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ABSTRACT

BOOTSTRAP APPROXIMATIONS TO THE DISTRIBUTIONS

OF M — ESTIMATORS.

By

Soumendra Nath Lahiri

Consider the linear regression model Yi = xifl + 6i, where ei's are random

variables with common distribution F and xi's are known constants. Let Bu be the

M - estimator of 3 corresponding to a nondecreasing, bounded score function 2/). This

thesis analyzes the asymptotic behaviors of certain bootstrap approximations to the

distribution of normalized 3n. It is shown that the ordinary bootstrap procedure as

such does not work in the present set up. As remedies, several modifications of this

procedure have been rmulated. For studying the asymptotic behaviors of these

procedures, Edgeworth expansions of the distributions of Bu and the modified

bootstrap estimators are obtained. It is proved that all the prOposed modifications

lead to a faster rate .of approximation, viz. o ( Max { |xj|/( 2 i: x? )1/2 :

l_<_ j 5 n }) than the usual normal approximation. For the special case, when the

score function g!) is odd and the underlying error distribution F is smooth and

symmetric, it is observed that by taking the resampling distribution to be a

suitable symmetrized kernel estimator of F, one can have even a higher rate of

2
n

approximation, namely 0 ( Max { |xj|2/2 x. : lgj g n } ).

i=1
1

Second part of the thesis considers the bootstrap approximations to the

distributions of M — estimators in a multivariate setting under a different model.



Let Xl ,..., Xn be independent and identically distributed k — dimensional random

vectors with common distribution F0 , 0 E G C Rp for some p 2 1. Let 112 be a

function from Rk x RP into Rp and in be the M - estimator of 0 corresponding to

w. Under some regularity conditions on w, an Edgeworth expansion of the

bootstrapped M - estimator is proved. Using this and the Edgeworth expansion for

an ( obtained by Bhattacharya and Ghosh (1978) : 'On The Validity of Formal

Edgeworth expansion.', Ann. Statist. 6, 434 - 445 ), the rate of bootstrap

approximation is shown to be o(n_1/2). This extends a result of Singh (1981)

( 'On the Accuracy Of Efron's Bootstrap.', Ann. Statist. 9, 1187 — 1195 ) about the

sample mean to the M—estimators.
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INTRODUCTION

Ever since introduction, the bootstrap method has found its applications in a

variety of statistical problems and in most of the cases with overwhelming success.

The superiority of the bootstrap approximation in certain estimation problems has

been reported in the introductory paper, Efron (1979), on the basis of some

numerical studies. Soon these empirical results were substantiated from the

theoretical standpoint by Singh (1981), Bickel and Freedman (1981), Beran

(1982), Babu and Singh (1984) and Hall (1988) among others. In fact, it was

Singh (1981) who ' showed for the first time that the rate of bootstrap

approximation to the distribution of the normalized sample mean is faster than the

usual large sample normal approximation. He derived an almost sure Edgeworth

Expansion for the distribution of the bootstrapped statistic and compared it with

the standard Edgeworth expansion for the distribution of normalized sample mean

to arrive at the conclusion. It became clear from this work that the distribution of

the bootstrapped statistic corrects itself for the possible skewness of the underlying

distribution and thus povides a better approximation than the normal law.

Subsequently similar results on the rate of bootstrap approximation have been

established in a number of cases when the statistic of interest is a smooth functional

of the underlying distribution. See Babu and Singh (1983) for results on

studentized k—sample means, Helmers (1988) for results on U—statistics,

Bose (1988) for bootstrapping an autoregression model.

In this thesis we shall consider the behaviour of bootsrtrap approximation to

the distributions of M—estimators in two different problems. The first problem

concerns a simple linear regression model

Yi = xi 3 + (i, 1: l,....,n  



2

where ci's are independent with a common distribution F and xi's are known,

nonrandom constants. Here the model differs from the others mentioned earlier

(except Bose (1988) ) at the point that the observed values Y1,....,Yn are not

identically distributed. Bootstrap approximation in similar nonidentical set up has

been considered in Freedman (1981), Bickel and Freedman (1983) and Liu (1988).

The first two papers prove the bootstrap central limit theorem for the least square

estimators of the multiple regression parameters and Liu (1988) establishes the

second order correctness of the bootstrap method for the sample mean of

independent but not necessarily identical observations. Here we consider

bootsrapping the M¥estimator Bn of fl corresponding to a nondecreasing,

bounded score function 21) (see Section 1.1 of Chapter 1 for definition ). Under

certain smoothness conditions on it and/or F, an Edgeworth expansion for the

distribution of normalized Bu has been obtained. This result is of independent

interest for two reasons. First, such expansions for the M— estimators in the general

regression context were not known earlier ; second, the method of proof is

somewhat different from the conventional approach ( cf. Ringland ( 1983)) based on

Bhattacharya and Ghosh (1978).

Bootstrapping 3n under the present model leads to some intriguing

phenomena. In Section 1.3 of Chapter 1, we give an example which shows that the

usual bootstrap procedure does not work in the present set up. The bootstrapped

statistic in the example does not even converge to the limiting distribution of the

unbootstrapped statistic. To overcome this drawback of the usual bootstrap

procedure, we pr0pose different modifications and show that each of these

modifications actually attains a faster rate than the normal approximation.
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In the second problem, we consider the M—estimators of a higher dimensional

parameter in a multivariate setting. The Edgeworth expansion of the normalized

M—estimator was obtained by Bhattacharya and Ghosh (1978) and Bhattacharya

(1985) under some smoothness conditions on the score function 1p. Here we follow

the usual bootstrap procedure and select the bootstrap samples from the empirical

distribution of the observations. Using the smoothness of w and a result of Babu

and Singh (1984), we obtain an almost sure expansion of the distribution of the

bootstrapped statistic along the line of Bhattacharya and Ghosh (1978).

Comparison of these two expansions establishes the superiority of the bootstrap

approximation to the. normal approximation. This extends a result (part ((1) of

Theorem 1) of Singh (1981) about the sample mean to the M—estimators.



CHAPTER 1

1.1. Introduction.

Consider a simple linear regression model

(1.1) Yi = Xi fl + (i , I=1,...,Il,

where 61,...,€n are independent and identically distributed (i.i.d.) random variables

(r.v.'s) with common distribution function (d.f.) F and where x1,...,xn are known

nonrandom constants. Let {0 be a nondecreasing and bounded function from IR into

[R. Define an estimator Bu of 3 to be a solution of the equation ( in t )

(1.2) 2. xi¢(Yi—xit)=0.

I:

Estimators {Bu} are known as M—estimators of fl ( Huber : 1973 , 1981). Assume

that

(1.3) .. E i!) (61) = 0.

The condition (1.3) ensures the asymptotic unbiasedness of BB . For easy reference

later on, let

2 2 .
(1.4) 3. :2. x. and Mn=Max{|xi|:151£n}.

The asymptotic normality of an(Zin — fl) has been studied extensively in the

literature under much more general settings : see Huber (1973, 1981) and the

references therein. Relatively very little is known about the Edgeworth expansions
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for the distributions of these estimators , Specially when the score function e is not

smooth. Ringland (1983) considered the one—way layout model with p p0pulations

(p3/n —1 oo ) and obtained a two—term Edgeworth expansion for the distribution of

studentized M—estimators. His method of proof was along the line of Bhattacharya

and Ghosh (1978). In particular, he required the score function it to be smooth and

the design matrix elements to be 0's and 1's only. When p = 1, this forces xi = 1

for all i which is too restrictive in the regression context .

For the one parameter case this paper gives an Edgeworth expansion of the

distribution of 3an — 3) when w is not necessarily smooth and the constants xi's

satisfy only some mild growth conditions. The method of proof is completely

different from that of Ringland (1983). Monotonicity of 1!) enables one to obtain

bounds on the probabilities involving Bu in terms of the probabilities relating to the

sums of independent random variables. Thus one can apply the classical Edgeworth

expansion techniques to these bounds for obtaining an approximate expansion of the

distribution of 3n . Then, the smoothness of 1p and/or F is used to simplify these

expressions into the stated forms.

BOOTSTRAPPING En: In order to describe the bootstrapping of fin, let

Fn be an estimator of the underlying error d.f. F based on the estimated residuals

*
—

*

c. = Y. — x. i = 1,...,n. Also let ‘1 ,..., En be a bootstrap sample from Fn and
1 1 1 n ’

* *

define Yi = xi 3n + 6i for i = 1 ,..., n. In accordance with (1.2), the bootstrap

:1:

estimator fin of fl is defined as a solution of the equation ( in t )

(1.5) 2. xii/)(Y:—xit)=0.
1:  
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The role played by fl in the original problem is to be replaced by 3n in the

bootstrap set up. Accordingly one should have

(1.6) En 10(6):) = En ¢( YI_X13n ) = 0.

where En denotes the expectation under Fn‘ In general, the choice of FIl that will

satisfy condition (1.6) and at the same time be a good estimator of F seems to

depend heavily on the forms of F and 1,0. In the case of bootstrapping the least

square estimator fin of B , the corresponding requirement is E1103: ) = 0. Freedman

(1981) considered the problem of bootstrapping :61] and ensured this condition by

centering the estimated residuals 21,..., ED and then taking the bootstrap samples

from the empirical distribution of these centered values. In fact, he has pointed out

that if one does not center the estimated residuals, the distribution of an(fl: — (in)

does not converge to that of an(bn — fl). Similar remark applies to the present

context as well. We give an example at the beginning of Section 1.3 where (1.6)

does not hold and an(fl:l — Bn) does not have the same limiting distribution as the

unbootstrapped statistic an(BIl — 3). Therefore, one should consider only those

Fn's for which condition (1.6) is satisfied.

Clearly, (1.6) is not satisfied for general design points if Bu is defined by

(1.5) and F11 is taken to be the empirical distribution function (e.d.f.) of the

estimated residuals Erwin. Therefore, one has to look for apprOpriate

modifications, if any, of the usual bootstrap procedure. In fact, there are at least

two ways of attaining this. One is to change the resampling distribution and the

other is to change the defining equation (1.5). As an example of the first possibility,

Fn is taken to be a suitable weighted empirical distribution and fl: is defined as a

solution of (1.5) ( see Section 1.3 for details ). As an example of the other case,  
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*

equation (1.5) is modified according to Shorack (1982) and fin is defined as a

solution of the resulting equation ( cf. equation (3.8) in Section 1.3 ). In the second

case, it is shown that one can take FIl to be either the e.d.f. of the estimated

residuals E or some smoother estimator of F depending on the degree of1 ,..., En

smoothness of d) and F. With either modification the resulting bootstrap procedure

corrects one term in the Edgeworth expansion of the distribution of the normalised

3n and the rate of bootstrap approximation becomes 0(Mn/an).

Finally, in the case when the error d.f. F is smooth and symmetric and the

score function it is odd, the rate of bootstrap approximation corresponding to a

symmetrized kernel density estimator of F is shown to be 0((Mn/an)2). This result

is similar to a result of Babu and Singh (1984) about the sample mean where the the

resampling distribution is taken to be the symmetrized e.d.f. of the observations

centered about the sample mean. In a nut shell, for all the cases considered here

bootstrap approximation is shown to have a better rate than the normal

approximation .

The layout of this chapter is as follows. Section 1.2 contains theorems giving

the Edgeworth expansions for Bu. Section 1.3 deals with the bootstrap

approximations to the distribution of Zin and Section 1.4 contains the proofs of the

results stated in Sections 1.2 and 1.3.

 



1.2. Edgeworth expansions for BB.

This section gives the Edgeworth expansion for the distribution of

normalized En under some assumptions on at, F and xi's. Parts of these

assumptions are on the underlying model (1.1) and will be assumed throughout the

paper without explicit reference. The rest of the assumptions are required for the

validity of some results in this section. Whenever used, one or more of these will

always be mentioned in the statement of the corresponding assertion. Before stating

the assumptions, we need to fix some notation. For x real, write

”(x) =12 we, —x), V(x) = a? (x) =Var we, — x),

#30:) =E (as, —x) — u(X))3 and not) =E (10(61-x)— u(X))4-

Since 1/2 is bounded all these quantities are well defined.

For any real valued function h defined on IR, let 110) denote the i—th

derivative of h whenever it exists and “h” denote the supremum norm of h. For

convenience, h', h", h'" will replace 11(1), h(2) and h(3) respectively. Define

II n

3 3 4 4
A=—p.'.(0)/0(0), (1111:). lxi/an, (1211:) lxi/an,

l: 1:

(2.1)

11

_ 3 3 _ 2
(rm—Z 1:1 |xi| /an and d4n—Max{d3n,d2n}.

Next recall the definition of Mn and an from (1.4). Note that d3n = O (Mn/an)

and d4n = O (Mi/a3). Let bu: log aIl (whenever it is defined ). For c > 0,  
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define the set An(c) ={ i : 1 5 i 5 n, |in > c.Mn} and let kn(c) denote the

number of elements in An(c).

In addition to (1.3), assume that conditions (A.1) — (A.3) below are satisfied

by the underlying model (1.1) throughout this chapter.

(A.1): an-woasn-voo.

(A.2) : A = —p'(0)/ 0(0) > 0 ( Whenever it exists ).

(A.3) : There exists a constant c , 0 < c < 1 such that bu: o ( kn(c)) as n -» 00.

Next, we list down the remaining assumptions used in this section.

. 4 _
(A.4). bIl Mn — 0 (an) as n —. oo.

. 6 _
(A.5). bn Mn — 0 (an) as n -+ 00.

(AG) : There exist constants M > 0, 6 > 0 and 0 < q < 1 such that

sup{ |Eexp( it (M cl-x))| : |x|< (Sand |t| > M} < q.

REMARK 2.1 : First two assumptions are typical for proving the asymptotic

normality of 2311 and occur frequently in the literature (see, for example, Huber :

1973,1981). Assumption (A3) is rather uncommon and deserves some

clarifications. For obtaining the Edgeworth expansions of normalized sums of

independent r.v.'s, one usually assumes that the absolute values of the

characteristic functions of all the summands are uniformly bounded away from 1

outside every neighbourhood of zero. But in the present context, this will require

min { |in : i 2 1 } > c for some constant c > 0 which will rule out many

frequently used designs. Condition (A.3) relaxes this requirement on xi's. Another

typical assumption made for proving the asymptotic normality of En is that

Mn/an = o (1) as n -> 00. Condition (AA) and (A.5) are somewhat stronger versions  
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of this and are required for obtaining the Edgeworth expansions upto the desired

orders. Note that both the conditions are trivially satisfied for bounded xi's as well

as for xi 5 i. Condition (A.6) is actually a modified Cramer's condition ( see

Bhattacharya and Rao (1976), page 207 for the statement of Cramer's condition )

and will be used for obtaining higher order expansions. See Remark 2.4 and the

Proposition following it for a sufficient condition.

Before stating the theorems, we put down the explicit form of the

Edgeworth expansions. To that effect, write Hi for the Hermite polynomial of

degree i, i 2 1 (see Feller (1966), page 514 ). Let (b and (I) respectively denote the

density and the d.f. of a standard normal r.v.. For Theorems 2.1 and 2.2, define

Hm<x> = <1><x> — d1n [mm/0(0) — mu) V'(0)/03(0)) x2/ 2A2

+ (113(0) / 603(0) ) H2(x)1¢(x>

H2n(x) = H1n(x>-¢(x) [agnl (mm/0(0) + 3 A may 2 we) ) $76143

+ (115(0) / 6Aa3(0) ) x 11,00 + (( ”4(0) — 304(0)) / 2404(0)) H3(x) }

+ «111,2 {mum/0(0) + A v'(0)/ v<o> ) ( team/12112 03(0) > X21130.)

+ ( 1432(0)/ 7206(0) ) H500 + (mo/0(0) + A v'(o>/ we»? x5/ 8A4

— (we) V'(0)/03(0) + swim)/2v2(0))x‘”’/4A2

- (113(0) v'(0)/4Ao5(o>> xH2(x)}1.  
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Under the hypotheses of the following Theorems , the functions a, V, u3, [14 have

sufficiently many derivatives so that H1n and H211 are well defined. Now we state

the theorems of this section.

THEOREM 2.1 : Suppose that if has a uniformly continuous, bounded second

derivative. (a) If“61) is nonlattice and condition (A.4) holds, then

8:1) I P( and, — 5) 5x) — H1n( Ax) l = o (Mn/an).

(b) Suppose that at has a uniformly continuous, bounded third derivative. If in

addition, conditions (A.5) and (A.6) hold, then

sup |P(an(Bn-fl)5x)—H2n(Ax)|=0(d4n)=0(M,2,/a,2,)
X

where d4n is as defined in (2.1).

Next we state a version of Theorem 1 under the corresponding regularity

conditions on F without assuming the differentiability of 2b.

THEOREM 2.2 : Assume that F has a uniformly continuous, density f.

(a) If (Mel) is nonlattice and condition (A.4) holds, then

3:2" I P(an(73n-fl) SX)-H1n(AX)| = own/an).

(b) Suppose that f has a uniformly continuous, bounded second derivative. If in

addition, conditions (A.5) and (A.6) hold, then

3:2" I P( anon—oss—Hgnmm I =o<d4n)=o(M§/a§ ).

REMARK 2.2 : The same technique can be used to obtain higher order expansions

under stronger smoothness conditions on 1b and/or F. The corresponding  
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expressions become more and more messy as the order of expansion increases.

REMARK 2.3 : In Theorems 2.1 and 2.2, the smoothness conditions on it and/or

F has been used to guarantee that the functions a, V, m3, m4 etc. have

sufficiently many derivatives. In fact it is possible to achieve the same results by

varying the degree of smoothness on if and F. In practice one often encounters score

functions it which are sufficiently smooth except possibly at a finite number of

points. It can be shown that if F is well behaving in some neighbourhoods of these

points, then also the above expansions hold.

REMARK 2.4 : Direct verification of assumption (A.6) may pose some difficulty in

some cases. But (A.6) is true quite generally if it and F satisfies some mild

regularity conditions as is evidenced by the following result.

PROPOSITION : Suppose that F has a nonzero absolutely continuous component Q

with density q with respect to the Lebesgue measure on IR and i/J has a continuous

nonvanishing derivative on some interval (a , b) for which Q { (a , b) } > 0. Then

(A.6) holds.

1.3. Bootstrap Approximations.

We start this section with the following example. It shows that if condition

(1.6) does not hold for some choice of the resampling distribution Fn’ then the

corresponding bootstrap procedure cannot be even first order correct.

 



13

EXAMPLE : In addition to all being a nondecreasing, bounded, real valued

function, assume that a has a bounded uniformly continuous second derivative

( e.g. one may take (b(x) = tan—1(x) ). Also suppose that F and w jointly satisfy

the hypotheses of Theorem 2.1 (a) and E (0(61) = O. For the sake of clarity in the

resulting expressions, we take xi = 0 or 1 according as i is even or odd. Note

that for this choice of xi's, a3 = 0 (n) and bn= 0 (log 11). By Theorem 2.1, it

follows that

(3.1) anwn fl) converges in distribution to N ( 0, A—2).

where A = Ew'(cl)/ [E (1)2(Is1)]1/2 as in (2.1).

Next consider bootstrapping 3n. Let Fn denote the empirical distribution of

the estimated residuals 2i = Yi — xiBn, i = 1,..., 11. Take independent sample

* * *

‘1’ ..., ‘n from Fn. Note that in this case En(w(cl)) is not necessarily zero.

Hence, condition (1.6) does not hold. For t 6 IR, write

* 11 a:

r:(t) =~Standard deviation of SI: (t) under Fn.

*

By the monotonicity of (b and the definition of fin, it follows that for all t 6 IR,

* *

(3.2) ms, (t) < 0) s Pn( (an —a s t) s 1),,(811 (t) s 0).

where Pn denotes the bootstrap probability under Fn.

Now, using the Berry — Esseen Theorem for independent random varibles

( cf. Theorem 12.4 of Bhattacharya and Rao (1976)), one can conclude that almost
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surely, for all t 6 IR,

a: * *

831) | P11 ( (311 (t) —En 311(0) 33’ THU) ) — ‘1’ (Y) I

(3.3)

s 2.75 { 2:1 |in3 Enl a e“; -in ) -Env( 5; —x,t )I3 }/[T:,(t)l3

Here, as before, En denotes the expectation under Pn and (JD denotes the

distribution function of N( 0, 1).

Next we state the following results without proofs. Result 3.1 has been

derived in the proof of Theorem 2.1 below ( see equation (4.4)) and Result 3.2 is a

consequence of Lemma 4.2 of Section 1.4 below.

RESULT 3.1 : Let «b have a bounded second derivative and 3n be defined by

equation (1.2). Then there exists N > 1 such that for all n > N ,

P ( an(Bn—fl) > bn ) < 3133.

RESULT 3.2 : Let FI1 denote the empirical distribution of the estimated residuals

'Ei , i = 1,..., n. Then for everyM > 0 and every k 21,

sup{|En[(b(e:—x)]k-E[ib(cl-x)]k|: |x| 5M}: 0(1), a.s..

By Result 3.2 and the uniform continuity of (b, it follows that for all x with

IXI Slos n,

(3.4) I [7:(X/an)]2 — [73(0)]21 = o (n), as.

Hence, from (3.2), (3.3) and (3.4), it follows that for all x with |x| 3 log n,



15

(3.5) sup I P, ( anw; 43,) s x) - <I> (— Hans; (x/an)l/r:(x/an)) I
|x|$logn

=o(n_l/2), a.s..

Next we simplify (— [EnS; (x/an)]/r:(x/an)). Since Bu satisfies (1.2),

taking Taylor's expansion , we get

11

0 = 2i=1 xi “Ci -Xi(fin “fl”

‘1 n 2 2 n 3
= 2 i_1x, Meg-(35(3)) i_1x, rm) + (an—5) 2 H x, rap/2

where 5i is a point between 6i and 2i = Yi — xiBn, 1 S i g 11. Now use Result 3.1

and the Law of Iterated Logarithm (LIL) to conclude that

I]

(3.6) an(Bn—fl)Ezb'(rl)=E. 1xi («69+ 0(1) as.

1:

two term Taylor's expansion together with the LIL and thea

fact that Zn x. = Zn x? = a2, yields,
. 1 i 1 11

Epic, — xjx/an> = n‘lf,‘ lug) — Ixxj/An + aim, — manual)
1:

+ Rjn(x)

where sup { |Rjn(x)| :15 j S n, |x| 5 log n} = O ( n—1(log n)2) a.s..

Therefore, by (3.6) and the Result 3.2, one has

—[EnSI:(x/an)]/r:(x/an) = Ax+ 2?=1(Xi—1)w(ei)/ano(0) + Rn(x)
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where sup {an(X)| : |x| S log 11} = 0(1) a.s.. Recall that 02(0) = Ew2(cl).

n

Define Bn = 2 i= (xi — 1)Ib(ri)/ano(0). Then Bn has a limiting nondegenarate

normal distribution ( viz. N( 0, 1)). Also, from (3.5), it follows that

Iiniggn I Pn(an(fl;-fin)5x) — <I>(Ax+Bn)|=o(1) 3,,

Comparison of this with (3.1) shows that the usual bootstrap procedure fails to

capture the limiting distribution of the unbootstrapped statistic and as a result, is

not even first order correct.

As indicated in the introduction and implied by the above example, we shall

confine ourselves only to those cases in which condition (1.6) holds. First we

consider a situation where (1.6) is ensured by changing the resampling distribution.

Weighted Empirical Bootstrap

Assume that xi's are either all nonnegative or all nonpositive. For n 2 1,

11

write pn = 2 i=1 1xil. Let, F1n be the d.f. putting mass lin/pn at fi’

i=1,..., 11. Take the resampling distribution Fn to be F and draw the
la

* * :1: *

bootstrap samples (1,...,cn from Fn . With Yi 2 xi 3n + (i, i = 1 ,..., 11, define

*

the bootstrap estimator fln of 6 as a solution of (1.5). Note that for this choice of

* __1 Il '

Fn’ Enwcl) = n 2 i=1]in (b(Yi —xiBn). Hence (1.2) and the fact that all xi 3

are of the same sign jointly imply that

:1: . _1 n

Enw(61) = (Sign of XI) pI1 2i_1xi flYi—Xifin) = 0.
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Hence, in this case ( 1.6) holds.

Before stating the theorems we introduce some more notation. For any

resampling distribution Fn’ write

m (x) — E I/(X—x) w (x) — s2(x) — E w2(c*—x)—m2(x)
n _ n 1 ’ n " n — n 1 n

(3.7)

mi,n(x) = En(1b(6:— x) — mn(x))i , i = 3, 4 and An = — m1'1(0)/sn(0).

Next define

*

Hlne) = ax) — d1n «mm/sum) — mp0) wan/aim» x2/2Afi

+ ( m3,n(0) / «Asia» ) 11,00 I ¢<x>

Hines = nine) — <I>(x) [d2n{ (negro/sum) + 3 Anwgov 2 we) )x3/6A3

+ ( m3;n(0)/6Ans§(o» xH2(x) + (( mmm) — 3sfi(0))/24sfi(o» H300}

+ damp/3.3) + Anwgmvwnm» (m3,n(0)/12Afi an» X2H3(x)

+ (m3?n(0)/72sfi(o»H5(x) + (mum/sum) + A,,w;,(0)/Wn<o>)2 x5/8Afi

— (Inga) w'(0)/s3(0) + 3Anwg2m1/2wfimnx3/4Afi

— (1113,40) w;,(0)/4Ans;’;(0)) xH2(x)}]-
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* *

REMARK 3.1 : In the statements of Theorems 3.1 — 3.4, H111 and H2n are

defined by the same expressions but in each case the functions m11’ Wn, m3 n and

1114 n are to be defined using the corresponding resampling distribution Fn'

In the following, let Pn denote the bootstrap probability under Fn. We are

now ready to state

THEOREM 3.1 : Assume that the hypotheses of Theorem 2.1 (a) hold and that for

00 *

every c > 0, 2 1exp"( — Cp121/a‘121 ) < co. If/in is defined as a solution of(l.5) with

n:

Fn=F1n then,

(a) spp IPn(an(fl:i_Bn)Sx)-Hin(Anx) | =o(Mn/an) a.s..

(b) “it" I Pn(Anan(fl;—lln)SX)-P(Aan(Bn—fl)Sx)l

= o ( Mn/an ) a.s..

where A and An are as defined in (2.1) and (3.7) respectively.

Modified Scores Bootstrap :

Now we consider bootstrapping Bu using Shorack's modification. For any

*

resampling distribution Fn, define fin as a solution t of

(3.3) 2 xi { (av: — xit) — EnWi) } = 0.

i=1

n e o * *

Clearly w1th thls modlficatlon, En{ zb(Y1 — x1311) — Enib(cl) } = 0 for any

resampling distribution Fn and any xi's. Let Gn denote the empirical distribution
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of the estimated residuals E1 ,..., En. If I]; is smooth, one can take Fn = G11 and

*

still have the Edgeworth expansion for fin. More precisely, the following analog of

Theorem 3.1 is true.

*

THEOREM 3.2: Suppose that the hypotheses of Theorem 2.1(a) hold and fin is

defined as a solution of(3.8) with Fn = Gn' Then,

(a) sip I Pn( an( a; —Zln ) g x ) —H:n( Anx) | = o ( Mn/an) a.s..

(b) 8:1)lPn(Anan(fl;—Bn)Sx)-P(Aan(Bn-fl)5x)l

= o ( Mn/an) a.s..

Now consider the case when (I) is not necessarily smooth and the

differentiability conditions are imposed solely on F. Here, instead of taking the

samples from Gn’ one should take the bootstrap samples from some smoother

estimator of F to guarantee the validity of Edgeworth expansion for the

bootstrapped estimator fl; Let k be a known probability density on the real line

and {en} be a sequence of positive real numbers, en a 0 as n —I oo. Define

(3.9) gnu) = e;1 l j k( (x—y)/e,,) demo) 1-

Now take Fn to be the d.f. corresponding to gn. In this case preperties of Fn

depends largely on the assumptions made about k and {en}. For r = 1, 2, let

C(r) refer to the following conditions on k and {en} :

00

(i) For every c>0, 2 n=1 exp(— mega—*2) ) < oo,
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(ii) I |u| k(u) du < 00 and

(iii) For s = 0, 1, ..., (r+1), k(s) is of bounded variation.

( *

THEOREM 3.3 : Assume that the hypotheses of Theorem 2.2(a) hold and that 'Bn is

defined by (3.8) taking Fn to be the d.f corresponding to the density gn' If k and

{en} satisfy condition C(l), then

*

(a) sip I Pn( an( a: — an ) g x ) — H1n( Anx) I = o ( Mn/an) a.s..

(b) sgplPn(Anan(fl:,—Bn)Sx)—P(Aan(3n—fl)5x)!

= o ( Mn/a’n) a.s..

Theorems 3.1 — 3.3 show that appr0priate bootstrap estimators correct the

terms of order O(d1n) ( see equation (2.1) of Section 1.2 for the definition of djn’

1$j$4 ) in the Edgeworth expansion for the distribution of normalized BD and thus

attain a higher rate than the normal approximation. In fact, under some symmetry

assumptions on the model, the accuracy of bootstrap procedure can be increased

considerably with a minor modification. Assume that the score function w is odd

and the underlying d.f. F is symmetric about zero ( i.e. F(—x) + F(x) = 1 ). Under

these conditions all the terms of order 0 (d3n) in the Edgeworth expansion of BH

vanish. As a result, the rate of normal approximation is typically of the order of

O (d4n)' In such situations if one draws the bootstrap samples from an asymmetric

resampling distribution Fn’ the terms of order O(d3n) do not necessarily vanish

from the corresponding expansion for fl; Therefore, the rate of bootstrap

approximation can at the best be 0( d3n ) which is much worse than the normal
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approximation. In particular this implies that the ordinary bootstrap procedure

fails in such situations. However, one can overcome this by changing the

resampling distribution to a suitable symmetric distribution. Only the case with

smooth F is considered below.

Let gIl be as in (3.8). Since gn(x) may not be symmetric, we symmetrize gn

and take the estimating density at x to be fn(x) = [gn(x) + gn(—x)] /2. Now choose

Fn to be the d.f. corresponding to tn. Note that for this choice of Fm, (3.8) reduces

to (1.5) and the corresponding bootstrap estimators are the same.

THEOREM 3.4 : Assume that the hypotheses of Theorem 2.2(b) hold and k and

{en} satisfy condition C(2). Then for odd Ib, symmetric F and F11 equal to the d. f.

corresponding to in,

(a) Sip I Pn( an( a; —pn ) g x ) —H;n( Anx) I = o ((1411) = 0(MI21/a121) a.s..

(b) 82" I Pn( Anan< a; 43,) s x) — P< Aan( a, — A) s x )I = 0 (A4,)

_ 2 2
— o ( Mn/an) a.s..

*

In (a) and (b), fin is defined as a solution of (1.5) or (3.8).
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1.4. Proofs.

We start by stating Esseen's lemma (Lemma 2 of Feller (1966), page 512).

LEMMA 4.1 (Esseen) : Let F be a probability distribution with vanishing expectation

and characteristic function (p. Suppose that G is a function on the real line such that

F — G vanishes at i 00 and G has a derivative g with | g|$ m. Finally, suppose that g

has a continuously differentiable Fourier transform 7 such that 7(0) = 1 and

7'(0) = 0. hen for all real x and a > 0,

| F(X) -G(X) I S l_,a,’{ | s0(t)-7(t) |/(W|t|)} dt + 24m/ M-

Repeated use of this lemma with prOper choice of a and G will give the

expansions upto the desired order. For the sake of completeness, we include here an

inequality due to Hoeffding ( Theorem 2 of Hoeffding (1963)).

HOEFFDING'S INEQUALITY : If X1, X2, ..., Xn are independent r.v.'s with

ai SXiSbi (1 sign), thenforanyt >0,

P( x — ,1 > t ) _<_ exp( —2n2t2/ 211(1), — 392)

_1 n

whereK=n 2 Xi and u=E(X).

let

1=1

Before proving Theorem 2.1 we need to have some more notation. For t 6 1R,

Sn(t) =2 21:1 xiw (Yi — xit), un(x) = E Sn( 5 + x/an),

Vn(x) = 7121(x)= Var Sn( [3 + x/an), E4,n(x) = 2 21:1 x? 04(x xi/an),

.th .
”Ln (x) =1 central moment of Sn ( fl + x/an), 1 = 3, 4.
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pnpr) = E exp ( it I Sn( fl + x/an) — un(x))),

vn(x,t) = [log Ipn(x,t)] + Vn(x) p2/2, w (x,t) = E exp ( it w (61 — x)).

Next for real numbers x and y, define

Klnpr) = e (y) — ( p3,,,Ix)/ ariiIx) ) H2(y) 4) (y).

Kgnpr) = K1n(x,y)-— ¢(y) IIIp4,,,Ix) — semen/zeta» H3(y)

+ (”3,1100 / vzrfiIx) ) H5(y) I,

plnIxx) = [ 1 e I p3,,Ix)/ 6rfiIx) ) (it)3 I exp I — t2/ 2 )

72n(x,t) = 71n(x,t) + I ((#4,n(x) — 3E4,n(x))/24T:(x)) (it)4

+ I pine) / 72rfiIx) ) (it)6 I exp I — 9/2 ).

In the proofs that follow, we shall use D > 0 as a generic constant, independent

of n, x, y etc.

PROOF OF THEOREM 2.1 : Proofs of parts (a) and (b) follow more or less the

same route . First we outline the arguments common to both the parts and then

complete the remaining steps in the proof of each part separately.

Note that boundedness of Ib, ill" and continuity of II)" guarantee that

Jw'(y)dy < co and Ib' is uniformly continuous. This in turn implies that W is

bounded. Therefore, the function u is twice continuously differentiable with a

bounded second derivative. Hence there exist constants 111 > 0 and c1 > 0 such

that for |x| < 771,
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(4.1) |u(X)I >C|X|-

This inequality will be used to obtain a bound on the probability of the deviation of

3n from [3. Next observe that monotonicity of 1]) implies Sn(t) is nonincreasing in t

for every n21. This and the definition of 3n gives,

P(Sn(fl+x/an)<0)5P(an(En—fl)$x) $P(Sn(fi+x/an)50)

(4.2)

P(Sn(fl+x/an)>0)5P(an(Zin—fl)2x) $P(Sn(fl+x/an)20)

By Hoeffding's inequality, (4.1) and (4.2), there exists a constant C > 0

such that for all 0 < u < nan,

(4.3) P(Ipn-—eI>u)g 2exp(-Cu2aI21)

Now take 11 = bn/aI1 ( recall that h1] = log an ) in (4.3) to get an N > 1 such that

for all n > N,

—3
(4.4) P(an|Bn—fl|>bn)5an.

Therefore, it is enough to consider the expansion of P( aI1 | 3n -— ,6 | _<_ x ) for

|x| 5 bn' In view of (4.2), (4.3) and the form of H1n(x), it is enough to find an

expansion of P( Sn( )6 + x/an ) S 0 ), that holds uniformly for |x| 5 bn, and to

appraise sup { P( Sn(fl + x/an) = 0 ), |x| 5 bn }.

PROOF OF (a): Given an 17 > 0, choose an integer N and a constant b > 0 large

enough such that for all y and |x| 3 bn’ 24 |K1n(x,y)| < IN). This is possible since
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both It and its derivative are bounded. Take a = b Mn/aIl in Lemma 4.1. Then for

all y in IR and for all x with |x| 3 bn’

I P( [3,103 + X/an) - un(X)I/Tn(X) S y ) - K1n( X , y) I

(4.5)

5 Lil pnIxA/rnIx» - 71n(x.t) I / ltl dt + ”Mn/an

As is customary, the integral on the R.H.S. is broken into two parts ; one

ranging over It] 5 6 an/ Mn (call it I ) and the other over 6 an/ Mn < |t| < a

(call it 11 ) for some 6 > 0 which will be chosen later. Since 2b is bounded,

continuous and nondecreasing, w is uniformly continuous. Therefore for any D > 0,

sup{l w(x,t)—w(0,t) I: |t| <D}

s DII er—xI—pIy) I dFIy) .0 am.

Hence there exists a 6'> 0 such that for |x| < 26 and |t| < 26,

(4.6) |w( x ,t)| > .5.

This guarantees that Vn( x , t/rn(x) ) is well defined for large 11 when |x| 5 bI1 and

|t| S 6 an/Mn. Since it is bounded, vn( x , t/rn(x)) is infinitely differentiable in t

over |t| S 6 an/Mn' Next note that for any complex number 11 with | u| <1

log (1+u)=u—u2 r(u) where |r(u)|<1/(1—61) for all |u|< 51a.

Therefore, Taylor's expansion of vn(x , t/rn(x)) around t = 0, continuity of the

functions V(x), u3(x), u4(x) and the above result together yield (possibly with a

smaller 5 > 0 )
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(4.7) I vn(x . t/T,,(x)) — (it)3 p3,,,Ix)/6r§’,Ix) I < D N4 I 2 xj4/ rfiIx»

for all |x| 3 bn’ |t| < 6 an/MI1 and large 11. Without loss of generality we may

suppose that for the same set of values of x, t and n,

(4.8) I vnIx,t/r,,Ix)) I 5 12/4, I Iit)3p3,nIx)/6rfiIx) I s 1.2/4.

Note that for all complex u and z,

Iepru)—1—z I s ( III—2 I + IZI2)exp (r)

|exp(u)-1-z-22/2I 5011—2 I + Izl3) exp (7), 7> maxIIuIIzI).

Now choose 6 > 0 such that (4.6) — (4.8) hold simultaneously. For this

choice of 6, one may use bounds (4.7) — (4.9) to conclude that uniformly in -

|x| 5 bn and for large n,

I: I { I rn(x,t/Tn(x)) — meet) I / |t| )dt

|t|$ 6an / Mn

= I |t|—1|exp(vn(x,t/Tn(x))) —1— (it)3u3,n(x)/61'3(x) I exp (—t2/2)dt

|t| g 6an / Mn

5nd ItI3I2xj4)/r;‘,Ix)+ ItI5I2xj3)2/rfiIx)Iepr—t2/4)dt

(4.10) s D ( Mn/an )2
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This takes care of the first part of the integral. Now we estimate 11 . Note that for

real numbers x and t, the differentiability of (I) gives

|w (x,t) —w (0,t)| S D Ith.

By the nonlatticeness of w(cl) and the above inequality, it follows that there exist

0 < q < 1 and N > 1 ( both depending on 7; through 'a' of (4.5) ) such that for all

n > N,

sup {Iwaecj/an. txj/rnIxnI =1 e An(C), IxI s bu, «5 an/Mns I t I s ban/Mn)

(4.11)

<q.

Hence by condition (2.3) it follows that for all n > N and |x| S bn’

H = I {IpnIx.t/r,,Ix)) — mexm/III} dt

6an/Mn SItIS b an/Mn

anc)
(4.12) mm + I {I71n(x,t) I / |t| }dtl

6am / Mn gItI

5D(Mn/an)2.

By (4.5), (4.10) and (4.12) it follows that given an r; > 0, there exists N > 1 and a

D>0 ( both depending on F only through the nonlatticeness of w(cl) and the values

of the function u, 0, p3 and their derivatives at zero ) such that for all n > N,

811p sup IP( (Snw + X/an) -un(X))/Tn(X) .<. y ) - K1n( X , y) |

IXIS bn y

)2
g D ( Mn/an + 17 Mn/an.
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Since 17 > 0 is arbitrary, this gives the Edgeworth expansion of normalised

Sn(,6+ x/an) with a remainder term of the order of o (d3n) uniformly in

|x| 5 bn. The smoothness conditions on pensures that the functions II, V and p3

have a second derivative and u" is uniformly continuous. Taking Taylor's

expansions ( of the terms involving x ) around x = 0, one gets,

un(x)/rn(x) = xp'IOI/eIO) + d1n(u"(0)/o(0) — u'(0)V'(0)/03(0))x2/2

+ Q1n(x)a

M3,n(x)/Tg(x) = I 143,,,(0)/03(0) ) (dln) + aanx),

where the remainder terms satisfy

I Qme) I .<. D x2 (d3n) sup{ I 14"(y) —p"I0) I = lyl s enMn/en I.

(4.13)

I Q2n(X) I s D b, IM,,/e,,)2

for all x with |x| S bn' Here the constant D depends only on the values of functions

II, V, m3 and their derivatives at 0. Using the above expansions, uniform

continuity of u" and (4.2) one can conclude that,

IxI‘ipb I P( an( 3,, — 4) s x) — H1n(Ax) I = o I (MD/ a.) ).

This together with (4.4) completes the proof of part (a).

PROOF OF PART (b) : The steps in the proof are similar to those in part (a). We
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will mention only the major differences here. Given 1) > 0, choose b > 0 large

enough such that for all y in IR and |x| 5 bn’ | 24 Kén(x , y) | < br). Take a = b

d4n in the Esseen's lemma and break up the integral into two parts as before. Note

that for any complex 11 with |u| < 1,

log (1+u) = u - 112/2 + 113 r(u) where |r(u)| < 1/(1 41) for |u| < 151 < 1.

Using the differentiability of v(x, t) in t and the above result, choose 6 > 0

such that for |x| S bn, tI S 6an/Mn and large n,

I vnIx.t/rnIx)) — (it)3 p3,,,Ix)/6rfiIx) — (it)4 [#4,n(x) — p4,nIx)I/24r§Ix) I

< D III5 I) Iij5)/r,5,Ix).

IvnIx.t/r,,Ix))I s 9/4, |(it)3 143,n(x)/67?,(X) + (it)4 M4,n(x)/24Tfi(x)l s 9/4.

Now use the second part of (4.8) to conclude that for |t| 5 6 Mn/an,

Ison(x,t/Tn(x)) — pgnIxxn s D (d4nMn/an) {|t|5+ |t|9} epr—tg/A).

Hence, it follows that for large n, uniformly in |x| 5 bn’

(4.14) I = I {IpnIx.t/r,,Ix)) — 12n(x,t)l/It|} at s D d4nMn/an.

ItIS 6 an / Mn

For estimating 11, one has to use condition (A.6) instead of the

nonlatticeness of w(el). In fact condition (A.6) guarantees that
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k (c)
I n

(4.15) sup {len(x,t/rn(x))| . |x|$bn, 6an/MnsltISb d4n} < q

Using (4.14) and (4.15) one can conclude (as in part a ) that

(4.16) | 31<1pb 8311 IP( (Sn(fl + x/an) -un(x))/rn(x) S y ) — K2n( X , y )I

X

"' II

2

Now observe that the differentiability conditions 011 I6 implies that the

functions II, V, ,u3 and 114 are three times differentiable and u'" is uniformly

continuous. A tedious computation of Taylor's expansion gives

un(x)/rn(x) = Ip'IDI/eIo» x + (em) {u"(0)/o(0) -— u'(0)V'(0)/o3(0)} x2/2

+ [Iain/2) {3 u'(0)V'2(0)/205(0) — u"(0)V'(0)/03(0) }

-+ 4,, {u"'(0)/0(0) — sp'Io)v"Io)/2e3Io))I x3/6 + D3,,Ix),

143,n(x)/r§(x) = d1n u3(0)/a3(0) + 4,, p3'Io) x/e3Io))

— 3 din 113(0) V'(0) x /2e5I0) + D4,,Ix),

Ip4,,,Ix) - p4,,Ix) I/rfiIx) = 42,, [144(0) — 174(0) I/e4Io) + Q5nIx),

pins/ego) = «1%,, p§Io)/e6Io) + Q6n(X)

where for all x with |x| 5 bn, the remainder terms satisfy



31

|Q3n(x)l s D |x|3d4nsupl I It"'(y)-Iu"'(0)l = lyl < lumen/e»n I.

(4.17)

Max{ IQin(x)| :1: 4,5,6} < “121 (d4n Mn/an).

The constant D depends only on the values of the functions It , V , #3 , I14 and their

derivatives at zero. As in the previous case it now follows from (4.2), (4.16) and

(4.17) that

Iii“? b I PI'anI 73,, — r) s x) — H2n(x) I = o (d4n) = o I (Mn/ an?)

By (4.4) the proof of part (b) is now complete.

PROOF OF THEOREM 2.2 : Note that the hypotheses of Theorem 2.2 differ from

those of Theorem 2.1 only in the differentiability conditions on the functions 7/) and

F. From the proof of Theorem 2.1 it is evident that the differentiability of the

function ’l/J has been used to guarantee that the functions II, V, #3 and #4 have

sufficiently many derivatives. Since 'l/) is bounbed and nondecreasing, therefore for

every k 2 1, wk is of bounded variation. An application of integration by parts

gives,

Ivk(y-x)dF(y) = kae)—IFIy+x)dkay)

As a consequence of this relation, the function u, V, #3 and #4 will have

sufficient smoothness as required in the proof of Theorem 2.1. The only cases where

the differentiability of It has been used for different reasons are (4.6) and (4.11).

But under the hypotheses of both the parts, F has a density and hence this follows

easily by Scheffe's Theorem.
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PROOF OF THE PROPOSITION : Let p = Q { (a , b) }. Then 0 < p S 1. For

any set B of R, let lB' denote the indicator of the set B. Note that by the Riemann

Lebesgue Lemma,

Iexp I a. pIy) ) 1(3, b)(y) dQ(y)

=I exp I up) [1( “a, , pr) )(y)q(v‘1(y))/v(1)(y)l dy

403.8 |t| 400.

Hence, there exists a constant M > 0 such that for |t| > M,

(4.18) I I eprit pIy) ) 1(a,b)(y)dQ(y) I < p/4

Therefore, for any x in IR and |t| > M,

I Eexp(it¢(€1—x)) I

sIl—p)+ I IepritpIy—x))1(,,b)Iy)dDIy) I

s (4 —3p)/4 + I IIexp (it pIy—x» — exp I it up» I 1p, , b)(y) dQ(y) I

s (4 —3p)/4 + I I q (y + x) 1(,_x,b_x)Iy) — q (y) 1(,,b)Iy) I dy.

Note that the continuity of q on (a , b) implies,

q (y + x)1(a—x , b—x)(y) " QIY)1(a , b)(Y) as X " 0

Therefore, the above integral goes to zero because

I q (y + x)1(a—x , b—x)(y) dy = Iq (y) 1(a , b)(y) dy for all x in IR.

Hence, there exists 6 > 0 such that whenever |x| < 6 and |t| > M,
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I Eexp(it ¢( «fl-X» | < (4-3p)/4 +D/4 =(2-p)/2<1-

This completes the proof of the pr0position.

. *

For the proofs of Theorems 3.1 — 3.4, define wn(x,t) = En ( exp (in/(61 -— x) )),

1 n . 1 n .
w1n(x,t) = pI'1 Ej=1xj exp (ltrb(6j— x)) and w2n(x,t) = n' Xj=1exp (1th(6j — x)).

The basic facts required for proving Theorem 3.1 and 3.2 are given in Lemma 4.2

below.

LEMMA 4.2 : Let Fn be either of the resampling distributions of Theorem 3.1 and

3.2. Then, for any M > 0,

(4.20) sup { | wn(x,t) —w (x,t) | : |t| S M, |x| S M} = 0(1) a.s..

Let h be a function with a bounded first derivative. Then for every M > 0,

(4.21) sup {lEnh( c: —x) —E h( ‘1— x) I : |x| 5 M} = 0(1) a.s..

PROOF OF LEMMA 4.2 : First we prove (4.20). For |t| S M, |x| g M and

FD : Fln’

I Wn(X,t) —W1n(X,t) I

1 n -
sll p( )II M ID |ij I ej—ej I l/pn,

1:1

2

By the assumption on xi's and (4.3), the R.H.S. tends to zero as. as 11 tends to

infinity. Similarly, for Fn = Gn’ |t| S M, [X] 5 M,

|wn(x,t)—w2n(x,t)| S D an I bn—flI /n.

By (4.3), this tends to zero as. as 11 goes to infinity. Therefore, it is enough to
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show that for i = 1, 2,

sup{ | win(x,t)—w (x,t) | : |t| 5 M, |x| 5 M } =0 (1) a.s..

This is proved by adapting the idea of the proof of Lemma 2 in Babu and Singh

(1984). Fix a > 0. Then there exists a constant C > 0 ( independent of r) ) such

that for all n 2 1 and for all u with |u| < Cr),

sup{ lwin(x+u, t+u)—win(x,t) I: |t| SM, |x| _<_M, i=1, 2}< 77

and ‘

sup{|w(x+u, t+u) —w(x,t)|:|t|$M, |x|$M}<ry.

Define B(M,n) = {j : j is an integer between —M/(Cr)) and M/(Cn) }. Then,

for i = 1, 2,

sup{ I w,,,Ix.t)—wa,t) I = |t| 5M. IxI 5M}

$277+max{ I Win(10n,iCn)—W(lCn,in) I =i, i€B(M,n) }-

Therefore by Hoeffding's inequality it follows that

P(SuD{ | W1n(.x,t)-W(x,t) I = |t| SM, IXI SM } >477)

SP(maX{ I W1n(iCn,iCn)-W(i0v,i0n) I =i,j€B(M,n) } >277)

sD 27-2 epr—I ppn)2/ 2e13, ).

Similarly,

P( sup{ | w2n(x,t)—w(x,t) | : |t| 5M, |x| SM } >417)

—2

SD?) exp(—712n/2).
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By Borel Cantelli lemma, first part of the lemma follows. The other part can be

proved similarly.

PROOF OF THEOREM 3.1 : Now we sketch the proof of Theorem 3.1. Since w is

bounded, by Lemma 4.2 all ( central ) moments of w (61 -- x) under Fn converges

as. to the corresponding (central ) moments of It (61 — x) uniformly over |x| 3 M.

Let N denote the set of all positive integers. Fix a sample point for which (4.20)

holds for every M in N and mn(x), sn(x), m3,n(x), m4,n(x) and their

derivatives respectively converge to u (x), o (x), u3(x), ,u4(x) and the

corresponding derivatives uniformly over |x| 5 1. For this sample point, using

Lemma 4.2 one can get bounds in the inequalities ( in the present set up )

corresponding to (4.1), (4.3), (4.4), (4.5), (4.10), (4.12) and (4.13) uniformly

over all n 2 N for some N > 1. Hence one can retrace the proof of Theorem 2.1(a) to

obtain Theorem 3.1 (a). Part (b) follows easily from Lemma 4.2.

PROOF OF THEOREM 3.2 : Similar to the proof of Theorem 3.1.

PROOF OF THEOREM 3.3 : Let G1n denote the empirical distribution function

of 61,...,en. Define g1n(x) = I [ k ((x—y)/en) dG1n(y) ]/en . First we show that the

estimators gn(r) (x) converge to f(r)(x) uniformly in x for r = 0, 1, a.s.. Under

the hypothesis of Theorem 3.3, Lemma 2.2 of Schuster (1969) and a simple

modification of Lemma 1 of Bhattacharya (1967) guarantee that

(4.22) max { || g1n(r)—f(r) || : r = 0,1 }= 0(1) as n —) oo a.s..

Therefore, it is enough to show that

(4.23) max { II g1n(r)— gum” : p = 0, 1 } = 0(1) as n -» a a.s..
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Now. II gm“) —g,,(‘) II

5 21.1 II 3:2" Ik(r)((X—€i)/en)—k(r)((x-Ei)/en)I I/ne;+1
1:

11

- r+2

SD2i=IIEI~cil/(nen )

sDxn I lln—fll /(n1/2ef,+2)-

The last step follows by an application of Cauchy Schwartz inequality. By (4.3)

and the assumption on { en}, (4.23) follows. Hence (4.22) and (4.23) jointly

imply that

(4.24) max { II glfl‘) 4“) II : p = 0,1 } = 0(1) as n 4 a a.s..

For proving Theorem 3.3 we need the following Lemma.

LEMMA 4.3 : Let Fn be the distribution corresponding to the density gn' Then ,

sup { I wn(x,t) —w (x,t) I : t 6 IR, x 6 IR} = 0(1) as n-+ oo a.s..

For any bounded fimction h,

.. *

sup{ I Enh(cl—x)—Eh(cl—x) I :xEIR}=o(1) aSl'l-Ioo a.s..

PROOF OF LEMMA 4.3 : It is to see that for all x and for all t

| Wn(x,t) - W (x,t) I

s I I sn(y) - f(y) I dy

By (4.24) and Scheffe's theorem it follows that

I I 8n(Y)—f(y) I dyeOasn—aoo as.

This proves the first part of the Lemma. Proof of the other part is similar.
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Now we give an outline of the proof of Theorem 3.3. Fix a sample point for

which max { II gflr) — {(r) II : r = 0, l } -) 0 as n -+ 00. It is enough to show that

for this sample point the inequalities in the proof of part (a) of Theorem 2.1 holds

uniformly in all sufficiently large 11 when F is replaced by Fn' Note that for any real

number x,

sup{ I w(x,t)—w(0,t) I :tEIR}

5 II f(y+x)-f(y) I dy

which tends to zero as x tends to zero. Hence, by the nonlatticeness of 16(61),

Lemma 4.3 and the above observation, it follows that there exist N > 1, 6 > 0 and

0<q<1suchthatforalln2N,

Inf{ I wn(x,t) I :ItI > M, IxI S 6} > .5,

(4.25)

sup{ I wn(x,t) I :ItI > M, IxI S 6}<(1+ q)/2 <1.

Also by Lemma 4.3,

Max{ II mHITI—p“) II, II Sn(r)-0(I)II:I'=0, 1, 2}-)0asn—+oo

(4.26) "

Max{ IImin(r)—ui(r)II:i=3, 4; i=0, 1, 2}-+0asn-+oo.

Using (4.25) and (4.26), one can get bounds in the inequalities corresponding to

(4.4), (4.5), (4.10), (4.11) and (4.12) uniformly over all sufficiently large 11. As for

the counter part of (4.13) in this case, note that,

sup{ I mI2)(y) -m,(,2)Io) I = lyl s Mnbn/en)

s sup{ I My) -u(2)(0) I = lyl SMnbn/an } + 2 II mg?) -u(2) II

403511-100.
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Hence part (a) of the Theorem 3.3 follows. Part (b) is trivial in view of Lemma4.3.

PROOF OF THEOREM 3.4 : Using the conditions on {en}, k and the symmetry of

the underlying density f, one can show ( as in the proof of Theorem 3.3 ) that

max{ IIflgr)—f(r)||:r=0,1,2}-)Oasn-mo as.

Therefore the conclusions of Lemma 4.3 hold in this case as well. Hence, one can

complete the proof along the line of proofs of Theorem 3.3 and Theorem 2.2(b) with

a similar observation on Q3n‘



CHAPTER 2

2.1. Introduction.

Let X1, X2, be a sequence of independent and identically distributed

(i.i.d) p—dimensional random vectors with distribution function (d.f.) F 0 where 0

lies in an Open subset O of IRm. Let 1]): Rp x 9 -) [Rm be a measurable function

with respect to (w.r.t) the Borel o—algebras on RP x O and Rm such that

(1.1) I w(x, a) dF0(x) = 0 for all a e e.

Let 161,...,Ibm denote the components of (6. Then M—estimator 9n of 6

corresponding to It is defined as a solution of the m—equations ( in t )

n

(1.2) 2 pi(xj, t) :0, i=1,2,...,m.

i=1

For n 2 1, denote the empirical distribution function of X1, X2""’Xn by Fn' Let

*

x1,"

M—estimator 0; as a solution of the system of equations (in t)

.,XI"; be a random sample of size n from Fn' Define the bootstrapped

n

(1.3) I pi(x3=,t)=o, i=1,2,...,m.

i=1

In sections 2.2 and 2.3 below, under some regularity conditions on It and

F 0, it is shown that in exists for sufficiently large values of n and tends to 0 as

n -) 00 with probability 1 under 0. It is also shown that with high ( conditional )

probability under Fn, 0;; exists and tends to 0 at the rate 0(n_1/2(log n)1/2).

39
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For such sequences of estimators, an almost sure Edgeworth expansion of the

distribution of ATM; — in) is given.

The method of the proof is similar to that of Bhattacharya and Ghosh

(1978). Using the assumptions, an almost sure representation for 0n is obtained.

In fact, it is shown that there exists a sufficiently smooth function H and a Borel

measurable function f : Rp -+ Rk, for some integer k 2 1, such that

n

where Z = l/n}: zj, zj = {(xj), j = 1, 2, n and with probability 1,

i=1

IIRDII = 0(n—(S’2V2) for some integer s 2 3.

Next, for almost all sample sequences (X1, 2,....), outside a set of

conditional probability o(n_(s_2)/2), 0; is expressed as

I); = 1107+ 11;)

II

1 .
h Y: — Y', Y' = f X¥ , = 1,...,w ere n2 j=1 J J ( J) J n and

Pn(IIR;II > 0(n_s/2(log n)s/2) = o(n_(s_2)/2) almost surely (as). Here Pn refers

to the conditional probability given (X1, X2,...,Xn). It should be pointed out that

for almost all sample sequences (X1, X2,...), 0; is expressed in terms of the same

function H.

The arguments in the proof following this point can be divided into two

steps. In step 1, JE(0* — 0 ) is closely approximated by JH(H(Y) —— H(Z)).
n n
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Pr0perties of H, R11 and R; guarantee that for almost all sample sequence

(X1, X2,...), the error of approximation, say Dn’ is small with high conditional

probability. More precisely, Dn satisfies

Pn(|IDn|I > 0(n—(S_l)/2(log ins/2) = pal—(3‘3”) a.s..

Representation of 0; in terms of the same function H is crucial for carrying out

this step.

In step 2, an almost sure asymptotic expansion for the conditional

distribution of J5 (H(Y) — H(Z)) is obtained. This, together with step 1, gives the

almost sure asymptotic expansion for the distribution of JI—1(9; — 6n). Corresponding

expansion for the distribution of Jfi( 611— 0) was obtained by Bhattacharya and

Ghosh (1978). Comparison of these two expansion shows that the bootstrap

distribution of J5“); — 6n) approximates the distribution of 45(611— 0) under 0,

at the rate of o(n_1/2).

2.2. Assumptions and main results.

Before proceeding further, we collect here the notations to be used in the rest

of chapter 2. Let Z+ denote the set of all non—negative integers. Also, let i be a

positive integer. For V=(l/1....V[)’ e (Z+)[ and x = (x1,...,x[)’ in IR‘, write

(I V. t’

x”: 11 x.‘, u! = II (11.!) and IVI = u1+....+u,. For afunction leRZ-1IR

i=1 1 i=1 1

having sufficiently many partial derivatives, denote by Djf the partial derivative

1/ l/

of f w.r.t. its j—th co—ordinate, j=1,..., l and set DVf = D11. . . D/ f. Let (DA

and II)A respectively denote the distribution function and the density of normal

distribution with mean zero and covariance matrix A for some positive definite
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matrix A. For any matrix A, write A, = transpose of A. By II II and < , >

denote, respectively, the norm and the inner product on appropriate Euclidean

spaces. For a Borel set B g R‘, let B6 = {x: IIx—yII < e for some y E B}, c > 0

and 6B = boundary of B.

Next, denote the underlying parameter value by 00. For i = 1,...., 1n,

OSIVI S s—l and j 21, define the variables {Zuij} and {Yuij} by

z =DV1/1i(Xj, 00), Y = Dthi(X’J!‘, 00). Write YI"), ZI") for the

and (Z

11,1,j ”31,1

m—dimensional random vectors (Y
V,I,j) i = 1,...,m V,i,j) i = 1,...,m

- _. (V) .. (V)
respectlvely. Set Zj - ( Zj ) 0 S IVI S 8—1, Yj — (Yj ) O s IVI 53—1. Then

(Z1, Z2, ...) and (Y1, Y2, ...) are i.i.d k-dimensional random vectors with

s 1 m+r—1 n

k=m2r=0( r ). Write 29):)

i=1

define V(V) and Y similarly. In the following we shall write P to denote the

n

Z(V)/n and Z -.= I am and
.I j=1 .I

(D

product probability measure 0 F0 on the space of all infinite sequences in IRp and

1 o

E to denote the expectation under P. X1, X2, are then considered as

co—ordinate variables. Also write En to denote the expectation under Pn.

Let ”Vii = E (Z i = 1 ,..., m, 0 S |u| S s—l,
u,i,1)’

(2'1) ”V=(‘uu,i)i=1,...,m and ”:(MV)0SIVISS—l'

Also, let 2 = E ( Zl—p )( Zl—u )’ and Sn 2 En(Y1_ EnY1)(Y1- EnYl)’.

Finally, define

M = (Cl-ratd H(u)) (23) (Grad H (u))’

Mn = (Gard H(Z)) (Sn) (Grad H(Z)’.

Now we state the assumptions.
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(A1) There exists a Borel set C E RP such that F0(C) = 1 V 0 E O and the

components of V) have continuous Vth order partial derivatives in 0 for 1 S |u| S s

at each (x, 0) E C x O for some integer s 2 3.

(A2) E IIDVIb(X1, 00) ”S < 00 for 0 S |u| S s—l, and there exists an e > 0 such

that

Max E( sup IIn”p(x,o)II3)<a.

IuI=s ||Holl<e 1

(A3) D = (( E Diji(X1, do) )) is non—singular.

We are now ready to state the main result.

THEOREM: Let assumptions (A1) — (A3) hold. Then,

(a) for almost all sample sequences (X1, X2, ...), there exists a sequence of statistics

*

{0n} and a constant (11 > 0 such that

Pn ( ”0:1 — 00” < dln—1/2(log n)1/2, 0; solves (1.3) ) = 1 — 0(n—(S_2)/2).

(b) There exists asequence {9n} ofstatistics such that

P ( in solves (1.2) and ”in — 00" < dl-n_l/2 (log n)1/2 eventually) = 1.

. :1:

(e) Let {0n} and {011} be two sequences of statistics which respectively satisfy (b)

and (a). Suppose that the characteristic function of Z1 under 00 satisfies the

Cramer’s condition

i<t,Z1>

(A.4) lim sup IE (e )I <1.

IItllw

Then, there exist polynomials a1(Fn, -), ..., as—2(Fn’ -) such that for almost

all sample sequence (X1, X2, ...),
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* ‘ n-ar/2
sup IPn(./n'(0n—0n)e13)—IB(:1+2 (anx))d<1>M(x)I

Bee?

= 0 (n—(S—2)/2)

where .2 is a class ofBorel subsets of Rm satisfying

(2.2) sup QM(0B)£) = 0(6) as (I 0

B63

and al(Fn, 0), ..., as_.2(Fn, .) are polynomials whose co—efficients are continuous

functions ofmoments of Fn oforder s or less.

(d) If conditions (A1) — (A4) are satisfied with s = 3, then for almost all sample

sequence (X1, X2, ...)

62%, anNfi Mil/20:, — In) 6 B) — P («E Ml/ZIIn — 00) e B)| = o (fl/2)

where .21 is a class ofBorel subset of IRm satisfying

(2.3) sup <I>I( (6B)€) = 0(6) as c I 0.

BE .21

REMARK 2.1. Conditions (A1) — (A3) are similar to those of Bhattacharya (1985)

and are somewhat weakerthan the conditions in Bhattacharya and Ghosh (1978).

Under some additional conditions, e.g. the contnuity of the maps 0 -) F 0 and

04 D(0) = E0((Dj Ibi (X1, 0))), Bhattacharya and Ghosh ( 1978) have obtained

results similar to (b) and (c) of the Theorem uniformly in 0 lying in compact subsets

of 6. But, in our case, such a uniformity does not seem to be necessary. Given the

1’""Xn’ if we can find 0; and (in satisfying (a) and (b), we can use the

approximations in part (c) and (d) without any knowledge about 0. One such

data X

situation is of course that (1.2) and (1.3) have unique solutions. In the case of
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multiple solutions there is no rule which definitely specifies in satisfying (b) (or 0;

satisfying (a)) even in ,the presence of such uniformity.

REMARK 2.2 : Part ((1) of the Theorem extends the pioneering result of

Singh(1981) concerning the improvement of the rate of approximation by bootstrap

in the case of sample mean. Taking It (x,t) = x — t for the sample mean, it is easy

to see that assumptions (A1)—(A4) reduce exactly to the set of conditions required

for the validity of the corresponding result (part D of Theorem 1) of Singh(1981).

REMARK 2.3 : Though conditions ( 2.2) and ( 2.3) look similar, they are not

equivalent in general. If the largest eigenvalue A of M is less than or equal to 1,

then every class of Borel sets satisfying (2.3) also satisfies (2.2). But for A>1, a

class of Borel sets satisfying (2.3) need not satisfy (2.2) as shown by the following

example.

EXAMPLE : We consider the case m = 1. Let M = (A) with A > 1 and c = (4A)°5.

1/2
Also,letan=(clogn) ,n>2. DefinethesetBby B={an:n>2}.Then

SE = B and (6B)6 = U (an— 6 , an+t ). Therefore, for 0 < c < a3,

n>2

I (an exp ( —x2/2) dx

( —x2 x

2n>2 J(an—c, an+ c) e p ( /2 ) d

g 26 2 DZ exp ( — (an—c )2/2)
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Now choose a = ( 16 A )—1/4 and let N be an integer such that (1—2o)aN > 2a3.

Then, '

I 6 exp(-—x2/2)dx S25(N+}: exp(-oaI21))=0(c).

(dB) n>N

Hence .3 = { B } satisfies condition (2.3). Now for sufficiently small 6 > 0 and

for all integer n satisfying (n+1)c 2 1, an+1 — an < e. Write a = (— c log 6 )1/2.

Then,

I 6 exp ( —x2/2A) dx

(013)

2 I exp(—x2/2A) dx

( a , co

2 (a‘1 — a—3 A ) exp (—a2/2A)

= a_1 (1— a"2 A) 6 c/2A.

Hence, it follows that

161151 3%wa exp(—x2/2A) dx

(0 — 2A )/2A
2lim a—1(1—a_2A) c =+oo

£1 0

So, .2 does not satisfy condition (2.2).

REMARK 2.4 : Condition (A.4) may be difficult to verify in some situations. A

sufficient condition for (AA) is given in Bhattacharya and Ghosh (1978) as

assumption (A6) on page 439. In our set up, this can be stated as : (A6) of

Bhattacharya and Ghosh (1978) together with the assumptions that C in (A1) is

Open and the matrix ((E Ibi(X1, 00) . I/Jj(X1, 00))) is nonsingular.
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2.3. Proofs.

First we state and prove some lemmas.

LEMMA 3.1. If E IIZIIIS < co for some 8 2 3 and Z1 satisfies (A.4), then for

almost all sample sequences and for sufficiently large n,

- —2

an(«/fi (Y-Z) e D) -I B (1 + 2 :1 n‘r/2 b,IF,,, x)) d<I>Sn(x)I

sou—(3‘2”?) + c1 es ((6B)e—dn)
I]

for every Borel set B in Rk. Here (1 > 0, c1 are constants (independent of the

sample sequence) and br(Fn’ ~), r = 1, ..., 8—2 are polynomials whose co—efficients

are continuous functions ofmoments of Fn oforder s or less.

Lemma 3.1 is an easy consequence of Theorem 2 in Babu and Singh (1984).

So we omit the proof. The next lemma gives an almost sure asymptotic expansion

for the distribution of J13 (H(Y) — H(Z)).

LEMMA 3.2 : Let Q = {x 6 RR: IIx — pII < 61} for some 61> 0 and let H: IRk —+

[Rm have continuous partial derivatves of all orders on Q. If Grad H(,u) is of full

rank then, for almost all sample sequences,

s—2

1 n_r/2 ar(Fn’ x))d ‘I’M (x)ISup an(Jfi (H0?) — IHIZ))e D) - I (1+2
B62 B

= O (n-(S'2)/2)

where a1(. , .), ..., as_2(. , .) and .2 are as in the statement ofpart (c) of the

Theorem.

 





48

PROOF OF LEMMA 3.2: without loss of generality, we may assume that the first

m—columns of Grad H(p) are linearly independent. Write,

s—2 —r/2 k

7,, n(x) = (1 + 2 1n br(Fn, x)) 4’s (x), x a; In and
1 1': Il

gn(X) = J5 (H(Z + x/JE) — H(Z)), x e IRk so that

JD (HO?) - H(Z)) = gnwfi (Y- Z)

First, we show that

(3.1) I -1 73,n(x) dx

:IB(1+X—1 n-T/2 ar(Fn’ x))d (PM (x) + 0(n_(s_2)/2)

holds uniformly over all Borel sets B in Rm. To that effect let Vn denote the set

{x 5 RR : I|xll 5 log n} and define the function kn : vn -» 111‘ by

gn(X)

k (x) =

n (x)m-1I—1

  

where (x)mk k. Then,+1 denotes the vector of last (k—m) elements of x 6 IR

 

By SLLN, Z —) It almost surely (P). Therefore kn has continuous partial

derivatives of all orders and a non-singular gradient on VI1 eventually, a.s.(P).

For sufficiently large n';
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(3.2) I(ng) v,,,,(x)dx

x x n—'(s_2)/2I(gnlB)nV r,,,( )4 +eI )

= 78,n(k;l(w)).ldet Grad kn(k;1(w))I—1dw

{(o)'fe13}n kn(Vn)

+0(n_(s—2)/2)

where (at)?1 is the vector of first m elements of w E IRk.

Next, we approximate det Grad kn(x) by taking co—ordinatewise Taylor's

expansion.

det Grad kn(x)

 

Grad H( Z+ x/Jfi)

= det

d Grad H(Z) +2: n—rr/QA,n(x) + n_(S—1)/2Rn(x)

= t

e 0 Ik—m

 

Here Ar n(x) are m x k matrices of polynomials in x and Rn(x) is a mxk matrix

which satisfies |an(x)II < c2 IIxIIS—l, x e vn eventually, as. for some

nonrandom constant c2.
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Grad H(Z)

With Bn = , we have

  

0 Ik—m

(3.3) det Grad kn(x)

= (det Bn) (1 + q1,n(n—1/2x) + n_(S—1)/2R1n(x))

where q1 n is a polynomial of degree S (8—2) and the remainder term R1n is

ONE) uniformly on Vn' Therefore , for all large n, we can write

(3.4) (det Grad kn(x))—1

—1 —1 2 — s—1 2
= (det Bn) (1 + q2,n(n / x) + n ( )/ R2,n(x))

where q2 n and R2 11 respectively have pr0perties similar to q1 n and R1 11 in

(3.3). Next observe that for almost all sample sequences, there exists a 6 > 0 such

that {Z + x: ”x” 5 6} _<_; Q for sufficiently large values of n. Define the function

I‘n on E = {x: “X” S 6} by

H(Z+x) —H(Z)

F (x):n ,xEE.

  

mail

Then, kn(x) = 41—1 Fn(n-1/2x), x 6 VII holds for all n such that log n g d-Jfi.

Notice that I‘n is a diffeomorphism ( cf. Milnor (1965), page 4) onto its image.

Hence 1:1 has continuous partial derivatives of all orders. In particular we can

I
express I‘; as the sum of a vector of polynomials q3 n and a remainder term

0(llwlls). As a consequence, for all w E kn(Vn),
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(3.5) k;1(w) = n1/2(r;1(n‘1/2w))

= nl/2 qa nor”2 w) + J5 0(Iln‘1/2wlls)

= 331w.+28-:”—r/2 «:4 r as») + ads-1V2dawns)
r: 3 3

where for r = 1, ..., (s-2), q4 r n is a vector of polynomials. Now, using (3.4) and

(3.5) in (3.2), we have

_ 7 (KNX
[3111B s,n

= w —1 n—1/2 -1 w

J{(w)TEB}nkn(V) and;H) |(det 3,) (1+q2,n( kn( mas

+ 0(n—(S—2V2).

_ --l
— |det Bnl

n1/2 1/2
<13(n w))(1 + q2,n<q3,n(n‘1/2w))) dw

J‘{(w)m111,163le(VVnNS’J

+ 0(n—(S—2)/2)

:'_nr/2(a1 n(a)) d<I>Mn(w) + o(n_(s_2)/2)
J m (1 +2: ,Fr

{(w)1eB}nkn(v)

where a1 r(Fn’°)’ r = 1,...,(s—2) are polynomials whose co—efficients are continuous

,

functions of moments of Fn of order s or less. Now, integrate out the variables

(wm+1,...wk) to get (3.1).
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N . __ 3—2 —r/2 m
ext, wrlte {S n(x) — (1 + 2 1 n ar(Fn’ x)) ¢M (x), x 6 IR . From

’ r= 11

Lemma 3.1, it follows that for almost all sample sequences and for large n,

(3.6) Iwmm — Hm) e B) — jB (s,n(xmxl

sows—2V2) + c163 ((agngffii'n)
II

for every Borel subset. B of Rm. Following the arguments given in Bhattacharya

and Ghosh (1978) ( page 444—445) it can be shown that there exists a constant

a > 0 such that for large n

—dn —

(3.7) osnaogglme )) 3 «Mn ((313)e an n vn) + o(n_(S-2)/2)

holds for every Borel set B Q lRm. Next use condition (2.2) to conclude that

sup <I>M ((6B)e—an n Vn) = 0(n“(S—2)/2)

B63 11

This completes the proof of lemma 3.2.

LEMMA 3.3. Let, U1,...,U be i.i.d. random vectors with common mean fl. Let
n

A denote the largest eigen value of the dispersion matrix of U1. Suppose that

E||U1||S < 00 for some integer s 2 3. Then,

Poi IIU— on > ((s—l) A 10g 101/?) g lids-2V2 (log 10—3/2

11

where Un = n_1 2 Ui and J is a function of A which is bounded on bounded

i=1

set of values of A.
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PROOF OF LEMMA 3.3 : See Von Bahr (1967).

We are now ready to prove the theorem.

PROOF OF (a): By assumption (Al), $1,...,z/2m have continuous partial

derivatives of order s on C x 6. Taking Taylor's expansion of wi(x,o) around 00

fori = 1,...,m, we have

(3.8) wi(x,t) = piano) +2 (t—oo)” DVwi(x,00)/V! + Rn,i(x,t)

1$|V| _<_s—1

where the remainder term Rn i(x, t) satisfies

8
an,i(X’ t)| S c ”t - 00“ max sup IDVib-(x, 0) I

IVI=s II0-00ll<llt-0oll ‘

for some constant c. Using (3.8), rewrite equation (1.3) as

(3.9) 0 = YO,i +2 (t-00)V.YV’i/u! + R;,i(t)

13 | VI gs—l

t
i
l
l
-
l n

where R;,i(t) = .31 Rn,i(X’J!‘, t).

By SLLN, the dispersion matrix of YE”) under Pn

=l E1; zi") . zCV)’ — Zl") .Z(”)’
nj=l J J

a_.s_., 00210». zgur _ ,(u) . ”or

for all u, 0 5 |u| 5 s—l and hence are bounded in norm.
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By Lemma 3.3, there exist constants d2 , (13 such that almost surely (P),

Pruitt") — Buys)“ > era-Ina... .)1/2) < d3.—<s—2>/2(,,g We

for Oslulg s—l, when n is sufficiently large. Also note that by the LIL,

”EnYiV) — pull = 0(n-”200g log 101/2) almost surely (P). Therefore it follows

that for almost all sample sequence, there exist an integer n02 1 such that for all

112110,

(3.10) Pn(llY(") — null > d.1 {V2003 xii/2))

< d3 n_(s_2)/2(log n)_€‘/2 for some constant d4 > 0.

Set R;(t) = (R; 1(t), ..., R; m(t))’. By similar arguments, it can be shown that

for almost all sample sequences, there exists a constant (15 such that (without loss

of generality)

(3.11) Pnumgcm > Ilt—0olls (d, + eel—”200g Isl/2))

< (13 n—(s—2)/2 (log n).s/2 for all n 2 no.

Hence, for almost all sample sequences, there exists n0 2 1 such that for all n 2 no,

outside a set of Pn—probability d6 n_(s_2)/2(log n)-S/2, we can write (3.9) as

—1 1/ s

3.12 t—0 = D+ * 6*+ 2 13—0 u!+d t—o 6*( ) ( O) ( on) (n 2s|u|5s—1( o) HV/ 7” on n)

where (16 and d7 are constants and 1);, 6* and 6* are random elements depending
11 I1

‘1/2 1/2 while neg” s 1.on (X*,...,XI";) and norms of n; and 8:1 are 0(n (log n)
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Hence, there exist an integer n1 2 no( depending on the sample sequence) and a

constant d8 such that for all n 2 n1, r.h.s. of (3.12) is less than d8 n—1/2 1/2(log n)

whenever Ht 0 II is less than d -1/2 1 In B B ' fi (1 '-— 0 8 11 (0g 11) . y rowers xe pornt

*

theorem (Milnor (1965), page 14) it follows that there exist statistics {0n} such

that for all n 2 n1,

alt ' _ an:

(3.13) Pn(||0n — 00" < d8 11 1/2(log n)1/2, on solves (1.3))

> 1 — (16 1143-4”2 (log 10—3/2.

This completes the proof of part (a).

PROOF OF (b): The proof is essentially the same as that of (a). Only exception is

that we use LIL instead of Lemma 3.3 to get bounds on the deviations ||Z(V) — 140’) H

for 0 5 |u| 5 s—l. This is also pointed out in Remark 1.8 of Bhattacharya and

Ghosh (1978).

PROOF 0F (c): Using (3.8) we can write

1

0 = if}: ._ 1bios] ’ 0n)
j—l

_ ‘ _ 1/
... 20,, + 2 K I vl (H (on 00) 21],, /1/! + End

_1 n * '

Where an : n E j=1 Rn,i(xj3 011)- Set Rn = ( Eula-.., Rum) . Then by

assumption (A2), it follows that there exists a constant (19 > 0 such that

(3.14) P (”Rnll < (19 n-S/2(log n)s/2 eventually) = 1
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Fori=1,...,m define the function fi: Rk+m-+IR by

fine, a): .+ E (a —oo)”/ul

1<|u|<s—-1 w,“

where w = (wui) e Rk, 0 611"“. Then, f = (f1,...,fm

’ OSIVISs-l; ISiSm

continuous partial derivatives of all orders, f(p, 00) = 0 and by assumption

)has

——((Dk+jfio(u,0))1 <i is non—singular. Hence by the implicit function

<l,j<m

theorem, there exists a unique function H : le -+ film and a neighborhood Q of a

such that

f(w, H(w)) = 0

for all 112 6 Q and H has continuous partial derivatives of all orders. Now, by LIL

and (3.14),

||Z(V) "”11” < (10 n_1/2(log 11)”2 for 1 5 |u| S 8—1

”7(0) + Rn” < (10 n_1/2 (log 11)”2

hold eventually, almost surely under P for some constant (10 > 0. Hence, by the

uniqueness of H, we have

(3.15) 0,, -- 11(3)

where i = (il/l) is given by

VJ = 2”,, forlg |u| gs—l and i=1,...,m

Z0,i = ZO,i +Rn,i fOI‘ i: 1,...,m

This gives the almost sure representation for in.
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n__ =1: *

Next expand the r.h.s of the equation 0 = n 1 2 wi(Xj’ (in) into Taylor's

i=1

series around 00 as in (3.8). Using (3.10) and (3.11) it can be shown (exactly in

the same way as in Bhattacharya and Ghosh (1978)) that for almost all sample

‘ _ :1:

sequence, outside a set of Pn— probability 0(n—(S 2)/2(log n)—s/2), 9n has the

representation

* ..

0n = H(Y).

~

Here, if = (Y ) is defined as
V,i

~

Yu,i=Y1/,i for 15 [VI 3 s—l and l=1,...,m

~

Y * * .

Y0,i : 0,i + Rni(0n) for l = 1,...,m

By (3.11) and (3.13), it follows that for almost all sample sequences, there exists a

constant (110 > 0 such that

(3.17) an 13:30:) II > c110 IFS/2 (log 103/2) = nods—2V2 (log en‘s/2)

Fix 0 < §2< 61. Since H has continuous partial derivatives on Q, by the mean

value theorem, there is a constant d11> 0 such that whenever Lal, 1122 lies in

{an Ilu- on s 3,),

(3.18) IIH(w1) — mas)" < d11 Ne1 — can.

.. :1:

Write DD = Jfi (6'n — 0n) — J13 (H(Y) -— H(Z)). Then (3.14), (3.17) and (3.18)

jointly imply that for almost all sample sequences, there exists a constant (112 > 0

such that
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(3.19) Pn(||Dn|| > d12 {WU/2 (log n)S/2)

= Pn (new) -- Hon) — (H(i) - H(Y)“ > d12 D‘s/2 (“g 108/2)

s Pn(llR:,(0;)ll > d10 n‘l/2 (log Ills/2)

= 0(n—(s_2)/2(log n)_Js/2).

Let (D = (110 n—(S—IV2 (log n)S/2. Then, it follows from Lemma 3.2 and

(3.6) that

(3.20) 1832?? | PM (of, — in) e B) —jB emu) dxl

5 sign w(a; —- in) e B) — PM (Ho?) — m» e B)|

+ 0(n-(S_2)/2)

s innnu > en) + sup Pumas?) — M) e (6B)€n)
B63

+ «HS—2)”)

= 0 (sup <1>M ((013)091 n vn)) + 0(n—(S—2)/2).

B63 11

for some constant a > 0. Now use the smoothness of H at a and the LIL to get

u M: — M_1 n = 0 (n_1/2(log log n)1/2)) a.s.(P).

Hence, it follows that .
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(no:

0 (183161.; @anB) n V11»

6 a

= o (sup iMaan) “ ))
B63

= 0(cn) = 0(n s—2)/2).

This completes this proof of (c).

PROOF OF ((1): Write on = rn||M;1/2II, n z 1. Then, as in the derivation

(3.20), one can show that for almost all sample sequences,

A

1%161391 |Pn(,/n MEI/2“)" -— on) e B) —JM111/2Bgs,n(x) dx|

s 0(n-(8‘2”?) + o (gun «iM (6M3/2B)‘“))
E II

= 0(n—(S—2)/2) + 0(sup (PM (Mi/2(aB)fln))

B631 n

= 0(n—(s—ZZ)/2)

The last step follows by the condition (2.3). By exactly similar arguments as in the

bootstrap case, it follows that

anb‘) dx| = o(n“(3‘2)/2)

£23 '1’ ”a 13-1/2th “ 00) E B) "l141/23
1
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—2

where Es,n (.) = (1 + 2:=1 n-r/Zarwo, -)) ¢M(-) and ar(00 , ~), are

polynomials obtained‘by replacing the moments of Fn by the corresponding

moments of F0 . Hence, the result follows from the SLLN and the continuity of

o

the co—efficients of the polynomials ar(° , .) in the moments of the corresponding

distributions.
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