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ABSTRACT

AN ANALYTICAL AND EXPERIMENTAL

INVESTIGATON OF‘EHE DYNAMIC RESPONSE

OF A FOUR BAR MECHANISM CONSTRUCTED FROM

A.VISCOELASTIC COMPOSITE IATERIAL

Wang Chun-hwa

The intense competition in the international marketplace for

mechanism systems which operate at higher speeds. are less noisy and

more energy efficient than previous designs has imposed considerable

preasures upon the machinery designer. This is because classical

rigid-body analyses are unable to predict the elastodynamic phenomena

associated with these new modes of operation. In order to respond to

these commercial stimuli. mechanical systems need to incorporate members

with high stiffness to weight ratios and also high strength to weight

ratios.

The work presented here develops appropriate finite element models

for four- bar mechanisms constructed in elastic and viscoelastic materi-

als. Experimental investigations into the effects of different link

materials upon the dynamic flexural response of four bar mechanisms are

also described. The correlations between the analytical and experimen-



tal results for the midspan transverse deflections of the coupler and

rocker links are good. thereby suggesting that these models may be used

with confidence in the computer aided design of high-speed machine sys-

tems fabricated in the commercial materials and also composite

laminates.
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Chapter 1

Introduction

For the past decade. the design of machine members have always been

based on the rigid body method of analysis. which means designers have

traditionally considered all members of a mechanism to be rigid bodies

[1-5]. With this rigid body approach. elastodynamic phenomena. such as

dynamic stresses and vibrations. associated with link elasticity are

neglected. This method can only be considered to be resonably accurate

for those mechanisms which operate at low speeds. The major problem.

from designer's point of view is that the traditional rigid-body ana-

lysis and synthesis techniques are unable to predict the response of

these mechanical systems with flexible members because mathematical

models need to incorporate link flexibility.

Recently. machines have been required to operate at higher speeds

with more accurate performance characteristics. Because of the higher

Operating speed creates increased inertial forces. the mechanism must be

fabricated as a lightweight form-design to reduce the inertial loading.

Unfortunately. mechanism with lighter members develop deformations and

vibration due to external and internal forces; therefore. the perfor-

mance of the mechanism might not be acceptable owing to these

inaccuracies. In addition. failure of the mechanism might occuur if a

vibration analysis has not been undertaken. Owing to this effect. the



analysis of non-rigid mechanisms have became extremly important in the

mechanism design area. Research in the field of mechanism design has

progressed from studies of systems containing one [1-9]. or more. flexi-

ble links [10-30] during the past few years as researchers have

attempted to deveIOp viable mathematical models for designing high speed

mechanism systems with high stiffness weight ratios and lighter weight

members because classical techniques based upon rigid-body dynamics are

unable to adequately predict the performance characteristics of these

flexible systems. These kind of techniques would allow a designer to

deveIOp a light weight. flexible mechanism that would meet both require-

ments. Comprehensive review articles of the early research in the area

of the dynmmic analysis of elastic mechanism have been presented in [31.

32].

In all of these references, the systems are assumed to be con-

structed from homogeneous isotropic materials such as carbon steels or

aluminum alloys. Some of the more recent work were devoted to deveIOp-

ing Optimum lightweight form-designs for the menbers of linkages based

on optimizing the stiffness characteristics or focused on the

cross-sectional dimensions and shapes of the links [33-37]. Hence links

were designed with tapers and complex cross-sectional shapes which

directly increases the cost of manufacture. while reducing product

marketability.

An alternative philosophy with which to design a mechanism with

high strength-to-weight ratio and stiffness-to-weight ratio components



is to fabricate the links from a modern fiber-reinforced composite. As

is well known, these materials have much higher strength and stiffness

to weight ratios than the commercial materials such as steel or

aluminum; furthermore. the composite also have high material damping.

and good fatigue life.

Although considerable fundamental research has been undertaken on

determining the mechanical properties [38-43] and the response Of the

composite materials treated as elastic members [44.45]. the literature

is devoid of reports on the dynamic viscoelastic response of mechanism

systems built using these materials. Therefore. the objective here is

to establish guidelines for the design of linkage machinery in composite

materials. A four bar mechanism was constructed by incorporating these

different materials as the coupler and rocker links and treating them as

the flexible parts. A finite element code was developed for the nonli-

near elastic analysis Of flexible four bar linkages based on a

variational formulation [46] and presented in [47]. A second code was

developed for a four bar linkage fabricated in a £45 graphite epoxy lam-

inate.

The material characterization tests show that the £45 degree

composite was a viscoelastic material. There have been several deriva-

tions of variational theorems in linear viscoelasticity [48-56]. The

experimental four bar mechanism which was fabricated using a :45 degrees

composite is analyzed by first developing an appropriate variational

principle for a general multi-body system fabricated from a linear



viscoelastic material prior to formulating a model of constitutive equa-

tions of the composite laminate and then solving the resulting equations

of motion by the finite element method.

This single functional expression with its associated varational

equation provides a complete description of this class of mixed boundary

value problem and is relevant to the design of all mechanisms. By per-

mitting arbitrary independent variations of the stress. strain.

displacement and velocity parameters. this equation yields the governing

differential equations as well as the relevant boundary conditions. As

an illustrative example.an approximate solution is sought for the

response of the flexible four bar linkage by developing a displacement

finite element model of the system. This mathematical model incoropo-

rates one standard linear solid model to represent the material's

constitutive equation. The equation of motion is solved by numerical

integration. and the analytical and experimental results are presented.



Chapter 2

Variational Theorem

The objective of this chapter is to develop the equations governing

the motion of mechanisms constructed in viscoelastic materials. The

approach follows the developments of reference [57].

2-1 Ihgoretiggl Dggglopgent

The volume of a viscoelastic body is taken to be V and the total

surface area S is the summation of two prescribed area Sd and so' The

dynamic problems of this viscoelastic body V are considered. Let

o-x-y-z be a set of Lagrangian coordinates fixed in the body in a refer-

ence state with zero deformations. strains and stresses. and

furthermore, it is also assumed that these parameters have been zero

throughout the previous time t. Employing a Cartesian tensor notation.

at time t a general point P in the continuum has the general position

vector ri. which is defined as

where

roi: the component measured in the o-x-y-z frame with the position



 

 

Figure 2—1.1 Definition of Axis Systems and Position Vectors



vector of the origin Of the body axes relative to the origin

Of the inertial frame.

rri: the position vector of point P in the reference state relative

to the origin of the body axes.

“i: deformation displacement vector.

in Figure 2-1.1. O-X-Y—Z is an inertial reference frame.

The field equations for the linear theory of dynamic viscoelastici-

ty for an body describing a general spatial motion relative to O—X-Y-Z

are as follows:

(i). pi=zoi+3i+eijkdj(rok+rtk+uk) (2'1.2)

this equation is obtained by differentiate equation (2-1.l).

and is the velocity rate of change of position statement; where

pi : absolute velocity associated with ti

°ijk: alternating tensor

dj : angular velocity defining the rotation of the Lagrangian

frame

(~).: the time rate of change with respect to the moving

coordinate frame

(') : the absolute rate of change with respect to time.



(ii).

(iii).

(iv).

The boundary conditions for prescribed displacement and

tractions are written as

ui=ui on Sd

Eigaijnjgzi on S (2-1.3)

Sd: surface on which the prescribed displacements are imposed

S : surface on which the prescribed tractions are imposed
0'

gi: surface traction vector

( ): a prescribed quantity

n-: the outward normal from the surface Sd

Strain-displacement relation

eij=(1/2)(ni’j+nj.i) (2-1.4)

e..: Lagrangian strain tensor

1J

Equation of equilibrium

0

: body force per unit volume

Lagrangian stress tensor

: mass density of the material

: rate-of change of absolute valocity



(v). Strainrstress relation in relaxation form

oij=Gijklsk1to>+I§cijkl(t-c)[aeklttiIdc]dz (2-1.6)

where

Gijkl: Relaxation function

oij : stress tensor

the first term in the equation above represents the response

at t=0, while the second term of the equation is the rate of

change during a time interval dt. Equation (2-1.6) can also be

written as

“ij‘Gijn' den (2—1.7)

where

‘ is the convolution form

Equation (2-1.7) is the constitutive equation of the material

In addition. the following energies are defined



10

kinetic energy: T=(1/2)ppi‘8ijpj

potential energy: U=(l/2)Gijk1‘dakl‘deij

The Objective now is to establish a variational theorem which con-

tains equation (2-1.l) to (2-1.7) in the first variation of the

functional. When the first variation is set equal to zero, and indepen-

dent variations are permitted then these governing equations are the

stationary conditions of the functional. The task of determining the

stationary conditions of this functional expression may be achieved

using a the Lagrange multiplier approach to introduce the constraints

into the functional and generalise Hamilton's principle [24].

The functional may be written

P ( ) -
4" v11; .dIeiJ (1,2) (ui'j'I’nj ' 1)]

P (3) -~ -~ -

+ Vii .dtpi roi ni Oijk‘i.(rok+rrk+uk)]dv

 
P —

+ salg')‘d(ui-ui)dsa]dt (2—1.s)

The first variation may be generated using the standard rules of

the variational calculus and this procedure involves utilizing the
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divergence theorem and also the symmetric properties of the tensors. On

establishing the first variation. this is then set equal to zero. yield-

ing

sJ=O

=1{:{jvdtsT-suldv

+jsdzi‘d(8roi+8rri+bui)dsd

"' Pvflgyfileij-(l/Z) (“Lfnj ' i)]¢1v

+jvgxgfl)edlpi-roi-Ei-sijkzej(rok+rrk+uk)]dv

+ .86”? ’ «iii-aims,

+dpvxgg).d[58ij-(1/2) (ani.j+6uj ' i)]dv

 P (3) _*‘sali ‘d(-6ui)dSa] dt (2 1.9)

Considering the first term in the equation (2-l.9). the varition of

the kinetic energy T may be written as

Mater/apps}.i

‘(a/api)[(1/2)pp1‘511p1]5pi

=ppi‘6pi (2—1.10)

Similarly. for the potential energy density.



.tF‘FIAIFfts_ft
(PII-Z)APnap.(,)tI+SPnap.“(,)YIAP89P.(3WI

AP[(‘‘n9+‘‘nsitz/t)-“=91P.(mff

saueiitxaexequse(6'I-Z)

notianbeu;use;pxtqaeqi‘(8I'I-Z)pus(ZI'I-Z)uotssubemos;'eeueq

(€I'I-Z)

P
APnep.f(f§v“j-”usp’nsP.F(5;!SI+pSP‘n9P.Fu(f§tSI:

AP‘nspsrzfgtAJ-SP‘nOP.fu(igtI:F‘n9P.(fhf! t

o;spuetstqimeaoeqieouefixeatpeqaSutxtddauodupus

sizedAqpeieaieau;equse(ZI'I-Z)notieubesq:u;use;puoeeseql

(zr't-z)AP;’nsp.(3YI-APIF‘991P.(f§tI=

Aptt‘F119+F‘n9)(ZII>-“=91P.(Ehff

ueaitxaexeq5am

srq;'I‘;g=f‘?ngeeuts'(6'I-Z)notieubeu;use;pxtqieqiseptsuoa

(tI'I-z)
Fr,pg.tx.p.txfta,

Fl‘apg[Ixal’e1:1:91’eturng
Z/I)“nape/9)"

n”swan/aches

ZI



13

the fourth term in equation (2-1.9) may be written as

(a) - ~ - ~ -

vai ‘dlbpi Oroi Oui eijkbdj‘(rok+rrk+uk)]dv

‘I4‘i3)‘45P15V'I41i’)‘dl5?oi+531+eijk631*(rok+rrk+uk)
lav (2-1.15)

the second term of equation (2-1.15). may be integrated by parts over

time and rewritten as

t1 (3) ~ ~ g

Iti[jvki ¢d[5roi+5ui+eijksdje(tokfrrk+uk)1dv1dt

... t0 (3) ~ ~

- tljvli .d[5roi+5“i+°1jk5‘j‘(rok+trkfuk)]dv
dt

_ (2) ~ ~ t1 _
[Jvii tdIOroi+8ui+eikadj0(rok+rrk+uk)NV]to (2 1,16)

the second term in the right hand side of the equation (2-1.16) is

zero because varoations at the extremes of the time interval are not

permitted.

Thus

(a) -~-~-

vai ‘dISpi 6:01 Gui eijkbdj‘(rok+rrkfuk)]dv

=ngg’)‘dapidv-Iglg"'d[8r°i+6ni+eijkbej‘(rok+rrk+uk)ldv (2-1.17)
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therefore. the first variation of the functional I may be written

as

81=O

=I§:[Iv5pi‘d‘PPi+1§”)dV+I;6A§;’Sdteij-(1/2)(ni.j+uj,1)]av

+Ivalga).dlpi—EOi-Ei-eijkaj.(rokfrrkfnk)]dV

+186“? )ed (Hi-uiMSa-PLdggij sufiLGij k1 ‘denldv

+Ivaeui-[A§;Zj+i§”1dv+5droislj;i§"dv+JsaE,dsdl

+sddjslj;eijk(rok+rrk+uk)i§"dv+jsad5ni'(-x§"-a§;’nj)aso]

-Jsd(;i-ui)‘dbgidsd+jsad6ui‘(ii-1:3)nj)d86]dt (2—1.13)

By permitting independent arbitrary variations in the system

parameters. the Lagrange multipliers may be determined and written

*i')"PPi

(1) -

‘13 ‘Gijki‘d‘k1’“ij
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(a) - -
A1 = 8i (2 1.19)

So the final form for GI becomes

=I::[Ivboij’d[eij-(1l2) (ui'j-O-uj , i)Iav

'vaapi.d[pi—;Oi';i-°ijkaj.(rok+rrk+uk)lav

‘Isasgi.d(Ei-ni)dso+jvdbni.(°ij.j-péi)dv

+IsadOUi‘(Eroijnj)dSa+[jsagidSa-I;ppidV]‘dbroi

+[Isa;i°ijk(tok+rrk+uk)dsd+vaii°ijk(rok+rrk+nk)].d5‘j

+.[V(aij—Gijkl‘d8kl).dssijd
v1dt

(2—1.20)

Independent arbitrary variations of the deformation displacement.

stress. strain. absolute velocity. and the kinematic parameters defining

the rigid body equation of motion enable equation (2-1.20) to yield the

field equations and boundary conditions for this class of dynmmic

viscoelastic problem because each integral must be independently equal

to zero. The above variational principle represents a generalization to
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the theory of viscoelasticity Of an elastodynamic variational theorem

presented in reference [15].

The characteristic equations obtained from equation (2-1.20) actu-

rately define the dynamic viscoelastic problem for the design of

mechanisms fabricated in materials with linear viscoelastic prOperties.

In order to obtain viable solutions. simplifying assumptions must be

introduced and inparticular the constitutive equation must be modeled.

In order to establish an industrially orientated solution methodology.

the finite element method was selected as the vehicle for generating

approximate solutions. A number of approachs establishing finite ele-

ment models of viscoelastic media have appeared in the literature .such

as references [58. 59. 60].



l7

2;; Finite Element Formulgtion

The variational equation of motion may be'employed as the basis for

a variety of finite element models depending on the geometrical shape of

the body being analysed. the type of deformation theory assumed to be

apprOpriate. the information sought from the analysis. the accuracy of

the model for the constitutive equations. and the assumption of whether

the material is isotropic or orthotropic. A finite element model is

developed herein for determing the flexural response of the beam-shaped

links of planar linkage mechanisms deforming in the plane of the mechan-

ism. These linkages are assumed to be fabricated from graphite-epoxy

laminates with orthotropic prOperties. The developments are based on

publications [61, 62, 63].

The link deformations are governed by the Euler-Bernoulli beam

theory. shown as Figure 2-2.l

93‘I'\ u...
I’5

 

 

   

Figure 2-2.1 Nodal Degrees of Freedom Describing the

Deformations Of The Beam Element
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and the transverse deformation may be written as

w=[N']{U] (2-2.1)

where

{U}={U,.U,,U,,U‘}T

Assuming that the member deforms on the axial and flexural mades. then

the axial deformations is

u=u.-zw.x

=[Nn]{Un]-z[N"][U] (2—2.2)

where

tuni={u,,u,i

[N]: the row vector containing the shape functions

2 : the spatial variable prependicular to the beam section in

the plane of the mechanism.

. : the spatial dervative with respective to the axial

spatial variable. This symbol was also employed to denote

the absolute time dervative (see equation 2-1.2) but

confusion should not exist because in this section it is

confined to Operations on the shape functions.

The absolute velocity field p(x.t) is related to the nodal values in the
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discretized field by

p=[N][P} (2-2.3)

where

{P}={Pn1p ssssssss spu‘}

[N]=[1-(x/L).l-(x/L).1.x/L.x/L.1]

In order that equation (2-1.20) be employed as the basis for a fin-

ite element analysis. this tensor expression must be reformulated in

linear algebra format

vaaij.d[eij“(1/2)(ni,j+u 'i)]dv=jgd{86]T'[[e]-[N'][U]]dv (2-2.4)

j

Ivbpi‘dp[pi-roi-ui+eijk‘dj(r°k+rrk+uk)]dv

=j;dtaP1T-pttpi-INRI{pRJ-tuiifiilav (2-2.5,

Isa581‘d‘35‘uiIdso=IsadISsITsi{fit-{Nita}iasa
(2-2.6,

Igdbui*(aij.j-pPi)dv=Igd{60}T‘[NlT‘([bliel-OINJIP})dv <2-2.7)

Isadeui‘(Ereijnj)dsa=ISad{501T‘[N]T‘({El-{g})dsa (2-2.3)

(Isoziasa-jgpbiav)vdsroi=a{aroiTstjsatziasa-j;p[Ni{914v> (2—2.9)

[Isa‘.° ij k(rok+rrk+uk)dsd+jvp.P° ij k.(rok+rrk+nk) ] .OOOj
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=dststjsd(;.z)as+j;(?xpiidvi (2-2.10)

Iv(°ij’Gijk1‘dek1).dbeijdv=Iv{5‘xx}T‘d({“xxl'IG}.dfexx})dv (2-2.11)

hence the equation (2-1.20) can be rewritten as

OJ=O

=j§:[j;tsaiTsatte1—rnvliniiav

+jgaptspiTsripi-[NR]{Pal-[Nirtilav

+ISGIdOgIT‘({U}-[N]{U})dsa

+Igdtean‘[N]T([DJIcl-plNliP})dv

+Jsad{OU}T‘[N}T({El-{gl)dsa

+d{8ro}T'(Jsa{E}dsa- vptuimdv)

”1535 ‘IJsd(;xE)dS+Iv(rxpP)dv]

+I;dtbs]T‘({exxl-{Gl‘dtexx})dv]dt (2-2.12)

Focussing attention upon equation (2-2.7). this may be written as
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[vatsuiTtIN1T(tni{oi-ptNi{Pi)av

=IvdISUIT'[NlT([D]{exxl-plN]{Ul-p[NR]{PRJ)dv (2-2.13)

by utilising the equation (2-2.5). The first term of equation (2-2.13)

may be subjected to integration-by-parts over x to yield

I;dteu1TstNiT(a/ax)taxxiav

=[IAdtemT‘[NthanidAL-Ldtsm'rs[N' Men} dv (2-2 .14,

where [N']=(3/dx)[N]

As stated in [62] consider an one dimensional finite element of

length L.and cross sectional area A represented by a cartesian reference

frame. If ox is the axial coordinate. then the unit vector on the end

faces has the direction cosine 1=11. m=0, n=0 and surface tractions are

{g}=i{oxx] ' (2-2.15)

thus. equation (2-2.8) leads to

Isad{601T'[N]T({El-{g})ds

=IAdISUIT‘IU]T({E}t{axx})dA::g (2—2.16)

The first term in the right hand side of equation (2-2.14) may

be written as
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Figure 2-2.2 Finite difference representation



23

IAOISUIT‘[NlTicxxldAlx=L7IAd{OUIT‘[NJTchxldA]x=o

upon combining there terms with equation (2-2.l6). terms cancel to give

IAd{OU}T‘[N]T{;]dA (2—2.17)

which is part of the equations of equilibrium.

The second term on the right-hand side of equation (2-2.14) may be

written as

-j;aisu1Ter'1tax,iAv

The the standard linear solid. presented in reference [63]. will be

employed to model the viscoelastic constitutive behavior. hence

Oij+floij=2u(éij+aeij) (2-2.18)

Using Figure 5-2.2. which is a finite-difference representation of the

materials' constitutive curve relating stress and strain. the left

hand side of the equation (2-2.18) may be written as

=6ij(t,)+(Aoij/2) (2-2.19)
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and, in addition.

dij=(1/At)[oij(t1)-oij(t,)]

=Ao[ij ) lAt (2—2 .20)

Thus. the L.H.S. of the equation (2-2.18) becomes

éij+aaij=maij lAt was“ (t,+(a/2) )Aoij

=[(1/At)+(B/2)]Aoij+fioij(to) (2-2.21)

Similarly. applying the above procedure to the strain. the right

hand side of equation (2-2.18) may be written as

2p[[(1/At)+(o/2)]Aeij+aeij(to)]

and hence equation (2-2.18) becomes

[(2/At)+B]Aoij=2p[[(2/At)+a]Aaij+20eij(t,)]-28oij(t.) (2-2.22)

Considering a one-dimensional model. equation (2-2.22) can be written as

[oxx]=B(A[exx+2o{sxx(t.)])-C{oxx(to)] (2-2.23)
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where

Ae(2/At)+a

Bszp/[(2/At)+fll

C=2B/[(2/At)+B]

where a. B. a are constants.

exx(t,) and oxx(t,) are the strain and stress at the

previous time step of the numerical algorithm. Since

{exx]=[N']{Ul (2—2.24)

the constitutive equation may be written as

-Ivd{OU}T‘[N']T[AB[N'J{U}+2“B[3xx(t°)l-C{"xx(t°)l]dv

=-j;d{aUITs[AE[N'ITIN'JIU]+2aB[N'thexx(t,))-CIN'ltaxx(t,>1]dv (2—2.2s)

by defining

[K]=I;AE[N']T[N']dv

[M]=I;[N]Tb[N]av

tuni=j;[N1T.[NR1av

and combining equation (2—2.25) with (2-2.17) and (2-2.13) the resulting

equations of motion are

d{SU}T‘[-[I]{U}-2aB[N']T{sxx(t.)}+C[N'lTioxx(t.)}-[M]{U}-[MR]{PRI+ISG[N]T

[EldA]=O
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This may be written in a simpler form as

[x1tur+iuii01=tfvi,coi-tuni{PR}+ISGIN'JTIEJaA

where

{fviscol=C[N'JTchx(t,)}-2aB[N'leaxx(t,))

Therefore. the final form of the variational equation of motion

becomes

5J=0

=I::[Jvd{6exxlr‘[{exxl-[N']{U}]dv

+IgdtbPlT‘pIIPI-[NR]{Pal-[lefilldv

+Jsad{bng*({U]-[N]{U])dsa

+d{60}T‘[[K]{U}+[M]{Ul-{fvi‘c°}+[MR]{PRJ-ISGIN]T{;)ds]dv

+d{5ro]T‘(IS {Ziasa—I;ptN1{P1aV>
0'
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+d63j ‘ [Isa (Ex?) dS+Iv (rxpP) dv]

+Ivd{sgxx}Tt({oxx}-[G}‘d{exxl)dv]dt (2-2-25)



Chapter 3

Mathematical Model of a Flexible Linkage

The objective of this chapter is to develop the finite element

equations for a general planar elastic linkage which deforms principally

in the axial and bending modes. In the course of this develOpment. the

nocal displacements. accelerations and shape functions experssions are

derived. The stiffness matrix and mass matris are also presented. The

model for the viscoelastic material is in the last section. Some of the

material presented in this chapter is based on reference [61].

3-1 Plggar ngm Element

A general beam element is shown on the Fig. 3—1.1 in twO reference

frames. The global frame O—X-Y and the local frmme o-x-y. The x-axis

of the local reference frame is parallel to the beam element axis. The

dotted lines represent the rigid body position of the beam element and

the solid lines show its elastically deformed configuration. The elas-

tic deformation Of the beam element could be discribed by six nodal

displacements. here we denoted as uz. u,. u,. u‘. u,. u‘. These dis-

placements are located at the deformed positions of the node A and node

B. From the figure shown. the following relationships may be esta-

blished in the global coordinates.

28
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 w I

Figure 3-1.1 A General Beam Element
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XAo-XAfuIcosO~u,sinO

YAo=YA+u1sin6+u,cos0 (3-1.1)

9A.=0+n,

Differentiating equations above with respect to time. the velocity

and the acceleration at node A can be expressed in the global coordinate

IA.=1Afu;cosO-u10sinO-n,sinO—uaécose

YA.=IA+u1sin9+u1OcosO+n3cosO-u30sin9 (3-1.2)

éA'Bé'Irt'l’

and

IA.=XAffi:cosO-ZuIOsinO-ulézcosO-uIOsinO-fi’sinO-2u,écosO-u,O’sine-u,OcosO

YA.=YAffi1sin0+2n1écos6-u103sin0+u1Ocos0+fi,eosO-2u,0sinO-uzé’cosO-uaOsinO

9A.!“é'i'fi3 (3.103)

The absolute accelerations in equation (3-1.3) in global coordi-

nates can be expressed in the local frame system with the following

relations
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gAngo 3080+YAp sine

yAé-XA.sin0+YA.cosO (3-1.4)

6Ag=°+a.

combining equations (3-1.3) and (3—1.4). the resulting equations

2A.-2A+a,-.,é*—2a,e.,a

yA.=“A+a,-n,é’-2a,é+u,a (3—1.5)

9Afi=§+33

Equation (3-1.5) is the absolute accelerations of node A Of the

beam element in the local frame.

Apply the same procedure to node B

EB.=iB+fi‘-u‘O’-2u,O-u,9

?B.=§B+fi,-u,Oz-2u‘é+u4§ (3-1.6)

swam

Where 2A. yA. O. in. ya. 5 describe the rigid body motion of the beam

element and are all kinematic quantities.

Defining
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combining (3-1
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this may be written as:

32

.Ind {8:1}:

  

(3-1.7) in this section

-2u30 -u,9 ‘

+2510 +u1O

+0 +0

-2£,6 -u,O

~2n‘0 +u‘0

+0 +0 1 

{u.}={6r}+(ul+{fin}+{fic}+{6t}

where

E : absolute acceleration

(3-1.7)

(3-1.8)

(3-1.9)
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6 : rigid body acceleration

: elastic accelerationa
:

#
3

: normal acceleration

: Coriolis acceleration

6
3
6
!

t: tangential acceleration

[in]. {ac}. {at} are the elastic and rigid body coupling terms. If

the rigid body velocity and accelerations are small compared with those

of the elastic nodal deflection. then in the equation (3-1.9) the pro-

duct terms in vectors {ficl' [ac]. [it] are also small compared to the

corresponding terms in {fir}+{fi]. The analytical model presented here

did not incorporated theese coupling terms.

3;;_Shgpe Fggctions of Be m Elggggt

The most widely used finite element approximation for representing

the continuous function being studied. is the polynomial. Consider the

beam element present in Figure 3-2.1.the shape functions for two kinds

of deformations must be formulated. First. for the axial deformation.u1

and u‘ the choice of this shape function is a linear polynomial in x.
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Figure 3-2.1 The Deformations of a Beam Element
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u(x.t)'61(;)u1(t)+d‘(;)u4(t)

=a§+b (3-2 .1 )

where 61(;) and 6‘(;) are shape functions.

By virture of fact that u(x.t) must be such that

u(0.t)=u,(t)=b

u(L.t)=u‘(t)=La+b

the functions 61(;) and d‘(;) must satisfy boundary conditions

61(0)=l . 61(L)=0

d,(0)=o . A.(L)=1

therefore

6,=(L-§)IL

A‘JIL

Secondly. for the bending displacement field. the shape functions will
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be described as a cubic polynomial in x. Bence

w(x.t)=d,(;)u,(t)+d,(;)u,(t)+d,(;)u,(t)+6‘(;)u‘(t)

=01+u,;4a,;’+u4;’ I (3-2.2)

w(0.t)=u,(t)=o1

w(L.t)=u‘(t)=a:+a,L+a,L3+a‘L’

" (0.t)‘u,(t)=a,

w'(L.t)=u‘(t)=o,+2a,LrI-3O‘L3

hence

a,=(1/L‘)(-3a,—2L¢,+3¢,-L¢.)

a.=(2/L’)(t,+2L¢,-¢,-<L/2)a,) (3-2.3>

the shape functions are. therefore

a,=1-(3§'/L’)+<2I’/L')

d,=(3;‘/L’)-(2;'/L')

a,=x-<2;’/L)+(;’/L’) (3-2.4)

4.»;‘IME'IL’i

The shape function of the beam element may; therefore. be written
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d,(§)=1-'x'/L

¢,('£)=3<(L—;)/L)‘-2( (L-;)/L) ’

a, (Than—BIL)“

d. (§)-§/L (3-2 .5)

4, (3:3 (inf-2511.) '

a, (;)=(L-;) GIL) '

The transverse displacement. w(;.t). may be written as:

w('x'.t)=¢,<;) ...,” w, G) 4., (0+4, (E) .u, (the. (I) ...“) (3-2.6)

and the axial displacement

u(;.t)=61(;)ou1(t)+dg(;)-u.(t) (3-2.7)

ummmmm

Assume that the beam element has a uniform cross section. then the

local mass and stiffness matrices are represpectively [i] and [E], than
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, .

1/3

0 13/35

0 11L/210 1.2/105 Symetric

[Ek- PAL (3-3.1)

1/6 0 0 1/3

0 9/70 13L/420 0 13/35

\0 -13L/420 -L2/140 o —11L/210 L2/105 .

. \

EA/L

O 12EI/L3 Symmetric

O 6EI/L2 4EI/L

[k]=

-EA/L o O EA/L

O -12EI/L3 -6EI/L2 O 12EI/L3

. o ear/1.2 ZEI/L o -6EI/L2 4EI/L/

(3-3.2)

When deriving the stiffness properties of a beam finite element.

using the small strain theory. it is assumed that the transverse dis-

placements are independent of the axial displacements or forces. In

reality. however. a compressive axial force would tend to increase any

transverse displacement of the beam. thus effectively decreasing the
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transverse stiffness of the beam. While a tensile axial force would

have the Opposite effect. This dependence of the stiffness matrix upon

the axial loading is called geometric stiffening. and could become

important in mechanism analysis where large axial forces are known to

occur and also when the beam is very slender . One approximate method

of including this effect is to calculate a geometric stiffness matrix

[k5] based on large strain theory that would represent the coupling

between the axial and transverse displacements. The geometric stiffness

matrix for a beam element. which has been derived [46] and [64] is

' O o o o

6/5 L/lO -6/5 LllO

[k§]=(P/L) L/lO 2L’/1s -L/10 -L’/3o (3-3.3)

o o o o

-6/5 -L/1o 6/5 -L/10

L L/lO -L’/3o -L/10 2L’I15 
where

 

F : the axial force in the element

This matrix [k3] represents the change in transverse stiffness due

to an axial force in the element. Tb include this coupling effect in

the equation of motion. the geomatric stiffness matrix is simply added
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to the element stiffness matrix [R].

ummmmm Raisins 9.! the Rachael;

m

The finite element method generally requires the use of a global

frame in order to assemble the element into a model for particular com-

ponent. Therefore. a transfer matrix is necessary so as to transfer the

stiffness matrix and mass matrix from the local frmm to the global frame

before the matrices of the system can be assembled to form a model for

the complete mechanism system in which the links have differing orienta-

tions relative to the global frame.

Consider the beam element shown as Fig.3-4.1

 

  

  
Figure 3-4.1 The Relation between Global and Local Coordinate

The relations between two different coordinate are:
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u1=U1cosO+U2sinO

u2=-UlsinO+U2cosO

u3=U3 (3-4.l)

u4=UgcosO+U5sinO

u5=-UgsinO+U5cosO

“6:06

Thus. a transfer matrix may be written as:

 

cosO sinO 0 O O O

-sinO cosO O O 0 O

O 0 l 0 0 O

[R]= (3-4.2)

O O 0 case sine O

O 0 0 -sinO cosO O

\ O 0 0 O O l  
and the global matrix In]. is related to the local mass matrix [H]

by the expression

[nHRIT [E] [R] (3-4.3)

similarly

[:14an if] [a] (34.4)
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3;; Linkgge Model

For the finite element analysis. the linkage is regarded as an

instantaneous sturcture at every position. Consequently. the stiffness

and mass matrices are different at each mechanism position. Generalized

coordinates representing deflections are assigned to every joint permit-

ting the members to deflect in the horizontal or vertical directions.

As illustrated above. the following steps should be satisfied in the

computer program.

1) An idealization of linkage stucture is needed. This will require

selection Of the type and the size of the finite element to generate

the system mesh.

2) The system-oriented element mass and stiffness matrices are generated

for each e1 ement .

3) These element mass and stiffness matrices are assembled systematically

to develOp the mass and stiffness matrices of the total linkage system.

4) Determination of unknown model displacements of the problem involves

solving a system of coupled ordinary differential equations.

These equations are obtained by using the equilbrium condition at the

nodes.
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Figure 3-5.1 Four Bar Linkage Model with Flexible Coupler

   

 

   

Flexible -—-.-—'

‘*~

Rigid

 

The linkage model is shown in Figure 3-5.1. the crank element is consi-

dered to be rigid. while each flexible link. coupler and rocker. is

divided into six elements. The element at both ends of the link. consi-

dered as joints made of aluminum. is treated differently because of the

different material prOperties. In Figure 3-5.2. system-oriented gener-

alized displacements are labeled to describe the stuctural deformation

Of the linkage as well as to maintain compatibility between the elements

and nodes. For instance. at the joint between the coupler and the rock-

er. U14 and U15 represents the nodal translations and U36 and U16

describe the rotational deflection of the coupler and the rocker at that

point. A rigid connection between two elements. will be simulated by

only one rotational displacement.

3:6 anstggction of system mgtriges

In Figure 3-6.1. appropriate displacements are labeled on each

retaining compatibility at the nodes. The system mass and stiffness
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Figure 3-6.1 Finite Element Model for the Simulation
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matrices of ith element are

[mi]= m} [iii In).

T .—

i=1. 2' 3.0.00.0...12

3-7, Modeling 1h; Visgoelggtig Chastitgtiyg Egggtions

The model representing a viscoelastic media is constructed to simu-

late the experimental behavior Of viscoelastic material and involve

differential equations relating strain. stress. and time. An important

characteristic of these materials. especially whrn subjected to dynamic

loading. is that they exhibited a time and rate dependence that is com-

pletely absent in the constitutive relations of elastic materials.

Although these types of material have the capacity to respond instan-

taneously they also exhibit a delayed response. Thus the materials have

the combined capacity of an elastic material to store energy and the

capacity of a viscous material to dissipate energy. Materials with this

type of behavior are termed viscoelastic materials and they have been

the subject of several texts [48. 65-68]. the tOpic for chapters in

standard reference texts [69-71]. and the objective of numerous papers

[72-76]. For dynamic viscoelastic problems it is necessary to construct

the entire solution without relying on the static elasticity results

since after all. dynamic situations involve wave propagation phenomena.

strain rate effects and attenuation characteristics. In this regard.
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finite element solutions are proposed herein based on approximate forms

for the constitutive equations because an exact solution requires the

time history of the material to be known for all time. which is of

course impractcal.

The basic elements commonly used in the model representation are a

spring and a dashpot. A spring. shown as Figure 3-7.1a. represents an

elastic solid. and exhibits instantantaneous elastic strain and elastic

recovery as Figure 3-7.1b.

The equation relating stress and strain for a spring in time domain

is

o=Es or s=o/E (3-7.1)

A dashpot. as Figure 3-7.2a. represent a viscous element. and exhibits

irreversible creep and permanent set as Figure 3-7.2b.

The differential equation relating stress and strain for a dashpot

in time domain is

o=pe (3-7.2)

One of the combinations of the two basic elements is the Kelvin

model. as Figure 3-7.3. which consists of a spring and dashpot in paral-
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o—A/vw—w
E

Figure 3-7.1a Spring.

 

£9.

E

   
0 to it

Figure 3-7.2b Strain-Time Relation of Dashpot.

 

 

 

 
 

O {o ;t

Figure 3-7.1b Strain-Time Relation of Spring.
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lel. At all times the elogation a of the two elements is the same. and

the total force 6 will split into a; (for the spring) and a, (for the

dashpot) in whichever way to make a the same. When applied to this

model

01=E1a

a,=pé (3-7.3)

and from these two relations

o=ol+oa

=E,e+pé (3—7.3)

Various combinations of the basic elements are also possible. The

standard linear model. as Figure 3-7.4. representing a first order

linear differential equation of stress and strain. This is a three

parameter model which consists of a spring in serious with a Kelvin

unit. The differential equation relating stress and strain for this

model are

(p1/E1)o+[1+(E1/E3)]o=ulé+Els (3-7.4)
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lA1

.1

Figure 3-7.3 Kelvin Model.

'52

[.1

Figure 3-7.4 Standard Linear Solid Model



Chapter 4

Experimental Investigation

5-1, Mgterial Characterization Studigg

The experimental results concerning the material properties were

deveIOped by Mr.C.K.Sung and Mr.J.Cuccio under the instructions of Dr.

B.S.Thompson in August 1983 in Michigan State University [78].

The main causeof link deformations in a flexible mechanism is

either the bending. or the flexural. mode and the associated deflection

field is governed by the flexural rigidity. which is the product of the

Young's modulus (E) of the material and the second moment of the

cross-section area of the link (I).

The materials chosen for the experimental work were a low carbon

steel and a graphite-epoxy laminate with a symmetrical ply layup of £45

degrees relative to the longitudial axis of the link.

The modulus of elasticity of the steel link specimens were obtained

from supplier's data sheets. and the specimens were not subjected to

mechanical testing. However. the composite materials have a greater

variability Of mechanical prOperties. hence the characteristics of the

lmminates need to be examined and quantified carefully. In order to
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determine whether it is elastic. viscoelastic. or plastic.

The purpose for the testing was to investigate the mechanicl pro-

perties of the 145 degrees graphite-epoxy laminates. At first. the

specimens were subjected to dynamic testing. which required the specimen

to gain a prescribed maximum load 0.258 MPa over a range Of time inter-

vals. Thus Figure 4-1 presents the results of the tests performed on

the :45 degrees laminate and the maximum stress level was reached in

0.5. l, 10. 100 and 1000 seconds during the four tests.

The results presented in Figure 4-1 suggest that the behavior of

the material is certainly dependent on the rate of application of the

loading. Thus. the 145 degrees laminate is a viscoelastic material. and

the response curve implies that the constitutive relationship of strain

and stress is nonlinear.

In order to verify the deductions made from these test data. anoth-

er test was undertaken to study the creep response of the materials.

The results are presented in the Figure 4-2. The creep data in Figure

4-2 verifies that the :45 degrees composite is truly a viscoelastic

material.

The following method was adopted in order to incorporate the data

from the material characterization studies into the mathematical model.

The objective was to determine the relaxation function relating stress

and time. Firstly. the maximum strain was measured on the response
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curve extreme left. This corresponded to a stress of 0.258 MPa. at 0.5

second after the load was initially applied.

Then using this magnitude of strain.a horizontal line was measured

from the point of load initiation on each of the response curve in Fig-

ure 4-1 and a vertical prependicular line consructed until if

intersected each response curve on the increasing load (upper) portion

of the curve. This permitted the stress to be obtained and assuming

that the rate of application of load was constant (it was programed to

be constant on the HTS testing machine) this operation permitted a

stress-time graph to be plotted. This is presented in Figure 4-3. Then

using a PRIME 750 curve fitting software "CURVFIT" by changing the

values of the parameters A. B in the equation

Y(t)=(A-B)e‘“t+3 (4-1)

' and the data presentedin Figure 4-4. which is a curve of the standard

linear solid model. the curve presented in Figure 4-5 was generated. By

plotting the constants E1, E3, p1 of the relaxation modulus. [79]. can

be obtained from the following procedures

c<t)=21e‘t’":+(nllaz)(1—e’t/":)

=[El-(E1/E2)le-“t+(E1/E2) (4-2)

80

E1=A

82=AIB
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[11:1 [C

After the dynamic and creep testing of the laminate is completed.

the response data provides the fundations of several investigations.

The :45 degrees laminate has a complex response because the

stress-strain relation is not linear. and the gradient depends on the

strain rate. Obviously. a wide range of different Young's modulus could

be determined from the experimental data depended on the assumptions

that considered to be necessary. Because a link of any mechanism exper-

iences rapidly fluctuating stress levels. the response curve on the

extreme left of Figure 4-1 was selected to provide the basis for the

Young's modulus because this records the highest strain rate of any spe-

cimen.

The approach was to draw a tangent to the response curve out the

lower end of the upper portion of the curve in the region recording. the

initial response immediately following load application. The effective

Young's modulus for this viscoelastic material was calculated to be

3.143x10‘lbf/in3 while a mean value of 2.834x106 lbf/ina was calculated

for the line joining the points defining the maximum and minimum stress

levels.

The final objective of the material characterization studies was to

determine the material damping of the material. Each link specimen was

clamped at one end to develop a cantilever configuration prior to
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a1 Frequency of the Steel LinkNaturFigure 4-6

 

 
a1 Frequency of the Composite Link-NaturFigure 4-7
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deflecting and releasing the other end and recording the transient

vibration. Besides obtaining the natural frequency of the link from the

trace on the oscilloscope screen .simple logarithmic decrement calcula-

tions were undertaken to calculate the damping ratio (t). The results

are presented in Figure 4-5 for steel and Figure 4-6 for composite lami-

nate. Thus it is evident that of the laminate has a much higher damping

ratio than the steel . and this property can be utilised in mechanism

design to eliminate undesirable vibrations.

5:2 LhimentalM

Specimens were prepared to form matched pairs in the two link

materials. At the end of each link. two clearance holes were drilled.

These accommodated socket screws which clamped each specimen to the

bearing housing and permitted the experimental four bar linkage to be

constructed. The flexible links were fixed to the aluminum bearing

housing by two socket screw at either ends with a flat plate. The small

plate which was shown in Figure 4-7 ensured a smooth load' transfer

between the principle components of each link.

The experimental four bar linkage presented in Fig.4-7 was located

on a large cast iron table which was bolted to the ground and wall of

the labaratory. It had a rigid crank.with a link length of 63.5 mm (2.5

inches). while the lengths of the two flexible links. the coupler and

rocker. were changeable.
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Figure 4-8 Joint connecting the flexible coupler and rocker

 
lechanism

Figure 4-9 Experimental
Four Bar
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The coupler and rocker links were supported on matched pairs of

ball bearing (FAG R3 DB R12) of 0.25 inches in bore. Every bearing was

preloaded using a Dresser torque limiting screw driver with :1 inrlbf

preloading. This procedure is to ensure that bearing clearance is elim-

inated. The impact loading associated with bearing cleariances would

cause the links to have large defledtions. Nevertheless. where the

bearings were assemblied with large axial preloading. the deflections of

the linkages will be decayed. Owing to these affects. the torque limit

device must be employed to accurately preload the joints.

A 0.75 hp variable speed D-C motor (Dayton 22846) powered the crank

through a 0.625 inch diameter shaft supported by a cast iron pillow box

bearings. A 4 inch diameter fly wheel was keyed to the shaft thereby

providing a large inertia to ensure a constant crank frequency. when

operating in unison with the motor's speed controller.

1;; Instrumentation

The instrumentation flow chart in the experimental work is shown in

the Figure 4-9. The rated speed of the electric motor was measured to

three decimal places by a HP 5314A universal counter which was actived

by a digital-magnetic pickup. model 58423. by Electro corporation.

These devices allowed the operator to adjust the speed controller of the

motor in order to achieve the desired speed.

The experimental results present the variation of link deflections



Visual monitorino
' ' ' ' - °f HP 5314A

Crank speed (rpm) universal counter
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with crank angle. Strain gages were bonded to the midspans of the

coupler and rocker links of the four bar mechanism and shielded cables

were used to reduce the effect of electromagnetic fields which can

introduce spurious noise into the signals. In fact. noise from electro-

magnetic fields and other sources. which was superimposed upon the

strain gagesignals. was considered to be a major signal conditioning

problem in this experimental work. A low pass filter was builted to

eliminate the high frequency noise from the signal and the filter had a

variable cut-off frequency.

In order to relate the strain gage signal to the configuration of

the experimental mechanism. another transducer arrangement was esta-

blished. A zero velocity digital pick up. Airpax 14-0001. was located

so as to sense the bolt head at the end of the crank when the

four-bar-linkage was in the position of zero-degree crank angle.

This mechanism configuration signal and the output from the gages

were either fed to the oscilloscope with a C-5C camera attachment for

photographically recording the response. or to a digital data acquisi-

tion system (a DEC PDP—ll/03 microcomputer with 5 Mb hard disk).

The BNC cables from the experimental apparatus were connected to a

input-output module. This device had 16 analog-digital channels. 4

digital-analog channels and two schmidt triggers. Using the code

developed for digital data acqusition. the flextural response signal was

recorded from the zero crank angle position through 360 degrees by fir-



ing on of the schmidt triggers.
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Chapter 5

Experimental and Computational Results

The analytical and experimental results are obtained by using the

finite element method and the equations were solved by the Newmark

method [77]. The [K8] matrix desiribed in the chapter 3 was included in

the mechanism model developed for the elastic material. Each flexible

link was devided into six elements.and the element at both ends of the

link considered as bearing housing made of aluminum that need to input

the different material prOperties and dimensions into the simulations.

These analytical results are then compared with experimentally obtained

strain data in order to varify the correlation between the analytical

and experimental results.

The main assumptions made formulating the computer model for the

simulations are

1) All bearings were considered frictionless and without clearance.

2) Out-of-plane motions were disregarded.

3) Only small elastic deformations from the rigid body

equlibrium position were assumed.

4) Gravitational acceleration was considered to be smaller than the

elastodynamic accelerations.
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5) The crank speed was assumed constant.

6) The natural frquency and damping ratios were calculated from

experimental work.

In Figure 5-1. it shows the dynamic response of the coupler taken

by C—5C camera from T>912 oscilloscope. The material used was a low

carbon steel. Figure 5-2 presents a comparison of the dynamic responses

of the analytical and experimental investigations. It shows good core-

lation between the two. The dimensions of the link and other necessary

data were listed below.

Link lengths:

Ground 16 inches

Crank 2.25 inches

Coupler 12 inches

Rocker 12 inches

RPM of the mechanism:

342 RPM

Cross sectional area of the flexible links:

Width 0.75 inch (in the plane perpendicular to the mechanism)

Depth 0.055 inch (in the plane of mechanism)

Young's Modulus 30 x 10‘ psi



bug—...- ... . . ._ 

 

Figure 5-1 Steel Coupler Response Operated at 342 RPM

(Oscilloscope Photograph)

 

Figure 5‘3 45 Camposite Coupler Response operated at 280 RPM

(Oscilloscope Photograph)
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Figure 5-3 is the photograph of the dynamic response for the compo-

site lmninate coupler and Figure 4-4 is the comparison of the simulation

result and experimental data. The relvant dimensions for the composite

mechanism are:

Link lengths:

Ground 12 inches

Rocker 2.25 inches

Coupler 9 inches

Rocker 9 inches

RPM of the Mechanism:

280 RPM

Cross sectional area of the flexible links

Width 0.092 inch (in the plane perpendicular to the mechanism)

Depth 0.045 inch (in the plane of the mechanism)

Young's Modulus 1.38 x 10‘ psi

Figure 5-5. 5-7 and 5-9 are the responses of the coupler obtained

at 205 RPM. 255 RPM and 297 RPM respectively. Figure 5-6. 5-8 and 5-10

are the rocker responses obtained from 205 RPM. 255 RPM and 297 RPM.
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Chapter 6

Discussion of Results

Figure 5-2 shows that the corelation between the analytical results

and the experimental response are extremely good. thus proving that the

variational theorem has been successfully applied and the correct model

has been used to formulate the elastic linkages. However. the results

for the composite material presented in the previous chapter do not have

such a good correlation between the analytical and the experimental

responses. The difference in amplitude between the two results at 280

RPM for the coupler is about 0.09 mm. which is an extremely small

deflection. as shown in Figure 5-4. All the rocker responses have

larger differences between two curves if compared with the coupler.

Plausible explanations for the difference in the two classes of waveform

will now be discussed.

Firstly. the alignment of the experimental mechanism introduces an

error. Since several specimens with different lengths were employed.

upon completing each set of tests it was necessary reconstruct the

mechanism : therefore. it was necessary to change the position of the

rocker ground joint. 'henever this joint was moved back or forth. the

alignment had to be carefully reconfigured. Furthermore. the clearance

holes on the specimens for the socket screws will affect the alignment.

The alignment can only be improved by considerable care prior to under-
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taking the experimental work.

Secondly.the value of the second moment of area of model for the

joints in the mathematical representation are only approximate values.

The cross section area of the real joints are rather complex. while the

cross-section area being used in the simulation are the values of rec-

tangular cross sections. Also. the lengths of the joints used in the

simulation are the lengths from the centerline of the bearing to the

other end of the joint. these lengths are a little bit shorter than the

true lengths of the joints. However. the model of the joint did include

the total mass of the joints.

Thirdly. the dynamic responses of the experimental work were often

disturbed by unknown sources of electromagnetic noise and the results

are not always repeatable. Thus. it was necessary to take several data

sets for the same RPM and select the best curve after first eliminating

the noise disturbance using the Fast Fourier Transform program FILTER

developed in the laboratory. This was developed using FORTRAN and

MACRO. Further discussion concerning the stability of the response in

the experimental work has been discussed in [51] but is outside the

scope of this thesis.

Forthly. the sampling rate of the digital data acquisition may not

be high enough to adequately represent the signals being monitored. In

the present program . the PDP-ll can pick up one datum in 0.000363467

second; therefore. the curve obtained from PDP-ll were often more than
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one revolution. If the experimental result is to be superimposed on the

analytical result. judgements. based on the oscilloscope photograph were

necessary in order to decide the starting point as well as the ending

point of the revolution. Misjudgement of this activity may be resulted

in a phase shift.

The technique of calibration is considered to be the most critical

reason which resulted in the difference between two response curves.

This is because that the results of the calibration govern the magnitude

of the experimental results. To do the calibration. a load was applied

at the midpoint of the specimen which was configured as a simply sup-

ported beam. then recorded the deflection read from the dial gage. At

the same time. the response was recorded from the oscilloscope so as to

measure the voltage (strain) developed by the gage. The problem here is

that the dial gage. must be observed by the operator in addition to

recording the oscilloscope deflection and also apply the load on the

link. Thus there are too many operations to be performed simutaneously.

Two experimentalists. operating in unison improved the accuracy of this

procedure. but a more accurate instrument for calibration in considered

to be necessary. such as a calibration fixture.



Chapter 7

Conclusions

A variational theorem has been developed and has been shown to pro-

vide a vaiable formulation for the finite element analysis of an

experimental linkage fabricated with a viscoelastic material using a

three parameter solid.model representing the material constitutive equa-

tions. Although differences between the experimental and analytical

results exist. these are rather small if attention is focused on the

qusi-static response. The limitations in predicating the dynamic

response are probably due to the first order model of viscoelastic

material. As discussed previously. advanced approaches exist and these

should probably be adopted a future work. The simulations do. however.

provide a conservative prediction for the dynmmic response hence this

model could be used with confidence in an industrial computer aided

design environment for the design of high speed mechanism systems and

robotic manipulators.
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INITIALIZE STRAIN AND STRESS FOR THE FIRST STEP

 

EBSZ(1.1)=O.

fll83(1.1)=0.

EBS4(1.1)=O.

fl385(1.1)=0.

EBSS(1.1)=O.

ERS9(1.1)=O.

MBSlO(1.1)=O.

ERSII(1.1)=O.

TAW2(1.1)=O.



TAM3(1.1)=O.

TAN4(1.1)=O.

TAM5(1.1)=O.

TA!8(1.1)=O.

TAR9(1.1)=0.

TAW10(1.1)=O.

TAM11(1.1)=0.

 

O
G
O
O
O

INITIALIZE THE DEFLECI‘ION OF EACH EMT

IN LOCAL FRAME THE BETWEEN U _L STANDS

FOR THE ELEMENT N

 

UZL(6.1)=0.

U3L(6.1)=O.

U4L(6.1)=0.

U5L(6.1)=0.

U8L(6.1)=O.

U9L(6.1)=O.

U10L(6.1)=0.

U11L(6.1)=O.

 

DEFINE TIME STEP AND RPM 0F CRANK LINK

 
C—g

TH21=RPM‘2.0‘3.1415927/60.0

TSTEP=1.0

STEP=1.0/TSTEP

 

M
?

TO EVALUATE ma CONSTANTS FOR THE NEWARK METHOD

 

PAR=O.5

AA=O.25

Th1./(RPM/60.0‘360.0‘STEP)

SSO=(1./(AA'T“2))

SSI=PAR/(AA‘T)

SSZ=1./(AA‘T)

SS3=(1./(2.‘AA))-1.

SS4=PARIAA-1.

SSS=(T/2.)‘(PAR/AA-2.)

SS6=T‘(1.-PAR)

SS7=PARET

 

TO INITIALIZE U.UI.U2 AND UL AND O

 R
“
?

877

889

D0 877 I=1.36

U(I)=O.

U1(I)=O.

U2(I)=0.

UL(I)=0.

Q(I.1)=O.

CONTINUE

D0 889 I=1.36

DO 889 J=1.36

KN(I.J)=O.
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c:

C BUILD UP THE MATRIX WITH SECOND DERIVATIVE

C OF SHAPE FUNC.

6

CALL SSP(EL1.BBT1.BBl)

CALL SSP(EL2.BBT2.BBZ)

C

C DEFINE LOCAL STIFFNESS _MASS MATRICES

C

CALL LOL(E.A.EL1.RI.MASS.KLI,MLI)

CALL LOL(E.A.EL2.RI.MASS.KLJ.MLJ)

CALL LOL(ES.A1.XLEN1.RIl.MASSl.KL1.ML1)

CALL LOL(ES.A2.XLEN2.RI2.MASSZ.KL2.ML2)

CALL LOL(ES.A3.XLEN3.RI3.MASS3.KL3.ML3)

CALL LOL(ES.A4.XLEN4.RI4.MASS4.KL4.ML4)

C

cassssssessaesssesssassassesssuccessessssseesaseaess

C

C THIS IS THE START OF THE MAIN LOOP

C

casssssssssssssssesssssssssssssssesessssssseseesesse

D0 765 K=1.360

 

 

 

C

C FIND THE ACCELERATION OF THE LINK

C

CALL KIN(RA.TH2.TH3.TH4.TH21.STEP.XLEN1.

‘ XLEN2.AC.XLEN3.XLEN4.L1.L2.L3.L4)

C—

C THE RIGHT'HAND SIDE OF THE EO. OF MOTION

C IS -MK‘P(I). SO THE FOLLOWING STEP IS NECESSARY

C;
 

D0 990 I=1.36

990 P(I.1)=-RA(I.1)

T13=TE3

TTMBTE4

S3=SIN(TT3)

C3-COS(TT3)

S4=SIN(TT4)

C4=COS(TT4)

 

BUILD UP TRANSFER MATRICES

o
n
?

 

CALL RMTR(R3.RT3.TT3)

CALL RMTR(R4.RT4.TTM)

 

TRANSFER [K] MATRICES TO GLOBAL FRAME

 

r
p
n
n

CALL MMLT(WORK.KLI.R3.6.6.6)

CALL MMLT(XKLI.RT3.WORK.6.6.6)

CALL MMLT(WORK.XL1.R3.6.6.6)

CALL MMLT(XKL1.RT3.WORK.6.6.6)
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C

CALL MMLT(WORK.KL2.R3.6.6.6)

CALL MMLT(XKL2.RT3.WORK.6.6.6)

C

CALL MMLT(WORK.KLJ.R4.6.6.6)

CALL MMLT(XKLJ.RT4.WORK.6.6.6)

C

C

CALL MMLT(WORK.KL3.RM.6.6.6)

CALL MMLT(XKL3.RT4.WORK.6.6.6)

C

CALL MMLT(WORK.XL4.R4.6.6.6)

CALL MMLT(XKL4.RT4.WORK.6.6.6)

(:

C CONSTRUCT THE GLOBAL STIFFNESS MATRIX

C

CALL GLOLIN(XKLI.XKLJ.XKL1.XKL2.XKL3.XKL4.XG.Gl)

C

C TRANSFER [M] MATRICES TO GLOBAL FRAM

6

CALL MMLT(WORK.MLI.R3.6.6.6)

CALL MMLT(XMLI.RTB.WORK.6.6.6)

C

CALL MMLT(WORK.ML1.R3.6.6.6)

CALL MMLT(XML1.RT3.WORK.6.6.6)

C

CALL MMLT(WORK.ML2.R3.6.6.6)

CALL MMLT(XML2.RT3.WORK.6.6.6)

C

CALL MMLT(WORK.MLJ.R4.6.6.6)

CALL MMLT(XMLJ.RT4.WORK.6.6.6)

C

C

CALL MMLT(WORK.ML3.R4.6.6.6)

CALL MMLT(XML3.RT4.WORK.6.6.6)

C

CALL MMLT(WORX.ML4.R4.6.6.6)

CALL MMLT(XML4.RT4.WORK.6.6.6)

C

C CONSTRUCT IRE GLOBAL MASS MATRIX

C

CALL GLOLIN(XMLI.XMLJ.XML1.XML2.XML3.XML4.XG.MK)

C

IF(K.EQ.1)GOTO 10007

C

(:

C GANGE THE NOTATION OF THE DEFLECI‘ION FORM

C SYSTEM TO ELEMENTS

(3:

DO 201 I=1.6

J=I+1

201 U2L(I.1)=UL(J)

D0 2011 181.6



2011

2012

2013

2014

2015

2016

2017

99

J=I+4

U3L(I.1)=UL(J)

DO 2012 I=1.6

J=I+7

U4L(I.1)=UL(J)

DO 2013 I=1.6

J=I+10

U5L(I.1)=UL(J)

D0 2014 I=1.6

J=I+20

U8L(I.1)-UL(J)

DO 2015 I=1.6

J=I+23

U9L(I.1)=UL(J)

D0 2016 I=1.6

J=I+26

U10L(I.1)=UL(J)

DO 2017 I=1.6

J=I+29

U11L(I.1)=UL(J)

 

CALGJLATE THE STRAIN OF EACH FLEXIBLE ELE.

 

C
O
C
O
?

THIS IS FOR THE M.EMENTS ON THE COUPLER

CALL

CALL

CALL

CALL

MMLT(I82.BBI.U2L.1 .6.1)

MMLT(I83 .BBl .U3L.1 .6.1)

MMLT(EBS4.BB1.U4L.1 .6.1)

MMLT(I85 .BB1.U5L.1 .6.1)

 

G
O
O

THIS

CALL

CALL

CALL

CALL

IS FOR THE ELEMENT ON ms ROCKER

MMLT(I88.BBZ.U8L.1 .6.1)

MMLT(EBS9.BBZ.U9L.1 .6.1)

MMLT(EBSIO.BBZ .U10L.1 .6 .1)

MMLT(I811.BBZ .U11L.1 .6 .1)

 

O
O
V
O

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALCULATE STRESS OF EACH FLEXIBLE REMENT

8TRESS(TAW2 .TAWBZ . SBI2 .I82 .ALmA. BETA. MU)

8TRESS(TAW3 .TAWB3 . ISB3 .I83 .ALPHA. BETA, MU)

8TRESS(TAW4 .TAWB4 . I884 . I84 .ALPHA. BETA, MU)

8TRESS(TAW5 .TAWBS .ISB5 .I85 .ALHiA. BETA. 1H1)

8TRESS(TAW8 .TAWB8 . EBSB8 . I88 . ALMA. BETA. All)

8TRESS(TAW9 .TAWB9 .ISB9 .IS9 .ALPHA, BETA. MU)

8TRESS(TAW10.TAWBIO.BSBIO.I810.ALHA.BETA.MU)

8TRESS(TAW11 .TAWB11 . EBSBll . I811 .ALPHA. BETA. MU)

 C

C CALCULATE THE LOAD VECTOR Q=(M)"(P)

 

6

10007

c=

CALL MMLT(Q.MK.P.36.36.1)
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DELTb60./RPM/360.

ETA=29DELT/(2+BETA‘DELT)

 

C!

C CALCULATE (B)‘TAW‘A ‘ETA

 

DO 202 I=1.6

X2(I.1)=BBT1(1.1)‘TAl2(1.1)’A‘ETA

X3(I.1)=BBT1(I.1)’TAW3(1.1)‘A‘ETA

X4(I.1)=BBT1(I.1)‘TAW4(1.1)‘A‘ETA

X5(I.1)=BBT1(I.1)‘TAW5(1.1)‘A'ETA

X8(I.1)=BBT2(I.1)‘TAW8(1.1)‘A‘ETA

X9(I.1)=BBT2(I.1)‘TAM9(1.1)‘A‘ETA

X10(I,1)=BBT2(I.1)‘TAM10(1.1)‘A‘ETA

X11(I.1)=BBT2(I.1)‘TAI11(1.1)‘A‘ETA

CONTINUE

 

TRANSFER X2....X5. X8....X11 TO GLOBAL FRAME

 

D
O
C
?
O

CALL

CALL

CALL

CALL

CALL

CALL

MMLT(XT2.RT3.X2.6.6,1)

MMLT(XT3.RT3.X3.6.6.1)

MMLT(XT4.RT3.X4.6.6.1)

MMLT(XT5.RT3.X5.6.6.1)

MMLT(XT8.RT4.X8.6.6

MMLT(XT9.RT4.X9.6.

CALL

CALL

.1)

6,1)

MMLT(XT10.RT4.X10.6.6.

MMLT(XT11.RT4.X11.6.6. h
fi
h
l

v
v

CALCULATE ONE OF THE VISCO TERM

CALL GL05(XT2.XT3.XT4.XT5.XT8.XT9.XT10.XT11.GS)

 

G
O
O

CALCULATE (K)‘(U2L. . . . .U11L)

 

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

MMLT(Y2.KLI.U2L.6

MMLT(Y3.KLI.U3L.6

MMLT(Y4.KLI.U4L.6

MMLT(Y5.XLI.U5L.6

MMLT(Y8.KLJ.U8L.6

MMLT(Y9.KLJ.U9L.6

MMLT(Y10.KLJ.U10L.

MMLT(Y11.KLJ.U11L.

 

G
O
O

 

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

MMLT(YT2.RT3.Y2.6.

MMLT(YT3.RT3.Y3.6.

MMLT(YT4.RT3.Y4.5.

MMLT(YT5.RT3.Y5.6.

MMLT(YT8.RT4.Y8.6.

MMLT(YT9.RT4.Y9.6.

MMLT(YT10.RT4.YIO.

MMLT(YT11.RT4.Y11, h
i
h
l

v
v
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TIME ALPHA AND ETA

 

ZT2(I.1)=YT2(I.1)‘ALPHA‘ETA/E

2T3(I.1)=YT3(I.1)‘ALPHA‘ETA/E

ZTK(I.1)=YT4(I.1)‘ALPHA‘ETA/E

ZT5(I.1)=YT5(1.1)‘ALPHA‘ETA/E

ZT8(I.1)=YT8(I.1)'ALPHA'ETA/E

ZT9(I.1)=YT9(I.1)‘ALPHA‘ETA/E

ZT10(I.1)=YT10(I.1)‘ALPHA‘ETA/E

ZT11(I.1)=YT11(I.1)‘ALPHA‘ETA/E

 

ASSEIBLY ONE TERM OF THE VISCO PROPERTIES

 

CALL GL05(ZT2.ZT3.ZT4.ZT5.ZT8.ZT9.ZT10.ZT11.QE)

 

To CREATE ms TERMS INSIDE ms SECOND BRACKET

ON LINE Bl P323 3!

 

DO 890 I=1.36

Y(I.1)=880‘U(I) +882‘U1(I) +883‘U2(I)

 

TO CREATE THE SECOND TERM ON LINE Bl

M‘(AO‘UTWA2'U1T4A3‘U2T)

 

CALL MMLT(B.MK.Y.36.36.1)

 

TO CREATE LINE Bl P232 B!

QCAP ETC THE EFFECTIVE LOAD

 

QCAP(I)=Q(I.1)+B(I.1)+G§(I.1)-02(I.1)

 

To CREATE ms EFFECTIVE STIFFNESS MATRIX

LINE A4 9232 By

 

RCAP(I.J)=Gll(I.J)+SSO‘MK(I.J)+881‘CC(I.J)

 

TO SOLVE THE LINEAR EQUATIONS BY GAUSS ELIMINATION.

 

CALL LINEO(OUT.QCAP.RCAP.WK.36.37.IERR)

 

TO CREATE LINES B3 AND LINES B4 P232 B!

G

C

LL

DO 203 I=1.6

203 CONTINUE

C:

C

C:

(A

C

C

C

890

C

C

C

C

C

C

C

C

DO 894 I=1.36

894

C

C

C

LL

DO 888 I=1.36

DO 888 I=1.36

888

C

C

(b

C

C

6
 

DO 896 I=1.36

UD=U(I)

UV=U1(I)

UAFUZ(I)

U(I)=OUT(I)
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U2(I )=SSO‘(U(I)-UD)-882‘UV-SS3 ‘UA

U1 ( I)=UV+SS6‘UA+SS7‘U2 ( I)

CONTINUE

 

TREAT STRAIN AND STRESS AS ms INITIAL OF NEXT STEP

 w
e
n
s

ISBZ(1.1)-=m82(1.1)

TAWBZ(1.1)=TAW2(1.1)

IISB3(1.1)=S3(1.1)

TAWBB(1.1)-=TAW3(1.1)

ISB4(1.1)=EBS4(1.1)

TAWB4(1.1)=TAW4(1.1)

IISBS(1.1)=85(1.1)

TAWBS (1.1)8TAW5(1.1)

IISBS(1.1)=88(1.1)

TAWB8(1.1)-TAW8(1.1)

IISB9(1.1)=S9(1.1)

TAWB9(1.1)=TAW9(1.1)

EBSBlO(1.1)=I810(1.1)

TAWBlO(1.1)=TAW10(1.1)

II$11(1.1)=811(1.1)

TAWBll(1.1)=TAW11(1.1)

 

C
P
O
G
G

TO DEFINE ms DYNAMIC DEFLECTIONS IN THE

LOCAL FRAMES

 

100

200

300

400

500

600

0

DO 100 I=2 .17 .3

J=I+1

UL( I)=(XJT(I)‘C3+(IJT(J) ‘83

D0 200 I=3 .18.3

J=I-1

UL(I)=-(IIT(J) ‘S3+(llT(I)‘C3

DO 300 I=21 .33 .3

J=I+1

UL(I )=(llT(I)‘C4+(XlT(J) ’84

DO 400 I=22 .34.3

J=I-1

UL(I )FWT(J)‘S4+(IIT(I)‘C4

DO 500 I=1.19.3

UL(I)=(IIT(I)

DO 600 I=20.35.3

UL(I)‘(IJT(I)

UL(36)=WT(17)‘C4+(IJT(18)'S4

RK11=(K-1) /1 .0

 

0
0
0
0

THIS IS FOR THE PLOT'TING . IT

GIVES THE CRANK ANGLE.

UL(9) DEFORMATION AT MIDPOINT OF COUPLER
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C UL(28) DEFORMATION AT MIDPOINT OF ROCKER

 

WRITE(1.153)RK11.UL(9).UL(28)

765 CONTINUE

153 FORMAT(F14.8.1X.F14.10)

CLOSE(7.STATUS='KEEP')

STOP

END

.ju.£n.s 2
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0.0.000...00.0.0.0...OOOOOOOOOOOOOOOOOOO0.0.0.000..OOOOOOOOOOOOOOOtit

L A 8888888 TTTTTTT 000000

L A A 8 T O 0

EEEEEE L A A 8888888 T O O

L AAAAAAA S T 0 O

EEEEEEE LLLLLLL A A 8888888 T 000000

0.000000000000000...000.0.000.0.......0....00......0000000000000....

This program is designed to seek the dynamic response

of the elastic four bar mechanism. the material

prOperties and the link length are changable.

000.000..0.0000000000.0000.00.0000...00.00.00.0000000000000..00000‘.

REAL EL1.EL2

REAL KLI(6.6).Q(36.1).MK(36.36).XLJ(6.6)

REAL Gl(36.36).MLI(6.6).MLJ(6.6)

REAL YY(36.1).CC(36.36).OUT(36).WK(37.37).WORK(6.6)

REAL RA(36.1) .MASS .P(36.1)

REAL U(36).U1(36).U2(36).RCAP(36.36)

REAL Y(36.1).B(36.1).F(12)

REAL UL(36).QCAP(36).BB(36.1).MR(36.36)

REAL KN(36.36).KG1(6.6).KG2(6.6).XG3(6.6).KG4(6.6).KI(6.6).KJ(6.6)

REAL KGS(6.6).XG6(6.6).KG7(6.6).KG8(6.6).KG9(6.6).AC(40)

REAL KGlO(6.6).KG11(6.6).K012(6.6)

REAL KGI(6.6).XGJ(6.6).KGM(6.6).KGK(6.6)

REAL KS(36.36).KL1(6.6).KL2(6.6).KL3(6.6).KL4(6.6)

REAL AST(2).ML1(6.6).ML2(6.6).ML4(6.6).ML3(6.6).R3(6.6).RT3(6.6)

REAL RI.RIl.RI2.RI3.RI4.XLEN1.XLEN2.XLEN3.XLEN4

REAL MASSl.MA882.MASS3 .MASS4

REAL XKLI(6.6).XKLJ(6.6).XKL1(6.6).XKL2(6.6).XKL3(6.6).XKL4(6.6)

REAL XMLI(6.6).XMLJ(6.6).XML1(6.6).XML2(6.6).XML3(6.6).XML4(6.6)

REAL KM1(6.6).KM2(6.6).KM3(6.6).KM4(6.6).KM5(6.6).KM6(6.6)

REAL KM7(6.6).KM8(6.6).KM9(6.6).KM10(6.6).KM11(6.6).KM12(6.6)

cessssse

C

C

C

C

C

C

C

C

C

C

c

c

C

C

KL LOCAL STIFFNESS MATRIX

XG GLOBAL STIFFNESS MATRIXAND MASS MATRIX.WITHOUT B. C.

61 GLOBAL STIFFNESS MATRIX INCORPORATTNG B.C.'S

ML (1 TO 4) LOCAL MASS MATRIX

MK GLOBAL MASS MATRIX INCORPORATTNG B.C.'8

EL ELEMENTLENGTH FOR THE LINKAGE (COUPLER AND ROCKER)

nm (1 TO 4) LEJGTH FOR ms JOINT

E YOUNGS MODULUS FOR.THE LINK DESIRED

ET YOUNGS MODULUS FOR THE JOINTS

RHO MASS DENSITY

U DEFLECTION

U1 VELOCITY

U2 ACCELERATION(
fi
t
fi
t
fi
t
fi
t
fi
t
fi
t
fi
t
fi
(
5
(
5
1
5
C
1
1
5

cassette

C IN NEWMARK METHOD.

ceasesse



105

 

 

 

 

C Q LOAD VECTOR

C RA ACC. VALUES FROM FLEX PROGRAM

C QCAP IS THE EFFECTIVE LOAD VECTOR BEFORE USING THE

C SUBROUTINE 'LEOTIF' AFTEKWARDS IT IS THE DYNAMIC

C DEFLECTIONS DUE TO THE IDDE OF OPERATION OF

C THIS IMSL PACKAGE. .

C UL ARE THE DYNAMIC DEFLECTIONS IN THE LOCAL FRAME

C P IS THE ACCELERATION VALUES FROM FLEX AFTER THEY

C ARE CHANGED FROM RA.

C:

C INPUT THE LINK LmG'm DESIRI

CI

PRINT ‘.'WHAT KIND OF LINK LENGTH DO YOU WANT'

PRINT ‘.'ENTER 1 FOR LONG LINKS'

PRINT ’.'ENTER 2 FOR SHORT’LINKS'

READ(I..)XLL

IF(XLL.EQ.1)THEN

GOTO 1

ELSE IF(XLL.EQ.2) THEN

GO TO 2

ELSE

GOTO 3

ENDIF

C==a=====

C THE LENGTHES OF THE LONG LINKS

1 L1=16.12

L2=2.25

L3=12.0

L4=12.

C=======

C THE LENGTHES OF THETSHORT LINKS

2 L1=12.

L2=2.25

L3=9.

L4=9.

3 CONTINUE

C:

C DECIDE WHAT KIND OF MATERIAL YOU WANT

&

PRINT ‘.'WHAT KIND OF MATERIAL YOU 'ANTl'

PRINT ‘.' 1. STEEL'

PRINT ‘. ' 2. ALUMINUM'

PRINT ‘.' 3. UNICOMPOSTE'

READ (1.")XMAT

IF(XMAT.m.1)THm

GO TO 11

ELSEIF(XMAT. no.2 )THE‘J

GO TO 12

ESE IF(XMAT.EQ.3)THEN

GO TO 13

ESE

GO TO 14

DID IF
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DEFINE THE MATERIAL PROPERTIES

 

MATERIAL PROPERTIES FOR ALUMINUM

E:10.3E&06

WID=O.58

DEP=0.0795

A-WID'DEP

RHO=0.100

DR-0.0048

IF-GO.

BELTA=2.0‘DR‘XF

OPEN(7.FILE='A')

GO TO 14

C=======

C

11

MATERIAL PROPERTIES FOR STEEL

EF30.0EH06

WID=O.75

DEP=0.062

RHO=O.3

A=WID‘DEP

DR=0.01

XF=31.1

BELTA§2.0‘DR‘XF

OPEN(7.FILE:'ST')

GO TO 14

C

13

MATERIAL PROPERTIES FOR UNIDIRECTIONAL COMPOSITE

E320.5E+6

Rfl0=0.06

WID=O.75

DEP=0.08

AsWID'DEP

DR=0.00984

XF=100.0

BELTA=2.0‘DR’0.01/XF

OPEN(7.FILE='UNIC')

GO TO 14

CONTINUE

 

n
9
:

THE LENGTH OF EACH JOINT ELEMENT

EJ=10.3E+6

RHOJ=0.1

XLEN1=1.5

XLEN2=1.5

XLEN3=1.75

XLEN4=1.5

 

0
:
?

THE,LENBTH OF THE FLEXIBLE ELEMENT

EL1=(L3-XLEN1-XLEN2)/4.

EL2=(L4-XLEN3-XLEN4)/4.

 

0
?

THE DIMENSIONS FOR JOINT 1 ( ELE 1)
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WID1=O.75

DEP1=0.75

A1=WID1‘DEP1

MASSI=(RHOJ/384.)‘A1

RIl=(1.0/12.0)‘(WID1‘DEP1“3)

 

TEE DIMENSIONS FOR.JOINT 2 ( ELE 6)

WID2=1.25

DEP2=O.75

A2=WID2‘DEP2

MASSZ=(REOJ/384.)‘A2

R12=(1.0/12.0)‘(WID2‘DEP2“3)

 

r
m

THE DIMENSIONS FOR JOINT 3 ( ELE 12)

WID3=1.75

DEP3=0.27

A3=WID3‘DEP3

MASS3=(RHOJ/384.)‘A3

RI3=(1.0/12.0)‘(WID3‘DEP3“3)

 

TEE DIMENSIONS FOR JOINT 4 ( ELE 7)

WID4=1.25

DEP4=O.75

A4=WID4‘DEP4

MASS4=(RHOJ/384.)‘A4

RI4=(1.0/12.0)‘(WID4‘DEPH‘*3)

 

MASS=(RHO/384.) ‘A

RI=(1.0/12.0)‘(WID‘DEP“3)

 

INITIALIZE TEE CRANK ANGLE

THZ=0.0

 

DEFINE TIME STEP AND RPM OF CRANK LINK

RPM=340.0

TE21=RPM‘2.0‘3.1415927/60.0

STEP=1.0

TSTEP=1.0/STEP

 

03
.?

TO EVALUATE TEE CONSTANTS FOR THE NEWARK METHOD

PAR=O.5

AA=O.25

T51./(RPM/60.0‘360.0‘STEP)

SSO=(l.l(AA*T*‘2))

SSl=RAR/(AA‘T)

SS2=1./(AA‘T)

SS3=(1./(2.‘AA))-1.

SS4=PARIAA-1.

SSS=(T/2.)‘(PAR/AA-2.)

SS6=T‘(1.-PAR)

SS7=PAR*T

 

TO INITIALIZE 0.01.02 AND 0L AND Q
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D0 887 I=1.36

0(1) =0.0

01(I)=0.0

U2(I)=0.0

0L(I)=0.0

Q(I.1)=0.0

887 CONTINUE

DO 889 I=1.36

DO 889 I=1.36

KN(I.J)=O.

 

”
9
:

DEFINE LOCAL STIFFNESS _MASS MATRICES

CALL LOL(E.A,EL1,RI,MASS,KLI.MLI)

CALL LOL(E.A.EL2,RI,MASS,KLJ.MLJ)

CALL LOL(EJ.A1.XLEN1.RIl.MASSl.KL1.ML1)

CALL LOL(EJ'.A2.XLENZ .RIZ.MASSZ .KLZJILZ)

CALL LOL(EJ.A3.XLEN3.R13,MASSS.KL3.ML3)

CALL LOL(EJ.A4.XLEN4.RI4.MASS4.KL4.ML4)

cott¢o¢¢t¢¢o¢¢oo¢t¢cow:totttooocttc.0ttotcootootctt

C THIS IS THE START OF'TEEVMAIN LOOP ‘

cttcctttcttotttoctet...toococtcttocototocoto¢00to¢t

C CALCULATE 'IBE ACCELERATION OF HE LINKS

DO 765 K=1.360

CALL KIN1(RA.THZ.TB3.TB4.TEZI.STEP.XLEN1.XLENZ

* ,AC.XLEN3.XLEN4,L1.L2.L3,L4)

 

DO 990 I=1.36

990 P(I.1)=-RA(I.1)

THIS IS NECESSARY BECAUSE 111E R.R.S. OF

THE ED. OF MOTION IS -MK‘P(I)

 

G
O
O

TT3=TBS

TTK=TB4

83=SIN(TT3)

C3=COS(TT3)

S4=SIN(TTH)

C4=COS(TTW)

 

M
?

BUILD 0P TRANSFER MATRICES

CALL RMTR(R3.RT3.TT3)

CALL RMTR(R4.RTI.TTH)

 

M
?

TRANSFER [K] MATRICES TO GLOBAL FRAME

CALL MMLT(VORK.KLI.R3.6.6,6)

CALL MMLT(XKLI.R13.WORK.6,6.6)

CALL MMLT(WORK.KL1,R3.6.6,6)

CALL MMLT(KKL1.RT3.VORK.6.6.6)

CALL MMLT(WORK.KL2.R3.6.6.6)

CALL MMLT(XKL2.RT3.WORK.6.6.6)

CALL MMLT(WORK.KLJ.R4.6.6.6)

CALL MMLT(XKLJ.RT4.WORK.6.6.6)

CALL MMLT(WORK,KL3.R4.6.6.6)

CALL MMLT(XKL3.RT4.WORK.6.6.6)



CALL

CALL

CALL
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MMLT(WORK.KL4.R4,6,6.6)

MMLT(XKL4.RTK.WORK.6.6.6)

GLOLIN(KKLI.KKLJ.XKL1.XKLZ.XKLS.XKL4.XG.G1)

 

TRANSFER [M] MATRICES TO GLOBAL FRAM

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

MMLT(WORK,MLI.R3.6.6.6)

MMLT(XMLI.RT3.WORK.6.6.6)

MMLT(WORK.ML1.R3.6.6,6)

MMLT(XML1.RT3.WORK,6.6,6)

MMLT(WORK.ML2.R3.6,6.6)

MMLT(XML2.RT3,WORK,6.6.6)

MMLT(WORK.MLJ.R4.6,6.6)

MMLT(XMLJ,RTI.WORK.6.6,6)

MMLT(WORK,ML3.R4.6,6.6)

MMLT(XML3.RTI.IORK,6.6.6)

MMLT(WORK,ML4,R4.6.6.6)

MMLT(XML4.RTK.WORK,6.6.6)

CALL GLOLIN(XMLI.KMLJ.XML1.XML2.XML3.XML4.XG.MK)

 

IF(K.EQ.1) GOTO 10007

 

DEFINE LOCAL NONLINER MATRICES FOR EACH KIND OF ELE

CALL LONON(E.A.0R,EL1,0L.KI)

CALL LONON(E.A.0R.EL2.UL.KI)

CALL LONON(EJ.A1.0R.XLEN1.0L.KGI)

CALL LONON(EJ.A2.UR.XLEN2.0L.KGJ)

CALL LONON(EJ.A3.0R.XLEN3.0L.KGK)

CALL LONON(EJ.A4.0R.XLEN4.UL.KGM)

 

CALCULATE KB FOR EVERY ELEMENT

CON1=E‘A/EL1

F(1)=EJ‘A1/XLEN1‘UL(2)

DO 101 I=2.5

DO 101 132,11.3

KK=J+3

F(I)=CON1‘(0L(KK)-0L(J))

CONTINUE

F(6)=EJ'A2/XLEN2‘(0L(17)-UL(14))

F(7)=EJ‘A4/XLEN4‘UL(21)

CON2=E‘A/EL2

DO 102 I=3.11

D0 102 J=24.33.3

M=J-3

F(I)=CON2‘(0L(J)-0L(M))

CONTINUE

F(12)=EJ‘A3/XLEN3‘(UL(35)-UL(33))

DO 832 131 '6

DO 832 J=1.5

KGI(I.J)=F(1)IXLENI‘KGI(I.J)

KG2(I.J)=F(2)/EL1‘KI(I.J)

KG3(I.J)=F(3)/EL1‘KI(I.J)

KG4(I.J)=F(4)/EL1‘KI(I.J)

K65(I.J)=F(5)/EL1‘KI(I.J)

101

102
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KG6(I.J)=F(6)/XLEN2’KGJ(I.J)

KG7(I.J)=F(7)/XLEN4‘KGM(I.J)

KG8(I.J)=F(8)/EL2‘KJ(I.J)

KG9(I.J)=F(9)/EL2‘KI(I.J)

KGIO(I.J)=F(10)/EL2‘KJ(I.J)

KGll(I.J)=F(11)IEL2‘KJ(I.J)

K012(I.J)=F(12)IXLENB‘KGK(I.J)

 

832 CONTINUE

C

c:

C

C TRANSFER KG TO THE GLOBAL FRAME

C

CALL MMLT(WORK.KGI.R3.6.6.6)

CALL MMLT(KM1.RT3.'0RK.6.6.6)

C

CALL MMLT(WORK.KG2.R3.6.6.6)

CALL MMLT(KM2.RT3.WORK.6.6.6)

C

CALL MMLT(WORK.KG3.R3.6.6.6)

CALL MMLT(KM3.RT3.WORK.6.6.6)

C

CALL MMLT(WORK.KG4.R3.6.6.6)

CALL MMLT(KM4.RT3.WORK.6.6.6)

C

CALL MMLT(WORK.KGS.R3.6.6.6)

CALL MMLT(KM5.RT3.WORK.6.6.6)

C

CALL MMLT(WORK.KG6.R3.6.6.6)

CALL MMLT(KM6.RT3.WORK.6.6.6)

C

CALL MMLT(WORK.KG7.R4.6.6.6)

CALL MMLT(KM7.RT4.WORK.6.6.6)

C

CALL MMLT(WORK.KG8.R4.6.6.6)

CALL MMLT(KM8.RIM.WORK.6.6.6)

C

CALL MMLT(WORK.KG9.R4.6.6.6)

C

CALL MMLT('ORK.KGIO.RH.6.6.6)

CALL MMLT(KM10.RT4.WORK.6.6.6)

C

CALL MMLT(WORK.K011.R4.6.6.6)

CALL MMLT(KM11.RT4.WORK.6.6.6)

C

CALL MMLT(WORK.KG12.R4.6.6.6)

CALL MMLT(KM12.RTI.WORK.6.6.6)

 

0
0
0
9
0

CONSTRUCT THE GLOBAL [KGIMATRIX
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CALL GLONON(KN,KM1.KM2.KM3.KM4,KM5.KM6.KM7,KM8,

‘ KM9.KM10.KM11.KM12.KX)

 

TO CREATE m3 LOAD VECI‘OR "Q".

H
0
0
0
0
0

0007 CALL MMLT(Q.MK.P.36.36.1)

 

TO CREATE THE TERMS INSIDE m3 SECOND BRACKET

ON LINE B1 P323 B!

0
0
0
0
0
0

DO 890 I=1.36

890 Y(I.1)=SSO*U(I) +SSZ‘01(I) +SS3‘U2(I)

 

TO CREATE THE SECOND TERM ON LINE B1

M‘(AO‘0T4A2‘01T¥A3‘02T)

0
0
0
0
0
0

CALL M11189 MK: Yo36936 '1)

 

TO CREATE THE TERMS INSIDE TEE.TEIRD BRACKET ON LINE

0
0
0
0
0

YY(I.1)=SSI‘U(I)+SS4‘UI(I)+SS§‘02(I)

0
0

o O 0

DO 8901 I=1.36

DO 8901 I=1.36

CC(I.J)=BELTA‘MK(I.J)

CALL MMLT(BB,CC,YY,36.36,1)

c
o

‘
0

O H

 

TO CREATE LINE B1 P232 B!

QCAP ETC TEE EFFECTIVE LOAD

0
0
0
0
0
0

DO 894 I=1.36

QCAP(I)=Q(I.1)+B(I.1)+BB(I.1)Q U .
5

 

TO CREATE IRE EFFECTIVE STIFFNESS MATRIX

LINE A4 P232 B!

0
0
0
0
0
0

DO 888 I=1.36

888 RCAP(I.J)=GI(I.J)+SSO‘MK(I.J)+KN(I.J)+SSI‘CC(I.J)
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C

C

C TO SOLVE 111E LINEAR EQUATIONS BY GADSS ELIMINATION.
C ,

CALL LINEQ(OUT.QCAP.RCAP.'K.36.38.IERR)

C

C:

C

C TO CREATE LINES E3 AND LINES 34 P232 E!

C

DO 895 I=1.36

UD=0(I)

0V=01(I)

UAF02(I)

U(I)=OUT(I)

02(I)=SSO‘(U(I)‘UD)-SSZ‘UV-SS3‘UA

Ul(I)=UV+SSG‘UA§SS7‘UZ(I)

896 CONTINUE

C

&

C

C TO DEFINE 111E DYNAMIC DEFLECTIONS IN mE LOCAL FRAMES

C

DO 100 I=2.17.3

J=I+1

100 UL(I)3OUT(I)‘C3+OUT(J)'S3

C

DO 200 I=3,18,3

J=I—1

200 UL(I)=-OUT(J).S3+OUT(I)‘C3

C

DO 300 1:21:3393

J=I+1

300 UL(I)=OUT(I)‘C4+OUT(J).S4

C

DO 400 1322:3493

JBI-l

400 UL(I)='OUT(J).S4*OUT(I)‘C4

C

UL(36)=OUT(17)‘C4+OUT(18)‘S4

C

RK11=(K-1)/1.0

C

c:

C THIS IS FOR THE PLOTTING . IT

C GIVES TEE CRANK ANGLE.

C UL(9) IS THE DEFLECTION IN THE MIDPOINT OF COUPLER

C UL(28) IS THE DEFLECTION IN TEE,MIDPOINT OF ROCKER

C:

'RITE(7.153)RK11.UL(9).UL(28)

(i

765 CONTINUE

153 FORMAT(F14.8.1X,F14.10)
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CLOSE(7.STATUS='KEEP')

STOP

END
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COOIOOOOOOOOOOOOOOO00.000000030000000000.000.0000..

00000 L

0 0 L

0 O L

0 O L

LLL 00000 LLLLLLL

THIS SUBROUTINE IS USED TO GET LINEAR

LOCAL STIFFNESS AND MASS MATRICES

0
0
0
0
0
0
0
0
0
0
0

E
l
“
?
?
?

c0...O0000000.00000.000.....OOOOOOOOOOOOOOOOOOOOOOO

SUBROUTINE LOL(E.A.EL.RI.MASS,KL.ML)

REAL MASS.KL(6.6),ML(6.6),EL.E,RI

C=======

C INITIALIZE TEE MY OF STIFFNESS MATRIX

C=======

DO 1 I=1.6

DO 1 I=1.6

1 KL(I.J)=0.0

c=======

KL(1.1)=E‘A/EL

KL(2.2)=12.‘E’RI/EL“3.

KL(3.3)=4.‘E‘RI/EL

KL(4.4)=KL(1.1)

KL(5.5)=KL(2.2)

KL(6.6)=KL(3.3)

KL(1.4)='KL(1.1)

KL(2.3)=5.'E‘RI/EL“2

KL(2.5)=-KL(2.2)

KL(2.6)=KL(2.3)

KL(3.6)=2.‘E‘RI/EL

EL(5.6)=_KL(2.3)

D0 2 I=2.6

Il=I-1

D0 2 J=1.Il.1

2 KL(I.J)=KL(J.I)

C

&======

C INITIALIZE mE MY 0F MASS MATRIX

C=======

no 100 I=1.6

DO 100 I=1.6

100 ML(I.J)=0.0

31:31:39.2:

C TO CREATE THE LOCAL MASS MATRIX.

c=======

ML(1.1)=140.
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ML(2.2)=156.

ML(3.3)=4.‘EL“2

ML(4.4)=ML(1.1)

ML(5.5)=ML(2.2)

ML(6.6)=ML(3.3)

ML(1.4)=70.

ML(2.3)=22.‘EL

ML(2.5)=54.

ML(2.6)=-13.‘EL

ML(3.5)=-ML(2.6)

ML(3.6)=-3.‘EL“2

ML(5.6)=-ML(2.3)

DO 103 I=2.6

Il=I-1

DO 103 J=1 .11

ML(I.J)=ML(J.I)

D0 104 I=1.6

D0 104 I=1.6

104 ML(I.J)=ML(I.J)‘(MASS‘EL)/420.

RETURN

END
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CO0.000000000000000000000....0000.0000000000000000000000t

C 0

c GGGGG L 00000 L III N N ‘

C G L O O L I NN N ‘

C G GG L O O L I N N N ‘

C G G L O O L I N NN ‘

C GGGGG LLLLL OOOOO LLLLL III N N ‘

C 0

C THIS SUBROUTINE IS DESIGNED TO CONSTRUCTED ‘

C THE GLCBAL STIFFNESS AND MASS NATRICES ‘

C O

C0000.0.0.0.0000000000.0.000.............‘OOOCOUCOOCCOOOC

C

SUBROUTTNE GLOLIN(X.XJ.X1.X2.X3.X4.XG.XM)

REAL X(636)pXT(636)pXZ(696)oX3(696)pX4(6o6).XJ(636)

REAL XG(40.40).XM(36.36)

C

C======:

C INITIALIZE EVERY ENTRY OF THE MATRIX

C=======

DO 111 I=1.40

D0 111 J=1.40

111 XG(I.J)=0.0

C=======

C CONSTRUCI'ED THE 40 BY 40 MATRIX WIHWT B.C.

C====:==

DO 10 I=1.3

DO 10 I=1.6

10 XG(I.J)=X1(I.J)

C

DO 20 I=4.6

DO 20 J=4.6

K=I-3

M=J-3

20 XG(I.J)=X1(I.J)+X(K.M)

C

DO 30 I=4.6

DO 30 137.9

K=I-3

M=J-3

30 XG(I.J)=X(K.M)

C

XG(7.7)=X(4.4)+X(1.1)

XG(7.8)=X(4.5)+X(1.2)

XG(739)‘X(436)+X(103)

C

XG(8.7)=X(5.4)+X(2.1)

XG(8.8)=X(5.5)+X(2.2)

XG(8.9)=X(5.6)+X(2.3)

C

XG(9.7)=X(6.4)+X(3.1)

XG(9.8)=X(6.5)+X(3.2)

16(9o9)=X(696)+X(303)



(9'?)ZK=(IZ'6I)0X

(S'V)€K+(S‘?)ZK*(OZ'6I)OX

(9'?)€X+(V'?)ZX=(6I‘6I)9K

(M'X)ZK=(I'I)9X

$I-I=M

SI-I=X

IZ'GISI00!00

81'913100100

(£'€)ZX+(9'9)X=(81‘8I)9X

(Z‘€)ZK+($'9)K*(LI‘8I)DK

(I‘€)ZX+(?'9)X=(9I‘8I)OX

(€‘Z)ZK+(9'S)X=(8I‘LI)OX

(Z'Z)ZK+(S‘$)X=(LI'LI)9X

(I'Z)ZK+(?'S)X=(9I'LI)DX

(E'I)ZK+(9'V)X=(8I'9I)9K

(Z'I)ZK+(S‘V)K=(LI'9I)9X

(I‘I)ZK+(V‘?)X=(9I'9I)9X

(M'X)K=(I'I)9X

ZI-f=fl

ZI-I=X

8I‘9I=f0600

SI‘€I=I0600

(H'X)9X=(I'I)9X

€-I=fl

S-IBX

SI'€I=I0800

SI'€I=I0800

(fl‘X)X=(f‘I)9X

6-I=M

6-I=X

SI‘SI=IOL00

ZI‘OI-IOL00

(N'X)9X=(I'I)9X

€-f=M

€-I=X

ZI'0I=I0900

ZI'OI=I0900

(M'X)X=(I'I)9K

9-I=fl

9-I=I

ZI‘0I=f0900

6'L=I0?00

LII

00I



110

1101

120

XG(20.19)=X2(5.4)+X3(5.4)

XG(20.20)=X2(5.5)+X3(5.5)

XG(20.21)=X2(5.6)

KG(21.19)=X2(6.4)

XG(21.20)=X2(6.5)

XG(21.21)=X2(6.6)

XG(19.37)=X3(4.1)

XG(19.38)=X3(4.2)

XG(19.40)=X3(4.6)

XG(20.37)=X3(5.1)

XG(20.38)=X3(5.2)

XG(20.39)=X3(5.3)

XG(20.40)=X3(5.6)

DO 110 1:22.24

DO 110 J=22.24

K=I-21

M=J-21

XG(I.J)=X4(K.M)

D0 1101 I=22.24

DO 1101 J=25.27

K=I-21

M=J-21

XG(I.J)=X4(K.M)

XG(25.25)=K4(4.4)+XJ(1.1)

XG(25.26)=X4(4.5)+XJ(1.2)

KG(25.27)=X4(4.6)+XJ(1.3)

XG(26.25)=X4(5.4)+XJ(2.1)

XG(26.26)=X4(5.5)+XJ(2.2)

XG(26.27)=X4(5.6)+XJ(2.3)

XG(27.25)=X4(6.4)+XJ(3.1)

XG(27.26)=X4(6.5)+XJ(3.2)

XG(27.27)=X4(6.6)+XJ(3.3)

D0 120 I=25.27

DO 120 J=28.30

K=I-24

M=J-24

XG(I.J)=XJ(K.M)

XG(28.28)=XJ(1.1)+XJ(4.4)

XG(28.29)=XJ(1.2)+XJ(4.5)

118

XG(28. 30)=XJ(1.3)+XJ(4.6)

XG(29.28)=XJ(2.1)+XJ(5.4)
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KG(29.29)=XJ(2.2)+XJ(5.5)

XG(29.30)=XJ(2.3)+XJ(5.6)

XG(30.28)=XJ(3.1)+XJ(6.4)

XG(30.29)=XJ(3.2)+XJ(6.5)

XG(30.30)=XJ(3.3)+XJ(6.6)

DO 130 I=28.30

D0 130 J=31.33

K=I-27

M=J-27

130 XG(I.J)=XJ(K.M)

DO 140 I=31.33

D0 140 J= 31.33

K=I-3

M=J-3

140 XG(I.J)=XG(K.M)

D0 150 I=31.33

DO 150 J=34.36

K=I-30

M=J-30

150 KG(I.J)=XJ(K.M)

D0 160 I=34.36

DO 160 J=34.36

K=I-3

M=J-3

160 XG(I.J)=XG(K.M)

D0 170 I=34.36

D0 170 J=37.39

K=I-33

M=J-33

170 XG(I.J)=XJ(K.M)

XG(37.37)=XJ(4.4)+X3(1.1)

XG(37.38)=XJ(4.5)+X3(1.2)

10(37.39)=XJ(4.6)+X3(1.3)

XG(37.40)=X3(1.6)

XG‘38.37)=XJ(5.4)+X3(2.1)

XG(38.39)'XJ(5.6)+X3(2.3)

XG(38.40)=X3(2.6)

XG(39.37)=XJ(6.4)+X3(3.1)

XG(39.38)‘XJ(6.5)+X3(3.2)

XG(39.39)=XJ(6.6)+X3(3.3)

XG(39.40)=X3(3.6)

XG(40.40)=X3(6.6)
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D0 180 I=1.40

D0 180 J=1.40

180 XG(J.I)=XG(I.J)

0:38:33

C PUT'B.C. IN THE MATRIX REDUCED TO 36 BY 36 MATRIX

C:=a===::=

DO 181 I=1.36

DO 181 151.36

181 XM(I.J')=0.

C

D0 190 I=1.19

DO 190 J=1.19

K=I+2

M=J+2

190 XM(I.J)=XG(K.M)

C

D0 200 I=20.36

D0 200 J=20.36

K=I+4

M=J+4

200 XM(I.J)=XG(K.M)

C

RETURN

END
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THIS SUBROUTINE IS TO GENERATE NONLINEAR

LOCAL STIFFNESS MATRIX

00000000.....00....00.000000000000000000000000000000

KG(1-12)----NONLINEAR LOCAL STIFFNESS MATRIX

C
!
f
i
f
i
f
i
f
i
f
fl
f
i
f
i
f
i
f
i
f
i
f
i
fl

f
)

SUEROUTINE LONON(E.A.UR.EL.UL.XG)

REAL UR(6).XG(5.6).E

C=======

C INITIALIZE EVERY “TRY OF THE MATRIX

C=======

DO 830 I=1.6

DO 830 I=1.6

830 EG(I.J)=0.0

C

KG(2.2)=6.0/5.0

KG(3.3)=2.0'EL“2/15.0

KG(5.5)=KG(2.2)

KG(6.6)=KG(3.3)

KG(2.3)=EL/10.0

KG(2.5)=-KG(2.2)

KG(2.6)=KG(2.3)

KG(3.2)=KG(2.3)

KG(3.5)=-KG(2.3)

KC(3.6)=’EL"2/30.0

KG(5.2)=_KC(2.2)

XG(5.3)='XG(2.3)

KG(5.6)=-KG(2.3)

KG(6.3)=KG(3.6)

RETURN

END
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BUILD UP GLCBAL MATRICESS (NONLINEAR PART OF THE PROGRAM)

KM---GLOBAL MMTRICES FOR.EVERI ELEMENT

KX--GL(BAL MATRICES FOR THE MECHANISM IITHOGJT B.C.

KN---GLOBAL MATRICES FOR.THE MECHANISM WITH B. C.

.
.
.
.
.
.
O
O
G
O
I
O
C
O
O

000000.000000.00000.0....00..000.00000000.00.00.0000000000......00

SUBROUTINE GLONON(KN.KM1.KM2.KM3.KM4.KMS.KM6.

KM7.KM8.KM9.KM10.KM11.KM12.KX)

REAL KN(36.36).KX(40.40)

REAL KM1(6.6).KM2(6.6).KM3(6.6).KM4(6.6).KM5(6.6).KM6(6.6)

REAL KM7(6.6).KM8(6.6).KM9(6.6).KM10(6.6).KM11(6.6).KM12(6.6)

D0 111 I=1.40

D0 111 J=1.40

KX(I.J)=0.

DO 10 I=1,3

D0 10 I=1.6

KX(I.J)=KM1(I.J)

D0 20 I=4.6

D0 20 I=4.6

K=I-3

M=J-3

KX(I.J)=KM1(I.J)+KM2(K.M)

D0 30 I=4.6

DO 30 187.9

K=I-3

M=J-3

KX(I.J)=KM2(K.M)

D0 201 I=7.9

D0 201 187.9

K=I-3

M=J-3

KK=I-6

MM=J-6

KX(I.J)=KM2(K.M)+KM3(KK.MM)



(9")9MX=(IZ'6I)XX

(S'f)ZIM1+(9")9MX=(OZ'6I)XX

(V‘V)ZINX+(7'?)9MX=(6I'6I)XX

(M'X)9MX=(£'I)XX

SI-Ial

SI-I=X

IZ'6I=f00I00

8I'9I=I00I00

(MM'XX)9MX+(M'X)$MX’(I'I)XX

SI-£=MM

$I-I=XX

ZI-I=M

ZI-ISX

8I'9I=£I0600

8I'9I=II0600

(M'X)9MX=(I'I)XX

ZI-£=H

ZI-I=X

8I'9I=f0600

SI'£I=I0600

(MM'XX)SMX+(M'X)VMX=(I'I)XX

ZI-I=NN

ZI-I=XX

6-I=H

6-I=X

SI'€I=I0800

SI'€I=I0800

(M‘X)VMX=(I'I)XX

6-f=fl

6-I=X

IOL00

IOL00

SI'€I=

ZI'0I=

(MM'XX)VNX+(M'X)€MX=(I'I)XX

6-I=MM

6-I=XX

9-I=l

9-I=X

ZI'OI=£0900

ZI'0I=I0900

(M'X)£MX=(I'I)XX

9-£=M

9-I=X

ZI'0I=I0?00

6'L=I0900

SZI

00I

I06



110

1101

120

1201

130

124

KX(20.19)8KM6(5.4)+KM12(5.4)

KX(20.20)=KM6(5.5)+KM12(5.5)

KX(20.21)=KM6(5.6)

KX(21.19)8KM6(6.4)

KX(21.20)8KM6(6.5)

KX(21.21)8KM6(6.6)

KX(19.37)=KM12(4.1)

KX(19.38)8KM12(4.2)

KX(19.39)8KM12(4.3)

KX(19.40)8KM12(4.6)

KX(20.37)8KM12(5.1)

KX(20.38)8KM12(5.2)

KX(20.39)=KM12(5.3)

KX(20.40)8KM12(5.6)

DO 110 I822.24

D0 110 1822.27

K=I-21

M81-21

KX(I.1)=KM7(K.M)

D0 1101 I825.27

D0 1101 1825.27

K8I-21

M81-21

KK8I-24

MM81-24

KX(I.1)=KM7(K.M)+KM8(KK.MM)

DO 120 1825.27

D0 120 1828.30

K=I-24

M81-24

KX(I.1)=KM8(K.M)

D0 1201 I828.30

DO 1201 1828.30

K8I-24

M81-24

KK8I-27

MM81-27

KX(I.1)8KM8(K.M)+KM9(KK.MM)

DO 130 I828.30

DO 130 1831.33

K8I-27

M81-27

KX(I.1)8KM9(K.M)

D0 140 1831.33



140

150

160

170

180

191

C
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D0 140 1831.33

K8I-27

M81-27

KK8I-30

MM81-30

KX(I.1)8KM9(K.M)+KM10(KK.MM)

D0 150 1831.33

D0 150 1834.36

K8I-30

M81-30

KX(I.1)8KM10(K.M)

D0 160 I834.36

D0 160 1834.36

K8I-30

M81830

KK8I-33

MM81-33

KX(I.1)8KM10(K.M)+KM11(KK.MM)

DO 170 1834.36

D0 170 1837.39

K8I-33

M81-33

KX(I.1)=KM11(K.M)

KX(37.37)=KM11(4.4)+KM12(1.1)

KX(37.38)=KM11(4.5)+KM12(1.2)

KX(37.39)8KM11(4.6)+KM12(1.3)

KX(37.40)8KM12(1.6)

KX(38.37)8KM11(5.4)+KM12(2.1)

KX(38.38)8KM11(5.5)+KM12(2.2)

KX(38.39)8KM11(5.6)+KM12(2.3)

KX(38.40)8KM12(2.6)

KX(39.37)8KM11(6.4)+KM12(3.1)

KX(39.38)8KM11(6.5)+KM12(3.2)

KX(39.39)8KM11(6.6)+KM12(3.3)

KX(39.40)8KM12(3.6)

KX(40.40)8KM12(6.6)

D0 180 I81.40

DO 180 181.40

KX(1.I)8KX(I.1)

DO 191 I=1.36

DO 191 181.36

KN(I.1)80.

COOOOOOOOOOOOOO
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PUT BOUNDARY CONDITIONS IN

00000000000000

DO 56 I=1.36

DO 56 181.36

IIM=I+2

JIM=J+2

IF(I.GE.20)IIM=I+4

IF (J.GE.20)JIM=J+4

KN(I.J)8KX(IIM.JIM)

CONTINUE

RETURN

END
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K K III N N
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THIS SUBRWTINE IS DESIGNED TO CALCULATE

THE ACCLERATION MD ANGULAR DISPLACEMENT

L1.L2.I3.IA GRGJND. CRANK. COUPLER

AND ROCKER LENGTHES.

(
3
6
5
0
3
0
3
0
5
C
D
C
D
C
S
C
I
C
D
C
S
C
D
C
)
C
D
C
I
C
D
C
D
C
S
C
D
C
D
C
5
C
S

SUBRWTINE KIN(RA. TH2 .TH3 .TH4 .TH21 . STEP.

* X1.E‘11.XLE‘12.AC.XLENS.XLE€4.L1.L2.L3.IA)

REAL L1 .L2.L3 .IA .AC(40) .RA(36.1)

1H21180.0

1 A82.‘L3"(L2‘COS(TH2)-L1)

PI=3.1415927

381.4"2-L1 ”2-L2“2-L3 "2+2‘L1 ’L2 ’COS(TH2)

C82‘L2‘L3 ‘SIN(TH2)

AZ8ABS(A“2+C*‘2)

D8SQRT(AZ)

AB(%ABS( (A‘B/D“2 ) “2-(B"2-C“2) /D"2)

DD8SQRT(ABC)

DA8 SIN(TH2)

IF(DA.GT.0 . )mm

TH38ACOS(A"B/D“2+DD)

ELSE

m38ACOS(A‘B/D“2-DD)

BIDIF

m4=ACOS((L2‘C08(1H2)+L3'COS('I‘H3)-L1)/L4)

m31=-m210(12¢sm(m2-m4) ) I03 ‘SIN(TH3-TH4))

THETA28'IH2‘18OJPI

THETA38'm3‘180 . IPI

THETA48TH4‘180 . IPI

TH41=-TH21" (L2‘SIN(TH2-TH3 ) ) /(L4‘SIN(TH3-TH4))

AA8'1H21“2‘L2 *COS(HZ-m4)

BB-TH3 1*‘2'L3 ‘COS(TH3-TH4)

CC8L3 ‘SIN(TH3-TH4)

TH3118(TH31/TH21) ‘TH211-(AA+BB-TH41”2‘L4) ICC

EE8TH21“2‘L2‘COS(TH2-TH3)

FF8TH41 “2‘L4 ‘COS(TH3-TH4)

PROGRAM IS BASED ON THE PAPER BY SMITH AND MAUNDER(1967)

XLEN1.2.3.4 ARE THE LENG'mES OF 1OINTS

TH2 CRANK ANGLE IN RADS. 'HILE

TH21 CRANK ANG. VEOCITY IN RAD/S.

Ottttttttttttt

C
.
.
.
.
Q
O
Q
O
I
G
Q

000.00.00.000000000000.0.0......OOOOOOOOOOOOOO00.00000000000000000
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GG8L4‘SIN(TH3-TH4)

TH411=(TH41/TH21)‘TH211-(EE-FF+TH31*‘2‘L3)IGC

C=======

C AC CONTAINS NODAL ACCELERATIONS IN THE

C GLOBAL FRAME.

C=======

AC(1)8-L2‘(TH21“2‘COS(TH2) + 'IH211‘SIN(TH2))

AC(2)8-L2‘(TH21“2‘SIN(TH2)-TH211'COS(TH2))

C

DO 1011 I83.21.3

AC(I)8TH311

1011 CONTINUE

C

DO 1012 I824.39.3

AC(I)8TH411

1012 CONTINUE

C

EL18(L3-XLEN2-XLEN1)/4.

D0 1013 I87.16.3

II=(I-4) l3

18I+1

AC(I)8AC(1)-(II‘EL1+XLEN1)‘(TH31“2‘COS(TH3)+TH311‘SIN(TH3))

AC(1)8AC(2)-(II‘EL1+XLEN1)‘(TH31“2‘SIN(TH3)-TH311'COS(TH3))

1013 CONTINUE

EL28(L4-XLEN3-XLEN4)/4.

DO 1014 I828.37.3

II8(I-25)/3

18I+1

AC(I)=8(XLEN4+II*EL2)‘(TH41“2‘COS(TH4)+TH411‘SIN(TH4))

AC(1)=~(XLEN4+II‘EL2)‘(TH41“2‘SIN(TH4)-TH411‘COS(TH4))

1014 CONTINUE

C

AC(4)=AC(1)-XLEN1‘(TE31“2‘COS(TE3)+TH311‘SIN(TE3))

AC(5)=AC(2)-XLEN1‘(TE31“2‘SIN(TE3)8TE311'COS(TE3)1

C

AC(19)=-L4‘(TH41"2‘COS(TR4)+TE411.SIN(TE4))

AC(20)=-L4‘(TE41“2‘SIN(TE4)-TH411‘COS(TE4))

C

AC(22)=0.

AC(23)=0.

C

C

AC(25)='(XLEN4)‘(TE41“2‘COS(TH4)+TE411'SIN(TE4))

AC(26)=-(XLEN4)‘(TE41“2‘SIN(TE4)8TE411‘COS‘TE4))

C

AC(40)=TH411

C=s=====

C To INCREMENT mE CRANK ANGLE AND BENCE TEE MECHANISM

(#83333:

11 TH28TH2+PI/(180.‘STEP)

C=======
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RA IS DEFINED RELATIVE TO THE FINITE ELEMENT

PRMRAM WHILE AC IS DEFINED REATIVE TO THE

MEGANISM KINEMATICS PRmRAM.WE NW HAVE THE

INTERFACE.

0
0
0
0
0
0

DO 1015 181.19

18I+2

RA(I.1)=AC(1)

1015 CONTINUE

C

DO 1016 I820.36

18I+4

RA(I.1)8AC(1)

1016 CONTINUE

C

RETURN

DID
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c......OOOOOOOOOOOO0O000000000.000.00.0.000000000000

C a

C S T R A I N ‘

C a

C This snbrontin is designed to calculate ‘

c the strain of each element ‘

c e

caeesseeeeeeeeeseaseasseseeeeseeeeeeeeesesessseeeeee

C

SUBROUTTNE STRAIN(HIS.BB.0L.EBSB)

REAL EBS(1.1).BB(1.6).0L(6.1).EBSB(1.1)

CALL MMLT(E3S.BB.0L.1.6.1)

RETURN

END




