”51%: ,3“ . ‘J ‘\.n - - ~ 1 'Jfivfin' .1 ‘ f-flf‘fib—‘ngj :FgL ".‘ I. .‘_ 011]." ""1 n ‘AVK‘J; I f... §.41.. J ._,. .. ... ‘0 .. , I".‘.. 3 I'4~[A1 {rif'ih’t ‘ ‘v I.‘ l.’ ‘ «$351.; , ‘f .v I; dial; J“; I“ ”a”. .. . _ .,_.. ... '91:,Qf... \- .. ".44— 4'.’.. “1-5.; mm 34;: ”vi-15 . .1 Via-.13!" 7.9.4-4 7,": drv-Iu-Vfl'fl 11 "W ‘2':;:. via- t. Irig‘r' 3.4} riff; r}; N l . f :l' A ;.5.‘}:’&i'v& ‘3" R ‘v ”(:qu ‘34: {-- O \ ‘1‘“. .- r‘ .5"?th 9 ",I‘ n/m M M ' A'- A), ’4." . .,, {In . r_ “VII“ 9.1. ..:.., ,. ~,- 41.3.,“ ‘ - A” _w. 92'! ['2 ’a.:.£--~r'v?“ .M «4.10": . ..— u-—._m' ', I 3:![:§,;.,- '- £7" "'LW‘J‘JJi—vl‘r' - {1:}, '70‘0lv‘fl-l 11"" --r r‘r ‘P"‘.'T.~' a; mu -~;,,:; .. 44 .2: 4.1“ n ' ‘v—rv 3t r I'- ’ _ , imp-A .433, 33.5) _, 0M 4.! ,.. ~ . - '29" . r . u u- g. fi‘tjfieéfiv .3. "Ly-75$: 133; 1;? .. .f'lf'v Wig“ ”:54..- .u y 2m. 35;; 22- w ’ .5123", A'T1‘5W1wur‘ Mr M ‘1‘ firing". ’51:; , W": f nu? r ‘2‘ our—vb"; W,“ ,3" r w-VTWVLW..--" " Q, in -wP~ I In A-vpv' "‘ I .1 _,,..-..-‘ v-r- .. ..::u:=:?:.::: ,,.. “t" ,zfi-pw- ' w n WLE" ‘vvvr‘fitl’ t- ”my ’ .4:'-..4'. 1"‘W:—P "$13.. .—-I- _. JE‘JBV pv- ”=an- pr’” ”7.. ‘ifiv—«n‘! ”n 'MWw "IQW; J v4 a»? 4mg"; mix I fill \\ ‘H‘W‘f ”/ H 9H 561 m EIBRARY Michigan Statel University This is to certify that the dissertation entitled g‘dfltké Sis an} Cka(ac+dfi65fiofi 0&- tLCQQ Sqf‘qC 0% ”“2" #edouwal amine “Hi-z J1 om} {elm I UM‘UU 0‘» afosk? ’0 M¢+‘\‘ afla ’ti‘ei ( >ONY?\\Cu+(Ofi$ t0 (“+5 “\jS‘S +r; c S 44“ a“! “53““: ‘ypresente‘il by ’“w A} AlaVi Mann; has been accepted towards fulfillment of the requirements for FIND degreein Ciuuld(f MI Major professor DatW 9% MS U is an Affirmative Action/Equal Opportunity Institution 0-12771 PLACE IN RETURN BOX to remove We chokout from your record. TO AVOID FINES man on or baton ddo duo. DATE DUE DATE DUE DATE DUE MSU Is An Affirmative ActioNEquoi Opportunity lnditution SYNTHESIS AND CHARACTERIZATION OF THREE SERIES OF NEW FERROCENYL AMINE SU'LFIDE AND SELENIDE COMPLEXES OF GROUP 10 METALS AND THEIR APPUCATIONS TO CATALYSIS AND ASYMMETRIC SYNTHESIS By Ahmad Alavi Naiini A DISSERTATION . Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Chemistry 1989 1’ V" (QWZIHI‘ ABSTRACT SYNTHESIS AND CHARACTERIZATION OF THREE SERIES OF NEW FERROCENYL AMINE SULFIDE AND SELENIDE COMPLEXES OF GROUP 10 METALS AND THEIR APPLICATIONS TO CATALYSIS AND ASYMMETRIC SYNTHESIS BY Ahmad Alavl Nallnl Two series of new ferrocenyl anime sulfide and selenide ligands. (5.3)- [ER]C§H4F905H3[CHMeNMezflER] and [ER]C§H4FeCsH3ICH2NMez][ER] (E - S and Se; and R - Me, Et, n-Pr, i-Pr, n-Bu, sen-Bu, t—Bu, l-Pent, Ph, 82, 4-tolyl, and 4-Cl- Ph) have been synthesized yja Iithiation of proper ferrocene preouroors, first in the presence of ether and then TMEDA followed by treatment with appropriate disulfides and diselenides. These compounds, which are air stable, have been characterized by 1H and 130 NMR, IR, MS, and elemental analysis. These ligands chelate platinum and palladium chloride to form the heterobimetallic complexes (fi,fl)-[ER]C5H4F905H3[CHMeNMeg]- [ER][MCI2] and [ER]C§H4F905H3[CH2NM62][ER][MCI2], (E - s and Se; 9 - Me, Et, :1- Pr, l-Pr, Ph, 82, 4-tolyl, and 4-Cl-Ph; M - Pd and Pt). A series of chiral platinum ferrocenyl amine sulfide. (3.53-05H3Fe05H3[CHMeNMez][SR][PtCI2], (R - Me, Et, i- Pr, and Ph) have also been prepared by reaction of (PhCN)2PtCI2 and appropriate ferrocenyl amine thioether ligands. 1H NMR, IR, MS and elemental analysis data were Ahmad Alavi Naiini obtained for the complexes. An x-ray structure of [SMelcsH4FecsH3[CH2NMeg]- [SMe][PdCI2] was determined . High chemo- and regioselectivities have been achieved for the reduction of carbon-carbon double bonds of conjugated dienes and a-B unsaturated carbonyls, carboxyllc acids, esters. amides, and nitriles by using new palladium ferrocenyl amine sulfide complexes. Some platinum complexes, CpFeCsHalcHMeNMeZ][SR][PtCI2]; R - (Me, Et, i-Pr, Ph), were examined for their catalytic activities toward hydrogenation of 1,3- cyclooctadiene and it was found that they are far less active and selective than palladium analogs. . The reaction of NiCI2 with chiral ligands LSflJ-[SR]C5H4F905H3[CHM9NMeg]- [SR], (R - Et, sec-Bu, Ph. and 4-Cl-Ph) produced flung nickel complexes which are active catalysts for asymmetric Grignard cross-coupling reactions between allyl magnesium chloride and 1-phenyl-1-chloroethane. The structure of CpFeCsH3[CHgNMezlls-t-Bu] was determined by an x-ray crystal structure study. ‘ .'R Ag. " a o" W DEDICATION As this year marks the twentieth anniversary of my father's death, I would like to dedicate this thesis to him. iv ACKNOWLEDGEMENTS I sincerely wish to thank Professor Carl H. Brubaker, Jr. for suggesting this region of study. His expert guidance and patience during the experimental work and preparing of this thesis are greatly appreciated. Also, I wish to extend my appreciation to the members of my Guidance Committee (Dr. Plnnavaia. Dr. Eick, Dr. Rathke, and Dr. Crouch) for their valuable suggestions. It is also a pleasure to thank Dr. Karabatsos for the opportunity he has given me to come to Michigan State University to pursue a degree in chemistry. My gratitude also to Dr. L.D. Le and Dr. D. Ward for the many instances of their helpful assistance. I would also like to thank Dr. Mike Okoroaior, Dr. Chung-Kung Lai, Hussein Ali and Chun-Hsiang Wang for their help and friendship. I also wish to thank Lisa Bishop for typing this thesis. Finally, my deepest gratitude goes to my parents, parents-in-Iaw, brother, brothers and sister-in-law and especially to my wife, Soheila, and her profound love, unrivalled understanding and great patience throughout this work. TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF SCH EM ES INTRODUCTION EXPERIMENTAL A. Preparation of Ligands (BJ-[t -(dimethylamino)ethy|]ferrocene, [(33-12] (SJ-[1-(dimethylamino)ethyl]ferrocene, [(53-12] (SHE-1-[1-(dimethylamino)ethyI]-2,1'-bis(methylthio)- ferrocene, (43, R - Me) (S..B.)-1-[1-(dimethylamino)ethyl]-2.1'-bis(ethylthio)- ferrocene, (44, R - Et) (5.33-1-[1-(dimethylamino)ethyl1-2,1‘-bls[(n_-propyl)thio]- ferrocene, (45. R - n-Pr) (S..B.)-1—[1-(dimethylamino)ethyl]-2,1'-bis[(i-propyl)thio]- ferrocene, (46, R . i—Pr) (5,334-[1-(dimethylamino)ethyI]-2,1'-bis[(n.-butyl)thio]- ferrocene, (47, R - n-Bu) (S..B_)-1-(1-(dimethylamino)ethyll-Z,1'-biS[(§.e.Q~butyl)thio]- ferrocene, (48, R - sac-BU) (&,B,)-1-[1-(dimethylamino)ethyl]-2,1'-bis[(1-butyl)thio]- ferrocene, (49, R - t-Bu) (gm-1 —[1-(dimethylamino)ethyl]-2,1'-bis[(1—pentyl)thio]- ferrocene, (50. R - i-Pent) (gm-1-[1-(dimethylamino)ethyl]-2.1'-bis(phenylthio)- ferrocene, (51, R - Ph) (3.334~[1-(dimethylamino)ethyl]-2,1'-bis(benzylthio]- ferrocene, (52, R - 82) vi Page xiii xv XX 14 15 15 15 16 17 18 19 2O 21 22 23 24 25 (S..B.I-1-[1-(dlmethylamino)ethyI]-2,1'-bis[(4-tolyl)thio]- ferrocene, (53, R - 4-tolyl) (gm-1-[1-(dimethylamino)ethyI]-2,1'-bis[(4-chlorophenyl)- thiol-ferrocene, (54, R - 4-Cl-Ph) (Sam-1-[1-(dimethylamino)ethyl]-2,1'-bis(methy|seleno)- ferrocene, (55. R - Me) (S..B.)-1-[1-(dimethy|amino)ethyl]-2,1'-bis(phenylseleno)- ferrocene, (56, R - Ph) (§,B_)-1-[1-(dimethylamino)ethyI]-2,1'-bis[(4-chlorophenyl- seleno)]-ferrocene, (57, R - n-Pr) 1-[(dimethylamino)methyll-2.1'-bis(methylthio)ferrocene, (58, R - Me) 1-[(dimethylamino)methyl]-2,1'-bis(ethylthio)ferrocene, (59, R - Et) 1-[(dimethylamino)methyll-z,1'-bis[(n,-propyl)thlo]ferrocene, (60, R - n—Pr) 1-[(dimethy|amino)methyl]-2,1'-bis[(i—propyl)thiolferrocene, (61 , R - i—Pr) 1-[(dimethy|amino)methyI]-2,1'-bis[(n,-butyl)thio]ferrocene, (62, R - n—Bu) 1-[(dimethylamino)methyI]-2,1'-bis[(seg,-butyl)thiolferrocene, (63, R - sag-Bu) 1-[(dimethylamino)methyll-Z,1'-bis[(l-butyl)thio]ferrocene, (64, R - t-Bu) 1-[(dimethylamino)methyl1-2,1'-bis[(i-pentyl)thiolferrocene, (65, R -1-Pent) 1-[(dimethylamino)methy|]-2,1'-bis(phenylthioiferrocene, (66. R - Ph) 1-[(dimethylamino)methyl1-2,1'-bis(benzylthio)ferrocene, (67, R - Bz) 1-[(dimethylamino)methyl]-2,1'-bis[(4-tolyl)thio]ferrocene, (68. R - 4-tolyl) vii Page 26 27 28 29 30 31 32 33 34 35 36 36 37 38 39 4O 1-[(dimethylamino)methyI]-2.1'-bis[(4-chlorophenyl)thio]- ferrocene, (69, R - 4-CI-Ph) 1-[(dimethylamino)methyl]~2,1'-bis(phenylseleno)ferrocene, (70, R . Ph) 1-[(dimethylamino)methyl]-2,1'-bis[(4-chIorophenymhio]- ferrocene, (71, R - 4-CI-Ph) B. Preparation of Metal Complexes (5.33-[1-[1-[(dimethylamino)ethyl]-2,1'-bis(methylthio)- ferrocene]Palladium(ll) chloride (72) (5,,BJ-[1-[1-[(dimethylamino)ethyI]-2,1'-bis(phenylthio)- ferrocene]Palladium(ll) chloride (73) (S,B_)-[1-[1-[(dimethyIamino)ethyI]-2,1'-bls(benzylthio)- ferrocene]Palladium(ll) chloride (74) (gm-[1 -[1 -[(dimethylamlno)ethyl]-2,1'-bis[(4-tolyl)thio]- ferrocene]Palladium(ll) chloride (75) (Sum-[141-[(dimethylamino)ethyl]-2,1'-bls[(4-chlorophenyl)- thio)]ferrocene]Palladium(lI) chloride (76) (fi.fl)-[1-[1-[(dimethylamino)ethyI]-2,1'-bis(phenylthio)- ferrocene]Platinum(ll) chloride (77) (S,B_)-[1-[1-[(dimethylamino)ethyl]-2,1'-bls(benzylthio)- ferrocene)Platinum(ll) chloride (78) (gm-[1-[1-[(dimethylamino)ethyl]-2,1'-bis[(4-tolyl)thio]- ferrocene]Platinum(ll) chloride (79) (SHE-[141-[(dimethylamino)ethyl]-2,1'-bis(phenylseleno)- ferrocene]Palladlum(ll) chloride (80) (sum-[141-[(dimethylamino)ethyI]-2,1'-bis([(4-chlorophenyl)- selenolferrocene]Palladium(lI) chloride (81) (Sum-I141-[(dimamylaminolelhle-Z.1'-bIS(PheflY|89|6fl0)- ferrocene]Platinum(ll) chloride (82) [1-[(dlmethylamino)methyll-Z,1'-bis(methylthio)ferrocene]- Palladium(ll) chloride (83) [1 -[(dimethylamino)methyl]-2,1 '-bis(ethylthio)ferrocene]- Palladium(ll) chloride (84) viii Page 41 41 42 43 44 44 45 46 46 47 48 48 48 49 50 50 51 [1-[(dimethylamino)methyll-2,1'-bis[(n_-propyl)thio]ferrocene]- Palladium(ll) chloride (85) [1-[(dimethylamino)methyll-Z,1'-bis[(1-propyl)thiolferrocene]- Palladium(ll) chloride (86) [1 -[(dimethylamino)methyl1-2,1 '-bis(phenylthio)ferrocene]- Palladium(ll) chloride (87) [1 -[(dimethylamino)methyI]-2,1 '-bls(benzylthio)ferrocene]- Palladium(ll) chloride (88) [1 -[(dimethylamino)methyl]-2,1 '-bis[(4-to|yl)thio]ferrocene]- Palladium(ll) chloride (89) [1 -[(dimethylamino)methyl]-2.1'-bis[(4-chIorophenyl)thio]- ferrocene]Palladium(ll) chloride (90) [1 -[(dimethylamino)methyI1-2,1 '-bis(methylthio)ferrocene]- Platinum(ll) chloride (91) [1 -[(dlmethylamino)methyll-2,1 '-bis(phenylthio)ferrocene]- Platinum(ll) chloride (92) [1- --[(dimethylamino)methyl[ -,2 1' bis(benzythio)ferrocene]- Platinum(ll) chloride (93) [1-[(dlmethylamino)methyl]-2,1'-bis[(4-toIyl)thio]ferrocene]- Platinum(ll) chloride (94) [1-[(dimethylamino)methyl]-2,1'-bis[(4-chIorophenyl)thio]- ferrocene)Platinum(ll) chloride (95) [1 -[(dimethylamino)methyl]-2,1 '-bis(phenylseleno)ferrocene]- Palladium(ll) chloride (96) [1 ~[(dimethylamlno)methyll-z-bis(methylthio)ferrocene]- Platinum(ll) chloride (97) [1-[(dimethylamlno)methyl]-2-bis(ethylthio)ferrocene]- Platinum(ll) chloride (98) [1-[(dlmethylamino)methyll-2-bis[(i-propyl)thi0]- ferrocene]Platinum(ll) chloride (99) [1 -[(dimethylamino)methyI]-2-bis(phenylthio)ferrocene]- Platinum(ll) chloride (1 00) ix Page 51 52 52 53 53 54 55 55 56 56 56 57 57 58 59 59 C. Grignard cross-coupling reactions of allylmagnesium chloride to 4-phenyI-1-pentene using NiClz and ligands 44, 48.51.54 Conversion of 4-phenyI-1-pentene to methyl 3-phenylbutyrate D. Selective Hydrogenation of Conjugated Dienes to Olefins E. x-ray Structural Determlnatlon 1. [1-[(dimethylamino)methyll-Z-(t-butylthio)ferrocene] Palladium(ll) chloride (101) 2. [1-[(dimethylamino)methyl]-2,1'-bis(methylthlo)ferrocene] Palladium(ll) chloride RESULTS AND DISCUSSION A. Preparation of Uganda a.1 Synthesis of (SE-[ERlcsmFeCsHleHMeNMe2][ER] (E - S, R - Me, Et, n-Pr, [-Pr, n-Bu, t—Bu, sec-Bu, i-Pent. Ph. 32, 4-tolyl. and 4-Cl-Ph and E - Se, R - Me, Ph. and 4—Cl-Ph) (4 3 - 5 7) a.2 1H NMR of Compounds 43-57 a.3 130 NMR of Compounds 43-57 a.4 Infrared (IR) Spectra of Compounds 43-57 a.5 Mass Spectra of Compounds 43-57 b.1 Synthesis of [ER]C5H4F905H3[CH2NM92][ER] (E - S, R - Me, Et. n-Pr, [-Pr, n-Bu, sag-Bu, i-Pent. Ph. 82, 4-tolyl, and 4-Cl-Ph and E - Se, R - Ph. and 4-Cl-Ph) (58-71) b.2 1H NMR of compounds 58-71 b.3 130 NMR of compounds 58-71 b.4 Infrared (IR) and Mass Spectra of Compounds 58-71 Page 60 60 61 61 61 62 67 67 67 69 69 80 82 82 85 92 97 2. Page Preparation of Complexes 97 a.1 Synthesis of Palladium and Platinum Complexes (§.fi)-[ ER105H4F005H3[CHMeNM92][ER][MCI2] (M - Pd, E - S, R = Me, Ph, 32, 4-tolyl, 4-Cl-Ph; M - Pt, E - S, R . Ph, 32, and 4-tolyl; M - Pd, E . Se, R - Ph and'4-CI-Ph; M .. Pt, E a Se, R = Ph) (72-82) 97 a.2 1H NMR of Heterobimetallic Complexes 72-82 100 a.3 Infrared Spectra (IR) of Chiral Complexes 106 b. Synthesis and Characterization of Palladium and Platinum Complexes [ER105H4FeCsH3[CH2NM62][ER][MCI2] (M - Pd, E - S, R . Me, Et n-Pr, j-Pr, Ph, 32, 4-tolyl, and 4-Cl-Ph; M- Pt, E - S, R - Me, Ph, 82, 4—tolyl, and 4-Cl-Ph; M a Pd, E - Se, R - Ph) (83-96) 109 Structure of [1-(dimethylamino)methylj-Z,1'-bis(methylthio)- ferrocenePalladium(ll) chloride 114 C. Synthesis and Characterization of Platinum Complexes (3,5,)- CpFe[CHMeNM92][SE][PtCl2] (R - Me, Et, j—Pr, and Ph) (97-100) 119 Catalytic Applications of Complexes 1 21 a. Selective Hydrogenation of Conjugated Double Bonds 1 21 a.1 Selective Hydrogenation of Cyclooctadiene by use of Complexes 9 7 - 1 0 0 1 21 a.2 Selective Hydrogenation of Cyclooctadiene by use of Complexes 7 2 - 9 6 1 2 9 a.3 Selective Hydrogenation of Cyclohexadiene 137 a.4 Selective Hydrogenation of 2,3—dimethyI-1,3-butadiene 137 a.5 Selective Hydrogenation of 3-methyI-1,3-pentadiene 141 a.6 Selective Hydrogenation of Double and Triple Bonds Conjugated to Aromatic Rings 141 a.7 Chemoselective Hydrogenation of Carbon-Carbon Double Bonds Conjugated to Different Functional Groups 144 b. Asymmetric Grignard cross-coupling Reactions 147 xi IV. Structure of [1 -[(dlmethylamlno)methyl]-2-(1—butylthlo)- ferrocene]PalIadlum(ll) chloride (1 01) APPENDIX REFERENCES xii Page 154 164 238 TablI Table 10. 11. 12. 13. 14. LIST OF TABLES 'X-ray Structure Determination for [1-(dimethylamino)- methylj-2-(t—butylthio)ferrocene]palladium dichloride (101) X-ray Structure Determination for [1-[(dimethylamino)methyl]- 2,1'-bis(methylthio)ferrocenejpalladium(II) chloride (83) 250 MHz 1H NMR Data for (a.3-[ER105H4F905H3[CHM9NM92][ER] in CDCI3 at Room Temperature 250 MHz Gated Decoupled 130 NMR Data for (5,3)- [ER]C§H4Fe05H3[CHMeNMe2][ER] in CDaCOCD3 at Room Temperature 250 MHz 1H NMR Data for [ER105H4FeCsH3[CH2NMe2][ER] in CDCI3 at Room Temperature 250 MHz Gated Decoupled 130 NMR Data for [ER105H4FeC5H3- [CHzNMezijR] in CDgCOCD3 at Room Temperature 250 MHz 1H NMR Data for (am-[ERIC5H4Fe05H3mHMeNMezI- [ER][PdCl2] in CDCI3 at Room Temperature Metal-N, Metal-Cl, Metal-S Stretching Modes in Some Pd and Pt Sulfide Complexes 250 MHz 1H NMR Data for [SR105H4FeC5H3ICH2NMez][SR][PdCI2] in CDCl3/T MS at Room Temperature Positional Parameters and their Estimated Standard Deviations for [1-[(dimethylamino)methyIj-2,1'-bis(methylthio)ferrocene]- palladium(ll) chloride (83) General Temperature Factor Expressions U'S - for [1- [(dimethylamlno)methylj-z,1'-bis(methylthio)ferrocene]- palladium(|l) chloride (83) Bond Distances (in Angstrum) for [1-[(dimethylamino)methyl]-2,1'- bis(methylthio)ferrocene]palladium(ll) chloride (83) Bond Angles (in Degrees) for [1-[(dimethylamino)methylj-2,1'- bis(methylthio)ferrocene]palladium(Il) chloride (83) . Coupling Constant (Hz) of 195Pt With The Neighboring Protons Hydrogenation of 1,3—cyclooctadiene, Effect of Solvent xiii Page 63 7O 75 86 93 101 107 115 116 118 122 125 21. 22. 2i. 25. 26, 26 Table Page 16. Heterogeneous Hydrogenation of 1,3~cyclooctadiene 126 17. Hydrogenation of 1,3-cyciooctadlene, Effect of Pressure 1 27 18. Selective Hydrogenation of Diane to Monoene 1 2 8 19. Selective Hydrogenation of 1,3-cyciooctadiene with Various Complexes in Acetone at Room Temperature and 104 psi initial H2 pressure 130 20. Effect of Solvents in Selective Hydrogenation of 1,3-Cyclooctadiene at Room Temperature and 104 psi Initial H2 Pressure 1 36 21. Selective Hydrogenation of 1,3-cyclohexadiene with Various Complexes in Acetone at Room Temperature and 104 psi Initial H2 Pressure 138 22. Selective Hydrogenation of 2,3-dimethyI-1,3-butadiene at Room Temperature . 139 23. Selective Hydrogenation of 1Dimethyl-1,3-pentadiene at Room Temperature 142 24. Selective Hydrogenation of Styrene, 4-vinylpyridine, and phenylacetylene ‘43 25. Chemoselective Hydrogenation of Carbon-Carbon Double Bonds of a-p Unsaturated Carbonyls, Aldehydes, Carboxylic Acids. Esters, Nitriles, and Amides 145 26. Asymmetric Grignard Cross-Coupling Reactions Using Chiral Nickel Ferrocenyl Amine Sulfide Catalysts 148 27. Positional Parameters and Their Estimated Standard Deviations for [1- -[(dimethylamino)methylj- --2 --(t-butylthio) ferrocenej- palladium dichloride 158 28. General Temperature Factor Expression-U'S- for [1-(dimethylamino)- methylj-2-(t—butylthio)ferrocene]pailadium dichloride 159 29. .Bond Distances (in Angstrum) for [1-[(dimethylamino)methyl]-2-(t— butylthio)ferrocene]palladium dichloride 160 30. Bond Angles (in Degrees) for [1-[(dimethylamino)methyI]-2-(1- butylthio)ferrocene]palladium dichloride 162 xiv LIST OF FIGURES Figure 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20.. ORTEP diagram of [Rh17(S)2(CO)32]3' 1H NMR spectrum of compound 46 (R - j-Pr) 1H NMR spectrum of 51 (R - Ph) Gated decoupled 13C NMR spectrum of 46 (R - j-Pr) Gated decoupled 13C NMR of spectrum of compound 51 (R .. Ph) IR spectrum of 46 (R - j-Pr) Mass spectrum of compound 46 (R - j—Pr) 1H NMR spectrum of compound 61 (R - j-Pr) 1H NMR spectrum of compound 64 (R - ten-Bu) 1H NMR spectrum of compound 66 (R - Ph) Gated decoupled ‘30 NMR speCtrum of compound 61 (R - j-Pr) Gated decoupled ‘30 NMR spectrum of compound 66 (R sPh) ' iR spectrum of compound 61 (R - j—Pr) Mass spectrum of compound 61 (R - j-Pr) A) 1H NMR spectrum of compound 53 B) 1H NMR spectrum of compound 75 Structure of PdCl2[(§,,B_)-BPPFA)] A) 1H NMR spectrum of ligand 68 B) 1H NMR spectrum of complex 69 The molecular structure and the numbering of the atoms of 83 Stereographic packing diagram of 83 1H NMR spectrum of complex 97 XV Page 11 73 74 78 79 81 83 88 88 89 90 95 96 98 102 104 105 112 113 123 I.‘ F‘ A]. A... U Q 1U 9‘. “iii Figure 21. 22. 23. 24. 25. 26. 27. 28. 29 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. Heterogeneous selective hydrogenation of 1,3—cyciooctadiene in acetone/water solvent system at room temperature and 80 psi initial H2 pressure by using complex 98. Selective reduction of 1,3-cyclooctadiene at room temperature and 104 psi initial H2 pressure by using catalyst 73 Olefinic region of 1H NMR spectra of products of hydrogenation of 1,3-cyclooctadiene at room temperature and 104 psi initial H2 pressure after 3.5 h (above), 2.5 h (middle), and 0.5 h (below) by using catalyst 73 Selective hydrogenation of cyclooctadiene by use of complex 90 Proposed mechanism for cross-coupling reaction 1H NMR spectra of (B) and (SJ-methyl 3-phenyl butyrate in the presence of increasing concentration of chiral shift reagent Eu(dcm)3 The magnitude of AA8 increase for methyl 3-phenyl butyrate with decreasing temperature in the presence of chiral shift reagent, Eu(dcm)3 The molecular structure and the numbering of the atoms of 101 Stereographic packing diagram of the complex 101 Stereographic view of the complex 101 1H NMR spectrum of compound, 43 (R - Me) Gated decoupled 130 NMR of compound 43 (R - Me) IR spectrum of compound 43 (R - Me) I 1H NMR spectrum of compound 44 (R - Et) Gated decoupled 130 NMR of compound 44 (R - Et) IR spectrum of compound 44 (R - Et) Mass spectrum of compound 44 (R .. Et) 1H NMR spectrum of compound 45 (R - n—Pr) Gated decoupled 130 NMR of compound 45 (a - n—Pr) IR spectrum of compound 45 (R - n-Pr) xvi Page 131 133 134 135 151 152 153 155 156 154 164 165 166 167 168 169 170 171 172 173 e 4 v t... Figure 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. Mass spectrum of compound 45 (R - n—Pr) 1H NMR spectrum of compound 47 (R - n-Bu) Gated decoupled 130 NMR of compound 47 (R .. n-Bu) IR spectrum of compound 47 (R - n—Bu) Mass spectrum of compound 47 (R - n-Bu) IR spectrum of compound 48 (R - sec-Bu) Mass spectrum of compound 48 (R - sag-Bu) 1H NMR spectrum of compound 49 (R - t-Bu) IR spectrum of compound 49 (R -1-Bu) Mass spectrum of compound 49 (R - t-Bu) 1H NMR spectrum of compound 50 (R - j-Pent) Gated decoupled 130 NMR of compound 50 (R - j-Pent) ’ IR spectrum of compound 50 (R - j-Pent) Mass spectrum of compound 50 (R - j-Pent) Mass spectrum of compound 51 (R - Ph) IR spectrum of compound 52 (R - 82) 1H NMR spectrum of compound 53 (R - 4-tolyl) Gated decoupled 13c NMR of compound 53 (R - 4-tolyl) IR spectrum of compound 53 (R - 4-tonI) Mass spectrum of compound 53 (R - 4-tolyl) 1H NMR spectrum of compound 54 (R - 4-CI—Ph) 1H NMR spectrum of compound 55 (R . Me) Gated decoupled 13C NMR of compound 55 (R . Me) IR spectrum of compound 55 (R - Me) xvii Page 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 Figure 65. Mass spectrum of compound 55 (R - Me) 66. Mass spectrum of compound 57 (R - 4-Cl-Ph) 67. 1H NMR spectrum of compound 58 (R - Me) 68. Gated decoupled 13C NMR of compound 58 (R - Me) 69. IR spectrum of compound 58 (R - Me) 70. Mass spectrum of compound 58 (R - Me) 71. 1H NMR spectrum of compound 59 (R .. Et) 72. Gated decoupled 130 NMR of compound 59 (R - El) 73. IR spectrum of compound 59 (R - Et) 74. Mass spectrum of compound 59 (R - Et) 75. 1H NMR spectrum of compound 60 (R .. n—Pr) 76. Gated decoupled 130 NMR of compound so (R - n—Pr) 77. IR spectrum of compound 60 (R - n-Pr) 78. 1H NMR spectrum of compound 62 (R - n—Bu) 79. Gated decoupled 130 NMR of compound 62 (R - n—Bu) 80. IR speon of compound 62 (R .. n-Bu) 81 . Gated decoupled 130 NMR of compound 64 (R -1-Bu) 82. 2 IR spectrum of compound 64 (R - t-Bu) 83. Mass spectrum of compound 64 (R - j-Bu) 84. 1H NMR spectrum of compound 65 (R - i-Pent) 85. Gated decoupled 130 NMR of compound 65 (R - j-Pent) 86. IR spectrum of compound 65 (R - j-Pent) 87. Mass spectrum of compound 65 (R - j-Pent) 88. 1H NMR spectrum of compound 68 (R - 4-tonl) .xviii Page 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 Figure 89. 90. 91. 92. 93. 94. 95. 96. 97. 98. 99. 100. 101. 102. 103. 104. Gated decoupled 130 NMR of compound 68 (R - 4-tolyl) Mass spectrum of compound 68 (R - 4-tolyl) 1H NMR spectrum of compound 69 (R - 4-CI-Ph) Gated decoupled 130 NMR of compound 69 (R = 4-CI-Ph) Mass spectrum of compound 70 (R - Ph) Mass spectrum of compound 71 (R - 4-CI-Ph) IR spectrum of compound 73 (R - Ph) IR spectrum of compound 75 Mass spectrum of compound 76 IR spectra of compound 82 Mass spectrum of compound 83- Mass spectrum of compound 87 (R - Ph) . Mass spectrum of compound 89 (R - 4-tolyl) Mass spectra of compound 92 (R - Ph) Mass spectrum of compound 95 (R - 4-tonl) Mass spectra of comound 95 (R - 4-CI-Ph) xix Page 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 LIST OF SCHEMES Scheme Page 1 2 2 3 3 4 4 5 5 7 6 8 7 9 8 68 9 84 1O 99 11 103 12 110 13 120 XX INTRODUCTION INTRODUCTION Since the first appearance of biscyclopentadienyliron(lI) (ferrocene),1 its chemistry has attracted much interest, mainly because of stability and unusual reactivity of ferrocene and its derivatives. The Cp (Cp - 05H5)rings display the chemistry of aromatic ring,5 however, ferrocene is more reactive than benzene toward electrophilic reagents and undergoes acylation, formylation, alkylation, mercuration, and sulfonation.2 These substitution reactions are mostly electrophilic while electrophiles should not be able to oxidize iron or destroy the cyclopentadienyl ring- metal bond. Reactive functional groups also can be introduced to the Cp ring via metallation. A large number of compounds have been synthesized by reaction of Iithiation products 2, 5, 8, 9, 13, 14 (Scheme 1) of ferrocene 1, bromoferrocene 4, [(dimethylamlno)methyl]ferrocene 7 and [1-(dimethylamino)ethyljferrocene 12 with different electrophiles. Among the various compounds derived from 1,1'- dilithioferrocene 2 are those where the electrophilic atom comes from group 14 (3, Raorganic group3 and silyl group4), group 15 (3, R=AsMez, ASPI‘Iz, PMez, PPhg 5 and P(1-Bu)2 6) and transition metals (3, R=AuPPh3 7 and Cu 8). Compounds 6 (R=C02H, SiPhg, SIMeg, (thoH 9) have been synthesized yja reaction of proper electrophiles with ferrocenyllithium 5 1°. Scheme 2 shows other reactions of compound 6. Electrophiles have been used to give 10 (R-PPh2 1‘, SiMe3 12, 2-Pyridyl13, ((0H)Ph214), Cl15 and B(OH)215 (Scheme 3 ). A wide variety of stereoisomers of 15 and 16 have been prepared‘7'33 (Scheme 4). The resolution of 12 into its 3 and S enantiomers34 let extensive studies of these compounds as chiral ligands in catalysis. Lithiation of optically resolved N,N-dimethyl-1-ferrocenylethylamine 12, followed by treatment with chlorophosphines produce chiral ferrocenylphosphines.19 It I 2 3 , . B t ”3'11 Fe ; Wis _> 820' 4 5 6 Q74 0801.! .5 a We , QR M02 320 . M 7 8 10 08w TMEDA electropnao \ a : 9 NM” 11 NM“! (F93 new a electrppnrlg > Fe f—NW; 5120 - Mb: M82 W Me Me 9’12 ($013 ‘ '3 (34m. 15 0M TMEDA F9 . 6mm” \ F9 "MO: Me Me (9'15) ‘ 1‘ (51.0?) - 16 Scheme 1 Fe Fe ._+. F8 5 , Fr @flj ©Mfiz 25 0s ' '5‘ an Fe m b/ @589” © 2‘ © SR R-Me, Et . i-Pr 23 22 R-Me,i-Pr i-Bu. i-Pent. Ph. 82 Scheme 2 67$... Fe / ..__,. Ff p... Q)... @c Q25, @8" $52... abs/m2 @8256 @SR R=Mez.1Et.i-Pr R-Me, i-Pr i-Bu,i-Pent, Ph, 82 Scheme 2 Scheme 3 5-4-3 sI III - . .. AL- ....._ m» a. é FOHMe Fe (343 ’ 13 CPR; NMez HMO CIPRz ‘ $0sz \3232 1) n-BuU TMEDA 2) CIPRZ PR2 0 NMez Fe 38 a»: Scheme 4 \/ R-Me, Ph, 4-CIPh 3 58 «(NW Fe. 5 iHMe .' R - i-Pr. n-Pr. n-Bu, i-Bu. secBu. t-Bu, Ph, mien, p-tolyl 37 Snm cm, .0 We, ® NMoz Fe 3 Fe Hi Me H Me _ - 39 as n-Buu \CIS II 02"?“ CIPRz V \ . SeR filzpfiire, we. «(a "m2 l 59292 Fe 5 F9 > H W w -r .b 3282 36 1) r*BuU . TMEDA 2) CIPRZ «(Brim «(2M3 Ea H3 Me i-"e HE Me ‘98, . R - i-Pr, rl-Pr, 38 n-Bu, i-Bu, seoBu, I-Bu, Ph, 4-CI-Ph, ptolyl 37 Scheme 4 6 It has been reportedz‘3 that the Iithiation of (3)42 proceeds with high stereoselectivity to give mainly (B)-a-[(B_)-2-IithIoferrocenyljethyldimethylamine. H (6 Elm EL— HMeNMez + (.—CHMeNMez (1) v J \NM92 » J (Bf-12 ‘(BJ-(BJ (96%) (BJ-(SJ (4%) (R)-N,N-dimethyl[-1-[(S)-2-(diPhenylPhosphino)ferrocenyl)]-amine[(R)-(S)- PPFA] has been synthesized by reaction of (R7) with n—BuLi followed by introduction of chlorophosphines”, reaction 2. A * CHMeNMez A ‘ CHMeNMez f) 1. BuLi/Etgo _ I’> (2) L 4 2. CIPPhg k q PPh2 (R)-FA (Bj-(SJ-PPFA (R)-(S)-PPFA has planar chirality due to 1,2-unsymmetrically substituted ferrocene structure, central chirality and also a functional group. Kumada and co-workers have also synthesized other chiral ferrocenyl phosphines‘9, some of them are shown in Scheme 5. These ligands have been used used extensively to prepare Pd, Pt, and Ni compounds which are useful catalysts in asymmetric hydrogenation of olefins,21:35 asymmetric hydrogenation of ketones,36 asymmetric hydrosylation of ketones,” and asymmetric Grignard cross-coupling reactions.13v37'42 Recently In this laboratory analogous ferrocenyl sulfide and selenide amine were prepared.43"48 Examples of these compounds are 21, 22 (Scheme 2), 27 (R-Me, Et, n-Pr, i-Pr, n-Bu, i-Bu, i-Pent, Ph, 4-CIPh, P-tolyl), 28 (R-Me, Ph, 4-CIPh) (Scheme 3), 36 and 37 (Scheme 4). Scheme 6 and 7 show the preparation of Pd complexes of these ligands. @prnz Fe NMez © Qt?" Fe PfizMez <05 R=Ph; PPFA R=Ph; MPFA Qppnz F6 . Me © PPh2 BPPEF HMe I Fe 9‘1sz ©1362 R=Ph; BPPFA R=Me; BMPFA Scheme 5 Me i=2. PPhS’“ <3} PPFOH BPPFOH z E“ I FeS (i R a. ‘35" 6» CI (PhCN)2MCI2 q to, benzene i Fig M=Pd, R=Me Et i-Pr n-Bu i-Bu t—Bu i-Pent Bz 4-tolyl 4-Cl-Ph Scheme 6 (PhCN)2MCI2 benzene Scheme 7 as" 8" Fe R M=Pd, R=Me LPr n—Pr FBu Ph II -to y flora. (I) 10 Strong coordinating and absorptive properties of sulfur-containing complexes, cause them to block reactive metal sites and therefore act as poisons for noble metal catalysts.49 However, Interesting catalytic activities were displayed by many transition-metal sulfides..5° Recently catalytic applications of transition-metal complexes with sulfide ligands have been reviewed.51 It has been found that under mild homogeneous conditions hydrogen can be activated by (CpMo)2(u-S)2(u-Sz) to produce (CpMO)2(u-S)2(U-SH)2.52 The product was used as a catalyst for the formation of HD from a mixture of deuterium and hydrogen.53 This sulfide complex also under mild conditions, catalyzed the hydrogenation of N-N bonds in azo compound to prepare the corresponding hydrazines.52 (CpMo(u-S))2SZCH2 has similar catalytic activity and it has also catalyzed the hydrogenation of C-N bonds in isothiocyanate, isocyanates and imine to prepare thioforamides, forrnamides and amines. Hydrogenolysis of elemental sulfur to give hydrogen sulfide has been achieved under 23 atm of hydrogen, by use of [MenCpMo(u-S)(u-SH)]2 (Me-0, 1, 5).53 It also has been found that [(Mescp)Mo(u-S)(u-SH)]2 can be used as catalyst for the reduction of $02 in CHCI3 at 75°C under 2.8 aim of H2354 Reduction of carbon disulflde to hydrogen sulfide and thioformaldehyde was achieved by use of catalytic amounts of (CpMo(u-S))2820H2 (reaction 3) under 1-2 _ on + H23 (3) Bill 7:19“ 11 of hydrogen at 70°C.55 As it is shown in reaction 3, H208 has been stabilized by interaction with the sulfide ligand. This catalyst also has been used, under 23 atm of H2, to convert bromoethylbenzene and B-bromostyrene to ethylbenzene.56 Among various clusters that contain sulfide and have been examined for catalytic activity [Rh1782(CO)32]3' is the largest. This cluster contains an antiprismatic arrange- ment of rhodium atoms. Two sulfide atoms are placed in an interlayer cavity (Figure 1). INTERNAL INTEINAI. “SAL i INWIUM AIM MN“ Figure 1. ORTEP diagram of [Rh17(S)2(CO)32]3‘ with the carbon monoxide ligands omitted. H 4" Vim, 12 Under 1 atm pressure of H2 at 25°C in THF, the reduction of phenylglyoxal to (2- hydroxyethyl)benzene have been achieved by use of this cluster as catalyst!"7 This cluster was also found to catalyze conversion of CO/Hz (1 : 1) to give ethylene glycol and methanol in the presence of promoters and under much more vigorous conditions.”-59 The complex Ir2(u-S)(CO)2(dppm)2 where dppm is bis(diphenylphosphino)- methane), reacts with hydrogen molecule to produce lr2H2(u-S)(CO)2(dpm)2.6° Presence of both terminal and bridging. hydride isomers were proved by characterization of products. At 80°C and in toluene solution, olefins and acetylenes were hydrogenated by use of this hydride complex as a catalyst. H2 has been activated by use of a dinuclear rhodium complex with bridging sulfide ligands (eq. 4).61 H l P p H P \ / / H2 \I/S\|/ 12.—— h Rh— (BPII4)2 —- Rh Rh (4) I /R\s/ \ I /i\{ \p Reaction of (n3-2-CH303H4)Pd and H28 give (113-2-CH3C3H4Pd)482 as the product.‘52 This tetranuclear palladium cluster has been used as a homogeneous catalyst, or catalyst precursor to hydrogenate 3-hexyne at ambient conditions.63 Cis-3-hexene is the initial product but it is isomerized under reaction conditions. Mixed palladium- platinum and palladium-nickel clusters are insoluble in the reaction condition and show lower catalytic activity. [Rh(C2H4)2C|2]2 reacts with Ptg(u-S)2(PPh3)4 to give trinuclear complex [(Pth)4Pt2(u-S)2Rh(C2H4)2]PF6.64 This complex was used as a catalyst for hydrogenation of cyclohexene, however, its catalytic activity under 1 atm pressure of hydrogen and 25°C was almost 1/500 of the Wilkinson's catalyst. [Fe4S4Cl412', a tetranuclear iron cluster with sulfide ligands, has been used as a catalyst for hydrogenation of diphenylacetylene and 915,- and trans-stilbene to the Furl ban 1 3 corresponding alkane in the presence of PhLl.‘55 Related thiolate Clusters such as [Fe4S4(SPh)4]2' did not show such catalytic activity, therefore, it is believed that the lability‘ of chloride ligands is important in this system. A mixture of [Fe4S4Cl412' lPhLi also found to serve as a catalyst in the hydrogenation of octene to octanes. Furthermore, this system can selectively promote the reduction of terminal double bonds in dienes and monoenes.66 The interesting catalytic activity of transition metal sulfides and also previous results obtained by Brubaker and co-workers, which showed some Pd complexes of ferrocenylamine sulfides are good catalysts for hydrogenation of dienes to monoenes‘i5r48 under homogeneous and heterogeneous conditions and some have catalytic activity for asymmetric Grignard cross-coupling reactions,47 led us to this work. The aim of this research was to prepare two new series of ferrocenylamine sulfide and selenide ligands and use them to prepare new complexes of the Ni triad. Investigation of catalytic activity of these-previously unknown complexes and, also, their structural elucidation was carried out. EXPERIMENTAL EXPERIMENTAL Air sensitive reagents were manipulated in a prepurified argon or nitrogen atmosphere. Standard Schlenk-ware techniques and a vacuum line was employed. Where necessary an argon-filled glove box was used for transfers. Infrared spectra (IR) were obtained by use of a Perkin-Elmer 457 grating spectrophotometer or a Perkin-Elmer 599 grating spectrophotometer or a Nicolet 740 FT-IR spectrophotometer by using neat films of liquid samples, Nujol mulls between Csl plates or in KBr pellets for solid samples. Mass spectra (MS) were obtained by means of a Finnigan 4000 instrument with.an lncos data system at 70 ev. Optical rotations were determined with a Perkin-Elmer 141 Polarimeter. 1H and 13C NMR were obtained by use of a Bruker WM-250 spectrometer. Elemental analyses were performed by Galbraith Laboratories, Knoxville, TN. Gas chromatography (G0) was carried out by using a Hewlett-Packard 5880, and a Varian 1400 instrument. All melting points were determined by using a Thomas-Hoover capillary melting point apparatus and were uncorrected. All solvents used were reagent grade and were distilled by standard methods.67 (SJ-N,N-dlmethyl-I-ferrocenylethylamine(§_-12) and (B)-N,N-dimethyl-1- ferrocenylethylamine(B-12) were prepared according to Ugi's procedure”. Dimethylaminomethyl ferrocene, dialkyl and diaryl dlsulfides, dimethyl and diaryl dlselenldes and N,N,N',N'-tetramethylethylenediamine (TMEDA) were purchased from Aldrich Chemical Company. Bis (benzonitrile) complexes [(PhCN)2MCI2] where Man and Pt, were prepared according to published procedures.“69 All the hydrogenation substrates were obtained from Columbian Carbon 00., Columbian Organic Chemical Co. and Aldrich Chemical Co. These reagents were re-treated by standard methods before use. The Grignard cross-coupling substrate, 1-Phenylethyl chloride, was prepared as previously reported;70 allylmagnesium chloride (2 M solution in THF) were obtained 14 14315 13”,; "iii 15 from Aldrich Chemical Co. The 1H NMR chiral shift reagents, tris(d,d- dicampholymethanato)europium(lll) [Eu(dcm)3], was obtained from Alfa Products. A pressure bottle with a gauge was used to perform the hydrogenations. X-ray structure determinations were performed by use of a Nicolet P3F computer controlled 4-circle diffractometer equipped with a graphite crystal incident beam monochromator. A. Preparation of Ligands- (B,)-[1-(Dlmethylamlno)-ethyl]ferrocene[(B_)-12] and (SJ-[1-(Dimethylamlno)-ethyl]ferrocene[(s_)-12]. N,N-dimethyI-1-ferrocenylethylamine(12) was prepared and resolved by using (B)-(+)tartarlc acid by a modification of Ugi's procedure.34 In the recrystallization of 1-ferrocenylethyl alcohol, a mixture of CHZCl2/heptane or CHzclzlhexane was used In place of pure heptane and, consequently, a higher yield was achieved. The (B)-(+)amlne tartarate crystals were recovered from the mother liquor by treatment with diethylether and then recrystallized three times from 1:10 waterzacetone, allowing about 17 mL of solvent for each 9 of salt. The (S)-(-)amine tartarate crystals filtered off readily as previously reported.34 The tartarate salts were dissolved in 20% aqueous NaOH solution and extracted with methylene chloride. The amine solution was dried over anhydrous K2003 and evaporated to give a dark brown oil that partially solidified on cooling. [011025 -14.1° for (SJ-I-(dimethylamino)- ethylferrocene[(s_)-12] and [611025 +14.1 for (B)-1-(dimethylamino)- ethylferrocene[(fi_)-12]. 1H NMR (6 ppm), 4.11(m, 4H, CsH4): 4.08(s, 5H, Cp); 3.60(q, J-6.8Hz, 1H, CH); 2.09(s, 6H, NMEz): 1.46(d, J-6.8Hz, 3H, NHCH3). 130 NMR (5 ppm), 86.2(s, Cr); 68.5(d, J-91Hz, 02-5): 67.7(d, J=88Hz, Cp); 66.5(d, J-92.4Hz, Cg, Ca, Ca, 05): 66.3(d, J-9.2Hz, C2 C3, C4. 05); 65.9(d, 16 J-91.4Hz, Cz, C3. C4, Cs); 57.8(d, J-67.3Hz, NCH); 40.2(q, J-47.4Hz, NMez); 14.8(q, J-42.9Hz, NCHMe). MS m/e (relative intensity): 257(83, M+), 242(95, M+-Me), 213(100, M+-NM62), 212(36, M+-HNM62), 121(66, FeCp), 72(18, CHMeNMez), 65(3, Cp), 56(21, Fe), 44(4, NMez). (Sam-1-[1-(Dimethylamino)ethyl]-2,1'-bls(methylthlo)- ferrocene.(43, R=Me) The amine (5)42 (1.3 g, 5.1 mmol) was dissolved in 75 mL dry ether and placed in a 200 mL round-bottomed Schlenk flask equipped with a side arm and rubber septum. The solution was cooled to -78°C and while being stirred, 3.0 mL (8.1 mmol of a 2.7 M solution of n-BuLi in hexane was added dropwise 11a a syringe. The orange suspension was allowed to reach room temperature and stirred overnight. Then, a solution of freshly distilled TMEDA (0.9 g, 7.5 mmol) and n-BuLi (3.0 mL, 8.1 mmol) was added to the reaction mixture at -78°C. After being stirred for 8 more h at room temperature, to the reaction mixture was added dropwise, a solution of dimethyl disulfide (1.42 g, 15 mmol) at -78°C. The reaction mixture was allowed to reach room temperature and stirred under N2 for an additional 24 h, after which saturated aqueous NaHCOa was added to the mixture. The resulting organic layer and ether extracts from the aqueous layer were combined, washed with cold water and dried over anhydrous Na2804. Evaporation of the solvent gave a product mixture which was chromatographed on a silica gel column (hexane/ether) to give a brown oil: yield 90%. 1H NMR (5 ppm), 4.26(m, 1H, H3, H4, H5); 4.17(m, 4H, CsH4); 4.07(m, 2H, H3, H4, H5); 3.90(q, J-4.4 Hz, 1H, CH3Cfl); 2.28(s, 3H, SCtis); 2.23(s, 3H, $01-13); 2.09(s, 6H, NMgg); 1.36(d, J-4.4 Hz, 3H, QtngH). 17 13C NMR (5 ppm), 93.6(s, Cl): 85.9(s, 02): 84.9(s, 0‘1); 73.2(d, Cs); 77.5(6, 013, 014); 72.4(d, C15); 71.1(d, C12): 69.6(d, C4); 68.4(d, C3); 56.2(d, QflCHs): 40.0 (q, NM62): 19.7(q, SQH3): 19.6(q, SQHs); 10.7(q. CchH). MS, m/e (relative Intensity): 349(77, M+), 334(24, M+-Me), 304(38, Mt- 3M6), 358(78, M+-SMe-NM62), 72(100. MeCHNMez), 56(50, Fe), 44(25, NME2). IR (neat, KBr disks) 3095 (ferrocene C-H stretch), 2970-2775 (alkyl C-H stretch), 1452 (ferrocene antisymmetric C-C stretch), 1265, 1249 (C-N stretch), 825 (C-H bend perpendicular to the plane of the Cp ring), 655 (S-C stretch), 491cm“1 (antisymmetric ring-metal stretch). Anal. calcd. for C15H2382NF6: C, 55.01; H, 6.64. Found: C, 55.04; H, 6.61. (SHE-1 -[1 -(Dlmethylamlno)ethyl]-2,1 '-bls(ethylthlo)ferrocene (44, R = E t) The amino (Si-12 (1.3 g, 5.1 mmol) was dissolved in 75 mL dry ether and placed in a 250 mL round-bottomed Schlenk flask equipped with a side arm and rubber septum. The suspension was cooled to -78°C and while being stirred 3.0 mL (8.1 mmol) n-BuLi was added dropwise Ida a syringe. The orange suspension was allowed to reach room temperature and stirred overnight. A mixture of freshly distilled TMEDA (0.9 g, 7.5 mmol) and n-BuU (3.0 mL, 8.1 mmol) was then added to the reaction mixture at -78°C during a period of 10 min. After being stirred for 8 more h at room temperature, diethyl dlsulfide (1.83 g, 15 mmol) was added dropwise 11a a syringe at -78°C. The solution was allowed to reach room temperature and stirred under Ar for 36 h. After refluxing for 2 h‘, the reaction mixture was cooled and 30 mL of aqueous sodium bicarbonate was added. The organic layer was separated, dried and evaporated to give a brown oil. The oil was chromatographed on a silica gel by gradient elution (hexane/ether), to give a brown oil: yield 90%. 18 1H NMR (5 ppm), 4.24(m, 1H, H3, H4, H5): 4.16(m, 4H, C5H4); 4.05(m, 2H, H3, H4, H5): 3.88(q, J-6.8 Hz. 1H, CHaQtD; 2.95(m, 1H, SCI-12): 2.65(m, H, $0112); 2.48(q, 2H, $0112); 2.04(S, 6H, NMez); 1.29(d, J-6.8 Hz, 3H, Cfl30H); 1.13(l, J-7.5 Hz, 3H, 80113); 1.06(t, J-8.0 Hz, 3H, BCHg). 13C NMR (5 ppm, coacocoa). 95.2(s, Q1); 82(s. 02); 81.8(s, C11); 76(d, 03, C4, 05): 75.2(d, 013, C‘s): 72.1(d, 012. 015); 71 .9(d, 012. C1 5); 69.9(d, 03, C4. Cs): 88.8(d, 03, C4. Cs): 56.3(d, CH3QH); 40.0(q, NMflz); 31.2(t, SQHZ); 30.5(1, SCH2): 15.3(q, cha); 15.1(q, Bel-la): 10.1 (q, QHacH). MS m/e (relative intensity): 377(M+, 49), 362(M+-Me, 19), 332(Mf-3Me, 100), 152(F605H4S, 33), 121(C5H3(CH2NM62), 30). 72(MeCHN(CH3)2, 33), 56(Fe, 24), 44(NM62. 38). IR (neat, KBr) 3095 (ferrocene C-H stretch), 2970-2775 (alkyl C-H stretch), 1452 (ferrocene antisymmetric C-C stretch), 1245, 1263 (C-N stretch), 837 (C-H bend perpendicular to the plane of the Cp ring), 655 (S-C stretch), 480 cm'1 (antisymmetric ring-metal stretch). Anal. Calcd. for C13H2782NF8: C, 57.29; H, 7.21. Found: C, 57.38; H, 7.37. (gm-1-[1-(Dlmethylamlno)ethyl]-2,1'-bls[(n_-propyl)thlo]- ferrocene (45, R = 11.-Pr) A 2.7 M solution of n-BuLi in hexane (4.0 mL, 10.8 mmol) was added to a 10 mmol (2.55 g) (SJ-[1-(Dimethylamino)ethyl]ferrocene in 100 mL dry ether at - 78°C under Ar. The orange suspension. was warmed to room temperature and stirred for 8 h. Then a solution of freshly distilled TMEDA (1.20 mL, 10.0 mmol) and n—BuLi (4.0 mL, 10.8 mmol) was added to the reaction mixture at -78°C. After being stirred overnight at room temperature, to the reaction mixture was added dropwise a solution of (4.52 g, 30 mmol) di(n,-propyl) disulfide in 20 mL other over a 20 min period at - 78°C. The reaction mixture was stirred for 3 h at room temperature, then refluxed for 19 another 12 h. The workup is identical with that reported for 44, R-Et. The product was obtained as a brown oil: yield 83%. 1H NMR (5 ppm), 4.31(m, 1H,,H3, H4, H5): 4.20(m, 4H, Csl-I4); 4.08(m, 2H, H3, H4, H5); 3.94(q, J-6.8 Hz, 1H. CHafifl); 2.80(m, 1H, SCI:1,2); 2.62(m, 1H, $0112); 2.52(m, 2H, $0112); 2.10(s, 6H, NMezii 1.58(m, 2H, 59:12); 1.51(m, 2H, 891-12); 1.30(d. J-6.8 Hz, 3H, CH30H); 0.98(t, J-7.6 Hz, 3H, 7Cfl3); O.91(t, J-7.6 Hz, 3H, 10H3). 13c NMR (5 ppm. coacocoa), 95.0(s, Q1); 82.2(s, 02): 82.1(s, 9.11); 75.9(d, 03. C4, C5); 75.1(d, 013, 014); 72.0(d, 012, C15); 71 .9(d, 012,015); 69.9(d, 03, C4. 65): 68.9(d, 03, C4. Cs): 56.3(d, CH3QH); 39.9(q, NMez); 39.4(t, SQH2); 38.7(t, SQHz); 23.4(t, BCHz): 23.2(t, BCH2): 13.7(q, ngali 13.5(q, yQHg); 10.0(q, QHacH). MS m/e (relative intensity): 405(M+, 21), 390(M+-Me, 8), 360(M+-3Me, 100), 288(M+-S(03H7)-NM62, 24), 242((CH)05H3F605H4(SCH2), 64), 152(FeCsH4S, 30), 72(MeCHNM62, 34), 56(Fe, 17), 44(NMe2, 36). IR (neat, Csl) 3095 (ferrocene C-H stretch), 2960-2770 (alkyl C-H stretch), 1455 (ferrocene antisymmetric C-C stretch), 1250, 1235 (C-N stretch), 826 (C-H bend perpendicular to the plane of the Cp ring), 655 (S-C stretch), 479 cm'1 (antisymmetric ring-metal stretch). Anal. Calcd. for ngH3182NFe: C, 59.25; H, 7.71. Found: C, 59.31; H, 7.52. (LBJ-141-(Dimethylamino)ethyl]-2,1 '-bls[(l-Propyl)thio]- ferrocene (46, R=1-Pr) The procedure was the same as for 45, Ran-Pr, except that 4.52 g (30.0 mmol) of diisopropyl disulfide was used. The product was obtained as a brown oil: yield 80%. 1H NMR (5 ppm), 4.34(m, 1H, H3, H4, H5); 4.20(m, 4H, 05H4l; 4.10(m, 2H, H3, H4, H5); 3.94(q, J-6.8 Hz, 1H, CHgfili); 3.20(h, 1H, SCH); 2.82(h, SCH); 2:396 Ill-(c stretcl 826 I ml (47 N. .5. l‘f HIHJIHC 20 2.09(s, 6H, NM62); 1.33(d, q-6.8 Hz, 3H, Cfl30H); 1.19(d, J-6.9 Hz, 3H, BCflg); 1.17(d, 3H, BCHa): 1.12(d, 3H, BCH3); 1.09(d, 3H, BCHg). 13C NMR (5 ppm, coacocoa). 96.2(s, 9.1); 80.3(5, Ca); 79.4(s, Cir); 77.6(d, 03, c4. Cs): 76.9(d, 013,014); 76.8(d, 013, 014); 72.7(d, 012,015); 72.3(d, 012.015): 70.1(d, ca, 04. cs): 69.1(d, 03, C4. cs): 56.2(d, CH3QH); 139-BIG. NMaz): 39.4(d. SQH); 24.2(q. BQH3); 23.6(4. Bails): 23.0(q- Bill-l3): 9.2(51. QchH). 1 MS m/e (relative intensity): 405(M+, 43), 390(M+-Me, 16), 360(M+-3Me, 100), -286(M+-S(CaH7)-NM62, 15), 242((CH)C5H3F605H4(SCH2), 49), 152(FeCsH4S, 30), 72(MeCHNM62, 25), 56(Fe, 19), 44(NM62, 44). IR (neat, KBr) 3095 (ferrocene C-H stretch), 2960-2775 (alkyl C-H stretch), 1455 (ferrocene antisymmetric C-C stretch), 1265-1250 (C-N stretch), 826 (C-H bend perpendicular to the plane of the Cp ring), 635 (S-C stretch), 455 cm'1 (antisymmetric ring-metal stretch). Anal. Calcd. for ngH31SZNFe: C, 59.25; H, 7.71. Found: C, 59.53; H, 7.49. (§_,fi_)-1-[1-(Dlmethylamlno)ethyl]-2,1'-bls[(n_-butyl)thlojferrocene (47, R: n_- B u ) The amine (SJ-12 (0.65 g. 2.55 mmol) was dissolved in 50 mL dry ether and placed in a 100 mL round-bottomed Schlenk flask equipped with a side arm and rubber septum. The suspension was cooled to -78°C and while being stirred 1.5 mL (4.05 mmol) n-BulJ was added dropwise 11a a syringe. The orange suspension was allowed to reach room temperature and stirred overnight. Then, to the reaction mixture was added a mixture of freshly distilled TMEDA (0.45 g, 3.75 mmol) and n—BuLi (1.5 mL, 4.05 mmol) at -78°C. After being stirred for 8 more h at room temperature, dibutyl disulfide (1.34 g, 7.5 mmol) was added dropwise via a syringe at -78°C. The solution was allowed to reach room temperature and sitrrred under Ar for 30 h. The work-up is 21 identical with that reported for 45(R-n-Pr). The product was obtained as a brown oil: yield 75%. 1H NMR (5 ppm), 4.29(m, 1H, H3, H4, H5); 4.16(m, 4H, C5H4): 4.07(m, 2H, H3, H4. H5); 3.95(q, J-6.7 Hz, 1H, CH3Cli); 2.84(m, 1H, SCH2)i 2.61(m, 1H, SCH2); 2.52(m, 1H, SCHz); 2.08(s, 6H, NMEz): 1.51(m, 2H, BCHzli 1.47(m, BCHz); 1.45(m, 2H, 7H); 1.40(m, 2H, 1H); 1.34(d, J-6.7 Hz, 3H, CH30H); 0.86(t, 3H, 50H313 0.82(t, 3H, 5CH3) 13C NMR (5 ppm, CDaCOCDa), 95.2(s, C1); 82.5(s, 02); 82.1(s, £211); 75.9(d, 03, or. c5); 74.9(d, 013.014); 71 .9(d, C12. 015); 71 .8(d, 012, 015); 69.9(d, Ca, C4, Cs); 68.8(d, Ca, C4. 05): 56.3(d, CH3Ql-l); 39.8(q, NMaz): 39.0(t, SQH2): 36.3(1, SQHz): 32.2(t, BQHa): 22.3(t, yQHa); 22.0(t, yQHaii 13.8(q, 50H3); 9.8(q, .CchH). MS m/e (relative Intensity): 433(M+, 14), 418(M+-Me, 5), 388(M+-3Me, 100), 300(M"'-S(C4Hg)-NM62, 11), 242((CH)C§H3F605H4(SCH2), 52), 152(FeCsH4S, 25), 72(MeCHNMe2, 17), 56(Fe, 12), 44(NM82, 14) IR (neat, Csl) 3095 (ferrocene C-H stretch), 2955-2775 (alkyl C-H stretch), 1455 (ferrocene antisymmetric C-C stretch), 1272, 1249 (C-N stretch), 828 (C-H bend perpendicular to the plane of the Cp ring), 655 (S-C stretch), 479 cm'1 (antisymmetric ring-metal stretch). Anal. Calcd. for C22H35$2NFe: C, 60.96; H, 8.14. Found: C, 60.35; H, 7.93. (5.33-1-[1-(Dlmethylamlno)ethyl]-2,1'-bls[(m-butyi)thlo]- ferrocene (48, R=m-Bu) The procedure was the same as for 47 except 1.34 g (7.45 mmol) of di(s_e_(;- butyl) disulfide was used. Product was obtained as a brown oil: yield 73%. 1H NMR (5 ppm), 4.34(m, 1H, H3, H4, H5): 4.29(m, 4H, C5H4); 4.10(m, 2H, H3, H4, H5); 3.98(q, J-6.8 Hz, 1H, CHacfl); 3.04(m, 1H, SCH2); 2‘.58(m, 1H, 22 SCH2); 2.07(s, 6H, NMezl; 1.52(m, 2H, BCHzli 1.48(m, 2H, BCH2): 1.36(d, J-6.8 Hz, 3H, Cfl30H); 1.15(d, J-6.9 Hz, 3H, BCHal: 1.12(d, 3H, BCH3)i 0.95(t, 3H, yCHeli 0.90(t, 3H, yCHg). 130 NMR (5 ppm, coacocoa), 96.3(s, $.21): 80.9(s, C2): 80.1(s,9_11); 77.9(d, 03, C4. Cs); 77.4(d, 0‘3, 0‘4): 77.2(d. 013. 0‘4): 73.2(d, 012, C1 5); 72.6(d, 012. 0‘5); 70.2(d, ca, C4. 05); 69.5(d, 03, C4, 05); 56.3(d, CH3QH); 46.4(d, SQH); 46.2(d, SCH); 40.1(q, NM”); 30.3(t, BQHz); 30.1(t, BQHzi: 22.2(q, Bill-13): 21.214. BCHal: 12-6lq. “rill-Ia): 12.219. till-13). 9-5(q. QHacHl- MS m/e (relative intensity): 433(M+, 100), 418(M+-Me, 38), 388(M+- 3Me, 68), 300(M+-SC4Hg-NM62, 29), 242((CH)C§H3F605H4(SCH2), 22), 152(FeCsH58, 14), 72(MeCHNMez, 30), 56(Fe, 7), 44(NMe2, 4) IR (neat. Csl) 3092 (ferrocene C-H stretch), 2960-2775 (alkyl C-H stretch), 1452 (ferrocene antisymmetric C-C stretch), 1265, 1249 (C-N stretch), 829 (C-H bend perpendicular to the plane of the Cp ring), 690 (S-C stretch), 450 cm"1 (antisymmetric ring-metal stretch). 'Anal. Calcd. for C22H3582NF6: C, 60.95; H, 8.14. Found: C, 61.13; H, 8.37. (gm-1-[1-(DImethyIamlno)ethyI]-2,1'-bI8[(t-butyl)thIolferrocene (49, R=1- B u) The procedure was the same as for 47 except 1.34 g (7.45 mmol) of di(1-butyl) disulfide was used. Product was obtained as a brown oil: yield 55%. 1H NMR (5 ppm), 4.24(m, 1H, H3, H4, H5); 4.19(m, 4H, 05H4): 4.13(m, 2H, H3, H4. H5): 3.89(q, J-6.9 Hz, 1H, CHaCfl); 2.09(s, 6H, NM62): 1.30(d. J-6.9 Hz. 3H, CHgCH); 1.22(s, 18H, BCHg). 13C NMR (5 ppm, CDaCOCDa), 89.5(s, 9.1): 77.6(s, 02); 77.5(s, Q11); 71 .5(d, Ca, C4, Cs); 71.2(d, 013, 0‘4): 69.5(d, 012. 0‘5); 69.4(d, 012, 015); 23 69.2(d, 63, C4. Cs): 68.6(d, C3, C4. C5): 58.6(d, CHggH); 44.6(s, SQMeali 40.7(q, NM62); 31.1(q, BQHa); 15.8(q, QHgCH). MS m/e (relative intensity): 433(M+, 69), 418(M+-Me, 45), 388(M+-3Me, 96), 300(M+-SC4Hg-NMe2, 30), 244 (100), 242((CH)C5H3FeCsH4(SCH2), 23), 152(F605H4S, 19), 72(MeCHNM92, 7), 56(Fe, 20), 44(NM62, 28) IR (neat, Csl) 3082 (ferrocene C-H stretch), 2963-2767 (alkyl C-H stretch), 1453 (ferrocene antisymmetric C-C stretch), 1262, 1251 (C-N stretch), 828 (C-H bend perpendICUIar to the plane of the Cp ring), 645 (S-C stretch), 462 cm'1 (antisymmetric ring-metal stretch). Anal. Calcd. for 022H35NF882: C, 60.95; H, 8.14. Found: C, 61.71; H, 8.16. (543)-1-[1-(Dlmethylamlno)ethyl]-2,1'-bls[(l,-pentyl)thIojferrocene (50, R=1-Pent) A 2.7 M solution of n-BuLl in hexane (3 mL, 8.1 mmol) was added over a 30 min period to a solution of 5:12 amine (1.3 g, 5.1 mmol) in 50 mL of dry ether under argon in a 250 mL round-bottomed Schlenk flask equipped with a magnetic stirring bar at -78°C. The suspension was stirred overnight at room temperature under Ar, and then a mixture of freshly distilled TMEDA (0.9 g, 7.5 mmol) and n-BuLi (3.0 mL, 8.1 mmol)" was added yin syringe at -78°C. After being stirred for one h, the reaction mixture was warmed to room temperature and sitrred for 8 h. Then di(isopentyl) disulfide (3.10 g, 15 mmol) was added by syringe at -78°C and stirred for 36 more h. The mixture was slowly added to NaHCOa(aq) and was cooled in an ice bath, and the cloudy solution was filtered. The resulting organic layer and ether extracts from the aqueous layer was combined, washed with ice water, dried over anhydrous M2804, and concentrated in vacuo to afford a dark brown oil that was chromatographed on a silica gel column by gradient elutlon (hexane/ether). The product was obtained as a brown oil: yield 76%. 24 1H NMR (5 ppm), 4.26(m, 1H, H3, H4. H5); 4.19(m, 4H, CsH4): 4.06(m, 2H, H3, H4, H5): 3.95(q, J-6.6 Hz, 1H, CchtL); 2.80(m, 1H, SCHz): 2.76(m, 1H, SCH2): 2.60(m. 2H, SCI-I2): 2.55(m, 2H, 80H2); 2.53(m. 2H, pCHz); 2.08(s, 6H, NMez): 1.62(m, 1H, 10H); 1.40(m, 1H. 161:0; 1.32(d, J-6.6 Hz, 3H, CH30H); 0.85(d, 3H, 5H); 0.83(d, 3H, 5H); 0.81(d, 3H, 5H); 0.79(d, 3H, 5H). 130 NMR (5 ppm, coacocoa), 95.1(s, C1); 82.6(s, 02); 82.0(s, 9,11); 76.1(d, C3, c4. Cs): 74.9(d, 013, 014); 71 .9(d, 012, 0‘5); 71 .8(d, C12, 015); 69.7(d, Ca, C4. Cs); 68.9(d, 03, C4. 05); 56.3(d, CH3QH); 39.9(q, NMez): 39.3(t, SCHzi: 35.411. Bella); 94.711. BQHz): 27.810. 16H): 27.510. 10H): 22.714. sells). 22.5(q, 5CH9); 22.4(q, 5CH3); 9.7(q, QH30H). MS m/e (relative intensity): 461(M+, 29), 446(M+-Me, 10), 416(M+-3Me, 96), 314(M+-ScsH11-NM92, 18), 242((CH)05H3Fe05H4(SCH2), 67), 152(FeCsH4S, 32), 72(MeCHNMez, 35), 56(Fe, 16), 44(NM82, 49) IR (neat, Csl) 3095 (ferrocene C-H stretch), 2955-2778 (alkyl C-H stretch), 1460 (ferrocene antisymmetric C-C stretch), 1278, 1268 (C-N stretch), 829 (C-H bend perpendicular to the plane of the Cp ring), 652 (S-C stretch), 500 cm'1 (antisymmetric ring-metal stretch). Anal. Calcd. for Cz4HagszNFe: C, 62.46; H, 8.52. Found: C, 62.18; H, 8.13. (Sam-1-[1-(Dimethylamino)ethyl]-2,1 '-bls(Phenylthlo)ferrocene (51 , R=Ph) . A hexane solution of n-BuLi (2.7 M, 2.0 mL, 5.4 mmol) was added to a solution of 0.87 g (3.4 mmol) (S)-12 In 75 mL of dry ether at -78°C over a period of 30 min. The suspension was stirred for 12 h at 25°C then cooled to -78°C and a mixture of freshly distilled TMEDA (0.6 g, 5 mmol) and n-BuLi (2.0 mL, 5.4 mmol) was added dropwise over a 30 min period. The reaction mixture was stirred under Ar for 8 h and then diphenyl disulfide (2.19 g, 10 mmol) dissolved in 30 mL warm ether, was added 4.411 Slim: Silelc 25 dropwise via cannula to the orange suspension at -78°C. The reaction mixture was stirred under Ar for 30 h at 25°C and filtered. The filtrate was washed with H20, and the organic layer was separated and evaporated to give a brown oil. The oil was separated on a silica gel column by gradient elutlon (hexane/ether). The product was obtained as yellow crystals upon recrystallization from hexane/CH2CI2: yield 80%. 1H NMR (5 ppm), 7.05-7.20(m, 10H, CaHs); 4.60(m, 1H, H3, H4, H5); 4.41(m, 4H, CsH4); 4.36(m, 2H, H3, H4, H5): 3.90(q, J-6.9 Hz, 1H, CHacfl); 1.93(s, 6H,NM82): 1.42 (d, J-6.9 Hz, 3H, 033CH). 130 NMR (5 ppm, CDaCOCDa), 141.5(s, substituted Ph C); 129.5(d, meta Ph C); 128.9(d, meta Ph C); 127.8(d, ortho Ph C); 126.8(d, ortho Ph C); 125.8(d, para Ph C); 125.6(d. para Ph C); 96.5(s, C1); 79.3(s, 02): 79.0(s. 9.11); 78.0(d, Cg, C4, Cs); 77.4(d, 013. 0‘4); 73.8(d, 012,015); 73.6(d, 012,015): 70.8(d, C3, C4, cs); 70.5(d, Ca, C4. 05): 56.3(d, CH3QH); 40.1(q, NMezli 11.9(q, QHaCH). MS m/e (relative Intensity): 473(M+, 22), 458(M+-Me, 10), 428(Mf-3Me, 30), 402(M+-CHMeNM62, 7), 320(M+-NMe2-SPh, 35), 72(CHMeNMeg, 100), 56(Fe, 52), 44(NM82,, 47). IR (Nujol, KBr) 3100 (ferrocene C-H stretch), 3065-3040 (phenyl C-H stretch), 2955-2755 (alkyl C-H stretch), 1462 (ferrocene antisymmetric C-C stretch), 1267, 1248 (C-N stretch), 849 (C-H bend perpendicular to the plane of the Cp ring). 475 cm'1 (antisymmetric ring-metal stretch). Anal. Calcd. for Cst2782NFe: C, 65.96; H, 5.75. Found: C, 65.74; H, 5.92. (3.334-[1-(Dlmethylamlno)ethyl]-2,1'-bls(benzylthIo)]ferrocene (52, H=BZ) The same procedure as 51 was followed except (2.47 g, 10 mmol) of dibenzyl disulfide was used. The product was obtained as a brown oil: yield 52%. 4.31m. SCHZ) C);12I Pi C): Stretci stretc Ca tin Ill) (53. 26 1H NMR (5 ppm), 7.13-7.27(m, 10H, Ph); 4.13-4.38(m, 7H, 05H4, C5H3); 4.01(q, J-6.8 Hz, 1H, CHacfl); 3.90(d, 1H, $03.2); 3.85(d, 1H, SCH2); 3.82(s, 2H, SCH2); 2.14(s, 6H, NM82); 1.37(d, J-6.8 Hz, 3H, ChlaCH). 130 NMR (5 ppm, coacocoa), 140.1 (s, substituted Ph C); 129.8(d, meta Ph C); 129.7(d, meta Ph C); 129.0(d', ortho Ph C); 128.8(d, ortho Ph C); 127.7(d, para Ph C); 127.4(d, para Ph C); 96.3(s.C1): 82.3(5, 02): 81.0(s. 9.11): 77.6(d, 03, C4, Cs): 76.6(d, 013, 014); 75.5(d, C13, C14); 72.0(d, 012, 0‘5): 71 .9(d, 012,015); 70.1(d, Ca, C4. Cs); 69.1(d, Ca, C4, C5); 56.5(d, CH3QH); 42.0(t, SQHZI: 41 .5(t, SQHZIS 40.1(q, NMez); 9.08(q, QH30H). MS m/e (relative intensity): 501(M", 14), 468(M+-Me, 6), 458(M+-3Me, 3), 430(M+-CH(Me)NM62, 16), 72(CHMeNMez, 95), 56(Fe, 35), 44(NMe2, 23). IR (neat, KBr) 3085 (ferrocene C-H stretch), 3062-3020 (aryl C-H stretch), 2955-2780 (alkyl C-H stretch), 1455 (ferrocene antisymmetric C-C stretch), 1260, 1245 (C-N stretch), 820 (C-H bend perpendicular to the plane of the Cp ring). 675(S-C stretch), 470 cm‘1 (antisymmetric ring-metal stretch). (§_,fl_)-1-[1-(Dimethylamino)ethyl]-2,1'-bls[(4-tolyl)thio]ferrocene (53, R=4-tolyl) The procedure for 51 was repeated except 2.47 g (15 mmol) of di(4-tolyl) disulfide was used. After two recrystallizations from hexane/CHZClz, the product was obtained as yellow crystals: yield 75%, mp 86-87°C. 1H NMR (5 ppm), 6.95-7.13(m, 8H, Ph); 4.55(m, 1H, H3, H4, H5); 4.40(m, 4H, C5H4li 4.30(m, 2H, H3, H4. H5); 3.91(q, J-6.8 Hz, 1H, CHaCfl); 2.24(s, 6H, Ph-Clia): 1.95(s, 6H, NM62)3 1.48(d, J-6.8 Hz, 3H, CflgCH). 13C NMR (5 ppm, CDaCOCDa), 136.8(s, substituted Ph C); 136.0(d, para Ph 0); 135.3(5, para Ph C); 130.0(d, meta Ph 0); 129.8(d, metal Ph C); 127.8(d, ortho Ph C); 127.3(d, ortho Ph C); 95.4(s,C1): 79m. 02); mm. Cir); 77.7(d, 03, C4, 27 C5); 77.2(d. 013, 014); 73.6(d, 012, 0‘5); 73.4(d, 012, cls); 70.6(d, C3, C4, 05); 70.4(d, 03, C4. 05): 56.9(d, CH3QH); 45.4(q, NMez); 20.9(q, QH3Ph); 12.3(q, QH3CH). MS m/e (relative intensity): 501(M+, 19), 786(Mf-Me, 7), 456(M+-3Me, 100), 179(42), 153(54), 121(31), 72(CHMeNMe2, 94), 56(Fe, 50), 44(NMe2, 71). IR (Nujol, KBr) 3100 (ferrocene C-H stretch), 3085-3045 (phenyl C-H stretch), 2980-2741 (alkyl1 C-H stretch), 1460 (ferrocene antisymmetric C-C stretch), 1260, 1235 (C-N stretch). 811 (CH bend perpendicular to the plane of the Cp ring), 470 cm'1 (antisymmetric ring-metal stretch). Anal. Calcd. for 023H3182NFe: C, 67.06; H, 6.27. Found: C, 67.20; H, 6.20. (gm-141-(Dlmethylamlno)ethyI]-2,1'-bls[(4-CI-Ph)thlo]- ferrocene (54, =4-CI-Ph) The same procedure as 51 was followed except 2.88 g (10 mmol) of bis(4-Cl- Ph) disulfide was used. Upon recrystallization from hexane/CHzclz, the product was obtained as yellow crystals: yield 81%, mp 114-116°C. 1H NMR (5 ppm), 6.98-7.11(m, 8H, Ph); 4.56(m, 1H, H3, H4. H5); 4.42(m, 4H, C5H4); 4.35(m, 2H, H3, H4. H5): 3.92(q, J-6.8 Hz, 1H, CH3Cji); 1.97(s. 6H, NMezli 1.42(d, J-6.8 Hz, 3H, Cfl30H). 130 NMR (5 ppm, coacocoa), 139.9(s, substituted Ph C); 131.1(d, meta Ph C); 130.8(d, meta Ph C); 129.5(8, para Ph C); 129.2(5, para Ph C); 128.8(d, ortho Ph C); 128.2(d, ortho Ph C); 96.4(s. 01); 79.4(s, 9.11. 02); 78.1(d, C3, c4, 05); 77.4(d, 013, 0‘4); 74.0(d, C12, 615); 73.8(d, clz, 0‘5); 71 .0(d, C3, C4, Cs): 70.7(d, 03, C4. C5): 56.3(d, CH3QH); 39.9(q, NM62); 10.8(q, CHQH3). stretch), stretch), 0) Inc: I {iii-I 28 MS m/e (relative intensity): 543(M+, 16), 541(16), 528(M+-Me, 5), 526(9), 498(M+-3Me, 5), 496(6), 72(CHMeNMez, 100), 56(Fe, 13), 44(NMez, 14). IR (Nujol, KBr) 3100 (ferrocene C-H stretch), 3085-3045 (aryl C-H stretch), 2980-2740 (alkyl C-H stretch), 1460 (ferrocene antisymmetric C-C stretch), 1260, 1235 (C-N stretch), 811 (GR bend perpendicular to the plane of the Cp ring). 470 cm'1 (antisymmetric ring-metal stretch). Anal. Calcd. for CstzsszNFeCIzz C, 57.59; H, 4.65. Found: C, 57.47; H, 4.60. (5333-1-[1-(DImethylamlno)ethyI]-2,1'-bls(methylseleno)ferrocene (55, R=Me) A 2.7 M solution of n-BuLi in hexane (3.0 mL, 8.1 mmol) was added to a 1.3 g (5.1 mmol) (sol-1-(Dimethylamino)ethyljferrocene in 100 mL dry ether at -78°C under Ar. The orange suspension was warmed to room temperature and stirred for 8 h. Then, a solution of freshly distilled TMEDA (0.9 g, 7.5 mmol) and n-BuU (3 mL, 8.1 mmol) was added to the reaction mixture at -78°C. After being stirred overnight at room temperature, to the reaction mixture was added dropwise a solution of dimethyl diselenide (2.82 g, 15 mmol) in 20 mL other over a 20 min period at -78°C. The reaction mixture was sitrred for 12 h at room temperature under Ar. After being refluxed for 24 h, the reaction mixture was cooled and then 30 mL of saturated aqueous NaHCOa was added. The resulting (organic layer and ether extracts from the aqueous layer were combined, washed twice with ice water, dried over anhydrous N32804, and evaporated to give a dark oily residue. The oil was chromatographed on silica gel by eluting first with hexane and then with CHZClz to give a brown oil: yield 82%. 1H NMR (5 ppm), 4.24(m, 1H, H3, H4, H5); 4.17(m, 4H, 0er); 4.07(m, 2H, H3, H4, H5): 3.96(q, J-6.8 Hz, 1H, CHacjzl); 2.12(s, '3H, SeCHa): 2.11(s, 3H, SeCHa): 2.07(s, 6H, NMezl: 1.33(d, J-6.8 Hz, 3H, Cfl3CH). 29 130 NMR (5 ppm, 00300003), 94.4(s,01); 77.1(s, 02.9.11); 75.0(d, c3, C4); 74.2(d, ca, c4. 05 I: 71 .9(d, clg, 0‘5); 71 .6(d, 012.015); 68.7(d, C3. C4, c5); 68.7(d, C3, C4. 05); 59.1(d, CH3QH);.39.8(q, NMez); 10.2(q, CHQ); 9.32(q, SeQH3); 8.62(q, SeQHa). MS m/e (relative intensity): 443(M+, 27), 441(11), 428(Mf-Me, 6), 398(M+-3Me, 24), 397(14), 396(15), 349(M+-SeMe, 8), 305(M“'-SeMe-NM62, 11), 304(28), 212(26), 149(23), 72(CHMeNMez, 42), 56(Fe, 50), 44(NM62, 34). IR (neat, Csl) 3078 (ferrocene C-H stretch), 2961-2765 (alkyl C-H stretch), 1449 (ferrocene antisymmetric C-C stretch), 1265, 1240 (C-N stretch), 820 (C-H bend perpendicular to the plane of the Cp ring), 511 (Se-C stretch), 470 cm"1 (antisymmetric ring-metal stretch). Anal. Calcd. for C13H23$e2FeNz C, 43.37; H, 5.23. Found: C, 43.51; H, 5.23. (§_,fl_)-1-[1-(Dlmethylamlno)ethyl]-2,1 '-bls(phenylseleno)farrocene (56, R=Ph) A hexane solution'of n-BuLi (2.7 M, 3 mL, 8.1 mmol) was added to a solution of 1.3 g (5.1 mmol) S-(12) in 100 mL of dry ether at -78°C over a period of 30 min. The suspension was stirred for 12 h at 25°C and cooled to -78°C, and then a mixture of freshly distilled TMEDA (0.9 g, 7.5 mmol) and n-BuLi (3.0 mL, 8.1 mmol) was added In a syringe. The reaction mixture was stirred under Ar overnight and then 4.86 g (15 mmol) of diphenyl diselenide In 40 mL dry ether was added through a cannula at -78°C over a period of 30 min. The reaction mixture was stirred under Ar for 30 h and then refluxed for 10 more h. Upon cooling, saturated aqueous NaHCOa was added and the resulting organic layer and ether extracts of aqueous layer were combined. After drying and evaporation of solvent, the resulting product mixture was chromatographed on a III 30 silica gel column (hexane/ether). The product was obtained as yellow crystals upon recrystallization from CH20l2/hexane: yield 76%, mp 57-58°C. 1H NMR (5 ppm), 7.11-7.36(m, 10H, Ph); 4.50(m, 1H, H3, H4, H5); 4.34(m, 4H, CsH4Ii 4.26(m, 2H, H3, H4, H5): 3.92(q, J-6.7 Hz, 1H, CHacH); 1.96(s, 6H, NMezli 1.44(d, J-6.7 Hz, 3H, CHaCH). 130 NMR (5 ppm, coacoooa), 135.0(s, substituted Ph ); 130.8(d, meta Ph C); 129.9(d, ortho Ph C); 128.8(d, para Ph C); 126.7(d, para Ph C); 95.8(s,C1); 80.7(s. C2): 79.6(s, C11); 78.4(d, C3, C4, C5); 78.2(d, 013, 014); 78.0(c13, 014); 73.9(d, 012,015): 73.7(d, C12. 01 s): 70.8(d, ca, C4, Cs): 70.1(d, ca. 04. Cs); 56.9(d, CH3QH); 40.9(q, NMez): 11.8(q, QHCH3). MS m/e (relative intensity): 569(M+, 2), 567(2), 368(M+-SePh, 3), 167(10), 166(24), 165(65), 153(28), 152(42), 72(CHMeNMez, 52), 56(Fe, 56), 44(NM62, 100). IR (Nujol, KBr) 3092 (ferrocene C-H stretch), 3072-2041 (phenyl C-H stretch), 2965-2765(alkyl C-H stretch), 1447 (ferrocene antisymmetric C-C stretch), 1260, 1241 (C-N stretch), 828 (C-H bend perpendicular to the plane of the Cp ring), 540 (Se-C stretch), 510 cm‘1 (antisymmetric ring-metal stretch). Anal. Calcd. for CzeszseéNFe: C, 55.05; H, 4.80. Found: C, 54.19; H, 4.74. (S_.B_)-1-[1-(Dlmethylamlno)ethyl]-2,1'-bls[(4-Cl-Ph)- selenojferrocene (57, R=4-Cl-Ph) The same procedure for 56 was followed except 5.72 g, 15 mmol of bis(4-Cl- Ph) diselenide was used. The product after two recrystallizations from CH20l2/hexane was obtained as yellow crystals: yield 65%, mp 92-93°C. 1H NMR (5 ppm), 7.14-7.35(m, 8H, Ph); 4.63(m, 1H, H3. H4, H5): 4.38(m, 4H, CsH4); 4.29(m, 2H, H3, H4, H5); 3.92(q, J-6.8 Hz, 1H, CH3QH); 1.97(s, 6H, NMezl: 1.39(d, J-6.8 Hz, 3H, CflaCH). 31 130 NMR (5 ppm, coacocoa). 134.6(s, substituted Ph); 132.8(s, para Ph C); 132.4(d, meta Ph C); 132.3(d, meta Ph C); 129.8(d, ortho Ph C); 129.2(d, ortho Ph C); 96.1(s,01); 78.3(d, 03, C4, cs); 78.2(d, 013, 014); 73.8(d, 012, 0‘5); 70.9(d, Ca, C4. C5): 70.5(d, Ca, C4. C5); 57.4(d, CH3QH); 39.9(q, NMez); 10.8(q, CHQH3). MS m/e (relative Intensity): 637(M+, 5), 635(6), 592(M+-3Me, 42), 590(51), 402(M+-NMe2-Se(PhCl), 9), 72(CHMeNM62, 68), 56(Fe, 23), 44(NMe2, 100). IR (Nujol KBr) 3105 (ferrocene C-H stretch), 3080-3030 (aryl C-H stretch), 2955-2765(alkyl C-H stretch), 1447 (ferrocene antisymmetric C-C stretch). 1265, 1241 (C-N stretch), 817 (C-H bend perpendicular to the plane of the Cp ring), 511 (Se-C stretch), 470 cm‘1 (antisymmetric ring-metal stretch). Anal. Calcd. for CstzssezNFeClg: C, 49.09; H, 3.96. Found: C, 49.61; H, 3.99. 1 -[(Dlmethylamlno)methyI]-2,1 '-bls(methylthlo)ferrocene (58, R=Me) A 2.7 M solution of n-BuLi in hexane (4.0 mL, 10.8 mmol) was added to a 10 mmol solution of [(dimethylamlno)ethyljferrocene (2.43 g) in 100 mL dry other at -78°C under Ar. The orange suspension was warmed to room temperature and stirred for 8 h. Then, a solution of freshly distilled TMEDA (1.20 mL, 10.0 mmol) and n—BuLi (4.0 mL, 10.8 mmol) was added to the reaction mixture at -78°C. After being stirred overnight at room temperature, to the reaction mixture was added dropwise a solution of dimethyl disulfide (2.83 g, 30 mmol) in 20 mL dry ether over a 20 min period at 78°C. The reaction mixture was stirred for 3 h at room temperature, then refluxed for another 12 h. Then, it was hydrolyzed with a cold saturated aqueous NaHCOa solution (40 mL). The resulting organic layer and ether extracts from the aqueous layer were combined, washed with ice water, dried over anhydrous N82804, and concentrated in 32 vacuum to give a dark oily residue which was chromatographed on a silica gel column by gradient elutlon (hexane/ether). The product was obtained as a brown oil: yield 92%. 1H NMR (8 ppm), 4.28(m, 1H, H3, H4, H5): 4.18(m, 4H, CsH4): 4.09(m, 2H, H3, H4. H5); 3.55(d, J-12.1 Hz, 1H, ClizN); 3.24(d, J-12.1 Hz, 1H, CflzN); 2.26(s, 3H, SCH3); 2.25(s, 3H, SCH3): 2.18(s, 6H, NMez). 13C NMR (5 ppm, CDsCOCDa), 88.2(s, c1); 86.4(s, 02): 85.6(s, C11); 73.4(d, c13.c‘4); 72.9(d, 03.014); 72.4(d, c3. c4, cs): 72.3(d, ca, 04, cs); 71.1(d, 012, C15): 71 .0(d, 012. 015): 69.2(d, c3, C4. cs); 57.4(t, QHNMez); 45.4(q, NMez); 20.0(q. SQH3): 19.3(q, SQH3). MS m/e (relative intensity): 335(M'i', 100), 320(M+-Me, 5), 286(M+- SCH3, 6), 244(M+-NMez-SCH3, 17), 230(M+-NM62(CH3)-SCH3, 10), 213(13), 164(22), 152(30), 56(Fe, 47), 44(NMe2, 32). IR (neat Csl) 3097 (ferrocene C-H stretch), 2925-2762 (alkyl C-H stretch), 1420 (ferrocene antisymmetric C-C stretch), 1269, 1259 (C-N stretch), 819 (C-H bend perpendicular to the plane of the Cp ring), 640 (S-C stretch), 480 cm'1 (antisymmetric ring-metal stretch). Anal. Calcd. for C15H2182NFe: C, 53.73; H, 6.31. Found: C, 54.14; H, 6.23. 1-[(Dimethylamino)methyl]-2,1'-bls(ethylthio)ferrocene (59, R=Et) Procedure was the same as 58 except 3.67 g (30 mmol) diethyl disulfide was used. The product was obtained as a brown oil. 1H NMR (5 ppm), 4.29(m, 1H, H3, H4, H5): 4.16(m, 4H, C5H4); 4.10(m, 2H, H3, H4, H5): 3.55(d,1H, Cl:|_2N); 3.20(d, CtlzN); 2.64(m, 1H, SCH2); 2.60(m. 1H, SCHz); 2.53(q, 2H. SCH2): 2.16(s, 6H NMez): 1.19(t, 3H, BCH3): 1.12(t, 3H, BCH3). 130 NMR (5 ppm, coacocoa), 89.5(s, C1): 82.9(s. 02); 82.7(5, 011); 76.3(d, 013, 014); 76.0(d, 013, 014); 75.4(d, C3, c4, C5); 73.8(d, 03, C4, Cs); 33 72.4(d, 012, C15); 72.0(d, 012. 015): 70.0(d, 03, C4. C5); 58.0(t, QHZNMez); 48.8(q. NMez): 31 .9(t, SCHz): 31.3(t, SQH2): 15.7(q, BCHs): 15.5(q. BCH3). MS m/e (relative intensity): 363(M+, 100), 348(M+-Me, 5), 334(M+-Et, 7), 318(M*-3Me, 16), 302(M+-802H5, 38), 286(23), 258(M+-NM62-SCzH5, 12), 230(17), 165(8), 152(19), 121(23). 97(20), 58(31), 56(Fe, 19), 44(NM62, 31). IR (neat, Csl) 3095 (ferrocene C-H stretch), 2972-2763 (alkyl C-H stretch), 1430 (ferrocene antisymmetric C-C stretch), 1260, 1249 (C-N stretch), 828 (C-H bend perpendicular to the plane of the Cp ring), 630 (S-C stretch), 482 CW1 (antisymmetric ring-metal stretch). Anal. Calcd. for C17H2582NF9: C, 56.19; H, 6.93. Found: C, 56.48; H, 6.93. 1-[(Dlmethylamlno)methyl]-2,1'-bls[(n_-propyl)thIojferrocene (60, R=n_-Pr) Procedure was the same as 58 except 4.51 g (30 mmol) dim-propyl) disulfide was used. The product was obtained as a brown oil: yield 82%. 1H NMR (8 ppm), 4.27(m, 1H, H3, H4, H5); 4.17(m, 4H, CsH4); 4.08(m, 2H, H3, H4, H5); 3.55(d, J-12.7 Hz, 1H, CtLqN); 3.21(d, J-12.7 Hz, 1H, C];I_2N); 2.64(m, 1H, SCH2); 2.56(m, 1H, SCH2); 2.50(m, 2H, SCH2): 2.17(s, 6H NMezli 1.56(m, 2H, BCH2): 1.46(m, 2H, BCH2): 0.95(t, 3H, yCH3)3 0.88(t, 3H, yCH3). 13C NMR (5 ppm, coacocoa), 89.1(s, Ct): 82.9(s. 02); 82.8(s, C11); 75.7(d. 013, 014); 75.3(d, C13, C14); 74.8(d, ca. C4. 05): 73.3(d, C3, C4, C5); 71 .9(d, 012,015); 71 .6(d, 012. 0‘5): 69.5(d, ca, C4. Cs); 57.5(1, QHZNMez); 45.5(q, NMez): 39.4(1, SQHz): 39.1(t, SQHz): 23.5(t, BQHz): 23.4(t, BQHZ); 13.6(q. YQH3); 13.5(q. 19343)- N 34 MS m/e (relative intensity): 391(M+, 100), 376(M+-Me, 3), 346(M+-3Me, 18), 316(M+-S(n_-Pr), 37), 272(M+-NM62-S(n_-Pr), 12), 164(13), 152(17), 58(40), 56(Fe, 17), 44(NM62, 28). IR (neat, Csl) 3095 (ferrocene C-H stretch), 2962-2764 (alkyl C-H stretch), 1448 (ferrocene antisymmetric C-C stretch), 1260, 1240 (C-N stretch), 829 (C-H bend perpendicular to the plane of the Cp ring), 649 (S-C stretch), 481 cm'1 (antisymmetric ring-metal stretch). Anal. Calcd. for C1gH2982NFe: C, 58.30; H, 7.47. Found: C, 58.48; H, 7.53. 1-[(D'lmothylamlno)methyl]-2,1'-bls[(1-propyl)thlojferrocene (61, R=bPr) The procedure for 58 was followed except 4.51 g (30 mmol) of di(isopropyl) disulfide was used. Product was obtained as a brown oil: yield 81%. 1H NMR (6 ppm), 4.32(m, 1H, H3, H4. H5); 4.19(m, 4H, CsH4): 4.09(m, 2H, H3, H4, H5); 3.57(d, J-12.8 Hz, 1H, CH2N); 3.17(d, J-12.8 Hz, 1H, CfigN); 3.01(h, 1H, SCH); 2.81(h, 1H, SCH); 2.16(s, 6H, NM62); 1.18(d, J=8.8 Hz, 3H, BCH3); 1.14(d, J-6.8 Hz, BCha); 1.10(d, J-8.8 Hz, 3H ch3): 1.07(d, J=6.8 Hz, 3H, cha). 13C NMR (8 ppm, CD3COCD3), 89.5(s, C1); 80.6(s, 02); 79.2(d, 011); 76.8(d, 013, 014); 76.6(d, C13, C14): 76.1(d, ca, c4, Cs); 73.2(d, C3, C4, cs); 72.1(d, 012, 015); 71 .7(d, 012, 0‘5): 69.3(d, cs, C4. Cs); 57.1(t, CH2NMe); 45.2(q, NMezli 39.4(d, SQH2); 39.3(d, SQH); 23.7(q, BQH3); 23.2(q, BQHg); 223% Bill-l3)- MS m/e (relative intensity): 391(M+, 100), 376(M+-Me, 6). 346(M+-3Me, 24), 316(M+-S(1-Pr), 39), 304(21), 272(M+-NMez-S(j-Pr), 12), 230(10), 195(13), 164(15), 121(20), 56(Fe, 19), 44(NMe2, 21). IR (neat, Csl) 3097 (ferrocene C-H stretch), 2960-2765 (alkyl C-H stretch), 1449 (ferrocene antisymmetric C-C stretch), 1260, 1241 (C-N stretch), 35 835 (C-H bend perpendicular to the plane of the Cp ring). 652 (S-C stretch), 485 cm'1 (antisymmetric ring-metal stretch). Anal. Calcd. for C19H29$2NF6: C, 58.30; H, 7.47. Found: C, 58.54; H, 7.44. 1-[(DImethyIamlno)methyl]-2,1'-bls[(n-butyl)thlo]ferrocene (62, R=n-Bu) The procedure for 58 was followed except 5.35 g (30 mmol) dim-butyl) disulfide was used. The product was obtained as a brown oil: yield 75%. 1H NMR (5 ppm), 4.29(m, 1H, H3, H4, H5); 4.15(m, 4H, cer); 4.08(m, 2H, H3, H4, H5): 3.56(d, .I-12.7 Hz, 1H, CH2N); 3.20(d, J-12.7 Hz, d, 1H, CH2N); . 2.66(m, 1H. SCHz); 2.60(m. 1H, $0112); 2.53(m. 2H, $0112); 2.17(s, 6H, NMez); 1.52(m, 2H, BCH2): 1.46(m, 2H, chzl: 1.43(m, 2H yCHz); 1.31(m, 2H, yCHz): 0.86(t,— 3H, SCH3); 0.82(t, 3H, BCH3). 130 NMR (5 ppm, coaoocoa), 88.9(s, C1); 82.5(s, 02): 82.4(s, 011); 75.5(d, 013. 014); 75.1(d, out. 014); 74.5(d, 03.31.05): 73.1(d, ca, c4. 05); 71 .6(d, 012, 615); 71 .3(d, 012, 015); 69.2(d, ca, C4, 05); 57.3(t, QHZNMez); 54.4(q, NM62); 36.8(t, SQHz): 36.6(t, sotlz): 32.2(1, BCHZ), 32.0(t, BCHg); 22.1(t, yCH2): 22.0(1, yCHz); 13.9(q, 5CH3), MS m/e (relative intensity): 419(M+, 100), 404(M+-Me, 3), 374(M+-3Me, 26), 362(M+-(n_-Bu), 8), 330(M"'-S(n_-Bu), 44), 318(M+-NMeg-(n_-Bu), 3), 286(M*-NM92-S(n,-Bu), 9), 164(15), 121(19), 56(Fe, 17), 44(NMe2, 16). IR (neat, Csl) 3095 (ferrocene C-H stretch), 2996-2768 (alkyl C-H stretch), 1442 (ferrocene antisymmetric C-C stretch), 1275, 1261 (C-N stretch), 830 (C-H bend perpendicular to the plane of the Cp ring), 635 (S-C stretch), 480 cm‘1 (antisymmetric ring-metal stretch). Anal. Calcd. for 021H3382NFe: C, 60.13; H, 7.93. Found: C, 59.82; H, 7.71. 36 1-[(Dimethylamlno)methyl]-2,1'-bls[(m—butymhlojferrocene (63, R=m-Butyl) The procedure was the same as for 58, except 5.35 g (30 mmol) of dim- butyl) disulfide was used. The product was obtained as a brown oil: yield 59%. 1H NMR (5 ppm), 4.31(m, 1H, H3, H4, H5): 4.19(m, 4H, CsH4); 4.12(m, 2H, H3, H4, H5); 3.56(d, 1H, CflzN); 3.20(d, 1H, CflgN); 2.83(h, 1H, SCH); 2.57(h, 1H, SCH); 2.17(s, 6H, NM62): 1.47(m, 2H, BCH2): 1.36(m, 2H, 80H2); 1.15(d, 3H, pCHa); 1.10(d, 3H, pCHai: 0.97(t, 3H yCHa); O.87(t, 3H, yCH3). MS m/e (relative intensity): 419(M+, 100), 404(M+-Me, 6), 374(M+-3Me, 36), 362(M*-(m—Bu), 11), 330(M"’-S(§.Q_Q-Bu), 49), 318(M+-NMe2-(s_gQ-Bu), 5), 286(M+-NMez-S(s_e_Q-Bu), 14), 164(18), 121(20), 56(Fe, 46), 44(NM62, 90).. IR (neat, Csl) 3094 (ferrocene C-H stretch), 2998-2770 (alkyl C-H stretch), 1444 (ferrocene antisymmetric C-C stretch), 1276, 1263 (C-N stretch), 829 (C-H bend perpendicular to the plane of the cyclopentadienyl ring), 636 (S-C stretch), 480 cm'1 (antisymmetric ring-metal stretch). Anal. Calcd. for CZ1H33SQNFBI C, 60.13; H, 7.93. Found: C, 60.25; H, 7.79. 1-[(Dlmethylamlno)methyI]-2,1'-bis[(t-butyl)thlo]ferrocene (64, Reru) The procedure was the same as for 58, except 5.35 g (30 mmol) of di(1-butyl) disulfide was used. The product was obtained as a brown oil: yield 55%. 1H NMR (5 ppm), 4.19(m, 1H, H3, H4, H5); 4.14(m, 4H, CsH4); 4.10(m, 2H, H3, H4, H5): 3.27(s, 2H, CflzN); 2.14(s, 6H, NM”); 1.17(s, 18H, BCH3). 130 NMR (5 ppm, coacocoa), 89.1(s, Ct); 77.4(s, 02): 77.3(s, 011); 72.1(d, 013, 014); 72.1(d, 03, c4, Cs); 70.9(d, C12, C15); 69.8(d, 03, C4, 05); 59.1(t, QHZNMezl: 44.9(q, NMez): 37.2(s, S-Q); 31.0(q, BQHg). 37 MS m/e (relative intensity): 419(M+, 21), 374(M+-3Me, 72), 361(M+- CH2NM62, 11), 359(M‘f-4Me, 31), 330(M+-NM92-3Me, 27), 317(M+-NMez-(1- Bu), 6), 286(M+-NMez-S(1-Bu), 4), 164(17), 121(33), 56(Fe, 19), 44(NM92, 17). IR (neat, Csl) 3093 (ferrocene C-H stretch), 2967-2761 (alkyl C-H stretch), 1451 (ferrocene antisymmetric 00 stretch), 1231, 1222 (C-N stretch), 822 (C-H bend perpendicular to the plane of the Cp ring), 620 (S-C stretch), 470 cm'1 (antisymmetric ring-metal stretch). Anal. Calcd. for C21H3332NF8: C, 60.13; H, 7.93. Found: C, 60.59; H, 7.97. 1-[(D|methylamlno)methyl]-2,1'-bls[(l-Pent)thio]ferrocene (65, R=j_- Pent) _ The procedure was the same for 58 except 6.19 g (30 mmol) of di(j-pentyl) disulfide was used. The product was obtained as a brown oil: yield 78%. 1H NMR (5 ppm), 4.28(m, 1H, H3, H4, H5): 4.17(m, 4H, C5H4): 4.08(m, 2H, H3, H4, H5): 3.57(d, J-12.7 Hz, CflzN); 3.20(d, J-12.7 Hz, 1H, CflzN); 2.71 (m, 1H, SCl:l2); 2.64(m, 1H, SCHz); 2.54(m, 2H, SCHQ); 2.16(s, 6H, NM62); 1.63(m, 2H, BCH2); 1.58(m, 2H, BCH2): 1.41(m, 1H, yCH); 1.35(m, 1H, yCH); 0.87(d, J-3.8 Hz, 3H 50H3); 0.84(d, J-2.6 Hz, 3H, 50H3); 0.82(d, J-3.8 Hz, 3H. 5CH3); 0.79(d, J-2.6 Hz, 3H, 5CH3). 13C NMR (5 ppm, coaoocoa), 89.1(s, C1): 82.7(s, 02); 82.6(s, 011); 76.6(d, 013, C14); 75.0(d, C13. (31 4); 74.5(d, C3, C4, Cs): 73.2(d, C3, C4, Cs); 71 .7(d, 012. 015); 71 .4(d, 012. C‘s); 69.3(d, C3, C4. Cs); 57.3(t, QHgNMez); 45.4(q, NMez): 39.2(t, SCHz): 35.2(1, BQHz); 34.9(t, BCH2): 27.5(d, yCH); 27.4(d, yCH); 22.8(q, 5CHe); 22.6(q, 5CHa); 22.4(q, 5CH3). MS mle (relative intensity): 447(M+, 84), 432(M+-Me, 5), 402(M+-3Me, 30), 376(M+-(1-Pent), 11), 344(M+-S(j_-_Pent), 39), 332(M+-NMeg-(j;Pent), 35 38 6), 300(M+-NMez-S(i-Pent). 8), 164(24), 149(44), 97(34), 56(Fe, 29), 44(NM92, 42). IR (neat, Csl) 3090 (ferrocene C-H stretch), 2955-2762 (alkyl C-H stretch), 1441 (ferrocene antisymmetric C-C stretch), 1272, 1260 (C-N stretch), 835 (C-H bend perpendicular to the plane of the Cp ring), 649 (S-C stretch), 478 cm'1 (antisymmetric ring-metal stretch). Anal. Calcd. for C23H3782NF6: C, 61.73; H, 8.33. Found: C, 62.00; H, 8.14. 1-[(Dlmethylamlno)methyl]-2,1'-bls(phenylthlo)ferrocene (66, R: Ph) The same procedure was used as for 58 except 6.55 g (30 mmol) diphenyl disulfide was used. The product was obtained as yellow crystals after two recrystallizations from CHzclzlhexane: yield 74%. mp 86-87°C. 1H NMR (5 ppm), 7.02-7.19(m, 10H, Ph); 4.60(m, 1H, H3, H4, H5); 4.44(m, 4H, C5H4): 4.33(m, 2H, H3, H4. H5): 3.55(d, 1H, 0112M); 3.44(d, 1H, CflzN); 2.04(s, 6H, NM). 130 NMR (8 ppm, 003COCD3), 141.0(8, substituted Ph C); 140.6(s, substituted Ph C); 129.4(d, meta. Ph C); 129.2(d, meta Ph C); 127.4(d, ortho Ph C); 126.7(d, ortho Ph C); 125.8(d, para Ph C); 90.0(s. c1); 78.2(s, 02); 77.6(s, 0‘1): 77.5(d, C13, C14); 77.4(d, 013. 0‘4); 77.1(d, ca, c... Cs): 74.1(d, 013. 014); 73.6(d, 012, C‘s): 73.4(d, 012,015): 71 .3(d, 03, C4, Cs): 56.9(t, CH2NM62); 45.4(q, NMez). MS mle (relative intensity): 459(M+, 100), 444(M+-Me, 2), 391(21), 350(M+-SPh, 42), 306(M+-NMez-SPh, 38), 230(18), 152(25), 121(25), 71(19), 58(36), 44(NM92, 18). IR (neat, Csl) 3100 (ferrocene C-H stretch), 3075, 3060, 3020 (phenyl C-H stretch), 2975-2720 (alkyl C-H stretch), 1441 (ferrocene antisymmetric C-C CS .4 J: 39 stretch), 1182, 1172 (C-N stretch), 835 (C-H bend perpendicular to the plane of the Cp ring). 620 (S-C stretch), 490 cm'1 (antisymmetric ring-metal stretch). Anal. Calcd. for CstzsszNFe: c, 65.35; H, 5.48. Found: c, 65.49; H, 5.35. 1-[(Dlmethylamlno)methyI]-2,1'-bls(benzylthIo)ferrocene (67, R=Bz) The procedure was the same as 58 except 7.38 g (30 mmol) dibenzyl disulfide was used. The product was obtained as a brown oil: yield 54%. 1H NMR (5 ppm), 7.14-7.32(m, 8H, Ph); 4.13-4.30(m, 7H, 05114, 05133); .4.02(d, J-2.7 Hz, 1H $0132): 3.90(d, J-2.7 Hz, SCH2): 3.82(s, 2H, $0112): 3.78(d, J-12.5 Hz, ChlzN); 2.98(d, J-12.5 Hz, 1H, CflzN); 2.19(s, 6H, NMez). 130 NMR (6 ppm, CD3COCD3), 139.2(5, substituted Ph C); 138.6(5, substituted Ph C); 129.2(d, meta Ph C); 128.9(d, meta Ph C); 128.3(d, ortho Ph C); 128.1(d, ortho Ph C); 126.6(d, para Ph C); 126.3(d, para Ph C); 89.3(5, C1): 82.6(s, 02); 82.3(s, 0‘1); 76.1(d, 013, 614): 75.9(d, 013. C‘4li 74.8(d, C3, C4. C5); 72.9(d, C3, C4, 05): 72.6(d, 012. 015); 72.4(d, C12, 01 5): 70.0(d, C3, c4, Cs): 57.4(t, QHZN); 45.2(q, NM62); 42.4(t, SCH2); 41.7(t. SCHg). MS mle (relative intensity): 487(M+, 100), 472(M+-Me, 10), 442(M+- 3Me, 37), 366(M+-NMez-Bz, 11), 334(M+-NMez-SBz, 42), 164(14), 121(38), 58(27), 56(Fe, 44), 44(NM92, 78). IR,(neat, Csl) 3098 (ferrocene C-H stretch), 3080, 3025 (phenyl C-H stretch), 2962-2760 (alkyl C-H stretch), 1451 (ferrocene antisymmetric C-C stretch), 1258, 1327 (C-N stretch), 820 (C-H bend perpendicular to the plane of the Cp ring), 620 (S-C stretch), 475 cm'1 (antisymmetric ring-metal stretch). Anal. Calcd. for 027H2932NF62 C, 66.52; H, 5.60. Found: C, 66.59; H, 6.08. 1-[ 40 1-[(Dlmethylamlno)methyl]-2,1'-bls[(4-tolyl)thlo]ferrocene (68, R=4-tolyl) Procedure was the same as 58 except 7.40 g (30 mmol) di(4-tolyl) disulfide was used. The product was obtained as yellow crystals after two recrystallizations from acetone/hexane: yield 78%. mp 71 -72°C. 1H NMR (5 ppm), 6.95-7.06(m, 8H, Ph); 4.53(m, 1H, H3, H4, H5); 4.39(m, 4H, CsH4): 4.30(m, 2H, H3, H4, H5 ): 3.51(d, J-2.0 Hz, 1H CflzN); 3.43(d, J-2.0 Hz, 1H, CflzN); 2.24(s, 6H, PhCHa); 2.05(s, 6H, NMez). 130 NMR (8 ppm, CDacOCDa), 137.0(5, substituted Ph C); 136.8(s, substituted Ph C); 135.3(5, para Ph C); 130.3(d, meta Ph C); 129.8(d, meta Ph C); 127.8(d, ortho Ph C); 127.3(d, ortho Ph 0); 89.5(s, Cl): 79.5(5, 02): 79.0(s. 0‘1): 77.2(d. 013, C14): 77.1(d, 013,014): 76.6(d, C3, c4, C5); 73.8(d, 03, C4. 05): 73.3(d, 012, 0‘5); 72.9(d, 013. 0‘5): 71 .0(d, c3, C4. Cs): 56.7(t, QHZNMezl: 45.4(q, NMeg); 21 .0(q, PhQH3). MS mle (relative Intensity): 487(M+, 100), 472(M+-Me, 3), 447(19), 419(17), 364(M+-S(4-tolyl), 32), 320(M+-NMez-S(4-tolyl), 33), 152(21), 121(22), 91(22), 56(Fe, 24), 44(NMe2, 21). IR (Nujol, KBr) 3100 (ferrocene C-H stretch), 3090, 3080 (phenyl C-H stretch), 2970-2765 (alkyl C-H stretch), 1442 (ferrocene antisymmetric C-C stretch), 1260, 1270 (C-N stretch), 849 (C-H bend perpendicular to the plane of the Cp ring), 620 (S-C stretch), 460 cm'1 (antisymmetric ring-metal stretch). Anal. Calcd. for C27H2982NF8: C, 66.52; H, 5.60. Found: C, 66.43; H, 5.80. 41 1-[(Dlmethylamlno)methyI]-2,1'-bls[(4-Cl-Ph)thlojferrocene (69, R=4-Cl-Ph) The procedure was the same as 58 except 8.53 g bis(4-Cl-Ph) disulfide was used. The product was obtained as yellow crystals after recrystallization from CH2Cl2/hexane: yield 81%. mp 75°C. 1H NMR (5 ppm), 6.93-7.14(m, 8H, Ph); 4.58(m, 1H, H3, H4, H5): 4.45(m, 4H, C5H4); 4.37(m, 2H, H3, H4, H5 ): 3.44(s, 2H, CflzNMezli 2.04(s, 6H, NM). 130 NMR (8 ppm, 00300003), 139.9(s, substituted Ph C); 139.6(5, substituted Ph C); 131.1(s, para Ph C); 129.4(d, meta Ph C); 129.1(d, meta Ph C); 128.9(d, ortho Ph C); 128.1(d, ortho Ph C); 90.3(5, Ct): 78.4(5, 011. Cal: 77.7(d, 013, 014); 77.4(d, 013, 014); 77.1(d, ca, C4. 05): 74.3(d, ca, C4. 05): 73.8(d, 012, 0‘5): 73.6(d, 012,015):71.5(d, 03, C4, 05); 56.9(1, QHgNMezli 45.3(q, NMeg). MS mle (relative intensity): 529(69), 528(M+, 37), 527(100), 384(M+- S(PhCI), 55), 340(M+-NM92-S(PhCl), 40), 58(CH2NMe2, 94), 44(NM92, 31). IR (Nujol, KBr) 3095 (ferrocene C-H stretch), 3082, 3055 (phenyl C-H stretch), 2970-2760 (alkyl C-H stretch), 1450 (ferrocene antisymmetric C-C stretch), 1185, 1170 (C-N stretch), 815 (C-H bend perpendicular to the plane of the Cp ring), 620 (S-C stretch), 475 cm‘1 (antisymmetric ring-metal stretch). Anal. Calcd. for 025H2382NFeCl2: C, 56.83; H, 4.39. Found: C, 56.62; H, 4.35. 1-[(DImethylamIno)methyl]-2,1'-bis(phenylseleno)ferrocene (70, R=Ph) The procedure was the same as for 58 except 9.36 g of diphenyl diselenide was used. Upon two recrystallizations from CHzClglhexane, the product was obtained as yellow crystals: yield 79%. mp 60-61°C. 42 1H NMR (5 ppm), 7.30-7.42(m, 10H, Ph); 4.63(m, 1H, H3, H4, H5); 4.47(m, 4H, CsH4): 4.39(m, 2H, H3, H4, H5 ); 3.59(d, 1H, CjizNMezli 3.55(d, 1H, ClizNMez): 2.16(s. 6H, NM). 130 NMR (8 ppm, CDacOCDa), 141.9(s, substituted Ph C); 130.7(d, meta Ph C); 129.9(d, meta Ph C); 129.8(d, ortho Ph C); 129.6(d, ortho Ph C); 126.8(d, para Ph C); 90.5(s. Ct): 78.5(d, 013.014); 78.4(d, 013, CM): 78.2(d, C3, C4, C5); 73.8(d, Ca, C4. Cs): 73.7(d, 0‘2, 015): 71 .7(d, C3, C4. C5); 58.2(t, QHzNMez); 45.3(q, NMez). MS mle (relative Intensity): 555(53), 553(M+, 56), 398(33), 276(M+- C5H3-CH2NM92-SePh, 13), 58(CH2NM92, 85), 44(NM92. 31). IR (Nujol, KBr) 3100 (ferrocene C-H stretch), 3055(aryl C-H stretch), 2970-2760 (alkyl C-H stretch), 1470 (ferrocene antisymmetric C-C stretch), 1253, 1238 (C-N stretch), 841 (C-H bend perpendicular to the plane of the Cp ring), 540 (Se-C stretch), 510 cm'1 (antisymmetric ring-metal stretch). Anal. Calcd. for 025H25N882Fe: C, 54.25; H, 4.55. Found: C, 54.19; H, 4.74. 1-[(Dimethylamino)methyl]-2,1'-bis(4-CI-Ph)seleno]ferrocene (71, R=4-Cl-Ph) The procedure was the same as for 58 except 11.43 g (30 mmol) of bis(4-Cl- Ph) dlselenide was used. After two recrystallizations from CH2Cl2/hexane, the product was obtained as yellow crystals: yield 67%. mp 96-98°C. 1H NMR (5 ppm), 7.21-7.38(m, 8H, Ph); 4.61(m, 1H, H3, H4, H5): 4.48(m, 4H, CsH4); 4.41 (m, 2H, H3, H4, H5 );.3.57(d, 1H, CflzNMezli 3.48(d, CflzNMez); 2.17(s, 6H, NW). 13C NMR (8 ppm, 00300003), 134.0(5, substituted Ph C); 132.2(5, para Ph C); 131.3(d, meta Ph C); 129.8(d, ortho Ph C); 129.5(d, ortho Ph C); 90.8(5, Ci); strel SUEZ Cpl W2} I908, 43 78.6(d, 013,014); 78.4(d, c13, 014): 78.2(d, ea. c... Cs): 74.0(d, c3. C4, C5); 73.7(d, C12. 015): 71 .9(d, 03, C4. Cs); 58.1(t, QHZNMezli 45.3(q, NMez). MS mle (relative Intensity): 624(20), 623(22), 622(M", 9), 621(19), 434(7), 432(20), 390(M+-S6(PhCl)-NMe2, 6), 380(M+-Se(PhCI)-CH2NM62, 8), 58(CH2NM62, 100), 44(NM62, 38). IR (Nujol, KBr) 3105 (ferrocene C-H stretch), 3050, 3043 (aryl C-H stretch), 2975-2759 (alkyl C-H stretch), 1460 (ferrocene antisymmetric C-C stretch), 1260, 1235 (C-N stretch), 812 (C-H bend perpendicular to the plane of the Cp ring), 540 (Se-C stretch), 490 cm'1 (antisymmetric ring-metal stretch). Anal. Calcd. for CstaClzNSezFe: C, 48.13; H, 3.72. Found: C, 48.57; H, 3.89. B. Preparation of Metal Complexes The complexes (gm-(ElecngFe[CHMeNMe2][ER][MCIZI and [ER][C§H4]FelCHzNMe2][ER][MCl2] where EsS, Se, R=Me, Et, j-Pr, Ph, 82, 4-tolyl, and 4-Cl-Ph, and M-Pd and Pt, and CpFeCsH3[CHMeNM82][SR][ptCl2] where R-Me, Et, j-Pr, and Ph were prepared from a benzene solution of the (PhClePdClz (0.1g) or (PhCN)2PtCl2 (0.2g) and a slight excess of ligand in an approximate 1 : 1.2 molar ratio. The reaction mixture was stirred for 8 h in the case of Pd complexes, and for 8 days in the case of Pt complexes. The resulting precipitates were collected by filtration, washed with cold benzene and petroleum ether. The pure crystals were obtained by recrystallization from CHZClglhexane or acetone. 44 (gm-[1-[1-(Dlmethylamlno)ethyl]-2,1'-bls(methylthio)ferrocene]- Palladium(ll) chloride (72) The general procedure was followed by using amine thioether 43 and (PhCN)2PdCI2. The product was obtained as dark purple crystals: yield 90%. mp 157-158°C (dec). 1H NMR (5 ppm), 4.31-4.45(m, 7H, Cer, CsHa); 4.14(q, J-4.3 Hz, 1H, CHaCH); 3.21 (s, 3H, NMaz); 2.52(9. 3H, $154.62): 2.29(s, 3H, NMez); 2.26(s, 3H, 8M3); 1.53(d, Jar-4.3 Hz, 3H, Cfi30H). MS mle (relative intensity): 349(M+-PdCl2, 40), 304(M+-PdCl2-NM82- SCH3, 15), 72(CHMeNMe2, 100), 56(Fe, 27), 44(NM92, 72). IR (Nujol, Csl) 3097 (ferrocene C-H stretch), 2973-2854 (alkyl C-H stretch), 1449 (ferrocene C-C stretch), 1261, 1247 (C-N stretch), 841 (S-C stretch), 456 (ring-metal stretch), 452(Pd-N stretch), 389, 374, 326, 269, 218 cm'1 (Pd-S and Pd-Cl stretch). Anal. Calcd. for C13H2382NFePdCl2: C, 36.49; H, 4.40. Found: C, 36.67; H, 4.22. (gm-[1-[1-(DImethylamIno)ethyl]-2,1'-bis(phenylthIo)ferrocene]- Palladium(ll) chloride (73) The general procedure was followed by using amine thioether 51 and (PhCN)2PdCl2. The product was obtained as dark purple crystals: yield 87%. mp 142-143°C(dec). 1H NMR (8ppm), (7.43-7.51 and 6.98-7.25)(m, 10H, Ph); 4.26-4.41(m, 7H, C5H4, CsH3); 4.11(q, J=6.6 Hz, 1H, CflCHali 3.29(s, 3H, NM32): 2.34(s, 3H. NMflz): 1.55(d, J26.6 Hz, Cfl30H). 45 MS mle (relative intensity): 473(M+-PdCl2, 13), 428(M+-PdCl2-3Me, 15), 402(M+-PdCI2-CHMeNM62, 13). 320(M+-PdCl2-NM92-SPh, 8), 72(CHMeNMeg, 18), 56(Fe, 24); 44(NM92, 100). IR (Nujol, Csl) 3096 (ferrocene C-H stretch), 3079-3041 (aryl C-H stretch), 2969-2849 (alkyl C-H stretch), 1448 (ferrocene C-C stretch), 1261, 1239 (C-N stretch), 836 (C-H bend perpendicular to the plane of the Cp ring), 641 (S-C stretch), 469 (Pd-N stretch), 378, 360, 321, 231, 217 cm-1 (Pd-S and Pd-Cl stretch). Anal. Calcd. for CgngyszNFePdClzz C, 47.99; H, 4.18. Found: C, 48.01; H, 4.51. (Sam-[141-(Dlmethylamlno)ethyl]-2,1'-bls(benzylthlo)ferrocene]- Palladium(ll) chloride (74) The general procedure was followed by using thioether 52. The product was obtained as dark purple crystals: yield 74%. mp 172-174°C(dec). 1H NMR (5 ppm), 7.15-7.34(m, 10H, Ph); 4.29-4.44(m, 7H, C5H4, C5H3); 4.21(q, J-6.6 Hz, 1H, CflCHa); 3.94-4.13(m, 4H, C_H_2Ph); 3.32(s, 3H, NM_ez); 2.35(s, 3H, NMgz); 1.46(d, J-6.6 Hz, 3H, CHCjia). MS mle (relative intensity): 501 (M+-PdCl2, 14), 428(M+-PdCl2-Me, 5), 456(M+-PdCI2-3Me, 3), 430(M+-PdC|2-CHMeNM92, 13), 378(M+-PdCI2-SBZ, 9), 72(CHMeNM62, 56), 56(Fe, 25), 44(NM82, 18). IR (Nujol, Csl) 3095 (ferrocene C-H stretch), 3078-3038 (aryl C-H stretch), 2880-2455 (alkyl C-H stretch), 1425 (ferrocene C-C stretch), 1251, 1160 (C-N stretch), 835 (C-H bend perpendicular to the plane of the Cp ring), 643 (S-C stretch), 475(antisymmetric ring-metal stretch, 463(Pd-N stretch), 381, 361, 323, 235, 219 cm-1 (Pd-S and Pd-Cl stretch). Anal. Calcd. for 023H31$2NFePdClgz c, 49.54; H, 4.60. Found: C, ;H, . 1" , . p7 I 46 (Sum-[1 -[1 -(Dlmethylamlno)ethyl]-2,1 '-bls[(4-to|yl)- thlo]ferrocene]Palladlum(ll) chloride (75) The general procedure was followed by using amine thioether 53 and (PhCN)2PdCI2. The product was obtained as red crystals: yield 85%. mp 163- 165°C(dec). 1H NMR (5 ppm), 6.92-7.27(m, 8H, Ph); 4.24-4.40(m, 7H, 05H4, CsHa); 4.10(q, J-6.7 Hz, 1H, CflCHa): 3.30(s, 3H, NMfiz); 2.39(s, 3H, PhCH3); 2.36(s, 3H. NMaz); 2.26(s, 3H, Pthla); 1.55(d, J-6.7 Hz, 3H, CHCH3). MS m/e (relative intensity): 501(M+-PdCI2, 12), 456(M+-PdCl2-3Me, 7), 430(M+-PdCl2-CHMeNMe2, 14), 378(M+-SPhMe, 8), 72(CHMeNMe2, 71), 56(Fe, 43), 44(NM62, 79). IR (Nujol, Csl) 3093 (ferrocene C-H stretch), 3076-3035 (aryl C-H stretch), 2959-2871 (alkyl C-H stretch), 1430 (ferrocene C-C stretch), 1260, 1249 (C-N stretch), 829 (C-H bend perpendicular to the plane of the Cp ring), 644 (S-C stretch), 481(antisymmetric ring-metal stretch), 459(Pd-N stretch), 377, 369, 321, 236, 218 cm'1 (Pd-S and Pd-Cl stretch). Anal. Calcd. for C23H3182NFePdCl2: C, 49.54; H, 4.60. Found: C, 49.64; H, 4.76. (gm-[1-[1-(Dlmethylamino)ethyl]-2,1 '-bls[(4-Cl-Ph)thlo- ferrocene]Palladlum(ll) chloride (76) The general procedure was followed by using amine thioether 54 and (PhCN)2PdCI2. The product was obtained as black crystals: yield 90%. mp 154- 155°C(dec). 1H NMR (5 ppm), 6.95-7.49(m, 8H, Ph); 4.30-4.42(m, 7H, C5H4, 05H3); 4.13(q, J=6.5 Hz, CflCHa); 3.29(s, 3H, NMfiz); 2.34(s, 3H, NMgz); 1.56(d, J=6.5 Hz, 3H, CHCHa). 47 MS mle (relative intensity): 543(16), 541(16), 528(5), 526(6), 470(M+-PdC|2-CHMeNMe2, 7), 72(100, 56(Fe, 13), 44(NMe2, 13). IR (Nujol, Csl) 3099 (ferrocene C-H stretch), 3089-3031 (aryl C-H stretch), 2931-2869 (alkyl C-H stretch), 1430 (ferrocene C-C stretch), 1249, 1130 (C-N stretch), 829 (C-H bend perpendicular to the plane of the Cp ring), 645 (S-C stretch), 480(antisymmetric ring-metal stretch), 459(Pd-N stretch), 379, 365, 331, 235, 221 cm" (Pd-S and Pd-Cl stretch). Anal. Calcd. for CzestsgNFePdClg: C, 43.42; H, 3.50. Found: C, 43.39; H, 3.66. (gm-[1-[1-(Dimethylamino)ethyl]-2,1'-bls(Phenylthio)ferrocene]- Platinum(ll) chloride (77) _ The general procedure was followed by using (PhCN)2PtCl2 and amine thioether 51. The product was obtained as yellow crystals: yield 61%. mp 188-190°C(dec). MS mle (relative intensity): 473(M+-PtCl2, 9), 428(M+-PtCl2-3Me, 6), 402(M+-PtCl2-CHMeNMez, 3), 72(CHMeNMe2, 51). IR (Nujol, Csl) 3093 (ferrocene C-H stretch), 3085-3100 (aryl C-H stretch), 2958-2869 (alkyl C-H stretch), 1425 (ferrocene C-C stretch). 1261, 1247 (C-N stretch), 831 (C-H bend perpendicular to the plane of the Cp ring), 649(S-C stretch), 459(antisymmetric ring-metal stretch), 381, 359, 340, 268 cm'1 (Pt-N, Pt-Cl and Pt-S stretch). Anal. Calcd. for C23H27SzNF6PtCI2: C, 42.23; H, 3.68. Found: C, 41.97; H, 3.64. 48 (S_,fl_)-[1-[1-(Dlmethy|amlno)ethyl]-2,1'-bls(benzylthlo)ferrocene]- Platlnum(ll) chloride (78) The general procedure wasfollowed by using (PhCN)2PtCl2 and amine thioether 52. The product was obtained as yellow crystals: yield 49%. mp 179-181°C(dec). MS mle (relative intensity): 501 (M+-PtCl2, 7), 430(M+-PtCl2-CHMeNMe2, 13), 378(M+-P1Cl2-SBz, 7), 72(CHMeNMe2, 100), 56(Fe, 46), 44(NMez, 21). IR (Nujol, Csl) 3100, 3085-3029, 2879-2760, 1425, 1281, 1151, 830, 655, 479, 466, 389, 362, 335, 279. Anal. Calcd. for 023H3182NFePtClzz C, 43.82; H, 4.07. Found: C, 44.01; H, 4.11. (S_,B_)-[1-[1-(Dimethylamino)ethyl]-2,1'-bls[(4-tolyl)thlo]- ferrocenelPlatlnumUl) chloride (79) The general procedure was followed by using (PhCN)2PtCl2 and amine thioether 53. The product was obtained as yellow crystals: yield 62%. mp 190-191°C(dec). MS m/e (relative intensity): 501(M+-PtCI2, 8), 456(M+-PtCl2-3Me, 5), 379(M+-PtCl2-SPhMe, 9), 72(CHMeNMez, 100), 56(Fe, 47), 44(NMe2, 24). IR (Nujol, Csl) 3101, 3085-3040, 2969-2871, 1430, 1263, 1259, 832. 651, 475, 466, 376, 369. 339. 247. Anal. Calcd. for C23H3182NFePtCl2: C, 43.82; H, 4.07. Found: C, 43.98; H, 4.21. (5.33-[1-[1-(Dlrnethylamino)ethy|]-2,1 '-bis(phenylse|eno)- ferrocene]Palladlum(ll) chloride (80) The general procedure was followed by using (PhCN)2PdCl2 and amine selenoether 55. The product was obtained as purple crystals: yield 93%. mp 141- 142°C(dec). 49 1H NMR (5 ppm), 7.14-7.50(m, 10H, Ph); 4.35-4.60(m, 7H, C5H4, C5H3); 4.13(q, 1H, CflCHsi; 3.29(s, 3H, NM”); 2.35(s, 3H, NM.9.2); 1.56(d, 3H, 01-1053). MS mle (relative intensity): 567(M+-PdCI2, 15), 523(M+-PdCl2-NMe2, 23), 367(M+-PdCI2-NMez-SePh, 8), 72(CHMeNMe2, 51). IR (Nujol, Csl) 3095, 3081-3072, 2881-2772, 1430, 1245, 1181, 837, 631, 472, 466, 341, 323, 278, 212. Anal. Calcd. for Cst27Se2NFePdCl2: C, 41.90; H, 3.66. Found: C, 40.90; H, 3.63. (gm-[1-[1-(Dlmethylamino)ethyl]-2,1’-bls[(4-Cl-Ph)- seleno]ferrocene]Palladium(ll) chloride (81) The general procedure was followed by using (PhCN)2PdCl2 and amine selenoether 57. The product was obtained as red crystals: yield 71%. mp 161- 163°C(dec). 1H NMR (8 ppm), 7.17-7.47(m, 8H, Ph); 4.23-4.47(m, 7H, 05H4, C5H3); 4.17(q, 1H, CthHs); 3.37(s, 3H NMezi; 2.27(s, 3H, NMQZ); 1.56(d, 3H, CHCfla). MS m/e (relative intensity): 636(M+-PdCl2, 6), 402(M+-PdCl2-NM92- Se(PhCl), 10); 72(CHMeNM92, 100), 56(Fe, 50), 44(q, NMez, 88). IR (Nujol, Csl) 3092, 3081-3072, 2871-2777, 1429, 1245, 1171, 828, 636, 471, 462, 351, 323, 298, 279, 217. Anal. Calcd. for CstgssezNFePdClzz 0.38.53; H, 3.07. Found: C, 38.63; H, 50 (S_,B_)-[1-[1-(Dimethylamino)ethyl]-2,1'-bis(phenylseleno)- ferrocenelPlatlnumUI) chloride (82) The general procedure was followed by using (PhCN)2PtCl2 and amine selenoether 56. The product was obtained as yellow crystals: yield 81%. mp 171- 173°C(dec). MS m/e (relative intensity): 524(47), 522(48), 368(5), 290(15). 288(11), 286(10), 154(28), 158(38), 141(45), 121(10), 44(100). IR (Nujol, Csl) 1439, 1251, 1174, 834, 630, 480, 354, 344, 313, 286. 259, 253 cm“. Anal. Calcd. for CgaszsegNFePtClz: C, 37.50; H, 3.27. Found: 0.37.50; H, [1-[(Dlmethylamlno)methyl]-2,1'-bls(methylthlo)ferrocene]- Palladium(ll) chloride (83) A The general procedure was followed except amine thioether 58 and (PhCN)2PdCl2 were used. The product was obtained as deep red crystals: yield 87%. mp 153°C(dec). 1H NMR (5 ppm), 4.264.45(m, 7H, 05H4, CsHa): 3.89(d, J-12.7 Hz, 1H, CflzNMez): 3.09(s, 3H NMfiz); 2.73(s, 3H, sous): 2.70(d, J-12.7 Hz, 1H, CHQNMGZ); 2.34(s, 3H, NM92); 2.16(s, 3H, $0113). MS m/e (relative intensity): 335(M+-PdCl2, 21), 320(M+-PdCl2-Me, 3), 305(M+-PdClz-2Me2, 4), 288(M+-PdCl2-SCH3, 10), 58(CH2NMez, 22), 56(Fe, 14), 44(q, NMez, 66). IR (Nujol, Csl) 3111 (ferrocene C-H stretch), 2960-2765 (alkyl C-H stretch), 1429 (ferrocene C-C stretch), 1239, 1186 (C-N stretch), 827 (S-C stretch), 474 (ring-metal stretch), 468 (Pd-N stretch), 324, 318, 298 cm'1 (Pd-S and Pd-Cl stretch). 51 Anal. Calcd. for C15H2182NFePdCI2: C, 35.15; H, 4.13. Found: C, 35.59; H, 4.13. [1-[(Dlmethylamino)methyl]-2,1'-bls(ethylthlo)ferrocene]- Palladium(ll) chloride (84) The general procedure was followed by using (PhCN)2PdCl2 and amine thioether 59. The product was obtained as black crystals: yield 59%. mp 144-146°C(dec). 1H NMR (5 ppm), 4.38-4.52(m, 7H, 05H4, CsHa); 4.02(d, J-12.8 Hz, 1H, CflzNMez): 3.37(m, 1H, SCH2): 3.27(m, 1H, SCH2): 3.09(s, 3H NM92); 2.73(d, J-12.8 Hz, 1H, CH2NM62): 2.58(q, 2H, $0112); 2.30(s, 3H, NMez): 1.67(t, 3H, 80H3); 1.14(t, 3H, BCH3). MS mle (relative intensity): 363(M+-PdClg, 7), 334(M+-PdCl2-02H5, 5), 302(M1-PdCl2-SCZH5, 11), 56(Fe, 57), 44(NMez, 19). IR (Nujol, Csl) 3110 (ferrocene C-H stretch), 2959-2760 (alkyl C-H stretch), 1427 (ferrocene C-C stretch), 1243, 1184 (C-N stretch), 827 (C-H bend perpendicular to the plane of Cp ring), 642 (S-C stretch), 476 (ring-metal stretch), 469 (Pd-N stretch), 320-298 cm-1 (Pd-S and Pd-Cl stretch). Anal. Calcd. for C17H2582NFePdCI2: C, 37.77; H, 4.66. Found: C, 37.65; H. 4.55. [1-[(Dimethylamlno)methyl]-2,1'-bis[(n_-propyl)thio]ferrocene]- Palladium(ll) chloride (85) The general procedure was followed and (PhCN)2PdCl2 and ferrocenylamine sulfide 60 were used. The product was obtained as purple crystals: yield 63%. mp 151-152°C(dec). .MS mle (relative intensity): 391(M+-PdCI2, 11), 316(M+-PdCl2-S(n_-Pr), 22), 272(M+-PdCl2-NMeg-S(n-Pr), 7), 56(Fe, 7), 44(NM92, 30). 52 IR (Nujol, Csl) 3110 (ferrocene C-H stretch), 2959-2770 (alkyl C-H stretch), 1432 (ferrocene C-C stretch), 1238, 1182 (C-N stretch), 828 (C-H bend perpendicular to the plane of Cp ring), 637 (S-C stretch), 476 (ring-metal stretch), 472 (Pd-N stretch), 320-294 cm-1 (Pd-S and Pd-Cl stretch). Anal. Calcd. for C19H2982NFePdCI2: 0.40.13; H, 5.14. Found: c, 40.10; H, 5.11. [1-[(Dlmethylamino)methyI]-2,1'-bls[(1-propyl)thio]ferrocene]- Palladium(ll) chloride (86) The brown crystals decomposed at 131-132°C. MS m/e (relative intensity): 391(M+-PdCI2, 6), 316(M+-PdCl2-S(1-Pr), 6), 272(M+-PdCl2-S(1-Pr), 11), 56(Fe, 49), 44(NMe2, 67). IR (Nujol, Csl) 3092, 2970-2760, 1428, 1241, 1176, 829, 637, 476, 472, 322-300 cm“. Anal. Calcd.for C19H2982NFePdCI2: C, 40.13; H, 5.14. Found: C, 40.33; H, 5.31. [1-[(Dlmethylamlno)methyI]-2,1'-bls(Phenylthio)ferrocene]- Palladium(ll) chloride (87) The general procedure was followed except (PhCN)2PdCl2 and amine thioether 66 were used. The product was obtained as brick-red crystals: yield 85%. mp 133°C(dec). 1H NMR (8 ppm), 7.01-7.48(m, 10H, Ph); 4.36-4.43(m, 7H, 05);)... 0553); 3.97(d, J-12.5 Hz, 1H, CflzNMez): 3.17(s, 3H, NMfiz); 2.83(d, J-12.5 Hz, 1H, CH2NM92); 2.46(s. 3H, NMfiz). 53 MS mle (relative intensity): 459(M+-PdCl2, 9), 402(M+-PdCI2-CH2NMe2, 3), 350(M+-PdCl2-SPh, 7), 306(M+-PdC|2-SPh-NMe2, 8), 58(CH2NMe2, 28), 44(NM62, 26). IR (Nujol, Csl) 3090, 3080-3070, 2950-2770, 1435, 1245, 1181, 835. 640, 470, 460, 379, 365, 330, 240, 225. Anal. Calcd. for 025H2582NFePdC|zz C, 47.16; H, 3.98. Found: C, 46.99; H, 3.81. [1-[(Dlmethylemlno)mothyI]-2,1'-bls(benzylthlo)ferrocene]- Palladium(ll) chloride (88) t The general procedure was followed by using (PhCN)2PdCl2 and amine thioether 67. The product was obtained as purple crystals: yield 82%. mp 161-163°C(dec). 1H NMR (8 ppm), 7.14-7.3(m, 10H, Ph); 4.26-4.42(m, 7H, 05);“. 05113); 3.944.10(m, 4H, SCflzPh); 3.47(d, J-12.8 Hz, 1H, CflzNMez); 3.30(s, 3H, NM”); 2.59(s, 3H, NMszl: 2.33(d, J-12.8 Hz, 1H, 052111.162). MS mle (relative intensity): 478(M+-PdCl2, 26), 429(M+-PdCl2-NMe2, 32), 364(M+-PdCl2-SBz, 12), 320(M+-PdClg-NMeg-SBZ, 9), 58(CH2NM92, 72), 44(NM62, 76). IR (Nujol, Csl) 3102, 3089-3033, 2960-2780, 1430, 1244, 1187, 831, 640, 478, 472, 373, 364, 245, 213 cm“. Anal. Calcd. for Cz7H29$2NF6PdCI2: C, 48.78; H, 4.40. Found: C, 48.65; H, 4.43. [1-[(Dimethy|amino)methyl]-2,1'-bis[(4-tolyl)thiolferrocenel- Palladium(ll) chloride (89) The general procedure was followed by using (PhCN)2PdCl2 and amine thioether 68. The product was obtained as brick-red crystals: yield 79%. mp 149°C(dec). 54 1H NMR (6 ppm), 6.97-7.25(m, 8H, Ph); 4.21-4.41(m, 7H, 051:1... 05113); 4.00(d, J-12.7 Hz, 1H, CtlgNMez): 3.16(s, 3H, NMez); 2.83(d, J=12.7 Hz, 1H, CHzNMez); 2.43(s, 3H, Nan): 2.34(s, 3H, PhCHa): 2.24(s, 3H, PhCHg). MS mle (relative intensity): 478(M+-PdCl2, 14), 364(M+-S(PhCH3)- PdClz, 10), 320(M+-PdCl2-S(PhCH3)-NMe2, 11), 58(CH2NMe2, 34), 56(Fe, 21), . 44(NMe2, 26). IR (Nujol, Csl) 3100, 3090-3025, 2955-2775, 1430, 1243, 1182, 831, 640, 477, 466, 371, 363, 323, 239, 221 cm". Anal. Calcd. for C27H2982NFePdCl2: C, 48.78; H, 4.40. Found: C, 48.41; H, 4.32. [1-[(Dimethylemino)methyl]-2,1'-bls[(4-Cl-Ph)thlo]- ferrocene]Palledlum(ll) chloride (90) ' The general procedure was followed by using (PhCN)2PdCl2 and amine thioether 69. The product was obtained as brick-red crystals: yield 93%. mp 151-152°C(dec). 1H NMR (6 ppm), 6.94-7.42(m, 8H, Ph); 4.16-4.43(m, 7H, 05114, 05113); 4.05(d, J-12.8 Hz, 1H, CflzNMez): 3.16(s, 3H, NMez); 2.83(d, J-12.8 Hz, 1H, CflgNMez): 2.24(s, 3H, NMeg). MS mle (relative intensity): 527(M+-PdCl2, 10), 483(M+-PdC|2-NMe2, 5), 470(M+-PdCl2-CH2NM92, 6), 384(M+-PdC|2-S(PhCI), 8), 340(M+-PdCl2- S(PhCl)-NMe2, 7), 58(CH2NMez, 38), 56(Fe, 15), 44(NMe2, 45). IR (Nujol, Csl) 3090, 3080-3060, 2955-2770, 1428, 1245, 1180, 823, 640, 475, 465, 321-300 cm". ' Anal. Calcd. for 025H2382NFePdCl2: C, 42.55; H, 3.29. Found: C, 43.05; H, 3.31. 55 [1-[(Dimethylamlno)methyl]-2,1'-bls(methylthlo)ferrocene]- PIatlnum(ll) chloride (91) The general procedure was followed by using (PhCN)2PtCl2 and amine thioether 58. The product was obtained as'yellow crystals: yield 63%. mp 169-170°C(dec). MS mle (relative intensity): 335(M+-PtCl2, 100), 276(M+-PtCl2-Me- NMeg, 42), 244(M+-PtCl2-NMez-SMe, 19), 230(M+-PtCl2-CH2NMeg-SMe, 9), 58(CH2NMe2, 34), 56(Fe, 49), 44(NM62, 96). IR (Nujol, Csl) 3091, 2957-2776, 1428, 1239, 1178, 830, 638, 475, 476, 319-297 cut-1. Anal. Calcd. for C15H2182NFePtCI2: C, 29.52; H, 3.47. Found: C, 30.05; H, 3.86. [1-[(Dlmethylamlno)methyl]-2,1'-bls(phenylthio)ferrocene]- Pletlnum(ll) chloride (92) The general procedure was followed by using (PhCN)2PtCl2 and amine thioether 66. The product was obtained as yellow crystals: yield 56%. mp 180-182°C(dec). _MS m/e (relative intensity): 459(M+-PtCl2, 100), 416(M+-PtCl2-NMe2, 4), 402(M+-PtCI2-CH2NMe2, 3), 350(M+-PtCI2-SPh, 46), 306(M+-PtC|2-NMe2- SPh, 45), 58(CH2NMe2, 26), 44(NM92, 15). IR (Nujol, Csl) 3097, 3083-3042, 2971-2776, 1435, 1241, 1191, 835. 637, 479, 470, 390, 380, 320, 268 cm'I. Anal. Calcd. for 025H25$2NFePtCl2: C, 41.39; H, 3.47. Found: C, 42.72; H, 3.66. 56 [1-[(Dlmethylemlno)methyl]-2,1'-bls(benzylthlo)ferrocene]- Platinum(ll) chloride (93) The general procedure was followed by using (PhCN)2PtCl2 and amine thioether 67. The product was obtained as yellow crystals: yield 49%. mp 176-178°C(dec). MS mle (relative intensity): 487(M+-P1CI2, 96), 444(M+-PtCl2-NMe2, 12), 364(M+-PtCl2-SBz, 21), 320(M+-PtCl2-NMe2-SBz, 32), 44(NM92, 73). IR (Nujol, Csl) 3093, 3082-3069, 1441, 1246, 1180, 837, 639, 446. 453, 380, 365, 336, 249 cm'l. Anal. Calcd. for Cz7H2982NFePtCI2: C, 43.04; H, 3.88. Found: C, 43.10; H, 3.78. [1-[(Dlmethylamlno)methyl]-2,1'-bls[(4-tolyl)thIo]ferrocene]- Platinum(ll) chloride (94) The general procedure was followed by using (PhCN)2PtC|2 and amine thioether 68. The product was obtained as yellow crystals: yield 58%. mp 190°C(dec). I MS m/e (relative intensity): 487(M+-PtCl2, 35), 444(M+-PtCl2-NMe2, 7), 364(M+-PtCI2-S(PhMe), 18), 320(M+-PtCI2-S(PhMe)-NMez, 19), 44(NM92, 72). IR (Nujol, Csl) 3107, 3093-3018, 2960-2771, 1427, 1245, 1183, 832, 645, 473, 468, 375, 361, 290, 240 cm-1. Anal. Calcd. for CzszgszNFePtClzz C, 43.04; H, 3.88. Found: C, 43.21; H, 3.92. [1-[(Dlmethylamino)methyl]-2,1 '-bls[(4-Cl-Ph)thlo]ferrocene]- Platinum(ll) chloride (95) The general procedure was followed by using (PhCN)2PtCI2 and amine thioether 69. The product was obtained as yellow crystals: yield 65%. mp 208-210°C(dec). 57 MS mle (relative intensity): 527(M+-PtC|2, 85), 484(M+-PtCI2-NM32, 4), 384(M+-PtCI2-S(PhCI), 57), 340(M't-PtCl2-S(PhCI)-NMeg, 47), 56(Fe, 34), 44(NM62, 100). IR (Nujol, Csl) 3091, 3079-3053, 2941-2732, 1431, 1237, 1176, 330, 635, 477, 468, 391, 372, 323. 271 cm". Anal. Calcd. for CstzaszNFePtCI4: C, 37.80; H, 2.92. Found: C, 39.02; H, 2.98. [1-[(DImethylamlno)methyl]-2,1'-bls(Phenylseleno)ferrocene]- Palladium(ll) chloride (96)- The general procedure was followed by using (PhCN)2PdCl2 and amine selenoether 71. The product was obtained as dark-red crystals: yield 90%. mp 128- 129°C(dec). 1H NMR (6 ppm), 7.01-7.48(m, 10H, Ph); 4.36-4.43(rn, 7H, 05H4, 05H3); 3.97(d,. J-13 Hz, 1H, CH2NM62); 3.17(s, 3H, NM.0.2): 2.83(d, J-13 Hz, 1H, ChlzNMezl; 2.46(s, 3H. NMez). IR (Nujol, Csl) 3100, 3070, 3050, 3020, 2975-2820, 1460, 1290, 1190, 1130, 311, 550, 430, 392, 332, 342, 241 cm-1. Anal. Calcd. for C25H25NSeFePdCI2: C, 41.04; H, 3.49. Found: C, 41.17; H, 3.50. (mm-[1 -[1-(Dlmethylamlno)ethyI]-2-(methylthio)ferrocene]- Platinum(ll) chloride (97) The general procedure was followed by using (PhCN)2PtCl2 and (3,5)— CpFe[C5H3][CHMeNM62][SMe]. The product was obtained as yellow crystals: yield 32%. mp 181-183°C(dec). 58 1H NMR' (6 ppm), 4.47m, 1H, H3, H4, H5); 4.35(m, 1H, H3, H4, H5); 4.31 (m, 1H, H3, H4, H5): 4.21 (s, 5H, Cp); 3.47(q, .1- Hz, 1H, NCHNMe); 3.34(s. 3H, NMez); 2.71(3, 3H, SMe); 2.45(s, 3H, NMez); 1.55(d, .1- Hz, 3H, NCHCH3). MS mle (relative intensity): 303(M+-PtCl2, 1), 258(M+-PtCl2-3Me, 6). 121(FeCp, 3), 44(NMe2, 100). IR (Nujol. Csl) 520, 475, 335, 360, 330, 305, 295, 275, 250, 220 cm-1. Anal. Calcd. for C15H21NSPtCI2Fe: C, 31.64; H, 3.72. Found: C, 31.43; H, 3.67. (fi_,3_)-[1-[1-(Dimethylamlno)ethyl]-2-(ethylthlo)ferrocene]- Platinum(ll) chloride (98) The general procedure was followed by using (PhCN)2PtCl2 and (3,5)- CpFeleH3][CHMeNM32][SEt]. The product was obtained as yellow crystals: yield 78%. mp 177-179°C(dec). 1H NMR (6 ppm), 4.51(m, 1H, H3, H4. H5): 4.34(m, 2H, H3, H4, H5); 4.19(s, 5H, Cp); 3.98(q, J- Hz, 1H, CHMe); 3.69(q, 1H, SCHZ): 3.44(q, 1H, SCtlz); 3.32(s, 3H, NM92); 2.45(s, 3H, NMQz); 1.66(d, J- Hz, 3H, CHMe); 1.23(t, 3H, SCHQMe). MS m/e (relative intensity): 317(M+-PtCl2, 3), 302(M+-PtCl2-Me, 1), 273(M+-PtCI2-NMe2, 4), 272(M+-PtCI2-HNMe2, 16), 121(FeCp, 4), 44(NMe2, 1 00). IR (Nujol, Csl) 505, 473, 467, 453, 421, 372, 339, 315, 249, 223cm-1. Anal. Calcd. for C16H23NSPtCl2Fe: C, 32.95; H, 3.97. Found: C, 32.58; H, 3.72. ' For coupling between 195Pt and 1H see Chapter III (Results and Discussion). 59 (mm-[1-[1-(Dimethylamlno)ethyl]-2-[(l.-Propyl)thlo]ferrocene]- Platinum(ll) chloride (99) The general procedure was followed by using (PhCN)2PtCl2 and (3,5)- CpFe[C5H3][CHMeNMe2][S-i-Pr]: yield 85%. mp 176-178°C(dec). 1H NMR (6 ppm), 4.73-4.39(m, 3H, H3, H4, H5): 4.26(s, 5H, Cp); 3.60(m, 1H, SCflMez): 3.47(q, 1H, NCflMe); 3.34(s, 3H, NMag); 2.45(s, 3H, NMez): 1.77(d, NCHMfi); 1.57(d,'3H, BCH3): 1.23(d, 3H, BCH3). 'MS m/e (relative intensity): 331(M+-PtCl2, 1), 316(M+-PtC|2-Me, 1), 288(M+-PtCI2-HNM32, 17), 244(M+-PtCl2-CHMeNMe2, 8), 121(FeCp, 5), 44(NM92, 100). IR (Nujol, Csl) 503, 471, 405, 390, 349, 317, 305, 225, 210 cm“. Anal. Calcd. for C17H25NSPtCl2Fe: C, 34.18; H, 4.22. Found: C, 34.08; H, 4.31. (B_,§_)-[1-[1-(Dlmethylamino)ethyl]-2-(Phenylthio)ferrocene]- Platinum(l|) chloride (100) The general procedure was. followed by using (PhCN)2PtCl2 and (3,5)- CpFe[C5H3] [CHMeNMe2][SPh]. The product was obtained as yellow crystals: yield 68%. mp 175-176°C(dec). 1H NMR (6 ppm), 7.15-7.57(m, 5H, Ph); 4.23-4.35(m, 3H, H3, H4, H5); 4.20(s, 5H, 00): 3.77(q, 1H, NCflMe); 3.42(s, 3H, NMez); 2.52(s, 3H, NMez); 1.53(d, 3H, NCHMe). MS mle (relative intensity): 320(M+-PtC|2-HNM32, 3), 212(M+-PtCl2- SPh-NMez, 3), 77(CeH5, 3), 65(C5H5, 9), 44(NM62, 26). IR (Nujol, Csl) 500, 475, 450, 438, 330, 310, 250, 230, 215 cm'l. Anal. Calcd. for ConzaFeSNPtClzz C, 38.05; H, 3.67. Found: C, 36.59; H, 3.57. 60 C. Grignard cross-coupling reaction of allylmagnesium chloride to 4- phenyI-1-pentene using MCI: and ligand 44, 48, 51, and 54. NiClz (0.0499 mmol, 0.0065 g) was placed in a 100 mL round-bottomed Schlenk flask equipped with a stirring bar and a septum. The vessel was evacuated and filled with Ar several times. 10 mL dry ether was added to the flask to dissolve NiClz and then 0.0499 mmol of appropriate ligand was added and the reaction mixture was stirred for 2 h. Upon being cooled to -78°C 1.41 g (10.0 mmol) 1-Phenylethyl chloride in 20 mL dry ether was added dropwise and stirred for 2 h at room temperature before allylmagnesium chloride (20 mmol, 10 mL of a 2 M solution in THF) being added In syringe at -78°C. The reaction mixture was allowed to warm to 0°C, stirred for 40 h and hydrolyzed with 10% HCI. The organic layer and ether extracts from the aqueous layer were combined, washed with saturated NaHCOa solution and water, and dried over N92804. Evaporation of solvent and chromatography on a silica gel column (hexane/ether) gave 96-97.5% of 4-PhenyI-1-Pentene. Conversion of 4-Phenyl-1-Pentene to methyl 3-Phenylbutyrate. The procedure is identical with that reported before.71 A solution of 2.48 g (18.0 mmol) K2003 in 120 mL of water and a solution of 10.26 g (48 mmol) of sodium periodate and 1.26 g (8 mmol) of KMnO4 in 120 mL of water was added to a solution of 4-Phenyl-1-Pentene (0.906 g, 6.2 mmol) in 160 mL ten-butyl alcohol. Aqueous NaOH (2N) was added dropwise until the PH of solution was 8.5. After being stirred overnight, Len-butyl alcohol was removed under reduced pressure. The solution was adjusted to PH 2.5 by dropwise addition of concentrated HCI. Then sodium bisulfite was added until the solution became off-white. The solution was extracted twice with ether, then extracts were combined, dried over K2003 and concentrated. A solution of acid (0.590 g, 3.5 mmol) and p-toluenesufonic acid (80 mg) in 20 mL of methanol was 61 refluxed for 3 h. Upon the solvent being removed, the residue was taken up in ether. Then, the reaction mixture was washed with 10% aqueous NaOH, dried over anhydrous K2C03, evaporated, and distilled [100-120‘0 (0.01 mm)] to give methyl 3-Phenyl- butrate (70-87%). 1H NMR (6 ppm), 7.16-7.45(m, 5H, Ph); 3.61(s, 3H, OCHe); 3.23(sex, J - 7.0Hz, 1H, CHPhMe); 2.63(dd, Jgem-15HZ, Jvic-8Hz, 1H, Cfl20H); 2.53(dd, Jggm-15Hz, Jvic-8Hz, 1H, ChlzCH); 1.29(d, J-7.0Hz, 3H, CHCH3). D. Selective Hydrogenation of Conjugated Dlenes to Olefins. 7.45x10‘3 mol of substrate, 9 mL acetone and 2x10‘5 mol catalysts were added to a 100 mL pressure bottle equipped with stirring bar. The bottle filled and evacuated at least 3 times with hydrogen before it was filled at a determined pressure. At the end of each experiment the initial turnover rate, product analysis and selectivity were determined. E. X-ray Structural Determination 1. [1-[(Dlmethylamlno)methyl)]-2-(1-butylthlo)- ferroceneJPalladium chloride 72 (101) A summary of data collection and crystallographic parameters for compound 101 is given in Table 1. 62 2 . [1 -[(Dimethylamlno)methyl]-2,1 '-bls(methylthlo)- ferrocene]Palladlum(ll) chloride (83) A summary of data collection and crystallographic parameters for compound 83 is given in Table 2. 63 Table 1 X-ray Structure Determination for [1-(dimethylamino)methyl1-2-(t- butylthio)ferrocenelpalladlum dichloride (101) Formula: F.W.: Crystal: color: size: mounting: density: Radiation: Instrument: Unit cell: no. reflns: 26 range: temperature: system: space group: a: c: Volume: Data collection: scan type: scan rate: scan range (°): max. 20: total data: C1'7H25CI2F9NPdS 5 0 8 . 61 purple red 0.20x0.20x0.35 mm glass capillary, random orientation 1.75 g/cm3 (calc) MoKa, 0. - 0.71073A) Nicolet P3F diffractometer 18 30<28<39 - 23(1)°c orthorhombic P212121 7.313(1)A 14.336(3)A 17.235(3)A 1931 .7(5)A 0-20 2°lmin (in 20) 2.10 + (29(K02) - 290011)) 50° 3177 Table 1. Continued unique data: Absorption correction: coefficient: type: range: Structure solution: method: H atoms Structure refinement: method minimization: weight, w: H-atoms: scat. factors: Af’ and At": observed data: parameters: convergence: R factors: e.s.d.o.u.w.: computer: program system: 64 3153 20.6 cm1 (for MoKa) empirical, based on psi-scans 0.933 to 1.000, average - 0.981 Patterson heavy-atom, Pd atom located, other non- from succeeding difference maps full-matrix least-squares ZWIIFOI - IFCII2 1.0 for observed reflections riding on carbon atom Cromer and Waber73 Cromer73 2591 with l > 3c(l) 208 largest 8/6 < 0.37 R1 - 2||Fo|-|Fc|| / |2|Fo| - 0.046 R2 - (Zw(|Fo|-|Fc|)2 Iszo2)1/2 - 0.053 2.38 VAX 11/750 SDPNAX74 65 Table 2 X-ray Structure Determination for [1-[(Dimethylamino)methyl]-2,1'- bis(methylthio)ferrocene]palladium(ll) chloride (83) Formula: F.W.: Crystal: color: size: mounting: density: Radiation: Instrument: Unit cell: 00‘. reflns: 26 range: temperature: system: space group: a: c: Volume: Data collection: scan type: scan rate: scan range (°): max. 26: total data: C15H21CI2FePdN82 512.62 deep red 0.04x0.36x0.60 mm glass capillary, random orientation 1.90 g/cm3 (calc) McKa, (l. - 0.71073A) Nicolet P3F diffractometer 13 20 < 26 < 25 24(1)°c orthorhombic P21/C 11.567(2)A 11.675(2)A 13.270(2)A 1792.1 (4)A3 9-29 3°lmin (in 26) 2.00 + (26(Ka2) - 20(Ka1)) 50° 3329 Table 2. Continued unique data: Absorption correction: coefficient: type: range: Structure solution: method: H atoms Structure refinement: method minimization: weight, w: H-atoms: scat. factors: Af’ and At": observed data: parameters: convergence: R factors: e.s.d.o.u.w.: computer: program SYSIGMI 66 g 3006 23.2 cm'1 (for MoKa) empirical, based on psi-scans 0.933 to 1.000, average .. 0.996 Patterson heavy-atom, Pd atom located, other non- from succeeding difference maps full-matrix least-squares 2W(|F0I - IFCI)2 1.0 for observed reflections riding on carbon atom Cromer and Waber73 Cromer73 2742 with l > 30(I) 200 largest 8/c < 0.37 R1 - 2||Fo|-|Fc|| /| 2Fo| - 0.084 R2 . (zw(|l=ol-|l=cl)2Iszo2)1/2 - 0.105 5.59 VAX 11/750 SDPNAX74 RESULTS AND DISCUSSION RESULTS AND DISCUSSION 1 . Preparation of Ligands 3.1 Synthesis of (S.B,)-[ER]CsH4FeC5H3[CHMeNMezuER] (E = S, R = Me, Et, n_-Pr, L-Pr, n_-Bu, t-Bu, m—Bu, l-Pent, Ph, 82, 4-tolyl, and 4-CI-Ph and E = Se, R = Me, Ph, and 4-Cl- P h ) (4 3 - 5 7) . ' A series of previously unknown ferrocenyl amine sulfide and selenide ligands (3,3)[ER]C5H4FeC5H3[CHMeNMe2][ER] where E - S, Se and R - Me, Et, n-Pr, i-Pr, n-Bu, sec-Bu, t-Bu, i-Pent, Ph, 32 4-tolyl and 4-Cl-Ph were prepared via Iithiation of (SJ-[1-(dimethylamino)ethyl]ferrocene, first in the presence of ether and then TMEDA, followed by treatment with appropriate disulfides or diselenides as it is shown in Scheme 8. (5H1-(dimethylamino)ethyl]ferrocene 12 was prepared according to Ugi's procedure34 and was resolved by using (B)-(+)-tartaric acid. At the first step (SJ-12 was lithiated by use of n—BuLl in ether to give 96% of (SJ-(5)43 (Scheme 1)25 further Iithiation in the presence of TMEDA and then reaction with suitable dialkyl or diaryl disulfides or dlselenldes produced the (SJ-(B) amines 43-57. it has been shown that it is necessary to wash the products by use of aqueous NaHCOa solution in order to enhance the yield.75 Without using NaHCOa the yields of the ferrocenyl amines with one sulfide substituent were between 0.1% to 45%"6 while yields were considerably higher when the reaction mixtures were washed.75 In the former case the products were obtained as yellow powders,76 possibly because the products were salts of the amine. Ether was always used as the solvent in the synthesis of these ligands, and halogenated organic solvents such as CH2Cl2, CHCl3 and CCI4 were avoided to prevent the possible production of quarternary ammonium salts such as those reported by Nesmayanov and co-workers.7778 The separation‘was carried out by chromatography on silica gel column. The products in most cases were obtained as 67 ER 1) BuLi/Etfl ® Nine2 2) n-BuU F‘e 3 TMEDA H Me 3’ E2‘12 ‘53 Eé R=Me(43) Et(44) n-Pr(45) i-Pr(46) n-Bu(47) s-Bu(48) t-Bu(49) i-Pent(50) Ph(51) Bz(52) 4-tolyl(53) 4-Cl-Ph(54) E=Se R=Me(55) Ph(56) 4-Cl-Ph(57) Scheme 8 69 brown. oils, but for compounds 51, 53, 54, 56, and 57 after several recrystallizations from Cchlzlhexane the products were obtained as yellow crystals. Compounds 43-57 all have two elements of chirality, namely, central and planar chirality (due to two different substituents in one Cp ring).79 These ligands also have an amine as a functional group. The presence of the elements of chirality and functional group is essential for a ligand if it is to be used in asymmetric synthesis.80 3.2 1H NMR of Compounds 43-57 Table 3 presents 1H NMR data of compounds 43-57. Figures 2 and 3 also show 1H NMR of [S-i-Pr1C5H4FeC5H3[CHMeNMe2][S-i-Pr] and [SPh]C5H4F305H3[CHMeNMe2][SPh) which are typical examples. An important feature of these spectra is the diastereotopic nature of S-CH2 protons. The non-isochronicity of these protons is due to the chirality of the ligands and they appear at different positions with their proper multiplicity. However, sometimes the total number of peaks are fewer than that expected due to the overlap of some peaks. The two methyl groups of NMez are also diastereotopic and, therefore, non equivalent. They give only one signal because of rapid inversion at the N-atom. This phenomenon was also observed by other workers.81 The upfield chemical shifts for the NMez protons are due to the ring current effect. It is difficult to assign substituted Cp ring protons with absolute certainty. 1H NMR studi3632'34 have proved that any substitutent may shield or deshield either positions 2 and 5 or 3 and 4, in any combination relative to ferrocene. Here, we have assigned the position of Cp ring protons by comparison with previous results“5'48 and by integration of clearly separated peaks. a.3 ' 13C NMR of Compounds 43-57 Carbon-13 NMR data are presented in Table 4. Figures 4 and 5 also show 130 NMR spectra of [S-i-Pr1C5H4Fe05H3[CHMeNM32][S-1-Pr] and [S- Ph]C5H4FeC5H3[CHMeNMez[S-Ph] respectively. All of these compounds have central and planar elements of chirality and C1 symmetry. Consequently, groups such as 70 o m... o m... . . 8.6 o5 8.. . 8... as mm. . and as 2... as t... . 8... as 6.... o... 6.. a mo. u N... u h... n a... . 3... as um. . 8... c5 8.. . 09.. . n... z. I. x. «E and «E 3.0 o... «3.. as as. as 3.5. .— and s cm...” on. and «E mad ME cod no «3.. GE med aE mad a mud a and Id mm a: .2 Eco o ”2228...... 68m a 908 s fame:zozzoaozmofiezmofiaad. 5. sea .52 1. ~12 emu at u mm. E o 3.. E u 8.. S o 8.. E e 9...... A... .o 8.. £10 m nod m mod m mod m o..N w vow. w mod N222 E a 8... E a 8... E a .6... _ E o 3... E a on... E o 8... 0230 m aid... on. 3.4 a... 3... o... B... as mm... o5 3... as 3.4 as 8... as 8... DE moi «E vwé DE 50% GE Gui ammo E «Nd E 0.6 E cmé E 0N6 E 0.6 E :6 5.0.0 m 3.8.9 (.0. II 71 u and u .md u 8.0 U mad m ...N a N..N ovwd Dm No.0 on mad at 8d DE 8N NE th GE and NE 6‘. ME Nm. _. DE and DE mmd m «N. E o 3... . t c 8.. E o m... E o a... E o 8.. E o m... E o 3.. E o 8.. 3410 m mm. m nod m hm. m mm. m mm. m mod a mod «5.22 E a «a... E o 8... E o «a... E o .5... S a .o... E o 8.... S a 3...” E a 8... 0220 DE mud ME omé E #0.? DE hoé ME ewé E :2? DE mg? ME mmé E «#6 DE omé ME mmé E ové E mm... . o..v DE mmé ME 00.? E ové DE moé ME me E m..v DE 0.6 ME VN.‘ E m..v ammo £8 E was. .K E ...h- wad E m .K. mod E NNKé .K E ow.h-mo.n .Eum ”owum 3-8.9 gum uowed 6.37819 33.320391... ”mum $.39 32..."... ”mam 3-8.9 266...... umum. 3.39 5...... ”mum .339 2:858 .6228 a one. 72 In E e 8.. 3410 m um. No.22 E o «a... .530 «E 86 ammo on. am... e 8... £8 E mmK... .K omega... :9. .:.e 35.38020.qu u96.-m 5.8.9 9585 255.80 n 2%. 73 cal .. E 2. 9:59.60 .0 82.0on 522 I. .m 2:9“. 74 2.. .. E .m .o 5253... £22 I. .o 659“. ELL 75 0.00 0.00 0.0 ..00 0.0. 0.00 0.0. 00.. ..00 0..0 0..0 0.00 ..00 0.0. 0.00 0.00 0.00 0.00 ..0. ..0. 0.00 0.00 0.00 0.00 0.00 ..00 0.00 0.00 0.0. 0.0. 0.00 0.00 0.00 0.00 0.00 0.00 0.0 ..0. . 0.0. ..00 0.0 ..00 0.0 0.00 0.0 0.00 0.0. 0.00 ..0. 0.00 ..0. 0.00 90.235632 5 sea . "528.5. 58¢ .- 80880 5 .zmusezzizoaxaoeaczoacuéd. 6. :5 .32 on. 3988 38 £2 a... 0.00 0.00 0... 0.00 0.00 0.0. 0.00 0.00 0.00 a 0.0.0.0 0.0.0.0 0... 0.0. v.00 0... 0.0. v... 0... 0.0. 0.0. 0.0. 0... ..0. 0.0. .... 0... . 0... 0.00 ..0. 0.0. ..0. 0.0. v 030. 0.00 ..00 ..0. 0.00 .000 .0... 0.00 .00. .0... 0.00 .0.00 .00.. ..00 ..0. .0... 0.00 .000 .00.. 0.00 .00. .0. 0.0. .0.00 6.00 00 .00 .00 0.00 ..00 ..00 060 ..0 0.00 0... 0.00 0.00 0.00 0.00 a.2 no ..00 0.00 ..2 .0 a... ”mew “mew .mew “mew ”mew ”mew .000 2:2... .omamac 3.7.. 610.9 306.0 678.9 30.0.: 5.89 :2... 64.3.9 .00.: 6.78.9 a... .239 840.. ”mew 60.8.9 2383 76 0... 00.0 00.0 0.0. 00.00 0.0. 0..0 0.00 00.0 0... 0.0. 0.00 0.00 0.00 0.00 0.0. ..00 ..00 So. 88584.32 ..0. 0.00 0... ..00 0.00 0.00 0.0. 0.00 0... 0.00 0.0. 0.00 03.0 0.0. 0.0. 0... 0... 0.0. 0... 305.0 o.o.~.o 0.0. .0... 0.0. 0.0. 0.0. 0.0. ..0. .06. .00. 0.00 ..00 .00. ..0. .0... ..0. 0.0. .0..0. ..... ..00 ...0. .0... 0.0. .06. .0. 00 .00 .00 0.0. 0.0. ..0. 0.0. ..00 .... 000. ..0. 0.00 a... ..0 0.00 0.00 0.00 0.00 0.00 0.00 .0 0.00. 00.00.6000. E0.00..oo.00. o2... 2.8.5.3. 90.31598. 52.2.3.3. 00.0. 00.0 ..E0.00. .Eon..00.00. 00.09.0000. 01.0. 6....0. ..00.0.N. 00.00 ..E..GN. E060 . .0 . .00. Q0400. 300010060. 59.07.00.00— Endu . .00. .0. E f... and .389 .2... 3m... .389 35.320291... warm .389 32...... ad .389 8... ad .289 E... .3 .389 3388 3500000030.. 76 0... 00.0 00.0 0.0. 0.0. 00.00 0.0. 0.00 00.0 0... 0.0. 0.00 0.00 0.00 0.00 0.0. ..00 ..00 80. 0.9.5892: ..0. 0.00 0... ..00 0.00 0.00 0.0. 0.00 0... 0.00 ..2 «.3 £20 0.0. 0.0. 0.0. . 0... v... 0.0. 0... 0.0. 0.0. 0.0. v... 0.0. 0.0.0.0 0.0.0.0 ..0. .0.0. .00. 0.00 ...00 .06. ..0. .0... ...0. 0.0. .00. ..... ..00 ...0. .0... 3.2 3.2 .3 no .6 .8 0.0. .... 0.0. ..0. 0..0 0.0. ..0 ..00 .... 0.0. ..0. 0.00 a... S 0.00 0.00 0.00 0.00 0.00 3.8 .o 0..00. 00.00..o0.00. E0.00..00.00. 00.00. o0.00..00.00. £3. .m.u .389 031.0 8m... .389 a».3..5..8. 355.0323... E...0..00.00. ov..0. 09.075000. .Eon..0n.mo. 00.00..00.00. 00.0. 0...0..o0.0.0. 00.00 ..E..00. £0.00... . .3. 00.00. 00.00..o0.00. 59.076060. 50.00.60. .0. ..0 6.0 .389 22...... "ad .389 8... ad .389 £3. 6.0 .389 3.8.3 0035.000 0 030.. 77 80.0. 05 ..o. a... 1.... $8032 {:0 0.0. 0.0. 0.0.0.0 0.0.0.0 0.0.. .06. .00. 00 .00 .00 ..0 030......- .2000 853.6 "0.06.... “005:.3310 2433...“. august“... 32.19323... ..8 .93....3. 30.0 .289 00 .0 ..0 9.3950 90:00:00 0 030. .78 .8. F: . E 2. .o 52.8% .222 02 83.58.. 8.8 ELL Em 8.80 8.8m .v 229“. 79 Ea .. 5.0 95868 .o 52.8% «:22 00. 020388 0200 ELL .80 8.8m 8.80 8.80 8.8.. .0 2:90 8.86.. 80 isopropyl methyls are diastereotopic and appear at different positions. Due to fast inversion of nitrogen in the NMez, the two methyl groups appear at the same chemical shift. On the basis of deuterium-labeling studies, Koridze85 and co-workers have assigned the signals in methoxy-ferrocene. Such labeling studies were not performed in this work, so most of the assignments here are tentative. Nevertheless, the assignment of c1, c2 and 011 in Cp rings are reasonable. The chemical shifts of oz and C11 reflect the inductive and field effects of the substituents (-SR) and (~SeFl) and they should be close to each other. Therefore. with the exception of the aryl carbons, the most down field peaks are due to carbon C1. Two adjacent peaks in region 77-83 ppm belong to C11 and 02. The assignment of the other carbons of the Cp rings is difficult, and based on comparison with previous results.45'43 a.4 Infrared (IR) Spectra of Compounds 43-57 The IR data are presented in the experimental section. A few examples of IR spectra are also shown in the appendix, and Figure 6 shows IR spectra of compound 46. An inspection of these data shows that some frequencies are common to all the chiral ferrocenyl amine compounds 43-57. The assignment of these frequencies are tentative and based on comparison with the vibrational spectra of ferrocene2 and its derivatives.86 The observed bands around 3150-2750 cm“1 are assigned to C-H stretching frequency. The band around 1450 cm'1 is attributed tothe ferrocene antisymmetric C-C stretch while absorption around 1220-1280 cm'1 could be associated with the C-N stretch. The bands around 620-655 cm'1 are assigned to the S- C stretch while that of 510-550 cm'1 may be associated with the Se-C stretch. The broad band absorptions in the region of 500-470 cm'1 may be attributed to the ring- metal vibrations such as an asymmetric ring-metal stretch or an asymmetric ring- metal tilt. Absorption near 890 cm‘1 is indicative of 1.2-(as opposed to 1,3-) disub- stitution of the Cp ring. This is an excellent tool to distinguish between the two different substituent patterns in cases of acetyl, alkyl and aryl ferrocenyl compounds.37'90 81 00.000 1 ;L 0.00N« 0.0 Illll ..... 2:53 00« .l ..l. 0.000N ....ll.l 0.00vm illll Loneaco>nz 0.000N ..n.‘lll|llull .I'l- I'll. I'II.II|¢|. I.l|.'u. tn: n E we .0 £28QO 5 0.00mm 0.006n 0.000v OO'OOI OOO'OB 000'09 OOO'O? OOO'OZ OOOO'O OO'OZI oauaaatwfiu°dlx .o oSoE 82 a.5 Mass Spectra of Compounds 43-57 Mass spectra (MS) data of compounds 43-57 are given in the experimental section. Figure 7 shows mass spectrum for compound 46, which serves as a typical example. For compounds 43-57 the molecqu ion peaks have high intensity. Other observed peaks are M+-NMe2-SR, CHMeNMez, Fe, SR(SeR) and NMez. Aside from these major fragments, smaller peaks consistent with isotopes 348, 54Fe, 57Fe, 768e, 738e, and 82Se were also observed. b.1 Synthesis of [ER1C5H4FeC5H3[CH2NMe2][ER] (E = S, R = Me, Et, 11.-Pr, l-Pr, n_-Bu, m—Bu, l-Pent, Ph, 32, 4-tolyl, and 4-Cl-Ph and E = Se, R = Ph, and 4-Cl-Ph) (58-71) A series of hitherto unknown ferrocenyl amine sulfides and selenides [EFl]C5H4Fe05H3[CH2NMe2][ER] where E - S and Se and Ft - Me, Et, n-Pr, j-Pr, n—Bu, sec-Bu, t-Bu, l-Pent, Ph, 4-tolyl, and 4-Cl-Ph were prepared via Iithiation of [(dimethylamlno)methyl]ferrocene first in the presence of ether and then TMEDA followed by treatment with appropriate disulfides or diselenides as it is shown in Scheme 9. The products were deprotonated by use of sodium hydrogen carbonate before separation by column chromatography as mentioned in Part 1.a.1 of this section. The yields are generally high,.between 90% to 52%. The yield for sulfide ligands are higher than those of the selenides. Some by-products with only one substituted Cp ring, CpFeCsH3[CH2NMe2][SeR] were found in the case of the selenide ligands. The separation of these by-products was difficult because of their close Rf with the main products in all TLC solvent systems. For each of the selenide ligands, column chromatography was repeated at least three times. The same problem was observed when San-Bub was allowed to react with 9, because t-Bu is a bulky group and it is difficult to introduce two s-t-Bu groups with one in each Cp ring. The yield in this case was only 55%. It is interesting to note that all attempts to synthesize 1,1'-bis(1-butylthio)ferrocene have 83 cnl .- S we 2:888 .o 82.8% «3.2 K 05am own 3.. 3v .0»... can 9.: nlb P nib! P bi P .- P .- IPl-Plb fP LIBPE—fr bllPlbllPl-Plb P .- mB—nlbfWPILII—IIPILI P- . [PI—ylbIIPPBA‘rl-"lnI-ulb —P b twink—ilk!!- . _ . vmn‘ 4 van . . own man . . 2n . new 1 r 0.3 can com on— umu _ . 8“ R 9: 3. n2 . mom 4 ~ _ . {a 1 gm A r 4 r A n' v L redw— 84 [~14sz <62?”sz Fe Fr 1) BuU/Etg } © 2’ $323. @411 3) E2R: E=S R=Me(58) Et(59) n-Pr(60) i-Pr(61) n-Bu(62) s-Bu(63) , t-Bu(64) i-Pent(65) Ph(66) Bz(67) 4-tolyl(68) 4-Cl-Ph(69) E=Se R-Ph(70) 4-Cl-Ph(71) Scheme 9 85 failed.91 However, [1-(dimethylamino)-methyI]-2-1-butylthio ferrocene, which has only one t-butyl sulfide substituent, was prepared and the yield was 52.5%.92 Compounds 58-65 and 67 were obtained as brown oils while ligands 66, 68, 69, 70 and 71 were crystallized by use of a Cchlglhexane mixture. These compounds lack central chirality but they all have a planar element of chirality due to two different substituents In one Cp ring.2 However, the products here are racemic mixtures. Kumada and co-workers19 resolved ferrocenyl amine phosphines analogs and used them as well as ligands with both central and planar chirality (analogs to 43-57) for asymmetric Grignard cross coupling reactions and found that the ferrocene planar chirality is more important than the carbon central chirality.37 Such resolution was not performed here. The investigation of the regioselectivity of Pd complexes of these ligands was emphasized In this work. The mono and dilithio substituted 8 and 9 (Scheme 1) were not isolated here but rather were prepared fresh for each reaction. However, Flausch and co-workers reported isolation and characterization of 1,1'- Dilithloferrocene, 2TMEDA, ferrocenyllithium, TMEDA, and 2- lithio[(dimethylamino)methyl]ferrocene as air-sensitive solids.98 Ligands 58-71 are air-stable and they have been characterized by 1H NMR, 13C NMR, IR, MS and elemental analysis b.2 1H NMR of Compounds 58-71 Table 5 presents 1H NMR data for ligands 58-71. Figures 8-10 show in NMR spectra of compounds 61 (Ft - i-Pr) and 64(R - 1-Bu) and 66(R - Ph). The large chemical shift between the two diastereotopic protons of the amino-methylene group in the 3-4 ppm region for many of these compounds is an important feature of their 1H NMR spectra. For example, the value of MN“ for ligand 61 (Figure 8) is 6 so there are two clearly defined doublets. These chemical shift differences are variable and depend on the nature of the R group. Compounds with alkyl sulfide substituents generally have larger chemical shift differences than those with aryl substituents, 86 DE $8? a 2.. e 3a a Re as 8... E z... 5.3. ”mum .3 e t... s 8.. . 3... e m... a «3 e on.» as 9... . 3... e e... 5 Ba a t.“ c em... as u... e a... 3.9.: ”mum .3 a... 8d _ 8... e 9... e «a. as 8d a: e 8.» as on... . we... a 5.. s 2... as 8.... e ta 8: u on.” as 8... e 2... 8.9.: ”mum .3 e a... c e... e o... c 8.." a. e S.» as we... a 8.. a .3 e 8a a. e t... as 8... e a... :21... ”mum ..e as 3.0. . me... e 3... as and a: c and as R... . 8... e an. as 9.3 a 2.... a: u a... a5 8+ 2 t... iarm “mum .8 DE EN . c... as 8d a: u mm... as ewe . «.m. as new a 8a a: e cm.» as o... e e... mum ”mum .8 a mud a: c mod as am... e and a 8d a: c em.” as 8... E 2... ezrm .mrm .3 30-5 5 x. In .3 «222 23.0 38 58 & 8:358 mm a: .3 See a ”2223.8. 58.. a «.08 c. Emfies.zuxoaxmoecezmoaa 3. sea «.22 :. ex: 8“ m as... 87 m cud 30.... nu Noé nu cad «a No.0 u had u vmd . nE KN u de E 3... E mm; nE vmd u and E no; E mm; aE vmd :e x. .a .3 mm m :d m afim m vod a mod a 3d a VON a 2d N222 e 2.... 9E .e... c B... «E .e... E 3.... e mm... cE an... e mm... «E 3... E S... eE mm... c a...” E B... E 9.... a. u .m.» cE on... a. u a..." «E em... E 8... a. e 2.... .8. e 8d E one. 2... e an... cE 8... e :3 «E 8... E 3+ 8.. u 3.... «E 8... 8.. u om... .aE 8... E ...e 230 Eco £8 mm.~-.w.~. NvKénK :KéQm mo.~..mm.o «0.5% _..n a — .h.No.~. IND .1 pm ;cozaoazoéum ucmuw . K scum ”owuw .2. 35.320.20.qu ”mum .am acacia ”mum .8 Nmum “mum .ho clam umam do 29...... ”mum .3 Season. 835.80 m as... 88 Ewan. r E 3 3:868 .o 62.8% «.22 x. .m 239”. as a. a~ a.n skate”... em a. es en FEE—EECEL. EELEE:L..E:EL::ELE J i _ al _ F: u m: 3 9.3388 .o 528on 522 I. .9 059m ELL 8.. 8m U h 80 an 17311131344443; 3j%— 144133.. 14 714444 4444—4111 1. 153% - 4 89 Ea r m. 8 3 E2823 m2: 1. .e. 9:9“. 90 F1 .. E 5 2:858 .o 62.8% $22 On. 33:82. 360 ... 23E 91 (compare Figure 8 with Figure 10). Chemical shift differences in ligands with alkylthio groups depend on the steric crowding at B-carbon of the alkyls. The largest chemical shift difference have been-observed for ligand 67(R - 82) and the smallest for compound 64(Fl - t-Bu) and 67(Fl - 4-Cl-Ph) for which Av/J - 0.0 and the two signals overlap (Figure 9). The compounds with aryl substituents have smaller chemical shift differences between their aminomethylene protons, possibly because one proton is close to aromatic ring and the effect of ring current on that proton force two peaks to be close to each other. The thiomethylene groups (SCfl2-) are also diastereotopic and the two methylene protons with their proper multiplicity are present at different chemical shifts. The nitrogen methyls appear as singlets in the 1.99-2.16 ppm range because the inversion of the-pyramidal N of NMeg is faster than the NMR time scale at room temperature. The assignment of Cp protons is difficult and require deuteration studies. Such studies were not performed here. The assignments in Table 5 are based on the integration of different peaks and the previous results obtained in this laboratory,45'48 and the results of Ovoryantesva."5 The chemical shifts for different protons of R in -SR or -SeR (Fl - alkyl) appear at 0.70-3.50 ppm which is the expected region for alkyl sulfide and selenide substituents. Protons closer to S and Se have lower chemical shifts so 0M > pH > 1H > 8H (Table 5). Comparison of Tables 3 and 5 reveals the following interesting points. 1. The spectra of compounds 43-57 basically are similar to those of 58-71 except that because of the existence of the CH2MeNMe2 substituent in the first series, there is a doublet around 1.38-1.45 ppm and a quartet around 3.62-4.04 ppm while in the second series, because of the existence of CH2NMe2 group with two diastereotopic methylene protons there exist two doublets which sometimes are completely distinguishible and sometime overlap to prodUce only a singlet. 2. The diastereotopic thiomethylene protons in the second series (compounds 58-71) have chemical shift differences similar to those of the first group (compounds 43-57). 3. The protons of the NMe2 methyls in 92 the second series appear at lower chemical shifts (204-2.18) relative to first series (1.91-2.13 ppm) because Me of CHMeNMeg is more electron donating relative to H of - CHgNMeg. Some 1H NMR spectra of these series are shown in the appendix. b.3 13C NMR of Compounds 58-71 Carbon-13 NMR data of compounds 58-71 are presented in Table 6. Figures 11 and 12 show 13C NMR spectra of compounds 61 and 66, respectively. A few other examples of 13c NMR spectra can be found in the appendix. All of these ligands have planar chirality and C1 symmetry.2 Consequently, groups such as isopropyl methyls (Figure 11) are diastereotopic and appear at different positions. Due to fast inversion of two methyl groups in the NMeg these two non-equal groups appear at the same chemical shift. The assignment of Cp carbons is tentative. 130 NMR spectroscopy is a sensitive tool for measuring the electron density on the Cp rings of ferrocene. Each substituent can have two different effects. 1. Magnetic anisotropy of the substituent, 2. electronic effects of the substituent which encompasses both resonance and inductive components. Unambigious assignment requires labeling studies such as those performed by Koridze and co-workers.35 Nevertheless, the assignments of C1, Cg and C11 in Cp rings are reasonable. The chemical shifts of Cg and C11 reflect the magnetic anisotropy and the electronic effects of the substituents (-SFi) and (-SeR), which should be similar. Therefore, the most downfleld peaks (except aryl carbon signals) are due to the carbon Ct and the two adjacent peaks in the region 77-83 ppm belong to C11 and Cg. A comparison with other results obtained in this laboratory“5'48 is the basis for the assignment of the other peaks. A quick look at tables 4 and 6 shows a general agreement between the ‘3 C NMR spectra for the two series, except that the first series has one more signal for the same (-SR) or (~SeR), because (CHMeNMeg) has 3 signals while (CHgNMeg) has only 2 signals. 93 tau. 93 ..2 0.35 On v.5“ a.5“ 6.2 3.... ad— 0.0— ud— 0.94. v64 '6' ¢.vv v.mv «6' '6' adv Ymv cp o. oewezz a.5» pd» 0.5... T5» «.5... 0.0» 1... —.N5 —.n5 v.65 065 0.05 065 565 665 «65 9N5 v.05 v.2 a.2 a: ...: ...: ...: 5.: «.8 .«.2 ......z «.2 ..S ...S .52 a.2 9:. «.3 ...2 .....z c: 3L a: «.2 .2: ...: . ...: a: 6.2. .9: ads I: a.2 6.2 .12 6.: a: «.8 a.2 .12 8.6.8 zfo Joe—o £0.50 c.55 o.~o «.55 «do N.o5 odn 5&0 «do :0 ~65 5&9 «.55 wine ode ado 9N0 v.00 «0 06¢ —.uo —.oo 5.90 «do 5 and“ — 0563.015“— ENdNfiEvda— a¢.o:.-o. :— cm 6.: . "52gb 58.. a 80880 5 Emfiezzfoszmoeafeoim. 3. :6 as: on. 39586 38 £2 a...“ o 03.... S "mum .3 2.97m. "mum . 3.7: "new .3 sch-c 6d .3 5.7: "new .5 umalc "new .3 inc “new .au .24. and .3 .5988 93 ..««. o.«« e.«« 0.00 00 v.5« 0.5« o.«« ..«« 0.0p 0.0— 0.; 0&0 «.«0 0.«« «.0« 5.0« v.0« 0.0« 0.05 5.0— 0.00 0.00 —.00 v.00 0.3 0.; 0.0— o.o« v.00 0.00 0.00 v.0v «.00 0.00 0.0V v.0v o. o. 9.922 0.50 p.00 0.50 5.50 0.50 0.00 4.5... 0.05 0.05 0&5 v.05 4.2 ..2 a: ...: ...: ...: c: «.3 «.2 5.: ...: ...: ...: ...2 a: 9:. «.3 ...2 .....z a: 32 «.8 «.2 62 ...: . a: as 5.2 .9: e.«« 4.2 a.2 ...2 .1: 0.: ..: «.8 .«.«« ...: 8.6.8 23.0 :0 .0—0 050.50 0.55 0&0 v.55 0&0 «.05 0&0 5&0 0.00 :0 «.05 5&0 0.55 0&0 0.00 0&0 0&0 0.00 «o 0.00 —.00 —.00 «.00 .c no.0“— osdu — .o v.5“— EN.ON..EQ.ON5 00.0v—.0O. — v— cm 6.: . Eases...» 58: a 80380 c. Emfiezzexoazmotezmoaa 3. :8 522 on. 3886 38 £2 8« 0 03.... £1: "new .3 20.2.0 "mum . 3.7: "new .3 5.9.0 66 .«o 5.3. “new .3 5.0.1 "0:0 .3 an: "new .3 12.: "mum .3 ...-62.8 94 0.06 0.06 0.00 c0.—« v.06 6&6 5.: «.06 8 or Ronni: 5.00 5.00 —.05 6.50 ...: 6.05 6.55 5.55 p.55 «.55 0.05 5.05 5.05 0.05 0.05 0&5 0.05 6&5 0&5 zfo :o .«.o «.0 .«.o 0.—5 .065 .«.05 5.5 .005 .«.05 0.5 .065 ...55 0.5 .0.05 .005 0.05 .0&5 .065 ...o ..o .«.o 0.05 6.05 :0 030......- “2270 353-... ”82.-E 6.5533... 0.05 0.05 6.05 0.05 0&0 «o 0.00 0.00 0.00 0.00 00.0«— 00.03.6040— a«.«0—.0060— a0.0«—.o0.0«— 0009.60.02 «05.02.00.3— o—dw— 00.0N—.E—.0N— Ev.0«—.aw. p0— 00.23.00.00— 00.5«5 00.5«—.E0.0«— 50.00—60.00— 0000709505 00.0«— .0002 o p .0« — .00.0«— E0.0«—.E«.0«— «0.00—.«.00— at 15.320297». 30am ..5 Elm "om-w .05 .xcozaocoEoé-m ”mew .3 32.1.". .mé .3 3.... ”......m . 239:8 3.550 e .33. 95 Emu 5 mm 0:39:00 .0 €28QO E22 02 029.8% 830 .0: G.Qn 8.8m 8.0:. 8.8n 8.85” 8.80.; .«_ «Sui 96 00.000 ...-iii: tn: .. E 5 2.2888 .0 82.8% m: .«tEu. Lcoeacc>oz 0.00m" 0.0000 tlllllllilllii o.ooom o.oovm o.oomm o.oomm o.oomm o.ooov -tillTllllllLllil . 0 0 i—-——--———+--- OO'OZt 000°09 000°09 OOO'OP 000'02 OOOO'O OO'OOt .0— 820:. OSUBiz‘W‘U§JL% 97 b.4 Infrared um and Mass Spectra for Compounds 58-71 IR spectra of these series are very similar to those of 43-57. Figure 13 shows the IR for ligands 61 (R -1-Pr). Comparison of this figure and Figure 6 reveals this similarity and the reader is referred to Part 1.a.4 for the detailed discussion of Infrared spectra. A few IR spectra of this series are shown in the appendix. Mass spectra of these complexes generally show molecular ion (M+), (M+-15 or M+-Me), (M+-45 or M+-3Me), (NF-SR), (M+-SR-CHgNMeg), CHgNMeg(58), Fe(56), NMe(44). Smaller peaks consistent with isotopes 3“'8, 5“Fe, 57Fe, 768e, 738e, 328e are also observed. Figure 14 shows mass spectra of ligand 61 (R - i-Pr). 2. Preparation of Complexes a.1 Synthesis of Palladium and Platinum Complexes (5.3,)- [ER]CSH4F065H3[CHMeNMeg][ER][MClg] (M = Pd, E = S, R = Me, Ph, 82, 4-tolyl, and 4-Dc-Pl't; M = Pt, E = S, R = Ph, 82, 4- tolyl; M = Pd, E = So, it = Ph, and 4-Cl-Ph; M = Pt, E = Se, R Ph) (72-82) Complexes 72-82 were prepared via treatment of appropriate benzene solution of chiral ferrocenyl amine sulfide and selenide ligands with bis(benzonitrile)palladium or platinum chloride, (PhCN)gMClg (M - Pt, Pd) according to Scheme 10. The resulting heterobimetallic products are insoluble in benzene. Precipitation of the products occur after a few hours (3-8) in the case of palladium and after 2-7 days in the case of platinum. The palladium complexes are soluble in acetone and other polar solvents such as methylene chloride and chloroform, but the Pt complexes are not soluble in any common solvents. They are only slightly soluble in acetone. Analytically pure complexes of palladium were obtained by recrystallization from acetone or mixed solvent systems of methylene chloride/hexane. 913 we? 050 060 «5N ..." '0“ $2 a E 5 0.50qu0 .0 52.0QO 000.2 .3 059... «am 00- 00— on wx: 6.. :: __.;.._:_,_:_:: __ 7 . 00 .5. mm. 0 _ 00 .5 . v.— Nnu _m— 50 06 00 r 0.00 ..0.00~ 99 ea 7%: "M” (PhCN)2MCl2 Fe ' 2 F. H! W benzene 6E R R E-S, M-Pd, Fi-Me(72) Ph (73) 82 (74) 4-tolyl (75) 4-Cl-Ph (76) M=Pt, R=Ph (77) 82 (78) 4-tolyl (79) E=Se. M=Pd, RaPh (so) R=4-Cl-Ph (81) M-Pt, R=Ph (82) Scheme 10 100 a.2 ' 1H NMR of Heterobimetallic Complexes 72-82 The 250 MHz 1H NMR data for the chiral palladium complexes are presented in Table 7. Because the platinum complexes are almost insoluble in all common solvents, obtaining solution NMR for them was almost impossible and they were characteized by elemental analysis, mass spectra and infrared spectra. Figure 15 shows the free ligand (S..B)-[S-4-tolyl]CsH4FeCsH3[CHMeNMeg][S-4-tolyl] 53 versus complex 75 which was obtained by complexation of free ligand 53 with the adduct of palladium dichloride. This comparison is very important for deducing the striking differences between the free and complexed compounds. It is also helpful to understand the structure of bi- metallic complexes. One important feature of complexed ligands is the downfield shift of all signals because of either magnetic anistropy or the inductive effect of the metal chloride. Also, in the free ligands, two non-equivalent methyl groups of S-Ph-Mg accidentally appear at the same chemical shift while in the palladium complex 75 they are separated by 0.2 ppm and both signals are downfield relative to free ligand. The most striking difference in the 1H NMR spectra of the complexed ligand relative to the free ligand is the observed chemical shift of the methyl groups in NMeg. Sokolov, et al. had observed in the 2-dimethylaminomethylferrocenyl palladium chloride dimer, there were two signals for the two methyl groups of NMeg.96 Here, the same splitting pattern was observed. This is a very important and helpful observation in understanding the structure of these compounds. Chiral ligands 43-57 have three coordination sites, one N atom and two 8 atoms (or Se atoms). Therefore, there are three possible structures as shown in Scheme 11. The structure of PdClg[(§_)-(B)-BPPFA] has been reported by Kumada and co-workers97 (Figure 16). in that complex, palladium is coordinated to the two phosphine atoms, rather than coordinated by a phosphine and a nitrogen atom. However, the appearance of two methyl groups of NMeg at two different chemical shifts rule out the existence of similar structure for the analogous, ferrocenyl amine sulfide and selenide complexes. Structure C of Scheme 11 cannot be ruled out without further 101 E 05660.0 0 0«.« a «m.« «2.0 a 26.300 0 0«.« a 00.« 030.50 ««.« p or... S.» 8.« p 8.. 30 3.« E u on.— $0 03 c :0 mm... 8.» mod E u 9... «no .0« E 0 m3 8..” . a«.« E u «3 ad Toflo «022 a t... a 9... Eu «2. E a 2... E .6 .«.v E a S... E a 3+ 30030 656.006 006.006 «6.6.006 066.6«6 E 66.6.0«6 E —6.6.0«.6 E 006.206 ammo ...:«0 EE 56.5.5 «.5 00.5.6 —.5 06.5000 5«.5.«0.0 60.5.0 5.5 m«.5.00.0 3.5-06.5 .5 IND .150 _>cozao.o__._0.6um n8%. .3 50am 60am ..00 Saga—2020.6 6am .05 scream ”mum .2. «mac ”mum .65 cmum ”mum .05 ofium .mum .«5 a: .3 sea a 653.35.: 28m a 9000 c. _«_0E=mm=«e2zezzofixmoeaezmofiaédv .2 «an «.22 z. «:2 8w. 5 030... SiL '102 JL M JJ 'l I IIT‘ITIIIIIII‘III“![111I‘YTITIT1IIIIIIII1IIITIIIIIlllIIIYTTIYYYYIYYYYI 8.2 7.0 8.0 5.0 ‘1.8 3.8 2.0 . 1.8 Figure 15. A) 1H NMR spectrum of compound 53 B) 1H NMR spectrum of complex 75 103 Scheme 11 MCI 2 104 Figure 16. Structure of PdClg[($_,fi)-BPPFA] 104 Figure 16. Structure of PdClg[(S_,B)-BPPFA] g WTIIIIIIIIIIIIIIIITIIIIIIIIIJIIIIIIIIIIIIIIIIIIIIITIIIIIIIIIIIIIIITIT 7.0 8.0 s.ra ma- 3.0 z.ra- '1.0 Figure 17. a) 1H NMR spectrum of ligand 68 b) 1H NMR spectrum of complex 69 106 investigation. As it will be shown, the structure of [SMe][05H4]Fe[05H3]- [CHzMeNMe2][SMe][PdCl2] was investigated by X-ray diffraction analysis and it confirmed the structure a (Scheme 11). From the above discussions it can be concluded that in. the metal complexes the chemical shifts of the two methyl groups in NMez are different and much more downfield than those of the corresponding free ligands. The inversion of the bipyramidal N of these metal complexes are prevented by the presence of rigid 6-membered ring complexes (a. Scheme 11). a.3 Infrared Spectra (IR) of Chlral Complexes (72-82) The infrared data for complexes 72-82 are given in the experimental part. A comparison of these data and those of the free ligands shows that the most striking difference can be found in the low frequency region because of the presence of metal- ligand vibrations. lR data for several complexes are given in Table 8. These data clearly show that metal-S bands are very close to metal-Cl bands and it is often very difficult to distinguish one from the other. So here the bands around 231-389 cm'1 are attributed to the Pd-CI or Pd-S bands. The Pd-N and Pt-N stretches occur in region 460-500 cm'1 and at 630 cm'1 respectively. As was emphasized earlier, the complexes 72-82 have C1 symmetry and in these kinds of molecules often more than one fundamental mode contributes to a given peak.”7 Thus these assignments are tentative, however, all data in Table 8 and also other values in the literature confirm them.1°3‘1 ‘3 107 Table 8 Metal-N, Metal-Cl, and Metal-S Stretching Modes in Some Pd and Pt Sulfide Complexes Compound 72 73 77 78 (PhSCaHasPh)PdCl2 PszClga [PdCl2(RN-Cl-l-CH-NR)] [PdCl2(Py-2-CH=NR)] Pd(PhSCH20HQSPh)Cl2 Pt(PhSCHZCHZSPh)Cl2 Pd(PhSCH-CHSPh)Cl2 Pt(PhSCH-CHSPh)Cl2 Pd20l4(SMez) [Pdlsalel [Pl(33N)2l Pd(PhS)2 (diars) Pt(dto)22‘ v. crn'1 492 389.374 326.269 469 378.360 321.231 649 ' 331.359 340.268 651 376.369 339.247 278.262 323.308 480 325 337.330 330.338 315.296 315.302 313.293 316.300 340 374.319 329 363,317 340 Stretching Mode Pd-N Pd‘C'o Pd'S Pd-N Pd'Clc Pd’s Pt-N Pt-S and Pt-Cl Pt-N Pt-S and Pt-Cl Pd-Cl Pd-S Pd-N Pd-Cl Pd-Cl Pd-Cl Pd-Cl Pt-Cl Pd-Cl Pt-Cl Pd-S Pd-S Pt-S Pd-S Pt-S Reference This work This work This work This work 98 99 100 100 101 101 101 101 102 103 103 104 105b Table 8 Continued Compound Pth1 Cl2c [Pill-1°Hizl 108 v. cm'1 565 325 530.746 330 Stretching Mode Reference 106 106 aL-2-picolyl-p-nitrcSphenyl bdto-dithionalato complex °L1-NH2NHC(-S)SM6 109 b. Synthesis and Characterization of Palladium and Platinum Complexes [ER105H4FeC5H3[CH2NMe2][ER][MCl2] (M = Pd, E = S, R = Me, Et, n,-Pr, L-Pr, Ph, 82, 4-tolyl, and 4-Cl-Ph; M = Pt, E = s, n -.- Me, Ph, 32, 4-tolyl, and 4-Cl-Ph; M = Pd, E = s9, 11 = Ph) ( 8 3 - 9 6 ) The new heterobimetallic complexes 83-96 were prepared by reaction of bis(benzonitrile) adducts of palladium and platinum chloride with appropriated ferrocenyl amine sulfide or selenide ligands as discussed in Part 2.a.1 of this section (Scheme 12). These complexes have a planar element of chirality due to two different substituents in the 1,2 positions of one Cp ring2 but the product was obtained as a racemic mixture. 250 MHz 1H NMR data for these complexes are shown in Table 9. Also Figure 17 shows the comparison between free ligand [S-4-tolyl105H4FecsHalcHzNM92][S-4- tolyl] 68 and its palladium complex 89. The non-isochronicity of the two methyl groups of NMez (Figure 16b) is strong evidence for coordination of that group to the metal as a consequence of a higher energy barrier for inversion at the nitrogen atom. Structure of [1-(Dimethylamino)methyl1-2,1‘-bis(methylthio)- ferrocene Palladium(ll) dichloride (83) Atomic parameters are listed in Table 10 and 11 and selected bond lengths and bond angles are given in Tables 12, and 13. A drawing showing the atom labeling and thermal ellipsoids is given in Figure 18 and a Stereographic packing diagram is given in Figure 19. The carbon-carbon distances in the cyclopentadienyl ring vary from 1.35 (2) A to 1.48 (3) A averaging at 1.41 (3) A. This is a typical value for ferrocene. The bond angles within two Cp-rings (C-C-C) change from 105(2)° to 111(2)° with an average of 108(2)° which is the typical value for the angle of a regular planar pentagon. 110 e ‘3» (131106112114012 Qi‘fp #— \C: benzene Fe R E=S, M=Pd, R=Me (83) El (84) n-Pr (85) i-Pr (86) Ph (87) 82 (88) '4-tolyl (89) 4-Cl-Ph (90) M-Pt, R=Me (91) Ph (92) 82 (93) 4-tolyl (94) 4 ~Cl-Ph (95) 8:89, Mapd' R-Ph (96) Scheme 12 111 INn IF m m an 8.“: .3 new £6-.. 1 m a 2d :3: o 8.3. 9.3-2... 3.358 ”m u m .8 ... .33 m 2% A3: a new 3.2... a m m 3d a 2.” Cum: 8 8... 3.13.3 3.5-38 um u m .8 m 3d 8.2 .3 new Nm ..m 3.136 m 8.” 8d: 8 2.0 «3-8... 8.3: um ... m .8 m 34.. EN: 8 new i n m a t.” 3.“: c a...” 9.3? 22-5.» ”m a m .5 ac mm.“ . 3.. we Rd 3 8d 8.3 u «3 m. am _ 34 as R.” ... 88 :3: u «a... «3.8.3. ”m n m .3 a 2d ... «3 Cum: u Sum 221m 3 «3 m mod rd: .3 23 9.18.3. ”m u m .8 €388 In a :6 £95 82230 Nazzflo £60313 5. 2:880 mm a: .3 5% a 85.3853 586m a 9508 s 3025.64.82z~:o_oxmo££mo_mm_ .2 28 $2 I. £2 8“ m min... CLI The molecular structure and the numbering of the atoms of 83 Figure 18. 113- Stereographic packing diagram of 83 Figure 19. [1-[(Dimethylamino)methyll-2,1'-bis(methy1thio)ferrocenel- Atom Pdl Pel C11 C12 81 52 N1 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 114 Table 10. Positional Parameters and Their Estimated Standard Deviations for Palladium(II) Chloride (83) -0.00391(9) 0.3796(2) -0.2012(4) -0.0070(4) 0.1960(3) 0.4199(4) -0.001(1) -0.037(2) -0.099(1) 0.110(1) 0.202(1) 0.259(2) 0.332(2) 0.319(1) 0.243(1) 0.454(1) 0.422(1) 0.476(2) 0.544(2) 0.534(1) 0.264(2) 0.306(2) .07699(9) .5121(2) .1096(4) .2026(4) .0392(3) .1420(5) .031(1) .038l2) .126(1) .089(1) .002(1) .04S(2) .137(2) .148(2) .070(1) .120(2) .180(2) .135(2) .043(2) .033(2) .139(2) .241(2) 0.13725l8) -0. 0. .0033(3) .1070(3) .0622(4) .2701(9) .357(1) .253(1) .293(1) .310(1) .396(1) .365l1) .261(1) .225(1) .190(1) .276(1) .361(1) .329(2) .219(1) .032(1) .073(1) OOOOOOOOOOOOOOOOOOO 2072(2) 1597(4) 2.16(2) 3.22(5) 4.08(9) 3.55(8) 2.90(7) 4.6(1) 2.7(2) 4.3(4) 3.7(3) 3.4(3) 2.5(3) 4.1(4) 4.6(4) 3.6(3) 3.5(3) 3.5(3) 4.0(4) 4.5(4) 5.4(5) 3.8(4) 4.9(4) 4.9(4) Anisotropically refined atoms are given in the form of the isotropic equivalent thermal parameter defined as: (4/3) * (92*9(1,1) + b2*B(2,2) + c2*8(3,3) + ablcos gamma)*B(1,2) + ac(cos beta)*B(l,3) + bc(cos alpha)*8(2,3)] 115 Table 11. General Temperature Factor Expressions - U's - for [1-[(Dimethylamino)methyl]-2,1'-bis(methy1thio)ferrocene]- Palladium(II) Chloride (83) U(1,2) 0(2.3) U(2,2) 0(3.3) u<1.3) 901 0.027(1) 0.026(1) 0.029(1) 0.000(0) 0.001(0) 0.001(1) 961 0.039(1) 0.042(1) 0.041(1) 0.003(1)-0.006(1) 0.001(1) c11 0.040(2) 0.055(2) 0.059(2) 0.007(2)-0.002(2) 0.008(2) C12 0.053(2) 0.045(2) 0.037(2) 0.007(2)-0.003(2) 0.011(2) 51 0.040(2) 0.035(2) 0.035(2)-0.001(2) 0.005(2) 0.002(2) 52 0.058(3) 0.066(3) 0.051(2) 0.003(2) 0.005(2)-0.006(2) N1 0.040(6) 0.033(6) 0.028(6)-0.002(5) 0.005(5)-o.000(5) c1 0.07(1) 0.06(1) 0.035(9) 0.013(9) 0.003(8)-0.005(8) c2 0.041(8) 0.054(9) 0.045(9)-0.013(8)-0.004(7) 0.006(8) 03 0.046(8) 0.039(8) 0.043(8) 0.005(7) 0.002(7) 0.008(7) c4 0.033(7) 0.032(7) 0.032(7)-0.004(6)-0.003(6) 0.005(6) cs 0.06(1) 0.05(1) 0.045(9) 0.010(9)-0.008(8)-0.006(8) C6 0.05(1) 0.07(1) 0.06(1) -o.007(9)-o.009(9)-o.01(1) c7 0.034(8) 0.047(9) 0.057(9)-0.004(9)-0.009(7)-0.005(9) cs 0.053(8) 0.049(9) 0.034(9) 0.009(9) 0.020(7) 0.009(7) c9 0.034(8) 0.050(9) 0.049(9) 0.004(8) 0.000(7)-o.006(8) 010 0.040(8) 0.049(9) 0.06(1) 0.019(8) 0.006(8)-0.003(9)‘ C11 0.05(1) 0.06(1) 0.06(1) 0.019(9)-0.002(9) 0.002(9) C12 0.08(1) 0.05(1) 0.07(1) -0.01(1) -0.02(1) -o.01(1) C13 0.049(9) 0.045(9) 0.053(9)-0.000(8)-0.001(8) 0.010(8) C14 0.07(1) 0.06(1) 0.06(1) -o.00(1) 0.01(1) 0.01(1) C15 0.08(1) 0.05(1) 0.06(1) 0.01(1) -o.02(1) -0.00(1) The form of the anisotropic thermal parameter is: exp[-2n2{h2a20(1,1) +.k 2 2 2 620(2.2) + l c U(3,3) + 2hkabU(1,2) + 2hlacU(l,3) + 2klch(2,3)}] where a, b, and c are reciprocal lattice constants. 115 Table 11. General Temperature Factor Expressions - U's - for [1—[(Dimethylamino)methyll-2,1'-bis(methy1thio)ferrocene]- Palladium(II) Chloride (83) Name 0(1,1) u(2,2) u(3.3) 0(1.2) u(1,3) U(2,3) Pdl 0.027(1) 0.026(1) 0.029(1) 0.000(0) 0.001(0) 0.001(1) P91 0.039(1) 0.042(1) 0.041(1) 0.003(1)-0.006(1) 0.001(1) C11 0.040(2) 0.055(2) 0.059(2) 0.007(2)-0.002(2) 0.008(2) 012 0.053(2) 0.045(2) 0.037(2) 0.007(2)-0.003(2) 0.011(2) 91 0.040(2) 0.035(2) 0.035(2)-0.001(2) 0.005(2) 0.002(2) 52 0.058(3) 0.066(3) 0.051(2) 0.003(2) 0.005(2)-0.006(2) n1 0.040(6) 0.033(6) 0.028(6)-0.002(S) 0.005(5)-0.000(5) C1 0.07(1) 0.06(1) 0.035(9) 0.013(9) 0.003(8)-0.005(8) C2 0.041(8) 0.054(9) 0.045(9)-o.013(8)-0.004(7) 0.006(8) C3 0.046(8) 0.039(8) 0.043(8) 0.005(7) 0.002(7) 0.009(7) C4 0.033(7) 0.032(7) 0.032(7)-0.004(6)-o.003(6) 0.005(6) c5 0.06(1) 0.05(1) 0.045(9) 0.010(9)-0.008(8)-0.006(8) C6 0.05(1) 0.07(1) 0.06(1) -0.007(9)-o.009(9)-o.01(1) C7 0.034(8) 0.047(9) 0.057(9)-0.004(9)-0.009(7)-o.005(9) C9 0.053(8) 0.049(9) 0.034(8) 0 009(9) 0.020(7) 0.008(7) c9 0.034(8) 0.050(9) 0.049(9) 0.004(8) 0.000(7)—0.006(8) C10 0.040(9) 0.049(9) 0.06(1) 0.019(8) 0.006(8)-0.003(9)' C11 0.05(1) 0.06(1) 0.06(1) 0.018(9)-0.002(9) 0.002(9) C12 0.08(1) 0.05(1) 0.07(1) -0.01(1) -0.02(1) -o.01(1) C13 0.048(9) 0.045(9) 0.053(9)-o.000(8)-0.001(8) 0.010(8) C14 0.07(1) 0.06(1) 0.06(1) -o.00(1) 0.01(1) 0.01(1) C15 0.09(1) 0.05(1) 0.06(1) 0.01(1) -0.02(1) -o.00(1) The form of the anisotropic thermal parameter is: exp[-2n2{h2a20(1,l) +.k bZU(2.2) 2 2 + 1 C 0(373) + 2hkabU(1,2) + 2hlacU(l,3) + 2klch(2,3)}] where a, b, and c are reciprocal lattice constants. 116 Table 12. Bond Distances (in Angstroms) for [1-[(Dimethylaminoimethyll-2,1'-bis(methy1thio)ferrocene]- Palladium(II) Chloride (83) Atoml AtomZ Distance Pdl C11 2.335(4) Pdl C12 2.305(4) Pdl Sl 2.277(4) Pdl N1 2.164(12) 81 C8 1.74(2) 81 C14 l.78(2) 52 C9 1.76l2) 82 C15 1.76(2) N1 C1 1.47(2) N1 C2 1.51(2) N1 C3 1.50(2) C3 C4 1.52(2) C4 C5 1.41(2) C4 C8 1.45(2) C5 C6 1.44(3) C6 C7 1.39l3) C7 C8 1.35(2) C9 C10 1.39l3) C9 C13 1.42(2) C10 C11 1.38l3) C11 C12 1.41(3) C12 C13 1.48(3) Numbers in parentheses are estimated standard deviations in the least significant digits. 117 Table 13. Bond Angles (in Degrees) for [1-[(Dimethylaminoimethyll-Z,1'-bis(methylthio)ferrocene]- Palladium(II) Chloride (83) Atoml AtomZ Atom3 Angle C11 Pd1 C12 89.0(2) C11 Pdl Sl 176.6(2) C11 Pdl N1 89.9(4) C12 Pdl $1 89.9(2) C12 Pdl N1 175.9(3) 51 Pdl N1 91.3(3) Pdl 51 C8 99.3(6) Pdl 51 C14 117.6(7) C8 51 c14 100.6(9) C9 52 C15 100.5(9) Pdl N1 C1 109.(1) Pdl N1 C2 107.3(9) Pdl N1 c3 116.2(9) C1 N1 C2 109.(1) C1 N1 C3 110.(1) C2 N1 C3 105.(1) N1 C3 C4 108.(1) C3 C4 C5 133.(1) C3 C4 C8 120.(1) C5 C4 C8 107.(1) C4 C5 C6 107.(2) C5 C6 c7 107.(2) C6 C7 C8 111.(2) 51 C8 C4 118.(1) . 113 Table 13. Bond Angles (Continued) for [1-[(Dimethylamino)methy1l-2,1'-bis(methylthio)ferrocene]- Palladium(ll) Chloride (83) Atoml Atom2 Atom3 Angle 81 C8 C7 134.(1) C4 C8 C7 108.(1) 52 C9 C10 131.(1) 82 C9 C13 120.(1) C10 C9 C13 109.(2) C9 C10 C11 111.(2) C10 C11 C12 107.(2) C11 C12 C13 109.(2) C9 C13 C12 105.(2) Numbers in parentheses are estimated standard deviations in the least significant digits. 119 The Pd-S bond length is 2.277(4) A which compares favorably with the sum of the covalent radii (2.35 A)114 and suggests very limited 1: bonding in the Pd-S bond. There is no trans bond lengthening effect for the Pd-Cl bond trans to sulfur atom. The average value for the Pd-Cl distances is 2.32 (4) A comparing favorably with the sum of the Pauling covalent radii. 2.31 A314 Pd is in a square planar environment with two Chlorine ions cis to each other. The Cl-Pd-Cl bond angle is 89.0(2)° and the S-Pd-N bond angle is 91 .3(3)°. The structure of (Ph3P)PdFe(C5H4S)2 with two chelating thiolate groups has been reported.“5 The presence of a weak Fe-Pd dative bond was proposed for this heterobimetallic complex on the basis of a Fe-Pd distance of 2.878 (1) A. Such interaction between Pd and Fe does not exist here. The two cyclopentadienyl rings are eclipsed and are almost parallel; the dihedral angle between two Cp rings is 1.54°. The most striking feature of the structure of complex 83 is the coordination of the Pd atom to S and N atoms of the same ring which confirm structure a Scheme 11. An X-ray diffraction study of PdCl2(§,fl-BPPFA) (Scheme 5) was carried out by Hayashi and co-workers (Figure 16).97 In that complex Pd has square planar geometry with two cis chlorine and two phosphorus atoms. and the nitrogen atom is not bound to palladium. The difference between the structures of palladium ferrocenyl amine sulfides and phosphine analogs is very interesting and this maybe an important reason for obsenied differences in the catalytic activities of these two classes of complexes. c. Synthesis and Characterization of Platinum Complexes (3,5)- CpFelCHMeNM92][SR][PtCl2] (n = Me, Et, 14», and Ph) (97- 1 0 0) Complexes 97-100 were prepared from benzene solution of 0.1 g of (PhCN)2PtCl2 and the appropriate ferrocenylamine sulfide igands in 1 : 1.1 molar ratio (Scheme 13). The reaction mixture was stirred at 35°—45°C for 7 days. The resulting .120 ‘99. $4” (PhCN)2PtCl2 . (:0 Benzene fl F“ R RIMS (97) El (98) i-Pr (99) Ph (100) Scheme 13 .120 (PhCN)2PtCIz Benzene f R-Me (97) Et (98) i-Pr (99) Ph (100) Scheme 13 121 precipitates were filtered, washed with benzene, then with petroleum ether and recry- stallized from CHQClzlhexane by slow evaporation. Yields.) 1H NMR (without coupling to ‘95Pt), IR, MS, melting point and elemental analysis of these compounds were reported in the experimental section. The most striking feature of NMR is coupling of 195Pt to protons of dimethylamino groups. Table 14 shows the coupling constants of 195Pt and the neighboring protons of different Pt complexes. 195Pt (I - 1/2) has a natural abun- dance of 33% and has roughly the same relative sensitivity as the 13C nucleus. It has been found115 that 3.l(195Pt1H) in platinum complexes with PMea and other analog ligands are between 15-57 Hz. Table 14 shows that here 3.l(195Pt1 H) values are in the range 28.4-51.9 which compares favorably with the results reported before.113 Figure 20 shows the NMR spectra for compound (B.S,)-CpFe[CHMeNMegl-[SMeHPtClg] 97 3 . Catalytic Applications of Complexes 9. Selective Hydrogenation of Conjugated Double Bonds a.1 'Selectlve Hydrogenation of Cyclooctadiene by Use of Complexes 97- 1 0 0 The selective hydrogenation of dienes to monoenes has been well documented. Catalytic systems include, for example, [Co(CN)53']117 and [PdCl(PPH3)(n3- allyl)].118 Selective hydrogenation of 1.3- and 1,5- cyclooctadiene to cyclooctene has been achieved by ruthenium(0)polyolefin complexes.119 A similar behavior is shown by Ni(acac)2 in the presence of AlgEtaCla and PPh3.12° Novel homogeneous and mineral supported, nitrogen containing palladium compounds were also used as catalysts in this process.121-122 The other catalytic systems used for selective hydrogenation of 1,3- cyclooctadiene are as follows: ZirConium(lll) complexes containing chelated RPPh3323 untreated and prereduced copper chromite at 140°C and 1 atm pressure,124 colloidal palladium in Poly(n-vinyl-2-pyrrolidone) at 30°C and atmospheric H2 pressure,125 and polymer membranes containing 200 A Ni particles on active carbon.126 This catalyst is 4 times as active as Raney nickel with 90% 122 Table 14 Coupling Constant (Hz) of 195Pt With The Neighboring Protons; 8, ppm (Hz) Compdund NCH3 sore 97 2.45 (28.9) 2.71 (51.9) 3.34 (29.9) 98 2.45 (30.4) 3.32 (29.5) 99 2.45 (29.6) 3.34 (29.7) 100 2.52 (29.8) 3.42 (29.9) 123 3 33:50 ..0 52.8% E22 IF .8 659“. run. 0; 9. ed as __———___________—__ mm . _.__ m; o.~ m.~ o.m mm . __.______. _ LI—rlP________ _ 06 m6 ______________ .\\\\\\ \\\l 124 selectivity for monoene (vs. 50% for Raney nickel).126 Selective hydrogenation of polyenes is of practical importance; in particular, the hydrogenation of cyclopentadienes to cyclopentene has been a subject of a number of patents.127 It has been shown that homogeneous hydrogenation of 1,3.cyclooctadiene to cyclooctene in acetone by using palladium ferrocenyl amine sulfide catalysts resulted in high chemical yields (up to 100%) and improved selectivity of the product.48 All attempted homogeneous hydrogenation by using catalysts 97-100 failed. Table 15 shows that the hydrogenation of cyclooctadiene to cyclooctene in the presence of catalyst 98 can occur only if a mixture of acetone and water is used as the solvent. In the absence of any solvent. or in the presence of acetone or Cchlz, and THF, no hydrogen uptake was observed. A possible explanation for the different behavior of platinum and palladium ferrocenyl amine is as follows; Pt-S bonds are stronger than Pd-S bonds and as has been demonstrated,48 breakage of Pd-S bonds could be important to the selective hydrogenation of the 1.3-cyclooctadiene. it should be noted here that palladium ferrocenyl amine selenide complexes also failed to have catalytic activity under the same conditions, because Pd-Se bonds are stronger than Pd-S bonds. The addition of water to acetone caused the catalyst to precipitate. The reaction was performed under heterogeneous conditions and gave fairly good results as it is shown in Table 16. The heterogeneous reactions may proceed via hydrolysis of a Pd-Cl bond. Table 17 shows an example of the effect of pressure in hydrogenation. As shown, a minimum of 80 psi initial H2 pressure was required to efffect an appreciable hydrogenation by using a platinum ferrocenyl amine sulfide 98 as a catalyst. Palladium analogs required as low as 61 psi initial H2 pressure for excellent results.48 In order to evaluate catalytic activity of Pt complexes, catalyst 97 is compared with previously known Pt complexes (Table 18). A comparison of this catalyst with the entries 2 and 3 shown that although platinum catalysts reported here are considerably slower than the palladium analogs,“ they are one order of magnitude faster than those reported by Bailar and co- 125 $583.05 + 3280.08.35.3208 a .3 3. _o .3303 coast»: 32:. 05.20an— Eoo. 3 6.9.8:» .o .9: 93..va .3528 .o .2: 93.6.“ a 339 a: o: 2820» Song? 9.59 a: 8 CE 35 a 3.53 f 8 «Gaze as a .22.. ..E N + SN... «4.... ...... a sea 2: 828. he a . 93% a: 8 228. me a a. gammfiezzozxoazcoeedo 3: 3: 32 .5 2.6 .2569 as a§>=oo.om ...—Sooofixo ecsoosoku oEF concave. Soc 3.65:... 3.22600 Eozom .1330 8262a 2828 .o .85 5538626.».— .o 8:26.322: 3 Saab $888.98 + 22002388580206 8 ..ma 3. .o 2885 cocci»: BEE ..QES Eco. .m 6.9.88 .o .2: macaw.» .8298 .o .08 90:23 .883 ..E N .2688 ..E m a 126 8. 5 n8 «.8 ma 3. 6.8 8. 36.228.825.21c.8888 c F. E 8.8 0.8 .8 8.. N8 8 _~_o&_=c-_-m__mozz§:08:86on 8.8 «.8 8.2 e 8.8 .8 8 36.11.89.828:4.081888 8.8 has 8.2.. m S. 2 9k 8 _~_oi=os_m=~ezz§:ofizmoocoo 3.; ti 33 Eves: 1. a .858. 3.; 923.82% 8580.05 2588.26 5.83:. 2mm 865:... 588280 8298 90:35 accofimfiosgoé; .0 5.85993... 88:30.29: 2. Sam... 127 .Aocmfioggo + o:2ooo_o>8\oc2ooo_o>o 9 65.2095“ Eco. 6.9.33 .o .08 0.3.2va .8328 .05 mbpxod .383 ..E N + 2358 ..E ad a 38¢: NI o: 5 . 8.2 .128 5. mg 3s 9:. 8 .. 8.8 «.«m a.2 a 8.0 ..8 3 _ 8 .«.o.o=mm=«os_2621082888 at $3 $2 .5 Ed .6555. 3; =63 333:0on 2.23205 2.28205 oEF c2839.. 2m: .2653 co_m.o>coo 05390 $2880 20: been. «23on .0 Soto .ocofifioosgoé; .o cozmcouoauar 2. 03m... 128 3 _~_o.n_=m2m=~mzz§.._03:89.8 a a N . ~66 sewzo in. o w 228x222?! . E :3 8 F ~55 N59$ in o a 000.? v . 35 «v.33 «.5 33; 898m +~E Z 900.? 2:5 8:233“. 3:63 Emzow .222 0.... 28.83 _ m a \ c \ c a v an .o 8:52: 22.. BEE. 3:35.: o. «28% .o scam—.323: @2823 3 20¢... 129 workers.128 It should be mentioned here that the compounds present after each hydrogenation reaction were 1.3-cyclooctadiene, cyclooctene and cyclooctene. The (1.3ocyclooctadiene-cyclooctene) : cyclooctene was determined by GC. The 1.3- cyclooctadlene : cyclooctene ratios were determined by integration of the 1H NMR in the Olefinic region. The outer olefinic protons of the diene and the olefinic protons of the monoene appear around 5.6 ppm. While the central protons of the diene appear at 5.8 ppm . The ratio of monoene to diene is therefore given by: Monoene A§,6-A§.§ Diene ' A53 A - The area of 1H NMR peaks which are obtained by integration. Figure 21 shows how the H2 pressure is changed by time. In this case, catalyst 98 CpFeCsH3[SEt][PtCI2] was used and initial H2 pressure was 80 psi. During the first 30 min the pressure was constant and then it increased possibly because Clz or HCI gas was produced. Alter being constant for a few hours the pressure dropped until the completion of the reaction. The rate of pressure decrease rate was almost constant throughout the course of the reaction. a.2 Selective Hydrogenation of Cyclooctadiene by Use of Complexes 72- 9 6 After it was found that platinum ferrocenyl amine sulfide complexes are far less active and selective than palladium analogs for the hydrogenation of cyclooctadiene, the catalytic activities of complexes 72-96 were investigated. In comparison with the catalysts reported by Shen“8 and Okoroafor75 these complexes have an additional sulfide or selenide substituent in the second Cp rings. Kumada and co-workers show that existence of the second phosphine groups in the second Cp rings can effect the catalytic activities of ferrocenyl amine phosphine analogs. Table 19 shows the results of the hydrogenation of cyclooctadiene by use of some of the above complexes as selective catalysts. 130 8.8.0020? ... 05802053828205 a 33828 n .328 .o .2: 8-2.6.“ 0 2.208 ..E m a 29.38 s .2: 938: a m8: poi 8.8 2.0 8.8 v.8» o 8. 8 8-6-.. a m 8.8 3.: 8.8 8.88 o 8. 8 .22... ... m 8.8 8.5 8.8 8.2 o 8. 8 8 u m 8.8 «as 8.8 88 o 8. 8 i .. m 308:8:«22Zazosxmoomfmoim. 9.2% 8822.. oz 8 .«.ouazaomfiozzfi10.808.18.88. 9.9% 58.2.. oz 2. .«.oézawfifizazzozxmoouezmcsmm. 58 8.8 88 2.88 o 2: 2. 8-6-.. u m 88 8.8 8.8 8.8.. o 8.8 2. 22-.. ... m 8.8 8.0 98 8.1. o «.8 2. i .. m 8.8 8.» 8.8 8.: m8 2: 2. 22 u m 308.8828:zo_nzmoon_.:mo_mm_ ox; 3.. 3L 2.. ..8 3.5.95 .5 25. 3L U>z>=om_ow gauge—ORV ocouooonio 2mm bo>oc5h cozguc— co_m..o>coo earn—mo 2885 «I E=S .3 v2 new 2:anth Eco: 8 A.2382 c. 8.8.9.30 8285 5:5 acacia—80.29%. .o cozmcooocof 258.3 2. 03a... arr-col- . tho-II ..o tabla-1th. . » . . - lo=>=oo3m 05330.96 3280.05 8.5 3553 53.0250 Eozow cabflmo 2:32“. «I 3:... .3 X: can Saflanoh 88m 3 533383.390; .0 322323: 02.3.3 5 cacozom .0 .33. on 0.9m... 137 conditions. A similar behavior was observed for Pt complexes with different solvents as was discussed before. a.3 Selective Hydrogenation of 1,3-cyclohexadlene Table 21 shows the results of hydrogenation of 1,3-cyclohexadiene by use of catalysts 73, 76. 87, and 90 in the presence of acetone as solvent. In all cases the conversions were 100% and there was no induction time. Turnover rates were fairly high from 152.8 to 665.17 moi/moi cat. h. The selectivities were high and in the case of catalyst 73, 96.7% selectivity was achieved. A comparison between the hydrogenation reactions catalyzed by complexes 73 and 76 reveals that the turnover rate is far higher in the latter reaction while the selectivity is higher in the former case. Also, the turnover rate is higher for catalyst 90 with two 4-chlorophenylthio substituents than for 87 with two phenylthio substituents while the selectivity is almost equal for both catalysts. Comparison of data in Tables 19 and 21 shows that the results of hydrogenation depend on the substrates. For the same catalyst when substrate changes from 1.3-cyclooctadiene to 1,3-cyclohexadiene both turnover rate and selectivity were changed. a.4 Selective Hydrogenation of 2,3-dimethyl-1,3-butadiene. Upon being found that new palladium ferrocenyl amine sulfide complexes are active catalysts for selective hydrogenations of cyclic conjugated substrates-we decided to investigate the hydrogenation of acyclic substrates with conjugated double bonds. Table 22 shows the results of hydrogenation of 2,3-dimethyl-1,3-butadiene. The major product in all cases is 2,3-dlmethyl-2-butene and this shows that not only hydrogenation but also isomerization has occurred in this process. Preparation and characterization of compounds 102-105 (Table 22) have been reported92 but their catalytic activities remained unknown. In order to investigate the effect of second aryl or alkylthio substituent in the second Cp ring these complexes have been used along with new compounds in hydrogenation of several substrates. A direct comparison between 6:32.203 + ocoxozo_o>o:ocoxoco_o>o u E2823 6 5288 .o .2: mbpxod .o 9.28m ..E m a 29.83 .0 sewage.» . 13's «.3 m6 a.3 2.3m o 2: ca nnzoé u m a.3 F6 a.3 and: o oo. so .E n m 303:5:«22zmzomxmoomfmoim. «do a.3 «do «.36 o o3 on 529v n m Ema man «do a.3. o 2: 9" .E u m .«.ougimfiazzo:zafmofifmoim. 72 $3 33 E ..8 3:50.... .5 as: 3.; u>g>=o2om 9.39.205 2.98.335 Soc .2652... c2832.. 535280 a.3-60 2262c @5305 «I 3:... .3 X: use 2383th 83: .< A.2333 c. 3.8.9.80 255.5 55> cocofiuxocoggoé; .o cozmcomocgz 02828 «N 03w... 139 .3223 .9: not: new 66:33 .9: “Yo—find daemon oomé .m: ..o 2385 REE 7d omm 33o: 3625.32-39 ..NN N. B m. o F u . o 3.3 P mazzfowzmofimzmo as: $02.35. 9m «.2 a.2 c 33. . amzzfowxmofimxmo , 38c: _~_ou&:;_2i-m_ New ...: ad to 33 N5 .8222).Iofixmofimxmoéé nae: 308.328 o. 3 ..S m. 8 o m. on P .8220::o_m:mo£mzmo-a.g as _~_ou&:;_o.-:-m=~oz23$. 3 «.3 EN as 3.3 P . «Imoouvzmozéorvvo. . as _~_oE=o2m=~§z~zo_ v. o . 3K .... m. ..o «.... m F «Imofifmoazw. at _~_oum_:._n_-_o-:-m=~mz222:0. ad a.3 mew m5 a.2: to 3....onvzmo_2n_-_oi-m_-a..fl at 353.322-36.3222:8. ma a.2 a.2 to. :2. m5 0:32..:mo:_>_o.i-m_-aé at _~_oE=§m=~§z§:o_ «.2 93. ..mm «.o ..mm 3 «Incomfmoazaéd 3 as E 3 VIA VIAI YA I 2 E .2505 2mm :3 £269.”. 835:... REE 95... 2283:. .3ng mm Sam... «$282.88. 83m 8 ocofimsné.F-_>5oE_o-m.m .o 523323: 3.82% 140 complex 72 with two methylthio substituents and 102 with only one methylthio shows similar results. Although the induction time has been reduced by half and initial turnover rate increased by ca. 60% after introduction of the second methyl sulfide group in the second Cp ring but the percentage of products are close in the both cases. It is very interesting and somehow surprising that addition of the second methylthio substituent to the unsubstituted Cp ring of the chiral complex (§,B)CpFng-,H3[CHMeNMezl[SMe][PdCl2] dramatically changes its catalytic activity toward hydrogenation of 2,3-dimethyl-1,3-butadiene (compare entries 4 and 8, Table 22). The induction time is increased by a factor of 15 and also initial turnover rate decreased by a factor 0150. On the other hand. higher selecitivity was achieved by use of the catalyst 63. Conversion for all investigated catalysts were more than 99% and initial turnover rate reached to 575.7 moi/moi Pd. h, however, the selectivity was not as good as for the other substrates (cyclooctadiene and cyclohexadiene). The best results were obtained by use of (S,B)-[S(4-tolyl)]C5H4Fe[CHMeNMe2][S(4-tolyi)][PdCl2] 75. The conversion, selectivity and, the initial turnover rate were 99.9%, 74.8%, and 49.66 (mol/mol Pd h) respectively. The (2,3-dimethylbutane + 2,3-dimethyl-1-butene):2,3-dimethyI-2-butene: 2,3-dimethyl-1,3-butadiene ratios were determined by GC. The 2,3-dimethylbutane: 2,3-dimethyl-1-butene ratios were obtained by integration of appropriate peaks in 1H NMR. The starting materials, 2,3-dimethyl-1,3-butadiene, shows a singlet at 1.9 ppm for 6 methyl protons and a doublet at 5 ppm for 4 olefinic protons while 2,3-dimethyl- 2-butene shows only one singlet at 1.6 ppm in the proton NMR spectra. On the other hand, 1H NMR spectra of 2,3-dimethyl-1-butene has a peak at 4.6 ppm for two olefinic protons which is completely distinguishable from the doublet of the starting material. There is also a doublet at 0.9 ppm for 6 protons of terminal methyls. 1H NMR spectra of 2,3-dimethylbutane also shows a doublet at 0.9 ppm for 12 methyl protons and a 141 multiplet for the other 2 protons at 1.4 ppm. Therefore, it may be concluded that the ratios of 2,3-dimethylbutane: 2,3-dimethyl-1-butene can be obtained by: Wane—— - _A.Q,9__3.é54_,§_.L2_ 2, 3- “dimethyl 1- butene - a.5 Selective Hydrogenation of 3-methyl-1,3-pentadlene. Table 23 shows the results of hydrogenation of 3-methyl-1,3-pentadlene by use of 8 different palladium ferrocenyl amine sulfides as catalysts. The solvent in all cases was acetone and the initial H2 pressure was 80 psi. The existence of two double bonds in two different environments is the interesting point about this substrate. The last three substrates, cyclooctadiene, cyclohexadiene, and 2,3-dimethyI-1,3-butadiene all have two equivalent double bonds,.therefore, only one initial monoene product was obtained. However, in the case of 2,3-dimethyl-1,3-butadiene the initial product was isomerized. Here, there is a competition between the terminal and internal double bonds. It is not surprising that the terminal double bond has been hydrogenated much faster than the other double bond and 3-methyl-2-pentene was obtained as the major product. The selectivities and the conversions both are high and reached to 94.8% and 100% respectively. These results also show that introduction of second sulfide substituent at the unsubstituted Cp ring effects the conversions and the selectivites. However, these effects are not always parallel (compare results of entries 1 and 4 versus results of entries 3 and 6). a.6 Selective Hydrogenation of Double and Triple Bonds Conjugated to Aromatic Rings. Table 24 presents the results for the hydrogenation of styrene, 4-vinylpyridine, and phenylacetylene. These reactions were all performed under homogeneous conditions by using acetone as a solvent and in all cases quantitative yields were observed. Hydrogenation of styrene was much faster than 4-vinylpyridine and phenylacetylene. When catalyst 75 was used for hydrogenation of both styrene and 4-phenylpyridiene, 142 $26.60 .2: 6.3.: can 6.9.3365 6-3.6.86 6:886 8 m6 .«1 .0 Samoa .655 an own so: .«.ooazczsié A. 8 8 F m . 3 «.2 me o. .«mzz«zo_«zmo£mxmo so: .«.ouazmza v. «m «6... m . «F « . «a a. « «.o 5226210316086me so: .«.oum_=;_o.-e-m=«m2222:o. «.3 «.3 «.o 6.: «6 P. .« «1886163de «0: .«.03=§6=««zz§:o_ :6 o.«« «6 «66 .6 o; «188618-849 as .«.oua=_>_2i6=««2z«_..o_ mag a.3 to «.5 as a.3 «Icemmvxmozéeié «.8 «.3 «6 «.E «...: o.« as .«.ouéazmfimzzfo. «168.1665. 6.; :6 no «.3 8.6 «.«. at .«.oua_:_>_2i-w=«22222:o. «1603:.Imo:_>_o.-3-w_-adv at .«.ouémzmfimizgxo. .66 2: «6 .66 «6 o «Imommexmoazaéé 3.; Ti 3.; 3.; E; E; £2828 62.28 5.96500 lL/\ /$_/\ /\_/$ /\_/\ «22966th Eoom .6 6:o_o£:oo-m.2>£6e-m .0 5223231 6286.6...” mm 636... 1 4 3 Table 24 Selective Hydrogenation of Styrene, 4-vinylpyridine, and phenylacetylene.a Entry Catalystb Starting Material Time Product Yield (h) (%) z 1 7 5 2 >99 2 8 3 " 1 2 " >99 3 8 9 0.25 " >99 4 1 0 4 0.25 " >99 5 1 O 5 0.25 " >99 6 7 5 1 4 >99 7 8 9 1 7 " >99 8 1 0 4 1 5 " >99 9 7 5 1 2 >99 1 O 1 0 5 2 " >99 5‘ Room temperature, 80 psi initial pressure of Hz, 4.5 mL acetone 2.375x10‘3 mol substrate,and 1x10'5 mol catalyst. b 75 : (S_,B_)-[S-(4-tolyl)]C5H4FeCSH3[CHMeNMezlls-(4-tolyl)][PdCl2] 83 : [SMe105H4FeC5H3[CHMeNMe2][SMe][PdCl2] 89 : [S-(4-tolyl)]C5H4Fe05H3[CH2NMe2][S-(4-tolyl)][PdCl2] 104 : 05H5FeC5H3[CH2NM92][SMe][PdCl2] 105 : 05H5Fe05H3[CH2NMe2][S-(4-tolyl)][PdCl2] 1 4 4 Table 25 Chemoselective Hydrogenation of Carbon-Carbon Double Bonds of a-B Unsaturated Carbonyls, Aldehydes, Carboxylic Acids, Esters, Nitriles. and Anides Entry Catalystb Starting Material Time Product Yield (h) We) W "11’ 1 7 2 o 8 0 >99 2 7 5 ' 0.5 " >99 3 8 3 ' 8 " >99 4 8 9 " 1 o " >99 5 1 o 2 " 0.5 " >99 6 1 o 3 " 0.5 ' >99 7 1 o 4 ' 1 o " >99 8 1 o 5 " 1 ' >99 9 7 2 é‘cHo 2 ACHO >99 1 o 1 o 4 " 9 ' >99 1 1 1 o 5 " 1 2 " >97 1 2 7 5 é‘COOH 1.2 ACOOH >99 13 e 9 ' 1 " >99 1 4 1 o 4 " 3 " >99 1 5 1 o 5 " 1 " >99 0 o 16 7 5 MES—00113 0.75 ACHg-OCHa >99 17 8 9 " 0.75 ' >99 1 8 1 o 4 " 1 ' >99 1 9 1 o 5 ' 0.1 " >99 2 o 7 5 AN 3 ACN >99 .145 Table 25 Continued Entry Catalystb Starting Material Time Product Yield ( h ) PM 21 a 9 é‘CN 1 ACN >99 2 2 1 0 4 " 0.25 " >99 2 3 1 04¢ " 0.5 " >99 2 4 1 0 5 " 0.25 " >99 2 5 7 5 AONHz o .1 "CONHz >99 2 6 1 0 5 " 0.5 " >99 a Room temperature, 80 psi initial pressure of H2, 4.5. mL acetone. 2.375x10‘3 mol substrate, and 1x10'5 mol catalyst. b C 72 : (S..B)-[SMe)]C5H4FeCsH3[CHMeNMe2][SMe][PdCl2] 75 : (gm-[s-(MolymcsmFecsH3[cHMeNMe2][s-(4-toly1)1[Pd012] 83 : [SMelcsH4FecsH3[CHMeNM92][SMe][PdCI2] 89 : [S-(4-tolyl)]CsH4F605H3[CHzNM62][SMe][PdCI2] 102 : (SE-C5H4F905H3[CHMeNM62][SMe][PdC|2] 103 : (am-C5H4F805H3[CHM6NM62][S-(4-tolyl)][PdC|2] 104 : 05H5F9C5H3ICH2NM92][SM8][PdC|2] 105 : CsH5F605H3ICH2NM62][S-(4-tolyl)][PdC|2] 4.75x10'3 mol substrate 146 styrene was hydrogenated 7 times faster than 4-vinylpyridien. In the case of catalyst 68 this ratio was 68:1. A reasonable explanation is that 4-phenylpyridine has two coordination sites, the double bond and the nitrogen atom. Thus, some of the active sites of the catalysts were coordinated to the nitrogen atom and consequently the turnover rate was decreased. It has been reported that the use of pyridlene as the solvent in homogeneous reduction of cyclooctadiene in the presence of a ferrocenyl amine sulfide catalyst resulted in lowering the turnover rate and poor yield (7.2%).‘29v‘3o The reason is that again the pyridine nitrogen solvent competes with double bonds of the substrate for coordination to active sites of the catalyst. Styrene also was hydrogenated much faster than phenylacetylene and indicates that reduction of a triple bond to a double bond is slower than the reduction of a double bond. V6 6 K1 < K2 a.7 Chemoselective Hydrogenation of Carbon-Carbon Double Bonds Conjugated to Different Functional Groups. Chemo- and regioselective reduction of carbon-carbon double bonds is of importance in organic synthesis. Boron“;1 and transition metal hydrides (e.g. iron,132 rhodium,”4 cobalt,135 aluminum,136 palladium,‘37 and nickel138 hydrides) are frequently used in stoichiometric amounts. By using different palladium ferrocenyl amine sulfide complexes, Chemoselective reduction of carbon-carbon double bonds conjugated to different functional groups have been investigated. As shown in Table 25, short reaction times and quantitative yields are two important aspects of all of these reactions. Hydrogenation of vinylmethylketone was carried out by use of 8 different catalysts (entries 1-8) and it was found that ethylmethylketone is the only product for all of these reactions. Not even traces of 147 W 1-buten-3-ol OH or 2-butanol OH was found. The reaction time was varied between 0.5-10 h and in most cases it was slower for the catalysts with two sulfide substituents than those with only one. Hydrogenation of acrylaldehyde (entries 9-11), acrylic acid (entries 1215), methyl acrylate (entries 16-19), acrylonitrile (entries 20-24) and acrylamide (entries 25-26) were also investigated and in all the cases it was only the carbon-carbon double bond that was hydrogenated. As shown in Table 25, when 2.375x10'3 mol acrylamide was hydrogenated by use of 1x10'5 mol catalyst 104, CpFeC5H3[CH2NMeg][SMe]-[PdCl2], the reaction was completed in ca. 15 min and when 4.75x10'3 mol acrylamide was used the reaction was ended in ca. 30 min. This shows that the turnover rate or this reaction remained constant throughout the reacfion. b. Asymmetric Grignard Cross-Coupling Reactions. Asymmetric carbon-carbon bond formation is of great interest for the preparation of chiral molecules, and frequently novel chiral transition-metal catalysts have been used for this purpose.3°:139 In 1973, the first asymmetric Grignard cross- coupling reaction catalyzed by a nickel complex was reported.”0 The asymmetric coupling of vinyl halides with Grignard reagents by use of chiral nickel or palladium complexes of ferrocenyl phosphines has been extensively investigated42-141 and spectacularly successful results have been achieved (equation 5). the L'M . Pn—cHMgCI + CH2=CHBr 4» Ph—(‘SH—Cl-=CH2 (5) Me Me racemic enantioselective step in the catalytic cycle was the transmetallation reaction and the 1 4 8 Table 26 Asymmetric Grignard Cross-Coupling Reactions Using Chiral Nickel Ferrocenyl Amine Sulfide Catalysts Catalyst Chemical Yield e.e. Configuration ( °/o) ( %) (§,B)-[SR]05H4F605H3[CHMeNMezl [SR]/NiCI2 R-Et 975 2L2 R - sag-Bu 9 6 23.2 R - Ph ' 96 22.5 R - 4-Cl-Ph 96.5 27.7 101133 149 most important intermediate of the reaction was the diastereomeric transition state shown below. r \ ' F6 PPh [— 2\M——- . Me )8? C_N2 '0 ’1 MgC1 291 l H/C‘:\Ph Me \ J The transmetallation step must be slow compared to the equilibrium of the Grignard reagent to keep a racemic mlxcture. because the optical purity of the coupling product is not affected by the degree of conversion of the Grignard reagent. It was shown that the ferrocene chirality plays the major role in this asymmetric reaction and chirality at the carbon bearing the amino function does not influence the optical purity of the products. However, it should be reminded that the coordination of magnesium of the Grignard reagent to the amine group is the first requisite for achieving high enantioselectivity. Reaction of NiClg with chiral ligands 44, 48, 51, and 54 produced 1n_sjm nickel complexes that are active catalysts for asymmetric Grignard cross coupling reactions between allylmagnesium chloride and 1-phenyl-1-chloroethane (equation 6). (EH3 H3 catalyst PhCHCl + ClMgCHZCH=CH2 a = PhCHCHZCl-l=CH2 (6) 20 THF 6 Table 26 shows the chemical and optical yields of these reactions. The chemical yields were very high for all four investigated complexes (96%-97.5%) and fairly good optical yields were achieved (21 .2%-27.7%). The yields are much higher than those 150 reported by Kellog1“'2 and slightly better than those reported by Okoroafor.“7 The proposed mechanism is shown in Figure 25 which is based on the Grignard cross- coupling reaction mechanism postulated by Kumada18b and co-workers for nickel phosphineferrocenyl amine catalysts. Although all attempts for isolation of nickel/ferrocenyl amine sulfide failed, but because of similarity of the results obtained here and those obtained by use of Pd analogs,143 we assume that nickel complexes have the same structures as the palladium complexes. It has been shown that the optical rotation of the 4-phenyl-1-pentene was strongly affected by small amounts of impurities.41 Moreover, products were racemized and it was difficult to determine the optical purity by use of a polarimeter. The enantiomeric excess of the products was determined by use of 1H NMR spectroscopy in the presence of a chiral shift reagent, tris(d,d-dicampholylmetanato)europium(lll) (Eu(dcm)3) after the alkene was converted into the methylester.144 Figures 26 and 27 show the dependency of the chemical shift (5), and the enanitomeric shift difference (AA5) on the concentration of the chiral shift reagent and the temperature at a constant concentration of the substrate (0.5 M) in chloroform-d1. At room temperature and without addition of the chiral shift reagent there is only one singlet for the methyl protons of the methylester. However, the signal separates into two distinct singlets after addition of the shift reagent. Upon increasing the concentration of shift reagent the signal was shifted downfield and AA5 was increased. The enantiomeric excess was clearly determined when concentration of the shift reagent reached 0.27 M. It has been reported by Kumada41 that the signal of (5,)-methyl-3-phenyl propionate appears at a higher field than that of the B enantiomer. Therefore, here we also attribute the higher field signals to S, enantiomer. In all cases the resulting product has 3 configuration, the configuration of ferrocene chirality. However, we cannot deduce any conclusion from this observation. - Ph CH2=CHCH2\ c" /\ H Me (jg-Form XMgCHZCH=CH2 CH3 I PhCHCl .-"\ M9XC1 H M" v Figure 25. Proposed mechanism for cross-coupling reaction. 152 L - -1-2- 1- --1- 21 . ‘ 1L J A A 1- ALLQLL- “1----124 1“] PPM 7 5 5 4 3 2 1 A Figure 26. 1H NMR spectra of (B) and (_S_)-methyl-3-butyrate in the presence of increasing concentrations of chiral shift reagent Eu(dcm)3. The concentration of substrate in these spectra is 0.5 M in CDCl3/TMS, and that of Eu(dcm)3 is (a) 0.0 M, (b) 0.09 M, (c) 0.18 M, and (d) 0.27 M. 153 «wt Figure 27. The magnitudes of AA8 increase for methyl 3-phenylbutyrate with decreasing temperature in the presence of chiral shift reagent. Eu(dcm)3. The concentration of substrate and chiral shift reagent in CDCl3/TMS are 0.5 and 0.27 M, respectively 154 4 . Structure of ' [1-[(Dlmethylamlno)methyl]-2-(1- Butylthlo)ferrocene]Palladlum dichloride (101) Atomic parameters are listed in Table 27 and 28 and selected bond lengths and angles are given in Tables 29 and 30 respectively; a drawing showing the atom labeling and thermal ellipsoid is given in Figure 28, a stereographic packing diagram is given in Figure 29 and a stereographic view of the complex is given in Figure 30. The palladium atom is in a square-planar environment where the sulfur and nitrogen atoms of the ligand chelate to the palladium. The Fe-C distances range from 2.017(9) to 2.084(9)A, with an average value of 2.046(22)A, comparing favorably with those of m-CpFecsHaCHMeNMez][SMe][PdCl2].47 The C-C distances in the cyclopentadienyl rings range from 1.37(2) to 1.436(13)A. with an average value of 1.409(6)A; these values are typical for ferrocene. The bond lengths to Pd closely approximate the sum of the Pauling covalent radii;114 Pd-S observed.at 2.312(2)A, compared with 2.35A; Pd-Cl observed average 2.303(3)A, compared with 2.31A; and Pd-N observed at 2.147(7)A, compared with 2.16A. The most striking angular feature of the complex is the obtuse S-Pd-N angle of 100.2(2)° that can be attributed, in part, to steric crowding caused by the bulky 1- butyl group. Cullen145 has observed an analogous effect by t-butyl substituents in ferrocene-bridged bis(tertiaryphosphine) complexes of Rh. The two cyclopentadienyl rings are eclipsed and are slightly tilted with respect to each other; the dihedral angle is 8.0. 155 Figure 28. The molecular structure and the numbering of the atoms (ORTEP, 50% probability ellipsoids) of complex 101. 156 Figure 29. Stereographic packing diagram of complex 101 (ORTEP. 20% probability . ellipsoids). The c-axis is vertical, the b-axis is horizontal and the a-axrs rs normal to the page. Figure 30. Stereographic view 157 f as .v—--,—‘ "° ~ \rc‘.‘ .11 J’ \". /“/‘1: 1" ’4, ._ , ‘ $7713. / :~\: 7: '1“ “t 3 ‘\ of complex 101 (ORTEP,-50% probability ellipsoids). 158 Table 27 Positional Parameters and Their Estimated Standard Deviations for [l-l(Dimethylamino)methyl]-2-(t-butylthio)ferrocenelpalladium dichIoride Atom x y z 8(A2) Pdl 0.51669(7) 0.20158(5) 0.16807(4) 2.425(9) Fel 0.7763(2) 0.2623(1) 0.35287(8) 2.80(2) C11 0.3293(3) 0.0774(2) 0.1569(2) 4.51(6) C12 0.2871(3) 0.2996(2) 0.1539(2) 4.47(6) Sl 0.6636(3) 0.3400(2) 0.1855(1) 2.41(4) N1 0.7229(9) 0.1035(5) 0.1788(5) 3.0(2) C1 0.689(1) 0.0331(7) 0.2410(7) 3.9(2) C2 0.736(1) 0.0537(7) 0.1017(6) 4.0(2) C3 0.897(1) 0.1438(6) 0.1953(6) 3.0(2) C5 0.906(1) 0.2188(6) 0.2536(6) 2.6(2) C6 1.018(1) 0.2231(6) 0.3180(6) 3.3(2) C7 1.020(1) 0.3159(6) 0.3493(6) 3.3(2) C8 0.904(1) 0.3691(7) 0.3034(6) 2.9(2) C9 0.836(1) 0.3108(6) 0.2464(5) 2.4(1) C10 0.548(1) 0.1938(9) 0.3742(6) 4.4(2) C11 0.670(2) 0.172(1) 0.4304(8) 5.5(3) C12 0.718(2) 0.257(1) 0.4668(7) 5.8(3) C13 0.627(2) 0.328(1) 0.4331(7) 5.1(3) C14 0.524(1) 0.291(1) 0.3760(6) 4.8(2) C15 0.756(1) 0.3889(7) 0.0957(6) 3.1(2) C16 0.854(2) 0.3186(9) 0.0483(6) 5.0(3) C17 0.605(2) 0.422(1) 0.0475(7) 5.4(3) C18 0.868(2) 0.4685(9) 0.1170(8) 6.3(3) Anisotropically refined atoms are given in the form of the isotropic equivalent thermal parameter defined as: (4/3) . [a2*8(1,1) + b2*8(2,2) + c2*B(3,3) + ab(cos gamma)*B(1,2) + ac(cos beta)*8(1,3) + bc(cos alpha)*8(2,3)] ‘159 Table 28 General Temperature Factor Expressions - U's - for [1-[(Dimethylamino)methyl]-2-(t-butylthio)ferrocenelpalladium dichloride U(2,3) U(3,3) U(1,2) U(1,3) Name U(1,1) Pdl 0.0176(2) 0.0337(2) 0.0409(3) -0.0009(3) 0.0015(3) -0.0003(3) Fel 0.0266(5) 0.0428(6) 0.0371(6) -0.0035(6) -0.0011(5) 0.0060(6) C11 0.032(1) 0.050(1) 0.089(2) -0.015(1) -0.003(1) 0.007(2) C12 0.0227(8) 0.058(1) 0.089(2) 0.009(1) -0.006(1) -0.002(2) 81 0.0235(8) 0.0286(9) 0 039(1) 0.0034(8) -0.0033(8) 0.0010(9) N1 0.023(3) 0.030(3) 0.062(5) 0.002(3) -0.002(4) -0.004(4) C1 0.036(5) 0.034(5) 0.079(7) -0.002(4) -0.003(5) 0.010(5) C2 0.039(5) 0.047(5) , 0.067(7) 0.005(5) 0.007(5) -0.019(5) C3 0.020(4) 0.032(4) 0.063(6) 0.003(3) 0.008(4) 0.006(4) CS 0.019(3) 0.034(4) 0.048(5) -0.000(3) -0.002(3) 0.010(4) C6 0.024(3) 0.042(4) 0.058(5) 0.002(4) -0.002(4) 0.014(4) C7 0.025(3) 0.046(5) 0.054(5) -0.011(4) -0.013(4) 0.007(4) 08 0.029(4) 0.035(4) 0.048(5) -0.001(4) -0.003(4) 0.008(4) C9 0.021(3) 0.033(4) 0.037(4) -0.001(4) -0.001(3) 0.002(4) C10 0.040(5) 0.070(6) 0.057(6) -0.022(5) 0.017(4) -0.001(6) C11 0.064(7) 0.070(7) 0.076(7) 0.009(7) 0.018(7) 0.032(6) 012 0.047(6) 0.12(l) 0.051(6) -0.016(8) -0.011(5) 0.009(8) C13 0.060(6) 0.080(8) 0.053(6) -0.021(6) 0.023(5) -0.021(6) C14 0.032(4) 0.093(8) 0.058(6) 0.011(7) 0.019(4) 0.004(7) C15 0.037(4) 0.038(4) 0.043(5) -0.006(4) -0.009(4) 0.011(4) C16 0.064(7) 0.080(8) 0.044(5) 0.001(7) 0.011(6) 0.017(6) Cl7 0.046(6) 0.096(9) 0.064(7) 0.010(7) o-0.008(6) 0.038(6) C18 0.090(8) 0.074(7) 0.074(8) -0.049(6) —0.001(8) 0.009(7) The form of the anisotropic thermal parameter is: expl-2n2{h2a20(l,l) + kZbZU(2,2) + 12c20(3,3) + 2hkabU(1,2) + 2hlacU(l,3) + 2k1ch(2,3)}] where a, b, and c are reciprocal lattice constants. 160 Table 29 Bond Distances (in Angstroms) for [1-[(Dimethylamino)methyll-2—(t-butylthio)ferrocenelpalladium dichloride Atoml Atom2 Distance Pdl C11 2.314(3) Pdl C12 2.292(3) Pdl Sl 2.312(2) Pdl N1 2.147(7) Pel C5 2.084(9) Fel C6 2.062(9) Fel C7 2.053(9) Fel C8 2.017(10) Fel C9 2.017(9) Fel C10 2.069(11) Fel C11 2.041(13) Fel C12 2.017(12) Fel C13 2.042(12) Fel C14 2.055(10) 51 C9 1.756(8) 81 C15 1.846(10) N1 C1 1.496(14) N1 C2 1.513(14) N1 C3 1.503(11) C3 C5 1.472(13) C5 C6 1.418(13) C5 C9 1.434(12) C6 C7 1.436(13) 161 Table 29 Continued C7 C8 1.423(13) C8 C9 1.397(13) C10 C11 1.40(2) C10 C14 1.41(2) C11 C12 1.42(2) C12 C13 1.38(2) C13 C14 1.37(2) C15 C16 1.51(2) C15 C17 1.52(2) C15 C18 1.48(2) Numbers in parentheses are estimated standard deviations in the least significant digits. 162 Table 30 Bond Angles (in Degrees) for [1-[(Dimethylamino)methyl]-2-(t-butylthio)ferrocenelpalladium dichloride Atoml Atom2 Atom3 Angle C11 Pdl C12 88.1(1) C11 Pdl Sl l70.29(9) C11 Pdl N1 88.8(2) C12 Pdl $1 82.93(9) C12 Pdl N1 176.8(2) $1 Pdl N1 100.2(2) Pdl 51 C9 104.7(3) Pdl 51 C15 114.3(3) C9 81 C15 107.0(4) Pdl N1 c1 111.9(6) Pdl N1 C2 106.6(6) Pdl N1 C3 116.3(5) Cl N1 C2 108.8(7) c1 N1 c3 106.4(8) c2 N1 c3 106.6(7) N1 C3 C5 116.9(7) C3 C5 C6 126.6(8) C3 C5 C9 126.4(8) C6 C5 C9 105.3(8) C5 C6 C7 109.9(8) C6 C7 C8 106.4(8) C7 - C8 C9 108.3(8) 51 C9 C5 124.3(7) '163 Table 30 Continued Atoml AtomZ Atom3 Angle 51 C9 C8 124.8(7) C5 C9 C8 110.1(8) C11 C10 C14 108.(1) C10 C11 C12 107.(1) C11 C12 C13 109.(1) C12 C13 C14 109.(1) C10 C14 C13 108.(1) 51 C15 C16 113.5(7) 81 C15 C17 106.0(7) 51 C15 .C18 108.4(8) C16 C15 C17 107.9(9) C16 C15 C18 110.(1) C17 C15 018 111.(1) Numbers in parentheses are estimated standard deviations in the least significant digits. ‘163 Table 30 Continued Atoml Atom2 Atom3 Angle 51 C9 C8 124.8(7) C5 C9 C8 110.1(8) C11 C10 C14 108.(1) C10 C11 C12 107.(1) C11 C12 C13 109.(1) C12 C13 C14 109.(1) C10 C14 C13 108.(1) 81 C15 C16 113.5(7) 51 C15 C17 106.0(7) 51 C15 ~C18 108.4(8) C16 C15 C17 107.9(9) C16 C15 C18 110.(1) C17 C15 C18 111.(1) Numbers in parentheses are estimated standard deviations in the least significant digits. APPENDIX 164 a 6.2 .1. 5 me 5:309:00 .o $28on «:22 IF .5 2:9”. e: 165 as. ... a. 2 65828 .6 522 on. 8.98% 8.8 ELL .l S. a E.QN 8.8.4 ®.®m 8.8m «445—111d—d1qq—qflflqqd‘flq1—‘qqd‘d'l—lqqqu—d<11—4411L—1111—14144—1l4l 1.1).)? 1. = .mm 2:9... 166 a: ... a. me 2:368 .o 53.8% E .2. 859“. .«lEU. £0063cm>03 0.000m 0.009N O.oomm 0.00Nm o.oomm 0.000? I L . . 1 4 (.- Y 00.000 0.00Nn 0.000" ...... ll.-. -- 1 1 (d 0000'0 000'02 OOO'OP 83U9331W5U9413 000'08 000'09 OO'OOI 00°08¥ 167 ..m .1. m. 3 658.28 .6 22.88 :22 :. ...m 9:9". 168 9‘ 0.8N L 8.8.4 ..m n m. 3 65858 .6 522 on. 8.98% 628 ELL &.&m 8.00 —1mZ 00.000 0.00N« 0.00@« 0.000N 0.00VN 0.000N 0.00Nm 0.000m 0.000? n b l- . h b 5 lb )4 u 1 J 4 4 ‘ (4 000'08 000'09 OOO'OV 000'08 OOOO'O aaucnatwsuaqlx OO'OOt 00'oa1 .8 9:9”. 169 ”\ 00.000 ill) ?. 0.00N« » 0.000« < .«lEU. 0.000N LonEacu>mz 0.0090 )0 ..w u m. 3. 95an8 .0 £2.0me m. 0.000N b 0.0000 d 0.0000 4- 0.000? OOO'OQ 000'09 OOO‘OV OOO'OE OOOO'O eauaqntwsuaqix OO'OOI OO'OZI .8 93E cm .1. m. 3 9:59.50 .o 825QO $92 Km 25E J 170' 2...... 8... 9.... . 8...... 9m .3. . .... .. P b PblPPL Pb PPl— PIL..I—.11Pi. ... ... ...—....- .- ~_m mam «mm NNm ,1o.om «mm .reéo. 0mm can om. ca. on m\: .... Bu, 2 an mm? ,_ , _._ , _ . ._ _ ,: 2 z . 8“ k. 5. , 2.. . 8 8 k 8 . 9mm mm mm . .N. mm. NN vv . 10.0w NvN . roéo. 0.. 1 «N. 5:3. :9. fig .v~m~m .u—m no 4G0 ._4co vvuo + oo.m~.~. ~0xmoxo. «mm .0). mmcm «Na :93 .53 5&5me mmc: 171 cm-.. 1 m. we 9:59.50 5 825QO £22 I. ELL 0.0 0.. 0.N 0.0 0.4 0.m 0.0 0.P 0.m 0.0 wqqfiwqqqqqqqq44449919qu«444442474«4:444:44414144d444191444m..qqfiqqqqmdfiqql.141.1«11417424 .8 9:9“. 172 E-.. 1 m. 9 2:828 .6 222 02 62988 8.8 80.0. . 0.3 0.9m 8.8.. 50m @.@m e an. .mm 95: 173 cm-.. ... m. we 9:59.50 5 E2534. E .3. 9:9... .«IEU. LmDEJC0>03 9 00.000 0.000“ 0.000" 0.0000 0.0090 0.0000 0.0000 0.0000 0.0009 1 ll. il-1.-..l1l+ .11....1111111 .1 ill)... . ..1l111.l,11Il+. .. . ., -- 1144 1. .. 1 111111.---- 11--1111114.- 0000'0 000'02 000°C? C 000'09 BDUGQQTwBuaqix 000'08 00'001 00°08? 173 cm-.. .... m. 2. 9:59.50 5 52.0QO m. .9. 2:9“. .«IEU. LmDEJCm>03 V 00.000 0.000" 0.000« 0.0000 0.0090 0.0000 0.0000 0.0000 0.0009 . (11¢ (l.l-1.|.l|+..1 .-...illllll . -.-1 .l .ll 11.. .-.)-(1.).ll. .. 11.1111?) 1111111 (11¢ . 1 ..11lill1-.- ll . 1.14.. O O O O O 4 3 . o O O O 11 p O O 0% _ o 1 J 2 .... . w . . w t. 2 .. o 3 G U 3 11 8 08 O O O .1 0 o O O O 00°08? 174 ca-.. 1 m. we 9:59.50 .0 525QO «was. .... 559“. 0mm aw? owe own Sam mxz l... -lP-IPILIIPIL -..... .- .. .- ..P P .- P .— lP-IP h .- ..:tP-lP h P b - 51.-15......5—1... P _ .8 A can mm... 2.. . . 8.. . L r 1 to...» L . 1 . l g 9.00— omm on. u on u\= mm a.om 0.90. 175 25.: u m. 5 9:59.50 5 82.55% «=22 I. 0.0 0.— §.N 0.0 0... §.m 0.0 0.h §.m §.m :6... 9:9“. 176 .00 3m... 1 m. 9 65858 .6 :22 cm. 8.988 8.8 :1... _ . 8.5 8. am e an: Ill 31 1219. .fi 0 .9. 2:9”. 177 Sm... 1 m. 5 9:59.50 5 525QO m. .3. 2.5.“. .«IEU. L0.63co>03 V 00.000 0.000“ 0.0006 0.0000 0.0090 0.0000 0.0000 0.0000 0.000? .1: L4 k L .. lb b $ b - .l. —1.1 q d (Id 0000'0 000°C? 000'0? C 000'09 aaueautwsueuix 000'08 OO'OOI 00'08t 177 :65 1 m. be 9.59:8 5 82.08% m. .3. 25E 3 180. L 0 55:0)03 V 00.000 0.000n 0.000« 0.0000 0.00V0 0.0000 0.0000 0.0000 0.000V 1 1 1 ill.-- 1 1 1 1 0000'0 000'03 000'0? SDUE‘JQ‘CWSUPJLX 000'08 000'09 00'001 OO'OEI 178 3m... 1 E 2. 9:59.50 .5 E2583 mums. .m... 2.5.1. 8» 3.. 3.. 9% 8m 0...... mam ..o.o®. mxz o.om o.co. 179 26-3w 1 m. 3 9:59.50 5 525QO E .2. 2:9“. .«lEU. LSLEJC0>03 00.000 0.000“ 0.000“ 0.0000 0.00V0 0.0000 0.0000 0.0000 0.000V 31:-.. 1-.- 1 11 1-.....l1l1--- 1 1 l1 )1 o O 0 0 O 1 a O 0 O O .- V .4 O O Ova O 1. nu 0 1 U we . w T! w: 0 3 9 U 3 11 a O a 0 0 O 41 ob 0 0 0 0 00'081 180 onm 3N New 25:15“ 1 m. 3 9:55:18 5 $2.0QO 1.8.2 .3. 2.5.“. 8.. 8m 8m .1... who ...... . a... 1 «8 Ba . . gm 8.” . m... . . 1 a .3 21m . 19.8. on. ow. on .2 1: 1.2 .— . _ B R . .N. ..m . on. .... . km . 1 a .8 *1 0.00. 181 4 3m: ... E 8 2:858 B 5288.0. mzz E .3 2:9... 182 :5.“ n my me 95an8 3 52.8% m. .2. 2:9". A«IEU. Lmoeaco>m3 00.000 0.00m" 0.000n 0.000N 0.00VN 0.000N 0.00Nm 0.000m 0.000? ,, ‘.II¢,. --as-:ll+:i-u!l-s-s-II$:ue;.‘ --,III+ (\fi‘ .; -1.ia!ll+ $ lz-:.|IIIII+qu-:II IIIA. 0000'0 000'02 000'0? 80U933FNSU90L3 000'08 000'09 00°00? 00'02? 183 mmv m2. owm gm ....Er..................P!r....:.... mam a 1 own 21m N N m: 3N «3 cm“; mm. 8.. .._ ww— Sma u my me canon—=8 .o 528QO 9.6.2 mvm 0mm. x... gm .m an L .3 2:9“. m3 2 LEE I o .9: mx: [0.0a— 184 23:23 u E on 2:888 .o 828QO 522 ...F .5 23am 185 $.53 u E on 2:858 .o «52 09 8.9.88 8.8 .mm 2:9”. ELL §.§fl G.§m $.05 §.Sm ’1’44‘444444114’41144Wqfiq—‘4d‘qqqd114fl<141<1414fi44441144 tr Ja 1533a 186 3::ng a E on 95858 .0 828QO m. .3 83¢ “also. LonEJCO>03 00.000 0.00m“ 0.000u 0.000N 0.00VN 0.000N 0.00Nm 0.000m 0.000? . .! - ..... ||.--i...- ill-ll- ..ll L. II.--..|.+ l --.||+1- ..... 1J- 000'08 0000'0 000'0V 000'09 aouenuthUOJix 000'08 00'OOI 00°08? 187 3:83 u E on 95an8 .o 828QO $32 L can 09. .zs....rErr......-rs ...._. .... P ....z...--...... P ,. ..P — 5 .- . a a : w: Ev w v 3N com on— : x: _ . _. mum mum mom mt v3 KN mm— N3. 3 “N— 3— um ._ M_ no R mm mm .vm 2%: wxx 187 can €3.83 u 5 on 3:888 .o 5.28QO mum: on... 00v .....tzrr...5.5L.......:r...—.........r........r...............r..t... -..—:1... ....-. Fri-i... .I.-IlP.-.-.I.—ll—-Ibl A .=114<1 mom {a Q vm .— - u : m3. .3 3 8a 92 . _ . ..2 . as com E 3: m2 oo— mm— mm ~N~ no k mm mm mv .vm 23: ux: [0.8“ w\: [0.02 188 Eu «3. Em .... E 3 95388 .0 828QO «was. 8. 8.: on” P r.- PbePEP. IPP.P..PP . d . mmm mmm 8.. $4 8. 2., 8 8a 9.: 3a 3. m2 — v2 3 3 mm P. 2: Nu can gamma .mm 2:9". mxz r 0.03 mx: [0.8— 189 00.000 .11. 0.00N« - 1|. 0.000" ii: Afilsuv LwnEJCm>n3 0.000N I. ,V. A . I!" A,‘% 0.00vm -i|!|I+I fim n E um canon—=8 8 E2823 m. 0.000N 0.00Nm 0.000m 0.000? .!I.: < 1 III\.:\ Illnlin - i.l|.- .l4v 000'08 000'09 000‘09 000'02 0000'0 OO'OOI OO'OZI saueanywsuaqix .8 2:5 190 3o: .... E 8 2:858 .o 53.8% Ezz :— .3 2:9... 191 is-.. .- 5 an 2:858 .o 522 02 8.388 8.8 ELL 5.9 aéN e.e.. 5.5m 5.3 5.59: 5.52 .mm 2:9”. 192 00.000 Ill?|bb‘l.ll 0.000" Ii}! : IEUV LGOEDCO>03 0.000N 0.00?N L P J is: u 5 an 2:388 .o 828QO m. [gr ’l‘l‘l‘} 0.000N 0.00Nm 0.000m 0.000? b .b L 000'08 000'09 000'07 000°C? 0000'0 aaueuntwsufide 00'00I OO'OET .3 2:9”. 1 913 000 Irtbpllnvb-IIIII-PPIbIIPIbIIII 0mm :20: n 5 am 95858 .0 :58on man: 00m vb - I P I — I I I I {II — a 4. 2m 4&5 .88 9.0 8m 3.? owe 30 .In I I I I I I P .I I II I I I I I I I I - I I 4 _ a . a. a an vmm 93. 00a 02 u; on : _, _: _ :W. :_ m M j M . C 2.: , _ : _ a , :— m .3 w u 5 F. “J. 3... N 5 _ 8. r. ,_ ~2 4 _ " § a: 8 mm and . «m 3 um 02.. r 0.000 .8 5:9“. 194 5.5-68 u E E 8:858 .o 5:88... £22 I. .5 28:. 195 . n C 8.2 u 5 mm 95888 .0 82.8% E22 ...F E.r C:_Ln_.m &.m E.h E.m E.m Cgégf—EE .8 28E 196 .02. 8.2 .. E ...... 8:858 .o «.22 09 8.888 8.8 5.545.. 55¢ 5.5m J. 43:3? 4 .8 285 196 E.n: E.En e£mL E .22 a E ...... 2:858 3 £22 09 83:88 8.8 .8 2:9“. .92. 8.95 t::~—-»-PCP»—»~P___ppp—pbhpphth—phphbphpprpphhppphhtphpppbh—pphpphhhh—ppphpbpt—pppbhpht fl 4 J Jfi 1.4 ‘l 5% J 197 oo.oom J ;l. 62 u 5 mm 95868 .o 82.8% m. Anisov Lunfiacm>mz ‘. I ill ! '11? it'. ...... IIT: .----. 0.000? 0.00N« 0.000" 0.000N 0.00VN 0.000N 0.00Nm 0.000” J1 CO'OOt 000'08 OOO'OQ OOO'Or OOO'OE 0000'0 OO'OEI aaueuntwsuaulx .3 2:9“. 198 8.2 u 5 mm 2:858 .o 528QO $.22 00... an... 33. ...-{KP........-.I.PIL..IPI. ....- ..fi: 4; - -—.—. -——-- ..-- .... - ———~ ”..--“--- mv I a .02 um...” an u or: an m ...: 3L:m.qrim.qn_4..hr=n.:m._m. ... 0.1:“..m.:.._:. ._ .. firmed—«2:. .. m.1...m.1._.=.m._.i. :4; 33...“. _..m....m...:..u..:..::_1: .:....:»... ...—4.4.4.... :5... :___ é ._ __ a; _ __,_ __ _ m2. a: E : rm" 7 mm r mm I 0 .am mm T r I O .00— .mo 2:9... 11953 own Dunn-IDII-IIDD-IIID-IIII-blllbllhh-I PI!- - I I-I Phi-II P I. ...L:.....-... .- Em-_o-v u E 3 95858 .0 528on «was. .8 2:9“. oww cow ............E_ ...-...... own ux: 3.0. ....—....P...PI--. -...- ...Pl—u 3v 9mm v3.2 L I o .3. 8.. 8m 3m “3.. nip-III. In DD: E DD uni. II Dub. pp! p r p- r .- .- P b- .v —ln—ltl-nlln—I-pn—hE-IRLIIPIp-Iib-"nI—II-Ilr—p-nIPE—IBI-IIPIL'IPF—llh Dub-p.» r ..PIb-IIDI- II - I—IE—hlb- - 8m _ 4:. a. 3.. :m E” I 0.09 an" 93 on mx: m. ......r............._..:..:._ a _ LI-{...-I—I-In-nnnn—bpr-DII- — u .d ==;a_a '= - d mm.— 2— N9 7 V B. .... [3.2 200 Am: r. E am 95888 .0 526on E22 1. ‘. .8 2:9“. 201 EN 8n as. .. E a... 2:828 .o :22 02 8388“. Sac ELL ar am am urii111114J111444114rVq-11-q am an ...a .8 23m 202 oo.oom T. ;i o.oom« >IAL 0.000“ :IEUV Lmnchm>nz 0.000N 0.00vN L: L 3.2 u E on ucaanoo .o 828QO m. o.oomm o.oomm o.oomm o.ooov II \4 “ ¢ 4- J J0 000'09 000'09 OOO'OP OOO'OZ OOOO'O aDU913VWSUPJLX OO‘OOI OO'OZI .mm 2:9“. 202 82 u my an 950950 .0 Egomam m: .3 23¢ AalEU. LmDEDcm>oz . 00.000 0.00m" 0.000n 0.000m 0.00VN 0.000N 0.00Nm 0.000m 0.000? : :1. i L. J. 4. “ ¢ a J. OOO'OE 0000'0 OOO'OV 000'09 aaueulthUfidix 000'08 OO’OOI OO'OEI or. Idpncwh a.1... \ R - ~01 1w .... ..‘w ‘4‘] I ad . Qu‘ icy: AWWNNN - I n ~ ‘ h “‘3 =.\~,h.«w 59.-9de nqfl- .xa..,-¢ ..I. t..z- 11.3... .....é‘ 12(l3 65. u E on 3:858 .o 52.8% «was. AK 2:9”. ..wv 8m 8a SN o2 B: on 9.... u p p n u p - p P p b p , . , . . . —‘ . W8 , NWN “.___ ,_ ,, _t _. __ :_ m H”: ~ _ a __ _J _ 4 _ _ , . m2 _ _ L u 08 wk a: _ ..2 k a 2m 8 r . 8m «2 . u m; a _ z... _ 5 . m: an 9... 19.8 r mam €0.93 _ 8 a: - m: . . S E ”32% 988 5:. . a u « mmm flux: mmqm m_.momwmw "wumm mm o + co owned ~m\_o\~. Smhouam mqu 204 a. E .... E m... 2:858 8 52.88 E22 1. ELL . N 6..“ a r 33:81 .: 2:9“. 205 a— BM 8n 8r 8m Gm 8h 8m jjjlijfigflfijf 4 _1 ¢ cm .. my 8 2:858 .8 .32 on. 88:88 850 ELL g J L fl j a: 5: .fi 2:9“. 206 00.00? - 00.000 0.00mn 0.000« Ln J AalEUv cm u E mm c5858 3 636QO m: LUDEDCQ>UZ 0.000N 0.00VN 0.000N 0.00Nm 0.000m 0.000, w 'fi L w L J 4 J noun: mo mm >02 «m fl>5um|m mIU .2 5:9“. {'1 Av .35 ~ 207 cm u 5 mm ncaoasoo .o 5.28QO mums. ..K 2:9... 00v Ohm 80 0mm 8N and 3— on 9.: . ._ . »fl : , .. 3:” -_:: .. _,-,.. 5 g: :3 :_ 5: .V 2 _ H. 1 _ : 5 5 . _ _ _ 5, mm :8 RN :8 m2 ” k . M: 5 m2 m2 8 f mnm 0mm . mm" Nm r w mm mmm. ‘I o .2: 208 cad u E on 95888 3 82.8% E22 IP .2 2:9”. 209 Ea u my 8 2:858 3 8:2 02 2.88% 2.8 .2 2:9“. 28-: n E on 95888 B 82.8% m: Adina—LUV LmDEJCO>03 00.00? 00.000 0.00N« 0.000« 0.000N 0.00VN 0.000N 0.00Nm. 0.0000 0.000? P? L L b h b h L h 4 ! - £4. J [d d 210 ___.+___ ..---- ——--—-+—-- :—. ——+-—-— B“ "WV "00 00 >02 «mu fl>QOLQIClm NIU .R 2:9”. 211 :58 u E No 25888 .0 82.8% E22 IF .E 5:9“. 212 3m-.. .. ... 8 2:858 .o ..22 o... 8.888 8.8 :7 J 44 .2 2:9". 213 :58 n 5 no 95888 .0 82.8% m. .8 2:9”. A«IEU. L0083c0>03 00.000 0.00Nn 0.000a 0.000N 0.00VN 0.000N 0.00Nm 0.0000 0.000? ..-l . .-l-.--l|l.+r: - --.Il. --. al.:l. ltlznlli -I-.--zll+- -IlullllllT...s.! ....I..l+l.;--;r_.. 1'14. 0000'0 000'08 .:;> 000°C? 93U933¥wsuaqig 000'08 000'09 OO'OOI OO'OZI 214 .EW 8.. u m. 8 2:858 .o 822 o... 88:88 8.8 arr... 5.58 9.8 e.em .... 5:9“. 215 Ema u E 3 95888 .0 82.8% m. .8 8.6.“. 3 IEUV LODEJC9>03 . 00.00? 00.000 0.00mn 0.000“ 0.000W 0.00?m 0.000N 0.00Nm ..llll. ol. . .l. .IIIII‘! ,1.....Ol.ll.|i.ll. .. . ....|-¢ .-nilufi I .i . . .I..l.l. ... 0.000m 0.000. -4 216 3v own Pup-bb—ub-nnpnn-PDP- ._- m; mmm «mm 83... .mm mam 8m _ _ 8m 8m (‘4 mm. mm— mm. .m— cm: mn mm Ema u E 3 95888 B 8:88.... 822 was 19% 10.03 .8 2:9”. 217 2358.. u m. mm 95888 .0 82.88 $22 IF J 41%.. .3 2:9“. 218 ....58. .. .... 8 2:858 .o 85.2 on. 88:88 8.8 .8 2:8... 219 3.88-. n 5 no 9.5888 3 82.88 m. AaKEU. LUDEDCN>03 00.000 0.00N« 0.009“ 0.000 0.00?N 0.000N 0.000m 0.003m 0.000? , VII...— . ..-...Il‘l . . ....i - ...|+ . .-.. ....--cyll- . .l‘ . . .i. . 2||+.. . ._ ____+_.__- __ __._;_ 000'0? F—- ---- OOOO'O 000'02 OOO‘OB 000'09 saueuztwsuede OO'OOI CO'OBI .8 9:9”. 220 A383; u my no 95388 .0 528QO mums. emu own own omv I..P..P.P .bb-trn.PP-Pb-Pppbn. .PbpnfiP-IP- Nov nvv can com com on— _ __ _‘ . . ,:‘ .T:q__:; ; , . 2m 3“ «a _ i : can 8m or.“ um. I. _ mm— omu :— v.— m?_ oov 0mm vmm «av m v oo— .: f, 5 a __ ._ _ , o a ma an «N— mm «mm 0 vvm 0v .8 2:9”. mxz r 0.8. ax: 221 3.03. n 5 no 95888 8 528QO £22 IP .m E.m E.h S.m &.m .S 2:9“. 222 G . S~ G.§n S . #3333343??? Sm N. . n2. 1% IJ 4 ELL £33. . E 3 2:858 3 £22 09 83:88 8.8 a. fin Q.n:~ §.Sfl~ .8 2:9... 223 g]; 1 btpnnb—PFF-uunPn-pbPPPpbPP—P- 0 mm 3m 08 «cm mam own mmu ova 6mm mm— com com 3.. v3 303. u E 8 2:388 3 £28QO mans. vwm 0mm 0v .8 2:9“. mx: I 0.8“ m\: [0.03 224 Em- - u .0 v E mo 2:358 .o 82.0QO «:22 IP .5 2:9“. . Q 8 fl u m ‘ ‘ ‘ N A ‘ 225 h m «11311131343343: 43431431341443 J. # J # J4 J— En. u E as c.5888 .o 82.0QO «$2 .8 9:9“. 226 on» own 3... 3v 5mm was a n I {hr .1 p n n n n u n n p b .- p I P p n n - p n u - n n n I 3 fit»? - p n n» - fl _ r mmm vmm rmdw own y r 10.3. own 9.“... on. mg on mx: .LB:F...-P..P.. .PEP....-..:p_BB—:_::_ . fl _ __ _ j . 2 ._ y m: x: B. J. t , 2m «.2 a , mm 3 r ;J r r m; k _ , x r . mm: m u a on r mm 7 3; [@63— ov . 227 D-bv—Iup—van—IPIP—--Iruin—ptDDDI-Ip-Ibiblph-blpb-Ibvb—nI! Dubli-Ilvhr'I—DnpD—IE—Irbp-pug—pPLD-rhErgp-DBP-IIII—bDID—B'PE-b'b-IE-I’bp- I: =Ur £1-64. mimm E I. 2:868 .o 82.8% mam: IID—DE......BID-IIID—Il-Ii-IILIDDD.DIILIID.IDDI-IIII-DDII-IlhDIII-I DID-IILIIDD- .3 2:9”. w. : bhbbhbb-br...—hnhb-b-Ib—prhp—phIb—Inlb—IDIL-D-b-DP-n—Ibbbrrl-DDDI-IIDD—I-b n-DbppFlu—IIII—p-Dunn-5..I-rb—IE-ID-n-IbII-Ikn—II'PD-h-blib-Dhg—nphn—I-ph—nE—b-pI—Ihhb—Dbbu— :mv = ..—4———=¢ m I‘fi own mum 1.a.oo_ U“: ‘ 1 1 ...-P.Brl.—I......._:..—..:_£...an._.: " j a: mum mm- mam 1: r N no _Um mm... r..... . ._ r N 1.a.om "dub-Db :r-Ibrzi—b-B—IKID: :I—pbun—Ilbh-Ibb nub-h- I-Ib—h saw. :::I—.. I—Dbpn—DE—b-DD—p-bh—Ipnp—r- ph—nbph—LD-D—hh-b—n-bpbbubh—bp PEF—thb—n-Ip—h-hh—hn:rnun—DID.—->b—ID-b-|Ib-III-III- r:-——=:—pn:rn-P—Ip:- oo— . .____= 3%.... 5U-- _ 1...: ________::_.__1. 1.: £1344. 5:. com mr_ em— N vo— _.—=——_z:—~—41— —: =— :——-1--—— no" «V mm“ vfi.__1.._.£__:.___;m._w_ __ __=_ mm 7 T I a .9: 228 00.003 ----I--'ll¢. O . ..-...--'Il*..||||tl..||llll*... ..-.. ....Illl I, CON“ 0.000a gazeuv LCLEJCM>03 0.000N 0.00?N . «-....llnlui - -9. ‘ -l.|-in . i ll Em u E 2. 338.28 3 82.8% m. o.oomm o.oomm o.oomm 0.000: ulii .i--,lT. .-.- rlé 000'08 0000'0 000°C? 000'08 000'09 souezztwsueqig V A' 00'0 00'08? .mm 2.6.". 229 00. com 4|; 0.00N« 0.000H - a-1-Iii ---. -- 3..-. iii adi80U L00838m>mz 0.000N -yx. ,iiIt. 0 . Con-N 1.. ..l-II..|l|i --u 0.003m 1.. 3-1: 'nll'lllillll . 2- 95888 .0 82.8% m. 0.00Nm 0.000m 0.000? !. -I'll.v- 'I . 0000'0 000'02 000'0? sauenutwsuedix 000‘09 000'08 Fm —-—~————+—- OO'OOI O 7 00°06 .8 2:9”. 2530 L P1 mom can P.--—..bbbb-.-P- ;n 3. ohm 8m 3m .3“ km _ _ an «a . own man mNN EEO-v u E on 95888 B 88.88 822 3n omv 3v 98 F- l I II; D I P I I I I I I I I I» I- I III- I I up I 8.. “Us 8.. 8m :0 m8 vmm com on. n; on :. _. i. U ..,__.h. = _ 22 3. 92 n_ ma no _ on n; «.2 mm. _ u a B 3. :— an .8 98: w\= r062 mxz [9.09 231 oo.oom -L 0.00N« ...I||l+ .. 0 .000« -L Ufileu. 0.00 LmDEDCm>03 0N 0.00VN Qll+ .. .Ii: '01 0.000N - in l»..|a||l:lov fill .. «a 8:888 .o 8.88 m. 0.00Nm 0.00®m in .. Al‘x - 0.000? A- J. 000'08 000'09 OOO'OP 000'08 0000'0 830933¥W5U90L3 00'00! OO'OEI .8 28m 232 3.2 u E 8 8:888 .0 8:8me 882 Tm: mm:- . mm. . .3: 6....1 «ann- u: .........._..... ._ mmm n8 . 19.3 red? on. man: an mxz .aqfl. “hr—.— .._J.l-..._._.—— . =.-. . 1—.u_ —.I ... .u=—. . 1L. . v _ m3 3 . an; N— an r mm no.9.“ 3. . r gm ..0-om: .8 2:9”. Lu 15;“? up " 03 - “I 7’! (‘3 I""" 0‘. 'D 7? “TI 10:18 ~ .4 WE 1%. t3 — 233 U: u‘J—z '3' 4332 do 66 { 4 1 .4 1 [3.1 .-ID , C 1 - 5w '3' a I..." . I:lj I '3: -' - H Ph) Figure 100. Mass spectrum of compound 87 (R 234 222-*- u 5 mo 8:888 .0 8:8QO 882 .2: 9:9“. '5 0" r‘- mwm 9mm amw own w.: I3 own -wv a: 9mm 0mm ma: ¢mm omm DELI-Irgu—IDII-IE-I-bn-plpb—IE ...—Ibr-—pInv.1.{Pug—nIr—pb-p—b-hr-Ipb—pbbn—hInn—unp-rh-r—u-B-IE—hp-I—Il-vlp-Ip I. E—ngp—b-rp-p-nn-p-pp—IE—IEEEL l d—I—\ ‘- mmv 235 En. u 5 am 8:888 .0 888m «8.2 .m3 2:9“. .’ .un 02! =Um 9w m mam own U : IkLBII-IE—IKI—BlPIILBI—IE—IIIl-IIII—IIDI-IDII-IE-IDII-FIII—IIIP-IIII.IIDI—IIDI-IIII-IIII—IIn-rIII-IIII-IhII-bIII-IIIb-IDII—DIII-IIII—IIII-IIII—IE—IIII—IIII-IIII-IIIh-IIDI—IIILIIII-I=I-II:—IIB-ItI-BBPII-Bg-III— DB’D-PIPI- T Y I’ Y T ’- l" I .. 3‘. I T I .U . on; man om? -ov amm cam um: ....- J..R..._z.._....r......_.E...EL.........1.......-.-......—............:_.:._:.-_::_................ m_v ms? _ om. 'I-llrgl-DIPI-IDII-I III—I’ll-IBI-DIDI_IE_I=I-‘=— ._ 3.... gm :2 :2 a {FE-IKI—I nub»: L.III-IEIIII-—III—IIID—II:-—-I:—bIIP—ILII<“III LIIIIrIIIMIIII—ob Ir-ILI-l—IIIII-:rIIIII-IIII—IIII—nbbb—IIII—III-rI-II-skp—IIII—IIII—II:rIII—II-I—IIBM-III-IIII—IIII-I-II—I. .Ih-I-n-—.IIII.—.I'D-IIII-I3g——=-_:fi— {MW-l. 0 ‘u A :1 d: J u 4. a *1 ...-,3 1‘4 «14— ”.r:- ~VN CD“... MM“~ #& V—M— A—M-V— q mr— J——— — mflw— Nam 0n — mm m: E 3 - mNN ND— w an. mm mm mm“ Y 0) FY D '9 D l '5 ID V f '1?) Y T I I V r— T v .5 c:- :22-.. u 5 mm 8:888 .o 8:888 882 do. 2:9“. UWF .. w. .0.” DWfi 33W 01'. .U.- m m : I=LII:—IIII-IIIL==r:LIII-IIII“III—IIII-IIII-IIII—IIII’IIII—IIII-IIII—IIII—IFIII—IIII—IIII—IIII—IIII—IIII-IIII-IIII.IIII—IIII-IIII_IIII-IIII—IIII—IIII-IIII-IIII—IIII—IIII-IIII-IIp—III-IIII-IIII-IIII—II:—-=I—=IIPIII-IIII—IIIIPEI—RII- l J A l. L l4_L 236 3w 8.... EU. .8 8.. ”...... III I—IIII—IIIIrIII- IIII.IIIPDIIII—IIII—IIII—IIII-IIII—IIII—I III—IIII—IIII—IIII—-III-IIII—IIII-IIIIrtI—tt-IIII—IIII-IIII—IIII-IIII—IIII III-IIII—IIII-IIIIPIII—IIII— IIII—IIII-IIIIrIII-I'LIIIIPIII-IIII—IIII—I III-IIII—IIII-IIII—IIII—IIIIhIIII. L I L L LLI 1 U— . J— U a 24.. _U ...w 0) 9mm. mm;- T r r .— '- ‘ mm - 9:.- mm; 2.: s... ..U 9. '0‘ .0 ll\ IIIIIIIII—IIII—IIII—IIIIrIIIhIIIIu-IIIIIIIII—III-IIIIIhIIII—IIE—IIII—IIII-IIII-IIII—IIII—I II—IIIIIIIIIIIIII—I1III—IIII—IIII—IIIP-IIII—IIII—IIII—IIIIrIII—IIII—IIII—II-IuIIII—IIII-IIII-IIII—I'I—IIII—IIIIbIIII—I-II—IIII—II II—n III—IIII-IIII—IIId III— .= A Y Mvw mm ...r 0: n2 If) U) .. UU .. Em... . UU..._.;__U.............U ...U.._: a... ...: ...-...... :2 r .:m . mm: m - 3. Um I 9.8.: 237 Em-_o-v n 5 mm 959:8 .o 98QO mass. .2: 2:9... - um. new... own. 5...)...” a?” v mm m? z . . _ . E r o .9”: 9% awn can am.» mm... 3m». 9...: _ s... . . _ . d . E _ E r :93 tam r f up...“ Was...— mom “......" am; mm m __ BL: . . . I . ~ . I . . ~ m m d d N , g N d Cd [\- m r [\- wam N2 1 o ....u. fr—r r 3.. r o .03 REFERENCES 10. 11. 12. 13. 14. REFERENCES (a) Kealy. T. J.; Pauson, P .L. W19“, 155.. 1039;' (b) Miller, S. A.; Tebboth, J. A.; Tremane, J. F. J._Qh_am._S_QQ. 1952, 632. (a) Rosenblum, M. ”Chemistry of the Iron Group Metallocenes", Part I., Wiley, New York, 1965; (b) Wilkinson, 6.; Stone, F. G. A.; Abel, E. W. ”Comprehensive Organometallic Chemistry”, Pengaman Press, New York, 1982. (a) Nesmayanov, A. N.; Perevalova, E. G.; Golovnya, R. V.; Nesmayanova, D. A. W 1954. 91. 459; (b) Okuhara. K. Mm. 1976. 41. 1487; (c) Sosin, S. L.; Alekseeva, V. P.; Litvinova, M. D.; Korshak, V. V.; Zhigach, A. F. WW 1976.18, 703; (d) Hanlan, A. J. L.; Ugolick, R. C.; Fulcher, J. (3.; Togashi, 8.; Bocarsly, A. 8.; Gladysz, J. A. 1mm. M1980. 19,. 1543; (e) Cassens, A.; ,Eilbracht, P.; Mueller-Westerhoff, U. T.; Nazzal. A.; Neuenschwander, M.; Prossdrof, W. WW 1 981 . 2.0.5.. C17. (3) Goldberg, S. l.; Mayo, D. W.; Vogel, M.; Rosenberg, H.; Rausch. M. 1.12m. 91mm. 1959. 24, 824; (b) Rausch, M.; Vogel, M.; Rosenberg, H. mm 1957, 22, 900; (c) Wrighton, M. S.; Palazzotto, M. C.; Bocarsly, A. B.; Boltz, J. M.; Fischer, A. B.; Nadjo, L. W1978, 1.0.0.. 7264. Bishop, J. J.; Davison, A.; Kateher, M. L.; Lichtenberg, D. W.; Merrill, R. E.; Smart, J. c.J._annnmm._Qham.1971.2L 241. Cullen, W. H.; Kim, T.-J.; Einstein, F. W. 8.; Junes, T. W 1983, 2. 714. Perevalova, E. G.; Lemnovskii. D. A.; Afanasova, O. B.; Dyadchenko, V. P.; Grandberg, K. I. and Nesmayanov, A. N. W 1972, 21. 2594. ' Sedova, N. N.; Moiseev, S. K.; Sazonova, V. A. W 1982, 224, C53. Seyferth, D.; Hofmann, H. P.; Burton. H.; Helling, J.F. W196; 1, 227. Hedberg. F. L.; Rosenberg, H. W1969, 4011. Kotz, J. 0.; Niven, C. L.; Lieber, J. M.; Reed, R.C. imam 1975, .83., 255. Marr. G. W 1967. a. 147. Booth, D. J.; Rockett, B. W. WWW, 5,, 121. Slocum, D. W.; Rockett, B. W.; Hauser, C. R. mm 1964, 1831. 238 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 239 Gay, R. L.; Crimmlns, T. F.; Hauser, C. R. W19“, 1635. Booth, D. J.; Marr, G.; Rockett, B. W.; Rushwonh, A. W 1969, 2701 . Hayashi, T.; Yamamoto, K.; Kumada, M. W 1974, 4405. (a) Hayashi, T.; Tajika, M.; Tamao, K.; Kumada, M. LAW 1976, 91. 3718. (b) Hayashi, T.; FukushIma, M.; Konishi, M.; Kumada, M. W 1980. 2.1.. 79. Hayashi, T.; Mise, T.; Fukushima, M.; Kagotani, M.; Nagashima, N.; Hamada, Y.; Matsumoto, A.; Kawakami, 8.; Konishl, M.; Yamamoto, K.; Kumada, M. Bull. Wwema 1138. Cullen, W. R.; Yeh, E.-S. W 1977, 139. C13. Cullen, W. R.; Einstein, F. W. B.; Huang, C.-H.; Willis, A. 0.; Yeh, E.-S. LAm. Qbfimhsgs. 1 980.. 1.0.2. 988- CuIIen, W. R.; WooIIIns, J. D. W 1981, 33. 1. Cullen, W. R.; Woollins, J. D. Mam. 1982, 59, 1793. Butler, I. R.; Cullen, W. R.; Reglinski, J.; Rettig, S. J. Wen], 1983. 2.4.9.. 183. Marquarding, D.; Klusacek, H.; Gokel, G.; Hoffmann, P.; Ugi, I. W 1 970, 93, 5389. Gokel, G.; Hoffmann, P.; Klusacek, H.; Ugi, I. W 1970. 9_, 64. Valkovich, P. B.; Gokel, G. W.; Ugi, I. K. W 1973, 2947. Battelle, L. F.; Bau, R.; Gokel, G. W.; Oyakowa, R. T.; Ugi, I. K. W 1 973. 9.5.. 482. Stuber, 8.; Ugi, I. mmn, 309. ' Knowles, w. 3. W19”. 15, 106. Yamamoto, K.; Wakatsuki, J.; Sugimoto, R. Wm, 1980, 53, 1132. Hayashi, T.; Kawamura, M.; Yoshihiko, I. W 1987,1512, 7876. Hayashi, T.; Yamamoto, A.; Ito, Y. Wm 1986, 1090. Gokel, G. W.; Ugi, I. K. W 1972, 42, 274. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 240 Hayashi, T.; Mise, T.; Mitachi, 8.; Yamamoto, K.; Kumada, M. Whit. 1 976. 1133. . Hayashi, T.; Katsumura, A.; Konishi, M.; Kumada, M. W 1979, 425. Hayashi, T.; KonIshi, M.; Fukushima, M.; MIse, T.; Kagotani, M.; Tajika, M.; Kumada. M. Wwazm 180- Hayashi, T.; Konishi, M.; Ito, H.; Kumada, M. W 1982.104. 4962. Hayeshl, T.; Okamoto, Y.; Kumada, M. W 1983, 25, 807. Hayashi, T.; Konlshl, M.; Okarnoto, Y.; Kabeta, K.; Kumada, M. M 1 986. 5.1.. 3772. Hayashi, T.; Konishi, M.; Fukushima, M.; Kanehira, K.; Hioki, T.; Kumada, M. .L Mommas. 48.. 2195. Hayashi, T.; Kumada, M. Wes. 1982, 15,, 395. MoCulIoch, B.; Brubaker, C. H., Jr. W19“, 3,, 1707. McCuIIoch, 3.; Ward, D. L; Woollins, J. D.; Burbaker, C. H., Jr. W 1985, A. 1425.’ Honeychuok, R. V.; Okoroafor, M. 0.; Shen, L.-H.; Brubaker, C. H., Jr. W19“. 5. 482. Shen, L.-H.; Okoroafor, M. 0.; Brubaker, C. H., Jr. Wigs, 1988, Z, 825. Okoroafor, M. 0.; Ward, D. L.; Brubaker, C. H., Jr. W19881, 1504. Okoroafor, M. 0.; Shen, L.-H.; Honeyohuck, R. V.; Brubaker, C. H., Jr. W19”. L 1297- Hegedus, L. L.; McCabe. R. W. "Catalyst Poisoning”, Marcel Dekker, New York, 1984. Weisser, 0.; Landa, S. ”Sulfide (Catalysts, Their Properties and Applications", Pergamon Press, New York, 1973. Rakowski DuBois, M. W 1989, 89,, 1. Casewit, C. J.; Coons, D. E.; Wright, L. L.; Miller, W. K.; Rakowksi DuBois, M. W19“. 5. 951. Rakowski DuBois, M.; VanDerveer, M. C.; DuBois, D. L.; Haltiwanger, R. C.; Miller, W. K. W 1980, 192, 7456. 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 73. 74. 241 Kubas, G. J.; Ryang, R. R. W 1985. 1.01. 6138. Rakowski DuBois, M. W 1983. 1.0.5.. 3710. Weberg, R.; Haltwanger, R .C.; Laurie, J. C. V.; Rakowski DuBois, M. LAID. Mania 6242. Vidal, J. L. Flato, R. A.; Cosby, L. A.; Pruett, R. L. W 1978, 11, . 2574. Vldal, J. L.; Walker, W. E. W19“, 19. 896. Cosby, L. A.; Fiato, R. A.; Vidal, J. L. U.S. Patent U.S. 4,155,433; ML. 1979. 9.0.. 1033855. Kublak, C. P.; Woodcock, C.; Elsenberg, R. Ingram 1980.19,. 2733. Blanchlnl, C.; Mealll, C.; Mell, A.; Sabat, M. WWBB, 25,. 4617. Bogdanovlc, B.; Gottsch, P.; Ruback, M.Z. W 1983, 3.8,, 599. Bogdanovlc, B.; Gottsch, P.; Rubach, M. LMgLQataL 1981, J_1_, 135. Gilmour, D. I.; Luke, M. A.; Mingos, D. M. P. Was, 1987, 335. Inoue, H.; Suzuki, M. WWBO, 817. Inoue, H.; Nagoo, Y.; Haruki, E. W1986,L 165. Gordon, A. J.; Ford, P. A. "T he Chemists Companion”, John Wiley and Sons, New York, 1972. PP. 445-447. Kharasch, M. S.; Seyler, R. C.; Mayo, F. R. W 1938, 60,. 882. Hartley, F. R.; “The Chemistry of Palladium and Platinum”, Wiley, New York, 1973, p. 482. Goerner, G. L.; Hines, W. G. W19“, 10,. 3511. Spencer, H. K.; Hill, R. K. Mm. 1976, 41, 2485. The synthesis of this complex have been reported in reference 48. Cromer, D. T.; Wabe, J. T. ”International Tables for X-ray Crystallography", Vol IV, The Kynoch Press, Birmingham, England, 1974. Frenz, B. A. “The Enfra-Nonius CAD 4 SDP - A Real-time System for Concurrent X-Ray Data Collection and Crystal Structure Determination" in Computing in Crystallography, Schenk, H.; OIthof-Hazelkamp, R.; Vankonigsveld, H.; Bassi, G. C.; Eds, Delft University Press. Delft, Holland, 1978. pp. 64-71. 75. 76. 77. 78. 79. 80. 81. 82. 83. 84. 85. 86. 87. 88. 89. 90. 91. 92. 93. 94. 95. 242 Okoroafor, M. 0.; Ph.D. Thesis, Michigan State University, East Lansing, MI 1 9 85 . Honeychuck, R. V., Ph.D. Thesis, Michigan State University, East Lansing, MI 1 984 . Perevalova, E. G.; Ustynyuk, Y. A.; Nesmeyamov, A. N. “W 1 963 , 1036. Perevalova, E. G.; Ustynyuk, Y. A.; Nesmayanov, A. N. W 1 963. 1045. ' Schloole. K. W 1967.1. 39. Bosnich, B.; ”Asymmetric Catalysis”, Martinus Nijhoff Publishers, Boston, '1986. Onishl, M.; Hirakl, K.; Iwamoto, A. W19“, 262, C11. Rausch, M. D.; SIegeI, A. W 1969.11, 117. Slocum, D. W.; Ernst, C. R. Warn. 1972,10, 79. Slocum, D. W.; Ernst, C. R. W 1970, 6. 337. Koridze, A. A.; Petrovskii, P. V.; Mokhov, A. I.; Lutsenko, A. I. Magma. Chem.1977,1_a_e, 57. Bailey, R. T.; Lippincott, E. R. W 1965, 21, 389 Rosenblum, M. Wmse, 953. Rosenblum, M. W 1959, 81, 4530. Rosenblum, M.; Howells, W. G. W 1962, 8:1. 1167. Rosenblum, M.; Howells, W. G.; Banerjee, A. K.; Bennett, C. W 1 962, 8_4_, 2726. McCulloch, B. Ph.D. Thesis, Michigan State University, East Lansing, MI, 1983. Shen, L.-H., Ph.D. Thesis, Michigan State University, East Lansing, MI, 1985. Rausch, M. D.; Moser, G. A.; Meade, C. F. MW], 1973, 51, 1. Silverstein, R. M.; Bassler, G. C.; Morrill, T. C. 'Speotrometric Identification of Organic Compounds", 4th Ed., Wiley, New York, 1981, Chap. 4, p. 190. Ovoryantesva, G. G.; Portno, S. L.; Grandberg, K. I.; Gubin, S. P. W 55.88.1965, 15.0.. 1075. 96. 97. 98. 99. 100. 101. 102. 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116. 243 Sokolov, V. l.; Troitskaya, L. L.; Reutov, O. A. W 1979, 182, 537. Hayashi, T.; Kumada, M.; Higuchi, T.; Hirotsu, M. W 1987, 314,. 195. Plusec, J.; Westland, A. D. W19”, 5371. EI-Dlssouky, A.; Refaat, L. 8. W19“, 81, 213. Croclani, B.; DiBianca, F. W19“, 253. Hartley, F. R.; Murray, S. G.; Levason, W.; Soutter, H. E.; McAuIiffe, C.A. mom, M1979. 35. 265. Goggin, P. L.; Goodfellow, R. J.; Haddock, S. R.; Reed, F. J. S.; Smith, J. G.; Thomas, K. M. W197; 1904. Woolllns, J. D.; Grinter, R.; Johnson, M. K.; Thomson, A. J. W 1980, 1 91 0. Roundhill, D. M. W1980Jfi. 553. Czemuzewicz, R. S.; Nakamoto, K.; Strommen, D. P. Mm. 1980, 19, 793. Battlstonl, C.; Giuliani, A. M.; Paparazzo, E.; Tarli, F. W19“, 1 293. Murray, S. G.; Hartley, F. R. WWBLfl, 365. Busetto, L. W 1980.186, 411. Callahan, K. P.; Piliero, P. A. M1980, 1.9, 2619. Sangar, A. R.; Weiner-Fedorak, J. E. mm 1980, 4,2, 101. Sindellari, L.; Faraglia, G.; Zarli, B.; Cavoli, P. W1980,4§, 57. Allkins, J. R.; Hendra, P. J. may, 1325. Goates, G. E.; Parkin, C. MEGS, 421. Pauling, L. "The Nature of the Chemical Bond“, Cornell University Press, 3rd, 1960. Seyferth, D.; Hames, B. W.; Rucker, T. G.; Cowie, M.; Dickson, R. S. W 1988. 2. 472. Goggin, P. L.; Goodtellow, R. J.; Knight, J. R.; Norton, M. G.; Taylor, B. F. ..L We. 1973. 2220. 117. 118. 119. 120. 121. 122. 123. 124. 125. 126. 127. 128. 129. 130. 131. 132. 133. 134. 135. 244 Harmon, R. E.; Gupta, S. K.; Brown, D. J. mwn, 23, 21. Strukul, G.; Carturan, G. Wan, 35, 99. Airoidi, M.; Deganello, G.; Dia, G.; Gennaro, G. W19”, 58. 179. Sakai, M.; Harada, F.; Sakakibara, Y.; Uchino, N. W 1982, 55,, 343. Checkashin, G. M.; Shuikina, L. P.; Parenago, O. P.; Frolov, V. M. W 1 985, 25. 1110. Frolov, V. M.; Parenago, O. P.; Shuikina. L. P.; Novikova, A. V.; El'Natanov, A. I.; Cherkashin, G. M.; Kliger, E. G.; Mirskaya, E. Y. W 1986, 587. Choukroun. R.; Basso-Bert. M.; Gervais. D. Wu. 1 986, 1317. Fragale, C.; Gragano, M.; Ravasio, N.; Rossi, M.; Santo, I. W 1984, 82,. 157. Hirai, H.; Chawanya, H.; Toshima, N. W 1985, 58, 686. Kurokawa, Y. Japan P. 62-74938 (1987). (a) Spencer, M. S.; Dorden, D. A. USP. 3, 1961, 009, 969; (b) Kondo, H.; . Miyake, Y. Japan P. 44-12126; 45-21484; (0) Aaki, K.; Miyake, Y. Japan P. 45—21 284 . Tayim, H. A.; Bailar, J. 0., Jr. WWW, 89,, 4330. Lai, C. K.; Naiini, A. A.; Brubaker. C. H., Jr. W3, in press. Lai, C. K., Ph.D. Thesis, Michigan State University, East Lansing, MI, 1988. (a) Yamashita, M.; Kato, Y.; Suemitsu, R. 911901.490. 1980, 847; (b) Nishio, T.; Omote, Y. W 1981, 934; (c) Dincan, E.; Loqu. A. W1981.31.1171. Collman, J. P.; Finke, R. G.; Matlook, P. L.; Wahren, R.; Komoto, R. G.; Brauman, J. I.J._Am._Qn9m._Soo.1978.J_QQ. 1119. (a) Tsuda, T.; Fuhii, T.; Kawasaki, K.; Saegusa, T. WW 1980, 1013; (b) Ashby, C.; Lin, J. J.; Goel, A. B. man, 13,, 183. Hayashi, T.; Yamamoto, K.; Kumada, M. W 1974, 4405. (a) Reger, D. L.; ‘Habib, M. M.; Fauth, D. J. Wham, 1980, 45, 3860. 136. 137. 138. 139. 140. 141. 142. 143. 144. 145. 245 Tsuda, T.; Hayashi, T.; Satomi, H.; Kawamoto, T.; Saegusa, T. W 1 986. 5.1.. 537. Cortese, N. A.; Heck, R. F. Mm. 1978, 43,, 3985. Fort, Y.; Vanderess, R.; Caubere, P. QDEIILLBIL 1988, 755. Bosnich, B.; Fryzuk, M. D.qu,._s_te;ag_gnmn.1981,1z, 119. Consigllo, G.; Botteghi, C. W 1973, 55, 460. Kumada, M. Proceeding of the Okazaki Conference, Okazaki, Japan, Nov. 1981. Lemire, M.; Buter, J.; Vriesema, B. K.; Kellog, R. M. W Comm 1984. 309. All, H.; Brubaker, C. H., Jr. Unpublished results. McCreary, M. D.; Lewis, D. W.; Wemick, D. L.; WhItesldes, G. M. LAW 5.9.9.1974. 96. 1038. Cullen, W. R.; Kim, T.-J.; Einstein, F. W. B.; Jones, T. W 1985, 4,, 346.