

)V1£SI_J RETURNING MATERIALS:

PIace in book drop to

LIBRARJES remove this checkout from

Jul-zsllll. your record. FINES will

 be charged if book is

returned after the date

stamped below.

GRAPHICAL VERIFICATION OF NUMERICALLY CONTROLLED

MILLING PROGRAMS FOR SCULPTURED SURFACE PARTS

BY

James Herman Oliver

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Mechanical Engineering

1986

4
’
3
2'
4
2
7
2
6
'
;

This is to certify that the

dissertation entitled

GRAPHICAL VERIFICATION OF NUMERICALLY CONTROLLED

MILLING PROGRAMS FOR SCULPTURED SURFACE PARTS

presented by

James Herman Oliver

i/flrmx/ ////Z/<%

mes Herman Oliver Date I '

octor of Philosophy Candidate

has been accepted towards fulfillment

of the requirements for

Doctor of Philosophy Degree in Mechanical Engineering

Michigan State University

by

MW //-/2-8e

Erik D. Gaodman Date

Professor

Dissertation Advisor

Department of Electrical Engineering and

System Science

//c 431%

4 , Date

= ofessor and Chairman

Department of Mechanical Engineering

ABSTRACT

GRAPHICAL VERIFICATION OF NUMERICALLY CONTROLLED

MILLING PROGRAMS FOR SCULPTURED SURFACE PARTS

by

James Herman Oliver

Verification of numerically controlled (N/C) machining programs

prior to actual milling is often a very tedious and costly step in the

manufacturing process. This dissertation describes an algorithm and its

implementation in computer software which allows cost-effective checking

of N/C milling programs for complex, sculptured surface parts. 1km

current implementation is applicable to three-axis milling operations.

The algorithm combines techniques originally developed for accurate,

non-polygonal, surface shading and elements of B-rep solid modeling

technology, to produce graphical output depicting the desired part as

shaded surfaces with out-of-tolerance areas highlighted. Complexity

analysis shows the algorithm to beof order N, where N is the cardinality

of the tool path program. This result is compared with a direct solid

modeling approach to the problem which has been shown to have complexity

4

O(N).

To Vince and Caroll...

iv

ACKNOWLEDGEMENTS

I would like to extend special thanks to Dr. Erik D. Goodman, my

major professor, for his guidance and support throughout my Ph.D.

program. Erik provided steady encouragement when the chips were down

and insightful criticism when I was sure I was right. His perpetual

enthusiasm towards work and life in general has been inspirational.

The other members of my Doctoral Guidance Committee also deserve my

thanks. Drs. Clark Radcliffe, Ronald Rosenberg, James Bernard, and

Jacob Plotkin were all helpful, and their comments and observations

concerning this work were very useful. In particular, I would like to

thank Jim Bernard whose interest and initial ideas in this area launched

my trek through this research.

Thanks to the people at Chrysler Corporation who provided funding

for this work and the data for an excellent application example.

My family has always been a source of strength, love, and moral

support for me, especially over the last five years. I only hope that I

can put back as much as I have drawn. To my father and mother, Vincent

and Caroll, my sisters and brothers, Linda, Gene, Deborah, Cynthia,

Janet, Barbara, Michael, and Diane... thank you, I couldn't have done

it without you.

Finally, a sincere thanks to my friends. As technical peers and

sounding boards for (or sources of) many of my harebrahmxiideas, I

would like to thank Ace Sannier, Jane Hawkins, and Paul Haas. To all my

other friends, thanks for being there when I need you.

Page

LIST OF FIGURES ... viii

LIST OF TABLES .. x

CHAPTER I - INTRODUCTION .. l

1.0 Research Objective 1

1.1 N/C Program Verification 2

1.2 Problem Definition 3

1.2.1 N/C Geometric Verification Problem 4

1.2.2 N/C Geometric Verification Severity Problem 8

1.3 Algorithmic Implementation 10

1.4 Overview of the Dissertation 11

CHAPTER II - CURRENT N/C VERIFICATION TECHNIQUES 12

2.0 Review of N/C Verification Technology 12

2.1 Traditional N/C Verification 13

2.2 Verification Via Solid Modeling Technology 14

2.2.1 Early Solid Modeling Techniques 14

2.2.2 An Alternative Solid Representation Scheme 16

2.3 Recent Advances in Solid Modeling 19

2.4 Limitations of Direct Solid Modeling Approaches 21

2.5 Image Space Boolean Operations 22

2.6 A Surface Based Approach 24

CHAPTER III - N/C GEOMETRIC VERIFICATION - A NEW APPROACH 25

3.0 Avoiding the Constraints of Direct Solid Modeling 25

3.1 Introduction to the N/C Geometric Verification Technique 26

3.2 Input Data Requirements 28

3.2.1 Additional Input 30

3.3 User Interaction .. 32

3.4 Coordinate Systems 33

3.5 Comparison of Algorithmic Implementation and Problem

Definition .. 34

CHAPTER IV - VERIFICATION PROCEDURE 35

4.0 Overview of the Verification Procedure 35

4.1 Preprocessing ... 35

4.1.1 Workpiece Surface Model Discretization 36

4.1.2 Sorting of Workpiece Coordinate Data 39

4.1.3 Effects of Discretization Element Size 44

4.2 Tool Path Processing 46

4.2.1 Vector/Solid Intersection 52

4.3 Postprocessing .. 57

TABLE OF CONTENTS

vi

CHAPTER V - APPLICATION EXAMPLES 59

5.0 Application of the N/C Geometric Verification Problem ... 59

5.1 Application One: Contouring Operation 60

5.2 Application Two: Turbine Blade 62

5.3 Application Three: Automobile Hood 67

CHAPTER VI - ALGORITHM ANALYSIS 71

6.0 Performance Analysis of the N/C Geometric Verification

Algorithm ... 71

6.1 Order of Complexity Analysis 72

6.1.1 Growth Rate ... 73

6.1.2 Constant of Proportionality 76

6.2 Performance Comparison 78

CHAPTER VII - SUMMARY AND CONCLUSIONS 81

7.0 Review of the Dissertation 81

7.1 Future Research ... 82

APPENDIX A - LOOK AHEAD AND LOOK BACK DISTANCES 84

APPENDIX B - VECTOR/PLANE INTERSECTION 90

APPENDIX C - EXAMPLE OF THE ROBERTS ALGORITHM 92

APPENDIX D - INTERSECTION OF A VECTOR WITH SPHERICAL AND CYLINDRICAL

SURFACES ... 95

LIST OF REFERENCES ... 101

vii

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

LIST OF FIGURES

Page

1 Workpiece model surface normal pierces

mill tool swept volume 26

2 Conversion of discretized model coordinate

data from view space to mill axis space 41

3 Multiple pixels in view space can map

to the same bin in mill axis space 43

4 Nearest neighbor interpolation for cut value smoothing 45

5 Construction of the swept area in mill axis space 48

6 Three cases of consecutive swept areas

showing varying degrees of overlap 50

7 Example of a swept area which falls outside

of the active area in mill axis space 51

8 Parallelepiped surrounding a tool swept volume 53

9 Subregions of a side face of a parallelepiped

which surrounds a mill tool swept volume 55

10 N/C geometric verification of a contouring operation 61

11 Turbine blade N/C geometric verification, Case 1 63

12 Turbine blade N/C geomteric verification, Case 2 64

13 Turbine blade N/C geometric verification, Case 3 65

14 Global view of automobile hood N/C geometric verification . 68

15 Zoomed view of automobile hood N/C geometric verification . 69

16 Pseudo-code representation of N/C geometric

verification algorithm 74

A.1 Pseudo-code algorithm for look ahead

and look back distance 86

A.2 Calculation of the look ahead distance 87

viii

Figure

Figure

Figure

Figure

Figure

Figure

A.3

A.4

0.1

0.1

D.2

D.3

Calculation of the look back distance for 0 < 8 < n/2 88

Calculation of the look back distance for n/2 < B < n 89

Example application of the Roberts algorithm 93

Intersection of a vector with a sphere 96

Intersection of a vector with a cylinder, coplanar case .. 98

Intersection of a vector with a cylinder, noncoplanar case 99

ix

LIST OF TABLES

Page

Table l Computation Time in CPU Minutes for N/C Geometric

Verification - Turbine Blade Example 65

CHAPTER I

INTRODUCTION

1 . 0 RESEARCH OBJECTIVE

Numerically controlled (N/C) machining processes are used in a wide

variety of manufacturing industries, In the automotive industry, for

instance, N/C milling is applied in the creation of stamping dies and

injection molds which are then used in the mass production of various

components. Aerospace industries often machine parts directly with N/C

milling technology, typically operating on very expensive materials.

Regardless of the end product, N/C machining processes generally form a

large portion of the total manufacturing effort.

This dissertation describes an algorithm which, when implemented

within a CAD/CAM system, provides a tool for significantly improving

manufacturing productivity. This work focuses on the problem of

verifying the correctness of N/C milling programs prior to actual

milling, particularly when dealing with complex, sculptured surface

parts. N/C program verification has traditionally been a very expensive

step in the manufacturing process. The algorithm described here allows

cost-effective N/C program verification by efficiently checking N/C tool

paths against the desired part model (and fixturing, if necessary), to

produce graphical output depicting the desired part as shaded surfaces

with out-of-tolerance areas highlighted.

The N/C program verification algorithm presented here is

application (product) independent; it can be applied to any three-axis

N/C milling application. Through the efficient use of available model

and milling information, this algorithm provides a tool for improving

N/C milling capabilities and manufacturing productivity.

1.1 N/C PROGRAM VERIFICATION

Although use of N/C technology is widespread, the methods used for

generation and verification of N/C tool paths vary widely depending on

the end product. N/C tool paths for sculptured surface parts are

typically generated.via.either turnkey systems, which operate on

mathematical models as input, or software such as APT-SS [l], capable of

model as well as tool path generation. However, current generathmu

methods cannot generally guarantee that the tool path will properly mill

the desired surface model.

Improper part programming, or flaws in path generation software,

can result in areas of the part surface being overcut (gouged) or

undercut (missed) relative to the desired part surface model. Also, the

cutting tool may interfere with the fixtures holding the part or with

other obstacles. Material cost, setup time and milling time make such

errors very expensive. So regardless of the method of generation, the

N/C program is generally checked before final milling. This remains one

of the most difficult aspects of machining sculptured surface parts.

Current verification techniques are either labor and capital intensive,

inadequate for complex geometries, or computationally uneconomical.

l . 2 PROBLEM DEFINITION

Many high level general-purpose part-programming systems operate in

two distinct steps; processing and postprocessing. [2] In the

processing phase, mathematical models of the desired part, the milling

tool, and generally, several limiting surfaces are used to generate an

intermediate set of data points called the cutter location data, or

CL-data. The CL-data file is sufficient to define the final shape (or

geometry) of the desired part. Postprocessing involves incorporation of

CL-data with machine specific factors such as tool feed and speed rates

and coolant flow requirements. With some combinations of languages and

milling machines, postprocessing may also involve the introduction of

approximations needed to drive a particular mill: straight-line

approximations to arcs, for instance.

Postprocessing parameters can, of course, affect the dimensional

quality of the final part. For example, tool size and shape combined

with feed and speed rates determine the material removal rate. The rate

of material removal is limited by tool deflection, tool wear, and

coolant flow rates. Postprocessing parameters are often determined

based on conservative empirical data (tables) and the experience of the

mill operator; they are typically verified via trial and error.

Although these parameters are certainly an important part of the N/C

program, their importance is secondary to the dimensional (or geometric)

quality of the tool paths (the CL-data).

Previous computational techniques for automated N/C program

verification [4]-[7] have approached the problem as a simulation

problem, conducting all of the operations needed to check material

removal rates, while interested only or primarily in the final geometric

(piality of the part. This leads to unnecessary constraints and a heavy

computational load. In this work, the problem is broken into two parts:

N/C geometric verification, in which the geometric quality of the

milling program is checked, and N/C simulation, in which material

removal rates and other such factors may be considered, but final

geometric dimensions are not explicitly checked. (The term N/C

simulation as used here implies calculation of either the union of all

material removed or the workpiece remaining after each tool motion.)

Dissection of the verification problem along these lines allows for

solution of the N/C geometric verification problem independent fixnn the

constraints imposed by the N/C simulation problem. This dissertation

deals exclusively with the N/C geometric verification problem, sixuxa it

is the primary concern in evaluating the quality of an N/C program.

1.2.1 N/C Geometric Verification Problem

The following discussion provides a definition of the N/ngeometric

verification problem.

Let P represent a geometric description of trimmed, oriented

surfaces comprising pertinent exterior portions of the

desired milled part,

H represent a geometric description of trimmed, oriented

surfaces comprising pertinent exterior portions of the

necessary holding fixtures, (which are not to be cut),

N represent an N/C program including n distinct

positions of the tool center, combined with

appropriate specification of the paths to be followed

between positions (i.e. interpolation rules),

Q represent a tool geometry,

Tin be a uniform tolerance limit inside the desired part

and,

Tout be a uniform tolerance limit outside the part.

Define the workpiece model as the union of the desired part and

holding fixture models. For every point pi on {P U H}, let Vi

represent the corresponding outward-directed surface unit normal

vector.

For the jth step in program N, combine Q with Nj and N. and
J+l

the interpolation rule, to define Sj’ the surface definition of

the jth "swept volume".

Let equal the directed distance along Vi from pi toIi,j

intersection with Sj' Then, define cut value C(pi) - min { Ii j }.

Define a verification mapping V : P 4 { -l, 0, l } such that

-1 if C(pi) < -Tin

V(pi) - 0 if -Tin s C(pi) 5 Tout

1 if Tou < C(pi)

t

Also, define a fixture cut mapping E : H 4 { -l, 0 } such that

E(pi) - { -1 if C(pi) < o.

0 otherwise .

Then, the program N is geomeffigaiiy vefified iff for all pi e P,

V(pi) - 0, and for all pi e H, E(pi) - 0. Program N gouges P if

there exists pi such that V(pi) - -l, andm P if there exists

p1 such that V(pi) - 1. The Wig is defined as the set of

points Rg - V'1(-l). Similarly, the missed region is defined as

1(1).the set of points Rm - V-

Program N interferes with (cuts) holding fixtures H if there

exists pie H such that E(pi) - -l, and the fixture collision region

is defined as the set of points Rf - E-1(-l).

Note that the tolerance model used in this definition is limited to

surface features; i.e., Tin and Tout define a general unequally disposed

bilateral tolerance zone relative to the desired part surface model.

This tolerancing scheme conforms to the ANSI standard Yl4.5M-1982. [3]

However, characteristic tolerances relative to other geometric features

(e.g. , cylindricity, perpendicularity, concentricity, etc.) as well as

material condition modifiers, are not addressed by this definition.

This definition allows each point (theoretically infinitely many)

on the workpiece model, Pi’ to be affected by multiple tool motions

(swept volumes, Sj), resulting in multiple intersections of the normal

vector and swept volumes, Ii,j' However, only the closest or deepest

excursion of the tool toward or into the surface is retained for each

point as the cut value, C(pi). The cut values may then be evaluated to

determine regions of the part model which have been gouged, missed, or

cut within tolerance limits.

An interesting comparison can be drawn between this definition of

the N/C geometric verification problem and another definition based on

the direct application of solid modeling technology. Voelcker and Hunt

[4] [5] define the problem as a "null-object" calculation which is

required when comparing an "as milled" solid model of the part with an

"as desired" solid model. For example, let A represent the "as milled"

part model and B represent the "as desired" part; then if the Boolean

difference (A-B) is non-null, an undercut (missed) condition exists.

Similarly, if the result of the difference (B-A) is non-null, an overcut

(gouged) condition exists. The N/C program mills the desired part

exactly if the symmetric difference, (A-B) U (B-A), is null. In the

terminology of this dissertation, calculation of the "as milled" part is

called N/C simulation, while the symmetric difference null-object

calculation is called N/C geometric verification.

Although both definitions of the N/C geometric verification problem

are useful, they are fundamentally different. For example, the

definition presented by Voelcker and Hunt does not explicitly deal with

milling tolerance. Their definition could, of course, be extended to

include solids at various tolerance limits but such an extension would

drastically increase the size of the problem (i.e. the number of Boolean

operations) to be solved. In contrast, the definition presented in this

dissertation deals with direct comparison of the desired part with the

action of the mill; this allows the straight-forward incorporation of a

tolerance band. The two definitions theoretically agree in classifying

the part as missed or gouged in the ideal case in which the tolerance

band is set to zero. Of course, this comparison is possible only when

the parts to be verified are defined as complete solids, which is not a

requirement of the technique presented here.

1.2.2 N/C Geometric Verification Severity Problem

A useful extension to N/C geometric verification involves

consideration of the degree or magnitude of the deviations (misses

and/or gouges) of the tool path from the desired part model. It

involves first defining a "range of interest" which bounds the maximum

miss or gouge which is to be portrayed distinctly from less severe ones;

that is, more severe misses or gouges will be "lumped" as severe misses

or gouges and further degree of severity information will be lost.

Using the same terminology as the above formulation, the N49 geometric

vegifiggfiog sevgzity ngblgm is defined as follows.

Let Rint denote a range of interest which designates the

magnitude of the maximum distinguishable miss or

gouge,

L - R + T , be the cut value limit for the
out int out

maximum distinguishable miss, and,

L + Tin’ be the cut value limit for the
in - Rint

maximum distinguishable gouge.

Define a degree 9f cut mapping,

D : P + I -l, G(pi), 0, M(pi), 1 }, such that,

' -1 if C(pi) 5 -Lin

G(ci) if -Lin < C(pi) < -Tin

D(pi) - < o if -Tin s C(pi) s Tout

M(ci) if Tout< C(pi) < Lout

[1 if Lout s C(pi)
where, G(pi) and M(Pi) are functions of the cut value, for

example ,

C(Pi) ' (C(Pl) + Tin) / Rint’ and

M(pi) - (C(pi) - Tout) / Rint'

The program N is ggometzicaiiy vefifieg iff for all pi e P,

D(Pi) - 0, and for all pi e H, E(p g - 0. P is gouged if there

exists p1 such that D(pi) - G(pi) and gouged severely iftimre

exists p:L such that D(p1) - --1. Similarly, P is missed if there

exists pi such that D(p1) - M(pi) and missed.§eve;eiy if there

exists pi such that D(pi) - l.

The definition of holding fixture interference is the same as the

one described above for direct N/C geometric verification. Also, the

regions of miss and gouge are constructed in an analogous manner except

that cut values are interpolated according to an interpolation rule.

This rule incorporates information concerning the magnitude of the

deviations between the as milled part and the desired part. The linear

interpolation rule presented above is only an example, it could be

replaced with other functions, based perhaps on tool geometry or a

logarithmic function of the cut value.

Note that this definition of the "severity" problem reduces tn) the

more simple N/C geometric verification problem if the range of interest,

10

R is set equal to zero. Another interesting case occurs if the
int ’

tolerance band is set to zero (Ti - T - 0) and the R. is set equal

n ou int t

to the tool radius. Under these conditions, very detailed features of

the surface (as affected by the mill) would be highlighted, e.g. cutter

cusps.

This extended definition of the N/C geometric verification problem

is even more distinct from the direct solid modeling problem definition.

The solid modeling approach results in mathematical models resulting

from discrepancies between the tool path and the desired part. However,

the solid modeling problem definition does not explicitly address the

quantification of the degree of discrepancy which is represented by

these solids. In contrast, incorporation of the "degree of" miss and

gouge information into the problem definition described in this work is

a simple and natural extension.

1.3 ALGORITHMIC IMPLEMENTATION

These definitions of N/C geometric verification lend themselves to

an algorithmic implementation for their approximate solution. Such an

implementation requires a method for discretization of the workpiece

model {P U H} into a finite number of surface points pi and normals vi.

Also, efficient techniques for calculating the intersections, ofI. .,
1,3

the normals with the surfaces defining sequential swept volumes of the

mill tool, S are required. A method for effective and efficient
j,

display of the various regions of the workpiece model (as affected by

the mill) is the final requirement. The thrust of this research is to

11

design, implement, and demonstrate algorithms which meet these

requirements .

The verification technique described here is a new application of

the technology underlying surface and solid modeling. The algorithm is

designed with the goal of minimizing unnecessary computations. For

instance, a convenient spatial transformation is applied to reduce the

area of the workpiece model that must be considered for each motion of

the mill. Also, the vector/solid intersection calculation is

hierarchically refined, utilizing progressively tighter envelopes around

the tool swept volume. The result is an N/C verification tool which

combines ease of interpretation with computational efficiency superior

to existing techniques based on traditional solid modeling approaches.

1.4 OVERVIEW OF THE DISSERTATION

Chapter Two presents a review of techniques in current use for N/C

program verification and discusses applicable research efforts. Chapter

Three introduces the aforementioned algorithm for N/C geometric

verification and describes input requirements and necessary user

interaction. The details of the verification algorithm itself are

outlined in Chapter Four. Chapter Five presents several application

examples of N/C program geometric verification via this new algorithm.

A performance analysis of the verification algorithm is presented in

Chapter Six, including a comparison of this technique with a standard

solid modeling approach. Finally, Chapter Seven summarizes the work,

suggests future research directions and draws conclusions.

CHAPTER I I

CURRENT N/C VERIFICATION TECHNIQUES

2.0 REVIEW OF N/C VERIFICATION TECHNOLOGY

This chapter presents a review of current N/C program verification

technology. The review begins with the widely used but often very

inefficient and inaccurate techniques which are in current use in many

manufacturing facilities. Next, some initial research efforts toward

the automation of N/C verification through application of solid modeling

technology are discussed. Then, more recent research is discussed which

deals with improving the performance of solid modeling techniques for

this application. The distinction between N/C simulation and N/C

geometric verification is drawn in a discussion of the nature of solid

modeling technology as applied to the general N/C verification problem.

A final discussion deals with some very recent research on a surface

based approach to N/C verification which is similar, in some respects,

to the work presented here.

12

13

2.1 TRADITIONAL N/C VERIFICATION

The two principal methods in current use for N/C verification both

depend heavily upon skilled human observation and intuitdxni. Probably

the most common method of N/C tool path verification is simply an

experimental trial or "proofing" run of the program. The mill is

‘programmed.and set up with a workpiece often made of wood, high density

foam or some other relatively soft, inexpensive material. After milling

is complete, the prototype is measured (either manually or with a

coordinate-axis measuring machine, ”CMM") to determine the quality of

the N/C program. Changes to the program are often necessary and several

test runs may be required before an acceptable part can be milled. This

is labor-intensive, and may also be quite capital-intensive,

particularly when both milling and CMM equipment are involved.

The second common approach involves visual checking«of

two-dimensional drawings of N/C tool paths. In this method a part

programmer examines line drawings representing the path of the mill in

areas considered to be prone to error, in order to judge the

acceptability of the tool path. The success of this method depends on

the skill of the user in choosing suspect areas and in interpreting the

complicated line drawings associated with these areas. Since the

surface itself is represented by a line drawing, interpretation becomes

increasingly difficult as the surface and its associated tool path

become more complex. Though this method can be effective in identifying

gross milling errors, it is by no means comprehensive, and must

generally be supplemented by the trial milling process described above.

14

2.2 N/C VERIFICATION VIA SOLID MODELING TECHNOLOGY

Principal research efforts in the automation of N/C program

verification rely extensively on the use of solid modeling technology.

The typical procedure for N/C verification via solid modeling involves

creation of a complete geometric solid model representing the part as

milled and a comparison between this model and another representing the

desired part. These calculations are accomplished through the

application of the regularized set operations union, difference, and

intersection. [8] For example, an "as milled" part model can be

obtained by subtracting (via Boolean difference operations) solids

representing the volumes swept out by each motion of the mill tool from

a solid model of the workpiece.

Using the terminology introduced in Chapter One, straightforward

application of solid modeling techniques involves performing the Boolean

operations required for solution of the N/C simulation problem, even if

only the solution of the N/C geometric verification problem is desired.

2.2.1 Early Solid Modeling Techniques

Most currently available solid modeling systems can be described as

primarily either constructive solid geometry (CSG) systems or boundary

representation (B-rep) systems. [8] [9] With CSG modelers, objects are

represented as collections of primitive solids (such as cylinders,

cones, blocks, etc.) connected via Boolean operations. B-rep modelers

represent solids as structures which incorporate collections of faces

described by surface equations (usually planar or quadric), bounding

15

edges, and vertices. B-rep models are typically constructed with

functions called "Euler operators" [10] which define and maintain an

object's topological boundary in a hierarchical form. Through various

conversions, many modelers maintain both of these data structures

internally; using, for instance, CSG for Boolean operations and B-rep

for shaded display purposes.

Voelcker and Hunt [4] [5] were among the first to suggest the

application of solid modeling to the N/C verification problem. Using a

CSG-based solid modeler they demonstrated verification capabilities for

very simple parts milled with "2-1/2 D" N/C programs. This work showed

that the bulk of the (heavy) computational load for N/C verification

results from the null-object calculation (see Chapter One) which is

required when comparing the ”as milled” part model with the “as desired"

model. Although this work was exploratory in nature, dealing with

simple models and N/C programs, it illustrates many of the problems

inherent in the application of solid modeling to this problem.

Similar direct solid modeling approaches to N/C verification were

extended to three and five-axis milling applications. [6] [7] These

techniques allowed more sophisticated milling operations and tool

libraries, but were still based on simple CSG modelers, thus limiting

their application to parts which can be defined with collections of

relatively simple geometric primitives. The N/C verification technique

used in these papers is essentially the same as that presented by

Voelcker and Hunt, but the added complexity of the swept volume models

incurs a very heavy computational load. Also, the method used to create

a shaded display of the part after verification is based on a ray

16

tracing algorithm. [11] Such rendering algorithms are typically more

computationally intensive than other surface shading techniques.

Standard primitive-based solid modeling technology could

theoretically be applied to N/C program verification of complex,

sculptured surface parts. However, to represent such a solid with this

type of system would require an excessive number of primitives. The

overall size of typical industrial parts is often many orders of

magnitude larger than the tolerance required for milling. An accurate

primitive-based solid representation of a part with these properties

would require a very large data set. The Boolean operations necessary

for verification of N/C tool paths via solid modeling are

computationally intensive even for simple geometries. The added burden

of applying such algorithms to very large data sets makes this approach

practically intractable.

2.2.2 An Alternative Solid Representation Scheme

A data structure which is much more efficient at Boolean operations

than CSG- and B-rep- based solid modelers is a hierarchical spatial

decomposition, such as the octree representation. [12] [13] This

technique involves the hierarchical encoding of a solid based on

recursive subdivision of a three-space volume into eight equal octants.

At each level of subdivision, an octant is labeled as either empty,

full, or partially full. An octant is subdivided if it is both

partially full and larger in size than the desired resolution. The

hierarchy of labels thus created forms the octree model of the solid.

17

The primary advantage of octree encoding is efficiency in

performing Boolean operations. Given several octrees representing

several different solids, Boolean operations can be performed by

simultaneously traversing each octree and comparing at each level the

labels which represent the status of each octant. An octree

representing the resulting solid is built level by level based on these

comparisons. Each comparison is simply a logical operation and the

regular order of the data structure is exploited, so Boolean operations

are typically very efficient computationally. In fact, the regular

structure of the octree representation may soon lead to hardware

implementation of Boolean capabilities using VLSI technology.

Although this method of solid representation is not as common as

classical CSG or B-rep techniques,lmany feel that the computational

efficiency afforded by octrees offers the greatest hope in representing

and manipulating complex objects. For example, in his work on tool path

generation for CSG solids, Bobrow [l4] conjectures that octrees may

someday provide "the ability to verify tool paths to within normal

machining tolerances".

However, significant problems arise when the octree solid modeling

approach is extended from simple, easily representable objects to the

complicated parts required by current users of N/C technology. The

octree data structure, though computationally efficient, requires a

prohibitive amount of memory to accurately represent complex solids,

especially when dealing with the tolerances required in N/C machining

applications. The size of the octants at the deepest level of the

octree must be on the order of the milling tolerance, while the octant

at the root of the octree is on the order of the size of the largest

18

dimension of the part. For N/C verification of complex parts, the

difference in these dimensions guarantees an extremely large octree

model.

A quantitative example will illustrate this point. Consider a

solid part model which resembles a box composed of five planar surfaces

and one bi-cubic Bezier-type sculptured surface. Suppose that the

entire solid nearly fills a cube which is one inch on a side and that

the desired milling tolerance (Tin. T) is one thousandth of an inch
out

(0.001). In B-rep form this model could be defined with as few as 68

real numbers; four constants defining each of the five planes and three

4X4 coefficient matrices (one each for X,Y, and Z) for the Bezier

surface. An equivalent octree model would require much more memory.

Meagher [12] shows that the memory requirement for a 3-D objects modeled

with octrees is on the order of the surface area of the object. In this

example, the necessary units are thousandths of an inch, so that the

surface area of the solid is approximately 6 x 1000 x 1000 - 6 x 106.

Thus, even such a simple solid yields a difference in memory requirement

of approximately five orders of magnitude.

Another significant problem in application of octrees to sculptured

surface N/C verification is the actual creation of the octree models

themselves. To create an octree representation of a solid composed of

sculptured surfaces requires decisions at each level of subdivision as

to whether points defining the octants are inside or outside the solid.

These decisions would require either significant user interaction or the

use of a very sophisticated sculptured surface solid modeler at each

step of the subdivision. Alternatively, assuming the availability of a

sufficiently accurate CSG or B-rep approximation of a sculptured surface

19

solid, one could apply algorithms designed to convert these data

structures into octree form. [15] [16] However, application of such

conversion algorithms would incur a significant computational burden on

the verification process since they must operate on very large CSG or

B-rep databases.

For these reasons, octree modeling technology in its current state

is not well suited for application to the N/C geometric verification

problem. Although octree encoding could provide efficient Boolean

operations between solids derived from sculptured surfaces, overhead

cost in memory and preliminary computational load in creating the

requisite octrees apparently outweighs the computational gains the

method may afford. However, as memory cost continues to decline and

development of more sophisticated octree software and hardware

continues, this technology may emerge as a viable solution to the N/C

geometric verification problem .

2.3 RECENT ADVANCES IN SOLID MODELING

More recent advances in solid modeling research have led to systems

capable of incorporating sculptured surfaces as part of their data

structures. Kimura [17] [18] uses an enhanced B-rep data structure in

which Bezier-type sculptured surfaces are allowable as faces. Casale

and Stanton [19] present a unique data structure called the tricubic

hyperpatch which is neither CSG nor B-rep based. Although these

authors do not explicitly address N/C verification, both claim to

incorporate Boolean operation capabilities. Thus, sculptured surface

N/C verification via such modeling systems is possible.

20

By incorporating a more general data structure, these methods would

be «capable of accurately representing sculptured surface solids with a

much smaller database than the aforementioned techniques. However, the

smaller size of the database comes at the expense of increasing the

complexity of performing Boolean operations on objects in that database.

Specifically, Boolean operations on sculptured surface solids require

calculation of the curves defining the intersection of two or more

parametric sculptured surfaces. In general, calculating either exact or

approximate solutions is a very difficult problem, requiring intensive

computations.

Kimura proposes the use of subdivision techniques to approximate

sculptured surface intersections. Most subdivision techniques are

recursive in nature and are computationally intensive, depending on the

curvature of the intersecting surfaces and the accuracy desired. [20]

[21] Butterfield [22] presents a more precise, albeit more costly,

alternative for sculptured surface intersections using either a

Newton-Raphson-type iteration method or some form of distance

minimization. Both these alternatives introduce even greater

computational requirements. Since many Boolean operations are necessary

to perform N/C geometric verification of a sculptured surface part and

the tolerances involved may be quite small, these methods, though

theoretically possible, are not well suited to current manufacturing

practice.

21

2.4 LIMITATIONS OF DIRECT SOLID MODELING APPROACHES

The primary problem encountered in the direct application of any of

the solid modeling techniques to N/C geometric verification of

realistically complex parts lies in the trade-off between, on the one

hand, the size and complexity of the database, and on the other, the

difficulty inherent in the manipulation of that database. Typically,

the smaller the size of the database used to describe a given solid, the

greater the complexity of the algorithm used for its manipulation, and

vice versa. For N/C verification applications, where complex parts with

tight tolerances are involved, one can choose a solid representation

that is either efficient in performing Boolean operations but requires a

very large database, or a scheme which allows a relatively compact

database at the expense of very complex algorithms for Boolean

operations. Both of these options require intensive computational

effort.

In the context of the definitions given in Chapter One, the direct

application of solid modeling techniques to the N/C geometric

verification problem leads to many unnecessary Boolean operations and to

unnecessarily precise computation of intermediate solids. For example,

many of the swept volumes representing tool motions, when subtracted

from the workpiece model, result in bounding surfaces which are nowhere

near the final surfaces of the part, but are fully calculated

nonetheless.

A more fruitful approach would seek to eliminate unnecessary

calculations by skipping those evaluations which are distant from the

desired part surface, and to use increasingly more precise evaluation

22

methods as the desired part surface is approached. While the octree

encoding technique appears to offer strong possibilities for

implementing such an approach, it would require special-purpose

algorithms to do so. The direct application of Boolean operations on

arbitrarily complex solids appears to be ill-suited to the N/C geometric

verification problem.

The technique presented in this dissertation takes advantage of the

special nature of the N/C geometric verification problem and applies the

ideas sketched out above for improved computational efficiency. The

details of this algorithm are presented in Chapters Three and Four.

2.5 IMAGE SPACE BOOLEAN OPERATIONS

One of the most promising developments in solid modeling research

applicable to N/C verification is the so called "visual solid modeler".

In this scheme, Boolean operations are computed "on-the-fly" during

image rendering (shading). Roth [11] was among the first to suggest

that the three-dimensional Boolean operation could be reduced to a

one-dimensional problem by considering the intersections of sightlines

(rays) from each image picture element through a CSG solid model.

Atherton [23] extends this idea to a polygon-based.scan:1ine hidden

surface removal algorithm, using various coherence techniques to gain

significant performance improvements over the simple ray-casting

approach. These techniques provide a relatively fast means for

displaying solids resulting from Boolean operations because they do not

calculate and maintain the complete geometrical definition of the

resulting solid. Thus, the result is completely view dependent; if

23

another view is selected, the entire procedure (Boolean operation and

rendering) must be repeated.

Independent of Atherton, Wang [24] developed a similar scan-line

based rendering algorithm for image space Boolean operations with the

specific application of N/C milling in mind. In this initial work, Wang

presents a mathematical basis for mill tool swept volumes and develops a

prototype system for simulating three-axis N/C milling. The simulation

involves relatively simple parts composed of CSG primitives. Also, the

simulation stops short of N/C geometric verification, calculating and

displaying the "as milled" part resulting from the Boolean difference of

each tool swept volume from the stock material model.

However, more recent work by Wang [25] shows that many of these

shortcomings have been addressed and eliminated. For instance, Wang now

claims to have the capability for full N/C verification (including

overcut and undercut conditions) for five-axis milling applications.

Sightline intersections with swept volumes resulting from general

five-axis mill motion requires the solution of nonlinear equations which

contain transcendental functions. Also, the full null-object Boolean

operations must be performed to produce models of the missed and gouged

portions of the workpiece. Despite these computational requirements,

Wang apparently obtains results with impressive computational speed.

Wang's group is currently developing capabilities for sculptured surface

solid modeling [26], which will undoubtedly be incorporated with his

work.

24

2.6 A SURFACE BASED APPROACH

Some very recent research by Jerard [27] addresses the N/C

geometric verification problem with a surface-based approach. This

research has been sponsored by Ford Motor Company and deals specifically

with three-axis milling of sculptured surface parts. Jerard applies a

first order curvature approximation to evaluate a grid of points on the

surface of the workpiece which is dense enough to account for surface

irregularities relative to the size of the mill tool. He does not

evaluate surface normals but instead applies a Z-buffer algorithm [28]

on the point grid itself as he evaluates the tool paths. (Jerard assumes

that the mill axis remains parallel to the global Z axis.) The surface

"cut values" are thus measured relative to the mill axis.

Although Jerard's work is substantially different from the

technique presented in this dissertation, it is interesting to note that

he had independently reached a similar philosophy: quickly eliminating

motions of the mill which do not directly affect the final finished

part. Both Jerard's technique and the method presented here take

advantage of the fact that the final desired surface model is the basis

for the N/C geometric verification problem.

CHAPTER III

N/C GEOMETRIC VERIFICATION - A NEW APPROACH

3.0 AVOIDING THE CONSTRAINTS OF DIRECT SOLID MODELING

In Chapter One, the problem of N/C program verification was divided

into two distinct parts: N/C geometric verification and N/C simulation.

Chapter Two described several attempts at direct solid modeling solutions

of the general N/C verification problem. Because these solid modeling

techniques generate information required for the N/C simulation problem

while solving the N/C geometric verification problem, they tend to be very

intensive computationally. This Chapter introduces a new algorithm for

solving the N/C geometric verification problem. Exploiting the distinct

properties of the geometric verification problem, the algorithm gains

efficiency by operating free from the constraints of the N/C simulation

problem.

Chapter Three begins with a general introduction to a new method for

the solution of the N/C geometric verification problem. Next, input data

requirements are discussed, emphasizing the differences between this

technique and solid modeling methods. Finally, the necessary user

interaction is described as well as its effect on the performance of the

algorithm.

25

26

3.1 INTRODUCTION TO THE N/C GEOMETRIC VERIFICATION TECHNIQUE

The approach to N/C program verification described hntfids

dissertation was developed from a synthesis of sculptured surface

rendering (color shading) techniques and solid modeling. The method

involves intersection of workpiece surface normal vectors with

“implicit" solid models which represent the motions of the mill (see

Figure l). The swept volume solid models are never calculated

explicitly. They are maintained, instead, as collections of

progressively tighter enveloping surfaces.

E

5”“FAG

NORMAL

VECTOR

G
 \4

SWEPT;:>>

VOLUME

Figure l. Workpiece model surface normal pierces

mill tool swept volume

27

Techniques developed originally for accurate (non-polygonal) color

shading of sculptured surfaces are applied for systematic calculation of

surface normal vectors at each picture element (pixel) of a raster-type

display device. The verification procedure is, however, fundamentally

independent of the particular algorithms used in this preprocessing

phase. Any other method could be used to discretize the part model so

long as it resulted in arrays containing surface coordinates and the

corresponding normal vectors.

Pixel-based discretization of the part model is used here for ease

of presentation and user convenience. In particular, it provides the

user with two ways to affect the relative resolution of the check. The

first is through view selection. The larger the object appears in the

view, the greater the number of pixels associated with a given area of

the model, and thus, the more accurate the calculation. Similarly,

views from further away, or from oblique angles, reduce the number of

pixels considered, decreasing computation time at the expense of

resolution.

The second way that the user can control checking resolution is via

a discretization element size. Although normal vectors are calculated

for each visible pixel on the part model, the user has the Option of

including only a subset of the total in the actual intersection

calculation. In a manner similar to view selection, the user may trade

off checking resolution (and hence accuracy) for computational speed.

The details of how the discretization element size affects the

verification algorithm are discussed in Chapter Four.

28

The mill path is modeled as a series of B-rep solids which

represent sequential volumes swept out by the motions of the mill; each

solid is compared with appropriate workpiece surface normals to

calculate the distance between tool and workpiece, then discarded. A

convenient spatial transformation is used to insure that a relatively

small subset of normal vectors is considered for each sweep of the mill

tool.

The intersection calculation for any given normal vector proceeds

in hierarchical steps as far as needed through a series of progressively

more exact definitions of the shape of the tool swept volume. The

results of intermediate calculations are used to determine if further,

more sophisticated swept volume intersection calculations are required.

This structure insures that redundant or superfluous calculation of

vector/solid intersection is minimized. The resulting image shows the

interaction of the mill with the desired part model by color shading

based on the signed distance between the desired part surface and the

surface actually milled. There is a distinction, in the intersection

calculation, between vectors which have been missed and those gouged;

both conditions are computed simultaneously and displayed together in

the output .

3.2 INPUT DATA REQUIREMENTS

The desired part model used in this method consists only of those

(trimmed) surfaces which define the exterior of the desired part (and

holding fixtures, if desired) which are to be checked for proper cutting

or for unwanted violation. The part surfaces would typically be

29

directly produced by a CAD modeling package. Construction planes and

other intermediate surfaces, (i.e. portions of surfaces which may have

been trimmed away in solid modeling Boolean operations) must be

identified as such to the processor or they will also be checked and

shaded as missed, gouged, or within tolerance, perhaps confusing the

user. Workpiece surface definitions which form complete closed solids

(such as B-rep outputs from a solid modeler) are acceptable, though by

no means necessary. The minimal part model is a single sculptured

surface patch.

Only the rational (nonuniform or uniform) B-spline surface type is

used in this work. [29] [30] It is a very flexible surface

representation which facilitates the use of fully sculptured, as well as

quadric and planar surfaces. This allows for easy incorporation of

simple models of holding fixtures or other obstacles into the workpiece

model. A very efficient technique developed by Pickelmann [31] is used

here to evaluate rational B-spline surfaces (points, parametric

derivatives and normals). For a typical bi-cubic rational B-spline

surface, this evaluation technique is approximately three times faster

than the commonly used Cox-DeBoor algorithm [32] [33]. Furthermore,

like the Cox-DeBoor algorithm, Pickelmann's technique avoids the

numerical instabilities associated with evaluation of nonuniform

B-splines; hence it is much more accurate than methods which apply the

definition of the B-spline directly.

Since a sculptured surface part is milled from a solid piece of

stock, and the workpiece model used in this work need not be a complete

model of a closed solid, a convention is necessary to distinguish the

"outside" of a surface from the "inside", to yield oriented surfaces

30

similar to those used in "half-space" solid modelers. In this case, the

primary purpose of the convention is to allow distinction between gouges

and misses. On parametrically defined surfaces, normal vectors are

defined by the vector cross product of tangent vectors in each

parametric direction. The outward facing side of a surface is defined,

in this work, by the order in which the surface data were input.

Outward pointing normal vectors are defined as the cross products of

tangents in the first parametric direction with those in the second.

(It is simple to transform improperly oriented surfaces which may be

created by a modeler.)

3.2.1 Additional Input

In addition to the desired part model, other input required for

this method includes the cutter location data (CL-data), the dimensions

of the cutting tool, the desired tolerances, the range of interest, and

the discretization element size. The CL-data file contains the spatial

coordinates defining the position of the mill. It is assumed that any

nonlinear point to point interpolation rules in the CL-data file have

been postprocessed into linear segments. The development presented here

deals with three-axis milling. Thus, the order of the points in the

CL-data file completely determines the motion of the mill, as it moves

in a straight line from point to point. Necessary cutting tool

dimensions include the height of the tool and the radius, R, of the

spherical end. For simplicity, the spherical or ball end tool is used

as the basic tool geometry in the initial development of this work.

However, other tool geometries can be accommodated easily since the

subroutines which calculate the mill swept volume are modular.

31

The milling tolerances are used to determine the hue of pixels

which map to the outside of the workpiece model in the selected view.

Two tolerance values are required as input; one (T) representing a

out

distance outside the surface, the other (Tin) a distance inside the

surface, which together define the limits of an acceptable out. (See

Chapter One for a precise tolerance definition.) A pixel's cut value is

defined as the signed distance, calculated along the normal vector from

the surface to the mill swept volume which yields the smallest (or most

negative) length. (Refer again to Chapter One.) If a cut value falls

between the limits defined by Tin and T the pixel is assigned the
out ’

hue representing an acceptable cut.

Recall that the range of interest, Ri represents a distance
nt’

outside of the surface and its tolerance limits, beyond which the user

is unconcerned about quantifying the relative distance between the mill

and the tolerance limit from the surface. Also recall that the maximum

distinguishable (quantifiable) miss is defined as Lout- R + Tou

int t '

The primary use of the range of interest is in enabling quicker

handling of passes of the mill which are rough cuts or positioning

motions. The range of interest is also used as part of the display

technique. Any pixel with a cut value greater than Lou is assigned the
t

hue representing the maximum distinguishable miss. Pixels with normals

which intersect a swept volume in a distance less than Lout’ but

greater than T are assigned a hue based on interpolation between the
out ’

hues representing "complete miss" and "just beyond tolerance". The

procedure is analogous for gouging, where the deepest or maximum

R. +Tdistinguishable gouge is defined as Lin. int in'

32

The discretization element size is used to reduce the number of

normal vectors which participate in the precise intersection

calculation. It is restricted to integer values between one and

sixteen, inclusive. Let the discretization element size be denoted by

M; it is applied by sending the normal vectors at every Mth pixel on

every Mth scanline into the vector/solid intersection portion of the

algorithm. Cut values are then interpolated for pixels whose normals

were not intersected exactly. The interpolation is a linear, nearest

neighbors scheme, based on the distance from the pixel in question to

the (up to) four closest pixels which were calculated exactly.

3 . 3 USER INTERACTION

Before N/C geometric verification begins, the user is required to

select a view of the workpiece as it is displayed in wireframe (or

flowline) form. A typical view would show most, or all, of the milled

surfaces from outside the workpiece, although zoomed views of critical

areas could also be chosen. Milling operations such as pocketing or

contouring, in which vertical "walls" (i.e. surfaces parallel to the

mill axis) are to be machined, may require several views and

verification runs to check completely. Only surfaces visible in the

selected view are included in the verification procedure.

After view selection, the user may choose a portion of the screen,

called a subwindow, which contains the entire workpiece wireframe or

some portion of it. The subwindow can significantly reduce the number

of pixels which must be considered, thus reducing computation time. For

example, the subwindow is particularly useful when a zoomed view

33

completely fills the screen with the wireframe drawing, but only a

portion of the workpiece model is of interest.

3.4 COORDINATE SYSTEMS

Four coordinate systems are used in this work: world space, view

space, screen space, and mill axis space. World space refers to the

three-dimensional cartesian coordinate system in which the workpiece

model and the tool path CL-data are defined. Milling operations are

often programmed after a part has been rotated from the cartesian

coordinate system in which it was designed into a more convenient

orientation for milling. This "fixtured" orientation will be called

world space. The mill axis is assumed to remain parallel to the global

(world space) 2 axis. Milling operations which require changes in

workpiece orientation and refixturing can be handled by preprocessing

the part model with an appropriate transformation for each change in

orientation.

Upon view selection, the world space data are linearly transformed

(rotated, translated, and scaled) into an equivalent three-dimensional

space called view space. An axonometric projection of view space data

onto the two-dimensional grid of pixels representing the raster-type

display device yields screen space. Mill axis space is similar to

screen space, but results from the projection of view space data onto a

plane which is perpendicular to the mill axis. The development and use

of mill axis space is discussed in detail in the following chapter.

34

3.5 COMPARISON OF ALGORITHMIC IMPLEMENTATION AND PROBLEM DEFINITION

The algorithm introduced in this chapter (and detailed in the next)

is a practical implementation of procedures to solve the general N/C

geometric verification problem as defined in Chapter One. However, the

infinitesimal part model discretization implied in the problem

definition is approximated, in the algorithmic implementation, by a

view-based, pixel level discretization. This approximation introduces

some practical limitations on the accuracy of the algorithm.

Any method of surface discretization, including pixel level

discretization, results in an approximation of the properties, e.g.,

surface coordinate and normal vector, of a finite area of the surface

with those of a single point within-the area. The crucial factor in

pixel level discretization is the maximum physical distance between

adjacent pixel centers. Consider, for example, a model of a ship hull

which is displayed in its entirety via pixel level discretization on a

raster type device. The distance between pixel centers may be so large

that significant surface irregularities, such as slope discontinuities

or areas of high curvature, may not be visible. In the extreme case any

object, regardless of size, can be viewed from a point distant enough so

that the entire object maps onto one pixel. Such a view is, of course,

of little use.

The accuracy of the N/C geometric verification algorithm presented

here is limited by the accuracy of the method used for surface

discretization. If a view is selected such that the maximum distance

between adjacent pixels is greater than the minimum local radius of

curvature, the algorithm may produce misleading results.

CHAPTER IV

VERIFICATION PROCEDURE

4.0 OVERVIEW OF THE VERIFICATION PROCEDURE

In the last Chapter, a new technique for solution of the N/C

geometric verification problem was introduced. This Chapter describes

the algorithm in detail. The process of N/C geometric verification is

divided into three phases: a preprocessing phase, in which the surfaces

of the workpiece model are discretized and normal vectors are calculated

at each pixel; a tool path processing phase, in which cut values are

calculated for each pixel; and a postprocessing phase, in which the cut

value and normal vector are used to assign a hue and intensity at each

pixel.

4 . 1 PREPROCESSING

The preprocessing phase entails two tasks: discretization of the

workpiece model resulting in surface points and normal vectors, and

sorting of these data to allow for more efficient tool path processing.

The majority of the computational effort in the preprocessing phase

results from the first of these tasks.

35

36

4.1.1 Workpiece Surface Model Discretization

Discretization of the workpiece model into pixel-size elements is

accomplished with an algorithm which was originally designed for

accurate shading of sculptured surfaces. The following discussion

provides some background on the development of surface shading

algorithms and describes the state-of-the-art technique used in this

work for surface discretization.

Many shading algorithms apply various techniques to approximate a

sculptured surface with polygon "tiles", in order to simplify and speed

the shading process. [34] A simple method for "tiling" a bivariate

parametric surface is to evaluate a grid of points on the surface at

regular parametric intervals and to connect the points linearly to form

polygons. Many algorithms exist for shaded display of objects composed

of polygons. One of the most widely used methods for shaded polygon

display is the scan line technique [35].

A scan line is a row of pixels in a raster display. Scan line

algorithms involve processing an image from left to right, top to

bottom. For each pixel, a view space vector is constructed from the

viewpoint (at infinity) through the pixel in the direction of the

surface model. If this vector, called a sightline, intersects the

surface model, the (view space) coordinates of that surface point and

the normal vector there are calculated and stored. If there are

multiple intersections on one sightline, the point closest to the viewer

is used. Scan line methods gain efficiency by making use of scene

coherence, i.e. information about surface intersections of the previous

37

Sightline is used in calculating the intersections of the current

Sightline.

The primary problem in applying polygon shading techniques to

sculptured surfaces is that the number of polygons necessary to

represent a complex surface accurately can become excessive. Also, to

avoid a faceted appearance, polygon shading techniques typically involve

interpolation or smoothing of normal vectors [36] [37] which can

potentially result in loss of important surface features. For example,

silhouette edges appear as piecewise linear edges instead of smooth

curves. Also, surface slope discontinuities can be washed out by the

"tiling” process or by normal vector smoothing.

Catmull [38] was among the first to address direct shading of

sculptured surfaces. He developed an algorithm which recursively

subdivides a bicubic parametric surface patch until the size of a

subpatch is on the order of the size of a pixel. However, the

performance of this algorithm degrades if the surface has high curvature

or is viewed from a poor orientation. Also, since this method does not

assign pixels in an orderly fashion, it is not well suited to raster-

type display environments.

Catmull's technique was later extended into a scan line type

algorithm by Lane and Carpenter [39] . At about the same time, other

direct scan line algorithms for sculptured surface shading were

introduced by Blinn [40] and Whitted [41] [42]. Each of these

techniques, however, make various approximations to the exact surface

definition in order to gain computational efficiency. Lane and

Carpenter apply a patch subdivision technique which terminates when a

38

"flatness" criterion is met, writing subpatches not on the current scan

line to an, inactive patch list. Blinn computes sightline intersections

only at so-called key visual points and interpolates normal vectors

between them (along a scan line). Whitted's technique is similar to

Blinn's except that silhouette edges are first fitted with cubic splines

and patches are divided into forward- and rearward-facing components

before scan line processing begins.

Vanderploeg [43] developed an "exact" sculptured surface shading

technique which avoids the approximations described above yet maintains

considerable computational efficiency. He uses a scan line algorithm

similar to one developed by Blinn, but takes advantage of efficient

patch preprocessing and a virtual memory environment to gain

improvements in speed and accuracy. 1 This algorithm calculates an

accurate surface normal at each sightline intersection. Vanderploeg's

initial work was limited to bicubic Coons-type surface patches.

Pickelmann [31] extended this algorithm to provide accurate and

efficient shading of rational B-spline surfaces.

In this work, the Vanderploeg/Pickelmann algorithm is applied to

the workpiece surface model as the initial step in the preprocessing

phase. The procedure results in stored surface coordinates and

corresponding normal vectors for each pixel in the user-selected

subwindow. Portions of the workpiece model which are not visible in a

given view are not retained in this phase and thus are not included in

the verification procedure.

39

4.1.2 Sorting of Workpiece Coordinate Data

Since the pixel discretization of the part model is based on an

arbitrary view selected by the user, the coordinate data must be

transformed into a more convenient space in order to process the tool

path in the most efficient manner. This step in the preprocessing phase

was motivated by results of some early work by this author. [44] In

this initial approach, the subset of pixels to be considered for a

motion of the mill was based on the projection of the three-dimensional

swept volume defined in view space onto the two-dimensional screen

space. This technique effectively considered all the pixels which could

possibly have been affected by a mill motion; it was, however, much too

conservative. In certain views, a pixel could be included in the

intersection calculation for many different swept volumes when it was

actually affected by only a few. Even though the vector/solid

intersection process was designed to quickly eliminate normals

intersected out of range, the initial subset of normals considered was

too large for computational efficiency.

From an efficiency standpoint, the best viewpoint from which to

watch a milling operation -- the position from which the cutting tool

occludes the smallest area of the workpiece -- is from a point above the

workpiece looking down along the mill axis. If the user were restricted

to choosing only this view, then the efficiency problems of the earlier

approach discussed above would be effectively avoided. A more elegant

solution is to maintain arbitrary view selection, but to map the

discretized coordinate data from view space into an effective screen

space, (henceforth called "mill axis space") which would result if the

pixel data were viewed from a "mill's eye view". The tool path may then

40

be processed (followed) in mill axis space. A milling tool swept volume

projected onto mill axis space will occlude only those areas of the

surface which it can possibly cut. Mill axis space is used only to

determine the smallest subset of normal vectors which must be considered

for any given motion of the mill. The vector/solid intersection

calculation takes place in view space.

Mill axis space is two-dimensional since the third coordinate,

corresponding to the mill axis, is not necessary to determine the

projected area that the mill occludes for a given motion. An

alternative approach would be to convert the entire problem into a

three-dimensional mill’s eye view, performing both path following and

vector/solid intersections in such a space. However, the computational

expense of correlating the mill axis space data to equivalent view space

data is significantly less than the‘cost of calculating the

three-dimensional components of each normal vector in a "mill's eye"

view as well as the third coordinate of each surface point

(corresponding to the mill axis).

The view space coordinates of each pixel are mapped into mill axis

space via a two-step process (see Figure 2). First, the transformation

matrix which converts world space data into view space is inverted and

applied to the array of view space pixel coordinate data to yield the

(two-dimensional) world space equivalent of the discretized part model.

Only pixels which map onto the outside of the part model (i.e., those

with normals pointing out of the screen) are eligible for this

transformation. Only two coordinate values need be calculated for each

pixel since the coordinate corresponding to the mill axis is

unnecessary. This step effectively converts the discretized data into

41

Y size Y size

a K— Xclze —-)] OLr— Xslzo —’I

View space Y (m) Mill axns space

-OJ

1 X (ml

Step one

Step two

World space

Figure 2. Conversion of discretized model coordinate

data from view space to mill axis space

the desired orientation, but in doing so, it destroys the scan line

coherence that it had in the view space in which it was defined. This

point will be clarified in the following discussion.

The second step in the transformation is motivated by the need to

access the view space coordinates of a pixel given its coordinates in

the mill's eye view. This requires sorting the transformed data to

create a list of pointers back to the view space coordinate arrays. The

sorting process is straightforward if the transformed data can be

accessed by positive integer indices. However, since the model may be

defined relative to an arbitrary origin, and the dimensional units used

to, define world space may be numerically diverse (millimeters or feet,

for instance), the world space equivalents of the pixel coordinate data

are scaled and translated into a normalized frame of reference. A

42

reasonable choice for the basis of this scaling is the screen space

subwindow size selected by the user.

Thus, mill axis space coordinate data are obtained from the

two-dimensional world space version of the original pixel data via a

scaling and translating transformation such that the resulting data are

within the same physical dimensions as the original subwindow. For

example, if the subwindow was defined as 200 pixels high by 300 pixels

wide, then the pixel coordinate data would be mapped to a region in mill

axis space which is 200 units by 300 units in area. This region in mill

axis space will be called the "active area". These dimensions also

define the range of the (integer) indices used to define a point in

mill axis space. An addressable point in the active area of mill axis

space will be called a bin, referenced by row and column indices. The

mill axis space coordinates of a pixel are rounded to the nearest

integer in assigning it to a bin.

An interesting consequence of this transformation is that multiple

pixel coordinates from view space can map onto the same bin in mill axis

space. An example of this case is shown in Figure 3. Here, the user

has selected a reasonable view of a contouring operation, where the side

of the tool is the primary cutting surface. When the pixel coordinate

data are transformed into mill axis space, pixels which lie on the

"wall" of the part model in a line parallel to the mill axis, will map

onto the same bin. This condition, and the need to access the original

pixel data given a bin number, require the development of a new data

structure. The final portion of the preprocessing phase deals with the

creation of this structure.

43

Column of pixels mg into one bln

6

UL]

'
0

.
n
l
l
u
u
'
«

View space Mill oxie space

Figure 3 Multiple pixels in view space can map

to the same bin in mill axis space

For each bin in mill axis space, the array COUNT contains an entry

denoting the number of pixels which were mapped to it. Similarly, for

each bin, an entry in the array START points to a location in an array

called FNDPNT which contains pointers back to the original pixel data.

If a bin is empty then the appropriate entries in both COUNT and START

are both set to zero. To construct this data structure, the FORTRAN

environment in which this work was developed requires several passes

through the pixel coordinate arrays and the corresponding mill axis

space bins. Since the implementation of this data structure is language

specific, the details of its creation are omitted. Coordinate data

transformation and creation of the corresponding data structure

typically requires only a small fraction of the total preprocessing

computation time.

44

4.1.3 Effects of Discretization Element Size

The data transformation and conditioning described above are

modified somewhat if the user selects a discretization element size

other than one. The purpose of this parameter is to reduce the size of

the data set (surface coordinates and corresponding normals) to which

each tool swept volume must be compare. Since the tool path is

processed in mill axis space, the most direct way to accomplish this

reduction is to transform only every Mth pixel on every Mth scanline

into this space. This effectively imposes a grid or lattice structure

upon the screen space image of the workpiece such that a cell of the

lattice may be defined by four "corner" pixels. Cut values for pixels

which are not mapped into mill axis space may then be interpolated using

the (up to) four closest corner pixels, resulting in overall

computational savings .

Note that this parameter does not affect the calculation of a

normal vector at each pixel since calculation of these accurate normals

is relatively inexpensive and they may be used in the output phase to

enhance the resulting image with a simple light reflectance model. The

discretization element size is used only to reduce the number of surface

normals which participate in the most computationally intensive portion

of the algorithm, vector/solid intersection.

Interpolation of cut values for pixels which lie within a lattice

cell is simple if all four corner pixels map onto the surfaces of the

workpiece. However, if a lattice cell lies near the edge of the model,

so that it includes both background and part model pixels, the

interpolation is not so clear. To handle this situation, each cell in

45

the lattice is processed individually. If the cell is completely full,

i.e. all of the pixels in it map onto the part model, then only the four

defining corner pixels are transformed into mill axis space. If the

cell is partially full, i.e. it contains both background and part model

pixels, then all the pixels which are not background are sent to mill

axis space for precise intersection calculation. Obviously, if a cell

is composed completely of background pixels, then none of its pixels are

transformed.

Care is taken to avoid repetitive consideration of pixels which lie

on the edges of cells since adjoining cells share common boundaries.

So, pixels which lie near the edges of the workpiece model (in a given

view) are processed via precise normal vector intersection, while those

in the interior are "smoothed" by a linear interpolation based on the

(up to) four closest corner pixels. Two examples of this interpolation

are shown in Figure 4. The cut values of the corner pixels in the cell

C1 C2

B

 C3 C1.

- 0.09101 + 0.09102 + 0.40903 + 0.40904

CA

cB - 0.75001 + 0.75002

Figure 4. Nearest neighbor interpolation for cut value smoothing

46

are denoted by 01 through c, ; pixel A lies in the interior of the cell

and pixel B lies on a cell edge. The cut value interpolating equation

for both pixels is shown on the figure. This interpolation is only

necessary, of course, if the discretization element size is set greater

than one .

4.2 TOOL PATH PROCESSING

N/C geometric verification proceeds by following the tool path in

mill axis space. A rectangular solid surrounding each swept volume

(representing ,a tool motion) is projected onto mill axis space,

resulting in a rectangular envelope which surrounds the projection of

the actual swept volume. Each bin which lies within this bounded region

is processed by locating the pixel(s) which mapped there and

intersecting each pixel's normal vector with an appropriate (view space)

model of the swept volume to calculate its out value. When all the bins

which lie within the rectangle have been processed in this manner, the

next tool motion is considered. This procedure continues until all tool

motions have been considered, i.e. until the CL-data file is completely

processed.

The swept volume envelope which is projected onto mill axis space

is enlarged to account for the tolerance (T) and the range of
out

interest (R) selected by the user. However, this entire volume is

int

never actually calculated; instead, its projection is calculated

directly from the world space coordinates of two consecutive tool path

points. Since the mill tool is assumed to remain parallel to the world

space Z axis, only the X and Y coordinates of the two path points need

47

be considered. 'The four corner points of a rectangle enclosing the

"swept area" can be constructed using the coordinates of the path points

and a length, called the "swept area range" or Rsa’ equal to the snnn of

the tool radius, T and Rout’ The rectangle (defined by its corner
int'

points) is then converted into mill axis space with the same scaling and

translating factors used in the second step of the pixel data

transformation described above.

If the swept area were constructed by simply projecting the entire

swept volume at each step, then consecutive swept areas would overlap an

area of as much as (2Rsa)2, causing many bins to be considered

redundantly. Alternatively, if the swept area considered onLy the area.

which lies strictly between tool path points, then the overlap area

would be small but significant portions of the surface would be

neglected at each tool motion. The technique used here falls between

these two extremes; it results in a swept area of sufficient size to

include all portions of the surface that could be affected by a tool

motion while minimizing the swept area overlap of consecutive tool

sweeps. This is accomplished by exploiting the fact that the tool

occupies the same space at the terminal position of the current sweep as

it does in the initial position of the next sweep.

Construction of this "minimal" swept area is shown schematically in

Figure 5. The tool path vector, 71, is calculated from the difference

in the world space coordinates of two consecutive path points, ti and

t Dividing the components of Ti by its length, Lp , yields the
1+1 '

normalized path vector, A1. The unit vector, 7i' is normal to the plane

defined by ’1 and the unit mill axis vector, f.

48

r1

/

/

IK‘R

\

\

r2

. [,4

Lb llLa

Figure 5. Construction of the swept area in mill axis space

The crucial parameters in this construction are the "look ahead

distance", La’ and the "look back distance", Lb. The look ahead

distance is based.on.the angle between the current path vector and next

path vector; the look back distance is based on the angle that the

current path vector makes with the mill axis and the angle between the

current and previous path vectors. Details of this calculation are

given in Appendix A. The computational cost of calculating La and Lb is

quite small: two vector dot products and two intrinsic function calls

for each tool motion. However, this cost is more than offset by the

significant reduction in the redundant and/or unnecessary consideration.

of bins (and hence pixels) which lie in the vicinity of tool path

points.

Although they are based on three-dimensional world space data, La

and Lb are calculated as projected onto a plane which is perpendicular

to the mill axis. By neglecting the 2 (mill axis) coordinate, a similar

49

projection is applied to the (three-dimensional) world space tool path

data, t, A, and 1, in preparation for construction of the swept area.

Given La’ 1.b and the projected two-dimensional equivalent path points

and vectors, the four points which define the swept area may be defined

(using the terminology introduced above) as follows:

r1 ' ti ‘ Lb‘i ' Rsali

r2 ' ti ‘ Lb‘i + Rsa7i

+ L A
8r3 ' t1+1 1 ‘ Rsa’i

r4 ' t1+1 + Laxi + Rsa71

The points r1 through r4, defining the rectangular swept area envelope

in a two-dimensional projection of world space, are then transformed

into mill axis space with the same scaling and translating factors used

in the second step of the pixel data transformation (see Figure 2).

Some results of this technique are depicted in Figure 6 which

illustrates the effect of the look ahead distance as applied to three

typical cases of sequential mill tool motions. The shaded regions

represent the swept areas for each tool motion; the swept area for the

current motion is surrounded by a solid line while the swept area

associated with the next tool motion is surrounded by a dashed line.

The cross-hatched areas are overlap regions considered in both swept

areas. Figure 6a shows the optimum case where the tool does not change

directions and there is no swept area overlap. Figures 6b and 6c depict

progressively worse cases in which the size of the overlap region

increases proportional to the change in mill direction.

50

4

 N
\

 +
\
W
%

El
m
a
s
k

(a) (C)

Figure 6. Three cases of consecutive swept areas

showing varying degrees of overlap

Given a swept area in mill axis space, the algorithm proceeds by

processing the bins which fall within it. However, if the swept area

falls outside of the active area, as shown in Figure 7, then this motion

of the mill is disregarded since its affect on the part model is

invisible in the view selected by the user; the next tool motion would

then be considered. If any of the points defining the swept area fall

within the active area, then the points are sorted by their mill axis

space Y coordinate from smallest to largest. Linear equations which

define the bounds of the swept area in mill axis space are calculated

such that, given a Y value they return an X value. Each of these lines

divides mill axis space into a two-dimensional "half space", such that

when considered together, they form a logical boundary of the swept area

envelope.

51

....7’.

 -.....l... D C

.............

.......

.-‘

View space Mill axis space

Figure 7. Example of a swept area which falls outside

of the active area in mill axis space

The bins within the swept area are processed from the corner with

the smallest Y value (rounded down to the nearest integer) to the corner

with the largest Y value (rounded up). Nested within this Y loop is a

loop on X where the starting and ending X value is determined from the

bounding linear equations. The rounding required to access the bins at

the boundaries of the swept area is always done in a conservative

manner; leading edge X values are rounded down, while trailing edge X

values are rounded up. If a swept area lies partially outside of mill

axis space, then the limits of the X and/or Y loop are dictated by the

limits on the active area of mill axis space.

As each bin in the swept area is accessed, its COUNT value is

checked to see if any pixels mapped onto it. If the COUNT value is

nonzero, then pixel and normal data are accessed through the pointers

START and FNDPNT. The normal vector for each pixel in the bin is

52

intersected (in view space) with an appropriate solid model of the swept

volume. Irdtially, all pixels sent into mill axis space are assigned a

cut value equal to the sum of the tool radius, the tolerance Tout’ and

the range of interest, Rint' If, during processing,e1ncrmal

intersection is calculated yielding a cut value which is less than the

one previously stored for that pixel, the new value is saved,

overwriting the previous value. This process continues until all the

pixels in all the bins within the swept area have been processed. A new

swept area is then calculated and the process continues until the entire

CL-file has been considered. Thus, on completion of processing, only

the deepest excursion of the mill toward or into the surface is saved

for each pixel.

4.2.1 Vector/Solid Intersection

The intersection of a surface normal vector with a mill tool swept

volume is calculated efficiently by modeling the swept volume solid with

progressively more precise collections of bounding surfaces. The

calculation begins by modeling the swept volume as a parallelepiped. If

necessary, the model is refined, but only in the region where the vector

intersection could possibly occur. More precise bounding surfaces,

(cylindrical and spherical) are added to the model, in the region of the

planar intersection, if the parallelepiped model yields a cut value

which is less than the maximum miss, Lout (as defined in Chapter One).

Figure 8 depicts the smallest parallelepiped which surrounds a tool

swept volume. Three vectors are required to define the six planes which

make up the parallelepiped. The first one, 7, introduced in the

53

previous section as the vector normal to the plane defined by the tool

path vector, 1, and the mill axis vector, g, is used to construct the

side planes of the parallelepiped. The cross product of g and 7 results

in the vector normal to the end faces of the parallelepiped, and the

cross product of 1 with the path vector, 7, yields a vector normal to

the top and bottom faces. Cases where the path vector is coincident

with the mill axis vector are handled as a special case. In

constructing the top plane of the parallelepiped, the angle that the

path vector makes with the mill axis (lift or dive) is checked to insure

that the volume includes the flat "top" of the mill (refer again to

Figure 8).

 \

\

-
_
4
_
_
.
.
_
_
.
_
_
.
-

+
-
-
-
-
J
,

Figure 8. Parallelepiped surrounding a tool swept volume

A distance, Lint’ is calculated from the surface pixel, along the

normal vector, to each of the six planes which bound the parallelepiped.

The formula for this intersection calculation is described in Appendix

B. If none of the Lin values is less than the maximum miss, Lo then
t ut’

54

processing for the pixel ends and the next one may be considered.

Otherwise, the subset of intersection distances which are less than Lout

is sorted from smallest to largest.

The sorted list of possible vector/plane intersections is

processed to determine the first intersection which takes place within

the plane boundaries defining the parallelepiped. This check is

accomplished with a modified version of the Roberts algorithm, which was

originally applied to three-dimensional hidden line removal. [42] In

this application, the algorithm is simplified to two dimensions, and

used to determine if a point on a plane lies within four bounding

half-spaces (i.e. on a face). The parallelepiped is constructed so that

the normals of each plane point toward the interior of the volume. Dot

products are calculated between the vector representing the intersection

point (in homogeneous coordinates) and vectors containing the

coefficients of the bounding planes. (See Appendix C for a numerical

example of this application of the Roberts algorithm.)

If any of the four dot products yields a negative value, the

intersection point is outside the face boundaries. The planes are

processed in order, i.e. , the ones with the smallest Lint values are

considered first. If there is an intersection within a face, then the

normal vector at this pixel must be considered further; if not, the next

plane in the list is checked, until the list of eligible planes is

exhausted. If none of the plane intersection points falls within a

face, then processing for the pixel is terminated and the next available

one may be considered. Also, if the top of the parallelepiped is found

to be the closest intersecting plane, the user is warned of possible

55

tool or mill interference with the workpiece, and processing for the

pixel ends.

Since the list of eligible planes is sorted by normal vector

intersection distance, from smallest to largest, the first one which

yields an intersection within a face must be processed further to

determine if a more accurate swept volume model is necessaryu fNais is

accomplished with further applications of the Roberts algorithm, this

time with bounding planes moved inside the swept volume to represent the

transitions from planar to cylindrical or from cylindrical to spherical

surfaces.

For example, Figure 9 shows a side face of the parallelepiped

surrounding a swept volume, divided into subregions labeled 1 through 8.

The Roberts algorithm described above is performed with the intersection

point and the planes which bound subregion 1. If the intersection point

nu” axis

vector

z’/;;N,palh

vector

Figure 9. Subregions of a side face of a parallelepiped

which surrounds a mill tool swept volume

56

falls within this subregion, processing for this pixel ends, since the

planar intersection is already exact. If it is not within subregion

one, the dot products can be interpreted to determine which subregion

should be examined next. For instance, if the plane separating

subregion l and subregion 4 yields a negative value, then another

application of the Roberts algorithm with the planes which bound

subregion 4 will determine if the intersection took place within

subregions 4, 5, or 6. At most, two applications of the Roberts

algorithm are sufficient to determine the subregion of the vector

intersection for this (side) face of the parallelepiped.

Referring again to Figure 9, if subregions 2, 3 or 4 bound the

intersection point, then the normal vector may intersect a cylindrical

surface of the mill swept volume. If Subregions 5 or 6 bound the point,

a spherical surface must be considered. If the normal vector intersects

the plane in subregion 7, the user is warned that the part may have been

cut with the rearward facing top edge of the tool (or forward facing if

the mill dives), and processing for the pixel is terminated. Similarly,

if subregion 8 bounds the point, the normal has missed the actual swept

volume and processing terminates. Note that subregions 7 and 8 do not

exist if the mill does not change its Z coordinate (height) during a

motion. An analogous (although somewhat simpler) procedure is applied

if the intersecting plane is an end face or the bottom face of the

parallelepiped, except that only cylindrical or spherical subregions are

possible.

Intersection of a vector with a sphere or cylinder requires a

relatively straightforward application of vector algebra. Details of

these vector/surface intersection calculations are given in Appendix D.

57

The calculations are not computationally intensive, but are considerably

more complex than the planar approximations used up to this point.

The data which are sent to the precise surface intersection

routines depends on which subregion of the parallelepiped face has been

pierced. For instance, along with the surface point and normal vector

under consideration, the routine for cylindrical surface intersection

requires a point (vector) defining the base of the cylinder and a vector

defining the principal axis of the cylinder. Using the example shown in

Figure 9, if subregion 2 is pierced, the base point is the initial tool

path point (for the current swept volume) and the principal vector is

the mill axis. For subregion 3, the principal vector is the same but

the base point is the terminal tool path point. Similarly, if subregion

4 is pierced, the base point is the initial path point and the principal

vector is the tool path vector.

A normal vector can pierce the parallelepiped in a cylindrical or

spherical subregion yet miss the actual volume completely. This

condition can be determined without calculating the intersection point,

so is checked first in the initial portion of the exact intersection

calculation, to further reduce unnecessary computations.

4 . 3 POSTPROCESSING

The output image of the sculptured surface part, as milled by the

tool path, is generated using the cut value and normal vector saved at

each pixel. The color of each pixel is made up of a hue and an

intensity. As described above, pixels on the outside of surfaces in the

58

current view are assigned a hue based on the cut value. Areas of the

surface cut within tolerance are assigned the hue green. Overcut

(gouged) areas are shaded via hue interpolation between red and yellow,

where red represents "just beyond tolerance" (cut < - Tin) and yellow

represents "maximum gouge" (cut < Lin)' Undercut (missed) areas of the

model are shaded via hue interpolation between blue and magenta, where

blue represents "just beyond tolerance" (cut > T) and magenta
out

represents "maximum miss" (cut > Lout)' When the user selects a range

of interest, R.
int’ equal to zero, information regarding the "degree of"

miss or gouge is no longer applicable, so that overcuts are assigned the

hue red and undercuts blue. Pixels with normal vectors which point into

the screen represent areas of the surface which are viewed from the

inside and are shaded with black.

Independent of hue, the intensity at each pixel is based on the

angle between the normal vector and a user-defined light source. This

calculation is inexpensive, since the normals are necessary for, and

available from, the cut depth calculation. The intensity calculation

greatly enhances surface feature recognition. Thus, two pieces of

information are combined in the same image: the desired surface model

and the effect of the mill on it.

CHAPTER V

APPLICATION EXAMPLES

5.0 APPLICATION OF THE N/C GEOMETRIC VERIFICATION ALGORITHM

In Chapters Three and Four a new algorithm for N/C geometric

verification was described. This chapter deals with the application of

the algorithm to realistic industrial parts. Three example applications

are described. First, a portion of a simple manufactured part is

considered to illustrate the interpretation of the graphical output.

This example also demonstrates verification of contour milling

operations and the incorporation of holding fixtures as part of the

workpiece model. Next, a part from the aerospace industry is

considered. In this example, several test runs are made illustrating

the effects of the user-selectable parameters (i.e., range of interest

and discretization element size) on both graphic output quality and

overall computation time. Tradeoffs between the conflicting goals of

rapid computation time and high quality output are discussed, as are the

limitations of the user-selectable parameters. The third example, from

an automotive application, demonstrates how the algorithm could be

applied in an actual CAM environment. A problem area on the desired

59

60

part is located in a global view of the entire part, then a more precise

zoomed view of the area is examined.

All application examples were run on a Prime 750 superminicomputer

with 6 megabytes of physical memory; results were displayed on a

Tektronix 4129 color terminal. In all of the application examples the

computation time for the preprocessing phase of the algorithm, i.e. ,

calculation of surface point coordinates and normals, is reported

separately from the computation time required for N/C geometric

verification. This is done because preprocessing time is a fixed cost

(independent of the size of the CL-data file) and the verification

procedure is essentially independent of the method used for surface

discretization and generation of normals. For example, a more

traditional polygon tiling of the surface could be used, resulting in

faster computation time due to the calculation of (generally fewer)

normal vectors .

5.1 APPLICATION ONE: CONTOURING OPERATION

Although it could represent an actual manufactured part, the part

model (and associated N/C program) considered in the first application

example was created by the author for demonstration purposes. This

example features N/C geometric verification of a contouring operation on

a workpiece model that includes two holding fixtures. The part is

essentially a three inch thick slab of material with one corner rounded

into a three inch radius cylindrical surface. The part model (including

holding fixtures) consists of 14 rational B-spline surfaces; the

associated CL-data file contains 19 points. A spherical end tool of

61

radius 0.5 inch and height 3.0 inches was used to mill the contour. The

user selectable parameters were set as follows: discretization element

size equal to one, milling tolerances equal to 0.01 inch (inside and

outside), and range of interest equal to 0.49 inch.

Results of the N/C geometric verification algorithm as applied to

this model are shown in Figure 10. Since the N/C program only mills

(contours) the sides of the part, the entire top of the slab appears as

missed by at least the maximum amount, 0.5 inch. The walls or sides of

the part appear to be milled within tolerance except in the area of the

cylindrical surface where both slightly missed and gauged regions are

apparent. In this example, the circular arc tool path necessary to mill

this area precisely was approximated by eight linear segments. The

errors were intentionally introduced to show the verification

Figure 10. N/C geometric verification of a contouring operation

62

capability. The band, ranging from blue to magenta, around the bottom

of the part shows the effect of milling a corner with a ball end tool.

Figure 10 also shows the effect of the mill on holding fixtures.

Both fixtures extend 0.5 inch out from the sides of the part. The

fixture on the lefthand side of the part measures 0.5 inch in height,

while the one on the right has a height of 1.0 inch. The mill

successfully avoids the fixture on the lefthand side since it is shaded

in blue and magenta with only a small green area that was affected

within the tolerance limit. However, on the righthand side of the part,

the tool interferes with the fixture. Note that the fixture is shaded

as modeled (a planar box), but that its yellow hue indicates a severe

gouge.

The computation time required for this application example was

approximately 25 CPU minutes for the preprocessing phase and 19 CPU

minutes for N/C geometric verification.

5.2 APPLICATION TWO: TURBINE BLADE

The second N/C geometric verification example considers a faulty

part program (generated by N/C software which was then under

development) which was used to machine an actual prototype. The desired

part in this example is modeled by a single rational B-spline surface

patch representing the convex side of a turbine blade. The part is

approximately 1.75 inches wide by 3.5 inches long. It is to be milled

(on a three-axis milling machine) with a ball end tool of radius 0.25

inch and height 1.0 inch. The CL-data for this part consists of 3034

63

distinct positions of the mill tool. In each of the example runs, the

milling tolerance was Tin- - 0.001 inch.
Tout

Results of the N/C geometric verification of this N/C program are

shown in Figures 11, 12 and 13; associated computation times are given

in Table 1. Figure 11 shows the results of Case 1, the most accurate,

and hence, the most computationally intensive run. In this case, the

discretization element size was set to 1 (i.e. every pixel was

considered in the intersection calculation) and the range of interest

was set to 0.01 inch. Figure 12 shows results of Case 2; the same

conditions as above, but with the range of interest set to zero.

Finally, for Case 3, the results of the same part in the same view, with

discretization element size set to 4 and range of interest set to 0.01

inch, are shown in Figure 13.

Figure 11. Turbine blade N/C geometric verification, Case 1

64

Figure 12. Turbine blade N/C geometric verification, Case 2

It should be noted that the "color banding" apparent in Figures 11

and 13 is a result of the limitations of the display terminal used for

this work. The terminal is limited to display at most 256 colors at a

time. When the user selects a nonzero range of interest, 15 hues are

used to depict depth of cut (7 each for miss and gouge and one for "in

tolerance"). The color limitation results in only 16 intensity levels

being available for each hue. The result shown in Figure 12 appears

smoother because only three hues are used if the user selects a range of

interest equal to zero. For this case, there are 80 intensity levels

available for each hue.

65

Table l

Computation Time in CPU Minutes for N/C Geometric Verification

Turbine Blade Example

Task --> A B C D E Total

Case 1 1.4 59.8 132.7 159.3 50.8 404.0

Case 2 1.5 61.4 130.7 155.0 47.1 395.7

Case 3 1.3 10.7 15.2 18.6 5.4 51.2

Case 1 -> Discretization element size - 1

Range of interest - 0.01 inch

Case 2 -> Discretization element size - 1

Range of interest - 0.0 inch

Case 3 -> Discretization element size - 4

Range of interest - 0.01 inch

Task A: transform pixel data into mill axis space, sort, construct

swept area, construct parallelepiped and auxiliary planes

Task B: process swept area, retrieve view space coordinate and

normal data given mill axis space bin addresses

Task C: intersect normal with planes of parallelepiped

Task D: apply parallelepiped face boundaries for face

determination, calculate plane subregion

Task E: intersect normal with cylinder or sphere

Figure 13. Turbine blade N/C geometric verification, Case 3

66

Table 1 summarizes the results of these three cases and breaks the

total computation time down by function. In each case the total CPU

time spent to calculate the surface normal vectors was about 21 minutes.

These results show the dramatic effect that the discretization

element size has on the performance of the algorithm. Computation time

was reduced by a factor of approximately 8 when the discretization

element size was changed from 1 to 4. Of course, this change has an

adverse effect on the resolution and accuracy of the resulting output

image, but it is still quite apparent that the improper milling of the

part would be discovered in this case.

Reducing the range of interest also cuts computation time although

not nearly as dramatically as the discretization element size change.

This small change is expected since this reduction of Rint results in a

swept area envelope size reduction of only about 4 percent. This

example shows that the computational price for the "degree of" miss or

gouge information is really quite small. The effect of the

discretization element size is much more profound since it actually

reduces the size of the data set (pixels and normals) with which the

tool path must be compared.

Variation of the range of interest and discretization element size,

along with prudent view selection, can be applied simultaneously to

increase computational efficiency. Alternatively, if the user is

prepared to pay the computational price, he can opt for precision

limited only by the resolution of the display device.

67

5.3 APPLICATION THREE: AUTOMOBILE HOOD

This example illustrates the potential use of the N/C geometric

verification algorithm in an actual CAM environment. The workpiece

model represents one half of a stamping die for an automobile hood. The

model is composed of eight rational B-spline surface patches. Two

CL-data files are used to mill the part. The first contains 4972 points

and operates with a ball end tool of radius 1.0 inch and height 3.0

inches. The second CL-data file contains 1112 points and its smaller

tool, 0.125 inch radius by 0.5 inch height, is used for more detailed

finishing work.

In an actual production environment, a part programmer might first

wish to see the entire part as affected by the N/C program. Such a run

is depicted in Figure 14. The centerline of the automobile runs along

the upper lefthand edge of the model in this figure, while the front of

the car is at the upper righthand edge. In this example, T. and
In

Tout were set equal to 0.005 inch, the range of interest was set to

0.045 inch, and the discretization element size was set to one. The

band of magenta colored surface along the lower edge of the model shown

in Figure 14 represent portions of the model which are trimmed away in

the actual design database; they are remnants of the design process, not

part of the model and are not meant to be cut.

The computation time required to produce this output was

approximately 33 CPU minutes for preprocessing and 285 CPU minutes for

N/C geometric verification. When compared to the computational

performance of the previous example, these results may appear spurious.

Although the total size of the CL-data in this example is approximately

68

Figure 14. Global view of automobile hood N/C geometric verification

twice as large as that of the previous example, the computation time is

approximately 25 percent less. This result is probably due to the fact

that, in these two examples, the average number of pixels considered for

each tool motion is quite different. Assuming the number of pixels on

each model is approximately equal, since the automobile hood model is

much larger than the turbine blade, the distance between pixels is much

larger, resulting in fewer pixels being considered for a given motion of

the mill. Thus, although the hood example appears more efficient

computationally on a per tool motion basis it is, in this view, less

accurate than the turbine blade example.

Upon examination of the global view of the N/C geometric

verification of the hood model, the part programmer may wish to take a

69

closer look at some critical areas of the model. One such critical

area, as evidenced by the band of yellow, is the crease running the

length of the hood roughly parallel to the centerline of the car.

Figure 15 shows the results of an N/C geometric verification run on a

zoomed view of the hood featuring this crease. In this example a

subwindow around the feature of interest (the crease) was selected to

reduce computation time. Preprocessing for this example took about 16

CPU minutes while N/C geometric verification required approximately 187

CPU minutes.

Many features of the milled surface which are barely visible in

Figure 14 are visible in much more detail in Figure 15. With this

Figure 15. Zoomed view of automobile hood N/C geometric verification

70

information the part programmer could return to the tool path generation

phase and attempt to remedy the problems in the N/C program. More

detailed zoomed views of other flawed areas could be also be run.

CHAPTER VI

ALGORITHM ANALYS I S

6.0 PERFORMANCE ANALYSIS OF THE N/C GEOMETRIC VERIFICATION ALGORITHM

In the preceding chapter, several application examples of the N/C

geometric verification algorithm were presented and discussed. Some of

the example cases presented were said to be relatively efficient

computationally. This chapter serves .to support this claim by

presenting a performance analysis of the algorithm. First, an order of

complexity analysis is developed and discussed. This analysis provides

an upper bound on the execution time of the algorithm based on the input

to it. These results are then compared to a similar order of complexity

analysis which has been developed for a solid modeling approach to N/C

geometric verification through N/C simulation. The algorithm presented

here for direct N/C geometric verification is shown to be much less

demanding computationally than the solid modeling approach, especially

as the number of tool path points (i.e. size of the CL-data file)

increases.

71

72

6.1 ORDER OF COMPLEXITY ANALYSIS

Recall from Chapter Two the distinction between N/C geometric

verification and N/C simulation. The original solid modeling approach

to the problem can provide N/C geometric verification but only after

completionlof full N/C simulation followed by computationally intensive

"null object" calculations. The algorithm presented in this

dissertation differs dramatically from the solid modeling approach; it

addresses the N/C geometric verification problem directly, reducing the

complexity of the problem by avoiding the constraints imposed by N/C

simulation. Intuitively, direct N/C geometric verification should

afford an efficiency improvement over the solid modeling approach.

Whereas the solid modeling approach is concerned with calculation of

many intermediate solids, representing various stages of the "as milled"

part and the material removed from it, direct N/C geometric verification

deals only with the final "desired part" surface model and its

interaction with the tool path. In this section the performance of the

direct N/C geometric verification algorithm is quantified, with a

standard technique for algorithm analysis, so that it can be compared to

that of the solid modeling approach.

To guarantee accurate results, any algorithm that provides N/C

geometric verification must consider each motion of the tool regardless

of whether it is intended as a rough or final cut. Assuming that the

algorithm treats each tool motion similarly, one would expect its

computation time to be strongly dependent on the number of tool motions

or the number of points in the CL—data file (as is actual milling time).

The following analysis deals with the nature of this dependency.

73

Comparison of different algorithms according to relative

computational efficiency requires definition of a standard measure which

is independent of the hardware and software used to implement the

algorithms. Typically, algorithm performance is measured and compared

through the use of an order of complexity or "big oh" analysis. [45]

The result of such an analysis is a function called the time complexity

of the algorithm, T(n) , which is proportional to some function of the

size of the input data set "n". In this work, T(n) will be categorized

by calculating a bound, C(f(n)), on the time complexity; i.e., the

"worst case" is characterized by the inequality T(n) s C(f(n)) , where C

is a constant of proportionality and f(n) is called the "growth rate".

The time complexity analysis for the direct N/C geometric

verification algorithm will proceed by considering first its growth rate

and then its constant of proportionality.

6 . l . 1 Growth Rate

For the purposes of this analysis, the N/C geometric verification

algorithm may be depicted in "pseudo-code" as shown in Figure 16. The

algorithm is shown broken down into nested tasks. The time complexity

of each task is denoted by the term "0(g(n))", where g(n) is the growth

rate of the individual task. The term 0(1) indicates that the task has

constant order time complexity; i.e., it is independent of input size.

Each task in the algorithm will be examined individually to determine

the growth rate of the algorithm as a whole. The reader may refer to

Chapter Four for precise details on each task.

74

sort.pixels.into.bins 0(1)

Pbr every CL-point fro-.1 to N

make.swept.area 0(1)

make.box 0(1)

Pbr every bin in swept area fro-.1 to BINSA

getpix 0(1)

Fbr every pixel in bin from 1 to PIXBIN

boxint 0(1)

exactint 0(1)

Ender

Ender

Ender

Figure 16. Pseudo4code representation of N/C geometric

verification algorithm.

The first task in the algorithm, sorting the pixels into mill axis

space bins, depends only on the number of pixels/normals participating

in the exact intersection calculation. This term is affected by user

view and subwindow selection as well as the discretization element size,

but is independent of the size of the CL-data file, N. The sort is done

only once, before path processing begins and therefore is of constant

order time complexity. Each of the remaining tasks operates inside of

the loop which considers every tool path point.

The swept area creation task is of constant order; it involves

calculation of four two-dimensional points given a tool position (as

shown in Appendix A). If the swept area overlaps the active area in

mill axis space then the parallelepiped which surrounds the swept volume

75

is constructed. This task entails calculation of nine planes, six for

the parallelepiped itself and three auxiliary bounding planes. Since

the normals of these planes are already known, this task reduces to a

calculation of nine constants; thus it is also of constant order time

complexity. The following tasks are undertaken for every bin in the

swept area which is also in the active area of mill axis space.

The task called "getpix" entails a manipulation of the data

structure used to correlate view space with mill axis space. More

specifically, given a bin address, getpix looks up the number of pixels

mapped there, then uses the linked list data structure to retrieve the

address of the pixel (and normal) data in storage arrays. This task is

also of constant time complexity. The following tasks are then applied

for each pixel in the bin.

The task "boxint" refers to intersection of a (normal) vector with

six planes which bound the parallelepiped, a task of constant time

complexity. (Details are shown in Appendix B.) Typically, only a

subset of the six planes is considered further in the next task

"exactint". This task entails application of the Roberts algorithm

(Appendix C) to determine whether the vector intersection occurs within

a planar face; if successful, another application of the Roberts

algorithm to determine the subregion; and finally, if necessary,

intersection of the normal with a cylindrical or spherical surface model

(Appendix D). Even if all six planes must be considered and each normal

vector passes through to the most complex surface intersection

calculation, the entire task is still of constant time complexity.

76

Of the three control loops shown in Figure 16, only the outermost

loop depends on the size of the input. The limits on the two interior

loops, the number of bins in a swept area, BINSA, and the number of

pixels per bin, PIXBIN, depend on such factors as view and subwindow

selection, discretization element size, range of interest, and the tool

motion (CL-point) under consideration. BINSA and PIXBIN are independent

of the size of the input (the number of CL-data points) and can be

bounded. Thus, since each of the tasks within the outermost loop is of

constant time complexity, the growth rate for entire N/C geometric

verification algorithm is 0(N), where N is the number of tool path

points.

6.1.2 Constant of Proportionality

The above development shows that the time complexity of the N/C

geometric verification algorithm is bounded by a linear function of the

number of tool path points in the N/C program. This is sufficient to

describe its asymptotic behavior. However, calculation of a bound on

the rate of that growth (i.e. the slope of the line), is a more

difficult task. Each of the 0(1) tasks shown in Figure 16 has an

associated constant. An operation count on each task could serve to

estimate these constants, but the limits on the interior loops, BINSA

and PIXBIN, are difficult to quantify. A total operation count on an

algorithm of this size and complexity would be very difficult.

Furthermore, it would be of little use since none of the alternative

algorithms for this task have similar analyses published. The purpose

of this section is to quantify the dominant constant in the algorithm.

77

To get some idea of the magnitude of this constant of proportionality, a

"worst case" application of the algorithm will now be examined.

Consider a contour type milling operation similar to the one shown

in Figure 3. Suppose a user selects a view perpendicular to both the

mill path and the "wall" being milled. Also, suppose that the view is

zoomed sufficiently so that the entire screen is filled with pixels

which map onto the "wall" and a single mill motion proceeds from outside

of the screen on the lefthand side, across the entire screen to a point

outside on the righthand side. Futhermore, allow that the subwindow

covers the entire screen, the discretization element size is set to one,

and the range of interest is set to a large value. Finally, suppose

that the tool path consists of multiple rough cuts parallel to the

"wall" such that initial tool sweeps are far from the "wall" and each

sweep gets progressively closer to it.

In this scenario all of the pixels on the screen will map into one

row of bins in mill axis space. If the screen is SCRSIZ pixels in width

by SCRSIZ pixels in height, then each of the SCRSIZ bins in this row

will contain SCRSIZ pixels. Assume that the range of interest is large

enough that this row of bins is included in the swept areas generated by

each and every tool motion.

Consider again the two interior loops of the algorithm as shown in

Figure 16. Given the case described above, since every pixel is

considered for every tool motion, it is reasonable to combine these

interior loops into one loop which has as its limit the product of the

limits of the original two. In other words, the product of the number

of bins per swept area BINSA and the number of pixels per bin, PIXBIN

78

results in a value for the number of pixels per swept area, PIXSA. The

maximum value that PIXSA can take is the maximum number of pixels,

2

SCRSIZ .

The above discussion is intended more as a thought experiment than

as a rigorous analysis of the worst case proportionality constant. An

analysis at this level, however, is sufficient for comparison of this

algorithm to other techniques. Verification of an actual milling

operation in the above described worst case scenario would represent a

very inefficient use of the algorithm. In actual practice, the number

of pixels considered per swept area depends loosely on the number of

path points and the selected view. If the number of CL-data points

approaches SCRSIZ2 (without rough cuts) and the user chooses a view such

that the entire workpiece is visible then the number of pixels per swept

area is on the order of one. The typical N/C geometric verification

application falls somewhere between this case and the worst case

scenario described above; the time complexity of a general case is

2

certainly much less than SCRSIZ . N.

6 . 2 PERFORMANCE COMPARISON

In this section the performance of the direct N/C geometric

verification algorithm described in this dissertation is compared to

several other techniques.

Consider first the application of CSG solid modeling. Hunt and

Voelcker [8] report that N/C geometric verification via direct

4

application of CSG solid modeling has time complexity of 0(N) in the

79

general case and 0(N310g(N)) under certain special circumstances.

Compared to the 0(N) time complexity of the algorithm described above,

this represents a dramatic difference in computational effort. This

difference is probably due to the added effort in the solid modeling

approach involved with N/C simulation (which must be done in conjunction

with N/C geometric verification). Note that the technique described in

this dissertation makes no attempt to verify such milling parameters as

tool feed and speed rates. Obviously, the price paid for information

concerning the amount of material removed with each motion of the tool

is quite high. The computational efficiency of direct N/C geometric

'werification.comes at the expense of neglecting the feed and speed rate

factors. Much of the effort expended in a solid modeling N/C

verification calculation has nothing to do with the final shape of the

part.

Using the time complexities of both techniques, an interesting

comparison is to calculate the value of N at which the lower order

(simpler) adgorithm becomes more efficient. Although Hunt and Voelcker

did not address the constant of proportionality for their solid modeling

approach, for the purposes of comparison, suppose the constant is equal

to one. Applying the worst case time complexity for the direct N/C

geometric verification technique described here with a realistic screen

size of 512 by 512, the value of N at which this algorithm becomes more

efficient than the solid modeling approach is 64. Although this is a

very loose comparison, the order of magnitude of the result implies that

for any but the simplest of milling operations, the direct N/C geometric

verification technique would be the more efficient method. .Application

of the standard solid modeling approach to realistic milling operations

80

involving thousands of tool motions is probably not economically

practical.

The other published techniques for N/C geometric verification are

also (probably) more efficient than the direct solid modeling approach

since they were designed with the application in mind. The image space

solid modeling approach developed by Wang [24] [25] as well as Jerard's

surface based Z-buffer technique [27] are probably of 0(N), although

neither author has published an algorithm analysis. However, Jerard's

technique calculates cut values measured vertically from the surface

regardless of the normal, thus introducing inaccuracies and limiting

its possible future application to five-axis milling. Wang's technique

seems to be one of the most promising. He claims to have five-axis

verification capability already, but has yet to publish true sculptured.

surface capability.

CHAPTER VII

SUMMARY AND CONCLUSIONS

7.0 REVIEW OF THE DISSERTATION

This dissertation introduced a new way to consider the problem of

automated N/C program verification. The general verification problem

was dissected into two component problems: N/C geometric verification

and N/C simulation. This work focused on the N/C geometric verification

and a complete definition of this problem was developed and discussed.

Previous analytical techniques based on solid modeling technology were

discussed. The limitations of these approaches were examined with

respect to the dissection of the problem introduced here. The

computational inefficiency of the general solid modeling approach to N/C

geometric verification‘was attributed to the fact that the NVC

simulation problem must be considered simultaneously.

The approach presented in this dissertation was to attack N/C

geometric verification directly, independent of the N/C simulation

problem. An algorithm for this purpose was developed from a synthesis

of sculptured surface shading techniques and elements of B-rep solid

modeling. The algorithm was designed with the goal of minimizing

unnecessary computations; it also incorporates options which allow the

81

82

user to trade accuracy for computational speed. The design and

operation of the algorithm was discussed at length and several

application examples were presented and discussed.

A performance analysis of this algorithm for direct N/C geometric

verification showed that it behaves with a time complexity of 0(N) ,

where N is the number of tool path points. This compares to a time

4

complexity 0(N) for the general solid modeling approach to the problem.

Thus, the algorithm developed in this dissertation is a viable

solution to the problem of accurate and efficient geometric verification

of N/C milling programs. It offers distinct advantages over the

existing analytical techniques and could provide a significant

productivity improvement over traditional manual verification methods.

7 . l FUTURE RESEARCH

One portion of this algorithm which shows promise for further

development is in the application of the discretization element size.

The smoothing technique described in Chapter Four demonstrates the

feasibility of cut value interpolation as a means to increase

computational efficiency, but it is flawed in at least two ways. First,

for any given case, a limiting cell (discretization element) size

exists, beyond which the size of the effective data set (and hence

computation time) increases instead of decreases. This is a result of

considering all the pixels in cells which fall partially on the

background. The second problem with this interpolation technique is

that some cells may fall partially on two different surfaces or across

83

surface discontinuities on the same surface, resulting in undesirable

interpolation. Both of these could be remedied with more sophisticated

sampling and interpolation schemes.

Alternatively, a completely different discretization scheme could

be developed based, for instance, on Jerard's [27] technique of using

local surface curvature and tool geometry to discretize the part only

once, in world space. Verification could proceed much the same way as

described here, except it would be done in world space. Then, a

sophisticated mapping and interpolation scheme would be necessary to

display the results on a raster device.

The direct N/C geometric verification technique presented here also

shows some promise in extension to five-axis milling applications. For

example, Wang's [24] [25] method of modeling five axis swept volume

solids could theoretically be applied to intersect surface normals (as

in this work) instead of sightlines. However, the entire portion of the

this algorithm dealing with mill axis space would probably not be useful

in such an extension since the mill axis changes at almost every motion

of the mill.

Finally, the techniques developed in this dissertation may be

useful in robotics applications. Problems such as collision avoidance

and interference detection are some possible application areas. Also,

with some modification, these N/C verification techniques could be

applied to verify the film thickness performance of spray painting or

coating robots. The geometric techniques presented in this dissertation

may be useful in many other applications in the general areas of

robotics and manufacturing.

APPENDICES

APPENDIX A

LOOK AHEAD AND LOOK BACK DISTANCES

In this appendix, the details behind the calculation of the "look

ahead distance", La’ and the "look back distance", Lb, are discussed.

These parameters are used in the tool path processing phase of the N/C

geometric verification algorithm as described in Chapter Four. La and

Lb are used to construct the smallest mill tool swept area which is of

sufficient size to include all portions of the surface that could be

affected by a given tool motion. The look ahead distance is based on

the angle between the current tool path vector and the next one, while

the look back distance depends on the angle between the current path

'vector and.the mill axis and the angle between the current and previous

path vectors.

The following terminology is necessary for this discussion:

define,

t a tool path point,

r a tool path vector,

A a unit tool path vector,

0 angle between current and next path vectors,

B angle between previous and current path vectors,

84

85

g the unit mill axis (2) vector,

a angle between current path vector and mill axis,

Rsa swept area range (see Chapter Four).

The procedure for calculation of the look ahead and look back distances

is most easily presented in the form of a "pseudo-code" algorithm, as

shown in Figure A.l. Each step of the algorithm will be discussed.

Control statments in this "pseudo-code" are shown in bold face type.

The reader is encouraged to refer to Figure A.2, which depicts La’ and

Figures A.3 and A.4, which depict Lb, as necessary, to follow the

following discussion.

The procedure outlined above begins with calculation of the current

and next path vectors and the corresponding unit path vectors. The unit

path vectors are then used to calculate the angle between the current

and the next path vector, 0, as well as the angle between the current

path vector and the mill axis, a. Note that the function cos.1 returns

a value between zero and pi (1r) radians, but that 0 is restricted to be

at most w/2.

The look ahead distance is then calculated as a simple function of

0 and the swept area range Rsa’ as shown schematically in Figure A.2.

This relationship guarantees that La will be a maximum if the angle

between consecutive path vectors is greater than or equal to 1r/2. On

the other hand, if 0 is zero, then the look ahead distance is set to

zero since the bins which are "ahead" of the current terminal path point

will automatically be considered in the next swept area (refer to

Chapter Four, Figure 5). Note that when the final tool path point is

considered, then La is set to the maximum value.

86

For each tool path point i - 1 to number of path points - l

---- Calculate path vector

If (first point) then r

’1 ' t1+1‘ ‘1' *1 ' Ilrill’ 5 ' “/2

Else

’1 ’ 'i+1' *1 ' Amy B ' 9

Endif

---- Next path vector and angle between consecutive paths

T

+1

'i+1- ti+2' ti+1' Ai+1' Ilr. II
1+1

-1 -1
9 - Max(cos (Ai- 11+1), a/2), a - cos (ii. g)

---- Look ahead distance

If (last point) then

L - R

a sa

Else

L - R sin(0)
a sa

Endif

---- Look back distance

If (first point) then

Lb ' Rsa

Elseif (a/2 < a < x) then

If (0 < B < «/2) then

Lb - Rsatan(fi/2)

Else

Lb - Rsasin(fi)

Endif

Else

Lb - 0

Endif

---- Remainder of N/C geometric verification algorithm (Chapter Four)

-Calculate swept area

--Process bins

---Process pixels

----Vector solid intersection

---End pixels in bin

--End bins in swept area

-End swept area

Endfor

Figure A.1 Pseudo-code algorithm for look ahead and look back distance

87

Figure A.2 Calculation of the look ahead distance, La

The look bacdeistance involves a slightly more complex

calculation. If the first path vector is under consideration, then Lb

is set equal to Rsa’ For a general tool motion, the look back distance

depends first upon the angle that the current path vector makes with a

plane which is normal to the mill axis. If the tool "lifts", i.e. a is

less than a/2, then Lb is set to zero because the area behind the

initial path point has been considered by the previous tool motion and

cannot be cut deeper. If the tool "dives" then a will be greater than

a/2 and the area behind the initial path point may have been cut deeper

by the current tool motion than it was by the previous one.

Given that a is greater than a/2, the look back distance depends on

the angle between the current path vector and the previous one, 13. Note

that for a general tool motion, 19 is set equal to 0 before 0 is updated

for the next tool motion. Thus the angle is not recalculated but saved.

88

Figure A.3 Calculation of the look back distance, Lb, for 0 < B < a/2

For «/2 < a < a, Figure A.3 depicts calculation of the look back

distance when 0 < B < 1/2, and Figure A.4 shows the case where

n/2 < B < a. In either case, as B approaches «/2, Lb approaches the

maxinnun value of Rsa' Thus when the mill "plunges", the algorithm will

always reconsider bins "behind" the initial path point since they may be

affected.by'this type of motion. On the other hand, as B approaches a,

i.e. , the tool retracts along nearly the same path, then Lb approaches

zero since the area behind the current path point was already considered

in the "look ahead" area of the previous tool motion.

The final portion of the pseudo-code procedure, "Remainder of the

N/C geometric verification algorithm", was included for completeness.

The details of the entire algorithm are covered in Chapter Rmnrand

Appendices B through D.

89

Figure A.4 Calculation of the look back distance, Lb, for a/2 < B < a

APPENDIX B

VECTOR/PLANE INTERSECTION

Consider an infinite plane in the form;

Ax+By+Cz+D-O

where:

A, B, and C are the scalar components of a unit vector, ”p’

which is normal to the plane.

The cartesian distance, L from a point, p, to the plane, along
int’

the vector u, is given by the following formula:

Lint - < < np- p > + D) / < np° u >

Note that the absolute value of the numerator in the above formula

is simply the normal distance from the point, p, to the plane. The sign

of L'int’ given by the denominator, is the direction from p, along y

towards the intersection.

To save computations, in this application, one might wish to reject

a point as "missed completely" if the normal distance (the numerator

90

91

above) is less than the sum of the range of interest, Rint and the outer

tolerance, Tbut' However, since the orientation of the point relative

to the outward pointing normal (u in this description) is not considered

in the numerator, such an assumption would be in error. Iflfsuch an

approximation were applied, the algorithm could neglect cases of severe

gouge.

APPENDIX C

EXAMPLE OF THE ROBERTS ALGORITHM

In this work, the Roberts algorithm is used to determine if a point

on a plane lies within a closed bounded region on the plane called a

face. The boundaries which define a face are oriented planes

perpendicular to the plane of the face. Bounding planes must be

constructed such that their associated normal vectors point towards the

interior of the face. The following example will serve to illustrate

the use of the Roberts algorithm.

Figure C.1 shows a face bounded by four planes labeled A through D.

For simplicity, this example considers a face plane which lies parallel

to the "Z - constant" plane. Hence it is a two-dimensional example in

the X-Y plane, with bounding planes parallel to the Z axis. The

algorithm works equally well for general three-dimensional planes.

The equations of each bounding plane are given below;

plane A: 4x - y - 0

plane B: -x + 6y - 0

plane C: -4x + y + 23 - 0

plane D: x - 6y + 23 - 0

92

93

(7.5)

Figure C.1 Example application of the Roberts algorithm

The Roberts algorithm proceeds by taking the vector dot product of'

the homogeneous coordinates of the point in question with each of the

four vectors composed of the coefficients of the bounding planes.

Consider the point on the plane given by (x,y) - (3,3). The

homogeneous coordinates of this point are [3 3 1]. Taking dot products

yields;

[3 3 l] 4 -l -4 1 A B C D

-1 6 1 -6 - [9 15 14 17 1

 0 0 23 23

b -l

94

Since each bounding plane dot product yields a positive value, the

point (3,3) is within the face defined by the above boundaries.

Alternatively, consider the point (x,y) - (3,0). This point yields

a value of -3 for its dot product with the coefficients of plane B.

This point therefore is out of bounds and is not on the face.

APPENDIX D

INTERSECTION OF A VECTOR WITH SPHERICAL

AND CYLINDRICAL SURFACES

Part 1: Vector/Sphere Intersection

Figure D.1 shows the intersection of a surface normal vector with a

spherical mill tool surface model. The following terminology defines

the geometry of this situation;

given: p, a surface point,

v, the corresponding (unit) normal vector,

3, the point at the center of a sphere

of radius, RS,

define: w - s - p, as a "connecting vector".

The perpendicular (shortest) distance, Ls, from the center of the

sphere, s, to the normal vector, u, is given by the magnitude of the

vector resulting from the cross product of w and u, thus:

LS - II w x V II

95

96

° (0

Tool Sphere

Figure D.l Intersection of a vector with a sphere

If Ls is greater than the sphere radius, RS, then the vector has

missed the sphere model and there is no need to process the intersection

calculation further. Otherwise, the distance, Ln’ from p to the point

on u closest to the sphere center is calculated as follows,

Ln - (w o v)

Now the precise directed distance, IHJH:’ from p along u to

intersection with the spherical surface model can be obtained from,

97

Part 2: Vector/Cylinder Intersection

Intersection of a surface normal with a cylindrical surface model

involves a.somewhat similar calculation. The terminology defined above

for a surface point and normal vector, along with definitions of the

following terms, are sufficient to discuss this geometry.

given: c, the initial point (base) of the cylinder,

¢, the principal (unit) vector of the cylinder,

(the vector which the cylinder surrounds),

Rc’ the radius of the cylinder,

define: p - p - c, a "connecting vector"

The first step of the intersection calculation is to determine if.

the normal vector, u, and the principal vector,«¢, are coplanar. This

is done by calculating the following scalar triple product,

0- (¢XV)

Kc-(t/J-a)

If the result of this product, Kc, is equal to zero (within the

error bounds for the computer arithmetic), the normal vector, u, and the

principal vector, 43, are coplanar. This case is shown in Figure D.2.

If K6 is not equal to zero, the vectors are noncoplanar as shown in

Figure D.3.

98

l 1* cp”

)0 RC Lh

Ltoi
Lu

Figure D.2 Intersection of a vector with a cylinder, coplanar case

In the noncoplanar case, the perpendicular distance between V and p

(i.e., the length of vector 0) can be determined as follows,

IKIL -

c TT_—QIT

a

If the shortest distance between the normal and principal vectors, LC,

is greater than the cylinder radius, Rc’ the normal vector has missed

the cylinder model and further processing is unnecessary. If LC is less

than Rc (or if the normal and principal vectors are coplanar), the

intersection calculation proceeds.

The same vector loop equation is used for both the coplanar and

noncoplanar case of normal vector intersection with a cylinder, with

slightly different inputs. For the noncoplanar case, the distance, Li ,

along the normal vector from the cylinder wall to the intersection with

vector 0, is given by,

99

2 2 1/2

Li - Rc - Lc

n 2

(1 - an)

where:

an - (v - ¢), the dot product of normal and

principal vectors.

For the coplanar case, the distance along the normal vector from the

cylinder wall to the normal's intersection with the principal vector is

given by,

L. -_fR_c_..

1n sin(0)

where:

-1

0 - cos (an), the angle between the normal and

principal vectors.

Figure D.3 Intersection of a vector with a cylinder, noncoplanar case

100

The other case-specific input required in the intersection formulation

is the "known vector" in the loop equation. These inputs are given

below,

5 - p + Lea for noncoplanar case

n - p for coplanar case

The normal vector intersection with the cylinder model is then given by:

N ° (V - an¢)

Ltot ' 2

(1 - an)

Lint - Ltot ' Lin

where:

Ltot is the directed distance along the normal

vector from surface point to either, ¢ if

coplanar, or a if noncoplanar.

Lint is the directed distance along the normal

vector to intersection with the cylinder wall.

LIST OF REFERENCES

LIST OF REFERENCES

[l] CAM-I Inc. "APT4 Sculptured Surfaces Part Programmers Manual,"

August, 1984.

[2] Smith, D.N. and Evans, E., "Management Standards for Computer

and Numerical Control," Institute of Science and Technology, Industrial

Development Division, Ann Arbor, Michigan, 1977.

[3] ANSI, "Dimensioning and Tolerancing, ANSI Y14.5M-l982," The

American Society of Mechanical Engineers, New York, N.Y., 1982.

[4] Voelcker, H.B. and Hunt, W.A., "The role of Solid Modelling in

Machine-Process Modelling and NC Verification," Procedings of SAE 1981

International Congress and Exposition, Detroit, Michigan, February,

1981.

[5] Hunt, W.A. and Voelcker, H.B., "An Exploratory Study of

Automatic Verification of Programs for Numerically Controlled Machine

Tools," Production Automation Project, Technical Memo No. 34, University

of Rochester, 1982.

[6] Ruberl, S.T., "Verification of NC Part Programs with

Interactive Computer Graphics and Solid Geometric Modeling," Proceedings

of CAM-I 10th Annual Meeting and CAD/CAM Graphics User's Exposition,

Fort Worth, Texas, October, 1981.

[7] Fridshal, R., Cheng, K.P., et a1, "Numerical Control Part

Program Verification System," Proceedings of the Conference on CAD/CAM

Technology in Mechanical Engineering, Massachusetts Institute of

Technology, Cambridge, MA, March, 1982.

[8] Requicha, A.A.G. and Voelcker, H.B., "Solid Modeling; A

Historical Summary and Contemporary Assessment," IEEE Computer Graphics

and Applications, Vol.2, No.2, March 1982.

[9] Requicha, A.A.G. and Voelcker, H.B., "Solid Modeling: Current

Status and Research Directions," IEEE Computer Graphics and

Applications, Vol.3, No.10, October, 1983.

[10] Eastman, C.M. and Weiler, R., "Geometric Modeling Using the

Euler Operators," Proceedings of First Annual Conference on Computer

Graphics CAD/CAM Systems, Massuchusetts Institute of Technology,

Cambridge, MA, April, 1979.

[11] Roth, S.C., "Ray Casting for Modeling Solids," Computer

Graphics and Image Processing, 18, February, 1982.

101

102

[12] Meagher, D. , "Geometric Modeling Using Octree Encoding,"

Computer Graphics and Image Processing, Vol. 19, 1982.

[13] Jackins C.L., and Tanimoto, S.L., "Oct-Trees and Their Use in

Representing Three-Dimensional Objects," Computer Graphics and Image

Processing, Vol. 14, 1980.

[14] Bobrow; J.E., "NC Machine Tool Path Generation From CSG Part

Representations," Computer Aided Design, Vol. 17, No. 2, March, 1985.

[15] Y.T. Lee and A.A.G. Requicha, "Algorithms for Computing the

Volume and Other Integral Properties of Solids: I - Known Methods and

Open Issues; II - A.Family of Algorithms Based on Representation

Conversion and Cellular Approximation," Communications of the ACM,

Vol. 25, No. 9, September, 1982.

[16] Tamminen, M. and Samet, H., "Efficient Octree Conversion by

Connectivity Labeling," Computer Graphics, Proceedings of SIGGRAPH, Vol.

18, No. 3, July, 1984.

[17] Chiyokura, H. and Kimura, F., "Design of Solids with

Free-Form Surfaces," Computer Graphics, Proceedings of SIGGRAPH, Vol.

17, No. 3, July, 1983.

[18] Kimura, F., "Geomap-III: Designing Solids with Free-Form

Surfaces," IEEE Computer Graphics and Applications, Vol. 4, No. 6, June,

1984.

[19] Casale, M.S. and Stanton, E.L., "An Overview of Analytic

Solid Modeling," IEEE Computer Graphics and Applications, Vol. 5, No. 2,

February, 1985.

[20] Cohen, E., Lyche, T. and Riesenfeld, R.F., "Discrete B-

splines and Subdivision Techniques in Computer Aided Geometric Design

and Computer Graphics," Computer Graphics and Image Processing, Vol. 14,

1980.

[21] Hanna, S.L., Abel, J.F. and Greenberg, D.P., "Intersection of

Parametric Surfaces by Means of Look-Up Tables," IEEE Computer Graphics

and Applications, Vol. 5, No. 2, February, 1983.

[22] Butterfield, K.R., "The Development and Application of

Algorithms Associated with Surface Representation," Ph.D. Dissertation,

Brunel University, Uxbridge, U.K., 1978.

[23] Atherton, P.R., "A Scan-Line Hidden Surface Removal Procedure

for Constructive Solid Geometry," Computer Graphics, Proceedings of

SIGGRAPH, Vol. 17, No. 3, July, 1983.

[24] Wang, W.P., "Solid Geometric Modeling for Mold Designamui

Manufacture", Ph.D. Dissertation, Cornell University, 1984.

[25] Wang, W.P., "Integration of Solid Geometric Modeling for

Computerized Process Planning," Computer-Aided/Intelligent Planning -

PED, Vol. 19, Book No. G00334, American Society of Mechanical Engineers,

1985.

103

[26] Farouki, R.T. and Hinds, J.E., "A Hierarchy of Geometric

Forms", IEEE Computer Graphics and Applications, Vol. 5, No. 5, May,

1985.

[27] Jerard, R.B., Hauck, R., and Drysdale, R.L., "Simulation of

Numerical Control Machining of Sculptured Surfaces," Proceedings of

International Symposium on Automotive Technology and Automation,

Flims, Switzerland, October, 1986.

[28] Catmull, E., "Computer Display of Curved Surfaces,"

Proceedings of IEEE Conference on Computer Graphics, Pattern

Recognition, and Data Structure, May, 1975.

[29] Riesenfeld, R.F., "Applications of B-Spline Approximation to

Geometric Problems of Computer Aided Design," Ph.D. Dissertation,

Syracuse University, 1973.

[30] Versprille, K.J., "Computer Aided Design Applications of the

Rational B-Spline Approximation Form," Ph.D. Dissertachnn Syracuse

University, 1975.

[31] Pickelmann, M.N., The Design of Rational B-Spline Algorithms

for Interactive Color Shading of Surfaces," Ph.D. Dissertation, Michigan

State University, 1985.

[32] Cox, M.G., "The Numerical Evaluation of B-Splines," Journal

of the Institute of Mathematics Applications, Vol. 10,;nL 134-147,

1972.

[33] DeBoor, C., "On Calculation with B-Splines," Journal of

Approximation Theory, Vol. 6, pp. 50-62, 1972.

[34] Coviak, R.A., "Color Graphics in Engineering Design," Masters

Thesis, Michigan State University, 1981.

[35] Watkins, G.S., "A Real-Time Visible Surface Algorithm,"

Technical Report, UTEC-CSC-70-101, Computer Science Department,

University of Utah, 1970.

[36] Gouraud, H., "Continuous Shading of Curved Surfaces," IWLIL

Dissertation, University if Utah, 1971.

[37] Phong, B., "Illumination for Computer Generated Images,"

Ph.D. Dissertation, University of Utah, 1973.

[38] Catmull, E., "A Subdivision Algorithm for Computer Display of

Curved Surfaces," Ph.D. Dissertation, University of Utah, 1974.

[39] Lane,.J.M. and Carpenter, L.C., "A Generalized Scan Line

.Algorithm.for the Computer Display of Parametrically Defined Surfaces,"

Computer Graphics and Image Processing, Vol. 11, 1979.

[40] Blinn, J.F. , "Computer Display of Curved Surfaces," Ph.D.

Dissertation, University of Utah, 1978.

[41] Whitted, T. , "A Scan-line Algorithm for Computer Display of

Curved Surfaces, Computer Graphics, Proceedings of SIGGRAPH, Vol. 12,

1978.

104

[42] Lane,.JJL, Carpenter, L.C., Whitted, T., and Blinn, J.F.

"Scan Line Methods for Displaying Parametrically Defined Surfaces,"

Communications of the ACM, Vol. 23, No. 1, January, 1980.

[43] Vanderploeg, M.J., "Surface Assessment Using Color Graphics,"

Ph.D. Dissertation, Michigan State University, 1982.

[44] Oliver, J.H. and Goodman, E.D., "Color Graphic Verification

of N/C Milling Programs for Sculptured Surfaces," 10th Annual ESD/ACM

Automotive Computer Graphics Conference and Exposition, Engineering

Society of Detroit, Detroit, Michigan, December, 1985.

[45] Aho, A.V., Hopcroft, J.E., and Ullman, J.D., "Data Structures

and Algorithms," Addison-Wesley Publishing Co., Reading, MA, 1983.

