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ABSTRACT

PANEL DATA MODELS WITH MULTIPLICATIVE INDIVIDUAL

AND TIME EFFECTS: APPLICATIONS TO COMPENSATION

AND FRONTIER PRODUCTION FUNCTIONS

BY

YOUNG HOON LEE

The increasing availability of panel data (pooling cross

section and time series data) enables econometricians to

extract information both from variation between individuals

and from variation between time periods. Most of the panel

data literature assumes that slopes are common for all cross

sections, but that intercepts vary over individuals. The role

of individual-variant intercepts. is to control for

unobservable individual specific effects. The unobservables

which are represented by the individual effect should have'

influences on the dependent variable that are constant over

time but varying over individuals. For example, according to

the conventional panel data model, unmeasurable ability or

ambition should have the same effect on wage over time. The

primary focus of this study is on the construction of a

regression model that allows time-varying effects of

individual specific components on the dependent variable.

We discuss fixed effects and random effects and derive

the estimators that are analogous to the within and GLS

estimators of the standard panel data model. We derive the

asymptotic properties of the generalized within and GLS

estimators. Furthermore, we construct test statistics for the



    



hypothesis that the individual effect has a constant

coefficient over time.

We apply the model in two different settings. The first

application. deals ‘with. the. compensation of a sample of

economics faculty members from six U.S. universities. There

are two separate time periods, and the effect of unobserved

ability on compensation is found to be different in the two

periods.

Second, we apply our model to the frontier production

function (efficiency measurement) problem. Previously,

frontier models estimated from panel data could estimate the

technical inefficiency of each firm by assuming it to be time-

invariant or by allowing technical inefficiency to vary over

time only in a specific restrictive way (such as a quadratic

function of time). The application of our general panel data

model to frontier production functions allows technical

inefficiency to change over time in a relatively unrestricted

way. Our results for a sample of Indonesian rice farms show

that. technical. efficiency' levels 'vary' significantly' over

farms, and indicate interesting time trends in efficiency

levels.
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CHAPTER ONE

INTRODUCTION

Panel data are data that have both a cross-sectional and

a time-series dimension. For example, we might have

observations on each of 1000 individuals for each of five

years. Letting N denote the cross-sectional sample size and T

denote the time-series sample size, we have a total of NT

observations; in the example just given, N=1000 and T=5, so

there are NT=5000 observations in all.

Panel data are potentially useful for several reasons. At

the most basic level, observing each individual repeatedly is

a way of increasing the total number of observations. Also,

some parameters may be estimated more readily from cross-

sectional information and others from time-series information.

For example, in budget studies it is often argued that prices

display little cross-sectional variation, so that precise

estimation of price elasticities requires time-series

information, while real incomes display little temporal

variation, so that precise estimation of income elasticities

requires cross-sectional information. Panel data contain both

types of information and therefore may be very useful.

However, in this study we will be concerned specifically

with techniques that are useful when N is large and T is

small. Such cases are common in labor economics, since many

1
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longitudinal data sets contain thousands of individual but

only a few time periods of data per individual. In such cases

the usual motivation for the use of panel data is to control

for possible biases due to unobservable individual

characteristics. For example, Mundlak (1961) considered a

Cobb-Douglas production function for farms, and was concerned

about possible biases due to differences across farms in soil

quality, an unobserved variable that affects output and may be

correlated with the inputs. More recently, many labor

economists have estimated wage equations and have been

concerned with possible biases due to differences across

individuals in unobserved ability.

The existing panel data literature has dealt extensively

with the problem of avoiding biases due to unobservables like

soil quality or ability, by assuming the unobservables to be

time invariant. The standard model that is used is the

regression model with individual effects:

(1.1) Yic-Xicp+a1+eit i-l’ooopN’ t-110oo,T,

Here Iit is the dependent variable; X is a le vector of
n

explanatory variables; fl is a le of parameters (regression

coefficients): ai is the unobserved individual effect, which

is time invariant (does not depend on t); and a” is the random

error. The errors cit are assumed to be independently and

identically distributed (i.i.d.) with.E(e")=0 and‘Var(en)=oz.
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In this model the unobserved individual characteristics

represented by the individual effect ai are assumed to have

the same effect on the dependent variable Y in all time

periods. The motivation for this study is that this assumption

is unnecessarily strong, and we will relax it. Specifically,

we will allow the effect of t1i on Y to vary over time, though

we will require that the temporal pattern of the effect of ai

on Y must be the same for all individuals. Specially, we will

consider the model

(1.2) Yic-XicB+eta1+eit i-lpooo'N’ t-llooolTo

This model requires a normalization, and we set 01=1. Compared

to the model (1.1), the new model introduces the (T-l) new

parameters 02, 03,..., 0, to represent the effect of as on Yit

for t=2, 3,.. ., T relative to the effect of ai on Y“.

As a matter of notation, let Yi=(Yi1 Yi2 Yr) ', €i=(6i1

Eiz e”)' and xi=(Xn' Xiz' Xn')', each representing the

T observations for person i. Then we can write equation (1.2)

as

(1.3) Yi-Xifl+5a1+ei 1-1'00I’N ‘



where

'6;

63

(1.4) E-[é]. e-

(6.11  

The usual model ( 1.1) thus corresponds to the case that

02=03=...=01=1, or equivalently that 0 (or 5) is a vector of

ones. As we shall see, this is a testable proposition in our

model.

The model we consider can also be compared to the two-way

analysis.of covariance model that includes both individual and

time effects. That model can be written as

(1.5) Yic-X1t+ai+et+eic 1-1,...,N’ t-1,...,T

The number of parameters in (1.5) is exactly the same as in

our model (1.3), but the -models are different. Our

interpretation of (1.5) is that it is suitable in cases in

which there are relevant unobservable variables that vary over

time but not over individuals; it does not handle the case

that our model is designed for, in which the effects of

unobservable individual characteristics vary over time.

Compared to the two-way analysis of covariance model (1.5),
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our model (1.3) is more difficult to estimate, because it is

nonlinear. However, unlike the analysis of covariance model,

our model allows for inclusion of observables that are time

invariant or invariant over individuals, a considerable

advantage in some applications.

The plan of this study is as follows. Chapter 2 discusses

the fixed effects model in which the parameters cti are treated

as fixed. We derive a generalized within estimator, and we

show its consistency and asymptotic distribution. We also

discuss the case of several possible interactions between

time-invariant and individually invariant parameters, as in

the model

G

(1.6) Yi-XIB-I-Eegag-itei i-1,...,N.

9-1

Chapter 3 discusses the random effects model in which the

individual effects a‘- are treated as random. We derive the

appropriate GLS estimator and prove that it is more efficient

than the within estimator.

Chapter 4 considers tests of the hypothesis that 5 is a

vector of ones, so that our model reduces to the simple panel

data model. We present Lagrange Multiplier (LM) and likelihood

ratio (LR) and Wald statistics for this hypothesis.

Chapter 5 presents an application of our model to the

compensation of academics, previously considered by Hamermesh
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(1989) using the standard panel data model. Chapter 6 presents

an application to the measurement of the technical efficiency

of‘a sample of Indonesian rice farms, previously considered by

Erwidodo (1990) using the standard model. Finally, Chapter 7

gives our concluding remarks.



CHAPTER TWO

FIXED EFFECTS

2.1 The Simple Model

We may rewrite (1.1) as

(2.1.1) Yi-Xifl‘l'erai'tei 1-1,...iN

where

In 3&1 €i1

’32 3&2 812

Y1- o I X1- 0 I 81- o

Xu~ 9%: 31T      

and eT is a Txl vector of ones. This is also identical to

(2.1.2) i’-Jfl3+-Ga-+e

where

Y1 'Xll t21 'afl

Y2 3% e2 “2

Y - o ’ X - o ' e - o I a - o

YN X". Le N. La N        



and

e, 0 0

0 6T. 0

<;- 1J9..-

. 0

o 09,.   

As a matter of notation, define

(2.1.3) p6 = G(G'G)'1G' and 141‘; = I”T - P5.

Note that PGGa = Ga and MGGa = 0.

The fixed effects model treats ai as fixed. That is, each

(A is a parameter to be estimated. The within transformation,‘

which eliminates the effects by transforming the data into

deviations from individual means, corresponds to

multiplication by MG:

(2.1.4) MGY- MGXB + use

Avoiding matrix algebra, this amounts to:

(2.1.5) yin-17, - (Kn-Em + (en—31) i-1,...,N, t-1,...,T,



where

T T

- 1 '— 1

Y1--1—~2:Yit’ Xi-Trftz:xic'
6'1 c-l

The DIS estimator of the transformed model is the within

estimator of 3;

(2.1.6) Bw- (X’MGX)‘1X’MGY

N T _ __ N T __ __

- (Z; .2; (X,,-X,)’(X,,-X,) 1 '1 {I}; m (X,.-X,)’(Y1,-Y,)]

The within estimator is the best linear unbiased

estimator (BLUE) and is consistent as N goes to infinity with

T fixed.

2.2 The General Model

We rewrite (1.3) as

Y1'Xip+€a1+ei i-l’...,N
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where tsit is i.i.d. N(0,oz)‘. This reduces to the simple model

of section 2.1 if £=eT. We may consider all NT observations as

(2.2.1) Y- XB + (IN®E)G + e

If (2.2.1) is the true relationship and efet, the

estimates of B from the simple model are not unbiased, since

E(B,,) - E[X’(IN®M‘T) X] ’1X’(IN®MOT) Y

- (3+ [26 (1.8%,) X] ‘IX’ (1.8%,) (1.35) a

N r _ __ N 1' _ _ p

' l3+ [2: 2 (Xic'xi),(xic'xi) ] -1; 2 (Xic’xi) (5 FE) a 1

1-1 c-1 -1 t-l

where E=(1/T) 225v Thus we expect the simple within estimates

to be biased for the coefficients of those variables whose

temporal variation is correlated with the temporal variation

in the effect of a on Y.

The generalization of the within transformation is to

premultiply (2.2.1) by the idempotent matrix (Iume) that is

defined as

(2.2.2) Me = I," - PE where P6 = ((ver‘g'.
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That is, the transformed regression model is expressed by

(2.2.3) (IN®M,)Y- (IN®M,)XB + (I,®M,)e

or

(2.2.4) szl' -M£X1p +M£€1 i-l,...N

since M£§=0. The individual effects are deleted by taking

deviations from individual weighted means (PeY and P£X) instead

of taking differences from individual means in the simple

model.

We may not apply OLS to (2.2.3) since MeYi and M‘EXi are

not observables; MeYi and Mexi include the parameter vector €-

Instead, we construct an objective function which will be

minimized with respect to B and 0. This objective function is

simply the error sum of squares of (2.2.3):

N

(2.2.5) CSSE - I: (Y,-X,B)’M,(Yi-X,B)

-1

- (Y-XB)’(IN®M,) (Y—XB)

The reason that.we.denote this objective function CSSE is that

it is the same as the (concentrated) error sum of squares of

(2.2.1). By taking derivatives of (2.2.5) with respect to 3

and 0, the first order conditions are obtained as

6033}:

BB

 

N

(2.2.6) - -2 zxfiMgn-xifl) - o

-1
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661953 2 N ,

66 t”: 2.3. 1 1” 1' 1'”

N

" ; (Y1'X1B)IP£(Y1-Xip)e] - 0

-1

where

Y1: X12

Y1: X1:

Y1 ' . X1. '

.Y17'. .Xir.    

The solutions of the first order conditions are the following;

(2.2.8) Bw- (X’(IN®M£')X)’1X’(IN®Mh)Y

N N V

- ( X’M KW 26»! y)
§ i t" i (2:. 1" 1

N

(2.2.9) 5,,- (1,6’,)’ is an eigenvector of ;: (Yi—XIB ,) (Yr-Kill w)’

-1

The derivation of (2.2.9) is given in Appendix 2.1.
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NQTE 1 For a matrix A, suppose that A is an eigenvalue and

x is the corresponding eigenvector. Then, Ax=xx and x'Ax=A.

LEMMA 1 Eu is the eigenvector corresponding to the largest

eigenvalue.

Proof>

N

(2.2.10) CSSE - ;(Y1-X,B,,)M,(Y1-X,B,,)

-1

N N

-2 (Yi—XIBN)I(Yi-XIBW) ”—1—Elwz (Yi-XIBW) (Y1-XiBN)IEW

=11 E’NE ,, 1-1

By NOTE 1, (2.2.9) can be rewritten as

N

(2.2.11) CSSE - ;(Y1—X18,)’(Y1-Xiflw) - X,

-1

where A" is the estimated eigenvalue. We pick the largest

eigenvalue since we wish to minimize CSSE. Q.E.D.

The solutions for By and 9w are not closed forms of the

data, since the solution for B" depends on Pu and vice versa.

However, these can be calculated by iteration starting with

any initial value of pr The estimate 3" from the simple model

is a good candidate for the initial value.

For the proof of consistency and asymptotic normality of

Bu.and 9" , we need two theorems provided by Amemiya(1985).2
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THEOREM 1 Make the assumptions:

(A) The parameter space 6 is a compact subset of the Euclidean

K-space (R‘) , and the true value 00 is in 6.

(B) QNCy,0) is continuous in 066 for all y and is a measurable

function of y for all 066.

(C) N'1QN(0) converges to a nonstochastic function Q(0) in

probability uniformly in 066 as N goes to m, and 0(0) attains

an unique global maximum at 0°.

Define 5" as a value that satisfies

QN(6N) _ Delia: Qy‘e) .

Then 5} converges to 00 in probability.

THEOREM 2 Assume:

(A1) lim (l/N) fixi'xi exists and is finite and nonsingular.

(A2) lim (1/N) gaf exists and is finite and nonzero.

Then, Bu and 5n which satisfy

N

CSSE(B,,,E,,) - 0:132 z: (Yi-Xifl)’M¢(Y1-X1l3)

-1

are consistent.

Proof> The proof that the assumptions (A) and (B) in THEOREM

1 hold in this model is omitted since it is trivial. With (A1)

and (A2), it is shown in Appendix 2.2. that

(2.2.12) plim %TCSSE(B.E) - (arm/odors) + Q.ESMJO
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+ 2(Bo‘plleJo + (T-1)o2

where

1 XI

Q-lim— MX

4“ N... N ,1 1‘1

N

- 1 2

-lm— a

CL .M~ .N _1 01

—- N X/Q -lim iMai

Define a compact parameter space 6 by 6'6 5 ca and ('5 5 c2

where c1 and c2 are large positive constants and assume (30'

50') ' is an interior pointcf 6. Then N"CSSE(fi,£) converges to

(2.2.12) uniformly in probability and plim (1/N)CSSE(B,£)

attains an unique global minimum at (60, £0) :

plim(1/N)CSSE(B°,£0)=(T-1)oz. Thus assumption (C) holds. Using

THEOREM 1, Ba and so which minimize the objective function

converge to true (30 and so in probability as N goes infinity.

Q.E.D.

Using the following theorem by Amemiya (1985), we may derive

the asymptotic normality.

IMEQBEM_; Make the following assumptions in addition to the

assumptions of THEOREM 1.

(AA) aZQN/aoao' exists and is continuous in an open, convex
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neighborhood of 00.

(BB) N“(a2QN/aoao ”a: converges to a finite nonsingular matrix

A(0o)=lim E N"(aZQu/a00')oc in probability for any sequence 0,:

such that plim 0:500.

(co) N"’2(aQ./ao), » N(0.B(0o)).

where B(0o)=1im E N‘(aQ,,/ao),°(ao,,/aa'),'. Let {0"} be a sequence

obtained by choosing one element from 0“ defined in THEOREM 1

such that plim 3,300. (We call 3" a consistent root).

Then,

«MON-60) - N[0,A(60)’1B(80)A(60)'1]

Applying THEOREM 3, we have

OCSSE
A}. -1» E'—
(°) 1”“ MET—61'“

 

 

N

1

9,, 111m _( a X’Ee’ a )
N 2X! 01- {loge/1:021 0 OJ:

- 2
e I

Q‘(IT.1- 36°)

5050  

a finite nonsingular matrix, and

BOSSE aCSSE
3(10) limE-fi(—-——a}. )lOX(—a—Al—)Lo



 

 

N

o, 1.13 Tbtgx’a.”- Jeopx’z6,10,)

- 4o2

6.63
( +0 ) (I )

. £35. ”'1 tat.   

where

- [‘3]

(See Appendix 2.3 for the derivation of A(Ao) and 8(10).)

Therefore,

«W (31-6... -'N[0,A(10)’1B(10)A(1°)‘1].

aw’eo

An advantage of the general model over the simple model

(1.1) is the ability to include time-invariant explanatory

variables. To see this, consider first the simple model with

time-invariant regressors zi added:

(2.2.13)Yic-Xicp+ziy+a1+eit

01'

(2.2.14) Y- x|3 + (Z®e,.)y + Ga + e
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where

  

Premultiplying by Mh,'the transformed regression model is

B
(2.2.15) MGY - [MGX MG(Z®e,-)] Ywe

 

-[MGX o][5]+MGe- (M6108 +MG€

since MG(Z®eT)=03. This is the reason why we can not

incorporate time-invariant explanatory variables into a fixed

effects model.

This problem does not arise in our general model. The

equation for the general model corresponding to (2.2.13) is

(2.2.16) Yic-chp+ziy+eta1+eic
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or

(2.2.17) Y- XB + (z®e,.)y + (I,,®£)a + e

- [X (Z®e,.)] [5] + (IN®E)a + 6

The within transformation leads (2.2.16) to

3] + (IN®€)6

 

(2.2.18) (1,614,” - {(1,611)}: (Z®MEeT)]

But (I"®M€) (Z®e.)=Z®(M€eT) is generally not equal to zero unless

£=eT. Therefore, the inclusion of time-invariant regressors"

is allowed, and their coefficients can be estimated

consistently. This is an advantage of the general model since

time-invariant explanatory variables are often important in

many applications. For instance, in a wage equation, years of

schooling, race, union status or sex could be important

determinants of the wage. Notice that the overall intercept is

also identified in the general model while not in the simple

model.

In the simple model with fixed effects, assuming the

normality of the 6. the conditional maximum likelihood
It'

estimator (CMLE) is equal to the within estimator .

Furthermore, the MLE is the same as the CMLE (or within

estimator). Thus the incidental parameters problem is not
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relevant in the simple model.

The above results do not hold in the general model. The

same type of derivation as in the simple model for the CMLE

can not be applied in the general model. The individual mean,

Y1! is a sufficient statistic for a, in the simple model and

the likelihood conditional on Y, does not depend upon

incidental parameter (1.. However, Pin in the general model

corresponds to Yi in the simple model, and it is not a

sufficient statistic since it is not a function of only the

data. A parameter 5 is included in PeY‘.

Because the incidental parameters problem is relevant in

the general model, the asymptotic theory developed in this

section does not agree with (naive) normal likelihood theory.

According to normal likelihood theory, the covariance matrix

of (3,0) derived from the likelihood function L(fi,0,a) , which

is a submatrix of the inverse of the information matrix,

should equal the covariance matrix of (3,0) derived from the

concentrated likelihood function. Furthermore, this covariance

matrix should be (asymptotically) the covariance matrix of the

estimates (5,0). However, in the present case none of these

statements is true. (See Appendix 2.4.) In summary, the

conventional way to derive the CMLE does not work and the

asymptotic theory of the generalized within estimator is

different from that indicated by likelihood theory.
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2.3 The G-component Model

It is impossible to have many different individual

effects in the simple model since they would not be

identified. However, we may include a number of individual

specific components in the general regression model:

specifically, we may assume

(2.3.1) Yi-XiB+Ela11+---+£Gaci+ei i'l,...,N

where

' 1

6

we).9

  .692:

For identification we make the orthorgonality assumption

€9'£f=ol gEf°

The within transformed version of model (2.3.1) is

(2.3.2) MEYI -M8XIB +M861 1-1,...N
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where

PS-P£1+P£3+---+P£a’ Ma-IT-Pa.

(Note that the projection onto [51, £2, ... , £6] equals PS

because €°'£f=0, gyéf.) The objective function is constructed

in the same way as in section 2.2:

(2.3.3) 1341': CSSE - (Y—XB)’(IN®M3) (Y-XB)

where

  

We can obtain solutions for B in terms of 0 and 0 in terms of

3 from the first order conditions.

(2.3.4) Bw-(X’(IN®M3)X)‘1X’(IN®M3)Y
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N

(2.3.5) ng- (1 G’W)’ is an eigenvector of ; (Yi-Xifi ,) (Yi—Xifi ”f

-1

M2 59" is the eigenvector corresponding to the gth

largest eigenvalue of 2(Yi-XiB") (Yi-XiBuw.

Proof>

N

(2.3.6) CSSE- ;(Y1-X13,,)’(IT-le- . . . -PEG)(Y1-X1[3,)

-1

N

' 2(Yi-X1BN)I(Yi-X16N) ‘ x1 " ° ' ° ' xc:

We have to choose the largest G eigenvalues to minimize CSSE.

Q.E.D.

The same asymptotic theory as in Section 2.2 is applied

to show that the estimators are consistent and to derive their

asymptotic covariance matrix. (See Appendix 2.5 for this

covariance matrix.)

2.4 Summary

We have discussed a generalization of the conventional

fixed effects model that allows different time-effects of

individual specific components on the dependent variable.
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We derive a consistent estimator of the regression

coefficients (B) and of the coefficients of the individual

effects (E) using the conventional within transformation. We

noted that the coefficients of time-invariant explanatory

variables, which cannot be estimated in the simple model, may

be estimated consistently and asymptotically efficiently. The

inclusion of several individual specific components in the

regression model is also introduced, and the results are

similar to those with one individual specific component.

Unlike the simple model, the asymptotic theory of this model

does not agree with normal likelihood theory. The sufficient

statistic for the individual effects depends on other

parameters, and so the CMLE cannot be obtained by the usual

method (see Chamberlain (1980)) by conditioning on a

sufficient statistic. The MLE is consistent, but this must be

proved directly, and the usual formula for its asymptotic

covariance matrix (the inverse of the information matrix) does

not apply.



CHAPTER THREE

RANDOM EFFECTS

3.1 The Simple Model

An alternative approach in panel data models is to assume

that the individual components are random. That is to say,

random effects models consider the individual effects to be

independently identically distributed and to be independent of

the disturbance and the explanatory variables.

Hsiao (1985)5 mentions the difference between fixed

effects models and random effects models. The fixed effects

model is regarded as providing inference conditional on the

effects in the sample, whereas the random effects model is

regarded as providing unconditional inference with respect to

the population of effects.

The within estimator does not consider variation between

individuals. The GLS estimator used in the random effects

model considers both variation between individuals and

variation over time within each individual. Therefore, the GLS

estimator can be expressed as a combination of the within and

the between estimators. The GLS estimator is more efficient

than the within estimator because of the utilization of the

variation between individuals. However, we need a

distributional assumption about the effects, which reduces N

25



26

parameters to a single parameter (the variance of the

effects), and we also need to assume that the effects are

uncorrelated with the regressors.

The regression equation (1.1) can be written as

(3.1.1) YiC-XiCp+viC 1-1,...N, t-1,...T

where

ic'a1+eic

We assume that the effects t:i are i.i.d., with E(ai)=0 and

Var(ai)=oaz, and that ai is independent of X and 6. Combining

all NT observations, We have

(3.1.2) Y-XB+V

where

t/- Ga-te

and where G=In®eT as in section 2.1.

The knowledge of the covariance matrix of v is necessary

to derive the GLS estimator of H:
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(3.1.3) Cov(v) - Q - E(Ga+e) (Ga+6)’

- OEQW-tlbiPG

- l
02

(3.1.4) Ql-—(Im-(1-k2)P), k2-———

02 a 02+Taf,

and

(3.1.5) 0
i 1
2 - :(Im-(l—k)PG)

Treating k as known, the GLS estimation can be calculated by

the regression of (n'l’zY) on (n'l/ZX). Equivalently, the GLS

estimator of B is given by

(3.1.6) (36” - (X’Q’1X)'1X’Q'1Y

gas is consistent and asymptotically efficient. It is

more efficient than B}, but the! efficiency difference

disappears as T goes to infinity. A consistent estimate of n

can.be obtained from the estimated variances in the within and

the between regressions, and the feasible GLS estimator is

asymptotically equivalent to the GLS estimator.
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3.2 The General Model

3.2.1 Ordinary Least Squares Estimation

The regression equation (1.2) is considered as

(3.201) Yic-X1UB+VIU i-llooepN, t-lpooaiT

where

Vic ' etai + 616

We let E(ai)=u and assume that ai'=a‘-u is i.i.d. with

2
Var(af)=oa. Estimation of (3.2.1) is identical to

(3.2.2) Yi-X1B+Ep+vg

where

O

Vi'£“i+31

and

(3.2.3) Y-XB-t- (ep£)|.l+V‘
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where

'v‘- (I$3£)a‘+te

and eN is the N-dimensional vector of ones.

The OLS estimation procedure ignores the fact that the

covariance matrix of the error term is not the identity

matrix. Its objective function is

(3.2.4) SSE - (Y-XB- (61,35) u)’(Y—XB- (13,65) (1)

The derivative of SSE with respect to u is

(3.2.5) 635E - -2(e,®5)/(y-xp-(e,®£)p) - o 

and this yields the solution for u in terms of B and $3

(3.2.6) {3015' N:,E(e,®£)’(Y-xp) 

The concentrated objective function is obtained by

substituting (3.2.6) into (3.2.4):

(3.2.7) CSSE - (Y-XB)’[INT-(P,'®Pg)] (Y-XB)
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where

P," - eN(e§16N) 'lely - (swab/N

Minimizing CSSE with respect to B and 0, the first order

conditions and the OLS estimator of B and 0 are obtained as

 (3.2.8) 3%?” - exam—(94819.” (Y-XB) - o

OCSSE 2 - 1

(3.2.9) T ' ‘ NET (E’EeO-figleTeT’EO) "' 0 

and

(3.2.10) 301.1- (X’lINT-(PON®P£]X)'1X[INT-(P,'®P£)]Y

(3.2.11) EOLS is an eigenvector of E’

where

1 N 1 "

N -1
N -1

a- (6......e,)'





LEMMA 3 Ems is equal to é/é1.

Proof> After some algebra using the first order condition

(3.2.9), we can derive

O OLS

Note that 65' is a Tthmatr x whose rank is one. Therefore, T—

1 eigenvalues are zeros and one is positive. It is clear that

E is the eigenvector corresponding to the positive eigenvalue

=é'é, since (éé')é=(§'§)§=.\é. Therefore EOLs=é is proportional

to 6. We can check that this satisfies (3.2.12):

(3.2.13) E’E—i—E’Eé’e “11—67;- 67a -0

The division of E by E, is required to satisfy the

normalization condition that the first element of 6 is one.

Therefore, Em5=§/e1. Q.E.D.

Finally, the solutions for B, 0 and B using LEMMA 3 can

be written in closed form:

N _ _ N _ _

(3.2.14) [50,,3 - [2: (X,-X)’(x1-X)]'1; (Xi-X)’(Y1-Y)

-11-1

31
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9
|
)
!
”

(3,2,15) 60,3-

(3.2.16) flou,- 61

Note that BOLS is indeed the usual OLS estimator, and that 0

and B are then calculated from the OLS residuals.

3.2.2 Generalized Least Squares Estimation

Unlike the case with 015 estimation, the covariance

matrix of the error term is taken into account in GLS

estimation. The covariance structure of v is as follows:

(3.2.17) COV(V) - 2 - E((IN®E)a’+e) ((IN®E)a‘+e)’

- 02%.T + E'5O:(IN®P£)

(3.2.13) 2-1 - Tj’lgorw-u—qZ) (1,612,»

where
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-1
2(3.2.19) 2: -%(Im.-(1-q) (13,614)).

GLS can be obtained by OLS applied to the transformed

regression model

-3 -1 -2. -_1

(3.2.20) 2 ZY-z 2X8 +2 2(e,,®£)p+2 2v

where

-l -l -l

COV(E 2v)-1~:'(23 2VV’E 2) - INT

This transformation is a combination of the within and the

between transformations. For example, 2'1’2Y=(IN®M€)Y+q(I“®P€)Y.

Since 2""? includes the parameter vector 0, we cannot

simply apply OLS to (3.2.20). we‘will derive the.GLS estimator

of B and 0 which minimizes the objective function, equal to

the error sum of squares.of the transformed equation (3.2.20).

That is, we wish to minimize

(3.2.21) SSE - [Y-xp-(eflEml’IIM-(l-qz) (IN®P,)]
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° [Fm-(6,186)]

The derivative of SSE with respect to u is

 (3.2.22) agfiE--2(e,,®£)'trw—(1—q2) (1,6291 [Y-XB-(e,®£)uJ-o

and this implies

(3.2.23) (1613 " fig(eN®£)’(Y—Xfl)

Substituting (3.2.23) into (3.2.21), we obtain the

concentrated SSE

(3.2.24) CSSE - (Y—XB)’[(4)2014)“;2 (M,'®P¢)] (Y-xp)

where

AQN- IN-ewe@Um

The values BGLS and 501s which minimize CSSE are derived by

taking derivatives of CSSE with respect to1B and 0 and setting

them to zero. This gives
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(3.2.25) 5115 - (X’[(I,,<8>1\t,)+q2(1~1,"<8>13,)]x)‘1 -

° X’I (IN®M£) +q2 (M9N®P£) 15’

(3.2.26) {as is an eigenvector of

N

z: [1/1-q2 61+(1-y/1-q2) 51 [t/l-q2 61+ (1-1/1-q2 ) a'

-1

where

N

1

ei-IYI-3UBGB" 9"ffi.z:(33"3956u9
1-1

The proof that ems is the eigenvector corresponding to the

largest eigenvalue is essentially the same as the proof of

LEMMA 1, 2 or 3. Similarly, the asymptotic properties of BGLS

and 501s are derived using Theorem 1 & 3 as before, and we

obtain

Bots-Bo _1 _1

(3.2.27) JI—V ~ N[0,A BA 1

a61.5'60

The matrix A comes from the second derivatives of CSSE while

B is(derived from the cross-products of the first derivatives.

These are (K+T—1)x(K+T-1) matrices given by:



 

B-4o2

OH

on
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f- i?£oeé)

0 0

M1?-
 

(191-(1-«12)a3) (1--,- ,

0

 u (23- :1: Fad.)
/

0 0

(02+ (1-q2)a§) (IM-

6060)

E

 

 

I

 o I

0003
)

- 202A

  €350 ‘

where

Qxx - lim fix’urfim) +q2(MeN®P£)]X
N“.

Therefore, the asymptotic covariance matrix of BGLS and 0
GLS ’

which is given by (1/N)A"BA", is simply equal to 40‘8".

The efficiency gain of the GIS estimator compared to the

within estimator is shown by the difference of the asymptotic

covariance matrices. If Cov(Bu,0U) - Cov(BcLs,0GLs) is positive

semidefinite (PSD) , BGLS and 901s are more efficient than B“ and

0". Thus we ask

(3.2.28) Cov(X,,) — COV(XGLS) is 19317?

This is identical to the question:

(3.2.29) [COVUIGLSH‘1 - [Cov(1,,)]'1 is PSD?
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Assuming E(ai)== u = 0 for simplicity (See appendix 3.1), we

focus on the submatrices in (3.2.29) that correspond to B and

0, respectively. Note that the covariance matrices of the

within and the GLS estimators are block-diagonal when u=0.

This gives

(3.2.30) [Va1((3c,.Ls)]‘1 - [Var(fl,,)]‘1

- Tlvx/[(IN®M£)+q2(IN®p,)]X — 71VX’(IN®M,)X

2

- %X’(IN®p,)x, which is PSD.

(3.2.31) [Va1'(6m)]‘1 - [Var(6,,)]'1

(l-qzwi 66’ - (l-qzwi 66’ -
' -—:§—( 7.1-?) 1 " TLIT-l-W) 1 ' 0

Thus Bus is more efficient than BH and gms and 0H are equally

efficient.

The efficiency gain of GLS over within disappears as T

goes to infinity since ('5 4 m as T 4 w. Therefore

2

02+€’€03
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which implies that in (3.2.30)

2

Efix’upng-o 0 as T~ co.

Because of the lack of knowledge of qz, we need a

feasible GLS estimator using a consistent estimator of qz. We

can estimate q2 from the results of the within and the between

regressors; or, for that matter, from the within and between

sums of squares evaluated at any consistent estimates.

Specifically

SSE

(3.2.32) lim 62 - lim " o2

N-oa N-o N(T-1) ”K -

 

 

 

SSE

(3.2.33) lim (02+£’Eoi) - lim 3 - a2 + {’ioi

”—0 N... N-K-l

- . SSE _ -

(3.2.34) limdz-llm
w NK1

N... 11.. SSE, N(T-1)-K
 

Since q2 is consistently estimated, the asymptotic properties

of the feasible GLS estimator are asymptotically equivalent to

those of the GLS estimator.

We have noted in Chapter 1 that our general model is

different from the simple model that includes both individual

and time effects. We now note that the regression model
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(3.2.2) with random effects and “$0 is identical to the model

with zero u and including fixed time effects. That is to say,

(3.2.35) Y“ - c1 + X1113 + (0.¢1+€1c)

or

(3.2.36) YR - c:1 + Xufl + 9;“ + (Oca'peu)

is identical to

(3.2.37) Y1: - c2 + X38 + 6: + (Oca’pen) , c2+6 t-c1+8 tn

This general model effectively includes not only time-variant

coefficients of individual specific components but also

"simple" time effects (or time trend).

3.3 The G-component Model

As in the fixed effects model, we can include a finite

number of individual specific components in the random effects

model. The regression equation is then

(303.1) Yi-Xifl+v.i i-lpooclN
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where

V1 " 51am "’ E2&21 " ' ' °+ £54131 + 61

The assumptions in this regression model are as follows:

(A.3.1) Baggy)“ and Var(agi)=092- “oi is independent of a“.

for all g, f, i, and j except g=f and i=j. It is

*

independent of X and 6 and we denote 02m = agi-ug.

(A. 3.2) The orthogonality conditions hold: £Q'£f=0, gyéf.

Then, (3.3.1) is the same as

(3.3.2) Y1. -X1.B +£1u1+. . .+EGp.G+ v;

where

V; ' 51‘111 + - - - + €54.81 + 31 1 «Int-“grits, 1

and

(3.3.3) Y-XB +(eN®£1)p.1+.. . + (91.3559961" v’



41

where

v‘ - (1,351)“; + . . . + (IN®EG)a'G+e

The covariance matrix of v' is calculated as

(3.3.4) Cov(v‘)-E-o’IM+£’1£10:1(IN®P£1)+. . .+E'G£GaiG(IN®P£O)

(3.3.5) 2-1 - _01_2[I,,,.-(1-qf) (IN®P1,>-- . .-(1-qg)(1,,®p.a)]

 

where

2 02

q " -1, . . . ,G

g 02+E/gigoig g

.1

(3.2.6) 2 2 - %[Im-(1—q1)(IN®P£1)—. . .-(1-qG) (1,650)]

Therefore, the objective function (SEE after transformation by

2‘1/2) is

G G

(3.3.7) SSE - (Y-XB-Z (e,®£,)u,)’[Im-2 (1-q3) (1,613.31
9-19-1
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The derivative of SSE with respect to no is

(3.3.8) 3;” - -2(eN®E,)’[Im-(1—q§) (IN®P,,)]

9'

 

°[Y—XB-(efl®£,)ttg] - 0

The solution of [.19 obtained from (3.3.8) is

 (3.3.9) ag- N95 (epgg)/(Y-X6)

99

Then, the concentrated objective function gotten by

substituting (3.3.9) to (3.3.7) is

G

(3.3.10) CSSE-(Y-XB)’[Im-(P,'®P3)] [INT-E (1-q3) (1,613.31

g~1

- [rm-(2,323)] (Y-XB)

G

NQI'EJ. [INT—(Peppgn’IIm-E (1—q3) (14813)] [Im-(P.,®Pa)1

g-i

G G

- IN, — E q§(P,.®P£') — E (1-q3) (I,® P“)

g- 9-11
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G

- (I,,®M3) + Eq3(M,,®P£,).
9-1

Using NOTE 2, we can rewrite CSSE as follows:

G

(3.3.11) CSSE - (Y-XB)’[(IN®M3) + 2q§(M,'®P.')] (Y-XB)

9'1

We can derive the solutions for fl and each 09 by minimizing

CSSE with respect to B and as. This yields

G

(3 .3 .12) BGLS- (X’ [IN®M3) +2 q: (11,919“) 1 X) '1

gu

G

. X’[ (138143) +2) q; 01,3912“) 1 y

rd

(3.3.13) 59 8Ls=(1 99 ms.) ' is the eigenvector corresponding to

the largest eigenvalue of

2 [ l-qgepu- l-qg)a[(/1-q361+(1- 1-qg)é]’.

1'].

The estimates in (3.3.12) and (3.3.13) are consistent and

asymptotically efficient by the same reasoning in section 3.2.

As in the one-component case, we can get a consistent

estimator of qu using the results of the within and the

between regressors. Specifically
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SSE,
—-02

NKT‘G

(3.3.14) plim 62 - plim

 _ , SSE
(3.3.15) plim (0243,02) - P111" —% ' 024.5175 9°29

SSE, N 2

SSEfiVNWTbG)

 (3.3.16) plim q; - plim

where

SSEBg - (Y—XB)’(M9"®P£') (Y-XB)

The properties of the feasible GLS estimation using a

consistent estimator of q: are asymptotically equivalent to

those of the GLS estimator.

3.4 Summary

We have discussed a generalization of the conventional

random effects ‘model that assumes (g to be i.i.d. and

independent of the disturbance and the explanatory variables.

We derived the OLS estimator and showed that it is consistent.

We also derived the GLS estimator, showed that it is

consistent, and derived its asymptotic distribution. The GLS

estimator is more efficient than the within estimator, but the

efficiency gain disappears as T ~ 0.



CMP‘I'BR FOUR

TEST STATISTICB

It is meaningful to test the hypothesis that o is a

vector of ones. This is the restriction that reduces our

general model to the usual simple panel data model. The within

estimator and the GLS estimator of the simple model are not

consistent if are”. In the case of the within estimator,

(4.1.1) plim [3,, - plim (X’MGX) ‘1X’MGY

- B + 1:33." (X’MGX) '1X’MG(IN®E)a ¢ (3

since MG(I~®£)7$O‘. This means that the conventional panel data}

model produces inconsistent estimators (has a specification

problem) if fife”.

We may develop test-statistics for the hypothesis o=eM

based on the work of Ronald Gallant (1985)7. Gallant considers

estimators derived by minimizing an objective function Sn(0) ,

where n=sample size and asparameters. Our estimators minimize

objective functions and therefore fit his framework. For

example, for GLS we have

N

1
(4.1.2) SD(B,6) figsmfi)

45
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 2;: (y-xp)'[(r,,®u,) +q2(M,,®P,)] (Y-XB)

 CSSE
m2

where a preliminary estimator” 72 is 02 derived from the within

estimator (3.2.32).

The null hypothesis is considered as

(4.1.3) [10:6 -4.=3,._1

or

(4.1.4) Ho: hme) - Hm - e111 - o

where H = [0 : 1%,] is a (T-l) by (K+T-1) matrix.

Then, the LM statistic given by Gallant (p. 219) is

 

aSN(xal.S) I -1 I -1 -1 aSN(th.S‘)

(4.1.5) LM-N( 61 )8 H’(H1?H) H8 (T)

where

Im' restricted estimate of [5] - [Bats .

0 97-1
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pas = GLS estimator with 0=eM imposed,

aS(X__G__L_,)

N1;—6161’

9: _N; (_332?”) ) ( 65%;”) ),

)7 - 84.78“

The LM statistic in (4.1.5) has asymptotically a Chi-square

distribution with (T-l) degrees of freedom. Gallant (p. 220)

also provides a test-statistic analogous to the usual

likelihood ratio and Wald statistics:

(4.1.6) LR - 2N[S,,(Xm) - 5,,(xmn

- % [cssg(xam) - CSSEde

(4.1.7) w - N°h(BGLS,5m)’(m7H’)'1h(Bm,9m)

where

131,5 " [g as] - unrestricted GLS estimate of [g]
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t7 - unrestricted GLS estimate of V.

Under general conditions we have also that LR and W are

asymptotically Chi-square with T-l degrees of freedom.

These three test-statistics will be used in Chapter 5

when we apply this general model to the compensation

regression of faculty members, and test the hypothesis that

the effects of individual specific components on the dependent

variable (compensation) are equal over time.



CHAPTER FIVE

EBTIMATION of COMPENSATION

5.1 Data

Our data consist of 100 full professors of economics in

six large public universities: Michigan State University, the

University of Michigan, the University of Wisconsin-Madison,

the University of Illinois-Urbana, the University of Minnesota

and the University of Maryland. These 100 observations have

been taken at 1979-80 and 1985-86 so that this data set is a

panel data set with N=100 and T=2.

The data set includes log of nominal compensation (LCR),

an administrative experience dummy (AD) , a theorist dummy

(TH), citations (CITS), and experience (EX). Nominal

compensation is transformed from salaries. AD is a dummy

variable equal to one for those *with current or’ prior

administrative service at or above the level of department

chair. TH is a dummy variable equal to one for those who are

theorists or 'theoretical econometricians; it. is a ‘time-

invariant variable. CITS is the average annual number of

citations by others in the previous 5 years. EX is the number

of years since the individual obtained the Ph.D. Thus every

individual has.6:more years of experience in the second.period

(1985-86) than in the first period (1979-1980). The means and

49
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standard deviations of the variables are shown in Table 5.1.

For a further discussion of the data, see Hamermesh (1989).

TABLE 5.1. Means and Standard Deviations

 

 

 

Variables 1979-80 1985-86 Pooled

Mean S.D. Mean S.D. Mean S.D.

LCR 3.763 0.17 4.227 0.19 3.995 0.29

CITS 19.460 6.74 25.460 6.74 22.460 7.36

EX 20.556 24.58 28.422 40.40 24.489 33.59

N=100

 

5.2 Estimation

The compensation equation is described as

(5.2.1) LCRi - [304».11Difll+THi[32+15.‘X1[3_,,+CITSJS,+E(:L1+6:JE

The only difference between the simple and the general panel

data models developed in Chapter 2 and 3 is whether to assume

5 is a vector of ones or not. That is, when we consider that

ai is unobserved, time-invariant and has an effect on

compensation, the general regression model allows the effect

on compensation to be time-variant whereas the simple model
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assumes the effects are equal over time.

The meaning of 5 needs to be discussed in the present

setting before we go on. Suppose $1=1 and £2=1.3. Then, it is

not true that the compensation of individual 1 is 30 percent

higher at T=2 than at T=1 because of the individual effect 02..

This would be true only when ai-l. It is more accurate to say

that the effect of ai on nominal compensation at T=2 is 30%

higher than at T=1. If ai=0.1, compensation is 3% higher 6

years later because of ai, holding all other regressors

constant. We can also say that the 1'th individual has 5

percent higher compensation than the j'th individual when ai

is one unit greater than c):j and the two individuals have the

same values for all other regressors.

Table 5.2 reports the OLS, simple within and simple GLS

estimates. Table 5.3 presents the estimates of the general

within and general GLS models. The first noticeable change

from the simple to the general model is that the general

within estimation could include time-invariant regressors,

such as a constant term and TH, which are excluded from the

simple within estimation.

Table 5.3 shows the value of £2. The within estimate and

the GLS estimate of 52 are 1.3424 and 1.5630, respectively.

According to the within-estimated f, the unobservable

parameter a:i has a 34.24 percent higher effect on compensation

in 1985-86 than in 1979-80. As we discussed, £2=l.3424 does

not mean that compensation increases 34.24% because of 02,. We
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TABLE 5.2. The Simple Estimation

 

 

 

 

 

 

 

Independent Estimation Method

Variables OLS Within GLS

Constant 3.4301 2.9218

(63.44) (44.67)

AD 0.1679 0.1249 0.2080

(4.15) (4.41) (4.07)

TH 0.1199 0.1468

(3.05) (2.42)

EX 0.0188 0.0728 0.0400

(8.71) (51.60) (15.31)

CITS 0.0034 0.0022 0.0040

(6.90) (6.42) (6.66)

Adjusted R2 0.415 0.965 0.725

t-value in parenthesis.

TABLE 5.3. The General Estimation

Independent Estimation Method

Variables Within GLS

Constant 2.3448 2.7495

(11.53) (13.78)

AD 0.0823 0.1057

(2-89) (1.47)

TH 0.0086 0.0819

(0.11) (0.71)

EX 0.0363 0.0174

(4.75) (2.34)

CITS 0.0012 0.0023

(2.48) (2.04)

52 1.3424 1.5627

(3.58) (4.27)

Adjusted R2 0.977 0.967

 

t-value in parenthesis.

t-value of $2 is for £2=1.
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TABLE 5.4. Test-Statistics for Ho: £1=€2=1

 

 

Test-statistics Within GLS

t-statistic 3.58 4.27

LM-statistic 24.86 7.76

LR-statistic 34.32 83.62

 

will have an opportunity to look at the percentage change in

compensation caused by ai later in this section, after we

estimate ai.

Unlike the general estimation, the simple regression

model assumes £2=£1=1. Therefore, we need to test the

hypothesis £2=1 using the test-statistics9 developed in Chapter

4. The results of the hypothesis tests are given in Table 5.4.

The LM and LR test statistics all show that we can reject the

assumption that g is a vector of ones. In other words, the di

have different effects on compensation over time.

We noted in the introductory chapter that our general

model is similar in some ways to a panel data model with

additive individual and time effects, but that it is not the

same model. Now, we may run the same regression as (5.2.1) but

including a time dummy in order to verify the above statement

empirically. Thus consider the model

(5.2.2) LCR, - BO+A0101+TH,B,+EX103+CITS,B,+DZIBS+Ea1+8,
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where D2 is a time—dummy variable, equal to one at T=1 and

zero at T=2. One might expect that 52 should be close to one

when a time-dummy is in the regression, since the time-dummy

absorbs the factor 5. Table 5.5 shows that is not so. The

coefficients of the time-dummy are not much different between

the estimation with and without 5. All three estimates in

Table 5.5 imply that nominal compensation in 1979-80 is about

thirty-four percent lower than in 1985-86 if the rest of the

explanatory variables are equal. Moreover, the value of £2

with the time-dummy included is really no different from its

value without the time-dummy (Table.5.5 vs.Table 5.3). Both of

TABLE 5.5. Estimation with a Time-Dummy

 

 

 

Independent Estimation method

Variables OLS The Simple GLS The General GLS

Constant 3.8997 3.9037 3.6738

(92.55) (74.22) (81.71)

AD 0.1224 0.1228 0.1057

(4.91) (4.69) (4.68)

TH 0.1113 0.1134 0.0819

(4.63) (3.68) (2.42)

EX 0.0079 0.0079 0.0174

(5.46) (4.18) (10.88)

CITS 0.0025 0.0024 0.0023

(8.23) (7.54) (6.41)

D2 -0.3871 -0.3882 -0.3328

(-18.03) (-24.05) (-22.87)

62 1.5627

(4.21)

Adjusted R2 0.777 0.929 0.967

 

t-value in parenthesis.

t-value of 52 is for £2=l.
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the GLS estimates of {2 (in Table 5.3 and Table 5.5) imply

that nominal compensation of individual ‘4 is 56.3 times a:i

percent higher 6 years later because of ai, holding all other

variables constant. This is some empirical evidence that f is

not simply another expression of a time effect. Actually, the

regression without a time-dummy, such as the general random

effects model in Table 5.3, is identical to the regression

with a time-dummy and E(ai)=0, which is the general random

effects (GLS) model in. Table 5.5. Notice that all GLS

estimates in Table 5.3 and 5.5 are equal. Therefore, we do not

have to include time effects when ‘we use this general

estimation method. Refer to Table 5.6 for the hypothesis test

for including a time effect in this general regression model.

TABLE 5.6. Test-Statistics (Estimation includes a time-dummy.)

 

 

Test-statistics GLS

t-statistic 4.21

LM-statistic 10.69

LR-statistic 50.17

 

The t-statistic, LM and LR test-statistics show that we can

reject the hypothesis that “R has a time-invariant effect on

compensation.

In order to calculate how many percent compensation rose
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in 6 years because of the individual effect ai, we need to

estimate a.. The ai can be estimated using the first order

condition from the minimization of SSE.

5’"

E’ ,,

(5.2.3) 61W- (Yi'xiflw)
 

The estimate am is a consistent estimate of as as T - m but

not as N - m with T fixed. (See Appendix 5.1 for the list of

as). Table 5.7 shows the maximum, the average and the minimum

estimated ai in the within regression. amu=1.114 along with

£d=1.3424 in Table 5.3 implies that the faculty member whose

as is the maximum among 100 individuals has 38.1

(0.381=l.114x0.3424) percent higher nominal compensation in

1985-86 than in 1979-80 because of the individual effect a“,

0n the other hand, the individual whose as is the minimum has

7.2 (0.072=0.210x0.3424) percent higher nominal compensation

in 1985-86 than in 1979-80 because of the individual effect

a”. We can also say that on average the individual effect on

TABLE 5.7. The Within Estimate of ai

 

Maximum Minimum Average

 

& 1.114 0.210 0.673

Faculty Number 26 39
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nominal compensation 6 years later is 32.0 (0.230 =

0.673x0.3424) percent higher.

It is worth discussing what a can represent in the

compensation equation. The a. should not only be unobserved

but also have significant effects on the change in nominal

compensation. These effects should be different over time to

qualify as a legitimate candidate for a. I think that work

habits are a good candidate for 0s. The fact that Eu=l.34 and

Em3=1.56 implies that the same work habits in 1985-86 have

1.34 and 1.56 times more impact on nominal compensation of

faculty members than in 1979-80, according to the within and

the GLS estimates, respectively. This is reasonable in the

sense that work. habits do not have a large impact on

compensation at the early stage of the job, but the impact

will grow gradually as time passes. Suppose an individual just

becomes a faculty member. At this early stage, TH, EX, AD, and

CITS determine the compensation but work habits have little

effect even if they are very good. Good work.habits will be an

increasingly important factor in determining compensation as

time goes on since good working attitudes will be appreciated

by colleagues, supervisors and so on (even though we cannot

measure them). The work habits of each individual affect

compensation greatly and are stable over time, as well as

unobserved in the data. Therefore, work habits satisfy all the

requirements to be considered as what as represents.



CHAPTER SIX

FRONTIER PRODUCTION FUNCTIONS

6.1 Review

A standard production function represents the maximum

possible amount of output obtained from a given amount of

inputs. However, the output data we observe are not

necessarily equal to the maximum possible output. The

difference between maximal output and observed output is a

measure of technical inefficiency. The desire to measure

technical inefficiency motivates the use of so-called

"frontier production functions" to model maximal possible

output, given inputs.

A stochastic frontier model assumes output to be bounded

by a stochastic frontier, whereas a deterministic frontier

model regards the production frontier as deterministic. That

is to say, in the stochastic frontier model the production

frontier can vary randomly over time or across firms. Aigner,

Lovell and Schmidt (1977) and Meeusen and ven den Broeck

(1977) introduce a stochastic frontier model as follows:

(6.1.1) Y1 " BO+XIB+61 i-lpoooNo
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Here Y represents output and X represents inputs; for example,

in the Cobb-Douglas case, Y and x are measured in logarithms.

The stochastic frontier model decomposes the error e:i as €i=Vi-

ui so that (6.1.1) can be written as

(6.1.2) Y1 - BO+XIB+V1-U1

The error term (vi-ui) has two parts. The component vi is

statistical noise, and represent the variation in output due

to luck, weather, and other factors outside the control of the

firm. It is assumed to be i.i.d. as N(0,ov2). The second

component ui represents technical inefficiency, and so ui.>.0.

It is assumed to be i.i.d. with a specific (one-sided)

density. The original papers considered half-normal and}

exponential distributions for u. Other choices include

truncated normal (Stevenson (1980)) and gamma (Green(1990)).

In any case, the model is called a stochastic frontier because

the upper bound (frontier) for Y: is (30+xifi+vi), which is

stochastic.

The model may be estimated by maximum likelihood or by a

corrected least squares procedure. There is, however, a

problem in estimating the technical inefficiency ui for each

observation. After the frontier function is estimated, the

residuals are easily obtained, but they are estimates of ei=vi-

ui, not of ui. (The average level of technical inefficiency can

be estimated by the average of the 6,.) Jondrow, Lovell,
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Materov and Schmidt (1982) use the fact that o5i can be

estimated and has information on ui. They suggest estimating

ui by E(ui|vi-ui), and they give an explicit formula for the

'w. However, this estimate contains noise (duehalf-normal case

to vs) even asymptotically.

The estimate of technical inefficiency depends upon the

distributional assumptions made, such as normality for v and

half-normal, exponential, gamma, etc. for u. Schmidt (1986)

says,

"In my opinion the only serious intrinsic problem with

stochastic frontiers is that the separation of noise and

inefficiency ultimately hinges on strong (and arbitrary)

distributional assumptions."

Schmidt and Sickles (1984) present a stochastic production

frontier model with panel data which does not require strong

distributional assumptions about technical inefficiency. Their

model is the following;

(6.1.3) Y1: -' po+Xicp+V1c-U 1-1,...pN; t-ll...,T.
.i

The term ui represents technical inefficiency and is assumed

to be constant over time. By defining ai=Bo-ui, (6.1.3) becomes

(6.1.4) Y1; - Xicp+a 1+VIC
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a panel data model with an individual effect. Schmidt and

Sickles define

(6.1.5) 0: -ma-11x 041‘

(6.1.6) ui - a-a1

so that we may decompose the effects as into overall intercept

or and technical inefficiency ui.

This model can be estimated without any assumptions about

ui, other than uizo, by treating the effects as fixed. In this

case the usual fixed effects (within) estimator applies.

Alternatively, if we assume the ui to be i.i.d., but do not

make a specific distributional assumption, we have the usual-

random effects model and a GLS estimator applies. Finally, if

we are willing to make a specific distributional assumption,

the model may be estimated by MLE, as suggested by Pitt and

Lee (1981). In this case the technical inefficiency ui is

estimated by E (ui |vi1-ui , . . . Nit-u.) .

6.2 Presentation of The Model

The Schmidt and Sickles model rel-axes strong

distributional assumptions about technical efficiency, but at

the cost of imposing another strong assumption, that technical
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efficiency is constant over time. Schmidt (1986) says,

"An important line of future research, in my opinion, is

to allow inefficiency to change over time, but in such

a way that it can still be separated from statistical

noise without making very strong distributional

assumptions.

I believe strongly in the usefulness of panel data in

estimating frontiers and measuring inefficiency."

We need to weaken the assumption of time-invariant

inefficiency but should not lose:the advantages of Schmidt and

Sickles model.

Kumbhakar has generalized the Schmidt and Sickles model

by assuming that the technical inefficiency'for'firmli at time

t, u“, can be written as

uit = g(t,0)ai

where ai is an individual effect and g(t,0) is a specified

function that depends on.t1and some parameters 0. He considers

the specific function

g(t,o) = (1 + exp(bt+ct2))'1

In this model as is fixed over time, but its effect on output

changes over time as g(t,9) changes with t. The empirical

problem is choosing the function g, appropriately.

Our panel data model of Chapter 2 and 3 can be regarded

as. a generalization of Kumbhakar's model, in 'which the

parametric function g(t,0) is replaced a set of dummy

variables representing' time. As such. we. do not require

assumptions about g(t,0). Specifically, our model applied to

the frontier production function setting can be written as
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(6-2'1) Y1: ' B0+X1cfl+vifu1c

When we define u"=-0gm, (6.2.1) becomes

(6 . 2 .2) Y“ - BO+XRB+0 t(z 1+inc

or

(6.2.3) Y1 - BO+XIB+EG1+V1

This is the general panel data model with individual effects

whose coefficients change over time. Similarly to Schmidt and

Sickles, we define

(6.2.4) 0:c - max [80+0ca1]

1

(6.2.5) Ill-t - (It-(Bojfitai)

Notice that (6.2.4) and (6.2.5) are equal to (6.1.5) and

(6.1.6) when every at is equal to one. If all elements of e

have the same sign the definition in (6.2.4) and (6.2.5) are

equivalent to

(6.2.6) cz-m?x«a1
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(6.2.7) 01., - e,(a-a,)

Our regression equations will also include some variables

representing influences on output that are not inputs under

control of the firm. (Examples are dummy variables

representing wet versus dry season and village location.)

These are properly regarded as part of the intercept and

should be included in the above calculations so that they do

not appear to be inefficiency. Letting Din represent the

effects of these variables, (6.2.4) and (6.2.5) become

(6.2.8) 0:c - msx [(30+Dicy+0ca1]

(6.2.9) ”1: - at-(Bo+Dity+0ta1)

The estimates in (6.2.5), (6.2.7) or (6.2.9) are

consistent as N and T - 90 since the estimate of ai is

consistent as T - co and the most efficient firm in the sample

will indeed be perfectly efficient as N - 90.

6.3 Data

We will reanalyze a data set previously analyzed by

- Erwidodo (1990). The data consist of information on 171 rice

farms in Indonesia, for six growing seasons. The data set was
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collected by the Agro Economic Survey, as part of the Rural

Dynamic Study in the rice production area of the Cimanuk River

Basin, West Java, and obtained from the Center for Agro

Economic Research, Ministry of Agriculture, Indonesia. The

data are for 171 rice farming families and extend over six

time periods. Each time period is a growing season; there are

two growing seasons per year. Three of the six time periods

are dry seasons and the other three are wet seasons. Data are

collected from six different villages that contain 19, 24, 37,

33, 22 and 36 farm families, respectively.

The data set includes information on seed, urea, TSP

(Triple Super Phosphate), labor, and land. It also includes

some dummy variables. DP is a dummy variables equal to one if

pesticides are used, and zero otherwise. DVl equalsone if HYV’

(High Yield.Variety) of rice are planted, while DV2 equals one

if mixed varieties are planted; the omitted category

represents traditional varieties. DSS equals one in the wet

season and zero in the dry season. DR1,...,DR5 are dummy

variables that represent the six different villages, and are

intended to control for differences in soil quality across

1. For a further discussion of the data, see Erwidodovillages1

_ c

K.

(1990).
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6.4 Estimation

In this section, we estimate a production function for

Indonesian rice farms. The Cobb-Douglas production function to

be estimated is specified as follows:

5

(6 .4 .1) unfit-00+}: B , lnXut+BsDP1c+B7DV11c+BBDV21c+[39DSSC

ha

+910DR11+511DR21+$12DR31+913DR41+914DR51+6 t“ 1+V1c

where

Y: total production of rough rice in kilograms

X1: the amount of seed (Kg)

X2: the amount of urea (Kg)

X3: the amount of TSP (Kg)

X4: the amount of labor (hours)

X5: the area planted with rice (Ha)

and all dummies are defined in Section 6.3.

Our main concern is a comparison of the results obtained

from the simple and general panel data models. Estimation

results are given in‘Table 6.1 and 6.2. Table 6.1 displays the

estimates of the simple panel data model by OLS, within and

GLS. (The second column of‘ Table 6.1 shows the ‘within

estimates and it cannot include the village dummies (DR)



67

 

 

 

TABLE 6.1. Estimation of the Simple Panel Data Model

Independent Estimation Methods

Variables OLS Within GLS

Constant 5.0811 5.0636

(26.73) (26.32)

Seed 0.1358 0.1208 0.1327

(5.06) (4.46) (4.93)

Urea 0.1200 0.0918 0.1132

(6.91) (4.79) (6.38)

TSP 0.0718 0.0892 0.0761

(6.31) (7.71) (6.66)

Labor 0.2167 0.2431 0.2230

(7.60) (8.25) (7.75)

Land 0.4819 0.4521 0.4770

(15.90) (14.03) (15.57)

DP 0.0077 0.0338 0.0141

(0.27) (1.15) (0.49)

DV1 0.1755 0.1788 0.1772

(4.60) (4.75) (4.66)

DV2 0.1356 0.1754 0.1446

(2.60) (3.40) (2.78)

DSS 0.0489 0.0533 0.0492

(2.26) (2.73) (2.35)

DRl -0.0500 -0.0511

(-l.16) (-1.03)

DR2 -0.0393 -0.0442

(-0.73) (-0.75)

DR3 -0.0623 -0.0724

(-1.09) (-1.17)

DR4 0.0248 0.0117

(0.47) (0.20)

DRS 0.0818 0.0750

(1.48) (1.25)

Adjusted R3 0.882 0.989 0.890

 

t-value in parenthesis.
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TABLE 6.2. Estimation of the General Panel Data Model

 

 

 

Independent Estimation Methods

Variables Within GLS

Constant 4.2605 4.7453

(10.99) (16.88)

Seed 0.1241 0.1286

(3.86) (3.89)

Urea 0.1069 0.1045

(5.07) (4.63)

TSP 0.0303 0.0421

(2.27) (3.16)

Labor 0.2303 0.2188

(7.92) (6.98)

Land 0.4579 0.4739

(10.63) (10.74)

DP 0.0080 0.0272

(0.29) (0.97)

DV1 0.0805 0.1040

(2.28) (2.95)

DV2 0.1226 0.1370

(2.43) (2.89)

DSS 0.1580 0.1684

(3.21) (2.67)

DRl 0.0487 0.0124

(0.35) (0.15)

DR2 0.6292 0.1621

(2.40) (1.79)

DR3 0.4853 0.0904

(2.13) (0.96)

DR4 0.2316 0.0625

(1.27) (0.60)

DR5 0.6342 0.2581

(2.98) (2.78)

(2 1.1713 1.4410

(1.48) (2.06)

(3 0.4912 0.3229

(-3.05) (-4.71)

g, 0.6800 0.4157

(-2.47) (-3.38)

55 1.2203 1.1993

_ (2.51) (1.75)

66 1.3854 1.6848

(2.48) (2.56)

Adjusted R2 0.935 0.928

 

t-value in parenthesis.

t-values of g are for £t=1.
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TABLE 6.3. Test-Statistics

 

 

Test-statistics Within GLS

F-statistic 2.29 14.69

LM-statistic 69.53 9.78

LR-statistic 238.17 288.73

 

because they are time-invariant.) Table 6.2 reports the

estimates of the general panel data model by within and GLS.

The within estimates in Table 6.2 include the coefficients of

the village dummies, and they seem to be significant. In this

application, the villages have significantly different soil

conditions from each other and village dummies should be

included in the regression. One of the advantages of the

general model is the ability to include time-invariant

regressors such as constant and village dummies, in performing

within estimation.

The primary focus must be on the value of 5 since there

is no real difference between the simple and general panel

data models if 6 is close to a vector of ones. In addition, 5

allows technical efficiency to change over time. Both E¢=(1

1.171 0.491 0.680 1.220 1.385)' and Ema-(1 1.441 0.323 0.416

1.199 1.685)' seem to be far different from a vector of ones.

Table 6.3 provides us 'with ‘the test-statistics for ‘the

hypothesis that technical efficiency is constant over time.
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The asymptotic distribution under the null hypothesis is xf}

for which the 5% critical value is 11.07. For all of the

statisticsntexcept one we can reject the null hypothesis that

technical inefficiency is time invariant.

There is no obvious temporal pattern to our estimates of

6- In particular there is no clear trend, nor is there a

seasonal pattern.

Despite the fact that an and 5015 are significantly

different from a vector of ones, the estimated regression

coefficients for the simple model (Table 6.1) and the general

model (Table 6.2) are not very different. The biggest changes

are in the coefficient of TSP (.089 to .030), DV1 (.179

to.081) and DSS (.053 to .158).

Table 6.4 and 6.5 show some summary'measures of technical

efficiency of individual rice farms. (See Appendix 6.1 for a

complete list of technical efficiency of each farm.) The

results in Table 6.4 are calculated according to (6.1.5) and

(6.1.6) ‘while we construct Table 6.5 according to (6.2.8) and

(6.2.9). The. dummy ‘variables ‘which are included in, the

intercept are the seasonal dummy (DSS) and.the village:dummies

(DR). The pesticides use dummy (DP) and the variety dummy (DV)

are in the production function of rice since DP is considered

as an input and DV represent different outputs.

The average level of technical efficiency in Table 6.4

from the Schmidt and Sickles model is fairly close to the

overall average efficiency in Table 6.5 from the new model.



71

That is to say, the simple within estimator tells us that

these six Indonesian rice farm villages have an average level

technical efficiency of 56.69%. The general within estimator

also implies that average technical efficiency is 56.79%.

Erwidodo (1990) estimated the production function of the

rice farms from the simple panel data model and used the

Battese and Coelli (1988) method to measure technical

inefficiency by assuing a half-normal distribution of

technical inefficiency (ui)‘3. His measure of the average level

of technical efficiency is approximately 94.20%. The high

efficiency measures are expected from the half-normal density

assumption since it implies that the mode is at.ts=0 which

means there are many perfectly efficient farms. On the other

hand, the average efficiency measure of 56.79% from the

general panel data model seems to be too low. However, this

measure seems to be more legitimate than the measure of

Erwidodo when we consider that these six Indonesian rice farm

villages are relatively less developed (for examples, poor

drainage, water control, transportation, etc.) and they

harvest twice a year.

The advantage of the general model is that it gives us

different efficiency levels in. each, season. The. average

technical efficiency of the first season is 56.52% and it is

more or less the same in the second season. The third season

brings a large improvement of efficiency to 67.27%, and

efficiency declines slightly to 62.87% inuthe:next season. The
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TABLE 6.4. Technical Efficiency (from the simple estimation)

 

The Simple Within Estimation

 

 

Farm Number Efficiency(%)

Maximum 164 100.0

Minimum 45 36.55

Median 15 55.40

Average (Mean) 56.69

 

TABLE 6.5. Technical Efficiency (from the general estimation)

 

Efficiency(%) from The General Within

 

 

Farm Number T=1 T=2 T=3 T=4 T=5 T=6

Maximum 164 100.0 100.0 100.0 100.0 100.0 94.39

Median 80 55.40 50.11 74.63 66.82 48.70 41.73

Minimum 45 33.63 27.93 58.40 47.59 26.48 20.90

Average 56.52 53.62 67.27 62.87 52.85 47.59

Overall Average = 56.79

 

Maximum, Minimum and Median Farms are defined in the first

season .

last two seasons have lower technical efficiency levels of

52.85% and 47.59%, respectively.

We can also calculate the technical efficiency level of

each rice farm family over the six different time periods in
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this sample. Table 6.5 shows the efficiency levels of

selected families. Family number 164 is the most efficient in

all seasons except the last season. (It is the third most

efficient for T=6.) The simple within estimator says that

family number 164 is the most efficient for all six seasons,

because it assumes that the efficiency level does not change

over time. The most inefficient rice farm family for T=1 is

family number 45, and it is 33.63% efficient according to

Table 6.5. This family becomes the 133rd most efficient family

for T=3, with an efficiency level of 58.40%, but it goes back

to being the least efficient rice farm family for T=5 and.T=6.

The results of the Schmidt and Sickles model say that the

technical efficiency level of family number 45 is 36.55% and

it is the lowest among the 171 families.

Figure 6.1 shows the trend of technical efficiency of the

median family at T=1 (family number 80). Its efficiency level

is 55.40% for T=1. Its efficiency level then falls at T=2,

rises rapidly at T=3, and then declines continuously. On the

other hand, the efficiency level of the same family is 55.18%

over all six time periods according to the simple within

estimator.

Table 6.6 records the percentage of rice farm families

(among the 171 families) which fall in each decile of

technical efficiency. The implication of Table 6.6 is not very

different from that of Table 6.4 and 6.5. As expected, rice

farms are relatively more efficient at T=3 and 4 since the
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within-estimated e shows that $3 and 6, are smaller than the

other elements of g. The value (51.3854 is the largest

element of g and so the rice farms are on average the least

 

 
 

Technical 75%

Efficiency

of the 80th

family

70

65

60

55 3‘ i_,simple‘

within

50

45

general

40 within

1 2 3 4 5 6 T

(FIGURE 6.1>

efficient at T=6. It is not true that every family has the

highest efficiency level at T=3 and the lowest at T=6 just
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because the maximum, the median or the average efficiency in

Table 6.5 has that kind of trend. Some other farms have

different trends for technical efficiency. Figure 6.2 shows

three different types of efficiency trends. Family number 5

has its lowest efficiency level (67.78%) at T=3 and its

highest efficiency (100%) at T=6. Family number 25 has a

relatively constant efficiency level over time: 58.60%,

59.11%, 57.09%, 57.65%, 59.26%, and 56.41%. Finally, the trend

of the technical efficiency level of family number 160 is

opposite to that of family number 5.

TABLE 6.6. Efficiency Levels(%)

 

 

 

Efficiency The Simple The General Within

Intervals Within

% T=1 T=2 T=3 T=4 T=5 T=6

100-90 1.75 1.75 2.34 2.92 1.17 2.34 2.34

89-80 1.17 2.34 1.17 5.85 5.85 5.85 0.00

79-70 6.43 6.43 6.43 29.23 8.77 5.85 4.09

69-60 20.47 16.96 13.45 33.33 42.11 13.45 10.53

59-50 43.86 46.78 33.33 27.49 38.01 29.24 17.54

49-40 23.98 22.81 33.92 1.17 4.09 37.43 34.50

39-30 2.34 2.92 9.36 0.00 0.00 10.53 25.15

29-20 0.00 0.00 0.58 0.00 0.00 0.58 5.85
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6.5 Summary

The usual motivation for the use of panel data in the

measurement of technical efficiency is the desire to avoid

strong distributional assumptions for technical inefficiency.

The simple panel data model was first used for this purpose by

Schmidt and Sickles (1984), and can be viewed as replacing

distributional assumptions by the assumption that technical

inefficiency is time invariant. More recent work by Cornwell,

Schmidt and Sickles (1990) and Kumbhakar (1990) has relaxed

the assumption that technical inefficiency is time invariant,

by allowing it to vary in specific ways. These papers impose

a certain amount of smoothness in the pattern of technical

inefficiency over time.

Our general panel data model is more flexible than

previous models. It assumes only that the temporal pattern of

technical inefficiency is the same over time for all firms.

That is, the pattern of change must be the same for every

firm, though the direction can be reversed for some firms and

the extent of the intertemporal variation differs across

firms. Our model nests the model of Kumbhakar, and our three-

component model nests the model of Cornwell, Schmidt and

Sickles. An interesting topic for future research is to use

our model to test the restrictions imposed by their models on

the smoothness of the intertemporal change in efficiency

levels. Our empirical results for Indonesian rice farms may
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show more change over time in efficiency levels than is

plausible, so that some smoothing may be desirable. If so, our

general results are at the very least useful as a reference

against which to test the models that impose such smoothness.



CHAPTER SEVEN

CONCLUSIONS

The usual motivation for the use of panel data in labor

economics and in related areas is the desire to avoid

potential bias caused by the omission of unmeasured individual

characteristics from the regression equation. For example, in

a wage equation, individual "ability" (or "ambition") is

usually unobservable, and may have an effect on wage. If so,

the omission of ability from the regression will cause a bias

in the estimation of the coefficients of those variables that

are correlated with ability. The usual solution to this

problem is to assume that ability (or more properly the effect

of ability on wage) is time invariant and can therefore be

captured by'a time-invariant individual-specific effect. This

leads to the so-called within estimator. However, the

assumption that the individual effects are time-invariant is

very strong. In this thesis we have considered a model that

weakens this assumption. In particular, we assume an

unobservable time-invariant individual variable (such as

ability), but we do not assume that its effect on the

dependent variable is time invariant. Rather, we need only to

assume that the effect of this variable on the dependent

variable has the same temporal pattern for all individuals.

79
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Thus, for example, the effect of ability on wage may differ

across the business cycle, or may display a trend, so long as

it does so for all individuals. We estimate this temporal

pattern along with the other parameters of the model.

We develop fixed-effects and random-effects treatments of

our model. Fixed-effects treatments are relevant when the

motivation for the use of panel data is bias reduction, as

diScussed above, while random-effects treatments are relevant

when the motivation is efficiency of estimation. Our model is

nonlinear so estimation is more complicated than in the usual

simple model. In both the fixed and random effects cases we

propose a method of estimation, and we prove the consistency

and asymptotic normality of the estimates. This is non-trivial

since standard likelihood theory does not apply, due to the-

so-called incidental parameters problem (the number of

unobservable effects increases with sample size). We also

propose asymptotically valid tests of the restrictions that

reduce our model to the usual panel data model.

After the theoretical consideration of our model, we

consider two applications. The first application is a model of

the compensation of faculty members. Hamermesh (1990)

estimated this model using the simple within estimator, while

we use estimators based on our more general panel data model.

We find that the individual effect does not have a constant

effect on compensation: rather, its effect is larger in the

second time period (1985-1986) than in the first (1979-1980).



81

This seems plausible since the effect of ability or work

habits on compensation may be larger when one has been in the

job longer. The choice of model makes a modest difference to

the results for ‘the variables of ‘main interest in the

regression.

Our second application is to the frontier production

function (efficiency measurement) problem. We analyze data on

Indonesian rice farms previously analyzed by Erwidodo (1990)

using the simple panel data model. Our model allows a much

richer pattern of technical inefficiency over time than the

simple model, which assumes constant technical inefficiency,

and it therefore yields substantially different results than

Erwidodo found.

A promising line of future research is to consider models

that are intermediate between the simple model, in which

individual effects have a time-invariant effect on the

dependent variable, and our model, in which the temporal

pattern of these effects is completely unrestricted. Kumbhakar

(1990) has proposed one such model in the frontier production

function setting, and our model can be used to test the

specification of his model or of other similar models. It is

obviously an empirical question how much flexibility of

specification the data will typically support, and we hope to

address this question in further applications.
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FOOTNOTES

10.

11.

12.

A distributional assumption for e. is necessary since the

fourth moment of eit appears in ghe calculation of the

covariance matrix of the estimator.

See Amemiya (1985), p. 105-114.

MG(z8eT) = [I - (I8e( e')/T)](Z®e)

= (zge) - @(e;=e 'e)/T]

= (Z®e::) - (Z% 0.

The simple between estimator has to exclude individual-

invariant explanatory variables for the same reason that

the simple within estimation cannot include time-

invariant regressors. However, those regressors can be

included in the general between estimator.

See Hsiao (1985), p. 131.

(1.802e ')/T)1(e..800

(62:85) - "819...(ee 'e)/TJ" 7&0 .

See Gallant (1985), p. 217-220.

MG ( eN®£ )

Gallant originally defines

2 lNéé"{-76th

0'1

and eit as least squares residuals obtained from each

univariate model when he discuss multivariate nonlinear

least squares. See Gallant (1985), p. 149-150.

The number of degrees of freedom is one, so that x2=6. 63

with 99% of confidence.

= ule.)

? Eo.[f<e x/a)/<1-F(eVan - (eVOH
=0u +0 a..=au2va22/a , and A=au/a .

E (“i IVi'“i)

2
where a v2,

See Erwidodo (1990), p. 25.

The number of degrees of freedom is five so that x52=15.09

and 11.07 with 99% and 95% of confidence, respectively.
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FOOTNOTES (Continued)

13. When we define a half-normal density of ui,

[1-F(a‘- [Hi/0.)]

U1 [l-F'(-n11/O‘)] exp( mp0 / )

 

_ 2 2 2 2 4
where a - an ov (a" + Tau)

— -(ou2ei) (of + af/T)",S

I

(
D IIi ai - au(2/w)°5
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APPENDIX 2.1

The Proof of (2.2.9)

FACT: Eu = (1 PH')' is an eigenvector of Eeiei' where

NOTE: For a matrix A, let A be an eigenvalue of A and let

x be the corresponding eigenvector. Then (A-AI)x = 0.

Proof:

Using the NOTE, if it is true that EU satisfies

.N

(A2.1.1) [Xeiefi- 735.6,";16162 5,15,,-

1-1

then it is an eigenvector of Eefig'. (A2.1.1) is identical to

 

 

. N 2 N I
; en + 91161.6, N 1

-1-1
(A2.1.2) N -+59; 91915.: 8 l - 0

9,.6 E 3' '1 N

_1-1 

The first row of (A2.1.2) is

.N N'

(152L.1..3) gE;‘9§1 4* IE;¢911€h_m -15sz—Ewgz:‘93eii Erw-

- 1- w
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APPENDIX 2.1. (Continued)

and the next (T-l) rows are

N N a N

(A2.1.4) e1 91. + eLeLB - ——l—E 2391915 - 0
g 1 I; W zlwz" W -1 w

(A2.1.4) is the same as the first order condition (2.2.7) and

therefore (A2.1.4) holds.

To show that (A2.1.3) holds, premultiply (2.2.7) by 90"

(A2.1.5) Elem/we )2 + N efiawe - Pig—"I? N 68251- 0
1-1 1. g - 11 Elna” "g 1 W

or

NN N

(A2.1.6) G’wfiwgef, + (1—0’,,0,,) 2:95.589” + £20915...” - 0

1

(A2.1.5) or (A2.1.6) is identical to (A2.1.3). We have shown

that (2.2.7) implies (A2.1.3) and (A2.1.4), which in turn

imply (A2.1.1). Therefore Eu is an eigenvector of Eefig'.

Q.E.D.
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APPENDIX 2 . 2 .

Derivation of plim (I/N) CSSE

FACT: plim (l/N) CSSE(3.€) = (fio-fi)'Q,(fio-fi) "' Qaeo'Meéo

+ 2(40-0) '0...“ + ('I'-1)a2

PROOF Let us rewrite CSSE as
 

.N

CSSE - 1: (Yi-Xifi)’M¢(Y1-X19)
-1

The true relationship is

(A2.2.1) Y1 - X180 + an01 + 61

By substituting (A2.2.1) into CSSE,

N'

CSSE " ; [X1 (Bo-B) +£0601+€1]’Mg [X1(Bo-B) +€0a01+311

-1

N
N N

- 2 (Bo-B)’X§M;X1(Bo-B) + )3 “3153445. + 236986:
1-1

'1 -1

N N N

+ 2; (Bo-B)’X.’1Mgzoaoi "' 2; (Bo-B)’X1M¢€1 + 2; “01504431
-1 -1 -1
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APPENDIX 2.2. (Continued)

Using the assumptions (Al) and (A2),

N

(A2.2.2) - lim
1 ..Xl . . .

— MX .18 film te.

(A2.2.3) Qaso'Mefo is finite since fo'Meeo = 0 if 5 = 50 and

éo'M,£o = 60's,, if 5'50 = 0.

N N

- 1 I - 1 I
(A2.2.4) plim—2:81Mei-plim— €18 -plim— 6,1(—E,)€1

N,.1L ‘ 1:21.755? E’
N1-1 E

1

- To2 - -— lim — tr(e,- ’e )E’E p N; if

- To2 - azfi’i - (T—1)a2

(A2.2.5) lim TV 2': (Bo -B)’X1M,£oao,

N N

" Q7162; (30-5)}{150‘01 ' w%; (Bo-B)X.lipgeoa01

It is true that

N N

(A2.2.6) [um—22145040112 s [figfififi’xil [%,; «31]

- -1
N4.
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APPENDIX 2.2. (Continued)

since

1 N 2 1 N 1'

[fig Xitouul k ' [“132 (“01 ZX1Ck£0t)]2

t-l

1 N 2 1 N T

5 W2; «01] (76;; (Exmaom

t-l

1 N 2 1 N I /

- [752; an] [-1722 Xifioioxil k .

N

Note that pxépzfioaoi -o if E’Eo-o

-1

and if §=§0,

N N

o 1 0 1

[hm-172.1: X§P£80a0112 - Him-1712.1: Xiioaoi] 2 .

This is the same as (A2.2.6). Then, (A2.2.5) is finite and

N

. 1
(A2.2.7) plm .172; ((30.9)11Ki1u‘e1 - o

N

(A2.2.8) plim 71:72 aOIEQM‘ei - o
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APPENDIX 2.2. (Continued)

Therefore,

plim (l/N) assume) = (Ho-m'oxmo-m + Qaéo'Meéo

+ 2(30-3) the + <T-1)a’-

is finite. Q.E.D.
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APPENDIX 2.3

The Derivation of 3(Ao) and B(Ao)

1. The Derivation of A(Ao)

BZCSSE
A2.3.1——-2 X’MX

( ) apapl 12: 1 E 1

N N

(A2.3.2) yfig—gg- - £35 £616; + .5? I:ejipgeirm
-1 -1

(A2.3.3) éyCSSE

N

afiw/ -- (5/5)2£X25E/616/
+ _[12X1€ei

+; X1.E/ei]
  

Taking expected values of (A2.3.2) and (A2.3.3) at the true

values of B and o,

  (A2.3 .4) im 623953); ~ [(606’00+azI,_1)-(EOEOQ+02)IT.1]

 

N 6660' o 1,20

6’
- 20‘(I_1-e?

0)

00

1 620553
(A2.3.5) 76m awe, )10 20x. 
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APPENDIX 2.3. (Continued)

where

 

Therefore,

- l

AUso) 1N1? E—E(W ‘0

Qx 9x.

- 2 609’
Q“ (IT.1-—l—o)

0 0

2.The Derivation of B(Ao)

 (11.2.3.6) E( agiszx agi‘fgm - 4 EX’(IN®M,°) [e+(I,,®Eo)ao]

- [e+ (1,595,) a0] ’ (1,324,) X

N

- 4X’(IN®M:.) (calmer; afiiuflmoeén (IN®M‘°)X

-1
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APPENDIX 2.3. (Continued)

- 4 azx’ (14851“) X

 

60533 603% 4 ” ” /
(A2.3.7) E'( x ) - -—E ;:X’M e [Xe 65

as w, 1° 5,060 -1 1 £0 1 -1 1. i 0

N N

-1

N

" an; (3,150)2 " Egan; “0181. + £1 acielieoeoll

(A2.3.8) E( 
acsss acssz' 4 ” I

x ) - ——E [ e e E
66 w, 10 (5,050)2 g 1. 1 0

 

 

e N N N N

_ £12 2 (6,150)2 + £2.50; “0161. ‘ Educ/15090] [231.3/1'50

O o '
- -

_ g

9 N I, N N

- El; 2 (8,150); + £050; “0131. ‘ ; “0131150901,

0 o ' - -

NOTE Meir") = 302 and E(eit3) = 0 since eit is distributed as

No.02).

Using the NOTE, we get

N N

(A2.3.9) E[;€1,€’150;3’1.3’1£o] - (N2+N)000304 + Na‘fiQEoIm

-1 -1
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APPENDIX 2.3. (Continued)

(A2.3.10) ——El; (e’ifio )212606’ - N(N+2)o‘0°8’

(£0£0) 1

N I I

(A2.3.11) WE; (3,160)”£81.815060 " 2N(N+2)026090

N N

(A2.3.12) E 2 «MeZ «0161’, - 15:; «3161.94, - 02 2 «3,1,4

1-1 -1 1-1

NN

(2123.13) E (g: «Meg-50v 6er - 0253:, g: «3,0001,

-1 -1

N

(A2.3.14) E;a01e1 Zeus/156’ - 0223101316063

1-1

Using the information from (A2.3.9) - (A2.3.14),

   

a SSE acs 000’
(A2.3.15) E( 060 x SE)10'4°2(No:+za:1)(IT'-:Z§:)

Therefore,

1 60553 60535:
3(10) limE N(——a). )‘°X(—ax' ’10
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APPENDIX 2.3. (Continued)

0): 0X:

2

' 4O 0'2( 6°63
 

 

+0“) (I -1- )

m o
\

m a
n

O
\

m0 0
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APPENDIX 2 . 4 .

Information Matrix from Standard Likelihood Theory

The likelihood function can be concentrated as

NT "
(A2.4.1) 1n L(B,6,a)-c - 7 1n z:(YrXifl-Ea1)’(Y1-X1B'€a1)

1-1

The asymptotic covariance matrix of fl, 0 and a calculated in

the usual way from (A2.4.l) is

    

( ' N ]

XIX z: X11101 X’(IN®€)

- 2 - .l ‘P1(A2.4.2) ACOV(B,6,a) o lug-n N . a’aIT_1 Goat:

\
E’OEOIN ,1 I

Strictly speaking, this limit is not. defined since the

dimension of the matrix grows with N. However, the upper-left

submatrix of ACov(fi,0,a) is well defined, and would normally

be taken to be the asympotic covariance matrix of B and 6:

 

. N N .

. 1 1 I

0 11m—( Xa- x’eea)
x N“. N g i. 01 “£02 1 o 0 01

ee’

Q'(IT.1-—To;.')

0 o

(A2.4.3) AC’ov(B,6)-a2
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APPENDIX 2.4. (Continued)

However, ACov(B,0) from (A2.4.3) is different from the

asymptotic covariance [A(fi,0)]"B(fi,45?)[1&(B,o)]'1 in section 2.
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APPENDIX 2.5

The Asymptotic covariance Matrix in The G-component Model

A - lim if.“ GZCSSE)

N—-- N 6161’

  

 

   

Qxx Qm1 . . . one

Q¢1¢1M1 o . . o

- 2

0

QaflaMGJ

and

B _ lim _1_ E, BCSSEx 60535:)

N-o. N a}. all

Qxx QX¢1 ' . Qxaa T

02

(‘7—+Q¢1¢1)M1 Q¢1a,M12+°2P12 ' Q¢1¢0M16+02P16

1 1

- 402

Quma OMG-16+02PG-lc

c,2

(6’05 +Q¢G‘O)MG

c

where

. 1 ,

0,0, - 1N3? fix [IN®(IT-P£1-. . .-P,a) 1X
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APPENDIX 2.5. (Continued)

 

N

0,9,” lNim — ; agiafi

 

9 5,9 g

I

Egeg {fat

I

P age,

9’ - (6’95 ,) (£245 t)

Then, the asymptotic distribution of Bu and 9w:

’Bnr' B.

91w ' 61

m ' ~ mo, .2143 114).
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APPENDIX 3 . 1

GL8 Asymptotic Covariance Matrix when u=o

If p=0, the objective function (3.2.7) is the same as

(A3.l.l) CSSE - (Y-XB)’[Im.-(1-q2) (IN®P£)] (Y-XB).

By minimizing CSSE with respect to fl and 0, the solutions for

3 and 9 are obtained as

(A3.l.2) BGLS- [X’um- (1—q2) (1,39,) )Xl‘lx’Um-(l-qz) (1,319,) ) y

(A3.l.3) 9 is the eigenvector corresponding to the largest
GLS

eigenvalue of

N

2 (Yi-Xiflcm) (Y1-X136L5) I.

i-l

The covariance matrix of Bus and Ems is

m(BGLS - Bo) -. N(ol 02043)
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APPENDIX 3.1. (Continued)

a2 9093

(l-q’) 0?. M

)4) 

[1?me - 60) ~ MO,
I

00

where

. 1
Qxx - 1N3? wx’HIfiMEO) +q2(I,,®P£°)]X.



0.472

0.789

0.624

0.900

0.623

0.470

0.734

0.514

0.959

0.673

0.683

0.211

0.947

0.648

0.875

0.587

1.114

0.766

0.638

0.548

1.103

0.483

0.679

0.952

0.805

0.796

APPENDIX 5.1.

0.950

0.946

0.629

0.738

0.493

0.729

0.598

0.850

0.403

0.523

0.720

0.714

0.820

0.494

0.628

0.859

0.846

0.850

0.505

0.430

1.009

0.726

0.629

0.670

0.591

0.690

0.333

1.042

0.841

0.865

0.335

0.523

1.074

0.741

0.617

0.302

1.010

0.818

LISTS OP ALPHA

0.389

0.463

0.955

0.711

0.704

0.843

0.633

0.645

0.336

0.308

0.773

0.955

0.782

0.588

0.445

0.327

0.210

0.881

0.507

0.551

0.443

0.609

0.385

0.876

0.415

0.462

0.678

0.675

0:764

0.577

0.721

0.703

0.678

0.410

0.808

1.007

* The order of the displayed faculty members is by rows.

Thus, for example, a2== 0.648.
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APPENDIX 6.1. LISTS OF TECHNICAL EFFICIENCY

1. INDIVIDUAL LEVELS OF TECHNICAL EFFICIENCY

(SIMPLE WITHIN ESTIMATION)

AVERAGE OF TECHNICAL EFFICIENCY: 0.567

TECHNICAL EFFICIENCY

0.501 0.558 0.594 0.629 0.886 0.690 0.576 0.734

0.702 0.535 0.464 0.463 0.556 0.532 0.554 0.498

0.659 0.481 0.583 0.612 0.625 0.637 0.545 0.544

0.536 0.567 0.615 0.492 0.645 0.447 0.616 0.504

0.486 0.467 0.524 0.633 0.676 0.546 0.569 0.553

0.516 0.468 0.477 0.498 0.365 0.641 0.566 0.490

0.541 0.537 0.520 0.710 0.416 0.491 0.491 0.663

0.436 0.527 0.619 0.576 0.520 0.470 0.586 0.565

0.427 0.599 0.474 0.578 0.581 0.634 0.496 0.663

0.664 0.578 0.698 0.636 0.535 0.585 0.422 0.552

0.609 0.421 0.623 0.516 0.452 0.398 0.480 0.525

0.451 0.479 0.430 0.519 0.580 0.493 0.562 0.573

0.639 0.585 0.505 0.646 0.552 0.503 0.545 0.583

0.506 0.473 0.450 0.543 0.471 0.522 0.524 0.563

0.446 0.412 0.468 0.673 0.379 0.932 0.548 0.501

0.608 0.540 0.510 0.639 0.605 0.480 0.574 0.596

0.592 0.659 0.596 0.486 0.478 0.549 0.646 0.523

0.563 0.481 0.516 0.516 0.615 0.422 0.384 0.454

0.412 0.602 0.591 0.593 0.549 0.528 0.747 0.899

0.772 0.622 0.714 0.721 0.700 0.726 0.693 0.765

0.641 0.564 0.930 1.000 0.593 0.555 0.764 0.607

0.565 0.531 0.582

* The order of the displayed farm families is by rows.

Thus, for example, technical efficiency of the second farm

is 0.558
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APPENDIX 6.1. (Continued)

2. INDIVIDUAL LEVELS OF TECHNICAL EFFICIENCY

(GENERAL WITHIN ESTIMATION)

AVERAGE OF TECHNICAL EFFICIENCY AT T=1: 0.565

TECHNICAL EFFICIENCY AT T=1

0.582 0.583 0.567 0.645 0.874 0.598 0.629 0.603

0.711 0.502 0.499 0.520 0.561 0.581 0.563 0.521

0.625 0.479 0.650 0.647 0.701 0.644 0.547 0.586

0.586 0.560 0.605 0.504 0.651 0.429 0.731 0.514

0.475 0.468 0.592 0.598 0.631 0.476 0.586 0.599

0.537 0.495 0.447 0.515 0.336 0.506 0.585 0.507

0.493 0.544 0.474 0.736 0.411 0.452 0.439 0.573

0.383 0.506 0.642 0.514 0.490 0.512 0.611 0.549

0.380 0.594 0.502 0.586 0.556 0.593 0.500 0.637

0.630 0.573 0.636 0.629 0.555 0.566 0.457 0.554

0.615 0.433 0.557 0.540 0.424 0.395 0.490 0.554

0.496 0.473 0.415 0.481 0.558 0.504 0.556 0.560

0.637 0.590 0.506 0.633 0.533 0.497 0.523 0.579

0.484 0.455 0.440 0.534 0.461 0.508 0.508 0.545

0.482 0.442 0.510 0.713 0.411 0.908 0.540 0.472

0.537 0.522 0.515 0.662 0.662 0.571 0.508 0.606

0.597 0.657 0.639 0.493 0.514 0.567 0.725 0.476

0.577 0.513 0.459 0.489 0.564 0.434 0.389 0.435

0.430 0.544 0.549 0.580 0.517 0.544 0.747 0.821

0.743 0.612 0.690 0.723 0.782 0.847 0.693 0.799

0.642 0.565 0.974 1.000 0.589 0.511 0.817 0.577

0.536 0.500 0.625

AVERAGE OF TECHNICAL EFFICIENCY AT T=2: 0.536

TECHNICAL EFFICIENCY AT T=2

0.591 0.592 0.573 0.667 0.952 0.610 0.648 0.617

0.748 0.497 0.493 0.518 0.567 0.590 0.569 0.519

0.643 0.471 0.674 0.664 0.729 0.660 0.546 0.592

0.591 0.560 0.613 0.495 0.669 0.411 0.765 0.506

0.462 0.455 0.598 0.605 0.645 0.463 0.591 0.607

0.534 0.485 0.430 0.460 0.279 0.450 0.535 0.452

0.437 0.490 0.418 0.699 0.353 0.395 0.381 0.521

0.325 0.451 0.596 0.459 0.434 0.457 0.562 0.496

0.323 0.543 0.446 0.536 0.504 0.542 0.445 0.590

0.582 0.522 0.589 0.582 0.502 0.514 0.400 0.501

0.581 0.384 0.517 0.499 0.376 0.345 0.445 0.513
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0.451

0.605

0.439

0.437

0.517

0.586

0.525

0.373

0.706

0.595

0.482

AVERAGE OF TECHNICAL EFFICIENCY AT T=3:

0.426

0.553

0.408

0.411

0.501

0.655

0.458

0.490

0.563

0.512

0.444

(Continued)

0.366 0.435

0.462 0.601

0.392 0.492

0.487 0.720

0.492 0.661

0.634 0.467

0.402 0.432

0.495 0.529

0.647 0.684

0.969 1.000

0.577

TECHNICAL EFFICIENCY AT T=3

0.555

0.613

0.575

0.571

0.515

0.547

0.705

0.622

0.620

0.795

0.730

0.657

0.743

0.649

0.648

0.600

0.633

.0.763

0.661

0.864

0.804

0.736

0.555

0.516

0.505

0.558

0.511

0.525

0.739

0.714

0.772

0.759

0.614

0.641

0.715

0.630

0.545

0.592

0.663

0.721

0.742

0.786

0.755

0.711

0.548

0.514

0.586

0.580

0.574

0.500

0.691

0.803

0.711

0.798

0.696

0.602

0.664

0.620

0.585

0.588

0.654

0.682

0.745

0.833

0.987

0.794

0.584

0.525

0.599

0.530

0.577

0.720

0.858

0.720

0.767

0.794

0.685

0.647

0.741

0.681

0.690

0.665

0.575

0.704

0.766

0.853

1.000

104

0.518

0.491

0.414

0.378

0.660

0.492

0.511

0.461

0.750

0.538

0.678

0.545

0.623

0.601

0.592

0.584

0.644

0.703

0.748

0.747

0.608

0.696

0.680

0.634

0.527

0.665

0.588

0.755

0.723

0.886

0.771

0.460

0.452

0.464

0.957

0.556

0.549

0.376

0.490

0.823

0.455

0.673

0.563

0.554

0.598

0.490

0.515

0.714

0.676

0.718

0.771

0.754

0.587

0.662

0.658

0.665

0.777

0.619

0.615

0.664

0.741

0.922

0.719

0.516

0.480

0.464

0.521

0.485

0.735

0.331

0.710

0.651

0.789

0.577

0.546

0.552

0.636

0.571

0.767

0.665

0.783

0.710

0.679

0.653

0.695

0.674

0.665

0.602

0.584

0.696

0.629

0.866

0.835

0.905

0.520

0.541

0.504

0.444

0.596

0.419

0.378

0.794

0.769

0.525

0.565

0.526

0.571

0.535'

0.577

0.715

0.759

0.743

0.799

0.746

0.693

0.697

0.709

0.688

0.563

0.637

0.694

0.665

0.908

0.896

0.763
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APPENDIX 6.1. (Continued)

AVERAGE OF TECHNICAL EFFICIENCY AT T=4: 0.629

TEHCNICAL EFFICIENCY AT T=4

0.565 0.565 0.555 0.606 0.745 0.575 0.596 0.579

0.648 0.511 0.509 0.523 0.551 0.564 0.552 0.524

0.593 0.495 0.609 0.617 0.651 0.614 0.550 0.577

0.576 0.559 0.589 0.520 0.619 0.467 0.670 0.527

0.500 0.495 0.580 0.584 0.606 0.500 0.576 0.585

0.543 0.514 0.479 0.636 0.476 0.628 0.694 0.629

0.617 0.660 0.601 0.810 0.545 0.582 0.570 0.683

0.520 0.628 0.739 0.635 0.615 0.633 0.714 0.664

0.517 0.700 0.625 0.694 0.670 0.699 0.623 0.735

0.729 0.684 0.734 0.728 0.669 0.678 0.586 0.668

0.685 0.539 0.641 0.627 0.532 0.507 0.587 0.638

0.592 0.573 0.524 0.580 0.641 0.599 0.640 0.643

0.702 0.666 0.600 0.699 0.621 0.593 0.614 0.657

0.582 0.558 0.546 0.622 0.563 0.602 0.602 0.631

0.581 0.504 0.556 0.698 0.480 0.823 0.578 0.527

0.576 0.565 0.560 0.664 0.664 0.601 0.555 0.626

0.619 0.661 0.648 0.543 0.559 0.596 0.706 0.604

0.688 0.635 0.589 0.615 0.677 0.567 0.526 0.568

0.564 0.661 0.665 0.691 0.638 0.661 0.820 0.875

0.817 0.716 0.777 0.802 0.846 0.893 0.779 0.859

0.739 0.678 0.982 1.000 0.698 0.633 0.871 0.688

0.654 0.624 0.727

AVERAGE OF TECHNICAL EFFICIENCY AT T=5: 0.528

TEHCNICAL EFFICIENCY AT T=5

0.594 0.595 0.575 0.673 0.976 0.614 0.653 0.621

0.759 0.495 0.492 0.518 0.568 0.592 0.570 0.519

0.648 0.469 0.680 0.669 0.737 0.665 0.545 0.593

0.593 0.561 0.616 0.493 0.674 0.405 0.776 0.504

0.459 0.451 0.600 0.607 0.649 0.459 0.592 0.609

0.533 0.482 0.426 0.445 0.265 0.436 0.521 0.438

0.422 0.476 0.403 0.688 0.338 0.380 0.366 0.507

0.310 0.436 0.583 0.445 0.420 0.442 0.549 0.481

0.308 0.530 0.431 0.522 0.489 0.529 0.430 0.578

0.569 0.508 0.576 0.569 0.488 0.500 0.385 0.487

0.572 0.372 0.506 0.487 0.363 0.332 0.433 0.502

0.439 0.414 0.353 0.423 0.507 0.448 0.505 0.509

0.596 0.543 0.450 0.592 0.479 0.440 0.469 0.530

0.426 0.395 0.380 0.480 0.402 0.452 0.452 0.493
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0.424

0.512

0.583

0.511

0.357

0.696

0.582

0.467

AVERAGE OF TECHNICAL EFFICIENCY AT T=6:

0.403

0.495

0.654

0.443

0.476

0.550

0.498

0.429

(Continued)

0.480 0.723

0.486 0.660

0.632 0.461

0.387 0.418

0.481 0.515

0.636 0.673

0.968 1.000

0.564

TEHCNICAL EFFICIENCY AT T=6

0.569

0.752

0.628

0.564

0.422

0.500

0.355

0.250

0.248

0.498

0.510

0.378

0.535

0.366

0.364

0.466

0.540

0.441

0.294

0.625

0.510

0.398

0.571

0.463

0.435

0.530

0.414

0.446

0.407

0.368

0.459

0.437

0.313

0.354

0.481

0.336

0.355

0.448

0.616

0.374

0.406

0.479

0.428

0.361

0.549

0.460

0.664

0.589

0.572

0.387

0.336

0.512

0.364

0.505

0.445

0.296

0.389

0.321

0.433

0.439

0.593

0.321

0.411

0.564

0.910

0.493

0.656

0.487

0.647

0.458

0.580

0.377

0.618

0.376

0.451

0.498

0.426

0.363

0.531

0.419

0.689

0.622

0.413

0.350

0.444

0.602

0.944

106

0.369

0.660

0.486

0.497

0.447

0.741

0.524

1.000

0.542

0.723

0.653

0.625

0.209

0.276

0.352

0.420

0.419

0.305

0.445

0.418

0.342

0.322

0.622

0.439

0.427

0.378

0.672

0.453

0.972

0.552

0.544

0.361

0.476

0.816

0.441

0.476

0.591

0.567

0.642

0.367

0.422

0.368

0.315

0.374

0.458

0.430

0.276

0.387

0.380

0.391

0.965

0.507

0.500

0.297

0.406

0.750

0.372

0.515

0.479

0.738

0.316

0.700

0.639

0.781

0.634

0.544

0.513

0.766

0.564

0.450

0.302

0.478

0.362

0.319

0.372

0.443

0.407

0.391

0.469

0.432

0.706

0.255

0.630

0.568

0.713

0.437

0.594

0.404

0.363

0.786

0.761

0.511

0.599

0.488

0.565

0.470

0.582

0.370

0.437

0.412

0.507

0.417

0.441

0.448

0.469

0.432

0.389

0.551

0.338

0.298

0.718

0.692

0.440
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APPENDIX 6.1. (Continued)

3. INDIVIDUAL LEVELS OF TECHNICAL EFFICIENCY

(SIMPLE GLS ESTIMATION)

AVERAGE OF TECHNICAL EFFICIENCY: 0.571

TECHNICAL EFFICIENCY

0.483 0.543 0.601 0.615 0.871 0.679 0.590 0.711

0.680 0.538 0.460 0.459 0.533 0.528 0.572 0.478

0.631 0.468 0.547 0.591 0.625 0.614 0.541 0.521

0.510 0.570 0.593 0.499 0.609 0.443 0.597 0.506

0.476 0.471 0.522 0.601 0.686 0.540 0.571 0.533

0.524 0.456 0.481 0.513 0.380 0.634 0.549 0.494

0.550 0.530 0.544 0.705 0.405 0.509 0.506 0.651

0.458 0.537 0.612 0.576 0.533 0.471 0.582 0.555

0.445 0.598 0.467 0.580 0.580 0.624 0.503 0.646

0.681 0.575 0.702 0.631 0.521 0.579 0.419 0.543

0.620 0.425 0.654 0.524 0.475 0.409 0.494 0.528

0.452 0.495 0.440 0.543 0.597 0.511 0.587 0.571

0.647 0.575 0.527 0.646 0.572 0.525 0.546 0.600

0.517 0.495 0.464 0.557 0.488 0.543 0.555 0.585

0.453 0.422 0.482 0.677 0.402 0.928 0.575 0.522

0.609 0.564 0.535 0.651 0.611 0.525 0.607 0.614

0.615 0.697 0.626 0.505 0.506 0.563 0.648 0.546"

0.562 0.477 0.531 0.527 0.635 0.420 0.396 0.450

0.415 0.611 0.617 0.592 0.579 0.523 0.754 0.910

0.768 0.627 0.719 0.709 0.689 0.701 0.690 0.755

0.658 0.558 0.917 1.000 0.595 0.565 0.772 0.632

0.592 0.546 0.588
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APPENDIX 6.1. (Continued)

4. INDIVIDUAL LEVELS OF TECHNICAL EFFICIENCY

(GENERAL GLS ESTIMATION)

AVERAGE OF TECHNICAL EFFICIENCY AT T=1: 0.595

TECHNICAL EFFICIENCY AT T=1

0.602 0.636 0.604 0.695 0.884 0.646 0.667 0.632

0.756 0.538 0.540 0.548 0.609 0.595 0.586 0.563

0.645 0.517 0.655 0.665 0.732 0.657 0.599 0.589

0.596 0.570 0.626 0.545 0.629 0.465 0.723 0.559

0.516 0.522 0.612 0.631 0.652 0.508 0.597 0.609

0.577 0.540 0.493 0.547 0.374 0.537 0.608 0.544

0.516 0.555 0.507 0.756 0.447 0.489 0.465 0.603

0.416 0.539 0.666 0.541 0.525 0.536 0.621 0.586

0.425 0.609 0.532 0.632 0.579 0.610 0.528 0.663

0.659 0.608 0.655 0.641 0.576 0.592 0.500 0.579

0.655 0.469 0.582 0.577 0.462 0.424 0.531 0.584

0.531 0.517 0.454 0.512 0.584 0.548 0.571 0.582

0.669 0.607 0.540 0.652 0.575 0.526 0.546 0.612

0.514 0.495 0.470 0.554 0.494 0.562 0.547 0.588

0.523 0.472 0.545 0.732 0.460 0.902 0.551 0.498

0.594 0.538 0.559 '0.731 0.712 0.604 0.551 0.630

0.642 0.678 0.643 0.523 0.542 0.589 0.744 0.538

0.610 0.534 0.495 0.533 0.596 0.471 0.437 0.464

0.473 0.583 0.609 0.621 0.567 0.595 0.769 0.850

0.757 0.612 0.709 0.730 0.793 0.850 0.717 0.817

0.701 0.579 0.986 1.000 0.634 0.549 0.826 0.637

0.589 0.525 0.672

AVERAGE OF TECHNICAL EFFICIENCY AT T=2: 0.509

TECHNICAL EFFICIENCY AT T=2

0.539 0.586 0.542 0.663 0.938 0.597 0.625 0.578

0.749 0.459 0.461 0.471 0.548 0.530 0.518 0.490

0.595 0.433 0.609 0.618 0.711 0.608 0.533 0.520

0.528 0.495 0.567 0.464 0.571 0.370 0.698 0.482

0.430 0.437 0.549 0.574 0.602 0.420 0.530 0.546

0.504 0.459 0.402 0.438 0.253 0.425 0.509 0.433

0.402 0.446 0.392 0.697 0.327 0.372 0.346 0.503

0.295 0.428 0.581 0.430 0.412 0.425 0.525 0.483

0.304 0.510 0.420 0.538 0.474 0.511 0.416 0.577

0.572 0.509 0.567 0.550 0.471 0.490 0.385 0.475

0.586 0.361 0.494 0.487 0.354 0.313 0.433 0.496
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0.433

0.604

0.413

0.423

0.515

0.576

0.491

0.340

0.669

0.599

0.467

AVERAGE OF TECHNICAL EFFICIENCY AT T=3:

0.416

0.525

0.390

0.359

0.447

0.623

0.405

0.460

0.493

0.455

0.395

(Continued)

0.345 0.411

0.443 0.582

0.363 0.460

0.455 0.696

0.472 0.694

0.577 0.428

0.363 0.404

0.489 0.503

0.609 0.636

0.980 1.000

0.564

TECHNICAL EFFICIENCY AT T=3

0.713

0.767

0.729

0.716

0.684

0.709

0.757

0.706

0.711

0.819

0.779

0.728

0.784

0.720

0.724

0.740

0.759

0.853

0.785

0.914

0.892

0.843

0.726

0.687

0.678

0.706

0.687

0.694

0.775

0.767

0.798

0.798

0.699

0.721

0.760

0.711

0.687

0.717

0.773

0.817

0.840

0.853

0.838

0.812

0.713

0.688

0.732

0.728

0.723

0.674

0.752

0.822

0.764

0.818

0.750

0.692

0.732

0.700

0.720

0.726

0.760

0.797

0.852

0.895

0.995

0.880

0.746

0.692

0.742

0.696

0.730

0.771

0.856

0.768

0.808

0.812

0.747

0.719

0.778

0.738

0.792

0.792

0.711

0.816

0.857

0.903

1.000
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0.495

0.485

0.390

0.356

0.669

0.451

0.475

0.441

0.716

0.518

0.807

0.715

0.766

0.729

0.738

0.682

0.723

0.761

0.785

0.784

0.696

0.750

0.746

0.711

0.682

0.785

0.719

0.846

0.832

0.928

0.863

0.452

0.426

0.470

0.939

0.528

0.508

0.338

0.473

0.792

0.421

0.768

0.729

0.710

0.739

0.661

0.680

0.766

0.744

0.766

0.799

0.791

0.677

0.735

0.725

0.741

0.847

0.745

0.738

0.784

0.845

0.949

0.824

0.480

0.450

0.451

0.462

0.462

0.711

0.303

0.685

0.620

0.759

0.737

0.706

0.718

0.762

0.717

0.798

0.732

0.804

0.763

0.749

0.728

0.745

0.734

0.735

0.723

0.723

0.796

0.765

0.919

0.898

0.940

0.494

0.530

0.501

0.399

0.561

0.409

0.331

0.791

0.747

0.523

0.724

0.698

0.714

0.702‘

0.722

0.770

0.796

0.788

0.820

0.786

0.750

0.750

0.762

0.752

0.699

0.755

0.818

0.781

0.949

0.937

0.865
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APPENDIX 6.1. (Continued)

AVERAGE OF TECHNICAL EFFICIENCY AT T=4: 0.741

TECHNICAL EFFICIENCY AT T=4

0.696 0.713 0.697 0.739 0.817 0.717 0.727 0.711

0.766 0.665 0.666 0.670 0.700 0.693 0.689 0.678

0.717 0.654 0.721 0.731 0.761 0.727 0.700 0.695

0.698 0.686 0.713 0.673 0.714 0.630 0.757 0.680

0.658 0.661 0.706 0.716 0.725 0.654 0.699 0.705

0.689 0.671 0.646 0.736 0.628 0.730 0.769 0.734

0.718 0.740 0.713 0.842 0.677 0.702 0.688 0.766

0.657 0.731 0.798 0.732 0.723 0.730 0.776 0.757

0.662 0.769 0.727 0.781 0.753 0.770 0.725 0.797

0.795 0.769 0.793 0.786 0.752 0.760 0.709 0.754

0.761 0.662 0.724 0.721 0.658 0.635 0.697 0.725

0.697 0.689 0.653 0.687 0.725 0.706 0.718 0.724

0.767 0.737 0.702 0.759 0.720 0.694 0.705 0.739

0.688 0.677 0.663 0.710 0.677 0.714 0.705 0.727

0.692 0.653 0.693 0.784 0.646 0.855 0.696 0.668

0.718 0.690 0.701 0.783 0.775 0.724 0.696 0.736

0.742 0.759 0.743 0.681 0.691 0.716 0.789 0.773

0.814 0.770 0.746 0.770 0.807 0.731 0.709 0.727

0.732 0.799 0.814 0.820 0.790 0.806 0.897 0.935

0.891 0.815 0.867 0.877 0.908 0.935 0.871 0.919

0.863 0.797 0.994 1.000 0.827 0.779 0.924 0.829

0.803 0.765 0.848

AVERAGE OF TECHNICAL EFFICIENCY AT T=5: 0.554

TECHNICAL EFFICIENCY AT T=5

0.572 0.614 0.575 0.680 0.908 0.623 0.648 0.607

0.753 0.501 0.503 0.512 0.580 0.565 0.554 0.529

0.622 0.477 0.634 0.643 0.722 0.634 0.568 0.557

0.564 0.535 0.599 0.507 0.602 0.420 0.711 0.523

0.475 0.482 0.583 0.605 0.629 0.466 0.566 0.580

0.543 0.502 0.450 0.495 0.314 0.483 0.561 0.491

0.461 0.503 0.451 0.729 0.388 0.432 0.407 0.555

0.356 0.486 0.626 0.488 0.471 0.483 0.576 0.537

0.365 0.562 0.478 0.588 0.529 0.563 0.474 0.622

0.618 0.561 0.614 0.599 0.526 0.543 0.444 0.530

0.623 0.417 0.541 0.534 0.409 0.370 0.484 0.543

0.484 0.469 0.401 0.464 0.542 0.502 0.528 0.540

0.639 0.568 0.494 0.619 0.532 0.478 0.500 0.574

0.466 0.445 0.419 0.510 0.444 0.518 0.501 0.547
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0.475

0.557

0.612

0.553

0.407

0.716

0.653

0.530

AVERAGE OF TECHNICAL EFFICIENCY AT T=6:

0.422

0.495

0.653

0.471

0.524

0.555

0.520

0.462

(Continued)

0.502 0.716

0.518 0.714

0.613 0.478

0.430 0.471

0.551 0.565

0.662 0.686

0.983 1.000

0.621

TECHNICAL EFFICIENCY AT T=6

0.507

0.745

0.570

0.494

0.388

0.468

0.350

0.244

0.253

0.529

0.551

0.386

0.570

0.366

0.376

0.476

0.542

0.435

0.283

0.625

0.549

0.410

0.559

0.420

0.392

0.458

0.396

0.419

0.396

0.377

0.463

0.462

0.313

0.369

0.484

0.343

0.322

0.403

0.595

0.348

0.403

0.437

0.399

0.338

0.510

0.422

0.585

0.537

0.517

0.359

0.340

0.538

0.369

0.524

0.451

0.297

0.397

0.315

0.411

0.430

0.544

0.305

0.433

0.560

0.977

0.512

0.646

0.434

0.594

0.425

0.545

0.387

0.667

0.379

0.493

0.505

0.444

0.363

0.546

0.415

0.676

0.674

0.383

0.347

0.448

0.589

1.000
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0.410

0.692

0.499

0.538

0.506

0.757

0.579

0.969

0.517

0.700

0.542

0.576

0.204

0.275

0.361

0.425

0.421

0.305

0.453

0.441

0.342

0.309

0.646

0.407

0.419

0.384

0.677

0.464

0.919

0.568

0.551

0.405

0.536

0.823

0.487

0.467

0.571

0.498

0.583

0.326

0.378

0.374

0.320

0.374

0.464

0.441

0.265

0.407

0.379

0.425

0.961

0.490

0.468

0.281

0.416

0.761

0.364

0.509

0.509

0.729

0.371

0.730

0.671

0.795

0.603

0.485

0.500

0.684

0.496

0.462

0.294

0.479

0.364

0.333

0.386

0.436

0.405

0.405

0.419

0.419

0.694

0.248

0.642

0.571

0.724

0.451

0.598

0.475

0.399

0.823

0.785

0.583

0.550

0.454

0.485

0.444

0.513

0.382

0.455

0.434

0.534

0.426

0.454

0.451

0.490

0.458

0.353

0.525

0.351

0.275

0.761

0.711

0.468
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