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ABSTRACT

STUDIES IN COMPRESSIBLE AND INCOMPRESSIBLE MIXTURES

By

DEVANG JAYANT DESAI

The work presented herein is focused on identifying qualitative
and/or quantitative differences in the behavior of incompressible
mixtures with solid constituents being various types of nonlinearly
elastic incompressible solids in the context of the Theory of
Interacting Continua. In particular, the response of mixtures with Neo-
Hookean or Mooney-Rivlin solids with ideal fluid is studied for several
cases of simple deformations. The results of these investigations could
have a significant impact on material identification studies.Comparison
of these results with the experimental results of Treloar are also
presented.

Furthermore, attention is also directed towards resolving issues
which would permit the solution of boundary value problems involving
compressible mixtures. This work also clarifies certain misconceptions
pertaining to primitive concepts such as volume additivity and
incompressibility of mixtures. In addition, the saturation equations of
state for a mixture of a compressible solid and an ideal fluid and an

appropriate free energy function for a compressible mixture is derived.
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Finally, a boundary value problem is solved to demonstrate that the
presence of constraints such as inserts and inclusions which have
differential constitutive characteristics can induce nonhomogeneous

swelling characteristics and stress concentrations within the material.
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NOMENCLATURE

A Helmholtz free energy function of the mixture per unit mass

of the mixture.

Al, A2 Partial derivatives of Helmholtz free energy function with
respect to invariants I1 and 12' respectively.

ASl’ AS2 Helmholtz free energy function of the solid and fluid per
unit mass of the solid and fluid, respectively.

Ae’ Am Helmholtz free energy function of the elastic deformation and
mixing per unit mass of the mixture, respectively.

bi Components of the interaction body force.

Bij Components of the Cauchy-Green deformation tensor.

C1 C2 Coefficients appearing in the generalised constitutive
equations for incompressible solids.

dij' f1j Components of the rate of the deformation tensor for the
solid and fluid, respectively.

Fij Components of the deformation gradient tensor.

fi’ 84 Components of the acceleration vector for the solid and
fluid, respectively.

I Identity tensor.



Il, 12, 13 Invariants of the Cauchy-Green deformation tensor B.

Lij’ Mij Components of the velocity gradient tensor for the solid and
fluid, respectively.

n Unit outer normal vector.

p Scalar appearing in the constitutive equations due to the
incompressibility constraint.

R, r Components of the reference and current radial coordinates,
respectively.

Sl, 52 Labels denoting a solid and a fluid particle, respectively.

Sij Components of the total stress characterizing the state of
the mixture in a saturated state (i,j=1,2,3 or r,f8,z ).

ty Total surface traction vector.

T Absolute temperature of the mixture continua.

Tij Components of the total stress tensor for the mixture.

u;, vy Components of the velocity vector for the solid and fluid.

w, Components of the mean velocity vector for the mixture.

§land Xy Functions defining the current configuration of the solid and
fluid, respectively.

Xi, Yi Reference position of the solid and fluid particle,
respectively.

X0 Y4 Current position of a solid and fluid particle, respectively.

X,Z, x,z Components of the reference and current coordinates in the

cartisian coordinate system, respectively.
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A(Z)
AL A,
Y1
P
P10’ P20
pl’ p2
Figr Ay
'71. l‘i
8, ¢

13" "ij
ai, "1
X

Stretch ratio along the length of the cylindrical mixture.
Stretch ratio in the thickness direction of the mixture slab.

Radial and circumferential stretch ratios.
Volume fraction of the solid in the mixture.

Density of the mixture.

Density of the pure solid and fluid, respectively.
Mass per unit volume of the mixture for the solid and fluid,

respectively.

Components of the vorticity tensor for the solid and fluid,

respectively.

Coefficients appearing in the dynamical part of the

constitutive equations (i=1,2,3,4).
Components of the reference and current coordinate in the
radial coordinate system.

Components of the partial stress tensor for the solid and

fluid, respectively (i,j=1,2,3 or r,4,z).

Components of the partial surface traction for the solid and

fluid, respectively.
A constant which depends on the particular combination of the

solid and the fluid.
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CHAPTER 1

INTRODUCTION

Several phenomena involving the presence of two or more
constituents are difficult or almost impossible to be mathematically
modeled by conventional single constituent theories. Typically examples
of such phenomena include the swelling of polymers or rubber-1like
materials, diffusion phenomena in blood vessels, moisture effects in
composite materials. Classical diffusion theories model flow of a fluid
through a solid assuming negligible deformation of the solid
constituent. However, this assumption is violated in solid-fluid
interactions where largebdeformations are involved. For example,it has
been shown by Treloar [1] that a block of rubber can swell into several
times its original volume when placed in a bath of an organic fluid.
Furthermore the amount of swelling is strongly affected by subjecting
the block to uniaxial or bi-axial extension, for example.

The Theory of Interacting Continua, also known as Theory of
Mixtures, has been successfully used to model phenomena involving two or
more constituents. In this theory, the continua are assumed to be
superimposed. Each spatial point in a mixture is assumed to be
simultaneously occupied by material particles from each constituent.
This essentially amounts to taking into account contributions from each
constituent in the neighborhood of a mathematical point and averaging
them. The theory accounts for large deformations, dependence of
material properties on all constituents and interaction between the

constituents. In proof-of-concept studies it has been clearly shown



that the Theory of Mixtures has substantially better predictive
capabilities than traditional single constituent modeling concept. For
example, results obtained by Gandhi [2] using Theory of Interacting
Continua had better agreement with experimental results of Paul and
Ebra-Lima (3] in modeling pressure-induced diffusion of organic liquids
through a rubber layer than results obtained by using Ficks law (
Classical Diffﬁsion Theory ).

Gandhi, et al.[4] have successfully used Mixture Theory to model
behavior of a swollen cylinder under combined extension and torsion and,
the results obtained show excellent correlation with the experimental
results for global behavior of the swollen cylinder presented by Treloar
[5]. They have also been able to predict the distribution of the fluid
in the interior of the swollen cylinder and the effect of axial strain
on the volume of the swollen cylinder. Currently experimental results
pertaining to such detailed field information of these phenomena are not
available.

The mathematical basis of the general Theory of Interacting
Continua has been well established for a long time. The historical
development of the theory and comprehensive surveys of the progress in
the field are presented in the review articles by Bowen [6], Atkin and
Craine [7], Bedford and Drumheller [8] and Passman, et al.[9]. A
critical review of the field makes it clearly evident that the
applications of the Theory of Interacting Continua to solve boundary-
value problems of physical interest have been very limited. The main
difficulty in these problems arises due to the lack of physically
obvious ways for specifying the partial tractions, which are an integral
part of the Theory of Interacting Continua.

Shi, et al. [10] and Rajagopal, et al. [11] were the first to

study equilibrium and steady-state boundary-value problems by employing



auxiliary conditions at the boundary of solid-fluid mixtures in an
effort to bypass the difficulties associated with specifying partial
tractions at the boundary. The use of these auxiliary conditions
rendered a whole class of boundary-value problems tractable where the
boundary of the mixture could be assumed to be saturated.” Gandhi, et
al. [12,4,13,14] have not only used the above boundary condition to
study boundary values problems, such as torsion of a cylindrical
mixture, flexure of a mixture cuboid but have also contributed
significantly to a better understanding of the saturation boundary
condition by providing a strong mathematical basis to the same which was
previously derived on an ad-hoc basis.

In previous work reported in the literature, attention has been
primarily focused on a mixture of an ideal fluid and a nonlinearly
elastic incompressible solid. In particular, for solving the boundary
value problems all investigators have assumed the solid constituent to
be "Neo-Hookean" which is a nonlinearly elastic incompressible solid.
Boundary value problems on mixtures with a nonlinearly elastic
compressible solid or compressible mixture have not been addressed in
the literature. In this work an ideal fluid is assumed to be one of the
constituent for all the mixtures under consideration ,while the other
constituent may be an incompressible or a compressible nonlinearly
elastic solid . Depending on the type of the solid in the mixture, the
mixture will be referred to as an incompressible mixture or a
compressible mixture for convenience.

The work presented herein is focused on identifying qualitative

and/or quantitative differences in the behavior of incompressible

+ A saturated state represents an equilibrium state in which material

elements of a solid-fluid mixture in a deformed and swollen state are in

contact with the fluid with no fluid entering or leaving the mixture.



mixtures with solid constituents being various types of nonlinearly
elastic incompressible solids in the context of the Theory of
Interacting Continua. In particular, the response of mixtures with Neo-
Hookean solids and ideal fluids and mixtures with Mooney-Rivlin solids
and ideal fluid is studied for several cases of simple deformations such
as uniaxial extension, bi-axial extension and simple shear. The results
of these investigations could have a significant impact on material
identification studies, for instance solids exhibiting significant
swelling characteristics, in their swollen states can be classified as
Neo-Hookean-type or Mooney-Rivlin-type mixtures by performing simple
experiments such as allowing solid specimens to swell freely and then,
subjecting the specimens to uniaxial extension or shear, for example.
Comparison of the results from this work with the experimental results
of Treloar [l] is also presented. Furthermore, attention is also
directed towards resolving issues which would permit the solution of
boundary value problems involving compressible mixtures. The qualitative
differences between the response characteristics of compressible and
incompressible mixtures can be exploited in several practical
applications.

This work also clarifies certain misconceptions pertaining to
primitive concepts such as volume additivity and incompressibility of
mixtures. In addition, the saturation equations of state for a mixture
of a compressible solid and an ideal fluid are derived. These equations
are instrumental in solving boundary problems where saturation is
assumed. A brief rationale for deriving an appropriate free energy
function for a compressible mixture is presented herein. Such a function
would permit the explicit description of constitutive equations for

studying boundary value problems involving compressible mixtures.



Finally, a boundary value problem focused on investigating the
swelling characteristics of a composite cylinder is studied in detail.
The composite cylinder features an inner core which exhibits material
properties which are quite distinct from those of the surrounding
concentric material. This work is motivated by the need for modeling the
large deformations of polymeric composite materials under various under
hygrothermal environments. This work partially addresses this need by
characterizing the interaction of ideal fluids and idealized constrained
nonlinear elastic solids in the context of Mixture Theory [15]. The
deformations of the elastic solid may be restricted due to the presence
of extensible/inextensible fibers, rigid inclusions and coatings on
reinforcing fibers, for example. Such constraints can quantitatively
and qualitatively alter the ability of these materials to undergo
dimensional and constitutive changes very significantly. The results of
these investigations for large deformations demonstrate that the
constraints imposed by the core material induce nonhomogeneous swelling
characteristics with significant gradients in the stretch ratios and
severe stress concentrations at the fiber/matrix interface. These
results could have important implications for a variety of fiber-
reinforced composites featuring hygroscopic and temperature-sensitive
matrix materials.

The composite cylinder considered herein is an archetypal
representative volume element of a unidirectional fiber-reinforced
incompressible elastic composite. And study of such a representative
volume element when subjected to complicated loads could provide vital
information about the neighborhood of fiber.

In chapter II the basic kinematic quantities are defined and
basic postulates of the Theory of Interacting Continua are stated.

Volume additivity, the incompressibility constraint, and the



constitutive equations are stated in chapter III along with the
derivation of saturation equations of state for a mixture of
compressible solid-ideal fluid. Details of comparative studies between
Neo-Hookean type solid-ideal fluid mixtures and Mooney-Rivlin type
solid-ideal fluid mixtures are presented in chapter IV. In chapter V the
boundary value problem of a cylinder with differential core properties
is presented. Finally, concluding remarks and discussion on further

application of this work to damage in composite material is presented.



CHAPTER II
PRELTMINARIES: NOTATIONS AND BASIC EQUATION

A brief review of the notations and basic equations of the
Theory of Interacting Continua are presented in this section for
completeness and continuity. Let Q and ﬂt denote the reference
configuration and the configuration of the body at time t, respectively.
For a function defined on @ x R and th R, V and grad are used to
represent the partial derivative with respect to I and nt, respectively.
Also gz denotes partial derivative with respect to t. The divergence
operator related to grad is denoted by div.

The solid-fluid aggregate will be considered a mixture with $1
representing the solid and S2 representing the fluid. At any instant of
time t, it is assumed that each place in the space is occupied by
particles belonging to both S1 and 82. Let X and Y denote the reference
positions of typical particles of Sl and S,- The motion of the solid
and the fluid is represented by

X =% X, ©), and y = X, X, o). (2.1)

These motions are assumed to be one-to-one, continuous and

invertible. The various kinematical quantities associated with the

solid S, and the fluid 82 are

1
Py D@y,
Velocity: U=t , Y=o (2.2)



NOR b2y
Acceleration: f - Dt , g~ Dt , (2.3)
du av
Velocity gradient: L= Eg, M- 52 , (2.4)
Rate of deformation tensor:
p-2@w+1h, x-2a+uh (2.5)

where D(l)/Dt denotes differentiation with respect to t, holding X fixed
and D(2)/Dt denotes a similar operation holding Y fixed. The

deformation gradient F associated with the solid is given by

ax
- —=1
F =5 (2.6)

The total density of the mixture p and the mean velocity of the mixture

w are defined by

P =P+ Py (2.7)
PY = piu + p,v, (2.8)

where P1 and p, are the densities of the solid and the fluid in the
mixed state, respectively, defined per unit volume of the mixture at
time t.

The basic equations of the Theory of Interacting Continua are

presented next.



(1) Conservation of mass
Assuming no interconversion of mass between the two interacting
continua, the appropriate forms for the conservation of mass for the

solid and the fluid are

py |det E| = 5,4, (2.9)
and

ap

—2 -

70+ div (o, v) = 0, (2.10)

where P10 is the mass density of the solid in the reference state.
(2) Conservation of linear momentum

Let o and x denote the partial stress tensors associated with
the solid S1 and the fluid 82, respectively. Then, assuming that there
are no external body forces, the balance of linear momentum equations

for the solid and fluid are given by

div g - b = p f, (2.11)

div n + b = Pog- (2.12)

In equations (2.11) and (2.12), E denotes the interaction body force
vector, which accounts for the mechanical interaction between the solid
and the fluid. By defining the total stress as

T=o0+m, (2.13)

the equilibrium equations for the mixture may be written as

div T = plg + Pog- (2.14)
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It may be pointed out that it is sufficient to satisfy any two of
equations (2.11), (2.12) and (2.14) to satisfy the balance of linear
momentum.

3) ervation o u

This condition states that

1Q
+
& ]
1
1Q
+
& ]

(2.15)

However, the partial stresses o and x need not be symmetric.
(4) Surface conditions

Let t and q denote the surface traction vectors taken by S1 and
82, respectively, and let n denote the unit outer normal vector at a
point on the surface of the mixture region. Then the partial surface
tractions are related to the partial stress tensors by

t = gTB, and q = ETQ. (2.16)

(5) ermodynamical conside n

The laws of conservation of energy and the entropy production
inequality are not explicitly mentioned here for brevity. However, the
relevant results are quoted. A complete discussion of these issues is
presented in [14].

Let the Helmholtz free energy per unit mass of §, and S, be
denoted by Aland A,, respectively. The Helmholtz free energy per unit
mass of the mixture is defined by

pPA = plAl + p2A2. (2.17)

Note that by setting

b= - grad ¢, + b = grad ¢, + b, (2.18)



(]
I
©-
-
—
+
2

(k]
]
Ne-
1]
+
I?l

where,

¢1 - pl(Al'A)o ¢2 -

11

pz(Az'A), ¢1 + ¢2 - 0,

equations (2.11), (2.12), (2.14) and (2.15) become

div

19
]

div

13|
+

div

]|
]

191
+
E]]
]

The terms in g, «® and E which

contribute to the equations of motion

10|

- plg'

b = 0,8,

depend on ¢1 and ¢2 do not

or the total stress.

(2.

(2.

(2.

(2.
(2.
(2.

(2.

19)

20)

21)

22)

23)

24)

25)



CHAPTER III

VOLUME ADDITIVITY, INCOMPRESSIBILITY CONSTRAINT AND CONSTITUTIVE

EQUATIONS

a) Volume additivity

Volume additivity is an intrinsic property of mixtures which
simply says, the total volume of the mixture at any state ( time or
deformation ) is equal to the sum of the respective volumes of the
superimposed continua at that state. In the present notation it can be

stated as

V =V, +V (3.1)

where VS and VS are the current volume of the respective constituents
1 2

and Vm is the current volume of the mixture. (3.1) can also be written

as

l = vy t vy (3.2)

where Vi Vo are volume fractions of the respective constituents. Prior
to this work volume additivity was misinterpreted as a constraint and
was defined as volume of the mixture is the sum of the volumes of the
respective continua in their reference state, which is true only if both
the constituents of the mixture are incompressible. When two continua

are superimposed to form a mixture, assuming no interconversion of mass,

12
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and both the constituents being chemically inert to each other the sum
of the volumes of the constituents at any state (time or deformation) is
equal to the total volume of the mixture at that state even though the
individual constituents might undergo volume changes as in a case of
compressible constituents, for example. Let the mixture under
consideration constitute of a nonlinearly elastic solid Sl’ and an ideal

fluid 82. Consider

(3.3)

where VRS is the reference volume of the solid and VS is the current
1 1

volume of the solid. Similarly

\ v

o 52, (3.4)
p v v 2 :
10 m m

where VRS is the reference volume of the fluid and VS is the current
2 2

volume of the fluid. As the fluid is ideal in nature VRs - V2 .
2

Substituting (3.3)-(3.4) in (3.2) results into

Vs P P
—+ L2, (3.5)
RS, P10 *20

This relationship is valid for a mixture of any solid and an ideal

fluid.
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b) Incompressibility constrajint
Now if the nonlinearly elastic solid is incompressible that is

vsl- VRslthen (3.5) yields

A L2

(3.6)
P10 P20

which can be considered as an incompressibility constraint relationship.
This relationship was referred to as volume additivity constraint prior

to this work [16].

c) CONSTITUTIVE EQUATIONS
i) Mixture of incompressible solid and an ideal fluid

A mixture of an elastic solid and a fluid is considered. The
solid is assumed to be nonlinearly elastic and incompressible, the fluid
is assumed to be ideal. Thus all the constitutive functions are
required to depend on the following variables:

E, VF, Pos grad Pos T, grad T, u and v,
where T denotes the common absolute temperature of the solid and the
fluid.

A lengthy but standard argument, based on the balance of energy,
entropy production inequality, restrictions due to material frame
indifference and the assumption that the solid is isotropic in its
reference state, leads to the following results [10]. .

The constitutive equations are written in terms of the Helmholtz
free energy function A per unit mass of the mixture, and the form of
this function is given by

A=A (le IZ’ 13, P2. T), (3~7)
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where Il’ 12, I3 are the principal invariants of B = EgT defined through

I, = tr B (3.8)
1, =3 [(exr B2 - er B, (3.9)
I, = det B = (det )7 (3.10)

Using (2.9), (2.26) and (3.4), I3 can be expressed in terms of Py by the
relation

I, Y% adet F = (1 - py/0p0) (3.11)

Furthermore, on restricting attention to isothermal conditions
equation (3.1) reduces to

A=A (Il' 12, p2). (3.12)

The components of the partial stresses in the solid and fluid, and the

interaction body force for isothermal conditions are given by

Tyg = - P %%; Sy + 20 [[QAI %%2 I1] Pt * a1, Pim Bmi]' (3.13)
Tt " ;f; Sy - PPy ggzski’ (3.14)
By = - Z?; ggt t A ap axk e [[ I1]511

. g%; 512] By * O Si; Eﬁ; (u, - V). (3.15)
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In equations (3.7) - (3.9), p is a scalar which arises due to the volume
additivity and incompressibility constraint. The constitutive parameter
a accounts for a contribution to the interaction body force due to
relative motion between the solid and the fluid. The interaction
between the solid and the fluid is evident in these equations, where the
partial stress of each constituent is affected by the deformed state of
both the constituents. It is also useful to record the representation
for the total stress

- - .. . dA dA_ | JA_
Tet = %t ¥ M T PEkiTPP) p, Ska*P [(611 *ar, 1P

2A_
a1, BkmBmi]' (3.16)

In the remainder of this thesis, only g, and x and b, will be used.

Hence, for notational convenience, the superposed bars are dropped.

ii) ture of compressible d and a dea uid

Green and Steel [17], Crochet and Naghdi [18] have presented the
constitutive equations for a mixture of a nonlinearly elastic solid and
a viscous fluid couple of decades ago and are not restated here for
brevity. Rigorous verification of the constitutive equations given by
the above researchers is not addreséed here but at equilibrium of the
solid and the fluid ( at saturation ) the constitutive equations derived
by the above mentioned authors is in agreement with the constitutive
equations obtained below.

Consider a block of pure solid compressible material which a
unit cube in its unstrained unswollen state. The unit cube is placed in
a bath of an ideal fluid and is subjected to a triaxial extension due to

tractions on its surfaces and the absorption of the fluid. Eventually,

N
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the block, which is now a mixture of the solid and the liquid, reaches
an equilibrium strained swollen state while in contact with the bath.
This is what is meant by a saturation state. The mixture in the block
has mass M and dimensions Al,xz,x3 in the direction of triaxial
extension. In triaxial extension the triaxial directions are the
principal directions. Hence, the derivation which follows would yield
equations of state for principal directions only. Later, the equations
of state will be tensorially transformed to general directions.

The condition for the equilibrium of the block with the

surrounding liquid and thus of saturation is

§ (MmA) = §W (3.17)
where, A = A(Il,12,13,p2) is the Helmholtz free energy function per unit

mass of the mixture. Equation (3.17) can be written as

MmsA + A 6Mm - §W (3.18)
where
& dA dA dA
§A = 1611 + 8I2 8I2 + 813 613 + apz 8p2 (3.19)

Also, for triaxial extension the invarients of Cauchy-Green tensor,

2

I1 - Al + A2 + A3 (3.20)
2,2 2,2 2 2

12 - Alkz + A2A3 3A1 (3.21)
2 2 2

I3 1A2 3 (3.22)

The mass balance equation for the solid yields

Lt




18

10
py = (3.23)
1 A1A2A3

The variations of Il’ 12 and 13 from equations (3.20)-(3.23) are given

by

S, = 20 83) + 20,81, + 22361, (3.24)
51, = 2005 + a3y aaa; + 202 + a2 a6,

+ 202 +2%) g, (3.25)
51, = 223238 + 2,302,

+ maialaag (3.26)

The variation of P1 from equation (3.23)

—1
§pq = P1g A§A§A§ (A2A36A1 + A1A38A2 + A 2,614) (3.27)
The mass of the mixture is related to the density of the mixture by

My = P(X12923)

- pl(A1A2A3) + p2(A1A2A3) (3.28)
Hence, using (3.27)

SMm - 6p (A1A2A3) + p (AZA §Ay + A A6, + A A, 6

3627 + A1A38%, + X12,824) (3.29)

The tractions on the surfaces of the block are considered to be the

total tractions. The expression for the virtual work done is given by

W = T11A2A36A1 + T22A1A38X2 + T33A1A26A3 (3.30)
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Equation (3.19), (3.24)-(3.30) when substituted in equation (3.18)

results

[p(A1A2A3](A1611 + A2612 + A3613 + Ap28p2) + A(A1A2A38p2

+ 8, A3621 + A Ag6%, + A13,605)) = T 13,0563

+ T22A1A36A2 + T33A1A26A3

24 A A and, A, = 24

axl' 2 612 3 813

On further simplification the resulting equation must be satisfied for ;

where Al -

all arbitrary variations of Al, Az, A3, and Py the following saturation

equations are obtained

2 2,.2 2 2.2,2
Ty = Aoy + 20 [A)A] + AAT(A5 + A3) + AATA5)7] (3.31)
2 2,.2 2 2,2,2
T22 - A,p2 + 2p [Alk2 + A2A2(A1 + X3) + A3A1A2A3] (3.32)
2 2,.2 2 2,2,2
T33 - A,p2 + 2p [A1A3 + A2A3(A2 + Al) + A3A1A2A3] (3.33)
and
p(A1A2A3) A,p26p2 + A(A1A2A3)8p2 =0
or
pA,p2 + A =0 (3.34)
where A, = %A .
P2 P

It is essential to note here that now four equations are
available instead of three, as obtained incase of the mixture

constituting only incompressible constituents [2].

iii) Free enexgy function for a mixture of a nonlinearly elastic
mpre b id d

The free energy function for the mixture of a solid and an ideal

fluid is obtained by adding the change in free energy due to mixing of



20

the solid and the fluid and the elastic free energy of the solid. The
basis for adding up the two quantities is not clear but does seem
reasonable. The elastic free energy function, that of the solid can be

written as
As - As(11,12,13) (3.35)

where Il' 12, 13 are these invarients of the Cauchy Green tensor. The
free energy function reduces to zero when the solid is stress free.

The free energy of mixing Al of the solid and the fluid is
complicated as compared to that of the solid and is obtained by
considering the change in Gibbs free energy when ‘nl' moles of fluid are

mixed with the solid as given by Flory-Huggins [19] equations stated

below.
aicm-RT(ln(l-u)d»u + ) (3.36)
an1 1 1 1 :
where
R = universal gas constant
T = temperature
AGm = change in the Gibbs free energy
x = interaction parameter that depends on the
combination of the specific solid and the
fluid.

I1f V1 is the molar volume of the fluid in the mixture, ny number of

moles present at any state and V_, volume of the solid at that state,

S
then volume additivity can be written as
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v, = Vg + Vg (3.37)
From (3.4)
P n,V
2 .-l (3.38)
P20 'm

Using (2.9), (3.38) can be stated as

Ps1 hV
- 23 RS (3.39)

n
1 Vir90

Differentiating (3.39) with respect to Py yields

an 1™ p, 31
w0, " Vo |1 2 (3.40)
) 120 3 97

Since the fluid is ideal and hence incompressible (3.5) can be written

as

P
+ =2 (3.41)

l =y
1 py

Differentiating (3.41) with respect to py we have

Now (3.30) can be written as

dAG dAG_ dv, dp
anm'amal'a"z (3.43)
1 Vi 9P
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Using (3.41) and (3.42), (3.43) yields

aAG P al
& 'u[ln(lu)+u + 2) & — 3
- ] i a.h |- (3.44)
aul V1 1 1 1 3 2I3p20 8u1
Considering mass balance (2.9) and rewriting yields,
13” - Vs (3.45)
RSY1

Differentiating with respect to 2E substituting in (3.44) yields

daGm _ . X1 [ In(l-vy) +l+xv] Vs - (lv)av] (3.46)

1 1 av

Y1 1

Integrating with respect to vy, we get
(l-v,) 31
--u - 2 Li _1_3
AGm v1J.(ln(l ul) + vy + xul) [13 + - ” 3"1] aul + C (3.47)
3

Where C is the constant of integration which is evaluated
considering no change in Gibbs free energy in absence of solid
constituent results in
C=0.

The thermodynamic system includes the mixture and the infinite
bath surrounding of the fluid. Thus the total volume change of the

thermodynamic system can be assumed to be zero and hence

AG = AA
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The free energy of mixing per unit mass of the mixture becomes,

- v

_ _ :RT U] In(l-v.) xv ]

A = AA —1+1+ || =2
m V1 p VSM vl Vl

av
(1'"113—51] av. (3.48)
vy 1

The total free energy per unit mass of the mixture is thus given as :

follows

wewr

A= As + Am ) (3.49)

where, As and Am are defined per unit mass of the mixture
Now consider a mixture of an incompressible nonlinearly elastic
solid such as a Neo-Hookean solid and an ideal fluid, the elastic free

energy per unit mass is given by
a, =1%210 T (1,- 3) (3.50)
2 p

The free energy of mixing is obtained by letting the volume of the solid

VS = constant, i. e. V_, =V S equation (3.48) becomes

s = 'R
A =V RT [(l-vl)ln(l-vl) £ (L= vx ] (3.51)
P Vl Y1

It should be noted that the total free energy per unit mass of the
mixture obtained by substituting (3.50) and (3.51) in to (3.49) is the
same as derived and employed by Gandhi et al [4] for an incompressible

solid-fluid mixture.
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It is clear that the free energy function in case of a mixture
of a compressible nonlinearly elastic solid and an ideal fluid can only
be obtained if the variation of the volume of the solid is known when a
known amount of fluid has entered the mixture. Hence specific boundary
value problem with compressible constituents cannot be solved unless

experimental results are available.

Physical interpretation of the free epergy function of mixing.

The free energy function of mixing can be obtained in the closed
form if and only if the variation in volume of the mixture is known when
a known quantity of fluid enters the mixture. In other words the change
in the volume of the solid with change in the fluid content of the
system. This relationship needs to be experimentally determined.

Currently such experimental results are not available.

Y I . h T



CHAPTER 1V

MATERTAL CHARACTERIZATION USING SIMPLE DEFORMATIONS OF A CUBOID MIXTURE

The problem of swelling of an incompressible solid cube under
simple deformations is reported in this chapter. A unit cube of
nonlinearly elastic material is placed in an infinite bath of an ideal
fluid and then is allowed to swell freely untill it attains saturation.
The swollen cuboid is then subjected to uniaxial extension, equibiaxial
extension and shear. The results obtained have a significant impact on
material characterization or identification of incompressible solids.
Let (Xl, XZ’ X3) denote the position of a typical particle in reference
configuration. The particle denoted by (Xl, X2, X3) in the reference
configuration may be represented in deformed configuration by the
coordinates (xl, Xy, x3). The problem is formulated in a generalized
form and then reduced to the specific case of uniaxial, biaxial and
shear deformation as follows,

The general form of the deformation field is assumed to be

X = Al (X1 + CXZ)
X, = A X

2 272

Xy = A3X3 (4.1)

The deformation gradient F associated with the mixture is given by

25
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The Cauchy-Green strain tensor B which is defined as

takes the following form for the above deformation:

2 2
AT (14C%) 031*2 0
B = | e, A5
0 0 A

The principal invariants of B are given as

2
2

2

I 3

- x% (1 +c?y +22 4

1

I, = A7)

N
NN

2 2,2 2
2 (L +C%) + AZAZ (1 +CY

I, = AJA5A

w

=N
NN
w N

(4.

(4.

(4.

(4.

(4.

(4.

2)

3)

4)

5)

6)

7)

The balance of mass equation for the solid constituent (2.9) may

be expressed in terms of the stretch ratios as

where 2 represents the volume fraction of the solid.

(4.

The equilibrium

equations are expressed in terms of the coordinates in the reference

8)

configuration for computational convenience. Assuming no external body




27

forces, the equations of equilibrium for the mixture and solid take the

form

—ii ‘1.0 (4.9)
i1 ‘1.oo (4.10)

5—11 F."loo (4.11)

The tensor E'l that appears in these equations has the form given by

1/, -C/A 0
1 1 2
Flalo 1/, 0 (4.12)
0 0 1/x

For the deformation field under consideration, (3.13)-(3.15) become,

N 2142
o941~ - P + 2p (A1 + Ale) A1(1+C )

P10
- a0+ C2)2+C2A2 2]] (4.13)
I i 2,2,2
0yp = -P "1 + 2p [ (A + A Il)A A, (COATX; + Az )] (4.14)
4
gy = -P :] + 2p [ (a) + A Il),\ - Aj)g ] (4.15)
10

o1y = 20 [ (A, +A,11)CA %, - A, [cx (1+c ) + Gy g]] (4.16)
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013 = 9p3 = 0, (4.17)
_ _ _ P aA

11T "2 T 33 T P T PP2 gy, (4.18)

b, = 0 k=1,2,3 (4.19)

where,

- A - 4A
Al a1 and A2 3L,
1 2
It is sufficient to satisfy any two of the three equilibrium
equations (4.9)-(4.11) for the deformation field under consideration,
the third equilibrium equation is automatically satisfied. By virtue of

equation (3.16) total stresses are given as follows:

- 2 2 2
T, = P - ppz 3, + 2p [ (8 + AT AT(L + C9)

4 2,2 2,2.2
- A2(A1(1 +C)" +C Alxz)] (4.20)

T22 =--p - pp2 g—%; + 2p [ (Al + AZIZ),\g
- a,(cha02 4 x;)] (4.21)
Tyy = - P - png% + Zp[(Al + Azll)xg - Ay, ] (4.22)
T, = 2p [ (A, + A, 1)CA A, - A (CAIA (L + C%) + CA A3)] (4.23)
12 1 ¥ 8110, - A (G, 1*2
Tyy = Tpy = O (4.24)
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In the subsequent part of this section special cases of free swelling,

uniaxial extension, biaxial extension and shear are considered.

a. Free Swe ng o n ube

In the case of free swelling the cube of unit length is allowed

to swell freely untill it achieves saturation and, at saturation the

total stress on its boundary vanishes, hence

cC =0, (4.25)

Tij = 0, on boundary of swollen cuboid yields

Al - Az - A3 - )\ (4.26)
4
P = -rp, g%; + 2p [(A1 + Ale)Az- AZA ] (4.27)
and
T12 - T13 - T23 = 0. (4.28)

b. Uniaxial Extension

The swollen cube is stretched in Xy direction which implies that

the stretches in the other two directions are equal and hence,

Ap = Ay =2, (4.29)

cC =0, (4.30)
and total stresses are given by

- o J0A 2 4
T11 P PP, apz + 2p [ (A1 + AZII)A1 A2k1 ] (4.31)
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4
P = -rpy g%; + 2p [ (A1 + Ale)A2 - AZA ] (4.32)
and
T12 - T13 - T23 =0 (4.33)

The case of equibiaxial extension is given by

AL =2y =2, (4.36)

cC=0 (4.35)

and total stresses are given by

T, = Ty, = P -pp, g%; + 2 [ (A, + AZII)AZ ; AZA“] (4.36)
Tyy= O
4
P = -sp, g% + 2p [ (A + AzIz)Ag - A0, ] and, (4.37)
2
Typ= Tyg= Tpy = O (4.38)

d. Simple Shear

In the case of simple shear the unit cube is allowed to swell
freely untill it achieves saturation and then is sheared by an angle 7,
i. e. shear is superimposed on a freely swollen cuboid. The stretch
ratios ratios take form as follows,

Ay = A, = A, = A, (4.39)
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C = tan(vy) (4.40)

and total stresses given by

- -p - A 2 2
T11 P -rPy apz + 2p [ (A1 + AZII) A7(1 +tan"y )

; AZA“ (1 + 3tany + tan’y )] (4.41)

o aA 2 4 2
T22 P -rpy 8p2 + 2p [ (A1 + A211)A AZA (1 +tan 7)] (4.42)

33

o 34 2 4
P PPy 6p2 2p [(A1 + Azll)A AZA ] (4.43)

2 2..4
12 = 2p [ tanv(A1 + AZII)A - A2(tan7(l + tany )A
+tan1A4)] (4.44)
and

Tiq3 = Tyq = 0. (4.45)

Cases (a-c) cannot be solved for stretch ratios due to the presence of
indeterminate scalar p. To eliminate the indeterminate scalar p
saturation boundary condition is assumed where p becomes determinate
[2].

The equations of state at saturation for a mixture of an
incompressible solid and an ideal fluid were obtained by Gandhi et al

are stated here for completeness
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Tij- [PZOA + PApz(on' 92)] 61J+

2p [(A1+ AZII)BiJ- AZBimij] (4.46)
Comparing (4.46) with (4.20-4.22) , it is observed that at saturation
the indeterminate scalar p becomes determinate and is given by

P=- ppzoAp = pzoA (A-A7)

2

Now assuming that saturation is attained by the swollen cuboid when
subjected to uniaxial extension, and equibiaxial extension. And then
substituting equation (4.47) for p in equations (4.27), (4.32) and,
(4.37) and the variation of stretch ratios, stresses and volume
fractions is obtained. The numerical example and discussion on these

results is presented next.
NUMERICAL EXAMPLE AND DISCUSSION

The explicit forms of equations (4.7), (4.8), (4.13) and (4.14)
may be obtained for a specific choice of the Helmholtz free energy
function A. The free energy function per unit mass of the mixture is

assumed to be given [6] by

1l-v
v RT 1
A= pl C1 (I1 -3 +C2(I2 -3) + V1 ["1 ln(l-ul)

+ x(1-u1)H, (4.48)

where,




33

V1 is the molar volume of the fluid,

x 1is the constant which depends on the particular combination

of the solid and the fluid,
R is the universal gas constant,
T is the absolute temperature,

M, is the molecular weight of the solid.

The free energy function given by equation (4.48) is for a

"Mooney-Rivlin type" nonlinear solid fluid mixture. When C2

free energy function represents a "Neo-Hookean type" nonlinear solid

mixture.

For numerical calculations the following material properties as i

given by Treloar (1] were used:

Density of natural rubber in the reference state = .9016

10
Density of solvent (benzene) in the reference state Poo = .862

Molar volume of the solvent V1 = 106

The molecular weight of rubber between

cross links M, = 9151
Natural rubber-benzene interaction constant x = .425

= 0 the

gm/cc
gm/cc

cc/mole

gm/mole

The numerical value of the universal gas constant R is given by

8.317 x 107 Dyne-cm/mole - °K, and the absolute temperature T was

assumed to be 303.16°K. The constitutive co-efficients C1 and 02 are

given as follows:

C. = —2i0
1 M
c
C, = aC

(4.49)

(4.50)
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Numerical results presented in figures (1-6) for a cuboid
mixture under simple deformations are for both Mooney-Rivlin and Neo-
Hookean type mixture.

The variation of the stretch ratios for uniaxial extension of a
cuboid mixture is presented in figure 1. Corresponding experimental
results obtained by Treloar [1] are also presented on the same graph for
reference. The experimental results are in excellent agreement for
tension and not quantitatively in agreement for the compression case. It
is observed that qualitatively there is no difference between Neo-
Hookean type and Mooney-Rivlin type mixtures. Figure 1 clearly shows
that Neo-Hookean mixtures admit more states as compared to Mooney-Rivlin
type mixtures. The variation of the volume fraction of the solid in the
mixture with the stretch ratio is presented in figure 2. Figure 2
conveys that Neo-Hookean solids absorb more fluid to achieve saturation
as compared to Mooney-Rivlin solids. These results have a substantial
bearing on material characterization or material identification and, can
be exploited as follows. Consider a block of rubber of unknown
properties and known dimensions, place it in a fluid bath for a
sufficient length of time so that the block is fully saturated. Then
stretch the block in Xy direction by some amount. Measure the new
dimensions of the swollen block and obtain the stretch ratios in the
other two directions. Place the value of the proper stretch ratios in
figure 1 and relate its position to the existing variation for Neo-
Hookean and various Mooney-Rivlin mixtures and hence the material can be
identified. Also figure 2 can be used for the same purpose if the amount
of fluid required for complete saturation is measured. A parametric
study can be done to incorporate the values of x which depends on the
particular combination of the solid and the fluid. The variation of x

for all known combinations is very small.
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Similar results are obtained for Equi-Biaxial extension and the
variation of the stretch ratios is presented in figure 3. The variation
of the stresses for the Neo-Hookean and various Mooney-Rivlin mixtures
subjected to simple shear with shear angle is presented in figures 4, 5
and 6. These results clearly satisfy Universal relationship for simple
shear. Linear behavior of stresses in Neo-Hookean mixtures is observed
as anticipated whereas nonlinear nature of variation of stresses is seen

in case of Mooney-Rivlin mixtures.




CHAPTER V

INTERACTION OF CONSTRAINED NONLINEAR ELASTIC SOLIDS AND IDEAL FLUIDS

oblem

The behavior of a constrained nonlinear elastic solid in the
presence of an ideal fluid is investigated in this section. The
constraints under consideration are those which result due to the
presence of two or more elastic materials, rigid inclusions or
inextensible/extensible fibers, for example. The representative problem
is presented in order to demonstrate the role of constraints in

modifying the swelling characteristics of reinforced elastic solids.

a. well of a Composite C dric ture wit erential core
properties.

Consider a solid cylinder composed of two different materials Ml
and Mz, with the material Ml occupying the region R ¢ [O’Ri] and the
material M2 occupying the region R ¢ [Ri’Ro] in the reference
configuration, such that, Ro > Ri > 0. Both cylinders are assumed to
have a length Lo. A schematic of the reference configuration and the
current configuration is presented in figure 7. It is assumed that both
materials are perfectly bonded to each other at the interface. The co-
ordinates of a typical material particle in the reference configuration
will be denoted by cylindrical co-ordinates (R,8,Z). In the deformed
swollen state the co-ordinates of the same particle are assumed to be

described by

36
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r =1r(R), § =06, and z = AZ,

where )\ is a constant axial stretch ratio assumed to be unity.

The deformation gradient associated with the mixture is,

A 0 0
r

F=1]0 Ao 0
0 0 A

The Cauchy Green tensor B which is defined as

B = FFL

takes the following form for the above deformation:

2 o 0
r 2

B - o Ao
0 0 a2

where Ar = dr/dR and Ao

directions. The principal invariants of B are then given as

2 2
+ xo + A7,

2 2 2.2
(xr + Aa) + xoxr and ,
2

I1 -

12 -\

La JL NN

2
I3 - Aol

(5.1)

(5.2)

(5.3)

(5.4)

= r/R denote the stretch ratios in the r and 4§

(5.5)
(5.6)

(5.7)

The balance of mass equation for the solid constituent (2.9) may

be expressed in terms of the stretch ratios or the volume fraction of

the solid v, as

(5.8)
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The equations of equilibrium which are appropriate for the
deformation being considered are documented next. Since the assumed form
of deformation implies that the stresses depend only on the radial co-
ordinate r , the equations of equilibrium for the solid constituent ,

namely (2.11),reduce to

99 0 4 %% T % - b_ =0 (5.9)
dr r

where - and %8 denote appropriate components of o , and br denotes
the component of the interaction body force b in the radial direction.
The equilibrium equations for the fluid constituent, namely (2.12),

reduce to

O e+ "~ "o + b =0 (5.10)
dr r

where - and LPY denote the components of x. Equations (5.9), (5.10)

and (2.14) yield

T+ T -~ Thg =0 (5.11)
dr r

which is the equation of equilibrium for the mixture.
For the deformation under consideration, it follows from (5.3)
and equations (3.13) - (3.15) that the non-zero components of the

partial stress tensors for the solid and fluid constituents are given by

| 2 . 4
o = -P ot 2p[(A1 + a0 2 At ] , (5.12)
o = .pd ., (A, + A2 - aa® (5.13)
66 P10 1™ 2717% 29 |} .
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S | 2 4
%, P p10+ 2p[(A1 + AZII)A Azx ] and, (5.14)

%2
LI P P Pa0 - pPZApZ' (5.15)
The only non-zero component of interaction body force is given by
e,
b = - + p.a P [(A + A,I) -
r ploxr dr 1 Py dr 2 1 271 Ardr
g By Xy @y
2A2(Ar e A, ar ) ] (5.16)
- 4A - 9A - aa
where, A1 811 , A2 aIZ and, Apz apz .

It is sufficient to satisfy any two of the three equilibrium equations
(5.9) - (5.11). Equations (5.12) - (5.15) are substituted into the
equilibrium equations for the solid and the mixture (5.9) and (5.11),
respectively, to get the following functional functional form of the
equilibrium equations, which are stated in terms of the co-ordinates in

the reference configuration for computational convenience:

_d 21 \
R 210 2

The mixture is assumed to be of a "New-Hookean-type", that is, A is a

+ 8 (A, Ay, A R, AL, Ap, A) =0 (5.17)

r g X
linear function of Il' Following this assumption the explicit forms of
the equilibrium equations for the mixture and the solid for the

deformation under consideration are given by
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6
- H2.,2)] -
y [Ao A2 0 (5.18)
and
A

dp —I _ X . L [,2.,2

" ViRt 2 AP [Z: T 3R [A *o] X R [*o Ar
A_-A dx
a1l x ¢ 1 _x d [,2.,2) _
TY1°1°2008, B, R A _®RJTP2M R {*r"a} 0,

respectively (5.19)

In equations (5.18) and (5.19) the radial and the tangential stretch

ratio Ar and A,, respectively, are related through the compatibility

0 ’
condition given by

- . (5.20)

Equations (5.18) and (5.19) may be solved for p, Ar and Aa once the
specific form of the Helmholtz free energy function for the mixture is
known, and the appropriate boundary conditions are specified. The
Helmholtz free energy function per unit mass of the mixture is assumed

to be given by

RTp 1l-v
i N b 1) RT ]
A=7 2M (I, -3+ v, | In(l-v,) + x(l-vl)]] (5.21)

where, R, T, Vl, Mc, and x are constants [l1]. The appropriate boundary
conditions for solving the set of ordinary differential equations (5.18)

and (5.19) in regions [O’Ro] are given by
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A (0) = 2,(0) , (5.22)
(1) (2)

. Perp -1 _Pwrp (5.23)

xo(l)(ai) - ,\0‘2)(111) . and (5.24)

T_(R) =0 . (5.25)

The boundary condition given by equation (5.22) arises due to the
compatibility requirement between the radial and tangential stretch
ratios at the axis of the cylinder. The boundary condition (5.23) on
radial stress tensor ét R = Ri is due to the requirement that the radial
stress be continuous at the interface. The boundary condition (5.24)
arises due to the assumption of perfect bonding at the interface. The
boundary condition on total traction vector represented by (5.25) is a
consequence of the requirement that the outer surface of the composite
cylinder be traction-free. Since a boundary condition for the partial
traction vectors is not physically obvious, following the arguments
presented in [10, 11, 12] it is assumed that the outer surface of the
cylinder is in a saturated state. This assumption results in the

boundary condition represented by
Srr(Ro) -0, (5.26)

where, Srr represents the radial stress component for a saturated state,

and is given by [15]

- 0A 2
Srr P (p20 - p2) apz + pZOA + 29 AIAI . (5.27)



For computational convenience, equations (5.18) and (5.19) may

be combined to eliminate p, and for the Helmholtz free energy function

given by (5.21) the resulting equation is given by

RA, d) Ay - 2p) [K [2x -

i%;;] vy - A ]

rd

where,

. 22
K [2x 1'”1] Vi Ar

(5.28)

The set of ordinary differential equations given by (5.20) and

(5.28) subjected to boundary conditions given by (5.22) - (5.25) were

solved numerically. For the computational work the following properties

were employed [1,6a]:

Density of rubber in the reference state

Density of solvent in the reference state

Molar volume of the solvent

The molecular weight of rubber between

cross-links

Rubber-solvent interaction constant

My M,
p1o = -9016  .9016 mg/cc

Poo = -862 .862 gm/cc

vy - 106.0 106.0 cc/mole

M, - 8891.0 4000 gm/mole

x = .400 .400

The computational results are presented in Figures 8, 9, 10, 11

and 12 where it is clearly evident that the presence of two different

elastic materials results in nonhomogeneous swelling characteristics,

nonlinear distribution of the radial stress, discontinuity in the

circumferential stress and the volume fraction of the solid and finally



43

a nonlinear volume change in the outer circumferential cylinder due to
swelling. Figure 8 shows that the composite cylinder swells
nonhomogeneously with the radial and tangential stretch ratios A, and
Aa, varying nonlinearly with R in the interval [Ri'Ro]' In addition,
there is a discontinuity in the radial stretch ratio Ar at the
interface, where the material characteristics change abruptly. This is
in sharp contrast to a cylinder composed of a single material, which
would swell homogeneously with Ar and Ao equal and constant throughout
the domain R ¢ [O,Ro]. Figure 9 shows the nonlinear distribution of the
radial stress in the region R ¢ [Ri'Ro]' which is induced by the
presence of the material Ml occupying the region R ¢ [O,R1]. The
nonlinear variation of the circumferential stress in the region R ¢
[Ri'Ro] with the radial coordinate appears in figure 10. A discontinuity
of the circumferential stress at the interface of the two different
properties is observed. Figure 11 shows a discontinous but almost
constant volume fraction of the solid along the radial coordinate. In
figure 12 the percentage volume change of the cylinder with the radial
coordinate is presented. This variation is particularly useful for

experimentalist.

b. welling o o ea der with a ore

A special case of the problem considered in section (5a) is when
the inner material Ml is assumed to be rigid. The governing equations
for this problem are again given by equations (5.18) and (5.19). The

appropriate boundary conditions are given by

Aa(Ri) = 1, and

Srr(Ro) -0 .
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The computational results are presented in Figures 13 and 14. It is
clearly evident from these results that the presence of the rigid core
induces nonhomogeneous swelling characteristics. Furthermore, it has
been demonstrated that the rigid core initiates significant gradients in
the stretch ratios and severe stress concentrations at the bond

interface. A complete detail of this special case appears in [20].

AL e




CONCLUDING REMARKS AND DISCUSSION ON APPLICATIONS OF THIS WORK TO DAMAGE
IN

COMPOSITE MATERIALS

The principal contributions of the work presented are

a. Qualitative and/or quantitative differences in the
behavior of incompressible mixtures with solid constituents being
various types of nonlinearly elastic incompressible solids were
identified. In particular, the response of the mixtures with Neo-Hookean
solids and ideal fluids and mixtures with Mooney-Rivlin solids and ideal
fluid is studied and compared with experimental results by Treloar for
several cases of simple deformations such as uniaxial extension, bi-
axial extension and simple shear. The results of these investigations
could have a significant impact on material identification studies.

b. This work presents sufficient basis to motivate
experimentalist to conduct certain experiments with compressible solids
to yield change in volume of the solid when a known amount of fluid
enters in the solid. These results would provide the missing link to
solve boundary value problems involving mixtures with compressible
constituents.

c. Certain misconceptions pertaining primitive concepts like
volume additivity and incompressibility which apparently existed in
previous literature were clarified.

d. Finally, a boundary value problem focused on
investigating the swelling characteristics of a composite cylinder is
presented. The composite cylinder features an inner core which exhibits
material properties which are quite distinct from those of the

surrounding concentric material. This work is motivated by the need for

45
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modeling the large deformations of polymeric composite materials under
various under hygrothermal environments. This work partially addresses
this need by characterizing the interaction of ideal fluids and
idealized constrained nonlinear elastic solids in the context of Mixture
Theory. The deformations of the elastic solid may be restricted due to
the presence of extensible/inextensible fibers, rigid inclusions and
coatings on reinforcing fibers, for example. Such constraints can
quantitatively and qualitatively alter the ability of these materials to
undergo dimensional and constitutive changes very significantly. The
results of these investigations for large deformations demonstrate that
the constraints imposed by the core material induce nonhomogeneous
swelling characteristics with significant gradients in the stretch
ratios and severe stress concentrations at the fiber/matrix interface.
These results could have important implications for a variety of fiber-
reinforced composites featuring hygroscopic and temperature-sensitive
matrix materials. This problem also has significant implications in
ability to predict local (in the neighborhood of the fiber/matrix
interface in composites, for example) events occuring due to global (on
the whole composite structure) effects. This is very critical in
composites, particularly in damage studies for instance, from the
boundary value problem it can be speculated that large gradients of
stretch ratios and stresses in the neighborhoods of the fiber matrix
interface due to smaller global effects occur. Damage in composite
materials seemingly macroscopic phenomena is truely a microscopic
phenomena and hence representative volume element considered in the
above presented boundary value problem should be studied in damaged and
undamaged configuration in detail and a continuum relationship should be
developed to predict macroscopic response. This is taken up by the

author as a part of Doctoral studies.
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FIGURES
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