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ABSTRACT

WAVE PROPAGATION IN PRESTRAINED
POLYETHYLENE RODS

by Aldred L. Stevens

The influence of prestrain on the propagation of
mechanical waves along a slender rod of low-density un-
oriented polyethylene was experimentally investigated.

The investigation consisted of two major parts: first,

a uniaxial continuous-wave technique was used to determine
the dynamic mechanical properties of the polyethylene in
the form of the frequency-dependent phase velocity and
damping factor for frequencies spanning the audio spectrum
and for levels of uniaxial static prestrain up to 10%. A
linear incremental dynamic viscoelastic behavior about a
state of finite static prestrain was shown to obtain over
the range of strains and frequencies used.

In the second part, the propagation of an incre-
mental strain pulse along a slender rod of the same mate-
rial used in the first part was investigated. With the
rod in a state of static prestrain, an incremental impact-
induced strain pulse was introduced into the polyethylene

rod and monitored at two positions along the rod. Assuming
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a linear incremental dynamic viscoelastic behavior of the
material, the equations necessary to describe the result-
ing uniaxial strain as a function of time and position
along the rod are presented and the solution obtained by
Fourier transform methods. The resulting Fourier inverse
transform was numerically evaluated, using the material
properties determined in the first part. The strain meas-
ured at the first position was used as the input boundary
condition for computing the strain at the second position.

Results of the continuous-wave studies indicate
that the phase velocity decreases and the damping factor
increases with increasing prestrain in the range of pre-
strains. For example, at 8% prestrain the decrease in
phase velocity is approximately 4% and the increase in
the damping factor is approximately 25%. The change in
the phase velocity with prestrain is relatively uniform
over the audio-frequency range.

Good correlation of the leading edges of the ex-
perimentally measured and numerically synthesized strain
pulses supports the high-frequency phase velocity data of
the first part. Discrepancies between the measured and
synthesized pulse shapes were noted which are believed to
be associated with the problem of measuring strain in low

modulus materials with conventional strain gages.
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I. INTRODUCTION

1.1. Purpose of Investigation and Brief Statement of
Results

The general objective of this research was to de-
termine the influence of various moderate amounts (less
than 10%) of quasistatic prestrain upon the dynamic re-
sponse of low-density polyethylene when small increments
of dynamic strain were superposed on the prestrain.

The experimental investigation consisted of two
major parts: (1) sinusoidal continuous-wave propagation
studies to determine the incremental phase velocity and
damping, and (2) impact-induced pulse propagation studies.
In the first part the dynamic mechanical properties of
low-density polyethylene in the form of a slender rod
were determined as a function of the frequency and the
prestrain. In this continuous-wave study the prestrain
was the constant mean strain upon which the sinusoidal
incremental strain was superposed. In the second experi-
mental study longitudinal tensile impacts induced transient
incremental strain pulses, which propagated along rods of
the same material and same size as those used in the con-

tinuous-wave studies, at the same levels of prestrain.



Although the response of the material to dynamic
strains of the order of 10% is nonlinear, the incremental
dynamic response for small incremental waves superposed
on prestrains up to 10% was assumed to be lineér, which
was verified in the continuous-wave studies for various
incremental strain amplitudes up to 400 microinches per
inch.

The impact-induced pulse propagation was then
analyzed, assuming a linear incremental response super-
posed on the prestrain, by Fourier analysis and synthesis,
using the properties determined in the continuous-wave
studies. The results predicted by the Fourier synthesis
are compared with the pulse-propagation experimental re-
sults in Section 3.4.

Previous investigations of the effect of prestrain
upon the dynamic mechanical properties are limited. Hillier
and Kolsky [l1]* have studied the propagation of single-
frequency continuous waves along filaments of several poly-
mers while the filaments were being stretched at a constant
rate. Mason [2] and Hillier [3] have studied the influence
of strain upon the dynamic mechanical properties of natural
rubber. Both investigations were primarily concerned with

large prestrains, up to 600% elongation.

*Numbers in brackets refer to the list of refer-
ences at the end of the paper.



Hillier and Kolsky indicated that, for a fixed
strain, the change in the dynamic modulus during the
relaxation of stress was "extremely small." The present
investigator was thus influenced to study the dependence
of the dynamic mechanical properties upon prestrain, as
opposed to dependence upon prestress.

The results of the present investigations indi-
cate that, for prestrains up to approximately 10%, the
phase velocity c decreases with increasing prestrain and
the damping factor o increases with increasing prestrain,
over the complete audio frequency range used in this in-
vestigation. This result was qualitatively supported by
the correlation between the measured pulse traveling along
the polyethylene rod and the predicted pulse as synthesized
by Fourier techniques using the dynamic mechanicai prop-
erties éfeviously determined.

The effect of moderate prestrain on the dynamic
properties may have practical importance because the me-
chanical failure of polymer structural elements in many
realistic situations involves the dynamic loading of the
material while it is in a strained state. For example,
the viscoelastic solid fuel in a rocket is exposed during
the firing sequence to an essentially quasistatic defor-
mation, due to the acceleration forces, upon which is
superposed the high-frequency deformations due to turbu-

lent loads and vibrations. As another example, during the



growth of a crack in tensile failure the polymer may be
subjected to dynamic loads in addition to the quasistatic
extensions in the area of the crack. 1In view of the ef-
fects of elongation upon the dynamic behavior of polymers,
as discussed below, it is evident that the use of dynamic
properties measured at essentially zero prestrain could
be misleading.

To place in perspective the problem to which the
investigation is addressed, a brief history of the devel-
opment of the theory of viscoelasticity is given in the
following section with attention focused mainly upon the
dynamic properties of polymers. Then previous experimen-
tal work leading to this investigation is discussed in
some detail in Section 1.3.

Part II is concerned with the investigation to
achieve the first major objective of this research, the
determination of the dynamic mechanical properties of
polyethylene as a function of frequency and prestrain.

In Part III the propagation of a longitudinal strain
pulse in a prestrained polyethylene rod is investigated,
the second major area of this work. The experimental
results are compared in Section 3.4 with the analysis by
Fourier transform methods based on the mechanical prop-
erties determined in Part II. A summary of results and
conclusions and comments on continuing research in this

area are presented in Part IV.



1.2, Historical Background

The phenomenological theory of viscoelasticity
dates from the nineteenth century. In 1835 Weber [4]
described the "elastic after-effect" in silk fibers and
developed an empirical expression relating elongation to
time under constant load. Boltzmann [5] gave the first
mathematical statement of linear viscoelasticity, the now
well-known superposition principle. However, the appli-
cation of the theory of viscoelasticity has lagged far
behind in comparison to the field of elasticity, where
active research has been pursued for more than a century.

In the last twenty-five years there has been an
increased interest in the mechanics of viscoelastic ma-
terials and structures. The introduction and rapid in-
crease in the use of polymers as structural materials has
provided a practical stimulus for the development of the
mathematical theory of viscoelasticity.

From the standpoint of engineering analysis, the
essential difference between viscoelastic materials and
elastic materials is the rate and temperature dependence
in the constitutive equation, the relation between stress
and strain. This complexity in the constitutive equation
is one reason for the delay in the development of appli-

cations of the formal theory of viscoelasticity.



A considerable development has been made for lin-
early viscoelastic materials, or materials assumed to be
linear for a limited range of strain. Linear viscoelas-
ticity implies that, at any instant, the magnitude of a
time-dependent response is directly proportional to the
magnitude of the applied time-dependent input. This as-
sumption has proved to be sufficiently precise for many
applications of polymer materials.

The mathematical aspects of linear viscoelasticity
were greatly simplified by the integral transform tech-
niques introduced by Gross [6]. Several papers [7, 8, 9]
have been published giving useful approximate methods for
interconverting expressions for the various mechanical
properties of linear viscoelastic materials. Three dis-
tinct forms of the constitutive equations have been devel-
oped for describing the mechanical behavior of viscoelastic
materials. They are the

1. Differential-operator (operational modulus)

form;

2. Integral-operator (hereditary integral) form;

3. Complex modulus and compliance.

These are mathematically equivalent descriptions and can
be interconverted by the transform techniques presented

by Gross.



The differential-operator form was developed es-
sentially in conjunction with the mechanical "spring-
dashpot" models. The models provide insight into the
phenomenological behavior of viscoelastic materials, but
are not essential to the theory. A realistic description
of most viscoelastic materials requires many-element mo-
dels and consequent high-order (nv10) differential consti-
tutive equations. The resulting difficulties associated
with initial and boundary conditions and the numerical
solution of systems of high-order differential equations
have diminished the practical use of this form. The
integral-operator form is most conveniently used in quasi-
static analyses where creep and/or relaxation functions
are available for the material. Both of these forms have
been used primarily in the area of quasistatic structural
analysis or stress analysis. Excellent reviews of the
development and use of these forms may be found in books
by Leaderman [10], Alfrey [11], Gross [6], Bland [12],
Ferry [13]), and Flugge [14], and papers by Lee [15],
Williams [16], and Ward and Pinnock [17].

Laplace-transform techniques may be applied to
great advantage with these two forms of the constitutive
equation used in quasistatic stress analysis. By using
integral transforms, a system of differential or integral
equations can be replaced by much simpler algebraic rela-

tions. The Laplace-transform of the constitutive equation



has the effect of displaying the time dependence of the
material in terms of a spectrum of time (decay) constants
as expressed by the transform parameter. Schapery (18,
19] has presented two methods of fitting experimentally
determined creep and stress-relaxation functions by a
Dirichlet (or Prony) series, a "Fourier series" expansion
in terms of real exponentials, of an arbitrary number of
terms. The Laplace-transform of this series is well known.
The solution of the resulting system of equations in trans-
form space can be inverted by approximate techniques pre-
sented in recent papers by Arenz [20, 21] and Cost [22].
Since the primary concern of this paper is that
of dynamic mechanical properties, further comments will
be restricted to the third form of the constitutive equa-
tion, the complex modulus and compliance.

If a linearly-viscoelastic specimen is subjected

iwt

to an alternating uniaxial stress, o0 = o,e , varying

sinusoidally with circular frequency w, the resulting
uniaxial strain will be € = eoel(wt-a). Then, in analogy
to an elastic system, the relationship between uniaxial

stress and uniaxial strain can be defined by a frequency

dependent complex modulus E(iw) as follows:

(1.2-1)



The behavior of the material in this type of loading can
be completely described by a pair of quantities: the in-
phase component E, and the 90°-out-of-phase component E,
of the complex ratio of stress to strain, or equivalently,
the phase angle 8§ and the ratio o,/€e, = E*¥. Still another
equivalent pair, the phase velocity c and damping factor o
are defined in Section 2.2. The frequency-dependent para-
meter E* = E(iw) 1is often simply called the modulus; El
is the storage modulus and E, is the loss modulus. A com-
plex compliance J(iw) = 1/E(iw) can be similarly defined.
In the complex-modulus representation the mechan-
ical behavior of a linearly-viscoelastic material at a
given temperature can be completely defined by the lab-
oratory measurement of the two components of the complex
modulus, or any of the equivalent pairs, as a function of
frequency. This representation is most important when
experimental work is to be correlated with theoretical
analyses of transient pulse propagation. Fourier-transform
methods are regularly used to transform the field equa-
tions and the initial and boundary conditions onto the
frequency plane. The system of transformed equations is
solved in transformed space in conjunction with the fre-
quency-dependent material properties. Inversion back to
the time domain is then accomplished either in closed form
or, more generally, by numerical techniques. An excellent

review of the theory of Fourier transform methods and
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associated experimental procedures for wave and pulse
propagations is given by Hunter [23]. Techniques used
in the analysis of the transient pulse propagation in
the present investigation follow closely those given by
Hunter.

The survey papers by Kolsky [24] and Hunter [23]
provide a comprehensive review of publications in the
area of wave propagation in viscoelastic materials prior
to 1961l. Several significant papers have been published
since then: Chu [25] and Valanis [26] investigated the
propagation and attenuation of waves in linear viscoelas-
tic materials for which the relaxation function is known
as a function of time and showed that "weak" (small) wave
fronts propagate at a constant speed dependent only upon
the "glassy" modulus of the material, that is, on the
initial value of the relaxation function. The attenuation
of these wave fronts is exponential in character and the
attenuation rate depends only upon the initial value and
initial slope of the relaxation function. Fisher and
Gurtin [27] and Herrera and Gurtin [28] extended these
results to include waves of finite amplitude propagating
through anisotropic and inhomogeneous viscoelastic solids.
But the initial value and initial slope of the relaxation
function, necessary to experimentally apply the analytical
results discussed above, cannot be directly obtained ex-

perimentally. This leads to difficulties in inverting
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the Laplace transform solutions for the shape and velocity
of the propagating pulse as a function of position and
time. For this reason the use of Fourier transform tech-
niques and the complex modulus form of characterizing the
material properties seems to be a more promising approach
to wave propagation analysis.

Experimental work in the area of wave propagation
in viscoelastic materials is limited. Kolsky [29] inves-
tigated the propagation of "short" mechanical pulses along
rods of three different polymers. The pulses were applied
to the ends of the rods by an explosive charge of approx-
imately 2 microseconds duration. The experimental results
were compared with pulse shapes predicted by numerical
Fourier synthesis using the complex modulus form for de-
scribing the material behavior and a dirac-delta-function
approximation to the input pulse. Norris [30] extended
the work of Kolsky to the case of a much longer initially-
applied stress pulse and the results showed good agreement
between the experimental and computed wave shapes and ve-
locities. Lifshitz and Kolsky [31] experimentally inves-
tigated the assumption, generally used in the application
of the well-known correspondence principle, that the bulk
modulus is real, whereas the shear modulus is complex.

The results indicated that the loss tangent of the bulk
modulus was approximately 20% of that of the shear modulus.

This assumption was tested by measuring the propagation
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of a spherically-divergent stress pulse in a linear visco-
elastic solid. Photoelastic techniques have been used by
Dally [32], Daniel [33], and Arenz and Fourney [34] to

study two-dimensional wave propagation in photo-viscoelastic
model materials. Durelli [35] has determined the stress-
strain curves at different strain rates in rubber-like
materials by photoelastic techniques.

As noted above, most viscoelastic materials are
linear for sufficiently small strains. In most polymers,
e.g. polyethylene, the transition from linearity to non-
linearity is quite smooth. The problem is how to extend
the theory to describe the nonlinearities which occur for
large strains. In general, the experimental problem is
made more complex in that the nonlinear material behavior
is combined with nonlinear geometric effects due to large
strains.

A general constitutive equation for viscoelastic
materials (materials with memory) has been formulated and
discussed by Green, Rivlin and Spencer [36, 37, 38]. They
assume that the elongation of a specimen at time t depends
on all previous values of the rate of loading to which the
specimen has been subjected. That is, in the one dimen-

sional case:

t
e(t) = F [9-3—“—)] ) (2.1-2)
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If the functional F is continuous and nonlinear, Frechet
has shown [see 36] that the functional expression for the
elongation can be represented to any degree of accuracy in

the following manner:

J’t do(rl)
e(t) = [|__J,(t-T1 dt

ft jt do(rl) dc('tz)
¥ ) Joadp (7T s E0T)) dr,  drt, dr,dt,

j‘tj‘tj’t do(t;) do(t,) do(ty)
MY Y L T YA e oty o o R

+ . . . (2.1-3)

If only the first term on the right is retained, this ex-
pression for e(t) reduces to the linear hereditary integral
expression of the Boltzmann superposition principle [5].
Lockett [39] has extended the above development to the
more general three-dimensional case and defined a series
of experiments which are required to determine the twelve
material functions which appear in the three-dimensional
constitutive relations involving multiple integrals of

the first, second and third orders. A minimum of 330
separate tests are required. Less ambitious experimental
investigations for the one-dimensional case have been made

by several investigators [40-44]. Multiple-integral
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representations of the third order, involving three material
functions, have been successfully employed to describe the
nonlinear creep and recovery behavior of several polymers.

Noll [45] and Coleman and Noll [46] have given a
more general form of the constitutive equation based on
thermodynamic considerations and a postulated principle of
fading memory. Their constitutive equation is valid when-
ever the deformation is slow; hence it is essentially re-
stricted to the quasistatic case. Some approximations [47,
48, 49] to this theory have been proposed for "short time"
(dynamic) behavior. Lianis and DeHoff [48] proposed an
approximate theory for small dynamic strains superposed on
static large deformations in transversely-isotropic ma-
terials in which it is necessary to determine fifty kernels
(material functions).

Because the complete specification of the nonlinear
response is so difficult there has been some interest in
the possibly-simpler problem of small increments super-

posed on a finite prestrained state.

1.3. Previous Work Leading to this Investigation

Previous investigations of the effect of prestrain
upon the dynamic mechanical properties of viscoelastic ma-
terials are few. Biot [50] has shown that, on the basis of
the linear theory of viscoelasticity, prestress (prestrain)

influences longitudinal wave propagation only through its
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effect upon the magnitudes of the modulus and density of
the material. The phenomenon must therefore be considered
as being a nonlinear-material effect.

Hillier and Kolsky [1] have studied the propaga-
tion of continuous waves along 1 mm.-diameter filaments of
polyethylene, neoprene and nylon at a frequency of 3000
cycles per second while the specimens were being elongated
at a constant rate of strain, 0.0015 per second. Measure-
ments of the phase velocity and some values of the damping
factor were obtained for elongations up to approximately
140% for polyethylene and nylon and 500% for neoprene.
Measurements at 1500 cps and 6000 cps were also recorded
for undrawn filaments of polyethylene. All data were
taken at 20°C. Their results showed an increase of the
order of 100% in the dynamic modulus at 3000 cycles per
second for elongations of 100%. Slight decreases in the
values of the dynamic moduli of polyethylene and nylon
were noted, however, at low strains, followed by a rapid
rise. Correlation of the results with the molecular re-
arrangements which take place during large elongations
were discussed. The experimental method and apparatus
used in the present investigation is similar to that used
by Hillier and Kolsky; it is discussed in Sections 2.2
and 2.3.

The influence of strain upon the dynamic proper-

ties of natural rubber has been studied by Mason [2] and
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of some synthetic rubbers by Hillier ([3]. Mason recorded
phase velocity and attenuation over a limited frequency
range for a series of temperatures, and then used the
time-temperature superposition principle (method of reduced
variables), developed by Williams, Landel and Ferry [51],
to extend this information over a wider frequency range at
a single reference temperature. The results reported in
both of these papers [2, 3] are similar to those reported
by Hillier and Kolsky. For extensions up to 600% the dy-
namic modulus for some rubbers increased as much as two
orders of magnitude. An initial decrease in the dynamic
modulus with strain in the range of strain from zero to
50% was noted for some materials. The damping factor also
varied considerably with strain.

The present study explores in greater detail the
effect of moderate prestrains (up to 10%) upon the dynamic
mechanical properties of low-density polyethylene. The
results of the present study are compared to the above

results and discussed in Section 2.5.



II. DETERMINATION OF MATERIAL PROPERTIES

2.1. Introduction

The engineering analysis of structures uses, in
general, a system of equations that can be divided into
two categories: one, the field equations and boundary
conditions, which incorporate the geometry into the anal-
ysis, and two, the constitutive equations, which describe
the fundamental mechanical relationship between load and
deformation (stress and strain) for the material. This
investigation is primarily concerned with the second cat-
egory; therefore the field equations will be made as simple
as possible so as to emphasize the constitutive relationship.
The geometry of the material specimens was chosen to be a
slender rod, and the frequencies and pulse rise-times are
such that the assumption of one-dimensional analysis can
be made.

The analysis for the method is presented in Section
2.2, and details of the experimental technique are given

in the following section.

17



18

2.2. Method of Determining the Material Properties

A number of experimental methods are available
for the measurement of the dynamic mechanical properties
of polymers. Hillier [52] gives an excellent survey of
available techniques up to 1961. Brown and Selway [53],
Adkins [54] and Philbrick [55] have enlarged upon tﬁese
techniques in recent years.

The method of measurement is essentially deter-
mined by the relevant frequency range desired. For pur-
poses of correlation with Fourier transform techniques,
the pertinent frequency range is that comprising the
Fourier spectrum of the pulse. On the other hand, if a
complete description of the material properties is re-
quired, from the rubbery range through the transition
range and into the glassy range, probably no single tech-
nique will suffice. For instance, the transition region
for polyethylene spans approximately eight decades of
frequency (or time), and there is no available technique
that will span this range.

The time-temperature superposition principle,
using the method of reduced variables, as developed by
Williams, Landel and Ferry [51], provides a means of ex-
tending the range of any one technique. 1In using this
method the mechanical properties are determined in the

usual manner over the available frequency (or time) range,
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but for a series of temperatures. The Williams-Landel-
Ferry technique is then usea to extend this information
over a broad frequency (or time) range for a single ref-
erence temperature. The method assumes a single tempera-
ture-dependent dissipative mechanism over the range of
the expanded frequency (or time) scale. Extensive temp-
erature conditioning equipment is required in order to
utilize this technique. In addition, the equipment used
in the measurement technique itself must be capable of
operating over the required temperature range.

A transient pulse analysis was made in the second
part of this investigation. Therefore the properties were
sought in the form of the complex modulus. Two general
methods are available for this: resonance methods using
short specimens, and sinusoidal traveling-wave methods.
The wave-propagation method was used in this study, be-
cause preliminary experiments indicated that with the
equipment available it would give more precise data. 1In
the wave-propagation method, the parameters actually meas-
ured are the frequency-dependent phase velocity c(w) and
damping factor a(w). These two parameters are related to

the complex modulus, discussed in Section 1.2, as follows:

1/2
c(w) = [%:] sec % (2.2-1a)
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_w 8 -
a(w) = E tan 7 (2.2 1b)
2 2 2 : . .
where (E*)" = El + E2 and tan § = Ez/El' The derivation

from which these relationships are taken is given below,
beginning with equation (2.2-2).

The method used for determing the frequency
dependent phase velocity c(w) and damping factor a(w) for
polyethylene was selected so that the frequency range of
the material data spanned the Fourier spectrum of the
impact-induced strain pulses used in Part III. This range
was of the order of the audio frequency range.

The parameters c(w) and o(w) were determined for
a series of prestrain elongations up to approximately 10%.
It was assumed that the material undergoes a linear dynamic
response to small dynamic increments in the neighborhood of
a state of static prestrain. This assumption was checked
experimentally during the course of the experimental in-
vestigation. The technique of measurement was first devel-
oped by Ballon and Silverman [56], and has been used by
Hillier and Kolsky [1l], Mason [2] and Norris [57]. The
theory is thoroughly presented in the paper by Hillier and
Kolsky, including the effect of reflection due to the
measuring transducer. A summary of the method will be

given here:
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The equations necessary to describe uniaxial wave
propagation in a slender viscoelastic rod are the equation

of motion

90 _ o u _
=P =5 (2.2-2)

the strain displacement relation

€ = == ’ (2.2-3)
the constitutive equation, as given in complex modulus
form by equation (1.2-1):

. 18
= E(iw) = E*el '

mja

and the associated boundary and initial conditions. Sub-

stituting (l1.2-1) and (2.2-3) into (2.2-2) gives:

2 32u
___.2 o (2.2-4)
t

9

9

u
8x2

tgjo

For sinusoidal time dependence, the solution to (2.2-4)

is taken in the form

u(x,t) = v(x) eiwt . (2.2-5)
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The reduced equation becomes

2
OV _\2y =90 (2.2-6)
9X
where
>\2 = g(iw)2 (2.2-7)
E*e’

If the rod is taken to be semi-infinite in length and stress-
free on all boundaries except at the accessible end x = 0,
where
iwt
u(o,t) = U, e ' (2.2-8)
then the solution to the reduced equation (2.2-6) for the

outgoing wave is

vix) = U, e ¥ (2.2-9)

where A = a+ik is a complex function of w. The complete

solution is

u(x,t) -0xX eiw[t-(x/c)]

U, e (2.2-10)

where

k = w/c . (2.2-11)
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The phase velocity c and damping factor a can be related

to the complex modulus and w by equation (2.2-7):

A= ol - [Mlg’)
E*e

2] 1/2

w (si § + i Q)
—W 91n-2- 10082

+ i

. (2.2-12)

Njor

w w
= = tan
© [E"’/pll/2 sec §/2

The equations (2.2-1) relating the phase velocity c and
damping factor a to the complex modulus follow from equa-
tion (2.2-12).

Consider a laboratory setup where a steady sinusoi-
dal displacement given by equation (2.2-8) is applied to
one end of a long slender rod of a viscoelastic material.
If the material has sufficient damping and the rod is suf-
ficiently long so that there are essentially no waves re-
flecting from the terminated far end, then the rod may be
considered semi-infinite in length. 1In this case the dis-
placement transmitted past any section at a distance x from
the driven end will be given by equation (2.2-10). If a
transducer is brought into contact with the rod at a dis-
tance £ from the driven end, the wave reflected from the

transducer will be
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2£-x)
Cc ’ (2.2-13)

ur(xlt) = -mU, e-a(z‘e-x)eiw(t-

for 0< x < £, where "m" is the reflection coefficient.

The measured displacement at any point 0< x < £ is then

the sum of the transmitted displacement u and the reflected
displacement u.. In particular, the measured displacement

at the input end is
ui(O,t) = u(0,t) + ur(O,t) ’ (2.2-14)
and the measured displacement at the transducer is

uz(l,t) = u(f,t) + ur(l,t) . (2.2-15)

Experimental measurements will give the input amplitude A,
the amplitude B at the transducer (where x=£), and the
phase angle 6 by which the wave at x={ lags behind the in-

put wave. From the relationship

Aeiwt i0 ui(O,t) (2.2-16)
——*7———@- = Re = -_TI__ 2=
Bel wt" ) uz lt)

the following equation can be derived:

) wl

204
tan 6 = (l+me_2a tan = (2.2-17)
)

(1-me
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If the term m[exp(-2af)] is sufficiently small, this ex-

pression may be written approximately as tan gé = tan 6
from which the phase velocity is
c =3t (2.2-18)

The curve of phase angle 6 as a function of distance ¢
expressed by equation (2.2-16) shows a damped oscillation
superimposed upon a straight line of slope k, as seen in
Figure 2.4-5. For sufficiently large values of £ an ac-
curate determination of the slope can be obtained. Hillier
[52] claims that an accuracy of *1% can be obtained.

A second expression derivable from the complex

equation (2.2-15) is

-0l
_ B (1-m) e o
R = == — — (2.2-19)
A [1-2me 2a£cos %g + m2e 4aL]I72

from which the damping factor may be determined. 1If a is
sufficiently large, then equation (2.2-19) can be written

approximately as:

Ln (g) = -al (2.2-20)

The graph of the logarithm of the amplitude ratio as a

function of position £ will give the value of the damping
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factor directly as the slope of the straight line. Again,
as shown in Figure 2.4-6, damped oscillations are superim-

posed on the straight line. If points are selected where

we _ 1 3m 5w
c 2'2 "2

denominator is rendered zero (the last term is much less

s « « « , then the middle term in the

than unity as it stands) and the significance of the os-
cillation is reduced. The phase velocity c¢ and the damp-
ing factor o, when determined for a series of selected
frequencies, provide a complete description of the mechan-
ical properties of the material over that frequency range.
Repeating this method for a series of longitudinal pre-
strains of the material then provides the desired descrip-
tion of the material as a function of both frequency and
prestrain. 1In effect, an "incremental" complex modulus
is determined as a function of prestrain.

Experimental details of this program are given in
Section 2.3. It should be kept in mind that this method
is only valid provided the assumption of one-dimensional
theory holds, that is, provided the diameter (transverse
characteristic dimension) of the rod is small compared to

the wavelength of the traveling wave.

2.3. Details of the Experimental Technique

2.3.1. Sgecimens

One-eighth-inch diameter rods of low-density un-

oriented polyethylene were used in this investigation.
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The material was obtained from Allied Resiﬁous Products,
Inc., Conneaut, Ohio, under the classification of "poly-
olefin welding rod."

The selection of this material was based on several
factors. The complex modulus has a considerable variation
over the frequency range comprising the Fourier spectrum
of the pulse utilized in the second part of this investi-
gation. That variation occurs when the material is at
room temperature, thus permitting the material properties
to be determined and the subsequent pulse propagation ex-
periments to be conducted at room temperature. While a
considerable amount of information has been published for
polyethylene, there evidently has been very little inves-
tigation of the dependence of the dynamic mechanical prop-
erties of polyethylene upon prestrain in the range of
strain considered here. The material-characterization
experiments by continuous-waves and the pulse-propagation
experiments could be conducted using specimens of the same
geometry, thereby minimizing any effects that specimen

geometry may have on the results and comparison.

2.3.2. Continuous Wave Source

The vibration driver used was an MB Electronics
Model EA-1500 Vibration Exciter, with matching power am-
plifier. The driver has a 35-pound force-amplitude output

capability. The frequency range of this unit is 5 to 15000
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cycles per second, which was sufficient to cover the fre-
quency range comprising the Fourier spectrum of the pulse
used in the second part of this investigation. Since the
flexural supports of the moving element (armature) of the
exciter were not sufficient to support the static load on
the polyethylene rod, an auxiliary flexural support was
constructed. The auxiliary support is essentially a beam
with fixed ends, which is driven transversely at midspan
to introduce the sinusoidal wave into the polyethylene
rod. The flexural stiffness of the beam was made large
enough to support the static load but "soft" enough to
permit the required flexural amplitude when driven at
midspan. The complete support fixture also incorporates
a provision for alignment of the exciter with the beam to
prevent damage to the exciter armature during operation.
The entire fixture was mounted on a lathe bed, along with
the displacement-measuring transducers. Figure 2.3-3 is a
photograph of the complete test apparatus.

The method of attaching the polyethylene rod at
the driven end is shown in Figure 2.3-1. The end of the
polyethylene rod was upset by heating it to approximately
100°C and applying an axial compressive load while it
cooled. A heat sink was applied around all but approx-
imately one inch of the end of the polyethylene rod to
prevent altering of the material properties. The heat

sink consisted of two pieces of aluminum bar stock, l-inch
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Metal Coupler Polyethylene rod

Epoxy Potting Material

Figure 2.3-1. Fixture for Attaching the Polyethylene Rod
at the Driven End

by 1-1/2-inch by 4-inches long, which were clamped together.

A 1/8-inch diameter hole was drilled along the length of

the interface between the two bars to hold the polyethy-

lene rod while the end was being upset. The bars were

then separated to release the rod after the bulbous end

had been formed. The bulbous end of the rod was then em-

bedded in the metal coupler with a room-temperature-setting

epoxy. This provided a fixture that would support the

static axial load on the polyethylene rod without causing

it to fail by "necking" and, at the same time, would trans-

mit the oscillatory force into the rod without apparent

distortion.

2.3.3. Static Prestrain

The prestrain elongation was induced in the rod by
passing the far end over a sponge-rubber-covered pulley
and applying a dead-weight load. The material was allowed

to creep until the desired elongation was attained and
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then it was clamped. The pulley was positioned at various
distances from the driven end; up to 40 feet was required
at low frequencies to effectively eliminate the effect of
wave reflection from the far end, so that the displacements
measured were essentially those in a semi-infinite rod.

The wave-reflection problem is discussed further in the

following section.

2.3.4. Displacement-Measuring Transducers

Two crystal phonograph cartridges, Astatic Model
62-1, were used as displacement-measuring transducers.
The apparatus for positioning each transducer along the
lathe-bed way is shown in the photograph of Figure 2.3-3.
The device utilizes a microscope stage for adjusting the
transducer into contact with the polyethylene rod. An
extension for the lathe-bed way was constructed to permit
a total transducer travel of 180 inches.

These transducers were calibrated with reference
to an accelerometer, the output of which was continuously
integrated, through two operational amplifiers in series,
to give a displacement signal. The transducers were found
to produce an output voltage linear with displacement
amplitude over the range of frequencies and amplitudes
employed in this test. Calibration curves are shown in
Figure 2.3-2. The standard stylus delivered with the

transducer was used; the pointed stylus was found to
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Transducer #1
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Transducer #2
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Figure 2.3-2.

-

)
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Displacement - Voltage Calibration Curves
for the Displacement Measuring Transducers,
Astatic Model 62-1 Crystal Phonograph Cart-
ridges. The calibration was performed
using sinusoidal displacements.
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provide reliable contact with the polyethylene rod. After
sufficient contact pressure was established (approximately
4 grams.) to provide a visibly-undistorted signal on the
monitoring oscilloscope, the transducer output was essen-
tially independent of pressure over a broad range of con-
tact pressure. Névertheless, the transducer output signals
were visually monitored throughout the tests.

The effect of wave reflection from the transducer
was checked experimentally. One transducer was brought
into contact with the polyethylene rod at an arbitrary
position and the signal amplitude and phase relative to
the driver observed. The second transducer, when con-
tacted with the rod at various distances along the rod,
produced no significant change in the output of the first
transducer. This was interpreted as an indication that
the transducer reflection coefficient "m" in equation
(2.2-12) was small. Nevertheless, a small oscillation of
the phase shift angle 6 versus position £ was observed
about a straight line in the experimental results at low
frequencies and in the results for attenuation over a
larger frequency range. See Figures 2.4-5 and 2.4-6.

The assumption of a semi-infinite rod was also
checked experimentally. The distance of the far-end pulley
from the driven end was adjusted so that the measured
amplitude at several points along the rod in the vicinity

of the pulley was less than 10% of the input amplitude.
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Figure 2.3-3. The Driver, Load Support Device and
Transducers as Mounted on the Lathe Bed
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The amplitude of the reflected wave at the input end would
then be less than 1%. This was easily accomplished for
all frequencies except the two lowest frequencies used in
this test, for which the 40-foot length of the laboratory
was the limiting factor.

Considerable attention was also given to the prob-
lem of vibration isolation of the system. The lathe bed
was isolated from the floor by rubber isolation pads.
Vibration amplitudes transmitted from the driver to the
transducers via the lathe bed were also checked and found
to be insignificant. 1In all cases, the mechanical noise
level was below the electrical noise threshold of approx-
imately 30 microvolts RMS for the system as shown in
Figure 2.3-4.

It was assumed in Section 2.2 above that the ma-
terial would exhibit a linear dynamic response in the
neighborhood of a state of static prestrain. This assump-
tion was checked experimentally for several values of
static prestrain. At an arbitrary frequency the dynamic
response amplitude and phase shift angle were recorded
for a range of amplitudes at the driven end. No signif-
icant nonlinearity was observed over the range of dynamic
amplitudes used in this study up to 0.1% dynamic strain.

The following section summarizes the experimental

setup and procedure of the study.
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beam rod
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Figure 2.3-4. Schematic Diagram of the Experimental
Apparatus Used for Material Property
Measurements.
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2,3.5. Experimental Setup and Procedure

A schematic diagram of the complete experimental
apparatus used for measuring the material properties is
given in Figure 2.3-4. Figure 2.3-3 is a photograph of
the complete test apparatus.

The following specific items of equipment were
used in this setup, as discussed in detail above:

l. MB Electronics Model EA-1500 Vibration Exciter

with matching 125VA Power Amplifier.

2. Hewlett-Packard Model 200CD Sine Wave Signal

Generator.

3. Hewlett-Packard Model 3734A Frequency Meter.

4. Acton Laboratories Type 320-AB Phase Meter.

5. Ballantine Laboratories Model 320 True Root-

Mean-Square Voltmeter.
6. Tektronix Type 0 Preamplifier.
7. Tektronix Type 532 Oscilloscope.

8. Astatic Model 62-1 crystal phonograph cartridge.

The following experimental procedure was used for
conducting the continuous-wave tests:

a. The material was received in coil form. Re-
quired lengths were laid out in a straight, flat position
and allowed to relax in this form for a minimum of 24 hours

at room temperature.
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b. The equipment was turned on and allowed to
warm up and stabilize.

c. The polyethylene rod was elongated a specified
amount and then clamped at the far end. The initial elon-
gation was 0.25%, sufficient to hold the rod in position
for conducting the tests.

d. The desired frequency and amplitude were set
on the signal generator and power amplifier.

e. The phase and amplitude of the wave in the
rod were detected by the transducer and readings of the
resulting phase and RMS voltage were recorded at success-
ive positions along the rod.

f. Setps d. and e. were repeated for the complete
frequency range at the given level of static elongation.

g. Another increment of prestrain elongation was
applied. This was accomplished by applying an increment
of load at the far end of the rod and permitting it to
creep until the rate of creep became sufficiently slow,
and then clamping the end.

h. Steps d. through g. were repeated for success-
ively increasing levels of prestrain until the maximum
level was completed.

In some instances data was taken for successively
decreasing levels of prestrain. This data deviated from
that obtained by the above procedure of successively in-
creasing prestrain as is noted in the experimental results

in Section 2.4.
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2.4. Experimental Results

All of the tests were conducted at an ambient
temperature of 72°F * 1°.

Typical graphs showing the phase shift angle and
attenuation as a function of the distance along the rod
are given in Figures 2.4-5 and 2.4-6, respectively. These
figures show the results for 0.25% and 8.0% elongation.
These results are typical of the results obtained over the
complete frequency range: the phase velocity decreases
with increasing prestrain and the damping increases with
increasing prestrain in the range of prestrains used in
this study. The slope of the straight line of phase shift
angle 6 versus distance £ in Figure 2.4-5 gives the wave
number k = w/c, as given by equation (2.2-11). The slope
of the straight line of 1n(A/B) versus distance in Figure
2.4-6 gives the damping factor a, as given by equation
(2.2-20).

The phase data was reproducible within 1%, both
for a given specimen and for several specimens cut from
the same lot of material. The attenuation data, on the
other hand, exhibited as much as 10% scatter at some
points (see Figure 2.4-6). In general the amount of scat-
ter decreased with increasing frequency. The attenuation
data was uniformly scattered about a straight line faired

through the data. 1In the lower-frequency data an
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Figure 2.4-5.

TRANSDUCER POSITION, £ (inches)

Typical plot of data for Phase Angle 6
Versus Transducer Position £ (for w = 2000
per second). The slope of the straight
line is k = w/c. Experimental points are
shown for 0.25% prestrain.
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oscillation superimposed on this straight line was ob-
served. Reliable attenuation data could not be obtained
for w less than approximately 5000 per second.

Figure 2.4-7 shows the change in phase velocity
as a function of the percent elongation. This data was
obtained for w = 3000 per second by stationing the trans-
ducer at £ = 100 inches and recording the phase and ampli-
tude of the transmitted wave as a function of the elonga-
tion. Similar curves were obtained for other values of
w; the same general form of curve and approximately the
same percentage change was exhibited for each w. The
results for phase velocity as a function of frequency
for the complete series of tests are given in Figures
2.4-8a and 2.4-8b for elongations of 0.25% and 8.0%. The
results are displayed on a linear frequency scale in Fig-
ure 2.4-8a to emphasize the essential uniformity of the
shift in phase velocity with prestrain. The logarithmic
frequency scale used in Figure 2.4-8b suggests the form
of the equation for the frequency-dependent phase velocity
given in equations (2.4-1) and (2.4-2) below. The equa-
tion for the upper curve in Figure 2.4-8a, for 0.25% pre-

strain, is:

20,700+2375 log,,u,  w<80,000 sec.”!

c(w) =
32,400 (constant) , w>80,000 sec.”1

(2.4-1)
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And the equation for the lower curve, for 8.0% prestrain,
is:
16,290+3140 log,,u, w<60,000 sec:!

c(w) =

31,450 (constant) , w>60,000 sec.t

(2.4-2)

The results for attenuation are summarized in Figure 2.4-9.
The damping factor is essentially proportional to the fre-
quency over the frequency range considered and can be ex-

pressed as follows:

o(w) = dw . (2.4-3)
For 0.25% prestrain d = 2.17 x 10-6 sec./in., and for
8.0% prestrain d = 2.68 x 10~ ° sec./in.

All of the data as presented above was recorded
for successive positive increments of prestrain elongation,
as noted in the experimental procedure, Section 2.3.5. No
negative increments (contractions) from any state of elon-
gation was permitted during the tests. On completion of
the tests in some specimens, the phase was recorded at a
few states of elongation as recovery (contraction) oc-
curred. A typical record is given by the dashed line in

Figure 2.4-7. The phase velocity during recovery is offset
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8.0% prestrain

o = 2.68 x 10 %

0.25% prestrain

a = 2.17 x 10" %

L 4
L
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CIRCULAR FREQUENCY, w (1000 per second)

Figure 2.4-9. Damping Factor o versus the Circular Fre-

quency w. The data is approximated by
straight line of the form o = duw.
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from that recorded for increasing elongation. Complete
recovery of the elongation did not occur; approximately
1.0% strain remained after a minimum of 4 hours at no
load.

There was no significant change in the phase or
amplitude ratio due to the stress relaxation while tests

were conducted at each level of elongation.

2.5. Discussion of Results

It should be reiterated here that in this study
of the influence of prestrain upon the dynamic mechanical
properties of polyethylene, the attitude has been to regard
each quasistatic elongation as producing a new material,
and consequently, to determine the "incremental" complex
modulus as a function of frequency at each level of pre-
strain. The dynamic mechanical properties were determined
in the form of the frequency-dependent phase velocity c(w)
and damping factor a(w), which together are equivalent to
the complex modulus, the defining relationship given by
equations (2.2-1).

The values obtained in this study for phase velocity
in low-density polyethylene at 0.25% prestrain are compared
in Table 2.4-1 with values given by Hillier and Kolsky [1]
and Norris [57] for "unstretched" specimens of polyethy-

lene, at three frequencies for which comparable data is



48

available. The damping increased with frequency in all
cases; for an approximate equation for damping in the form
a(w) = dw (see equation 2.4-3), comparative values of the
coefficient d are given in Table 2.4-1 also. Composite
results of this Part II, as given in Figure 2.4-8 and
2.4-9 show that the phase velocity c(w) decreases with
increasing prestrain and the damping factor c(w) increases
with increasing prestrain, in the range of prestrain up to
10% as used in this investigation. Figure 2.4-7 shows the
typical smooth manner in which the phase velocity decreases
with prestrain. The results further indicate a relatively
uniform shift of phase velocity with prestrain over the
audio frequency range used in this study. All of this
data is for a temperature of 72°F * 1°,

These results are in good agreement with and ex-
tend the results given by other investigators. Data re-
ported by Hillier and Kolsky [l1] for phase velocity versus
strain at a single frequency, 3000 cps, and at a tempera-
ture of 68°F, indicates a 2% decrease in the phase velocity
at 10% prestrain (followed by a rapid rise of 300% as the
strain was increased to 140%). The results of the present
investigation show approximately 4% decrease in c(w) at
the same frequency for 8% prestrain. Hillier and Kolsky
give no data on the effect of prestrain upon the damping

factor for polyethylene.
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TABLE 2.4-1.

COMPARISON OF DATA FOR PHASE VELOCITY
AND DAMPING FACTOR FOR

"UNPRESTRAINED"
POLYETHYLENE
Hillier & Norris Present
Kolsky [1] [30] Study
Frequency Phase Velocity, c¢ (in./sec.)
-1
f (cps) w(sec )
1500 9,400 29,300 26,000 30,000
3000 18,800 30,800 27,130 30,900
6000 37,600 32,000 27,910 31,600

Damping Factor (o = dw)

6

d (10 °sec./in.) 1.62 2.73 2.17
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A similar decrease in the phase velocity for nylon
for strains up to 10% has been given by Hillier and Kolsky
[1] and for natural rubber by Hillier [3] and Mason [2].
On the other hand, data reported for neoprene [1] and
other synthetic rubbers [3] exhibit no such initial de-
crease in phase velocity with prestrain.

Mason [2] reported an initial rise in the loss
tangent (tan ¢ = Ez/El) for natural rubber for prestrains
up to 50%, and a sharp decrease thereafter. The data re-
ported for the synthetic rubbers [1, 3], however, show a
continual decrease in the damping factor with prestrain.
Using the definition of equation (2.2-1b), a=(w/c)tan(§/2),
it is seen that a decrease in the phase velocity would
result in an increase in the damping factor; however, the
4% decrease in the phase velocity at 8% prestrain is not
sufficient to explain the 15% increase in the damping fac-
tor at the same level of prestrain (see Figures 2.4-8 and
2.4-9), therefore it is possible that the loss tangent §
does increase with prestrain for polyethylene.

The work of Lifshitz and Kolsky [44] on the non-
linear viscoelastic creep behavior of polyethylene indi-
cates that this material becomes "stiffer" for additional
increments of load as the prestraining is increased for
prestrains up to approximately 10%. This is a study of

the quasistatic behavior of polyethylene, which provides
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data in the rubbery region and low end of the transition
region on a graph of modulus versus log-frequency. If

the "additional increment of load" is interpreted as a
dynanmic load for which w is (very) small, then the results
of [44] indicate an increase in the "incremental" modulus
as the prestrain is increased, which is opposite to the
effect indicated at higher frequencies. This means that
the two curves given in Figure 2.4-8b must cross as the
frequency w decreases.

The reason for the effects and anomalies discussed
above are difficult to assess. Low-density unoriented
polyethylene is supposed to be highly amorphous, that
is, of low-percent crystallinity, and be non-crosslinked.
However, processes for polymerizing ethylene sometimes
use catalysts that promote weak cross-linking by side
groups (see [58], p. 51). These weak bonds may be rup-
tured during early stages of strain. The evidence seems
to indicate that the phenomenon occurring at low strain
is not part of the induced anisotropy resulting from the
"orienting and crystallizing" effects of large strains in
polymers. It is the latter to which the recent work on
nonlinear large-strain theories is primarily directed.

The second major part of this experimental study
will now be considered: the propagation of a longitudinal

strain pulse in a prestrained polyethylene rod of the same
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material and geometry as used in the continuous-wave
studies. The general experimental problems associated
with wave-propagation in viscoelastic materials are dis-
cussed in Section 3.1, followed by a summary of the ex-
perimental method and details of the experimental apparatus

and procedure used in this study.



III. PULSE PROPAGATION EXPERIMENTS

3.1. Introduction

It was found in Part II that high-frequency sin-
usoidal waves travel at a higher velocity in polyethylene
than do low-frequency waves. It was also found that high-
frequency waves are attenuated more rapidly than waves of
lower frequency. As a result of these two effects the
shape of a mechanical pulse changes as it propagates
through the viscoelastic material.

It was further found that the phase velocity and
attenuation of sinusoidal waves are affected by prestraining
the polyethylene material. The analytical and experimental
investigation of the influence of prestrain upon the prop-
agation of an incremental longitudinal strain pulse is
discussed in the following sections. The analytical method
for predicting the speed and shape of the strain pulse is
given in Section 3.2. The experimental setup used to in-
duce and measure a strain pulse traveling along a polyethy-
lene rod is described in Section 3.3, and followed by a

correlation and discussion of the results.

53



54

3.2. The Experimental Method

3.2.1. Theoretical Development

The analytical method used in this study for de-
scribing the strain pulse propagating along a slender rod
of viscoelastic material with known mechanical properties
is essentially the Fourier transform method developed by
Hunter [23] for a linear viscoelastic material.

The phenomenon of geometric dispersion is well
known; the speed of propagation of a sinusoidal wave along
a cylindrical rod of an elastic material depends upon the
ratio of the wavelength A to the radius, a, of the rod.
Davies [59] showed, however, that as long as A/a is great-
er than about 10 the approximate one-dimensional theory
can be used with the elastic wave speed c = [E/p]l/z. The
diameter of the specimen rod used in this study was 1/8 of
an inch and the minimum significant wavelength was about
1.4 inches, so that A/a > 10. Therefore the approximate
one-dimensional theory can be used without introducing
any significant error due to geometric dispersion.

The equations necessary for describing a uniaxial
wave propagating along a semi-infinite viscoelastic rod
are the equation of motion, the strain-displacement equa-
tion, the constitutive equation and the initial and bound-
ary conditions. The constitutive equation is here taken

in the form of the superposition integral
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(t) = E (t) - © o (tm de(t) 4 3.2-1
o] =E,|¢€ -w¢(t T) T T . (3.2-1)

¢(t) is called the relaxation function for the material, a
positive, monotonic function increasing with time and in-
dependent of the stress and strain amplitude. The relaxa-
tion function and ED’ the dynamic Young's modulus, can be
determined by a uniaxial relaxation test. A thin rod of
the viscoelastic material is subjected to a step strain,

€ = €, ,H(t), where H(t) is the Heaviside unit function.

The resulting stress is given by

o(t)

Ej[1-¢(t)]le, , 20

= O ’ t<0 . (302—2)

The equation of motion and strain-displacement equation
are given by equations (2.2-2) and (2.2-3), respectively.
The initial and boundary conditions for the problem con-

sidered here are

e(x,0) = 3&%%;2) =0, x>0
e(0,t) = h(t)
’ t>0 (3.2-3)

lim e(x,t) = 0

X
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It is convenient to transform the complete system of

equations (2.2-2, 2.2-3, 3.2-1 and 3.2-3) by the Fourier

transform method to obtain the solution to the problem.
The Fourier integral representation of a function

f(x,t) may be written [60] as

£(x,t) = ;Tl-f [ £(x,t)cos w(t-u)du dw (3.2-4)
o Jo
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