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ABSTRACT

A SIMPLIFIED METHOD FOR
QUANTIFYING DIAMETER DISTRIBUTIONS
OF NORTHERN MICHIGAN UPLAND HARDWOODS
WITH THE WEIBULL AND Sy FUNCTIONS
by

Robert De Geus

This study presents a unified and simplified method
for applying the Weibull or Sy distribution to modelling of
tree diameter distributions. This approach uses spreadsheet
software and a microcomputer rather than a mainframe
computer.

The methodology is based on the use of point sample
data and grouped frequencies of observed data. Grouped
frequencies, and maximum likelihood and percentile
estimation are used to estimate distribution parameters.
The Weibull and Sg functions are compared for both
estimation methods.

Ten ecological groupings of 72 upland hardwood stands
are used for diameter distribution modelling. The stands
are composed of mixed species and age groups.

The methods described are found to provide reasonably
good models. The Weibull function with maximum likelihood
parameter estimation is found to perform best with these
methods and data. Percentile parameter estimation for the
Weibull is suggested as the starting point with these

methods for obtaining the maximum likelihood estimates.
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INTRODUCTION

Tree diameters are of interest to forest managers and
researchers for a variety of reasons. First and fofemost is
the fact that tree diameter is well correlated with other
important variables such as volume, value, conversion cost,
and product specification. Secondly, from a silvicultural
standpoint, diameter distributions are useful in
understanding current and future stand structure.

Obtaining a statistical or mathematical model of an
observed diameter distribution can be an important step in
developing growth and yield projection models. Recent
projection models have incorporated diameter distribution
models to obtain better projection accuracy. The
improvement in projection is related to the capacity of a
proiection model to project stand attributes by diameter
class. By predicting diameter distributions at a given time
from stand variables, stand simulators using such models
maintain some of the detail of individual tree simulators
without the necessity for keeping track of individual trees
throughout the simulated rotation (Little, 1983). This
distributional information is useful in delineating yield
by diameter class, identifying silvicultural opportunities,
and projecting the impact of management decisions over a

rotation.



Distributional models have not been developed for
forestry. Instead, general distribution functions that can
generate a wide variety of curve shapes have been adapted
for use in modelling tree diameter distributions. Any
distribution model is dependent upon certain constants or
parameters for use. These parameters are estimated from
sample data. For the normal distribution, these parameters
(mean and standard deviation) are familiar and well
understood. The parameters of other distributions, such as
those used for modelling diameter distributions, are not
well understood. The result is that parameter estimation is
often a difficult or vague process.

One of the more important distribution models in tree
diameter distribution modelling is the Weibull
distribution. The Weibull distribution has been
successfully applied to many diameter distribution
modelling problems, principally in even-aged, single
species plantations or forests. Another model that is
relatively new to diameter distribution modelling is the Sg
distribution of N.L. Johnson (1949). The Sg distribution is
more complex than the Weibull and is theoretically capable
of producing a wider range of curve shapes (Hafley and
Schreuder, 1977).

The Weibull distribution is widely accepted in tree
diameter distribution modelling and in growth and yield

modelling based on distribution models. There is, however,



3
no biological basis for the use of this or any
distribution model in forestry, and there remains some
uncertainty about model selection and application (Bailey,
1980). Therefore, models such as the Sg are of interest in
the search for the best possible model.

The scope of this study is two-fold. First, to
address the problem of non-normal distribution parameter
estimation, a simplified (and as explicit as possible)
methodology for parameter estimation for the Weibull and Sg
distributions is described and applied. Second, the
relative performance of the Weibull and Sg distributions
are assessed using observed diameter distributions from ten
ecological forest groupings. The purpose of the first
objective is to establish parameter estimation and
distribution derivation methods that facilitate diameter
distribution modelling while maintaining as much accuracy
as possible. As such, three new facets of diameter
distribution modelling are presented. First, data obtained
from sampling with probability proportional to size (point
sampling) are used to derive observed diameter
distributions and estimate distribution parameters. Second,
grouped frequency counts are used for parameter estimation.
Third, mainframe computing is avoided in favor of more
accessible (and cheaper) microcomputers with spreadsheet

software. In addition, the data used comprise mixed species



and age upland hardwoods. This latter point is a function
of the data available as well as an interest in applying
simplified methods to complicated data.

The purpose of the second objective is to investigate
the relative performance of two distribution models using
two parametér estimation methods on observed data. This
investigation assesses the different models as well as
their underlying methodologies.

The ultimate goal is the application of the
appropriate model to growth and yield modelling with the
observed data. This goal is not addressed in this study.
However, the results of the study include distribution
parameter estimates that may be appropriate for future
studies. Finally, the methods presented may serve as a
basis for future diameter distribution modelling either as
the current data base develops or for an entirely new data

set.



Literature Review

I. Background

DeLiocourt first introduced mathematical and statis-
tical models for tree diameter distributions to forestry in
1898. Since that time, a variety of models have been inves-
tigated for application to tree diameter distributions such
as the negative exponential, negative power function,
gamma, beta, lognormal, Weibull, and Johnson's Sp (Hafley
and Schreuder, 1977). The goal in these studies was to find
a model that could adequately describe diameter distribu-
tions based on observed sample data. The desirable proper-
ties of such a function were given by Hafley and Schreuder
(1977):

1. the model should have a mathematical form that
allows ease of computation;

2. the parameters of the function should have
properties that make their estimation relatively
simple and exact;

3.the function should have the capacity to
generate the widest possible range of curve shapes
without sacrificing accuracy of fit to observed data.

The last feature given was related to the fact that
observed diameter distributions take on a variety of
shapes. These shapes ranged from a reversed J-shaped curve

in all-aged, undisturbed forests to a mound shaped,
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negatively skewed curve in mature conifer plantations
(Bailey and Dell, 1973; Lorimer and Krug, 1980). Bailey
(1980) further suggested that a single function or
distributional family is desirable for describing all
possible distributional curves for tree diameters in a
forest. The single function approach was shown to
accomodate growth and yield projection.

With regard to the models mentioned above, Hafley and
Schreuder (1977) noted that the beta distribution and
Johnson's Sp distribution yield the wider range of curve
shapes. They based their conclusion on the plot of skewness
(B;) and kurtosis (By) values possible for each
distribution function (Figure 1). Within this graph was an
"impossible region" wherein no combinations of skewness and
kurtosis could mathematically exist. According to their
plot, the normal distribution occupied a single point,
implying a single possible shape. The Weibull, gamma,
lognormal, and exponential distributions each were
represented by a line. The beta distribution and Johnson's
Sp distribution each occupied a region within the graph,
implying more flexibility of shape than a line alone.

Of those distributions that have been investigated,
Hafley and Schreuder (1977) noted that only the Weibull and
Johnson's Sp functions meet all the criteria given for an
appropriate distribution for modelling tree diameter

distributions. The other functions (i.e., the gamma,



Kurtosis

s <

Skewness

Figure 1: Skown.ss-? Kurtosis space



8
lognormal, exponential, and beta distributions) showed
problems with relative inflexibility, difficulty in
parameter estimation, or difficulty in mathematical use of
the function.

In general, the mathematical form of a distribution
was given by all authors as the probability density
function (pdf) denoted as f(x). A further criterion for a
pdf was given by Johnson (1949) as ease of integration of
f(x) to obtain F(x), the cumulative probability density
function (cdf). The cdf was given as a means of determining
the proportion of observations that would occur below a
certain threshold observation.

In all studies citing criteria for distribution
selection, the emphasis was on simplicity and/or ease of
calculation in the use of a model. Most literature has not
been concerned with this feature and Johnson (1949) claimed
that this has held back the practical application of non-
normal distributions. The result has been that the dominant
distribution and theory in statistical applications has
been the normal distribution (Johnson, 1949). One major
reason given for this dominance was the ease with which
moments of the distribution and, therefore, distribution
parameter estimates can be obtained.

Johnson (1949) noted that three basic approaches to
distribution parameter estimation exist. These were given

as maximum likelihood estimation, the method of moments,



and percentile estimation. He also summarized two
conceptual approaches to the use of distribution models in
fitting observed frequencies. The first was the idea that
there should exist a theoretical, statistical basis in
applying a distribution function to observed data. This
idea was further expanded to state that the parameters of a
function must be estimated on the basis of statistical
theory in order to ensure that these estimates accurately
represent the underlying population distribution
parameters. The second concept was that the most important
criterion in using a distribution model to fit observed
frequencies is nothing more than the goodness of the fit.
Any underlying theory or statistical parameter estimation
was said to be of little interest for this approach.
Johnson (1949) concluded that subscribing to either
approach is dependent on the individual's objectives in
using a distribution model. He suggested that a desire to
develop inferences about an underlying population based on
the use of a distribution model would require some degree
of theoretical basis.

Maximum likelihood parameter estimation was said by
Cohen (1965) to provide unique estimates of parameters with
minimum bias in a statistically sound manner. He showed
that maximum likelihood methods are based on the
distribution function itself as applied to observed

frequency data. Johnson (1949) stated that the method of
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moments is most practically applied to the normal
distribution since calculation of sample moments for non-
normal distributions is often very difficult. As such, the
method of moments was not given as a general procedure.
Percentile estimation was presented as something of the
pattern maker's approach to curve fitting. The generalized
method was given by Dubey (1967) as one in which
observations at particular percentile points of the
observed distribution are used to estimate parameters of a
curve identical to the observed curve. Percentile parameter
estimation was noted to yield estimates that are not unique
and may not have much theoretical relation to the
underlying population distribution.

Johnson (1949) related the methods of parameter
estimation to the differing conceptual approaches to
distribution function use. He wrote that from a theoretical
standpoint, parameter estimates ought to be unique and
should have some theoretical relationship to the underlying
population distribution. From the standpoint of curve
fitting alone, parameter estimates were not required to be
unique or theoretically related to some underlying
population distribution. In this latter case, Johnson
(1949) concluded that any inference about a population
using a distribution model would be entirely dependent upon
the sampling method used and the depth of inference

desired. The former conceptual approach was given as being
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appropriate for maximum likelihood parameter estimation.
The latter case was given as being appropriate for either
method of estimation.

A generalized approach to the application of
distribution models to observed data was given by Johnson
an: Kotz (1970). They showed that observations on a
continuous variable could be grouped into strata or
classes, usually of equal width. They suggested that while
the resulting variable was then discrete, this
transformation was one merely of convenience. They wrote
that inference or graphic presentation could be done on the

basis of the original continuity of the data.
II. The Distribution Models

A. The Weibull Distribution

| Weibull (1951) introduced a distribution model that
gained wide acceptance in materials strength testing. Since
its introduction, many studies have explored other
applications and the intricacies of the distribution's
properties. Despite these investigations, Dubey (1967)
claimed that the Weibull distribution is not well
understood.

Bailey and Dell (1973) applied the Weibull

distribution to the problem of modelling tree diameter
distributions. Since their introduction, the Weibull

distribution has gained a great deal of attention and, to
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some degree, acceptance in forestry. There was no
biological basis for their application; Bailey and Dell
(1973) wrote that the Weibull distribution was chosen
because of the relatively wide range of curve shapes it
produces, the relative ease with which parameters may be
estimated, and the ease by which the pdf can be integrated
to obtain F(x). They found that the Weibull distribution
effectively modelled even-aged conifer plantation diameter
distributions.

Bailey and Dell (1973) gave the three-parameter
Weibull probability density function as

£(x) = (c/b)(((x-a)/b)"(c-1)) expl-((x-a)/b)" c]

where x = diameter at breast height (dbh)
a = location parameter
b = scale parameter
¢ = shape parameter.

The location parameter (a) was described by Zarnoch,
Ramm, Rudolph, and Day (1980) as the smallest diameter in
the population. In general, it was given by Dubey (1967) as
the lower end-point of the distribution. Thus, in a
population of trees, the location parameter (a) was noted
to be theoretically zero.

The scale parameter (b) was described by Little (1983)
as the 63rd percentile of a population. In other words, b
is the diameter below which 63% of all ordered observations

would occur.
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The shape parameter (c) was said by Bailey and Dell
(1973) and Lorimer and Krug (1983) to be associated with
the general degree of skewness of the distribution. They
showed that for c<1, the curve becomes a reversed J-shape,
or highly skewed in the positive direction. For 1<c<3.6 the
curve exhibits a mound shape with positive skewness; for
c=3.6 the curve approximates a normal curve; when c=1 the
exponential distribution results; for c>3.6 the curve
becomes negatively skewed. As c approaches infinity, the
curve becomes a spike over a single point.

Integration of the pdf resulted in the cumulative
probability function (Bailey and Dell, 1973):

F(x) = 1 - exp[-((x-a)/b)€]
with parameters as given above.

This function was shown to provide the percentage of
observations below a given diameter (x). Johnson and Kotz
(1970) mentioned that in a strict sense it is necessary to
use F(x) to obtain percentages for classes formed from a
continuous variable. They further stated, though, that the
probability density function f(x) may be used to obtain
percentages for classes without any significant loss of
accuracy in fit. In such a case they suggested that
inferences based on such an approach could suffer some loss
of precision because the continuous variable is treated

altogether as a discrete variable.
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The moments of the Weibull distribution were presented
by Johnson and Kotz (1970). It was apparent that under any
circumstance the moments present serious difficulty in
calculation.

Estimation of the parameters of the Weibull
distribution was shown by Cohen (1965) and Bailey and Dell
(1973) for maximum likelihood methods, by Zarnoch and Dell
(1985) and Dubey (1967) for percentile methods. Other
methods were found based on tables (Mann, 1967) and the
sample coefficient of variation (Newby, 1980). Neither of
the latter methods were shown to be a superior method for
parameter estimation.

Bailey and Dell (1973) noted that maximum likelihood
estimators are generally the best but for the Weibull
distribution the method requires iterative computations.
They stressed that the easiest estimators to compute are
based on percentiles.

Dubey (1967) and Zarnoch and Dell (1985) presented
methods for estimating the shape parameter using two
percentile points: 0.17 and 0.97. These two percentiles
were found by Dubey (1967) to have 82% asymptotic
efficiency, the highest efficiency of the percentiles
examined. For estimating the scale parameter b, Zarnoch and
Dell (1985) suggested the 63rd quantile minus the estimate
of the location parameter (a). For estimating the location

parameter (a), they suggested setting it equal to the



15

smallest observed diameter. Dubey (1967), on the other
hand, suggested a method for estimating a based on three
percentiles. He wrote that his method yielded a value of
the location parameter that would not exceed the smallest
observation nor would it fall below some theoretical limit.

Cohen (1965) developed the iterative form of the
maximum likelihood estimators for the Weibull distribution.
The likelihood function of the Weibull pdf was manipulated
to form two equations. In one, the shape parameter (c)
appeared on both sides of the equation necessitating an
initial estimate of ¢ and an iterative solution. When the
two sides of the equation converged to equality, the
estimated value of c (3) that brought about the equality
was the maximum likelihood estimate of the shape parameter.
In the second equation the estimate of ¢ was used to
estimate the scale parameter (b). He offered no method for
estimating the location parameter (a) in conjunction with b
and c. Coren (1965) only dealt with the two-parameter
Weibull pdf which does not include a location parameter. It
seemed possible that a likelihood function could be derived
for the three- parameter Weibull pdf and that a, b, and ¢
could be estimated more or less simultaneously.

Zarnoch and Dell (1985) presented maximum likelihood
estimation as a difficult and costly method. However, Cohen
(1965) pointed out that solving for the shape parameter (c)

by using the iterative formula could be done effectively
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using trial and error, giving a simpler and cheaper method.
He wrote that it is only necessary to obtain two estimates
of c that bracket the final value of &. The bracketing was
explained as the situation when two values of the ieft hand
side of the iterative formula for c are above and below the
value of the right hand side. The final step was given as
linear interpolation between the two incomplete estimates
of c to obtain the actual estimate of c. The vague proviso
given was that the two bracketing values of ¢ must be
within a "sufficiently narrow interval”.

The functional forms of these estimation methods were
given as follows:
From Cohen (1965) and Zarnoch and Dell (1985) for maximum
likelihood estimation, the following methods applied:

1. g is estimated iteratively from

(Ix;€ 1n x1)/(Ex;6)1 - 1/8 = [(1/n) (Iln x4))
2. b is estimated from

b= [(1/n) (zx;6)11/€

From Zarnoch and Dell (1985) for percentile estimation,
these methods were given:
l. a is estimated from
a = (x) xp - x22 )/ (% + x, = 2x2 )
where x; = the ith ordered value (ascending) in the

sample,
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n = the sample size,
xy = the smallest ordered value in the sample.
2. b is estimated from
N A
b=-a+ x.63n
where x = the 63rd quantile of the sample.
.63n
3. ¢ is estimated from
¢ = 1ln{ln(l-pg )/1n(l-p; )]

Inl(xppg = 3)/(Xpp; = 3)]

where py 0.97366

0.16731.

and p;

Zarnoch and Dell (1985) investigated the properties of
both percentile estimators and maximum likelihood
estimators by applying them to artificially generated
populations of tree diameters with known Weibull
parameters. They found that the magnitude and direction of
bias variéd accoiding to the parameter for both percentile
estimators (PCTE) and maximum likelihood estimators (MLE).
They concluded that the maximum likelihood estimators were
superior in accuracy to the percentile estimators. They
pointed out, however, that the percentile estimators should
not be considered unsuitable. They gave as evidence the
simple and explicit nature of percentile estimators, and
that their behavior when ¢ is near or below 2 is comparable
to or better than that of the maximum likelihood

estimators. Behavior in this context meant that, although
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the bias of percentile estimators exceeded that of the
maximum likelihood estimators, the asymptotic variances of
the percentile estimators were much smaller.

Zarnoch and Dell (1985) concluded further that the
Weibull distribution may be insensitive to the magnitude of
the bias in percentile estimators. Their results indicated
that, although the estimators may have been considerably
inaccurate, the population distribution was remarkably well
estimated. They noted generally that the maximum likelihood
estimators appeared to produce slightly better estimates
but the percentile estimators were probably well within the
margin of error anticipated by most researchers.

Finally, Zarnoch and Dell (1985) stated that because
the parameters of the Weibull distribution are correlated,
various combinations of parameters can lead to very similar
distributions. They concluded that percentile estimators
are entirely appropriate for those interested in the

distribution and not in interpreting individual parameters.

B. Johnson's Spg Distribution

Norman L. Johnson introduced three models in 1949 that
comprised one coherent system of distributions. His
development of these models followed the work of Edgeworth
(1898). Edgeworth initiated a method of transformation of
variables such that the transformed variables could be

considered to have a normal distribution. This method was
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termed the method of translation. Edgeworth worked only
with transformations represented by polynomials. Kapteyn
and van Uven (1916), Wicksell (1917), and Rietz (1922)
extended the method of translation to include general
transformations (Johnson, 1949).

Another approach was taken by Pearson (1895) and
Charlier (1905). They each developed systems of curves with
the main intent of establishing functions that could
produce a wide variety of non-normal distribution curves
(Johnson, 1949).

Johnson (1949) carried both of these approaches
further to produce three models based on a single general
transformation. This system was 2:stablished to produce a
unique curve for any mathematically possible combination of
skewness and kurtosis values.

Johnson's rationale for pursuing the method of
translation was based on the prominence of the normal
distribution (Johnson, 1949). He reasoned that given this
prominence and the fact that functions associated with the
normal curve are well tabulated, it was natural to try to
relate observed distributions to the standard form. He
further noted that previously defined translation systems
only covered a portion of the range of shapes possible with

the well established Pearson (1895) curves.



20

Johnson (1949) gave the method of translation in
general. A function of an observed variable was sought
which would be, with sufficient approximation, a normal
variable. He noted that normal theory could then be applied
to the transformed variable.

Johnson based his transformation on four parameters.
The justification for this number of parameters was that
having four truly independent parameters would prevent a
restricted locus of variation for skewness and kurtosis.
The general form of the transformation was given as

z =g + d*f((x-e)/1).
The parameters g and d were defined as governing the shape
of the distribution of x. The parameters w and 1 were given
as the location and scale parameters, respectively.

Three systems resulted from Johnson's work: a three
parameter lognormal distribution, a four parameter
distribution denoted as Sy, and a four parameter
distribution denoted as Sg. The Sy distribution was so
termed because the function is unbounded at both ends. The
Sp distribution was so termed because its function is
completely bounded at both ends.

Hafley and Schreuder (1977) introduced the Sg
distribution as a means of modelling tree diameter
distributions. They based their choice of the Sy on the
fact that it describes a wide range of curve shapes. They

also noted that the cumulative percentages of the
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distribution could be easily obtained without messy
integration. Perhaps more importantly, they proposed that
the SB may be appropriate for tree diameter distributions
because of the bounded nature of the function. The.bounded
end-points have a logical counterpart in natural diameter
limits of trees: tree diameters cannot be less than zero
and will not exceed a phenological limit.

Johnson (1949) gave the probability density function
of the Sgz as
f(x) =
(AA/Zw) {1/[(x=w)(w+1l-x)]} exp{-1/2(g+d 1n((x-w)/(w+1-x))]%}
based on the transformation

z= g+ 4d I1In((x-w)/(w+l-x))

where d = shape parameter
g = shape parameter
w = location parameter (lower end-point)
1l = scale parameter (w + 1 =upper end-point).

Bowman, Serbin, and Shenton (1981) wrote that very
little is known about the Sg distribution. The moments of
the distribution were shown by Johnson (1949) to have a
very complicated form for which exact solutions are not
always possible. Mage (1980) found that when w = 0 the Sg
becomes a three parameter distribution bounded between 0
and 1. He stated that this curve is directly analogous to
the Pearl-Verhulst logistic growth curve. Beyond this

relationship, Bowman, Serbin, and Shenton (1981) and
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Johnson (1949) found no general pattern of parameter values
which could be said to correspond to other, more familiar
distribution curves. They explained that this situation was
due to the fact that each combination of parameters
produces a curve with unique skewness and kurtosis values.

This latter point led Hafley and Schreuder (1977) to
conclude that the Sy occupies a region within the
skewness/kurtosis space rather than a point or line.
Johnson (1949) and Hafley and Schreuder (1977) showed that
the Sg is confined within the skewness/kurtosis graph to a
space bounded on one side by the impossible region and on
the upper side by the line representing the lognormal
distribution (Figure 1). Hafley and Schreuder (1977) used
this as evidence that the Sg is theoretically more flexible
in shape than the Weibull distribution. They further
pointed out that the S has four parameters and the Weibull
only three. Johnson (1949) mentioned that more parameters
can be equated, generally, with greater flexibilty of
shape. The Sp's larger number of parameters therefore
further suggested that the Sg should generate a wider
variety of curve shapes than the Weibull.

Johnson (1949) presented three approaches to parameter
estimation for the Sg based on knowledge of the end-points.
When both end-points are known, the method of moments was
suggested as providing maximum likelihood estimates of the

shape parameters. Moments were calculated on the
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trarsformed variable. When one, generally the lower, end-
point is known, the method suggested was percentile
estimation of the other end-point and moment estimation of
the shape parameters as when both end-points are known. For
neither end-point known the method suggested was percentile
estimation by solution of four transformation equations
where each z represents a different percentile.

The method for both end-points known was further
discussed by Johnson (1949). He stated that this method
allowed using the sample data directly to set the values of
the location and scale parameters. He suggested that the
location parameter be set at the smallest observation and
the sum of the location and scale parameters be set at the
largest observed value. In his numerical examples Johnson
(1949) showed that when dealing with classes where
observations are class midpoints, the sum of the scale and
location parameters ought to extend to the end of the
largest class rather than to its midpoint. This latter
point was in reference to obtaining class frequencies using
the distribution function.

Johnson gave the transformation of x as

£, = 1n((x; - W)/(w + 1 - x)))

With this transformation he stated that the problem then
reduces to that of fitting a normal curve to the observed
f;'s. Fitting this curve by moments was shown to produce

the maximum likelihood estimates of the shape parameters.
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The moments were given as

§ = -f/s¢
and

3 = l/sf
where

£ = 2£;/n
and

s¢? = 5(f; - £ )2/n.

For percentile estimation Slifker and Shapiro (1980)
used four symmetrical and equidistant normal variates along
with hyperbolic trigonometric functions. This method
improved on Johnson's simultaneous equations by providing
explicit solutions to all four parameters. Their result was
directly descended from Johnson's method for neither end-
point known. In addition, they proposed criteria for
selecting among the three Johnson models based on
relationships between percentiles. They suggested that
these criteria would be more suitable than using sample
estimates of skewness and kurtosis to determine which curve
to fit.

Slifker and Shapiro's (1980) method began with the
selection of a value of z>0 of a standard normal variate.
Based on this value of z they proposed setting four points
as +/-z and +/-3z. For the Sg, the distances between each

of the outer and inner end-points would be smaller than the
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distance between the two inner points. They maintained that
this relationship would be the result of the bounding on
the Sg.

In detail, Slifker and Shapiro (1980) asked to let the
sample quantiles x3,, X,, X_,, and x_3, correspond to 3z,

2, -z, and -3z. Three relationships were then defined as

m = X3z - xz
n = X_z = X_32
p = Xz - X-z.

These three measures of distance within the sample
distribution were used to establish the following criteria
for selection of one of Johnson's models:

if mn/p2 >1 then fit Sy;

if mn/p2 = 1 then fit S;, the lognormal;

if mn/p2 < 1 then fit Sg.
Using m, n, and p and hypergeometric trigonometric
functions they defined parameter estimators for Sy, S;, and

Sp. For Sg these estimators were given as

d =  z/{cosh™l(1/2{(1+p/m)(1+p/n)11/2)}
n o _ ((p/n)-(p/m)){1+p/n) (1+p/m)-4}1/2
g = d sinh™1 _
2((p/n)(p/m)-1)
" pl{ (1+p/n) (1+p/m)-2}2-4)1/2
((p/n) (p/m))-1

. X; + X_, 1 , PUBR/n)-(p/m))
w = -

2 Z —2((p/n) (p/m)-1)
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Slifker and Shapiro (1980) based the initial choice of
z on sample size. They suggested that for a moderately
sized sample z should be set at less than one; as sample
size increases, the largest practical choice of z also
increases.

For determining actual percentiles from the data,
Slifker and Shapiro (1980) showed that percentages Pj are
obtained from tabulated z values with j = 3z, 2z, -z, -3z.
The next step given was to obtain the percentile x(1) from
i-s= nPj + 1/2. The final step given was to obtain the value
of the observations corresponding to the four observed
percentile points and using these to compute m, n, and p.

Mage (1980) followed a somewhat similar line of
development but made allowance for the use of four
equidistant z values that need not be symmetric. He
maintained that the use of four symmetric and equidistant
normal variates leads to gross simplification. He also
stated that Slifker and Shapiro's (1980) use of hyperbolic
trigonometric functions offered more difficulty but was
more powerful than Mage's use of natural log functions with
z values that need not be symmetrical. In addition, Mage
(1980) wrote that the use of symmetric normal variates
provides for maximum efficiencies in Sy parameter

estimation.
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Mage (1980) pointed out a major difficulty in both
percentile estimation methods. He wrote that the choice of
an initial z value dictates the resulting parameter
estimates. He established that different z values yield
different parameter estimates. He stressed that the
ambiguity of obtaining different parameter estimates by
different percentile choices may be unacceptable in some
applications. However, from examination of Johnson's (1949)
numerical examples as well as those of Slifker and Shapiro
(1980) and Mage (1980), it appeared as though a particular
range of z values could apply to particular types of
populations.

Mage (1980) made a superficial comparison between
Johnson's moment estimators, Slifker and Shapiro's
percentile estimators, and Mage's percentile estimators. He
reached no conclusion but from visual inspection it
appeared that there was better agreement between the moment
estimators and Slifker and Shapiro's estimators than with
Mage's estimators.

Johnson (1949) noted that the Sz was capable of
producing two unique curve shapes. He showed that a bimodal
or dish shaped curve and a flat topped curve were possible.
In general, these curves were taken to be somewhat trivial.
However, their existence seemed to further imply the
difficulty in using the current, seemingly vague percentile

estimation methods for Johnson's Sg-



28
III. Applications of Distribution Models to Forestry

A. Stand structure

Lorimer and Krug (1983) wrote that the most promising
method of indirectly assessing forest age structure has
been the interpretation of diameter distributions. They
proposed using distribution function parameter estimates
and distribution curve shapes as indices for forest age
structure.

Lorimer and Krug (1983) found that even-aged stands
typically have unimodal diameter distributions. They noted
that these stands exhibit varying degrees of positive
skewness at a young age but approach a more symmetric
distribution with time. All-aged stands were shown to have
steeply descending, monotonic diameter distributions that
can be represented by the negative exponential distribution
function. Multi-aged stands were said to consist of several
age classes that may or may not have equal prominence.
These stands varied from near normal to irregular negative
exponential distributions. The variation depended in part
on the proportion of shade tolerant species in the stand.

Shade tolerant species were found by Lorimer and Krug
(1983) to have the greatest variety of curve forms,
frequently deviating from a symmetric, unimodal shape. The
lack of symmetry was attributed to the large number of

suppressed trees.



29

Lorimer and Krug (1983) concluded that for all-aged
stands, the Weibull shape parameter (c) is less than 1.0 in
most cases and is therefore distinct from the shape
parameters of even-aged stands. They decided that it was
difficult to distinguish even-aged stands from multi-aged
stands through the use of diameter distributions.

Lorimer and Krug (1983) also noted that the diameter
distribution of overstory trees alone was near-normal for
all species. This was the case even when the total
distribution was highly skewed.

Lorimer and Frelich (1984) wrote that the negative
exponential distribution has been used with all-aged forest
diameter distributions. They stated that a semi-log plot of
this distribution produces a straight line which implies an
invariant rate of attrition from one size class to the
next. This rate was shown to be inappropriate since
mortality rates decline precipitously as trees progress
from saplings to dominant trees. They provided evidence
that it is possible to demand properties of a distribution
model that agree with biological conditions associated with

a population to be modelled.

B. Forest growth and yield modelling

Bailey (1980) noted that recent growth and yield
models have incorporated techniques for predicting changes
in diameter distribution with stand age. He described these

models as using an assumed distribution that is fitted to
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stand data. The models were further described as using
estimates of distribution parameters to develop least
squares (regression) equations to predict the parameters,
and the distributions, from stand age.

Bailey (1980) set as a requirement for these models
that a diameter distribution remain in a given family over
the projection time. This requirement was easily justified
in that it would be very awkward to respecify a
distribution function, and use parameter predictions, at
any step in the projection. From this point Bailey (1980)
set out to show that the Weibull distribution exhibits a
key property that provides some tentative biological
justification for its use.

It was shown by Bailey (1980) that the Weibull
distribution allows the assumption of a nonconstant
relative growth rate in diameter at any two ages. On the
other hand, he showed that Johnson's Sg distribution forces
the assumption of constant relative growth rate in diameter
at two ages. He concluded, based on his data, that relative
diameter growth rate cannot be assumed to be constant over
all ages for a given density.

Hyink and Moser (1983) acknowledged that the diameter
distribution method for predicting yields and stand
structure in even-aged forests was firmly established. They
went on to present two approaches to the use of diameter

distribution models in growth and yield modelling. One was
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the parameter prediction model, defined as the process of
predicting the future values of distribution function
parameters. This step was given to lead to computation of
stand average attributes such as volume, basal areé per
acre, trees per acre, and quadratic mean diameter. The
other method was the parameter recovery model, defined as
the process of predicting future values of stand attributes
and then computing the distribution parameter estimates of
the underlying diameter distribution. In general, Hyink and
Moser (1983) stated that the parameter prediction models
are viewed as being somewhat more informative than the
parameter recovery models. Their reasoning was that
parameter prediction models allow computation of total
stand attribute values as well as their distribution by
diameter class.

. Hyink and Moser (1983) concluded with a remark that
tends to sum up the state of knowledge of distribution
models and their use in forestry. They stated that there is
poor, if any, understanding of the biological relationships
between specific distribution function parameters, the
forest populations they characterize, and the

characteristics of the site upon which they reside.

C. Other applications
Quang and Burkhardt (1984) presented a method for
modelling irregular diameter distribution curves. They

focused on the Weibull distribution but showed the general
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applicability of the method to distribution functions. In
essence, they used the cumulative probability function of a
distribution and different sets of parameter estimates to
model segments of a sample distribution. The segment
cumulative functions were then joined to create an overall
model of the irregqular curve.

Ek, Issos, and Bailey (1975) discussed how to estimate
Weibull distribution parameters so as to obtain a
particular result beyond that of fitting an observed
distribution. They showed that a distribution could be
modelled in such a way as to have the model produce a
specific quadratic mean diameter. They defined the expected
value of the quadratic mean as a quadratic equation
involving gamma functions. The distribution parameters were
defined as the positive roots of the quadratic equation. No
explicit solution of parameters was found possible when the
shape parameter (c) is unknown.

Little (1983) has provided the only research to date
on fitting a distribution model to tree diameter
distributions in a mixed species forest. She developed
parameter prediction equations based on stand attributes
but pointed out that individual species distributions were
stil. needed to complete the work. She found, however, that
the Weibull distribution fit the observed diameter

distribution of the mixed stands quite well. The major
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implication of her work was that the use of distribution
models need not be restricted to even-aged, single-species
forests or stands.

Zarnoch, et al. (1980) used the Weibull distribution
to model changes in red pine diameter distributions under
different thinning treatments. They looked at proportions
of trees per acre and basal area per acre estimated by the
Weibull function for the various thinnings. They found that
the Weibull provided an adequate fit to observed diameter

distributions.



Materials and Methods

I. The Sampling Method

During the summers of 1983-1985, eighty forest stands
were selected and sampled as part of the Ecological
Classification System (ECS) study - a cooperative agreement
between Michigan State University and the U.S. Forest
Service. The 80 stands are composed of upland hardwoods and
many are in "late successional" stages. The sampling was
done on the western unit of the Huron-Manistee National
Forest located in the northwestern portion of the Lower
Penninsula of Michigan. This area includes parts of
Newaygo, Lake, Wexford, and Manistee counties.

Stands were selected at random from a list of stands
which exhibited the appropriate overstory characteristics.
The list was compiled by air photo interpretation and
ground reconnaisance. The critical overstory
characteristics for the ECS study were defined as
composition, degree of disturbance, age, basal area, and
degree of aspen presence.

The overstory was limited to well-stocked upland
hardwoods of at least forty years of age. The aspen
component was restricted to 20 % of total basal area or
less. Disturbance was defined as evidence of harvesting (or
other cutting) or fire in the last forty years. Evidence of

grazing, insect attack or disease were also cause for

34
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rejecting a stand. Stand size was defined as a minimum of
2.5 acres. Other criteria for stand selection were that the
stand have some consistency of slope ahd aspect and that it
be on Forest Service land.

Prior to identifying possible sample stands, the
sample region was stratified by landform. Stands were then
located randomly within the landform strata. A minimum
number of sample stands was identified for the strata and
for overstory community types. These types were defined as
upland oak, mixed oak-red maple, and northern hardwoods.

Once a stand was located on the ground and selected,
simple random sampling was used. Permanent markers were
placed at point center of all sample points as well as at a
reference point that was described in stand summary notes.
Four sample points were used in ECS stands 8-80 (stands
numbered consecutively by chronology) while 6 sample points
were used in stands 1-7. The initially larger sample size
was used to assess the level of variability within stands.
Results of this assessment allowed reduction of the sample
size.

The main sample point was randomly located from the
reference point. The three or five remaining points were
located as satellites at random azimuths and distances from
the main point. Sample points were rejected if they fell
outside the stand boundary. In such cases, a new random
azimuth and distance was chosen and followed from the main

point.
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The overstory data which were collected included tree
species, diameter, height, age, ten-year diameter
increment, crown ratio, and crown class. Understory species
abundance and cover were also sampled as part of the
inventory. Additionally, soil profile was described and
textural samples taken for laboratory analysis.

At each sample point, variable radius plot sampling
(point sampling) was performed. A basal area factor (BAF)
of 10 (English) was used on all sample points in all stands
except stands 60-66. Stands 61-66 were sampled using a BAF
of 5 and stand 60 was sampled with a BAF of 5 for two
points and a BAF of 10 for two points. The variable of
interest in this study, diameter at breast height (dbh),
was measured to 1/10 inch on all tally trees at a sample
point. The minimum dbh was 3.5 inches, the lower 1imit of
tree merchantability. Data was recorded on U.S. Forest
Service-style tally sheets, one sheet per point.

The intent of stratifying and selecting stands as
deséribed was to eventually segregate stands based on
landform overstory community type, ground flora species
cover and abundance, and soil characteristics. Via this
post-stratification, stands were grouped and their
overstory productivity levels determined from per acre
stand averages. The goal of this process was to identify

strata characteristics by which land units could be
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identified with regard to their potential productivity. The
potentiality was derived from the "late successional”
nature of many of the stands sampled.

The groups of stands were termed Ecological Land Type
Phases (ELTP). Of the eighty stands sampled, 72 were
classed as one of eleven ELTP's. The remaining 8 stands
were not classified due to irregqularities in overstory
composition and/or other characteristics that did not
conform to ELTP definitions. The current ELTP
classifications (Table 1) were not given as final but only
as an initial step in the process of defining the
classification scheme and system. These unofficial
classifications were issued in March of 1986. Additional
samples were expected to be added to the ECS data base and
these stands and further investigation could alter the
current ELTP's. This study utilized these current ELTP's to
establish an initial basis for ELTP diameter distributions
and a methodology by which distribution modelling may be
accomplished as ELTP's develop.

Each ELTP was given a numeric code. The first digit
of the code indicated the potential late successional
overstory community. The first number was also strongly
related to soil development within sandy soils.

ELTP 1: pin oak - white oak
ELTP 1_: black oak - white oak

ELTP 2_: mixed oak - red maple
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Table 1 : ECS Stand Assignments by ELTP

ELTP

1:

35:
37:

40:
43:
45:
47:

No ELTP:

ECS STANDS

48, 49,
1, 3,
29, 30,
15, 18,
8, 11,
14, 16,
4, 5,
7, 36,
21, 23,

6, 22,

9' 12'

50,
28,
34,
39,
47,
17,
10,
40,
25,

24,

13,

53,
33,
51,
45,
52,
20,
44,
41,
26,
27,

19,

54, 55, 65, 78, 79
38, 61, 63

59, 66, 71, 75

46, 76

58, 67, 68, 70, 80
60, 64, 69, 74, 77
72

43, 56, 57

31, 35

32, 37

42, 62, 73
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ELTP 3_: red ocak - red maple

ELTP 4_: northern hardwoods

The second digit in the code described the soil substrata

characteristics relative to plant associations.

0:

no textural substrata

bands of sandy loam or coarser material

subirrigation

bands of sandy clay loam or finer materials in ELTP's
undifferentiated by ground flora

sandy clay loam or finer bands beneath ELTP's with

diagnostic ground flora.

A brief description of each ELTP can be found in

Appendix I.
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II. Data Processing

All overstory sample data collected were entered into
computer files as well as retained as original and
photocopies of original tally sheets. Individual files were
created for each stand. Species codes and dbh data were
extracted from these files to create stand files in a
statistical analysis program. The data in these files
remained as species and dbh of sample tally trees.

Stand files of species and dbh were grouped according
to ELTP groupings. The ELTP files then contained total
tally trees for all stands in an ELTP. The statistical
program was used to produce frequency distributions of
tally trees by one inch dbh classes. The dbh classes were
defined as being centered on the inch with width of plus
0.4 inch and minus 0.5 inch. For example, the 4 inch class
had width 3.5-4.4 inches.

The sampling design truncated the diameter samples at
3.5 inches. Samples of trees less than 3.5 inches in
diameter, though available, were found to be inappropriate
for this study. Therefore, the population of interest was
defined as all trees in ECS stands of diameter 3.5 inches
and greater.

Once the frequency distributions of tally trees
within an ELTP were obtained, the number of tally trees in

each diameter class in an ELTP were transformed to per acre
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values by the function:

# tally trees * [{(baf/ba)/# points}/#stands in an ELTP]

where baf basal area factor

ba basal area = 0.00545415 * dbh2

]

as derived from Husch, Miller and Beers (1982). This
conversion factor resulted in unbiased estimates of trees
per acre for point sampling.

All stands with the same BAF over all points and the
same number of points were processed as a group to the
point of obtaining per acre frequencies by diameter class.
There were four such groups: 10 BAF and 4 points, 10 BAF
and 6 points, 5 BAF and 4 points, and one stand (60) with
two points at 10 BAF and two points at 5 BAF. Frequency
distributions for each ELTP were then compiled by combining

per acre frequencies from appropriate groups.

A. Point Sample Data and Distribution Modelling

The per acre frequency distributions of tree dbh by
ELTP were used to develop modelled dbh distributions using
the Weibull distribution model and Johnson's Sg
distribution model. This methodology agreed with the
theoretical foundation developed by Van Deusen (1986). He
used relative frequency - percentage of total trees in a
diameter class - to develop the theory behind the use of

point sample data to model dbh distributions. That
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development parallelled the use of absolute frequencies -
the actual number of trees in a diameter class - in
modelling dbh distributions, as was done in this study.

The contrast in methodology was in using observed
tally frequencies as the basis for modelling and then
expanding the predicted tally frequencies to per acre
values. Van Deusen's point was that point sampling, or
sampling with probability proportional to size, has dbh? as
the variable in the proportional function. The dbh? term
was applied directly in transforming observed tally
frequencies to modelled per acre frequencies. In the
contrasting, incorrect methodology, the dbh2 proportional
transformation would have to be applied after the modelling
portion of the process. Because the method used here
modelled the per acre frequencies, the dbh? term was
incofporated in the modelling, following exactly the theory

developed by Van Deusen (1986).

B. Calculation Tools

The criteria set forth in the objectives of this
study included that the calculations be kept relatively
simple. The goal was to provide methodology making the
modelling of diameter distributions readily accessible,
concise, and yet reasonably accurate. To that end, all
calculation was done using a simple spreadsheet program

and/or a programmable calculator.
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A simple spreadsheet program was used in carrying out
the preceeding and following methods. The program was
considered to be a standard sort of spreadsheet that would
be available to most foresters interested in diameter
distributions. More complex spreadsheets were noted to be
capable of allowing an individual to perform the
calculations more quickly and easily. A programmable
calculator was also found to a capable tool for use in
carrying out the necessary calculations. Obviously, the
time required in the use of a calculator was greater than
for a spreadsheet.

The key element in the use of the spreadsheet was
defining a series of "macros": individual keys or short
sequences of keys that stored longer typed formulas or a
series of commands to the program. The use of macros
eliminated the need to type in long formulas and command
sequences repeatedly. The macros were saved to diskette and

loaded with the spreadsheet program.

III. Distribution Model Development

A. Weibull Distribution
The Weibull probability density function was given

earlier as

£(x) = (c/b) ((x-a)/b)S™1 exp[-((x-a)/b)€]

dbh

where X

a smallest dbh in distribution
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b 63rd percentile of the distribution

c shape parameter.

In order to apply this function to modelling diameter
distributions, the parameters a, b, and c first had to be
estimated. The conceptual approaches to parameter
estimation for the Weibull distribution have been
presented.

The method for estimation from percentiles was given
by Zarnoch and Dell (1985). Estimation of a, the location
parameter, was done according to the definition of the
population of interest. That is, since the samples were
truncated at a diameter of 3.5 inches, the smallest
possible diameter, a was set at 3.5 inches. This value then
became the estimate of a.

Estimation of b, the scale parameter, was given by
Zarnoch and Dell (1985) as
b= -3 +x¢3,
where n = total number of trees per acre

a = the estimate of a, the location parameter
X _g3n = the 63rd percentile of the distribution.
They also defined the estimator of ¢, the shape parameter,
as
¢ = {1n [1n(1-pk)/1n(1-p;)1}/{1nl(Xppy=8)/(Xpp5-3) 1}
0.97366

where Pk
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Cohen (1965) and Zarnoch and Dell (1985) gave the
maximum likelihood estimators of b and ¢ as
[(E %38 1n x) /(L ;€0 - 1/8
= [(1/n)(Z1n x;)]
from which ¢ is derived through iteration, and
b= ta/myzx /e

A

In both formulas x; = x; - a.

Percentile estimation was given by Cohen (1965) and
Zarnoch and Dell (1985) as a good way to obtain an initial
value of ¢ upon which to base the iterative solutions of
the first equation for maximum likelihood estimation. They
noted that when the two sides of the equation are equal,
the value of ¢ used to obtain this equality is the maximum
likelihood estimate of c.

For both estimation methods, grouped frequency counts
were the basis for determining parameter estimates. Though
this approach ran the risk of suppressing possibly
important distributional information as would be available
in a complete data 1list, the simpler nature of this
approach was in accordance with the objectives of the
study.

For percentile estimation a list of observed
cumulative per-acre frequencies and corresponding diameters
were obtained for each ELTP. Total number of trees per acre
(n) was then multiplied by the two values of p given by

Zarnoch and Dell (1985). This provided two cumulative
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frequency values, Xnpk and Xnpi- The diameter classes
corresponding to those two cumulative frequencies were then
used to calculate c. The same n for the ELTP was then
multiplied by 0.63 to gain one more cumulative frequency.
The corresponding diameter class for this value was then
used to estimate b. All calculations were easily done on a
programmable calculator.

For maximum likelihood estimation, diameter class and
frequency data for an ELTP were entered into a spreadsheet.
Diameter class was necessarily transformed by subtracting
3.5 from all classes. Three other values (columns) were
calculated: frequency * 1ln x, frequency * xe, and frequency
* ln x * xa. Columns were summed to obtain the elements of
the maximum likelihood estimation formula.

The percentile estimate of c was obtained first. That
estimate of c was used to solve for the maximum likelihood
estimate of ¢ through the iterative formula. In most cases
it was necessary to complete only five iterations. At that
point values for each side of the equation were
sufficiently close (identical in value up to the fourth
significant digit) that linear interpolation, as suggested
by Cohen (1965), yielded the correct result. The estimate
of b was calculated in the same spreadsheet.

The parameter estimates from each method for each
ELTP were then used to calculate f(x) for the Weibull

distribution. Number of trees per acre by diameter class
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(absolute frequencies) were obtained by multiplying £(x) by
the total observed number of trees per acre. Tables of
observed and predicted relative and absolute frequencies
were compiled for each ELTP. Chi-squared and Kolmogorov-
Smirnoff one sample goodness of fit test statistics were
computed for each parameter estimation method in each ELTP.
In addition, ELTP level attributes were calculated to
assess the predictive power of the parameter estimation

methods and the model beyond simple curve fitting.

B. Johnson's Sp Distribution
The Sp distribution probability density function was
given earlier as
f(x) =
(AA/Z%) (1/1(x-w)(w+1-x) 1} exp{-1/2[g+d 1n((x-w)/(w+l-x))]?}

where x = dbh

d = shape parameter
g = shape parameter
1 = scale parameter

w = location parameter (smallest diameter).
The parameters to be estimated were discussed earlier.

The method for percentile estimation was given by
Slifker and Shapiro (1980). Estimation of the parameters
was noted as being dependent upon the selection of an
initial z-value, where z is a unit normal variate as given
in tabular form by Steele and Torrey (1980). Sliker and
Shapiro (1980) let this initial z be the basis of four
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symmetrical values of z : +/-z and +/-3z. The probabilities
associated with each of these values, designated Pj, were
then used to determine the distribution percentile x(1)
fromi = nPJ- +1/2, where n equals the total

number of trees per acre.

Using the four percentiles corresponding to the four
z-values, Slifker and Shapiro (1980) developed three
relationships

m = X3z = X,
N = Xz =~ X.32
P=X; = X_g,.
- These three relationships were used in the hyperbolic

trigonometric functions to estimate the four parameters:

N

d = z/{cosh™1(.5[(1+p/m) (1+p/n)11/2)}
A A .y Up/n)-(p/m)){(1+p/m)(1+p/n)-4}1/2
g = d sinh _
2((p/n)(p/m)-1)
- p{[(1+p/n) (1+p/m)-212-4}1/2
((p/n)(p/m))-1
. X; + X_, 1 . PUBR/M)=(p/m))
w - -
2 —z “2((p/n) (p/m)-1)

Slifker and Shapiro (1980) suggested an initial z-
value less than one. In the process of using this method of
parameter estimation, a set of tables were developed giving
a range of z-values from 0.50 to 0.90 in increments of 0.10

(Appendix II). The tables included sample size and z-value,
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and gave the four appropriate cumulative frequencies for
the four corresponding z-values. Parameter estimation was
then simply a matter of choosing a z-value within 0.50
through 0.90 for a particular ELTP, obtaining values for m,
n, and p, and calculating the estimates.

The method for maximum likelihood estimation was
given by Johnson (1949). It was based on the distribution
transformation function and so reduces the problem to
fitting a normal distribution. Johnson (1949) defined the
transformation function as

£; = Inl(x; - W)/(% +1 - x5)],
the moments of which yielded estimates of d and g, the
shape parameters. The moments were given as

f=1f;/n
and

s¢2 = I(f; - £)/n
and the estimators as

-E/Sf

)

and

Q>
[}

l/sf.

This method required that values for w and 1, the
location and scale parameters, be estimated or known prior
to estimating d and g. As in the case of the Weibull
distribution, the most straight forward approach was to
define the range of diameters given by the samples as the

population range of diameters. Therefore, the location
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parameter, w, was set at 3.5 and the scale parameter, 1,
was set at the maximum observed diameter class for an ELTP
minus 3.5. Because w+l defines the upper end of the Sp
distribution, this method of setting wand1 gave the
observed range. In addition, because the Sg distribution
has high contact at both ends of its curve, the upper
distribution end was defined as the upper bound of the
maximum diameter class plus 0.5.

In the case of each parameter estimation method, the
grouped frequencies of the observed distributions were used
in computation. Again, some specificity in the complete
data list may have been lost due to this approach but the
conciseness of calculation and data handling was considered
to be an important aspect of the study.

Maximum likelihood parameter estimation for the Sp
distribution was carried out with the use of a spreadsheet.
Diameter classes and frequencies were entered, the
transformation f; was calculated for each class and summed,
the moments were obtained from these sums, and the
parameter estimates calculated. Parameter estimates from
each method were used to calculate f(x) for each ELTP.
Absolute frequencies were obtained by multiplying f(x) by
total observed trees per acre for an ELTP. As in the case
of the Weibull, goodness of fit statistics and ELTP level
attributes were calculated to assess the quality of
prediction for the model and each parameter estimation

method.
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IV. Data Analysis

A. Goodness-of-Fit Statistics

Two tests were used to statistically determine the
goodness-of-fit of the predicted diameter distributions to
the observed distributions. The first was the Chi-squared
test and the second was the Kolmogorov-Smirnoff one sample
test.

Steele and Torrie (1980) and Conover (1980) defined
the Chi-squared test statistic as

x2 = 7 ((Observed - Expected)z)/Expected
with degrees of freedom equal to the number of classes
minus one, minus the number of parameters estimated from
the data. They specified that the test statistic be
compared to tabulated values of Chi-squared based on a
predetermined alpha level and degrees of freedom.

Steele and Torrie (1980) noted difficulties with the
test statistic when there are class frequencies less than
one. They suggested that consecutive classes with
frequencies less than one be combined in both observed and
expected distributions. However, Steele and Torrie (1980)
and Conover (1980) agreed that there is no accepted
protocol for handling frequencies less than one.

For testing the predicted or "expected" diameter
distributions against the observed ELTP distributions,
consecutive classes with frequencies less than one were

combined. The Chi-squared test statistic was then
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calculated. Degrees of freedom were determined by the
number of classes after combining. Two degrees of freedom
were subtracted for parameters estimated for the Weibull
distributions, both parameter estimation methods, and for
the Sp distribution, maximum likelihood estimation. Four
degrees of freedom were subtracted for the Sy distribution
obtained through percentile estimation.

Alpha level was set a priori at 0.05. The precedent
found in the literature for diameter distribution modelling
was 0.10. Almost all such studies were conducted on even-
aged, single species forests using fractional area
sampling. The stands in this study were mixed species,
mixed age stands sampled using probability proportional to
size. Under these conditions, it was decided that
acceptance or rejection criteria of the goodness-of-fit
hypotheses could be relaxed somewhat. By decreasing the
value of alpha, the rejection region for the hypothesis
test was made smaller thereby decreasing the possibility of
incorrect rejection of the null hypothesis. That is, the
chance of a Type I error was thereby reduced.

The second test used, the Kolmogorov-Smirnoff one
sample test, was discussed by Conover (1980). He defined

the test statistic as

D = sup | Fy(x) - Fg(x) |
x .

where F,(x) = cumulative relative frequency of the

predicted distribution
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and F,(x) = cumulative relative frequency of the
observed distribution.

The test was presented as one which is concerned with
the cumulative distributions: observed and expected.
Conover (1980) described it as looking at the absolute
value of the differences between the cumulative relative
frequencies of the observed and predicted distributions.
The largest of these differences was given as the value of
the test statistic. Tabulated values of D were referred to
where comparison is based on alpha level and sample size.
Sample size in this case was defined as the total trees per
acre for an ELTP. The large sample approximation, for
n>40, was given as D = 1.36/(n +WI'G)1/2.

The Chi-square test gave a class by class assessment
of goodness of fit. The Kolmogorov-Smirnoff test was used
to provide secondary goodness of fit information. The
Kolmogorov-Smirnoff test was rather sensitive to
distributional differences in the smaller diameter classes
but rather insensitive to differences in the upper tails.
Conversely, the Chi-Squared test was overly sensitive to
differences in the upper tails and, in one case, gave an
unreliable indication of goodness of fit. The Kolmogorov-
Smirnoff test was used to provide further goodness of fit
discrimination when the Chi-squared test did not provide

reliable results.
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The Chi-squared test was also applied to that portion
of each distribution greater than or equal to 11 inches in
diameter. Again, classes with.frequencies less than one
were combined. The trees greater than or equal to 11 inches
in diameter were defined as sawtimber size. Because of size
and potential for producing a higher value product than
smaller trees, the sawtimber portion of the distributions
was considered critical in modelling. The Chi-square test
on this portion of the distributions was intended to provide
further evidence on the quality of the performance of each

model and parameter estimation method.

B. ELTP-Level Parameters

Bailey (1980), Hyink and Moser (1983), and Little
(1983) made the point that stand level attributes are of
real interest in growth and yield modelling. These
attributes included basal area per acre (BA/a), number of
trees per acre (not/a), arithmetic mean diameter at breast
height (amdbh), and quadratic mean diameter at breast
height (gmdbh). The ability of a distribution model to
accurately predict frequencies of trees per acre by
diameter class was said to be of basic importance to growth
and yield modelling. The further ability of a model to
predict a distribution that also yields accurate
predictions of stand level attributes that are based on
easily obtained measurements and are closely correlated

with volume was noted to be of equal significance.
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Therefore, the second level of model and parameter
estimation method assessment was to determine how well the
predicted distributions agreed with the observed
distributions on ELTP level attributes.

Not/a was calculated by summing the observed and
predicted per acre frequencies respectively for each model
and patametér estimation method in each ELTP. BA/a was
calculated by obtaining the basal area of each diameter
class, multiplying by class per acre frequencies, and
summing. Qmdbh was calculated by dividing the BA/a by
not/a, then dividing that quotient by 0.00545415 and taking
the square root of the result. Amdbh was calculated by
multiplying diameter class by frequency, summing the
products, and dividing by not/a.

No conclusive means of assessing attribute prediction
for an individual ELTP was found. Instead, predictions were
assessed by model and parameter estimation method through
the use of ATEST. Rauscher (1986) developed ATEST, a
computer program written.in BASIC, to determine the bias of
a predictor based on observed values. This bias was
described as the difference between observed and predicted
values given in units of measure and as a percentage of the
observed. The program was described as giving a value for
bias of a prediction based on normally distributed
differences or non-normally distributed differences.

Normally distributed differences were given to lead to use
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of Student's t in order to establish a confidence interval
about the bias. Non-normally distributed differences were
given to lead to the use of a trimmed mean and a jackknifed
estimate of variance to obtain a confidence interval about
the bias. An alpha level of 0.05 was used in constructing
the confidence intervals.

Using this program meant that bias and accuracy would
be reported for a model and parameter estimation method
over all ELTP's. Therefore, attribute prediction was
assessed on an overall level. The main interest in using
ATEST was to establish whether the prediction was
significantly biased and to what degree it was accurate.
Whether or not the 95 $ confidence interval about the bias
contained zero was the criterion for determining if the

bias was significantly different from zero.

C. Skewness and Kurtosis

The final level of analysis was the comparison of
observed and predicted values of skewness and kurtosis.
ATEST was also used in this comparison.

Steele and Torrie (1980) defined the coefficients of
skewness and kurtosis as incorporating the second, third,
and fourth moments of the mean as calculated from sample
data. These moments were defined as
-1

m, = n (x4 = %)2

my = ol (x; - )3
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mé = n°l (x5 - x)4
and the coefficients were defined as

skewness = /B; = m3/(m23/2)

kurtosis = B2 = m4/m22.
They defined skewness as a measure of displacement of the
mode of a distribution from centrality. Kurtosis was
defined as a measure of the "peakedness" of the
distribution.

The three moments were calculated in a spreadsheet by
first entering the diameter classes and frequencies for an
ELTP. Arithmetic mean diameter was calculated as given
earlier. Each diameter was deviated from the mean and
raised to the second, third, and fourth power in turn and
multiplied by the class frequency. The deviations were then
summed and divided by the total trees per acre.

One of the key features of each model was given as
flexibility in generating a variety of curve shapes. The SB
distribution was said to be more flexible than the Weibull,
i.e., that it could generate a wider variety of curve
shapes. The intent of this comparison was to bring to light

information of an ancillary nature regarding any questions

arising from differences in model performance.



Results and Discussion

The results of this study may be put into three
categories: model results, goodness-of-fit results, and
ELTP-level parameter predictions. Results from the
application of the distribution models and parameter
estimation methods include stand tables of observed and
predicted trees per acre and accompanying distribution
graphs. This section also includes discussion of the models
and methods used from the standpoint of application
mechanics. Results of goodness-of-fit tests include test
statistics and outcomes and a discussion of the relative
performance of models and methods with respect to observed
values. Prediction results include predicted ELTP-level
parameter values, relative measures of bias with respect to
observed values, and discussion of the significance of the
parameters and their prediction through diameter

distribution modelling.

I. Modelling Results

Tables 2 and 3 present the results of parameter
estimation for the Weibull and Sg distributions,
respectively. The non-unique nature of estimates obtained
by percentile estimation is apparent in the Weibull
distribution. ELTP's 1 and 10 have identical shape

parameter estimates as do ELTP's 20 and 35. In addition,

58
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ELTP's 20 and 35 have identical scale parameter estimates.
On the whole, the Weibull shape parameter estimates show a
range of curve shapes from reverse J-shape to a somewhat
strongly right skewed mound shape (0.8876 - 1.53595).

The maximum likelihood estimates (MLE) are different
from the percentile estimates (PCTE) for both models. The
MLE are noticeably more conservative in that they exhibit a
narrower range of values. For the Weibull, three of the
shape parameter estimates differ in a significant way
between estimation methods for the same ELTP. The PCTE give
values of c less than 1.0 for ELTP's 12, 40, and 43
whereas corresponding MLE are greater than 1.0. There is a
basic change in curve shape as ¢ differs from 1.0; when c
is less than 1.0 the curve becomes a reverse J-shaped
distribution; when c is greater than 1.0 the curve becomes
mound-shaped. For ELTP 12 the PCTE does not correspond to
the class of curve of the observed distribution (Figure 6).
The reverse is true for ELTP's 40 and 43 (Figures 16 and
18).

Far less can be discerned by examining the parameter
estimates for the Sg distribution (Table 3). The main
observation that can be offered is that relative magnitudes
of parameter estimates are similar between parameter
estimation methods. This at least suggests some degree of

internal consistency in the model.
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The Sp percentile parameter estimation process
appears to offer more difficulty in practice than in
theory. Initial estimates for ELTP's 1, 10, 12, 20, 21, 43,
and 45 are those given in Table 3. These estimates are the
direct result of the estimation method described. The
estimates for ELTP's 35, 37, and 40 in Table 3 are the
result of some modification. Estimates obtained directly by
the given method do not produce a distribution of
sufficient range in application to this data set. The scale
parameter in particular is too small.

This problem is corrected by rejecting the
underestimates of the scale parameter. The corrected
estimates are values of the scale and location parameters
that produce frequencies in a range of diameters identical
to that of the appropriate ELTP. For this problem, the sum
of wand 1 is set to equal the maximum diameter class and
the solutions for W and 1 are obtained by two or three
iterations of f(x), when the proper range is obtained.

The correction of percentile estimates is permissible
since percentile estimation is a non-deterministic method.
Percentile estimation of parameters is simply a systematic
and repeatable method for fitting a curve to an observed
frequency curve. For curve fitting only, one may obtain
parameter estimates by trial and error alone. The
appropriate estimates are those that provide the best curve

fit.
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Correcting parameter estimates creates two problems.
First, the process is time consuming and ill-defined. It is
probable that the use of a complete data list instead of
grouped frequencies would provide sufficient distributional
detail to overcome the problem. Second, when the scale and
location parameter estimates are corrected, the shape of
the curve is altered. In effect, the curve becomes less
kurtotic as the location parameter is decreased and the
scale parameter is increased. The fit to the complete
observed distribution may then be better or worse. If the
shape parameter(s) need to be corrected, estimate
correction becomes increasingly complex.

The method of maximum likelihood estimation for the
Sp is straight forward, as given. The use of the moments of
the transformed variable (diameter) is simple and precise.
The only difficulty with this method is that w and 1 must
be taken from the sample data directly. Since the Sz curve
approaches zero very quickly at the bounds the values of @
and 1 must be set so as to allow sufficient frequencies to
occur near the bounds. The method described is adequate for
accommodating this feature.

Both estimation methods for the Weibull distribution
are easy to apply as described. The MLE method requires
somewhat more time than the PCTE method and about the same
as the Sg MLE ﬁethod. Weibull PCTE are the result of about

three hours of work, including the production of the
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frequency tables. The Weibull MLE method currently requires
about six hours including obtaining the distribution
frequencies. Time savings for this method are possible
because of the piecemeal setup of calculations, the limited
nature of the spreadsheet used, and the speed limitations
on the computer used. The Sg MLE are the result of
approximately four hours of work including obtaining
frequencies. The Sg PCTE require about six to seven hours
of work for the initial estimates. The correction of
estimates adds an undetermined amount of time to the
process.

The Weibull PCTE method is clearly quicker and is
also easier than the other methods. The Sy MLE method is
easier and quicker than the Weibull MLE method because the
latter is done iteratively. The use of spreadsheet and
calculator makes obtaining parameter estimates rather easy,
quick, and immediate in the sense that no mainframe
computer time is required.

Tables 11 - 20 and accompanying Figures 2 - 21 detail
the observed and predicted distributions and their curves.
Parameter estimation method results are paired in the
graphs. Pairing methods results is preferred because of the
inherent differences in the methods. Both relative
frequency (RF) and absolute frequency (AF) are given in the

tables for each ELTP.
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Some aspects of curve behavior can now be linked to
parameter estimate values. Although ELTP's 1 and 10 (Tables
11 and 12; Figures 2 and 4) have the same shape parameter
estimate via percentile estimation, the difference in their
scale parameter estimates causes rather different curves.
This difference gives an idea of what effect changing the
scale parameter has on the distribution.

The disagreement between percentile and maximum
likelihood estimates of the Weibull shape parameter for
ELTP's 12, 40, and 43 can be seen in Tables 13, 18, and 19
and Figures 6, 7, 16, 17, 18, and 19. The discrepancy is in
fact small and may be related to the truncation of the
distribution. Because of this truncation it cannot
necessarily be said that one or the other estimate is
incorrect. The behavior of the distribution around ¢ = 1.0
is interesting in spite of the truncation. It can be seen
that small changes in ¢ around 1.0 definately change the
general class of curve that results. At c equal to about
one the distribution develops a shoulder on the left tail.
When ¢ becomes even slightly less than one the distribution
becomes a definite reverse J-shaped curve (Tables 13 and
19, Figures 6 and 19).

In general, visual inspection reveals a reasonable
approximation of the observed distributions by the
predicted in all cases except ELTP's 35 and 37. These

ELTP's will be discussed later.
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Closer inspection reveals that the left tail of the
observed curves can be highly variable. This variability
makes fitting a curve to the observations overall somewhat
difficult. Where the observed curves are relatively
regular, the predicted curves can be seen to fit much
better (Figqres 2 - 21). The variability of frequencies in
the lower diameter classes is a product of sample size,
sampling method, and the stands sampled. A larger sample
size would provide greater opportunity for observing
smaller diameter trees. The expansion of point sample
frequencies to per acre frequencies results in small
diameter trees being weighted much more heavily than larger
diameter trees. The outcome is that the absence or presence
in a sample of a single 4 inch tree greatly affects the
expanded frequencies. Finally, in many stands, the
inconsistent presence of multiple stemmed red maples of
small diameter (< 7") ends up creating a sawtoothed left
tail in ELTP's 35 and greater.

Though trees less ghan 3.5 inches in diameter are not
included in the observed frequencies, there is no
indication that this truncation presents any problems in
modelling. The location parameter for each model provides
the means by which a lower bound is placed on the
distribution. Frequencies beyond that point are then
allocated according to the observed frequencies by either

parameter estimation method.



67

II. Goodness-of-Fit Results

The null hypothesis of the Chi-squared goodness-of-
fit test states that there is no difference between
observed and predicted distributions. Failure to reject the
null hypothesis leads to the conclusion that the predicted
distribution is as representative of the underlying
population distribution as is the observed distribution.
The same null hypothesis and conclusion are applicable to
the observed and predicted ELTP diameter distributions
generated in this study.

The Chi-squared test examines individual class
absolute frequencies to assess goodness-of-fit. The
Kolmogorov-Smirnoff test works with cumulative relative
frequencies of the distributions. The differences between
these tests present different aspects of goodness of fit.
The Chi-squared test is used in this study as the primary
indicator of goodness-of-fit because it shows how well
individual class absolute frequencies are predicted. These
class frequencies are of interest in assessing the accuracy
of a prediction on the dependent variable of the study:
frequencies of trees per acre by diameter class. The
Kolmogorov-Smirnoff test is used as an indicator of the
accuracy of the distribution in general. As such it can be
expected to be less discriminating and more related to the
distributions as continuous rather than discrete as they

are treated here.
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A. Percentile Estimation

Table 4 provides the calculated test statistics for
the PCTE models. According to the Chi-squared test, both
models produced significantly different distributions
(alpha = 0.05) for six ELTP's. That only 40% of the
observed distributions for each model are non-significant
indicates that the PCTE models did not do an adequate job
of modelling the observed distributions. This is especially
so considering that the alpha level was set to allow
greater latitude by reducing the size of the rejection
region. However, the hypothesis tests are not the final
word on how well the models perform, as is shown in the
sections to follow.

The PCTE Sg model produces non-significant results
for the so-called low site ELTP's: 1, 10, and 12. The PCTE
Weibull model produces no such pattern of non-significance.
Both PCTE models produce significant results for the higher
site ELTP's - 35, 37, 40, 43, and 45 - with the exception
of the Weibull PCTE model for ELTP 45. Over all ELTP's the
Sg PCTE model produces somewhat lower Chi-squared scores.
Considering that three of the Sp distributions have
corrected parameter estimates, the lower scores over all
ELTP's is a point of interest. However, because of the
increased difficulty in parameter estimation, the small
improvement over the Weibull PCTE model over all ELTP's may

not be worth noting.
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As a final note on the Sg PCTE Chi-squared scores,
the degrees of freedom are two fewer than for the Weibull.
The reduction in degrees of freedom increases the size of
the rejection region for the goodness-of-fit test from that
of the Weibull. The fewer degrees of freedom therefore
makes statistical fitting of the Sy PCTE model more
difficult than for the Weibull.

Rejection of the null hypothesis in the Chi-squared
test is of prime concern. As such, the Weibull and Sg PCTE
distributions model the observed distributions about
equally well. This result indicates that both models are
about equally accurate in predicting individual class
frequencies for ELTP's, though the models do not model the
same ELTP's equally well.

Rejection of the null hypothesis in the Kolmogorov-
Smirnoff test is of concern for it indicates a lack of
cumulative distributional accuracy. For this study, this
result is considered less important than the results of the
Chi-squ#ted test. However, the Kolmogorov-Smirnoff test
provides information on the general suitability of the
models to this application which can lead to general
comments on model selection.

The two tests do not agree in all cases (Table 4).
The Kolmogorov-Smirnoff test is more sensitive to
differences in the small diameter classes. However, in many
cases the cumulative distributions approach each other

reasonably well to produce better agreement than indicated
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by the Chi-squared test. The Komogorov-Smirnoff test
indicates that although the two models produce about equal
accuracy in class frequency prediction, the Weibull PCTE
model provides a better overall fit than the Sg. This is
likely due to the corrections made to the Sg parameter
estimates in order to obtain a suitable diameter range. The
resulting distributions may be less accurate overall than
if corrections were not necessary.

The Weibull PCTE model must be preferred over the Sg
PCTE model in this study based on goodness-of-fit results.
Both goodness-of-fit tests indicate that the Weibull PCTE
model performs at least as well as the Sg PCTE model. This
is the telling point. The greater difficulty of estimating
parameters for the Sp PCTE model requires that it perform
better than the Weibull in order for its use to be
justified. Since it performs only about as well at best,

nothing appears to be gained by the increased complexity.

B. Maximum Likelihood Estimation

The distributions derived through maximum likelihood
estimation of parameters do a much better job of fitting
the observed data (Table 5). Though this method of
parameter estimation is more difficult in general than the
percentile estimation methods, the improvement in accuracy

justifies its consideration.
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Both the Chi-squared and Kolmogorov-Smirnoff tests
show that the MLE models perform decidedly better than the
PCTE models. The improvement in performance can be
determined by the relative magnitudes of the test .
statistics. Only in the case of ELTP's 35 and 37 is there
no improvement. Both of those distributions are so
irregular that curve fitting of any regular sort would
prove difficult or impossible. Examination of the
distribution data and curves in Tables 11 - 20 and Figures
2 - 21 gives an idea of how close in agreement the MLE
models come to most of the observed distributions.

On the whole, the Weibull MLE model does somewhat
better than the Sz MLE model. The differences could be
explained by noting that two of the Sg parameters were
taken directly from the sample data while the Weibull
required only one parameter to be treated in that way. The
setting of parameter estimates from sample data may
introduce additional error into the estimation process. In
making a choice between these two models, it should be
acknowledged that differences in accuracy are not
substantial. Instead, the basis for choice should be that
although the iterative calculations for estimating the
Weibull shape parameter are somewhat time consuming, that
method is more exact than relying on setting sample
observations as parameter estimates. Therefore the Weibull
MLE model is indicated as superior to the Sz MLE model on

the basis of goodness-of-fit tests on the whole distribution.
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Goodness-of-fit tests on the whole distribution are,
however, not the final word in determining the adequacy of
a model. Hafley and Schreuder (1977) use goodness-of-fit
criteria as a relative measure of distribution adequacy.
Still other studies (Little, 1983; Zarnoch, et al., 1980;
Johnson, 1949) do not base their findings completely on
goodness-of-fit tests, or also are interested in how well
predicted distributions estimate certain aspects of the
data. It is typical that distribution modelling is a step
in dealing with a larger estimation or modelling problem.
It is the nature of the data itself that dictates what is
important in modelling. In this case, diameter
distributions are presented as possibly leading to forest
growth and yield modelling. Other criteria in addition to
goodness-of-fit to the entire distribution are of interest
for assessing the relative worth of a distribution model
for growth and yield modelling. These criteria include how
well the model predicts frequencies of larger diameter,
higher value trees and how well the model predicts forest
level attributes. Both of these criteria are not mutually
exclusive of the overall goodness-of-fit tests but need not

follow the pattern of accuracy established by the tests.
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III. Goodness-of-Fit for Classes 11 Inches and Greater

Trees 11 inches in diameter and greater are defined
as sawtimber size and as such-demand attention as
potentially higher value trees than those less than 11
inches. Table 6 presents Chi-squared goodness-of-fit
scores for the two models and two parameter estimation
methods. The Kolmogorov-Smirnoff test is not included
because the concern is with accuracy of class frequency
prediction alone.

Results are much improved over the full
distributions. The percentile estimation models produce
seven non-significant distributions. Because degrees of
freedom serve to scale the rejection region, the results
between the full distributions and the sawtimber segments
may be compared. Visual inspection of the curves indicates
that the sawtimber segments are more regular than the
smaller size class segments. The more regular curve would
be easier to model on its own. As it is, both models
predict the sawtimber segment quite well as a part of a
total distribution.

The MLE models are again superior in prediction to
the PCTE models. For this segment, there is no real
difference between models for a parameter estimation
method. Therefore, the choice of model must go to the
Weibull since it provides the easier and more exact means

for parameter estimation.
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ELTP 37 stands out as the most intractable in all
cases. The observed distribution is bimodal and reaches its
maximum diameter class somewhat suddenly (Table 17 and
Figures 14 and 15). In addition, both modes appear quite
leptokutotic, making the curve even more unbalanced. The
reasons for this are not entirely clear. A breakdown of
species distributions reveals that the modes are not
especially associated with individual species or particular
groups of species. Age data is incomplete so it is unknown
whether the modes coincide with different age groups. A
breakdown by stands shows that three of the five stands
exhibit the identical modes of the ELTP distribution, one
at 4 inches and another at 10 inches. The other two stands
have no trees in the 4 inch class and have their respective
modes at 10 inches. Given the shape of the observed curve,
there is almost certainly no way to adequately model it

using the methods described in this study.

IV. ELTP-Level Parameters.

The final level of assessment looks at prediction of
the parameters basal area per acre (ba/a), total trees per
acre (not/a), arithmetic mean diameter (amdbh), and
quadratic mean diameter (gmdbh). All of these parameters
are directly related to the distributions from which they
are calculated. However, they are summaries of the
distributions and as such can be different in accuracy than

the predicted curves from which they are derived.
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These parameters are considered important for what
their prediction accuracy indicates about the respective
models and parameter estimation methods. The goodness-of-
fit tests deal with the details of the distributions.
Consideration of ELTP-level parameter predictions leads to
statements about how well the modelled distribution as an
aggregate characterizes an ELTP in a standard manner of
summary. The ability to predict and therefore project
forest level parameters is considered a key to obtaining
the best results from growth and yield modelling (Little,
1983).

The observed and predicted estimates of the ELTP-
level parameters are given in Tables 7 and 8. The error
in prediction (bias) and the confidence limits about that
error are presented in Table 9. Predictions are by ELTP
and distribution parameter estimation method by model.
Errors and confidence intervals are for ELTP-level
parameter predictions over all ELTP's.

By and large, the predictions are adequate in
accuracy, the most extreme deviation being for ba/a for the
Sg PCTE model. The most extreme value of the confidence
interval for that prediction is 17% of the mean of the
observed ba/a. Though accuracy is generally good, several
of the predictions are slightly to clearly biased,

generally upwards. The preponderance of biased predictions
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occurs for the MLE models. Biased prediction is determined
by the fact that the 95% confidence interval does not
include zero.

Arithmetic mean diameter (amdbh) and total trees per
acre (not/a) are used here as direct summaries of the
distributions. Their values are given in Table 7.
Inspection of observed and predicted values shows that the
MLE distributions are very close in prediction of the
observed values. The bias and 95% confidence intervals in
Table 9 confirms the better accuracy of the MLE
distribution predictions compared to the PCTE model
predictions. This result is no surprise since the accuracy
in MLE model curve fitting is superior. Yet for their
lesser accuracy, the PCTE predictions are unbiased for both
models. The Weibull and Sg MLE predictions are biased,
however slightly, for both amdbh and not/a.

The sign on the bias indicates the direction of the
bias. Where the 95% confidence intervals include zero this
sign is of no consequence as the bias is not significantly
different from zero (alpha = 0.05). Where the confidence
interval does not include zero the sign of the bias is of
interest.

Both MLE models underestimate amdbh, indicated by the
positive sign on the bias (as given by the ATEST program).
Both MLE models overestimate not/a, as indicated by the

negative bias. The implication is that the MLE models tend
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to overestimate the frequencies of trees in the small
diameter classes and/or underestimate the frequencies in
the larger diameter classes.

The amount of bias in the MLE models predictions is
small: no more than 3% of the parameter mean for the
extreme value of the confidence interval. However, the
result is unexpected in view of the precedents set in the
literature. Percentile estimation is generally expected to
produce distributions with greater bias than maximum
likelihood estimation (Zarnoch and Dell, 1985). The
predictions considered here are somewhat removed from
distribution estimation so that this expectation may not
apply. Yet these ELTP-level parameters are directly related
to the distributions as summaries.

Quadratic mean diameter (gmdbh) and basal area per
acre (ba/a) are more sophisticated summaries than amdbh and
not/a and are easier to relate to volume. Observed and
predicted values for these ELTP-level parameters are
included in Table 8. The errors in prediction and 95%
confidence intervals about the errors are in Table 9.

Only the Weibull MLE predictions are biased for
gmdbh. As before, the magnitude of the bias is small: the
extreme value of the confidence interval is only 1% of the
ELTP mean gmdbh. The Sg MLE prediction of gmdbh is the most
accurate over all ELTP's. There is less to indicate this

result in the distributions and their curves.
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All models produce biased predictions of ba/a for all
ELTP's. The PCTE predictions are two to three times less
accurate than the least accurate MLE predictions. The
errors for these predictions are much higher than for any
other predictions. As such, the PCTE predictions
overestimate ba/a by as much as 17% of the ELTP mean ba/a.
The Sg MLE predictions are also overestimates of ba/a. The
Weibull MLE predictions underestimate ba/a. The magnitude
of bias for both MLE models is relatively small.

In general, the Weibull MLE predictions of ELTP-level
parameters are the most accurate. However, all of those
predictions are biased. The Sg MLE predictions are only
slightly less accurate than the Weibull MLE predictions, in
general. These predictions tend to be biased as well,
except for gmdbh. The PCTE predictions are generally less
accurate than the MLE predictions. Except for the ba/a
predictions, they are all unbiased.

From a statistical standpoint, unbiased results are
preferred. Therefore, though the MLE models produce more
accurate curves and predictions of ELTP-level attributes,
the biasedness of their summary predictions makes their
superiority less certain. This result cannot be applied to
the models in general. Observations on the biasedness of
predictions are limited only to the data used in this

study.
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V. Skewness and Kurtosis

The coefficients of skewness and kurtosis are
normally used to assess the normality of a distribution or
curve. They are overall measures of curve shape in two
dimensions. In this study, these coefficients are used to
assess the relative curve shapes of observed and predicted
curves. The observed and predicted coefficients are in
Table 10. The bias of the predictions and the 95%
confidence intervals about the bias are presented in Table

9.

For skewness predictions, the Sg models produce
biased results. The biasedness in both cases is the result
of overestimating skewness. This overestimation of skewness
is seen in the distributions (Tables 11 - 20) and graphs
(Figures 2 - 21) as reflected in the overestimation of
frequencies in the small diameter classes. The
overestimation of skewness may be the result of an
underestimation of the distribution scale parameter. All
predictions for kurtosis ;re unbiased for both models.

The most accurate predictor of overall curve shape as
described by skewness and kurtosis is the Weibull PCTE
distribution. This is somewhat surprising given that the Sy
distribution was noted to be the more flexible model. Two
reasons may be given for this result. First, the range of
curve shapes given by the observed data is not very wide.

Other than the two irregular distributions, ELTP's 35 and
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37, only two general curve types appear. Second, the
difficulties encountered in the percentile estimation of
the Sp parameters is certain to have given a less than
satisfactory indication of that distribution's potential
performance. Allied to this point is the fact that maximum
likelihood estimation for the Sg distribution is less
explicit than for the Weibull. In being less explicit, the
method may be subject to additional error in estimation.
The result in both cases could be parameter estimates that
are not sufficiently accurate. The parameter estimation
methods are at fault for the Sy and that places them in a
position inferior to the Weibull distribution in this
study.

The implications of accurately predicting skewness
and kurtosis may be carried further. The correlation
between the Weibull shape parameter estimates (both
methods) and the skewness and kurtosis of the predicted
curves is -0.80 and -0.39, respectively. The two tailed 95%
critical correlation value is -0.44, n = 20. The Weibull
shape parameter is clearly correlated with skewness. The
association is not outstanding but there is evidence to
suggest that c is associated with skewness in some real
fashion. Correlations between the Sp shape parameters and
predicted skewness and kurtosis exhibit a similar
association: 4 and skewness = 0.53; d and kurtosis = 0.67;

g and skewness = 0.82; g and kurtosis = 0.90.
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It should be expected that shape parameters and the
skewness and kurtosis coefficients would exhibit some
significant degree of association. Both sets of values are
indices of curve shape. It cannot be said if the
association shown here is truly linear. The point is that
it should also be expected that a distribution function
that is more accurate in predicting the observed
coefficients of skewness and kurtosis is based on estimates
of the distribution parameters that are closer to the
values of parameters for the true distribution. This is a
hypothesis that cannot be tested here since the underlying
population distributions are unknown. However, when all
ELTP's are taken as a set, the Weibull models, with
parameters estimated as in this study, exhibit better
overall accuracy in prediction than the Sp distribution
when compared within parameter estimation methods. Based on
the above hypothesis, this better accuracy may be traced to
the fact that the Weibull models are more accurate and

unbiased in predicting observed measures of curve shape.



OBSERVED AND PREDICTED DIRMETER DISTRIBUTIONS

ELTP 1:

Table 11
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Table 12 : ELTP 10: OBSERVED AND PREDICTED DIAMETER DISTRIBUTIONS
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ELTP 12: OBSERVED AND PREDICTED DIAMETER DISTRIBUTIONS

Table 13 :
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ELTP 20: OBPSERVED AND PREDICTED DIAMETER DISTRIBUTIONS

Table 14 ¢
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OBSERVED AND PREDICTED DIRMETER DISTRIBUTIONS

ELTP 21:

Table 18 :
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ELTP 35: OPSERVED AND PREDICTED DIAMETER DISTRIBUTIONS

Table 16 :
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Table 17 @

ELTP 37: OBSERVED AND PREDICTED DIAMETER DISTRIBUTIONS
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Table 18 : ELTP 40: OBSERVED AND PREDICTED OIAMETER DISTRIBUTIONS
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ELTP 43: OBSERVED AND PREDICTED DIRMETER DISTRIBUTIONS

Table 19 :
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Summary and Conclusions

In general, the nature of the data analyzed in this
study presents a complex modelling problem. First, the
ELTP's are composed of mixed upland hardwood species and,
to some extent, mixed age groups. This sort of forest as a
whole has not yet been considered in diameter distribution
modelling in the literature. Second, the ELTP's are
composed of stands with disparate diameter distributions.
The expected and actual result of these two conditions is a
series of somewhat regular to very irregular diameter
distributions.

The use of point sample data is suitable for
modelling ELTP diameter distributions. The methods given
are based on sampling and distribution theory taken from
sampling with probability proportional to size. A larger
number of sample points per stand may lead to improved
accuracy of small diameter class (< 8") frequencies.
Overall, the MLE models especially provide good fits to the
observed data except in cases where the observed
distributions are irregular to very irregqular (ELTP's 35
and 37). ELTP 37 may present a case where the compound
distribution modelling method of Cao and Burkhart (1984)
would be appropriate. Otherwise, the good fits to observed

data indicate that point sample data are useful in
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120
modelling observed diameter distributions. This point is
especially important since a great deal of forest inventory
is done with point sampling.

The grouping of frequency data before estimating
parameters may result in diminished accuracy. However, the
MLE models in particular provide results that are
sufficiently good to state that the possible loss of
accuracy may not be great enough to offset the ease of the
method. The use of the grouped frequency counts should
include an acknowledgement of this possible shortcoming.

The fact that any of the models used in this study
produce a good overall fit to the observed data may be
taken as evidence that these methods are worth
consideration. In these methods, three new facets of tree
diameter distribution modelling are given: modelling of
mixed species and mixed age upland hardwood diameter
distributions; the use of grouped frequency counts for
distribution parameter estimation; and the use of point
sample data for modelling diameter distributions. Using the
grouped frequencies facilitates the use of a microcomputer
and spreadsheet software for calculations. The chief
advantages in this are that a mainframe computer is not
necessary and manipulation of data is reduced.

As to the models themselves, the Weibull distribution
provides the best overall accuracy with these data with the

least effort. The Sg distribution is theoretically more
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flexible and therefore more interesting than the Weibull,
but its estimation accuracy is not commensurate with its
greater complexity. Therefore, the Weibull distribution is
preferred in this study.

The relatively poorer performance of the Sg with
respect to the Weibull may be related to the parameter
estimation methods chosen for the Sg. The simplest and most
explicit methods available are described and used in this
study but these methods are not as simple or explicit as
those for the Weibull distribution. This weakness may be
the cause of the unacceptable level of accuracy of the Sgy
as compared to the Weibull. In addition, the Sg may be more
sensitive than the Weibull to the use of grouped
frequencies for parameter estimation. The result of
inaccurate parameter estimates is an inaccurate fit of
predicted to observed data. These speculations serve to
point out that the most significant impediment to the
common use of the Sg is the difficulty in parameter
estimation previously described.

Both parameter estimation methods for the Weibull
distribution are explicit and straight forward. The
percentile estimation method as given in this study is the
easier of the two methods for parameter estimation. The
Weibull PCTE model is not as accurate in predicting class
frequencies as the Weibull MLE model, but for estimation of

a somewhat generalized nature, the PCTE model is

vy
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appropriate. If more accuracy is required, the PCTE
estimates of c are a good starting point for the iterative
solution of the maximum likelihood estimate of c. The
Weibull MLE parameter estimates are suitable for inferences
about stand structure.

ELTP-level parameters are predicted most accurately
from the MLE models, particularly the Weibull. However, the
increase in accuracy is marred by a slight bias in
prediction. The PCTE model predictions yield unbiased
results, except for predictions of basal area per acre. It
should be noted, however, that the 95% confidence intervals
about the errors are wider for the PCTE models than for the
MLE models. This wider confidence interval indicates an
overall lower reliability in individual predictions. Based
on the extremes of the error confidence intervals and
consideration of the very small size of the biasedness in
most biased predictions, both methods produce acceptable
accuracy for all ELTP-level parameters except for the PCTE
model predictions of basai area per acre. Acceptable
accuracy in these cases is defined as error less than 10%
of the observed parameter mean across ELTP's.

The ability of the Weibull model to accurately
predict ELTP-level parameters means that it provides an
accurate summary of the ELTP's. An accurate summary is
desirable for growth and yield modelling. One feature of

growth and yield modelling based on a distribution model is
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that it allows diameter class specificity without the
necessity of modelling individual trees (Little, 1983). A
distribution model that is accurate in class frequencies
and summary at the outset will be less subject to error
through projection cycles.

The Weibull PCTE model is most accurate in predicting
observed distribution skewness and kurtosis. In doing so,
this model does best in modelling observed curve shape as
measured by skewness and kurtosis. However, the difference
in accuracy between the Weibull and Sp models in predicting
skewness and kurtosis is not great except that the Sg
models produce biased estimates of skewness. In general,
prediction of observed skewness and kurtosis gives a much
more generalized look at curve fitting than the goodness-
of-fit tests. The results of this study suggest that the
Weibull model and its parameter estimation methods provide
unbiased estimates of observed curve shape.

In general, the use of spreadsheet software for
estimating distribution parameters and obtaining
distribution frequencies provides a quick and easy
alternative to mainframe computing. This method may bring
diameter distribution modelling within the reach of those
who are interested in diameter distribution modelling but
who don't have access to more expensive and powerful

hardware systems.
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To sumirarize, this study examines the relative
performance of the Weibull distribution and the Sp
distribution in modelling ELTP diameter distributions. The
ELTP's are composed of upland hardwoods of somewhat mixed
age groups. Conventional distribution parameter estimation
methods are described and applied to grouped frequency
counts of trees per acre by diameter class as obtained from
point sample data.

The Weibull distribution is preferred for modelling
the observed ELTP diameter distributions. The Weibull PCTE
model provides an adequate approximation to observed data
on its own. In addition, the Weibull PCTE model provides a
good starting point for maximum likelihood parameter

estimation for the Weibull distribution.
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Appendix I.

Ecological Land Type Phase Descriptions

The following ELTP descriptions are from Cleland,
Hart, Pregitzer, Host, and Padley (March, 1986;
unpublished). The descriptions are not in any way complete
but are intended to provide general classification
background as may be desired for further understanding of
the diameter distributions developed in this study. The
classifications are considered unofficial at this time
since the study is still in progress. Therefore, ELTP as

presented in this study is not a definitive classification.

Species names:

Black oak : Quercus velutina

White oak : Quercus alba

(Northern) red oak : Quercus rubra

(Upland) pin oak : Quercus ellipsoidalis

Red maple : Acer rubrum

Sugar maple : Acer saccharum

White ash : Fraxinus americana

(Bigtooth and quaking) aspen : Populus grandidentata

Populus tremuloides

Basswood : Tilia americana

Beech : Faqus grandifolia
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ELTP 1: Pin oak-white oak-Deschampsia plant association on

excessively well drained sands of outwash plains. Overstory
composition is upland pin oak and white oak. The canopy is
relatively open and ground flora coverage is very low. Red
maple does not occur in the understory.

Stand averages for the overstory:

species - BA/a Gross Vol SI
pin oak 53 1033 56
white oak 24 325 49
81 1438
age = 72 MAI = 20.6 cu.ft./a/yr.

ELTP 10: Black oak-white oak-Vaccinium plant association

on excessively well drained sands of outwash plains.
Similar to ELTP 1 except in having a more closed canopy and
in the presence of red maple and bracken fern in the
understory. Overstory composition is black ocak, white oak,

and northern red oak.

species BA/a Gross vol SI
black oak 32 767 50
white oak 32 606 42
red oak 18 388 54
85 1817

age = 81 MAI = 23.1 cu.ft./a/yr.
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ELTP 12: Black oak-white oak-Vaccinium plant association on
sub-irrigated, excessively well drained sands of outwash
plains. Similar to ELTP 10 except for the presence of sub-
irrigation and the wider presence of witch hazel as a
shrub. Sub-irrigation refers to the presence of a water
table within tree rooting depth for an extended period of

time. Overstory composition is the same as ELTP 10.

species BA/a Gross vol SI
black oak 35 828 56
white oak 40 685 49
red oak 7 178 54
90 1832

age = 73 MAI = 25.3 cu.ft./a/yr.

ELTP 20: Mixed ocak-red maple-low Viburnum plant

association on well to excessively well drained sands on
overwashed moraines, kame terraces, spillways, and outwash
plains. The overstory of this ELTP is made up of northern
red ocak, white oak, black oak, and red maple. Red maple and

witch hazel are well represented in the 1-3" classes.

species BA/a Gross vol SI
red oak 30 819 61
white oak 30 689 52
black oak 35 865 60
red maple S 71
102 2533

age = 81 MAI = 31.2 cu.ft./a/yr.
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ELTP 21: Mixed oak-red maple-low Viburnum plant

association. Similar to ELTP 20 except for the absence of
sub-irrigation and the presence of sandy loam textural
bands beneath well to somewhat excessively well drained
sands. Overstory composition is northern red oak, white

oak, black oak, and red maple.

species BA/a Gross vol SI
red oak 40 967 65
white oak 30 682 53
black oak 21 534 66
red maple 11 144
107 2460
age = 72 MAI = 34.4 cu.ft./a/yr.

ELTP 35: Red oak-red maple-high Viburnum plant association

on well drained sands with fine loamy substrata on moraines
and overwashed lake beds. Overstory composition is northern

red oak, white oak, and red maple.

species BA/a Gross vol SI
red oak 73 2166 77
white oak 14 372 63
red maple 14 274 74
117 3169

age = 72 MAI = 44.3 cu.ft./a/yr.
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ELTP 37: Red oak-red maple-Desmodium plant association on

well to moderately well drained sandy loams over loamy
substrata on ground moraines and fine textured glacial
lakebeds. Overstory composition is northern red oak, white

oak, and red maple.

species BA/a Gross vol SI
red oak 62 2192 85
white oak 20 498 63
red maple 25 615 69
113 3561

age = 73 MAI = 48.9 cu.ft./a/yr.

ELTP 40: Sugar maple-beech-Lycopodium plant association on

well drained morainal sands. Overstory composition is sugar

maple, beech, northern red oak, and red maple.

species BA/a Gross vol SI

sugar maple 27 589 65

red oak 32 973 76

red maple 7 66 65
104 2717

age = 62 MAI = 43.6 cu.ft./a/yr.

ELTP 43: Sugar maple-northern red ocak-Lycopodium plant
association on well drained morainal sands with fine
textured substrata. Overstory composition is sugar maple,

beech, northern red oak, and red maple.
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species BA/a Gross vol SI

sugar maple 40 969 73

red oak 50 1840 . 88

red maple 2 60 73
119 3649

age = 67 MAI = 54.3 cu.ft./a/yr.

ELTP 45: Sugar maple-white ash-Osmorhiza plant association

on well to moderately well drained morainal sands over fine
substrata. Overstory composition is sugar maple, white ash,

northern red ocak, and red maple.

species BA/a Gross vol SI

sugar maple 52 1388 76

red oak 9 343 86

white ash 14 471 85
126 3868

age = 66 MAI = 59.5 cu.ft./a/yr.



Appendix II

Sg Percentile Parameter Estimation Tables

The tables in this appendix may be used to facilitate
estimation of the parameters of the Sg distribution by
percentiles. Use of these tables is mentioned in the
materials and methods section (Chapter 3).

The tables are based on the percentile estimation
methods of Shapiro and Slifker (1980). These methods are
described in Chapter 3. The sample size (n) appears in the
first column on the left. The second column contains the
values of z, the tabulated standard normal variate (Steele
and Torrie, 1980). The remaining four columns contain the
four symmetric percentiles according to the sample size and
z-value.

Given a sample size and an initial value of 2z, the
corresponding percentiles are read from the table. These
percentiles identify individual observations from a list of
ordered observations (in this case, diameter). The four
appropriate observations ére then used to calculate m, n,
and p. The parameter estimates can then be obtained
accordingly via the hyperbolic trigonometric functions
given in Chapter 3.

The sample sizes include 50 and 75 and otherwise are
given by tens from 100 through 400. Interpolation of
percentiles between sample sizes is possible. Likewise,

interpolation between z-values is possible.
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Table 21:

132

Tables for percentile estimation
of Johnson’s distribution parameters
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