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ABSTRACT

A SIMPLIFIED METHOD FOR

QUANTIFYING DIAMETER DISTRIBUTIONS

OF NORTHERN MICHIGAN UPLAND HARDWOODS

WITH THE WEIBULL AND SB FUNCTIONS

by

Robert De Geus

This study presents a unified and simplified method

for applying the Weibull or SB distribution to modelling of

tree diameter distributions. This approach uses spreadsheet

software and a microcomputer rather than a mainframe

computer.

The methodology is based on the use of point sample

data and grouped frequencies Of observed data. Grouped

frequencies, and maximum likelihood and percentile

estimation are used to estimate distribution parameters.

The Weibull and SB functions are compared for both

estimation methods.

Ten ecological groupings of 72 upland hardwood stands

are used for diameter distribution modelling.‘The stands

are composed of mixed species and age groups.

The methods described are found to provide reasonably

good models. The Weibull function*with maximum likelihood

parameter estimation is found to perform best with these

methods and data. Percentile parameter estimation for the

Weibull is suggested as the starting point with these

methods for obtaining the maximum likelihood estimates.
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INTRODUCTION

Tree diameters are of interest to forest managers and

researchers for a variety of reasons. First and foremost is

the fact that tree diameter is well correlated with other

important variables such as volume, value, conversion cost,

and product specification. Secondly, from a silvicultural

standpoint, diameter distributions are useful in

understanding current and future stand structure.

Obtaining a statistical or mathematical model of an

observed diameter distribution can be an important step in

developing growth and yield projection models. Recent

projection models have incorporated diameter distribution

models to obtain better projection accuracy. The

improvement in projection is related to the capacity of a

projection model to project stand attributes by diameter

class. By predicting diameter distributions at a given time

from stand variables, stand simulators using such models

maintain some of the detail of individual tree simulators

without the necessity for keeping track of individual trees

throughout the simulated rotation (Little, 1983). This

distributional information is useful in delineating yield

by diameter class, identifying silvicultural opportunities,

and projecting the impact of management decisions over a

rotation.



Distributional models have not been developed for

forestry. Instead, general distribution functions that can

generate a wide variety of curve shapes have been adapted

for use in modelling tree diameter distributions..Any

distribution model is dependent upon certain constants or

parameters for use. These parameters are estimated from

sample data. For the normal distribution, these parameters

(mean and standard deviation) are familiar and well

understood. The parameters of other distributions, such as

those used for modelling diameter distributions, are not

well understood. The result is that parameter estimation is

often a difficult or vague process.

One of the more important distribution models in tree

diameter distribution modelling is the Weibull

distribution. The Weibull distribution has been

successfully applied to many diameter distribution

modelling problems, principally in even-aged, single

species plantations or forests. Another model that is

relatively new to diameter distribution modelling is the SB

distribution of ELL. Johnson (1949). The 58 distribution is

more complex than the Weibull and is theoretically capable

of producing a wider range of curve shapes (Hafley and

Schreuder, 1977).

The Weibull distribution is widely accepted in tree

diameter distribution modelling and in growth and yield

modelling based on distribution models. There is, however,
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no biological basis for the use of this or any

distribution model in forestry, and there remains some

uncertainty about model selection and application (Bailey,

1980). Therefore, models such as the SB are of interest in

the search for the best possible model.

The scope of this study is two-fold. First, to

address the problem of non-normal distribution parameter

estimation, a simplified (and as explicit as possible)

methodology for parameter estimation for the Weibull and SB

distributions is described and applied. Second, the

relative performance of the Weibull and SB distributions

are assessed using observed diameter distributions from ten

ecological forest groupings. The purpose of the first

objective is to establish parameter estimation and

distribution derivation methods that facilitate diameter

distribution modelling while maintaining as much accuracy

as possible. As such, three new facets of diameter

distribution modelling are presented. First, data obtained

from sampling with probability proportional to size (point

sampling) are used to derive observed diameter

distributions and estimate distribution parameters. Second,

grouped frequency counts are used for parameter estimation.

Third, mainframe computing is avoided in favor of more

accessible (and cheaper) microcomputers with spreadsheet

software. In addition, the data used comprise mixed species



and age upland hardwoods. This latter point is a function

of the data available as well as an interest in applying

simplified methods to complicated data.

The purpose of the second objective is to investigate

the relative performance of two distribution models using

two parameter estimation methods on observed data. This

investigation assesses the different models as well as

their underlying methodologies.

The ultimate goal is the application of the

appropriate model to growth and yield modelling with the

observed data. This goal is not addressed in this study.

However, the results of the study include distribution

parameter estimates that may be appropriate for future

studies. Finally, the methods presented may serve as a

basis for future diameter distribution modelling either as

the current data base develops or for an entirely new data

set.



Literature Review

I. Background

DeLiocourt first introduced mathematical and statis-

tical models for tree diameter distributions to forestry in

1898. Since that time, a variety of models have been inves-

tigated for application to tree diameter distributions such

as the negative exponential, negative power function,

gamma, beta, lognormal, Weibull, and Johnson's SB (Hafley

and Schreuder, 1977). The goal in these studies was to find

a model that could adequately describe diameter distribu-

tions based on observed sample data. The desirable proper-

ties of such a function were given by Hafley and Schreuder

(1977):

l. the model should have a mathematical form that

allows ease of computation;

2. the parameters of the function should have

properties that make their estimation relatively

simple and exact;

3.the function should have the capacity to

generate the widest possible range of curve shapes

without sacrificing accuracy of fit to observed data.

The last feature given was related to the fact that

observed diameter distributions take on a variety of

shapes. These shapes ranged from a reversed J-shaped curve

in all-aged, undisturbed forests to a mound shaped,
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negatively skewed curve in mature conifer plantations

(Bailey and Dell, 1973; Lorimer and Krug, 1980). Bailey

(1980) further suggested that a single function or

distributional family is desirable for describing all

possible distributional curves for tree diameters in a

forest. The single function approach was shown to

accomodate growth and yield projection.

With regard to the models mentioned above, Hafley and

Schreuder (1977) noted that the beta distribution and

Johnson}s SB distribution yield the wider range of curve

shapes. They based their conclusion on the plot of skewness

(31) and kurtosis (82) values possible for each

distribution function (Figure 1). Within this graph was an

"impossible region" wherein no combinations of skewness and

kurtosis could mathematically exist. According to their

plot, the normal distribution occupied a single point,

implying a single possible shape. The Weibull, gamma,

lognormal, and exponential distributions each were

represented by a line. The beta distribution and Johnsonfis

SB distribution each occupied a region within the graph,

implying more flexibility of shape than a line alone.

Of those distributions that have been investigated,

Hafley and Schreuder (1977) noted that only the Weibull and

Johnsonfls SB functions meet all the criteria given for an

appropriate distribution for modelling tree diameter

distributions. The other functions (i.e., the gamma,
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lognormal, exponential, and beta distributions) showed

problems with relative inflexibility, difficulty in

parameter estimation, or difficulty in mathematical use of

the function.

In general, the mathematical form of a distribution

was given by all authors as the probability density

function (pdf) denoted as f(x). A further criterion for a

pdf was given by Johnson (1949) as ease of integration of

f(x) to obtain F(x), the cumulative probability density

function (cdf). The cdf was given as a means of determining

the proportion of observations that would occur below a

certain threshold observation.

In all studies citing criteria for distribution

selection, the emphasis was on simplicity and/or ease of

calculation in the use of a model. Most literature has not

been concerned with this feature and Johnson (1949) claimed

that this has held back the practical application of non-

normal distributions.‘The result has been that the dominant

distribution and theory in statistical applications has

been the normal distribution (Johnson, 1949). One major

reason given for this dominance was the ease with which

moments of the distribution and, therefore, distribution

parameter estimates can be obtained.

Johnson (1949) noted that three basic approaches to

distribution parameter estimation exist. These were given

as maximum likelihood estimation, the method of moments,



and percentile estimation. He also summarized two

conceptual approaches to the use of distribution models in

fitting observed frequencies. The first was the idea that

there should exist a theoretical, statistical basis in

applying a distribution function to observed data. This

idea was further expanded to state that the parameters of a

function must be estimated on the basis of statistical

theory in order to ensure that these estimates accurately

represent the underlying population distribution

parameters. The second concept was that the most important

criterion in using a distribution model to fit observed

frequencies is nothing more than the goodness of the fit.

Any underlying theory or statistical parameter estimation

was said to be of little interest for this approach.

Johnson (1949) concluded that subscribing to either

approach is dependent on the individual's objectives in

using a distribution model. He suggested that a desire to

develop inferences about an underlying population based on

the use of a distribution model would require some degree

of theoretical basis.

Maximum.likelihood parameter estimation was said by

Cohen.(l965) to provide unique estimates of parameters with

Ininimum bias in a statistically sound manner..He showed

that maximum likelihood methods are based on the

distribution function itself as applied to observed

frequency data. Johnson (1949) stated that the method of
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moments is most practically applied to the normal

distribution since calculation of sample moments for non-

normal distributions is often very difficult. As such, the

method of moments was not given as a general procedure.

Percentile estimation was presented as something of the

pattern maker's approach to curve fitting. The generalized

method was given by Dubey (1967) as one in which

observations at particular percentile points of the

observed distribution are used to estimate parameters of a

curve identical to the observed curve. Percentile parameter

estimation was noted to yield estimates that are not unique

and may not have much theoretical relation to the

underlying population distribution.

Johnson (1949) related the methods of parameter

estimation to the differing conceptual approaches to

distribution function useuIHe wrote that from a theoretical

standpoint, parameter estimates ought to be unique and

should have some theoretical relationship to the underlying

population distribution. From the standpoint of curve

fitting alone, parameter estimates were not required to be

unique or theoretically related to some underlying

population distribution. In this latter case, Johnson

(1949) concluded that any inference about a population

using a distribution model would be entirely dependent upon

the sampling method used and the depth of inference

desired.‘The former conceptual approach was given as being
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appropriate for maximum likelihood parameter estimation.

The latter case was given as being appropriate for either

method of estimation.

A generalized approach to the application of

distribution models to observed data was given by Johnson

anu Kotz (1970). They showed that observations on a

continuous variable could be grouped into strata or

classes, usually of equal width. They suggested that while

the resulting variable was then discrete, this

transformation was one merely of convenience. They wrote

that inference or graphic presentation could be done on the

basis of the original continuity of the data.

II. The Distribution Models

A. The Weibull Distribution

Weibull (1951) introduced a distribution model that

gained wide acceptance in materials strength testing. Since

its introduction, many studies have explored other

applications and the intricacies of the distributionfls

properties. Despite these investigations, Dubey (1967)

claimed that the Weibull distribution is not well

understood.

Bailey and Dell (1973) applied the Weibull

distribution to the problem of modelling tree diameter

distributions. Since their introduction, the Weibull

distribution has gained a great deal of attention and, to
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some degree, acceptance in forestry; There was no

biological basis for their application; Bailey and Dell

(1973) wrote that the Weibull distribution was chosen

because of the relatively wide range of curve shapes it

produces, the relative ease with which parameters may be

estimated, and the ease by which the pdf can be integrated

to obtain F1x). They found that the Weibull distribution

effectively modelled even-aged conifer plantation diameter

distributions.

Bailey and Dell (1973) gave the three-parameter

Weibull probability density function as

f(x) = (C/b)(((x-a)/b)“(c-1)) eXPI-((x-a)/b)“c]

where x = diameter at breast height (dbh)

a = location parameter

b = scale parameter

c = shape parameter.

The location parameter (a) was described by Zarnoch,

Ramm, Rudolph, and Day (1980) as the smallest diameter in

the population. In general, it was given by Dubey (1967) as

the lower end-point of the distribution. Thus, in a

population of trees, the location parameter (a) was noted

to be theoretically zero.

The scale parameter (b) was described by Little (1983)

as the 63rd percentile of a population. In other words, b

is the diameter below which 63% of all ordered observations

would occur.
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The shape parameter (c) was said by Bailey and Dell

(1973) and Lorimer and Krug (1983) to be associated with

the general degree of skewness of the distribution. They

showed that for c<l, the curve becomes a reversed J-shape,

or highly skewed in the positive direction. For l<c<3.6 the

curve exhibits a mound shape with positive skewness; for

c=3.6 the curve approximates a normal curve; when c=l the

exponential distribution results; for c>3.6 the curve

becomes negatively skewed..As c approaches infinity, the

curve becomes a spike over a single point.

Integration of the pdf resulted in the cumulative

probability function (Bailey and Dell, 1973):

F(x) = 1 - EXPI-((x-a)/b)cl

with parameters as given above.

This function was shown to provide the percentage of

observations below a given diameter (x). Johnson and Kotz

(1970) mentioned that in a strict sense it is necessary to

use F(x) to obtain percentages for classes formed from a

continuous variable. They further stated, though, that the

probability density function f(x) may be used to obtain

percentages for classes without any significant loss of

accuracy in fit. In such a case they suggested that

inferences based on such an approach could suffer some loss

of precision because the continuous variable is treated

altogether as a discrete variable.
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The moments of the Weibull distribution were presented

by Johnson and Kotz (1970). It was apparent that under any

circumstance the moments present serious difficulty in

calculation.

Estimation of the parameters of the Weibull

distribution was shown by Cohen (1965) and Bailey and Dell

(1973) for maximum likelihood methods, by Zarnoch and Dell

(1985) and Dubey (1967) for percentile methods. Other

methods were found based on tables (Mann, 1967) and the

sample coefficient of variation (Newby, 1980). Neither of

the latter methods were shown to be a superior method for

parameter estimation.

Bailey and Dell (1973) noted‘that maximum likelihood

estimators are generally the best but for the Weibull

distribution the method requires iterative computations.

They stressed that the easiest estimators to compute are

based on percentiles.

Dubey (1967) and Zarnoch and Dell (1985) presented

methods for estimating the shape parameter using two

percentile points: 0.17 and 0.97. These two percentiles

were found by Dubey (1967) to have 82% asymptotic

efficiency, the highest efficiency of the percentiles

examined. For estimating the scale parameter b, Zarnoch and

Dell (1985) suggested the 63rd quantile minus the estimate

of the location parameter (a). For estimating the location

parameter (a), they suggested setting it equal to the
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smallest observed diameter. Dubey (1967), on the other

hand, suggested a method for estimating a based on three

percentiles. He wrote that his method yielded a value of

the location parameter that would not exceed the smallest

observation nor would it fall below some theoretical limit.

Cohen (1965) developed the iterative form of the

maximum.likelihood estimators for the Weibull distribution.

The likelihood function of the Weibull pdf was manipulated

to form two equations. In one, the shape parameter (c)

appeared on both sides of the equation necessitating an

initial estimate of c and an iterative solution. When the

two sides of the equation converged to equality, the

estimated value of c (3) that brought about the equality

was the maximum likelihood estimate of the shape parameter.

In the second equation the estimate of c was used to

estimate the scale parameter u». He offered no method for

estimating the location parameter (a) in conjunction with b

and c. Cohen (1965) only dealt with the two-parameter

Weibull pdf which does not include a location parameter. It

seemed possible that a likelihood function could be derived

for the three- parameter Weibull pdf and that a, b, and c

could be estimated more or less simultaneously.

Zarnoch and Dell (1985) presented maximum likelihood

estimation as a difficult and costly method. However, Cohen

(1965) pointed out that solving for the shape parameter (c)

by using the iterative formula could be done effectively
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using trial and error, giving a simpler and cheaper method.

He wrote that it is only necessary to obtain two estimates

of c that bracket the final value of 6. The bracketing was

explained as the situation when two values of the left hand

side of the iterative formula for c are above and below the

value of the right hand side. The final step was given as

linear interpolation between the two incomplete estimates

of c to obtain the actual estimate of c. The vague proviso

given was that the two bracketing values of 6 must be

within a "sufficiently narrow interval”.

The functional forms of these estimation methods were

given as follows:

From Cohen (1965) and Zarnoch and Dell (1985) for maximum

likelihood estimation, the following methods applied:

1. c is estimated iteratively from

[(ina 1n xi)/(2xie)1 - 1/8 = [(1/n) (21a xi)]

2. b is estimated from

E = [(l/n) (ine)11/5

From Zarnoch and Dell (1985) for percentile estimation,

these methods were given:

1. a is estimated from

a = (x1 xn.- x22 )/(x1 + xn - 2x2 )

where xi = the ith ordered value (ascending) in the

sample,
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n = the sample size,

x1 = the smallest ordered value in the sample.

2. b is estimated from

B = ‘3 + x.63n

where x.63n = the 63rd quantile of the sample.

3. c is estimated from

a = lnlln(1-Pk )/1n(1'Pi )1

1nl<xnpk - S)/(xnpi - 3)]

0.97366where Pk

and Pi 0.16731.

. Zarnoch and Dell (1985) investigated the properties of

both percentile estimators and maximum likelihood

estimators by applying them to artificially generated

populations of tree diameters with known Weibull

parameters. They found that the magnitude and direction of

bias varied according to the parameter for both percentile

estimators (PCTE) and maximum likelihood estimators (MLE).

They concluded that the maximum likelihood estimators were

superior in accuracy to the percentile estimators. They

pointed out, however, that the percentile estimators should

not be considered unsuitable. They gave as evidence the

simple and explicit nature of percentile estimators, and

that their behavior when c is near or below 2 is comparable

to or better than that of the maximum likelihood

estimators. Behavior in this context meant that, although
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the bias of percentile estimators exceeded that of the

maximum likelihood estimators, the asymptotic variances of

the percentile estimators were much smaller.

Zarnoch and Dell (1985) concluded further that the

Weibull distribution may be insensitive to the magnitude of

the bias in percentile estimators. Their results indicated

that, although the estimators may have been considerably

inaccurate, the population distribution was remarkably well

estimated. They noted generally that the maximum likelihood

estimators appeared to produce slightly better estimates

but the percentile estimators were probably well within the

margin of error anticipated by most researchers.

Finally, Zarnoch and Dell (1985) stated that because

the parameters of the Weibull distribution are correlated,

various combinations of parameters can lead to very similar

distributions. They concluded that percentile estimators

are entirely appropriate for those interested in the

distribution and not in interpreting individual parameters.

B. Johnson's 58 Distribution

Norman Lu Johnson introduced three models in 1949 that

comprised one coherent system of distributions. His

development of these models followed the work of Edgeworth

(1898). Edgeworth initiated a method of transformation of

variables such that the transformed variables could be

considered to have a normal distribution. This method was
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termed the method of translation. Edgeworth worked only

with transformations represented by polynomials. Kapteyn

and van Uven (1916), Wicksell (1917), and Rietz (1922)

extended the method of translation to include general

transformations (Johnson, 1949).

Another approach was taken by Pearson (1895) and

Charlier (1905). They each developed systems of curves with

the main intent of establishing functions that could

produce a wide variety of non-normal distribution curves

(Johnson, 1949).

Johnson (1949) carried both of these approaches

further to produce three models based on a single general

transformation. This system was established to produce a

unique curve for any mathematically possible combination of

skewness and kurtosis values.

Johnson's rationale for pursuing the method of

translation was based on the prominence of the normal

distribution (Johnson, 1949). He reasoned that given this

prominence and the fact that functions associated with the

normal curve are well tabulated, it was natural to try to

relate observed distributions to the standard form. He

further noted that previously defined translation systems

only covered a portion of the range of shapes possible with

the well established Pearson (1895) curves.
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Johnson (1949) gave the method of translation in

general. A function of an observed variable was sought

which would be, with sufficient approximation, a normal

variable. He noted that normal theory could then be applied

to the transformed variable.

Johnson based his transformation on four parameters.

The justification for this number of parameters was that

having four truly independent parameters would prevent a

restricted locus of variation for skewness and kurtosis.

The general form of the transformation was given as

2 = g + d*f((x-e)/l).

The parameters 9 and d were defined as governing the shape

of the distribution of x. The parameters w and l were given

as the location and scale parameters, respectively.

Three systems resulted from Johnson's work: a three

parameter lognormal distribution, a four parameter

distribution denoted as 30' and a four parameter

distribution denoted as SB' The 30 distribution was so

termed because the function is unbounded at both ends. The

SB distribution was so termed because its function is

completely bounded at both ends.

Bafley and Schreuder (1977) introduced the SB

distribution as a means of modelling tree diameter

distributions. They based their choice of the SB on the

fact that it describes a wide range of curve shapes. They

also noted that the cumulative percentages of the
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distribution could be easily obtained without messy

integration. Perhaps more importantly, they proposed that

the SB may be appropriate for tree diameter distributions

because of the bounded nature of the function. The bounded

end—points have a logical counterpart in natural diameter

limits of trees: tree diameters cannot be less than zero

and will not exceed a phenological limit.

Johnson (1949) gave the probability density function

of the SB as

f(x) =

(d/fl?) {l/[(x-W)(w+l-x)l}exp{-1/2[9+d 1n((x-w)/(W+1-x))]2}

based on the transformation

2 g + d 1n((x-w)/(w+l-x))

where d = shape parameter

9 = shape parameter

w = location parameter (lower end-point)

1 = scale parameter (w + l =upper end-point).

Bowman, Serbin, and Shenton (1981) wrote that very

little is known about the SB distribution. The moments of

the distribution were shown by Johnson (1949) to have a

very complicated form for which exact solutions are not

always possible. Mage (1980) found that when w = 0 the SB

becomes a three parameter distribution bounded between 0

and 1. He stated that this curve is directly analogous to

the Pearl-Verhulst logistic growth curve. Beyond this

relationship, Bowman, Serbin, and Shenton (1981) and
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Johnson (1949) found no general pattern of parameter values

which could be said to correspond to other, more familiar

distribution curves. They explained that this situation was

due to the fact that each combination of parameters

produces a curve with unique skewness and kurtosis values.

This latter point led Bafley and Schreuder (1977) to

conclude that the SB occupies a region within the

skewness/kurtosis space rather than a point or line.

Johnson (1949) and Bafley and Schreuder (1977) showed that

the SB is confined within the skewness/kurtosis graph to a

space bounded on one side by the impossible region and on

the upper side by the line representing the lognormal

distribution (Figure 1). Hafley and Schreuder (1977) used

this as evidence that the SB is theoretically more flexible

in shape than the Weibull distribution. They further

pointed out that the SB has four parameters and the Weibull

only three. Johnson (1949) mentioned that more parameters

can be equated, generally, with greater flexibilty of

shape. The 88's larger number of parameters therefore

further suggested that the SB should generate a wider

variety of curve shapes than the Weibull.

Johnson (1949) presented three approaches to parameter

estimation for the SB based on knowledge of the end-points.

When both end-points are known, the method of moments was

suggested as providing maximum likelihood estimates of the

shape parameters. Moments were calculated on the
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transformed variable. When one, generally the lower, end-

point is known, the method suggested was percentile

estimation of the other end-point and moment estimation of

the shape parameters as when both end-points are known. For

neither end-point known the method suggested was percentile

estimation by solution of four transformation equations

where each 2 represents a different percentile.

The method for both end-points known was further

discussed by Johnson (1949). He stated that this method

allowed using the sample data directly to set the values of

the location and scale parameters. He suggested that the

location parameter be set at the smallest observation and

the sum of the location and scale parameters be set at the

largest observed value. In his numerical examples Johnson

(1949) showed that when dealing with classes where

observations are class midpoints, the sum of the scale and

location parameters ought to extend to the end of the

largest class rather than to its midpoint. This latter

point was in reference to obtaining class frequencies using

the distribution function.

Johnson gave the transformation of x as

f1 = ln[(xi - w)/(G + 1 - xi)]

With this transformation he stated that the problem then

reduces to that of fitting a normal curve to the observed

fi's. Fitting this curve by moments was shown to produce

the maximum.likelihood estimates of the shape parameters.
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The moments were given as

6 = —f/sf

and

3 = l/sf

where

f — Zfi/n

and

sfz = 2(fi - E )2/n.

For percentile estimation Slifker and Shapiro (1980)

used four symmetrical and equidistant normal variates along

with hyperbolic trigonometric functions. This method

improved on Johnson's simultaneous equations by providing

explicit solutions to all four parameters.‘Their result was

directly descended from Johnson's method for neither end-

point known. In addition, they proposed criteria for

selecting among the three Johnson models based on

relationships between percentiles. They suggested that

these criteria would be more suitable than using sample

estimates of skewness and kurtosis to determine which curve

to fit.

Slifker and Shapiro's (1980) method began with the

selection of a value of z>0 of a standard normal variate.

Based on this value of 2 they proposed setting four points

as +/-z and +/-32. For the SB' the distances between each

of the outer and inner end-points would be smaller than the
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distance between the two inner points. They maintained that

this relationship would be the result of the bounding on

the SB.

In detail, Slifker and Shapiro (1980) asked to let the

sample quantiles x32, x2, x_z, and x_3z correspond to 32,

z, -z, and -32. Three relationships were then defined as

m = x3z ' xz

n = x--z ' x-3z

These three measures of distance within the sample

distribution were used to establish the following criteria -

for selection of one of Johnson's models:

if mn/p2 >1 then fit so;

if mn/p2 = 1 then fit SL' the lognormal;

if mn/p2 < 1 then fit 33'

Using m, n, and p and hypergeometric trigonometric

functions they defined parameter estimators for 30' SL' and

SB..For SB these estimators were given as

3 = z/{cosh‘1(1/2t(1+p/m)(1+p/n)11/2)}

A . _ ((p/n)-(p/m)){1+p
/n)(1+p/m,-4}1/2

9 = d sinh l
 

i((P7n)(P/m)-l
)

P[{(1+p/n)(
1+p/m)-2}2-

4]1/2

 

  

i =

((p/n)(p/m))-1

. x2 + x-z i + P((P/n)-(P/m))
w = -

i ‘7' -§((p/n)(p/m)-1)
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Slifker and Shapiro (1980) based the initial choice of

2 on sample size. They suggested that for a moderately

sized sample 2 should be set at less than one: as sample

size increases, the largest practical choice of 2 also

increases.

For determining actual percentiles from the data,

Slifker and Shapiro (1980) showed that percentages P- are

3

obtained from tabulated 2 values with j = 32, z, -z, -Bz.

The next step given was to obtain the percentile x‘i) from

i = nPj + 1/2. The final step given was to obtain the value

of the observations corresponding to the four observed

percentile points and using these to compute m, n, and p.

Mage (1980) followed a somewhat similar line of

development but made allowance for the use of four

equidistant 2 values that need not be symmetric. He

maintained that the use of four symmetric and equidistant

normal variates leads to gross simplification. He also

stated that Slifker and Shapiro's (1980) use of hyperbolic

trigonometric functions offered more difficulty but was

more powerful than Mage's use of natural log functions with

2 values that need not be symmetrical. In addition, Mage

(1980) wrote that the use of symmetric normal variates

provides for maximum efficiencies in SB parameter

estimation.
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Mage (1980) pointed out a major difficulty in both

percentile estimation methods. He wrote that the choice of

an initial 2 value dictates the resulting parameter

estimates. He established that different 2 values yield

different parameter estimates. He stressed that the

ambiguity of obtaining different parameter estimates by

different percentile choices may be unacceptable in some

applications. However, from examination of Johnson's (1949)

numerical examples as well as those of Slifker and Shapiro

(1980) and Mage (1980), it appeared as though a particular

range of 2 values could apply to particular types of

populations.

Mage (1980) made a superficial comparison between

Johnson's moment estimators, Slifker and Shapiro's

percentile estimators, and Mage's percentile estimators. He

reached no conclusion but from visual inspection it

appeared that there was better agreement between the moment

estimators and Slifker and Shapiro's estimators than with

Mage's estimators.

Johnson (1949) noted that the SB was capable of

producing two unique curve shapes. He showed that a bimodal

or dish shaped curve and a flat topped curve were possible.

In general, these curves were taken to be somewhat trivial.

However, their existence seemed to further imply the

difficulty in using the current, seemingly vague percentile

estimation methods for Johnson's SB'



28

III. Applications of Distribution Models to Forestry

A. Stand structure

Lorimer and Krug (1983) wrote that the most promising

method of indirectly assessing forest age structure has

been the interpretation of diameter distributions. They

proposed using distribution function parameter estimates

and distribution curve shapes as indices for forest age

structure.

Lorimer and Krug (1983) found that even-aged stands

typically have unimodal diameter distributions.‘They noted

that these stands exhibit varying degrees of positive

skewness at a young age but approach a more symmetric

distribution with time. All-aged stands were shown to have

steeply descending, monotonic diameter distributions that

can be represented by the negative exponential distribution

function. Multi-aged stands were said to consist of several

age classes that may or may not have equal prominence.

These stands varied from near normal to irregular negative

exponential distributions. The variation depended in part

on the proportion of shade tolerant species in the stand.

Shade tolerant species were found by Lorimer and Krug

(1983) to have the greatest variety of curve forms,

frequently deviating from a symmetric, unimodal shape. The

lack of symmetry was attributed to the large number of

suppressed trees.
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Lorimer and Krug (1983) concluded that for all-aged

stands, the Weibull shape parameter (c) is less than 1.0 in

most cases and is therefore distinct from the shape

parameters of even-aged stands.‘They decided that it was

difficult to distinguish even-aged stands from multi-aged

stands through the use of diameter distributions.

Lorimer and Krug (1983) also noted that the diameter

distribution of overstory trees alone was near-normal for

all species. This was the case even when the total

distribution was highly skewed.

Lorimer and Frelich (1984) wrote that the negative

exponential distribution has been used with all-aged forest

diameter distributions.‘They stated that a semi-log plot of

this distribution produces a straight line which implies an

invariant rate of attrition from one size class to the

next. This rate was shown to be inappropriate since

mortality rates decline precipitously as trees progress

from saplings to dominant trees. They provided evidence

that it is possible to demand properties of a distribution

model that agree with biological conditions associated with

a population to be modelled.

8. Forest growth and yield modelling

Bailey (1980) noted that recent growth and yield

models have incorporated techniques for predicting changes

in diameter distribution with stand age. He described these

models as using an assumed distribution that is fitted to
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stand data. The models were further described as using

estimates of distribution parameters to develop least

squares (regression) equations to predict the parameters,

and the distributions, from stand age.

Bailey (1980) set as a requirement for these models

that a diameter distribution remain in a given family over

the projection time. This requirement was easily justified

in that it would be very awkward to respecify a

distribution function, and use parameter predictions, at

any step in the projection. From this point Bailey (1980)

set out to show that the Weibull distribution exhibits a

key property that provides some tentative biological

justification for its use.

It was shown by Bailey (1980) that the Weibull

distribution allows the assumption of a nonconstant

relative growth rate in diameter at any two ages. On the

other hand, he showed that Johnson's 38 distribution forces

the assumption of constant relative growth rate in diameter

at two ages. He concluded, based on his data, that relative

diameter growth rate cannot be assumed to be constant over

all ages for a given density.

Hyink and Moser (1983) acknowledged that the diameter

distribution method for predicting yields and stand

structure in even-aged forests was firmly established.‘They

went on to present two approaches to the use of diameter

distribution models in growth.and yield modelling. One was
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the parameter prediction model, defined as the process of

predicting the future values of distribution function

parameters. This step was given to lead to computation of

stand average attributes such as volume, basal area per

acre, trees per acre, and quadratic mean diameter. The

other method was the parameter recovery model, defined as

the process of predicting future values of stand attributes

and then computing the distribution parameter estimates of

the underlying diameter distribution. In general, Hyink and

Moser (1983) stated that the parameter prediction models

are viewed as being somewhat more informative than the

parameter recovery models. Their reasoning was that

parameter prediction models allow computation of total

stand attribute values as well as their distribution by

diameter class.

. Hyink and Moser (1983) concluded with a remark that

tends to sum up the state of knowledge of distribution

models and their use in forestry. They stated that there is

poor, if any, understanding of the biological relationships

between specific distribution function parameters, the

forest populations they characterize, and the

characteristics of the site upon which they reside.

C. Other applications

Quang and Burkhardt (1984) presented a method for

modelling irregular diameter distribution curves.‘They

focused on the Weibull distribution but showed the general
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applicability of the method to distribution functions. In

essence, they used the cumulative probability function of a

distribution and different sets of parameter estimates to

model segments of a sample distribution. The segment

cumulative functions were then joined to create an overall

model of the irregular curve.

Ek, Issos, and Bailey (1975) discussed how to estimate

Weibull distribution parameters so as to obtain a

particular result beyond that of fitting an observed

distribution. They showed that a distribution could be

modelled in such a way as to have the model produce a

specific quadratic mean diameter. They defined the expected

value of the quadratic mean as a quadratic equation

involving gamma functions. The distribution parameters were

defined as the positive roots of the quadratic equation. No

explicit solution of parameters was found possible when the

shape parameter (c) is unknown.

Little (1983) has provided the only research to date

on fitting a distribution model to tree diameter

distributions in a mixed species forest. She developed

parameter prediction equations based on stand attributes

but pointed out that individual species distributions were

still needed to complete the work. She found, however, that

the Weibull distribution fit the observed diameter

distribution of the mixed stands quite well. The major
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implication of her work was that the use of distribution

models need not be restricted to even-aged, single-species

forests or stands.

Zarnoch, et al. (1980) used the Weibull distribution

to model changes in red pine diameter distributions under

different thinning treatments. They looked at proportions

of trees per acre and basal area per acre estimated by the

Weibull function for the various thinnings. They found that

the Weibull provided an adequate fit to observed diameter

distributions.



Materials and Methods

I. The Sampling Method

During the summers of 1983-1985, eighty forest stands

were selected and sampled as part of the Ecological

Classification System (ECS) study - a cooperative agreement

between Michigan State University and the 0.8. Forest

Service. The 80 stands are composed of upland hardwoods and

many are in "late successional" stages.‘The sampling was

done on the western unit of the Huron-Manistee National

Forest located in the northwestern portion of the Lower

Penninsula of Michigan. This area includes parts of

Newaygo, Lake, Wexford, and Manistee counties.

Stands were selected at random from a list of stands

which exhibited the appropriate overstory characteristics.

The list was compiled by air photo interpretation and

ground reconnaisance. The critical overstory

characteristics for the ECS study were defined as

composition, degree of disturbance, age, basal area, and

degree of aspen presence.

The overstory was limited to well-stocked upland

hardwoods of at least forty years of age. The aspen

component was restricted to 20 % of total basal area or

less. Disturbance was defined as evidence of harvesting (or

other cutting) or fire in the last forty years. Evidence of

grazing, insect attack or disease were also cause for

34
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rejecting a stand. Stand size was defined as a minimum of

2.5 acres. Other criteria for stand selection were that the

stand have some consistency of slope and aspect and that it

be on Forest Service land.

Prior to identifying possible sample stands, the

sample region was stratified by landform. Stands were then

located randomly within the landform strata. A minimum

number of sample stands was identified for the strata and

for overstory community types. These types were defined as

upland oak, mixed oak-red maple, and northern hardwoods.

Once a stand was located on the ground and selected,

simple random sampling was used. Permanent markers were

placed at point center of all sample points as well as at a

reference point that was described in stand summary notes.

Four sample points were used in ECS stands 8-80 (stands

numbered consecutively by chronology)‘while 6 sample points

were used in stands 1-7. The initially larger sample size

was used to assess the level of variability within stands.

Results of this assessment allowed reduction of the sample

size.

The main sample point was randomly located from the

reference point. The three or five remaining points were

located as satellites at random azimuths and distances from

the main point. Sample points were rejected if they fell

outside the stand boundary. In such cases, a new random

azimuth and distance was chosen and followed from the main

point.



36

The overstory data which were collected included tree

species, diameter, height, age, ten—year diameter

increment, crown ratio, and crown class. Understory species

abundance and cover were also sampled as part of the

inventory. Additionally, soil profile was described and

textural samples taken for laboratory analysis.

At each sample point, variable radius plot sampling

(point sampling) was performed. A basal area factor (BAF)

of 10 (English) was used on all sample points in all stands

except stands 60-66. Stands 61-66 were sampled using a BAF

of 5 and stand 60 was sampled with a BAF of 5 for two

points and a BAF of 10 for two points. The variable of

interest in this study, diameter at breast height (dbh),

was measured to 1/10 inch on all tally trees at a sample

point. The minimum dbh was 3.5 inches, the lower limit of

tree merchantability. Data was recorded on 0.5. Forest

Service-style tally sheets, one sheet per point.

The intent of stratifying and selecting stands as

described was to eventually segregate stands based on

landform overstory community type, ground flora species

cover and abundance, and soil characteristics. Via this

post-stratification, stands were grouped and their

overstory productivity levels determined from per acre

stand averages. The goal of this process was to identify

strata characteristics by which land units could be
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identified with regard to their potential productivity. The

potentiality was derived from the "late successional"

nature of many of the stands sampled.

The groups of stands were termed Ecological Land Type

Phases (ELTP).‘Of the eighty stands sampled, 72 were

classed as one of eleven ELTP's. The remaining 8 stands

were not classified due to irregularities in overstory

composition and/or other characteristics that did not

conform to ELTP definitions. The current ELTP

classifications (Table l) were not given as final but only

as an initial step in the process of defining the

classification scheme and system. These unofficial

classifications were issued in March of 1986. Additional

samples were expected to be added to the ECS data base and

these stands and further investigation could alter the

current ELTP‘s. This study utilized these current ELTP's to

establish an initial basis for ELTP diameter distributions

and a methodology by which distribution modelling may be

accomplished as ELTP's develop.

Each ELTP was given a numeric code.‘The first digit

of the code indicated the potential late successional

overstory community; The first number was also strongly

related to soil development within sandy soils.

ELTP 1: pin oak - white oak

ELTP l_: black oak - white oak

ELTP 2_: mixed oak - red maple
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Table 1 : ECS Stand Assignments by ELTP

ELTP ECS STANDS

l: 48, 49, 50, 53, 54, 55, 65, 78, 79

10: 1, 3, 28, 33, 38, 61, 63

12: 29, 30, 34, 51, 59, 66, 71, 75

20: 15, 18, 39, 45, 46, 76

21: 8, 11, 47, 52, 58, 67, 68, 70, 80

35: 14, 16, 17, 20, 60, 64, 69, 74, 77

37: 4, 5, 10, 44, 72

40: 7, 36, 40, 41, 43, 56, 57

43: 21, 23, 25, 26, 31, 35

45: 6, 22, 24, 27, 32, 37

47: 2

NO ELTP: 9, 12, 13, 19, 42, 62, 73
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ELTP 3_: red oak - red maple

ELTP 4_: northern hardwoods.

The second digit in the code described the soil substrata

characteristics relative to plant associations.

0: no textural substrata

1: bands of sandy loam or coarser material

2: subirrigation

3: bands of sandy clay loam or finer materials in ELTP's

undifferentiated by ground flora

5: sandy clay loam or finer bands beneath ELTP's with

diagnostic ground flora.

A brief description of each ELTP can be found in

Appendix I.



40

II. Data Processing

All overstory sample data collected were entered into

computer files as well as retained as original and

photocopies of original tally sheets. Individual files were

created for each stand. Species codes and dbh data were

extracted from these files to create stand files in a

statistical analysis program. The data in these files

remained as species and dbh of sample tally trees.

Stand files of species and dbh were grouped according

to ELTP groupings. The ELTP files then contained total

tally trees for all stands in an ELTP. The statistical

program was used to produce frequency distributions of

tally trees by one inch dbh classes. The dbh classes were

defined as being centered on the inch with width of plus

0.4 inch and minus 0.5 inch. For example, the 4 inch class

had width 3.5-4.4 inches.

The sampling design truncated the diameter samples at

3.5 inches. Samples of trees less than 3.5 inches in

diameter, though available, were found to be inappropriate

for this study. Therefore, the population of interest was

defined as all trees in ECS stands of diameter 3.5 inches

and greater.

Once the frequency distributions of tally trees

within an ELTP were obtained, the number of tally trees in

each diameter class in an ELTP were transformed to per acre
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values by the function:

I tally trees * [{(baf/ba)/# points}/#stands in an ELTP]

where baf basal area factor

ba basal area = 0.00545415 * mm2

as derived from Husch, Miller and Beers (1982). This

conversion factor resulted in unbiased estimates of trees

per acre for point sampling.

All stands with the same BAF over all points and the

same number of points were processed as a group to the

point of obtaining per acre frequencies by diameter class.

There were four such groups: 10 BAF and 4 points, 10 BAF

and 6 points, 5 BAF and 4 points, and one stand (60) with

two points at 10 BAF and two points at 5 BAF. Frequency

distributions for each ELTP were then compiled by combining

per acre frequencies from appropriate groups.

A" Point Sample Data and Distribution Modelling

The per acre frequency distributions of tree dbh by

ELTP were used to develop modelled dbh distributions using

the Weibull distribution model and Johnson's SB

distribution model. This methodology agreed with the

theoretical foundation developed by Van Deusen (1986). He

used relative frequency - percentage of total trees in a

diameter class - to develop the theory behind the use of

point sample data to model dbh distributions. That
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development parallelled the use of absolute frequencies -

the actual number of trees in a diameter class - in

modelling dbh distributions, as was done in this study.

The contrast in methodology was in using observed

tally frequencies as the basis for modelling and then

expanding the predicted tally frequencies to per acre

values. Van Deusen's point was that point sampling, or

sampling with probability proportional to size, has dbh2 as

the variable in the proportional function. The dbh2 term

was applied directly in transforming observed tally

frequencies to modelled per acre frequencies. In the

contrasting, incorrect methodology, the dbh2 proportional

transformation would have to be applied after the modelling

portion of the process. Because the method used here

modelled the per acre frequencies, the dbh2 term was

incorporated in the modelling, following exactly the theory

developed by Van Deusen (1986).

B. Calculation Tools

The criteria set forth in the objectives of this

study included that the calculations be kept relatively

simple. The goal was to provide methodology making the

modelling of diameter distributions readily accessible,

concise, and yet reasonably accurate. To that end, all

calculation was done using a simple spreadsheet program

and/or a programmable calculator.
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A simple spreadsheet program was used in carrying out

the preceeding and following methods. The program was

considered to be a standard sort of spreadsheet that would

be available to most foresters interested in diameter

distributions. More complex spreadsheets were noted to be

capable of allowing an individual to perform the

calculations more quickly and easily. A programmable

calculator was also found to a capable tool for use in

carrying out the necessary calculations. Obviously, the

time required in the use of a calculator was greater than

for a spreadsheet.

The key element in the use of the spreadsheet was

defining a series of ”macros": individual keys or short

sequences of keys that stored longer typed formulas or a

series of commands to the program. The use of macros

eliminated the need to type in long formulas and command

sequences repeatedlyu The macros were saved to diskette and

loaded with the spreadsheet program.

III. Distribution Model Development

A. Weibull Distribution

The Weibull probability density function was given

earlier as

f(x) (c/b) ((x-a)/b)°‘1 expl-(«x-a)/b)°1

dbhwhere x

smallest dbh in distributiona
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b 63rd percentile of the distribution

c shape parameter.

In order to apply this function to modelling diameter

distributions, the parameters a, b, and c first had to be

estimated.'The conceptual approaches to parameter

estimation for the Weibull distribution have been

presented.

The method for estimation from percentiles was given

by Zarnoch and Dell (1985). Estimation of a, the location

parameter, was done according to the definition of the

population of interest. That is, since the samples were

truncated at a diameter of 3.5 inches, the smallest

possible diameter, 3 was set at 3.5 inches. This value then

became the estimate of a.

Estimation of b, the scale parameter, was given by

Zarnoch and Dell (1985) as

B = -3 + x.63n

where n = total number of trees per acre

3 = the estimate of a, the location parameter

x.63n = the 63rd percentile of the distribution.

They also defined the estimator of c, the shape parameter,

as

6 = {1n t1n(1-pk)/1n(1-pi)11/{1nt(xnpk-S)/(xnpi-a)1}

0.97366where Pk

Pi = 0.16733.
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Cohen (1965) and Zarnoch and Dell (1985) gave the

maximum likelihood estimators of b and c as

[(22 x15 1n ximz x16)! - 1/6

= [(l/nHZln xiH

from which c is derived through iteration, and

8 = («i/annienl/e

A

In both formulas xi = xi - a.

Percentile estimation was given by Cohen (1965) and

Zarnoch and Dell (1985) as a good way to obtain an initial

value of 3 upon which to base the iterative solutions of

the first equation for maximum.likelihood estimation. They

noted that when the two sides of the equation are equal,

the value of 6 used to obtain this equality is the maximum

likelihood estimate of c.

For both estimation methods, grouped frequency counts

were the basis for determining parameter estimates. Though

this approach ran the risk of suppressing possibly

important distributional information as would be available

in a complete data list, the simpler nature of this

approach was in accordance with the objectives of the

study.

For percentile estimation a list of observed

cumulative per-acre frequencies and corresponding diameters

were obtained for each ELTP. Total number of trees per acre

(n) was then multiplied by the two values of p given by

Zarnoch and Dell (1985). This provided two cumulative
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frequency values, x k and xnpi' The diameter classes
nP

corresponding to those two cumulative frequencies were then

used to calculate c. The same n for the ELTP was then

multiplied by 0.63 to gain one more cumulative frequency.

The corresponding diameter class for this value was then

used to estimate b..All calculations were easily done on a

programmable calculator.

For maximum likelihood estimation, diameter class and

frequency data for an ELTP were entered into a spreadsheet.

Diameter class was necessarily transformed by subtracting

3.5 from all classes. Three other values (columns) were

A

calculated: frequency * In x, frequency * x°, and frequency

* In x * x6. Columns were summed to obtain the elements of

the maximum likelihood estimation formula.

The percentile estimate of c was obtained first. That

estimate of c was used to solve for the maximum likelihood

estimate of c through the iterative formula. In most cases

it was necessary to complete only five iterations. At that

point values for each side of the equation were

sufficiently close (identical in value up to the fourth

significant digit) that linear interpolation, as suggested

by Cohen (1965), yielded the correct result. The estimate

of b was calculated in the same spreadsheet.

The parameter estimates from each method for each

ELTP were then used to calculate f(x) for the Weibull

distribution. Number of trees per acre by diameter class
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(absolute frequencies) were obtained by multiplying f(x) by

the total observed number of trees per acre. Tables of

observed and predicted relative and absolute frequencies

were compiled for each ELTP. Chi-squared and Kolmogorov-

Smirnoff one sample goodness of fit test statistics were

computed for each parameter estimation method in each ELTP.

In addition, ELTP level attributes were calculated to

assess the predictive power of the parameter estimation

methods and the model beyond simple curve fitting.

B. Johnson's 38 Distribution

The SB distribution probability density function was

given earlier as

f(x) =

(CM/271) (1/[(x-w)(W+1-x)l}exp{-1/2[g+d 1n((x-w)/(W+1-x))12}

where x = dbh ‘

d shape parameter

9 = shape parameter

1 = scale parameter

w location parameter (smallest diameter).

The parameters to be estimated were discussed earlier.

The method for percentile estimation was given by

Slifker and Shapiro (1980). Estimation of the parameters

was noted as being dependent upon the selection of an

initial z-valu-e, where z is a unit normal variate as given

in tabular form by Steele and Torrey (1980). Sliker and

Shapiro (1980) let this initial 2 be the basis of four
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symmetrical values of z : +/-z and +/-3z. The probabilities

associated with each of these values, designated Pj, were

then used to determine the distribution percentile x‘i)

from i = nP- + 1/2, where n equals the total

3

number of trees per acre.

Using the four percentiles corresponding to the four

z-values, Slifker and Shapiro (1980) developed three

relationships

m=x3z-xz

n - x-z "" X_32

p = x - x
2 '2'

.These three relationships were used in the hyperbolic

trigonometric functions to estimate the four parameters:

 

 

 
 

3 = z/{cosh'1(.5[(1+p/m)(1+
p/n)11/2)}

A . . -1 ((p/n)-(p/m)){(1+p/m)(1+p/n)-4}
1/2

9 = d Sinh
v-

2((p/n)(p/m)-1)

1 _ Pil(1+p/n)(l+p/m)-2]2-4}1
/2

((p/n)(p/m))-1

A x2 + x_z
i + 9((p/n)_(p/m))

W =
_,

5 ‘7' ‘§((p/n)(p/m)-1)

Slifker and Shapiro (1980) suggested an initial 2-

value less than one. In the process of using this method of

parameter estimation, a set of tables were developed giving

a range of z-values from 0.50 to 0.90 in increments of 0.10

(Appendix II). The tables included sample size and z-value,
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and gave the four appropriate cumulative frequencies for

the four corresponding z-values. Parameter estimation was

then simply a matter of choosing a z-value within 0.50

through 0.90 for a particular ELTP, obtaining values for m,

n, and p, and calculating the estimates.

The method.for maximum.likelihood estimation was

given by Johnson (1949). It was based on the distribution

transformation function and so reduces the problem to

fitting a normal distribution. Johnson (1949) defined the

transformation function as

ti = ln[(xi - a)/(a + l - xi)],

the moments of which yielded estimates of d and g, the

shape parameters. The moments were given as

E = Zfi/n

and

sfz = 2(fi - f)2/n

and the estimators as

‘E/Sf<3

and

0
»

l
l

l/sf.

This method required that values for a and 1, the

location and scale parameters, be estimated or known prior

to estimating d and g..As in the case of the Weibull

distribution, the most straight forward approach was to

define the range of diameters given by the samples as the

population range of diameters. Therefore, the location
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parameter, w, was set at 3.5 and the scale parameter, 1,

was set at the maximum observed diameter class for an ELTP

minus 3.5. Because w+l defines the upper end of the 58

distribution, this method of setting 93 and ’1 gave the

observed range. In addition, because the SB distribution

has high contact at both ends of its curve, the upper

distribution end was defined as the upper bound of the

maximum diameter class plus 0.5.

In the case of each parameter estimation method, the

grouped frequencies of the observed distributions were used

in computation. Again, some specificity in the complete

data list may have been lost due to this approach but the

conciseness of calculation and data handling was considered

to be an important aspect of the study.

Maximum likelihood parameter estimation for the SB

distribution was carried out with the use of a spreadsheet.

Diameter classes and frequencies were entered, the

transformation fi was calculated for each class and summed,

the moments were obtained- from these sums, and the

parameter estimates calculated. Parameter estimates from

each method were used to calculate»f(x) for each ELTP.

Absolute frequencies were obtained by multiplying f(x) by

total observed trees per acre for an ELTP. As in the case

of the Weibull, goodness of fit statistics and ELTP level

attributes were calculated to assess the quality of

prediction for the model and each parameter estimation

method.
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IV. Data Analysis

A. Goodness-of-Fit Statistics

Two tests were used to statistically determine the

goodness-of-fit of the predicted diameter distributions to

the observed distributions. The first was the Chi-squared

test and the second was the Kolmogorov-Smirnoff one sample

test.

Steele and Torrie (1980) and Conover (1980) defined

the Chi-squared test statistic as

x2 = 1((Observed - Expected)2)/Expected

with degrees of freedom equal to the number of classes

minus one, minus the number of parameters estimated from

the data. They specified that the test statistic be

compared to tabulated values of Chi-squared based on.a

predetermined alpha level and degrees of freedom.

Steele and Torrie (1980) noted difficulties with the

test statistic when there are class frequencies less than

one. They suggested that consecutive classes with

frequencies less than one be combined in both observed and

expected distributions. However, Steele and Torrie (1980)

and Conover (1980) agreed that there is no accepted

protocol for handling frequencies less than one.

For testing the predicted or "expected" diameter

distributions against the observed ELTP distributions,

consecutive classes with frequencies less than one were

combined. The Chi-squared test statistic was then
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calculated. Degrees of freedom were determined by the

number of classes after combining. Two degrees of freedom

were subtracted for parameters estimated for the Weibull

distributions, both parameter estimation methods, and for

the SB distribution, maximum likelihood estimation. Four

degrees of freedom were subtracted for the SB distribution

obtained through percentile estimation.

Alpha level was set a priori at 0.05. The precedent

found in the literature for diameter distribution modelling

was 0.10.4Almost all such studies were conducted on even-

aged, single species forests using fractional area

sampling. The stands in this study were mixed species,

mixed age stands sampled using probability proportional to

size. Under these conditions, it was decided that

acceptance or rejection criteria of the goodness-of-fit

hypotheses could be relaxed somewhat. By decreasing the

value of alpha, the rejection region for the hypothesis

test was made smaller thereby decreasing the possibility of

incorrect rejection of the null hypothesis. That is, the

chance of a Type I error was thereby reduced.

The second test used, the Kolmogorov-Smirnoff one

sample test, was discussed by Conover (1980). He defined

the test statistic as

D = sup | Fn(x) - Fo(x) |

x .

where Fn(x) = cumulative relative frequency of the

predicted distribution
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and Fo(x) = cumulative relative frequency of the

observed distribution.

The test was presented as one which is concerned with

the cumulative distributions: observed and expected.

Conover (1980) described it as looking at the absolute

value of the differences between the cumulative relative

frequencies of the observed and predicted distributions.

The largest of these differences was given as the value of

the test statistic. Tabulated values of D were referred to

where comparison is based on alpha level and sample size.

Sample size in this case was defined as the total trees per

acre for an ELTP.‘The large sample approximation, for

n>40, was given as D = 1.36/(n +frVI'0)1/2.

The Chi-square test gave a class by class assessment

of goodness of fit. The Kolmogorov-Smirnoff test was used

to provide secondary goodness of fit information. The

Kolmogorov-Smirnoff test was rather sensitive to

distributional differences in the smaller diameter classes

but rather insensitive to differences in the upper tails.

Conversely, the Chi-Squared test was overly sensitive to

differences in the upper tails and, in one case, gave an

unreliable indication of goodness of fit. The Kolmogorov-

Smirnoff test was used to provide further goodness of fit

discrimination when the Chi-squared test did not provide

reliable results.
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The Chi-squared test was also applied to that portion

of each distribution greater than or equal to 11 inches in

diameter. Again, classes with frequencies less than one

were combined. The trees greater than or equal to 11 inches

in diameter were defined as sawtimber size. Because of size

and potential for producing a higher value product than

smaller trees, the sawtimber portion of the distributions

was considered critical in modelling.‘The Chi-square test

on this portion of the distributions was intended to provide

further evidence on the quality of the performance of each

model and parameter estimation method.

B. ELTP-Level Parameters

Bailey (1980), Hyink and Moser (1983), and Little

(1983) made the point that stand level attributes are of

real interest in growth.and yield modelling.‘These

attributes included basal area per acre (BA/a), number of

trees per acre (not/a),.arithmetic mean diameter at breast

height (amdbh), and quadratic mean diameter at breast

height (qmdbh). The ability of a distribution model to

accurately predict frequencies of trees per acre by

diameter class was said to be of basic importance to growth

and yield modelling. The further ability of a model to

predict a distribution that also yields accurate

predictions of stand level attributes that are based on

easily obtained measurements and are closely correlated

with volume was noted to be of equal significance.
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Therefore, the second level of model and parameter

estimation method assessment was to determine how well the

predicted distributions agreed with the observed

distributions on ELTP level attributes.

Not/a was calculated by summing the observed and

predicted per acre frequencies respectively for each model

and parameter estimation method in each ELTP. BA/a was

calculated by obtaining the basal area of each diameter

class, multiplying by class per acre frequencies, and

summing. debh was calculated by dividing the BA/a by

not/a, then dividing that quotient by 0.00545415 and taking

the square root of the result..Amdbh was calculated by

multiplying diameter class by frequency, summing the

products, and dividing by not/a.

No conclusive means of assessing attribute prediction

for an individual ELTP was found. Instead, predictions were

assessed by model and parameter estimation method through

the use of ATEST. Rauscher (1986) developed ATEST, a

computer program written in BASIC, to determine the bias of

a predictor based on observed values. This bias was

described as the difference between observed and predicted

values given in units of measure and as a percentage of the

observed. The program was described as giving a value for

bias of a prediction based on normally distributed

differences or non-normally distributed differences.

Normally distributed differences were given to lead to use
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of Studentls t in order to establish a confidence interval

about the bias. Non-normally distributed differences were

given to lead to the use of a trimmed mean and a jackknifed

estimate of variance to obtain a confidence interval about

the bias. An alpha level of 0.05 was used in constructing

the confidence intervals.

Using this program meant that bias and accuracy would

be reported for a model and parameter estimation method

over all ELTP's. Therefore, attribute prediction was

assessed on an overall level. The main interest in using

ATEST was to establish whether the prediction was

significantly biased and to what degree it was accurate.

Whether or not the 95 % confidence interval about the bias

contained zero was the criterion for determining if the

bias was significantly different from zero.

C. Skewness and Kurtosis

The final level of analysis was the comparison of

observed and predicted values of skewness and kurtosis.

ATEST was also used in this comparison.

Steele and Torrie (1980) defined the coefficients of

skewness and kurtosis as incorporating the second, third,

and fourth moments of the mean as calculated from sample

data. These moments were defined as

-1
m2 = n (x1 - i)2

m3 = n"1 (xi - i)3
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-1 (Xi - i)4

and the coefficients were defined as

J31 = m3/(m23/2)

32 = M4/III22.

skewness

kurtosis

They defined skewness as a measure of displacement of the

mode of a distribution from centrality. Kurtosis was

defined as a measure of the ”peakedness” of the

distribution.

The three moments were calculated in a spreadsheet by

first entering the diameter classes and frequencies for an

ELTP. Arithmetic mean diameter was calculated as given

earlier. Each diameter was deviated from the mean and

raised to the second, third, and fourth power in turn and

multiplied by the class frequency. The deviations were then

summed and divided by the total trees per acre.

One of the key features of each model was given as

flexibility in generating a variety of curve shapes. The SB

distribution was said to be more flexible than the Weibull,

i.e., that it could generate a wider variety of curve

shapes. The intent of this comparison was to bring to light

information of an ancillary nature regarding any questions

arising from differences in model performance.



Results and Discussion

The results of this study may be put into three

categories: model results, goodness-of-fit results, and

ELTP-level parameter predictions. Results from the

application of the distribution models and parameter

estimation methods include stand tables of observed and

predicted trees per acre and accompanying distribution

graphs. This section also includes discussion of the models

and methods used from the standpoint of application

mechanics. Results of goodness-of-fit tests include test

statistics and outcomes and a discussion of the relative

performance of models and methods with respect to observed

values. Prediction results include predicted ELTP-level

parameter values, relative measures of bias with respect to

observed values, and discussion of the significance of the

parameters and their prediction through diameter

distribution modelling.

I. Modelling Results

Tables 2 and 3 present the results of parameter

estimation for the Weibull and SB distributions,

respectively. The non-unique nature of estimates obtained

by percentile estimation is apparent in the Weibull

distribution. ELTP's l and 10 have identical shape

parameter estimates as do ELTP's 20 and 35. In addition,
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ELTP's 20 and 35 have identical scale parameter estimates.

On the whole, the Weibull shape parameter estimates show a

range of curve shapes from reverse J-shape to a somewhat

strongly right skewed mound shape (0.8876 - 1.53595).

The maximum likelihood estimates (MLE).are1different

from the percentile estimates (PCTE) for both models. The

MLE are noticeably more conservative in that they exhibit a

narrower range of values. For the Weibull, three of the

shape parameter estimates differ in a significant way

between estimation methods for the same ELTP. The PCTE give

values of c less than 1.0 for ELTP's 12, 40, and 43

whereas corresponding MLE are greater than 1.0. There is a

basic change in curve shape as c differs from 1.0; when c

is less than 1.0 the curve becomes a reverse J-shaped

distribution; when c is greater than 1.0 the curve becomes

mound-shaped. For ELTP 12 the PCTE does not correspond to

the class of curve of the observed distribution (Figure 6).

The reverse is true for ELTP's 40 and 43 (Figures 16 and

18).

Far less can be discerned by examining the parameter

estimates for the SB distribution (Table 3). The main

observation that can be offered is that relative magnitudes

of parameter estimates are similar between parameter

estimation methods. This at least suggests some degree of

internal consistency in the model.
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The SB percentile parameter estimation process

appears to offer more difficulty in practice than in

theory. Initial estimates for ELTP's l, 10, 12, 20, 21, 43,

and 45 are those given in Table 3. These estimates are the

direct result of the estimation method describedm‘The

estimates for ELTP's 35, 37. and 40 in Table 3 are the

result of some modification. Estimates obtained directly by

the given method do not produce a distribution of

sufficient range in application to this data set. The scale

parameter in particular is too small.

This problem is corrected by rejecting the

underestimates of the scale parameter.'The corrected

estimates are values of the scale and location parameters

that produce frequencies in a range of diameters identical

to that of the appropriate ELTP..For this problem, the sum

of a and 1 is set to equal the maximum diameter class and

the solutions for a and ’1 are obtained by two or three

iterations of f(x), when the proper range is obtained.

The correction of percentile estimates is permissible

since percentile estimation is a non-deterministic method.

Percentile estimation of parameters is simply a systematic

and repeatable method for fitting a curve to an observed

frequency curve. For curve fitting only, one may obtain

parameter estimates by trial and error alone. The

appropriate estimates are those that provide the best curve

fit.
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Correcting parameter estimates creates two problems.

First, the process is time consuming and ill-defined. It is

probable that the use of a complete data list instead of

grouped frequencies would provide sufficient distributional

detail to overcome the problem. Second, when the scale and

location parameter estimates are corrected. the shape of

the curve is altered. In effect, the curve becomes less

kurtotic as the location parameter is decreased and the

scale parameter is increased. The fit to the complete

observed distribution may then be better or worse. If the

shape parameter(s) need to be corrected, estimate

correction becomes increasingly complex.

The method of maximum likelihood estimation for the

SE is straight forward. as given. The use of the moments of

the transformed variable (diameter) is simple and precise.

The only difficulty with this method is that a and ’1 must

be taken from the sample data directly; Since the 88 curve

approaches zero very quickly at the bounds the values of 0

and 1 must be set so as to allow sufficient frequencies to

occur near the bounds. The method described is adequate for

accommodating this feature.

Both estimation methods for the Weibull distribution

are easy to apply as described. The MLE method requires

somewhat more time than the PCTE method and about the same

as the SB MLE method. Weibull PCTE are the result of about

three hours of work, including the production of the
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frequency tables. The Weibull MLE method currently requires

about six hours including obtaining the distribution

frequencies” Time savings for this method are possible

because of the piecemeal setup of calculations, the limited

nature of the spreadsheet used, and the speed limitations

on the computer used. The 58 MLE are the result of

approximately four hours of work including obtaining

frequencies. The SB PCTE require about six to seven hours

of work for the initial estimates. The correction of

estimates adds an undetermined amount of time to the

process.

The Weibull PCTE method is clearly quicker and is

also easier than the other methods. The SB.HLE method is

easier and quicker than the Weibull MLE method because the

latter is done iteratively. The use of spreadsheet and

calculator makes obtaining parameter estimates rather easy,

quick, and immediate in the sense that no mainframe

computer time is required.

Tables 11 - 20 and accompanying Figures 2 - 21 detail

the observed and predicted distributions and their curves.

Parameter estimation method results are paired in the

graphs. Pairing methods results is preferred because of the

inherent differences in the methods. Both relative

frequency (RF) and absolute frequency (AF) are given in the

tables for each ELTP.
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Some aspects of curve behavior can now be linked to

parameter estimate values. Although ELTP's l and 10 (Tables

11 and 12; Figures 2 and 4) have the same shape parameter

estimate via percentile estimation, the difference in their

scale parameter estimates causes rather different curves.

This difference gives an idea of what effect changing the

scale parameter has on the distribution.

The disagreement between percentile and maximum

likelihood estimates of the Weibull shape parameter for

ELTP's 12, 40, and 43 can be seen in Tables 13, 18, and 19

and Figures 6, 7. 16, 17, 18, and 19. The discrepancy is in

fact small and may be related to the truncation of the

distribution. Because of this truncation it cannot

necessarily be said that one or the other estimate is

incorrect. The behavior of the distribution around c = 1.0

is interesting in spite of the truncation. It can be seen

that small changes in c around 1.0 definately change the

general class of curve that results. At c equal to about

one the distribution develops a shoulder on the left tail.

When c becomes even slightly less than one the distribution

becomes a definite reverse J-shaped curve (Tables 13 and

19, Figures 6 and 19).

In general, visual inspection reveals a reasonable

approximation of the observed distributions by the

predicted in all cases except ELTP's 35 and 37. These

ELTP's will be discussed later.
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Closer inspection reveals that the left tail of the

observed curves can be highly variable. This variability

makes fitting a curve to the observations overall somewhat

difficult. Where the observed curves are relatively

regular, the predicted curves can be seen to fit much

better (Figures 2 - 21). The variability of frequencies in

the lower diameter classes is a product of sample size,

sampling method, and the stands sampled. A larger sample

size would provide greater opportunity for observing

smaller diameter trees. The eXpansion of point sample

frequencies to per acre frequencies results in small

diameter trees being weighted much more heavily than larger

diameter trees. The outcome is that the absence or presence

in a sample of a single 4 inch tree greatly affects the

expanded frequencies. Finally, in many stands, the

inconsistent presence of multiple stemmed red maples of

small diameter (< 7”) ends up creating a sawtoothed left

tail in ELTP's 35 and greater.

Though trees less than 3.5 inches in diameter are not

included in the observed frequencies, there is no

indication that this truncation presents any problems in

modelling. The location parameter for each model provides

the means by which a lower bound is placed on the

distribution. Frequencies beyond that point are then

allocated according to the observed frequencies by either

parameter estimation method.



67

II. Goodness-of-Fit Results

The null hypothesis of the Chi-squared goodness-of-

fit test states that there is no difference between

observed and predicted distributions. Failure to reject the

null hypothesis leads to the conclusion that the predicted

distribution is as representative of the underlying

population distribution as is the observed distribution.

The same null hypothesis and conclusion are applicable to

the observed and predicted ELTP diameter distributions

generated in this study.

The Chi-squared test examines individual class

absolute frequencies to assess goodness-of-fit. The

Kolmogorov-Smirnoff test works with cumulative relative

frequencies of the distributions. The differences between

these tests present different aspects of goodness of fit.

The Chi-squared test is used in this study as the primary

indicator of goodness-of—fit because it shows how well

individual class absolute frequencies are predicted. These

class frequencies are of interest in assessing the accuracy

of a prediction on the dependent variable of the study:

frequencies of trees per acre by diameter class. The

Kolmogorov-Smirnoff test is used as an indicator of the

accuracy of the distribution in general. As such it can be

expected to be less discriminating and more related to the

distributions as continuous rather than discrete as they

are treated here.
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A. Percentile Estimation

Table 4 provides the calculated test statistics for

the PCTE models. According to the Chi-squared test, both

models produced significantly different distributions

(alpha = 0.05) for six ELTP's. That only 40% of the

observed distributions for each model are non-significant

indicates that the PCTE models did not do an adequate job

of modelling the observed distributions. This is especially

so considering that the alpha level was set to allow

greater latitude by reducing the size of the rejection

region. However, the hypothesis tests are not the final

word on how well the models perform, as is shown in the

sections to follow.

The PCTE SB model produces non-significant results

for the so-called low site ELTP's: l, 10, and 12. The PCTE

Weibull model produces no such pattern of non-significance.

Both PCTE models produce significant results for the higher

site ELTP's - 35, 37, 40, 43, and 45 - with the exception

of the Weibull PCTE model for ELTP 45. Over all ELTP's the

SB PCTE model produces somewhat lower Chi-squared scores.

Considering that three of the SB distributions have

corrected parameter estimates, the lower scores over all

ELTP's is a point of interest. However, because of the

increased difficulty in parameter estimation, the small

improvement over the Weibull PCTE model over all ELTP's may

not be worth noting.
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As a final note on the SB PCTE Chi-squared scores,

the degrees of freedom are two fewer than for the Weibull.

The reduction in degrees of freedom increases the size of

the rejection region for the goodness-of-fit test from that

of the Weibull. The fewer degrees of freedom therefore

makes statistical fitting of the SB PCTE model more

difficult than for the Weibull.

Rejection of the null hypothesis in the Chi-squared

test is of prime concern. As such, the Weibull and SB PCTE

distributions model the observed distributions about

equally well. This result indicates that both models are

about equally accurate in predicting individual class

frequencies for ELTP's, though the models do not model the

same ELTP's equally well.

Rejection of the null hypothesis in the Kolmogorov-

Smirnoff test is of concern for it indicates a lack of

cumulative distributional accuracy. For this study, this

result is considered less important than the results of the

Chi-squared test. However, the Kolmogorov-Smirnoff test

provides information on the general suitability of the

models to this application which can lead to general

comments on model selection.

The two tests do not agree in all cases (Table 4).

The Kolmogorov-Smirnoff test is more sensitive to

differences in the small diameter classes. However, in many

cases the cumulative distributions approach each other

reasonably well to produce better agreement than indicated
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by the Chi-squared test.'The Komogorov-Smirnoff test

indicates that although the two models produce about equal

accuracy in class frequency prediction, the Weibull PCTE

model provides a better overall fit than the 58° This is

likely due to the corrections made to the SB parameter

estimates in order to obtain a suitable diameter range.‘The

resulting distributions may be less accurate overall than

if corrections were not necessary.

The Weibull PCTE model must be preferred over the SB

PCTE model in this study based on goodness-of-fit results.

Both goodness-of-fit tests indicate that the Weibull PCTE

model performs at least as well as the SB PCTE model. This

is the telling point. The greater difficulty of estimating

parameters for the SB PCTE model requires that it perform

better than the Weibull in order for its use to be

justified. Since it performs only about as well at best,

nothing appears to be gained by the increased complexity.

B. Maximum Likelihood Estimation

The distributions derived through maximum likelihood

estimation of parameters do a much better job of fitting

the observed data (Table 5). Though this method of

parameter estimation is more difficult in general than the

percentile estimation methods, the improvement inxaccuracy

justifies its consideration.
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Both the Chi-squared and Kolmogorov-Smirnoff tests

show that the MLE models perform decidedly better than the

PCTE models. The improvement in performance can be

determined by the relative magnitudes of the test .

statistics. Only in the case of ELTP's 3S and 37 is there

no improvement. Both of those distributions are so

irregular that curve fitting of any regular sort would

prove difficult or impossible. Examination of the

distribution data and curves in Tables 11 - 20 and Figures

2 - 21 gives an idea of how close in agreement the MLE

models come to most of the observed distributions.

0n the whole, the Weibull MLE model does somewhat

better than the SB MLE model. The differences could be

explained by noting that two of the 58 parameters were

taken directly from the sample data while the Weibull

required only one parameter to be treated in that way.‘The

setting of parameter estimates from sample data may

introduce additional error into the estimation process. In

making a choice between these two models, it should be

acknowledged that differences in accuracy are not

substantial. Instead, the basis for choice should be that

although the iterative calculations for estimating the

Weibull shape parameter are somewhat time consuming, that

method is more exact than relying on setting sample

observations as parameter estimates. Therefore the Weibull

MLE model is indicated as superior to the SB MLE model on

the basis of goodness-of-fit tests on the whole distribution.
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Goodness-of-fit tests on the whole distribution are,

however, not the final word in determining the adequacy of

{a model. Hafley and Schreuder (1977) use goodness-of-fit

criteria as a relative measure of distribution adequacy.

Still other studies (Little, 1983; Zarnoch, £3 31,, 1980;

Johnson, 1949) do not base their findings completely on

goodness-of-fit tests, or also are interested in how well

predicted distributions estimate certain aspects of the

data. It is typical that distribution modelling is a step

in dealing with a larger estimation or modelling problem.

It is the nature of the data itself that dictates what is

important in modelling. In this case, diameter

distributions are presented as possibly leading to forest

growth and yield modelling. Other criteria in addition to

goodness-of-fit to the entire distribution are of interest

for assessing the relative worth of a distribution model

for growth and yield modelling. These criteria include how

well the model predicts frequencies of larger diameter,

higher value trees and how well the model predicts forest

level attributes. Both of these criteria are not mutually

exclusive of the overall goodness-of-fit tests but need not

follow the pattern of accuracy established by the tests.
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III. Goodness-of-Fit for Classes 11 Inches and Greater

Trees 11 inches in diameter and greater are defined

as sawtimber size and as such demand attention as

potentially higher value trees than those less than 11

inches. Table 6 presents Chi-squared goodness-of-fit

scores for the two models and two parameter estimation

methods. The Kolmogorov-Smirnoff test is not included

because the concern is with accuracy of class frequency

prediction alone.

Results are much improved over the full

distributionsu The percentile estimation models produce

seven non-significant distributions. Because degrees of

freedom serve to scale the rejection region, the results

between the full distributions and the sawtimber segments

may be compared.‘Visual inspection of the curves indicates

that the sawtimber segments are more regular than the

smaller size class segments. The more regular curve would

be easier to model on its own..As it is, both models

predict the sawtimber segment quite well as a part of a

total distribution.

The MLE models are again superior in prediction to

the PCTE models. For this segment, there is no real

difference between models for a parameter estimation

method.‘Therefore, the choice of model must go to the

Weibull since it provides the easier and more exact means

for parameter estimation.
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ELTP 37 stands out as the most intractable in all

cases. The observed distribution is bimodal and reaches its

maximum diameter class somewhat suddenly (Table 17 and

Figures 14 and 15). In addition, both modes appear quite

leptokutotic, making the curve even more unbalanced. The

reasons for this are not entirely clear. A breakdown of

species distributions reveals that the modes are not

especially associated with individual species or particular

groups of species..Age data is incomplete so it is unknown

whether the modes coincide with different age groups. A

breakdown by stands shows that three of the five stands

exhibit the identical modes of the ELTP distribution, one

at 4 inches and another at 10 inches. The other two stands

have no trees in the 4 inch class and have their respective

modes at 10 inches. Given the shape of the observed curve,

there is almost certainly no way to adequately model it

using the methods described in this study.

IV. ELTP-Level Parameters-

The final level of assessment looks at prediction of

the parameters basal area per acre (ha/a), total trees per

acre (not/a), arithmetic mean diameter (amdbh), and

quadratic mean diameter (qmdbh). All of these parameters

are directly related to the distributions from which they

are calculated. However, they are summaries of the

distributions and as such can be different in accuracy than

the predicted curves from which they are derived.
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These parameters are considered important for what

their prediction accuracy indicates about the respective

.models and parameter estimation methods. The goodness-of-

fit tests deal with the details of the distributions.

Consideration of ELTP-level parameter predictions leads to

statements about how well the modelled distribution as an

aggregate characterizes an ELTP in a standard manner of

summary. The ability to predict and therefore project

forest level parameters is considered a key to obtaining

the best results from growth and yield modelling (Little,

1983).

The observed and predicted estimates of the ELTP-

1evel parameters are given in Tables 7 and 8. The error

in prediction (bias) and the confidence limits about that

error are presented in Table 9. Predictions are by ELTP

and distribution parameter estimation method by model.

Errors and confidence intervals are for ELTP-level

parameter predictions over all ELTP's.

By and large, the predictions are adequate in

accuracy, the most extreme deviation being for ba/a for the

SB PCTE model. The most extreme value of the confidence

interval for that prediction is 17% of the mean of the

observed ba/a. Though accuracy is generally good, several

of the predictions are slightly to clearly biased,

generally upwards. The preponderance of biased predictions
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occurs for the MLE models. Biased prediction is determined

by the fact that the 95% confidence interval does not

include zero.

Arithmetic mean diameter (amdbh) and total trees per

acre (not/a) are used here as direct summaries of the

distributions. Their values are given in Table 7.

Inspection of observed and predicted values shows that the

MLE distributions are very close in prediction of the

observed values. The bias and 95% confidence intervals in

Table 9 confirms the better accuracy of the MLE

distribution predictions compared to the PCTE model

predictions. This result is no surprise since the accuracy

in MLE model curve fitting is superior. Yet for their

lesser accuracy, the PCTE predictions are unbiased for both

models“ The Weibull and SB MLE predictions are biased,

however slightly, for both amdbh and not/a.

The sign on the bias indicates the direction of the

bias. Where the 95% confidence intervals include zero this

sign is of no consequence as the bias is not significantly

different from zero (alpha = 0.05). Where the confidence

interval does not include zero the sign of the bias is of

interest.

Both MLE models underestimate amdbh, indicated by the

positive sign on the bias (as given by the ATEST program).

Both MLE models overestimate not/a, as indicated by the

negative bias. The implication is that the MLE models tend
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to overestimate the frequencies of trees in the small

diameter classes and/or underestimate the frequencies in

the larger diameter classes.

The amount of bias in the MLE models predictions is

small: no more than 3% of the parameter mean for the

extreme value of the confidence interval. However, the

result is unexpected in view of the precedents set in the

literature. Percentile estimation is generally expected to

produce distributions with greater bias than maximum

likelihood estimation (Zarnoch and Dell, 1985). The

predictions considered.here are somewhat removed from

distribution estimation so that this expectation may not

apply. Yet these ELTP-level parameters are directly related

to the distributions as summaries.

Quadratic mean diameter (qmdbh) and basal area per

acre (ba/a) are more sophisticated summaries than amdbh and

not/a and are easier to relate to volume. Observed and

predicted values for these ELTP-level parameters are

included in Table 8. The errors in prediction and 95%

confidence intervals about the errors are in Table 9.

Only the Weibull MLE predictions are biased for

qmdbh. As before, the magnitude of the bias is small: the

extreme value of the confidence interval is only 1% of the

ELTP mean qmdbh. The SB MLE prediction of qmdbh is the most

accurate over all ELTP's., There is less to indicate this

result in the distributions and their curves.
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All models produce biased predictions of ba/a for all

ELTP's. The PCTE predictions are two to three times less

accurate than the least accurate MLE predictions. The

errors for these predictions are much higher than for any

other predictions. As such, the PCTE predictions

overestimate ba/a by as much as 17% of the ELTP mean ba/a.

The 53 MLE predictions are also overestimates of ba/a.‘The

Weibull MLE predictions underestimate ba/a. The magnitude

of bias for both MLE models is relatively small.

In general, the Weibull MLE predictions of ELTP-level

parameters are the most accurate. However, all of those

predictions are biased. The SB MLE predictions are only

slightly less accurate than the Weibull MLE predictions, in

general. These predictions tend to be biased as well,

except for qmdbh. The PCTE predictions are generally less

accurate than the MLE predictions. Except for the ba/a

predictions, they are all unbiased.

From a statistical standpoint, unbiased results are

preferred.‘Therefore, though the MLE models produce more

accurate curves and predictions of ELTP-level attributes,

the biasedness of their summary predictions makes their

superiority less certain. This result cannot be applied to

the models in general. Observations on the biasedness of

predictions are limited only to the data used in this

study.
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V. Skewness and Kurtosis

The coefficients of skewness and kurtosis are

normally used to assess the normality of a distribution or

curve.‘They are overall measures of curve shape in two

dimensions. In this study, these coefficients are used to

assess the relative curve shapes of observed and predicted

curves. The observed and predicted coefficients are in

Table 10. The bias of the predictions and the 95%

confidence intervals about the bias are presented in Table

9.

For skewness predictions, the SB models produce

biased results. The biasedness in both cases is the result

of overestimating skewness. This overestimation of skewness

is seen in the distributions (Tables ll - 20) and graphs

(Figures 2 - 21) as reflected in the overestimation of

frequencies in the small diameter classes.‘The

overestimation of skewness may be the result of an

underestimation of the distribution scale parameter. All

predictions for kurtosis are unbiased for both models.

The most accurate predictor of overall curve shape as

described by skewness and kurtosis is the Weibull PCTE

distribution. This is somewhat surprising given that the SB

distribution was noted to be the more flexible model. Two

reasons may be given for this result. First, the range of

curve shapes given by the observed data is not very wide.

Other than the two irregular distributions, ELTP's 35 and
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37, only two general curve types appear. Second, the

difficulties encountered in the percentile estimation of

the SB parameters is certain to have given a less than

satisfactory indication of that distribution's potential

performance. Allied to this point is the fact that maximum

likelihood estimation for the SB distribution is less

explicit than for the Weibull. In being less explicit, the

method may be subject to additional error in estimation.

The result in both cases could be parameter estimates that

are not sufficiently accurate. The parameter estimation

methods are at fault for the SB and that places them in a

position inferior to the Weibull distribution in this

study.

The implications of accurately predicting skewness

and kurtosis may be carried further. The correlation

between the Weibull shape parameter estimates (both

methods) and the skewness and kurtosis of the predicted

curves is -0.80 and -0.39, respectively. The two tailed 95%

critical correlation value is -0.44, n = 20. The weibull

shape parameter is clearly correlated with skewness. The

association is not outstanding but there is evidence to

suggest that c is associated with skewness in some real

fashion.<Correlations between the SB shape parameters and

predicted skewness and kurtosis exhibit a similar

association: d and skewness = 0.53: d and kurtosis = 0.67;

g and skewness = 0.82; g and kurtosis = 0.90.
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It should be expected that shape parameters and the

skewness and kurtosis coefficients would exhibit some

significant degree of association. Both sets of values are

indices of curve shape. It cannot be said if the

association shown here is truly linear. The point is that

it should also be expected that a distribution function

that is more accurate in predicting the observed

coefficients of skewness and kurtosis is based on estimates

of the distribution parameters that are closer to the

values of parameters for the true distribution. This is a

hypothesis that cannot be tested here since the underlying

population distributions are unknown. However, when all

ELTP's are taken as a set, the Weibull models, with

parameters estimated as in this study, exhibit better

overall accuracy in prediction than the SB distribution

when compared within parameter estimation methods. Based on

the above hypothesis, this better accuracy may be traced to

the fact that the Weibull models are more accurate and

unbiased in predicting observed measures of curve shape.



E
L
T
P

1
:
m

“
0
@
1
0
1
5
m
m

0
1
5
1
1
1
3
1
7
1
”

1
‘
1
0

1
1

:

mo

manaasmanmmmaemmmmmmm
u fifiufifim597532110000mm

9 4 1 1 14 51

.wwmmmm mammmmwmmmwm

usmmmmxmxmmammamammamm
m sfifisaaflm54z11ooooooa

m.mmmm.mmmmmmmmmmmmm

”455705012345570931a

1111111111 2

R
F

8
r
e
l
a
t
i
v
e

F
r
o
w
n
-
n
e
g

fl
:

8
“
l
u
t
e
P
M



8
0
1

—
—

O
b
s
e
r
v
e
d

-
-

W
e
i
b
u
l
l

P
C
T
E

—
-

s
o
P
C
T
E

7
0
‘

s
o
.

, "
x

 

.100

4
0

'
\
\

90

/

Jed

3
O

\

2
0
‘

soul

1
0
‘
)

‘
\

 4
6

8
1
0

1
2

1
4

1
6

1
8

2
0

2
2

2
4

D
i
a
m
e
t
e
r

F
i
g
u
r
e

2
:

O
b
s
e
r
v
e
d

a
n
d
p
r
e
d
i
c
t
e
d

(
p
e
r
c
e
n
t
i
l
e

p
a
r
a
m
e
t
e
r

e
s
t
i
m
a
t
i
o
n
)

d
i
a
m
e
t
e
r

d
i
s
t
r
i
b
u
t
i
o
n
s

F
o
r

E
L
T
P

l
.



8
0
:

7
0
1

6
0
1

5
0
.

 
4
0

3
0
-

uoe :ed seen

2
0
:

1
0
4

 

O
b
s
e
r
v
e
d

-
-
—

W
e
i
b
u
l
l

D
A
L
E

-
-
-

9
1
a
M
L
E

 
 

F
i
g
u
r
e

3
:

[
l
a
s
e
r
v
e
d

a
n
d
p
r
e
d
i
c
t
e
d
(
m
i
-
u
.

l
i
k
e
l
i
h
o
o
d

e
s
t
i
m
a
t
i
o
n
)

d
i
a
m
e
t
e
r

d
i
s
t
r
i
b
u
t
i
o
n
s

F
o
r

E
L
T
P

1
.

1
O

1
2

1
4

1
6

1
8

2
0

2
2

2
4

D
i
a
m
e
t
e
r

91



T
‘
l
e

1
2

:
E
L
T
P

1
0
:
m

M
P
E
D
R
T
E
D
a
r
m
s
:

0
1
5
1
2
1
!
"
1
0
8

mu

manmeaamasmamusmnums
...................

5

U

1
6
7
2

m 1
6
5
4

1
2
3
0

0
9
4
1

0
7
1
0

G
3
7

0
4
0
5

0
3
3

0
2
2
7

0
1
“

0
1
1
0

u
m

u
m

“
1

(
I
1
1
5

n
u
n
s

m
u
m

ummnaansnmsmauaumamu
3%63 amn7532100000&

m - - 2
m.mmmmmmmwmmmmmmmwmm

assuaaanauaaunwanauuw
n neweamwmzaaznumaaam

.smmmmmmmwmmmmmmmmwm

museumswusannneamuaa
m anaeaamumsaunmmmmmm

.mmmmmmmmmmmwmmmmwm

“45679901523455.139”...

1111111111 2

H
:

8
r
e
l
a
t
i
v
e
F

F
F

8
a
b
s
o
l
u
t
e

F
r
e
c
p
e
n
c
g



8
0
.

O
b
s
e
r
v
e
d

 

7
m

—
-
—

s
a

P
C
T
E

6
0
4

s
o
.

,\

/

\

01:1!

 
4
o

_
\
-
\

/
"

3
0
'

\
\
\
.

Jed seer;

2
0
‘

\
\
\

1
0
.

\

 
 4

6
8

1
O

1
2

1
4

1
6

1
8

2
0

D
i
a
m
e
t
e
r

F
i
g
u
r
e

4
:

O
b
s
e
r
v
e
d

a
n
d
p
r
e
d
i
c
t
e
d

(
p
e
r
c
e
n
t
i
l
e

p
a
r
a
m
e
t
e
r

e
s
t
i
m
a
t
i
o
n
)

d
i
a
e
e
t
e
r

d
i
s
t
r
i
b
u
t
i
o
n
s

-
-
-

W
e
i
b
u
l
i

P
C
T
E

93

2
2

F
o
r

E
L
T
P

1
0
.



s
o
w

7
0
*

6
0
‘

5
0
<
/
‘

 
4
0

\
-

0100

3
0
4

\

2
0
:

\
\
\
_

/

JOd seer;

1
0
1

 

O
b
s
e
r
v
e
d

-
-

-
—
W
e
i
b
u
l
l

M
L
E

—
-
-
—

8
0

“
L
E

 

 
4

6
8

1
0

1
2

1
4

1
6

D
i
a
m
e
t
e
r

F
i
g
u
r
e

5
:

O
b
s
e
r
v
e
d

a
n
d
p
r
e
d
i
c
t
e
d

(
m
a
x
i
m
u
m

l
i
k
e
l
i
h
o
o
d

e
s
t
i
m
a
t
i
o
n
)

d
i
a
m
e
t
e
r

1
8

2
O

2
2

d
i
s
t
r
i
b
u
t
i
o
n
s

F
o
r

E
L
T
P

1
0
.

94



E
L
T
P

1
2
:
m

"
I
!
F
E
D
I
C
T
E
D
0
1
m

0
1
m
1
m
1
0
1
5

Y
t
l
e

1
3

:

mm

smuuaeaammanaeeaaanma

3mm...”mama mmmmmmmmw

«mwm59uuMS4ziiooou
om

zmfimmmmmmmmmmmmmmmw

usmms.ama§masausemamws
“awaa34137543211000m

glassesgem

msmsmsamamneaanuamasmu
m unannmameaaxaazzntnm

masses 59%

2
5

9
9

7
6

2
3

1
3

3
7

6
3

3
2

3
9

1
3

5
9

4
7

2
9

o
n

1
2

3
7

1155512111

8
r
e
l
a
t
i
v
e

F
r
e
c
p
a
n
c
g

=
a
b
s
o
l
u
t
e
F
r
e
q
-
n
e
g

we



8
O

O
b
s
e
r
v
e
d

-
—

—
W
e
i
b
u
l
l

P
C
T
E

—
.
-

S
B
P
C
T
E

7
0

6
0

4
0
«

\
\

3
0
‘

‘
.
\

2
0
.

'
\
\

/

was led seer;

 
 4

6
8

1
0

1
2

1
4

1
6

1
8

2
0

2
2

2
4

D
i
a
m
e
t
e
r

F
i
g
u
r
e

6
:

O
b
s
e
r
v
e
d

a
n
d
p
r
e
d
i
c
t
e
d

(
p
e
r
c
e
n
t
i
l
e

p
a
r
a
m
e
t
e
r

e
s
t
i
m
a
t
i
o
n
)

d
i
a
m
e
t
e
r

d
i
s
t
r
i
b
u
t
i
o
n
s

F
o
r

E
L
T
P

1
2
.

96



97

1
3
1

d
l
'
1
3

.
1
0
3
s
u
o
i
q
n
q
i
n
s
t
p
m
e
e
t
-
1
p

(
1
1
0
1
1
2
0
1
1
9

9
0
0
1
-
1
1
1
0
1
1
1
“
1
"
.
)

P
3
1
3
1
9
0
1
1
P
1
3
M
O

3
1
'
1
5
”

 
 

 

 

i
e
i
e
m
e
l
a

t
r
:

2
:

o
z

9
:

9
:

n
z
:

o
:

s
9

r
l

l
i

0

)
0
:

r
0
!

:
1

OO0

~
0
2

U2

+
0
9

IO3
"

\
_
_
A
0
9

+
0
9

3
1
1
1

a
s
—

-
—

3
1
1
1

1
1
0
9
1
-
1
1
1
-
—

-
L
0
1

p
e
u
e
s
g
o

 



E
L
V
P

a
n
:
m

H
I
)
“
0
1
0
1
3
0
1
m

D
I
S
T
R
I
U
‘
I
’
I
D
B

T
a
b
l
e

1
4

:

cm

..msmmmwmmwmmimmmmmm

OOOOOOOOOOOOOOO

”40370501233537.5312

1111111111 2



8
0
-

7
0
1

5
0
4

4
t
h

3
(
M

4
f
’
d
fl

use 106 nu;

2
0
1

1
0
‘

 
F
i
g
u
r
e

8
:

L
'
b
s
e
r
v
e
d
a
n
d
p
r
e
d
i
c
t
e
d

(
p
e
r
c
e
n
t
i
l
e
p
a
r
a
e
e
t
e
r
u
t
i
e
a
t
i
o
n
)

d
i
a
m
e
t
e
r

d
i
s
t
r
i
b
u
t
i
o
n
s

F
o
r

E
L
T
P

2
0
.

/./

/

O
b
s
o
t
v
o
d

W
e
i
b
u
l
l

P
C
T
E

S
a

P
C
T
E

 

. //.

I

1
0

1
2

1
4

1
6

1
8

2
0

2
2

D
i
a
m
e
t
e
r

2
4

99



100

'
0
2
a
n

J
O
:
m
t
z
n
m
-
n
s
w
J
a
w
-
c
w
w
o
m
e
n
?
“

P
0
0
4
1
1
0
)
!
!
!
W
V
»
)

9
6
1
3
9
0
4
6

P
O
?

p
a
A
-
a
s
q
o

=
6
a
m
fi
u

J
u
o
w
a
m

V
I
»

3
1

0
|
»

8
9

V

C)

   

 

ad .0011.13.

'
0
9

a
m

a
s
—

-
-

3
1
H

I
I
M
I
I
'
M

"
-

"
"

p
o
u
o
s
q
o

r
0
1
.

 



m
"
I
!
P
E
D
I
C
T
E
D
0
1
m
m

D
I
S
T
R
I
H
J
T
I
O
B

E
U
P
Z
R

h
fi
h
l
s
:

2:

. .mgasgmaafisa$Mfismmfimmmmm
u Q$$§WEEUSQSSZZIIOOOOOOR

ummmxagmfimxmmxmmmafiam3mm“
“swammeSSASZIIOOQOOOOW

w 4 4 9c 4 m

mammmmmmmwwmmmmmmmmmmmmm

ummasgaaaaumuuamumnsumama
m “anamu975‘aq‘111000000m

suananaammmuaumaaaummmmu
umamaanmmzmznummmmmmmmm

ammmmmmmmmmmmmmmmmmmmm

mamuauuaaunnnnumnamummms
00000000000000000000000

“aeeamwga56421‘ooooooon

,émammmmfimmmmmm

m4sswasmuumummnmumaaaaa

l
f
s
r
fl
¢
M
M
F

F
F
a
a
m
m
m
a
n
q
m
q
;



8
0

1
O
b
s
e
r
v
e
d

7
0
‘

,
\

—
—
—

W
e
i
b
u
l
l

P
C
T
E

\
I

—
.
—

S
P
C
I
E

 

 

I

\

o

e

019! Jed

3
0
‘

\
.

\
\
.

2
m

\
\
.

see);

1
C
¥

'
\
\

 

 

h

4
6

8
1
O

1
2

1
4

1
6

1
8

2
O

2
2

2
4

D
i
a
m
e
t
e
r

F
i
g
u
r
e

1
0
:

O
b
s
e
r
v
e
d

a
n
d

p
r
e
d
i
c
t
e
d

(
p
e
r
c
e
n
t
i
l
e

p
a
r
a
m
e
t
e
r

e
s
t
i
e
a
t
i
o
n
)

d
i
a
m
e
t
e
r

d
i
s
t
r
i
b
u
t
i
o
n
s

102

2
6

F
o
r

E
L
T
P

2
1
.



0
'

O
b
e
e
t
v
e
d

—
-
—

W
e
i
b
u
l
l

"
L
E

7
0
‘

-
-
-
—

8
8

“
L
E

 

 

6.13. Jed seeu

 
 

 

 4
6

8
1
O

1
2

1
4

1
6

1
6

2
O

2
2

2
4

2
6

D
i
a
m
e
t
e
t

F
i
g
u
r
e

1
1
:

O
b
s
e
r
v
e
d

a
n
d
p
r
e
d
i
c
t
e
d
(
m
i
e
n
.

l
i
k
e
l
i
h
o
o
d

e
s
t
i
e
a
t
i
o
n
)

d
i
a
e
e
t
e
r

d
i
s
t
r
i
b
u
t
i
o
n
s

F
o
r
E
L
T
P

2
1
.

103



E
L
T
P
3
:
m
m

5
.
0
P
R
E
D
I
C
T
E
D
m
m

D
I
S
T
R
I
U
T
I
O
S

T
b
l
e

1
6

:

Hoe

.exuaaflmmememeieeamweemmm
u ausmammmmass432211

ooooow

g”mmmwmmmmmmmmmmmmmmmmmmm

uwfifimmmmmmammmamxmxymazfim.
axfifiaawwuessazle‘oooooooa

m,mememmmemmmmfimmfi
OOOOOOOOOOOOOOOOOOOOOOO

OOOOOOOOOOOOOOOOOOOOOOOO

umumauameannauamgasguammmn
‘0 .......a. OOOOOOOOOOOOOOO

zagaau‘amiscfsaz‘loooooooog

mimeEmegmmfififi

misswasmuuuummnmwmmaaaaa

M



a
t
»

 

O
b
s
e
r
v
e
d

7
0
-

—
—
—

W
e
i
b
u
l
l

P
C
T
E

—
-
—

S
B

P
C
T
E

6
0
‘

5
0
4

4
0
«

’
\

eioe Jed

3
C
,

,
\
\

/ /

/

seen,

2
0
‘

1
0
1

‘
~
;
\

-
-

~
‘
-

-
-
-
.
_
-
-

 

 
4

6
8

1
0

1
2

1
4

1
6

1
8

2
0

2
2

2
4

2
6

D
i
a
m
e
t
e
r

F
i
g
u
r
e

1
2
:

O
b
s
e
r
v
e
d

a
n
d

p
r
e
d
i
c
t
e
d

(
p
e
r
c
e
n
t
i
l
e

p
e
r
a
e
e
t
e
r

e
s
t
i
e
a
t
i
o
n
)

d
i
a
e
e
t
e
r

d
i
s
t
r
i
b
u
t
i
o
n
s

F
o
r

E
L
T
P

3
5
.

105



106

 

 

i
e
i
e
w
e
g
a

9
3

7
3

3
3

0
3

E
l

9
L

V
I

Z
l

O
I

9
9

7

-
~
-

.
l

I
l

j
l

l
o

“
>
<
:
>
u
‘

F
O
L

\
\
§
;
:
\

-
‘
\

V
\
.

\
o
r

\
I

‘
0
9

'
0
9

a
m

a
s
—

-
—

3
1
"

I
I
"
Q
I
.
M
-

"
'
"

‘
O
l

D
O
A
J
O
B
Q
O

'
0
8

 

'
S
E
d
l
'
B

.
0
3
s
m
u
n
q
u
q
s
r
p
m
u
e
r
p

(
m
u
m
-
1
1
8
0
P
o
o
q
n
a
m
l
N
E
W
)

P
6
1
3
1
1
3
1
3

P
U
?
p
a
w
-
s
4
0

3
E
2
!
'
J
r
'
fi
H

use Jed seen,



T
b
l
e

1
7

:
E
L
T
P

3
7
:
m

a
n
“
D
i
m
m
m

0
1
5
1
1
3
1
3
1
7
1
0
6

new

sumammmmmnmflmmmefimmmefimamm“
u mamwuuwsm7354433221110000m

a i i 7

mmmmmmmmmmmwmmmmmmmmmmmm1m

ummflaamxmaamxfinmmamammfiamamm
2700754200754322111000000”
111111111

m,Em”Ememmmmmegmm..

mmmmflemeaeemfiexmfixmeeemflnumm
I “$66420967654433221110mmmn
m 1111].

.L

0

meansmmmmmmaaaaasamsaammamsm
..........................

2677043100765‘32211110000”
111111111

mimeemgme“emceeg,

m.asyasmuuuummnmwaaaaaaana

8
r
e
l
a
t
i
v
e

F

F
F

8
a
b
s
o
l
u
t
e
F
r
e
g
n
n
c
g

w



8
0
«

O
b
s
e
r
v
e
d

7
o
«

—
—
—
.

W
e
i
b
u
l
l

P
C
T
E

—
-
—

S
B

-
P
C
T
E

5
0
+

4
0
‘

else 186 seen

 
~
~
_

.
.

~

.

 
 
 

 

1
O

1
2

1
4

1
6

1
8

2
0

2
2

2
4

2
6

2
8

D
i
a
m
e
t
e
r

r-Q

co

V

F
i
g
u
r
e

1
4
:
M
e
r
v
e
d

a
n
d

p
r
e
d
i
c
t
e
d

(
e
a
x
i
i
e
u
e

l
i
k
e
l
i
h
o
o
d

e
s
t
i
m
a
t
i
o
n
)

d
i
a
m
e
t
e
r

d
i
s
t
r
i
b
u
t
i
o
n
s

F
o
r
E
L
T
P

3
7
.

108



8
0
1

O
b
s
e
r
v
e
d

7
0
¢

-
—

-
—
-
-

W
O
I
D
U
"

P
C
T
E

—
-
—

S
B

P
C
T
E

6
0
‘

5
0
‘

4
0
*

3
0
‘

use 186 see];

2
0
‘
,

\

1
0
1

‘
~

.
‘

 4
6

8
1
O

1
2

1
4

1
6

1
8

2
O

2
2

2
4

2
6

2
8

D
i
a
m
e
t
e
r

F
i
g
u
r
e

1
5
:

C
b
s
e
r
v
e
d

a
n
d
p
r
e
d
i
c
t
e
d

(
a
u
r
i
c
u
-

l
i
k
e
l
i
h
o
o
d

e
s
t
i
e
a
t
i
o
n
)

d
i
a
e
e
t
e
r

d
i
s
t
r
i
b
u
t
i
o
n
s

F
o
r
E
L
T
P

3
?
.

109



E
L
T
P

4
0
:
m

N
O
"
5
3
1
6
1
9
m
m

D
I
S
T
R
I
U
J
T
I
O
B

T
a
l
e

1
8

z

Hwo

mumammanaaeawammumn
u maflyammu975421100m

11 03 1

enmxummumemmmmmmmm

“easemeemmmmsmemeees
wamflafiww9‘4211000m

mmmnweuaxmamamamaemm
m ”anammuu975432100m

unmanasmmmsanusmaasm
egoeLOO‘WZOOOOQSQ‘Qaeezee.

Q4$3a811166. 2 l

eeeeeeeeeeeeeeeee

wnammmwauasaaneamm
e’e eeeeeeeeeeeeeeuse

m siuamaauusvziooo m

emmmmmmmmmmmmmmmmm

”40570901234567093
1111111111



O
b
s
e
r
v
e
d

 

7
0
1

-
—
—

W
e
i
b
u
l
l

P
C
T
E

—
-
-
—

S
B

P
C
T
E

610'

111

3
0
1

led seeu

2
0
-
4

1
0
1

  
 

4
6

8
1
O

1
2

1
4

1
6

1
8

2
0

D
i
a
m
e
t
e
r

F
i
g
u
r
e

1
6
:

O
b
s
e
r
v
e
d

a
n
d

p
r
e
d
i
c
t
e
d

(
p
e
r
c
e
n
t
i
l
e

p
a
r
a
m
e
t
e
r

e
s
t
i
e
a
t
i
o
n
)

d
i
a
m
e
t
e
r

d
i
s
t
r
i
b
u
t
i
o
n
s

F
o
r

E
L
T
P

4
0
.



O
b
s
e
r
v
e
d

W
e
i
b
u
l
l

M
L
E

_
.
_
.
.
.

s
a

M
L
E

.10.

3
0
1

186 seen

2
0
‘

1
0
1

  
 

O
I

I
I

4
a

8
1
o

1
2

1
4

1
6

1
8

D
i
a
m
e
t
e
r

F
i
g
u
r
e

1
?
:

O
b
s
e
r
v
e
d

a
n
d

p
r
e
d
i
c
t
e
d

(
a
a
x
i
e
u
a

l
i
k
e
l
i
h
o
o
d

e
s
t
i
a
a
t
i
o
n
)

d
i
a
e
e
t
e
r

d
i
s
t
r
i
b
u
t
i
o
n
s

F
o
r

2
0

E
L
T
P

4
0
.

112



a
.
”

4
3
:
a
m

F
I
B
P
E
D
I
C
T
E
D
m
m

0
1
5
1
?
l
e
1
0
6

T
t
l
e

1
9

:

me

magmaemmemnammmmmmnmmma«my
” anaammmmamls.‘432211100000m

a name is 4 exam 9 is 10 1 a...

simimwmmm Emma”0
1

0
1

usemamnnamueassnuaasnseaamm
«“aaawmu9754322110000000m

m ommzmmmtmfiémmmmmémm
1 1 117 11

eeuiiu m "mmm mmm

exammaemmesaewammmammmmmmafi
1 uuaawwuwa7‘s443222111000m

m

uissvasmuunummumwmaaaaasa

F
a

r
e
l
a
t
i
v
e

f

F
F

=
8
a
b
s
o
l
u
t
e

f
r
e
q
i
e
n
c
g



ease ied 866.11

O
b
s
e
r
v
e
d

-
—
—

W
e
i
b
u
l
l

P
C
T
E

—
-
—

S
B
P
C
T
E

7
0
*

6
0
‘

 

5
0
<

' 1‘

4
0
1

\
\

.
\

3
0
1

\

2
0
‘

\
\

1
0
*

\
,

"
~

.
.
‘
W
-
‘
fi
'

 4
6

8
1
O

1
2

1
4

1
6

1
8

2
0

2
2

2
4

2
6

D
i
a
m
e
t
e
r

2
8

114

F
i
g
u
r
e

1
8
:

C
b
s
e
r
v
e
d

a
n
d
p
r
e
d
i
c
t
e
d

(
p
e
r
c
e
n
t
i
l
e
p
a
r
a
e
e
t
e
r

e
s
t
i
m
a
t
i
o
n
)

d
i
a
m
e
t
e
r

d
i
s
t
r
i
b
u
t
i
o
n
s

F
o
r

E
L
T
P

4
3
.



8
0
*

7
0
1

6
0
‘

5
0
q

4
0
1

3
O

OJDI ied seeu

2
0
4

1
0
%

 

 

O
b
s
e
r
v
e
d

W
e
i
b
u
l
l

S
a
M
L
E
.

M
L
E

 

P0

D

I
r

8
1
0

1
2

1
4

1
6

D
i
a
m
e
t
e
r

 

2
O

2
2

2
4

2
6

2
8

F
i
g
u
r
e

1
9
:

[
l
a
s
e
r
v
e
d

a
n
d

p
r
e
d
i
c
t
e
d

(
a
a
x
i
e
u
a

l
i
k
e
l
i
h
o
o
d

e
s
t
i
a
a
t
i
o
n
)

d
i
a
e
e
t
e
r

d
i
s
t
r
i
b
u
t
i
o
n
s

F
o
r

E
L
T
P

4
3
.

115



:o

meanamamnumaaaanan«uaaaaamummmmmmmw
0Q£3362w86543221lleDDDDmDDDDDDO&

m

:meemeemeaeeemwsemmmm

u

9»

I
E 3
’

u
m

1
3
3

1
3
3

1
&
5

1
“
“

I
n
!

M
M
!

w
a
s

1
2
5

0
1
9
1

0
1
4
1

o
n
:

(
m
m

I
n
”

O
D
S

(
n
5

“
”
4

C
B
S

1
3
m

G
D
!

a
l
u
m

a
n
s

N
E
E

m
u
n

a
n
)
:

a
u
r
a

m
u
m
s

P
a
n
a
m
a

urnsnnLsnuanam7usnenw2a7suaaamummmmam
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

m aufia3Z842’76543221
110000000000000ll

assesses?seegeese

sanasannaansssasaaananummmmmmmmmma
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

fifififlazmstw78432lloooooooooooooooom

teemseem:emmesmmmmmmmm M

K
W
E
L
H
N
H
E

f
’

mmsamsswamu:nea2:9«s«amsmmmmmmmm7.w
00000000000000000000000000000000000

Ml!1393“aflflmlzs4320000000000000000000mm

h
fi
h
fi
fl
:

E
fi
h
fi
t
G
E
E
M
M
R
U
W
H
M
W
E
D
D
M
E
M
D
O
E
M
N
W
H
O
E

a.ssrasmuunummumwmaaaaasaaammagmas



8
0
]

O
b
s
e
r
v
e
d

7
0
1

.
-
—
—

W
e
i
b
u
l
l

P
C
T
E

-
-

.
—
-

S
B

P
C
T
E

6
0
‘

1
4
C
»

 .
\
.

3
0

\ \
.

ease ied seen,

2
0
«

\
\

1
0
1

.
\
.
\
‘

.
\
‘

I
~

‘
§

.
'
~
.

~
—

_

 
0

I
I

r
I

I
r

A

4
6

8
1
0

1
2

1
4

1
6

1
8

2
0

2
2

2
4

2
6

2
8

3
0

3
2

3
4

3
6

in

D
i
a
m
e
t
e
r

F
i
g
u
r
e

2
0
:

O
b
s
e
r
v
e
d

a
n
d
p
r
e
d
i
c
t
e
d

(
p
e
r
c
e
n
t
i
l
e

p
a
r
a
e
e
t
e
r

e
s
t
i
e
a
t
i
o
n
)

d
i
a
m
e
t
e
r

d
i
s
t
r
i
b
u
t
i
o
n
s

F
o
r

E
L
T
P

4
5
.

117



8
0
i

6
0
+

5
0
%

010'

4
0
‘

100 seen,

3
0

 

O
b
s
e
r
v
e
d

-
—

—
-

W
e
i
b
u
l
l

M
L
E

—
-
—

5
8

“
L
E

 
 

F
i
g
u
r
e

2
1
:

O
b
s
e
r
v
e
d

a
n
d
p
r
e
d
i
c
t
e
d

(
m
a
x
i
-
n
u
n

l
i
k
e
l
i
h
o
o
d

e
s
t
i
a
a
t
i
o
n
)

d
i
a
e
e
t
e
r

d
i
s
t
r
i
b
u
t
i
o
n
s

F
o
r

E
L
T
P

4
5
.

1 6

T 8
1
0

I
r

1
2

1
4

1
6

1
8

2
0

2
2

2
4

2
6

2
8

3
0

3
2

3
4

D
i
a
m
e
t
e
r

3
6

118



Summary and Conclusions

In general, the nature of the data analyzed in this

study presents a complex modelling problem. First, the

ELTP's are composed of mixed upland hardwood species and,

to some extent, mixed age groups. This sort of forest as a

whole has not yet been considered in diameter distribution

modelling in the literature. Second, the ELTP”s are

composed of stands with disparate diameter distributions.

The expected and actual result of these two conditions is a

series of somewhat regular to very irregular diameter

distributions.

The use of point sample data is suitable for

modelling ELTP diameter distributions. The methods given

are based on sampling and distribution theory taken from

sampling with probability proportional to sizeurA larger

number of sample points per stand may lead to improved

accuracy of small diameter class (< 8") frequencies.

Overall, the MLE models especially provide good fits to the

observed data except in cases where the observed

distributions are irregular to very irregular (ELTP”s 35

and 37). ELTP 37 may present a case where the compound

distribution modelling method of Cao and Burkhart (1984)

*would be appropriate. Otherwise, the good fits to observed

data indicate that point sample data are useful in

119
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modelling observed diameter distributions. This point is

especially important since a great deal of forest inventory

is done with point sampling.

The grouping of frequency data before estimating

parameters may result in diminished accuracy. However, the

MLE models in particular provide results that are

sufficiently good to state that the possible loss of

accuracy may not be great enough to offset the ease of the

method. The use of the grouped frequency counts should

include an acknowledgement of this possible shortcoming.

The fact that any of the models used in this study

produce a good overall fit to the observed data may be

taken as evidence that these methods are worth

consideration. In these methods, three new facets of tree

diameter distribution modelling are given: modelling of

mixed species and mixed age upland hardwood diameter

distributions; the use of grouped frequency counts for

distribution parameter estimation; and the use of point

sample data for modelling diameter distributions. Using the

grouped frequencies facilitates the use of a microcomputer

and spreadsheet software for calculations. The chief

advantages in this are that a mainframe computer is not

necessary and manipulation of data is reduced.

As to the models themselves, the Weibull distribution

provides the best overall accuracy with these data with the

least effort. The SB distribution is theoretically more
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flexible and therefore more interesting than the Weibull,

but its estimation accuracy is not commensurate with its

greater complexity. Therefore, the Weibull distribution is

preferred in this study.

The relatively poorer performance of the SB with

respect to the Weibull may be related to the parameter

estimation methods chosen for the SB. The simplest and most

explicit methods available are described and used in this

study but these methods are not as simple or explicit as

those for the Weibull distribution. This weakness may be

the cause of the unacceptable level of accuracy of the 38

as compared to the Weibull. In addition, the SB may be more

sensitive than the Weibull to the use of grouped

frequencies for parameter estimationi‘The result of

inaccurate parameter estimates is an inaccurate fit of

predicted to observed data. These speculations serve to

point out that the most significant impediment to the

common use of the SB is the difficulty in parameter

estimation previously described.

Both parameter estimation methods for the Weibull

distribution are explicit and straight forward. The

percentile estimation method as given in this study is the

easier of the two methods for parameter estimation. The

Weibull PCTE model is not as accurate in predicting class

frequencies as the Weibull MLE model, but for estimation of

a somewhat generalized nature, the PCTE model is

.
A

.
‘
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appropriate. If more accuracy is required, the PCTE

estimates of c are a good starting point for the iterative

solution of the maximum likelihood estimate of c. The

Weibull MLE parameter estimates are suitable for inferences

about stand structure.

ELTP-level parameters are predicted most accurately

from the MLE models, particularly the Weibull. However, the

increase in accuracy is marred by a slight bias in

prediction. The PCTE model predictions yield unbiased

results, except for predictions of basal area per acre. It

should be noted, however, that the 95% confidence intervals

about the errors are wider for the PCTE models than for the

MLE models. This wider confidence interval indicates an

overall lower reliability in individual predictions. Based

on the extremes of the error confidence intervals and

consideration of the very small size of the biasedness in

most biased predictions, both methods produce acceptable

accuracy for all ELTP-level parameters except for the PCTE

model predictions of basal area per acre. Acceptable

accuracy in these cases is defined as error less than 10%

of the observed parameter mean across ELTP's.

The ability of the Weibull model to accurately

predict ELTP-level parameters means that it provides an

accurate summary of the ELTP's. An accurate summary is

desirable for growth and yield modelling. One feature of

growth and yield modelling based on a distribution model is
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that it allows diameter class specificity without the

necessity of modelling individual trees (Little, 1983). A

distribution model that is accurate in class frequencies

and summary at the outset will be less subject to error

through projection cycles.

The Weibull PCTE model is most accurate in predicting

observed distribution skewness and kurtosis. In doing so,

this model does best in modelling observed curve shape as

measured by skewness and kurtosis. However, the difference

in accuracy between the Weibull and SB models in predicting

skewness and kurtosis is not great except that the SB

models produce biased estimates of skewness. In general,

prediction of observed skewness and kurtosis gives a much

more generalized look at curve fitting than the goodness-

of-fit tests. The results of this study suggest that the

Weibull model and its parameter estimation methods provide

unbiased estimates of observed curve shape.

In general, the use of spreadsheet software for

estimating distribution parameters and obtaining

distribution frequencies provides a quick and easy

alternative to mainframe computing.‘This method may bring

diameter distribution modelling within the reach of those

who are interested in diameter distribution modelling but

who don't have access to more expensive and powerful

hardware systems.
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To summarize, this study examines the relative

performance of the Weibull distribution and the SB

distribution in modelling ELTP diameter distributions. The

ELTP's are composed of upland hardwoods of somewhat mixed

age groups. Conventional distribution parameter estimation

methods are described and applied to grouped frequency

counts of trees per acre by diameter class as obtained from

point sample data.

The Weibull distribution is preferred for modelling

the observed ELTP diameter distributionsw The Weibull PCTE

model provides an adequate approximation to observed data

on its own. In addition, the Weibull PCTE model provides a

good starting point for maximum likelihood parameter

estimation for the Weibull distribution.
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Appendix I.

Ecological Land Type Phase Descriptions

The following ELTP descriptions are from Cleland,

Hart, Pregitzer, Host, and Padley (March, 1986;

unpublished). The descriptions are not in any way complete

but are intended to provide general classification

background as may be desired for further understanding of

the diameter distributions developed in this study. The

classifications are considered unofficial at this time

since the study is still in progress. Therefore, ELTP as

presented in this study is not a definitive classification.

Species names:
 

Black oak : Quercus velutina
 

White oak : Quercus alba

(Northern) red oak : Quercus rubra
 

(Upland) pin oak : Quercus ellipsoidalis
 

Red maple : Acer rubrum
 

Sugar maple : Acer saccharum

White ash : Fraxinus americana
 

(Bigtooth and quaking) aspen : Populus grandidentata
 

Populus tremuloides

Basswood : Tilia americana
 

Beech : Fagus grandifolia
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ELTP 1: Pin oak-white oak-Deschampsia plant association on
 

excessively well drained sands of outwash plainsm<0verstory

composition is upland pin oak and white oak. The canopy is

relatively open and ground flora coverage is very low. Red

maple does not occur in the understory.

Stand averages for the overstory:

 

species ' E512 Gross Vol SI

pin oak 53 1033 56

white oak 34 33; 49

81 1438

age = 72 MAI = 20.6 cu.ft./a/yr.

 

ELTP 19: Black oak-white oak-Vaccinium plant association

on excessively well drained sands of outwash plains.

Similar to ELTP 1 except in having a more closed canopy and

in the presence of red maple and bracken fern in the

understory. Overstory composition is black oak, white oak,

and northern red oak.

 

species E512 Gross vol SI

black oak 32 767 50

white oak 32 606 42

red oak 18 388 S4

85 1817

age = 81 MAI = 23.1 cu.ft./a/yr.
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BEER 12: Black oak-white oak-Vaccinium plant association on

sub—irrigated, excessively well drained sands of outwash

plains. Similar to ELTP 10 except for the presence of sub-

irrigation and the wider presence of witch hazel as a

shrub. Sub-irrigation refers to the presence of a water

table within tree rooting depth for an extended period of

time. Overstory composition is the same as ELTP 10.

 

species E512 Gross vol SI

black oak 35 828 56

white oak 40 685 49

red oak Z l_gy 54

90 1832

age = 73 MAI = 25.3 cu.ft./a/yr.

ELTP 29: Mixed oak-red maple-low Viburnum plant
 

association on well to excessively well drained sands on

overwashed moraines, kame terraces, spillways, and outwash

plains. The overstory of this ELTP is made up of northern

red oak, white oak, black oak, and red maple. Red maple and

witch hazel are well represented in the 1-3" classes.

 

species E513 Gross vol SI

red oak 30 819 61

white oak 30 689 52

black oak 35 865 60

red maple 5 ' 11

102 2533

age = 81 MAI = 31.2 cu.ft./a/yr.
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ELTP 24: Mixed oak-red maple-low Viburnum plant
 

association. Similar to ELTP 20 except for the absence of

sub-irrigation and the presence of sandy loam textural

bands beneath well to somewhat excessively well drained

sands. Overstory composition is northern red oak, white

oak, black oak, and red maple.

 

species 8413 Gross vol S;

red oak 40 967 65

white oak 30 682 53

black oak 21 534 66

red maple 44 444

107 2460

age = 72 MAI = 34.4 cu.ft./a/yr.

ELTP 32: Red oak-red maple-high Viburnum plant association
 

on well drained sands with fine loamy substrata on moraines

and overwashed lake beds” Overstory composition is northern

red oak, white oak, and red maple.

 

species 8414 Gross vol S4

red oak 73 2166 77

white oak 14 372 63

red maple 44 414 74

117 3169

age = 72 MAI = 44.3 cu.ft./a/yr.
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ELTP 41: Red oak-red maple-Desmodium plant association on
 

well to moderately well drained sandy loams over loamy

substrata on ground moraines and fine textured glacial

lakebeds. Overstory composition is northern red oak, white

oak, and red maple.

 

species 8414 Gross vol g;

red oak 62 2192 85

white oak 20 498 63

red maple g; 444 69

113 3561

age = 73 MAI = 48.9 cu.ft./a/yr.

ELTP 44: Sugar maple-beech-Lycopodium plant association on

well drained morainal sands. Overstory composition is sugar

maple, beech, northern red oak, and red maple.

 

species 8413 Gross vol g;

sugar maple 27 589 65

red oak 32 973 76

red maple Z 66 65

104 2717

age = 62 MAI = 43.6 cu.ft./a/yr.

ELTP 43: Sugar maple-northern red oak-Lycopodium plant
 

association on well drained morainal sands with fine

textured substrata. Overstory composition is sugar maple,

beech, northern red oak, and red maple.
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species 8813 Gross vol 8;

sugar maple 40 969 73

red oak 50 1840 . 88

red maple 8 88 73

119 3649

age = 67 MAI = 54.3 cu.ft./a/yr.

ELTP 45: Sugar maple-white ash-Osmorhiza plant association
 

on well to moderately well drained morainal sands over fine

substrata. Overstory composition is sugar maple, white ash,

northern red oak, and red maple.

 

species 8818 Gross vol 8;

sugar maple 52 1388 76

red oak 9 343 86

white ash 13 £11 85

126 3868

age = 66 MAI = 59.5 cu.ft./a/yr.



Appendix II

SB Percentile Parameter Estimation Tables

The tables in this appendix may be used to facilitate

estimation of the parameters of the SB distribution by

percentiles. Use of these tables is mentioned in the

materials and methods section (Chapter 3).

The tables are based on the percentile estimation

methods of Shapiro and Slifker (1980). These methods are

described in Chapter 3. The sample size (n) appears in the

first column on the left. The second column contains the

values of z, the tabulated standard normal variate (Steele

and Torrie, 1980). The remaining four columns contain the

four symmetric percentiles according to the sample size and

z-value.

Given a sample size and an initial value of z, the

corresponding percentiles are read from the table. These

percentiles identify individual observations from a list of

ordered observations (in this case, diameter). The four

appropriate observations are then used to calculate m, n,

and p.‘The parameter estimates can then be obtained

accordingly via the hyperbolic trigonometric functions

given in Chapter 3.

The sample sizes include 50 and 7S and otherwise are

given by tens from 100 through 400. Interpolation of

percentiles between sample sizes is possible. Likewise,

interpolation between z-values is possible.
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228.61

229.70

224.47

231.88

236.20

238.53

239.66

233.80

241.53

246.03

‘248.45

249.63

243.13

251.17

255.85

258.37

259.59

252.46

260.81

265.67

268.29

269.56

261.80

270.45

275.49

278.20

279.52

271.13

280.09

285.31

288.12

289.49

280.46

289.73

295.13

298.04

299.45



310

310

310

310

310

320

320

320

320

320

330

330

340

340

340

340

340

350

350

350

350

370

370

370

370

370

0.5

0.6

0.7

0.9

0.9

0.5

0.6

0.7

0.8

0.9

0.5

0.6

0.7

0.8

0.9

0.5

0.6

0.7

0.8

0.9

0.5

0.6

0.7

0.8

0.9

0.5

0.6

0.7

0.8

0.9

0.5

0.6

0.7

0.8

0.9

0.5

0.6

0.7

0.9

0.9

21.21

11.63

6.05

3.04

1.59

21.88

11.99

6.23

3.12

1.62

22.54

12.35

6.41

3.21

1.66

23.21

12.71

6.59

3.29

1.69

23.88

13.07

6.77

3.37

1.73

24.55

13.42

6.94

3.45

1.76

25.22

13.78

7.12

3.53

1.80

25.88

14.14

7.30

3.62

1.83
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2

96.14

85.53

75.52

66. 19

57.57

99.22

88.28

77.94

68.31

59.41

102.31

91.02

80.36

70.43

61.25

105.39

93.76

82.78

72.55

63.09

108.48

96.51

85.20

74.67

64.94

111.56

99.25

87.62

76.78

66.78

114.65

101.99

90.04

78.W

68.62

117.73

104.73

92.46

81.02

70.46

3

214.87

225.47

235.48

244.81

253.43

221.78

232.72

243.06

252.69

261.59

228.70

239.98

250.64

260.57

269.75

235.61

247.24

258.22

268.45

277.91

254.50

265.80

276.34

286.07

249.44

261.75

273.38

284.22

294.22

256.36

269.01

280.96

292.10

302.38

263.27

276.27

288.54

299.98

310.54

4

289.79

299.37

304.95

307.96

309.42

299.12

309.01

314.77

317.88

319.38

308.46

318.65

324.59

327.79

329.35

317.79

328.29

334.41

337.71

339.31

327.12

337.94

344.24

347.63

349.28

336.45

347.58

354.06

357.55

359.24

345.78

357.22

363.88

367.47

369.21

355.12

366.66

373.70

377.38

379.17



390

390

390

390

390

400

400

400

400

o.

0.6

0.7

0.8

0.9

0.5

0.6

0.7

.0.8

0.9

26.55

14.50

7.48

3.70

1.87

27.22

14.86

7.66

3.78

1.90

136

120.82

107.48

94.88

83.14

72.30

123.90

110.22

97.30

85.26

74.14

3

270.19

283.52

296.12

307.86

318.70

277.10

290.78

303.70

315.74

326.86

4

364.45

376.50

383.52

387.30

389.14

373.78

386.14

393.34

397.22

399.10
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