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ABSTRACT
AN ANALYTICAL AND EXPERIMENTAL
INVESTIGATON OF THE DYNAMIC RESPONSE
OF A FOUR BAR MECHANISM CONSTRUCTED FROM

A VISCOELASTIC COMPOSITE NATERIAL

Wang Chun-hwa

The intense competition in the international marketplace for
mechanism systems which operate at higher speeds, are less noisy and
more energy efficient than previous designs has imposed considerable
preasures upon the machinery designer. This is because classical
rigid-body analyses are unable to predict the elastodynamic phenomena
associated with these new modes of operation. In order to respond to
these commercial stimuli, mechanical systems need to incorporate members
with high stiffness to weight ratios and also high strength to weight

ratios.

The work presented here develops appropriate finite element models
for four— bar mechanisms constructed in elastic and viscoelastic materi-
als. Experimental investigations into the effects of different 1link
materials upon the dynamic flexural response of four bar mechanisms are

also described. The correlations between the analytical and experimen-



tal results for the midspan transverse deflections of the coupler and
rocker links are good, thereby suggesting that these models may be used
with confidence in the computer aided design of high-speed machine sys-
tems fabricated in the commercial materials and also composite

laminates.
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Chapter 1

Introduction

For the past decade, the design of machine members have always been
based on the rigid body method of analysis, which means designers have
traditionally considered all members of a mechanism to be rigid bodies
[1-5]. With this rigid body approach, elastodynamic phenomena, such as
dynamic stresses and vibrations, associated with 1link elasticity are
neglected. This method can only be considered to be resonably accurate
for those mechanisms which operate at low speeds. The major problenm,
from designer’'s point of view is that the traditional rigid-body ana-
lysis and synthesis techniques are unable to predict the response of
these mechanical systems with flexible members because mathematical

models need to incorporate link flexibility.

Recently, machines have been required to operate at higher speeds
with more accurate performance characteristics. Because of the higher
operating speed creates increased inertial forces, the mechanism must be
fabricated as a lightweight form—design to reduce the inertial loading.
Unfortunately, mechanism with lighter members develop deformations and
vibration due to external and internal forces; therefore, the perfor-
mance of the machanism might not be acceptable owing to these
inaccuracies. In addition, failure of the mechanism might occuur if a

vibration analysis has not been undertaken. Owing to this effect, the



analysis of non-rigid mechanisms have became extremly important in the
mechanism design area. Research in the field of mechanism design has
progressed from studies of systems containing ome [1-9], or more, flexi-
ble links [10-30] during the past few ye;rs as researchers have
attempted to develop viable mathematical models for designing high speed
mechanism systems with high stiffness weight ratios and lighter weight
members because classical techniques based upon rigid-body dynamics are
unable to adequately predict the performance characteristics of these
flexible systems. These kind of techniques would allow a designer to
develop a light weight, flexible mechanism that would meet both require-
ments. Comprehensive review articles of the early research in the area
of the dynamic analysis of elastic mechanism have been presented in [31,

32].

In all of these references, the systems are assumed to be con-
structed from homogeneous isotropic materials such as carbon steels or
aluminuom alloys. Some of the more recent work were devoted to develop-
ing optimum 1lightweight form-designs for the menbers of linkages based
on optimizing the stiffness characteristics or focused on the
cross—sectional dimensions and shapes of the links [33-37). Hence links
were designed with tapers and complex cross—-sectional shapes which
directly increases the cost of manufacture, while reducing product

marketability.

An alternative philosophy with which to design a mechanism with

high strength-to-weight ratio and stiffness-to-weight ratio components



is to fabricate the links from a modern fiber—-reinforced composite. As
is well known, these materials have much higher strength and stiffness
to weight ratios than the commercial materials such as steel or
aluminum; furthermore, the composite also have high material damping,

and good fatigue life.

Although considerable fundamental research has been undertaken on
determining the mechanical properties [38-43] and the response of the
composite materials treated as elastic members [44,45], the 1literature
is devoid of reports on the dynamic viscoelastic response of mechanism
systems built using these materials. Therefore, the objective here is
to establish guidelines for the design of linkage machinery in composite
materials. A four bar mechanism was constructed by incorporating these
different materials as the coupler and rocker links and treating them as
the flexible parts. A finite element code was developed for the nomnli-
near elastic analysis of flexible four bar 1linkages based on a
variational formulation [46] and presented in [47]. A second code was
developed for a four bar linkage fabricated in a +45 graphite epoxy lam-

inate.

The material characterization tests show that the 45 degree
composite was a viscoelastic material. There have been several deriva-
tions of variational theorems in linear viscoelasticity [48-56]. The
experimental four bar mechanism which was fabricated using a 145 degrees
composite is analyzed by first developing an appropriate variational

principle for a general multi-body system fabricated from a linear



viscoelastic material prior to formulating a model of comstitutive equa-
tions of the composite laminate and then solving the resulting equations

of motion by the finite element method.

This single functional expression with its associated varational
equation provides a complete description of this class of mixed boundary
value problem and is relevant to the design of all mechanisms. By per-
mitting arbitrary independent variations of the stress, strain,
displacement and velocity parameters, this equation yields the governing
differential equations as well as the relevant boundary conditions. As
an illustrative example,an approximate solution is sought for the
response of the flexible four bar linkage by developing a displacement
finite element model of the system. This mathematical model incoropo-
rates one standard 1linear solid model to represent the material’s
constitutive equation. The equation of motion is solved by numerical

integration, and the analytical and experimental results are presented.



Chapter 2

Variational Theorem

The objective of this chapter is to develop the equations governing
the motion of mechanisms constructed in viscoelastic materials. The

approach follows the developments of reference [57].

N

-1 Theoretical D o t

The volume of a viscoelastic body is taken to be V and the total
surface area S is the summation of two prescribed area Sd and Sa. The
dynamic problems of this viscoelastic body V are considered. Let
o—x-y-z be a set of Lagrangian coordinates fixed in the body in a refer-
ence state with zero deformations, strains and stresses, and
furthermore, it 1is also assumed that these parameters have been zero
throughout the previous time t. Employing a Cartesian temsor mnotation,
at time t a general point P in the continuum has the general position

vector T which is defined as

ri=r°i+rri+ui (2"1-1)
where
r,;: the component measured in the o—x-y-z frame with the position



Figure 2-1.1 Definition of Axis Systems and Position Vectors



vector of the origin of the body axes relative to the origin
of the inertial frame.

T i: the position vector of point P in the reference state relative
to the origin of the body axes.

u;: deformation displacement vector.

in Figure 2-1.1, 0-X-Y-Z is an inertial reference frame.

The field equations for the linear theory of dynamic viscoelastici-

ty for an body describing a general spatial motion relative to 0-X-Y-Z

are as follows:

(i). Pi=;oi+ii+e1jk3j(rok+rrk+nk) (2-1.2)

this equation is obtained by differentiate equation (2-1.1),
and is the velocity rate of change of position statement; where
P; : absolute velocity associated with r;

°ijk: alternating tensor

3j : angular velocity defining the rotation of the Lagrangian

frame

() : the time rate of change with respect to the moving

coordinate frame

(') : the absolute rate of change with respect to time.



(ii). The boundary conditions for prescribed displacement and

tractions are written as

u;=u; on Sd

;igaijnjgzi on S, (2-1.3)

Sd: surface on which the prescribed displacements are imposed
SG: surface on which the prescribed tractions are imposed
8;: surface traction vector

(7): a prescribed quantity

n;: the outward normal from the surface Sd
(iii). Strain-displacement relation

eij=(1/2)(ni'j+uj.i) (2-1.4)
'ij: Lagrangian strain tensor

(iv). Equation of equilibrium

fi+aij’j-pi>i=0 (2-1.5)

fi : body force per unit volume
%ij.j° Lagrangian stress tensor
p : mass density of the material

Py : rate—of change of absolute valocity



(v). Strain-stress relation in relaxation form
= t - -
where
Gijkl: Relaxation function
°ij : stress tensor
the first term in the equation above represents the response
at t=0, while the second term of the equation is the rate of

change during a time interval dt. Equation (2-1.6) can also be

written as
Uij=Gijk1‘ dekl (2—1.7)

where

* js the convolution form

Equation (2-1.7) is the constitutive equation of the material

In addition, the following energies are defined
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kinetic emergy: T=(1/2)ppi‘61jpj

potential enmergy: U=(1/2)Gijk1°dskl‘deij

The objective now is to establish a variational theorem which con-
tains equation (2-1.1) to (2-1.7) in the first variation of the
functional. When the first variation is set equal to zero, and indepen-
dent variations are permitted then these governing equations are the
stationary conditions of the functional. The task of determining the
stationary conditions of this functional expression may be achieved
using a the Lagrange multiplier approach to introduce the constraints

into the functional and generalise Hamilton's principle [24].

The functional may be written

+Ivl§-j1) ‘d[eij-(IIZ) (ui. j+nj , i)]
+J.vlg’)‘d[pi-;oi-;i‘eij kdi‘(r°k+trk+uk)]dv

+J-scl(i')‘d(;1-ni)dsaldt (2-1.8)

The first variation may be generated using the standard rules of

the variational calculus and this procedure involves utilizing the
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divergence theorem and also the symmetric properties of the temsors. On
establishing the first variation, this is then set equal to zero, yield-

ing

83=0

=[tatf,ats7-sv10v
+:Sdzi‘d(broi+8rri+6ni)dsd
+fa{3)eale; - (1/2) (uy y+uy 10V
+:v61§’)‘d[pi—?oi-ﬁi-eijka‘j(r°k+rrk+uk)]dv
+fs 1{")salm -0, as,

+Iv1§;).d[68ij-(1/2)(bni,j+6nj.i)]dv

[ s
+ sazg Yed(-bu;)ds,) dt (2-1.9)

Considering the first term in the equation (2-1.9), the varition of

the kinetic emergy T may be written as

8T=(3T/dp,) bp,
'(a/api)[(1/2)pp1‘51jpj]5pi

=ppi.8pi (2‘1.10)

Similarly, for the potential emergy denmsity,
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5U=(30/0de, ;) 8de, |

=G jx1*dey) *8de; (2-1.11)

Consider the third term in equation (2-1.9), since G“i,jgsj.i' this

may be rewritten

Jr {3 eatse, - (1/2) (5, jobuy 1av

=[or{})eatse, 1av-[2{}) easn,  ;av (2-1.12)

The second term in the equation (2-1.12) can be integrated by parts

and upon applying the divergence theorem this leads to
(2) = (2) _ (1)
J’vlij ‘d&ni'j jslij nj ‘dGuidS J‘V"ij 'j‘dbuidv

[ 4 (0) (1) _(a(2)
Isd"ij nj‘dsuidsd+js¢;.ij n *dbu,ds, vaij'j‘danidv

(2-1.13)

hence, from equation (2-1.12) and (2-1.13), the third term in equation

(2-1.9) can be rewritten as

Ivlg;).d[seij-(IIZ) (6ni.j+6nj , i)]dV

= (") - (3) (1) _
j'vxij *dde, jdv J’Slij “j‘“‘ids"jv"ij,j‘““idv (2-1.14)
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the fourth term in equation (2-1.9) may be written as
(’) _~-~_
Ivli *d[8p;-8T ;-5 °1jx535“’ok+‘:x+“x)]dv

=[r{*)satp av-[ 22 0alsT, 48T re,,, 88, (xgyrr pruy) 1AV (2-1.15)

the second term of equation (2-1.15), may be integrated by parts over

time and rewritten as
ta (3) ~ ~ ",
tl[j;li ‘d[5t°i+6ni+eijkSJj‘(rok+rrk+nk)]dv]dt
= ::jvlgz)‘d[5?°i+831+eijk561‘(rok+rrk+nk)]dv dt
- (2) ~ ~ ta _
[[oA{?)0ats7, #6540, 86,0 (xoyre yrug) 1av]E2 (2-1.16)
the second term in the right hand side of the equation (2-1.16) is
zero because varoations at thé extremes of the time interval are not
permitted.
Thus

(’) -~-~_
jvli 'd[&pi 6r°i Gui eijkbij‘(r°k+rrk+uk)]dv

=[r{*)sasp av-[ A{) salor, +bu ve, 1 88,% (rpptrpruy) OV (2-1.17)
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therefore, the first variation of the functional J may be written

8J=0
= ::[jvbpi‘d(Ppi+xgz))dV+j;sx§;)td[eij-(1/2)(ni.j+uj,i)]dv
+ v61§’).d[pi—;°i-;i—eij kaj.(r0k+rrk+nk)]dv

[ 52 ed (3.~ (2)_
+)s 84" %Gy ni)ds,+jvd531j'[xij Gyjx1 *dey; 1AV

+.vdsni‘[l§;3j+ig’)]dV+6dr°i‘[Ivi§’)dV+Isd;ide]
+5ddj'[jveijk(rok+rrk+uk)i§"dv+jscd5ui°(-x§"-xg;’nj)dsa]
—Isd(ii-ui)'dsEidsd+Isddsui°(Ei-x§;)nj)dsa]dt (2-1.18)
By permitting independent arbitrary variations in the system

parameters, the Lagrange multipliers may be determined and written

Ai=-pp;

(1)
Aij =Cijx1*dex1=0;;
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(Mg, (2-1.19)
So the final form for 8J becomes
83=0

=I::[Iv5°ij‘d[°ij—(1/2)(ui,j+nj.i)]dv
—jvpbpi‘d[pi-?oi-ii—eijkaj‘(rok+rrk+nk)]dV
-ISGSgi‘d(;i-ni)dSc+Ivd6ni‘(cij’j—pﬁi)dv
+jscdsui°(2;aijnj)dsa+[jsciidsa-fvp§idv]°dszoi
+[Isdgieijk(rok+rrk+“k)dsd+j;p£i°ijk(rok+rrk+“k)]‘d5‘j

+I;(aij—Gijkl‘dekl)‘dbaijdv]dt (2-1.20)

Independent arbitrary variations of the deformation displacement,
stress, strain, absolute velocity, and the kinematic parameters defining
the rigid body equation of motion enable equation (2-1.20) to yield the
field equations and boundary conditions for this class of dynamic
viscoelastic problem because each integral must be independently equal

to zero. The above variational principle represents a gemeralization to
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the theory of viscoelasticity of an elastodynamic variational theorem

presented in reference [15].

The characteristic equations obtained from equation (2-1.20) actu-
rately define the dynamic viscoelastic problem for the design of
mechanisms fabricated in materials with linear viscoelastic properties.
In order to obtain viable solutions, simplifying assumptions must be
introduced and inparticular the comstitutive equation must be modeled.
In order to establish an industrially orientated solution methodology,
the finite element method was selected as the vehicle for generating
approximate solutions. A number of approachs establishing finite ele-
ment models of viscoelastic media have appeared in the literature ,such

as references [58, 59, 60].
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2-2 Finite Element Formulation

The variational equation of motion may be,enplo&ed as the basis for
a variety of finite element models depending on the geometrical shape of
the body being analysed, the type of deformation theory assumed to be
appropriate, the information sought from the analysis, the accuracy of
the model for the constitutive equations, and the assumption of whether
the material is isotropic or orthotropic. A finite element model is
developed herein for determing the flexural response of the beam—shaped
links of planar linkage mechanisms deforming in the plane of the mechan-
ism. These linkages are assumed to be fabricated from graphite-epoxy
laminates with orthotropic properties. The developments are based on

publications [61, 62, 63].

The link deformations are governed by the Euler-Bernmoulli beam
theory, shown as Figure 2-2.1

Uz [
93... - UG‘\

Us
™\
\uy - \‘ ~Uq

Figure 2-2.1 Nodal Degrees of Freedom Describing the

Deformations of The Beam Element
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and the transverse deformation may be written as

w=[, ] (2-2.1)
where

(v)={v,,v,,0,,0,)7T

Assuming that the member deforms on the axial and flexural mades, then

the axial deformations is

w=uy-2zwW, o

=IN_]{U )~z [N 1 (U} (2-2.2)

where
[Un}={Ul.U.l
[N]: the row vector containing the shape functions
z : the spatial variable prependicular to the beam section in
the plane of the mechanism.
, : the spatial dervative with respective to the axial
spatial variable. This symbol was also employed to demote
the absolute time dervative (see equation 2-1.2) but
confusion should not exist because in this section it is

confined to operations on the shape functions.

The absolute velocity field p(x,t) is related to the nodal values in the
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discretized field by

p=[R1{P} (2-2.3)

where
(R1=[1-(x/L) ,1-(x/L) ,1,2/L,2/L,1]

In order that equation (2-1.20) be employed as the basis for a fin-
ite element analysis, this tensor expression must be reformulated in
linear algebra format

[ysosy0ate = (172) (uy y+u, ) 1av=[ at80) ToLLe)-IN"1 (U} lav (2-2.4)

j;bpi‘dp[pi-roi-“i+°ijk.aj(rok+rrk+“k)]dv

=[,at8P) TopL{P)-INg] (PR} -INI (D) Tav (2-2.5)
:Sassi.d(;i‘“i)dsa=jsad{Ss}T‘({ﬁl-[N](U})dSc (2-2.6)
.;dsni'(°ij.j“Pbi)dv=Ivd[6U]T‘[N]T‘([D]{c]-p[N]{P])dv (2-2.7)
:Scdani.(;;cijnj)dscgjsad{SU]T‘[N]T‘({;]-{3])dSa (2-2.8)
(Isciidsa-jvpbidv)tdsr°i=d{5:°}T'(jsa{I]dsa- P N1{Blav) (2-2.9)

[ISdE.C ij k(r°k+ rrk+nk)dsd+jvp.Pe ij k‘ (r0k+rrk+uk) ] .ds‘j
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~a83;+ 1[5 (rxg)ase [, (FxpPrav] (2-2.10)
jv(oij-Giju‘den)‘d&eijdv=Iv{63xx]T‘d({cxx]-[Gl *d{e, )dv  (2-2.11)
hence the equation (2-1.20) can be rewritten as

8J=0

=[ta[ [, tsorToatte-In" 110} 1av

+[ap(6PY T [{P}-INg] (PR} -IN1 (B} Tav

+Isc{d6ng‘({ii}-[N] (U})as,

+[,atsmI T INIT(ID] (o) -p IN] () ) av

+Is°d{BU}T‘[N}T({§l-{s])dso

+atoro)To(fs (mras,-[pN1ctIan)

+astttjsd('r'xi)ds-rjv(?xpi)dv]

+[ 81881 To (o ) ~(6) *ale, ) rav ]t (2-2.12)

Focussing attention upon equation (2-2.7), this may be written as
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[yatsmToNIT((D1 (e} -pINT ($) ) av

=[,atsm T INIT([D1 (o, }-pINI (D) -p [Ng] (Bg) av (2-2.13)

by utilising the equation (2-2.5). The first term of equation (2-2.13)

may be subjected to integration-by—parts over x to yield

[oatsmTerniT(as0x) (o, av
~[[ratsmTeniTto, 1 an], [, atsmiTo N T(o, D av (2-2.14)

where [N']=(8/90x)([N]

As stated in [62] consider an one dimensional finite element of
length L,and cross sectional area A represented by a cartesian reference
frame. If ox is the axial coordinate, then the unit vector on the end

faces has the direction cosine 1=11, m=0, n=0 and surface tractions are

{gl=t(cxx} (2-2.15)
thus, equation (2-2.8) leads to

s, atsmT T (z1- (g0
=[Aats0) T 01T () 200, ) ) an2Y (2-2.16)
The first term in the right hand side of equation (2-2.14) may

be written as
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gjj( t)

ZSGﬁ

Gijlty1

~—0jjlto]

Figure 2-2.2 Finite difference representation
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RIS LICHRPTY [aatsnToNIT (o, a8], g

upon combining there terms with equation (2-2.i6). terms cancel to give
jAd[!SUlT'[N]T{;}dA (2-2.17)
which is part of the equations of equilibrium.

The second term on the right-hand side of equation (2-2.14) may be

written as
-[LatsmTon 1o dav

The the standard linear solid, presented in reference [63], will be

employed to model the viscoelastic constitutive behavior, hence
éij+ﬁaij=2u(éij+aeij) (2-2.18)
Using Figure 5-2.2, which is a finite-difference representation of the
materials’ constitutive curve relating stress and strain, the left
hand side of the equation (2-2.18) may be written as

Wij(t.)+(AO'ij/2) (2-2.19)
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and, in addition,
éij=(1/At)[cij(t1)—cij(t,)]

=Aopij) /At (2-2.20)
Thus, the L.H.S. of the equation (2-2.18) becomes
éij+Boij=(Aaij/At)+ﬁcij(t,+(B/2))Acij

=[(1/At)+(B/2)]Acij+ﬁaij(t,) (2-2.21)

Similarly, applying the above procedure to the strain, the right
hand side of equation (2-2.18) may be written as
Zu{[(1/At)+(a/2)]A8ij+aeij(to)}
and hence equation (2-2.18) becomes
[(2/At)+ﬁ]Aaij=2n{[(2/At)+a]Asij+Zaeij(t,)]-ZBcij(t,) (2-2.22)
Considering a one-dimensional model, equation (2-2.22) can be written as

{ogx}=B(A{e  +2ale  (t,)]})-Clo,, (t,)] (2-2.23)



25

where
A=(2/At)+a
B=2p/[(2/At)+B}
C=2B/[(2/At)+B]
where a. B, p are constants.
e x(ty) and o, (t,) are the strain and stress at the

previous time step of the numerical algorithm. Since

(e, )=[N"1{U) (2-2.24)

the constitutive equation may be written as

- atenyToIN T ABIN" 1 (U} +2aBl e, (2,0 )-Clogg (2} Jav

=-j,a{an]T'[Anm'lT[N'1[01+zan[wthen(t.n-c[N'uau(t.n]av (2-2.25)
by defining

te1=[ ABIN* ITIN' Jav

1=, IN1Tp INJav

()= [, [N1Tp INplav

and combining equation (2-2.25) with (2-2.17) and (2-2.13) the resulting

equations of motion are

a(su)To[ - [K1(U)-2aBIN' 1T (e 4y (£,)14CIN' 1T Loy (£,)1-IMI{0)-TNR] (Bp) +Isc[N]T
(3}dA]=0
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This may be written in a simpler form as
(KI(O}+INO) =1, o) -Dlg] (Bpd+ s TN 1T (30
where

(£, 500t =CIN' 1T {0 (t,))-2aBIN 1T(e__(¢,))

Therefore, the final form of the variational equation of motion

becomes

8J=0
=:§:[Ivd{6"xx}r.[{zxx}-[N'][U)]dv

+[_atsPyTepL (P}-[Ng1 (PR}~ [N (6} Jav

+[s atsg1Te((@-IN1TD a5,

bt 4

+a (80 T LRI+ NI (O3~ o)+ DMg) (Bg)-[5 INIT(g)aslav
[

+atsrg)To([s (gras,- [ otNItPIan)
(4]
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+d633 o[ j sd(?xE) ds+Iv(?pr) dv]

+[,at8e 1 To (o, )16} *ale ) )av]at (2-2.26)



Chapter 3

Mathematical Model of a Flexible Linkage

The objective of this chapter is to develop the finite element
equations for a general planar elastic linkage which deforms principally
in the axial and bending modes. In the course of this development, the
nocal displacements, accelerations and shape functions experssions are
derived. The stiffness matrix and mass matris are also presented. The
model for the viscoelastic material is in the last section. Some of the

material presented in this chapter is based on reference [61].

3-1 Planar Beam Element

A general beam element is shown on the Fig. 3-1.1 in two reference
frames. The global frame O-X-Y and the local frame o-x-y. The x-axis
of the local reference frame is parallel to the beam element axis. The
dotted 1lines represent the rigid body position of the beam element and
the solid lines show its elastically deformed configuration. The elas-
tic deformation of the beam element could be discribed by six nodal
displacements, here we denoted as u,, u,, u,, u,, u,, u,. These dis-
placements are located at the deformed positions of the node A and node
B. From the figure shown, the following relationships may be esta-

blished in the global coordinates.

28
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Figure 3-1.1 A General Beam Element
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X,/=X,+u,cos6-u,3in@
Y,=Y)+u,8in0+u,c0s0 (3-1.1)

OA.-O+u,

Differentiating equations above with respect to time, the velocity
and the acceleration at node A can be expressed in the global coordinate

on=XAfﬁ1cosO-nlésin6-ﬁ,sinO—u,écosO
YA.-YA+51sin0+u,écosO+ﬁ,cosO—n,ésin0 (3-1.2)
éArgé"l'l,

and

X,,=%,+8,c0os0-20,0sin0-u,6*cos6-u,Bs1n6-8,3106-20,6c036-u,6*sin6-u Bcos0
?,,=,+8, 5in0+20,6c056-u,6" sin6+u,Bcos6+8,c080-20,051n60-u,6%c0s6-u,Bsin0

QA.ﬂéﬂi, (3-1.3)

The absolute accelerations in equation (3-1.3) in global coordi-
nates can be expressed in the local frame system with the following

relations
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!Ang' 0089+YAO 8in®
yA‘-on sin0+YA.cose (3-1.4)
5,.=b+%,

combining equations (3-1.3) and (3-1.4), the resulting equations
£),=%,+8,-0,0%-20,6-0,8

?A.=§A+i,-u,é’-26xé+u1§ (3-1.5)
GA,=6+3'

Equation (3-1.5) is the absolute accelerations of node A of the
beam element in the local frame.

Apply the same procedure to node B
iB' =iB+ﬁ. -n‘é’-Zl'l,é-u,é
?Ba=§B+ﬁ,-u,é’-Zﬁ4é+u‘§ (3-1.6)

By, =B+5,

Where ¥,, ¥,, 8, X, p. O describe the rigid body motion of the beam

element and are all kinematic quantities.

Defining
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!A' iA
Far ¥a
5,
(ﬁ.i]= ,and {ﬁti]*‘ (3-1.7)
ch iB
¥p ¥
8,
\ Y, Y /

combining (3-1.5), (3-1.6), (3-1.7) in this section

u‘,’ ' i, +i, -v,6"° -20,6 -u, ‘
i,, i, +§, -u,0° +20,6 +u,d
g, iy, +i, +0 +0 +0
8,.1= | 8, +i, —u,é -20,6 -uB (3-1.8)
g, i, +i, -u,6® -20,6 +u.8
\ii", L i, +i, +0 +0 +0 )

this may be written as:

(8, )=(8 J+{@}+{8 ) +{8 }+{8,) (3-1.9)

where

ﬁ.: absolute acceleration
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@_: rigid body acceleration
@ : elastic acceleration

8 : normal acceleration

8.: Coriolis acceleration

ﬁt: tangential acceleration

{i ), (8.}, {8;) are the elastic and rigid body coupling terms. If
the rigid body velocity and accelerations are small compared with those
of the elastic nodal deflection, then in the equation (3-1.9) the pro-
duct terms in vectors {8 )}, (i ), {i,) are also small compared to the
corresponding terms in {ﬂr}+[ﬁ}. The analytical model presented here

did not incorporated theese coupling terms.

3-2 Shape Functions of Beam Element

The most widely used finite element approximation for representing
the continuous function being studied, is the polynomial. Consider the
beam element present in Figure 3-2.1,the shape functions for two kinds
of deformations must be formulated. First, for the axial deformation,u,

and u, the choice of this shape function is a linear polynomial in x.
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Figure 3-2.1 The Deformations of a Beam Element

’ .
U
T -—
~¢
Uy ) 4‘04

u(x, t)=6,(x)u, (t)+6, (x)u,(t)

=ax+b (3-2.1)

where 6,(x) and 6,(;) are shape functions.

By virture of fact that u(x,t) must be such that

u(0,t)=u, (t)=b

u(L, t)=u,(t)=La+b

the functions é,(x) and é,(x) must satisfy boundary conditions

6,(0)=1 , 6,(L)=0
6,(0)=0 , é,(L)=1
therefore

é,=(L-x)/L

é,=x/L

Secondly, for the bending displacement field, the shape functions will
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be described as a cubic polynomial in x.

w(x, t)=6,(x)u, (t)+6, (), (t)+é,(x)u,(t)+6,(x)u (t)

Tap 3., O3
=a,ta,x+a,x +a,x

w(0,t)=u,(t)=a,

w(L,t)=u,(t)=a,+a,L+a,L*+q,L’

w' (0,t)=u,(t)=a,

w'(L,t)=u,(t)=a,+2a,L+3q,L?

hence

a,=(1/L%)(-36,-2Lé,+36,-L4,)
a,=(2/L")(4,+2Lé,-6,-(L/2)é,)

the shape functions are, therefore

é,=1-(3x*/L*)+(2x’/L’)
é,=(3x*/L?)-(2x" /L")
é,=x-(2x*/L)+(x"/L*)

éo=x"/L+(x"/L?)

The shape function of the beam element may; therefore,

(3-2.2)

(3-2.3)

(3-2.4)

be written
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¢, (x)=1-x/L

é,(x)=3((L-x)/L)*-2((L-x) /L)’

é,(x)=x((L-x)/L)?

é,(x)=x/L (3-2.5)
é,(x)=3(x/L)*-2(x/L)’

é¢(x)=(L-x) (x/L)*

The transverse displacement, w(x,t), may be written as:

w(x,t)=6,(x) 0, (t)+6,(x}-u, (t)+6,(x} -u,(t)+6,(x) -u (t) (3-2.6)

and the axial displacement

u(x,t)=¢,(x)-u, (t)+é,(x) .1, (t) (3-2.7)

3-3 Element Mass and Stiffness Matrices

Assume that the beam element has a ngiforn cross section, then the

local mass and stiffness matrices are represpectively [m] and [k], then
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, R
1/3
0 13/35
0 11L/210 L2/105 Symmetric
[m]= pAL (3-3.1)
1/6 0 0 1/3
0 9/70 13L/420 © 13/35
(0 -13L/420 -1%/140 O -11L/210  L2/105 ‘
) \
EA/L
0 12E1/13 Symmetric
0 6EI/12 4EI/L
[x]l=
-EA/L 0 0 EA/L
0 -12E1/13 -6E1/12 0 12E1/13
| o 6EI/L? 2EI/L 0 -6EI/L? 4EL/L |

(3-3.2)

When deriving the stiffness properties of a beam finite element,
using the small strain theory, it is assumed that the transverse dis-
placements are independent of the axial displacements or forces. In
reality, however, a compressive axial force would tend to increase any

transverse displacement of the beam, thus effectively decreasing the
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transverse stiffness of the beam. While a tensile axial force would
have the opposite effect. This dependence of the stiffness matrix upon
the axial 1loading is called geometric stiffening, and could become
important in mechanism analysis where large axial forces are kmnown to
occur and also when the beam is very slender . One approximate method
of including this effect is to calculate a geometric stiffness matrix
[ka] based on large strain theory that would represent the coupling
between the axial and transverse displacements. The geometric stiffness

matrix for a beam element, which has been derived [46] and [64] is

( 0 0 0 0
6/5 L/10 -6/5 L/10
[xg1=(F/L) L/10  2L%/15 -L/10  -L%/30 | (3-3.3)
0 0 0 0
-6/5 -L/10 6/5 -L/10
L/10 -L*/30 -L/10 2L%/15
(
where
F : the axial force in the element

This matrix [kal represents the change in transverse stiffness due
to an axial force in the element. To include this coupling effect in

the equation of motion, the geomatric stiffness matrix is simply added
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to the element stiffness matrix [k].

3-4 Assombling the Mass and Stiffpess Matrices of the Mechanis
System

The finite element method generally requires the use of a global
frame in order to assemble the element into a model for particular com—
ponent. Therefore, a transfer matrix is necessary so as to transfer the
stiffness matrix and mass matrix from the local fram to the global frame
before the matrices of the system can be assembled to form a model for

the complete mechanism system in which the links have differing orienta-

tions relative to the global frame.

Consider the beam element shown as Fig.3-4.1

Figure 3-4.1 The Relation between Global and Local Coordinate

The relations between two different coordinate are:
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uy=U;c0s6+U,sin®
uy=-U;3in0+U,co0s0
u3=Us (3-4.1)
uy=Uycos6+U5sin®
ug=—U,sin6+U5c0s6

“6=U6

Thus, a transfer matrix may be written as:

cos® sin@ 0 0 0 0
-sin@® cos® 0 0 0 0
0 0 1 0 0 0
[R]= (3-4.2)
0 0 0 cos® sin6 0
0 0 0 ~sin®@ cos6 0
.0 0 0 0 0 1

and the global matrix [m], is related to the local mass matrix [m]
by the expression
[m1=[RIT [m] [R] (3-4.3)
similarly

(x1=[r1T (k] (R] (3-4.4)
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3-5 Linkage Model

For the finite element analysis, the 1linkage is regarded as an
instantaneous sturcture at every position. Consequently, the stiffness
and mass matrices are different at each mechanism position. Generalized
coordinates representing deflections are assigned to every joint permit-
ting the members to deflect in the horizontal or vertical directions.
As illustrated above, the following steps should be satisfied in the

computer program.

1) An idealization of linkage stucture is needed. This will require
selection of the type and the size of the finite element to generate

the system mesh.

2) The system-oriented element mass and stiffness matrices are gemerated
for each element.

3) These element mass and stiffness matrices are assembled systematically
to develop the mass and stiffness matrices of the total linkage system.
4) Determination of unknown model displacements of the problem involves
solving a system of coupled ordinary differential equations.

These equations are obtained by using the equilbrium condition at the

nodes.
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Figure 3-5.1 Four Bar Linkage Model with Flexible Coupler

Flexible —m

~
Rigld

The linkage model is shown in Figure 3-5.1, the crank element is consi-
dered to be rigid, while each flexible link, coupler and rocker, is
divided into six elements. The element at both ends of the link, consi-
dered as joints made of aluminum, is treated differently because of the
different material properties. In Figure 3-5.2, system—oriented gener-
alized displacements are labeled to describe the stuctural deformation
of the linkage as well as to maintain compatibility between the elements
and nodes. For instance, at the joint between the coupler and the rock-
er, U14 and UIS represents the mnodal translations and U36 and 016
describe the rotational deflection of the coupler and the rocker at that
point. A rigid connection between two elements, will be simulated by

only one rotational displacement.

3-6 Copstruction of system matrices

In Figure 3-6.1, appropriate displacements are labeled on each

retaining compatibility at the nodes. The system mass and stiffness
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Figure 3-6.1 Finite Element Model for the Simulation
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matrices of ith element are

(m;1= (R)] [m;] [R],
T -—
(x,1= [R]] [E;] [R], (3-6.1)

i=1, 2, 3,...000..,12

3-7., Modeling The Viscoelastic Constitutive Equations

The model representing a viscoelastic media is constructed to simu-
late the experimental behavior of viscoelastic material and involve
differential equations relating strain, stress, and time. An important
characteristic of these materials, especially whrn subjected to dynamic
loading, is that they exhibited a time and rate dependence that is com-—
pletely absent in the constitutive relations of elastic materials.
Although these types of material have the capacity to respond instan-
taneously they also exhibit a delayed response. Thus the materials have
the combined capacity of an elastic material to store energy and the
capacity of a viscous material to dissipate energy. Materials with this
type of behavior are termed viscoelastic materials and they have been
the subject of several texts [48, 65-68], the topic for chapters in
standard reference texts [69-71], and the objective of numerous papers
[72-76]1. For dynamic viscoelastic problems it is necessary to comstruct
the entire solution without relying on the static elasticity results
since after all, dynamic situations involve wave propagation phenomena,

strain rate effects and attenuation characteristics. In this regard,
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finite element solutions are proposed herein based on approximate forms
for the constitutive equations because an exact solution requires the
time history of the material to be known for all time, which is of

course impractcal.

The basic elements commonly used in the model representation are a
spring and a dashpot. A spring, shown as Figure 3-7.1a, represents an
elastic solid, and exhibits instantantaneous elastic strain and elastic

recovery as Figure 3-7.1b.

The equation relating stress and strain for a spring in time &onain

is

o=Ee or e=c/E (3-7.1)

A dashpot, as Figure 3-7.2a, represent & viscous element, and exhibits

irreversible creep and permanent set as Figure 3-7.2b0.

The differential equation relating stress and strain for a dashpot

in time domain is

o=pe (3-7.2)

One of the combinations of the two basic elements is the Kelvin

model, as Figure 3-7.3, which consists of a spring and dashpot in paral-
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—MW—

E

Figure 3-7.1a Spring.

Y% _
E

) tO

Figure 3-7.2b Strain-Time Relation of Dashpot.

o-—-{_L————o

M

Figure 3-7.2a Dashpot.

= -t
0 tO
Figure 3-7.1b Strain-Time Relation of Spring.
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lel. At all times the elogation & of the two elements is the same, and
the total force o will split into o, (for the spring) and o, (for the
dashpot) in whichever way to make & the same. When applied to this

model

o,=E ¢

o,=pe (3-7.3)

and from these two relations

o=0,%0,

=E,e+pe (3-7.3)

Various combinations of the basic elements are also possible. The
standard linear model, as Figure 3-7.4, representing a first order
linear differential equation of stress and strain. This is a three
parameter model which consists of a spring in serious with a Kelvin
unit. The differential equation relating stress and strain for this

model are

(n,/E,)o+[1+(E, /E,) Jo=p 8+E, ¢ (3-7.4)
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) %

Figure 3-7.3 [Kelvin Nodel.

Ey

1
JL-
m

Figure 3-7.4 Standard Linear Solid MNodel



Chapter 4

Experimental Investigation

4-1, Material Characterization Studies

The experimental results concerning the material properties were
developed by Mr.C.K.Sung and Mr.J.Cuccio under the instructions of Dr.

B.S.Thompson in August 1983 in Michigan State University [78].

The main causeof link deformations in a flexible mechanism is
either the bending, or the flexural, mode and the associated deflection
field is governed by the flexural rigidity, which is the product of the
Young’s modulus (E) of the material and the second moment of the

cross—section area of the 1link (I).

The materials chosen for the experimental work were a 1low carbon
steel and a graphite—epoxy laminate with a symmetrical ply layup of 145

degrees relative to the longitudial axis of the linmk.

The modulus of elasticity of the steel link specimens were obtained
from supplier’'s data sheets, and the specimens were not subjected to
mechanical testing. However, the composite materials have a greater
variability of mechanical properties, hence the characteristics of the

laminates need to be examined and quantified carefully. In order to

49
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determine whether it is elastic, viscoelastic, or plastic.

The purpose for the testing was to investigate the mechanicl pro-
perties of the +45 degrees graphite-epoxy laminates. At first, the
specimens were subjected to dynamic testing, which required the specimen
to gain a prescribed maximum load 0.258 MPa over a range of time inter—
vals. Thus Figure 4-1 presents the results of the tests performed on
the 145 degrees laminate and the maximum stress level was reached in

0.5, 1, 10, 100 and 1000 seconds during the four tests.

The results presented in Figure 4-1 suggest that the behavior of
the material is certainly dependent on the rate of application of the
loading. Thus, the +45 degrees laminate is a viscoelastic material, and
the response curve implies that the constitutive relationship of strain

and stress is nonlinear.

In order to verify the deductions made from these test data, anoth-
er test was undertaken to study the creep response of the materials.
The results are presented in the Figure 4-2. The creep data in Figure
4-2 verifies that the +45 degrees composite is truly a viscoelastic

material.

The following method was adopted in order to incorporate the data
from the material characterization studies into the mathematical model.
The objective was to determine the relaxation function relating stress

and time. Firstly, the maximum strain was measured on the response
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curve extreme left. This corresponded to a stress of 0.258 MPa. at 0.5

second after the load was initially applied.

Then using this magnitude of strain,a horizontal line was measured
from the point of load initiation on each of the response curve in Fig-
ure 4-1 and a vertical prependicular 1line comnsructed Tuntil if
intersected each response curve on the increasing load (upper) portion
of the curve. This permitted the stress to be obtained and assuming
that the rate of application of load was constant (it was programed to
be constant on the MIS testing machine) this operation permitted a
stress—time graph to be plotted. This is presented in Figure 4-3. Then
using a PRIME 750 curve fitting software 'CURVFIT” by changing the

values of the parameters A, B in the equation
Y(t)=(A-B)e %t+B (4-1)

" and the data presentedin Figure 4-4, which is a curve of the standard
linear solid model, the curve presented in Figure 4-5 was generated. By
plotting the constants E,, E,, p, of the relaxation modulus, [79], can

be obtained from the following procedures

6(t)=E e~ t/Ma+(E,/E,) (1-¢"t/1a)

=[E,-(E,/E,;)]e % +(E, /E,) (4-2)
30
E;=A

E,=A/B
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stress

j~—— stress at time t

strain

b 9onstant strain—

. —

Figure 4-3 ‘Method to Obtain the Relxation Function
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ny=1/a

After the dynamic and creep testing of the laminate is completed,
the response data provides the fundations of several investigationms.
The +45 degrees laminate has a complex response because the
stress—strain relation is not linear, and the gradient depends on the
strain rate. Obviously, a wide range of different Young’s modulus could
be determined from the experimental data depended on the assumptionms
that considered to be necessary. Because a link of any mechanism exper-
iences rapidly fluctuating stress 1levels, the response curve on the
extreme left of Figure 4-1 was selected to provide the basis for the
Young'’s modulus because this records the highest strain rate of any spe-

cimen.

The approach was to draw a tangent to the response curve out the
lower end of the upper portion of the curve in the region recording, the
initial response immediately following load application. The effective
Young'’s modulus for this viscoelastic material was calculated to be
3.143x10°1bf/in® while a mean value of 2 .834x108 1bf/in* was calculated
for the line joining the points defining the maximum and minimum stress

levels.

The final objective of the material characterization studies was to
determine the material damping of the material. Each link specimen was

clamped at one end to develop a cantilever configuration prior to
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al Frequency of the Steel Link

Natur

Figure 4-6

Natural Frequency of the Composite Link-

Figure 4-7
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deflecting and releasing the other end and recording the transient
vibration. Besides obtaining the natural frequency of the link from the
trace on the oscilloscope screen ,simple logarithmic decrement calcula-
tions were undertaken to calculate the damping ratio ((). The results
are presented in Figure 4-5 for steel and Figure 4-6 for composite lami-
nate. Thus it is evident that of the laminate has a much higher damping
ratio than the steel , and this property can be utilised in mechanism

design to eliminate undesirable vibrationms.

4-2 Experimental Apparatus

Specimens were prepared to form matched pairs in the two 1link
materials. At the end of each link, two clearance holes were drilled.
These accommodated socket screws which clamped each specimen to the
bearing housing and permitted the experimental four bar linkage to be
constructed. The flexible links were fixed to the aluminum bearing
housing by two socket screw at either ends with a flat plate. The small
plate which was shown in Figure 4-7 ensured a smooth 1load transfer

between the principle components of each linmk.

The experimental four bar linkage presented in Fig.4-7 was 1located
on a large cast iron table which was bolted to the ground and wall of
the labaratory. It had a rigid crank with a link length of 63.5 mm (2.5
inches), while the 1lengths of the two flexible links, the coupler and

rocker, were changeable.
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Figure 4-8 Joint connecting the flexible coupler and rocker

Experimental Four Bar Mechanism

Figure 4-9
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The coupler and rocker links were supported on matched pairs of
ball bearing (FAG R3 DB R12) of 0.25 inches in bore. Every bearing was
preloaded using a Dresser torque limiting screw driver with +1 in-1bf
preloading. This procedure is to ensure that bearing clearance is elim—
inated. The impact loading associated with bearing cleariances would
cause the 1links to have large defledtions. Nevertheless, where the
bearings were assemblied with large axial preloading, the deflections of
the 1linkages will be decayed. Owing to these affects, the torque limit

device must be employed to accurately preload the joints.

A 0.75 hp variable speed D-C motor (Dayton 2Z846) powered the crank
through a 0.625 inch diameter shaft supported by a cast iron pillow box
bearings. A 4 inch diameter fly wheel was keyed to the shaft thereby
providing a 1large inertia to ensure a constant crank frequency, when

operating in unison with the motor’s speed controller.

LS
1
W
bt

4-3 Instrumentation

The instrumentation flow chart in the experimental work is shown in
the Figure 4-9. The rated speed of the electric motor was measured to
three decimal places by a HP 5314A universal counter which was actived
by a digital-magnetic pickup, model 58423, by Electro corporation.
These devices allowed the operator to adjust the speed controller of the

motor in order to achieve the desired speed.

The experimental results present the variation of link deflections
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HP 5314A
universal counter

Micromeasurements

system 2100 Wheatstone

bridge and amplifier

Electro-Corp. | 12 volts.
pickup D.C.
Links Mechanism | 60 tooth - b.C.
strain gaged spur gear sotor
Air Pax speed f—
pickup controller
i
12 volts
D.C. .
zero crank-angle configuration DEC3
- oPD 11/0
‘ pulse microcomputer.

system
dynamic strains
post-processed
experimental
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with crank angle. Strain gages were bonded to the midspans of the
coupler and rocker links of the four bar mechanism and shielded cables
were used to reduce the effect of electromagnetic fields which can
introduce spurious noise into the signals. In fact, noise from electro-
magnetic fields and other sources, which was superimposed upon the
strain gagesignals, was considered to be a major signal conditioming
problem in this experimental work. A low pass filter was builted to
eliminate the high frequency noise from the signal and the filter had a

variable cut-off frequency.

In order to relate the strain gage Qi;nal to the configuration of
the experimental mechanism, another transducer arrangement was esta-
blished. A zero velocity digital pick up, Airpax 14-0001, was 1located
s0o as to sense the bolt head at the end of the crank when the

four-bar-linkage was in the position of zero—degree crank angle.

This mechanism configuration signal and the output from the gages
were either fed to the oscilloscope with a C-5C camera attachment for
photographically recording the response, or to a digital data acquisi-

tion system (a DEC PDP-11/03 microcomputer with 5 Mb hard disk).

The BNC cables from the experimental apparatus were connected to a
input-output module. This device had 16 analog-digital channels, 4
digital-analog channels and two schmidt triggers. Using the code
developed for digital data acqusition, the flextural response signal was

recorded from the zero crank angle position through 360 degrees by fir
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ing on of the schmidt triggers.



Chapter 5

Experimental and Computational Results

The analytical and experimental results are obtained by nusing the
finite element method and the equations were solved by the Newmark
method [77]. The [K&] matrix desiribed in the chapter 3 was included in
the mechanism model developed for the elastic material. Each flexible
link was devided into six elements,and the element at both ends of the
link considered as bearing housing made of aluminum that need to input
the different material properties and dimensions into the simulations.
These analytical results are then compared with experimentally obtained
strain data in order to varify the correlation between the analytical

and experimental results.

The main assumptions made formulating the computer model for the

simulations are

1) All bearings were considered frictionless and without clearance.
2) Out-of-plane motions were disregarded.
3) Only small elastic deformations from the rigid body
equlibrium position were assumed.
4) Gravitational acceleration was considered to be smaller than the

elastodynamic accelerations.

65
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5) The crank speed was assumed constant.
6) The natural frquency and damping ratios were calculated from

experimental work.

In Figure 5-1, it shows the dynamic response of the coupler taken
by C-5C camera from T-912 oscilloscope. The material used was a low
carbon steel. Figure 5-2 presents a comparison of the dynamic responses
of the analytical and experimental investigations. It shows good core-
lation between the two. The dimensions of the link and other mnecessary

data were listed below.

Link lengths:
Ground 16 inches
Crank 2.25 inches
Coupler 12 inches
Rocker 12 inches
RPM of the mechanism:
342 RPM
Cross sectional area of the flexible links:
Width 0.75 inch (in the plane perpendicular to the mechanism)
Depth 0.055 inch (in the plane of mechanism)

Young's Modulus 30 x 10° psi
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Figure 5-1

Steel Coupler Response Operated at 342 RPM

(Oscilloscope Photograph)

Figure 5-3

45 Composite Coupler Response operated at 280 RPM

(Oscilloscope Photograph)
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Figure 5-3 is the photograph of the dynamic response for the compo-
site laminate coupler and Figure 4-4 is the comparison of the simulation

result and experimental data. The relvant dimensions for the composite

mechanism are:

Link lengths:
Ground 12 inches
Rocker 2.25 inches
Coupler 9 inches
Rocker 9 inches
RPM of the Mechanism:
280 RPM
Cross sectional area of the flexible links
Width 0.092 inch (in the plane perpendicular to the mechanism)
Depth 0.045 inch (in the plane of the mechanism)

Young’s Modulus 1.38 x 10¢ psi

Figure 5-5, 5-7 and 5-9 are the responses of the coupler obtained
at 205 RPM, 255 RPM and 297 RPM respectively. Figure 5-6, 5-8 and 5-10

are the rocker responses obtained from 205 RPM, 255 RPN and 297 RPM.
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Chapter 6

Discussion of Results

Figure 5-2 shows that the corelation between the analytical results
and the experimental response are extremely good, thus proving that the
variational theorem has been successfully applied and the correct model
has been used to formulate the elastic linkages. However, the results
for the composite material presented in the previous chapter do not have
such a good correlation between the analytical and the experimental
responses. The difference in amplitude between the two results at 280
RPM for the coupler is about 0.09 mm, which is an extremely small
deflection, as shown in Figure 5-4. All the rocker responses have
larger differences between two curves if compared with the coupler.
Plausible explanations for the difference in the two classes of waveform

will now be discussed.

Firstly, the alignment of the experimental mechanism introduces an
error. Since several specimens with different lengths were employed,
upon completing each set of tests it was mnecessary reconstruct the
mechanism ; therefore, it was mecessary to change the position of the
rocker ground joint. Whenever this joint was moved back or forth, the
alignment had to be carefully reconfigured. Furthemmore, the clearance
holes on the specimens for the socket screws will affect the alignment.

The alignment can only be improved by conmsiderable care prior to under—

17
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taking the experimental work.

Secondly,the value of the second moment of area of model for the
joints in the mathematical representation are only approximate values.
The cross section area of the real joints are rather complex, while the
cross—section area being used in the simulation are the values of rec-
tangular cross sections. Also, the lengths of the joints used in the
simulation are the 1lengths from the centerline of the bearing to the
other end of the joint, these lengths are a little bit shorter than the
true lengths of the joints. However, the model of the joint did imclude

the total mass of the joints.

Thirdly, the dynamic responses of the experimental work were often
disturbed by nunknown sources of electromagnetic noise and the results
are not always repeatable. Thus, it was necessary to take several data
sets for the same RPM and select the best curve after first eliminating
the noise disturbance using the Fast Fourier Transform program FILTER
developed in the 1laboratory. This was developed using FORTRAN and
MACRO. Further discussion concerning the stability of the response in
the experimental work has been discussed in [51] but is ocutside the

scope of this thesis.

Forthly, the sampling rate of the digital data acquisition may mnot
be bhigh enough to adequately represent the signals being momitored. In
the present program , the PDP-11 can pick up one datum in 0.000363467

second; therefore, the curve obtained from PDP-11 were often more than
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one revolution. If the experimental result is to be superimposed on the
analytical result, judgements, based on the oscilloscope photograph were
necessary in order to decide the starting point as well as the ending
point of the revolution. Misjudgement of this activity may be resulted

in a phase shift.

The technique of calibration is comnsidered to be the most critical
reason which resulted in the difference between two response curves.
This is because that the results of the calibration govern the magnitude
of the experimental results. To do the calibration, a load was applied
at the midpoint of the specimen which was configured as a simply sup-
ported beam, then recorded the deflection read from the dial gage. At
the same time, the response was recorded from the oscilloscope so as to
measure the voltage (strain) developed by the gage. The problem here is
that the dial gage, must be observed by the operator in addition to
recording the oscilloscope deflection and also apply the load on the
link. Thus there are too many operations to be performed simutaneously.
Two experimentalists, operating in unison improved the accuracy of this
procedure, but a more accurate instrument for calibration in considered

to be necessary, such as a calibration fixture.



Chapter 7

Conclusions

A variational theorem has been developed and has been shown to pro-
vide a vaiable formulation for the finite element analysis of an
experimental linkage fabricated with a viscoelastic material using a
three parameter solid model representing the material comstitutive equa-
tions. Although differences between the experimental and analytical
results exist, these are rather small if attention is focused on the
qusi-static response. The 1limitations in predicating the dynamic
response are probably due to the first order model of viscoelastic
material. As discussed previously, advanced approaches exist and these
should probably be adopted a future work. The simulations do, however,
provide a conservative prediction for the dynamic response hence this
model could be used with confidence in an industrial computer aided
design enviromment for the design of high speed mechanism systems and

robotic manipulators.
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YY(36,1),CC(36,36) ,00T(36) ,WK(37,37),WORK(6,6)

RA(36,1) ,MASS ,P(36,1)
U(36),01(36),02(36) ,RCAP(36,36)
Y(36,1),B(36,1),F(12)

UL(36) ,QCAP(36) ,BB(36,1),MR(36,36)
AC(40) ,KI1(6,6) ,KT(6,6) ,EN(36,36)
KL1(6,6) ,KL2(6,6) ,KL3(6,6) ,KL4(6,6)
ML1(6,6),ML2(6,6) ,ML4(6,6),ML3(6,6)
R4(6,6) ,RT4(6,6) ,R3(6,6) ,RT3(6,6)
RI,RI1,RI2,RI3,RI4,XLEN]1,XLEN2,XLEN3 , XLEN4
MASS1,MASS2 ,MASS3 , MASS4
XKLI(6,6),XKLY(6,6),XKL1(6,6)
XKL2(6,6) ,XKL3(6,6) ,XKLA4(6,6)
XMLI(6,6),XMLY(6,6),XML1(6,6)
XML2(6,6) ,XML3(6,6) ,XML4(6,6)
BB1(1,6),BB2(1,6) ,BBT1(6,1),BBT2(6,1)

C
C=
C
C

THE DIMENSIONS FOR FINDING THE STRAIN AND STRESS
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ALPHA, BETA, DELT, MU, ETA

EBS2(1,1) ,EBS3(1,1) ,EBS4(1,1) ,EBS5(1,1)
EBS8(1,1) ,EBS9(1,1) ,EBS10(1,1),EBS11(1,1)
TAW2(1,1) ,TAW3(1,1),TAW4(1,1),TAWS5(1,1)
TAW8(1,1) ,TAW9(1,1),TAW10(1,1),TAW11(1,1)

EEBEE

THESE ARE THE STRAIN ATRESS AS THE INITIAL FOR NEXT STEP

EBSB2(1,1) ,EBSB3(1,1) ,EBSB4(1,1) ,EBSB5(1,1)
EBSB8(1,1) ,EBSB9(1,1) ,EBSB10(1,1) ,EBSB11(1,1)
TAWB2(1,1),TAWB3(1,1) ,TAWB4(1,1),TAWB5(1,1)
TAWB8(1,1) ,TAWB9(1,1) ,TAWB10(1,1),TAWB11(1,1)

EEEE

G?Q

Q

U2L(6,1),03L(6,1),U4L(6,1) ,05L(6,1)
U8L(6,1),U9L(6,1),U10L(6,1),U11L(6,1)
X2(6,1),X3(6,1),X4(6,1),X5(6,1)
X8(6,1),X9(6,1) ,X10(6,1),X11(6,1)
XT2(6,1) ,XT3(6,1) ,XT4(6,1) ,XT5(6,1)
XT8(6,1),XT9(6,1) ,XT10(6,1) ,XT11(6,1)
G5(36,1)

Y2(6,1),Y3(6,1),Y4(6,1),Y5(6,1)
Y8(6,1),Y9(6,1),Y10(6,1),Y11(6,1)
YT2(6,1),Yr3(6,1),Yr4(6,1) ,YI5(6,1)
YT8(6,1),Yr9(6,1),Yr10(6,1),YT11(6,1)
@2(36,1)

ZT2(6,1),ZT3(6,1) ,ZT4(6,1) ,ZT5(6,1)
ZT18(6,1),2T9(6,1),ZT10(6,1) ,ZT11(6,1)

EE BEEEE EEEEEEP

OPEN(7,FILE='COM1')

KL LOCAL STIFFNESS MATRIX

XG GLOBAL STIFFNESS MATRIXAND MASS MATRIX
WITHOUT B. C.

Gl GLOBAL STIFFNESS MATRIX INCORPORATING B.C.’'S

ML (1 TO 4) LOCAL MASS MATRIX

MK GLOBAL MASS MATRIX INCORPORATING B.C.'S

EL1  ELEMENT LENGTH FOR THE COUPLER

EL2  ELEMENT LENGTH FOR THE ROCKER

XLEN (1 TO 4) LENGTHES FOR THE JOINTS

E YOUNG’S MODULUS OF THE FLEXIBLE PART

ES YOUNG'S MODULUS OF THE JOINTS

RHO  MASS DENSITY

U DEFLECTION

1) ] VELOCITY

02 ACCELERATION

OO?(’GGOOGOOGOGOQOOO

IN NEWMARK METHOD.
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LOAD VECTOR
ACC. VALUES FROM FLEX PROGRAM
CAP THE EFFECTIVE LOAD VECTOR BEFORE USING THE

ogo

SUBROUTINE 'LEQT1F' AFTERWARDS IT IS THE DYNAMIC

DEFLECTIONS DUE TO THE MODE OF OPERATION OF
THIS IMSL PACKAGE.

THE DYNAMIC DEFLECTIONS IN THE LOCAL FRAME
THE ACCELERATION VALUES FROM FLEX AFTER THEY
ARE CHANGED FROM RA.

vgg88

INPUT THE CONSTANTS IN THE CONSTITUTIVE EQUATION

TR

PRINT ¢, 'THE VALUE OF G1,G2,NTA’
READ(1,*)GG1,GG2,NTA

ALPHA=GG2 /NTA

BETA=(GG1+GG2) /NTA

MU=GG1/2.

PRINT *, 'ENTER RPM OF THE MECHANISM'
READ(1,*)RPM

THE LENGTHES OF LINKS

THE LENGTH OF EACH JOINT ELEMENT

c=

XLEN1=1.5
XLEN2=1.5
XLEN3=1.75
XLEN4=1.5

(v NeNe]

THE LENGTHES OF THE ELEMENT OF THE FLEXIBLE LINK

eoP

EL1=(L3-XLEN1-XLEN2)/4.
EL2=(LA-XLEN3-XLEN4)/4.

MATERIAL PROPERTIES FOR JOINTS ELE.

RHO=0.1
ES=10.3E+6

oe

THE NECESSARY DATA FOR JOINT 1 ( ELE 1)

c=

WiD1=0.75
DEP1=0.75
A1=WID1*DEP1

ONE OF THE VISCO TERM (CONSIST OF THE STRESS TERM)
ONE OF THE VISCO TERM (CONSIST OF THE STRAIN TERM)
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MASS1=(RHO/384.)*A1
RI1=(1.0/12.0)*(WID1*DEP1*#3)

THE NECESSARY DATA FOR JOINT 2 ( ELE 6)

ﬂﬁ?

WID2=1.25

DEP2=0.75

A2=WID2*DEP2
MASS2=(RHO/384.)%*A2
RI2=(1.0/12.0)*(WID2*DEP2**3)

THE NECESSARY DATA FOR JOINT 3 ( ELE 12)

GO(?

WID3=1.75

DEP3=0.27

A3=WID3*DEP3
MASS3=(RHO/384.)*A3
RI3=(1.0/12.0)*(WID3*DEP3**3)

THE NECESSARY DATA FOR JOINT 4 ( ELE 7)

(o NeNe]

WID4=1.25§

DEP4=0.75

AM=VWID4*DEP4
MASS4=(RHO/384.)*A4
RI4=(1.0/12.0)*(WID4*DEP4**3)

c MATERIAL PROPERTIES OF COMPOSITE(4S DEG)
Co===

E=1.328E+06

DEP=0.135

RHO1=0.06

WID=1.36

A=VWID*DEP
MASS=(RHO01/384.) *A
RI=(1.0/12.0)*(WID*DEP**3)

INITIALIZE THE CRANK ANGLE

TR

TH2=0.0

INITIALIZE STRAIN AND STRESS FOR THE FIRST STEP

Po¢

EBS2(1,1)=0.
EBS3(1,1)=0.
EBS4(1,1)=0.
EBS5(1,1)=0.
EBS8(1,1)=0.
EBS9(1,1)=0.
EBS10(1,1)=0.
EBS11(1,1)=0.

TAW2(1,1)=0.



TAW3(1,1)=0.
TAW4(1,1)=0.
TAWS5(1,1)=0.
TAW8(1,1)=0.
TAW9(1,1)=0.
TAW10(1,1)=0.
TAW11(1,1)=0.

INITIALIZE THE DEFLECTION OF EACH ELEMENT
IN LOCAL FRAME THE BEIWEEN U _L STANDS
FOR THE ELEMENT N

QOO0

U2L(6,1)=0.
U3L(6,1)=0.
U4L(6,1)=0.
USL(6,1)=0.
U8L(6,1)=0.
U9L(6,1)=0.
U10L(6,1)=0.
U11L(6,1)=0.

DEFINE TIME STEP AND RPM OF CRANK LINK

ooy

TH21=RPM*2.0%3.1415927/60.0
TSTEP=1.0
STEP=1.0/TSTEP

o5

TO EVALUATE THE CONSTANTS FOR THE NEWARK METHOD

PAR=0.5

AA=0.25
T=1./(RPM/60.0*360.0*STEP)
SS0=(1./(AA*T**2))
SS1=PAR/ (AA*T)
$S2=1./(AA*T)
$83=(1./(2.%AA))-1.
SS4=PAR/AA-1.
§S5=(T/2.)*(PAR/AA-2.)
8$S6=T*(1.-PAR)
SS7=PAR*T

TO INITIALIZE U,U1,U2 AND UL AND Q

7o¢

DO 877 I=1,36
U(I)=0.
U1(I)=0.
U2(1)=0.
UL(1)=0.
Qa(I1,1)=0.
877 CONTINUE
DO 889 I=1,36
DO 889 J=1,36
889 KN(I,J)=0.
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C=
C BUILD UP THE MATRIX WITH SECOND DERIVATIVE
C OF SHAPE FUNC.
C_

CALL SSP(EL1,BBT1,BB1)

CALL SSP(EL2,BBT2,BB2)
C
C DEFINE LOCAL STIFFNESS _MASS MATRICES
C

CALL LOL(E,A,EL1,RI,MASS,KLI,MLI)

CALL LOL(E,A,EL2,RI,NASS,KLY,MLY)

CALL LOL(ES,Al1,XLEN1,RI1,MASS1,KL1,ML1)

CALL LOL(ES,A2,XLEN2,RI2,MASS2 ,KL2,ML2)

CALL LOL(ES, A3 ,XLEN3,RI3,MASS3,KL3,ML3)

CALL LOL(ES, A4 ,XLEN4 ,RI4 ,MASS4 ,KL4,ML4)
C
COOSS580880808008083080088800808888080008088080880800
C
C THIS IS THE START OF THE MAIN LOOP
C

COPSS440000008088088888000808002008SES888888808888008¢
DO 765 K=1,360

C
C FIND THE ACCELERATION OF THE LINK
C
CALL KIN(RA,TH2,TH3,TH4,TH21,STEP,XLEN1,
. XLEN2 ,AC,XLEN3 ,XLEN4,L1,12,13,14)
C==
C THE RIGHT HAND SIDE OF THE EQ. OF MOTION
C IS -MK*P(I), SO THE FOLLOWING STEP IS NECESSARY
Cg
DO 990 I=1,36
990 P(I,1)=—RA(I,1)
C
TT3=TH3
TT4=TH4
S3=SIN(TT3)
C3=00S(TT3)
S4=SIN(TT4)
C4=COS(TT4)
C=
C BUILD UP TRANSFER MATRICES
C
CALL RNTR(R3,RT3,TT3)
CALL RMTR(R4,RT4,TT4)
C
C TRANSFER [K] MATRICES TO GLOBAL FRAME
G
CALL MMLT(WORK,KLI,R3,6,6,6)
CALL MMLT(XKLI, RT3 ,WORK,6,6,6)
C

CALL MMLT(WORK,KL1,R3,6,6,6)
CALL MMLT(XKL1,RT3,WORK,6,6,6)



98

C
CALL MMLT(WORK,KL2,R3,6,6,6)
CALL MMLT(XKL2,RT3,WORK,6,6,6)
C
CALL MMLT(WORK,KLJ,R4,6,6,6)
CALL MMLT(XKLJ, RT4,WORK,6,6,6)
C
C
CALL MMLT(WORK,KL3,R4,6,6,6)
CALL MMLT(XKL3,RT4,WORK,6,6,6)
C
CALL MMLT(WORK,KL4,R4,6,6,6)
CALL MMLT(XKL4 ,RT4,WORK,6,6,6)
C=
C CONSTRUCT THE GLOBAL STIFFNESS MATRIX
C
CALL GLOLIN(XKLI,XKLJ,XKL1,XKL2,XKL3,XKL4,XG,G1)
C
C TRANSFER [M] MATRICES TO GLOBAL FRAM
C— =
CALL MMLT(WORK,MLI,R3,6,6,6)
CALL MMLT(XMLI, RT3,WORK,6,6,6)
C
CALL MMLT(WORK,ML1,R3,6,6,6)
CALL MMLT(XML1,RT3,WORK,6,6,6)
C
CALL MMLT(WORK,ML2,R3,6,6,6)
CALL MMLT(XML2,RT3,VWORK,6,6,6)
C
CALL MMLT(WORK,MLJ,R4,6,6,6)
CALL MMLT(XMLJ, RT4 ,WORK,6,6,6)
C
C
CALL MMLT(WORK,ML3,R4,6,6,6)
CALL MMLT(XML3,RT4,WORK,6,6,6)
C
CALL MMLT(WORK,ML4,R4,6,6,6)
CALL MMLT(XML4,RT4,WORK,6,6,6)
C
C CONSTRUCT THE GLOBAL MASS MATRIX
C
CALL GLOLIN(XMLI,XMLJ,XML1,XML2,XML3,XML4,XG,MK)
C
IF(K.EQ.1)GOTO 10007
C
C=
C CHANGE THE NOTATION OF THE DEFLECTION FORM
C SYSTEM TO ELEMENTS
C=
DO 201 I=1,6
J=I+1

201 U2L(I1,1)=UL(J)
DO 2011 I=1,6



2011

2012

2013

2014

2015

2016

[ %]

017

J=1I+4
U3L(I,1)=UL(J)
DO 2012 I=1,6
J=I+7
U4L(I,1)=UL(J)
DO 2013 I=1,6
J=I+10
USL(I,1)=U0L(JY)
DO 2014 I=1,6
J=I+20
USL(I,1)=UL(JY)
DO 2015 I=1,6
J=1+23
U9L(I,1)=UL(J)
DO 2016 I=1,6
J=I+26
U10L(I,1)=UL(J)
DO 2017 1=1,6
J=1+29
U11L(I,1)=U0L(J)

99

CALCULATE THE STRAIN OF EACH FLEXIBLE ELE.

s N NeNeNe]

THIS IS FOR THE ELEMENTS ON THE COUPLER

CALL
CALL
CALL
CALL

MMLT(EBS2,BB1,02L,1,6,1)
MMLT(EBS3,BB1,U3L,1,6,1)
MMLT(EBS4 ,BB1,U4L,1,6,1)
MMLT(EBSS5 ,BB1,USL,1,6,1)

(o NeNe!

THIS

CALL
CALL
CALL
CALL

IS FOR THE ELEMENT ON THE ROCKER

MMLT(EBS8 ,BB2,U8L,1,6,1)
MMLT(EBS9 ,BB2,U9L,1,6,1)
MMLT(EBS10,BB2,U010L,1,6,1)
MMLT(EBS11,BB2,U11L,1,6,1)

OG?G

CALCULATE STRESS OF EACH FLEXIBLE ELEMENT

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

STRESS(TAW2 , TAWB2 , FBSB2 , FBS2 , ALPHA, BETA, MU)
STRESS(TAW3 , TAWB3 , EBSB3 , EBS3 , ALPHA, BETA, MU)
STRESS (TAW4 , TAWB4 , EBSB4 , EBS4 , ALPHA, BETA, MU)
STRESS(TAWS , TAWBS , EBSBS , EBSS , ALPHA, BETA, MU)
STRESS(TAWS , TAWBS , EBSB8 ,EBS8 , ALPHA, BETA, MU)
STRESS(TAWY , TAWBY , EBSBY , EBS9 , ALPHA, BETA, MU)
STRESS(TAW10,TAWB10, EBSB10,EBS10, ALPHA, BETA, MU)
STRESS(TAW11,TAWB11,EBSB11,EBS11,ALPHA, BETA, MU)

CALCULATE THE LOAD VECTOR Q=(M)*(P)

e590¢

007

CALL MMLT(Q,MK,P,36,36,1)




100

DELT=60./RPM/360.
ETA=2*DELT/ (2+BETA*DELT)

Cg
C
C=

CALCULATE (B)*TAW*A °*ETA

202

DO 202 I=1,6
X2(I,1)=BBT1(I,1)*TAW2(1,1)*A*ETA
X3(I,1)=BBT1(I,1)*TAW3(1,1)*A*ETA
X4(I,1)=BBT1(I,1)*TAW4(1,1)*A*ETA
X5(I,1)=BBT1(I,1)*TAWS5(1,1)*A*ETA
X8(I,1)=BBT2(I,1)*TAW8(1,1)*A*ETA
X9(I,1)=BBT2(I,1)*TAW9(1,1)*A*ETA
X10(I,1)=BBT2(1,1)*TAW10(1,1)*A*ETA
X11(I,1)=BBT2(I,1)*TAW11(1,1)*A*ETA
CONTINUE

TRANSFER X2....X5, X8....X11 TO GLOBAL FRAME

('?O

CALL MMLT(XT2,RT3,X2,
CALL MMLT(XT3,RT3,X3,
CALL MMLT(XT4,RT3,X4,
CALL MMLT(XT5,RT3,XS,
CALL MMLT(XT8,RT4,X8,
CALL MMLT(XT9,RT4,X9,
CALL MMLT(XT10,RT4,X1
CALL MMLT(XT11,RT4,X1

==

Q0

CALCULATE ONE OF THE VISCO TERM

CALL GLOS(XT2,XT3,XT4,XT5,XT8,XT9,XT10,XT11,G5)

CALCULATE (K)*(U2L.....U11L)

(o NeNe]

CALL MMLT(Y2,KLI,U2L,6,6,1)
CALL MMLT(Y3,KLI,U3L,6,6,1)
CALL MMLT(Y4,KLI,U4L,6,6,1)
CALL MMLT(YS,KLI,USL,6,6,1)
CALL MMLT(Y8,KLJ,U8L,6,6,1)
CALL MMLT(Y9,KLY,U9L,6,6,1)
CALL MMLT(Y10,KLJ,U10L,6,6,1)
CALL MMLT(Y11,KLJ,U11L,6,6,1)

TRANSFER TO THE GLOBAL FRAME

CALL MMLT(YT2,RT3,Y2,
CALL MMLT(YT3,RT3,Y3,
CALL MMLT(YT4 ,RT3,Y4,
CALL MMLT(YTS,RT3,YS,
CALL MMLT(YT8,RT4,Y8,
CALL MMLT(YT9,RT4,Y9,6
CALL MMLT(YT10,RT4,Y10,
CALL MMLT(YT11,RT4,Y11,

bbb
~
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TIME ALPHA AND ETA

ZT2(I,1)=YT2(1,1)*ALPHA*ETA/E
ZT3(1,1)=YT3(I,1)*ALPHA*ETA/E
ZT4(1,1)=YT4(I,1)*ALPHA*ETA/E
ZT5(1,1)=YT5(1,1)*ALPHA*ETA/E
ZT8(I,1)=YT8(I,1)*ALPHA®ETA/E
ZT9(I,1)=YT9(I,1)*ALPHA*ETA/E
ZT10(I,1)=YT10(I,1)*ALPHA*ETA/E
ZT11(I1,1)=YT11(I,1)*ALPHA*ETA/E

ASSEMBLY ONE TERM OF THE VISCO PROPERTIES

CALL GLO5(ZT2,ZT3,ZT4,7ZTS,ZT8,Z19,ZT10,ZT11, @)

TO CREATE THE TERMS INSIDE THE SECOND BRACKET
ON LINE Bl P323 BW

DO 890 I=1,36
Y(I,1)=SS0*U(I) +SS2*U1(I) +SS3*U2(I)

TO CREATE THE SECOND TERM ON LINE Bl
M* (AO*UT+A2*U1T+A3*U2T)

CALL MMLT(B,MK,Y,36,36,1)

TO CREATE LINE Bl P232 B¥W
QCAP ETC THE EFFECTIVE LOAD

QCAP(I)=Q(I.1)+B(I.1)+05(1.1)‘02(1.1)

TO CREATE THE EFFECTIVE STIFFNESS MATRIX
LINE A4 P232 BW

RCAP(I,J)=G11(I,J)+SSO*MK(I,J)+SS1*CC(I,J)

TO SOLVE THE LINEAR EQUATIONS BY GAUSS ELIMINATION.

CALL LINEQ(OUT, QCAP, RCAP,VK,36,37, IERR)

TO CREATE LINES B3 AND LINES B4 P232 BW

C_
C
C=
DO 203 I=1,6
203 CONTINUE
C=
C
C=
C_
C
C
C
890
C
C
C
C
C
C
C
C
DO 894 I=1,36
894
C
C
C
b
DO 888 I=1,36
DO 888 J=1,36
888
C
C
C=
C
C
c=

DO 896 I=1,36
UD=U(I)
Ov=U1(I)
UA=U2(I)
U(I)=0UT(I)
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U2(I)=SS0*(U(I)-UD)-SS2*UV-SS3*UA
U1(I)=UV+SS6*UA+SS7*02 (1)

896 CONTINUE
C=
C TREAT STRAIN AND STRESS AS THE INITIAL OF NEXT STEP
C=
EBSB2(1,1)=EBS2(1,1)
TAWB2(1,1)=TAW2(1,1)
EBSB3(1,1)=EBS3(1,1)
TAWB3(1,1)=TAW3(1,1)
EBSB4(1,1)=EBS4(1,1)
TAWB4(1,1)=TAW4(1,1)
EBSB5(1,1)=EBS5(1,1)
TAWBS (1,1)=TAW5(1,1)
EBSB8(1,1)=FBS8(1,1)
TAWB8(1,1)=TAW8(1,1)
EBSB9(1,1)=EBS9(1,1)
TAWB9(1,1)=TAW9(1,1)
EBSB10(1,1)=EBS10(1,1)
TAWB10(1,1)=TAW10(1,1)
EBSB11(1,1)=EBS11(1,1)
TAWB11(1,1)=TAW11(1,1)
C-——
C TO DEFINE THE DYNAMIC DEFLECTIONS IN THE
C LOCAL FRAMES
C=
Do 100 1=2,17,3
J=1I+1
100 UL(I)=0UT(I)*C3+0UT(J)*S3
C
DO 200 I=3,18,3
J=I-1
200 UL(I)=-OUT(J)*S3+0UT(I)*C3
C
DO 300 I=21,33,3
J=I+1
300 UL(I)=0UT(I)*C4+0UT(J)*S4
C
DO 400 I=22,34,3
J=I-1
400 UL(I)=—OUT(J)*S4+0UT(I)*C4
C
DO 500 I=1,19,3
500 UL(I)=0UT(I)
DO 600 1=20,35,3
600 UL(I)=0UT(I)
UL(36)=00UT(17)*C4+0UT(18)*S4
C
RK11=(K-1)/1.0
G
C THIS IS FOR THE PLOTTING , IT
C GIVES THE CRANK ANGLE.
C UL(9) DEFORMATION AT MIDPOINT OF COUPLER
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C UL(28) DEFORMATION AT MIDPOINT OF ROCKER
G

WRITE(1,153)RK11,UL(9),UL(28)
765 CONTINUE
153 FORMAT(F14.8,1X,F14.10)
CLOSE(7, STATUS='KEEP')
STOP
END

jp.fu.s 2
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Cee858080808030388880883888808088808808083080308883088008083088888¢8303%8888888ss

EEEEEEE L A S§SSSSSS TTTITIT 000000
E L A A S T o 0
EEEEEE L A A SSSSSSS T o o
E L AAAAAAA S T o 0
EEEEEEE LLLLLLL A A SSSSSSS T 000000

[ I B IR B I N )

S80S LSS 0SSRESSEEEEESE 0SS0 S LSS SEEESSSEESSSSESESESSSS

This program is designed to seek the dynamic response
of the elastic four bar mechanism, the material
properties and the link length are changable.

SES 0SSP0V SESRELOSRLEO LSS S0 EEESESCSEEES S LSS SESESSES

EL1,EL2

KLI(6,6),Q(36,1),MK(36,36) ,KLJ(6,6)

G1(36,36) ,MLI(6,6),MLY(6,6)

YY(36,1),CC(36,36) ,00T(36),WK(37,37),WORK(6,6)

RA(36,1) ,NMASS ,P(36,1)

U(36),01(36) ,U2(36) ,RCAP(36,36)

Y(36,1),B(36,1) ,F(12)

UL(36) ,QCAP(36) ,BB(36,1) ,MR(36,36)

EKN(36,36) ,KG1(6,6) ,KG2(6,6) ,KG3(6,6) ,KG4(6,6) ,KI(6,6) ,KJ(6,6)
KG5(6,6) ,K66(6,6) ,KG7(6,6) ,KG8(6,6) ,KG9(6,6) ,AC(40)
KG10(6,6) ,KG11(6,6) ,KG12(6,6)

KGI(6,6) ,KGI(6,6) ,KGM(6,6) ,KGK(6,6)

Ks(36,36) ,KL1(6,6) ,KL2(6,6) ,KL3(6,6) ,KL4(6,6)

AST(2) ,ML1(6,6) ,ML2(6,6) ,MLA(6,6) ,ML3(6,6) ,R3(6,6) ,RT3(6,6)
R4(6,6) ,RT4(6,6)

RI,RI1,RI2,RI3,RI4,XLEN1,XLEN2,XLEN3 , XLEN4
MASS1,MASS2 ,MASS3 ,MASS4

XKLI(6,6) ,XKLY(6,6) ,XKL1(6,6) ,XKL2(6,6) ,XKL3(6,6) ,XKLA4(6,6)
XMLI(6,6) ,XMLY(6,6) ,XML1(6,6) ,XML2(6,6) ,XML3(6,6) ,XMLA4(6,6)
KM1(6,6) ,KM2(6,6) ,KM3(6,6) ,KM4(6,6) ,KM5(6,6) ,KN6(6,6)
KM7(6,6) ,KM8(6,6) ,KM9(6,6) ,KM10(6,6) ,KM11(6,6) ,EM12(6,6)

C
C
C
C
C
C
C
C
C
C
c
c
C
C

FEEEEEEEEEEEERREERREE

(o]
*
L3
L 4
-
-
*

LOCAL STIFFNESS MATRIX
GLOBAL STIFFNESS MATRIXAND MASS MATRIX WITHOUT B. C.
GLOBAL STIFFNESS NMATRIX INCORPORATING B.C.'S
(1 TO 4) LOCAL MASS MATRIX
GLOBAL MASS MATRIX INCORPORATING B.C.'S
ELEMENTLENGTH FOR THE LINKAGE (COUPLER AND ROCKER)
EN (1 TO 4) LENGTH FOR THE JOINT
YOUNGS MODULUS FOR THE LINK DESIRED
YOUNGS MODULUS FOR THE JOINTS
MASS DENSITY
DEFLECTION
U1 VELOCITY
U2 ACCELERATION

“gErEREERNA

s Noe KNz Kz EeKeEe KN Ko Ke Ke)

Cessssss

C IN NEWMARK METHOD.
Cesssess
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C Q LOAD VECTOR
C RA ACC. VALUES FROM FLEX PROGRAM
C QCAP IS THE EFFECTIVE LOAD VECTOR BEFORE USING THE
C SUBROUTINE ‘'LBQT1F’ AFTERWARDS IT IS THE DYNAMIC
C DEFLECTIONS DUE TO THE MODE OF OPERATION OF
C THIS IMSL PACKAGE. .
C UL ARE THE DYNAMIC DEFLECTIONS IN THE LOCAL FRAME
C P IS THE ACCELERATION VALUES FROM FLEX AFTER THEY
C ARE CHANGED FRON RA.
C=
C INPUT THE LINK LENGTH DESIRED
C=

PRINT ¢, 'WHAT KIND OF LINK LENGTH DO YOU WANT'

PRINT *, 'ENTER 1 FOR LONG LINKS'

PRINT *,’'ENTER 2 FOR SHORT LINKS'

READ(1,*)XLL

IF(XLL.EQ.1)THEN

GOTO 1

ELSE IF(XLL.EQ.2) THEN

GO TO 2

ELSE

GOTO 3

ENDIF
C=======
C THE LENGTHES OF THE LONG LINKS
1 L1=16.12

12=2.25§

L3=12.0

14=12,
C=======
C THE LENGTHES OF THE SHORT LINKS
2 L1=12,

12=2.25

L3=9.

LA=9.
3 CONTINUE
Ce====sme==c===
C DECIDE WHAT KIND OF MATERIAL YOU WANT
C=====c========

PRINT #*,'WHAT KIND OF MATERIAL YOU WANT!'’
PRINT &,' 1, STEEL’
PRINT #,' 2, ALUMINUM'
PRINT &,' 3, UNICOMPOSTE'’
READ (1,*)XMAT
IF(XMAT.EQ.1) THEN

GO TO 11
ELSEIF (XMAT. EQ.2 ) THEN

GO TO 12
ELSE IF(XMAT.EQ.3)THEN

GO TO 13
ELSE

GO TO 14
END IF
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DEFINE THE MATERIAL PROPERTIES

MATERIAL PROPERTIES FOR ALUMINUM
2 E=10.3E+06
WID=0.58
DEP=0.0795
A=VWID*DEP
RHO=0.100
DR=0.0048
XF=60.
BELTA=2 .0 *DR*XF
OPEN(7,FILE="'A')
GO TO 14
C=======
C MATERIAL PROPERTIES FOR STEEL
11 E=30.0E+06
WID=0.75
DEP=0.062
RHO=0.3
A=WID*DEP
DR=0.01
XF=31.1
BELTA=2 .0 *DR*XF
OPEN(7,FILE='ST')
GO TO 14
C MATERIAL PROPERTIES FOR UNIDIRECTIONAL COMPOSITE
13 E=20.5E+6
RHO=0.06
WID=0.75
DEP=0.08
A=WID*DEP
DR=0.00984
XF=100.0
BELTA=2 .0*DR*0.01/XF
OPEN(7,FILE='UNIC')
GO TO 14
CONTINUE

XXX

agy

THE LENGTH OF EACH JOINT ELEMENT
EJ=10.3E+6

RHOJ=0.1

XLEN1=1.5

XLEN2=1.5

XLEN3=1.75

XLEN4=1.5

Y

THE LENGTH OF THE FLEXIBLE ELEMENT
EL1=(L3-XLEN1-XLEN2) /4.
EL2=(LA-XLEN3-XLEN4) /4.

cfR

THE DIMENSIONS FOR JOINT 1 ( ELE 1)
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WID1=0.75

DEP1=0.75

A1=VWID1*DEP1
MASS1=(RHOJ/384.) %Al
RI1=(1.0/12.0)*(WID1*DEP1%*3)

THE DIMENSIONS FOR JOINT 2 ( ELE 6)
WID2=1.25

DEP2=0.75

A2=WID2*DEP2

NASS2=(RHOJ/384.)*A2
RI2=(1.0/12.0)*(WID2*DEP2%¢3)

THE DIMENSIONS FOR JOINT 3 ( ELE 12)
WID3=1.75

DEP3=0.27

A3=VID3*DEP3

MASS3=(RHOJ/384.)*A3
RI3=(1.0/12.0)*(WID3*DEP3**3)

THE DIMENSIONS FOR JOINT 4 ( ELE 7)
WID4=1.25

DEP4=0.75

M=VWID4*DEP4

MASS4=(RHOJ/384.)%A4
RI4=(1.0/12.0)*(WID4*DEP4**3)

MASS=(RHO/384.) *A
RI=(1.0/12.0)*(WID*DEP**3)

P o

an

aX-

INITIALIZE THE CRANK ANGLE
TH2=0.0

DEFINE TIME STEP AND RPM OF CRANK LINK
RPM=340.0

TH21=RPM*2.0*3.1415927/60.0

STEP=1.0

TSTEP=1.0/STEP

TO EVALUATE THE CONSTANTS FOR THE NEWARK METHOD
PAR=0.5

AA=0.25
T=1./(RPM/60.0*360.0*STEP)
SS0=(1./(AA®T**2))
SS1=PAR/ (AA*T)
8S2=1./(AA*T)
883=(1./(2.%AA))-1.
SS4=PAR/AA-1.
885=(T/2.)*(PAR/AA-2.)
$S6=T*(1.-PAR)

SS7=PAR*T

C

TO INITIALIZE U,U1,U2 AND UL AND Q
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DO 887 I=1,36
U(I) =0.0
U1(1)=0.0
U2(1)=0.0
UL(I)=0.0
Q(1,1)=0.0
887 CONTINUE
DO 889 I=1,36
DO 889 J=1,36
KN(I,J)=0.

ceg

DEFINE LOCAL STIFFNESS _MNASS MATRICES

CALL LOL(E,A,EL1,RI,NASS,KLI,MLI)

CALL LOL(E,A,EL2,RI,MASS,KLY,MLY)

CALL LOL(EJ,Al1,XLEN1,RI1,MASS1,KL1,ML1)

CALL LOL(EJ,A2,XLEN2,RI2,MASS2,KL2,ML2)

CALL LOL(EJ,A3,XLEN3,RI3,MASS3,KL3,ML3)

CALL LOL(EJ, A4 ,XLEN4,RI4,MASS4 ,KL4,ML4)
COe8880808880800880808080848888328888388888800088888

C THIS IS THE START OF THE MAIN LOOP .
COtE8482880588300848880820880888388880880008800088008
C CALCULATE THE ACCELERATION OF THE LINKS

DO 765 K=1,360

CALL KIN1(RA,TH2,TH3,TH4,TH21, STEP, XLEN1,XLEN2

. »AC,XLEN3 ,XLEN4,11,12,13,14)

DO 990 I=1,36
990 P(I,1)=-RA(I,1)
THIS IS NECESSARY BECAUSE THE R.H.S. OF
THE EQ. OF MOTION IS —-MK*P(I)

[eNeNe!

TT3=TH3
TT4=TH4
S3=SIN(TT3)
C3=COS(TT3)
$4=SIN(TT4)
C4=00S(TT4)

g

BUILD UP TRANSFER MATRICES
CALL RMTR(R3,RT3,TT3)
CALL RMTR(R4,RT4,TT4)

°Q

TRANSFER [K] MATRICES TO GLOBAL FRAME
CALL MMLT(WORK,KLI,R3,6,6,6)
CALL MMLT(XKLI, RT3, WORK,6,6,6)
CALL MMLT(WORK,KL1,R3,6,6,6)
CALL MMLT(XKL1,RT3,WORK,6,6,6)
CALL MMLT(WORK,KL2,R3,6,6,6)
CALL MMLT(XKL2,RT3,WORK,6,6,6)
CALL MMLT(WORK,KLJ,R4,6,6,6)
CALL MMLT(XKLJ, RT4,WORK,6,6,6)
CALL MMLT(WORK,KL3,R4,6,6,6)
CALL MMLT(XKL3,RT4,WORK,6,6,6)
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CALL MMLT(WORK,KL4,R4,6,6,6)
CALL MMLT(XKL4,RT4,WORK,6,6,6)
CALL GLOLIN(XKLI,XKLJ,XKL1,XKL2,XKL3,XKL4,XG,G1)

TRANSFER [M] MATRICES TO GLOBAL FRAM
CALL MMLT(WORK,MLI,R3,6,6,6)

CALL MMLT(XMLI, RT3,WORK,6,6,6)

CALL MMLT(WORK,ML1,R3,6,6,6)

CALL MMLT(XML1,RT3,WORK,6,6,6)

CALL MMLT(WORK,ML2,R3,6,6,6)

CALL MMLT(XML2,RT3,WORK,6,6,6)

CALL MMLT(WORK,MLJ,R4,6,6,6)

CALL MMLT(XMLJ, RT4,WORK,6,6,6)

CALL MMLT(WORK,ML3,R4,6,6,6)

CALL MMLT(XML3,RT4,WORK,6,6,6)

CALL MMLT(WORK,ML4 ,R4,6,6,6)

CALL MMLT(XMLA4,RT4,WORK,6,6,6)

CALL GLOLIN(XMLI,XMLJ,XML1,XML2,XML3,XML4,XG, MK)

IF(K.EQ.1) GOTO 10007

DEFINE LOCAL NONLINER MATRICES FOR EACH KIND OF ELE
CALL LONON(E,A,UR,EL1,UL,KI)

CALL LONON(E,A,UR,EL2,UL,KJ)

CALL LONON(EJ,Al,UR,XLEN1,UL,KGI)

CALL LONON(EJ,A2,UR,XLEN2,UL,KGJ)

CALL LONON(EJ, A3,UR, XLEN3, UL, KGK)

CALL LONON(EJ, A4 ,UR,XLEN4,UL,KGM)

101

102

CALCULATE KG FOR EVERY ELEMENT
CON1=E*A/EL1

F(1)=EJ*A1/XLEN1*UL(2)

DO 101 I=2,5

Do 101 J=2,11,3

KK=J+3

F(I)=CON1*(UL(KK)-UL(J))
CONTINUE

F(6)=EJ*A2/XLEN2*(UL(17)-UL(14))

F(7)=ET*A4/XLEN4*UL(21)
CON2=E*A/EL2

DO 102 I=8,11

DO 102 J=24,33,3

M=J-3

F(I)=CON2*(UL(J)-UL(M))
CONTINUE
F(12)=EJ*A3/XLEN3*(UL(36)-UL(33))

DO 832 I=1,6

DO 832 J=1,6
KG1(I,J)=F(1)/XLEN1*KGI(I,J)
KG2(I,JY)=F(2)/EL1*KI(1,7J)
KG3(I,J)=F(3)/EL1*KI(1,J)

KG4(I,J)=F(4)/EL1*KI(1,J)
KG5(I,J)=F(5) /EL1*KI(1,J)
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KG6(I,J)=F(6) /XLEN2*KGJ(I,J)
KG7(I,J)=F(7) /XLEN4*KGM(I,J)
KG8(I,J)=F(8)/EL2*KJ(I,J)
EKG9(I,J)=F(9) /EL2*KJ(I,J)
KG10(I,J)=F(10)/EL2*KJ(1,J)
KG11(I,J)=F(11)/EL2*KJ(1,7J)
KG12(I,J)=F(12) /XLEN3*KGK(I,J)
832 CONTINUE

TRANSFER KG TO THE GLOBAL FRAME

Oﬁﬁ?ﬂ

CALL MMLT(WORK,KG1,R3,6,6,6)
CALL MMLT(KM1,RT3,WORK,6,6,6)

CALL MMLT(WORK,KG2,R3,6,6,6)
CALL MMLT(KM2,RT3,WORK,6,6,6)

CALL MMLT(WORK,KG3,R3,6,6,6)
CALL MMLT(EM3,RT3,WORK,6,6,6)

CALL MMLT(WORK,KG4,R3,6,6,6)
CALL MMLT(KM4,bRT3,WORK,6,6,6)

CALL MMLT(WORK,EKGS5,R3,6,6,6)
CALL MMLT(KMS,RT3,WORK,6,6,6)

CALL MMLT(WORK,KG6,R3,6,6,6)
CALL MMLT(KM6,RT3,WORK,6,6,6)

CALL MMLT(WORK,KG7,R4,6,6,6)
CALL MMLT(KM7,RT4,WORK,6,6,6)

CALL MMLT(WORK,KG8,R4,6,6,6)
CALL MMLT(KM8,RT4,WORK,6,6,6)

CALL MMLT(WORK,KG9,R4,6,6,6)
CALL MMLT(EM9,RT4,WORK,6,6,6)

CALL MMLT(WORK,KG10,R4,6,6,6)
CALL MMLT(EKM10,RT4,WORK,6,6,6)

CALL MMLT(WORK,KG11,R4,6,6,6)
CALL MMLT(KM11,RT4,WORK,6,6,6)

CALL MMLT(WORK,KG12,R4,6,6,6)
CALL MMLT(KM12,RT4,WORK,6,6,6)

CONSTRUCT THE GLOBAL [KG]MATRIX

GQG?O
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CALL GLONON(EN, KM1,KM2 ,KM3 ,KM4 ,KMS ,KM6,KM7,KM8,
. KM9 ,KM10,KM11,KM12 ,KX)

TO CREATE THE LOAD VECTOR ""Q”.

007 CALL MMLT(Q,MK,P,36,36,1)

TO CREATE THE TERMS INSIDE THE SECOND BRACKET
ON LINE B1 P323 BY

DO 890 I=1,36
890 Y(I,1)=SSO*U(I) +SS2*U1(I) +SS3*U2(I)

C
c_
C
C TO CREATE THE SECOND TERM ON LINE B1
C M* (AO*UT+A2%U1T+A3*U2T)
C
CALL MMLT(B,MK,Y,36,36,1)
C
C=
C
C TO CREATE THE TERMS INSIDE THE THIRD BRACKET ON LINE
C

DO 8900 I=1,36
8900 YY(I,1)=SS1*U(I)+SS4*U1(I)+SS5*U2(I)

DO 8901 I=1,36
DO 8901 J=1,36
8901 CC(I,J)=BELTA*MK(I,J)
CALL MMLT(BB, CC,YY,36,36,1)

C
G ———
C
C TO CREATE LINE Bl P232 BW
C QCAP ETC THE EFFECTIVE LOAD
C
DO 894 I=1,36
894 QCAP(I)=Q(I,1)+B(I,1)+BB(I,1)
C
c_
C
C TO CREATE THE EFFECTIVE STIFFNESS MATRIX
C LINE M P232 BW
C

DO 888 I=1,36
DO 888 J=1,36
888 RCAP(I,J)=G1(I,J)+SSO*MK(I,J)+EN(I,J)+SS1*CC(I,J)
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C
C
C TO SOLVE THE LINEAR BQUATIONS BY GAUSS ELIMINATION.
C
CALL LINEQ(OUT, QCAP, RCAP,VK,36,38, IERR)
C
C=
C
C TO CREATE LINES B3 AND LINES B4 P232 BW
C
DO 896 I=1,36
UD=U(I)
Uv=U1(I)
UA=U2(I)
U(I)=00T(I)
U2(I)=SS0*(U(I)-UD)-SS2*UV-SS3*UA
U1(I)=UV+SS6*UA+SS7*U2(1I)
896 CONTINUE
C
C=
C
Cc TO DEFINE THE DYNAMIC DEFLECTIONS IN THE LOCAL FRAMES
C
DO 100 I=2,17,3
J=1+1
100 UL(I)=0UT(I)*C3+0UT(J)*S3
C
DO 200 I=3,18,3
J=I-1
200 UL(I)=—0UT(J)*S3+0UT(I)*C3
C
DO 300 1321033 p3
J=1+1
300 UL(I)=0UT(I)*C4+0UT(J)*S4
C
DO 400 1‘2213433
J=I-1
400 UL(I)=—0UT(J)*S4+0UT(1)*C4
C
UL(36)=00T(17)*C4+0UT(18)*S4
C
RK11=(K-1)/1.0
C
C=
C THIS IS FOR THE PLOTTING , IT
C GIVES THE CRANK ANGLE.
C UL(9) IS THE DEFLECTION IN THE MIDPOINT OF COUPLER
C UL(28) IS THE DEFLECTION IN THE MIDPOINT OF ROCKER
C=
WRITE(7,153)RK11,UL(9),UL(28)
C=

765 CONTINUE
153 FORMAT(F14.8,1X,F14.10)
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CLOSE(7, STATUS='KEEP’')
STOP
END
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THIS SUBROUTINE IS USED TO GET LINEAR
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COPCESS S0 ESESLSEE 0SSO0 0CSS00008088S808805S8SS

SUBROUTINE LOL(E, A, EL, RI, MASS,KL, NL)
REAL MASS,KL(6,6),ML(6,6),EL,E,RI

C=======

c INITIALIZE THE ENTRY OF STIFFNESS MATRIX
C=======
1 I=1,6
DO 1 J=1,6
1 KL(I,))=0.0
CcE======
C TO DEFINE THE LOCAL STIFFNESS MATRIX
c====e=c==
KL(1,1)=E*A/EL

KL(2,2)=12.%E*RI/EL**3.
KL(3,3)=4.*E*RI/EL
KL(4,4)=KL(1,1)
KL(5,5)=KL(2,2)
KL(6.6)=KL(3.3)
KL(1,4)=-KL(1,1)
KL(2,3)=6.*E*RI/EL**2
KL(2,5)=KL(2,2)
KL(2,6)=KL(2,3)
KL(3,5)=KL(2,3)
KL(3,6)=2.%E*RI/EL
KL(5,6)=-KL(2,3)

DO 2 I=2,6

I1=1-1

po 2 J=1,I11,1
2 KL(I,J)=KL(J,I)

C
C=======
C INITIALIZE THE ENTRY OF MASS MATRIX
C=======
DO 100 I=1,6
DO 100 J=1,6
100 ML(I,J)=0.0
cg-=====
C TO CREATE THE LOCAL MASS MATRIX.

c====r=s

ML(1,1)=140.
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ML(2,2)=156.
ML(3,3)=4.%EL**2
ML(4,4)=ML(1,1)
ML(5,5)=ML(2,2)
ML(6,6)=ML(3,3)
ML(1,4)=70.
ML(2,3)=22.%EL
ML(2,5)=54.
ML(2,6)=-13.°*EL
ML(3,5)=-ML(2,6)
ML(3,6)=-3 .%EL*%2
ML(5,6)=—ML(2,3)

DO 103 I=2,6
I1=I-1
DO 103 J=1,I11
103 ML(I,J)=ML(J,I)

DO 104 I=1,6
DO 104 J=1,6
104 ML(I,JY)=ML(I,J)*(MASS*EL)/420.
RETURN
END
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Ce0880888808008385538080888008388808000SS8008008880880808800s

C &
c GGGGG L 00000 L III N N ¢
C G L 0O 0 L I NN N *
C G GG L 0O 0 L I NNN .
C G G L 0O 0 L I N NN *
C GGGGG LLLLL 00000 LLLLL III N N b
C *
C THIS SUBROUTINE IS DESIGNED TO CONSTRUCTED *
C THE GLOBAL STIFFNESS AND MASS MATRICES s
C L
Co8888450430808805¢880030830080888380808888888088888008¢80880¢
C

SUBROUTINE GLOLIN(X,XJ,X1,X2,X3,X4,XG,XNM)

REAL X(6,6),X1(6,6),X2(6,6) ,X3(6,6),X4(6,6) ,XJ(6,6)

REAL XG(40,40) ,XM(36,36)
C
C=======
C INITIALIZE EVERY ENTRY OF THE MATRIX
C=======

DO 111 I=1,40
DO 111 J=1,40
111 X6(I1,J)=0.0

C=======
c CONSTRUCTED THE 40 BY 40 MATRIX WITHOUT B.C.
C=======
DO 10 I-=1,3
DO 10 J=1,6
10 XG6(1,J)=X1(1,7J)
C
DO 20 I=4,6
DO 20 J=4,6
K=I-3
M=J-3
20 XG(I,J)=X1(I,J)+X(K, M)
C
DO 30 I=4,6
DO 30 J=7,9
K=I-3
M=J-3
30 XG(I,J)=X(K,M)
C

XG(7,7)=X(4,4)+X(1,1)
XG(7,8)=X(4,5)+X(1,2)
XG(7,9)=X(4,6)+X(1,3)

C
XG(8,7)=X(5,4)+X(2,1)
XG(8,8)=X(5,5)+X(2,2)
XG(8,9)=X(5,6)+X(2,3)
C

XG(9,7)=X(6,4)+X(3,1)
XG(9,8)=X(6,5)+X(3,2)
XG(909)=X(6p6)+X(353)
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DO 40 I=7,9
DO 40 J=10,12
K=I-6

M=J-6
XG(I,J)=X(K,M)

DO 60 I=10,12
DO 60 J=10,12
K=I-3

M=J-3
XG(I,J)=XG(K, M)

DO 70 I=10,12
DO 70 J=13,15
K=I-9
M=J-9
XG(I,J)=X(K, M)

DO 80 I=13,15
DO 80 J=13,15
K=I-3

M=J-3
XG(I,J)=XG(K,M)

DO 90 I=13,15
DO 90 J=16,18
K=I-12
M=J-12
XG(I,J)=X(K, M)

XG(16,16)=X(4,4)+X2(1,1)
XG(16,17)=X(4,5)+X2(1,2)
XG(16,18)=X(4,6)+X2(1,3)

XG(17,16)=X(5,4)+X2(2,1)
X6(17,17)=X(5,5)+X2(2,2)
XG(17,18)=X(5,6)+X2(2,3)

X6(18,16)=X(6,4)+X2(3,1)
XG(18,17)=X(6,5)+X2(3,2)
XG(18,18)=X(6,6)+X2(3,3)

DO 100 I=16,18
DO 100 J=19,21
K=I-15
M=J-15
XG(I,J)=X2(K,M)

XG(19,19)=X2(4,4)+X3(4,4)
XG(19,20)=X2(4,5)+X3(4,5)
X6(19,21)=X2(4,6)
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1101

120

XG(20,19)=X2(5,4)+X3(5,4)
XG(20,20)=X2(5,5)+X3(5,5)

XG(20,21)=X2(5,6)

XG(21,19)=X2(6,4)
XG(21,20)=X2(6,5)
X6 (21,21)=X2(6,6)

XG(19,37)=X3(4,1)
XG(19,38)=X3(4,2)
XG(19,39)=X3(4,3)
XG(19,40)=X3(4,6)

XG(20,37)=X3(5,1)
XG(20,38)=X3(5,2)
XG(20,39)=X3(5,3)
XG(20,40)=X3(5,6)

DO 110 I=22,24
DO 110 J=22,24
K=I-21
M=J-21
XG(I,J)=X4(K,M)

DO 1101 I=22,24
DO 1101 J=25,27
=]I-21

M=J-21

XG(I,J)=X4(K,M)

XG(25,25)=X4(4,4)+XJ(1,1)
XG(25,26)=X4(4,5)+XJ(1,2)
XG(25,27)=X4(4,6)+XJ(1,3)

XG(26,26)=X4(5,5)+XJ(2,2)
XG(26,27)=X4(5,6)+XJ(2,3)

XG(27,25)=X4(6,4)+XJ(3,1)
XG(27,26)=X4(6,5)+XY(3,2)

DO 120 I=25,27
DO 120 J=28,30
K=I-24
M=J-24
XG(I,J)=XJ(K,M)

XG(28,28)=XJ(1,1)+XJ(4,4)
XG(28,29)=XJ(1,2)+XJ(4,5)
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XG(28, 30)=XJ(1,3)+XJ(4,6)

XG(29,28)=XJ(2,1)+XJ(5,4)
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XG(29,29)=XJ(2,2)+XJ7(5,5)
XG(29,30)=XJ(2,3)+XJ(5,6)

XG(30,28)=XJ(3,1)+XJ(6,4)
XG(30,29)=XJ(3,2)+XJ(6,5)
XG(30,30)=XJ(3,3)+XJ(6,6)

DO 130 I=28,30
DO 130 J=31,33
K=I-27
MW=J-217
XG(I,J)=XJ(K,M)

DO 140 I=31,33
DO 140 J= 31,33
K=I-3

M=J-3
XG(I,J)=XG(K, M)

DO 150 I=31,33
DO 150 J=34,36
K=I-30
M=J-30
XG(I,J)=XJ(K,M)

DO 160 I=34,36
DO 160 J=34,36
K=I-3
M=J-3
XG(I,J)=XG(K, M)

DO 170 1=34,36
DO 170 J=37,39
K=I-33
M=J-33
XG(I,J)=XJ(K,M)

XG(37,37)=XJ(4,4)+X3(1,1)
XG(37,38)=XJ(4,5)+X3(1,2)
XG(37,39)=XJ(4,6)+X3(1,3)
XG(37,40)=X3(1,6)

XG(38,37)=XJ(5,4)+X3(2,1)
XG(38,38)=XJ(5,5)+X3(2,2)
XG(38,39)=XY(5,6)+X3(2,3)
XG(38,40)=X3(2,6)

XG(39,37)=XJ(6,4)+X3(3,1)
XG(39,38)=XJ(6,5)+X3(3,2)
XG(39,39)=XJ(6,6)+X3(3,3)
XG(39,40)=X3(3,6)

XG(40,40)=X3(6,6)
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DO 180 I=1,40
DO 180 J=1,40
180 XG(J,I)=XG(I,J)

C=am====

C PUT B.C. IN THE MATRIX REDUCED TO 36 BY 36 MATRIX
C=======

DO 181 I=1,36

DO 181 J=1,36
181 XM(I,J)=0.

C
DO 190 I=1,19
DO 190 J=1,19
K=I+2
M=J+2
190 XM(I,J)=XG(K,M)
C
DO 200 1=20,36
DO 200 J=20,36
K=I+4
M=J+4
200 XM(I,J)=XG(K,M)
C
RETURN

END
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THIS SUBROUTINE IS TO GENERATE NONLINEAR
LOCAL STIFFNESS MATRIX

S8 6858000205000 0SSESSSSSESSSESESESSEESSSSSSSESSSSS

KG(1-12)----NONLINEAR LOCAL STIFFNESS MATRIX

a0 0o 0

SUBROUTINE LONON(E, A, UR,EL,UL,KG)
REAL UR(6),KG(6,6) ,E

C=======

C INITIALIZE EVERY ENTRY OF THE MATRIX

C=======
DO 830 I=1,6
DO 830 J=1,6

830 KG(I,J)=0.0

C
KG(2,2)=6.0/5.0
KG(3,3)=2.0%EL**2/15.0
KG(5,5)=KG(2,2)
KG(6,6)=KG(3,3)
KG(2,3)=EL/10.0
KG(2,5)=KG(2,2)
KG(2,6)=KG(2,3)
KG(3,2)=KG(2,3)
KG(3,5)=KG(2,3)
KG(3,6)=—EL**2/30.0
KG(5,2)=-KG(2,2)
KG(5,3)=-KG(2,3)
KG(5,6)=KG(2,3)
KG(6,2)=KG(2,3)
KG(6,3)=KG(3,6)
KG(6,5)=KG(2,3)

RETURN
END
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BUILD UP GLOBAL MATRICESS (NONLINEAR PART OF THE PROGRAM)
KM---GLOBAL MATRICES FOR EVERY ELEMENT
KX---GLOBAL MATRICES FOR THE MECHANISM WITHOOUT B.C.

EN---GLOBAL MATRICES FOR THE MECHANISM WITH B. C.

[ I K R I JEE JK JNE K BN JEE JEE BN BN B

SESEEEL S ES S LSS ES00SESSSCSESESSSSEEESSESESEEESSSSSSSSESSS

SUBROUTINE GLONON(EN, KM1,KM2,KM3,KM4 ,KM5,KM6,
KM7,KM8 ,KM9 ,KM10,KM11,KM12,KX)
REAL KN(36,36) ,KX(40,40)
REAL KM1(6,6),KM2(6,6) ,KM3(6,6) ,KM4(6,6) ,KM5(6,6) ,KM6(6,6)
REAL KM7(6,6) ,KM8(6,6) ,KM9(6,6) ,EM10(6,6) ,KM11(6,6) ,EM12(6,6)

DO 111 I=1,40
DO 111 J=1,40
KX(I,J)=0.

DO 10 I=1,3
DO 10 J=1,6
KX(I,J)=KM1(I,J)

DO 20 I=4,6

DO 20 J=4,6

K=I-3

M=J-3
KX(I,J)=KM1(I,J)+KM2(K,M)

DO 30 I=4,6

DO 30 J=7,9
K=I-3

M=J-3
KX(I,J)=KM2 (K, M)

DO 201 I=7,9

DO 201 J=7,9

K=I-3

M=J-3

KK=I-6

M=J-6
KX(I,J)=EM2 (K, M)+KM3 (KK, MM)
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DO 40 I=7,9

DO 40 J=10,12
K=I-6

M=J-6
KX(I,J)=KM3(K, M)

DO 60 I=10,12

DO 60 J=10,12

K=I-6

M=J-6

KK=I-9

W=J-9
KX(I,J)=KM3(K, M) +EM4 (KK, MM)

DO 70 I=10,12
DO 70 J=13,15
K=I-9

M=J-9
KX(I,J)=KM4 (K, M)

DO 80 I=13,15§

DO 80 J=13,15

K=I-9

M=J-9

KK=I-12

MM=J-12
KX(I,J)=KM4 (K, M)+EMS (KK, MM)

DO 90 I=13,15
DO 90 J=16,18
K=I-12

M=J-12
KX(I,J)=KM5(K,M)

DO 901 I=16,18

DO 901 J=16,18

K=I-12

M=J-12

KK=I-15

W=J-15
KX(I,J)=KM5 (K, M)+KM6 (KK, MM)

DO 100 I=16,18
DO 100 J=19,21
K=I-15

M=J-15
KX(I,J)=KM6(K,M)

KX(19,19)=KM6(4,4)+KM12(4,4)
KX(19,20)=KM6(4,5)+KM12(4,5)
KX(19,21)=KM6(4,6)
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KX(20,19)=EM6(5,4)+KM12(5,4)
KX(20,20)=KM6(5,5)+KM12(5,5)
KX(20,21)=KM6(5,6)

KX(21,19)=KM6(6,4)
KX(21,20)=KM6(6,5)
KX(21,21)=KM6(6,6)

KX(19,37)=KM12(4,1)
KX(19,38)=KM12(4,2)
KX(19,39)=KM12(4,3)
KX(19,40)=KM12(4,6)

KX(20,37)=KM12(5,1)
KX(20,38)=KM12(5,2)
KX(20,39)=KM12(5,3)
KX(20,40)=KM12(5,6)

DO 110 I=22,24
DO 110 J=22,27
K=I-21
M=J-21

110 KX(I,J)=EM7(K,M)

DO 1101 I=25,27
DO 1101 J=25,27
K=I-21
M=J-21
EK=I-24
MM=J-24
1101 KX(I,J)=KM7(K,M)+KMS8 (KK, MM)

DO 120 I=25,27
DO 120 J=28,30
K=1-24
M=J-24
120 KX(I,J)=KM8 (K, M)

DO 1201 1=28,30
DO 1201 J=28,30
K=I-24
M=J-24
KK=I-27
W=J-217
1201 KX(I,J)=EM8(K, M)+KM9 (KK, MM)

DO 130 I=28,30
DO 130 J=31,33
K=I-27
M=J-217

130 KX(I,J)=KM9(K,M)

DO 140 I=31,33
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191
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DO 140 J=31,33

K=I-27

M=J-217

KK=I-30

MM=J-30

KX (I, J)=KM9 (K, M)+EM10(KK, MN)

DO 150 I=31,33
DO 150 J=34,36
K=I-30

M=J-30
KX(I,J)=KM10(K, M)

DO 160 I=34,36

DO 160 J=34,36

K=I-30

M=J-30

KK=I-33

MM=J-33
KX(I,J)=EM10(K, M)+EM11 (KK, MM)

DO 170 I=34,36
DO 170 J=37,39
K=I-33

M=J-33
KX(I,J)=EM11(K, M)

KX(37,37)=KM11(4,4)+KM12(1,1)
KX(37,38)=KM11(4,5)+KM12(1,2)
KX(37,39)=KM11(4,6)+KM12(1,3)
KX(37,40)=KM12(1,6)

KX(38,37)=KM11(5,4)+KM12(2,1)
KX(38,38)=KM11(5,5)+KM12(2,2)
KX(38,39)=KM11(5,6)+KM12(2,3)
KX(38,40)=KM12(2,6)

KX(39,37)=KM11(6,4)+EN12(3,1)
KX(39,38)=KM11(6,5)+EM12(3,2)
KX(39,39)=KM11(6,6)+KM12(3,3)
KX(39,40)=EM12(3,6)

KX(40,40)=KM12(6,6)

DO 180 I=1,40
DO 180 J=1,40
KX(J, I)=KX(I,J)

DO 191 I=1,36
DO 191 J=1,36
KN(I,J)=0.

Cesssssssnsssss
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PUT BOUNDARY CONDITIONS IN

5864688888

DO 56 I=1,36

DO 56 J=1,36
IIN=1I+2

JIM=J+2
IF(I.GE.20)IIM=1I+4
IF (J.GE.20)JIM=J+4
EN(I,J)=KX(IIM, JINM)
CONTINUE

RETURN
END
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THIS SUBROUTINE IS DESIGNED TO CALCULATE
THE ACCLERATION AND ANGULAR DISPLACEMENT

PROGRAM IS BASED ON THE PAPER BY SNITH AND MAUNDER(1967)

L L B JEE I JK BN K IR NN N K

S5 SCES00SSESEEER 0SS0 ESECESSSSE SO SSSSESRS

L1,12,13,14 GROUND, CRANK, COUPLER
AND ROCKER LENGTHES.
XLEN1,2,3,4 ARE THE LENGTHES OF JOINTS

TH2 CRANK ANGLE IN RADS. WHILE
TH21 CRANK ANG. VELOCITY IN RAD/S.
T TTIT I T T Y

e NrEe e e Er Nz Ne e ErEsEs RN N NN EoNe Ne Ne Ny

SUBROUTINE KIN(RA,TH2,TH3,TH4,TH21, STEP,
b XLEN1,XLEN2 ,AC, XLEN3 ,XLEN4,11,12,13,14)
REAL L1,12,13,14,AC(40),RA(36,1)
TH211=0.0
1 A=2.%L3%(L2*COS(TH2)-L1)
PI=3.1415927
B=1A4%%2-1]1%%2-12%#2-13%%2+2%L1%L2¢COS(TH2)
C=2%L2¢L3*SIN(TH2)
AZ=ABS(A**2+C**2)
D=SQRT(AZ)
ABC=ABS((A®B/D*%2)%%2—(B**2-C**2) /D**2)
DD=SQRT(ABC)
DA=SIN(TH2)
IF(DA.GT.0.)THEN
TH3=ACOS(A*B/D**2+DD)
ELSE
TH3=ACOS(A*B/D**2-DD)
ENDIF
TH4=ACOS( (L2*COS(TH2)+L3*COS(TH3)-L1)/14)
TH31=-TH21¢(L2*SIN(TH2-TH4)) /(L3*SIN(TH3-TH4) )
THETA2=TH2+180./PI
THETA3=TH3+180./PI
THETA4=TH4*180./PI
TH41=—TH21*(L2*SIN(TH2-TH3)) / (LA*SIN(TH3-TH4) )
AA=TH21%%2¢L2*COS(TH2-TH4)
BB=TH31%%2¢L3*COS(TH3-TH4)
CC=L3*SIN(TH3-TH4)
TH311=(TH31/TH21) *TH211-(AA+BB-TH41%%2°%L4) /CC
EE=TH21%%2¢L2*COS(TH2-TH3)
FF=TH41%%2%L4*COS(TH3-TH4)
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GG=LA*SIN(TH3-TH4)
TH411=(TH41/TH21)*TH211-(EE-FF+TH31%%2%L3) /GC

C=======

C AC CONTAINS NODAL ACCELERATIONS IN THE
C GLOBAL FRAME.
C=======

AC(1)=—12*(TH21%*2*COS(TH2) + TH211*SIN(TH2))
AC(2)=—12*(TH21%*2*SIN(TH2)-TH211*COS(TH2))

C
DO 1011 I=3,21,3
AC(I)=TH311

1011 CONTINUE

C
DO 1012 I1=24,39,3
AC(I)=TH411

1012 CONTINUE

C

EL1=(L3-XLEN2-XLEN1) /4.

Do 1013 I1=7,16,3

I1=(1I-4)/3

J=I+1

AC(I)=AC(1)-(II*EL1+XLEN1)*(TH31%**2¢COS(TH3)+TH311*SIN(TH3))

AC(J)=AC(2)-(II*EL1+XLEN1)*(TH31%%2¢SIN(TH3)-TH311*COS(TH3))
1013 CONTINUE

EL2=(1A-XLEN3-XLEN4) /4.

DO 1014 1=28,37,3

II=(I-25)/3

J=I+1

AC(I)=-(XLEN4+II*EL2)*(TH41¢%2*COS(TH4)+TH411*SIN(TH4))

AC(J)=(XLEN4+II*EL2)*(TH41%*2*SIN(TH4)-TH411*COS(TH4))
1014 CONTINUE

C
AC(4)=AC(1)-XLEN1*(TH31**2*COS(TH3)+TH311*SIN(TH3))
AC(5)=AC(2)-XLEN1*(TH31¢*2*SIN(TH3)-TH311*COS(TH3))
C
AC(19)=—14*(TH41*+2*COS(TH4)+TH411*SIN(TH4))
AC(20)=-1A*(TH41**2*SIN(TH4)-TH411*COS(TH4))
C
AC(22)=0.
AC(23)=0.
C
C
AC(25)=—(XLEN4)*(TH41%*2*COS(TH4)+TH411*SIN(TH4))
AC(26)=—(XLEN4)*(TH41%*2¢SIN(TH4)-TH411*COS(TH4))
C
AC(40)=TH411
C=======
C TO INCREMENT THE CRANK ANGLE AND HENCE THE MECHANISM

C===z===

11 TH2=TH2+PI/ (180 .*STEP)

C=======
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RA IS DEFINED RELATIVE TO THE FINITE ELEMENT
PROGRAM WHILE AC IS DEFINED RELATIVE TO THE
MECHANISM KINEMATICS PROGRAM.WE NOW HAVE THE
INTERFACE.

O?GOGG

DO 1015 I=1,19

J=1+2

RA(I,1)=AC(J)
1015 CONTINUE

DO 1016 I=20,36
J=1+4
RA(I,1)=AC(J)
1016 CONTINUE
C
RETURN
END
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C .
C STRAIN s
C .
C This subroutin is designed to calculate .
c the strain of each element b
C s
C‘...‘..‘.““‘..‘...‘.....“.OO.....O‘...‘....‘.“‘
C

SUBROUTINE STRAIN(EBS, BB, UL, EBSB)

REAL EBS(1,1),BB(1,6),UL(6,1),EBSB(1,1)
CALL MMLT(EBS,BB,UL,1,6,1)

RETURN

END






