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ABSTRACT

COHEN-MACAULAY UNIONS OF LINES IN Pfi

AND THE COHEN—MACAULAY TYPE

by

Frank Judson Curtis III

Let V be a union of projective lines in projective n—space. We

consdier the questions of when k[V]m, the coordinate ring localized at the

irrelevant maximal ideal, is Cohen—Macaulay, and what the Cohen—Macaulay

type is when k[V]In is Cohen—Macaulay.

Chapter 1 reviews the definitions and some of the history of the problem.

Chapter 2 shows how it can be interpreted as a problem involving the graded

ring k[V] and modules over k[V]. This approach yields a linear algebra

algorithm, similar to an algorithm by M. Baruch and W. C. Brown, which can

answer both questions (Chapter 3). The method also provides a graph

theoretical solution in the case where V is a graph on n+1 linearly

independent points (Chapter 4).

Chapters 5 and 6 are applications of a method, deve10ped by A. V.

Geramita and C. Weibel, which uses pullback rings. In Chapter 5, the class

of simply connected unions V is defined and both questions are answered for

this class. A Hilbert function condition on k[V], which is necessary for

Cohen—Macaulay V. (due to A. V. Geramita, P. Maroscia, and L. Roberts), is

reviewed in chapter 6, and an example constructed to Show the condition is

not sufficient.



The last chapter expands the class of known Cohen—Macaulay unions of

linear varieties by Showing that any unmixed union of linear varieties W is

contained in a union of linear

varieties V of the same dimension which is Cohen—Macaulay. The type

of V is also established.
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CHAPTER 1

INTRODUCTION

The study of commutative algebra arose historically as an adjunct to the

study of algebraic geometry, but it has not been limited to this role in the

development of its methods and concepts. In fact, while commutative algebra

has been able to provide a more rigorous foundation for algebraic geometry, it

has at the same time produced new concepts whose significance in algebraic

geometry remains largely unexplored.

In this paper I will be concerned with two such properties, the

Cohen-Macaulay pr0perty for rings and the Cohen—Macaulay type of a

Cohen—Macaulay ring. The geometric objects I will consider are the localized

coordinate rings of reducible projective varieties consisting of unions of line in

P“, where k is an arbitrary algebraically closed field. The two basic

questions are:

(1) When are such rings Cohen—Macaulay?

(2) What is the Cohen—Macaulay type in those cases where the

coordinate ring is Cohen—Macaulay?

Given the motivation for considering these questions, it is to be

understood that any answers to them will be of greater interest to the extent

to which the criteria invoked are clearly geometric, and that algebraic

computational solutions are not as informative.

Unfortunately, it appears that a satisfactory general solution to even the

first question is very difficult to obtain. In fact, one of the basic problems in

studying these questions is the scarcity of examples of unions of lines whose

coordinate rings are known to be Cohen—Macaulay. For this reason, much of



this paper will be devoted to the task of identifying classes of examples whose

coordinate rings are Cohen-Macaulay.

Before reviewing the history of the subject, I will pause to review some

definitions and introduce notation to be used throughout the paper.

Let k be an algebraically closed field. Let .9 be a homogeneous

prime ideal of height n—l in k[XO,...,Xn] with 9=(f1,...,fn_l), where

deg fi=1 for i=1,...,n—1. .9 is a prime ideal and L=V(.9’) 9 P11: is a

li_ne in P111. Thus L is a linear variety of projective dimension 1. Linear

varieties of projective dimension 0 are mints in PE. V will denote a union

of s lines in Pn

s

, V: U L.
k i=1 1.

8

Let I=J(V)=. n .95. A will denote the coordinate ring,

1 1

A=k[V]=k[XO,...,Xn]/I.

We wish to consider the local ring Am, where m=(xo,...,xn) is the

homogeneous maximal ideal of A. A 2—generated mAm—primary ideal q is

a parameter ideal, and any set of 2 generators for such an ideal is a system of
 

parameters. The multiplicity of a parameter ideal q is the leading

coefficient of its Hilbert polynomial.

Definition/Theorem 1.1. [ZS, p. 400; HK] The following are equivalent

for a Noetherian local ring (R,m) with dim R=d:

1) R is a Cohen—Macaulay ring

2) 111 contains a regular sequence of length d.

3) e(q)=l(R/q) for some parameter ideal q, where e(q) is the

multiplicity and 1(R/q) is the length of R/q.

4) e(q)=l(R/q) for every parameter ideal q.

5) One system of parameters is a regular sequence.

6) Every system of parameters is a regular sequence.



7) Ext §(R/m,R)=0 for i=0,...,d~—l.

Any reduced Noetherian local ring of dimension 1 contains regular

elements, and is thus Cohen—Macaulay, by (2). In particular, the localized

coordinate ring of a union of points in P: is always Cohen-Macaulay.

Definition. The Cohen-Macaulay type r of a Cohen-Macaulay ring

(R,m) is a r=dimR/m(d’(R/q)) for any parameter ideal q [K, p. 189].

J(R/q) is the $219 97(R/q)={yER/q|ym=0} g [qzm]/q. R is Gorenstein

if r=1.

Theorem 1.2 r is also [K, p.202, HK, p.4]

1) The number of irreducible components in an irredundant

decomposition of q into irreducible ideals.

2) dimR/m(Ext §(R/m, R)).

For the rings Am which are Cohen-Macaulay, r is also the last

nonzero betti number in a minimal free resolution of Am over

k[Xo, .....’Xn](X0,---,Xn)'

It will sometimes be convenient to call V Cohen-Macaulay whenever

A!n is and refer to the Cohen—Macaulay type of Am as the

Cohen—Macaulay type of V.

The first partial answer to the first question (when is Am

Cohen—Macaulay) is due to Hartshorne.

Theorem 1.3 (by [H1, pr0p. 2.1]). Let A be the homogeneous

coordinate ring of a union of irreducible curves in Pfl. If A is

Cohen-Macaulay, then the union of curves is connected.

This says that V must be connected in order to be Cohen—Macaulay.

3
So, for example, if V consists of two skew lines in Pk’ then V is not

Cohen—Macaulay.



Unfortunately the converse is false, as the following theorem illustrates.

We recall that the nonsingular quadratic surface, 7’ (X0X2—X1X3), is

isomorphic to PfixPfi; i.e., it is a ruled surface with two rulings [M, p. 27].

Theorem 1.4. Geramita and Weibel ([GW, 5.1]). Let V be a union

of lines on a quadric surface, with m lines from one ruling and n lines

from the other ruling. Then Am is Cohen—Macaulay if and only if

lm-IIISI.

In the same paper it is shown unions of lines through a common point

(pencils) are always Cohen-Macaulay. Geramita and Weibel have also proven

the following theorem. Here, a _v_ert_ex of V is a point of intersection of

two or more lines. For a reduced Noetherian ring R, with total quotient

ring Q(R), R is said to be seminormal if the following pr0perty holds:

whenever aEQ(R); a2, a3ER, then aER [S].

Theorem 1.5 [GW, 5.9]. If V is connected, and the lines through each

vertex are linearly independent, then V is Cohen—Macaulay if and only if V

is seminormal.

As a consequence, the examples of seminormal unions V given in [DR]

are all Cohen—Macaulay.

The Cohen—Macaulay type of V has, so far a I know, been previously

studied only in some special cases which will be discussed in Chapter 4.

The Cohen-Macaulay type of unions of points has been studied more

extensively (see bibliography).



CHAPTER 2

GRADED RINGS

The ring A, as the coordinate ring of a projective variety, is naturally

a graded ring. In this chapter, we will relate the local properties of Am

(being Cohen-Macaulay of a certain type) to the global prOperties of the

graded ring A.

Let f1, f26k[xo,....,Xn], with deg f1: deg f2=1. Denote by fi the

image of fi in Am and in A. As dim Am=2,

a = (fl, f2)_C_Am is a parameter ideal (i.e., {f1, f2} is a system of

parameters)

4:) (f1, T2) is mAm—primary in Am

:1 (f1, f2) is m—primary in A

4:» 1’ 2 + = (X0,....,Xn)

4:» 7(f1) n 7(12) n V=0 in PE

Because k is infinite, we can choose elements f1 and f2 of degree 1 so

that fl ¢ 53, for i=1,...,s, and f2 9! (f1, .95), for i=1,...,s. Then

Jul, f25+l = (X0,....,Xn) and {f1, f2} will be a system of parameters.

In the following pr0position, e(A) denotes the multiplicity of the

graded ring A, defined as follows. If we let PA(n)=dimkAn be the

Hilbert function of A, and PA(n) the corresponding Hilbert polynomial,

then e(A) is the leading coefficient of PA(n). By [K, VI, pr0p. 2],

grmA (Am) k[X0,...-.Xn]/({L(F)IF61})
m

= k[XO,....,Xn]/I =A.

_ n n+1 . . .
As Pmm(n)——l(mm/mIn ), It follows that the Hilbert functions of mm

and the graded ring A are the same. So e(A)=e(mm).

 



Proposition 2.1. If l(A/q)=e(A), then AIn is Cohen—Macaulay.

Proof. As q is m-primary, A/q is local with maximal ideal m/q.

So A/qg(A/q)m/q gAm/qm, so the lengths are the same. l(Am/qm)2e(qm),

as this is true for any parameter ideal, by [Z8 11, p. 296].

Let qu(n) and qu(n) denote the Hilbert function and polynomial

respectively for qm, then qu(n)2Pmm(n) for all n. Thus

qu(n)2Pmm(n) for all n>>0. As these polynomials both have degree

2=dim Am, we can compare leading coefficients to obtain e(qm)_>_e(mm).

As noted in the discussion preceding the pr0position, e(mm)=e(A), so

e(qm).>.e(A)-

We have now shown that the following chain of inequalities holds:

l(A/Q)=l(Am/am).>.e(qm)2e(A)-

So if l(A/q)=e(A), then l(Am/qm)=e(qm), and AIn is

Cohen-Macaulay(1.1(3)). u

The converse of 2.1 is also true.

Pr0position 2.2. If AIn is Cohen—Macaulay, then l(A/q)=e(A).

Proof. If Am is Cohen—Macaulay, then {f1, f2} is a regular

sequence in Am, so {f1, f2} is a regular sequence in A. Consider the

Poincaré series:

m .

QA(Z) =i§0(dimkAi)zl

m .

CIA/(1(2)=i§0(dimk(A/Q)i)zl,

where Ai denotes the ith graded part of A. We then have an exact

sequence

”f

0 -+A(—1) _1.. A -» A/flA-vo



is exact. So QA/f1A(z)=QA(z)—QA(_1)(Z)

= QA(Z)'ZQA(Z)-

a) .

Repeating the argument with f we obtain QA(z)=( E zl)2QA (2). So if

2 i=0 /‘1
. m . a) . . .

m“1 C q, 2 (dim A.)zl = 2 (i+1)zl£ dim (A/q).zl. Equating coefficients

_ i=0 R l 0 i=0 k li

of z1 for i213 dimk Ai=k§0 (i+1—k)dimk(A/Q)k=k£0 (i+1)dimk(A/q)k -

:0 k dimk(A/q)k=(i+1)l(A/q)-k§0 k dimk(A/q)k. So e(A)=l(A/q). a

e(A) is the leading coefficient of the Hilbert polynomial of A. As

projdim (A)=1, the degree of V is e(A)~l!=e(A). We now apply [H,

prOp.I.7.6]. Each line has degree 1; all lines have projective dimension 1; and

any two intersect in a variety of projective dimension 0 or —1. So the degree

of V is the sum of the degrees of the Li’ i.e. deg (V)=s. Thus e(A)=s.

We have now proven:

Proposition 2.3. Am is Cohen—Macaulay if and only if l(A/q)=s.

As l(A/q) can be determined by choosing as a composition series of

A/q a refinement of:

Ala 2 mm 2 m2q/<L3_ ma 0,

it follows that Am is Cohen-Macaulary precisely when dimkA/q=s.

The Cohen—Macaulay type can also be determined using q.

Proposition 2.4. r=dimk(q:m/q).

Proof. By definition, r=dimAmlmm(qm:mm/qm). As

Am/mmgA/mgk, it suffices to note that dimk(qm:mm/qm)=dimk(q:m/q).

But this is clear, for if {x1,...,xn} is a basis for (q:m/q), then

x x

{II—,....,—I11} is a linearly independent set of elements of

(q:m/q)m=(qm:mm/qm). And, conversely, given a basis for qIn:mm/qm, we



can choose representatives of the basis elements and clear fractions to obtain a

linearly independent subset of qzm/q. u

The significance of these prOpositions is that A, A/Q: and qzm/q are

all graded, and all vector spaces over k. Thus l(A/q)= {I dimk(A/q)i for

i=0

some j>>0 (where the subscript i denotes the ith graded piece of A/q),

and dimk(q:m/q)= £1 dimk(q:m/q)i.

i=0

In the next two chapters we will use these formulas to reduce

determination of the Cohen-Macaulay pr0perty and computation of type to

elementary problems in linear algebra, and to obtain a formula for the type

for one class of unions V which are Cohen—Macaulay.



CHAPTER 3

MATRIX METHODS

In this chapter, we will use the results of Chapter 2 to show that we

can tell whether AIn is Cohen-Macaulay, and compute the type if it is, by

doing elementary matrix computations. These results are more of theoretical

than practical interest, as the matrices whose ranks must be computed will be

very large, given V with a large number s of lines.

The reader should note that the method used for computing the type is

generalization to lines of Baruch and Brown's method for computing the type

in the case of points [BB, B].

Each line in V can be described as the linear span of two projective

points, Li=3pan((b. "’ibn)’(cio’”" "Cin))' Let S=k[X0,....,Xn]. Let u be

the map defined by10

S 31—. k[Tgl), 1151)] g... .9 1411(3) T(S)]

V(Xi)=(b1iT]1) + CliTng"bs1T(S)+c3iT(S))

for i=0,....,n.

Let IIj be projection into the jth coordinate,

II].-:k[T(1), T(1 )1 e 4» k[T]S). T9],

lqleEJ), T(J)]

Then rjorr. S -+k[T(j)s, Tm] is the map defined by rji=ou(X)bjiT(j)+

c..T(j). So ker V: n ker (ij V)
11 2 jzls

=15 {fES|f(bj0T“) + cjorgllm

bjn T“) + cjnTm): 0}

8

——n {feSlf e J(L.—)}— n 9:1

i=1 i=1



10

So A=S/I 2 im V.

We now use V to obtain a matrix representation for each graded piece

Ad of the graded ring A.

n e.

Lexicographically order the monic monomials in S(1 via II Xil >

i=0

fi

11 xi1 if e.=f. for i=0,...t, and e
i-0 1 1

n+d a a

1](d)=[ n ]. Let ggd)=Xo0 ----- Xnn (010+....+an=d). Then

xggdl>=xxpa° ------ ref“

=<{bloTil)+cloT§l)}ao”"{b1nTil)+ClnT(l)}an:

(d) (d)
t+1>ft+l, as g1 ,....,gn(d), Where

2

., bso'r]3)+csoT(3)}a°~~{bsnT(“’)+csn'r§3)}0'“>

< g0 CiMTU)]2T(d-a[”01]....

d a

agocCUJ)[T(3)]d
-011153)] >,

S

for some constants)c(j(); j: .1..,u(d); r=1,...,sj a=0,...,d. Define

[gldl] =[e(1)e(] ,inl], and let I‘d(A) be the n(d)xs(d+1) matrix

1'

j ro ’ Cr1

~l[gist]; .

defined by

cm (1) (1) (1)
1d ’ C20 ’ ’Cso ’ ,ch

 

,...,r]g(d>), agar...,.ggd»,....gg<d»
 1

Thus I‘d(A) is a matrix representation of a spanning set for Ad’ as

 

embedded in 9 kn“), ijd. In particular, dimk Ad=rk I‘d(A).
[:1

Next, choose an m—primary ideal q generated by two linear forms as

in the last chapter. We can assume coordinates on V have been chosen so
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that q=(xo,x1). Such a change of coordinates takes k[V] to an isomorphic

graded ring, so none of the numbers we are computing will change. Then

dimk (A/q)d and dimk(q: m/q)d can be determined by routine matrix

computations.

Because (q)d is generated by the images in A of all

(d)- 00 an .
g. —Xo ---)(n such that aoato or 011%0, (q)d can be represented in

J

n+d n—2+d

I‘d(A) as the span of the first 11 — d rows. If we partition

I‘(1l 1 . n+d n—2+d

I‘d(A) as 73—, where I‘d is n - d xs(d+1) and

2 . n—2+d . 1 .

1‘d 13 d x s(d+1), then dimk(q)d=rk I‘d and dimk(A/q)d=

m

rk I‘d(A)-rk I‘é. As l(A/q)= 2 dimk(A/q)d, it follows (by proposition 2.3)

d=0

that we can determine whether Am is Cohen—Macaulay by checking the

equality:

on

1
S: E(rkI‘(A)—rk1‘).

d=0 d (1

As dimk(A/q)d=0 implies that dimk(A/q)d+1=0, we only need to

compute ranks for values of d up to (at most) d=s.

We recall from proposition 2.4 that, if Am is Cohen-Macaulay, then

00

the Cohen-Macaulay type is given by r=dimk(q:m/q). =d2 dimk(q: m/q)d.

=0

If AIn is Cohen—Macaulay, then dimk(A/q)d#0 is possible only for

d=0,1,...,s—1. Thus (q:m/q)d#0 is possible only for d<s. So we need only

compute dimk(q:m/q)d for d < s.

In the case d=0, dimk(q:m/q)o=0, unless 8:1, in which case q=m

and dimk(q:m/q)0=1.
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To compute dimk(q:m/q)d for d2], we can use the following

procedure.

We first locate a spanning set for (q: xi)d for each i=2,...,n

Let Mi be the matrix whose rows correspond to the u[ggd)Xi],

where ggd) runs through the last [mild] monic monomials of degree (1.

Note that the ggd) are precisely the monomials in X2,...,Xn. Note also

that Mi is a submatrix of I‘d+1(A), consisting of all rows corresponding to

monomials in )(2,....,Xn where the exponent on Xi is nonzero.

 

  

1
I‘

Let M: (1+1, and suppose M acts on the right on row vectors.

Mi

Let N=NS(M)=(N1|N2), where N2 has [11‘3”] columns. Let

1

.= _Fd_2l .

Nzrd

  

Claim. The rows of Qi represent a spanning set for (q: xi)d'

Consequently, the row space of Qi satisfies RS(Qi)§(q:Xi)d, and thus

1

_1‘_a7

Mzrd

Proof. To show that each row represents an element of (qzxi)d, we

rank =dimk(q:Xi)d.

  

need only consider the rows of Nsl‘g. Each row represents a linear

combination 2 ajgggd) where the coefficients a are given by a row of N2.

Since Nle+1+N2Mi=0 V(2a.g(d)X.) = 2a. V(g(dlxi) e

RS(N2Mi)=RS(NlFé+l)gRS(I‘(ll+1). So 2 aj gg(J) represents an element of

((13 Xl')d

1‘" (d)Conversely, let g—= aj gj e (q: xi)d' In order to show that

j=l

u(g) is in the span of the rows of Qi , we need only consider g'=2 a. g(d)

J

n——2+d
d) are the last [ d ] monic monomials of degree d. Wewhere the g]
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have the relation in A:

0=235kgk(d+l) + 2a g(d)x
xi,

_ n-d+1 n—2+d+1 ._ n+d n—2+d n+d
where k—l,...,[ (1+1 ] —[ (1+1 ], and J—[ d ]-[ d ]+1,..,[ (1 ].

Then, by definition of N, (a1,. ..,,ak....,aj..... )ERS(N). In particular,

(a1,....,ak,. .a,j,...)ERS(dN2). So u(g’ )= 8 aj u(g(d)) is represented by some

element in RS(N21‘2), i..,e some element in RS(Qi.)

From RS(Qig')(qi:xi)d , it follows that (q:m)d '2 in2 RS(Qi)=

E (RS(QQ‘)‘, which can be computed using the followingprocedure.

Let Bi be the row reduced echelon form of Qi’ with the zero rows

deleted, so that rk(Bi) is the number of nonzero rows. Let Ci be a

permutation matrix such that BCi=(IlDi)’ where I is an identity matrix

of size rk(Bi). Then (I|Di)[-1Di]=0, so (RS(IlDi)) =CS[-jDi—], as

the column Space has the correct dimension. Thus (RS(I |Di)) =RS(—Di II),

and (118(0)): =(RS(B,))*= (RS((IID,)C{1))* =RS((—D'f11)c;1). Let

E.=(-DT|I)C'1,. for i=2,...,n

I "filT.Let E bethe matrix E=(E§|E§|~~ E Then

11

RS(E)= 2 (RS(QQ)‘, and (RS(E))l can be computed by the same method

i=2

used to compute (RS(QQ)‘.

So we can compute both dimk(q)d =rk [‘31, and dimk(q:m/q)(l =

dimk(q:m)d — dimk(q)d . As previously noted, this gives the Cohen—Macaulay

type as

3—1

r=dX0 dimk(q:m/q)d-— dEO dimk(q:m/q)d.

Thus, in principle, we can determine whether AIn is Cohen—Macaulay, and

compute the Cohen-Macaulay type if it is, by doing matrix computations.
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For large 8, the matrices involved become very large, and accurately

computing ranks would be difficult. But for small 3, the method is

practical.



CHAPTER 4

GRAPHS

We now consider examples of A which are also Stanley-Reisner- Rings.

[Ho, Re], i.e., rings which correspond to simplicial complexes. In order for a

Stanley—Reisner ring to be k[V] for some union of lines V, it is necessary

and sufficient for it to be the coordinate ring of a graph over a field.

Let G be a graph on {0,....,n}, n > 1, that is, V(G) = {0,....,n}

is the BEES & of G. The gge se_t of G, E(G) is a subset of the set

of unordered pairs of distinct vertices. Let s = |E(G)|. We assume that

G has no isolated vertices, so, in particular 3 z n. For each edge

e = ij 6 E(G), Let .9; be the ideal in k[Xo,...,Xn] generated by

{Xo,...,Xn}\{Xi, Xj}’ and I =e€g(G) 5;. As each .9; = V(Le) for some

L8 in P: (in fact, a coordinate axis), A = k[XO,...,Xn]/I is k[V] for

some union of lines V. A is usually denoted k[G] to indicate its

construction from the graph G.

I is generated by monomials, for if f e n 93, then each

e€E(G)

monomial term of f is in each .93, as these are generated by monomials.

We first locate a generating set for 1.

Suppose I contains an element of degree 1, say Xi' Then

Xie .9é,VeeE(G)=>ij¢E(G) forany j

=> 1 is an isolated vertex of G.

As we assume that G has no isolated vertices, I contains no elements of

degree 1.

As I is reduced, it contains no elements X? As for other elements

of degree 2,

15
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Xixjeleexie 93 or Xje 93, VeeE(G)

«:1 ij ¢ E(G).

I will not contain any elements of the form: (1) le, (2) Xli‘ X},

where ij 6 E(G).

Finally, if i, j, and k are distinct, each Pe will contain one of

Xi’ X]. or Xk’ so all other monomials are in 1. Thus, I is generated by

{Xileij t E(G)} U {Xi X]. Xkl it i, la k},

and A is a Stanley—Reisner ring [Ho, §1].

Note that for each graded part Ad of A, a basis is given by the set

of all monomials of degree d which do not occur in Id. For example, A2

has a basis {if} u {xileij e E(G)}.

Promsition 4.1 (Reisner, [Ho, p. 180]) AIn is Cohen—Maculay if and

only if G is connected.

BENI- We give a different proof than the the one in [Ho], by

computing l(A/q) for an m—primary ideal q. We note first that the

prOposition holds in one direction by Hartshorne's result (Theorem 1.3).

Assume G is connected.

let q = (f1, f2), where

g 293f = x.,f = a.x., where:
1 i=0 1 2 i=0 1 l

Oaéaiek, and aiataj foriatj.

We have immediately,

q0 = (0), so dimkq0 = 0

(11 = (fl, f2), so dimkq0 = O.

q2 = ( {xjfi|j=0,....,n; i = 1, 2}).
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n 11

Suppose £0 cixifl, + iEO dixif2 = 0. Then (ci + diai)x? = 0 for each

i, by linear independence of basis elements of A2, so ci = —diai, and we

have

n n

(*) .2 —d.a.x.f + 2 dixif2 = 0.
01111 i

l —0

Claim. (10 = (11 = = (ln

Ergo! of Claim. If ij 6 E(G), then xixj # 0. So the coefficient of

. * . . _
xixj 1n ( ) ls zero, l.e., _diai-djaj + diaj + djai -— 0,

so di = dj' The claim now follows because any two vertices of G are

connected by a path in G. So ci = 'doa‘i’ and

n 11

£0 cixif1 + iEO dixif2

n n

= —d (2 a.x.f — 2 X-f ).

0 i=0 1 1 1 i=0 12

So every linear relation on the generators of q2 is a multiple of the relation

11

So dimk(q)2 = 2(n+1) - 1 = 2n + 1.

n

X

i:

Next, we not that for i, j, i at j,

_ 2 2 _
xixjf1 — xixj + xixj, as xixjxk — 0,

for iE i, i, k.

and ai at a.,
_ 2 2

xixjf2 — aixix. + a.xix J

111"

so x?xj€q for any i#j.

Then q contains

x?fl = x3 + 2 x?x. E x? (mod q).

‘ #i ‘1
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So q3 = m3 = m3. So q is an m—primary ideal. Moreover,

dimk AO/qo =1- 0 =1.

dimk Al/ql=n+l-2=n-l.

dimk A2=n+1+8,

as I2 contains every element of degree 2 except x? for each i, and xixj

for the s edges ij E E(G). So dimk A2/q2 = n + 1 + s — (2n+1) =

s - n. Thus l(A/q) = s, and Am is Cohen-Macaulay (prop. 2.3). .

In order to compute the type of Am, we will need some definition

from elementary graph theory. Consider a sequence of vertices v1,...,vi such

that vjvj+1 e E(G) for j=1,...,i-1. If vj ,1 vk for jatk, the sequence is

a path , and if v1=vi, but vjatvk for jatk otherwise, the sequence is a

w. G—v denotes the graph obtained from G by deleting the vertex v:

V(G-v) = V(G) - {v}, and E(G-v) = E(G) — {uv luv 6 E(G)}. A vertex

v is a cut vertex if G—v is disconnected (i.e., not path—connected). G is

said to be a M if G has no cut vertices, and the M of G are

the subgraphs which are maximal with respect to the pr0perty of being a

block. For example, a graph consisting of two vertices and one edge is a

block, and a graph mnsisting of a single cycle is a block. the graph depicted

in Figure 4.1 is not a block, but it has as blocks the graphs in Figure 4.2.

 

 

Figure 4.1
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Figure 4.2

We will make use of the following fact: If |V(G)| 2 3, then G is a

block if and only if any two vertices lie on a common cycle (for this and

other elementary results, see [CL]).

We now return to consideration of the ring A = k[G].

If g 6 A2, we can use the basis for A2 given previously to write g

uniquely as

2
g = X gux. + 2 g

ieV(G) 1‘ ‘ ijeE(G)

where in the second sum, each edge ij is counted only once. To simplify

(i: ”"in

notation, we can refer to g(i, j) as gij or gji’

unique coefficient of xixj in g. So

2
g = 2 gux. + 2 g..x.x..

ieV(G) 1‘ ‘ ijeE(G) ‘1 ‘ 3

either one denoting the

Ergmsition 4.2. Suppose 0, 1, ..., k, 0 is a cycle in G. Then there

is no element

2
g = E g..x. + E g..x.x. E q such that.

j€V(G) 11 J ij€E(G) ‘1 ‘ J 2

1) gjj = 0. for j = 0, ...., n.

2) g01#0, g0k =0, gjj+l = 0 for j: 1, ...,k-l.
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Proof. k = 1. The proposition is trivial.

 

n

k > 1. Suppose there is such a g, and let g = 2 c.x.f1 - d.x.f2.

i=0 J J J J

. . 2 ’1
Th co = l o = o s o . = o o o '—en g” 0 mp les cJ dJaJ (as x‘I at 0) So g jgo deJ(an1 f2),

and

g : diai "" d-a- + d-&- - d-ai

1 J J J J

= (di - dj)(ai - aj), for each i j E E(G).

ij

Then ai—ajgtO for iatj, but, for j=1,...,k—1 gjj+1=0' So

dj = dj+l’

contradiction. .

and similarly dk = do, so (10 = (11. But g01 a! 0, a

n

Pronosition 4.3. Let h = E bixi 6 (q: m)l. If bi = b. = 0 for

i=0 0 o

ioj0 E E(G), then bl = 0 for all vertices l in the block B containing

the edge in0 .

PM. If V(B) = {i0, j0 }, there is nothing to show. So assume

|V(B)| > 2, and let 1 E V(B) be any third vertex. Suppose bl at 0.

Claim 1. There is path v, v0, v1 in B such that bv = 0,

b = 0, b ,1 0.

v0 v1

m. Because B is a block, we can choose path 111, ...., uk from

j0 = 111 to l = uk, which does not contain i Let P be the path i0,0'

ul, ...., uk. Let v1 be the first vertex along P such that bv ,t 0, and

1

let v and v0 be the two preceding vertices.

There is a path P2 in B from v1 to v which does not contain

v0, say P2 is the path v1,v2, ...., kk—l’ vk = v. Then v0, ...., vk, v0

is a cycle in B. Relabel G, if necessary, so that vj = j for
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j = 0,..., k.

Claim 2. g = xoh satisfies the conditions of prOposition 4.2.

n

2199:. Let g = x h = E ..x.x.. Here x h = 2 b.x x.. If
0 ij€E(G) glj 1 j 0 i=0 1 o 1

i a! 0 34 j, then gij = 0, so gjj+l = 0 for j = 1, ..., k - 1. Moreover,

bk = 0, so g0k = 0, and b1 3% 0 so g01 ,e 0. So condition (2) of 4.2

is satisfied. If j at 0, then gjj = 0. As b0 = 0 implies g00 = 0 also,

condition (1) is also satisfied.

Then 4.2 implies xoh ¢ q2, contrary to h E (q: 111). therefore

bl = 0 for all 1 E V(B). I

Prgpgsitign 4.4. Suppose i is a cut vertex of G, and V0 the set

of vertices in some connected component of G - i. Let

g = E (ai — a.)x.. then g E (q: m)1.

0

21991. We show xkg E q, for k = 0, ...., n.

Caag 1. k 9! V0, k at 1. Here kj ¢ E(G) for j 6 V0, so xkxj = 0

and xkg = 0 E q.

Cgez. kEV. xg=x 2 (a.—a.)x.= E (a.—a-)xx.. If
0 k kjEvo 1 jj jEVO l jkj

p f V0 U{i} then xkxp = 0, so if p f V0, (ai -— ap)xkxp = 0. Thus

xkg = je§f(G) (ai — aj)xkxj =aixkf1 - xkf2 E q.

Caaa 3. k = i.

x.g=fg—Ex Eq.

' 1 11¢ng '

Prgpgsition 4.5. If G is a block, then (q: m)1 = q1.
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n

M. Let h = 2 bixi E (q: M). Relabel so that 01 e G(G).

° 01:

Define

I b1 - b0

h = h-bofl—(——a-a )(aofl—f2)

o 1

n

= 2 ex.

i=0 “

Then co = cl = 0, and h’ E (q: m), so h’ = 0 by pr0p. 4.3. 80

h E q. .

Let C = {i E {0, ..., n}| i is a cut vertex}. C may be empty.

For each i E C, let Vi1""’vip(i) denote the connected components of

G - i. Let W g A1, be the vector space generated by

{f , f} U 2 (a. - a.)x.| i E C, p = 1, ..., p(i)}.
1 2 {jEVip l J J

Ergpggitign 4.6. (q: m)1 = W.

Raga; By pr0p. 4.4., it is enough to show (q: m)1 E W.

If G is a block, this inclusion follows immediately from pr0p. 4.5. So

assume G is not a block and relabel so that 0 is a cut vertex. For any

n

h = 2 bixi e A1, let 2: (h) = {i e V(G)| bi = 0}. Let (21(h)) be the

i=0

subgraph generated by (71(h)); i.e., V((?£(h))) = V(G) n %(h), and

E((WID) = {e = ii 6 E(G)| iri 6 7411)}-

Let 210(h) denote the set of all vertices in the connected component of

(?l(h)) which contains 0 (thus ?l(h) = (b if b0 9% 0).

Suppose the proposition is false. Let h E (q: m)1\ W, h as above.

We can replace h mod W by h’ = h — bof1 and so assume that
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h0 = 0. So the following set is nonempty

95’: {h E (q: m)1\ Wlb0 = 0}.

Choose h E oi’ so that 2(O(h) is a maximal (w.r.t. inclusion) element of

210(1)|l E of}.

If flo(h) = V(G), then h = 0 E W, so we can choose

v E V(G)\?to(h) and let u0 = 0, 111, ....,u

If necessary, replace v by the first ui on the path such that ui ¢ %0(h).

In=v beapathfromOtov.

Relabel G so that ui = i, for i = 1, ..., m.

If bm = 0, then 11m = v E 24h). Since there is a path in %(h)

from 0 to v, v E 2t0(h), a contradiction. So bm ,t 0.

Clam. m - l is a cut vertex.

P_rggi. @334. m = 1.

There is nothing to show.

W. m > 1.

If m - 1 is not a cut vertex, then G — (m—l) is connected, so there

is a path from m — 2 to m which does not contain m - 1. But then

m -2, m -1, and m lie on a common cycle and thus in the same block.

Now bm—2 = b = 0. So bm = 0 by prop. 4.3. This is a
m-l

contradiction. Therefore m — l is a cut vertex of G.

Let V0 be the set of all vertices in the component of G — (m — 1)

which contains m.

P_rQQf. Suppose not. Then (%O(h)) U (V0) is connected. So there is

a path P in (%O(h)) U (V0) from m — l E %0(h) to m E V0, say

P is v0 = m - 1, vl,..., vt = m. Then v0, ...., vt, v0 is a cycle in

G, so In - 1, v1, and m are in the same block of G. As
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m — 1 1! V0, (111 - 1)v1 E E((ito(h))) and v1 E 710(h). So bm—1= b = 0
v
1

forces bm_1 = bV1 = 0 forces bIn = 0, by pr0p. 4.3, a contradiction.

E ( ) bmLet g = a — a. x., and h’ = h - _ g. Then

jEV0 m—l J J am—l 3m

g E W, so h’ E h mod W, and h’ E 97. But by the claim,

210(h) g 210(h’), and the coefficient of x is zero in h’, so
m

flo(h) S 7(0(h’), contrary to choice of h. So 4.6 holds. .

In the following lemma, b(G) will denote the number of blocks of G.

Lemma 4.7. Let G be a graph with cut vertices v1, ..., v s 2 1.

Then there exists V1, ..., V such that
t

1) Each Vi is the vertex set of some connected component of

G — vj for some j.

2) For each j = 1, ..., s, G - v. has all of its connected

J

components in {V1, ..., Vt} except for one component.

3) ViI U V. for i=1, ....,t

j<i J

t

4) |V(G) —U Vil >1.

i=1

5) t = b(G) — 1.

REEL We prove 4.7 by induction on the number of blocks of G.

As 9 2 1, the smallest case is when G has two blocks. Letting V1

be the vertex set of either component of G — vl satisfies the conditions.

Suppose G has m blocks and the lemma holds for all G with

m - 1 blocks. Choose a block B which contains only one cut vertex v of

G. Let G’ be the subgraph of G obtained by deleting all edges and

vertices of B, except v. Choose Vi, ..., Vé satisfying 1 - 5 for G’.
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Let V1=V(B—v), and for i=2, ...,t+1 let

Vi_1, if v E Vi-l

Vi = . It follows immediately that 1—4 hold

Vi_1 U V1 if v E V§_1

for V1, ..., Vt+1’ and t + l = b(G’)-1 +1 = b(G’) = b(G) — 1, so 5

holds also. I

For the next prOposition, it should be noted for each i = 1,..., t, there

is a unique cut vertex vj such that Vi is a component of G - vj. The

proof is as follows.

Let v1 and v2 be cut vertices with vl at v2. Let C be a

connected component of G - v1, D a connected component of G — v2,

and suppose C = D. Choose w E V(C) so that wv1 E E(G). If

w 1! v2, then wv1 E E(D). But wv1 ¢ E(C), so C a! D, a

contradiction. Suppose now that w = v2. then v2 E V(C) - V(D), again

contrary to C = D. Therefore, C = D is impossible.

EeraitiQa 4.§. dimk((q:m)1/q1) = b(G) — 1.

21991. If b(G) = 1, this is pr0p. 4.5. So assume b(G) > 1. We

use pr0p. 4.6 and show that dimk W/ql = b(G) - 1.

Let V1, ...,, Vt be as in lemma 4.7. Let v1.0) be the cut vertex

corresponding to Vi’ and define gi = 2 (av__ - ak)xk. Then g1,....,gt

l(EVi j(l)

E W. Fix i. The connected components of G - v.1 are among V1, ....,

Vt’ except for one, say V0. We can assume G — vi = V0 V VI v---- V

Vm by relabeling V1,...,V if needed (mgt). Let h = 2 (a -aj)x..
t . v. J

jEV0 1
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Suppose the vertex sets of the other components are V1,...,Vm. Then

1 1 (’3 ) ii E ‘5 2 ( )a - — g. =a x - ax — a —a x =

V11 2 j=1J Vi 1:0 1‘ k=0 J‘J‘ i=1 revj Vi k k

n

E(a — )x-E (a —a)x=23 (a -a)x=h.Sohis

k=0 vi 8“ 1‘ kEV(G)—VO Vi 1‘ 1‘ kEVO V' k k

in the span of {g1,....,gt, fl, f2}. But h was any generator of W not in

this set, so {g1,....,gt, fl, f2} spans W. So dimkW/q1 5 t = b(G) — 1.

By 4.7 (3), g1,....,gt are linearly independent, and by 4.7 (4) (and

choice of f1, f2), (gl,...,gt ) n (f1, f2) = 0, so gl,....,§t are linearly

independent over W/ql' So dimkW/qlz b(G) — l. I

Using prop. 4.8 it is now easy to determine the type of Am'

fIfhgirem 4.2. Let A = k[G], for some connected graph G, and let

m be the homogeneous maximal ideal. Let |V(G)| = n+1, and assume

n22. If |E(G)| = s, then the Cohen-Macaulay type of Am is

r=s-(n+1)+b(G).

For example, the graph in Figure 4.1 has 10 edges, 8 vertices, and 4

blocks, so the type is 6.

ErQQf 9f 4.2. As |E(G)| > 1 q # m, so dimk(q: m/q)0 = 0. By

prop. 4.8, dimk(q: m/q)1 = b(G) — 1. Finally, by the proof of 4.1, qi = mi

for i 2 3, so (q: m)2 = A2, and thus dimk(q: m/q)2 = dimkA2/q2 =

s — n (again from the proof of 4.1). Moreover, dimk(q: m/q)i = 0 for

123. So

a, 2

r =.3 l((<l= m/qli) = £0 dimkm: m/‘JJi
1:

=0+b(G)—1+s—n=s-(n+1)+b(G).I

We conclude this chapter with some applications of Theorem 4.9.
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Example 4.10. A gig is a connected graph which contains no cycles. If

G is a tree on n + 1 vertices then G has n edges, and every edge is a

block, so r = n — 1. In particular, if G is a path on n + 1 vertices

(n_>_2), then r=n—1. I

Example 4.11. A graph is mama; if it can be embedded in s2 (This

does agt imply that the corresponding union of lines embeds in P2). By

Euler's formula, |V(G)] - |E(G)| + |R(G)] = 2, where R(G) is the set

of regions determined by any planar embedding of G. 80 if G is a planar

graph, then r = |R(G)| + b(G) — 2. In particular, if G is a cycle on

n+1points, r=1. I

W- AWgraph on n+1 points is the graph which

contains all possible ["31] edges. If G is a complete graph, then

,- [“5”] -.,...1- ["21] 1:] = [Sl-
Examplgilfi. Let G be the graph obtained by adding 1 edges to a

cycle on 11 +1 points, 0 g i g [’2‘] - 1. Then |V(G)| = n + 1,

|E(G)| =n+1+i, and b(G)=1, so r=1+i.Soagraphon

n + 1 points can have any type r, 1 g r 58]. I

If G = G1 U G2, where V(Gl) n V(G2) consists of a single vertex,

and |V(G1)| > 2, |V(G2)| > 2, then Theorem 4.9 implies r = II +

r2 + l, where ri is the type of Gi' This makes it easy to prove the

following.

Ergmsiiion 4.14. If G is a graph on n + 1 > 2 vertices, then

r 5 [3]. If n + 1 > 3, then equality holds only when G is a complete

graph on n + 1 vertices.
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m. We induct on the number of blocks of G.

11 b(G) = 1, then |E(G)| g [“42“] so r g [g], by 4.9.

Suppose b(G) = m > 1 and that the proposition is true for

b(G) < m. Then G = C1 U G2, where G1 is a block with t vertices,

G2 is a graph on n — t + 2 vertices, b(G2) = m - 1, and

V(Gl) n V(G2) consists of a single vertex.

Suppose t>2 and n—t+2>2,i.e.,2<t<n. Then,by

inductive assumption, r1 5 [$1] , r2 5 [ll—3+1] , so r = r1 + r2 + 1 5

[‘51] + [”‘l+1l+1< [‘2‘]-
Suppose t = 2 (or similarly t = n). Then

|E(G)| =1+ 113(62):,

|V(G)l =1 + |V(G2)I,

b(G) = 1 + b(G2)

If G2 also consists of a single edge, then r = 1 and the proposition

holds. Otherwise, r = l + r2 5 l + [n51] < [121].

Note that if G is a block, equality holds only if G contains all [121

possible edges. And if G is not a block, equality can hold only if n = 3.

This is a genuine exception as a path on 3 points has type 1. I

The last result in this chapter was first proven by Hochster [Ho, p. 199],

using different methods.

ii 4.1 h r. r=1 ifandonlyif G isacycleor

consists of one or two edges.

Prmf. the result is trivial if |E(G)| = 1, so assume |E(G)| > 1,

thus |V(G)| > 2. Any connected graph satisfies |E(G)| 2 |V(G)] - 1,

with equality precisely when G is a tree. 80 if r = 1, — 1 + b(G) S 1,
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b(G) 5 2. If b(G) = 2, |E(G)| = |V(G)| — 1, and G is a tree with

two blocks, i.e. G has two edges. If b(G) = 1, then |E(G)| = |V(G)].

Removing one edge yields a tree, which must be a path, as b(G) = 1. 80

G is a cycle. I

It should be noted that Hochster [Ho, p. 194] has given formulas for

the betti numbers for all Stanley—Reisner rings. The aim of this chapter has

been to show that in the case of graphs, the type (i.e., the last betti number)

is given by a simple formula which can be established using more elementary

methods than those used in [Ho].



CHAPTER 5

SIMPLY CONNECTED UNIONS OF LINES

Pencils of projective lines are the simplest non-trivial examples of

Cohen—Macaulay unions of lines [GW, 4.1].

In this chapter we review these examples and apply some results of

[GW], to extend them to a larger class of examples. We say that union V

of 3 lines is s_i_rap_ly 991M231 if it is connected and there is no sequence of

distinct lines in V, L1,...,Lt, with t 2 3, such that Li n Li+1 at (1),

L1 n Ltat (I), and Li n Lj= d), for 1< |i - j] < t - 1. That is, a simply

connected union is one which contains no cycles. The goal of this chapter is

to characterize those simply connected V which are Cohen—Macaulay, and to

obtain some results regarding the type.

If V consists of lines through a single projective point (i.e., V is a

pencil), then V is simply connected, and V is always Cohen—Macaulay. A

proof of the first part of the following prOposition was given in [GW].

8

Prgpgsition 5.1. ([GW, 4.1]). Let V = U Li be a union of lines

i=1

through a point v in P”. Then V is Cohen—Macaulay, and the type of

V is the same as the type of a union of points in Pn-l.

REEL By a linear change of coordinates, we may assume v =

(1: 0:....:0). Then each line is determined by v and one other point vi =

(0: ailz....:ain). As before, let .9; = J(Li). Then .9; = (fi1""’fin-1)’ with

deg fij = 1, fij E k[X1,....,Xn], as no other linear polynomial vanishes at v.

30



31

Let s = k[x0,....,xn], T = k[X1,....,Xn] “s; = :91“ T, I = .9; and

“
3
0
0

i 1

s

I = n 73° As before, A = k[V], so that A = 8/1.

i=1

Claim. A = T/I[x0].

Bum. Let V: T -+ 8/1 be the canonical map. Then ker V =

InT=(n3;)nT=n(3i’nT)=n3i’=I. So ET/I-lS/I isa

monomorphism. For each i, fil’m’fin—l are linearly independent in 8

over k, thus algebraically independent over k, and thus algebraically

independent in T over k. So ht 3; = n — 1 for each i, and

dim T/I = I. But dim 8/1 = 2, and the canonical map T/I [x0] --1 S/I

is subjective, so it is transcendental over T/I, by consideration of
0

dimensions, and so this map is also injective. This proves the claim.

Each 7; has height 11 — l and is generated by linear forms, so it is

the ideal of a point in Pn—l. As v; = (ailz...ain) E 7(2), this implies

T/I = k[U vi] is the coordinate ring of a union of points, and thus contains

a regular element g. As x is regular by choice of coordinates, {x0, g}
o

is a regular sequence in A, so A is Cohen—Macaulay. By [HK, Satz

1.22], the type of Am is the same as the type of (A/(x0))_, where m

m

is the image of m in A/(xo). That is, the type is the same as that of

(T/I)_. I

m

In order to study simply connected unions of lines, we use the notion of

Cohen—Macaulification of the graded ring A.

r ii .2. ([GW, 1.71). Let C=UM‘“gK, where M is

the homogeneous maximal ideal of A. Then G is a Cohen—Macaulay ring,
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finitely generated as an A—module, and C = M—n for 11 >> 0. Moreover,

every Cohen—Macaulay ring containing A and finite over A contains C.

_Rgmarig. C is called the Cohen—Macaulification of A, as it is the

natural generalization to the graded ring A of the notion of

Cohen-Macaulification of a local ring, as introduced by Grothendreck.

Clearly A is Cohen—Macaulay if and only if A = C. The main goal

of this chapter is to determine when A = C in the case of a simply

connected V. We will use the following construction of C given by

Geramita and Weibel.

As before, we let the vertices of V be the points of the form

Li n LJJ‘ (1), for i 9% j. Label these points P1,....,P and let .2 = .7(P.)

I" J J

for i = 1,...t. Let J]. = n{.9i|.9§ C 23}, so that S/Jj (where

= k[XO, ..... ’an) is the coordinate ring of the lines of V which pass

through Pj' The set of ideals {Jj} n {9} U {.23} is partially ordered by

inclusion and corresponds to a directed diagram 1‘ of the rings {S/Jj} U

{8/53} U {S/.%} as in Figure 5.1.

S/J S/J

"MN?”N.
NM221/\e./

S/Ql S/Q2 S/Qt

Figure 5.1. The diagram 1‘
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The maps of I‘ are defined as follows. For .9; g .2], aji is the

canonical map a. .' S/Jj -o 8/9, and 'Bji is the canonical map ,6]. i:

M

3/9; -+ .Zj.

We will assume throughout the rest of the chapter that V is

connected, and consists of more than one line. Thus every line passes through

at least one vertex, and the initial rings of the diagram I‘ will be the rings

S/J..

J

The pullback (or inverse limit) of the diagram I‘ is the ring:

{(11,...,,f)€II S/Jjle(f)=B(fl)
j-l

whenever the maps A and B are defined and have the same image}.

Theorem 53 ([GW, 84]) The pullback ring of the diagram I‘ is the

Cohen—Macaulification of A.

We first prove as a corollary a slightly stronger version of the theorem.

Prgmsition 5.4. Let I" be the directed diagram of the rings

{S/Jj} U {S/fli’} (i.e., I" is a subdiagram of I‘). Then the pullback ring

of I" is the Cohen—Macaulfication of A.

Prmf. Let C’ be the pullback ring of I". Clearly C Q C’ as I"

is a subdiagram of I‘ with the same initial rings. So it suffices to shown

C' Q C.

Let(f,..,ft)EC’_ IIS/Jj, andsuppose(fl, ft)¢C. Ifjatk,

l_<_j<t.

there is at most one i such that .9; g Qj n Qk’ so flj,i am: S/Jj -1

8/.2j is the only path in I‘ from S/Jj to S/Zk. If j= k, and
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not depend on 1. So without ambiguity we can let 7j k: S/Jj -+ S/.Zk be

the map defined by any path in I‘ from S/Jj to S/fk.

S/Jj -1 S/.2j is just the canonical map, and so does

Because (f1,...,ft) E C’, “11(5) = ak i(fk) whenever both maps are

defined. If (f1,...,fr) E C, then 7j,kaj) at 7l,k(fl) for some j, k, 1. Let

71

fil(2),kak,i(2)' The” 71,161) = fli(1),kak,i(1)(fk)’ and 7j,k(fj) =

fl1(1),kaj,i(l)(rj). BUt ak’i(1)(fk) = aj,i(l)(fj) because (1.1,...31') 6 CI. SO

7113(ka = 7j,k(fj)’ and 7k,k(fk) = 7l,k(fl)’ similarly. But then 7j,k(fj) =

71 l((11), a contradiction. Therefore 0’ g C. I

k = fli(1),ka.’i(l) and 71,1‘ = ,Bi(2),kal,i(2) for some 1(1), 1(2). Then

Ergpgsition 5.5;. Let [‘2 be the directed diagram contained in I",

and consisting of {S/Jj} U {S/.9i’|Li contains at least two vertices}, where

a; = J(Li). Then I" and T2 have the same pullback.

£199; The initial rings of the two diagrams are the same. 1‘2 is

obtained from I" by eliminating only those terminal rings S/Pi which are

the image of precisely one initial ring. So the pullback is unchanged. I

Lemma 5.6. Let V be a simply connected union of lines. Then there

is a vertex P. such that among LEJ),...,L£J), the lines through Pj’ there

is at most one L?) which contains some other vertex of V.

M. Suppose V has no such vertex. Then V has more than one

vertex. Choose a sequence of distinct lines in V, L1""’Lm such that

Li n Li+1# d), for i=1,...,m-l, and Li n ijt (b, if |i - j| > 1, with m
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as large as possible. As V is simply connected, m > 3. Let Pi =

Li n Li+1 for 1 S i 5 m—l. Then I’m—1 contains Pm—l and Pm—2’

and, by assumption, there is at least one other line LO which contains

Pm—l and some other vertex. L0 = Li for i < m — 1, otherwise V

would contain a 100p. So wlog we may assume LO at Lm. Thus there is a

vertex Pm at Pm_1 on Lm, and PIn = Lm n Lm+1 for some Lm+1.

This contradicts the maximality of m. I

The following proposition characterizes those simply connected V which

are Cohen—Macaulay.

Proposition 5.7. Let V be a simply connected union of lines. Then

A = k[V] is Cohen—Macaulay if and only if the degree 1 graded part of A

is the pullback of the degree 1 graded parts of the rings of F2.

m. (G). Suppose A is Cohen-Macaulay. Then A = C, which

is the pullback of 1‘2, by prOpositions 5.4 and 5.5. In particular, A is a

pullback in degree 1.

(F). We induct on the number of vertices t. Suppose V contains t

vertices and A is a pullback in degree 1. If t = 1, then A is

Cohen-Macaulay, by pr0p. 5.1. Suppose t > 1 and the prOposition is true

when V contains at most t — 1 vertices.

By lemma 5.6, choose P1 satisfying the condition of 5.6. Let L1 be

the unique line containing Pl as well as some other vertex P2 (L1 exists

as t > 1). Let A1 be the directed diagram {S/le J 1‘ 1} U {S/PilLi

contains at least two vertices}, Let A2 be the directed diagram {S/Jl} U

{S/Pl}. Thus 1"2 = A1 0 A2.

Let Vl be the union of those lines of V which contain at least one

vertex not equal to P1, and let V2 be the union of all lines of V which
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contain P1. As k[V2] is Cohen—Macaulay, k[Vz] is the pullback of A2.

We show next that k[Vl] is the pullback of A1.

Let deg fi = 1, i = 2,...,t, and suppose that (f ""’ft) E H S/Ji

i¢1

is in the pullback of Al. A3 Vl n V2 consists of a single line

(f2.

that A is a pullback in degree 1, there is some f E A1 such that f 5 f2

f2...,ft) e 11 S/Ji is in the pullback of T2. So, by the assumption

mod J1 and f5 fi mod Ji for i = 2,...,t. If we replace f by the image of

f in k[Vl], then these congruences still hold. Thus k[Vl]l is the

pullback of the degree one parts of the diagram A1. As Vl contains

t - 1 vertices, and is simply connected, it follows by inductive assumption

that k[v

A

1] is Cohen-Macaulay, and thus that k[Vl] is the pullback of

1.

In order to show that A is the pullback of theLet L =VlflV
1 2'

diagram F2 = A1 U A2, it now suffices to show that A is the pullback of

the diagram in Figure 5.2.

k[V]] k[VQJ

’1 ’2

k[Ll]

Figure 5.2



37

As A is the pullback in degree 1, and the maps irl and x2 are

subjective, we have:

(*) edim k[V] = edim k[Vl] + edim k[V2] - edim k[Ll]

Let mi = edim k[Vi], for i = 1, 2. For any projective variety W,

edim k[W] = dimk Span (W), where Span (W) denotes the linear span in

A?” of the cone of W (by [K, p. 165]). So it follows from (*) that

dimk Span (V) = dimk Span (Vl U V2)

= dimk Span (V1) + dimk Span (V2) — dimk(Span (V1) n Span (V2))

= dimk Span (V1) + dimk Span (V2) - dimk(Span (L1).

Thus, dimk Span ((Vl) n Span (V2)) = dimk Span (L1), and so

Span (V1) n Span (V2) = Span (Ll)'

It follows that we can change coordinates on V as follows. First, we

may assume by an initial change of coordinates that V is minimally

embedded; i.e. edim (V) = n + 1. [To do this, change coordinates so that

the affine subspace Span (V) consists of all points with non—zero coordinates

only in the first 11 + 1 coordinates. Then (if v g P’f)

k[V]/(X .,Xm) ~ k[V]] Next, change coordinates so that
n+1’" =

J(L1) = (x2,...,xn),

J(Span (v1)) = (xml,...,xn )

J(Span (V2)) =(X2,..., xm1—1)°

Thus J(V1) 2 J(Xm1,...,Xn ), J(V2) 2 (X2,..., Xml—l)’ and then

k[LIJ = k[XO, X1]:

k[Vl] = k[Xo, X1"""xm1"1]’

k[V = k[Xo, x1, xml,...,xn].2]
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[Note that there are algebraic relations among the generators of the last two

rings]

As J(Vi) g .7 (V), there are canonical surjective maps pi: k[V] —1

k[Vi]. Let (f, g) E k[Vl] x k[V2] be in the pullback of the diagram in

Figure 5.2. Choose F, G so that F E k[X XIn _1] g k[V], G E k[Xo,

1

0,...,

X1, Xml""’xn] g k[V], and such that pl(F) = f, p2(G) = g. Let F =

Fl + H1 and G = G1 + H2, where HI = F(xo, x1, 0,...,0),

H2 = G(xo, x1, 0,...,0). Then xl(p1(Hl)) = 21(f) = 2(g) = 2(p2(H2)).

As pi 0 xi: k[V] -. k[Ll] is the identity when restricted to k[xo,x1], it

follows that HI = H2. Moreover, F1 + H1 + G1 E A = k[V], and

122(F1) = 0. p1(Gll = 0. so

(p1(F1 + H1 + G1), p2(F1 + H1 + G1)) = (f, g).

S0 A is the pullback of the diagram in figure 5.2., and therefore also the

pullback of T2. So A is Cohen-Macaulay. .

The preceding proof allows an alternative characterization of which

simply connected unions of lines are Cohen—Macaulay. For i = 1,...,t, let

Vi = 7’ (Ji)‘ Thus Vi consists of all lines through the vertex Pi'

ThQrem Q8. Let V be a simply connected union of lines. Then

edim k[V] S E edim k[Vi] - 2(t-1), where t is the number of vertices of

V. Moreover, equality holds if and only if A = k[V] is Cohen—Macaulay.

ELQQI- We induct on t. For t = 1, V = V1, and there is nothing

to show. Let V have t > 1 vertices and assume the corollary is proven

when V has less than t vertices. Let P1 be as in the proof of pr0p.
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_ 1 _
5.7. Let V2—V, and V1--Ui>1

the proof of 5.7, A is Cohen-Macaulay

vi, and L1 = v1 n v2. then, as in

PC A is the pullback of the diagram in Figure 5.2

We show first that the inequality holds. We always have

edim k[V] 5 edim k[Vl] + edim k[V2] — edim k[Ll]

= edim k[Vl] + edim k[V2] - 2.

Then, by inductive assumption, there follows

edim k[V] 5 2 edim k[Vi] — 2(t — 2)

i>1

+ edim k[V2] — 2.

As V2 = V1, we conclude

edim k[V] g z: edim k[v‘] — 2(t — 1).

i>1

Suppose A is Cohen-Macaulay. By pr0p. 5.7, A1 is the pullback of

the degree 1 parts of the rings of F2. So by the proof of 5.7, k[V1]1 is the

pullback of the degree 1 parts of the rings of A1, and thus is

Cohen—Macaulay, by 5.7. So, by inductive hypothesis,

edim k[Vl] 5 2: edim k[Vi] - 2(t — 2)

i>1

But also,

edim k[V] = edim k[Vl] + edim k[V2] - edim k[Ll]

= edim k[Vl] + edim k[V2] - 2

= z edim k[Vi] + edim k[Vl] — 2(t — 2) — 2

i>1 .

= 23 edim k[V‘] — 2(t — 1)

121 .

For the converse, suppose that edim k[V] = 2 edim k[V]] - 2(t — 1).

121

Then

edim k[V] = l: edim k[Vi] — 2(t — 2) + edim k[Vl] — edim k[Ll]

1>
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Also

edim k[V] S edim k[Vl] + edim k[V2] — edim k[Ll].

If equality does not hold, then

edim k[Vl] + edim k[V2] — edim k[LIJ

> 2 edim k[V'] — 2(t — 2) + edim k[Vl] — edim k[Ll]

i>1

But, as V VI, this implies edim k[Vl] > 2 edim k[Vi] — 2(t - 2)

i>1

2 =

which is impossible. So

(1) edim k[V] = edim k[Vl] + edim k[V2] — edim k[Ll],

and also

(2) edim k[Vl] = )3 edim k[Vi] - 2(t — 2).

i>1

By inductive hypothesis, (2) implies that k[Vl] is Cohen—Macaulay. In

particular, k[Vl]1 is a pullback of Al in degree 1. It then follows from

(1), that k[V]1 is a pullback of diagram 5.1 in degree 1, and thus a

pullback of F2 in degree 1. So, by prOposition 5.7, A is Cohen-Macaulay. I

Mark. These results are false if V is not simply connected. Let V

be a 2 x 2 configuration of lines on a nonsingular quadratic surface. Then

k[V] is Cohen—Macaulay (theorem 1.4). Also edim k[V] = 4. However,

23 edim k[Vi] — 2(t —1) = 4(3) — 2(3) = 6 ,1 4.

We conclude the chapter by showing how to compute the

Cohen—Macaulay type of Am in the case where V is simply connected and

A is Cohen-Macaulay. As noted in Chapter 2, we can compute the type by

computing the graded analogue of the socle.

For each i = 1,...,t, let ri be the Cohen—Macaulay type of the ring

k[Vi], and r the Cohen—Macaulay type of k[V].
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Brgpgsition {2.9. If V is simply connected and Cohen—Macaulay, then

Prmf. We induct on T. For t = 1, there is nothing to show. As

in the proof of pr0p. 5.7, we reduce to consideration of the diagram in figure

5.2. By inductive assumption k[Vl] has type 2 ri, and it suffices to

ZSiSt

show that the type of k[V] is the sum of the types of k[Vi], i = l, 2.

For ease of notation, let ri be the type of k[Vi].

Assume coordinates have been changed as in the proof of pr0p. 5.7.

Choose a system of parameters (fl, f2} for A, with deg fi = 1, i = 1,

2. Let Fi be the preimage of fi in k[XO,....,Xn]. Then

W2M and J(Ll)2nPi so WW=M

As (F1, F2) and J(L1) are generated by degree 1 forms, (F1, F2) +

J (L1) is the ideal of a linear variety, and thus prime. So (F1, F2) +

J(L1) = M; i.e., (F1, F2) + (X2,...,Xn) = M. So X0 = alFl + blF2 —

G1, X1 = a2Fl + sz2 - 62, for some ai, bi E k, Gi E (X2,...,Xn) .

Replace Fi by F; = aiFl + biF2, so as to assume wlog that

F1 = X0 + G1, F2 = XI + GZ’ with

Gi 6 (X2,...,Xn) . [Note that {F’, Fé} is still a system of parameters

because

X0 + G1 1‘ (X1 + G2)

3L1 b1

(12 b2

9‘ F1’ F2 6 (F’, Fé)

) 411:1, F2) + fl Pi = M.)

G #0
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Let g1,...,g e k[Vl] such that g1 + H,...,g + a is a basis for the

1'1 r1

socle of k[V1]/§, and h1,...,hr2 6 k[V2] such that h1 + H,...,hr2+ E1- is a

basis for the socle of k[V2]/Ei. Suppose gi = Fi(xo’ x1) + Gi(xo,...,xn),

where each monomial term of Gi contains one of x2,...,xn as factor. then

replace gi by gi - Fi(f1, f2) E gi mod (f1, f2), so that we may assume

wlog that each monomial term of gi contains one of x2,...,xn as a factor.

Similarly, we may assume that each monomial term of each hi contains one

of x2,...,xn as a factor. Then 11(gi) = 12(hj) = 0 E k{L1] for all i, j,

so (gi, 0), (0, hj) E k[V] for all i, j.

M. (gi, 0) is in the socle of k[V]/q for each i.

m. It suffices to show that (xk, xk)(gi, 0) = (0, 0) = 0 E k[V]/q,

for k = 0,...,n. Thus it suffices to show xkgi = 0 in k[Vl]/§. But this

true because g1 is in the scole of k[Vl]/§.

QLai_m_2. (0, hj) is in the socle of k[V]/q for each j.

ELQQI. Similar.

Clearly the elements {(gi, 0)} U {0, hj)} are linearly independent over

k. In order to show r = r1 + r2, it now suffices to show that this set

generates the socle of k[V]/E.

Let k1,...,kr E k[V] such that (k1, k1)"”’(kr’ kr) generate the socle

of k[V]/H. As in the previous argument, let k1 = Fl(x0, x1) +

Gl(xo,...,xn), where each monomial term of G1 contains one of x2,...,xn

as a factor. Then replace k1 by k1 — Fl(f1, f2) 5 k1 mod (f1, f2) so that

we may assume wlog that each monomial term of k1 contains on of

x2,...,xn as a factor. As before, it follows that (kl, O), (0, kl) e k[V] for

each i.
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For each j = 1,...,n, (klxj, klxj) = (0, 0) = 0 E k[V]/q. Consequently,

klxj = o in k[Vll/H and in k[V2]§. Thus k1 is in the socles of both

k[v11/a and k[v21/a. Let

r1

1'

2

k] = 1'21 bjhj e k[V2]/q.

r r
l 2

Then 0‘ i k) = = 2 a'(g’i 0) + 2 b-(O, 11') SO {(3, 0)} U {(0, h)}l 1 i=1 1 1 j=1 j j 1 j

generates the socle of k[V]/q as claimed. .

Note that by prOposition 5.1, the Cohen—Macaulay type for a union of

lines through a single vertex can be reduced to the computation of the type

for a union of points obtained by intersecting with a hyperplane.

Thus prOp. 5.9 reduces the problem of computing the type of a simply

connected union of lines to computations of the types of unions of points.

As any union of points in Fri—1 can be coned to a union of lines

through a single vertex in P“, prOp. 5.9 is in some sense the strongest

result we can expect for an arbitrary simply connected Cohen—Macaulay union

of lines.

Finally, note that pr0p. 5.9 is false if V is not simply connected.

Example 5.19. Let V consist of 3 lines in P2 with 3 vertices.

Then k[Vi] has type 1 for each i = l, 2, 3, as Vi is a hypersurface.

But V is also a hypersurface, so k[V] has type 1 )6 3.



CHAPTER 6

HILBERT FUNCTIONS

One necessary condition for A = k[V] to be Cohen—Macaulay is that

its Hilbert function be twice differentiable. In this chapter, this condition will

be discussed, and an example constructed which shows that the condition is

not sufficient.

dimkAi, ' _

Let P (i) be the Hilbert function of A, P (i) = .
A A .

0, 1 < 0

Let ai = PA(i). Then the first sequence of differences is {bi}iel’ where

b. = a. — ai_1, and the second sequence of differences is {ci}iel’ where

differentiable.

As in Chapter 2, let QA(z) denote the Poincaré series of A,

If ci 2 0 for all i, we say that PA(i) is twice

(I) .

QA(z) = 2 PA(i)zl. As noted in the proof of proposition 2.2, if A is

i=0

Cohen-Macaulay, then we can choose f1, f2 6 Al such that the set of

images {f1, f2 } is a system of parameters for Am’ in which case

QA/f1A(Z) = QA(Z) - QA(_1)(Z). So iEO bizi = QA/f1A(Z)' Similarly,

with q = (f1, {2), we have QA/q(z) = QA/f1A(Z) — Q(A/f1A)(—1)(Z)’ so

°° i . i . .
. = = , > . = >

as Hilbert functions are nonnegative. As ci = 0 for i < 0, it follows that

ci 2 0 for all i and PA(i) is twice differentiable. We conclude the

following:

Proposition 5.1. ([GMR]) Let A = k[V] be the coordinate ring of a

union V of projective lines in Pi. If A is Cohen-Macaulay, then the

Hilbert function PA(i) is twice differentiable.

44
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Proposition 6.1 gives a useful criterion for showing that certain unions of

lines are not Cohen—Macaulay. Here is a simple application.

Example 6.2. Let L1 = 7’( 0, X1), L2 = V(XZ, X3), V 2 L1 U

3 _ _
L2 g Pk' then .XV) — (X0, X1) n (X2, X3) — (X0X2’ X0X3, X1X2,

X1X3). PA(i) is then easily computed,

1, i = 0

2(i+1), i < 0

Then b1: 3, b - 2, and c2 = —1, so V is not Cohen—Macaulay.

Unfortunately, the condition of proposition 6.1 is not sufficient.

6

Example 6.3. Let A = k[V], where V = U Li is the union of the

i=1

following six lines:

L1 = 71x2, x3)

= V(Xli X3)

= 7(X3, x1 ’ X2)

= rix3, x1 + x2)

= “X0, X2)

= 7(x1, x0 — xt
‘
r
‘
r
‘
r
‘
t
"

c
a
m
s
-
w
t
»
:

3)

Then A is not Cohen—Macaulay, but PA(i) is twice differentiable.

M. We show first that A is not Cohen-Macaulay. Figure 6.1

illustrates the intersection relations among the Li:



46

 
Figure 6.1

Here P1 = xx], x2, x3), P2 = V(XO, x2, x3), and P3 = 74x0, x1,

4

Let V1 = U L., V2 = L1 U L5, and V3 = L2 U 1’6 Then each

i=1 ‘

Vi is contained in a hyperplane Hi, where H1 = 7(X3), H2 = 7/(X2)

3

and H3 = V(Xl). So edim k[Vi] = 3 for i = 1, 2, 3, and thus £1 edim

k[Vi] - 2(3 - 1) = 5, while edim k[V] = 4 < 5. As v is simply

connected, V is not Cohen—Macaulay, by Theorem 5.8.

We now show that the Hilbert function is twice differentiable. We begin

by computing the Hilbert function for C, the Cohen—Macaulfication of A,

as this provides an upper bound for the Hilbert function of A.

By prop. 5.5., C is the pullback ring of the diagram in Figure 6.2

k[V2] k[Vl] k[V3l

“2,1

k[L

 

Figure 6.2
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Fix the degree = i for all the graded rings in the diagram of Figure

6.2. Let 7i be the map

7,: 14v?)i e k[vl]i e k[v3]i s k[L1]i e k[L2]i,

defined by

7i(f, g. h) = (02,16) - 014(3). 03,201) - 013(3)) Let (T, H) E

k[Ll]i 6 k[L2]i, and choose preimages f E k[V2]i and h E k[V3]i (using

the fact that 021 and 03,2 are surjective). Then 7i(f, 0, h) = (f, If),

so 7i is also surjective.

For each i, C. = ker 71’ so
1

3 2

(*) P (i) = 23 P .(i) — 2 P (i).

C j=1 k[V]] k=1 k[Lk]

1 _ 1 _
J(v ) _ (x1 X2(Xl — X2) (x1 + X2), X3). and k[V ] _ k[XO, X1, x2,

1 . .
X3]/J(V ) g k[XO, x1, x21/(xl x2(x1 — x2) (x1 + x2», which IS the

coordinate ring of a hypersurface in Pi of degree 4. So we have the

following exact sequence, where S = k[XO, X1, X2],

0 -+ S(-4) -+ S -1 k[V1]-o 0.

. Pk[V1](i) = Ps(i) — PS(_4)(i). As Ps(i) = [‘32] and PS(_4)(i) =

['52], we conclude that

[“2”], if ogigs

P i =

k[V1]() 4i — 2, if i 24

Similarly, k[V2] is isomorphic to the coordinate ring of a hypersurface of

degree 2 in 1212‘, so (i) = PS(i) — PS(_2)(i)

Pk[V2]
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[‘32], if ogigl

— 2i +1, if i 2 2

V3 also consists of two lines in a plane, so P 3 (i) = P 2 (i).

k[V] k[V]

Finally PML l(i) = i + 1, as Lk is isomorphic to 1211‘.

k

It now follows from equation (*) that

PC(0) = 3%] — 2(1) = 1,

pC(1) = 3g] - 2(2) = 5,

pC(2) = [g] + 2(5) — 2(3) = 10

130(3) = [3] + 2(7) — 2(4) = 16

and, for i 2 4,

PC(i) = (4i - 2) + 2(2i + 1) —- 2(i + 1)

= 6i - 2.

We have established:

QLai_m_1. PC(0) = l, PC(1) = 5, and PC(i) = 6i — 2, for i > 2.

We next show:

Claim 2. C is generated by elements of degree 1.

Proof of Claim 2. Choose lines L’,....,Lé in P: as follows: For i

1, 2,...,5,

L; = 7(J(Li)k[X0,....,X4], X4),

L6 = ”(X11 X0 ’ X31 X0 ' X4)

The same intersection relations hold among L; as bold among the Li' Let

1’ 4 2/ 3/

V = U L5, V =Li U L’, and V =Lé U Lé. Then, for i = 1, 2,

i=1 ‘

k[vi'] g k[Vi] via the map induced by s1(xi) = xi, for i = o, 1, 2, 3,

and 11(X4) = 0. k[V3I] g k[V3] under a different map. Note first that
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J(v3') = (x1, x3, x4) n (x1, x0 — x3, x0 - X4)

= (x1, x4 - x3, x3) n (x1, x4 - x3, x0 — x3)

= (x1, x4 — x3, x3(x0 - x3)).

J(v3) = (x1, x3) n (x x — x
1’ o 3)

= x3(x0 - x
3)-

Let r2: k[X0,....,X4] -1 k[X0,....,X3] be defined by «2(Xi) = Xi’ for

. 3’ 3
1 = 1, 2, 3, and 12(X4) = X3. Then 12(J(V )) = J(V ), and 7r2

induces the desired isomorphism. Note finally that 7'1 induces isomorphisms

k[Li] g k[Li], for i = l, 2.

We have now constructed the following commutative diagram.

k[vz']

 
Figure 6.3

Commutativity is easily checked, as most of the maps are projections.

As the maps induced by lrl and 12 are isomorphisms, it follows easily

that k[V] and k[V’] have isomorphic Cohen—Maculifications. As edim

k[vi'] = edim k[Vi], for i = 1, 2, 3, and edim k[V]] = 5 with v'

simply connected, it follows from Theorem 6.8 that k[V’] is
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Cohen—Macaulay. Thus k[V’]g C, and C is generated by elements of

degree 1, as claimed.

Proof of Claim 3. Only the last equality is non-trivial, and

Pk[V](2) g 10 is obvious. Suppose Pk[V](2) < 10. then V lies in a

hypersurface w of degree 2. suppose w 2 H1. Then w n H1 2 v1

which is a reducible curve of degree 4, contrary to Bézout's theorem. Thus

W 2 H1. As deg W = 2, we must have W = H1 U H4 for some

hyperplane H4. But then H4 2 L5 11 L

L5 U L6 = (I). So there is no such W and Pk[V](2) = 10.

suffices to show that PJ(V)(3) = 4. Let f6 J(V)3, and W = V(f).

6’ which is impossible, as

As in the previous claim, it follows by Bézout's theorem that "W 2 H1. So

W 2 H1 U Wl for some hypersurface Wl of degree 2. As before W1 3

L5 U L6" But L5 U 16’ is a union of two skew lines in Pi, and as such,

is isomorphic by a change of coordinates to the union of two skew lines given

in example 6.2. In that example, we found PA(2) = 6. Thus there are

10 — 6 = 4 linearly independent elements of degree 2 vanishing on two skew

lines. So there are only four linearly independent elements of degree 3

vanishing on V.

Therefore Ple](3) = 16.

glam. k[V]i = Ci’ for i _>_ 2.

WM- By claims 1, 3, and 4, Plelm = Pc(i) for i =

2, 3. As k[V] C C, k[V]i = Ci for i = 2, 3. If f6 Ci for i 2 4,

then, by claim 2, f = 2 gj, where each gj is a product of degree 1

elements of C. Thus, each gj is a product of elements of C2 and C3.

As each of these factors is in k[V], so is gj, and therefore, f e k[V]i.



. . 1 if i = 0

M' Pklvlm : 6i-2, if i z 1 '

Proof of Claim 6. For i = O and 1, this follows by claim 3. For

i 2 2, this follows by claims 1 and 5.

Now, letting ai = Ple](i), we have a first sequence of differences

{bi}?=1 with b0 = 1, b1 = 3, bi = 6, for i 2 2. The second sequence

of differences is cl = 1, c2 = 2, c3 = 3, ci = 0, for i 2 4. So

Pklvlfi) is twice differentiable. .

Example 6.3 allows us to answer a related question posed by Geramita,

Maroscia and Roberts, relating to differentiable 6—sequences. asequences can

be defined as follows [St, p. 60]. If h and i are positive integers, then b

can be written uniquely in the form

l?)
h<l> =

n. — 1 n.

+ L1- 1 ]+....+ [i1], where ni > ni_1 >....>n. 2 j 2 1. Define

ni 1 ni_1 + 1 nj 1 .

i + 1 + i + j + 1 . An fieguence 18 a sequence

 

{ai}°i°:1 such that a0 = 1 and ai+1 5 a?) for i 2 1. It can be

shown that the O-sequences are precisely the sequences of values of Hilbert

functions of Standard G—algebras R with k0 = k[St, Theorem 2.2] Thus

Pk[V](i) defines an asequences. An 0—sequence is a 2jifferentiable

asequence if its first and second sequences of differences are also 0—sequence.

Geramita, Maroscia and Roberts have asked [GMR, remark 7.13]

whether a union of lines in Pi whose Hilbert function is a 2—differentiable

asequence must be Cohen—Macaulay. It is easy to check that the first and

second sequences of differences in example 6.3 are 0—sequences, so the answer

is negative.



CHAPTER 7

EXISTENCE THEOREMS

In order to be Cohen—Macaulay, a union of lines must be connected, and

the Hilbert function of its coordinate ring must be a twice differentiable

asequence. These global necessary conditions suggest that "most" unions of

lines are not Cohen—Macaulay.

In this chapter we will show that any union of lines V is contained in

a union of lines W which is Cohen—Macaulay. That is, it is always possible

to add lines to V so as to make some larger union W Cohen—Macaulay.

This suggests: (1) that the class of Cohen—Macaulay unions of lines may

contain much more than just the classes of examples discussed in previous

chapters, and (2), that there may be no simple local necessary condition (i.e.,

condition on the vertices) for a union of lines to be Cohen-Macaulay. The

second observation, if true, would contrast the Cohen-Macaulay prOperty

sharply with seminormality, as a union of lines cannot be seminormal if the

lines through each vertex are not linearly independent (by [DR, 2, 3.5]).

The results in this chapter hold not only for unions of lines, but also for

all unions of linear varieties of unmixed projdim 2 1, so we will prove the

results in this form.

We will need the following prOposition about minimal generating sets of

ideals of definition of certain unions of points in PE.

Brgmsitign 2.1. Let f1,...,f8 E k[Xo,...,Xn] be polynomials of degree 1,

with s > n, with the following property. For every choice of 1 5 i1 <

, f. ,....,f.< in+1 S s are linearly independent over R. For each such
11 1

n+1

52
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choice of i1,...,in+1 define

_ H ..

gi1"”’in_l ‘ j¢{i1,...,in_1} 1

Then

(a) V = 7/( . n . fi ,...,fi )) 5 Pi: is a set of [3] points.

1511<....<1nSs 1 n

(b) V is not contained in any hypersurface of degree < s - n + 1.

(c) The gi ""’i are linearly independent over k. (d) If

1 n—l

I = ({gil"”’i }), then I = J(v).

Proof. (a) it follows immediately from the linear independence
 

condition that each of the [3] ideals (fi ,....fi ) is the ideal of a point in

1 11

P11: and that any two of these ideals are distinct.

(b) Let H = V(h) with deg h 5 s - n, and suppose H 3 V.

Then, for any choice of 1 _<_ i1 < ....< in—l S s, H contains each of the

s — n + 1 points V(fil,....fin_l, fj)’ where j j! {i1,...,in_1}, so by

Bézout's theorem, H contains the line 7’ (fi ,....,fi ). So

1 n—l

h e (1 (fi ,...,fi ). Repeat the argument. For any choice of

1_<_i1<....<in_l<s 1 n-l

7(1‘. ,....,f.

1 < i1<... < in—2 5 s, H contains each of the s - n + 2 lines

,fj) for j j! {il,..,in_2 }. So by Bézout's theorem, H

'1 ln-2

contains the plane V(fi ,....,fi ), and h e n (fi ,...,fi ).

1 n-2 lgi1<....<i ss 1 n—2
n—1

s

In a finite number of steps we find that (1 (fi) = f1....fs). So f1...f8|h,

i=1

contrary to deg h S s — 11. Therefore V I H.
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(c) Suppose 2 ai "”’i gi ""’i = 0, for some

15i1<....<in_153 1 n—1 1 n—l

E k. Suppose one of these coefficients is nonzero, w log

n—l

36 0. Let (b :....:bn) be any point on the line 7(f1,....,fn_l)
al"”’n—l o

which is distinct from the points V(f1,....,fn_l, fj), j = n,..., s. Then

g ,...,. does not vanish at (b :....:b ), but all the other g.,...,. do,
1 ln—l o n 1 ln—l

so if we put Xi = b. in the equation above, we find al""’n—1 = 0, a
l

contradiction. So there is no nontrivial linear relation among the gi "“’i .

1 n—l

((1) Let S = k[X0,...,Xn] and a = S/J(V). By (b), J(V) u 3i =

(0) for i = 0,...,s - n, so for these i, the Hilbert function has value

PA(i) = [i311]. PA(i) is the Hilbert function of a reduced variety, so it is

differentiable, and thus nondecreasing. And V consists of [3] points in

Pi, so the Hilbert polynomial is PA(i) a [3]. This forces PA(i) = [181],

. . . _ _. s
for all 1 2 s — n. In partlcular, 1f dO -— s - n + 1, then PA(do) — [n]°

(10+!) ] [8

so dimk (J(v) n Sdo) = [n n]. As (10 is the least degree of

d +n

a polynomial vanishing on V, and also the least integer such that [ 3

 

>

[3], it follows that the points of V are in generic [3] - position [(301,

pr0p. 3]. Moreover, J(V) n Sd = I n Sd , as I g J(V) and

o o

d +n
. . s _ 3+1 3 _ o __ S _

dlmk(I n Sdo) 13, by (c), [n—l] _ [n ] - [n] _. [n ] [n] _

dimk(J(V) n Sdo).

It now follows by [G02, prOp. 4]. that J (V) = I. I

We now construct Cohen-Macaulay unions of linear varieties which are

higher dimensional analogues of the unions of points in prop. 7.1.
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Prop. 7.2. Let f1,....,fs E k[Xo,...,Xn] be homogeneous of degree 1.

Let t < s, 2 5 t _<_ n, and suppose that for every choice of l 5 il < <

it+1 S 3, fi ,...,fi are linearly independent over k. For each choice of

1 t+l

1< i < < i < 3 define g. = II L. Then:
' l t+l ' ” l ’ ’1 . . . J

1 t—l j¢{11,...1t_1}

(a) V = 7’( (1 (fi ,...,fi )) g PE is a union of [i]

lgi1<...<itgs 1 t

distinct linear varieties of dimension n — t.

(b) The gi ""’i are linearly independent over k.

l t-l

(c) if I: ({gi1,...,i 1}), then I: J(V). (d) If A = k[V],

then A is Cohen—Macaulay.

Ermf. (a). The proof is the same as the proof of pr0p. 7.1. (a).

(b): The proof is similar to the proof of pr0p. 7.1

(c): If (b0:...:bn) is a point of 7(f1,...,ft_1) which is not contained

in any of the pr0per subvarieties 7(f1,...,ft_l,fj), j = t,...,s, then

g ,..., does not vanish at this point, but all the other g. ,...,. do.

1 t-1 11 lt-1

The rest of the argument is the same. (9) and (d). We proceed by induction

on dim V = n - t. For n = t, (c) is just 7.1 (d), and (d) is also true

as unions of points are always cohen-Macaulay. So suppose (c) and (d) are

true if dim V < d and suppose dim V = d.

As t < 11, each (fi ,...,fi )g M, where M is the homogeneous

l t+l

maximal ideal of S. So, by a vector space argument applied to 81’ we can

choose an x e M - U (fi ,...,f. ) of degree 1. By
. . 1

1511<...<1t+153 1 t+1
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Changing coordinates we can assume wlog that x = Xn and define f; =

fi (XO,...,X 0) 5 S; = k[XO,...,Xn] . Also, define

= 11 ff.

g‘1 lt-l j¢{il,...it_l}1

n-l ’

Note that for any choice of 1 g i1<...<i 5 s, if we we had a
t+1

t+1 t-i-l

nontrivial relation 23 eff = 0, c. e k, then either 2 of = 0 or
.=1 J 1. j .=1 11.

J J J J

X11 6 (fi ,...,fi ), both being contradictions. So f; ,...,f; are linearly

1 t+1 l t+1

independent over k. Finally, let v' Q Pfi‘l, where v' =

7’( n (f; ,...,f; )), and A’ = k[V’].

15i1<...<itss 1 t

If we identify S/(Xn) g S’, then (Xn) + I/(Xn) = (Xn) +

. ,...,. X = X + .’ ,...,. X g f ,...,. =({5,1 ,t_1})/( n) ( ,1) Hell 1t_l})/( n)_,({g11 ,H l)

J(V’), by the inductive assumption, as n - l - t = d — 1 = dim (V’).

As the preimage in S is (Xn) + I, this must also be a radical ideal, so

(Xn) + I = (Xn) + ,4. But

15i1<...<it$s 1 t - '7

so JI = J(V), and (Xn) + I = (X11) + J(V). By choice of coordinates,

X11 9! U (fi ,...,fi )

1$il<...<it$s 1 t

 so Xn is regular in A. Suppose h e J(V) and deg h < s —t + 1. If L

= Xlfilh’, then the image in A is H = x1515, = 0, so 11’ = 0, i.e.,

h’ E J(V). So we can replace h by h’ and assume wlog that Xn th.

but then 0 3‘ h(XO,....,Xn_1, 0) E J(V) = ({gil,...,it 1}), which is a

contradiction, as deg gi ""’i = s — t + 1. Thus .7 (V) contains no

1 t—l

elements of degree < s — t + 1.
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As Xn is regular in S/J (V), it follows by [G, lemma 1.1] that

4le» = V((Xn, J(V))/(Xn))- As (xn, J(v»/(x,,) = (x,, I)/(Xn)

J(V’), we have V(J(V)) = V(J(V’) = [:11], by (b) and the inductive

assumption on J(V'). Then by (b), we have J(V) = ({gi1,...,i 1}). So

t—

the induction step holds for (c).

Also, A/(Xn) 'é’ (S/I)/((Ia Xn)/1) 2 S/(I. Xn) s S’/J(V’) = k[V’lr

and X11 is regular in A. So by the inductive assumption and (d), k[V’] =

A/(xn) is Cohen—Macaulay, and it follows that A is Cohen-Macaulay. So

the inductive step holds for (d).

ErOstition 7.3. Let V be as in prop. 7.2. Then the Cohen-Macaulay

. s—l
type of V is [t—l]

hoof. As in the previous proof, we induct on dim V = n — t. For

n = t, V consists of [131] points in generic position in Pk' by [GO2,

pr0p. 16], the Cohen-Macaulay type is [:1] = [:1].

Suppose the proposition is true for dim V < d and that dim F"

V = d. By the proof of the inductive step in prop. 7.2 (c) and ((1), there is

a regular element x in A (corresponding to x under change of
n

coordinates), such that A/(x) g k[V’]. Then k[V] and k[V’] have the

 same Cohen-Macaulay type, which is, by inductive assumption, [:3]. I

We come now to the main result of the chapter.

8

Proposition 7.4. Let v = u vi g P? be a union of linear varieties

i=1

Vi’ each of dimension n - t 2 0, with t 2 1- Then V .C. W .9. PE,
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where W is a union of linear varieties of dimension n — t and k[W] is

Cohen—Macaulay.

13m. if t = 1, then V is a hypersurface, thus Gorenstein, so we

can let W = V. If n — t = 0, then V is a union of points. Again, we

let W = V. So assume that 2 5 t S n —1.

We use the fact that any vector space over an infinite field is not the

union of a finite number of prOper subspaces. Let .9; = J(Vi) and

Wi = 5; n 81’ for i = 1,...,s. Choose f1,...,fSt as follows. Each

3

W1 n Wj ( W1, if jfl, so choose f1 6 W1 — U Wj' Suppose we have

i=2

chosen f1,...,fm so that: (1) If t(i—1) < j 5 ti, then fj E Wi - kgi Wk’

and (2) If 1 3 i1 g ..._<_ it < j, then f. g (f. ,...,f. ). Let t(i - 1) <

3 l1 ‘1

m+1_<_ti. HI

I
A

Wi g (fi ,...,fi ) n 81’ by dimensions. But then il 5 ti - t = t(i—1), so

1 t

for some j < i, fi 6 Wj — Wi, by inductive assumption (1), contrary to

1

fi 6 Wi' Thus Wi n (fi ,...,fi ) is a prOper subspace of Wi' So we can

1 l t

choose some element

 

f e W. - [( UW.) u ( U (f. ,...,f. ))], 3

m“ ' jsti J 191$...5itgm ‘1 ‘t "f

and then properties (1) and (2) hold for f1,....,fm+1. So we can choose L

fl,....,fst also that prOperties (1) and (2) hold. It follows immediately from

pr0perty (2) that any t + 1 of the fi are linearly independent. If

s = 1, then W = V is already Cohen-Macaulay, so there is nothing to

prove. So assume 3 >1. Let W = 7’( n (fi ,...,fi )). By

1$i1<...<it$s 1 t
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st

t

and k[W] is Cohen—Macaulay. As ft(i+1)

pr0p. 7.2., Wis a union of [ ] linear varieties of dimension n—t in PD,

+1 ,...,fti E Wi are llnearly

independent, .9? = fl (ft(I+1)+1 ,..., ti,) and 30 V E W. I

We close with a simple example to illustrate the construction involved in

obtaining W from V.

Example 7.5. Recall example 6.2, L1 = 7(X0, X1), L2 = V(Xz, X3).

Letting fi = Xi-l for i = 1,....,4, we satisfy conditions (1) and (2) in the

proof of prop. 7.4 (here 3 = t = 2). Then W = 7’( n (Xi , Xi ))

Osi1<i2g3 1 2

consists of [3] = 6 lines in Pg. By prop. 7.3, k[W] has type

4-1 _

In general, the number of linear varieties in W is much larger than

the number of linear varieties in V, and may be larger than the smallest

number required to obtain a Cohen—Macaulay variety containing V. In the

example above, we can add the line L3 = 7 (X1, X2), to L1 U L2 to

obtain a simply connected Cohen—Macaulay union of lines of type 2. There

‘
1
-
'
fl

does not appear to be any general procedure for finding the minimum number

of new lines required.
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