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ABSTRACT

A DESIGN OPTIMIZATION TECHNIQUE

APPLIED To A SQUBEZE-FILM,

GAS, JOURNAL BEARING

By

Carl Leander Strodtman

Two different though related aspects of optimization of a com-

pressible-fluid, squeeze-film journal bearing are treated. First,

it is shown that the minimum clearance in the journal bearing can be

maximized by the proper choice of the nominal clearance, the length-

diameter ratio, and the excursion non-uniformity factor, for the

case of fixed load force and volume. Second, it is shown that an

optimum design can be selected by means of a merit function developed

from the designer's value-judgement of the desired performance and

cost. It is also shown that the merit function, multiplied by some

suitable weighting function, can be used to select a maximax design.

Although the merit function and the weighted merit function are ap-

plied to the squeeze—film journal bearing, it is believed that they

constitute a design procedure of much greater generality.

A method of characterizing non-uniform driver excursion by means

of its root-mean-square amplitude and a shape factor is developed.
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An augmented, small-parameter solution of the squeeze-film

partial differential equation including terms to the third power of

the radial displacement is given. The results are compared to an

alternating-direction, implicit, numerical method previously used.

A study of sensitivity to parameter changes is presented by

means of a response surface defined by the second derivatives, near

the Optimum. Parameters not optimized are treated by employing

sensitivity coefficients based on the first derivatives. Sensitivity

is studied for both the clearance optimization and the merit optim-

ization problems.
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CHAPTER 1

INTRODUCTION

1.1 GAS BEARINGS

The use of a gas as a bearing lubricant has many advantages.

There is an abundant supply of comparatively clean air available; gas

bearings are very low friction devices having near infinite life;

lubricating gases are comparatively free from adverse effects due to

nuclear radiation; and for high temperature missile or low tempera-

ture cryogenic applications, gas bearings are useful because the gas

viscosity does not change much over wide temperature ranges.

Gas bearings can be designed to have stiffnesses comparable to

ball bearings and thus have wide applicability. Gas bearings have

been used in textile spindles, machine tools, dental drills, jet

engines, accelerometers, measuring instruments, and refrigerators.

The first operational use of gas bearings was as gyroscope bearings

for the German V-2 rockets. They are inherently well-suited in pre-

cision instruments due to their low noise when rotating and to zero

friction when used as a null device. Because of the increased demand

of the aero-space industry for bearings embodying the above advan-

tages the study of gas bearings has recently been brought to a high

level.



In the study of gas bearings to date, most of the work has re-

lated to basic understanding of their operation and design. Little

has been done on the field of design optimization. This thesis will

study one type of gas bearing only recently developed, the squeeze—

film bearing. A primary objective is to Show that the proper choice

of parameters will maximize the minimum clearance in the bearing. A

second objective is to develop a technique for design based on optimi—

zing a series of functions developed from the designer's value judge-

ment of the desired performance and cost.

Film lubrication occurs when two closely spaced parallel or

nearly parallel surfaces are completely separated by a lubricating

fluid. In order for such a film to support a load, the pressure

forces in the film must be such that their resultant produces a net

force. There are three main types of film bearings recognized,

(1) those which depend on an external source of lubricant to create

a pressure field in the film (hydrostatic or externally pressurized

bearings), (2) those which depend onrelative tangential motion of

the bearing surfaces to create the pressure field (hydrodynamic or

self-acting bearings), and (3) those which depend on relative normal

motion of the bearing surfaces to create the pressure field (squeeze-

film bearings). This paper will concern itself with the squeeze-film

bearing using a compressible lubricant (gas), which should, more

properly, be called the "steady-state, compressible-fluid squeeze-

film bearing" to distinguish it from the transient bearing which is

generated when two surfaces approach or recede from each other. It

should also be distinguished from the incompressible fluid
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squeeze-film bearing in that the compressibility of the lubricant

plays a prime role in its operation.

In the absence of tangential velocity or of external pressuri-

zation, the squeeze-film gas bearing is able to support a load by

virtue of a continuous high-frequency oscillation normal to the

bearing surface.

The squeeze-film bearing can be thought of as a self-pressuriz-

ing bearing. Its advantages over the externally pressurized bearing

include compactness, simplicity of construction, and ease in regula-

tion. Further it seems to be relatively free of the stability

problems associated with the externally pressurized bearing.

The high-frequency oscillation can be sustained by electrical

means through a suitable transducer, hence a suitable oscillator for

driving the transducer is required. To conserve driving power, the

transducer is operated at one of its mechanical resonant frequencies.

The squeeze-film bearing, in its simplest form, is created be-

tween two plates, one plate vibrating normal to the other. If the

plates are closely spaced in relation to their lateral extent and if

the vibration is at a relatively high frequency (both conditions are

usual), then the effect, due to the finite viscosity of the gas, is

to trap the gas between the plates at a superambient density, i.e.,

more gas can flow in when the plates are separated during the vibra-

tion cycle than can flow out when the plates are close together. In



the limit as a parameter, known as the squeeze number, goes to in-

finity the trapped gas is completely isolated from the ambient and

no external flow of gas occurs after an initial pump period. With

the gas trapped between two closely Spaced plates, the effect of a

non-linearity due to Boyle's law is to create a non-zero cyclic

average pressure on the plates.

Although described above in terms of a flat plate, the squeeze-

film bearing can take many forms such as a round disk, journal,

sphere or cone.

1.2 LITERATURE REVIEW

‘ Gross[l] reports that the Frenchman G. Hirn[2] in 1854 was ap-

parently the first to mention that air might be used as a lubricant

but that this type bearing was not discussed again until Kingsbury[3]

built an air-lubricated journal bearing in 1897.

The Englishman W. J. Harrison[4] in 1913 presented solutions

for infinitely long gas-lubricated slider and journal bearings. It

is only since about 1950 that the study of gas bearings has been

noticeably accelerated.

Taylor and Saffman[5] in 1957, stated that the Reiner effect[6]

was probably due to either non-parallel plates or to normal vibra-

tions rather than due to a non-Newtonian or visco-elastic property

of air. They showed that it was possible to develop an average

load-carrying pressure distribution in a compressible film by a re—

lative normal motion of two surfaces. This is probably the first

reference to a compressible squeeze-film bearing.



One of the first analyses of squeeze effects for a gas bearing

was that of Langlois[7], who considered the linearized problems for

small periodic variations in the gap between infinitely long paral-

lel plates and the gap between parallel disks. The case of periodic

variation in the gap between parallel coaxial disks has also been

considered experimentally and theoretically (numerical integration

using a finite-difference scheme) by Salbu[8]. Malanoski and Pan[9]

in the discussion of this paper, developed a mass content rule which

allowed them to obtain the instantaneous film force and mean load-

carrying capacity for large squeeze numbers. Their results were in

excellent agreement with those of Salbu.

A Pan[lO] was the first to publish an asymptotic method for large

squeeze numbers which is applicable to arbitrary bearing shapes and

arbitrary modes of oscillation. These asymptotic techniques have

been applied to determine the load support capacity of a number of

different bearing shapes such as (l) the infinitely long journal

bearing by Pan, Malonoski, Broussard, and Burch[ll], the finite

journal by Beck and Strodtman[12], the rotating sphere by Chiang,

Malonoski, and Pan[l3], the non-rotating sphere by Beck and

Strodtman[l4], and a variety of shapes by Pan and Broussard[15].

Other papers published include the following. A treatment of a

high frequency instability for'the infinitely long squeeze-film

journal bearing is given by Beck and Strodtman[16]. A treatment of

the same form of instability in the finite journal bearing is by

Nolan[l7]. An analysis has been developed by Elrod[18] of the ef-

fect of low frequency vibration in the bearing. This analysis has been



applied to spherical bearings by Pan and Chiang[19]. The asymptotic

analysis for squeeze-film bearings including the effects of tangen—

tial motion (the hybrid bearing) has been rederived on the basis of

singular perturbation theory by DiPrima[20]. Pan and Chiang[Zl] de-

rived the turbine torques on the supported load for the cylindrical

journal bearing. The case of coaxial disks where one member is

driven and the other is free to respond was treated by Beck, Hol-

liday, and Strodtman[22].

There appears to be no publication of optimization techniques

applied to squeeze-film bearings.

1.3. DESIGN OPTIMIZATION AND PROBLEM STATEMENT

Although much has been written on optimization and on tech-

niques for optimization, there does not seem to be any extensive

field of literature on applications of these techniques to design

problems, per se. Most of the applications use cost or profit as

the objective function to be optimized. Sage[23] in his book

"Optimum Systems Control" calls his objective function "a goal or a

cost function", regardless of its nature. This is perhaps natural

when one considers that cost is a common denominator in so much of

man's activity.

Other applications speak of maximizing range (of a rocket),

minimizing the error in estimation (of position of an object), or

minimizing the energy to achieve some end state.

To attain an immediate goal it may be expedient to optimize the

most important facet of a design. However, in the comprehensive



treatment of a design problem there is not one, but many features,

often conflicting, which must be considered for optimization. Yet

the very word "optimum” means "the best".

To resolve this conflict, it is proposed that a composite ob-

jective function be created. This composite function will embody

the designer's value judgements as to the importance of the various

features entering into the design and the relationship between these

features and the design variables or parameters. For want of a

better name this composite fUnction will be called the figure-of-

merit function or simply the merit function.

An examination of recent literature failed to Show any previous

work in this area. Starr[24] treated a similar problem in his

quality function, although he used only a pure ratio between each

feature and a standard feature. The fact that the design parameters

can be used to define a merit function is one of the contributions

of this thesis.

Another contribution is made in studying the optimization of

minimum clearance in the squeeze-film journal bearing of finite

length when carrying a given load of fixed volume.

The plan of this thesis is as follows:

1. The appropriate gas film equations for the squeeze-film

bearing are stated and the equations for non-uniform

driven excursion are derived.



2. The minimum clearance problem in the squeeze-film journal

bearing is studied, the significant parameters are deter-

mined, and it is shown that the minimum clearance can be

optimized.

3. The figure-of-merit function for a squeeze-film journal

bearing used as an accelerometer element is developed and

optimized.

4. A figure-of—merit function weighted in terms of the ex-

pected load is next developed. It is shown that this

weighted merit function can also be optimized leading to

what could be called an optimum of optimums or a maximax

value.

Throughout the study, whenever specific application was re-

quired, the following practical design problem, called the demon-

stration problem, was used.

A single degree-of-freedom accelerometer is to be designed for

an aerospace application. The accelerometer is to consist of a one

. gram (.0022 lbm) proof-mass suspended in a squeeze-film journal

bearing. The sensitive axis is along the axis of the journal bear-

ing and sufficient restraints will be provided to withstand the

maximum acceleration to be applied to the sensitive axis. Cross

axis loading may be in any direction and may be any value up to

thirty times the acceleration due to gravity. The proof-mass is to

be completely contained within the squeeze-film transducer and is

to consist of a cylinder of material with a density of .024 pounds



per cubic inch. The squeeze-film bearing problem, extracted from

this specification, is to support a .0022 pound load having a volume

of .0925 cubic inches in a 30g acceleration field (maximum load equal

to .066 pounds) in the radial direction.

As a result of this study it was found that (l) the important

parameters for maximizing the minimum clearance are the nominal

clearance — drive amplitude ratio, the non-uniformity shape function

of the excursion, and, to a lesser extent, the length-diameter ratio

of the bearing; (2) a merit function based on the parameters above

can be used to find an optimum combination of cost, radial displace-

ment, length-diameter ratio, and drive amplitude; and (3) a weighted

merit function can be used to show that a design optimized at less

than the maximum load will not only work at all loads up to the maxi-

mum anticipated, but will have a higher merit rating than the design

optimized at the maximum load.



CHAPTER 2

GOVERNING EQUATIONS

2.1 GAS FILM EQUATION

The equation describing the fluid dynamics of laminar gas films

is called the Reynolds equation. For a bearing in which there is no

relative tangential motion between mating surfaces and for the cylin-

drical coordinates z and 6 , Reynolds equation may be written[l]

.12. 11.3.2.1». . .8; 11.325. (oh
R2 30 p u 30 32 u at

(2.1)

where p is the density of the gas film at a general location 2

and 8 and at a general real time T ; h is the film thickness at

(2,6,1); p is the pressure at (2,0,T); u is the gas viscosity; and

R is the bearing radius.

The assumption is generally made that the gas film is an iso-

thermal, perfect gas, thus density is proportional to pressure and

the viscosity may be treated as a constant. With this assumption

then (2.1) becomes

1 a 313 = 3 (2h)
E2- '3 [131136 wiEJh:1] 1211 31'

(2.2)

10



Equation (2.2) may be made

the new variables

where

pa 15 the

h is the
o

m is the

Then (2.2) becomes

.iL
ae

aifli[PH 36] +

where

.3.
32

11

dimensionless through substitution of

0
3
1
3
‘

z
H
N

ambient pressure

nominal film thickness

squeeze frequency

a dimensionless group called the squeeze number.

The boundary conditions for use with (2.3) are

+

P(_ZL,0)

$2.0)
38

[m3 a] = 04—13::
(2.3)

12 uwRZ

Pahf;

= I (2.4)

QEIZ.T)
36 o (2.5)
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where

_L

ZL'E‘R’

Equation (2.3) may be greatly simplified when G is large which

is generally true in squeeze-film bearings. (Typically o is 1000 or

greater.) C.H.T. Pan[lO] in 1966 first published an asymptotic solu-

tion of (2.3) allowing 0 to go to infinity.

With the assumption of infinite squeeze number (2.3) becomes

1332 as 32 373’WIT—LP] =0
(2.6)

where H is the time average of. H . Making the substitution

T = (PH)2

reduces (2.6) to

a HOT 3H a BET 3H _

a second order, linear, partial differential equation in T, inde-

pendent of time.

Since the asymptotic analysis used to derive (2.6) or (2.7) is

valid only in the interior of the bearing, new boundary conditions

where the bearing is exposed to the ambient are required. The

boundary conditions at the ends of the bearing, (2.4), become (Pan[10])

4.2,.) =

:
E
I
I
E
I

 :Z (2.8)
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The derivative boundary conditions (2.5) are still valid but now

take the form

31am) z flaw)
80 36 0 (2.9)

For a journal of uniform radius constrained to have radial dis-

placement only, the film thickness for the bearing,when the driving

member moves sinusoidally, is given by

h = ho - 6h1(z) sin wt - ah, cos a (2.10)

where

6h1(z) is the amplitude of the excursion of the driving

member at any 16cation along the z axis

dhz is the displacement of the journal center above

the bearing center measured in the plane defined

by the journal center and 0 = 0. (See Figure 2.1)

Equation (2.10) may be made dimensionless by dividing through by

ho , and by using t = wT

H = “1:?— = 1 - €1f1(Z) sin I: - £2 COS 0 . (2.11)

o

where

c1 is some reference excursion

f1(z) is a shape function for the excursion

82 is the eccentricity of the bearing
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Figure 2.1 Configuration of the squeeze-film journal bearing

From (2.11) then

H = 1 - 52 cos 6 (2.12)

and the boundary conditions (2.8) become

_ _ 2 3 2 2
T(ZL,0) - (1 52 cos 6) + 2 clfl(zL)

(2.13)

2 3
T( ZL’B) (I 92 cos 6) + 2 elf1 ( ZL)

for the journal bearing.

A solution to the asymptotic form of Reynolds equation has been

approximated previously by two different methods, one numerical, the

other analytical[12]. In the numerical approach, finite differences
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were used in an alternating-direction, implicit method to generate a

matrix of T values over the surface of the bearing. In the analyt-

ical approximation, the series

T 2 TO + €2T1 (2.14)

was substituted into (2.7) and into the boundary conditions (2.9) and

(2.13). A collection of like powers of €2_ gave two partial differ-

ential equations, one in To , the other in To and T1. The solu-

tion of these equations gave the answer

3 3 3T.[ --:+ ,2]

(2.15)

l (uniform excursion). Latervalid when 62 is small and ff(z)

work produced the answer

2 1 cosh Z 2

T 2' l+§c§f2- 262c056[-%czf2c;.5h—-Z—+1+ie§f2]

L

(2.16)

for non-uniform, but symmetrical, excursion where

f = |f1(zL)| = IfII-ZL)‘

For this investigation it was concluded that (2.16) could be used

only for preliminary investigations because of the restriction that

82 be small. The numerical method is valid for all 52 but re-

quires a considerable amount of computer time for iterative solutions.
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For these reasons the small parameter solution was expanded to in-

clude two additional terms in the series

T 2 TO + €2T1 + ESTZ + €3T3 (2.17)

The details of this work are given in Appendix A together with

a comparison in Appendix B between this augmented, small-parameter

analysis and the numerical results. The conclusions reached are that

the T-values found using the augmented, small-parameter solution agree

with the numerical solutions for values of 52 as large as -.8, and

that the former requires significantly less computer time. In all

that follows then, the small parameter solution was used for prelim-

inary investigations or to find starting values and the final solu-

tion was made using the augmented, small-parameter equation. In the

optimization procedure the solution of the partial differential

equation (2.7) is required a large number of times. Without the

augmented, small-parameter analysis, the total computer time may have

been so large that the optimization procedure would not be practical.

In summary then the film characteristic, T, is a function of the

variables

T = T(ho,6h1(z),6h2,pa,z,0,R,L) (2.18)

in the dimensioned form or of

T = T(€1,f1(Z),€2,Z,O,ZL) (2.19)

in the dimensionless form.
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2.2 LOAD SUPPORT CAPABILITY .

A bearing at equilibrium can support an average load W1 , per

unit length which is given by

 

  

   

L
2n F2" -5

1

W1 = - 2TE' p cos 6 d6 dz dt

0 Jo —§ (2.20)

In dimensionless terms (2.20) becomes

r2.” r2". rZL

W' _ w1 _ 1
_ 2p R — 8NZ P cos 0 d9 d2 dt

a L

Jo Jo J-ZL (2.21)

The Sign of the force is chosen such that a displacement of the

journal below the bearing center gives rise to a positive (upward)

force.

The pressure, P , in (2.21) is obtained from the solution of the

gas film equation and since T = (PH)2,

(2.22)

Since H , given by (2.11), is the only factor of (2.21) containing



18

time and then in an especially simple manner, the integration of

(2.21) over time may be performed explicity giving

12" IZL

;,

T2 cos a de dZw'=-i- ,
4ZL [(1:62 cos 0)2 - eff?) é

 

  J J-
o ZL (2.23)

Again two methods of solution of (2.23) are available, numerical

integration and a small parameter approximation. A two dimensional

form of Simpson's rule was used for the numerical integration.

_The small parameter solution, requiring now that cf as well as

52 be small led to the answer[12]

 

 

n ( 3 tanh 2L)

W' = - —-ezc 1 + -————-———-
22 1 2ZL (2.24)

for uniform excursion and to

IZL

2 cosh Z
c c 2

w' = - 1- 1 2 2f1 * 3f cosh 2 dz
8 2L L

J_ , (2.25)

ZL

for non—uniform but symmetrical excursion.

In summary, the load support per unit length does not involve

any variables other than those considered previously for the film
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characteristic. In fact, the integration over the bearing area elim-

inates the dependency on position so that in dimensioned form

 

W

l

W' = = W' (h ,8h1(z),5h2,p ,R,L)

ZpaR O a (2.26)

and in dimensionless form

w' = w'(:1.f1(2).e2.zL) (2.27)

2.3 NON-UNIFORM DRIVER EXCURSION

The high frequency, sinusoidal displacement of the driving

member, in general, will not be uniform along the axial length. As

suggested by (2.11) the excursion may be represented by some refer-

ence excursion multiplied by a non-uniformity shape function.

An assumption, substantiated by some unpublished experiments by

William G. Holliday[25] is that the amplitude of some of the simpler

radial motions of a thin-walled cylinder can be expressed by a cosine

function as

am = a + b cos 97:5— (2.28)

LC

Where a and b are two parameters to be treated at greater length

below and z is the half length of the driver. It is necessary

LC

to distinguish between the length of the driver and the length of the

bearing since the two need not be equal. The length of the bearing

is determined by the length over which the gas film extends. The

driver excursion is defined over the length of the driver.
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If a new variable,called the shape factor, is defined by the

ratio

m
l
c
‘

(2.29)

then (2.28) can be written

oh, = a(l + A cos 22'2") (2.30)

LC

This accomplishes the separation of Ohl into a reference ampli-

tude, a , and a shape function.

If a is assumed to be a non-negative constant then a number of

different drive shapes may be characterized by the magnitude of A

as shown in Figure 2.2 , which depicts the range of displacement of

one surface of the driving member.

Equation (2.30) suffers from two deficiencies. First, the

excursion, a , at the end is not a good reference, since as the in-

put power changes both the end excursion and the shape factor, A ,

change, and second if the excursion at the end should be zero, Ohl

is not defined.

It was postulated that a spatial root-mean-square excursion

value would make a better reference. Limited experiments by

W. G. Holliday[25] did in fact show that a good degree of correlation

existed between the rms excursion and the input power.
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Define

[ZLG
2

2 32 1T Z

dhlr E 22 1+A cos E-E——- dz

LC LC

J-

zLG

After performing the indicated operations

A2 4A /
5h1r - a (-§-+ 7F-+ I) - am

where

4A A2
a = 1 + -—-+ ——-

n 2

since

-1/

a = Ohlr a 2

In dimensionless terms (2.34) is

5 Z
-——— = €1f1(Z) = -%E- 1+A cos g-E——-

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)
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Thus for Ohl given by (2.28) the shape function is identified as

44
-P n z A2 4A R z

f1(Z) = a 2(1er cos 27-) = (7+74r l) (1+A cos 2?)

and the essential information identifying the shape is given by the

value of A once the cosine distribution is assumed.

Note that if the excursion at the end of the driver is zero,

A = w , but (2.32) can easily be shown in the limit as A + m to be

b

5h1r = '7; (2.38)

Similarily (2.37) in the limit becomes

f1(Z) = 2 cos E-—3L- (2.39)
2 2

LC

For any given value of A , (2.37) defines an even function of

2 so clearly f1(Z) is symmetrical.

Although in the development of (2.37) A was treated as a con-

tinuous variable only certain values of A correspond to mode shapes

which are physically attainable. This point will be considered

again in the subsequent work.



CHAPTER 3

OPTIMIZATION OF CLEARANCE

3.1 CLEARANCE EQUATIONS

Two highly desirable prOperties of a gas lubricated bearing are

(l) a relatively large nominal clearance and (2) a small radial dis-

placement, i.e., small eccentricity, regardless of load. Even re-

latively large nominal clearance in gas lubricated bearings must of

necessity be small physical dimensions (of the order of 100-400 mi-

croinches). A large and uniform clearance would not have any pre-

ferred location tending to contact due to machinging tolerances or

dirt particles. (At the other extreme, a very large eccentricity

means that contact is always imminent and that a machining asperity

or an extremely small dirt particle is capable of bridging the film

thickness). Unfortunately, large nominal clearance and small ec-

centricity are incompatible requirements; however, it is possible

to choose the nominal clearance such that the resulting eccentricity

gives the maximum value of the minimum clearance. The problem is

somewhat more complex that this because other independent variables

are also important in the clearance optimization problem.

The minimum clearance, c , in the bearing corresponds to the

minimum film thickness. In a journal constrained to have radial

di5placement only, G is a minimum at 6 = n and when the

24
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excursion is maximum. Thus the minimum value of h ,

:
3
"

l
l

ho - 0h1(2) sin t - th cos 0 (3.1)

is

0

ll

ho - Ohlm + 5112 (3.2)

where dhlm is the maximum value of 0h1(z)

In the following, the minimum clearance, c , will be simply

called "the clearance", but it should be distinguished from the

nominal clearance, ho .

In the previous chapter, the load support per unit length was

shown to be a function of the dimensioned variables

w' = w' (ho, 6h1(z), 5h2, p , R, L) (3 3)
a

Also 6h1(z) was represented as a reference excursion, dhlr and a

shape function characterized by the shape factor, A , so that

finally

w: = w. (ho’ Ohlr, A, th, pa, R, L) (3.4)

Quite frequently in the design of a bearing, the maximum load

which the bearing will be expected to support is a predetermined

value. In addition, in the accelerometer application, the volume of

the load is contained completely within the bearing, thus for a

material of fixed density, the volume of the load is also fixed.

These two quantities may then be treated as equality constraints in

the following work.
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When a fixed load volume is considered, the volume acts as a

constraint on the variables R and L ; however in the gas film

computations R and L are also related through ZL . It is thus

convenient to replace R and L by the constraint relationship V

and the length to diameter ratio, ZL . Then

I = Iw w ( ho, 6h1 , A, on,, pa, v, 2L) (3.5)

The total dimensioned load, W , which a bearing is capable of

supporting is given by

w = WlL = 2RL pa w' (3.6)

If now W set equal to a constant is introduced as another

constraint, and since the relationship for W introduces no new

variables, (3.5) can be symbolically solved for the radial displace—

ment giving

dhz = on, (w, v, ho, 6h1r. A, pa, 2L) (3.7)

Of these variables, then, two, V and W , are constant constraints.

The ambient pressure, pa , enters linearly into the gas film equa-

tions such that a higher ambient pressure permits the bearing to

carry a proportionately larger load. No further consideration was

given pa which was treated as a constant and set equal to atmos-

pheric pressure.

To express 6h1m in terms of Ghlr and A consider the six

cases shown in Figure 2.2.
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CASE 1 6h1m = b + a = a(1 + A) (A > 0)

2 Ohlm = a (A = 0)

3 Ohlm = a (-1 < A < 0)

4 Ohlm = a A = -l

5 6h1m = a for b :_-2a (-2 :_A < -1)

dhlm = [bl -2a for b < -2a (A < -2)

6 ahlm = b (A = m)

The first five cases may be expressed as Ohnn aF(A) where

F(A) is defined as follows

 

A > 0 F(A) = A + l

-2 :_A :_0 F(A) = l

A < —2 F(A) = |A + II

But from (2.35)

a - Ohlr a (3.8)

Therefore

1m _ -%
5h1r - F(A) a (3.9)

Equation (3.9) does not appear to cover case 6 since it is

indeterminate as A + w ; however

 

 

6h . [-
iim dhlm = 21m 2 1A+ll L = 2 (3.10)

A400 11‘ A-_>°° 57+%+1]‘



28

5h1m

A values of interest. Differentiation of ( 3.9) with respect to A

 

Figure 3.1 shows how the ratio varies in the range of

fOr -2 §_A.§_0 gave the value of the maximum as 2.298 at A = -.%

(A = - 1.2732).

Putting (3.9) into the expression for clearance (3.2) gives

_ F(A)6h1r
c - hO - -——;?;——-+ th W, V, ho’ dhlr, A, pa, ZL)

(3.11)

as the expression for clearance to be maximized.

3.2 OPTIMIZATION OF SMALL PARAMETER EQUATION

For the case when the gas film is the same length as the driver,

the small parameter load support equation (2.25) may be integrated,

using the non—uniform excursion expression (2.36), to obtain

n 3 tanh ZL

w' s - E-cfrsz 1 +--377;7§:—- (3.12)

or in dimensioned terms

w' _ _lL__ = _ 1.5h1r éhz 1 + 3.:EEE—EE. (3 13)
- 2RL p 2 h3 2 a Z '

a o L

Equation (3.13) may be solved for th and put into the

clearance equation (3.11) yielding

w h3
o

2 3 tanh ZL

"RL Pa “WE * 737—
L

F(A)

ah

 C = h ..

0

 

éhlr'

(3.14)



 

\
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. ohfir 6h2
as the clearance equatlon for values of and -17—-<< 1,

hg o

(This implies that #2- must be near unity.)

0

Since constant volume was to be an equality constraint in the

optimization it may be introduced by observing that the radius ap-

pearing in (3.14) may be given by

 

v 1/3

R = (21:2) (3.15)

L

and the length, L , by

L = 2R zL (3.16)

Then

3
WhoF A

c h,6hu,A,z - h - ~§l-mn, -

1 ° ' 1" ° 61 (hr/3 pavz/a le/a ohfr [l o #21:“:

L I

(3.17)

 

In order to gain some insight into the nature of the clearance

function, it is instructive to study (3.17) by varying one parameter

at a time; however to reduce the number of variables, divide (3.17)

by dhlr and define the new variables air and ‘85 to get

 (3.18)
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where

  

 

3

El : 5P2 = - W (Cir)

2 Phlr @é kg 3 tanh ZL

"V ZL “—2??—
L

(3.19)

h
I = O

Elr — 5h1r

he

K = (2“) Pa

Thus it is possible to plot a dimensionless clearance in terms

of a dimensionless nominal clearance, so that the results to follow,

although specific for W and V , are general in nominal clearance

and excursion.

Figure 3.2 shows that for a fixed value of the load and the load

volume, the clearance does have a definite maximum as a function of

nominal clearance, and further that the maximum is a function of the

non-uniformity of the excursion. Figure 3.2 also clearly shows the

incompatibility of large nominal clearance and small eccentricity

I

since as Eir increases (large nominal clearance) so does 62

(large eccentricity).

Figure 3.3 shows for a fixed value of non-uniform excursion

that the optimum clearance is also a function of Z the length to
L ,

diameter ratio of the bearing. The shape of the curves in Figure

3.3 suggest that Z may not be an important variable in determ-

L

ining the clearance. This is particularily true for €1r near the
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ratio (small parameter equation)
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value of 14, the curve which yields the maximum clearance. For the

dotted curves (sir > 14), the curvature becomes considerably more

pronounced than for the solid curves (air §_l4)

Figure 3.4 shows the contours of constant clearance plotted

against the two most important variables, fixing ZL at 0.897.

It is also possible to gain some insight into the maximum of

(3.18) by the classical approach of setting the differential with

respect to each of the three independent variables equal to zero.

This procedure produces

 

 

' 3 h Z -1

8—CL = W(€1r) 3 Z ‘1/3 1 + :_t_a_n___li = 0

23 L KV/3 BZL L 2 a ZL

(3.20)

I 2
ac' - 1 3 W (Elr - o

a 8' - - 3 tanh Z -

L 2 a ZL (3.21)

' _ _. w ' 3 Stanhz '1

a— - EEAmeMAJ) .glr , Nam—L ..
. KV 2!. L

(3.22)

Performing the indicated differentiation of (3.22) with F(A) = l,

which assumes that A lies between -2 and 0 , gives
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I 3 ‘2 . ..
‘ __'________(clr) 3tanh42L 3tanh 2!. A2‘4A"! 2(A+4)-0

2 1 2 nxv/32L/3 22L(% + +:1) zzL n

(3.23)

a
y
n

This equation is satisfied by A = - for any value of W, Z V,
L,

I

or 81 That the value of A lies in the assumed range justifiesr .

the original assumption. Further, Beck and Strodtman[IZ] showed for

small parameters that the load support of a finite journal bearing

with uniform excursion is composed of two components, one due to

interior excursion (non-linearity of the load support equation), the

other due to the excursion at the boundary, (pressure pump-up). It

was also shown that the second component was a function of the length

 

diameter ratio, ZL , and for 2L 2 l was 1 1/2 times the first com-

ponent. It has been shown that Shlm has a maximum at A = - %-.

1r

This value of A is case 5 of Figure 2.2 with [bl < 2a thus

5h1m occurs at the boundary, enhancing the total load support. It

is reasonable to expect a maximum value for the clearance when the

load support capability is maximum.

With the above value for A , since (3.20) is a function of A

and ZL only, one can solve for

2

_ W *8 3 2, 2
a =-_- - n2 ZL tanh ZL 2 sech ZL

“ (3.24)
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Newton-Raphson iteration gives

Z: = 0.89664

where here and elsewhere the asterisk will be used to denote optimum

quantities.

Using these values for ZL and A in (3.21) gives

26 %

clr = 2.3501 w (3.25) 

For the assumed values of V = 0.0925 in3 and W = 0.066 lbs,

oi; = 14.054 and c'* = 7.0719

That these values correspond to the maximum is evident from

Figure 3.4 which is a contour map near the optimum. Further, in

Section 3.4 it will be shown that the function defined by the second

derivatives near the optimum is negative definite thus insuring that

the optimum is a local maximum.

To relate the above optimum values to dimensioned quantities it

is necessary to know 5h1r . Typical values for the rms excursion

range from five to fifteen microinches. The optimum nominal clear-

ance, ho , will then be between 70 and 210 microinches and the min-

imum clearance, c , will be between 35 and 105 micro-inches. The

lower limit of 70 microinches for the nominal clearance is less than

usually used in squeeze-film bearings. It is near the limit of

nominal clearance which can be reliably fabricated and measured.
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The upper limit of 210 microinches is well within typical dimensions

encountered. A bearing with the lower limit of 35 microinches for

the minimum clearance may not be satisfactory since a very small

asperity or foreign particle might bridge the gap and destroy the

bearing.

It is also evident from (3.20) that if any other value of A

is assumed for the excursion the corresponding maximums with respect

I

to ZL and c1

Spectively. It is also interesting to note that Z

r only can be obtained from (3.24) and (3.21) re-

L is independent

of W and V thus only the optimum value of Fir changes as W

and V are varied.

The small parameter approach just described fails in one im-

portant respect. The Optima predicted do not fulfill the small

. . 6h ,

parameter restrictions; 1n particular 7;;- was requ1red to small

0

compared to unity. But at the optimum by using (3.21) and (3.19)

one finds

I
I I

m
|
H

which is not small compared to unity.

3.3 OPTIMIZATION OF CLEARANCE USING THE

AUGMENTED, SMALL-PARAMETER EQUATION

In the previous section, explicit solution of the clearance

equation was analytically possible because a relatively simple ex-

pression for dhz was available. However, a more accurate
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solution is obviously needed since the clearance predicted by the

small parameter equation did not meet the small parameter require-

ment5 .

Equation (3.11) is still valid but th must be determined by

a more accurate means. Two methods are available, (1) the finite

difference solution and (2) the augmented, small-parameter equation.

The latter was chosen because it uses less computer time with no

significant difference in accuracy, in the range of interest for this

problem. See Appendix B.

The programs written to solve for the load support by either

method result in a W' corresponding to given values of 51f: 52,

A, Z To determine 82 corresponding to a given load it is ne-L .

cessary to iterate on 82 until the given W' is obtained within

some given error bound. To start the iteration, the small para-

meter equation (3.12) was solved explicitly for £2 for the given

load. Since for large loads or very small values of £1 , the small

parameter equation tends to overstate the value of £2 , a check was

necessary to insure that the resulting clearance was positive. If

this condition was not satisfied, a value of 52 was selected which

made the clearance slightly positive. The second value of 82 was

always arbitrarily selected as 0.95 of the first. Linear inter-

polation to the desired W' gave a third value. Quadratic inter-

polation on the last three values was used for following steps to

locate each new 52 . As each 82 was located the corresponding

W' was computed and compared to the desired W', the operation

terminating as soon as the error criterion was satisfied.
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The load support calculations were normalized by dividing all

film dimensions by hO , the nominal film thickness. But ho is

one of the independent variables in the clearance equation. To get

around this inconvenience, it is desirable to work either with

dimensioned clearances or, to simplify the problem by reducing the

number of variables, to find a new normalizing parameter. In the

c
previous section the use of c' = 5h was immediately evident

1r

from (3.17). That the same normalization holds in general can be

 

demonstrated from the gas film and load support equations.

Define a new variable H' = 6N1 . Substitute this new

1r

variable into (2.2) together with the other variables previously

 

defined for P, Z, and t to get the analog of (2.3) in the form

_3_ I3 23 1 I3 _a_p_ : I 30311.)

as [PH 80:] I 32 [PH 82 O at (3.26)

This is identical to (2.3) except that the squeeze number is

redefined as

v=.1_2_u_w_fi_

PaC5h1r)2

Since the squeeze number was assumed to be very large, this normali-

zation makes it even larger as Ohlr < ho , and thus the asymptotic

differential equation for the gas film characteristic is unchanged.
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In the boundary conditions at the ends of the film

 
T'=-==

I (h)

(3.27)

thus the new boundary conditions are related to the old through the

ratio of the normalizations. This means that the new T values

(called T' = (PH')2) computed from (2.7) will differ from the old

by a factor of

h 2

___9.

5h1r

Consider the load support, W' , given by equation (2.21) with

 

 

 

 

P = H,

where

H' = h = —h—0 ho

dhlr ho dhlr

therefore

ho T%

61111‘ T%

P " -_h_____— = '7;

° H

and the dimensionless pressure used for computing the load support

is unchanged proving that W' is the same using either normalization.
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Thus the clearance equation (3.18) derived originally from the

small parameter equation is valid for the more general solution as

well.

A steepest ascent method was used to find c'* , the optimum

. . 1*

d1mens1onless clearance, and the opt1m121ng parameters cl , Z A*,
*

L ’

numerically, for given values of W, the total load in pounds and V,

the load volume in cubic inches. However, in developing this program

it was instructive to also develop curves comparable to those pre-

viously given for the small parameter treatment.

Figure 3.5 compares the small parameter solution with the aug-

mented solution. It is evident that after the optimum clearance is

reached, further increases in the nominal clearance-drive ratio,

Sir , result mainly in increasing c; , the eccentricity, With only

a slow decrease in the clearance. It is also evident that the two

solutions correspond closely so long as c; , which corresponds to

6h2 is small, and that the clearance curve in the more exact case

has a flatter top. Although the solutions agree so far as clearance

is concerned, the values of Elr corresponding to the maximums of

the two curves are quite far apart.

Figure 3.6 shows the contours of constant clearance for vary-

ing A and sir with 2 fixed at 0.713. Again it appears that
L

the optimum value of 5h1mq/5h1r occurring at A = - %-, determines

the A* value, certainly for the value of ZL selected. Other com-

puter runs confirmed that, indeed A* = - g-for all values of ZL

that were checked.
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Figure 3.6 Contours of constant clearance

(augmented, small-parameter equation)
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The optimization program was run for the demonstration design

of W = 0.066 lbs and volume of 0.0925 in3 with the result c'* =

7.873, c1; = 18.205, A* = - 1.2732, 2: = 0.7131.

Comparing these optimum values to those found previously from

the small parameter equation, the nominal clearance, €1r , has in-

creased 30 percent to 18.2. This represents a dimensioned nominal

clearance of from 90 to 270 microinches depending on the drive amp-

litude. The minimum clearance has increased slightly more than

10 percent giving clearances between 40 and 120 microinches. It

appears that the small parameter solution is not too far from the

more exact solution.

The Optimum length-diameter ratio of 0.713 is not convenient

and many applications of the squeeze-film bearing use a ZL between

unity and 1.4.

3.4 SENSITIVITY TO PARAMETER CHANGES

To gain some insight into the fashion in which the optimum

dimensionless clearance changes with changes in the independent

variables, make a Taylor series expansion around the Optimum giving

N 32c *
§;—§;—-AxiAx. + 0(Axi)3

1-1 j=l 1 j 3

I
M
Z

3 1
CI _._ CI*+2 1 ET

' *

§£—-Ax. +

. 3x.

1 1l

(3.28)

where Axi and ij are the deviations from the optimum

(x1 = €1r: x2 = ZL’ x3 = A)-
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One of the definitions of sensitivity widely used in feedback

control theory is the following[26]

Sensitivity is normally used to express the ratio of the

percentage variation in some specific system quantity

such as gain, impedance, etc., to the percentage variation

in one of the system parameters. The sensitivity function

is defined as

M d in M _ d M/M - Percentage change 1n M(due to change 1n xi)

  

k d in x. - d x./x. Percentage change in x.
1 1 1 - - 1

where M is a transfer function and xi is a specified

parameter.

. . . . . ac'

At an 1nter10r opt1mum, where x1 15 not constrained, 5;—- = 0

i

leaving only thesecond derivatives and higher order terms, thus the

definition given above is not applicable to this particular case.

Following the ideas of Box [27] it is possible to fit a quadric

surface in i dimensions to represent the response, c'-c'*, for

small deviations near the optimum.

Write (3.28) in the quadratic form

c'-c'* = i Qx T (3.29)

where Q is the matrix Of coefficients given by
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F '1

32c' ; x 82c' ; x 82c' *

axlaxl 1 1 axlax2 1 2 8x13x3 x1x3

Q = 32c' ; x 82c' ; x 82c' ;

3x28x1 2 1 8x23x2 2 2 3X23X3 2x3

32c' ; x 32c' ; x 32c' *

3X33X1 3 1 3X33X2 3 2 3X33X3 X3X3

L— ._J

(3.30)

and

 

X1 x2 x3

x
:

II

(
—
"
'
1

Axl sz Ax3 ]

(3.31)

The magnitude of the Off-diagonal terms in (3.30) indicates

the degree of interaction between the variables. (Called the "factor

dependence" by Box.) In the diagonalized form, the diagonal members

of (3.30) give the curvature of the surface in each of the dimensions

considered and are thus a measure of the sensitivity of the system

to changes in the variables.

Figure 3.7 shows the first derivatives near the optimum for

the small parameter equation. The three curves in the tOp row

I

.53;. air but, by being plotted

; 611'

versus 81 ZL and A respectively, have slopes which give the

r, ’

second derivatives required by the first row of (3.30) (except for

(Figure 3.7 (a), (b), (c))all are

the required normalizing factor).
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This pattern is true for the other six curves also representing

I I

EE—- Z and §2—-IAI. Thus from Figure 3.7 (3.30) can be written

BZL L BA

for this particular problem as

 

f-28.1 0 0 T

Q = 0 -2.14 0

L 0 0 -24.84 
(3.32)

evaluated at (14.05, .897, -l.2732), the optimum. It can be shown

from (3.20), (3.21), and (3.22) that the off—diagonal terms of (3.32)

are identically zero at the optimum.

Figure 3.8 shows the second derivatives of the dimensionless

clearance as functions of the three independent variables. The

curves are arranged so that the position of each corresponds to the

location that the second derivative has in the Q matrix (3.30).

Figure 3.8 contains more information than is required by (3.30),

or by (3.32) for the specific problem, in that (3.30) requires

evaluation of the derivatives at the Optimum only. Figure 3.8 shows

the manner in which the second derivatives change away from the

optimum. Note that only at the optimum are the pairs of mixed

2 I 32 I . .

partial derivatives equal, i.e., 3—3—E——- = ——ZE—~T- This 15 not

clraZL 3 Laelr

unexpected, in that in moving away from the optimum the mixed

partials are no longer being evaluated at the same points on the

. 3 ac'

surface, 1.e., SET—' 57—-

11‘ L

in general, it is not the

I*

811-

*
ZL + AZL
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8 ac'

BZ 36' '

same as

*

ZL

For a maximum it is necessary that (3.30) be negative definite.

This insures that the quadric surface is ellipsoidal and not hyper-

bolic. The test for negative definiteness is that the principal

minors of -IQI be positive.

It is immediately evident that (3.32) is negative definite. It

is further evident that no cross coupling exits, i.e., each variable

has the same effect regardless of the value of the other variables.

In the geometrical sense the quadric surface developed from (3.32)

is of the form

axf + bxg + cx§ = f(x1,x2,x3) (3.33)

. . . 32f . .
s1nce only second der1vat1ves of the form 3&2-, (1 = 1,2,3) ex1st

2 i

and the mixed derivatives §;§3§—-(i = 1,2,3; j = 1,2,3, i + j) do not

i 1

occur.

It is evident from Figure 3.7 and (3.32) that the nominal

clearance-drive ratio, Cir. has the largest influence on the curva-

ture of the quadric surface followed closely by the non-uniformity

factor, A. The length-diameter ratio, ZL’ has very little influence.

Thus it can be concluded that the two most important variables are

I

€1r and A.

Figures 3.9 and 3.10 contain the same type information as

Figure 3.7 and 3.8 except that the clearance is now computed from
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the augmented equation. The matrix of approximate second derivatives

analogous to (3.32) is

F n

-10.7 -l.20 -.157

Q = -1.16 -l.78 -.070

-.01 .018 -26.8

L
.1

  
(3.34)

evaluated at (18.2, .712, -1.2732), the Optimum.

The Off-diagonal terms at q13, q23, q31, and q32 are essen-

tially zero and could well be due to the inaccuracies in the finite

difference procedure for computing the derivatives, to the finite

error allowed in computing the eccentricity corresponding to a given

load support and to the inability to determine the Optimum exactly.

Since no explicit solution is available for the clearance, c', it

is not possible to show that these off—diagonal terms must be zero

as was possible in the small parameter case. However since the

clearance function is continuous and has continuous first derivatives,

the order of differentiation at the optimum is immaterial. Thus the

matrix (3.34) must be symmetrical. The terms at q23 and q32 are

small and of opposite sign indicating a tendency to average to zero.

The average of terms q13 and q31 is small compared to the diagonal

terms. Thus q13 and q31 will be assumed to be zero.

The off-diagonal terms at q12 and q21 are clearly not zero

and demonstrate that an interaction occurs between air and ZL'



By using the average of q12 and q21

terms (3.34) can be written as

Clo.

c' - c'* = x -l.l

 

The linear transformation

 

leads to the diagonalized form

c' - c'* =

‘
<
I

 

The matrix in (3.37) is clearly negative definite.

7

8

-10.7

55

-1.18

-1.78

-1.65

0

 

as the value for these

0

O

-26.8  

0 T

0

-26.8  

(3.35)

(3.36)

(3.37)

evident that the shape factor, A, is the most important variable

and that ZL is of minor importance. A new variable



56

 

showing the interaction between Sir and ZL is also significant.

Since the contribution of ZL in y1 is small, air is still the

more significant of the two variables.

Two other aspects of parameter sensitivity relate to (l) the

influence of load or volume changes on the clearance and (2) the

effect of load changes on the Optimizing parameters.

For the first point the classical definition of sensitivity

can be used with the results from (3.18)

N
"

iii—3.11

3W cfl _ 3W CH

(3.38)

and

21.1.2.1
3V c' 3V c'

(3.39)

For the small parameter equation a; is given explicitly by

(3.19) resulting in

 

I I

221.". - - ”(EN-‘33 = .12
BW c' _ 3 tanh Z 9'

2 I

c'Icv/3 z ‘9 [},+-———-——§£]
L 2 a ZL

(3.40)
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and

WIN
 

ac' ‘V _ 2 _ 2 Eé_

TV c—' 7 3 7 "36'

C KV Z 1 +'————————-

L 2 a ZL

(3.41)

Equations (3.40) and (3.41) evaluated at the optimum give -0.66243

and 0.44162 respectively. Thus a one percent change in W' results

in a -0.66 percent change in c', whereas a one percent change in V

changes c' by only 0.44 percent.

Numerical evaluation of (3.38) and (3.39) using the augmented,

small-parameter equation gives

3c'

3W

I
2

gfi- -.6482

and

I
I

3c' V
av 37- .4318

for the optimum parameters. It appears that load and volume changes

effect both the small parameter and the augmented, small parameter

equations equally.

To investigate the second point, varying load values were used

and the Optimizing parameters were calculated numerically. Figure

3.11 shows the result of varying the load using the augmented equa-

tion. The small parameter analysis showed that once A was de-

termined, Z: was also determined, and that 8;; was inversely

proportional to square root of the load (3.25). It appears from
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Figure 3.11 Optimum nominal clearance and optimum clearance

as functions of load (augmented, small-parameter equation)
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Figure 3.11 that A = -
4 . . .
T. 15 near the opt1mum value for a w1de

variation in load (the difference may be due to computational error)

and that ZE is nearly a constant also, though not the same value

as predicted by the small parameter equation. It is further inter-

esting to note that the resulting 51; curve follows the equation

I* =

11'

:
2

l
g
;

~
\
"
‘

(3.42)

with K1 = 4.69 i 0.03; whereas the small parameter equation (3.25)

predicts K1 = 3.61 for the volume of 0.0925 cubic inches. From

  

(3.42) then

3.3,; w =-1.fl._=-_1.
aw 6i; 2 wag 5i; 2

(3.43)

giving the sensitivity of the Optimum dimensionless nominal

clearance to load changes for constant volume.



CHAPTER 4

FIGURE-OF-MERIT

4.1 MERIT FUNCTIONS

It is now desired to develop some method of rating competing

designs so that the computer can be used to select the design with

the highest rating. One common method of rating is strictly on a

cost basis, dollars being used as a measure of minimum cost or as a

measure of maximum profit. A dollar measure is not always easy to

apply. Performance of the design must be translated into dollars -

often a formidable task. What is proposed here is a figure-of—merit

rating (or simply merit rating), M , which may involve cost as well

as certain other design considerations which may at first seem non-

comparable.

The idea of merit rating by a merit function owes its origin to

the utility function as used by VOnNeumann and Morgenstern[28], and

others[29]. If a preference can be expressed then some mathematical

expression should be capable of describing this preference. Merit

differs from utility in that the latter assigns a numerical value

which is the order of preference whereas the merit function as pro-

posed here assigns a functional value to the preference. In a de-

sign problem, particularily when rating the performance of competing

designs, the problem can be reduced to a series of dichotomies. One

extreme of each being acceptable, the other completely unacceptable.

60
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In a continuum, there will always be cases between these two extremes

and it is in this "in-between region" that design decisions between

conflicting requirements must be made. If the value of unity is as-

signed to the acceptable extremity and zero to the other, than the

in-between region can take on the intermediate values by means of

some, perhaps arbitrarily determined, relation.

An example of these conflicting requirements occurs in the

squeeze-film bearing between the desire to have a large nominal

clearance and a small eccentricity. Once having established a merit

rating for each requirement then optimization techniques can deter-

mine the compromise which yields the highest merit value.

The proposed merit rating procedure appears to be part of the

field of decision theory. The only reference which was found that

approached the same method of rating appeared in Starr[24]. He

employed the simple ratio of the rated design quality to a standard

design quality in what he termed a "quality" function. A weighting

exponent was to be used with each ratio. As conceived by Starr,

both the rated design quality and the standard design quality were

to be value judgements by the members of the design team. It would

seem that the quality function could only be used to choose the

Optimum quality after the design is completed, the measurements

taken and the value judgements made. An examination of the quality

function offers no direction as to how an optimum design might be

achieved.

The proposed merit function, M , will be made up of the prod-

uct of individual merit factors, Mn . Each Mn is a functional
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relationship relating one of the output characteristics or require-

ments of the design to the independent variables determining that

characteristic. Each merit factor will be given a positive weight

exponent, wn , which will permit emphasizing (wn < l) or de-emphasizing

(wn > 1), the accompanying merit factor. The general form of the

merit function for a design is then

N

M = TMXnEci) (i = 1,2,...1) (4.1)

The argument for multiplying the merit factors is that this

insures that if any one factor is zero, the product is zero also.

(This may seem drastic, but what merit does a design have which is

perfect in all respects except that it costs so much to produce

there is no market? or one whose performance is so poor that the

design fails its intended purpose?). Further, since each factor

ranges from zero to one, the product does also, and additional

factors may be appended still keeping the total product between

zero and one. Also, one or more factors may be eliminated by set-

ting the appr0priate exponent equal to zero.

In order to make the optimization of the merit function mean-

ingful, it is desirable to define or specify each merit factor care-

fully. The desired result is to have the merit function a strictly

concave function in the vicinity of the optimum, thus assuring

second derivatives with respect to all variables and a negative de-

finite matrix of second derivatives. This is a necessary condition

for the function to have a maximum on the interval. It is also
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desired to have a merit function which has first derivatives with

respect to all variables equal to zero on the open interval, thus

insuring that the Optimum is not at one limit. This is desired since

any variable going to its limit means that that variable does not

enter into the optimization and could just as well be eliminated by

setting it equal to its limit value.

Some requirements for attaining the desired properties in the

merit function can be given for some of the simpler cases.

It is assumed that the merit function will be single-valued,

continuous and have continuous first derivatives in each of its

variables. It is also assumed that the range of the merit function

will be zero to unity and that the domain of the variables is closed

and finite.

Consider (4.1) written in the logarithmic form

N

log M = 2 wn log Mn(xi) (4.2)

n=l

then, assuming that an interior optimum exists,

N

a - . - 0..SET-log M — Z wn SEE-log Mh(x1) - 0 (1 - 1,2, I)

1 n-l

(4.3)

It is evident from (4.3) that the individual values of the wn are

not important in determining the optimum but rather only their ratio.
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Thus in (4.3) wn can be replaced by ”n where

 

n = (4.4)

with the definition, n1 E 1.

Consider now a particularly simple case of a merit function made

up of two factors each of which is a function of the same independent

variable on the interval (a,b), i.e.,

M M1 (x1) M2 (x1) (4.5)

Then if on (a,b)

1 3M 1 8M1 1 3M2
__ = -—— + T] — —- = 0 (4'6)

since n2 > 0 , M1 :_0 , M2 3_0 , (4.6) requires that the two first

derivatives be of opposite sign at the optimum.

The simplest pair of candidate functions which fulfill this

requirement is two linear functions, one increasing and the

other decreasing in XI.

The other requirement for a maximum is that

 

 

 

2M 3M 3M 1 3142 2 1 32142

-- I -— —-— ——
-— -— 2 —-

M 31:? M1 3x? n2 MIMZ 8x1 3x1 2' 2 M; 8x1 M2 axf

(4.7)

For the simplest pair of functions, the two linear functions,

the two second derivatives vanish leaving
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1 3M1 3M 3M 2

( 2 2) < 0 (02 i 0))+(n-1)1(_
M1M2 3x1 8x1 2 NY' 3x1

(4.7a)

Since the two first derivatives are of Opposite sign, the first

term of (4.7a) will be negative. The Sign of the second term is de-

termined by (nz-l). If 0 < n2 §_l, then the sign of the second term

will be negative also and clearly (4.7a) is negative. This is some-

what more restrictive than needed as the final requirement is

 

3M1 3M2 | > (nz-l) 3M2 )2 (4.7b)

M13X1 Mzaxll 2 Mzaxl

In the event strict monotonicity is not required, both functions

can be zero simultaneously over part of the interval even though one

is an increasing function and the other decreasing. When this hap-

pens, the product function will be zero over the entire interval.

Another problem with non-strict monotonicity is that the functions

may simultaneously be constant over part of the interval. Although

the requirement of (4.6) will be satisfied, the second derivative

(4.7) will be zero and not negative-definite as required for a max-

imum.

Since it is not desired to restrict the candidate functions to

linear functions, any other pairs of function can be used provided

the requirements of (4.6) and (4.7) are met.

If considering more than two functions of a single variable,

those which strictly increase may be grouped together and treated as

a single, strictly increasing function. Those which strictly de-

crease may be similarily grOuped. Since neither of the resulting

pair need be linear, the tests of (4.6) and (4.7) must be met by the

resulting merit function.
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If now we consider a function of two variables

 

n
2

M = M1 (x1,x2) M2 (x1,x2) (4.8)

Then for an interior Optimum on the interval [a,b]

1 3M __ 1 3M1 + n 1 8M2 _ 0 “
._.___ - .__.___ 2.__.___ _

M 8x1 M1 3x1 M2 3x1

(4.9)

1314.:_l_3“_‘_1.. 1.35.4.0
M 3X2 M1 3X2 n2 M; 3X2 J

Write (4.9) in the form

1.'3M 3 log M _ 3 a _

M 3x1 - 3x1 - EEI-log M1 + n2 SEY'lpg M2 - O

(4.10)

1. 8M 8 log M 3 3 _

fi'axz 3x2 3x2 1°g M1 + n2 3x2 193 M2 ' O

the

3

3x1

.1.

3x1

.1.

3x2

Try an iterative solution of (4.10) for x1

 

 

 

 

k+1 iteration,

k+l k k+1 k k+1 3 102 M? 32 108 Mi
log Ml x1 + 6xl , x2 + 6x2 - 3x 3 2

1 X1

k 2 2
a log M 3 log M 3 103 M

+1 2 2 +1 2 k+1

103 ME ' _f§kl * ax? 6x§ * axlaxz x2 *

k 2 2
k+1 - a log M1 8 log Ml k+1 a 103 M1 k+1

log M1 3 + 6x2 + 3 3 1

x2 axg (x1 x2

I:
a log M 32 log M 32 103 M

10' M§*l - a 2 . 2 2 6x§+1 + 2 xg‘fl

x2 3x2 axlax2

and x2 where, for

k+l 32 log Mk +
1 Wfixgl+ooo

(4.11)

(4.12)

(4.13)

(4.14)
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Putting (4.11), (4.12), (4.13) and (4.14) into (4.10) gives

      

 

{- 'fi F' "‘ r- ‘l

32 k 2 k 2 k 2 k
Vx log MI n 3 log M 3 log M + n a log M 6):“!

I 3x2 2 3x2 3x 3x 2 3x 3x I
1 1 1 2 1 2

2 k 2 k 2 k 2 k
sz a log M1 . n 8 log M2 3 log Ml * n 3 log M2 dxk”

3x131:2 2 axlax2 Mg 2 3x7? 2 J

(4.15)

k+1 k k+1 k
3 log M1 3 log M1 3 log M2 3 log M

where VX. = - -—-—--— + n2 ——-—— - —-—-—2-

1 8x. 3x. 8x. 3x.
1 1 1 1

For (4.15) to have a unique solution it is necessary that the

square matrix, which will be called Q, be other than zero. Since

(4.15) is to be iterated for a marimum, at which point the left side

will be zero; it is necessary that Q be negative definite. This

is to insure that a positive value of Gxi will decrease the value

the left hand side of (4.15) when xi is less than the optimum.

It is evident that Q is identical to the matrix of the quadratic

form obtained by expanding (4.8) in a Taylor series about the optimum.

It should also be noted that if the set of equations (4.15) is

solved by Cramer's rule, the determinant of Q will be the denomin-

ator in the solution. Thus if Q is near zero, small changes in Q

will have a large effect on the answer. This then constitutes an

"ill-conditioned" set of equations.

The simplest candidate functions for M1 and M2 are linear
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functions in x1 and x2.

Assume

M1 axl + bxz + e

(4.16)

M2 6X1 + dXz + f

What requirements must be placed in the coefficients of equation

(4.16) in order that it meet the requirements of (4.9) and that Q

of (4.15) be negative definite?

Using (4.9) one obtains

 

1 3M 3 C _ -

1 1 2

(4.17)

1 8M b d

M ax2 M1 2 M2 J

Evaluating Q from the square.matrix of (4.15) gives

P n

2 2 + 2 2 M2 + dMZ
a M2 nzc M1 ab 2 nzc 1

 

  
2 2 2 2 2 2

h-asz + n ch1 b M2 + nzd M1“d

(4.18)
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Since M1 and M2 are to be non-negative, (4.17) can be

satisfied only if a and c are of opposite sign as well as b and

d of opposite sign. This says that if M1 is an increasing linear

function of xi then M2 must be a decreasing function of the same

variable. Expanding the determinant of (4.18) leads to the require-

ment

(ad - be)2 > o (4.19)

Equation (4.19) says that Q. given by (4.18) will be negative

definite for any values of the coefficients in (4.16) except those

which make Q equal zero. However, so far, there is no restriction

on the domain of x1 and x2 . Being assured that the merit

function is negative definite, it is necessary to impose conditions

that insure that at least a local optimum occurs on the open in-

tervals defined by x1 and x2 . Rolle's theorem hi one dimension

states that a continuous function on a closed, finite interval which

has a continuous first derivative will have its first derivative

zero some place on the interior of the interval provided the values

of the funCtion at each end are equal to each other. By extending

this to a plane and requiring all four of the combinations of bound-

ary points to be equal,an interior optimum of M is assured.

The requirements for an interior maximum of the merit function

when made up of two linear factors of the form given by (4.16) on the

intervals 0 §_x1 §_l , O §_x2 :_l is then

(1) ac < O

(2) bd < 0



(3)

(4)

ad - bc + O
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M(0,0) = M(1,0) = M(O,l) = M(1,1) = k

If equation (4.2) is expanded in general for N merit factors

with I variables,

VXI

VX2

VX 

where

 

F

 

(4.15) takes the general form

   

 

r R

E1 n 82 log Mk E 32 log M5 . 3' n 32 log M"; 6x?”

“=1 n 31:21 n=l n axlax2 “:1 n 8x131:I

N N N
k kE ”n 32 log M1,: 2 n“ 32 log Mn ..... Z ”n 32 log Mn “I21”

n=l 5X25X1 n=l 3x; n=l 3x23):I

g 32 108 Mk 0000000000000000000000 g 32 log M: 6xk+l

nn 3x 8x _ nnT I
n=1 1 ‘ n-l I J

J .

k+1 k (4.20)

N 3 log Mn 3 log Mn

- Z nn 3x ' 5x.
n=1 1

Equation (4.20) assumes that an interior optimum exists. An

I-dimensional form of Rolle's theorem will be required to insure an

interior optimum. Then, if the square matrix of (4.20) is negative

definite, the optimum is at least a local maximum.

It is very time consuming to apply the requirements of (4.20)

to candidate functions but in general it appears that at least the

following requirements must be met by either the individual merit

factors or by the final merit function.
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1. Each merit factor must be continuous, single-valued, and

have continuous first derivatives.

2. Each merit factor must be dimensionless and be normalized to

lie between zero and one.

3. If each merit factor is a linear combination of the varia-

bles, then each variable must appear in at least two different fac-

tors. Further if one appearance is in an increasing function of that

variable (positive sensitivity coefficient) then the other must be

in a decreasing function.

4. The weight exponents, wn , must be non-negative to pre-

serve the zero to unity criterion.

Each merit factor is to be a relationship describing one aspect

of the design performance or requirement. It is also assumed that

the different merit factors describe conflicting requirements on

the same set of independent variables. Thus it is expected that

each independent variable will not only appear in both increasing

and decreasing functions, but that the resulting merit function will

be near zero near the boundaries of the domain of interest for each

variable. This does not guarantee that an interior optimum will

exist but makes it plausible that one should exist.

Since any merit factor going to zero yields a zero value for

the merit function, considerable care must be exercised in choosing

each merit factor. In effect, this says that no matter how well

the other performance requirements are met, this particular one

renders the design completely unacceptable.
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Five representative functions which are suitable as merit factors

are shown in Figure 4.1. For convenience, all are shown as monotonic

decreasing functions of a single variable. Also shown is the effect

of varying wn on each of the functions. It is apparent in all

cases that wn < l keeps the function near unity over a larger

portion of its domain than does wn = 1, thus de-emphasizing that

factor.

It should be noted that only the linear function, Figure 4.1(a),

has both end points fixed (with the possible exception when wn = O,

in which case the right hand value will be defined as unity).

Since the shape of each merit factor depends on the value

judgement of the designer, it is not possible to give any rules for

selecting each factor nor where to set the end points. This can

only come from a thorough analysis of each application. In general

though, lacking any better criteria, a good start might be with an

approximate linear curve, such as shown in Figure 4.1(e). The

weight exponent can then be used to alter the shape of the curve

without changing the end points too drastically.

It should be emphasized that the merit factors are measures of

the design performance and requirements and as such will many times

be expressed in terms of functions of the independent variables.

This will be more apparent in the next section when specific appli-

cation will be made to the squeeze-film journal bearing problem.
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4.2 APPLICATION TO THE SQUEEZE-FILM JOURNAL BEARING

To illustrate the application of the merit function to the

squeeze-film journal bearing, four different design requirements are

to be considered:

1. Cost of producing the transducer.

2. Minimum eccentricity

3. Length to diameter ratio

4. Minimum power

This list is by no means exhaustive but does include some of

the more important considerations and will serve to demonstrate the

method. The four design requirements must be translated into func-

tions of the four independent variables, ho , A , ZL , and 6h1r .

The first item, cost, is not an arbitrary choice of the de-

signer. Generally a cost estimator provides the numbers to be used

here. To relate cost to merit, through parameters in the gas bear-

ing, the variable costs to produce a given nominal clearance and

the increment of cost that would be necessitated by an extremely

small minimum clearance were used. At one extreme, the cost to pro-

duce an assembly with a nominal clearance of 1000 microinches and a

minimum clearance greater than 250 microinches was used as the

standard (M1 = l). The other extreme was represented by a nominal

clearance of 50 microinches, a value which present manufacturing

processes are unable to produce at any reasonable cost (M1 = 0).

The function chosen to represent merit between the extremes was the
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reciprocal of the cost function which was taken as

ho + 700 -(0.01c)2
+8

h - SO

A
h
—
I

 

(4.21)

where 50 < ho §_lOOO and c 3'0 are to be measured in microinches.

P has the value of unity at h0 = 1000 microinches without the

additive clearance term. The clearance was put in the form given so

that the small clearance requirement would have the greater effect

for large values of nominal clearance. The reason for this is that

when the nominal clearance is small anyway, the added requirement of

small minimum clearance adds but little to the total cost. No fixed

costs were considered since only differences between designs were

being considered.

The first merit factor was taken as

(4.22)

Figure 4.2(a) shows that M1 appears to be a monotonic in-

creasing function of the nominal clearance ho . Since M1 is also

an explicit function of the clearance, c , which in turn is a func-

tion of ho , to prove that M1 is monotonic increasing with ho ,

3M1

3h
0

 it is necessary to show that 3_O for all values of c. This can

be done, at least for the small parameter equation, using (3.17) as

the clearance equation. However, in general since c is a single-

valued, continuous function of ho , it should be possible to bound

the derivative of M1 with respect to ho by considering the two
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Figure 4.2 Merit factors for the squeeze-film journal bearing
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extremes, c + w and c 0. For c + w

 

 

50

3M1 - 700 + T

3ho (%-ho + 700)2

(4.23)

For c = 0

250

8h ' S 2
o (z-ho + 650)

(4.24)

Both (4.23) and (4.24) are always positive showing that M1 is an

increasing monotonic function of hO .

Differentiation of M1 with respect to the other independent

variables, dhlr , A, and Z showed that, in general,
L

3M - 2

__l. = - 0.0002c e (0.01c) .JEL.M2

Bxi 3xi 1

(4.25)

Equation (4.25) is positive or negative depending on the sign

of §¥i' . In Chapter 3 it was shown that the dimensionless clear-

i

ance can be optimized on the interval. Thus §¥i- does change sign

1

and M1 is not monotonic in dhlr , A , and ZL . In Section 4

of this chapter when examining the sensitivities of the merit factors

. . . 3M1 . .
near the opt1mum it Will be found that '52— 15 negative and

L.

-2Eu——- and BEL. are positive. This, however, is a local condi-

3(6h1r) 3A

tion near the optimum only.
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The second merit factor is a function of the radial displace-

ment, dhz, of the bearing. Note that dhz is a function of hO ,

ZL , A , and 5h1r , the four independent variables.

A signal transducer and forcer used in the accelerometer work

best if the journal is centered (zero eccentricity). They are

reasonably indifferent to radial displacements up to 100 microinches.

After this point, performance degrades so that at 200 microinches

the instrument is nearly useless. It was decided that the second

merit factor should be an approximate linear function of the radial

displacement beyond a certain minimum displacement. See Figure 4.2

(b). For this purpose the second merit factor was taken as

2

M2 = e-AZ

(4.26)

where

12 = a2(6h2)2 + a1(5h2) + a0

with

a = 8258x10's a = 6837x10'3 a = o
2 ’ 9 1 o 0

The constants selected gave M2 = 0.98 at 6h2 = - 100 microinch

and M2 = 0.5 at 6h2 = - 150 microinches (M2 = 0.024 at dhz =

- 200 microinches). Also M2 = l for 6h2 3_- 82.8 microinches

It can be shown from the small parameter equation that M2 is

a monotonic increasing function of A and dhlr and a monotonic

8M2

decreasing function of ho . Near the optimum §§_' is negative.

L
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The third merit factor was determined from the general shape of

the package desired. If the length to diameter ratio becomes either

too small or too large the instrument becomes an undesirable shape.

It was decided that 0.7 §_ ZL §_1.5 was the most desirable range.

At the low end of the range the merit factor was chosen of the

approximate linear form

M3 = 1 - e-A3 (4.27)

where

2
A3 = aZZL + alzL + a0

with

a2 = 5.176 , a1 = -3.420 , a0 = 0 .

The constants selected gave M3 = .02 at ZL = 0.7 and M3 = 0.954

at ZL = 1. At the high end of the range M3 = 1 for ZL < 1.3

decreasing to zero at Z = 1.5. See Figure 4.2(c).

L

The merit function, M3 , is a monotonic increasing function of

ZL for 2L < l and a monotonic decreasing function for ZL > 1.3.

There is a discontinuity in the first derivative at Z = 1.3,
L

however this was not removed as subsequent Optimization showed that

2: was always less than 1.3.

The fourth item, minimum power, is related to the drive ampli-

tude, dhlr , in that limited, unpublished experiments by W. G.

Holliday[25] at Lear Siegler, Incorporated showed that the rms value
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of the excursion of the transducer could be directly correlated to

the input power. The fourth merit factor was taken as a simple

linear relation with M“ = l at dhlr = 0 and Mn = 0 at dhlr =

20 microinch rms. See Figure 4.2(d).

Ghlr

M“ = 1 ' 20
 

(4.27a)

The total merit function for the design was then taken as the

product of the four individual merit factors in the form

W W W W

.. 1 2 3 '+M - M1 M2 M3 M“

(4.28)

where

M1 = M1010! C(hoa 61111’." A: ZL: W, V: pa))

M2 " M2(6112 (ho: 5h1r, A: ZL’ W, V, 133))

M3 ' M3 (21)

M4 = M4 (51hr)

Each of the merit functions is continuous, single-valued in the

independent variables and, except at the high end of M3, all the

merit factors have continuous first derivatives on the interval of

interest.

Although the merit factors are measures of different effects

they are by no means independent in that they are various functions

I

of the independent variables of the squeeze-film problem.
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Table 4.1 summarizes the type of functional relationship which

exists between each merit function and the independent variables.

In most cases the relationship was derived from the small parameter

equation for the gas film. Although not linear functions, as dis-

cussed earlier, each of the first three variables appears as an in-

creasing function in at least one of the factors and as a decreasing

function in one of the other factors. The exceptional case is the

TABLE 4.1 FUNCTIONAL RELATIONSHIP BETWEEN THE

MERIT FACTORS AND THE INDEPENDENT VARIABLES.

 

 

 

 

 

M1 M2 M3 ML,

ho Increasing Decreasing Not Applicable Not Applicable

ZL Decreasing* Decreasing* Increasing* Not Applicable

dhlr Increasing* Increasing Not Applicable Decreasing

A Increasing* Increasing Not Applicable Not Applicable      
* Local condition near the optimum.

non-uniformity factor, A. The optimization, to be treated in the

next section, was not, however, carried out with respect to A.

The fact that M1 and M2 are both increasing functions of A

results from the choice made for the value of A .

There does not appear to be any significance to the fact that

M1, for instance, is an increasing function of ho , dhlr and A

and a decreasing function of ZL .
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4.3 OPTIMIZATION OF THE MERIT FUNCTION

With the merit function as defined in the previous section, the

ability to use 5h1r as a normalizing parameter is gone and all

computations will be done on a dimensioned basis. A convenient di-

mension for film thickness is the microinch which will be used ex—

clusively for dhlr , dhz , and ho .

Preliminary runs of the optimization program written to solve

the merit problem showed that, as with clearance, the Optimum value

of A is - However the value for A which has been physical-

:
L
n

ly demonstrated and which is closest to this value is A equal to

-1. To reduce the number of variables, this value of A was used

throughout the remainder of the work in preference to other less

effective values of A which also have been demonstrated. This

reduced the problem to the three independent variables (ho , Ghlr ,

and ZL) since again W, V, and p3 were assumed fixed in the demon-

stration problem. Although introduction of the weighting exponents

wn in (4.1) did, in effect bring in four new independent variables

they generally were assumed equal to unity, although some limited

experimentation was done varying them one at a time.

It can be shown that the merit function, M , is essentially zero

at each boundary of the independent variables thus insuring an in-

terior optimum. For instance, Mn is zero when dhlr = 20 micro-

inches , M2 is zero when dhlr = 0 microinches ; M1 is zero when

h = 50 microinches; M2 is essentially zero when h0 = 1000 micro-

0

inches.
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Figure 4.3 shows the merit contours computed using the aug-

mented, small parameter gas film equation with ZL = Z: . Also

shown on the figure are the numerically computed optima.

The optimum merit value of 0.0860 shown on Figure 4.2 may seem

rather small compared to the maximum possible of unity. The main

contribution to the small merit value comes from M1 . This function

was selected to have a value of unity for ho of 1000 microinches

and c greater than 250 microinches. The gas film equation only al-

lows h; = 175.6 microinches and c = 49.3 microinches, making

M1 = 0.149.

The other large contributor is Mg which linearly decreases

from unity to zero as dhlr goes from 0 to 20 microinches, thus

at dhf = 7.7 microinches, Mg = 0.615. The point here is that the

numerical value of the merit function evaluated at the Optimum is of

no consequence. The values of the parameters which gave the optimum

are important.

The optimization routine was also performed using the small

parameter equation to describe the gas film. The results are shown

in Table 4.2 together with the results of the computation with the

augmented, small-parameter equation.

It is evident from Table 4.2 that, except for the optimum drive

amplitude, the answers from the two different equations agree quite

well. Since the small parameter equation required much less computer

time than the augmented equation it was used to generate the start-

ing vector for subsequent optimization procedure using the augmented,

small-parameter equation.
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TABLE 4.2 OPTIMIZING PARAMETERS FOR THE MERIT FUNCTION.

 

 

  

AUGMENTED,

SMALL SMALL-PARAMETER

PARAMETER EQUATION EQUATION

h; microinches 167.5 175.6

ZE 1.117 1.097

dhlr microinches 9.527 7.700

M* 0.07122 0.0860

c microinches 44.573 49.258

6h2 microinches —102.92 -110.16   
4.4 SENSITIVITY TO PARAMETER CHANGES

The first derivatives of the merit function are zero at the

optimum, thus they cannot be used as sensitivity coefficients. But

again a quadric surface can be used to represent the response sur-

face. The second derivatives required for the matrix of the quadra-

tic form can be found as the slopes of the first derivatives near

the optimum, where the first derivatives are shown on Figure 4.4,

calculated from the augmented small-parameter equation. Thus in

analogy to (3.30)

P

1.392 0.1055

Q = - 0.1058 0.3352

-O.S702 -0.0456 L.

-0.5710

-0.0460

0.2898  

I
!

1.4

0.1

 L-O.

0.1 -O.57

0.34 O

57 0 0.29  
(4.29)
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where

_ 32M

qi) axiaxj l J

with

_ Aho AZL A(5h1r)

x " ho ' zL dhlr

The linear transformation

F‘ H

1 0.072 -0.41

9 = 0 1 0 i

O 0 l

1.. .J  
(4.30)

applied to (4.29) diagonalizes Q .

The deviation of the merit value from the optimum merit value

may then be written

M - M* = 9 0 -0.333 0

  L o 0 -0.058

(4.31)

where

Aho 0.072 AZL 0.41 Adh1r

ho 2L ' dhlr

 
 

(4.32)
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Equation (4.32) shows strong interaction between ho and dhlr.

The ridge of one-dimensional optima which divides Figure 4.3 is also

evidence of ho - dhlr interaction. The presence of the ho - dhlr

interaction was also evident during the numerical Optimization proce-

dure. A steepest ascent method was used even though it was knwon

that this method is inefficient for ridge systems[30]. The procedure

did "zig-zag" across the ridge, eventually finding the optimum; but

not without taking a great number of steps. Making the transforma-

tion of variables (4.30) would improve the efficiency of the optimi-

zation procedure; however, the transformation is not known until

after the optimization has been performed. It is evident from (4.29)

that the optimum is relatively insensitive to the value of ZL .

Since the merit function is a product of merit factors, it is

possible to determine sensitivity coefficients, in the sense of the

classical definition, for each of the merit factors. Using (4.3),

write the sensitivity coefficient in the form

x.

M _ 1 3M _ a . _

Sx - 14 x. - xi 3x. log M (1 - l, 2, I)

1 1 1

(4.33)

which is also

N N x. 8M N

M _ 3 _ _1_n _ Mn
Sx - X1 z wn 3x log Mn - Z wn M 3x. ' E wn Sx.

1 n-l 1 n=1 n 1 n=1 1

(4.34)

At the optimum, (4.34) is zero, for xi equal to h0 , ZL ,

or dhlr as shown in the second column of Table 4.3. (The small

residue is due to the inability of the computer to find the exact
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(WEIGHT EXPONENTS EQUAL TO UNITY)

TABLE 4.3 SENSITIVITY COEFFICIENTS OF THE MERIT FUNCTION

 

SMALL PARAMETER EQUATION

 

 

     
 

 

 

xi 51‘. 8’2? S??? 85.“? Si“:
1 1 1 1 1

ho -0.0067173 1.0670 -1.0737 0 0

ZL 0.0023194 -0.0098701 -0.033910 0.045700 0

Ohlr —0.00034617 0.19038 0.71582 0 -0.90967

A 0.44930 0.092708 0.35659 0 0

W -0.46322 -0.10541 —0.35782 0 0

V 0.30909 0.070334 0.23875 0 0

AUGMENTED,SMALL-PARAMETER EQUATION

ho -.0061109 1.14999 1.15589 0 0

ZL -0.0093814 -0.017460 -0.085965 0.094039 0

5h1r -0.0057128 0.089228 0.53106 0 -0.62602

A 0.28457 0.038712 0.24586 0 0

W -0.31861 -0.053790 -0.26482 0 0

V 0.21176 0.035746 0.17600 0 0     
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Optimum). However, Table 4.3 shows how the individual merit factors

are affected by the parameter changes. Thus a unit change in hO

using the augmented equation, for instance, changes M1 and M2 by

1.15 units; whereas a unit change in Z changes M1 by 0.017 units,
L

M2 by 0.086 units, and M3 by 0.094 units. Thus, it is evident that

ZL does not have as great an influence as ho or dhlr .

Also shown in Table 4.3, are sensitivity coefficients with re-

spect to the non-uniformity factor, A , the load, W , and the volume,

V. These, of course, are not zero. Table 4.3 also gives the sensi-

tivity coefficients of the merit factors for these parameters.

By chain-rule differentiation

  

 

5141.11.33.53: jsii.h°3bflahfi
x. M 3x. M1 3c ax; c M1 3h 8x h
1 1 1 h 1 o o

O c

_ M1 C M] ho

- Sc Sx. + Sh 8x.
h 1 o c 1

o (4.35)

8M2 = 5112 3M2 3(Oh2) Xi = 8M2 Séhz

Xi M2 3 (5112) 3X1 (5112 5112 Xi

(4.36)

This further reduces the sensitivity of each factor to the product of

parameter sensitivities. The merit factor M1 is an explicit func-

tion of b0 and c ; M2 is an explicit function of 6h2 , thus

three of the sensitivity coefficients in (4.35) and (4.36) are di-

rectly obtainable. The factors 8: in (4.35) and Sihz in (4.36)

i i
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are obtainable from the clearance equation (3.11), either analytical-

ly, using the small parameter equation, or numerically, using the

augmented, small-parameter equation. The merit factors, M3 and Mg ,

are explicit functions of ZL and dhlr, respectively, thus the

sensitivity coefficients are obtained by direct differentiation.

Typical values of the sensitivity coefficients for the small

parameter equation at the optimum are

 

 

 

521 = 0.0002 c2 M1 e'(°°1°) = .04568 (4.37)

h
0

5° = l- h + 3 6b = - 3.170 (4.38)
h c o 2
0

712.5 M1 h
M1 0s = 4.39

ho (h - 50)2 ( )
O

C

5:0 = 1 (4.40)

0

These give

sfil = (.04568)(-3.170) + 1.211 = 1.066 (4.41)

O

The second term of (4.41) shows that the explicit expression for

ho in M1 has nearly ten times greater influence than the implicit

expression for ho . Equations (4.37) and (4.39) are constants once

the expression for M1 is selected. The parameter sensitivity
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. . c . .

coeff1c1ent Sx is different for each of the variables. This is

i

. M .

also true in (4.36) where 56h 15 a constant for a given M2 but

2

the parameter sensitivity coefficient 5‘3112 changes. Typical ex-

i

pressions for some of the simpler parameter sensitivity coefficients

from the small parameter equation, in addition to (4.38) and (4.40),

are

c _ _ 1 F(A) ‘
$51111. C (T 6111]: + 2 5112)

a (4.42)

5° = _ (4.43)

_ 2
s — -3— (4.44)

5h,

séhlr

> (4.45)

6h2 _
Sw - 1

5h2

Sv

=-£
3  

J

Thus some insight into the relative importance of the various

parameters can be obtained.

Some limited experimentation was done to determine the effects

of weighting exponent changes on the optimizing parameters. The

results shown in Table 4.4, were obtained using the augmented,
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TABLE 4.4 EFFECT OF WEIGHT EXPONENTS

ON THE OPTIMIZING PARAMETERS.

 

 

 

w1 w2 w3 w“ M* h; Shir 2:

1 1 1 1 0.0860 175.6 7.700 1.097

0.5 l 1 1 0.2458 134.5 4.0 1.112

1 0.5 1 1 0.0903 182.1 7.328 1.101

1 1 0.5 1 0.0860 179.0 8.044 1.081

1 1 1 0.5 0.1202 216.2 11.96 1.092         
small-parameter equation for the gas film. No attempt was made to

compute the partial derivatives with respect to the weight exponents.

Rather, a significant change was made in one exponent at a time. It

is probable in an application that changes would be of a similar

order of magnitude.

alized through the appropriate merit factor.

deemphasized the effect of ho.

The effect of each exponent change can be visu-

For instance "1 = .5

As a consequence the optimizing

parameters shift to a smaller value of h; ; and with the smaller hS’

less drive is required to support the load, so éhtr decreases.

Another aspect of sensitivity, how the optimizing parameters

change with load changes, is deferred to the next chapter. There a

merit function weighted by the expected load to be applied will be

developed.



CHAPTER 5

WEIGHTED FIGURE-OF-MERIT

5.1 WEIGHTED MERIT FUNCTION

The merit function developed in the previous chapter is capable

of further extension which may be of great value when one of the

parameters, previously assumed constant, is permitted to vary. In

particular, the load to be carried by the squeeze-film journal bearing

has been treated as a constant. However, in many aerospace design

problems, as in the demonstration problem, this load is the maximum

at which the instrument is expected to perform. The actual load

applied at any moment can be described by a probability function.

A common practice is to design for the maximum load with the

philosophy, "if it works at the maximum, it will surely work at all

lesser loads." The argument with this philosophy is that it tends

to create a heavy, bulky, more costly design than is necessary in

order to have the reserve for the occasional maximum load. This

is especially true if the merit function has been optimized for the

maximum load.

What is proposed is a figure-of—merit function, weighted in

some suitable fashion by a probability function which describes the

load. Such a weighted merit function may be created as follows:
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1. Optimize the merit function of a number of competing designs

by evaluating at different load values up to the maximum to be ex-

pected.

2. Using the optimizing parameters found in step 1, evaluate

each competing design at a number of values over the range of expected

loads. Call these values Md,s where d is the fraction of the maximum

load at which the design was optimized and s is the fraction of the

maximum load at which the design is being evaluated.

3. Evaluate the integral

Md = Md,s 0 ds (5.1)

where 0 is the weighting function to be selected.

It is then a simple matter to select the design having the

maximum fid value.

This procedure should be approached with some caution, though,

since it is possible to select a weight function which will so

minimize the effect of large load values, that the design with the

optimum fig will not function at the maximum load. This could be

treated by constraining the optimum design in such a fashion to insure

an acceptable level of performance at the maximum load. In any case,

it is desirable to check at the maximum load to insure acceptable,
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though no larger Optimum, performance at the maximum load.

Although application of the weighted merit function is being

made to the load, it should be remembered that other parameters could

be used as well.

5.2 APPLICATION TO SQUEEZE—FILM BEARING

The procedure described in the preceding section was applied to

the squeeze—film journal problem, with Wfiax = .066 pounds and A = -1.

Unless otherwise noted the weighting exponents, wn, in the merit

function were all set equal to unity.

The results of the first step, the determination of the Opti-

mizing parameters for a number Of competing designs at loads, d, less

than the maximum, is shown in Figure 5.1. It is immediately apparent

that Z is not an important parameter and in the final program to

L

Optimize E', Z was fixed at its first computed value and only ho
L

and dhl were used in the optimization program.

r

Figure 5.2 shows how the merit value, clearance and radial

displacement vary when the maximum load is applied to each Of the

competing designs. Evidently a design Optimized for a load Of less

than .3 of maximum cannot be used as the merit is rapidly approaching

zero. This appears to be mainly due to the radial displacement

approaching the undesirable region of 200 microinches.

The path followed by the optimizing parameters is shown in

Figure 5.3 (a) in the 6h1r-ho plane superimposed on contours of

constant merit and in Figure 5.3 (b) superimposed on constant clearance
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contours in the same plane.

Figure 5.4 illustrates the results of the second step, the

evaluation Of each competing design over the load range. Again it

can be seen that a design optimized at a design load of less than .3

is near failure at the maximum load. On the other hand, the merit

rating of a design Optimized at the maximum load changes very little

over the load range. It is clear that if the design value is very

small (d + O) the area under the curve goes to zero. It is not

evident that there is a maximum area under one of the design curves,

other than the one for d = l.

The third step in the Optimization of the weighted merit function

is to evaluate the integral given in (5.1). For this problem the

weighting function was chosen to be the normal (Gaussian) distribution,

 

 

¢ = e (5.2)

where o is the standard deviation of the load-frequency distribution.

There is equal probability that a given load will be applied in

any radial direction leading to the maximum load being i 30 g in the

coordinate plane originally defined. Thus the mean value Of the

load-frequency distribution was taken as zero.
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Numerical integration of (5.1) was performed for different

values of sigma, with the results shown in Figure 5.5. The value

of o = 0 corresponds to a weight of one, or all ordinates equally

weighted. This has its maximum at d = .6. As sigma increases, the

effect is to de-emphasize the larger load values and the maximum

shifts to smaller d values. A sigma value of three indicates that

the maximum load would be applied approximately 0.3 percent of the

time, thus strongly de-emphasizing the importance Of the maximum

load; in fact, any larger value for sigma says that the probability

of this maximum load being applied is vanishingly small.

Considering a reasonable value of sigma to be two, i.e., there

is a 5 percent probability Of the maximum load being applied at any

instant, the Optimum weighted merit value corresponds to a design at

d = 0.45. It is interesting in Table 5.1 to compare the Optimum

parameters for this design with those for the design at d a 1.

TABLE 5.1 COMPARISON BETWEEN DESIGN OPTIMIZED AT MAXIMUM LOAD

(d = 1.0) AND DESIGN OPTIMIZED AT THE WEIGHTED OPTIMUM (d = 0.45)

 

d 1.0 0.45

h: 175.6 microinches 230 microinches

GhIr 7.7 microinches 9.1 microinches

z: 1.094 1.098

Md,d 0.0860 0.1166

id 0.0232 0.0269      



103

 

 

ca,-ufipnw5-¢v‘i1

W t .066 L88.

van .0925 m3

  

\’U’IO

\c-t

 

 

J
)
\
\
\

/
/

J
\
\

/

 

 

      
 

5.110'

\’0.2

2

\
0.3

\;

£704

',

O

0 2 4 .5 8 l0

Figure 5.5 Weighted merit as function Of design



104

Although the improvement in Md is only 16 percent, the improve-

ment in the individual M; d is 36 percent.

3

The results, of course, will be different for a different set

of merit functions and for a different problem. The squeeze-film

journal bearing example has been carried out in considerable detail.

The reason has been to illustrate the merit function and the weighted

merit function technique on a concrete example. It should be evident

that the merit function approach to a problem allows the selection of

an Optimum design after a designer analytically Specifies his pre—

ferences; and, when applicable, the weighted merit function technique

further sharpens the choice Of Optimums.

5.3 STABILITY CONSIDERATIONS

Since all compressible fluid bearings exhibit potential insta-

bilities, this is a matter which must be investigated during the

design of any gas bearing. Beck and Strodtman[lé] first investigated

the stability of a journal bearing when no flow along the axis is

permitted (infinite journal). Nolan[17] enlarged this investigation

to include Z axis flow (finite journal). Although neither work is

directly applicable except when A = 0 (uniform excursion), Nolan's

results can be used to indicate whether stability might be a problem

in the present case.

Figure 5.6 is a combination of Figures 20 and 21 Of Nolan's

thesis. A design is considered stable if its parameters (8,62) fall

below the appropriate 51 curve. The parameter 8 is the dimensionless

"mass" parameter,
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B = —— (5.3)

In the demonstration problem, 8 has a value of .007 for a

drive frequency of 80,000 Hertz, Z of unity, and a nominal clearance

L

Of 176 microinches. At the Optimum Of Figure 4.3, h0 = 176 micro-

inches, 0h1 = 7.7 microinches, ZL = 1.097, A = —l, and the radial

r

displacement is 111 microinches. This corresponds to £2 = -0.6 and

£1 = 0.0436. At 8 = 0.007, 81 = -0.6, the stability boundary of

r

Figure 5.6 is crossed at E1 approximately 0.3. If all the above

parameters were to hold for A = 0 (where e1: 81 ) then, the Optimum

r

values give a design which is well removed from the stability boundary

For values of A other than zero it can be argued that the

equivalence between €1r and £1 at the stability boundary can be

established by the value of the static load support at the boundary.

The basis for this argument lies in Figure 5.6, on the two curves

for £1 = 0.3. One curve is for the infinite journal, the other for

a finite journal, yet the stability boundaries practically coincide.

A point such as C represents a static load support, W', Of 0.27

whereas 0 represents a load support Of 0.155. We can then bound the

load support represented by the point B by interpreting 81 in two

ways (1) as the maximum boundary excursion or (2) as the root-mean-

square value Of the excursion. Using interpretation (1) the static

load support at point B for A = -l is()062 and for interpretation

(2) it is 0.016. Similarily point F represents either 0.090 or 0.022.
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The Optima of Figure 4.3 give a load support of 0.018 at £2 =

-0.63 and e = 0.0436. The point (0.007, - 0.63) falls well to

1r

the left Of the worst F (0.016, - 0.6) representing a load support

between 0.022 and 0.090.

The weighted optimum design for sigma of two, i.e., for design

load Of 0.45 maximum load, had h0 = 230 microinches, and dhlr = 9.15

microinches, and gave 6h2 = 158 microinches when loaded at the

maximum load equivalent to 52 = -0.69, Elr = 0.040. For the new

value of h0 = 230 microinches, B has the new value of 0.0053. The

load support required at the maximum load is 0.018 as before. Point

G (0.01, -0.69) of Figure 5.6 represents a load support either 0.024

or 0.11. The design value Of (0.0053 - 0.69) is still on the stable

side; however, under the worst interpretation Of G as representing

a load support Of 0.024, the design is very near the stability boundary.

It would appear that the locations Of the stability boundaries

for non-uniform excursion should be the subject for future investiga-

tion in order to put this matter on a firm basis.



CONCLUSIONS AND RECOMMENDATIONS

One Of the Objectives of this thesis was to show that the proper

choice at variables would maximize the minimum clearance in the bear-

ing under the constraint of fixed load weight and load volume. A

second Objective was to develop a technique for design optimization.

Both Objectives have been met.

In meeting the primary objectives, a number of other tasks were

accomplished. A method of treating non-uniform driver excursion by

means of its root-mean-square value and a non-uniformity factor was

developed. Although, in this thesis, the non-uniform excursion was

treated as a sinusoidal function in the axial direction, the treat-

ment is general enough to accommodate other shape functions which

may be encountered.

The asymptotically-derived partial differential equation de—

scribing the squeeze-film bearing was expanded in an asymptotic

series of powers of the radial displacement. It was shown that sepa-

ration Of variables on the resulting series Of partial differential

equations could be accomplished. It was found that the resulting

series solution including the third order term was of sufficient ac-

curacy that a slower, alternating-direction, implicit, numerical

solution of the squeeze-film differential equation was not required
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for this problem. If desired, further improvement in accuracy is

possible by following the pattern shown to be present in the series

of partial differential equations, to develop higher order terms.

It was found, using only first order terms in the small para-

meter equation, that explicit optimization Of the minimum clearance

could be accomplished. A gradient method was used to optimize the

clearance using the augmented, small-parameter equation. The Optimum

nominal clearance was found to be well within the range Of values

used in the squeeze-film bearings built to date. The Optimum length-

diameter ratio was considerably less than has usually been used. The

Optimum non—uniformity factor appeared to be constant regardless of

whether the small parameter or the augmented equations were used.

A study of the response surface near the Optimum showed that,

Of the variables treated, the most important variables are the non-

uniformity factor and the dimensionless nominal clearance-drive

amplitude ratio. The length-diameter ratio did not appear to be an

important variable.

By varying the load on the bearing, it was found that the

Optimum nominal clearance-drive amplitude ratio varied in an especially

simple fashion with the change on load.

The concept of a figure-Of-merit function as introduced in

Chapter 4 should be applicable to a wide range of design problems.

Its main forte is its ability to treat dissimilar quantities without
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reducing each to a "cost" function. It was shown that a cost

factor, a displacement factor, a length-diameter ratio factor,

and a drive amplitude factor could be combined into a merit function.

It was then possible to Optimize the resulting merit function, which

was done numerically by a gradient method.

The merit function was fUrther improved by the introduction Of

the weighted merit function in Chapter 5. The weighted merit function

showed that if one of the constraints, such as load, was described

by a probability function, the weighted merit function produced an

Optimum at less than maximum load. The design Optimized at this

weighted Optimum had a merit value 36 percent greater than that Of

the design Optimized at the maximum load.

Among the problems left unanswered or at least which need

additional work are the following:

(1) A more complete set Of rules for the formation Of the

merit factors is needed. This was explored to some extent in

Chapter 4 and some rules were given.

(2) The treatment Of stability Of the journal bearing when the

excursion is non-uniform is needed. Some arguments were advanced

in Chapter 5 based on previous work which treated uniform excursion

only [17].

(3) The effect Of certain manufacturing errors on the Optimi-

zation Of clearance and on the merit function should be treated.

Such errors include taper in the nominal clearance along the longi-

tudinal axis, out-Of-roundness or taper in the nominal clearance on

the angular direction, and non-uniform excursion on the angular

direction.
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APPENDIX A

AUGMENTED, SMALL-PARAMETER SOLUTION

OF THE SQUEEZE-FILM EQUATION

A.l SERIES EXPANSION

The squeeze-film equation, for the journal bearing of finite

length, derived on the basis of infinite squeeze number is

81181" 8H 8 HST 8H

33[§m'T55]*37[§37'T37] ' 0 (M)

with the boundary conditions

3

'r(:z ,0) = 11. (A.2)
L H +Z

‘ L

91mm) 332.“)
36 — 36 0 (A.3)

For the case considered in this thesis, where only displacement

in the radial direction is permitted,

H = l - 82 cos 6 - elfl sin t . (A.4)

Equation (A.1) becomes

  

a 1-82 cos 6 8T . a 1-62 cos 6 8T _

8‘01: 2 BO-TE251n6]+BZ[2 az '0

(A.5)
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and the boundary conditions (A.2) become

2 3 2 2
T(:ZL,0) = (l-ez cos 0) + §'f1 (:ZL )51 (A.6)

An approximation to T may be made by expanding T in a power

series of 62, the eccentricity of the bearing,

 

T = Z 62 Tn (A.7)

n=O

Putting (A.7) into (A.5) yields

m +1 ) aZTn +1 aTn +1
n n _ n - _ n

2 [:(82-82 cos 6 862 82 Sin 0 86 2 62 cos 0 TH

n=O

+ aZTn
+ (52-63 1 cos 0) -ng- ' 0 (A-3)

Substitution of (A.7) into (A.6) gives the boundary conditions

E en T +Z = 1-6 cos 0 2 + §,f2€2 (A 9)
= 2 n ‘ L 2 2 1 °

where

f = f1(iZL)

The derivative boundary conditions (A.3) take the form

C
D

3 on n _ 3 on n _

‘3'- ; CZ Tn(Z,O) E Z £2 Tn(z,fl) - 0 (A°10)
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Expanding (A.8), (A.9) and (A.10) into the indicated series and

collecting coefficients of like powers of 82 gives the series of

partial differential equations and boundary conditions,

 

  

 

 

 

 

  

 

n = 0

aZTO aZTO

+ = 0 A.1l

802 8Z2 C )

T (12 = 1 + 32 £262 (A.12)

O L 2 1

3To(Z,O) 3T0(Z,n)

—3—0- = 3'5- : 0 (11.13)

n = l

8210 8T0 82T 82T

- cos 0 2 - sin 6 ——- - 2 T cos 6 + -——J-+ -——J-

86 o 882 822

aZT (A.14)

- cos 0 f =

32

T1(:ZL) = - 2 cos 6 (A.15)

EILIZ»0) = 31112,") = 0 (A.16)
80 80

n = 2

32T1 3T1 32T2 82T2
-056 -sin —-2Tcos6+ +—

C 802 e -39 1 882 3Z2

(A.17)

82T1

- cos 0 0

822
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T2(:ZL) = c0526 = %~(l + cos 26) (A.18)

3T2(Z,O) 3T2(Z,fl)

-86- - —5§— - 0 (A.19)

n = 3

32T2 , 8T2 82T3 82T3

- cos 6 - s1n e -——-- 2 T2 cos 6 + +

392 30 382 322

(A.20)

2T
- cos 6 =

8Z2

T3(iZL) = 0 (A.21)

8T3(Z,O) 3T3(Z,w)
Be _ 86 - 0 (A.22)

The same pattern that is evident in (A.14), (A.17), (A.20)

continues for higher values Of n , and all boundary values are zero.

A.2 SOLUTION FOR To AND T1

The solution Of (A.11) is

T = 1 . §.f2€2 (A.23)
O 2 1

Putting this value of To into (A.14) gives

82T1 82T1
+

882 822

  - 2 To cos 0 = 0 (A.24)
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The variables may be separated in (A.24) by assuming a solution

of the form

T1 = h1(Z) cos 0 (A.25)

giving

h1 - h = 2 T (A.26)

 

h1 = - 2 (A.27)

:ZL

The solution of (A.26) is

cosh Z . (A.28)

1'11 = - 2 [To + (1-T0)——COSh2L]

giving

T = - 2 cos 8 T + (l-T SEEELJE— (A 29)
1 O O cosh ZL '

A.3 SOLUTION FOR T2

Putting (A.25) for T1 into (A.17) gives the partial differ-

ential equation for T2 ,

2 2

2_IZ.+ 2.22.- (h + h") c0526 + hl sinze = 0 (A.30)
302 az2 1 1
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Assume a product solution Of (A.30) of the form

T2 = gO(Z) + g1(Z) cos 6 + g2(Z) cos 20

Putting (A.3l) into (A.30) gives

H H

n hl H " hl

go - —3- + gl - g1 cos 6 + g2 - 4g2 - h1 - —5- co

with the boundary conditions from (A.18)

g1(:ZL) - 0

g2(iZL) - %

Since the terms in 1, cos 0, cos 20, --- cos n6

each coefficient Of (A.32) must be zero thus leading

ential equations

'1‘g1 = O

g3 - 4g2 - h1 - 2%. = 0

Equation (A.36) is

....(.-.0);g:;;L o

(4.31)

s 20 = 0

(A.32)

(A.33)

(4.34)

(A.35)

are orthogonal,

to the differ-

(A.36)

(A.37)

(A.38)

(A.39)
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which can be integrated twice to get

cosh Z

gO = - (1 - TO) cosh Z + C1 Z + C2
L

The boundary values (A.33) require that

C1 = 0 and c2 = g-

giving the solution

gO = - (I - To) %%§%—%;'+ 2'

Equation (A.37) has the solution

g1 = CleZ + Cze"Z

therefore

81 = 0

Equation (A.38) can be written

g3 - 4g2 = - 2 To - 3(1 - To)
cosh Z

cosh Z

L

(A.40)

(A.41)

(A.42)

(A.43)

(A.44)
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The solution Of the homogenous part Of (A.44) is

-2Z

g2H = cleZZ + C2e (A.45)

A particular solution Of (A.44) is

T
_ cosh Z O

g2p - (I To) cosh ZL + -2' (A'46)

The general solution with consideration of the boundary values

(A.35) is then

  

T
_ cosh Z cosh 2Z O

g2 - (1 To) (cosh ZL - 2 cosh 22L)‘+ITT (A'47)

The solution of the partial differential equation (A.30) for

T2 is then

  

_ §__ _ _ cosh Z

T2 - 2 TO (1 To) cosh ZL

(A.48)

cosh Z cosh 22 TO

+ (1 - To) (cosh ZL - 2 cosh 2ZL )+'7f cos 26

It was hoped that this additional term would be enough to give

answers Of acceptable accuracy for large values Of £2 ; however

comparison to the numerical solution, though showing a significant

improvement due to this term, was still not good enough.
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A.4 SOLUTION FOR T3

Writing

T2 = 86(2) + 82(2) cos 26

then (A.20) can be put in the form

62T3 82T3
+—

882 822

H

+ (Zgz - E3-- 2go - g3) cos 6 - gg-cos 36 = 0 

2 2

(A.49)

The variables in (A.49) may be separated by assuming a solution

of the form

T3 = ko(Z) + k1(Z) cos 6 + k2(Z) cos 26 + k3(Z) cos 36

(A.50)

Putting (A.50) into (A.49) gives

H

k; +(k'1' - k1+ 2g2 - %2-- 2go - gg)cos 6 + (k'z' - 4k2) cos 26

g
+. (k3 - 9k3 - -§-)cos 36 = 0 (A.51)

Putting (A.50) into the boundary values (A.21) gives

ko(:zL) = k1(:ZL) = k2(:ZL) = k3(:ZL) = 0 (A.52)

Again orthogonality Of the series in cos n6 gives the dif-

ferential equations

k" = 0 (A.53)
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n 82

k1 - k1 + 2g2 - 7 - Zgo - g; = 0 (A.54)

k2 - 4k2 = 0 (A.55)

H 8'2. _

k3 - 91(3 - '2— - 0 (11.56)

The only solutions Of (A.53) and (A.55) which satisfy the

boundary conditions are

k = 0 (A.57)

k2 = 0 (A.58)

The solutions of (A.54) and (A.56) proceed in a straight

forward fashion and eventually lead to

 

92 tanh Z cosh Z - 92 sinh Z + 12 (cosh Z - cosh Z )
k (1 T ) L L L

1 ‘ ‘ o

  

4 cosh ZL

(A.59)

and

k = - 1 _ T cosh Z _ cosh 22 + ll_cosh 32

3 l6 cosh z 5 cosh 22 80 cosh 32
L L L

(A.60)

The expression for T3 is now completely determined by substituting

(A.57). (A.58). (A.59) and (A.60) into (A.50)

Additional terms could be found in the same manner but sub-

sequent tests showed that terms including those to 53 gave suffi-

cient accuracy.
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COMPARISON OF THE AUGMENTED, SMALL-PARAMETER

SOLUTION TO THE NUMERICAL SOLUTION

In order to show that the augmented equation had sufficient

terms to be an acceptable solution, the load support computed by

using T from the finite-difference method was compared to the load

support computed by using T from the augmented, small—parameter

3
solution with the £2 term. In both cases, the integration of the

load support equation was performed numerically using Simpson's rule.

It was known that an error existed in the direct numerical

method due to the finite grid size used. Since the answers computed

by this method were to be used as a standard, the error must be re-

duced to a minimum. The numerical method approximated the deriva-

tives in the squeeze-film equation by central differences, Of second

order accuracy, thus it was expected that the error in T would be

proportional to the square Of the mesh spacing in both the Z and

6 directions. If M and N are the number Of nodes in the Z

and 6 directions respectively, then m = —l—- and n = —l—- are
M-l N—l

the respective mesh spacings.

One method Of improving the accuracy would be to increase the

number of nodes in the two directions, this however, would certainly

increase the computer time needed for a solution and, if carried to

extremes, might well increase the truncation and roundoff errors to
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unacceptable levels. The computations were to be performed on an

IBM System/360-50, which in single precision, carries six hexadecimal

digits (equivalent to approximately 7.2 decimal digits) thus roundoff

error could rather quickly reach unacceptable levels.

An investigation was made to determine if an extrapolation to

zero mesh size, based on the assumed error being 0(m2) and 0(n2),

would be effective. It was assumed that the domain of interest for

the independent variables was

O<€ _<_0.5

A sampling was made using mesh sizes ranging from 9 x 9 tO

17 x 41 at the extremes of the above domain. It was quickly apparent

that the effect of mesh size was greatest for small values Of 81 ,

for large absolute values Of £2 , for A = - l , and for large

values Of ZL . It also appeared that the N mesh spacing (6 di-

rection) was more critical than the M spacing (2 direction). The

worst combination Of values which was found is shown in Table B.l,

and plotted versus n in Figure B.l.

It appears from Figure B.l that the points lie on a straight

line (N = 9 appears to be a slight exception) and that the error is

0(n2). It also appears that an answer extrapolated from the 9 x 9
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Figure 8.1 Load support as a function

of mesh spacing in the axial direction
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TABLE B.1 COMPARISON OF THE EFFECT OF THE NUMBER OF NODES

 

 

      
 

 

ON LOAD SUPPORT CALCULATIONS. (elr=o.048, £2 = - 0.8, A = - 1)

M m2 N n2 11' AT 2L = .5 w' AT zL = 1,7

9 .0156 9 .0156 .025626 -.086639

9 .0156 17 .00391 .062890 .010319

.9 .0156 25 .00174 .069058 .025852

9 .0156 33 .000977 .071179 .031138

9 .0156 41 .000625 .072168 .033602

17 .00391 17 .00391 .062717 .0092033

17 .00391 25 .00174 .068907 .024931

17 .00391 33 .000977 .071035 .030282

17 .00391 41 .000625 .072029 .032778

grids (W' = 0.04253) is closer to the answer extrapolated from

9 x 17 and 9 x 24 (W' = 0.03831) than is the single computation at

9 x 41 (W' = 0.033602). It appears that extrapolation from two

coarse grids gives a better answer than that from one fine grid.

Using grid size as a measure of computer time, the 9 x 9 and 9 x 17

combination should be nearly twice as fast as a single 9 x 41 grid.

In all other cases checked the slope Of the extrapolation curve was

less than that of Figure 3.1 indicating that the accuracy of the

answer extrapolated from the coarse grids was proportionately better.

At the other extreme of large values of 61 and small absolute

values Of 82 it was found that the slope of the curve of W'

versus 112 was essentially zero but that W' plotted versus 1112

now had a significant slope. Thus in one case extrapolation on n2

improves the answer; in the other case extrapolation on m2 is





128

necessary. TO cover both cases then, extrapolation is necessary in

the m2 - n2 plane rather than linear extrapolation on either m2

or 112 although the greatest improvement is made by n2 extrapola-

tion. The final result was that the computation was performed three

times with meshes Of 9 x 17, 9 x 25, and 17 x 17 respectively, with

extrapolation Of a plane to zero mesh size in both the m2 and n2

directions.

A short investigation was also made to determine if the

Simpson's rule integration for W' was introducing any measureable

error. This was done by computing the T values for a given mesh

(say 17 x 17) then using quadratic interpolation to generate the

missing values in a mesh with twice the number of intervals (33 x

33). Each set of values was integrated and the final answers com-

pared. There was no significant difference between the two computa-

tions. Consider the case when T in (2.23) is given by

T = T[1 + 0(88)2 + 0(AZ)2] (B.1)

A

where T is the exact value. Then

T1/2 = T1“2 [1 + 0(A6)2 + 0012?] (B.2)

All other terms in the integrand of (2.23) can be expressed exactly.

Since the error in Simpson's rule is Of the order'of the fourth

power of the mesh spacing, this error is evidently insignificant

compared to the 0(m2) or 0(n2) of the T computation itself.

An error analysis performed on the finite difference equations
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for small absolute values of 82 showed that the magnitude of the

error is approximately

2 2
m 5n

n z E _ + — 8.3

I 1max 2[12 6 :1 ( )

bearing out the Observation that the n interval (6 direction) is

more important than the m interval (Z direction).

Finally, the finite difference computation for W' was

compared to the augmented, small-parameter solution. The results

of this comparison are shown in Figure 8.2 for the worst case.

(Worst in that the augmented equations are exact in 51 , so that

the maximum error should be associated with small 51 and large

absolute values of 82.) In the range Of interest of 0.7 §_Z §_l.5
L

the maximum difference for the augmented equation including terms

to 83 was at ZL = 0.7 and amounted to less than 10%. The error

for the augmented equation to including terms to 8% however was an

unacceptable 28%.

3
It was concluded that the augmented equation with terms to 82

gave answers which would be more thrn accurate enough for the present

investigation. Further, when only load support is needed in any

future work the augmented equation will suffice. The computer time

for the finite-difference equation is approximately 20 seconds per

load support computation compared to less than 4 seconds for the

augmented equation when using the IBM System/360-50.
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Figure 8.2 Comparison between finite difference

solution and augmented, small-parameter equation.
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