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ABSTRACT

Combining time-series and cross-section data is useful in

controlling for omitted or unobservable individual Specific attributes

which may be correlated with the explanatory variables in a

regression. A regression function that does not condition on the

individual specific effects will not identify the parameters of the

model. Econometric models that assume the availability of panel data

are usually of the constant slopes and variable intercept form. This

study considers a panel data model with cross-sectional variation in

some of the slopes as well as the intercept.

An established literature exists on the estimation of the simple

model. The choice of estimation procedures depends on the assumptions

about the individual effects. We distinguish three sets of

assumptions: (1) fixed effects, (2) random effects uncorrelated with

the regressors, and (3) random effects correlated with the regressors.

The fixed effects model is estimated by analysis of covariance, or

within. Generalized least squares is the standard procedure when the

effects are random and uncorrelated with the regressors. When the

effects are random and correlated with the regressors, the instrumental

variables estimator introduced by Hausman and Taylor is appropriate.

Each of these estimators is asyhptotically well-behaved in the case of

inany individuals and few time periods. For the general model we derive

the analogous within, GLS, and Hausman-Taylor instrumental variables



estimators. Furthermore, we prove that these estimators possess the

same properties in the general model that they have in the simple model.

Then, we apply some of our theoretical results to an attempt to

measure the impact of unions on wages. Conventional wisdom suggests

that cross-section estimates are upwardly biased due to the positive

correlation of unobserved individual specific attributes, or ”ability",

with union status. Most often this bias is addressed through a fixed

effects specification of the simple model. However, this approach is

criticized for ignoring the sectoral dependence of the individual

effects. We consider a special case of our model in an attempt to deal

with this criticism. We conclude the conventional wisdom is confirmed

in our empirical investigation.
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CHAPTER ONE

INTRODUCTION

Panel or longitudinal data are simply time-series observations on a

cross-section. The applied economist may have several years of data on

individuals, households, or firms. Typically the number of time

observations (T) is small and the number of cross-sectional units (N) is

large. Combining time-series and cross-section data is particularly

useful in controlling for omitted or unobservable attributes specific to

the cross-sectional unit (henceforth taken to be an individual) which

are correlated with the explanatory variables. A regression function

which does not condition on these individual specific effects will not

identify the parameters of the model.

Econometric models that assume the availability of panel data most

often take the form

(101) Yit =3 Xit'B + 01 + cit , i=1,ooo’N, F190009T ,

where X1: is a vector of explanatory variables and sit is an iid

S

error. The a1 are individual specific parameters, or effects. 80, in

(1.1) each individual has a unique intercept.



How we estimate (1.1) depends on our assumptions about the 01.

From the literature we can identify three distinct cases: (1) fixed

effects, (2) random effects uncorrelated with the regressors, and (3)

random effects correlated with the regressors. Case (1) is the weakest

set of assumptions. Here the individual effects are taken to be

constant over time (no other assumptions about them are necessary). In

(2) the at are assumed to be iid random variables that are uncorrelated

with all of X. This specification is sometimes referred to as the error

components model. The last case drops the independence assumption and

allows the individual effects to be correlated with some of X.

This study has as its focus the estimation of an obvious

generalization of (1.1) - a panel data model which allows cross-

sectional variation in some of the slopes as well as the intercept.

Such a model can be written as

a ' ' =
(1.2) Y1: X1: 8 + Wit 61 + Sit, 1 1,ooo,N, F1’000,T ,

where ”it is a vector of explanatory variables associated with

coefficients that depend on 1. (Alternatively, we could partition X and

a ' ' .1 \ aB and write Yit xlit 811+ XZithZF + €1t)' Clearly, if “it constant

then (1.2) reduces to the simple, intercept varying model.

Our investigation proceeds as follows. The next three chapters

present theoretical results. Chapter Two considers the fixed effects

case; Chapter Three takes up the case of random effects uncorrelated

"PC\,

with the regressors; then, the case of random effecté uncbrrelated with

\w
.r

the regressors is covered in Chapter Four. For each set of assumptions,

we first review the results on estimation established for the simple



model. Then, we extend these results to the general model. In each

case we are interested in estimators which have good asymptotic

properties as Nrn while T is fixed.

In Chapter Two this means deriving an analog to the within (or

analysis of covariance) estimator of the simple model. We also show

that under normality, the within estimator for the general model is the

conditional MLE. The error components model is traditionally estimated

by generalized least squares. So, in Chapter Three, we derive the GLS

estimator for our model and prove that the properties of GLS in the

simple model carry over to the general model. The groundwork for

Chapter Four is laid by Hausman and Taylor (1981) (hereafter referred to

as H-T). They develop an instrumental variables procedure for the

simple model in which the individual effects are random and correlated

with some of the regressors. We derive a similar instrumental variables

estimator for our model, and following H—T, detail conditions under

which it differs from the fixed effects estimator.

In Chapter Five, we apply some of our theoretical results in an

empirical exercise where we attempt to measure the impact of unions on

earnings. Using data from the years 1978-1981 of the Michigan Panel

Study of Income Dynamics (PSID), we estimate: (1) the simple cross-

sectional earnings equations for the four years of our sample; (2) the

usual panel data model in which only the intercept varies across

individuals; and (3) a special case of our general panel data model.

Conventional wisdom states that the cross-section estimates are upwardly

biased due to the positive correlation of unobserved individual specific

attributes - collectively referred to as ”ability” - with union



status. Most often this bias is addressed through a fixed effects

specification of the simple model. We note some criticisms of this

approach and examine a Special case of the fixed effects version of our

model that attempts to deal with the criticisms. For the sake of

comparison, we also estimate (2) and (3) under both sets of random

effects assumptions. In general, we are able to confirm the

conventional wisdom that cross-section estimates of the union wage

effect are upwardly biased.

In Chapter Six, we present a summary of our results and offer some

final remarks on panel data models in which some slopes as well as the

intercept vary cross-sectionally.



CHAPTER THO

FIXED EFFECTS

2.1 Introduction
 

In this Chapter, we consider the estimation of (1-1) and (1-2)

under the weakest set of assumptions; i.e., fixed effects. Since the

number of individual Specific parameters increase with sample size, we

focus our analysis on the estimation of B. In particular, we seek

estimators of B that are consistent in the common panel case of large N

and small T.

First, we review the estimation of the simple model. We derive the

”within" estimator of covariance analysis, which possesses the above 1

consistency Property. This is equivalent to maximum likelihood. “:1

Chamberlain (1980) demonstrates the incidental parameters problem can

also be circumvented through a conditional likelihood approach. He

derives the conditional MLE of B in (1.1) which is also equivalent to

the within estimator.‘

Secondly, we extend the results of the standard model to the more

general model which allows cross-sectional variation in some of the

slopes as well as the intercept. There exists a substantial literature

on the case in which all coefficients vary across 1 (see, for example,



‘\

.1

Judge et a1 (1985, sectioé 13.5). In this case, the model can be

1
1

considered as N seemingly unrelated regressions; and if not all the

coefficients vary across 1, then cross-equation restrictions are

implied. Since we are concerned with an asymptotic theory in which N+00

.TT“

and T is fixed, this treatment is unsatisfactory. Mundlak (1978) has ;

\‘ed~'
1 \ \\»fi

investigated this case, and notes (given standard assumptions about the

errors) the cross-sectionally constant regression coefficients can be

estimated by a version of least squares.

So, we follow Chamberlain, and derive the conditional MLE of B in

(1.1). This is shown to be equivalent to the obvious least squares

estimator, which is a comforting result. Our conclusions are summarized

in section four.

2.2 The Standard Model

Recall the usual representation of a linear regression model with

panel data. This is described in (1.1) as

Y axit's +0 +6 131,0009N; talgooogTo

it i it

where git is assumed to be iid N(o,oz). The n1 are incidental 1

parameters and B is a K-dimensional vector of cross-sectionally constant

coefficients.

As outlined in the previous section, we seek an estimator

of B which is consistent for the usual panel case of large N and small

T. It is well known that the “within” estimator of covariance analysis

~

possesses this consistency property. Let us review this estimation

procedure.



As a matter of notation, define

(2.2.1) Y = Y .

  

This allows us to write

(2.2.2) Y1 = X18 + a1 + 81 .

 

Then, we may consider all NT observations as

(202.3) Y :3 X3 + m* + e D

where
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(2.2.4) Y ' Y2 ’
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D = I s e = 0 e : , a = a ,

(2.2.5) N T : T. : * ?

0 00.. e1. ’ 1 0N

    

where GT is a T-dimensional vector of ones. Notice D is simply a matrix

of individual indicator (dummy) variables.

The within estimator of B is derived as follows. Let

a _ I '1 a
(2.2.6) MD INT D(D D) D .

Then transform the data by premultiplying (2.2.3) by MD, thereby

obtaining

"DY a Mst + MDDn* +_MDF ,

which reduces to

(2.2.7) MDY a MDXB + Mus ,

since HDD=O.. This transformation changes a vector of observations into

deviations from individual means.l Least squares applied to (2.2.7)

yields the within estimator of 8, defined as

- (x'an)'lx'u Y .1;(2.2.8) 5 n
W

‘



A

Under the condition that xit varies over time, 8W is consistent as

N*” for fixed T.

It should be clear that the within estimation does not depend on

normality of the errors. When we invoke normality, we see that maximum-

likelihood is, in fact, analysis of covariance. Chamberlain (1980)

derives the conditional MLE of B, which he shows is also equivalent to

O

8 The conditional likelihood approach employs a set of sufficient“0

statistics for the Q1, removing any incidental parameters problem. The

consistency of Bw is confirmed by the coincidence of the conditional and

joint MLE's.

2.3 A Generalization
 

As described in (1.2), a straightforward generalization of the

standard panel data model is

6 +6 i=1’000’N; tal,...’T .

a c t

x1e B + "it 1 1cYit

(’1 ‘1 \\

\

The "it and\6 are L-dimensional vectors of explanatory variables and

i

coefficients, respectively. The remaining variables and parameters are

defined as in the simple model.

This distinguishing feature of this model is that we allow for

cross-sectional variation in some of the slapes as well as the

intercept.‘ Obviously, if ”it is a constant, (1.2) reduces to the simple

model. Again, we seek a consistent (as N+co for fixed T) estimator

OfB.
a

Let “1 a ("11’ "12,000, “1'9'. This allows 118 to write



10

(2.3.1) Y1 = x13 + ”151 + 51 .

Then, considering all NT observations, we obtain

(2.3.2) Y = xs + Q 6* + e .

where

W1 61

(20303) Q " ”2 , 6* a 62 o

wN 6N     

This general model can be estimated by least squares. By analogy to the

within transformation, we premultiply (2.3.2) by the idempotent matrix

Mo, which is defined as

o -1!

u - INT“Q(QQ> Q
Q

M1
(2.3.4) _ u

2

MN

with

, -r~

(2.3.5) M1 =- IT - u1(v1'w1) ”‘1' .



11

Then, we may apply least squares to the transformed model,

. . M = M M ,(2 3 6) QY QXB + QC

which yields the following estimator of 8:

(2.3.7) B 1 1 1 1 1 1

i i

-1 -1
= ' ' a 2 ' Z ' ow (x MQX) x MQY ( x M x ) x M Y

The estimatorgw is consistent for fixed T if (x'qu)‘l+o as

N*”. Essentially, this is a condition which requires sufficient

temporal variation in X1 not explained by W1. When W1 is only a

constant term, we have the familiar condition that xit must vary over

time.

As in the standard model, the above is straightforward and does not

depend on normality. We now invoke normality to prove that'é'w is also

the conditional MLE of 8.

Following Chamberlain, consider the 61 as incidental parameters for

which we need to find sufficient statistics. The likelihood of Y,

conditional on the sufficient statistics, will not depend on the 51.

Maximizing this conditional likelihood should provide a consistent

estimator of B.

To prove this, we first show that Wi'Y1 is sufficient for 61.

Consider the (T+L)Xl vector

I
l
l 0
4

(2.3.8) y -



12

The vector y has a (singular) multivariate normal distribution with

mean u and covariance matrix X, which with the above partitioning gives

u1 = X18 + "151

= t I

"2 "1 X15 + "1 "151

2
(2.3.9) 211 a IT

2 == 02W 'W

22 1 1

2
212 = 0 W1

2 l

221 0 W1

Standard results on normal distributions imply the distribution of Y1

conditional on Wi'Y1 is (singular) normal with mean

0 a "l _

E<Y1 w1 Y1) "1 + 212222(y2 "2)

(2.3.10)

‘1
u t _

W1(W1 W1) W1 Y1 M1X18 p

and covariance matrix

a ' =3 — 1 = 2cov(Y1 W1 Y1) z r z z a M(2.3.11) 9 11 12 22 21 1 .
1

Neither (2.3.10) nor (2.3.11) depends on 61. Hence, Wi'Y1 is indeed

sufficient for 61.

To construct the conditional likelihood function, we need an

O

explicit formula for the conditional density. Here we employ the

standard result [see, e.g., Rho (1973, p. 528)] that if y~N(u.Z) with



13

dim(Y)=P and rank (2) = k<P, then

- k/ZE- 1/2exp [-1/2(y-u)'2+(Y‘U)] 9(2.3.12) f(y) = (2n)

where 2+ is any generalized inverse of 2, and E is the product of the k

positive eigenvalues of 2. Since M1 is idempotent (with rank T-L),

.1.

(2.3.13) 91 = _§.u1

and

(2.3.14) 6 = (02)(T-L) .

Given the conditional mean of the distribution,

(2.3.15) Y E(Y V 'Y ) = M1(Y1-X18) .
1 " 1 1 1

Therefore, we obtain the following expression for the conditional

density:

(2.3.16) f“‘1’"1"1’ = (zn)‘(T'L)/zo“T‘L>exp[- -1—2-(Y1-X18)'M1(Y1-X18)] .

20

Since observations are assumed independent across i, we may

multiply over i to obtain the conditional likelihood function,

Q

3

(2.3.17) : =- (21v)-N(T-L)/zo-N(T-L)exp[- Z(II—221: (vi-xieriui-xisn.
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This likelihood function is indeed maximized by 3W as given in (2.3.7).

2. Conclusion
 

We have considered an extension of the usual fixed effects panel

data model in which some of the explanatory variables may have

coefficients which vary across 1.

The results we obtain are essentially the same as those obtained in

the standard, simpler case. Our model may be estimated by least

squares, and the resulting estimates (of the cross-sectionally constant

coefficients) are consistent given a reasonable condition on the

variability of the regressors. Under normality this estimator is in

fact the conditional MLE. However, we cannot claim asymptotic

efficiency. Unlike the direct MLE, the conditional MLE will not, in

general, be efficient in the sense that its asymptotic variance equals

the Cramer-Rao lower bound (see Andersen (1970)). On the other hand, we

do not know of any estimators with superior asymptotic behavior.



CHAPTER THREE

RANDOM EFFECTS

UNCORRELATED WITH THE REGRESSORS

3.1 Introduction
 

Having demonstrated the consistency of the within estimator in the

usual (fixed T) panel case, we must now acknowledge two drawbacks of the

fixed effects specification. First, for small T, the within estimator

is not fully efficient since it ignores variation between individuals.

Secondly, time-invariant explanatory variables are orthogonal to the

within transformation and therefore cannot be incorporated into a fixed

effects model. This is potentially a serious problem, since in many

applications, attention is focused on the coefficients of such variables

(e.g. on the coefficients of race or education in an earnings equation).

As a remedy to the problems of fixed—effects models, a random

effects specification is sometimes proposed. Random effects models take

the individual effects to be iid random variables independent Of the

explanatory variables and the disturbance. Estimation of the simple

a

model, also referred to as the error components model, is well

documented. The basic results are reviewed in the next section.

15
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Then, in section three, we extend the results of the error

components model to our more general model where some of the slope

coefficients are allowed to vary cross—sectionally. Our model, under

the assumption of random effects, is essentially a Swamy random

coefficient model where some of the coefficients do not vary across i.

Section four summarizes our results.

3.2 Error Components
 

Assume the a in (1.2) are iid N(0,aa2) variables. Furthermore,

i

let 011 be uncorrelated with the columns of (x,e). Under these

assumptions, the usual panel data model has an error components

structure, where

(3.201) vit a a1 + cit 9

and therefore

a 0

(3.2.2) Y t Kit 3 + v
1 it'

Then, considering all NT observations,

(302.3) Y a XB + v o

with v = Dn* + s .

Traditionally, models 11k.‘<3.2.3) are estimated by generalized

least squares. The GLS estimator of B is defined as



l7

‘ = . -l -l , -1
(3.2.4) BGLS (x n x) x n Y ,

where

= g 2 2 .
(3.2.5) o cov(v) 0 INT + 00 DD

and

a 2

-l a l 2 , 2 a a

o +Ta

a

Now, like BW’ BGLS is consistent as N+w for fixed T. But, BGLS is

asymptotically more efficient than B". This efficiency gain is a result

of the exploitation by GLS of both within and "between” (across

individuals) variation. Within estimation only uses variation within

1. However, this efficiency gain disappears and BGLS + 8W as Tr”. 1

An additional advantage of the random effects specification is that

time-invariant explanatory variables can be incorporated into the model

(Recall the within transformation annihilates time-invariant

regressors). So, in the classical panel case (large N, small T), the

error components model may be preferred.

One caveat is in order. The consistency of aGLS depends crucially

on the assumption that the a1 are uncorrelated with the columns of X.

This is often an unreasonable assumption; and, if violated, gGLS is no

longer consistent.2 Ironically, it is inconsistency in the presence of

such correlation that led to thbsoriginal fixed effects model.

N
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3.3 A Generalization
 

Generalizing the error components model to include cross-

sectionally varying slope coefficients is straightforward. Let

(3.3.1) 5 = 6 + u .

Assume the “1 are iid N(O,A) random variables, with A E COV(u1). As in

the previous case, take the “1 to be uncorrelated with the explanatory

variables and 8. Given (3.3.1), the full model may be defined as

=- I 3
(3.3.2) Y xits+wt6 +v ,

it i 0 it

where

(3.3.3) Vit 3 "it “1 + Cit o

More conveniently, we have

(3.3.4) Y=XB +W60+v

and

(3.3.5) v = Qu* + e ,.

where s
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w1 u1

W = W2 and u* = u2 .

"N "N     

Applying GLS to (3.3.4) we obtain the following estimator of 8:

(3.3.6) chs = (x'n' 1/2Mw*n' llzx)”1MWn" l/ZY ,

where

(3.3.7) MW* = 1_w*(u*ou*)‘1w*-=I_Q- 1/2w[(9- 1/2w).9— l’zwl’lw'n‘ 1/2’

and

2
(3.3.8) 9 = COV(v) = 0 INT + QAQ' .

with A 2 IN a A. Note that

(3.3.9) 9‘1 - 11,. HQ + 0(Q'Q)‘1r‘l(o'o)’lo' .

0

where T = 02(Q'Q)-l + A. (For the derivation of n‘l, see the appendix

which concludes this chapter).

~

Now, as in the usual error components model, BGLS is consistent as

S

Nfir for fixed T. Then, do the efficiency results of GLS carry through

’4’”

to this more general model? Indeed, we would be surprised if they did
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not. It is straightforward to prove that EGLS is efficient relative to

~

EW for fixed T and that'fi B as T+m.+

GLS

If BGLS is efficient relative to BW’ then [COV(Bw)-COV(BGLS)]

must be a positive semidefinite (PSD) matrix. It is well known that for

any two nonsingular matrices A and B, (A-B) is PSD if and only if (B.1 -

A‘l) is PSD. Therefore, our problem is to show that

1/2 1
x --—— x' M x

02 Q

- 1/2 -
(3.3.10) x'n Mugs

is PSD.

Rewriting (3.3.10), we obtain

1/2 ___g .
X 2 X MQX

X'Q- l/ZII'Q- l/ZW(W'Q-IW)-IW'Q- 1’2] Q-

0

(3.3.11)

x - x'n'IW(w'n'lw)‘lw'n‘lx - —%-x' MQX .

O

= x'n‘l

Now, given (3.3.9),

(3.3.12) x'n‘lx =.—% X'MQX + x'Q(Q'Q)-IP'I(Q'Q)'IQ'X

a A

and

Xin‘lw(w1n‘1w)‘1w'n‘1x

(3.3.13) .

= x'Q(Q'Q)'1r‘IENL(nNL'r‘lzNL)‘IENL'r‘l<Q'Q)‘lQ'x .
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e a N—dimensional vector of one's. So we needh aw ere E eN D IL’ N

NL

only show that

X'Q(Q'Q)“’r‘1(Q'Q)‘IQ'x

(3.3.14)

1 'r“1<Q'Q)"IQ'x- X'Q(Q'Q)_1F-IENL(ENL'F- ENL)’1ENL

is PSD.

For simplicity define

s = x'Q(Q'Q)‘l

(3.3.15) R a 1""1

_ a -1 '

8 SR ENL(ENLRENL) ENL .

Note that R is PD. Then, consider the PSD matrix,

(3.3.16) (s-§) R (s-E)‘ .

Expanding (3.3.16), we obtain

SR§'-§RS'

I -1 I I I I
SRS + 35E NéE NLRB Ni ENL RENL(ENL RENL)ENL (SR)

3

_ I I I I

SRENL(§NL RENL) ENI. (SR)

533' + §R§'

-l
- I I

SRENL(ENL RENL) ENL(SR) ’
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which is equivalent to (3.3.14). Hence (3.3.10) is psn, and EGLS is

efficient relative to aGLS for fixed T.

However, as T*” this efficiency gain disappears. That is to say,

as T¥~,

llzflnlfl‘ 1/2X - ——%— X'M X]+0 I

1 . -
(3.3.17) T‘ [x n a Q

or

-i.- [X'Q(Q'Q)-II‘_I(Q'Q)-1Q'X

(3.3.18)

I I ‘1 -1 I ‘1 ‘1 I ‘1 I ‘1 I
‘ X Q(Q Q) P ENL(ENL P ENL) ENL P (Q Q) Q X]+O .

To see this, assume %-Q'Q,-%~X'Q, and-%~Q'X have finite nonsingular

limits.

In particular, let

(3.3.19) -l,fQ'Q+U , 711-. Q'x+v, and 7:,— x'Q+v'

Note that (Q'Q)-l+0, This implies r - 02(Q'Q)-1+A+A and r"l+A-l. Then,

1 l l1. 1.-1-11.-1_1_. .-
033m TXQ(§Q® r %QQ) Tvau

‘.

A” u’v

\

.and
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1 , 1 , -1 -1 , —1 -1 , -1 1 , -1 1 ,
:r-XQ(.-r—QQ) r Ream.“ Em) Em.“ (Too) Tax

-1 , —1 -1
ENL A u v..

1 1
A_ E (NA-l)+ v'u" ”L

Since -%»A-l+0, (3.3.18) is confirmed, implying EGLS is equivalent

to?w for large T.

Now, the caveat concerning the assumption of independence of the

individual effects with the regressors also carries through to this

model. It remains that GLS has little appeal if purchased from

unreasonable assumptions. In the next Chapter, we consider a random

effects model in which the independence assumption is dropped.

3.4 Summary

In this Chapter, we have considered the estimation of our general

model in a random effects context. Taking the 61 to be iid random

variables independent of the regressors and the disturbance, we sought

to extend the results of the usual error components model to this more

general model.

As in the fixed effects case, the results we obtain for the general

model are essentially the same as those established for the simpler

model. Estimation is by GLS, and the GLS estimator of 8 is consistent

for fixed T. Moreover, for fixed T, E is efficient relative to?w

GLS

GLS¥§ 88 T*”). And, the random effects specification does

allow the inclusion of time-invariant explanatory variables.

is

However, as in the standard'error components model, the

\

unreasonableness of the independence assumption reduces the appeal of

(however,.§

the random effects specification.
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We make use of the following fact:

Fact: Provided the relevant inverses exist,

(A+BDB')‘1 = A‘lBEB'A“1BEB'A‘1+A‘IBE(E+D)‘IEB'A‘1,

where E = (B'A‘lB)”1.

The covariance matrix of V is given by

(11.1) n = 021m. + my .

In applying the above fact,

2
let A .. a I, B=Q, D=A, and 1: =- (B'A-IB)-l =- on’Q . Then,

’n'1 = —;. 1 - é q(Q-Q)‘IQ' + <1(<1'<1>‘1 [62(0'0)’1+A1(Q'Q)‘IQ'

0'

(A.2) ' s

1 .-1‘-1 . -1.
--a—2-HQ+Q(QQ)‘I' (00) Q '.

where r - 02(Q'Q)-1+A .

24



CHAPTER FOUR

RANDOM EFFECTS

CORRELATED WITH THE REGRESSORS

The conventional random effects specification allows us to include

time-invariant explanatory variables which cannot be incorporated into a

fixed effects model. In the usual fixed T case, GLS estimation of this

Specification is more efficient than within estimation of the fixed

effects model. However, these improvements usually come at the expense

of an untenable assumption: that the individual effects are

uncorrelated with all the regressors.

In this Chapter we drop this assumption. We investigate random

effects panel data models in which the individual effects are assumed

correlated with some of the explanatory variables. As in the previous

two chapters, we focus on the fixed T case and begin by discussing the

results, established by Hausman and Taylor (1981), for a model with only

an intercept that varies across 1. Briefly, they use prior information

to construct exogeniety restrictions that are then employed to derive a

consistent and asymptotically efficient instrumental variables

estimator. They also derive the conditions under which it differs from

the fixed effects estimator. ~

Next, we generalize the H—T analysis to include 810pes that vary

25
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across 1. Although the derivation of our estimator is more complicated,

we show that the results of H-T carry through to the general model. In

the last section we offer a brief summary.

6.2 The Hausman—Taylor Analysis

In addressing the problems associated with both the fixed effects

and error components Specifications, H-T consider the following model:

'Y + a + s ,
=- I

(4.2.1) Y x“: s + z 1 it
it i

where 21 is a J—dimensional vector of time-invariant explanatory

variables (notice it is not indexed by t) and Y is a conformably

dimensioned parameter vector. The oi, as in the error components model,

are assumed to be iid N(0,oa2) random variables. However, unlike the

usual random effects specification, H—T take the at to be correlated

with some of the columns of X and Z.

According to H-T, consistent and asymptotically efficient

estimation of all of the parameters in (4.2.1) hinges on our ability to

distinguish columns of x and 2 which are not correlated with the a1.

To examine this, let us adopt a more convenient form of the

model. Let

E
N

N

o
O
N

I(4.202) 2 - 2* n-6,]: ’ 2* '

  2
‘
"
-
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So, we may write

(4.2.3) Y=XB+2y+V,

where V = Du*+e (as before). Then, suppose we have prior information on

which of the columns of X and Z are correlated with the at. Let

(4.2.4) x = [x1,x2] , z = [21.22] .

where X1 is NTXkl, X is NTsz, 2 is NTle, and 22 is NTij (and
2 l

kl+k2=K, j1+jz=J). For fixed T, assume

1 'D l D

(4.2.5)

.1. ' l ’
N X2 Dn*+ hx¢0 fi-Zz Dn*+hz¢0 .

Now, it should be noted that although the condition E(a1|X1t,21) a 0

fails, consistent, though inefficient estimates of B and Y may still be

obtained from the within regression.l First, we estimate 8 by within,

obtaining a“ defined in (2.2.8). Secondly, we compute the within

residuals, (Y-XBw). From the within residuals we estimate the individual

means, defined as

(4.2.6) .d = PD(Y-X8w) - ZY + Da* + PD(e+error).

__'- s

where PD=D(D'D) 1D' and “error” denotes estimation error from the within

‘

regression. Treating PD(e+error) as an unobservable zero mean
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disturbance, we attempt to estimate Y from (4.2.6). We know OLS and GLS

are inconsistent for Y since the a are not independent of 22. However,

i

if the columns of X1 (which are uncorrelated with Dn*) provide

sufficient instruments for the columns of Z2 (which are correlated with

Du*), consistent estimation of‘y from (4.2.6) is possible. A necessary

condition for this is that the model must include at least as many time-

varying exogenous variables as time—invariant endogenous variables;

i.e., it must be that k1>jz.

If this condition is fulfilled, instrumental variables applied to

(4.2.6), using as instruments

(412.7) B = [x1,zl] ,

yields the following estimator for Y (denoted Y"):

A a ' -1 ' A

(4.2.8) '7w (2 PBZ) z de ,

where PB = B(B'B)-1B', the projection onto the column space of B. This

estimator is consistent for fixed T, but not fully efficient since it is

calculated from the within-residuals. (Recall a" is not fully efficient

since it ignores between variation.)

. Now, consistent and asymptotically efficient estimates of B and Y

can be derived if these parameters can be identified using prior

information like that given in (4.2.5). Even without (4.2.5) all of the

elements of B are identifiable as is clear from the within regression

fl

(1.2.. X'HDX is nonsingular). waever, without this information, no

‘

elements of‘Y are identifiable. But, given (4.2.5) we have the set of
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instruments.2

(4.2.9) A = [MD,X1,21]

and the corresponding projection PA, suggesting the following

proposition:

Proposition 1(H-T): A necessary and sufficient condition for the
 

identification of (B,Y) in (4.2.3) is that

x l

PA [xl,zl]

be nonsingular.

And, associated with this rank condition is the order condition to which

we referred earlier:

Proposition 2 (H—T): A necessary condition for the identification
 

of (B,Y) in (4.2.3) is that kl>jz.

SuPpose the parameters of (4.2.3) are identified by the information

in (402-5)o3 Let

(4.2.10) 9- 1/2 a MD + OPD 3 INT-(l-G)PD ,

where 6 = (l-TBIZ) 1,2 = [oz/(02+Toza)]1/2. 4 Then, perform

instrumental variables on the transformed equation,

Q

3

(4.2.11) 9" 1’21: = n" UZXB + 12" 1’22)! + 9' l”V .
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using the set of instruments given by A in (4.2.9). This procedure

yields consistent and asymptotically efficient estimates of B and Y.

Equivalently, and more computationally convenient,5 we may apply OLS to

(4.2.12) FAQ‘ 1’21 = pAn‘ 1’sz + FAQ“ ”221 + PAS?- 1le .

where PA is the projection onto the column space of A. We denote the

estimators of (B,Y) obtained from (4.2.11) or (4.2.12) as (6*,Y*) .

Now, in evaluating the information given in (4.2.5), three cases

are possible: under-identification, exact-identification, and over-

identification. First, in the under-identified case (kl<j2), §*=§w and

Y* does not exist. Secondly, in the case of exact-identification

(klajz), 3*;EW and Y*=Yw, where Y" is defined in (4.2.8). Finally, if

the model is over-identified (kl)jz), (3*,Y*)¢(EH,YH) and (5*,Y*) is

Q

6

",Yu)'
more efficient than (a

4.3 H-T: An Extension

This section extends the H-T analysis to our more general model.

In doing so, we are able to incorporate time-invariant explanatory

variables and allow for endogeneity of some regressors based on

correlation with the individual effects. The version of our model we

consider here is

I \sI

tY +W1t61+e

,.

- 0

(4.3.1) in x“ B + 21 1t .
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where zit is a JXl vector of explanatory variables. We treat the zit as

time-invariant in the sense that any time variation in the zit must be

fully explained by the time variation in the wit'7 Again,

let 61:60+u1, where "i are taken to be iid N(O,A) random variables.

However, we now consider the case where the “i are correlated with some

of the regressors.

Consider all NT observations and write our model as

(4.3.2) Y=XB+ZY+W5°+VI

where

(4.3.3) z - z , z = z '

o
O
N

    z
f
i

N

p
a
n
e

r
-
J

and V = QU* + e. Suppose, for fixed T,

l
N

1 1
— x ' QU*+O _ Zl'QU*+O

I
N 1 N W QU*+O

(4.3.4)

1_ . 1 .
N X2 QU*+gx¢0 'fi 22 QUf+gzto ,

where X and Z are partitioned in the same way described by (4.2.4).

4.

Note that we have assumed the effects to be uncorrelated with some of

‘

the columns of X and Z, and all of the columns of W.
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Using prior information like (4.3.4), H—T derived two different

estimation procedures for their model. One combined the prior

information with the fixed effects regression to obtain consistent

though inefficient estimates of the parameters. The other applied

identifying restrictions to an n' 1’2 transformation of the equation to

obtain consistent and asymptotically efficient parameter estimates.

Next, we construct analogous procedures for our model.

First, consider estimation based on the fixed effects regression.

The translation of the initial steps of the H-T procedure to our model

is direct and straightforward. We simply estimate 8 by applying OLS to

(2.3.6), thereby obtaining?w in (2.3.7), and then form the least

squares residuals, (Y-Xfiw). At this point the translation becomes more

subtle. The next step in H-T is to calculate d in (4.2.6) by

premultiplying the residuals by PD. This would suggest the d analog in

our model should be constructed by premultiplying our residuals by

PQ - Q(Q'Q)-1Q'. But this is not optimal.

The correct procedure in our case is to calculate8

‘a a a“ l/2(Y_x§") a 9" l/ZZY +9" l/Zwso

(4.3.5)

1/2
+ 9- (QU*+e+error) .

where

(4.3.6) 11" 1’2 -%.u + F
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and

1/2 1/2 /2]- 1/2(Q,Q)- 1/2- 2

(4.3.7) F = Q(Q'Q) [o INL+(Q'Q) A(Q'Q)1 Q'.

Then, if k1>j2, 9 we perform instrumental variables on (4.3.5), using

the set of instruments10

_ - 1/2 _ - 1/2
(4.3.8) 3* — n B — n (xl,zl,w) .

This yields

‘Yw

(4.3.9)

= [(le)'n- l/ZPB 9' l/2(Z.W)]'l(z,w)"1$1" l/ZPB E

as. * *

ow '  

-l
with P3* = 3*(B*'B*) B*' .

To understand this, recall the definition of the H-T 9- 1,2 in

(4.2.10). Suppose we substitute (4.2.10) for PD in the calculation

of d. The, instrumental variables using 3* a n‘ 1’2(xl,zl) yields

1/2 - 1/2 -1 . - 1/2 - 1/2 _ *
PB n z) z 9 PB n (Y xsw) .(4.3.10) 1" = (242'

* 1:

which is generally different from‘Yw in (4.2.8).11 However,

when kl-j2 (the exact identification case), both (4.2.8) and (4.3.10)

‘4

3

are equivalent to12

‘
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(4.3.11) 'Yw - (B'z)"l B'(Y-x§w) .

So, in the case in which this procedure is appropriate (in the

sense it is equivalent to "efficient” estimation when kl=j2), it makes

no difference in the H—T model whether we use pD(Y-x§w) or

9- l[2(‘17-Xg ) for d or whether we em loy (X z ) n- 1/2()( Z )w 9 p 1, l or 1, l as

instruments. In our model, it is never the case that substitution of Pb

for 9- 1,2 and B for 3* results in estimates equivalent to the correct

Y" andlgow.given in (4.3.9).

In sum, consistent but inefficient estimation, based on the fixed

effects regression, of all the parameters in (4.3.2) is possible if the

columns of X1 provide sufficient instruments for the columns of 22. As

before, the inefficiency is grounded in the use of the fixed effects

residuals.

Now we turn to efficient estimation of the model. Specifically, we

seek identifying restrictions from which instruments may be formed to

estimate our model consistently and asymptotically efficiently.

Following H-T, consider the set of instruments

(4.3.12) A = Inq,xl,zl,w],

and the projection onto the column space of A, PA. Then, given

Propositions l and 2, rank and order conditions for identification are

easily derived. The order condition, which is mentioned above, is the

same as in H-T; namely that kl>j2 is a necessary but not sufficient

condition for the identificatioh'of B,Y, and 60 in (4.3.2). The rank

\

condition is almost the same as in H-T: a necessary and sufficient
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condition for the identification of all the parameters in (4.3.2) is

that G'PAG be nonsingular, where G = (X,Z,W).

Suppose the rank condition is fulfilled by the information in

(4.3.4).13 Then, similarly to (4.2.11), we transform (4.3.2) by

- 1/2
our 9 and perform instrumental variables using the set of

instruments

= - 1/2
(4.3.13) A* n (MQ,x zl,w) .

19

Equivalently, we may apply OLS to

(4.3.14) * A* A*

~ 1/2 - 1/
+ PA*Q W60 + PA*Q 2v ,

where PA* is the projection onto the column space of A*. This yields

~*

~* — .— — — -

(4.3.15) Y 8 (6'9 1/2P 9 1IZG) IG'Q 1/2P 9 lle .

* 4* 4*

60   
These estimates are consistent and asymptotically efficient.

Returning to the information given in (4.3.4), we (again)

distinguish three separate cases. Appendix A formally derives the

characteristics of §*; Y*, and‘30* when the model is under-identified,

exactly-identified, or over—identified. Although the derivations

\

differ,14 the characteristics of‘these estimators when kéjz are

.‘

essentially the same as in the H-T model. To summarize,
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if k1<jz, 8 =8" and (Y ,60 ) does not exist. If k=j2,

~*av *.~ * ~ ~ ~

8 =8” and (Y ,60 ) = (YW’KOW)’ when (YW’GOW) is defined in (4.3.9).

And, if kl>32, (s ,y '30 ) s (BW’YW’KOW) with the former being more

efficient than the latter.

Finally, there is the following computational note. While it is

possible to calculate 9-1/2 (or F) and estimate the transformed model

(see Appendix B), it is not necessary. Instead, we may directly

calculate

~*

;W ~* -1 2 -1
~ and Y , using 3 (or F ), Recall a is defined in

6014 30 *

0   

(3.3.9) as [—%-NQ+Q(Q'Q)_lF-1(Q'Q)-IQ']. However, this may be expressed

a

88

-l l 2
(4.3.16) :2 =- M + F .

37' Q

So, in the consistent but inefficient procedure,

(4.3.17) 9"1’298 a“ 1’2 = 1241303'n"lli)'113'fi"1 .
*

Simplifying (4.3.9) to

7 _
w I.

(4.3.18) - [(2.11)'F213(B'n'ls)‘ls'1?2(z,w)]'l

6ow (z,w)'FZB(B'n'ls)’lB'Fzfi .
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And since p = “Q is a projection onto p 9- 1/23, the efficient

A* Q

estimator in (4.3.15) can be computed as

~*

~* ... .. .-

(4.3.19) 1 =- {c'[-% MQ+FZB(B'FZB) ls'rzlc} 1G,[_%MQ+F23(B.F23) lB'leY
~ * O O

5
O   

4.4 Summary

We have considered a random effects specification of our model in

which the unreasonable independence assumption of Chapter Three is

dropped and time-invariant explanatory variables are added.

Following Hausman and Taylor (1981), we derived a consistent and

asymptotically efficient estimator of our model using identifying

restrictions constructed from prior information about which explanatory

variables are uncorrelated with the individual effects. We also derive

conditions under which this estimator differs from the within estimator

discussed in section three of Chapter Two.

This represents a significant improvement over the fixed effects

specification since we now can estimate coefficients of time-invariant

variables and gain efficiency without requiring that all the regressors

\

3

be exogenous.
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APPENDIX A

To derive the characteristics of §*, Y*, and 3 * when kl-é-jz, we

0

will make use of the following lemma, due to Trevor Breusch (personal

communication):

Lemma: Let H and C be nxm and nxp matrices respectively, such that

H and H'C both have rank m. Then H and H(H'H)"1H'C have the same column

Space.

~*

Case I (under-identification): If kl < j2 , B = 8W and ~ *

6
0

does not exist.

First, consider 8. The ”efficient" estimator of 8, §*, is obtained

(separately) by OLS of PA 9. lle on the part of PA 9- 1/2x orthogonal

* s

- 1/2 - 1/2
to PAJR (Z,W). Now, since A* a n ‘ (M0,xl,zl,W) a (HQ’B*),

p . M + projection onto the part of B* orthogonal to HQ; i.e.,
A* Q

P a h + p B*(B*'PQB*)-IB*'P

(11.1) A. Q Q Q

- 1/2 . — 1/2 - 1/2 -1 , - 1/2
HQ + PQQ B(B fl PQQ B) B Q PQ

But, 9 - n + FB(B'FZB)-1B'F
A* Q

38



39

and

- 1/2 _ 1 , 2 -1 . 2
(4.3) PA*n — a-MQ + FB(B F B) B F .

Therefore,

(A.4) PA n’ 1”x =-l-M x + FB(B'F2B)-1B'F2X

* 0 Q

(4.5) Plan“ 1/2(z,w) = FB(B'FZB)-1B'F2(Z,W)

(A.6) PA 9- 1’22 = l.u Y + FB(B'FZB)‘IB'F2Y .

* a Q

Given the above lemma (with H = PB and C = F(Z,W)). when k1 < 12, the

rank of B determines the rank of 9A n‘ 1,2(Z,W). Thus, both

*

PA 9- l/2(Z,W) and EB share the same column space and null space.

*

Hence, the part of PA 9- 1”X orthogonal to P n. l/2(Z,W) must also be

*

orthogonal to F8. This part of PA 9’ 1/2(Z,W) must also be orthogonal

*

- l 2
to PB. This part of PAH I X is %-MQX. SO. when k1 < 32:

—v* a 1 . 1 -1 1 . 1 . 2 -l . 2
s [(3.th) 6.14Qx] (E-MQX) [a-MQ+FB(B F B) B F ]Y

I -1!
(x MQX) x M Y

(A.7) Q

:38”.

Now, consider Y and 60. Since the column space of PA 9" l[2(Z,W)

‘ *
fl

equals the column space of EB, when k1<jz, PA*D- 1”(LED is not of full

column rank. So, a (J+L) ~dimensiona1 vector 5 such that
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_ Y

P Q 1/2(Z,W)E = O and cannot be distinguished from

A* 6

0

~*

Y Y

+ g. Therefore, * does not exist in the under-

60 60

identified

case.

~*~

Case II (exact-identification): If k1=j2, B =8w and

~* «I

Y - Y N

N * ~ .

60 6CW

Again, rank [F(Z,W)] = rank (FB). 80, following the argument in

~* ..

case I, 8 = 8W when k1 = jz.

~* ..

Since 8 = B in this case,

w

«0*

Y .. ~ ..

* - OLS of P Q llzd on P D l/2(Z,W)

'50 As A.»

(A.8)

7w - 1/2~ - 1/2
~ = OLS of PB 9 d on PB 9 (Z,W)

50w * *

Now,

in

(14.9) phn" “221' a 61‘ n0? + Fs(s'rzs)‘ls'rzfi
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and

(4.10) PB 9" ”23 = n" 1/28(B'n'ls)'ls'n‘12i = 9" l/213(13's1'113)’113'1922i,

*

since B'Mdd = 0. Then note

(4.11) PB 11" 1/2(Z,W) = 11" 1/ZB(B'Q_IB)-IB'F2(Z,W) .

*

So, the regressions of (A.8) yield

?*

(A.12) ~ * =- [(Z,W)'F28(B'F28)’18'F2(z,w)]’1(z,w)'F28(B'FZB)”IB'FZE

60

?w
‘ 2 —1 -1 2 2 -1 2~

(11.13) ,. ~ =- [(Z,W)‘F B(B'n B) B'F (Z,W)‘F B(B'n B)B'F d ,

6

ow

l
which are not generally equivalent since B'FZB t s'n’ B (specifically,

X'F2X=t Kin-1X). However, when k = j2 , B'F2(Z,W) is nonsingular and

1

therefore

3* 3'

(1.14) ~,, - 3" ‘- [B'F2(Z,W)]-IB'F23.
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8”

~* ~

Case III (over—identification): If k1>j2 , t Yw

~ * ~

60 60”    
and the former are more efficient.

If kl>j2, rank (FB) ) rank F(W,Z). Then, the column space of

P Q— l”(Z,W). Intuitively, this means that there are parts

A*

of P 9“ 1/2x orthogonal to PA 9‘ l/2(Z,W) even though they are not

A* *

~* ~
orthogonal to F3. Hence 8 ¢ 8".

..* ~ ~ ~ ~

Since 8 t 8W in this case, (Y-XB*) i d = (Y-XBW)' Additionally,

I
there is the general nonequivalence of B'fl- B and B'FZB (which is not

~* ~

Y Y"

mentioned by H-T). So, for two reasons, ~ * t ~ . And,

60 6OW

~* ~

Y Y“

because ‘~ * is asymptotically efficient, ~ is not in this

60 6011
case.
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APPENDIX B

We now consider the computation of the consistent and

asymptotically efficient estimates defined in (4.3.15). First, we need

a consistent.n— 1,2. More precisely, we need consistent (as N+¢)

estimation of 02 and A, since

- 1/2 1 l
9 = M +F = M

:7 Q 37 Q

(13.1)

+Q<Q'Q)‘ ”2 [azimm'm”2(1NaA)<0'0”21‘ “(on)" ”20'.

As in the H-T model, 02 is derived from the within residuals. Let

3'1 =- th, E = MQe, and hi =- I—X(X'X)-1X'. Then, the SSE from the within

regression in (2.3.6) may be written as

(13.2) "12'”? = Z'E' - E'§(i'i)

and therefore

(3.3) a - m?‘"i? .W Y Q ")0
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This estimator is consistent:

~~ 2
(B.4) plim o = plim N T-2 r

<
2

Y "2

since 3'? = s 'e - e'Q(Q'Q)_1Q'e .

A consistent estimator of A may be constructed as follows. Perform

instrumental variables on

(13.5) (Y-xsw) =- 2), + ms + 011* + e ,
0

using B = (X1,ZI,W) as instruments. From the IV residuals, we can form

(8.6) 5 = ee' - . ,

where e1 denotes a TXl vector of IV residuals.. Obviously, a is not a

consistent estimator of Q. But,

(8.7) 050 =- ozo'o + Q'QUNDMQ'Q .

and

(3.8) (Q'oflo'fiom'ofl - 02(0'0)’1 - 11,84.
\

C

This suggests
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(8.9) 2 = I(wi'wi)-lwi'eiei'wi(wi'wi) -32(w1'w1)-1]
1
_.):

Ni

Since the IV estimates of B, Y, and do are consistent,

A: 1 I -1 I I
plim A plim fi-i [(W1 N1) W1(W1u1+€1)(wiu1+€1) W1(W1 W1)]

1 2 , -l
filo ("1"1)

1

(8.10)

= plim-£2 uu '

N i i
1

3A.

Hence, A is consistent.

2 ‘ - 1/2
Given a and A, Q can be easily calculated once the

troublesome terms of F are decomposed into matrices of their eigenvalues

and eigenvectors. For example, (Q'Q)- 1’2 = PD- lIZP', where P is an

orthogonal matrix of the eigenvectors of Q'Q, and D is a diagonal matrix '

of the eigenvalues of Q'Q.

To implement the efficient estimation procedure defined by

(4.3.14), note that (4.3.2) and (4.3.4) may be expressed as a system of

one structural equation and two reduced form equations:

1/2
(8.11) 9" 1’2)! =- n‘ 1’sz + n” 1,227 + n’ ”21:60 + n' v

- 1/2 - - 1/2 - 1/2 - 1/2 - 1/2
(8.12) n x:z fl 9 xlnllm 2111 12m 1111le MQIIM-l-nl

- 1/2 .. - 1/2 ‘ - 1/2 - 1/2 - 1/2
(8.13) n 22 n xlnnm zlnzzm 171123441 11011244412.
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1/2X and 9- 1,22 are calculated from their

2 2

reduced forms. However, estimation of (8.12) and (8.13) is made

The fitted values of Q-

cumbersome due to the presence of HQ. Alternatively, we may "parse out

"Q in both reduced form equations by premultiplying by PQ. This allows

us to calculate Q. 1,222 from a regression of F22 on FB. To obtain

9- l/ZXZ, we must replace MQX2 ”parsed out“ by Pb. 80, we form

fl_ 1’2 = M + P Q. l/ZX = M + FX where PX are the fitted
x2 0x2 Q 2 0x2 2' 2

values obtained from a regression of FXZ on PB.

Finally, 0. 1IZXZ and n. 1/222 can be combined with X1 and Zr; in a

least squares regression to obtain consistent and asymptotically

efficient estimates of B, Y, and 60.



CHAPTER FIVE

ESTIMATION OF UNION

WAGE DIFFERENTIALS

The previous three chapters have presented some theoretical results

on the estimation of panel data models with cross-sectional variation in

both slopes and intercept. In this chapter we will apply these results

to the problem of measuring the impact of unions on wages.1 For the

purpose of exposition let us begin with a brief methodological review.

Prior to the existence of large longitudinal data sets, attempts to

measure the union wage differential were characterized by the estimation

of various forms of a standard cross-sectional earnings equation. To

consider a specific form, let

13 1,0...“ ’(5.1.1) Y = x1'8 + U 6 + e
i i i ’

where Y1 is the natural logarithm of the wage, X1 is a K—dimensional

vector of explanatory variables (e.g., education, experience, sex), 01

is a binary variable indicating whether individual i's job is covered by

a union contract, and 61 is an iid disturbance. Ordinary least squares

estimation of (5.1.1) provides an estimate of 6 which is interpreted as

the union relative wage differential.

47
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One of the usual objections to estimates based on (5.1.1) is that,

given high union wages, firms will hire workers of commensurate quality,

resulting in

(5.1.2) 8(6101) > 0 .

In other words, there exists an omitted variables problem, since in the

simple cross-section we are unable to control for those individual wage

determining attributes - collectively referred to as ”ability" - which

are correlated with union status. Consequently, 81 is positively

correlated with U1 and the least squares estimate of 6 is biased upward.

With the availability of panel data, these individual attributes,

or effects, can be taken into account. Typically this has been done

within a fixed-effects framework,2 where

1=l’.0.,N’ FI’OOO,T O

a O

+ +it t5 a e

i

and n1 is the individual effect, assumed constant over time. The

inclusion of the<11's can be viewed as a form of differencing. Indeed,

this is the essence of the within transformation, to difference away the

correlation between the error and union status. Then, applying least

squares to the within-transformed equation yields an unbiased and

consistent estimate of the union wage differential.

_The notion of omitted variable bias is supported by those studies

in which models like (5.1.3) are estimated. Invariably these analyses

report lower union wage effectsfiihan do cross-section studies.3

\

Now, models like (5.1.3) are also subject to criticism. First,
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there is the issue of measurement error with respect to the union status

variable. This problem is not addressed in this paper, but Freeman

(1984) and Chowdhury and Nickell (1985) correctly point out that errors

in the reporting of union status are accentuated in longitudinal studies

since the estimation of panel data models usually depends on a small

number of union status changes.

A second criticism, which we do consider, is offered by Stewart

(1983). He notes that the standard fixed effects model (varying

intercept only) ignores the possibility that the individual effects may

be sector dependent. In recognizing that the processes which determine

wages are different in the union and nonunion sectors, Stewart

constructs a model which allows the union wage differential to vary

across people. As we will see below, his model is just a special case

of the fixed effects version of our model presented in section 3 of

Chapter Two.

We may express Stewart's model as

a 0

where

(5.1.5) ¢it

S

Clearly, if A 8 1 (5.1.4) reduce; to the standard fixed effects model.

If’l ¢ 1, then the individual effects are sector dependent. Stewart
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suggests A<l since union contracts, in their standardization of wage

rates, ”may alter the link between pay and productivity." That is to

say, the individual effects may have greater impact in the nonunion

sec tor.4

The Stewart model is seen as a Special case of our own when we

write

a I
(5.1.6) Yit x” B + out;1 + a1 + an ,

where 61 =‘Y + (X-l)011 is the union wage differential for individual

i. For simplicity, in our empirical application of Stewart's model, we

consider an unrestricted version of (5.1.6), one in which 61 is not

constrained to be a linear function of the individual effect. This

allows us to investigate, with little computational difficulty, fixed

and random effects estimation of Stewart's model.5

In the next two sections, we present our empirical results on the

union wage effect. We compare estimates from the three structural

frameworks described in (5.1.1), (5.1.3), and (5.1.6). In addition, we

contrast the fixed and random effects estimates of the simple and

general panel data models. Our conclusions are presented in section

four.

5.2 Data
 

Our data set consists of 1706 heads of household taken from the

k

Michigan Panel Study of Income Dynamics (PSID). We consider the four

‘

years 1978-1981, and restrict the sample to include only those
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individuals who report receiving a nonzero wage (each year), are not in

the military, and were between the ages of 18 and 65 in 1978. The

variables used are those commonly found in an earnings equation. They

are described in some detail below. Table 1 gives the means and

standard deviations of these variables for each of the four years and

for the pooled sample.

The dependent variable is the natural logarithm of the wage (LW).

The set of regressors includes the following continuous explanatory

variables. Education (ED) is measured by years (grades) of schooling

completed. Notice this variable is time-invariant. Experience (X) is

recorded as the number of years that an individual reports he/she has

worked full time. Now, in the PSID, the values of experience in 1979-

1981 are the same as the value of experience recorded in 1978.

Therefore, we construct experience responses for the last three years.

We do this by simply adding one year of experience to the 1978 value for

each of the following three years. The tenure (TEN) variable is not the

preferred "tenure with the employer.” For 1978-1980, the PSID only has

observations for ”tenure on the job.” So, this is what we use, measured

in months. As is standard procedure, we also include a quadratic in

experience (X2) and tenure (TENZ).

Other individual characteristics are defined by a set of binary

variables. If an individual lives in a standard metropolitan

statistical area (i.e., a city with population > 50,000), city size

(SMSA) is given the value 1. .Similarly, we use a redneck (REG) dummy,

set equal to 1, if an individual lives in the South. Marital status

(MARR) is recorded with a valuefibf 1 if married. The gender variable

(SEX) is equal to 1 if an individual is male. An individual's race
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'LAILEI

Means (and Standard Deviations)

 

 

Variables 1978 1979 1980 1981 8001.81)

1w 6.3706 6.4779 6.5773 6.6616 6.5218

(.4843) (.4825) (.4707) (.4688) (.4902)

8) 12.1219 12.1237 12.1237 12.1237 12.1232

(2.8715) (2.8687) (2.8687) (2.8687) (2.8687)

x 13.9461 14.9461 15.9461 16.9461 15.4461

(11.0018) (11.0018) (11.0018) (11.0018) (11.0561)

x2 315.4619 344.3540 375.2462 408.1383 360.8001

(412.2647) (433.4538) (454.7202) (476.0537) (446.0018)

TEN 70.0305 77.7907 88.4877 119.2339 88.8882

(77.6660) (81 .0625) (90.0519) (103.6219) (90.6037)

Tm? 10932.7456 12618.6829 15936.4297 24947.4209 16108.9448

(23348.9671) (25332.7136) (30691.7007) (40331.7051) (31108.8640)

5184 .6940 .6858 .6899 .6858 .6889

(.4610) (.4643) (.4627) (.4643) (.4630)

RE: .4302 .4314 .4308 .4326 .4313

(.4953) (.4954) (.4853) (.4956) (.4953)

MAR .7145 .7216 .7315 .7292 .7242

(.4518) (.4484) (.4433) (.4445) (.4469)

sr-x .8224 .8224 .8224 .8224 .8224

(.3823) (.3823) (.3823) (.3823) (.3822)

sacs .6676 .6676 .6676 .6676 .6676

(.4712 (.4712) (.4712) (.4712) (.4712)

CB .3458 .3646 .3581 .3628 .3579

(.4893) (.4825) (.4707) (.4688) (.4902)

N= 1706
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(RACE) is defined as 1 if he/she is white (the nonwhite category only

consists of blacks). Union coverage (i.e., whether a person's job is

covered by a union contract), rather than union membership, is chosen as

the union status variable. It (CB) is set to 1 if a person's job is

unionized. Finally, we include a series of one—digit occupation dummies

to control for the effect of occupation on wages.

In the next section we combine the data with the structural models

described in 5.1 to examine the impact of unions on wages.

5.3 Estimation and Results
 

Here we present the results of estimation. Our primary concern is

to gain a better understanding of the union wage effect. Of related

interest is a comparison of the results obtained from the simple and

general panel data models (in particular, the within and H-T

estimators). We proceed by considering, in turn, the models described

by (5.1.1), (5.1.3). and (5.1.6).

As mentioned in section one of this Chapter, the first attempts to

measure the union wage differential were simple cross-section studies

where ordinary least squares was applied to an equation like (5.1.1).

we replicate this procedure on each of the four years of our sample.

These cross-section results are given in Table 2. In general, our

estimates are very similar to those obtained in other cross-section

studies. Two exceptions are the coefficients of tenure and tenure-

squared. In no year are these coefficients estimated with much

\

precision. This is due, at least.in part, to the fact that our tenure

‘

variable is defined as "tenure on the job” rather than the preferred
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TAILEZ

(toss—Section Estimates

 

 

 

Dependent Variable: 100 Wage

Emlanatory

Variables 1978 1979 1980 1981

n) .0472 .0481 .0505 .0547

(.0039) (.0038) (.0037) (.0037)

x .0238 .0235 .0214 .0167

(.0028) (.0029) ( .0029) (.0032)

x2 -.00044 -.00047 -.00038 -.00032

(.00007) (.00007) (.00007) (.00007)

M om372 om336 -0m264 omo

(.00360) (.00336) (.00300) (.00288)

TENZ -.00004 .0000006 .00014 -.00012

(.00013) (.0001253) (.00010) (.00009)

3154 .1173 .1164 .1170 .1193

(.0187) (.0183) (.0177) (.0179)

RE; -0048]. _00547 “00520 -00509

(.0185) (.0183) (.0177) (.0181)

MARR .0700 .0827 .1102 .1325

(.0263) (.0264) (.0264) (.0272)

$81 .2585 .2299 .2035 .1865

(.0334) (.0331) (.0327) (.0331)

Ram .1071 .1389 .1204 .1305

(.0202) (.0201) (.0196) (.0199)

CB .1758 .1573 .1915 .1809

(.0188) (.0182) ( .0179) ( .0182)

i2 . _ .550 .551 .556 .535

N = 1706 . Standard errors in parentheses
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"tenure with the employer.” The coefficient on union status (8) ranges

from .157 to .191, which implies a union wage differential of 17 to 21

percent.6 Like our parameter estimates in general, this range of

estimated union wage differentials is in agreement with earlier cross-

section results. Perhaps also not surprising is the decline and rise in

the union wage effect over the four year period. This may be explained

by the incompleteness of union cost-of-living adjustments (COLA's)

during the inflationary period of the late 1970's, and the

countercyclical nature of the union wage differential (demonstrated by

the effects of the 1980 recession). .

Since we strongly suspect the selectivity of union workers causes

an upward bias in the cross-section estimates of the union wage effect,

we turn to the panel data model of (5.1.3), where each individual has a

unique intercept (oi, the intercept effect). For the sake of

comparison, we first estimate this model by OLS. These results are

presented in the first column of Table 3. Notice they are vary much

like those obtained by the simple cross-section regressions. This is

because OLS ignores the longitudinal nature of the data. In other

words, OLS assumes no correlation between the explanatory variables and

the individual effects. So, the 8 calculated by OLS is upwardly biased

for the same reason as the union status coefficients given in Table 2.

The claim of this bias in the cross-section and OLS/panel estimates

of 6 is supported by the fixed effects results given in the third column

of Table 3. Performing OLS on a within transformation of the data

(i.e., deviations from individual means) yields an estimate of the union

\

3
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TAILE3

Dependent Variable:

 

Intercept Varying

 

 

 

Explanatory

Variables OLS GLS Within HT

83 .0514 .0728 .1573

(.0020) (.0152) (.0677)

x .0233 .0960 .1164 .1155

(.00151) (.0017) (.0027) ( .0027)

X2 -0m5 “.le -om3 -0m2

(.00004) (.0001) (.00007) (.00007)

TEN .00648 .00360 .00096 .00180

(.00156) (.00003) (.00003) (.00003)

Tm? -.0000003 -.0000011 -.0000003 -.0000005

(.0000004) (.0000002) (.0000002) (.0000002)

(.0094) (.0156) (.0157) ( .0157)

RE -00519 ".0427 ’00416 “.0308

(.0094) (.0285) (.0298) (.0291)

“ARR olm3 omsa "'om27 "omds

(.0138) (.0132) (.0131) ( .0131)

381 .2298 .3393 .2912

(.0171) (.1065) (.1154)

(.0104) (.0917) (.1761)

(:8 .1803 .0975 .0945 .0941

(.0095) (.0096) (.0096) (.0096)

E2 .536 ‘. .397 .405 .403

N - 17%. Standard errors in parentheses.
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status coefficient of .094, a 65 percent decrease from the cross-section

estimate.7 With the exceptions of experience and experience-squared,

the impacts of the other explanatory variables are reduced by allowing

for the individual effects. The within estimates are unbiased and

consistent even if the effects are correlated with the regressors.

However, they are not fully efficient and the within transformation

removes all time-invariant variables (ED, SEX, RACE) from the model. As

we stated at the outset of Chapter Three, this is a potentially serious

problem if one is interested in, for example, the return to schooling.

An alternative specification of (5.1.3) is the error components

model, which was reviewed in section two of Chapter Three. In this

case, the a1 are taken to be iid random variables uncorrelated with the

regressors. If this assumption is true, generalized least squares based

on consistent estimates of the variance components will produce

consistent and asymptotically efficient estimates of all the parameters,

including the coefficients of the time-invariant variables; and GLS is

simply computed. It is equivalent to OLS on a (1-0) differencing of the

data, where 6 - [oz/(02+Toza)] 1’2 (see Note 4 of Chapter Four).

2 and a2 can be derived from the withinConsistent estimates of o a

residuals (see H—T, p. 1384). In our case,

(5.3.1) 0 = .025, on = 3.418, 9 B .043 .

The results of GLS estimation are listed in the second column of

Table 3. Now we have argued that there exists an omitted variables

is

problem in the cross—section. Since GLS also assumes no correlation

'D

between the effects and the explanatory variables, the error-components
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specification is vulnerable to the same criticism leveled at the cross-

section estimates. The GLS estimate of 6 (.098) is higher than the

within estimate (.094). However, it is surprisingly low given the

argument of omitted variables bias. In any case, if the effects are

correlated with union status, the GLS estimate is biased and

inconsistent. The coefficient on education, which we also expect to be

correlated with the effects, is closer to the OLS estimate. In sum,

unless we are prepared to reject the story of selectivity of union

workers, the fixed effects specification should be preferred over the

error components model for measuring the union wage differential.

However, we need not rely solely on the fixed effects version of

(5.1.3). Instead, we may let the n1 be random variables correlated with

the regressors. Then, following the H—T coefficient procedure described

in Chapter Four, we are able to include time-invariant explanatory

variables, and obtain consistent and asymptotically efficient estimates,

thereby meeting the objections to the OLS, within, and GLS estimators.

Implementation of this procedure requires that we be able to

distinguish those regressors that are correlated with the effects from

those that are not. Since the effects presumably control for ability,

obvious choices as endogenous variables are union status and

education. In addition, applications of this technique by H-T and

Chowdhury and Nickell lead us to include experience and tenure (and

their quadratic terms) as endogenous variables.8 Recalling the H-T

order condition for identification of the model, we know that we need at

least as many time varying explanatory variables (SMSA, REG, MARR)

uncorrelated with the effects ab‘we have time invariant explanatory

\

variables correlated with the effects (ED). Clearly this condition is
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fulfilled here.9 In fact, the model is over-identified. Hence, the H-T

estimator should yield an efficiency improvement over the within

estimator for this model.10

Beyond determining which explanatory variables are endogenous, the

only major difficulty is computational. However, the computational

difficulty can be reduced. Following H-T (Appendix B), the fitted

values of the endogenous variables (both time-varying and time-

invariant) can be calculated from their reduced forms in a manner that

reduces the size of the estimation problem from sample size NT

regressions to sample size N regressions. The predicted values of the

time-invariant endogenous variables are obtained from a regression of

these variables on the time-invariant exogenous variables and the

individual means of the time varying exogenous variables. The
 

calculation of the predicted values of the time-varying endogenous

variables is almost as simple. They are derived from a regression of

the individual means of the time-varying endogenous variables on the
 

time-invariant exogenous variables and the individual means of the time-

varying exogenous variables. To these predicted individual means-we

must add the true deviations from means since the correct prediction of

the time-varying endogenous variables is calculated with the set of

instruments that includes the projection used to transform the data into

deviations from means. Then, fitted values are combined with the

variables that are uncorrelated with the effects to obtain consistent

and asymptotically efficient estimates of 8 and d.

The results from the H-T efficient estimation of (5.1.3) are

presented in the last column of\Table 3. First, note that the estimated

‘

coefficient on union status is essentially the same as that calculated
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by within. This should not be surprising since correlation between the

effects and union status is assumed by this specification. Education is

also taken as endogenous and the effect of this is a marked increase in

its coefficient, to .157, over both the OLS (.051) and GLS (.073)

estimates. This rise in the returns to schooling is not in accordance

with a story of positive correlation between education and ability

leading to an upwardly biased OLS (or GLS) estimate. But, H-T point out

that when the amount of education is endogenous, there may be a negative

correlation between ability and the amount of education chosen.ll Their

application of this procedure to an investigation of the returns to

schooling reveals a similar rise over OLS and GLS estimates.

The coefficients of the other time-varying explanatory variables

are reasonably close to the within estimates. The sex and race

parameters, which cannot be estimated by within, are both considerably

different from either the OLS or GLS estimates. In particular, notice

the effect of race has essentially vanished.

Now, the H-T procedure produces parameter estimates which support

the omitted-variables bias argument, and are consistent and fully

efficient. However, within the framework of (5.1.3) we are still

vulnerable to the criticism of Stewart. Thus, we next consider the

unrestricted version of (5.1.6), where the union wage differential is

allowed to vary cross-sectionally. We examine (as we did for the simple

model), the fixed-effects and two random-effects specifications of this

special case of our general panel data model.

First, we take 6 and mi in (5.1.6) to be fixed over time. The
i

\

fixed effects version of the genbral model is estimated by performing

\

OLS on the within (deviations from means) transformation of the simple
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model (see chapter two). These results are presented in the second

column of Table 4. Since T=4, the individual 61's cannot be estimated

equals .093, which is only

A

consistently. However, their mean, fi-i 61

slightly less than the usual fixed effects estimate. In general, the

coefficients of all the explanatory variables are not too different from

those calculated by within on the simple model, even though the effects

are now composed of both 61 and n1. Finally, notice the time-invariant

variables are (again) eliminated by the transformation.

We have consistently argued that any estimation method which

assumes no correlation between the regressors and the effects is

inappropriate for measuring the union wage effect. However, for the

sake of comparison, let 61 and a1 be iid random variables uncorrelated

with the explanatory variables. With this specification we estimate by

GLS, but we first need consistent estimates of the variance of sit and

the covariance matrix of (01,01). Using the estimates defined in

Appendix B to Chapter Four, we obtain

“2
o = .032

(5.3.2)

. .774 .003

A a o

.003 .043

Given (5.3.2) we can calculate a consistent estimator of n" 1/2

(again, see chapter four, appendix B). Then, GLS is obtained by

performing an.a- 1’2 transformation on the data and running OLS.

The resulting estimates, which are only consistent if the

uncorrelatedness assumption is‘true, are given in the first column of

‘

Table 4. As in the simple model, the GLS estimate of the union wage
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effect (.095) remains higher than, though close to, the fixed effects

estimate. The estimates of the other parameters, with the exception of

the coefficients of the experience and tenure variables, are very

different from those calculated by GLS on the simple model. One reason

for this must be the inclusion of the 61 as part of the random effects,

which are assumed to be uncorrelated with the regressors. These results

should not be too upsetting, however, since they are based on an

unrealistic assumption and are therefore biased and inconsistent.

Finally, we address the drawbacks of within and GLS. Now we take

the a1 and 61's to be random variables correlated with the explanatory

variables. To this version of (5.1.6) we apply our extension of the H-T

analysis. The variables taken to be endogenous in the simple model are

also assumed to be correlated with the effects here. The only exception

is union status, which is now exogenous.12 Like the simple model, our

model is over-identified, and therefore the H-T procedure should yield

consistent and asymptotically efficient estimates of the general model.

These estimates are presented in the last column of Table 4. After

distinguishing those variables that are uncorrelated with the effects,

as in the simple model, the main difficulty is computational. In an

analogous fashion to the procedure outlined for the simple model, we

calculate the fitted values of the endogenous variables from their

reduced forms. For the general model, however, efficient estimation

requires the reduced forms be transformed by

9 - 1,2 (constructed from 02 and A given in (5.3.2)). (General reduced

form expressions for those variables correlated with the effects are

62
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TAILE4

Estimates: Slopes and Panel Intercept Varying

Dependent Variable: 1m thge

 

 

Ebcplanatoxy

Variables GLS Within 111‘

n) .3364 .3743

(.0045) (.0227)

x .1236 .1141 .1677

(.0031) (.0026) (.0123)

x2 -.00142 -.00061 -.00095

(.00008)- (.00007) (.00033)

TEN omzm OM72 -0m168

(.00120) (.00096) (.00480)

Tm? -.00004 -.00003 -.00001

(.00004) (.00003) (.00016)

(.0175) (.0153) (.0328)

R .1272 -00220 -o%77

(.0297) (.0290) (.0556)

MARR -.0212 -.0091 -.0208

(.0151) (.0126) (.0237)

SEX 1.1048 .3498

(.0573) (.1658)

RACE -.0610 -.4510

(.0522) (.1135)

, (13 .0955 .0930 .0854

' (.0074) (.0128)

E’ .911 . .403 .791

 

N = 1706. Standard errors in parentheses.
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defined in chapter four, appendix B).

1/2 transformed) reducedDirect application of OLS to the (0 -

forms is cumbersome since the set of instruments includes not only the

exogenous variables, but also the projection used to transform the

fixed-effects model. This projection can be ”parsed out” in both

reduced forms before performing OLS. However, to obtain the correct

predicted values of the time-varying endogenous variables, the ”within”

transformed exogenous variables must be added back to the fitted values

calculated from the least-squares regression with the ”within"

projection ”parsed out”. (This is formally described in appendix B to

chapter four). The predicted values of the endogenous variables are

then combined with the (0 - 1’2 transformed) exogenous variables in an

OLS regression to obtain consistent and asymptotically efficient

estimates of the parameters in the general model. The union status

coefficient is estimated to be .085, implying a union wage differential

of 8.9 percent. This is very close to the mean of the 61's derived from

the within regression. As in the simple model, the H-T estimate of the

return to schooling is much higher than that calculated by the original

OLS regression. This lends further support to the story offered by H—T

of a negative correlation between ability and education when the amount

of schooling is made endogenous. The coefficients on the other time-

varying explanatory variables are closer to the within estimates of the

general model than those obtained by GLS. However, one particularly

peculiar result is the estimate of the race parameter. In the simple

model the race effect essentially disappears. In their return to

schooling exercise, HJT report b‘similarly reduced effect of race on

‘

earnings from their efficient procedure; but, a negative race effect of
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such magnitude is completely unexpected. Why the inclusion of 61 as

part of the individual effect would lead to this result is unclear.

5.4 Conclusions
 

Table 5 contains a tabular summary of the union wage differentials

obtained from the different models and estimation techniques we have

considered. Because of the selectivity of union workers it is likely

that ability is correlated with union status. If union status is

observed without error, then we conclude that there is no real

justification for measuring the union wage differential from the simple

cross-section, or from a panel estimation method which does not allow

for correlation between the regressors and the individual effects. The

simplest means of estimating the union wage effect is within estimation

of the usual fixed effects model. These estimates are unbiased and

consistent. Similar, and likewise consistent results may be obtained by

estimating a fixed effects version of our general model (e.g., Stewart's

Specification). In this way we can let the union wage differential vary

cross-sectionally (or allow for sectoral dependence of the effects).

Finally, if we are also concerned about the coefficients of the time

invariant explanatory variables, we can apply H-T to the simple

(intercept varying) model and obtain consistent and asymptotically

efficient estimates of all the parameters in the model (provided the

parameters are identified). In the general model, the H-T analysis

provides somewhat peculiar results for the coefficients of the time-

invariant variables. This may be due to misspecification, since union

‘

status is not endogenous in the general model. In sum, all of the
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TABLELS

Percent Union Wage Effects

 

 

 

Cross-Section Panel OLS WITHIN GLS HT

1978: 19.22 Intercept Varying: 19.76 9/91 10.24 9.87

1979: 17.03 Slopes and

1980: 21.11 Intercept Varying: 9.75 10.02 8.92

1981: 19.83
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estimation methods which allow for correlation between the individual

effects and the explanatory variables yield union wage differentials

that are much smaller than those obtained in simple cross-section or

OLS/panel estimation.



CHAPTER SIX

SUMMARY AND CONCLUSIONS

A regression function which does not control for omitted or

unobservable variables that are correlated with the explanatory

variables will not identify the parameters of the model. Conventional

estimation of such a regression function will produce biased and

inconsistent results. However, the availability of panel data allows us

to control for these omitted or unobserved characteristics through the

inclusion of individual specific parameters or effects.

The focus of this study is on the estimation of panel data models

in which there is cross-sectional variation in some of the slopes as

well as the intercept. A well established literature exists on the

estimation of the simpler case in which only the intercept varies cross—

sectionally. The results for the simple model are a function of the

assumptions about the individual effects. We identify three different

cases: (1) fixed effects, (2) random effects uncorrelated with the

regressors, and (3) random effects correlated with the regressors.

For each set of assumptions we review the appropriate method of

estimation for the simple model_and then extend these results to our

more general model. In both the review and the extension, our primary

interest is in estimation techniques that behave well when we have a

68
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small number of time observations on a large cross-section, a typical

case with longitudinal data.

First, we consider the weakest set of assumptions: fixed

effects. In this case, the individual effects, while differing across

people, are assumed to be constant for each person. Traditionally, the

simple model is estimated by OLS on the within transformed data. The

within estimator is consistent for fixed T. We develop the analogous

transformation for the general model and show that OLS on our

transformed model is also consistent (given a reasonable assumption

about the variability of the regressors) in the case of fixed T. In

addition, we prove that under normality, the within estimator of the

general model is also the conditional MLE.

Two drawbacks of the fixed effects specification are noted. The

first, and perhaps less serious, is that (for both models) the within

estimator is not fully efficient when T is small. Secondly, time-

invariant explanatory variables are orthogonal to, and therefore

eliminated by, the within transformation.

One solution to these two problems is to adopt a random-effects

specification where one assumes the individual effects are iid random

variables uncorrelated with the regressors. In the model with only a

variable intercept, estimation is by GLS. The GLS estimator is

consistent and efficient relative to within when T is small. We derive

the GLS estimator for our model and show that the results from the

simple model carry over to the general model. However, the consistency

of GLS in both models hinges on the assumption that the effects be

uncorrelated with the explanatoTy variables. This assumption is not

justified in most empirical applications.
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Finally, we consider the case of random effects which are

correlated with the regressors. Under this set of assumptions, Hausman

and Taylor (1981) derive an instrumental variables procedure for the

simple model that allows the inclusion of time invariant variables, and

yields consistent and asymptotically efficient estimates. Their IV

estimator is unique in that it uses the included exogenous time-varying

variables as instruments for the endogenous time-invariant variables.

Specifically, their procedure requires that we have at least as many

time-varying explanatory variables uncorrelated with the effects as we

have time invariant explanatory variables correlated with the effects.

This is essentially an order condition for the identification of the

parameters in the model. We apply the HJT analysis to the case in which

slopes and intercepts are allowed to vary. An analogous order condition

for the identification of our model is obtained, and a consistent and

asymptotically efficient IV estimator is derived. Then, following H-T,

we detail conditions under which the efficient IV estimator of our model

differs from within.

After our theoretical examination of panel data models in which

slopes and intercepts are allowed to vary, as an empirical exercise we

consider the estimation of unions' impact on earnings. The issue of the

union wage effect offers an appropriate empirical question for the

application of a special case of our model.

The first attempts to measure the union wage effect were conducted

within the framework of a simple cross-sectional earnings equation

containing a union status dummy. These studies ignored the selectivity

of union workers. Given high union wages, firms tend to select more

5

able workers, producing a positive correlation between union status and
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the disturbance. Put differently, there is an omitted variables problem

since ”ability” is ignored in the cross-section regression. The result

is a measure of the union wage differential which is upwardly biased.

With the availability of panel data, the typical response to the

biased cross-section results has been through the standard fixed effects

panel data model. Here individual specific intercepts (effects) are

included to control for ability. This can be viewed as a form of

differencing, which is the essence of the within transformation.

Estimation by within yields an unbiased and consistent estimate of the

union wage differential.

However, the usual fixed effects model is not without its

critics. Stewart (1983), noting that the processes which determine

wages are different in the union and nonunion sectors, constructs a

model that allows for the individual effects to be sector dependent.

This is equivalent to letting the union wage differential vary across

the individuals in the sample. Thus Stewart's model is just a special

case of the fixed effects version of our general panel-data model. In

his model, the union wage differential is constrained to be a linear

function of the individual effects. Estimation of his model is by

nonlinear least squares. We consider an unrestricted version of

Stewart's model which is estimated by within. In either case, the

individual union wage effects cannot be estimated consistently as long

as T is fixed. However, we can calculate the average union wage

differential for the sample.

Using data from the years 1978-1981 of the PSID we estimate: (1)

the simple cross-sectional earnings equation, (2) the usual fixed

effects model, and (3) the unconstrained Stewart model. Since within
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estimation of (2) and (3) eliminates time invariant variables (e.g.,

education), and because the resulting estimates are not fully efficient

in the case of small T (here, T=4), we also estimate the random-effects

(correlated and uncorrelated with regressors) specifications of each.

From (1) we obtain estimates of the union wage differential in the

range of 17 to 21 percent for the years considered. These results are

in agreement with other cross-section studies. Estimation of the

standard fixed-effects model yields a much smaller union wage

differential of 9.9 percent. Averaging the individual union wage

effects obtained from within estimation of (3) produces a measure of the

union wage differential of about 9.7 percent. Similar results are

obtained when we take the effects to be random and correlated with the

regressors. In general, we find that in every case where we allow

correlation between the regressors and the individual effects, the story

of upward bias in the cross-section is confirmed with substantially

reduced estimates of the impact of unions on wages.

We conclude from this empirical exercise that unless there is

interest in the coefficients of the time invariant explanatory

variables, the fixed effects specification of either the simple or

general model provides a satisfactory framework for measuring the union

wage effect. And, since within estimates of each are always consistent,

they can serve as a basis of comparison for results from more

restrictive models.

Our final remarks concern what remains to be done. Aside from

other applications of the theoretical results presented here, there are

further extensions of our modelfifio be considered. One is to allow some

\

of the variables associated with the cross-sectionally varying
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coefficients to be correlated with the individual effects. Another

extension might explore the limits of conditional likelihood analysis in

a system of simultaneous equations with panel data, where some of the

slope coefficients vary across individuals. Such considerations are

tOpics for future research.



 

FOOTNOTES



CHAPTER TWO

NOTES

1 To see this, notice MD may also be expressed as

l I

MD — INT - [IN 8 T eTeT ] .

So, prelmultiplication of the data by MD yields

 

 

 

Y11 ’ Y1

Y - Y
12. l - _1

MDY a : ' Yi ‘ ‘T’ E Yit
Y _-

1T Y1

F

Y21 ’ 2

Y22 T Y2

Y2T ‘ Y2

YN1 ' YN

Ynz ' YN

YNT ' YN   
and MDX similarly.
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CHAPTER THREE

NOTES

1 Recall the within estimator,

A

_. '1.
8w — (x MDX) x MDY .

where MD = I - D(D'D)-1D'. Let PD = D(D'D)-lD'. The "between"

estimator is defined as

“ _l

= ' .BB (x PDX) x PDY.

The projection PD transforms the data into individual means. So, BB is

derived from a regression of

    

Y1 x1

2 on X2 ,

YN *8

and therefore uses variation across individuals.

may be expressed‘as a matrix weighted average

A

Now, BGLS

A

of 8W and BB:
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fl

2 -1 2
= I I I I

BGLS (x (MDX + e x PDX) (x MD + 0 x PD) Y.

2 2 02

where 6 = 1 - T8 =.—___—_— . For fixed T, the use of between

1 2 2

o +To a

variation by GLS results in an efficiency gain over within. But,

A

02 + O as T + w implying 8 = B l .GLS W for arge T

2 Except where the individual effects are correlated with all of the

columns of X. In this case GLS = within (see Mundlak (1978)).



CHAPTER FOUR

NOTES

1Specification tests are outlined on pp. 1382-3 of H-T.

2Any vector orthogonal to a time-invariant vector can be used as an

instrument. Since the time—invariant n1 are the only components of the

disturbance which are correlated with an explanatory variable, MD may be

included as an instrument. As H-T note, the time-invariance of the (11

provides N(T-l) linearly dependent instruments for (4.2.3). (See H-T p.

3These identifying restrictions can be tested. See H-T, pp. 1388-9 for

details.

1/2
éThe matrix Q - transform 9 into a scalar matrix; i.e.

fl - 1,299- 1/2 = 021 When used to transform (4.2.3), 0 — 1/2

NT.

yields a simple (1-0) differencing of the data,

Y - (149))?1 = [xit-(l—efiils + 621)! + 0:11 + (ct-(l-efiil.
it

3

OLS applied to this transformation is GLS (see note 2). This is

computationally convenient.
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5This procedure combines the computational convenience of the Q _ 1/2

transformation with the simplifications provided by PA° First, PA

applied to the exogenous variables yields the variables themselves.

Secondly, the projection of the endogenous variables onto the column

space of A can be derived by using only individual means (see H—T

appendix B).

6The proofs of these results are given in Appendix A of H-T.

7Formally we assume MQZ = O (i.e., Mil1 = 0, V1).

8Derivation of Q- 1’2 is a straightforward application of Wansbeek and

Kapteyn (1982).

9Or, equivalently if k1 + J1 + L > J + L.

10Since (9‘ lIZXI, 9- 1,221, Q- lIZW) is more highly correlated than

(x1, zl w) with 9‘ 1’20:, z, u).

- 1/2 1/2
11Since 9 z = 02 and n" (Y-XBw) = 0(Y-X8w) .

y" a [2;8(8'n"18)"lB'Z]-1 Z'B (B'fl-IB)-IB'(Y‘XBW)-

This is generally different from Yw in (4.2.8); i.e., (4.2.8) uses
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while (4.3.10) uses

2
I I

B'n'ls _ xl I(MD+O 1>D)x1 8 x1 21

I I

0 21 x1 0 Z1 21

Incidently, B'B t B'Q-IB is another reason (one H-T do not mention) for

A

5*

Yw t Y in the over-identified case.

12Since B'Z is nonsingular when k1 = jz.

13Again, the identifying restrictions may be tested. See note 6.

14Compare with H-T Appendix A.



CHAPTER FIVE

NOTES

1An extensive literature exists on the estimation of union wage

differentials. Two excellent surveys, discussing methodological issues

as well as empirical findings, are Freeman and Niedoff (1981) and Lewis

(1983).

2A random effects/GLS approach to this problem would not make sense for

obvious reasons. However, at least one study, Chowdhury and Nickell

(1985), has applied the H-T analysis to the question of unions' effect

on wages.

3See Lewis (1983) for a critique of these studies.

4See Freeman (1980).

5The restricted version of Stewart's model can be estimated consistently

by nonlinear least squares (i.e., searching over the values of 1).

6Percentage differentials are calculated by (exp(5)-1)100.

7Percentage changes are calculated by differences in natural logarithm.
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8The occupation dummies are also treated as endogenous.

9The rank condition is also fulfilled.

10Recall the H—T efficient estimator is equivalent to within in the

exactlky identified case.

11See also Criliches (1977) and Criliches, Hall, and Hausman (1978).

12Union status is now a part of W in our general model (see (4.3.4)).

While this may be intuitively unsatifying, allowing parts of W to be

correlated with the efffects makes estimation of the model overly

complicated.
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