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ABSTRACT

IMPLANTABLE ELECTROMAGNETIC FIELD
PROBES IN FINITE BIOLOGICAL BODIES

By

Seyed Hossein Mousavinezhad

This thesis presents some theoretical and experi-
mental results on the study of a dielectrically coated,
small spherical probe used to measure the induced EM
fields in conducting (biological) bodies of finite
extent. The receiving and radiating characteristics of
the insulated probe are determined as functions of the
electrical parameters and geometry of a spherical con-
ducting body.

First, a general theory for a wire probe in a
volume conductor is presented and the relation between
the output of the probe and the induced electric field in
the body is derived. The receiving properties of an in-
sulated spherical probe immersed in a uniform electric
field inside a conducting body are then discussed. An
expression for the effective diameter of the probe is
also derived.

The expression for the input impedance of a

dielectrically coated spherical antenna imbedded in a



Seyed Hossein Mousavinezhad
finite conducting body is formulated based both on the
matrix equation method and transmission line theory.

Finally, experimental results on the input
impedance of insulated spherical probes and the measure-
ments of the induced electric field inside conducting
bodies are presented.

The convergence problem of the theoretical input
admittance and the computation of Hankel functions are

also included in two Appendices.
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CHAPTER I

INTRODUCTION

In recent years, many researchers have inves-
tigated the proklem of Electromagnetic Radiation effects
on biological systems and related potential health
hazards. In order to understand the nature of the
problem and to determine whether the radiation-induced
effect is thermal or non-thermal, one needs to know the
actual intensities of the induced electromagnetic ficlds
inside the irradiated biological bodies. Experimentally,
implantable EM field probes can be inserted into these
bodies to measure the field intensities. 1In order not
to perturb the actual field distribution in the body and
to have a good resolution of the measurement, the probes
are required to be electrically small.

In this thesis, we present a study on an implant-
able EM field probe which can be used to measure the
induced EM field in a finite conducting (biological) body.
Recent studies on the characteristics of some conventional
probes used in conducting bodies have been reported [1 1],
t 21, [ 31. In almost all these works, an infinite con-

ducting body was assumed which neglected the effect of



the boundary of the medium on the characteristics of the
probe. In the present study, we consider a coated
spherical probe in a finite conducting body, taking into
account the boundary effects.

In Chapter 2, we discuss some general properties
of the probe in a volume conductor. We derive the re-
lationship between the output of the probe and the in-
duced electric field intensity in the irradiated body.
The receiving characteristics of an insulated spherical
probe is investigated in Chapter 3. A relation is derived
for the effective diameter of the probe immersed in a
uniform incident electric field inside a conducting body.

In Chapter 4 we formulate the expression for the
input impedance (acting as a radiating element) of a
dielectrically coated spherical probe located at the
center of a spherical conducting body. Two different
approaches are discussed to obtain the series expression
for the input admittance and some numerical results are
presented. The end effects of the probe are also dis-
cussed.

Finally, in Chapter 5, we present some experi-
mental results obtained in measuring the input impedance
of the spherical probe in which a relatively new method
of impedance measurement is introduced. A few examples
of the measurement of the induced electric field in

finite conducting bodies containing saline solution is



also shown and compared to the theory. Two appendices,
at the end of the thesis, discuss the convergence prob-
lem of the series expression obtained in Chapter 4 and
the numerical computation of Hankel functions used in

the computer program.



CHAPTER 1II
GENERAL THEORY FOR AN IMPLANTABLE

ELECTROMAGNETIC FIELD PROBE IMMERSED
IN A FINITE VOLUME CONDUCTOR

In order to measure electromagnetic field in-
tensities induced in finite conducting bodies, appropriate
field probes may be inserted in these bodies. 1In this
chapter, we derive the relationship between the output
of a wire probe and the intensity of the electric field
at the location of the probe inside a volume conductor
which is irradiated by an incident electromagnetic wave.
After this, a simple spherical probe is proposed for
further study because, an exact analvtical solution

exists for such a probe.

2.1. A Wire Probe in a Finite Conducting Body

Consider a conducting body of volume V with

electrical parameters e(;), o(;) and irradiated by

Yo
a non-uniform EM wave with an electric field intensity
ﬁi(;), as shown in Figure 2.1. The induced electric field
ﬁ(;) inside the body, in the absence of the probe, can

be theoretically obtained based on the Tensor Integral

Equation method developed originally by Livesay and Chen

(41.



ZL = load impedance ﬁl(;)
IO = terminal (load) current
V0 = ZLI0 = terminal voltage

(

I(s) = Iof(s) = induced probe

[(£(0) = 1]

o = e = oo - o

Voltage
Measure-
ment

Device

Figure 2.1. Configuration of Probe in a Finite,
Heterogeneous Volume Conductor.

in

Veq(r) L 0

Figure 2.2. Equivalent Circuit for Probe in a Finite
Heterogeneous Volume Conductor.



When a probe is introduced into the body, E(T)
induces a current 1I(s) on the probe. (s measures the
distance along the contour T of the thin probe as shown
in Figure 2.1.) This current maintains its own secondary
field Ep(;) at any point in the body.

Assuming the linearity, the total electric field

at any point can be expressed as
E (r) = BE(T) + Ep(?). (2.1)

We aim to find the relation between output voltage of the
probe V(r) and the induced field E(r) at the probe
location.

Using the boundary condition that the tangential
electric field vanishes at any point on the surface of

the perfectly conducting probe, one can write,
S-E (s) = Vg(s)§(s) = 2, I 8(s) (2.2)

where ZL is the load impedance and S is a unit vector
along the contour TI. Assuming that I(s) = Iof(s) as
the induced current on the surface of the probe, we can
multiply both sides of Eg. (2.2) by £f(s) and then

integrate along T to get

frf<s)s-E(s)ds + frf(s)s-Ep(s)ds = 2,1, (2.3)

(note that £(0) = 1). The second integral on the left

hand side is proportional to input current I0 and we



can define the internal impedance of the probe as

Z . =-1_

in Io frf(s)s~Ep(s)ds . (2.4)

This is equal to the input impedance to the probe when
it is used as a radiating element. Substituting (2.4)

in (2.3), we have

Z, .
= frf(s)s-E(s)ds (2.5)
Zin(r) + ZL

Vo (T) =

where the relation V0 = ZLI0

(2.5) is the general relation between the output voltage

has been used. Equation

of the probe VO(;) and the electric field at the probe

location in the conducting body. 1If we define
> - <
Veq(r) = frf(s)s-E(s)ds (2.6)

as an equivalent voltage source for the probe, and noting

that 7= IO’ Eg. (2.5) can be rewritten as

=v_ (1) . (2.7)

I1.2. (¥) + I.2Z
in'f 0°L eq

0

Equation (2.7) suggests an equivalent circuit for the
probe in the conducting body as shown in Figure 2.2.

In practice, we are interested in electrically
small probes such that internal electric field at probe

location is uniform. Thus Eg. (2.5) can be written as

Z

[Zin(r) + ZL

->

Vo () =

frf(s)éds]-ﬁ(‘f) . (2.8)



This is the desired relation which shows that the output
of the probe is proportional to the electric field at the
probe's location in the absence of the probe. It also
shows that the proportionality factor is a strong function
of the location of the probe in the body (i.e. ;) and
also of electrical parameters of the medium (i.e. e(;),
c(;) and uo) at the probe location. We note that the
current distribution function f(s) 1is, in general, a
function of the parameters of the medium. At the same
time, input impedance of the probe when used as a
radiating element Zin(;) is a function of not only
location r but of electrical parameters ¢, o and M-
It is obvious that in order to measure the field intensity
inside, say, a biological body, we need to have a loca-
tion - and local parameter - independent probe. In other
words, the equivalent circuit shown in Figure 2.2 differs
from the conventional circuits for a receiving antenna,
in which Zin is a strong function of location and local
parameters. Also as hidden in Veq(;), the current
distribution function £(s) is not constant as one moves
the probe around in a heterogeneous body.

The solution of the input impedance of a dipole
or a loop type probe is not easily obtainable in a finite
conducting body. Therefore, a simple spherical probe
will be treated rigorously throughout this study because,

an exact analytical solution is possible for this model.



2.2. Spherical Antenna as a Probe

The problem which will be examined in the next
few chapters deals with an insulated spherical antenna as
an implantable probe in a finite conducting body. The
problem is schematically shown in Figure 2.3. It will
be shown that when the coated spherical probe is located
in the center of a spherical homogeneous conducting
body, a closed form analytical solution can be obtained.
After this, we will study the receiving and radiating
characteristics of a dielectrically coated spherical

antenna imbedded in a finite biological body.
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To voltage measuring
device

+j -

E (r)

Figure 2.3. Insulated Spherical Probe in a Conducting
Body Irradiated by an Incident EM Wave.



CHAPTER III

AN INSULATED SPHERICAL
PROBE IN A CONDUCTING BODY

As was mentioned in the previous chapter, a
dielectrically coated spherical antenna may be used as a
probe in a conducting body. 1In this chapter, we consider
the receiving characteristics of an insulated spherical
probe when illuminated by a uniform electric field inside
a biological body. An expression will be derived for the
effective diameter of the probe and some theoretical re-
sults will be presented for the normalized effective dia-
meter as a function of relative dielectric constant and
conductivity of the conducting body.

It should be noted, however, that the results of
this chapter are partly based on the results of the input
impedance of a coated spherical probe when used as a
radiating element in a finite body. The latter results are

developed thoroughly in the next chapter.

3.1. Statement of the Problem and the Superposition

Principle

As shown in Figure 3.1, an electrically small

sphere of diameter 2a, coated by a dielectric shell of

11
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Biological Body

€, O, UO

X

Figure 3.1. Dielectrically Coated Small Spherical Probe
in a Uniform Incident Electric Field Inside
a Biological Body

Figure 3.2. Illustrating the Superposition Principle
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radius b 1is imbedded in a biological body. Assume that
an electric field EO exists at the probe location and
this EO is uniform over the probe when the probe is small.
There is an impedance Z; ~across a narrow gap of the probe

and we aim to derive a relation between the induced

voltage across ZL and the impressed electric field EO'
The dielectric coating has a permittivity €. and perme-

i
ability Mo - The electrical parameters of the kody are

€, o and Mo- The spherical probe is located such that
the 2z axis of the rectangular coordinate system is per-
pendicular to the plane of the narrow gap and the impressed
electric field is in the 2z direction.

Since the biological body is assumed to be linear,
we can apply the superposition principle. This principle
states that the total electromagnetic field present at any
point outside the spherical proke is the sum of the
scattered fields from the shorted probe (a coated solid
sphere) illuminated by the impressed electric field, plus
the field radiated by the coated spherical antenna driven
by a voltage which is equal to the voltage drop across
the load impedance at the narrow gap. This is illustrated
in Figure 3.2 where arrows on the spheres show the
directions of currents.

The radiating antenna will be analyzed in the next
chapter and its input impedance will be formulated. 1In

this chapter, we will solve the scattering proklem.
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3.2. Scattering from a Dielectrically Coated Sphere

An insulated solid sphere together with the
spherical coordinate system is shown in Figure 3.3. The

incident electric field at the sphere is expressed as

-> A A . A
E0 = Eoz = EO Cos 6 r - EO Sin 6 0 (3.1)

based on the approximation of the field being uniform
over a small sphere. Time harmonic dependence of the form
exp(jwt) 1is implied but not shown in the analysis.

From the incident field of equation (3.1), we can
see that there exists only the r- and 6- components
of the electric field in dielectric region and the con-
ducting body. Furthermore, all fields are independent of
azimuthal angle ¢ due to the rotational symmetry. The
magnetic field associated with this uniform electric field
can be shown, via Maxwell's curl equation, to be iden-
tically zero. This implies that the effect of the
magnetic field will be neglected at this stage. The
following relations are true under the stated approxima-

tions.

=0, E =0 and Hr=H6=O' (3.2)

Of course, there is a scattered magnetic field maintained
by the current induced on the sphere by the uniform

incident electric field.



15

(r,06,9)

—f - om = -

21

€, O, UO

conducting body

Figure 3.3. The Scattering from a Dielectrically Coated
Sphere when Irradiated by a Uniform Incident
Electric Field in the 2z Direction, Inside
a Conducting Body.



16

There are two regions where we have to find ex-
pressions for the total EM field components. To do this,
we can start from the Maxwell's equations andderive the
Helmholtz Wave equation. The solution to this equation
will be considered in more detail in the next chapter.
Here, we just write down the tangential components of E
and ﬁ fields in the two regions:

For r > b, the scattered fields by the coated

sphere are

S _ 51 s+
H¢n(r,6) = Pn(Cos e)H¢n(r) (3.3)
s _ 51 + s+
Een(r,e) = Pn(Cos e)zsn(r)H¢n(r) (3.4)
where
4 (2)
A H (kr)
Hs+(r) = n n+k , k2 = wiu
wn /kx °
U
- - g. = 0
{ £ = ¢ g n T (3.5)
(2)
Z+ () = in H n_%(kr) n_
sn g P P =
- n+
H(l) and H(z) are Hankel functions of the first and

second kind, respectively. £ 1is the complex permittivity
of the conducting body and Z;n(r) is the TM mode wave
impedance in this region. An’ for integer n, is an un-
known coefficient to be determined later from the boundary

conditions. In Equations (3.3) and (3.4), only the
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out-going waves are considered. This approximation neglects
the reflection of the waves at the outer surface of the
conducting body. This may be valid because of the losses
in the medium.

For a < r < b, the total fields in this region

can be expressed as

_ pl - +
Hoo(£,8) = Po(Cos 0)(H_ (x) + H@n(rﬂ (3.6)
1 + +
Egn(r.0) = Pp(Cos 0)[z (r)H_ (r) - 2_ (rH_(r)) (3.7)
where
(1) (2)
rH- (r) = Bn n+55(k r) gt (r) = Can+%(kir)
¢n Vkir ¢n Vkir
U
2 _ 2. _ 0
kl = W HgE e Ny T E;
< (3.8)
(2)(k r) ]
z) (x) = ing [ (21)E - X r:|
n (k r) i
n+k
(1) (k r)
z (r) = -ing n- -3 .
. n (lzs(k r) kit

Note that since this is a finite region, there exist both
out-going spherical wave, H;n(r), and incoming spherical
wave, H;n(r). Bn and Cn are two other unknowns to be
determined later.
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Since there is a solution for each n, the actual
E and H fields are infinite sums of fields given by

equations (3.3), (3.4) and (3.6), (3.7), i.e.;

H¢(rle) = Zn=l Hwn(r,e) (3.9)
where Hwn(r'e) is as given by (3.6). Similar expres-

sions can be written for other field components.

Up to this point, we have introduced three un-
known coefficients An’ Bn and Cn' To solve for these
unknowns, we use the Boundary Conditions.

The first boundary condition is that the tangential

electric field vanishes at any point on the perfect con-

ducting metallic sphere, i.e.
_ o1 + + - 2= = =
Een(g,e) = Pn(Cos B)EZn(a)HWn(a) Zn(a)Hwn(ai] =0 (3.10)

which is valid for all n and 6.
The second boundary condition states that the
tangential E and H field components are continuous

at r = b, or

- + _ .5+

H¢n(b) + H¢n(b) = an(b) (3.11)
+ + - - ot s+ _
Zn(b)an(b) - Zn(b)H¢n(b) = an(b)H¢n(b) Eoéln (3.12)

Note that in writing the continuity of E field, the
uniform incident electric field Eo in the conducting

body is included in the right hand side of equation (3.12).
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The notation associated with EO' i.e.

$ = (3.13)

is the Kronecker delta.
The three unknown coefficients are the solutions

of the following system:

Y X =F_ (3.14)
where
An anln
x =|B |, F =| o (3.15)
n n n
c 0
n{2)  (xb) (1) (x p) 1(2) (kb 7
n+l/2 ;n(b) n+l/2'7i Z;(b) n+]/2 Z;(b)
vkb 4P i
(2) (1) (2)
¢ < |Mns1/2P “Hhv1y2 (KiP) Hhry2tkiP)
" vkb /k;b kB
(1) - (2)
L 0 n+% (kia)zn(a) Hn+%(k .a) )

The matrix equation (3.14) gives us non-zero solutions
for An' Bn and Cn only when n = 1. That means

there is only one term in the infinite series of equation
(3.9). This simply is due to the fact that the incident

electric field was assumed to be uniform. If, for example,

the incident field was assumed to be a plane wave, the
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solution would be quite involved and there would be
infinite terms in the series solution of Equation (3.9).

We can now define
a, = =—, bl = == and c, T g (3.16)

such that the expression for the tangential H field on
the surface of sphere, as given in equation (3.6), can

be expressed as

(1) (2)
1) (x.a) 182) (x.a)
H (a,0) = Sin e[—3/2—1 b, + /21" .1 g (3.17)
q} VE.a l VE.a l 0
1 1

Note that P%(Cos 6) = Sin 6. The unknowns b1 and

c are solved from equations (3.16) and (3.15) as

1
4 /k.b
by = 7 = a, 7 ¥ (2)
[z, (o) +2] (0)) Hy 3 (k;b)+[2 ) (b) =27 (b)) a(a)Hy¥) (k;b)
4c1 = a(a)b; (3.18)
=y (1)
) Zl(a)H3/2(kia)
a(a) = T (2) .
L Zl(a)HB/Z(kia)

Up to now, the magnetic field on the sphere is completely
known.

We are interested in the current on the sphere.
The surface current on the surface of the sphere is given

by
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~

K(8) = A xH = £ x H (a,0)§ = -H(P(a,e)é (3.19)

where H¢(a,6) is as given by equation (3.17). This

current is proportional to E, and can be written as

Kg(8) = -Hcv(a'e) = Y(O)E, (3.20)
where
(1) (2)
H (k.a) H (k.a)
Y(6) = —[—142——5—— bl + 3/2 1 ° c{]sin 0 (3.21)
/Eia v’kia
with bl and c, as given by equation (3.18). Note

that Y(6) has the dimensions of an admittance.

3.3. Equivalent Circuit of an Insulated Spherical Probe

in a Conducting Body

Referring back to superposition principle as de-
picted in Figure 3.2, the total surface current on the

insulated sphere of Figure 3.1 is given by
K g(0) = Kg(8) + Ky () (3.22)

where Ke(G) is found in the previous section and is
given by equation (3.20), Ké(e) is the surface current
on the spherical probe when it is driven ky a voltage
generator. The radiating problem will be solved in the
next chapter. At this point, we write Kg at the probe

gap or 6 = 90° simply as
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' = oy =— v
Ke(e = 90°) = 27 a 7. (3.23)
in

where V 1is the induced voltage (or the voltage drop)
across the load impedance of the spherical probe, and

Zin is the input impedance of the coated sphere when

used as a radiating antenna in the same conducting body.
The general expression for this input impedance Zin will
be derived in the next chapter.

The induced voltage across the load impedance is

given by

vV = -ZLI = -2ma Kte(e = 90 )ZL (3.24)

Note the polarity of this voltage drop as shown in Figure
3.1. Substituting equations (3.23) and (3.24) into the

equation (3.22), one gets;

\% \4

- = + Y(® = 90°)E, .
2ra ZL 2ra Zin 0
After rearranging, it becomes
V(zin + zL)/zL = =2 anZinY(O = 90 )EO (3.25)

where Y (9) is given in equation (3.21).

Equation (3.25) suggests an equivalent circuit for
the insulated spherical probe in a conducting body as
shown in Figure 3.4. The equivalent driving voltage for

the probe in Figure 3.4 is,

Veq:= -2na ZinY(e = 90 )EO . (3.26)
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IN

\Y
€q

Figure 3.4. Equivalent Circuit of the Dielectrically
Coated Spherical Probe in a Homogeneous
Biological Body.
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Note that Figure 3.4 is similar to Figure 2.2 of Chapter
2 which is the equivalent circuit of a wire probe.
In analogy with a wire probe, we can define an

"effective" diameter of the probe as

Deff = Veq/E0 = -2qa ZinY(e = 90°) (3.27)

Furthermore, this can be normalized to the physical
diameter of the sphere, 2a, to give dimensionless

normalized effective diameter as
deff = Deff/2a = =T ZinY(e = 90°) (3.28)

Finally, before ending this section, we note that Veq
is the voltage developed across the load impedance when
ZL + o, Therefore, useful information can be obtained

from the effective diameter of the probe. Some theoretical

results of this parameter are shown in the next section.

3.4. Some Theoretical Results on the Normalized

Effective Diameter of the Spherical Probe

The expression for the normalized effective dia-
meter of the spherical probe was derived and expressed
in equation (3.28) of the last section. The results of
this section are also based on the results of the input
impedance of the spherical probe acting as a radiating

element Zin' which will be analyzed in the next chapter.
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First, in order to compare the receiving charac-
teristics of the spherical antenna to the other conven-
tional probes (such as dipoles and loops), the effective
diameter of a small sphere in free space is calculated.
In Table 3.1, the real and imaginary parts (or magnitude
and phase) of the normalized effective diameter for a
small spherical probe in the free-space are shown. The
frequency is assumed to be 600 megahertz which -
corresponds to the free space wavelength of 50 cm. The
spherical probes considered are all electrically small.

As can be seen from Table 3.1, for small spherical

receiving antennas,
Deff/Za = 1/2 (3.29)
is a good approximation. This means that

Dogg = @ (3.30)

which is the physical radius of the sphere. This is
similar to small dipole type probes, where the effective
length is one half of the total physical length. The
theory for the dipole antenna as a receiving element, can
be found in King's book [5].

Several examples were worked out for the insulated
spherical probe of Figure 3.1. It was found that the
effective diameter, in general, is a strong function of

the relative dielectric constant of the conducting body.
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Table 3.1. Complex Normalized Effective Diameter of
Small Spherical Antenna in Free Sgace
(f = 600 MHz; ), = 50 cm.)

0
o Dogg/2a
MAGNITUDE PHASE (DEGREES)

0.5 0.44738 ~0.00478
1.0 0.44805 ~0.03796
1.5 0.45078 -0.12655
2.0 0.45448 ~0.29493
2.5 0.45902 ~0.56393
3.0 0.46428 ~0.95012
3.5 0.47010 ~1.46559
4.0 0.47630 ~2.11801
4.5 0.48270 -2.91084
5.0 0.48913 ~3.84390
5.5 0.49541 ~4.91383
6.0 0.50137 ~6.11478
6.5 0.50685 ~7.43891
7.0 0.51170 ~8.87698
7.5 0.51579 ~10.41877
8.0 0.51902 ~12.05351
8.5 0.52127 ~13.77013
9.0 0.52247 -15.55751
9.5 0.52254 ~17.40459

10.0 0.52144 -19.30041
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Of course, it is also a function of the thickness of the
coating (or b). The example shown in Figure 3.5 illus-
trates the magnitude of normalized effective diameter for
a small, coated spherical probe. The frequency is

f = 2.45 GHz (corresponding to the free space wavelength
of AO = 12.24 cm) and the radius of the sphere is

a = 1.0 mm. The sphere is coated with a dielectric of
dielectric constant ¢, _ = 2.1 (Teflon). The conduc-

ir
tivity of the body is o

1 mmho/m. The curves are
plotted for different thicknesses of the coating as a
parameter. The independent variable is the relative
dielectric constant of the conducting body. It is to be
noted that although the effective diameter is a complex
quantity, the imaginary part is usually small compared
with the real part.

As can be seen from Figure 3.5, for smaller values
of b/a (i.e. for thin coatings), there is a considerable
variation in the effective diameter as the relative
dielectric constant is changed. But for higher values of
b/a (i.e. for thicker coatings), there is almost no
variation in the effective diameter of the probe as the
€ is varied. This is not true, however, for lower
values of €.r Say, €p < 10. Fortunately, for most cases
of interest in biological bodies, €r is greater than 10.

The results obtained in this chapter are based

on the geometry of a conducting body of infinite extent.



[SPEN
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However, as we will see later, the input impedance of the
probe is quite independent of the electrical parameters
of the conducting body and the probe location. When the
dielectric coating is sufficiently thick, the effective
diameter expression derived in this chapter may also be
valid for an insulated spherical probe immersed in a
finite body.

Finally, in Figure 3.6, the normalized effective
diameter of the probe is shown as a function of the
dielectric constant of the conducting body for different
values of the relative dielectric constant of the coating,
€... It is seen in this figure that for lower values of

lr

€ir? the effective diameter remains almost constant for a
wide range of relative dielectric constants of the con-
ducting medium.

Therefore, as far as the receiving characteristics
of the insulated spherical probe are concerned, in order
to have the output of the probe to be independent of the
electrical parameters of the conducting body, a thick
coating with low dielectric constant materials is
appropriate. In the next chapter, the radiating charac-
teristics of the coated spherical probe will be studied

as functions of the electrical parameters of the medium

and the probe location in a conducting body.
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CHAPTER IV

DIELECTRICALLY COATED SPHERICAL
ANTENNA IN A FINITE CONDUCTING BODY

As was seen in Chapter 2, the output of an EM
field probe immersed in a finite conducting body is, in
general, a strong function of its Input Impedance when
used as a radiating element. Furthermore in Chapter 3,
the expression for the effective diameter of a
dielectrically coated spherical probe was found to be
dependent on the input impedance of the radiating
spherical antenna.

It is evident that to understand the performance
of an EM field probe in a biological body, the input
impedance of the probe acting as a radiating element
must be determined. 1In this chapter the expression for
the input impedance of the probe is determined as a
function of the parameters of the body and the relative
probe location inside the body.

The theoretical results for the input impedance
of a coated spherical probe in a finite conducting body
were computed numerically with a digital computer and are
shown in figures. 1In the next chapter, the accuracy of

these results is verified by experiments.

31
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It is noted that the major difference between
the problem studied here and the ones considered by other
workers and available in the literature is the fact that
the conducting body in the present study is finite. The
selection of a finite conducting body increases the
degree of difficulty in the theoretical analysis. How-
ever, with the geometries of a spherical conducting body
and a spherical probe, an exact solution is obtainable
by the method of boundary value problem. In the course
of solving the problem, the matrix inversion method was
first applied without success. Later, a transmission
line approach was employed to find the solution success-

fully.

4.1. Geometry of the Problem

Figure 4.1 shows the geometry of the problem to
be considered in this chapter. An electrically small
sphere of radius a 1is driven by a voltage generator
which maintains a potential difference V across a
narrow equatorial gap. The spherical antenna is coated
by a dielectric shell of outer radius b and dielectric
constant € This dielectric coating region is assumed
to be almost lossless, i.e. €5 is a real quantity.

The coated antenna is then imbedded in the center of a

conducting body of radius c¢. The electrical parameters

of the conducting body are ¢ (permittivity) and o



Figure 4.1.
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==

€0'Yo
(free space)

IT ITI

biological body

Dielectrically Coated Small Spherical
Antenna in a Finite Biological Body. A
Generator Maintains a Voltage V Across
a Narrow Equatorial Gap of the Conducting
Sphere. Spherical Coordinate System is
Also Shown.
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(conductivity). It is noted that for an exact solution
to exist, the insulated sphere should be located at the
center of the conducting body.

We aim to find an expression for the input
impedance of a radiating, insulated spherical antenna,
which is electrically small and can be used as a probe,
imbedded in the center of a spherical biological body.
This input impedance will be shown to be a function of
all parameters involved, namely, a, b, c, €50 €, O and

the frequency of the oscillating source, f.

4.2. Electromagnetic Field Solutions

Due to the geometry of the problem, the usual
spherical coordinate system (r,6,p) 1is used as shown in
Figure 4.1. There are three regions in which electric
and magnetic fields are to be determined from the

Maxwell's Equations. The two curl equations are:
> . >
V x E = -jmuOH (4.1)
V x B = juek (4.2)

in which ¢ 1is, in general, a complex permittivity. The
time dependence of exp(jwt) is understood. Due to the
rotational symmetry, all field quantities are independent

Of w, i.ea

— ( ) =0 (4.3)
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Also, due to the uniform excitation of the antenna around

the gap, it is true that
E =0 (4.4)

It implies that there is no . component of the electric
field in any region. With conditions (4.3) and (4.4),
it can be shown that the magnetic field has only the ¢ com-

ponent. From Equation (4.1),

vV x E = 13 (rE

1 ry, _ _- >
T 5r Y Jo = ~JuugH (4.5)

Equation (4.5) shows that H=H », i.e. there is only
P

o component of H field at any point outside the

spherical antenna.

Taking curl of Equation (4.2) one gets
> . >
VxVxH= jwe VxE (4.6)

in which the complex permittivity € 1is assumed to be

independent of the location. Using Fquation (4.1) in

(4.6), one has

V x V x ﬁ = wzuogﬁ (4.7)
Since H = $H¢, Equation (4.7) can be rewritten
as
32 1 3 1 3 . 2
;;5 (rqv) + ;7 55-[sin 5 55 (rﬁ031n Gq + w uugrﬁo = 0.

(4.8)
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This partial differential equation is a key relation for
the derivation of all EM field components in the different
regions. It is written in a form to facilitate the solu-
tion by the usual "separation of variables" technique.

Let us now consider the 3 different regions as shown in

Figure 4.1:

Region I, a < r < b or the dielectric coating region.

In this region the insulating layer has a real dielectric
constant ¢ and Equation (4.8) can be written as
2 my + L2 (1 2y ogine] + k2, = o
8r2 Ly r2 96 | sin 6 2936 Lo . 1771y
(4.9)

2 2 . .
where ki = wugey and ki is the real wave number in
this region. Solution to the above equation can be

written as

rHLp(r,e) = R(r)€(s) . (4.10)

and Equation (4.9) is rewritten;

2 .2
rd“R, 14d 1 4 : 2.2 _
R_d_1,'2'+(§§€[sine"€(® sin 9’} tkgpo =0 (4.1

The above equation is true if,

(4.12)
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where K 1is a separation constant. However, to get well-
behaved solutions to (4.12), K should be equal to

n(n + 1) where n =1,2,3,... . The resulting ordinary
differential equations are well known equations in mathe-
matical physics [6]. With this choice of K, we can write

the solutions as (details omitted and are in the reference)

_ (2) (1)
R (r) = /TIAH {1 p(kir) + B H 1 o(kir)]
(4.13)
@n(e) = P%(Cos 6)

(1) (2)

In the above equations, H and H are Fankel Func-
tions of the first and second kinds, respectively.
Physically, they represent in-coming and out-going waves
which exist in the dielectric coating region. Pi(Cos )
is an Associated Legendre function of the first kind,
order n and degree 1. Furthermore, An and Bn are,
at the present time, unknown coefficients to be deter-
mined later from boundary conditions.

From Equation (4.13), we write the expression for

the tangential component of the magnetic field as

[e o}

z
n=1

(2)
n+l/

(1)

(r,8) = n+l/2

1
Pn(Cos 8)[AnH 2(kir) + BnH (kir)]

s

H
1p
(4.14)

With the magnetic field determined, electric

field is found from Maxwell equation (4.2). This gives
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= ) o (2)
E, (r,68) = ——1—7: Ip_qn(n+1)P (Cos 8) [A H ©) o (k1)
weir r
(1)
+ BH L) o (kyr) ] (4.15)

and

E, (r,8) = - —— 3°_pl(cos o){a_mu‘?) _(x.r)

18 % n n'MHne1/2%

wsir/f n=1

- (2) (1) _ (1)
kian—l/Z(kir)] + Bn[an+1/2(kir) kian-l/Z(kir)]}

(4.16)

Note that in deriving the above equations, the following

relations of Legendre and Hankel functions have been used:

a1 _ 1 1 _ 1

1) [Pn(Cos )] = sin 6[nPn+l(Cos 0) (n+l)Cos 8 Pn(Cos 8)]
(4.17)

1 [Cos 6 Pl(Cos 8) - Pl (Cos 8)] = (n+l)P_(Cos 8)

sin 0 n n+l n

a (1) _ _ n+l/2 (1) (1)

ar Bpe1y2(0) = - —F— Hpoy (1) + H Oy o (1)
(4.18)

a ..(2) _ _ n+l/2 _(2) (2)

ar Pn+1/2(0) = r Hppp o(0) + H g o ()

Up to this point, we have found the complete expressions
for the total EM field components in the dielectric coat-
ing region a < r < b. 1In other regions, the fields are
written by inspection since the form of the wave equa-

tions is similar in all regions.
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Region II, b < r < ¢ or the biological body region.

In this region because of the losses in the conducting
body, the wave number of the medium is complex and given

by

2 2 . _ _ .0
km = w UOEI g € Iy (4.19)

The tangential field components in this region are,

_ _l_ ) 1 (2)
(1)
+ Dan+l/2(kr)] (4.20)
and
N BRI | (2)
Eze(r.e) elE Zn=l Pn(COS e){cn[nnn+l/2(kr)
- (2) (1) _ (1)
ern-l/Z(kr)] + Dn[an+l/2(kr) ern_l/z(kr)]}(4.21)

Note that E2r is omitted since it is not used in the
determination of the unknown coefficients A, Bn’ Cn

and D .
n

Region III, r > ¢ or the free space region. In this

region, the wave number is real and given by
2 2

and only outward traveling waves represented by
Héz)(kor) are present. Therefore, the tangential field

components are given as
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1 o 1 (2)
Hy (£,0) = In_q EnPp(Cos 0)HZ) ,(kor) (4.23)
and
Eyq(r,0) = - -3 N EnPl(Cos 0) [na(f)l/z(kor)
weor/f n= n n
(2)
- HpZ) (ko) ] (4.24)

This completes the derivation of EM field components in
the three regions shown in Figure 4.1. There are five
unknown coefficients An’ Bn’ Cn’ Dn and En for each
integer n. To find these unknowns and obtain the ex-
pression for the magnetic field on the metallic sphere
(and thus the current), we use the boundary conditions
on the tangential field components as outlined in the

next section.

4.3. Applications of Boundary Conditions

The boundary conditions state that the tangential
components of electric and magnetic fields are continuous
at r=b and r = c (see Figure 4.1). Moreover, on
the surface of the metallic sphere (assumed to be perfectly
conducting), Ele(a,e) vanishes at any point except at
the narrow equatorial gap. An enlarged view of the gap
region and a possible feeding system is shown in Figure
4.2. The angular width of the gap is 260 and is assumed
to be very small (e.g. 260 is of order of 10 degrees or

smaller). Mathematically, we write
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Perfect conducting sphere

+ 4+ ++ A+ + 4+ o+ + \VET28)

dielectric gap _ -
region F~ 26, \Y

coaxial
Transmission Line

To R.F. Generator

Figure 4.2. Enlarged View of the Gap Region of the
Spherical Antenna. A Coaxial Line Connected
to a R.F. Source, Maintains a Voltage V
Across the Narrow Gap. Input Current I 1is
Shown at the Edge where 6 = w/2 - 90 (280

is the Angular Width of the Gap).
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=V -
Ele(a,G) =3 § (8 n/2) (4.25)

Oon the other hand, from Equation (4.16) in the

last section, we have

(2)

_ 1
Eyq(a,0) = -3 P, (Cos 6) {A_[nH {) ,(k;a)

WE ; a/_ n=1

(2)
n-1/

(1)
n+l/

(1)

-k, aH 2(k;a)] + B [nH o (k;a) - kiaHn-l/Z(kia)]}

(4.26)

Multiply both sides of Equation (4.26) by

"P;(Cos 8)sin 8" and integrate from 0 to m on 6 to

get
T 1 j (2)
J E,.(a,8)P (Cos 6)sin 68de = Z {A [nH (k. a)
o 1° m weia/a PolRnl/2
_ (2) (1)
k. a 1/2(kia)] + Bn[an+l/2(kia)
- k aH(l) (k. a)]} f P (Cos e)P (Cos 6)sin 6d6 (4.27)

-1/2

where we interchanged the summation and integration
opeations. We now use the following orthogonality rela-

tions of the Associated Legendre functions:

T
S Pl(Cos e)Pl(Cos 8)sin 6d6 = 0 ; m # n

(4.28)

2n(n+l)

1l 2 . _ .
[Pn(COS 8)]“sin 6de6 = n+l ¢

o

Equation (4.27) then becomes,
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J2m(m+1) |
2m+1

o3

Ele(a,G)P;(Cos 6)sin 6de = - —
weia/g

(2)
m+l/2

(2)

'{Am[mH n-1/2

(kia) - kiaH (kia)]

(1)
m+1l/2

(1)

+ Bm[mH (kia) - kiaHm-l/2(kia)]} (4.29)

Using Equation (4.25) for the tangential E field on the
sphere, the left hand side of Equation (4.29) is evaluated

as follows:

E

ow12

1 . _
le(a,e)Pm(Cos 9)sin 646 =

ow3
o<

§(6 - ﬂ/2)Pi(Cos 8)sin 646
(0) . (4.30)

Therefore, Equation (4.29) is finally written as (after

some rearrangements and replacing m by n)

ylnAn + ¥YoBp = gnV (4.31)
where
( (2) (2)
Yin = MHpy1/2(k53) - kjal oy o (k@)
- (1) _ (1)
<Y2n = an+1/2(kia) kiaHn-l/Z(kia) (4.32)
. 1, .(2n+1)
9n < J““Ei'/a Pn(o) 2n (n+l)

Note that, since Pi(O) is zero for all even integers

(see for example Reference 7), we have
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n=1,3,5,7,... odd integers only (4.33)

Equation (4.31) is written in a form suitable for matrix
solution which will be used to find the impedance ex-
pression.

The other boundary conditions are stated by the

following relations:

Eyq(bs8) = Eyp(b,8), E,o(c,8) = Eyp(c,0)
(4.34)

(b,0) (b,8), H, (c,8) H, (c,9)

f1p = M 2 3

Note that these relations are valid for all values of the
angle 6. Using the expressions for the tangential com-
ponents of fields derived in the previous section, we

write down the following equations:

at r = b;

y3nAn + y4an + yann + y6nDn =0 (4.35)
and

Y7nPn * YgnBn * y9nCn * ¥YionPn = 0 (4.36)

where
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(Yan = &/e; {3 (kb - kpEf2) (kb))

Yon = €/e;tnnly) o kib) - kpEIL) (kb))

Ysn = -[nH{F) 5 (kb) - kbHIZ) (kb)) (4.37)
{ Ygn = -tnr{}) o (kb) - kbr(l) ) (kb))

Yon = Héii/z(kib)

Yan = Hasl/o (KsP)

Yon = Hpty 2 (KP)

Yi0n~ “éii/z‘kb)

L

Equation (4.35) results from the continuity of Ee and

Equation (4.36) from the continuity of H , at the boundary
D

yllncn + y12nDn + yl3nEn =0 (4.38)

and

Y14n%n * Y15nPn * Yi6nEn = © (4.39)

with
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/Y11n = ‘lnﬂéii/z‘RC) } kc”éfi/z‘kc’]
Yion = ’[“Héii/z(kC) N kc“éii/z‘kc’]

€y13n = e/eqnnf2) (ko) - kgent?) (ko)) (4.40)
Yi4n = Héii/z(kc’
Yisn = Héii/z(kc)

(Y16n = #1112 (Kgo)

This completes the application of the boundary conditions.
In the next section, we put the equations derived in this

section into a more compact form.

4.4, Matrix Equation Formulation of the Input Impedance

Expression

Equations found in the last section relating the
unknown amplitude coefficients A , B, C_, D and E
n n n n n

can be put in a matrix form as follows:
YX = GV (4.41)

where V 1is the (scalar) applied voltage and



ryln Y2n 0 0 0 ] FAA~

Y3n Y4n ¥Ysn Yen 0 Bn
Y=1¥m Ysn Yon Yion © S (4.42)

0 0 ¥yin ¥ion Yi3n Dy

-p 0 Y14n Y15n y16q‘ _Fn,

The elements of the coefficient matrix Y are defined in
Equations (4.32), (4.37) and (4.40) of the last section.
The column vector G has only the first non zero element

and is given by

?"gr?
0
G=1]0 (4.43)

0

(.0 .J

with g, as given in Equation (4.32).
The solution to the matrix equation (4.41) is

found by inverting the known matrix Y,

x = v lgv (4.44)

where YY-l = I and I 1is the 5 x 5 wunit matrix. We

are mainly interested in solving for the current which
flows on the surface of the sphere. This is related to
the solutions X of the equation (4.44) as is seen from

the following discussion.
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The surface current density at any point on the
surface of the metallic sphere of radius r = a 1is given

by
K(6) = A x ‘ﬁl(a,e) (4.45)

where 1fi is the unit outward normal vector to the surface
of the sphere or fi = £; a unit vector in r direction

of the spherical coordinate system as shown previously in
Figure 4.1. Based on Equation (4.45), we compute the

current which flows on the surface of the antenna as
I(6) = (2ma sin e)Ke(e) (amp.) (4.46)
Or, substituting for xe(e) from Equation (4.45),

I(9) = -2ywa sin 6H, (a,®) (4.47)

Ly

Now, the input current, which is defined as the current
flowing from the input terminal 6 = 7/2 - 8o toward the
top of the spherical antenna (see Figure 4.2), is given

by
I =-I(6=mn/2 - 60) (4.48)
which, by virtue of Equation (4.47), becomes

I = 2ra Cos eOth(a’"/z - 60) (4.49)

Or, using H, (r,0) as given in Equation (4.14), we get

Ip
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= © 1 _. (2)
I = 2nva Cos 60 Zn=1 Pn(Sln 60)[Aan+l/2(kia)
(1)
+ Ban+1/2(kia)] . (4.50)

From Equation (4.41), we see that all coefficients An'

Bn' Cn' Dn and En are proportional to the applied

voltage V. Therefore defining,

b_ = Vﬂ"“ etc. (4.51)
we write Equation (4.50) as

(2)

_ ® 1, .
I = 2n/a Cos 8,V I, _; P, (sin 60)[aan+l/2(kia)

(1)
+ ann+l/2(kia)]' (4.52)
where now aj and bn are solutions of

YX' = G (4.53)

with Y and G as given previously and

X' =|c (4.54)

L n_J
is our unknown column vector.
Equation (4.52) is the desired relation. From

this equation, input admittance of the coated spherical
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antenna in a finite conducting body shown in Figure 4.1,

is found to be

(2)

_ © 1 .
= 27m/a Cos 0o I = P_(sin 60)[aan+l/2(kia)

=1
(odd)

<IH

IN

(1)
+ ann+l/2(kia)] (4.55)

One may change the index of summation by letting n = 2m+l

and let m run from 0 to o;

1 (2)

Yin = 27/a Cos 85 Iy Popyp (Sin 0g) layn, Honys o (ky2)
+ b, B a4y (4.56)
2m+1M2m+3/2 (Kg .

The input impedance is the inverse of the input admittance;

- -1
ZIN = (YIN) (4.57)

This completes the derivation of the input impedance of
our spherical antenna as shown schematically in Figure
4.1. The final solution, of course, is obtained by in-
verting the matrix Y of Equation (4.53).

Although the solution obtained through the matrix
operations is mathematically sound and rigorous, final
results must be obtained with a computer which evaluates
the matrix elements of the matrix Y in Equation (4.53)
and inverts the matrix. A computer program was written

to solve the problem and find the input impedance.
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However, after some computations, it was found that it is
difficult to compute the higher order modes or terms of
the admittance expression, Equation (4.55). Specifically,
it was found that, in some cases the solution blew up

and inaccurate results were obtained through the matrix
inversion. After checking all the steps involved and
printing some of the matrix elements, it was discovered
that the matrix Y was, in some cases, nearly singular
(or the determinant was almost zero). Physically, in
general, all modes are excited and there is a solution
for each odd integer n. The problem may be due to the
fact that since arguments of the Hankel functions in-
volved are very small, and it is difficult for the com-
puter to handle an operation involving these functions.
For example, in Table 4.1, we show the values computed

(2)

for Hn+1/2(kia) for a case where a =1 cm, £f = 600 MHZ

(free space wavelength of 50 cm) and e; = 2.1 €0’ €0
being the free space permittivity. These values are
needed when we want to compute the first 20 terms of the
series for input admittance. Table 4.2 shows the values

éii/Z(kb) when €. T 70, c =1 y/m and b = 1.5

for H
cm. In this case the arguments of the Hankel function
are complex.

As can be seen from Tables 4.1 and 4.2, the Hankel

functions needed for the input impedance computation are

such that we are dealing with either very large numbers
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. (2)

Table 4.1. Values of Hankel functions Hn+l/2(kia)
when a =1cm, £ = 600 MHz (a/xo = 0.02;
AO is free space wavelength) and

€y = 2.1 €07 € is free space permittivity.

(2)

n Hn+l/2(kia)
REAL IMAGINARY

1 .20625 x 1071 .10423 x 102
3 .19603 x 104 .46462 x 104
5 .65809 x 1078 .87992 x 107
7 .11213 x 10”31 .37860 x 101
9 .11534 x 10717 .29055 x 10%°
11 .79330 x 10”20 .34895 x 10%°
13 .39042 x 10”24 .60397 x 1023
15 .14426 x 10”28 .14235 x 1028
17 .41491 x 10733 .43840 x 1032
19 .95514 x 1038 .17090 x 1037
21 .17996 x 10”42 .82270 x 1041
23 .28264 x 10”47 .47923 x 1046
25 .37570 x 107 °2 .33225 x 10°1
27 .42813 x 107>/ .27036 x 10°°
29 .42287 x 10”52 .25516 x 10°1
31 .36551 x 10~ %7 .27646 x 10°°
33 .27880 x 10”2 .34082 x 10°1
35 .18903 x 10~ /7 .47434 x 10'°
37 .11468 x 10”92 .74013 x 1081
39 .62626 x 10”58 .12867 x 1087
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Table 4.2. Values of Eankel function with complex

(2) =
argument, Hn+l/2(kb)' when b = 1.5 cm,

f = 600 MHz (a/)\0 = 0.03), k = m#uoi;

E =€-3 %: e =70 eo, o =1 %.

n REAL PART IMAGINARY PART
1 .23754 x 10° .51620 x 10°
3 -.14714 x 10t .22733 x 10t
5 -.48549 x 10° .27834 x 102
7 -.28124 x 10* .27098 x 103
9 -.24679 x 10° -.81352 x 10°
11 -.28138 x 108 ~.24123 x 108
13 -.33292 x 1010 -.71960 x 10%°
15 -.59027 x 10%1 -.22745 x 10%3
17 .31749 x 1013 -.79329 x 10%°
19 .28798 x 1018 -.28714 x 10'8
21 .22228 x 1021 -.88300 x 1020
23 .17026 x 104 .46718 x 1022
25 .13111 x 1027 .60576 x 102°
27 .96185 x 102° .10688 x 10°°
29 .53449 x 1032 .15724 x 1033
31 -.17019 x 1033 .21959 x 103°
33 -.15418 x 1039 .29450 x 103°
35 -.43918 x 1042 .35780 x 10%2
37 -.10406 x 1046 .29790 x 10%°
39 -.22865 x 10%? -.28955 x 1048
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or very small ones. Now, due to the fact that the computer
carries only a finite number of significant figures (e.gq.
in CDC 6500 system 30 for double precision arithmetic),
this will lead to errors in evaluating the matrix elements
of the matrix Y because of the roundoffs. In fact,
after printing some of the elements out, it is found
that, for example, two rows of the matrix are identical
while theoretically they are always different. This com-
putational error makes the matrix nearly singular and
therefore, the results obtainable from this method were
inaccurate.

It is true that for small antennas only the first
few terms are needed for the real part of the input
admittance (i.e. the conductance). In fact the infinite

series of the real part of YI in Equation (4.63) con-

N
verges while the series for the imaginary part (the
reactance) converges only for the assumption of finite
gap (i.e. 90 # 0°). This is shown more carefully in
Appendix A.

To solve the problem of computational error, we
used a different approach in solving for the unknown
amplitudes of the EM fields components in the three dif-
ferent regions. This method uses the formulation used

in the transmission line theory and is described in the

next section.
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4.5. Transmission Line Approach

The method discussed in this section, employs the
definitions of the reflection and transmission coefficients
as used in the transmission line theory.

Following Stratton [8], we write the solutions of

field components in the three regions as

Region I (a < r < b);

o 1 + -
gpl(r,e) = anl Pn(Cos 8)[%pln(r) + %pln(r)] (4.58)
where
(1)
H . (r) = Aan+l/2(kir)
[} 1n ,——-kir
(2)
B H (k.r)
H () = B n+l/2 i (4.59)
® N k.r
i

An and Bn are the two new unknown amplitude coefficients
(note that they are different from those used in the pre-
vious section). Other notations have been introduced in
the previous sections.

Physically %:ln(r) and ﬁ;ln(r) represent,
respectively, outgoing and inward spherical waves which

are present in this region. The tangential component of

the E field is written as

L 1 + + - -
Egy(r,8) =L 4 P (Cos 6)[Zln(r)qpln(r) - Zln(r)qpln(r)]

(4.60)
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where TM mode wave impedances are defined by
- 4 (2)

2t ey = in. | Pncrz2®iF)
1n Iny 12 _(k.r) KT
< n+l/2"'1i - (4.61)
(1)
27 (r) = -3 Hn—l/2(kir) n
1n iny H(1) (k.r) kir
n+l/2 i

fu
with ny = Eg being intrinsic impedance of the di-
i
electric coating medium.

Region II (b < r < ¢): 1In this region the wave-number is

complex and tangential field components can be written

similar to that in region I as

_ o 1 + -

and

_ 1 + +
Eez(r.e) =1z Pn(Cos G)IZZn(r)H¢2n(r)

n=1
- ZZn(r)%pzn(r)] (4.63)
where
(1) (2)
CH (kr) D H (kr)
H zn(r) - n n+l/2 ' H+2n(r) - _n n+l/2 (4.64)
vkr ® vkr
(2)
(2t (1) - “ne1/2) n
2n Ing 22 oy ko
< n+l/2 R (4.65)
(1)
23 (6) = -3n, | n200 o
Q 2n 2 H( (kr) kr
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where TM mode wave impedances are defined by

e . (2)
2 ey = 5 Hh-172%%) g
1n = Jn

(2) k.r
H (k. r) i
< n+l/2 N (4.61)
(1)
27 (1) = -- Hn 1/2(k r) _n
1n M| S (k) k.t
n+l/2
[
Mo
with ny, =/ being intrinsic impedance of the di-

i
electric coating medium.

Region II (b < r < ¢): 1In this region the wave-number is

complex and tangential field components can be written

similar to that in region I as

H,(r,0) = In_) BT (Cos 0) [H), (r) + E ) ()] (4.62)
and
_ o 1 + +
E,,(r,0) =1 _, P (Cos 6) [ZZn(r)H¢2n(r)
- ZZn(r)q32n(r)] (4.63)
where
(1) (2)
C H (kr) D_H (kr)
n(r) = n n+l/2 ) H+2n(r) - _n n+l/2 (4.64)
vkr ® Ykr
(2)
(2t (©) = in, | nz12®D _n
2n Iny 22 ., kr
ﬁ n+l/2 (4.65)
Zon(T) = =iny | =y T
\ H (kr)

n+l/2
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/u
n, = EE is the complex intrinsic impedance of the con-
ducting body. k2 = mzuoi; £E =€ -3 % were defined pre-
viously. Cn and Dn are two more unknown amplitude

coefficients.

Region III (r > c): 1In this free space region we can

write the field components as

_ o™ 1 +
qp3(r,6) = Zn=l Pn(Cos 9)q03n(r) (4.66)

and

(r) (4.67)

o 1 + +
Ee3(r,6) = zn=l Pn(Cos e)Z3n(r)H(p

3n

Note that in this region only an outgoing wave is ex-

pected, and

(2)
nin+1/2 Ko¥)

Jkor

E

+ -
%p3n(r) = (4.68)

The wave impedance is

(2)

H (k,r)

+ . n-1/2""0 _n

Z3n(X) = Ing | T2y k (4.69)

Hpi1/2koT)

/u
where ng = Eg = 377 Q@ 1is the intrinsic impedance of
0
the free space.

Again we have introduced five unknown coefficients

An' Bn' Cn’ Dn and En‘ However, now they will be

eliminated by using transmission line definitions.
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First, we note that since the Associated Legendre
functions form a complete set, we can expand the tangential
electric field on the surface of the metallic sphere in

terms of these functions as

- ¢ ® 1
Eel(a,e) = Zn=l Pn(Cos G)Fn (4.70)

where Fn is an unknown expansion coefficient. To
evaluate Fn' we use the boundary conditions of Equation
(4.25) and the orthogonality of the functions Pi(Cos 6)
as shown in Equation (4.28). One gets

pl (0).42n+1)

Fn = n 2n (n+1)

\'
n 3 (4.71)

where, again, n denotes odd integers only. Also, from
Equation (4.60) we have another expression for

Eel(a,e), equating these two expressions we have

o+ + - -
Fn = 21n (@B () = 2,0 (DB, (q) (4.72)

where Fn is given in Equation (4.71). We will use
Equation (4.72) later on. The boundary conditions on the
tangential field components are used to get the following

equations:

E = E

01 at r = b;

62

+ + - -
Zln(b)Hcp ln(b) - Zln(b)ng ln(b)

o+ + - -
= Z2n(b)%p2n(b) ZZn(b)§DZn(b) (4.73)
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q?l = qu at r = b;
H'. (b) + H , (b) = H . (b) + H ._(b) (4.74)
(pln (pln - <p2n @21’1 ¢
E62 = E83 at r = c;
+ + - - + +
Zzn(C)H-pzn(C) - ZZn(C)H¢2n(C) = Z3n(c)h'93n(c) (4.75)
1%2=%3,n r = C;
+ - ot
}I@Zn(c) + HrPZn(c) = H<P3“(C)' (4.76)

To solve Equations (4.73) to (4.75), we introduce new
unknowns as follows:
At r = b, the reflection and transmission coefficients

are defined respectively as

H-ln(b) I‘!+2n(b)

Rip(b) = S——0, T,,(b) = F—— (4.77)
H , (b) n H ., _(b)
cpln cplrl

similarly at r = c;

- +
H Zn(c) H 3n(c)
R, (c) = £, T,,(c) = o (4.78)
H , (c) H (c)
[} n (pZn

Note that these are the current coefficients in analogy
with the transmission line theory. For example, Rln(b)
is the ratio of the reflected wave q;ln(b) to the
incident wave %:ln(b) at r = b boundary. We also
define a reflection coefficient looking from region 2

to region 1 of Figure 4.1 at r = b as
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H+2n(b)
R, (b) = 22— (4.79)

2n -
%pZn(b)

Finally, a reflection coefficient at r = a 1is defined

as

+
H ln(a)
Rln(a) = - (4.80)

Hcpln(a)

Of course, these coefficients are unknown since the

amplitude coefficients A Bn, c, D and En are

n’ n n

hidden in spherical waves H+1n(b)' etc. But the

P
advantage is that the products of reflection coefficients
are known. From (4.80) and (4.77) we have

5 (2) (1)
n+l/2 n+l/ 1

B EY) 2) = K, _(a,b)
Hov1/2 (kg B 0 /o (kyb) In

(kia)H 5 (k;b)

Rln(a)-Rln(b) (4.81)

Similarly we can write

(2) (1)

H (kb) H (k)

) _ ‘n+l/2 n+l/2 3 1

Ryn (B) *Ryp (€)= —33 (4.82)

(2) " K, _(b,c)
Hn+1/2 (kb)H (kC) 2n

n+l.2
If we use Equation (4.78) in Equations (4.75) and (4.76),

we can then write

23, (c) T, (c) = 2, (c) - 2z, (CIR, (c)
(4.83)
T, (c) = 1 + R, (c)

From which we solve for Rzn(c):
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+ +

Z, (c) - 2, (c)

R, (c) = 2D 3n (4.84)
2n 2= (c) + 27 (o)

2n 3n

Equations (4.73) and (4.74) can also be written as

1 Rip(P)

( + -
2, (b)e7"" - 2, (b)) 7#/—F+
1n Tln(b) 1n Tln(b)

1

—3 + - - 0 cosemseeesE———
\ = Z,,(b) - Z, (b) R, (b)
n (4.85)
T. (b
1+ R (b) =T, (b) + ﬁlE%E;
\_ 2n

From which one solves for the key quantity Rln(b):

+ +
Z, (b) -2, (b)*Q

Ry (b) = —D 2n (4.86)
2] (b) + 23 (b)+Q

with

- +
0 - 1l - K2n(b,c)R2n(c)Zzn(b)/Zzn(b)
- 1l + K2n(b,c)R2n(c)

(4.87)

Note that Q is now a known complex quantity.
To find an expression for the magnetic field on
the surface of the spherical antenna, we start from Equa-

tion (4.72) to write

F
n

1 (4.88)

+

H (a) =
1n + -

® Zln(a) - Zln(a)'Rln(a)

or, since Fn is already known
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1 2n+1
v/a Pn(o) 2n (n+1)

+ -
Zln(a) - Kln(a,b)Zln(a)Rln(b)

fa o}
V]
]

(4.89)

(n 1,3,5,... .)

The total input current is given in Equation
(4.49). The magnetic field is found from Equation (4.58)

to be

_ [} + 1 .
le(a, 8 =1n/2 - 60) = Zn=l H¢1n(a)[l + Rln(a)]Pn(81n 60)

(4.90)
With H;ln(a) from Equation (4.89), we write the total

input current, I, as

_ oo Y 1 : l ._2_EL_0
I =2maCos 645 L , 7P (sin 84)P (0) 5 Ty
(odd)

1+ Kln(a,b)Rln(b)

+ -
Zln(a) - Kln(a,b)Rln(b)Zln(a)

(4.91)
From which one finds the input admittance as
= I m(2n+l) _1, . 1 .
YIN“’ v = Cos 60 Zn=1 D) Pn(51n eo)Pn(O)
(odd) (4.92)

1 + Kln(a,b)Rln(b)

+ -
2], (2) - Ky (a,b)R  (b)Z] ()

The input impedance is the inverse of Y Rln(b) is

IN®
given in Equation (4.86) and is the most important
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quantity to be computed. Note that expression (4.92) is
physically more meaningful. For example, if we want to
consider the case of a spherical antenna in a free space
(a special case of the proklem shown in Figure 4.1), we

argue that Rln(b) is zero and from (4.92) we get

mT(2n+1)

_ © 1, . 1
YIN = Cos 90 Zn___l m+—l)— Pn(Sln Oo)Pn(O) Z+ (a) (4.93)
(odd) 1n
where, from Equation (4.61) we have
(2)
+ - Ho Hn-l/Z(kOa) n
2, (a) = j [— - (4.94)
Ln colu'?) (x.a) Xo@
n+l/2"°0
. 2 2 e e . o
with k0 = WHpEq- For an infinitesimal gap, 60 = 0°,

Equation (4.93) is exactly the same as that found in the
literature [6].

The expression for the input admittance (or input
impedance) is derived on the assumption of a finite gap as
shown in Figure 4.2. However the expressions derived are
also valid as 60 + 0° or for a zero gap. The question
of the convergence of the series expression for the admit-
tance will be addressed in the Appendix A. But at this
point it is necessary to mention that for a zero gap
assumption the series will diverge [9] and in the computa-
tion of the admittance keeping a large number of terms will

lead to an inaccurate result.
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Based on the expression of Equation (4.92), an-
other computer program was written. Although the same
Hankel function appeared in this expression, we did not
meet the computational difficulty we encountered in the
matrix inversion method discussed in the last section.
This was primarily due to the fact that we now mostly used
Hankel function in ratios and the effect of normalization
took place. Theoretical results of the input impedance
presented in the next section are based on the expression
derived in this section for the input admittance. To check
the validity of the theoretical results a comparison is
made for a special case with a classical theory. Also in
the next chapter we will show experimental evidence which
will verify the accuracy of the results for the input

impedance formulated in this section.

4.6. Some Theoretical Results of the Input Impedance

Computations

In this section, we discuss some numerical results
calculated from the Equation (4.92) in the last section.
Basically, we are interested in electrically small
spherical antennas and it is desirable to see how the
input impedance of an insulated antenna of Figure 4.1
varies as a function of the parameters involved.

To begin with, the accuracy of our computations

was checked in a special case of a spherical antenna in
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free space. In Figure 4.3, we show the numerical results
of the input conductance of an isolated, perfectly con-
ducting sphere in free space calculated based on Equation
(4.92). This case has been discussed by Stratton and Chu
(10 and the results of Figure 4.3 agrees very well with
their computations. A very small value of 60 was used
corresponding to their assumption of zero (or infinitesimal)
gap.

In order to see the effect of the dimension of the
conducting body (or biological body) on the input impedance
of the insulated spherical antenna depicted in Figure 4.1,
we computed the input impedance as a function of ¢ or the
radius of the conducting body. For example, in Figure 4.4,
we show the input reactance of a small insulated spherical
antenna of radius a = 1 cm as a function of ¢ in
centimeters. The frequency of the antenna is 600 MHz and
the relative dielectric constant of the insulating coating
is €ir = 2.1 (e.g. Teflon). The biological body is
assumed to be of low loss with o = 0.1 mho/m ,its
dielectric constant is assumed to be €, = 70. Note that

in general

Z... =R__ + jX

IN IN ohms (4.95)

IN

is the input impedance to our spherical antenna. (The
antenna is mainly capacitive and, therefore, its reactance

is always negative.) However, for the construction of
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‘ GIN(mhos)

Figure 4.3. 1Input Conductance (or Radiation Conductance)
of a Spherical Antenna in Free Space as a
Function of koa, where a 1is the Radius of

Sphere and k0 = w/ugEq is the Free Space
Wavenumber.
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Figure 4.4. Input Reactance of a Small Spherical Probe
as a Function of the Radius of the Conducting
Sphere.
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small probes we are only interested in clectrically small
antennas, thus, the input resistance RIN is always small

as compared with its reactance X Therefore, in most

IN®
cases we only discuss the variation of the input reactance
as a function of various parameters. Referring to Fig-
ure 4.4, we plot XIN in ohms for various values of the
dielectric coating thickness or the ratio b/a, as a func-
tion of c¢. It can be seen from this figure that for
thin coating or for b/a close to unity, there is a con-
siderable variation of the input impedance as the dimension
of the conducting body changes. However, as the thickness
of the coating or as b/a 1is increased, XIN becomes
less sensitive to the variation of c¢. When b/a = 3.0,
there is practically no variation in the input impedance
as the dimension of the conducting body is changed. This
phenomena is desirable, since we want the probe to be
insensitive to the relative probe location in the
biological body; changing of ¢ corresponds to the chang-
ing of the probe location in a conducting body of fixed
dimensions.

Another interesting point which can be seen from
Figure 4.4 is that for a thin coating (or b/a close to
1), and for small values of ¢, the input reactance (and

hence the input impedance) changes very rapidly and be-

comes very large as ¢ approaches b. (The limiting
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cases of zero coating or ¢ = b are shown by X's in
Figure 4.4.) This suggests that if we use a very thin
coating, then the field measured by the thinly coated probe
at the edge of the biological body may be in error since
the input impedance of the probe experiences a rapid change
at this region and, thus, the output of the probe may be
effected significantly as indicated by Equations (2.8) and
(3.25) of the previous chapters. On the other hand, for a
thick coating this problem disappears and the input
impedance becomes nearly independent of <c¢. This phenomenon
has been observed experimentally in the literature 1], and
will be explained in Figures 4.5 and 4.6.

Figure 4.5 is the measurement of the electric
field induced in a finite conducting body (a box of saline
solution of 0.5N) with dimensions of 16 cm x 16 cm x 1 cm.
The incident plane wave is incdident normally upon the body
and is polarized in the x direction. 1In Figure 4.5,
dots are theoretical values and the continuous line is
the experimental results. In this experiment, a small
dipole probe with a very thin coating was used. As in-
dicated in this figure, the measured values are significantly
lower than the theoretical values near the edge of the body.
This can be explained as follows. The input impedance of
the probe at the body edge becomes very large so that the
output voltage of the probe becomes small consequently

(see Equations (2.8) and (3.25)). Figure 4.6 shows similar
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measurements in a conducting body with dimensions of

12 cm x 12 cm x 2 cm. The field is measured over two layers
as shown. Again, near the body edges, the experiment dis-
agrees with the theory for the same reason mentioned above.
(The values near the body edges are shown by circles and
triangles.)

To see the effect of the parameters of the con-
ducting body on the input impedance, we evaluated the in-
put reactance as a function of the relative dielectric
constant of the medium. For example, in Figure 4.7a, we
show the family of curves for the input reactance of a
spherical probe. The radius of the sphere is a = 1 cm
while the conducting body is of radius ¢ = 10 cm and the
frequency of operation is f = 600 MHz (corresponding to
tfle free space wavelength of AO = 50 cm). The dielectric
coating is assumed to have relative dielectric constant

of €ir = 2.1 (Teflon) and the conductivity of the Lkody is

o 0.01 mmho/m (very low loss body). The curves are
plotted for different thicknesses of the dielectric coating
or b/a ranging from 1.0 (bare antenna in the conducting
body) to 3.0 (relatively thick coating). The independent
variable is €, or the relative dielectric of the con-
ducting body.

As can be seen from Figure 4.7a, for thin coatings,

there is a considerable amount of variation of the input

ractance as € varies while, for thicker coatings, the
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Figure 4.7. a. Input Reactance of a Small Spherical Probe
as a Function of the Permittivity of the
Conducting Sphere.
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input impedance seems to be almost independent of this
parameter. As mentioned previously, only the input re-

actance is shown because the input resistance is usually

very small compared to XIN’ For example for the case of
b/a = 1.0, RIN is only 0.32 Q@ at €, = 1.0 compared to
-234 Q@ for XIN and 1.1 @ at €, = 70.0 compared to

-136 @ for the input reactance. Figure 4.7b shows the
case of the same probe but in a conducting body with
c=5cm and o = 1.0 ¥m.

Up to this point, we have seen that to construct
a probe whose input impedance is rather independent of the
radius of the conducting body and its relative dielectric
constant, one may use a thick dielectric coating on the
probe.

We have also investigated the dependence of the
input impedance of the probe on the conductivity of the
conducting body. 1In Figure 4.8, we observe the variation
of the input impedance (both Rin and XIN) as a function
of the conductivity .o (mho/m) of the conducting body.
Three curves are plotted for each part (i.e. real and

imaginary parts of 2 for the cases of b/a = 1.1, 1.5

IN)'
and 2.0. The sphere has a radius of a =1 cm and the
radius of the conducting body is ¢ = 5 cm. The frequency
is f = 600 MHz (i.e. a/)\0 = 0.02) and the relative
dielectric constant of the coating is again €ip = 2.1.

The body is assumed to have a relative dielectric constant
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Figure 4.8. Input Impedance of a Dielectrically Coated
Spherical Antenna as a Function of the Con-
ductivity of the Conducting Body.
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of €p = 50. Figure 4.8 shows clearly that for thick
coating (i.e. b/a = 2.0) the input impedance of the in-
sulated spherical antenna is almost insensitive to the
variation of the conductivity of the conducting body. For
the case of thin coating (i.e. b/a = 1.1), we see that
the input impedance (both input resistance and input
reactance) depends more significantly on the conductivity
of the body.

To fabricate a probe to be used in finite biological
bodies, it is desirable to make it as small as possible
to have a good resolution of the field and minimize the
perturbation caused by the introduction of the probe.
Therefore, it is not desirable to increase the thickness
of the dielectric coating a great deal.

Another parameter of interest seems to be the
relative dielectric constant of the insulating materials.
In Figure 4.9a, we show the dependence of the input reactance
of a spherical antenna of radius a = 1.0 cm when coated
by a dielectric spherical shell of outer radius b = 1.1 cm.
(i.e. b/a = 1.1) on the dielectric constant of the coating.
The radius of the conducting body is ¢ = 10.0 cm and the
frequency is f = 600 MHz. The body is assumed to have
the conductivity of 0 = 1.0 mmho/m. Five curves are plotted
as a function of the relative dielectric constant of the
conducting body, € for five different relative dielectric

constant of the coating; €ir varies from 1.0 to 10. As
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observed in Figure 4.9a, for small values of eir/er, the
input reactance has less variation (in percentage) than the

. /€ as the relative dielectric
ir’ “r

case of larger values of ¢
constant of the conducting body is changed. For most
biological bodies e, > 10, therefore to fabricate a

probe which is insensitive to the dielectric constant of the
body, the insulating material should have a low value of
dielectric constants €ip* Figure 4.9b shows the problem
for o = 1 mho/m. It can be seen that for higher values

of o, XIN is not strongly affected by the values of €

From the discussion of the last few figures, it
is concluded that to construct a spherical probe whose in-
put impedance is nearly independent of the electrical
parameters and the configuration of the biological (or
conducting) body, it is desirable to choose the dielectric
coating as thick as possible within the allowable limit,
and at the same time, to keep the ratio eir/er as small
as possible. The receiving characteristics of the
spherical probe was considered in the last chapter and a
similar conclusion was reached.

Before going to the experimental verification of
the theory presented in this chapter, the difference be-
tween theoretical and experimental input impedances should
be studied. Theoretically the input impedance of the

spherical antenna was calculated at the "edge" expressed

by r=a and 6 = n/2 - 60. However, in the experiment,



120

100 |

80

1l cm
600 MHz
= 1.1 cm
10.0 cm
1 U/m

Q QO U o
|

80
60 -
2.0
//- —_
-
40 3.0
/\/”_——_\ ‘/—\\v
20 F 6.0
- T
0 1 1 Il 1 1 I ST,
0 10 20 30 40 50 60 70

Figure 4.9. b.

Input Reactance of a Small Spherical Probe
as a Function of the Relative Dielectric
Constant of the Conducting Body. The
Parameters are Relative Dielectric Con-
stants of the Insulating Dielectric Shell.

€

r



81

the antenna was driven at a point r = 0 by a small co-
axial line. Therefore, it is necessary to transform the
"edge" impedance computed in this chapter to the center
of the antenna, before it can be compared with the measured
results. Such an impedance transformation is discussed

in the next section.

4.7. Radial Transmission Lines

The gap region of the spherical antenna discussed
in the last sections is shown in Figure 4.2. This gap
region can be treated as the medium between two conducting
circular plates and, thus, the problem of the transforma-
tion of the input impedance from the edge (r = a,

6 = n/2 - 90) to the central feeding point (r = Lo
where ry is the small radius of the coaxial line used
to excite the antenna) becomes the impedance transforma-
tion in a radial transmission line [12]. The geometry

of the proklem to be studied here is shown in Figure 4.10.

There are two identical conducting plates of
radius r = rn, separated by a dielectric medium (gap
region). The upper plate is connected to the center con-
ductor of a coaxial line and the lower plate to the outer
conductor of the coaxial line. Thus, a potential dif-
ference (voltage) is maintained across the plates. The

problem is to find an expression relating the impedance

seen at r = r. to that at r = r

i [, as shown in Figure
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Figure 4.10. The Geometry of Radial Transmission Line.

ZL is the "edge" Impedance of the Spherical

Antenna. The Gap Corresponds to the Medium
Between the Conducting Plates.
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4.10. The separation of the plates is "d" and the 1load
impedance at r = r is ZL' (Note that this ZL repre-
sents the input impedance of the spherical antenna as
discussed in this chapter).

The solution to the problem can be constructed
using the cylindrical coordinates r, ¢ and 2z as shown
in Figure 4.10. The simplest EM wave that can be guided
in this system is a TEM mode with field components E, and
H¢. Also field components are functions of r only. We

will analyze other fields starting with Helmholtz Equation

for E

+ wp,E Ez(r) =0 (4.96)

0°g

where eg = EgrEO is the dielectric permittivity of the

gap region and r; < r < rp
2 2

g = “Votq’
order. Noting that we are in a bounded region, the solu-

(see Figure 4.10). With
k Equation (4.96) is a Bessel Equation of zeroth

tion to Equation (4.96) can be expressed as
= (1) (2)
E, (r) = AHO (kgr) + BH, (kgr) (4.97)

éZ) are the first and second Hankel

where Hél) and H
functions of order zero, respectively. H has only the
¢-component and can be found from Equation (4.2) and Equa-

tion (4.97) to be
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1 aEz(r)
Hw(r) = jwuo 5T (4.98)
or
_ 1 39 (1) 3 .. (2)
HW(I) = jwuo (A T Ho (kgr) + B 5T HO (kgr)] (4.99)

The following relations of Hankel functions are used:

3 (1) — _ (1)
3T Ho (kgr) = kng (kgr)
(4.100)
d (2) - _ (2)
I Ho (kgr) = kng (kgr)
Equation (4.99) then becomes
H (r) = kg (a1 (x 1) + Bu{? (x_r)3 (4.101)
wuo 1 g 1 g :

Note that the dielectric region between the plates is
assumed to be lossless, i.e. kg is a real quantity.
Since Hankel functions are complex quantities, they can

be expressed as

B 0 2 g0 e® ™, w1 oo 2 ng e (40102)

jH{l)(x) = hl(x)ejw(x), jH{z)(x) = ‘hl(x)e—jw(x)(4.1o3)

where h, h 6 and Yy are the amplitudes and phase

1I
functions. With these definitions, expressions for the
impedance transformation can be simplified.

Using Equations (4.102) and (4.103), Equations

(4.97) and (4.101) are written as
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j6 (k_r) -39 (k_r)
E (r) = h,(k_r)[Ae 9 4+ Be 9 (4.104)
z 0'"g
and
h, (k_r) jv(k_r) -ju(k_r)
H(r) =29 [ae° 9 - Be 9 (4.105)
@ n
g
Mo
where ng = = - Equation (4.105) may be put in a dif-
g

ferent form by defining a wave impedance as

ho(k r)
ZO(kgr) = ng HITEEET (4.106)
g
such that Equation (4.105) becomes
h (k_r) Jv(k_r) -jy(k_r)
0 [ae” 9 - Be I 7. (4.107)

H¢(r) = ZO(kgr)

Note that the unknown amplitude coefficients A and B
have the dimensions of electric field (volts/meter).
To evaluate the constants A and B, we specify

the fields at r = r, (input terminals) and at r = r

1 L

(load). We can write,

at r = r,;

jei -3j6
= ho(kgri) [Ae + Be

t
|

hy Gk ry) iv. (4.108)

i i
wi_mir_iT[Ae - Be ]

w(kgri)-

o]
|

"
D

where ei (kgri) and by
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L;
36 -J6
_ L L
E,,, = ho(kgrL) [Ae + Be ]
(4.109)
Chg(korp)  Gug -3v
H L= Tkt [Ae - Be ]
P 0'""'gL
where eL =0 (kgrL) and wL = w(kgrL). 6 and vy

functions are as defined by Equations (4.102) and (4.103).

From Equations (4.108) and (4.109) one obtains

j0. -3j0.
E . 1 1
21 _ g5 (kr,) Be__ + Be (4.110)
H . 0'"g i Iy, -Jjvy.
%1 Ae 1 Be 1
and
j6 -j6
E L L
2L _ , (x p ) Be " + Be (4.111)
B~ Y0 9"t T3 =30,
P Ae - Be ©“

Next, the voltage and current at any radius r are defined

as follows:

vV = -Ez(r)d
(4.112)
{ I = 2mr H (r)
¢
With Equation (4.112) the "total" impedance becomes
E_(r)
=VY___8 [z _
Ztotal T T - 2nr [Hw(r)] (4.113)

Now, Equations (4.110) and (4.111) can be written in terms

of the total impedances as
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76 . -36,
271r, I3 i
i _ Ae Be
- 3 Zin = Zo(kgri) 3. =3V, (4.114)
ae ' - Be 1
and
j 6 -jb6
2nr I L
L Ae + Be
- =2 : - 4.115
S A A [ S (4.113)
Ae - B
We solve Equation (4.115) for B as
je 2nr Jy
e LZOL + dL e LzL
B = A (4.116)
2an e-]sz _ e-JOLZ
d L oL
ho(k rL)
= 29 = Substituting (4.116)

where Z0L = zo(er) = ng Hl(kgrL) .
in (4.114), one gets (after some algebra)

1 aLZLcos(ei - wL) - JZOLs1n(ei - GL)

2in T &, ZOl Z,..Cos(y, - 6.) = ja.2_sin(y, - ¢ ) (4.117)

1 oL i L L°L i L
where

21r. 21r
= 1 - L

O] = —g r % * —4g (4.118)

and ZOi = Zo(kgri). Note that in deriving Equation

(4.117), Euler's identity, eJe = cos 6 + j sin 6 was used
Equation (4.117) is the desired impedance trans-
formation formula of the radial transmission line of Figure

4.10. ZL is to be interpreted as ZIN of our spherical

antenna as shown in Figure 4.1 and Zin is the input

impedance measured experimentally (Chapter 5).
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Before closing this chapter, we consider a simpler
method of correcting the end effect or transforming the
impedances as discussed above. Some numerical examples are

also given.

4.8. Apparent Antenna Impedance and Capacitive End

Correction

Although the expression of Equation (4.117) in
the last section rigorously transforms the edge impedance
to the center of the spherical antenna of Figure 4.2, there
is a simpler method of treating this proklem if the radius
of the sphere (or the radius of the plates shown in
Figure 4.10) is electrically small and the electric field
in the gap region is uniform.

King [5] used the terminology of "apparent"
antenna impedance as the impedance measured at the input
or feeding terminals as compared to that of the theoretical
antenna terminals. In our case, the important factor is
the "junction" capacitance and the terminal zone equi-
valent circuit can be visualized as shown in Figure 4.11.

In electrostatic, it is known that when the
electric field between two parallel plates is uniform,

the capacitance is simply given by
c,=c¢ 2 (4.119)

where eg = € __€ is the permittivity of the dielectric
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o
Yapp CJ YIN
-
(a)
‘///f“—- area A
4 €g = sgr 0
(b)
Figure 4.11. (a) is the Junction Equivalent Circuit of

the Spherical Antenna with an Edge Input
Admittance of YIN' (b) is the Configura-

tion of the Circular Parallel Plates of Area
A which Approximates the Gap of the Antenna.
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region between the two plates. A 1is the area of the
plates and d 1is the separation between the plates as
shown in Figure 4.11.

The measured input impedance is given by

1 1
Z. (exp.) = = (4.120)
in Yapp CJ + YIN
where Y is the input admittance of the insulated

IN

spherical antenna in the conducting body as given by
Equation (4.92). As will be seen from the following
numerical examples, the junction capacitance has a signif-
icant effect on the measured value of the input impedance.
2Also, in the following examples, we show a close agreement
between the results calculated from the simple method just
discussed and that from the more rigorous radial trans-
mission line theory.

Numerical Example #l1. Let us now consider some cases

where we transform the input impedance from the edge of
the spherical antenna to its center. First we have

Zin = %g = -j235 @ as the edge input impedance for a

dielectrically coated spherical antenna in the free space

(a=1.0cm, b=1.5cm, Egr = 2.1 and f = 600 MHz).

This is computed from the expression in Equation (4.92).

The angular width of the gap is assumed to be 260 = 10°.

Also the following data are used: a = r; = 1 cm.

r, = 0.025 cm, d = 0.2 cm. With these data, we use the
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radial transmission line expression of Equation (4.117)

to find the input impedance at the feeding point as follows:

V2.1 x 21 x 0.025 _ o o4

kgFi = 50
/3T x 21 x 1
kgTp = - = 0.182
.2 ,1.781 x 0.0045, _
hy(kory) = 2 . ) = 3.514
ho(k r.) =@ —2 = 141.47
1(kgT5 T x 0.0045 .
ho(kgry) & 1.158 , hy(krp)  3.498
_ ~ -1,2  1.781 x 0.0045. . _ _
ei(kgri) = Bi = tan [n on ( 5 )] = -1.295 rad.
_ _ -1.2  1.781 x 0.182 . _ _
GL(kgrL) = GL = tan [TT on ( 5 )]= -0.858 rad.

(for small argument approximations of the Hankel functions

involved, see Appendix B).

-1l m x (0.0045)2

wi(kgri) = tan [ 2 ] = 0.000016 rad.
v. (k r.) = tan lp_" X (0.182)° ] = 0.026 rad
LkgrL y = 0. rad.
_ 3.514 _
ZOl = 260.15 x m = 6.462 Q
_ 1.158 _
ZOL = 260.15 x 3.498 86.12 Q
Cos(ei - wL) = 0.247, Cos(\pi - GL) = 0.654
Sln(ei - GL) = -0.423, Sln(wi - wL) = -0.026
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_2m x 0.025 _ = 21 x 1 _
a; = 0.2 = 0.785 , ap 0. 31.416

All these are computed according to the definitions
given in the last section. Finally, putting all these

values in Equation (4.117), we have
Zin(center) = -j61.3845 Q (4.121)

that is the edge input impedance of -3j235 Q@ (with a

very small resistive part), reduces to that given above
after going through the transformation of Equation (4.117).
As is seen from the above computation, the procedure is
rather involved. Since a/)\0 is 0.02 in this case, the

capacitive approximation may be used as follows:

-4
A =12 m x 10
C.=¢€¢_ €, = 2.1 x 8.854 x 10 X ———
J gr 0 d 5 x 10-3
or
CJ = 2.92 uyuF
and
jwe. = 31.1 x 10” %2 mho

According to the theory; YIN = j0.42 x 10—2 mho. Therefore
2

YIN + jucy = Yapp = jl1.52 x 10 mho and

1 .
Z . = : = -365.78 Q (4.122)
in YIN + ]ch

Comparing Equations (4.121) and (4.122), it is evident
that a simple junction capacitance correction can transform

the edge impedance to the input impedance.
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Numerical Example #2. 1In this example, we use some data

from the case of a dielectrically coated spherical antenna

in a finite low-conducting body. The values used are:

a=1.0cmn, b=2.0cm, ¢c =10 cm, €ip = 2.1
€p = 28, o0 = 0.01 mmho/m

ZIN = -j174 Q, egr = 1.0 (air gap)

f = 600 MHz, a = r, = 1.0 cm, r,; = 0.01 cm

d = 4.0 mm.

The impedance calculated from Equation (4.117) is

z2;, = -3116.54 Q

and that from the capacitive correction is found to be

Z; = -3119.59 Q

Again a good agreement between these two methods is
obtained.

No theory is complete without experimental
verification. 1In order to check the numerical accuracy
of the theoretical values of the input impedance calculated
from Equation (4.92) of this chapter, we have performed
some experiments. Details are presented in the next

chapter.



CHAPTER V

SOME EXPERIMENTAL RESULTS

In order to verify the theory presented in the pre-
ceding chapter, some experiments were performed in which
the input impedances of some cases discussed previously
were measured and compared with the theory. A good agree-
ment between theory and experiment was obtained.

Two methods for measuring the input impedance of
the antenna were used in the present study. The first
is the conventional minimum shift method in which a slotted
line is used together with an impedance chart (Smith chart).
The second method employs E-H probes and a vector volt-
meter. This method has been reported by Scott 13, [14].
We will first discuss the second method and then present
some experimental measurements of the input impedance.

Finally, since the probe is to be used to measure
the intensity of EM fields induced in finite conducting
bodies, we will present some experimental results on the
spherical probe when it is used to measure the induced
electric field in finite experimental models containing

saline solution.
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5.1. V-I (or E-H) Probe Impedance Measuring Techniques

The method to be described here is based on the
very definition of the impedance on the transmission line
which states: The impedance at any point on a transmission
line is the ratio of the voltage to the current at that
point. Since coaxial transmission lines are most commonly
used in experiments and practice, we will first study the
nature of voltage and current waves on a coaxial trans-
mission line (or cable).

Figure 5.1 shows the cross sectional and longi-
tudinal views of the coaxial transmission line used to
construct the E-H probe device. The inner conductor,
assumed to be perfectly conducting, is of radius a and
is maintained (by a generator) at the potential +V. The
outer conductor which has an internal radius of b is
kept at the zero potential. The dielectric between the
conductors (a < r < b) 1is assumed to be air.

The electric field in the air region between the
conductors, can be determined from the Gauss' Law.
Assuming that the charge density (charge per unit length)
on the center conductor is Py (coul./m), we can write
this law as

§ Eeas = (5.1)
S 0

where Q is the total charge enclosed by the closed

surface S. Choosing a cylindrical surface as shown by
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the dotted lines of Figure 5.1 (b), Equation (5.1) can be

written as

(5.2)
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Now, from the symmetry consideration, it is evident that
there is only a radial component of E field, Er’ which
is a function of r only. Therefore, there is no con-

tribution from Sl integral, and Equation (5.2) becomes

J Ed$ = E_(r) f ds = E_(r) (21r+h) = %— (5.3)
s, s, 0

Since Q = hpg, Equation (5.3) yields

Py

(5.4)
€0

Er(r) =

2TE Y

where a < r < b. The potential difference between the
center conductor and outer conductor, V, can ke expressec
in terms of the charge density, Py as follows:

By the definition of the potential difference

(voltage) ;
d(a) - ¢(b) =V = Ib E_(r)dr (5.5)
a'r

Substituting Equation (5.4) in Equation (5.5), we have

P

_ Py
vV = Tre o b/a (5.6)

Combining Equation (5.6) and Equation (5.4), the r

component of the E field can be found as
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v
Er(r) =r—m, airib (5.7)

Equation (5.7) can also be found based on the

Laplace Equation:

v2o(r) = 0 (5.8)
subject to the boundary conditions of ¢(a) = V and
®(b) = 0. Writing out Equation (5.8) in the cylindrical

coordinates, one gets

R~

%; [r 5 ] =0 (5.9)

Equation (5.9) is easily solved to give

3¢ (r) _ 1
r

T (5.10)

where cq is a constant to be determined by the boundary

conditions. 1Integrating (5.10) one more time, we have
d(r) = Cimr +c, (5.11)

c being another unknown constant. Using ¢(a) =V

2
and ¢(b) = 0, one gets

_ \'4 - _v_ .
c, = T b/a’ c, - b/a m b (5.12)
C
Now, B = -Vé(r) = - E%éﬁl p=--1g¢ (5.13)

and with the value of c, as given in Equation (5.12),

one gets Equation (5.7) for E_.
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Equation (5.7) shows that electric field in the
region between the two conductors of the coaxial line is
proportional to the voltage on the line.

The magnetic field H is found by the application

of Ampere's circuital law:
§ Hedl = I (5.14)
c

where I 1is the total current enclosed by the contour
c. From Maxwell's Equation (4.1), it follows that with
E = Er(r)f, there is only the ¢-component of A field
which is a function of r only. Thus, Equation (5.14)
can be written as

27

I H (r)r d¢ =1 (5.15)

0 ®

Equation (5.15) gives rise to

H (r) = (5.16)
2

I
2nx
where a < r < b.
Equation (5.16) shows that the magnetic field in
the region between the conductors is proportional to the
current I on the line. The sketches of the E and
A field lines, are shown in Figure 5.1.
It is well known that a small dipole (or mono-
pole) can be used to measure, or to sample, the electric
field in a medium. The electrical length of the dipole

should be kept to a minimum in order not to disturb the



100

field distribution. On the other hand, an electrically
small, shielded loop can be used to measure the intensity
of the magnetic field in a given medium. The theory for
these probes can be found in the literature [15] and is
not repeated here.

At this point, it is clear that for measuring
the impedance 2 = ¥ at any point on a transmission line,
the £ and H fields (both magnitudes and phases) at
that point need to be measured. Therefore, electric and
magnetic field probes should be introduced from the outer
conductor into the medium between the inner and outer
conductors (which is usually air). Two points chosen for
entrance should be on diametrically opposite sides to
ensure that voltage and current (or the electric and
magnetic fields) are being measured at the same location
on the line. 1In order that the presence of these probes
doesn't cause any significant change in SWR (Standing
Wave Ratio) on the line, the sizes of the probes should
be kept electrically small. In the case of our device,
we are interested in the frequency range of 1 to 1000 MHz.
The dimensions of the probes constructed are in the order
of 2 mm. For one device, when the test line was attached
to one end of the Slotted Line and a 50 @ matched

termination was placed at the other end of one test line,

it was found that SWR did not change (i.e. SWR 1.0).

This means that the probes were not loading the line.
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The over-all block diagram of the E-H probe con-
structed for the experiments is shown in Figure 5.2.

The main equipment used is the HP Model 8405A Vector
Voltmeter which is capable of measuring both the magnitude
and the phase of a signal. It has two channels, "A" and
"B". In our set up, the channel A is always connected

to the outlet of the current probe. The B channel is
connected to the voltage (or electric field) probe.
Therefore, the phase reading is the angle, in degrees,
between the voltage and the current, with the current
signal being the reference. The signal generator or
oscillator is to be used without any modulation.

To mount the E and H probes, we need a section
of a coaxial line. For this purpose, a section of the
coaxial line was constructed and a "block" supporting the
probes was attached to the coaxial line as shown in
Figure 5.3. It is noted that since all the lines used
are standard 50 Q coaxial lines, the test line section
should also have a 50  characteristic impedance as

computed from the following formula :

3
o

_ b
Zc— n (g

) (5.17)

N
=]

u
where No TJ/;§-= 120m @, b and a are the dimensions
0

as shown in Figure 5.1. 1In the construction of the test

line we chose a = %" and b = %5“ such that Zc was

very close to 50 Q. The total physical length of the
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line was 25.4 cm. The V-I block was constructed from
brass and had the dimensions 5.08 cm x 5.08 cm x 2.54 cm.
To facilitate the connection to other parts of the
experimental set-up, GR Type 874 standard connectors were
used at both ends of the test line.

As mentioned previously, E and H probes are a
small monopole and a small half shielded loop, respectively.
The dimensions of these probes are shown in Figure 5.4.
It is noted that the plane of the loop is parallel to the
axis of the coaxial line.

After the test line and the V-I block were con-
structed, they were connected in the experimental set-
up shown schematically in Figure 5.2. Before actual
measurements of the input impedance, we tried to measure
some known impedances using this E-H probe device. It
is worth mentioning that the calibration of the probes
depends on the direction of the current flowing on the
center conductor. Therefore, we should try to use one
side of the test line always for the generator connection
and the other side for the load connection. To avoid
confusion, both ends of the test line were marked as
"Gen." and "Load". 1In order to use the vector voltmeter
for the measurements, the followina steps should be
taken:

1. The vector voltmeter has two main parts:

"Magnitude" and "Phase". Since the phase is relative
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between probes A and B, we should calibrate the phase
meter before attempting to take any reading. To do this,
a simple arrangement as shown in Figure 5.5 is used.
When the A and B probes are connected as shown, the two
signals are in phase, thus, the phase meter should be
adjusted to read zero degree. When using the R.F. gen-
erator, the FREQ. RANGE (in MHz) dial of the vector volt-
meter should be adjusted to include the operating fre-
quency. The APC UNLOCKED light should go out indicating
that the meter is tuned to the generator's frequency.
Note that vector voltmeter can operate in the frequency
range of 1 to 1000 MHz. The phase is now calibrated and
the phase meter should not be touched during the experi-
ment.

2. After calibrating the phase of the vector volt-
meter as in step 1, we should calibrate the E-H probe,
or the impedance sensing block, experimentally. As
mentioned earlier, the voltage signal VA (or the signal
from the current, I, probe) is proportional to the total

current on the line, while the voltage signal V (the

B
signal from the voltage, V, probe) is proportional to the
total voltage on the transmission line. Since the
voltage and current on a line, in general, are out of
phase relative to each other, the ratio of the two
signals measured (i.e. VA and VB) is generally a
complex quantity which is proportional to the impedance

measured at the location of the probes, i.e.,
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K+ 2=12 (5.18)

P
Va

where K, the complex calibration constant, is, in gen-
eral, a complex quantity and Zp denotes the impedance
measured at the E-H probe location. Bars on the signals
VA and VB
plex voltages having both magnitudes (usually in mV)

emphasize that these, in general, are com-

and phase angles in degrees. Before comparing Zp with
the impedance at the end of the test line (which is
attached to its "LOAD" end), one needs to transform this
impedance via the length £ (electrical length) to the
load plane. Such a transformation is given by a well
known formula from the transmission line theory:

. - Zp - ]Zc tan Bol ’ (5.19)
L z_ - ij tan 602 c )

C

where Zc = 50 @ 1is the characteristic impedance of the
line, 80 = 2w/Ao (Ao is the free space wavelength).

Zp is the impedance measured at the location of V-I

block and is computed from Equation (5.18). ZL is then

the value of unknown impedance attached to the load side

of the test line (e.gq. ZIN for the spherical antenna

of our problem).

The easiest way to find the calibration constant

K 1is to place a "matched termination" (Z, = 50 Q) at

L
the load end of the test line. Then from Equations

(5.18) and (5.19) one gets,
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v
E-:§l=zp=soa (5.20)
Va1
Since vBl and vAl can now be read directly from the

vector voltmeter, Equation (5.20) gives us the value of
K for the frequency of operation. It should be noted

that K 1is a function of frequency and the device should

be calibrated for each frequency. Also note that VA

is a reference signal and therefore, LXA = 0° and
423 is the angle (in degrees) as read from the vector
voltmeter.

3. As can be seen from Equation (5.19), we need
to know the electrical length from the location of the
E-H probe to the plane of the unknown load. The
electrical length is different from the physical length
(which is known) because of the dielectric supports used
in the connectors. In general, the actual electrical
length is longer than the physical length. The best way

to measure this length is to place a short termination

(ZL = 0) at the load part of the test line. This leads
to

Zp(short) = ch tan Bol (5.21)
which is obtained from Equation (5.19) with ZL = 0.

Recording the measurement at the probe location,
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vy, O
Zp(short) =K o« —— (5.22)

o
Va2 £0

where K has been found in the previous step. By this
method one can find the unknown electrical length. The
value of the physical length should always be used to
check the algebra involved. One has to be careful in
computing the electrical length £ because a small error
in £ can lead to a significant error in z. due to
rapid variation of tan Bol in Equation (5.19). This

is a drawback of this method.

The advantage of the E-H probing method is that
it can be used for a wide range of the operating fre-
quency (e.g. from 1 MHz to 1000 MHz). While for the
conventional slotted line method we are restricted to a
shorter range of frequency because at low frequency an
excessively long slotted line is needed. Another point,
which is important in the measurement of impedances for
our problem, is that if the resistive part of the
impedance is very small, it is very difficult to employ
the slotted line technique. The reason is that a low re-
sistance causes a high SWR on the transmission line and
it cannot be measured accurately. On the other hand,
with the E-H probe method, we can measure resistances as
low as 0.5 ohm. For the case of small spherical antennas

we encounter small values of RI (input resistance)

N

and it was only possible to measure a small RIN with
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the E-H probe device. One source of errors in using the
E-H probe device may be due to inaccuracy in phase
readings and a possible error in measuring the electrical
length £ mentioned previously. To check the accuracy
of the device and to clarify the steps needed for using
the V-I impedance device, a numerical example is worked
out here.

NUMERICAL EXAMPLE: To check the calibration of the E-H
probe and its accuracy, we select a known 100-Q GR
termination as our "unknown" load. First we choose the
frequency of operation as f = 600 MHz and the steps
outlined above are taken with the following results:

(a) Phase meter is calibrated according to Figure 5.5
(i.e. "0" phase reading).

(b) A matched load (50 Q) is placed at the "LOAD" side
of the test line and the readings from the vector volt-

meter are recorded as

Vs

VA 69.9 mv y /V

6.55 millivolts, AYB +101°

00

such that the calibration constant K found from Equa-

tion (5.18) is

<l

K -2 =50 Q; K = 533.587 /-101° Q

A
(c) With the load in place, the following readings are

<

obtained:
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I
n

v 138°

B

Va

6.45 mv, ZXB

00

74 mvV, AXA

The impedance at the probe location can now be found from

Equation (5.18) as

Z =K
P

<Wuﬁl

= 46.5 /+37° = 37.136 + j27.984 Q (5.23)
A

This impedance Zp is the one measured at the probe
location looking toward the load and should be trans-
formed through the electrical length £ to get the
actual load impedance.

(d) The electrical length & is found by placing a
GR-WN short termination at the "LOAD" side of the test

line. The following readings are recorded:

= = o
Vg = 12.2 mv, /Vp = +12
V, = 43.7 mv, /v, = 0°

Using Equation (5.18) one gets

12.2 /12°
= - o .
Zp(short) 533.587 /-101 337 70°

or Zp(short) = -j 148.965 Q
Equation (5.21) can now be used:

-j 148.965 = j 50 tan 802

i.e. tan 802 = =2.9793
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For Ao = 50 cm (f = 600 MHz) we get
Bot = 108.5543° or ¢ = 15.077 cm.

It is noted that the physical length was roughly 14 cm.
Before transforming Zp of Equation (5.23) we note that
the actual position of our unknown load is at ¢ + 4
(see the illustration) from the probe location, where

from the GR catalog,

:ﬂr—\m,

C [ '
Ty

le—d —=| &R 100-0

d =3.2 + 0.55 = 3.75 cm
Thus,
£ +d=15.077 + 3.75 = 18.827 cm = &'

(e) The last step is to transform the impedance Zp
through the length ¢'. This can be done by usina Equa-

tion 5.19 (or by the use of the Smith chart) to find

Z, = 99.2 + j10.5 @ (5.24)

as the unknown load impedance. Considering the fact

that this is a 100 Q termination and that there is always
a reactive component of the impedance in the R.F. range,
we see that the E-H probe system gives an accurate

measurement of the impedance to be measured.



114

To see the effect of the frequency change, we
repeated the above example at f = 250 MHz. Skipping the

steps (a) to (e) we found the following values:
K = 252.84 /+80°

Comparing this to K = 533.587 /-101° for the case of
f = 600, we see the frequency dependence of the
calibration factor.

At 250 MHz, we have found

Z; = 99.95 + j1l.92 Q (5.25)

as the value of the load impedance (100 Q@ termination).
Again there is a good agreement between the measured

value and the known value of the impedance.

5.2. Experimental Setup for the Measurement of the
Input Impedance of a Dielectrically Coated Spherical

Antenna in a Finite Conducting Body

In this section we discuss the experimental
arrangements for measuring the input impedance which was
theoretically discussed in Chapter 4. Although the far
zone radiation characteristics of a coated spherical
antenna were measured by other investigators [16] at
microwave frequencies, to our best knowledge, the input
impedance of a coated spherical antenna has not been

measured before. A difficulty here was the construction
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of the conducting body filled with Saline solution and
the problem of water leaking which was solved by a proper
sealing. If phantom materials which approximate actual
biological tissues are used, the leaking problem can be
eliminated.

Figure 5.6 shows the complete experimental set-
up used to measure the input impedances. An anechoic
chamber (6' x 6' x 5') was covered at the top side with
an aluminum ground plane. As the experimental results in
the ‘next section will show, this chamber lined with the
microwave absorbers was sufficient to simulate the free
space needed for the experimentation.

The cross sectional view of the metallic hemi-
sphere together with the dielective coating and the
conducting body is shown in Figure 5.6. The radius of the
hemisphere (made from aluminum) was of the order of 1 cm
and that of the conducting body was 5.5 cm. The dielectric
coating shells were constructed of different outer radii
and the actual datas are indicated in the next section.
The metallic hemisphere was insulated from the ground
plane with a narrow dielectric disk (Nylon or Teflon) of
the thickness of about 1 mm. (This corresponds to
60 = 5° as the half angular width of the gap region dis-
cussed in Chapter 4). The insulating dielectric shell
was supported by plastic screws from the ground plane.

The saline solution was stored in a small tank and small
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Figure 5.6. Experimental Setup for Measuring the Input
Impedance of a Dielectrically Coated Hemi-
sphere in a Finite Conducting Body.
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plastic tubes were used to connect between the tank and

the conducting body in such a way that the saline solu-
tion inside the conducting body was in close touch with

the ground plane and air bubbles were thus avoided. The
conducting body was constructed from a thin plastic
material. To feed the antenna, we need a transition from
a standard coaxial line (which has a center conductor with
a diameter in order of 1 cm) to a smaller size connector in
which it has a center conductor with a much smaller cross
section compared with that of the hemisphere.

After constructing the chamber and the spherical
antenna, the whole system was connected as shown in Figure
5.6 to measure the input impedance with the two methods
mentioned previously. In the top left of Figure 5.6, we
show the connection for the slotted line measurements.

For this measurement, the minimum point is located in the
slotted line with the antenna connected and then it is
removed and replaced with a short circuit. The shift in
the minimum points for the cases of the antenna and the
short circuit is then used in the Smith chart calcula-
tion. The SWR was measured by a SWR meter. It is
mentioned that the reactance part of the impedance usually
can be measured very accurately by this method. 1In the
top right of Figure 5.6, we show the E~-H probe connection
discussed in the last section. Note that 1KC modulation
used in the slotted line measurement was not used in the

E-H probe technique.
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Using the experimental setup presented in this
section, we were able to measure some input impedances
of the insulated hemispheres imbedded in a conducting
medium and in free-space. These experimental results are
compared with theoretical results. Due to constructional
difficulty and the time limitation, it was only possible
to measure some typical cases in the experiment. How-
ever, a limited amount of experimental results was suf-
ficient to verify the accuracy of the theoretical re-

sults presented in the preceding sections.

5.3. Comparison of Theory and Experiment

Before attempting to compare the values of input
impedances based on the Equation (4.92) of the last
chapter with experimental results, it is reminded that
experimental results of the input impedance were measured
at the center of the antenna, instead of the edge. There-
fore, as discussed in the last section of Chapter 4, it
is necessary to transform the "edge" impedance to the
center of the sphere by using either the radial trans-
mission line theory or the junction capacitance correc-
tion. Furthermore, since an image ground plane was used
in the experiments, only 1/2 of the input impedance of

the antenna was actually measured. In other words,

ZIN(hemlsphere) = 1/2 Zin (5.26)
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where Zin is the input impedance of the spherical
antenna (sections 4.7 and 4.8) at the center and ZIN
(hemisphere) is the value measured expérimentally.

These facts have been taken into account in the compari-
son of theory and experiment.

Figure 5.7 shows the input reactance of a di-
electrically coated hemisphere in free space. This can
be regarded as a special case of our general problem.

The curve is plotted against kia where ki = w/ﬁEEI,

€ T €;,%0 and €ir is the relative dielectric constant
of the insulating material (Nylon) and is estimated to be
€ip = 3.0, a 1is the radius of the antenna. The dots

are experimental results while the solid curve is the
theoretical result based on the computation of Chapter

4 (60 is about 5 degrees). Only the reactance is shown
because the input resistance is negligible compared with

X for small kia. Naturally, the input resistance

IN
increases as the frequency is increased. Note that the
plot can be considered to be as a function of frequency
because in the actual experiment the radius a of the
hemisphere was kept constant and the frequency was in-
creased. It is noted that the input resistance was
measured to be approximately one ohm. This value is
about 0.5 ohm bigger than the theoretical value. This is

due to the losses in the system and insulating materials.

The diameter of the hemisphere shown in Figure 5.7 is
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2.2 cm and that of the insulating shell is 3.0 cm. It
is observed in the figure that a good agreement between
theory and experiment was obtained.

As mentioned previously, the experimentation for
the general case of an insulated spherical antenna in a
finite conducting body was difficult to perform, however,
some good results were obtained. They are summarized in
the next few tables. In Table 5.1, we show the values of
the input reactance of a coated hemisphere with a = 1.1
cmand b =1.21 cm (b/a = 1.1) when imbedded in a finite

conducting body of ¢ = 5.5 cm. The frequency used was

600 MHz and the insulating material had €ir = 3.0. The
medium in the conducting body was changed from air, dis-
tilled water, to saline solutions of various normality
ranging from 0.5N to 2.0N. The electrical parameters of
the solution were computed based on the available theory
(17]. As shown in the last two columns of the table,
there is a good agreement between theory and experiment.
Also note that this is the case of relatively thin coating

and there is a considerable variation in X (and hence

IN
in ZIN) of the spherical antenna as the properties of the
external medium are changed. The input resistance was
small but it was increased as the normality of the solu-
tion was increased from 0 to 2.

Next, the thickness of the dielectric coating was

increased. Table 5.2 shows similar results as that of
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Theoretical and Experimental Values of the
Input Impedance of a Coated Hemispherical
Antenna in a Finite External Medium.
(a=1.1cm., b=1.21 cm., ¢ = 5.5 cm.,

f = 600 MHz, €ip = 3.0) (T = 20°c)

it PARAMETERS J Xy (OHMS)
e/eo o (mho/m) THEORY EXPERIMENT

AIR 1.0 0.0 -5 20.99| -3 19.5
DIS. WATER | 79.89 0.095 -5 9.057| -3 11.50
.5N SALINE | 70.92 | 4.52 -j 8.23 -5 10.1
1.0N SALINE | 62.93 7.74 -j 8.07 -5 8.0
1.5N SALINE | 56.94 10.84 -5 8.06 -5 8.8
2.0N SALINE | 50.95 | 13.84 -j 8.08 -j 9.15
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Table 5.2. Theoretical and Experimental Values of the
Input Impedance of a Coated Hemispherical
Antenna in a Finite External Medium.
(a=1.1cm., b=1.5¢cm., ¢ = 5.5 cm.,
f = 600 MHz, €._ = 3.0) (T = 20°c)
ir
EXTERNAL .
MEDIUM PARAMETERS J XIN (OHMS)
8/80 o0 (mho/m) THEORY EXPERIMENT
AIR 1.0 0.0 -j 19.34 -j 18.76
DIS. WATER 79.89 0.095 -j 14.89 -j 14.55
0.5N SALINE 70.92 4.52 -j 14.57 -j 14.08
1.0N SALINE 62.93 7.74 -j 14.55 -j 14.03
1.5N SALINE 56.94 10.84 -j 14.55 -j 13.98
2.0N SALINE 50.95 13.84 -j 14.56 -j 14.16
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Table 5.1, except that now Lt = 1.5 cm (b/a = 1.36).
Again, the input reactance was measured for different
external media. For this case, as shown in the last two
columns of the table, there is a smaller variation in

XIN (and hence in ZIN) as the external medium is
changed. Note that this is the case of a relatively thick
coating and the experimental results are in agreement

with the theoretical predictions of Chapter 4.

Finally, in Table 5.3, the case of an even thicker
cotaing, b = 3.1 cm (b/a = 2.82) is shown. 1In this case,
as shown in the last two columns of the table, there is
nearly no variation in the input reactance (and hence in
the input impedance) of the spherical antenna as the
properties of the external medium are changed. Again,
there is a good agreement between theory and experiment.

In consistence with the conclusion made in the last
chapter, we have found experimentally that to fabricate
a probe which has an input impedance independent of the
electrical parameters of the surrounding medium, the thick
coating of dielectric materials is needed. Of course,
the coating cannot be excessive because small probe
dimensions are desired and necessary conditions.

Before closing this section, it is interesting to
observe the effects of the relative probe location in a
finite conducting body on the antenna input impedance.

Theoretically, when the insulated spherical antenna of
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Table 5.3. Theoretical and Experimental VAlues of the
Input Impedance of a Dielectrically Coated
Hemispherical Antenna in a Finite External
Medium. (a =1.1 cm., b = 3.1 cm.,
c=5.5¢cm., £ =600 MHz, €y = 3.0)

(T = 20°c)

EXTERNAL .

MEDIUM PARAMETERS j xIN (OHMS)

Eﬁo o0 (mho/m) THEORY EXPERIMENT
AIR 1.0 0.0 -j 22.54 -j 21.97

DIS. WATER 79.89128 | 0.09531 -j 21.59 -j 21.24

0.5N SALINE 70.92058 | 4.52694 -j 21.77 -j 21.50

1.0N SALINE 62.93319| 7.74285 -3 21.75 -j 21.63

1.5N SALINE 56.94402 | 10.84945| -j 21.75 -j 21.50

2.0N SALINE 50.95491 | 13.84467| -j 21.75 -j 21.48
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Figure 4.1 is not at the center of the spherical conduct-
ing body, the problem becomes untractable. However, we
can get some idea of the situation by measuring the in-
put impedance of a coated spherical antenna located off-
center in a finite conducting body.

In Table 5.4, we show the measured input impedance
of an insulated hemisphere as a function of the off-
center distance d. The conducting medium is a 0.1N

saline solution and has the parameters of €, = 77.9 and

o = 0.925 mho/m. The hemisphere has a radius a 1.1 cm

and that of insulating shell is b = 1.2 cm (b/a 1.09).
The conducting body has a radius c¢ = 5.5 cm and the
frequency is f = 600 MHz. The relative dielectric con-
stant of the coating is again €ir = 3.0. As shown in the
table, there is some variation in the input impedance as
the antenna is moved from the center to the boundary of
the conducting body. When d = 0, the antenna is in the
center of the body and the theoretical value of the input
impedance is shown. As this is the case of thin coating,
the variation of the input impedance is expected accord-
ing to the theory of Chapter 4.

Next, in Table 5.5, we show similar results as in
Table 5.4, except that now the coating is increased to
b=1.6 cm (b/a = 1.45). As shown in the table, there

is a considerably smaller variation in the input impedance

as the antenna is moved off-center.



127

Table 5.4. Experimental Input Impedance of a Dielectrically
Coated Hemispherical Antenna at Different
Locations in a Finite Conducting Body
(a=1.1 cm., b=1.2 ecm., ¢ = 5.5 cm.,
€ir = 3.0, e, = 77.898, 0 = 0.925 mho/m,

f = 600 MHz; d 1is the Distance from the
Center of the Antenna to the Center of the
Conducting Body).
f— a
Conducting Body Free
(0.1N Saline) Space
d (cm.) ZIN(ohms)
0.0 1.0 -j10.5 (Theory: 1.0 -3j10.0)
2.6 1.3 -j14.15
3.3 1.5 -j315.0
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Table 5.5. Experimental Input Impedance of a Dielectrically
Coated Hemispherical Antenna at Different
Locations in a Finite Conducting Body
(a=1.1cm., b=1.6 cm., ¢ = 5.5 cm.,
€5 = 3.0, €, = 77.898, o = 0.925 mho/m,
f = 600 MHz; 4 1is the Distance from the
Center of the Antenna to the Center of the

Conducting Body).

Free

Conducting Body Space
(0.1N Saline)
d (cm.) ZIN(ohms)
6.0 0.8 - jl6.0 (Theory: 0.2 - j15.56)
2.6 1.0 - jl6.6

3.3 1.0 - jl6.7
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The last table, Table 5.6, shows similar results
for the case of an even thicker coating with b = 2.2 cm
(b/a = 2.0). We observe in the takle that, there is
practically no variation in the input impedance of the
spherical antenna as it is moved in a conducting body.
This implies that a probe with a relatively thick coating
has an input impedance almost independent of the relative
probe location in a biological (conducting) body. We have
reached the similar conclusion theoretically in the last

chapter.

5.4. Field Measurements using Insulated Spherical Probes

In this section, we discuss some experimental
results on the induced electric field in a conducting
medium measured with dielectrically coated spherical
antennas studied previously. Figure 5.8 shows the
schematical configuration of the insulated spherical
probe used in the experiments. Two solid metallic hemi-
spheres (made from brass) are separated by a small gap
and a microwave diode detector (type HP 5082-2755) is
mounted between them as shown in the figure. Two highly
resistive thin wires (Nichrome V wires of 2 mil diameter)
are attached to the terminals of the diode and led all
the way out to the voltage measuring device (a high
gain D.C. voltmeter or a SWR meter). The whole structure

is coated with a dielectric shell (plexiglas) and a small
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Experimental Input Impedance of a Dielectrically
Coated Hemispherical Antenna at Different
Locations in a Finite Conducting Body
(a=1.1cm., £ =2.2 cm., ¢ = 5.5 cm.,

€ir = 3.0, €, = 77.898, 0 = 0.925 U/m,

f = 600 MHz; 4 1is the Distance from the Center
of the Antenna to the Center of the Conducting

Body) .

I~

Free
Space

Concducting Body
(0.1N Saline)

d (cm.) Z 1 (Ohms)
0.0 0.5 -j19.0 (Theory: 0.13 -j18.5
2.6 0.56 -j19.0
3.3 0.65 -j19.0
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Figure 5.8. Configuration of the Dielectrically Coated

Spherical Probe Loaded with a Microwave

Detector. (Free Space Incident Plane Wave
is also Shown.)
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rod (tail) is left for holding the probe to a long
plastic stick (not shown in the figure). The microwave
detector is a cylindrical diode of diameter 2.0 mm and
height 4.0 mm. Note that the diode detector in parallel
with the resistive wires and the voltage measuring de-

vice constitute the load, 2 as discussed in Chapter 3.

L’
The probe can be rotated in such a way that the axis of
the diode can be either parallel or perpendicular to the
direction of the incident electric field. The reason

for using high resistive wires is to minimize the lead
wire interference with the incident EM wave. The use of
high resistive wires, in turn, necessitates the detection
of the probe output to avoid excessive loss due to the
lead wires.

As a first series of measurements, we used the
spherical probe of Figure 5.8 in a TEM transmission cell
[18]. The cross section of the rectangular cell is shown
in Figure 5.9 together with the insulated spherical probe.
In this experiment, the output leads of the probe were
connected to a high gain d.c. voltmeter (a capacitor was
also used to filter out the a.c. signal). Before
attempting to take any measurements, the output of the
spherical probe was calibrated. This was done by
monitoring the incident power into the cell from the
R.F. generator via a directional coupler. The calibra-

tion curve so obtained is also shown in Figure 5.9.
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As can be seen from the calibration curve, the
microwave detector diode of the spherical probe is a
Square Law Detector. (This is needed for the optimum
operation of the SWR meter used to detect the output of
the probes.) The output voltage was measured in milli-
volts while the incident power from the R.F. generator
was in milliwatts. Since power is proportional to the
square of the electric field (or the voltage), this means
that the probe was actually measuring the square of the
electric field at its location. After calibrating the
probe, the intensity of the electric field was measured
at 6 cm above the center conductor of the TEM cell (the
frequency was f = 320 MHz). The result is shown in
Figure 5.10. This agrees quite well with the results re-
ported in Reference 18.

We also tried to measure the induced electric
fields inside finite conducting structures containing
saline solution placed inside the TEM cell. One such
measurement is shown in Figure 5.11. Although the measured
field was quite symmetric, as one expects theoretically,
it was not possible to compare the experimental results
with the theoretical induced field calculated by the
tensor integral equation method [4] assuming the con-
ducting structures located in- free-space. The reason
is believed to be due to the fact that when the con-

ducting body is placed in an enclosed metallic chamber,
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Figure 5.11. The Output of the Dielectrically Coated
Spherical Probe Inside a Finite Body Con-

taining the 0.0N Solution. The Frequency
is £ = 320 MHz.
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the wall image effect prevails and, thus, the body can no
longer be assumed to be in the free space. The conducting
body had the dimensions of 16 cm x 12 cm x 4 cm and the
frequency of the incident plane wave was f = 320 MHz.

The incident electric field was polarized in the vertical
direction (x - axis). In order to study the case of the
conducting body in free space, the box containing the
saline solution was removed from the TEM cell and placed
in a large microwave Anechoic chamber. The construction
of this chamber was reported elsewhere [19].

The conducting body was illuminated in the "far
zone" of the transmitting antenna within the anechoic
chamber and the insulated spherical probe was placed in-
side the body in such a way that the direction of the
incident electric field was perpendicular to the plane of
the equatorial gap. On the ceiling of the anechoic chamber
in the far field region, a slot was cut, and through
which a long plastic stick supporting the probe assembly
was connected to the voltage measuring device located
outside the A.C. The stick was attached to a shaft
driven by a d.c. motor so that the probe can be moved
inside the conducting medium by a remote control system.
An x - y recorder was used to plot the distribution of
the square of the electric field induced in the finite
conducting body. A diagram of the anechoic chamber and

the configuration of the body is shown in Figure 5.12.
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The dimensions of the conducting body were

16 cm x 12 cm X 4 cm. The conducting body can now be
considered to be located in the free space, and
theoretical results for this case are obtainable by the
existing theory and an available computer program [20].
To compute the induced electric field, the body was
partitioned into 96 of 2 cm3 cubic cells. A symmetry
condition was used to facilitate the numerical calcula-
tions.

In the experiment, the medium in the box was the
distilled water (0.0N saline solution) and the operating
frequency of the transmitting antenna was chosen as
f = 500 MHz (AO = 60 cm; free space wavelength). At
this frequency, the size of the insulated spherical probe
as shown in Figure 5.8 was sufficiently small to produce
meaningful results. In Figure 5.13 we show some results
of the measurements. It is noted that the signal from
the R.F. generator was amplified by a power amplifier
(Hughes Model 46159H Transistor Amplifier, 500-750 MHz,
20 W) and that the received signal from the spherical
probe was monitored on a SWR meter and then fed into
X - y recorder (after d.c. filtering). The amplitudes
shown in the figure are in db and the theoretical results
are for o/zlExl2 where for the distilled water at

500 MHz, €, = 79.92 and o = 0.06 mho/m were assumed.
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Theoretical values were computed at the center of each
cubic cell. The three plots of Figure 5.13 show the
measured values of 0/2|Ex|2 as a function of =z along
three different depths from the top of the body.’ The
parameter &£ indicates the distance from the top side

of the medium to the center of the spherical probe. As

can be seen from Figure 5.13, the agreement between the
theory and experiment is considered quite good in view

of the fact that there exist some numerical errors in the
theoretical computation and also some inherent experimental
errors caused by lead wires and the container of the con-
ducting medium (made from plexiglas materials). It is
important to mention that, due to the improvement in the
construction of the probe (a thicker coating), the ex-
perimental error at the body edge as discussed previously
in Chapter 4 is now minimized. It is anticipated that if
the size of the spherical probe is reduced, better experi-
mental results may be obtained.

Finally, in Figure 5.14 we show similar measure-
ments for a 16 cm x 12 cm x 2 cm body containing 0.1N
saline solution for which €, = 77.92 and o = 0.897 mho/m.
The frequency is again 500 MHz and the theoretical results
are obtained for cubic cells of 1 cm x 1 cm x 1 cm

dimensions. Note that now there are more theoretical

points for comparison with experiment.
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CHAPTER VI

SUMMARY AND CONCLUSIONS

In this thesis we presented some theoretical
and experimental results on the study of an electromagnetic
spherical field probe in a finite conducting body. The
spherical geometry was chosen because an exact, analytical
solution can be found to the problem.

After deriving the general relation between the
output voltage of a probe and the induced electric field
in a volume conductor, the receiving characteristics of
an insulated spherical probe immersed in a uniform
electric field inside a conducting body were studied. The
normalized effective diameter of the probe was shown to
be nearly independent of the parameters and dimension of
the conducting body when a relatively thick coating of
insulating material was used on the probe. After that an
expression for the input impedance of a dielectrically
coated spherical antenna imbedded in a finite conducting
body was derived. The matrix equation formulation was
used first, but due to numerical difficulty, an alter-
native method, based on the transmission line theory,

was used to obtain some numerical results. It was

144
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subsequently shown that, for thick coatings with di-
electrics of low dielectric constants the input impedance
of the spherical probe became nearly independent of the
electrical parameters and the dimension of the finite
biological body.

Finally, we presented some experimental results
on the input impedance of the spherical probe and com-
pared them with the theoretical results. In general,
there was a good agreement between theory and experiment.
A few examples of actual field intensity measurements in-
side finite bodies were also reported.

In conclusion, we may say that to fabricate an
implantable EM field probe which is insensitive to the
properties and dimensions of the conducting body, one
should use thick coating of low dielectric constant
material to cover (or to insulate) the appropriate probe.
Of course, the whole probe structure should be kept
electrically small, therefore, as a topic for further
research, one may consider the case of two or more thinner
layers of different dielectric materials which may
achieve the same purpose as a single thick layer of

coating does.
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APPENDIX A
HIGHER ORDER MODES AND THE

CONVERGENCE OF THE INPUT ADMITTANCE
EXPRESSION

The expression for the input admittance of a
dielectrically coated spherical antenna in a finite con-
ducting body, as shown in Figure 4.1, was derived in
Equation (4.92) of Chapter 4. Although mathematically
this represents the analytical solution to the protklem,
in a closed form, it is necessary to show that the series
converges. Actually a close study of the series shows
that its real part converges quickly after a few terms,
but its imaginary part does not.

Another point is that, as was shown in Chapter 4,
the Hankel functions involved may still cause some dif-
ficulty in evaluating very higher order modes. Therefore,
it is desirable that to find appropriate forms for the
higher order modes or Hankel functions of very high orders
that are suitable for the computer computation. 1In the
following, we will give the expressions for the higher
order modes and show that the expression for the admittance

converges if a finite gap of the antenna is assumed.
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As was mentioned in section 4.5, the key quantity
of the input admittance expression is Rln(b), repeated

here for convenience:

+ +
ozt ) -zt o

Ry (b) = —2 Zn (A.1)
2] _(b) + z5 (b)+0Q

where the complex quantity Q is defined as

- +
1l - Kzn(b,c)RZn(c)aZn(b)/Zzn(b)
1 + KZn(b’C)RZn(C)

Q = (A.2)

other quantities have been defined previously. Actually
the dependence of the input admittance of the insulated
spherical antenna on the parameters (e,0) and the
dimension (c) of the finite conducting body is all given
by the complex quantity Q. Inthe actual computation

of the input admittance expression, using a computer, the
difficult quantity to compute, for the higher order modes,
is this complex quantity Q. However, after few computer
programs were run to cover various cases, it was found
that for nearly all cases the value of this quantity was
equal to unity, accurate to 15 significant figures, for
higher order modes. Therefore, we may assume that for
higher order modes,

+ o+
Zin(P) = 2,5, (b)

Q £1.0; R, (b) = (A.3)
1n = +
Z1n(b) + Z, (b)
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In other words, the higher order modes of the input
admittance depend only on the properties of the medium in
the immediate vicinity of the antenna (i.e. the dielectric
coating) and are independent of the parameters of the con-
ducting body. Of course, the first few modes depend
strongly on the parameters of the conducting body because
for those modes, Q depends on the values of these para-
meters as can be seen from Equation (A.2).

As the index of the summation for the input
admittance expression becomes sufficiently large, the
following approximations (or asymptotic forms) of the

Bessel functions can be used [ J]:

I (z) 2 =— (Y
2TV
(A.4)
. [T ez
Nv(Z) - TV (Zv)

where e = 2.718 is the base of natural logarithm. For
the case of small spherical antennas, the argument 2z is

small compared to v i.e. we can assume that

Z << v (A.5)

where v 1is a large number. For example, z = kia = 0.1
is a typical case while v = n = 20. With the assumption
of Equation (A.5) we can write, for the Hankel function

of the second kind,
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. .. 2
HéZ)(z) = J,(2) - 3N (2) =3 [= (2V)V

™V ez (A.6)

. + .
Now, the expression for Z., (a) as needed in the Equa-

1n
tion (4.92) is given by
(2)
H (k.a)
z+ (a) = 3n n-1/2"'"1i _n (A.7)
1n LLef?)  (x.a) Ki?
n+l/2'"i

u
EQ . Using the approximation of Equation
i

(A.6) in Equation (A.7), one gets

where ny

v+l Vv )v

+ . v+l ez
Zln(a) B Jnl[ v (3 )(v+l

1 _ v +1/2
(v+l) z ] (A.8)

where n - 1/2 = v and kia = z. Now since n >> 1, we
can further simplify the expression in the bracket of
Equation (A.8) to get

z _ v + 1/2)
v+1l z

z7 (a) = jn (5 - (A.9)

Noting that 2z << v, Equation (A.9) can be written finally
as
z (a) = -jn, 2— (A.10)
1n'® T 73N &, :
i
Other higher order wave impedances which appear in the

input admittance expression can be written down similarly

as,
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= s n + s s - s n
Zln(a) =I1n kia' Zln(b) ing EIB, Zln(b) ing kib (A.11)

3

Note that these impedances are mainly imaginary (reactive)
for higher order modes. Returning now to Equation (A.3)

for R,_(b) we can write,

1n

. n +
BEAS kb = Zyp(P)
Rln(b) . = =1.0 (A.12)

. n +
ing _kib + Z2n(b)

This is a main approximation needed for evaluating the
higher order modes of the input admittance series. Note
that if the conductivity of the conducting body is high,
then Equation (A.l12) can be written by inspection. We

may now write, for the n-th mode of the input admittance;

7 (2n+1) 1 - Kln(a,b)

1, . 1
YIN(n) Cos 60 i) Pn(31n eo)Pn(O)

+ -
Zln(a)+Kln(a,b)Zln(a)

(A.13)
where n 1is a large odd integer. The only remaining
quantity to be approximated is Kln(a,b) which was de-

fined in Chapter 4 to be

(1) (2)
H (k.a)H (k.b)
Kln(a’b) = n+l/2 "' 71 n+l/2 i (A.14)

2) (1)
Hoy1/2(kjalHpLy /o (kyb)

Using the approximate values for the Hankel functions,
we can show that (note that the real parts of Hankel

functions should be retained in the calculation of
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Equation (A.14))
Kln(a’b) =1+ vy (A.15)

where Yy 1is a complex quantity. Substituting this into

Equation (A.13), one gets

. m(2n+l) _1, . 1
YIN(n) = Cos 60 n—(—n+—lT— Pn(51n OO)Pn(O).
.= =Y - (A.16)
zln(a) + zln(a) + yzln(a)

which, after using the approximation of Equation (A.1l0),

becomes

k.a
m(2n+l) .1, . 1 i
0 73— P~ (sin GO)Pn(O) N (A.17)

Y_.(n) = j Cos 6
IN n® (n+1) n 1

This is the desired relation for the n-th mode of the input
admittance for higher order modes, n >> 1. Note that a
similar expression can be derived for the case of spherical
antenna in a free space [6].

Equation (A.17) shows that the higher order modes
of a small, dielectrically coated spherical antenna depend
only on the dielectric coating region and is independent
of the parameters of the finite conducting body as stated
previously. However, the input admittance will depend on
these parameters through the first few terms of its series

solution.
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Now that a simple form has been found for the
higher order modes, we can discuss the problem of con-
vergence (or divergence) of the series. Again we note
from Equation (A.17) that the conductance part (or the
real part of YIN) of the series converges and we will
only show the convergence of the imaginary part, i.e. we

write Equation (A.l17) as

YIN(n) = jBIN(n) (A.18)
where,
k.a
B. (n) = cos 6, ™2n+1) Ll i 6 yplo) - (A.19)
IN 0 n 0" n n
n“ (n+l) 1

is a (real) susceptance depending on the large integer n.

We will show that ZnBIN(n)

finite 60. Before that, the validity of the approxima-

converges for large n and

tion of Equation (A.18) was checked on the computer. We
first used the exact relation [Equation (4.92) of Chapter

4] to compute a few higher order terms of the series, then
the computation was repeated using the approximation derived
in this appendix. The agreement between the two methods

was excellent and appreciable computer time and cost was
saved by using the approximation.

The associated Legendre functions are given by

(_1)-(n—l)/2
2" B5h 1

1 _ n!
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where n is an odd integer. Also from Jahnke and Emde's

Tables [21] we have

pi(x) 2 %ﬂ sinln(n/2 - x) - x/2] (A.21)

assuming that x << 1. Equation (A.21) can be written in

a product form as (x = Sin 60)
P. (x) é\j/%E'sin nn/2 Cosl (n + 1/2)x] (A.22)
Since n 1is an odd integer, we can assume
n=2m+ 1 (A.23)

where m=90,1,2,3,4,... . Note that n and m will be

large numbers. Equation (A.22) can be rewritten as

P%m+1‘*’ =/ ZiZ%ilL (-1)"cos[ (2m + 3/2)x] (A.24)

Substituting Equations (A.20) and (A.24) in Equation

(A.19), we have

Byy(m) = Cos g, 1l4m+3) [2(2m+l) (2m+1)1

0 2 (2m+1) % (m+1) J m 22Mp 1y 12
k.a
« Cos[(2m + 3/2)sin 6,.]— (A.25)
0 ny

To simplify Equation (A.25) further, we can use the Stirling's

formula for the factorial of large numbers:

m! = /2mm (g)m (A.26)



where e = 2.718. Using this in Equation (A.25), and
simplifying, we have

k.a

Cos[2m sin 6,.] —— (A.27)

B...(m) = Cos 6 0 n

IN

=R

0

where we have also used the fact that m 1is a large
number i.e. m >> 1.

We have now a very simple form for the higher
order modes in Equation (A.27). The summation for the

input admittance is

_ oM L
Yin T Ip=o Yin ™ * 3 Ipoyen Bpn (M (A.28)

where YIN(m) represents the first few terms for which
exact relation is given by Equation (4.92). The second
sum of Equation (A.28) can be replaced by an integral

when m is sufficiently large that the approximation of

Equation (A.27) is valid, i.e.

k.a
o 2 . i
(m) - fM Cos 60 — Cos(2m sin 60) —ﬁz dm (A.29)

[«

Zm=M+l BIN

The value for the integral in Equation (A.24) can be
found as follows

» COsS(2m sin 60)

f°° 1 Cos(2m sin eo)dm = [

Mm d(2m sin 90)

M 2m sin 60

(A.30)

letting 2m sin eo = y, we have
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© 1 - . - (® Cos y
fM - Cos(2m sin eo)dm f2Mx — dy (A.31)

which is in the form of the Cosine Integral [7]:

ci(a) = s° 8Os U 4y (A.32)
o u

Therefore, the sum in Equation (A.24) can be finally
evaluated as

2k.a

Xm=M+l BIN(m) = -j Cos ©

0 ”1 ci(2M sin 60) (A.33)

From Equation (A.33) we observe an important re-
sult that as soon as 60 # 0, the sum for the input
admittance expression found in Chapter 4 converges be-
cause ci(a) 1is always finite if a is nonzero. How-
ever if 60 = 0 (i.e. zero or infinitesimal gap) we see
that the series diverges, because c¢i(0) is infinite
(actually -«~). In fact, it diverges as ¢-(sin eo) and,
therefore, the expression for the input admittance
becomes meaningless. Physically this phenomenon is
expected since zero gap implies an infinite capacitance
connected in parallel at the antenna terminals and it
leads to an infinite input admittance.

To close this appendix we show in Table A.1l,
some computer results illustrating the convergence prob-
lem for a particular case in which a dielectrically coated
spherical antenna is immersed in a finite conducting body.

The radius of the metallic sphere is a = 1.0 cm and the
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Table A.l1l. Illustrating the Convergence of the Input
Admittance Series. (a =1.0 cm., b = 1.5 cm.,
c=5.5cm., £ =600 MHz; a/A0 = 0.02,

€ip = 2.1, €. = 77.9, o = 0.925 s/m, 260

is the total angular width, in degrees, of

the gap.)

Integer N as in INPUT SUSCEPTANCE, millimhos

N ¥ (n) 6, = 0° 8, = 5° 6, = 10°
1 5.46 5.41 5.30
3 6.52 6.43 6.17
5 7.10 6.94 6.50
7 7.50 7.26 6.61
) 7.81 7.48 6.58
19 8.80 7.73 5.85
29 9.36 7.41 5.70
39 9.76 7.02 6.05
49 10.07 6.81 6.03
59 10.33 6.83 5.81
69 10.54 7.01 5.90
79 10.73 7.18 6.03
89 10.90 7.25 5.92
99 11.04 7.18 5.85
199 12.01 6.99 5.91
299 12.60 7.12 5.95
399 12.98 7.06 5.94
499 13.30 7.06 5.92
599 13.55 7.09 5.91
699 13.76 7.05 5.93
799 13.95 7.09 5.94
899 14.12 7.07 5.93
999 14.26 7.06 5.92
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dielectric coating shell has a radius b = 1.5 cm with

a relative dielectric constant of €ir = 2.1. The fre-

guency of operation is f = 600 MHz (corresponding to

AO = 50 cm) and the parameters of the body are

€, = 77.9 and o = 0.925 ¥/m and its radius is ¢ =
5.5 cm. Three cases of 60 = 0°, 5° and 10° are con-
sidered.

To see how the input admittance series converges,
we study the partial sum Z§=1 YIN(n) for different
values of N. The real part (or the conductance) of the
input admittance was almost unchanged for different N's,
as expected, and was equal to 0.160, .156 and .146
millimhos corresponding to 60 = 0°, 5° and 10°,

respectively. The real part of Y vanished, in gen-

IN
eral, after the first few terms. On the other hand, for
the imaginary part (i.e. the susceptance), as can be seen
in Table A.1, the series diverges for the zero gap case
(60 = 0°) while for the case of finite gaps (60 = 5° and
60 = 10°) the series converges. Usually up to 10 terms
or more are needed to get accurate results which agree
quite well with the experimental results. Also from

this table we can see that increasing the gap width makes
the susceptance less capacitive. It is interesting to
compare the results obtained here for spherical antennas

to that of other kinds of antennas, for example, the

circular loop antenna [22].



APPENDIX B

COMPUTATION OF HANKEL FUNCTIONS

In this appendix, we first discuss Hankel functions
of small arguments as mentioned in section 4.7 in connec-
tion with radial transmission lines and then followed with
a brief description of the numerical computation of the
input admittance expression as derived in Chapter 4.

The main purpose of this appendix is to introduce a power-
ful routine used throughout the computation of the Bessel
functions with generally complex arguments.

Hankel functions of the first and second kinds are

defined in terms of Bessel and Neumann functions as

(1) - .
Hv (z) = Jv(z) + jNv(Z) (B.1)
and
Héz)(z) = Jv(z) - jNv(z) (B.2)

where v, in general, is a complex number called the
"order" of the function involved and 2z 1is a complex
argument.

Assuming that 2z = x = a positive real number, we

have for the case when x << 1

158
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. . 2
Jo(x) = 1.0, No(x) = on %ﬂ
(B.3)
. X . 1 2
Jl(X) = 5: Nl(x) = - ;ﬂn (;)

which are obtained from the series representations of the
Bessel functions and Yy = 1.781 i the Euler's constant

(9m vy = 0.5772). Hankel functions then become

. .2

BV 0 21452, X5, 5P 21 -5 2, 13
(B.4)

. : 2 2 . . 2

H{l)(X) = % =) %wm (;). H{ )(x) = % + 3 %9n (;)

From Equation (B.4) we can write, for the amplitude

and phase functions as introduced in section 4.7 of Chapter

4,
hex) = 2] (X, by =L
2 (B.5)
Lo(x) 2 tan T i2g ()], vix) 2 tan b (T

The relations given by Equation (B.5) were used in section
4.7.

Next, as can be seen from Equation (4.92), for the
computation of the input admittance (or the input impedance),
one needs to generate the associated Legendre functions.

For zero argument the relation is simply

-(n-1)/2
1 _ (=1) n!
Pn(o) - 2n—1[(n—l), 2 (B.6)
2 '

for odd integers n. For non-zero arguments, the first

three functions are given by
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pcl)(cos ) = 0, Pi(Cos ) = sin 6, Pi(Cos ) = 3/2 sin 20
(B.7)
For other functions we can use the recurrence relation for

varying degree [7] as
mpl (x) = (2m+1)xPr(x) - (m+1)Pl _ (x) (B.8)
m+l X = m X m m-l -

where for our case x = sin 60.

To compute the various quantities involved in the
expression for the input admittance, e.gq. Rln(b)'
zIn(a),... etc., we have to compute Hankel functions of
fractional order and complex argument (in general). This
can be tedious if one uses the series expansion of the
Bessel functions or tries to use tabulated values for these

functions. 1In fact, to compute each term of Y as

IN
given in Equation (4.92) one needs approximately 15 dif-
ferent Hankel functions. Fortunately, for this purpose,

we had access to a powerful routine for computing cylindrical
Bessel functions (including Neumann functions) of complex
order and complex argument [23]. The description of the
routine and an example of its use follows.

The subroutine to compute the Bessel functions,
code-named COMBES, uses the appropriate recursion rela-
tionships and normalization factors to compute Bessel func-
tions of the first kind Jv(z) and then uses a summation

of Jv(z) to compute the Bessel functions of the second

kind (or Neumann functions) Nv(z) [24], where in
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general both v and 2z may be complex, or

v = (o +# n) + jB (B.9)
and

z = X + jy (B.10)
where |n| =0,1,2,...,N, and o is positive. Note that

the real part of v 1is written in the form of an integer
plus a real number due to the fact that usually we are
interested in Bessel functions of integer orders or
integer plus half (as in our case). However, the order
in general can be any real or complex number. A restric-
tion on the magnitude of the argument is given in the

routine as

lz] =Jx% + y? < 50 (B.11)

In all our problems COMBES was used to calculate the Hankel
functions and as we saw earlier, the results were in good
agreement with experiments and comparison with existing
results.
To "call" the routine in a program, the following
statement is used:
CALL COMBES (X,Y, ALPHA, BETA, N, BJR, BJI, BNR, BNI)
(B.12)
where X and Y are the real and imaginary parts of the
argument 2z defined in the program, ALPHA and BETA are

as defined in Equation (B.9). |N| + 1 is the number of
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values of the functions to be computed. BJR, BJI, BNR
and BNI are all one-dimensional arrays. Real part of
Jv(z) will be stored in BJR while its imaginary part
will be stored in BJI. These two arrays (i.e. BJR and
BJI) should have a dimension greater than or equal to the
maximum of |[z| + 25 and |N| + 15. The real part of
Nv(z) will be stored in BNR while its imaginary part
stored in BNI. Each of these two arrays should have a
dimension greater than or equal to the maximum of

IN|] + 1 and 3. 1In the existing deck these arrays are
dimensioned as BJR(100), BJI(100), BNR(50) and BNI(50).
In the program of interest it is best that the arrays be
dimensioned accordingly, if possible, to avoid errors
since the arrays are also used for temporary storage in
the routine.

As an example, suppose that we want to compute

(2) (2)
n-1/ n+l/

is a complex quantity. Then if RK = kr in the program,

Hankel functions H 2(kr) and H 2(kr) where k

we can call the routine COMBES as follows:

CALL COMBES (RKR, RKI, 0.5, 0, N, BJR, BJI, BNR, BNI)
(B.13)
assuming that the arrays BJR,...,BNI have been dimensioned
properly. RKR, RKI are the real and imaginary parts of
kr, respectively. After calling the routine we can con-

struct the Hankel functions as
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HM

BJR(N) + jBJI(N) - j[BNR(N) + jBNI(N)]

(B.14)
HP

BJR(N+1) + jBJI(N+l) - j[BNR(N+l) + jBNI(N+1l)]

(2)
n-1/2

Héii/z(kr). Note that since the argument kr was complex,

it is necessary to use both real and imaginary parts of

where HM 1is used for H (kr) and HP for

Bessel and Neumann functions. Also since the routine
will compute the elements of the array from 1 to N+1, in
the case where we use Hankel functions in a do-loop, the
routine needs to be called only once for the maximum
integer number of the do-loop's parameter.

In order to illustrate the accuracy of the numerical
results obtained after executing the routine COMBES, we
now compute some Spherical Bessel functions. These func-
tions are defined in terms of the ordinary (cylindrical)

Bessel functions as

: = [r_ = /E_
Jm(x) ./ 2x Jm+1/2(x)' nm(x) ./ 2x Nm+1/2(x) (B.15)

Table B.1l shows values of the spherical Bessel functions
of order m = 0,1 and 2. The real argument x runs

from 0.1 to 2.1 (note that x = 0 cannot be computed).
These values are computed using the routine described
before. A comparison of the values in Table B.1l and that
from the National Bureau of Standard's "Tables of
Spherical Bessel Functions", which are compiled in Re-

ference [7] shows a very good agreement. Although for all
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Table B.1l. Spherical Bessel Functions of Order 0, 1 and
2. These Results are Comptued by using the
Routine "COMBES".

x jo(x) no(x) jl(x) nl(x) j2(x) nz(x)

0.1 .99833| -0.95004 | .03330| -100.49875 | .00067 | -3005.01248
0.2 .99335 -4.90033 .06640 - 25.49501 .00266 -377.52483
0.3 . 98507 -3.18445 .09910 -11.59992 .00596 -112.81472
0.4 .97355 -2.30265 .13121 -6.73018 .01055 -48.17368
0.5 . 95885 -1.75517 .16254 -4.46918 .01637 -25.05992
0.6 .94107 01.37556 .19289 -3.23367 .02339 -14.79279
0.7 .92031 -1.09263 .22210 -2.48121 .03154 -9.54114
0.8 .89670| -.87088 .24999| -1.98530 .04075 | -6.57399
0.9 .87036 -0.69068 .27639 -1.63778 .03095 -9.76860
1.0 .84147 -0.54030 .30117 -1.38177 .06204 -3.6052
1.1 .81019 -.41236 .32417 -1.18506 0.7392 -2.81963
1.2 .77670 -.30196 § .34538 -1.02834 . 08651 -2.26888
1.3 .74120 -.20577 | .36438 -.89948 . 09969 -1.86996
1.4 .70329 -.12141 .38138 -.79061 .11334 -1.57276
1.5 .66500 -.04716 .39617 -.69644 .12735 -1.34571
1.6 .62473 .01825 .40871 -.61333 .14159 -1.16824
1.7 .58333 .07579 .41893 -.53875 .15595 -1.02653
1.8 .54103 .12622 .42679 -.47090 .17030 -.91106
1.9 . 49805 .17015 ]| .43229 -.40850 .18450 -.81515
2.0 .45465 .20807 .43540 . -.35061 .19845 -.73399
2.1 .41105 .24040 .43614 -.29657 .21201 -.66408
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the results encountered in the problem of the input
admittance of spherical antennas one had a good accuracy
in using the routine COMBES, it is recommended that the
reader runs a few examples in special cases first, and
then compares it with the values given in standard tables.
It is believed that the routine is not very accurate for

pure imaginary arguments.
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