
5‘:
£53.

fiAY ‘

 

 

 

W
C

.
a



 

 

 

3
.



  



 

 

 

 

 





 

 

ABSTRACT

A THEORETICAL MODEL OF HUMAN LANGUAGE PROCESSING

by

Jeffrey H. Katzer ‘

The purpose of this study was to develop and test a theoretical

model of continuous-free-association behavior. 'Ihe model is in the

form of an information processing model; which may be thought of as

a oonputer program. The model consists of six related hierarchical

routines. The time executive routine controls the parallel process-

ing of the other routines . Macroprocessing routine oversees the timed

routines. The stimulus sorting routine takes a coded input stimulus

word and attenpts to recogfize it in the verbal nerrory. The net sort-

ing routine cmtrols the sorting of stimults and re5ponse codes through

the binary discrimination net nemory . Finding terminal routine is call-

ed whenever an msatisfactory terminal in the menory is readied. It

atten'pts to find a satisfactory terminal. 'Ihe major routine in the nodel

is the response giving routine. Over tine it initiates associated poten-

tial respcnses to the stimults words. One at a time they are examined

to see if their item-availability is sufficient for evocation. If suf-

ficient for evocation, the potential responses may serve as internal me-

diating stilmlus words .

'Ihe mt model uses a hypothetical nenory. When presented with

a stimulus word it evokes non-trivial responses. In producing these
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responses the nodel Operates in a conplex manner. It learns over tine:

short-term-nenory and reinforcement of internal processing have a pro-

found effect cm the responses evoked. Part of the discussion is concern—

ed with the problems of net building and with obtaining measures of word

meaning from the model by a deterministic process—oriented method.
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INTRODUCTION

approach to meaning. The theory is in the form of an information pro—

cessing model.

TWO concerns motivated the construction of this theory. In the

first place, an adequate theory of language behavior is essential to

the general understanding of an individual ' 5 communication behavior.

The model examines the relationships between a measure of the meaning

of a lexical item (e. g. word, syllable, etc.) and the generation of

similar items in an association task. It seems reasonable to assume

that an understanding of language implies an understanding of sentences;

”hi-Ch in turn implies an understanding of simpler lexical forms (q.v.

Osgood, 1963).

Meaning is typically considered to be a major variable in the study

of human communication (q.v. Mowrer, 195% Berlc, 1960), and if an ex—

tmm Stinnllus-response position is not taken, it has a similar role

in a more general study of language behavior. Osgood comments forcefully

on the inpor'tance of meaning:

22222.22.2 mxmtm..mmm2
édjustment is mainly a matter of acquiring and HDdlny-ng the Slgnlf‘leance of signs and learning how to behave in ways appropriate tothese significances. (1961, p. 91)
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A second goal of this study is to evaluate information process-

ing models as models. Some researchers in the social—behavioral sci—

ences (e.g. J.G. Miller, 1963; Mackay, 1968; Miller, Galanter 8 Pribram,

1960) have argued that man can be profitably viewed as a general inform-

ation processor. This view could be adopted by more communication re—

searchers. Oertainly, none of the social—behavioral sciences deals with

phenomena more complex than those studied by commmication scholars.

Nowhere are the concepts of process and information more central

than in commmication. Information processing models are a viable alter—

native to the linear additive models so commonly used. This is especial—

ly true when the phenomenon modeled is a complex, interactive process.

For example,

It has been argued that the problem of meaning is of major

importance in the study of the nature of intelligence, and

that a useful definition of meaning must include not only

denotaticn but connotation and implication as well. To

handle these important questions it is necessary to study

cognitive organizations which are more complex than those

upon which most psychological theories are based. (Lindsay,

1963a, p. 233)

This study is organized into five chapters. In the first, an out-

line of a mediation theory of meaning is presented. Certain empirical

relationships found between measures of meaning and association behaviors

are discussed. It is these relationships that a fully developed and

fully validated model will have to duplicate, and thereby offer a suf—

ficient explanation of their causes. Chapter 2 evaluates information

processing models in terms of their potential contribution to science.

The relative advantages of these models compared with other models is

discussed. The last half of Chapter 2 presents several related inform-

ation processing models of verbal behavior. These models form the

X



 



  
framework of the theory developed in Chapter 3. Chapter 3 presents a

family of information processing models which, hOpefully, will become

a part of a general theory of individual language behavior. These

models seek to explain some of the empirical and theoretical relation-

ships found between free association behavior and several measures of

meaning. In Chapter 1+, one of the models will be examined by means of

hand simulation. That is, the model will be followed step-by—step to

see what outputs are related to what inputs . Chapter 5 evaluates the

models, explores their consequences , and points the way for further

research in the area.

 



 



 

 

CHAPTERI

This chapter presents some psychological contributions to the

definition and measurement of meaning. By focusing on psychological

investigations I do not want to imply that other studies of meaning

(notably the philosophic, linguistic and anthropologic) are of no

import . Currently , the study of free association behavior and the

operational definitions of the meaning of individual linguistic units

(e.g. words) are mainly within the domain of experimental psychology.

These are the major topics of this thesis.

The material in this chapter is organized into four major sections:

(1) an orientation to the psychological study of meaning, (2) the me-

diation approach to meaning, (3) the association approach, and (14) re-

lationships between the mediation and association approaches .

Orientation
 

Psychologists who study language are behavioral theorists -— in

Alston's sense of the word. The behavioral theory of meaning identifies

the meaning of a linquistic item "with the stimuli that evoke its utter—

ance and/or the responses that it in turn evokes" (Alston, 1960; p. 12).

Operaticnally, psychological studies of meaning seem to stem from

Bloomfield's definition of the meaning of a linguistic form: "the situ-

ation in which the speaker utters it and the re5ponse which it calls forth

in the listener" (1933, p. 139).



 



 

Psychological discussions of meaning may center on underlying

processes of meaning acquisition and comprehension and on indices

(dimensions) of meaning. A major assumption underlying these types of

psychological studies is that words are the basic units of language and

are, therefore, central to any investigation of verbal behavior. This

assumption is also trne for those studies in which, for experimental-

control reasons, non-words (also called nonsense syllables) such as

consonant-vowel—ccnsonants (e.g. XOJ ), consonant—consonant—consonants

(e.g. XRV), and disyllables (e.g. GOJEY) have been used. Those inves—

tigators who use words and those who use non—words are equally and

ultimately concerned with human processing of real languages. While

concerned with both meaning acquisition and measurement, this chapter

does not deal with original language learning (e. g. Brom's 1958 "Orig—

inal Word Game") nor the studies of developmental differences in lan-

guage behavior (e.g. Piaget, 1955, Vygotsky, 1962). The focus of this

chapter will be the theoretical and empirical relationships between two

approaches to meaning: the associative approach and the mediation ap-

proach. First, however, antecedents of these methods and these theories

must be discussed.

In terms of methods, Creelman (1966) traced the American investiga—

tions of the experimental study of meaning from the earlier work based

on classical condition to the later studies concerned with scaling, associ-

ation, and operant conditioning. The work in semantic generalization

(q.v. Razran, 1939) typifies the conditioning approach. In such studies

a word (or object) is the conditional stimulus (C81). A test is then

given to see if the conditioned response will generalize to a new stimulus



 



 

(C82) whose primary relationship with the old stirmilus is semantic

(e.g. CS1 is the word "ball" and CS2 is a ball, or vice versa). In con—

trast with these procedures, contemporary approaches to meaning are based

upon scaling and/or association techniques. This chapter is focused upon

these two methods and their relationship with each other.

In terms of theory, forerunners of current psychological positions

are the substitution theories of the early behaviorists and the diSposi-

tional view of Morris. The Watsonian behaviorists considered a linguistic

item to refer to an object (i.e. name the object) if the item elicited in

the receiver the same behaviors as the object itself elicited. For example,

the word "food" would be considered to refer to food if upon hearing the

word, the receiver salivated, chewed, digested, etc. This view is not

generally held today because "it is well known that the conditioned re—

sponse [to the lexical item] is seldom precisely the same as the uncondi—

tioned response [to the object]" (Carroll, 196”; p. 36). The trouble with

the behaviorist view is that total equivalence of reactions (to the word

and to the object) is required. It is certainly true that the receiver

may have some of the reactions to the word as he would have to the object

(e. g. a hungry person upon hearing the word "food" might start to salivate,

but probably would not start chewing). Morris (19%) tried to avoid this

problem by equating reference with an internal "disposition" on the part

of the language user to react to the lexical item as if it were the object

itself. This position has been criticized in depth by Alston (196%, pp. 28—

30) who considers it oversimplified. In their review of psycholinguistics,

Erwin—Tripp and Slobin have traced the problem of behavioral correlates
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of meaning,

from 'conditioned response' through 'respcnse disposition' ,

'fractional anticipatory goal response' , 'representational

mediating response' , to the most recent candidate. Stats

and Stats ' 'conditioned sensory, motor, and autmmmic

response' (1966, p. I+50).

The two most frequently used definitions of meaning are the topics of

the next sections of this chapter.

Mediation

The mediation approach to meaning has been presented by Osgood

(1952, 1957) and Osgood Suci and Tannenbaum (1957). The meaning of

a stimulus word in this approacln is the representational mediated re-

sponses which are elicited in the person upon presentation of the stim—

ulus word. ‘ A representational mediated response is the internal stim-

ulus-response (hence mediaticnal) which is part of (hence representational)

the total response the person has toward the word's referent.

Mediated meaning acquisition , according to this view depends upon

the develOpment of mediated responses. Part of the total reaction to

a stimulus word or object is classically conditioned to the new word

developing meaning. This self—stimulating conditioned response is the

mediating respmse. Through numerous yet varied pairings of the new

word with other words or objects , a complex pattern of mediating respon-

ses will be conditioned to the new word and will, in fact, be the meaning

of the new word.

Some examples are in order. Osgood distinguished between two types

of language learning. Sign learning is a process in which the meaning of

a word is learned through repeated pairings of the word with the object it

names. Assign learning occurs whenever one learns the meaning of a word



 



 

by means of other words -- a verbal definition. Suppose one has ex—

perienced a lemon (e.g. drank lemonade squeezed lemons, etc.) but has

no name for it. Through repeated pairings of the word "lemon" with

fine object lemon (or lemonade, etc.) the mediation principle posits

that certain portions of one's reactions to the object lemon will be-

come conditioned to the word "lemnon" and will mediate between the word

"lemm" as a stimulus and the reaction to the word. This is the pro—

cess of sign learning. In assign learning, the meaning of the word "lem-

on" may be obtained by placing it in temporal, spatial, or semantic con-

tiguity with other words such as, citrus, tart, yellow, sour, etc. The

mediation approach claims that portions of the intermediate reactions

which constitute the meaning of these other words, become part of the

intermediate reactions to the neW'word, "lemon."

A criticism of mediaticns approaches to meaning comes from Fodor

(1965) who claims that the two-stage models (q.v. Osgood, 1952; Mowrer,

1951+) differ from fine Watsonian one-stage model only in terms of obser-

vability of response. In general, two-stage models posit at least one

stimulus-response sequence intervening between the overt stimulus and

fine overt response. The one-stage models of Watson and Pavlov do not

posit such intermediaries. Since the difference of observability of re-

sponse is considered insignificant by Fodor, he argues that the newer

mediation models are susceptible to fine same criticisms as the older

Pavlovian ones. Sudn a position, however, was not readily agreed upon by

the mediationists (q.v. Osgood, 1956; Berlyne, 1966) who consider Fodor's

interpretations inaccurate: a one-stage model cannot functionally sep-

arate decoding and encoding behaviors.



 



 

Osgood and his associates posit that fine meaning of a word can be

operationalized by its location in n—dimensional semantic space. Each

dimension of this space is defined by a bipolar adjectival scale pass—

ing through the origin. Consider a 2—dimensional semantic space defin-

ed by fine adjective scales sweet-sour and strong-weak. The meaning of

the word "lemon" could be quantified as a Cartesian point in the plane

defined by finese scales. Presumably, such a point would be more toward

the sometrong quarter of the plane finan fine sweet-weak quarter. The

method described by Osgood to locate a word in semantic space is by means

of a semantic differential. A semantic differential is a paper and pen—

cil instrnment consisting of a set of bipolar adjective scales on which a

person rates a word or a concept. The distance between fine ends of each

scale is broken into (usually seven) supposedly equal intervals. The

rater indicates which inter-val reflects his reaction to fine word or con-

cept. A typical analysis of this data entails the computation of a cor—

relation matrix between scales. This matrix is factor analyzed. The re—

sulting factors form the dimensions of semantic space. In finis manner,

ratings on a semantic differential are convertible to locations in semantic

space and, finerefore, constitute fine meaning of the word or concept rated.

There is an assumed relationship between the mediation theory of meaning

acquisition and the semantic differential.

Corresponding to each major dimension of the semantic space,

defined by a pair of polar terms, is a pair of reciprocally

antagonistic mediating reactions, which we may_symbolize as

i‘é'loaiédalfleé‘i’ifhifiiitfwEarmai‘ii‘v‘eififthe
judgnent by fine subject using the semantic differential, in

whidn a sign is allocated to one or fine other direction of

a scale, corresponds to_fine acquired capacity of that sign

to elicit either rm or rm, and the extremeness of fine sub-

ject's judgment corresponds to fine intensity of reaction

associating the sign with either rIn or rm. (Osgood, Suci

and Tannenbaum, 1957, p. 27)



 



 

One frequent criticism of fine semantic differential concerns the

approPriateness of calling fine measurement "meaning". This criticism

is supported by two types of arguments. The intuitive argument claims

that what a person means by "lemon" is more than a coordinate position

in a hypothetical space -- there is more to the meaning of lemon than

can be shown with adjectives. The second argument stems from the mea—

surement of fine relationship between the meanings of words in semantic

space: words lying far apart in semantic Space are less related than

those close together. If two words lie in the same position of seman-

tic space (within the limits of measurement error) then one would have

to conclude that the two words have the same meaning. However, few

peOple would be willing to say that "nurse" and "success" mean the same

thing even though they occupy the same position in semantic space.

Criticisms similar to these have led to a re—interpretation of what is

being measured with a semantic differential. The current position is

finat connotative meaning or affective reactions is being measured. That

is, no claim is made that "nurse" and "success" refer to the same object

(same denotative meaning). Rather, bofin words name concepts which peo-

ple react to similarly (same connotative meaning) .

Association
 

A second way to look at meaning from a psychological point of view

is fine association approach. This is based upon the reaction of an indi-

vidual to a word. TWO words, for example, may be said to have the same

meaning if finey evoke the sane total reaction pattern within the indivi-

dual. Since fine associationists of interest here study verbal behavior,

they limit themselves to intraverbal meaning —- the verbal reactions to

a word.



 



 

Noble (1952) defines meaning in a Hullian framework as the several

habit (tendency for a stimulus to evoke a particular reSponse) strengths

between the stimulus word and the class of corresponding conditioned

verbal responses. Deese (1962, 1965) and Garskof and Houston (1963) com—

pare meanings of stimulus words by comparing the patterns of free associ-

ates elicited by each. The totality of free associates elicited is , ac—

cording to Deese, a sample of the intra-verbal meaning of a word.

One difficulty encountered in defining meaning as re8ponse of a

hearer (or speaker) is that any particular linguistic form, at

various times, elicits a variety of responses in the same per-

son. Therefore, the meaning of any form is not given by single

response, or, indeed, by a collection of responses at some par-

ticular time, but by the potential distribution of responses 3:2

that form. (1965, p. I+1). _

 

Meaning acquisition, in an association framework, depends upon the

establishment and strengthening of the links between the stimulus word

and its verbal re$ponses. This procedure has been typically explained

in terms of the laws of association; the most important of these being

ccntiguity and frequency. The more often two words, or a word and an

object, are perceived together (Spatially or temporally) the stronger

will be the link between them.

In terms of method, the association paradigm asks a subject to

respond to a stimulus word with another word or words. There are four

major types of association tasks: (1) in a discrete-free association

task the subject responds with the first word that "pops into his mind";

(2) in continuous-free association the subject is asked to respond with

associates until either a desired number of associates have been pro—

duced or until some fixed time limit has expired; (3) a discrete—con-

trolled association task asks the subject for one response , but that



 



 

response must be in some pre-defined category (e. g. respond with the

opposite of the stimulus word); and (H) a continuous—controlled associ—

ation task is similar to a discrete—controlled task except more than one

associate to the stimulus word is required in the former case.

A distinction ought to be made between these approaches to meaning

and the more familiar ones which use association values. Association

values are numbers assigned to stimulus items (e.g. words, nonsense syl-

lables) which reflect how many different responses the stimulus word has

elicited in a group of subjects participating in one of the four types of

association paradigrs (q.v. Woodworth and Schlosberg, 19 5H; Underwood and

Schulz, 1960). The higher the association value, the more responses elic—

ited. With association values, a comparison between stimulus words is

made in terms of the size or strength of the association elicited. In one

situation comparisons are made in terms of similar specific responses elic—

ited by each stimulus word. In the other situation comparisons are made

in terms of the numeric association values. The former is a comparison of

meaning while the latter is a comparison of meaningfulness.

To lay a proper foundation for the model of continuous free associ-

ation behavior presented in chapter 3, it is necessary to examine some re-

lationships central to the study of verbal learning and behavior. As noted

above, association strength is a construct which accounts for observed dif-

ferences in the strength of the stimulus (S) —- response (R) bond. Response

strength is typically measured by reaction time and/or response frequency

or communality (q.v. Vbodcmrth 8 Schlosberg, 1951+). That is, in an associ—

ation task, those responses linked to the stimulus word more strongly will

be emitted more quickly and more frequently (when a discrete free associ—

ation task is administered to the same subject with the same stimulus word
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several times). The ingredients which produce or affect associative

strength are the subject of some disagreement-—depending, in the main,

upon the theoretical position one takes. The frequency of the S—R pair-

ing, the recency of the pairing, the closeness of the stimulus and re-

sponse objects, and the type and schedule of the pairing reinforcement

are put forth by different investigators as key ingredients of associate

strength (q.v. McGeoch 8 Irion, 1952).

The nature of an association task (but not the nature of association,

Er: _s_e_) implies directionality. The stimulus is linked to the response

because the S elicits the R or because the S comes before the R. This

suggests that forward association (S—R) is the normal state of affairs

and backward association (R-S) is an unusual state which must be dis—

counted if the notion of directionality is to be maintained. Backward

associations have been shown to exist (e.g. Murdock, 1958) and a great

deal of energy has been devoted to "explaining away" the phenomenon,

though no one has done so to everyone's satisfaction.

A different approach was taken by Asch and Ebenholtz who report a

series of studies which support the principle of associative symmetry:

"when an association is formed between two distinct terms, a and b, it

is established simultaneously and with equal strength between b and a

[italics omittedJ" (1967, p. L#81). Their studies strongly indicate that

backward associations are typically weaker than the corresponding forward

associations because of an experimental artifact: in learning S—R pairs,

the subject experiences (evokes, pronounces) the R member of the pair more

so than the 3 member. This uneven experience makes the R member more

available than the S member. When both members of the pair are made equal-

ly avaliable to the subject as a possible response, the strength of the
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S-R and R—S associations are very nearly equal (q.v. Asch 8 Ebenholtz,

1967; Horowitz, Brown, 8 Weissbluth, 1961+; Horowitz, Norman, 8 Day, 1966).

Item availability (I-AV) and response strength are related concepts.

They are not equivalent, however, because response strength reflects a

long term, more stable, relationship between verbal units while I-AV can

be changed much more easily [see below].

Underwood and Schulz (1960) present a two stage analysis of verbal

learning: the response learning stage and the association stage. In

the first stage a response is learned by integrating it into a whole unit

(e. g. treating a word as a word rather than a collection of letters) and

by making the response avaliable. (Tip of the tongue phenomenon mnight be

considered as an example of integrated, but not available verbal Lnnits) .

In the associative phase, the integrated, available response is paired with

a stimulus item.

In summarizing their research, Underwood and Schulz proposed the

"spew hypothesis" which states that, "the order of emission of verbal

units [in a continuous free association task] is directly related to fre-

quency of experience with those units" (1960, p. 86). They reason that

more frequently experienced items will be more available and, therefore ,

will start entering into an association before less frequently experienced

items. While there is snpport for the spew hypothesis from other investi—

gators (e.g. Noble, 1963; Osgood 6 Anderson, 1957; Jakobovits, 1966),

other studies show that frequency alone is not a sufficient determinant

of I-AV. Woodmr'th and Schlosberg (195”), Horowitz and his associates

(1964, 1966), and Asch and Ebenholtz (1967) indicate that recency of ex-

perience and mode of exPerience (e.g. does subject produce the item from

memory or read it) are also major components of I-AV.
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I-AV is an important variable in a theory of association behavior.

A researcher can only study behavior's of the subject. In a free associ-

ation task this behavior is mainly the associates given in response to a

stimulus. In studies of verbal learning, the verbal units are often un-

known or unfamiliar (especially when the units are not words but are non-

sense syllables, or strings of numbers, etc. ). In these studies the sub—

ject must go through both parts of the response learning phase -- integrat—

ing the unit and making it available -- before an association can be given.

However, in free recall or association tasks the subject produces responses

from memory which must already be integrated. Therefore, in a free associ-

ation task the role of I-AV is more directly related to overt subject be-

havior, than in studies of verbal learning, and I-AV is more directly a

determinant of the recall of verbal units than is associative strength

(q.v. Asch 8 Lindner, 1963).

Relationships Between Association and Mediation Approaches

The difference between the association and mediation approaches to

meaning is not as great as might be inferred from the preceding paragraphs.

Classical conditioning underlies both. The relationship between mediated

meaning acquisition and classical conditioning was shown in an interesting

study by Stats and Stats (1957) . Subjects were slum a nonsense syllable

paired with several different words. The words, chosen from the Semantic

Atlas (Jenkins, Russell 8 Suci, 1958), were very similar in their affective

meaning components. Semantic differential ratings of the nonsense sylla-

bles after the pairings showed a shift in the affective meaning of the non-

sense syllable toward that of the words . Additional support of the role

of classical conditioning in meaning acquisition was found by Pollio (1963)

and Stats and Stats (1958).
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= Because of the apparent haphazard nature of contiguity (i.e. any

typical or atypical word-word, word-object, or object—object pairing

strengthens the association bond), and because certain responses to

stimuli could not be adequately described by the association laws , there

has been a strong interest in mediational interpretations of these phe-

nomena (q.v. Cofer 8 Foley, 1992; Jenkins, 1963). These writers suggest

’ that free associates are determnined not only by contiguity, frequency

and the other laws of association, but also by various mediation paradigns.

For example, "dark" might be an associate of "heavy" because of the medi—

? ating response, "light". That is, "dark" can be thought of as being an

associate of "light", and "heavy" can also be considered related to

"light". Thus, in a free-association task the stimulus word "heavy"

' mnight elicit the response "dark" because of the previously formed rela-

tionship, heavy—light-dark. This type of mediation paradigm might help

explain certain oddities in free-association behavior. It is known

(q.v. McNeill, 1966), for example, that adults frequently give opposites

of the stimulus word in free-association tasks . Opposites , however,

occur less frequently together than other types of word pairs. In gram-

1 matical English sentences, "good" would be more frequently paired with a

noun (e.g. boy) than with its opposite, "bad". The fact that "g "

strongly elicits "bad" as an associate indicates that the simple laws

of association are not sufficient as they are based on frequent pairings

of words. Mediation has been proposed to explain the elicitation of

opposites (q.v. Ervin, 1961; Jenkins, 1963). In fact, the notion of

mediated contiguity makes it possible to abandon the more restricted
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concept of primary stimulus generalization (q.v. Deese, 1965; Cofer 8

Foley, 190.2) and adopt the more general principle of mediated stimulus

generalization.

In practice, Osgood, Suci and Tannenbaum (1957, p. 20) consider

the semantic differential related to a controlled association task.

Bousfield (1961) views the semantic differential as a controlled asso-

ciation task in which the subject chooses appropriate adjectives rather

than emnitting free responses. Deese (1965) argues that the semantic

differential ratings are derivable from associational structures. Stats

and Stats (1959) state that the same operation of word-word pairings

strengthens the interword association and distance from the origin of

semantic space —- a mediation measure of meaningfulness related to associ-

ation values. Pollio concludes a series of enperiments dealing with both

association and mediation responses to a stimulus word by taking,

the position that both classes of events imply, or at least

suggest, certain relations among words and that these re—

lations can be described by a single structural conceptual-

ization encompassing both classes of events (1966, p. 11).

Empirical relationships have been reported between the two approach-

es to meaning. Stats and Stats (1959) had subjects rate 10 words on a

good—bad semantic differential scale and later rate the first 20 asso—

ciates of each of these 10 words. Averaging over subjects and associates

they found a rank order correlation of +.90 between the ratings of the ten

words and the average of their first 20 associates. Jenkins and Russell

(1956) report a correlation of +.7l between an association measure of

meaningfulness and distance from the origin of semantic space. Wimer

(1963) and Howe (1965) obtained correlations (r = +.36, +.Sl) between the

same two measures.
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There is research reported which relates the spew hypothesis to

measures derived from a mediation approach to meaning. For children,

Pollio (1969) found the correlation between a word's location in seman—

tic space and the location of its first free associate. The correlation

was significant (p. < .01) separately for each dimension in 3—dimensional

semantic space (r: +.6|+, +.69, and +.lH4 for the evaluative, potency and

activity dimensions respectively).

For adults, similar results were found except the correlation be—

tween the potency scores did not reach as high a level of significance.

According to the studies reported above (q.v. Stats and Stats, 1959;

Pollio, 1964) associates of a word ought to lie near that word in semantic

space. One would expect frequent word—word pairings to have more of an

effect (in terms of acquiring detachable portions of responses) than in—

frequent ones. Therefore, we would expect first associates to be closer

in semantic space to a stimulus word than later associates. DeBurger and

Donahoe (1965) found that succeeding associates are less similar in mean—

ing (i.e. farther away in semantic space) to the stimulus word. In a re-

lated study, Portncy (1961) reported that reinforcing the first associate

of a word had greater effect of the word's evaluative meaning than rein—

forcing the third associate of the word. In continuous free—association

behavior, Pollio (1966) found that responses given in rapid succession

to each other formed a cluster whose average distance between them in

semantic space was less than the distance between responses which were not

temporally clustered by the respondant.

These studies in general SLpport the theoretical position noted at

the beginning of this section; viz: that several of the association mea-

sures and mediation measures are related.
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Psychological theories of meaning have evolved from the earlier

mentalistic approaches and the strict behaviorism of Watson and his

followers to the more liberal behavioral approaches today. These ap—

proaches typically consider meaning to be related to processes which

occur within a person. In the main, these processes are thought of

as being habit, bonds, some form of mediated response, or some com—

bination of these.

Both mediation and association approaches to meaning, including

the theory underlying each and their methods of measurement, are sub—

ject to some criticism. This does not vitiate their importance to cur»—

rent thoughts in the psychology of language. They are , by far, the ma—

jor theories Lnnderlying most of the thinking and research in this area.

This pervasiveness outweighs the criticism in terms of their importance

to this study.

The research findings presented do not exhaustively survey the rel—

evant literature. Such a task would be larger than the sc0pe of this

thesis. Rather, an attempt was made to indicate those variables and re—

lationships relevant to continuous free-association behavior which will

be major considerations in the model presented in chapter 3.

This is an appropriate place to restate the goal of this study. Sim-

ply stated, it is to specify a model of verbal behavior which ultimately

will identify the theoretical relationships between association and medi-

ation principles of meaning. Also, such a model should predict empirical

relationship between both measures of meaning.
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There are several ways to organize this effort, and at this time

it is impossible to forsee which will ultimately have the greatest pay-

off. The strategy here, is to generate a model based upon association

principles -- Specifically a model of continuous free association behav-

ior. A major conclusion of the next chapter is that information process—

ing models are very useful in the behavioral sciences. This type of model

clearly specifies procedures which hopefully will produce relationships of

interest among the variables. Thus, if a model is to exhibit relationships

between free association structures and mediation measures of meaning (as

in the above studies) then the model must account for the generation of

free associates. The model presented in this study will be a first ap-

proximation to this goal.

Before the variables described in this chapter can be organized with—

in a model of individual continuous free association behavior it will be

rnecessary to discuss information processing models, their construction,

their relative merits, and their relationship to computer simulation of

cognitive processes. Such are the topics of chapter 2.



 



 

CHAPTER II

This chapter examines the primary method of inquiry to be used:

Information Processing Models (IPMS). There are two major divisions to

this examination. First, types and roles of models will be discussed -—

leading to a general presentation and evaluation of IPMS and their re-

lationship to computer simulation of cognitive processes. Next, several

examples of IPMS will be presented. These are Simulations of verbal be-

havior or language processing. The implications of this method of inquiry

and of these examples will be discussed vis-a-vis the subject matter of

this study.

Models and Simulation
 

Confounding any discussion of models in scientific inquiry are the

numerous philosophic and psychological distinctions between models and

theories, between various types of models, and between judgnents of the

relative value of the different kinds of models. Models have been dis—

tinguished fromn theories by separating the structure from the content of

the plnenomenon of interest (q.v. Kaplan, 196”, pp. 269 — 265; Rudner, 1966,

p. 29). Rather than unduely magnify the importance of this distinction to

this discussion, the position here is the same as that taken by Newell and

Simon:
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. we shall use the terms 'model' and 'theory' sub-

stantially as synonyms. The term 'model' tends to be ap—

plied to those theories that are relatively detailed and

that permit prediction of the behavior of the system

througn time, but the line between theories that are called

'models' and other theories is too vague to be of mnuch use.

(1963a, p. 365)

While there are other uses for models in science (e.g. the null

hypothesis model is used as a straw man for comparative purposes, or mod-

els used for control purposes or approximations-w (q.v. Ackoff, 1967) the

point-of-view taken here is that models have a value directly related to

their heuristic role or deductive fertility.

Why should a scientist ever concern himself with a model?

In one rather obvious sense, the point of employing a model

belongs to the context of discovery rather than to that of

validation; for models function as heuristic devices in

science. (Rudner, 1966, p. 25)

Models have been classified in various ways (e. g. Ackoff, 1967,

p. 101+; Tatsuoka, 1968; Kaplan, 1969, pp. 273-275). For purposes of

discussion the classification scheme of Springer, Herlihy and Beggs

(1965) will be adepted. They classify models into one of three general

categories: abstract models, symbolic models, and physical models. Ab-

Stract models are mental images (q.v. Boulding, 1956) of reality. Sym-

bolic models are either verbal or mathematical. And, physical models are

iconic (physically isomorphic) or analogic (functionally isomorphic). Of

these, the model builders in the social sciences are symbolic models most

frequently. This may be due in part to custom (most models a theoretician

has eXperienced are symbolic), or practical considerations (physical mod-

els -- if applicable - are difficult to construct), or esthetic evalua-

tions (mental models are not rigorous enough). Of the two types of

symbolic models, the verbal are more cannon while the mathematical are

more in vogue (due to the difference in perceived rigor and the affinity

of some researchers to be "scientific").



 



 

20

Information ProcessinLModels:

The task of this thesis is to construct and evaluate a model.

This model is symbolic in format but is neither verbal nor mathematical

in the common uses of these terms. It will be an Information Processing

Model, an IPM.

Evaluating the information processing approach in psychology

Reitman describes it as,

one way of looking at psychological activity. It deals with

processes and functions; it emphasizes whatever it is that any

particular behaviors ge_t_ done; it is also concerned with the

fine structure of behavnor. The accomplishments resulting

from thinking, problem solving, and psychological activity

generally can be accounted for only if we study them in great

detail. When we do so, we discover that even simple behaviors

appear to be made Lp of a great many steps integrated into

complex sequences . . . . In other words, this approach allows

us to view man as dynamic systems analyzing, seeking, and

doing things, as purposive organisms manipulating objects

and information to achieve ends. (1969, p. 1193)

The information processing approach is applicable to content areas

other than psychology. In fact, its generality makes it applicable to

non-human systems (e.g. communication networks within a formal organ—

ization, and processing within a general purpose digital computer).

Hart (1967) presents one way to specify the essentials of the inform—

ation processing approach. Models employing this approach are characterL

ized by their components, structure, and primitive processes. There are

five basic types of components: (1) a set of containers or storage loca—

tions; (2) a set of possible contents of the containers -- where the con-

tents can be (or stand for) a word, number, person, nation, process, etc.;

(3) a set of links which connect the containers; (H) a set of labels which

nane the containers and links; and if the model is empirical, (5) a pro—

perty set may be attached to any of the containers or links. One form of
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a property set is a set of ordered pairs. The first member of the pair

Specifies the dimension of the container or link (e.g. color) while the

second member of the pair gives the valLe of that dimension (e. g. red).

Structure of IPMS depends upon the organization of containers (re—

gardless of content) and links. Links may be uni- or bi—directional.

Usually not all containers will be linked with each other and the dif—

ferent resulting organizations (e.g. rings, linear) structnme IPMS.

IPMS can easily represent hierarchical systems. If a group of contain—

ers and links are grouped together under one name, then that name labels

the contents of a hierarchical container. Hierarchies (level n+1) of

subsystems (level n) can be created. Property sets, links and structure

among hierarchical containers can be specified. The importance of hierL

archical systems should not be mninimnized -- especially when dealing with

complex phenorena (q.v. Simon, 1965)

For complex phenomena there may be, and usually are, several

levels of explanation; we do not explain the phenomena at

once in terms of the Simplest mechanisms, but reduce them to

these simplest mechanisms through several stages of explana-

tion. We explain digestion by reducing it to chemical events;

we explain chemical reactions in terms of atomic processes;

we explain the atomic processes in terms of the interactions

of subatomic particles. Every flea has its little fleas, and

the scientist's view accepts no level of explanation as 'ulti-

mate.‘ (Newell 8 Simon, 1961, pp. 155-156)

Primitive processes in IPMS function on both hierarchical and non—

hierarchical (atomic) levels. These processes can affect the structure

or the state of the system. Structural processes can add or delete con-

tainers, links, hierarchical conponents, and change the directionality

of links. State processes may modify the contents of containers , nanes

of containers or links and the elements of property sets. Processes

may be stated in conditional form. This plus the fact that the contents
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of a container may name a process to be executed, makes IPMS very pow-

erful. One example of the power of IPMS is their ability, in theory,

to calculate anything computable (q.v. Davis, 1958).

An example of an IPM would be helpful. The example is taken from

an article by Gregg and Simon (1967) which will be discussed more fully

later. The model was designed to represent the behavior of a subject

(_S_) in a simple concept learning task. The concept to be learned is

chosen by the experimenter (E) in advance and can be any one of the 2N

possible concepts (where N is the number of dimensions -- each dimension

has two values). In the experimental procedure E presents S with a series

of stimulus instances. A stimulus instance contains a sarple of the 2N

possible concepts (e.g. if the dimensions were size, number, color, and

shape then a stimulus instance might be five large red circles). The E

responds to the instance by stating whether or not it contains an example

of the concept chosen by E, but unknown by _S_. E appropriately reinforces

_S_'s response. A concept is learned when E makes a predetermined number of

correct responses in a row.

As presented in Table 1 the IPM consists of seven processes. In

terms of the description of general IPMS, this model can be considered as

composed of seven hierarchical containers, the contents of each represents

a set of processes. The use of conditional processes, the linkage struc-

ture among the processes and the possible use of property sets (e.g. the

number of correct learning trials may be kept in a property set) should

be noted.

Evaluatiog of IPMs:

It is important to evaluation IPMS vis-a—vis the other symbolic
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Processes in an IPM of Simple Concept Learning

 

 

Name of

Process Process
 

EO Do 1:3, £9, 81, 132.

If reinforcement = "right" then increase the number of

correct learning trials in a row by 1. Call this

number "tally."

If reinforcement = "wrong" then set tally equal to 0.

If tally equals the preset criterion defining the attain—

ment of the concept , halt.

If tally is less than the criterion do 82 then E0.

 

31 If the E's current hypothesis of the correct hypothesis

is a member of the stimulus instance respond "positive";

otherwise re3pond "negative."

 

E2 Compare the _S_'s response with the correst response. If

the E's response is correct, reinforce "right"; other-

wise reinforce "wrong."

 

82 If reinforcement was "wrong" adopt a new hypothesis from SS.

 

E3 Generate a stimulus instance by sampling randomly from each

pair of the N dimensions .

 

39 If the concept adopted by E is present in the stimulus

instance then the correct response the _S_ can give is

"positive"; otherwise the correct response the S can

give is "negative."

 

85  Generate a new hypothesis of the correct concept by sam—

pling at random from the list of 2N possible hypotheses.

 

Note. -- Adapted from Greg 8 Simon (1967, p. 253-259).
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models to see if the level of explanation and insight afforded by the

former compare favorably with those afforded by the latter.

To make comparisons involves the application of criteria. As noted

before, the term "model" is used in a manner simnilar to the term "theory."

The proper criteria to be used to evaluate theories are a major topic in

the philosophy of science. The ones adapted here are falsifiability, use—

fulness, precision, and parsimony. The first is the sine qua non of the-

ories according to Popper (1961) —— theories must, in principle, be capa-

ble of being proved false. The second is important because a major pur—

pose in the construction of IPMS is the heuristic role of the model --

criteria used to evaluate a model should not be determined without a con-

cern for the purpose of the model. Another aspect of usefulness is ap-

plicability in terms of the model's practicality and generality. The

third criterion, precision, also has two aspects. A theory is precise if

it is Stated clearly and rigorously, and a theory's precision is inversely

related to the size of its error of prediction. The last criterion, par—

simony, is adopted because of the esthetic value placed on explaining more

and more with less and less. Parsimony is related to falsifiability. The

less parsimonious a theory the more difficult it is to be falsified (e.g.

if fine number of degrees of freedom in a fineory equals or is greater than

fine number of empirical observations, the theory is not falsifiable because

fine paraneters will cover all instances of possible observations).

It is important to compare the three different types of symbolic mod-

els. Comparing IPMS to verbal models Kaplan believes that a generalized

form of IPM is, "far more effective than philosophical dialectics in free—

ing behavioral science from fine stultifications of both mechanistic
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materialismnand mentalistic idealismfl (1964, p. 292). In Choosing be-

tween mafinematical models and verbal models there is a general prefer-

ence for fine former because of its increased clarity, rigor and deduct-

ive fertility. To these Arrow adds the greaternpossibility of mathe—

1matical models, "to tap the great resources of modern theoretical stat-

istics as an aid in empirical verification" (1956, p. 31).

The evaluation of mathematical models versus IPMS is most signif-

icant because of the generally held belief that mathematical models are

to be preferred.over general verbal models. The relationship of mathe-

matical models to IPMS is one of inclusion. Mathematical models can

be considered as special cases of IPMS, and for that reason IPMS are

more general. Mathematical models rarely deal with explicit processes

and therefore are less valuable to the researdher~who is interested in

processes, Er se. In fine concept learning model presented above, the

processes were clearly stated and hypothesize how a person learns a con-

cept. An analagous mathematical model predicted not processes but em—

pirical measures of concept learning behavior (e.g. number of errors be-

fore fine concept is learned). In addition, mathematical models are

limited.by the complexity of the phenomenon of interest.

If the mathematics is known to the model builder or can be

discovered by him, he will be able to determine the implications

of his model. If the mathematical techniques for solving cer-

tain equation systems are not known or available to the model

builderg he is in no better'a.position than if he had only a

natural language model. The effect of finis last condition is

to constrain fine model builder to consider only that class of

models for which he knows solutions are available. Unfortun-

ately this constraint may have a spurious effect on the model

builder: e.g., he may oversimplify a complex situation. In

general, many of fine mathematical models of human behavior

are elegant and simple. Sometimes, the constraints of the

mathematical medium force unfortunate compromises upon fine

model and reduce its ability to predict. (Feigenbaum 8

Feldman, 1963, p. 271)
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For example, mathematical techniques for dealing with non—linear sys—

tems have not been highly developed (or are unlcnown by many social sci—

entists). Many of fine phenomena of interest to social scientists will

probably not be explained best by linear descriptions (q.v. Lindsay,

1963a). On the other hand fine effect of complexity and non—linearity

upon IPMS is not thought of as significant (q.v. Feigenbaum 8 Feldman,

1963, p. 271).

It would be helpful to compare a mathematical model with an IPM.

Gregg and Simon (1967) made such a comparison between their IPM of sim-

ple concept learning and Bower and Trabasso's (1961+) mathematical model

of fine same phenonenon.

Gregg and Simon's IPM of simple concept learning is outlined in

Table 1. Bower and Trabasso's model consists of fine following two state-

ments and the analytic deductions from these statements.

1. On each trial the subject is in one of two states, K or K.

If he is in state K (he 'knows' fine correct concept), he

will always make the correct response. If he is in state

K (he 'does not know' the correct concept), he will make an

incorrect response with probability p.

2. After each correct response, fine subject remains in__his pre—

v10us state. After an error, he shifts from state K to state

K wifin probability II. (Gregg 8 Simon, 1967, p. 21+?)

Several criteria were applied in making fine comparison between fine

two models. The most relevant of finese are generality, rigor, parsimony,

usefulness, and validation procedure.

In terms of generality, Gregg and Simon compellingly argue that IPMS

are more general. Starting with a Bayesian position, finey Show that the

a Ester-{Lori (i.e. after the evidence is in) credibility of a fineory (or

model, or hypofinesis) is a joint fnmnction of the likelihood or accuracy
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of the fineory and fine a priori plausibility of fine theory. That is, more

believable theories depend not only on the accuracy of their predictions,

but also upon the perceived reasonableness of the theory before testing.

If this position is accepted, then Gregg and Simon might say that the

statement of reasonableness of the theory can often take the form of an

IPM. It was from fine reasonableness argument that Bower and T‘rabasso

developed fineir mafinematical model. Since the mafinematical model was de-

veloped from the crude IPM (the reasonableness argument) it can be con-

sidered a special case of fine IPM. In fact, Gregg and Simon Show that the

mafinematical model is a special case of a family of related IPMS. Each

member of the family is different from each ofiner and the difference may

be of theoretical import to concept learning tasks (for example, a dif-

ferent IPM would change process SS in Table l to allow for sampling of

only those hypotheses still supportable by the current stimulus instance).

However, the same mathematical model is derivable from each of fine related

IPMS. Therefore, fine IPMS are more general.

In terms of rigor, IPMS can be stated as rigorously as desired. It

should be remembered, however, finat neither mathematical models nor IPMS

are as rigorous as cormonly believed.

The guarantees of unarbiguity are usually overrated both for

mathematics and for programs [an operationalized IPM]. The suc—

cessive waves of rigorization that have swept through fine mathe-

matical world testify that what is unambiguous in one generation

is not in the rnext. Similarly, the fact that most programs never

are fully debugged indicates a similar failing in programs.

(Newell 6 Simon, 1963a, p. 379)

In terms of parsimony, the mathematical model has two free parameters

( H , 2) while the IPMS have none. Thus, the IPMS are easier to falsify.

And in terms of usefulness, fine following finree points are noted in favor
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of the IPM: (1) having a family of IPMS for each mathematical model

implies that rejection of an IPM is not fatal; (2) the IPM separates

subject processes (those named with an "S" in Table 1) from experimenter

processes (those naned with an "E"). This separation allows fine research—

er to test the effects of fine subject's behavior in different experimental

situations. As stated, the mathematical model cannot make such investi—

gations; (3) the IPMS generate more useful data (e. g. fine model can trace

and "repo " the subject's actual hypotheses and responses —— which can

later be compared with those of real subjects).

And finally, fine validation of fine mathematical model involves

"proving the null hypothesis" (i.e. finere is no difference between the

model's performance and the performance of human SS). Since this is not

considered to be statistically permissible Bower and T‘rabasso place,

their main reliance on finding 'critical' experiments that sep-

arate alternative hypotheses radically. But . . . the variant

predictions in fine critical experiments come . . . not from fine

stodnastic theory but from the informal, and only partially

stated, process models finat stand behind the theory. (Gregg

8 Simon, 1967, p. 270)

Therefore, in terms of these criteria the IPM is to be preferred.

Gregg and Simncnn also corpare the two types of models empirically (in terms

of prediction) and statistically (in terms of error variance). Again their

conclusion favors fine IPM. In fineir article the choice of the specific

models used mignt have unfairly stressed the value of IPMS. With different

models, sore of their arguments might not have been appropriate or as tel-

ling. However, Lindsay (1963b) and Abelson (1961+) arrive at similar con—

clusions with different models.

Certainly, IPMS cannot be perfect. Wlnat then are some disadvantages?

Newell and Simnon (1963a) identify a major disadvantage of these models,
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yi_z. , the absence of a deductive formal system for making inferences from

the model. A second consideration has to do with the amount of time need—

ed to rigorously state an IPM. Usually such rigorous statements take the

form of a computer program. This implies that the model builder must take

fine time to learn the programming language and an inordinate amount of

time to debug the program. These, disadvantages, however, do not outweigh

fine benefits of IPMS.

Reviewing this comparison of models it is argued that IPMS are to be

preferred over ofiner symbolic models, especially in those situations in

which (1) fine actual behaviors are important to understand, and (2) a

major value placed on fine model is its heuristic insight.

Construction of IPMS: 

Before concluding fine presentation of general IPMS it seems appro—

priate to discuss some factors related to fineir construction. Building

IPMS, like other models, depends upon the definition of the task, delimit-

ation of fine system's boundaries, adoption of the level of analysis, iden—

tification of the processes and relationships, etc. These considerations

have been discussed elsewhere (e.g. Ackoff, 1967) and will not be present—

ed here. The purpose of the next several paragraphs is to identify some

more specific problems concerning IPM construction.

Carroll and Farace (1968) make an interesting distinction between

theory—rich and data-rich models (with what finey call heuristic models

lying between these extremes). Theory—rich models are constructed by rep-

resenting fineoretical relationships within the model, while data-rich mod—

els use information obtained empirically (e.g. in giving values to para-

meters). While IPMS may be theory-rich or heuristic, they usually are not
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data—rich (with emphasis on the word "rich"). Data-rich IPMS are anal—

ogous to Simple predictive mafinematical models (e.g. multiple regression)

whose validity criterion is accuracy of prediction rather than accuracy

plus the irnsight obtained from the modeling of processes.

Related to fine fineory-rich, data-rich dimension is the role of prob—

ability models. Stochastic processes have a proper role in IPMS of human

behavior (e.g. in the generation of environmental noise, experimenter pro—

duced stimuli, or experimental situations). They also have an undesirable

role in these IPMS —- when they are used because fine deterministic proces—

ses cannot be hypothesized. For example, if the model cannot predict

(based on sore criteria) which fork in a strange road a motorist will

choose, the model chooses randomly. This is considered a weakness in the

model because (a) humans do not act randomly, or (b) it is better for sci—

ence if scientists act as if humans do not behave randomly.

Thirdly, full tee of the value of IPM; requires fine construction of

a family of related models. These models (which may differ in structure,

content, or process) investigate differences in assumptions (often stated

as processes) and differences in environmental conditions. The family of

models are not very difficult to form -- each usually involves some change

in the first model. Therefore, wifin little added expense, the heuristic

payoff has increased sizeably (q.v. Newell 8 Simon, 1961, p. 175).

Finally, a comment is in order concerning fine trade-off between mod—

el—building and practicality. Science can be considered as a series of

successive approximations. First stabs into model building will necessar-

ily be gross. Measurement precision will be low, relevant factors will be

omitted (due to ignorance or a desire for simplicity), and irrelevant
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factors included. It is usually the later approximations which can be

judged with criteria other than "future possibilities."

Computer Simulation:
 

The remaining part of finis section is devoted to computer simulation.

Corputer simulation, here, is thought of as the typical mefinod for opera-

tionalizing IPMS. The term "Simulation" has been used to cover a broad

range of activities (q.v. Crawford, 1966; Hermann, 1967; Abelson, 1968).

In finis paper fine term will, in general, refer to the Simulation of cog-

nitive processes .

First, a brief comment about artificial intelligence.

It is often argued that a careful line must be drawn be—

tween the attempt to accomplish with machines the same

tasks that humans perform, ancTthe attempt to simulate

the processes humans actually use to accomplish finese

tasks. (Newell 8 Simon, 1963b, p. 279)

 

Machines and computer programs which are designed to accomplish by any

means, task which up till then only humans could accomplish are within

the realm of artificial intelligence. Machines and programs designed

to accomplish tasks humans can accomplish in a (hypothesized) manner used

by humans are instances of Simulation. In practice, finis distinction does

not hold up well. Many of the techniques and principles applicable to

artificial intelligence are need in computer simulation, and vice versa.

Also, many researdners jump back and forth between these two areas , behav—

ing similarly in bofin. In theory fine distinction is not tenable. First

of all, if it proves mrfinwhile to maintain fine distinction, then at most

it seems to be one of levels of eXplanation. If behavior is simulated at

a given level of a hierarchical IPM, then at a more atomic level, fine pro-

cesses are determined by artificial intelligence mechanisms.
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For example, Feldman (196 3) believes finat humans function in fine

binary choice experiment by hypothesizing a rule which fits the past

presentations of stimuli. Therefore, in his simulations of finis behav-

ior his model uses hypotheses. But the mechanisms used to generate

these hypotheses (at fine more atomic level) are not purported to rep—

resent fine human processes of hypofinesis generation.

If behavior is simulated with a non-hierarchical IPM, fine distinc—

tion between autonata and human beings becomes important. Since brain

processes and computer processes at the atomic levels are finought to be

fundamentally different (q.v. Newell 8 Simon, 1961) all Simulations are

based upon artificial intelligence mechanisms.

More importantly, fine value of the distinction itself can be ques-

tioned. In terms of producing heuristic models of behavior,

any automaton, whether it is intended to simulate human behav-

ior or just do man-like finings, is by definition a model of

behavior. If a machine accomplishes the sane result that a

person does, then the machine is manifestly a model of human

behavior (Green, 1961, p. 86).

Therefore, at least for the purposes of this study, no unnecessary

distinction will be made between fine artificial intelligence and the simu—

lation literature. Bofin sources will be used when applicable.

Mnile the actual simulation is the typical operationalization of the

IPM, fine computer program is fine theory. Or, as Frijda (1967) points out,

fine program only represents the theory because fine program includes pro—

cesses which fine researcher does not believe to be true or useful (even

if the mochl works satisfactorily) such as random processing.

@erationalizing the Simulation:

'Dnere are two steps involved in operationalizing an IPM: Program—

ming the model and running fine program. Both of finese may contribute to,
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or hinder a mochl—builder. Programming an IPM clearly increases fine

clarity of fine model's statement. Below, Lindsay, stresses the effect

of simulation on psychological theories . His remarks are certainly ap—

plicable to most areas of the behavioral sciences.

It has long been a feature of psychological theorizing that

would-be fineories suffer from chronic vagueness . The result

is a fineory which can be stretched to fit anything. The

genesis of finis difficulty lies in the fact finat the fineorist

knows what he is saying and so does his audience. Hence, it

is often possible to put together assumptions whidn logically,

will not fit, or to make deductions which , logically, do not

follow. These unfortunate juxtapositionings may go unnoticed

by an intelligent fineorist and his informed listeners , who

can readily and unwittingly supply the missing pieces , ignore

fine excesses, and beg fine answer which they know is there

even if it is not. 'Ihe computer, though, is a very stupid

audience. From one point of view, it may prove more valuable

now while it is stupid than later when it is not; for today

it will not tolerate vagueness. Mnen a theorist with an idea

sits down to convey his idea to a machine he almost invari—

ably finds finat he must first sharpen it up. And when fine

machine attempts to simulate the idea, the theorist almost

invariably finds it will not do what it is supposed to do.

(1963b, pp. 50-51)

The desire for clarity, however, may force premature closure on the

form and extent of the model. In addition finere seems to be a Whorfian

nature to computing languages. Different languages process information

differently. Once a language is chosen (or forced onto a researcher be-

cause of its availability) the researcher must translate fine IPM into the

programming language and accept its implied assumptions. This is even

true of those languages Specially created for the simulation of cognitive

processes (q.v. Newell 8 Simon, 1963a, p. I+25).

The second step, running the program is beneficial for complex mod—

els which would be impractical to simulate by hand (i.e. follow the steps

of the IPM or program without using fine computer). Furthermore, it is

only finrough running fine program that inconsistencies become evident.
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Producing a correctly working program is a long iterative process. The

final program is frequently quite different from the first program.

Thirdly, running the program, perhaps under different conditions, allows

for the testing of fine IPM and fine evaluation of specific subprocesses.

And finally, the actual running of the program may open new paths of

study. For exanple, fine concept of "insight" may take on a new respect—

ability when simple deterministic processes within a computer program pro-

duce "insightful" behaviors (q.v. Newell, Shaw, 8 Simon, 1958).

There are several disadvantages with simulating fine model on fine

computer —- principally time and money. In addition there are the con-

straints imposed by fine size of the available computer. Are finere enough

storage locations for the model, or must it be distorted to fit? Process—

ing speed of the computer is a related factor.

A program can operate only in terms of what it krnows. This

krnowledge can come from only two sources. It can come from

assumption -- from the programmer's stipulation finat such and

such will be the case. Alternatively, it can come from exe—

cuting processes finat assure that fine particular case is such

and such -— either by direct modification of the data structures

or by testing. Now the latter source -— executing processes -—

takes time and space; it is expensive. The former source costs

nofining: assumed information does not have to be stored or

generated. Therefore the temptation in creating efficient pro—

grams is always to minimize the amount of generated information,

and hence to maximize fine amount of stipulated information. It

is fine latter finat underlies most of fine rigidities. Something

has been assured fixed in order to get on wifin the programming,

and fine concealed limitation finally shows itself. (Newell, 1962,

p. l+20)

A more detailed examination of the relationship between IPle and

computer simulation is possible. The components, structure, and primitive

processes of IPM; can be compared wifin fine components, structural arrange—

ments, and primitive processes permitted in computer languages. The com-

parison between computer languages and IPP's is, however, beyond fine scope
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of finis paper, and has been discussed elsewhere (e.g. Reitman, 1965;

Newell, Shaw, 8 Simon, 1958; Newell 8 Simon, 1961). The main conclu-

sions can be identified 'from finese and ofiner papers. (1) There is a

class of computer languages particularly suited for Simulations of cog—

nitive processes (q.v. Green, 1963, p. 89—99). (2) There is a reason—

able correspondence at several levels between IPMS and computer languages

(e. g. Gladun, 1966) -— though some language processes must necessarily be

for housekeeping purposes and do not pretend to correspond with behaviors

(q.v. Baker, 1967; Frijda, 1967).

At a grosser level fine organization of programs and IPMS have major

similarities. Baker (1967) identified the two major approaches used in

simulation programs, fine basic premise approach and the surface approach.

The basic premise type of simulation program starts with a minimal set of

rules and derives the observable data from these rules. The surface type

of program starts with observable behaviors (data) and does not stipulate

an overall mechanism. Thus the basic premise —— surface distinction in

simulation prograns parallels fine theory—rich —— data—rich classification

of models noted earlier.

Testing fine Simulation:

Whenever a model is built it should be tested. All types of models

can be inspected to see how closely finey meet fine criteria desired by the

philosophers of science —- e.g. falsifiability, parsimony, etc. Computer

Simulations as models have special problems of validation. The positions

taken here are fine same as finose presented by Hermann (1967): (1) Com-

puter Simulation models are never corpletely validated. Rafiner, models

have during fineir growth different degrees of validity. (2) There is no
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one correct validity procedure for all models. The proper procedures

are a function of fine purpose of fine model. (3) Dependence upon one type

of validity criterion is not as valuable as using several criteria.

Hermann identifies five types of validation procedures useful in

judging the correspondence between IPMS and fineir behavioral referents.

(1) The level of internal validity or reliability is ascertained finrough

test-retest procedures: What is fine Size of the variability among the

outcomes of several executions of the model —- with each execution having

fine same initial conditions? (2) Face validity depends upon the model's

output "looking good" to the modeler. The dimensions for testing the

goodness of fine look should be Specified in advance of the observation.

(3) Variable-parameter validating procedure compares the values of fine

model's constants and variables with those in the analogous real Situation.

One aspect of variable—parameter validity is sensitivity testing. What

are the differences in output caused by differennt initial values of the

variables or parameters? (1+) Event validity is a function of the accu—

racy of the model's predictions. (5) Hypothesis validity includes empir—

ical relationships anong variables similar to those represented in fine mod—

e1.

There are several types of techniques recomended for validating sim-

ulations of cognitive processes. The most general of these is T‘uring's

Test (1963). This test asks an observer to distinguish between computer

output and human behavior (usually in written form). The more the observ—

er errs in identifying fine two reports, the more the model as a simulation

of fine behavior is validated. T‘uring's Test takes many forms and can be

applied at different levels of analysis. For example, it can be applied
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to fine grossest from of behavior sucln as the final product of the

model and man (as in testing artificial intelligence models), and it

can be applied to finose lower level processes which produce these

macrobehaviors.

Other validating procedures are protocol matching and statistical

testing. Protocol matching is a form of Turing's test. It entails fine

comparison of a person's step-by—step examination of his own thought

processes with a trace of fine computer processes. Though a useful pro-

cedure, there are several problems with protocol matching (e.g. Dennett,

1968). These will not be discussed since finis procedure is applicable

to finose models of specific individuals refiner than those models of

generalized individuals —- and the model presented in the next chapter

is of fine generalized type. In addition, this procedure assumes a con—

sciously functioning subject, whereas association behavior is not gen—

erally finought of as being consciously planned.

Statistical testing may be considered to be more appropriate for

models of generalized individuals. Most statistical comparisons will

involve proving the null hypothesis (i.e. showing finat the model and the

modeled produce the same output), which is a questionable procedure.

Also, if the model produces numerical values, it is difficult to estimate

fine number of degrees of freedom within fine model (suppose, for example,

a multiple regression type of model predicts a score representing the

average score; since beta weights rather than individual scores went into

making that prediction, how many degrees of freedom, comparable to indi—

viduals, should be used to test fine average?). A more workable alterna-

tive is to compare the output from a family of models using one's judg-

ment (a weak form of Turing's Test) as fine criterion.
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In summary, finis section of chapter 2 argues that an IPM is a very

useful way of presenting a theory. This type of model compares favors

ably wifin other symbolic models used in the behavioral sciences , fine

verbal and fine mathematical. The comparison is especially favorable

whenever fine goal of fine theory construction includes insignt as well as

predictability. Secondly, computer simulation is seen as an operational—

ized IPM. The benefits and limitations of fine conversion from an IPM to

a running computer program were presented. Finally, fine problems of mod—

el validation was discussed. Because IPMS have more to offer a researcher,

they are harder to validate than ofiner types of models . Models of behav-

ior are first of all behavioral science and secondly models. If they do

not explain behavior, the fact that they are consistent is of little import.

IPMS of Verbal Behavior
 

There are computer simulation models which are not directly concerned

wifin verbal behavior, but do have something to contribute to a model of

free association behavior. Presumably knowledge of models dealing with

automatic language translation and linguistics (q.v. Garvin, 1963), seman-

tic nets (q.v. Quillian, 1967), and answering in English (q.v. Green,

23 31; , 1963) will aid in fine construction of a model of free association

behavior because all deal with natural language. Also, those IPMS of

information storage and retrieval (q.v. Garvin, 1963) might suggest solu—

tions to fine problem of storing words in memory and later retrieving them

in a free-association task. These models will be considered only second-

arily, however, to simplify the task of constructing an IPM of free asso—

ciation behavior.
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As primary resources, several related models of verbal learning

and verbal behavior will be used. These models can be modified to

handle natural language units, they present approaches to fine storage and

retrieval problem, and fineir structure is such finat with fine addition of

some processes finey can be adapted to model free association behavior.

Any complex IPM is difficult to talk about. To describe, in any

depfin, its structures and processes is usually prohibited because of its

size and complexity. For example,

fine description of a recent version of Newell, Shaw, and Simon's

General Problem Solving program covers more finan one—hundred

pages, and even so contains only fine main details of the system.

Furthermore, the discussion assumes a knowledge of an earlier

basic paper on GPS and a knowledge of Information Processing

Language-V, the computer language in which it is written. Final-

ly, fine appendix, whidn simply nanes the routines and structures

employed takes another twenty—five pages. Unless one is famil-

iar with similar systems, a thorough grasp of the dynamic proper-

ties of so complex a model almost certainly presupposes experience

with fine running program and its output. (Reitman, 1965, p. 21+)

The models of verbal learning and verbal behavior described below have,

for fine most part, complexities on the order of finat of GPS. Therefore,

fineir description must of necessity be terse.

Five related models will be discussed: EPAM I, EPAM II, EPAM III,

WEPAM, and SAL I—III. These models simulate subjects in either a paired-

associate (P-A) paradigm, or a serial anticipation paradigm of nonsense

syllable learning.

In fine P—A Situation fine subject is presented wifin a list of stim-

ulus—response pairs. For eadn pair, fine stimulus item is presented

to the subject whose job it is to give fine correct response. After the

subject responds or after a fixed interval of time, fine correct response

is presented. Usually fine list of pairs is presented until the subject
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learns fine list to some criterion. Each time the list is presented,

fine order of the pairs on fine list is randomized. In the serial anti-

cipation paradigm, the subject is presented with one list of items. Each

item (except fine last) serves as fine stimulus for the next item, and

(except for fine first) serves as a response to fine previous item. When

fine list is presented several times, fine order of the items on the list

is not changed.

'Ihe five models below describe finose processes a human subject goes

througn in such experimental situations. The interpretation of the func-

tioning of these models provides one possible set of explanations of some

psychological phenonena related to learning (e.g. forgetting, retroactive

inhibition) .

w:

The first and simplest of these models is EPAM I (Elementary Perceiver

and Manorizer). EPAM I was developed by Feiganbaun and Simon (1962b) to

account for the serial position effect. In serial anticipation learning,

if the total nunber (or percentage) of errors is plotted as the ordinate

against fine serial position of fine items on fine list, a typical bowed

curve results: more errors are made on items in fine middle of the list

than at either end, and fewer errors are made at the beginning of fine list

than at fine end of the list. This curve represents the serial position

effect. As described by Feigenbaum (1959, p. l+6447), EPAM I consists of

four macroprocesses.

MO: Serial Mechanism.

The central processing mechanism operates serially and is capable of

doing only one thing at a time. Thns, if many finings demand processing
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activity from fine central processing mechanism, finey must share the total

processing time available. This means finat fine total time required to

memorize a collection of items, when finere is no interaction among them,

will be the sum of fine individual items.

M1: Unit Processing Time.

The fixation of an item on a serial list requires the execution of

a seqtence of information microprocesses that, for a given set of experi—

mental conditions, requires substantial processing time per item.

M2: Immediate Memozy.

There exists in fine central processing mechanism an immediate memory

of very limited size capable of storing information temporarily; and all

access to an item by the microprocesses must be finrough the immediate

memory.

M3: Anchor Points.

Items in a list which have unique features associated with them will

be treated as 'anchor points' in fine learning process. Anchor points will

be given attention (and finus learned) first; items immediately adjacent to

anchor points will be attended to second; items adjacent to these, next; and

so on, until all of fine items are learned.

3% of MO - M3

M0 establishes a serial processor, capable of doing only one fining at

a time; this creates a need for deciding fine order in which items will be

processed, i._e an attention focus, and M3 establishes a mechanism for de-

termining this order. M2 provides a tarpomry storage, while the processes

in M1 are permanently fixating the item.
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To account for fine serial position effect, Feigernbaun and Simon

(1962b) posit that fine anchor points at the beginning of the learning

task are the first and last items on the list. The subject focnses on

one of finese items (choosing at random between than) and memorizes it.

Once an item is memorized fine effective beginning or end of fine list is

changed to fine first and last unknown items —— which finen become fine anchor

points. This process is outlined in Figure l.

EPAM I is a powerful, yet simple model. Its simulated data agree

closely with empirical data and, as a theory, is to be preferred on par-

simonious grounds over fine more complex explanations of the phenomenon

(q.v. Feigenbaum 8 Simon, 1962b). On heuristic grounds, EPAM I can be

judged quite favorably. For example, if certain items in fine middle of

the serial list are altered fine characteristic curve is changed. EPAM I

accounts for this (with fine sane processes as fine serial position effect)

by stipulating finat these items become additional initial anchor points.

Thus, "one would also expect that ofiner items could be made unique by

printing them in red . . . , or by making some items much easier to learn . . .

or by explicit instructions ..., etc." (G.A. Miller, 1963, p. 325). The

model also lends support to other learning phenomena such as one—trial

learning —- an item in EPAM I is eifiner learned or it isn't. EPAM I is

limited because it cannot learn a list in which an item appears more finan

once -- a task SLbjects can do with difficulty.

The valte of EPAM I, w, to finis study is negligible. Its import-

ance lies in fine fact finat fine EPAM I macroprocesses oversee the more spe-

cific microprocesses of EPAM II and EPAM III.
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Figure I. Item Selection and Learning in EPAM I.
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EPAM II:

EPAM II is mudn more complicated than EPAM I because it posits one

plausible set of microprocesses at the information processing level of

explanation which seem to account for several verbal learning phenomena.

A part of the EPAM 11 program simulates fine experimenter and experimental

conditions in a verbal learning situation (e.g. simulation of the memory

drum controls fine amount of time the subject has to respond). In this dis-

cussion, the major focus will be upon fine microprocesses used in the Simu—

lated subject.

The inputs to EPAM II are binary coded nonsense syllables. If the

program makes a response, it is also with binary coded nonsense syllables.

Coded nonsense syllables are used because fine routines within the program

which convert fine nonsense syllables to coded nonsense syllables (and vice

versa) have not been developed. They are not central to the goals of EPAM

II. The coding of nonsense syllables is done letter by letter. Each let-

ter is represented by ten bits -— five of which are redundant. Feigenbaum

(1959) callsthe binary coded external stimulus (the nonsense syllable) a

"stimulus input code" or "code."

There are two major sets of microprocesses in EPAM II. Performance

processes function to produce the response associated with the stimulus .

Learning processes are more complex. They work,

to discriminate each code from fine others already learned, so finat

differential response can be made; second, to associate information

about a 'respcnse' syllable with the information about a 'stimulus'

syllable so finat the response can be retreived if the stimulns is

presented. (Feigenbaum, 1963, p. 301)

Figure 2 presents an overview of the performance processes. The code

is sorted through a discrimination net to a terminal. A discrimination
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Figure 2. EPAM II Performance Processes.

(Adapted from Feigenbaum. 1963. p. 300).



 

46

net to a terminal. A discrimination net is a tree of binary testing

nodes which examine bits of the code to identify characteristics of a

letter in a given position (e.g. is the third letter closed?). Terminals

are either empty or contain images which are more permanent representations

of the stimulus (the code e>dsts in "immediate memory" and if the memory

drum turns, the code is lost; an image, on the other hand, is never lost).

If the code matdies the image (i.e. the code is recognized) a cue code is

sought. A cue code is a subset of the response code which, at the time

it was stored at the terminal, was minimally sufficient to retrieve the

stored response image.

In the learning microprocesses, discrimination learning functions to

correctly identify stimulus and response items. _'I'he discrimination net

is modified (i.e. learning takes place) whenever identification is incor-

rect.

To understand how the discrimination and memorization processes

work, let us examine in detail a concrete example from the learn—

ing of nonsense syllables. Suppose that the first stimulus—res—

ponse associate pair on a list has been learned. (ignore for the

moment the question of how the association link is actually form-

ed). Suppose that the first syllable pair was DAX—JIR. 'Ihe dis-

crimination net at this point has the simple two-branch structure

sham in Fig. 3. Because syllables differ in their first letter,

Test 1 will probably be a test of some characteristic on which

the letters D and J differ. No more tests are necessary at this

point.

Notice that the image of JIR which is stored is a full image.

Full images must be stored —— to provide the information for

reco 'zin the stimulus. How much stimulus image information

18 required the learning system determines for itself as it grms

its discrimination net, and makes errors which it diagioses as

inadequate discrimination.

Topursue our sinple example, suppose that the next syllable

pair to be learned is PIE-JUK. There are no storage terminals

in the net, as it stands, for the two new items. In other words,

the net does not have the discriminative capabilityto contain

more than two items. ‘Ihe input code for PIB is sorted by the net



 
Figure 3. Discrimination Net after the Learning of the First Two

Items. (Adapted from Feigenbaum, 1963, p. 303).

 
Figure 4. Discrimination Net of Fig. 3 after the Learning of

Stimulus Item, PIB.

(Adapted from Feigenbaum, 1963. p. 304).



 

us

interpreter. Assume that Test 1 sorts it down the plus branch

of Fig. 3. As there are differences between the incumbent image

(with first letter D) and the new code (with first letter P) an

attempt to store an image of PIB at this terminal would destroy

the information previously stored there.

Clearly what is needed is the ability to discrimdnate further.

A match for differences between the incumbent image and the

challenging code is performed. When a difference is found, a

new test node is created to discriminate upon this difference.

The new test is placed in the net at the point of failure to

discriminate, an image of the new item is created, and both

images —— incumbent and new —- are stored in terminals along

their appropriate branches of the new test. and the conflict is

resolved. The net as it ncw stands is shown in Fig. 1+. Test

2 is seen to discriminate on some difference between the letters

P and D.

The input code for JUK is no» sorted by the net interpreter.

Since Test 1 cannot detect the difference between the input

codes for JUK and JIR (under our previous assumption), JUK is

sorted to the terminal containing the image of JIR. The match

for differences takes place. Of course, there are no first-

letter differences. But there are differences between the in—

cumbent image and the new code in the second and third letters.

Notic1n'c1ng Order. In which letter should the matching process

next scan for differences? In a serial machine like EPAM, this

seaming must take place in some order. This order need not be

arbitrarily determined and fixed. It can be made variable and

adaptive. To this end EPAM has a noticing order f__or letters _o_f

syllables, which prescribes at any moment a letter-scanningse-

quence for the matching process. Because it is observed that

subjects generally consider end letters before middle letters ,

the noticing order is initialized as follows: first letter,

third letter, second letter. When a particular letter being

scanned yields a difference, this letter is promoted Lp one

position on the noticing order. Hence, letter positions rela-

tively rich in differences quickly get priority in the scanning.

In our example, because no first—letter differences were found

between the image of JIR and code for JUK, the third letters

are scanned and a difference is found (between R and K). A test

is created to capitalize on this third—letter difference and the

net is grown as before. The result is shown in Fig, 5. The

noticing order is updated; third letter, promoted up one, is at

the head. (Feigenbaum, 1963, pp. 302-3014)

 

 

Association learning functions to pair the correct response to its

stimulus. When an image is placed in an empty terminal a cue of the cor-

rect response is also placed in the same terminal. Thus the response is
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Figure 5. Discrimination Net of Fig. 4 after the Learning of the

Response Item. JUK.

(Adapted from Feigenbaun, 1963, p. 304).
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associated with the stimulus. The one is determined by trial and error

to be that minimal subset of the response code, which when sorted through

the discrimination net will retrieve the correct response. It is impor-

tant to remember that the cue is the minimal satisfactory subset. Be-

cause as learning takes place the structure of the net changes and a giv—

en cue may no longer be sufficient to retrieve the correct response. At

this later time the cue may not contain sufficient information to be test—

ed at a test node (e.g. the cue code may be the first letter of the re—

sponse, while the testing node is checking the third letter position).

When this happens one of the two branches below the test node is chosen

randomly. One of three possibilities now exists. (1) The cue can by

chance be sorted to the correct terminal and the correct response will be

given (thougi there is no guarantee that this will happen the next time

the stimulus item is presented). (2) The cue code can be sorted to an

empty terminal and no response be given. (3) The one code can be sorted

to a non-empty, but incorrect terminal, and an incorrect response is made.

In both the second and third cases, additional learning processes are

brought into play (when the correct response becomes available in the mem—

ory drum) and the cue is modified to insure that when it is sorted through

the net as it now exists, it is minimally sufficient to retrieve the cor—

rect response. If an empty terminal was found the learning processes be—

gin to build a response image in that terminal.

The basic structme and processes of EPAM II have been presented.

Before evaluating the model a more extended example of its functioning

would be helpful. The example below is adapted from Feigenbaum (1959,

pp. 86—96). 'Ihougi this example is of serial anticipation learning, it

should be evident that the same microprocesses can effect the simulation
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of P—A learning. In the example, the experimental situation consists of

one list of six nonsense syllables: KAG, LUK, RIL, PEM, ROM, TIL. Ini-

tially the noticing order (N.O.) is first letter, third letter, second

letter, and the mem'mum number of test nodes added to the net each time

it is grown is three (it is efficient to detect several differences each

time the net is grown and add more than one test node at a time). The

learning criterion is one perfect trial. Macroprocesses oversee the

learning and determine the order in which stimulus—response items within

the list are learned. rIhe processing of the example is outlined in Table

2 and Figures 6-10 which summarizes the "learning" of the list by EPAM II.

The effectiveness of EPAM II as a model is indicated by the verbal

behaviors it simulates.

Study of the behavior of EPAM in an initial set of about a hun-

dred simulated experiments shows that a variety of 'classical'

121?} learning phenomena are present. Referring to traditional

ls, these include serial position effect, stimulus and re-

sponse generalization, effect of intra—list similarity, types of

intra—list and interlist errors, oscillation, retroactive in—

hibition, proactive effect on learning rate (but unfortuaately not

proactive inhibition), and log-linear discriminative reaction

time. Further experiments, especially those involving inhibition

phenomena and transfer phenomena are now in progress. (Feigenbaum

8 Simon, 1963a, p. 335)

To illustrate how the model simulates one of these phenomena, there is

an instance of stimulus generalization in the example presented in Table

2. Stimulus generalization is the name given when stimulus B's response

is given to stimulus A (stimulte A and stimulus B are similar on some

dimension). In Trial u of the example TIL is erroneoxely given in re—

sponse to PEM. This is an instance of stirmzlus generalization. The test

nodes do not discriminate between PEM and ROM (operationally they can be

defined as similar stimuli because both meet the same testing conditions).
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KEY to Figures 6-10.

Circles represent testing nodes

identifying the node and the

position of the letter being

tested.

Rectangles are terminals which

may be empty. contain an

image. or an image plus a

‘ response cue code.

 

   

 

 

        
Figure 6. Discrimination Net after Trial 1.

(Adapted from Feigenbaum, l959. p. 90).
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Figure 7. Discrimination Net after Trial 2.

(Adapted from Feigenbaum. 1959. p. 9i).
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Figure 8. Discrimination Net after Trial 3.

(Adapted from Feigenbaum, l959. p.93).



 

 



   
  

Figure 9. Changes in Discrimination Net after Trial 5.

(Adapted from Feigenbaum, 1959. p. 94).
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Figure 10. Discrimination Net after Entire List is Learned.

(Adapted from Feigenbaum, 1959. p.96).
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In addition to these phenomena, the model also contributes to a

theory of forgetting (q.v. Feigenbaum 8 Simon, 1961). In EPAM II items

are never permanently lost from memory; they are misplaced. Thus, what

appears to be forgetting is, in fact, the effect of later learning (i.e.

retroactive inhibition). See Trial 6 in the preceeding example for an

instance of forgetting.

EPAM III:

Certain deficiencies in EPAM II (such as learning a list containing

two identical nonsense syllables which differed according to some external

property; e. g. color) lead Feigenbaum and Simon (1962a) to construct EPAM

III. EPAM III is a much more complex IPM than EPAM II. It uses a hier—

archical discrimination net (not present in EPAM II) which sorts and learns

letters, nonsense syllables, and stimulus—response pairs similarily. It

efficiently makes use of early learning by treating previously learned

letters as syllables and previously learned syllables and stimulus-response

pairs . By means of a property set attached to letters , syllables and

pairs , EPAM III can discriminate between items alphabetically similar but

having different contexts (e.g. coming at the beginning of the list),

modes of production (e.g. oral, visual), and different external character-

istics (e.g. pica type).

The discrimination net in EPAM III is composed of three related parts.

The letters' portion of the net is very similar to that of the entire EPAM

II net. It is composed of test nodes (which test some attribute of the

encoded letter) and terminals which may be empty or contain an image of a

letter. The tests in the letters' portion of the net are, in effect, bi—

nary tests checking if the encoded letters meet or do not meet the crite-

rim being checked.
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The syllables' portion of the net is composed of attribute test—

ing nodes, subobject nodes and terminals. The attribute testing nodes are

n—ary branching. They test individual syllables (e.g. what is the color

of this syllable?). The terminals contain images of a syllable. The

image of a syllable consists of cue tokens (analogous to cue codes in

EPAM II) for each letter in the syllable.

'Ihe stimulus-response pairs' portion of the net consists of n—ary

branching tests (which identify subobjects of the pair and attributes of

the pair) and terminals which contain complete or partial images of pairs.

An image of a pair consists of the cue tokens for each syllable member of

the pair.

Since some nodes in the syllables' and pairs' portions of the net

test for lower level components (i.e. letters and syllables respectively)

these nodes are called subobject nodes. Figure 11 presents a partial dis-—

crimination net of EPAM III. In Figure 11 (and througmout the remaining

discussion of EPAM III) 0 represents an object (i.e. letter, syllable, or

pair); 0' is the terminal 0 is sorted to; and 0" is the image stored in

terminal 0'. 0" may or may not correspond to 0, it is simply the image in

0'. 0' is also the cue token of 0". It names the terminal containing 0".

0" consists of a list of the cue tokens of the subobjects of an object plus

a property set of its attributes.

Suppose from previous learning trials, part of a discrimination net

exists as shown in Figure 11. In the experimental situation the list to

be learned contains the pair CAT-m6 (which has already been completely

learned). When CAT appears in the window of the simulated memory drum,

the simulated subject should respond with 113G (before DOG appears in the
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memory drum window). The performance and classification processes would

proceed thusly. CAT is a syllable and will not be recognized until an

image is found. . In the syllables' portion of the discrimination net

(center of Figure 11) the first subobject testing node asks for the first

letter of the syllable. Since CAT is not yet recognized this question

cannot be answered. The letter C is sorted througi the letters' portion

of the net (left side of Figure 11) reaching terminal C' which contains

the image C". (Just as in EPAM II, if learning were not complete at this

point, C migit have been sorted to an empty terminal or one whose image

did not match the object). C is recognized and branch C' is taken in the

syllables' portion of the net. The second subobject testing node there

requires the identification of the second letter of the syllable, A. A

is sorted through the letters' portion of the net until it is recognized.

Branch A' is taken and CAT is sorted to terminal CAT' which contains an

image (i.e. CAT is recognized). Since learning is complete the terminal

sorted to is, in fact, the correct one. But, in general, there is no re—

quirement that the correct terminal be reached for a stimulus to be re—

cognized.

Once OAT is recognized an attempt is made to make a response. A

dummy stimulus-response pair, CAT'—_, is formed (the response is not

yet in the memory drum window). This dummy pair is sorted into the pairs'

portion of the net (rigit side of Figure 11). The subobject node there

requires that the stimulus member be recognized —- which it is. The dummy

pair is sorted down the CAT' branch which terminates at terminal (CAT-DOG)' .

Again, because earlier learning had been complete an image of the response

exists at that terminal and is the correct one. Within that image is the
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cue token DOG' . 'Ihis identifies the syllable terminal which contains cue

tokens D' , 0' and G' which, in turn, identify terminals in the letters'

portion of the net. Stored along with the images of the letters is in-

formation needed to make an actual response DOG. It should be noted that

once the response image DOG" was found, further sorting through the dis-

crimination net was not necessary since cue tokens in EPAM III name a

terminal and do not themselves have to be sorted through the net -— as

is the case with the cue codes in EPAM II. This is an example of early

learning affecting the rate of later learning.

Assuming that the subject had enough time (i.e. the memory drum did

not turn) to make a response, that response is compared with the correct

response (when the drum finally turns) and if they do not match the net is

augmented. This takes the form of adding test nodes to the net, changing

or modifying existing images, and adding a new image to a terminal.

To better understand some of the processing involved in classification

and learning (image building and discrimination) in EPAM III, an example

of P-A learning is outlined in Table 3 and Figures 12-16. Initially the

discrimination net is as described in Figure 11. The only pairs on the

list to be learned which will be discussed are CAT-DOG and CAB—MAN. CAT—

mG has already been learned but neither CAB nor MAN has affected the net

in any way.

If there is no interference from other pairs on the list, CAT-DOG

and CAB—MAN have been correctly learned after Trial ll. Trials 1 and 2

of this example contain instances of stimulus generalization (CAB elicits

DOG). While the alternating responses to CAT illustrates oscillation, a

familiar phenomena in verbal learning.
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CDNSTRUCT AN s-R OBJECT.  

PUT 5' ON THE S-R OBJECT AS , DOES THE TERMINAL (S-R)‘
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THE S-R OBJECT A VALUE l

IDENTIFYING IT AS AN S-R "0

OBJECT.
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33
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Figure 12. Flowchart of F20, the Paired-Associate teaming Routine

of EPAM III.

(Adapted from Hymn, 1966. p. 53).
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Figure 12. Flowchart of F20. the Paired-Associate Learning Routine

of EPAM 11! (continued).
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Figare 12. Flowchart of F20. the Paired-Associate Learning Routine

of EPfll III (continued).
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Figure 12. Flowchart of F20. the Paired-Associate Learning Routine

of EPAM 11! (continued).
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K8 LETTER OF
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I

HIN' ,’ CAT'

I

I

’ (CAT-DOG)‘
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R . DDG'

 
  HHAT IS
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K9

Discrimination Net of Fig. 11 agter Trial 1.

6

Figure 13.

Adapted from Hymn, 1966. p. 7 .
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Discrimination Net of Fig. 13 after Trial 2.

(Adapted from Nynn, 1966, p. 67).
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Figure 15. Discrimination Net of Fig. 14 after Trial 3.

(Adapted from Hynn, 1966. p. 67).
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Figure 16. Discrimination Net of Fig. 16 after Trial 4.

(Adapted from Nynn. 1966. p. 67.
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EPAM III accounts for most of the same phenomena as EPAM II:

stimulus and response generalization, oscillation and retroactive in-

hibition, forgetting (fincugh in EPAM III information can be permanently

lost from the discrimination net -- q.v. step 17, Fig. 12 —- which does

not occur in EPAM II), effects of similarity among list items, and others.

Neither model accounts for proactive inhibition , backward association , and

free recall. EPAM III (but not EPAM II) contributes to an understanding

of the role of meaningfulness and familiarity in verbal learning (q.v.

Simon 8 Feigenbaum, 1961+). And, EPAM III can learn lists in which the

same item occurs more than mce. For the purposes of this paper it is not

necessary to evaluate the EPAM models further. A more thorough examination

is available in Feigenbaum and Simon (1962a) and Wynn (1966). The reason

for identifying the phenomena "accounted for" by these models is simply to

lend weight to their credibility as models.

Bar:

The weaknesses of the EPAM models noted above, along with some the-

oretical and empirical considerations, led Wynn (1966) to develop a mod-

ified version of EPAM, called WEPAM (Wynn's Elementary Perceiver and

Memorizer) . WEPAM uses as its main structure a discrimination net similar

to that of EPAM III. The net differs from earlier models in several

important ways:

a) multiple representations (images) of the same objects in

memory, b) multiple retrieval pathways —- both divergent and

convergent -- to these images , c) multiple responses associated

with each stimulus, and d) processes by Whid'l the retrieval

structure in early stages of learning incorporates redmdant

information which is in part later eliminated in the interests

of more efficient retrieval. (Wynn, 1966, p. 138)

In addition, WEPAM employs a position testing node as well as the attri-

bute and subobject nodes used in EPAM III. Position nodes identify the
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location of a letter in a syllable. Figure 17 shows a WEPAM net early in

P-A learning. In the pairs' portion of the net, there is an instance of

a stimulus item (VEC) associated with two possible responses (IAJ, GIW).

In the syllables' portion of the net there are three position testing

nodes (P, L, G). Figure 18 shcws the syllables' portion of the same net

later in the learning situation. In this Figure there are examples of

multiple paths to the same object (e. g. DAX, GIW) and multiple representa-

tions of the same object (e.g. VAF, LGP).

Three techniques employed in WEPAM produce these multiple paths and

multiple images. First of all a noticing order (as in EPAM II) is used

separately for syllables, S—R pairs , and letters. Secondly, the net can

be made more efficient by bypassing redundant nodes which test, one after

the other, the same attribute or the same position. And, thirdly branch

recruitment is possible. Branch recruitment is a process whereby a branch

in the net is duplicated at the node below. This may occur depending upon

initial parameter conditions, the current N.O. , and time remaining before

the simulated memory drum turns.

The general learning processes of the WEPAM model will not be discus—

sed because of their close similarity to those in EPAM III. It is import—

ant, however, to further study WEPAM'S use of multiple responses stored

with stimulus items in the pairs' portion of the net because of its obvious

similarity with what is needed in a model of free association behavior.

In its most complex form, the image stored in the terminal node in

the pairs' portion of the net consists of (l) a property set identifying

diaracteristics of the S—R pair, (2) a stimulus token with its (3) associ-

ated respcnse list, and (H) a response error list. When a dummy S—R pair

(i.e. S'—_) is sorted to a terminal in the pairs' portion of the net, an
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an attempt is made to match 8' with S". If they match the first response

on the response list that is not associated with an error flag becomes the

first response camdidate. If all responses in the list are marked with an

error flag, the last one examined becomes the candidate.

When the memory dnmn turns and presents the correct response, WEPAM

may use one of several possible procedures to (1) add a response token to

the response list, (2) augment an existing response token on the list,

(3) change the value of a responses' error flag, and (1+) move a response

higher on the response list. All of these techniques can have a profound

effect on later learning trials.

The WEPAM model simulates some of the same phenomena of verbal learn—

ing as the EPAM models do: types and frequency of response errors, stim-

ulus and response generalization, oscillation and forgetting. Forgetting

does not involve a permanent loss of information (as in EPAM III); rather

information may be temporarily misplaced due to retroactive inhibition (as

in EPAM II) or permanently misplaced (i.e. a node is stranded) due to by-

passing of nodes.

In WEPAM most of the explained phenomena occur because of micropro—

cesses similar to, but not exactly the same as those in the EPAM models.

WEPAM also simulates the effects of overlearning (errors appear after items

seem to be learned), backward association (R—S), and stimulus redintegration

(an incomplete stimulus gb_j_e_c£ may elicit the correct response). These

phenomena are not accounted for by the EPAM models. WEPAM as well as EPAM

fails in simulating proactive inhibition.

SAL I-III:

A second IPM based on an EPAM—like discrimfination net and processes

was developed by Hintzman (1968). He called his model SAL (for Stimulus
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and Association learner). It is not necessary to discuss SAL at great

length here , because of its structural and functional similarity with

the EPAM and WEPAM models. Therefore, what follows is concerned mainly

with important differences between the SAL models and the earlier ones .

Despite the common assumption of the discrimination net ,

SAL differs from EPAM in several respects. First, learning

in SAL is a stochastic process, while in EPAM it is deter-

ministio. If an investigator gives EPAM a list to learn,

erases the memory and then presents the same list again , he

will obtain two identical (or nearly identical) protocols

. . . . The SAL model, in contrast, is governed by stochastic

processes , and can generate any number of unique protocols for

the learning of a given list. . . . It should be mentioned

here that stochastic processes are used in SAL only to facil-

itate the derivation of prediction. They are intended as.

statements of ignorance , rather than assertions that learning

is basically probabilistic.

Second, in SAL all processes which are not necessary in

order to do rmning simulations of PA learning have been elim-

inated. 'Macroprooesses,‘ such as those in EPAM concerned with

allocation of processing effort, have been greatly simplified.

Also, SAL does not make Lee of 'stimulis images' or of a scan

for differences between the image and the presented stimulus as

does EPAM. It is hoped that, since there are fewer postulated

processes in SAL, it will be easier to identify specific pro—

cesses or combinations of processes with specific resulting

predictions . Thus , it should be easier to understand why the

model makes a correct or incorrect prediction, and to make

appropriate changes when needed.

Third, SAL uses the discrimination net only for stimulus dis—

crimination learning, while EPAM uses it for both stimIIlus learn-

ing and response integration. Accordingly , the 'task environ-

ment' of SAL consists only of lists of trigram-digit pairs,

where the responses are already well known, and only the stimuli

are unfamiliar. The purpose of this restriction is simple. It

is felt that if stimulus discrimination learning is to be under-

stood, it should be isolated from possible confounding processes ,

such as those cmcerned with response integration, and so on.

(Hintzman, 1968, pp. 124-125)

SAL exists as three higily related IPMS. The later versions are more

complex than the earlier ones and include, for the most part, all processes

of fire earlier mes. In SAL I discrimination learning differs from that in
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EPAM in two major ways. First, there is no N.O. which "learns" (i.e.

changes in N.O. based upon experience). Rather the N.O. is fixed —-

always being the first, then the second, then the third letter of the

stiImIlus trigram. Second, there are probabilistic processes. When an

error occurs in discrimination learning a new test node is added to the

net with probability a. If an error occurs and no new test node has

been added (probability l—a), then the correct response replaces the old

response with probability _13. The probabilities a and b are parameters of

the model and are initially set by the experimenter before running the

simulation.

SAL I simulates stimulus generalization, oscillation, perserverance

(same incorrect response given to the same stimulus item over several

trials), effect of stimulus similarity and other phenomena. The model

fails to handle retroactive inhibition. Also since the model does not

attempt to simulate response processing there are no failures to respond

to a stimulus object.

SAL II was developed mainly to handle retroactive inhibition. In

SAL II learning can occur after a correct response (as well as after an

incorrect response) with probability 3. g is a parameter between 0 and a.

After a correct response a new test node is added to the net with proba—

bility 9. Below this test node is an empty terminal. In later trials, if

the stimulus is sorted to a blank terminal, the model responds with any

item on the list (randomly) and stores the reinforced response in the

empty terminal. SAL II simulates the effects of overlearning and retro—

active inhibition.
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In SAL III more than one response may be associated with a stimulus

item (as in WEPAM). This modification of the model was thought to be

necessary if the model were to account for proactive inhibition and mod-

ified free recall. In SAL III responses to a stimulus item are stored in

a pLsh down stack (PIE). In a PIE new responses to be associated with a

stimulus item are added to the t0p of the stack; older items are pushed

down one level. Response items at the top of a stack are more available

as responses than items lower in the stack. Thus, the PDS is a simple

method for making response availability a function of recency. Incorpor-

ated into SAL III is a short-term memory process which functions to move

all items in a FIB up one level with an a priori probability g. By this

procedure newer items in short—term memory (i.e. at the top of a PDS) can

become permanently forgotten. SAL III can simulate the difference usually

found between two methods of measuring retention: recall and recognition.

That is , the model presents a mechanism which produces higher recognition

scores than recall scores. Also, the model can simulate proactive inhi-

bition and can explain some of the empirical research in this area.

As an overall assessment, SAL and EPAM models,

account for oscillation , stimulus generalization , retroactive

interference, and the effects of stimulus similarity on list

difficulty. EPAM contains assumptions not present in SAL,

which make it applicable to problems of serial learning,

response integration , and presentation rate , and which allow

it to predict negative transfer. At the same time, SAL is

able to simulate some phenomena that present versions of

EPAM cannot, mainly through the use of overlearning assump-

tions (SAL II) and the storage of multiple associations (SAL

III). Althougi all subprocesses in SAL are all-or-none, it

is cmsistent with a number of facts (such as the effects of

overlearning on retention) which have always seemed to prove

that an incremental habit strength notion was needed.

(Hintzman, 1968, p. 157)
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In this section of chapter 2, five IPMS were presented. All of

these models siImIlate a subject (or gap of subjects) and the experi—

mental conditions in a verbal learning situation. EPAM I consists of

form macroprocesses. It simulates the serial position effect and the

von Restorff. effect (i.e. changes in serial position curve due to unusual

items in the list) by hypothesizing that the list item learned on a trial ....‘

is chosen from a subset of items located at anchor points . EPAM II adds I

one plausible set of microprocesses to the above structure. EPAM II (and

the EPAM III, WEPAM, and SAL models) uses as its main structure the dis-

crimination net. Coded input stimulus items are sorted through the net

until a terminal is reached. The terminal may be empty (and no response

is made) or it may contain an image. The stored image is matched against

the input stimulus. If they match the stimulus is said to be recognized.

Once recognized an associated cue to the correct response (if one exists)

is sorted through the net to find and produce a coded response. Wlnenever

an error occurs and processing time remains, learning processes are brought

in to dnange the structure and/Or content of the net .

EPAM III extends EPAM II by including within the net nodes for letters

and stimulus-response pairs as well as for syllables. WEPAM is an EPAM

III-like structure which builds multiple representations of objects in nets

and multiple retrieval pathways to these objects . None of the EPAM models

permits this. SAL is an EPAM II-like structure. It is concerned solely

with stimulus learning. SAL is the only one of these models which incor—

porates stochastic processes to a major extent .
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While the models differ from one another in their specific set of

microprocesses , they all use the discrimination net as the primary form

of memory organization. Taken together, the number of phenomena "explain-

ed" by these models is extraordinary. This in itself, supports the posi-

tion that further examination of this type of model is warranted. There

is a second reason for developing an EPAM-like model of free—association

behavior. Namely, the simplest most straightforward position to take is I

that all verbal behavior phenomena can ultimately be explained with one :1

theory or one IPM. And 50, first models of free association behavior

ought to try to fit into existing models of verbal behavior. Finally, it

should be noted that EPAM can simulate internal mediated responses (q.v.

Feigenbaum 8 Simon, 1963b) and both WEPAM and SAL III incorporate the use

of multiple responses associated with a stimulus item. These processes

may turn out to be necessary in models of free association behavior. Such

models are presented in the next chapter.



 

 



 

 

CHAPTER III

In this chapter a family of related information processing models

(IPI’B) is described. These IPMs offer an approach to the cognitive pro-

cesses within a respondant engaged in a typical continuous free assoc-

iaticn (C—F-A) task. There are two subdivisions to this chapter. In the

first, the scope of the problem is discussed. This includes major assump-

tions characteristics of C—F—A behavior, and requirements of the models.

The second division describes the models —- their structure and operation.

3% of the Problem

As described in chapter 1 a C—F—A task requires that a subject (S)

give a series of responses to a specified stimulus item. The stimulus

item can be a word, nonsense syllable, dysyllable, etc. The usual require-

ments governing the responses are that the stimulus item cannot be given

and no item can be given more than once. The task is completed when either

a given number of responses is given or a set amount of time has elapsed.

E usually records the actual responses and the number of responses given.

He may also record the time intervals between all responses.

A final IPM of C—F-A behavior should produce associates to a stimulus

item from a cognitive memory structure. To account for the response learn-

ing phase, the association phase, and the response giving phase a model

must specify the operations which build and modify a memory, and identify

procedures for the association and retrieval of responses from the memory.
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In addition, the model should include deterministic procedures which

hypothesize the mechanisms accounting for those variables found to be

viable to an understanding of C—F—A behavior. The main variables to be

included in a final model are those underlying response strength, response

integration, response availability and response elicitation. For reasons

given earlier, this first model is mainly concerned with item availability

(I—AV).

The last part of chapter 2 describes the EPAM, WEPAM, and SAL models

 

of verbal learning. Upon examination these models were found to be very

general and highly heuristic. The discrimination net underlying the models

and the procedures described for the modification of the net can be applied

to a C—F—A model. To review briefly, these models posit operations which,

at face value, seem to simulate or account for mediation and association

of verbal units (through response cue codes); hierarchical associations

(by means of the letters'-syllables'-pairs' portion of the EPAM III and

WEPAM nets); and multiple responses associated with stimulus items (in

WEPAM and SAL III). These operations are needed in a C—F—A model. It is

therefore reasonable to base a first C—F—A model on the EPAM—type discrim-

ination net memory.

There are two reasons why the EPAM—WEPAM—SAL models should not be

directly employed as a complete C—F—A model. A major wealcness in the ver-

bal learning models is the lack of parallel processing. It is difficult

to clearly define and separate serial and parallel operations (q.v. Minsky

8 Papert, 1969). The notion of parallel operations may seem to be in con-

flict with the character of general purpose machines which operate sequen—

tially. The conflict is due to an erroneous identification of a machine
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with its physical properties. Rather machines must be considered as a

combination of hard and software . Though a machine moves through a pro-

gram (IPM) sequentially, it is possible to simulate parallel operations by

means of a hierarchical program structure (e.g. at a given time to process

A then B then C, but treat that block of operations as if they occurred

simultaneOLBly).

Wynn's (1966) review of the area indicates that humans operate in a

parallel mode for at least some of the cognitive processes -- including

sensation , perception , attention and association. Of course the hierar—

chical organization of these processes may Operate serially. While some

IPMS attempt to include parallel processing (e.g. Reitman, Grove, 8 Shoup,

1961+; Selfridge 6 Neisser, 1963) none of the IPMS previously described in-

clude them. This, "failure to provide for parallel processing in any re-

spects is probably [their] most serious weakness" (Wynn, 1966, p. 210).

The second reason for not using the EPAM—type models as complete IPMS

of C-F-A has to do with some important differences between verbal learning

experiments and association experiments: (1) In verbal learning tasks the

stimulus and responses must be learned and integrated as part of the task.

An association eIperiJIent deals with the elicitation of previously learned

and integrated verbal units. Thus, _E_ can treat the S in a learning experL

iment as if he had a limited lcnown memory; in C—F—A the S's memory is not

limited as all his past learning can be Lsed. Related to this is _E_I's at-

tempt to cantrol fine learning environment and stimuli in the former case

while he is unable to control or even guess finemn in fine latter case. (2)

In verbal learning situations it is important to differentiate between cor—

rect and incorrect responses; while in free association fine distinction is

not applicable. (3) In fine typical verbal learning study fine _S__ must give
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one response to each stiImIlus. In C-F-A many responses are called for.

(H) The time limit for responding is relatively short in a learning para—

digm, while it is absent or much longer in the association paradigm.

A central assumption underlying any theory is consistency. This mod-

el of C-F-A behavior is no exception. For this model it is necessary to

assume that fine procedures which generate free associates for one individ—

ual are identical with the procedures operating within another individual.

For finis model this means that all individuals have a similar memory struc—

 

ture —- finat of a generalized discrimination net. Observed differences be-

tween individuals engaged in C-F—A behavior must be attributed to differ—

ences in the content of fine net, relationships among the components of the

net, and different values of fine various parameters or property sets attach—

ed to parts of the net. Once these idiosyncrasies have been determined for

an individual it should be possible to treat his C-F—A behavior the same

as that of ofiner individuals. The corollary to this assumption is that the

model is consistent within an individual over time. These assumptions are

not particularly unreasonable and there should be little surprise that there

is some related evidence supporting them (e.g. Jenkins, 1960; Cofer, 1958).

In sum finere is a series of EPAM—type IPMS which can account for encod—

ing—decoding behaviors; memory structure and growth; and those operations

which associate stimulus and response items in a simulated learning experi—

ment. This type of model must be modified to account for parallel process-

ing, fine essential characteristics of a C-F-A experiment, and the stable

cognitive functions within a S engaged in a C—F—A experiment.

The next section of this chapter presents such a model. Because this

model is a first attempt and because parts of the model will be simulated
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by hand rather than by machine, certain simplifications are needed. Spec—

ifically, fine model will be solely concerned with fine retrieval of stored

words from a generalized discrimination net. For fine most part an EPAM-

WEPAM—SAL type of model will be used to handle all parts of C-F—A other

finan response retrievals. The model can be thouglnt of as being similar

to a counterpart of the SAL IPMS which specify stimulus and association

learning and assume response learning and integration. That is , fine C—F—A

model will be concerned wifin resPonse retrieval while fine earlier models

will assume responsibility for stimulus and response learning, their

association and basic net structure.

The adoption of the earlier models to handle these chores is not

totally applicable. It is assumed (and not documented below) that they

can be simply modified to (1) deal with natural language rather than non-

sense syllables, and (2) generate valLes for variables - such as I—AV --

rneeded by the model. Correspondingly, the model will have parallel opera—

tions described for the response retrieval phase only.

An IPM of C-F-A BehaXi_or
 

The C-F-A model described in finis section is exclusively concerned

wifin the retrieval and evocation of responses to a stimulus object from a

verbal memory. The model does not describe specifically how such a memory

is built. It does, however, require finat the memory be of a certain form.

The organization of fine discrimination net (memory) will be discussed first,

and than fine routines which control retrieval and evocation will be describ—

ed. Table 9 lists fine more frequent abbreviations used in the ensuing de—

scription.
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Table 1+. SuTma_ry of Abbreviations Used to Describe the C—F—A Model
 

 

 

Abbreviation Description

CDI‘ Current Date-Time. Number of siJmIlated time

units from beginning of processing.

DT Date—Time. Any specified simulated time period.

EN Exit Number of responses. A parameter. If NR

exceeds EN processing stops.

ET Exit Time units. A paraIeter. If CDT exceeds EI‘

processing stops.

IRT InterResponse Time. One IRT is attached to each

active list of responses. IRT counts elapsed DI‘S

between responses from the same list (of. Y).

MS Memory Size. A parameter which specifies how

many items can be put into short term memory.

NM Number of Markers. NM equals fine number of SMs

plus fine number of RMs active during the CDT.

NMM Number of Markers Maximum. A paraIeter. If NM

equals NMM no additional markers can be initiated.

NR Number of Responses evoked.

PDS Push Down Stack.

RM Response Marker.

SM Stimulus Marker.

STM Short Term Memory. STM can only hold MS items.

If additional item is added to fine top of STM an

item is dropped ("forgotten") from fine bottom.

TM Time Marker. TM tracks the processing in the Time

Executive Routine.

Vi A series of 3 parameters. .They specify the increase

in an item's I—AV due to d1fferent types of procesmng.

Y A parameter. Whenever any IRT equals Y time units

anofiner response from fine list associated with the

IRT starts its processing.

9i A series of 2 parameters. The 9's are thresholds against which fine I—AV of responses are compared.
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The discrimination net is quite similar to the nets presented in

chapter 2. There are two divisions to the net: the letters' portion

and the units' portion. The pairs' portion of the net is omitted be-

cause fine C-F—A model represents S—R associations in the units' portion.

The letters' portion is identical to that part of the EPAM III net -—

consisting of attribute testing nodes, empty and filled terminals, and

branches (including K8 and K9). The units' portion consists of attribute

testing nodes, subobject nodes, and terminals. To that extent it is sim-

ilar to fine other nets. The major difference occurs at the terminals.

If the only type of verbal unit stored in memory is an English word, then

each word may occur many times finroughout fine net (as in WEPAM) but only

once as a first item in a terminal. Terminals may contain (and usually will

contain) more than one word. The first word in a terminal can be considered

loosely as a stimulus word. All other words in the terminal may be thought

of as cue codes for potential responses to the first word.

Words are stored in a terminal in a push down stack (PDS) similar to

those in SAL. Most recent associates to the first word are higher in the

stack than less recent associates. An example of a terminal in the units'

portion of the net is given in Table 5. That terminal is described in an

annotated form of IPL-V (Newell, 9: a1. , 1969) -- a programming language par-

ticularly suited for finis type of model. The middle portion of table 5 con—

tains fine attached property set for the first object. The values in the

property set are tested when fine first object, DOG, is sorted through the

net or is being used as a possible response. The response list in Table 6

indicates that IDS is associated with five possible responses. The responses

are stored in a PDS of finite size. That is, the PDS simulates forgetting

of an association from a long term memory. Whenever a more recent associate
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Table 5 . A Terminal in fine Units' Part of the Discrimination Net——

An Example of Coding in IPL—V.

 
 

27

90

91

92

 

(name of terminal) 90 (attached property set)

815 (stimnlus object DOG)

91 (attached response list)

(property set) 0

D13 (what is node of first object?)

V22 (it is printed.)

D63 (what is U]? of first object?)

V69 (83 time units.)

D79 (what is I—AV of first object?)

V8” (22)

D91 (how many time units are in IRT for response list

associated with first object?)

V92 (IRT has not yet been set for finis response list.)

(response list) 92 (attached use list)

R13 (cue code of most recent response, CAT)

R17 (cue code of next most recent response, PUPPY)

R13 (cue code of next response, CAT)

R914 (cue code of next response, ANIMAL)

R29 (cue code of least recent response, HORSE)

(use list) 0

U13 (has R13 been used as a response?)

D2 (no.)

U17 (has R17 been used as a response?)

D2 (no.)

U13 (has R13 been used as a response?)

D2 (no.)

man (has R9l$ been used as a response?)

D2 (no.)

U29 (has R29 been used as a response?)

D2 (no.)
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to the first object is learned and added to the top of the response list

(i.e. where CAT is no») all lower items are pushed down one space, and

if all spaces were taken in the PDS, fine lease recent response would be

ptrshed off of the bottom and lost.

In order for a word to be recognized in the memory its coded form

must be sorted finrough the net until it reaches a terminal with a first

object. (It is plausible to assume finat sorting occurs with few errors

because responses given in C—F—A experiments are highly learned and well

integrated). If the word being sorted is a stirmnlus word then fine terminal

reached may contain cue codes for possible responses to that stimulus. In

Table 5 R13 represents a cue code for a possible response to stimulus word

DOG. In order for fine CLB code to be recognized, it is sorted through the

net until it reaches a terminal containing CAT as fine first object. The

use of cue codes in C—P—A is much closer to the cue codes of EPAM II than

fine cue tokens of EPAM III because they do not name a terminal —- rather

they must be sorted through the net.

Thus, every word is stored in a terminal as a first object. A stim—

ulus word and a response word must find their first objects if they are to

be recognized. If a stimulus is sorted to fine proper terminal, then fine

cue codes stored at that terminal become available as possible responses.

Many words are also stored in fine response lists of different terminals in

the form of cue codes.

When sorting an object through fine net it is necessary to distinguish

between potential stimuli and potential responses. Both are being sorted

to a terminal whose first image (hopefully) matches fine coded object.

Once recognized, however, the two kinds of objects are treated differently.

Potential stimuli will not have fine opportunity of being evoked as responses;  
 



 
finey initiate their response list as a time-ordered set of potential re—

sponses. Potential responses, when recognized, are immediately processed

in fine response giving phase of C—F—A. In order to identify objects being

sorted finrough the net, an SM is used to mark the position of a potential

stimulus and an RM is need to mark fine position of a potential response.

At this time, the processing of fine C-F-A model is controlled by

six routines. Figure 19 shows fine relationships among finese routines.

It may be helpful to consider fine C—F—A model as a type of board game with

finree different kinds of markers ("men") moving around the board. There

is one TM which keeps track of the Time Executive Routine. The TM only

moves wifinin finis routine. There are zero or more SMs and RMs subject to

fine constraint finat fine number of SMs plus the number of RMs cannot be

greater finan NMM. SMs keep track of potential stimuli and RMs follow the

processing of potential responses. SMs and RM; move about finrough all six

routines.

Generally speaking, the C—F-A model takes an encoded stimulus object

and sorts it to a terminal where it is compared with the first object for

recognition. Upon recognition, the associated words in finat terminal are

all popped out -— most recent first. A specific number of time units, Y,

must elapse between fine emission of consecutive potential responses from

each response list. Each potential response emitted is a cue code which

mLB't be sorted through fine net Lnntil recognized. When it is recognized the

property set attached to finat terminal is examined to see if fine response's

I-AV is sufficient for a response to be evoked. Evocation depends upon I—AV

elapsed time, fine contents of S'I'M, the values of the finresholds (9i) , and

other factors. Some potential responses which cannot be evoked are "strong"
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91+

enough to be treated as mediated stimuli starting the entire process

over again. That is, while there is only one nominal stimulus in an ex-

periment, it is likely that there will be several functional stimuli.

The Time Executive Routine (T-O) controls all other routines and

functions mainly to start and stop a simulated C—P—A experiment and

control the parallel processing. Figure 20 gives the flowchart of T—O.

Starting a new experiment the TM moves through steps T—l, T-2, and T—3.

An experiment is stopped at T—16 when either condition in T—7 is met or

no RMs or SMs exist. Throughout the bulk of the experiment, the TM con-

trols the movement of the RMs and SMs by cycling through T—l+, T-S and

T—6. T-5 is fine essence of parallel processing in C—F—A. All markers

(RMs and SMs) have a DI‘ attached to finem. All routines except T—O and the

Macroprocessing Routine consist of timed processes. T—5 moves all markers

one time unit. Within each time unit markers are moved in fine order of

their attached D‘I‘s .-- earliest first.

T-O also increments fine IR'I's of the active response lists. Whenever

an IRT' exceeds Y a new RM is created (T—l2) for processing the next unused

potential response in finat response list.

The Macroprocessing Routine (M-O) controls all ofiner routines (except

T—O). While both M-0 and T-O control all of the timed routines it was de—

sirable and necessary to separate finis control into two routines. It was

desirable to have one routine dealing solely wifin parallel processing. It

was necessary to separate the routines as finey are hierarchically organized:

no marker leaving T—O (at T—3 and T—l3) ever returns to T-O. This makes it

impossible to construct T—O and M-0 as one routine.

M-O links the Stimulus Sorting Routine and the Response Giving Routine

It also counts the number of responses given in the experiment. Figure 21

gives a flowchart of M-O.
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The ofiner four routines of C—F—A contain timed processes . In con-

structing the model it was necessary to decide upon fine number of time

units each process should take. The following arbitrary, but reasonable

rules were followed. (1) Exits from routines and calls to other rou-

tines take no time as finey serve as links between processes. (2) Deci—

sions, in general, take more time finan simple processes. (3) Highly

practiced processing should occur faster finan less frequently practiced

processing. Net sorting should be a major component of all uses of a

verbal memory while giving free associates is only one use of this memory.

Therefore, fine Net Sorting Routine should process markers mnuch faster than

the ofiner timed routines. Figures 22-25 outline the timed processes. The

number of time units required for processing is indicated at fine lower

rignt corner of each component in finose Figures. In order for a particu-

lar corponent to be processed, all time units for finat component must be

completed.

Figure 22 gives fine flowchart of the Stimulus Sorting Routine (S—O).

It is a simple routine designed to find the terminal whose first image

matches fine encoded stimnulus object provided finat fine terminal contains

at least one item in its response list. Since the goal of a C—F—A experi-

ment is to give responses to stimuli, it is of little use to recognize a

stimulus object which has no associated responses. Exactly how a terminal

could be constructed whidn contains a first image but no associated res-

ponse list is beyond finis model. One possibility is that processing time

"ran out" when fine terminal was constructed.

The Response Giving Routine (R-O) is outlined in Figure 23. When an

RM is sorted to a terminal (i.e. a response is recognized) fine I—AV of the

reSponse (first image) found in fine property set attached to fine terminal

2
.
1
%
.
.
.
-
i



 



 

 

_
—

S
-
z

_
S
-
a

I
S
A

T
E
R
M
I
N
A
L

R
E
A
C
H
E
O

s
O
O
E
S

T
H
E

T
E
R
M
I
N
A
L

H
A
V
E
A
T

V
H
I
C
H

C
O
N
T
A
I
N
S
A

F
I
R
S
T

’
9

L
E
A
S
T
O
N
E

R
E
S
P
O
N
S
E

I
M
A
C
E

"
°

I

 

 
M
A
C
E
?

/
A
S
S
O
C
I
A
T
E
D

H
I
T
H
m

fi
r

3

i
3

0
0

’
9
5

 

 

\

 
 

S
-
l

5
-
4

7

3
2
g

S
M
T

.

-
5
-
6

'

F
I
N
D

S
U
C
H
A

T
E
R
M
I
N
A
L

E
X
I
T

C
A
L
L

F
-
O

C
A
L
L

N
-
O

O

 

 

 

98

 

 

  

 
 

e
s

_
S
-
S
i
’

...
/
M
i
n
x

X
F
O
U
N
D
?
_
/
3

F
i
g
u
r
e

2
2
.

F
l
o
w
c
h
a
r
t
o
f

S
t
i
m
u
l
u
s

S
o
r
t
i
n
g

R
o
u
t
i
n
e
o
f

C
-
F
-
A
.

 
 

 

 

 
 





 

 

99

is decreased (q.v. R—8). In actuality it makes sense to consider the

I—AVs of all first items decreasing at each new CDI'. In practice it is

easier to remember when fine value of I—AV for a particular first item was

last changed (its DI‘ -— see Table 5), and decrease fine I—AV according to

fine ratio DT/CDI‘. This is fine procedure used in fine ARGUS model of finink-

ing (Reifinan, 1965; Reitman, Grove 8 Shoup, 1961+).

Once computed fine new I-AV is coIpared against a series of thresh-

olds, 6i. While there does not seem to be any direct evidence about this,

it seems reasonable finat a greater I—AV is needed for an overt response

than for an internal ("unconscious") mediated response. 9i is fine finresh—

old parameter of I—AV which must be at least equalled if an overt res—

ponse is to be given. Similarly, this model assumes finat an internal res-

ponse will occur only with an I—AV of sufficient strength (at least equal

to 92). Responses greater finan or equal to 91 will be evoked if the res—

ponse is neifiner identical with fine stimulus word nor given earlier as a

response. Bofin of these requirements are conditions of a typical C—F—A

experiment. A person, however, does not always remember the words he has

already given as response. In fine C—F—A model the STM which holds the

responses given is a PDS of finite length. Thus, it is possible for the

same response to be given more finan once.

Before continuing fine description of the C—F—A model it is interest-

ing to compare fine methocb used in WEPAM and C—F—A for dnoosing among pos-

sible responses in a response list. Bofin models have an ordered list of

possible response. They are ordered so finat items at fine top of fine list

are examined first. In WEPAM associated wifin each item in the list is an

error marker indicating whether or not that particular response had been

given in error previously. WEPAM produces as a response fine first item
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in The list not previously given in error. In C-F-A all items in fine res—

ponse list are first of all discriminated (since criteria for evaluating

finem as possible responses cannot be considered until the responses are

recognized) and finen fine corresponding RMs are moved through R—O to see

if finey meet the necessary requirements for evocation. Responses are

popped up from a response list under fine control of its IRT (q.v. T-12).

Exactly which response in fine list should be popped up is controlled by

marking finose responses already used (R—H). This mark is stored in the

terminal in fine use list. This marking of used responses corresponds

directly with WEPAM's error marks.

Potential responses can be either candidates for evocation, mediated

response, or merely processed responses (whenever I-AV is less than 92).

The I-AV of eacln of finese potential responses is raised according to Vi

before the RM leaves R—O (see R-l2, R—l8, R—19). The I—AVs of responses

which are candidates for evocation are raised more than fine I—AVs of med—

iated responses, which, in turn, are raised more finan the I—AVs of proces-

sed responses. The work of Horowitz and his associates (1961+, 1966) strong-

ly supports finis ordered raising of fine I—AVs.

The Net Sorting Routine (N-O) is presented in Figure 2H. Understand—

ing NO is rafiner straightforward. First of all, it identifies fine loca-

tion of a marker and finen it takes appropriate action. The recursive

nature of finis routine is evident at N-16 where fine routine uses itself to

discriminate fine letters of a word. It should be noted finat the time units

needed for processing in N-O are given in tenfins of time units.

Figure 25 outlines fine Finding Terminal Routine (F—O). PO is called

on two occasions: when N—O sorts a marker to an empty terminal and when

S-O finds a terminal wifin no associated response list. In a C—F—A experiment
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empty ”terminals do not make sense as finey do in a verbal learning study.

In learning studies an empty terminal (due to inadequate learning) pro—

duces no response on a given trial. In a C—F—A situation fine notion of

trials is irrelevant and reSponses are usually given (perhaps because

there is not a short time limit on response giving). Secondly, stimulus

items with no associated responses are of little use in C—F-A. In these

two circumstances F—O attempts to find a successful terminal by choosing

among terminals close to fine non-successful terminal.

This then is the basic C—F—A model. It consists of six related

routines: time executive, macroprocessing, stimulus sorting, response

giving, net sorting, and terminal finding. For reasons noted in fine

previous clnapter a family of related IPMS is desirable. Major extensions

of fine C-F-A model are described in chapter 5. Outlined below are pos-

sible minor extensions of fine basic model -- all of which constitute the

family of IPMS.

Obviously, the first route to be taken is to change the valLes of

fine various parameters. It seems reasonable that various judicious choices

of fine parameters will cause the model to behave differently: perhaps to

such an extreme difference that fine model could be considered to have

changed in kind. Sensitivity testing as described in chapter 2 is the

mefinod to be taken to explore finese models.

Other models in fine family could include one or more of the follow—

ing: (1) Include with each letter terminal in fine discrimination net

soIe measure of its I-AV and use these values to adjust fine recognition

of letters . This alternative, however, does not seem to be too worth-

while since fine hign frequency of exposme to letters (as corpared with

words) should tend to raise fineir I-AV over any reasonable thresholds
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(q.v- Cofer, 1961). (2) Have fine response list PDS function similar to

those in SAL III wherein over time fine items in the stacks rise, losing

newer items because of short term memory. (3) Have the net built on

pronunciation rather finan printing. Use of the oral—Aural mode implies

a phoneme—units division of fine net. In finis case, I—AV for each phoneme

might be useful. (ll) Change R—O eliminating fine need for 92. This means

finat all RMs marking responses whose I—AVs are not greater than or equal

to 61 will be converted to SMs. This should greatly increase the activity

of markers througnout fine experiment.

m

This chapter specified some of the requirements of a general C—F—A

model. Some of these requirements stemmed from basic needs of most IPMS

of cognitive processes -— such a parallel processing, and some require-

ments arose from the differences between verbal learning and C—F—A ex-

perimental situations. The model described takes as input a coded stim—

ulus word and sorts it through a completed discrimination net to a ter-

minal. Associated responses in that terminal are popped-up one at a time,

sorted through fine net for recognition and finen tested for possible evoc-

ation. Recognized responses can be treated in one of three ways: (1) they

can be evoked; (2) they can be treated as internal stimulus objects; or

(3) they can be considered for eifiner of fine above -— but neither occurs.

The choice among finese possibilities depends in the main on fine relative

location of a response in its response list, its DI‘, and its I—AV. The

last two of these are values attached to each first item in a terminal.

Other characteristics of fine model include a parallel processing routine
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(T—O) and an error correcting routine (F—O) which finds "successful"

terminals. The Chapter also briefly mentions some possible other'members

of the family of C—FLA.models.

Before the model can be critically appraised its functioning needs

to be tested. Chapter ll gives it one of fine necessary tests.
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CHAPTERIV

This chapter describes a contrived experimental situation includ—

ing a simplified simulated S who operates according to the rules of the

C-F-A model presented in the previous chapter. In actuality the C-F—A

model operates on a hypothetical verbal memory under set parametric con-

ditions. The states of the system at various times (DI‘s) throughout the

simulation are outlined. The first part of this chapter discusses the

problems involved in simulating the experiment with the C-F-A model. The

remainder of the chapter describes the simulation itself.

Problems of the Simulation 

Two problems wifin this simulation make its value less than what

could be fineoretically desired. First there is the problem of the ver—

bal memory. The C—F—A model does not, at this time, build one. Since

one is needed to test the model it must be obtained from other sources.

A primary alternative would normally be either tabled listing of stimulus

words and their response lists (such as Deese, 1965), or the responses

given by real SS in a real C-F-A experiment.

Both of these procedures, however, implicitly assume that the res—

ponses evoked by SS in a C-F-A experiment are identical with the internal

response lists -- not in format or coding, but in terms of the actual

words and their order in the response list. There are several reasons to
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believe the assumption to be false. For example, the directions given

the S may stipulate that no response may be given more than once. If

the assumption were true then the internal response lists in the S's ver—

bal memory would not contain any word more than once. Also, the work on

item availability (I-AV) and response strength indicates that only highly

available and strongly associated items in a response list will be evoked

rafiner than all of the items. Thirdly, Jung (1966) declares that the ac—

tual responses given in word association tests depend to a large extent

upon non-associative factors such as subject set.

Since the C—F—A model does not build a verbal memory and since lit—

tle faith can be placed in the results of C—F—A experiments, this simu-

lation will use an g hog hypothetical memory. This should cause little

concern as the purpose of this simulation is not to test all levels of

validity (q.v. Hermann, 1967) but to test the lowest levels. The pri—

mary object here is to see if fine model evokes any responses.

The second problem with this simulation is the fact that hand rath-

er than computer techniques will be used. Simulating even a simple mod-

el by hand is arduous, and the difficulty is greatly increased when the

model functions in a parallel mode. With a computer, many simulations can

be easily run wifin different initial conditions of the memory and of the

parameters. This would allow for a fuller range of validity testing. For

this reason , the simulation should not be considered to be a formal test

of the C-F-A model (of. Feigenbaum, 1959, p. 85).

A proper question at this time would ask what the results of a "good"

or "validating" simulation should look like. For all of the reasons noted

earlier, this simulation can be judged a success if paramonmntly (1) non-

trivial responses are evoked from the model after being presented with a



 



 

stimulus word, and, to a lesser extent, (2) if the model and the res-

ponses manifest face validity in terms of the theories and research

known in this area. The second of these conditions will be taken up in

the next chapter. The first of the conditions is considered below.

A Simulation of the C—F—A Model  
The hypothetical discrimination net is shown in Figure 26 and the

identification of fine attribute testing nodes in the letters' part of

the net is given in Table 6. The net is similar to those generated by

EPAM III (with the exception of the pairs' portion). For simplicity,

attribute testing nodes in fine units' portion are minimal; limited here

to D—2. Also, it should be clear finat empty terminals and branches not

relevant to this simulation have been omitted from Figure 26. The K8 and

K9 branches are used here in the same manner as in EPAM III and WEPAM:

K8 is taken when the value fonmnd does not as yet have a branch grown from

the node, K9 is taken when fine dimension tested at the node is irrelevant

to the object.

The terminals in fine units' part of the net only show their first

objects. The sixteen first objects and their associated response lists

are shown in Table 7. Again it must be remembered that this organization

of words is not claimed to be necessarily realistic. All simulations of

cognitive processing of verbal materials have physical limitations on the

size of their memories. These sizes, fi'lough they differ, are all consider-

ably smaller than the most conservative estimates of the size of the human

verbal memory. If a small subset of a human memory were obtainable, it is

reasonable to expect to find some words appearing as both first objects
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Table 6. Identification of Attribute Testing Nodes in

Letters ' Part of Net .

Node Type Test

Tl Vertical Line?

T2 Vertical midpoint?

T3 Horizontal line?

TH Horizontal top?

TS Horizontal middle?

TS Horizontal bottom?

T7 Straight lire?

T8 Diagonal line?

T9 Diagonal midpoint?

T10 Diagonal down from right?

Tll Enclosed space?

T'12 Curved lire?

T'l3 Concavity below?

T‘llT Concavity above?

T'lS Open to fine left?

T16 Open below?  
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Table 7. Organization of Hypofinetical Memory.

 

 

ANIMAL

dog

horse

rabbit

lion

rabbit

tiger

HORSE

animal

LEG

LION

tiger

tiger

animal

dog

dog

RABBIT

bunny

easter

tail

foot

SHOE

 

I
T
.
‘
7
‘
"
“
3



 

 

116

and in response lists. Also some words would be found which appear in

either the first position or in fine response list. In the sense of pre-

ceeding lines, the hypothetical memory used in this simulation does not

seem to be troublesore. Parenthetically, it should be pointed out that

the associative principle of frequency is represented directly in this

verbal memory (e.g. see PUPPY).

Throughout the simulation, words will have to be frequently recog—

nized by sorting them (in actuality, fineir markers) through fine discrim-

ination net Innder fine control of the Net Sorting Routine, N—O. This is

a complex operation to follow, and as it is serially connected to the

ofiner aspects of the simulation it would be helpful to run this sub—sim-

ulation separately. The results of this sub-simulation will be directly

incorporated into the full simulation.

Table 8 outlines the sub-simulation for fine discrimination of the

word LEE. It starts wifin a marker at D-1 and a marker (RM or SM) at N—l.

Under fine control of N-O, the marker in the net is sorted to the L and E

terminals in fine letters' portion and ultimately to the E terminal in

the units' portion. The number of time urnits needed to recognize LEG is

23.3 time units. In terms of the rest of the C-F—A routines 2” time units

will elapse from the calling of N-O to the exit from N—O. Table 9 gives

the results of discriminating the other 15 first objects in memory.

The other initial conditions which must be specified are the values

of fine parameters and the values of fine dimensions stored in the property

set attached to each terminal (q.v. Table 5). Table 10 gives the values

of the parameters. According to these values the simulation will end when

either five responses are given or 1000 time units have elapsed. The ca—

pacity of fine short term memory is seven words. This effectively prevents
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Table 9 . Time Units Required to Recognize All

Items in Hypofinetioal Memory

 

 

 

  

 

 

 

Items Time Units

ANIMAL 27

ARM 214

BUNNY 28

CAT 18

Doc; 18

EARS 28

EASTER 28

IOOT 21

HORSE 17

LEG 2n

LION 27

PUPPY 27

RABBIT 1n

SHOE 19

TAIL 27

TIGER 29

Table 10 . Value of Parameters for Simulation

Parameters Value

EN 5

ET 1000

MS 7

NM! 7

V1 I-AV + . 5(100—I-AV)

V2 I—AV + .25(100-I-—AV)

V3 I-AV + .1(100-I-AV)

Y 25

91 25

82 10  
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STM from playing any major role in this simulation as EN is less than MS

(see Table 1+ for a list of abbreviations). The maximum total number of

markers (SMs plus RMs) which can be active at any UI‘ is seven.

The possible values of I-AV range from 0—100. The I—AV of a word

is raised during processing to Vi where the value of 3 depends upon what

happened to the RM. The most a word's I—AV can be raised is to decrease

its difference from 100 by 50%. The least it can be raised is by 10% of

its distance from the maximum.

The value of Y specifies that an IRT equal to 25 will cause a new

RM to be initiated for the next mused response on that response list.

This occurs, of course, when contraindications are not present.

Finally, the chosen values of theta mean that a word will be con—

sidered as a possible candidate for evocation if its I-AV is greater than

or equal to 25. If a word's I-AV is less than that but at least 10 its

RMwillbe changed toan SM.

Because the C-F-A models does not produce a memory, it does not build

up values for each word's I-AV and DI‘ (last date-time fine I-AV was changed).

This simulation starts at CDT equal to 201. The first 200 time units were

required to actually build the verbal memory. It is rot lonown at this time

if that amount of time is reasonable. The first two columns of Table 11

give fine initial values of each word's I-AV and 171'. They were chosen ran—

domly as no other information is available.

Table 12 presents fine simulation. It traces all major CDTs from 201

to 5H1 when fine simulation ends because five responses were given to the

stimulus word ANIMAL. The Table is set up so the movement of the markers

can be followed. It would be impossible to describe what happened in fine

simulation with a non-tabular format. As an overview of the simulation,
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Table 11. I-AV and DI‘ of First Items in Memory.

At fine Beginning At the End of the

of the Simulation. Simulation.

Item I-AV* DI‘** I-AV UI‘

ANIMAL 13 131+ 1'4 500

ARM 76 1 76 1

BUNNY 1+6 77 17 1+17

CAT 53 173 66 306

DOG 22 83 16 271+

EARS 1‘ 138 11 l+93

EASTER 68 118 39 ”AS

FOOT 88 187 66 519

HORSE 9’4 170 75 331

LEE 38 105 38 105

LION 52 82 1+”. 538

PUPPY 83 131 83 131

RABBIT 77 73 62 539

SHOE 3 83 3 83

TAIL 5 1'40 12 l+67

TIGER 53 182 70 1+81     
*Choosen randomly with replacement from 1-100.

“Oncosen rarndcmfly with replacement from 1-200.
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Table 12 . An Outline of C-F—A Response Giving

End of Position

CDT Marker of Marker“ Notes"

201 T—l Initialization completed.

'r-2 Stimulus object ANIMAL obtained.

202 M1 M1 created. CUI‘ attached to M1. M1 is

N—2#l an SM. Looking for ANIMAL termninal.

228 Ml s-2#1 ANIMAL recognized.

231+ Ml R-l#l Change M1 to an RM. Initialize IRT=0

for response list associated with ANIMAL

2H1 Ml R—MZ Ml marks DOG. Mark IDG under ANIMAL as

used. Update Ml.

2‘42 M1 N-2#l Looking for DOG terminal.

259 Ml R—6#l DOG recognized.

M2 M-u IRT for ANIMAL met. Initiate a new RM.

Set IRI'=0. Attadn CDT to RM.

2614 M1 R-SIM I-AV for 115 = 22 (83/268)=7.

M2 R-3#3

266 M1 R-9#2

M2 R-lH'IZ Mark CAT under ANIMAL as used. Update

M2. M2 marks CAT.

267 M1 R—9#3 I-AV of DOG = 7 is not i 91.

M2 N—2#l Looking for CAT terminal.

270 M1 R-17#3 I-AV of IDG = 7 is not 3 92.

272 Ml R-19#2 I-AV of DOG increased by V3 = 16.

27A Ml R-1u#2 DT of ms updated.

275 Ml M-12 M1 removed.

28% M2 R—6#l CAT recognized.

M3 M—H IRT for ANIMAL met. Initiate a new RM.

Set IRT-=0. Attadn CUI‘ to RM.

290 M2 R-8#'+ I-AV for CAT = 53 (173/290) = 32.

M3 R-3#3

292 M2 R—9#2

M3 R-1+#2 Mark HORSE under ANIMAL as used. Update

M3. M3 marks HORSE.

293 M2 R-9#3 I—AV- of CAT = 32 is a 81.

M3 N-2#1 Looking for HORSE terminal.

300 M2 R-llfl CAT evoked as a mm.

302 M2 R-12#2 I-AV of CAT increased by Vl = 66.

309 M2 R-13#2 CAT adchd to top of STM.

306 M2 R-lun DT of CAT‘ updated.    
*The first letter indicates fine routine; fine second item marks fine sub-

coxponent of finat routine; fine third item, if it exists, specifies fine

mmber of time units fine marker has been in finat subconponent.

M'Notes are only given when interesting. Whenever a marker enters fine NEI‘

Sorting Routine, its position is not followed until it exists .
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Table 12 . (continued)

End of Position

CUI‘ Marker of Marker Notes

307 M2 M—7 NR=1

R-1#l Since R—l is still an entry point for

ANIMAL stimulus.

309 M2 R-l#3

M3 R—6#l HORSE recognized.

M14 M-ln IRT for ANIMAL met. Initiate a new RM.

Set IRT-=0. Attadn CUI‘ to RM.

31% M2 R—H#2 Mark RABBIT under ANIMAL as used.

Update M2. M2 marks RABBIT.

M3 R-8#3

M14 R-2#2 Mark R-l as no longer an entry point

for ANIMAL stimulus.

315 M2 N-2#1 Looking for RABBIT terminal.

M3 R-8#lb I—AV for HORSE = 99 (170/315) = 51.

mu R—3#1

318 M3 R—9#3 I-AV of HORSE = 51 is 3 81.

Ml} R—lfill

319 M3 R-10#1

m R-1+#2 Mark LION under ANIMAL as used. Update

MN. m marks LION.

320 M3 R-10#2

Mu N-2#1 looking for LION terminal.

325 M3 R-lliM HORSE evoked as a response.

327 M3 R-l2#2 I-AV of HORSE increased by V:L = 75

328 M2 R—6#l RABBIT recognized.

M3 R-13#l

329 M2 R—6#2

M3 R-13#2 HORSE added to t0p of STM.

331 M2 R-8#l

M3 R-ll+#2 Dr of HORSE updated.

332 M2 R-8#2

M3 M—7 NR=2.

M—l2 M3 removed $ R-l is not an entry point

for ANIMAL stimulus.

339 M2 R—BM I-AV for RABBIT = 77 (73/339) = 17.

-- T-l2 IRI' for ANIMAL met. No mused responses .

IRT dropped.

337 M2 R-9#3 I-AV of RABBIT = 17 is not ; 81.

3% M2 R-17i3 I—AV of RABBIT = 17 is z 8 .

31m M2 R—lBfiu MZ is dnangd to an SM. M2 is updated.

I-AV of RABBIT increased by V2 = 38.

3'46 M2 R-11M2 DT of RABBIT npdated.

m R-6il L101 recognized.
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Table 12 . (continued)

End of Position

CUI‘ Marker of Marker Notes

397 M2 N-2#l Looking for RABBIT terminal.

mu R—6#2

352 M“ R-8#|+ I-AV for LION = 52 (82/352) = 12.

355 M9 R-9#3 I—AV of LION = 12 is not >.. 81.

358 mu R—l7#3 I-AV of LION = 12 is z 82.

360 M2 s-2#1 RABBIT recognized.

Ml} R-18#2

362 M2 S—2#3

mu R-18#lt M16 is dnanged to an SM. MM is updated.

I—AV of LION increased by V2 = 31+.

361+ M2 S-3#2

mu R—l'+#2 DI‘ of LION updated.

365 M2 S-3#3 RABBIT as a stimulus has responses.

Mu N-2#1 looking for LION terminal.

366 M2 R—l#l M2 is dnanged to an RM. Initiate IRI‘=0

for response list associated with RABBIT.

373 M2 R—u#2 Mark BUNNY urnc'hr RABBIT as teed. Update

M2. M2 marks BUNNY.

371+ M2 N—2#l Looking for BIMY terminal.

391 mu S-2#l LION recognized.

M5 M-U: IRT for RABBIT met. Initiate a new RM.

Set IRI' = 0. Attach CDT to RM.

396 M14 S-3#3 LION as a stimulus has responses.

M5 R-3#2

397 mu R—l#1 M9 is dnanged to an RM. Initiate IRI‘=0

‘ for response list associated with LION.

399 M14 R-1#3

M5 R—ll#2 Mark EASTER under RABBIT as used. Update

M5. M5 marks EASTER.

#00 MM R—3#l

M5 N—2#l looking for EASTER terminal.

l+01 M2 R-6#1 BUNNY recognized.

M4 R-3#2

I+014 M2 R-8#1

M14 R-l4#2 Mark TIGER under LION as used. Update

mu. Ml} marks TIGER.

905 M2 R-8#2

MM N-2#1 looking for TIGER terminal.

ln07 M2 R-Bfln I-AV for BUNNY = l46(77/807) = 8.

1#15 M2 R-19#2 I-AV of BINNY increased by V3 = 17.

lt16 M2 R-l'Ml

1% M—0 IRI‘ for RABBIT met. Initiate a new RM.

Set IRI' = 0. Attadn CDT to RM.

lt17 M2 R—lMI2 III‘ of mm updated.

1% R-lfll   



 

 

 

 

 

Table 12 . (continued)

W Position

CDT Marker of Marker Notes

l#18 M2 M-12 M2 removed.

M6 R-1#2

I+22 M6 R-3#3

M7 M—u IRT for LION met. Initiate a new RM.

Set IRI' = 0. Attach CDT to RM.

uzu M6 R-|+#2 Mark TAIL under RABBIT as used. Update

M6. M6 marks TAIL.

M7 R-l#2

#25 M6 N—2#1 Looking for TAIL terminal.

M7 R-l#2

I427 M5 R-6#1 EASTER recognized.

M7 R-3#2

l130 M5 R-8#l

M7 R-‘HIZ Mark TIGER urnder LION as used. Update

. M7. M7 marks TIGER.

I+31 M5 R—8#2

M7 N—2#1 Looking for TIGER terminal.

1433 Min R—6#1 TIGER recognized.

M5 R—8#H I-AV for EASTER = 68(118/933) = 19.

#36 Min R-8#1

M5 R—9#3 I—AV of EASTER = 19 is not > 8 .

l$39 Ml-l R-BIM I-AV for TIGER = 53(182/939) =122.

M5 R—l7#3 I-AV of EASTER = 19 is >82.

Hill Ml M—u IRT for RABBIT met. Initiate an RM.

SetIRI‘= 0. AttachCDI‘toRM.

Mu R—9#2

M5 R-18#1

1.042 Ml. R—lfll

Mu R-9#3 I—AV of TIGER = 22 is notzel.

M5 R-18#3

#143 Ml. R—1#2

Mil R-l7#l

M5 R-18#lt M5 is changed to an SM. M5 is updated.

I—AV of EASTER is increased by V2 = 39.

ans M1 R-3#l

Mu R—l7#3 I-AV of TIGER = 22 i538?

M5 R-lu#2 UT of EASTER npdated.

#96 Ml R—3#2

nu R—18#1

M5 N—2#1 Looking for EASTER terminal.

1+1}? Ml R—3#3

M2 M—ln IRI‘ for LION met. Initiate an RM. Set

IRI‘ = 0. Attadn CDT to RM. -

Mu R-18#2

“#9 M]. lid-W2 Mark EARS under RABBIT as need. Update   Ml. MlmarksEARS.
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Table 12 . (continued)

of Position

CUP Marker of Marker Notes

M2 R—l#2 .

MM R-18#ll MA is changed to an SM. M14 is updated.

I-AV of TIGER is increased by V2 = 1+1.

l+50 Ml N-2#1 Looking for EARS terminal.

M2 R-l#3

MM R—llli‘l

.451 M2 R-2#1

Mu R-1'4#2 UT of TIGER updated.

M6 R-6#1 TAIL recognized.

l$52 M2 R—2#2 Mark R-l as no longer an entry point

for LION stimulns.

M14 N-2#l Looking for TIGER terminal .

M6 R—6#3

#57 M2 R-1+#2 Mark ANIMAL nmnder LION as used. Update

M2. M2 marks ANIMAL.

M6 R-8#‘+ I-AV for TAIL = 5(190/957) = 2.

L158 M2 N-2#l Looking for ANIMAL terminal.

M6 R-9#1

1459 M6 R—9#2

M7 R—6#l TIGER recognized.

1#60 M6 R—9#3 I-AV of TAIL = 2 is not ; 81.

M7 R—6#2

l+63 M6 R—l7#3 I—AV of TAIL = 2 is not a 82.

M7 R—8#2

l+65 M6 R-19#2 I-AV of TAIL increased by V = 12 .

M7 R-8#lt I-AV for TIGER = ulcusnluasi = no.

ass M3 M-u IRT for RABBIT met. Initiate an RM.

Set IRT = 0. Attach CDI‘ to RM.

M6 R—llwl

M7 R—9#1

1+6? M3 R-l#l

M6 R—1u#2 UT of TAIL updated.

M7 R-9#2

l+68 M3 R-l#2

M6 M-12 Marker removed.

M7 R-9#3 I-AV of TIGER = I+0 is z 91.

l+71 M3 R—2#2 Mark R—l as no longer an entry point

for RABBIT stimulus.

M7 R-10#3 TIGER is neither fine stimulus object

nor in STM.

I+72 M3 R—3#1

M7 R—llfl

— T-12 IRT for LION met. No unused reSponses.

IRI' dropped.

l+73 M3 R-3#2

M5 S-2#1 EASTER recognized.

M7 R—11#2    
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Table 12. (continued)

End of Position

CUI' Marker of Marker Notes

H75 M3 R—H#l

M5 S-2#3

M7 R-ll#H TIGER evoked as a response.

H76 M3 R-H#2 Mark FOOT under RABBIT as used.

Update M3. M3 marks FOOT.

M5 S-3#l

M7 R—l2#l

H77 Ml R-6#l EARS recognized.

M3 N-2#1 looking for FOOT terminal.

M5 S-3#2

M7 R—12#2 I-AV of TIGER increased by Vl = 70.

H78 Ml. R-6#2

MS S-3#3 EASTER as a stimulus does not have any

responses associated with it.

M7 R-l3#l

H79 Ml R-6#3

M5 F-l#l

M7 R-13#2 TIGER added to top of STM.

H80 Ml R-8#1

MH S-2#l TIGER recognized.

M5 F-1#2

M7 R-lHi'l

H81 Ml R-8#2

MH S-2#2

M5 F-2#1

M7 R-1H#2 DT‘ of TIGER updated

H82 Ml R-8#3

MH S—2#3

M5 F—2#2

M7 M—7 NR = 3.

M-l2 M7 removed as R-l is not an entry point

for LICN stimulns.

H83 Ml R-8#H I-AV for EARS = H(l38/H83) = 1.

MH S-3#l

M5 F—2#3 Yes. EARS terminal is off of marked

terminal.

H8H Ml R-9#l

M2 R-6#1 ANIMAL recognized.

MH S-3#2

M5 F-3#1

H86 Ml R-9#3 I-AV of EARS = l is not a 81.

M2 R—6#3

MH R-lfl Change MH to an RM. Initiate IRT = 0

for response list associated with TIGER.

MS P—Hfil
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Table 12. (continued)

End of Position

CDI‘ Marker of Marker Notes

H88 M1 R-17#2

M2 R—8#2

MH R—1#3

M5 F-H#2 Yes. EARS is successful as a stimulus

since it has responses associated

wifin it.

H89 M1 R-17#3 I-AV of EARS = l is not a 82.

M2 R—8#3

MH R—3#1

M5 F—7#l

H90 M1 R—19#1

M2 R-8#H I—AV for ANIMAL = 13(13H/H90) = H.

MH R—3#2

M5 F-7#2 Terminal EARS is dnosen as stimulns.

Attach M5 to EARS. Attach CDI‘ to M5.

H91 Ml R-19#2 I-AV of EARS is increased by V3 : 11.

M2 R—9#l

MH R-3#3

M5 S-5#1

-— T—l2 IRI‘ for RABBIT met. No unused responses.

IRT dropped.

H93 Ml R-1H#2 UT of EARS updated.

M2 R—9#3 I-AV of ANIMAL = H is not B O .

MH R-H#2 Mark LION under T'IER used. date MH.

M5 S-5#3 MH marks LION.

H9H Ml M—12 Marker removed.

M2 R-l7#1

MH N—2#l Looking for LION terminal.

M5 R-l#l Change M5 to an RM. Initiate IRT = 0

for response list associated with EARS.

H96 M2 R-l7#3 I-AV of ANIMAL = H is not 3 82.

M5 R-1#3

H97 M2 R—19#l

M3 R—6#1 FOOT recognized.

M5 R—2#l

H98 M2 R-19#2 I-AV of ANIMAL increased by V3 = 1H.

M3 R—6#2

M5 R-2#2 Mark R-l as no longer an entry point for

EARS stimulus.

500 M2 R—1H#2 UT of ANIMAL updated.

M3 R-8#l

M5 R—3#2

501 M2 M—12 Marker removed.

M3 R—8#2

M5 R-3#3
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Table 12 . (continued)

End of Position

CUP Marker of Marker Notes

503 M3 R-8#H I-AV for FOOT = 88(187/503) = .

M5 R-H#2 Mark RABBIT under EARS used. Update

M5. M5 marks RABBIT.

50H M3 R-9#1

M5 N-2#1 Looking for RABBIT terminal.

506 M3 R-9#3 I-AV of FOOT is >3 9 .

511 Ml M-H Set IRI‘ = 0. Att CDT to RM.

M3 R-ll#2

513 M1 R—l#2

M3 R-ll#H FOOT evoked as a response .

515 Ml. R-3#l

M3 R-l2#2 I-AV of FOOT is increased by Vl = 66.

517 Ml R—3#3

M3 R-13#2 FOOT added to top of STM.

M5 R—6#l RABBIT recognized.

519 M1 R—H#2 Mark ANIMAL under T'IER used. Update

Ml. Ml marks ANIMAL.

M3 R-1H#2 131‘ of FOOT updated.

M5 R—6#3

-- T-12 IRI‘ for EAIG met. No unused reSponses.

IRT dropped.

520 Ml N-2#l Looking for ANIMAL terminal.

M3 M—7 NR = H

MH R-6#l LION recognized.

M5 R-8#l

523 MH R-8#l

M5 R-8#H I—AV for RABBIT = 38(3H6/523) =

526 MH R-8#3 I-AV for LION = 3H(36H/526) = 2H

M5 R-9#3 I-AV of RABBIT = 25 is 3 81.

529 MH R—9#3 I-AV of LION = 2H is not a. 91.

532 MH R-l7#3 I-AV of LION = 2H is b 82.

M5 R-ll#3

533 MH R-18#1

M5 R-11#H RABBIT evoked as a response .

535 MH R-l8#3

M5 R-l2#2 I-AV of RABBIT is increased byV

536 M2 MH IRI' for TIER met. Initiate a nlnwRM.

SetIRI=0. AttadnCDI'toRM.

MH R—18#H MH is changed to an SM. MH is updated.

I-AV of LION increased by V =

M5 R-13#1 2

538 M2 R-1#2

MH R-1H#2 UT of LION updated.

M5 R-1H#1   
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Table 12 . (continued)

End of Position

CDT Marker of Marker Notes

539 M2 R—1#3

MH N-2#l Looking for LION terminal.

M5 R-1H#2 DT of RABBIT is updated.

5H0 M2 R- 3#2

MS M—7 NR = 5. Set stop flag. M5 removed.

5H1 -- ------ STOP.
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Table 13 lists fine five responses given to ANIMAL, the DI' it was given,

and fine first object in fine memory it was associated with.

Table 13. Responses Evoked During Simulation.

 

 

 

   

131' Response Stimulus

300 CAT ANIMAL

325 HORSE ANIMAL

H75 TIER LION

513 FOOT RABBIT

533 RABBIT EARS

m

In finis chapter fine C-F-A model was tested by means of a hand simu-

lation. Since the model does not include a net building routine a hypo—

finetical memory was constructed. The memory contains 16 first objects

each of which has up to five associated reaponses. The simulation was to

stop when eifiner five overt responses were made or 1000 time units had

elapsed. The simulation took 3H1 time units before the five responses

were evoked. This met the major criterion set for fine model -- finat res—

ponses are evoked. The next dnapter evaluates the simulation more closely.
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CHAPTERV

This chapter is organized into finree parts. In the first fine C—F—A

model and fine execution of fine hand simulation is evaluated. Major

strengths and weaknesses of fine model are identified along with an assess—

ment of different dimensions of the model's validity. The second section

contains approaches to needed extensions of fine model if it is to be more

completely tested. Mainly this section is concerned with the problems of

a net bm'lding routine. The last section is more speculative as it deals

with more distant future explorations with fine model .

An Evaluation of the C-F-A Model

Before examining fine C-F-A model in detail, it would be wise to re—

vian sole of the'mefinods and criteria for assessing its validity. Kaplan

(196”), Hermann (1967) and ofiners do not consider validity to have only

two values: valid and invalid. Rafiner validity is a matter of degree,

depending in part upon fine goals of fine model and fine state of its develOp-

ment. The C—F—A model has as its primary goals understanding of the re-

lationships among its conponents (q.v. Dnbin, 1969) and insight into free

association behavior. In finis early stage of its development prediction

is not of mnajor concern.

The pattern model [understanding] may more easily fit expla—

nations in early stays of inquiry, and fine deductive model

[prediction] explanations in later stages (Kaplan, 1961“ p. 332).
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Hermann's (1967) five levels of validation were discussed in chap-

ter mo. His lowest level is an assessment of test-retest reliability.

Since fine simulation of fine C-F-A model was run only once, there is no

measure of this reliability. However, fine C-F-A model is almost purely

deterministic in nature. The sole exception is fine random process which

may occur in fine Time Executive Routine at T-5 . In the actual simulation

it was never necessary to execute this random part of T—S. Thus, there

is no reason to believe finat it will be utilized by all or most future

simulations. Furthermore, fine mere execution of that random component

does not guarantee finat fine outcomes of fine simulation will be altered in

any important way. While never tested, it is reasonable to expect fine test—

retest reliability of fine C—F-A model to be hign. That is, it should ex-

hibit very similar behaviors and outputs when it operates under identical

initial conditions (memory and parameters).

Hermann' s fourth and fiffin levels are more appropriate for deductive-

predictive models finan for fine C-F-A model. One aspect of his third level

is sensitivity testing. Such testing requires multiple executions of the

simulation with different initial conditions . Unlike the discussion above

about fine lowest validity level, it is much more difficult here to estimate

the results of multiple runs. Sore of finese considerations will be included

in fine ensuing, more general evaluation of the model.

The ofiner part of his finird level requires a comparison of the model

and fine modeled. This plns his second level, face validity, are similar

to Kaplan's (196%) norm of correspondence. Before applying finis type of

criterion to fine C—F—A model several ofiner criteria should be discussed

briefly .
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Kaplan's second norm is finat of coherence. Coherent models are

internally consistent. They fit existing fineories , are simple , and pos-

sibly, are esthetically pleasing. One sensible way to test a simulation

for internal consistency is to see if it executes without a terminal error

in any one run. The one simulation executed did not terminate wifin an

error. To test for contradictory outcomes requires the sort of sensitivity

testing mentioned previously. Simplicity may mean one of two finings . A

simple fineory may be one which is not structurally complex, or it may be

one finat is parsimoneous in terms of its free parameters. Models attempt-

ing to explain cognitive processes must be structurally complex. EPAM I

appears to be an exception to finis, but that may be a function of fine

scope of fine phenomenon it is explaining. The C-F-A model has ten free

parameters. Wifinout further simulation finere is no way to tell whether or

not there are too many free parameters.

The pragmatic norm is Kaplan's third criterion. Valid models need

not be practical in an everyday sense. Rafiner they should be useful to

science itself. They must generate interesting questions as well as sup-

ply sore answers. The C—F-A model is proposed as a means of obtaining in-

signt into the relationship between free association behavior and, (when

a more advanced version is completed) meaning. How well C-F-A meets the

pragmatic norm remains to be seen.

Finally, it is instructive to review fine criteria proposed to eval-

uate IPMs specifically. The C-F-A model simulates a general individual.

This rules out protocol matdning. Statistical and empirical comparisons

between fine model's output and an average person's output is also ruled

out due to fine impossibility of having fine model and fine average person
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start with identical conditions. The only procedure finat seems workable

is a loose version of Turing's test, whidn is similar to face validity.

Detailed process simulation does not usually lend itself to

significance tests. Common sense impression of simnilarity

seems fine only basis for judgment. 'Ihere is nofining wrong

wifin this use of comon sense. (Frijda, 1967, p. 65)

In sum, fine major criterion applicable for evaluation is face validity--

or equivalently fine norm of correspondance or Turing' 3 test . This criterion F

is not applicable to fine possible full range of corparisons. Mainly, finis

is because fine model uses a hypothetical memory. Since the dnaracteristics
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of associates given in a C-F—A task depend upon fine structure and content

of fine verbal memory, it is not sensible to corpare fine model's output

wifin finat of an individual (or generalized individual) rigorously. (No—

tive finat fine EPAM-type models are not so limited as fine verbal learning

experiment defines fine verbal memory of interest.)

The remainder of finis section presents an evaluation of the model

in terms of a gross examination of its output and a more detailed look at

fine principles and phenonena "represented" or possibly "accounted for" in

some way wifinin fine model's processes. What follows is organized around

four related t0pics: (l) the output of fine simulation outlined in fine last

dnapter, (2) fine structure of the C-F-A memory, (3) the functioning of the

C—P—A model especially in terms of some principles of verbal behavior, and

0+) fine major strengfins and weaknesses of fine model.

Simulation Output

The single most significant result of fine simulation is fine fact finat

responses were evoked. The fact finat parts of fine C-F—A model were de—

signed to evoke responses (q.v. R-ll in Figure 23) in no way diminishes

fine importance of finis result. The model as described is too conplex for
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one to ascertain before execution whefiner or not responses will be evoked

under a given set of conditions. True, one successful execution does not

guarantee others , wifin different initial conditions , but it does lend

weignt, img _f_a_c_l_:g, to an optimistic expectation of future runs. In addi-

tion, when fine execution ceased five unpredictable responses were evoked.

A model which evoked predictable associates might upon presentation

of fine stimulns word ANIMAL, respond wifin DOG, CAT, HORSE, RABBIT, and

LION (q.v. Table 7). This type of model places fine burden of free-assoc—

iation behavior upon fine processes whidn build fine memory net, instead of

fine processes which retrieve responses from the net. As stated in chapter

four finere are reasons to believe finat humans do not evoke all responses

directly associated in memory with a stimulus object. Therefore, models

based upon retrieval of items from memory are to be preferred. The C—F—A

model is of this type. Also, when fine simulation stopped at DIES“,

there were two active markers being processed. Wifinout further processing

finere is no way to tell whidn additional responses (if any) would have

been evoked.

A second interesting characteristic of the execution is the time each

response was evoked. Table 13 summarizes finose times. What is apparent

is from an inspection of finese ms, is fine fact finat finey are not regular

arnd finat inter-response intervals vary greatly. There are two groups of

responses (1) CAT, HORSE, and (2) TIGER, FOOT, RABBIT. The inter—response

interval between finese groups is 150 time units while the interval wifinin

fine groups rnever greater finan no time units. 'Dnis temporal grouping of

free associates has been stuch'ed by Pollio (1966) who fournd that humans

temporally group fineir associates , and fine average semantic distance be-

twaen groups was greater finan fine distance wifinin groups . In the C—F—A
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nothl fine temporal clustering seems to be due primarily to an internal

mediation of stimulus objects . Anofiner contributer to fine inter-response

latency is fine additional processing required whenever an unsuccessful

terminal is reached. At DT=I+78, fine potential stimulus EASTER was elim-

inated because it did not have responses associated wifin it. Routine

F-O was called and EARS was substituted for EASTER. The processing of

F—O possibly increased fine nunber of time units between evoked responses

four and five.

While ANIMAL was fine only nominal stimulns in fine simulation, there

were four functional stimuli (q.v. Underwood, 1963) which mediated overt

responses . In addition ofiner items in fine memory effected fine processing

of possible candidates for evocation (e.g. EASTER) and in sone sense served

as internal mediators .

Mediation in fine C-F-A model is more complex finan finat in fine EPAM—

type models. Those models and fine C—F—A model mediate responses by dis-

criminating some coded representation (e.g. cue codes) of the response

finrougn fine net. Thne , every response has bean mediated. In addition to

this response mediation, only fine C-F-A model includes a form of stimulus

mediation. Stimulns mediation occurs whennever a word's I-AV is less than

91 but greater finarn 92. Response mediation is similar to Osgood's rm's

(see chapter one), in fine sense finat they bofin function for all inputs.

Stimulus mediation in fine C-F—A model does not always occur and is closer

in its Operation to fine finree stage simple chain mediation paradigm (q.v.

Jenkins, 1963).

A fourth major result of fine simulation is fine permanent alternation

of parts of fine memory as a function of processing. Newell, Shaw and

Simon (1958) call finis type of alteration a form of learning. Table 11
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presents fine I-AV and DI‘ of all first items in the memory before and

after fine simulation. There was only one nominal stimnulus and five

evoked responses, but fine I—AV and UT of 12 of the 16 items in memory

were changed.

This type of learning by the model helps produce more successful

mediated reactions. Tho examples of finis occurred in fine simulation.

The first exanple concerns TIGER which was evoked as a response at DT=I+75.

'Dne TIGER that was evoked was fine second TIGER under LION, not fine first

 

(see Table 7). At UI‘=I+0!+ the first TIGER started being processed. Its

I-AV was too small for it to be evoked. At DIEM-$9 its I-AV was raised

by V2 to 1&1. The second TIGER was started into processing at DT=ln30.

Its I—AV was compared wifin 61 at DI‘=I+68 which was after fine I—AV was

raised to 1+1. Hence, TIGER became a candidate for evocation on its second

attempt. The other example is similar to the first. RABBIT as a response

to ANIMAL did not have an I—AV sufficient for evocation. But in its pro—

cessing the I-AV was raised above fine finreshold (at 13123“). When RABBIT

as a response to EARS was processed it could be evoked as a response be—

cause of its raised I—AV.

A fifth attribute of fine simulation whidn ought to be pointed out

is finat parallel processing actually occurred. The existence of T-S in

fine Time Executive Routine does not guarantee parallel processing. It

merely stipulates that if fiere is more than one marker active at a CDI‘,

then finey shall be processed in a parallel mode. The simulation starts

wifin only one active marker, fie SM for ANIMAL. The entire simulation

could have occurred with only oe marker active at each CDI‘. That wasn't

fine case. The actual amount of time different nunbers of markers were
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active is given in Table lit. The Table shows finat in the simulation from

oe through seven markers were active. There was no instance in whidn

more than seven markers were active in any CDI‘. If a situation occurred

in which an eignfin marker were needed, fine model would have prevented its

initiation at T-ll because fine parameter NMM was set equal to seven. NMM

serves to limit fine anount of paallel processing and is in line with evi-

dence reviaved by Miller (19 56) and ofiners on fine limitation of human in-

formation processing.

Table 14

Time Units Different Numbers

of Markers Were Active

 

 

 

Number of Markers Time Units

1 65

2 100

3 76

1+ 1W

5 18

6 31+

7 2  

Finally, it is interesting to notice that all six C-F-_-A routines were

used in the simulation, and finat fine interrelations among fine routines

functioned as expected. In real C—F-A situations _Ss rarely fail to give

responses or stOp responding in fine middle of an experiment. They operate

as if under pressure to give a response. The F-O Routine in fine C—F—A

model operates to simulate this behavior. F—O was used only once during

execution which was unexpected. There was no reason to believe before

beginning fine simulation finat F—O would be called at all. At DIE-H79 the

routine was called when stimulus EASTER was discriminated to a terminal
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which contained no associated responses . What a human _S does when con—

fronted with a stimulus word for which he has no real (as Opposed to overt)

associates is unknown. But fine human does give associates. So does the

C-F—A model. F-O operates by finding a terminal close to fine unsatis—

factory one which has associated responses. In fine simulation that ter-

minal was headed by fine stimulus word EARS. I

Considering fine structure of fine discrimination net, F-O operates

a forced stimulns generalization. In fine EPAM—type of models stimulus

generalization occurs because of inconplete previous learning. In fine

C—F—A model stimulus generalization operates because of F-O. EASTER is

fine stimnulus, but a response to EARS is given. The model can be thought

of as being "under pressure" to respond when no response is available.

'Ihis pressure makes the difference between fine "T" in EASTER and fine "8"

in EARS unimportant (see Figure 26, D-lO). A form of stimulns general-

ization follows.

In most instances of C—F—A or pooled discrete free association exper—

iments finere are items in the list of associates finat seem completely out

of context. For example, Deese (1965) notes finat an associate of BUTTER-—

FLY is WINTER. In fine simulation, fine four'fin associate to ANIMAL is FOOT

which, in turn, precedes RABBIT. In fine C-F-A model it is fine F-O Routine

and fine mediation of stimulus items which produce these difficult to eXplain

Wee»-

! Memory Structure

Because the C-F-A necel is heavily based upon fine EPAM-type of model

little reeds to be said about fine structure of the memory net. Most of the

previously described strengfins and weaknesses of finose models are applicable
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to C-F-A. A few variations need to be pointed to . None of the earlier

models need to allow for a conplex hierarchy of connections within fine

memory. Models of verbal learning do not require it. But because, "fine

associations a subject forms are probably numerous and hierarchically
 

organized" (G.A. Miller, 1963, p. 328), fine C—F—A model requires a more

complex memory structure. A cursory examination of fine hypofinetical mem-

ory presented in Table 7 reveals such a hierarchical memory. Whenever

net building is added to this model it must be able to produce an arrange—

ment ofmemory items similarto finat in the_a_d_h_9_cmemory.

WEPAM, SAL III and C-F-A all associate more than one response with

a stimulus item. There are sole differences however. In SAL III only

fine top (most recent) response is available as a possible response. The

reSponse list also functions as a stochastic short term memory —- finere is

a probability finat fine topmost response on any list will be pushed up and

"forgotten". The C-F—A model operates with a central short term memory.

It retains all associates, fiougn they may not be available enough to be

evoked. Whereas , SAL III activates one response, C-F-A activates an entire

response list.

In WEPAM, the topmost response not previously given in error becomes

fine candidate for evocation. The error indicator is stored with fine re-

Sponse list. If finis form of marker were used in a free association model

it would be very inefficient. All of fine nunerous instances of a response

througnout fie memory would have to be similarly marked and simultaneonsly

updated whenever necessary. In fine C-F-A model fine I—AV of a word is stored

onlyonce finrougnoutfinememoryatfineterminalinwhichthewordis fine

first item. WEPAM functions as if fine responses in a response list are
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knom since fine error indicators are decked without discriminating the

response. In fine C-F-A model it is impossible to make any inspection of

a response or its associated property set until it has been recognized by

means of discrimination.

Functioningof Model

For reasons given in fine first chapter, I-AV is fine variable of major

interest in finis model. It differs from associative strength in three ways.

First, LAN is more directly applicable to the response learning-giving

phase, while associative strength is also relevant to fine associative phase

of verbal learning. Second, I-AV is considered to be more sensitive to

dnange, while associative strengfin is more stable. And, finird, I—AV is

determined mainly by frequency of experience , recency of enperience and

mode of experience of fine verbal unit. 0n fine ofiner hand associative

strength may depend upon fie reinforoement history of an S—R pair as well

as fie simpler principles of association.

The C-F-A model does not specify how each item's I-AV should be

originally estimated. That would be (a proper function of a net building

routine. However, it is instructive to examine how I-AV is handled in the

current model. An assunption implied wifinin fine model is finat fine major

factors whidn affect I-AV do not becone Operative during fine building of

fine verbal memory, but, rafiner during fine response giving phase. That

is , fine valne of an itam' s I-AV is manipulated during response processing

rafiner finan during item learning.

Recency, frequency, and mode of experience are fine major factors

which affect an item's I—AV (Rosenzweig 8 Postman, 1957; Horowitz, Norman,

6 Day, 1966). Figure 23 outlines fine response giving phase of C—F-A.

Recency affects I-AV in two ways. Most directly, recently processed items
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in memory are not as affected by fine effects of fine passage of time on

I-AV as older items are. R-8 in Fignue 23 stipulates finat all items'

I—AVs decrease as a function of elapsed time . Items with higher DI‘s

(more recent) have fineir I—AVs decreased least. The second way recency

affects I-AV is less direct. The most recently acquired item in a re-

sponse list is always the item at the tap. A PDS Operates by "popping—up"

fine topmost item first. It is fie recent items from each response list

whidn beoone fie first candidates for evocation. Since association experi-

ments end before a S's entire verbal memory is depleted, potential responses ..

left unprocessed are those further down on fine response lists . Tlerefore, “

more recent items are more likely to have fineir I-AVs examined (q.v. R—9

or R-l7), $creased (R—B) or raised (R—12, R-18, R-19).

Frequency is represented in fine verbal memory directly, by allowing

fine same item to appear in the sane (or different) response lists as often

as needed. (Again, exactly what procedure is followed depends upon fine

unspecified ret building routine). Freqnency affects I-AV by means of

successive processing of fine same item. 'Ihe two examples described ear-

lier in this chapter illustrates finis point: The first TIGER in the re—

sponse list of LION did not have an I-AV sufficiently high for it to be

evoked as an overt response. But fine processing of fie first TIGER raised

its I-AV permitting fine second TIGER to be evoked. The second exarple is

similar to this dealing with RABBIT (under ANIMAL and later under EARS)

instead of TIGER.

Horowitz , Norman and Day (1966) experimentally manipulated I—AV . They

found finan an item' 5 I-AV is raised most when fine item is overtly produced

from memory. The I—AV is also raised wl'en fine item is seen, but fie increase

is not as. great as when it is produced from memory. 'Ihe C-F-A model raises
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fine I—AV of item's in a manner consonant with these findings. The model of

fine item serves to raise its I-AV at least a little (see Figure 23, R—lQ) .

This internal processing corresponds to fine "seen" condition of the experi-

ment. The model raises an item's I-AV the greatest amount when the item

is evoked from memory (R-l2). And, in a condition not paralleled by fine ex—

periment, fine model can raise an item's I—AV an intermediate anount wherever

fie I-AV is less finan 91 but greater finan 92 (R-18). This middle condition

scans reasonable as items meeting finis condition are treated as mediating

stimuli: mediating stimuli are additionally processed but not evoked,

wwhile items whose I-AV are not greater finan 92 are not additionally processed.

In sum, I-AV is quite specifically treated in fine C-F-A model. Each

first item in fine memory has a nureric value of I-AV assigned to it. In

fine response giving phase , fine I-AV functions in a manner which is con-

sistent wifin existing fineory and experimentation: I-AV is a major factor

in determining which of fine potential responses will be evoked, and the

value of an item's I-AV depends upon recency, frequency and mode of pro-

cessing. The EPAM—WEPAM—SAL models, on the other hand, do not represent

or treat I—AV in any manner whatsoever.

'Ihe variable employed by fiese earlier models to govern response

giving is relative (or absolute) associative strength . In fineory , the

strength of association depench upon fine frequency of association and the

nunber of associates of the stimulus word. In addition, each succeeding

presentation of fie S-R pair contributes less to fine strengfin of the

bond between finemn (Deese, 1965). This is true under fine classical con-

ditioning paradigm in whidn contiguity of fine S-R pair is so important, nnd

it is true in fine-operant conditioning paradigm in which reinforcement

strength and scledule is important.



 



 
In EPAM II associative strength is represented indirectly by fine

degree of completeness of a response cue code. Cue codes whidn are well

learning (i.e. complete) function as if fine response they seek is strongly

associated wifin fie stimulus . Complete cue codes always retrieve the

correct response. The degree of conpleteness of a one code depends upon

fine nature of fine discrimination net, not fine number of trials. If the

net is built in a manrer which foroes a cue code to pass numerous tests 7“

 

fien finat cue code will be complete before other one codes. Since the
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cue tokens of EPAM III name a terminal and do not have to be sorted

finrougn fine ret, associative strength is not represented in finat model

in a manner which permits variation in fine level of the variable. Rather

fine value of associative strength is eifiner zero (before the cue token is

added) or at a maximum (at fine trial the one token is added to the terminal).

Wynn's (1966) model is similar to EPAM III in accounting for absolute

associative strengfin. It does a better job wifin relative associative

strength since more finan one reSponse is stored at a terminal. The order

of responses in fie response list and fie presence or absence of the error

mark (see chapter 2) determines fine relative strength of responses to a

stimulns.

SAL III also reflects relative associative strength because of the

possible multiple responses. However, fie concept of absolute strength

is irrelevant to fine SAL model as response learning is assured to be com—

plete and perfect.

In fine C-F-A mochl a precise interpretation of associative strength

depends upon fine, as yet unspecified, net building routine. That routine

will be discussed in greater lengfin later in finis chapter. It is appro—

priate to speculate about its effects on associative strength at finis time.
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In building his memory for a future free association task a S is

not confronted wifin repeated pairs or lists of fine same objects. It is

finis repetition in fine verbal learning studies wwhich allows associative

strength to be built up by reinforcement and/or contiguity. In free

association it does not seem likely finat a person will experience the

pairs of words often enougn to permit an incremental fineory of associative

strength to function faster finan the negative effects of time. An incre—

mental theory specifies finat each succeeding occurrence of a S-R pair

contributes (less) to fine strength of fineir association. Elapsed time

between successive pairings Operates to decrease the strength of asso-

ciation. One possible way a person can build up a memory of associates

is by means of Ore-trial learning and contiguity. That is, whenever a

pair of worce is experienced togefier it is associated oonpletely (if it

is associated) and symmetrically. This approach eliminates fine need for

several presentations of S-R pairs and for reinforcement. It places a

great deal of reliance on one-trial learning (e.g. Rock 8 Heimer, 1959;

Estes, 196“) and associative symmetry (Asch 8 Ebenholtz, 1967; Horowitz,

Norman 8 Day, 1966). This approach would also reverse the order of the

two stages of verbal learnings (Underwood 8 Schulz, 1960) described in

chapter one.

Thus , fine net building routine would operate by finding contiguous

pairs of words. If they meet sore criterion they are associated com—

pletely (associative strengfin is at a maximum) and summetrically (each

word is bofin a stimulus to and a response of fine other member of the pair).

It is during processing in fie response giving phase that availability be-

cones important. Availability is part of the second stage of verbal
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learning (after the stages are reversed). Asch 8 Lindner (1963) found

some support for this reversal of the two stages of learning.

Strengths and Weaknesses 

Tie C—F—A model succeeds in that it is the first IPM of free asso—

ciation behavior. It posits specific deterministic processes which Operate

on the principles of association. The model operates in a parallel mode

to evoke a string of response to a stimulus word. Some of the internal

processing depends upon a word's I-AV. The C-F—A model is the first of the

related IPMS to do this. Neither EPAM, WEPAM, nor SAL incorporated I—AV

or parallel processing in any direct fashion. Nor do the earlier models

employ a type of mediation found in this model.

What are the major limitations of the model? There are two important

limitations wwhich serve to prevent an adequate assessment of the validity

of the model. The first is the lack of a net building routine. Without

such a routine the model must work on an a_d l_ng_c_ merrory which (thougn satis—

factory for testing the operation of the model) makes any direct compar-

isons between model and human output specious. If the verbal memory were

created by an adequate net building routine, it would be possible to assign

to each word in the memory some measure of its connotative meaning. (One ,

type of routine could build up such values as the net was constructed.

Another version of the routine would not include these values, but if fine

memory were reasonable, fine values could be obtained from normative data.)

With such a routine it would be possible to attempt to replicate by simula—

tion some of the experiments described in the first chapter. A net building

routine is essential if fine model is to be tested in terms of event validity

(q.v. Hermann, 1967). The next sections of finis chapter contain approaches

toward fine solution of these problems.
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The other limitation related to validity assessment has less to do

with the model & s_e. For practical reasons it was impossible to rm

more than one simulation of the model. That one simulation was a success

insofar as the operation of the model is concerned. From the simulation

it was possible to see the effects of the interactions of the components

of the various routines. It could be determined that responses were evoked,

parallel processing occurred and a form of mediation took place. On the

other hand, me simulation is not sufficient to permit an adequate testing

 

of the model's sensitivity to different initial conditions. It is impor—

tant to know the effect upon output of different memory content and struc—

ture and of different values of the parameters.

In addition to these major limitations, several lesser difficulties

are apparent from an examination of the simulation. When the memory was

constructed it was assumed that 200 simulated time units would be suffi-

cient for the task. Since it took over 300 time units to evoke five re—

sponses, it now appears that 200 time units is far too few for net build-

ing -- especially if a net of reasonable size is constructed.

Givm a large memory and the additional number of time units needed

to construct it, then the formula given in R-8 (Figure 23) for reducing

an item's I—AV as a function of elapsed time needs to be dianged. It is

possible with a large enough memory that many time units will elapse be-

tween successive Lses of one item. If that is so, then the denominator

increases much more rapidly than the numerator in the formula given in

R—8. It will be possible, under such conditions, for an item's I-AV to be

always reduced to a level below any of the thresholds -— leading to a mod-

el which does not evoke any responses.





 

'Ihis problem is a weakness of the particular formula used in R—8.

But other formilae are possible and reasonable. All should, however,

decrease I-AV as a function of elapsed time. This is important if re-

cency is to play a role in the determination of the value of I-AV.

A definitive evaluation of the C—F—A model at this time is not pos-

sible. What is possible is to begin to assess the validity of the model

at different levels. This section of the chapter offered such an assess-

ment. The model is at a level of development common to IPMS.

For a simulation of even moderate complexity, it is such a

considerable achievement to get a 'dry run' version working

that investigators often do not pitch their levels of aspi-

ration much beyond that point. That a model may work well

on simple illLstrative data carried finrougn a few represen-

tative steps , however, does not at all guarantee that it

will behave properly when run full-scale with a large body

of data. (Abelson, 1968, p. 307).

Nothing has been proven by the model or the simulation, but the mo—

del does exist at some higher level of credibility. Some insight has

been gained and now some patience is needed to continue the investigation

with different versions of “the model and with additional simulations .

Some extensions of the model are described in the next section.

Extensions of the C-F—A Model

While there are many possible extensions to this model, obviously

all of them cannot be discussed here. The most appropriate extensions

to explore are finose which are needed immediately if fine model is to be

developed further. In this case, a net building routine is central to a

better C-F-A model.

An initial net building routine should be limited to assign learning .

At this time it looks as if it would be easier to construct a memory from
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word pairs or sentences finan from word—object pairs. Sign learning

(word—object) is very important to a realistic C—F—A model. Probably

TABLE is associated with CHAIR because of non-verbal co—occurrences of the

objects finemselvas instead of verbal co-occurrences in fine spoken or writ-

ten language. Some important preliminary work has been done (e.g. Minsky,

1963; Evans, 1968) which points fine way toward a sign learning net build-

ing routine. The complexity of these approaches is beyond the scope of

fine current model.

Consequently, let fine input to fine model be a series of word pairs.

If a word pair is peroeived finen eadn item will be learned completely

 

and each word will be associated symmetrically. Thus, when a word pair

is peroeived each word would be conpared with existing first items in the

memory. If fine word did not exist it would be discriminated through the

net and added. In addition each word would be added to the top of fine

ofiner word's response list -~ associating finem. Since the response giving

routine effectively manipulates fine value of a word's I-AV, it is not

necessary for the net building routine to treat I-AV in any complicated

fashion. One possibility would have an item's I-AV raised by one (up to

some limit) each time that item is processed. ‘

Suppose the input to the net building routine were English sentences.

A simple expedient would be to treat fine sentence as a collection of all

possible word pairs. Irrespective of fineir sequential order, all words

would be associated with each ofiner. It would be desirable to include

some effect of contiguity in finis by forming better (stronger, more likely)

associations between words closer together in fine sentence, but the model

a currently envisaged has noway to Cb this.
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If the sentence were to be treated as an entirety rafiner than a

collection of word pairs finen parts of a vast body of krnowledge about

modern linguistics, psydnolinguistics, and computer understanding of

natural language becomes pertinent. Some of this literature is appli-

cable if it sheds light on fine problem of selecting and associating words

from a sentence. To critically review or summarize these areas here is

impossible. i-bwever, one interesting contribution will be discussed.

It was chosen not only because it contributes to the theory of a net

 

building routine, but also becanse it is a relatively modern, working IPM.

The model is Raphael's (1968) SIR -- Semanitc Information Retrieval.

SIR's memory is basically unstructured, consisting of words with asso-

ciated property lists (much like fine C-F—A model). Property lists con-

tain ofiner words and fine relationship between fine first word and each of

the ofiners. The SIR model attempts to "understand" natural English.

Given some input sentences fine model determines fine relationships between

the words. At present fine relationships it can process ,are set-inclusion,

part—whole, numeric quantity, set membership, ownership, and spatial

arrangements.

Wifin a developed memory, SIR answers some questions posed to it, dem—

onstrating its "understanding" of English. Suppose SIR were given as

input four sentences: (1) Every boy is a person. (2) There are two hands

on each person. (3) John is a boy. And, ('4) each hand has five fingers.

Through a limited analysis of syntax fine model finds subset—superset rela—

tions (e.g. boy—person), subpar't relations (e.g. hand-finger) and ofiner re—

lations anong fine content words of each sentence. When queried, "How many

fingers does Jdnn have?", SIR responds, "The answer is 10". (q.v. Raphael,

1968, pp. 65-66)
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To employ some of SIR's principles in a C-F-A model would require

an analysis of the input sentence into the syntactical or logical rela-

tions among the words . A small number of important dyadic relations

(or a hierarchy of relations coupled with a limited amount of process-

ing time) would be used. The C-F—A model could finen associate word pairs

found to be related. Still later, fine model could store fine type of fine

relationship between members of a word pair and use finis information dur— m.

ing fine response giving phase. Responses given in a C-F-A task differ in 3

their relationship to fine stimulns word. It is known that these relation- ‘1

ships differ as to fineir relative frequency of occurrence and fineir asso—

ciated response latencies (e.g. Karwoski 8 Schachter, 19%). By conpar-

ing the performances of versions of fine extended ’C-F-A model it might be

possible to determine if fine empirical findings were due to an input-

storage process , an output routine, or some other situation.

Procedures for net building and handling sentences as input are

the most important of possible future extensions to C-P-A. Other weak—

nesses of fine current model need to be corrected. The model as now de-

scribed is very inefficient in net organization and discrimination learn-

ing. The model must learn how to lean. Certain rearrangements in the

net structure ought to occur as a function of processing. The restructur-

ing would make later retrievals more efficient finan earlier ones . Wynn

(1966) implements several of these efficiences in his model. WEPAM permits

different pafins througn fine net to fine same terminal. It also builds loops

to bypass earlier nodes in fine discrimination net when finose nodes are

redundant or "get in fine way." For example, fine letters' portion of the

C—F-A model's hypofinetical memory (Figure 26) is constructed by discrim—

inating attributes of letters as finey appear temporally at the beginning
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of the eXperiment. If a letter occurred late in the temporal sequence,

its terminal would be deep in fine net. In Figure 26 the terminal for

"E" is none testing nodes into fine net. Since "LI" appears frequently

in English it is very inefficient for all processing to pass through the

preceding nodes. Wynn's methoch would allow for a more direct access to

"B" as testing nodes and paths are changed as a function of processing.

Another need for fine model is for it to handle context. It is

known (q.v. Howes 8 Osgood, 1951+) that different free associates are

given when the stimulus word is preceded by other words (verbal context).

Also it is common for people to modify fineir verbal behavior depending

upon where finey are (e.g. in a church or a locker room) orwho they are

with (ones parents or ones peers). The current C—P-A model is fineoretically

equipped to deal with fine problem of context. Whenever a response is asso-

ciated with a stimulus item, its property set could be augrented to con-

tain sore coding of fine context. Appropriate attribute testing nodes

included in fine memory net would test for fine presence of desired or un-

desired contexts and thereby, modify the output.

This section dealt mainly with finose few major additions needed if

fine C—F—A model were to build its om memory as a function of its verbal

experience. Especially difficult will be handling sentences in a manner

which utilizes the syntactic relations among fine words. The problem of

making verbal associations from fine physical world is very important but

not considered. The ability to abstract verbal relationships from the

physical world is a major need for any conprehensive model of net build-

ing for free association. These problems of net bnilding would completely

overwhelm any first attempt at a C—P—A model and therefore, the omission

of a net building routine was deliberate.
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Some Future Enqplorations with fine C-F-A Model

If work wifin fine C-F-A mochl is to be continued, finen initial

efforts need to deal wifin sensitivity-parameter testing and net build—

ing. Also, itappearsfinatitisnecessarytocodefineIPMsoitcan

beprocessedbymadninerafinerthanbyhand. Thesetypesoffinings are

reasonhbly straigntforward in concept, if not in practice , and some of

finem have been discnesed earlier. This section of fine chapter is con-

cerned with more distant explwations of an extended C—F-A model . A

caution here seems necessary. There is no 3 212932 reason to believe

that fine best way to proceed with future study of C-P-A behavior is

by studying a model refiner finan fine subject matter pg; s_g (q.v. Kaplan,

19m, 1). 279).

The pheromone of one-trial learning has been discussed earlier. It

was relevant to fine presentation of fine BPAM—WEPAM—SAL models and the

extended C-F-A model. Both verbal (e.g. Rock 8 Heimer, 1959) and mafin-

ematical (e.g. Estes, 1961+) arguments have been used to present and defend

the one-trial position. A critique of one-trial learning showed that

both approadnes were either non-supportable or indistinguishable from an

incremental fineory position of learning (Postman, 1963). that can be

concluded? The IPMs treat one-trial learning as a useful or needed

concept, while a critical review concludes otherwise. Part of fine prob-

lemmignt be due to the different types of models. 'Ihe incremental theory

is verbal and it does not contain encplicit internal processes (finougn it

does contain explicit internal variables such as habit strength). Conse-

quently, Postman not base his tests of fine one-trial fineory on overt

responses made to specified stimufli. It is particularly difficult to
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separate acquisition from response giving since finere is no way to

ascertain acquisition wifinout studying the responses made.

An IPM is not so limited. This type of model can separate acqui—

sition from output mechanisms. Thus, an IPM (such as C-F-A) can employ

one—trial learning but have a response pattern identical wifin those pro-

duced by an incremental fineory. It is fine processes between the acqui-

sition and response giving phases whidn permit finis.

This illustrates fine difficulty encountered whenever an IPM and

anofiner type of model are compared. It also illustrates some of the

value if IPMS. In terms of one-trial learning researchers can build

various processors which operate between acquisition and response giv-

ing (the C-P-A model is one possibility). Througn testing it may be pos-

sible to settle some of fine differences between a one-trial and incre-

mental position. It is also likely, that work with an IPM may offer

anofiner possibility, gig, finat differences between fine two theories re—

flect two different abstractions from a more corplex model.

Similarly , fine C-F-A model and the EPAM—WEPAM—SAL models contribute

to a more complex version of fine contiguity versns reinforcement contro-

versy (q.v. McGeoch 8 Irion, 1952, p. ln6f.). The 1% require only tem-

poral or Spatial contiguity for acquisition , but need some effects of

frequency (including reinforcement in fine learning models) before the

changes in fine memory net are developed sufficiently for further pro-

cessing -- such as response giving. In fine C—F—A model fine further pro—

cessing raises an item's I-AV above fine minimal finreshold. In the ver-

bal models of learning (e.g. Gufinrie, 1952) or in fine more formalized

theories (e.g. Hull, 19%) it is difficult to separate the internal
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processes and fine temporal sequence of finese processes (q.v. Jenkins,

1965, p. 27). THIS clearly outline such processes and, finereby, offer

approaches toward a more general formulation of the problem.

There are several areas into which a more general C-F-A model could

explore. One possibility is verbal satiation . Verbal satiation names

fine phenonenon of a loss or dnange in meaning of a word as a result of its

continued repetition. In fine C-F-A model, the experimental situation ...

would consist of a word associated with itself several times. This results in

in fine most recent responses to fine word being fie word itself.

Without simulating finis condition it is impossible to specify exactly

what would occur. Hoaever, two possibilities seem likely. First of all,

finere should be an increase in elapsed time between fine presentation of

the word as a stimulus and fine first evoked response. In fine Response

Giving Routine (Figure 23) potential responses are examined serially from

fine most recent to fine least recent. The recent potential responses are

identical with fine stimulus word. Verbal satiation studies do not allow

the stimulus word to be given as a response. In C—F-A, R-lO prevents the

stimulus word from being given as a response. Thus, all of fine reSponses

which are identical with fine stimulus word must be processed before any

ofiner word becomes a candidate for evocation .

The second possibility derives from fie first. Suppose fine first

response to CAT is DOG. In fine satiation condition, many copies of CAT

are placed before DOG on fine response list. As noted above, finere slould

be some elapsed time before DOG is fie current candidate for evocation.

The more time elapsed, fine greater DOG's I-AV will be reduced (q.v. R—8).

In such a situation it is possible finat DOG is no longer available as a
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mSponse and may serve at most as an internally mediated stimulus word.

The encpectation finen would be for an idiosyncratic response to CAT .

The literature of verbal satiation is not in agreement (cf. Lambert

8 Jakobovits, 1960; Jakobovits 8 Lambert, 1961). In fact Yelen and

Schulz (1963) could not find much support for the existence of verbal

satiation. The C-P-A model is not equipped to deal wifin a word' 8 loss in

meaning measured by semantic differential rating scales (as in fine above

finree studies). If loss in meaning is measured by increased latency of

response and lack of commonality of response , finen studies by Wertheimer

and Gillis (1958), and Smith and Raygor (1956) are applicable. These

studies show finat when satiation occurs less cannon associates are given.

One hypothesis derived from fine predicted behavior of fine C-F—A model is

finat more internal processing (caused by storing many stimulus words as

potential responses) produces a greater chance for idiosyncratic overt

responses. Fillenbaum (1963) found that when _S_s repeated fine stimulus

word for four seconds finey had less loss of meaning (measured by common—

ality of response) finan words repeated for one or three minutes . It

should be noted, lnowever, finat fine difference between the one and three

minute conditions was small and not in the direction predicted.

Another area in whidn fine model ougnt to explore more fully is mean-

ing. Initially it was hoped that this model could relate C-F-A behavior

wifin a mediational approadn to word meaning. It turned out that the scoPe

of finis problem was greater finan expected and could not be dealt with be-

fore a model which produced free associates was develoPed. The current

model employs mediation in its processing. It also gives fine meaning of

a word -- either defined interverbally or relationally . The model does
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not conbire fiese approaches in order to permit a mediational measure

of a word's meaning. In terms of initial plans, this is a serious fail-

ing of this study.

It is still not clear how fine C-F—A model could be modified to in—

corporate such a measure. Suppose , for example, the approach chosen was

that of Osgood, Suci and Tannenbaum (1957) as presented in chapter one.

In their fineory the mediators are not letters of a word (as in EPAM and

C-F-A) , nor are finey indicators of a semantic or linguistic relationship

(as in Reitman's Argus (1965) or SIR), nor are they words used to trans-

late between languages (as in EPAM III). Rafiner they are "light-weight"

components of fine response to a word. In assign learning wifin C-F—A

this would entail part of fine response to one word mediating the response

to fine second word. A variant of this procedure may occur in fine current

model. Suppose Ri are fine ordered set of potential response to a stimulus

word 31- If an unknom word 82 is paired with $1 finen each word will be

the topmost potential re5ponse for fine ofiner word. If an interverbal

meaning for $2 is asked for, it is likely finat 81 and its responses will

be used. The C-F-A model does not employ conponents of the response to

81; it uses 81 in full. Conseqnently, it appears that fine principle of

internal mediation is incorporated directly in the C—F—A model . What is

still missing is a mefinod for obtaining a quantitative measure of a word' 3

meaning as a function of fine mediation .

TWO alternative mefinods for obtaining fiese measures seem worth de-

veloping. In one case, an internal semantic space is hypofinesized. For

each dimension of the space fine ret building routine determines a word' 8

location relative to finat dimension. This is the heart of Osgood's theory.

The input would be definitional or descriptive messages about an unknown



 

mm in terms of mrds already in the memory. The known words are located

in semantic space. By means of an as yet undefined processor each dimen—

sion of each old word in the definitional input would contribute to fine

location of fine new word. (Parenthetically, it should be noted finat "lo—

cation" is used here figuratively. The structure of fine discrimination

net need not be changed from finat of the current model. All that is needed

is for fine relative locations on each dimension to be added to fine property

set for a terminal.) Once this difficult part is completed it is concep—

tually easy to include in a net, attribute nodes whidn test for values of

finese locations. In addition, the routines which retrieve response could

have a series of thresholcb testing fine positional indicators. Only those

words "near" another word could serve as a mediator for that word. 'Ihus,

I—AV would determine whether or not a response will be evoked, and relative

location in semantic space would be fine new method (cf. Figure 23, R—l7)

for controlling mediation.

The other alternative takes a different tack. It does not assume

internal processing (at fine time assign learning occurs) produces fine

measures of location. Instead, it assumes finat the measures are a function

of fine measuring instrument. In this situation, the C—F—A model would

require a routine to respond to a semantic differential rating scale. Sup-

pose DOG were being rated on a "good-bad" scale. Using Quillian's (1967,

1968) procedure, markers would start at fine three terminals: DOG, GOOD,

and BAD. Each response to eadn stimulus, eadn response to each response,

etc. would be examined until fine markers crossed pafins. Some weighting

scheme would determine where DOG ougnt to be rated on the scale as a func-

tion of elapsed time to intersection or number of terminals examined before

fine two paths met.



 

 

 
 



 
If these two alternatives could be developed it would be very inter-

esting to explore their consequences. Osgood and his associates (1957) do

not distinguish between finese two possible ways of obtaining measures of

meaning. (This distinction is similar to the one made previously about

one-trial and incremental theories of learning.) The first method cper»

ationalizes meaning as a representational mediated reaction. The second

method does not require mediation of that sort at acquisition time . The

measures of nearing and a chaining type of mediation cccms in the response

giving or test taking phases .

‘Ihere are ofiner tOpics deserving exploration with fine C-F-A model .

Adults in a C-F-A experiment do not usually give obscene words as response.

Often they give rhyming re8ponses and Opposites. Processes within the cur-

rent model may contribute to an understanding of finese phenomena. Obscene

words could be handled in two ways; eifiner by treating finem similar to

stimulus words (q.v. Figure 23, R—lO) or by adding to each word's property

set a role marker indicating fine situations in whidn the word is permitted

to be spoken. Rhyming responses of fine CAT—HAT sort may be due to an error

in decoding fine stimulus word. CAT could be sorted to the HAT terminal.

The C—F-A model (and EPAM and WEPAM) does not check to see if fine terminal

reached matches fine input stimulus . A procedure could be included in the

Stimulus Sorting Routine whidn only treats an object as a stimulus if the

terminal sorted to has a first image identical with fine object. If this

condition is not met, fine terminal must be a response terminal. This type

of procedure will produce a form of response generalization. Mnen fine

error in discrimination occurs at fine first letter of fine word, rhyming

responses are possible.
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Finally finere is fine problem of opposites: since they do not often

occur contiguously it is difficult to explain how one can evoke fine ofiner.

If responses are mediated by wort-k5 wifin low I—AV (as in fine current model)

opposites will occur. For example, if in building fine net HOT and WATER

are associated togefier and COLD and WATER are similarly associated, finen

over time it is possible that fine two adjectives will have a higher I-AV

than WATER because finey are experienced more frequently. When presented

wifin HOT, the model's most recent associate might be WATER which is not

strong enough to be evoked. Acting as a stimulus, WATER, evokes COLD as

a response. This is fine position taken by Pbrowitz, Brown and Weissbluth

(1961+) who showed that this interpretation based upon I-AV is not equiv—

alent with a simple chaining paradigm.

513—E!

This last part of chapter five pointed fine way for some future explo—

rations with fine cm'rent and extended C—F—A models. One value of the C—F-A

model (and ofiner IPMS of cognitive processes) is its capability to tempo—

rally separate internal processes. Tris viewpoint may contribute to a more

fundamental understanding of fine phenonena of verbal behavior. Some of the

phenomena discussed in this section are satiation, meaning, and evocation

of opposites.

The purpose of finis chapter was to evaluate fine model and its simu—

ulation in terms of strengths and weaknesses. There are several major

weaknesses of fine model. Of considerable importance is fine lack of any

net building routine. 'l‘nnis foroed fine use of an a_d h_o_c memory and made

it impossible to test several aspects of fine model's validity. In addition,
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because the model was not coded for computer processing, it was only

possible to execute one hand simulation. Several executions are needed,

however, if sensitivity and parameter testing is to be conducted. The

last major weakness of the model is its inability to produce measures of

a word' 8 meaning based Lpon a representational mediation paradigm.

On fine positive side, C-F—A is fine first working model of free asso-

ciation behavior. Lending weight to its face validity are fine facts that

(1) it operates upon a hierarchically organized verbal memory, (2) in a

parallel mode, and (3) evokes unpredictable reSponses. (1+) Item avail-

ability is treated directly in finis model (but not in fine earlier ones).

The treatment of I—AV corresponds closely with what is known about the

variable. In addition the model (5) employs a form of stimulus mediation

which is important to its processing. Finally, (6) the model learns.

The contents of the net are changed as a function of earlier processing

and finese changes affect later outcomes .

Later in the chapter possible net building routines were considered

briefly along with the problems of handling sentence input for assign

learning. It was noted finat one of fine advantages of an IPM of cognitive

behavior is its ability to temporally separate different processes . A

possibly important role for these IPMS is to make finese explorations in

order to shed light on existing fineoretical controversies -— such as one—

trial learning. More Specific directions for future exploration were also

mentioned.

Finally, it must be stressed finat fine C-F-A model is a first try,

a partially justified guess. As Popper (1962) emphasizes scientific

knowledge progresses by finese conjectures and by criticisms of them.
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Science gains if fine model is refuted and it also gains if it can not,

as yet, be refuted. Both conjectures and refutations are central to the

undertaking. At fine conclusion of finis study finere is, at best, an interim

model of C-F-A behavior, and a preliminary evaluation of it. That is a

reasonable beginning.
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