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ABSTRACT

WAVE PROPAGATION IN PRESTRAINED

POLYETHYLENE RODS

by Aldred L. Stevens

The influence of prestrain on the prOpagation of

mechanical waves along a slender rod of low-density un-

oriented polyethylene was experimentally investigated.

The investigation consisted of two major parts: first,

a uniaxial continuous-wave technique was used to determine

the dynamic mechanical pr0perties of the polyethylene in

the form of the frequency-dependent phase velocity and

damping factor for frequencies spanning the audio spectrum

and for levels of uniaxial static prestrain up to 10%. A

linear incremental dynamic viscoelastic behavior about a

state of finite static prestrain was shown to obtain over

the range of strains and frequencies used.

In the second part, the propagation of an incre-

mental strain pulse along a slender rod of the same mate-

rial used in the first part was investigated. With the

rod in a state of static prestrain, an incremental impact-

induced strain pulse was introduced into the polyethylene

rod and monitored at two positions along the rod. Assuming
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a linear incremental dynamic viscoelastic behavior of the

material, the equations necessary to describe the result-

ing uniaxial strain as a function of time and position

along the rod are presented and the solution obtained by

Fourier transform methods. The resulting Fourier inverse

transform was numerically evaluated, using the material

properties determined in the first part. The strain meas-

ured at the first position was used as the input boundary

condition for computing the strain at the second position.

Results of the continuous-wave studies indicate

that the phase velocity decreases and the damping factor

increases with increasing prestrain in the range of pre-

strains. For example, at 8% prestrain the decrease in

phase velocity is approximately 4% and the increase in

the damping factor is approximately 25%. The change in

the phase velocity with prestrain is relatively uniform

over the audio-frequency range.

Good correlation of the leading edges of the ex-

perimentally measured and numerically synthesized strain

pulses supports the high-frequency phase velocity data of

the first part. Discrepancies between the measured and

synthesized pulse shapes were noted which are believed to

be associated with the problem of measuring strain in low

modulus materials with conventional strain gages.
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I . INTRODUCTION

1.1. Purpose of Investigation and Brief Statement of

Results

The general objective of this research was to de-

termine the influence of various moderate amounts (less

than 10%) of quasistatic prestrain upon the dynamic re-

sponse of low-density polyethylene when small increments

of dynamic strain were superposed on the prestrain.

The experimental investigation consisted of two

major parts: (1) sinusoidal continuous-wave propagation

studies to determine the incremental phase velocity and

damping, and (2) impact-induced pulse propagation studies.

In the first part the dynamic mechanical properties of

low-density polyethylene in the form of a slender rod

were determined as a function of the frequency and the

prestrain. In this continuous-wave study the prestrain

was the constant mean strain upon which the sinusoidal

incremental strain was superposed. In the second experi-

mental study longitudinal tensile impacts induced transient

incremental strain pulses, which propagated along rods of

the same material and same size as those used in the con-

tinuous-wave studies, at the same levels of prestrain.



Although the response of the material to dynamic

strains of the order of 10% is nonlinear, the incremental

dynamic response for small incremental waves superposed

on prestrains up to 10% was assumed to be linear, which

was verified in the continuous-wave studies for various

incremental strain amplitudes up to 400 microinches per

inch.

The impact-induced pulse propagation was then

analyzed, assuming a linear incremental response super-

posed on the prestrain, by Fourier analysis and synthesis,

using the prOperties determined in the continuous-wave

studies. The results predicted by the Fourier synthesis

are compared with the pulse-propagation experimental re-

sults in Section 3.4.

Previous investigations of the effect of prestrain

upon the dynamic mechanical properties are limited. Hillier

and Kolsky [l]* have studied the prOpagation of single-

frequency continuous waves along filaments of several poly-

mers while the filaments were being stretched at a constant

rate. Mason [2] and Hillier [3] have studied the influence

of strain upon the dynamic mechanical properties of natural

rubber. Both investigations were primarily concerned with

large prestrains, up to 600% elongation.

 

*Numbers in brackets refer to the list of refer-

ences at the end of the paper.



Hillier and Kolsky indicated that, for a fixed

strain, the change in the dynamic modulus during the

relaxation of stress was "extremely small." The present

investigator was thus influenced to study the dependence

of the dynamic mechanical properties upon prestrain, as

opposed to dependence upon prestress.

The results of the present investigations indi-

cate that, for prestrains up to approximately 10%, the

phase velocity c decreases with increasing prestrain and

the damping factor a increases with increasing prestrain,

over the complete audio frequency range used in this in-

vestigation. This result was qualitatively supported by

the correlation between the measured pulse traveling along

the polyethylene rod and the predicted pulse as synthesized

by Fourier techniques using the dynamic mechanical prop-

erties previously determined.

The effect of moderate prestrain on the dynamic

proPerties may have practical importance because the me-

chanical failure of polymer structural elements in many

realistic situations involves the dynamic loading of the

material while it is in a strained state. For example,

the viscoelastic solid fuel in a rocket is exposed during

the firing sequence to an essentially quasistatic defor-

mation, due to the acceleration forces, upon which is

superposed the high-frequency deformations due to turbu-

lent loads and vibrations. As another example, during the



growth of a crack in tensile failure the polymer may be

subjected to dynamic loads in addition to the quasistatic

extensions in the area of the crack. In View of the ef-

fects of elongation upon the dynamic behavior of polymers,

as discussed below, it is evident that the use of dynamic

properties measured at essentially zero prestrain could

be misleading.

To place in perspective the problem to which the

investigation is addressed, a brief history of the devel-

Opment of the theory of viscoelasticity is given in the

following section with attention focused mainly upon the

dynamic properties of polymers. Then previous experimen-

tal work leading to this investigation is discussed in

some detail in Section 1.3.

Part II is concerned with the investigation to

achieve the first major objective of this research, the

determination of the dynamic mechanical properties of

polyethylene as a function of frequency and prestrain.

In Part III the propagation of a longitudinal strain

pulse in a prestrained polyethylene rod is investigated,

the second major area of this work. The experimental

results are compared in Section 3.4 with the analysis by

Fourier transform methods based on the mechanical prop-

erties determined in Part II. A summary of results and

conclusions and comments on continuing research in this

area are presented in Part IV.



1.2. Historical Background
 

The phenomenological theory of viscoelasticity

dates from the nineteenth century. In 1835 Weber [4]

described the "elastic after-effect" in silk fibers and

developed an empirical expression relating elongation to

time under constant load. Boltzmann [5] gave the first

mathematical statement of linear viscoelasticity, the now

well—known superposition principle. However, the appli-

cation of the theory of viscoelasticity has lagged far

behind in comparison to the field of elasticity, where

active research has been pursued for more than a century.

In the last twenty—five years there has been an

increased interest in the mechanics of viscoelastic ma-

terials and structures. The introduction and rapid in-

crease in the use of polymers as structural materials has

provided a practical stimulus for the development of the

mathematical theory of viscoelasticity.

From the standpoint of engineering analysis, the

essential difference between viscoelastic materials and

elastic materials is the rate and temperature dependence

in the constitutive equation, the relation between stress

and strain. This complexity in the constitutive equation

is one reason for the delay in the development of appli-

cations of the formal theory of viscoelasticity.



A considerable development has been made for lin-

early viscoelastic materials, or materials assumed to be

linear for a limited range of strain. Linear viscoelas-

ticity implies that, at any instant, the magnitude of a

time-dependent response is directly proportional to the

magnitude of the applied time-dependent input. This as-

sumption has proved to be sufficiently precise for many

applications of polymer materials.

The mathematical aspects of linear viscoelasticity

were greatly simplified by the integral transform tech-

niques introduced by Gross [6]. Several papers [7, 8, 9]

have been published giving useful approximate methods for

interconverting expressions for the various mechanical

properties of linear viscoelastic materials. Three dis-

tinct forms of the constitutive equations have been devel-

Oped for describing the mechanical behavior of viscoelastic

materials. They are the

1. Differential-operator (operational modulus)

form;

2. Integral-operator (hereditary integral) form;

3. Complex modulus and compliance.

These are mathematically equivalent descriptions and can

be interconverted by the transform techniques presented

by Gross.



The differential—operator form was developed es-

sentially in conjunction with the mechanical "spring-

dashpot" models. The models provide insight into the

phenomenological behavior of viscoelastic materials, but

are not essential to the theory. A realistic description

of most viscoelastic materials requires many-element mo—

dels and consequent high-order (mlO) differential consti-

tutive equations. The resulting difficulties associated

with initial and boundary conditions and the numerical

solution of systems of high-order differential equations

have diminished the practical use of this form. The

integral-operator form is most conveniently used in quasi—

static analyses where creep and/or relaxation functions

are available for the material. Both of these forms have

been used primarily in the area of quasistatic structural

analysis or stress analysis. Excellent reviews of the

development and use of these forms may be found in books

by Leaderman [10], Alfrey [11], Gross [6], Bland [12],

Ferry [13], and Flfigge [14], and papers by Lee [15],

Williams [16], and Ward and Pinnock [l7].

Laplace-transform techniques may be applied to

great advantage with these two forms of the constitutive

equation used in quasistatic stress analysis. By using

integral transforms, a system of differential or integral

equations can be replaced by much simpler algebraic rela-

tions. The Laplace-transform of the constitutive equation



has the effect of displaying the time dependence of the

material in terms of a spectrum of time (decay) constants

as expressed by the transform parameter. Schapery [18,

19] has presented two methods of fitting experimentally

determined creep and stress-relaxation functions by a

Dirichlet (or Prony) series, a "Fourier series" expansion

in terms of real exponentials, of an arbitrary number of

terms. The Laplace-transform of this series is well known.

The solution of the resulting system of equations in trans-

form space can be inverted by approximate techniques pre-

sented in recent papers by Arenz [20, 21] and Cost [22].

Since the primary concern of this paper is that

of dynamic mechanical prOperties, further comments will

be restricted to the third form of the constitutive equa-

tion, the complex modulus and compliance.

If a linearly-viscoelastic specimen is subjected

iwt

to an alternating uniaxial stress, 0 = ooe , varying

sinusoidally with circular frequency w, the resulting

uniaxial strain will be e = eoellwt-G). Then, in analogy

to an elastic system, the relationship between uniaxial

stress and uniaxial strain can be defined by a frequency

dependent complex modulus E(iw) as follows:

E(iw) = 9%: g—°e = E*e = E + iE (1.2-1)
0



The behavior of the material in this type of loading can

be completely described by a pair of quantities: the in-

phase component E1 and the 90°-out-of—phase component E2

of the complex ratio of stress to strain, or equivalently,

the phase angle 6 and the ratio co/eo = E*. Still another

equivalent pair, the phase velocity c and damping factor a

are defined in Section 2.2. The frequency-dependent para-

meter E* = E(iw) is often simply called the modulus; E1

is the storage modulus and E2 is the loss modulus. A com-

plex compliance J(iw) = 1/E(iw) can be similarly defined.

In the complex—modulus representation the mechan-

ical behavior of a linearly-viscoelastic material at a

given temperature can be completely defined by the lab-

oratory measurement of the two components of the complex

modulus, or any of the equivalent pairs, as a function of

frequency. This representation is most important when

experimental work is to be correlated with theoretical

analyses of transient pulse propagation. Fourier-transform

methods are regularly used to transform the field equa-

tions and the initial and boundary conditions onto the

frequency plane. The system of transformed equations is

solved in transformed space in conjunction with the fre-

quency-dependent material properties. Inversion back to

the time domain is then accomplished either in closed form

or, more generally, by numerical techniques. An excellent

review of the theory of Fourier transform methods and
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associated experimental procedures for_wave and pulse

propagations is given by Hunter [23]. Techniques used

in the analysis of the transient pulse prOpagation in

the present investigation follow closely those given by

Hunter.

The survey papers by Kolsky [24] and Hunter [23]

provide a comprehensive review of publications in the

area of wave pr0pagation in viscoelastic materials prior

to 1961. Several significant papers have been published

since then: Chu [25] and Valanis [26] investigated the

propagation and attenuation of waves in linear viscoelas-

tic materials for which the relaxation function is known

as a function of time and showed that "weak" (small) wave

fronts propagate at a constant speed dependent only upon

the "glassy" modulus of the material, that is, on the

initial value of the relaxation function. The attenuation

of these wave fronts is exponential in character and the

attenuation rate depends only upon the initial value and

initial slope of the relaxation function. Fisher and

Gurtin [27] and Herrera and Gurtin [28] extended these

results to include waves of finite amplitude pr0pagating

through anisotropic and inhomogeneous viscoelastic solids.

But the initial value and initial slope of the relaxation

function, necessary to experimentally apply the analytical

results discussed above, cannot be directly obtained ex—

perimentally. This leads to difficulties in inverting
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the Laplace transform solutions for the shape and velocity

of the propagating pulse as a function of position and

time. For this reason the use of Fourier transform tech-

niques and the complex modulus form of characterizing the

material properties seems to be a more promising approach

to wave propagation analysis.

Experimental work in the area of wave propagation

in viscoelastic materials is limited. Kolsky [29] inves-

tigated the propagation of "short" mechanical pulses along

rods of three different polymers. The pulses were applied

to the ends of the rods by an explosive charge of approx-

imately 2 microseconds duration. The experimental results

were compared with pulse shapes predicted by numerical

Fourier synthesis using the complex modulus form for de-

scribing the material behavior and a dirac-delta-function

approximation to the input pulse. Norris [30] extended

the work of Kolsky to the case of a much longer initially-

applied stress pulse and the results showed good agreement

between the experimental and computed wave shapes and ve-

locities. Lifshitz and Kolsky [31] experimentally inves-

tigated the assumption, generally used in the application

of the well-known correspondence principle, that the bulk

modulus is real, whereas the shear modulus is complex.

The results indicated that the loss tangent of the bulk

modulus was approximately 20% of that of the shear modulus.

This assumption was tested by measuring the propagation
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of a spherically-divergent stress pulse in a linear visco-

elastic solid. Photoelastic techniques have been used by

Dally [32], Daniel [33], and Arenz and Fourney [34] to

study two-dimensional wave propagation in photo-viscoelastic

model materials. Durelli [35] has determined the stress-

strain curves at different strain rates in rubber-like

materials by photoelastic techniques.

As noted above, most viscoelastic materials are

linear for sufficiently small strains. In most polymers,

e.g. polyethylene, the transition from linearity to non-

linearity is quite smooth. The problem is how to extend

the theory to describe the nonlinearities which occur for

large strains. In general, the experimental problem is

made more complex in that the nonlinear material behavior

is combined with nonlinear geometric effects due to large

strains.

A general constitutive equation for viscoelastic

materials (materials with memory) has been formulated and

discussed by Green, Rivlin and Spencer [36, 37, 38]. They

assume that the elongation of a specimen at time t depends

on all previous values of the rate of loading to which the

specimen has been subjected. That is, in the one dimen-

sional case:

1':

e(t) = F [8333] T (2.1-2)
T =—-OO
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If the functional F is continuous and nonlinear, Frechet

has shown [see 36] that the functional expression for the

elongation can be represented to any degree of accuracy in

the following manner:

 

dO(T1) do(12)

_:J (t’T1-,tT2)——1T—-2- dTlde

2

+1.t]:tit dc('rl) dc(12) do(r3)

cwJ (t-Tl't-T2,t-T3)-——dTl -aT—2— T;- dTldedTB

+ . . . (2.1-3)

If only the first term on the right is retained, this ex-

pression for e(t) reduces to the linear hereditary integral

expression of the Boltzmann superposition principle [5].

Lockett [39] has extended the above development to the

more general three-dimensional case and defined a series

of experiments which are required to determine the twelve

material functions which appear in the three-dimensional

constitutive relations involving multiple integrals of

the first, second and third orders. A minimum of 330

separate tests are required. Less ambitious experimental

investigations for the one-dimensional case have been made

by several investigators [40-44]. Multiple-integral
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representations of the third order, involving three material

functions, have been successfully employed to describe the

nonlinear creep and recovery behavior of several polymers.

Noll [45] and Coleman and Noll [46] have given a

more general form of the constitutive equation based on

thermodynamic considerations and a postulated principle of

fading memory. Their constitutive equation is valid when-

ever the deformation is slow; hence it is essentially re-

stricted to the quasistatic case. Some approximations [47,

48, 49] to this theory have been proposed for "short time"

(dynamic) behavior. Lianis and DeHoff [48] proposed an

approximate theory for small dynamic strains superposed on

static large deformations in transversely-isotropic ma-

terials in which it is necessary to determine fifty kernels

(material functions).

Because the complete specification of the nonlinear

response is so difficult there has been some interest in

the possibly-simpler problem of small increments super-

posed on a finite prestrained state.

1.3. Previous Work Leadinggto this Investigation

Previous investigations of the effect of prestrain

upon the dynamic mechanical prOperties of viscoelastic ma-

terials are few. Biot [50] has shown that, on the basis of

the linear theory of viscoelasticity, prestress (prestrain)

influences longitudinal wave propagation only through its
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effect upon the magnitudes of the modulus and density of

the material. The phenomenon must therefore be considered

as being a nonlinear-material effect.

Hillier and Kolsky [l] have studied the propaga-

tion of continuous waves along 1 mm.—diameter filaments of

polyethylene, neOprene and nylon at a frequency of 3000

cycles per second while the specimens were being elongated

at a constant rate of strain, 0.0015 per second. Measure-

ments of the phase velocity and some values of the damping

factor were obtained for elongations up to approximately

140% for polyethylene and nylon and 500% for neoprene.

Measurements at 1500 cps and 6000 cps were also recorded

for undrawn filaments of polyethylene. 'All data were

taken at 20°C. Their results showed an increase of the

order of 100% in the dynamic modulus at 3000 cycles per

second for elongations of 100%. Slight decreases in the

values of the dynamic moduli of polyethylene and nylon

were noted, however, at low strains, followed by a rapid

rise. Correlation of the results with the molecular re-

arrangements which take place during large elongations

were discussed. The experimental method and apparatus

used in the present investigation is similar to that used

by Hillier and Kolsky; it is discussed in Sections 2.2

and 2.3.

The influence of strain upon the dynamic prOper-

ties of natural rubber has been studied by Mason [2] and
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of some synthetic rubbers by Hillier [3]. Mason recorded

phase velocity and attenuation over a limited frequency

range for a series of temperatures, and then used the

time-temperature superposition principle (method of reduced

variables), develOped by Williams, Landel and Ferry [51],

to extend this information over a wider frequency range at

a single reference temperature. The results reported in

both of these papers [2, 3] are similar to those reported

by Hillier and Kolsky. For extensions up to 600% the dy-

namic modulus for some rubbers increased as much as two

orders of magnitude. An initial decrease in the dynamic

modulus with strain in the range of strain from zero to

50% was noted for some materials. The damping factor also

varied considerably with strain.

The present study explores in greater detail the

effect of moderate prestrains (up to 10%) upon the dynamic

mechanical properties of low-density polyethylene. The

results of the present study are compared to the above

results and discussed in Section 2.5.



II. DETERMINATION OF MATERIAL PROPERTIES

2.1. Introduction
 

The engineering analysis of structures uses, in

general, a system of equations that can be divided into

two categories: one, the field equations and boundary

conditions, which incorporate the geometry into the anal-

ysis, and two, the constitutive equations, which describe

the fundamental mechanical relationship between load and

deformation (stress and strain) for the material. This

investigation is primarily concerned with the second cat-

egory; therefore the field equations will be made as simple

as possible so as to emphasize the constitutive relationship.

The geometry of the material specimens was chosen to be a

slender rod, and the frequencies and pulse rise-times are

such that the assumption of one-dimensional analysis can

be made.

The analysis for the method is presented in Section

2.2, and details of the experimental technique are given

in the following section.

17
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2.2. Method of Determining the Material PrOperties

A number of experimental methods are available

for the measurement of the dynamic mechanical properties

of polymers. Hillier [52] gives an excellent survey of

available techniques up to 1961. Brown and Selway [53],

Adkins [54] and Philbrick [55] have enlarged upon these

techniques in recent years.

The method of measurement is essentially deter-

mined by the relevant frequency range desired. For pur-

poses of correlation with Fourier transform techniques,

the pertinent frequency range is that comprising the

Fourier spectrum of the pulse. On the other hand, if a

complete description of the material properties is re-

quired, from the rubbery range through the transition

range and into the glassy range, probably no single tech-

nique will suffice. For instance, the transition region

for polyethylene spans approximately eight decades of

frequency (or time), and there is no available technique

that will span this range.

The time-temperature superposition principle,

using the method of reduced variables, as develoPed by

Williams, Landel and Ferry [51], provides a means of ex-

tending the range of any one technique. In using this

method the mechanical properties are determined in the

usual manner over the available frequency (or time) range,
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but for a series of temperatures. The Williams-Landel-

Ferry technique is then used to extend this information

over a broad frequency (or time) range for a single ref-

erence temperature. The method assumes a single tempera-

ture-dependent dissipative mechanism over the range of

the expanded frequency (or time) scale. Extensive temp-

erature conditioning equipment is required in order to

utilize this technique. In addition, the equipment used

in the measurement technique itself must be capable of

operating over the required temperature range.

A transient pulse analysis was made in the second

part of this investigation. Therefore the prOperties were

sought in the form of the complex modulus. Two general

methods are available for this: resonance methods using

short specimens, and sinusoidal traveling-wave methods.

The wave-propagation method was used in this study, be-

cause preliminary experiments indicated that with the

equipment available it would give more precise data. In

the wave-propagation method, the parameters actually meas-

'ured are the frequency-dependent phase velocity C(w) and

damping factor e(w). These two parameters are related to

the complex modulus, discussed in Section 1.2, as follows:

1/2

C(w) = [E1 secp 7 (2.2-1a)
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e(w) = %-tan % (2.2-lb)

where (E*)2 = Ei + E: and tan 5 = EZ/E1° The derivation

from which these relationships are taken is given below,

beginning with equation (2.2-2).

The method used for determing the frequency

dependent phase velocity C(w) and damping factor e(w) for

polyethylene was selected so that the frequency range of

the material data spanned the Fourier spectrum of the

impact-induced strain pulses used in Part III. This range

was of the order of the audio frequency range.

The parameters C(w) and e(w) were determined for

a series of prestrain elongations up to approximately 10%.

It was assumed that the material undergoes a linear dynamic

response to small dynamic increments in the neighborhood of

a state of static prestrain. This assumption was checked

experimentally during the course of the experimental in-

vestigation. The technique of measurement was first devel-

Oped by Ballon and Silverman [56], and has been used by

Hillier and Kolsky [1], Mason [2] and Norris [57]. The

theory is thoroughly presented in the paper by Hillier and

Kolsky, including the effect of reflection due to the

measuring transducer. A summary of the method will be

given here:
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The equations necessary to describe uniaxial wave

propagation in a slender viscoelastic rod are the equation

of motion

30 _ 3 u _§;,_ 0 .mi , (2.2 2)

the strain displacement relation

6 ='—— , (2.2-3)

the constitutive equation, as given in complex modulus

form by equation (1.2-l):

. '6
= E(iw) = E*e1 ,

(
M
O

and the associated boundary and initial conditions. Sub-

stituting (1.2-l) and (2.2-3) into (2.2-2) gives:

2 2

1.3. L; . (2.2-4)

8x 3t

t
a
r
o

For sinusoidal time dependence, the solution to (2.2-4)

is taken in the form

u(x,t) = v(x) eiwt . (2.2-5)
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The reduced equation becomes

2

§_%._ xzv = o , (2.2-6)

8x

where

E*el

If the rod is taken to be semi-infinite in length and stress-

free on all boundaries except at the accessible end x = 0,

where

u(0,t) = Uo el‘"t , ~ (2.2-8)

then the solution to the reduced equation (2.2-6) for the

outgoing wave is

v(x) = Uo e'AX (2.2-9)

where A = a+ik is a complex function of w. The complete

solution is

u(x,t) = Uo e-ax eiw[t-(x/c)] (2.2-10)

where

k = w/c . (2.2-11)
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The phase velocity c and damping factor a can be related

to the complex modulus and w by equation (2.2-7):

. 2 1/2

A = a+i§-= [0(12) ]

E*e

 

 

= m 1/2 (sin % + i cos %)

[E*/p]

w 6 . w

= — tan — + 1 . (2.2-12)

C 2 [E"’/Dll/2 sec 5/2

The equations (2.2-l) relating the phase velocity c and

damping factor a to the complex modulus follow from equa-

tion (2.2-12).

Consider a laboratory setup where a steady sinusoi-

dal displacement given by equation (2.2-8) is applied to

one end of a long slender rod of a viscoelastic material.

If the material has sufficient damping and the rod is suf-

ficiently long so that there are essentially no waves re-

flecting from the terminated far end, then the rod may be

considered semi-infinite in length. In this case the dis-

placement transmitted past any section at a distance x from

the driven and will be given by equation (2.2-10). If a

transducer is brought into contact with the rod at a dis-

tance Z from the driven end, the wave reflected from the

transducer will be
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2£-x)
-a(2£-x)eiw(t- c , (2.2-13)

 

ur(x,t) = -mU° e

for O:_x i L, where "m" is the reflection coefficient.

The measured displacement at any point O§_x i.£ is then

the sum of the transmitted displacement u and the reflected

displacement ur. In particular, the measured displacement

at the input end is

ui(0,t) = u(0,t) + ur(0,t) , (2.2-14)

and the measured displacement at the transducer is

u£(£,t) = u(£,t) + ur(£,t) . (2.2-15)

Experimental measurements will give the input amplitude A,

the amplitude B at the transducer (where x=£), and the

phase angle 6 by which the wave at x=£ lags behind the in-

put wave. From the relationship

Aeiwt _ i6 ui(0,t)

W) = Re = W) (2.2-l6)

the following equation can be derived:

 tan —— (2.2-17)
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If the term m[exp(-2a£)] is sufficiently small, this ex-

pression may be written approximately as tan %£-= tan 6

from which the phase velocity is

C = .6.—
(2.2-1.8)

The curve of phase angle 8 as a function of distance £

expressed by equation (2.2-16) shows a damped oscillation

superimposed upon a straight line of slope k, as seen_in

Figure 2.4-5. For sufficiently large values of Z an ac-

curate determination of the slope can be obtained. Hillier

[52] claims that an accuracy of i1% can be obtained.

A second expression derivable from the complex

equation (2.2-15) is

(l-m) e'“B
R s — = _ (2.2-19)

A 2a.}: g; + mze 4a£1Ir2
 

[l-Zme- cos

from which the damping factor may be determined. If a is

sufficiently large, then equation (2.2-19) can be written

approximately as:

tn (2) = -a£ (2.2-20)

The graph of the logarithm of the amplitude ratio as a

function of position i will give the value of the damping



26

factor directly as the slope of the straight line. Again,

as shown in Figure 2.4-6, damped oscillations are superim-

posed on the straight line. If points are selected where

§£I= %" %1" §E-, . . . , then the middle term in the

denominator is rendered zero (the last term is much less

than unity as it stands) and the significance of the os-

cillation is reduced. The phase velocity c and the damp-

ing factor a, when determined for a series of selected

frequencies, provide a complete description of the mechan-

ical properties of the material over that frequency range.

Repeating this method for a series of longitudinal pre-

strains of the material then provides the desired descrip-

tion of the material as a function of both frequency and

prestrain. In effect, an "incremental" complex modulus

is determined as a function of prestrain.

Experimental details of this program are given in

Section 2.3. It should be kept in mind that this method

is only valid provided the assumption of one-dimensional

theory holds, that is, provided the diameter (transverse

characteristic dimension) of the rod is small compared to

the wavelength of the traveling wave.

2.3. Details of the Experimental Technique

2.3.1. Specimens
 

One-eighth-inch diameter rods of low-density un-

oriented polyethylene were used in this investigation.
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The material was obtained from Allied Resinous Products,

Inc., Conneaut, Ohio, under the classification of "poly-

olefin welding rod."

The selection of this material was based on several

factors. The complex modulus has a considerable variation

over the frequency range comprising the Fourier spectrum

lof the pulse utilized in the second part of this investi-

gation. That variation occurs when the material is at

room temperature, thus permitting the material properties

to be determined and the subsequent pulse propagation ex-

periments to be conducted at room temperature. While a

considerable amount of information has been published for

polyethylene, there evidently has been very little inves-

tigation of the dependence of the dynamic mechanical prOp-

erties of polyethylene upon prestrain in the range of

strain considered here. The material-characterization

experiments by continuous-waves and the pulse-propagation

experiments could be conducted using specimens of the same

geometry, thereby minimizing any effects that specimen

geometry may have on the results and comparison.

2.3.2. Continuous Wave Source

The vibration driver used was an MB Electronics

Model EA-1500 Vibration Exciter, with matching power am—

plifier. The driver has a 35-pound force-amplitude output

capability. The frequency range of this unit is 5 to 15000
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cycles per second, which was sufficient to cover the fre-

quency range comprising the Fourier spectrum of the pulse

used in the second part of this investigation. Since the

flexural supports of the moving element (armature) of the

exciter were not sufficient to support the static load on

the polyethylene rod, an auxiliary flexural support was

constructed. The auxiliary support is essentially a beam

with fixed ends, which is driven transversely at midspan

to introduce the sinusoidal wave into the polyethylene

rod. The flexural stiffness of the beam was made large

enough to support the static load but "soft" enough to

permit the required flexural amplitude when driven at

midspan. The complete support fixture also incorporates

a provision for alignment of the exciter with the beam to

prevent damage to the exciter armature during Operation.

The entire fixture was mounted on a lathe bed, along with

the displacement-measuring transducers. Figure 2.3-3 is a

photograph of the complete test apparatus.

The method of attaching the polyethylene rod at

the driven and is shown in Figure 2.3-1. The end of the

polyethylene rod was upset by heating it to approximately

100°C and applying an axial compressive load while it

cooled. A heat sink was applied around all but approx-

imately one inch of the end of the polyethylene rod to

prevent altering of the material pr0perties. The heat

sink consisted of two pieces of aluminum bar stock, l-inch
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Metal Coupler Polyethylene rod

 

    

d
h
’

Epoxy Potting Material

Figure 2.3-1. Fixture for Attaching the Polyethylene Rod

at the Driven End

by l-l/2-inch by 4-inches long, which were clamped together.

A l/8-inch diameter hole was drilled along the length of

the interface between the two bars to hold the polyethy-

lene rod while the end was being upset. The bars were

then separated to release the rod after-the bulbous end

had been formed. The bulbous end of the rod was then em-

bedded in the metal coupler with a room-temperature-setting

epoxy. This provided a fixture that would support the

static axial load on the polyethylene rod without causing

it to fail by "necking" and, at the same time, would trans-

mit the oscillatory force into the rod without apparent

distortion.

2.3.3. Static Prestrain
 

The prestrain elongation was induced in the rod by

passing the far end over a sponge-rubber-covered pulley

and applying a dead-weight load. The material was allowed

to creep until the desired elongation was attained and
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then it was clamped. The pulley was positioned at various

distances from the driven end; up to 40 feet was required

at low frequencies to effectively eliminate the effect of

wave reflection from the far end, so that the displacements

measured were essentially those in a semi-infinite rod.

The wave-reflection problem is discussed further in the

following section.

2.3.4. Displacement-Measuring Transducers

Two crystal phonograph cartridges, Astatic Model

62-1, were used as displacement-measuring transducers.

The apparatus for positioning each transducer along the

lathe-bed way is shown in the photograph of Figure 2.3-3.

The device utilizes a microscope stage for adjusting the

transducer into contact with the polyethylene rod. An

extension for the lathe-bed way was constructed to permit

a total transducer travel of 180 inches.

These transducers were calibrated with reference

to an accelerometer, the output of which was continuously

integrated, through two operational amplifiers in series,

to give a displacement signal. The transducers were found

to produce an output voltage linear with displacement

amplitude over the range of frequencies and amplitudes

employed in this test. Calibration curves are shown in

Figure 2.3-2. The standard stylus delivered with the

transducer was used; the pointed stylus was found to
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Transducer #1
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Transducer #2
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O 2.4

2.3-2. Displacement - Voltage Calibration Curves

for the Displacement Measuring Transducers,

Astatic Model 62-1 Crystal Phonograph Cart-

ridges. The calibration was performed

using sinusoidal displacements.
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provide reliable contact with the polyethylene rod.. After

sufficient contact pressure was established (approximately

4 grams.) to provide a visibly-undistorted signal on the

monitoring oscilloscope, the transducer output was essen-

tially independent of pressure over a broad range of con-

tact pressure. Nevertheless, the transducer output signals

were visually monitored throughout the tests.

The effect of wave reflection from the transducer

was checked experimentally. One transducer was brought

into contact with the polyethylene rod at_an arbitrary

position and the signal amplitude and phase relative to

the driver observed. The second transducer, when con-

tacted with the rod at various distances along the rod,

produced no significant change in the output of the first

transducer. This was interpreted as an indication that

the transducer reflection coefficient "m" in equation

(2.2-12) was small. Nevertheless, a small oscillation of

the phase shift angle 6 versus position K was observed

about a straight line in the experimental results at low

frequencies and in the results for attenuation over a

larger frequency range. See Figures 2.4-5 and 2.4-6.

The assumption of a semi-infinite rod was also

checked experimentally. The distance of the far-end pulley

from the driven and was adjusted so that the measured

amplitude at several points along the rod in the vicinity

of the pulley was less than 10% of the input amplitude.
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Figure 2.3-3. The Driver, Load Support Device and

Transducers as Mounted on the Lathe Bed
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The amplitude of the reflected wave at the input end would

then be less than 1%. This was easily accomplished for

all frequencies except the two lowest frequencies used in

this test, for which the 40-foot length of the laboratory

was the limiting factor.

Considerable attention was also given to the prob-

lem of vibration isolation of the system. The lathe bed

was isolated from the floor by rubber isolation pads.

Vibration amplitudes transmitted from the driver to the

transducers via the lathe bed were also checked and found

to be insignificant. In all cases, the mechanical noise

level was below the electrical noise threshold of approx-

imately 30 microvolts RMS for the system as shown in

Figure 2.3—4.

It was assumed in Section 2.2 above that the ma-

terial would exhibit a linear dynamic response in the

neighborhood of a state of static prestrain. This assump-

tion was checked experimentally for several values of

static prestrain. At an arbitrary frequency the dynamic

response amplitude and phase shift angle were recorded

for a range of amplitudes at the driven end. No signif-

icant nonlinearity was observed over the range of dynamic

amplitudes used in this study up to 0.1% dynamic strain.

The following section summarizes the experimental

setup and procedure of the study.
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Figure 2.3-4. Schematic Diagram of the Experimental

Apparatus Used for Material PrOperty

Measurements.
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2.3.5. Experimental Setup and Procedure

A schematic diagram of the complete experimental

apparatus used for measuring the material properties is

given in Figure 2.3-4. Figure 2.3—3 is a photograph of

the complete test apparatus.

The following specific items of equipment were

used in this setup, as discussed in detail above:

1. MB Electronics Model EA-1500 Vibration Exciter

with matching 125VA Power Amplifier.

2. Hewlett-Packard Model 200CD Sine Wave Signal

Generator.

3. Hewlett-Packard Model 3734A Frequency Meter.

4. Acton Laboratories Type 320-AB Phase Meter.

5. Ballantine Laboratories Model 320 True Root-

Mean-Square Voltmeter.

6. Tektronix Type 0 Preamplifier.

7. Tektronix Type 532 Oscilloscope.

8. Astatic Model 62-1 crystal phonograph cartridge.

The following experimental procedure was used for

conducting the continuous-wave tests:

a. The material was received in coil form. Re-

quired lengths were laid out in a straight, flat position

and allowed to relax in this form for a minimum of 24 hours

at room temperature.
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b. The equipment was turned on and allowed to

warm up and stabilize.

c. The polyethylene rod was elongated a specified

amount and then clamped at the far end. The initial elon-

gation was 0.25%, sufficient to hold the rod in position

for conducting the tests.

d. The desired frequency and amplitude were set

on the signal generator and power amplifier.

e. The phase and amplitude of the wave in the

rod were detected by the transducer and readings of the

resulting phase and RMS voltage were recorded at success-

ive positions along the rod.

f. Setps d. and e. were repeated for the complete

frequency range at the given level of static elongation.

9. Another increment of prestrain elongation was

applied. This was accomplished by applying an increment

of load at the far end of the rod and permitting it to

creep until the rate of creep became sufficiently slow,

and then clamping the end.

h. Steps d. through g. were repeated for success—

ively increasing levels of prestrain until the maximum

level was completed.

In some instances data was taken for successively

decreasing levels of prestrain. This data deviated from

that obtained by the above procedure of successively in-

creasing prestrain as is noted in the experimental results

in Section 2.4.
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2.4. Experimental Results
 

All of the tests were conducted at an ambient

temperature of 72°F i 1°.

Typical graphs showing the phase shift angle and

attenuation as a function of the distance along the rod

are given in Figures 2.4-5 and 2.4-6, respectively. These

figures show the results for 0.25% and 8.0% elongation.

These results are typical of the results obtained over the

complete frequency range: the phase velocity decreases

with increasing prestrain and the damping increases with

increasing prestrain in the range of prestrains used in

this study. The lepe of the straight line of phase shift

angle 6 versus distance 2 in Figure 2.4-5 gives the wave

number k = w/c, as given by equation (2.2-ll). The slope

of the straight line of 1n(A/B) versus distance in Figure

2.4-6 gives the damping factor a, as given by equation

(2.2-20).

The phase data was reproducible within 1%, both

for a given specimen and for several specimens cut from

the same lot of material. The attenuation data, on the

other hand, exhibited as much as 10% scatter at some

points (see Figure 2.4-6). In general the amount of scat-

ter decreased with increasing frequency. The attenuation

data was uniformly scattered about a straight line faired

through the data. In the lower-frequency data an



39

  

700 “

600 A.
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Figure 2.4-5. Typical plot of data for Phase Angle 6

Versus Transducer Position Z (for w = 2000

per second). The slope of the straight

line is k = w/c. Experimental points are

shown for 0.25% prestrain.
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oscillation superimposed on this straight line was ob-

served. Reliable attenuation data could not be obtained

for w less than approximately 5000 per second.

Figure 2.4-7 shows the change in phase velocity

as.a function of the percent elongation. This data was

obtained for w = 3000 per second by stationing the trans-

ducer at K = 100 inches and recording the phase and ampli-

tude_of the transmitted wave as a function of the elonga-

tion.. Similar curves were obtained for other values of

w; the same general form of curve and approximately the

same percentage change was exhibited for each m. The

results for phase velocity as a function of frequency

for the complete series of tests are given in Figures

2.4-8a and 2.4-8b for elongations of 0.25% and 8.0%. The

results are displayed on a linear frequency scale in Fig-

ure 2.4-8a to emphasize the essential uniformity of the

shift in phase velocity with prestrain. The logarithmic

frequency scale used in Figure 2.4-8b suggests the form

of the equation for the frequency-dependent phase velocity

given in equations (2.4—l) and (2.4-2) below. The equa-

tion for the upper curve in Figure 2.4-8a, for 0.25% pre-

strain, is:

2o,7oo+2375 loglow, wiao,ooo sec.”1

C(w) =

32,400 (constant) , w>80,000 sec.—l

(2.4-1)
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And the equation for the lower curve, for 8.0% prestrain,

is:

16,290+3l40 loglow, 8550,000 sec?l

C(w) =

31,450 (constant) , w>60,000 sec:l

(2.4-2)

The results for attenuation are summarized in Figure 2.4-9.

The damping factor is essentially proportional to the fre-

quency over the frequency range considered and can be ex-

pressed as follows:

a(w) = dw . (2.4-3)

For 0.25% prestrain d = 2.17 x 10’6

6

sec./in., and for

8.0% prestrain d = 2.68 x 10' sec./in.

All of the data as presented above was recorded

for successive positive increments of prestrain elongation,

as noted in the experimental procedure, Section 2.3.5. No

negative increments (contractions) from any state of elon-

gation was permitted during the tests. On completion of

the tests in some specimens, the phase was recorded at a

few states of elongation as recovery (contraction) oc-

curred. A typical record is given by the dashed line in

Figure 2.4-7. The phase velocity during recovery is offset
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8.0% prestrain

a = 2.68 x 10‘66

0.25% prestrain

a = 2.17 x 10'66

n I I J

I

20 40 6o 80 106

CIRCULAR FREQUENCY, w (1000 per second)

Damping Factor a versus the Circular Fre-

quency w. The data is approximated by

straight line of the form a,= dw.
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from that recorded for increasing elongation. Complete

recovery of the elongation did not occur; approximately

1.0% strain remained after a minimum of 4 hours at no

load.

There was no significant change in the phase or

amplitude ratio due to the stress relaxation while tests

were conducted at each level of elongation.

2.5. Discussion of Results
 

It should be reiterated here that in this study

of the influence of prestrain upon the dynamic mechanical

properties of polyethylene, the attitude has been to regard

each quasistatic elongation as producing a new material,

and consequently, to determine the "incremental" complex

modulus as a function of frequency at each level of pre-

strain. The dynamic mechanical properties were determined

in the form of the frequency-dependent phase velocity C(w)

and damping factor u(w), which together are equivalent to

the complex modulus, the defining relationship given by

equations (2.2-l).

The values obtained in this study for phase velocity

in low-density polyethylene at 0.25% prestrain are compared

in Table 2.4-1 with values given by Hillier and Kolsky [l]

and Norris [57] for "unstretched" specimens of polyethy-

lene, at three frequencies for which comparable data is
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available. The damping increased with frequency in all

cases; for an approximate equation for damping in the form

e(w) = do (see equation 2.4-3), comparative values of the

coefficient d are given in Table 2.4-1 also. Composite

results of this Part II, as given in Figure 2.4-8 and

2.4-9 show that the phase velocity c(w) decreases with

increasing prestrain and the damping factor C(w) increases

with increasing prestrain, in the range of prestrain up to

10% as used in this investigation. Figure 2.4-7 shows the

typical smooth manner in which the phase velocity decreases

with prestrain. The results further indicate a relatively

uniform shift of phase velocity with prestrain over the

audio frequency range used in this study. All of this

data is for a temperature of 72°F i 1°.

These results are in good agreement with and ex-

tend the results given by other investigators. Data re-

ported by Hillier and Kolsky [l] for phase velocity versus

strain at a single frequency, 3000 cps, and at a tempera-

ture of 68°F, indicates a 2% decrease in the phase velocity

at 10% prestrain (followed by a rapid rise of 300% as the

strain was increased to 140%). The results of the present

investigation show approximately 4% decrease in C(w) at

the same frequency for 8% prestrain. Hillier and Kolsky

give no data on the effect of prestrain upon the damping

factor for polyethylene.
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TABLE 2. 4-10

COMPARISON OF DATA FOR PHASE VELOCITY

AND DAMPING FACTOR FOR

 

 

 

  

 

"UNPRESTRAINED"

POLYETHYLENE

Hillier & Norris Present

Kolsky [l] [30] Study

Frequency Phase Velocity, c (in./sec.)

-l
f(cps) w(sec )

1500 9,400 29,300 26,000 30,000

3000 18,800 30,800 27,130 30,900

6000 37,600 32,000 27,910 31,600

 
 

Damping Factor (a = dw)

 

d(lO-65ec./in.) 1.62 2.73 2.17
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A similar decrease in the phase velocity for nylon

for strains up to 10% has been given by Hillier and Kolsky

[l] and for natural rubber by Hillier [3] and Mason [2].

On the other hand, data reported for neoprene [l] and

other synthetic rubbers [3] exhibit no such initial de-

crease in phase velocity with prestrain.

Mason [2] reported an initial rise in the loss

tangent (tan 6 = EZ/El) for natural rubber for prestrains

up to 50%, and a sharp decrease thereafter. The data re—

ported for the synthetic rubbers [1, 3], however, show a

continual decrease in the damping factor with prestrain.

Using the definition of equation (2.2-lb), a=(w/c)tan(6/2),

it is seen that a decrease in the phase velocity would

result in an increase in the damping factor; however, the

4% decrease in the phase velocity at 8% prestrain is not

sufficient to explain the 15% increase in the damping fac-

tor at the same level of prestrain (see Figures 2.4-8 and

2.4-9), therefore it is possible that the loss tangent 6

does increase with prestrain for polyethylene.

The work of Lifshitz and Kolsky [44] on the non-

linear viscoelastic creep behavior of polyethylene indi-

cates that this material becomes "stiffer" for additional

increments of load as the prestraining is increased for

prestrains up to approximately 10%. This is a study of

the quasistatic behavior of polyethylene, which provides
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data in the rubbery region and low end of the transition

region on a graph of modulus versus log-frequency. If

the "additional increment of load" is interpreted as a

dynamic load for which w is (very) small, then the results

of [44] indicate an increase in the "incremental" modulus

as the prestrain is increased, which is Opposite to the

effect indicated at higher frequencies. This means that

the two curves given in Figure 2.4-8b must cross as the

frequency w decreases.

The reason for the effects and anomalies discussed

above are difficult to assess. Low-density unoriented

polyethylene is supposed to be highly amorphous, that

is, of low-percent crystallinity, and be non-crosslinked.

However, processes for polymerizing ethylene sometimes

use catalysts that promote weak cross-linking by side

groups (see [58], p. 51). These weak bonds may be rup-

tured during early stages of strain. The evidence seems

to indicate that the phenomenon occurring at low strain

is not part of the induced anisotropy resulting from the

"orienting and crystallizing" effects Of large strains in

polymers. It is the latter to which the recent wOrk on

nonlinear large-strain theories is primarily directed.

The second major part of this experimental study

will now be considered: the propagation of a longitudinal

strain pulse in a prestrained polyethylene rod Of the same
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material and geometry as used in the continuous-wave

studies. The general experimental problems associated

with wave-prOpagation in viscoelastic materials are dis-

cussed in Section 3.1, followed by a summary of the ex-

perimental method and details of the experimental apparatus

and procedure used in this study.



III. PULSE PROPAGATION EXPERIMENTS

3.1. Introduction
 

It was found in Part II that high-frequency sin-

usoidal waves travel at a higher velocity in polyethylene

than do low-frequency waves. It was also found that high-

frequency waves are attenuated more rapidly than waves of

lower frequency. As a result Of these two effects the

shape of a mechanical pulse changes as it prOpagates

through the viscoelastic material.

It was further found that the phase velocity and

attenuation of sinusoidal waves are affected by prestraining

the polyethylene material. The analytical and experimental

investigation of the influence of prestrain upon the prOp-

agation of an incremental longitudinal strain pulse is

discussed in the following sections. The analytical method

for predicting the speed and shape of the strain pulse is

given in Section 3.2. The experimental setup used to in—

duce and measure a strain pulse traveling along a polyethy-

lene rod is described in Section 3.3, and followed by a

correlation and discussion of the results.

53
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3.2. The Experimental Method

3.2.1. Theoretical Development
 

The analytical method used in this study for de-

scribing the strain pulse propagating along a slender rod

Of viscoelastic material with known mechanical properties

is essentially the Fourier transform method develOped by

Hunter [23] for a linear viscoelastic material.

The phenomenon of geometric dispersion is well

known; the speed of propagation of a sinusoidal wave along

a cylindrical rod of an elastic material depends upon the

ratio of the wavelength-l to the radius, a, of the rod.

Davies [59] showed, however, that as long as A/a is great-

er than about 10 the approximate one-dimensional theory

can be used with the elastic wave speed c = [E/pll/Z. The

diameter of the specimen rod used in this study was 1/8 of

an inch and the minimum significant wavelength was about

1.4 inches, so that A/a > 10. Therefore the approximate

one-dimensional theory can be used without introducing

any significant error due to geometric dispersion.

The equations necessary for describing a uniaxial

wave propagating along a semi-infinite viscoelastic rod

are the equation of motion, the strain-displacement equa-

tion, the constitutive equation and the initial and bound-

ary conditions. The constitutive equation is here taken

in the form of the superposition integral
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e(t) - E e(t) - t (t-T)§-§-Sl-)-d‘t (3 2-1)

- D _m¢ d1 ' '

¢(t) is called the relaxation function for the material, a

positive, monotonic function increasing with time and in-

dependent of the stress and strain amplitude. The relaxa-

tion function and ED, the dynamic Young's modulus, can be

determined by a uniaxial relaxation test. A thin rod of

the viscoelastic material is subjected to a step strain,

6 €°H(t), where H(t) is the Heaviside unit function.

The resulting stress is given by

e(t) ED[l-¢>(t)]so , t_>_0

= 0 , t<0 . (3.2-2)

The equation of motion and strain-displacement equation

are given by equations (2.2-2) and (2.2-3), respectively.

The initial and boundary conditions for the problem con-

sidered here are

e(x,0) = §E%%42) = 0, x30

\

s(0,t) = h(t)

> , t>0 (3.2-3)

lim e(x,t) = 0

x+oo I 
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It is convenient to transform the complete system of

equations (2.2-2, 2.2-3,.3.2-l and 3.2-3) by the Fourier

transform method to Obtain the solution to the problem.

The Fourier integral representation of a function

f(x,t) may be written [60] as

f(x,t) = %7jf ‘jf f(x,t)cos w(t-u)du dw (3.2-4)

0 0

or equivalently, as the complex transform pair

fXx,w) =‘jr f(x,t)e-iwtdt , (3.2-5)

0

26f(x,t) =.jr f}x,w)eiwtdw , (3.2-6)

0

where f(x,t) = 0 for t10. This represents f(x,t) for all

values Of t>0 if f(x,t) is piecewise differentiable in

every finite interval of t, and if the integral

[ |f(x,t)| dt (2.3-7)

converges uniformly in x. These conditions are-satisfied

for the field equations in the pulse propagation problem
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considered here. Applying the definition (3.2-5) to equa-

tions.(2.2-2) and (2.2-3) gives

g—g-= (16)2 p E , (3.2-8)

and

—_ 36'
8 -' '37" I (392-9)

respectively. Making use of the convolution theorem in

transforming the constitutive equation (3.3-1) gives

3(x,w) = ED[l+iw$(w)]EXx,w) (3.2-10)

which may be written as

3(x,w) = E(iw)E'(x,w) (3.2-11)

where the definition of E(iw) in terms of the transformed

relaxation function follows from equation (3.2-10). E(iw),

the complex modulus, was introduced in equation (1.2-1);

it is a complex function of the real variable w and relates

the amplitude and phase of the periodic stress and strain

response. The complex modulus, in the equivalent form of

the frequency—dependent phase velocity c(w) and damping

factor e(w), was determined for the polyethylene material

in Part II.
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The transformed system of equations (3.2-8),

(3.2—9) and (3.2-ll) may then be combined to give the

following equation in terms of the transformed strain E

32

E(x,w) - 12 E(x,w) = 0 (3.2-12)

8x

where the expression for).2 is given by equation (2.2-7)

and repeated here for convenience

12 = (im)2 9

2E*el

The solution to equation (3.2-9) under the conditions

(3.2-3) is

E(x,w) = E(o,w)e'“l‘”’x , (3.2-13)

where E(O,w) is the Fourier transform of the input condi-

tion €(0,t). The desired time-dependent solution is Ob—

tained applying the inverse Fourier transform, defined by

(3.2-6) to equation (3.2-13), to give

no

e(x,t) = 2? ‘E(0,Lu)e-O"(w)x eiw[t-(x/c(w))]dw

—oo

(3.2-14)

Since e(x,t) is real, equation (3.2-14) may be written as
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6(x,t) = %!/P [Efi cos w[t-(X/C(w»}

0

+ E sin (1) [t-(x/c(w)):}] (Jam)X dw (3.2-15)

where E(O,w) has been defined as

‘E(O,w) I
I

(
D l

P
-

mR I (3.2-16)

with

ER =.jr 6(0,t) cos wt dt

0

El =f 6(0,t) sin wt dt . (3.2-17)

o

If the phase velocity c(w) and damping factor e(w)

are known for a given material and the input boundary con-

dition s(0,t) is known for the accessible end of the semi-

infinite rod, then equations (3.2-15) and (3.2-l7) provide

the complete formal description of the wave propagating

along the bar. The details Of the numerical procedure

used to evaluate these equations are given in the following

section.
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3.2.2. Numerical Integration
 

The measured strain at the first strain-gage station

was used as the input boundary condition e(O,t), since use

of the input boundary condition at the transmitter bar-

polyethylene interface was found not to be feasible for

reasons discussed below in Section 3.3.1. The input strain

e(0,t) was found to be closely approximated by a sequence

Of connected piecewise-linear segments (see Figure 3.4-l4).

This permitted the analytical evaluation of 5k and E} in

terms of the end points of each time segment and the zero-

time intercept and lepe of each segment. This greatly

reduced the computation time by eliminating the need for

the numerical integration of equations (3.2-l4) for each

value of the circular frequency w used in numerically

evaluating equation (3.2-12).

The resulting expressions for E and E' for the
R I

piecewise linear approximation to s(0,t) are given by

m
l

w

u

n n
b
fl
z
z

3
‘

”
V

3

(3.2-18)m
I

H

u

s u
b
fl
z
z

6
‘

H a
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where

(6R)n = :7 (cos wtn+l - cos wtn)

B +S t B +S t

+ n n n+1 sin wt - n n sin wt
w n+1 w n

and

(eI)n = :7 (Sin wtn+l - Sln wtn)

Bn+Sn tn+l Bn+Snt

- w cos wtn+l + w cos wtn .

(3.2-l9)

N is the number of straight-line segments, with the n-th

segment having end points tn and tn+1 , slope Sn and a

zero-time intercept of Bn' As a check on the error intro-

duced by this approximation, equations (3.2-l7) for Efi and

4E1 were evaluated numerically by Newton-Cotes quadrature

for a range of circular frequencies m using values of

6(0,t) scaled directly from the experimental data. These

results were compared with the values for Efi and 3i ob—

'tained by using equations (3.2-18) and found to differ

more than 2% only for values of w greater than 105 per

second. As will be shown later, due to the exponential

term in the integrand Of equation (3.2-15) the contribution
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to the value of 6(x,t) for values Of w greater than 105

is very small.

The expressions (3.2-l8) for Eh and Ei were in-

troduced into equation (3.2—15) along with the measured

values of the phase velocity C(w) and damping factor u(w)

in the forms given by equations (2.4-1) and (2.4-3), re-

spectively. The resulting integral of equation (3.2-15)

was numerically evaluated by a Newton-Cotes quadrature

formula Of order five (see Ralston [70], pg. 116), which

uses a fifth-degree polynomiaal to fit the integrand fun-

ction I(w,x,t) at six points. The integration was per-

formed over the six-point interval of five panels; the

interval was then halved and the integration performed for

each half and summed. If the two results differed by more

than 0.01 percent the interval was halved and the computa-

tions repeated. Panel widths of Am = 200 per second were

used. The integration was performed over intervals of

1000 per second, starting at w = 0, and the sum accumulated

over successive intervals along the w-axis.

Two difficulties arose in evaluating equation

(3.2—15) numerically: (l) the integrand is indeterminate

at w = 0 in the form in which it appears in equation

(3.2-15), i.e., the transforms Eh and Ei are fractions

whose numerators and denominators vanish at w = 0, and

(2) the upper limit of the integral is not finite. The

first problem was solved by applying L'Hospital's Rule
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in taking the limit of the integrand I(w,x,t) as w+0.

Using the expressions given by equations (3.2-18) and

(3.2-19) for the transform Of the piecewise linear ap-

proximation to €(0,t) and applying L'Hospital's Rule,

the limit Of the integrand of equation (3.2-15) was found

to be finite, say

lim I(w,x,t) = K(x,t) . (3.2-20)

w+0

It was further found that

K(x,t) ; I(w,x,t) (3.2—21)
w=l

for all values of x and t used in the computations. This

result was used for convenience in computing the value of

the integrand at w = 0 in the numerical evaluation of the

integral in equation (3.2-15).

The second problem was resolved by determining the

magnitude of w = w' for which

w

e(x,t) --/r I(w,x,t)dw ; 6e(x,t) (3.2-22)

0

or, equivalently

jf I(w,x,t)dw ; 6‘/P I(w,x,t)dw (3.2-23)

w' 0
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where 6 is the relative error. By numerically evaluating

the terms in the brackets in the integrand of equation

(3.2-15) it was found that the value Of the bracketed

quantity was positive and approximately equal to 0.086

over the range of circular frequency 0 i w i 104. For

m > 105 the magnitude of the bracketed quantity was less

than 0.05 and it alternated in sign as w increased. The

following inequality can then be written for the left-hand

side of equation (3.2-23)

‘j Idw : [lildwgf (0.05);de dw

‘ m' w' w'

(3.2-24)

for w": 105, with d = 2.68 x 10.6 per second per inch as

determined in Part II and x = 10.4 for this problem. A

lower bound for the integral on the right-hand side of

equation (3.2-23) can be written as follows

4
10 o.

f (0.086) e‘dw" dw if 1 duo . (3.2-25)

o o

The inequality of equation (3.2-23) will then be satisfied

1 f '

4
.. 10

[ (0.05) e'dx‘“ dw : 6 f (0.086) e'dx‘” dw .

w' 0

(3.2-26)
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Taking 6 = 0.001 in equation (3.2-26) and solving for w'

gives w' 2 2.5x105 per second. The Newton—Cotes quadra—

ture formula was then used to sum over up to 250 six-panel

intervals of 1000 per second to evaluate the integral of

equation (3.2-15) for e(x,t). It was found in the process

Of performing the computations that the sum over the first

150 intervals gave a result for e(x,t) that differed by

less than 0.1% of the value Obtained by integrating over

250 intervals for x=10.4 and several different values Of

t. To conserve computation time, the value of w' was

taken as 1.5x105 per second in the remainder Of the

computations.

3.3. Details Of the Pulse Propagation Experiment

3.3.1. Experimental Apparatus

The experimental part of the pulse prOpagation

study consisted of inducing a longitudinal tensile strain

pulse into a polyethylene rod that was in a state of lon-

gitudinal prestrain, and measuring the resulting dynamic

strain as a function of time at stations along the rod.

The apparatus used to generate and detect the propagating

strain pulse is shown schematically in Figure 3.3-10. The

system consists of an aluminum transmitter bar, a steel

striker bar and the polyethylene rod waveguide. These

components were mounted on the lathe bed used previously
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(see Section 2.3.2) together with the apparatus to induce

the prestrain into the specimen rod. Two strain gages

were used to monitor the strain pulse as it prOpagated

along the rod. Details Of the strain-gage technique are

given in Section 3.3.2 and in Appendix B. Some comments

on the strain gage behavior are also included in Section

3.4 in the discussion Of the results. The level of static

prestrain was recorded photographically as shown schemat-

ically in Figure 3.3-10. A photograph of the complete

apparatus is shown in Figure 3.3-ll.

The specimens used in this study were one-eighth-

inch diameter rods of low-density polyethylene, the same

as the specimens used to determine the dynamic material

properties in the continuous-wave study discussed in Part

II. A detailed discussion of the specimens is given in

Section 2.3.1.

The device used to generate the strain pulse con-

sists of a 0.375-inch-diameter aluminum rod, 60 inches

long, with an impact collar located at the center. The

collar is impacted by a sling-shot-propelled concentric

striker tube to produce the strain pulse. Figure 3.3-12

shows the details of the transmitter bar-collar-striker

tube assembly. At impact a tensile strain pulse travels

to the right along the transmitter bar from the impact

collar. A similar compressive pulse travels simultaneously

to the left. These elastic pulses travel essentially



68

 
Figure 3.3-11. The Wave-Propagation Experimental Apparatus
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undistorted at the sonic velocity of the aluminum. The

duration Of the pulse is governed by the time required

for the pulse to travel twice the length of the striker

tube.

The large acoustical—impedance mismatch between

the 3/8-inch diameter aluminum transmitter bar and the

l/8-inch diameter polyethylene waveguide results in most

of the tensile strain pulse in the aluminum rod being re-

flected from the aluminum—polyethylene interface as a

compressive strain pulse. It can be shown that the stress

reflection coefficient for an elastic stress pulse trans-

mitted from rod 1 to rod 2 at an interface is (see Lindsay

[61], pg. 74, et.seq.):

p2°2A2 - p1°1A1
R = 3.3-

p2°2A2 T p1°1A1 ( l)

 

‘where p, c and A are the density, sonic velocity and cross-

sectional area of the respective rods at the interface.

2Assuming for the moment that polyethylene is purely elastic

twith a sonic velocity c =30000 inches per second, the

:tesulting reflection is -0.99. Thus, to seek to determine

1:he experimentally transmitted pulse as the difference be-

tzween the incident and reflected pulse would be to seek

t:he small difference between the incident and reflected

p>ulses, introducing the possibility of large relative errors.
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Consequently, the input boundary condition for the strain

pulse in the polyethylene rod was taken as the strain meas-

ured at the first strain gage, located approximately two

inches from the aluminum-pOlyethylene interface. Figure

3.3-l3 shows an oscillogram of the strain as a function of

time at_both gages. The input pulse duration is approx-

imately 250 microseconds.

The method Of attaching the polyethylene rod to

the end of the transmitter bar is essentially the same.as

that used in the continuous-wave study (see Figure 2.3-1).

The end of the polyethylene rod was "upset," as described

in Section 2.2.2. The resulting bulbous end was then em-

bedded in a l/4-inch-diameter by 7/16-inch-deep hole in

the end of the transmitter bar with a room-temperature-

setting epoxy. This provided a connection that would sup-

port the static axial load on the polyethylene rod and, at

the same time, transmit the prOpagating pulse from the

transmitter bar into the polyethylene rod without apparent

distortion. Clamping techniques would have caused the

polyethylene to fail by "necking" at the point of clamping,

and, in addition, would possibly present a discontinuity

in the otherwise "smooth" transmitter bar which would dis-

tort the pulse transmitted to the polyethylene specimen.

Prestrain was induced into the polyethylene rod

in the same manner as in the continuous wave studies: the

far end Of the polyethylene rod was passed over a pulley
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Figure 3.3-l3. Typical Oscillogram Record of a Strain

Pulse as it Passes the Two Strain-Gage

Stations on the Polyethylene Rod. The

second pulse on each trace is the re-

flected pulse from the support—end Of

the transmitter bar.

 



73

and loaded with dead weights. The polyethylene was allowed

to creep until the desired level of prestrain was attained,

and then the pulley was clamped to maintain the level of

prestrain.

3.3.2. Strain Measurement
 

The strain pulse in the polyethylene rod was meas-

ured at two stations with conventional strain gages.

Micro-Measurements, Incq.Type EP-08-062AD-120 foil.strain

gages of 1/16-inch gage length were used. Due to the con-

fining size of the polymer rod only one gage was used at

each station. Each strain gage was connected into a four-

arm balanced Wheatstone bridge, with a 1.5 volt battery

power supply. The bridge output was amplified by a Tekt-

ronix Type D High-Gain Differential Calibrated DC Pre-

amplifier and recorded photographically on a Tehtronix

Type 555 Dual Beam OscilloscoPe. Each channel of the

oscilloscope was Operated independently, set for single

sweep and triggered by the incoming signal frOm the pre-

amplifier; the vernier trigger adjustment enabled trigger-

ing at a very low threshold above the base line. The

plus-gate trigger output from the time-base plug-in unit

of each channel of the OSCillOSCOpe was used to trigger a

Computer Measurements Corporation Model 800A/833A time-

interval counter. The arrival Of the strain pulse at the

first gage triggered the sweep of the first oscilloscope
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trace and "started" the time interval counter; the arrival

Of the pulse at the second gage triggered the second trace

and "stOpped" the time interval counter. This resulted in

a complete description of the pulse at each gage station

and a record Of the time of travel of the pulse front from

the first gage station to the second. The time-interval

counter has a resolution of 0.1 microseconds and an accu—

racy of 11 count. A typical oscillogram record of the

strain pulse as it is measured at the two strain-gage

stations on the polyethylene rod is shown in Figure 3.3-l3.

The level of static prestrain and the distance

between the strain gages was recorded photographically.

A steel scale with 100 divisions per inch was placed par-

allel and adjacent to the polymer rod; the position of

both strain gages relative to the scale was then recorded

at the appropriate levels of prestrain. In addition, the

static strain level was recorded by d.c.-coupling the

strain-gage bridge to the oscillOSCOpe and recording the

indicated strain. 'This permitted a comparison Of indicated

strain with actual strain to establish an effective gage

factor for the strain gages as mounted on polyethylene.

This problem is discussed further in Appendix B.

3.3.3. Experimental Procedure

Figure 3.3-10 shows a schematic diagram of the

complete experimental apparatus used to generate and
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measure a tensile strain pulse as it propagates along a

polymer rod that is in a state of static prestrain. A

photograph of the setup is shown in Figure 3.3-ll.

The following specific items Of equipment were

used in this setup as discussed in detail above:

1. Tektronix Type 555 Dual Beam OSCillOSCOpe.

2. Tektronix Type D High Gain Differential Cal-

ibrated DC Preamplifiers.

3. Wheatstone four-arm bridges, 120 ohms per arm,

1.5 volt power supply.

4. Micro—Measurements Type EP-08-125AD-120 (post

yield) foil strain gages.

5. Computer Measurements Corporation Model 800A/

833A Time Interval Counter.

6. Tektronix Type C-12 Trace-Recording Camera.

The following experimental procedure was used for

conducting the pulse-propagation tests:

a. A bulbous end was formed on the polyethylene

specimen for attaching it to the transmitter bar. The

procedure for accomplishing this is discussed in detail

in Section 2.3.2.

b. The strain gages were mounted on the polyethy-

lene rod. This required a special etching procedure to

enhance the bond between the gage and the polymer. A com-.

plete discussion of this problem is given in Appendix B.
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c. The bulbous end of the polymer rod was mounted

in the hole in the end of the transmitter bar and banded

with a room-temperature-setting epoxy.

d. Strain gage leads were attached directly to

the strain gage tabs; no separate soldering terminals were

used. Low-temperature (200°F) solder was used, with ex-

treme care exercised at this step so as not to overheat.

the polyethylene.

e. The electronic equipment was turned on and

allowed to warm up and stabilize.

f. The desired level of static prestrain was set

by applying a load to the far end, allowing the polyethy-

lene rod to creep until the required prestrain level was

attained, and then clamping the pulley to prevent further

creeping.

g. The power to the strain-gage bridge was turned

on, the "base-line" and strain-gage circuit calibration

level were recorded on the oscillogram for each channel.

h. The oscilloscope trace was set to sweep at

50 microseconds per division with a sensitivity Ofvl milli-

volt per division, each channel.

i. The single sweep triggers were reset, the time

interval counter register set to zero, and the striker bar

manually set and released to induce the strain pulse.

j. The time interval counter read-out was record-

ed and the oscillogram developed.
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k. Steps f through j were repeated for each level

of prestrain.

The problem Of strain gage failure was experienced

for static prestrain levels greater than approximately 5%.

Apparent stress concentration in the gage caused the me-

tallic grid of the gage to crack along a line transverse

to the axis of the gage and about at_the center of the

grid pattern. When such a failure occurred the gage was-

carefully removed and a new gage installed in an adjacent

area that had previously been etched. The removal Of the

broken gage and installation of a new one required approx-

imately 10 minutes. During this time the previously at-

tained level of prestrain was maintained constant. Since

it was found in the continuous-wave studies Of Part II

that the material prOperties did not change with stress

relaxation at a constant level of prestrain, it was as-

sumed here that the time required to install a new gage

would not affect the results.

The results of the experimental pulse-propagation

tests are given in the following section and compared with

the pulse predicted by the analytical method presented in

Section 3.2. The results are discussed and compared with

the results Of other investigators in Section 3.5.
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3.4. Numerical and Experimental Results
 

All of the tests were conducted at an ambient

temperature of 72°F i 1°.

Figures 3.4-14 and 3.4-15 show the experimental

and numerical results for the cases of 0.25% prestrain

and 8.1% prestrain, respectively. The solid curves give

the strain as a function Of time as measured experimentally

at two gage stations at the given positions on the poly-

ethylene rod. The experimentally-measured strain at the

first gage station was then used as the input boundary

condition e(0,t) to analytically predict the strain as a

function of time at the second gage station. The strain

pulse at the first strain gage was approximated by a ser-

ies of connected piecewise-linear segments to decrease

computation time, as discussed in Section 3.2.2. These

straight-line segments are shown on the record for the

first gage in the figures. A tabulation Of the appropriate

constants for each segment used in the computations with

equations (3.2—19) are given in Table 3.4-1. Sn is the

slope, Bn is the zero-time intercept and tn and tn are
+1

the time-end-points Of the n-th segment. Repeatability

of the input pulse permitted these tabulated values to be

used for the piecewise-linear approximation to the input

pulse in both Figure 3.4-14 and Figure 3.4-15.
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TABLE 3.4-l.

THE CONSTANTS FOR EACH SEGMENT OF THE

PIECEWISE-LINEAR APPROXIMATION

TO THE STRAIN PULSE AT THE

FIRST GAGE STATION

 

 

 

 

Segment. tn en Bn Sn

(u-sec.) (u-in./in.) (u-in./in.) (in./in./sec.)

0 O

l 0 128.8

30 3870

2 3066 26.7

45 4270

3 6856 - 57.8

75 2530

4 4532 - 26.7

140 800

5 945 - 1.0

275 670

tn, tn+1 = time end-points of n-th segment

en, €n+l = strain at end-points of n-th segment

Bn = zero—time intercept of n-th segment

S = slope of n-th segment
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The predicted pulse at the second gage station

was obtained by numerically integrating equation (3.2-15),

using the computed transform of the input boundary condi-

tion at the first gage in the form of equations (3.2-18)

and the values of the phase velocity C(w) and damping

factor u(w), for the corresponding level of prestrain,

determined by the continuous-wave methods in Part II.

The predicted pulse is shown by the dashed line for second

gage station in Figures 3.4-14 and 3.4-15.

The experimental results were repeatable to within

the width of the oscillogram trace. This was determined

by using a storage oscilloscope and superposing the traces

from several impacts. To insure repeatability it was

necessary that the sling-shot propelled striker tube be

released at the same distance from the impact collar each

time.

The general problem of strain gage application on

polyethylene was investigated independently and is dis-

cussed in Appendix B. Two effects should be noted here:

one, the strain gage, when mounted on a low modulus ma-

terial such as polyethylene, has a significant stiffening

effect in the area of the gage. As‘a consequence the in-

dicated strain is less than that which would result if the

gage were not there. It was possible in this investiga-

tion to compare the prestrain in-the polyethylene rod as

measured by the strain gages with that measured by the
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photographs of the rod and scale (see Figure 3.3-ll). A

correction factor of approximately 2.3 was determined;

this compared well with similar results of other investi-

gations (see Appendix B) for higher strain rates. It was

therefore concluded to assume a rate-independent correc-

tion factor, and, equivalently, to use the uncorrected

strain pulse measurements directly in the process of

Fourier analysis of the pulse from the first strain gage

and re-synthesis of the pulse at the second strain-gage

position.

The second problem associated with strain gage

applications on polymers is that of local heating of the

polymer by the gage. The resulting softening of the poly-

mer in the vicinity of the gage may produce erroneous

strain indication. This effect is detected by initial

drift upon application of power to the strain gage bridge.

In this investigation, using a 1.5 volt power supply for

the four-arm Wheatstone bridge, the initial drift was

approximately equal to the width of the oscillogram trace

and therefore considered relatively insignificant.

3.5. Discussion of Results

The results as given graphically in Figures 3.4-14

and 3.4-15 show the correlation between the experimentally-

measured pulse and the numerically—synthesized pulse, both

for the case of 0.25% prestrain and for 8.1% prestrain.
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The wave front correlation is seen to be very good. The

high frequency components of the pulse travel the fastest

and hence are the first to arrive at the next gage station

on the polymer rod. The good wave front correlation sup—

ports the value of the phase velocity c(w) for high fre-

quency as determined in Part II. For example, in the case

of 0.25% prestrain the high-frequency asymptatic value of

the phase velocity was taken to be 32,600 inches per sec-

ond, as suggested by the graph of phase velocity versus

frequency, Figure 2.4-8a. This value is supported by the

experimental pulse propagation measurements reported in

two previous investigations [58, 30] by dividing the dis-

tance between monitoring stations by the time of travel

of the initial wave front from one station to the next.

In both of these investigations [58, 30] the value of C(w)

for large values of m was taken as approximately 29,000

inches per second for the polyethylene specimens, and the

results showed the experimentally measured wave front to

be traveling faster than the numerically-synthesized pulse

wave front.

The time required for the pulse front to travel

from the first strain gage to the second in the case of

0.25% prestrain was 290 microseconds and for 8.1% pre-

strain it was 301 microseconds. This increase of 11

microseconds out of 300 microseconds is 3.7% which agrees

well with the 4% decrease in phase velocity due to 8.0%

prestrain in the continuous-wave study.
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The agreement in the general shape of the observed

and calculated pulses is also good, but the experimentally-

measured values are consistently lower than the predicted

values on the decreasing side of the pulse. This could be

due to several factors: the phase velocity of the lower-

frequency components as determined in Part II could be too

low. This would decrease the contribution to the pulse

amplitude by those lower frequency components. It is pos-

sible that the first gage causes a reflection of some of

the incoming pulse resulting in a lower actual pulse being

transmitted to the second gage. The existence of such

reflection is strongly suggested by the magnitude of the

correction factor for stiffening due to the strain gage.

Also, the gage correction factor could be frequency depen-

dent. The increasing modulus of the polyethylene with in-

creasing frequency suggests that the strain gage response

in following the polymer may be greater for higher frequen-

cies. This would cause the strain gage measurement to be

more nearly correct in the area of the wave front, where

high frequency components predominate, than in the latter

stages of the pulse where the lower frequency components

become important. There is also the possibility of errors

in the values used for the damping factor at lower fre-

quencies.



IV. SUMMARY AND CONCLUSIONS

The objective of this research was to determine

the influence of moderate amounts (up to 10%) of quasi-

static prestrain upon the dynamic response of low-density

polyethylene when small increments of dynamic strain were

superposed on the prestrain. In the distinct absence of

a formal theory to describe the exhibited nonlinear be-

havior, the attitude has been to regard each level of

quasistatic prestrain as producing a new material, and

to determine the “incremental" material response at each

level of prestrain.

The experimental investigation consisted of two

major areas: first, sinusoidal continuous-wave prOpaga-

tion studies were made to determine the "incremental"

dynamic mechanical properties of low—density unoriented

polyethylene, using long l/8—inch-diameter rod specimens.

These properties were determined in the form of the fre-

quency-dependent phase velocity C(w) and damping factor

u(w) for various levels of prestrain up to 10%, and over

the frequency range comprising the audio frequency spec-

trum. Taken together C(w) and u(w) are equivalent to the

complex modulus. In the second study, the prOpagation of

86
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an impact-induced longitudinal tensile strain pulse was

investigated, using the same l/8-inch-diameter polyethy-

lene specimen material as was used in the continuous-wave

studies, and at essentially the same levels of prestrain.

Although the response of the material to dynamic strains

of the order of 10% is nonlinear, the incremental dynamic

response for small incremental waves superimposed on pre-

strains up to 10% was assumed to be linear. The assump-

tion was verified experimentally in the continuous-wave

studies. With this assumption the impact-induced pulse

propagation problem was then analyzed by Fourier analysis

and synthesis using the material properties C(w) and u(w)

determined in the continuous-wave studies.

The experimental results indicate that, for pre-

strains up to approximately 10%, the phase velocity C(w)

decreases with increasing prestrain and the damping factor

u(w) increases with increasing prestrain. For example, an

8% prestrain results in approximately a 4% decrease in the

phase velocity and a-15% increase in the damping factor,

as shown in Figures 2.4-8 and 2.4—9, respectively. These

results show a relatively uniform shift of the phase ve-

locity with prestrain over the audio frequency range. At

any particular frequency in this range the shifts in phase

velocity and attenuation have a smooth (nearly linear)

dependence upon prestrain as indicated in Figure 2.4-7.

These results extend the work of previous investigations
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of the influence of prestrain upon the dynamic mechanical

properties of polymers and are in good agreement with

those results.

The results of the strain-pulse propagation studies

support the conclusions of the continuous—wave studies.

The strain pulse propagating along the polymer rod was

monitored at two stations. The record of the strain pulse

as a function of time at the first station was used as

the input boundary condition to predict the pulse at the

second station as a function of time, using Fourier trans-

form techniques and the previously—determined material

properties. The results show a decrease in the speed of

travel of the wave front due to prestrain which is in

good agreement with the results of the continuous wave

study. The general shape of the measured pulse agrees

with the shape of the numerically synthesized pulse; the

measured pulse is, however, consistently lower in ampli-

tude over all of the pulse except at the pulse front.

This discrepancy is believed to be a result of the stiff-

ening effect of the strain gage when applied to the poly-

ethylene. This problem is discussed further in Appendix B.

Indeed, the question of the applicability of con-

ventional strain gages for polymers of low elastic modulus

is a serious one. When a strain gage is mounted on any

material a local stiffening is introduced. In the appli-

cation to metals this stiffening effect is relatively
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insignificant, but_when applied to low—modulus materials

the effect is significant. As discussed in Appendix B, a

correction factor of approximately 2.3 was required for

the strain gage-polyethylene rod configuration used in

this study. In further pulse-prOpagation experiments it

would be desirable to use some other sensing device.

Recently [30] a Faraday-principle velocity trans-

ducer was used to measure the particle velocity inwa poly-

ethylene rod subjected to axial impact. A capacitor

transducer has also been used to measure transient pulse

shapes in applications where the end of the specimen is

accessible. Non-contacting methods of monitoring strains

in low modulus materials appear to be advantageous, since

the monitoring transducer then does not affect the response

of the material. Two such methods would be a diffraction

grating technique and an interferometric technique; another

would be an Optical measuring system which monitors the

motion of a line on the specimen.

Uncertainties in the experimental dynamic strain

measurements must be reduced before any check of the as—

sumption of a linear "incremental" dynamic material re-

sponse can be made by pulse—propagation experiments.

It is known, by reports from the vibration field,

that many structures containing viscoelastic elementSI

exhibit a nonlinear dynamic response. Both of these
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circumstances display the need for the development of a

nonlinear theory which may be conveniently used in the

area of dynamic viscoelasticity.

In conclusion, the work presented here extends

the available information on the mechanical properties of

.low-density polyethylene as a function of frequency and

of prestrain. Within the framework of the assumption of.

the applicability of the linear "incremental" theory of

viscoelasticity, these results are supported by two inde-

pendent studies. Some problems associated with this work,

have been presented which may motivate further research.
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APPENDIX A

THE TEMPERATURE GENERATED DUE TO THE

LONGITUDINAL OSCILLATIONS

IN THE POLYETHYLENE RODS

When a viscoelastic rod is subjected to a longi-

tudinal oscillating force, part of the mechanical energy

supplied by this force is lost to the rod in the form of

heat. The mechanical properties of viscoelastic materials

are highly temperature sensitive and the heat input to the

material by dissipation affects, in turn, the mechanical

response of the material. Thus the problem is one of

thermomechanical coupling. Several recent papers [62, 63,

64] have treated this problem rigorously, and the reader

is referred to these papers for the extensive details of

such an analysis.

It is the purpose of this appendix to establish an

upper bound for the temperature rise due to mechanical

energy dissipation and to show that this temperature rise

was small and therefore had an insignificant effect upon

the results of the continuous-wave studies discussed in

Part II of this work.

To establish the upper bound it is assumed that

all of the mechanical energy dissipated in the form of

heat is accumulated in the l/8-inch-diameter polyethylene

rod and that no heat is conducted along the rod. Per unit

volume of the rod, the total rate of heat accumulating
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BQ/at is equal to the rate of heat production due to dis-

sipation, assuming that the rate of heat production due

to dilatational compression is negligible. The heat equa-

tion is then

0
)

30- _'1_?'__

where the product of the specific heat c and density p is

called the heat capacity, T is the temperature and D is

the dissipation rate.

It is also assumed that all of the mechanical

energy lost is transformed into heat energy so that D can

be written as

D = o g5 , (A.2)

where

c = 00 Sin wt ,

e = so sin (wt-6) , (A.3)

and 6 is the usual phase-lag angle. Then, on a per-cycle

basis, the energy loss is

ZN/w

DI ='jf o gé-dt = nooeo sin 6 . (A.4)

0 ' ,



100

The heat equation (A.l) then gives the temperature rise

per cycle to be

I 1
T = EB- TTO°€° sin 5 . (A.5)

From equation (2.2-10) the displacement at any cross-section

along the rod is:

u(x,t) = er-ax sin (wt-kx) . (A.6)

Since u << k, the expression for strain is approximately

s = 32-= H-9--“—’-e-mX cos (wt-kx) . (A.7)

The exponential term serves to concentrate the energy

dissipation near the driven end of the rod, especially at

higher frequencies. The maximum value of so can then be

taken as

5:92.“).
0

c . (A.8)

The maximum magnitude of the stress is

co = E*(w) so . (A.9)

The value of the phase angle 6 is found, by using equation

(2.2-1), to be approximately 8.6 degrees for the polyethy-

lene.
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The maximum rate of dissipation occurs at the high

frequencies. At w = 105 per second the maximum displace-

ment Uo = 10 microinches for which so = 33 microinches per

inch. Substituting the approximate values, equation (A.4)

gives the dissipation rate per cycle of energy input to

the polyethylene rod to be:

D’ = 3.6 x 10.5 in-lbf/in3/cyc1e . (A.10)

The heat capacity for polyethylene is co = 180 in-lbf/in3/

°F [65], and the resulting temperature rise per cycle

given by equation(A.3 is

I D’ 7
$22.0X10H II °F/cyc1e (A.11)

At w = 105 per second the resulting rate of temperature

rise is

I w o

T 2F'2 0.003 F per second (A.12)

Thus, assuming no loss of heat from the polyethylene rod,

a temperature rise of 1°F would require 5 minutes.

Since the time required to take a series of meas-

urements in the continuous-wave study of Part II was of

the order of 5 minutes it was considered advisable to ex-

perimentally measure the temperature rise in the polyethy-

lene rod during a test. A thermocouple made of 0.003 inch
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diameter copper-constantan wire was used. A Leeds and

Northrup Model 8662 potentiometer was used to read the

output of the thermocouple. The thermocouple was mounted

on the polyethylene rod approximately two inches from the

driven end. The thermocouple was glued to the surface of

the rod by Eastman 910 Contact Cement.

Tests were conducted by driving the end of the

polyethylene at an amplitude equal to or greater than the

amplitudes used in the measurements made in the study of

Part II. Each test was run until a temperature equili-

brium was reached and the resulting change in the poten-

tiometer reading was recorded and converted to a tempera-

ture reading. Tests were conducted at five different

frequencies over the audio frequency range. The maximum

indicated temperature rise was 0.7°F at the highest fre-

quency tested, 10000 cycles per second. The accuracy of

the thermocouple was approximately plus or minus 0.5°F,

absolute, but somewhat better than this for making rela-

tive temperature measurements.

It may be concluded from these results that the

temperature rise of the polyethylene rod was small enough

that it did not significantly affect the test data.



APPENDIX B

THE BONDING AND CALIBRATION

OF STRAIN GAGES

ON POLYETHYLENE

Two problems arose in using conventional strain

gages to measure the strain in the polyethylene rod in

Part III of this work. First, the "wax-like" nature of

the surface of the polyethylene made it difficult to ef-

fect a reliable bond between the strain gage and the poly-

ethylene. Second, due to the local stiffening effect of

the strain gage, the indicated strain was less than the

actual strain would have been without the strain gage

bonded in place. The methods used in this study to bond

strain gages to polyethylene and to calibrate the strain

gages for use on polyethylene are discussed below.

The Bonding Problem
 

The bonding problem was resolved by a method of

preparing the surface of the polyethylene to enhance

"wetting" of the surface by the adhesive used, Eastman

910 Contact Cement. In the general problem of adhesives,

the bond strength is closely related to the degree of

attraction of the adhesive to the surface in question,

called wetting. The beading of water on a waxed surface

is an example of poor wetting. If a drOp of liquid ad-

hesive, such as Eastman 910, spreads out quickly over a
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flat surface, this is an indication of good wetting of the

surface by the adhesive. It was found that Eastman 910

Contact Cement and Duco Cement would not adequately wet

the surface of untreated polyethylene. Some epoxy cements

appeared to wet the polyethylene surface, but all of the

bonds failed at a very low level of strain (less than 0.5%).

Consequently, as a part of this research program, a method

of treating the polyethylene surface was developed to en-

hance wetting of the polyethylene by the adhesive. Eastman

910 Contact Cement was selected as the adhesive because

the adhesive thickness could be made very thin (approx-

imately 0.003 inch) and still maintain good bond strength.

A thin adhesive thickness results in less stiffening ef-

fect due to the gage.

An etching process was developed for treating the

polyethylene surface, using an etchant recommended for

preparing Teflon for bonding. The particular etchant used

was Tetra-Etch, manufactured by W. L. Gore and Associates,

Newark, Delaware. Directions accompanying the etchant

were used as a guide in develOping the procedure for etch-

ing the polyethylene surface. The procedure for preparing

the polyethylene surface and installing the strain gages

is as follows:

1. If the surface of the polyethylene is rough or

uneven, use dry 400 grit silicone carbide sandpaper to

lightly sand the surface in the area where the gage is to

be applied.
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2. Clean the surface of the polyethylene with

acetone to remove any oily residue.

3. Apply the etchant liberally to the surface of

the polyethylene and allow it to remain on the surface for

at least one minute.

4. Wipe the etchant from the surface with a facial

tissue. (Kleenex tissues are recommended as being free of

dust and powder.)

5. Repeat steps 3 and 4 for a total of at least

three applications of the etchant.

6. Using the neutralizer from an Eastman 910

Contact Cement Kit (obtained from Wm. T. Bean, Inc.,

Detroit, Michigan), apply the neutralizer to the surface

of the polyethylene with a cotton-tipped swab and wipe dry

with a kleenex. The surface is now ready for cementing

the strain gage to it.

7. Cement the strain gage to the polyethylene

with Eastman-910 Contact Cement by the standard procedure

outlined in the instructions included in the kit.

8. Solder the leads to the strain gage with a

low-temperature solder. A 200°F solder is recommended,

together with Variac-controlled soldering iron set at a

temperature just sufficient to melt the solder. Care

should be exercised not to overheat the gage; since the

polyethylene is a poor heat sink, temperature build-up is

rapid in the gage and may result in damage to the bond.
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For the same reason, the current through the gage should

be maintained low.

The Calibration Problem
 

In the procedure in Part III for measuring the

strain pulse propagating along the prestrained polyethy-

lene rod, the level of static prestrain was measured by

two methods: the actual elongation of the polyethylene

rod was measured by recording the longitudinal displace-

ment of two points approximately 10 inches apart on the

rod relative to a fixed scale beside the rod (see Figure

3.3-ll). The average static strain was then calculated

as the change in the distance between the two points,

divided by the original distance. At the same time, the

corresponding level of static strain indicated by the

strain gages was recorded. The average strain was higher

than the gage indicated strain by a factor of about 2.4

for strain levels up to approximately 5%. Norris [58]

has previously found that, for strain rates in the range

of 10'4 to 10"2 inches per inch per second, the actual

strain was higher than the gage indicated strain by a

factor of approximately 2.2. Norris mounted foil strain

gages on l/2-inch diameter by 1.5 inch long low-density

polyethylene specimen bars and tested them in compression

in an Instron Testing Machine. These strain rates are,

however, several orders of magnitude lower than the strain
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rates associated with wave propagation. The above tests

are, in effect, comparing the stiffening effect of the

mounted gage with the stiffness of the polyethylene in

its “rubbery” (very-low frequency) range.

A test was conducted to examine the response of

strain gages mounted on low-density polyethylene under

conditions of oscillating strain. From Figure 2.4-8a it

is seen that at a frequency of 500 cycles per second, or

greater, the polyethylene exhibits a stiffness of the

order of 2.5 times greater than the quasistatic value.

The apparatus for conducting the test is shown schema-

tically in Figure B-l6. An aluminum mass was cemented

to each end of a low-density polyethylene rod, l/2 inch

in diameter and 6.0 inches in length. This assembly was

driven longitudinally at one end by the vibration driver

described in Section 2.3.2. The acceleration of each of

the aluminum masses was monitored by accelerometers,

Endevco Models 2221, with associated charge amplifiers,

Endevco Models 2614C, having a system calibration factor

of 100 millivolts (peak) per "g" (peak). The acceleration

amplitudes of the end-masses were recorded using a Ballan-

tine Model 320 True-Root-Mean-Square Electronic Voltmeter.

At the same time, the oscillatory longitudinal strain in

the polyethylene rod was monitored by two strain gages

(Micro—Measurements, Inc., Type EP-08-125AD-l20 foil

strain gages with l/8-inch gage lengths) mounted
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Figure B-16. Schematic Diagram of the Test Apparatus for

the Calibration of Strain Gages on a Poly-

ethylene Rod under Sinusoidal Strain.
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diametrically opposite and at mid-span.on the polyethylene

rod. The strain gages were bonded to the rod by the pro—

cedure given above in this appendix. The strain gages.

were connected into a Tektronix Type Q Strain Gage Plug-in

Unit mounted in a Tektronix Type 532 oscilloscope., The

strain gage system was calibrated by the built-in calibra-

tion device in the Q unit. The readings were taken directly

from the oscilloscope screen. The strain gage response

was then compared to the computed longitudinal strain in

the specimen as follows:

The longitudinal resonance of the assembly was

found to occur at 452 cycles per second. At this fre-

quency the magnitude of acceleration of the driven-end-

mass was 2.83 g's and of the far-end-mass 24.4 g's. Using

elementary vibration theory this gives displacement amp-

litudes of 136 and 1170 microinches, respectively. At

resonance the sinusoidal displacements of the two ends

are essentially 90 degrees out of phase. When the dis-

placement at the driven end is zero, the displacement at

the other end is maximum. This permits the average max-

imum strain in the rod to be calculated as

UL ‘1170 u in.
s = f—'= 6.0 in. = 195 u-in./in. (B.l) 

The maximum strain rate for this oscillating strain was

é = we 2 .5 inches per inch per second. The strain was
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assumed to be uniform along the rod since the end mass

was large compared to the mass of the polyethylene rod.

The corresponding strain indicated by the strain gages

was 100 microinches per inch. The computed results are

higher than the strain-gage results by a factor of 1.95.

This is noted as being lower than the factor of 2.2 for

quasistatic strain rates found by Norris [58] on l/2-inch

diameter specimens. This casts some doubt on the assump-

tion, used in Part III, that a single statically-determined

correction factor could be applied over the whole fre-

quency range.
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