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ABSTRACT

BOOTSTRAP APPROXIMATIONS TO THE DISTRIBUTIONS
OF M — ESTIMATORS.

By

Soumendra Nath Lahiri

Consider the linear regression model Y, = xiﬂ + ¢, where ei‘s are random
variables with common distribution F and x;'s are known constants. Let Bn be the
M - estimator of § corresponding to a nondecreasing, bounded score function . This
thesis analyzes the asymptotic behaviors of certain bootstrap approximations to the
distribution of normalized Bn' It is shown that the ordinary bootstrap procedure as
such does not work in the present set up. As remedies, several modifications of this
procedure have been rmulated. For studying the asymptotic behaviors of these
procedures, Edgeworth expansions of the distributions of Zin and the modified
bootstrap estimators are obtained. It is proved that all the proposed modifications
lead to a faster rate of approximation, viz. o ( Max { |xj|/( z 1.1_1 x? )1/ 2.
1< j<n}) than the usual normal approximation. For the special (l:a;e, when the
score function ¢ is odd and the underlying error distribution F is smooth and
symmetric, it is observed that by taking the resampling distribution to be a

suitable symmetrized kernel estimator of F, one can have even a higher rate of

o 2, v 2
approximation, namely o ( Max { |xj| /2 ox
1=

i 1<j<n}).

Second part of the thesis considers the bootstrap approximations to the

distributions of M - estimators in a multivariate setting under a different model.



Let X1 yeees Xn be independent and identically distributed k — dimensional random

vectors with common distribution F0 ,0€e0C RP for some p>1l. Let ¢ bea
function from RX x RP into RP and bn be the M - estimator of @ corresponding to
¥. Under some regularity conditions on ¢, an Edgeworth expansion of the
bootstrapped M - estimator is proved. Using this and the Edgeworth expansion for
bn ( obtained by Bhattacharya and Ghosh (1978) : 'On The Validity of Formal

Edgeworth expansion.', Ann. Statist. 6, 434 — 445 ), the rate of bootstrap
approximation is shown to be o(n—l/ 2). This extends a result of Singh (1981)
( 'On the Accuracy Of Efron's Bootstrap.', Ann. Statist. 9, 1187 — 1195 ) about the

sample mean to the M—estimators.
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INTRODUCTION

Ever since introduction, the bootstrap method has found its applications in a
variety of statistical problems and in most of the cases with overwhelming success.
The superiority of the bootstrap approximation in certain estimation problems has
been reported in the introductory paper, Efron (1979), on the basis of some
numerical studies. Soon these empirical results were substantiated from the
theoretical standpoint by Singh (1981), Bickel and Freedman (1981), Beran
(1982), Babu and Singh (1984) and Hall (1988) among others. In fact, it was
Singh (1981) who ~showed for the first time that the rate of bootstrap
approximation to the distribution of the normalized sample mean is faster than the
usual large sample normal approximation. He derived an almost sure Edgeworth
Expansion for the distribution of the bootstrapped statistic and compared it with
the standard Edgeworth expansion for the distribution of normalized sample mean
to arrive at the conclusion. It became clear from this work that the distribution of
the bootstrapped statistic corrects itself for the possible skewness of the underlying
distribution and thus povides a better approximation than the normal law.
Subsequently similar results on the rate of bootstrap approximation have been
established in a number of cases when the statistic of interest is a smooth functional
of the underlying distribution. See Babu and Singh (1983) for results on
studentized k—sample means, Helmers (1988) for results on U-statistics,

Bose (1988) for bootstrapping an autoregression model.

In this thesis we shall consider the behaviour of bootsrtrap approximation to
the distributions of M—estimators in two different problems. The first problem
concerns a simple linear regression model

Yi = X B+ 6 i= 1,....,n
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where ei's are independent with a common distribution F and xi's are known,
nonrandom constants. Here the model differs from the others mentioned earlier
( except Bose (1988) ) at the point that the observed values Yy5esY,  are not
identically distributed. Bootstrap approximation in similar nonidentical set up has
been considered in Freedman (1981), Bickel and Freedman (1983) and Liu (1988).
The first two papers prove the bootstrap central limit theorem for the least square
estimators of the multiple regression parameters and Liu (1988) establishes the
second order correctness of the bootstrap method for the sample mean of
independent but not necessarily identical observations.  Here we consider
bootsrapping the M—estimator Bn of (B corresponding to a nondecreasing,
bounded score function ¢ (see Section 1.1 of Chapter 1 for definition ). Under
certain smoothness conditions on ¥ and/or F, an Edgeworth expansion for the
distribution of normalized Bn has been obtained. This result is of independent
interest for two reasons. First, such expansions for the M— estimators in the general
regression context were not known earlier ; second, the method of proof is
somewhat different from the conventional approach ( cf. Ringland (1983)) based on

Bhattacharya and Ghosh (1978).

Bootstrapping Bn under the present model leads to some intriguing
phenomena. In Section 1.3 of Chapter 1, we give an example which shows that the
usual bootstrap procedure does not work in the present set up. The bootstrapped
statistic in the example does not even converge to the limiting distribution of the
unbootstrapped statistic. To overcome this drawback of the usual bootstrap
procedure, we propose different modifications and show that each of these

modifications actually attains a faster rate than the normal approximation.
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In the second problem, we consider the M—estimators of a higher dimensional
parameter in a multivariate setting. The Edgeworth expansion of the normalized
M—estimator was obtained by Bhattacharya and Ghosh (1978) and Bhattacharya
(1985) under some smoothness conditions on the score function ¢. Here we follow
the usual bootstrap procedure and select the bootstrap samples from the empirical
distribution of the observations. Using the smoothness of 3 and a result of Babu
and Singh (1984), we obtain an almost sure expansion of the distribution of the
bootstrapped statistic along the line of Bhattacharya and Ghosh (1978).
Comparison of these two expansions establishes the superiority of the bootstrap
approximation to the normal approximation. This extends a result (part (d) of

Theorem 1) of Singh (1981) about the sample mean to the M—estimators.



CHAPTER 1

1.1. Introduction.

Consider a simple linear regression model

(1.1) Yi = Xi ﬂ + fi 3 i=1,...,[l,

where €]+ €, are independent and identically distributed (i.i.d.) random variables
(r.v.'s) with common distribution function (d.f.) F and where x,,...,x  are known
nonrandom constants. Let i be a nondecreasing and bounded function from R into

R. Define an estimator Bn of 3 to be a solution of the equation ( in t )

(1.2) Y xp(Y,—xt)=0.

1=

Estimators {8} are known as M—estimators of # ( Huber : 1973 , 1981). Assume
that

(1.3) ) E¢(¢)=0.

The condition (1.3) ensures the asymptotic unbiasedness of Bn . For easy reference

later on, let

(1.4) a2=)  x® and M_=Max{ |x|:1<i<n}.

The asymptotic normality of an(ﬂn — f) has been studied extensively in the
literature under much more general settings : see Huber (1973, 1981) and the

references therein. Relatively very little is known about the Edgeworth expansions



5
for the distributions of these estimators , specially when the score function ¢ is not
smooth. Ringland (1983) considered the one—way layout model with p populations
(p3/n - o ) and obtained a two—term Edgeworth expansion for the distribution of
studentized M—estimators. His method of proof was along the line of Bhattacharya
and Ghosh (1978). In particular, he required the score function ¢ to be smooth and
the design matrix elements to be 0's and 1's only. When p = 1, this forces x; =1

for all i which is too restrictive in the regression context .

For the one parameter case this paper gives an Edgeworth expansion of the
distribution of a,n(Z?n — ) when 9 is not necessarily smooth and the constants x;'s
satisfy only some mild growth conditions. The method of proof is completely
different from that of Ringland (1983). Monotonicity of 1 enables one to obtain
bounds on the probabilities involving Bn in terms of the probabilities relating to the
sums of independent random variables. Thus one can apply the classical Edgeworth
expansion techniques to these bounds for obtaining an approximate expansion of the
distribution of Bn . Then, the smoothness of ¢ and/or F is used to simplify these

expressions into the stated forms.

BOOTSTRAPPING Bn: In order to describe the bootstrapping of Bn’ let
F  be an estimator of the underlying error d.f. F based on the estimated residuals
- * *
=Y, —xiBn yi=1,.,n. Alsolet ¢ ,..., ¢, be a bootstrap sample from F and
* *
define Y, =x; Bn + € fori=1,..,n. In accordance with (1.2), the bootstrap

*
estimator 8 of fis defined as a solution of the equation (int)

(1.5) Y oxo(Y,-xt)=0.

1=
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The role played by [ in the original problem is to be replaced by Bn in the
bootstrap set up. Accordingly one should have

(1.6) E ¥e) = B ¥(Y,—xB,)=0.

where EIl denotes the expectation under Fn' In general, the choice of Fn that will
satisfy condition (1.6} and at the same time be a good estimator of F seems to
depend heavily on the forms of F and 9. In the case of bootstrapping the least
square estimator bn of 3, the corresponding requirement is En(eI ) = 0. Freedman
(1981) considered the problem of bootstrapping fin and ensured this condition by

centering the estimated residuals ?1,..., € and then taking the bootstrap samples

n
from the empirical distribution of these centered values. In fact, he has pointed out
that if one does not center the estimated residuals, the distribution of an(ﬂ; - bn)
does not converge to that of an(bn — f). Similar remark applies to the present
context as well. We give an example at the beginning of Section 1.3 where (1.6)
does not hold and a‘n(ﬂ; - Bn) does not have the same limiting distribution as the

unbootstrapped statistic an(Bn — ). Therefore, one should consider only those

F 's for which condition (1.6) is satisfied.

Clearly, (1.6) is not satisfied for general design points if Bn is defined by
(1.5) and F_is taken to be the empirical distribution function (e.d.f.) of the
estimated residuals El"""zn' Therefore, one has to look for appropriate
modifications, if any, of the usual bootstrap procedure. In fact, there are at least
two ways of attaining this. One is to change the resampling distribution and the
other is to change the defining equation (1.5). As an example of the first possibility,
F  is taken to be a suitable weighted empirical distribution and ﬂ: is defined as a

solution of (1.5) ( see Section 1.3 for details ). As an example of the other case,
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equation (1.5) is modified according to Shorack (1982) and ﬁ; is defined as a
solution of the resulting equation ( cf. equation (3.8) in Section 1.3 ). In the second
case, it is shown that one can take Fn to be either the e.d.f. of the estimated
residuals ?1 yeery En or some smoother estimator of F depending on the degree of
smoothness of ¥ and F. With either modification the resulting bootstrap procedure
corrects one term in the Edgeworth expansion of the distribution of the normalised

Bn and the rate of bootstrap approximation becomes o(Mn/an).

Finally, in the case when the error d.f. F is smooth and symmetric and the
score function ¢ is odd, the rate of bootstrap approximation corresponding to a
symmetrized kernel density estimator of F is shown to be o((Mn/an)z). This result
is similar to a result of Babu and Singh (1984) about the sample mean where the the
resampling distribution is taken to be the symmetrized e.d.f. of the observations
centered about the sample mean. In a nut shell, for all the cases considered here
bootstrap approximation is shown to have a better rate than the normal

approximation .

The layout of this chapter is as follows. Section 1.2 contains theorems giving
the Edgeworth expansions for Bn. Section 1.3 deals with the bootstrap
approximations to the distribution of Bn and Section 1.4 contains the proofs of the

results stated in Sections 1.2 and 1.3.




1.2. Edgeworth expansions for Bn.

This section gives the Edgeworth expansion for the distribution of
normalized Zin under some assumptions on 3%, F and xi's. Parts of these
assumptions are on the underlying model (1.1) and will be assumed throughout the
paper without explicit reference. The rest of the assumptions are required for the
validity of some results in this section. Whenever used, one or more of these will
always be mentioned in the statement of the corresponding assertion. Before stating

the assumptions, we need to fix some notation. For x real, write

ux) =E ¥e, —x),  V(x) = 0> (x) =Var ¢(¢, —x),

p3(x) =E (We; —x) —u(x))° and  pyy(x) =B (e, =) — ()™

Since 9 is bounded all these quantities are well defined.
For any real valued function h defined on R, let h(i) denote the i—th

derivative of h whenever it exists and ||h|| denote the supremum norm of h. For

convenience, h', h", h'" will replace h(l), h(2) and h(3) respectively. Define

n

3, 3 4, 4
A=—pO))o®), dyp =] x/ay, dy=] xi/a,

i= 1=

(2.1)
n

_ 3, ,.3 _ 2

d3n—z i=1 x50/ ap and dyy = Max {dg, , dg, }

Next recall the definition of M| and a_ from (1.4). Note that d3 = O (M /a )
and d, =0 (Mﬁ/aﬁ). Let b = log a, (whenever it is defined ). For ¢ > 0,
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define the set A (c)={i:1<i<n, [x| >cM;} andlet k (c) denote the

number of elements in A (c).

In addition to (1.3), assume that conditions (A.1) — (A.3) below are satisfied
by the underlying model (1.1) throughout this chapter.
(A.1): a, +©asn .
(A2): A=—p'(0)/ 6(0) >0 ( Whenever it exists ).

(A.3) : There exists a constant ¢ , 0 < ¢ < 1 such that b =0 (ky(c)) asn - .

Next, we list down the remaining assumptions used in this section.
. nd —
(Ad): by M =o0(a) asn-om.
. 16 —
(A5): b M =o(a) asn-o
(A.6) : There exist constants M > 0, §> 0 and 0 < q < 1 such that

sup { |E exp( it ¥ ¢;—x))| : [x|< and |t| >M } <q.

REMARK 2.1 : First two assumptions are typical for proving the asymptotic
normality of Bn and occur frequently in the literature (see, for example, Huber :
1973,1981).  Assumption (A.3) is rather uncommon and deserves some
clarifications. For obtaining the Edgeworth expansions of normalized sums of
independent r.v.'s, one usually assumes that the absolute values of the
characteristic functions of all the summands are uniformly bounded away from 1
outside every neighbourhood of zero. But in the present context, this will require
min { x| : i 21} > c for some constant ¢ > 0 which will rule out many
frequently used designs. Condition (A.3) relaxes this requirement on xi's. Another
typical assumption made for proving the asymptotic normality of Bn is that

M ja =0 (1) as n- . Condition (A.4) and (A.5) are somewhat stronger versions
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of this and are required for obtaining the Edgeworth expansions upto the desired
orders. Note that both the conditions are trivially satisfied for bounded xi's as well
as for x; = i. Condition (A.6) is actually a modified Cramer's condition ( see
Bhattacharya and Rao (1976), page 207 for the statement of Cramer's condition )
and will be used for obtaining higher order expansions. See Remark 2.4 and the

Proposition following it for a sufficient condition.
Before stating the theorems, we put down the explicit form of the
Edgeworth expansions. To that effect, write H, for the Hermite polynomial of

degree i, i > 1 (see Feller (1966), page 514 ). Let ¢ and ® respectively denote the

density and the d.f. of a standard normal r.v.. For Theorems 2.1 and 2.2, define
Hy (%) = 8(x) = d; [(#(0)/0(0) — #(0) V'(0)/°(0)) x°/ 24
+ ( 13(0) / 65%(0) ) Hy(x) ] 0(x)

Hyp (x) = Hy () = 906) [dgp { (4"'(0)/0(0) + 3 A V"(0)/ 2 V(0) ) x*/6A
+ (13'(0) / 6A0%(0) ) x Ho(x) + (( 1,(0) —30%(0)) / 240%(0)) Hy(x) }
+d; 2 {(8"(0)/0(0) + A V'(0)/ V(0) ) ( 5(0)/12A% 6(0) ) x°Hy(x)
+ (15°(0)/ 720%0) ) Hy(x) + (1(0)/0(0) + A V'(0)/ V(0))* x°/ 8A"
— (4"(0) V'(0)/3%(0) + 3AV'%(0)/2v7(0))x°/4A

— (13(0) V'(0)/4A0°(0)) xHy(x)}].
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Under the hypotheses of the following Theorems , the functions x, V, Bgs My have
sufficiently many derivatives so that H, and H, are well defined. Now we state

the theorems of this section.

THEOREM 2.1 : Suppose that ¢ has a uniformly continuous, bounded second
derivative. (a) If ¢(cl) is nonlattice and condition (A.4) holds, then

sup | P(a,(B, —#) $)~Hyy(Ax) | = o (My/ay)

(b)  Suppose that ¥ has a uniformly continuous, bounded third derivative. If, in

addition, conditions (A.5) and (A.6) hold, then

sup. | P(ay(B, — ) $x) ~Hyy(Ax) | =0 (dyy) =0 (M /2;)

where d,  is as defined in (2.1).

Next we state a version of Theorem 1 under the corresponding regularity

conditions on F without assuming the differentiability of .

THEOREM 2.2 : Assume that F has a uniformly continuous, density f.
(a)  If¥(e;) is nonlattice and condition (A.4) holds, then

sup | P( (B, =) ) ~Hyp(Ax) | = 0 (My/ay)

(b)  Suppose that f has a uniformly continuous, bounded second derivative. If, in

addition, conditions (A.5) and (A.6) hold, then

sup | P(ay(By = 5) <)~ Hap((Ax) | =0 (dyy) =0 (Mg /2.

REMARK 2.2 : The same technique can be used to obtain higher order expansions

under stronger smoothness conditions on ¢ and/or F. The corresponding
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expressions become more and more messy as the order of expansion increases.

REMARK 2.3 : In Theorems 2.1 and 2.2, the smoothness conditions on ¥ and/or
F has been used to guarantee that the functions u, V, mg, my etc. have
sufficiently many derivatives. In fact it is possible to achieve the same results by
varying the degree of smoothness on 9 and F. In practice one often encounters score
functions ¢ which are sufficiently smooth except possibly at a finite number of
points. It can be shown that if F is well behaving in some neighbourhoods of these

points, then also the above expansions hold.

REMARK 2.4 : Direct verification of assumption (A.6) may pose some difficulty in
some cases. But (A.6) is true quite generally if ¢ and F satisfies some mild

regularity conditions as is evidenced by the following result.

PROPOSITION : Suppose that F has a nonzero absolutely continuous component Q
with density q with respect to the Lebesqgue measure on R and v has a continuous
nonvanishing derivative on some interval (a , b) for which Q { (a,b) } > 0. Then

(A.6) holds.

1.3. Bootstrap Approximations.

We start this section with the following example. It shows that if condition
(1.6) does not hold for some choice of the resampling distribution F , then the

corresponding bootstrap procedure cannot be even first order correct.
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EXAMPLE : In addition to ¢ being a nondecreasing, bounded, real valued
function, assume that 4 has a bounded uniformly continuous second derivative
( e.g. one may take ¥(x) = ta.n_l(x) )- Also suppose that F and ¢ jointly satisfy
the hypotheses of Theorem 2.1 (a) and E #(¢;) = 0. For the sake of clarity in the
resulting expressions, we take x; =0 or 1 according as i is even or odd. Note
that for this choice of x;'s, ag =0(n) and b =0 (log n). By Theorem 2.1, it
follows that

(3.1) a (B, B) converges in distribution to N ( 0, A_z).

where A= Ey/(e))/ [ E y¥(e)]/? asin (2.1).

Next consider bootstrapping Bn. Let Fn denote the empirical distribution of

the estimated residuals Ei = Yi — X0, i = 1,..,, n. Take independent sample
x *

*
€y - €, from F . Note that in this case E_(¢¥(¢;)) is not necessarily zero.

Hence, condition (1.6) does not hold. For t € R, write
* n *
* *
7,(t) =Standard deviation of S (t) under F .

3
By the monotonicity of ¥ and the definition of ﬂn, it follows that for all t € R,
X X *
(32) P_(S, (t) < 0) <P_( (B — ) <t) < P(S, (1) <0).
where P, denotes the bootstrap probability under F.

Now, using the Berry — Esseen Theorem for independent random varibles

( cf. Theorem 12.4 of Bhattacharya and Rao (1976)), one can conclude that almost
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surely, for all t € R,
* * *
sup | P_((S, (t)—E, S, (1)) <y (t))— @ ()|
y
(3.3)

<215 (] InI Byl 66 —xt) By § —x0)l* Hiro)

Here, as before, En denotes the expectation under Pn and @ denotes the

distribution function of N( 0, 1).

Next we state the following results without proofs. Result 3.1 has been
derived in the proof of Theorem 2.1 below ( see equation (4.4)) and Result 3.2 is a

consequence of Lemma, 4.2 of Section 1.4 below.

RESULT 3.1 : Let 9 have a bounded second derivative and Bn be defined by
equation (1.2). Then there exists N > 1 such that for alln > N ,

P(a,(B,—f)>b, )<ar

RESULT 3.2 : Let F, denote the empirical distribution of the estimated residuals

€.,i=1,..,n. Then for everyM > 0 and every k > 1,

i?

sup { | E_[9(e; —)]X-E [$( e, =] : |x| <M} = 0(1), as.

By Result 3.2 and the uniform continuity of ¢, it follows that for all x with

|x| <logn,

(3.4) | [r(x/a )12 = [r(0)%] = 0 (n), as.

Hence, from (3.2), (3.3) and (3.4), it follows that for all x with |x| <logn,
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(3.5) sup | P (a(f,—B,)<x)— & (—[ES, (x/a)l/r(x/a)) |
|x|<log n
=o(n_1/2), a.s..

* *
Next we simplify (= [E S (x/a )]/7 (x/a})). Since B satisfies (1.2),
taking Taylor's expansion , we get

0= x¥g-x0,-0)

1=
n

=1 _ ) -@0Y_ Eeq+ @) Swigne

where £ is a point between ¢; and ?i =Y, —x 1 <i<n. Now use Result 3.1

n’
and the Law of Iterated Logarithm (LIL) to conclude that

(3.6) a (B,—BA E ()= z l_:_l x; ¥¢) + o(1) a.s..

For j =1, 2, ..., n, a two term Taylor's expansion together with the LIL and the

a
fact thatXn X; = Xn x? =a12], yields,
i=1 i=1
E g, — xxfa) = 1) ge) — bxifa + a2(B — B)/n]BR(c,)
n¥eg — xx/ay) = - & xx;/a, (B, €

+ Rj n(x)

where sup { |Rjn(x)| :1<j<n, |x| <logn} =0 ( n_l(log n)2) a.s..
Therefore, by (3.6) and the Result 3.2, one has

(B8, (x/a)l/r(x/a) = Ax+ 2?=1(xi—1)¢(ei)/ana(0) + R (%)
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where sup {|R_(x)| : |x| <log n} =0 (1) as.. Recall that 02(0) = sz(el).

n
Define B_ = 2 (x; —1)¥(e.)/a_o(0). Then B has a limiting nondegenarate
n =1 1 i//%n n
normal distribution ( viz. N( 0, 1)). Also, from (3.5), it follows that

lezlllggn | P (a (B,—B,)<x) — ®(Ax+B))|=0(1) as.

Comparison of this with (3.1) shows that the usual bootstrap procedure fails to
capture the limiting distribution of the unbootstrapped statistic and as a result, is

not even first order correct.

As indicated in the introduction and implied by the above example, we shall
confine ourselves only to those cases in which condition (1.6) holds. First we

consider a situation where (1.6) is ensured by changing the resampling distribution.

Weighted Empirical Bootstrap
Assume that xi's are either all nonnegative or all nonpositive. For n > 1,

n
write p = 2 . |xi|. Let, F, be the d.f. putting mass |xi|/pn at €,

=1 !
i=1,..,n Take the resampling distribution Fn to be Fln and draw the

L 3 * * *
bootstrap samples ¢,,....¢, from F_ . With Y, = x Bn + €,i=1,.,n, define

L 3
the bootstrap estimator S of # as a solution of (1.5). Note that for this choice of
* -1 n
F, En¢(el) =P, 2 i=1]xil wp(Yi —xiBn). Hence (1.2) and the fact that all x;'s
are of the same sign jointly imply that

% . _1 n
E ¥(¢)) = (Sign of xl) P, 2 - X; q/)(Yi —xiﬂn) = 0.
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Hence, in this case (1.6) holds.

Before stating the theorems we introduce some more notation. For any

resampling distribution F_, write
m ) = Egfle =%, W) = 82 (x) = B ¢X(ef —x) - m(x)
(3.7)
m, () = E (W, —x)—m (x)', i=3,4 and A_=—m!(0)/s (0).
Next define
H, (0) = ®(x) —d, _ [(m"(0)/s,(0) — m!(0) W(0)/s3(0)) x2/2A2
+ (mg 1 (0) / 6s3(0) ) Hy(x) ] 6(x)
Hyp(x) = Hp () = §(x) [dyg { (m2'(0)/5,(0) + 3 A_W2(0)/ 2 W, (0) ) x/6A
+ (mg! (0)/6A,53(0)) xHy(x) + ((my (0) — 353(0))/245,(0)) Hy(x)}
+ 4, 2((m2(0)/5,(0) + AW (0)/W,(0)) (my ,(0)/1242 $3(0)) 2By (x
+ (my” (0)/7283(0))Hg(x) + (m)(0)/5,(0) + A W, (0)/W, (0))* x°/8A

— (m!(0) W'(0)/s%(0) + 3A_W%(0)/2W2(0))x3/4A2

— (mg ,(0) W},(0)/4A s2(0)) xH,y(x)}]




18
* *
REMARK 3.1 : In the statements of Theorems 3.1 — 3.4, Hln and H2n are
defined by the same expressions but in each case the functions m, W, mg and

m, . are to be defined using the corresponding resampling distribution F .

In the following, let P denote the bootstrap probability under F . We are
now ready to state

THEOREM 3.1 : Assume that the hypotheses of Theorem 2.1 (a) hold and that for
® . 2,.2 * o . :

every ¢ > 0, 2 exp (— an/a'n ) < . Ifﬂn is defined as a solution of (1.5) with
n=1

Fn = F1Il then,

(a) sn;p | P (a( ﬂ: -B,) <x) —HIn( Ax)|=o0(M/a ) as.

(b) s | Py Agag( 5y =By ) $x) = P(Aay(B, =) <)

=0 ( Mn/a,Il ) a.8..

where A and A_ are as defined in (2.1) and (3.7) respectively.

Modified Scores Bootstrap :

Now we consider bootstrapping Bn using Shorack's modification. For any

%
resampling distribution F , define ﬂn as a solution t of

n

(3.8) y il WY; —xt) —E_$(e;) } = 0.

. . . * *
Clearly with this modification, E { ¥(Y; — x;8,) — E ¥(¢;) } = 0 for any

resampling distribution F and any xi's. Let Gn denote the empirical distribution
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of the estimated residuals ?1 yeuey €y

n If 9 is smooth, one can take F, = G and

%
still have the Edgeworth expansion for ﬂn. More precisely, the following analog of

Theorem 3.1 is true.

*
THEOREM 3.2: Suppose that the hypotheses of Theorem 2.1(a) hold and ﬂn is
defined as a solution of (3.8) with F =G, . Then,

(a) sup | Py (2 B —B)<x)—Hy (Ax)|=o0(My/a ) as.

(b) sup | Py Agag(fy =By ) $x) = P(Aay(B, =) )

=o(M_ /a ) as.

Now consider the case when ¢ is not necessarily smooth and the
differentiability conditions are imposed solely on F. Here, instead of taking the
samples from Gn, one should take the bootstrap samples from some smoother
estimator of F to guarantee the validity of Edgeworth expansion for the
bootstrapped estimator ﬂ:. Let k be a known probability density on the real line

and {en} be a sequence of positive real numbers, e, 20asn- o Define

(39) 8.9 = et [ [ K (x9)/ey) 4G, (1) ]

Now take F to be the d.f. corresponding to g, In this case properties of F
depends largely on the assumptions made about k and {en}. Forr =1, 2, let

C(r) refer to the following conditions on k and {en} :

0
(i) For every ¢>0, }: n=1 &p(= cnele(r+2) ) < o,
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(ii) / |u] k(u)du <o  and

(iii) Fors =0, 1, ..., (r+1), k(s) is of bounded variation.

. %
THEOREM 3.3 : Assume that the hypotheses of Theorem 2.2(a) hold and that B, is
defined by (3.8) taking F, to be the d. [ corresponding to the density g . If k and
{e,} satisfy condition C(1), then

(a) sup | Py (2, B —B)<x)—H, (Ax)|=o(M/a ) as.

(b) sup | Pyl Ayay( 8 =By) $x) = P( Asy(By =) <x)|

=o(M/a ) as.

Theorems 3.1 — 3.3 show that appropriate bootstrap estimators correct the
terms of order O(d; ) ( see equation (2.1) of Section 1.2 for the definition of djn’
1<j<4 ) in the Edgeworth expansion for the distribution of normalized Bn and thus
attain a higher rate than the normal approximation. In fact, under some symmetry
assumptions on the model, the accuracy of bootstrap procedure can be increased
considerably with a minor modification. Assume that the score function ¢ is odd
and the underlying d.f. F is symmetric about zero ( i.e. F(—x) + F(x) = 1 ). Under
these conditions all the terms of order O (dg ) in the Edgeworth expansion of Bn
vanish. As a result, the rate of normal approximation is typically of the order of
O 411). In such situations if one draws the bootstrap samples from an asymmetric
resampling distribution F , the terms of order O(d3n) do not necessarily vanish
from the corresponding expansion for ﬂ;. Therefore, the rate of bootstrap

approximation can at the best be of s, ) which is much worse than the normal
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approximation. In particular this implies that the ordinary bootstrap procedure
fails in such situations. However, one can overcome this by changing the
resampling distribution to a suitable symmetric distribution. Only the case with

smooth F is considered below.

Let g be as in (3.8). Since gn(x) may not be symmetric, we symmetrize g_
and take the estimating density at x to be f (x) = [g (x) + g,(-x)]/2. Now choose
F  to be the d.f. corresponding to f . Note that for this choice of F , (3.8) reduces

to (1.5) and the corresponding bootstrap estimators are the same.

THEOREM 3.4 : Assume that the hypotheses of Theorem 2.2(b) hold and k and
{en} satisfy condition C(2). Then for odd 3, symmetric F and F  equal to the d.f

corresponding to fn,

(@) s | Py(ay B —B.)<x)—Hy (Ax)|=0(d)=0(M/a2) as.

(5 sup | Py Agay B —B)<x)—P(Aa (B, — B <x)| =0(d,,)

_ 2,2
=o0(M/a ) as.

In (a) and (b), ﬂ; is defined as a solution of (1.5) or (3.8).
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1.4. Proofs.

We start by stating Esseen's lemma (Lemma 2 of Feller (1966), page 512).
LEMMA 4.1 (Esseen) : Let F be a probability distribution with vanishing ezpectation
and characteristic function . Suppose that G is a function on the real line such that
F — G vanishes at + » and G has a derivative g with |g|< m. Finally, suppose thatg
has a continuously differentiable Fourier transform v such that y(0) = 1 and

4 (0) = 0. hen for all real x and a > 0,

| F(x) ~G(x) | < J_g { | elt) = (t) |/(x]t])} dt + 24m/ ar.

Repeated use of this lemma with proper choice of a and G will give the
expansions upto the desired order. For the sake of completeness, we include here an

inequality due to Hoeffding ( Theorem 2 of Hoeffding (1963)).

HOEFFDING'S INEQUALITY : If Xl, X2, very Xn are independent r.v.'s with

a; <X, <, (1 <i<n), then for anyt > 0,

P(X—p>t)< exp( -—2n2t2/21.1 l(bi—-ai)z)
1=

—1¢n
where X = n z X; and p=E (X).
i=1

Before proving Theorem 2.1 we need to have some more notation. For t € R,

let
n

Sp) =) . x#(Y;—xp), iy(x) = ES ( B+ x/ay),

i=1
n
V_(x) = 72(x)= Var S_( S+ x/a_), Ay =) xt ot(x x;/a ),

th

7. (x) =i central moment of S, (B+ x/a.n), i=3, 4.
)
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pp(xt) = E exp (it ( S( B+ x/a;) — (),

v, (x.t) = llog ¢, ()] + V,(x) 2/2, W (xt) = E exp (it 9 (¢, —x).

Next for real numbers x and y, define
Kpp(6) = @ (3) = (13 5 (0)/ 675(%) ) Ho(y) 6 (¥),
Ko (63) = Ky (563) = 0(3) [((1y (x) — 38y 1())/2473(x)) Hy(y)

+ (g (x) / T275(x) ) Hy(y) ],

Tal0t) = [1+ (g 1 (x)/ 673(x) ) (it)° | exp (—t%/ 2)
Ton(%) = 1 (x) + [ (g () = 3y (x))/2475(x) (it)*

+ (45 (0 / T275(%) ) (it)°  exp (—%/2).

In the proofs that follow, we shall use D > 0 as a generic constant, independent

of n, x, y etc.

PROOF OF THEOREM 2.1 : Proofs of parts (a) and (b) follow more or less the
same route . First we outline the arguments common to both the parts and then

complete the remaining steps in the proof of each part separately.

Note that boundedness of ¢, %" and continuity of ¢" guarantee that
Jw'(y)dy < o and ¢ is uniformly continuous. This in turn implies that ' is
bounded. Therefore, the function u is twice continuously differentiable with a
bounded second derivative. Hence there exist constants n >0 and ¢, >0 such

that for |x| <,
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(4.1) lu(x)| > c|x].

This inequality will be used to obtain a bound on the probability of the deviation of
Bn from 8. Next observe that monotonicity of ¥ implies Sn(t) is nonincreasing in t

for every n>1. This and the definition of Bn gives,

P(S,(B+x/a ) <0)<$P(a, (B,—B)<x) <P(S (f+x/a )<0)
(4.2)
P(S,(B+x/a )>0)<P(a (B, —B)2x) <P(S,(f+x/a,)20)

By Hoeffding's inequality, (4.1) and (4.2), there exists a constant C > 0
such that for all 0 < u < mM,,

(4.3) P(|B,~81>u)s 2exp(~Cu’al)

Now take u = b /a (recall that b =loga ) in (4.3) to get an N > 1 such that
for alln > N,
(4.4) P(a, | B,—B|>b_ ) < a >

Therefore, it is enough to consider the expansion of P(a | B, —f8 | <x) for
|x| <b,. In view of (4.2), (4.3) and the form of H, (x), it is enough to find an
expansion of P( S ( A+ x/a ) €0), that holds uniformly for [x| <b_, and to
appraise sup { P(S (B+x/a))=0), |x|<b }.

PROOF OF (a): Given an 7 > 0, choose an integer N and a constant b > 0 large

enough such that for all y and |x| <b_, 24 |K, (x,y)| < bp. This is possible since
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both ¢ and its derivative are bounded. Take a = b Mn/a,n in Lemma 4.1. Then for
all y in R and for all x with |x| <b,

| PO[S,(8+x/a ) —p (x)/7,(x) <y ) —K (x,y) |
(4.5) :

<[ 21 o0t/ my) = 7 0e) 1/ 18] dt + My /2y

As is customary, the integral on the R.H.S. is broken into two parts ; one
ranging over |t| < §a /M_ (callit I) and the other over §a / M <[t| <a
(call it ITI ) for some § > 0 which will be chosen later. Since ¢ is bounded,

continuous and nondecreasing, % is uniformly continuous. Therefore for any D > 0,

sup{| w(x ) ~w(0.t) | : [t] <D}
<D 9 -$() | dFy) +0 asx-0.

Hence there exists a § > 0 such that for |x| < 26 and |t| < 26,

(4.6) [w(x,t)] > .5.

This guarantees that v n( x,t/ rn(x) ) is well defined for large n when |x| < b and
|t| < §a /M . Since 3 is bounded, v ( x,t/7 (x))is infinitely differentiable in t
over |[t| < 6a /M . Next note that for any complex number u with |u|<1

log (14u) =u— u?

r(u) where |r(u)|< 1/(1-6;) forall |u[< o<1
Therefore, Taylor's expansion of v_(x , t/7, (x)) around t = 0, continuity of the
functions V(x), u3(x), p4(x) and the above result together yield (possibly with a
smaller § > 0)
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(4.7) | o, /() = (it)° g ((%)/673(x) | <D [¢]* (Ex* / 7500)

for all |x| < b, [t| <éa /M and large n. Without loss of generality we may

suppose that for the same set of values of x, t and n,
(4.8) | vt/ 0) | <8274, | (i6)° mg ((/673(%) | < ¢4,
Note that for all complex u and z,
lexp(u) —1-2 | < ( [u=z | + |z|%) exp (7)
lexp(u) — 1-2—2%/2| < (Ju=z | + |2]°) exp (), ¥ > max (|ul,|2]).
Now choose § > 0 such that (4.6) — (4.8) hold simultaneously. For this

choice of &, one may use bounds (4.7) — (4.9) to conclude that uniformly in

|x| <b, and for large n,

1= | {1 gt/ (0) = 7 (x) |/ 18] } e
[t]<da /M
- | |17 lexp(v, (4 7,()) 1= (1) *1g  (0)/673(x) | exp (—47/2)d
|t]< 6a /M,

<D [ (1Pt /720 + 117 (20?70 ) exp (4374 e

(4.10) <D(M/a_)?
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This takes care of the first part of the integral. Now we estimate II . Note that for

real numbers x and t, the differentiability of ¥ gives
|w (x,t) —w (0,t)| <D |tx].

By the nonlatticeness of y(¢;) and the above inequality, it follows that there exist
0<qg<1land N >1 ( both depending on 5 through 'a' of (4.5) ) such that for all
n> N,

sup {|w(xxj/a,n, txj/rn(x))| :jeA (c), [x|<by, 6a /M <|t|<ba /M }
(4.11)

<q.

Hence by condition (2.3) it follows that for alln > N and |x| <D ,

I = j {10, (x,t/7, (%)) = 7, (6t / [t} dt
fa /M <|t|<ba /M

ka(©)
(12 <Dlq " + | {1 mplot) |/ 161} dt ]
ba [ M_<t|

<D(M,/a )2

By (4.5), (4.10) and (4.12) it follows that given an 7 > 0, there exists N > 1 and a
D>0 ( both depending on F only through the nonlatticeness of ¥(¢;) and the values

of the function p, o, Hg and their derivatives at zero ) such that for all n > N,

o]y SIP TP xfa) ~ /() €3) Ky (6, ) |

2
<D(M/a )"+ M /a.
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Since 7 > 0 is arbitrary, this gives the Edgeworth expansion of normalised
S,(8+x/a ) with a remainder term of the order of o (d3n) uniformly in
|x| € b . The smoothness conditions on 4 ensures that the functions 4, V and ug
have a second derivative and 4" is uniformly continuous. Taking Taylor's

expansions ( of the terms involving x ) around x = 0, one gets,

1y (X)/ 7 (x) = x¢'(0)/2(0) + d;  (u"(0)/0(0) — ' (0)V'(0)/ A 0)x*/2

+ an(x)a
i n(/73(x) = (g 1(0)/3°(0)) (d) + Qpp(x),

where the remainder terms satisfy

| Q0 | €D’ (dg;) sup { | 4'(y) = #"(0) | : Iy] S My/a },
(4.13)
| Qp,(x) | <Db_(M_/a )’

for all x with |x| <b . Here the constant D depends only on the values of functions
b, V, mg and their derivatives at 0. Using the above expansions, uniform

continuity of 4" and (4.2) one can conclude that,

0B I PCay(By =) €0~ By (A0 | =0 (4 5,)).
- n

This together with (4.4) completes the proof of part (a).

PROOF OF PART (b) : The steps in the proof are similar to those in part (a). We






29
will mention only the major differences here. Given 7 > 0, choose b > 0 large
enough such that for all y inR and |x| <b, | 24 K, (x,y) | <bp. Takea=>

d,, in the Esseen's lemma and break up the integral into two parts as before. Note

that for any complex u with |u| < 1,
log (1+u) = u—u2/2 +u r(u) where |r(u)| < 1/(1-§;) for |u| < § <1.

Using the differentiability of v(x, t) in t and the above result, choose § > 0

such that for [x| <b_, t] < 6a /M~ and largen,

| oot/ 7y (%)) = (i6)° g (¥)/675(0) = (it)* [y (%) = By (0)/2475() |

<D [t (] I%1%)/73),
valat/ ry (N1 € 82/4, 1) g 00/673(x) + ()% by (/2473 (0)| < £/,

Now use the second part of (4.8) to conclude that for [t| < § Mn/an,

| 9,0t/ 7, (%)) = Yy (k)] € D (dg M, fa) {1615+ |t} exp(—t%/4).

Hence, it follows that for large n, uniformly in x| <b_,

(4.14) 1=J (o (/7 (0) = 1 (01 /1t]} dt € Ddy M /a .
[t|<éa, /M

For estimating II, one has to use condition (A.6) instead of the

nonlatticeness of w(el). In fact condition (A.6) guarantees that
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k (
(415)  sup {|g,(x, t/7 (x)] : Ix|<b, Sa /M <[t|bd, } < q a(®

Using (4.14) and (4.15) one can conclude (as in part a ) that

(4.16) sup sgp IP((S,(8+x/ay) —p (x))/7,(x) $y) =Ko (x,¥)]

[xI< b,

=0 (dgy) =0 ((My/a,)).

Now observe that the differentiability conditions on 3 implies that the
functions gy, V, b and py are three times differentiable and y"' is uniformly
continuous. A tedious computation of Taylor's expansion gives

p (/7. (%) = (#(0)/0(0)) x + (dy) {#"(0)/0(0) — w'(O)V'(0)/5°(0)} x*/2

+[(3d2_/2) { 3 w(O)V'}(0)/26°(0) — w"(0)V'(0)/%(0) }
A+ dy, {4"(0)/0(0) — 31 (0)V"(0)/20°(0)}] x°/6 + Qg (%),
3 _ 3 ) 3
g o (R)/73(x) = dy, 15(0)/0°(0) + doy 15'(0) x/0°(0))
~3d2 1y(0) V'(0) x /26°(0) + Q, (%),
[y ) — Fiy 109 1/75(0) = dgp, [1,0) = 1y(0) 1/*(0) + Qs (),

g n(0)/75(%) = dF, 15(0)/0%0) + Qg (x)

where for all x with |x]| < b, the remainder terms satisfy
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Qg ()| <D |x| g sup { | w"'(y) —u"(0)] = Iy] <Mb [a },
(4.17)
Max { |Q(x)| :i=4,5,6} <Db2(d, M_/a).

The constant D depends only on the values of the functions u, V, B > by and their
derivatives at zero. As in the previous case it now follows from (4.2), (4.16) and

(4.17) that

Sy | P(a (B~ ) <x)—Hy (x) | =o(dy)=0((M,/2)>

By (4.4) the proof of part (b) is now complete.

PROOF OF THEOREM 2.2 : Note that the hypotheses of Theorem 2.2 differ from
those of Theorem 2.1 only in the differentiability conditions on the functions 9 and
F. From the proof of Theorem 2.1 it is evident that the differentiability of the
function 1 has been used to guarantee that the functions u, V, lg and by have
sufficiently many derivatives. Since 9 is bounbed and nondecreasing, therefore for
every k > 1, wk is of bounded variation. An application of integration by parts

gives,

[ # -2 aFw) = ¥ (o) - [ F (v + 2 a0

As a consequence of this relation, the function x4, V, ba and by will have
sufficient smoothness as required in the proof of Theorem 2.1. The only cases where
the differentiability of 3 has been used for different reasons are (4.6) and (4.11).
But under the hypotheses of both the parts, F has a density and hence this follows
easily by Scheffe's Theorem.
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PROOF OF THE PROPOSITION : Let p=Q { (a, b) }. Then 0 < p < 1. For
any set B of R, let lB' denote the indicator of the set B. Note that by the Riemann

Lebesgue Lemma,
e (it #9) 1, | 1)) 4Q)
=J exp (ity) 11 ygay , gy ) 9 0D/ 1y

-+0as |t] - w.

Hence, there exists a constant M > 0 such that for |[t| > M,

(418) | [exp (it #3)) 115, ) dQ) | < p/a.

Therefore, for any x in R and |t| > M,

| Eexp (it (¢, —x)) |
<(=p)+ ] [exp (it Yy =x)) 11y (¥ Q) |
<(4-3p)/4 + | [ [exp (it oy —x) = exp (it 63) ] 115, 1)) 4QW) |

<=3/t + [1a@+9 1y pg® = a0 1, pO) | dy.

Note that the continuity of q on (a, b) implies,

4y +3) 1y 4 pa)®) 2 a¥) 1 () asx-0.

Therefore, the above integral goes to zero because
J Ay +x) 1, ¢ py®dy = Jq ) 13 p)ly) dy forallxinR.

Hence, there exists 6§ > 0 such that whenever |x| < § and |[t| > M,
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| Eexp (it ¥ ¢; —x)) | <(4-3p)/4 +p/4 =(2-Dp)/2< 1

This completes the proof of the proposition.

. *
For the proofs of Theorems 3.1 — 3.4, define w_(x,t) =E (exp (it¢(e; — X)),

1 . 1v® .
W (xt) = Py 2j=1xj exp (mp(ej— x)) and w2n(x,t) =n" zj:lexp (m/)(ej —X)).
The basic facts required for proving Theorem 3.1 and 3.2 are given in Lemma 4.2

below.

LEMMA 4.2 : Let Fn be either of the resampling distributions of Theorem 3.1 and
3.2. Then, for anyM > 0,
(4.20) sup { | w (x,t) —w (x,t) | : [t] <M, |[x| <M}=0(1) as.

Let h be a function with a bounded first derivative. Then for everyM > 0,

(4.21) sup {|E_h( ¢ —x) —Eh(e,—x) | : [x] €M} =0(1) as.

PROOF OF LEMMA 4.2 : First we prove (4.20). For |t| <M, |x| <M and
Py =Fiw
1 > -
<HeOI1e 12 Ix1 16— 1 1py,
=1

2
<DaZ|B,~61/p,

By the assumption on x;'s and (4.3), the R.H.S. tends to zero a.s. as n tends to

infinity. Similarly, for F =G, [t| <M, [x| <M,

| wy(ct) =W o () | < Da |B,~61/n.

By (4.3), this tends to zero a.s. as n goes to infinity. Therefore, it is enough to
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show that fori = 1, 2,

sup { | w, (x,t) —w(x,t) | : [t|] <M, |x| <M} =0(1) as.

This is proved by adapting the idea of the proof of Lemma 2 in Babu and Singh
(1984). Fix n > 0. Then there exists a constant C > 0 ( independent of 7 ) such
that for all n > 1 and for all u with |u| < Cp,

sup { | w (x+u, t+u)—w (xt) [ :[t] <M, |x] <M, i=1,2}<np
and '

sup{ |w(x+u t+u) — w(xt)|:[|t] <M, |[x|] <M} <

Define B(M,n) = { j : j is an integer between —M/(Cn) and M/(Cn) }. Then,
fori=1, 2,

sup { | wi (%t) —w (x,t) | 2 [t] <M, |x| <M}

<29+ max { | w; (1Cn, jCn)—w (1Cn,jCn) | :i, je B(M,n) }.
Therefore by Hoeffding's inequality it follows that

P(sup { | wy (x,t)—w(xt) | [t] <M, [x| <M} >4p)
<P(max { | wy (iCy,jCn)—w (iCp,jCn) | :1,j€ B(M,n) } > 29)
<D 7 2 exp (—(1py)°/ 222).

Similarly,
P(sup { | wo (x,t) —w (x,t) | : [t] <M, [x] <M} >4p)

<Dy 2exp(—1n/2).
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By Borel Cantelli lemma, first part of the lemma follows. The other part can be

proved similarly.

PROOF OF THEOREM 3.1 : Now we sketch the proof of Theorem 3.1. Since ¢ is
bounded, by Lemma 4.2 all ( central ) moments of 9 ( €, —x) under F converges
a.s. to the corresponding (central ) moments of (cl —x) uniformly over |x| < M.
Let N denote the set of all positive integers. Fix a sample point for which (4.20)
bolds for every M in N and m (x), s (x), m3’n(x), m4’n(x) and their
derivatives respectively converge to u (x), o (x), ,u3(x), py(x) and the
corresponding derivatives uniformly over |x| < 1. For this sample point, using
Lemma 4.2 one can get bounds in the inequalities ( in the present set up )
corresponding to (4.1), (4.3), (4.4), (4.5), (4.10), (4.12) and (4.13) uniformly

over all n > N for some N > 1. Hence one can retrace the proof of Theorem 2.1(a) to

obtain Theorem 3.1 (a). Part (b) follows easily from Lemma 4.2.
PROOF OF THEOREM 3.2 : Similar to the proof of Theorem 3.1.

PROOF OF THEOREM 3.3 : Let G1 n denote the empirical distribution function
of €],-e,. Define g, (x) = j [k ((x—y)/e,) dG,,(y)]/e, - First we show that the
estimators gn(r) (x) converge to f(r)(x) uniformly in x for r = 0, 1, a.s.. Under
the hypothesis of Theorem 3.3, Lemma 2.2 of Schuster (1969) and a simple
modification of Lemma 1 of Bhattacharya (1967) guarantee that

(4.22) max { || gln(r) _£{®) | :r=0,1}=o0(l)asn-o as.
Therefore, it is enough to show that

(4.23) max { g, g ] : r=0,1} =o(l) asn-e as.
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Now, I g, —g, )

< Zl.l | SUP | k() (x — )/e, ) — k(D (x=E)/e, )| /n el ™!

1=
<0y 15-¢ |/ (et
= i=1 i i n

<Da, | BB/ (n!/2el*2).

The last step follows by an application of Cauchy Schwartz inequality. By (4.3)
and the assumption on { e}, (4.23) follows. Hence (4.22) and (4.23) jointly
imply that

(4.24) max { [| g, () ) :r= 0,1} =0(1) asn-0 as.
For proving Theorem 3.3 we need the following Lemma.

LEMMA 4.3 : Let F be the distribution corresponding to the density g . Then,
sup { | w (x,t) —w(xt) |:t€R, xeR}=0(1) asn-w a.s..
For any bounded function h,

. *
sup { | E h(e; —x)—Eh( ¢ —x)|:x€R}=0(1) asn-w as.

PROOF OF LEMMA 4.3 : It is to see that for all x and for all t
| w () = w (x,0) |
< J | 8,(v) -1(y) | dy
By (4.24) and Scheffe's theorem it follows that

[ 18,0 ~10) 1 dy+0asn-w as

This proves the first part of the Lemma. Proof of the other part is similar.
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Now we give an outline of the proof of Theorem 3.3. Fix a sample point for
which max { || gl(lr) ) [: r=0, 1 }+0asn-w Itisenough to show that
for this sample point the inequalities in the proof of part (a) of Theorem 2.1 holds
uniformly in all sufficiently large n when F is replaced by F . Note that for any real
number x,
spp{ | w(x,t) —w(0,zt) |:teR}
< [115+x-1) | dy

which tends to zero as x tends to zero. Hence, by the nonlatticeness of ¢(cl),
Lemma 4.3 and the above observation, it follows that there exist N > 1, § > 0 and

0 < q < 1 such that for all n > N,

Inf { | w (x,t) | :]t] >M, |x[<é}> .5,

(4.25)

sup { | w (x,t) | :[t] >M, [x| <6} <(1+q)/2<1
Also by Lemma 4.3,

Max { [ m &= 4@, 15, & —o@jir=0, 1, 2} 2050w
(4.26)

(D ):i=3, 4 r=0,1,2}-0asn-

Max{ || mi’n(r) W

Using (4.25) and (4.26), one can get bounds in the inequalities corresponding to
(4.4), (4.5), (4.10), (4.11) and (4.12) uniformly over all sufficiently large n. As for

the counter part of (4.13) in this case, note that,
sup { | m{Dy) —m(PD0) | : Iyl <M b /a_}
<sup { | By) = 4@ (o) [ : 1yl <Mbfa ) +2 1 mD 4P

-+0asn- o
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Hence part (a) of the Theorem 3.3 follows. Part (b) is trivial in view of Lemma4.3.

PROOF OF THEOREM 3.4 : Using the conditions on {en}, k and the symmetry of

the underlying density f, one can show ( as in the proof of Theorem 3.3 ) that
max { ||fI(lr)—f(r)||:r=0, 1, 2}-0asn-o a.s.

Therefore the conclusions of Lemma 4.3 hold in this case as well. Hence, one can
complete the proof along the line of proofs of Theorem 3.3 and Theorem 2.2(b) with

a similar observation on an.



CHAPTER 2

2.1. Introduction.

Let X;, Xo, ...

(i.i.d) p—dimensional random vectors with distribution function (d.f.) F g Where 0

be a sequence of independent and identically distributed

lies in an open subset © of R™. Let ¥: RP x © - R™ be a measurable function

with respect to (w.r.t) the Borel o—algebrason RP x © and R™ such that

(1.1) Jz/)(x, §) dFx) = 0 forall ¢ ©.

a

Let wl,...,qu denote the components of 3. Then M-—estimator 0n of 6

corresponding to ¥ is defined as a solution of the m—equations (int )
(1.2) ) %X ) =0,i=12.,m

For n > 1, denote the empirical distribution function of Xl’ X2""’Xn by Fn‘ Let

X’i‘,..

M-—estimator 6} as a solution of the system of equations (in t)

.,X’I"l be a random sample of size n from Fn' Define the bootstrapped

n
(1.3) ) BXLY) =0, i=12.,m
=1

In sections 2.2 and 2.3 below, under some regularity conditions on ¢ and
Fg, it is shown that bn exists for sufficiently large values of n and tends to 6 as
n-o with probability 1 under 4. It is also shown that with high ( conditional )

probability under F , 6% exists and tends to § at the rate O(n_l/ 2(log n)l/ 2).

39
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For such sequences of estimators, an almost sure Edgeworth expansion of the

distribution of Jﬁ(0;"l - bn) is given.

The method of the proof is similar to that of Bhattacharya and Ghosh
(1978). Using the assumptions, an almost sure representation for f,, is obtained.
In fact, it i3 shown that there exists a sufficiently smooth function H and a Borel

measurable function f: RP - Rk, for some integer k 2 1, such that

n
where Z = l/nX Zj’ Zj = f(Xj), j=1,2, .., n and with probability 1,
‘21

J
IR Il = o(n_(s—2)/ 2) for some integer s > 3.

Next, for almost all sample sequences (Xl’ X2,....), outside a set of

conditional probability o(n_{s_z)/ 2), 0; is expressed as

0 = H(Y + R})
where Y = %Xn Y, Y;=f(X}), j=1,.n and
ji=1
Pn(IIR;';II > O(n_s/ 2(log n)s/ 2) = 0(n—(s—2)/ 2) almost surely (a.s.). Here P_ refers
to the conditional probability given (Xl, X2,...,Xn). It should be pointed out that
for almost all sample sequences (Xl’ X2,...), 6* is expressed in terms of the same

n
function H.

The arguments in the proof following this point can be divided into two

steps. In step 1, Jﬁ(ﬂ;"l - bn) is closely approximated by yn(H(Y) — H(Z)).







41
Properties of H, RIl and Rl"; guarantee that for almost all sample sequence
(Xl’ X2,...), the error of approximation, say D , is small with high conditional

probability. More precisely, DIl satisfies
P_(ID,ll > 00 1)/2(10g n)*/?) = o(a52/2) 5.

Representation of 01"; in terms of the same function H is crucial for carrying out

this step.

In step 2, an almost sure asymptotic expansion for the conditional
distribution of yn (H(Y) — H(Z)) is obtained. This, together with step 1, gives the
almost sure asymptotic expansion for the distribution of Jﬁ(0; — bn)‘ Corresponding
expansion for the distribution of \/ﬁ(bn— 6) was obtained by Bhattacharya and
Ghosh (1978). Comparison of these two expansion shows that the bootstrap
distribution of ,/ﬁ(ﬂ; - bn) approximates the distribution of Jﬁ(bn— 6) under 4,
at the rate of o(n_l/ 2).

2.2. Assumptions and main results.

Before proceeding further, we collect here the notations to be used in the rest
of chapter 2. Let 7t denote the set of all non—negative integers. Also, let ¢ be a

positive integer. For v = (1/1....1/[)' € (Z+)( and x = (xl,...,xe)' in IRZ, write

{ v, 4
=1 x.l, V=TI (w!) and |v| =v,+...4v,. For a function f:lRZ—*IR
i=1 ! i=1 | 1 ¢

having sufficiently many partial derivatives, denote by D jf the partial derivative
v " Ve

of f w.r.t. its j—th co—ordinate, j=1,..., {and set D"f = D1 . DZ f. Let <I>A

and ¢ A Tespectively denote the distribution function and the density of normal

distribution with mean zero and covariance matrix A for some positive definite
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matrix A. For any matrix A, write A = transpose of A. By ||| and <, >
denote, respectively, the norm and the inner product on appropriate Euclidean
spaces. For a Borel set B C Rt, let B = {x: ||x—y|| < ¢ for some y € B}, ¢ > 0
and B = boundary of B.

Next, denote the underlying parameter value by 00. For i = 1,...., m,
0<|v] < s-1 and j 21, define the variables {Zu,i,j} and {Yu,i,j} by
Z,:5=D" %Xy 0, Y,; ;= DY§(X1, 6. Write Yg”), zJ(") for the
and (Z

. 14 14
respectively. Set Z; = ( zj( 1) 0 < Wl <o ¥ = (YJ( 1) o < (v] <ot Then

vi,j
m—dimensional random vectors (Y

V7l ?J

vij) i = 1,.,m vif i = 1,.m

(Zy, Zy, ...) and (Y, Y,, ..) areiid k—dimensional random vectors with
m+r—1

1 n
. ri Z(V)=
, (| ) Write 2j=1

define Y(V ) and Y similarly. In the following we shall write P to denote the

8 n
- (v) = :
k mzr ZJ /n and Z 2j=1 Zj/n and

o0
product probability measure @ F g on the space of all infinite sequences in RP and
1 "o

E to denote the expectation under P. Xl’ X2, ... are then considered as
co—ordinate variables. Also write E to denote the expectation under P .

Let byi= E(Z i=1,.,m 0¢|v]|<s,

u,i,l)’

(2.1) ”V=(”1/,i)i=1,...,m and ”=(”V)0S|V|SS—1'

Also,let Y =E (Z—p)(Z;—p) and S,=E (Y~ E Y )(Y,—EY,)".
Finally, define

M = (Grad H(y)) (%) (Grad H (i)’

M = (Gard H(Z)) (S,) (Grad H(Z).

Now we state the assumptions.
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(A1) There exists a Borel set C c RP such that Fy(C) =1V 0 € © and the
components of ¥ have continuous wth order partial derivatives in # for 1 < |v| <s

at each (x, 4) € C x © for some integer s> 3.

(A2) E ||DV1/;(X1, 00) I® < for 0 < |v| <s—1, and there exists an ¢ > 0 such
that

Max E( sup |DY ¢(X;, O)|°) < .
|vl=s l|6-6 ||<e 1

(A3) D= ((E Djzl)i(Xl, 00) )) is non—singular.
We are now ready to state the main result.

THEOREM: Let assumptions (A1) — (A3) hold. Then,
(a) for almost all sample sequences (Xl, X ...), there ezists a sequence of statistics

X
{0,} and a constant d; >0 such that

P (10, 0]l < d;n/%(10g 0)!/2, 4] solves (1.3) ) = 1 —o(n™(52)/2),

(b) There ezists a sequence {0n} of statistics such that

-1/2

y ' y 1/2
P (6, solves(1.2)and ||, -0 | <d;n

(log n)"/“ eventually) = 1.

- *
(c) Let {0n} and {ﬂn} be two sequences of statistics which respectively satisfy (b)
and (a). Suppose that the characteristic function of Z, wunder 00 satisfies the
Cramer’s condition
i<t,Z1>

(A.4) lim sup |E (e

<1
1t Il 0 )

Then, there ezist polynomials a,(F, -), ..., as_z(Fn, -) such that for almost
all sample sequence (Xl, X2, )y
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P,/ (4, — 6 ) € B) (1+2“’-2 /% (F_, x))d8y, (x)]
sup —0 )¢ —J n /“a(F_,x b
Beg " non B r=1 ra M,
— o@D/
where @ is a class of Borel subsets of R™ satisfying

(2.2) ggg@M(HB)‘) =0(e)ase] 0

and al(Fn, )y ees as-‘—2(Fn’ +) are polynomials whose co—efficients are continuous

functions of moments of F of orders or less.

(d) If conditions (A1) — (A4) are satisfied with s = 3, then for almost all sample

sequence (Xl’ Xy, )

sup, [P/ ML/20" -8 )eB) P (vEMY%8 - 0) e B)| =0 @ /?)

where B isa class of Borel subset of R™ satisfying

(2.3) sup &((dB))=0(c) as €0
Be.g

REMARK 2.1. Conditions (A1) — (A3) are similar to those of Bhattacharya (1985)
and are somewhat we;,ker than the conditions in Bhattacharya and Ghosh (1978).
Under some additional conditions, e.g. the contnuity of the maps 8 - F() and
6-D(0) = Eo((Dj % (X{, 0))), Bhattacharya and Ghosh ( 1978) have obtained
results similar to (b) and (c) of the Theorem uniformly in 4 lying in compact subsets
of ©. But, in our case, such a uniformity does not seem to be necessary. Given the
data xl,...,xn, if we can find 0;‘; and bn satisfying (a) and (b), we can use the

approximations in part (c) and (d) without any knowledge about 4. One such

situation is of course that (1.2) and (1.3) have unique solutions. In the case of
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multiple solutions there is no rule which definitely specifies bn satisfying (b) (or 0%

satisfying (a)) even in the presence of such uniformity.

REMARK 2.2 : Part (d) of the Theorem extends the pioneering result of
Singh(1981) concerning the improvement of the rate of approximation by bootstrap
in the case of sample mean. Taking ¥ (x,t) = x —t for the sample mean, it is easy
to see that assumptions (A1)—(A4) reduce exactly to the set of conditions required
for the validity of the corresponding result (part D of Theorem 1) of Singh(1981).

REMARK 2.3 : Though conditions ( 2.2) and ( 2.3) look similar, they are not
equivalent in general. If the largest eigenvalue A of M is less than or equal to 1,
then every class of Borel sets satisfying (2.3) also satisfies (2.2). But for A>1, a
class of Borel sets satisfying (2.3) need not satisfy (2.2) as shown by the following
example.

EXAMPLE : We consider the casem = 1. Let M = (A) with A > 1 and ¢ = (4A)".
Also , let a_= ( c log n)l/2

=B and (dB) = U ( a —€,a +e ). Therefore, for 0 < ¢ < ag,
n>2

,0 > 2. Define the set Bby B = {a :n> 2} Then

J((’)B)‘ exp ( —x2/2) dx

<

X2 X
zn>2 J(a,n—c, a + ¢ exp (~x/2)d

<2)  exp(—(a¢ %/2)

n>2
< 262 exp (— (arzl —2¢ca )/2).

n>2
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~1/4

Now choose 0 = (16 A ) and let N be an integer such that (1-20)ay > 2a4.

Then,

J(aB)f exp (—x2/2) dx gze(N+§n>Nexp (—oa2))=0(e).

Hence @ = { B } satisfies condition (2.3). Now for sufficiently small ¢ > 0 and
for all integer n satisfying (n+1)e > 1, a 1/2,

ntl 2 <€ Write a = (—c log ¢)
Then,

> (a1 a3 A)exp (—a2/20)

—a (‘ 1—a 2 A ) € ¢/2A,

Hence, it follows that

> lim a ! (l—a,_2A) e(c—20)20 _

So, 2 does not satisfy condition (2.2).

REMARK 2.4 : Condition (A.4) may be difficult to verify in some situations. A
sufficient condition for (A.4) is given in Bhattacharya and Ghosh (1978) as
assumption (A6) on page 439. In our set up, this can be stated as : (A6) of
Bhattacharya and Ghosh (1978) together with the assumptions that C in (Al) is

open and the matrix ((E #(X;, 00) . qu(Xl, 0,))) is nonsingular.
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2.3. Proofs.

First we state and prove some lemmas.

LEMMA 3.1. If E ||Z)> < forsome 823 and Z, satisfies (A.4), then for

almost all sample sequences and for sufficiently large n,

: )
PR (F=2)eB)=[ 4] a2 by(F, ) dvg (o)

<o D) 4 ¢ osn((aB)eﬂin)

for every Borel set B in Rk. Here d > 0, ¢, are constants (independent of the
sample sequence) and br(Fn, ), r =1, ..., 82 are polynomials whose co—efficients

are continuous functions of moments of F of order 8 or less.

Lemma 3.1 i3 an easy consequence of Theorem 2 in Babu and Singh (1984).
So we omit the proof. The next lemma gives an almost sure asymptotic expansion

for the distribution of vn (H(Y) — H(Z)).

LEMMA 3.2: Let Q ={x¢€ R: Ix = ull < 61} Jor some 6,> 0 and let H: RX -
R™ have continuous partial derivatves of all orders on Q. If Grad H(p) is of full

rank then, for almost all sample sequences,

Sup [P, ()~ (A@)e B~ [ (1+3° 0724 (B, 0)d By (9]
Beg O B r=1 o M,
o@D

where al(. N T as_2(. ,.) and B are as in the statement of part (c) of the

Theorem.
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PROOF OF LEMMA 3.2: without loss of generality, we may assume that the first

m—columns of Grad H(u) are linearly independent. Write,
Ty a0 = (1+ 2 a2 b (F_, %)) ds, () x € RX and
g,(x) = Vit (H(Z + x/&) — H(Z)), x € R¥ so that
VA (H(Y) - K(Z)) = g, (v (Y- 2)

First, we show that

(3.1) T n %) dx
! &'
_ 2 2, p o 0 + o(a=-2/2)
_ JB(1+ZI=1 ((Fpy X)) By () + of

holds uniformly over all Borel sets B in R™. To that effect let vV, denote the set
{x€R¥: ||x <logn} and define the function k_:V_-R¥ by

k () = g, (x)

(x)m+1

where (x)m_ll(_1 denotes the vector of last (k—m) elements of x € RK. Then,

By SLLN, Z - p almost surely (P). Therefore k, ~has continuous partial
derivatives of all orders and a non—singular gradient on V, eventually, a.s.(P).

For sufficiently large n,
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(3.2) (x)dx

J ( gng) 7s,n

Odx 4 o(g—5-2)/2
- | lmpy, al o

7s,n(k;1(W)).|det Grad kn(k;;l( w)) |—1 dw

{(@)TeBINK (V)
+0(n_(s_2)/ 2)
where (w)'}1 is the vector of first m elements of w € R.
Next, we approximate det Grad k n(x) by taking co—ordinatewise Taylor's

expansion.

det Grad k (x)

Grad H( Z+ x/yn)
= det
0 Ik—m
Grad H(Z) +2 n /2 A0+ (/2R _(x)
= det
0 Ik—m

Here A_ n(x) are m x k matrices of polynomials in x and Rn(x) is a mxk matrix
which satisfies ||R (x)] < ¢, ||x||s_1, x € V_ eventually, as. for some

nonrandom constant Cy-
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Grad H(Z)

With B n= , we have

0 Ik—m

(3.3) det Grad k_(x)

= (det B_) (1+ ql’n(n—l/ 29 + 0 D2 (x)

where q; s a polynomial of degree < (s—2) and the remainder term R, is

o(vn) uniformly on V- Therefore , for all large n, we can write

(3.4) (det Grad k_(x)) ™"

= (det B)™I (1 + q2’n(n—1/ 24) + 05 1)/2 Ry ()

. h 08 simil .
where q2’n and R2,n respectively have properties similar to 9 and Rl,n in
(3.3). Next observe that for almost all sample sequences, there exists a § > 0 such
that {Z + x: ||x]| < 6} ¢ Q for sufficiently large values of n. Define the function
I, onE= {x: |Ix]| < 6} by

H(Z+x) —H(Z)

k ,XEE
(x)m+1

I (x)=

Then, k_(x) = ¥& rn'(n‘l/ %), x € V_ holds for all n such that log n < 8-y
Notice that T is a diffeomorphism ( cf. Milnor (1965), page 4) onto its image.
Hence I‘;l has continuous partial derivatives of all orders. In particular we can
express I‘;l as the sum of a vector of polynomials d3 5 and a remainder term

0(||w]|®). As a consequence, for all w € k (V)
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(3.5) Clw) = oA 7 2)

=1/ g /2 ) 4+ @ (I 2l
=B.lu+ ] s: 02 gy, (@) + 0D 2o

where forr =1, ..., (s—2), Q4 , o i8 & vector of polynomials. Now, using (3.4) and

(3.5) in (3.2), we have

1. Y p(x) dx
JgnlB s,n

ko l(@)- |(det BTN + gy (07 AN (w)] do

-] (DB (v,)
+ o(n_(s_2)/2).

_ -1
= |det B |

/2, 1/2 =1/2,0)) dw
j{(w),{,eB}nkn(vn) 1 n0 20y (07201 + gy (0 07 20)) d

b o2

) ~(s-2)/2
J{(w)‘{‘eB}nkn(V (1 +2 n al (Fp @) d<I>Mn(w) + of )

where al,r(Fn’°)’ r = 1,...,(s—2) are polynomials whose co—efficients are continuous

functions of moments of F of order s or less. Now, integrate out the variables

(""m+1""“’k) to get (3.1).
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8—2
. -1/2
Next, write Es,n(x) =1+ 2 o ot/ a (F,, x)) ¢Mn(x), x € R™. From

Lemma 3.1, it follows that for almost all sample sequences and for large n,
(3.6) |P,(WA(H(Y) ~ H(Z)) € B) - [ £, , (x)dx|
< O(H—(s—z)/z) + ¢ @Sn(( agng)e—d.n)
for every Borel subset. B of R™. Following the arguments given in Bhattacharya

and Ghosh (1978) ( page 444—445) it can be shown that there exists a constant

a > 0 such that for large n

—dn —an
(37) o (0B ) <oy (@B)° V) + o I
n n
holds for every Borel set B C R™. Next use condition (2.2) to conclude that

—an o
sup &y (B nV,)=on (-2)/2

This completes the proof of lemma, 3.2.

LEMMA 3.3. Let, Ul"“’Un be i.i.d. random vectors with common mean (. Let
A denote the largest eigen value of the dispersion matriz of Ul' Suppose that

E||U1||s < w for some integer s> 3. Then,

P(VE [T — Bl > (1) A log )"/?) < 3. (572)/2 (10g n™5/2

n
where Un — z U, and J isa function of A which is bounded on bounded
i=1

set of values of A.
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PROOF OF LEMMA 3.3 : See Von Bahr (1967).

We are now ready to prove the theorem.

PROOF OF (a): By assumption (Al), ¥y»-»¥, have continuous partial
derivatives of order s on C x ©. Taking Taylor's expansion of 1/)i(x,o) around 00

fori =1,...,m, we have

(38) B0at) = i(x0) + lv] <ot (t=0,)" D"¥,(x,0,)/ + Ry, 5(x,t)

where the remainder term R_ .(x, t) satisfies
)

IR :(x,t)] <clt—0|° max sup |D¥3(x, 6)]|
wl O vl=s l18-G,I<llt—gl

for some constant c. Using (3.8), rewrite equation (1.3) as

3.9 0=Y,.+ t—0).Y /U + R (¢
(3.9) 0,i 215|V|SS—1( o) 1/,1/ Il,l()

n
where R ;(t) = %)3 R, (X1, 1)

By SLLN, the dispersion matrix of Y%V ) under P 1

n 14 14 v)’
%,-51 A o)~ 7). g

for all v, 0< |v| <s—1 and hence are bounded in norm.
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By Lemma 3.3, there exist constants d2 , d3 such that almost surely (P),

P, (71 - Enyg")u > dyn /2(10g 0)1/2) < dgn (52 (10g n) /2

for 0<|v|< s—1, when n is sufficiently large. Also note that by the LIL,
IIEHYYI) -l = O(n—l/ 2(log log n)1/ 2) almost surely (P). Therefore it follows
that for almost all sample sequence, there exist an integer n 02 1 such that for all

nZno,

(3.10) P_(IY™ = )l > 4, s/ %(10g n)1/2))

<dg n(5-2)/ 2(log n)—s/ 2 for some constant d 4> 0.

Set RX(t) = (Rf {(t), ..., R} (t))’. By similar arguments, it can be shown that
b )
for almost all sample sequences, there exists a constant d5 such that (without loss

of generality)

(3.11) P_(IRXW)I > -0, [1° (d5 + d,n/2(log n)!/2)

<dg n(5-2)/2 (log n)_@’/2 forall n2n.

Hence, for almost all sample sequences, there exists n, > 1 such that for all n > n,,

outside a set of P —probability d n—(8—2)/ 2(log n)—s/ 2, we can write (3.9) as

-1 v S
3.12 t—0 ) = (D+n* #+ X t—0 U+ d.|t—0 ||° €

where d6 and d7 are constants and 17;“1, b;"l and e;"l are random elements depending

on (X},....X%) and normsof 7% and & are O(n_l/z(log n)l/2 while [lex]| < 1.
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Hence, there exist an integer n; 2 no( depending on the sample sequence) and a

constant dg such that for all n > n,, r.h.s. of (3.12) is less than dg n~1/2 1/2

(log n)
. _l /2 1/2 ] .
whenever ||t — 00|| is less than dg n "/“(log n)"/“. By Brower's fixed point
%
theorem (Milnor (1965), page 14) it follows that there exist statistics {4 } such
that for all n > n,,
* _ *
(3.13) P_(I0; — 0]l < dg n~*/%(1og n)!/2, 4] solves (1.3))

>1-dg n(8-2)/2 (log n)—s/2.
This completes the proof of part (a).

PROOF OF (b): The proof is essentially the same as that of (a). Only exception is
that we use LIL instead of Lemma 3.3 to get bounds on the deviations ||Z(V ) _ y(V )Il
for 0 < |v| < s—1. This is also pointed out in Remark 1.8 of Bhattacharya and
Ghosh (1978).

PROOF 0OF (c): Using (3.8) we can write

_1y" ‘
0=a),_ %% 4

= PR R 4
=Zy;+) lv] ot (0= 0)" Z,5 M+ Ry
el .
—_— — '
where Rn,i =n 2 - Rn,i(xj’ 6). Set R = (R, R )" Then by

assumption (A2), it follows that there exists a constant dg > 0 such that

(3.14) P (IRl < dg n~*/%(10g n)*/? eventually) = 1
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Fori=1,...,.m define the function fi: Rk+m-+R by

f(w,0) =w,: + 0—0)" /v
1( ) 0,i 21<| v|s—1 Vl( )/

where w = (w,,;) € RS, 0 €R™ Then, f= (f,..[ ) has
0<|v|<8—1; 1<i<m

continuous partial derivatives of all orders, f(u, 4 ) 0 and by assumption

= ((Dk +ifi (p,0 )) i is non—singular. Hence by the implicit function
,j<ém

theorem, there exists a unique function H : Rk +R™ and a neighborhood Q of 4
such that
f(w, Hw)) =0

for all we Q and H has continuous partial derivatives of all orders. Now, by LIL

and (3.14),
129 — ) < d 2 (t0g )M/ for 1 ¢ v <51

1Z® + & |l < d, n7Y/2 (log n)!/2

hold eventually, almost surely under P for some constant d o > 0. Hence, by the

uniqueness of H, we have

>

(3.15) 0, = H(Z)

where Z = (i is given by

l/,i)

vi = Zu,i for1<|v] <s-1 and i=1,...m

ZO’i = ZO,i + Rn’i fOl' i = ].,.. ,m

This gives the almost sure representation for 0n.
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n
Next expand the r.h.s of the equation 0 = ) wi(X;, 0:) into Taylor's

=1
series around §, as in (3.8). Using (3.10) and (3.11) it can be shown (exactly in

the same way as in Bhattacharya and Ghosh (1978)) that for almost all sample

‘ _ *
sequence, outside a set of P — probability O(n_(s 2)/ 2(log n)_s/ 2), 0, has the
representation

. -
6, = H(Y).

Here, Y= (\.{V ;) 18 defined as

-~

YV,i = Yl/,i for 1< |v| <s-1 and i=1,...,m

-~

v x % .
YO,i =Y+ R.(0) fori=1,.,m

By (3.11) and (3.13), it follows that for almost all sample sequences, there exists a

constant d10 > 0 such that

(317) Pyl Ry(8) 1> dyg n~2 (og m)*/2) = 00 ~*2)/2 (10g ) ¥/

Fix 0 < §2< 51. Since H has continuous partial derivatives on Q, by the mean
value theorem, there is a constant d11> 0 such that whenever W, Wy lies in
{w:llp—ull < &},

(3.18) 1H(w)) — B(wy)ll < dy lloy — wyl

Write D_ = v& (6, — 6,) — v& (H(Y) — H(Z)). Then (3.14), (3.17) and (3.18)
jointly imply that for almost all sample sequences, there exists a constant d12 >0

such that
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(3.19) P_(IID, || > d;p s /2 (10g n)®/?)

= P, (I(H(Y) - H(Y)) - (H(2) - H(T)|| > d} n /2 (10g 0)®*/?)
<P_(IR()I| > d;g 0%/ (1og n)*/?)

. O(n_(s—z)/ 2(log n)—S/ 2).

Let € =4, n(5-1)/2 (log n)s/ 2 Then, it follows from Lemma 3.2 and
(3.6) that

(3.20) sup | Py (= 0,) € B) = [ € ;0 dx]

< sup | P (6, ~ ;) € B) P (/i (H(Y) ~H(D) € B)|
+ o(n_(s_2)/2)

<P_(ID, |l > €,) + sup P_(JA(H(Y)— H(Z) € (3B) )
Be #
+o(n 5212

ac e
=0 (sup 3y () Bav)) + o 52)/2),

for some constant a > 0. Now use the smoothness of H at px and the LIL to get

I M;l —M! |=0 (n_1/2(log log n)1/2)) a.s.(P).

Hence, it follows that ‘
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0(sup &y (8B) 2 NV)
su
Be.pﬂ Mn n
0 (sup By,((3B) ™))
=0(sup
Beg M
= 0(¢,) = o(n /2,
This completes this proof of (c).

PROOF OF (d): Write g = cnllM;I/ 2II, n > 1. Then, as in the derivation

(3.20), one can show that for almost all sample sequences,

sup [P (M0 —8) eB) = [ o € 00 dx|
Be n n n n M111/2B s,n

<o /) Lo (sup By, (6M111/23)6n))
Be.ﬂl n

= O(D—(s—2)/ 2) +0(sup @y, (Mlll/ 2(5B)ﬂn))
Beg o

~ o(n—+/2)

The last step follows by the condition (2.3). By exactly similar arguments as in the

bootstrap case, it follows that

]sﬁlel?ﬁllp (v M_1/2(bn —0,) €B) -JMI /2B§,n(X) dx| = o(n (522
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—2
where Es,n )=(0 + 2 :=1 n_r/2ar(0o, ‘) ¢M(-) and a0, , -), are

polynomials obtained ‘by replacing the moments of F by the corresponding

moments of F g Hence, the result follows from the SLLN and the continuity of
o

the co—efficients of the polynomials a (- , -) in the moments of the corresponding

distributions.
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