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ABSTRACT

TIRE MODELS FOR THE DETERMINATION

OF VEHICLE STRUCTURAL LOADS

By

Robert Thomas Jane

This thesis develops a tire model which estimates the magnitude

and frequency of forces applied to the wheel spindle during low-speed

tire/rough road interactions. A simple tire test to obtain input

parameters for the model, and tests which validate the model are

presented. The model is then used with a quarter car simulation

to illustrate the utility of the model. Finally the limitations

of the model for higher speed applications are examined.
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CHAPTER I

Introduction

Directional response simulations of passenger cars have been

in use since the l950's. Since the trajectory of a vehicle is

almost entirely dependent on the forces and moments applied to

the vehicle from the road, the representation of the tire-road

interface is of great importance. 'By and large, these directional

response simulations have been limited to smooth road studies,

and a variety of tire models have been developed for this purpose

[4]. '

More recently, structural analysts have developed models which

can reproduce modal properties of vehicles quite faithfully.

These models are valuable in that the free vibrational modes of

the automobile are indicators of structural performance. But

an additional use of these models is the calculation of vibrational

response, and or the stresses resulting from loading on the

vehicle through the tires. This capability depends on additional

information, the forces applied to the structure by the tires.

This thesis was motivated by this need for tire forces generated

during rough road vehicle simulations to be used as input to these

complex vehicle models.



CHAPTER 2

Literature Survey

Two types of mathematical models of tires have been developed and

presented in the literature. One type is the finite element model.

This model is an excellent representation of a tire, but because of

its complexity and high computing cost it is not used for tire-

vehicle-system simulations. The remaining tire models are semi-

empirical, they depend on the tire test data for their utility.

Three of these models will be discussed here, the so-called point

contact model, the fixed footprint model, and the adaptive foot-

print model.

Figure l presents the point contact model. This model has been

extensively used in vehicle simulations to predict vertical forces

for tires traversing smooth road surfaces. Davis, in Reference 7,

claims that the point contact model is useful only if it is operated

on a ground surface that exhibits the following characteristics:

(l) the road profile cannot have any step changes in ele—

vation or slope.

(2) the elevation and slope of the road profile within the

tire contact patch can be defined by a plane tangent to

the ground at the ”ground contact point”.



Fvertical = Kp'

   

F

longitudinal

Figure l. Point contact model.
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Figure 2. Fixed footprint model.



To overcome some of the shortcomings of the point contact

model, the fixed footprint, or ”brush" model was developed. In

Reference 4 the fixed footprint model is discussed along with its

use in vehicle simulations. As shown in Figure 2, the model con-

sists of a number of parallel springs evenly spaced across the

tire contact patch. The model has been used to successfully compute

the vertical and longitudinal forces created by a tire slowly moving

over an irregular road surface. But since the computation of longi-

tudinal force depends on the local slope of the terrain, the fixed

footprint model has its limitations. For example, the fixed footprint

model predicts no longitudinal force upon encountering a step elevation

change in terrain such as a curb.

A third formulation is the so-called adaptive footprint, or

radial spring model. A diagram of the model is shown in Figure 3.

The model assumes that:

(l) the tire is a thin disk that deforms only in the radial

direction.

(2) the terrain is undeformable.

(3) the radial force-deflection relationship for the tire

being modelled is known for a rigid planar surface.

Two procedures have been used to calculate forces for this model.

A brief discussion of each follows:

The first method redefines the terrain contacting the tire model

through the use of an ”equivalent ground plane" that reflects the



   
     

  

 

A Fvertical

    longitudinal

Figure 3. Radial spring model.

 



original elevation and slope of the terrain. Models of this type

were presented by McHenry [6], and latter by Davis [7]. In

McHenry's model, the tire is represented as a disk composed of

nonlinear radial springs. The springs are spaced 4 degrees apart

in the wheel disk, and have identical load-deflection charac-

teristics that match the flat terrain properties of a nonlinear

point contact model.

If a tire encounters irregular terrain, as in Figure 4, the

tire model computes the forces as follows: At each point in time

the individual radial spring deflections are computed. A vector

summation of these deflections, is used in conjunction with the

load-deflection properties of the radial springs to compute the

resultant radial force vector, ”equivalent ground contact point”,

and the ”equivalent ground plane” of the tire. The resultant

radial force vector is assumed to act through the ”ground contact

point“, on a line through the wheel center.

It is important to note that the equivalent ground plane

formulation assumes the net force vector acts through the wheel

center. Since this assumption was not in agreement with our

measurements, we were led to consider a second approach presented

in [4], which does not require the resultant tire force to act

through the wheel center. This model and some details of the

supporting test program are presented in following sections of

this thesis.
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CHAPTER 3

The Model

Figure 3 is a schematic diagram of an adaptive footprint model.

Algorithms used to compute forces at the tire/road interface for

such a model have been presented in the literature by McHenry [6],

Davis [7], and Captain [4]. The method employed here uses the

radial spring deflections for force calculations, and neglects

damping, as our goal is the simulation of low speed impacts.

Higher speed impacts, where damping would be expected to be more

important, will be discussed in Chapter 6.

The total force on the wheel hub can be expressed as the sum

of all the forces created by the radial springs:

_,
_I in

II
M

3

0
-
l

—
h

(3.l)

To calculate the individual force contributions from each spring,

one might be led, as in [4], to use a linear relationship:

df. = K * E. (3.2)

Where Kr represents a linear spring constant and 5} is the radial

deflection of the ith spring. Since the tire model must support



 



the normal load, MS, of the tire at equilibrium, the following

relation results:

n

NS = 2 K * 6- - k (3.3)

where k is a unit vector in the vertical direction. This equation

does not allow the value of Kr to be determined because the

individual spring deflections, E}, are not known at the trim

condition. Additional information is required to solve for Kr'

Either the dynamic spring rate of the tire at equilibrium, or the

contact patch length at equilibrium could be used. But if the

dynamic spring rate is specified, the model's contact patch will

not necessarily have the correct length, and if the contact patch

length is specified, the resulting dynamic spring rate may be in

error.

To deal with this situation, a nonlinear force-deformation

relation was developed. This was done as follows: Consider a

simple test in which the vertical tire force of a free rolling

tire is measured as a function of wheel center height, as in

Figure 5. The experimental data can be related to the sum of the

vertical radial spring deflections, as shown in Figure 6, by

simulating the same test using the radial spring model, thus

yielding the summation of vertical spring deflections corres-

ponding to the measured forces. Now vertical forces can be

computed for any terrain by summing the vertical component of

the radial spring deflections and finding the force from Figure 6.
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deflection.
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Defining the vertical force versus total spring deflection

in this way assures the correct dynamic spring rate as well as

the proper contact patch length at the trim condition.

It is reasonable to assume that longitudinal forces can be com-

puted using a similar algorithm. However, from the free rolling

tire test results, it was found that a linear spring constant

could be used to compute the longitudinal tire force:

n .

F = E K * 5, . 1 (3.4)

where i is a unit vector in the longitudinal direction. It was

found that setting the magnitude of KX to ninety percent of Kr

yielded excellent agreement between the test data and computed

longitudinal forces.

An obvious question to be asked at this stage concerns the

number of radial springs required to meet the objectives of the

model. Its clear that the answer is not ”one” - the point spring

model has been shown to be inadequate for rough road simulations.

On the other hand very large numbers of springs lead to increased

computational expenses.

Related questions arise concerning enveloping. For example,

if the deflection of each radial spring is computed by finding

the intersection of the undeformed tire disk with the road profile,

the awkward situation shown in Figure 7 may result. Computing

forces in this manner assumes only radial deformation of each

spring and ignores the forces and moments that can result if

there is a stretching of the tire perimeter.
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Since the stiffness of the tire perimeter precludes slope

discontinuities such as those illustrated in Figure 7, the

following algorithm was developed. Initially the deflection of

each spring is computed based on the intersection of the un-

deformed tire disk with the road profile. Then a comparison is

made between the vertical position of the endpoints of neigh-

boring springs:

52. = ZTIREi - ZTIRE1._1 i=2, n (3.5)

where ZTIREi represents the vertical position of spring i's endpoint

with respect to the road. If the magnitude of 621 is greater than

a given value, DELTA, then the endpoint position of springs close

to spring i will be modified. The value of DELTA is determined

by limiting the stretching of the tire circumference:

DELTA = R * de (3.6)

where R is the undeformed tire radius, and do is the angle between

adjacent springs. This allows a maximum arc length of /2'*

DELTA for each arc segment before the following algorithm is used

to modify the tire profile. If a tire impacts a sharp bump, and

the magnitude of 521 exceeds DELTA, then the M springs adjacent

to spring i are to be modified, with M being computed by:

 

M = (3.7)

 



IS

The spring endpoints being modified are always lower than spring

i. For example, if a tire is going up a bump, then the springs

before spring i are modified using the following equation:

6Z-
_ T

ZTIRE’Q "' ZTIREQ +W (IL-I

IQ, .

)2 2:1, M (3.8)

where t is a counter that moves to the left or right of spring i.

Figure 8 illustrates the resulting smoothing created when a

tire encounters a 2" by 6" bump. Note the greater movement of

the springs close to the object with a decreasing effect on the

springs located away from the obstruction. In this example,

6Z1 becomes greater than DELTA when i=2l, or between the twenty

and twenty-first springs. By computing M as previously dis-

cussed, it is found that the seventeen springs before spring 2l

must be modified.

Using this enveloping algorithm, with 200 radial springs

evenly spaced across the 2 radian arc of the tire model led to

realistic tire profiles. Computing the tire profile with this

intuitively based approach to account for tread shear force led

to very good correlation with test data. This will be discussed

in the next section.
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CHAPTER 4

Model Validation

To validate the modified radial spring model, rolling tire

tests were performed at the Highway Safety Research Institute in

Ann Arbor, Michigan, using a flat bed tire testing machine [6].

The flat bed test machine is instrumented to measure all of the

forces and moments created by a tire rolling along the test bed.

To simulate rough road conditions, various sized wooden blocks

were placed on the test bed and allowed to move under the tire

while the wheel spindle height was held constant. The tests were

made using a bed speed of three ft/sec, the standard speed of the

test machine.

To gather parameters for the modified radial spring model,

the vertical force vs. deflection was measured for a Goodyear

Pl85/75-l4 radial tire, inflated to 28 psi. The input data was

gathered by varying the wheel spindle height, and measuring the

resulting vertical force as the tire rolled along the flat bed

of the test machine. Figure 5 presents this data.

To validate the modified radial spring model output for

rough road simulations, the flat bed test machine was used to

gather test data. Road disturbances were provided by wooden blocks

l7

 



l8

placed on the bed of the test machine. The dimensions of

the blocks used were two inches high by six inches long, and

one inch high by six inches long. In both cases the wooden blocks

were of sufficient width to eliminate any lateral force generation.

Both vertical and longitudinal tire forces were measured using

a strip chart recorder to record the forces.

Figure 9 presents the measured test data and the computed

model output for vertical force versus longitudinal position as

the tire encounters each of the wooden blocks. The vertical force

output was expected to be symmetric since the bump was symmetric

and because the wheel spindle was held at a fixed height. The

Figure shows a static normal load of 800 pounds was present in

the tire, and the peak vertical force was generated as the wheel

spindle passed over the center of the bump, occuring at x=l5.5

inches. The symmetric plots of the model output and the tire

test results are in close agreement.

The results of the tire testing program also suggested that

a linear spring constant Kx would be sufficient to compute the

longitudinal forces for the radial spring model. A comparison of

longitudinal tire force calculated using this linear spring are

presented in Figure TO. The figure incidates that the free

rolling test data and simulation produce symmetric, very similar

results. As the leading edge of the tire first impacts the bump,

a negative or rearward force is produced. Then as the wheel

center passes directly over the bump, the longitudinal force

passes through zero and becomes positive, or forward, as the tire

begins to move down off the bump.
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CHAPTER 5

Vehicle Simulation

To illustrate the utility of the modified radial spring

model, a so-called quarter car model simulation was implemented.

Figure ll presents a schematic diagram of the model. The vehicle

model has two degrees of freedom, the vertical position of the

wheel, the unsprung mass, and the vertical position of the car

body, the sprung mass. These two quantities are represented by

Zw and Zb respectively.

A variety of tire models could be used to compute the forces

at the tire/road interface. For purposes of comparison here, two

tire models were used, a simple point contact model, and the

modified radial spring model. The parameters input to both of

these tire models are representative of l4“ radial car tires,

and are presented in Table 5.l. The vehicle parameters are

presented in Table 5.2, indicating a simple approximation for a

3200 pound car.
0

TABLE 5.l Tire Parameters

Radial spring model .................. Figure 5

Point contact model .................. Kp=l000 Lb/in.

2l
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where Kp is a linear spring constant used to compute vertical

force for the point model.

TABLE 5.2 Vehicle Parameters

K (suspension spring stiffness) ............... l00 lb/in

C (suspension damping coefficient) ............ 2.2 lb-sec/in

MB X 9 (weight sprung mass) ................... 700 lbs

MN X 9 (weight unsprung mass) ................. lOO lbs

To study the effect of the tire model on transient response,

a low speed impact with a 2” high by 6” long bump was simulated.

Figures 12 through l4 present the computed output for the quarter

car model. Figure l2 presents the resultant vertical force created

at the tire/road interface. The Figure indicates that the vertical

force spike of the point model begins when the wheel center is

directly over the leading edge of the road obstruction, and ends

as the wheel center passes the end of the obstruction. The force

which occurs immediately after the center line of the tire reaches

the bump, is the product of the point spring rate and the height

of the bump. The force output of the radial spring model has a

more realistic time history with the vertical force building up

before the wheel center reaches the bump, and decaying after the

wheel center has passed over the end of the obstruction.

The resulting rigid body motions are shown in Figures l3

and 14. The Figures indiciate that the higher frequency content

 



 
 

Figure l2. Vertical tire forces, impact speed 3 (feet/sec.).

Time (sec.)

1000—

   

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

-
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.

.
‘
D
'

point contact model

 modified radial spring model

24



 



.
b

H
m

U

l
L
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
1
1
1
1
1
1
1
]

I

g
.
.
.

Figure 13.

25

 

modified radial spring model

0
v
”

-
-
.
.
a
a
-
-
-
'
- ................ point contact model

 
  

O H t
o

Time (sec.)

Wheel spindle displacement, impact speed 3 (feet/sec.).

 



 



26

............... point contact model

 “\‘ modified radial spring model

  
Figure l4.

Time (sec.)

Car body displacement, impact speed 3 feet/sec.

”
I

 



                         



27

of the point model leads to enhanced excitation of the wheel hop

mode of vibration, and less excitation of the car body. The more

realistic force-time history created by the radial spring model

leads to smaller wheel displacement; and larger car body motion.

All of the work so far presented has been of low speed

testing and simulations. The next section is concerned with

higher speed impacts.



 



CHAPTER 6

Spin Constraint

In the free rolling tire tests presented in Figures 9 and 10,

the tire was unconstrained by any moments applied about the spin

axis by the tire testing apparatus. The angular spin rate, m, was

able to vary as the tire traveled over the test block. In parti-

cular, the longitudinal velocity of the wheel center relative to

the ground was held constant, and the spin rate, w, increased

as spindle-to-ground distance is decreased, thus avoiding longi-

tudinal stretching of the tire contact patch. This section will

consider similar tests in which the wheel spin rate was held

constant.

Figure l5 presents the longitudinal force test data for a l4"

radial passenger car tire impacting the 2" x 6" block with spin

rate held constant, and the free rolling test data of the same

impact. The symmetric plot of the free rolling tire contrasts the

biased forces measured when the tire was not permitted to spin up

as it encountered the wooden block. As the rolling radius of the

tire is shortened by the tire/block interaction, the constant

angular velocity of the tire, w, maintained by the flat bed test

machine servo drive becomes smaller than the spin rate required

for no longitudinal slip. As a result, the force bias caused by

this longitudinal slip is in the negative or rearward sense. The

28
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Figure 15. Longitudinal force biasing. Test data from a l4" Goodyear

Pl85/75-Rl4 tire at 28 psi.



30

vertical tire force, on the other hand, did not show substantial

changes when the spin rate of the tire was constrained to remain

constant during tire testing.

A simple simulation was used to aid in understanding these

results. In this simulation longitudinal brake force was assumed

to be a function of the longitudinal tire slip, S, where:

S = l - Rw/U (6.l)

R is the average length of the radial springs in the contact

patch; w is the wheel spin rate, and U is the longitudinal velocity

of the wheel spindle.

Using a simple u-slip curve, shown in Figure l6, to compute

the brake forces caused by longitudinal tire slip, a simulation of

the tire impacting the 2" x 6" bump at various speeds was implemented.

The results of this simulation are presented in Figure l7.

The simulation of the low speed impact indicated a sym-

metric longitudinal force as the tire crossed the bump, in good

correlation with the free rolling tests. But as the speed, U, is

increased, the simulation predicts a force bias similar to the

one created during the constrained wheel spin testing. This non-

symmetric force output is expected because as the longitudinal velocity

is increased, the tire/wheel assembly does not have sufficient time

to spin up while the tire is in contact with the test block. This

inability to spin up creates a deformation of the tire contact patch,

and therefore large brake forces due to longitudinal slip of the

 

 





31

750:

J
l

 

U
1

0 O

“
I

1
1

m 0
1

O

l

 

I

(
U

U
T

0

l
l
l
l
l
l
l
l
L
I
l
l
l
l
I
l
l
l
l

  

I

p
.
.
.

Slip

Figure l6. Longitudinal tire force due to tire slip.



 

 



 

32

 

 

  

19°01 ------- 1000 ft/sec.

:
-------------- 50 ft/sec.

‘ 3 ft/sec.

'1000 TIITIITTTITIIIllIlTllTll'

o 10 20 30 4° 5°

X spindle location (in.)

Figure l7. Effect of vehicle speed on longitudinal tire force.



 



33

tire. The highest velocity, which effectively holds the tire‘

spin rate constant during the tire/bump impact, leads to a result

very similar to the results measured while testing with the wheel

spin rate constrained.

The simulation predicts little longitudinal force biasing

for tire/bump impacts with longitudinal velocity less than ten

feet per second.



 



CHAPTER 7

Conclusions

The modified radial spring model yields accurate vertical and

longitudinal tire forces created during tire/rough road inter-

action at low speeds. The model requires a minimum of input data,

which can be gathered by measuring the vertical force-deformation

 

relationship of the tire.

The longitudinal forces generated by the model at high speeds

are expected to be inaccurate due to the significant force biasing

created by longitudinal tire slip. Further work should include

high speed testing to confirm the effects of wheel spin rate on

tire forces.

34
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