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ABSTRACT

A STUDY OF THE PION-NUCLEUS OPTICAL POTENTIAL

By

Karen Sue Stricker

The optical potential model is a convenient means of charac-

terizing the interaction of the pion with the nucleus. Its simplicity

makes it practical for the calculation of elastic scattering and

pion distorted waves for more complicated processes. Its success

in reproducing the early pion data and the existence of new, higher

quality data motivate the present investigation.

An Optical potential for pion-nucleus interactions in the

energy range 0-250 MeV pion kinetic energies is constructed with

the Watson multiple scattering series and the nN transition ampli-

tude as starting point. The pion-nucleon to pion-nucleus center

of mass transformation is calculated to first order in the ratio

of total pion energy to nucleon mass. Multiple scattering correc-

tions in low energy approximation are included to second order in

the s—wave and to all orders in the p-wave (the Lorentz-Lorenz or

Ericson-Ericson effect). True pion absorption terms, proportional

to the square of the nuclear density, are included in both 5 and

p-wave parts of the potential. Pauli blocking is approximated,

and an energy shift due to the Coulomb interaction is incorporated.
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The potential parameters are taken from the experimental nN phase

shifts and theoretical calculations. The potential, of Kisslinger

type, is incorporated in coordinate space computer codes which cal-

culate pionic atom level shifts and widths, elastic scattering dif-

ferential cross sections, and total and partial cross sections.

These calculations are compared to the current experimental data.

It is found that at low energies (0-50 MeV) the potential produces

elastic cross sections which fit the data provided the s-wave repul-

sion is increased. The pionic atom level data require more absorp-

tive strength than that given by current calculations, as well as

increased repulsion consistent with the scattering results. The

general features of the resonance region elastic scattering and

total cross sections are well reproduced.
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CHAPTER I

INTRODUCTION

In the past few years the field of pion—nucleus interactions

has advanced rapidly. A large amount of excellent quality data has

come out of the intermediate energy laboratories; LAMPF at Los Alamos,

New Mexico, USA; TRIUMF in Vancouver, Canada; and SIN in Switzerland.

This data includes not only elastic and inelastic differential cross

sections, but also total and partial cross sections and single and

double charge exchange measurements as well as more complicated reac-

tions. Much progress has also been made in the theoretical descrip-

tion of the pion-nucleus interaction, with characterizations which

vary from the phenomenological to the fundamental and microscopic.

The present work will focus on the optical potential model, which

takes a middle ground between these two approaches and has had a

fair amount of success in the description of the early pion-nucleus

data.

The concept of an optical potential, that is, a complex poten-

tial describing the interaction between the projectile and the nucleus

as a whole, and in which the imaginary part accounts for flux lost

to other channels from the elastic channel, is due to Bethe (1). An

optical model for scattering of high energy particles by nuclei was

first introduced by Fernbach, Serber, and Taylor (2) to describe



the scattering of 90 MeV neutrons. They proposed a constant complex

potential inside the nucleus, the imaginary part of which can be

related to the mean free path A of the nucleon in nuclear matter (3),

ko
Im(u )=—Opt 2 9 (1-1)

>
4
]
.
.
.

where k0 is the particle momentum and M its mass. The mean free

path can, in turn, be expressed in terms of the total collision

cross section and the nuclear density,

§= 0T0 . (1-2)

The optical model was first applied to low energy scattering by

Feshbach, Porter, and Weisskopf (4) in the analysis of resonances

in 0-3 MeV neutron total cross sections. A theoretical basis for

the optical model was provided by Natson (5), who derived the optical

potential from a multiple scattering theory. A simplification of

the theory, due to the antisymmetry of the target states, was given

by Kerman, McManus, and Thaler (6).

The study of the pion-nucleus interaction began with the dis-

covery of the pion in 1947, since early pion experiments usually

involved nuclear targets in cloud chambers and emulsions. An optical

model for pion-nucleus elastic scattering which included both 5- and

p-wave terms was first given by Kisslinger (7), and used in the

analysis of differential cross section data (8) for 62 MeV1FIand n-



on 12C. The analysis of the measured energy shifts and widths of

pionic atoms made clear the necessity of including higher order

terms in the optical potential. The inclusion of true pion absorp-

tion terms, first suggested by Brueckner (9), and the calculation

of the Lorentz-Lorenz effect were made by Ericson and Ericson (10)

and greatly improved the agreement between calculated and measured

levels.

The emphasis shifted to the resonance region with the appear-

ance of n'-12C elastic scattering cross sections at 120, 200, and

280 MeV from CERN (11), followed by data on other nuclei. Although

the Kisslinger potential was originally derived for low energy scat-

tering, it was found to give reasonable results in the resonance

region also (12). A local optical potential form, the Laplacian

model, gave similar results for scattering near resonance (13).

Glauber theory (14) was also successfully applied to scattering

data in this region (15).

Very little was known of the low energy (0-50 MeV) pion scat-

tering cross sections, and few calculations beyond first order

existed for these energies (16) until about 1975, when more accurate

data of 50 MeV n+ elastic scattering from 120 appeared (17).

Thies (18) showed that the inclusion of kinematic effects, higher

order multiple scattering terms, and s-wave absorption greatly

improved the agreement between the calculated and measured cross

sections.



Since 1975 the theoretical activity in pion-nucleus interactions

has been intense. The most successful microscopic calculations have

been the isobar-hole calculations (19) which treat the dominant

channel, with A33 intermediate states, by means of a spreading

potential, the parameters of which are fitted to the data. The

phenomenological input is small, and the results are encouraging;

16O are impractical.however, calculations for nuclei larger than

The phenomenological optical model has also received a great

deal of attention. It has been shown (20) that a first order

Kisslinger potential with four free parameters can be fitted to

the elastic scattering data for pion kinetic energies around 50 MeV.

Four parameters are also sufficient to describe the pionic atom

data for a wide range of nuclei (21). The elastic scattering cross

sections in the resonance region can also be fit by optical model

calculations, requiring, however, a somewhat more sophisticated

potential with more than four parameters (22).

The phenomenological approach, although successful in describ—

ing various classes of data, has almost no predictive power and is

most unsatisfying to a theorist. The microscopic theories have a

strong theoretical base and a minimum of approximations but are

extremely complicated, tedious calculations and have been made for

only a few light nuclei at a few energies. Thus the need at present

for a simpler approach based on theoretical considerations but with

a simple optical potential form. Such a model, if carefully con-

structed, should be valid over a fairly wide energy range, say



0-250 MeV, and for all nuclei large enough to justify the optical

model assumptions, certainly carbon and all heavier nuclei. The

theoretical basis gives the model predictive power; its simplicity

makes it a useful tool in calculations of more complicated processes.

The important physical content of the theory appears in the optical

potential in a straightforward way, not buried in vast computer

calculations, giving a feel for the important features of the prob-

lem. It is to be hoped that the microscopic calculations will even-

tually become sufficiently tractable and accurate to be applicable

to most nuclei and energies. However, an optical potential type

model, taking input from the more sophisticated theories with suita-

ble approximations, will almost certainly be the basis of most

practical calculations.

The early work on theoretically based optical potentials by

the Ericsons (10) and Thies (18) has already been mentioned. Pieces

of the problem have been much discussed by various authors. A review

of all such research will not be attempted in this brief introduc-

tion; the interested reader is referred to the proceedings of the

several recent pion conferences (23). The purpose of this disserta-

tion is to bring together all aspects of the problem in a coherent

framework, to construct an optical potential with a broad range of

validity. The form chosen for the potential is a coordinate space

form of Kisslinger type, local in the sense of depending on only

one pion coordinate. Previous investigations suggest that the

essential physics survives the approximations necessary to obtain



such a form, which is chosen for its simplicity. The more important

test of the validity of the theory is, of course, the accuracy with

which it predicts the experimental results, hence the inclusion

in this work of calculations of pionic atom level shifts and widths,

differential elastic scattering cross sections, and total and partial

cross sections for a variety of nuclei and energies.

The reason usually given for the study of the pion-nucleus

interaction is the hope that the pion can be used as a probe of

nuclear structure once the pion-nucleus dynamics are understood.

The nature of the pion, with three isospin states and no spin, and

the fact that pions can be absorbed on nucleons, make the pion a

unique tool in, for example, the determination of neutron and proton

distributions and perhaps the study of correlations between nucleons.

There is a growing interest, however, in the pion-nucleus problem

itself. The field of intermediate energy physics, of which pion

physics is an important part, has become a meeting ground for the

nonrelativistic many-body theories of low energy nuclear physics

and the relativistic field theories developed in elementary particle

physics. Although the present study does not delve deeply into

these questions, the development of the potential indicates where

these elements enter and provides a base for more detailed calcula-

tions. Any improvements to the optical potential model discussed

here will almost certainly involve a more careful synthesis of these

two aspects of the problem.



The dissertation is divided into six main parts. In the

first of these, Chapter II, the information is presented which forms

the basis of the optical potential theory: the pion-nucleon inter-

action, the form of the pion wave equation, and the multiple scat-

tering formalism. From these the first order Kisslinger optical

potential is constructed. In Chapter III, the optical potential

is refined with the addition of kinematic effects, multiple scat-

tering corrections, true absorption terms, and Pauli and Coulomb

effects. This completes the construction of the optical potential;

the comparisons to data are discussed in the following three chap~

ters. The first of these, Chapter IV, is a discussion of the optical

potential applied to the analysis of pionic atom shifts and widths.

Chapter V presents the calculations of elastic differential cross

sections, compared to a selection of the available data. In Chap-

ter VI a discussion is given of the calculation of total and partial

cross sections, with the results compared to the data. In Chapters V

and VI, two different approaches are taken to the choice of param-

eters for the optical potential. The first is to adopt the param-

eters as calculated theoretically in the earlier chapters. The

second is to extrapolate by simple means the information gained

from the pionic atom analysis discussed in Chapter IV to non-zero

energies, extending the work of reference 24. The major conclusions

of this work are discussed in the final chapter.

The symbols used for some common quantities are given in

Table 1. These will be used throughout, unless otherwise noted.



Table 1. Symbols used throughout this work and their interpretation.

 

 

 

Symbol Meaning

(k,w) Momentum and energy of incoming pion

(k',w') Momentum and energy of outgoing pion

(p,E) Momentum and energy of incoming nucleon

(p',E') Momentum and energy of outgoing nucleon

(P,EA) Momentum and energy of incoming nucleus

m Mass of pion

M Mass of nucleon

MA Mass of nucleus

t Isospin operator for pion

I Isospin operator for nucleon

Spin operator for nucleon0

cm subscript

2cm subscript

no subscript

Quantities in pion-nucleon center of mass

Quantities in pion-two nucleon center of

mass

Quantities in pion-nucleus center of mass

(Subscripts are often dropped when only one

frame is being considered.)

 



CHAPTER II

THE FIRST ORDER OPTICAL POTENTIAL

The optical model provides a method by which the pion-nucleus

many body problem can be reduced to a one particle equation for

the pion, interacting with an optical potential which describes

the nucleus. The optical potential can be derived from knowledge

of the measured pion-nucleon scattering amplitude and a multiple

scattering formalism which relates the pion-nucleon amplitude to

the pion-nucleus interaction. In Section 1 of this chapter the

pion-nucleon interaction is described. The pion wave equation is

discussed in Section 2. The development of the multiple scattering

series for the optical potential is given in Section 3, and the

first order coordinate Space optical potential is given irISection‘4.

1. The Pion-Nucleon Interaction
 

The most prominent feature of pion-nucleon scattering in the

energy region 0-300 MeV pion lab kinetic energy is the effect of

the nN resonance, denoted A33, at 1236 MeV total center of mass

energy or about 180 MeV pion kinetic energy. The subscripts 33

refer to the isospin and total angular momentum of the resonance,

both of which have the value 3/2. The orbital angular momentum

of the state is L = 1. This channel dominates the nN interaction
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at these energies, giving rise to a large p-wave term in the scat-

tering amplitude.

The most general scattering amplitude for this problem can

be expanded in orbital angular momentum, isospin, and total angular

momentum. The s- and p-wave terms of this expansion are

f N = (b0 + bIE°I) + (CO + c 1E I)Ecmk~ cm

+ (50 + S E ~)~ (Ecmx E'cm) ' (11.1)

The relationships between the coefficients bi’ c.1, and 5i and the

measured pion-nucleon phase shifts are derived in Appendix A, and

are given by

cm

c =-—l—-l (4w + 2w + 2w + w )
0 k3 3 33 31 13 11

9“ (II-2)

c = ~l—-l-(2w + w - 2w - w )
1 k3 3 33 31 13 11

cm

s = —l——l-(2w - 2w + w - w )
O k3 3 33 31 13 11

cm

s = 1 1 (w w w + w )
1 k3 3' 33 31 13 11
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The wi and wij are related to the a21,2J of Appendix A by

 

_ o

wi - kcmail

(II-3)

_ 1

wij ‘ kcmaij

where

L exp(2i8%I’ZJ) - 1

O‘21,2.1 ‘ 21 kcm ' (11‘4)

Here I, L, and J are respectively the isospin, orbital angular

momentum, and total angular momentum of the system.

The first two terms of equation II-l, referred to as the s-

and p-wave terms, are the most important terms for the calculation

of pion-nucleus scattering. The third term, also a p-wave term,

is usually negligible for pion-nucleus calculations since the nucleon

spin is summed over, and will not be discussed further. The d-wave

and higher partial waves do not contribute appreciably until ener-

gies well above resonance.

The "i and wij and the s- and p-wave parameters are shown

in Figures 1 and 2, as a function of pion lab kinetic energy Tn.

They are computed from the parametrization of the n-nucleon phase

shifts given by Rowe, Salomon, and Landau (25), in which an analytic

function of energy is fitted to the quantity kc(2L+1) tan 621 20'

over the energy range 0-400 MeV. The advantage of such a parametri-

zation is that the scattering parameters derived from it vary
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kinetic energy.
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smoothly with energy, even at low energies, whereas the scattering

parameters calculated directly from phase shifts, even those that

have been smoothed, such as the CERN Theoretical set (26), are quite

noisy below about 80 MeV.

Several things may be noted. Although the phase shifts 521,20

are purely real below the threshold for pion production, ”cm + Ecm

= 2m + M, the scattering parameters are not; the imaginary parts

are zero only at zero pion kinetic energy. The real part of the

isoscalar s-wave parameter b0 is negative in this energy region,

corresponding to a repulsive s-wave interaction, and is nearly zero

at low energies due to a near cancellation of the two terms w1 and

2w3. The p-wave parameters c0 and c1 are dominated by the 6§3 phase

shift and display characteristic resonant behavior, the real part

crossing zero at the resonance energy and the imaginary part reach-

ing a maximum at this point. The parameter Re(c0) 1'5 positive 13910"

resonance, hence an attractive p-wave interaction in this region.

The quantity reguired for the pion-nucleus calculations is

the pion-nucleon transition amplitude tWN. This is related to the

pion-nucleon potential v by a Lippmann-Schwinger type equation.

nN _- - O nN _
t - v + v2wcmg t , (II 5)

0
where g is the propagattn‘ for a free pion; in momentum space

90 = 2 12 , (II-6)

-k + k0 + is
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The factor ZEEm’ where 5' is the relativistic equivalent of the
cm

reduced mass

=_fl_c_m__ ’ (11-7)

is a result of the use of the Klein—Gordon equation rather than the

Schrddinger equation for the pion. This point will be considered

in more detail in the discussion of the pion-nucleus scattering

equation. Matrix elements of tTTN between momentum states of the

pion and nucleon can be written

= 3 _ 1_ 1 ‘TTN I

lk’9> (2") 6(5 + E E B )t (Ecm’E cm) ‘

(II-8)

The transition amplitude and scattering amplitude can then be

shown (27) to be related in the nN center of mass by

 

TIN . _ 4'” I -

t (Ecm’gcm) - ' 25cm an(Ecm’Ecm (II 9)

Thus, the required pion-nucleon T-matrix is related in a simple way

to the experimental phase shifts.

2. The Pion Nave Equation

Before discussing the multiple scattering series expansion

for the optical potential, it is necessary to consider what form

the wave equation for the pion will take. The nucleus is quite
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massive and can be treated nonrelativistically. However, the rest

mass of the pion is not large compared to its momentum at the ener-

gies considered here and must be treated relativistically. Thus,

the Hamiltonian for the system must include rest masses and can

be written

p2

A+mx+v (HamH=uz+¥fi+n

where P and MA are the momentum and mass of the nucleus, and V

characterizes the interaction between the nucleons in the target

and the pion. The part of the Hamiltonian which describes the

internal dynamics of the nucleus has been neglected, assuming that

the excitation energies of the various nuclear states do not play

an important role. The Schrddinger equation for the system is then

2

[(k2 + m2)1 + M + J:—-+ VJv = E (II-11)
A 2MA

T‘i’

Goldberger and Watson (27) have shown that for |V|<<m and-%%%L << k0

s (m2 - m2)i, this equation is equivalent to a Klein-Gordon-like

equation for V,

(k2 + m2)v==(ET - v - M )21 (II-12)
A ZMA

In the pion-nucleus center of mass system

k = P2 (II-13)
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and equation II-12 can be written

-M
A 2 _ 2

T) + m 11 -(1-:T - MA - V) 1}! (II-14)

2 2

where the terms (g%—-V) and (g%—)2 have been dropped. Replacing

A A

k2 by -V2 and rearranging gives

{v2 + [(ET - MA)2 - m2] E— - 2(5

(II-15)

The quantity (ET - MA) can be evaluated by considering the pion

far from the nucleus, in which case the total energy of the system

is

k3
ET = w + MA + §_Aho (II-16)

Thus, equation II-15 can be written

(v2+k2-2Bv+§v0 w = o (II-17)

where Ziis.the reduced energy for the pion-nucleus system,

wEA

 

(11+ EA °
(11'18)

A similar equation can be written for the bound state case, but with

kg replaced by -K2. It is seen that equation II-17 is very similar
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to the usual Schrodinger equation but with (-2mV) replaced by

CfiV+§FL

Because the potential V depends on the coordinates of the

nucleons as well as the pion, V = V(rl,rz,...rA;r), equation II-17

is still an A + 1 particle equation. The formalism and approxima-

tions required to reduce this to a one-body equation for the pion

are discussed in the next section. Some simplification can be made

at this point by dividing the pion-nucleus potential into two

components,

v = vS + vEM . (II-19)

The potential VEM’ describing the electromagnetic interaction between

the pion and various nucleons, can be approximated by the Coulomb

potential VC due to a smooth charge distribution corresponding to

the measured proton distribution of a given nucleus. With this

approximation VEM = VC(r) depends only on the pion coordinate mea-

sured relative to the nuclear center. The strong potential VS is

assumed to be of the form

with r. the coordinate of the ith nucleon, E that of the pion. Note

that vi is just the strong part of the potential v of equation II-S.
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The strategy of the next section will be to ignore the Coulomb

potential and manipulate the wave equation with potential V = VS in

such a way that the nucleon coordinates can be integrated out. The

resulting potential, known as the optical potential, can then be

put in a wave equation for the pion that includes the Coulomb poten-

tial. This procedure is an approximation, the effect of which is

discussed in a later section.

One more approximation is made at this point; the VSVC and

V3 parts of V2 are dropped as they are small compared to the ch

and mVS terms. Then equation II-17 becomes

2 2

(-k + k0

e
l
e
l

<- 23V +- 200VS C )V = O (II-21)

where, in preparation for the calculations of the next section,

the momentum space form has been given.

3. The Multiple Scattering Series
 

The multiple scattering formalism (5) has as its starting

point the Lippmann-Schwinger equation (28),

1 = v + vcor , (II-22)

which is equivalent to the Schrodinger equation for a scattering

problem. Here the Hamiltonian is given by

H = H0 + V , (II-23)
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G0 is the propagator for the noninteracting pion-nucleus system,

 

O _ 1

G ‘ E - H0 + is ’ (11'2“)

and T, the transition matrix, is defined by

v0 = To , (II-25)

where w is the wavefunction which is the solution to the full

Schrodinger equation,

HO = Ew , (II-26)

and 0 is the solution to the equation without interaction,

H00 = E0 . (II-27)

An equation similar to the Lippmann-Schwinger equation can be

derived from equation II-17 by defining

 

1 = 2615

i = 251 (II-28)

80 = 1
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Then equation II-17 can be written

A AAOA

T = 1 + VG T (II-29)

and manipulated in the same way as the conventional Lippmann-

Schwinger equation. Note that T, V, and G are (A + 1) particle

operators. In this section equation II-29 will be rearranged in

order to make use of the knowledge of the pion-nucleon T-matrix

and in order to group all the largest terms together in such a way

that the nucleon coordinates can be integrated over, reducing the

problem to a one particle equation. By defining an Optical poten-

tial which includes these largest terms and solving the corresponding

wave equation, they can be treated exactly.

To derive the optical potential the infinite series implicit

in the Lippmann-Schwinger equation,

1 = 1 + 9609 + 0609609 + ... (II-30)

is rearranged in two ways. The derivation given here roughly follows

that of Eisenberg (29).

The first rearrangement groups together all interactions which

do not have the nuclear ground state as an intermediate state into

the subseries

1 + 98 (1 - p011 + 980(1 - P0)VG (1 - p011 + ...C
)

I
I

= 9 + 18 (1 - P0)fi (II-31)
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where P0 is the ground state projection operator |0><O|; (1 - P0)

projects onto all other states. It is to be hoped that the ground

state expectation value of this series converges rapidly, since

the matrix elements of V between the ground state and an excited

state are assumed to be much smaller than the ground state to ground

state matrix elements. Using the first result of Appendix B, equa-

tion II-29 can be written

1 = G + fiéopoi . (II-32)

This series contains all the large terms, i.e. those with ground

state intermediate states, and therefore is not expected to converge

rapidly. The ground state expectation value of equation II-32 gives

.1120;
‘ U 00 00 00 (11‘33)

—
1

>

I

00 00

where

G <olfi|0> , (II-34)
00

with similar definitions for 100 and 080. Note that GO is diagonal

in the nuclear states,

0
<nIGOIm> = Enamn . (II-35)
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Equation II-33 is now a one particle equation for the pion and can

be written as a Schrodinger-like equation with U00 as potential.

Thus the problem can be solved "exactly" (by computer), if U00 is

known.

The second rearrangement is motivated by the fact that the

nN T-matrix, not the potential, is the quantity closely related

to the experimental data. The terms in the expansion for O which

involve only the potential of the ith nucleon can be grouped together

to define a quantity similar to the free tTTN of equation II-5.

Writing

= 2 O1. (II-36)

and noting that

= 2 Q. , (II-37)
. 1
1

equation II-31 can be rewritten using the second result of

Appendix B,

=Z¥i+2 Z iméoi-Ph.

i' i jfi

(II-38)

+ 2 .2. 2. 1100(1 - P0)TJ-GO(1 - P0)Tk +

1 321 kfa
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where r. is defined by

0(1 - PO)¥. .. = v. + .T v1G 11 1 (II-39)

In order to relate 11 to the free pion-nucleon T-matrix tflN, define

__1_" d -.L"
Ti - 25 T1 an vi - 25 vi . (II-40)

Then

Ti = vi + vi[GO(1 - P0)2mii . (II-41)

The first result of Appendix 8 applied to equations II-41 and II-5

gives the relationship of 11 and the free nN T-matrix for the ith

nucleon th,

Ti = t?” + t?“ [00(1 - P0)23 - gOZEEm] Ti . (II-42)

As was pointed out by Kerman, McManus, and Thaler (6), the

antisymmetrization of the intermediate states can be exploited in

order to simplify equation II-38 for O. Let A be a projection

operator projecting onto completely antisymmetrized target states.

Note that A commutes with V, P0, and(¥)since these are totally

symmetric in the nucleon coordinates. Thus, assuming T and U will

always be taken between properly antisymmetrized states, equa-

tions II-29 and II-31 can be written
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i = {i + 960.? (11-43)

0 = v + 960(1 - PO)AO . (II-44)

Equations II-38, II-39, II-41, and II-42 can be rederived with the

operatoruaincluded, yielding equations of the same form but with

50(1 - P0) replaced by 00(1 - P0)A. Note that the $1 thus defined

are somewhat different than those defined in equation II-39. With

this change the matrix elements of the T1 in the equivalent of

equation II-38 are the same for all i, since with the antisymmetriza-

tion all nucleons are equivalent. Equation II-38 becomes

AA- AAO A

U - Ari + A(A - 1)TiG (1 - PO)ATj

(II-45)

22 0 A

)Aer (1 - P0)ATk + ...
“O

+ A(A - 1) TiG (1--P0

where i f j, j # k, and so on. The equation giving Ti in terms of

t?" is now

1. = t?" + tIN [G
O

1 1 1 (
1 - P0)126'- gozagm] Ti . (II-46)

The difference between Ti and t?” will be neglected; this is known

as the impulse approximation (30).

The final result, equation II-45, is the multiple scattering

series for O. The first term describes the scattering to all orders

from one nucleon, summed over all nucleons. The second term
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describes scattering to all orders by one nucleon, propagation,

and then scattering to all orders by a second nucleon. The third

term describes three such scatterings, and so on. The optical poten-

tial is given by

A

ZZMOPt = U00 5 <0|U|O> . (II-47)

Writing equation II-33 in the form of a Schrodinger equation and

including the Coulomb potential gives a wave equation much like

equation II-17 but involving pion coordinates only,

22

(v +kO - 2; (u + Vc) + g vE) ¢(r) = o (II-48)
opt

where o is the pion wavefunction.

It is, of course, impossible to calculate all terms of the

series for U, equation II-45. However, the first two terms and

a partial summation of the rest can be calculated if some approxi-

mations are made. This is the subject of the next chapter.

4. The Optical Potential-~Simplest Assumptions
 

To see the general features of the pion-nucleus optical poten-

tial, it is useful to construct the first order potential, arising

from the first term in equation II-45. The impulse approximation

is made, and kinematic corrections due to the transformation of

nN
t to the pion-nucleus center of mass, and to the difference between

w and '5, are ignored. Then
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nN

210(1) = A<O]2wtiopt 10> (II-49)

which, by equations II-8 and II-9, is

1 | _ 3 I I I

ZwUépg(§.f ) - A<0|(2n) 5(k + p1 - k - Bl)('4")an(E’E )|0>

(II-50)

*

Here |0> represents 00(p1,p2...pA) and <O| representsmb(pi,p2...pA).

The scattering amplitude th is given in equation II-l. Since

fflN(k,k') is independent of the nucleon momenta in this approxima-

tion, equation C-10 of Appendix C can be used to write

(1) . _ . _
Zonpt(k.k ) — - 4nAan(5.k )o(q) (II 51)

where p(q) is the Fourier transform of the nuclear density p(r),

normalized to 1, and q is the momentum transfer, q = k' - k.

Assuming a nucleus with N = Z and zero spin, isovector and spin

dependent terms can be ignored, and the optical potential becomes

sz§gfi(5.5') = - 4hA{bOo(Q) + c0o(q)5-5'1 (II-52)

in momentum space or

2du§;{(r) = - 4nA{bop(r) - y [cop(r)ig} (II-53)
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in coordinate space. The gradient Operators act on all functions

of r to their right (see Appendix C). Equation II-53 is known as

the Kisslinger potential (7). This is not the only choice for the

form Of Uégz, as will be discussed in the first sectioncfi’ChapterIII,

but it is the form adopted in this work.

As might be expected, the Kisslinger potential has s-wave

and p-wave parts which are respectively repulsive and attractive

for energies below resonance. The imaginary parts Of the potential

reflect the flux lost from the elastic channel, which process is

sometimes called absorption. However, it is important to make a

distinction between this process, in which the pion is present in

the final state with the nucleus in an excited state, and the pro-

cess not included in the simple Optical potential above, in which

the pion is absorbed by the nucleus and does not reappear. The

former process will be referred to as quasielastic, and the latter

as true absorption. At zero pion kinetic energy there is no energy

available for quasielastic processes, and the first order optical

potential is purely real.

Due to the p-wave interaction the Kisslinger potential is

"non-local" (more accurately, velocity dependent). The p-wave term

acting on the pion wavefunction can be written

Co? ip<r1yair>1 = coiya<r11~ty¢<r11 + coo(r)V2¢(r) . (II-54)

The first term contributes a surface peaked interaction. The second

term is somewhat troublesome, as it has the same form as the kinetic
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energy term but appears with opposite sign below resonance. The

difficulty can be seen more clearly when the Optical potential,

equation II-53, is put in the wave equation II-48,

{[1 - 411cop(r)]V2 + k3 + 4nbOp(r)-»4nCO[Yp(r)]-Y

- 20vC + v§}d(r) = o (II-55)

When Re(4hcoo) becomes greater than one, the v2¢ term changes sign,

giving rise to an attractive "potential" in which an infinite number

Of bound states can exist, with the peculiar property that pion

wavefunctions with more nodes correspond to more deeply bound pion

states (31). The pion wavefunction can be shown to have a logarith-

mic singularity at the point where the V20 term changes sign. With

p(r) z .17 fm.3 in the nuclear interior the requirement Re(4rrc0p(r))>1

leadsix>Re(c0)>-.47 fm3, a condition satisfied by c0 computed from

phase shifts in the entire low energy region. Higher order correc-

tions to be discussed in the next chapter, in particular the

Ericson-Ericson effect, reduce the strength of the p-wave term.

It is not clear, however, whether this reduction is sufficient to

avoid difficulties. It is to be noted that although the pion wave-

function is singular in the interior, its exterior behavior is not

anomalous, and the calculated scattering cross sections are perfectly

reasonable.

The anomalous behavior Of the Kisslinger potential is due,

Of course, to the approximations made, and in particular to the
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Off-shell extrapolation chosen. The introduction of form factors,

which eliminate the high momentum components, is one possible remedy.



CHAPTER III

THE FULL OPTICAL POTENTIAL

As noted in the introduction, the first order treatment of

the Optical potential described in the previous chapter was found

to be inadequate for the description Of pion-nucleus processes,

in particular the pionic atom level shifts and widths. This led

to studies Of kinematic and second order effects in the Optical

potential. In this chapter the various corrections tO the first

order Optical potential which are incorporated into the calculations

are derived.

The first section Of this chapter deals with the kinematic

transformation which was ignored in the simple Optical potential

of the last chapter, that is, the transformation of the pion-nucleon

T-matrix from the pion-nucleon to the pion-nucleus center Of mass.

In the second section, the higher order multiple scattering terms

are considered, in particular the second order s-wave term and a

partial summation Of the p-wave terms known as the Ericson-Ericson

effect. Terms which arise from true absorption are discussed in

Section 3. Other corrections, due tO the Pauli exclusion principle

and Coulomb distortion, are described in Section 4. Finally, the

full Optical potential is stated in Section 5.

31
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In order to give some indication of the effect Of the various

kinematic and higher order corrections in pion-nucleus calculations,

a representative set of differential elastic scattering calculations

is shown where appropriate. Calculations for the nuclei 160 and

208Pb at 50 and 162 MeV are given to illustrate the nucleon number

and energy dependence of the effects. Only n+ scattering is shown

in most cases, since the h' scattering shows similar changes. The

low energy data shown is that of Ref. 32 (diamonds), and Refs. 33

and 34 (triangles). The data at 162 MeV is from Ref. 35 (160) and

Ref. 35 (208Pb).

1. Kinematics
 

The pion-nucleon transition matrix T. = tIN which is required
1

for the Optical potential is simply related to the experimentally

measured scattering amplitude an’ defined in the nN center Of mass,

where |k| = |k'|. However, Ti must be known for k + p f O as well.

If one ignores the Fermi motion of the nucleons within the nucleus

Ti must be calculated in the pion-nucleus center Of mass. This

is sometimes referred to as the angle transformation, since it

involves the transformation of the angle between k and k' in the

p—wave term, among other things. When Fermi motion is included

the transformation depends on p as well as k. It is a straight-

N
forward matter tO relate tn for k + p = Q to the nN center of mass

~

amplitude for which 5 + p = 0. If, however, [kl f Ik'l in the frame

in which E + p = 0, some assumption must be made about the off energy

shell behavior Of tn”. An infinite number Of such assumptions exist.
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A complete theory of the pion-nucleon system would provide a unique

Off-shell extrapolation; however, such a theory does not yet exist.

N
The Kisslinger potential assumes that t1T is proportional

to b0 + c k-k' for all k and k'. A different off shell amplitude

can be Obtained if the scattering amplitude

fflN = b0 ,, Cok'k' (III—1)

is rewritten using

5-5' = %(k2 - qz) . (III-2)

which gives

- 1 1 2 -
an - b0 + c0 q (III 3)

1.. 12 1-1 =1_ °

where b0 - bO +-§ k c0, c0 - - 2 c0, and q k k. Th1s leads

to an Optical potential, with the simplifying assumptions of the

previous chapter,

2duopt(r) = -4n{béo(r) + c6[Vzo(r)]} . (III-4)

which is generally called the Laplacian model. Note that the V2

acts only on p(r), making this a local potential. The Equation III-2
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is only true on shell, therefore the off shell behavior Of these

two potentials is somewhat different.

Figure 3 shows a comparison of differential cross sections

calculated with these two potentials. The differences are pronounced,

especially at 50 MeV, where the two curves are Of quite different

character. At 162 MeV the curves have different magnitude but more

or less the same shape. The partial cross sections also show large

differences at 50 MeV. For 160 the reaction cross section calculated

with the Kisslinger potential is three times that for the Laplacian

potential, with a corresponding inequality in the total cross sections;

the elastic cross sections are about equal. For 208Pb the Kisslinger

reaction cross section is also greater than the Laplacian; however,

the total elastic scattering cross section for the Kisslinger poten-

tial is only about half that of the Laplacian, leading to a smaller

total cross section. At 162 MeV the cross sections are much more

similar; those of the Laplacian potential are slightly larger.

The Kisslinger and Laplacian potentials have been the most

popular models for pion-nucleus scattering and are easily transformed

to coordinate space. Another type of potential is known as the

separable potential because the k and k' dependence of the pion-

nucleon potential v is assumed to be of the form ig(k)g(k') in each

channel, leading to a t"N Of the form :g(k)g(k')D(E) in each channel.

The g's, known as form factors, reflect the finite range of the nN

interaction. This assumed form is quite useful in that the form

factors and D can be related to the nN phase shifts (37) and give
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a more realistic Off shell behavior for tn"; however, the coordinate

space potential derived from such a theory is of an awkward non-

local form.

The Kisslinger form will be adopted for the Optical potential

in this work. Because it is explicitly separated into s- and p-wave

parts it is best for pionic atom analysis and low energy scattering.

The form is convenient, also, for the calculation of higher order

terms. In the low energy region the Kisslinger potential parameters

vary slowly with energy. This is not true in the resonance region,

however. It has been shown that when higher order multiple scatter-

ing terms are included, taking account Of the correlations between

nucleons, Kisslinger and Laplacian potentials give similar results (30).

This is true since the interaction is Of short range and the cor-

relations insure that nucleons are not close together, so that the

potentials due to different nucleons are almost non-overlapping.

Thus Beg's theorem (38) is applicable, which states that for non-

overlapping potentials the scattering depends only on the on-shell

part of the potential.

Once the Off-shell behavior Of the pion-nucleon T-matrix is

chosen, all necessary T-matrix elements can be calculated. One

method Of doing this relativistically is given by relativistic poten-

tial theory (39). The process is more complicated than a Lorentz

transformation, since the T-matrix does not have well-defined trans-

formation properties (see Appendix D). The relativistic potential

theory provides a prescription (40) for relating <k',p'|t(ET)l5.B>.
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where ET is the total energy of the pion-nucleon system, to t(w,q',q),

where w is an energy parameter related to ET' The momentum q is

related to k and p, and q' is related to k' and p', by equation D-2

of Appendix D, which is equivalent to a Lorentz transformation to

the two-particle center of mass frame. Thus 3 = 5cm and q' = EOm'

It is to be noted that the B for the transformation (k,p)-+ (3,-3)

is not in general the same as the B for (k',p') +-(q',-q'). The

quantity t(w,q,g') with Iql = Ig'l is just the on-shell T-matrix

and with [3] # Iq'l is its Off-shell extrapolation.

The exact expression for <k',p'|t(ET)|k,p> in terms of

t(w,q,q') is given by equations D-5, D-6, and D-IO, along with an

expansion of the result in powers Of 02, where Q = k + p = k' + 2',

given by equation D—11. Keeping only the first term in the

expansion,

 

(Ei’Ellt(ET)lE’E> = (2W)3O(E| + E. - E - E)Nt(W,E'cmsEcm)

(III-5)

where

- EwE'w' (Ecm + wcm)(EOm + mlcm) '1

N ‘ E w E' w' (E + w)(E' + w') (III-6)
cm cm cm cm

and
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Note that

s-02+¥fi gm=mg+mhi

(III-8)

_ 2 21 _ 2 21
w - (k + m ) wcm - (kcm + m )

are not the same as the on-shell values usually represented by these

symbols.

The off-shell forms discussed previously were given for an'

Since tTIN is related to fTTN by

 
TIN . _ __ I

.

t (W’Ecm’Ecm) ‘ ' zwcm an(w’Ecm’Ecm) (III 9)

where

w _ wcmEcm

cm wcm + Ecm

an Off-shell form is needed for the reduced energy 5cm' This is

chosen tO be symmetric in incoming and outgoing particle energies,

d E d' E'

a = [ mfg .Cmf'g. ]* . (111-10)

wcm cm wcm cm

 

Taking the impulse approximation

T. = ti" (III-11)
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and recalling

T. = 251- , (III-12)

it is seen that Off-shell matrix elements of Ti also require an Off-

shell form for 5, taken as

 

__ w 'E' A

w = [wwEA+ EA 0). + 511] (111-13)

with EA and EA the initial and final energies of the nucleus.

Putting all these factors together gives

(5"EilTi(ET)IE’Ei> = '4i(2">3

(III-14)

E.
x 6(5' + P% ‘ E ' pi)==“ N fhN(w’Ecm’ 5cm)

In order to simplify this result, the nucleons and nucleus

are assumed nonrelativistic, so that

I
I

ME = E' = Eém = M and EA = EA = MA = AM . (III-15)
cm

This is not sufficient to make equation III-14 usable in a coordi-

nate space calculation, as w and w' still depend on k and 5'. There-

fore, w and w' are set equal to their on-shell values

w = mi = “o 2 (kg + m2)*, (III-16)
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With these approximations equation III-14 becomes

<E"B€IT1(ET)IE’21> = ’4“(2“)3

(III-17)

1 + e

x 5(E' + Bi ' E ' Bi) 1 + e/A an(w’Ecm’Ecm)

where

“o
e = TW' (111-18)

“0 w0cm 2
and the difference between WT-and -7W—3 of order a , has been

neglected. At 50 MeV e = .20; at 200 MeV e = .36.

The arguments of f-nN’ Ecm and kc'm, must be expressed in terms

of k, p, k'. and 2'. For this equation D-2 or equivalently the

Lorentz transformation can be used. The latter gives

~(:m ~ ~ y+1~o~

(III-19)

Eém = ’5' + é'Y'Wryfié' '5' ' m"

where

5*? E'+F

g = E w and § = E + w' (III-20)
 

To make these expressions tractable, only terms of first order in

g will be kept. (This is nearly equivalent to expanding to first

order in 6.) At T“ = 200 MeV <B> 3 .25 and the error due to the
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dropped terms is about 6%. With the additional approximations given

hiIII-ISand III-16, equation III-19 becomes

Mk - mop k - ED

 

 

5cm = M + mo = 1 + E

(III-21)

Mk' - wop' k' - cp'

k' = ~ ~ = :;____;;.

~cm M + “0 1 + e ’

and the p-wave term in fTTN is

. . 1 2

=-—-— [5°E'-€<E°E'+E"B>+€
p-p'] . (III-22)

~Cm ~Cm (1 + €)2 ~~

The last term is of order 62 and should be dropped. However, it is

an induced s-wave term and, as noted by Brown, Jennings, and Ros-

tokin (41), is important since the first order s-wave term is

unusually small. A more careful calculation, too tedious to be

given here, indicates that this is the only important 52 term.

Because the nucleon is part of a moving nucleus, the nucleon

momentum should be separated into a part due to the momentum of

the nucleus as a whole and a part due to the momentum of the nucleon

relative to the nucleus,

_ 1

E"KE+EO ””4”

However, this separation complicates greatly the process of trans-

forming from momentum space to coordinate space and only contributes
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terms of order e/A which are negligibly small for all but the lightest

nuclei. Therefore p and EU will be considered equivalent.
~

  

 

Let

2+9' 3*"
E: 2 E: 2

(III-24)

?=E-B 9=F-E

Then equation III-22 can be written

.I .. 1 .|_2 o

5cm 5 cm - (1 + 8)2 E E 1 + e E E

(III-25)

 

The T-matrix is now expressed in terms of pion-nucleus center

of mass quantities, and the first order term of the optical

potential,

-(1)- -zouopt - A<OlTil0> (III 26)

can be calculated. Omitting the spin term this is

26033.3; = -4wA<0!<2w>36<21+s-e;- 5'>{<1+e><bo+bls-zi>

2
1 g 2 I

+ (Co + “13'3"“ e 5"}. ' 23'“ " % q + 1'1. 2'2 “10>~

  

(III-27)
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where it is assumed that p3 = pj for j f i. The integrations over

ground state nucleon momenta of the various terms are given in

Appendix C. (This process is called Fermi averaging.) The result

is

azuggfi (~.g') = ~4n{pl[boo(Q) + eflb1<pp(q) - pn(q))]

+ p;1 [Coo(q) + enc1<pp(q) - pn(q))15-5'

- %.(1 - p11)[cop(q) + encl(op(Q) - pn<q))1q2

____(p1-1) c V( )} (III-28)
p1 0‘ q

where e1T is the pion charge, :1, p1 = 1 + c, and K(Q) is the Fourier

transform of 2M times the kinetic energy density of the nucleus,

given in equation C-13. The transformation to coordinate space gives

ad”<n=-Mm[bmo+eb(on>-pon1
Opt ~ 1 O n 1 p n

- pily-[coo<r) + enc1(op(r) - pn(r>)1y

+l<1-'h¥uoo)+ecm(o-o<nn
2 pl 0 nlp n

(P1 ' 1)

TCOK(Y‘)} . (111'29)
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The nucleon, neutron, and proton densities p, on, and pp are nor-

malized to A, N, and 2, respectively.

This method of treating kcm-kém is, of course, not unique.

2
One could, for example, replace q by 2kg - Zk-k', leading to the

optical potential

ZEUégz (r) = -4n{p1b0p(r) - c0Y°p(r)Y

2 (III-30)

(p1- 1)

pl

30 - p;1>coo(r) +- k COK(r)}

where isovector terms have been suppressed for simplicity. It should

be noted that any choice of kinematics must treat 5 and k' sym-

metrically; otherwise the potential is not Hermitian and the results

may violate unitarity.

The energy parameter w, given by equation III-7, is the energy

at which the scattering parameters should be evaluated and should

also be expressed in terms of Bi and p; before the integrals over

nucleon momenta are performed. This is not practicable, however,

and w2 is evaluated with ET and Q the total energy and momentum of

the nucleon and pion before collision,

w2 = (E + w)2 - (E + 5)2 . (III-31)

This is just the total energy in the pion-nucleon center of mass.
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It should be noted that the same results can be obtained from

much simpler assumptions (see for example Ref. 24). It is instruc-

tive, however, to begin with a theory which claims to be relativis-

tically correct and consistent. The approximations made are all

explicit and the calculations required to improve the model are

obvious, if not simple.

Figure 4 illustrates the effect on elastic scattering calcula-

tions of several choices for the kinematic transformation. The

calculation with a first order optical potential with no kinematic

terms, equation II-53 (dashed line), is compared to that with kine-

matics as in equation III-29 (solid line), equation III-30 (dash-

dotted line), and equation III-29 but without the K(r) term (dotted

line). It is clear that the choice of kinematics has a non-negligible

effect on the scattering from both light and heavy nuclei, not only

at low energies, but in the resonance region as well.

2. Multiple Scattering Corrections
 

Thus far only the first term of the multiple scattering series

has been used in the construction of the optical potential. In this

section the second and higher order terms of the series are con-

sidered. These modify both the s- and p-wave parts of the optical

potential. As the s-wave parameter bO is nearly zero, the second

order s—wave correction, first derived by Ericson and Ericson(10),

is quite important. The p-wave parts of the multiple scattering

series can be summed to all orders in the low energy limit, giving

rise to what is termed the Ericson-Ericson or LLEE effect (10) first



103

46

 

   

  

 

100

10

E
1

\
D s

E.

ca
‘0

\\ 100

b
'O

10

1

o.

1o 30

Figure 4.

 I'VTrYVIVI'VIIWY: losfiIfiv11r1rvy11't

50 MeV a ; 182 MeV

f1+ “10"” «+-

1 103

I 100

160 . 160

1 10

.

  

 

  

  

ZOBPb

.“ .

lv/‘uS .§. ‘ I § ‘

i. ' , .....

:‘ . '0'..... . ~.

.: § 4 .‘f‘\ . /// ‘
a .0 \. I

9' :1 \l

'1'
h

.'

I

80 90 120 150

9mm. [deg]

Comparison of calculations with no kinematic corrections

(dashed curve), full kinematics (solid curve), and alterna-

tive choices for the kinematic corrections (dotted and

dot-dashed curves).



47

discussed by M. Ericson (43), analogous to the Lorentz-Lorenz effect

in electromagnetism (44).

The second term in the multiple scattering series for U, equa-

tion 11-45, is

A(A-1)¥iEO(1 - P0)A¥j . (III-32)

Making the impulse approximation as before, the second order optical

potential can be written

2$U(2)(k,k') z <o|fi(2)10> = f <0lA(A - 1)(2w)36(gi+5'-91-5")

 

 

opt .. ...

x (-4n)?(k',k") 2 12 [1 ‘ |0><0l]
~ ~ “k" + k0 + 15

3 ' n
_ "

d3kll

x (2w) 6(22 +5 -22 - w—W M» (2 ,3
TI

(III-33)

where p% = pi is assumed for i f 1, 2, and f'is the pion nucleon

scattering amplitude with the kinematics derived in the previous

section included,

We?) = p1(bo + has) * p17 (.0 + elm-'5'
(III-34)

- %(1 - p11)(c0 + C1E'I)q2 + p1(1 - p'l'l)2 c0 K(Q) -
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. “0
Here p1 = 1 + a with e = 1T“ As the last two terms are already

small, their contribution to the second and higher order optical

potential is neglected.

The second order s-wave term is generated from the s-wave

parts of f(k',k") and f(k",k). The two terms of equation III-33,

from the 1 and |0><O| in brackets, can be evaluated using equa-

tions C-27 and C-9 of Appendix C, respectively. The result is

2314345,?) = <-4">2 1Lir-l- PE “3 + 2b§>c<r’:'>

-i(k'-k")°r -i(k"-k)-r'

x o(r)p(r')e ~ ~ ~ e " ~ * (111-35)

3 3 1 d3k"
r d r'

-k"2 + k + is (2n)3

 xd 2

0

where

2

3j (k Ir - r'l)

 

Note that the first term on the right-hand side of equation C-27

exactly cancels the |0><O| term. The integration over terms in 5"

gives

 

. "O '
ik le

feik (If-f ) 1 d3k" = _ _1___[_T__e0 ~ (III-36)
_ku2 + k + is (2W)3

4“ x
~

2

0

where x = r - r'. Equation III-35 becomes
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—-(2) . _ 2 5L:_;. 2 2
2.1155 (5.5 > - 4an A (no + 2b1) [pm

-i(k'-k)-r -ik-x eikolfl 3 3

x e ” ” ” [(-) C(x)p(r')e ” ”-——T—T—- d x]d r
X

2 2 '1(k"k).r 3

=4np1——A——(b0+2b1) fp(r)e ” " ~Idr

(III-37)

The integral I, sometimes denoted <%>corr’ can be performed assuming:

(1) an on-shell approximation, 5 = ko; (2) a specific form for the

correlation function; and (3) p(r') approximately constant over

the region in which C(x) is large. With the Fermi gas model value

for C(x), equation C-28, and p(r') z 35%;-, the integral I can be

done analytically for k0 = 0 or numeri3cflally for any given k0. For

k0 = 0 the result is

3kF

10 =71?- . (III-38)

With I approximated by a constant for a given k0, equation III-37

is a function of q only and can be Fourier transformed, giving
~

25U§§)(5) = 4np§ fl—g—l (b3 + 2b§)1p(r) . (III-39)

Ericson and Ericson (10) made somewhat different assumptions in

their derivation of the s-wave effect, leading to a term in p2(r).
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The form given here is taken from Krell and Ericson (45), and requires

slightly less radical assumptions.

The value of I, obtained by numerical integration, is shown

in Figure 5 as a function of pion lab kinetic energy (solid line).

In order to obtain a value of I for low energy scattering Thies (18)

ikox ikO-r

expanded e and e ” to first order in k0, resulting in

3k

____5

IT - 2n .+
ik0 (III-40)

As can be seen in the figure, this is not a good approximation above

about 10 MeV, as the real part of I falls quickly from its zero

energy value égg” and the imaginary part does not follow k0 (dashed

line). Both real and imaginary parts of I go to zero at high ener-

gies, the imaginary part falling off more slowly than the real part.

Because the second order s-wave term is proportional to p(r),

it can be combined with the first order s-wave term, giving

zauéglcg) = -4np1[30p(r) + eflblopm - pnnm (III-41)

where

-- _ A -1 2 2 __
b0 - b0 - p1 A (bO + 2b1)I . (III 42)

Figure 6 shows b0 and Eb as a function of pion kinetic energy. As

expected, the difference is greatest at low energies and also of

greatest importance, as b0 is small there.
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tion included, b0, as a function of pion lab kinetic

energy.
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In Figure 7 differential cross sections calculated with the

optical potential including the second order s-wave term (solid

curve) are compared with those calculated with the first order

optical potential equation III-29 (dashed curve). Also shown at

50 MeV is the effect of treating I in equation III-42 in the zero

energy approximation, I = :;E-(dotted curve). At 50 MeV the second

order s-wave term makes an appreciable difference, especially at

backward angles. It has no effect at all, however, in the resonance

region.

The second term of equation III-33 to be considered is the

s-p interference term. This arises from

ilE',E")?(k".5)==(bo i b1E'I)(Co * c 5'3)(5'°5" + EHOE)
~

(III-43)

and is zero by symmetry.

The second order term due to the p-wave parts of f(5'.5")

and f(k",k) in equation III-33 is

 

-m) 2 5(Wkuu"p
211Upp (E,E )= (4'”) 2(A A ' 1)p1 f<0l(2fl)

_2ku + k3 + i8

XMfi+E'-h-kWU-IW¢HM%++k"- W'k)
~

d3k"

(hfi

 

x (Co + C13'11)(C0C13 32’1”)

(III-44)
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The operator (k'-k")(k"'k) can be written as the sum of a second

rank tensor and a scalar in k",

I. II n. = I II II _ l 112 l 112 . l _

(15 '5)“: 5) 123 kikjEkikj 3 513k ]+ 3 k 55 (11145)

The tensor part is negligible at low energies and will be ignored

at all energies considered here. As in the s-wave term, the inte-

grals over nucleon momenta give the Fourier transforms of functions

of r and r'. The remaining terms in k" can be integrated over as

 

before,

. u. . ik x

..2 1 ‘5 (5’5) d3k" _ 2 1 e 0
k 2 2 e --j§ - 'Vx[' zf"‘jf" ]

-k" + k0 + 15 (2n n

(III-46)

where x = r - r' and x = |x|. This gives two terms,

L v2 elkox = -5(x) - 539—159: (III-47)
4n X X 4n x °

 

In the zero energy limit only the first term contributes, giving

r = r'. As was noted in Appendix C, the first term in brackets

in equation III-44 gives zero contribution for r = r', assuming

hard core repulsion between nucleons. Equation C-9 gives for the

second term



1:15.15.» =1 >2——- *1m
.(k k.” (III-48)

+ t3c1(pp(r) - pn(r))]2 e1 ~ ” kk''d3r

in momentum space or

Zwéghr) = -(44102 éLA—l V-[cooM + t3c1(op(r)- on(r))]2y

(III-49)

in coordinate space.

The p-wave terms can be calculated to all orders 'hi the

zero energy limit, assuming tensor terms in the intermediate momenta

do not contribute. The delta functions which appear,6(r-r')6(r'-rf0

and so on, insure that only the P0 pieces of the (1 - P0) operators

are nonzero. Thus the Nth order p-wave term is proportional to

pN(r). To all orders the p-wave terms are

ziupph) = 3°4npilcoo(r) m§0 [- fl31 LA—l‘ copilo(r)]"‘y

-1 (111-50)

411pl cop(r)

V 1

1 - [- 531 A 5,1—1 pilcooh‘fl ”

 =V°

where the isovector terms have been suppressed for simplicity. This

is the Ericson-Eriscon or LLEE effect, with A = 1.

The Ericson-Ericson effect can be calculated more carefully,

giving a term of the same form but with A different from one. The
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best value for A has been a matter of dispute. Recent calculations

by Brown, Jennings, and Rostokin (41), including n, p, and w meson

intermediate states and taking into account the finite range of

the pion-nucleon interaction, yield a value for A greater than one.

They note that although the finite range of the interaction causes

a reduction in the Ericson-Ericson effect, as noted by Eisenberg,

HUfner, and Moniz (46), other terms strengthen it, the net effect

being a value of A which is about 1.6 or higher (47). As their

calculations were done in the low energy limit, their conclusions

apply to the low energy region only. Oset and Weise (48) have also

made an estimate of A for low energies, based on calculations in

the isobar-hole model. They give a value for 1 in the range

A = 1.2 - 1.6. For this work the value A = 1.6 is ad0pted as

reasonable.

In the case of nonzero pion kinetic energy each term in the

sum, equation III-50, should be modified by the effect of the second

term in equation III-47. However, the second term is much more

difficult to manage than the first, therefore its effect is calcu-

lated here to second order only, giving a rough idea of its impor—

tance. The second order term is quite similar to the s-wave term,

and can be evaluated in a similar manner, giving

“1'! 3
2 % kgk-k'kg + 2%): fp(r)e d r ,- 41T A—A"l p1

(III-51)
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where I is defined in equation 111-37. The p-wave optical potential

in coordinate space is, with the inclusion of this term,

 

%gufl—fi—l 1 p11 [cop(r)i-t3cl(pp(r)"On(r))]
~

-1

U (r) = 4nV°{ ”1 [cop(r’ * t3¢1(op<r> - on(r))]

pp
1 +

 

+ A A 1 PIIC'D(P)} y

(III-52)

where

+ 2c§)1 . (111-53)

Note that the isovector part of the c' term has been neglected.

Figure 8 gives the energy dependence of c', as compared with

that of co. As c' goes as k3 it is small at low energies, and dies

away at high energies due to the falling off of both I and the

p-wave scattering parameters. It is, however, a large effect in

the resonance region.

In Figure 9 the effect of the Ericson-Ericson correction is

illustrated. The differential cross sections calculated with only

the first order p-wave term (dashed curve) are compared with those

calculated with the full Ericson-Ericson effect with A = 1.6 (solid

curve), with A = 1.0 (dotted curve), and with the Ericson-Ericson

effect to second order only, A = 1.0 (dash-dotted curve). At 50 MeV the

differences are quite large; at 162 MeV there is a difference at

backward angles between calculations with and without the



59

 

0.50
l
f
m
'
l

C

0.001R
e

  

0.50 >

(
f
m
'
l

C

 

o-oc : ‘A : 4'” 4‘

I
n
1

 
100 200

TnIlob] (MeV)

O
v
i
v
i
v

  
 

Figure 8. The parameter c' compared to the first order p-wave

parameter cO as a function of pion lab kinetic energy.



60

103
 

5
T 1 I I I 1' I I V I I fat I T 7 lo

50 MeV 162 MeV

fl+ 10“: «+

100 \ 103.

 

#111W11t1fvyivjw

 100 _

O O

I

1
1
1
1
1
4
1

   

180

10 10

O

i
J

1
L
L
1
1
1
I

   0.1~

10‘?

100 10“

d
G
/
d
Q

[
m
b
/
s
r
l

103

100

10

10

g
-
o

.
.
.
.

0.1

10'2 111$4110-311111IJ1L11l 1 l 1 L4! 1

80 90 120 150 0 30 60 90 120 150

Own. [deg]

Figure 9. The effect of the Ericson-Ericson correction to the

p-wave, A = 1.6 (solid curve) and A = 1.0 (dotted curve),

compared to calculations with no correction (dashed curve)

and with the correction included to second order only,

A = 1 (dash-dotted curve).



61

Ericson-Ericson effect, but almost none between the full effect

and the second order approximation to it.

Figure 10 shows calculations with (solid curve) and without

(dashed curve) the c' term. Because of the crudeness of the calcula-

tion it is likely that the effect is greatly overestimated, espe-

cially at higher energies. Other terms such as the tensor terms

may also begin to contribute in the resonance region. Therefore

this term is dr0pped in future calculations.

One other comment should be made about the Ericson-Ericson

effect. The pion-nucleus T-matrix given in equation II-30 can be

expressed in terms of :1, using the same reasoning that leads to

II-38. The result is (29)

£=~r. +22 $.80; +2 2 Z $160$jéoT

i i jfi j i jfi kfj

(III-54)

This series, the Watson multiple scattering series for T, is just

the Born series with an effective potential :1. Using the same

arguments which lead to the Ericson-Ericson effect, it is seen that

the second term of equation III-54 is zero. Thus the first Born

approximation should be a reasonable approximation to the full cal-

culation. This argument breaks down, of course, for 1 f 1.0.

3. True Pion Absorption Terms

The conventional multiple scattering series includes only

intermediate states consisting of one pion plus the nucleus, since
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the T1 in the multiple scattering series correspond to pion nucleon

scattering. Because the pion is a meson, however, it can be absorbed

on one or more nucleons, resulting in intermediate states with no

pion. This process gives a non-negligible contribution to both the

real and imaginary parts of the optical potential, and is especially

important at low energies. The parametrization of this process as

terms in the Optical potential is discussed in this section.

Analogous to the scattering T-matrix T, define an absorption

operator 1 and emission operator 1+ for the pion, describing respec-

tively the processes Nn + N and N +an. Although there is some

contribution from pion absorption on one nucleon at very low energies,

the dominant absorption mechanism is two nucleon absorption, in

which the pion scatters from one nucleon and is absorbed by the

second, with the two nucleons sharing the kinetic energy due to

the disappearance of the pion mass. The lowest order optical poten-

tial term due to such a process can be written

<01A(A - 1)TGO(1 - P0)MTGN(1 - P0)ATGO(1 - P0)ATIO>,

(III-55)

where GN is the propagator for the nucleus. Although this is, in

a sense, a fourth order term, it has a large imaginary part,

describing flux lost from the elastic channel due to true absorption

of the pion. At low energies the other imaginary terms in the
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optical potential, due to quasielastic processes, are nearly zero,

and the absorption terms make the dominant contribution.

In their discussion of pionic atoms Ericson and Ericson (10)

introduce absorption by defining a pion-two nucleon amplitude

describing pion absorption and reemission,

W
= B0 + C 'k' (111-56)

2) 0E2cm ~2cm

where the subscript 2cm refers to the pion-two nucleon center of

mass frame in which f(2) is defined. The B0 and C0 can be deter-

mined in principle from the various amplitudes of the angular momen-

tum and isospin states of the pion—two nucleon system. A fair

amount of data does exist for the reaction n + d +rN + N, but it

is difficult to eliminate effects of deuteron structure from the

amplitudes.

The amplitude f(2) can be related to expression III-55 by

 

defining

¥(2) a $80(1 - P )AT+G (1 - P )118°(1 - P )1? (111-57)
0 N o o

and

T(2) 1 1 ;(2) (III-58)

“(2)

where'Ekz) is the reduced energy of the pion-two nucleon system in

that system's center of mass. Then the impulse approximation gives
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;(2) 1 _4flf(2) (111-59)

Equation III-57 may include more than s- and p-wave terms; however,

the first two partial waves are assumed to dominate.

As the amplitude f(2) is defined in the pion-two nucleon center

of mass, a kinematic transformation to the piononucleus center of

mass is required for 1(2). The results derived in Section 1 for T

can be immediately applied to 1(2) with the substitution M +42M

in the kinematic factors. Thus the lowest order absorption terms

in the optical potential are

zauggis) (5,5') 2 <0|A(A - 1)r(2)10>

= <o|(2n)3a(5' + Bi + g; - 5 - 91 - 92)(-4n) (III-60>

x A(A - 11113230 + pglcog-g' - %(1- pglxoqzilw

where the term analogous to K(r) has been neglected. Note that the

details of the two nucleon absorption process are buried in the

parameters B0 and CO. By expression C-31 of Appendix C the Fourier

transform of equation III-6O is

-— (abs) _ -1 .
2onpt (r) - -4n[p28062(r,r) - p2 COY 02(r,r)Y

(III-61)

+ %(1 - PEI)COV202(r.r)
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The two-body density p2(r,r) is replaced with 92(r), assuming all

correlation effects are included in B0 and Co. This rather awkward

situation is due to the simplified form of equation III-60. A more

careful derivation is given by Rockmore, Kanter, and Goode (49).

They write the absorption term of the optical potential schematically

as

— (abS) I 2 * I I + I I I

zwuopt (§ ’§) ” A .lfw (EI’CZ’E3"°EA)U (EI’CZ’ 5 )

(III-62)

x G (r' r' r r )U(r r ° x)w(r r r r )d3r'd3r21‘Id3r
N ~l’12’~1’~2 11’12’ ~ ~1’~Z’~3°"~A 1 'i

where U and U+ are the two nucleon absorption and emission operators

and x and x' are the pion coordinates. The two nucleon propagator

GN is diagonal in momentum space,

 

1

G~<Ei’eé’21,22> = 6(21 - Ei)5(92 - 21> p§ pg

w-m-ffi-ie

(III-63)

neglecting interactions between the two nucleons. Let

r + r r' + r'

_ _ ~1 ~2 . _ ~1 ~2

E'ENEz B 2 3""2'

P - P

2=3%fi [=Q‘E1 :'=Q-ri

(III-64)
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Then the Fourier transform of equation III-63 is

H

"(28' RH“ ' E1)
G~<ri45é£1452> = f6

.1 , .

"(23* E) (E2 ‘ '32) 1 d3P d3p

2 2 3 3
w _ %fi__ %T__ is (2n) (2n)

(III-65)

Xe  

The dinucleon momentum E is, by momentum conservation, roughly the

same size as k, the incoming pion momentum. The relative momentum

of the two nucleons, p, is large, however, because of the kinetic

energy gained when the pion is absorbed. Therefore the 2; term

in GM is dropped. This gives

ip-(r - r') 3

G~(‘3"E"E’E)=4(B-E') fe‘ “' “ d”
1

2 3

= 6(R - R')G (r - r')
1 ~ pO 1 1

 

(III-66)

where p0 =‘VBM and

eipx

Gp(x) ~ x (III-67)

Putting this in equation 111-62 and making the coordinate trans-

formations III-64 gives
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—-(abs) . 2 E. E.
zwopt (5 .5) ~ A [1*(3-7,3+-§—, 5 5A)

x U+(R,r',x')6(R - R')Gp (r - r')U(R, ,x)
.... .. .. .. O- ., 11..

r

, 3+ %, r 5A)d3Rd3R'd3
m
l
z
-
s

. 3x¢(8- rdrigzdri.

(III-68)

The wavefunction product is expanded about 5, giving

(III-69)

where the functions f insure the proper correlations between the

two nucleons, f(0) = O and f(r) +-1 for r large. With zero range

interactions equation III-68 becomes a local potential and the U+

and U depend only on r' and r. Thus the absorption term of the

2 with the effect Of correlations includedoptical potential goes as p

in the integrals over 5 and 5' which give rise to the absorption

parameters. The lowest order absorptive terms in the Optical poten-

tial are then

26U§§25’(r) = -4w[p280o2(r) - pglcoy-p2(r)y

(III-70)

+ 111 - p511c0v2o2(r)]
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The only higher order multiple scattering terms due to absorp-

tion to be calculated here are those which contribute to the Ericson-

Ericson effect. The other terms involve long range correlation

functions of three or more particles, which are not well known.

It is to be hoped that they make only small contributions to the

Optical potential and can be ignored. The absorptive terms can

be included in a simple way in the Ericson-Ericson effect by replacing

2) given by equation III-59.T in the derivation by T + 1(2), with T(

As 1(2) is a two nucleon Operator, the delta functions Of position,

6(r - r'), 6(r‘ - r"), and so on, become delta functions of the

coordinates Of one particle and the center of mass of a pair Of

particles, or of the centers of mass of two pairs. The two body

density p2(r,r') is replaced by three and four particle densities.

It must then be argued that the nucleons in the pair are close enough

so that the three particle density is zero when the coordinate of

one particle corresponds to the center of mass of a pair, and simi-

larly with the four particle density and two pairs. With these

assumptions the Ericson-Ericson term is

Pilcoob‘) + PEICODZU‘)
25U(EE)(r) = -4nV° 4" V

opt ~ A-l -1 -1 2 ~

1 + 3 A—'_A [p1 COD(Y')+P2 CDC (7‘)]

 

(III-71)

for an N = Z nucleus.

With the form of the absorption terms determined, it is neces-

sary to choose the parameters B0 and C0. Rather than attempt to

construct these directly from n + d + N + N amplitudes, the results
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of calculations Of B0 and CO for nuclear matter by Riska, Bertsch,

Chai, and Ko (50) will be adopted. Only a brief summary of their

calculations will be given, as they are fully described in the ref-

erences cited, and are fairly long. Riska and collaborators write

the lowest order two particle absorptive term of the Optical

potential

U(abs)_ 1

t. E? 2:T f{ E. + - Eop ffi Ti w

 

f - in6(Ei + w - Ef)}Tfi

(III-72)

where P stands for principle value. The Tfi are the two nucleon

absorption and emission operators, with i and f labelling the nuclear

states. Note that this expression is simply related toequation III-57

for 1(2), with the expression in brackets above equal to GN'

The Tfi are Obtained from the evaluation of the diagrams shown

in Figure 11. For the s-wave, the rescattering vertex is described

by a phenomenological Hamiltonian (51),

H = 4.”. Tn—w ¢.¢w +411- __g.+-[WT911¢ , (III-73)

where 4+ and w are nucleon field Operators and ¢ and n are the pion

field Operator and the momentum operator conjugate to it. The coup-

ling constants A1 and 12 are determined by the n-N phase shifts.

The pion absorptiOn vertex is described by

H = - %N(Zo§7’)g.gp , (111-74)
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Figure 11. Diagrams of the s and p-wave processes included in the

calculation (50) of the absorption parameters.
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f2

where 4“ =0081.

The p-wave rescattering is assumed to be dominated by the A33

resonance, as shown in the p-wave diagrams Of Figure 11. Both n

and p intermediate states are included. The Lagrangians for the

various vertices are

LnNN ‘%“’+3'V(? I”

gO

LONN=-2-fi(1+l()1p(oxv):6

(III-75)

f + +

LnNA=FATZTVWThHC

90131.,

LpNA = T13(‘7 x B” T h°c°

where w is the nucleon operator, Q the delta Operator, which is a

vector-spinor in spin and isospin spaces, 9 the pion operator, and

E the rho Operator, which is a vector in spin and isospin spaces.

The symbols "+" and "~" to denote vectors are both used in order

to distinguish vectors in differint spaces.2 The values of the

coupling constants adopted are 4g = O. 32.-2% = 0.55, K = 6.6, and

90A = 9%: gp(l + K).

The vertex factors are combined with the propagator for the

intermediate particle to give the two nucleon absorption Operator

T. The initial and final nuclear states for which T is evaluated

are two nucleon states in nuclear matter, i.e. plane wave states,
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which are symmetric or antisymmetric in the two nucleon coordinates,

chosen so that the total wavefunction including space, spin, and

isospin parts is antisymmetric. The isospin and spin sums over

the two particle initial and final states are performed first, assum-

ing equal numbers of protons and neutrons. Multipole expansions

are made of the initial and final wavefunctions and T, and the

nucleon coordinates are expressed in terms of the center of mass R

and relative coordinate r, with the integral over R giving conserva-

tion Of momentum. The sums over initial and final spatial states

are converted to integrals over momenta, and the final integrals

are performed numerically.

The s- and p-wave optical potential parameters thus Obtained

are shown as a function of energy in Figure 12. The imaginary part

of 80 increases with energy; the real part is approximately zero

at zero energy and becomes more negative with increasing energy.

The imaginary p-wave parameter shows a peak near resonance, as does

the real part.

It should be noted that the real parts of the absorptive terms

of the Optical potential are, unlike the imaginary parts, quite

sensitive to Pauli blocking effects, and somewhat sensitive to the

radius assumed for the hard core repulsion, and the form factors

assumed for the pion and rho meson. The inclusion of Pauli blocking

increases the values Of the real parts; thus the values given here

can be considered lower bounds on these numbers.
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Figure 12. The absorptive parameters BO and Co as a function of

pion lab kinetic energy.
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There are several problems with calculations of this type.

Because it is a nuclear matter calculation, the form of the absorp-

tion terms for a finite nucleus must be derived separately; hence

the inclusion of the argument of Rockmore et al. A more serious

problem is the possibility of double counting in the p-wave, as

part of the amplitude equation III-57 looks like a third order mul-

tiple scattering term with far Off shell components, and is there-

fore already included in the Ericson-Ericson effect derived in the

previous section. This problem is perhaps best resolved by a dif-

ferent approach, in which absorption and scattering terms are con-

sidered together at the outset.

Other calculations of these parameters have been performed.

The s-wave absorption parameters have been calculated at threshold

by Hachenberg and Pirner (52), who Obtain the value B0 = (0.375

+ i 0.144)fm4. This has a somewhat larger imaginary part and much

larger real part than the Riska value B0 = (0.0067 + i O.080)fm4.

G.A. Miller (53) has calculated the p-wave parameter; his values are

00 = (-0.05 + i 0.57)fm6 at 50 MeV and c0 = (-0.03 + i 0.72)fm6 at

150 MeV. Oset, Weise, and Brockmann (54) have also calculated C0,

obtaining (0.96 + i 0.64)fm6 at threshold, (1.20 + i O.88)fm6 at

50 MeV. These numbers can be compared with those calculated by

Riska et al., 00 = (0.287 + i 0.343)fm6 at threshold, (0.373 +

i 0.622)fm6 at 50 MeV, and (1.20 + i 2.55)fm6 at 150 MeV.

Figure 13 shows the effect of the absorptive terms on the

elastic scattering cross sections. Shown are calculations without
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to calculations without these terms (dashed curve) and

with the absorption terms included to first order only

(dotted curve).
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absorption (dashed curve), with absorption as discussed (solid curve),

and with absorption included to first order only, i.e. with the C0

term not included in the Ericson-Ericson effect but added separately

(dotted curve). Clearly absorptive terms Of the size calculated

by Riska and collaborators are not negligible even in the resonance

region. Although the absorption terms have both real and imaginary

parts, most of the effect on the scattering cross sections is due

to the imaginary parts both at low energies and in the resonance

region. Near resonance the effect of the real parts is not seen

at all except at very backward angles.

The reaction and total cross sections are not greatly changed

by the inclusion of absorptive terms. The reaction cross section

for 160 at 50 MeV increases by 30%; the total by 14%. For 208Pb

at 50 MeV the increase in the reaction cross section is only 7%;

the total cross sections are nearly equal. The differences are

much less pronounced at 162 MeV, with almost no difference at all

208
for Pb.

4. Pauli and Coulomb Corrections
 

Two corrections to the optical potential remain to be made.

The first is due to the Pauli exclusion principle, limiting the

intermediate states accessible to the struck nucleon. This correc-

tion has already been made for the isoscalar s-wave part by explicitly

calculating the second order term which includes the Pauli correla-

tions. The calculation of the corresponding p-wave term could only

be made in second order, but the Ericson-Ericson effect includes
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terms Of all orders. Therefore this method is abandoned and the

effect of the Pauli principle is approximated by reducing the

imaginary parts Of the parameters c0 and c1 by a factor O which

corresponds to the fraction of phase space available to the nucleon.

This is also done for b1, as the second order isovector term was

not calculated.

The Pauli factor Q is taken from the Goldberger (55) classical

calculation as given for pions by Landau and McMillan (56). The

particles in the nucleus can be thought of as occupying a sphere

in momentum space of radius kF = 1.36 fm'l. When a pion of given

momentum strikes a nucleon the nucleon may or may not gain enough

momentum to displace it into the allowed momentum region outside

the Fermi sphere. Q is the probability that for a given pion momen-

tum the nucleon will scatter into the allowed region, averaged over

nucleon initial momentum and scattering angle. Figure 14 shows 0

as a function of pion kinetic energy. As expected, 0 goes to zero

at zero energy, as no states are accessible, and approaches one

at high energies.

The absorption parameters also have imaginary parts; however,

as the nucleons gain a large amount of momentum when the pion is

absorbed, they are likely to be in unoccupied states. Therefore,

no correction is made.

Figure 15 shows the effect of the Pauli corrections just dis-

cussed (solid curve) compared to calculations with no Pauli factor,

i.e. Q = 1 (dashed curve). At 50 MeV 0 =0.31; at 162 MeV Q = 0.75.
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Although the Pauli effect is larger at 50 MeV, the changes resulting

from its inclusion are more pronounced at higher energies, where

the scattering is more sensitive to the magnitude of the imaginary

p-wave terms. As is evident in both Figures 13 and 15, the effect

of increasing the imaginary part of the Optical potential in the

resonance region is to raise the differential cross section curve

and make the minima shallower.

The second correction to be discussed is due to the Coulomb

interaction. This correction is necessary because the electromag-

netic part of the interaction was not treated consistently in the

derivation Of the Optical potential; the Coulomb potential was

ignored until the end of the calculation and then put back in. The

needed correction can be considered in the following way: When a

negative pion approaches the nucleus it is accelerated by the Coulomb

field; a positive pion is decelerated. Thus positive and negative

pions strike the nucleus with different effective energies. TO

account for this the scattering parameters are calculated at an

energy different from the incoming pion energy by EC’ the magnitude

of the Coulomb field at the nuclear surface, assuming the inter-

actionis.surface peaked. This Coulomb shift is an important effect

for large nuclei in the resonance region. It is not so important

for light nuclei and at low energies, where the parameters vary

only slowly with energy. Values Of Ec for various nuclei are given

in Table 2.
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Table 2. The Coulomb energy shift EC’ evaluated at the nuclear

surface, for various nuclei.

 

 

 

Nucleus Ec (MeV)

4He 1.6

7Li 2.1

93a 2.5

120 3.4

160 4.2

24Mg 5.4

27Al 5.7

28Si 6.0

400a 7.5

56Fe .9

58Ni 9.5

gozr 11.7

12OSn 13.3

208
Pb 18.1
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TO illustrate the effect of the Coulomb shift, the elastic

scattering of 0+ and n- from 16O and 208Pb at 162 MeV is shown in

Figure 16 with (solid curve) and without (dashed curve) the Coulomb

shift in the energy of the parameters. The main effect of this is

to deepen the minima for n" and make them more shallow for n+. This

is important, as the data for n+ and n' in the resonance region

are quite similar, but the calculations give pronounced differences

when the Coulomb shift is not included.

5. The Optical Potential

The various pieces can now be put together to give the full

Optical potential,

zwuopt<r1 = -4. P1[EOO(F) + enbl<pp<r) - On(r))] + P23002(r)

 

v { piltcop(r1 + eflc1<pp(r> - on(r))] + pglcopz(r) }

~ 4— 1.;lcc..(r>+e.c.<o.<r>-4401454044} ~

+ %(1 - pil)V2[cOp(r) + eflc1(pp(r) - on(r))] (III-76)

+ p1<1 - p1112c0K<r1 + 141 - pglivztcopzir>1

where all i-terms have been dropped. The parameters b0, c0, b1,

and c1 will be denoted single nucleon parameters, to distinguish

them from the absorption parameters B0 and C0. The parameters are
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to be calculated at the energy w - eflEc. The imaginary parts of

b1, c0, and c1 are multiplied by the Pauli factor Q.

For all calculations the difference in radii between the proton

and neutron distributions is ignored; thus pp(r) - pn(r) can be

replaced by Zifl-Mr). The parameters of the charge distribution

are taken from the available tables (57,58). For the light nuclei

the matter distributions are obtained from the charge distributions

by adjusting the size parameter such that

= Rc - 0.64 fm , (III-77)

where R is the radius of the equivalent uniform distribution,

R2 = §-<r2>. The density forms and parameters for various nuclei

are given in Table 3.

This completes the construction of the optical potential.

The next three chapters will deal with the calculation of various

experimental quantities using the potential equation III-76.



Table 3.
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The forms and parameters of the matter and charge density

distributions for various nuclei.

 

 

 

 

 

2 2
2 _ 2 2 2 -r la

o<==(1+ot-r—2)e'Hal por(1+a-"—2)e c

a C a

C

a(fm) ac(fm) a

7L1 1.67 1.77 .327

12C 1.57 1.66 1.33

16o 1.75 1.83 1.54

oaoc“[1 + 6(r'R)/Z]'1

R(fm) z(fm)

27A1 3.07 .519

40Ca 3.51 .563

55Fe 3.97 .594

63Cu 4.21 .586

9°2r 4.83 .496

1205n 5.32 .576

208
Pb 6.46 .549

 



CHAPTER IV

PIONIC ATOM LEVELS

Measured pionic atom level shifts and widths provide an impor-

tant test of the optical potential at essentially zero pion kinetic

energy, as the data furnish information about the overall strengths

of the s and p-wave parts of the real and imaginary potential. As

several approximations were made in the low energy limit, the poten-

tial form should be most reliable at zero energy. The parameters

derived from "N phase shifts are not well known at low energies,

however; the values used in this analysis are taken from the Rowe,

Salamon, and Landau (RSL) fit (25), extrapolated to zero energy,

and are known only within rather large error bars.

Pionic atom calculations are not new; however, a new analysis

is worthwhile and necessary because the data has improved greatly

in quality in the last few years, because the form of the optical

potential used in the present analysis is slightly different from

that used in earlier analyses, and because detailed calculations

of X and the absorption parameters are available for the first time.

It will be found that the optical potential derived in the previous

chapter, with parameters taken from the sources indicated there,

does not reproduce the pionic atom data. However, the form can be

used with fitted parameters to give an excellent description of

the data.

87
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The first section of this chapter describes the general features

of pionic atom levels. The details of the calculations of level

shifts and widths are discussed briefly in Section 2. The results

of calculations with the optical potential as derived, and the same

optical potential but with fitted parameters, are discussed in

Section 3.

1. General Features
 

A pionic atom is an atom in which a negative pion is bound

in the Coulomb potential of the nucleus in the place of an electron.

Because of its large mass, the pion orbitals are much closer to

the nucleus; the pion Bohr radius is £§-=-§%§ times the electron

Bohr radius. Thus, in the lower orbitals the pion is close enough

to interact strongly as well as electromagnetically with the nucleus.

This causes a shift in and broadening of the energy levels relative

to the positions and widths to be expected from the electromagnetic

interaction alone.

The energy shifts and widths are obtained from measurements

of the pion transition x-rays. As the strong interaction effects

are largest for the lowest 2 states, in which the pion is closest

to the nucleus, most of the difference between measured and electro-

magnetic transition energies and widths is. due to the lower state.

The general features of the data are evident in Table 4, which gives

the calculated electromagnetic energy of the transition, experimental

s-wave shifts and widths from Ref. 59, and experimental p-wave shifts

and widths from Ref. 60. Some d and f wave levels have been measured
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Table 4. Experimental pionic atom energy level shifts and widths in

keV from Refs. 59 and 60.

S'Wave

Nucleus (Ep - ES)EM AES(6XP) Ps(exp)

108 68.714 - 2.977 1 0.085 1.59 1 0.11

120 99.066 - 5.874 1 0.092 3.14 1 0.12

14M 134.740 - 9.915 1 0.144 4.34 1 0.24

160 175.413 -15 03 1 0.24 7.64 1 0.49

19F 220.952 -24.46 1 0.35 9.4 1 1.5

2ONe 270.952 -33.34 1 0.50 14.5 1 3.0

23Na 327.131 -49.93 1 0.71 10.3 1 4.0

Q'Wave

Nucleus (Ed - Ep)EM AEp(€XP) Pp(€XP)

27A1 87.270 0.201 1 0.009 0.120 1 0.007

2851 101.283 0.308 1 0.010 0.192 1 0.009

325 132.510 0.635 1 0.016 0.422 1 0.018

400a 207.674 1.929 1 0.014 1.590 1 0.023

55Fe 352.356 4.368 1 0.088 6.87 1 0.21

63Cu 439.016 6.67 1 0.24 11.4 1 0.8

64Zn 469.995 6.44 1 0.33 12.4 1 1.4
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also (61), but will not be discussed here. As might be expected,

the level shifts and widths increase with increasing Z. The s-wave

shifts are negative, indicating a repulsive s-wave interaction;

the p-wave shifts are positive, indicating an attractive p-wave

potential.

In the calculation of pionic atom shifts and widths the various

parts of the optical potential are correlated with the measured

quantities: the values of the real s- and p-wave optical potential

parameters determine the s- and p-wave level shifts, and the imaginary

parameters determine the corresponding widths, to a good approxima-

tion. As there are only four independent quantities to be measured,

only four optical potential parameters can be determined correspond-

ing to the overall real and imaginary s- and p-wave strengths. Thus

Re(b0) and Re(BO) cannot both be determined, nor can Re(c0) and

Re(C0) from data on one nucleus. Although it is possible in prin-

ciple that certain combinations of these related parameters reproduce

the A dependence of the data better than others, in practice all

reasonable combinations give similar results. That is, the combina-

tion Re(b0)p(r) + Re(BO)pz(r) acts like [Re(b0) + Re(BO)pav]p(r)

with pav independent of A. The same is true for the p-wave param-

eters. Although there are correlations between particular parameters

or combinations of parameters and particular measured quantities,

there is a fair amount of mixing. Some of this is due to the kine-

matics, which introduce s-wave terms with p-wave coefficients, some

to the Ericson-Ericson effect which mixes real and imaginary terms
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in the p—wave. Even without these, however, the s-wave optical poten-

tial strength affects the p-wave quantities, and to a lesser extent,

vice versa.

It was evident from early measurements of pionic atoms that

the first order optical potential with parameters determined from

phase shifts could not describe the data. The calculated s-wave

strength was too small, the p-wave strength was too large, and the

widths could not be explained at all, as the imaginary parts of

the single nucleon parameters are zero. This was the original moti-

vation for the calculation of the second order s-wave term, the

Ericson-Ericson effect, and the s- and p-wave true pion absorption

terms.

2. Details of the Calculations
 

The pionic atom level shifts and widths were calculated using

the program MATOM written by R. Seki (62). This is a position space

code which sets up and solves the eigenvalue equation for the pion

wavefunction, obtaining the complex eigenvalue corresponding to

the energy and width of a given state. The wave equation is first

reduced to an equation in r only, noting that the Optical potential

is independent of angle for a spherical nucleus,

u; + f(r)ui + [g(r) - £1£—%—ll]u£ = 0 (IV-1)

r

where
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f(r) CC; r_ 1 (IV-2)

and

9M (1- c(r))'1{c—'-§.fl + 1.12- m2 - 25% + v3 - b(r)} (IV-3)

with b(r) and c(r) the s- and p-wave terms of the optical potential,

Zonpt(r) = b(r) + Y-c(r)Y . (IV-4)

The first derivative term in equation IV-l is eliminated by a change

of variables,

m1 = (1 - c6016) (Iv-5)

and the equation becomes

u 1 C' 2 1 C" _

y + {3(j—j—E) + §'T-:-E'- f}y - 0 (IV'G)

where

f = 1.12 - m2 - szC + vE - b(r) - 81%;) (IV-7)

r

Equation IV-6 is set up in the nuclear interior and exterior, with

a matching radius chosen to be well outside the range of the strong

interaction. A guess is made of the eigenenergy w and the equation

is integrated in from infinity and out from zero using Milne's

predictor-corrector method (63), with the two wavefunctions compared
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at the match point. A new energy guess is made from the size of

the mismatch and the process repeated until convergence is reached.

The number of nodes is checked against the number proper to the

state being calculated at the end of each iteration and a correction

to the energy guess is made accordingly. The program includes electro-

magnetic effects due to the finite charge distribution of the nucleus,

vacuum polarization, and electron screening.

The program has been modified to include the full optical

potential, equation III-76. One defect has not yet been remedied,

however; only one form for the nuclear density is available, the

woods-Saxon form. It was therefore necessary for small nuclei to

derive the size parameters from the experimental rms radius and

skin thickness.

3. Calculated Shifts and Widths
 

Calculations of shifts and widths for the nuclei listed in

Table 4 have been performed using the optical potentialequation III-76

with single nucleon parameters derived from the RSL phase shifts

and the absorptive parameters of Riska and collaborators. Two dif-

ferent values of the parameter A were used, the Ericson-Ericson

value (10), 1=1,and a value in the range suggested by Weise (48)

and Brown (47), A = 1.6. The results are shown in Figure 17, where

the lines are simply drawn from one calculated point to the next.

The dashed line corresponds to A = 1, the dotted to 1 = 1.6. It

is not possible to say with certainty what parameter changes are

necessary to bring the curves to the data, but it appears that the
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Figure 17a.
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Z

Calculations of the s-wave shift as a function of 2

compared to the experimental data, with the parameters

of set 1 of Table 5 with A = 1 (dashed line), A = 1.6

(dotted line), and with the parameters of set 2 (solid

line). Data are from Ref. 59.
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Figure 17c. Calculations of the p—wave shift. Data are from

Ref. 60.



97

 

   
 

1 l 1 1 1 r l j I T 1 I 1 1 I I 1 r

_ P .

10— _

_ I

I-

d

I—\ I-
a-

>

<1)

4‘

U

1_ —I

I I

1- ..

I— .1

b d

|- ‘1

001— ~—

- -1

l— ..

1 1 1 1 1 1 1 J 1 1 #1 1 1 1 J L 4

16 20 2‘1 28

Figure 17d.. Calculations of the p-wave width. Data are from

Ref. 60.



98

s-wave is not repulsive enough, while the p-wave is too attractive,

especially for the value A = 1. The s- and p-wave absorption strengths

appear to be too weak.

A fit was then made to the data, varying the parameters Re(b0),

Re(c0), Im(B0), and Im(C0). No attempt was made to minimize the X23

the fit was done only in order to give some idea what parameter

changes were necessary to give reasonable results. The parameters

thus obtained are given as set 2 in Table 5 along with the parameters

of the first calculation, set 1. The results with the fitted param-

eters are shown as the solid curve in Figure 17. The calculated

quantities follow quite well the A dependence of the data, except

for the p-wave shift for the larger nuclei. This deviation is not

surprising, as the isovector parameters were not fitted. Comparison

of the numbers in Table 5 indicates that the parameters Re(b0),

Im(Bo), and Im(C0) must be increased greatly in magnitude in order

to reproduce the data. The parameter Re(c0) must be increased

slightly, although the required value is well within the error bars

of the value given by RSL for co at zero energy. Alternatively

the RSL value for c0 can be used if A is reduced to X = 1.5, with

a corresponding small decrease in Im(C0). Although the discrepancies

between the required single nucleon parameters and their phase shift

values can be resolved by assuming different values for Re(B0) and

Re(C0), no such remedy exists for the imaginary parameters, except

to the extent that Im(C0) is sensitive to the value of A. The one

nucleon absorption mechanism, not included in the optical potential,



99

Table 5. Parameters used in the pionic atom calculations.

 

 

 

 

Real Imaginary

Set 1 b0(fm) -0.029 0.

b1(fm) -0.13 0.

80(fm4) 0.007 0.08

c0(fm3) 0.65 0.

c1(fm3) 0.43 0.

Co(fm6) 0.29 0.34

1 1.0 or 1.6

Set 2 b0(fm) -0.050 0.

b1(fm) -0.13 0.

80(fm4) 0 007 0.19

c0(fm3) 0.66 0.

c1(fm3) 0.43 0.

C0(fm6) 0.29 0.90

A 1.6
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is not large enough to make up the difference; it is estimated at

not more than 30 percent of the two nucleon strength (64).' Thus

there is a real discrepancy at zero energy of about a factor of

two between the absorption parameters calculated by Riska and col-

laborators and those required to fit the pionic atom widths. Other

calculations of these quantities are somewhat nearer the fitted

values: Hachenberg and Pirner (52) obtain Im(BO) = 0.144 fm4; Oset,

Weise, and Brockmann (54) calculate Im(C0) = 0.64 fm6. This is clearly

a subject which requires further investigation.

The fitting procedure was also carried out for A = 1 so that

comparisons could be made with previous work. Comparison is still

20, V202, and K(r) terms in the opticaldifficult because of the V

potential used here, which have not been included in other analyses.

The effect of these terms is to decrease the s-wave repulsion, thus

requiring a more negative Re(b0) to compensate. It is clear that

the value of the p-wave absorption parameter thus obtained,

6, is smaller than that obtained by, for instance,

6

Im(CO) = 0.77 fm

Krell and Ericson (45) in their fits, Im(C0) = 1.12 fm , and used

in the calculations of Ref. 24. Krell and Ericson give an alternate

value, which gives better results for certain nuclei in their sample,

Im(C0) = 0.56 fm6. Fortunately the recent p-wave data is much better

than that available to Krell and Ericson, making a more definitive

result possible.

From the calculations it can be seen that the objective has

not yet been reached; the optical potential with parameters from
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theoretical predictions does not reproduce the data. The deficiency

in the s-wave repulsion is an unsolved problem, and will appear

alsoirlthe low energy elastic scattering calculations. The inadequacy

of the absorption parameters is a less serious matter, requiring

further refinements in the calculations and a more careful treatment

of the LLEE effect including absorption and multiple scattering

on an equal footing. It is encouraging that the A dependence of

the data is reproduced by the optical potential with fitted param-

eters. Because the theoretical parameters vary slowly with energy

in the range zero to 50 MeV, the information gained from the pionic

atom analysis is also relevant for the low energy scattering calcula-

tions to be discussed in the next chapter.



CHAPTER V

ELASTIC SCATTERING CROSS SECTIONS

In this chapter the pion-nucleus elastic differential cross

sections calculated using the optical potential equation III-76

are discussed and comparisons are made to the existing data. The

energy region considered in this study, 0-250 MeV, will be divided

into two regions: the low energy region, defined roughly as 0-50 MeV,

and the resonance region, around 180 MeV. The elastic scattering

cross sections from these two energy ranges have quite different

characteristics. The low energy scattering shows evidence of inter-

ference between the s-wave, p-wave, and Coulomb amplitudes; the

real parts of the optical potential are most important. In the

resonance region the scattering has a diffractive character, due

to the large imaginary part of the p-wave optical potential. The

scattering cross sections for energies between these two regions

have some characteristics of both.

The data in the low energy region at present consists of cross

sections for n+ on various targets at 30, 40, and 50 MeV. Unfor-

tunately there is as yet very little n' data, only on 12C and 208Pb

at 30 MeV. There is no data for pion energies below 30 MeV. Between

208% at50 and 100 MeV there are measurements of n+ on 160 and

80 MeV. Above 100 MeV there is an abundance of 0+ and n' scattering

data from various nuclei, clustered about the energies 115, 162,

102
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180, and 240 MeV. A characteristic sample of these data will be

compared with the theoretical calculations.

The first section of this chapter describes in a simple model

the general features of the low energy elastic scattering cross

sections. Section 2 includes a model for diffraction scattering,

relevant to scattering in the resonance region. In Section 3 the

computer program used for the calculations is briefly described.

Finally, the theoretical and experimental differential cross sections

are compared in Sections 4 and 5.

1. General Features--Low Energy Scattering

The low energy elastic scattering cross sections are charac-

terized chiefly by the interference between the s- and p-wave ampli-

tudes, the strengths of which are determined by the real parts of

the optical potential parameters, and the Coulomb amplitude. This

can be seen most easily in Born approximation. As was noted in

Section 2 of Chapter III, the second order p-wave term in the Born

series is suppressed due to short range correlations. Therefore

the Born approximation with a potential which includes only the

first order p-wave terms should give a good approximation to the

scattering from the full p-wave part of the optical potential includ-

ing the Ericson-Ericson effect. For an N = Z nucleus the amplitude

in Born approximation for scattering from the simple first order

optical potential equation II-53 is

219.f: = 150 + cok2 cos 61601) 1 2 6cm) (H)
q
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where the + or - refers to the pion charge and a is the fine struc-

ture constant. This can be rewritten

f = C[1-——l;——.+ 4y2 sin2«9 - 2y2(1 - x)] (v-2)
1 . 2 8 2

s1n -—
2

b c k4

with C = - 299, x = - ——9—, and y2 = —9——-. Thus, y measures the

4k2 kzc 9“

relative strength of the pgwave and Coulomb potentials and x measures

the strength of the s-wave repulsion relative to the p-wave attrac-

tion. The nuclear and charge form factors p(q) and pc(q) have been

ignored in equation V-Z, as they decrease only slowly over the range

2
of q relevant for a light nucleus and low pion energy. For 50 MeV

pions, the RSL phase shift values for the real parameters are Re(Eb)=

3
-0.042 fm and Re(c0) = 0.75 fm , giving C = -0.0083 fm, x = 0.13,

and y = 4.4. The parameters derived from the fit to pionic atoms

give the values x = 0.18, y = 4.1 at 50 MeV, assuming the energy

dependence of the parameters can be ignored. The behavior of f

is considered separately for 0+ and n'.

2 9-_1_.
§-- Zy’ thus the

position of the minimum is determined only by the p-wave strength.

For positive pions f has a minimum at sin

39°. The zeros of f areI
I
I

For the RSL value of c0 this gives 0

given by

51112; {(1 - x) 1 [(1 - x)2 i?) (M)

b
i
o
—
-

For y < 2 there are no zeros. For y > 2 two zeros exist for

x < 1 - g, none for x > 1 - §* This behavior is illustrated in
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Figure 18 which shows f+ (upper left) as a function of x. Here

the parameters were arbitrarily chosen to be y = 5 and x = 0.4,

0.6, and 0.8. The square of this amplitude (bottom left) indicates

how changes in the s-p interference parameter x produce one minimum,

which, with decreasing x, broadens, then becomes two minima separated

by a hump.

For negative pions f is monotonically increasing with 6 and

has a zero at

sin2 g-= %{(1 - x) + [(1 - x)2 +-£§]§} . (V-4)

Y

For the RSL values of the parameters this gives 0 = 86°. The ampli-

tude f_ is also shown as a function of x in Figure 18 (upper right)

along with If_|2 (lower right). Note that the position of the zero

of f_ becomes the position of the minimum in the differential cross

section, and thus depends on both the s- and p-wave strengths.

The full Born amplitude, neglecting the K(r) term, is given by

F = [ 5' + '1c k~k' - p1 - 1 c 2] (q)
B p10 “10.... 2pl 0qp

 

 

 

- 1
, -1 . ' pz 2 2 -

+ [p280 + P2 C05 5 ' 2P2 Coq JD ((1) (V 5)

2w€

- p-1 n“ oc(q) .
1 02

The Ericson-Ericson effect is not included, as noted above. Fig-

12
ures 19 and 20 show calculations for 0+ and n' scattering from C.
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11   
Figure 18. Amplitudes and corresponding cross sections for the

first order real optical potential in Born approxima-

tion. The vertical scales are arbitrary.
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The curves labeled (a) are Born approximation calculations with

reasonable values of the optical potential parameters and Re(Bb) =

0., -0.04 fm, -0.08 fm, and -0.12fm. The curves labeled (b) are the

full calculations, with the optical potential equation III-76 minus

the K(r) term, and the same parameters as were used in calculations

(a). It can be seen that the characteristic interference effects

persist when the kinematic and absorption terms are added to the

Born amplitude, and in the full calculation. Although the imaginary

part of the Optical potential has some effect, the differential

cross sections are most sensitive to the overall real s-wave and

p-wave strengths.

2. General Features--Resonance Region Scattering
 

Because the imaginary part of the p-wave optical potential

is large in the resonance region, the nucleus appears nearly "black"

to the pion. This gives rise to differential cross sections with

a distinctive shape, known as diffractive or shadow scattering.

A semiclassical description can be given for this type of

elastic scattering (65). Assume that the nucleus is completely

absorbing, so that all pions with impact parameters smaller than

R, the radius of the nucleus, are absorbed; those with impact param-

eter greater than R are transmitted. The scattering amplitude can

be written

”1 - 1

f(6) = Z (21 + 1) 711—— P£(cos 8) (M)

1
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where complete absorption is characterized by n = 0, complete trans-

mission by n = 1. The impact parameter b can be expressed in terms

of the angular momentum of the incoming pion, so that n2 = 0 for

2‘: kR, n2 = 1 for 1 > kR. The differential cross section is just

the square of f,

kR
do _ 1 1 2 _

d0 ' k2 192:0 (2 T 2)Pz(c°5 6” ' (v 7)

Assuming kR large and the angular range small, the discrete variable

1 becomes continuous, 1 +-%-+ kb, and P£(cos 9) is approximated

by Jo(kb sin 6), where do is the zeroth order Bessel function. With

these replacements equation V-7 becomes

01(kR sin 0) 2

sin e

 

R

do_1 2 . 2:2
d0 - k2 [.12 k bJO(kb Sln 0)db| R [

(V-8)

which corresponds to the classical formula for the diffraction scat-

tering from a black sphere.

In Figure 21 this approximate form is compared to optical

208Pb at 163 MeV. The radius usedmodel calculations for 160 and

is the effective nuclear radius, R = Ru + 1, where Ru is the radius

of the equivalent uniform distribution and A = %u The momentum k

is calculated for the incoming pion energy minus the Coulomb poten—

tial at the surface, k = [(w - ENEC)2 - m2]§, where EC is discussed

in Section 4 of Chapter III. The simple model does reasonably well
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in describing the magnitude of the curves and the position of the

208Pb. As it is derived in small angleminima, especially for

approximation, the model is not expected to do well near 90°. The

inclusion of the Coulomb shift in k reproduces fairly accurately

the differences in the position of the minima for 0+ and n'. It

is evident from these calculations that the imaginary part of the

optical potential is of principle importance in the resonance region.

3. Details of the Calculations
 

The differential cross sections were calculated using a modi-

fied version of the program PIRK, written by R.A. Eisenstein and

G.A. Miller (66). PIRK is a position space code which solves the

wave equation II-17 and determines the phase shift between that

wavefunction and the exterior Coulomb wavefunction. The wave equa-

tion is reduced to a set of equations in r only, noting that the

optical potential is independent of angles,

113+ f(r)u,; + [g(r) - 553—11111, = o (M)

where

f(r) = ccr' r_ 1 (HO)

and

9(1) = (1- c(r))'119—'—'§Il + 13 - 25vC - b(r)} (v-11)
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with b(r) and c(r) the s- and p-wave parts of the optical potential.

This is, of course, the same equation as was discussed in Chapter IV,

except that the VE term has been dropped, for reasons to be explained

below. Two complex coupled first order equations are formed from

the second order equation V-9, by defining v(r) = u'(r). These

are solved numerically by a fourth order Runge-Kutta method (63).

The differential cross section is obtained from

do
HI? = Ifc(0) + fN(0)|2 (V-12)

where the Coulomb amplitude is

fC(e) = ";_;?§2fg exp {2i[o0 - ncln(sin §)]} (V-13)

with

he = Zeflo‘i— (v-14)

and the nuclear amplitude is

1 21% em" - 1fN(e) = W E: (21 + 1)e [ 2 JP£(cos 9) (V-15)

where 02 is the Coulomb phase shift and 62 is the phase shift between

the Coulomb wavefunction and the solution to equation V-9.

The Coulomb wavefunctions and Coulomb phase shifts are deter-

mined for a nonrelativistic particle, i.e. they are solutions to
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the Schr5dinger equation with a Coulomb potential; no VE term is

included. Because the exterior wavefunction is calculated in this

way, it is deemed necessary to drop the V3 term from the calculation

of the interior wavefunction as well. It is found that the inclusion

of the V2 term in the equation for the interior causes a small amount

of instability of the results with matching radius. In any case,

the inclusion or exclusion of the V5 term in equation V-9 makes

only a small change in the differential cross sections for 208Pb

at low energies, where it is expected to be important, and none at

all for the light nuclei. Cooper, Jeppeson, and Johnson (67) look

at the effect of the VS term not only in the interior equation but

in the Coulomb wavefunctions and phase shifts as well. For 208Pb

at 100 MeV they find discrepancies larger than the experimental

errors. It is not clear that the discrepancies are larger than

the uncertainties in the theoretical calculations. however. There

is a need for further investigation on this point.

The program PIRK has been modified to include all the terms

of the optical potential, equation III-76. A routine to calculate

total and partial cross sections has also been added, as discussed

in Chapter VI.

4. Calculations-~Low Energy Region
 

Several elastic scattering calculations using different param-

eter sets are discussed in this section. The first of these calcula-

tions is that with the theoretical potential derived in Chapter III

and used in the pionic atom calculations of Chapter IV. The
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theoretical Optical potential parameters at 30, 40, and 50 MeV are

given as set 1 in Table 6. As before, the single nucleon parameters

are taken from the RSL phase shift fit (25), the absorption param-

eters from the calculation of Riska and collaborators (50), and

1 = 1.6. Note that the imaginary parts of b1, c0, and c1 listed

in the table are the RSL values multiplied by the Pauli factor Q.

The elastic scattering cross sections calculated with set 1

are shown as the dashed curves in Figures 22. Clearly, the curves

do not bear much resemblance to the data. The simple analysis of

Section 2 can be used to give an indication Of what is amiss in

the Optical potential. Comparison of the shapes of the 12C and

160 curves with those shown in Figure 19 suggests that the s-wave

repulsion in the Optical potential is too weak. The same conclusion

12C calculation in Figure 22fcan be drawn by comparison of the n"-

and the curves Of Figure 20.

The solid curves in Figures 22 are the result of calculations

with more negative values of Re(5b), listed as set 2 in Table 6.

These were chosen to give reasonable eyeball fits to the 12C and

160 data, and to have the same slope as a function of energy as

the original values. The other parameters of the Optical potential

were left unchanged. Although the fits are not perfect, the energy

and A dependence is well reproduced and, on the basis of the two

cases available, the n' data is also well described, including the

208
diffractive appearance of the 0' data for Pb at 30 MeV.
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Table 6. Parameters used in the low energy elastic scattering

calculations.

30 MeV 40 MeV 50 MeV

Set 1 ‘Bb(fm) -0.035 + i0.003 -0.038 + i0.004 -0.042 + i0.006

b1(fm) -0.132 - i0.001 -0.131 - i0.001 -0.131 - i0.002

80(fm4) -0.005 + 10.115 -0.010 + iO.130 -0.020 + iO.14O

c0(fm3) 0.70 + 10.007 0.72 + i0.015 0.75 + i0 029

c1(fm3) 0.44 + i0.004 0.45 1 i0 007 0.45 + i0.014

C0(fm6) 0.32 + i0.46 0.34 + 10.52 0.37 + i0.62

A 1.6 1.6 1.6

Set 2 'Bb(fm) -0.070 + i0.003 -0.073 + i0.004 -0.077 + i0.006

Other parameters as in Set 1.

Set 3 ‘Bb(fm) -0.057 + i0.003 -0.06O + i0.004 -0.064 + i0.006

b1(fm) -0.132 — i0.001 -0.131 - i0.001 -0.131 - i0.002

80(fm4) -0.005 + i0.22 -0.010 + i0.24 -0.020 + i0.25

c0(fm3) 0.70 + i0.007 0.72 + i0.015 0.75 + i0.029

c1(fm3) 0.44 + i0.004 0.45 + i0.007 0.45 + i0.014

C0(fm6) 0.32 + i1.02 0.34 + i1.08 0.37 + i1.18

A 1.6 1.6 1.6

0 0.19 0.24 0.31
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A X2 fit to some of the 50 MeV data using the same optical

potential as used here but without the K(r) term gives a minimum

in x2 3for A = 1.6 and Re(c0) = 0.75 fm , with Re(bb) = -0.06'fin(73).

The value for Re(c0) is almost the phase shift value at 50 MeV,

3
Re(c0) = 0.74 fm . The value for Re(Bb) is not as negative as that

required in the analysis presented here, due to the absence of the

K(r) term. Note that all the induced s-wave terms, the V20, V202,

and K(r) terms, are attractive, requiring more repulsion in the

Ebb term.

Another approach can be made to the question of choosing opti-

cal parameters for the low energy region. The analysis of pionic

atom shifts and widths gives the overall strength of the s- and

p-wave parts of the optical potential. This information can be

extrapolated from zero energy to the required energies assuming

some reasonable prescription.

As a first approximation, the optical potential parameters

are assumed approximately energy independent in the energy range

zero to 50 MeV. This is the approach taken in Ref. 24. The param-

eters for the calculations are taken from the fits to the pionic

data, set 2 of Table 5, with the exception of the imaginary parts

of the single nucleon parameters which are taken from set 1 of

Table 6. The results of these calculations are shown as the solid

curves of Figures 23. These are in fact rather close to the data

for the light nuclei and nearly reproduce the s-p interference.

They become steadily worse, however, with increasing A.
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The optical parameters are not hifact energy independent,

even in this energy range. One should, therefore, make some estimate

of the energy dependence of these parameters. For the p-wave param-

eter c0 this is a straightforward task; as the pionic atom value

of Re(c0) is close to the zero energy RSL phase shift value, these

values of c0 are adopted at all energies. The pionic atom value

for Eb is not near the value calculated from the RSL phase shifts;

therefore, it is extrapolated assuming the same slope as a function

of energy as the calculated value, i.e. the difference between the

fitted value of 56 and the RSL value at zero energy is added to

the RSL value at all energies. The real parts of the absorption

parameters were fixed in the pionic atom analysis at the values

calculated by Riska et al., therefore the calculated values are

used at all energies. In the first set of calculations, the imagi-

nary parts of the absorption parameters were kept at their zero

energy fitted values. These are the dashed curves of Figures 23.

In the second set of calculations, the dotted curves of Figures 23,

the absorption parameters Im(Bo) and Im(C0) were extrapolated also.

This can be done in two ways. The first is simply to assume the

slope as a function of energy of Im(BO) and Im(C0) is that of the

Riska calculations. A more general method is discussed in the next

section. The two give nearly identical results for 30-50 MeV. The

complete set of extrapolated parameters is given in Table 6 under

the heading set 3. A comparison of the dashed and dotted curves

indicates that the smaller absorption strength gives quitereasonable
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results, especially for the light nuclei, while the calculations

with the larger absorption strength are somewhat worse. The cal-

culations are rather insensitive to the imaginary absorptive param-

eters, and small adjustments of the real 5 and p-wave strengths

can at least partially compensate for differences due to the absorp-

tive strength. Note that both calculations with extrapolated param-

eters do better than those with the zero energy values. From these

calculations one can conclude that although the smaller imaginary

absorption parameters calculated by Riska and collaborators seem

to give Somewhat better fits to the data, the absorption parameters

deduced from pionic atom analysis are not inconsistent with the

data. In fact, the set of optical potential parameters deduced

from pionic atom shifts and widths fits the scattering data rather

well, considering the approximate treatment of the energy dependence.

As yet nothing has been said about the relative strengths of

the single nucleon and absorption pieces of the real part of the

potential. In fact, the scattering is quite insensitive to this;

the overall real 5 and p-wave strengths are the important quantities,

just as was the case for the pionic atom shifts. This is illustrated

for the s-wave in Figure 24, where the elastic scattering cross

12C at 50 MeV are calculated for two differentsections for n+ from

values of Re(BO) (solid and dashed curves) and several values of

Re(Bb), with the highest curves corresponding to the most negative

values of Re(Eb). The curves are equally spaced except at the most

backward angles, indicating the insensitivity of the calculation
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to the origin of the s-wave strength. A similar situation exists

for the p-wave. Thus, the low energy elastic scattering data yield

only a limited amount of information about the parameters of the

optical potential, and even less about the form of the potential.

The overall real 5 and p-wave strengths are roughly indicated, and

some wide limits are placed on the imaginary strength of the Optical

potential.

5. Calculations--Resonance Region
 

In this section several sets of calculations of elastic scat-

tering for energies above 50 MeV are compared with a sample of the

data in this energy region. The first set is again that with the

theoretical optical potential. It is not clear what value of the

LLEE parameter A should be used at these energies as both the simple

model(10), giving A = 1, and the calculations of Weise (48) and

Brown, Jennings, and Rostoken (41), giving A s 1.6, are made in

the low energy limit. There is as yet 1K) theoretical value for A

above about 50 MeV. It is convenient to choose the value A = 1.6,

as this was used in the low energy calculations. Calculations using

both values, A = 1.6 (solid curve).and A = 1 (dashed curve), are

shown in Figures 25. The differences between these two curves are

in each case not large, so that the choice is not a crucial one.

Both curves reproduce well the general features of the data, but

not the details. The best fits occur when the nucleus is blackest,

around 163 MeV,and for the larger nuclei. It is difficult to

analyze the optical potential in the intermediate energy range
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80-150 MeV, as the dependence of the scattering on the parameters

is not given by a simple model. It is not clear, therefore, what

changes in parameters would be required in order to fit the data.

Detailed fitting of this data, with a first order optical potential

which includes form factors, has been done by Stephenson et al.(76),

who vary the radius and skin thickness of p and the overall normali-

zation as well as the optical potential and form factor parameters.

Thus, it is difficult to correlate their information with the poten-

tial used in this investigation.

As the early calculations of resonance region scattering were

made with the Kisslinger potential with no modifications, it is

interesting to see whether the addition of the higher order correc-

tions, which are extremely important at low energies, improves the

fits at these energies. The results of Kisslinger potential calcula-

tions, with parameters from n-N phase shifts, are shown as the dotted

curves in Figures 25. Although these curves are closer to the data

in places, the inclusion of higher order corrections causes an over-

all improvement in fit for all nuclei at all energies shown here.

The second method discussed in the previous section for choosing

the potential parameters, using the zero energy parameters derived

from pionic atom analysis, can be applied at these energies also.

However, a more sophisticated method of extrapolation is required.

As noted before, the real p-wave parameter obtained from pionic

atom fits is quite close to the RSL phase shift value, when the

value 1.6 is adopted for A. Although the real s-wave parameter is
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not near the phase shift value, the resonance region scattering

is not very sensitive to the s-wave strength, and the RSL value

for Eb will be adopted. As the real parts of the absorption param-

eters were fixed at the values given by Riska and collaborators,

the only parameters for which an extrapolation procedure is required

are Im(BO) and Im(CO). In order to derive a simple procedure, the

assumption is made that in the matrix element of 1(2),equationIIII-57,

the dominant contribution to the energy dependence is from the scat-

tering operators T. Thus, the absorption parameters are assumed

proportional to the square of the single nucleon parameters. For

the s-wave it is necessary to include the isovector contribution,

as the isoscalar term b0 is small. The imaginary parts of the

s-wave parameters can be neglected, however, in this simple estimate.

The s-wave absorption parameter is therefore taken as (52)

Im(BO) = K1{[Re(b0)]2 + [Re(b0) + 2Re(b1)]2} (V-16)

where K1 is a constant of proportionality. For the p-wave, the

isovector terms are proportional to the isoscalar terms, due to

the dominance of the A33 channel, and need not be considered. The

imaginary part of the p-wave single nucleon parameter must be

included, however, as it dominates in the resonance region. The

p-wave absorption parameter is taken to be

2
Im(CO) = Kzlcol . (V-17)
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The constants K1 and K2 can be determined by evaluating equationsV>16

and v—17 at zero energy. with Im(Bo) = 0.19 fm4 and Im(CO)= 0.90 fm6

from Table 5, and the zero energy RSL values for b0, b1, and co,

the constants K1 and K2 are determined to be K1 = 2.6 fin2 and K2==2.1.

The absorption parameters obtained in this way are shown as a func-

tion of pion energy in Figure 26 (dashed curves), compared to the

Riska values (solid curves). Both absorption parameters derived

from pionic atom fits are higher than the calculated values at low

energies, but the simple extrapolation gives a flatter energy depen-

dence so that the calculated values overtake the extrapolated ones

in the resonance region. The peak in the extrapolated value of

Im(C0) is also shifted in energy compared to the calculated values.

Although the imaginary parts of the absorption parameters can be

estimated in this simple way, the real parts cannot, due to the

more complicated form of the real part of the nuclear propagator

GN in equation 111-57. (The imaginary part of GN is just a delta

function giving energy conservation.) The calculations of Riska

and collaborators must be used to give the energy dependence of

the real absorptive terms.

Calculations using this second set of parameters are shown

as the dashed curves in Figures 27, and are compared to the previous

calculations with A = 1.6, shown as the solid curves. Again, there

are not large differences between the two sets of calculations,

although the extrapolated parameters give slightly better fits on

the whole.
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It is not clear whether the parameters or the optical potential

itself should be blamed for the lack of detailed agreement between

theory and data. The form of the Optical potential is open to ques-

tion, as several terms were calculated in the low energy limit.

The concept of an optical potential in the resonance region has

been questioned by Weise (77), who deduces from isobar-hole calcula-

tions that the potential is too nonlocal to be treated in this simple

way at these energies. Unfortunately, detailed calculations, such

as the isobar-hole calculations, are quite complex and must be done

on a case by case basis. The optical model is the best simple

approach, allowing calculations over a wide range of energies and

nuclei.



CHAPTER VI

TOTAL AND PARTIAL CROSS SECTIONS

Before discussing the importance of total and partial cross

section calculations as a test of the optical potential it is useful

to define these quantities. The total cross section OT’ the cross

section for any kind of interaction to occur, can be divided into

two pieces due to elastic scattering and to all other processes,

CT = OE] + CR , (VI-1)

where o is the differential cross section integrated over angles.
El

The reaction cross section OR can again be divided into two parts,

due to true pion absorption, OA’ in which there is no pion in the

final state, and to quasielastic scattering, COE’ which includes

all processes with a pion in the final state. Note that in this

discussion the charge exchange cross section, OCX’ is included in

OQE' Thus

CT = OEl + GA + OQE (VI-2)

gives the various partial cross sections to be discussed in this

chapter.
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The total cross section and the partial cross sections 0A

and OQE are important because they are sensitive to parts of the

optical potential that the differential elastic cross section may

not be. In particular, 0A and OQE are sensitive to the imaginary

parts of the absorption and single nucleon parameters respectively

and can provide information about the relative strength of these

two parts of the potential which cannot be obtained from elastic

scattering. Unfortunately the total and partial cross sections

are difficult to measure, and the data are sparse. It is also not

clear how to divide the calculated reaction cross section into its

absorptive and quasielastic pieces in the model considered here.

Thus the analysis can yield only tentative conclusions at present.

The first section of this chapter gives a discussion of the

methods used in extracting total cross sections and forward nuclear

amplitudes from the data and of the theoretical quantities to which

these numbers correspond. In Section 2 the calculations of the

total cross sections and nuclear amplitudes are compared to the

data. The third section includes possible techniques for calculating

the partial cross sections. Calculations of GA and oQE are compared

to the experimental data in Section 4.

1. Extraction of Total Cross Sections

and Scattering Amplitudes

 

 

Before calculations can be made the term total cross section

must be redefined for any problem which involves the Coulomb inter-

action, because the total Coulomb cross section is infinite. A
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quantity must be defined which has this Coulomb cross section sub-

tracted, and which can be extracted from some set of experimental

data. Two experimental groups have defined and measured such a

quantity, Carroll et al. (78) and Jeppesen et al. (79). Their choices

will be described in the discussion given below. Both begin with

data obtained in a transmission experiment, in which the beam flux

is measured before striking the target, and the flux of particles

within a solid angle 9 centered on the beam axis is measured after

the target. The difference can be expressed in terms of a cross

section 0(9). Several cross sections can be defined relative to

this. (This discussion follows that of Cooper and Johnson (80).)

One cross section which can be extracted from transmission

data is the reaction cross section. Define

don
CRUZ) = C(Q) - £9 (19 71-5.— (VI-3)

That is, the flux lost due to reactions other than elastic scattering

is the total flux lost minus the flux that went into elastic pro-

cesses with angle greater than 9. The reaction cross section is

the limit of oR(O) as 9 goes to zero. The calculation of the reac-

tion cross section for c(Q) requires either a model for the elastic

scattering or measured differential elastic cross sections at all

angles.
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The cross section usually referred to as the total cross sec-

tion, also called the removal cross section, is defined as the limit

of

1 2 l *-

on) = 0(9) - £9 an Ifc| - 2Re [£9 an fch] (v1-4)

as Q + O. This is the quantity extracted by Carroll et al. (78).

Here the scattering amplitude has been separated into a Coulomb

and a nuclear part,

f(9) = fN(e) + fC(e) (VI-5)

where

f (e) = - ————:EL——-exp {2i[ 0 - n ln(sin 9)]} (VI-6)
C . 2 e O C 2

2k Sln -7

with

nc = Zena? (VI-7)

and

. 2i6
210 R

__l_ 2 e - 1] _
we) - 1k § (21 + 1)e [ 2 P£(cos a) (v1 3)

Note that the nuclear amplitude cannot be completely separated from

the Coulomb; fN still contains the Coulomb phase shifts 01' The

removal cross section measures flux lost to reaction processes and

the |le2 part of the elastic scattering. The extraction of 0T

'2
is difficult because one needs not only IfC which is calculable,
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*

but also Re(foN), for which a model of fN is required. It can

be shown (80) that the cross section OT defined in equation VI-4

can be related to the scattering phase shifts by

0T = -k—- Im[fN(O)] (VI-9)

where

215

~ 2 -

me) = 711% (29. + 1)[§——2—l]P£(cos e) (v1-10)

Note that fN differs from fN in the absence of the Coulomb phase

shift factor.

The quantity extracted by Jeppesen et al. (79) is oN(Q),

defined and discussed by Cooper and Johnson (80)

2
0N(Q) 0(Q) .I:Q Q I Cl ( )

The advantage of this definition is that only the known function

fc is required; no model is necessary for the full pion nucleus

interaction. Cooper and Johnson show that the limit of oN(O) as

Q + O is given by

UN = 4T"- Im[fN(O)] (VI-12)

The quantity UN has no direct physical significance, and in fact

is not always positive. If equation VI-ll is rearranged and a
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polynomial expansion in Q is made for the various terms, the follow-

ing form results,

on> = (0N + § Ana”)cos w + if ReEfN(0)]+ § Bnan]sin w

+ §cnn" (VI-13)

where

N = y log (Q/4n) - 200 (VI-14)

with

Y = if; (VI-15)

for positive pions. Here v is the pion velocity. The quantity

fN is given in equation VI-8. Thus if sufficient data exists at

small enough O so that the sums have only a few terms, the param-

eters 0N, Re[fN(O)], An, Bn’ and Cn can be determined. For large

Z the cos N and sin w terms can be distinguished and both Re[fN(O)]

and Im[fN(O)] (from 0“) can be derived. For small nuclei only

Im[fN(O)] is determined. A model for elastic scattering can be

used as an aid to extracting fN(O); the number of fitted parameters

can thereby be reduced. The role of the model in this analysis

is much less important than in the extraction of OT, however. The

chief difficulty in the approach of Cooper and Johnson is the problem
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of interpreting the results, as fN includes the Coulomb phase

factors eZIOl.

This completes the description of the two experimental quan-

tities related to the total cross section, OT and fN(O), and their

relation to the calculated pion-nuclear phase shifts. Theoretical

calculations of these quantities are compared to these data in the

next section.

2. Total Cross Section and Scattering

Amplitude Calculations

 

 

In this section two sets of calculations are presented for

CT and fN(O), corresponding to the two sets of parameters discussed

in Section 5 of the previous chapter. These are the theoretical

set including the absorption parameters of Riska, shown in the figures

as solid curves, and the set in which Im(B0) and Im(C0) are extrap-

olated from pionic atom fits, shown as dashed curves.

The first set of data to be considered is that of Carroll

et al. (78), who have extracted 0T, as defined in the previous sec-

tion, from data on natural Li, C, Al, Fe, Sn, and Pb at energies

from about 65 to 250 MeV. For the quantity fN required in their

analysis they used an optical model calculation with a first order

Laplacian potential and parameters from n-N phase shifts. They

adjusted the energy and width of the (3,3) resonance contribution,

however, to fit the position and width of the peak in the total

cross section as a function of energy.
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A comparison of the experimental and calculated total cross

sections is given in Figure 28. Although the calculations reproduce

the data for the light nuclei, there are significant discrepancies

for the larger nuclei, especially for n+. The calculations show

a much greater difference between n+ and n" total cross sections

at the lower energies than is seen in the data. It is to be noted

that the calculated cross sections are insensitive to differences

in the absorption parameters of the size to be found in the two

parameter sets.

It is difficult to draw conclusions from this data, as the

effect on the experimental cross sections of the model used in their

extraction is unknown. The dashed curves of Figure 3 give the result

of calculations with the first order Laplacian model with parameters

from n-N phase shifts. As can be seen, the fits are somewhat random,

208Pb. The effect of the varia-being reasonable for 160 but not for

tions made in the parameters in the fitting of the total cross sec-

tion peak is not clear. Thus no definite conclusions can be drawn

until the accuracy of the data has been assessed.

The second set of data to be discussed is that of Jeppesen

et al. (79). The data are from targets of Al, 40Ca, Cu, Sn, Ho,

and Pb and pion energies from 63 to 215 MeV. Although their analysis

is less model dependent, the interpretation of the trend in energy

or A of the quantity fN(O) that they extract is complicated by the

Coulomb phase, as noted in the previous section.
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The experimental and calculated values of fN(O), defined in

equation VI-8, are compared in Figures 29-31. Figures 29 and 30

27Al and 207Pb respec-illustrate the energy dependence of fN(O) for

tively; Figures 31 show the A dependence at 165 MeV. In each case

the data for n+ are indicated by circles, for n' by X's. Although

the general features of the data are well described, there are again

problems with details. The poor quality of the fits to the data

for 207Pb may be due in part to the neglect of the V3 term in the

potential, and its absence in the calculation of OR and the Coulomb

wavefunctions. The A dependence of the data at 165 MeV is quite

well reproduced, suggesting that the large discrepancies between

theory and the Carroll data seen for n+ on the large nuclei may

be exaggerated. A more detailed comparison of the two data sets

is difficult, due to the fundamental differences between the quanti-

ties OT and fN(O). As in the case of the resonance region elastic

scattering, the poor quality of the fits and the insensitivity to

moderate parameter changes demand a closer scrutiny of the optical

potential itself.

3. Theoretical Expressions for the Partial Cross Sections
 

Measurements have recently been made of the components of

the reaction cross section: the quasielastic, charge exchange,

and absorption cross sections, both as a function of energy for

one nucleus and as a function of A at a particular energy (81).

Although the reaction cross section can be calculated from the simple

expression (82)
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0R = - % f¢*(r)1m123uopt<r>Ja<g>d3r . (vi-16)

where ¢(r) is the distorted pion wavefunction, there is no well

defined prescription for calculating the various components of 0R

within the framework of the optical model. Thus some approximate

means of calculating OOE and 0A must be devised.

As the optical potential can be divided into single nucleon

and absorption terms, a first guess at the form of the partial cross

sections is

005 = - % f ¢*([)Im[2®zgt([)1¢(f)d3r (mm

and

0A = - % [f(r))Im[2uiUApt(r)]¢((3r)dr (v1-13)

This technique is perhaps reasonable in the low energy region, where

the absorption terms dominate. It is not a good prescription in

the resonance region, where the imaginary single nucleon and absorp-

tion parameters are both large. The reason is that the two processes

are not equivalent; a pion which scatters quasielastically can still

be absorbed, but an absorbed pion cannot later scatter. This prob-

lem was considered in Glauber theory (14), which is a good approxi-

mation in the limit of high energy, projectile wavelength short

compared to the nuclear size, and strong forward scattering. The

Glauber result can be recast in the form of equations VI-17 and
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VI-18. The result is that only the imaginary absorptive terms should

be used in calculating the distorted wavefunctions in the expression

for CA,

* _

o, = --,% f¢A(r>1m[2au§pt(r>J¢A<gid3r . (vi-19)

That is, the ¢A satisfy a wave equation with an optical potential

in which the imaginary parts of the single nucleon parameters are

set equal to zero. The quasielastic cross section is then the dif-

ference between the reaction cross section from equation VI-16 and

OR - GA . (VI-20)

The Glauber theory result can also be derived in a simple semi-

classical transport theory, as noted by Koltun and Schneider (83).

This theory is expected to be a good approximation in the same limit

as for Glauber theory provided phases are not important, i.e., the

real parts of the optical potential are small. These conditions

are all reasonably well satisfied near the resonance energy. They

consider a pion traveling through the nucleus with impact parameter

b. The change with x in the probability P5(X) that the pion is

in a particular state S at a horizontal distance x can be related

to the probabilities for processes which feed or rob the state S.

The possible states of the pion are the elastic channel, with
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probability P0, a quasielastic scattering state, with probability

PQE’ and nonexistence due to absorption, with probability PA. The

quasielastic scattering and absorption processes are characterized

by mean free paths, AS and AA. The transport equations, which

describe the change in the probability of a given state with posi-

tion, can be written

“19.22-39
dx AS AA

dP P P

_d_Q§= _0-_0LE (VI-21)
x AS AA

dP P P

dA = 7\Q‘I 9E

x A AA

Positive terms on the right-hand side refer to processes which feed

into the channel being considered, negative terms to processes which

rob the channel. The small terms due to quasielastic processes

feeding back into the elastic channel have been neglected. The

boundary conditions for the probabilities are

PQE(0) = 0 (VI-22)

v

>

A

O

V

I
I

O o
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where x = O is the edge of the nucleus at which the pion enters,

with x increasing across the nucleus. The solutions to equa-

tions VI-21 with these boundary conditions are

_ -x/A
P0 - e

P = e (1 - e ) (VI'23)QE

-x/A
_ A

PA -1- e

where A is defined by

1-_1_ .1. -“A — A + A (VI 24)

A S

The cross sections for these processes are obtained by integrating

the probabilities at the end of the pion path through the nucleus

over all impact parameters and angles,

-L b /A -L b /A

=2nfbdbe ()A(1-e H S)

-L b /A

2nfbdb(1-e H A)

OQE

(VI-25)

0A

where L(b) is the length of the path through the nucleus at impact

parameter b, L(b) = ZVR2 - b2. Here R is the radius of the nucleus,

taken to have a uniform matter distribution. The reaction cross

section is just the sum of these two expressions,
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OR = 2n f b db(1 - e'm’m) (VI-26)

with A given by equation VI-24. Comparison of the expressions for

0A and OR indicates the Glauber result, that the absorption cross

 section is calculated in the same way as the reaction cross section,

but with only absorptive processes taken into account.

The transport calculation just described can itself be used

 

to give the quasielastic and absorption cross sections, with the

mean free paths estimated from the optical potential. The results,

however, give the wrong ratio of quasielastic and absorption cross

sections and the wrong A dependence of the quasielastic cross sec-

tions. Various improvements to the transport theory are possible

(83); however, these will not be discussed here. The transport

theory result is used only as an approximate justification for

equations VI-19 and VI-ZO.

Partial Cross Section Calculations

In this section the calculations of oQE and 0A are compared

to the data of Navon et al. (81). The two approximations discussed

in the last section are adopted in their respective energy domains:

equations VI—17 and VI-18 are employed for energies through 50 MeV,

equations VI-19 and VI-ZO in the resonance region, 160-220 MeV.

No reliable method is known for extracting OQE and GA between 50

and 160 MeV. The limitations of the model should be kept in mind

when comparisons of calculations and data are made.
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In Figure 32 calculations of partial cross sections, using

the two parameter sets described in Section 2, are compared with

the data for n+ on 12C as a function of pion energy. Note that

smooth curves have been drawn to connect the low energy and resonance

regions. The reaction cross sections are well described by the

 I1calculations. The differences between the results of the two param-

eter sets for OR at low energies are due almost entirely to dif-

ferences between CA for the two sets; the quasielastic cross sections

are about the same. The calculated absorption cross sections mirror

to some extent the differences between the p-wave absorption param-

eters of the two sets, with the extrapolated pionic atom parameters  
giving much higher absorption cross sections at low energies, peak-

ing earlier, and falling faster than the calculations with the Riska

parameters. It is clear that both sets of calculations overestimate

the absorptive and underestimate the quasielastic pieces of the reac-

tion cross section. The absorption cross section has the correct

shape, peaking near the resonance and falling off at higher energies.

The data are not yet precise enough to determine the energy at which

0A peaks, thus little can be said of the relative merits of the

 two parameter sets. The calculated quasielastic cross section

appears to rise too slowly between 50 and 150 MeV; however, as the

curves are pure interpolation in this region no conclusions can

be drawn from this. Insufficient evidence exists at present to

determine whether the overestimated absorption cross sections are

due to the strength of the absorption parameters themselves or to
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the method of calculating the cross sections. It should be noted

that calculations of 0A using equation VI-17, that is, with the

fully distorted wavefunctions, produce much smaller absorption cross

sections. The true value may lie between these two calculations.

Figure 33 shows comparisons of calculated and experimental

partial cross sections as a function of A. The data were taken

at 165 MeV; however, the calculations are done at the resonance

energy, 180 MeV, where the conditions required for the transport

theory to be a good approximation are best met. The differences

between cross sections at 165 and 180 MeV are presumed small. The

solid and dashed curves are the optical potential calculations with

the two parameter sets previously described. Note that the data

are preliminary and have not been assigned errors as yet. The reac-

tion and total cross sections are well reproduced by both sets of

calculations. Although the calculated absorption cross section

has about the right A dependence, it is too large in comparison

with the data. The calculated quasielastic cross section is much

too small and exhibits a flattening or saturation effect at large

A which is not seen in the data. Part of this effect may be due

to noise in the calculation, as OQE is the difference of two large

terms. Again, the uncertainties in the method of determining OQE

and 0A preclude any definite conclusions about the optical potential

at this stage.

It is possible that the problem of separating the reaction

cross section into absorptive and quasielastic pieces could be solved
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by a different approach. The quasielastic cross section can perhaps

be calculated directly, as was done for nucleon scattering by Bertsch

and Tsai (84). Studies of charge exchange reactions indicate that

the quasielastic scattering, of which charge exchange is assumed

representative, looks like quasi-free scattering in energy and angle

dependence, but with an effective number of nucleons Neff which

is less than A (85). Thus the quasielastic scattering is a simple

process, and could be calculated by summing the distorted wave

impulse approximation results to all final states, using the full

optical potential to distort the incoming wave and the optical poten-

tial with only absorptive imaginary parts for the outgoing wave,

as suggested by Koltun (83). A great deal of work remains to be

done on this subject.

 

 



 

CHAPTER VII

CONCLUSIONS

The focus of this work has been the construction and testing

of a pion-nucleus optical potential which is simple in form but

which includes the important physics. In this chapter the main

features of the model are reviewed and its accuracy in reproducing

the relevant experimental data is summarized. Unsolved problems

and areas for further study are also discussed.

The optical potential was constructed from the experimentally

determined pion-nucleon transition amplitude using the Watson mul-

tiple scattering series. The off-shell form of the T matrix was

taken to be of Kisslinger type, without form factors. This form

is convenient because it leads to a coordinate space potential which

is local (although velocity dependent), making calculations much

simpler. The kinematic transformation of the T matrix was treated

inéuiapproximate way, expanding in w/M and keeping only zero and

first order terms. The second order s-wave term of the multiple

scattering series as calculated in low energy approximation was

included, as was a sum of the p-wave series in the same approxima-

tion. True pion absorption was represented by terms quadratic in

the nuclear density, for which an approximate theoretical justifi-

cation exists. Pauli blocking was roughly included, and an energy
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shift due to the Coulomb potential was incorporated. The parameters

for the various terms in the optical potential were taken from the

experimental IN phase shifts and from various theoretical calcula-

tions (47.48.50). An alternative set of parameters was derived

from fits to pionic atom level shifts and widths with suitable energy

extrapolation.

This method of constructing the optical potential has several

weaknesses. The first is that the starting point contains insuf-

ficient information; the IN data can only give the on-shell behavior

of the T matrix (unless a separable form is assumed (37)). A funda-

mental theory of the nN interaction is necessary to give the correct

off-shell dependence. Such a theory, if fully relativistic, would

provide the proper kinematics for the problem as well as the neces-

sary framework for treating the higher order multiple scattering

and absorption terms consistently. No completely satisfactory nN

theory exists, although some form of Chew-Low description (86) is

probably adequate. To carry out this program of optical model con-

struction is an impossibly complicated task; a pr0per first order

calculation in a finite nucleus would be very difficult. The com-

plicated dependence of the full T matrix on the nucleon momenta

requires the use of realistic nucleon wavefunctions in the integral

over the ground state, limiting the resulting potential to one

nucleus as well as one energy. It must be hoped that such a complete

calculation can be used to justify approximations which lead back

to an optical potential of sufficient simplicity to be used in
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practical calculations. The success of the simple potential pre-

sented here suggests that this hope is not groundless.

The second weakness in the derivation of the potential given

here is the number and severity of approximations required. Some

of these are necessary to keep the potential form simple; others

are required to make calculation of a given term feasible. Most

of the approximations are easily justified for low pion energies

but are not obviously valid in the resonance region. Fortunately

they are also less important there, as the scattering calculations

are not as sensitive to the terms in question.

It should be noted that knowledge of the experimental phase

shifts is vital for studies of pion-nucleus processes, whether incor-

porated directly, as in the present study, or used as a test of

the fundamental NN theory which generates the pion-nucleus inter-

action. The resonance region phase shifts are fairly well deter-

mined; however, the low energy phase shifts are difficult to measure

and not well known at present. This is a serious problem, as the

low energy scattering calculations are quite sensitive to these

numbers.

The validity of a model such as the one presented here rests

ultimately on its ability to reproduce the experimental results.

The initial comparisons at low energies were somewhat disappointing.

The pionic atom level shifts and widths indicated too little 5 and

p-wave absorptive strength in the potential at zero energy and too

little s-wave repulsion. The problem of the absorption parameters
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is not serious, as the calculation of these parameters is still

subject to uncertainty. The missing real s-wave strength is more

disturbing, since it is not clear what mechanism could provide the

required repulsion. This problem appears also in the low energy

scattering, for which the potential gives a good description pro—

vided the s-wave repulsion is increased. A reasonable fit is also

given by the potential with parameters extrapolated from the pionic

atom fit. These two potentials have quite different absorptive

strengths; the elastic scattering data at low energies are not very

sensitive to the imaginary part of the optical potential. Unfor-

tunately, there is as yet no low energy absorption cross section

data, which would provide more information about the absorption

parameters. Thus the form of the potential gives an excellent

. framework for studying the systematics of the low energy data; how-

ever, the theoretically derived parameters do not satisfactorily

reproduce the experimental quantities.

The optical potential does reasonably well in the resonance

region. The general features of the elastic scattering and total

cross sections are reproduced over a wide range of energies and

nuclei. No attempt has been made to improve the fit by parameter

searches, as the Coulomb energy shifts incorporated in the poten-

tial would necessitate a separate search for each nucleus at each

energy. The results of such a study would be very difficult to

correlate. The evidence from the absorption cross section measure-

ments cannot be interpreted unambiguously because ofiflueuncertainties
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inherent in the calculation of the absorption cross sections within

the context of the present theory.

Thus much work needs to be done, both experimentally and

theoretically. Studies of more complicated pion-nucleus processes

offer new tests of the simple optical potential concept, while micro-

scopic calculations can give new insight into the appropriate form

and approximations for the problem.



APPENDIX A

THE PION-NUCLEON SCATTERING AMPLITUDE

178

"
L 

 



 

APPENDIX A

THE PION-NUCLEON SCATTERING AMPLITUDE

In this Appendix a review is given of the origin of the form

of the scattering amplitude used to describe pion-nucleon scattering.

The expansion of the scattering amplitude in terms Of the phase

shifts is given, and the terms Of this expansion which are important

for the pion-nucleon interaction are expressed in simple form with

the parameters related to the relevant phase shifts.

The scattering amplitude can be expanded (3) in terms Of iso-

spin 1, orbital angular momentum L, and total angular momentum J,

 

. _ L _“5,5 ) ... 1213.1 QI FLJ (21 +1)a21’2J PL (cos a) (A 1)

where

. L
OL = exp(21621’2J) - 1 (A-2)

21,20 21 kcm

is the scattering amplitude for the (I,L.J) partial wave,and QI and

PL J are projection Operators projecting onto states Of given I or

L and J,
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-1
01/2 ' 3(1 ‘ E I)

Q = 1-(2 + t°T)
3/2 3 ..

(ll-3)

L-M

PLJ=L--1—= 2L”
. 2

L + 1 + O'%

PL.J=L+%- 2L”

Here g is the relative angular momentum Operator, which acts on the

Legendre polynomials in equation A-I,

EP£(cos e) = r x (-iV)P (cos 0)
~ ~ 2

_ - “ 3L
- 1r x 0 39 P£(cos e) .

Note that the plane defined by r and 6 is the same as that defined

 

by Ecm and Ecm’

A A k x k. A

~cm ~cm _
-r X e = | : n . (A-S)

IEcm x ECWJ_

Thus

gP2(cos O) = inPi(cos O) . (A-5)

The important terms in the pion-nucleon amplitude for the

energies considered here are the L = O and L = 1 terms of equa-

tion A-l. The L = 0 terms are

 



 

—_ --_H._ _~.— ...... A . .....—--. -—
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o o
Q1/2Po,1/2O‘11 Po(COS 9) + Q3/2PO,1/20‘31 P0(C°S 9)

(A-7)

‘ %11 ‘ E'I)091 + 112 + E'I)“g1 = bO + blt'T

where

- 1_ o 0

b0 ‘ 3(011 I 20‘31)

_1_o 0
b1 - 3( all + a31) . (A-8)

The p-wave terms are

1 1
3[P1,1/2ml/20‘11 + Q3/2831) +

1 1

+ P1,3/2(Ql/2a13
+ Q3/2a33)]P1(COS

6)

- 1 1 1 1
' [(01/2811 + Q3/2031) * 2(01/2813 T Q3/20‘33)]C°S e

1 1 1 1 . A .

+ ['(01/2811 + Q3/2831) + (01/2913 T Q3/20‘33H‘9'n 5‘" 9 °

(A-9)

Noting that lkcml = [kéml 5 k0 for elastic scattering, the functions

of a can be written

k 'k'

cos 6 = 353L€?Zfl (A-lO)

k
0

 

 



 

and

A

n sin 0 =

182

_1_

k

k x ' .
~cm 2cm2

0

Therefore the p-wave terms are

where

(to + cit-9k -k' + ($0 + s two-<1... x11.) ,..cm ~cm ... ~ ...

)+2(a +2011”
1

13 33

jL_1_ _ 1 1 _ 1 1

k2 3[( C1‘11 + “31) + 2‘ 0‘13 + 033)]

o

;L_1 _ 1 1 1 1

k2 §{ (“11 l 20‘31) + (“13 + 20‘33)]

o

_1__; _ _ 1 1 _ 1 1

k2 3[ ( 0‘11 + “31)*'( 0‘13 + 0‘33)] °

0

(A-11)

(A-12)

(A-13)
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APPENDIX 8

DETAILS OF THE DERIVATION OF THE

MULTIPLE SCATTERING SERIES

In this Appendix two results are derived which are required

in the development of the optical potential formalism given in Chap-

ter III. These are:

(1) Let A, B, C, D, and F be operators in an arbitrary space. If

A = B + BCA (B-1)

and

D = B + BFD (B-2)

then

D = A + A(F - C)D (B-3)

(2) Let A, B be many particle operators and oi, Bi one particle

operators. If

' -A = 2 a]. + 2 oiBA (3-4)

i i

and

A = 2 A. (B-S)
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then

A=2 31+: 81.32 A]. (B-6)

1 i in

where

8i = oi + aiBBi
(3-7)

To prove the first result, rewrite equation B-l,

B = A(1 + CA)"1 (B-8)

and substitute for B in equation B-2

0 = A(1 + CA)'1(1 + FD) . (3-9)

By writing 1 = 1 + CA - CA this becomes

0 = A(1 + CA)(1 + CA)’1(1 + FD) + ACA(1 + CA)‘1(1 + FD)

= A(1 + FD) - ACB(1 + FD) (B-lO)

where equation B-B was used in the last step. The second term can

be simplified using equation B-2, giving

C

I
I

A + AFD - ACD (B-11)

01“

C

I
I

A + A(F - C)D . (B-12)

This proves the first result.
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For the second result, equations B-4 and B-5 imply

Ai=ai+aiBA=ai+aiBJzAj°

Grouping the A1 terms gives

(1- 011.8)A1. = a1- + 011.8 2 A

0?“

Equation B-7 can be written

_ -1
B. - (1 - aiB) on].

and substituted in equation B-15, yielding

Ai=Bi(1+B Z A. ).

17113

Summing both sides over i gives the second result,

A=ZBi+ZBiB Z A..

l 'I m J

(B-13)

(B-14)

(B-15)

(B-16)

(B-17)

(B-18)
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APPENDIX C

INTEGRATION OVER NUCLEON MOMENTA

The derivation of the optical potential requires the integra—

tion of several one and two particle operators over the coordinates

(or momenta) of the nucleons in the ground state nucleus. In this

Appendix the required integrals are performed. The Fourier trans-

forms of the two common momentum space forms for the optical poten-

tial are also given. As mentioned in the text, the momentum of the

nucleus as a whole is ignored in the evaluation of the ground state

terms.

The one particle operators to be evaluated are

1:1) = A<O|(2n)36(5' + Bi - 5 - p1.)(a0 + alt-:i)|0> , (C-1)

1:2) = A<O|(2n)36(E' + 8% - 5 - pi)(a0 + a1t°Ii)Pi|0> , (c-z)

and

113) ‘ A<OI(Z")35(E' + B1 ‘ E ' Ei)(ao + alE'Ii)Ei'E%|O> '

(C-3)

Let

A('T-i)‘ao + a1E'Ii

($1)(Ei’Ei) = 1
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N

V

A

(
'
U

d
o U

(
U

d
o
-

v

I I
I (
'
0

—
l

- 1t (C-4)

11 d pjX W(P1992... PA 3 (21103 (C'S)

where q = 5' - 5. The i = 1 term has been chosen and the spin and

isospin variables suppressed to simplify notation. Transforming

to coordinate space gives

11")“9 = A fWi’rz rAmrvrz :AWH)

 

. . 3

1(p -q)-r' -1p -r . . d p 3
xdn)(p1 _ q,p1)e ~1 ~ ~1 e ~1 ~1 e13: 13 (143

~ ~ ~ (2w) (2")

x d3ri II d3l".

j .1

(C-6)

The operator 0(n)(p1 - 3,21) can be replaced by OWN}??? - 31E)

acting on the exponentials, allowing the momentum integrals to be

performed
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1§”’<:> = A J1 W*(Ei’fz --- [A)w(:1’52 --- CA)

(ct-7)

x [0‘"’<-i :71, -%-21>6<:1-: W311 519%- -

For n = 1 this becomes

NUQ>=AfW“b&-~:Dho+%FnNQ{2~-m>

n: 3

* 1>1 d "j

(M)

The aO term is just the nuclear density p(r). As there is no change

in the isospin projection for the nucleus, the only non-zero contri-

bution from t-: is from t313, where 13 is +1 for protons, —1 for

neutrons. Expression C-B is therefore

I{1’(g> = a0o(r) + a,t,[op<r) - on(r)] . (c-9)

where p is normalized to A, pp to Z, and on to N. Expression C-l

is the Fourier transform of this,

1
If )(g) = aoo(q) + a1t31op<q) - on(q)] (c-10)

V'-V

For the second expression, (“2) =-11Efi—ll , and integration

by parts gives

 

 



 

(C-11)

This is, aside from the factor A(1), the current density and is

zero for a spherically symmetric nucleus. Assuming the neutron

and proton distributions are spherically symmetric, expression C-2

is zero.

For n = 3, CN3) = Vl-Yi and integration by parts twice gives

113)(E) ‘ aoA f‘ZW‘fxfz EA)°‘Z‘1’(I’52 EA) {>11 ‘3'}

a0K(r)

(C-12)

where K(r) is 2M times the kinetic energy density of the nucleons,

and the isovector part of A(1) has been dropped. The quantity K(r)

is evaluated in the Thomas-Fermi approximation (41),

KM = %(—3- 1,2)2/305/3 @430

This completes the evaluation of the one-body operators.

The first two-particle operator to be evaluated is

1%” = MA - 1><OI<2v>6é<ei + 5' - 21 - W25. + '5" - p2 - 5)

x (a0 + alt-IlflaO + a1t°:2)lO> . (C-14)
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which can be written

Iél’us'w = MA- 1)fw*<21- ('5' - 5">.92- 0.2"- {shag-~21)

d3p.

x A(T1)A(T2)W(E1’EZ’E3 PA) I} 3
(2n)

(C-15)

This is only a function of the variables (k' - k") and (k" - k)

and can be Fourier transformed resulting in a function of r and r',

1(1)(r r') = A(A - 1) ¢*(r r' r r ) (r r' r r )2 ~,~ ~,~ ,~3 ... ~A u; ~,~ ,~3 ... ~A

x A(11)A(12) 3.132 d3rj .

(C-15)

Without the isospin factors this is just the two particle density

p2(r,r'), which can be written in terms of the two body correlation

function C(r,r'),

02([,[') = [1 + C([.[')]p(§)o([') - (C-17)

In order to simplify expression C-16, assume that w can be expressed

as an antisymmetrized product of single particle wavefunctions,

1

w = 2%? det {¢i(rj)} (C-18)
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Then expression C-16 becomes

Iélhmu) =1}; ¢;(:)¢3(:')A(T)A(r')[¢,([)¢j(§')- ¢,-([')¢j(:)l

(C-19)

The first term is just

[6100(3) + t3a1(op([) - on([))][aoo(§')+t3a1(op(§') - on(['))]

(C-ZO)

The spin and isospin dependence of the second term can be made

explicit and factored out, replacing ¢k(r) by ¢k(r)xm(o)ns(1) where

X and n are Pauli spinors in spin and isospin space. For this term

the spin and isospin projection of the nucleus will be approximated

as zero. Then the sum over states can be separated into sums over

space, spin, and isospin states. The sum over spin dependent factors

gives

x;(o>x;<o')xn(o)xm(o') = 2 . <c-21>
m,n=1,2

The sum over isospin factors gives

3:1 2 n:(T)n:(T')(ao + alg-g)<a0 + alg-g'1ns<r')nt(r)
59:9

(C-22)

2) ._ 2
- 2(a0 + 2a1
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The spatial sum can be evaluated in the Fermi gas model, in which

ikirj

¢1([j) = e ~ ~ (c-23)

Then

I; ¢;(g)¢3(g')¢,(g')¢j(g)

  

d3k. 1.(r' -r) . -ik.-(r'-r)

=-[——‘—3eflf‘ fil—3e *3 ~ ~ (c-24)

(2n) (2n)

1 sin(kF|r' - rl) kFcos(kF|r' - r I) 2

2n2 lr' - r|3 |r' - r|2

where kF is the Fermi momentum, kF = 1.36 fm'l. The density is a

constant in the Fermi gas model,

c(r) = p(r') = (C-25)
 

and can be factored out,

3j (k Ir. - rl) 2

- 1% ¢$(g)¢3(:n)¢i(r
u)¢>j(g)=-o(g)p

(:.)li6[ '11:]?- 51" ]

(C-26)

Combining equations C-19, C-20, C-21, C-22, and C-26 gives for

expression C-14
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I§1)<g.g') = [600([) + t3a1<pp(g) - pn([))]

x [600(f') + t3a1<pp<g') - pn(['))] (c-27)

 

. 2
3j (k Ir' - rl)

2 2 1 1 F~ .. .
- (.10 + 2a1) 3|: "Fli' - El ]o([)o([ )

Note that the right hand side can be identified with equation C-17

for a0 = 1, a1 = 0, and

2

3j (k Ir' - rl)

“5’5” ‘11 :FIE'~‘[|~ I ‘ “'28’
 

As it is derived in the Fermi gas model, equation C-27 provides

a reasonable description of the long range correlations due to the

Pauli principle. It does not, however, properly describe the short

range correlations. One would expect Iél)(r,r) = 0 for N = Z, since

the short range repulsion keeps the nucleons apart. It is not zero

here because the Fermi gas model does not, of course, include inter-

actions between nucleons. For the second order s-wave term the

long range Pauli correlations are most important, and the result

given in equation C-27 will be used. In the derivation of the

Ericson-Ericson effect for the p-wave only the r = 5' part of the

right hand side of equation C-27 survives, and will be taken to

be zero.

The second two particle operator to be evaluated is much

simpler. It is

 

 



   

1[p'°r' + p'°r' - p 'r - p 'r ]
x e ~1 ~1 ~2 -2 -1 ~1 ~2 -2 (c-29)

x (211)3<S(p1 + 92 + E - pi - pé - k')d3ri dBré 3H d3r‘.l

i

d3pi d3p§ d3pl d3pz
 

(2n13 <2n13 (2113 (2.)3

The integration over pé gives

1;?)(91 = [1451.55.53 5A>w<2pr2£3 IA)

X e

( ) (C-30)

-ip ° r - r' -iq°r'

X e ~2 ~2 ”2 e ~ “'2 d3r' d3r' II d3r.
1 2 i 1

3 . 3 3
d pl d p1 d p2

X 

(2n13 (2113 (2n)3 '

and the remaining momentum integrals lead to delta functions. The

result is the Fourier transform of the two particle density p2(r,r),
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2) '13'5 3 3
I( (q) = f w*(r,r,r r )w(r,r,r r )e d r IId r.

(C-31)

This completes the discussion of two-body operators.

The simple Kisslinger and Laplacian models for the optical

potential include the momentum space terms

5°5'o(Q) (C-32)

and

020(q) (C-aa)

respectively. The Fourier transform of C-32 is

 

 

ik'r -ik'-r' 3 3 .

k'k'p(k' - k)e * ” e * ” d k3 d “:3 (c-34)

” ~ ” ~ (Zn) (ZN)

which can be written

iK’X iq R 3 3

jmwmmm~~e~~ dg dg «an

~ ” (2") (2“)

where

  

5 = 2 ’ 8

II ’
E

I

(
7
"

o

I
” II

N

e

(
X

ll

(
‘
5 I

(
'
1

The integrals over 5 and q give
~
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 y-y'tao; - [')o(” 2 ~ )1 (c-se)

Note that this is an operator of the form <r' |0|r >. The gradients

which act on the delta and density functions can be turned around

to act on whatever functions of r and r' are to the right and left

of 0. This gives

r + r' .+

PM: - [')o(“ 2 ~ 11v <c-37) 

which can be written as a function of r only, due to the delta func—

tion. The first gradient can now be reversed again, giving

- Y°[o(r)Y] (C-38)

where the gradients now act on everything to their right. The

Fourier transform of C-33 is

ik-r -ik'-r' 3 3 .

fqzo(q)e”~e”” dk3dk3

(2“) (2w)

_ V2 ‘5'1‘. "8'3 d3K d3q
‘ ' R p(Q)e e 3 3 -

~ (21) (21)

 

(C-39)

 

The integrations over K and q give

- v§p(R)a(x) , (C-40)
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which can be written as a function of r only,

— Vzp(r‘) . (Mn

2
Note that in this case the V acts only on p(r).  
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APPENDIX D

RELATIVISTIC POTENTIAL THEORY

Relativistic potential theory (39) is one of the methods that

have been proposed (42) to deal with the problem of relativistic

kinematics in a potential based theory. Unlike theories that are

manifestly Lorentz covariant, this theory includes quantities which

do not have definite transformation properties; among them is the

transition matrix T. In this appendix only a few of the details

and results of the theory will be given, taken from Heller,

Bohannon, and Tabakin (40).

Define the canonical transformation from the momenta of two

particles p1 and p2 to the center of mass and relative momenta P

 

and k:

E = 91 T 82 (D-l)

_ 1 2 2 2

E ' 2h0(n0 + ho) [(“o * 2E2ho + m2 ' m1)El

(0-2)

2 2 2
- (h0 + 2E1h0 + m1 - m2)pz]

where

- - 2 2 1

H0 ’ E1 + 52’ Ei ' (mi + pi)

201



 

202

and

h = (Hg - P2)! = w1(k) + w2(k) a b(k)
O

with

wi(k) = (m? + k2)5

(The notation of reference 40 will be used throughout this appendix

and the conventions given in Chapter I will be ignored.) Equa-

tion D-2 can be shown to be identical to the Lorentz transformation

from an arbitrary frame with particle momenta El and 22 to the center

of mass frame with momenta k and -k. Interaction can be introduced

by defining

h E hO + v(k) and H E (h2 + P2)i (D-3)

where the potential is given by V E H - H0. Although H transforms

as the fourth component of a four-vector, neither H0 nor V separately

have well defined transformation properties. Since the transition

matrix is given by

 - 1 _T(ET) - v + v ET _ “o + 1.6 T(ET) (D 4)

T must have the same transformation properties as V.

Let 31,32 be the initial particle momenta, qi,qé the final

particle momenta. Then matrix elements of T may be written
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<91’32|T(ET))91’32> = (2")35(9' ' 9)1 (ET; 31’32’31’32)

(0-5)

where Q = q1 + q2 and Q'
~ ~

Changing variables,I
I

.
0

H
- +

.
0

N
-

T(ET; 31’32’31’92) = NT(ET; g; q'9Q) (0'6)
~ ~

where q = 5(31’32) and q" = k'(qi,q'2) with k(pl,p2) given by equa-

tion D-2. The factor N which appears is due to the coordinate trans-

formation (91’32) *'(Q.g) and (91’92) +‘(Q,g').

N = Marga/91919.93" (“'7’

wherecfl'is the Jacobian,

3(q .q ) E (q )E (q ) w (q) + w (q)
J“ ) : I ~l ~2 I = 1 ~1 2 ~2 1 2

91.32 ‘ aIQ.q) E1(31) + E2(g§l' wqulw2(q)

 

(0-8)

The quantity T(ET; g; q',q) must now be expressed in terms of

t(w; q',q) where

t(w; q'.g) E T(ET = g; 0; g'.3) . (D-9)
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i.e., t is the transition amplitude in the two particle center of

mass. This relation is derived in reference 40, where the result

is given as

T(ET.Q; g'.q) = F(Q; g'.g)t(w(q); g'.g)
~ ~

3

+ T§_)§ F(9; 3',B)F(Q; ~.g)t(w(p); 3'.E) (0'10)

* F'l(g; 5.3) F-1(9‘ 3’9) ]
X t (w(P)% 9’2) b(k) - b(p) + is ' w(q) - w(pl+ is
 
 

where

w(q') + w(q)

E(Q.dTl + E(Q.ql

 

F(Q; 3'.g)

c(o.q> s (w2(q) + 02); s 51(q11 + 52(q2)

and k is defined by

mm = (5% - 021* .

Also given are the first terms in an expansion of equation D-10

in factors of 02. The first two terms are
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T(ET.Q; 339) '5 t(w(k); g'.g)

+  
 

2[ t(w(Q);g'.g) 1 1 1

2 ‘ wiq'Mq) " (Mk) 'Hfl'm’ (”'11)

X 9(k; 9':3) +'ZK%T)’9(Q; g'.g)] + 0(04)

where

 

, . _ d3p 1 tINIP)aQL.E)t*(w
(p),S,B)

9(k, S ’3) = (2n)3 WIP) DIR) - w(p) + is

It is to be hOped that the terms in Q2 and above are small, giving

a manageable result for T. For the pion-nucleon system Heller states

that the most important kinematic corrections arise from the appear-

ance of the relativistic rather than the nonrelativistic relative

momentum q, and the appearance of the factor N in equation D-6.
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