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ABSTRACT

STUDIES IN COMPRESSIBLE AND INCOMPRESSIBLE MIXTURES

BY

DEVANG JAYANT DESAI

The work presented herein is focused on identifying qualitative

and/or quantitative differences in the behavior of incompressible

mixtures with solid constituents being various types of nonlinearly

elastic incompressible solids in the context of the Theory of

Interacting Continua. In particular, the response of mixtures with Neo-

Hookean or Mooney-Rivlin solids with ideal fluid is studied for several

cases of simple deformations. The results of these investigations could

have a significant impact on material identification studies.Comparison

of these results with the experimental results of Treloar are also

presented.

Furthermore, attention is also directed towards resolving issues

which would permit the solution of boundary value problems involving

compressible mixtures. This work also clarifies certain misconceptions

pertaining to primitive concepts such as volume additivity and

incompressibility of mixtures. In addition, the saturation equations of

state for a mixture of a compressible solid and an ideal fluid and an

appropriate free energy function for a compressible mixture is derived.



DEVANG JAYANT DESAI

Finally, a boundary value problem is solved to demonstrate that the

presence of constraints such as inserts and inclusions which have

differential constitutive characteristics can induce nonhomogeneous

swelling characteristics and stress concentrations within the material.
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CHAPTER I

INTRODUCTION

Several phenomena involving the presence of two or more

constituents are difficult or almost impossible to be mathematically

modeled by conventional single constituent theories. Typically examples

of such phenomena include the swelling of polymers or rubber-like

materials, diffusion phenomena in blood vessels, moisture effects in

composite materials. Classical diffusion theories model flow of a fluid

through a solid assuming negligible deformation of the solid

constituent. However, this assumption is violated in solid-fluid

interactions where large deformations are involved. For example,it has

been shown by Treloar [1] that a block of rubber can swell into several

times its original volume when placed in a bath of an organic fluid.

Furthermore the amount of swelling is strongly affected by subjecting

the block to uniaxial or bi-axial extension, for example.

The Theory of Interacting Continua, also known as Theory of

Mixtures, has been successfully used to model phenomena involving two or

more constituents. In this theory, the continua are assumed to be

superimposed. Each spatial point in a mixture is assumed to be

simultaneously occupied by material particles from each constituent.

This essentially amounts to taking into account contributions from each

constituent in the neighborhood of a mathematical point and averaging

them. The theory accounts for large deformations, dependence of

material properties on all constituents and interaction between the

constituents. In proof-of—concept studies it has been clearly shown



that the Theory of Mixtures has substantially better predictive

capabilities than traditional single constituent modeling concept. For

example, results obtained by Gandhi [2] using Theory of Interacting

Continua had better agreement with experimental results of Paul and

Ebra-Lima [3] in modeling pressure-induced diffusion of organic liquids

through a rubber layer than results obtained by using Ficks law (

Classical Diffusion Theory ).

Gandhi, et a1.[4] have successfully used Mixture Theory to model

behavior of a swollen cylinder under combined extension and torsion and,

the results obtained show excellent correlation with the experimental

results for global behavior of the swollen cylinder presented by Treloar

[5]. They have also been able to predict the distribution of the fluid

in the interior of the swollen cylinder and the effect of axial strain

on the volume of the swollen cylinder. Currently experimental results

pertaining to such detailed field information of these phenomena are not

available.

The mathematical basis of the general Theory of Interacting

Continua has been well established for a long time. The historical

development of the theory and comprehensive surveys of the progress in

the field are presented in the review articles by Bowen [6], Atkin and

Craine [7], Bedford and Drumheller [8] and Passman, et a1.[9]. A

critical review of the field makes it clearly evident that the

applications of the Theory of Interacting Continua to solve boundary-

value problems of physical interest have been very limited. The main

difficulty in these problems arises due to the lack of physically

obvious ways for specifying the partial tractions, which are an integral

part of the Theory of Interacting Continua.

Shi, et a1. [10] and Rajagopal, et a1. [11] were the first to

study equilibrium and steadyostate boundary-value problems by employing



auxiliary conditions at the boundary of solid-fluid mixtures in an

effort to bypass the difficulties assOciated with specifying partial

tractions at the boundary. The use of these auxiliary conditions

rendered a whole class of boundary-value problems tractable where the

boundary of the mixture could be assumed to be saturated.+ Gandhi, et

a1. [12,4,13,14] have not only used the above boundary condition to

study boundary values problems, such as torsion of a cylindrical

mixture, flexure of a mixture cuboid but have also contributed

significantly to a better understanding of the saturation boundary

condition by providing a strong mathematical basis to the same which was

previously derived on an ad-hoc basis.

In previous work reported in the literature, attention has been

primarily focused on a mixture of an ideal fluid and a nonlinearly

elastic incompressible solid. In particular, for solving the boundary

value problems all investigators have assumed the solid constituent to

be "Neo-Hookean" which is a nonlinearly elastic incompressible solid.

Boundary value problems on mixtures with a nonlinearly elastic

compressible solid or compressible mixture have not been addressed in

the literature. In this work an ideal fluid is assumed to be one of the

constituent for all the mixtures under consideration ,while the other

constituent may be an incompressible or a compressible nonlinearly

elastic solid . Depending on the type of the solid in the mixture, the

mixture will be referred to as an incompressible mixture or a

compressible mixture for convenience.

The work presented herein is focused on identifying qualitative

and/or quantitative differences in the behavior of incompressible

 

+ A saturated state represents an equilibrium state in which material

elements of a solid-fluid mixture in a deformed and swollen state are in

contact with the fluid with no fluid entering or leaving the mixture.



mixtures with solid constituents being various types of nonlinearly

elastic incompressible solids in the context of the Theory of

Interacting Continua. In particular, the response of mixtures with Neo-

Hookean solids and ideal fluids and mixtures with Mooney-Rivlin solids

and ideal fluid is studied for several cases of simple deformations such

as uniaxial extension, bi-axial extension and simple shear. The results

of these investigations could have a significant impact on material

identification studies, for instance solids exhibiting significant

swelling characteristics, in their swollen states can be classified as

Neo-Hookean-type or Mooney-Rivlin-type mixtures by performing simple

experiments such as allowing solid specimens to swell freely and then,

subjecting the specimens to uniaxial extension or shear, for example.

Comparison of the results from this work with the experimental results

of Treloar [l] is also presented. Furthermore, attention is also

directed towards resolving issues which would permit the solution of

boundary value problems involving compressible mixtures. The qualitative

differences between the response characteristics of compressible and

incompressible mixtures can be exploited in several practical

applications.

This work also clarifies certain misconceptions pertaining to

primitive concepts such as volume additivity and incompressibility of

mixtures. In addition, the saturation equations of state for a mixture

of a compressible solid and an ideal fluid are derived. These equations

are instrumental in solving boundary problems where saturation is

assumed. A brief rationale for deriving an appropriate free energy

function for a compressible mixture is presented herein. Such a function

would permit the explicit description of constitutive equations for

studying boundary value problems involving compressible mixtures.



Finally, a boundary value problem focused on investigating the

swelling characteristics of a composite cylinder is studied in detail.

The composite cylinder features an inner core which exhibits material

properties which are quite distinct from those of the surrounding

concentric material. This work is motivated by the need for modeling the

large deformations of polymeric composite materials under various under

hygrothermal environments. This work partially addresses this need by

characterizing the interaction of ideal fluids and idealized constrained

nonlinear elastic solids in the context of Mixture Theory [15]. The

deformations of the elastic solid may be restricted due to the presence

of extensible/inextensible fibers, rigid inclusions and coatings on

reinforcing fibers, for example. Such constraints can quantitatively

and qualitatively alter the ability of these materials to undergo

dimensional and constitutive changes very significantly. The results of

these investigations for large deformations demonstrate that the

constraints imposed by the core material induce nonhomogeneous swelling

characteristics with significant gradients in the stretch ratios and

severe stress concentrations at the fiber/matrix interface. These

results could have important implications for a variety of fiber-

reinforced composites featuring hygroscopic and temperature-sensitive

matrix materials.

The composite cylinder considered herein is an archetypal

representative volume element of a unidirectional fiber-reinforced

incompressible elastic composite. And study of such a representative

volume element when subjected to complicated loads could provide vital

information about the neighborhood of fiber.

In chapter II the basic kinematic quantities are defined and

basic postulates of the Theory of Interacting Continua are stated.

Volume additivity, the incompressibility constraint, and the



constitutive equations are stated in chapter III along with the

derivation of saturation equations of state for a mixture of

compressible solid-ideal fluid. Details of comparative studies between

Neo-Hookean type solid-ideal fluid mixtures and Mooney-Rivlin type

solid-ideal fluid mixtures are presented in chapter IV. In chapter V the

boundary value problem of a cylinder with differential core properties

is presented. Finally, concluding remarks and discussion on further

application of this work to damage in composite material is presented.



CHAPTER II

PRELIMINARIES: NUTATIONS AND BASIC EQUATION

A brief review of the notations and basic equations of the

Theory of Interacting Continua are presented in this section for

completeness and continuity. Let 0 and 0t denote the reference

configuration and the configuration of the body at time C, respectively.

For a function defined on 0 x R.and Otx R, V and grad are used to

represent the partial derivative with respect to 0 and 0t, respectively.

Also 3: denotes partial derivative with respect to t. The divergence

operator related to grad is denoted by div.

The solid-fluid aggregate will be considered a mixture with S1

representing the solid and $2 representing the fluid. At any instant of

time t, it is assumed that each place in the space is occupied by

particles belonging to both S1 and 82. Let g and X denote the reference

positions of typical particles of S1 and 82. The motion of the solid

and the fluid is represented by

x - x1 (g, t), and y - x2 (X, t). (2.1)

These motions are assumed to be one-to-one, continuous and

invertible. The various kinematical quantities associated with the

solid S and the fluid 8 are

l 2

 

Velocity: u - , v - “‘ -— (2.2)



  

Dmg D<2)~

Acceleration: f - Dt , g Dt , (2.3)

2 62
Velocity gradient: L - 32, M - 3E , (2.4)

Rate of deformation tensor:

2-%(L+ET).§-%<g+gT> (2.5)

where D(l)/Dt denotes differentiation with respect to t, holding g fixed

and D(2)/Dt denotes a similar operation holding X fixed. The

deformation gradient F associated with the solid is given by

u
; I

Q
.
)

Q
)

m
t
g
»
:

(2.6)

The total density of the mixture p and the mean velocity of the mixture

w are defined by

p - p1 + p2. (2.7)

pg - p13 + 923. (2.8)

where p1 and p2 are the densities of the solid and the fluid in the

mixed state, respectively, defined per unit volume of the mixture at

time t.

The basic equations of the Theory of Interacting Continua are

presented next.



(1) anaerxatign_2f_masa

Assuming no interconversion of mass between the two interacting

continua, the appropriate forms for the conservation of mass for the

solid and the fluid are

p1 Idet gl - p10, (2.9)

and

6p
__2 _
at + div (p2 y) 0, (2-10)

where p10 is the mass density of the solid in the reference state.

(2) O a e m

 
Let g and 5 denote the partial stress tensors associated with

the solid S1 and the fluid 82, respectively. Then, assuming that there

are no external body forces, the balance of linear momentum equations

for the solid and fluid are given by

div 2 - b - plf (2.11)

div

2
:
! + b - ng. (2.12)

In equations (2.11) and (2.12), 2 denotes the interaction body force

vector, which accounts for the mechanical interaction between the solid

and the fluid. By defining the total stress as

I ' Z + I» (2.13)

the equilibrium equations for the mixture may be written as

div T - plf + ng. (2.14)
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It may be pointed out that it is sufficient to satisfy any two of

equations (2.11), (2.12) and (2.14) to satisfy the balance of linear

momentum.

(3) se at'o o a u

This condition states that

(2.15)

I
Q +

t
a I

I
9 +

l
=
l

However, the partial stresses 2 and 5 need not be symmetric.

(4) Surface conditions

Let E and 3 denote the surface traction vectors taken by S1 and

82, respectively, and let 9 denote the unit outer normal vector at a

point on the surface of the mixture region. Then the partial surface

tractions are related to the partial stress tensors by

E - g n, and g - ng. (2.16)

(5) Thermodynamical considerations

The laws of conservation of energy and the entropy production

inequality are not explicitly mentioned here for brevity. However, the

relevant results are quoted. A complete discussion of these issues is

presented in [14].

Let the Helmholtz free energy per unit mass of S1 and 52 be

denoted by Aland A2, respectively. The Helmholtz free energy per unit

mass of the mixture is defined by

pA - plAl + p2A2. (2.17)

Note that by setting

9- - grad ¢1+§-grad 432 +E, (2.18)



I
Q I

E
?
‘

P
!

+

t
f
l

I
3
! I

N
9
-

I
H +

l
f
l

where,

¢1 - p1(A1'A)r ¢2 -

ll

92(A2-A), ¢1 + ¢2 - 09

equations (2.11), (2.12), (2.14) and (2.15) become

divE - E - plf,

divE-t-E- p25,

div I - plf + ng,

§+Z-?+2T

The terms in g, I and b which

contribute to the equations of motion

depend on ¢l and ¢2 do not

or the total stress.

(2.

(2.

(2.

(2.

(2.

(2.

(2.

19)

20)

21)

22)

23)

24)

25)



CHAPTER III

VOLUME ADDITIVITY, INCOMPRESSIBILITY CONSTRAINT AND CONSTITUTIVE

muons

a) Volume additivity

Volume additivity is an intrinsic property of mixtures which

simply says, the total volume of the mixture at any state ( time or

deformation ) is equal to the sum of the respective volumes of the

superimposed continua at that state. In the present notation it can be

stated as

V - V + V (3.1)

where VS and VS are the current volume of the respective constituents

l 2

and Vm is the current volume of the mixture. (3.1) can also be written

as

l - v1 + u2 . (3.2)

where ul, "2 are volume fractions of the respective constituents. Prior

to this work volume additivity was misinterpreted as a constraint and

was defined as volume of the mixture is the sum of the volumes of the

respective continua in their reference state, which is true only if both

the constituents of the mixture are incompressible. When two continua

are superimposed to form a mixture, assuming no interconversion of mass,

12



l3

and both the constituents being chemically inert to each other the sum

of the volumes of the constituents at any state (time or deformation) is

equal to the total volume of the mixture at that state even though the

individual constituents might undergo volume changes as in a case of

compressible constituents, for example. Let the mixture under

consideration constitute of a nonlinearly elastic solid 81’ and an ideal

fluid 82. Consider

V
RS1 RS

3 4|

p MS
_l__v_l (3.3)

m910 s 1 m

where VRS is the reference volume of the solid and V8 is the current

1 1

volume of the solid. Similarly

v v
RS 3

p_2.__z__2_ 34

p v v ”2 ( ' )
10 m m

where VRS is the reference volume of the fluid and VS is the current

2 2

volume of the fluid. As the fluid is ideal in nature VRS - V2 .

2

Substituting (3.3)-(3.4) in (3.2) results into

V3 p p

5—1 -l + -3- - 1 (3.5)

RS p10 p20

This relationship is valid for a mixture of any solid and an ideal

fluid.

 



14

b) Ias2maressihili£1_ssns£raint

Now if the nonlinearly elastic solid is incompressible that is

Vsl- VRSIthen (3.5) yields

1,52"1
(3.6)

”10 ”20

which can be considered as an incompressibility constraint relationship.

This relationship was referred to as volume additivity constraint prior

to this work [16].

 
C) QQHSIIIHIIEE_EQHAIIQE§

i) Mixture of incompressible solid and an ideal fluid

A mixture of an elastic solid and a fluid is considered. The

solid is assumed to be nonlinearly elastic and incompressible, the fluid

is assumed to be ideal. Thus all the constitutive functions are

required to depend on the following variables:

E, VE, p2, grad p2, T, grad T, g and y,

where T denotes the common absolute temperature of the solid and the

fluid.

A lengthy but standard argument, based on the balance of energy,

entropy production inequality, restrictions due to material frame

indifference and the assumption that the solid is isotropic in its

reference state, leads to the following results [10]. .

The constitutive equations are written in terms of the Helmholtz

free energy function A per unit mass of the mixture, and the form of

this function is given by

A - A (11’ I I2. 3. p2. T). (3.7)
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where 11’ 12, I3 are the principal invariants of B - EFT defined through

11 - tr g (3.8)

12 - % [(tr §)2 - tr g2], (3.9)

13 - det g - (det §)2. (3.10)

Using (2.9), (2.26) and (3.4), I3 can be expressed in terms of p2 by the

relation

1 2 -1
13 / - det g - (1 - p2/p20) . (3.11)

Furthermore, on restricting attention to isothermal conditions

equation (3.1) reduces to

A - A (11, I (3.12)2: P2)

The components of the partial stresses in the solid and fluid, and the

interaction body force for isothermal conditions are given by

3k: ' ‘ p :10 ”kt + 2” [(3%1 giz I1] Bki ' giz Bkm Bmi]’ (3'13)

;ki ' ”Fig ski ’ ””2 332511. (3'14)

Bk ‘ ‘ ZE— gfll”+ ”1 ap2 a ‘ ”2 [[%%11]512
10 “k :k

- 3%; 312] 312 k + a Si; Si; (uk - vk). (3.15)
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In equations (3.7) - (3.9), p is a scalar which arises due to the volume

additivity and incompressibility constraint. The constitutive parameter

a accounts for a contribution to the interaction body force due to

relative motion between the solid and the fluid. The interaction

between the solid and the fluid is evident in these equations, where the

partial stress of each constituent is affected by the deformed state of

both the constituents. It is also useful to record the representation

for the total stress

- ‘ ‘ _ - , £5. 25. 2A.

Tki ”k1 + “k1 pski ””2 ap2 5k1+2” [(61 + 312 II)Bki

_ 2A.
312 BkmBmi]' (3.16)

In the remainder of this thesis, only Q, and i and b, will be used.

Hence, for notational convenience, the superposed bars are dropped.

ii) ixture of om ressible d and a dea u d

Green and Steel [17], Crochet and Naghdi [18] have presented the

constitutive equations for a mixture of a nonlinearly elastic solid and

a viscous fluid couple of decades ago and are not restated here for

brevity. Rigorous verification of the constitutive equations given by

the above researchers is not addressed here but at equilibrium of the

solid and the fluid ( at saturation ) the constitutive equations derived

by the above mentioned authors is in agreement with the constitutive

equations obtained below.

Consider a block of pure solid compressible material which a

unit cube in its unstrained unswollen state. The unit cube is placed in

a bath of an ideal fluid and is subjected to a triaxial extension due to

tractions on its surfaces and the absorption of the fluid. Eventually,

-
.

.
0
1
m
4
“
.

.
A

I
.
-
.
1
1
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the block, which is now a mixture of the solid and the liquid, reaches

an equilibrium strained swollen state while in contact with the bath.

This is what is meant by a saturation state. The mixture in the block

has mass Mm and dimensions A1,12,A3 in the direction of triaxial

extension. In triaxial extension the triaxial directions are the

principal directions. Hence, the derivation which follows would yield

equations of state for principal directions only. Later, the equations

of state will be tensorially transformed to general directions.

The condition for the equilibrium of the block with the

surrounding liquid and thus of saturation is

6 (MmA) - 6V (3.17)

where, A - A(Il,Iz,I3,p2) is the Helmholtz free energy function per unit

mass of the mixture. Equation (3.17) can be written as

M 5A + A 6M - 5w -(3.18)
m m

where

_ fi :14. 53A. QA—

Also, for triaxial extension the invarients of Cauchy-Green tensor,

2 2 2
I1 - A1 + 12 + A3 (3.20)

2 2 2 2 2 2
12 - A112 + 6263 + A311 (3.21)

2 2 2
I3 - A1A213 (3.22)

The mass balance equation for the solid yields

“
m
a
t
h
“
?
?
?
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p

(1 - III—T <3-23>
l 2 3

The variations of 11’ 12 and I3 from equations (3.20)-(3.23) are given

by

611 - 2A16A1 + 2A26A2 + 2A36A3 (3.24)

612 - 2(Ag + Ag) 21521 + 2(Ai + 1%) 12612

+ 2(13 + if) A36A3 (3.25)

513 - 2A1A§A§6A1 + ZAZAiA§6A2

+ 213A§Ai6x3 (3.26)

The variation of p1 from equation (3.23)

__;l__

5p1 - p10 AiAzAZ (A A 6A + A A 6A + A A 6A (3.27))
2 3 2 3 1 1 3 2 l 2 3

The mass of the mixture is related to the density of the mixture by

Mm ' ”(‘1‘2*3)

- p1(A1A2A3) + p2(A1A2A3) (3.28)

Hence, using (3.27)

6Mm - 6p (A1A2A3) + p (A2A36A1 + A1A36A2 + A1A25A3) (3.29)

The tractions on the surfaces of the block are considered to be the

total tractions. The expression for the virtual work done is given by

SW - T11A2A36A1 + T2211A36A2 + T33A1A26A3 (3.30)
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Equation (3.19), (3.24)-(3.30) when substituted in equation (3.18)

results

[p(A1A2A3](A16I1 + A2612 + A36I3 + Ap26p2) + A(A1A2A36p2

+ 62(A2A36A1 + A1A36A2 + A1A28A3)) - T11A2A38A1

+ T22A1A36A2 + T33A1A26A3

21 _6A _26
611' A2 612 and' A3 a13 E

On further simplification the resulting equation must be satisfied for f

where A1 -

all arbitrary variations of A1, A2, A3, and p2 the following saturation

 equations are obtained i

2 2 2 2 2 2 2
T11 - A,p2 + 2p [AIA1 + A2A1(A2 + A3) + A3A1A2A3] (3.31)

2 2 2 2 2 2 2
T22 - A,p2 + 2p [AIA2 + A2A2(A1 + A3) + A3A1A2A3] (3.32)

2 2 2 2 2 2 2
T33 - A,p2 + 2p [Alx3 + A213(A2 + A1) + A3AIA2A3] (3.33)

and

p(A1A2A3) A,p26p2 + A(A1A2A3)6p2 - 0

or

pA,p2 + A - 0 (3.34)

fig
where A, - .

p2 3p2

It is essential to note here that now four equations are

available instead of three, as obtained incase of the mixture

constituting only incompressible constituents [2].

iii) ee n un o tu o a o nea ela tic

c m es b 'd d

The free energy function for the mixture of a solid and an ideal

fluid is obtained by adding the change in free energy due to mixing of
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the solid and the fluid and the elastic free energy of the solid. The

basis for adding up the two quantities is not clear but does seem

reasonable. The elastic free energy function, that of the solid can be

written as

A5 - As(Il,Iz,I3) (3.35)

where Il, I2, I3 are these invarients of the Cauchy Green tensor. The

free energy function reduces to zero when the solid is stress free.

The free energy of mixing Am of the solid and the fluid is

complicated as compared to that of the solid and is obtained by

considering the change in Gibbs free energy when ‘nl' moles of fluid are

mixed with the solid as given by Flory-Huggins [l9] equations stated

below.

3359 - RT {1n (1 - u ) + v + xu2) (3 36)
an1 l l l '

where

R - universal gas constant

T - temperature

AGm - change in the Gibbs free energy

x - interaction parameter that depends on the

combination of the specific solid and the

fluid.

If V1 is the molar volume of the fluid in the mixture, n1 number of

moles present at any state and V volume of the solid at that state,
S

then volume additivity can be written as
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vm - vS + nlv1 (3.37)

From (3.4)

p n V

-2--‘1,—1 (3.38)

”20 m

Using (2.9), (3.38) can be stated as

p I 8V

-2—3— Rs (3.39)n

1 v1”20

Differentiating (3.39) with respect to p2 yields

an I 8 p 61

6—1'V3— lei—3‘1 <3”)
”2 1”20 3 ”2

Since the fluid is ideal and hence incompressible (3.5) can be written

as

p

+ ‘2‘ (3.41)1 - u

1 ”20

Differentiating (3.41) with respect to p2 we have

au

5-1 - il- (3.42)

”2 ”20

-—l -—2 (3.43)
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Using (3.41) and (3.42), (3.43) yields

 

BAG p BI

A '31 [111(1 11 ) + V + 2] ‘1 Z 3_ - X” (I ) 1 - (3-44)
aul V1 1 l 1 3 213p20 aul

Considering mass balance (2.9) and rewriting yields,

I3 - S (3.45)

Differentiating with respect to ”1’ substituting in (3.44) yields

ACm _ - KI 1n(l-v ) + l + xv Z§ ' (l'V )EX§ (3°46)

v1
V1 6”1

Integrating with respect to v we get
1’

(1-u1) BI

8 av
2I3

3_ -RI 2 5
AGm V1J-(1n(l-v1) + v1 + xul) [I3 + 1] avl + C (3.47)

Where C is the constant of integration which is evaluated

considering no change in Gibbs free energy in absence of solid

constituent results in

C - 0.

The thermodynamic system includes the mixture and the infinite

bath surrounding of the fluid. Thus the total volume change of the

thermodynamic system can be assumed to be zero and hence

AG - AA
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The free energy of mixing per unit mass of the mixture becomes,

u 1n(1-u ) V

A-AA-——']‘—RT __1+1+xv1 J-
m V p V M v u

l s 1 1

6V

(1 ”11——§l 60 (3.48)
avl 1

The total free energy per unit mass of the mixture is thus given as

follows

A-A +A , (3.49)
s m

where, As and Am are defined per unit mass of the mixture

Now consider a mixture of an incompressible nonlinearly elastic

solid such as a Neo-Hookean solid and an ideal fluid, the elastic free

energy per unit mass is given by

v p RT

Ae - 1 10 (11- 3) (3.50)

2p

The free energy of mixing is obtained by letting the volume of the solid

 

VS - constant, 1. e. VS - VRS , equation (3.48) becomes

Am - ”1 RT (1'"1)1“(1'”1) + (1 - v1)x (3.51)

p V1 ”1

It should be noted that the total free energy per unit mass of the

mixture obtained by substituting (3.50) and (3.51) in to (3.49) is the

same as derived and employed by Gandhi et a1 [4] for an incompressible

solid-fluid mixture.

 ‘2’
.

7
"
!
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It is clear that the free energy function in case of a mixture

of a compressible nonlinearly elastic solid and an ideal fluid can only

be obtained if the variation of the volume of the solid is known when a

known amount of fluid has entered the mixture. Hence specific boundary

value problem with compressible constituents cannot be solved unless

experimental results are available.

te t m x

The free energy function of mixing can be obtained in the closed

form if and only if the variation in volume of the mixture is known when

a known quantity of fluid enters the mixture. In other words the change

in the volume of the solid with change in the fluid content of the

system. This relationship needs to be experimentally determined.

Currently such experimental results are not available.

‘
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CHAPTER IV

MATERIAL CHARACTERIZATION USING SIMPLE DEFORMATIUNS 0F.A CUBOID MIXTURE

The problem of swelling of an incompressible solid cube under

simple deformations is reported in this chapter. A unit cube of

nonlinearly elastic material is placed in an infinite bath of an ideal

fluid and then is allowed to swell freely untill it attains saturation.

The swollen cuboid is then subjected to uniaxial extension, equibiaxial

extension and shear. The results obtained have a significant impact on

material characterization or identification of incompressible solids.

Let (X1, X2, X3) denote the position of a typical particle in reference

configuration. The particle denoted by (X1, X2, X3) in the reference

configuration may be represented in deformed configuration by the

coordinates (x1, x2, x3). The problem is formulated in a generalized

form and then reduced to the specific case of uniaxial, biaxial and

shear deformation as follows,

The general form of the deformation field is assumed to be

x1 - A1 (X1 + CXZ)

x2 ' A2X2

x3 - A3X3 (4-1)

The deformation gradient F associated with the mixture is given by

25
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The Cauchy-Green strain tensor B which is defined as

takes the following form for the above deformation:

Ai(l+C2) CA A o
21 2

g - cA A A o (4.4)

0 0 A

l 2 2

The principal invariants of B are given as

2 2 2 2
I1 - A1 (1 + C ) + A2 + A3 (4.5)

2 2 2 2 2 2
12 - AlA2 (l + C ) + A2A2 (1 + C ) (4.6)

2 2 2
I3 - A1A2A3 (4.7)

The balance of mass equation for the solid constituent (2.9) may

be expressed in terms of the stretch ratios as

_ yl (4.8)

where ”1 represents the volume fraction of the solid. The equilibrium

equations are expressed in terms of the coordinates in the reference

configuration for computational convenience. Assuming no external body
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forces, the equations of equilibrium for the mixture and solid take the

form

80 .

_L1. -1_
6x ij 0 (4.9)

an

-—11' F ‘1 - 0 (4.10)
6x pj

61

——l1 F '1 - 0 (4.11)
6

XP

 

The tensor F.1 that appears in these equations has the form given by

1/A1 -C/A2 0

-1
g - 0 1/A2 o (4.12)

0 0 1/A

For the deformation field under consideration, (3.13)-(3.15) become,

a -- 1+2 (A +AI)A2(1+C2)

11 P p10 ” 1 2 1 1

4 2 2 2 2 2
- A2[A1 (1 + c ) +0 A1A21] (4.13)

_ - £1_ 2 _ 2 2 2 4
022 p p10 + 2p [ (A1 + A211)A2 A2 (C A1A2 + A2 )] (4.14)

a - - ”1 + 2 (A + A 1 )A2 - A A“ (4 15)
33 P p ” 1 2 1 3 2 3 '

10

3 3 3
012 - 2p [ (A1+A2I1)CA1A2 - A2[CA1A2(1+C ) + CA1A2]] (4.16)
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013 - 023 - 0, (4.17)

_ _ __£L, 53A

“11 ”22 “33 P p20 ””2 ap2 (“'18)

bk - 0 k - 1,2,3 (4.19)

where,

A - QA‘ and A - EA-

1 all 2 612

It is sufficient to satisfy any two of the three equilibrium

equations (4.9)-(4.11) for the deformation field under consideration,

the third equilibrium equation is automatically satisfied. By virtue of

equation (3.16) total stresses are given as follows:

_ at 2 2
T11 -p - pp2 apz + 2p [ (A1 + A211)A1(1 + C )

4 2 2 2 2 2

- A2(A1(1 + C ) + C A1A2)] (4.20)

T - - p - p QA_ + 2p [ (A + A 12)A§

22 p2 6p2 1 2

2 2 2 4
- A2(C AlAZ + A2)] (4.21)

_ _ _ QA 3 _ 4
T33 p ppzap + 2p[(A1 + A211”3 A2A3 ] (4.22)

3 2 3
T12 - 2p [ (A1 + A211)CA1A2 - A2(CA1A2(1 + C ) + CA1A2)] (4.23)

T13 - T23 - 0 (4.24)

 



29

In the subsequent part of this section special cases of free swelling,

uniaxial extension, biaxial extension and shear are considered.

a. Free Swe n of U ube

In the case of free swelling the cube of unit length is allowed

to swell freely untill it achieves saturation and, at saturation the

total stress on its boundary vanishes, hence

 

c - 0, (4.25)

Tij - 0, on boundary of swollen cuboid yields

A1 - A2 - A3 - A (4.26)

p - -pp2 34:: + 2p [(A1 + A211)A2- AZAZ‘] (4.27)

and

T -T -T -o. (4.28)

b. Uniaxial Extension

The swollen cube is stretched in x1 direction which implies that

the stretches in the other two directions are equal and hence,

A - A - A, (4.29)

C - 0, (4.30)

and total stresses are given by

_ _ _ QA_ 2 _ 4
T11 p pp2 892 + 2p [ (A1 + A2I1)A1 A2A1 ] (4.31)



_ _ 5A. 2
p pp2 3P2 + 2p [ (A1 + A211)A

and

c. Egnibiaxinl Extension

The case of equibiaxial extension is given by

A - A

C - 0

and total stresses are given by

_ _ - _ EA. 2

T11 T22 P ””2 6,22 + 2” [ (A1 + ”211”

33"

QA

-A’

30

2

T - T - T

12

d.§i_male_§hear

In the case of simple shear the unit cube is allowed to swell

2

- A A

2

- A AA ]

34] and,

- A A

2 “l

(4.

(4.

(4.

(4.

(4.

(4.

(4.

32)

33)

34)

35)

36)

37)

38)

freely untill it achieves saturation and then is sheared by an angle 1,

i. e. shear is superimposed on a freely swollen cuboid. The stretch

ratios ratios take form as follows,

A - A - A - A, (4. 39)
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C - tan(1) (4.40)

and total stresses given by

_ as. 2 2
T11 -p -pp2 apz + 2p [ (A1 + A211) A (l +tan 1 )

- A2A“ (1 + 3tan21 + tanay )] (4.41)

_ _ _ §A_ 2 _ 4 2
T22 p pp2 3P2 + 2p [ (A1 + A211)A A2A (l +tan 1)] (4.42)

33

_ _ QA_ 2 _ 4

p pp2 692 2p [(A1 + A211)A A2A ] (4.43)

2 2 4
12 - 2p [ tan7(A1 + A211)A - A2(tan7(l + tany )A

+tan1Aa)] (4.44)

and

T13 - T23 - 0. (4.45)

Cases (a-c) cannot be solved for stretch ratios due to the presence of

indeterminate scalar p. To eliminate the indeterminate scalar p

saturation boundary condition is assumed where p becomes determinate

[2].

The equations of state at saturation for a mixture of an

incompressible solid and an ideal fluid were obtained by Gandhi et al

are stated here for completeness
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A + pA
le- [P20 p2(P20' P2)] 611+

2p [(A1+ A2I1)Bij- AZBimij] (4.46)

Comparing (4.46) with (4.20-4.22) , it is observed that at saturation

the indeterminate scalar p becomes determinate and is given by

p - ° ppzoApz’ p20A (4-47)

Now assuming that saturation is attained by the swollen cuboid when

subjected to uniaxial extension, and equibiaxial extension. And then

substituting equation (4.47) for p in equations (4.27), (4.32) and,

(4.37) and the variation of stretch ratios, stresses and volume

fractions is obtained. The numerical example and discussion on these

results is presented next.

NUMERICAL EXAMPLE AND DISCUSSION

The explicit forms of equations (4.7), (4.8), (4.13) and (4.14)

may be obtained for a specific choice of the Helmholtz free energy

function A. The free energy function per unit mass of the mixture is

assumed to be given [6] by

l-V

11 El _1
A - _1 C1 (I1 - 3) +C2(I2 - 3) + V [V £n(l-V1)

p l 1

+ x(1-v1)]], (4.48)

where,

 ‘uv
n

-
d
.
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V1 is the molar volume of the fluid,

x is the constant which depends on the particular combination

of the solid and the fluid,

R is the universal gas constant,

T is the absolute temperature,

MO is the molecular weight of the solid.

The free energy function given by equation (4.48) is for a

"Mooney-Rivlin type" nonlinear solid fluid mixture. When C - 0 the
2

free energy function represents a "Neo-Hookean type" nonlinear solid

mixture.

For numerical calculations the following material properties as

 

given by Treloar [l] were used:

Density of natural rubber in the reference state p10 - .9016 gm/cc

Density of solvent (benzene) in the reference state p20 - .862 gm/cc

Molar volume of the solvent V1 - 106 cc/mole

The molecular weight of rubber between

cross links Mc - 9151 gm/mole

Natural rubber-benzene interaction constant x - .425

The numerical value of the universal gas constant R is given by

8.317 x 107 Dyne-cm/mole - °K, and the absolute temperature T was

assumed to be 303.16’K. The constitutive co-efficients C1 and C2 are

given as follows:

0 - -l-9 (4.49)

C2 - 0C1 (4.50)
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Numerical results presented in figures (1-6) for a cuboid

mixture under simple deformations are for both Mooney-Rivlin and Neo-

Hookean type mixture.

The variation of the stretch ratios for uniaxial extension of a

cuboid mixture is presented in figure 1. Corresponding experimental

results obtained by Treloar [l] are also presented on the same graph for

reference. The experimental results are in excellent agreement for

tension and not quantitatively in agreement for the compression case. It 1

is observed that qualitatively there is no difference between Neo-

Hookean type and Mooney-Rivlin type mixtures. Figure 1 clearly shows

 
that Neo-Hookean mixtures admit more states as compared to Mooney-Rivlin i

type mixtures. The variation of the volume fraction of the solid in the

mixture with the stretch ratio is presented in figure 2. Figure 2

conveys that Neo-Hookean solids absorb more fluid to achieve saturation

as compared to Mooney-Rivlin solids. These results have a substantial

bearing on material characterization or material identification and, can

be exploited as follows. Consider a block of rubber of unknown

properties and known dimensions, place it in a fluid bath for a

sufficient length of time so that the block is fully saturated. Then

stretch the block in x1 direction by some amount. Measure the new

dimensions of the swollen block and obtain the stretch ratios in the

other two directions. Place the value of the proper stretch ratios in

figure 1 and relate its position to the existing variation for Neo-

Hookean and various Mooney-Rivlin mixtures and hence the material can be

identified. Also figure 2 can be used for the same purpose if the amount

of fluid required for complete saturation is measured. A parametric

study can be done to incorporate the values of x which depends on the

particular combination of the solid and the fluid. The variation of x

for all known combinations is very small.
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Similar results are obtained for Equi-Biaxial extension and the

variation of the stretch ratios is presented in figure 3. The variation

of the stresses for the Neo-Hookean and various Mooney-Rivlin mixtures

subjected to simple shear with shear angle is presented in figures 4, 5

and 6. These results clearly satisfy Universal relationship for simple

shear. Linear behavior of stresses in Neo-Hookean mixtures is observed

as anticipated whereas nonlinear nature of variation of stresses is seen

in case of Mooney-Rivlin mixtures. l

 



CHAPTER V

INTERACTION OF CONSTRAINED NONLINEAR.ELASTIC SOLIDS AND IDEAL FLUIDS

W

The behavior of a constrained nonlinear elastic solid in the

presence of an ideal fluid is investigated in this section. The

constraints under consideration are those which result due to the

presence of two or more elastic materials, rigid inclusions or i 
inextensible/extensible fibers, for example. The representative problem

is presented in order to demonstrate the role of constraints in

modifying the swelling characteristics of reinforced elastic solids.

a. we 1 of a Com osite C nd c i tu e wit dif erential core

W.

Consider a solid cylinder composed of two different materials M1

and M2, with the material M1 occupying the region R e [O’Ri] and the

material M2 occupying the region R e [Ri’Ro] in the reference

configuration, such that, Ro > Ri > 0. Both cylinders are assumed to

have a length LO. A schematic of the reference configuration and the

current configuration is presented in figure 7. It is assumed that both

materials are perfectly bonded to each other at the interface. The co-

ordinates of a typical material particle in the reference configuration

will be denoted by cylindrical co-ordinates (R,6,Z). In the deformed

swollen state the co-ordinates of the same particle are assumed to be

described by

36
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r - r(R), 0 - 9, and z - A2, (5.1)

where A is a constant axial stretch ratio assumed to be unity.

The deformation gradient associated with the mixture is,

Ar 0 0

F - 0 A0 0 (5.2)

0 0 A

The Cauchy Green tensor B which is defined as

a - FFT (5.3)

takes the following form for the above deformation:

A2 0 o

r 2
g - 0 A9 0 (5.4)

0 0 A2

where Ar - dr/dR and A0 - r/R denote the stretch ratios in the r and 0

directions. The principal invariants of B are then given as

2 2 2

I1 - Ar + A0 + A , (5.5)

2 2 2 2 2

I2 - A (A1. + A0) + AoAr and , (5.6)

2 2 2

I3 - AerA . (5.7)

The balance of mass equation for the solid constituent (2.9) may

be expressed in terms of the stretch ratios or the volume fraction of

the solid "1 as

p

4 Ti? - “-8)
”10 r o
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The equations of equilibrium which are appropriate for the

deformation being considered are documented next. Since the assumed form

of deformation implies that the stresses depend only on the radial co-

ordinate r , the equations of equilibrium for the solid constituent ,

namely (2.11),reduce to

Einr + or; ‘ ”00 - br - 0 (5.9)

dr r

where arr and 000 denote appropriate components of a , and br denotes

the component of the interaction body force b in the radial direction.

The equilibrium equations for the fluid constituent, namely (2.12),

reduce to

3:31 + :rr_;_:22 + br - 0 (5.10)

dr r

where “rr and «90 denote the components of n. Equations (5.9), (5.10)

and (2.14) yield

33;; + Err_1_322 - 0 (5.11)

dr r

which is the equation of equilibrium for the mixture.

For the deformation under consideration, it follows from (5.3)

and equations (3.13) - (3.15) that the non-zero components of the

partial stress tensors for the solid and fluid constituents are given by

_ _ ”1 2 g 4
art P p10+ 2p[(A1 + A2I1)Ar A2Ar ] , (5.12)

a - -P 31 + 2p (A + A I )A2 - A A 4 (5 13)

00 p10 1 2 1 0 2 0 ’ '
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_ _ £1 2 _ 4
azz P p10+ 2p[(A1 + A2I1)A A2A ] and, (5.14)

 

£2
"rr - n00 - fizz - - P p20 - ppZAp2° (5.15)

The only non-zero component of interaction body force is given by

E dp] dpz d (A: + A?) _

br ' ' p A dr + plap dr ”2 [(A1 + A211) A a: ' 3
10 r 2 r ;

dA A3 dA L

2 __r .2. __2
2A2(Ar dr + A: dr ) ] (5.16)

-294 -24 _26
where, A1 611 , A2 8I2 and, Ap2 892 .

It is sufficient to satisfy any two of the three equilibrium equations

(5.9) - (5.11). Equations (5.12) - (5.15) are substituted into the

equilibrium equations for the solid and the mixture (5.9) and (5.11),

respectively, to get the following functional functional form of the

equilibrium equations, which are stated in terms of the co-ordinates in

the reference configuration for computational convenience:

p

92 .1
dR p10 + g1 (A1, A2, Apz, A

The mixture is assumed to be of a ”New-Hookean-type", that is, A is a

R, Aé, A5, A) - 0 (5.17)
r, A0!

linear function of 11' Following this assumption the explicit forms of

the equilibrium equations for the mixture and the solid for the

deformation under consideration are given by
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a

-‘J— 2-2 -‘oR A0 Ar 0 (5.18)

and

A

92 ...r - .r. _ _ .1. 2, 2

' ”1 an + 2” A1": [:2 AoR [A *0] A R [*9 AJ]

A -A dA

I. .r__2 1....r g_ 2_ 2 _
+ A: } + p2A1 dR {Ar A0} 0,

respectively (5.19)

_ as.

”1 ”1”20 ap2 {A9 R dR

 
In equations (5.18) and (5.19) the radial and the tangential stretch

ratio Ar and A9, respectively, are related through the compatibility

condition given by

dfl#

dR . (5.20)

Equations (5.18) and (5.19) may be solved for p, Ar and A9 once the

specific form of the Helmholtz free energy function for the mixture is

known, and the appropriate boundary conditions are specified. The

Helmholtz free energy function per unit mass of the mixture is assumed

to be given by

RTp l-u

:1__19 81—1
A - p 2Mc (I1 - 3) + V1 V1 £n(1-v1) + x(l-u1)]] (5.21)

where, R, T, V1, Mc’ and x are constants [l]. The appropriate boundary

conditions for solving the set of ordinary differential equations (5.18)

and (5.19) in regions [0,Ro] are given by
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Ar(0) - Ao(0) , (5.22)

(1) (2)
Trr (R1) - rrr (R1) , (5.23)

A0(1)(Ri) - A0(2)(R1) , and (5.24)

Trr(Ro) - o . (5.25)

The boundary condition given by equation (5.22) arises due to the

compatibility requirement between the radial and tangential stretch

ratios at the axis of the cylinder. The boundary condition (5.23) on

radial stress tensor at R - R1 is due to the requirement that the radial

stress be continuous at the interface. The boundary condition (5.24)

arises due to the assumption of perfect bonding at the interface. The

boundary condition on total traction vector represented by (5.25) is a

consequence of the requirement that the outer surface of the composite

cylinder be traction-free. Since a boundary condition for the partial

traction vectors is not physically obvious, following the arguments

presented in [10, 11, 12] it is assumed that the outer surface of the

cylinder is in a saturated state. This assumption results in the

boundary condition represented by

Srr(Ro) - 0 , (5.26)

where, Srr represents the radial stress component for a saturated state,

and is given by [15]

_ 1L 2
Srr p (p2o - p2) 3P2 + p20A + 2 p AlAr . (5.27)



For computational convenience, equations (5.18) and (5.19) may

be combined to eliminate p, and for the Helmholtz free energy function

given by (5.21) the resulting equation is given by

(Ar-A0)[x[2x--}—]u1-AA]

 

4
*
L
?

9
L
9

where,

(5.28)

The set of ordinary differential equations given by (5.20) and

(5.28) subjected to boundary conditions given by (5.22) - (5.25) were

solved numerically. For the computational work the following properties

were employed [1,6a]:

Density of rubber in the reference state

Density of solvent in the reference state

Molar volume of the solvent

The molecular weight of rubber between

cross-links

Rubber-solvent interaction constant

M M
l 2

p10 - .9016 .9016 mg/cc

p20 - .862 .862 gm/cc

v1 - 106.0 106.0 cc/mole

Mc - 8891.0 4000 gm/mole

x - .400 .400

The computational results are presented in Figures 8, 9, 10, 11

and 12 where it is clearly evident that the presence of two different

elastic materials results in nonhomogeneous swelling characteristics,

nonlinear distribution of the radial stress, discontinuity in the

circumferential stress and the volume fraction of the solid and finally
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a nonlinear volume change in the outer circumferential cylinder due to

swelling. Figure 8 shows that the composite cylinder swells

nonhomogeneously with the radial and tangential stretch ratios Ar and

A0, varying nonlinearly with R in the interval [R1,Ro]. In addition,

there is a discontinuity in the radial stretch ratio Ar at the

interface, where the material characteristics change abruptly. This is

in sharp contrast to a cylinder composed of a single material, which

would swell homogeneously with A1. and A0 equal and constant throughout

the domain R e [0,R0]. Figure 9 shows the nonlinear distribution of the

radial stress in the region R e [Ri'Rol’ which is induced by the

presence of the material M1 occupying the region R e [O’Ri]° The

nonlinear variation of the circumferential stress in the region R e

[Ri’Ro] with the radial coordinate appears in figure 10. A discontinuity

of the circumferential stress at the interface of the two different

properties is observed. Figure 11 shows a discontinous but almost

constant volume fraction of the solid along the radial coordinate. In

figure 12 the percentage volume change of the cylinder with the radial

coordinate is presented. This variation is particularly useful for

experimentalist.

b. well n o No near a t c de with a R 1 Core

A special case of the problem considered in section (5a) is when

the inner material M1 is assumed to be rigid. The governing equations

for this problem are again given by equations (5.18) and (5.19). The

appropriate boundary conditions are given by

A0(R1) - l, and

Srr(Ro) - 0 .
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The computational results are presented in Figures 13 and 14. It is

clearly evident from these results that the presence of the rigid core

induces nonhomogeneous swelling characteristics. Furthermore, it has

been demonstrated that the rigid core initiates significant gradients in

the stretch ratios and severe stress concentrations at the bond

interface. A complete detail of this special case appears in [20].

 



CONCLUDING REMARKS AND DISCUSSION ON APPLICATIONS OF THIS WORK.TO DAMAGE

IN

COMPOSITE.MATERIALS

The principal contributions of the work presented are

a. Qualitative and/or quantitative differences in the

behavior of incompressible mixtures with solid constituents being

various types of nonlinearly elastic incompressible solids were

identified. In particular, the response of the mixtures with Neo-Hookean

solids and ideal fluids and mixtures with Mooney-Rivlin solids and ideal

fluid is studied and compared with experimental results by Treloar for

several cases of simple deformations such as uniaxial extension, bi-

axial extension and simple shear. The results of these investigations

could have a significant impact on material identification studies.

b. This work presents sufficient basis to motivate

experimentalist to conduct certain experiments with compressible solids

to yield change in volume of the solid when a known amount of fluid

enters in the solid. These results would provide the missing link to

solve boundary value problems involving mixtures with compressible

constituents.

c. Certain misconceptions pertaining primitive concepts like

volume additivity and incompressibility which apparently existed in

previous literature were clarified.

d. Finally, a boundary value problem focused on

investigating the swelling characteristics of a composite cylinder is

presented. The composite cylinder features an inner core which exhibits

material properties which are quite distinct from those of the

surrounding concentric material. This work is motivated by the need for

45
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modeling the large deformations of polymeric composite materials under

various under hygrothermal environments. This work partially addresses

this need by characterizing the interaction of ideal fluids and

idealized constrained nonlinear elastic solids in the context of Mixture

Theory. The deformations of the elastic solid may be restricted due to

the presence of extensible/inextensible fibers, rigid inclusions and

coatings on reinforcing fibers, for example. Such constraints can

quantitatively and qualitatively alter the ability of these materials to

undergo dimensional and constitutive changes very significantly. The

results of these investigations for large deformations demonstrate that

the constraints imposed by the core material induce nonhomogeneous

swelling characteristics with significant gradients in the stretch

ratios and severe stress concentrations at the fiber/matrix interface.

These results could have important implications for a variety of fiber—

reinforced composites featuring hygroscopic and temperature-sensitive

matrix materials. This problem also has significant implications in

ability to predict local (in the neighborhood of the fiber/matrix

interface in composites, for example) events occuring due to global (on

the whole composite structure) effects. This is very critical in

composites, particularly in damage studies for instance, from the

boundary value problem it can be speculated that large gradients of

stretch ratios and stresses in the neighborhoods of the fiber matrix

interface due to smaller global effects occur. Damage in composite

materials seemingly macroscopic phenomena is truely a microscopic

phenomena and hence representative volume element considered in the

above presented boundary value problem should be studied in damaged and

undamaged configuration in detail and a continuum relationship should be

developed to predict macroscopic response. This is taken up by the

author as a part of Doctoral studies.
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