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ABSTRACT

IMPLANTABLE ELECTROMAGNETIC FIELD

PROBES IN FINITE BIOLOGICAL BODIES

BY

Seyed Hossein Mousavinezhad

This thesis presents some theoretical and experi-

mental results on the study of a dielectrically coated,

small spherical probe used to measure the induced EM

fields in conducting (biological) bodies of finite

extent. The receiving and radiating characteristics of

the insulated probe are determined as functions of the

electrical parameters and geometry of a spherical con-

ducting body.

First, a general theory for a wire probe in a

volume conductor is presented and the relation between

the output of the probe and the induced electric field in

the body is derived. The receiving properties of an in-

sulated spherical probe immersed in a uniform electric

field inside a conducting body are then discussed. An

expression for the effective diameter of the probe is

also derived.

The expression for the input impedance of a

dielectrically coated spherical antenna imbedded in a



Seyed Hossein Mousavinezhad

finite conducting body is formulated based both on the

matrix equation method and transmission line theory.

Finally, experimental results on the input

impedance of insulated spherical probes and the measure-

ments of the induced electric field inside conducting

bodies are presented.

The convergence problem of the theoretical input

admittance and the computation of Hankel functions are

also included in two Appendices.
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CHAPTER I

INTRODUCTION

In recent years, many researchers have inves-

tigated the problem of Electromagnetic Radiation effects

on biological systems and related potential health

hazards. In order to understand the nature of the

problem and to determine whether the radiation-induced

effect is thermal or non-thermal, one needs to know the

actual intensities of the induced electromagnetic fields

inside the irradiated biological bodies. Experimentally,

implantable EM field probes can be inserted into these

bodies to measure the field intensities. In order not

to perturb the actual field distribution in the body and

to have a good resalution of the measurement, the probes

are required to be electrically small.

In this thesis, we present a study on an implant-

able EM field probe which can be used to measure the

induced EM field in a finite conducting (biological) body.

Recent studies on the characteristics of some conventional

probes used in conducting bodies have been reported [1 l.

E 2]. [ 3]. In almost all these works, an infinite con-

ducting body was assumed which neglected the effect of



the boundary of the medium on the characteristics of the

probe. In the present study, we consider a coated

spherical probe in a finite conducting body, taking into

account the boundary effects.

In Chapter 2, we discuss some general properties

of the probe in a volume conductor. We derive the re-

lationship between the output of the probe and the in-

duced electric field intensity in the irradiated body.

The receiving characteristics of an insulated spherical

probe is investigated in Chapter 3. A relation is derived

for the effective diameter of the probe immersed in a

uniform incident electric field inside a conducting body.

In Chapter 4 we formulate the expression for the

input impedance (acting as a radiating element) of a

dielectrically coated spherical probe located at the

center of a spherical conducting body. Two different

approaches are discussed to obtain the series expression

for the input admittance and some numerical results are

presented. The end effects of the probe are also dis-

cussed.

Finally, in Chapter 5, we present some experi-

mental results obtained in measuring the input impedance

of the spherical probe in which a relatively new method

of impedance measurement is introduced. A few examples

of the measurement of the induced electric field in

finite conducting bodies containing saline solution is



also shown and compared to the theory. Two appendices,

at the end of the thesis, discuss the convergence prob-

lem of the series expression obtained in Chapter 4 and

the numerical computation of Hankel functions used in

the computer program.



CHAPTER II

GENERAL THEORY FOR AN IMPLANTABLE

ELECTROMAGNETIC FIELD PROBE IMMERSED

IN A FINITE VOLUME CONDUCTOR

In order to measure electromagnetic field in-

tensities induced in finite conducting bodies, appropriate

field probes may be inserted in these bodies. In this

chapter, we derive the relationship between the output

of a wire probe and the intensity of the electric field

at the location of the probe inside a volume conductor

which is irradiated by an incident electromagnetic wave.

After this, a simple spherical probe is proposed for

further study because, an exact analytical solution

exists for such a probe.

2.1. A Wire Probe in a Finite Conducting Body

Consider a conducting body of volume V with

electrical parameters 5(f), 0(f) and irradiated by
“0

a non-uniform EM wave with an electric field intensity

Ei(§), as shown in Figure 2.1. The induced electric field

E(§) inside the body, in the absence of the probe, can

be theoretically obtained based on the Tensor Integral

Equation method developed originally by Livesay and Chen

[4]-



   

    
  

    

 

ZL = load impedance El(f)

IO = terminal (load) current

VO = ZLI0 = terminal voltage

I(s) = I0f(s) = induced probe

curren

[f(0) = 1]

EH?)

Voltage

Measure-

ment F + +

Device Probe 5(r), 0(r),u0

Figure 2.1. Configuration of Probe in a Finite,

Heterogeneous Volume Conductor.

 

  
in
 

  

   

  

Figure 2.2. Equivalent Circuit for Probe in a Finite

Heterogeneous Volume Conductor.



When a probe is introduced into the body, E(f)

induces a current I(s) on the probe. (5 measures the

distance along the contour F of the thin probe as shown

in Figure 2.1.) This current maintains its own secondary

field Ep(¥) at any point in the body.

Assuming the linearity, the total electric field

at any point can be expressed as

Et(r) = E(r) + Ep(r). (2.1)

We aim to find the relation between output voltage of the

probe vo(¥) and the induced field E(E) at the probe

location.

Using the boundary condition that the tangential

electric field vanishes at any point on the surface of

the perfectly conducting probe, one can write,

S-Et(s) = V0(s)6(s) = ZLI06(s) (2.2)

where ZL is the load impedance and S is a unit vector

along the contour P. Assuming that I(s) = Iof(s) as

the induced current on the surface of the probe, we can

multiply both sides of Eq. (2.2) by f(s) and then

integrate along P to get

frf(s)s-E(s)ds + frf(s)s-Ep(s)ds = ZLI0 (2.3)

(note that f(0) = l). The second integral on the left

hand side is proportional to input current I0 and we



can define the internal impedance of the probe as

_-_1_ “3*
Zin — Io frf(s)s Ep(s)ds . (2.4)

This is equal to the input impedance to the probe when

it is used as a radiating element. Substituting (2.4)

in (2.3), we have

 

Z A

v06?) = f; f f(s)s-E(s)ds (2.5)

Z. (r) + Z P
in L

where the relation V0 = ZLI0 has been used. Equation

(2.5) is the general relation between the output voltage

of the probe V0(?) and the electric field at the probe

location in the conducting body. If we define

—> A->

Veq(r) — frf(s)s-E(s)ds (2.6)

as an equivalent voltage source for the probe, and noting

that §—-= Io, Eq. (2.5) can be rewritten as

+ —>

Iozin(r) + IOZL = Veq(r) . (2.7)

Equation (2.7) suggests an equivalent circuit for the

probe in the conducting body as shown in Figure 2.2.

In practice, we are interested in electrically

small probes such that internal electric field at probe

location is uniform. Thus Eq. (2.5) can be written as

 

Z A

vo(‘r’) é[ f fFf(s)sds]°E('f) . (2.8)

Z. (r) + Z

in L



This is the desired relation which shows that the output

of the probe is proportional to the electric field at the

probe's location in the absence of the probe. It also

shows that the proportionality factor is a strong function

of the location of the probe in the body (i.e. f) and

also of electrical parameters of the medium (i.e. E(f),

0(3) and no) at the probe location. We note that the

current distribution function f(s) is, in general, a

function of the parameters of the medium. At the same

time, input impedance of the probe when used as a

radiating element zin(;) is a function of not only

location ; but of electrical parameters 2, o and “0'

It is obvious that in order to measure the field intensity

inside, say, a biological body, we need to have a loca-

tion - and local parameter - independent probe. In other

words, the equivalent circuit shown in Figure 2.2 differs

from the conventional circuits for a receiving antenna,

in which Zin is a strong function of location and local

parameters. Also as hidden in Veq(f), the current

distribution function f(s) is not constant as one moves

the probe around in a heterogeneous body.

The solution of the input impedance of a dipole

or a loop type probe is not easily obtainable in a finite

conducting body. Therefore, a simple spherical probe

will be treated rigorously throughout this study because,

an exact analytical solution is possible for this model.



2.2. Spherical Antenna as a Probe

The problem which will be examined in the next

few chapters deals with an insulated spherical antenna as

an implantable probe in a finite conducting body. The

problem is schematically shown in Figure 2.3. It will

be shown that when the coated spherical probe is located

in the center of a spherical homogeneous conducting

body, a closed form analytical solution can be obtained.

After this, we will study the receiving and radiating

characteristics of a dielectrically coated spherical

antenna imbedded in a finite biological body.
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To voltage measuring

device

 

+i+

E (r)

  
 

Figure 2.3. Insulated Spherical Probe in a Conducting

Body Irradiated by an Incident EM Wave.



CHAPTER III

AN INSULATED SPHERICAL

PROBE IN A CONDUCTING BODY

As was mentioned in the previous chapter, a

dielectrically coated spherical antenna may be used as a

probe in a conducting body. In this chapter, we consider

the receiving characteristics of an insulated spherical

probe when illuminated by a uniform electric field inside

a biological body. An expression will be derived for the

effective diameter of the probe and some theoretical re-

sults will be presented for the normalized effective dia-

meter as a function of relative dielectric constant and

conductivity of the conducting body.

It should be noted, however, that the results of

this chapter are partly based on the results of the input

impedance of a coated spherical probe when used as a

radiating element in a finite body. The.Latterresults are

developed thoroughly in the next chapter.

3.1. Statement of the Problem and the Superposition

Principle

As shown in Figure 3.1, an electrically small

sphere of diameter 2a, coated by a dielectric shell of

11
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Biological Body

   
 

 

E, C, 110
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Figure 3.1. Dielectrically Coated Small Spherical Probe

in a Uniform Incident Electric Field Inside

a Biological Body

  

 
 

 

 
Figure 3.2. Illustrating the Superposition Principle
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radius b is imbedded in a biological body. Assume that

an electric field E0 exists at the probe location and

this E0 is uniform over the probe when the probe is small.

There is an impedance ZL across a narrow gap of the probe

and we aim to derive a relation between the induced

voltage across ZL and the impressed electric field E0.

The dielectric coating has a permittivity 6i and perme—

ability “0' The electrical parameters of the body are

e, o and ”0' The spherical probe is located such that

the z axis of the rectangular coordinate system is per-

pendicular to the plane of the narrow gap and the impressed

electric field is in the z direction.

Since the biological body is assumed to be linear,

we can apply the superposition principle. This principle

states that the total electromagnetic field present at any

point outside the spherical probe is the sum of the

scattered fields from the shorted probe (a coated solid

sphere) illuminated by the impressed electric field, plus

the field radiated by the coated spherical antenna driven

by a voltage which is equal to the voltage drop across

the load impedance at the narrow gap. This is illustrated

in Figure 3.2 where arrows on the spheres show the

directions of currents.

The radiating antenna will be analyzed in the next

chapter and its input impedance will be formulated. In

this chapter, we will solve the scattering problem.
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3.2. Scattering from a Dielectrically Coated Sphere

An insulated solid sphere together with the

Spherical coordinate system is shown in Figure 3.3. The

incident electric field at the sphere is expressed as

E = E z = E0 Cos e r - Eo Sin e 6 (3.1)

based on the approximation of the field being uniform

over a small Sphere. Time harmonic dependence of the form

exp(jwt) is implied but not shown in the analysis.

From the incident field of equation (3.1), we can

see that there exists only the r— and 6- components

of the electric field in dielectric region and the con—

ducting body. Furthermore, all fields are independent of

azimuthal angle T due to the rotational symmetry. The

magnetic field associated with this uniform electric field

can be shown, via Maxwell's curl equation, to be iden-

tically zero. This implies that the effect of the

magnetic field will be neglected at this stage. The

following relations are true under the stated approxima-

tions.

= O, E = 0 and Hr = H6 = 0 . (3.2)

Of course, there is a scattered magnetic field maintained

by the current induced on the sphere by the uniform

incident electric field.
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Figure 3.3. The Scattering from a Dielectrically Coated

Sphere when Irradiated by a Uniform Incident

Electric Field in the z Direction, Inside

a Conducting Body.
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There are two regions where we have to find ex-

pressions for the total EM field components. To do this,

we can start from the Maxwell's equationsenuiderive the

Helmholtz Wave equation. The solution to this equation

will be considered in more detail in the next chapter.

Here, we just write down the tangential components of E

and H fields in the two regions:

For r 3 b, the scattered fields by the coated

 

sphere are

 

  

s _ 1 5+

H¢n(r,6) — Pn(Cos 8)H¢n(r) (3.3)

s _ 1 + s+

Een(r,8) — Pn(Cos 8)an(r)H¢n(r) (3.4)

where

(2)
A H (kr)

Hs+(r) E n n+7 , k2 = w u 5

an r];- 0

u

<£=€-j%,n=zfl (3.5)

(2)

2+ (r) = '0 H n-%(kr) - 2-
sn 3 H72)(kr) kr

K n+8

H(1) and H(2) are Hankel functions of the first and

second kind, respectively. E is the complex permittivity

of the conducting body and z:n(r) is the TM mode wave

impedance in this region. An, for integer n, is an un-

known coefficient to be determined later from the boundary

conditions. In Equations (3.3) and (3.4), only the



17

out-going waves are considered. This approximation neglects

the reflection of the waves at the outer surface of the

conducting body. This may be valid because of the losses

in the medium.

For a i r i b, the total fields in this region

 

can be expressed as

  

 

  

_ 1 - +
cpn(r,e) — Pn(Cos 8)[Hwn(r) + H¢n(rfl (3.6)

E n(r,e) = pi (Cos e)[z; (r)H;n(r) - z; (r)H;nm] (3. 7)

where

H(l) (2)

(H (r) s Bn“n+5(kr) , H+ (r) E Can+g(kir)

mn Vkir In Vkir

LI

2 _ 2. _ _9

k1 — w 14061' n1 - Ei

< (3.8)

+ Hr(12) (kr) _

“ Hn::fi(k r) 1r

_ Hélifki r) n

Zn“) = ‘3'” Hm ‘ 12‘? -
K M115(kr) 1

Note that since this is a finite region, there exist both

. . + . . .

out-901ng spherical wave, H¢n(r), and incoming spherical

wave, H;n(r). Bn and Cn are two other unknowns to be

determined later.
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Since there is a solution for each n, the actual

E and fi fields are infinite sums of fields given by

equations (3.3), (3.4) and (3.6), (3.7), i.e.;

awn, e) = z°°n=l Hwn(r'e) (3.9)

where H¢n(r,6) is as given by (3.6). Similar expres-

sions can be written for other field components.

Up to this point, we have introduced three un-

known coefficients An’ Bn and Cn‘ To solve for these

unknowns, we use the Boundary Conditions.

The first boundary condition is that the tangential

electric field vanishes at any point on the perfect con-

ducting metallic sphere, i.e.

_ l + + _ - - _
Een(a,6) — Pn(Cos 9)[Zn(a)qu(a) Zn(a)H(Pn(a)] — o (3.10)

which is valid for all n and 6.

The second boundary condition states that the

tangential E and fi field components are continuous

at r = b, or

- + _ s+
qu(b) + Hcpn(b) — Hcpn(b) (3.11)

+ + - - _ + s+ _
Zn(b)an(b) - Zn(b)H¢n(b) — an(b)H¢n(b) E051n (3.12)

Note that in writing the continuity of g field, the

uniform incident electric field E0 in the conducting

body is included in the right hand side of equation (3.12).
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The notation associated with E0, i.e.

l n = 1

61m = (3.13)

0 n # l

is the Kronecker delta.

The three unknown coefficients are the solutions

of the following system:

 

  

 
  

YnXn = Fn (3.14)

where

An E06m

x = B , F = 0 (3.15)

n n n

C 0

n

(2) (l) (2) 1

n+l/2(kb) + Hn+]/2(kib) - Hn+1/2(kib) +

sn(b) Zn(b) Zn(b)

.423 ib i

(2) (1) H(2)

Y = Hun/2m") ’Hn+1/2‘kib)Hn+1/2(kib)

“ (ES A??? W.

H(1) - (2)
L- 0 Hn+15 (kia)Zn(a) Hn+15(kia) J  

The matrix equation (3.14) gives us non-zero solutions

for An' Bn and Cn only when n = 1. That means

there is only one term in the infinite series of equation

(3.9). This simply is due to the fact that the incident

electric field was assumed to be uniform. If, for example,

the incident field was assumed to be a plane wave, the
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solution would be quite involved and there would be

infinite terms in the series solution of Equation (3.9).

We can now define

a = —- , bl = —— and cl = —— (3.16)

such that the expression for the tangential a field on

the surface of Sphere, as given in equation (3.6), can

be expressed as

  

(1) (2)
H (k.a) H (k.a)

H (a,e) = Sin e[ 3” 1 b + 3/2 1 c E (3.17)

(P VE.a l VE.a l 0

l 1

Note that P%(Cos 9) = Sin 6. The unknowns b1 and

 

  

C1 are solved from equations (3.16) and (3.15) as

f Jkib

b =

l + - (l) + + (2)
[231 (b)+z1 (13)] H3/2 (kib)+[zsl (b) —z1 (b)] a(a)H3/2 (kib)

{c1 = 0t(a)b1 (3.18)

- (1)
- Zl(a)H3/2(kia)

(1(a) : + (2) o

\ Zl(a)H3/2(kia)

Up to now, the magnetic field on the sphere is completely

known.

We are interested in the current on the sphere.

The surface current on the surface of the sphere is given

by



21

A

K(e) = a x i = r x H¢(a,6)$ = -Hw(a,9)9 (3.19)

where H¢(a,6) is as given by equation (3.17). This

current is proportional to E0 and can be written as

  

Ke(9) = -Hw(a,6) = Y(6)E0 (3.20)

where

(1) (2)
Ii (k.a) Ii (k.a)

Y(6) = _[ 3/2 1 bl + 3/2 1 c¥]sin e (3.21)

Vkia Vkia

with b1 and c1 as given by equation (3.18). Note

that Y(9) has the dimensions of an admittance.

3.3. Equivalent Circuit of an Insulated Spherical Probe

in a Conducting Body

Referring back to superposition principle as de-

picted in Figure 3.2, the total surface current on the

insulated Sphere of Figure 3.1 is given by

Kte(m = Ke(m +-Kg (m (3.22)

where Ke(6) is found in the previous section and is

given by equation (3.20), Ké(6) is the surface current

on the spherical probe when it is driven by a voltage

generator. The radiating problem will be solved in the

next chapter. At this point, we write Ké at the probe

gap or 9 = 90° simply as
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. _ o _ V
Ke(e — 90 ) — Zna Z. (3.23)

in

where V is the induced voltage (or the voltage drop)

across the load impedance of the spherical probe, and

Zin is the input impedance of the coated sphere when

used as a radiating antenna in the same conducting body.

The general expression for this input impedance Zin will

be derived in the next chapter.

The induced voltage across the load impedance is

given by

V = -ZLI = ~2na Kte(8 = 90 )ZL (3.24)

Note the polarity of this voltage drop as shown in Figure

3.1. Substituting equations (3.23) and (3.24) into the

equation (3.22), one gets;

V V
- —————— = ——————— + Y(e = 90°)E .

Zfla ZL 2na Zin 0

After rearranging, it becomes

V(Zin + ZL)/ZL = -2 anZinY(6 = 90 )E0 (3.25)

where Y(e) is given in equation (3.21).

Equation (3.25) suggests an equivalent circuit for

the insulated spherical probe in a conducting body as

shown in Figure 3.4. The equivalent driving voltage for

the probe in Figure 3.4 is,

Veq‘= -2na ZinY(6 : 90 )E0 . (3.26)
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V

eq

  

   

Figure 3.4. Equivalent Circuit of the Dielectrically

Coated Spherical Probe in a Homogeneous

Biological Body.
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Note that Figure 3.4 is similar to Figure 2.2 of Chapter

2 which is the equivalent circuit of a wire probe.

In analogy with a wire probe, we can define an

"effective" diameter of the probe as

Deff = Veq/E0 = -2na ZinY(9 = 90 ) (3.27)

Furthermore, this can be normalized to the physical

diameter of the sphere, 2a, to give dimensionless

normalized effective diameter as

deff = Deff/Za = -fl ZinY(6 = 90 ) (3.28)

Finally, before ending this section, we note that Veq

is the voltage developed across the load impedance when

ZL + w. Therefore, useful information can be obtained

from the effective diameter of the probe. Some theoretical

results of this parameter are shown in the next section.

3.4. Some Theoretical Results on the Normalized

Effective Diameter of the Spherical Probe

The expression for the normalized effective dia-

meter of the spherical probe was derived and expressed

in equation (3.28) of the last section. The results of

this section are also based on the results of the input

impedance of the spherical probe acting as a radiating

element Zin’ which will be analyzed in the next chapter.
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First, in order to compare the receiving charac-

teristics of the spherical antenna to the other conven-

tional probes (such as dipoles and loops), the effective

diameter of a small sphere in free space is calculated.

In Table 3.1, the real and imaginary parts (or magnitude

and phase) of the normalized effective diameter for a

small spherical probe in the free-space are shown. The

frequency is assumed to be 600 megahertz which

corresponds to the free space wavelength of 50 cm. The

spherical probes considered are all electrically small.

As can be seen from Table 3.1, for small spherical

receiving antennas,

Deff/Za = l/2 (3.29)

is a good approximation. This means that

Deff = a (3.30)

which is the physical radius of the sphere. This is

similar to small dipole type probes, where the effective

length is one half of the total physical length. The

theory for the dipole antenna as a receiving element, can

be found in King's book [5].

Several examples were worked out for the insulated

spherical probe of Figure 3.1. It was found that the

effective diameter, in general, is a strong function of

the relative dielectric constant of the conducting body.
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Table 3.1. Complex Normalized Effective Diameter of

Small Spherical Antenna in Free Space

(f = 600 MHz; A = 50 cm.)

 

 

0

(2m) Deff/Za

MAGNITUDE PHASE (DEGREES)

0.5 0.44738 -0.00478

1.0 0.44805 —0.03796

1.5 0.45078 -0.12655

2.0 0.45448 -0.29493

2.5 0.45902 -0.56393

3.0 0.46428 —0.95012

3.5 0.47010 -l.46559

4.0 0.47630 -2.11801

4.5 0.48270 -2.91084

5.0 0.48913 —3.84390

5.5 0.49541 -4.91383

6.0 0.50137 -6.1l478

6.5 0.50685 -7.43891

7.0 0.51170 -8.87698

7.5 0.51579 —10.41877

8.0 0.51902 —12.05351

8.5 0.52127 -13.77013

9.0 0.52247 -15.55751

9.5 0.52254 -17.40459

10.0 0.52144 —19.30041
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Of course, it is also a function of the thickness of the

coating (or b). The example shown in Figure 3.5 illus-

trates the magnitude of normalized effective diameter for

a small, coated spherical probe. The frequency is

f = 2.45 GHz (corresponding to the free space wavelength

of A0 = 12.24 cm) and the radius of the Sphere is

a = 1.0 mm. The sphere is coated with a dielectric of

dielectric constant e. = 2.1 (Teflon). The conduc-
1r

1 mmho/m. The curves aretivity of the body is o

plotted for different thicknesses of the coating as a

parameter. The independent variable is the relative

dielectric constant of the conducting body. It is to be

noted that although the effective diameter is a complex

quantity, the imaginary part is usually small compared

with the real part.

AS can be seen from Figure 3.5, for smaller values

of b/a (i.e. for thin coatings), there is a considerable

variation in the effective diameter as the relative

dielectric constant is changed. But for higher values of

b/a (i.e. for thicker coatings), there is almost no

variation in the effective diametercflfthe probe as the

Sr is varied. This is not true, however, for lower

values of gr, say, er < 10. Fortunately, for most cases

of interest in biological bodies, er is greater than 10.

The results obtained in this chapter are based

on the geometry of a conducting body of infinite extent.
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However, as we will see later, the input impedance of the

probe is quite independent of the electrical parameters

of the conducting body and the probe location. When the

dielectric coating is sufficiently thick, the effective

diameter expression derived in this chapter may also be

valid for an insulated spherical probe immersed in a

finite body.

Finally, in Figure 3.6, the normalized effective

diameter of the probe is shown as a function of the

dielectric constant of the conducting body for different

values of the relative dielectric constant of the coating,

5. . It is seen in this figure that for lower values of
1r

eir' the effective diameter remains almost constant for a

wide range of relative dielectric constants of the con-

ducting medium.

Therefore, as far as the receiving characteristics

of the insulated spherical probe are concerned, in order

to have the output of the probe to be independent of the

electrical parameters of the conducting body, a thick

coating with low dielectric constant materials is

appropriate. In the next chapter, the radiating charac-

teristics of the coated spherical probe will be studied

as functions of the electrical parameters of the medium

and the probe location in a conducting body.
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CHAPTER IV

DIELECTRICALLY COATED SPHERICAL

ANTENNA IN A FINITE CONDUCTING BODY

As was seen in Chapter 2, the output of an EM

field probe immersed in a finite conducting body is, in

general, a strong function of its Input Impedance when

used as a radiating element. Furthermore in Chapter 3,

the expression for the effective diameter of a

dielectrically coated Spherical probe was found to be

dependent on the input impedance of the radiating

spherical antenna.

It is evident that to understand the performance

of an EM field probe in a biological body, the input

impedance of the probe acting as a radiating element

must be determined. In this chapter the expression for

the input impedance of the probe is determined as a

function of the parameters of the body and the relative

probe location inside the body.

The theoretical results for the input impedance

of a coated spherical probe in a finite conducting body

were computed numerically with a digital computer and are

shown in figures. In the next chapter, the accuracy of

these results is verified by experiments.

31
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It is noted that the major difference between

the problem studied here and the ones considered by other

workers and available in the literature is the fact that

the conducting body in the present study is finite. The

selection of a finite conducting body increases the

degree of difficulty in the theoretical analysis. How-

ever, with the geometries of a spherical conducting body

and a spherical probe, an exact solution is obtainable

by the method of boundary value problem. In the course

of solving the problem, the matrix inversion method was

first applied without success. Later, a transmission

line approach was employed to find the solution success-

fully.

4.1. Geometry of the Problem

Figure 4.1 shows the geometry of the problem to

be considered in this chapter. An electrically small

sphere of radius a is driven by a voltage generator

which maintains a potential difference V across a

narrow equatorial gap. The spherical antenna is coated

by a dielectric shell of outer radius b and dielectric

constant 6i. This dielectric coating region is assumed

to be almost lossless, i.e. 5i is a real quantity.

The coated antenna is then imbedded in the center of a

conducting body of radius c. The electrical parameters

of the conducting body are e (permittivity) and 0



 

Figure 4.1.
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(conductivity). It is noted that for an exact solution

to exist, the insulated sphere should be located at the

center of the conducting body.

We aim to find an expression for the input

impedance of a radiating, insulated spherical antenna,

which is electrically small and can be used as a probe,

imbedded in the center of a spherical biological body.

This input impedance will be shown to be a function of

all parameters involved, namely, a, b, c, 6i, 5, 0 and

the frequency of the oscillating source, f.

4.2. Electromagnetic Field Solutions

Due to the geometry of the problem, the usual

spherical coordinate system (r,6,¢) is used as shown in

Figure 4.1. There are three regions in which electric

and magnetic fields are to be determined from the

Maxwell's Equations. The two curl equations are:

_)

v x E = -jwu0H (4.1)

v x E = j00_E (4.2)

in which E is, in general, a complex permittivity. The

time dependence of exp(jwt) is understood. Due to the

rotational symmetry, all field quantities are independent

Of (pf i.e.

-—- ( ) E 0 (4.3)
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Also, due to the uniform excitation of the antenna around

the gap, it is true that

E = 0 (4.4)

It implies that there is no (9 component of the electric

field in any region. With conditions (4.3) and (4.4),

it can be shown that the magnetic field has only the w com-

ponent. From Equation (4.1),

BR
+—1§_ _l.__£.A—..' +

V X E ‘ E 3r (r30) E 30 ]¢ ‘ J“’“0H (4'5)

Equation (4.5) shows that E = H.$, i.e. there is only

v

w component of E field at any point outside the

spherical antenna.

Taking curl of Equation (4.2) one gets

V x V x E = ng V x E (4.6)

in which the complex permittivity g is assumed to be

independent of the location. Using Equation (4.1) in

(4.6), one has

V x V x E = w noeH (4.7)

 

as

32 1 3 l 3 2
.....__. + __ —_ . _ ' + . = .arz (ram) r2 80[i81n 0 3 (rBD51n 0)] w uUcrNO 0
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This partial differential equation is a key relation for

the derivation of all EM field components in the different

regions. It is written in a form to facilitate the solu-

tion by the usual "separation of variables" technique.

Let us now consider the 3 different regions as shown in

Figure 4.1:

Region I, a i r i b or the dielectric coating region.

 

In this region the insulating layer has a real dielectric

constant ti and Equation (4.8) can be written as

2

3 (rH
__ 3_

3r2 LP

1 l 8 . 2 _
) + 7 38[§i—11—8— 56- (rH](051n 9)] + kirHLp - 0

r _

(4.9)

where ki = w “Oei and k1 is the real wave number in

this region. Solution to the above equation can be

written as

rHLp(r,6) = R(r)®(6) . (4.10)

and Equation (4.9) is rewritten;

 

2 2
r d R l d l d . 2 2 _

TE+E§E§[sinea‘0(® 51“ 9)] “if ‘0' ”'1“

The above equation is true if,

(4.12)
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where K is a separation constant. However, to get well-

behaved solutions to (4.12), K should be equal to

n(n + l) where n = l,2,3,... . The resulting ordinary

differential equations are well known equations in mathe-

matical physics [6]. With this choice of K, we can write

the solutions as (details omitted and are in the reference)

_ (2) (1)

Rn(r) _ /E[Aan+l/2(kir) + Ban+l/2(kir)]

(4.13)

®n(6) = P%(Cos 6)

(l) (2)
In the above equations, H and H are Hankel Func-

tions of the first and second kinds, respectively.

Physically, they represent in-coming and out-going waves

which exist in the dielectric coating region. P:(Cos 0)

is an Associated Legendre function of the first kind,

order n and degree 1. Furthermore, An and Bn are,

at the present time, unknown coefficients to be deter-

mined later from boundary conditions.

From Equation (4.13), we write the expression for

the tangential component of the magnetic field as

co

2

n=1

(2)

n+l/2

(1)

(r,6) = n+l/2
Pi(Cos 6)[AnH (kir) + BnH (kir)]

'
r
h
l
H

H

Lp

(4.14)

With the magnetic field determined, electric

field is found from Maxwell equation (4.2). This gives
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= j m (2)
Elr(r,6) /_ Zn=ln(n+l)Pn(Cos e)[AnHni+1/2(kr)

weir r

(1)
+ Ban+1/2(kir)] (4.15)

and

E (r 6) = - —j— 200 P1(Cos 6){A [nH(2) (k r)
9 ' -l n n n i

w€.r/E n— +l/2
i

_ (2) (1) _ (l)
k.1nrH_1/2(kir)] + BnIan+l/2(kir) kian-l/2(kir)]}

(4.16)

Note that in deriving the above equations, the following

relations of Legendre and Hankel functions have been used:

 

 

 

d 1 _ 1 1 _ 1
55 [pn(cos 9)] _ sin 0[nPn+l(COS e) (n+l)Cos 6 Pn(Cos 6)]

(4.17)

1 1 _
sin 6[Cos 6 Pn(Cos e) - Pn+l(Cos 6)] - (n+l)Pn(Cos 6)

‘0 (1) _ n+1/2 (1) (1)

as “ml/2‘“ ‘ ‘ ”F" “nu/2‘“ + Hn-l/Zm

< (4.18)

d H(2) _ _ n+l/2 (2) (2)

\dr Hn+1/2(r) ' "'r Hun/2‘1”) + Hn-l/2(r)

Up to this point, we have found the complete expressions

for the total EM field components in the dielectric coat-

ing region a i r i b. In other regions, the fields are

written by inspection since the form of the wave equa-

tions is similar in all regions.
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Region II, b i r i c or the biological body region.

 

In this region because of the losses in the conducting

body, the wave number of the medium is complex and given

by

2 _ 2 . = _ . g

k — w HOE. E E 3 m (4.19)

The tangential field components in this region are,

(2)_ 1__ w 1
Hzp(r,6) - /E Xn=1 Pn(Cos 6)[Can+l/2(kr)

(l)
+ Dan+l/2(kr)] (4.20)

and

= _ __i__ w 1 (2)
E29(r.6) mgr/f Zn=l Pn(Cos 6){Cn[an+1/2(kr)

(l)
n_1/2(kr)1}(4.21)

_ (2) (1) _
ern_l/2(kr)] + Dn[an+l/2(kr) er

Note that E2r is omitted since it is not used in the

determination of the unknown coefficients A B C

n' n’ n

and D .

n

Region III, r 3 c or the free space region. In this

 

region, the wave number is real and given by

k - 2 (4 22)
‘ w “050 '

and only outward traveling waves represented by

Hé2)(kor) are present. Therefore, the tangential field

components are given as
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- L_ m 1 (2)
Hlp(r,6) - /E anl EnPn(Cos 6)Hn+1/2(k0r) (4.23)

and

E3e(r.0) = - ——i——— z”_l EnP1(Cos 0)[nH(ii/2(kor)

wEOr/E n— n n

(2)
- Hn_1/2(k0r)] (4.24)

This completes the derivation of EM field components in

the three regions shown in Figure 4.1. There are five

B Cunknown coefficients A Dn and En for each
D! n! nl

integer n. To find these unknowns and obtain the ex-

pression for the magnetic field on the metallic sphere

(and thus the current), we use the boundary conditions

on the tangential field components as outlined in the

next section.

4.3. Applications of Boundary Conditions

The boundary conditions state that the tangential

components of electric and magnetic fields are continuous

at r = b and r = c (see Figure 4.1). Moreover, on

the surface of the metallic sphere (assumed to be perfectly

conducting), E16(a,6) vanishes at any point except at

the narrow equatorial gap. An enlarged view of the gap'

region and a possible feeding system is shown in Figure

4.2. The angular width of the gap is 260 and is assumed

to be very small (e.g. 260 is of order of 10 degrees or

smaller). Mathematically, we write
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Perfect conducting sphere

 

  
 

‘P -F d— +- +--F 4' 4- +--F 4- 4— +--t 4-

’ I ’ ’ ’ +

dielectric gap ’ , ""

region *F \ § 20 0 v

 

    coaxial

Transmission Line

T0 R.F. Generator

Figure 4.2.

Spherical Antenna.

Across the Narrow Gap.
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_ X _
E16(a,0) — a 6(0 n/2) (4.25)

On the other hand, from Equation (4.16) in the

last section, we have

1 (2)

E (a,0) = --—4L——-z”_ P (Cos e){A [nH (kia)

6 weia/a n—l n n n+l/2

_ (2) (1) _ (1)

(4.26)

Multiply both sides of Equation (4.26) by

“P;(Cos 6)sin 0" and integrate from 0 to n on 6 to

get

o
~
s
a

Ele(a,0)P;(Cos 0)sin 0de = -——l——— X:N{An[nH‘ii/2(k.a)

we.la/a

_ H(2) (l)
k.1aH 1/2(kia)] + BnIan+l/2(kia)

k.1aH(11/2(kia)]} f Pm (Cos 6)P: (Cos 6)sin ede (4.27)

where we interchanged the summation and integration

opeations. We now use the following orthogonality rela-

tions of the Associated Legendre functions:

F

f P1(Cos 6)P1(Cos 6)sin 0d6 = 0 ; m # n

(4.28)

2n(n+l)1 2 . _ . _
[Pn(COS 6)] Sln ede -W , m - n

0
%
:

Equation (4.27) then becomes,
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l . _ _ j .2m(m+1).
Ele(a,6)Pm(Cos 6)81n Gde -

weia/g 2m+l

0
‘
s
fi

(2)

'{Am[mHm+1/2(kia)

_ (2)

kiaHm-l/2(kia)]

(1)

m+l/2

(l)
+ Bm[mH (kia) — kiaHm_l/2(kia)]} (4.29)

Using Equation (4.25) for the tangential E field on the

sphere, the left hand side of Equation (4.29) is evaluated

as follows:

1 . _ y

Ele(a,6)Pm(Cos 6)51n ede - a 0(0 - fl/2)P;(COS 6)sin ede

O
‘
w
d

0
:
4
:

W
|
< 1

Pm(0). (4.30)

Therefore, Equation (4.29) is finally written as (after

some rearrangements and replacing m by n)

 

y1nAn + y2an = gnV (4°31)

where

’ _ (2) _ (2)
yln - an+l/2(kia) kiaHn_l/2(kia)

<y2n = nHéii/z‘kia) ' kiaHnE1/2(kia) (4°32)

(9n = jwei/a Pi(0)-%§%§%%Y

Note that, since P:(O) is zero for all even integers

(see for example Reference 7): we have
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n = l,3,5,7,... odd integers only (4.33)

Equation (4.31) is written in a form suitable for matrix

solution which will be used to find the impedance ex-

pression.

The other boundary conditions are stated by the

following relations:

/

   

 

(4.34)

(b,6) (b,6), H (c,6) H (c,6)

H149 = H29 20 3a

Note that these relations are valid for all values of the

angle 6. Using the expressions for the tangential com-

ponents of fields derived in the previous section, we

write down the following equations:

 

at r=b;

y3nAn + Y4an + stCn + Y6nDn = 0 (4.35)

and

y7nAn + Y8an + y9ncn + lenDn = 0 (4.36)

where
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f' _ (2) _ (2)

y3n ‘ g/EiIan+1/2(kib) kinn-1/2(kib)]

- (1) _ (1)

Y4n - E/eiIan+1/2(kib) kinn_l/2(kib)]

_ _ (2) _ (2)

y5n — [an+1/2<kb) kan_1/2(kb)] (4.37)

 _ _ (l) _ (1)
— [an+l/2(kb) kan_l/2(kb)]

- (2)

y7n ‘ Hn+l/2(kib)

_ (1)

Yan ’ Hn+1/2‘k1b)

_ (2)

Y9n ’ Hn+1/2(kb)

_ Hm
L?10n- n+l/2(kb) 
Equation (4.35) results from the continuity of E6 and

Equation (4.36) from the continuity of H , at the boundary

0

 

yllncn + y12nDn + y13nEn = 0 (4'38)

and

C = 0 (4.39)
y14n n + Y15nDn + y16nEn

with
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(ylln = ’lnfléii/2(RC) ‘ kCHéfi/2(kc)]

len = "[“Héii/2(kc) ’ k“xiii/2‘1””

(1Y13n = g“OI“Hfii/z‘koc) ’ Roenéfi/2(koc)] (4'40)

y14n = Héii/2(k9)

Y15n = Héii/2(kc)

(Y16n = ‘Héii/2(k0°) 
This completes the application of the boundary conditions.

In the next section, we put the equations derived in this

section into a more compact form.

4.4. Matrix Equation Formulation of the Input Impedance

Expression

Equations found in the last section relating the

unknown amplitude coefficients A , B , C , D and E
n n n n n

can be put in a matrix form as follows:

YX = GV (4.41)

where V is the (scalar) applied voltage and



    

ryln y2n 0 O 0 .W PAH“

y3n y4n y5n y6n 0 Bn

Y = y7n Y8n y9n ylOn 0 ' X = Cn (4'42)

0 O ylln Y12n y13n Dn

b0 0 y14h ylSn ylGnJ _an

The elements of the coefficient matrix Y are defined in

Equations (4.32), (4.37) and (4.40) of the last section.

The column vector G has only the first non zero element

and is given by

G = 0 (4.43)

  L01

with gn as given in Equation (4.32).

The solution to the matrix equation (4.41) is

found by inverting the known matrix Y,

x = Y-lGV (4.44)

where YY-l = I and I is the 5 x 5 unit matrix. We

are mainly interested in solving for the current which

flows on the surface of the sphere. This is related to

the solutions X of the equation (4.44) as is seen from

the following discussion.
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The surface current density at any point on the

surface of the metallic sphere of radius r = a is given

by

12(0) = a x H1(a,6) (4.45)

where n is the unit outward normal vector to the surface

of the sphere or n = f; a unit vector in r direction

of the spherical coordinate system as shown previously in

Figure 4.1. Based on Equation (4.45), we compute the

current which flows on the surface of the antenna as

1(6) = (20a sin 6)K6(8) (amp.) (4.46)

Or, substituting for Ke(e) from Equation (4.45),

1(6) = -2na sin 6H (a,6) (4.47)

1:0

Now, the input current, which is defined as the current

flowing from the input terminal 6 = 0/2 - 6 toward the
0

top of the spherical antenna (see Figure 4.2), is given

by

I = -I(6 = n/2 - 60) (4.48)

which, by virtue of Equation (4.47), becomes

I = 2na Cos eonp(a,n/2 - 60) (4.49)

Or, using H (r,6) as given in Equation (4.14), we get

Lo
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__ oo 1 . (2)
I — 20/5 Cos 0 Z Pn(51n 60)[Aan+1/2

0 n=1 (kia)

+ B 11(1)n n+l/2(kia)] . (4.50)

From Equation (4.41), we see that all coefficients An'

B , Cn Dn and En are proportional to the applied
n!

voltage V. Therefore defining,

An Bn
an = V", bn = "I—‘poo. Etc. (4.51)

we write Equation (4.50) as

I = 2n/5 Cos 6 V 2m Pl(sin 6 )[a E(z) (k a)
0 n=1 n 0 n n+l/2 i

(l)
+ ann+l/2(kia)]' (4.52)

where now an and bn are solutions of

YX' = G (4.53)

with Y and G as given previously and

'a a

n

b

n

I .—

X — CD (4.54)

d

n

e

L. nu)  
is our unknown column vector.

Equation (4.52) is the desired relation. From

this equation, input admittance of the coated spherical
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antenna in a finite conducting body shown in Figure 4.1,

is found to be

(2)
= 20/5 C08 0 n+1/2

w l .
0 anl Pn(51n 00)[anH

(odd)

(kia)

<
|
H

IN

+ b 11(1)
n n+l/2(kia)] (4'55)

One may change the index of summation by letting n = 2m+l

and let m run from 0 to 0a;

_ °° 1 « (2)

YIN ‘ 2"'a C°s e0 2m=0 P2m+1(Sln 90)[azm+1H2m+3/2(k1a)

+ b H”) (k a)] (4 56)
2m+1 2m+3/2 i '

The input impedance is the inverse of the input admittance;

-1
z =(Y)IN (4.57)

IN

This completes the derivation of the input impedance of

our spherical antenna as shown schematically in Figure

4.1. The final solution, of course, is obtained by in-

verting the matrix Y of Equation (4.53).

Although the solution obtained through the matrix

operations is mathematically sound and rigorous, final

results must be obtained with a computer which evaluates

the matrix elements of the matrix Y in Equation (4.53)

and inverts the matrix. A computer program was written

to solve the problem and find the input impedance.
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However, after some computations, it was found that it is

difficult to compute the higher order modes or terms of

the admittance expression, Equation (4.55). Specifically,

it was found that, in some cases the solution blew up

and inaccurate results were obtained through the matrix

inversion. After checking all the steps involved and

printing some of the matrix elements, it was discovered

that the matrix Y was, in some cases, nearly singular

(or the determinant was almost zero). Physically, in

general, all modes are excited and there is a solution

for each odd integer n. The problem may be due to the

fact that since arguments of the Hankel functions in-

volved are very small, and it is difficult for the com-

puter to handle an operation involving these functions.

For example, in Table 4.1, we show the values computed

(2)
for Hn+l/2(kia) for a case where a = 1 cm, f = 600 MHZ

(free space wavelength of 50 cm) and Si = 2.1 e e
0!

being the free space permittivity. These values are

0

needed when we want to compute the first 20 terms of the

series for input admittance. Table 4.2 shows the values

(2)

n+l/2

cm. In this case the arguments of the Hankel function

for H (kb) when Er = 70, o = 1 U/m and b = 1.5

are complex.

As can be seen from Tables 4.1 and 4.2, the Hankel

functions needed for the input impedance computation are

such that we are dealing with either very large numbers
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. (2)
Table 4.1. Values of Hankel functions Hn+1/2(kia)

when a = 1 cm, f = 600 MHz (a/AO = 0.02;

 

 

 

10 is free space wavelength) and

8i = 2.1 so; 50 is free space permittivity.

n ”iii/2‘kia)

REAL IMAGINARY

1 .20625 .10423 x 102

3 .19603 .46462 x 104

5 .65809 .87992 x 107

7 .11213 .37860 x 1011

9 .11534 .29055 x 1015

11 .79330 .34895 x 1019

13 .39042 .60397 x 1023

15 .14426 .14235 x 1028

17 .41491 .43840 x 1032

19 .95514 .17090 x 1037

21 .17996 .82270 x 1041

23 .28264 .47923 x 1046

25 .37570 .33225 x 1051

27 .42813 .27036 x 1056

29 .42287 .25516 x 1061

31 .36551 .27646 x 1066

33 .27880 .34082 x 1071

35 .18903 .47434 x 1076

37 .11468 .74013 x 1081

39 .62626 .12867 x 1087   
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Table 4.2. Values of Hankel function with complex

argument, Héii/2(kb), when b = 1.5 cm,

f = 600 MHz (a/AO = 0.03), k = w/Eg’;

E=e-j%;e=70€‘o,o=1%.

n REAL PART IMAGINARY PART

1 .23754 x 100 .51620 x 100

3 -.14714 x 101 .22733 x 101

5 -.48549 x 102 .27834 x 102

7 -.28124 x 104 .27098 x 103

9 -.24679 x 106 -.81352 x 105

11 -.28138 x 108 -.24123 x 108

13 -.33292 x 1010 -.71960 x 1010

15 -.59027 x 1011 -.22745 x 1013

17 .31749 x 1015 -.79329 x 1015

19 .28798 x 1018 -.28714 x 1018

21 .22228 x 1021 -.88300 x 1020

23 .17026 x 1024 .46718 x 1022

25 .13111 x 1027 .60576 x 1026

27 .96185 x 1029 .10688 x 1030

29 .53449 x 1032 .15724 x 1033

31 -.17019 x 1035 .21959 x 1036

33 -.15418 x 1039 .29450 x 1039

35 -.43918 x 1042 .35780 x 1042

37 -.lO406 x 1046 .29790 x 1045

39 -.22865 x 1049 -.28955 x 1048   
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or very small ones. Now, due to the fact that the computer

carries only a finite numbercflfsignificant figures (e.g.

in CDC 6500 system 30 for double precision arithmetic),

this will lead to errors in evaluating the matrix elements

of the matrix Y because of the roundoffs. In fact,

after printing some of the elements out, it is found

that, for example, two rows of the matrix are identical

while theoretically they are always different. This com-

putational error makes the matrix nearly singular and

therefore, the results obtainable from this method were

inaccurate.

It is true that for small antennas only the first

few terms are needed for the real part of the input

admittance (i.e. the conductance). In fact the infinite

series of the real part of Y in Equation (4.63) con-
IN

verges while the series for the imaginary part (the

reactance) converges only for the assumption of finite

gap (i.e. 00 # 0°). This is shown more carefully in

Appendix A.

To solve the problem of computational error, we

used a different approach in solving for the unknown

amplitudes of the EM fields components in the three dif-

ferent regions. This method uses the formulation used

in the transmission line theory and is described in the

next section.
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4.5. Transmission Line Approach

The method discussedjxlthis section, employs the

definitions of the reflection and transmission coefficients

as used in the transmission line theory.

Following Stratton [8], we write the solutions of

field components in the three regions as

Region I (a): r :_b);

 

 

 

_ co 1 + _

le(r,0) - anl Pn(Cos 0)[len(r) + len(r)] (4.58)

where

(l)

H- (r) E Aan+l/2(kir)

(9 1n r—kir

(2)
B H (k.r)

n+1 (r) a n “*1/2 1 (4.59)
4) ’1 ‘fE—ir

An and Bn are the two new unknown amplitude coefficients

(note that they are different from those used in the pre-

vious section). Other notations have been introduced in

the previous sections.

Physically H:ln(r) and H;1n(r) represent,

respectively, outgoing and inward spherical waves which

are present in this region. The tangential component of

the E field is written as

w 1 + + - -

E61(r,e) = Zn=1 Pn(Cos 0)[Zln(r)HDln(r) - Z1n(r)len(r)]

(4.60)
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where TM mode wave impedances are defined by

r ' (2)
2+ (r) = . Hn—l/2(kir) _ B__

In 3n1 H(2) (k1r) kir

n+1/2 -

< (1)
Z- (r) = _. Hn-1/2(kir) _ E__

ln 3”1 H(1) (k1r) kir

( n+1/2 

(4.61)

/u

with n1 = :2 being intrinsic impedance of the di-

1

electric coating medium.

Region II (b i r i c):

 

In this region the wave-number is

complex and tangential field components can be written

similar to that in region I as

  

 

 

_ m l + -

sz(r.e) - £n=1 Pn(Cos e)[§p2n(r) + HDZn(r)]

and

_ m l + +

E 2(n0) - anl Pn(Cos 0)[22n(r)H¢2n(r)

- z2n(r)H02n(r)]

where

(l) (2)

H (r) : Can+1/2(kr) H+ (r) : Dan+1/2(kr)

2n m- (9 2n [1&-

(2)
2+ (r) = . Hn_1/2(kr) - 2_

Zn 302 H(2) (kr) kr

. n+1/2

(1)
Z- (r) = -jn Hn_1/2(kr) _ E_

2“ 2 H(1) (kr) kr
n+1/2

(4.62)

(4.63)

(4.64)

(4.65)
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where TM mode wave impedances are defined by

r ' (2)

2+ (r) = . Hn-l/2(kir) _ n

ln 3”1 H(2) (k1r) kir

n+l/2 _

( (1)

z- (r) = -' Hnl/2(kir) - E-—
In 3n1 H(1) (kr) kir

\ n+1/2 ,

(4.61)

/u

with n1 = :9 being intrinsic impedance of the di—

i

electric coating medium.

Reqion II (b i r i c):

 

In this region the wave-number is

complex and tangential field components can be written

similar to that in region I as

2m

sz(r.e) n=1
1 + -

Pn(COS 0)[402n(r) + H02n(r)]

and

_ m 1 +
E 2(r78) — Z Pn(Cos 0)[Z2

+

n=1 n(r)§¢2n(r)

- ZZn(r)H¢ 2n(r)]

  

 

 

where

(l) (2)
_ - Can+l/2(kr) + _ Dan+l/2(kr)

HP 2n(r) : r H 2n,(r) :

9 /EE w /kf

(2)

2+ (r) = - Hn1/2(kr) - 2_
2n Jn2 n(Z) (kr) kr

, n+l/2

(1)
z_ (r) = -jn Hn_1/2(kr) - __

2n 2 H(1) (kr) kr
n+1/2

(4.62)

(4.63)

(4.64)

(4.65)
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/p

n2 = :9 is the complex intrinsic impedance of the con-

ducting body. k2 = 02006; E = e - j E were defined pre-

viously. Cn and Dn are two more unknown amplitude

coefficients.

Region III (r 1 c): In this free space region we can

 

write the field components as

P1(COS 0)H+ r) (4.66)
n r0 3n(1.1503(r'e) = £n=l

and

_ w l + +

Ee3(r,0) — X Pn(Cos 0)Z3n(r)H(p (r) (4.67)
n=1 3n

Note that in this region only an outgoing wave is ex-

pected, and

 

 

(2)
E H (k r)

H+3n<r) 2 n “*1/2 0 (4.68)
T Vkor

The wave impedance is

(2)
H (k r)

+ . -

z (r) = 30 n 1/2 0 - 9—— (4.69)
3n 0 H(2) (k r) kor

n+l/2 0

/u

where no = E9 = 377 Q is the intrinsic impedance of

O

the free space.

Again we have introduced five unknown coefficients

An, Bn' Cn’ Dn and En‘ However, now they will be

eliminated by using transmission line definitions.
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First, we note that since the Associated Legendre

functions form a complete set, we can expand the tangential

electric field on the surface of the metallic sphere in

terms of these functions as

_ °° 1
Eel(a,8) — £n=l Pn(Cos 8)Fn (4.70)

where Fn is an unknown expansion coefficient. To

evaluate Fn, we use the boundary conditions of Equation

(4.25) and the orthogonality of the functions P:(Cos 0)

as shown in Equation (4.28). One gets

(2n+l)

F = 2n(n+1)n

V
E

(4.71)

l

Pn(0)'

where, again, n denotes odd integers only. Also, from

Equation (4.60) we have another expression for

Eel(a,0), equating these two expressions we have

_ + + _ - -

Fn ‘ 21n(a)§p1n(a) Zln‘a)§pln(a) (4.72)

where Fn is given in Equation (4.71). We will use

Equation (4.72) later on. The boundary conditions on the

tangential field components are used to get the following

equations:

E = E
01 02 at r = b’

+ + - -

zln(b)§pln(b) - Zln(b)%pln(b)

_ + + _ - -
— 22n(b)H$2n(b) Zzn(b)HDr 2n(b) (4.73)
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le = sz at r = b;

H+ (b) + H- (b) — H+ (b) + H- (b) (4 74)
mln mln — (92n QDZn °

E62 : E03 at r = c;

+ + - - + ,+

ZZn(C)H¢,2n(C) - 22n(C)H¢2n(C) = Z3n(C)Hp3n(C) (4.75)

H = H at r = c;
'92 rp3'

+

+ - _

1g2n(c)‘+1%2n(c)-—Ig (c). (4.76)

To solve Equations (4.73) to (4.75), we introduce new

unknowns as follows:

At r = b, the reflection and transmission coefficients

are defined respectively as

H-ln(b) H+2n(b)

Rln(b) a J%————-, T1 (b) s Jgg————- (4.77)

H (b) n H (b)
(911'! (pl!)

similarly at r = c;

- +

H 2n(c) H 3n(c)

R2n(c) E —%7————-, T2n(c) E J$————— (4.78)

H 2 (c) H (c)
(p n (9211

Note that these are the current coefficients in analogy

with the transmission line theory. For example, R1n(b)

is the ratio of the reflected wave H;1n(b) to the

incident wave H:1n(b) at r = b boundary. We also

define a reflection coefficient looking from region 2

to region 1 of Figure 4.1 at r = b as
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H+2n(b)

R (b) 2 —2————— (4.79)
2n H- (b)

5921’)

Finally, a reflection coefficient at r = a is defined

as

H+ (a)
_ — 1n

1n(a) : —%—————- (4.80)

fimln(a)

R

Of course, these coefficients are unknown since the

amplitude coefficients A B D and E are

n' n’ Cn’ nn

hidden in spherical waves H+ln(b), etc. But the

T

advantage is that the products of reflection coefficients

are known. From (4.80) and (4.77) we have

(2) (1)

 

 

H (k.a)H (k.b)
R (a)-R (b) = n+l/2 1 n+l/2 1 E l (4.81)

ln ln H(1) (k a)H(2) (k b) K1n(a.b)

n+l/2 i n+l/2 1

Similarly we can write

(2) (l)
H (kb)H (kc)

R2n(b)’R2n(C) = ?:}/2 ?:;/2 35i?—;%E:;r (4.82)

Hn+1/2(kb)Hn+1.2(kC) 2“

If we use Equation (4.78) in Equations (4.75) and (4.76),

we can then write

(4.83)

T2n(c) = 1 + R2n(C)

From which we solve for R2n(c):
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+ +

_ 22n(c) - Z3n(c)

R (C) — (4.84)

2“ z' (c) + z+ (c)
2n 3n

 

Equations (4.73) and (4.74) can also be written as

 

(éIn‘b"T 1(b) ’ Zin‘b’ glgégi
ln ln

_ + — - o____]_"____

< ’ Zzn(b) Zzn(b) R2n(b)

(4.85)

T1n(b)

1 + R (b) = T (b) + ——————
\ ln ln R2n(b)

From which one solves for the key quantity Rln(b):

+ +

— Zln(b) - Zzn(b)'Q

Rln(b) - _ + (4.86)

Zln(b) + 22n(b)'Q

 

with

- +
l - K2n(b'c)R2n(c)22n(b)/Z2n(b)

Q E 1 + K2n(b,c)R2n(c) (4'87)

 

Note that Q is now a known complex quantity.

To find an expression for the magnetic field on

the surface of the spherical antenna, we start from Equa-

tion (4.72) to write

F

n
 

l (4.88)
+ —

Hcp ln(a) —

Rln(a)

+ _

Zln(a) - Zln(a)'

or, since Fn is already known
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l 2n+l

V/a Pn(0) ESTHITT
H (a) = + _ (4.89)

zln(a) - K1n(a,b)zln(a)Rln(b)

(n l,3,5,... .)

The total input current is given in Equation

(4.49). The magnetic field is found from Equation (4.58)

to be

00

H¢l(a, 8 = n/Z - 80) = Zn=l

+ l .

H¢1n(a)[l + Rln(a)]Pn(Sin 60)

(4.90)

With H;1n(a) from Equation (4.89), we write the total

input current, I, as

_ m v 1 . l .2n+l .

I - 2na COS 80 Zn=l g Pn(51n 90)Pn(0) 2n(n+1)

(odd)

1 + Kln(a,b)Rln(b)

 

+ .—

Zln(a) - K1n(a’b)R1n(b)Zln(a)

 

(4.91)

From which one finds the input admittance as

= £_ 00 n(2n+l) l . 1 .
YIN“’ V - Cos 60 Zn=l HTE:TT— Pn(31n 60)Pn(0)

. l + K1n(a'b)R1n(b)

+ —

Zln(a) - K1n(a,b)R1n(b)Zln(a)

The input impedance is the inverse of YIN“ R1n(b) is

given in Equation (4.86) and is the most important
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quantity to be computed. Note that expression (4.92) is

physically more meaningful. For example, if we want to

consider the case of a spherical antenna in a free space

(a special case of the problem shown in Figure 4.1), we

argue that R (b) is zero and from (4.92) we get
ln

n(2n+l)

 

_ w l . l

YIN — COS 90 211:1 W Pn(Sln 60)Pn(0) Z+ (a) (4.93)

(odd) ln

where, from Equation (4.61) we have

(2)

+ _ . “o Hn-1/2(koa’ n
Z (a) — -—- - ——— (4.94)

1“ £0 H(2) (k a) koa
n+l/2 O

. 2 2 . . . . a

With k0 = w “080' For an infiniteSimal gap, 60 = 0 ,

Equation (4.93) is exactly the same as that found in the

literature [6].

The expression for the input admittance (or input

impedance) is derived on the assumption of a finite gap as

shown in Figure 4.2. However the expressions derived are

also valid as 80 + 0° or for a zero gap. The question

oftfluaconvergence of the series expression for the admit-

tance will be addressed in the Appendix A. But at this

point it is necessary to mention that for a zero gap

assumption the series will diverge [9] and in the computa-

tion of the admittance keeping a large number of terms will

lead to an inaccurate result.
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Based on the expression of Equation (4.92), an-

other computer program was written. Although the same

Hankel function appeared in this expression, we did not

meet the computational difficulty we encountered in the

matrix inversion method discussed in the last section.

This was primarily due to the fact that we now mostly used

Hankel function in ratios and the effect of normalization

took place. Theoretical results of the input impedance

presented in the next section are based on the expression

derived in this section for the input admittance. To check

the validity of the theoretical results a comparison is

made for a special case with a classical theory. Also in

the next chapter we will show experimental evidence which

will verify the accuracy of the results for the input

impedance formulated in this section.

4.6. Some Theoretical Results of the Input Impedance

Computations

In this section, we discuss some numerical results

calculated from the Equation (4.92) in the last section.

Basically, we are interested in electrically small

spherical antennas and it is desirable to see how the

input impedance of an insulated antenna of Figure 4.1

varies as a function of the parameters involved.

To begin with, the accuracy of our computations

was checked in a special case of a spherical antenna in
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free space. In Figure 4.3, we show the numerical results

of the input conductance of an isolated, perfectly con-

ducting sphere in free space calculated based on Equation

(4.92). This case has been discussed by Stratton and Chu

Elm and the results of Figure 4.3 agrees very well with

their computations. A very small value of 60 was used

corresponding to their assumption of zero (or infinitesimal)

gap.

In order to see the effect of the dimension of the

conducting body (or biological body) on the input impedance

of the insulated spherical antenna depicted in Figure 4.1,

we computed the input impedance as a function of c or the

radius of the conducting body. For example, in Figure 4.4,

we show the input reactance of a small insulated spherical

antenna of radius a = 1 cm as a function of c in

centimeters. The frequency of the antenna is 600 MHz and

the relative dielectric constant of the insulating coating

is Eir = 2.1 (e.g. Teflon). The biological body is

assumed to be of low loss with o = 0.1 mho/m ,its

dielectric constant is assumed to be Er = 70. Note that

in general

ZIN = RIN + 3 XIN ohms (4.95)

is the input impedance to our spherical antenna. (The

antenna is mainly capacitive and, therefore, its reactance

is always negative.) However, for the construction of
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AGIthOS)

  
Input Conductance (or Radiation Conductance)

of a Spherical Antenna in Free Space as a

Function of koa, where a is the Radius of

Sphere and k = w u e is the Free Space

0 0 O
Wavenumber.

Figure 4.3.
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(-) I) XIN(ohm5)

a = 1 cm (a/Ao = 0.02)

f = 600 MHz

Eir = 2.1

240 x Er = 70

o = 0.1 mho/m

 

 

200 x: insulated sphere in free space

3.0

2 5

 

 

 
 

160'

120’

80.

b/a = 1.1

40 . 1 l 1 I ;

1 4 7 10 13 16 C(cm)

Figure 4.4. Input Reactance of a Small Spherical Probe

as a Function of the Radius of the Conducting

Sphere.
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small probes we are only interested in electrically small

antennas, thus, the input resistance RIN is always small

as compared with its reactance X Therefore, in most
IN'

cases we only discuss the variation of the input reactance

as a function of various parameters. Referring to Fig-

ure 4.4, we plot XIN in ohms for various values of the

dielectric coating thickness or the ratio b/a, as a func-

tion of c. It can be seen from this figure that for

thin coating or for b/a close to unity, there is a con-

siderable variation of the input impedance as the dimension

of the conducting body changes. However, as the thickness

of the coating or as b/a is increased, XIN becomes

less sensitive to the variation of c. When b/a = 3.0,

there is practically no variation in the input impedance

as the dimension of the conducting body is changed. This

phenomena is desirable, since we want the probe to be

insensitive to the relative probe location in the

biological body; changing of c corresponds to the chang—

ing of the probe location in a conducting body of fixed

dimensions.

Another interesting point which can be seen from

Figure 4.4 is that for a thin coating (or b/a close to

l), and for small values of c, the input reactance (and

hence the input impedance) changes very rapidly and be—

comes very large as c approaches b. (The limiting
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cases of zero coating or c = b are shown by X's in

Figure 4.4.) This suggests that if we use a very thin

coating, then the field measured by the thinly coated probe

at the edge of the biological body may be in error since

the input impedance of the probe experiences a rapid change

at this region and, thus, the output of the probe may be

effected significantly as indicated by Equations (2.8) and

(3.25) of the previous chapters. On the other hand, for a

thick coating this problem disappears and the input

impedance becomes nearly independent of c. This phenomenon

has been observed experimentally in the literature fill, and

will be explained in Figures 4.5 and 4.6.

Figure 4.5 is the measurement of the electric

field induced in a finite conducting body (a box of saline

solution of 0.5N) with dimensions of 16 cm x 16 cm x 1 cm.

The incident plane wave is indident normally upon the body

and is polarized in the x direction. In Figure 4.5,

dots are theoretical values and the continuous line is

the experimental results. In this experiment, a small

dipole probe with a very thin coating was used. As in-

dicated in this figure, the measured values are significantly

lower than the theoretical values near the edge of the body.

This can be explained as follows. The input impedance of

the probe at the body edge becomes very large so that the

output voltage of the probe becomes small consequently

(see Equations (2.8) and (3.25)). Figure 4.6 shows similar
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measurements in a conducting body with dimensions of

12 cm X 12 cm X 2 cm. The field is measured over two layers

as shown. Again, near the body edges, the experiment dis-

agrees with the theory for the same reason mentioned above.

(The values near the body edges are shown by circles and

triangles.)

To see the effect of the parameters of the con-

ducting body on the input impedance, we evaluated the in—

put reactance as a function of the relative dielectric

constant of the medium. For example, in Figure 4.7a, we

show the family of curves for the input reactance of a

Spherical probe. The radius of the sphere is a = 1 cm

while the conducting body is of radius c = 10 cm and the

frequency of operation is f = 600 MHz (corresponding to

the free space wavelength of A0 = 50 cm). The dielectric

coating is assumed to have relative dielectric constant

of Sir = 2.1 (Teflon) and the conductivity of the body is

o = 0.01 mmho/m (very low loss body). The curves are

plotted for different thicknesses of the dielectric coating

or b/a ranging from 1.0 (bare antenna in the conducting

body) to 3.0 (relatively thick coating). The independent

variable is Er or the relative dielectric of the con-

ducting body.

As can be seen from Figure 4.7a, for thin coatings,

there is a considerable amount of variation of the input

ractance as Er varies while, for thicker coatings, the
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Figure 4.7. a. Input Reactance of a Small Spherical Probe

as a Function of the Permittivity of the

Conducting Sphere.
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input impedance seems to be almost independent of this

parameter. As mentioned previously, only the input re-

actance is shown because the input resistance is usually

very small compared to XIN’ For example for the case of

b/a = 1.0, RIN is only 0.32 Q at Er = 1.0 compared to

-234 Q for XIN and 1.1 Q at Er = 70.0 compared to

-136 Q for the input reactance. Figure 4.7b shows the

case of the same probe but in a conducting body with

c = 5 cm and o = 1.0 (Vm.

Up to this point, we have seen that to construct

a probe whose input impedance is rather independent of the

radius of the conducting body and its relative dielectric

constant, one may use a thick dielectric coating on the

probe.

We have also investigated the dependence of the

input impedance of the probe on the conductivity of the

conducting body. In Figure 4.8, we observe the variation

of the input impedance (both R and XIN) as a function
IN

of the conductivity .0 (mho/m) of the conducting body.

Three curves are plotted for each part (i.e. real and

imaginary parts of Z for the cases of b/a = 1.1, 1.5IN)'

and 2.0. The sphere has a radius of a = 1 cm and the

radius of the conducting body is c = 5 cm. The frequency

is f = 600 MHz (i.e. a/A0 = 0.02) and the relative

dielectric constant of the coating is again Sir = 2.1.

The body is assumed to have a relative dielectric constant
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of Er = 50. Figure 4.8 shows clearly that for thick

coating (i.e. b/a = 2.0) the input impedance of the in-

sulated spherical antenna is almost insensitive to the

variation of the conductivity of the conducting body. For

the case of thin coating (i.e. b/a = 1.1), we see that

the input impedance (both input resistance and input

reactance) depends more significantly on the conductivity

of the body.

To fabricate a probe to be used in finite biological

bodies, it is desirable to make it as small as possible

to have a good resolution of the field and minimize the

perturbation caused by the introduction of the probe.

Therefore, it is not desirable to increase the thickness

of the dielectric coating a great deal.

Another parameter of interest seems to be the

relative dielectric constant of the insulating materials.

In Figure 4.9a, we show the dependence of the input reactance

of a spherical antenna of radius a = 1.0 cm when coated

by a dielectric spherical shell of outer radius b = 1.1 cm.

(i.e. b/a = 1.1) on the dielectric constant of the coating.

The radius of the conducting body is c = 10.0 cm and the

frequency is f = 600 MHz. The body is assumed to have

the conductivity of 0 = 1.0 mmho/m. Five curves are plotted

as a function of the relative dielectric constant of the

conducting body, er, for five different relative dielectric

constant of the coating; Eir varies from 1.0 to 10. As
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Figure 4.9. a. Input Reactance of a Small Spherical Probe

as a Function of the Relative Dielectric

Constant of the Conducting Body.
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observed in Figure 4.9a, for small values of sir/er, the

input reactance has less variation (in percentage) than the

case of larger values of sir/er as the relative dielectric

constant of the conducting body is changed. For most

biological bodies Er > 10, therefore to fabricate a

probe which is insensitive to the dielectric constant of the

body, the insulating material should have a low value of

dielectric constants Eir' Figure 4.9b shows the problem

for o = l mho/m. It can be seen that for higher values

of o, XIN is not strongly affected by the values of er.

From the discussion of the last few figures, it

is concluded that to construct a spherical probe whose in-

put impedance is nearly independent of the electrical

parameters and the configuration of the biological (or

conducting) body, it is desirable to choose the dielectric

coating as thick as possible within the allowable limit,

and at the same time, to keep the ratio sir/er as small

as possible. The receiving characteristics of the

spherical probe was considered in the last chapter and a

similar conclusion was reached.

Before going to the experimental verification of

the theory presented in this chapter, the difference be-

tween theoretical and experimental input impedances should

be studied. Theoretically the input impedance of the

Spherical antenna was calculated at the "edge" expressed

by r = a and 8 = n/2 - 00. However, in the experiment,
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the antenna was driven at a point r = 0 by a small co—

axial line. Therefore, it is necessary to transform the

"edge" impedance computed in this chapter to the center

of the antenna, before it can be compared with the measured

results. Such an impedance transformation is discussed

in the next section.

4.7. Radial Transmission Lines

The gap region of the spherical antenna discussed

in the last sections is shown in Figure 4.2. This gap

region can be treated as the medium between two conducting

circular plates and, thus, the problem of the transforma-

tion of the input impedance from the edge (r = a,

8 = n/2 - 80) to the central feeding point (r = ri,

where ri is the small radius of the coaxial line used

to excite the antenna) becomes the impedance transforma-

tion in a radial transmission line 018. The geometry

of the problem to be studied here is shown in Figure 4.10.

There are two identical conducting plates of

radius r = rL separated by a dielectric medium (gap

region). The upper plate is connected to the center con-

ductor of a coaxial line and the lower plate to the outer

conductor of the coaxial line. Thus, a potential dif-

ference (voltage) is maintained across the plates. The

problem is to find an expression relating the impedance

seen at r = ri to that at r = r as shown in Figure
L
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O _
\
J

82

€
3
>
>
N

 

 
 

 

conducting

plate

I

I,'_

I"‘\
ll \‘

ll \

II Z

i l L

In

I

I-

'\

I Z

I

I

l

l

I

n—pr = r

1 cp

x

‘;r = rL

 
The Geometry of Radial Transmission Line.

2 is the "edge" Impedance of the Spherical

L

Antenna. The Gap Corresponds to the Medium

Between the Conducting Plates.



83

4.10. The separation of the plates is "d" and the load

(Note that this Z repre-impedance at r = r is Z L
L L'

sents the input impedance of the spherical antenna as

discussed in this chapter).

The solution to the problem can be constructed

using the cylindrical coordinates r, T and 2 as shown

in Figure 4.10. The simplest EM wave that can be guided

in this system is a TEM mode with field components Ez and

HT. Also field components are functions of r only. We

will analyze other fields starting with Helmholtz Equation

for E

+ w u e Ez(r) = 0 (4.96)

09

where £9 = EgrEO is the dielectric permittivity of the

gap region and ri i r i rL

2

9

order. Noting that we are in a bounded region, the solu-

(see Figure 4.10). With

k = wzuoeg, Equation (4.96) is a Bessel Equation of zeroth

tion to Equation (4.96) can be expressed as

_ (1) (2)
Ez(r) — AH0 (kgr) + BH0 (kgr) (4.97)

$2) are the first and second Hankelwhere H31) and H

functions of order zero, respectively. 8 has only the

¢-component and can be found from Equation (4.2) and Equa-

tion (4.97) to be



 

 

8E (r)

H (r) — .1 z (4
jwuo 8r

or

_ l §_H (1) §_ (2)
HW(r) — jwuo [A 3r HO (kg r) + B 3r HO (kgr)] (4.

The following relations of Hankel functions are used:

8 H(1) _ _ (l)

(4.

§_ (2) _ H(2)
8 H0 (kgr) — kgH (kg r)

Equation (4.99) then becomes

jk

H (r) - ——3 [AH(1)(k r) + BH(2)(kgr)] (4.
wuo l 9

Note that the dielectric region between the plates is

assumed to be lossless, i.e. k9 is a real quantity.

Since Hankel functions are complex quantities, they can

be expressed as

H(l) (2)j6(x)

: H0(x) E 110(x)e

H{Z)(x) = -hl(x)e-jw(x)(4
jH(l)(x) = hl(x)ejw(X(,

where h, h 0 and w are the amplitudes and phase
1!

functions. With these definitions, expressions for the

impedance transformation can be simplified.

Using Equations (4.102) and (4.103), Equations

(4.97) and (4.101) are written as

(X) E h0(x)e-je(X) (4.

.98)

99)

100)

101)

102)

.103)



8S

j8(kgr) -j0(kgr)

Ez(r) = h0(kgr)[Ae + Be ] (4.104)

and

h (k r) jW(k r) -jW(k r)

H (r) = —l——3——-[Ae 9 — Be 9 1 (4.105)
(P 0

9

“o
where ng E E— . Equation (4.105) may be put in a dif-

9

ferent form by defining a wave impedance as

h0(k r)

Zo(kgr) : ng h1(k r) (4.106)

9

such that Equation (4.105) becomes

ho(k r) jW(k r) -jW(k r)

[Ae 9 - Be 9 ]. (4.107)H¢(r) = 20(kgr)

Note that the unknown amplitude coefficients A and B

have the dimensions of electric field (volts/meter).

To evaluate the constants A and B, we Specify

the fields at r = r. (input terminals) and at r = r
l L

(load). We can write,

at r = r.;

 

1

6i “jei
Ezi - h0(kgri) [Ae + Be J

. . (4.108)

h (k r.) 3W- ’3W-

H - —2——3-£— [Ae l - Be 1]

m1 Zo(kgri)

I
l
l

(
D

where 6i (kgri) and wi w(kgri).
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j8 -j6
L L

— h0(kgrL) [Ae + Be ]I
t
! I

(4.109)

h0(k r ) jw ’jw

L [Ae L Be L]:
1
1 I

where 8L

functions are as defined by Equations (4.102) and (4.103).

8 (kgrL) and wL w(kgrL). 6 and w

From Equations (4.108) and (4.109) one obtains

 

 

'6. -j8.

E . J 1 1

__z.2'. = Z (k r.) Ae. + Be . (4.110)

11. 0 g 1 3w. 'JW-

$1 Ae l - Be 1

and

je -j0

E L L

.aé = z (k r ) A8, + Be . (4.111)
H L 0 9 L 34L -34

W Ae - Be L

Next, the voltage and current at any radius r are defined

as follows:

 

V = -Ez(r)d

(4.112)

\I = 21Tr H (r)

T

With Equation (4.112) the "total" impedance becomes

E (r)
= y _ _ d z

Ztotal I _ an [Hw(r)] (4'113)

Now, Equations (4.110) and (4.111) can be written in terms

of the total impedances as
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'6. -j8.
2hr. J 1 1

1 _ Ae Be

' d Zin - Zo(kgri) jw- -j‘p' (4.114)

Ae 1 - Be 1

and

'6 -j8
2flr J L L

L Ae + Be

- Z = Z k r . . 4.115

d L 0‘ g L’ 34L -JwL ‘ ’
Ae - B

We solve Equation (4.115) for B as

30L 2an ij

e ZOL + d e ZL

B =
A (4.116)

2an e-ijz _ e-jeLz

d L 0L

h0(k rL)

where~ Z0L E Zo(er) = Substituting (4.116)n - o

g h1(kgrL)

in (4.114), one gets (after some algebra)

 

  

_ 1 aLZLcos(6i - wL) - 320Ls1n(0i - 8L)

Zin - E_ Z01 Z Cos(w. - 6 ) - ja Z sin(w. - w ) (4’11?)

1 0L 1 L L L 1 L

where

21rri 21rrL

(1i : d , (1L : d (4.118)

and Z0i = Zo(kgri). Note that in der1v1ng Equat1on

(4.117), Euler's identity, e36 = cos 6 + j sin 0 was used

Equation (4.117) is the desired impedance trans-

formation formula of the radial transmission line of Figure

4.10. ZL is to be interpreted as ZIN of our spherical

antenna as shown in Figure 4.1 and Zin is the input

impedance measured experimentally (Chapter 5).
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Before closing this chapter, we consider a simpler

method of correcting the end effect or transforming the

impedances as discussed above. Some numerical examples are

also given.

4.8. Apparent Antenna Impedance and Capacitive End

Correction

Although the expression of Equation (4.117) in

the last section rigorously transforms the edge impedance

to the center of the spherical antenna of Figure 4.2, there

is a simpler method of treating this problem if the radius

of the sphere (or the radius of the plates shown in

Figure 4.10) is electrically small and the electric field

in the gap region is uniform.

King [5] used the terminology of "apparent"

antenna impedance as the impedance measured at the input

or feeding terminals as compared to that of the theoretical

antenna terminals. In our case, the important factor is

the "junction" capacitance and the terminal zone equi-

valent circuit can be visualized as shown in Figure 4.11.

In electrostatic, it is known that when the

electric field between two parallel plates is uniform,

the capacitance is simply given by

_ A
C - e d (4.119)

where e

9
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0*

Y C “—7——‘ j
app J __ YIN

O:

(a)

£///’———‘area A

d 8g = EgrEO

(b)

Figure 4.11. (a) is the Junction Equivalent Circuit of

the Spherical Antenna with an Edge Input

Admittance of YIN' (b) is the Configura-

tion of the Circular Parallel Plates of Area

A which Approximates the Gap of the Antenna.
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region between the two plates. A is the area of the

plates and d is the separation between the plates as

shown in Figure 4.11.

The measured input impedance is given by

 

l 1

Z. (exp.) = =-———————— (4.120)
1n Yapp CJ + YIN

where Y is the input admittance of the insulated
IN

spherical antenna in the conducting body as given by

Equation (4.92). AS will be seen from the following

numerical examples, the junction capacitance has a signif-

icant effect on the measured value of the input impedance.

Also, in the following examples, we Show a close agreement

between the results calculated from the simple method just

discussed and that from the more rigorous radial trans-

mission line theory.

Numerical Example #1. Let us now consider some cases
 

where we transform the input impedance from the edge of

the spherical antenna to its center. First we have

ZIN = ZL é -j235 Q as the edge input impedance for a

dielectrically coated spherical antenna in the free space

(a = 1.0 cm, b = 1.5 cm, Egr = 2.1 and f = 600 MHz).

This is computed from the expression in Equation (4.92).

The angular width of the gap is assumed to be 200 = 10°.

Also the following data are used: a = rL = 1 cm.

ri = 0.025 cm, d é 0.2 cm. With these data, we use the



91

radial transmission line expression of Equation (4.117)

to find the input impedance at the feeding point as follows:

_ V2.1 X 2” X 0.025
 

 

 

 

 

 

kgri - 50 = 0.0045

_ V2.1 X 2n X l _
kgrL - 50 — 0.182

; 2 1.781 X 0.0045 _
h0(kgri) — --WM 2 ) — 3.514

h (k r ) é 2 = 141 47
1 g i n X 0.0045 °

h0(kgrL) = 1.158 , hl(er) = 3.498

_ _ -l 2 1.781 X 0.0045 _ _
61(kgri) - 0i — tan ETr DH 2 )J — 1.295 rad.

_ _ -l 2 1.781 X 0.182 _ _
0L(kgrL) - 8L — tan [1T 9% 2 )]— 0.858 rad.

(for small argument approximations of the Hankel functions

involved, see Appendix B).

 

-l[fl X (0.0045)2
tan ] = 0.000016 rad.

 

 

Wi(kgri) 4

w (k r ) = tan—1E “ x (0'182)2 ] - 0 026 adL g L 4 — . r .

_ 3.514 _
ZOi - 260.15 X m - 6.462 R

_ 1.158 _
Z0L - 260.15 X 3.498 - 86.12 0

Cos(8i - wL) = 0.247, Cosh);i - 8L) = 0.654

S1n(0i - 0L) = -0.423, Sinhpi - 0L) = -0.026
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_ 2n X 0.025 _ = 2n X 1 =
oi — 0.2 - 0.785 , aL ——6T§— 31.416 

All these are computed according to the definitions

given in the last section. Finally, putting all these

values in Equation (4.117), we have

Zin(center) = -j61.3845 9 (4.121)

that is the edge input impedance of -j235 Q (with a

very small resistive part), reduces to that given above

after going through the transformation of Equation (4.117).

AS is seen from the above computation, the procedure is

rather involved. Since a/A0 is 0.02 in this case, the

capacitive approximation may be used as follows:

 

-4
A -12 n X 10

C = E e — = 2.1 X 8.854 X 10 X ————————
J gr 0 d 2 x 10 3

or

CJ = 2.92 uuF

and

jch = j1.1 x 10'12 mho

According to the theory; YIN é j0.42 X 10_2 mho. Therefore

. _ _ . -2
YIN + jch — Yapp — 31.52 X 10 mho and

zin = Y i .wc = -j65.78 9 (4.122)

IN 3 J

Comparing Equations (4.121) and (4.122), it is evident

that a simple junction capacitance correction can transform

the edge impedance to the input impedance.
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Numerical Example #2. In this example, we use some data
 

from the case of a dielectrically coated Spherical antenna

in a finite low-conducting body. The values used are:

a = 1.0 cm, b = 2.0 cm, c = 10 cm, Eir = 2.1

Er = 28, o = 0.01 mmho/m

ZIN = -3174 Q, Egr = 1.0 (a1r gap)

f = 600 MHz, a = rL = 1.0 cm, ri i 0.01 cm

d = 4.0 mm.

The impedance calculated from Equation (4.117) is

zin = -3116.54 9

and that from the capacitive correction is found to be

zin = —3119.59 9

Again a good agreement between these two methods is

obtained.

No theory is complete without experimental

verification. In order to check the numerical accuracy

of the theoretical values of the input impedance calculated

from Equation (4.92) of this chapter, we have performed

some experiments. Details are presented in the next

chapter.



CHAPTER V

SOME EXPERIMENTAL RESULTS

In order to verify the theory presented in the pre-

ceding chapter, some experiments were performed in which

the input impedances of some cases discussed previously

were measured and compared with the theory. A good agree-

ment between theory and experiment was obtained.

Two methods for measuring the input impedance of

the antenna were used in the present study. The first

is the conventional minimum shift method in which a slotted

line is used together with an impedance chart (Smith chart).

The second method employs E-H probes and a vector volt-

meter. This method has been reported by Scott ELE, [14].

We will first discuss the second method and then present

some experimental measurements of the input impedance.

Finally, since the probe is to be used to measure

the intensity of EM fields induced in finite conducting

bodies, we will present some experimental results on the

Spherical probe when it is used to measure the induced

electric field in finite experimental models containing

saline solution.

94
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5.1. V-I (or E-H) Probe Impedance Measuring Techniques

The method to be described here is based on the

very definition of the impedance on the transmission line

which states: The impedance at any point on a transmission

line is the ratio of the voltage to the current at that

point. Since coaxial transmission lines are most commonly

used in experiments and practice, we will first study the

nature of voltage and current waves on a coaxial trans-

mission 1ine (or cable).

Figure 5.1 shows the cross sectional and longi-

tudinal views of the coaxial transmission line used to

construct the E-H probe device. The inner conductor,

assumed to be perfectly conducting, is of radius a and

is maintained (by a generator) at the potential +V. The

outer conductor which has an internal radius of b is

kept at the zero potential. The dielectric between the

conductors (a i r i b) is assumed to be air.

The electric field in the air region between the

conductors, can be determined from the Gauss' Law.

Assuming that the charge density (charge per unit length)

on the center conductor is p2 (coul./m), we can write

this law as

4 E-dS = g- (5.1)

s o

where Q is the total charge enclosed by the closed

surface S. Choosing a cylindrical surface as shown by
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Figure 5.1.

 

(b)

Cross-sectional (a) and Longitudinal (b)

Views of the Cylindrical Coaxial Trans-

mission Line. A Generator Maintains a

Voltage (or Potential Difference) V

Between the Inner and Outer Conductors.
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the dotted lines of Figure 5.1 (b), Equation (5.1) can be

written as

(5.2)

“
—
fi

U
)

[
1
3
4
'

D
J

U
H
v

+

E

U
)

”
1
)

Q
;

U
)

4
'

II '
0

Now, from the symmetry consideration, it is evident that

there is only a radial component of E field, Er’ which

is a function of r only. Therefore, there is no con-

tribution from S1 integral, and Equation (5.2) becomes

I E-dE = Er(r) I ds = Er(r)(2flr-h) = g— (5.3)

52 s2 0

Since Q = hpl' Equation (5.3) yields

92
(5.4)

8o

 

Er(r) =
2n r

where a i r i b. The potential difference between the

center conductor and outer conductor, V, can be expressed

in terms of the charge density, 02' as follows:

By the definition of the potential difference

(voltage);

b
@(a) - ¢(b) = V = fa Er(r)dr (5.5)

Substituting Equation (5.4) in Equation (5.5), we have

92

V = 2W8

 

fizb/a (5.6)

0

Combining Equation (5.6) and Equation (5.4), the r

component of the E field can be found as



98

V

Er(r) = W, a _<_ r _<_ b (5.7)

Equation (5.7) can also be found based on the

Laplace Equation:

2
V ¢(r) = O (5.8)

subject to the boundary conditions of ¢(a) = V and

¢(b) = 0. Writing out Equation (5.8) in the cylindrical

coordinates, one gets

 

H
I
H

Equation (5.9) is easily solved to give

34(r) = :1

r

8r (5.10) 

where cl is a constant to be determined by the boundary

conditions. Integrating (5.10) one more time, we have

¢(r) = C13" r + c2 (5.11)

c being another unknown constant. Using 4(a) = V
2

and ¢(b) = 0, one gets

 

- _ V = __X___.

C1 ‘ 4n b/a' C2 7, b/a 3” b (5'12)

C

Now, E = -V¢(r) = - agér) f = - —% f (5.13)

and with the value of c1 as given in Equation (5.12),

one gets Equation (5.7) for Er'
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Equation (5.7) shows that electric field in the

region between the two conductors of the coaxial line is

proportional to the voltage on the line.

0 a —> I a o

The magnetic field H is found by the application

of Ampere's circuital law:

-> —>

§ H.d2. = I (5.14)

c

where I is the total current enclosed by the contour

c. From Maxwell's Equation (4.1), it follows that with

E = Er(r)f, there is only the ¢-component of H field

which is a function of r only. Thus, Equation (5.14)

can be written as I

2H

J H (r)r d¢ = I (5.15)

0 6

Equation (5.15) gives rise to

I

E;;' (5.16)HQp (r) =

where a i r i b.

Equation (5.16) shows that the magnetic field in

the region between the conductors is proportional to the

current I on the line. The sketches of the E and

H field lines, are shown in Figure 5.1.

It is well known that a small dipole (or mono-

pole) can be used to measure, or to sample, the electric

field in a medium. The electrical length of the dipole

should be kept to a minimum in order not to disturb the
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field distribution. On the other hand, an electrically

small, Shielded loop can be used to measure the intensity

of the magnetic field in a given medium. The theory for

these probes can be found in the literature [15] and is

not repeated here.

At this point, it is clear that for measuring

the impedance Z = ¥ at any point on a transmission line,

the E and H fields (both magnitudes and phases) at

that point need to be measured. Therefore, electric and

magnetic field probes should be introduced from the outer

conductor into the medium between the inner and outer

conductors (which is usually air). Two points chosen for

entrance should be on diametrically opposite sides to

ensure that voltage and current (or the electric and

magnetic fields) are being measured at the same location

on the line. In order that the presence of these probes

doesn't cause any significant change in SWR (Standing

Wave Ratio) on the line, the sizes of the probes should

be kept electrically small. In the case of our device,

we are interested in the frequency range of l to 1000 MHz.

The dimensions of the probes constructed are in the order

of 2 mm. For one device, when the test line was attached

to one end of the Slotted Line and a 50 Q matched

termination was placed at the other end of one test line,

it was found that SWR did not change (i.e. SWR 5 1.0).

This means that the probes were not loading the line.
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The over-all block diagram of the E-H probe con-

structed for the experiments is shown in Figure 5.2.

The main equipment used is the HP Model 8405A Vector

Voltmeter which is capable of measuring both the magnitude

and the phase of a signal. It has two channels, "A" and

"B". In our set up, the channel A is always connected-

to the outlet of the current probe. The B channel is

connected to the voltage (or electric field) probe.

Therefore, the phase reading is the angle, in degrees,

between the voltage and the current, with the current

signal being the reference. The signal generator or

oscillator is to be used without any modulation.

To mount the E and H probes, we need a section

of a coaxial line. For this purpose, a section of the

coaxial line was constructed and a "block" supporting the

probes was attached to the coaxial line as shown in

Figure 5.3. It is noted that since all the lines used

are standard 50 Q coaxial lines, the test line section

should also have a 50 Q characteristic impedance as

computed from the following formula :

a) (5.17)

/u

where ”0 = 29 = 120H 9, b and a are the dimensions

0

as shown in Figure 5.1. In the construction of the test

line we chose a = %" and b = g5" such that ZC was

very close to 50 Q. The total physical length of the
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Oscillator

(R.F. Generator)
 

  Vector Voltmeter

f\ f

.1 )

 

   

  

 

  

   
 

 

 

IR,

l v-x L
I I Block J V

LOAD

(Antenna)

   

Figure 5.2. Block Diagram for E-H (or V-I) Probe Impedance

Measuring Device. All the Lines Shown are

Standard GR 50 Q Coaxial Transmission Lines.
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( GR Type 874
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)— 1...-1,

 

 

 

   
 

  

Figure 5.3. Test Line Together with E-H Block which

Supports the Voltage and Current Probes
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line was 25.4 cm. The V-I block was constructed from

brass and had the dimensions 5.08 cm x 5.08 cm x 2.54 cm.

To facilitate the connection to other parts of the

experimental set-up, GR Type 874 standard connectors were

used at both ends of the test line.

As mentioned previously, E and H probes are a

small monopole and a small half shielded loop, respectively.

The dimensions of these probes are shown in Figure 5.4.

It is noted that the plane of the loop is parallel to the

axis of the coaxial line.

After the test line and the V-I block were con-

structed, they were connected in the experimental set-

up shown schematically in Figure 5.2. Before actual

measurements of the input impedance, we tried to measure

some known impedances using this E-H probe device. It

is worth mentioning that the calibration of the probes

depends on the direction of the current flowing on the

center conductor. Therefore, we should try to use one

side of the test line always for the generator connection

and the other side for the load connection. To avoid

confusion,both ends of the test line were marked as

"Gen." and "Load". In order to use the vector voltmeter

for the measurements, the following steps should be

taken:

1. The vector voltmeter has two main parts:

"Magnitude" and "Phase". Since the phase is relative
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Solder

filled:131.5 mm

/—brass rod

  
/—brass

rod (with

9'5 * side slot)
 

     I
L

F

-
-
—
L

 "I 0.8 mm /r_1

mini coax (b) mini coax (c)

Figure 5.4. Cross-sectional View of the V-I Probe

Assembly, Electric Probe (b), and

Magnetic Probe (c).
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between probes A and B, we should calibrate the phase

meter before attempting to take any reading. To do this,

a simple arrangement as shown in Figure 5.5 is used.

When the A and B probes are connected as shown, the two

Signals are in phase, thus, the phase meter should be

adjusted to read zero degree. When using the R.F. gen-

erator, the FREQ. RANGE (in MHz) dial of the vector volt-

meter should be adjusted to include the operating fre-

quency. The APC UNLOCKED light should go out indicating

that the meter is tuned to the generator's frequency.

Note that vector voltmeter can operate in the frequency

range of 1 to 1000 MHz. The phase is now calibrated and

the phase meter should not be touched during the experi-

ment.

2. After calibrating the phase of the vector volt-

meter as in step 1, we should calibrate the E-H probe,

or the impedance sensing block, experimentally. AS

mentioned earlier, the voltage signal V (or the Signal
A

from the current, 1, probe) is proportional to the total

current on the line, while the voltage signal V (the

B

Signal from the voltage, V, probe) is proportional to the

total voltage on the transmission line. Since the

voltage and current on a line, in general, are out of

phase relative to each other, the ratio of the two

signals measured (i.e. VA and VB) is generally a

complex quantity which is proportional to the impedance

measured at the location of the probes, i.e.,
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<
|

P

A

where E, the complex calibration constant, is, in gen-

 

<
|

eral, a complex quantity and Zp denotes the impedance

measured at the E-H probe location. Bars on the signals

VA and VB

plex voltages having both magnitudes (usually in mV)

emphasize that these, in general, are com-

and phase angles in degrees. Before comparing Zp with

the impedance at the end of the test line (which is

attached to its "LOAD" end), one needs to transform this

impedance via the length 1 (electrical length) to the

load plane. Such a transformation is given by a well

known formula from the transmission line theory:

2. -:[ : :2 20:12.
c 3 p 0

 

where ZC = 50 Q is the characteristic impedance of the

line, 80 = 2w/Ao (10 is the free space wavelength).

Zp is the impedance measured at the location of V-I

block and is computed from Equation (5.18). ZL is then

the value of unknown impedance attached to the load side

of the test line (e.g. zIN for the spherical antenna

of our problem).

The easiest way to find the calibration constant

K is to place a "matched termination" (Z = 50 Q) at
L

the load end of the test line. Then from Equations

(5.18) and (5.19) one gets,
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 '13 - _Bl = zp = 50 0 (5.20)

VAl

Since V31 and VAI can now be read directly from the

vector voltmeter, Equation (5.20) gives us the value of

X for the frequency of operation. It should be noted

that K is a function of frequency and the device should

be calibrated for each frequency. Also note that VA

is a reference signal and therefore, 12A = 0° and

133 is the angle (in degrees) as read from the vector

voltmeter.

3. AS can be seen from Equation (5.19), we need

to know the electrical length from the location of the

E-H probe to the plane of the unknown load. The

electrical length is different from the physical length

(which is known) because of the dielectric supports used

in the connectors. In general, the actual electrical

length is longer than the physical length. The best way

to measure this length is to place a short termination

(ZL = 0) at the load part of the test line. This leads

to

Zp(short) = JZC tan 80% (5.21)

which is obtained from Equation (5.19) with ZL = 0.

Recording the measurement at the probe location,
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_ V132 1332

Zp(short) = K --———————— (5.22)

O

VAZ 19

where K has been found in the previous step. By this

method one can find the unknown electrical length. The

value of the physical length should always be used to

check the algebra involved. One has to be careful in

computing the electrical length 1 because a small error

in 1 can lead to a significant error in ZL due to

rapid variation of tan 802 in Equation (5.19). This

is a drawback of this method.

The advantage of the E-H probing method is that

it can be used for a wide range of the operating fre-

quency (e.g. from 1 MHz to 1000 MHz). While for the

conventional slotted line method we are restricted to a

shorter range of frequency because at low frequency an

excessively long slotted line is needed. Another point,

which is important in the measurement of impedances for

our problem, is that if the resistive part of the

impedance is very small, it is very difficult to employ

the Slotted line technique. The reason is that a low re-

sistance causes a high SWR on the transmission line and

it cannot be measured accurately. On the other hand,

with the E-H probe method, we can measure resistances as

low as 0.5 ohm. For the case of small spherical antennas

we encounter small values of R (input resistance)

IN

and it was only possible to measure a small RIN with
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the E-H probe device. One source of errors in using the

E-H probe device may be due to inaccuracy in phase

readings and a possible error in measuring the electrical

length 2 mentioned previously. To check the accuracy

of the device and to clarify the steps needed for using

the V-I impedance device, a numerical example is worked

out here.

NUMERICAL EXAMPLE: To check the calibration of the E-H

probe and its accuracy, we select a known lOO-Q GR

termination as our “unknown" load. First we choose the

frequency of operation as f = 600 MHz and the steps

outlined above are taken with the following results:

(a) Phase meter is calibrated according to Figure 5.5

(i.e. "0" phase reading).

(b) A matched load (50 Q) is placed at the "LOAD" Side

of the test line and the readings from the vector volt-

meter are recorded as

V = 6.55 millivolts, 123 +lOl°
B

A 69.9 mV , /VV
00

such that the calibration constant i found from Equa-

tion (5.18) is

<
l

E :33 = so 0; '1? = 533.587 /-101° (2

<

(
I
,

(c) With the load in place, the following readings are

obtained:
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V 138°
B

VA

6.45 mV, 123

00

74 mV, 12A

The impedance at the probe locationcnuinow be found from

Equation (5.18) as

= 46.5 /+37° = 37.136 + j27.984 Q (5.23)

This impedance Zp is the one measured at the probe

location looking toward the load and Should be trans-

formed through the electrical length 1 to get the

actual load impedance.

(d) The electrical length l is found by placing a

GR-WN Short termination at the "LOAD" Side of the test

line. The following readings are recorded:

= = 0VB 12.2 mV, 438 +12

vA = 43.7 mV, zy_ = 0°

Using Equation (5.18) one gets

12.2 /12°

43.7 19°
 Zp(short) 533.587 /-101° '

or Zp(short) -j 148.965 0

Equation (5.21) can now be used:

-j 148.965 = j 50 tan 804

i.e. tan 802 = -2.9793
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For 10 = 50 cm (f = 600 MHz) we get

801 = 108.5543° or K = 15.077 cm.

It is noted that the physical length was roughly 14 cm.

Before transforming Zp of Equation (5.23) we note that

the actual position of our unknown load is at 2 + d

(see the illustration) from the probe location, where

from the GR catalog,

  

K41 ->( GR loo-0

d = 3.2 + 0.55 = 3.75 cm

Thus,

I + d = 15.077 + 3.75 = 18.827 cm = 1'

(e) The last step is to transform the impedance Zp

through the length 2'. This can be done by using Equa-

tion 5.19 (or by the use of the Smith chart) to find

zL = 99.2 + 310.5 0 (5.24)

as the unknown load impedance. Considering the fact

that this is a 100 Q termination and that there is always

a reactive component of the impedance in the R.F. range,

we see that the E-H probe system gives an accurate

measurement of the impedance to be measured.
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To see the effect of the frequency change, we

repeated the above example at f = 250 MHz. Skipping the

steps (a) to (e) we found the following values:

E = 252.84 /+80°

Comparing this to X = 533.587 /-101° for the case of

f = 600, we see the frequency dependence of the

calibration factor.

At 250 MHz, we have found

2L = 99.95 + j1.92 0 (5.25)

as the value of the load impedance (100 Q termination).

Again there is a good agreement between the measured

value and the known value of the impedance.

5.2. Experimental Setup for the Measurement of the

Input Impedance of a Dielectrically Coated Spherical

Antenna in a Finite Conducting Body

In this section we discuss the experimental

arrangements for measuring the input impedance which was

theoretically discussed in Chapter 4. Although the far

zone radiation characteristics of a coated spherical

antenna were measured by other investigators [16] at

microwave frequencies, to our best knowledge, the input

impedance of a coated spherical antenna has not been

measured before. A difficulty here was the construction
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of the conducting body filled with Saline solution and

the problem of water leaking which was solved by a proper

sealing. If phantom materials which approximate actual

biological tissues are used, the leaking problem can be

eliminated.

Figure 5.6 shows the complete experimental set-

up used to measure the input impedances. An anechoic

chamber (6' x 6' x 5') was covered at the top Side with

an aluminum ground plane. As the experimental results in

the next section will show, this chamber lined with the

microwave absorbers was sufficient to simulate the free

space needed for the experimentation.

The cross sectional view of the metallic hemi-

sphere together with the dielective coating and the

conducting body is shown in Figure 5.6. Tfimaradius of the

hemisphere (made from aluminum) was of the order of 1 cm

and that of the conducting body was 5.5 cm. The dielectric

coating shells were constructed of different outer radii

and the actual datas are indicated in the next section.

The metallic hemisphere was insulated from the ground

plane with a narrow dielectric disk (Nylon or Teflon) of

the thickness of about 1 mm. (This corresponds to

00 = 5° as the half angular width of the gap region dis-

cussed in Chapter 4). The insulating dielectric shell

was supported by plastic screws from the ground plane.

The saline solution was stored in a small tank and small
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Figure 5.6. Experimental Setup for Measuring the Input

Impedance of a Dielectrically Coated Hemi-
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plastic tubes were used to connect between the tank and

the conducting body in such a way that the saline solu-

tion inside the conducting body was in close touch with

the ground plane and air bubbles were thus avoided. The

conducting body was constructed from a thin plastic

material. To feed the antenna, we need a transition from

a standard coaxial line (which has a center conductor with

a diameter in order of 1 cm) to a smaller size connector in

which it has a center conductor with a much smaller cross

section compared with that of the hemisphere.

After constructing the chamber and the spherical

antenna, the whole system was connected as Shown in Figure

5.6 to measuretfluainput impedance with the two methods

mentioned previously. In the top left of Figure 5.6, we

show the connection for the Slotted line measurements.

For this measurement, the minimum point is located in the

slotted line with the antenna connected and then it is

removed and replaced with a short circuit. The shift in

the minimum points for the cases of the antenna and the

short circuit is then used in the Smith chart calcula-

tion. The SWR was measured by a SWR meter. It is

mentioned that the reactance part of the impedance usually

can be measured very accurately by this method. In the

top right of Figure 5.6, we show the E-H probe connection

discussed in the last section. Note that lKC modulation

used in the slotted line measurement was not used in the

E-H probe technique.
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Using the experimental setup presented in this

section, we were able to measure some input impedances

of the insulated hemispheres imbedded in a conducting

medium and in free-space. These experimental results are

compared with theoretical results. Due to constructional

difficulty and the time limitation, it was only possible

to measure some typical cases in the experiment. How—

ever, a limited amount of experimental results was suf-

ficient to verify the accuracy of the theoretical re-

sults presented in the preceding sections.

5.3. Comparison of Theory and Experiment

Before attempting to compare the values of input

impedances based on the Equation (4.92) of the last

chapter with experimental results, it is reminded that

experimental results of the input impedance were measured

at the center of the antenna, instead of the edge. There-

fore, as discussed in the last section of Chapter 4, it

is necessary to transform the "edge" impedance to the

center of the sphere by using either the radial trans-

mission line theory or the junction capacitance correc-

tion. Furthermore, since an image ground plane was used

in the experiments, only 1/2 of the input impedance of

the antenna was actually measured. In other words,

ZIN(hemisphere) = 1/2 Zin (5.26)
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where Zin is the input impedance of the Spherical

antenna (sections 4.7 and 4.8) at the center and ZIN

(hemisphere) is the value measured experimentally.

These facts have been taken into account in the compari-

son of theory and experiment.

Figure 5.7 shows the input reactance of a di-

electrically coated hemisphere in free Space. This can

be regarded as a Special case of our general problem.

The curve is plotted against kia where ki = w/UEEE,

6i = €ir€0 and eir is the relative dielectric constant

of the insulating material (Nylon) and is estimated to be

Eir S 3.0, a is the radius of the antenna. The dots

are experimental results while the solid curve is the

theoretical result based on the computation of Chapter

4 (00 is about 5 degrees). Only the reactance is shown

because the input resistance is negligible compared with

X for small kia. Naturally, the input resistance
IN

increases as the frequency is increased. Note that the

plot can be considered to be as a function of frequency

because in the actual experiment the radius a of the

hemisphere was kept constant and the frequency was in-

creased. It is noted that the input resistance was

measured to be approximately one ohm. This value is

about 0.5 ohm bigger than the theoretical value. This is

due to the losses in the system and insulating materials.

The diameter of the hemisphere shown in Figure 5.7 is
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2.2 cm and that of the insulating shell is 3.0 cm. It

is observed in the figure that a good agreement between

theory and experiment was obtained.

As mentioned previously, the experimentation for

the general case of an insulated spherical antenna in a

finite conducting body was difficult to perform, however,

some good results were obtained. They are summarized in

the next few tables. In Table 5.1, we show the values of

the input reactance of a coated hemisphere with a = 1.1

cm and b = 1.21 cm (b/a = 1.1) when imbedded in a finite

conducting body of c = 5.5 cm. The frequency used was

600 MHz and the insulating material had Cir S 3.0. The

medium in the conducting body was changed from air, dis-

tilled water, to saline solutions of various normality

ranging from 0.5N to 2.0N. The electrical parameters of

the solution were computed based on the available theory

[17]. As shown in the last two columns of the table,

there is a good agreement between theory and experiment.

Also note that this is the case of relatively thin coating

and there is a considerable variation in XIN (and hence

in ZIN) of the spherical antenna as the properties of the

external medium are changed. The input resistance was

small but it was increased as the normality of the solu-

tion was increased from 0 to 2.

Next, the thickness of the dielectric coating was

increased. Table 5.2 shows similar results as that of
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Table 5.1. Theoretical and Experimental Values of the

Input Impedance of a Coated Hemispherical

Antenna in a Finite External Medium.

(a = 1.1 cm., b = 1.21 cm., c = 5.5 cm.,

f = 600 MHz, Cir 5 3.0) (T = 20°C)

figgggfim PARAMETERS j XIN (OHMS)

6/60 0 (mho/m) THEORY EXPERIMENT

AIR 1.0 0.0 -j 20.99 -j 19.5

DIS. WATER 79.89 0.095 -j 9.057 -j 11.50

I

.SN SALINE 70.92 4.52 ~j 8.23 -j 10.1

1.0N SALINE 62.93 7.74 -j 8.07 -j 8.0

1.5N SALINE 56.94 10.84 -j 8.06 -j 8.8

2.0N SALINE 50.95 13.84 -j 8.08 -j 9.15     
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Table 5.2. Theoretical and Experimental Values of the

Input Impedance of a Coated Hemispherical

Antenna in a Finite External Medium.

(a = 1.1 cm., b = 1.5 cm., c = 5.5 cm.,

f = 600 MHz, Cir é 3.0) (T = 20°C)

EXTERNAL .

MEDIUM PARAMETERS j XIN (OHMS)

E/EO 0(mho/m) THEORY EXPERIMENT

AIR 1.0 0.0 -j 19.34 —j 18.76

DIS. WATER 79.89 0.095 -j 14.89 -j 14.55

0.5N SALINE 70.92 4.52 -j 14.57 fij 14.08‘

1.0N SALINE 62.93 7.74 —j 14.55 -j 14.03

1.5N SALINE 56.94 10.84 -j 14.55 -j 13.98

2.0N SALINE 50.95 13.84 -j 14.56 -j 14.16     
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Table 5.1, except that now b = 1.5 cm (b/a = 1.36).

Again, the input reactance was measured for different

external media. For this case, as shown in the last two

columns of the table, there is a smaller variation in

XIN (and hence in ZIN) as the external medium is

changed. Note that this is the case of a relatively thick

coating and the experimental results are in agreement

with the theoretical predictions of Chapter 4.

Finally, in Table 5.3, the case of an even thicker

cotaing, b = 3.1 cm (b/a = 2.82) is shown. In this case,

as shown in the last two columns of the table, there is

nearly no variation in the input reactance (and hence in

the input impedance) of the Spherical antenna as the

properties of the external medium are changed. Again,

there is a good agreement between theory and experiment.

In consistence with the conclusion made in the last

chapter, we have found experimentally that to fabricate

a probe which has an input impedance independent of the

electrical parameters of the surrounding medium, the thick

coating of dielectric materials is needed. Of course,

the coating cannot be excessive because small probe

dimensions are desired and necessary conditions.

Before closing this section, it is interesting to

observe the effects of the relative probe location in a

finite conducting body on the antenna input impedance.

Theoretically, when the insulated spherical antenna of
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Table 5.3. Theoretical and Experimental VAlues of the

Input Impedance of a Dielectrically Coated

Hemispherical Antenna in a Finite External

Medium. (a = 1.1 cm., b = 3.1 cm.,

c = 5.5 cm., f = 600 MHz, sir 5 3.0)

(T = 20°c)

EXTERNAL .

MEDIUM PARAMETERS 3 x].N (OHMS)

CEO 0 (mho/m) THEORY EXPERIMENT

AIR 1.0 0.0 -j 22.54 -j 21.97

DIS. WATER 79.89128 0.09531 -j 21.59 -j 21.24

0.5N SALINE 70.92058 4.52694 -j 21.77 -j 21.50

1.0N SALINE 62.93319 7.74285 -j 21.75 -j 21.63

1.5N SALINE 56.94402 10.84945 -j 21.75 -j 21.50

2.0N SALINE 50.95491 13.84467 -j 21.75 -j 21.48     
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Figure 4.1 is not at the center of the spherical conduct-

ing body, the problem becomes untractable. However, we

can get some idea of the situation by measuring the in-

put impedance of a coated spherical antenna located off-

center in a finite conducting body.

In Table 5.4, we show the measured input impedance

of an insulated hemisphere as a function of the off—

center distance d. The conducting medium is a 0.1N

saline solution and has the parameters of er = 77.9 and

0 = 0.925 mho/m. The hemisphere has a radius a = 1.1 cm

and that of insulating Shell is b = 1.2 cm (b/a 1.09).

The conducting body has a radius c = 5.5 cm and the

frequency is f = 600 MHz. The relative dielectric con-

stant of the coating is again Eir = 3.0. As shown in the

table, there is some variation in the input impedance as

the antenna is moved from the center to the boundary of

the conducting body. When d = 0, the antenna is in the

center of the body and the theoretical value of the input

impedance is shown. AS this is the case of thin coating,

the variation of the input impedance is expected accord-

ing to the theory of Chapter 4.

Next, in Table 5.5, we Show similar results as in

Table 5.4, except that now the coating is increased to

b = 1.6 cm (b/a = 1.45). As shown in the table, there

is a considerably smaller variation in the input impedance

as the antenna is moved off-center.
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Table 5.4. Experimental Input Impedance of a Dielectrically

Coated Hemispherical Antenna at Different

Locations in a Finite Conducting Body

(a = 1.1 cm., b = 1.2 cm., c = 5.5 cm.,

sir é 3.0, Er = 77.898, 0 = 0.925 mho/m,

f = 600 MHz; d is the Distance from the

Center of the Antenna to the Center of the

Conducting Body).

t—d

Conducting Body Free

(0.1N Saline) Space

d (cm.) ZIN(ohms)

0.0 1.0 -j10.5 (Theory: 1.0 -j10.0)

2.6 1.3 -jl4.15

3.3 1.5 —j15.0



Table 5.5.
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Experimental Input Impedance of a Dielectrically

Coated HemiSpherical Antenna at Different

Locations in a Finite Conducting Body

(a = 1.1 cm., b = 1.6 cm., c = 5.5 cm.,:

Cir é 3.0, Er = 77.898, 0 = 0.925 mho/m,

f = 600 MHz; d is the Distance from the

Center of the Antenna to the Center of the

Conducting Body).

)e--- d

  

  

 

Free

Space  Conducting Body

(0.1N Saline)  

ZIN(ohms)

 

0.8 - j16.0 (Theory: 0.2 - j15.56)

1.0 - j16.6

1.0 - j16.7
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The last table, Table 5.6, shows similar results

for the case of an even thicker coating with b = 2.2 cm

(b/a = 2.0). We observe in the table that, there is

practically no variation in the input impedance of the

spherical antenna as it is moved in a conducting body.

This implies that a probe with a relatively thick coating

has an input impedance almost independent of the relative

probe location in a biological (conducting) body. We have

reached the Similar conclusion theoretically in the last

chapter.

5.4. Field Measurements using Insulated Spherical Probes

In this section, we discuss some experimental

results on the induced electric field in a conducting

medium measured with dielectrically coated spherical

antennas studied previously. Figure 5.8 shows the

schematical configuration of the insulated spherical

probe used in the experiments. Two solid metallic hemi-

spheres (made from brass) are separated by a small gap

and a microwave diode detector (type HP 5082-2755) is

mounted between them as shown in the figure. Two highly

resistive thin wires (Nichrome V wires of 2 mil diameter)

are attached to the terminals of the diode and led all

the way out to the voltage measuring device (a high

gain D.C. voltmeter or a SWR meter). The whole structure

is coated with a dielectric shell (plexiglas) and a small
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Experimental Input Impedance of a Dielectrically

 

 

  
  

Space  

 

Table 5.6.

Coated Hemispherical Antenna at Different

Locations in a Finite Conducting Body

(a = 1.1 cm., b = 2.2 cm., c = 5.5 cm.,

air é 3.0, Er = 77.898, 0 = 0.925 U/m,

f = 600 MHz; d is the Distance from the Center

of the Antenna to the Centerof the Conducting

Body).

|¢———-d

Conducting Body 7-;.u.5' Free

(0.1N Saline)

d (cm.) ZIN(ohms)

0.0 0.5 -jl9.0 (Theory: 0.13 -j18.5

2.6 0.56 -j19.0

3.3 0.65 -jl9.0
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Figure 5.8. Configuration of the Dielectrically Coated

Spherical Probe Loaded with a Microwave

Detector. (Free Space Incident Plane Wave

is also Shown.)
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rod (tail) is left for holding the probe to a long

plastic stick (not shown in the figure). The microwave

detector is a cylindrical diode of diameter 2.0 mm and

height 4.0 mm. Note that the diode detector in parallel

with the resistive wires and the voltage measuring de-

vice constitute the load, 2 as discussed in Chapter 3.L'

The probe can be rotated in such a way that the axis of

the diode can be either parallel or perpendicular to the

direction of the incident electric field. The reason

for using high resistive wires is to minimize the lead

wire interference with the incident EM wave. The use of

high resistive wires, in turn, necessitates the detection

of the probe output to avoid excessive loss due to the

lead wires.

As a first series of measurements, we used the

spherical probe of Figure 5.8 in a TEM transmission cell

[18]. The cross section of the rectangular cell is Shown

in Figure 5.9 together with the insulated spherical probe.

In this experiment, the output leads of the probe were

connected to a high gain d.c. voltmeter (a capacitor was

also used to filter out the a.c. signal). Before

attempting to take any measurements, the output of the

Spherical probe was calibrated. This was done by

monitoring the incident power into the cell from the

R.F. generator via a directional coupler. The calibra-

tion curve so obtained is also shown in Figure 5.9.
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As can be seen from the calibration curve, the

microwave detector diode of the Spherical probe is a

Square Law Detector. (This is needed for the optimum

operation of the SWR meter used to detect the output of

the probes.) The output voltage was measured in milli-

volts while the incident power from the R.F. generator

was in milliwatts. Since power is proportional to the

square of the electric field (or the voltage), this means

that the probe was actually measuring the square of the

electric field at its location. After calibrating the

probe, the intensity of the electric field was measured

at 6 cm above the center conductor of the TEM cell (the

frequency was f = 320 MHz). The result is shown in

Figure 5.10. This agrees quite well with the results re-

ported in Reference 18.

We also tried to measure the induced electric

fields inside finite conducting structures containing

saline solution placed inside the TEM cell. One such

measurement is shown in Figure 5.11. Although the measured

field was quite symmetric, as one expects theoretically,

it was not possible to compare the experimental results

with the theoretical induced field calculated by the

tensor integral equation method [4] assuming the con-

ducting structures located in free-Space. The reason

is believed to be due to the fact that when the con-

ducting body is placed in an enclosed metallic chamber,
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The Output of the Dielectrically Coated

Spherical Probe Inside a Finite Body Con-

taining the 0.0N Solution. The Frequency

is f = 320 MHz.
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the wall image effect prevails and, thus, the body can no

longer be assumed to be in the free space. The conducting

body had the dimensions of 16 cm X 12 cm X 4 cm and the

frequency of the incident plane wave was f = 320 MHz.

The incident electric field was polarized in the vertical

direction (x - axis). In order to study the case of the

conducting body in free Space, the box containing the

saline solution was removed from the TEM cell and placed

in a large microwave Anechoic chamber. The construction

of this chamber was reported elsewhere [19].

The conducting body was illuminated in the "far

zone" of the transmitting antenna within the anechoic

chamber and the insulated spherical probe was placed in-

side the body in such a way that the direction of the

incident electric field was perpendicular to the plane of

the equatorial gap. Ontflueceiling of the anechoic chamber

in the far field region, a slot was cut, and through

which a long plastic stick supporting the probe assembly

was connected to the voltage measuring device located

outside the A.C. The stick was attached to a shaft

driven by a d.c. motor so that the probe can be moved

inside the conducting medium by a remote control system.

An x - y recorder was used to plot the distribution of

the square of the electric field induced in the finite

conducting body. A diagram of the anechoic chamber and

the configuration of the body is shown in Figure 5.12.
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The dimensions of the conducting body were

16 cm X 12 cm X 4 cm. The conducting body can now be

considered to be located in the free space, and

theoretical results for this case are obtainable by the

existing theory and an available computer program [20].

To compute the induced electric field, the body was

partitioned into 96 of 2 cm3 cubic cells. A symmetry

condition was used to facilitate the numerical calcula-

tions.

In the experiment, the medium in the box was the

distilled water (0.0N saline solution) and the operating

frequency of the transmitting antenna was chosen as

f : 500 MHz (10 = 60 cm; free Space wavelength). At

this frequency, the size of the insulated spherical probe

as shown in Figure 5.8 was sufficiently small to produce

meaningful results. In Figure 5.13 we Show some results

of the measurements. It is noted that the signal from

the R.F. generator was amplified by a power amplifier

(Hughes Model 46159H Transistor Amplifier, 500-750 MHz,

20 W) and that the received signal from the spherical

probe was monitored on a SWR meter and then fed into

x - y recorder (after d.c. filtering). The amplitudes

shown in the figure are in db and the theoretical results

are for O/ZIEXI2 where for the distilled water at

500 MHz, Er = 79.92 and 0 = 0.06 mho/m were assumed.
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Theoretical values were computed at the center of each

cubic cell. The three plots of Figure 5.13 show the

measured values of o/ZIEXI2 as a function of 2 along

three different depths from the top of the body.’ The

parameter 2 indicates the distance from the top side

of the medium to the center of the spherical probe. As

can be seen from Figure 5.13, the agreement between the

theory and experiment is considered quite good in view

of the fact that there exist some numerical errors in the

theoretical computation and also some inherent experimental

errors caused by lead wires and the container of the con-

ducting medium (made from plexiglas materials). It is

important to mention that, due to the improvement in the

construction of the probe (a thicker coating), the ex-

perimental error at the body edge as discussed previously

in Chapter 4 is now minimized. It is anticipated that if

the size of the spherical probe is reduced, better experi-

mental results may be obtained.

Finally, in Figure 5.14 we show similar measure-

ments for a 16 cm X 12 cm X 2 cm body containing 0.1N

saline solution for which Er = 77.92 and 0 = 0.897 mho/m.

The frequency is again 500 MHz and the theoretical results

are obtained for cubic cells of 1 cm X 1 cm X 1 cm

dimensions. Note that now there are more theoretical

points for comparison with experiment.
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CHAPTER VI

SUMMARY AND CONCLUSIONS

In this thesis we presented some theoretical

and experimental results on the study of an electromagnetic

Spherical field probe in a finite conducting body. The

Spherical geometry was chosen because an exact, analytical

solution can be found to the problem.

After deriving the general relation between the

output voltage of a probe and the induced electric field

in a volume conductor, the receiving characteristics of

an insulated spherical probe immersed in a uniform

electric field inside a conducting body were studied. The

normalized effective diameter of the probe was shown to

be nearly independent of the parameters and dimension of

the conducting body when a relatively thick coating of

insulating material was used on the probe. After that an

expression for the input impedance of a dielectrically

coated spherical antenna imbedded in a finite conducting

body was derived. The matrix equation formulation was

used first, but due to numerical difficulty, an alter-

native method, based on the transmission line theory,

was used to obtain some numerical results. It was
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subsequently shown that, for thick coatings with di-

electrics of low dielectric constants the input impedance

of the spherical probe became nearly independent of the

electrical parameters and the dimension of the finite

biological body.

Finally, we presented some experimental results

on the input impedance of the Spherical probe and com-

pared them with the theoretical results. In general,

there was a good agreement between theory and experiment.

A few examples of actual field intensity measurements in-

side finite bodies were also reported.

In conclusion, we may say that to fabricate an

implantable EM field probe which is insensitive to the

properties and dimensions of the conducting body, one

Should use thick coating of low dielectric constant

material to cover (or to insulate) the appropriate probe.

Of course, the whole probe structure should be kept

electrically small, therefore, as a topic for further

research, one may consider the case of two or more thinner

layers of different dielectric materials which may

achieve the same purpose as a single thick layer of

coating does.
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APPENDIX A

HIGHER ORDER MODES AND THE

CONVERGENCE OF THE INPUT ADMITTANCE

EXPRESSION

The expression for the input admittance of a

dielectrically coated spherical antenna in a finite con-

ducting body, as shown in Figure 4.1, was derived in

Equation (4.92) of Chapter 4. Although mathematically

this represents the analytical solution to the problem,

in a closed form, it is necessary to Show that the series

converges. Actually a close study of the series shows

that its real part converges quickly after a few terms,

but its imaginary part does not.

Another point is that, as was shown in Chapter 4,

the Hankel functions involved may still cause some dif-

ficulty in evaluating very higher order modes. Therefore,

it is desirable that to find appropriate forms for the

higher order modes or Hankel functions of very high orders

that are suitable for the computer computation. In the

following, we will give the expressions for the higher

order modes and show that the expression for the admittance

converges if a finite gap of the antenna is assumed.
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As was mentioned in section 4.5, the key quantity

of the input admittance expression is Rln'b)' repeated

here for convenience:

+ +

. Z (1)) - Z (13) 'Q

R1n(b) = in in (A.l)

Zln'b) + z2n(b)-Q

 

where the complex quantity Q is defined as

,- +
l - K2n(b,c)R2n(c)42n(b)/22n(b)

(A.2)

1 + K211 (bIC) R211 (C)

 Q 5

other quantities have been defined previously. Actually

the dependence of the input admittance of the insulated

Spherical antenna on the parameters (8,0) and the

dimension (c) of the finite conducting body is all given

by the complex quantity Q. Intflmzactual computation

of the input admittance expression, using a computer, the

difficult quantity to compute, for the higher order modes,

is this complex quantity Q. However, after few computer

programs were run to cover various cases, it was found

that for nearly all cases the value of this quantity was

equal to unity, accurate to 15 significant figures, for

higher order modes. Therefore, we may assume that for

higher order modes,

 

+ +
Z (13) - 3 (13)

Q 5 1.0; Rln(b) = in in (A.3)

Zln(b) + 22n(b)



148

In other words, the higher order modes of the input

admittance depend only on the properties of the medium in

the immediate vicinity of the antenna (i.e. the dielectric

coating) and are independent of the parameters of the con-

ducting body. Of course, the first few modes depend

strongly on the parameters of the conducting body because

for those modes, Q depends on the values of these para-

meters as can be seen from Equation (A.2).

As the index of the summation for the input

admittance expression becomes sufficiently large, the

following approximations (or asymptotic forms) of the

Bessel functions can be used [ ]:

1 l ez v

Jv(Z) - (25

2nv

- £_ (25 7V

nv 2v

where e = 2.718 is the base of natural logarithm. For

 

(A.4)

Nv(z)

the case of small spherical antennas, the argument 2 is

small compared to v i.e. we can assume that

2 << v (A.5)

where v is a large number. For example, 2 = kia = 0.1

is a typical case while v = n = 20. With the assumption

of Equation (A.5) we can write, for the Hankel function

of the second kind,
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(2) = _ . g . 2_ 23 0
H0 (2) — Jv(2) 3N0(Z) - J "v (ez) (A.6)

Now, the expression for ZIn(a) as needed in the Equa-

tion (4.92) is given by

 

(2)
H (k.a)

+ . -

Z (a) = 30 n 1/2 1 - E—- (A.7)

1“ 1 H'Z) (k a) kia
n+l/2 i

u

where n1 5 E_ . Using the approximation of Equation

1

(A.6) in Equation (A.7), one gets

+ 4- Bile—ZLVL-___V+1/2
Zln(a' ‘ 3”1[: v '2 )'0+1 (0+1) 2 ] 'A"8'

where n - 1/2 = v and kia = 2. Now since n >> 1, we

can further simplify the expression in the bracket of

Equation (A.8) to get

2 _ v + 1/2

0+1 2 ) (A'g)
+ 4 ' E .

Zln(a) ‘ Jr‘1'2

Noting that 2 << 0, Equation (A.9) can be written finally

as

z+ ( ) 4 -' ——— (A 10)
1n a - 3nl . '

1

Other higher order wave impedances which appear in the

input admittance expression can be written down similarly

as,
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:
5

- l - l _- - é - n

w

Note that these impedances are mainly imaginary (reactive)

for higher order modes. Returning now to Equation (A.3)

for Rln(b) we can write,

. n +

'3”1 kib ’ Zzn(b)

Rln(b) = . n + 2+ (b) = -1.0 (A.12)

3n1 kib 2n

 

This is a main approximation needed for evaluating the

higher order modes of the input admittance series. Note

that if the conductivity of the conducting body is high,

then Equation (A.12) can be written by inspection. We

may now write, for the n-th mode of the input admittance;

n(2n+l) 1 _ Kln(a'b)
 

l . 1

Y (n) i Cos 6 ——————— P (Sin 6 )P (0)

IN 0 n(n+l) n 0 n + -

(A.13)

where n is a large odd integer. The only remaining

quantity to be approximated is Kln(a,b) which was de-

fined in Chapter 4 to be

(1) (2)
H (kia)H (kib)
n+l/2 n+l/2

(2) (l)

n+l/2(kia)Hn+l/2(kib)

(A.l4) 

K (a,b) 3
ln H

Using the approximate values for the Hankel functions,

we can show that (note that the real parts of Hankel

functions should be retained in the calculation of



lSl

Equation (A.14))

Kln(a,b) = 1 + y (A.15)

where y is a complex quantity. Substituting this into

Equation (A.13), one gets

n(2n+1)

Y (n) 5 C08 60m

l . 1
IN Pn(Sln 60)Pn(0)'

. 'Y (A.16)
+ _ -

Zln(a) + Zln(a) + yzln(a)

 

which, after using the approximation of Equation (A.10),

becomes

k.a

w(2n+l) l . l 1

0 —§————— P (Sln 60)Pn(0) —fi—- (A.17)Y (IfiéjCOsG

IN n (n+1) n 1

This is the desired relation for the n-th mode of the input

admittance for higher order modes, n >> 1. Note that a

similar expression can be derived for the case of spherical

antenna in a free space [6].

Equation (A.17) shows that the higher order modes

of a small, dielectrically coated spherical antenna depend

only on the dielectric coating region and is independent

of the parameters of the finite conducting body as stated

previously. However, the input admittance will depend on

these parameters through the first few terms of its series

solution.
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Now that a simple form has been found for the

higher order modes, we can discuss the problem of con-

vergence (or divergence) of the series. Again we note

from Equation (A.17) thattfluaconductance part (or the

real part of YIN) of the series converges and we will

only show the convergence of the imaginary part, i.e. we

write Equation (A.17) as

YIN(n) = jBIN(n) (A.18)

where,

k.a

BIN(n) s Cos 90 légflill Pi(sin 60)Pi(0) —%— (A.19)

n (n+1) l

is a (real) susceptance depending on the large integer n.

We will show that E Bn IN(n) converges for large n and

finite 6 Before that, the validity of the approxima-0'

tion of Equation (A.18) was checked on the computer. We

first used the exact relation [Equation (4.92) of Chapter

4] to compute a few higher order terms of the series, then

the computation was repeated using the approximation derived

in this appendix. The agreement between the two methods

was excellent and appreciable computer time and cost was

saved by using the approximation.

The associated Legendre functions are given by

(-1)-(n—l)/2n!

-
(A.20)

2n 1

 

l
P (O) =

“ [on—31):?
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where n is an odd integer. Also from Jahnke and Emde's

Tables [21] we have

P:(x) é /%3 Sin[n(n/2 - x) - x/2] (A.21)

assuming that x << 1. Equation (A.21) can be written in

a product form as (x = Sin 60)

Pi(x) é /%B-sin nn/z Cos[(n + l/2)x] (A.22)

Since n is an odd integer, we can assume

n = 2m + 1 (A.23)

where m = 0,1,2,3,4,... . Note that n and m will be

large numbers. Equation (A.22) can be rewritten as

Pém+l(x) é / Eligill (-l)mCos[(2m + 3/2)x] (A.24)

Substituting Equations (A.20) and (A.24) in Equation

(A.19), we have

(4m+3) 2(2m+1) (2m+l)!
B (m) = Cos e w

IN 0 2(2m+l)2(m+l)\/ " 22m[m!]2

k.a

- Cos[(2m + 3/2)sin eOJ—i— (A.25)

n1

  

To simplify Equation (A.25) further, we can use the Stirling's

formula for the factorial of large numbers:

m! é /§Ffi (2)m (A.26)



where e = 2.718. Using this in Equation (A.25), and

simplifying, we have

k.a

Cos[2m sin 6 ] —i— (A.27)B (m) = Cos e 0 n1

IN B
I
N

0

where we have also used the fact that m is a large

number i.e. m >> 1.

We have now a very simple form for the higher

order modes in Equation (A.27). The summation for the

input admittance is

_ M ' - ”

Y ' Z YIN(m) + 3 Zm=M+1IN m=0 BIN(m) (A'ZB)

where YIN(m) represents the first few terms for which

exact relation is given by Equation (4.92). The second

sum of Equation (A.28) can be replaced by an integral

when m is sufficiently large that the approximation of

Equation (A.27) is valid, i.e.

k a
co 2 . i

BIN(m) + fM Cos 60 a Cos(2m Sin 90) —HI dm (A.29)

oo

Z2m==M+l

The value for the integral in Equation (A.24) can be

found as follows

m Cos(2m sin e )
m l . _ o
[M m Cos(2m Sln 60)dm - [M 2m sin 60
 d(2m sin 60)

(A.30)

letting 2m sin 90 = y, we have
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f Cos(2m sin 60)dm = I:M £2§_X dy (A.31)

x yE
l
l
-
-
l

M

which is in the form of the Cosine Integral [7]:

ci(a) = I” 993—3 du (A.32)
(1 11

Therefore, the sum in Equation (A.24) can be finally

evaluated as

2k.a
co

Zm=M+l BIN(m)
-j Cos 6  0 n1 c1(2M Sln 60) (A.33)

From Equation (A.33) we observe an important re-

sult that as soon as 60 # O, the sum for the input

admittance expression found in Chapter 4 converges be-

cause ci(a) is always finite if a is nonzero. How-

ever if 60 = 0 (i.e. zero or infinitesimal gap) we see

that the series diverges, because ci(0) is infinite

(actually -m). In fact, it diverges as bdsin 60) and,

therefore, the expression for the input admittance

becomes meaningless. Physically this phenomenon is

expected since zero gap implies an infinite capacitance

connected in parallel at the antenna terminals and it

leads to an infinite input admittance.

To close this appendix we show in Table A.l,

some computer results illustrating the convergence prob-

lem for a particular case in which a dielectrically coated

spherical antenna is immersed in a finite conducting body.

The radius of the metallic sphere is a = 1.0 cm and the
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Table A.l. Illustrating the Convergence of the Input

 

 

 

   

Admittance Series. (a = 1.0 cm., b = 1.5 cm.,

c = 5.5 cm., f = 600 MHz; a/AO = 0.02,

air = 2.1, Er = 77.9, o = 0.925 u/m, 280

is the total angular width, in degrees, of

the gap.)

Integer N as in INPUT SUSCEPTANCE, millimhos

2§=1Y1N(n) 90 = 0° 90 = 5° 90 = 10°

1 5.46 5.41 5.30

3 6.52 6.43 6.17

5 7.10 6.94 6.50

7 7.50 7.26 6.61

9 7.81 7.48 6.58

19 8.80 7.73 5.85

29 9.36 7.41 5.70

39 9.76 7.02 6.05

49 10.07 6.81 6.03

59 10.33 6.83 5.81

69 10.54 7.01 5.90

79 10.73 7.18 6.03

89 10.90 7.25 5.92

99 11.04 7.18 5.85

199 12.01 6.99 5.91

299 12.60 7.12 5.95

399 12.98 7.06 5.94

499 13.30 7.06 5.92

599 13.55 7.09 5.91

699 13.76 7.05 5.93

799 13.95 7.09 5.94

899 14.12 7.07 5.93

999 14.26 7.06 5.92
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(dielectric coating shell has a radius b = 1.5 cm with

a relative dielectric constant of Sir = 2.1. The fre-

cguency of operation is f = 600 MHz (correSponding to

A 0 50 cm) and the parameters of the body are

Er = 77.9 and a = 0.925 U/m and its radius is c =

5.5 cm. Three cases of 00 = 0°, 5° and 10° are con-

sidered.

To see how the input admittance series converges,

. N

we study the partial sum Zn=l YIN(n)

values of N. The real part (or the conductance) of the

for different

input admittance was almost unchanged for different N's,

as expected, and was equal to 0.160, .156 and .146

millimhos corresponding to 00 = 0°, 5° and 10°,

respectively. The real part of Y vanished, in gen-
IN

eral, after the first few terms. On the other hand, for

the imaginary part (i.e. the susceptanCe), as can be seen

in Table A.1, the series diverges for the zero gap case

(80 = 0°) while for the case of finite gaps (80 = 5° and

60 = 10°) the series converges. Usually up to 10 terms

or more are needed to get accurate results which agree

quite well with the experimental results. Also from

this table we can see that increasing the gap width makes

the susceptance less capacitive. It is interesting to

compare the results obtained here for spherical antennas

to that of other kinds of antennas, for example, the

circular loop antenna [22].



APPENDIX B

COMPUTATION OF HANKEL FUNCTIONS

In this appendix, we first discuss Hankel functions

of small arguments as mentioned in section 4.7 in connec-

tion with radial transmission lines and then followed with

a brief description of the numerical computation of the

input admittance expression as derived in Chapter 4.

The main purpose of this appendix is to introduce a power-

ful routine used throughout the computation of the Bessel

functions with generally complex arguments.

Hankel functions of the first and second kinds are

defined in terms of Bessel and Neumann functions as

<1) : .
Hv (z) _ Jv(z) + 3Nv(z) (8.1)

and

Héz’(z) s Jv(z) - jNv(z) (3.2)

where v, in general, is a complex number called the

"order"of the function involved and z is a complex

argument.

Assuming that z = x = a positive real number, we

have for the case when x << 1

158



159

Jo(x) é 1.0. Now é $9,. 535+

(B.3)

. x . 1 2

J1(X) = ‘2'! N10” = " F071 (E)

which are obtained from the series representations of the

Bessel functions and y = 1.781 1 the Euler's constant

(2n Y = 0.5772). Hankel functions then become

H31’<x) = 1 + j %z. 1;. a32’<x> 1 1 - j £44 I;
(43.4)

. . . . 2

Hi“ (x) = 3,? -3 #0. (fi). Hfo) = 325 + 3%971 c;)

From Equation (3.4) we can write, for the amplitude

and phase functions as introduced in section 4.7 of Chapter

4.

how é %| 7m (11%|. hlm é 12r—x

(3.5)

. -1 2 x . -1 11x2

tam) = tan [Fan (15)]. wx) = tan (T)

The relations given by Equation (3.5) were used in section

4.7.

Next, as can be seen from Equation (4.92), for the

computation of the input admittance (or the input impedance),

one needs to generate the associated Legendre functions.

For zero argument the relation is simply

(_1)- (n-1)/2n!

B.6

2“"1[<Pgl):12 ( )

 

1 ..
Pn(0) -

for odd integers n. For non-zero arguments, the first

three functions are given by
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P$(cos 8) = 0, P:(Cos 0) = sin 8, P:(Cos 0) = 3/2 sin 20

(3.7)

For other functions we can use the recurrence relation for

varying degree [7] as

1

um+1

(x) = (2m+1)xP;(x) — (m+1)P;_l(x) (B.8)

where for our case x = sin 60.

To compute the various quantities involved in the

expression for the input admittance, e.g. R1n(b),

21n(a)"" etc., we have to compute Hankel functions of

fractional order and complex argument (in general). This

can be tedious if one uses the series expansion of the

Bessel functions or tries to use tabulated values for these

functions. In fact, to compute each term of Y as

IN

given in Equation (4.92) one needs approximately 15 dif-

ferent Hankel functions. Fortunately, for this purpose,

we had access to a powerful routine for computing cylindrical

Bessel functions (including Neumann functions) of complex

order and complex argument [23]. The description of the

routine and an example of its use follows.

The subroutine to compute the Bessel functions,

code-named COMBES, uses the appropriate recursion rela—

tionships and normalization factors to compute Bessel func-

tions of the first kind Jv(z) and then uses a summation

of Jv(z) to compute the Bessel functions of the second

kind (or Neumann functions) Nv(z) [24]. where in
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general both 0 and 2 may be complex, or

v = (a + n) + jB (B.9)

and

z = x + jy (3.10)

where |n| = 0,1,2,...,N, and a is positive. Note that

the real part of v is written in the form of an integer

plus a real number due to the fact that usually we are

interested in Bessel functions of integer orders or

integer plus half (as in our case). However, the order

in general can be any real or complex number. A restric-

tion on the magnitude of the argument is given in the

routine as

|z| =\/x2 + y2 < 50 (3.11)

In all our problems COMBES was used to calculate the Hankel

functions and as we saw earlier, the results were in good

agreement with experiments and comparison with existing

results.

To "call" the routine in a program, the following

statement is used:

CALL COMBES (X,Y, ALPHA, BETA, N, BJR, BJI, BNR, BNI)

(B.12)

where X and Y are the real and imaginary parts of the

argument 2 defined in the program, ALPHA and BETA are

as defined in Equation (B.9). INI + 1 is the number of
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values of the functions to be computed. BJR, BJI, BNR

and BNI are all one-dimensional arrays. Real part of

Jv(z) will be stored in BJR while its imaginary part

will be stored in BJI. These two arrays (i.e. BJR and

BJI) should have a dimension greater than or equal to the

maximum of |z| + 25 and |N| + 15. The real part of

Nv(z) will be stored in BNR while its imaginary part

stored in BNI. Each of these two arrays should have a

dimension greater than or equal to the maximum of

|N| + 1 and 3. In the existing deck these arrays are

dimensioned as BJR(100), BJI(100), BNR(50) and BNI(50).

In the program of interest it is best that the arrays be

dimensioned accordingly, if possible, to avoid errors

since the arrays are also used for temporary storage in

the routine.

As an example, suppose that we want to compute

(2) (2)

n-l/ n+1/

is a complex quantity. Then if RR = kr in the program,

Hankel functions H 2(kr) and H 2(kr) where k

we can call the routine COMBES as follows:

CALL COMBES (RKR, RKI, 0.5, 0., N, BJR, BJI, BNR, BNI)

(B.13)

assuming that the arrays BJR,...,BNI have been dimensioned

properly. RKR, RKI are the real and imaginary parts of

kr, respectively. After calling the routine we can con-

struct the Hankel functions as
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HM BJR(N) + jBJI(N) - jIBNR(N) + jBNI(N)]

(B.14)

BJR(N+1) + jBJI(N+1) - j[BNR(N+1) + jBNI(N+1)]HP

(2)

n—1/2

Héii/2(kr). Note that since the argument kr was complex,

where HM is used for H (kr) and HP for

it is necessary to use both real and imaginary parts of

Bessel and Neumann functions. Also since the routine

will compute the elements of the array from 1 to N+1, in

the case where we use Hankel functions in a do-loop, the

routine needs to be called only once for the maximum

integer number of the do-loop's parameter.

In order to illustrate the accuracy of the numerical

results obtained after executing the routine COMBES, we

now compute some Spherical Bessel functions. These func-

tions are defined in terms of the ordinary (cylindrical)

Bessel functions as

- _ /I_ — ’1.

3m(X) - 2x Jm+l/2(x)' "n(x) - 2x Nm+1/2(x) (3°15)

Table 8.1 shows values of the spherical Bessel functions

of order m = 0,1 and 2. The real argument x runs

from 0.1 to 2.1 (note that x = 0 cannot be computed).

These values are computed using the routine described

before. A comparison of the values in Table 3.1 and that

from the National Bureau of Standard's "Tables of

Spherical Bessel Functions", which are compiled in Re-

ference [7] shows a very good agreement. Although for all
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Table B.1. Spherical Bessel Functions of Order 0, 1 and

2. These Results are Comptued by using the

Routine ”COMBES".

x jo(x) no(x) j1(x) n1(x) j2(x) n2(X)

0.1. .99833 -0.95004 .03330 -1oo.49875 .00067 -3005.01248

().2 .99335 -4.90033 .06640 - 25.49501 .00266 -377.52483

0.3 .98507 -3.18445 .09910 -11.59992 .00596 -112.81472

0.4 .97355 -2.30265 .13121 -6.73018 .01055 -48.17368

0.5 .95885 -l.75517 .16254 -4.46918 .0163? -25.05992

0.6 .94107 01.37556 .19289 -3.23367 .02339 -14.79279

0.7 .92031 -1.09263 .22210 -2.48121 .03154 -9.54114

0.8 .89670 -.87088 .24999 -1.98530 .04075 -6.S7399

0.9 .87036 -0.69068 .27639 -1.63778 .03095 -9.76860

1.0 .84147 -0.S4030 .30117 -1.38177 .06204 -3.6052

1.1 .81019 -.41236 .3241? -1.18506 0.7392 -2.81963

1.2 .77670 -.30196 ' .34538 -l.02834 .08651 -2.26888

1.3 .74120 -.20577 . .36438 -.89948 .09969 -l.86996

1.4 .70329 -.12141 .38138 -.79061 .11334 -1.57276

1.5 .66500 -.04716 .39617 -.69644 .12735 -1.34571

1.6 .62473 .01825 .40871 -.61333 .14159 -1.16824

1.7 .58333 .07579 .41893 -.S3875 .15595 -1.02653

1.8 .54103 .12622 .42679 -.47090 .17030 -.91106

1.9 .49805 .17015 .43229 -.40850 .18450 -.81515

2.0 .45465 .20807 .43540 . -.35061 .19845 -.73399

2.1 .41105 .24040 .43614 -.29657 .21201 -.66408     
  



165

the results encountered in the problem of the input

admittance of spherical antennas one had a good accuracy

in using the routine COMBES, it is recommended that the

reader runs a few examples in special cases first, and

then compares it with the values given in standard tables.

It is believed that the routine is not very accurate for

pure imaginary arguments.
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