * % *
Compute 7, = ap /Ly based on (QZB,ee) and (QZB,ep )

(corresponding to Q1C and QZC* in Figure 2-9(a)). Compute
*% k* %* d froes L h b
{Qz,ep ) - ‘Qz,ee’_" [k ]v, (dq). (Qyp ¢p ! s thus on the

yield surface.

1f IQ *% * **x
A((QZA,GP ))I < ¢, set ‘72 - ‘72 ’ (Qz'ep) - (Q2’ep },
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(dqep) - 12(1 - 11)(dq). The plastic part {dqep,p} is
computed as usual. The part of {dq) remaining to be
"accounted for" is (dqpp} = (dq) - (dqee) - (dqep). Go to
*k * —_—
step 11. If |¢A((Q2A'ep ))| > €, update [k ] using Ve,
computed as per Eqs. 2-38 (with Q2A ep** taking the place of
*
ch ). Go to step 7.
11. ¢ * + [K'](dq_ ) in which [K] i
. ompute (QZ.pp ) - {QZ,GP) [ ]( qpp) n c [ ] S
based on the gradients at Q2 ep’ Iterate as described
previously to have Q2 op on the yield surface for both ends.
*
12. The final stress point is (Q2} - (Qz.ep} + [k ](dqpp). The
incr tal plastic deformati in (d , i.e., (d ,
ncremental plastic deformations in ( qpp} e { qpp,p)
BB

computed as usual based on the lastest gradients. The total

consisting of ldqppA p) - AAEEA and (dqppB p} - A V® are

incremental plastic deformation is ((dqep p) + (dqpp p)).

The resistance computation ends.

2.6 PLASTIC WORK DENSITIES AND DUCTILITY FACTORS

The calculation of the plastic part of the incremental element
displacements has been presented above. For purposes of interpreting the
inelastic response characteristics of the structure, it is appropriate
to further define the quantities "plastic work densities" and "ductility
factors". They may be considered as approximate measures of "damage" to

the structural elements.

2.6.1 Plastic Work Densities

It is assumed that all plastic work is due to the inelastic

straining of the "longitudinal" fibers of the beam elements. Thus the
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work would be done by the bending moments: Mx’ Hy' and the axial force
P. It is further assumed that the beam cross-section has the shape of a
rectangular box with two axes of symmetry (See Figure 2-10.) Thus for
each member end, the plastic work done by each of the stress resultants

in the time interval h may be expressed respectively as:
wxp - E Mxisaxpi

-T M 60
“yp § i ypt

Vap = % PiSApi (2-39)

in which Soxp' soyp. and 6Ap denote the plastic part of the incremental
rotations about x-x and y-y axis and the incremental axial displacement.
The subscript "i" denotes the ith time interval.

Although in the mathematical analysis, the plastic length is
assumed to have zero length, for purposes of engineering interpretation
of the results, it is assumed that the plastic deformations are
distributed for a finite length. Corresponding to the rotation in a
principal plane that length is taken to be the depth of the cross-
section in that plane. Consider the case Mx » 0 (signifying rotation in
the principal plane y-z), Hy = P = 0. Assuming that there is no
transition to fully plastic moment, i.e., all fibers across the web
thickness t, (see Figure 2-10) yield simultaneously, a "plastic hinge
volume" for Mx may be defined as th - 2thB, in which D and B are
respectively the depth and width of the section. Similarly, a plastic

hinge volume for My is defined as V., = 2thD, in which t_ is the

hy b3

thickness of the flange. For P, a plastic hinge volume, VhA is taken to
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be th + vhy' (If D/B = tf/tw’ this volume corresponds to that of the
cross-section area times a length equal to (D + B)/2.)
The strain energy per unit volume of material at yield is Vo =
(1/2)Fy¢y. The dimensionless measures of the wvarious plastic work

quantities may thus be represented as:

"kp = wxp/(thwo)

ayp - wyp/(vhywo)

WAP - wAp/(VhAwo) (2-40)

2.6.2 Dpuctility Factors

As alternative or additional measures of inelastic response,
member end ductilities may be defined as follows. Corresponding to out-

of-plane bending, the "curvature ductility factor" is

"inelastic curvature" ﬂx /B
Bag = 1+ -1+ —XP (2-41)
elastic limit curvature Mxo/(EIx)

in which oxp is the plastic rotation, B is the plastic hinge length for

out-of-plane bending, on, Ix are the elastic limit moment and moment of

inertia about the x-axis, respectively, and E is the Young'’s modulus.
Similarly, for in-plane bending, the "curvature ductility

factor" is

B, =14+ S ) A (2-42)
¢y M_./(EI)
yo y

in which the meaning of the symbols are entirely analogous to those in

the preceding expression. The "ductility factor" for axial strain, By

is defined as the ratio of "plastic axial strain" to the elastic limit
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strain. The former is taken as the plastic axial displacement, Ap,
divided by its "hinge length." Taking the latter as (D + B)/2, one

obtains

248
po=- -—P (2-43)

D
(B + )ey

2.7 WORK AND ENERGY DISTRIBUTION CHECK

Considering work and energy balance, the following equation

should hold for the system analyzed at all times:

WR + WG - ESE + ESP + EK + ED (2-44)
in which WR and WG denote work done by support reactions and by gravity

loads, respectively, E_.. is recoverable strain energy, E_, is

SE SP
irrecoverable (plastic) strain energy, EK is kinetic energy and E

D is
energy dissipated by damping.

An examination of the variation of these quantities is
instructive. Moreover, it can also serve as a check on the validity of
the analysis and numerical computation. In the following for each time
interval h, each work or energy item, with the exception of the kinetic
energy, is computed as the product of force (taken as the average of
those at the beginning and at the end of the time interval) and the
incremental displacement. The total amount of a given kind of work or
energy at a given time is of course obtained by summing the incremental

quantities over all time intervals preceding it.

The incremental work done by the support reactions is

NS
AWR -1§1( lsqui + n“AYi + R, 02, ) (2-45)
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in which RXi’ RYi and RZi are the X, Y, Z components of the reaction

are the corresponding ground displacements at

and aAX AYi’ and aZ

b i
support i, and NS is the number of supports. The reactions at a support
can be computed from summing the end forces of the structural members

incident to that support.

The incremental work done by gravity loads is

NN
I\ M aY 2-46
G ng 3 & 2%y (2-46)
in which Kj is the lumped mass at a non-support node point j, g is the
gravitational acceleration, AY, is the incremental vertical displacement

3

of node point j, and NN is the number of free nodes.

For a curved or straight beam element the displacement change
{dq) over h may be, in the general case, decomposed into:

{dq) = (dq .} + {dqep} + (dqpp) (2-47)
in which, as defined in Section 2.5.4.6, {dqee) denotes that part of
{dq) for both ends being elastic, {dqep) for one end elastic and the
other end elasto-plastic, and (dqpp} for both ends plastic. The general
case of force displacement change for a generic end, say end C, is
illustrated in Figure 2-11 in which {Ql) denotes the force vector at the
beginning of h, (Q2,ee}’ (Q2.ep) and (QZ,pp) denote the force vectors at
the end of (dqee)’ (dqep) and (dqpp}, respectively. The incremental
strain energy beg for the single member consists of an elastic part ae

Se

and a plastic part ae i.e.,

Sp;

= Ae, + Qe (2-48)

ae Se Sp

S
with

T T
beg = 0-5[((Q1)+(Q2’ee)) (dgq__} + ({Qz,ee}+(Q2’ep)) (dqep,e}
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+((Q, I+Q, )T ldg, )] (2-49)

T
deg, = 0-5[((Q2,ee}+(Q2'ep)) (dqep'p)
T
+ + d 2-50
({QZ,ep) (QZ,pp)) { qpp,p’] ( )
in which the third subscript "e" or "p" attached to {dq) denotes the

"elastic part" or "plastic part", i.e.,

(dq ) = {dq o ) + (da,, o) (2-51)
- d -

{dqpp) { q_pp'e) + (dqpp'p) (2-52)

The incremantal recoverable strain energy of the system is

AEgp = (Bege)gp + (Begedgy + (B85 )y (2-53)

in which the subscripts CB denote summing over all curved beam elements,
SB over all straight beam elements, and

(aeg)pp = L 0.5(Q; +Q,)dq (2-54)
denotes the incremental elastic strain energy due to all truss elements,
with Q1 and Q2 representing the axial forces at the beginning and end of
the time interval h, dq is the axial deformation changes taken place in
the interval.

The incremental irrecoverable strain energy is

AESP - (Aesp)CB (2-55)
The incremental kinetic energy over the time interval h is
AE, = 0.5((w) [m] (%), - 0.5({w) 7 [m] (), (2-56)

The incremental energy dissipated by damping is

aEp = 0.5[([C1(¥), + ([C](¥) 41" (aw) (2-57)
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Figure 2-5. Typical Curved Beam Element
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Figure 2-6. Curved Beam Element End Displacements
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Figure 2-10. Definition of Cross-Section
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CHAPTER III

APPLICATIONS AND NUMERICAL RESULTS

3.1 SENERAL

This chapter presents the numerical results based on the
analyses described in the preceding chapter. The results were obtained
by use of a computer program that incorporated the method of analysis
presented. They cover three model bridges: one each of short span,
medium span, and long span, and one ground motion.

Nonlinear behavior due to material inelasticity is presented
first, followed by behavior due to geometric nonlinearity (nonlinearly
elastic behavior). In each case, the time histories of displacements,
internal forces (stress resultants) and energy distribution are

discussed.

3.2 COMPUTER PROGRAM

The computer program was built from one based on linear analysis
using straight beam elements (Ref. [12]). It consists of approximately
6000 lines of FORTRAN statements. The major additions are the nonlinear
curved beam elements (material and geometric).

The bulk of the numerical results was obtained by use of the
Supercomputer CYBER205 at Purdue University with the linear equations
subroutine written for vector processing. After the National Sciense

Foundation ceased to support the Purdue Supercomputer operation, the

50
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computation was done on a VAX/VMS-11/750 computer at College of
Engineering, Michigan State University. For a problem solved by both
computers for comparision, the latter was 56 times slower than the
supercomputer. However, the numerical results were within 2% of each

other.

3.3 MODELS OF BRIDGE AND GROUND MOTION USED

Three existing steel deck-type arch bridges: the Cold Springs
Canyon Bridge (CSCB) in California, the South Street Bridge (SSB) in
Connecticut, and the New River Gorge Bridge (NRGB) in West Virginia with
arch spans of 700, 193, and 1700 feet, respectively, were chosen to be
the prototypes for the medium span bridge (MSB), the short span bridge
(SSB), and long span bridge (LSB).

A complete real arch bridge system generally contains a large
number of degrees of freedom. The expense for analysis of such a system
can be kept within reasonable bounds in the case of a linear analysis.
Because of the high cost of nonlinear analysis, it seemed necessary to
use models that have fewer degrees of freedom than those used for linear
analysis. For example, for the CSCB, the number of panels was reduced
from eleven to eight. Nonlinear curved beam elements are used for the
arch ribs. Straight beam and truss elements are used for the deck,
columns, and cross bracing members. They are presumed to be entirely
elastic.

"True" three-dimensional models with the two ribs modelled as
distinct curved beam elements for MSB (Figure 3-1) and SSB (Figure 3-2),
and "one-plane" three-dimensional model (Ref. [12]) with the two ribs

(plus bracing) modelled as a single curved element for LSB (Figure 3-3)
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were used to consider the inelastic effects (material nonlinearity). Yet
a third type of model, i.e., a two-dimensional plane model (Figure 3-4)
was used to study the nonlinear elastic effects. (Results for the three-
dimensional models were obtained on the supercomputer and the latter
two-dimensional models on the VAX.) A complete description of the
properties and boundary conditions for these bridge models is given in
APPENDIX.

There are two differences between the true three-dimensional
model and the one-plane three-dimensional model. Firstly, the axial
force in a rib of a true three-dimensional model would be approximated
by the axial force and the bending stress effects in a one-plane three-
dimensional model. Secondly, the bending response of the individual ribs
in a true three-dimensional model cannot be produced in a one-plane
three-dimensional model.

The natural periods of linear undamped vibration of, the first
four modes for out-of-plane and in-plane motions are listed in Table 3-1
and the mode shapes are shown in Figures 3-5, 3-6, 3-7, 3-8, 3-9 and
3-10. The fundamental out-of-plane natural periods are 3.032, 1.180, and
4.716 seconds for MSB, SSB, and LSB, respectively. The fundamental
in-plane natural periods are 2.247, 1.065, 3.565, and 2.514 seconds for
MSB, SSB, LSB, and the two-dimensional MSB model, respectively.

For this study, the basic ground motion used is an artificially
generated motion, CIT-A2 (Figure 3-11) (Ref. [18]), which is intended to
represent the ground motion near the epi-center of a magnitude 8 shock.
It has a maximum acceleration of 0.39 g, a duration of approximately 120
seconds. In all cases, the first 45 seconds which covers the most

intense part of the ground motion were used. The ground motion in all
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three directions in space were used with the amplitude of the vertical
motion being set equal to 75% of the two horizontal ones. The same
ground motion was applied to all supports of the structure with no phase

difference.

3.4 MATERIAL NONLINEAR PROBLEMS
3.4.1 General

For the material nonlinear studies, the three-dimensional
bridge models were used with ground accelerations applied in all three
directions. In order to induce inelastic response, an amplification
factor (AF) was applied to the basic ground motion as described in
Section 3.3. The typical amplification factors used were 2.0, 1.2, and
2.0 for MSB, SSB, and LSB, respectively. (Using AF = 1.2 for the SSB
model induced as much inelastic response as that for the MSB model with
AF = 2.0.) |

Under the specified ground motion, Figures 3-12, 3-13, and 3-14
indicated for MSB, SSB, and LSB, respectively, the time intervals during
which there was inelastic action (i.e., some elements yielding). One may
observe that the first yielding occurred at 12.22 second for MSB, 7.54
second for SSB and 12.45 second for LSB. For the SSB even the AF used
was 1.2 only, there were many members yielded within the duration of 45

seconds.

3.4.2 TIypical Displacement Time Histories

In this section displacement time histories are presented for
three nodes in each bridge model. For each node, three displacement

components are plotted. They are X (horizontal), Y (vertical), and Z
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(lateral; out-of-plane) displacement in the cartesian coordinates

system.

3.4.2.1 Medium Span Bridge (MSB)

The three nodes selected for this bridge are: node 17, 31 and 5
(See Figure 3-1). Node 17 is at the crown of the front arch rib, node 5
is at the 1/8 span of the front arch rib, and node 31 is at the 7/8 span
of the rear arch rib. The results indicate that at both node 5 and 31
there were yielding of the arch ribs.

The horizontal (X) displacement time histories for the three
nodes are shown in Figures 3-15, 3-16, and 3-17. They indicate that the
predominant period is approximately 2.2 seconds. The first in-plane
undamped natural period had been calculated to be 2.247 seconds (See
Table 3-1). Thus the response was then primarily in the first mode.
There were also some contributions, though small, from the third mode
(undamped natural period equal to 0.685 seconds). It may be noted that
the second mode is symmetric (Figure 3-5) which would not be excited by
the horizontal ground motion. Experience indicates that the effects of
horizontal ground motion dominate over those of vertical ground motion.
Because of antisymmetry in mode shapes, the horizontal displacement time
histories of node 5 and 31 are in phase and almost equal. The wave
patterns for the elastic and inelastic responses are quite similar.

The vertical (Y) displacement time histories are shown in
Figures 3-18, 3-19, and 3-20. The predominant period is again
approximately 2.2 seconds for time histories of nodes 5 and 31. As
above, it indicates that the response was mostly in the first in-plane

mode. Similarly, there were appreciable third mode contributions. These
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vertical displacement time histories of node 5 and 31 are out-of-phase
because of antisymmetry in mode shapes. The dominant period for node 17
is approximately 3.0 seconds which corresponds to the first out-of-plane
mode. One can observe from Figure 3-5 that the vertical displacement is
zero at the crown node in the first in-plane mode. Thus the
displacements are apparently excited by the out-of-plane ground motion
(See the first out-of-plane mode shapes in Figure 3-6). The wave
patterns for the elastic and inelastic responses are similar too.

The lateral (Z) displacement time histories are shown in Figures
3-21, 3-22, and 3-23. The predominant period is approximately 3.0
seconds. It indicates that the response was primarily in the first out-
of-plane mode. (Table 3-1 shown the first out-of-plane natural period to
be 3.032 seconds.) One can also observe that the fourth mode with period
equal to 0.942 seconds participated significantly in the overall
response of node 5 (Figure 3-21) and node 31 (Figure 3-23). The lateral
displacement time histories of node 5 and 31 are in phase and almost
equal. The wave patterns for the elastic and inelastic responses are

quite similar too.

3.4.2.2 Short Span Bridge (SSB)

For this bridge the nodes chosen for presenting displacement
time histories are the two symmetric points: node 11 and 23. They are at
the 2/7 and the 5/7 span of the rear rib (Figure 3-2), respectively. A
third point chosen is node 13 at the 3/7 span of the front rib.

The displacement time histories in the X, Y, and Z direction for
these nodes are shown in Figures 3-24 through 3-32. In general, they are

similar in character to those presented above for the MSB. Hence, no
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further discussion will be presented for them.

3.4.2.3 Long Span Bridge (LSB)

The displacement time histories for this bridge are shown in
Figures 3-33 through 3-41. They refer to node 18 at the crown, node 12
at the 4/14 span of the arch rib, and node 24 at the 10/14 span of the
arch rib (See Figure 3-3). Node 12 and 24 are symmetric points and there
was yielding near them. These time history results are also similar in
character to those presented for MSB, except for the following point.

For the vertical displacement time history of the crown point
(node 18, See Figure 3-37), the response was primarily in the second in-
plane mode (1.5 seconds) and fourth in-plane mode (1.1 seconds) as
expected. Because the crown node has zero vertical displacement in the
first and third in-plane modes (Figure 3-8). It differs from the
response of MSB because, as mentioned previously, LSB is a one-plane
model. The vertical displacement of the rib in that model corresponds to
that of the center line of the bridge. That displacement is essentially
unaffected by lateral ground motion. To deduce the actually vertical
displacements along the edges of a cross-section of the bridge
represented by a one-plane model, one needs to consider the torsional

response.

3.4.3 Maxingum Displacements

For the MSB model, the magnitudes of the maximum displacements
at the above selected nodes (Section 3.4.2.1) and certain additional
nodes are listed in Table 3-2. The odd numbers correspond to nodes on

the ribs and the even numbers on the deck (Figure 3-1). The maximum
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horizontal displacement occurring at the node next to a support
amounts to 1.1% of the arch height (121.25 feet) for the linear elastic
case and 1.13% for the inelastic case. The horizontal displacements in
the deck are smaller. There are no significant differences between the
vertical displacements in the ribs and deck. The maximum vertical
displacement occurred at the mid-span and amounted to 2.02% of the arch
height for elastic case and 2.12% for inelastic case. The maximum
lateral rib displacement also occurred at the mid-span and is
considerably larger, 8.13% of the arch height for elastic case and 7.6%
for inelastic case. The deck nodes all had even larger lateral
displacement. The maximum responses of the rear and front rib were
approximately equal.

The maximum displacements for the SSB model are presented in
Table 3-3. As before, the odd numbers are on the ribs and the even
number are on the deck (Figure 3-2). There are no significant
differences between the rib and deck for horizontal and vertical
displacements. The maximum horizontal displacement was 1.58% of the arch
height (28.398 feet) for the elastic case and 1.43% for the inelastic
case. The corresponding maximum vertical displacements were 3.17% and
3.12%. The corresponding maximum lateral displacements were 3.48% and
3.29%. For this bridge, the inelastic displacement responses were
smaller than the elastic responses. But the differences are relatively
small.

The maximum displacements for the LSB model are listed in Table
3-4. The even numbers are on the rib and the odd numbers are on the
deck (Figure 3-3). The maximum horizontal displacement was 0.98% of the

arch height (370 feet) for the elastic case and 0.95% for the inelastic
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case. The corresponding maximum vertical displacements were 1.65% and
1.61%. The corresponding maximum lateral displacements were 2.73% and

2.54%.

3.4.4 Iypical Force Time Histories

In this section the force time histories are presented for two
rib points in each bridge. At each point, three components are plotted:
Pz (axial force), Ky (referred to as "in-plane bending" because the
bending takes place in the plane of the rib), and Hx (referred to as
"out-of-plane bending" because the bending causes deformation out of

the plane of the rib).

3.4.4.1 Mediun Span Bridge (MSB)

The two points selected are: end J of member 1 at node 5 (the
1/8 span of the front arch rib) and end I of member 16 at node 31 (the
7/8 span of the rear arch rib) (See Figure 3-1). They are symmetric
points and yielding had been indicated in the inelastic analysis.

The Pz time histories are shown in Figures 3-42 and 3-43. The
predominant period is approximately 3.0 seconds which indicates that the
response was mostly in the first out-of-plane mode. In this mode, the
two ribs essentially act as the two opposite flanges of a beam. One can
also observe that the fourth in-plane mode (with a period equal to
approximately 0.5 seconds.) participated significantly in the overall
response. In this mode, the two ribs would respond identically. Because
of the sign conventions used in the analysis (See Figure 2-6), the two
time histories are seen to be in phase for the first out-of-plane mode

and out-of-phase for the fourth in-plane mode. As it was the case for
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displacement time histories, the wave patterns for the Pz forces for the
elastic and inelastic responses are quite similar.

The in-plane rib bending moment time histories are shown in
Figures 3-44 and 3-45. The predominant period is approximately 3.0
seconds which indicates that the response was again primarily in the
first out-of-plane mode. (Note that in-plane bending of ribs may exist
in an out-of-plane normal mode. See Figure 3-6) Similarly, there was
substantial fourth in-plane mode contribution. The two time histories
are in phase for the first out-of-plane mode and out-of-phase for the
fourth in-plane mode.

The out-of-plane bending time histories are shown in Figures
3-46 and 3-47. The predominant period was measured as 3.0 seconds which
indicates that the response was primarily in the first out-of-plane

mode. The two time histories are out-of-phase.

3.4.4.2 Short Span Bridge (SSB)

The two points selected for this structure is end J of member 9
at node 11 (the 2/7 span of the rear arch rib) and end I of member 13 at
node 23 (the 5/7 span of the rear arch rib) (See Figure 3-2).

The results are shown in Figures 3-48 through 3-53. In general,
they are similar in character to those presented above for the MSB.

Hence, no further discussion will be presented for them.

3.4.4.3 Long Span Bridge (LSB)

The points selected are end I of member 5 at node 12 (the 4/14
span of the arch rib) and end J of member 10 at node 24 (the 10/14 span

of the arch rib) (See Figure 3-3). They are symmetric points and
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yielding did occur at both points.

The axial force time histories are shown in Figures 3-54 and
3-55. The predominant period is approximately 1.1 seconds which
indicates that the response was mostly in the fourth in-plane mode. It
may be noted from Figure 3-8 that the fourth mode is the lowest mode in
which the axial force dominates (over bending). The wave patterns for
the elastic and the inelastic responses are quite similar.

The in-plane bending time histories are shown in Figures 3-56
and 3-57. The predominant period is approximately 3.5 seconds which
indicates that the response was primarily in the first in-plane mode.
There was also small contributions from higher modes. The two time
histories are in phase for the first in-plane mode and out-of-phase for
the higher modes.

The out-of-plane bending time histories are shown in Figures
3-58 and 3-59. The predominant period is approximately 0.5 seconds which
indicates that the response was primarily in the higher mode. The two
time histories are out-of-phase. The question arose why there was little
first out-of-plane mode response. The time histories of out-of-plane
bending at the two nodes (node 10 and 14) adjacent to node 12 were
obtained and are shown in Figures 3-60 and 3-61. It can be seen that the
responses at both nodes are mostly in the first out-of-plane mode. Thus
it may be concluded that the selected points (node 12 and 24) are very
close to points of inflection (zero moment) for out-of-plane bending in

the fundamental out-of-plane mode.
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3.4.5 Maximum Forces and Force Reduction Factors

The maximum values of the internal forces: P, “y and M for the
MSB model are listed in columns 3 and 4 of Table 3-5. It is seen that
they differ considerably for the elastic and inelastic cases (although
the time history wave patterns are quite similar for the two cases). It
may be noted that the maximum values in the inelastic case are limited
by the fully plastic values (See Eq. 2-20 and Table 3-5). No such limits
exist in the elastic case.

For an elastic design, the design is generally carried out based
on the maximum forces as indicated by the elastic analysis. For an
inelastic design, if the designer would accept the "damage" due to
plastic deformations, the design could be carried out based on the
maximum force as indicated by the inelastic analysis. Assuming that the
material needed is roughly proportional to the design force, it follows
that savings in material are possible if the "inelastic force" is less
than the "elastic force".

Let the term "force reduction factor" or simply "reduction
factor," be defined as:

Fe )} Fie
reduction factor = —mM8M8M8 —— (3-1)

F
e

in which, Fe = maximum force by elastic analysis and F, = maximum force

ie
by inelastic analysis. The factor may be regarded as a measure of
possible material saving using inelastic design. Its values are listed
in Table 3-5 for the data presented above. It is seen that they are of
appreciable magnitude.

The largest reduction factor for the SSB (listed in Table 3-6)

is 0.223 for in plane bending of member 9 end J. It is less than the



62

maximum values of 0.333 of the preceding MSB case. But the latter is
based on a ground acceleration amplification factor AF = 2.0, while for
the SSB model, AF = 1.2. Thus, the reduction factor per unit of AF is
approximately the same for the two cases.

The largest reduction factor for the LSB (See Table 3-7) is
0.137 for in-plane bending of member 10 end J. It is smaller than the
maximum reduction factors for either the MSB or SSB. It may also be
noted that the values of the dimensionless response (displacements) for

LSB model are also smaller than the other two bridges.

3.4.6 Iypical Work and Energy Distribution Time Historjes

The work and energy balance equation of the system was presented
in Section 2.7 as:

WR + WG - EsE + ESP + EK + ED (2-44)
in which, as noted in Chapter II, WR and VG denote work done by support
reactions and by gravity loads, respectively, ESE is recoverable strain
energy, ESP is irrecoverable (plastic) strain energy, EK is kinetic
energy and ED is energy dissipated by damping. During an earthquake
energy is fed through the base of the structure. It is instructive to
know how the energy is distributed among the terms in the work and
energy balance equation. There is no irrecoverable (plastic) strain
energy for a linear elastic case, therefore, for that case the term ESP
should be deleted from the equation.

The equation representing work and energy distribution may be

rewritten from Eq. 2-44 as follows:

E E
1o-—SE T & B
v vooow W

(3-2)
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in which W = WR + WG. The equation becomes

1.0 = SE + KE + DE + PW (3-3)
where SE = ESE/W, KE = EK/W, DE = ED/W and PW = ESP/W are presented in
the figures of the work and energy distribution time histories. A spline
technique was used in the graphs to connect the discrete points.

The work and energy distribution time histories of the MSB for
the elastic and inelastic cases are shown in Figures 3-62 and 3-63. The
elastic case has a greater percentage of dissipated damping energy
compared to the inelastic case. The dissipated damping energy continued
to increase to 87% of the work done for the elastic case and 74% for the
inelastic case. For both cases the kinetic and recoverable strain energy
remain relatively small throughout the whole 45 seconds and the elastic
case has a greater percentage. For the inelastic case, 18% of the work
done is shown to be dissipated by irrecoverable strain energy after
about 20 seconds. From Figure 3-63, a decrease in PW can be noted. It is
because of the fact that the ratio ESP/W is plotted, i.e., a decrease
signifies that the denominator, the work done, has increased faster than
the numerator.

The work and energy distribution time histories of the SSB for
the elastic and inelastic cases are shown in Figures 3-64 and 3-65. The
dissipated damping energy continued to increase at an almost constant
rate to 88% of the work done for the elastic case and 74% for the
inelastic case. The percentages of the kinetic and recoverable strain
energy were smaller than the corresponding percentages of MSB. According
to Figure 3-65, 17% of the work done is shown to be dissipated by
irrecoverable strain energy after about 15 seconds.

The work and energy distribution time histories of the LSB for
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the elastic and inelastic cases are shown in Figures 3-66 and 3-67. The
dissipated damping energy continued to increase at an almost constant
rate to 85% of the work done for the elastic case and 75% for the
inelastic case. The percentages of the kinetic and recoverable strain
energy were larger than the corresponding percentages of MSB with the
same amplification factor. For the inelastic case, 12% of the work done
is shown to be dissipated by irrecoverable strain energy after about 23

seconds.

3.4.7 VYariation of Energy Distribution with Different Damping Ratio

The results of the work and energy distribution time histories,
obtained by using a two-dimensional model of MSB (Figure 3-4) with
different damping ratios, are shown in Figures 3-68 through 3-74. The
responses are listed in Table 3-8. It is seen that the inelastic
responses and reduction factor decreased when the value of damping ratio
was increased. The amplification factor used is 2.0 for all cases.

There is no inelastic effect when the damping ratio is equal to
58. In that case, most (96%) of the work done was dissipated by damping.
When the damping ratio is equal to 0.25%, 50% of the work done was
dissipated by damping and 30% of the work done was dissipated by
irrecoverable strain energy. The ratios of irrecoverable strain energy,
kinetic energy and recoverable strain energy to the work done increased

vwhen the damping ratio decreased.

3.4.8

For a given bridge model and ground motion, one may carry out a

linear elastic analysis. The quantity'sg, for the case of "spherical
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plastic potential function,” is defined as:

— P Mo 2 My 2
3, - (— 2 e (L)% ) (3-4)
o M50 Mo

(The yielding condition is defined by setting 3; -1=20 (Eq. 2-20).) It
is a function of time and position in the structure. Its value can be
greater than 1. Let ’e be the maximum value of 3; for all points and
times considered in the linear analysis. It is called the linear
response factor.

For the same bridge model and ground motion, an inelastic
analysis may be carried out. The maximum inelastic response in terms
total plastic work (Eq. 2-39), plastic work density (Egs. 2-40) and
ductility factor (Eqs. 2-41 through 2-43) may be computed. These
inelastic response quantities may be used to represent measures of
"damages" done to the structure due to inelasticity. They are plotted
for the most severely strained member in the bridge MSB, in Figure 3-75
as a function of Qe.

It is seen that the inelastic response quantities generally
increase with the linear response factor. This is expected. Following
the concept of force reduction factor as discussed in Section 3.4.5, one
might use such a graph as follows. If one would accept a certain level
of "damage", for example, a curvature ductility factor about y-axis
equal to 3.5, the corresponding curve in Figure 3-75 would indicate a
linear response factor equal to 1.88. This factor may be used as a "load
reduction factor" (to be applied to the "seismic load" based on linear
behavior) or an allowable stress increase factor.

Similar curves are presented for the other two bridge models in

Figures 3-76 and 3-77.
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3.5 GEOMETRIC NONLINEAR PROBLEMS
3.5.1 Genperal

In the preceding the nonlinear effects due to material
inelasticity were considered. In this section numerical results on
nonlinear elastic effects ("geometric nonlinearity") are presented. For
simplicity, only in-plane behavior is studied. The same bridge models
and earthquake loading considered previously are used with the exception
that the MSB is simplified to a 4-panel model as depicted in Figure 3-4.
The main feature of nonlinear elastic effects is that the axial
compressive force in the arch ribs would lower the stiffness of the
structure (analogous to the case of a beam-column). That would change

the response characteristic and could even lead to instability.

3.5.2 Iypical Displacement Time Histories

3.5.2.1 Medium Span Bridge (MSB)
For this bridge, typical displacement time histories are

presented for node 3 (at the 1/4 point of the rib) and node 5 (at the
crown) .

The horizontal displacement time histories are shown in Figures
3-78 and 3-79 for both the linear and nonlinear analyses. The
predominant period for the linear elastic case is approximately 2.5
seconds which corresponds to the first mode (Table 3-1). For the
nonlinear elastic case, the measured period is approximately 2.8 seconds
wvhich represents approximately a 10% increase from the linear case.
This, of course, is due to the effects of the decreased stiffness of the
ribs resulting from dead load compression.

The vertical displacement time histories are shown in Figures
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3-80 and 3-81. For the quarter point (node 3), the predominant period is
that of the first mode (2.5 seconds) for the linear case. The crown
point (node S5) has zero vertical displacement in the first mode (See
Figure 3-10), which explains the fact that the response shows mainly a
combination of second and third modes (1.15 and 0.50 seconds,
respectively). For the nonlinear response, one can again notice an
increase in the values of the dominant period. For the quarter point, it
is approximately 108, as for the preceding case of horizontal
displacement. For the crown point, the change is from 1.15 seconds to

1.2 seconds representing an increase of about 5% in the second mode.

3.5.2.2 Short Span Bridge (SSB)

This bridge model has no node at the crown. The displacements
of the two nodes symmetric with respect to it are considered. They are
node 9 (at the 2/7 span) and node 21 (at the 5/7 span) (See Figure 3-2).

The horizontal displacement time histories are shown in Figures
3-82 and 3-83. For the linear elastic case, the predominant period is
approximately 1.1 seconds which corresponds to the first mode. The
period for the nonlinear elastic case is approximately 1.2 seconds which
represents approximately a 9% increase. The responses of the two nodes
are in phase.

The vertical displacement time histories are shown in Figures
3-84 and 3-85. The features of dominant periods of these responses are
similar to those discussed above. The responses of the two nodes are out

-of-phase.
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3.5.2.3 Long Span Bridge (LSB)

For this bridge model, the displacements are considered at node
18 (the crown), and two nodes symmetric to it: node 12 (at the 4/14
span) and node 24 (at the 10/14 span) (See Figure 3-3).

The horizontal displacement time histories are shown in Figures
3-86, 3-87, and 3-88. Again, the response was primarily in the first
mode (with a period of about 3.5 seconds). There was approximately a 8%
increase of the dominant period for the nonlinear elastic case (3.8
seconds) from the linear elastic case.

The vertical displacement time histories are shown in Figures
3-89, 3-90 and 3-91. The responses of the two symmetric nodes, nodes 12
and 24, were mostly in the first mode and there was little contribution
from higher modes. The response of the crown node, node 18, was
primarily in the second mode (1.5 seconds) and fourth mode (1.1
seconds). The change in the dominant period is approximately a 7%

increase for these nodal displacements.

3.5.3 Maximup Displacements
The maximum displacements are listed in Tables 3-9, 3-10 and

3-11 for MSB, SSB and LSB, respectively. The odd numbers represent nodes
on the rib and the even numbers on the deck for MSB and SSB (Figures 3-4
and 3-2). For LSB, the even numbers are on the rib and the odd numbers
are on the deck (Figure 3-3).

In Table 3-9, It can be seen that the maximum horizontal
displacements for MSB are 0.77% of the arch height (121.25 feet) for the
linear elastic case and 0.94% for the nonlinear elastic case. The

maximum vertical displacements are 1.69% of the arch height for the
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linear elastic case and 1.79% for the nonlinear elastic case.

As listed in Table 3-10, the maximum horizontal displacements
for SSB are 1.56% of the arch height (28.398 feet) for the linear
elastic case and 1.19% for the nonlinear elastic case. The corresponding
maximum vertical displacements are 3.22% and 2.59%.

As listed in Table 3-11, the maximum horizontal displacements
for LSB are 0.98% of the arch height (370 feet) for the linear elastic
case and 0.92% for the nonlinear elastic case. The corresponding maximum

vertical displacements are 1.65% and 1.6%.

3.5.4 TIypical Force Time Historjes

Two points in each bridge model are selected for presentation of
force time histories. At each point, two components are plotted: Pz

(axial force) and My (in-plane bending).

3.5.4.1 Medium Span Bridge (MSB)

The two points selected are end J of member 1 at node 3 (the 1/4
span of the arch rib) and end I of member 4 at node 7 (the 3/4 span of
the arch rib) (See Figure 3-4). They are symmetric with respect to the
crown.

The axial force time histories are shown in Figures 3-92 and
3-93. The predominant period is approximately 0.5 seconds which
corresponds to the third mode. As was noted previously in Section
3.4.4.3, this dominance appears to be due to the fact that this third
mode is the lowest mode in which axial force dominates (over bending)
(See Figure 3-10). The wave patterns for the linear elastic and

nonlinear elastic responses are quite similar.
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The in-plane bending time histories are shown in Figures 3-94
and 3-95. In this case, it appears that the responses were mainly in the
first and third modes. (These points, at which the responses are being
considered, appear to be close to points of counter-flexure for the

second mode.)

3.5.4.2 short Span Bridge (SSB)

The two points selected are end J of member 2 at node 9 (the 2/7
span of the arch rib) and end I of member 6 at node 21 (the 5/7 span of
the arch rib) (Figure 3-2). The results on this bridge are shown in
Figures 3-96 through 3-99. They are generally similar in character to
those presented in the preceding.

However, the in-plane bending response was primarily in its
first mode. Unlike the preceding case of MSB, there was little
contribution from the third mode. It should be noted that the points, at
which the responses are being considered, do not quite correspond for

the two bridge models.

3.5.4.3 Long Span Bridge (LSB)

The two points selected are end I of member 5 at node 12 (the
4/14 span of the arch rib) and end J of member 10 at node 24 (the 10/14
span of the arch rib) (See Figure 3-3). They are the same points from
the same ("one-plane") model in Section 3.4.4.3 for material
nonlinearity.

The results on this bridge are shown in Figures 3-100 through
3-103. It can be seen that the results are very close to those presented

in Section 3.4.4.3. While in that section ground motions in three
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directions were applied, here only in-plane motions are applied. These
results thus suggest that the in-plane and out-of-plane responses were

largely uncoupled for this ("one-plane”) bridge model.

3.5.5 Maximum Forces

The maximum internal forces are listed in Tables 3-12, 3-13 and
3-14 for MSB, SSB, and LSB, respectively. There is no appreciable

difference between linear elastic and nonlinear elastic solution.

3.5.6 Iypical Work and Energy Distribution Time Histories

As was done in Section 3.4.6 for the case of material
nonlinearity, the work and energy distribution time histories of the
linear elastic and nonlinear elastic case of MSB, SSB, and LSB were
calculated and are shown in Figures 3-104 through 3-109.

It may be seen that the differences between the linear and
nonlinear elastic cases are very small for all three bridge models. The
values of the ratios plotted for the kinetic and strain energy of SSB
are larger than those of MSB and less than those of LSB. However, for
both cases the kinetic and recoverable strain energy remain relatively
small throughout the whole 45 seconds. This points to the importance of

the role of damping.

3.5.7 Instability Effects

The results in Sec. 3.5.3 indicated that a consideration of the
nonlinear elastic behavior increased the maximum displacement by 10% to
20% for MSB. But for the other two bridge models, such effects of the

nonlinear behavior were much smaller (even negative). To consider
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possible instability effects, the static buckling loads were computed as
linear eigenvalue problems. They were found to be 4.415 D.L., 7.185 D.L.
and 8.557 D.L. (D.L. stands for "dead load" for the respective models)
for MSB, SSB and LSB, respectively.

The seismic responses were computed by increasing the initial
load (initially applied static load) to be a factor times D.L.. No
instability effects were observed until the initial load was closed to
the static buckling load. This is illustrated in Table 3-15, in which
are listed the maximum horizontal displacements at the crown for MSB and
LSB, and at node 7 for SSB. It is seen that the maximum displacements
remain quite moderate until the dead load placed almost reached the
magnitude of the static buckling load. The responses for MSB and SSB
became "infinite" at 99% of the buckling load. However, for LSB (See
also Figure 3-110), even after the initial load exceeded the static
buckling load the responses remained "finite" (but at larger rates of
increase). The reason may lie in the difference in the boundary
conditions between LSB and the other two bridge models (See Figures 3-2,

3-3 and 3-4.)
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Table 3-1. Natural Periods of Vibration

Out-of-Plane (second)

Mode No. MSB SSB LSB

1 3.032 1.180 4.716

2 1.204 1.127 3.677

3 1.174 0.379 2.612

4 0.942 0.370 1.424
In-Plane (second)

Mode No. MSB SSB LSB

1 2.247 1.065 3.565

2 1.276 0.484 1.534

3 0.685 0.304 1.221

4 0.469 0.242 1.094
Two-Dimensional model of MSB (4 panels) (second)

Mode No. 1 2 3 4

MSB 2.514 1.151 0.503 0.173
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Table 3-2. Elastic and Inelastic Maximum Displacements of MSB

Nodal Displacements(ft)
No. Horizontal Vertical Lateral
No. 1.082 1.637 0.856
5 (1.034) (1.782) ( 0.834)
No. 0.383 1.625 3.747
6 (0.359) (1.795) (3.528)
No. 1.237 1.867 0.856
7 (1.370) (2.073) (0.834)
No. 0.401 1.855 3.747
8 (0.376) (2.049) (3.528)
No. 0.455 2.437 7.772
17 (0.541) (2.267) (7.239)
No. 0.177 2.449 9.858
18 (0.169) (2.267) (9.215)
No. 0.456 2.389 7.772
19 (0.534) (2.558) (7.239)
No. 0.178 2.389 9.858
20 (0.173) (2.571) (9.215)
No. 1.334 2.073 0.867
29 (1.225) (1.976) (0.732)
No. 0.588 2.098 4.765
30 (0.552) (2.001) (4.401)
No. 1.124 1.843 0.867
31 (1.225) (1.855) (0.732)
No. 0.567 1.879 4.765
32 (0.531) (1.843) (4.401)
Covvn ) : Inelastic Displacement
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Table 3-3. Elastic and Inelastic Maximum Displacements of SSB

Nodal Displacements(ft)
No. Horizontal Vertical Lateral
No. 0.426 0.898 0.520
9 (0.378) (0.835) (0.503)
No. 0.388 0.900 0.987
10 (0.355) (0.837) (0.922)
No. 0.449 0.884 0.520
11 (0.400) (0.884) (0.503)
No. 0.386 0.886 0.987
12 (0.360) (0.886) (0.922)
No. 0.369 0.686 0.851
13 (0.334) (0.771) (0.804)
No. 0.383 0.689 0.950
14 (0.350) (0.771) (0.893)
No. 0.371 0.726 0.851
15 (0.339) (0.830) (0.804)
No. 0.383 0.729 0.950
16 (0.357) (0.832) (0.893)
No. 0.447 0.830 0.520
21 (0.400) (0.853) (0.487)
No. 0.386 0.835 0.987
22 (0.353) (0.856) (0.933)
No. 0.421 0.835 0.520
23 (0.407) (0.766) (0.487)
No. 0.388 0.837 0.987
24 (0.360) (0.771) (0.933)

C..... ) : Inelastic Displacement
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Table 3-4. Elastic and Inelastic Maximum Displacements of LSB

Nodal Displacements(ft)
No. Horizontal Vertical Lateral
No. 3.619 6.068 5.365
12 (3.156) (5.439) (5.180)
No. 2.723 6.105 10.101
13 (2.560) (5.476) (9.250)
No. 2.868 2.320 8.658
18 (2.538) (2.213) (8.362)
No. 2.150 2.331 7.548
19 (2.146) (2.224) (7.141)
No. 3.530 5.883 5.365
24 (3.497) (5.920) (5.254)
No. 2.609 5.920 10.101
25 (2.560) (5.957) (9.398)

C..... ) : Inelastic Displacement
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Table 3-5. Elastic and Inelastic Maximun End Forces of MSB

Member Linear Nonlinear Reduction Fully
Plastic
End Elastic Inelastic Factor Force
Pz 8907 8635 0.031 10064.34
1-J My 40547 29584 0.270 30034.75
Mx 4369 4989 -0.142 12169.45
Pz 9088 7890 0.132 10064 .34
16-1 %X, 43851 29344 0.331 30034.75
Mx 4381 4077 0.069 12169.45
Pz ¢ kips H Hy : ft-kips Hx : ft-kips

Table 3-6. Elastic and Inelastic Maximun End Forces of SSB

Member Linear Nonlinear Reduction Fully
Plastic

End Elastic Inelastic Factor Force
Pz 2669 2455 0.080 4554.000
9-J My 7235 5623 0.223 5696.625
Mx 185 193 -0.043 3112.313
Pz 2910 2637 0.094 4554.000
13-1 My 6779 5577 0.177 5696.625
Hx 185 247 -0.335 3112.313

-Pz : kips H !} : ft-kips Hx : ft-kips
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Table 3-7. Elastic and Inelastic Maximun End Forces of LSB

Member Linear Nonlinear Reduction Fully
Plastic

End Elastic Inelastic Factor Force
Pz 68350 67605 0.011 82849

5-1 Hy 1667632 1554821 0.068 1634933
Mx 322119 322119 0.000 2982580

Pz 66610 66610 0.000 82849

10-J My 1765728 1523757 0.137 1634933
Mx 322119 283643 0.119 2982580

l’z : kips H Hy : ft-kips ; Hx : ft-kips



79

Table 3-8. Maximum Responses for Various Values of Damping Ratio

Damping | Node 5 Displacement(ft) | Ductility | Plastic Work | Total
ratio Factor Density by |Plastic
(%) Horizontal Vertical My My Work
0.25 0.558 0.825 17.560 527.33 11094
0.5 0.571 0.808 16.049 330.56 6772
1.0 0.761 0.764 14.591 140.72 2599
2.0 0.618 0.732 5.909 56.92 884
3.0 0.557 0.755 2.083 20.31 272
5.0 0.468 0.743 |  ------ | eeeeee | eee--

Damping Member 1 End J
Ratio Axial Force (Pz) In-Plane Bending (My)
(%) Inelastic| Elastic |Reduction|Inelastic| Elastic | Reduction
0.25 9197 15420 0.404 48087 112430 0.572
0.5 8922 11841 0.246 48136 98802 0.513
1.0 7972 9982 0.201 48330 79334 0.391
2.0 6870 7724 0.110 44923 61325 0.263
3.0 6182 6499 0.049 45313 52565 0.138
5.0 5259 5259 0.000 43123 43123 0.000
Pz ¢ kips H y : ft-kips
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Table 3-9. Linear and Nonlinear Elastic Maximum Displacements of MSB

Nodal Linear Elastic (ft) Nonlinear Elastic (ft)
No. Horizontal Vertical Horizontal Vertical
3 0.918 1.831 1.135 2.037
4 0.409 1.879 0.409 2.086
5 0.650 0.955 0.833 1.135
6 0.663 0.968 0.663 1.146
7 0.935 2.001 1.062 2.134
8 0.832 2.049 0.832 2.170

Table 3-10. Linear and Nonlinear Elastic Maximum Displacements of SSB

Nodal Linear Elastic (ft) Nonlinear Elastic (ft)
No. Horizontal Vertical Horizontal ~ Vertical
5 0.443 0.912 0.329 0.684
6 0.389 0.914 0.312 0.687
7 0.378 0.525 0.278 0.491
8 0.386 0.528 0.307 0.491
11 0.437 0.849 0.338 0.733
12 0.389 0.852 0.312 0.736
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Table 3-11. Linear and Nonlinear Elastic Maximum Displacements of LSB

Nodal Linear Elastic (ft) Nonlinear Elastic (ft)
No. Horizontal Vertical Horizontal Vertical
12 3.619 6.068 3.414 5.920
13 2.723 6.105 2.542 5.920
18 2.868 2.320 2.642 2.301
19 2.150 2.331 1.865 2.309
24 3.530 5.883 3.230 5.587
25 2.609 5.920 2.290 5.624
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Table 3-12. Linear and Nonlinear Elastic Maximum End Forces of MSB

Linear Elastic Nonlinear Elastic
Member
Axial Force In-Plane Axial Force In-Plane
End Pz Bending M Pz Bending M
kips ft-kips y kips ft-kips y
1-J 8633 67653 8564 71546
4-1 8784 68626 8756 69600

Table 3-13. Linear and

Nonlinear Elastic Maximum End Forces of SSB

Linear Elastic

Nonlinear Elastic

Member
Axial Force In-Plane Axial Force In-Plane
End Pz Bending M Pz Bending M
kips ft-kips kips ft-kips
2-J 2268 7064 2218 6152
6-1 2026 6551 2077 6665

Table 3-14. Linear and Nonlinear Elastic Maximum End Forces of LSB

Linear Elastic

Nonlinear Elastic

Member
Axial Force In-Plane Axial Force In-Plane
End Pz Bending M Pz Bending M
kips ft-kips y kips ft-kips y
5-1 68350 1667632 68599 1623488
10-J 66610 1765728 69593 1554821




Table 3-15. Maximum Displacements for Different Values of Initial Load
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MSB SSB
(Buckling Load = 4.415 D.L.) (Buckling Load = 7.185 D.L.)
Initial Node 5 Initial Node 7
Load Horizontal Displ. Load Horizontal Displ.
4.300 D.L. 0.3492 ft 7.000 D.L. 0.5992 ft
4.350 D.L. 0.4450 ft 7.100 D.L. 0.4089 ft
4.360 D.L. 0.4729 ft 7.150 D.L. 0.4742 ft
4.365 D.L. 0.4874 ft 7.155 D.L. 0.5311 ft
4.370 D.L. 2.0E+10 ft 7.160 D.L. 6.5031 ft
LSB
(Buckling Load = 8.557 D.L.)
Initial Node 18 Initial Node 18
Load Horizontal Displ. Load Horizontal Displ.

8.45 D.L. 1.2136 ft 8.56 D.L. 2.7454 ft
8.46 D.L. 1.2506 ft 8.57 D.L. 3.7740 ft
8.47 D.L. 1.2987 ft 8.58 D.L. 5.2540 ft
8.48 D.L. 1.3579 ft 8.59 D.L. 7.2890 ft
8.49 D.L. 1.4356 ft 8.60 D.L. 9.5090 ft
8.50 D.L. 1.5281 ft 8.61 D.L. 13.801 ft
8.51 D.L. 1.6428 ft 8.62 D.L. 18.944 ft
8.52 D.L. 1.7760 ft 8.63 D.L. 25.567 ft
8.53 D.L. 1.9499 ft 8.64 D.L. 33.078 ft
8.54 D.L. 2.1645 ft 8.65 D.L. 43.290 ft
8.55 D.L. 2.4235 ft 8.66 D.L. 54.760 ft
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(* denotes overall mode number.)

Figure 3-5.

In-Plane Mode Shapes for MSB
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Figure 3-6.

Out-of-Plane Mode Shapes for MSB and SSB
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Figure 3-6.

(Continued)
Out-of-Plane Mode Shapes for MSB and SSB
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Figure 3-7. In-Plane Mode Shapes for SSB
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Figure 3-8.

In-Plane Mode Shapes for LSB
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Figure 3-9. Out-of-Plane Mode Shapes for LSB
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Figure 3-10. In-Plane Mode Shapes for Two-Dimensional MSB
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