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ABSTRACT
PANEL DATA MODELS WITH MULTIPLICATIVE INDIVIDUAL
AND TIME EFFECTS8: APPLICATIONS TO COMPENSATION
AND FRONTIER PRODUCTION FUNCTIONS
BY

YOUNG HOON LEE

The increasing availability of panel data (pooling cross
section and time series data) enables econometricians to
extract information both from variation between individuals
and from variation between time periods. Most of the panel
data literature assumes that slopes are common for all cross
sections, but that intercepts vary over individuals. The role
of individual-variant intercepts is to control for
unobservable individual specific effects. The unobservables
which are represented by the individual effect should have
influences on the dependent variable that are constant over
time but varying over individuals. For example, according to
the conventional panel data model, unmeasurable ability or
ambition should have the same effect on wage over time. The
primary focus of this study is on the construction of a
regression model that allows time-varying effects of
individual specific components on the dependent variable.

We discuss fixed effects and random effects and derive
the estimators that are analogous to the within and GLS
estimators of the standard panel data model. We derive the
asymptotic properties of the generalized within and GLS

estimators. Furthermore, we construct test statistics for the






hypothesis that the individual effect has a constant
coefficient over time.

We apply the model in two different settings. The first
application deals with the compensation of a sample of
economics faculty members from six U.S. universities. There
are two separate time periods, and the effect of unobserved
ability on compensation is found to be different in the two
periods.

Second, we apply our model to the frontier production
function (efficiency measurement) problem. Previously,
frontier models estimated from panel data could estimate the
technical inefficiency of each firm by assuming it to be time-
invariant or by allowing technical inefficiency to vary over
time only in a specific restrictive way (such as a quadratic
function of time). The application of our general panel data
model to frontier production functions allows technical
inefficiency to change over time in a relatively unrestricted
way. Our results for a sample of Indonesian rice farms show
that technical efficiency 1levels vary significantly over
farms, and indicate interesting time trends in efficiency

levels.
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CHAPTER ONE
INTRODUCTION

Panel data are data that have both a cross-sectional and
a time-series dimension. For example, we might have
observations on each of 1000 individuals for each of five
years. Letting N denote the cross-sectional sample size and T
denote the time-series sample size, we have a total of NT
observations; in the example just given, N=1000 and T=5, so
there are NT=5000 observations in all.

Panel data are potentially useful for several reasons. At
the most basic level, observing each individual repeatedly is
a way of increasing the total number of observations. Also,
some parameters may be estimated more readily from cross-
sectional information and others from time-series information.
For example, in budget studies it is often argued that prices
display little cross-sectional variation, so that precise
estimation of price elasticities requires time-series
information, while real incomes display 1little temporal
variation, so that precise estimation of income elasticities
requires cross-sectional information. Panel data contain both
types of information and therefore may be very useful.

However, in this study we will be concerned specifically
with techniques that are useful when N is large and T is

small. Such cases are common in labor economics, since many

1l
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longitudinal data sets contain thousands of individual but
only a few time periods of data per individual. In such cases
the usual motivation for the use of panel data is to control
for possible biases due to unobservable individual
characteristics. For example, Mundlak (1961) considered a
Cobb-Douglas production function for farms, and was concerned
about possible biases due to differences across farms in soil
quality, an unobserved variable that affects output and may be
correlated with the inputs. More recently, many labor
economists have estimated wage equations and have been
concerned with possible biases due to differences across
individuals in unobservéd ability.

The existing panel data literature has dealt extensively
with the problem of avoiding biases due to unobservables like
soil quality or ability, by assuming the unobservables to be
time invariant. The standard model that is used is the

regression model with individual effects:

(1.1) Yit-XitB+ai+eit i-l[oo.'N' t-lycooiT,

Here Y, 1is the dependent variable; X;, is a Kxl vector of
explanatory variables; B is a Kxl of parameters (regression
coefficients); a; is the unobserved individual effect, which
is time invariant (does not depend on t); and €;, is the random
error. The errors €, are assumed to be independently and

identically distributed (i.i.d.) with E(€,)=0 and Var(e,,)=02.
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In this model the unobserved individual characteristics
represented by the individual effect a; are assumed to have
the same effect on the dependent variable Y in all time
periods. The motivation for this study is that this assumption
is unnecessarily strong, and we will relax it. Specifically,
we will allow the effect of @, on Y to vary over time, though
we will require that the temporal pattern of the effect of «;
on Y must be the same for alll individuals. Specially, we will

consider the model

(1.2) Y, - X,,B+0,a,+e, i-1,...,N, t-1,...,T.

This model requires a normalization, and we set ¢,=1. Compared
to the model (1.1), the new model introduces the (T-1) new
parameters 4,, 05,..., 6, to represent the effect of a; on Y,
for t=2, 3,..., T relative to the effect of a; on Y,,.

As a matter of notation, let Y. =(Y, Y., ... Y;)', €,=(¢€;,
€ +++ €)' and X,=(X;,' X;,' ... X;;')', each representing the
T observations for person i. Then we can write equation (1.2)

as

(1-3) Yi-Xiﬁ+Ea1+€1 .i-l,-.-,N .



where

(1.4) z-[;], 6-|"

The usual model (1.1) thus corresponds to the case that
§,=6s=...=6,=1, or equivalently that ¢ (or ¢) is a vector of
ones. As we shall see, this is a testable proposition in our
model.

The model we consider can also be compared to the two-way
analysis of covariance model that includes both individual and

time effects. That model can be written as

(105) Yic-X1c+ai+et+eic i-].’...’N’ t-l’.-o'T

The number of parameters in (1.5) is exactly the same as in
our model (1.3), but the -models are different. Our
interpretation of (1.5) is that it is suitable in cases in
which there are relevant unobservable variables that vary over
time but not over individuals; it does not handle the case
that our model is designed for, in which the effects of
unobservable individual characteristics vary over time.

Compared to the two-way analysis of covariance model (1.5),
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our model (1.3) is more difficult to estimate, because it is
nonlinear. However, unlike the analysis of covariance model,
our model allows for inclusion of observables that are time
invariant or invariant over individuals, a considerable
advantage in some applications.

The plan of this study is as follows. Chapter 2 discusses
the fixed effects model in which the parameters a; are treated
as fixed. We derive a generalized within estimator, and we
show its consistency and asymptotic distribution. We also
discuss the case of several possible interactions between
time-invariant and individually invariant parameters, as in

the model
G
(1.6) Y, =-XPB+YEa_+e; i=1,...,N.
g-1

Chapter 3 discusses the random effects model in which the
individual effects a; are treated as random. We derive the
appropriate GLS estimator and prove that it is more efficient
than the within estimator.

Chapter 4 considers tests of the hypothesis that ¢ is a
vector of ones, so that our model reduces to the simple panel
data model. We present Lagrange Multiplier (LM) and likelihood
ratio (LR) and Wald statistics for this hypothesis.

Chapter 5 presents an application of our model to the

compensation of academics, previously considered by Hamermesh



6
(1989) using the standard panel data model. Chapter 6 presents
an application to the measurement of the technical efficiency
of a sample of Indonesian rice farms, previously considered by
Erwidodo (1990) using the standard model. Finally, Chapter 7

gives our concluding remarks.



CHAPTER TWO

FIXED EFFECTS

2.1 The Simple Model

We may rewrite (1.1) as

(2.101) YI-XIB'.‘e’ai"'ei i-llnociN
where
Y;, X, €1
Y;, X2 €2

and e, is a Tx1l vector of ones. This is also identical to

(2.1.2) Y=XB + Ga + €

where
'Y; }&W .e; o,
Y, X, €, a,
Y - . , X - . , e - . , a - .
Y, Xk € «Qy




and

e, 0 . . 0
0 eT L] . L]
G - I,Qe, - ) )
. 0
0 0 e,

As a matter of notation, define
(2.1.3) P, = G(G'G)"'6'" and M, = I, - P,.
Note that P.Ga = Ga and MGa = 0.
The fixed effects model treats a; as fixed. That is, each
a; is a parameter to be estimated. The within transformation,
which eliminates the effects by transforming the data into

deviations from individual means, corresponds to

multiplication by M;:

(2.1.4) MY =-MXB + Me

Avoiding matrix algebra, this amounts to:

(2.1.5) Y;.-Y; - (X;,~X,)B + (e,,~€,) i=1,...,N, t=-1,...,T,



where

1« = 1 w
?Z;Yit' ?tz;xic

The OLS estimator of the transformed model is the within

estimator of B;

(2.1.6) B, - (X'Mx)*x'M Y

N T

[E E (X;e-X;)! (Xic"xi)]-l[z:z: (Xe-X,)/ (Y;-Y)) )

1-1 t-1 1=-1 t=1

The within estimator is the best 1linear unbiased

estimator (BLUE) and is consistent as N goes to infinity with
T fixed.

2.2 The General Model

We rewrite (1.3) as

Yi-XiB+Eai+ei i-l,---,N
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where €, is i.i.d. N(0,0%)'. This reduces to the simple model

of section 2.1 if ¢=e;. We may consider all NT observations as

(2.2.1) Y=-XB + (I, D) a +e€

If (2.2.1) is the true relationship and ¢#e,, the

estimates of B from the simple model are not unbiased, since

EB, - E[X'(1,8M,)X] X' (I8M,)Y

- B+ [X/(1,8M,) X] X' (I BM, ) (I,DE)a

T N T

N
- B+ (X;-X,) ! (X,,-X;) ]2 (X;,-X;) (E,-E)a
B Z;c-l it 1 it 1 ; s it 1 t 1

-] t=

where E=(1/T)‘§fv Thus we expect the simple within estimates
to be biased for the coefficients of those variables whose
temporal variation is correlated with the temporal variation
in the effect of a on Y.

The generalization of the within transformation is to
premultiply (2.2.1) by the idempotent matrix (Iﬁ@Me) that is

defined as

(2.2.2) M, =1, - P, where P, = £(£'¢)7'¢".
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That is, the transformed regression model is expressed by

(2.2.3) (I,BM)Y - (I,0M,)XB + (I,BM)e

or

since M.£=0. The individual effects are deleted by taking
deviations from individual weighted means (P.Y and PX) instead
of taking differences from individual means in the simple
model.

We may not apply OLS to (2.2.3) since Mevi and M,‘,xi are
not observables; MY, and M.X; include the parameter vector ¢.
Instead, we construct an objective function which will be
minimized with respect to B and #. This objective function is

simply the error sum of squares of (2.2.3):

N

(2.2.5) CSSE - ; (Y;-X;B) /Mg (Y;-X,B)
-1

- (Y-XB)/ (I, QM) (Y-XPB)

The reason that we denote this objective function CSSE is that
it is the same as the (concentrated) error sum of squares of
(2.2.1) . By taking derivatives of (2.2.5) with respect to g8

and 4, the first order conditions are obtained as

ACSSE _ _, w _ )
(2.2.6) 38 2 f\;xﬁug(yi X,B) -0
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dCSSE 2 ,
(2.2.7) - - [y (Y,-x.B)E(Y, -X; B)
w CIE ;1 1 ib 1. 1.B

N
- ?: (Y;~X;B)/ P (Y,-X;$)0] = 0
-1

where

Y2 X,

Y;s Xis
Yi - , Xi -

REL) X7,

The solutions of the first order conditions are the following;

(2.2.8) P, = (X (I,OM )X X (1,04 )Y
N X/ . N x/
- M X,)" Y
(Y Xy X0 7 (3, Xabde Y,)

N
(2.2.9) &,-(1,0,) is an eigenvector of ; (v;-xB,) (v;-x,B,)/
-1

The derivation of (2.2.9) is given in Appendix 2.1.
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NOTE 1 For a matrix A, suppose that ) is an eigenvalue and

x is the corresponding eigenvector. Then, Ax=)x and x'Ax=)\.

LEMMA 1 ¢, is the eigenvector corresponding to the largest
eigenvalue.

Proof>

N
(2.2.10) CSSE =- ; (Y;-X;B ) M (Y;-X,B )
-1

N N
-E (Yj'Xij)l(Yi-XIB")-;EINE (YI-X.‘IBN) (Yi-XiB w),Ew

1-1 E/"E W 1=1

By NOTE 1, (2.2.9) can be rewritten as
N
(2.2.11) CSSE - ; (Y;-xB)/ (Y;~x,B,) - 4,
-1

where 2, is the estimated eigenvalue. We pick the largest

eigenvalue since we wish to minimize CSSE. Q.E.D.

The solutions for B, and ¥, are not closed forms of the
data, since the solution for B, depends on ¥, and vice versa.
However, these can be calculated by iteration starting with
any initial value of B,. The estimate ﬁu from the simple model
is a good candidate for the initial value.

For the proof of consistency and asymptotic normality of

B, and 7, , we need two theorems provided by Amemiya(1985) .2
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THEOREM 1 Make the assumptions:
(A) The parameter space 6 is a compact subset of the Euclidean
K-space (R), and the true value ¢, is in e.
(B) Q,(y,6) is continuous in #e® for all y and is a measurable
function of y for all 4ee.
(C) N"Qu(a) converges to a nonstochastic function Q(¢) in
probability uniformly in 6e€® as N goes to », and Q(4) attains
an unique global maximum at 4,.

Define #, as a value that satisfies

Oy(0,) = Max 0,(0) .

Then #, converges to ¢, in probability.

THEOREM 2 Assume:
(A1) lim (1/N) gx,uq exists and is finite and nonsingular.

(A2) lim (1/N) gaf exists and is finite and nonzero.

Then, B, and , which satisfy
N
CSSE(By.Ey) = Min ;E (Y;-X;B) /Mg (Y;-X,B)
’ 0 -]

are consistent.
Proof> The proof that the assumptions (A) and (B) in THEOREM
1 hold in this model is omitted since it is trivial. With (A1l)

and (A2), it is shown in Appendix 2.2. that

(2.2.12) plim %cssz(ﬁ,() = (Bo-B)/0x(Bo-B) + O.EWME,
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+ 2(Bo-PB)/Oye€o + (T-1) 02

where

. 1
- lim = Y xiMx
Ox N §y XM
N
. 1 2
- 1lim = a
Q¢ N ~ ol
N
N~e 1=1

Define a compact parameter space 6 by B'SB < c; and £'¢ < c,
where c, and c, are large positive constantsland assume (B,'
£,') ' is an interior point of €. Then N'CSSE(B,¢) converges to
(2.2.12) uniformly in probability and plim (1/N)CSSE(B,¢)
attains an unique global minimum at (Bgr€p) ¢
plim(l/N)CSSE(B°,£°)=(T-1)02. Thus assumption (C) holds. Using
THEOREM 1, B, and , which minimize the objective function
converge to true B, and £, in probability as N goes infinity.

Q.E.D.

Using the following theorem by Amemiya (1985), we may derive

the asymptotic normality.

THEOREM 3 Make the following assumptions in addition to the
assumptions of THEOREM 1.

(ARA) a%%/aaao' exists and is continuous in an open, convex
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neighborhood of 4.
(BB) N*(aZQw/aoao')v converges to a finite nonsingular matrix
A(6,)=1lim E N"(a"’Q“/aM')‘,c in probability for any sequence ¢,
such that plim ¢,'=4,.
(cc) N2(aQ/868), = N(0,B(4,)),
where B(4,)=lim E N‘(aQw/ao)%(aQ@/ao')%. Let (#,) be a sequence
obtained by choosing one element from 4, defined in THEOREM 1
such that plim 3N=00. (We call 3" a consistent root).

Then,

VN (8,-6,) ~ N[0,A(0,)-2B(6,) A(6,) ]

Applying THEOREM 3, we have

1 , OCSSE
A(Xy) ll'l.nE N( eIy )a,
1w ”
O, lim =( 1.0 0ha, ;)
M= N ; o1” o 0; E ool
-2
0,6,
QI(IT'I— /00)
0S80

a finite nonsingular matrix, and

CSSE (aCSSE

2
B(A. ) llm E -A_f( al. )%x T)lo



N N
Qx ];i-g\ T];T( -1X§.¢°i- E:E gx.{goe{)aoi)
- 40? °
( /oz +Q¢) (IT-J._ 6;)6,0)
€0, §o&o

where

o

(See Appendix 2.3 for the derivation of A();) and B(),).)

Therefore,

VN B”_B-o -~ N[0,A (L)) 1B(A,) A(A,) 1] .
6"—90

An advantage of the general model over the simple model
(1.1) is the ability to include time-invariant explanatory
variables. To see this, consider first the simple model with

time-invariant regressors Z; added:

(2.2.13) Yit-XitB +Zi‘Y+a1+€it

or

(2.2.14) Y= XB + (ZQe,)y + Ga + €
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where

Premultiplying by M,, the transformed regression model is

(2.2.15) MY = [MX M(Z®e;)] [3] + Mg
- [MX 0] [3] + Mg = (MX)B + Mg

since M, (Z8e,)=0’. This is the reason why we can not
incorporate time-invariant explanatory variables into a fixed
effects model.

This problem does not arise in our general model. The

equation for the general model corresponding to (2.2.13) is

(2.2.16) YIC-XICB"'ZIY+eta1+eit
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or

(2.2.17) Y= Xp + (ZQep)y + (I a + €

- [X (2Qe;)]

s] + (IRE)a + e

The within transformation leads (2.2.16) to

(2.2.18) (I, @M)Y = [(I,OM) X (Z@Me,)]

“:] + (IP%)e

But (I,®M,) (2Qe;)=28(M.e;) is generally not equal to zero unless
¢=e,. Therefore, the inclusion of time-invariant regressors*
is allowed, and their coefficients can be estimated
consistently. This is an advantage of the general model since
time-invariant explanatory variables are often important in
many applications. For instance, in a wage equation, years of
schooling, race, union status or sex could be important
determinants of the wage. Notice that the overall intercept is
also identified in the general model while not in the simple
model.

In the simple model with fixed effects, assuming the
normality of the e€;,, the conditional maximum likelihood
estimator (CMLE) 1is equal to the within estimator.

Furthermore, the MLE is the same as the CMLE (or within

estimator). Thus the incidental parameters problem is not
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relevant in the simple model.

The above results do not hold in the general model. The
same type of derivation as in the simple model for the CMLE
can not be applied in the general model. The individual mean,
?,, is a sufficient statistic for a; in the simple model and
the 1likelihood conditional on Y, does not depend upon
incidental parameter a;. However, P.Y; in the general model
corresponds to ¥, in the simple model, and it is not a
sufficient statistic since it is not a function of only the
data. A parameter ¢ is included in PY,.

Because the incidental parameters problem is relevant in
the general model, the asymptotic theory developed in this
section does not agree with (naive) normal likelihood theory.
According to normal likelihood theory, the covariance matrix
of (B,0) derived from the likelihood function L(B,60,a), which
is a submatrix of the inverse of the information matrix,
should equal the covariance matrix of (B,0) derived from the
concentrated likelihood function. Furthermore, this covariance
matrix should be (asymptotically) the covariance matrix of the
estimates (B,0). However, in the present case none of these
statements is true. (See Appendix 2.4.) In summary, the
conventional way to derive the CMLE does not work and the
asymptotic theory of the generalized within estimator is
different from that indicated by likelihood theory.
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2.3 The G-component Model

It is impossible to have many different individual
effects in the simple model since they would not be
identified. However, we may include a number of individual
specific components in the general regression model;

specifically, we may assume

(2.3-1) Yi-XiB+E1a11+---+EGaG1+ei i'l,..-,N
where
[ 1
0

1 .
oo e

g

For identification we make the orthorgonality assumption

fglff=or gkf.

The within transformed version of model (2.3.1) is

(2.3.2) MEYI - MBXIB + Msei i‘l, o« -N
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where

PS"PEI"’P{a“"--"'P(a, ME-IT-P3°

(Note that the projection onto (¢,, &,, ... , §;] equals P,
because ¢.'¢,=0, g#f.) The objective function is constructed

in the same way as in section 2.2:

(2.3.3) lgigz CSSE = (Y-XB)/(I,®Mg) (Y-XB)

where

We can obtain solutions for B in terms of 4 and ¢ in terms of

B from the first order conditions.

(2.3.4) P~ (X (1,PM) X)X (I,8M) Y
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N
(2.3.5) E_~(18,) is an eigenvector of ; (v,-x;B,) (v;-x,B,
-1

LEMMA 2 Ew is the eigenvector corresponding to the gth
largest eigenvalue of Z(Y,-X.B)) (Y;-X;B)"'.

Proof>

N
(2.3.6) CSSE - ; (Yi~XB)/ (Ip~Pg- . . . -P ) (Yy-X,B,)
-1

N
- E (YI-XIB'I)I(Y_{-X:[BN) - Il = e e .- XG

1-1

We have to choose the largest G eigenvalues to minimize CSSE.

Q.E.D.

The same asymptotic theory as in Section 2.2 is applied
to show that the estimators are consistent and to derive their
asymptotic covariance matrix. (See Appendix 2.5 for this

covariance matrix.)
2.4 Summary
We have discussed a generalization of the conventional

fixed effects model that allows different time-effects of

individual specific components on the dependent variable.
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We derive a consistent estimator of the regression
coefficients (B) and of the coefficients of the individual
effects (¢) using the conventional within transformation. We
noted that the coefficients of time-invariant explanatory
variables, which cannot be estimated in the simple model, may
be estimated consistently and asymptotically efficiently. The
inclusion of several individual specific components in the
regression model is also introduced, and the results are
similar to those with one individual specific component.
Unlike the simple model, the asymptotic theory of this model
does not agree with normal likelihood theory. The sufficient
statistic for the individual effects depends on other
parameters, and so the CMLE cannot be obtained by the usual
method (see Chamberlain (1980)) by conditioning on a
sufficient statistic. The MLE is consistent, but this must be
proved directly, and the usual formula for its asymptotic
covariance matrix (the inverse of the information matrix) does

not apply.



CHAPTER THREE

RANDOM EFFECTS

3.1 The Simple Model

An alternative approach in panel data models is to assume
that the individual components are random. That is to say,
random effects models consider the individual effects to be
independently identically distributed and to be independent of
the disturbance and the explanatory variables.

Hsiao (1985)° mentions the difference between fixed
effects models and random effects models. The fixed effects
model is regarded as providing inference conditional on the
effects in the sample, whereas the random effects model is
regarded as providing unconditional inference with respect to
the population of effects.

The within estimator does not consider variation between
individuals. The GLS estimator used in the random effects
model considers both variation between individuals and
variation over time within each individual. Therefore, the GLS
estimator can be expressed as a combination of the within and
the between estimators. The GLS estimator is more efficient
than the within estimator because of the utilization of the
variation between individuals. However, we need a

distributional assumption about the effects, which reduces N
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parameters to a single parameter (the variance of the
effects), and we also need to assume that the effects are
uncorrelated with the regressors.

The regression equation (1.1) can be written as

(3.1.1) Y.iC-XICB.‘.V.it i-l,-.-N, t‘l,-.oT

where

Vie = @ ; + €4,

We assume that the effects a; are i.i.d., with E(@;)=0 and
Var(ag=wf, and that a; is independent of X and €. Combining

all NT observations, We have

(3.1.2) Y=Xp + v

where

VveGx + e

and where G=I,®e, as in section 2.1.
The knowledge of the covariance matrix of v is necessary

to derive the GLS estimator of B;
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(3.1.3) Cov(v) = Q = E(Ga+e) (Ga+e)’
- 021, + TO.P,

- 1 02
(3.1.4) Q! « — (I,.-(1-k2)P,), k? w ——
02 NT G 02+T0'3

and

N[

(3.1.5) Q2 « L(r,-(1-K) Py

alk

Treating k as known, the GLS estimation can be calculated by
the regression of (2°'2Y) on (2°V/2X). Equivalently, the GLS

estimator of B is given by

(3.1.6) Bgs - (X'Q1x)X'Qy

3GLS is consistent and asymptotically efficient. It is
more efficient than 3‘,, but the’ efficiency difference
disappears as T goes to infinity. A consistent estimate of 0
can be obtained from the estimated variances in the within and
the between regressions, and the feasible GLS estimator is

asymptotically equivalent to the GLS estimator.
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3.2 The General Model

3.2.1 Ordinary Least Squares Estimation

The regression equation (1.2) is considered as

(3.201) Yit-xitp+vit i-l’oao,N, t-llooc,T

where

Vie=0.a; v ey,

We let E(a;)=4 and assume that a,"=a;-p is i.i.d. with

Var(ae;")=02. Estimation of (3.2.1) is identical to

(3.2.2) Y, -XB +&p+ vy

where

vi - fa’; + €,

and

(3.2.3) Y~-XB + (eN®E)p+V‘
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where

vt = (I,Q8)a* + e

and e, is the N-dimensional vector of ones.
The OLS estimation procedure ignores the fact that the
covariance matrix of the error term is not the identity

matrix. Its objective function is

(3.2.4) SSE = (Y-XB-(e,DE)p)/ (Y-XB- (e,D8) p)

The derivative of SSE with respect to u is

(3.2.5) ag—;""’" - -2 (e,®E)/ (Y-XB- (e,®E) p) = 0

and this yields the solution for p in terms of B and ¢:

(3.2.6)  figs = Nt’e (e,QE) (Y-XB)

The concentrated objective function is obtained by

substituting (3.2.6) into (3.2.4):

(3.2.7) CSSE = (Y-XB)/ [Ty~ (P, ®P)] (Y-XB)
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where

P, - eN(e{véN) ey = (eyen) /N

Minimizing CSSE with respect to B and ¢4, the first order

conditions and the OLS estimator of B and ¢ are obtained as

(3.2.8) a%‘%SE - -2X[Ipp- (P, ®P) ] (Y-XB) = 0

dCSSE 2 == 1 g
.2.9 - - -—_Fee’ -
(3 ) 30 e (e'te E,EEee E6) =0

and

(3.2.10) Bops = (X' [T (P ®P) X) X[ I (P, ®Pg) 1 Y

(3.2.11) s is an eigenvector of ee’

where
— 1 1 <
e - —?_': (Y;-XBors): €, - —;_: (Y;-X;Bors) . t=1,...,T;
N -1 N -1

e_. - (e—zl"'leT)/
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LEMMA 3 Z,. is equal to e/e,.
Proof> After some algebra using the first order condition

(3.2.9), we can derive

(3.2.12) E’EOLS - ,—1—5/01_96_6’:0[5!01’3-0
O. OLS

Note that ee' is a TxT matrix whose rank is one. Therefore, T-
1 eigenvalues are zeros and one is positive. It is clear that
€ is the eigenvector corresponding to the positive eigenvalue
A=é'€é, since (ée')e=(e'€)e=reé. Therefore £, =€ is proportional

to €. We can check that this satisfies (3.2.12):

(3.2.13) &é'e - —L_g'ee’ee - ee'a - &'ée = 0
e'e

The division of € by €, is required to satisfy the
normalization condition that the first element of ¢ is one.

Therefore, £,.=€/¢€,. Q.E.D.

Finally, the solutions for B8, #§ and u using LEMMA 3 can

be written in closed form:

N — — N — -
(3.2.14) Pos = [} (xi—x)’(xi-x)]‘l;‘ (X;-X)'(Y,-Y)
1=1 -1

31
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e
(3:2115) eow--r'
121

(3.2.16) PBos =&

Note that B, is indeed the usual OLS estimator, and that 7

and i are then calculated from the OLS residuals.
3.2.2 Generalized Least Squares Estimation
Unlike the case with OLS estimation, the covariance

matrix of the error term is taken into account in GLS

estimation. The covariance structure of v is as follows:

(3.2.17) Cov(v) = Z = E((IDE)a*+e) ((I,DE)a*+e)’
= 021, + E'E02 (I,9P)

(3.2.18) - %(1,,,—(1-:;2) (1,0P))

where
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(3.2.19) X

.

- % (I~ (1-Q) (I®P,)) .

GLS can be obtained by OLS applied to the transformed

regression model

-1 -1 -1 -1
(3.2.20) I 2y =X 2xp +3 2 (e@E)p + L 2v

where

-1 -1 -1
Cov(Z %v) = E(DZ 2vv'I 2) = I,

This transformation is a combination of the within and the
between transformations. For example, I '/2y=(I®M,)Y+q(I,@P,)Y.

Since =2 includes the parameter vector 6, we cannot
simply apply OLS to (3.2.20). We will derive the GLS estimator
of B and ¢4 which minimizes the objective function, equal to
the error sum of squares of the transformed equation (3.2.20).

That is, we wish to minimize

(3.2.21) SSE = [Y-XB- (€y®E) pl/ [Ijg- (1-q?) (I,BP) ]
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- [Y-XB-(e,®%)]

The derivative of SSE with respect to pu is

J0SSE
(3.2.22) =52 =-2(ey®8)/ [ I~ (1-q3) (I BP;) ] [Y-XB- () &) 1] -0

and this implies

(3.2.23) fgg - Fl?,?(e,,@E)’(Y—XB)

Substituting (3.2.23) into (3.2.21), we obtain the

concentrated SSE

(3.2.24) CSSE = (Y-XB)'[(I,BM) +q* (M, ®P;)] (Y-XB)

where

M, = Iy- een/N.

The values B, and §,¢ which minimize CSSE are derived by
taking derivatives of CSSE with respect to g and ¢ and setting

them to zero. This gives
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(3.2.25) P = (X'[(I,BM)+q* (M, ®P)1X) " -
X (I OM) +q* (M, ®P) 1y

(3.2.26) & is an eigenvector of

N

;:[¢1-qzei+(1-¢1-qi)§][Jl—q2e1+(1-¢1-q§)§V
=1

where

N
— 1
ei- Yi-XiBGl.S' e-‘ﬁE(Yi-X‘iBGLs)

1=-1

The proof that &, is the eigenvector corresponding to the
largest eigenvalue is essentially the same as the proof of
LEMMA 1, 2 or 3. Similarly, the asymptotic properties of B
and £, are derived using Theorem 1 & 3 as before, and we

obtain

(3.2.27) ‘/I—V[gm—::o] ~ N[0,A"*BA™Y]
GLs~ VYo

The matrix A comes from the second derivatives of CSSE while
B is derived from the cross-products of the first derivatives.

These are (K+T-1)x(K+T-1) matrices given by:



B = 402

Qxx

Qxx
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(X -—%
pla e

/
0%0

X'E,0)

(u2+(1-q?) 02) (I,,- 6

1

/
0%o0

B (X~

(p2+(1-g?) 03) (Ip,-

/

06/0 )

050 |

X'E400)

0,65

/

)

- 2022

080 |

where

.1
Oux = %‘r.n TIX’[(I,,@ME) +q% (M, ®P;) 1 X

Therefore, the asymptotic covariance matrix of B, and ¥,

which is given by (1/N)A'BA"', is simply equal to 40¢‘B’'.

The efficiency gain of the GLS estimator compared to the
within estimator is shown by the difference of the asymptotic
covariance matrices. If Cov(B,,¥,) - Cov(B;s,¥,s) is positive
semidefinite (PSD), B,  and ¥, are more efficient than B, and

Pu. Thus we ask

(3.2.28) Cov(X,) - Cov(lgs) is PSD?

This is identical to the question:

(3.2.29) [Cov(Xgg)]l™t - [cov(X,)1t is PSD?
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Assuming E(e;) = g = 0 for simplicity (See appendix 3.1), we
focus on the submaérices in (3.2.29) that correspond to B and
6, respectively. Note that the covariance matrices of the
within and the GLS estimators are block-diagonal when u=0.

This gives

(3.2.30) [var(Pgl™ - [var(By1™?

- SX [(I,2M) +q* (I,®P)1X - X (I,0M)X

- i;x'(r,v@&)x, which is PSD.
(3.2.31) [Var(Bg )1 - [var@,)]1?

_ (1-g) o} 00/ )., _ (1-g¥)oq

Ty Tt n g0 - 0

&'t

Thus B, is more efficient than B, and ¥, and J, are equally
efficient.
The efficiency gain of GLS over within disappears as T

goes to infinity since ¢'¢ - © as T -+ ©. Therefore

2
2-;-00 as T-ow’

02+§/Eo?
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which implies that in (3.2.30)

2
LX(I@P)X -0 as T~

Because of the 1lack of knowledge of qz, we need a
feasible GLS estimator using a consistent estimator of g?. We
can estimate g’ from the results of the within and the between
regressors; or, for that matter, from the within and between
sums of squares evaluated at any consistent estimates.

Specifically

(3.2.32) 1im 62 = 1im SSEy o?

P N-= N(T-1)-K

E
(3.2.33) 1lim (02+E’E02) = lim SSEs . o2 + E'Eo?
Nee N-= N-K-1

q2

. . SSEy, N-K-1
3.2.34) 1lim §2 = 1lim L4 -
( ) m @ - Lim o M(T-1) -

Since ¢ is consistently estimated, the asymptotic properties
of the feasible GLS estimator are asymptotically equivalent to
those of the GLS estimator.

We have noted in Chapter 1 that our general model is
different from the simple model that includes both individual

and time effects. We now note that the regression model
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(3.2.2) with random effects and u#0 is identical to the model

with zero u and including fixed time effects. That is to say,

(3.2-35) Y.it - C1 + Xicp + (eta1+eit)

or

(3.2.36) Y;,=-c, + X;,B+0.p+ (0,a%+e,,)

is identical to

(3.2.37) Y =cC, + X;,B+8,+ (0,a’y+e,.), C,+8,~c,+0.p

This general model effectively includes not only time-variant
coefficients of individual specific components but also

"simple" time effects (or time trend).

3.3 The G-component Model
As in the fixed effects model, we can include a finite

number of individual specific components in the random effects

model. The regression equation is then

(3.3-1) Yi-Xiﬂ*'Vi i‘l,---,N
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where

vy=8ay v &y v L+ By vy

The assumptions in this regression model are as follows:

(A.3.1) E(ag;)=u,, and Var(aﬂ)=af. a_,. is independent of @

gi

for all g, £, i, and j except g=f and i=j. It is

independent of X and € and we denote aﬁ' = Qg ;~Hg-

(A.3.2) The orthogonality conditions hold: £,'€~0, g#f.

Then, (3.3.1) is the same as

(3.3.2) Y;=XB+E&pu, +. .. +8hg+ vy
where
vi=&eig+ oL v e re;, agmag-p,,
and

(3.3.3) Y=-XB+ (e®E)p, +. ..+ (R )ps+ v
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where

vt - (I,®QEal + . . . + (I,BE)a; + e

The covariance matrix of v' is calculated as

(3.3.4) Cov(v*)=B=02Ip+E18,05, (I®P ) +. . .+Ec 02s(1,8P; )

(3.3.5) Z!a :12-[1,,,-(1-%’) (I®P ) -. . .-(1-g2) (I,®P )]

where
2 02
gy = —m8Mm8Mm8 ™ ——— -1,...,G
P o2 B E o2, 7
Y
(3.2.6) I ? %[Im.-(l-ql) (I®P ) -. . .-(1-gy) (I,®P )]

Therefore, the objective function (SEE after transformation by

2‘1/2) is

G G
(3.3.7) SSE = (Y-XB-Y (&%) ,) [T~ (1-q3) (I8P )]
g=1 g-1
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The derivative of SSE with respect to u is

JSSE

(3.3.8) £

= -2(e®E )/ [ Iz~ (1-a]) (I,BP )]

g

c [Y-xB-(e®E Jpu,) =0

The solution of By obtained from (3.3.8) is

(3.3.9) @i, - N;g (eyDE )/ (Y-XB)

gr g

Then, the concentrated objective function gotten

substituting (3.3.9) to (3.3.7) is

G
(3.3.10) CSSE=(Y-XB)/ [Ijz- (P, ®Pg)] [T~ (1-@3) (I8P )]
st
* (I (P, ®Pg) ] (Y-XB)

G
NOTE 2 [Iy(P,®Pg))/ [In-Y (1-q7) (I®P; )] [Iy~ (P, ®Pg))
g-1

G G
- I - 3,33 (P,®P ) - Y (1-g) (I, Q )
g=1 g=-1

by
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G
- (LQMg) + Y M, QP -
g1

Using NOTE 2, we can rewrite CSSE as follows:

G
(3.3.11) CSSE = (Y-XB)/[(I,BM) + Y a5 (M, ®P; )] (Y-XPB)
g-1

We can derive the solutions for B and each 8, by minimizing

CSSE with respect to B and 0ge This yields

G
(3.3.12) P (X [1,8M3)+Y a7 (M, ®P; )]1X)
g-1

G
X (I BM) +Y a5 (M, ®P ) 1Y
g-1

(3.3.13) &_,=(1 % ')' is the eigenvector corresponding to

g GL 9 GLS

the largest eigenvalue of

IX_; [y1-qZe+ (1-/1-g2) &) [f1-gZe;+ (1-/1-gZ) &',

The estimates in (3.3.12) and (3.3.13) are consistent and
asymptotically efficient by the same reasoning in section 3.2.

As in the one-component case, we can get a consistent
estimator of qu using the results of the within and the

between regressors. Specifically
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SSE,

—_—¥ . g?
N(T-G) °

(3.3.14) plim 8% = plim

SSE
(3.3.15) plim (0*+Ek ;05g) = plim ——22 = o*+E/gk jal,

SSE Y] N 2

. 2 >
(3.3.16) plim §; - plim S5E,, M(T-G) %

where

SSEgg = (Y-XB)' (M, ®P; ) (Y-XB)

The properties of the feasible GLS estimation using a
consistent estimator of qf are asymptotically equivalent to

those of the GLS estimator.

3.4 Summary

We have discussed a generalization of the conventional
random effects model that assumes @, to be i.i.d. and
independent of the disturbance and the explanatory variables.
We derived the OLS estimator and showed that it is consistent.
We also derived the GLS estimator, showed that it is
consistent, and derived its asymptotic distribution. The GLS
estimator is more efficient than the within estimator, but the

efficiency gain disappears as T - .



CHAPTER FOUR
TEST STATISTICS

It is meaningful to test the hypothesis that ¢ is a
vector of ones. This is the restriction that reduces our
general model to the usual simple panel data model. The within
estimator and the GLS estimator of the simple model are not

consistent if d#e,,. In the case of the within estimator,

(4.1.1) plimfB, = plim (X'MX) *X'M;Y

-p+ 1&1 (XM X) 2 X'M (I DE)a » B

since Mg(IJ%f)fo‘. This means that the conventional panel data
model produces inconsistent estimators (has a specification
problem) if fd#e, ,.

We may develop test-statistics for the hypothesis f=e,,
based on the work of Ronald Gallant (1985)7. Gallant considers
estimators derived by minimizing an objective function s (4),
where n=sample size and #=parameters. Our estimators minimize
objective functions and therefore fit his framework. For

example, for GLS we have

N
1
(4.1.2)  5,(8,0) - % 3 S(.0)

45
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— (7-XB) [(I,@M,) +q* (M, BP,) ] (Y-XP)

CSSE

mz

where a preliminary estimator® r2 is 62 derived from the within

estimator (3.2.32).

The null hypothesis is considered as
(4.1.3) Hy: 0 -ep,

or

(4.1.4) H,: h(p,0) = H[g] -epn, =0

where H = [0 | I,,] is a (T-1) by (K+T-1) matrix.

Then, the LM statistic given by Gallant (p. 219) is

8S,,(I¢w) loa- /Y -1 -1 aSN(xGlS)
(4.1.5) LM = N(—2 %5 )/3 0/ (HVH') 'H $ (— )

oA A
where

A oo - restricted estimate of B] - |Pas ,
6 €r1
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B, s = GLS estimator with é=e,, imposed,

g- 1 N s(X o)
N o oo
aS(xm) 95 (A ) |,
F- = ; ( ) ( 3 )

V- 3iFg?

The LM statistic in (4.1.5) has asymptotically a Chi-square

distribution with (T-1) degrees of freedom. Gallant (p. 220)

also provides a test-statistic analogous to the usual

likelihood ratio and wald statistics:

(4.1.6) LR = 2NI[Sy(% 45) - Sy(X o))

- %[CSSE(XM) - CSSE(X g5) ]

(4.1.7) W = Nh(PBgs.0gs) ! (HVH) *h(Bgre, B

where

B
X - [am - unrestricted GLS estimate

of [ﬁ
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V = unrestricted GLS estimate of V.

Under general conditions we have also that LR and W are
asymptotically Chi-square with T-1 degrees of freedom.

These three test-statistics will be used in Chapter 5
when we apply this general model to the compensation
regression of faculty members, and test the hypothesis that
the effects of individual specific components on the dependent

variable (compensation) are equal over time.



CHAPTER FIVE

ESTIMATION of COMPENSATION

5.1 Data

our data consist of 100 full professors of economics in
six large public uniQersities: Michigan State University, the
University of Michigan, the University of Wisconsin-Madison,
the University of Illinois-Urbana, the University of Minnesota
and the University of Maryland. These 100 observations have
been taken at 1979-80 and 1985-86 so that this data set is a
panel data set with N=100 and T=2.

The data set includes log of nominal compensation (LCR),
an administrative experience dummy (AD), a theorist dummy
(TH), citations (CITS), and experience (EX). Nominal
compensation is transformed from salaries. AD is a dummy
variable equal to one for those with current or prior
administrative service at or above the level of department
chair. TH is a dummy variable equal to one for those who are
theorists or theoretical econometricians; it is a time-
invariant variable. CITS is the average annual number of
citations by others in the previous 5 years. EX is the number
of years since the individual obtained the Ph.D. Thus every
individual has 6 more years of experience in the second period

(1985-86) than in the first period (1979-1980). The means and

49
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standard deviations of the variables are shown in Table 5.1.

For a further discussion of the data, see Hamermesh (1989).

TABLE 5.1. Means and Standard Deviations

Variables 1979-80 1985-86 Pooled
Mean S.D. Mean S.D. Mean S.D.
LCR 3.763 0.17 4.227 0.19 3.995 0.29
CITS 19.460 6.74 25.460 6.74 22.460 7.36
EX 20.556 24.58 28.422 40.40 24.489 33.59
N=100

5.2 Estimation

The compensation equation is described as

(5.2.1) LCR; = B,+AD;B,+TH,B,+EX,B,+CITSB,+Ea ;+€;

The only difference between the simple and the general panel
data models developed in Chapter 2 and 3 is whether to assume
¢ is a vector of ones or not. That is, when we consider that
@, is unobserved, time-invariant and has an effect on
compensation, the general regression model allows the effect

on compensation to be time-variant whereas the simple model
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assumes the effects are equal over time.

The meaning of ¢ needs to be discussed in the present
setting before we go on. Suppose {,=1 and {,=1.3. Then, it is
not true that the compensation of individual i is 30 percent
higher at T=2 than at T=1 because of the individual effect «;.
This would be true only when a;=1. It is more accurate to say
that the effect of a; on nominal compensation at T=2 is 30%
higher than at T=1. If a,=0.1, compensation is 3% higher 6
years later because of a;, holding all other regressors
constant. We can also say that the i'th individual has ¢
percent higher compensation than the j'th individual when aq,
is one unit greater than a; and the two individuals have the
same values for all other regressors.

Table 5.2 reports the OLS, simple within and simple GLS
estimates. Table 5.3 presents the estimates of the general
within and general GLS models. The first noticeable change
from the simple to the general model is that the general
within estimation could include time-invariant regressors,
such as a constant term and TH, which are excluded from the
simple within estimation.

Table 5.3 shows the value of f,. The within estimate and
the GLS estimate of ¢, are 1.3424 and 1.5630, respectively.
According to the within-estimated ¢, <the unobservable
parameter a; has a 34.24 percent higher effect on compensation
in 1985-86 than in 1979-80. As we discussed, §,=1.3424 does

not mean that compensation increases 34.24% because of «a;. We
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TABLE 5.2. The Simple Estimation

Independent Estimation Method
Variables OLS Within GLS
Constant 3.4301 2.9218
(63.44) (44.67)
AD 0.1679 0.1249 0.2080
(4.15) (4.41) (4.07)
TH 0.1199 0.1468
(3.05) (2.42)
EX 0.0188 0.0728 0.0400
(8.71) (51.60) (15.31)
CITS 0.0034 0.0022 0.0040
(6.90) (6.42) (6.66)
Adjusted R? 0.415 0.965 0.725
t-value in parenthesis.
TABLE 5.3. The General Estimation
Independent Estimation Method
Variables Within GLS
Constant 2.3448 2.7495
(11.53) (13.78)
AD 0.0823 0.1057
(2.89) (1.47)
TH 0.0086 0.0819
(0.11) (0.71)
EX 0.0363 0.0174
(4.75) (2.34)
CITS 0.0012 0.0023
(2.48) (2.04)
P 1.3424 1.5627
(3.58) (4.27)
Adjusted R® 0.977 0.967

t-value in parenthesis.
t-value of ¢, is for ¢£,=1.



TABLE 5.4. Test-Statistics for H;: £,=¢,=1

Test-statistics Within GLS
t-statistic 3.58 4.27
ILM-statistic 24.86 7.76
LR-statistic 34.32 83.62

will have an opportunity to look at the percentage change in
compensation caused by a; later in this section, after we
estimate a;.

Unlike the general estimation, the simple regression
model assumes ¢£,=¢,=1. Therefore, we need to test the
hypothesis ¢£,=1 using the test-statistics’ developed in Chapter
4. The results of the hypothesis tests are given in Table 5.4.
The LM and LR test statistics all show that we can reject the
assumption that ¢ is a vector of ones. In other words, the a;
have different effects on compensation over time.

We noted in the introductory chapter that our general
model is similar in some ways to a panel data model with
additive individual and time effects, but that it is not the
same model. Now, we may run fhe same regression as (5.2.1) but
including a time dummy in order to verify the above statement

empirically. Thus consider the model

(5 o2 . 2) LCRi - BO+AD131+THIBZ+EX1B3+CITSIB‘+D2.{BS+EG 1"’81
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where D2 is a time-dummy variable, equal to one at T=1 and
zero at T=2. One might expect that ¢, should be close to one
when a time-dummy is in the regression, since the time-dummy
absorbs the factor ¢. Table 5.5 shows that is not so. The
coefficients of the time-dummy are not much different between
the estimation with and without ¢. All three estimates in
Table 5.5 imply that nominal compensation in 1979-80 is about
thirty-four percent lower than in 1985-86 if the rest of the
explanatory variables are equal. Moreover, the value of 52
with the time-dummy included is really no different from its

value without the time-dummy (Table 5.5 vs Table 5.3). Both of

TABLE 5.5. Estimation with a Time-Dummy

Independent Estimation method
Variables OLS The Simple GLS The General GLS
Constant 3.8997 3.9037 3.6738
(92.55) (74.22) (81.71)
AD 0.1224 0.1228 0.1057
(4.91) (4.69) (4.68)
TH 0.1113 0.1134 0.0819
(4.63) (3.68) (2.42)
EX 0.0079 0.0079 0.0174
(5.46) (4.18) (10.88)
CITS 0.0025 0.0024 0.0023
(8.23) (7.54) (6.41)
D2 -0.3871 -0.3882 -0.3328
(-18.03) (-24.05) (-22.87)
£, 1.5627
(4.21)
Adjusted R? 0.777 0.929 0.967

t-value in parenthesis.
t-value of ¢, is for ¢,=1.
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the GLS estimates of ¢, (in Table 5.3 and Table 5.5) imply
that nominal compensation of individual i is 56.3 times a;
percent higher 6 years later because of a;, holding all other
variables constant. This is some empirical evidence that ¢ is
not simply another expression of a time effect. Actually, the
regression without a time-dummy, such as the general random
effects model in Table 5.3, is identical to the regression
with a time-dummy and E(a;)=0, which is the general random
effects (GLS) model in Table 5.5. Notice that all GLS
estimates in Table 5.3 and 5.5 are equal. Therefore, we do not
have to include time effects when we use this general
estimation method. Refer to Table 5.6 for the hypothesis test

for including a time effect in this general regression model.

TABLE 5.6. Test-Statistics (Estimation includes a time-dummy.)

Test-statistics GLS
t-statistic 4.21
IM-statistic 10.69
LR-statistic 50.17

The t-statistic, LM and LR test-statistics show that we can
reject the hypothesis that a; has a time-invariant effect on
compensation.

In order to calculate how many percent compensation rose
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in 6 years because of the individual effect a;, we need to
estimate ;. The a; can be estimated using the first order

condition from the minimization of SSE.

/
(5.2.3) @&, - -E—"(Yi-xiﬂ,,)

T

The estimate &, is a consistent estimate of a; as T -+ » but
not as N - © with T fixed. (See Appendix 5.1 for the list of
@,) . Table 5.7 shows the maximum, the average and the minimum
estimated a; in the within regression. &,,=1.114 along with
§,/1.3424 in Table 5.3 implies that the faculty member whose
@, is the maximum among 100 individuals has 38.1
(0.381=1.114x0.3424) percent higher nominal compensation in
1985-86 than in 1979-80 because of the individual effect a,.
On the other hand, the individual whose a; is the minimum has
7.2 (0.072=0.210x0.3424) percent higher nominal compensation
in 1985-86 than in 1979-80 because of the individual effect

a;,. We can also say that on average the individual effect on

TABLE 5.7. The Within Estimate of a;

Maximum Minimum Average

-~

a 1.114 0.210 0.673

Faculty Number 26 39
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nominal compensation 6 years later is 32.0 (0.230 =
0.673x0.3424) percent higher.

It is worth discussing what a can represent in the
compensation equation. The a; should not only be unobserved
but also have significant effects on the change in nominal
compensation. These effects should be different over time to
qualify as a legitimate candidate for a. I think that work
habits are a good candidate for a;. The fact that £,=1.34 and
§os=1-56 implies that the same work habits in 1985-86 have
1.34 and 1.56 times more impact on nominal compensation of
faculty members than in 1979-80, according to the within and
the GLS estimates, respectively. This is reasonable in the
sense that work habits do not have a 1large impact on
compensation at the early stage of the job, but the impact
will grow gradually as time passes. Suppose an individual just
becomes a faculty member. At this early stage, TH, EX, AD, and
CITS determine the compensation but work habits have little
effect even if they are very good. Good work habits will be an
increasingly important factor in determining compensation as
time goes on since good working attitudes will be appreciated
by colleagues, supervisors and so on (even though we cannot
measure them). The work habits of each individual affect
compensation greatly and are stable over time, as well as
unobserved in the data. Therefore, work habits satisfy all the

requirements to be considered as what a; represents.



CHAPTER S8IX

FRONTIER PRODUCTION FUNCTIONS

6.1 Review

A standard production function represents the maximum
possible amount of output obtained from a given amount of
inputs. However, the output data we observe are not
necessarily equal to the maximum possible output. The
difference between maximal output and observed output is a
measure of technical inefficiency. The desire to measure
technical inefficiency motivates the usé of so-called
"frontier production functions" to model maximal possible
output, given inputs.

A stochastic frontier model assumes output to be bounded
by a stochastic frontier, whereas a deterministic frontier
model regards the production frontier as deterministic. That
is to say, in the stochastic frontier model the production
frontier can vary randomly over time or across firms. Aigner,
Lovell and Schmidt (1977) and Meeusen and ven den Broeck

(1977) introduce a stochastic frontier model as follows:

(6.1-1) Y.l'. - Bo+XiB+81 i’l,-.-N-

58
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Here Y represents output and X represents inputs; for example,
in the Cobb-Douglas case, Y and X are measured in logarithms.
The stochastic frontier model decomposes the error €; as €,=v;-

u; so that (6.1.1) can be written as

The error term (v;-u;) has two parts. The component v, is
statistical noise, and represent the variation in output due
to luck, weather, and other factors outside the control of the
firm. It is assumed to be i.i.d. as N(0,02). The second
component u, represents technical inefficiency, and so u;20.
It is assumed to be i.i.d. with a specific (one-sided)
density. The original papers considered half-normal and
exponential distributions for u. Other choices include
truncated normal (Stevenson (1980)) and gamma (Green(1990)).
In any case, the model is called a stochastic frontier because
the upper bound (frontier) for Y, is (B, +X;8+V;), which is
stochastic.

The model may be estimated by maximum likelihood or by a
corrected least squares procedure. There |is, however, a
problem in estimating the technical inefficiency u; for each
observation. After the frontier function is estimated, the
residuals are easily obtained, but they are estimates of ¢;=v;-
u;, not of u;. (The average level of technical inefficiency can

be estimated by the average of the €,.) Jondrow, Lovell,
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Materov and Schmidt (1982) use the fact that €; can be
estimated and has information on u;. They suggest estimating
u; by E(u;|v;-u;), and they give an explicit formula for the

half-normal case'

. However, this estimate contains noise (due
to v;) even asymptotically.

The estimate of technical inefficiency depends upon the
distributional assumptions made, such as normality for v and

half-normal, exponential, gamma, etc. for u. Schmidt (1986)

says,

"In my opinion the only serious intrinsic problem with
stochastic frontiers is that the separation of noise and
inefficiency ultimately hinges on strong (and arbitrary)
distributional assumptions."

Schmidt and Sickles (1984) present a stochastic production
frontier model with panel data which does not require strong

distributional assumptions about technical inefficiency. Their

model is the following;

(6.1.3) Y, = Bo+X; B+v,-u;  i=1,...,N; t=1,...,T.

The term u; represents technical inefficiency and is assumed

to be constant over time. By defining a;=g,-u;, (6.1.3) becomes

(6-1.4) Yit - XitB'H!i*'Vit
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a panel data model with an individual effect. Schmidt and

Sickles define

(6.1.5) « = m?x «,

so that we may decompose the effects a; into overall intercept
a and technical inefficiency u,.

This model can be estimated without any assumptions about
u;, other than u;20, by treating the effects as fixed. In this
case the usual fixed effects (within) estimator applies.
Alternatively, if we assume the u; to be i.i.d., but do not
make a specific distributional assumption, we have the usualv
random effects model and a GLS estimator applies. Finally, if
we are willing to make a specific distributional assumption,
the model may be estimated by MLE, as suggested by Pitt and
Lee (1981). In this case the technical inefficiency u; is

estimated by E(u;|v,=u;,...,v,;~u).
6.2 Presentation of The Model
The Schmidt and Sickles model relaxes strong

distributional assumptions about technical efficiency, but at

the cost of imposing another strong assumption, that technical
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efficiency is constant over time. Schmidt (1986) says,

"An important line of future research, in my opinion, is
to allow inefficiency to change over time, but in such
a way that it can still be separated from statistical
noise without making very strong distributional
assunmptions.
I believe strongly in the usefulness of panel data in
estimating frontiers and measuring inefficiency."
We need to weaken the assumption of time-invariant
inefficiency but should not lose the advantages of Schmidt and
Sickles model.

Kumbhakar has generalized the Schmidt and Sickles model
by assuming that the technical inefficiency for firm i at time
t, u,,, can be written as

u, = g(t,d)a;
where @, is an individual effect and g(t,#) is a specified
function that depends on t and some parameters §. He considers
the specific function

g(t,8) = (1 + exp(bt+ct?))"!
In this model a; is fixed over time, but its effect on output
changes over time as g(t,#) changes with t. The empirical
problem is choosing the function g, appropriately.

Our panel data model of Chapter 2 and 3 can be regarded
as a generalization of Kumbhakar's model, in which the
parametric function g(t,d) 1is replaced a set of dummy
variables representing time. As such we do not require

assumptions about g(t,d). Specifically, our model applied to

the frontier production function setting can be written as
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(6.2.1) Yie = Bo"'xicb"'v.it'uit

When we define u,=-6.a,, (6.2.1) becomes

(6 .2 -2) Yit - ﬂo-bxitp*'a ta 1+Vit

or

(6-2.3) Yi - p°+xio+zai+vi

This is the general panel data model with individual effects
whose coefficients change over time. Similarly to Schmidt and

Sickles, we define
(6.2.4) @, = max (B,+6 . ,]
(6.2-5) Llit - at-(po"'etai)

Notice that (6.2.4) and (6.2.5) are equal to (6.1.5) and
(6.1.6) when every ¢, is equal to one. If all elements of ¢
have the same sign the definition in (6.2.4) and (6.2.5) are

equivalent to

(6.2.6) a = max &,



64

(6.2.7) u;, = 0.(a-a;)

Our regression equations will also include some variables
representing influences on output that are not inputs under
control of the firm. (Examples are dummy variables
representing wet versus dry season and village 1location.)
These are properly regarded as part of the intercept and
should be included in the above calculations so that they do
not appear to be inefficiency. Letting D,y represent the

effects of these variables, (6.2.4) and (6.2.5) become

(6.2.8) a, = max (Bo+D;.Y+0 @]

(6.2-9) uit - at—(Bo+DjtY+etai)

The estimates in (6.2.5), (6.2.7) or (6.2.9) are
consistent as N and T - © since the estimate of «; is
consistent as T - © and the most efficient firm in the sample

will indeed be perfectly efficient as N - w,
6.3 Data
We will reanalyze a data set previously analyzed by

- Erwidodo (1990). The data consist of information on 171 rice

farms in Indonesia, for six growing seasons. The data set was
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collected by the Agro Economic Survey, as part of the Rural
Dynamic Study in the rice production area of the Cimanuk River
Basin, West Java, and obtained from the Center for Agro
Economic Research, Ministry of Agriculture, Indonesia. The
data are for 171 rice farming families and extend over six
time periods. Each time period is a growing season; there are
two growing seasons per year. Three of the six time periods
are dry seasons and the other three are wet seasons. Data are
collected from six different villages that contain 19, 24, 37,
33, 22 and 36 farm families, respectively.

The data set includes information on seed, urea, TSP
(Triple Super Phosphate), labor, and land. It also includes
some dummy variables. DP is a dummy variables equal to one if
pesticides are used, and zero otherwise. DV1 equals one if HYV
(High Yield Variety) of rice are planted, while DV2 equals one
if mixed varieties are planted; the omitted category
represents traditional varieties. DSS equals one in the wet
season and zero in the dry season. DR1,...,DR5 are dummy
variables that represent the six different villages, and are
intended to control for differences in soil quality across

'. For a further discussion of the data, see Erwidodo

villages'

(1990) .
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6.4 Estimation

In this

section, we estimate a production function for

Indonesian rice farms. The Cobb-Douglas production function to

be estimated

is specified as follows;

5
(6.4.1) lnYit-Bo-r; B, 1nX,, . +P¢DP, +P,DV1, +PDV2, +B,DSS,
=1

where

+B,oDR1;+P,,DR2,+B,,DR3,+P,,DR4,+P,,DR5,+0 ,a ;+v;,

Y: total production of rough rice in kilograms

X1: the
X2: the
X3: the
X4: the
X5: the

and all

amount of seed (Kgqg)

amount of urea (Kg)

amount of TSP (Kg)

amount of labor (hours)
area planted with rice (Ha)

dummies are defined in Section 6.3.

Our main concern is a comparison of the results obtained

from the simple and general panel data models. Estimation

results are given in Table 6.1 and 6.2. Table 6.1 displays the

estimates of the simple panel data model by OLS, within and

GLS. (The second column of Table 6.1 shows the within

estimates and it cannot include the village dummies (DR)
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TABLE 6.1. Estimation of the Simple Panel Data Model
Independent Estimation Methods
Variables oLs Within GLS
Constant 5.0811 5.0636
(26.73) (26.32)
Seed 0.1358 0.1208 0.1327
(5.06) (4.46) (4.93)
Urea 0.1200 0.0918 0.1132
(6.91) (4.79) (6.38)
TSP 0.0718 0.0892 0.0761
(6.31) (7.71) (6.66)
Labor 0.2167 0.2431 0.2230
(7.60) (8.25) (7.75)
Land 0.4819 0.4521 0.4770
(15.90) (14.03) (15.57)
DP 0.0077 0.0338 0.0141
(0.27) (1.15) (0.49)
DV1 0.1755 0.1788 0.1772
(4.60) (4.75) (4.66)
DV2 0.1356 0.1754 0.1446
(2.60) (3.40) (2.78)
DSS 0.0489 0.0533 0.0492
(2.26) (2.73) (2.35)
DR1 -0.0500 -0.0511
(-1.16) (-1.03)
DR2 -0.0393 -0.0442
(-0.73) (-0.75)
DR3 -0.0623 -0.0724
(-1.09) (-1.17)
DR4 0.0248 0.0117
(0.47) (0.20)
DR5 0.0818 0.0750
(1.48) (1.25)
Adjusted R? 0.882 0.989 0.890

t-value in parenthesis.
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TABLE 6.2. Estimation of the General Panel Data Model

Independent Estimation Methods
Variables Within GLS
Constant 4.2605 4.7453
(10.99) (16.88)
Seed 0.1241 0.1286
(3.86) (3.89)
Urea 0.1069 0.1045
(5.07) (4.63)
TSP 0.0303 0.0421
(2.27) (3.16)
Labor 0.2303 0.2188
(7.92) (6.98)
Land 0.4579 0.4739
(10.63) (10.74)
DP 0.0080 0.0272
(0.29) (0.97)
DV1 0.0805 0.1040
(2.28) (2.95)
DV2 0.1226 0.1370
(2.43) (2.89)
DSS 0.1580 0.1684
(3.21) (2.67)
DR1 0.0487 0.0124
(0.35) (0.15)
DR2 0.6292 0.1621
(2.40) (1.79)
DR3 0.4853 0.0904
(2.13) (0.96)
DR4 0.2316 0.0625
(1.27) (0.60)
DRS 0.6342 0.2581
(2.98) (2.78)
P 1.1713 1.4410
(1.48) (2.06)
€3 0.4912 0.3229
(-3.05) (-4.71)
‘N 0.6800 0.4157
(-2.47) (-3.38)
§s 1.2203 1.1993
(2.51) (1.75)
€q 1.3854 1.6848
(2.48) (2.56)
Adjusted R? 0.935 0.928

t-value in parenthesis.
t-values of ¢ are for §.,=1.
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TABLE 6.3. Test-Statistics

Test-statistics Within GLS
F-statistic 2.29 14.69
IM-statistic 69.53 9.78
LR-statistic 238.17 288.73

because they are time-invariant.) Table 6.2 reports the
estimates of the general panel data model by within and GLS.
The within estimates in Table 6.2 include the coefficients of
the village dummies, and they seem to be significant. In this
application, the villages have significantly different soil
conditions from each other and village dummies should be
included in the regression. One of the advantages of the
general model is the ability to include time-invariant
regressors such as constant and village dummies, in performing
within estimation.

The primary focus must be on the value of ¢ since there
is no real difference between the simple and general panel
data models if ¢ is close to a vector of ones. In addition, ¢
allows technical efficiency to change over time. Both & =(1
1.171 0.491 0.680 1.220 1.385)' and Ecw‘(l 1.441 0.323 0.416
1.199 1.685)"' seem to be far different from a vector of ones.
Table 6.3 provides us with the test-statistics for the

hypothesis that technical efficiency is constant over time.



70
The asymptotic distribution under the null hypothesis is xf,
for which the 5% critical value is 11.07. For all of the
statistics'? except one we can reject the null hypothesis that
technical inefficiency is time invariant.

There is no obvious temporal pattern to our estimates of
¢. In particular there is no clear trend, nor is there a
seasonal pattern.

Despite the fact that £, and &, are significantly
different from a vector of ones, the estimated regression
coefficients for the simple model (Table 6.1) and the general
model (Table 6.2) are not very different. The biggest changes
are in the coefficient of TSP (.089 to .030), DVl (.179
to.081) and DSS (.053 to .158).

Table 6.4 and 6.5 show some summary measures of technical
efficiency of individual rice farms. (See Appendix 6.1 for a
complete list of technical efficiency of each farm.) The
results in Table 6.4 are calculated according to (6.1.5) and
(6.1.6) while we construct Table 6.5 according to (6.2.8) and
(6.2.9). The dummy variables which are included in the
intercept are the seasonal dummy (DSS) and the village dummies
(DR) . The pesticides use dummy (DP) and the variety dummy (DV)
are in the production function of rice since DP is considered
as an input and DV represent different outputs.

The average level of technical efficiency in Table 6.4
from the Schmidt and Sickles model is fairly close to the

overall average efficiency in Table 6.5 from the new model.
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That is to say, the simple within estimator tells us that
these six Indonesian rice farm villages have an average level
technical efficiency of 56.69%. The general within estimator
also implies that average technical efficiency is 56.79%.

Erwidodo (1990) estimated the production function of the
rice farms from the simple panel data model and used the
Battese and Coelli (1988) method to measure technical
inefficiency by assuing a half-normal distribution of
technical inefficiency (u;)". His measure of the average level
of technical efficiency is approximately 94.20%. The high
efficiency measures are expected from the half-normal density
assumption since it implies that the mode is at u;=0 which
means there are many perfectly efficient farms. On the other
hand, the average efficiency measure of 56.79% from the
general panel data model seems to be too low. However, this
measure seems to be more legitimate than the measure of
Erwidodo when we consider that these six Indonesian rice farm
villages are relatively less developed (for examples, poor
drainage, water control, transportation, etc.) and they
harvest twice a year.

The advantage of the general model is that it gives us
different efficiency 1levels in each season. The average
technical efficiency of the first season is 56.52% and it is
more or less the same in the second season. The third season
brings a large improvement of efficiency to 67.27%, and

efficiency declines slightly to 62.87% in the next season. The
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TABLE 6.4. Technical Efficiency (from the simple estimation)

The Simple Within Estimation

Farm Number Efficiency (%)
Maximum 164 100.0
Minimum 45 36.55
Median 15 55.40
Average (Mean) 56.69

TABLE 6.5. Technical Efficiency (from the general estimation)

Efficiency (%) from The General Within

Farm Number T=1 T=2 T=3 T=4 T=5 T=6

Maximum 164 100.0 100.0 100.0 100.0 100.0 94.39
Median 80 55.40 50.11 74.63 66.82 48.70 41.73
Minimum 45 33.63 27.93 58.40 47.59 26.48 20.90
Average 56.52 53.62 67.27 62.87 52.85 47.59

Overall Average = 56.79

Maximum, Minimum and Median Farms are defined in the first
season.

last two seasons have lower technical efficiency levels of
52.85% and 47.59%, respectively.
We can also calculate the technical efficiency level of

each rice farm family over the six different time periods in
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this sample. Table 6.5 shows the efficiency 1levels of
selected families. Family number 164 is the most efficient in
all seasons except the last season. (It is the third most
efficient for T=6.) The simple within estimator says that
family number 164 is the most efficient for all six seasons,
because it assumes that the efficiency level does not change
over time. The most inefficient rice farm family for T=1 is
family number 45, and it is 33.63% efficient according to
Table 6.5. This family becomes the 133rd most efficient family
for T=3, with an efficiency level of 58.40%, but it goes back
to being the least efficient rice farm family for T=5 and T=6.
The results of the Schmidt and Sickles model say that the
technical efficiency level of family number 45 is 36.55% and
it is the lowest among the 171 families.

Figure 6.1 shows the trend of technical efficiency of the
median family at T=1 (family number 80). Its efficiency level
is 55.40% for T=1. Its efficiency level then falls at T=2,
rises rapidly at T=3, and then declines continuously. On the
other hand, the efficiency level of the same family is 55.18%
over all six time periods according to the simple within
estimator.

Table 6.6 records the percentage of rice farm families
(among the 171 families) which fall in each decile of
technical efficiency. The implication of Table 6.6 is not very
different from that of Table 6.4 and 6.5. As expected, rice

farms are relatively more efficient at T=3 and 4 since the
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within-estimated ¢ shows that ¢; and ¢{, are smaller than the
other elements of ¢(. The value ¢,=1.3854 is the 1largest

element of ¢ and so the rice farms are on average the least

Technical 75%
Efficiency
of the 80th
family
70
65
60
55 # —eSimple
within
50
45
general
40 within
1 2 3 4 5 6 T

<FIGURE 6.1>

efficient at T=6. It is not true that every family has the

highest efficiency level at T=3 and the lowest at T=6 just
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because the maximum, the median or the average efficiency in
Table 6.5 has that kind of trend. Some other farms have
different trends for technical efficiency. Figure 6.2 shows
three different types of efficiency trends. Family number 5
has its 1lowest efficiency level (67.75%) at T=3 and its
highest efficiency (100%) at T=6. Family number 25 has a
relatively constant efficiency 1level over time: 58.60%,
59.11%, 57.09%, 57.65%, 59.26%, and 56.41%. Finally, the trend
of the technical efficiency level of family number 160 is

opposite to that of family number 5.

TABLE 6.6. Efficiency Levels(%)

Efficiency The Simple The General Within
Intervals Within
% T=1 T=2 T=3 T=4 T=5 =6

100-90 1.75 i.75 2.34 2.92 1.17 2.34 2.34
89-80 1.17 2.34 1.17 5.85 5.85 5.85 0.00
79-70 6.43 6.43 6.43 29.23 8.77 5.85 4.09
69-60 20.47 16.96 13.45 33.33 42.11 13.45 10.53
59-50 43.86 46.78 33.33 27.49 38.01 29.24 17.54
49-40 23.98 22.81 33.92 1.17 4.09 37.43 34.50
39-30 2.34 2.92 9.36 0.00 0.00 10.53 25.15

29-20 0.00 0.00 0.58 0.00 0.00 0.58 5.85
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6.5 Summary

The usual motivation for the use of panel data in the
measurement of technical efficiency is the desire to avoid
strong distributional assumptions for technical inefficiency.
The simple panel data model was first used for this purpose by
Schmidt and Sickles (1984), and can be viewed as replacing
distributional assumptions by the assumption that technical
inefficiency is time invariant. More recent work by Cornwell,
Schmidt and Sickles (1990) and Kumbhakar (1990) has relaxed
the assumption that technical inefficiency is time invariant,
by allowing it to vary in specific ways. These papers impose
a certain amount of smoothness in the pattern of technical
inefficiency over time.

Our general panel data model is more flexible than
previous models. It assumes only that the temporal pattern of
technical inefficiency is the same over time for all firms.
That is, the pattern of change must be the same for every
firm, though the direction can be reversed for some firms and
the extent of the intertemporal variation differs across
firms. Our model nests the model of Kumbhakar, and our three-
component model nests the model of Cornwell, Schmidt and
Sickles. An interesting topic for future research is to use
our model to test the restrictions imposed by their models on
the smoothness of the intertemporal change in efficiency

levels. Our empirical results for Indonesian rice farms may
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show more change over time in efficiency 1levels than is
plausible, so that some smoothing may be desirable. If so, our
general results are at the very least useful as a reference

against which to test the models that impose such smoothness.



CHAPTER SEVEN

CONCLUSIONS

The usual motivation for the use of panel data in labor
economics and in related areas is the desire to avoid
potential bias caused by the omission of unmeasured individual
characteristics from the regression equation. For example, in
a wage equation, individual "ability" (or "ambition") is
usually unobservable, and may have an effect on wage. If so,
the omission of ability from the regression will cause a bias
in the estimation of the coefficients of those variables that
are correlated with ability. The usual solution to this
problem is to assume that ability (or more properly the effect
of ability on wage) is time invariant and can therefore be
captured by a time-invariant individual-specific effect. This
leads to the so-called within estimator. However, the
assumption that the individual effects are time-invariant is
very strong. In this thesis we have considered a model that
weakens this assumption. In particular, we assume an
unobservable time-invariant individual variable (such as
ability), but we do not assume that its effect on the
dependent variable is time invariant. Rather, we need only to
assume that the effect of this variable on the dependent

variable has the same temporal pattern for all individuals.

79
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Thus, for example, the effect of ability on wage may differ
across the business cycle, or may display a trend, so long as
it does so for all individuals. We estimate this temporal
pattern along with the other parameters of the model.

We develop fixed-effects and random-effects treatments of
our model. Fixed-effects treatments are relevant when the
motivation for the use of panel data is bias reduction, as
discussed above, while random-effects treatments are relevant
when the motivation is efficiency of estimation. Our model is
nonlinear so estimation is more complicated than in the usual
simple model. In both the fixed and random effects cases we
propose a method of estimation, and we prove the consistency
and asymptotic normality of the estimates. This is non-tfivial
since standard likelihood theory does not apply, due to the
so-called incidental parameters problem (the number of
unobservable effects increases with sample size). We also
propose asymptotically valid tests of the restrictions that
reduce our model to the usual panel data model.

After the theoretical consideration of our model, we
consider two applications. The first application is a model of
the compensation of faculty members. Hamermesh (1990)
estimated this model using the simple within estimator, while
we use estimators based on our more general panel data model.
We find that the individual effect does not have a constant
effect on compensation; rather, its effect is larger in the

second time period (1985-1986) than in the first (1979-1980).
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This seenms plausible since the effect of ability or work
habits on compensation may be larger when one has been in the
job longer. The choice of model makes a modest difference to
the results for the variables of main interest in the
regression.

Our second application is to the frontier production
function (efficiency measurement) problem. We analyze data on
Indonesian rice farms previously analyzed by Erwidodo (1990)
using the simple panel data model. Our model allows a much
richer pattern of technical inefficiency over time than the
simple model, which assumes constant technical inefficiency,
and it therefore yields substantially different results than
Erwidodo found.

A promising line of future research is to consider models
that are intermediate between the simple model, in which
individual effects have a time-invariant effect on the
dependent variable, and our model, in which the temporal
pattern of these effects is completely unrestricted. Kumbhakar
(1990) has proposed one such model in the frontier production
function setting, and our model can be used to test the
specification of his model or of other similar models. It is
obviously an empirical question how much flexibility of
specification the data will typically support, and we hope to
address this question in further applications.
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FOOTNOTES

10.

11.

12.

A distributional assumption for €., is necessary since the
fourth moment of €; appears in the calculation of the
covariance matrix of the estimator.

See Amemiya (1985), p. 105-114.

(I, - (I®( e;')/T) ] (Z8e,)
ée) - [Z IeTeT'eT)/T]
(z e) - (28e,) = oO.

M, (2®e,)

The simple between estimator has to exclude individual-
invariant explanatory variables for the same reason that
the simple within estimation cannot include time-
invariant regressors. However, those regressors can be
included in the general between estimator.

See Hsiao (1985), p. 131.

(1,8(ere:') /D)1 (6,85)
"éf) ‘e,8(ere,'€)/T1 £ 0 .

See Gallant (1985), p. 217-220.

M, (e,8¢) _=

Gallant originally defines
2 - L Y g6l
N):

and &, as least squares residuals obtained from each
unlvarlate model when he discuss multivariate nonlinear
least squares. See Gallant (1985), p. 149-150.

The number of degrees of freedom is one, so that X1 2-6.63
with 99% of confidence.

- %(e 2/9)/(1-F(e;3/0)) = (;3/0)]

where o-—a +av, o;—o a /a ' and A=0 /O,.

E(u;|v;-u;)

See Erwidodo (1990), p. 25.

The number of degrees of freedom is five so that x =15.09
and 11.07 with 99% and 95% of confldence, respectlvely
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FOOTNOTES (Continued)

13. When we define a half-normal density of u,,

[1-F(6*- m;/0*)]
-1 - xp (- */2
1 [1-F(-m,/0*)] exp (-my+a”/2)

= a2y2(q2 2y -1
where o = 0,0 (0, + To )

= -(02;) (62 + o /T)",

=)
I

o
I

;= a, = g,(2/7)°%3
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APPENDIX 2.1

The Proof of (2.2.9)

FACT: &y (1 3,')' is an eigenvector of Ze;e;,' where
NOTE: For a matrix A, let A be an eigenvalue of A and let

x be the corresponding eigenvector. Then (A-AI)x = 0.

Proof:

Using the NOTE, if it is true that £, satisfies

N

(a2.1.1) [ - e,el £,
lz.:leiej E,"Ewe ;: i€i wf,

then it is an eigenvector of Zee,'. (A2.1.1) is identical to

N 2 = /

;: eih + Y e;eid, .

-1 -1 /

: x A2 T [ ]
E €1.€1 + ; e;.e1.8, v
1-1 -1

(A2.1.2)

The first row of (A2.1.2) is

(A2.1.3) ; Eeue, - E’.,E.E ;eiexf.,

-1
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APPENDIX 2.1. (Continued)

and the next (T-1) rows are

N

N
(A2.1.4) Eenei_ +;e1 ;.6 E’NE —k, ;eieizw
- - N

(A2.1.4) is the same as the first order condition (2.2.7) and
therefore (A2.1.4) holds.

To show that (A2.1.3) holds, premultiply (2.2.7) by 3,':

N N .5
(A2.1.5) (8e, )2 A - XN eeil] =0
; Wei. + 261 ”eil E/"zw z ; ieiE"

or

N N N
(A2.1.6) 6’,)6,,12.; e, + (1-6'B,) g;ej,ﬁ,,eu + g; (e;.B,)2? -

(A2.1.5) or (A2.1.6) is identical to (A2.1.3). We have shown
that (2.2.7) implies (A2.1.3) and (A2.1.4), which in turn
imply (A2.1.1). Therefore §, is an eigenvector of Zee,;'.

QoEoD.
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APPENDIX 2.2.

Derivation of plim (1/N) CSSE

FACT:  plim (1/N) CSSE(B,£) = (Bg=B) 'Q(By=B) + Q.6,'M &,
+ 2(By=B) 'Qué, + (T-1)0?

PROOF Let us rewrite CSSE as

N
CSSE - f\: (Y;-X,B) /M (Y;-X,B)
-1

The true relationship is

(A2.2.1) YI-XIB°+EOa01+ei

By substituting (A2.2.1) into CSSE,

N
CSSE = ; [Xi(ﬂo-ﬁ) +€°a°i+31] /Mg [XI(BO-B) +E°a°i+€ 1]
-1
= /! = 2 g/ ol /
- g (BO-B) 1ng1(po-b) + ;%:Eoﬂgeo + ;engej

N N N
+ 2?: (Bo-B) XiME ay, + 2;; (Bo-B)'XiMe , + 2; @osEoME
-] - _1
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APPENDIX 2.2. (Continued)

Using the assumptions (Al) and (A2),

N
.1 ) ..
(A2.2.2) - lim = XM x is finite.

(A2.2.3) Q60" M€ is finite since §0'MEy = O if ¢ = ¢, and

€O'Me€0 = fo'fo if e.fo = 0.

N N
.1 / . 1 / 55/
(A2.2.4) pllm—Z:eiMe -pllm—z:e,e - plim= Z:e (=2)e
N{H ¢ N{H N g !

- To? - _El'—E plim = ; t:r(eiit’ei)

- To? - g2§/E = (T-1)02

(A2.2.5) lim Tr ; (Bo -B)/XiME o,

N N
- ]ﬁ%g (BO-B)Xfianoi - %}P%g (Bo-p)XgPQ;'OaOI

It is true that

N N
(Aa2.2.6) [ llm—; XiEoo; 12 < [%2 XiEEX,) [%; aj;)
- -1

N-ew
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APPENDIX 2.2. (Continued)

since

1w 2 1 z
[—ﬁg Xﬁzoaoﬂ k= [TVZ; (@ Z;Xickeu)]z

1. 2 1%
s [w;l @) [—ﬁg (E Xiex€oe) 2]

t=1

1 s 2 1 g /g g/
- [W& aoj] ['ﬁz; XiEoEoXi] k °

N

Note that ;xgpgeoau -0 if E'E,-0
-1

and if ¢=¢,,

' N N
1 s 1
[llmTv ;-1: XﬁPEEOaM] 2 . [llmTV th X;€0@0412

This is the same as (A2.2.6). Then, (A2.2.5) is finite and

N
.1
(A2.2.7) plim Tr; (BO-B)’XxMzei -0

N
(A2.2.8) plim %I; o EoMe; = 0
=1
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APPENDIX 2.2. (Continued)

Therefore,

plim (1/N) CSSE(B,€) = (By=B) 'Q(By=B) *+ Q.&,'M&,

+ 2(By=B) 'Qufo *+ (T-1)0?

is finite. Q.E.D.
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APPENDIX 2.3

The Derivation of A(),) and B(1x,)

1. The Derivation of A(),)

PCSSE
A2.3.1) L2902 5 YW ximx
( ) aBaBI f\: o a8 |

PCSSE 2 w / 2 s/
(A2.3.2) %% TR ;;ei_e,-. * TE geipgeir,._1

3*CSSE
(a2.3.3) SE20E - (E,E)zg;xgee/eie/ . e'e [f\:xzzei ?_‘;x;.efeil

Taking expected values of (A2.3.2) and (A2.3.3) at the true

values of g and 94,

(42.3.4) Tl\IE( azaggég’E) A~ -E/i [ (85800,+0%I ;) - (EoE o0, +0?) I1,]
%o

- 20, (Ip, e,%)
050
*CSSE
(A2.3.5) TJE( 3pow )a, = 20x
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APPENDIX 2.3. (Continued)

where

Therefore,

. 1 , 0*°CSSE
Alko) = L ER (5an

QX Q X«

-2 0,6,
. Qc(IT-1-7_°
0%o

)

2.The Derivation of B(};)

OCSSE  9CSSE
(A.2.3.6) E( 3B 3 )a, = 4 EX(T,8M ) [e+ (IRE,) a,)

[e+ (Iy®%,) ay) (I,0M ) X

N
- ax'(1,8M, ) [azzm?: ads (I,QE80) ] (I,0M ) X
=1
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APPENDIX 2.3. (Continued)

- 4 02X/ (I BM ) X

dCSSE _ dCSSE 4 d d /
(A2.3.7) E( X ), = — EVY XM e, [V e, i
ap w i, E,OEO g 1 Eo 4 § 1. 1%0

N

N N
-0 ¢iE,)2 - & / E8,1
012-; (e5&,) Eo€o§ G €5, + g @:€1€06,]

(A2.3.8) E

dCSSE _ dCSSE 4 d /
( )y = E[) e; €t
® W M (gE,)? E 1.7 4%

e N N N N
- 5/2 z; (€380)% + E{)Eog ®oi€;. - ; @o1€'1€8,] [;1 e, €&,
0% 4+~ - - -
eo N e’ / N N e, ,
- (€380)2 + Eofo)_ @os€s. - ) @4;€18,0,]
7 og; 180 ooZ; 01€1. z; 01€ 1809
NOTE E(€,,*) = 30% and E(¢;,’) = 0 since ¢, is distributed as

N(0,d%).

Using the NOTE, we get

N N
(A2.3.9) E[; ei.elieo;: ¢ 8,1 = (N2+N)0,070° + No*EoE I .,
-1 -1
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APPENDIX 2.3. (Continued)

(A2.3.10) ———EI (€18,)2120,0, = N(N+2) 00,6
(Eoe )2 }'-; 1o
N
2 / /
(A2.3.11) —=< (€18,)2Y e, €80, = 2N(N+2) 020,08
(E5€,) 2 f‘: % — A iveTe o¥o
N N N N

-1 1=1

2

N
(A2.3.13) E (; a,.€8,)2 6,00 = 0284, ; a?;0,05
-1 -1

N
(A2.3.14) E;aoiei Eaueii 68, - a2 gac’uﬁo%

1=1

Using the information from (A2.3.9) - (A2.3.14),

N
(a2.3.15) E(OCSSE,OCSSE) _ 4q2(No? (5~ g2)) (1,

® T o £hE,
Therefore,
1 , OCSSE OCSSE
B(A) llmE N( A )lQX(—aT)lo

0

/
060

/
0

0

)
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APPENDIX 2.3. (Continued)

QX QX¢

2
- 40 02

( eoe{)

+0Q) (I ,- )

o
o~
2]
LAl
o™~
[aal

0 0
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Information Matrix from Standard Likelihood Theory

The likelihood function can be concentrated as
NT =
1-1

The asymptotic covariance matrix of B, é and a calculated in

the usual way from (A2.4.1) is

N b
X'x Exi.aoi X/ (I®%)
., ) i 1=1
(a2.4.2) ACov(p.8,a)=of [Lim | . 8,0
Eo€o Iy

Strictly speaking, this 1limit is not defined since the
dimension of the matrix grows with N. However, the upper-left
submatrix of ACov(gB,0,a) is well defined, and would normally

be taken to be the asympotic covariance matrix of B and 4:

.

. i

1 /

E/oeo E X.{IE060¢01)
0.0/

Q (Ipy-—2)

0%

1 N
Q lim— (; Xi_a i-
X Nom N = (4]

(A2.4.3) AcCov(B,0)=0?
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APPENDIX 2.4. (Continued)

However, ACov(B,6) from (A2.4.3) 1is different from the

asymptotic covariance [A(B8,0)]1 'B(B,6)[A(B,6)] ' in section 2.
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The Asymptotic Covariance Matrix in The G-component Model

A-1im Lp(&CSSE,
Nw N OA0A/
Ox Oxa, - - + Ly
Oue, 0 . . O
-2
0
Q‘a‘aMGJ
and
B - 1im L g(OCSSE, 9CSSE,
Oxx Oxa, . . Oxa
o2
(—=—+Qs ) M Qa,a,M12"'°2P12 . Qa,-,,Mm"‘osz
1%
- 402
« Oy e ,Mc-m"'ozp G-1G
o2
(-6,7""0.0.0) M,
G
where

. 1.
Oxc = lim -TX (I (I-Pg-...-Pg)1X
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APPENDIX 2.5. (Continued)

.1
Qaja,p = lN}f.“ N ; Cgi®rj
0
M, =1, y g
Ely
Mye = Iry - ﬁgelg - 9,9’:
g EE, E,
0.9
Py, = g f

(E/JE ) (E'¢E 5)

Then, the asymptotic distribution of B, and 7,

.Bw' ﬁ
em'el

VN ’ - N(0, A"1B A1),
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GLS Asymptotic Covariance Matrix when u=0

If u=0, the objective function (3.2.7) is the same as

(A3.1.1) CSSE = (Y-XB)/[Ipp- (1-g?) (I, ®P)] (Y-XB) .

By minimizing CSSE with respect to g and ¢, the solutions for

B and ¢ are obtained as

(33.1.2) PBgs= [X/ (I (1-q2) (IBP) ) X] X/ (I (1-q?) (IBF)) Y

(A3.1.3) 3 is the eigenvector corresponding to the largest

GLS

eigenvalue of

N
2: (Yi-X;Bors) (Yi-XiBers)’.

i=1

The covariance matrix of B,  and ¥, is

‘/N(BGIS- po) ind N(ol 020}})
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APPENDIX 3.1. (Continued)

o2 0,65

(1-g®)o2

VN (B, - 6,) - N(O, ) )

/
050
where

Opc = Lim %X’[(I@Mzo) +@* (I8P, ) 1 X.
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APPENDIX 5.1. LISTS OF ALPHA

0.472 0.648 0.950 0.494 0.333 0.389 0.782 0.415
0.789 0.875 0.946 0.628 1.042 0.463 0.588 0.462
0.624 0.587 0.629 0.859 0.841 0.955 0.445 0.678
0.900 1.114 0.738 0.846 0.865 0.711 0.327 0.675
0.623 0.766 0.493 0.850 0.335 0.704 0.210 0.764
0.470 0.638 0.729 0.505 0.523 0.843 0.881 0.577
0.734 0.548 0.598 0.430 1.074 0.633 0.507 0.721
0.514 1.103 0.850 1.009 0.741 0.645 0.551 0.703
0.959 0.483 0.403 0.726 0.617 0.336 0.443 0.678
0.673 0.679 0.523 0.629 0.302 0.308 0.609 0.410
0.683 0.952 0.720 0.670 1.010 0.773 0.385 0.808
0.211 0.805 0.714 0.591 0.818 0.955 0.876 1.007
0.947 0.796 0.820 0.690

* The order of the displayed faculty members is by rows.
Thus, for example, a, = 0.648.
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APPENDIX 6.l1. LIST8 OF TECHNICAL EFFICIENCY

1. INDIVIDUAL LEVELS OF TECHNICAL EFFICIENCY
(SIMPLE WITHIN ESTIMATION)

AVERAGE OF TECHNICAL EFFICIENCY: 0.567
TECHNICAL EFFICIENCY

0.501 0.558 0.594 0.629 0.886 0.690 0.576 0.734
0.702 0.535 0.464 0.463 0.556 0.532 0.554 0.498
0.659 0.481 0.583 0.612 0.625 0.637 0.545 0.544
0.536 0.567 0.615 0.492 0.645 0.447 0.616 0.504
0.486 0.467 0.524 0.633 0.676 0.546 0.569 0.553
0.516 0.468 0.477 0.498 0.365 0.641 0.566 0.490
0.541 0.537 0.520 0.710 0.416 0.491 0.491 0.663
0.436 0.527 0.619 0.576 0.520 0.470 0.586 0.565
0.427 0.599 0.474 0.578 0.581 0.634 0.496 0.663
0.664 0.578 0.698 0.636 0.535 0.585 0.422 0.552
0.609 0.421 0.623 0.516 0.452 0.398 0.480 0.525
0.451 0.479 0.430 0.519 0.580 0.493 0.562 0.573
0.639 0.585 0.505 0.646 0.552 0.503 0.545 0.583
0.506 0.473 0.450 0.543 0.471 0.522 0.524 0.563
0.446 0.412 0.468 0.673 0.379 0.932 0.548 0.501
0.608 0.540 0.510 0.639 0.605 0.480 0.574 0.596
0.592 0.659 0.596 0.486 0.478 0.549 0.646 0.523
0.563 0.481 0.516 0.516 0.615 0.422 0.384 0.454
0.412 0.602 0.591 0.593 0.549 0.528 0.747 0.899
0.772 0.622 0.714 0.721 0.700 0.726 0.693 0.765
0.641 0.564 0.930 1.000 0.593 0.555 0.764 0.607
0.565 0.531 0.582

* The order of the displayed farm families is by rows.
Thus, for example, technical efficiency of the second farm
is 0.558
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APPENDIX 6.1. (Continued)

2. INDIVIDUAL LEVELS OF TECHNICAL EFFICIENCY
(GENERAL WITHIN ESTIMATION)

AVERAGE OF TECHNICAL EFFICIENCY AT T=1: 0.565
TECHNICAL EFFICIENCY AT T=1

0.582 0.583 0.567 0.645 0.874 0.598 0.629 0.603
0.711 0.502 0.499 0.520 0.561 0.581 0.563 0.521
0.625 0.479 0.650 0.647 0.701 0.644 0.547 0.586
0.586 0.560 0.605 0.504 0.651 0.429 0.731 0.514
0.475 0.468 0.592 0.598 0.631 0.476 0.586 0.599
0.537 0.495 0.447 0.515 0.336 0.506 0.585 0.507
0.493 0.544 0.474 0.736 0.411 0.452 0.439 0.573
0.383 0.506 0.642 0.514 0.490 0.512 0.611 0.549
0.380 0.594 0.502 0.586 0.55%6 0.593 0.500 0.637
0.630 0.573 0.636 0.629 0.555 0.566 0.457 0.554
0.615 0.433 0.557 0.540 0.424 0.395 0.490 0.554
0.496 0.473 0.415 0.481 0.558 0.504 0.556 0.560
0.637 0.590 0.506 0.633 0.533 0.497 0.523 0.579
0.484 0.455 0.440 0.534 0.461 0.508 0.508 0.545
0.482 0.442 0.510 0.713 0.411 0.908 0.540 0.472
0.537 0.522 0.515 0.662 0.662 0.571 0.508 0.606
0.597 0.657 0.639 0.493 0.514 0.567 0.725 0.476
0.577 0.513 0.459 0.489 0.564 0.434 0.389 0.435
0.430 0.544 0.549 0.580 0.517 0.544 0.747 0.821
0.743 0.612 0.690 0.723 0.782 0.847 0.693 0.799
0.642 0.565 0.974 1.000 0.589 0.511 0.817 0.577
0.536 0.500 0.625

AVERAGE OF TECHNICAL EFFICIENCY AT T=2: 0.536
TECHNICAL EFFICIENCY AT T=2

0.591 0.592 0.573 0.667 0.952 0.610 0.648 0.617
0.748 0.497 0.493 0.518 0.567 0.590 0.569 0.519
0.643 0.471 0.674 0.664 0.729 0.660 0.546 0.592
0.591 0.560 0.613 0.495 0.669 0.411 0.765 0.506
0.462 0.455 0.598 0.605 0.645 0.463 0.591 0.607
0.534 0.485 0.430 0.460 0.279 0.450 0.535 0.452
0.437 0.490 0.418 0.699 0.353 0.395 0.381 0.521
0.325 0.451 0.596 0.459 0.434 0.457 0.562 0.496
0.323 0.543 0.446 0.536 0.504 0.542 0.445 0.590
0.582 0.522 0.589 0.582 0.502 0.514 0.400 0.501
0.581 0.384 0.517 0.499 0.376 0.345 0.445 0.513
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0.451
0.605
0.439
0.437
0.517
0.586
0.525
0.373
0.706
0.595
0.482

AVERAGE OF TECHNICAL EFFICIENCY AT T=3:

0.426
0.553
0.408
0.411
0.501
0.655
0.458
0.490
0.563
0.512
0.444

(Continued)
0.366 0.435
0.462 0.601
0.392 0.492
0.487 0.720
0.492 0.661
0.634 0.467
0.402 0.432
0.495 0.529
0.647 0.684
0.969 1.000
0.577

TECHNICAL EFFICIENCY AT T=3

0.555
0.613
0.575
0.571
0.515
0.547
0.705
0.622
0.620
0.795
0.730
0.657
0.743
0.649
0.648
0.600
0.633
.0.763
0.661
0.864
0.804
0.736

0.555
0.516
0.505
0.558
0.511
0.525
0.739
0.714
0.772
0.759
0.614
0.641
0.715
0.630
0.545
0.592
0.663
0.721
0.742
0.786
0.755
0.711

0.548
0.514
0.586
0.580
0.574
0.500
0.691
0.803
0.711
0.798
0.696
0.602
0.664
0.620
0.585
0.588
0.654
0.682
0.745
0.833
0.987
0.794

0.584
0.525
0.599
0.530
0.577
0.720
0.858
0.720
0.767
0.794
0.685
0.647
0.741
0.681
0.690
0.665
0.575
0.704
0.766
0.853
1.000
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0.518
0.491
0.414
0.378
0.660
0.492
0.511
0.461
0.750
0.538

0.678
0.545
0.623
0.601
0.592
0.584
0.644
0.703
0.748
0.747
0.608
0.696
0.680
0.634
0.527
0.665
0.588
0.755
0.723
0.886
0.771

0.460
0.452
0.464
0.957
0.556
0.549
0.376
0.490
0.823
0.455

0.673

0.563
0.554
0.598
0.490
0.515
0.714
0.676
0.718
0.771
0.754
0.587
0.662
0.658
0.665
0.777
0.619
0.615
0.664
0.741
0.922
0.719

0.516
0.480
0.464
0.521
0.485
0.735
0.331
0.710
0.651
0.789

0.577
0.546
0.552
0.636
0.571
0.767
0.665
0.783
0.710
0.679
0.653
0.695
0.674
0.665
0.602
0.584
0.696
0.629
0.866
0.835
0.905

0.520
0.541
0.504
0.444
0.596
0.419
0.378
0.794
0.769
0.525

0.565
0.526
0.571
0.535
0.577
0.715
0.759
0.743
0.799
0.746
0.693
0.697
0.709
0.688
0.563
0.637
0.694
0.665
0.908
0.896
0.763
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AVERAGE OF TECHNICAL EFFICIENCY AT T=4: 0.629
TEHCNICAL EFFICIENCY AT T=4

0.565 0.565 0.555 0.606 0.745 0.575 0.596 0.579
0.648 0.511 0.509 0.523 0.551 0.564 0.552 0.524
0.593 0.495 0.609 0.617 0.651 0.614 0.550 0.577
0.576 0.559 0.589 0.520 0.619 0.467 0.670 0.527
0.500 0.495 0.580 0.584 0.606 0.500 0.576 0.585
0.543 0.514 0.479 0.636 0.476 0.628 0.694 0.629
0.617 0.660 0.601 0.810 0.545 0.582 0.570 0.683
0.520 0.628 0.739 0.635 0.615 0.633 0.714 0.664
0.517 0.700 0.625 0.694 0.670 0.699 0.623 0.735
0.729 0.684 0.734 0.728 0.669 0.678 0.586 0.668
0.685 0.539 0.641 0.627 0.532 0.507 0.587 0.638
0.592 0.573 0.524 0.580 0.641 0.599 0.640 0.643
0.702 0.666 0.600 0.699 0.621 0.593 0.614 0.657
0.582 0.558 0.546 0.622 0.563 0.602 0.602 0.631
0.581 0.504 0.556 0.698 0.480 0.823 0.578 0.527
0.576 0.565 0.560 0.664 0.664 0.601 0.555 0.626
0.619 0.661 0.648 0.543 0.559 0.596 0.706 0.604
0.688 0.635 0.589 0.615 0.677 0.567 0.526 0.568
0.564 0.661 0.665 0.691 0.638 0.661 0.820 0.875
0.817 0.716 0.777 0.802 0.846 0.893 0.779 0.859
0.739 0.678 0.982 1.000 0.698 0.633 0.871 0.688
0.654 0.624 0.727

AVERAGE OF TECHNICAL EFFICIENCY AT T=5: 0.528
TEHCNICAL EFFICIENCY AT T=5

0.594 0.595 0.575 0.673 0.976 0.614 0.653 0.621
0.759 0.495 0.492 0.518 0.568 0.592 0.570 0.519
0.648 0.469 0.680 0.669 0.737 0.665 0.545 0.593
0.593 0.561 0.616 0.493 0.674 0.405 0.776 0.504
0.459 0.451 0.600 0.607 0.649 0.459 0.592 0.609
0.533 0.482 0.426 0.445 0.265 0.436 0.521 0.438
0.422 0.476 0.403 0.688 0.338 0.380 0.366 0.507
0.310 0.436 0.583 0.445 0.420 0.442 0.549 0.481
0.308 0.530 0.431 0.522 0.489 0.529 0.430 0.578
0.569 0.508 0.576 0.569 0.488 0.500 0.385 0.487
0.572 0.372 0.506 0.487 0.363 0.332 0.433 0.502
0.439 0.414 0.353 0.423 0.507 0.448 0.505 0.509
0.596 0.543 0.450 0.592 0.479 0.440 0.469 0.530
0.426 0.395 0.380 0.480 0.402 0.452 0.452 0.493
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0.424
0.512
0.583
0.511
0.357
0.696
0.582
0.467

AVERAGE OF TECHNICAL EFFICIENCY AT T=6:

0.403
0.495
0.654
0.443
0.476
0.550
0.498
0.429

(Continued)
0.480 0.723
0.486 0.660
0.632 0.461
0.387 0.418
0.481 0.515
0.636 0.673
0.968 1.000
0.564

TEHCNICAL EFFICIENCY AT T=6

0.569
0.752
0.628
0.564
0.422
0.500
0.355
0.250
0.248
0.498
0.510
0.378
0.535
0.366
0.364
0.466
0.540
0.441
0.294
0.625
0.510
0.398

0.571
0.463
0.435
0.530
0.414
0.446
0.407
0.368
0.459
0.437
0.313
0.354
0.481
0.336
0.355
0.448
0.616
0.374
0.406
0.479
0.428
0.361

0.549
0.460
0.664
0.589
0.572
0.387
0.336
0.512
0.364
0.505
0.445
0.296
0.389
0.321
0.433
0.439
0.593
0.321
0.411
0.564
0.910
0.493

0.656
0.487
0.647
0.458
0.580
0.377
0.618
0.376
0.451
0.498
0.426
0.363
0.531
0.419
0.689
0.622
0.413
0.350
0.444
0.602
0.944
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0.369
0.660
0.486
0.497
0.447
0.741
0.524

1.000
0.542
0.723
0.653
0.625
0.209
0.276
0.352
0.420
0.419
0.305
0.445
0.418
0.342
0.322
0.622
0.439
0.427
0.378
0.672
0.453

0.972
0.552
0.544
0.361
0.476
0.816
0.441

0.476

0.591
0.567
0.642
0.367
0.422
0.368
0.315
0.374
0.458
0.430
0.276
0.387
0.380
0.391
0.965
0.507
0.500
0.297
0.406
0.750
0.372

0.515
0.479
0.738
0.316
0.700
0.639
0.781

0.634
0.544
0.513
0.766
0.564
0.450
0.302
0.478
0.362
0.319
0.372
0.443
0.407
0.391
0.469
0.432
0.706
0.255
0.630
0.568
0.713

0.437
0.594
0.404
0.363
0.786
0.761
0.511

0.599
0.488
0.565
0.470
0.582
0.370
0.437
0.412
0.507
0.417
0.441
0.448
0.469
0.432
0.389
0.551
0.338
0.298
0.718
0.692
0.440
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3. INDIVIDUAL LEVELS OF TECHNICAL EFFICIENCY
(SIMPLE GLS ESTIMATION)

AVERAGE OF TECHNICAL EFFICIENCY: 0.571
TECHNICAL EFFICIENCY

0.483 0.543 0.601 0.615 0.871 0.679 0.590 0.711
0.680 0.538 0.460 0.459 0.533 0.528 0.572 0.478
0.631 0.468 0.547 0.591 0.625 0.614 0.541 0.521
0.510 0.570 0.593 0.499 0.609 0.443 0.597 0.506
0.476 0.471 0.522 0.601 0.686 0.540 0.571 0.533
0.524 0.456 0.481 0.513 0.380 0.634 0.549 0.494
0.550 0.530 0.544 0.705 0.405 0.509 0.506 0.651
0.458 0.537 0.612 0.576 0.533 0.471 0.582 0.555
0.445 0.598 0.467 0.580 0.580 0.624 0.503 0.646
0.681 0.575 0.702 0.631 0.521 0.579 0.419 0.543
0.620 0.425 0.654 0.524 0.475 0.409 0.494 0.528
0.452 0.495 0.440 0.543 0.597 0.511 0.587 0.571
0.647 0.575 0.527 0.646 0.572 0.525 0.546 0.600
0.517 0.495 0.464 0.557 0.488 0.543 0.555 0.585
0.453 0.422 0.482 0.677 0.402 0.928 0.575 0.522
0.609 0.564 0.535 0.651 0.611 0.525 0.607 0.614
0.615 0.697 0.626 0.505 0.506 0.563 0.648 0.546
0.562 0.477 0.531 0.527 0.635 0.420 0.396 0.450
0.415 0.611 0.617 0.592 0.579 0.523 0.754 0.910
0.768 0.627 0.719 0.709 0.689 0.701 0.690 0.755
0.658 0.558 0.917 1.000 0.595 0.565 0.772 0.632
0.592 0.546 0.588
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4. INDIVIDUAL LEVELS OF TECHNICAL EFFICIENCY
(GENERAL GLS ESTIMATION)

AVERAGE OF TECHNICAL EFFICIENCY AT T=1l: 0.595
TECHNICAL EFFICIENCY AT T=1

0.602 0.636 0.604 0.695 0.884 0.646 0.667 0.632
0.756 0.538 0.540 0.548 0.609 0.595 0.586 0.563
0.645 0.517 0.655 0.665 0.732 0.657 0.599 0.589
0.596 0.570 0.626 0.545 0.629 0.465 0.723 0.559
0.516 0.522 0.612 0.631 0.652 0.508 0.597 0.609
0.577 0.540 0.493 0.547 0.374 0.537 0.608 0.544
0.516 0.555 0.507 0.756 0.447 0.489 0.465 0.603
0.416 0.539 0.666 0.541 0.525 0.536 0.621 0.586
0.425 0.609 0.532 0.632 0.579 0.610 0.528 0.663
0.659 0.608 0.655 0.641 0.576 0.592 0.500 0.579
0.655 0.469 0.582 0.577 0.462 0.424 0.531 0.584
0.531 0.517 0.454 0.512 0.584 0.548 0.571 0.582
0.669 0.607 0.540 0.652 0.575 0.526 0.546 0.612
0.514 0.495 0.470 0.554 0.494 0.562 0.547 0.588
0.523 0.472 0.545 0.732 0.460 0.902 0.551 0.498
0.594 0.538 0.559 0.731 0.712 0.604 0.551 0.630
0.642 0.678 0.643 0.523 0.542 0.589 0.744 0.538
0.610 0.534 0.495 0.533 0.596 0.471 0.437 0.464
0.473 0.583 0.609 0.621 0.567 0.595 0.769 0.850
0.757 0.612 0.709 0.730 0.793 0.850 0.717 0.817
0.701 0.579 0.986 1.000 0.634 0.549 0.826 0.637
0.589 0.525 0.672

AVERAGE OF TECHNICAL EFFICIENCY AT T=2: 0.509
TECHNICAL EFFICIENCY AT T=2

0.539 0.586 0.542 0.663 0.938 0.597 0.625 0.578
0.749 0.459 0.461 0.471 0.548 0.530 0.518 0.490
0.595 0.433 0.609 0.618 0.711 0.608 0.533 0.520
0.528 0.495 0.567 0.464 0.571 0.370 0.698 0.482
0.430 0.437 0.549 0.574 0.602 0.420 0.530 0.546
0.504 0.459 0.402 0.438 0.253 0.425 0.509 0.433
0.402 0.446 0.392 0.697 0.327 0.372 0.346 0.503
0.295 0.428 0.581 0.430 0.412 0.425 0.525 0.483
0.304 0.510 0.420 0.538 0.474 0.511 0.416 0.577
0.572 0.509 0.567 0.550 0.471 0.490 0.385 0.475
0.586 0.361 0.494 0.487 0.354 0.313 0.433 0.496
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0.433 0.416 0.345 0.411 0.495 0.452 0.480 0.494
0.604 0.525 0.443 0.582 0.485 0.426 0.450 0.530
0.413 0.390 0.363 0.460 0.390 0.470 0.451 0.501
0.423 0.369 0.455 0.696 0.356 0.939 0.462 0.399
0.515 0.447 0.472 0.694 0.669 0.528 0.462 0.561
0.576 0.623 0.577 0.428 0.451 0.508 0.711 0.409
0.491 0.405 0.363 0.404 0.475 0.338 0.303 0.331
0.340 0.460 0.489 0.503 0.441 0.473 0.685 0.791
0.669 0.493 0.609 0.636 0.716 0.792 0.620 0.747
0.599 0.455 0.980 1.000 0.518 0.421 0.759 0.523
0.467 0.396 0.564

AVERAGE OF TECHNICAL EFFICIENCY AT T=3: 0.768
TECHNICAL EFFICIENCY AT T=3

0.713 0.726 0.713 0.746 0.807 0.729 0.737 0.724
0.767 0.687 0.688 0.692 0.715 0.710 0.706 0.698
0.729 0.678 0.732 0.742 0.766 0.739 0.718 0.714
0.716 0.706 0.728 0.696 0.729 0.661 0.762 0.702
0.684 0.687 0.723 0.730 0.738 0.680 0.717 0.722
0.709 0.694 0.674 0.771 0.682 0.766 0.798 0.770
0.757 0.775 0.752 0.856 0.723 0.744 0.732 0.796
0.706 0.767 0.822 0.768 0.761 0.766 0.804 0.788
0.711 0.798 0.764 0.808 0.785 0.799 0.763 0.820
0.819 0.798 0.818 0.812 0.784 0.791 0.749 0.786
0.779 0.699 0.750 0.747 0.696 0.677 0.728 0.750
0.728 0.721 0.692 0.719 0.750 0.735 0.745 0.750
0.784 0.760 0.732 0.778 0.746 0.725 0.734 0.762
0.720 0.711 0.700 0.738 0.711 0.741 0.735 0.752
0.724 0.687 0.720 0.792 0.682 0.847 0.723 0.699
0.740 0.717 0.726 0.792 0.785 0.745 0.723 0.755
0.759 0.773 0.760 0.711 0.719 0.738 0.796 0.818
0.853 0.817 0.797 0.816 0.846 0.784 0.765 0.781
0.785 0.840 0.852 0.857 0.832 0.845 0.919 0.949
0.914 0.853 0.895 0.903 0.928 0.949 0.898 0.937
0.892 0.838 0.995 1.000 0.863 0.824 0.940 0.865
0.843 0.812 0.880
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AVERAGE OF TECHNICAL EFFICIENCY AT T=4: 0.741
TECHNICAL EFFICIENCY AT T=4

0.696 0.713 0.697 0.739 0.817 0.717 0.727 0.711
0.766 0.665 0.666 0.670 0.700 0.693 0.689 0.678
0.717 0.654 0.721 0.731 0.761 0.727 0.700 0.695
0.698 0.686 0.713 0.673 0.714 0.630 0.757 0.680
0.658 0.661 0.706 0.716 0.725 0.654 0.699 0.705
0.689 0.671 0.646 0.736 0.628 0.730 0.769 0.734
0.718 0.740 0.713 0.842 0.677 0.702 0.688 0.766
0.657 0.731 0.798 0.732 0.723 0.730 0.776 0.757
0.662 0.769 0.727 0.781 0.753 0.770 0.725 0.797
0.795 0.769 0.793 0.786 0.752 0.760 0.709 0.754
0.761 0.662 0.724 0.721 0.658 0.635 0.697 0.725
0.697 0.689 0.653 0.687 0.725 0.706 0.718 0.724
0.767 0.737 0.702 0.759 0.720 0.694 0.705 0.739
0.688 0.677 0.663 0.710 0.677 0.714 0.705 0.727
0.692 0.653 0.693 0.784 0.646 0.855 0.696 0.668
0.718 0.690 0.701 0.783 0.775 0.724 0.696 0.736
0.742 0.759 0.743 0.681 0.691 0.716 0.789 0.773
0.814 0.770 0.746 0.770 0.807 0.731 0.709 0.727
0.732 0.799 0.814 0.820 0.790 0.806 0.897 0.935
0.891 0.815 0.867 0.877 0.908 0.935 0.871 0.919
0.863 0.797 0.994 1.000 0.827 0.779 0.924 0.829
0.803 0.765 0.848

AVERAGE OF TECHNICAL EFFICIENCY AT T=5: 0.554
TECHNICAL EFFICIENCY AT T=5

0.572 0.614 0.575 0.680 0.908 0.623 0.648 0.607
0.753 0.501 0.503 0.512 0.580 0.565 0.554 0.529
0.622 0.477 0.634 0.643 0.722 0.634 0.568 0.557
0.564 0.535 0.599 0.507 0.602 0.420 0.711 0.523
0.475 0.482 0.583 0.605 0.629 0.466 0.566 0.580
0.543 0.502 0.450 0.495 0.314 0.483 0.561 0.491
0.461 0.503 0.451 0.729 0.388 0.432 0.407 0.555
0.356 0.486 0.626 0.488 0.471 0.483 0.576 0.537
0.365 0.562 0.478 0.588 0.529 0.563 0.474 0.622
0.618 0.561 0.614 0.599 0.526 0.543 0.444 0.530
0.623 0.417 0.541 0.534 0.409 0.370 0.484 0.543
0.484 0.469 0.401 0.464 0.542 0.502 0.528 0.540
0.639 0.568 0.494 0.619 0.532 0.478 0.500 0.574
0.466 0.445 0.419 0.510 0.444 0.518 0.501 0.547
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0.475
0.557
0.612
0.553
0.407
0.716
0.653
0.530

AVERAGE OF TECHNICAL EFFICIENCY AT T=6:

0.422
0.495
0.653
0.471
0.524
0.555
0.520
0.462

(Continued)
0.502 0.716
0.518 0.714
0.613 0.478
0.430 0.471
0.551 0.565
0.662 0.686
0.983 1.000
0.621

TECHNICAL EFFICIENCY AT T=6

0.507
0.745
0.570
0.494
0.388
0.468
0.350
0.244
0.253
0.529
0.551
0.386
0.570
0.366
0.376
0.476
0.542
0.435
0.283
0.625
0.549
0.410

0.559
0.420
0.392
0.458
0.396
0.419
0.396
0.377
0.463
0.462
0.313
0.369
0.484
0.343
0.322
0.403
0.595
0.348
0.403
0.437
0.399
0.338

0.510
0.422
0.585
0.537
0.517
0.359
0.340
0.538
0.369
0.524
0.451
0.297
0.397
0.315
0.411
0.430
0.544
0.305
0.433
0.560
0.977
0.512

0.646
0.434
0.594
0.425
0.545
0.387
0.667
0.379
0.493
0.505
0.444
0.363
0.546
0.415
0.676
0.674
0.383
0.347
0.448
0.589
1.000
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0.410
0.692
0.499
0.538
0.506
0.757
0.579

0.969
0.517
0.700
0.542
0.576
0.204
0.275
0.361
0.425
0.421
0.305
0.453
0.441
0.342
0.309
0.646
0.407
0.419
0.384
0.677
0.464

0.919
0.568
0.551
0.405
0.536
0.823
0.487

0.467

0.571
0.498
0.583
0.326
0.378
0.374
0.320
0.374
0.464
0.441
0.265
0.407
0.379
0.425
0.961
0.490
0.468
0.281
0.416
0.761
0.364

0.509
0.509
0.729
0.371
0.730
0.671
0.795

0.603
0.485
0.500
0.684
0.496
0.462
0.294
0.479
0.364
0.333
0.386
0.436
0.405
0.405
0.419
0.419
0.694
0.248
0.642
0.571
0.724

0.451
0.598
0.475
0.399
0.823
0.785
0.583

0.550
0.454
0.485
0.444
0.513
0.382
0.455
0.434
0.534
0.426
0.454
0.451
0.490
0.458
0.353
0.525
0.351
0.275
0.761
0.711
0.468



REFERENCES



112

REFERENCES

Amemiya, T. (1985), Advanced Econometrjcs, Harvard Press.

Aigner, D.J., C.A.K. Lovell, and P. Schmidt (1977),
"Formulation and Estimation of Stochastic Frontier

Production Function Models," Journal of Econometrics, 6,
21-37.

Battese, G.E. and T.J. Coelli (1988), "Prediction of Firm-
Level Technical Efficiencies with a Generalized Frontier
Production Function and Panel Data," Journal of
Econometrics, 38, 387-399.

Chamberlain, G. (1980), "Analysis of Covariance with

Qualitative Data," Review of Economic Studies, 47, 225-
238.

Cornwell, C. (1985), "pPanel Data with Cross-Sectional
Variation in Slopes as well as the Intercept,"
Unpublished Doctoral Dlssertatlon, Department of
Economics, Michigan Sta iv .

Cornwell, C., P. Schmidt, and R. Sickles (1990), "Production
Frontiers with Cross-Sectional and Time-Series Variation

in Efficiency Levels," Journal of Econometrics, 46, 185-
200.

Erwidodo (1990), "Panel Data Analysis on Farm-Level
Efficiency, Input Demand and Output Supply of Rice
Farming in West Java, Indonesia," Unpublished Doctoral

Dlssertatlon, e cu a conomics
an iv ity.
Gallant, R. (1985), Nonlinear Statistical Models, John Wiley
& Sons.

Green, W.H. (1990), "A Gamma-Distributed Stochastic Frontier
Model," Journal of Econometrics, 46, 141-164.

Hausman, J.A. and W. Taylor (1981), "Panel Data and
Unobserable Individual Effects," Econometrica, 49, 1377-
1399.

Hamermesh, D.S. (1989), "Why Do Individual-Effects Models
Perform So Poorly? The Case of Academic Salaries,"

Southern Economic Journal, 56, 39-45.



113

Hsiao, C. (1985), "Benefits and Limitations of Panel Data,"
Economic Reviews, 4(1), 121-174.

Hsiao, C. (1986), Analysis of Panel Data, New York. Cambridge

University Press.

Jondrow, J., C.A.K. Lovell, I.S. Materov, and P. Schmidt
(1982), "On the Estimation of Technical Inefficiency in
the Stochastic Frontier Production Function Model,"

Journal of Econometrics, 23, 269-274.

Juhn, C., K.M. Murphy, and B. Pierce (1989), "Wage Inequility
and the Rise in Returns to Skill," Unpublished Paper,
University of Ch .

Kumbhakar, S.C. (1990), "Production Frontiers, Panel Data, and
Time-Varying Technical Inefficiency," Journal of
Econometrics, 46, 201- 212.

Maddala, G.S. (1971), "The Use of Variance Components Models
in Pooling Cross Section and Time Series Data,"
Econometrica, 39, 341-358.

Meeusen, W. and J. van den Broeck (1977), "Efficiency
Estimation from Cobb-Douglas Production Functions with

Composed Error," International Economic Review, 18, 435-
444.

Mundlak, Y. (1961), "Empirical Production Function Free of
Management Bias," Journal of Farm Economics, 43, 44-56.

Mundlak, Y. (1978), "On the Pooling of Time Series and Cross
Section Data," Econometrica, 46, 69-85.

Pitt, M.M. and L.-F. Lee (1981), "The Measurement and Sources
of Technical Inefficiency in the Indonesian Weaving

Industry," Journal of Development Economics, 9, 43-64.

Schmidt, P. (1986), "Frontier Production Functions,"
Econometric Reviews, 4(2), 289-328.

Schmidt, P. and C.A.K. Lovell (1979), "Estimating Technical
and Allocative Inefficiency Relative to Stochastic

Production and Cost Frontiers," Journal of Econometrics,
9, 343-366.

Schmidt, P. and C.A.K. Lovell (1980), "Estimating Stochastic
Production and Cost Frontiers when Technical and
Allocative Inefficiency are Correlated," Journal of
Econometrics, 13, 83- 100.



114

Schmidt, P. and R. Sickles (1984), "Production Frontiers and

Panel Data," Journal of Business and Economic Statistics,
2, 367-374.

Stevenson, R.E. (1980), "Likelihood Functions for Generalized
Stochastic Frontier Estimation, " Journal of Econometrics,
13, 57-66.



i




