VEGETATIONAL DEVELOPMENTS AFTER LOGGING EN SQUTHERN MECHEGAN XEREC OAK FORESTS Thesis for iho Degree of P'fi. El“. MKHIGAN STATE UNIVERSITY Paul S. Jchnson 1966 11111111111111 1171111111111 1293 00677 454 This is to certify that the thesis entitled Vegetational Developments After Logging In Southern Michigan Xeric Oak Fcrests presented by Paul S. Johnson has been accepted towards fulfillment of the requirements for Ph.D. degree in Forestry WW Major professory Date March 11+, 1966 0-169 LIBRAR Y ChigartSta “vaityw A BS T RAC T VEGETA'I‘IONAI. DEVELOPMENTS AFTER LOGGING IN SOUTHERN MICHIGAN XERIC OAK I’OI‘CES'I'S 1); Paul S. Johnson Betét'auee ot‘ inaxt‘utstng deantdttth tot' lumber and pulpmmd. Ihv t'clattx'oly large volume 01‘ low—qualms hatrdu‘omh (l)'~'ll'll)lllt-'(l throughout southern Lower Mit'higtm has bist‘t'mac e~t't,,ntt)ntit'all_\ 1'¥1[)C)l'lLi1114 OHL' L;L"‘-L't"' alizud area ot‘ the ~outhet'n Mtthiua". lurid-yam) in \t'hivh ”l(')'\\";_LI'Ll(lt,"' hardwoods [)l‘t;"(lt)!!llfluit“ 1~ on .‘.L‘I"i<" ()1‘ ”(11‘3” FI'L‘H “hitch are 1_\f)lt'21ll‘\' (l(_)',t‘.lni~ll(.‘('l ht .‘OIHC l-7(H'€'tl)lHLlI ton 0*; walk ~pt-cie'~. Thu objL-r‘tiu‘ ot the: })I'L“(‘I‘il .-tudx was to detm'ntnu ‘t‘-‘;12.‘711'tl()3‘till (let'clowttcut-‘ taking plut‘t‘ th‘tM‘ logging. int‘lLHllHL: ~llt't‘t_“i"r¥l()l‘.dl It‘(.".‘.(l<. species—sitt- relatioushitw, and zit—sowiution ln,:t\t'.-1(')?L. uttaltsi< ot varianto. Li!‘.(l chi -qitLiI‘U L1?!Lll}.-L‘>. The contpt)~‘it,it>:: of the starch before (cutting tun ("ilH'L‘s—‘t‘d h} ‘iH'Ip()1".mtt'0 Values (buxod or. z'cluttxo percent t't'ogttot‘m't. dun-tut and Laval urea) t'ultgulaltcd tor vat-h ll't‘C ~[)t_“-:‘La—' 12.1 (:th'lt stand. Those \Lllltt_'.~ \t'tst'c wolghtcd 1.)} climax aduptatlmt number~ to _\'1t 1d r-‘Lll‘.(l port— tmmum Index \'LllUL'“— ranging“ trout 528 to 2‘190 (out 01 L1 p().‘.‘ll)l£" l‘;l".'-_;L’ of. 1.30 (NCI'IQ) to 3.000 (t'tt(,,x-‘=L')). ELL—(Kl on tut-211:0 iH‘POI‘l‘dTLCL‘ \'CllllL:—'. Paul S. Johnson the seven most important species in the stands before cutting were (in decreasing order of importance): black oak, white oak, [)lg‘lltll. hickory. northern red oak, red maple. black cherry. and Sassafras. Black oak was tJie tiniraett3ristic: leaching domirunit ill the sttnids sttulied. In the stands before cutting, black oak was generally best represented on coarse textured soils. poorer sites, and south and west zispewsts. lite ()ttujr Inajt)r quecitss CKNHpCNlCHlE? ecwietmillt'tsonniriscwl a larger proportion of total stand basal area on liner textured snils and better sites. Overall, black cherrv, sassafras, and red maple were the most abundant species among seedling and seedling—sprout reproduction. For most species, frequency of stump sprouting declined with increasing stump diameter or d.b.h. The overall order of specit‘rs sprouting ability from high to lovv vvas: black cherry, red maple. red oak, bla etnnt)riseecl ()t 1'O(l nuiplts. blzitlc titer rx', and sassafras will be relatively small even where they are well I‘Clh‘esented in the reproduction. However. major shifts in the propoziitni of CHU§> anrlliianut liickoiw (IN) 9' H . ineixliantzablc: gtnieititiort to iNlOllNJF. I The oak forests of southern Michigan liased (N1 the (KHnbilNlllOH ()l ltwujing (knnin Three of the four oak types are classifie ered to be relatively permanent community Paul S. Johnsot l)L’ (‘fi:l)(‘£‘l (*(l l l‘()7a ()lit) we-rc* ett)u1)e(l llllt) ltJHl' l}{)t“~ ants and soil textural classes. n , H - d as xer1C' and zire twnisid— t )’[)L‘E¢, i . t'. , Ii()t L'()ll\ Let's i ()ztzil . , . 't . '1 to nmnwg mescnnivtic:‘tvpes. Fhe [(nirth tttx: is a uu3stc ()ak 131M), poltfllliéill\' ctniveiwsiontil tc) str'ai'inailtr-Anusricxnt bemwgh. Tht: contnisl— t f‘ tional possibilities of each t5pe in terms of secondary succession went} out] inecL Tints, tin: clzissitix:ati(ni taugilitatcu: eencnuilizcwl[)re— dictions of suecessional eventualities and aids in silvicultural and othtw‘ land Huntageumnrt deeisicnitnakina; VEGE'I‘ATIONAL DEVELOPMENTS AFTER LOGGING IN SOUTHERN MICHIGAN XERIC OAK FORESTS +c\ . ( _. (\ Paul bi Johnson A THES IS Subtréitted IO Miehigan State University in partial i'tllt‘illmt’.‘nt of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Forestry 1966 PLEASE NOTE: This is not original copy with extremely small type on some tables pages. Filmed as received. University Microfilms, Inc. ACKNOWLEDGEMENTS The author is grateful to the Lower Michigan Pulpwood Research Association for its financial support of this study. For their assistance in locating study areas. I would like to thank Mr. James Watters of the Otsego Paper Company, Mr. Charles G. Allen of the Scott Paper Company, and Michigan Conseryation Department Area Foresters Lloyd Cogswellr, A. J. Phillips, Paul Schroet‘ler. E. C. T\\():'k. Louis Miller. Irvin McFarland. and Victor Horyath. I am especially indebted to Dr. V. J. Rudolph for his generous counsel and patience throughout the term 01 this study, and also to time {(il.lcnviti;: Incwnl)eifs ()t Iny' tgrtidtlat.e ccnnn:it,te:e lt)!‘ tlitéit' zlsr:is;t;int e and zujriccw Drs. J. it. hh'ight . T. I). StCWKNlF. anul Geilrirdt Saluteich)r of the Forestry Department. and Drs. J. E. Cantlon and S. N. Steqnnanscni oi ‘the IfigpaIWJnent ()f Botariy anid FHtUlL Patlu>loey. I “tfllld also like to thank Mr. John L. Arend of the U. 8. Forest Service tor ccnitriIJdtiitg t imez anti illiOlWHntlt)n (Ml Stnne {diasths ot' tht: stttdyu Lastl}', I am irHMHDted to HU'\VlfU. Ekntla. tor h01'(”NWNlV3%9m“”1 and assistance throughout the study. ii TABLE OF CONTENTS ACKNOWLEDGEMENTS INTRODUCTION DESCRIPTION OF THE REGION Distribution of Forests . PhNEiOgI‘HPD)‘, Geology, and Soils Climate LITERATURE REVIEW Composition of Regional Oak Forests . Successional Status of Southern Michigan Oak Communities . . . . . . Reproduction Studies in Oak Forests METHODS Selection of Stands Collection of Field Data . . . . . . Number and location of field plots Vegetation ' Soils Topography Site class Analysis of Data . . Synthesis of stand data Plot analyses RESULTS AND OBSERVATIONS TV? Stands Before Cutting General characteristics Description of stands by areas . Basal area distribution by species and diameter classes Interspcciiic association . . Sptcies-soil and site relationships Topographic:tailationships Analyses Slope Position Aspect . . . Growth and productivity General Diameter growth iv v]_ I 4 . . .1 ii TABLE OF CONTENTS (continued) The Stands After Cutting T10 residual stand th)rodtu:tion It] gencnuil Slirule 811d \yoc)dy' thinc's Interspecific association Species-habitat relationships Analyses Black oak White oak Nortlnnrn 11x1 oak Pignut hickory Red maple Black cherry Sassatras American elm Sillml) s[)r(ntts DISCUSSION Classification of Southern Michigan Oak Forests Successional Possibilities in Relation to Oak Types . . . . . . . . . . Application of Silyicultural Methods st'i'tyt-im' AND CONCLUSIONS The Stands Before Cutting The Stands After Cutting Application of Results LITERATURE CITED APPENDICES iy 87 87 S) I} 97 97 112 112 116 119 123 130 131 136 138 110 110 161 161 166 1‘59 Table __._. —-._ U] \l 10. ll. LIST OF TABLES Distribution of stands by years since cutting Classification of soil series encountered within the xeric oak study areas Sc>il Itflxlllral giwiuiiirnis . . . . . . . . . Importance values of tree species in 30 south- ern Michigan xeric oak stands before cutting Basal area in square feet per acre for tree species in 30 southern Michigan xeric oak stands before cutting . . . . . . . . Number of saplings per acre in 30 southern Michigan xeric oak stands before cutting Interspecific and species—site correlations in xeric oak stands belore cutting Standard partial regression coefficients show- ixn; tlua twilatit)nsliip 1M9twcwni sitt: fathJrs {Uld basal area of species in the stands before cutting . . . . . . Summary of‘ analyses 01] variance showing differ- ences in mean basal areas per acre in stands before cuttiinz, by slope posititni. Sunmniry of'znialywugs of \niriancwz shouiin: difftrr- ences in mean basal area per acre in stands before cutting. by aspect Standard partial regression coefficients show~ ing factors which affect the diameter growth of black and red oaks . . . . . . . . . Standard partial regression coet‘t‘icients show-— ing factors which atiect the diameter growth of white oak Relative density of reproduction in 30 south- ern Michigan xeric oak stands alter cutting Mean density per acre of reproduction in cut— oyer xeric oak stands by species and size classes . . Pa 1; 1.‘ 1'3 16 K] 's W 79 81 86 91 Table 16. 17. 18. 19. 20. 21. 22. LIST OF TABLES (continued) List of shrub and vine species and their per- cent frequency of occurrence in cutover xeric oak forests Correlation coefficients showing association between species in the reproduction by size classes and density attributes regression cocificients show- relative density and some Standard partial iini the twelatitnishifi betwtwni of black and white oak reproduction (HlVlITJHHKthfll etact()rs . . Summaij‘zjf analyses cu \nariance showing diftca~ ences in mean relative density of oak and hickory reproduction by slope position Summary of analyses of variance showing differ— ences in mean relative density of oak and hickory reproduction by aspect . I regression coefficients show- relatiye density iwgpiw)dutrti(ni :nid Standard partial ing the relationship between ()f red (un< ancifiignut Iiickoifi* some environmental factors regression coefficients show— relatiye density reproduction and Standard partial IWBIatiCNthiI) betwtmni ixu; time and black cherry of red maple some environmental factors showing ditier- raidinice i‘etl n13[)1C‘, Summary of analyses of ences relative density of black cherry, and sassafras reproduction by s lope posit ion . in mean showing ditier~ \IIFiZNlCC? red maple. analy$u3s of relatiye density of FCfl)lWDCh1Cl lCHl 11y Sunmniry of eiicc3s ill Incwin black cherry, and sassairas aspect . coefficients show- relatiye density l‘()[)l'()(it1(ft.i.()ll 2111c! Standard partial regression iiig tflie 1%:latirnishifi hcdnyeen of sassafras and American elm scnne cgnttircnimcnitzil finctC)rs . . . ot‘ tacflc3rs iwslatcxl to satunu) spimnitiin; multiple regression Q Analyses; based on Ptlgt‘ 98 IOU 117 l26 l 1&9) LIST OF TABLES (continued) 3211.9 .3429 26. A classification of southern Michigan oak forest types . . . . . . . . . . . . . . . . . . . . . . . 133 1. N) \l 10 10. ll. 12. 13. ll. LIST OF FIGURES Oidtzinal ;xeritr<3ak ft>rest in stnithtaai Lowtu' Michigan . . . Location of study areas Relationship of xeric oak stands to continuum inth9x zantl sriil ttxxtttral clatss area per acre by throughout 30 Michigan lite (listi‘ilnlti()n (if thisal and diameter classes synacit3s in southern xcric oak forests stand on a Boyer-Oshtcmo soil complex. An oak Jackson County, Michigan . . . . . . . . association among pairs of spe— Interspecific cies in xeric Rolat ionships soil tex tural st aiitls l)c’f()1%) Relationships site class, 101' cutting Rt‘ltitixvrisliiti i)t‘[\VLW£H yxsal's cut and basal F(“4i(htdl at time of Stand 22-80 six Izlt_t‘1's;)(>c:i,i‘i(: Irittfrsgietriifit t rec sec-(ll i ngs s<]ttiii‘t* l);1s:(?(l ()ll (xii i Successional I‘tsy) i'C)(lt1<; t i ()1) CltlFE . . . Ih-latitNishiyne five spacies residual and depth to i ive sf‘wcies stems 1.0 cutting trends for btlS(J(l ()n stand basal area oak stands before cutting hetwwnan ixisal circa {Mgr aciw“ and class for five species in the cutting acre. St”)“ll%lld basal a rea pc r caltwircous l)tei‘()1‘t* between ill tllt‘ s taincls s i nce stands we re Der acre of QFEHI inglxnyth and 1a rg'e r j 11(311 (i. i). 11. years after cutting . . aisstxsitititni iii eissticiiititni anaoxn; slirtHJs thid 1 c:s s llltlfl ()11L‘ ftit)t it] llC‘It{l]t fCHll' stiec it‘s ill LhL‘ dcnnintu1t lleitflll O O o L? (lt‘llrll t y the re] at iv and total l)c*t\VL3(>ri iii tli(9 I‘(?[)I‘t)(lll('L l()lt per acitz . . . viii [111‘ l”:[)lK)(th‘llt)ll the .30 58 61 Kl l IMO 113 Figure 15. 17. 18. LIST OF FIGURES (continued) Relationships between the relative density oi five species in the reproduction and basal area per acre of the corresponding species in the original stand, based on reproduction greater than 0.9 foot in height . . Frequency of stump sprouting by diameter classes . . . . . . Height growth of stump sprouts Stump sprouts six years atter cutting in stand 23—80 - n O o o g I I c a o . o u c a o 0 ix Page ll3 ll6 131 LIST OF APPENDICES Appendix U! 10. 11. Site characteristics to be considered in classifying the productivity of upland sites in southern Michigan for black and red oaks Location. size, soil types and continuum in- dices of study areas Diameter at breast height and stump diameter lKBlati(HlShiJ) O Clinnix atnu)taticni nuunx>rs uscxl fOI'LUJ1and tree species in southern Michigan Percentage of soil separates and pH of Plainfield sand and Coloma loamy sand pro- files representative oi study areas Peixxnttager()f soil saniaratcne and.[fl{ of Oshtemo sandy loam and Boyer loamy sand pro- files representative of study areas Percentage of soil separates and pH sandy loam and Kalamazoo sandy loam representative of study areas Percentage of soil separates and pH of Fox profiles of Hillsdale sandy loam and Metea sandy loam f)FOfi]JJS itu)rescnitati\13 ot'::tudy'zareas Percentage of soil separates and pH of C-21 loamy sand and Casco loamy sand profiles representative of study areas 0 Basal area distribution in square feet per acre by diameter classes for oak and hickory Species in 30 xeric oak stands Basal area distribution in square feet per acre by diameter classes for companion spe- cies in 30 xeric oak stands Regression equations for Figures 7. 8. and 9 I Analysi¢=tnf variantticxnnparinq tlneinean annual diameter growth of three oak species 183 186 187 188 191) 191 192 LIST OF APPENDICES (continued) Appendix 11. 15. 16. 18. 19. Mean residaal stand basal area per acre by species for trees 1.0 inch d.b.h. and larger after cutting Mean relative densitx~ ot‘ reproductitm in cutover xeric oak stands by species and size classes Ck)rtw:ltltit)n btft“1ftdl i FcK1UL11C)' ot' otxxut'rtwnce ()i stnnt+ slirttb S[)(K31L‘S L1H(1 cdl\'11W)HIH0111L11 l at ttai‘s . . . . . . . . . . . . . . . . Regression equations for predicting the F013L1\W: densit)'t)i reprodUctitut by species and size classes Sununar}'()f c111 scnlare tuialyscws conuniring tiny [)rtu)01'tit)n (3t sttnnps \titli 1 iriiig :eptxnits 1iy diameter classes and species 12ea1w:ssi fizitgiiizitt I:()W'ltlll(l; ()ll lllt‘ Ii()i‘tlittt>s't l)y‘ tlit> T§()1‘t11t)iai Uj)lzni(l, zintl 011 IllC? wtsst. by‘ tin: laikt) lfitliitiati IA)wl¢in(l Pltiitns. Elr:\tl- Lions within the Southern Upland range from 800 to 1300 feet aboye sea level. Tlieé ftiiwsst_s olf tlii:< 1'tw;i()n hatrt~ dthtfilefl)€(l t)n styilsé (let‘itwgd flT)m glEIClill di‘ift. ()f \Vis soils; atw3 low' in nu>istiirtr. oxyganitrinatttlr. and Stuipect tc>yyind cu13sion. (Rhisequcmtly'. they'zire less \111Udb1t’219 agrituiltttral laiul. IMJHiIuint \«3gettititn1 on tJiestr latttu' $01151 is generally limited to black and white. oak. The sandy-hills land type largely consists of areas on moraines and eskers. Physiographically, they form a complex of broad and narrow ridges, knobs, and basins. In general. they are of depreciattd aLiricultural value because of steep slopes. stoniness. susceptibility to erosion, and non-uniformity. although locally they may be first~ class agricultural soils. VWDll drained sandy loams and loams 10 prmuhnninatt3; ty1)ical suiils 81%} Boycu‘. Fox. ()shtcmu), arml KdlLHHflZOU series. Natural vegetation is chiefly oaks and hickories. The more moist. steep north—facing slopes, and wetter depressions often sup- port suigar nuu)le antlzhnerictni beech. illso, intcanxsrsed tliroughout this land type are various wetland species in the deeper basins and depuwassitnis. lieIT) tanuiracli swiunps. shiaibby'lxggs. thld ltntlantlliardwxn)d types are iknuui. Much CM tJu: sandy-hills land type is (inwnu;tly being lltiliZOd as [nuilic OUttkMTF recreatitni areas, lfliFLiCUlflF13'lIIYK3Fth— eastern Jackson, northwestern Washtenaw. and southern Barry counties. 9:912:13 Generally, the climate of the interior counties of the southern Lower Peninsula may be characterized as continental. However. con— sick3rabl<3 V811J111€Hl may’ be ftnlnd lJl mettn>roltniical (H)Hdltl()flr. At times, stixnug, moisttnxy*laden winds iiwmltflu) surrounding Great lakes may abruptly [inaduce moderately high humidities. thus effecting a semi-marine influence (Wills, 1911). Tht) aywératui aruuial tenunsrattlre t)f tln: s(nlthtwwi [anyel‘ Penninstxla varies {nun l5 to 50 degrees F. The average summer temperature ranges bCWJVCcui 65 zjn(l 7t) dcgzrecne F. . antl tht> aywiratui wixitei' tenunarattlre iiw)m 20 to 25 degrees F. (Yisnel, 195l). The growing season lasts more I than 180 days in the southwest to about l10 days in the Saginaw Bay region (Wills, 19-11). The mean annual. precipitat ion ranges from 28 inches in tlurtuartheast to 37 iiuluas in the southwest. It is tairly well distributed during most of the year, although the winter pre— cipitation averages about two inches less than during the other three l] $01290pr During April through September. uh avul'ugu ol‘ 1.”) to 20 inchcs‘ falls. However. there is‘ a distinct. midsummer (July) (la-l'lim‘ of rainfall (Bruxmschwci101‘, 1962). Mu-Llll annual snoulall range»- lmv» 30 inc-he.C in the southeast to 60 13¢th in the southwest. LITERATURE REVIEW I Composition of Regional Oak Forests; The most recent and comprehensive ecological treatise on the upland oak forests of southern Michigan is that of Parmelee (1953). He studied 36 oak stands which he related to the vegetational con- tinuum in the manner of Curtis: and McIntosh (1951) and Curtis (1939). Most of the stands barmelee investigated were advanced second growth. I His study, however. covered a larger segment 01 the moisture gradi— ent thJn tluit cruisi(hgred lJl thc*[)resCNit invwxstigatitni. Sonm:()f the stands he investigated were situated on imperfectly drained soils (Nappancw‘znid Concnufr series). NeveiWJucless. all_(3f Parmelee's sttuh‘ aiwgas inc 1U(k3d zan llplithl otdi FIMJC1()F gis (N10 ()f thc: [“1) linidilig (h)mirt- ants. Stand continuum index values ranged from 731 to 1999. out of a possible range of 300 (xeric) to 3,000 (mesic). Continuum index position 1300 delimited two broad textural soil groupings on which oak upland stands were developed: those stands helou 1300 were SilufllLTl(Ml soils acnngrally Classilaixlzis sands (uni sandy loans; lil()rétf t1l)()\'t> 113()() \vt)1‘c3 s i Lll;ll.t'(l ()ll 1 ()zinls Ellltl s i l t l ()Llth . The average importance vaers5 ol the seven most important spe- (:ies iii thc: 36 cud< conmnnaititn: sttnliecllxv Paiwuslee “(‘FUI l)lack th< 79.1. luarthtnat red tud< 66.7, \Hiite cud< 56.5. 1)ianut liickori‘1£2.2. Fed maple 14.8, black cherry (Brunus_serorina Ehrh.) 13.1, and sassa- fras (SEZ‘EL‘EIE. £12511”) (Nutt.) Nees) 7.2. 5, . . . . 1 An importance value is the summation ol relative basal area. relative density, and relative percent frequenev of occurrence of a trcu: spcx ies in 21 gixani stauxd. 13 Paimuglee ikNJnd 1M) evitknice iii the Knitterns (if titw'. shin), and herb composition which suggested discrete combinations of species. But rather, he concluded. the stands of the oak upland community in southern Michigan form a c0ntinuum. Even at the extremes, he found sttnuis diffcnwxl less tn'l thzui scyils \titli C(HJFSL’ ttr<— tured or thin textural B horizons. Lower slope positions were more productive than upper or middle. Moist layers (as a result of high colloidal content or high water table) between [our and ten feet below the stuikree were nmnw; productive*tlnu1:maist layers tmdcnv ten feet. Five site-class categories were chosen based on the combination ot the above characters: very poor, poor, medium, good, and very good (see Appendix 1). They also found stand composition and structure to ditfer by site class. On very poor sites. black oak. white oak, black cherry. and sassafras were the main components in terms of number of trees per acre, Northern red oak, hickories. and red maple became more import- ant on the poor sites. Medium sites contained even larger proportions of iwxi oak, liiekoric64. red nuuile. antlyfliite ash (lanixinus FETLKLCEQB L.). Sugar maple became moderately important on the good sites as an ll understory species, and was well represented as an understory species (Hi the \Krry tnaod ssites. No141ngrn 11x1 oak ynis best twaprestnitcd (n1 seed and very good sites. However. black oak was the most important spe- cies on all sites. The cnd< forests of stnmlngrn Michigan are apparently sinulsn'tm) tlio~u3 ()f scnitlieiai \ViEKJOllFiIl. Idle Hleached g11)o(l loamsH Ol‘.ll10 titulix'ith- forszt rangiori t}])i(willy' sinipcn't (MAR .f0113stF: dtnniinittml by \yhitws (Mlk. northern red oak. and black oak associated with shagbark hickory. bitternut hickory, black walnut (flugtans_niira L.), white ash, and other more mesophytic species (Wilde et al., 1919). This soil-forest unit was designated the Parthenocissus-Circaca type. after the major “ shiwlb {Uld lietli ccnnpcnierrts. Curtis (1959) divided the xeric forests of southern Wisconsin intx) twt) a14)itiwaryr QIINJDSZ tln: diw' feimnsts ()cctniyiln; Lhtf C(Nltinlnlm index sector from 300 to 1300, and the dry—mesic from 1300 to 2300. Both are predominantly oak forests. These are located on well— drained sites on sandy soils, on south and west slopes, and on thin soils on hilltops and ridges. Overall, the most important tree spes cies are black oak, white oak, and northern red oak. The dry segment is tyj)ifi43d liy tlie [)re(knniiiarn e (if l)lacl< ocfl<, lilatli (lieiafiv, lnir ()ak (Quercus macrocarpa Michx.), northern pin oak (Q. ellipsoidalis E. J. Hill) ,(fliinkapiritxflt (Q. unndilcntxnxjii Engelm.), cunniing aspen (Populus tremuloides Michx.), and boxelder (Acer negundo L.). The __.—._.—_— ~-fl_._..- dry—mesic segment contains northern red oak, bigtooth aspen (Populus giggdidentata Michx.), and red maple as characteristic components Plus some invaders from the mesic forests. These latter components 15 include American basswood, sugar maple, slippery elm (1:131:15 r}_’_h.,’::1 Muhl.). and eastern hophornbeam (Ostrsga 35:31:} (.\1i11.) K. Koch). thit<3 (MIR, sluigluirk lticlu3r} . hlthk \valtiut , antl gtcw;n zish \veiw9 alxyut (mptally'imj)rescntted itt botli segnuatts of tlie xerac: forest. tStudies in other adjacent regions have also shown oak torests to he sinnilar lJl connxgsititnt and (utviixnunentzil clniractcn'istics tt)‘those of southern Michigan. These latter studies include those of Kie- tredee and Chittenden (1929) and Elliott (1952) in the podzol region of northern Lower Michigan; by Sears (1925). Sampson (1927. 193(1). and Shanks (1912) in northern Ohio; by Gordon (1936), Potzgcr (1933, 1939). Potzger and Friesner (1910), and Jones (1952) in Indiana; and by Hills (1932) in Ontario. iuccessional Status of Southern Michigan Oak Communities The various vegetational climax hypotheses (e.g.. Clement’s "nunnoclianax" (191(3). NiLJNJls' "po1}trlima§f' (1922” . an(ltfltitak(u"s "C].iNH1X.'piltt(3111" (1E)513)) htlYfl? 1(Jd tt) \wtri()uss c()ncfltust (Hf soutlusrn )htdtigan tt) lie “jtltin tht‘lxnlndatil(ltnit (VX(:cW3(ls in()iwc tliatt ter) ()l' tliiwrt‘ ititliLEs. litt‘ s ttulitcs ()l Lull (1939) in northeastern United States in a variety of deciduous and conifer forest types. and the studies of Orington (1959. 1962) ill Scmitch tiinc‘ (Piinis r:y1\13stiag: L.) iilanttititnts zilso sangqest. that ultimately there is a balance between organic accumulation and decom- [)Orfiili(nt. C(HlECT1UCWltl}', (hiicli's thM)F)' (1S32 1) tliat th? 91U431‘1fdfll0‘ becxdi ass(x;iati1ni is ltlliuulleli‘tgd1HHJIU (if occiuiyiiu; all tjie stiils td‘ southern Michigan because of increased soil water retention due to the zid(lit_iOIi (if htuutis, s<3cans tC) lLlCli l)as=is. In regard to chemical influences of forest litter. most studies have indicated that species yielding litter with high amounts of the major plant nutrients are those naturally associated with fertile Soils (Alway t: _al_., 1933; Alwai' _t_*t_ a_l. , 1931; Broadfoot and Pierre. 1939; (Hiandlcrr, lSltl; COilfif, 1937; 1(ittrcuhu2. 1918; khlhirgutituxd Ruin 1932). Bray and Gorham (1961) have summarized the world literature Pertaining to forest litter production. Their survey showed that the leaf litter of species associated with the southern Michigan xeric oak forest (oaks, hickories, red maple, black cherry) are relatively low in ash content in comparison to those species associated with more mesic habitats (sugar maple. American basswood. American elm, and whittr ash). .As sauigesttxl by Pkuamalee, it tunnaars tinit vegetatitni maintains, rather than builds, fertility. Certain notable exceptions to these generalizations have been found. Olson (1958) studied rates of succession and soil changes on southern Lake Michigan sand dunes (on Bridgman soils). lie found that cut lea) slcuies in tJie sshach: of‘ shiwdis zu1d lIWQUS ‘likcrlxisswtuid. :soil may improve quite rapidly in comparison to adjacent communities on similar soils. Such "mesophytic dune pockets” very early deyeloped soils whose nitrogen and base status were much higher than was usual in the "normal" black oak~b1ueberry community. The difference between the SLKHCCSFiCHHIl devcdcnnnent (n1 these (hum: pockets enui that (Hi the normal black oak community was considered not to be ”caused” by the soil, because parent materials were probably about the same. This (lif’ftircaiQWD, htiwtaywjt‘. “115 ae=stnntid tt) l)c> ( atts<3(1 l)y‘ tlif‘ft‘rtaictgs iii microclimate and moisture characteristics. These, in turn, ultimately depended on the independent variable of predetermined topographic position. Pauanznujiei' (1E362) sttulieri'y , tiH(l rtjtl Hia;)lt2. ltcwl aiid wlii.tt3 ()alts wwgtwi [)1‘lhlfll‘ll y llfchatt as :stunn) stiroutse antl theiif di4=triln1tion \vas thioix Noidliern red oak stmxllings, 211though tkiirly well twniresented twwiytnars after cutting were drastically reducml by rabbit browsing. The authors conclutkml that tin: clcnircuttiau: mettuxl did ncn.(fl)tain atkmhtate tnd< re— 13P0dtu:titn1 iii tlic iiew'sstancl. lliey' lurtlnsr [MDintt3d tnlt tliat in tlie absence of follow-up cultural measures. conversion of oak stands to more tolerant mixed hardwoods will follow clearcutting. 13latlunaia' antl eritc~ (1S161) retx)rttwl tliat lilacl< clnsrry':1cctunttetl fei‘ Bl 1)eiw:etit (if tlie liaszil zircui (t_rCu3s ().5 :intli (l.b.li. LlflCl lairgtlr) POP acre of reproduction 12 years after clearcutting an oak-hickory stand in Clinton County, Michigan. This stand was situated on a cums plex of well to imperiectly drained soils, including Hillsdale. Metea. Miami, Conover. and Metamora series. Pignut and shagbark hickory accounted for about 20 percent of the basal area. and finite oak about ten percent. Black oak and northern red oak predominated in the original.sstand whitdi averaged 1(X3 square feet (H‘lnasal area per aciwn Other important species in the original stand included white oak. and shagbark and pignut hickory. Basal area increased from 10 square feet per acre following cutting to 50 square feet after 12 growing seasons. in] Wisn:onsiii. Scluilz ancl De \Hfiencl (1957) fourul that 1u3rthetnt red oak reproduction declined by 69 percent two to six years after felling a well stocked 90—year-old stand of mixed hardwoods. They anticipated that the 1,220 red oak stems per acre remaining after six years would eventually'(Nitgrow cxmunstitive shrutw=znui provide an JIKKHUJlC stand. However, this assumed outcome has not yet been confirmed. Scholz (1955, 1959) also studied the effect of scarification of the forest floor by disking during a bumper acorn crop year. Two years after (liskiiu: thCIWJ W011} ovcnf thIKHE‘timCF zuelnany'iuirthtuai red cud< stwullings per acre on the disked area as on the undisked area. Seven years after treatment, however. there were practically no differences be— tween the numbers of red oak seet‘llings. Both disked and undisked test areas were located in stands subjected to a shelterwood preparatory cut which reduced the basal area from 110 square. feet per acre to 197 SQUBIT) feet [MJF acrwr. Scinulz ccnu31udcwl that tin} entiztr fiel(l()f "oak-ecology” needed to be explored to determine to what extent oak forests can be manipulated to attain specific silvicultural objectives. Scholz (1955) also showed that competing vegetation influences northern red oak seedling establishment and survival. Comparison of bltunrrass stxl. shiaH), and (knise ftnat sites iiniicatcwl that tin} lowest 22 establishment occurred on the sod and the highest on shrub sites. in tinae. howeytn‘ the {knat site innuilted in tln: severest (KNRpclltltNL Scholz (1964) has also shown that artificial regeneration of northern re(1()ak 13y stnaditig {Uld [)1antiaie L%Ul be ()ffet1.ive. liasttl on IJJN-ltfaf results in southwestern Wisconsin. In southeastern Ohio, Merl and Boyce (19.38) found that when about one-thiiwltif the basal area is removed from upland stands. oak species can 1x: expecttxl to pituknninate ill the 1wu>roductitnt. Furthtwwm7re, then“) oaks \yere tirimaidlqv indivirhuils esttuilishtwlt)rcvitnls to (itttineg Heavier cuts resulted in mixtures of oaks and yellow—poplar. In gtnieiuil, 'tht‘ rtqirtx1U(:ti(nt wtis zitttsctw;d l)y (hhpIWFe ()f tiittitiq tlH(1 ctnu- position of the original stand. Topography and aspect did not aficct the number and distribution of most species within the areas studied. 'They'zilso itntnd tliat zibout '75 [Marcent ()f "(MHQ secwllines"(:xarntn;d iii the field in southeastern Ohio were actually Hseedling; sprouts.H All ()aks: exunnitngd \vetws lavas tlian 1.5 fetw. tal l, lntt tlte taxats ()l stxwe yyeiw: 31 ytuirs oltku‘ than tin: stems (lksrz ancllhoyctr. 1936). 'fhe ltxigevity and growth rates of such Hseedling: sproutsH are apparently uncertain (Roth and Sleeth. 1939; Liming and Johnston. 1911; Toumey and Korstitni. 1917). Studies in oak-hickory and mixed hardwood stands in southern Illinois by Minckler and Woerheide (1965) showed that reproduction in various size openings and sites after ten years contained. in general. the. 531110 SpL‘CiL'S (l()”]indnt in the O\V'L‘I‘St()1‘~\'. Opening (lidnlctcl'f: I‘thlg't‘tl fronttnie—fkntrtli to tnviccz the lnsight'()f tin: SUFITfllndllu{'1PCCS. In smaller openings. reproduction height growth was reduced and the more 23 tolerant and less desirable species were predominant. They found , . H H . . _ ) competition from weed species greatest on the better sites. Black. northern red. white. and scarlet oak (Quercus cocciaea Muench.) were more abundant on southerly slopes and ridges. Hickories were about CQLuilly adjunCHNit (n1 all_5sites. All (Dak sqiecitw4 reptxxhtcetltmastly‘;is seedling sprouts. Generally, differences observed in reproduction ww3rt2 eiuilaiitietl liy thc: annotnit ol‘ ljigiit zincl S()ii nuii:;ttire itt:iptuiitn;s ot‘ diffeimnit sizes avid by tJn: overhewul<3anopyu In addititni. Minckltn‘ and Jensen (1959) found that litter depth did not greatly effect white. lilat1<. ()r ruirtlieiai 113d (Mik iaagtuieiwititn1. In West Virginia. Carvell and Tryon (1961) found the interaction of sunlight and exposure to be important factors in oak regeneration. lliey' sttgtnastthd 'Lhtit ()aL: stietllivuis (wliitti, 1101“tht3rn retl, {Uld lilacfl< tnik) C1fll peiw:ist init (ally iii therinoiwr opcni stznids tyjiical ()1 diw'trxpostnu\s. but can also be regenerated and maintained on moist exposures where ththniJigs liayt? becut UFtTi tt) piwivithr athxquatte litdit. .llst). stLNldF whitdi hatl beta: thitutetl. gtwuaed. tir litnitly' DUITNJH (hiritu; Lhc‘f)rctitfll~ 20 years were found to possess more oak reproduction than undisturbed stands. This phenomena was attributed to the increased light reaching the laarest iicxar in tlns disttninad sttnuls. Tin: autlnirs reconmnuid a series of thinnings during the last years of the rotation to provide sufficient sunlight for oak seedling establishment and survival. The same authors (1959) found oak regeneration to be most abundant on the middle third of slopes and on sites with dry exposures.’ Dry exposures on lower third and upper third positions were. also well stocked with I oak seedlings. They speculated that if less than 1.000 oak scudlipus 21 per acre are present, (HHitHNlld form only a minor portion of the stand following cutting. Also, Woitzman and Trimhle (1957) found the great- tast anmnntt of INDFthWWl red cud< repttxhn4tion (n1 sitc~ indittm: 50 antltfl). Above and below these indices, red oak declined in abundance. BOUITKHMJ (1954) :studicxl oak scxxlling (m1i10g}’zn€ a basis (In (Miter- mining segregation of species in piedmont oakfihickory forests. Good site species (northern red. scarlet and white oak) were eliminated from the poor sites because of insufficient drought resistance. Seedlings of these species were sometimes able to survive on the poor sites for one Oi‘nmntggzrowing seasons, lntt they were eliminated during the first droughtv summer. Poor site species (post oak (QEEXEQi-iLQLLQE§ Wangenh.) and blaCklaCk oak (Q. marilandica Muenchh.)) were eliminated from good sites lJl connxytiticni witli gocxl sitt: specicnstntder tln~ denseat:anop}'rtan<13 of leitte1‘(kn)th Ix) oak Iwnnnlerati(n1 is Lnuqertuizt. and its: functi(n11nay \11ry as ()tne1°(nnsironnunltal Ikugtors \11r§. and from region to region. In general many investigators believe there is a need for more studies in oak ecology to determine to what extent oak forests can be silvieulturally manipulated. METHODS Seltmrtion (3f Stanids W. -H_. The selectixn1<3f standy way primarily bdFCd on obtaining for etudy recently cutorer areas typical nnuiititss ixi scuttheiai Mitfliigalt. TX) in9u113 a (hxzree ity, it was ttndJusr UBFlFCd to obtain stands which the ohjective of of xeri c oak con“.— oi Farthitniilorm— Were relatively fully stocked and relatively free from recent disturhances prior to the last logging operation. More Fpecifically, lecting each study area were that each: 1. Bc* locuitcwl witliin tlrs Chuiy—I3row11 Ptmhuilic StNJLheiai Lowtak Miclrigan. 2. Be located on a well-drained. upland site (3. Be (knninatcxl by sonm‘twnM)ination (n'l)lack luirthcnai red (Mfli. bettnw: cuttirug. l. Ck)ntzlin 110 {u3pIW3cizflile LUnOlHlL ()f FLH;dI‘lnu or American basywood. in either the stand ill the 113)roducticn1 aftta‘tnltting. 5. Be five acres or larger in size. 6. Atwaragc) at ltéast {Ml FQKHIFC {kugt of'liaeal cutting, including all treey l.U inches d 7. ;l\xgiuigt: llO th)F(? 1113!) it) EéQIHJITB itset. c)! lia for residual trees 1.0 inches d.b.h. and altet‘caltting. tlH: gal Cl‘ll‘JFltl it)r S ‘7!— soil region of , xfliite. tnul or p14:. zlmcn‘iczin lietwsh. betr)re culttiiig ()r L11'<);1 fl<’l' tlt'l't“ litrl t)l't . l) . l) . :1 21(l 1 L1 1';;<> 1‘. area per acre larger. immediately 28 8. Be relatively free from recent disturbances other than logging. and have had no recent cutting prior to the last logging operation. 9. Possess stumps from the last logging operation which are identifiable as to species. and which are of measurable diameter. Rather than emphasize discrete forest types or specific species associations, a segment or "unit" of an environmental gradient was chosen to represent a range of forest communities. This "unit" is defined as the dry (xeric) segment of the regional soil moisture gra- dient. The first four of the above criteria arbitrarily delimit stands which fall into this xeric segment. These criteria assume that upland forests dominated by oaks truly represent dry (xeric) habitats. and that the elimination of upland oak stands with considerable amounts of sugar maple, American beech. or American basswood exclude the more mesic habitats from study. In general, these assumptions are suynxirtcwl by' th62 sttulies (3f Iktrmcdtn: (1S353) tnxd (hysel :ntd AlWflld (lSh33) in southern Michigan and Curtis (1959) in southern Wisconsin. The forest communities selected for study represent the "oak type" (kifineclliy Gyscd_znid Arcaul (1953). For tlnase win)1)refei‘t() think of vegetation more categorically. the stands studied might in- clude several distinct ecological groups. However. it is not the in- tention to herein approve or disapprove of any particular concept or system of classification. The objective is solely to define the investigative unit. ‘Preliminary field reconnaissance began in September 1961. Poten— tial study areas were located through the assistance of District Foresters of the Michigan Conservation Department, industrial forest- <1rs. anclxwaods (MXBratcnxe. Ovtn'tmie—hunchwxl areas wtnx: visittxl. Of these. 30 were considered suitable for study. They were distributed over eight southern counties, and varied in size from 5 to 80 acres. The locations of these areas are given in Figure 2 and Appindix 2. The stands selected ranged in age from 3 to 16 years (i.e., years since the stands were last cut). The number of stands and their age frequency distribution are shown in Table 1. Collection o£ Field Data Number and location of field plots 'Ten })lot (:enttBrs \veim) ranchnnly' loctitetltvithiii eacdi of the I“) study areas. "ha accomplisfli randomizatitni. a coordinate grid system of one—chain units was drawn on a sketch map of each area. A random numbers ttuile was tinnituaad to detcnmnau) the locatitni()f plot centers within the gridded sketch map. Field location was determined by a hand compass and pacing. Each random location represented a common I)lOL'(KHltCI‘.fOF 2111 [)lot saizes tnsed iii sanuiling tlie \tirious (fille- gories of vegetation. These are enumerated below. Vegetation Six categories of vegetation were sampled by species: (1) the trees removed during the last logging operation (from measured stumps), (2) the residual stand (trees one inch d.b.h. and larger at. tan: time of (nittine) , (3) the twniroductitni of seedlirngznnl seedling- ') ‘) 715;; 3 >6: 4 1 ._3 51.3.5; 1 N. 0.. Zn:— 31 mm3Hq $62: 0 O 5on ‘1 mmm<3<3uz o CthLiz1g. Yoaxw Number of since cutting Stands .90.: n—N CQW‘IGO' i”"‘[\3~—L~JLJL‘I bib—4H mu 17()1 211 (ff) 33 sprout origin greater than one foot in height and less than one inch d.b.h. at the tinu311ea1wxst tténtli ot cl f()0t itit' illCii\'1(iUgllf: l. 0 It) ~l.t) lteet . Iaiiwiei' ti‘et:s \vei'e tatuistiiwjd ‘to the nearest toot. Most measurements were made using a pole with gluidtnittrd [marititigs . HLPigillS ol' tin) t al lex' rtwixx)dtn-tit)n, htnrctt:r. wtn'e measured with a Blume—Leiss altimeter. ()ritzitial.l}'. I at.tcwnpt,e(l tt) (lil‘ft>retititit€> btfl“13011 atlvtuttikd {(1)1X)‘ , duction and reproduction established after cutting. This was enri— Sioned an; priuairily zixnattei'tfl_ YiFUJl ttnnxtrison lhnu‘ver. 3C })FCllJHilN1Y)' anrulal ritig'<30tuits ()i 2111 titres ()H .1 itnv plt)l~ shtnrctl tliat Inan)' ol‘ the: snuill stcnns wtgre tlcltulil}'()ldel‘ thati somma of the larger ones. Consequently. obtaining a satistactort estimate ot the proportion ot reproduction established betore cutting would have re- QLIiiwed tinit Vit‘lUflll)‘ etwart' stenn (n1 tlie 1)l()t l3e (JXEUHlltOCl bt' ritig ccnlnt+=. tfiutli nn3astircnnexits \tottld i)d\%? txxccwssixwalt' e54)an(h3d lht’ ddltl t1)llex'ticn1 [Hiascé ol‘ the} stttdiz As 11 rcwsalt , rtqirothnrtitni U1N< aiflai- trarilt delined as all trees less than 1.0 inch d b.h. at the time of ctttt itig; 'Ti'etrs 'btattretgn l. O aiid 1. 0 iticlicés d. b. h. \tei'e ctin:sirlei'ecl 11s a part of the residual stand. TKVt) ntil -zit rt} ()Hlel‘al,F Lit Cfllcl] 1)l()t ( ezttt3i' w131w3 tlstid l() rn~tist1rt‘ lrequency of occurrence of shrubs. woody vines. and tree seedlings less than one foot in height. S()il£: \Vi_tliiti (Patfh at'CCI, sc)il s trei'e LUKdIhlllC(l w itli L1H attgtxr 1C) a dtnitli ()t three to six teet. depending upon the thickness of the solum. Five L0 ten probes were made in each area. toad cuts were examined wher~ ever they bordered study areas. Thickness and texture or soil hori- zons were recorded for each protile observation. The soil protile waa then classified by series and type (Whiteside, Schneider, and Engberg. 1959). Samples from each horizon representing predominant soils within each area were collected. These samples were later sub- Jeeted to mechanical analysis by the Bouyoucos method and pH determina— tions insing;zi glass CHAN trode tfiilfiutol‘éh4tj check (n1 field classification. 36 Although as many as tour soil series were found within some areaa theztane ()r twr>1nost 1)re(knniruuit suiils {)restnit (krteIMtincwl thcr soil series designation for the area. Ten soil series were encountered witliin tln) 30 retud3'zareas: Plaiittiel(l, Colcnma. Oshtcmui. Boitu‘. Cascc). Fox. lhilamazcw). Hillswhile, ARthi.;1nd C-21 (Tkflile 2). Fkn' statistical purposes, the soil series encountered were grouped into textural classuss witich 1133reseuited tJie O\I)Fdll, lCXlLHTB of tin} soluui (lahltf 3). The study areas on Plainlield soils (textural class 1) were of distinctly uniform coarse sandy texture throughout. In contrast. most other areas possessed extremely heterogeneous soils. HoweVer, some soil series occurred together repeatedl} as an intergrading com— [)le>;. Tlussc‘ \VGITJ tlie ()sht<3mcr-C()lonui (ttextttral claiss 3) amid tlie lloxxnr~ Oshtemo complex (textural class l). The former includes both sandi 1()an1 arid 1()atny s21nrtant1? valtuss wtnwg therttised l() arriyw: at an: index :un her which reflects the total composition of a given stand. This was a<3ctinnil islie(l l)y tnttlt itily'itig (sac h inniot'tcin(;e Vtiltlc by' a cl lPlafi adaptatitnt nuudnar (CAN). .Adaptati(nttnnrbers (ma? subjectindy (h ter- tnined values wlUcli indicate the relatiyt?zuhurtability ot —pecics to Inescnfiiytit‘ {Otmwsts (Ruminatcwi by ruiga2'1naplcn Achuatatitnt ntuliers liave l‘EllltI(}(l t l'()Hl t) t.c) 1 t). ES[)(3(71 cks tvli itgli r4ll()\Y ea lt)\v [)l‘t)l)(‘llr3l t y‘ t ()l‘ ('()t)‘il s 1.. ettcc> \vit h sttgztr tnztpl e at'e at cC)r(le(i 1(3“' atlat)t;1tit3n nttndieifs. Sgiecii<>s wliicli atw: ttsULtlly‘ alninthint in staUtds: dtnninzttecl by' FlH;JI'lHa1)lU liaytg high adaptation numbers. The climax adaptation numbers used by Curtis and McIntosh (1950) in Wisconsin were modified lor Michigan forests (Appendix 1). Tim) sunnnati(nt ot‘ th‘[)FU(hH‘l5 cn' cliuuix athuitatitnt ntnubel'3nu1t i— Dliewl by time inqx)rtanc13 valtu: of 2111 sqnacies th a sttutd. yitglds t1 cxnttintuun ituflex tuunbetu Thlws conauisiticntal ituhrx \xtlue slants tlu: l‘GlElll\%3 lnasit ioti ot‘ a :stzutd in reltiticntshil) l() Ll“3 iv““"‘:“ “(”PDUF ‘- ' ‘ » . . \h‘. . . ' - ' t ‘3 sgf'fit' t't'-’,107‘:. lltfil oi tut oltl gtwnvth l()rest cut a uni 1c liabit.it ll) th+ 1 . 12 Mathematically, the relationship is expressed: CI : (CAN) (IV) where CIy= continuum index for a stand CAN and IV = climax adaptation number and importante value. respectively, for species in the stand. Ill the [)resenit stiidy. the {X)FFII)IO tunige ()f etnitintunn inthgx valtngs is from 150 to 3.000. Old growth forests on mesic habitats have index values Close to 3,000; xeric habitats have lower index values. Relative density values were also calculated for the reproduttion 0i seedling and seedling-sprout origin. In summarizing reproduction l)y st aiidr=, orily' t rcngs [Ratlr [(301 iii llt‘ltlhl ()1' gifetittJr at tlic- t inx“ (it saunJIilig yvetwa («)ns:i(h3rcml. ’th* snunll<3r :secwlliligsE wx>re (:xt'luthnd to emphasize the larger and more permanently established reproduction. However, in the plot analyses described later. all reproduction size L: 1 as 2-; es: were con s 1 de red . 59:19 13:2: - Ill twalzitiiig lialiitzit ‘fatitcirs tt) F[)(Tjit35 dcnisi.ty' anfl (knni22a1n30 . :ntd in determining interspecifie relationships. statistical analyses were based on individual plot measurements. Soils were not examined on every plot. but a textural class was assigned to each plot based on the area soil survey. Reproduction was divided into {our size classes: (1) trees les: thzui l .0 icx3t ill lieigzht, (t‘rcm1ULnicy' ol’ 0(KJU1'FCWlCCB c(ntnt:< (n1 2~:ril at-re [310(9), (2) all reproduction 1.0 (4)01 in height and larger. (3) reproduction 4.0 feet in height and larger, and (l) dominant 13 rcqitxidttct it)n (t rcwrs gm ezittfr izi lie iglit tliaii tlicr Hu‘atl [)It)? ll(“lglll ttir £111 11W3051 taill<3r thzni 1.0 {(ngt) . 'Tht) lzist thtwse F0[)F0(thl iOIl clzisst‘s were all measured on 1 lZS—acre rectangular plots. These "open end” size ( lasscn: wetwj deyigsed st) that sq)ecicw4 domirunice (WMlld lM) estiuuited. Density counts with the smaller size classes eliminated facilitated stud] estinnites. Densitjy and 1w31ativcr(hnisity wean) calcultwwul tor three reproduction size classes on each plot. Species in tluatgriginal stand and in the residual stand were represented by individual basal area factor-10 point sample counts. Regression and correlation methods. analysis of variance and chi-square analysis were Used to relate species to habitat. and spe- cies IC) specicna. Most zunalyses wtnwetnade (Hl the lhxfliigan Stanta University CDC 3600 computer. RESULTS AND OBSERVATIONS 'Thc: Stinids l3ettire (hittittg General (finaracteristics .._.w~- DOFtd‘lplltfll oi‘ stanchs by Lireas. «-- THUN3TlaH(TP valtuss caltntlattml for all species (trees 4.0 inches d.b.h. and larger) within the 30 up— land study areas are shown in Table 4. Black oak was the leading dominant in 15 stands. white oak in nine stands, northern red oak in four stands. and pignut hickory in two stands. No other species achieved the position of leading dominant in any of the stands studied. Bliaclt (Hlk liacl tlie liigzheést HHJSIl innioi‘tan1C(? \TJIIIG (lltl) atui yvas 1()IILVW£T1 by wliite cunt (61), [Jignut liickoiw (13) , and inarthtwai red (MIR (Lfii). When only basal area per acre was considered. the rankings for north~ ern red oak and pianut hickory were reversed (Table 5). Otherwise. mean basal area and mean importance values yielded the same overall iwnutings (if innnirtancwé fOI‘zill sinxsies. The! first.::cvcni specitzs listcml in Tlfliles 1 zuui 5 aCLTHHlICd 1tHflPOFl of tln? trees itizill stands. Ill c)r(iC?i‘ ()1. i:n;)t)i‘tzitic«3 . tlit3y' ill'C’Z 1)lzi monmphoqfiu .v mflnmh vqr)“ .- a 46 IOBOunnO a DO .u~o«u:«a~a n A .OHQUNHAAI n 2 "weaken ~«Ou ouau«v:« auouuou .HNIU « U .aouol u I .oouafiugafl I .xo~asou oeoacmcuuohoa I on .xom u h .xwdasou a50~00 uu£u«h o» uuw~ song .Eascuucou ca nacho unac:00ma :« uwucauua museum n .houhua van .&.n.v nonunu o.v mocha mousaunn I n vm QQ Om 0m an ban on and no ON" mo“ hm uau OVA mo na DOA 0% Am 00 men 90 med VNA HOA «a ah deg Qh NF 00 quOu IOhl «Oman [al.ov nn nn nu un nn un nn nn a In nn nn nn nn nn nn nu un nn nn nn nn nn nn nn nn nu nn nn nn 0:3 333 53.3w ~.qv nn nn nn nu nn nu nn nu nn nu nn nu nu nn nn nn nn nn nn nu nu a nu nn nn nu nn nn nn nn auoxoan xuanu-nm a .9 nn nn nn In In nn II II II In nn nn nu nn nu In In In a nu II In nn II II In nu In In In 3.0 guanine adv nn nn nn nn nn nn nn nu nn nn II In nn nn In un nn II In In g nn nu nn In In In nu un In 2.5!. 12.3 ~.ov nu nn nn « nn nu nn nn nn nn nn nu nn nn nn nn nn nn nn nn nu nn un un nn nn nn nn nu nn can “hangaam 79V nn nn II In nu nn nn II II II nn nu In In nu nn nu II In a II II II II II In II II ~ In 5009 53.5.: To n nn nn nn nn nn nn nu nu nn nn nn II II nn In In nu II In nu nu nn nu In In In nn nn nn 300..qu magneto:— n .o nu nn nn a nu nn nn nn nn In In In nn nn nu un II In II II In nn nn nn nn nn nn nn II II 585232. 5393 u .o nn un nn nn II II In a nu un nu nn nn nn nn nn In In In nu In a nu In In nn nn nn nn a 50 5.3.3.2 u.o nn nn nn nu nu nn nn a nu nn nn nn nn nu un nn nn nn nn nu nu nn nn nu nn nn nn nu uu uu cane: “swam N.o II II II II II II II II II II II II II II II II II N II II II II II II v II II II II II seams £u°09u«m 0.0 n nn un a nu a nu a nu nn un nn nn nn nn nn nn nn nn « nn nu nn nu nn nn un nn nn nu 2m. o»«:: a nu nn a nu nu nu nu nu un uu a a nu nu nu «a s o nu nn a nu a nu nu un a un nn nn manuammam « a .u n a ca a n a n nn nn nn ca nn un v a m a v a m A nn nn 5 nu nu A nn auumcu xoaam n ea c“ a n m a un a“ n on ad a a a n a nn 5 v v a o nu a a nu nu nu nn nn adage cox NA n Gm mN A NA nu an N N ha au 9 @a ma O ON II va @ mN MN n 5N OH VA II @ II II A AhoxO«£ aficwnm Ma ma hm H on on Na be ON vm ON 5 a on nu wN A an II m ”a @ QN II ~ II II II II II II sac no» cumnuuoz mm a Na an n n n mm an VN QN av OH aN NN mN GA II NM AN m mm 0 on ON AN v NA ma ~ 0 xao wads, Nv NN M NH 0 av Q Hv VA uh mu am aw vm an 6N an MN VN mN 0v QN Om on Am «v ww or no mo ~Q x60 scoum unllnlnllli ago: I m A x w J a l m m I .4 w w .4 m w .a J m w m w w 33on noduacuamov weapon ~«Om can hogan: uzaum xmo oflLox :mwfinofiz cumSHSOm on Ca moflO®Qm men» how m when you poem mumscm :a «mum Hmmmm wsfluuso whomon mncmpm .m mHan ‘17 «EOAOUIOEouan u 90 .vaouu:aaam u E .Oaatmmuuz n I umwfihvm ~«Om .ANnU u U .aouox u x .OONQEduax u a .xo~asoo osousznuomom u on .xOh n h .xmual00 museuccg nuouuog ”unmau 0» one” scum .Esacaucoe cw novuo unavcmeaa :« vowcahuo uvcaum n .£.n.u monucu m.n cu o.~ noouu movzgucu a hm NH (I'll-lull mod 03 no“ and r: 3 3 on 8 2. 52 on 8 2 mm on S. on 2 mm :8 on a: 2 v8 cm 3 so on 8 13o... II II In nn In nn nu In In II In In In In In In In In In II ~n In nu II II II II In II II xuuonoua>umm II II II ON II II II II II II II II II II II II II II II II II II II II II II II II II II Ego unwaauafl vs II nu mm nn mm nn nn nn nn nn nn nn nu nn nn nn nu nn nn no nu nn nn nn nn nn nn nn nn vooauoo unauosodm II II II an II II II II II II II II II II II II II II II II II II II II II II II II II II Edonflhonaon cucumafl II In ON II II II In m~ II II II II II II In II II II II II II II II ma II II II II II II Ego cauuu08< an nn nn on un un nn un nn nn nu nn nn nn nn nn nn nn nn un nn nn nu nn nn nu nn nu un nu can wads: nn nn nn nu an nn nn nu nu an nn on nn nn nn nn nn on nn nn nn nu ma nn av an un nu nn nn manuammam II II waa II on II ma m~ II nu mod II II Na II II vv II II mv nu II #0 II II II II II II II Auhozu suadm II II II mN on In II II In fig II II II II In II II II nu In In ON II II II II II In In In Quads we: II II In vv nn In mm In nu nu am In n~ nu mN nfl II II n~ av av In mm In II II II nn un nn huoxu«z uacwam II II n~ II In In In In In II II nu ma II II In II II II II II II In In II II In In In In xao non :uozuhoz nn nn «d nu nu nn nn un nn nn nu nu ma nn nu ma uu nn nu un ”A nu ma nn odd ma nu nu om nu xao wean: nn nn un nn nn nn nn nu nn un nn nn nn nu nu nu nn nu un nn nu nu nu nn as aw nn nn nn nn sac xuaam L 8 l 8 I I I “rm“.{Humafiflmamammmmmmmmmwwmmmm m u m m x a x m a w m a a w m w x x nln III mowoeaw ncofiuacwfimon amuuom IIIlIIIIIIIIIIIllIIIIlIlIIIIIllltllltlnI.I-I ~«om uza honey: unauw nwflHfl «a m .uu o opomon mUCMum xmo cauox cmwfi20H2 sum2u30m on Ca whom you mwcfiHQMm mo honezz .m manme I stands. Pignut hickory was the next most commonly encountered sap- ling. This species averaged ll saplings per acre over all stands, but was present in only ten stands. Sassalras and white oak were equally abundant with seven saplings per acre, and represented in 7 and 8 stanth , resnnxstivelyx Red nnnile antllalack (nut each aynnniged ttnur trees per acre. but were represented in only I and 2 stands, respectively. Northern red oak saplings were the least well retirensenitecl 01' 1110 (ghtirat“tei'ist.it' sIJet-icns. Tlley' ocwgu1‘rtwl iii (ntly twnu stznids, avenuigiin: oiu: 111M} pcn‘ BCIT) ovcn' all. stgntds. Fl(fi¥01ddlg (kag- Wood (gornus ilerida L.) was well represented in four stands. and aywéiuigxad ttni 543;)1 intgs pc‘r aici'e ()ynst‘ al.1 steincls. Tlie rennaintittg sniec'ie>: collengtiytaly ayw3rageml abetH_ l3 ttmxhs pcn' dCl%?. but Ivert>tirescntt in only £1 tew sttnids. Tdna averant~nnnnber of suuilings Ima'tu re of all F[)O(fit?5 itin;;e(l t rtnu () tn) 2151. TWinn nueait icir a1 1 tiiwéas: “115 (37. The density of saplings per acre was not significantly related to original stand density or basal area. nor to soil texture. In general. 1 t :is ncit iwjatli ly' tlp[)al‘OllI wliat. zic(fOInit s {(II' tlie ytiifialiil it_v ill r431)- l 111;; (ii s t r ilittt i()ll . }{()\V(?\'t‘l'. tlit: [)l‘(‘\'tll t'ltC't} (It‘ tilzit:l< t 11(‘1‘1'3‘ till(l [)iginitnt hickory in this size class points out their potential to develop fol- lowing removal of the overstory‘. On the other hand. it is likely that the relatively shade and drought tolerant white oak saplings will per— sist regardless of overhead canopy conditions. Sassalras saplirg- are found mainly in openings and generally on the droughtier sites. 'The gIlTidLlal (‘1C)Sitlg; oil tlie ciwawii (wincn)y' tcntcls tn) (“lllHlllal e tliis FI)Ut‘l(‘F. An ordination of xeric oak stands based on continuum index values I and soil. textuxwil groupinnue is shown id] Figuntnii. ThC‘tleCC stands l9 not.-~,ouv A ~ v m. oi_ma a.“ aon__: a ,_Ao o:uioeaoa a“ xotza 53:: :_Ao.._fi nowa~_~a. Cnflzn iefl.xa:i .e~o.~ .HAV ”i~_,ooaflin.‘_v Haze; C a it:d~i 72.: Se 3 ivmizdo .m;:~xeg fiwci “mo:~s> .HAV to.v-m~w;~aomrzifl ia.za -~#MJ._ .a~_o .imofio fin;:~xao ~fl31 tza vacav w%fi;iax gag Awfl~_ifizea oa.~3~_ .m 2;:xHL 50 oooooooooooooo ON. ll'lll III II I'l'Il 51 situated within soil textural class 1 (represented by the Plaintield (P) series) all have low continuum values (between 500 and 700). In these three stands. black and white oak predominated; pignut hickory. northcuai red (nut, and itwltnaple wxnwe absent. Forests (n1 these soils are classiiitxi as veij'txnjr in relatittztiroductivity (on ltntd, Harrain) by Gysel and Arend (1953). These soils possess no textural B horizon and are the coarsest (sandiest) soils tound within the region. Some soil characteristics of a Plaintield sand profile are given in Appendix 5. .\'o stands were observed on soil textural class 2 (loamy sands of the Coloma or Spinks series). Nine stands were situated on soils in textural class 3. the Oshtemo-Coloma (0C) complex. Both of these soil series were tound in close, intergrading association. Within this soil complex the Oshtemo series was predominant in the areas studied and comprised an estimated 7C) ptércwgnt. 01' “KJrC‘ of" tlie stxilrs (n1 tlie tirtnis iii wltitli Illc§’ wt-re totnid. C(il ant s()il>= aiw: tireck3miitatitl}' lcnnnt'ssantl ttirotuihcntt tlie tircd‘ilti. atni Oshtemo soils are predominantly sandy loam throughout, or with less than ten inches of sandy clay loam or cla} loam in the textural B horizon. Continuum index values of these stands ranged trom 652 to 1885. Some characteristics of Oshtemo and Coloma soils are given in .Aptngncliccns 5 zintl 6. rcH:pcw:ti\wal§. Stirtliet‘n F€Pd (Dal; wwis l113QLH3nl 15' aliscait 01‘ n()t atntntlattt (JR tin: Oshtemo-Coloma soils (Stands 28-OC, 24—OC. 25~OC. lS—OC. ll-OC, and l4-OC). In contrast with the stands on soils of textural class I. h0we\1nf. all knit one (Mdttemo-Ccdtnna artui supporttwltiianut liickor}. Stand 29~OC was unusual in that, it was dominated by black and northern red oaks. while pignut hickory and white oak were absent. An examina— ticni of tin: soil. to a (hq)th (H' eight ttx3t in tJiis aimui showttlei wet sandy soil at about seyen teet and deeper. It is possible that moist- LIFE? liati IH()V(}d u[)wtiiwl 1)) (fa[)il lLlF}' Lict.i()n [1%)nt a cl ay' lttyt-r bt‘ltiw' tlie depth examined. This stand's unusual composition might in part be ex- plziincml by' thL‘ inflttencwg ol‘ thi:s nu>ist laytér, tiatw_iculttrly tlte tnw:s~ (fixit-t3 C) t ll()t'l Ilt‘l‘ll l'(?Ci ()ztl< . \yli it it t y‘tii.t';tl l,y' tit-t-tti's ()1: ()Ill 3' : Ilt’ r.t>tw‘ moisture ltWtdlliVO soils. Soil textural group 1 includes the Boyer-Oshtemo complex. The—e two series are ditterentiated primarily by depth to the calcareous C or D horizon. Boyer soils have a stratil‘ied sand and grant-l D ht)l‘l/.t)t‘. bewiyeeni 2 1 anti l2 .intiies l)eltny tin} sut'tach Ositttmxw st):ls ltdYt‘ C111(11F(%)U5¢ C ()r I) htn'iztnts ttt (hfp1119 tzrtwitcn‘ tltan ~12 iutfiies. lhith stiil s dt'L‘ tittgtkiniittatitl y saintly' ltiatns w'itli leuss tliati t_ett itttlit~s ()I' c l.ty loam or sandy clay loam in the 82 horizon. Some soil characteristics of 21 Boyta'tirotilt: are (h3scribcwl.iu Apptuulix 6. Stand 20-BO is the second highest stand on the continuum. It was situated on a steep north-facing slope and contained the least. amount of black oak of the 30 stands studied. Also, it was second highest iri recltnapltz, tnrsed (n1 innx)rttuice \kllUC {Nld lxtsal zirea. Witltin tliis stiil ttixtwitmil gi'Ottp . l)lztcl<. wiiitts. aztd ntirtlteiWi t'etl txik. arid pi.etutt liiclunry' wcnws («bmnmnily' assudcitttetl. St.ari(is (in s()i.l [£33i1t1F211 k‘lilfi‘s 5 illQTIt1d(‘ till ()i t_ht: st)il s w itlt TC)I£11I.V£31}' tliitrk ( 1t) iticliers L)Y IhL)Y(3) , I itte tt;x1.ut'c«l (saintly «:1 a3' lt>anx or finer) 82 horizons. This soil group includes the Fox. Kalamazoo. Hillsdale, Metea, and C—21 series. Some characteristics of these 53 soil profiles? are given in Appendices: 7 to 9. Continuum index values on thM€e stzuids IYNMJOd 111nm 528 t4) 219tL This sqxuis t1n3 entitw: range of‘ tht) ccnttirntunr inch3x ‘valtles {01‘ the? stzutds :stutltecl. Staincl 2-ll. th€> lcnve9€t (n1 tlie (:oxxtiiniunt scmilc‘, wuis :4ittuittwl 011 a Hillsdale sandy loam soil. The average age of dominants in this stand was about 64 years. which was considerably less than the mean age of dcnnirtaxitrs ()l‘ tlie rtnnziixiitig stxincls ; wliit h axxei‘atgeci l()0 yt>at's ()1' m()r(n It was also the nly stand in soil textural class 5 which lacked n()rteh(3rxi 1%:(1 ()al<. Ili.ll:4dtilt? s()il s etin gtnicn'a1_1}' ”Hillltéiill HM)FL: nu3s()- [)h; tit: c(nnnn1ni_ti<3s tliart tliat 111 : of" dcnnittattts in FltlHCi 2-4l rnay‘ e>43121i21, lll [)fll‘l. its xeric nature with gradual infusion ot more mesophytic species to he expectcwl in the ftntxre. Hoth(nf. except fan'zi few AHCFlLTUltJUHS alone one edge bordering a marsh. no mesophytic understory species were en— countered in this stand. At the other extreme. stand 7—K on Kalamazoo sand} loam possessed the highest continuum index value of the stands studied. Average age ()1 (hbmiiiaxits irt tliis stcuid \vas ltll }tjaiw+. Bltuek ()ak.xras thté ltniditzg dtnniltaitt ill tlii,s st.attd , l)ut. t hc>rcl wuts n£?al‘l)' a Ctjnnitnsi,ti()n;11 bLllcth'Q among the three oak species and pienut hickory. Red maple was also well represented in this stand with an importance value ot 51 and a baszrl almni pcu' actwé of ll) scpnire ttwst. 1111s “1h; ccnisidtqwdil; tux>ve the averages tor all stands. which were 20 and 5. respectirely. White ash was also fairly well represented in this stand. It is interesting 51 to note that sassai'ras is absent in those five stands where white ash is present. Tim) wi

tentizil for diversity of species (among upland sites) during successional develop- INGHIW / A two dimensional ordination has obvious shortcomings ir. repre— senting the distribution oi plant communities which in reality are (ionu)0saitit)nc111y' CCHlLIT)ll(3d lJy 21 untlti[)lit:ity ot‘ iat‘IOIWs. XQWW‘Ftilcltfré. th(} sailicntt lt3attircw: ol‘ Fitmtre I3 stuigewet tliat tht: xcn‘ic (Hlk tr)rests: ol southern Michigan can be arbitrarily subdivided into three forest community types defined by the combination of leading dominants and soil texture: (l) communities on deep, coarse sands of the Platnfield series dominated by black and white oaks (soil textural class 1); 56 (2) sttntds ()n thea sanidy lCMNn-l()aam' satul Ctnapltnuas thruizaateti by lilatit cuik . “llll(3 t)al<. zintl I)lt{Httl liitltOt'y (stiil ttaxtititil (:lztss 3 zintl tirtn)al)l\ 2); and (3) stands on sandy loams with relatively fine textured 82 lquizons. (hnninatcxi by itirious [)FUDOFLl(NlS of lilack. \diite. 3H(llM)FIh" ern red oaks. and pignut hickory (soil textural classes i and 5, sometinuas 3). l3lack (nut is (tnmnonly’ the lcwuiing (Ruminant it: all titree communi’y'tytnns. Differentiation. then. is based on the combiratior of dominants and soil texture. The lattcr factor cannot be ignored in evaltuafine‘tinsecolcniical IMJsititnttJt distullxxi and FCC(HK1 growth stcuids . FlIlC€P it is, aliyayws ptxssil31e tliat, a 1)01(Hlti£ll (humixuint is tib- sent only because of past utilization or some other chance factor. 8312152921411 91 "911.239.13.117; :Pssic: 911i}! 1319:935‘131131 :5; i -- New basal area per acre in square feet by diameter classes and species is presentcmlimt FlgUlIP-l. Tht‘iuilues eittuteare averages ltH‘23ll stands, wlnathcn' Ot'riot a septm'ics \vas [)restnit. RCClthk, [)igntm. hitfltory . anti 113d nuiplt: wtirc‘ t113QtH3ntfily tibstuit (n1 ((N1F5(3 {(JXIIIYCWl st>ils. llnérettire tlie liasuil atw:a veiltués i()r LlHJSLP FlMfiCitRS inay' bci urtrcqiitistuittiti vc‘ ot‘ some stands. :Xnuitig lllt? ttDttr 1c3atlixia; (hintitiazitrs, tllC‘ inetin bziszil at'eti t)t l)ltttl{ oak williin tin) 13- it) lB-intlitliametta't lass sttUKl4 out £HNJVU all others at 19 square feet per acre. Also, the basal area distribution Of this speties is nearly symetrical about the central diameter class. Whitt) oak zuui pigntfl.lllck01®7 show 23 slitdit decliin: in tlu; larger diameter classes with respect to a balanced or "normal—like” distribu— tion. Conversely. northern red oak is a little better represented in the 19~ to 25-inch than the 13— to 18—inch diameter class. —l LHLQ;C. x3: 1.4 _.ua¢n‘.u .An_ pfigbx LLQd :N La; ~ .dAu~_qA_dAV..F* d . F-4q4 -_.q “*4 mammdfip ~_g.-~ ~ ~u1-n_ ._.g __A.fl A ~_;,4H~W_dmum Lodaaxflt :Qfiaqmwt :H 3:6 2:9 .* ngxfla 58 .L TL amnoca .mmmau nopmeuaa .Or}. TLTL T. WT.- navmtafifi¢ra%mdtz%«w_t J! 57v 3.... nea?fnmnflrflmmuyfinez% .3 msoocwaamomflx mmumwwwwm huumno xomam — mamas tam a... O m n 3 use; eJBubs ‘axoe 18d Bean Iaseq uean I l 41 E} boxes 8&3 x8 8m x8 ofié x3 :88 Low 59 The subordination of the three companion species (red maple, black cherry, and sassafras) to the four characteristic dominants is strikingly apparent in Figure l. .Although basal area values for all three of these species are relatively low, there are ecologically sig- nificant difterences among them. For example, the distribution of red maple is nearly symetrical about the central size class. and diminu- tively simulates the distribution of white oak basal area. Black cherry, on the other hand, is decidedly better represented in the smallest size class (1-6 inch), reflecting its relative importance in the sapling category. The decrease in black cherry basal area in the larger size classes indicates its inability to achieve dominance despite its relatively high representation in the sapling class. ‘On the other hand, the distribution of sassatras generally reilects its short .lite EflJDD. I The miscellaneous group, like black cherry. is best represented in the smallest size class. The presence of flowering dogwood, east— ern hophornbeam and serviceberry (figetanohier spp.) in this group help to explain the predominance of small stems in this species group. All three of these species seldom attain diameters greater than six inches. Also, some mesophytic species included in this group, which are able to establish themselves on xeric oak sites,are seldom able to develop intt) 131139 tiwees. Tflyis “(ntld 1x3 t}1)it&11 (if stniai'tnaplc’, AHM‘YlLYUl insect). AHK?Fi(%ln (31m, ancl sonny otliei'xnesrnihiixss. A view of a mature xeric oak stand on a Boyer-Oshtemo soil com— plex in northeastern Jackson County. Michigan is shown in Figure 5. Dominants iii this sttnui average about 11f) years of age. 6t) 1, Figure .3. An oak stand on a Boyer-Oshtemo soil complex in Jackson ‘ Countv, Michigan. (The large tree in the foreground is .i a black oak.) 61 18".4 v r .p. . K :. .R... . Jukt. . J, (7.5.» ‘ I551”) an... . 62 .1319; 335315123. 9595.3. 333.92 'The (Mincenit of Initteiai is lxised tut the tnwnnise tiutt thtitwnieta- tion of an area is heterogeneous; in other terms, at least some spe— (:ies \vithiii a (namnnuiit) tire ntnr-ranthnnlv (listrilntted. 'fhis (KMl$i(HfFu’ tion obviously relates to the mutual relationship between species t1nanse1tw:s (iaiteiwspetfi.fit' asstxxiatitni) as \vell as tt) the twilatitntshili betaveeui stxacixys £3n(l hzuiitttt. Ill fact , (habiu-éflnitli (lflol) petmwnivtwl of a parallel between interspecific association and classification of plantt COHmnHlili(35 ulnnt he ”nun: the? tolltnving StiltCnKHll (yr 95): If several species in a community exhibit pattern, indi- cating‘txnitrol ln' influencitn: factors. stuck ()l associa- titin lietxvecnt {lient wi_ll [)roxhidcz C\’idCHMJO (if tuiy gircntpiiie of flu} specitne intt) asscmuilages til like iqux)nse l() the influencing iactor or factors. Consideration of such species assemblages is similar to classification of picnit cxnnmtuiitiJJs. Inthnecl lht‘ dlfiélilujti(nl bLWNVCtul sin:— cies groupings in the present context of variation within [Ni accmnited [ilant LXHMHUHll§'ZMEd stnxxies giroupitn: into unitr: acctnited in: difiXBrent gilant tmnmnunititws.is laireely one of magnitude of difference. This studv is concerned with detecting pattern thrOUgh the mutual reliiticnishiiis luatutwmt spuxcies liastwl on int<)rspcmrifi(t coiawalatitni. Dawson (1951) Inn; defined an interspecific correlation coefficient as 'aui estinnite (H‘ the ttutdenc}'()f indixfixhials ()f one FfHK1105 t() be u ' ' ' . ' v. I ‘ ' , u \' H) "- ‘5. It} present in the neighborhood of inditiduals of a accond .lLfilL . H . " . , , 3" ) ' ‘-"‘ I ' field )101 practice, neighborhood is Usuall} dcfincd in ttims of a l ()f ;:i\1;n ditnernsicnis. 'th) utiit ol' Ol)5t‘r\%1lit)n ‘thtui. 1s {ht} pltit ILIIht I than the stand. In the present study. bflfial dFCd detOF’l” POlHl . . ._ ,|_' *. .., ~~‘ :e ')g ‘n lhtg sample plots were used to determine intetsptslflfl ‘lethI‘hl‘ 1 ~ - . .. t.- -. « ... . ' as been used and stands before cutting. Inteisptcifit toxitldtlon h , . e . .r,. , . .vi 931; described bv various investigators (btvlgtl. 1930, DJ“ 0”» 1 63 Goodall. 1953; de Vries, 1953; Greig-Smith, 1961; Ever. 1960: McIntosh, 1962). A significant positive correlation coefficient (r) between two species indicates that their mutual occurrence in terms of basal area (or some other measurement) within a stand is greater than would be expected by chance at a given probability level. were the two species randomly or independently distributed. A significant negative coeffi- cient implies that those stands,which contain a large basal area for individuals of one species tends to contain a smaller basal area for individuals of the other species than would be expected by chance. were the two species randomly or independently distributed. The possible ecological interpretations of significant coeffi- cients can be grouped into two categories: (1) the two species being compared have similar habitat requirements (p0sitive coefficient) or haiwa non-satnilar lufliitat itTptirenmnnxe (negatixte coefficitntt). (2) Tin: presence of individuals of one species provides a more favorable en— vironment for another species (positive correlation) or provides a less favorable environment for another species (negative coefficient). For example, stringent competition between two species could result in a negative correlation coefficient; conversely, a shade—demanding seedling of one species might benefit from the overhead canopy of another species. thus resulting in positive correlation. Irt tlie [Jimsscnit stitdy’ it; wiis inn)o:ssil)lt) tt) (lifftfirtnttizite ljetyvetni the two kinds of pattern mentioned above, 1 e., to separate competi— tive from non-competitive effects. In fact. whenever two tree species are interacting. there will always be some degree of competition , 61 lietyveeni tlieni, EélllCC? Lll05'.dlfilw tiptni tlie saune (ant'iiwinnu3ntzil iwgstnirtwgs tkar their sustenance. Therefore, no statistical expression (significant or non—significant) can provide evidence of no competition between inter— acting species. Possibly, the segregation of competitive irom non~ competitive effects could be arrived at through an approach more experimental than that of the present study. 'ic3 intéers1x3cil ic iw31atitnishitxs auwnie tlu} scytni cluiractxsrist_ic species and the miscellaneous species group in the stands before cut- ting are shown in Table 7. Four of the 21 species—pairs relationships are significant by chance at the one percent level. Black oak basal aiwza is; ncg;ati\w:ly c13rtwslatcwl witli pitinut, hicfle lllCllldC? tin: itiui' s[)e(“ies: wi th (;litna>; 8(klpl;llltjh values of five or less (species showing an affinity to dry habitats). Mesophytes include those species with climax adaptation values oi six or larger (species showing an affinity to more moist or mesic habi— tats). Lines representing positive (solid) or negative (dotted) association connect significantly related pairs of species. By super- iMposing the significant interspecific relationships on the climax adaptation groupings. we essentially combine what is generally known zibcnit [381 1e211 aim] achipttibil.ity' a: tin; ixiicw‘spcmsies 10\H*l. ..~AVA.A_ a._.../ A,“ V .. fl .vaVAqu .;:fifi Any 3~ 31;:C; Afiv . L . ‘ w .‘, . .2# V: ~2:;~ . . .. . d ._.4 .d.4._.. ._ .~),.un~n, .d... _ J z . _ #Av . . ~32 LZTLi 7.7 .A:__ __~:~ H V fix m2 NN.! .n.1 mz x_ ! 1. 1.: .. .4 fim IA 33 I _? T7 T. xx xx fix 5N. xx 3. fix fin fix fix 1% fix In fix . mm. _.. xx £2 xx xx fix m_. mxwww» flwflmeLmqwa;p,- 1.: §l.wflmwmww_~mwg.;g .;:‘w -wmmmdc;1 ;- :wmmm~¢v*m+M wmz,,.;fixa‘.-.w_.w.m.- , e, i:.:§wmflm~w‘, .1 x;:_m c;m h flzzxfim sax a.fl:3 mu;.¢~d ;.u~a,pwat.g ~r_-:*vm .ww- EHMAM“ ~_wwldw~ 1: -l ‘; .; Hg .JJF_ H H w ~,uv «4.~AV “.4A‘ 1L_V__~q u 1 .q ~.~ n.vn - fl xzs A;;2 E A_v 23;“ Lu::; .J._ 1. xx: xuzfim . - 5-} IF m.:uw~:_.fi~;arq ;~quxma.HanTL Uzfid. C... .3422; .1.;.1;1_9 .:.f., v(.,- m;:;:_; _:;:~/;_ ~K:£» . ._ .~::J~«~:1H; :;_:3 1::_.:~L;;:; __< , : :W:;HJ£:L 1:::;:;~:; C. :~;;: LLZ‘; Qu_fi ; 21.1.14; #33173“ :Cm ingdzildm A;;L:; xq:_2 .¢ _Aw~J_: *9..M_ x._..xmu-_ «.dzddfifim xfixv Cn&* vflfid.u my ~ ~ FA») ”qv;c fizmzm Dali .l ‘1‘} ’11,: I.) L M “pagaébfg .h 3;:qu Fi I 7“ pro 6 . 66 Interspccii’ic- asst‘wiation among: pairs of species in xei'ic oak stands bol’oi'e cutting. (Species connected by solid lines are :ignil'icantly positively associated at the 1 percent level; ”tho—‘0 connected by dotted lines are 51g- niiivantly nwgativoly useovintod. AHJINECS are based on 300 basal ai'ca factor—10 point samples.) 67 191'.ch manphytic emanate cmggnenta 1 5 White oak—Rad .3}: 6 ’2) g b. ‘1 (J: ‘J n *9? H :3 p. Q 3 |" Pigmt hick-17 Black cherry 6 g c: 5’; | g ‘53 | 3‘3 3* n :1 .oBlack oak--------Redmap1e 7 3 ‘r‘ \ :2 .,;? \ ‘ g3 7- s a." U; ‘ ~ '1 «L .H ‘ 0 \ ((13. 1 Sassafras “8061111130118 6’ V) J j — D8 The three positively associated species all have relativel} high clinuix arhuitatiCNI ValLMfl+ (5 ()r 6) , anti theii' relatixnushitil)ridgtw: the arbitrary xerophyte—mesophyte distinction. Two oi the negative rela- tionships are between species with quite different habitat requirements (black oak-red maple-miscellaneou: species). The black oak—pignut hickory relationship, however. indicates negati\e association betWeen tat) spcm‘ios xvhix h zire lxath 1%)latiiceli'twell. suitxkd tt) xcn‘ic liahitatts (Lflllflzlx 3(l3[)l£1t i()n ntxnniei‘s ()f l axid 3. IWPSL)(K t i\131:{). lirHVQ\WJI‘t lfalilg; 7 shows that black oak is the only species significantly associated with coarser textured soils and poorer sites. White oak, red maple. the miscellaneous species group, and even the relatively xerophytic pignut llitjkt)r}’ 113at:t o[)p()sj.tcr13‘. Tiiis: stiggge::ts tliat. lllt‘ ititctrsgiet‘iffitt leltI- t itiiir4lii_})s lht1}‘ t)() (331\'i r()Iiznt)tit_zll l 3' ('()111 [‘()l l kal. ll()tVL2\'c>i'. It() s 111;;1 c* (éttt'i.i't)ii:ntsii t girl i {it t ()l' t 2111 t ()t LI 1 1 }' 1'c>t l EfC'l Ell] i [it c31'+<[)c+t'i f i t' I‘( 1 L11 i,t)iie-li it) , siint e tlie ltll It?!‘ 1:: (gcnit r()lltctl 1)} ll](‘ cant il‘O GltYl.Y(Hllt‘Hl a1 («ixailtrx. aiid tlie iiati'irtsi c plelfljl’llt3S ot' lllt’ sticwxitzs tlienzst3lit3s. Nt~vcxrtlieltgs~<. “13 (win [)lzuxsilili' gtnicn'a1,izc: thzit tltOsee sgngcitjs twaac Liza: t() tlie (an\'ir(nt— mental cxnmilex in a sinnizu'1nanner tcnmi to be positively coiiwdtutmt tlujse \vhitli Iwéact ditflieimnit13' term] tti bC‘IIC:3111\tJll (tirrLJLIte(l. ldrzs. thta intt3rspcugificr cotwwrlatitnt ctn-rtic‘ient:4, tln: sptwgies-luihiitit rrn‘re- lations, anid the ctnuxnit oi th<*(rlhnax adaptatifdifdfi are not significantly associated with any Ol the three habitat tactors given in Table 7. Ptanut hickory and red maple are both associated with better sites and soil.- where the (h3pll1 tt) czilczircmnis liot'izn yxiliitrs (it si x aittl l.ai‘gt:i'. L111: tt—.-cn:itittad \Vl tli liet.t(3r si_t(3s aiid scii] s wlicrrc- (lit? c'al cziiw:(nts htiri ztin 1:4 l)t‘l(H¥ 12 inches. Figure 7 illustrates the relationship between soil textural class {lli(l l)ats:ti 1 £1 rtsai gicri' L1t‘t't) ll) s:(;tl;ii'(- l ()t)l f ()1' t l'('(‘é -l .ll .lllt‘llt'~ (l. l). li. Figure 7. Relationships between basal area per acre and soil textural class for five species in the stands before cutting. (5011 textural classes range iron (1) sands to (5) finer textured sand} loams; regression equations are given in Appendix 12.) 100 80 60 ho Basal area/acre of black oak Gt 8 3’1 Basal area/acre H <3 U1 71 Black oak l L l “r / Piglu‘t. hiCkory Z R“ “at“ J 2 3 h Y Soil textural class White oak Red oak Soil textural class ~l \3 aiid lzirgxgr iii tlie steincls lieltirC? ctttt ingg. 'fhfiPFC? tiwgncls aiwg i)u~t‘d txptni simple regression coefficients significant at the tive percent level. ancl int'luck: inartlietai 113d (xik amid lard inapltz iii achiititni tt) liMJSL‘ spcmfiies signiticantlv related to soil texture in Table 7. Of the tire species shown in Figure 7, black oak is the only one which decreases in basal area per acre toward the finer textured soils. The other tour species 81%) betttar iIHJrestnited (Ml tlu) iincu‘ textttred >%)iih. 'The lTlIQF tfl change over the textural scale are about the same tor white oak and pignut hickorv. Northern red oak and red maple basal area increase at a lower rate. The relative position of the species in respect to basal alwaa tiei' at Ft? gcnieiatllt‘ rel let3ts thc>ir tiveiuill inniotitintw? iii xca'ic ()ak communities. To be noted is that even where black oak is least well tmnirescnited lJl teimn: oi liasal zirea. it is still tnore inux)rtant. cut the LAVBIYUIC. thflti an}' otliei' spcm:ies. In Table 8. standard partial regression coetticients relate spe- (Jies to :sitEi facttDrs .‘WhCHl eacli vatdaiblei is iti FlznldaITi mcuisutti. i.cx ) it? a (iev'iat iott itmnn tlie tnezui ill tuiite: ol‘ ilr‘ SizifiCthd (havizititni. .A comparison of any two standard partial regression coefficients indi— cates the relative importance ot the independent variables involved. ThUs. :ii one ((HJffiCitHll (b1) is twicc'tlus size cu einothca‘ (b2). tlnni the independent variable associated with bl is twice as important as the independent variable associated with b2 in predicting the dependent variable (Steel and Torrie. 1960). It sliOttltl,ttlst) l)e riot eti tliat, itir a ;:l\1:n in Any Cd 336.3. 22.9., A~v :5... 33:; Le. ~— ; ..i;de.:_ff v. .V .vzq. Adv CH Qigrce A_v Es”. 41:1 .. r, l t. p . ..~ 1;JI/~a.— u ~Hu_: . i . I . ~70. __C.f; I .. ~ .:1: 3-£$ . in, . a i in; ._o:.3 .~.842» _:ae . oze. ..t a: ._ i . i - . r 3:: .E:;2:.:.:;C: eff/Lug ML. : _ x ~ _ Ha < 2:: ; .Zfi: i: .75; 3.71:7. 1:3;:::Lui~2 ..,: :231:2wa 7.3T: “2.1.9.74; # 3:. .7. _:>:_ _::e;o; a 3:. «a :2 T7. “213;; 23.. .HVL 43* ZELTZFJJI * 3| aqwav. vudc. m_A.. Anna.. 3‘ A. Nuke. _.+C. IA A. AN~_V szowg~xafl:r~o~n;o “O .wQCU O—QA. .— ~35” **nxm. m_~. mm_. **‘nm. **oxm. n~.. **m:N. **+~n. Axv .eaoe :oao IS~DLLCQ Gaga. w A :2 3 .1 I it'll! t- - it: - i .J i - - tiltllt ? iltlliltl' .t‘ it. tlli t it 3 -t -I‘ t - I- I l I- it I: It it tlt. .. .rtiitf r: P -l t 10 **:m. xx mz **:m.t **xm.t mz *m_.n **~m. sazegmcsm 1:39:7LdL OH. 2 “sea **©mu.l mz *m_ .I **A;H.t *.~ .1 n2 fix *o~ .viiswde Madam mz mz mz mz mz mz mz wz nmms~e fixeswxoo doom itawuwztritwmuumuwwmztiiw;aymwttrtwwmwaflir.wwdmuwmstttwmettitMimw-itttwmetttttttti;Hwansmumwttltrt a xocdm com ozzxqm cox ooflza xuzfim dzvczvzoccH ..tt ,;tro- tiittt MW m omttnwgq;nawwvt,a~s_z daomaxn Mnflfinwawg.dy osrat.rearaa -ti - .uzflfiwz; Geode: itzdox :fl iefleoam do Izogn ~micn :2: iacwazfl ogwt :uoaooz :flzizefl.zflog one azwaczm mazoflefla_oeo :Cqmwonuoa #:flegza testzzam .m e~nse A. 5.3:: 57.; Amy 3. 33:1,. 2.7,: :v .1:~::; 9.37.5 1.1534. .3: izcee a; :9; A: 2 :31 1:3 1.: H 21:2.” E _ L: A.1_ x::_..:E< F: :oix 3;: .1222:on :Ofliiz..xo: ESLQ Un:3. moiid_u Lyflmv :a 145521. 9:; .2: 328:1:1 71in... 3:1. Sign no; 3:: .1345 F393;: .w 9:71AM 75 0?“me GALA!” «Cumuwukaihi ocuocgox cucummo cue n .xmw mews: .ceemfi .oaomfi pnmzm mocsaocH \M cwcwkar< mamao opwm m a m w m _ :NJA - L :NJV wvapmpmm nzeoumoawe o» nwamn Nuoxoan pagan» g 53 O N O :3 O m C) M Aaoaotq qnufitd 30 ease/Beau 13833 adoehmoawo up canon 'm woman opdm «paupnnsm wommn nzoocwwawemau unaao 00am a m m H d u - pcmoawacmwn nos wpmuomnvm odooumUHao ow spawn xmo com C I L. J on B S B N E 3 J 4 w / a f. .w 3 O I. .H vi“ 8 m OH 3 d d 3H o 8 8 S v— oa T. 8 m hp ow w u on m, a D. on m 3. cm :NJA =mnv nmmao mfim t a m N H u u U\ 0 H 12 etduu pea JO OISE/tale teseg O N id: muahamnno mdowumoame 0» spoon uuuHo ouwm mil a m m a . . t1 - . :Nav\\\\\\\\\\\\\\\\\\\\\\\\\\ cmaA «panamasm mnomhwoamo op xenon xmo xoaam m (‘J ON 0a 0m x90 xoqu JO BJOB/BQJB [ages OOH 1|: Illl‘l'l In" st 0‘. relationship between black oak and site class is significantly posi— tive, all other considered tactors being equal. Bl;ka ()ak, thtni. .is tlie ()n1}' spcmsies \rhitli iinsrcuises in inisal zirea as poorer sites are encountered. The other species increase toward the better sites (more moisture). The effect of soil textural class he- <:onugs ncni-ssigaiit‘iciint wluan tht: et let t t)l rsittf clttss arui (hfplil tt) citl- cxireuius sulmstiwita is "pai'tiailethwaut 3' i.<:., lielcl ctnistinit. Tliis in(li* cates that site class is a better predictor of basal area tor a given species than soil textural class. The standard partial regression coetiicients (Table 8) are basically in agreement with the simple cor- relatitni coeitdxsient:s (Fable 7). 'The onli‘tliiierence is lit the non— sitflllfiCTulCC (H' soil. textttral ( lass. 'Thus , wheat sitcxttlass is: taken into consideration, the etfect of soil texture becomes tiorr-siiniit‘iczuit. Soil. textttral t lasse valtues wt:re Chglettxl ftwnn tht*tinalf~ses ()i de)le? 8 amid tlie iwsgitnssicnts wt:re tlien retwilcttlattwt. llie iwasult,ing regression equations permitted the graphic presentation ot species basal area and site class relationships (Figure 8). These relation— ships, significant at the tive percent level. include tour species and the miscellaneous species group (mesophytes). Red oak was the only species in this group not signiticantlv related with depth to calcare— ous sadistratti. AH(l{111 stxxgies. tgxcept,lilack (nut. declirmxl in basal area per acre on the poorer (closer to 5) Sites. Black oak was also better represented on soils where depth to calcareous substrata was greater than l2 inches. Ptgnut hickory and red maple were better twnirescnited (n1 soiles wheIW} the (knith it) a caltuireous inirizon wins less *1 «I tlian ’12 :intiies. Ctniveiv—eli'. tin) mi-t-elltuietnis nugsorniittvs atliievcwl a eimniter innx3rtancx3 on tlua bettta‘ sittws antttni soil - wheiw: the (hwith it) calcaitanis substiwutivuis greater tluui 12 inches. There is a significant relationship between depth t o calcareou- substrata and soil textural class (r is equal to -.381. siintficant at the one percent level). Thus. the coarser textured soils are cenerallv I associated witlitnilcareous C (n‘I)lu)rizons at depths tfi'ils: t2nttiu11ttsiwstl o:t tlie sltld§' (lVL%l~ (Coloma. Oshtemo. and Plainfield) either have no calcareous substrata 01f liav e tlican at. (legitlis gifetittir tliaii ~12 iticlicns. Black oak excels in its capacit) to attain dominance in the xeric oak forests of southern Michigan. On the poorest sites and on coarse textured soils. its dominance prevails unchallenged. On these sites it achieves maximum importance because it is the species mest able to achicwwa anclxnainttiin (hnninantx) and wlnare tmnnpetititni tiwnn othtn‘ specitgs is at a minimum. But where there is more moisture. other species are able to compete more et t'ectivelv with black oak. 1290.243 Willi; .1323} 5311:119: ggfiiyififfii' —-5X difiitailtv jJi appltiiu; analvw:is of \wu'iance iii the DIWJFLHlI sttld}' is ‘thtf lzu k (if (bxtugrinu:ntzil L%)Htl%3l ()vca' etvvitwnimcaital vari at i on. The multiple retires s ion anal vs e s; at read v p res en t ed show that the distribution of some species is signiiicantlv intluenced bv ”flirt? tliari orie (3H\’ilT)nanlltill tat'ttir. Iii tlie tcilltrwiiie allalj{rt‘é (it variance. however. two tactors are considered illdfl‘PCl‘ItOllt oi the other- iii i'ergztii'cl t C) t lite (1i s t l ilitit i ()ii ()t‘ Ll)(?(fl crs ' ( l ) s l<3tit> {)()‘4t t itizi gitinn3ai‘i>e011 ()f §[)0tfififb di.liasal zireas zutd lelatl\13 dcaisititw; of l)lacl< oak. which are signilicantly associated with coarrer textured soil: (TalfleaF 7 evid 8) zare ”unfit larecu'(nt levcd txerrain tlunt on ix)lliru: and hilly terrain. Conversely. thoge 9905165 better represented 0n the finer textured soile, particularly red oak, pignnt hickory. and red maple, are poorly represented on level land a; opposed to all other topographic categories. Nevertheless, the analyses of variance of spe- cies by topographic factors are presented because the relationships duc> to tm)p(n:rapfiiic (iiftksreru:es tire ::till_ agn)a1mnit 21nd sueaiiingfittl gum)— Vided the soil textural relationship i: kept in mind. Eigggflflgfi}}flfl- -- Table 9 summarizes the anal‘4e4 of vari— ance for species basal area distribition by slope position. Slope 79 Table 9. Summarv ol analvees of variance show1ng difference— in mean basal zireas {Mar acre i1: stands.lnslore cuttilui, by <1ope pesition. ~_~— ‘ "Mean 1353183121575;5(71177' “TM-ml"- ---___ ii ' ,-- *— Species I __~_“ by Slope pogititnL___w_ F Multiple range test 1115"“ UPP53;l_:\!_i_<1d__1_9.i._}.:>_“:¢3;._ -_ mt- _,_ -___-_Q.5. _?_L;-j_0_1_“__ _ Black oak 48.6 38.8 32.8 20.0 6.29** _;Q;Q_”32;‘ 38 8 18.0 Whitti<3ak 17.7 31.8 18.2 16.0 3.28* _L6L0'-}7;;Zuql8.2. 111.8 Red oak 11.3 11.4 17.6 18.6 0.10 Pi gnut hickory 8.2 17.2 22.5 L2 6 13.05** 8.2 17.2 22.5 22.6 Red maple 2.9 6.1 7 l 13 1 7 82** 2 9 o __1_- 7 _l‘ 13 1 Black cherry 3.4 3 5 2 3 10.8 2 01 Sagsairae 1.7 0.4 0.5 0.8 0.78 Total 96.8 109.5 101.0 102.2 -- No. ()1 observation+ 190 18 39 23 * Significant at the 5 percent level ** Significant at the 1 percent level a . . . t Means not underlined by the same line are sieniticant13 ditterent at the? .05 leavel. I 80 position is one of the lactors used to determine site class in the Gysel zutd Aiwnui systenn (1953). IWir thC‘zN1alyses itt'Table 9. twilline and hilly categories were gnauped due to the small sample for the latter. Upper slope positions are less productive than lower ~1ope positions assuming subsoil textures are similar; middle slopes and level topography represent sites of intermediate productivity, other factors lnging equal. Next to level terrain. black oak attained its greatest avcraie tuisal 81198 iiei' acrw: Oll utniet‘ slcnie guisititgnsg TWiercytvas 541;}.1lltlnttl} less black oak on lower slope positions: than upper. White oak at— taitMJd it;s zcatitlt Oittippcn' slcnies tilso. \vhit1i wtire sitntiiittNttly liiehcn' in basal area than middle or lower positions. Northern red oak showed no significant differences in mean basal area by slope positior. but I on the average. there was more basal area on the z..iddle and lower s l()[)C‘ {vtis l t it)t.:~ tlizttt ll})})(‘r s l()1)t)s . [’1 all it lti.cl{()i'y . til lllt)tlgll I‘L‘ltlL ry'cily xerophytic. was signilicantly better represented on lower than upper slopes. Red nun)le showmxlzi sttmnn; affinity‘tt) lower sltux: positions. where it was represented by significantly greater basal area than on the other slope positions. _§§pg:£. -- Three aspect categories were established: (1) level terrain (no aspect). (2) north and east (316T to 133‘ departure from tthe ttoi th) , zlh(l (13) ssOLtth zinti wwxst as})ec:ts (1136“ tt) 31(3- (lctnlflllFC? from north). Rollin; and hilly topographic categories were grouped toeether (Table 10)- Black.(xfl< and whitxataak weim?lx3th consitkaafljly bettcu' represerted on south and west than on north and east slopes; however. neither 81 Table 10. Summary of analyses of variance showing differences in mean basal areas per acre in stands before cutting, b3 aspect. '"7 - ' .111 .111 11.1 _11.1“31-173W1L~‘1WLT,“"_”_at". "— _ ' i W- .2“ b\ a 3:51)}? 1 ‘ 1 Multiple Slnscitgs \()1111 & —{—‘5(Hllll & P. . ‘WJHE' <9 "“1 ____._.____- 1 $3,311. .. ”9:45-; _Ws:>_t__.._.1 _ we“ ' __- 011-1} “1 __ .. Blzick.()ak ~18.13 1%).9 36.() 7.1M3** IM1LQ __ fiflizo l8.ti White oak 17.7 21.9 26.9 1.83 Red oak 11.3 17.8 10.2 0.71 Pignut hickory 8.2 20.8 19.2 18.23** 8.2 19. 20 8 Red maple 2.9 10.7 3.3 13.89** “2.9"“W_3;§ 10.7 Black _ ciiei‘r§' 3.11 5.1) (1.8 ().31 Sassafras 1.7 0.2 1.0 1.28 Total 96.8 107.3 100.6 —— No. 01 observations 190 71 39 * Siiniiiicwnit at tin: 5 peltfflll level ** Significant at the 1 percent level a . . . . H MCQU1§ riot .nth.rliiie(l b)‘ Lhk‘ sanu: liiie zire rélgnl.11(tN111}(llllt rtnit at the .05 levcl. 82 difference was statistically significant. Sassafras was also slightly better represented on south and west aspects, although differences. again were not statistically significant. Northern red oak, red maple, and black cherry basal area was greater on north and east aspects; however, differences were statistically significant only for red maple. Pignut hickory basal area was about equally distributed over the two slope aspect categories. Growth and productivity ..__. m General. -- Little is known of the productive potential of xeric oak forests in southern Michigan. The only productivity estimates re— latirn: spcx;ili(ually"to scnitheiii Mitliigan (hik stznids Lire tluise (n' Gyscfl and Aitnmi (1953). lfluxv related growili()l dominant and codominant trccw to several environmental factors to develop their oak site classifica~ tion system. Total oak stand productivity has been reported by Schnur (1937) and Gevorkiantz and Scholz (1918) for eastern United States and Wisconsin, respectively. The applicability of either of these yield estimates to southern Michigan forests, however, is questionable. Most Michigan studies indicate that gross volumes of relatively well stocked even-aged stands on medium sites (typical of the black oak—white oak- northern red oak communities in the present study) seldom yield more than 10,000 board feet per acre (International 1 inch rule) at 100 years (Arend and Monroe, 1950; Arend Si.§l°’ 1950; Monroe, 1912). Ecologically similar oak stands on Hleached grood loams" (Gray-Brown Podzolic soils) in southern Wisconsin have also been reported to yield 10.000 board feet per acre at 100 years. but seldom exceed 7,JUO board 83 feet per acre (Wilde gt (11., 1919). Gammon et a1. (1960). however. re- ported a southern Michigan stand dominated by red oak and white oak on an inwx3rfectly'ciraincmi soil (very taunt site) yfliich yicdthul a gross volume of 25,000 board feet per acre (age not mentioned). Obviously, good sites were not included in the present study. The annual growth rate oi unwanaged stands on mcdiu; oak sites in soutlmnai Michituui averagtw:anxntt three DCWIlflll. Thinniiups at ten—ycai' iiiteiwwils, tunvevtn , (int inCIT%3s0 tin: anruuil gtwnvth t()ru:ar1y' foui'txsr- cent (Arend and Monroe, 1950). Gysel and Arend (1953) tound the mean §;FO:§4 voltune ()t cunnintuit aiul c0(hwnirunit tiwses 1%N1goci front 12 t1d)ic feet and 25 board feet per tree at 80 years on poor sites to 51 cubic I feet and 210 board feet per tree at 80 years on very good sites. Medium sites (as defined by Gysel and.Arend. 1953), represerted by nuist ()t tlie Iirtssent sttidy aiw;as , ayxgraiusd 211 LWlblL‘ ictd. anti 7t) bcuird teet per dominant and codominant tree at 80 years of age. Tilt: ccnniM3si_ti()n zincl )‘iC?1(i ot‘ a [)IK)I(}C1(3d 1)ut, tuinuinzuietl txik stzinti on a Boyer-Oshtemo soil complex in which the dominants averaged about 100 years of age in 1950 have been studied by Arend (1965). The nct Intcnaiaticnutl boaiwl toot imilume [Mar atiw: attzihied by tliis FltN1d was 6,868 in 1950; by 1962 the net volume increased to 9,832 board feet. The per acre cord wood and cubic foot volume were 25 and 2.075. re- spectively in 1950; by 1962 these volumes increased to 36 and 2.931. resqiet'tinglyu 1311s. stzantl C(HitaidlLKi 1 l2 trtw3s [)ei‘ aciwg (litrgtaf tlian 4.5 inches d b.h ) and 98 square feet of basal area in 1950; by 1962 thte ntunbtn' oi‘ thEOrS dcwrliiiecl sliiiht 1y kuld liaszil zirtui liltIWJarLKi by' alnnxt 1 ft)()t [)L‘F a(:iw3. Chinuic)si I i()ntll ly', tlii.s st.aii(l i-s t yiiit‘al ()i Iiit‘ iircu-cwit 81 study areas iii soil IGXIUIYU.;{FOUPS l znni 5, although it [N)FSCSFCE somewhat more northern red oak than most of the stands in the present study. A View of this stand i? shown in Figure 5. Diameter growth. -- In the present study, diameter and age data for tlu3 three cud: speeiew:tw3re C011£M ted 1iwnn 219 sttnm)s. Thrungvere significant differences in mean annual diameter growth among the three oak species (Appendix 13). Black oak and northern red oak showed identical average annual diameter growth rates (.167 inch P9P year). White oak was significantly slower growing and averaged .136 inch PPV year. Regression analyses were calculated using three independent varia- bles (age of tree, site class, and plot basal area) as predictors of breast height diameter in inehes and mean annual diameter growth at breast height in inches (Tables 11 and 12). Stump diameters were con- verted to d.b.h. by the use of the table given in Appendix 3 (Horn and Keller. 1957). Black and northern red oak data were grouped since tlieiW} wwertz nc) siiznintitwint dil“texwgntw3s liettvecni tlie twt) srngritgs ill a\1?r- age diameter growth. Soil textural elass showed no relationship to either dependent variable in Table 11 and consequently was deleted fixnn tlie EU131§W4€F. Sitxa Clziss tras' thtni signiitit'antgly iwslattwl t()lHCdll annual diameter growth of black and red oak, but not to white oak (Table 12). The former epeeies grew faster in diameter on the better sites. Diameter and mean annual diameter growth were positively and negatively related, respectively, to age of the tree. The basal area factor-10 point sample was used in the analyses of Tkibltss ll aiid .PZ zas a Incnistircr oi' stzintl dcnisi t} . It. is agniarwgnt.ly tin 85 Table 11. Standard partial regression coefficients showing factors which affect the diameter growth of black and red oaks. *__-‘__~-_.n h_..___._.._~.-_“_.——--—————— - Dependent vari able ..- ._.—.-...__ -.__._._.. .__._— . _ _ - — — ———-hhoco xuuHm «H :H pH 0 n mm o 3H NH an an mm HH mm uu m hm nn CH NH mH om om H H h m H nu nn 0H UHQME com a H HH HH H m m s m o :H o H H on :H m H HH «H n hm m on mH HH nn 6 nn nn m hhoxUHn uncuHm m o «H n H n uu mH m un oH n uu a nu oH H a m a a H H m H H un H uu nu uu xoo com a nn 0 m H nn nu 0H 5H mH w n H n h xH m nu H m n n H HH nH 5H om H on mm H xdo oan: m m H m nn un nu m n n a H HH a an nH n n H n un H H o a: m m so a 3 MH x00 xunHm annamammmunumnunamamnumnnawait? coo: 1%.x.l.ra.al..u_a.r...r..fi.r.r....d.ddfl m... x xx xx xx xxxx x moHooam naoHuanuHuov uoHuOu HHOQ one nonnsa canon m.waHuu:o pmuwm mbcmpm xmo oHamx meHnoHE :pmSHDOm om CH :oHposnoaams we auHmch m>HpmHmm .mH oHnt 95 Table 11. Mean density per acre of reproduction in cutover xeric oak stands by species and size classes.a ,~__._ .— _4——-_.__— -_— ,._..___.__.—H.._.-.-.. ___‘4._.._-_. h“-.__.__— ...-.___.-.h.-_. _ - “a... __H HH- ‘— E5t.tixi(ltti (l tfl'1'()l‘ (n 1 Height class, Mean density mean as percent 1823230; ___. ._.. _ -- 3:61-- - ,- 11391122111. .. -- H __ __0,1'_ 31w“ _ _ __w Black oak 90.9 697 “1.1 b3.9 256 11.0 Dom. b 87 16. 1 White oak 10.9 682 19.9 )3.9 195 ' 11.2 Dom. 70 12 . 2 Red oak F0.9 289 10.7 >3.9 101 12.6 Ihnn. 37 17.1 Pignut hickory H0.9 155 6.8 ~'-3.9 217 9.4 Dom. ' 80 11.7 Red nun>1e i~0.9 561 9.1 >3.9 365 9.8 Iknn. 1155 (3.9 I3lack clusrry' 30.9 1139 7.2 ;%3.9 7ffl) 6.-1 Dom. 255 6.6 Sassairas L0.9 801 6.6 b3.9 117 7.9 Dom. 189 8.6 American elm “0.9 106 19.2 ‘23.?) 65 65.8 Dom. 17 25.0 Miscellaneousc no.9 906 13.2 :~3.9 631 13.2 Dom. 26-1 13. 2 ___ _ ___ ._—~___H__w_———._ _. hfi—M—‘——. _~_ —‘_._..____.-‘ .__...-~ a . . . ,_ . Densities per acre are based on 300 1.123~acre plots and include all trees which were 1.0 inch d.b.h. or less at the time the original stand was cut. b . . . . Dom. reiers to the dominant height class, 1.0., trees larger than the mean height of all trees on the plot larger than 3.9 feet in height. 0 . . Incltudes :nngat‘xnaplce. Anuariciui becmfli, whitx: ash, (fiasttuni htuflioyquAam. flowering dogwood, and bigtooth aspen. I 96 percentage of the mean tends to be lower for those species with high density or relatively density values. Also, the standard errors tend to be smaller for the relative density values than the absolute values. Both tknnsity znnl relatiymrthnisity stanchuui errors DJT§IWfltltiVCly small ior black cherry, sassafras, and red maple reproduction. These are also the only species with standard errors consistently lower than ten percent for all three size classes. The high density and relative density values for the latter three species, together with their rela~ ti\%31y'tibicniittn1s (list,rilntti()n, laiwiely‘ eiqilaiii tlieii‘ low' StznldalTl errors. However, these values have been averaged over considerable environmental variability, to which many of the species significantly respond. Nevertheless, these values do reflect the nature of the popu- lation from which they were drawn. The standard errors are largely a function of species density, i.e., the larger the density value the smaller the standard error. However, the magnitude of density is not CXCIUsively involved in determining the standard error. For instance. the standard error for pignut hickory greater than 0.9 feet in htixht is 6.8 percent. This value is considerably lower than the standard errors for black cherry and red maple in the same size class, despite the higher means 01 the latter. We may plausibly assume that the 0.9~ foot size class for pienut hickory is distributed relativela independ~ ently of environmental variation, i.e, is relatively randomly distributed. White oak is the only species in which the standard error of absolute density of the 0.9-foot and larger size class is consider— ably larger than the other two size classes. However, in the field 97 the clumped distribution oi l- and 2-year—old seedlings can often be observed. This may in part explain the statistical relationship. Slirul)s :1n(i wwnady‘ Viiies 'Table 15 shows the percent frequency of occurrence oi the major shiwn) and wrxndy \aing specieas encxnuitered 1J1 stanth4 attei'ltnniing. Blackberry and raspberry brambles were prevalent in all stands, but wcnw3 gerngrally‘inost (huisely‘tiistidlMited itizireas HKJFC rcmwnitly (nitoyei; Virginia creeper was also frequently present. In some stands this woody vine waS so dense it formed a matlike cover over the reproduction ()I‘tten twatts lite; [116? l.at;t(31' tc) l)cni(l zincl ljcw'CHHC? (ilr—l()l'tt3d. \’ii‘qi ni a creeper was also the only species signiiicantly associated Wllh the contiiunnu irnhgx, itniicatiini its LU.tinity‘tk)r the nnire mesicflufl)itats (Appendix 16). Two other common shrubs, red-panicle dogwood and haw- thorn, were significantly associated with years elapsed since cutting. Both were significantly associated with oldcr stands. Rose and blue- I3eirry' stiec'iCis \ytn e b()1}l liet,tc:r rtQJLxgstrnt e “(1)11idangt.i0ii r5iZ(? (“larestfs liiwjyitJUs=l§‘ dt?flll0(l. Ctirthltiticnis lie— twcmni all. seywni clniractcifistit: spam les amid seateral (H' ihL‘lM)TU tnwnuin» cut miscellaneous species were calculated. Of the latter group. only 98 Table 15. List 01‘ shrub and vine species and their percent frequency of oceurrcmce in cutoy'er Xerie oak torests. pt'l‘C'Ulll trequency of .e . . t. a Scientific name M.... W ___—___i-. Common name occurrenct _ -_._‘___ _.___._._..___._—_ _‘__. _— BtllltL: spp. Bramble ($8 _Fiart‘llc‘ilgcissvus (1.“.1.I.‘.q‘lgfi’liq Virginia creeper 2? L. Planch. » — - ~— 3(Lit): spp. Rose 22 goinus 331931102 Lam. Red-panicle dogwood LU _\:flifit‘i‘s spp. Grape 18 [inns radii-an: L.’ Poison-ivy 10 [Lilacs wlcislia‘tbi L. Pasture gooseberry lO SLQLQEQL? sop. Hawthorn 7 _Ei.i‘_’,‘,”_§ Lil'gin‘iana L. Choke cherry 6 £E1(;('_ill.ill.ln spp. Blueberry 6 §_t_)_t_;y;l_ti_.s aruenideana Walt. American hazelnut 5 Hilljla‘lllgLi: :i_r_t_{_i_rii_a_n_a L. Witch—hazel 5 :I‘ttn'iperu: Lommunfii: L. Dwarf juniper l ézyiiliueus canadensis L. Common elderberry 4 éi‘tielaiicliier sppi. Serviceberryt 3 lily: t._yphina L. Stae‘horn sumac 3 ;\:a‘i_i“t_h_(_).xy.lum attit;>i‘ic-Luittxii Mill. Northern prickly-ash 3 Xillurntjmacerit’o‘l'iiuii L Mapleleaf Viburnum 2 ggniiiis ~ro7.1.5.:zi—Lainfhw Roundleaf dogwood ml gltintis stolinifera Michx. Red~osier (“MWOOG '1 Fliefljiifm—‘iq birciata (\t'ane‘.) Black huckleberry l K Koch Lonicera dioica L. Mountain honeysuckle 1 Quercus urinoi'des Willd. Dwarf oak l linl‘itLE—Zlaliifa#1:...»—~ Smooth sumac l )1ibttilluiii lentagg L. Nannyberry l a . . . _ , At 101' Pernald, M. L. _GLLLL“ Manual _(_)_l_ Bot an: . 8th ed. .-\:;:er} can Book Co., New York, 1632 pp. l950. l v . 3Based on 300 2-mil acre plots. 99 American elm was significantly correlated with any of the other spe- ciehe. (XMisthHNitly, (nieffithientre tor (nily tin: setwni ChaITUJtCIWJ€LiC species and American elm are shown in Table 16. This table represents 1,008 correlaticnithalyses, of which 163 or about 16 percent are sic- ititit:ant. at tlie cnte [MBrctnit ctnifidcwnge 1(J\el. Front this tunnbtn: of analyses, we would expect about ten to be significant by chance at the one percent level. Both percent (relative density) and number (density) of trees per plot of each species were used to determine interspecific association zimcnig tweptxidtngticni. \Vitliin (3acli ot‘ tht? 28 :setre oi? sptn21es-1iairw= crr- efficdtnits, (K)LF818L11N15 are tmxniped by'iuuaber and tnnxantt analyses. Each combination of density attributes and size classes yields a sep— arate correlation coetticient tor each pair of species. Thus there are 36 correlation coelficients for each of 28 species—pairs combinations. Nineteen of these 28 species combinations are significant in at least one density-size class combination. (anJrally , the (Hnétributllfll of \wgry ytnnn; seedliings is less likely to be significantly related to environmental factors and to ()tliei' s1)t«;i<3s tliaii tlie IH()F€? aclvzintxecl rt9p1wichict.i()n , réltH‘G stirt'ivzil atid dtPVC?l()DrHLHlt dt?p(?n(i t1p<3n stic(:e> still atijtistincnit tC) tlie ttitzil (JHX'iIYDHIHCllILlI connilex. In iwnzard 11) thiee, Ca1wmgll atKl'Trytnt (1961) :stated: . tlie 23bil.ity’ oi‘tiak regxnieiuititni I()})Cl“4ist (in 21 sptxgitit- sitt: is more closely related to environmental condition than its ability to become established." For this reason, reproduction size classes were UféOCl “llCIWJill ecx)lcn:itral r(3lat;i0tushi¢)s (Jettltl bca vithcnl iiidtqictwictitly ot‘ the smaller size classes. This consideration led to the establishment Table 16. Correlation coefficients 100 showing association between species Spec tea Bl ack oak 'htte oak led out Size class: Number-b Percentc lu-ber Percent Nu-bor [bl-cont (“eight in ft.) >0.!) >19 Dol.d >0.9 >3.9 Don. >0.9 >33 Don. >0.9 )3.9 Don. >0.9 >33 Don. >0.9 >3.I Don. I) >O.9 NS NS NS NS NS NS Is us IS IS NS us IS RS 168 IS l8 NS No. >3. 9 NS NS NS NS NS NS NS NS NS NS NS l8 NS NS IS IS IS [(5 Don. NS 118 Nb lb Ks 1L9 IS IS N5 us Is Is .18 IS IS IS IS IS Mertcan 01- c >0.9 NS NS NS NS NS NS NS m NS NS NS NS IS IS .20 IS l8 l5 3 >3.9 NS NS NS NS NS NS NS NS NS NS NS NS 16 NS NS .19 IS NS Don. N5 NS NS NS NS NS NS NS NS NS NS NS 26 IS IS . 22 l8 l8 >0. 9 NS NS NS KS N5 118 IS IS K8 NS NS NS IS IS IS IS IS IS No. )3 . 9 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS us Don. NS NS 16 NS 16 -. 17 NS NS 35 IS K8 '6 NS NS NS K5 IS IS Sassafras >0.!) N8 - 16 - 15 NS NS -.16 NS NS NS IS NS K8 NS NS - 11 IS IS IS $ >3.9 KS - 16 - 18 NS -.17 -.21 NS NS NS NS NS NS NS NS NS NS IS IS Do- . NS NS - 18 NS NS - 1 1 IS IS NS NS NS - 1 5 NS NS Ks am Is I5 >0.9 NS NS NS -.18 NS NS NS NS IS IS - 18 NS NS NS NS NS NS NS No. )3.9 NS NS NS -.16 NS NS NS NS NS — 18 -.21 - 16 NS NS NS NS IS Us Do. NS NS Nb NS IS IS NS NS NS NS NS NS NS NS NS — 18 - 11 I5 Black cherry >0.9 —.23 -.15 NS -.24 - 15 NS NS - 18 IS -.22 -.20 NS -.10 IS IS IS IS NS 33.9 NS - 15 NS -.15 NS NS NS -.18 NS -.18 -.18 -.16 NS NS NS NS NS US i Do- NS NS NS NS NS IS IS NS NS H8 NS IS IS -.20 —.16 -.17 -.21 -.20 >0.9 NS NS NS -.23 — 19 - 18 NS NS .16 NS -.20 -.20 IS .18 .19 NS NS NS No. )3.9 NS NS NS -.22 *.18 *.17 NS NS .16 NS -.21 -.20 NS .19 .18 NS NS KS 00.. NS NS NS -.2‘ -.21 -.19 NS NS 18 - 17 - 21 - 21 NS NS NS NS NS NS Red maple >0.!) - 24 -.19 - la -.31 -.26 -.23 Ks -.20 23 - 24 -.26 - 26 NS NS NS NS NS NS $ )3.9 -.19 -.18 *.18 ~.24 -.25 -.22 N8 - 19 .23 -.17 - 26 -.26 HS NS NS IS IS IS Duo. -.17 -.15 -.16 -.24 -.21 - 19 NS - 17 .21 -.17 - 22 -.22 IS IS NS NS 16 NS 59.9 NS .18 NS NS NS NS NS NS NS NS NS NS N5 NS NS NS NS HS No. )3.9 Kb . 18 15 NS NS NS NS NS IS NS NS NS NS NS KS NS NS Us Do- NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Pignut hickory $ )?.9 NS NS NS “8 NS NS NS NS NS NS NS NS NS NS NS NS NS NS >J.9 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS IS IS DOI- NS NS NS NS N8 NS NS NS NS NS NS NS NS NS NS NS NS “8 >0.!) NS NS NS -.18 -.16 NS NS NS NS NS us NS No. :2.9 NS NS NS NS NS NS NS .24 NS NS NS IS I. NS NS NS Rod oak NS NS NS NS .24 NS NS NS NS >0.9 - - - - 1. >3 9 £38 "15 KS .21 18 us us his N5 us N8 N5 . 5 NS NS NS NS NS NS NS Nb NS NS Don. ls NS NS N5 N8 NS NS .17 NS NS NS NS >0.9 NS NS K8 118 NS NS No. >3.9 NS NS NS NS NS NS Don. N8 NS NS . "lite out is NS NS >0-9 IS us Is us us NS i >3.9 Ks us as .23 RS us 00.. us KS us .23 118 NS 101 reproduction by size classes and density attributes.a Pignut hickory Rod aaple Black cherry lunbcr Percent luaber Pvrcont luabor Percent >0.9 >3.9 Don. >0., >3.’ Don. >O.9 >J.9 Dun. 30.9 >3.9 Doc. >O.9 >3.9 Dun. >O.9 \3.9 Don. IS IS IS NB IS IS us NS NS NS IS IS IS IS NS NS NS IS IS us NS IS IS IS as NS NS NS Is as NS NS NS as NS NS l3 l8 l8 IE IS as NS NS as K8 NS NS N5 N5 NS NS NS IS l8 l8 l3 l5 NS NS NS as NS NS NS NS NS IS IS IS us NS 88 IS NB I8 NB l8 IS NS NS NS NS NS NS NS NS NS NS NS I3 IS I! l3 IS IS NS NS RS IS NS NS NS NS NS NS NS Is as Is IS IS NS NS NS NB NS NS NS NS NS NS NS -.24 —.15 KS as IS IS NS NS NS NS NS NS NS NS NS NS NS NS NS NS IS IS as us Is us NS NS NS NS N3 NS MS as NS NS - 19 -.21 -.23 as IE l5 Is as l3 NB NB IS NS MS as -.23 -.23 -.15 -.23 -.11 KS RS IS IS IS RS Is as NS HS NS NS NS -.21 -.23 -.20 -.25 -.26 -.10 l3 l8 l8 IS IS IS IS as NS NS NS NS NS -.16 -.21 -.20 -.24 -.28 IS IS I! -.15 l3 l8 l8 ”5 IS IS IS IS IS IS NS NS -.17 NS NS .17 .18 as NS IS IS IS IS NB KB -.18 NS .20 .17 KS "8 NS -.10 -.18 IS -.18 -.16 IS l3 NS NS IS IS KS -.ll -.21 - 16 -.20 -.22 NS NS NS NS NS NS NS US US -.17 as Is - 19 as as IS IS NS NS Is N3 NS us as Is IS as us as us NS l8 l8 us Is -.15 -.16 NB as NS NS -.17 IS ”3 IS IS N8 -.16 IS l8 RB -.15 KS -.17 -.17 3/ All correlations signilicant at the .01 lovol arc Ibo.“ (r creator ‘( '& than .148); NS leans non-significant. These correlations are baaed on the 225925 of trees of the given apecioa per plot for 300 plots. These corre1ntiona are based on the egrcent of the total nuaber trees per plot accounted for by the given species {or 300 p10ta. Don. refers to docinant height clans. 1.9.. trees greater than the loan plot hoizht of all trees greater than 3.9 {not in height. >0.9 Sassafraa Number 53.9 Doc. ‘19 IS NS NS NS NS NS NS NS as IS IS -.16 IS NS NS NS NS K5 Percent *3 9 D). IS IS NS N5 N5 N5 NS K5 NS NS NS NS 102 01' the "open end" size classes previouslv defined. Data for seedlings 1(3ss thzni cnte Itiot, in.lieitfllt vveiw: cm)lltw;ttml ort a "Iiw:q1u3nc)‘ oi’ octnlr- FEHIC€;' liasi s zinc! wi.ll lie [ircwseiiteCl ltltcl'. Of the lli3 significant txirrelations, 8i intdtukxltln: "0.9-Ioot and largerH class, while 78 included the dominant class; 95 included the "3.9-feet {uni larger” class. The relatively low number of signiticant coefficients involving the dominant height class might be attributable to small sumnple size (i.e., small number ot such trees per plot). In this respect, the relatively large number of trees greater than 0.9 I toot mav have compensated statistically for what was lost through ubiquitv of distribution among the smaller size classes. The Hgreater than 3.9-t'ectH class is apparentlv a good compromise between OVcr— exclusion and under-exclUsion. Correlations between numbers of individuals accounted for 17 of the 163 significant relationships, or about 11 percent. However, interspecitic association was detected most efficientlv it based on correlations using: percentage values. Where number X nu:r:1wr correla- tions were significant, the interspecitic relationship was usuallv reinforced bv one or more significant correlations among other densitv attributes. There were only two cases where the latter did not occur: in the pignut hickory-black oak correlations. and 1“ the VQd maple- black cherrv correlations. In both cases, however. there was more than . . ' . , . ‘1' v_' - . ‘ i a; I“~ 45 one significant coefficient. Also, 101 an} sl‘e” Pall 0‘ ‘pL‘JL ’ coetii43icnts wtnw: alwavs tINtsisttuitlv positi\12(DT HUQHl1‘1* .. . . ‘ . i.‘«__-. 'g - '-)"tions where out; one There were three sets 01 rchle pail” tottcla . ... , x . ~, gha“; "— 'Ild coeificient (out of 36) was 51%”liicantt bLL“C£n (1) “3"1tld d 711 103 IMHQFiLIUl elnq (2) saysnitras amid Ingrthtnwi red cxd<, anti (3) FtPs‘dilkl‘ zincl “1111(3 CHJK. :Xll tlircw: lWJlLlthnlrlli[)F \¥Ul\3 ruggiitixw; L1H(i al 1 tlircwy in\x)lrcml sa>w+afiuis. 'fhei siiniificwint (K)FlelaIl(nl witli AHHJFl(1Ul cluixtas betwtxni rolatix13(kntsity oi tln3 ”groattn' than 0.9-ffxnf' clase {Ol'lxith specie>. The number of sassafras in the latter size Cla1Nfioitu= is lhk’ ~auu) a> tliat tlkcd ill tht*()riuiI%1i s—tzin(l zinzil} «(39 rlnawii lll l‘iiutiwy (5. 1110540 sgicwxites si.giiit‘ituint l} a>->()- - ('iated in at loaut one donuitv—sizo Class combination are connected by _ C . ’ . ' ' ' ‘ i ‘r' "i ' “‘ a ion line. a solid (positive correlation) Oi dottud (ncgatixa (011L111 ) Six of the 19 signiticant relationships are p0>1ll¥0. The po~i- - ' .' , o . -v -' x; " 'n the SLllnt‘ titx: FUlJlliCMlShJ[)5 ziro tirinuiiil \ arm)nh [hL . pan it. witlii . . i - -. " s ‘ A ' )r >li l') lit-- (:1inn3x i1d;”)1£1l1()n ;;r(ntp (xi:rcu)h}'tc? OI H4;~h} tt) - 1hL It 131'1( t t - - t . . -. i ‘ ‘ ' :5 '1ittl Il() i't lttgi‘ti I‘t“(i ()zil< twoon white oak (climax adaptation number ) t ‘ ' ~ V ) . ' s‘ 1% l't‘)(-'L11.~ lilt' (( linuix £H18pl&311(nl ntnanI' b) l)r1(h;U+ tht» 1“() gICHIP-- 171’- I ' t . . , ‘. b LLIL‘I' relationship exhibitt‘d in the original rlfilld, althonhh lht 11 Figure 11. 101 Interspecific association in the reproduction. (Pairs of species significantly correlated at the? 1 ingreeuit l<3v01 in (H10 ()r UK)FU LTHHbiINlIiCHlS of density attributes and size classes given in Table 19 are showTL Speei-—O(i iit tlie Iltfl;81.l\%: sassatras relationships. It is hardly justitiable, however. to con- . . . . . H . . n . ,. Eider an individual species as a basic unit. i.e.. a discrete ph\to- socitfltniical tuttiti'lN:}ond tluit whicli is cuqilicit iii its taxl(h‘FC(L Colltnxtiveli', thcwua coulcl thcni lOFHIii disc113te. linictitnnill; inthqiend- ent cm1)logitwil asscmflilage. Patna the (huii at hand. inhvever. wtiznw> limitcxi to tlna gencwuilizatitni that :sassaliwis exhiiiits a ltnv abilit) fOI‘tholcniical inttniratitni intc) the ruiric ()ak LTNmHUHilJlUE. Tht‘lln' ustuilnesF: o? tliis is {nipaixnit wlnan (N10 tintsithars that , ovwirall , it i _t h the second most important species in the reproduction. Furthe'more, its lack of ecological integration is apparently no function of ran- domness or ubiquity of distribution, since significant negati\ix asso- ciation is as much indicative of non-randomness as positive association. The preceding relationships have been illucidated at one scale of observation (i.e., one plot size) and through the use ol one statis— tit a1 piXJctjdttrc? (i..e. . twiriwalziticni tiHLli}? is) . Irlgllft‘ 12 . htnvestr, shows interspecitic relationships among shrub species and tree stmwr- liiigs ]w3ss titan (NlC ltMJl iii hcdidit. Htww3 asstn;iati(ni has luren (hster~ ruined b} (iii squaic’tnniltsis bascwltni trequenct'til 0CCUFFUHLL‘(RH;1 obtained from 300 2-mil acre plots. Although no negative associations “13re (3xhiliitt3d, tin: }N)FllliVCf relzititinsliips' anunig tlie t.rcw3 st1>dliitgs {Ire siinilai' to IIHDSC lJl Fituire ll. Thcrliridgc‘lngtwcwni atwwiphitt: and Figure 12. 108 IIllC‘FFIWCWCi‘fi(S :r:S()ei.ai.i()n alnoxig 5l1rul3s a11d iiwge sawed— lings leSe than one foot in height baeed on ehi square. (F%1irs ()f syn:ci<:s uliich zare 5&igniifiezniil3';)osit_ivel}' associated at the 5 percent level are joined by a line. Miscellaneous species inelude white ash. American elm, slippery elm, sugar maple. American beech, eastern ll()[)il()l‘lll)(f211n . zixi(l l) l aic'l: \V11 1 llll t . ) 109 Xerophytic Mesophytic components components ___...” r_____ 1 Black oak Red oak 6 Blueberry l 1 assaf ras — Brambl e Red mapl e 7 Hawthorn Species climax adaptation number Jaqmnu notieidepe xemrto saroads 5 Black Cherry 6 3 Pignut hickory Miscellaneous 6+ __u ‘h- Pasture gooseberry Virginia creeper ‘ —Red-panic1e dogwood Grape American hazelnut Commo elderberry llO mesophyte, however, is between white oak (Climax adaptation number 5) and l)lack.(flierr3' (clinnrt athuitaticni nunner 6) 141 the tlii stuire tntal}— see, rather than between white oak and red oak (climax adaptation HUM” her 6) as in the correlation tests. Also, sassafras i9 positively associated with black oak, pignut hickory. and white oak in the chi square teats. In the correlation analyses, sassatras was not posi— tively associated with any species. The red oak~black cherry relation- sliip ;is tx3sit.it13 it] tht‘ clri SCflllej ttasts zis ()pyu)se(l to threat th‘ in th€~ correlation analyses. Nevertheless, the same general linear linkage exhibited in the correlation groupings were apparent in the chi square groupings. Shrub 9pecie5 were also included in the chi square interspecific association tests to show their relationship to one another wid to tin: 11%38 ELHBGIlJlQE. .All (gxct1)t tlirec> shrmn) stngcicn: Show11 in IrlgUITP 12 are significantly associated with at least one tree species. Blue- berry, brauflflea. and rose are QSEOClLNJHJ\Vilh xeroph§tic tree seedlings. . Hawthorn, pasture gooseberr}. red—panicle dogwood, and American hazel— Iuit 811? asstnsiattwi witli thczlnestuniytic (KHHpONLHltF. Ihvart jtuiiper bridges the two groups. Virginia creeper, common elderbcrri. and QFBPCEEUTB‘DOSiti\KHQJ associattwlznnong tlnynselvee onl53 Tlie 1)ott:nt.ial ut.ili.t3' ol‘ tlie r-ecwllitig-wéhIWtb tisstnsizititnis is stu;~ gestted iii the lilULHM3rr3—iw)se twslaticnrdiips. Botli shrtn) gencuui are significantly associated with the more xeric habitats (Appendix 16). However, blueberry is associated with black oak; rose is associated with the less xeroph3tic pignut hickory. The possibility mat exist htrre .fOI‘ a [notwa €u1)l()gi<:al 15’ exqilit:it. dit'teiwrut latlt)fl ()t lilaéicni t it W115 D()t riot.icw?al)ly' ifnplT)V(Pd ‘hi' SLHJh t1‘a1:9€<31wnat,itnis. TWNts. tin? [YJH5I()Fmall(HlF ditttiot inair0\t> the :H)ility ttitsstimatc-;M3r~ centage ot black oak at a given interval alter cutting. Thtrctore. I assunutl linear Lmdgitionehit»: in makizn: the Llfliflllullonr. The SLHMH3Y§‘()1 ana13>uss oi \diriantm>}iresenttml Show tmqut YUlall\t3 densit3'xiflings by Slope txraition and aspcmw. skll basal area values Figure l ') J. Successional trends for tour species in the reproduction based on the dominant height. class. (Soil textural classes range lrom (1) QKNJPFO t() (5) film). Site claeses range irom (l) verv good to (5) \mnw'fnuir. Note: the lll(it‘[)tdl(it‘lll \'tll'ltll)l c-s 1154(‘(i \’Lll‘}' l)L*l\V(3t3ll stit>tii_crs ; Regression equations are given in Aunendix 17.) 115 Black oak Red oak 25 ‘3 I Soil textural Soil textural class class ‘ / HNUt'U'! Relative density mas-w no H Relative density n :- o. co ’6' I r r r 1 1 a L 4 l 6 9 12' 15 o 3 6 9 jf'j (Basal area/acre of black oak in (Depth to calcareous substrate the stand before cutting is belt! is bald constant at 1; site class content at ho sq. It.) at 3.) . Basal area/acre or so 20- pignut hickory in as ho _ original stand Site class i” 20 E a 15 - 30 l- 3 5 5 0 3.10 - 3: 20 l- 1 *3 3 2 H ‘3 S r- ‘3 10 b 3 h J L J 1 J 1 1 1 a 5 0 3 6 9 12 15 0 3 6 9 12 15 tears since cutting tears since cutting (Depth to calcareous substrate is held constant at 1; basal area or the total stand before cutting at 100 sq. {tn/acre.) 116 used in the following analyses are in square feet per acre and are based on individual factor-10 point samples. Black oak. -- The multiple regression analyses represented in Table 17 show that, when all signitieant tactors under consideration are equal. the. relatiVe density oi at least otie black oak repi'ocl.tttioit :‘ize class slgziilicantly: l. Int-rettses \vitli "512a13< siinge tatttiixg.' 2. Increases as coarseness oi soil texture increases. a. Decreases with greater residual stand basal area. ~l. Incawmises as tin: basal attuitit black tufli increases ill the stantllystore tflltling. For the lZ-year period considered. the relatiVe densit; or domi- Hmfl black oak reproduction increased ten percent; this assumes all (athtu‘ signil‘icant faetcuws are lusld (mnistant. ThtrzittaiinU)le innier l iniit “111 1 lie dtfiptfHClClIL UIJOII ()tlieif s:ituii {1(Jatll etivi.rtninu3nt al I at ttirs . on (mmnpetit_iVe iwjlatitntshit) betutmni specitv—. and (Ml otht4'1tnknouit tac- t<)i%€. lite ixidtqiez‘dtnit Vitritibl<3s iii tlie filial tweei'e::si()n e(p1at ir()ii()z't 1()H ()f'COGlWHB texttnmxl soils (n1 thHL‘tJFUaS. tutther tlnni ditiknrenres (nu) 117 Table 17. St anda rd partial reg; res s ion coel‘l ic i ent s showi it}; the 1'63 1 a~ ticnisliip 1)etxvetui iwslzitixt) dcntsi.ty ()i 1)laL1{ aiul H11ilt‘()dk r<31)1'()(1ticrt.itaii aiicl s<>nit3 <311\‘i Yt)1lH1L'n till itiC't()i's . .__._<, _-—.._.~-_—.- r..—__..r._'___._ -.e __ ___—.-.- $.._, __f_‘ - -..__.. » -._-_ ___.--_ —~ w.— __— _ _. ..__ Dependent variable: relatiXe densitx I ritl(31)(:iiclt>itt I31 zit 1i ()Ll1i lilii t t2 (>.il{ Vitritu)l()s (ht‘ialit ill t(u9t) (lieitzht iii ttw:t) 41.9 .3 . 9 qu. a n. 9 a. 9 D(”)::.. 4‘ Years since cutting d“ d .15* d d d Soil textural class -.26** -.19** -.ll* —.28** -.26** -.29** Site class d d d .21** .39** .37** Depth tt) calcwireous (1 (1 (t -.11* d d su1)sti‘atzi Oiatginal stznul BA atawe (l (1 (1 (1 d d Residual stand BA acre -.19** -.19** d d -.12** d Residual stand BA in— d d d d —.10* d growth acre ()riainal stand BAJatre, .10** .25** .l7** .21** .09* .11* same speciesb 11e>;i(1uzil s 121H(l Iii, ac rt). (1 (1 (1 (l (1 d same speciesb —-_b ...—___. -\_—_ —»——.M—‘ ...—___... «___-«MM ~._‘..- tr... .1- ”a- -__.5____. ~.—_i u __ ,.- __.___. Standard error of the 16.1 15.3 17.5 12.1 13.1 11.6 estimate Multiple correlation .192** -337** ~271** -179** '63]** ‘597** (Kieit'icitxnt (R) Milti4)1e ttubtlitituit ot .212 .113 Jl75 .229 .399 .BSM , . ') (it: t tei'xu 1 llal t l.C)ll ( 11" ) * Ejianititiuit at 11M: 5 peimtuit lertd ** Situiii lCtnll ill th2 l pth'ent lcw<31 a . . . . I)()Rl. r‘trt tri's t L) (1()n:i lltllll 1ltf1 t:lit ('1 L1~ s , l . t'. . t 1°tftf¥i l (ll'tifxl' 1 11th:: Ttt‘tlfl P101 height of all trees larger than 3.9 teet in height. b‘ . . . . Stunt! s1)et'ic>s rc‘lei's tt) s})e(fiit3s {zistn ;is dt1)(%ldtfl11 ‘vai'1a1)1tn C _ . (d) Ineznis tliis inthgptuidcutt \uirittblt‘lias 1)ctui dt'1ettwl TlTnu tln) 1W1411'r-1tbfl. 118 Table 18. Summary of analyses: of \“Jl'i‘le'C‘ showing different-es in mean relative density of oak and hickory reproduction by slope position. Spec'i—os Re 1 at 13175115171} Hm -_.___ 7 ’77— 7 7 '7 ““““ ' ' 7 and per plot Multiple range test size class -__ by slfipg pg;s _int__i(_)_na - F .05 letelb .91}. 311.}; 0.2.1493} ___91112i111.<1stiglmsi 1- l. 1 Black oak >0.9 32.1 22.3 20.7 1.9 8.51** 1.9 EQ;Z__32:2 32.1 {5.9 21 .5 115.8 '.9 2.£3 5.1{2** 2:.3_Hm9:31 _111L8 231.5 Dom. 19.2 9.7 6.5 3.6 l.l8** 3.0“ _6r5” ‘9.7 19.2 White oak‘ iAl.9 21.1 30.5 121 3 16.2 22.51 93.9 18.8 20.5 19 7 11.5 0.61 Dom. 18.7 12 3 12.6 b 7 1.70 Red oak >0.9 11.5 21.5 21.8 21.7 9.27** 11.5 .3LL22.%217'_%3‘2 "-3.9 6.8 15.0 18.0 ‘ 9.3 7.51** ”138*” 9.5 15.0 18.0 Dom. 5.5 15.2 9 8 3 8 105*" F_.‘1__8____3#)~_ 9 8 1'; ) Pignut hitflior}' h0.9 22.1 33.2 25.1 21.7 3 26** _22 1 _21_7~ 2341 33.2 >3.9 19.1 28.8 21.0 15.5 2 21 Dom. 15.9 21.1 19.7 9.8 0.95 No. of observations 190 18 39 23 * Signifieant at the 5 percent level ** Significant at the 1 percent level ~_ .....— .___...--. a ‘ _ .~ . Atter (aresin “percentage) trans-ormatlon. ) Means not underlined by the same line are signiliram 1_\' dil'l‘eretxt at the .115 ltww31. 119 to slope. The relative abundance of black oak is sianil‘it'antlv de- pressed wherever residual stand density is high. Also, the amount 01 1)lack (nfl< FOplTNthtitfll esttdalishcwl beicnw: cuttiln; detcwvnintwl. to a siintilicnint (:xtcn1t. the? anmntnt ()1 131atlt ozd< FL11YOCHH111CH1 wliich (h Vel(u)s alter the stand is cant The. amount of variability in black oak reproduction which is: e‘~‘.- pltiinewl bt‘ztll siiniititwnit ixnieptaident vaiaifliles (R2) (lectmuises cue sizt\ Classes become less inclusive. ObViously the total number ot individ— ttals t() be LIMHlth (Rx;reascn; as tln: smalltnr indixithtals tire elirninatctl titan ctn1sich:rat.iott. lieltititt: dtntsit y t3stir43tes‘l)ecmnne nx>re t;ros>s anti less scnneitive tt) enviitnnnental Lineage as tln: total §)lot CTHHlt oi all individuals decreases. This disadvantage is ottset to some extent b} the elimination of the smaller :ize Classes which tend to be dis- trilm1tetlxnoxw: twntdcnnly‘ in iwsgatwl to tnivittn1mcnital fact()rs. l'Lh_._i__L‘9_‘2_Q.E‘,1§' -- The multiple regression analyses in Table 17 show that, tor at least one size class. the relative densitw o1 white oak imqir0(hu;ticni Sitnllfitfn1tlfif l. Itu*retstwe as tuiarstnn?ss tn} soil texttuw: ineitui4es. 2. Decreases with increasing site qualit}. 3. Decreases as the depth to calcareous substrata increases. . 7 ' . . , . , ... ‘ILI‘ "I 1 . ~1. Decreases with greater residual stand basal dlCd (Pihutt 1 1 J. Decreases as the basal area ingrowth increases. 6. Increases as the basal area of white oak in the stand belore cutting increases (Figure 15). 120 AK: x. 2:33;. 2,. :3.» a a. 9.2.. 3.2.1. :13; :3 . ... ....r..........: 7.575.521. :13375 :3; 1.7.: 1.12.2.2; .Z...t:;:;_:: 0:. ”HEW? 3.33; .575) Amy :2 33:1. 37.: A: 33.: «31.23. 13.1.1.4; slam .352 11.9 A: 9.1.33.5 A: 53.... axzd... 3.911.575 #92374: :65; ...Zo: .75; 33.5 :73: _E: 9.}. .33: a 1.3.2 _1. :1 1:1. :Ca. .oztc._:3._ ..z: :2. 1.1.52.1. 3.2: :5 a. 2 w 1:2. o.) .H :5 Ta; 2: 23.55....2 12:73:: .213: .‘~ 3.2 :1 2m 121 .eoua ca aguao: \« ago: \uoud Hanan ocdam Hqsuamou Hanna om, o4 on om 0H 0 q d « N .3 H so latsuap aatqutou 02) 53 «mean Hauauuo» Haom mdoA sac caudunid mJMN _1_l (v r4 A.ouua\.pu .6» OH on ocapmcoo cam: na vamp» Handmauo one ca huox nod: gunman uo saga Haounv “ego. \uohu Hanan vcnun Hasuanou Huaoa on Q: on ow OH o q d fl auaao oaam HNfi-S'IA l .o. axed: as am L A.oa a. unauaso cacao choc» «a an casuaunzu nsooaao uaao o» canon 2: a. undamaoo uaon aw mmaao Hausaxoo Haouv «choc \aoua Hanan wanna nusuaoou deans cm. 0; on ON OH - a a . q nodHo ouwm MJMNH 00A one x013 g Karena? OAI1'I08 £8 53 5% fiztcuop aatuuteu A.0uoa .yu .au cm as wanna Hacamauo on» xao mafia: mo noun Hanna «0 an sasbuMCa noun Hanan vane» anuunmu “a an «councoo vac; a“ cacao anuspxop Haonv ”who. \aoua Hanan ucaan aazvauou diva? om1. 0:. On ow ca 0 G d 4 onqao oaam mcna ado coup: Aoohoa\au .am ow a. nae; «5 case» aquamauo ca xuo was go noun Hanan «chow \.au .an ooH an acaaucoo vac: ad noua Hanan wanna Haaovv “who: \uoua Adana vane» Husoanou Hooch OM11 04 on on on u d d d - unaao ouam um.oA xdo cox .l it latcuap OAtfiit'H {R 53 o \n O H lztcuop aAIzctou m H O N m ANA r. 2271:; :._ :2» .31. 1:115:33 5:11.935: 31.3.5951... 959.5752 .33.» 2.5.1.: 3,331.72...) 225—5225132222 .1: “9.2.37“. 52:5 2.7.5 Adv :2 :91... 2.75.» A: 53.... 91:1; 1.5.1.157. L 322% .ozaw Amv Cw viadCu Afiv ECL. 01:3; momma—u 15.22.55“ :Cmv 42.1.23: s: 230% a.3 :3: .T::.,.Zx 5123:0933; :0 Coin: .3237. 1:24.523 3.: :2. 1.37531». a:202.273.7295 .3: .23 3.5: .32 «5.2.. :73: :21. :3 H ~93: 13.23.. ...: awaits: 3.: 21.75.. 3: 23.5.5753 12:72:: :5 TE .C_ 3.231.. TH '- 1223 T8 .3 8.“ an 33 [.50 £800. "Ewan 23 mo oqumoHo Human ”upon «0 an aquamccu damn ma whoa\uoha Hanan vcapm Hmsvwn Imu Hmaoav uncappso whammy vcavm «nu cw xmo was no wuoa\aos¢ flammm cm, as on ow 0H a condo ouwm xmo vow L o \n 53 E} finsuep annex H N 9" J Ifi \\l\ H} 5479““? 35113133 0 N In N waapaso «gamma unaa» egg a“ nahuamnmm mo whoa\¢opa duodm fioamoa l1 A 1 u 1 o O H O N Kuwait) aunties ouqao 3938... S8 .. O .17 O In nahuaunum p A.m pm mnuHo ovum «H pa unwanaoo cam: ma upmuamnnm nsoonwoaao on 583 3538 8&3 33m 2» ca xdo cpfizz mo ouoa\aona Hanna om on on on 0H 0 qt I q T J L ux S 8 unuao H9333 Sow ._ 38 03:3 m N Aoo an pcavncoo can: nu one: \uoaa Hanan vane» Hasuwoou Haaovv 3533 £83 33a 25 5 shone“: gunman no oaoj\qoua Hon-m 0 “WI. mg on cm on o d a u m w m OHWM. a m a m a ...». M PA N use 88 8 H fies? as. 93 mm 7o an #5988 Ban a dude» Hasvamou ogv no chafi\uoha Hamapv Mmcappso ououon pecan on¢ cw xmo xoan Ho ogoa\uohu aanam 0% 8 9 3 8 o q d :1 q u H N m am £9.th cannon and—”o flauspxuv_nwom Q: :8 x28 om 121 The stitnu: affinity (31 white (nut reproduction to txunwu: soils and otherwise poor sites is not surprising since this species is one 01 the few associates of black oak on Plainfield sand. However, the ultimate adjustment of this species to soil and site factors in maturity is ap~ parently quite different from that which it exhibits in the seedling and sapling stages. White oak in the original stands is associated with finer textured soils (Table 7 and Figure 7). although it is not :ignificantly associated with better sites. This indicates the ability of white oak to become an important component of the more mesophytic oak stands. despite its relatively poor representation there during the initigil ituuuteratitni pericnl. On etuuwuj tcxtutmxl soils. {Mirticulaidy' Plainiield sand, it is reasonable to assume that white oak will de- crease in abundance with time, giving way to the more rapidly growing black oak. In general, white oak will in time ascend in importance on finer textured soils and decrease in importance on coarse soils. Both total white oak reproduction. and white oak basal area in the original stand (Tables 17 and 7) are better represented on soils where tJie (k3ptli tC) Cfllt'aYCTHlF stdjstiiita .is ltgss thail‘12 izu hes. 111is tx)in~ cidence 01 distribution reflects a pattern influenced by seed source. chveywai', tlitr dlt=tl'11n1th)H ()f stusd SCH1F(WJ 1:; ltgss inttyns()1y' tited to thc‘ distribution of the larger white oak reproduction than to total white oak reproduction. This is indicated by the relatively smaller stand- ard partial regression coefficients for the two larger size classes. llowwcvca‘, tlie taro laiwzei' clzisstss tire (list.rilnitcwl inchgpcuidtnxtly' oi“ dtq)th to calcareous substrata. We can conclude that sooner or later the as— cendency ot white oak to a dominant position is most likely on soils 125 \vitli tltitutet‘ scila. Sittccr all. oi" thc: stxils \Villl stila..lese< tlian l2 inches are relatively fine textured (classes 1 and 5). this is in cen- eral turreenuutt witli oui‘tutdersttntdine;tyt whitc~txdt succtw—sional tiro- cesses, i.e., an increase in relatiye abundance with time on tiner ttx- tured soils. and a decrease with time on coarse textured soils (classes 1 and 2). The analyses oi topographic tactors (Tables. 18 and 19) indicate that white oak in the original stands is best represented on upper slope positions, although slope position was not statistically sieniti- (Hint ltir ziny' ol‘ tlte rcfl)r0(hlcl.loll clzisstks. Chi tlte zivcaxaat-. htflVU\W Y. upper and middle positions were higher in rclatiye density than lower sltipes. Ill tlu} rcqirodtn;titn1 cltnsses. ItoIWli ana1w3nt ill tlie I ()riaituil stan1ds. In stumnarym tllLiHuHJQ whitt: oak (h;yequnm3nt is=twost l ilak lW?plTHhJCll(Hl siaatititunttlyw l. Increases with Hyears since cutting.H 2. Increases as coarseness ot soil testure decreases. . . . . 0 Q J. Decreases as site quality decreases tor the greater than 'I . . . 0.9-foot size class, but increases as site quality decreasts . n , , n H . H . tor the greatcn'tlnnt 3.9-teet and dominant size classes. .1. Dcwrreauees: as the) dtxith It) ctilcttrtxnis suibst ratii itu-rcutses. 126 Table 19. Summary of analyse; of variance showing d111oruncvs in mvan relative density of oak and hickory reproduction by aspect. Spooies Relati1:::knfi:ity per plot ” “2--.“. and by aspecta Multip1o range toyt size C1895 ..... "Ty-{31:81) 1%.- — ‘ ion—(11*:- F .05 lovclb 1113-; 1L1.) 21112.1‘L-221LW _1:_:.:~'--1_ (...-‘1--- Black oak ...-0.9 32. 1 111. 3 21.9 11 . 11101 141.3” 2159 :12 1 «3.9 21 . 5 7.1 18.6 7.88” 7.1 131.1); -- 21.3 Dom. 19.2 5.0 11.5 6.58** 3.0 11.3 19.2 White oak 50.9 21.1 18.1 38.5 10.L7** 18.1‘M21.1 38.5 *3.9 18.8 12.0 L9.8 5.15** 13;Q_w1838 29.8 1k)m. 18. 7 '3 J "2 12 b 131** '3 3 18 I -fiflg? :’ RCTl oak 30.9 11.5 21.0 21.6 13.80** 11.1 31;§.~mg};0 i-3.9 6.8 11.9 11.8 9 ())** 6.8 ‘11 8 _ 1*1 9 Dom. 5.5 11.2 10 3 2 93 Pignut hickory ~0.9 22.1 23.1 31.1 5.11** 8941‘ 25:1 31.1 3 9 19 1 18 9 31 3 1.07* L8;9_ 19;}. 31.3 1km; 15 9 12 1 28 7 1.10* _yé~tplj.9 28.7 No. of observations 190 41 £9 * 51;fl1lfi(£n11 at tln: 5 pozxxn1t 10101 ** Sign11icant at the 1 porcvnt 10101 a . ~——*~*-*~~" . Aitcr (arC51n _pcrccntago) transformation. Mtnn1s xuut tn1dtwhlincw1 b}' th‘ sanmz 111H) a1x: Figmiificmu1t11'(1111011111 a: the .05 level. 127 Table 20. Standard partial regression coefficients showing the rela- tionship between relative density of red oak and pienut hit1<011y rcn)ro(hicti(n1 arui FLMHC (hiviiwinnunital tatltirs. 1 ‘fi 01:31:91-1? \'a r i ab] 9; r1: 1 at_i*\2_#d:n—;i_1_1 _‘ 7 Ixidcu)einle “ 1 11111 cuik Pfiiciuit liit13. 9 1103.. 1‘ thirs siiicc> Clllthlg (h' .221** . 11* (1 (1 .1 1* Soil textural class d d .17* d d d Site class -.16** d .18* -.13* d d Depth to CGICGFCOUS d ~.32** -.19** d d d subktrata Original stand BA/acre ~.13* -.11* d d d d Regidual stand BA/acre .11* d d -.16** d d Residual stand BA in- (l (1 d d d d ,; 1‘()\\'1.11 Original ptand BA acre. .18** .12* d .30** .22** .20*‘ same speciesb Residual stand BA acre. d d d d d d . . -, 3 game rpecies Standard error 01 the 9.3 6.7 9.8 11.9 11.1 17.8 estimate Multiple correlation .303** .392** .299** .3511“k .216** .266** ccnéiiitrient (R) Multiple coelficient of .092 .153 .089 .123 .017 .071 dettuuninati(n1 (R2) * :fii.g1111$it:aiit at t11e 5 p131w;cuit ltgtw 1 ** Significant at the 1 percent 10111 a Ih)m. retkirs 14) (hnnin1n1t Insight cltiss. i.tu . tinses liirg11r lthH Hagan yilot Irkight ()1 all trees lairgei' than 13.9 ttwst in lnaieht. ~Same Sptwgies 1w;1e1we to sgnnxies giiven 115 dt1xnident \%lridblth c . . . _ . ‘. _. (d) 1m:an9 11119 iiuhapenchnit \TH‘ldhlt‘iluS lnsen (halettul 111nm tht~1w-;1r+s11nt. 128 5. IDet'rcnist:s 21s tlie t(H.al 01'igiiia1 sttUid liastil LIFC11 iiiciwgas12s. 6. Increases with greater residual stand basal area. 7. Iiiciwsas12s :35 thc3 brusal axwga ()1 retl ozut iiiciwgastn: 111 tlu: sttnid before cutting. All other significant factors being equal, dominant northern red oak reproduction increases in relatite abundance with time. On the average. it increased about fire percent between three and 15 vears afte3r (w1ttiiig. In 1w:fe1w:nc(3 to 17igu112 12. it edioulcl be [Mainttwl out that northern red oak is seldom encountered on soil textural class 1. chre\13r. tht) at‘tect. of siqte lias bcu5n 11el(1 ctnisttuit 1)y 1w9211ussi(n1 at classli Consequently, tor coarse textured upland soils. site class 3 (:(3111.(1 (1111 3 ()1 t 111' (>11 1(1\t(31‘ s 1111111 [1(1s i t i()11s . Ill ( ()11s 1(1111‘11111 (1111 1 stit'li 1(1cuit 1t)h5€. lilt‘ 111w51)a1)i 11.13‘ (11 e11c()u111131'111g' 113d otik 1n3111.13s Luiiws plausible. The red oak relationships in Figure 12 are nerertheless applicable to soil textural classes 3. l, and 5 on letel terrain. in atklit.1011 tc) («2rtaii11 otliei' (timliintiti(n1s 01 toxnigiuipliic zintl stiil parameters. 111 111(n111h (h1n1111a111 “()l'illcl‘n 11:11 tial; rc111()(h1('ti(1n slicnts a11 .11 ;1111 11 t.() 111() .1 1 11131' t.()>tt 111‘(9(1 :4c) 1 1 s'. i t i s n1111‘12 £11)llll(1tllll, (111 t 1112 11()()1‘(>1' s 1 1 12s within an\ ciren soil textural group. These poorer sites are repre- sented tu'tunxar slope positions for medium textured soils. i.tn. (sltisstss 15, 1. :in(l 5. 'Thc> alnart: 1131;1111N1s11111 d(n3s iiot a1u11\‘ It) stiils of textural class 1. nor probably to textural class 2. since red oak 1s seldoniiiresent,(n1 suc11 soils. Iflirtheimunwg. red tndt reproducii\'c>l()[)n1c1n t i s 1)c‘t tté1' (>n 11[)I)t‘l' 2111(1 1n 111(1112 s ltiziv positions. Red oak abundance was not signiticantly a1 tected bx aspect although north and east aspects were highest in original stand basal £1 rea . Total red oak reproduction is greater on the better sites, but is not sienitictnitly related to soil textuiwn Pawn” this we can conclude that. red cxd< aernflaiates LNld bettnm3s esttd)lished tni the luxttca' sites. bin. is [H)OFI} 3d£u)LCCl tor (LJVechNHCNl inlt) donni1ant repixxhtctitn1 theiwn Conqx3tition {Winn red nunile anc1131ack chcwav; in such 1(xuitions may partli'cnuilain 1111s phennmnena. Like black oak and white oak, the amount. of red oak basal area in tlie o1'iggi11a1 >:tzn1(1 zxtltact_s t11e 1()ltll anu3u11t of' 1wstl 021k rciixwwdt1ct itn1 \rliitsli (lCVV()l()1)F at t<31~ ( 11tt.i11a. I11 acitlit.i()n . 1nc>1wg 1w:(1 ()a1< rcq)1w)(1u<:t.icnz was round where the total original stand basal area was relativelx 1 (111 (0.1.2.. 60 to 81) square feet per acre) , and where the residual stand “115 rE2lziti.vc>li‘ liitih ((3.;1. , -1C) t1) (50 5(1ULIIW; 1cwst pt-r at rt-). 'Ttiis 1:1t11— ctittjs t11at 1w:(1 t)alt I‘UC1H1.rt35 a naithsz‘at.e auuatuit (it s11atle i()1‘ t'ax'ly tws' tablishment, but does not possess this same requirement as it grow- 130 older. The oi'ten prescribed shelterbclt s} stem tor regenerating north- ern red oak apparently satisfies these requirements. 111 stunnuiry , tlie IHBQltfllF ()f liiglugst [)otcnitizil IWJd ()ak 1w:p1w)dtr; ;(L: development LUT): upper slcnxw:(n1 sandy loams with thick. llnt'lL¢JIHVHl B lioitizcn1s {Hid (381(IUITNJUF sulistiutta ititliin 12 itichtw: oi‘ tht: sui'tactn Fox sandy loam is such a soil. {ed oak in the stands before cutting showed similar relationships to soil and site parameters (Figures 7 and 8). .8133L‘LKHBE‘IVL' -- Table 211 shows that the relat it'c abundante 0‘ pi gnut hickory reproduction signi l'icant 1y: 1. Increases with Hyears since cutting.” 2. Decreases as site quality decreases. 3. Increases as residual stand basal area decreases. 1. Increases as the basal area oi pignut hickory in the stand betore cutting increases. Assuming other factors: held constant. the increase in dominant pignut hickory reproduction was nine percent tor the 12—j-.ear period considered. Since it is the most constant companion species o: the oaks in the xeric southern Michigan upland. its successioral ttst'et=('1111<_'y is not surprising. The habitat tactors taken into consideratiot:. how- eyer. do not greatly influence pignut hickory reproduction. lotal reproduction shows an allinity to the better sites with little residual stand. It is also influenced by the amount and distribution ot pienut hickory basal area in the stand belore cutting. Although generally extendirg turther into the .‘~‘.t'l'lt.‘ end of the moisture gradient than northern red oak. planut hickory is also 131 t.Vpically absent on the coarse textured Plainfield soils. Nevertheless. its twalatiywaly"’low‘c:1iunv< achu)tati(ni nundxgr ot‘ fou1'. antl its txlsitiyta association with black oak in the reproduction (Figure 10) characterize this species as a xerophyte among the upland species. The negatiye correlation with black oak in the original stands (Figure 6), however. indicates ultimate niche differentiation and possibly intense competi- tion between the two species. Tkwtal. pigmtut liitlu)ry twsprtxhicticn1 wris, (Hi the? arcawigc), gthatca' on upper slope positions than on middle or lower positions (Table 18). Pignut hickory basal area per acre in the original stand was greater on middle and lower slopes than upper slopes (Table 9). None oi these difterences by lepe position was statistically significant. South and west aspects were significantly highCY in pianut hickory VPPVUUUCIiUH than north and east aspects. for all three size classes (Table 19). 13ut. tlie lHdlLlFC? sitintls sshtnvetl MC) sitiniflficwint dit feiwsntwas l)Ct\y0Ldl lH)Ylll anti twist anti scnitli anti “1391 asqiet ts (T:d)lt2 10). pggdwmaple. __ From the results of the analyses presented in Table 21, the following generalizations can be made. For at least one reproduction size class, the relative abundance of red maple reproduc- tion: . n . . 't l. Decreases with years since cutting. 2. Decreases as coarseness ot soil texture decreases. 3. Decreases as site quality decreases. l. Decreases with increasing depth to calcareous substrata. a. Increases as the total original stand basal area increases. 132 Table 21. Standard partial regre9sion coefficients showing the rela— tionship between relative density of red maple and black cheiafiy reproductiint and some ewndawnnMNttal factors. A v...— -~—c.—-—— __d~r~—-———.——-———" Dependent variables: relative densiti Inchapcutdcntt fl"-—*— _chml nuu)lc' ‘ BlLMJk <:htu‘ry - - variables (height in feet) (height in feet) $0.9 T-3.9 Dom.a l ,+Q.9 E 3;?“W,WJ%Q@;j Yeaxw1ssince tattting dc (l -.13* .16** (l d Soil textural class .26** .18** d .17* d d Site class d d —.18** .23** NS .13* Depth to calcareous d -.l5* —.l7** —.l7** —.13* d substrata Original stand BA/aere d .ll* .ll* d d d Residual stand BA/acre d d d .22** .15** d Residual stand BA in- d d d d d d growth/acre Original stand BA acre, d d d d d d same speciesb Residual stand BA acre, d d d d d d same speciesb StiNldalTl<3PrOF CM" the 13.6 11.8 19.5 l9.ti L2. 1 '2l.l eStimate Multiple correlation .262** .323** .321** .376** .229*x .126* coefficient (R) Multiple coefficient .068 .10-1 .103 .1712 .052 .Ulfi of determination (R2) —..___ flww ___. ..-. q. fl. Fifi—W —_* rgm —* * Significant at the 5 percent level ** ESignifitxnlt at tlu3 1 DOIKKNTt level a . . . Dom. refers to dominant height class, 1.0., trees larger than mean plot lnéight ()f all tthas largei'tlunt 3.9 fawn. in height. Same species refers to species given as dependent variable. 0 . , . . (d) tnchIS tliis 1n(h3ptu1d(utt \uirizfl)le lias lxaen (lel()terl ltwnn tlte InglWJ>Sl()H. 133 RLTl nun)lc* is trng tflll}' U[)lun(l S}H:Ci(:$ \rhitli slMst a rsiaziifit-ant decrease in relative density with time. Other factors held constant. the dominant height class decreased ten percent during; the lB-year {Mariod (TNlSldPIKXl. It 11ndrtantw3annong'tuiland reproduction. but is in fifth position in the stands before cutting. Iierochict.iori is: usttal,ly :ibstsnt 01' DCK)F1}' rtqirtwscntt d ()n Plainfitflxl soils. Good sites on soils having sola 12 inches or less in thickness support tlnslnost imulinaple reproduclitni as well as the most ixwlnuudt- ill the ()riaiiuil stzuids (lld)les 7 anid 8). Howtwwlr. srnl texttnwn is a better predictor of red maple density than site class for the two more inclusive reproduction height classes. lithl inzi})1(: IWJ})IWD(lllt'I.lt)n \Vtis‘ Il()l. s igirii f lt'alli l }' 211 l<3t t twl l)3 s lt)[)t‘ position (Table 22), but was significantly greater in relative densitt on north and east than on south and west aspects. for all three size classes (Table 23). In the original stands, red maple was signifi~ cantly high in basal area on lower slope positions than middle or upper [Masititnis (lldile 9). Neiwli and tQD‘L aslun ts wtqw: alsC) ‘lghlli(1fllll§ higher in red maple basal area than south and west aspects (Table 10). :XHKJngz tin: stJVt9n $[)C%'l(39 Clldl‘atflffl'l81.l(‘ ()t tlie XL‘Flt' c)al<-tu)l;in€()li tLC) l)()i li () l t lit) 1 511 t (Fl' s [)(‘t‘i (.9 , l‘t?(l Hl{l[)l (? i‘txcllii l‘t'ri ti l)('i t t‘l' s i l(‘ IRJr optinuil devcdtnnnent. Sut11::ites “(Hlld be iwqiresenttwl b} loth' sltipt‘ ptnsit itnis ort Fk)x £1H(i Btnvei' s()il:s. “lueiwfias rtwl tuik rtqirothtct ior i s l)tu4t rtqir<~scnittfid \Vht‘PC) tt)tail ()Fl;;lllal stzintl lxisttl t111~a hgis l)r‘1l Table 22. relative density of Summary 01 1‘0 131 anal3su3s of \eriaHCWD showiini dilttiwnices d maple. reproduction by slope position. black cherry. in and 11‘. t’ " C1 11 sassalras r‘._._fi._- f test Speciesw777 Relative density 7. ‘0‘"—uu—-1 ancl DCI'I)101 Bhtltitile lantee s i ze C. l as s b _v s 1 ope t)o_s_’i_t‘i‘(;)na_- F .05 level b _(lrtL‘ill I t.2“ _la:\w31 11p})gg;_fl_§li(hil(:___153w191 [ _- J_ ‘_ ___ -7«___ Red maple ‘>0.9 20.8 31.6 31 6 33.2 5.19** 20.8 3L;6_-3L£i_ ;4$.9 21..5 32.53 31 1) 151.8 13.61* 21 5 ;¥{;§ ($1.0 Dom. 19.9 33.6 32 0 33 1 3.72* 19.9 33‘6_ 32 0 Black cherry L 0.9 17.2 15.1 11.8 -13.1 (1 57 23.9 52.6 19.1 10.9 46.7 1.83 Dom. 17.5 11 2 30.3 K5.l 2.16 Sassafras i-0.9 36.2 38.6 30.5 33 7 0.70 i=3.9 32.6 IfiJrl 31.1 31.9 0.61 Dom. 29.8 10.1 31.1 29.7 1.03 No. ()f Observations 190 18 39 23 * Signtiticant at tin: 5 percent lawmfl ** tiianifitxnit at tlua 1 peimxnit levcd aAfter (arcsin ‘EZFZZKtage) transformation. MCQUlS rant un(k3rlincxl by 11M: sanK? lincrzire 51£U11f1C1U1113'(iilfvlllfl the .Ogiev’el. 0 ill 135 Table 23. Summary of analyses of variance showina dilterences in mean rC\laA.i\%3 (kanscity' 01‘ 112d Inatilc'. lilacii (iici'ry. antl szissziltuis reproductitni by aspect. _.____._. ~._.. ___--- _. - V- M’— ._- .—_7-_ ___..—— ‘- S})et‘ités 7 Ilelgit—iyws (letisi.ty' ptlr [)l()t 5111(1 - l)y‘ £185[)L’('1,£1 ‘___ _ _ . 11111 t i [)1 (} l'illl;§lf t t-s t size class North & South & F .05 levelh 1.131231-0-2-1.1533:1 _ 4:32;, ..gwt a, m _ We,“ 1. _ Red maple “0.9 20.8 37.9 21.1 11.86** 20:8_ ‘21:; 37.9 n3.9 21.5 37.7 21 1 10.91** 21.1_~‘21:6 37.7 Dom. 19.9 38.8 22.2 9.08** 19:9 ”22.2 38.8 Black cherry '-0.9 -17.2 ~16.8 37.9 2.10 ~~3.9 52 6 50 1 37.1 1.33* 37.1 30.1_ 32.5 Dom. [17.5 11.5 29.1 1.18* 29.1 11.3 17.3 Sassafras 41.9 36.2 33.1 37.7 0.11 93.9 32.6 31.2 39.3 0.80 Dom. 29.8 32.1 12.1 1.85 NO. 01 obstnwuitions 190 71 39 * Significant at the 5 percent level ** Significant at the 1 percent lcwxd a . . . Atter (arcsin (percentage) transformation. b . . . Ekjans riot tindti‘lincml by lhc‘ sanmr litnfi aim: silutiticmnttly (lilltww at an the .05 level. 136 iwglzit:iywrly' ltnw'. 1fc(1 Uta})1£) i.s bcist_ t'efirt=stnitt:(1 “11(*F(‘ [(11211 01'1L111131 stand basal area per acre has been high. This reflects the species’ 1w31atitwg lOlLdYNlCC tt) shack: an(l alst) atttw:ts tt) the iHHH)FthLI‘()1 sttutd cluiracttn' beltire cuittitu: in (hflcrnddling llllUlT? statul couauisiti(nt. Total red maple reproduction is quite ubiquitous in its distribution. and is significantly related only to soil texture (Table 21). Black cherry. -- Table 21 shows that for at least one size class, the relative density of black cherry reproduction significantly: . H . , V! e H l. Incawaises wiiii years FIJNJ) cutting: (tor tlna greath‘ than . . H 0.9~toot height class ). 2. Increases as coarseness of soil texture decreases. CA2 Increases as site quality decreases (soil texture is held constant). 1. Decreases a depth to calcareous substrata increases. TI. 0. Increases as residual stand basal area increases. 113ta1 lilatii cluarryj FC}HT)ULK311011 restn>nds to tin: C(N1$1(REFC(1 en— vironmental factors in a manner similar to that of dominant red oak I‘QI)F()dtHJlHICH1. 1301 h H})C(§it?? illtl‘ULliL‘ w itli liluc’ arid ai‘e bn1€1 rtqirt~stnttt d ()n [H)()F(31' :si.tcts w it.h t lIItBF tt35;ttti'ewl stwil s attd ezllcrat‘caitts sttl)st rtitzi \vitititi l2 ilflthth ()f thté FLIFItJCC‘. 111 atldi_ti()n. t()ta1 rcj>rculut-titut (if botli specicu: is 1M3st imqiresenttxl whtawr resithutl stancllxisal aimui is liigh. Thawevca'. the zuuilysis (Tlflile 21) shows cunninant lilack tiwrrry I‘€‘1)1‘()tlttc:t.i.()tt I‘()r€[)()11(1t3(1 ()111 3' t_() 5:1 t (3 (; l;i:<.s . lvts ('11:) tj()llt 1 11(1() t 11:11 1111c‘1't‘ lilack (flierrw‘ is lysst :H)1c 1() CSILH)11§11 itstdl' anti survitm3, it is: not necessarily best able to achieve dominance. High residual stand basal arcwi in tiartititlat‘rnay'ttot {kivOI'lilatit chti‘ry (hcvcltunucnt. In 137 contrast, red oak prefers the best sites for initial establishment. but fUlWJlGF (hjvelcnnnent 1A5 best (xi poetwar sittnsyyithin tin: tincw' textuitml soil'groups. Interspecific correlation (Table lb) also indicates that establishment and development of northern red oak reproduction is not coincident with development of black cherry reproduction. This rela- ti(n1shi[)rnay In: due? to TN)Ih cannpcd.iti(ni an(liiiclu3 dillkarentizition. The distribution of black cherry reproduction is not significantly afiected by slope position (Table 22); south and west aspects are, however, significantly lower in relative density tor the two larger size classes (Table 23). In the stands before cutting, black cherry basal area is on the average greater on lower slopes than elsewhere (Table 9); north and east aspects are also slightly higher in black cherry basal area than south and west exposures (Table 10). These original stand differences are not statistically significant. Total black cherry reproduction is extremely abundant in the re- production after logging, and increases with time. In comparison. the ()aks £Uld [iigntrt hitdtory'zire [)rcstdlt ixi‘veiw' low'innnbeiwe. Tdugse lzittta‘ species are, however. ascending to dominance as evidenced by the suc- cessional trends in Figure 13. The majority of black cherry. however, are liJolly to iwnnain uruharstory scmnilings anclsnuilings. only‘ occasionally escaping suppression to develop into mature trees. The conditions responsible for black cherry development remain lzirgely'tuut lllfi? F})€t:i(35 c()ns:icle1‘e(l. Sassafra5. -- In Table 21. the multiple regression analyses show that the relative abundance of Fassatras reproduction Signilicantly: l. Decreases as coarseness of soil texture decreaces. 2. Incrwnases as tin: baSal thCa ot'suasaairas ill the stanrllxrtorc cutting increases. Other than black oak, sasgafras is durenly species which shows an affinity to coarser textured 90115. Its climax adaptation number of Table 21. Standard partial regression COUIfiClt‘IlLS showing; the rela- tionship between relative densit} ot sasyatras and Anerican (dhn reproduction and some environmental lactors. _ _ _-___ ___‘ -_. ___—___ __t- _ ___—H. _—.._ ___.__ — ‘__.__ — ‘ ___ “... I)\‘I)t‘ll(it‘lll \';11'i Lll)l L‘Z 1's'l Lil i t t~ (lt‘r s i t 3' IHdLflNBHdCHt SdfirtlfFaF Anan‘h an tlxn xnirizibltss (iltitfllt in ftust) 1 (ht-iaht 111 let-t) 0.9 3.9 Dom.‘_ L '-0.9 3.9 pm YLHIYS s¥incx3 titttiiig (f. (l (I d d d Soil textural class —.23‘* -.16* d .17“ .ll* d Site class d NS I: d d -.19‘* [Msptfl to (ullcaiwxaus d (l d (l d d substrata Oldirinal ::tan(ll%\/actw~ (l (l (l (l (l d RCSlthHll sttnui BA aLJW) (l (l d .18”k .17‘* (1 Residual Stand BA in- d d d d d d groutli«acit- Original stand BA acre, .3U** .21‘* .12* d d d same specieab Residual stand BA acre. d d d d d d same specie?b Standard error of the 16.7 19.5 21.1 6.1 6.8 8.8 eFtimate lltil t i;)l.(> (ft)I‘l‘L‘1 zit i()11 Coefficient (R) .385** .272** .llfi* .260** .236** .186‘* Multiple coefficient .118 .071 .021 .067 .036 .Ul‘ifi . . . . 9 ()t detcuvninatitnt (R‘) * Significant at the 5 percent level ** Significant at the 1 percent level NS Not signiticant a t . . . ‘ Donn rettnwé to (hnninant In ight ('lavs. 1.e. . trees lairgcr tlnu: mtunt plot height of all tree? larger than 3.9 feet in height. b~. - . . > - bann) Spfm‘les iKTtelw: to sln‘citw- g1\tfll as (h‘pwn(kfllt \xn'iabltn C(d) mean; this independent variable has been deleted from the rearc9rion. llO oru: alst) atttnéts IA) its: xeituniytitr natttre. Sassuitras tanirothugtion {Nld original stand basal area did not differ significantly by slope posi- tion or aspect. However. upper slopes and south and west. aspects were. on tlua axweragc‘. Sligflltl}'llightfl‘ in IKElatl\W: dtanéity tluUi elSCMlHFFC. émeriean_elm. -— Table 21 shows that the relative density ot Amer- ican elm reproduction significantly: 1. Increases as coarseness of soil texture decreases. 2. Decreases as site quality decreases. 3. Increases with greater residual stand basal area. Ir) gentutil, Amcadtuni elntuzu+ poorlt'iauiresenttal in the twqiroduc- tion on the study areas. Nevertheless, it is commonly abundant alon g the edges of oak stands which border wet or mesic habitats. Occasion- ally':it atfliietw:s inux3rtantwv thttntghcntt rttwnitly tattovtw' Xeidt: conmnnti- ties. Nevertheless. it is unlikely that American elm possesses any rtsal p<)tcaitizil It) l)CCK)mt‘ art inn>oiftzutt c(nnp(nie11t \vitliixi tuit' ol‘ tlie stands studied. It is. moreover. a species typical of mesic and h§dric conmuurities. as its=tglhnax adaptation nunflxa‘r)f 8 indicates. The analiwuas of 11H)le 21 iaulicate tluit Ameidtwni elnliwq)roductitni. in gen- eral, is best represented on the liner textured soils and better sites. It zilso is nunx: abundant tuncrever resithuil stand basal {HWNJ per acre is relatively high. Eit.ttn1;) s:;)i'()t1t s Of the 2.120 stumps. of all gpecies examined in upland stands. 568 or zflxnrt 27 ptimxnit bore litdaug sprouts. 'These provithl intormation lll on frequency of sprouting, sprout height. and number of sprouts per stump in relationship to several other factors. Perhaps tlngrmast apparent inalationship was IAN: relatively low ire— cpiency’ of ssprtnttirn: anmnig tlu: laiauér dizumater (:lBFFtfié. Ftnnf HDCClt§S (white oak, red oak, black oak, and red maple) exhibited significantly lowered sprouting ability among the larger diameter classes (Figure l6). Pignut hickory was the only species to show no significant differences in sprouting by diameter classes. However. red oak, black oak, and black cherry exhibited a lower sprouting frequency in the smallest di- ameter class (l—to 8-inch) than in the next larger class (9— to 13— iiushl. FOI‘ red thld lJIaCk (nut, ditlkgrencxgs btnwveen tlnsse twt):=ize classes were not significant at the five percent level by chi square. Black cherry was not tested due to inadequate sample size. In general, it has been found that the sprouting ability of oaks increases with size up to about five inches in diameter (d b.h.) and decreases above six inches (Little, 1938; Roth and Sleeth, 1939). I’retpieaicy' oi‘ blzu:k r)ak tln(i wliitt: ocu< stircnitixn; wuis zilsC) relzitetl tt) setKJral OthPF thicttirs (Tzd)le 125). [h3tt1 spam ies espitntte(lrnoim> flag- quently on poorer sites. However. white oak sprouted more frequently on liner textured soils within the poorer sites. Black oak sprouting was also related to residual stand basal area, and showed greater sprouting where residual stand basal area was higher. Frequency of sprouting for other species was not significantly related to the en- viiwannmnital ;factt)rs (KHisichsred. In Figure 17, height growth of stump sprouts is graphical‘y shown in relationship to age of sprouts. Data are based on the height of 112 Figure 16. Frequency of stump sprouting by diameter 0139595. (Chi square analysesare summarized in Appendix 18. BC’ : black cherry, RM 2 red maple, R0 : red oak, 130 black oak, wo : white oak, PH = pig‘nut hickory)- s—-—1—— q..- _ _, to .0 . "I WHITE OAK RED OAK RED MAPLE PIONUT MICKORY l sausacasgl 1 O 4" 3'” ll-ll 19'?! 4-8 9-13 ll-ll 19-23 l-B S'IJ ll-IB 19-23 h, I. O. BLACK CHERRY BLACK OAK SPECIES TOTALS 12 PERCENT OF BTUMPS BPROUTING I-l S-IJ “'1' ”-23 l-I 9-” 14-" "-23 BREAST "EIGHT DIAIETER CLASS "I INCHES I 'SICNIFICANT DIFFERENCES AT TRE 5 PERCENT LEVEL BY CHI SQUARE 0. 'SIOMFICART AT THE l PERCENT LEVEL I“ 'NON-SIGNIFICANT 2] NUMBER OF OBSERVATIONS El ”0 TEST OF SIGNIFICANCE DUE TO BIALL BAfiPLE BIZE lll Table 25. Analyses of factors related to stump sprouting based on multiple regression. _—__._____—_fi_—. -__..— Iiidtqaelidtuit variables l ‘— Soil textural classa Site classb Residual stand basal area Age of sprouts Site classb Original stand basal area TIWDC (l.b.li.. incdies No. of sprouts per stump Age of sprouts ’ Site class Original stand basal area Tree d.b.h., inches + sitniificant ++ Significant — Significant —- :iignifichit at at at at n I)t1)tni 119g1w3ss;i011 LN€tiJfldt (191Q5l tunne tr) the opposite conclusion studying resproutithr of young oaks 13 years of in aat> in séoutlieini Ntwy Jeiwnsy. .Alsti, iii the tirestnit sttuiy, wliite (nut sprouts grew faster on better sites. Sprout height in black oak. how— ever. decreased sienificantly as basal area of the original stand in~ creased and as the diameter of the tree increased. Nundxer of swirouts [Mgr sttmn) decimnised witii aue (H‘ the FIHTHIIF ior bitudt. whit(3. anti red cudis (llflile 25). Trecrtl.b.h. \yas innuirtant (wily for black oak in regard to number of sprouts per stump. Red maple had more sprouts per stump on poorer sites than on good sites. and also liatl nu)rc‘ stirOttts iii stiin(1s \Vht'FU thtf oi ieiiial sttnid liaszil 21FL%1 wtis HIWJaltFV. 'th‘t)ppt»:itt>\yas truer tox' rtml 0td<. wliiclitaxhiliittwl tewtgr FprOUts per SIUHU)\HH3PC the original stand basal area per acre was high. Pk)r all ziges txnisideiwxl, red nuuile tux ragttliiine sqirouts in-r stunn), whereas all three oak.species averaged between three and four per S'ttinn). Ill atkliticni tt) thx) tactt)rs (%)nFl(h3FC(l in tile [Jrestnit stitdyy stwwiral (niusrs have-inuni shown it) influenccfswiunp sproutiiui. Seastnitwt cuttin; is paiwitiilarly innxnrtant. Gentwuilly trees th.(htring the (knwmuit sea- stni pixxhiee 21 gitxitei‘iiunnxfir BU(11HUITJ viguiroUs= FptTflltS tlian tlnise ctu 119 during the growing season (Clark and Liming. 1953; Diller and Marshall. 1937; Ford and Snow, 1951; Roth and Hepting. 1913; Roth and b'leeth. 1939; Stoeckcdtnr. 1917; Wenger, 1956). In the present studv. however, seastni ot tilttiiu; coulaa= ouuum cauasoqx Asoauuoz can oncoHom Hwom no nuaoauuuaoa zufinuc>uua ouaum aduanoul Iona cox.» oua mucosa: anon» uaolouanal diam: .mn¢A “Annodv acqu¢0nunuoano a.uuou< can uouho no nousmu .unouo cauaaoni .nouuuazlloo 8.0 0:50 and. «o abunnnoula . Ivgfll Gun-0" adio- voaaauv Agency tuoaflu and vousu lac naonuOI< .nua m ca 032: 53:250.: no.9: page 3... o» 03 0.3.30 1.80 you: :0! 5003103.; 03:: 3:330:30: Anna» uncuvwnu no ouauuua aaoum a «cadence find Aan uo>oaoo can uuouauon human 0» :uouado .UOODunda voonouda toxulv couuo “unevenna manque: nunaauooa coon auo> “Aauv and“: m uoao~o>ou flack macaw-aooosu aao«uo:< .zoooa canal hams-ulna vooannan u0\u:¢ .sooon .oanae unmam cu coon "Anny onavmaaun saw: madam huge: .auauonaoh ndouuol< .xuo Gaunt v.» ahogauoz .v .3an “Aauxnv «can: unoaauo: .hanuuevn: Danna canon “mucuu “Aanv cannumaul n uono~o>ou Idonahonnos flamenco xdo Iuo>o can aneunuwuns neon nu ouau .ooudadadu n~0b 0a undue! .nnu Dawn. .aauuda-aa och nhonuLOB no ascend wanna human “undo ooh and woe» .xou “Anew new: ul¢o~ henna .huuozu Joana .o~nal undo onus} .ouqni .xoaan no uncleanaou ouoHnlou 0» Isaac: human .OIOunuo wad wanna undo“ uaondlhpn non .thJOwa vacuum undo sedan .n unon«uoa m uono~o>ov ddfli alfld thfiOflfllufigflQ .mnOunuoun: sauna ounce nouuu saute. Aavv almanac nag: «luau hvnao nahN¢QQUI .huuono uxdo ouant ho Havana canal henna van :10 on: o» goon .usuanm .ulonoo and none. aided unondflupm xueun .ouaafl tom Ixao souam .n .nsuna uadvcsna nu anyonosan “chug no unouna cunts human and .OHQaI no» .xao cop .suoxo«n assuan manna“ goon 0» Aao.nv odaa>xao unguauaau ano o»«nu utOOu sac ouant no mucunuoun: canon goon auo> .uno«u:«n~a macaw usage-hem .huuono sedan nxuo 801nm .a n.0c asouu Aquacual moaunquuouuaso ooze «mono» unmamu unoaobmnua duo» huaiuun «a acauuoooau no«oonn ooh» bongo euqm can nouuoa “wan ouauxOu cu ocean vauauocnu< onaa «wagon o>«uauaonouqom o>wuaao¢ coinsooo aaaom .mmaxu ummhom xmo fimwwsoflz GMOSaZOm MO GOH#NOHHflmmmHU < .ON mHDmB lSl on (Hiseiwwaticn1s (hiritui thtrlirestnit sttuly arm! is iturludcwl tor ttflfl)dFa” tive purposes. Recognition of forest types is based upon the presence or absence of one or more of three species. together with an appraisal of soil texture. Oak type 1 contains only black oak and white oak as primary dominants. Type 2 is differentiated from type 1 by the inclusion of [Jiggnttt lll<3kt)r)', zinc] (lif‘felwant.iat<:d frcnn ty1)esa 3 zan(l l 13y Lht? al)>tfllcc‘ of northern red oak and sugar maple. Type 1 can include almost any combination of oaks and other species. but is characterized by the prevalence of a typical mesophyte, particularly sugar maple. either as 21 donnaiant,. StH)d0ndJlanl . or ill the twuir0(hu tion. ’Thc>})re\uilenc()()f American beech or American basswood could also he used as difterentia- titig quCCJJ s ilt Otdi t}])C -l. 'fhtns. {iigrntt liicluiry. IiOIWIieiwi rtwl ordi. and sugar maple (and or beech and basswood) have been used as "differ— ential species” (Brauh—Blanquet. 1951: Damman, 1964). Differential specitw; are luarein (h thied as tlu)se whicdi diffcawnitiate one (txmnunity from one or more others. but do not necessarily dilferentiate one community from all others. Using the suggested scheme, an appraisal of oak communities for purposes Oi classification must also include an assessment ot soil textuxcn 'This is (W%%Hllial becausc‘cnua of the difftaxnitial species tnay , by (flIQRCTB, be adisent. frontei coumnutity ik)r whitli it is 1K)tentizilly sttit es t tt) (li f ft‘l't‘lll izit.t3 c()1n1ntttii t i (is litistrtl F(ll <-l y ()ll 155 the differential,species. Table 26 enumerates the soil series most characteristic of each forest type. There are undoubtedly other soils whicfli coulci hayc*lm:en nunitioncxl. llua soil tnanagenmn1t aroupJINmecrs (Appendix 20) may also be used to categorize soils in classifying oak types. Implicit in the classification has been an assumed discontinuity in tlue distidlnition (if ththe key sqnacies: Iiignut liickoryu IM)rthern IWNi oak. and sugar maple. A further assumption has been that the discontinus ities are directly related to available soil moisture. which in turn, is assumed to be related to the defined soil textural classes. It the assumptions are correct. the extremity of a given species' distribution toward the dry end of the moisture gradient has been placed upon a physiological basis, i.e. drought resistance. Little drought resistance information for hardwoods is available beyond that which has been in- ferred from ecological data. Studies of the kind undertaken by Bourdeau (193!) wtnuxilyr required to determine the actual physiological limitations of species. Of tin? abOVC‘HMNlllONCd anunnnptions. [n3rhaps tlu3yw3akest is tliat of available soil moisture in relationship to soil texture. Although total rnoisttlre (nuttent (3f soilse inCITHIECS 2n: the cltiy fractitni in~ creases. water available to plants does not increase proportionately. In iiict . FITNlZHHBiCI'_;£ 511' (lEHSO) liavee shtnyn tliat .'rtwulily' ayuiilaflile .. . 6 . . . . . . water capacity" (RAWC) is greatest for sells high in silt and very —‘_.—.-‘__ a ————- ‘fiuw- ..—_ 6 . . RAWC is defined as the difterence in weight percentage between the Water content of an undisturbed soil sample at 0.06 atmospheres ten— sion and that of a disturbed sample at 6 atmospheres tension. 156 .. 7 . . . , . tine sand. Although RAWC increases in L;Olllg from sands to loamy sands. it decreases slightly in going from loamy sands to sandy loams. Perhaps of most significance. however. is the fact that. in sand. loamy sand, and sandy loam textural classes, RAWC increases with decreasing sand size. This indicates the importance of determining particle size distribution in the sand fraction. Also, sandy clay loam, a common textural component of B horizons in textural class 5 (line) soils, possesses a RAWC value identical to that of sand. How then do we ac— count for the existence of the more mesophytic species on the finer textured soils? The answer may lie in the retardation of water more— nuent tlircntglniut, tlie I)lK)fj.l€¥ by' tlie lillc ttntttlrcwl stlbsuail.s. twitliei‘ tliari beirq: a clirect {Nineticni of tln: wattn: availzfl)le walliin tlu2 fine tcvxturtml luarizons. The acceptance of a discontinuous distribution of certain species may seem to imply that these species either will or will not occur in ea giywni CCHlCITBIC (somnnuiity'. 1111s \yill selchnn bcl the (1180. Souu: in— diyithnils of cunnarently'LUtsuittwl specicwsyrill otitni occtn'ttithin :1 community by chance. particularly among the reproduction classes. Hangarogcnueity'(>f soil . antl()f sgxrcicu; whitii othcnwrise wtnlld 1x3 ill-+wtited t() the site. But rather than give equal consideration to ”unusual" situations as is normally done in ”continuum analysis,H classification presented herein is based upon a Hcharacteristic site." A characteristic site would embody all of the features of a stand occupying a position of 7,. , . i . . e .. , _ LSDA textural classes, L. S. 5011 Survey Stall. Soil :PIXX}.393231° U. S. Dept. Agr.. Handbook No. 18. 503 pp. 1931. H H . . . . . c1nttral txnidency' \Vlthln canal class=<1t vegetaticnizind habitat tjnarac- teristics considered. This is the underlying idea behind the more statistically formal attempts at plant community classification using multivariate analysis (Williams and Lambert, 1959). Successional Possibilities in Relation to Oak Types The fundamental utility of the forest classification scheme pre- sented lies in the recognition of the inclusion of increasingly fewer numbers of potential dominants as we proceed from mesic to xeric habi— tats. Oak type 4 occupies mesic habitats and is the most ecologically complex. The number of species capable of occupying such sites are numerous. 'The prevaltnuns of sugar maplciznultar other tolerant mesos phytes. (aither as components of the overstory or understory, indicates their potential to replace the oaks. Consequently, the successional status of oak in these communities is temporary. Silyicultural mani- pulation and prediction of stand composition atter cutting is dilfi— Cttlt. TTiis \yasr extnsricntccml by‘ Gannnon (at :11. (l9tfi)). 'Thcn‘ sttulietl re— production trends after clearcutting in a red oak stand on a wet-mesic site. The composition of the developing reproduction bore little resemblance to that of the original stand. Sugar maple and white ash wcwwa asccnuthig to (knninancy; This (KMHDOSllilfilal outtmnms, howtn13r. was but (nu: of many [Matential Ixxnsibilities (Hi this sittr In general, it can be said that maintaining red oak in this type is difficult because of thcy tcnidtntcy' fox‘ FCWJIQCWNHOYH. attxsr titttitn; by Inelwe tolt rant halal— txoods. Neyenalualess, tlusse are tln: most liroductiyi:taak conmuntities, and generally classed as good to very good sites. 158 Oak type 3 possesses distinctly fewer possibilities tor diversifi— cation of species. Here the meaningful question is not so much ”what specicmstyill succeed to dominancy?” as ”what will be the proportionate distribution of black, white, and red oaks. and pignut (or possibly shagbark) hickory in the new stand?H If there are available seed sources, it.(listifiibutitni ot ()ak and hickory species is likely to be quite different from one generation t1) the next. 13M: present stuth'luas accounted itn'(Mily a small fraction of this variability. In regard to reproduction patterns for most spe— cies, uncertainty outweighs predictability by about ten to one. Nevertheless. of the tour oak types, type 3 probably offers the best oppothuiity fox'tiffectiyw: and tmxnnmnical (Mutinanagement. lhgre succes- sional processes favor both black and northern red oak. Competition from the more tolerant hardwoods is usually not too severe. The pro— dtugtitwj pottnititil oi“typicnil tyjni 3 s€tan(hs 3113 gencawilly t'lasstxl as lll(?(ll_llnl t;() ;:()()(l. Very few species possess the ability to dominate oak types 1 and 2. In tijz 2. Stuneessitni Iayoi¥:l)lack CKfli antltiignut liickoryt in 131%? l. lilack (xfl< only; It is (knibttul, that stufli stanth trill eyta‘lxg '. H , . . . . managed. Their productive capacities generally range lrom very poor to nugdiunr In lX)Lh tyqnas. FlKKHESFitHNJl trtnuhe are (Nfl)llclt .\yith ftw' Possible alternatives. Black oak will characteristically dominate in l)otli ty13es. 159 White oak possesses the ability to attain an important position in all four oak types. As pointed out earlier. though. white oak tends tc) bcz beittcrr ret)rcn5erite(l ori tlie :titiet' tcnatxtretl sc>ilss. lVitliixt C(NHmlHli- ties on these latter soils, white oak will tend to be better represented on the poorer sites. e.g., upper slope positions. Red maple is usually absent or rare in type 1 communities. It is. houcn13r. a Inithel'twnistant txnnponent ()f the (ulnar lthK} tvpes. altlunlah it never achieves a leading position in types 2 and 3. In this regard. it could also be included as a difierential species. Its potential to attain a dominant position in type 4 should be considered a possibility paIWJiculzirly (n1 innxxrtetw.lv diwxinetlsnyils. RCglIHfSiOD tuialyscwsliave shown red maple reproduction to (lecline in relative importance with time in the present investigation. I31atJ< tfiiei'ry' is 21 ctnistznit Luid [)YO\%11CHlt cxnnptnient in 2111 ()ak communities. {Mirticulailt'zhe reproduction. However. it seldom achieves (MDWillanLTP. lflie [)rinuiry' inflttentt? oi tJiis quCcicns is 1)rolnibl}' its tiegatitt>cxmnpetitixm3 effect cut the dettdcn)ing repitnhn tion of Olhhfl' species. particularly red oak. The same generalization might also be made for sassatras in relationship to other species. Application of Silvicultural Methods w Whiltaxnanagenuntt technicnuysxnav be zun)lied to all lXfllF types. it generally has not been economically feasible to apply cultural practices to types 1 and 2. due to their relatively low productivit}. Some exceptions to this generalization may exist on the better type 2 fiilt35. 'T5])e ‘1 (gonnnuttit.icu<, (an tln: ()lilel‘ hEUld. 8113 tlie tncnet [)r(HIU(:ti\w3. l 6 t) The difficulty'lu3n3 is the apparent lack of silvicultural control (niN' . . H H composition. It has therefore been suggested that oak management may'lM9 most (3ffectiytaly applitwi to tij: 3 oak C(mmnuiities. \fliat we 313nt9ra1 iZC? alx>ut. tliis lat tei‘ tytie yvill 31510 zu)ply to the? otliei‘ tytics to SOHKBQDXlCnt. The basic aim in type 3 will probably be to maintain a high pro- [301'ti()n (if retl ozu<. 'Th(? 51N211(?Fut)0(l syw=tcun hzus ctnnmcnily lietui cruisiti- eirecl tlie l)cwscntt bt?i()rt? tlie filial. htlr\%?51 ctit is rtwl cuik . tlie [)FCH)dl)llTll}’ tliat, twad tial; w ill tN3C(HHC? a inasjoi' C(MHpCHlClll t)l tlie tierzt stand is increased. Yet. even here. what takes place after the final haiwwgst (111 may (diange tlu: coatwue ot’tsvents. FOI'taxampILE, rabbit browsing has lxxni shown to influence reproduction development (Gammon _et al.. 1960). This points out that no silvicultural system can guaitnttee iwnil conttmul ovei‘txmnposititni of iwn)roductitnt. Insttxul. con- trol may'lna effecttxl by cyclicrcir random facttnx:. Nevertheless. in- termediate cuttings will aid in attaining satisfactory regeneration. The present study has indicated that although red oak regenera— tion is initially favored on the better sites. ultimate development is on the poorer sites. This indicates a general loss of individuals in tlie IHOIY? nuiist. 'hvitliin staincr' Itaczititnis. C(nnpcw;iti()n llTHh l)latl< (luarry'tnid culier HK3FC It)ICITUll [ITHD anti shiwda spcmxies (hiring tlu: re— productive phase may be responsible. Cultural techniques could possibly be used to advantage here through cleanings and thinnines. CLIPIWBHI ecx3ncnnit: ctnidit.i(nis. htnvengr. (lo iiot alltaw' sucli iiittatsiyw> 161 silvicultural methods to be employed in oak management Individual tree selection cutting would probably result in less control over composition oi reproduction. since relatively few trees would be removed at relatively frequent intervals, releasing whatever repitxhictitni harnMNied 14) OCCWUT. Ncnwgrthelcwas, cuttiiuzs diiwngted ttnyard improving composition might ottset some of the disadvantages oi the sc- lection system. If we are dealing with type 3 communities. our knowl— edge of successional trends informs us that the stands will be dominated by some combination of oaks and hickory. Thus. even under the selection system. the oak-hickory complex will continue to persist tUld (hnninatti. lknvevca‘. the (llanCChS of (fljtainitu: an Luisatistinstory proportion of unwanted species is relatively great. Cleaitnrtting ill the naiaxny sensc>13robably luis not or will INDI be practiced in southern Michigan oak forests. Strictly sp‘aking, this \VOUld require elimination of all pre-established reproduction and re- sidual stems. This is probably not economically feasible nor even de- sirable. It appears that the Hcommercially clearcut" areas studied are otttnitnerely a (awukxtunilication of the shelterwood system. since it is tlue advanttxi repiwuhu tion whitli apparently‘tknninates aftta'twit— ting. The most undesirable eftect of the commercially clearcut oak stand is the residual stand which remains. It is generally composed of poorly formed trees which may later develop into "well” trees and culls. The effect of residuals as "seed trees" is apparently nil. What about the quality of stems released in the final sheltcrwood cut? This question warrants further study. The possibility of utiliz- ing liiw: as a silvictfltiuuil tool might inuntnw: the quality of the 162 reproduction, since reproduction damaged during logging would be eliminated. New seedling—sprouts and seedlings would then predominate. Howeyer, this would require that landowners in southern Michigan be willing to undertake such cultural techniques. How long do seedling—sprouts persist in the understory? Do they ever reach an age at which they are no longer capable of exerting a tnajor iniltnnuxa in the future stand? Seedling-sprout studies may well hold the key to greater understanding of successional processes in oak (Innmtutit ies. If‘ stznids tirt> cut at a reltiti\«:ly‘ ycnutg zige. yye tint erqnxct liigln;r proportions of stump sprouts from most species. For sawtimber. this I tnay Haunt FCdULIKi trecicptalityu Tht‘(§fiCCt (n1 pulpwtuxl productitnt needs further examination. Haweyer. oak stump sprouts with low basal at tacflimtutt atwc l.ik()ly' to Iieiwsist IC) at lcwist. pttlpwtiocl sigae. In summary. I don’t believe foresters should be too adamant about impltHMNtting any'{Mirticultu':silyiculttnuil systentftar xerit (nut stands in stnithetai Mitliigan. Recmnmnenthitions: to winidlantltnvners txntceIWting 021k nulflthcnntdll s110ttltl l)e Inatle lithii)l£‘ cntottgli l() sttit. tlie ()wiici"s Ht‘etis and desires. There are no known basic "ecological laws” to indicate otherwise. Some owners may prefer to keep their woodlot intact tor aesthetic purpOses or to maintain the present worth of their property. 'rlii s zit ti TLl(iC‘ Intiy' 1)t}CtJHlC’ [)ai't it5ttltii'ly' §)IW?\‘a].cllL w’it h tilt? zitlyn:ttt ()1 farm recreation programs. an enterprise for which much of southern Michignnt and tin: xeric (Nut regitnt is partiLtharly‘yuall suittwl. More time) I atttl ()Wdlk'b czitt 13t’ sliciwit . tlitwattclt tltc- stel («qt lt)ll :sy‘s tcwu . lttnt lit) (‘ull acltithyt) tliis otrjet tit e. [hit rtwiatwllcwss ()f thtr mzniatugmtwtt ()hlt‘tl iytt, 163 it is essential to distinguigh between xeric (types 1. 2. and 3) and mtnsic (t31)e l) ()ak.<:onnnu11iti«:s. Tile (3X1:+I(W1C(‘ 0t Inestnih}t ic t1)m[x)ntutts. particularly sugar maple and beech,will indicate the successionn] po- tential of these species. Selection cuttings in this forest community type nuiy encinirage tln: toltnunit mestnfliytes an. the e>qxn1=e of tin: Duke. Snuill gimnip (3pcuiiruzs Inat' p11)v1ch3 tile (hgsiiwrd (I)H(iili(fll, \Vltl] ptu'i0(lic thinning between openings. A snitable management scheme in oak type 4, then, might be aimed at perpetuating a mixture of red oak and other more valuable mesophytes. 1.1 II 162 reproduction, since reproduction damaged during logging: would be eliminated. New seedline—sprouts and seedlings would then predominate. Howeyer. this would require that landowners in southern Michigan be xvilliin: to tnnhartake saufli culttnuil techniqutwn How long do seedling-sprouts persist in the understory? Do they eytn' reach amt aetxzat whitfli they tire no ltnnysr catuu)h: of excuflyhtg a major influence in the future stand? Seedling-Sprout studies may well liol(l tlie l giwaattgr intdcn‘sttutdiite ()i sutugesc:iOInil g)ro(w:sst2s iii (ulk t1MHMLntit ies. If' stanrh: are cut £31 a ttdtitiyely ytnuu; age. wtbtxnt expett liighcr proportions of stump sprouts from most species. For sawtimber. this I Inay Haunt reductml tree (nullity. ling effect (n1 pulputmxl;)roducticnt itetuls lUl‘tht‘Y (3xennitiatziori. H WVC\%31'. Cfllk sttnnp :epiw)ut.s \yitli 1(JW l)astil attachment are likely to persist to at least pulpwood size. In summary, I don’t believe ,f'oresters should be too adamant about inn)ltnntu1t itig‘ aiiy pzirt_itw11411' si.l\'ict11tttimil sywsttsnt l()P TiGl‘iL' o;u< :4ttntths in southern Michigan. Recommendations to woodland owners concerning oak management should be made flexible enough to suit the owner's needs . W . H and desires. There are no known basic ecological laws to indicate otherwise. Some owners may prefer to keep their woodlot intact [or aestlugtic intrpostns or lt)lnulnlzfifll the {nwrsent “(H111 of thtdi';)ropczty. This tn titudc‘xmiy betmnm> parittuilarly'[ireyaltnit with tln: adrent tn itirnt rcwgrcittit)n [ircnzrznns. att cqtteij)ri:=e foi‘ wiiitii HHlCll oi' Qtnttltctut Michigan and the xeric oak region is particularly well suited. Here I he land owner can be shown. th rough the gel t't'l ion sys t em, how he can atltietw: tltis (Hijeci.iye. But reintrdltsss ()l tlte UKNlagtfiHHlt (ditett ire, 163 it is essential to distinguish between xeric (types 1. 2, and 3) and rmssic (tij) l) oak (xmmnuniticwn 'The existcwuu)()t1nesophytic atmnxnunits. [)artitntlarly'sntgai'rnaple tnuj beeclhyyill iluticate tin? successicnial po— tential of these species. Selection cuttings in this forest community tyiJe inay' etu3011ranie ‘tht? tc>leiuant mtnsotntytt3s tat thcr eraietnse (it tlte (Jalts. Snutll tzrtnlp ()thiirnzs Inay' p113vith3 tlna (hgsiiwsd (X)n(lititnl. \Vlll) pei‘i0(lic thinniiu: between (flflfllingr. A suittfl)h; management sclunm: in oak type 4. then, might be aimed at perpetuating a mixture of red oak and other more valuable mesophytes. SUMMARY AND CONCLUSIONS Thirty recently cutover xeric oak forests in eight southern Michigan counties were studied. The number of years elapsed since cutting,r ranged from 3 to 16. Quantitatite data on the tree species composition of stands before cutting. and the stands after cutting were Obtained. Stand composution was related to soil and site characteris— tics, and to time. Association between pairs of species was also investigated. The Stands Before Cut tine, “.... .———-— — ~——— 1. The composition 01' the stands before cutting was reconstructed by ichuttifvixu::stumps sun! resichnil trees anuitneasutatu; thenttnt basal area iactor~lt)tx)int sample plots. 2. Importance values (based on relative percent frequency. density. and basal area) were computed for each tree species in each st aiid. 'rhc2st3 \uiltuss wt3rcz wwsigzhtwad bt' cl innix atla[)tztti()n tiunu)et's 10 yield stand continuum index values ranging from 528 to 2,190 (out of Li possible range of 150 (xeric) to 3.000 (mesie)). 3. Based on average importance values. the seven most important Species irttiu: stands before cutting wtawz (in decreasing order oi im- portance): black oak, white oak, pignut hickory. northern red oak. red maple, black cherry and sassatras. The overall positions oi red oak and pignut hickory were reversed when basal area only was considered. Blzufl< oak wxue the (fltaractxaristic: leadiru; domitun1t in tin: stzuuh: studiLmL -1. Black oak was. best represented on coarse textured soils; white oak. northern red oak, piguut hickory, and red maple were 161 165 significantly better represented on the finer textured soils. 5. Blacflc oak” 2n1d tin? miscxrllanecuus specicwe grout) (sueai'rnaplcn Ameidcuni beecit.‘white asli..Mneriean cflnt. and eastern hcufln)rnbeam) were significantly better represented on soils where the depth to calcareous substiuita wzn: greatcu' than H2 inclnjs belcnv the suifltuwg. The itwmérse wuas ttwte fcir [)l;:nlll liitrkt)ry attd rcui Ina1)lc’. 6. Black oak was best rupfe bc>ttcar ingpiwzscuiteci ort nc>rttt ancl etust aspects. However. only the differences for red maple were statisti— cally significant. 9. Based on interspecific correlation, white oak was positively assOciated with black cherry and northern red oak in the original stands. Black oak was negatively correlated with pianut hickory. red maplci. and tluatniscellznunfiis species pawn”). Thetiwynaining inuxirtant species were not significantly correlated with one another. 166 The Stands After Cutting 1. Numbers and heights of seedling and seedling-sprout reproduc- tion by species were measured on 1 125 acre rectangular plots. Stump sprout data were collected on basal area factor—10 point sample plots. 2. Black cherry. sassafras, and red maple were the most abundant species in the reproduction. 3. Based on correlation analysis, six pairs of spacies were positively associated (1.0., occurred together more olten than would be expecttwi by'tdiance) lJl the ixniroductitnt aflOI‘tfllllinfl. Paiwgtiairs of species were linearly linked by positive association in this order: pignut hickory-black oak-red oak-red maple—black cherry. The sixth positively associated pair was red oak—American elm. Thirteen other pairs of species exhibited negative relationships (i.e., where one spe- cies is well represented. the other tends to be poorly represented more tliatt wtntlcl bt» eiqiet:tctl byv cliarugc). -l. Anmnn; the tmnaroductitnt in tln: dOHUJMNll heitnit class, l)1ack (nun northern imwltxflt, and pignut hickory significantly increased in rela- tive density with years elapsed since cutting. Although total black cherry reproduction increased with time, most of it consisted of under- story seedlings of low vigor. The abundant red maple reproduction siiniificxnttly (MMJFOaStKi in ITflati\W3 dcnneity witli yea1w4<3lapsctle+ince cutting. Implicit in these trends is the outcome of secondary succes~ sion in xeric oak forests following cutting: the gradual re—emergence of the oaks and pignut hickory as leading dominants. However, major shifts in the proportions of the oak species and pignut hickory can be , n 'v . expected from one merchantable generation to another. 167 a. 'Total entd donniunit black tnfl< and whit£3ywell iwuireetnited iii the lTfl)FOdUCLj¢XI hetwuise of inherent succegsional trends. 6. TIhe lW)ldLiVCf(kfll$lLy ol (knninant.\diite oak, 1H)Flhcfldl red oak, and black cherry increased significantly in going from very good to poor sites; for red oak and black cherry. however. this increase was “Withlll tile .tixiet‘ ttéxtttrcwl sciil giwoutns. Tcrtal. re(l ozd< zutd {)igrutt ltitfli- ory reproduction decreased in going from finer textured to coarser texturrxl soils. Ilyninant IKKIIHBDIC‘ZNH1;MHOF1COH {dutiwqiroduction decreased significantly in going trom liner textured to coareer tex— tured soils. 7. The "greater than 3.9-~feetH reproduction height class for white oak, red oak, red maple. and black cherry was significantly better represented on soils where the depth to calcareous sub—trata \vas "lees: tlian -12 :incfliee. 168 8. The relative density oi all three reproduction size classes of black oak. white oak. pignut hickory. and sassafras increased as the basal area of the same species increased in the original stand. . . , . '! The same relationship was true for red oak. but only tor the greater _ n n , . H . than 0.9-ioot. and greater than 3.9-leet height classes. 9. The relative density ofat least one reproduction size class ot black oak. White oak. and pignut hickory decreased as total residual stzntd lxisal :area,;x3r aLiWD incaw:asttL Thclcnoposit(?\vas tiwu: for 1111 ()ak. lilacl< clusrtj'. arul AuujricuNI cflin imq)ro(hu:ti(n1. 10. Black oak, white oak. northern red oak. and pignut hickory reproduction was generally more abundant on upper than lower slope pOsitiints. altluaugh (lilltwwntces \wgre ncn. statix in piedmont oak—hickory torests. Et'ol. Monogz‘. 21: 297-3211. Braun. E. L. 1930. Deeiduous torests of eastern North America. The Blakiston Company. Philadelphia. 596 pp. Braun-Blanquet, J. — . t q ' ’ V 1 ‘ - 1§L)1. PtltntZtnhsozit)logllfii (Hthtbfllxt (“3V Vtflu'latl‘”15k”’“1“- S3”'1”!“' Verlaa. Wien. 2nd ed. (531 pp. Brav. J. R.. and E. Gorham. 19o14 Littta'tiroduetitni in t()rests (H the wotfltt. Advznnw s 1H EtW)l()gl<3£ll RC‘Ht’aIWJh 2: Jtll-1£37. .lcwidtwnit- I3rtn-s . Ittr. . Ntwt York. 26-1 pp. 172 Broadfoot. W. M., and W. H. Pierre. 1939. Forest soil studies: 1. Relation of rate of decomposition (if lIWJC‘ ltgatwes tt) tliei.r zicitJ-liasn: lialzincw3 zincl otlicu' clientitnil properties. Soil Sci. 18: 329-318. Brunnschweileiu I) 1962. Ih1x31pitation FCgiH¢L1JlIJM3 Lower Peninsula of Michigan. Pap. Mich. Acad. Sci., Arts. and Letters 17: 367-381. Byein it. D. 1960. An analysis of pattern and interspecific association along a sc)il lHOlJSttlFE) gtViditNtt (n1 tlie ‘jatii D1110 [)laitts ()1 11011110411 Lower Michigan. M.S. thesis, Michigan State University. 257 pp. Carvell, 1(. L.. gnu} E. H. Tlatnr 1959. Herbaceious vegetation and shrubs characteristic of oak sites in West Virginia. Castanea 21: 39~13. ——.—~_—. -—~_. 1961. The effect of environmental factors on the abundance of oak regeneration beneath mature oak stands. Forest Sci. 7: 98-105. Chandler, R. F., Jr. 1941. The amount and mineral content of freshly fallen leaf litter in the hardwood forest of central New York. Jonr. Am. Soc. Agron. 33: 859~871. Clark, F. B.. and F. G. Liming; 1953. Sprouting of blackjack oak in the Missouri Ozarks. Central States For. Expt. Sta. Tech. Paper 137. 22 pp. Clements, F. E. 1Slléi. 131.1nt. :{Ut'c13s::i()n: art ainztly‘si.s (31‘ tlte d(?Vt‘1(n)HK3nl ()1 ytzetrttt- tion. Carnegie Inst. Wash. Pub]. 212. 512 pp. Colle, T. S. 1937. CompOsition of the leaf litter of forest trees. Soil Sci. 13: 319-355. Curtis, J. T. ’ 1959. Vegetation of Wisconsin. Univ. Wise. Press. Madison. 65? pp. . and R. P. McIntosh. 1950. THte intcaauelations=tif certailtthalytic aunt synthetic inntto— sociological characters. Ecology 31: 131—155. 1.E)L3 1 . fltii tttil t111(1 i (ii'ces t t ()111 1.111111Hl i 11 t llt’ [)l't11.l'l t~—-t't)i't's t litii'tltri' l'('- git)n (if \Vi:sctnisiti. Ettilrniy 152: 17ti—13)6. Daimnan . A. W. H. 1961. Some l'ores t 1} Des o t' central Newfoundland and their relation to environment al factors. Ft) res t Sci. Mono; 1'. 8. (52 pp. I)Ll\\ s ()11 . (3. 11'. E). 1951. A "maliod ltn' inytustigatiin: the twilatitni—hip lxgtwcwni thc‘tlis- t.rilniticni oI‘ intlirithtals; ot~ dif’feixait fiHJCi£JE ill a tilant kWJmHHHIIL}. Ettilogy' 32: BBB—lfiil. Diller, O. D.. and E. D. Marshall. 1937. The relation of stump height to the sprouting of Qstrya rir- giniana in northern Indiana. Jour. Forestry 35: 1116-1119. Elliott, J. C. 1952. The phytosociology of the upland second growth hardwoods ot' Missaukee County. Michigan. Ph.D. thesis, Michigan State University. 256 pp. Fernald. 1L In 1950. Gray's manual of botany. 81h ed. American Book Co.. New \kirk. 1(332 })p. Findell, V. E.. R. E. Pfeiter. A. G. Horn. and C. H. Tubbs. 19th). Alitltitgari's t0113st iw-stntrtxss. laikC‘ Sttittws 1V)r. Efiqit. Sltl. Paper 82. 16 pp. Irt)l‘(1 . 11 . 17., ziiiti £1 . (3. ESIItiyr . t] 1'. 19531. SleLCl‘ is lht? btvst t imt\ tt) thitt hyliritl ptn)lai' pltnittttitnis. N()rtlietistt9111 Flir. Ernit. St.a. Rt>s. Nt)l(‘ 1t). 2 1)p. FIIUIZRK}10F, I). P. 1962. A chronosequence of podzols in northern Michigan. Ph.D. thesis. Michigan State University. 151 pp. . E. P. Whiteside. and A. E. Erickson. 1960. Relationship of texture classes of fine earth to readily available water. Transactions of the Seventh International Congress 01 Soil Science 1: 351—363. Gammon. A. D.. V. J. Rudolph. and J. L. Arend. 19tfl). RULM:HUI%111(N1 [tilltntintg cltuarcitttirn: oi ()flk (hiritn; a stngd year. Jour. Forestry 58: 711-715. Gerorkiantz, S. R., and H. F. Scholz. 1E118. Tinflxar yitxlds amid ix)ssi1)1e twatu111s [itnn thtirnixetkwnak {Eirm— WtX)ds ()f saintlntesttarn VVistxansiti. ltist-. (huts. thit. lhibl. 521. 72 pp. 171 Goodall. D. B. 1953. Objective methods tor the classification of vegetation. Australian Jour. Botany 1: 39-63. Gordon. R. B. 19156. 1% tirtélintinziry' vcuzetzititni naip (if IH(llalH1. \mcaf. ilidl. Naturalist 17: 866-877. Gorham. E. 1953. The dtwelopment of the humus layer in some woodlands of the English Lake District. Jour. Ecology 41: 123—132. Greig-Smith, P. 1952. Ecological observations on degraded and secondary forests in Trinidad. British West Indies. 11. Structure of the com- munities. Jour. Ecology 10: 316-330. ___5_,._. _. 1961. Data on pattern within plant communities, II. Ammophila 3111112133 (14') Lillk- JOUY‘. Ecology .19; 703—708. ~——-§ 1961. Quantitative plant ecology. 2nd ed. Butterworth Inc.. Wasliingtcni. D. CL 256 1”)- Grosenbaugh, L.’R. 1952. Plotless timber estimates -- new, fast. easy. Jour. Forestry 50: 32~3T. Gysel. L. W., and J. L. Arend. 1953. Oak sites in southern Michigan: their classification and evwiluzn.ionn Mitli. Stzite Ch)llegxz.Agru Exin . Stat. Tetli. Bull“ 236. 57 pp. Hills, G. A. 1951. The classiiication mulevaluation of site for forestry. Ontario Dept. Lands and Forests Res. lept. 2-1. 11 pp. Hoiat. A. (l . and 11. C. 10311012 1957. Tree diameter at breast height in relation to stump diameter by species group. Lake States For. Expt. Sta. Tech. Note 507. 2 pp. ch'incl. H. J. , anti C. E. Itietlt. 1961. Basal area and point~sampling interpretation and application. Wise. Cons. Dept. Tech. Bull. 23. 52 pp. lhuitzinger. 11. J 1961. Germination. survival. and first—year growth of black cherry inidcu' \Haricn1s suae(H)e(l anti sinipltamcnttal tiwaatrneiits. Ncn‘th— eastern For. Expt. Sta. Res. Note NE-26. 6 pp. Husch, B. 1951. TWM: regeneration oi Prunus serotina in “OrthCstern Pennsvl- vaniti folltnving caxtting. Ecoltnzv 35: ll~l7. Jtntes . J. J. 1&352. A satrvtfi' oi'.tifttn:n 1X)rest: stzutds 111 the thirlt'1Visccnisin drift plain of Indiana. Butler University Bot. Stud. 10: 182—201. Kershaw, K. A. 1959. An investigation of the structure of a grassland community, II. The pattern of Dactilis glomerata. Lolium perenne. and 'Frilt)litnn twéptnis, III . I)istih4si(n1 atul etuicltisitnts. Jtntr. Ecolog3 -17: 31—53. 1963. Pattern in vegetation and its causality. Ecology 11: 377-388. Kittredge. J. 1918. Forest influences. McGraw—Hill, New York. 391 pp. ”___“- , and A. K. Chittenden. 1929. Oak forests of" northern Michigan. Mich. State College Agr, E)d)t. Stzi. Stxac. Bu] 1. .l9t). l7 tip. Korstian. C. F. 1927. Factors controlling germination and early surVival in oaks. Yult‘lflllv. Stluuil Forestiw'lhtll. 19. 115 pp. Kl'tl‘jlct‘k, J. E. 1960. Some i‘actor.s at tecting oak and black walnut reproduction. Iowa State Jour. of Sci. 31: 631-631. Lambert. J. M.. and M. B. Dale. 1961. The use of statistics in phytosociologv. Advances in Ecological Rewmnnwdi 2: 59—99. theademic Press Inc.. Sew York. Lelileman. L. J.. and R. C. Hawley. 1925. Studies of Connecticut hardwoods. The treatment ot adtance U'rowth arising as a result of thinnings and shelterwood (itttings. Yale Univ. Ekluxil of Forestry Bull. 15: 9'1£L Levcnwgtt, l2 ‘ I ' -. y l . ~ I h ‘ ‘1] 1S)l2. Stirtkiccr gem)lcn:} zintl aga'icttlttttal ctnidit_iotu- ol tht. .tnttiti peninsula of Michigan. Mich. Geol. and Biol. Survey Publ. 9, Geol. Series 7. 111 pp. Liming. F. G.. and J. P. Johnston. 19 ll. Itetirtnduc-titin iti (nik—lii(:k()r§' ft)rtn:t sttintls ()t Ozarks. Jour. Forestry 12: 175-180. the All s sou t‘t Little. E. L. 1953. Check list of native and naturalized trees of the Knited Stattns. U. ES. Dept. :Mgr. Hanthxxflt No. 11. -172 tar Little. S. 1S)38. RcdzititNishiq)s lxétwcxni \ig;01't)t thspiwnititn: antl inttwtsity‘til cutting in coppice stands. Jour. Forestry 36: 1216-1223. Lull. H. W. 1959. lhnnus (knith iii the ruirth-eastx Jouia 'Forestivv 57: SMJ5—9U9. Marquis, D. A. thfii. Ctnitrolliiu: lltflll ill smal l cltuircntt_ings. NotWIieasttuai For. Expt. Sta. Research Paper NE—39. 16 pp. McHargue, J. 5., anti W. R. Roy. 1932. Nhausral antltiitrogen conttan.t)f some forest ttwnrs at differ- ent times in the growing season. Bot. Gaz. 91'. 381-393. McIntosh. R. P. 1962. Pattern in a forest community. Ecology 13: 25-33. Merz, R. W., and S. G. Boyce. ._ \ . " . '1 a .. .... ___ 1956. Age of oak seedlings. Jour. Forestry 51: 711—115. 1EL38. Refl)FO(hH:litfll of tnilantlliatthvoothe irt SOUIlMJaSLCHfll Ohit). Ctnr- tral States For. Expt. Sta. Tech. Paper 155. 21 pp. Aiitliitiart St ate) Litiv<3rsi.ty'.thiatwincaits oi' S()ll St'ietu:e zintl Ht)rt 1Ctlltllrtm 1959. Fertilizer Recommendations for Michigan Crops. Mich. State University Extension Bulletin E-159. 18 pp. Minckler. L. S., and C. E. Jensen. 1959. Reproduction of upland central hardwoods as afiected by cut- ting, topography. and litter depth. Jour. Forestry 01: 121—128. , anti J. D. lVoenlieitks. .__--,m_ . ’ . 1965. Reproduction of hardwoods 10 years after cutting Jour. Forestry 63: 103-107. 21- affected by' si te zintl otnjnitig :51zc2. Monroe. A. F. 1912. Managing the Mich. Acad. farm woodlands of the oak-hickory type. Papers of of Sci.. Arts. and Letters 28: 261-261. Nichols, G. E. 1923. A working basis tor thetcological classilication of plant . . _ H . _00 ctnnnutni.tit3s. Ettiltigy 1. 11. -.1. Olson, J. S. 1958. Itates (HT FUCCGFSitNl and scdl.t1uniges on stnnlnsrn Lake Michigan sand dunes. Bot. Gaz. 119: 125—169. Oyiiniton, .1. D. 1959. The circulation of minerals in plantations oi Pinus sylvestris L. Ann. Bot.. N. S. 23: 229-239. 1962. Quantitative ecology and the woodland ecosystem concept. Ad\TUHICF iii Ecoltugical Ih:sea11fli l: 1(K1-192. ikcatkwnic Ihwgss Inc.. New York. Parmelee. G. W. 11353. Tht><3ak tu)land.(tnitinutun in scnithtnai Miciiigan. Ph.I). tlussis. Michigan State University. 278 pp. Potzger. J. E. 1935. Topography and forest types in a central Indiana region. Amer. Midl. Naturalist 16: 212-229. _.__._, -- - 1939. Microclimate and a notable case of its influences on a ridge 111 (:eiiti'al Iiidj.aiia. Fkxoltigw 2t): 2E)—117. . and R. C. Friesner. 1910. A phytosociological study of the herbaceous plants in two types of torests in central Indiana. Butler Uniyersity Bot. Stud. 1: 163-180. Quick, B. E. 1921. A comparative study of the climax associations in southern Ahtfliigan. Pap. Rhini. Actul. Sci. 3: 2211—211. Rtith. E. R. ’ 1S356. DemWiy ikillcnyint: thiiiniiu; oi’ spixnit CHH{ cltunps. Jtnir. Forestry 51: 26-30. , and G. H. Hepting. ‘ 1913. Origin and deyelopment ot oak stump sprouts as altecting . . ‘ ' ‘1 < ‘ _ ' ()-'_o ‘ their likelihood to deeay. Joui . Foxtstiy 11 . ..4 .56. , {uni B. Slecflli. . ‘ \ . 9‘1939. Ikitt IT)L in tuflnirned stnxnit oak staunds. L. S. Ifiwit. .gx. Tech. Bull. 681. -13 pp. Siunpstni, 11. C. p _ . S'" . 19272 'The 1)rima13'[)lant iJFSOCIJltionfi ()1 Ohl(L Ohl() Joux. .<.1. - 301- 309. ‘1 _....._. --__. .- 1930. The mixed mesophytic forest community 01 northeastern Ohio. Ohio Jour. Sci. 30: 358-367. Schallau. C. H. 1961. An investigation of priyate forest landownership in the southernmost thirty—seven counties oi” the Lower Peninsula of Michigan. Ph.D. thesis. Michigan State L'niycrsity. 309 pp. Schneider. G. 1963. A twenty-year ecological investigation in a relatiyely un- disturbed sugar maple-beech stand in southern Michigan. Ph.D. thesis. Michigan State lfniycrsity. 228 pp. Schnur, L. G. 1937. Yield, stand, and yolume tables tor eyen—aged upland oak i'ores t s. U. 8. Dept. Agr. Tech. Bull. 560. 88 pp. Scholz. 11. F. 1955. Growth of northern red oak seedlings under variable condi- t i()ri.s ()1: tzi'tiittiti t ()\’t)1' ( ()fllt)£}1 i t i ()11. Iiii1it) Sit L11 (*s P‘tii'. Elfigtit . Sitl. Tcmdi. Ntux? 130. 2 [my 1959. Further Observations on seedhed scai‘it‘icatioti show bcntri its to northern red oak were temporary. Lake States For. Expt. Sta. 'l‘eth. NOte 555. 2 pp. 1961. Seedling and planting tests 01" northern red oak in Wistonsin. Lake States For. Expt. Sta. Paper 1.8-7. 7 pp. . and A. J. D(’V1'1Cll(1. 1957. Natural regeneration on a 2—acre mixed—oak clear cutting tiye years after logging. Lake States For. Expt. Sta. Paper 18. 11 pp. Schwarz. G. I". . 1907. The sprout forests ot' the Housatonic \alley ot Connccllt'Ut- For. Quart. 5: 121-153. Sears, p. B. . . 9” W) I“) 1925. The n’atural vegetation of Ohio. Ohio Jour. Sci. ...). 1... Shanks . R. E. 1912. The Vegetation ot Trumbull County. 220—236. Ohio. Ohio Jour. Sci. 12: Society 0 1' American Fores t ers. 1962. Forest coyer types oi North Washington. D. C. 67 pp. America. Soc. AHH'i‘. Foresters. 179 Steel. R. G. D., and J. H. Torrie. 1960. Principles and procedures of statistics. McGraw-Hill, New York. 181 pp. Steiger, T. L. 1930. Structure of prairie vegetation. Ecology 11: 161-217. Stoeckeler, J. H. 1917. When is plantation release most effective? Jour. Forestry 15: 265—271. Toumey. J. W., and C. F. Korstian. 1917. Foundations of silviculture upon an ecological basis. Rev. ed. 2. \Viley. New \1n1<. 168 pp. U. S. Soil Survey Staff. 1951. Soil surwwwvtnanual. U. S. Dept. Agr. Handbook No. 18. 503 pp. Veatch, J. O. 1953. Soils and land 01 Michigan. Michigan State College Press. East Innising. 1111 pp. 1959. Presettlement forest in Michigan (map). Department of Re— source Development. Michigan State University, East LanSing. Visnel, S. S. 1951. (Tlimatit'zitlas oi tin: Unitcxi Stattne. Haiwmuwilhtiversity Piwgss. 1(13 [)p. \’i'i (1S , I). 11. (1c-. 1953. Objective combinations of species. Acta Bot. 197—199. Neerl. l: Watt.,.A. S. 1917. Pattern and process 35: 1-22. in tiie [)lant (JJmnnuiityx Jouz'. Ect3logy' Weithan. 8., and G. R. Trimble, Jr. 1957. Sonmfl1aLU1111 iactcnms that tuavern _ Northeastern For. Expt. Sta. Paper 88. 10 pp. tlie inaninienmntt ()1 (niks. Wenger. K. F. 1956. Growth of hardwoods aiter clearcutting loblolly pine. Ecology 37: 735-712. Whittaker, R. R. 19953. A (winsickeratitnt of t limzu< thtuiry: tion pattern. Ecol. Monogr. 23: the climax as a popula- 11-78. WhitesidC. 1959. Wilde. S. 1919. Williams, 1959. Wills, M. 1911. 180 E. P. , I. F. Stdintiidtfr, zintl R. L“ C(X)k. Soils of Michigan. Mich. State Univ. 1gr. Expt. Sta. Spec. Bull. 102. 52 pp. F. Schneider. and C. A. Engberg. TaXonomic classification of Michigan soils. Unpublished mimeo. Michigan State University Soil Science Dept. A., F. G. Wilson, and D. P. White. Soils of Wisconsin in relation to silviculture. Wisc. Cons. Dept. Publ. 525-19. 171 pp. W. T.. and J. M. Lambert. Multivariate methods in plant ecology. 1. Association- analy sis iit[)lant twmnmutities. .hn1r. Ecoltnmv~l7z 83-101. H. Sllp[)1tHHCH1121F)‘ t liinat ic' n()tt3s ftir Nlic1iitzati. 113ai1iocn< (if Agriculture: 923—921. APPENDICES 181 Appendix 1. Pos 1 t i on OPE-1:11 e of moist Texture subsoil Fine Medium *W.‘fi._._ a,.r‘v 7 Coarse '1. C 1' rom Gysel . L. their classit ication and evaluation. black and Site characteristics productivity of upland sitcs in red oaks.a layers in the subs t rat a . b High . Hi gh Hi uh (u. Low Low IA)“. High High Low Low Low and J. L. Arend. 182 ————~-——— ___—__‘ ..~ General topography Flat R01 1 ing‘ Hilly s l ope. to be considered in classifying; the southern Michigan for ()ll L' ppe 1' Middle Lower Bottom Upper Mi dd 1 e Lowe r Flat {01 l 111;: Hilly Flat Rolling Flat Rolling; Hilly Flat Rolling Sta; Tech. ‘Bull. 236. 57 pp. 1953. bHHiL'h” for the fine—textured subsoil class refers to varying amounts of c l ay . ( Below ten feet . fi——_— L' p pc 1‘ Middle Lowe r Bot tom Upper Mi ddl e Lower Middle Upper Mi dd 1 c Lowe 1' Bottom L' ppe 1' Mi (id 1 C Lower Middle __M Pos it ion .._1..,_,__ _—m_—__ ___r_. Site class VERY GOOD (1) GOOD (2) GOOD (2) GOOD (2) VERY GOOD ( 1 ) MEDI CM (3) GOOD (2) GOOD (2) MEDILM (3) MEDIUM (3) MEDIUM (3) GOOD (2) VERY GOOD (1) POOR (1) MEDIEM (3) GOOD (2) GOOD (2) GOOD (2) VERY POOR (5) VERY POOR (5) POOR ( l) MEDIUM (3) GOOD (2) vERY POOR (3) POOR (1) GOOD (2) GOOD (2) GOOD (2) .Oak sites in southern .lli__t'_lli__>_;_.111; Mich. State College Agr. Expt. 183 mfiw ch LnNL QCLL AcmL CLLN can L N3NL cme meL nan LLNL LahL mth +n® mm L L cm: L, 3:: cm L m m L .2 can ewe a; man 115.? E:::LL:OU i L ~L_:.. LAO.O.I Lei ~e_:fla.sLL Law .J. L :23 _:UI L .... C.E..,J-L 2,120 1 L A:_ra LF+JAV..1 L LAO.LA.WL 1L C:raLsLimvl1 L ;ALALJL 1L EzraL.LmnvIL L LwaaLJL i L A:_ra LsLinv..1 L “fiwanOLL 1L CELL:LOILm wan L1 :.ew.::_~L:vLIL m J/.wL 1L :EOLCU I L .1. O..§1.._:..L1.VLIL.J. when L... Sue- - IL LOTOLLzflaGILILi BOLQZ ,J..L 1.50 L GUI L a. .A.:.__...;..L FLUOI 1L 3::OL..U..LL mL QEOLCUILL ~5:LML_LHNV AeLzLa-L.memmw L L.AOSNLG_L_LG L «NVL 1L ngcLhflulmL ArzwLFLmO 7 SO -- ..1 L aozra LLLHLAV..L 1 .~.. AAOML 7. 3:325 u. L 5:0 LCUI L ..1. 3:3 LLIMIO. IL fizzaLLTAuth ~%«Wd:mws:x mL CELLszILw CastsLQx 'J 33.2.3 E ... 33,225 33.2.2.3 I 3315:: J .1. iti.i iii llillln I! nL1.eALa L L snow--;ne_.wLL .mgrugd .LCLLLI t... Iii all] ll.il-.'1‘ ._ 3 MM L’ZIO-“-“.-~—~.,.. G ”3?”.7’23’5L’3 2") A. U.- . w ‘V'fl s 4 L3; : L rs»; 33.x. lixil '0 I m.e.aflLeL_L A ‘4 P-fi—flv—‘I—‘F‘ Axogudv 3N PL ~3L< EzzzsL23e tzz .t‘lii A’- AA - v nN ALL” Ln mL Ln 0L xL NL NL hm mL ::::AA zetzz; AOsOL..uOL_G>L CCLLOLsa A:OL;.OL:>L OCLLQLsa ~_.OLOL_ A.L F_AOLOL_.A‘L :OU:24 HLO< LLLan::OL. OEQLSLO Le L_.a L FL“; L.~L :OLBOZ iL./:aeu x50 :nExosLm LOLLCQ LULLOQ Lapgcm LLOBLz< Lzadooa LzLauoa w9>Hx .mLLzL Zea. AL L LL Tifi..2,.efimw .ame LLL~._.. L LL..q~>L 2,-._.O L LL1L_~>» LLLO.MVL..LJH. _zeuvevzm. :Cixezfi :AevaOLNw anLreLzmspL 3::OL2153 .smcoL.Ti:3 LZJX :Omxomfi CCNmE: L ax Axoxs::aLde :33: L GD 2 SC 2 A 1.9 :OLmu:L>~J :CIxu:h Lirazm L_s> :9. :m : s> LLMO.~_LML ~_~oL/ :v;:m :d> :opzm ::> :QLSQ :d> cemxonfi I: - - $33 I .::LLSOCL UOInJ UOIem Omtnm OmINN OZILN Omlsm hIaL hIwL thL 2.0 UOIn UOIe UOIn xIN UOILL “—4..qu— szflw .N xfl::O;;< 181 .::..:L chLL mmcL WELL :2: mme mmw rye—:5 E:::L :50 H L .:_:cL 32:7 H L .1. .3231. 2.5:: r. .1. L . 3:11. H 1. ”L813. L._;L.:: .14 9;: :01, 2.1.: 3:69;; .22.. Any 0L 9.1.2:: A: 53.: 31.51;: 1.9.1.193; LPZSxOL rem: _1 _mue a w Rm ::a_o>ciu czaano o-Lm L .1 .3 ACMLIL .1. x0; m Cm mm 3:: Lat/3:0 LEG LeLaO mica .1. L 3:515:51. c.:_.....:L...100 m m. L :33: TL 35:0 .2153 001mm ..1. L 0:5 :70 I L .1. ._ D.,.chL .1. WNWL m. Cr. 3N ._ O :59 92.1.:31755 «LIwN L1. 5 742151. “fawn m a L N 55:74 35:9 271...: hshm 1. L SEC LOUII. L :1::._...,.. ...:110 m w m 55:34 3::0 L515...) UOION .21.1..;,;WL!1L-:L19-1 -..Ldtmwzmd. -..-.- ilaxwwfi a---.--i.-A.1.Iom.r.,:..v- l- 1::IGIHIL-O.Q.m.I-i-.AL-L.~:L..1H_..:.Cfll - - i/iLILLLLNO. ti -lleLWIle. L.....:LU.....: ONT. L LOT. 12...}: I Crass: LZCOV .3 22:71:; 185 Appendix 3. Diameter at breast height and stump diameter relationship.a -.. ‘ —— “b.-—H- Stump diameter . 3 ( Ittclitws) ’ ‘ "———~~———\L..___L_ .LLL a—— ‘_._ ___—___ _— FXIr ltaiwhv0(nls: Diameter breast (.' 1a t. I {1 height 1'0 3 .77.; 5' O '1 .800 6'0 3 .800 7.0 (5 .811 8.0 7 .825 9.0 7 .830 10.0 8 ’ .8153 1”) 9 .836 12.0 10 .812 13.0 ' 11'" ‘ ’ 1811 11.0 12 .813 13-0 13 .817 16.0 11 .830 17.0 1-1 .833 18-0 15 .851 19.0 16 .851 20-0 17 .835 21.0 18 .835 22.0 19 .853 23.0 20 .837 21.0 21 .838 25.0 21 .858 20.0 22 .838 27.0 23 .858 28.0 21 .859 29.0 25 .859 30.0 26 .860 31.0 27 .860 32.0 28 .860 33.t) 28 .861 31 0 29 .801 35.0 30 .861 36.0 __21“ ... H_u _ fl 2-- -._ ._8_t51____ 3.7.5 1:} “—*m Nos 01" trees 811 811 iiF111m liotut, 11. (3., zincl R. C. KLfllitfiF. 11190 iii§fl§ftci'.at lircnnst lnxigltt i31 139.311.1931 to. :thw; 9.1.1.1111Qt-9_1‘ 1.3.1 >-1?_L‘_C.i‘~-;-‘ 32.19111). Sta. Tech. bStump diameters: were measured at 12 timber ground level for smaller trees. ”D.bIL and 6 21s a t)eIw:etIt ()1 Fttlmf) tenth inch (all measurements su renn-nt s to Data Note: “’0 1'0 Broken sizes. Note itu hes degve the collected in line nearest 507. 2 pp. scrpztratttxs Lake States For. Expt. 1957. 111(;11(“ 231)()\'C‘ tzt't1utttl 1(f\'t‘1 t't11' satw — ditnnettgr, l)astul (n1 sttnnp .ntd (l.b.lt. nn'a- outside bark). Minnesota. Filfid Ind)et' sI Zt‘ tt'ont p()101 lew'r :tntl -.uilit‘g 1815 Appendix -1. Climax. adaptation 111111111111's used tor upland tree species 111 southern Michigan. 11 u-7-77 A+i___jvi. _.__ _7——._._ - i.r_#-.. --.—..-- Clima\; adaptation ___2_____i._1_}{“ icait;ii.iflc‘ _1zinu;b Ctnnnn1n n1n110) 11n nbcir {cEL' égfciidllhl Nhirsii. SlHifll‘KuUpltf 10 .EJSVF.‘L14”2}J"1IJ Ehrh. .\me1wcxn1 beech 10 jlf}1¥f3 _7a11a11e11si s (11.) C11r1'. E11st<3111 11L1H1()C1( 11) 1‘1_1 i 11 £1H_E;r i.c 111111 1.. ;\:n<> r i1-1111 1311sssxthC11H)- Hznvthoiai l S Hirssai tas- alliidun1 (Nut t.) Xena: SzussaliwlF 1- 1001110111 -rial:inicu1a In Ezhsteiai re(kw:da1' (1.3 Popul1u-n11andi(hnitata Michx. Bigtooth 8900“ “-3 Pdfifiihl tichTQidg: Mich\.QUUk1”g aspen 0'” ..-—m ___...” _— v— _- aModified after C‘u1tis. J. T.. and R P. Mclntosh. The inttttelations ‘ a U L L'; L'l;:. (>1 ecu tain 1nn111tic :nid sxtithttit ph\t() 2C1511921f111 (h 1_1L1 31: 131-155, 1950. b} J. E. Cantlon and others, Botaiix De- Ecology partment. Michigan State Lnirersity. bAfter Little, E. L. Check list 0‘ nati\e ____ Avr.H1ndbook .\o.11 172 pp. 1953. the Unrted Shate:. U. S. DtPt 187 Appendix 5. Percentage of >011 separate-s and pH of Plainficld sand and Coloma loamy sand profiles rvprcscntalivc 01 studx areas. BLa_1'__ni_ield :and ( f rom s t and 113—?) : Dept h 5512;12:033 .<. 133119152 Sang .5511}, 9.1.93 722%!) 1.1311- 9195*: )2” A1 0-3 -- -- -- Sand -- A2 3-10 89 5 6 Sand 3.1 B I 10-21 89 6 .3 Sand 3.1 C 21+ 95 1 1 Sand 3.2 QIQQ 171771111} 75.66:“ h 7 “O M ___,» ' “___ Dept h fl(_2_1:1_i( ). n £91919. .1 £1.11. d S 1_ 1-1 (171a 3' F r.:.\}_‘_1_1_1f_a. 1fi__.C_l_a Ff; _p_H_ Al 0-3 -- —- —- Loamy sand -- Al) 3— 10 78 17 5 Loamy F and 5. 1 A3 1()—18 82 13 5 Loamy sand 5.2 Bl 18-26 77 22 l Loamy sand 5. 3 82 26-31 71 35 1 Loamy sand 3.5 Series of _ _ AZ—BL 31—55 81 10 9 Loamy sand o.a C 55+ 86 13 1 Sand 5.3 188 £1;)[)(911(11 ); (5 . £)£‘1'£J(?111.£lti(? () t s'()i 1 r5(?[)L11‘Ei1.tJE; 2111(1 [)11 ()t‘ C)» 111 L'Hlt) s—tltltly‘ l t)LiH1 and 1h)y01' loanu' sanc11)rofiieas IKfl)FO&Lfl1181i\W§ of stlndy areas. QshtemQ sandy 10am (from stand 21-OC): Depth 1141111. 7:211 9119119: SL111}! i 1-1.1 91-3.3. 1:539:11. 1- :19 *1 ~ P,“ A1 0'1 -- -- -- Sandy 10am -- A2 1-11 73 18 9 Sandy 10am 5.3 B1 11-26 85 13 2 Imamy smn1 5.1 Ba 26—36 61 11 25 Sandy clay 5.1 7 10am B3 36—56 78 10 12 Sandy 10am 5.6 D 56%- 91 6 3 Santl 7.8 -EQLS:_1qamy~sand (from stand 23-BO): ch)th 15:13.75!!! K331911041 5&1!!! .511 -1 91 :11; _T_t:31.ll.m 1“ _L' 1:15 9.”. Al 0-3 —— -- —- Loamy sand -- A9 3-10 81 10 6 Loamy sand 5.1 B] 18-28 78 10 12 Sandy loam 5.8 D 98+ 93 1 3 Sand 7.8 189 Appendix 7. Percentage of soil separates and pH of Fox sandy 10am and Kalamazoo sandy loam prot'iles representatlye 01' study areas. I FR1x s11n(1y 1t)an1 ( {Ivant st aIId IZ7-F) : Depth Wiley} $210352. 5.9.9.“. 6:1,? Q1: 1119.“ “La 1- £151» >-‘ 11*! A] 0-1 -- -— -- Sandy loam -— A9 1-10 75 17 8 Sandy 10am 5.1 B1 1(%-16 75 17 8 San(h' loant 5.3 891 16-31 55 22 23 Sandy elay 5.6 H 1t)211!1 B.” 31-39 56 22 22 Sandy elay 7.1 H“ 10an1 D 39+ 93 6 1 Sand 8.1 Kalamazoo sandy 15am (from stand 6—Kk Depth ”0“ MI < 1' mm“) $413.19. 54 13 C131} T£§_B_1_l7}‘_1-._fi'1:151" P.” A 0—3 -- -- -- Sandy loam -— l A 3-10 70 23 7 Sandy 1(HUH 5.2 ‘9 B 10-16 68 18 11 Sandy luau] 5.3 1 , B 16-10 56 22 22 Sandy tlay ).3 9 “1 1(MUH B 1(1— 52 83 16 1 1.081'13' sand 5. 2 3 - ._ C 72—63 71 11 15 Sandy 10am 5. 7 D 63+ 93 6 1 Sand 8.1 190 Appendix 8. Percentage of 5011 separates and pH of Hillsdale san 10am and Metea sandy loam profiles yepresentatiye 01 study areas. ' W—v—--—— ___ .4.— Hi11sdaLSflsandy loam (from stand 9-H): dy Depth 59:13.02 1311551105) Sam! .5}. 1.1.. 91.22; F‘C‘EBL’PLLBBEE 211. Al 0-1 —- —- —- Sandy loam -- A2 1-11 65 18 17 Sandy loam 5.3 B1 11-20 78 11 8 Sandy loam 5.3 B9 20-33 50 19 31 Sandy c1ay 5.8 H loam Ba 153-15 69 19 12 Sandy loam 6.0 C 15+ 69 18 13 Sandy loam 8-0 Metea sandy loam (from stand 16—M): Depth Horizon (inches) _Sand .8111 _Qiay .ISEEVKQ1-ELQ§5 BE A1 0-4 -- -- —— x Sandy loam " y r} . :— 3 !—_ A .1-10 71 .17 9 ~ ‘ y 10611“ 3' 2 B 10—23 73 11 13 mdy loam . 1 1 l1 82 23—36 10 25 35 Clay loam C 36+ 33 27 35 1 Clay 10am 8. 2 7”" ___—___-__. _____'__._'——v———— ___—___ - .. f“... 191 Appendix 9. Percentage of soil separates and p11 0.! C-Zl loamy sand and Caseo loamy sand profiles representative of stud.\' a reas: . gtgfiL'LOjLI'HJ“ 5.111111 ( 1: rom stand 31 ~C) : Dept 11 50-1132! Slim-:1. 2:135} 5.1-1} 9.11:1 395193311293: £11? A1 0-3 -- —- —— Loamy sand "’ A2 3‘10 75 21 -1 Loamy sand 0. 2 131 10~21 71 1.7 2 S.1ndy loam 5.1 B2 21—36 15 '19 :36. Sandy clay 5-6 1 oam C 36+ 33 L5 12 (‘l'ay 8.1 Kai‘s?“_1_Q_i‘1.l'11_,\_'_r:a'nd ( 1' rom s t and 2 1 - BO) 1 Dept 11 1111.11.13.91). (__11_1"_h_(_:2 AS_;1.I1.(1 S111 C_1_a'y_' 25:51:11}! L “lefilfjfi PH A1 073 “‘ “-- -— Loamy sand -- A2 3‘8 81 13 6 Loamy sand 6. U Bl 8-13 83 16 1 Loamy sand 6.1 82 13-18 75 11 1 1 Sandy loam 5. 8 D 18+ 92 7 1 Sand 7 9 3-5% — ---- ; lit—:3: ' — ~—* —H “A r g -, T;::fi~_ ::_—:'_; ;— ~—:—- '3“ f'“. f: - 1 192 llllulfal‘lif1.- .Iado taunt can .OOu .xoa~n acquaint-co can «cocaine unaudlaua ....d .uoqu—uad .a.n.c nonunu o.o can». not Icon» uOIoau Nulacaah on no GOIII A .IOL I u .n0—bloo IIOuOOIOIIuA-O I DO .v~0«nfladam I G .Oudvunuul I I .AN-u I u .nIuII I I .00idllnIl I I ...—aloe alluAIOIhONQI I a- nnuauoo «do. Quaouvaq Iuouuon “ununu 0» qu~ Iona .laaauuaoo a« house unavaooII nu sounduua Ivauuu I and can nan «Na nn~ Gnu on— pun nNu can can hon ova oa~ van NNA DNA vNa INA vou v0~ NNH Nun hv~ «vn ho Nvu and Nod 00 no.1 ISINnII on Gnu aou v0 Von v0 ON no no— 0h 00 on on nNg «an «an «N on no NO~ No" no 0a nod 0v on God on no an 30.. Island- oo~ vo— hNu and 06‘ N- vo— and ham mug bNu Nun ca cud own emu and No oo~ van van NN~ v- nod Nuu v0 0. nun 06 a. v0 nIOOhu no on. .Q< s. _n vs on uv a. «v ana an «AA a. as no" and as _a va on as no ov no a. an. co“ m. vs can as _s an u.oaoaa on. 1.0 uIaOF Na 0 o~ «N 1 Na Na ov N N ha Na a Na ad on AN nu on N nu ON a QN Ia cu -- o - - u «duck «v - - a - - - - - - - - - - - - - - - - - a - - - - - - - - - +nu a a n n - a - a -- - v a - a n n o - u a - o. - o a - - - - - - vu-aa nausea: 0 ~ v ~N -- n a ca a H a h n a v n o - o v 0 ~— n m" an o n- N - - - ouunu «anuwm v a «u n a o o NN ~ -- n N n n o N o In N a an - a h h n u- v - - a Na-h « a n a n - - a - a - a a a n . n - a a s a a a - a - - - - - o-— n~ on ov N on 0n 0‘ ha «N v~ ON h n ~n II wN a no N a ”A a 0N I» ~ - u- - - nu - ~IuOH ~ ~ ~ - - o a - - - N u - - - n - s. - a - - - - - - - - - - - +nu o s ha a an an n a v n a n - N - s - pa - n a v cu -- a - - - - - - vn-m~ sac van v o n~ - n o N Na Na ca 0 A ~ 0“ - ed a an - N h v o - u- - - - - - - o-n~ cuoauuo: « - v - n - a v n a n ~ - on - o - v a - ~ ~ « - - - - - - - - «_-s a a n a -- - a - _ - - - u a - - - a - a _ -- - - - -- - -- - - - o-. ad a N— on n n n on an VN 0N .v on an NN «N Na - NH AN 9 an o o~ ON 0N n ad on N n ~I90h a - - ~ - - - - -- - a - - - a - - - - - _ s - - - - -- - - - - +nu n a v v v - - a N - - D N e um v N - n n n nu -- N N - - - ~ - - VN-m— s n a sa - - - ma n_ a «a vs a a v on o - o m n n a v ca ca - - s - - n~-n_ x-o ca“:- 6 a N N~ a N N Na v" Na n mg n v” o o v nu v~ m N v n n a m ~ on b - a N—nh N -- d n - ~ ~ ~ - n u- n N h is a n 11 n In - N - a - o v a u N N o-— Nv NN n a~ 0 av o ~v Va ~h an - no vn an oN no 0N VN mN av QN on on «a vv me up no am an ‘190h « _ -- -- - n - m - - - - v - o" - a n _ ~ - - a s n - - -- . - - vnu ca o~ a n 0 Nu N o n h n N vv v Na n 5 un m ea 0 h MN D~ mg Nu c on o _c a vN-m~ ON a N o - 0N m an a ~v o v Nn mu o n— ov v ca m on o~ MN nv ov 0‘ an on 0N on mN n~on~ :Io Joann a - - a - u a mm a NN n n 0 kg :1 o n n v n n o a Na 0 m 0N n 5N NN vv N_-h a - - -- - - - - a - u - - - - - a - - - a - - n .- s oa - ~ 0 -- o-_ z x t x c I a w x z n z u u m s m n n m u n v n c c z ado. % .0 1.. r. w. 4 % .... “9 v... . v..v 1.. . an. _ . . . . . . . . _ _ . . mu Addy .. m .. m w .. .. a .. m m .. .. x m .. w m u .. .. x x x x a x a a ...z .22: .Snd Ino«uacu«nou weapon ~u0n and Lopez: unaum .mcsmum xmo ofihox on ma mmfloomm xaoxow: Ucm xmo Low mwnmzau acuasmflu kn whom Lea poem mpmzdm GM coapznflppmfin mops Hammm .QH xflssmam< 1S313 .23.. 0:8- EIuIII vs.- .huonofi. 1.3903.- .110 Iahdllano 53:!- 1013 .30 :23:- .£ooon 53.314 .9850: 05.5.83 .IIIAEOAAOA flea-Io .lgo can?! .02?! Ian..- .quII auoouuan ...-I :3. 3.32: .308. Ignace-«la .aN-u I u .IouII I I .ooIIIIaIn I I .Iougu scan-013N0- I a .IOh I .- .Ioaloo Isaac-cleans I 8 .BOCINIE I .— ..1033‘ I I ”I3...- ZOI 0502:: Iuouuon 3:0: 0» :0— Iouu .lgnuuaou I« .393 Ind—309: .3 0035...: Sudan. no I. no I: on NN~ on X: on o: 1: na 1— v: No no M: No ca Nb 2: on: «2 CNN Nod on No 2: 2. 2. on gun-:1 ...-0- u& IOII nIIIA Blu- «anon. s.oa an an «a a nu ma n ca a an ha a a” o 0 aa an an s «a ca «_ a a o I a - a a uoaoonv uoaavn cloo «I90? a _ a. - _ - - v - a a - - - - v - - - a a n v a - a v - - - a a «Icon 0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - van 0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - va-oa nuaoon « o a - - - - a - a a - - - - - - - - a - - - - - - - - - - - - o-n~ -a~oov«- n o a - - - - - - a - - - - - -- - - - _ _ a a a - - v - - - - a «a-» o o a - . - - n - n - - - - - v - - - - - a n a - a - - - - a - o-. n.a - - a - a - - - - a . n - - - ma s p - - a - a - - a a - - - «Icon 0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +nu o I- a- .- o- o- ..- uu ..- II on In up an I.- 11 In 1| 1| II II .1 it It - - - - - - - vu-o— ~.o - - - - - - -- - - - a a - - - - - - - -- - - - - ua-n. vauuanvaa 5.: - -- a - - - - - - - a a - - - s o v - - - - a - - - a - - - «a-p «.9 - - a - a - - - - a - a - - - o a a - - a - a - - a - - - - o- o.n a a a. a ad a n a n a ~ - ca . - v v s « a n a n - a s - - a - avugu o - - - - - -- - - - - -- -- - - - - - - - - - - - - - - - - - - +o« o - - - - - - - -- - - - - -- - - - - - - - - - - - - - - - - - vu-a. III-nu n o - a - - n - - - - - -- - v - - - - - - - - - - - - ~ - - - - Ia-na nona- o.~ a - a - a . a a a - - - v - - a - a a a a n a - - _ - - - - «a-p s.“ - a a a o - . . -- a _ - a a - a v a a n a - a - a a - - a - o-a on a _ v a o - an a oa « . a o a - v v a o - a a - - - - - «Inch - - -- a - - - - - - -- - - - - - - - - - - - - - - - - - .oa - n - -- -- -- - - - - - a - a n - a - - - - - - -- - va-o~ s a - a a v a - n n a - - - - - - - - - - --n~ vac-I vo- « - - a a - - a - - - - - «a-s ~ .93th. apt-«no III 1 n I 0 III Van - - - - a - - ~ - - - - a a - a - - - - - - o-a Idol 8 t l u n... fl u w... n a H ... u u I G n H N R W V n c. 8 TI: “mummnpmwwwppmm»»mvmbnwww...»H...»5:58... Isaac—undo; ION...- So- .33 ~33! Elan .mccmum xmo aflpmx om CH monomam cowcwaeoo pom mommmfio pmpoEmfln an whom awn ummm ohmzcm :H :oflusnflhpmfin «mam Hammm .HH xflccmma< Appendix 12. ‘Regression equations for Figures I. 8. and 9- ___—.—-—-‘ Q , .2- «.--—___ " .. . « ,1 (~1',1&..'-‘ 111 111C _I;_1£1_l_1;g;-7: Basal area in relationship to sell te.~.tula 1.. stands before -euttin;_;'. Blah k (xik: Y = 69.26 — 6.97(x) (r = -.252**; 1‘“ = .0153; SEC ‘7 ‘31"8) White oak: ’ Northern red oak: y 2 3.00 + 3.07(x) (r = .125*- r = .015; SEC = 31-6) Pigntn.1iiek01$t Y = 3.612(‘-:) - 1.07 (1'. 2 .267**; 1‘ = .071; SE = 17.0) Red maple: Y 2 .82 1 1.07(x) (r z .1219; H3==.015; SE ==ll-07) Where: Y = Basal area in square feet per aere. K 2 Soil textural class (from (1) ('oat‘gt‘ 10 (5) “”01 ___.____,__.._.... ...—___H ..._.__ - __ _.-_._ d—Q ————--——- * -"‘.—- w... .. __,_- __.____-_ ___. __ ___. _ .._, __ ___—7M _— ————-. . . . . . . - .. . . '11— _Iil_‘_—l}11'0 8: Basal area in relationship to slte elass and dLPU1 ‘0 “1 eareous substrata in the stands hel'ore cutting. Black oak: l ,. 2 V = 9 80(x1) + 17.83(x9) - 18.10 (R : .31Hs*; R 11 .116; SEC : 33.8) Northern red oak: [O Y = 33.13 - 5.81(x1) (r = .118*; y z .022; SEC = 29.1) p1 .‘lnu t h 1 ekory: .381**; a? z .113. SE“ : 16.3) 11 y : 11.91 - 1.26(x1) - 11.22(X9) (R H Ap1mn1di>; 12. (ttnititn1ed) _._~,.. A'— ~ H Red maple: Y = 19-82 - 2.12(xl) - 1.32(x9) (R = .268** RL : .012. bEC = 10-8’ Miscellaneous species: ._,_ ‘ . 2 —.~ 1 _ a.-5 + 2.88(x9) - 2.01(xl) (R : .281**; R = .019, L‘e Where: Y = Basal area in square feet per acre. X1 = Site class (from (1) yery good to (5) Very poor). A2 —-IMJ)th to Ca1LYHKKNJS substrata expressed as (1) ILSF IhJH 1— im'h‘“ 01' (2) more than 12 inches below the su r1 ace. Pl“sure 9: Basal area ingrthh of the residual stand. 1 = 21.59(Loglo)xl) — 1.95(x9) ha .--. 9 R = .31:)**; R“ = .110; SEQ : 12.33 3 = Basal area ingrowth of residual stems 1.0 incl: d.b.h. '«11111 1111'1rc31’ 211. 11113 t 1IHL) ()1 ('111 t 1112'. 1:1 stqtttitwo 113131 111‘1' ilt'l'fl‘i 1 intercept is fixed at zero. " '9 1.1)11211'1 t lirn 1.1) t lit: title (‘ 1 (l 111 y t-111's s 1:11:11 t 111 t 111... .x. 1 ”“2 = i§i tc‘ ( lctss (y'a1.ut:s 1113H1 (.1) Vtsr} atu)(1 1t) ((3) VL‘V} P"“")' ** Significant at the .01 leyel * Significant at the .05 level Ninnbea' of ()bseiwwjtitnts (11) 111 all analyaugs a11~ 3U‘L 196 Appendix 13. Analysis of variance co111parina‘ the mean annual diametrr growth 01' three oak FDCL'iQr-f. _” - ~ a,“ ~—--~~~~— "r 41.3511“. ‘ Black Red oak a_._-__ _. . Mean average annua 1 diameter . 136 . 167 .167 9. 10*)? growth at brea‘t height, incth. No. 0 f obr‘ert'at ions ** Significant at the 1 percent level 197 1 1~(§(§:: 1 _ () i 11()}1 (l. 1). l1 . 1111(1 l tii't:13 1' :11 t (’1' (711 t t i 111;. _-_._~._fi._1_7‘___ ___Hm7_,-fi_ka __V- _ _ -—. --.—___- Basal area in squa11> feet Inq' acre Bltud< oak . . . . . . . . . . . 1.7 \Vli i t (‘ ()Lll< . . . . . . . . . . . 1. £3 N01ilnsrn 11ml oak . . . . . . . 1.1 Pi;u1ut hitfl--‘[\‘, [\3 the density ._. u u 4. (.6 RI [C \1 classes. relzn.ive 1110 an 1.0 inch arger white i.e., than ash. in (attortn' xetdt’ Ll Stzutda1xl e1a%)r OJ 2 01 mean mean as 11.8 11.2 13.1 10. 12. 061.910 H [0’ £0 0 H [C \l ‘1 K! 10 coc L'In—CJI ‘lLOH— \lxlv-d m m m w 300 1 125 less 1101' a(_' 1‘0 d.b.h. or at than the height. larger in trees 3.9 feet easttw11 hophoxwflnunn. .1 asoflnfl Frag _Ae :~o«:: .esfio :sa ~eneuaon~ . .1.. a .mra.~s L..oka .Hsa. iwlqufim. meg.wx menawa.an,m QF~AA2 A.~;>Q_ «zoe;a; a 2:2 on 2:5;_as:1_1 1H mc_. zazw Loose;u ; MECCQQLQ _O maoaxoc mwmuv mau.a..~u ./n~ v;a w anoA21 s~.2.2-1 ,asa .a.aF_«.;._ :.a.aso .aao ./.ea_he_a~oma; a .aio :__.1 mas~o ”_sa do».1~aA# .e._~a 1“~.L./ flaafialx- 9 .OILJ 1 . 11. H11 1.1.1 --lltHIltllllnlW 11111 11 11-111” 1 -1 l 11 1 111111.11. tdtl. 11.1. .11 .1 1 Wltd H111H.11w afltt H111M1. P1111111. - .I11 11” 4. 1.1.lttlt1ltttd1H mz mz h_. mx mz 233:“ E:::_Q:Oe cssww Ch. mm. xx nz fix Silage boat :daE w+.1 mm xx xx xx mm:_u fizpzoxvg Adom $2 $2 fix he. an. 1:MSS:U bezam maze? .a.~.~nes~ae_a HM“ .auia.~_ .~.u.*.a.a._.a w. .was¢.>.waww . -aawaAewwmawaaw s«:wxaflk LH.YS:3sT;V®m u;aee;m . . .. , -,:. -. .N . «h._n. . .a-._ _ a“ a ...a_: 1._Ao; «_zsane _e~_~a whea.eflea_1 ”__a._a_1 .a:_..i Hie .e.afira.~; :.a.oae a.. .{.asra~o~e«e;._ Fraia>,~,aafl ~_<.H w-~.a._._somv .me Vnfi_esruflanwdw Appendix 17. Retires 5 ion of Black oak: \(50,9) = 19.30 - d.bb(x \(Dom.) White 3(Dom.) {ecit)ak: Y(»0.9) Y (53.9) \(Dom.) oak: equations Zuu -_’*_Ah_h-a____r-__~ u. __ -- 5.66 + O.87(xl) - 2.00(x9) + 11. 16.97 - 10.63 + 3.91 + Pignut lileOI$$ I ‘- 1(11.9) (93.9) S(I)on1.) Red maple: H.119) Y63.9) Y(D0m.) Black cher 3‘. (50.9) Y (n3.9) 16.83 - 20.31 — 3.OO(XO) 3.12(X9) 1.15(x2) [Q '0 j .2-(\3) 0.19(xl) 0.17'x l( 1 0. .( 4' 0‘3 [3 .', .30(x3) t 01(xr) + a 92(X1) - 101'11redit-tina YODITXMJCilCHl bt'rspeciirs the relative density and size classes. - 2.35(x9) - 3.Ol(36) + .11(x8) .09(x8) () "x, .1~(.8) v I . 3 r 4 .0f x l (\7) 3( 8) + 0.08(x6) O.06(x8) 0.031x,) + 0.03(x ) a 8 ) 1 1.32(X2) + 2.51(x3) - l.20(x;) f 1' , _ ‘ l , . 0') , 2.31(x3) 0.1ztx6) 1 0.-l(x8) NS , . , . ' 0.96(x2) - 3.03(x3) + O.16(x8) = 0.53 + 0.81(x1) + 0.21(X8) — —0.22 + 6.17 + 2.8l(x9) 2 09 o—Jn—I (x2) - 4.82(X1) 0.03(x,) J 2 11.53 - 0.88(xl) - 5.16(x3) - 7.16(x1) + O'UT(X5) 1'5': : 9.07 + 1.07(xl) + 1| 8(x2) + ‘ " ‘ ' 1 . " 9" V b.63(x3) - 1.73(xl) 4 U'“l(”6) x: . .- , . . 22.26 + 3.11tx3) 5 — 6.3/(x‘) 1 0.31(x6) 201 Aptxsndixt 17. (amnitiruied) ___-_h77'._- _.__._. -— 131 at'k cl1c1r1'y: Y 11.63 + 1.22" (Dom.) (x3) Sassafras: Y : I) _ I 1':- . __ ~ . (”0.9) -9.11 3.aa(\2) 0.19(x8) Y = 35 68 - 9 30(x ) - 3 09(' )NS 0 7 ’ (J3.9) . -... .2 c. x3 1 .tl(x8) . _ _ .\‘s .. \(Dom.) — 21.81 - 1.1a(x3) + 0.tl(x8) :Mneritun1 elnn Y s. ) z —2.36 1 0.78(x2) + 0.07(x6) 3(Dom.) : 9.11 - 2.27(X3) __ ___. “__d—‘a’fi Where: Y(h) 2 relative density by height Classes. X1 = years since cutting. X2 = soil textural class from (1) coarse to (5) line. x3 : site class (from (1) very good to (5) very poor). x1 : depth to calcareous substrata (either less than (1) or greater than (2) H3 inches txdimv suriaee.) x5 : total original stand basal area per acre in square leet. for t rcwes l. 0 iticl1 (1.1) 11. a11d 1:111:01‘. “ total residual stand basal area per acre in square feet. tor trees 1.1111u11 d.b.h. and larger at time of cutting. x- : residual stand bagal area ingrowth between time of cutting and I , .. _ . liHKB ot‘seampliiug, in FKUJflré’ feet 1x3r acxw: ior tixwrs l.() inch d.b.h. and larger at time of sampling. X8 : original stand basal area per acre in square feet. same species as Y. X9 = residual stand basal area per acre in square feet. same species as Y. 202 Appendix 18. Summary of chi square analyses comparing the propm'tioi; 0t stumps with living sprouts by diameter classes and species . ___ .__. . .....fi._ . -.. m r__.___- ___~_....-..___._ .._.__ __ __.._._.—-__‘._...__-.-. .___-___—- -—._.._ _ ___._,__5 , ___ _ ___ ., - Variables Degrees of Species compared , freedom _ _ _ _ Chi s_q_na_r_e I Black oak d.b.h. classes 15 82.93"‘* White oak d.b.h. classes 3 ($11.29** Red oak d.b.h. classes 3 11.6(‘)** Pig-nut hickory d.b.h. classes .2 1.00 Red maple d.b.h. classes 3 8.61" b _ _ Black cherry (no test) . - “ xi. *Sienificant at the 5 percent level **51.‘~‘Hiticant at the 1 percent level “Four to eight inch d.b.h. class dropped due to small sample size and 10“- ( 2) expected l'i'et‘luency. . a it c .) i ('.e .ee . 0, bsdntplc t()() 5111311 [01' V2.11 1d Lt'Fl, L'APL‘CtLd 11(.(111L11L1(. 1k .7 [11c111 .. "(.13 }\[)L)t?ll(1l Pi ].S3. litftil't'S S i.()ii L‘C{lltlt i.r)ris l ()1' [)l‘t‘til ('t iiitg 591.11211) 5:1)x'titit 11L 1 '11: g: 1'()\\ t 11 . Black and red oak: = -.50 + l.81(x) “A . (r = .772**; r“ = .596; SEU : 1.63; n : 137) \Vhitx: o:d<: Y = 1.07 +£7.17 (r z .733**; r2 = .537; SEC 2 0.18; n = 70) Ahean lieigdit (H‘ donnaiant. secwilint: ancl FCLTlling‘FflJFOUt imqir0(hu:tion: Y = 3.23 + 1.12(x) (r = .168**; r” = .219; SEC : 2.32; n = 15) Where: \' : Ilcuiglit oi‘ tailltjst 51)rcnit [)ei' cltinn) ill lxget. J1MJYC' aiwquiid. x 2 Years since cutting. _ _ _ ,,. _ __.v__, ._.__T_ri. f ~ ~-___.—_.'V‘.—»v,_h _‘fi ** tSignificxuit at tlu3 J)l level 201 iiiipt9n(1i.x 2t). l{£?lzll itirisliili (if uwgl l (lrélillt‘d s()il s 1‘) F()U1.ht'rll Blitlii gtin ozdi l}])es. - 5011 """" Average textuzw? manage— Predominant tit soil Inaterial ment oak a . . . giwnip 5cm 1 s(1'ies ___—_ __§ ___- _._- _ Q - _._. —~_. , , _ _ __ _ .____“ t) 1‘ -1) l‘() f i l (3 Clay lcnnn to siltfi' (fl aiy‘ 1()ilHl . . . . . . . 12:1 . . . lltni‘l c-y‘ . . . . . . . . . 1 IAJaHl . . . . . . . . . . 221 . . . llitnni . . . . . . . . . . l \’c*i‘y‘ 1 ill(‘ sziii(ls ziiitl silts ... . . . . . . . 2a . . . Sisson . . . . . . . . . l Loam to silt loams . . . 2a . . . Ockley . . . . . . . . . l SZUid}' 1(JJH1 tc) l()an1 over lcuun to silty (slay' loani . . . . . . (5'2a . . . KCH(U111(WCl11L‘ . . 9 . . . 3.1 Loamy sand to sandy 108“} oytkr 1(iani to s il ty‘ c:l£iy 1()&Hl . . . 3 12zi . . . Shatt‘a . . . . . . . . . . 3 .1 £5;iii(i,\' l ()ziin . . . . . . . I3ai . . . iii 1 l s (ltll c‘, Iatlf)tf(‘!' . . . . 13 . 1 ES iii(ly l,()ziln t() s i 1 t loam . . . . . . . . . 3a . . . Kalamazoo. Fox . . . . . 3 fiand 1t) loann' sand C)\'t-i' l ()Llhl t,() (:1 ziy' l () Liiii . . . . . . . . t) 12 Cl . . . () t t zivv Ll . . . . . . . . . 13 Sandy loam to silt l()a1n t)v(>r lieclrcnqk . . 3 lta . . . IDaIWHa . . . . . . . . - - 15 Loamy sand to sandy loam _ . _ ‘ . , , . _ 4a . Boyer. Casco . . . . . . 3 IA)ahn' san(h"to szuidy ltnun . . . . . . . . . 'la . . . Oslitenm) . . . . . . . . - - la . . . (Viltnna . Sgiiin