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ABSTRACT

DEVELOPMENT OF A DYNAMIC SIMULATION MODEL

FOR PLANNING PHYSICAL DISTRIBUTION

SYSTEMS: VALIDATION

BY

Peter Gilmour

Only recently has the potential cost saving and

the competitive advantage of an integrated physical distri-

bution system been realized. The aim of a recently com-

pleted research project at the Michigan State University

Graduate School of Business Administration was to develOp

a general model which would enable the user to evaluate

total cost and service capability interactions within the

physical distribution system over the long term. This

dynamic simulation model has been developed and is named

the Long Range Environmental Planning Simulator (LREPS).

Simulation, as a managerial decision making tool,

has greatly increased in acceptance and use over the past

decade. Problems have been approached which up until this

time were considered too large to be manageable. So the

extremely complex problem is quite often analyzed through

the use of a simulation model. Because of the large
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investments of time and money needed to develop a simula-

tion model of a complex situation, little energy is often

left to consider the question of the validity of the final

model.

This dissertation is a formal study of validation

of computer simulation models in general, and in particular

an analysis of the performance of the LREPS model.

The concept of validity for a computer simulation

model is rather naturally divisable into design validity

and output validity. While design validity is the estab-

lishment of the reasonableness of the basic underlying

processes of the model, output validity is the acceptability

of the form of the model's endogenous data streams. The

argument that the validity of a theory (or model) is not

based on the realism of its assumptions, but on the accuracy

of its predictions, is accepted. Although this means con-

centration on output validity, design validity is not

ignored. Testing for design validity can take the form

of determining the model's face validity, that is, testing

in a rudimentary way to see if the model "makes sense" in

relation to the available knowledge of the situation being

modeled. This type of testing is a coarse screening

device at stages during the model's development and as

a test at its initial completion.

Three major procedures are applied to establish a

model's output validity:
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1. Analysis of the stability of the model over the

long term. Stability is the ability of the

model to generate endogenous data streams which

show persistent behavior.

2. Comparison of the output of the model for some

past time period with the actual historical

data that was recorded for that time period.

3. Comparative analysis of the data streams

generated by the model before and after signifi-

cant changes in the model's major assumptions.

The output of a simulation model should not be

related to the nature of specific assumptions

contained in the model.

A reasonably comprehensive subset of possible

statistical techniques is examined for use in each of these

three validation procedures. Considered are (1) Graphical

Analysis, (2) Analysis of Variance, (3) Multiple Comparison,

(4) Multiple Ranking, (5) The F Test, (6) Correlation,

(7) Regression Analysis, (8) Sequential Analysis, (9) The

Kolmogorov-Smirnov Test, (10) Response Surface Analysis,

(11) The Chi-square Test, (12) Theil's Inequality Coef-

ficient, (13) Spectral Analysis, and (14) Factor Analysis.

Due to the rather stringent assumptions included

in many of the other techniques, and also due to the fact

that spectral analysis considers the effects of autocor-

relation, the results of this technique were relied upon

most heavily.
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The LREPS model was subjected to the proposed

validity testing. Initial face validity testing established

the acceptability of a wide range of cost and service data

streams to the management of the industrial sponsor. Now

the three general procedures could be applied to determine

the output validity of LREPS.

l. The model was found to be stable over the long

run.

2. The ability of the model to duplicate actual

historical data was not established.

3. The model output was not significantly related

to the nature of the two major assumptions

embodied in the model.

The only unfavorable results for LREPS was the failure to

establish the predictive ability of the model. Availa-

bility of sufficient historical data obtained at an adequate

time increment was a necessary condition for the satis-

factory completion of this validation procedure. Data of

the required quality was not available.

Establishing the validity of a computer simulation

model is a difficult task. These three validation pro-

cedures do provide a general method which, together with

the particular knowledge required for face validity

testing, can be used to perform this task.
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CHAPTER I

VALIDATION

Introduction
 

The development and use of a mathematical model has

become a popular means by which a solution to a problem is

attempted. But when the quantitative relationships in the

model become so complex that a mathematical solution is not

possible or extremely difficult to obtain, computers and

numerical methods offer a feasible alternative. This

approach is simulation.

The aim of computer simulation can basically be

described as system design or system analysis. System

design (a normative approach) is an attempt to find the

combination of exogenous variables and parameter values

that will Optimize a specified endogenous variable, possibly

subjected to the attainment of specified limits on other

endogenous variables. System analysis (a positive approach)

is an explanation of the relationship between the endogenous

variable and the controllable exogenous variables and para-

meters.

Simulation allows the analyst, in his drive for

greater realism, to develop a much more detailed and com-

plex model than he could using an analytical technique.



But a simulation model is a symbolic or numerical abstrac-

tion of the real process, and the danger exists that the

limitations and assumptions of the method will become

hidden (or not adequately considered) by its complexity.

A simulation model may be constructed of a firm's physical

distribution system. Sales forecasts and product line at

that time form an integral part of the model. If the model

is used over a period of years without updating these fac-

tors, the output of the model may well be of no value to

the firm.

Validation of the operation of a simulation model

is as desirable as the validation of the operation of any

other scientific experiment. While the basic problem of

validation is no different for a simulation experiment,

the complexity of the model is such that the processes by

which its validity is established are quite different.

With most scientific experiments it is rather easy and

inexpensive to carry out several independent replications.

Due to the complexity of most simulation models, the

expense of performing more than one experiment is often

prohibitive, while longitudinal observations during this

one experiment are autocorrelated.

The time and effort needed to develop and make

operational a computer simulation model are at present so

great that the problem of its validation has generally

been neglected. A common attitude seems to be that crude



judgmental and graphic methods1 are preferable to completely

ignoring validation.

Philosophy of Validation
 

To validate a model in a strict sense means to

prove that the model is true. That truth is a rather

elusive concept can be seen in the difficulty one has in

developing a set of criteria for differentiating between

a model which is "true" and one which is "not true."

Fortunately most simulations are seldom concerned with

proving the "truth" of the model (an exception might be

Clarkson's model to simulate the behavior of a bank's

investment trust officer).2 Popper,3 therefore, suggests

that efforts should be concentrated on determining the

degree of confirmation rather than verification. Models

should be subjected to tests, the results of which could

be negative with respect to the aims of the model. Each

such test passed will add confidence to our assumption

that the model behavior confirms the behavior of the

real system. "Thus instead of verification, we may speak

of gradually increasing confirmation of the law."4

Van Horn describes validation as the "process of

building an acceptable level of confidence that an inference

about a simulated process is a correct or valid inference

for the actual process."5 The focus for validation should

be to understand the input-output relationships in the



model and to be able to translate "learning" from the

simulation to "learning" about the actual process. Naylor

and Finger6 basically agree and provide some insight as

to how this focus can be operationalized. The computer

simulation model and its output are based on inductive

inferences about behavior of the real system in the form

of behavioral assumptions or Operating characteristics.

The real situation under study is usually so complex that

the construction of an exact model is not possible.

Another factor besides complexity which makes computer

simulation the desirable method of analysis is the random

nature of one or more of the exogenous variables. Therefore:

The validity of the model is made probable, not certain,

by the assumptions underlying the model. . . . The rules

for validating computer simulation models and the data

generated by these models are sampling rules resting

entirely on the theory of probability.7

Three major methodological positions on validation

are summarized by Naylor and Finger: rationalism, empiri—

cism, and positive economics.

Rationalism . . . Models or theory are a system of
 

logical deductions from a series of synthetic premises of

unquestionable truth. Validation is the search for the

basic assumptions underlying the behavior of the system.

Empiricism . . . The opposite View to rationalism
 

is that empirical science is the ideal form of knowledge.

The model should be constructed with facts, not assumptions.

So any postulates or assumptions which cannot be independ-

ently verified should not be considered.



Positive Economics . . . This view championed by

Milton Friedman is that the validity of a model depends

upon its ability to predict the behavior of the dependent

variables and not on the validity of the assumptions on

which the model rests.

These three positions are combined by Naylor and

Finger into a multi-stage verification procedure, each

stage of which is necessary but not sufficient. Stage 1

is the formulation of a set of postulates or hypotheses

describing the behavior of the system. This involves

specification of components, selection of variables, and

formulation of functional relationships using observation,

general knowledge, relevant theory, and intuition. Stage 2

is the attempt to verify the assumptions of the model by

statistical analysis, and the final stage is to test the

degree to which data generated by the model conforms to

observed data. The multi-stage verification procedure

attempts to include all major ways in which to build con-

fidence in a model.

A final view on validation is that of Fishman and

Kiviat8 which is a narrower concept because they divide

simulation testing into three parts.

(1) Verification insures that a simulation model

behaves as an experimenter intends. (2) Validation

tests the agreement between the behavior of the simula-

tion model and a real system. (3) Problem analysis

embraces statistical problems relating to (the analy-

sis) of data generated by computer simulation.



Experimental Design and Validation

It is difficult to distinguish where experimental

design ends and validation begins. The process of computer

simulation experimentation is interative: model construc-

tion, model operation, validation, and experimental design.

If the validation criteria are not satisfied, the process

is repeated making adjustments until validity is indicated.

The aim of a simulation experiment may be stated

as the desire to explore and describe the response surface

over some region in the factor space (system analysis) or

to optimize the response over some feasible region in the

factor space (system design). In order to achieve this

aim in the most economical manner, careful attention must

10
be paid to experimental design. The types of experiments

for which the model is used will depend upon the particular

requirements that the model was designed to meet.11 But

the types of problems that can be associated with experi-

mental design are universal.

A single run of a computer simulation provides an

estimate of pOpulation parameters. Because the model

contains exogenous random variables, this estimation, or

sample of one, will not exactly equal the pOpulation para-

meter. However, the larger the sample or the more runs

that are made, the greater is the probability that the

sample averages will be very close to the pOpulation

averages. The convergence of sample averages to population



averages with increasing sample size is called stochastic

convergence. Because stochastic convergence is slow,

methods other than increasing the sample size may be

required.

Another problem is that of size. The number of

cells required for a full factorial experiment becomes

very large even with few levels of a moderate number of

factors. If a complete investigation of all factors is

not essential, fractional factorial designs can ameliorate

the problem.

Yet another common problem associated with experi-

mental design arises from the desire to observe many

different response variables in a given experiment.

It is often possible to bypass the multiple response

problem by treating an experiment with many responses

as many experiments each with a single response. Or

several responses could be combined (e.g. by addition)

and treated as a single response. However, it is not

always possible to bypass the multiple response problem;

often multiple responses are inherent to the situation

under study. Unfortunately, experimental design

techniques for multiple response experiments are

virtually nonexistent.12

This dissertation will be concerned only with

validation. The other elements of the interative process

of computer simulation experimentation are discussed in

detail elsewhere.13

Sc0pe and Method

From the rather diverse views on validation examined

earlier, a position must be taken. The validity of a



computer simulation model can be shown by the model's

ability to satisfy three distinct validation procedures.

The output of a simulation model is in the form

of a time path for each of the endogenous variables. The

first validation procedure is to determine if these time

series are statistically under control. Being under con-

trol broadly means that over the long run the time path

will show convergence prOperties or else the rate of

change of the endogenous variable under study will be

proportional to or acceptable to the rate of change in

all other endogenous variables.

Simulation models can be broadly classified as

positive or normative. Positive models must by definition

show reasonable correspondence to the real system, while

normative models indicate a desirable level of operation

for the real system which may or may not be currently

achieved. But is it reasonable for a model to show the

desired state and not to indicate how to reach this state

from the current real state? If the normative model was

built by changing starting conditions and parameter values

of the positive model, management would be provided with

the means to move from the current actual position to the

more desirable normative position. The normative model

should then be built from the basis of the positive model.

For the positive simulation model, then, the second vali-

dation procedure is to compare the model output over a



past time period to the actual historical data from the

same time period.

The assumptions upon which a model is based often

cannot be examined beyond the level of face validity. But

the sensitivity of these assumptions can be examined, and

this is the third validation procedure. If the values of

the key endogenous variables are sensitive to the nature

of the assumption, then managerial knowledge and intuition

must be applied to confirm the assumption, or else the

model must be restructured to eliminate or replace the

assumption.

Organization
 

A research project to develop a long-range planning

model for physical distribution has been established at the

Michigan State University Graduate School of Business

Administration. The project has two broad aims: to develop

the model, which has been done, and to use the model and

adaptions to it to provide management with information about

the physical distribution system over the long run. Five

dissertations will describe in detail the project develop-

ment as shown in Figure 1.1. The scope of this dissertation

is delineated in the figure although other aspects of the

project will be briefly described for the sake of continuity.

Attitudes towards the validation of computer simula-

tion models and the general position to be taken in this
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dissertation were discussed in this introductory chapter.

Many different statistical methods can be used in order

to eStablish the validity of a computer simulation model.

A reasonable subset of these statistical techniques is

discussed in Chapter II without attempting at this point

to establish the relative merit. Chapter III is a brief

description of several celebrated simulation models and

an evaluation of the attempts made by the model builders

to validate their models.

The simulation model is described in Chapter IV.

The degree to which the model's face validity has been

established is discussed. Also given in this chapter is

the manner in which the model and its output will be used-

in order to satisfy the general validation procedures

outlined in Chapter I.

The next three chapters deal in detail with each

of these three general validation procedures. From the

set of statistical techniques detailed in Chapter II are

selected those most suitable for stability analysis

(Chapter V), for the comparison of simulation output and

actual data (Chapter VI), and for sensitivity analysis of

the model's major assumptions (Chapter VII). After a

technique is found to be suitable for a particular valida-

tion procedure, the results of its application will be

analyzed in the light of the assumptions inherent in the

technique.
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The final chapter (Chapter VIII) is a summary

statement of the validity of the simulatiOn model. The

question of establishing a general validation procedure

for computer simulation models is also explored.
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CHAPTER II

VALIDATION TECHNIQUES

Introduction
 

Three types of analysis for the validation of the

simulation model are to be performed:

1. Stability testing.

2. The comparison of actual historical data with the

simulation output for the same time period.

3. The comparison of two simulation data streams in

order to test the sensitivity of some major

assumptions made during model development.

Many statistical and graphical techniques have been

prOposed and used in an attempt to validate the output of

computer simulation models.1 In order to determine which

of these techniques will be most suitable for each of the

three types of analysis, the nature of the techniques must

be examined. This chapter presents what is hopefully a

large subset of all possible validation techniques.

Sequential Analysis
 

Most decision-making procedures are carried out with

the sample size predetermined and fixed. It is possible

that this sample size is larger than it need be resulting

in superflous information and unnecessary expense. But this

15
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can be avoided if after each observation is examined the

decision is made to:

1. Accept the hypothesis.

2. Reject the hypothesis.

3. Postpone a decision on the hypothesis and make

another observation.

Together with this variable sample size are required

managerially determined values of d (producers risk) and B

(consumers risk) to make the system operational. The

decision rules for testing Ho:u=uo and H1:u=u1 are:

 

  

 

Y

H f(Xi11-J1)

i=1 8 ‘

1. If < ——— ; Accept H :u=u (Reject H1),
— o o

y l-a

.11 f(XirUO)

1=1

Y

H f(XiIU1)

i=1 1-8

2. If 1 ; Reject Ho:u=uo (Accept H1),

y a

.H f(xi,uo)

1=1

II f(Xirll1)

B 1=1 l-B .

3. If -——— < < ——— ; Take another observation,

l-d y a

.H f(XlIUO)

1=1

. 2
where y is the number of observat1ons taken.

This general statement of the procedure for sequential

analysis provides a method for deciding at the ith observation
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whether to stOp sampling and accept or reject the hypothesis

under consideration or whether to continue sampling by making

the (i+l)th observation. At observation i the division of

the iedimensional space of all possible observations into

the three mutually exclusive and exhaustive sets is the basic

problem of sequential analysis.

The method has several applications for the analysis

of the results of computer simulations. Procedures for

testing the position of the true mean in relation to a

hypothesized mean and for comparing the means of k experi-

ments with a control mean have been developed by Paulson.3

A heuristic approach to Bechhofer and Blumenthal's method4

of selecting the population with the largest mean is described

by Sasser, Burdick, Graham, and Naylor.5

The Chi-Square Test
 

The Chi-square statistic can be used to measure the

discrepancy between observed and expected frequencies.

 

If x2=0, perfect agreement between observed and expected

frequencies exists while the larger the value of x2, the

greater the discrepancy between the two.
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The sampling distribution of x2 is approximated by

_ _ 2

the Chi-square distribution Y = YQ()(2)35(V 2) e 7x

_ _ 2

Y xv 2 e %Xo where v is the number of degrees of freedom

and y0 is a constant related to v such that the total area

under the curve is unity.

When using the Chi-square Test, expected frequencies

are develOped from a hypothesis Ho‘ It is reasonable to

expect the calculated Chi-square value to be less than a

critical value such as x2 which is the critical value
95

at the .05 significance level. If this turns out to be the

case, H0 is accepted at this level of significance. Other-

wise it is rejected.

Caution should be exercised if the correspondence

2

between observed and expected is too close. If x is less

than x2 0 at the .05 significance level, the agreement is
5

too great for the degree of significance chosen.

Regression Analysis6
 

It is often meaningful to be able to express the

relationship between the variable under study (the dependent I

variable) and other variables which have influence over it

(the independent variables). The most commonly accepted

method of determining this relationship is that of least

squares. A line, curve or plane is fitted to the data in

such a manner so as to minimize the vertical squared dif-

ference between the plotted data value and the value
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determined by the function being fitted. The result is

then the "best fitting" line, curve or plane. While this

function shows the relationship between the independent

variables and the dependent variables, it also enables

predictions of the dependent variable to be made.

The approach is illustrated by the most simple

example of fitting a straight line to n pairs of values of

two variables x and y. Let ei be the error or difference

between the true sample value of y and the value of y (9)

determined by the function of the straight line being

fitted (9 = a + bx), i.e., e. = yi - 9(i=l,...,n). For
J.

O 2 O I I

all observat1ons ei must be m1n1mized.

MIN 28.2 = 2(Y. - Y)2 = 2(Y. - a - bx.)2
1 1 1 1

Take the partial derivatives with respect to a and b, set

them equal to zero, and obtain the normal equations:

ZY. na + 82x.
1 . l

2
2x.Y azx. + 82x.

.1 l l

Solve for a and B

nZXY - (ZX)(ZY)

nZX2 - (2X)2

 

U
‘
>

ll
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which are the least-squares point estimators of a and b.

The least squares line fitted to the data is then y = a + Bx.

Analysis of Variance
 

Analysis of variance is used to test if two or more

samples differ significantly with respect to a particular

(usually qualitative) property. If observations are

classified on the basis of a single prOperty, the ratio of

the variance between the groups and the average variances

within the groups (the F ratio) is used to determine if a

significant difference does exist between the groups with

respect to this prOperty.

To test the null hypothesis, Ho’ that the expected

prOfit from each of a number of plans is equal, this

decision rule is set up. If F 3 Fa.k-l.k(n-l)’ where d

is the significance level, k is the number of plans con-

sidered and n is the number of replications per plan,

reject Ho' otherwise accept it. While if H0 is accepted,

the differences in expected profit between the plans is

only due to random fluctuation, if H0 is rejected, further

analysis (such as multiple comparison or multiple ranking)

is needed to quantify this significant difference between

plans.

Given7

Xij = Total profit from the ith replication of the jth plan

iflj = Average profit for jth plan over all replications

Y.. = Grand average profit for all plans over all replications.
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Degrees

Sigigiig: Sum of Squares of Mean Square

Freedom

Between k
SS plans = n2 _ 2 _ _SS_p1ans

Plans j=l(X.j X..) k 1 MSp— k-l

n k .

Error SS error = Z Z ( i'-—° )2 k(n-l) Mse-S:(:£i?r

i=1 j=l 3 3

n k _ 2

TOTAL SS total = Z Z (X..-X..) nk-l

i=1 j=1 13

The value of F obtained ($32) is compared to the

apprOpriate value from the F table in the manner indicated.

The F Distribution
 

To compare the variances of small samples, the F

distribution is used.

f(F)

where

= C

The function is

F5: (111 - 2)

 

(n2 + nlF);5(n1 + “2)
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n1 is the number of degrees of freedom for the'xzn1

distribution, and n2 is the number of degrees of freedom

for the xzn2 distribution.

The F statistic is equal to the ratio of the

sample variances. Given a level of significance and the

two sample sizes (from which can be determined the degrees

of freedom), the critical value of F can be read from a

table of the F distribution. By comparing the value of

the F statistic to the critical value of F, the hypothesis

that the variances are significantly different can either

be accepted or rejected.

Multiple Comparison
 

Analysis of variance uses the F Test to determine

if a significant difference exists between a statistic

from different samples. If homogeneity does not exist,

the method of multiple comparison quantifies the difference,

while the method of multiple ranking8 (to be discussed)

directly identifies the "best" sample or plan on the basis

of the measured statistic. Both multiple comparison and

multiple ranking must follow analysis of variance for

another reason--the computational reason that both these

methods use the mean square of the error.

Use of confidence intervals rather than tests of

hypotheses is a characteristic of the method.
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Tukey9 develOped simultaneous confidence intervals

for the differences between all pairs. Continuing with

the notation used in the section on analysis of variance,

the confidence intervals are:

(200 -)_{. )iqu Vb'd—fl—e‘ j,J=l’2’ so. I k

I

where the q statistic can be obtained from tables and v is

the number of degrees of freedom. If Student's t statistic

is used, the intervals are not all simultaneously true at

(Xi - 353-) i t mgfe— j,J=l'2, 000 p k.

A somewhat different approach is taken by Dunnett.lo

Instead of taking all possible pairs, he compares the con-

trol statistic (usually a result Of the present Operation

of the system under study) to all alternative values of

this statistic.

(x..->?.):d/2—”—4-S—% j=2,...,k

where Y'c is the control sample statistic (mean) and d is

Dunnett's t statistic with k(n-l) degrees of freedom for a

one factor eXperiment.

Multiple Ranking
 

11
This is a method to find the "best" plan. It is

a more direct method than multiple comparison, answering
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questions such as, "With what probability can it be said

that a ranking of sample means represents the true ranking

of the population means?"

Bechhofer, Dunnett, and Sobel describe a two-

sample multiple decision procedure for ranking means of

normal pOpulations with a common unknown variance. Take

a first sample of N1 observations from each of the k popu-

lations or plans under investigation. Calculate the mean

square of the error (MSe) which is an unbiased estimator

of the population variance having k(n-l) degrees of

freedom for n = N1“ Now take a second sample Of N - N
2 1

Observations from each of the k populations.

N = SUP [ N [2MSe(h/6*)21|
2 1’

where [2 MSe(h/6*)2] is equal to the smallest integer

greater than or equal to the rational number 2MSe(h/6*)2.

The values of h are tabulated, and 5* is the smallest

difference between expected values that is acceptable.

So if 2MSe(h/6*)2 is less than or equal to N1, a second

sample is not taken, and N2 is set to N1. The next step

is to calculate the overall sample mean (Yj) for each popu-

lation.

N

X X.. j=l,2’ coo ’ k

i
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_. _ — < .00 < 0
denote ranked values of X3 by X[l] < X[2] X[k]

2'Rank pOpulations according to observed ; and select that

with the largest i .
[x]

Theil's Inequality Coefficient
 

When comparing predicted results against actual

outcomes, it is desirable to be able to establish the

quality of the prediction. One way to do this is to

calculate Theil's Inequality Coefficient.12

The mean-square prediction error for a set of n

Observations is equal to

t
i
l
t
-
I

P
4
4
:

F
3 I

p

where (Pi'Ai) stands for a pair of predicted and observed

values. Theil calls its square root the root-mean-square

prediction error (RMS). This term is expressed in the

same dimensions as the predictions and realizations. If

the RMS prediction error is divided by the square root of

the mean square successive difference of the realizations,

the result is the inequality coefficient (U) of the n

pa1rs (Pi’Ai)'

 

 

/ Z(P.-A.)
l l

U = 2

EA
1
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If U = 0, the forecasts are perfect, as Pi = Ai for all i.

While it should be observed that U = 1 indicates a pre-

diction error equal tO that Obtained by the naive method

of no-change extrapolation, it should also be noted that

U has no finite upper bound. Worse methods of forecasting

than simple extrapolation are possible. Comparison of

the technique being used and extrapolation provide

valuable information.

Because the denominator of the inequality coeffi-

cient is a factor only to provide the proper unit of

measurement, attention can be centered on the numerator.

The square of the numerator can be decomposed into three

terms, each of which expresses the extent to which a

particular kind of prediction error is present.

1 2_—_—2 _ 2
HZ(Pi-Ai) —(P A) +(s s)P A + 2(l - r)SPS

A

where P and A are the means:

'17:}- SP. A=$2A.
n n 1

8p and Sa are the standard deviations:



27

and r is the correlation coefficient of the predicted and

realized changes:

Errors leading to positive values for the first term of

the decomposition are errors of central tendency: errors

leading to positive values for the second term are errors

of unequal variation; and errors due to incomplete covari-

ation result in positive values for the decomposition's

final term. If each of these three terms is divided by

their sum, the resulting inequality proportions--Um the

bias prOportion, US the variance prOportion, and UC the

covariance prOportion--provide additional information as

to the quality of the prediction and an indication as to

the direction in which effort should be applied for

 

 

improvement.

Um = (P'- A)2

-l- 2(P. - A72
n 1 1

2

s_ (SP-SA)

U ‘1 2
— 2(P. - A.)
n 1 1
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The Kolmogorov-Smirnov Test
 

The Kolmogorov-Smirnov Test13 is a nonparametric

test to determine if a given sample is a sample from a

particular distribution function. A Chi-square Test can

also be developed to supply the same information.

Order the given sample, Xi’ in ascending order.

Find F(Xi) for each Xi as the area below Xi in the

theoretical distribution being considered. Where

Number of Xi i t

Fn(t) = n , Fn(Xi+) is the right-hand 

limit at Xi of Fn(t) and Fn(Xi-) is the left-hand limit

at Xi of Fn(t). Dn is then equal to the maximum of the

absolute values of Fn(Xi) — Fn(Xi+) or Fn(xi) - Fn(Xi-).

Now, given that X = nDn and where n is the sample size,

look up P which is tabulated. Finally the null hypothesis

that the sample is a sample from this theoretical distri-

bution is rejected if P is no larger than a preassigned

number a.

Response Surface Analysisl4’15
 

When the response y is a continuous function of

a single factor x, the method of response surface analysis
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is relatively easily applied to find the maximum or

minimum of this function in the practical range of interest.

Several conditions must be satisfied before this technique

can be effective. It must be assumed that the response

function can be approximated by a simple polynomial over

the range of interest and that the function has only a

single maximum (or minimum) within this range. SO the

key to this method is seen to be the managerial skill

with which the relevant area of interest is selected.

The general area of the extreme point must be known.

The general aims of the procedure are to find the

extreme point and also to determine the sensitivity of the

response function in the area of the extreme point.

Make several Observations of y for different

values of x within a selected subregion. Within this sub-

region, if it is assumed that the response function can

be approximated by a straight line, the lepe Of this line

can indicate in which direction x should change for the

next Observation of y. If the slope is relatively steep,

the indication is that the extreme point of the function is

still a reasonable distance (in terms of x) away, while if

the lepe is small, the extreme point is either very near

or very far. SO ifthe slope is small, several more Observa-

tions of y are taken for a given change in x. If this new

lepe declines, the Optimum is indeed close by; but if the

new slope increases, the Optimum is still some distance
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away. When the area of the extreme point is reached, a

second-degree polynomial (y = a + bx + cxz) is fitted to

the Observations made in the region. The first derivative

Of this function will provide the extreme point, and the

second derivative will provide the relative sensitivity

of the function in the area of the extreme point.

The size of the change in x used is important.

This change is determined from a general knowledge of the

process being examined. But at the same time, the change

in x must be such that the resulting change in y is

greater than can be explained by experimental error,

otherwise, a poor estimate of the slope will result.

When fitting the polynomial, the size of the change in x

should be held constant.

When the response y is dependent on more than one

factor, the principles of the method remain the same,

but now more than one path to the extreme point exists.

The question now becomes how to reach the region of the

Optimum most economically.

Considering two factors, one method is to hold the

first factor constant and vary the second until the response

is at an Optimum. Hold the second factor constant at this

level and vary the first until the response to it is

Optimal. Continue this procedure until the response is

Optimal for both factors simultaneously. This method and

a response surface for which the method would not work are

shown in Figures 2.1 and 2.2 respectively.
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Factor

A

 
 

Factor

Figure 2.1.--Successful Application of Response Surface

Analysis.

Factor

A &

 
 

Factor

B

Figure 2.2.--Unsuccessfu1 Application of Response Surface

' Analysis.
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The Box-Wilson Method16 of steepest ascent over-

comes this disadvantage to the one-at-a-time method. The

greatest ascent at any point is obtained if movement is

made in a direction perpendicular to the contour line

through that point. TO find the contour, a small number

Of observations must be made in a subregion which is con-

sidered near the maximum and to these points is fitted a

linear function or plane. Movement is made in a perpen-

dicular direction, and if a marked gain in the reSponse

function is observed, further observations are made in

this new region and a new plane is fitted. This procedure

is repeated until the fitted plane levels out (the

increase in the response along the path of steepest ascent

is diminishing) at which point the response surface is

mapped with a second degree equation. Classical methods

then determine the extreme point and its sensitivity. The

method is illustrated in Figure 2.3.

Spectral Analysis
 

Because all data generated by time series is

autocorrelated to some degree, a method of analysis which

will account for this autocorrelation is desirable. After

transforming the data from the time domain to the fre-

17'18 is a method by whichquency domain, spectral analysis

the autocorrelation can be quantified and evaluated.

Information about the magnitude of deviations from the

average level of a given activity and information
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Factor

A

/

  
Factor

B

Figure 2.3.—-The Box-Wilson Method of Steepest Ascent.

about the period or length of these deviations can be

Obtained.

Let {X teT} be a generating process or ensemble
t!

from which a sample time series {X t=l,2, ... ,n} ist’

taken. Due to the stochastic nature of the system,

analysis Of {Xt} cannot determine exactly the value Of

the series at any particular time, but the approximate

structure of the generating process can be determined.

This is done by Obtaining estimates of the parameters

which describe the generating process:
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Mean Of the Process E[Xt]

“t

Variance Of the Process OX2 Euxt - ut)2]

Autocovariance of the y(t,s)

Process between

Observations at

times t and s

E[(Xt-ut)(Xs-us)]

These parameters can be estimated from M independent

samples from {Xt} i.e., {Xt, k=l,2, ... , M}. One great

advantage of computer simulation is that in order to cut

across the ensemble at a particular t in this fashion all

that is required is an alteration in the value of the seed

of the pseudorandom number generator. As an example, cut

across the ensemble at t = t0 in order to calculate the

ensemble average estimating

Estimates of OX2 and y(t,s) are Obtained in the same way.

But spectral analysis is usually performed on

time series which have first and second moments that are

not a function of time.19 There is no trend inthe mean

or variance of the series, and the autocovariance is a

function of the time lag only. Such a series is called

stationary. From a single time series can be obtained
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n
— l
x = — Z X

n t=1 t

n

52 = i Z (Xt- X)2

t=1

and

l n-I _

Ct = 3:?I 2_ (Xk - X)(xt+T 'X)

t—l

where y(0) = 02 and CO = 52 which can be used as

estimators for

EIXt] = u

2 _ 2

and

Euxt- 11) (XS- m1 = Y(t-s)

for all t,s y where T = t - s.
T

The power spectrum is defined as the Fourier cosine

transformation of the autocovariance

(X)

¢(w) = Y + 2 E y cos (wt) O < w < n

O T=1 t - _
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The spectrum can be regarded as the "decomposition" of

the variance of a time series. This is because the auto-

covariance is recovered from the spectrum by the inverse

transformation

1 n

= F J ¢(w) cos (wT) dw : = 0.1.2, ...

and in the special case when T==0, yo is equal to the

variance (02). From the power spectrum is Obtained the

squared amplitude associated with oscillations at different

frequencies w, and the process is thus characterized in

terms of independent additive contributions to the variance

from each m. So in order to Obtain this information, an

estimate of the power spectrum must be Obtained. Estimators

of power spectra usually have the form

f(wj) = loco + 2 i=1 ATCT cos (ij)

where f(wj) is an estimate of the power spectrum averaged

11' 0

over a band of frequencies centered at wj, and ”j = 51'

j = 0,1,2, ... , m, II are weights, and m is the number

Of frequency bands to be estimated. The values of m and n

should be selected with care in order to balance the con-

flicting requirements of resolution and statistical

stability. Granger and Hatanaka20 recommend a sample size

of at least one hundred.
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The spectrum is analyzed by plotting f(wj) against

wj' Two important statistical prOperties are associated

with the spectrum if xt is normal. The first is that

Spectral estimates at nonadjacent frequencies are

statistically independent. SO confidence intervals can

be used. The second is that if the control or theoretical

Spectrum (¢(wj)) is reasonably smooth, the distribution of

f(w') sz 2n
¢ w is approximately —E— with K = —fi-degrees Of freedom.

3'

With this knowledge, confidence intervals can be con-

structed around ¢(wj)21, the succession of which at

frequency points wj(j=0,l, ... , m) combine to form a

confidence band. Now the question, does the spectrum for

any plan under consideration lie within the confidence

band of the control Spectrum, can be answered.

An extension of this type of analysis is the com-

¢l(w.)

parison of two spectra. The ratio Pj = $37647-1s used

f(w.) 3f1(w.)

instead of $75?7' Def1ne Rj to be equal to {EYEgT and

R.

- - - =.1 = =22Obta1n the F statistic Fkl,k2 Pj where k1 k2 m

degrees of freedom. The 95% confidence interval for Pj is

  

 
 

R.

..1 = 'then P(F.975,k ,k < P. < F.025,k ,k ) .95 and solv1ng

l 2 3 1 2

R. R.

for P. P(F 3 < P. < F 1 ) = .95 sets up the

3 .025,kl,k2 3 .975,kl,k2

R. R.

simultaneous confidence band P(F 3 < P. < F 3 )

.001,kl,k2 3 .999,tl,k2
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= .95. If P = 1 lies within the desired simultaneous

confidence band for P for all values of o :_w i n, the

hypothesis that the two spectra under consideration are

not significantly different can be accepted.

Spectral analysis has been used to decompose the

variance of a time series into its frequency components.

A rather different application of the technique is to

obtain an estimate of the variance as a whole for a given

time series. Because of the autocorrelation 82 does not

have a Chi-square distribution with (n-l) degrees Of free-

dom, but as 02 can be expressed in terms of o, so can 82

be eXpressed in terms of f. Blackman and Tukey22 state

2- ...}.
that S — C — m [ 

n f(n)
+ Z f(w.) + -———J follows a

j=1 3 2

Chi-square distribution with K degrees of freedom, where

 

 

m-l f(n) 2
[f2(0) +2.: f(wj) + T]

K = 2 1=1 2 ' Em- m

[15(3)] +2 [f(w.)]2+ [f(n)]

j=1 3 2

For the comparison of two time series, the F statistic is

2 2
nlsl /01 k1

 . A confidence interval can be set up for any
2 2

n232 /°2 k2

desired level of significance about this statistic, and

'then statements about the two variances can be made after

012

solving for ——7.

o
2
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Spectral analysis is a significant method of

analysis of the output of computer simulations because it

does account for autocorrelation.

Correlation
 

Correlation theory can most easily be examined in

terms of regression analysis. When all observations fall

on the regression line develOped from the data, perfect

correlation exists between these variables. For two

variables x and y, direct correlation exists if as y

increases so also does x, While inverse correlation exists

when x increases with a decrease in y. Perfect correlation

occurs when both the amount and direction Of change is

identical for both variables, or the regression equation

of x on y is identical to the regression of y on x.

The standard error of estimate is a measure of

dispersion about the regression line. This statistic

has the same prOperties as the standard deviation. The

standard error of y on x is

2

S = //' (Y - Yest)

y.x N '

 

 

A good measure of linear correlation is the

coefficient of correlation (r). The total variation in y

can be expressed as the sum of the unexplained variation

and the explained variation:
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2
Total Variation in y = 2(Y — Y)2 = 2(Y - Y )

est

2
+ 2(Ye - Y) .

st

From this expression r is developed as plus or minus the

square root of the eXplained variation as a fraction of

the total variation. An advantage of r is that it is

dimensionless.

 

- a 2

2(Y .—.Y)

r=i/ eSt_2 —l<r<l

2(Y - y) ‘ —

The linear correlation coefficient measures the departure

of the regression lines for each variable from each other.

The slope of the regression line of y on x is equal to the

lepe of the regression line of x on y only if r is equal

to plus or minus one.

When considering time series, the degree of cor-

relation between the present value of a variable and its

value a fixed number of time periods prior to the present

time is of concern. Correlation between members of a

series (k-l) units apart is called autocorrelation of

order k:

= GOV (“t’“t+k) .23

k /{VARpt VARut + k}

 

e



41

Non-linearity and multiple variables add compu-

tational complexity, but do not alter the logic of this

type of analysis.

Factor Analysis
 

Correlation theory provides the basis for Factor

Analysis (as it does for spectral analysis). Because the

literature is extensive24 and the method is of primary

use when considering qualitative change, a detailed

description will not be given.

Using the matrix of all correlations between the

variables under consideration, the resolution of the set

of variables linearly in terms Of a small number Of factors

is possible. If this process is carried out satisfactor—

ily, the factors will convey as much information about the

system as did the original set of variables. The main

aim of Factor Analysis then is to provide the most economi-

cal description Of the Observed data.

A given matrix of correlations can be factored in

an infinite number of ways. Factor solutions are usually

generated according to statistical considerations, such as

attempting to account for a maximum amount of the total

variance, or according to the meaningfulness of the solu-

tion to the particular experimental context. It should be

emphasized that Factor Analysis does not produce an

exhaustive set of fundamental factors which are a complete

description.
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‘ Graphical Techniques
 

A graphical description of a time series has the

advantage that it is easily developed. But this technique

must be considered only in the sense that used alone it is

better than no attempt at validation at all. Together

with the preceeding forms of analyses, graphical measures

provide a small marginal contribution to the analyst's

confidence in the validity of his model. While the real

value of this procedure is dubious, its high visual con-

tent does make it readily acceptable to general management.

Among the many possible graphical measures for

comparing two time series are:25 number, timing, and

direction of turning points; amplitude of the fluctuations

for corresponding time segments; average amplitude over

the entire series; simultaneity of turning points for

different variables; average values, probability distri-

butions, and variation about the mean (variance, skewness,

kurtosis) Of variables; and exact matching of variables.

Application
 

The process of selecting the most suitable

techniques for each of our three purposes and their

application to simulation output will be described in

Chapters V, VI, and VII.
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CHAPTER III

VALIDATION OF RECENT COMPUTER

SIMULATION EXPERIMENTS

Introduction
 

As indicated in Chapter I, the analyst's approach

to the question of the validity of the results of his

Simulation experiment is fundamentally determined by his

basic point of view as to the aim and method Of execution

of his experiment. The type of model built which is a

function of the analyst's outlook and training is a primary

factor in the nature and extent Of the validation procedure

employed for the results of the model. This chapter will

examine the procedures used to validate the results of

some Of the better known and better documented simulation

experiments of the recent past.

Computer Models of the Shoe,

Leather, Hide Sequence

 

 

Cohen (1960) constructed two simulation models to

describe the aggregate behavior of shoe retailers, shoe

manufacturers, and cattlehide leather tanners between 1930

and 1940. This aggregate behavior was described in terms

of selling price, production or sales, and receipts. While

46
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the first model (Model II) was a "one-periOd-change" model

determining values for these endogenous variables only one

time period in advance, the second model (Model IIE) was

a "process" model which determines endogenous variable

values for an arbitrarily large number of future time

periods. Cohen's model is discrete and dynamic with a

time increment of one month.

Visual comparison of the time paths of the model

predictions of selling price, production, and receipts

with the actual historical time paths Of these variables

comprised the only validation of the model.

The simulation runs for both Models II and IIE generate

time paths for the endogenous variables which, although

not in complete agreement with observed time paths,

indicate that our models may incorporate some of the

mechanisms which determine behavior in the shoe,

leather, hide sequence.l

Both models produce time paths which fluctuate around

the observed time paths. For most variables, the

amplitude of the oscillations is greater for Model

IIE than for the actuals, with Model II having the

largest amplitude. However, none of the time paths

for either Model seem to be either explosive or overly

damped. 2

The findings are also similar for average price. The

time paths of both Models II and IIE are reasonably

on course with observed values, although Model II

Shows even wider fluctuations about the actuals than

for the preceding prices.3

Simulation Of Information and Decision

Systems in the Firm
 

Continuing a research effort started principally

by Cyert and March,4 Bonini (1963) constructed a computer
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model of the behavioral theory of the firm. In order to

Show the effects of organizational, informational, and

envirOnmental factors upon the firm's decision making

process, Bonini decided that price, level of inventory,

cost, sales, profit, and amount of pressure would be an

adequate endogenous variable set to represent the behavior

pattern of the organization. The model was used as an

exploratory device to describe the relationship between

various informational flow patterns and the firm's decision

process. From these relationships design changes for the

firm could be recommended.

Bonini was not concerned with modeling an actual

firm. He was concerned with a comparison of the behavior

of his theoretical firm after a proposed change with the

original behavior. This comparison involved analyzing two

sets of six time series (one time series for each Of the

variables price, level of inventory, cost, sales, profit,

and amount of pressure before and after the proposed

change). Because these time series did not exhibit any

tendency to Obtain steady-state or equilibrium values

over time, Bonini settled for a measure of central tendency

(the arithmetical mean), a measure Of dispersion (the

standard deviation), and a measure of trend (the least-

squares regression coefficient) to describe the output

time-series of his model.



49

Bonini determined the requirements for the length

of these time series in the following fashion:

On the one hand, the run Should extend over sufficient

Simulated periods so that extreme values in the time

series can be averaged out (that is, so there will be

relatively small sampling error associated with the

above three measures). On the other hand, limitations

on computation time would argue for keeping a reason-

ably short number of periods. In addition, if we are

going to apply our results to real organizations, we

would be more interested in the immediate and short-run

effects (Of particular changes) than in what might be

the average level over, say 20 or 30 years. In view

Of these considerations, I have chosen 108 time 5

periods . . . as the length for the simulation runs.

Portfolio Selection: A Simulation

of Trust Investment

Clarkson (1962) developed a simulation model to

duplicate the procedure by which a trust officer in a bank

selected stock for any particular client's portfolio. The

model combines a set of decision rules which are selected

on the basis on information available about the client's

financial situation and requirements.

The output of the model is not a data stream but

a selection of a variable number of shares of a variable

number of stocks, given the client's position. Clarkson

applies two types of testing procedures to his model:

those pertaining to the output of the model alone and

those pertaining to the decision processes incorporated

in the model.

For testing output Clarkson notes,

Since the problem of determining the type Of error

when comparing generated to actual output has not yet
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been solved, statistical tests on the goodness of fit

of the generated output are not very meaningful. The

only statistical test that has much meaning is to test

whether the generated data give a significantly 'better

fit' than that which would be produced by some random

or naive mechanisms.6

He tested the model against a "random selector"

from the total population. Stocks were being selected at

random without replacement from the list of total stocks

available. This list contains M stocks Of which W have

been selected by the trust Officer for the particular port—

folio under consideration. Z is defined as the number of

these stocks selected by the trust officer which occur in

a sample of n stocks drawn at random from the list without

replacement. 2 is called the hypergeometric random

variable.

(13) (13319
Pz(k) = k = 0,1,2, . . . ,n

M)n

where <2) = O for a>b

 

Clarkson rejected the hypothesis that this probability was

equal to the percentage of matching or "correct" responses

generated by the model. The size of the list was reduced

to include only those issues which displayed the character-

istics desired by the client, and the hypothesis was still

rejected.
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Naive decision rules replaced the random selection

procedure, and the hypothesis was still rejected. The

decision rules considered were:

1. Rank growth stocks on the basis of growth in

price over the last 10 years.

2. Rank growth stocks on the basis of growth in

earnings over the last 10 years.

3. Rank growth stocks on the basis of growth in

sales over the last 10 years.

4. Rank growth stocks on the basis of growth low

yield over the last 10 years.

5. Rank yield stocks on the basis of growth high

yield over the last 10 years.

His Objective, Clarkson contends, is to simulate

investment behavior, to select the correct portfolios with

the same processes and for the same reasons as the invest-

ment Officer. Therefore, the need to test the decision

processes exists. Turing's test7 was used: Can an impartial

Observer discriminate between the output of the model of

human behavior and the output of the actual human behavior?

Simulation of Market Processes

Balderston and Hoggatt (1962) constructed a computer

simulation model of the West Coast lumber industry. The

emphasis of the model is not to describe the real firms

making up this industry, but to study the dynamic behavior

of firms in a two-stage market from the vieWpOint of an
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economic theorist. The model is driven by wholesalers to

whom suppliers provide and from whom customers purchase.

While flows of information, material, and money move

vertically through the market, no horizontal movement is

allowed. At the end of each market period decisions about

output and price and entry and exit to the industry are

made.

Concern for the validity of the model centered on

the question Of viability. Viability, as used by Balderston

and Hoggatt, does not require equilibrium of the endogenous

time paths, but only requires that "behavior should persist

over a significant time interval."8 Persistent behavior

means that the time path is stable--stable in the sense

that it settles into a state which exhibits properties of

convergence or stable in the sense that change over time

is steady with proportional (or acceptable) changes in the

other endogenous variables.

This is the extent to which the original study

considered the model's validity. Hoggatt in a later

article9 applied G. E. P. Box's10 method of system analysis

to the model. At this time more SOphisticated validation

techniques were introduced. Hoggatt states that he would

consider the model valid if it "duplicated [the] trends and

11
frequency response of [the] real system" rather than

aiming to have the model duplicate the time paths of the
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real system. In order to measure the frequency response

of the model, he used the autocorrelation function.

Industrial Dynamics

Industrial Dynamics was developed by Forrester

(1962) from his original dynamic simulation model of a

firm's production-distribution system. Forrester has

tried with limited success to convert his model building

techniques into a general management philOSOphy. He

describes Industrial Dynamics as

the study of the information-feedback characteristics

of industrial activity to show how organizational

structure, amplification (in policies), and time

delays (in decisions and actions) interact to influ-

ence the success of the enterprise. It treats the

interactions between flows of information, money,

orders, materials, personnel, and capital equipment

in a company, and industry, or a national economy.

Industrial Dynamics provides a single framework for

integrating the functional areas Of management--

marketing, production, accounting, research and

development and capital investment. It is a quanti-

tative and experimental approach for relating organiza-

tional structure and corporate policy to industrial

growth and stability.12

The greatest contribution of the Industrial Dynamics

models was to point out the extraordinarily large fluctua-

tions that can occur in the inventory held at the retail

level when a change in customer demand is reflected through

the lagged order delivery sequence: retailers-distributors-

factory warehouse-factory-factory warehouse-distributors-

retailers. From this basic production-distribution model

many possible changes can be tested: limit factory capacity,
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eliminate the distributors, add additional sectors such as

a market sector, include advertising.

How well the model serves its purpose is Forrester's

test of its validity.. The purpose of Industrial Dynamics

is to design better management systems; therefore, validity

can only be tested after an Industrial Dynamics approach

has been applied to a situation and the results measured

in some concrete terms such as increased profit. Defense

of the model prior to use can only be given in terms of

an individual defense of each detail of structure and

policy so that in sum the total behavior of the model

shows performance characteristics associated with the

real system. The validity of the model at this stage as

a description of a specific system can only be examined

relative to the system boundaries (Are the boundaries

suitable relative to the objectives of the experiment?),

to the interacting variables, and to the values of the

parameters. If the similarity of the model output to the

actual characteristics of the system is not sufficient,

these three factors must be examined and changed., These

views on validity can be summarized in the following

quotations:

Validity as an abstract concept divorced from purpose,

has no useful meaning.13

The ability Of a model to predict the state of the real

system at some specific future time is not a sound test

of model usefulness.l4



55

Data may serve to reject a grossly wrong decision-

making hypothesis, but they can scarcely prove a

correct one.

Forrester believes the final test for validity is whether

the actual system is being controlled to agree with the

model.

Computer Simulation of Competitive

Market Response

 

 

In order to define and analyze management problems

involving the environment of the firm, Amstutz (1967)

developed a simulation model of competitive market response.

The objective of the study was to model the firm

and the environment external to the firm so that the total

effect of changes in variables which can be controlled by

management could be measured. Amstutz set up his system

structure in terms of three sets of elements. Active

elements are human. They can originate and react to

signals. The eight active elements involved in the model

are the producer, his competitors, distributors and whole-

salers, salesmen, retailers, consumers, government Officials

and research workers. "Elements of flow are the vehicles

16 These are theOf interaction between active elements."

elements management can manipulate in order to try and

achieve his Objectives. The elements of flow are product,

information and capital. The last set of elements are the

passive elements (time delays, dissipators and storage)

which describe the channels through which the flow elements
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move between the active elements. By means of this formula—

tion the dynamic effects of the origination of a signal by

management can be examined.

The tests Amstutz carried out in an attempt to

analyze the worth of his model were of two types--reliability

testing and validity testing.

The purpose of reliability testing is to determine

if the results of the model are reproduceable. Are the

results Obtained on sequential runs sufficiently alike to

justify the assumption that they are two samples drawn

from the same population of data?

Validity testing is concerned with "truth." As

there is no Objective measure of truth, Amstutz argues

that a subjective evaluation of the consistency Of the

model's performance with theory and prior knowledge must

be made.

Validity Of a model can be established only by

examining the realism of the assumptions on which

it is based.17

Evaluation of the model's performance is possible

using the Turing test. If a person knowledgeable in the

area to be modeled cannot distinguish the model from the

real system when provided with responses from both, then

the model is realistic. Other tests for validity can be

performed once the validity of the assumptions on which

the model is based has been established.
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Tests for Viability . . . This is a very gross test

which is usually satisfied without explicit consideration.

Does the model generate behavior which persists over a

significant time interval?

Tests for Stability . . . Variables and processes

which are stable in the real world must also exhibit

stability when modeled.

Tests for Consistency . . . Consistency between

model behavior and behavior observed in the real world.

The extent to which the assumptions of the model agree

with known facts must be tested as must the internal

consistency or "deductive veracity" of the model--does the

model "make sense." This testing may be done subjectively

as "face validity" testing (does the model appear to be

satisfactory), or analytically with sensitivity analysis.

Duplication of Historical Conditions . . . The

fourth set of tests proposed by Amstutz.

Prediction of Future Conditions . . . The ability

of the model to predict cannot be tested until after the

passage of time over which the predictions were made unless

"pseudo predictions" are made of past results.

Amstutz carried out these tests in the following

manner. Reliability was tested by calculating "interrun

deviations" when changing the seed in the random number

generator. Subjectivity and "eyeball" testing confirmed

viability, stability, and consistency requirements. To
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determine the extent to which the simulated exogenous time

paths matched historical data the absolute error between

simulated and actual was summed and averaged. The predic-

tive ability of the model was not examined.

Model Classification
 

In order to summarize the views on validation Of

these seven model builders, it might prove instructive to

classify their models. The models will be classified as

discrete or continuous, positive or normative, and behav-

ioral or physical.4 A discrete time model is structured

using difference equations while a continuous time model

is built with differential equations. A positive or

descriptive model is one which attempts to replicate a

real system. But no consideration is given as to the

adequacy or value of this real system. A normative model

attempts to produce the Optimal conditions for the system

under study. Explorative models generate solutions in

search of this goal. Positive is to normative as "what is"

is to "what ought to be." The last classification dichotomy

is behavioral-physical. If any part of the model is an

attempt to duplicate human behavior, the model is classified

as behavioral, otherwise it is physical (see Table 3.1).

The next task is to use this classification scheme

to determine if those who build the same type of model hold

similar views as tO the procedures by which their models

can be validated.
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Unifying Validation Concepts

From the study of these six models general concern

is directed in varying degrees to two distinct types of

validation--va1idation of the basic underlying processes

of the model and validation of the data stream output of

the model. Because the basic design and assumptions used

in any model are certain to differ from those used in any

other model, design validation procedures must of necessity

be tailored to the particular model under consideration.

This type of validation is probably best carried out by

interactions between the model builders and those who are

familiar with the real system being modeled both during

and after construction of the model. After completion of

the model, the Turing test can be used to increase confi-

dence in the validity of the basic design. This type of

model validity will be called design validity; validity

of the output data stream will be called output validity.

This study will not consider design validity to

any great extent for two reasons. First, as indicated,

design validity is a concept specific to the particular

:model at hand; and second, if the model satisfiesthe

requirements of output validity, it is not unreasonable

to assume that the basic processes of the real system must

.have been modeled reasonably accurately. Friedman adds

weight to the decision not to consider design validity.

the believes that the validity of a theory is not based
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on the realism of its assumptions (complete "realism" is

unattainable), but on the accuracy of its predictions.

Design validity is the point at which many normative

model builders (in particular Forrester) stop. They argue

that a normative model is not built to represent the actual

system, but to represent the system the way it should be.

Missing from this argument is a rational method Of moving

from the actual state to the desired state. A functional

normative model might well be one which first models the

actual system (at which point output validity testing can

be carried out) and then the desired corrections are made

from this basis.

The Cohen and Bonini models, and even the more

recent Amstutz model, after a rather thorough description

of validity testing, use subjective and basic statistical

tests for validity. It is reasonable to conjecture that

in general validation of currently built simulation models

is not carried out at a much, if any, higher level of

sophistication.

Balderston and Hoggatt's original analysis for

validity is also rather limited and basic, although

Hoggatt's later analysis is the most sophisticated of

those employed in the models discussed.

Data produced from a strictly behavioral model

such as Clarkson's is very limited. His analysis is quite

adequate for the purpose of his model.
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Two main points arise from this examination of

some of the most well known Simulation models. The first

point is that regardless of the type of simulation used

or the aims of the analyst, much of the activity that has

to be carried out in order to validate the model is the

same. The second point is the Obvious need for the use

of more extensive and more reliable techniques in the

validation process.
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CHAPTER IV

THE MODEL

Introduction

When large amounts of money and manpower have been

applied to a project over an extended period of time, there

is a natural reluctance (maybe not explicitly stated or

felt) to subject the finished model to scrutiny, the result

of which may indicate the worthlessness of the expenditures.

Because our industrial sponsor did not discourage critical

examination of the completed model, this dissertation is

a formal analysis of the model's validity. Rather than

narrow the focus to the validity of one specific model,

validation of simulation models as a class will be examined

with particular reference to this one model. A description

of the long-range environmental planning simulator for a

physical distribution system (LREPS) follows.

The Systems Approach

During the post-war period there has been an

increasing use of quantitative analysis (usually discussed

as operations research or management science methods) of

.industrial problems in order to supply an added dimension

in: the decision making process. Use of these techniques
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in physical distribution has on the whole been applied to

isolated segments of the entire system.1 Only recently

has the firm's fixed facility network, transport capability,

inventory allocations, communications, and unitization

(material handling, packaging, containerization) procedures

been conceptualized as an integrated physical distribution

system.2 Suboptimization can occur without an orientation

toward an integrated system. For example, suppose a cor-

poration is organized into four functional areas: purchas-

ing, finance, manufacturing, and sales. The responsibility

for physical distribution activities is allocated as

follows: inbound materials under purchasing, branch plant

shipments and order processing under finance, traffic and

shipping under manufacturing, and inventory control and

public warehousing under sales. If planning is not carried

on from the point of view of the corporation as a system,

suboptimization might occur if purchasing determined the

quantity of raw materials required solely on the basis of

price per unit. This would probably mean large inbound

shipments and non-optimal raw material inventory due to

high storage costs. Many other Situations can OCCur where

the Optimal action for a particular corporate functional

area is suboptimal for the company as a whole. Recognition

<3f the possibility of this type of suboptimization has led

to the establishment of integrated physical distribution

Systems by many corporations.
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The argument for integration using the systems

concept could be extended. Why not integrate the functions

of the firm? Why not integrate firms into a model of the

economy? Given the capacity limitations of the present

generation of computing machinery, the trade-off exists

between cost benefits from the "systems effect" and loss

Of ability to represent the system components accurately

in the required detail. At the desired level of detail

a great deal of effort had to be expended in order to

ensure that the size of LREPS did not exceed the capacity

of the available computing machinery. Integration beyond

the level of the physical distribution system would have

required a lower level of model refinement. But the

systems concept is a vital development which will be extended

with future technological advances.

Model Structure
 

The actual physical distribution system is modeled

in terms of the general structure given in Figures 4.1 and

4.2. The five basic components of an integrated physical

distribution system (the fixed facility network, transport

capability, inventory allocation, communication, and

unitization) are evaluated at three stages in the channel

structure. These three stages are:

l. The manufacturing control center (MCC) which

produces a partial product line and distributes
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PHYSICAL DISTRIBUTION SYSTEM
 

MANUFACTURING CONTROL CENTERS (MCC)

MULTI-LOCATION

EACH PRODUCES LESS THAN FULL LINE

EACH PRODUCT IS PRODUCED AT MORE THAN ONE MCC

REPLENISHMENT CENTERS (RC)

MULTI-LOCATION

EACH STOCKS ALL PRODUCTS MANUFACTURED AT MCC

DISTRIBUTION CENTERS (PDC) (RDC)

MULTI-LOCATION

FULL LINE - PRIMARY DC (PDC)

FULL OR PARTIAL LINE - REMOTE DC (RDC)

CONSOLIDATED SHIPPING POINT (CSP)

TRANSPORTATION

COMMON CARRIER - TRUCK, RAIL, AIR

INVENTORY

STOCKS AT RC, PDC, RDC

COMMUNICATIONS

COMPUTER, TELETYPE, MAIL, TELEPHONE

UNITIZATION

AUTOMATED OR MANUAL

PRODUCT PROFILE
 

MULTI-PRODUCT LINE

KEY PRODUCT GROUPS FOR EACH CUSTOMER CLASS OF TRADE

MARKET PROFILE

MULTI-CUSTOMER CLASSES OF TRADE

TOTAL U.S. MARKET

 

COMPETITIVE PROFILE

MULTI-COMPETITORS

 

Figure 4.1.--General Description of Firm-Distribution Audit.l

1D. J. Bowersox, et a1., Dynamic Simulation of

Physical Distribution Systems, Monograph (East Lansing,

Michigan: Division of Research, Michigan State University,

Forthcoming).
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STAGE 1:

MANUFACTURING

CONTROL

CENTERS

AND

REPLENISH-

MENT

CENTERS

 

  

STAGE 2:

DISTRI-

BUTION

CENTERS

  PDC PARTIAL

LINE

        
  

STAGE 3:

DEMAND

UNITS

 

 PD REGION    PD REGION J

 

 

 

-----INFORMATION FLOW PRODUCT FLOW 

REGION..THE REGION IS DEFINED BY THE ASSIGNMENT OF RDCS AND

DUS TO A.PDC. ’

MCC.....EACH MANUFACTURING CENTER PRODUCES A PARTIAL LINE.

RC......REPLENISHMENT CENTERS STOCK ONLY PRODUCTS MANUFAC-

TURED AT COINCIDENT MCC.

RDC.....REMOTE DISTRIBUTION CENTER. FULL 0R PARTIAL LINE. .

PDC.....PRIMARY DISTRIBUTION CENTER. EACH PDC IS FULL LINE

AND SUPPLIES ALL PRODUCTS TO DUS ASSIGNED TO THE

PDC REGION: PRODUCT CATEGORIES NOT STOCKED AT THE

PARTIAL LINE RDCS IN THE REGION ARE ALSO SHIPPED

BY THE PDC.

DU......THE DEMAND UNIT CONSISTS OF ZIP SECTIONAL CENTER(S).

CSP.....CONSOLIDATED SHIPPING POINT.
 

. . . . 1

Figure 4.2.--Stages Of the Phy51ca1 Distribution Network.

1D. J. Bowersox, et a1., Dynamic Simulation of

Physical Distribution Systems, Monograph (East Lansing,.

MichIgan: Division of Research, Michigan State Univer31ty,

Forthcoming).
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these products from the adjoining replenishment

center (RC).

2. The distribution center (DC) which provides a

product selection at a location from which

customer service requirements can be satisfied.

3. The demand unit (DU) which is an individual

customer's demand or the agglomeration of

several customers' demands.

The items manufactured at the MCC move to the

customer through the distribution centers. Four different

types of distribution center exist at the DC stage.

Primary distribution centers (PDC) handle a full line of

the firm's products and have the potential to serve all

the demand units in a defined region of the total market

area. Remote distribution centers full line (RDC-F) also

handle all of the firm's products, but service only a pre-

assigned subset of the DU's within the PDC market region.

A remote distribution center which handles only a fraction

of the firm's total product line is called a remote distri-

bution center partial line (RDC-P). The last type Of DC

is the consolidated shipping point (CSP) which is an RDC-P

which handles no products, but functions as a point at

which the demand of several DU's is agglomerated and

served from a PDC. The PDC'S are capable of serving the

same demand units as an RDC-P, but cannot serve the demand

units affiliated with an RDC-F.
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This model structure presents the physical distri-

bution system at an integrated level, a level which allows

the accumulation of information pertinent to the particular

project in progress, but which also allows the same model

(with minor modification) to be used in a wide range of

other applications.

Consideration of the physical distribution system

as an integrated unit offers management financial advantages.

Can the Operations research techniques used to analyze the

elements of the system be extended to the system in its

entirety? Usually not. The interaction between the elements

of the system normally introduces a degree of complexity

such that analytical procedures cannot be used. Fortunately

numerical procedures exist which provide a method for study-

ing this class of larger, more complex, problems. Such a

numerical procedure is simulation. Simulation as a tool

is less accurate and more costly than an analytical tech-

nique, but it is feasible.

As a design specification Of the project was for

a ten year time horizon, the model must be dynamic--dynamic

because information is required of the system at all points

along the time horizon, not just the end. The effect of a

decision at time n is dependent upon the timing and nature

of the decisions made prior to time n. LREPS has the

facility to change over time both the endogenous variables,



72

using internal feedback mechanisms and the exogenous

variables, which represent the system's environment.

A dynamic simulation model is desired which will

analyze the cost and service trade-Offs between the elements

or subsystems of the physical distribution system caused by

any given sequence of decisions made over a long-range

planning horizon.

The two main aspects which set the model apart

from previous studies are the consideration of both spatial

and temporal dimensions of the physical distribution system

in one model and the concept Of flexibility. The descrip-

tion of the model subsystems to follow will indicate the

method of including both spatial and temporal considera-

tions. Due to the stochastic nature of the system being

modeled, several acceptable outcomes are possible from a

given managerial decision. The flexibility of one parti-

cular outcome is the degree to which it is representative

of the whole range of acceptable outcomes.

Subsystem Detail
 

The model3 is constructed in three main parts: The

Data Support Subsystem, the four subsystems which comprise

the actual Operating model (the Demand and Environment

Subsystem, the Operations Subsystem, the Measurement

Subsystem, and the Monitor and Control Subsystem), and

the Report Generator Subsystem. This structure is shown

in Figure 4.3.
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The Data Support Subsystem generates the input

tape for the model. Contained on this tape are the con-

stant exogenous variables for a particular experiment

using the model and also the amount and timing over the

ten year planning horizon of changes in controllable

variables. The controllable variables are order char-

acteristics, product mix, new products, customer mix,

facility network, inventory policy, transportation, com-

munications and unitization.

The second main segment of the model contains a

mathematical representation (difference equations) Of

demand generation and allocation, the driver of the model,

and the five elements of the physical distribution system:

transportation, inventory control, facility location,

unitization, and communications.

The Demand and Environment Subsystem subdivides

the national sales forecast to the individual demand units,

generates actual customer orders by product, allocates

these orders to the demand units, and assigns a distribu-

tion center to service each demand unit. TO avoid dealing

with individual customers, demand was summarized by Zip

Sectional Center. The product orders representing this

demand were drawn in blocks at random from the order matrix

until the demand unit's daily sales forecast4 was satisfied.

Blocks on the order matrix contain orders for a stratified

sample of fifty products, or about 12% of the total product
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line. These orders can be constructed to be representative

of historical conditions, or “pseudo orders" can be gener-

ated. Testing new product lines, changing demand patterns,

or observing the dynamics of alternative inventory policies

is possible by generating "pseudo orders" with the desired

characteristics. Finally, demand units are assigned to

distribution centers according to one Of these decisions

rules: minimum distance, minimum transit time, minimum

transportation cost or a heuristic combination of these

three factors.

The Operations Subsystem uses the information

supplied by Demand and Environment and processes the

product and information flows through the physical distri-

bution system. Orders arrive each day at the distribution

centers from the demand units. If inventory on hand is

sufficient to meet this demand, the order is prepared and

shipment is made, but if inventory on hand is not sufficient,

a backorder is created, and at the time indicated by the

inventory policy in use, an order is sent to the replenish-

ment center. This transmittal time for the order, together

with order processing and preparation time, the delay to

the next scheduled shipping time, and the transit time to

the distribution center, make up the reorder cycle. The

average customer order cycle time, a measure of the system's

aservice capability, can then be calculated as the total of

customer order transmittal time, customer order processing
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and preparation time, the mean reorder cycle time, and the

customer transit time. One of three inventory policies

trigger the reorder cycle--a daily reorder point system,

an optional replenishment system or a hybrid combination

of these two. Communication policies can be tested by

varying the distribution from which the transmittal time

is selected. An order system based on mail, for example,

would be represented by a distribution of order transmittal

times with a larger mean and variance than would an order

system using a teletype.

The Measurement Subsystem develops cost, service,

and flexibility measures of the activity levels of the

Operations Subsystem. Fixed facility investment cost,

tranSportation cost, communications cost, average inventory

carrying cost, reorder cost, and throughput or unitization

cost per distribution center are summed to the total cost

associated with the physical distribution system. The

annual fixed facility investment cost is Obtained by

depreciating the dollar investment for the facility over

its functional life span. The dollar investment is

assumed to be constant for a given size and type Of

facility. To determine transportation costs, both inbound

from the replenishment center to the distribution center

and outbound from the distribution center to the demand

‘units, the appropriate freight rate for the distance is

Inultiplied by the weight. The freight rates were determined
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by regression analysis in order to account for such factors

as freight class, weight breaks, regional differences,

negotiated rates and average shipment size. The number

of orders and lines processed are used to determine com-

munication costs for each network link and each facility

size, again by regression analysis. Inventory costs (aver-

age carrying cost and reorder cost) are determined for a

sample product category and then extrapolated up by the

appropriate sample to product line ratio. Average

throughput costs per unit of volume moved through distri-

bution centers of each size and type have been calculated.

Throughput cost for the distribution center is then

volume times the appropriate cost per unit.

Also calculated in the Measurement Subsystem are

such service characteristics as the number of stockouts,

total order cycle time, and the percentage of demand satis-

fied within a specified number of days' transit time.

The Monitor and Control Subsystem provides an alter-

native to specifying all changes in controllable variables

in the Data Support Subsystem prior to the actual running

of the model. In Monitor and Control, desired and actual

levels Of cost, service, and flexibility are compared

at.specified stages over the time horizon, and modi-

2fications are made automatically to the physical dis-

‘tribution system on the basis of the size of the

‘Lariance. The modification might take the form of an
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expansion, addition or deletion of physical facilities for

future periods or it might be an alteration of the sales

forecasts for future periods.

The final main segment Of the model is the Report

Generator Subsystem which organizes the output data of the

model into management reports.

Validation
 

Effort to validate a computer simulation model can

be directed in two ways--to validate the design or method

Of construction of the model and tO validate the output of

the model. As indicated in Chapter III, too much emphasis

has been placed on design validity in the past. This

dissertation will concentrate on methods to establish the

output validity of computer simulation models in general,

and in particular the LREPS model.

Given this emphasis, it is still important to

recognize the need to test for design validity during

the process of constructing the model and as an initial

procedure upon its completion. This testing involves

checking the functioning of the model and its components

for reasonableness. DO the values Of the endogenous

variables fall within acceptable limits? This procedure

is sometimes known as determining the model's face validity,

that is, determining the extent to which the assumptions

of the model agree with known facts and also the internal

cIonsistency or "deductive veracity" of the model. In
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other words, the model must "make sense." Table 4.1 con-

tains the face validity analysis for LREPS. A comparison

of simulated versus actual data for an information category

is designated "within limits" if the variance is less than

5%.

The third output validation procedure proposed is

to examine the sensitivity of the major assumption employed

by the model. To the extent Of the analysis of data

streams before and after a change in these assumptions,

this is output validity. But the determination of the

particular assumptions to be examined is a problem of

design validity.

Gross malfunctions of a particular model can be

discovered by analysis for face validity or design validity.

Once the model has satisfied these criteria, the more

general and SOphisticated procedures for establishing

output validity can be applied. These methods as applied

to the LREPS model are now briefly discussed (the next

three chapters take up each of the methods in greater

detail).

Data streams for several endogenous variables need

to be generated by the model over an extended time period.

This is so the stability or viability of the model over

the long run can be established. Do the data streams

examined show persistent behavior over this time interval?
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TABLE 4.1.--LREPS Face Validity.

 

Information

Category

Simulated Versus

Actual

PD

Stages

 

Cust Sales

Cust Dollar

Sales/Order

Cust Wt

Sales/Order

Line Items

per Order

Cust Serv--

NOCT-Avg Within Limits DC and Domestic

NOCT-Std Dev No Data Avail. DC and Domestic

T4-Avg Within Limits DC and Domestic

T4-Std Dev No Data Avail. DC and Domestic

Dollar-Preps No Data Avail. DC only

Order Preps Within Limits DC only

DC-MCC Reorders Within Limits DC only

DC Stockouts No Data Avail. DC only

DC Avg IOH Within Limits DC only

Cust ship Difficult to

Accums Compare Because

Of Small Sample

Averages in Cust

Order Blocks

MCC Ship

Accums Within Limits MCC only

Total Product

Demand Within Limits Domestic only

Total PD Cost-- Within Limits DC and Domestic

Facilities Within Limits DC and Domestic

Transportation v

Inbound Within Limits DC and Domestic

Outbound Within Limits DC and Domestic

Inventory Within Limits DC and Domestic

Communications Within Limits DC and Domestic

Throughput Within Limits DC and Domestic

Cum Wt Indicies Within Limits DU, DC and Regional

Within Limits

Within Limits

Within Limits

Within Limits

DU, DC and Domestic

DC and Domestic

DC and Domestic

DC and Domestic
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The second validation procedure requires a measure

Of the extent to which the model is an accurate representa-

tion of the real system. Time paths of selected endogenous

variables, which are representative of the physical distri-

bution system's behavior, will be generated by the model

over a past time period. Statistical analysis Of this

data with actual historical data over the same time period

will provide the required measure.

Two critical building blocks in the model are the

use of a stratified sample of fifty products to represent

the total product line and the method of generating demand

unit orders. The model should be constructed so that

reasonable changes in these two procedures do not have a

significant effect on the model output. To carry out this

third validation procedure, analysis of selected endogenous

data streams before and after the change will be required.

An example of such a change is the alteration of the compo-

sition or size of the stratified sample.

As indicated, the methods used, and the results

Obtained, with these three types of analysis will be

examined in later chapters.
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1For example:

Transportation--

W. H. Hausman and P. Gilmour, "A Multi-Period Truck

Delivery Problem," Traneportgtion Research, Vol. 1, NO. 4

(December, 1967), pp. 349-357.

Warehousing-—

A. A. Kuehn and M. J. Hamburger, "A Heuristic

Program for Locating Warehouses," Management Science, Vol.

9, NO. 11 (July, 1963). PP. 643-666.

Inventory--

A. F. Veinott, "The Status of Mathematical Inventory

Theory," Management Science, Vol. 12, NO. 11 (July, 1966),

pp. 745-777. (This article includes an extensive bibli-

ography.)

2D. J. Bowersox, E. W. Smykay, and B. H. LaLonde,

Physical Distribution Management (New York: The Macmillan

Company, 1968), Chapter 5.

3A more detailed description of the model can be

Obtained from the monograph "Development Of a Dynamic

Simulation Model for Planning Physical Distribution

Systems: Formulation of the Conceptual Approach and

Research Design" which is in process at the Graduate

School of Business Administration, Michigan State Uni-

versity.

4The daily sales forecast for the demand unit is

a function of population, retail sales, personal income

and effective buying power associated with the Zip Sectional

Center.
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CHAPTER V

STABILITY OF THE MODEL

Introduction
 

The first aspect of validity to be subjected to

detailed analysis is long-term stability. Stability is

the ability of the model to generate endogenous data

streams which Show persistent behavior over the long run.

Over this time period the data streams will exhibit con-

vergence properties or the rate of change of each endogenous

variable being examined will be proportional to or accepta-

ble to the rate of change in all other endogenous variables.

The ten-year planning horizon of LREPS is considered "long-

term." I

This type of analysis follows naturally the

establishment of the model's face validity. While face

validity is a statement of the model's reasonableness over

the Short run (preliminary runs of any model are usually

not for the entire planning horizon), the analysis Of this

chapter is a statement of the model's reasonableness over

the long run.

Endogenous data streams of sales weights for the

three products are examined. This analysis is carried out

1J1 two ways. The first way is to study the time series or

83
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data stream and then make statements as to the reasonable-

ness of its variability over the time horizon. Spectral

analysis is used for this purpose. The second type Of

analysis is to lag the original time series by k units

and then compare this lagged time series with the original

set of Observations. This comparison Should indicate a

reasonable correspondence between the two data streams.

Given this particular analysis a 10 unit lag was selected,

as a large proportion of the variance of the time series

could be expected to occur over a two week period.

Graphical Analysis
 

Gross instability of the endogenous data stream

under consideration is indicated rather clearly when the

data is graphed. But it must be pointed out that the

amount Of variability contained in the data can appear

to increase or decline with a contraction or expansion

of the range of the ordinate. Figure 5.1 is the graph of

sales weight for each of the three products over a ten-

year period (Product 1 is plotted with "+'s," Product 2

with octagons, and Product 3 with triangles). No inordinate

amount of fluctuation is observable from this graph.

Parameters of the data streams are of relatively

little value because of the averaging effect over a large

number of observations and also because a comparison Of

two different data streams is not being made. Recognizing

this fact, the means, variances, skewness, and kurtosis of
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the three data streams are given in Table 5.1. The means

and variances are of limited value as absolute quantities.

A normal value for kurtosis is 3, and the symmetry of a

symmetrical distribution is l. The distribution for

Product 1 is remarkably symmetric. The distributions of

the other two products are nonsymmetric and leptokurtic

("humped" to a degree greater than normal).

TABLE 5.l.--Means, Variances, Skewness, and Kurtosis.

 

Sales Weight

 

 

 

Product 1 Product 2 Product 3

Mean 530.95 326.61 1.78

Variance 100162.81 89553.83 13.79

Skewness 1.00 2.05 2.81

Kurtosis 1.23 6.37 9.40

Correlation
 

The amount of correlation between a time series and

the same time series with observations lagged by k units is

of interest. This can be shown by the coefficient of deter-

mination (r2) which expresses the percentage of the total

variation in the original variable which is "explained" by

the regression line of this variable on the lagged variable.

.Also conveying the same type of information is the autocor-

relation of a time series at time t and at time (t + k). The

«autocorrelation of order k is given by
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COV(ut. ut+k)

 

ek _ (VAR ut) (VAR “t+k’

The first task is to examine the coefficient of

correlation (r). The range of this coefficient is from -1

to +1, or from perfect negative correlation to perfect

positive correlation. The values of r for original data on

lagged data are given in Table 5.2 as well as the results

Of the null hypothesis that r is significantly different

from zero. In order to accept the null hypothesis with

95% confidence, r must be greater than 0.197.1 The

hypothesis is rejected for Product 3. This product is

a slow mover, and so the variation in sales weight between

a given time and a time two weeks later could be considerable

(for example a positive sales weight against no sale or zero

sales weight). So this result appears reasonable.

TABLE 5.2.--Test of Correlation Coefficients.

 

Sales Weight

 

 

r HO

Product 1 0.6162 Accept

Product 2 0.5421 Accept

Product 3 0.1075 Reject

The values of the coefficient of determination are

given in Table 5.3. A moderate amount of the total
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TABLE 5.3.--Coefficients of Determination.

 

Sales Weight

 

Product 1 0.3797

Product 2 0.2939

Product 3 0.0116

 

variation in the original data for Products 2 and 3 is

explained by the lagged data--enough to suggest the absence

of instability over two-week periods.

Usually the presence of autocorrelation is a burden

to the analyst of time series. But for the present purpose,

autocorrelation indicates an inherent relationship between

observations in the time series at point n and those at

point (n + k). The existence of such a relationship limits

the susceptibility of the time series to excessive fluctua-

tion. The autocorrelations of order (k = 10) for the three

data streams are listed in Table 5.4.

Theil's Inequality Coefficient

The quality Of predicted results, given the availa-

1bility of the actual outcomes, is measured by Theil's

inequality coefficient. If the coefficient is zero, the

:forecasts are perfect; and if the coefficient has a value

<3f one, it means that the forecasting method has generated

r’Gasults no better than those obtained by no-change
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TABLE 5.4.--Autocorre1ation.

 

Sales Weight

 

Product 1 0.0044

Product 2 -0.0199

Product 3 0.0394

 

extrapolation. The inequality coefficient has no finite

upper bound.

Forecasting outcomes to be equal to those which

occurred two weeks previously is not good forecasting

technique, and the results of this test are not expected

to be good. But if the inequality coefficient has a value

close to one, it means that the variation occurring in the

time series over a two-week period is minimal and also

that movement within the series is gradual. The coeffi-

cients given in Table 5.5 Show that this is indeed so. As

expected, the covariance proportion accounts for all of

the disparity between forecast and actual (Table 5.6).

TABLE 5.5.--Test Of Predictive Quality.

 

Sales Weight

 

Product 1 0.7222

Product 2 0.9609

Product 3 1.1886
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TABLE 5.6.--Inequality Proportions.

 

Sales Weight

 

 

Bias Variance Covariance

Product 1 0.0000 0.0000 1.0000

Product 2 0.0000 0.0000 1.0000

Product 3 0.0000 0.0000 1.0000

 

Spectral Analysis

The techniques discussed up to this point in the

chapter have been applied to analyze the relationship Of

the Observations in a time series at point t with observa-

tions in the same time series at point (t + k). The other

form of testing for long-term stability is to inspect the

variability contained in the original data stream.

Examination of the power spectrum of this data stream

allows the determination of the extent to which particular

frequency bands contribute to the total variance. If the

graph of the logarithm of the power Spectrum does not

violate Granger and Hatanaka's2 simulataneous confidence

interval at some specified confidence level, then the

original time series can be said to exhibit stability for

that time period.

Figure 5.2 is a graph of the logarithm of the power

Spectrum of 2590 observations of the sales weight for

Product 1 against 120 frequency levels. Figures 5.3 and

5-»4 are similarly graphs for Products 2 and 3 respectively.
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Stability is indicated in all three cases by the fact that

a smooth curve could easily be drawn between the confidence

limits. Another method of analysis is possible if the

confidence intervals are constructed, not from the basis

of the power spectrum itself, but from a smooth line of

best fit for the power spectrum. In this case the power

spectrum will violate the confidence intervals if long-

term stability does not exist.

Stability of the Model

The analysis of a solitary data stream is more

difficult than the analysis of the differences and simi-

larities between two or more data streams. Fewer sta-

tistical techniques can be used, and even some which have

been used generate information of dubious value.

Two main avenues are followed in the analysis of

this chapter. The first is to examine the relationship

between observations within the same time series separated

by a particular time increment. If this relationship is

strong (the series is relatively highly autocorrelated),

then the possibility of the series' being unstable is

greatly diminished. The other avenue is to examine several

«different frequency components of the time series (using

Espectral analysis) and establish that no one frequency

lland contributes in excess to the overall variance of the

time series .
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This analysis considered time series which are 2600

observations long. Detailed statistical analysis of even

a few variables of this length consumes rather large amounts

of computer time. As with all types of analysis, a point

is reached where the value of additional information does

not justify the costs involved in obtaining it. This makes

the selection of the variables to study an important

decision. Sales weight for a high volume product, a

medium volume product, and a low volume product were

selected as the variables to study because it was felt that

these variables will reflect in general the total model

operation.

The results of this chapter must be interpreted

to conclude that the model does generate persistent endog-

enous behavior and is stable over the long run.



CHAPTER V--FOOTNOTES

lJ. Riggs, Production Systems: Planning, Analysis

and Control (New York: John Wiley and Sons, Inc., 1970),
fi

p. 70.

20. W. J. Granger and M. Hatanaka, Spectral Analysis

of Economic Time Series (Princeton, N.J.: Princeton Uni-

versity Press, 1964), p. 62.
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CHAPTER VI

THE MODEL'S PREDICTIVE ABILITY

Introduction

The second major validation task is to compare the

output of the simulation model for some past time period

with the actual historical data that was recorded for that

time period. This type of analysis comes most readily to

mind when considering validation. Accountants, for

example, place a great deal of emphasis on the analysis

of the difference between actual figures and expected or

forecast figures.

Several methods of comparing simulated endogenous

data streams with the actual data streams are presented

in this chapter. While the results of these statistical

tests are given here, detailed evaluation is contained

in Chapter VIII.

The results of this type of validation testing

are dependent upon the quality and length of the actual

cdata streams. The quality of the data is a function of

'the organization's accounting system and information .

'transmission capability. Because of the random component

<h31iberately included in a computer simulation model, the

97
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actual data stream must be of sufficient length for

variables to approach the distributions and parameters

modeled. Data collected on a weekly basis will be more

likely to average out the vagaries of the accounting and

information systems than data collected on a daily basis.

It would seem reasonable, then, that a shorter data stream

of weekly data would provide statistical information of

similar quality to a longer data stream of daily data.

The same case can obviously be made for information col-

lected on a monthly basis against information collected

weekly.

The industrial sponsor of the LREPS project was

able to supply actual historical data for three products

from the stratified sample. Dollar sales, sales weight,

and inventory on hand for these three products was supplied

for one region on a daily basis for a period of 103 days.

Information for a longer period and on a weekly basis was

requested, but was not available. The premonition was

that the quality and length of these data streams were

unacceptable. If the tests of this chapter are not satis-

fied, the next task must be to continue to accumulate more

extensive historical information and conduct the tests

again. As the industrial sponsor cannot obtain the required

data prior to the first day of the 103 day's information on

hand, the rerunning of the tests of this chapter would have

to be delayed for the several months required for data

accumulation.
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Discussion of the techniques used will include terms

as defined in Chapter II. Not all of these terms are

defined again in this chapter.

Graphical Analysis
 

A graph showing the time paths of the simulated

data stream and the corresponding actual data stream enables

the analyst to make a very gross qualitative appraisal of

the model's predictive ability. From the available data,

nine such graphs could be constructed: actual against

simulated dollar sales for the three products; actual

against simulated sales weights for the three products;

actual against simulated inventory of each of the three

products on hand at the distribution center. Because of

the lack of a reasonable degree of correspondence between

any of the simulated and actual time series, only the graph

of daily dollar sales (simulated plotted with octagons,

and actual plotted with triangles) for Product 1 is repro-

duced (Figure 6.1).

From these graphs the number, timing, and direction

of turning points, amplitude of fluctuations forcorrespond-

ing time segments, average amplitude over the entire series,

simultineity of turning points, average values, probability

distributions, variation about the mean, and exact matching

can be determined. This was not done because later tests

will perform similar comparisons in a more sophisticated
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manner, although the means and variances of the data

streams are given in Table 6.1 and their skewness and

kurtosis in Table 6.2.

It should be noted from Table 6.1 that the simulated

inventory on hand for Product 3 is maintained at zero units.

Product 3 is a slow mover, and on the infrequent occasions

when this product is demanded, it is placed on back order.

The information of this table shows large discrepancies

between actual and simulated means and variances for all

products over the three variables.

Skewness is a measure of the departure of a

distribution from symmetry. This measure would take on

the value zero if the distribution was symmetrical. Most

of the time series considered are not very symmetrical

(Table 6.2). Kurtosis is a measure of the "hump" of a

single humped distribution. This measure centers on the

value 3, platykurtic distributions having a kurtosis value

less than 3, and leptokurtic distributions having values

greater than 3. While this measure is of little value

for the study at hand, most of the time series considered

are platykurtic.

Analysis of Variance
 

A one-way analysis of variance is conducted to

test the null hypothesis that the mean of the simulated

data stream is not significantly (at a 95% significance
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level) different from the mean of the actual data stream.

Table 6.3 contains the results of this analysis.

The decision to reject the null hypothesis is made

if the calculated P value (MSp/MSe) is greater than the

tabled F value for the apprOpriate degrees of freedom.

If the null hypothesis is rejected, the means at this

level of confidence are significantly different.

The model indicated that inventory on hand for

Product 3 should be maintained at a zero level so an F

value could not be calculated. In all cases tested the

null hypothesis was accepted at the 95% confidence level.

Multiple Comparison

Multiple comparison is a technique which can be

used to test if a particular statistic from a simulation

is significantly different from the same statistic in

the control. The control in this case is the actual his-

torical data, and the statistic to be tested is the mean.

This analysis should confirm the results obtained using

analysis of variance.

If the absolute difference between the mean of

the simulated data stream and the mean of the actual data

is greater than an appropriate Dunnett statistic multiple

of the square root of twice the mean square error over

the number of variables, then the hypothesis that the

Ineans are equal must be rejected. The appropriate Dunnett
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statistic is indexed by the desired confidence level

(95%), the number of "plans" to be compared (k=2), and

the degrees of freedom for the mean square error term.

The results of Table 6.4 show that in all cases this

hypothesis was rejected.

The F Test
 

Similarity of simulated to actual mean values

has been evaluated using analysis of variance and multiple

comparison. The F distribution is to be used to test if

a significant difference exists between the variances.

It should be noted that other methods, such as multiple

comparison, could be used. The F Test was selected

because of the relatively small sample size.

The ratio of the actual variance to the simulated

variance is distributed as F. With a knowledge of the

number of degrees of freedom contained in each variance

calculation and the significance level desired (95%),

the correct F value can be found. If the tabled value of

F is less than the F statistic, then the hypothesis that

the two variances are equal at this significance level

is rejected.

The number of degrees of freedom in both the

numerator and denominator of the ratio of the variances

is 102, and the F value at the 95% confidence level is

1.37. The hypothesis that the variances are equal will
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only be accepted if both the ratio of actual to simulated

and the ratio of simulated to actual variances are less

than 1.37. The information in Table 6.5 shows that in

no case is this true, and so the null hypothesis must

be rejected every time.

Correlation
 

The coefficient of determination expresses the

percentage of the total variation in one variable which

is "explained" by the regression line of this variable

on another variable. Taking the square root of the coef-

ficient of determination gives the coefficient of correla-

tion r. The range of r is -1 to +1 or perfect negative

correlation to perfect positive correlation. For there

to be some degree of correlation between two variables,

r must be shown to be significantly different from zero.

Tables are available1 which show the value which r must

be greater than, at a particular confidence level, to be

considered different from zero. At a 95% confidence level

this value is r=0.l97. Analysis of the r values is con-

tained in Table 6.6. The null hypothesis is that the value

cof r is significantly different from zero.

As stated previously, the value of the coefficient

(of determination is the proportion of the sum of the squared

<deviations from the regression line accounted for by the

:independent variable. The values of r2 are given in

Table 6.7.
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Regression Analysis
 

If perfect correlation existed between the values

of the simulated endogenous data streams and the actual

data, then the regression line of either of these two

variables on the other would be a straight line passing

through the origin with a slope of one. Another test of

the degree of correlation between these two variables is

to determine if the regression line of actual on simulated

has an intercept significantly different from zero and a

slope significantly different from one. The difference

between the sum of the squared deviations between each

actual and simulated datum and the sum of the squared

deviations between the regression line and each simulated

observation divided by the number of observations n all

divided by the residual sum of squares divided by n-l is

distributed as F. If this value is greater than the

tabled F value (F=3.97) indexed by the degrees of freedom

and the confidence level, then the hypothesis that the

.intercept is not significantly different from zero and

'the lepe is not significantly different from one is

rejected.

The results of this test are given in Table 6.8

VVith the hypothesis being rejected in half the cases.

The Chi-Square Test

For the validity testing of simulated against actual

c.iata streams, the Chi-square test is not used in the
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accustomed manner. Whichever is larger, the range of the

actual data or the range of the simulated data, is divided

into ten equal parts. The number of observations from the

actual data which fall into each of these cells becomes

the expected frequencies, and the number of simulation

observations falling into each cell are the observed

frequencies. Summing the squared differences between

observed and expected frequencies divided by the expected

frequency gives the Chi-square value. This value is

compared with a tabled value given a confidence level

and degrees of freedom, and if the calculated value is

larger than the tabled value, then the hypothesis that

there exists a significant correspondence between observed

and expected frequencies is rejected.

With nine degrees of freedom and a 95% significance

level, the appropriate value of Chi-square is 16.9. The

values of Chi-square given in Table 6.9 are compared to

the value 16.9, and if smaller, then the hypothesis that

the actual and simulated frequencies show reasonable

correspondence is not rejected.

Theil's Inequality Coefficient
 

Theil's Inequality Coefficient U measures the

quality of predicted results against actual outcomes. The

coefficient has a range from zero to infinity. If U=0,

the forecaSts are perfect, and U=l indicates a prediction
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error equal to that obtained by extrapolation assuming no

change.

From Table 6.10 it can be seen that when con-

sidering the simulation output as a forecast of the actual

daily observations, the prediction is of rather poor quali-

ty. Table 6.11 shows that the disparity between forecast

and actual is not consistently due to one particular in-

equality proportion, although the variance proportion is

of less effect than the bias or covariance proportions.

Spectral Analysis
 

When considering the Fourier representation of a

time series, the contribution that a particular frequency

or frequencies make to the overall variance of the series

is of interest. This type of analysis is possible because

the frequency band (w, w + dw) contributes f(w) dw to the

total variance (f(w) is the power spectrum as defined in

Chapter II). The number of frequency bands or lags m to

consider should be less than % (where n is the number of

observations in the series), and if n is not large, m

n n 2
3'01? "6‘.should be about For the n=103 of this analysis,

m=20 was chosen.

Examination of the power spectra of the actual time

series and the simulated time series will show which fre-

quencies contribute the most to the total variance. If the

frequencies were the same or close for both series,
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similarity of the original series would be indicated. The

log of the power spectrum is plotted against j in Figures

6.2 and 6.3 in order to construct Granger and Hatanaka's3

simultaneous confidence bands (lOO-d)% for all j (a = con-

fidence level). Notable "power" exists at frequencies

where a smooth curve cannot be drawn easily between the

confidence limits.

The shape of the power spectra of Figures 6.2 and

6.3 are quite different. The frequency band centered on

the component with a period of about 2.67 days for the actual

data shows a significant lack of contribution to the overall

variance. For the simulated time series the frequency band

centered on the component with a period of about 6.67 days

provides significant positive contribution to total variance.

No reasonable interpretation can be found for periods of

2.67 or 6.67 days. It is also noticable that the low-

frequency range of the power spectra (within which the

"long-run" components are concentrated) did not contribute

to the extent that is normally found in economic time

series. A detailed explanation of these rather poor

results is contained in the final chapter.

A measure of the correlation between the frequency

components of two series is given by

c2 (w) + q2(w)

 C =

(w) fx(w) + fy(w)
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where C(w) is the co-spectrum, q(w) is the quadrature spec-

trum, fx(w) the power spectrum of x, and fy(w) is the power

spectrum of y. C(w) is the coherence at w. The range of

C(w) is from zero to one and its value can be interpreted

as the square of the correlation coefficient.

The coherence of actual and simulated dollar sales

for Product 1 is not great at any frequency although a

stronger relationship does exist for frequencies of one

month, one week and half a week (Figure 6.4). Tests estab-

lished by Goodman4 hypothesize that the true coherence at

all frequencies in Figure 6.4 is zero.

A relationship may exist between one time series

at point n and another at point (n+k). A measure of the

phase difference between the frequency components of two

l<:q(u0:>.

¢(w) = TAN

C(w)

From the phase diagram of Figure 6.5 no such relationship

series is

 

appears. There is no trend in the phase diagram which

would indicate a time lag, neither are there oscillations

about a constant other than zero indicating an angle lag.

A final diagram which may indicate the nature of

a relationship between two time series is the gain diagram.

The gain R;y(w) is defined by fy (w)R:y(w) = fx(w)C(w)-
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Gain can be considered as the regression coefficient of

process {Xt} on process {Yt} at frequency m (Figure 6.6).

The results of the other eight comparisons of

actual time series with simulated time series were of

comparable quality to those presented for daily dollar sales

of Product 1 and so they are not reproduced here.

Factor Analysis

Cohen and Cyert5 suggest comparison of the factor

loadings of simulated results with the factor loadings of

actual results as a method of appraising the quality of

the simulated output.

A factor analysis of the nine actual data streams

(dollar sales, sales weight, and inventory on hand, each

for three products) produced most meaningful factor loadings

with three factors. This was also the case with the nine“

simulated data streams. It is now of interest to determine

the extent to which the three actual factors and the three

simulated factors differ in ability to describe the actual

and simulated data respectively. Table 6.12 is the simi-

larity matrix for these three factor pairs. Each element

in the matrix has a range of values from -1 to 1, significant

correspondence between the factors occurring only for values

of 0.78868 or greater. The best factor pairings are: actual

1 with simulated 2, actual 2 with simulated 3, and actual 3

*with simulated 1. Only the second pairing is significant.
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The Model's Predictivevaility

The ability of the LREPS model to predict the

behavior of the actual system has not been established.

The results presented in this chapter are poor and at

times contradictory. But neither has any major defect

in the model been established. The only conclusion to

be drawn is that the validity of the model's predictive

capability has not been established. In order to do

this, these same tests must be repeated with a larger

number of observations collected at a longer time incre-

ment.
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CHAPTER VII

SENSITIVITY OF THE MODEL'S

MAJOR ASSUMPTIONS

Introduction
 

The third and final part of the validation procedure

is to determine the degree to which the characteristics of

the endogenous data streams change when the form of one of

the model's major assumptions is altered. Assumptions are

usually made to simplify the complexity of real situations

and so make the modeling process easier. Indeed, model

construction may not be possible in many situations without

incorporating rather stringent assumptions. But it is

undesirable to have the model output dependent on the

nature of the assumptions embodied in the model. It seems

reasonable that the endogenous data streams of a valid

computer simulation model will not change significantly

even with rather severe changes to the assumptions which

are incorporated into the model. This chapter describes

the analysis performed in order to test this statement for

the LREPS model.

The LREPS model contains two major assumptions.

The first concerns the way in which demand from the con-

sumer level is generated, and the second concerns the

129



130

selection of products from the total product line over which

this demand will be allocated. Both of these assumptions

are required because a firm of reasonable magnitude produc-

ing consumer products can expect to handle hundreds of

thousands of orders for hundreds of different products

during the course of a year. The dilemma created is: too

much detail cannot be handled by available computing machin-

ery; too much aggregation of this detail will reduce the

model's ability to test the effects of such changes as

the introduction of new products, different inventory poli-

Cies or different demand patterns. Solution of the dilemma

comes with the introduction of assumptions.

A stratified sample of 50 products from the total

product line was selected.1'2The products in the sample must

be representative of the entire product line so that the

information generated on the basis of the sample can be

extrapolated to the level of the total corporate operation.

The sample products were selected on the basis that a prod-

uct be representative of the company's inventory and

movement costs. Products were classified into four cate-

gories on the basis of annual dollar sales, with the first

category containing "high-movers" and any products management

might want to give special consideration.

Rather than attempt to account for each of several

hundred thousand individual orders, a random selection is

made of a year's invoices. A particular number of individual
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orders for the sample products is summarized into a block.

The number of orders so summarized is called the blocking

factor. These blocks are then combined into an order file

or order matrix from which a block of orders is randomly

drawn to generate the demand for each time period.3

This chapter investigates the effect of four changes

in the assumptions for LREPS product analysis and order

generation. .The normal blocking factor for order genera-

tion is 10--blocking factors of 5 and of 20 are considered.

A stratified sample of 50 products is used, these products

divided into four categories--a new sample of 50 products

is generated, and the effect of using only 3 product

categories is investigated.

So the net result is the analysis of the control

endogenous data stream (the output of the model in its

unmodified condition) with the endogenous data streams

resulting when each of the four proposed changes is put

into effect. To simplify the presentation of the results

of the statistical tests used, these five situations will

be designated plans viz.:

Plan A The control--no change in model structure

Plan B Blocking factor of 5 used in order generation

Plan C Blocking factor of 20 used in order generation

Plan D 3 categories used for sample products

EPlan New product sample used
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Graphical Analysis
 

An approximate idea as to the degree of change

occurring in the model's output data streams with a change

in assumptions can be obtained by examination of the graph

of these data streams before and after the change. Six

endogenous data streams of the unmodified model are

obtained: dollar sales for each of the three products

for a two-year period and sales weights for the three

products over the same two years. Comparison of each of

these six Plan A's with each of the other four plans gives

a net result of 30 data streams or 24 one-on-one comparisons

of Plan A with another plan. An exceedingly large volume

of data is recorded if the results of all tests for all

products for both variables are included. In this section

and the Spectral Analysis section only the results for dollar

sales of Product 1 are presented and even then the amount

of data included is considerable. The results not included

do not add any new dimension to the analysis which might

justify their inclusion.

Figure 7.1 shows the dollar sales of Product 1

Plan A (the control) against Plan B. Figures 7.2 to 7.4

are the graphs of Plan A and Plan C, Plan A and Plan D,

and Plan A and Plan E. The high degree of intermeshing

of each of the pairs of data streams indicates no radical

change in results for any of the four plans tested.
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Added information can be obtained by a detailed

analysis of the graphs as outlined in the preceeding chapter.

But again this will not be done, as later tests will provide

similar information by more reliable methods. The means

(Table 7.1), variances (Table 7.2), skewness (Table 7.3),

and kurtosis (Table 7.4) are given. These parameters show

no remarkable change between the control and any of the

other four plans.

Analysis of Variance

Analysis of variance is used to test for any dif—

ference between the mean of the control (Plan A) and the

means of the other four plans. The null hypothesis that

at the 95% confidence level no difference exists between

the control mean and the other means is examined in Table

7.5. The null hypothesis is rejected if the calculated

value of F (MSp/MSe) is greater than the tabled value of

F for the appropriate degrees of freedom.

The null hypothesis is accepted when Plan A is

compared with Plans B or C, but is rejected when Plan A

is compared with Plans D or E. Remember that Plans B and

C involve changes in the order generation process, while

Plans D and E involve alterations to the product sampling

procedure. Given a change in the method of order genera-

tion, a particular product should still be contained in

the average order to the same extent. But when the number
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of product categories or the particular products included

in the sample are changed, the extent of a particular

product's presence in the average order might well vary.

Multiple Comparison
 

To test for significant difference in a particular

statistic between the control and alternative plans,

multiple comparison is used. Again multiple comparison

is used to confirm the analysis of variance testing of

the mean values.

The absolute difference between the mean of the

control and the mean of the particular alternative plan

under consideration must be less than a specified amount.

Otherwise the null hypothesis that no significant dif-

ference exists between the means cannot be accepted.

This specified amount is an appropriate Dunnett statistic

multiple of the square root of twice the mean square error

divided by the number of variables involved. The correct

Dunnett statistic is found with a knowledge of the desired

confidence level (95%), the number of plans (2), and the

degrees of freedom for the mean square error.

Table 7.6 contains the results of this analysis.

The analysis of variance testing is confirmed only to a

moderate degree. General acceptance of the null hypothe-

sis is shown for all plans for Products 1 and 2, while

general rejection of the null hypothesis is shown for

Product 3.
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The F Test
 

While analysis of variance and multiple comparison

have been used to test means, the F distribution is used

to test for significant differences between variances.

The ratio of the variance of the control (Plan A)

to the variance of one of the other plans is distributed

as F. This F value, if greater than the appropriate

tabled value of F, will cause the null hypothesis that

the two variances are equal to be rejected. The correct

tabled value of F is selected with knowledge of the

desired significance level (95%) and the degrees of freedom

of each of the variances (519). The tabled F value of

1.11 is used for the results of Table 7.7.

For Products 1 and 2 the null hypothesis is accepted

for all plans except Plan C. Plan C uses the large blocking

factor which provides an individual product with a greater

probability of being included in the block, and therefore

decreases the variability (and variance) for the product.

Generally, the null hypothesis is rejected for Product 3.

This product is a slow mover, and so it occurrs in an

order with a great degree of irregularity, forcing the

variance to be relatively large and unpredictable.

Correlation
 

The square of the correlation coefficient r is the

coefficient of determination which expresses the amount of
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the total variation contained in one variable which is

"explained" by the regression line of this variable on

another variable (Table 7.9).

The range of the correlation coefficient is from

-1 to +1. If a relationship exists between two variables,

the most basic test is to show that the correlation coef—

ficient is significantly different from zero. Given a

particular confidence level, the calculated value of r

must be larger than a tabled r value4 in order to accept

the null hypothesis that the value of r is significantly

different from zero. At a 95% confidence level this

tabled value of r is 0.197. Table 7.8 gives the results

of such testing for the correlation coefficient of the

control plan and each of the alternative plans. While

the correlation coefficients are not significantly dif-

ferent with changes in order generation (Plans B and C),

they are significantly different with changes in the

product sample characteristics (Plans D and E). This is

confirmed by the values of the coefficients of determina-

tion.

Regression Analysis

A regression line passing through the origin with

a slope of one indicates perfect correlation between the

dependent and independent variable(s). The regression

lines of the control values (Plan A) against the values
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of each of the other plans is constructed and the slopes

and intercepts are tested to determine if they are sig-

nificantly different from one and zero respectively (Table

7.10). The sum of the squared deviations between each

observation of the control (Plan A) and another plan and

the sum of the squared deviations between the regression

line and the control observations are calculated. The

difference between these two sums is divided by the

number of observations n and the result divided by the

residual sum of squares over n-l. The net result of this

calculation is distributed as F. In order to reject the

null hypothesis that the intercept is not significantly

different from zero and the slope is not significantly

different from one, this F value must be greater than a

tabled value of F indexed by degrees of freedom and

confidence level. The tabled F value is 3.00 for this

testing.

Table 7.10 shows that this hypothesis is accepted

in all but one case which involved Product 3.

The Chi-Square Test
 

The Chi-square test is used to compare the control

(Plan A) with the other plans. The larger of the range

(of the control observations and the range of observations

cof the other plan being considered is divided into ten

engual parts. The number of observations from the control
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which fall into each of these cells is considered the

expected frequency, while the number of observations

from the alternative plan which fall into each of the

cells is the observed frequency. Then the Chi-square

value is the sum of the squared difference between observed

and expected frequencies divided by the sum of the expected

frequencies. Given a confidence level and degrees of

freedom, a tabled value of Chi-square is compared with

this calculated Chi-square value. If the calculated value

is larger than the tabled value, then the hypothesis that

there exists a significant correspondence between the

observed and expected frequencies is rejected.

For a 95% significance level and nine degrees of

freedom, the Chi-square value is 16.9. Table 7.11 shows

that in all cases a reasonable correspondence does exist

between the control frequencies and the frequencies of the

other plans.

Theil's Inequality Coefficient

The quality of a prediction when compared to the

actual outcome is measured by Theil's Inequality Coefficient

U. If U is equal to its lower limit of zero, then the

forecasts have been perfect, while a value of 1 indicates

a forecasting method no better than no-change extrapola-

tion. U has no finite upper bound.

Table 7.12 shows the results of trying to prediCt

'the control (Plan A) from the values generated by one of
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the alternative plans. All comparisons for Products 1 and

2 generate coefficients well below 1, with the values for

Plans D and E being below those of Plans B and C. The

coefficient for Product 3 also indicates better predictions

using Plans D or E, but the coefficient values are higher

in every comparison than for Products 1 and 2.

The covariance proportion consistently accounts

for most of the disparity between the actual and forecast

results (Table 7.13).

Spectral Analysis

Spectral Analysis is used to analyze the relation-

ship between the control (Plan A) and alternative plans

in the same manner as described in Chapter VI. The log

of the power spectrum is plotted and around it are con-

structed simultaneous confidence bands for all frequencies.

The power spectra of the two plans under examination should

show similar characteristics; notable "power" should exist

at similar frequencies. The correlation between frequency

components of the two series is given in the coherence

diagram. Relationship between different frequencies of

the two series is shown in the phase diagram. Finally,

the gain diagram is the graph of the equivalent of the

regression coefficient of one process on the other at

all frequencies.

Again this procedure is presented only for dollar

sales of Product 1, as no significant additional information
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is provided by the analysis of the control and four plans

for the other five variables.

Observation of Figures 7.5, 7.6, 7.7, 7.8, and 7.9

shows that in all cases (Plans A, B, C, D, and E respec-

tively) particular frequency bands contribute more to the

overall variance than might reasonably be expected. These

frequency levels occur at the equivalent of 20 days, 8

days, 4.5 days, 3.5 days, and just under 3 days. The 20

day (four week) and 4.5 day (almost one week) periodicity

could well be expected, but an explanation for other three

frequency bands is difficult to find. But anyway the main

result to be obtained from the power spectra is that the

frequency bands supplying notable power are the same for

all plans. This implies that a significant difference

does not exist between the original data streams.

Figures 7.10 to 7.13 show the coherence of each

alternative plan with plan A, while Figures 7.14 to 7.17

give the phase and Figures 7.18 to 7.21, the gain of all

possible comparisons with the control.

The coherence diagrams show that the correlation

per pair of frequency components is stronger when the

control is compared with the alternatives of a new product

sample (Plan E) and three product categories (Plan D) than

Ivith the alternatives of changed blocking factors (Plans

B and C).
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The phase diagrams shows oscillations about a

constant other than zero. This indicates the presence

of a fixed angle lag rather than a fixed time lag (i.e.

the lag is prOportional to the inverse of the frequency

which is the period of the component). Although this

fact is of interest in the analysis of the time series,

it is only germane to this study to the extent that this

angle lag is present for all plans.

Values which can be interpreted as regression

coefficients are given in the gain diagram. As with

coherence, better results are obtained for Plans D and

E than for Plans B and C.

Factor Analysis

The factor loadings of the control (Plan A) are

compared to the factor loadings of each of the alternative

'plans.

A factor analysis of the six streams of data

generated by Plan A (dollar sales and sales weight for

each of the three products) produced factor loadings of

rmost value with three factors. This was also true for

«each of the other four plans. These three factors in

«each case describe the data they represent, and the simi-

larity of this descriptive power between plans indicates

ea similarity in the basic data. 1

Table 7.14 contains the similarity matrices for

time factor loadings of all plans when compared with Plan A.
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Each element in the matrix has a range from -1 to +1,

significant correspondence between the factors occurring

with a value of 0.78868 or above. From the table a

significant one—to—one correspondence between factors

is found for every comparison.

Sensitivity of the Model's

Major Assumptions

Some of the early results of this chapter are

contradictory. While analysis of variance indicated that

the means of Plans D and E were significantly different

from the mean of the control, multiple comparison provided

results exactly opposite--accept the means of Plans D and

E as being the same as the control mean. The F test of

variances and the testing of the correlation coefficient

rejected about half of the plans as being equal to the

control. But all the remaining tests of the chapter

accepted the alternative plans as being equal to the con-

trol plan.

While there was not 100% support from all analyses

for the hypothesis that no significant difference exists

between Plan A and Plans B, C, D, and E, neither was the

hypothesis consistently rejected for any one plan (even

‘when considering only those few tests which rejected the

hypothesis for one or more plans).

Even prior to an evaluation of the relative merit

(of each form of analysis, the conclusion that the two
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major assumptions embodied in LREPS do not have a sig-

nificant influence on the model's endogenous data streams

can be accepted.



CHAPTER VI I--FOOTNOTES

1A. H. Packer, "Simulation and Adaptive Forecasting

as Applied to Inventory Control," Operations Research,

Vol. 15 (July, 1967), pp. 660-679.

20. K. Helferich, "Development of a Dynamic Simula-

tion Model for Planning Physical Distribution Systems:

Formulation of the Mathematical Model" (unpublished D.B.A.

dissertation, Michigan State University, 1970). P. 98.

3

 

Ibid., p. 121.

4J. Riggs, Production Systems: Planning, Analysis

andIControl (New York: John Wiley & Sons, Inc., 1970),

p. 70.
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CHAPTER VIII

A GENERALIZED VALIDATION PROCEDURE

Introduction
 

Before the tests of the last three chapters can be

evaluated as a generalized validation procedure, the results

of the application of these tests for the LREPS model need

to be more closely examined. The results obtained must be

evaluated in light of the relative merit or value of the

technique generating them. The merit of a technique is

established from the number and severity of the assumptions

of the technique.

The selection procedure for techniques to be used

for each type of validity testing is given in the next

section, and the following section is a discussion of the

assumptions contained in the techniques which were selected.

Two questions remain: is the LREPS model valid, and has

a generalized validation procedure been developed? These

two questions are answered in the final sections of the

chapter.

Selection of Statistical Validation

Techniques

 

 

Not all the statistical techniques presented in

(Chapter II were used for the validation procedures described

178
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in Chapters V, VI, and VII. A summary of those techniques

which were used is given in Table 8.1. Four techniques were

not used at all: sequential analysis, multiple ranking,

the Kolmogorov-Smirnov test, and response surface analysis.

Sequential analysis provides a means of reducing

computation if superfluous information is available. This

technique was not considered because the primary difficulty

in the analysis of the LREPS model was that caused by

insufficient data. Use of this technique can save time

and effort, but does not change the final results obtained.

Multiple ranking is a method to determine the

"best" of several plans under consideration. To estab-

lish the validity of a model, the important task is to

determine if significant differences exist between sets

of data. The size of this difference is unimportant; the

mere fact that it exists casts doubt on model validity.

This technique could be used to advantage during model

experimentation.

The Kolmogorov-Smirnov test establishes if a given

sample is a sample from a particular distribution. This

test could have been used to test the normality of data

used in other techniques which assume normality. This was

not done, as more powerful techniques not having this

assumption were also used.

Response surface analysis is a technique which can

be used to approximate the optimal value of a given function.
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Although this technique is recommended for testing simula-

tion models by Naylor,l it was determined to be of relevance

for design rather than the validity procedures developed in

this dissertation.

All of the remaining techniques of Chapter II were

used to test the model's predictive ability and the sensi-

tivity of its assumptions. When establishing the long-term

stability of the model, analysis is concentrated on a

single endogenous data stream (all other analyses are

comparisons between pairs of endogenous data streams).

This limits the applicability of techniques for stability

testing to the four listed in Table 8.1.

Comparative Value of Results

Because of the reasonably large number of techniques

used and because the results obtained from these techniques

were sometimes conflicting, the results of a technique need

to be weighted by a measure of the technique's merit or

value. This measure of value is established by the number

of major assumptions which are contained in the technique.

The three most common assumptions in the techniques

used are the assumed independence between individual observa-

tions, the assumed equality of variance, and the assumed

normality of the variables under consideration.2 Analysis

of variance, the F test, and multiple comparison include

all these three assumptions. The assumption of independence
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can be satisfied by the independence of the pseudorandom

numbers generated.3 This is not so for the type of testing

carried out on the LREPS model. Inequality of variance

for analysis of variance has little effect for a reasonable

number of plans when the sample size is the same.4 Departure

from normality can have severe effects on inferences about

variances, but little effect on inferences about means.5

The number of observations in a Chi-square test

needs to be large (at least 50) in order for the excess of

actual over expected frequencies to be normally distributed.

Also the theoretical cell frequency must be an absolute

minimum of 5 and a reasonable minimum of 10.6

Theil's Inequality Coefficient is always positive.

Because it does not discriminate between the direction of

forecast error, the coefficient might not be suitable for

some applications.7

The main assumption of factor analysis is that the

observed variables are linear functions of the factor

variables. All observed variables must also be linearly

related to one another.8 This assumed relationship can

be relaxed to monotonic, as a straight line can be assumed

a good approximation to a monotonic function. While another

assumption is that each observed variable must be normally

distributed, considerable latitude from this assumption is

often possible.
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For correlation analysis the number of observations

used must be reasonably large (even up to 100) or little

reliability can be placed on the interpretation of the coef-

ficient of correlation.9

The spectral analysis performed assumed the

stochastic process under consideration to be covariance

stationary.lo That is, the second moment of the process

is finite and a function only of reference time. If the

process is not covariance stationary, the trend can be

removed by filtering or transforming the time series. An

effective method of performing this task is to apply a large

term moving average to the data. The Tukey-Hanning estimate

of the power spectrum was used for all analyses which

allows very small leakage from one frequency band to

another.11 The effect of the covariance stationarity assump-

tion is then minimized even if the data violates the assump-

tion. But the most important fact about spectral analysis

is that the technique does not assume independence of

observations. This means that autocorrelated data (the

form of the output of most simulation models) can be

analyzed effectively. I

A summary of these assumptions is shown in Table

8.2. Because the effect of an assumption can vary given

the particular analysis, the important consideration is

how many of these assumptions are violated for the analysis
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under consideration. So the last column of Table 8.2

indicates the number of assumptions for each technique

which were violated by the nature of the output of the

LREPS model. Attention is drawn to the fact that the

worth of graphical analysis cannot be established in this

manner. A factor equivalent to the "number of assumptions

violated" is assigned by judgment.

Validityyof LREPS
 

The statistical results generated by the three

procedures for output validity testing are of major impor-

tance in establishing the validity of a simulation model.

But two factors must be considered before conclusions are

drawn from these results: the availability and adequacy

of the historical data used to test the model's predictive

ability, and the computational limitation on the number of

endogenous data streams which can be analyzed by each of

the three procedures.

Data collection is presently a major difficulty with

any type of analysis. This will continue to be so until

organizations implement management information systems which

are designed from a basis of the data requirements of their

planning and control tools (such as the LREPS model).

With a large simulation model many endogenous data

streams are developed. Given the present generation of

computing machinery, a computational limitation exists as
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to how many of these data streams can be statistically

analyzed for validity. So it is important to select those

data streams for analysis which will be representative of

the behavior of the remaining data streams. This selection

procedure and the critical examination of the nature of

the data streams omitted from analysis must be made by the

analyst working in close cooperation with the management

of the client corporation. Graphical analysis can supply

additional input to this face validity testing. Advancement

in the computational capability of future generations of

computing machinery may well cause the obsolescence of the

use of face validity testing as a supplement to output

validity testing--all endogenous data streams will be

statistically analyzed for output validity. This is not

to say that face validity testing will no longer be required.

A coarse and inexpensive first estimate of the model's

ability will always be provided by this type of testing.12

These initial results often are of vital importance in the

client's decision to provide adequate funds for the model's

development and implementation.

Conclusions have been made in Chapters V, VI, and

VII as to the ability of the output of the LREPS model to

satisfy the validation procedures outlined in those chapters.

Now it must be determined if the conclusions drawn will be

affected if the results of each statistical test are not

weighted equally, but are weighted inversely with the
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number of assumptions that are violated in using the tech-

nique. The significance placed on the results of a particu4

lar statistical test should vary with the quality of the

results, and the quality can be determined by examining

the number of assumptions violated in the process of apply-

ing the test.

Accounting for the quality of information generated

in this manner allows greater confidence to be placed on

the conclusions drawn in Chapters V and VII, as the tests

showing positive results were those which violated the

least assumptions. The LREPS model is stable over the

long run. The model also satisfies the claims made con-

cerning the generality of its structure--significant changes

in specific major assumptions contained in the model did

not result in significant changes in the output of the

model.

While the results of these two validation procedures

are positive, the ability of the model to duplicate actual

historical data is still not established. But again it

must be emphasized that the failure to establish the pre-

dictive ability of the model does not necessarily indicate

any shortcoming in the structure of the model. A more

accurate evaluation of this important aspect of the model

can be made only when a longer stream of actual historical

data, collected at a time increment greater than one day,
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is available. The results of the validation procedures of

Chapter VI would undoubtedly be greatly improved for the

LREPS model if two hundred observations of information

collected weekly were used.

A Generalized Procedure
 

It is admitted that some degree of design validity

testing (face validity testing) is required during the

construction of any computer simulation model. To this

extent a generalized validation procedure cannot be devel-

oped. But once the model passes this coarse testing,

output validity can be established by a general procedure--

a procedure composed of the three parts outlined in

Chapters V, VI, and VII.

The procedure is general, but two inputs to the

procedure are specific: the assumptions of the particular

model under consideration to evaluate, and the assumptions

of the statistical validation techniques which are violated

in this particular situation. These two considerations are

of similar significance to this generalized procedure, as

is the need for specific endogenous data streams in any

particular analysis.

Interpretation of the results of this procedure

involves a reasonable judgmental factor even with the

consideration of the violated assumptions. So it is of

interest to consider the construction of a validity index
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for a given simulation model. Each statistical technique

generates results a percentage of which are favorable to

the proposition that the model is valid. This percentage

is weighted by the inverse of the number of assumptions

this technique has violated plus one. The result is summed

for all techniques used in the validation procedure, and

then this total is divided by the sum of the weights used.

The result is an index of validity with a range from 0 to l.

‘1

Percentage of Number of assump-

 

1
1
M
B

 

 

- 1

i l favorable results tions.violated +1 I

Index of validity =

n 1

2 Number of assumptions

i=1 violated +1

where n = number of statistical techniques used.

Actually an index is determined for the long-term

stability of the model IS, another index calculated for

the model's predictive ability Ipa’ and a third index for

the sensitivity of the model to its major assumptions Ia.

The overall index of validity for the Model I is the mean

of the three component indices. Table 8.3 shows these

indices for the LREPS model.l3 Again the general results

previously established are confirmed.

An analyst may not want to carry out all the tests

of Chapters V, VI, and VII. He should select techniques

for each of the three validation procedures starting with

those that violate the least assumptions. If time and
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money permit, he can then move to techniques which violate

more assumptions and provide information of poorer quality.

With this selection procedure the value of the validity index

may tend to vary inversely with the number of techniques

used.14

The procedures detailed in this thesis provide a

generalized validation procedure, and the validity index

provides a basis for intra-model analysis and inter-model

comparison.
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14The truth of this statement can be established

or rejected by sensitivity analysis. If the index does

vary in this manner the appropriate corrective weighting

system can also be determined.
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