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ABSTRACT
A HISTORY AND DEVELOPMENT OF INDECOMPOSABLE CONTINUA THEORY
By

Francis Leon Jones

This thesis is an exposition of the history and devel-
opment of indecomposable continua theory from its origins
in 1910 until the present. It traces the rise of indecom-
posable continua from the status of pathological examples
to that of a general body of knowledge playing a fairly
important role in point-set topology.

The theory of ordinary indecomposable continua is
explored in great detail, In addition, most of the results
arising from the study of various special cases of indecom-
posability are surveyed., However, no results concerning
generalized indecomposable continua are included,

Chapter 2 gives some background material from general
topology. The specialized definitions are introduced as
they are needed,

Chapter 3 presents some early examples of indecompos-
able continua in essentially the same terminology as the
inventors used, Most of the results of Chapter 4 are
structure theorems dating from the 1920's; many are still

important today. In Chapter 5, several relationships
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between indecomposability and irreducibility are explbred.
Chapter 6 presents some more examples of indecomposable con-
tinua and outlines Knaster's construction of a hereditarily
indecomposable continuum,

Chapter 7 deals with some existence questions, In
particular, the theorem that every metric space of dimen-
sion greater than one contains an indecomposable continuum
is proved, A proof is outlined showing that most plane con-
tinua are hereditarily indecomposable., Bellamy' non-
metrizable indecomposable continuum is also included.

Chapter 8 presents Kuratowski's common boundary theo-
rem for E2 and several of Knaster's examples, Chapter 9
relates accessibility to indecomposability.

Chapter 10 treats topological groups and inverse
limits, Wallace's work on clans constitutes the first part
of the chapter, while inverse limits and solenoids make up
the last., Chapter 11 examines the results of subjecting
indecomposable continua to several usual topological
operations,

Chapter 12 surveys the work from Moise's thesis in
1948 to the present., The pseudo-arc and pseudo-circle are
discussed, along with theorems for ordinary hereditarily

indecomposable continua,.
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CHAPTER 1
INTRODUCTION

This thesis is an exposition of the history and devel-
opment of indecomposable continua theory from its origin
in 1910 until the present, It traces the rise of indecon-
posable continua from the status of pathological examples
to that of a general body of knowledge playing a fairly
important role in point-set topology.

We shall explore the theory of ordinary indecomposable
continua in some detail, We shall also survey many re-
sults arising from the study of various special cases of
indecomposable continua, However, we shall ndt include
results from the theory of generalized indecomposable con-
tinua, since this vein of research has not yet been as
widespread as those of the ordinary and special theories.
Much of the work on generalized indecomposable continua
has been done by P, M, Swingle and C. E. Burgess,

In Chapter 2, we give some elementary background mate-
rial from general topology. The specialized definitions we
shall use later will be introduced as needed. Chapter 3
presents some early examples of indecomposable continua in
essentially the same terminology as the inventors used.

Most of the results of Chapter 4 are structure theorems

1
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2
dating from the 1920's; many are still important today. In
Chapter 5, we explore several relationships between indecom-
posability and irreducibility., Chapter 6 presents some
more examples of indecomposable continua and outlines Knas-
ter's construction of a hereditarily indecomposable con-
tinuum,

Chapter 7 deals with some existence questions, In par-
ticular, we show that every metric space of dimension
greater than one contains an indecomposable continuum, We
also outline a proof that in the space of all continua of
12, the set of hereditarily indecomposable continua is a
dense Gs set, Further results of this nature are in Chap-
ter 12, Bellamy's non-metrizable indecomposable continuum
is also included in Chapter 7.

Indecomposable continua arose from a study of common

boundaries of plane domains, and Chapter 8 continues this

investigation., Kuratowski's theorem for E2 and several of

Knaster's examples are included, Chapter 9 relates accessi- g
bility to indecomposablity and gives Kuratowski's charac- !
terization of the latter in terms of the former.
Chapter 10 treats topological groups and inverse lim-
its, Wallace's work of clans constitutes the first part of
the chapter, while inverse limits and solenoids make up the
last, Chapter 11 examines the results of subjecting inde- .
composable continua to several usual topological operations, f
Chapter 12 surveys the work from Moise's thesis in .

1948 to the present. The pseudo~arc and pseudo-circle are

— e e

":.
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discussed, along with theorems for ordinary hereditarily

indecomposable continua, Because this work is recent and

readily available, few proofs are included.






CHAPTER 2
BACKGROUND DEFINITIONS AND NOTATIONS

This chapter gives the fundamental definitions needed
from general topology, beginning with a formal definition
of a topological space.

Let X be any set., By a topology on X, we mean a col-
lection T of subsets of X which satisfy the following con-
ditions:

(1) # and X are members of T;

(2) the union of any collection of members of T is a

member of T;
(3) the intersection of any finite collection of
members of T is a member of T.
The members of T are called open sets, and X together with

its topology T is a topological space. Where no confusion

can result, X is used to denote both the underlying set of
points, as well as the topological space.

If xeX, a neighborhood for x is any open set in X
containing x and will be denoted by U(x). (Some defi-
nitions of neighborhood require only that it be a set con-

taining an open set containing x.)
A set may have many distinct topologies on it, with

topologies T and T' being distinct if there is an open set

4
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in one that is not in the other. The branch of mathematics
known as topologies studies the consequences of imposing a
topological structure upon a set. Before giving any more
definitions, we make a few remarks about the ones above,

The definition of a topological space did not spring
into being as the result of any one person's inspiration,
but, like most abstractions, it developed as a result of
many persons' work and experiments, Of course, the choice
of axioms for a mathematical system is somewhat arbitrary,
with the only major restrictions being consistency and com-
pleteness, But to be useful, a system must neither be too
general nor too restrictive; in either case, very little of
value ensues.,

Historically, topological spaces had their origin in
the process of giving analysis a rigorous foundation [84].
Several concepts from analysis were generalized and ab-
stracted in this process, among them being "limit," "neigh-
borhood," "continuity," and "distance",

In real analysis, given the notion of distance, we may
say that "x is near y" if for some real number r> O,
{x=-yl«r, and that all such x for a given positive real num-
ber r constitute a neighborhood of y. If this neighborhood
concept is abstracted to a more general setting, not neces-
sarily involving distance, then "x is near y" can be given
meaning by saying that x is in some neighborhood of y,
where neighborhood has been defined, say in the manner

described on page 4.
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1 1

Next, consider a fixed set A < E~ and some point ye E™.

If for any r » O, there exists x ¢ A such that |x-yl¢r, then
v is a 1imit point of A < EY, Certainly this concept can
be defined in terms of neighborhoods, with no reference to
distance. On the other hand, given the concept of 1limit

(or cluster) point, neither of the other two notions can be
defined in terms of it, This "linear ordering" of the three

concepts was known as early as 1914, when Hausdorff noted

it in his Grundzuge der Mengenlehre. He used neighborhood

axioms to define a topological space, but it was recognized
later that the "open set" axioms (p. 4) are simpler.

Once topological spaces have been defined, a precise
definition of continuous functions can be given, For exam-

ple, f: X—Y is continuous at x € X iff for each neigh-

borhood V in Y of f(xo), there exists a neighborhood U in X

of x, such that f(U) = V. f is continuous on X if it is

continuous at x, for each x¢X., Alternatively, f is con-
tinuous on X iff for each open V in Y, 1) = {xeX|
f(x)é'V} is open in X. Continuity can also be specified
in terms of "closed sets", which we do, following these
definitions,

A < X is closed iff X-A is open in X. These sets can
be described in other ways. For example, if A < X, the set
of cluster points of A is

A' = {xex|V U(x): U(x) n (A- x ) # B).
‘Phe closure of A is K = AUA' , and A is closed iff A = K.

If A is closed and A = A', then A is perfect.

——
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The open sets can be described in different ways, too.
The interior of A < X is Int (A) = X-X-A, and A is open iff
A = Int (A). The boundary of A = X is Fr(A) = AN¥Y=K. 1In
terms of the above definitions, continuous functions can be
characterized by the property that for each A < X, £(X) <

T(A). Furthermore, f is a homeomorphism iff f is one-one,

onto, and for each A = X, f(X) = f(X); that is, iff f is

one-one, onto, and both f and 1

are continuous,
We shall need a few more basic definitions, A < X is

dense in X if X = X. A is nowhere dense in X if A < X-A.,

A collection, B of subsets of X is a basis for a topology T
on X if each member of T is the union of members of B, If
B is countable, then the space is said to be gg countable,
Thus, to specify a particular topology T for a set X, we
need not specify all the open sets; we can describe a
"smaller" collection of open sets and still have the origi-
nal topology.

In this thesis, we shall be primarily interested in
certain special topological spaces, such as Hausdorff or
metric spaces,

A metric 4 on a set X is a function 4: XxX*--?El sat-

isfying:
(1) d(x,y) # O, for all x,y€X;
(2) a(x,y) = 0 iff x = y;

(3) d(x,y) = d(y,x), for all x,y €X;
(4) d(x,y) ¢ d(x,z) + d(z,y), for all x,y,z €X.
B(x,r) = {ye X ]d(x,y)(r} is called a ball of radius r
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at x. A topological space (X,T) is called a metric space

if {B(x,r)l xe&X, r2 O} is a basis for T. The distance
between nonempty sets A, B in a metric space is
a(A,B) = inf {d(a,b) |a €A, bEBY,
and the diameter of A is
& (a) = sup {a(a,b)| 2,b€rYy.

The other general class of topological spaces that
will be used is the collection of Hausdorff spaces., A
topological space is Hausdorff, denoted T2, if every pair
of distinct points of that space have disjoint neighbor-
hoods., A space is regular if there are disjoint open sets
containing each closed A < X, and x€ X-A, Clearly every
metric space is T2.

We are now ready to give some definitions from con-
tinua theory. A space is connected if it is not the union
of two disjoint, nonempty, open subsets, If X is not con- :
nected, it is often useful to know its maximal connected
subsets, The component of x € X is the union of all con-
nected subsets of X containing x., If for each x € X, the

component C(x) = x, then X is totally disconnected. A con-

nected open set is a domain, If S is a closed proper sub-
set of X, then every component of X-S is called a comple-

mentary domain of S.

One of the useful properties of connectivity is its
invariance under continuous transformations, That is, if
A < X is connected, and if f: X—)Y is continuous, then

f(A) is connected. We shall also be interested in another
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invariant of continuous functions, compactness,

A space X is compact if every open cover has a finite

b o h i
subcover, Thus for any {_U,"}-“ ¢ such that each U, is
: n

open and X = U Uy, there exists a collection {UN 73 .

(8

xe L=

n
such that X = U U, . .

Lo ¢

Compact spaces are "very nice" in

several respects. For example, if X is compact, then "all
limits" exist in X (in the sense that every maximal filter-
base in X converges in X [28, p. 223]). For our purposes,
a more useful version of the above is the Bolzano-Weier-
strass property, which says that in a compact space every
countably infinite subset has at least one cluster point.
Also, compact subsets of a T2 space have many of the same
properties as points, the most useful of which to us is that
two disjoint compact subsets of a T2 space have disjoint
neighborhoods, Moreover, if X is a metric space, A = X
closed and C = X compact with ANC = @, then d(A,C) # 0
[28, p. 234]. If X is itself a compact metric space, then
it is 2° countable. Finally, if the space is Euclidean,
the Heine-Borel theorem states that A < E" is compact iff
it is closed and bounded,

Before considering those spaces which are both compact
and connected, we describe a very useful example of a com-
pact set, the Cantor set. Let I = [0,1]. Geometrically,
the Cantor set can be constructed by removing "open middle
thirds" from I. The first step is to remove (1/3, 2/3),
leaving two closed intervals, Jl,l = [0,1/3], and
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J1,2 = [2/3,1]. Tet F, ve Jp,199 At the nth step,

1,2°
"
Fn ='£‘ Jn,k , where Jn,l 9 o o o Jn’2n are closed inter-

vals, each of length 3”2,

st
The (n+1)™ step is performed by deleting from the

middle of each J , an open interval of length z=(n+1)
?

ln-o-l

Then Fn+1 = gﬂ Jn,k » and the Cantor set is F =

This set can also be described as the set of all real

F .

0
A

numberé in I that do not require the use of the digit "1"

in their ternary expansion., That is, if x &I, then

o0
an
X = —n,
:EE::::, 3
n=\

gne {6,1,2} s this gives a ternary (base 3) representation

for x, The expansion is unique except when x is of the
form b3"m, where 0£Db 3™ and b does not divide 3%, 1In
this case, there are exactly two such expansions for b=

1 (mod 3) and for b=2 (mod 3)., If b=2 (mod 3), either

a
n
X = _— ==
3n - 0
n=)
or
- |
a
X = —g--i-—];l--i- -gﬁ' .
3 3 3

N =) Az My
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If b=1 (mod 3), then either

on -
a
3 3
Az )
- | o0
a
0 2
X = _— — -
3 30 E 30
nz\ N:masi

We agree to take the first representation in the first
case, and the second expansion in the second case, so that
we do not force the use of the digit "1", Given this way
of expressing numbers between zero and one, we claim that
the Cantor set is the set of all such numbers that have a
ternary expansion not using "1"., Thus in the above expan-

sion for x, ane {0,2}.
It can be shown by induction, that for each n,
F, = {er] {ags - - - 93} < {0,2}}
where Fn is as described in the geometric construction,

This means that the geometric process of deleting (1/3,2/3)

from I removes all those numbers which have a1 = 1 in their

ternary expansions, Deleting (1/9,2/9) and (7/9,8/9) from

F1 removes all numbers which have a, = l, and so on, There-~

()
fore, xeN F iff a € {0,2} , for all n. Note that x €I
has the form x = b3~ " iff x is an endpoint of some Jn,k'

(We do not distinguish between the interval on the Xx=-axis

from zero to one and the real numbers from zero to one.)
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The Cantor set has some interesting topological prop-
erties; it is compact, perfect, totally disconnected, and

homogeneous. (A set is homogeneous if for each a, b in it,

there exists a homeomorphism of the set to itself taking a
to b.) For a proof of homogeneity, see Hocking and Young
[44, p. 100]. Actually, any metric space possessing the

first three of the above properties is homeomorphic to the
Cantor set [44, p. 100]. We now establish the other prop-

erties mentioned.

oo
F=0 F_, and each F_ closed, imply F is closed,
nz n n

Since it is also bounded, F is compact by the Heine-Borel

theorem., We now show that F is perfect. Let x be any ele-

ment of F. Since xan, for all n, there exists, for each

n, a kn such that ern,k . Let € 20 be given, To estab=-
n

lish the existence of elements of F within € of x, choose

n large enough so that 3™ ¢ ¢. Then ern x < (x=-€,x+ é)'
’"n

so that both endpoints are in the € -neighborhood. Since
these endpoints are in F, we have shown that F is perfect.

Since Fn contains no interval of length greater than
B-n, and since F < Fn’ we see that F contains no interval.

But the only connected subsets of I of more than one point
are intervals [28, p. 107]. Hence, each point is its own
component., Therefore F is totally disconnected.

If a topological space is both compact and connected,
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it is a continuum. Thus, a continuum is invariant under

continuous transformations. A non-degenerate continuum is

a continuum which contains more than one point. A semi-
continuum is any set S such that for any x,y in S, there is
a continuum C = S such that x,y€ C. A continuum C is a

Peano continuum (sometimes called a Jordan continuum) if it

is also locally connected; that is, if for each xe¢C and

each open set U containing x, there exists a connected open
set containing x contained in U, We conclude this chapter
with a theorem which we shall find very useful.

Theorem 2.1: The monotone intersection of nonempty T2 con=-

tinua is a nonempty continuum,
Proof: Let 9 be a (well-ordered) index set with e,

as its first element, Suppose that {C,‘}q € is a

family of nonempty T2 continua such that C°< e e

C D c D L] [ 4 L4 L4

n = then U C -C = C . Since C
If qe’ch 2, o< ( «, o() X, x

is compact, and Cdc’-cq are open, there is a collection

{C“c}

4
'fl such that U (C, =Cg.) = Cg . Consequently,
L=

= #, from which it follows that Co = §. This
n

K¢

n
n ¢
]

contradiction shows that the assumption of a vacuous inter-

section is false.

Since each C is closed, N Cyg 1s closed in the
x «

€ 7

compact set C o and is therefore compact. If 2 CN is
o
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disconnected, then there exist disjoint, nonempty sets Kl’

K2 that are closed in ll( Cq and hence are closed in C°‘o'

Then K1 and K2 are compact, and, since an is T2, there

exist disjoint sets 01, 02 open in C oo with K1 c O1 and

K2 c 02.
O1 UO2 o n“ Co¢ 1lmplies that (C«O -01) n (c‘,<° -02) is

contained in U (C« -C_,). Since the latter set is an open
= o X

covering for the compact set (Cu. -01) n (Cu. -02), we have

N
(Cu(. -—Ol) n (00(0-02) c EJ (C«O -C °‘£)‘ Therefore, it follows

N

Now, Cy . N0y 20 C, ﬂKi=Ki;é¢,i=1, 2, and

(cc-(,,., nol) n (Cdmﬂoz) = @, Consequently, C ., is not

connected, which is a contradiction, and the theorem holds,







CHAPTER 3
EARLY EXAMPLES

In this chapter we give the major definitions of the
thesis, along with some early examples of indecomposable
continua,

There are two distinct types of continua: the decom-

posable and the indecomposable., A continuum is decomposable

if it is the union of two proper subcontinua; otherwise, it

is indecomposable, The concept of indecomposability is

very easy to state; however, it is not so easy to see that
such sets actually exist., Most of the usual examples of
continua are decomposable, For example, in E2 the line seg~-
ment jolning two distinct points a and b is "very decompos-
able": it is the union of the segments ac and cb, where c
is any point of the segment except a or b. Even the so-
called "topologist's sine curve," the continuum

C = {(X.y) l 0Ocx£l, y = Sin ®/x} v {(O.y)‘ -léyfl} ’

is not sufficiently pathological to be indecomposable.

NN
{RVAV.

15
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However, this continuum does have the related property
of being irreducible between (1,0), and any point (0,y) for

IMES 1. A continuum is irreducible between two of its

points if no proper subcontinuum contains both points,
These seemingly distinct concepts are not only closely
related mathematically, but they also share a common his-
torical origin.

The first indecomposable continuum was constructed by
L. E. J. Brouwer in 1910 [15], although he never used the
term "unzerlegbaren Kontinuen" in his paper. He used this
set to disprove a conjecture made by Schoenflies that if a
"closed curve" is the common boundary of two plane domains,
then it must be expressible as the union of two proper sub-
sets, each of which is a "curve",

The concept of an irreducible continuum was defined
and studied by Zoretti in 1909 [133]., He credited the
Schoenflies papers with inspiring his work, although his
terminology was different than Schoenflies'. Brouwer was
later involved in the developement of irreducible continua,
again as a critic. He pointed out several errors in
Zoretti's work, saying in particular that his own example
of an indecomposable continuum was a counterexample to
Zoretti's statement that the "exterior boundary of a domain"
can be decomposed into two subcontinua having only two
points in common [16). Zoretti took note of these comments
[134] by pointing out that he had already published cor-

rections,
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The works of both Schoenflies and Zoretti were at least
partially motivated by a desire to give a set-theoretic
characterization of "curve". We shall see in later chapters
that this same goal inspired the works of several others
who contributed to the study of indecomposable continua,

The rest of the chapter will be devoted to describing
several of the original examples of indecomposable continua:
Brouwer's example, along with certain related examples, and
the Lakes of Wada, In view of the opening remarks of this
chapter, we would not expect any of these continua to have
simple descriptions, and in fact they do not. This may be
one reason why indecomposable continua were viewed as being
just pathological examples, This opinion seems to have been
shared by the discoverers of indecomposable continua and
their contemporaries until about 1920, when several theo-
retical results were published, (We shall discuss these
in great detail in the next chapter.) We begin our list of
examples with Brouwer's construction (paraphrased slightly
in translation) of his first indecomposable continuum [15].

2 of length a and height

First, form a rectangle Ro in E
b. (He called this his "principal rectangle",) The general
procedure is to deform the boundary of R0 by removing a
sequence of domains Rn inside Ro and to simultaneously
delete another domain D inside Ro» disjoint from the Rn's.

Rl is a rectangle based in the middle of Ro's base-

line, constructed so that the twice-bent white strip, Ro'Rl’

possesses the same width in its three parts: 4, = d, = d3.

1 2
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Let the ratio of its baseline to that of Ro be Tl

where o¢ is any positive real number. Then the white strip
i =<
has a width of [m-)a.
Next, draw the shaded strip D between the cross-

sections P1PZ‘L and QlQi, as shown, It consists of a strip

of width 1 x a, whose boundary is everywhere
T I [T AT

o~
parallel to, and at a distance [(2u<—+15?]a’ from the

boundary of the white domain which contains it.

7 JII1, 77

R2 is now constructed surrounding the already drawn

portion of D, beginning on the left hand side of the base-
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line of Ro’ and ending on the right at the height of QlQi'
hi i 2 i
This strip also has a width of G progerss that of the white
strip in whose center it lies, D is continued from QlQi
through the middle %1- Y1 bart of the new white domain

1
to Q2Q2; these latter points have the same distance from
the baseline of Ro as the vertical boundary through Q; has

from the boundary of R2.

Z £

7
| N4
v
sl %
7 = %
] v
y 4
7 » L
oo &
\ 7/ L
T xS f
g )

% '
R3 is constructed around the existing part of D,
beginning on the baseline of Ro and ending at the same
. 1 &
height as PlPl. It too removes = 7T of the width of the
white strip containing it.
Thus, in general, D is extended from both ends; a con-
' J n 5
tinuation from QnQn to Qn+lQn+l is followed by an extension
L v : :
from PnPn to Pn+lpn+1' Each R, and each extension of D is
. 1 : <
to have a width of 21§_$I that of the white strip which

contains it. See Figure 3.1, p. 20.
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Every point of the boundary of an Rn lies arbitrarily
near the domain D by a sufficient continuation of this
process, Likewise, every point of the boundary of D finally
lies arbitrarily near the Rn's. But D and the Rn's are
disjoint, being "fully separated" by K, the complete
boundary of D, The complement of XK contains only two
domains, namely D and the Rn's together with the plane out-
side Ry [15, p., 424].

Brouwer gave several other examples by slightly modi-
fying the above construction., He also indicated that his
Process could be used to construct a continuum that is the
common boundary of 3, 4, 5, . . ., or even a countably
infinite number of domains,

Janiszewski gave a simplification of the above example
in his thesis (1911) essentially by taking o¢ = 1, a = by
and dropping the domain D [48, p. 114, or 49, p. 68]. Thus
his example does not have the property of being the common
boundary of two domains, Hence his continuum is actually
distinct from the quoted one of Brouwer, in spite of the
fact that it is based on the latter's work. Note that
Janiszewski's technique of describing his continuum is more
concise than Brouwer's,

"On the base AlA of a square, let a sequence of points
Ay, Ay%, Ay, Ay', . . . be such that Lk = (1/3)5X, and
A'A = (2/3)AkA. Our figure is composed of:

1) the broken line AAl formed from three sides of the
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square [as shown);

—

Al A
2) the segment A4

1

A

11— 4y &

3) the broken line Al'A2 parallel to AlA;

4) the segment AyA

2
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5) the broken line AZ'A3 parallel to the line A2Al' u

Al'A1 u AlA;

Ay A ATl @ A

6) and so on [48, p. 114, or 49, p. 68]." He does not

say so here, but he intends to include the closure
of the imbedded topological ray thus constructed
[48, p. 120, or 49, p. 74].

Janiszewski makes no mention of indecomposability in

connection with this example, Rather, since his thesis

concerned irreducibility, he used this as an example of a
continuum irreducible between A and B, where B is in the
closure of the imbedded topological ray. Later, [48, p. 120
or 49, p. 74] he notes that if C is any point on a vertical
segment whose abscissa is incommensurable with those of A,
and B, as well as with any linear combination of them with
rational coefficients, then his continuum is irreducible

between any two of A, B, C. The fact that a continuum is
indecomposable iff it contains three points such that it is
irreducible between any two of them (p. 43%) was not pub-

lished (by him and Kuratowski) until 1920, but he seems to

=
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have thought that the property was interesting enough in
1911 to deserve mention.
Knaster developed a simpler means of describing Janis-
His work appeared in a paper by Kuratow-

The con-

zewski's example.
ski on irreducible continua [69, pp. 209-210].
struction is given below, with only a slight change in

notation.
Let F denote the Cantor set, and let Gn' for nz1,

denote the set of points G, = {x 6F[(2/3n)s x s(l/3n-l)} o

Using the point (1/2,0) as center, construct a set of semi-
circles above the x-axis having F as its set of endpoints.
The points (5/2)(1/3") are the centers of the semi-circles
below the x-axis whose endpoints are the points of Gn' The

set thus formed for all natural numbers n is an indecom~

posable continuum,

Xeaxis

Figure 3.2






e
25

Thus, in the span of twelve years, Brouwer's example

was modified and condensed from the major point of a paper

to a footnote in small print, The verification that this

continuum is indeed indecomposable can be more easily given

after adequate theory has been developed; see p. 53, There

was no proof of indecomposability with the example when it

appeared in Kuratowski's paper.
To see that Knaster's first "semi-circle example" is

related to Janiszewski's version, we modify the latter's

example slightly. Suppose that his square is the unit

square and that we delete from it those regions contiguous
to its base along An'An+1' forn=1, 2, 3, « « « . Inter=-
secting this figure with the line y = 1/2 gives the Cantor

set on that line, Moreover, if the rectilinear segments

are replaced by semi-circles, then we get Knaster's example

with left and right reversed.
The Brouwer example is fairly typical of the early

work in the study of indecomposable continua, It was viewed

as a pathological counterexample, and little else., This
may have been at least partially due to the fact that gen-
erally the early examples were described by means of rather

complicated constructions, as we have seen, A great deal

of machinery was required to verify that a given continuum
was indecomposable, if indeed explicit verification was

given at all, As Paul Urysohn put it, "the reason for this
is that the necessary and sufficient conditions for a con-

tinuum to be indecomposable are logically simple, but very

-
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few are manageable in practice [111, p. 225]

One of the most famous examples of an indecomposable
continuum was presented by the Japanese mathematician
Yoneyama in 1917, His extensive English paper entitled
"Pheory of Continuous Sets of Points" [131] dealt with a
theory of "curves" in Euclidean space, But, it was most
noted in the literature of that day and this for its pre-
senting the example now known as the Lakes of Wada. This
example also occupied the status of being little more than
a novelty, so far as the author's major intent is concerned.

Yoneyama used Wada's example to show that in EZ there
exists a continuum C containing three points such that C
is irreducible between any two of them, although he did not
use this terminology. (See Chapter 4 for his wording.) He
was not concerned with indecomposability in this paper.
From the direction of his research, it seems doubtful that
he was aware that the example has this property. (Again
more information is in Chapter 4.)

Essentially, the continuum was described in terms of
digging canals in an ocean island containing a fresh water
lake, (Motivated perhaps by the geography of his native
Japan,) His construction is quoted at length below,

"Suppose that there is a land surrounded by sea and
that in this land there is a fresh lake. Also suppose that

from the lake and sea canals are built to introduce the
waters of them into the land according to the following
scheme,

"Let By, Bpy o o o s By By, oo
positive numbers monotonously [sic] converging to zero;

namely let E17 E27. o WP En7En+1>' . . and 3:71 En = 0,

. be a sequence of
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"On the first day a canal is built from the lake such
that it does not meet the sea water and such that the
shortest distance from any point on the shore of the sea to
that of the lake and canal does not exceed El‘ The enp=-
point of this canal is denoted by Ll‘

Figure 3.3

"On the second day a canal is built from the sea, never
meeting the fresh water of the lake and canal constructed
the day before, and the work is continued until the shortest
distance from any point on the shore of the lake and canal
filled with fresh water to that of the sea and canal filled
with salt water does not exceed E,. The endpoint of this
canal is denoted by S,. [See Figl 3.4.]

Figure 3.4

"On the third day the work is begun from L1 never

cutting the canals already built, and the work is continued
until the shortest distance from any point on the shore of
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the sea and canal filled with salt water to that of the lake
and canal filled with fresh water does not exceed E3. The
endpoint of this canal is denoted by L3.

"Now it is clear that we can continue the work day by
day in the above way, by adequately narrowing the breadth
of the canals, since the land is always semi-continuous

i.e. a semi-continuum] at the end of the work of every day.
If we proceed in this way indefinitely, we get at last an
everywhere dense set of waters, fresh and salt, which never

mingle together at any place.
"Now denote by ML the shore of the lake and canal

filled with fresh water, and by Ms that of the sea and
canal filled with salt water, and by MP the set of limiting
points of ML and MS not contained in them, Then the sum of
My, Mg, M, forms a continuous set [continuum], and any

three points, each taken from the above different sets form
a system of three points, every two of which form a pair of
principal points of the set [i.e, the continuum is irreduc-
ible between any two of those three points].

". « o If we suppose that there are many such lakes in
the land, we may obtain by the similar method a continuous
set having the property [131, pp. 60-62]."

The construction mentioned in the last paragraph is
carried out in Hocking and Young's Topology [44, pp. 143~
144] for two lakes. Yoneyama supplies no further proof
that his set has the desired properties, which is fairly
typical of the era prior to 1920,

Parenthetically, it is interesting to note that other
new disciplines were studying pathological examples of
their own. In the same volume of the T8hoku Mathematical
Journal in which Yoneyama described the Lakes of Wada,
Sierpinski gave an example of a non-measurable set which
is a slight generalization of today's standard example {110].

A further investigation of the Lakes of Wada was made
by Paul Urysohn [116, pp. 231-233] as a tool in his monu-

mental study of Cantor manifolds in a separable metric
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space [115], [116], [117]. The goal of his work was to
establish the most general possible topological definitions
of "line" and "surface", Much of this work was published
posthumously under the supervision of Paul Alexandroff,
following Urysohn's death in 1924. His untimely death at
the age of twenty-six was the result of a swimming accident
[1].

Urysohn's contribution to the Lakes of Wada was an
outline of a proof of the indecomposability of the con-
tinuum, based on a necessary and sufficient condition for
indecomposability which he had developed. (See Chapter 5.)
He noted that for "a convenient distribution of canals" the
continuum is indecomposable, but that he did not know if
the "construction always gives an indecomposable continuum
for any distribution of canals [116, p, 232]."

He also indicated that the construction can be gen-
eralized by:

1) allowing a countable number of lakes, provided that

they "converge to a single point";

2) allowing certain lakes or even all lakes to have no

~

canals;

3) allowing other lakes to have several, or even a

-

countable number of canals;

4) allowing certain canals to have only a finite

-

length [116, p. 233].
In closing this chapter, we note one more contribution

to the study of the Lakes of Wada. While trying to extend
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Schoenflies' results on plane sets of points to higher
dimensions, R, L., Wilder showed that the Wada construction
does not necessarily yield an indecomposable continuum in
B> [129, pp. 275-279]. His first result was to use this
construction to dig tunnels in a certain solid to get a
surface which is a Peano continuum (and hence decomposable),
and yet is the common boundary of three (or countably many)

domains in E3. More will be said about this in Chapter 8.




CHAPTER 4
BASIC STRUCTURE THEOREMS

Prior to 1920, there were only two papers on indecom-
posable continua which could be considered theoretical.

The first was by Arnaud Denjoy in 1910 [26], and the second
was Yoneyama's in 1917 [131]), However, neither work seems
to have been very influential in the study of indecompos-
able continua.

In his paper, Denjoy announced that he believed "one
could construct three domains and even a countable number
of domains which all have the same boundary [26, p.28]."

In such a case, "the points of such a frontier F situated
on an arbitrary straight line must form a perfect every-
where non-dense [nowhere dense] set e if the line contains
no continuous [connected] portion of F [26, p. 138],"

Since Denjoy's results were stated without proof, and later
papers make scant reference to them, we say no more about
them,

Yoneyama's paper had only slightly more impact on
later theoretical investigations of indecomposable continua.
One of his theorems was used by Kuratowski to help establish
a theorem on indecomposable continua [69, p., 208],

One reason why Yoneyama's work does not seem to have

31
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been very influential is that his terminology was highly

non-standard with respect to the European school of mathe-
matics, For example, he used the word "component" to mean
subset, and "continuous set", which corresponds to our word
"continuum", to mean a connected perfect set. Furthermore,
in place of "irreducible continuum", Yoneyama's concept was
stated in the following terms. Let S be a "continuous set"

and let a, b be points of S, a and b are principal points

of S if no proper "continuous component" of S contains a
and b [131, p. 47].

It is interesting to compare this terminology to the
European, so we state a theorem of Yoneyama both ways. The
original version reads as follows: "When a continuous set
has two pairs of principal points, it has always two pairs
of them having one point in common {131, p. 48]." On the
other hand, Kuratowski, in using the above result, stated
it this way: "If e is irreducible between a and b and bet-
ween ¢ and d then e is irreducible between a and ¢ or a and
d (69, p. 208]."

One apparent difference in the above viewpoints seems
to be that Yoneyama classifies "continuous sets" according
to the number and type of principal points which they pos-
sessed, On the other hand, Kuratowski and other Europeans
studied the entire continuum, rather than just certain
points of it, Their technique seems a little more natural

in the sense that irreducibility between two points of a

set results from the structure of the set, rather than from
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any property inherent in those points alone,

As we proceed into more specialized concepts, we find
the differences in terminology and technique growing.
Yoneyama's definition of what we would call an indecompos-
able continuum is given as: "a continuous set having a
system of three points, every two of which form a pair of
principal points of the set, is called a singular set of
points [131, p. 62]."

He proved several theorems concerning some properties
of singular sets, but he gave no necessary and sufficient
conditions for a continuous set to be singular, Because he
was interested primarily in the principal points of a set,
rather than in properties of the entire set, it is doubtful
that he knew or was interested in the fact that singular
sets are indecomposable, For example, his only use of the
Lakes of Wada was to show that singular sets exist, Thus,
a second reason why his work does not seem to have had a
significant influence is that his point of view and direc-
tion diverged from those of his western contemporaries.

Beginning in the early 1920's, indecomposable continua
were studied more as entities in themselves, rather than
just as pathological examples, The first European paper
devoted exclusively to studying properties of indecompos-
able continua - sans examples = was published by the Polish
mathematician Stefan Mazurkiewicz in 1920, In it he an-
swered affirmatively the following question posed by Janis-

zewski, Knaster and Kuratowski {86, p. 35]}. Given an
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indecomposable continuum C, can one determine two points in
C such that C is irreducible between them? In fact, he
proved a stronger result, Using Baire category theory, he
was able to show that an indecomposable continuum in E" has
three points such that the continuum is irreducible between
any two of them, Moreover, it appears that he was the first
to use the word "indecomposable" to name these sets, and R.
L. Moore credits him with being the originator of the term
[100, p. 363]. 1Instead of giving Mazurkiewicz' results
here in more detail, we include them in the next section of
the chapter where they can be more naturally presented.

It should be noted here that during this time, the
word "continuum" meant a closed connected set rather than
a compact connected set, However, Mazurkiewicz restricted
his work to bounded, closed, connected sets in E'. So,
thanks to the Heine-Borel theorem, his concept of continuum
coincides with ours in E®, The fact that he worked in E®
was not a restriction as far as his contemporaries were
concerned, since they too were working in Euclidean space.
Often, papers of this era made no explicit mention of what
their underlying space was, perhaps because the geometric
nature of the results and examples seemed to be self-evident.
Perhaps also, interest in more general spaces had not yet
become widespread.

By far the most significant paper published on indecom-
posable continua theory during the early 1920's was "Sur

les Continus Indecomposables™, by Janiszewski and Kuratowski.
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It appeared in the first volume of the Fundamenta Mathe-

maticae (1920), the same one which contained Mazurkiewicz!'
above mentioned paper. The importance of the Janiszewski
and Kuratowski paper lies in the fact that it gave several
necessary and sufficient conditions for a continuum to be
indecomposable. The authors also defined the fundamental
concept of a "composant" and established some properties of
such sets., The significance of this paper is best proved
by the many later references to its results.

From the fact that several proofs make explicit use of
the metric properties of Euclidean space, it seems likely
that Janiszewski and Kuratowski considered an indecomposable
continuum as a subset of some EV, However, their defi-
nitions and results can be placed in a more general setting
very easily, and we shall do just this,

Before discussing any of the results, we present some

definitions, A set A is called a boundary set in X if

A c X=A, A subcontinuum K of a continuum C is called a

continuum of condensation if K < C-K, Hence, if X is a

continuum of condensation of C, it is nowhere demnse in C,
since it is closed., Equivalently, K is a continuum of con-
densation of C iff C-K = C. PFor if K is a continuum of
condensation of C, then C = KU (C-K) = KU (C=K) = C-K;

the converse is trivial. These definitions are still used
today, with the only change being that the word "continuum"
generally means a compact connected set rather than a

closed connected set,
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The first three results were not part of the original
paper, but we include them here because they simplify some
of Janiszewski and Kuratowski's proofs.
Lemma 4.1: A subset Y of a space C is connected iff there
do not exist two nonempty subsets A, B of Y such that Y =
AUB and such that (ANB) U (ANB) = @ [44, p. 15].

Proof: If the sets do exist, then C-X is an open set
containing B and C-B is an open set containing A, Therefore

Y = [(c-A)nY] u [(c-B) nY],
[(0-E)nY] n [(c-B)nY) = [(C-A)n(C-B)] nY =
= [c-(AUB)] nY = g.

and

Thus Y is disconnected.

If Y is disconnected, then Y = (ONY) U (VNY), where
O, V are open in C, and ONY, VNY are nonempty and disjoint.
Set A=0NnY, B=VnY,
Lemma 4,2: Let X be a connected subset of a connected set C,
If C=X is disconnected, say C=X = MUN, then XUM and XUN
are connected., Moreover, if X is closed, then XUM and XUN
are closed [62, pp. 210-211].

Proof: By Lemma 4.1, C-X = MUN, where M # #§ # N, and
(MATX) U (MNN) = §. Suppose XUM = AUB, where A £ §
and B£ @, and (ANB) U (ANB) = #. Since X is connected,
we may assume XNA = @, whence A « M, We now disconnect C.

C =XUMUN = AU (BUN);
A#9# (BUN);

(AnB) U (ANN) = (ANB) U (MOXN) = &;
(AnB) U (ANN) = (ANB) U (MNN)

n

AN (BUN)

1
=

An(BUN)
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This contradiction establishes the first part of the Lemma,

If X is closed, then YUM = YuM = xuM =
(XUM) n (XUMUN) = XUM, since N = #. Therefore, X UM
is closed, Likewise XUN is closed.
Lemma 4.3: Let C be an indecomposable continuum and let K
be any proper subcontinuum, Then C-K is connected,

Proof: If C-K is disconnected, then C-K = MUN, where
M, N are nonempty sets such that (Mn¥N) u (Mn¥N) = g, by
Lemma 4.1, By Lemma 4,2, KUM, KUN are continua, and their
union is C, Since each is a proper subcontinuum, we have a
contradiction.

The next theorem is of major importance., It was
included in the Janiszewski and Kuratowski paper, and is
due entirely to Janiszewski [50, p. 210].

Theorem 4.4: In order that a T2 continuum C should be

indecomposable, it is necessary and sufficient that each
proper subcontinuum of C should be a continuum of conden-

sation [50, p. 212].
Proof: If C is decomposable, then C = CllJCZ, where C1

and 02 are proper subcontinua of C, Thus, C-C1 < 02, from
which U-Cl < C, # C., Therefore, C, is a proper subcon-

tinuum of C that is not a continuum of condensation of C,
(This part of the proof is essentially as Janiszewski gave
it,)

Conversely, let C be indecomposable, Suppose that the

condition does not hold, so that there exists a proper sub-

X
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continuum K of C such that T=K # C, C = KU (C~K) = K U (T=X),
By Lemma 4,3, C-K is connected, and hence so is U=X. Thus,
the latter set is a proper subcontinuum of C, and we have
contradicted the indecomposability of C,

Corollary 4.5: Let C be a non-degenerate T2 indecomposable

continuum, Then C is not locally connected at any point.,

Proof: On the contrary, suppose there is a point a¢C
such that C is locally connected at a. There exists becC,
distinct from a, and there exist disjoint open sets g, v
containing a, b respectively, By local connectiviety, there
exists a connected open set K containing a and contained in
U. X is a subcontinuum of C, and XNV = @ implies ¥ £ C.
Moreover, KN (C-%) = § implies KNC-X = @#, Thus, ¥ is a
proper subcontinuum of C which is not a continuum of conden-
sation, contradicting Theorem 4.4.

The converse to the Corollary is false, (Neither this
statement nor the Corollary were part of the Janiszewski-
Kuratowski paper.) To see that it is false, consider the
continuum in E3 constructed as follows: Construct the Cantor
set on the x-axis between (1,0,0) and (-1,0,0) and on the
line segment joining (0,0,1) and (0,1,0). Next, construct
all the line segments determined by the points of the two
Cantor sets. The set so formed is a decomposable continuum
that is locally conneéted at no point.

By definition, an indecomposable continuum is not the
- union of any two proper subcontinua. Surprisingly, "two"

can be replaced by a "countable number", provided C is T2.
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We prove this by using Theorem 4.4 and the following lemmas,
Lemma 4,6: If a topological space is compact and Hausdorff,
then it is regular,

Proof: See Dugundji, [28, p.223].
Lemma 4.7: Let X be regular, x€ X, and let U be any neigh-
borhood of x in X, Then there is a neighborhood 0 of x
such that xe0 =« 0 < U,

Proof: See [28, p. 141].
Lemma 4,8: Let C be a T, continuum, Then C is not the union
of a countable number of closed nowhere dense subsets.

Proof: Let {Ai]’é be a collection of closed nowhere
=t
[~ -]

dense subsets of C, and suppose that C = U Ai. Then
L

L

oo
n (C-A;) = @, which we shall show is false,

Y
Since each Ai is closed and nowhere dense in C, C-Ai

is open and dense in C, for each natural number i, We shall

show that n (C-Ai) is dense in C, Suppose U is any nonempty

open set in C. Then, for each i, UN(C-A;) # #. Hence,

U(](C-Al) is nonempty and open in C, If x is any element

of this set, then by Lemmas 4.6 and 4.7, there exists an

open subset B; such that x€B, < 'Bl cUnN (C-Al). Likewise,

there exists an open set B, in C such that g #3B,c 32 S

Inductively, we obtain a sequence (Bn} of nonempty

open sets such that Bn c Bn_lf1(C-An), for each n, Since

k ®
Since N Bh =B # #$ and C is compact, then N Bn £ 0.

L] azi
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By = Un(C-A;) and B,c(C-A ) NB, _, imply that

g4

E oo o0

, < UN {L.(C'An)‘ Therefore, 23.(C-An) is dense
oo

and certainly not empty, Therefore, U A #0C.
ns

Theorem 4.9: A Hausdorff indecomposable continuum is not the

union of any countable collection of proper subcontinua,

Proof: If {Ki}f' is any family of proper subcontinua
[E N

of C, then by Theorem 4.4, each Ki is nowhere dense in C,
Fach K; is closed, so by Lemma 4.8, C # 1:1: K.

This result was used by Urysohn in a paper (116, p.
243] that we shall consider in the next chapter.

To help establish the rest of their results, Janis-
zewski and Kuratowski made the following important defi-
nition, The notation is theirs, ILet C be a continuum, and
let a€eC, P(a,C) = {c écla,c can be joined by a proper sub-

continuum of C} . Hence, P(a,C) = g(qu« , where a €K,

and K, is a proper subcontinuum of C. Clearly, P(a,C) is

o(

a semi-continuum, P(a,C) is called the composant of a in C,

In their paper, Janiszewski and Kuratowski only used

the word "composant" when the above sets had the property
that for all a, b in C, P(a,C) = P(b,C), or else
P(2,C) N P(b,C) = . Current usage is largely as we have
given it, although in some cases "subcontinuum" is
replaced by "closed connected set", The next theorem was
actually proved nearer to the end of the Janiszewski-
Kuratowski paper, but we shall make use of it earlier.

Theorem 4,10: If a and b are any two points of an indecom-
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posable continuum C, then the composants are either disjoint
or coincident [50, pp, 217-218].

Proof: Suppose instead that P(a,C) # P(b,C) and that
P(a,C) NP(b,C) # #. Pick c eP(a,C)-P(b,C), and choose
d ¢ P(a,C) nP(b,C), By definition of composant, there exists
a proper subcontinuum C1 of C such that a,ce-Cl. Likewise,
there exist proper subcontinua 02 and 03 of C containing

a,d and b,d respectively, Cl, 02, C3 being compact imply
that Cl U 02 U 03 is compact, d¢€ 02 n 03 and a e Cl n 02 imply
that Cll1021103 is connected, Therefore, this union is a
continuum, and b,c €C; UC, UCy = C. Since c ¢ P(b,C), C is
irreducible between b and ¢, Thus, ClUCZUC3 = C,
Finally, C = C; UC,, or else C = (CltJCZ)UC3 show that C

is decomposable,

Using the definition of "composant", Janiszewski and
Kuratowski restated Mazurkiewicz! theorems as follows:

Theorem 4,11:

(2) If a is any point of a metric indecomposable con-

tinuum C, then the set P(a,C) is of first category.
(b) For any point a in a metric indecomposable con-
tinuum C, the set P(a,C) is a boundary set in C,
(¢) If C is a metric indecomposable continuum, then
there exist three points such that C is irreducible
between any two of them [50, p. 215].
Proof: (a): (adapted from [44, p. 140]) Let aeC be

arbitrary, and let P(a,C) be as above, C being metric
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implies that C-{a} is open and has a countable basis {On}
[28, p. 233]., Let Kn(a) be the component of C-Un containing

a, Then X (a) is connected, and, since C is compact, X _(a)
is compact, Moreover, this subcontinuum is proper, since
Kn(a) c C-Ui implies that

Kn!ai c C--Un cc-0, £¢C.
Therefore, K'n!ai < P(a,C), for each n, so that we have

o
H:; K (a) = P(a,C).

On the other hand, if x€ P(a,C), then there exists a
proper subcontinuum C' of C such that C' contains a and x.

Let pe c-c'; c-¢' is open in C- a , and p # a shows that

’

p€C-{a}, Therefore, p €0,, for some n such that 0, = C-C'.
Since O, = C-C', C-0_ > C', Then by definition of K, (a),

we have C' < Kn(a) c C-Un. Therefore, x e P(a,C) implies
that xegl(a). Hence, P(a,C) < (z‘ g‘(?)', By Theorem 4.4,
each W is nowhere dense in C, and thus P(a,C) is a

first category set.
op
(v): By (a), P(a,C) = 'llJ” Kn!aJ, so we have C-P(a,C) =

0o

- i . a s
n, (c-X T(a)). Each C-K {aJ is open, and, since K (a) is
nowhere dense, each is dense, By the proof of Lemma 4,8,

L ]
- o h C-P(a,C) being dense shows
n. (c-X (a)) is dense, But then (a,C) g

that P(a,C) < C = U"’I!a’C’o

(c): By (a), each P(a,C) is the union of a countable

number of closed nowhere dense sets, If there were only a
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countable number of composants in C, then C would be the
union of a countable number of closed nowhere dense sub-
sets, violating Lemma 4.8, Therefore, C has uncountably
many composants. By Theorem 4,10, the composants are dis-
joint, so choose exactly one point from each one, By the
definition of "composant", C is irreducible between any
two of these points,

The above proof shows that a metric indecomposable
continuum has uncountably many composants, and that it is
irreducible between each two points of a certain uncount-
able set., Mazurkiewicz used the same technique in Euclidean
space, although he seemed to be satisfied with talking about
three points instead of uncountably many. This may have
been motivated by the fact that the converse needs only
three points., He may have been aware of this, since Janis-
zewski and Kuratowski established the converse as well as
suggesting the original problem to him, Mazurkiewicz later
showed [91] that a metric indecomposable continuum has as
many composants as there are real numbers.

Using Theorem 4.11, Janiszewski and Kuratowski were
able to establish the following necessary and sufficient
conditions for a continuum to be indecomposable.

Theorem 4,12: The following are equivalent:
(a) A metric continuum is indecomposable.
(b) For each a€C, there is a point x€ C such that C
is irreducible between a and x.

(c) There exists a €C such that P(a,C) is a boundary
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set in C; that is, P(a,C) < T=P(a,0).
(d) There exist three points of C such that C is
irreducible between any two of them [50, p. 215].
Proof: That (a) implies (b), (c),(d) follows from
Theorem 4.11 (a), (b), (c) respectively,
Conversely, suppose that C is decomposable; that is

assume that C = Cl UCZ’ where Cl’ C2 are proper subcontinua,

To establish that (b) is now false, first choose ac-Cl ﬂcz.

Then Cqy = P(a,C) and C, = P(a,C). Therefore, we have that
C=c uc, = P(a,C), so that C is not irreducible between

a and any other point of C,
Statement (c) is also false now. Let a€C be such that

(c) holds, and without loss of generality, suppose aeCq.
Since C; = P(a,C), then C-P(a,C) = 0-Cy = C,. C, being
closed shows that CT-P(a,C) < C,. If (c) were true, then

P(a,C) = C-P(a,C) would imply that ¢, = P(a,0) = T-P(a,0) =

c Thus, we would have 01 (= 02, which would imply that

oe
C= C1 UC2 = 02. This contradicts C # 02. Therefore,
P(a,C) ¢ C-P(a,C), for any a€ C. Thus, (c) is false.
Finally, let a, b, c be any three points of C., With-
out loss of generality, a, be Cl. Therefore, C is not
irreducible between a, b, This shows (d) is false.
Corollary 4.13: Let C be a metric continuum, C is indecom-

posable iff it is irreducible between some point pé& C and

each de D, where D is a dense subset of C.







45

Proof: If C is indecomposable, then by Theorem 4,11 (b),
C = C-P(a,C). Conversely, if D is any dense subset of C,
and if C is irreducible between some point p and all points
of D, then C-P(p,C) > D, Thus, C-P(p,C) > D = C, so that
P(p,C) = T=P(p,C). By Theorem 4,12 (¢), C is indecompos-
able,

This result was used often in the literature, but it
was never explicitly stated nor proved, possibly because
the proof is not difficult,

As an interesting application, Theorem 4,12 (d) can be
used to construct an indecomposable continuum in the manner
discussed in Hocking and Young's Topology, [44, p. 142].

This example was not part of the Janiszewski-Kuratowski

paper,

Let P1s Poy Pz be any three distinct points of Ez.

Construct Cl’ a finite simple chain of connected open sets

from P to Pz, containing p,, as shown:

S
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Inside Cl, construct another finite chain of open con-
nected sets, 02, from j to Pz containing ISE Inside CZ’
construct another such chain 03 from 123 to J containing Pz,

as shown in Figure 4.1.

Figure 4.1

In general, 03n+1 is a chain from p; to Pz containing
Py 03n+2 is a chain from 1 to Pz containing Py - C3n+3 is
a chain from Py to Py containing p3, and for all k, we have

Cy & Cpyq-
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00
Note that C = 2:,C3n+1 = 9",C3n+2 = 2. C3n+3‘ Moreover

-4

. 3 - w .
2,.03n+1 18 irreducible between Py and p3; P“ 03n+2 is

(. -]
irreducible between j and Ps; ﬂ 03n+3 is irreducible bet-
30

ween p, and Py. Therefore, C is indecomposable by Theorem
4,12,

Although we have explicitly given only three points,
Py Py, p3, such that C is irreducible between any two of

them, it follows from the proof of Theorem 4.11 (¢) that C
actually has uncountably many such points. (In more current
terminology, the continuum C is said to be cellular, since
it is the monotone intersection of a countable number of
2-cells,)

Janiszewski and Kuratowski established a further char-
acterization of indecomposability in terms of composants:

Theorem 4.14: In order that a metric continuum C should be

indecomposable, it is necessary and sufficient that it con-
tains two disjoint composants [50, p. 219].
Proof: By Theorems 4,10 and 4,11, a metric indecompos-

able continuum has uncountably many disjoint composants,

and hence certainly has two,
Conversely, suppose P(a,C) and P(b,C) are two dis-
Joint composants of C, Assume C is decomposable: C =

CllJCQ, where C1 and 02 are proper subcontinua of C, Either

C, = P(a,C), or else c, = P(a,C). But, in any case, we
have c,Nne, < P(a,C). Likewise, c,Nne, = P(b,C). There-
fore, @ # c,Nnc, = P(a,C) N P(b,C), contradicting the
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hypothesis of disjointness. Hence, C is indecomposable,
and the theorem is established,

In the last three pages of their monumental paper,
Janiszewski and Kuratowski considered bounded closed con-
nected sets, while the rest of their results held (at least
in E2) regardless of boundedness, The principal theorem
established in this section may be stated in our terminology
as follows: "Each composant of a T, continuum is dense."
Their proof was done via metric properties, but we give a
more general argument.,

Definition: Let X be a topological space. Define a relation

"~s" on X by x~y iff there is no decomposition of X into
two nonempty, disjoint, open subsets, one of which contains
x and the other of which contains y.

It can easily be seen that "~ " is an equivalence
relation, The equivalence classes are called the guasi-
components of X, and we denote the quasi-component con-
taining xe X by Q(x). Moreover, Q(x) is the intersection
of all closed open subsets of X containing x [76, p. 148].
Furthermore, the component of x, C(x), is contained in Q(x).
For if A is any closed open set containing x, then C(x) < A,
and hence C(x) < Q(x). To see that C(x) = A holds, suppose
C(x) ¢ A; then C(x) = AU[C(x)-A], contradicting the con-
nectedness of C(x).

Lemma 4.15: In a compact T2 space, the components coincide

with the quasi-components.

Proof: By the above remarks, we have C(x) = Q(x), for
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each x € X, By the maximality of C(x), it suffices to show
that Q(x) is connected in order to establish the opposite
inclusion,

Suppose Q(x) = AUB, where A, B are nonempty, disjoint,
closed subsets of Q(x)., Then A, B are closed in X, since
Q(x) is closed in X, Therefore, A, B are compact, since X
is compact. X being T2 implies there exist disjoint open

sets in X, U, V, such that A = U, B< V [28, p. 225].

Tet M = X-(UUV); M is closed in X. et {F},, o be
all the closed open sets in X containing x, so that Q(x) =
Qer"" Now, 0 (MNFy ) =MN O F, =MN(AUB) = 4. By

applying De Morgan's laws to the definition of compactness,
it follows that there exists {x \:'}L'"‘l such that I"l'(M nF‘,(,) o
= i N

n
$. Therefore, N F, <UUV,
o 2

5
Claim: (N F, ) NU is closed open in X,
Sl

n
n F
1

n
 Fay is certainly closed open and (l? Fuo )NU is
= =l

g -
clearly open. Moreover, (rJ»I Fu, )NT is closed, and
heS
n n _ n
(0 F,. )NU = 0(Fg, NT), since 0, Fuy SUUYV and Tnv =
TR v :
#. Therefore, the claim holds,
n
There exists we Q(x) such that we Q”F,‘L nu, since

n o b s
$#rc (N, Fy, ) NU. @#B inplies that there exists a

n n
z e Q(x) such that z ¢X-0 F, MU, But then ) F, . NU and

"
its complement are nonempty, disjoint, open subsets of X,
one of which contains w and the other of which contains z,

contradicting the fact that Q(x) is a quasi-component.
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Therefore, Q(x) is connected, and hence Qx) = ¢c(x).

We use these results to establish the following impor-
tant lemma., Janiszewski and Kuratowski also established it,
although they did not use the "quasi-component technique",
Lemma 4.16: If K is a proper subcontinuum of a T2 continuum
C, then there exists a subcontinuum I such that X < L < C
[50, p. 220].

Proof: From C being compact and T,, it follows that C
is regular. Then x¢ C-XK and K closed imply there exists an

open V such that x €V and VNK = §, Therefore, K < C-V,
and C-V # C. Let L be the component of C-V containing K. I

is connected , closed in the closed set C-V and hence also
closed in the compact set C., Thus, L is a proper subcon-

tinuum of C., It remains to show that L #K.

On the one hand, K N C-C-V = @, because @ = KN (C-C-V) =

KNC=C-V > KNC-C-V, On the other hand, suppose that

LNC-C-V = #, Since C is compact and T,, ¢~V is compact

and T Therefore, L is a quasi-component and hence is the

2'

intersection of all closed open sets in C=V containing a

given point y€ X, by Lemma 4,15, Thus, L = %tnG@’ , G(;

closed open in C-V, and y ¢ G(; . By assumption, we have

(ﬂQG@) N c-c-V = @, whence ﬂo (GB NC-C-V) = @. As before,

m ™ ——
there exists a set {f@;}:_l such that 0 Gp. NC-C-V = 4.

m -= ™ -=
In such a case, C =0 Gg. U [(c-V = n Gg. ) U C-C=V],
\ t

1 3

it b
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which contradicts the connectivity of C. Therefore, we have

LNC-C-V, and hence T # K.

The above proof is patterned after several in volume
two of Kuratowski's Topology [76].
Theorem 4,17: In a T2 continuum, each composant is dense

[50, p. 221].

Proof: P(a,C) is a continuum, since it is connected
and closed in the compact set C. If P(a,C) # C, then it is
a proper subcontinuum of C containing a, Therefore,

P(a,C) < P(a,C), whence P(a,C) is closed and is therefore
a continuum, But, since P(a,C) is then a proper subcon-
tinuum of C, there exists a proper subcontinuum K of C
properly containing P(a,C), by Lemma 4,16, However, by
definition of P(a,C), K < P(a,C). Therefore, P(a,C) is

dense.

Corollary 4.18: In a T2 continuum, a composant is not a

proper subcontinuum,
Proof: This was shown in the proof of Theorem 4,17,

Corollary 4.19: If C is a metric indecomposable continuum,

then for any a€C, P(a,C) = C; for any a € C, P(a,C) c
C-P(a,C) = C.

Proof: Theorem 4.17 establishes the first statement,
and the second follows from Theorem 4.11 (b).

Thus, an indecomposable continuum in a metric space
is "very irreducible" in the sense that given any point

aeC, there is a point x e€C, arbitrarily near a, such that

C is irreducible between a and x, For a given a &C, the

R—
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set of all such x€ C is dense in C. On the other hand,
given any a€C, C is not irreducible between a and all
points of a dense subset,

Furthermore, an indecomposable continuum is "very con-
nected" in the sense that any proper subcontinuum may be
removed without disconnecting it (Lemma 4.3). Xnaster and
Kuratowski proved [64, p. 37] a similar result which showed
that any point could be removed from a (non-degenerate)
indecomposable continuum without disconnecting it., R. L.
Moore established an even stronger result for Hausdorff
spaces along these lines.,

Theorem 4,20: Let C be a T2 indecomposable continuum, and

let X be any proper subcontinuum, If L is any subset of K,

then C-L is connected [100, p. 361].
Proof: If C-L is not connected, then by Lemma 4.1,

C~-L = AUB, where A, B are nonempty and (ANB) U (ANB) = @,
By Lemma 4,3, C-K is connected, so C-K « A and B < K., By
Theorem 4.4, C = C=K = K, Therefore, K < A, and hence
B < K, which is a contradiction., Thus, C-L is connected,
For a related result, see p. 76.
Janiszewski and Kuratowski also established two other
results for indecomposable continua, We shall present them,
but since they play no role in our later work, we do not

prove themn,

Theorem 4.,21: Let C be a metric indecomposable continuum,

Each subcontinuum situated in a composant is a boundary set

with respect to that composant [50, p. 221].
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The following is due to Mazurkiewicz,

Definition: The relative distance between X,y€S is

d, (x,y) = inf §(E), where §(E) is the diameter of E, and
the infimum is taken over all connected sets E < S con-

taining x,y. The relative diameter of A = S is SE(A) =

sup dr(x,y), for x,y e A, The oscillation of S at p€S is
w(p) = inf 5r(A), where A runs over all subsets of S such
that pe Int (A) [87, p. 170].

Theorem 4,22: For any point of an indecomposable continuum

C in a metric space, the oscillation of C at the point is a
constant and equal to the diameter of C [50, p. 217].

As our final result of the chapter, we prove Knaster's
first semi~-circle example (see p. 24) really is an indecom-
posable continuum (c¢f p, 161), Let Do be the set of semi-
circles with non-negative ordinates, centered at (1/2,0)
and having as endpoints the points of the Cantor set, F.
For n2»1, let G, be as before, and let Dn be the set of
semi-circles with non-positive ordinates, centered at
(5/[2+ 3™],0) and having as endpoints the points of Ge

Then the set B = ﬁ’Dn will be shown to be an indecomposable
o

continuum,

Let S =

-C8

Sn’ where Sn is an infinite sequence of semi-

circles used in constructing B, satisfying:
(a) (0,0) and (1,0) are in Sq;
(b) for n»1, S, NS,  is the point of F common to

both.

Let K represent the points of the Cantor set, F, which are

e e R EFS SRS
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endpoints of some Jn,k (see p. 9 for the notation), It can
be shown by induction that K = S; that is, for each "end-
point" in F, there is a semi-circle Sm having it as an end-
point, The proof that F is perfect shows (p. 12) that K is
dense in F, Therefore, K< S and X = F imply that 3§ = B, S
is clearly connected, and hence so is B, S is compact by
the Heine-Borel theorem, so we have shown that B is a con-
tinuum,

We shall next show that F-K = F, Given xeK, and €70,

we must find ye F-K such that |x-yl¢¢. Since x€X, then

X = -—2, where bné {0,2}, and there exists N such that
3

hz)
for all n#» N, bn = 0, or else bn = 2, Choose Nl'l/N so large

that 1/(3N “1y. €. Any element y in F-K has a ternary

co
2n .
expansion of the form y = -_;ﬁ For the desired ye¢ F-K,

NI
set
brl if n¢ N1
a =< 0 if n is even and 7 N1
n
2 if n is odd and 7, Ny.
=) o 00 0o
m N Bl el N2
en X = — — T
L ==yl 30 3% 31 3
n:s n:zl r\:ll/I ne A,

/3N el
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Since F-X = F, then B=5 = B, Therefore, B-S is dense
in B, By Corollary 4,13, it suffices to show that B is
irreducible between (0,0) and each point of B-S. To do
this, we first prove the following
Lemma: If L is a proper subcontinuum of B such that LN§S £
@, then there exists n such that L < g S .

Proof: Let qeL NS, Since S is dense in B, there is a
point pé S in the nonempty open set B-L. In fact, p can be
chosen in such a way that if A denotes the arc in S between
(0,0) and p, then q¢ A, This can be done by simply adding
the arc from (0,0) to q to the continuum I,

We shall next show L « A, If not, then there is a
point re L-A, Let n, be a natural number such that the
distance from p to L exceeds 3710 (and hence EE?'distance
from r to A exceeds 3 70) and such that A < g. S;.

Consider the band P formed by all the circles of radius
4/(3n°+2) centered on A, The boundary of P is composed of

two lines parallel to A and two semi-circles centered at

(0,0) and p respectively.

- -
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The first three of these lines are disjoint from B, for
their points of intersection with the x-axis are in the

intervals that were deleted in constructing F (since A <
no-l

g Si). The fourth is disjoint from L, since the distance

from p to L is greater than 1/(3%°), 4/(3no+2).

Therefore, the entire boundary of P is disjoint from L.

g,
ﬁ.-t

Since L is a continuum, we either have L « P or LNP

contradicting r € L-P and qe€ LNP, Therefore L < A c

- |l

which establishes the lemma,

To verify the irreducibility of B between (0,0) and
any point of B-S, assume that there exists a proper subcon-
tinuum L of B such that (0,0) L, and ye¢ L, for some y € B-S,.
Then LNS # @, and LN (B-S) # #, so that L £ S. This
contradicts the lemma, Therefore, we conclude that no such
L can exist. Thus, B is irreducible between (0,0) and each
point of B-S, which proves the indecomposability of B,

The above proof is slightly modified from the one that
appeared in a paper by Knaster and Kuratowski [64]. They
were dealing with closed, connected, non-bounded sets in ER,
This bounded example and proof were included because they
wanted to invert B-(1/2,1/2) with respect to a unit circle
centered at (1/2,1/2) to obtain a closed, connected, non-

. 2
bounded indecomposable set in E".

Thus, the proof of the indecomposability of Knaster's
first semi-circle example appeared two years after the

example itself,
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We conclude this chapter with a few historical obser-
vations., Zygmund Janiszewski made several great contri-
butions to mathematics in general and to continua theory in
particular [49]. His thesis established many results on
irreducible continua that continue to be of use today., Of
course, the above paper with Kuratowski developed many of
the fundamental properties of indecomposable continua.
Janiszewski was also very instrumental in establishing both
the Polish school of mathematics and the journal, Funda-
gggﬁg Mathematicae. Sadly, the first volume carried his
obituary., He died January 3, 1920 at the age of 32, as a
result of a long illness.

The second remark concerns the Fundamenta Mathematicae

itself, It was founded by Janiszewski, Mazurkiewicz, and
Sierpinski to be a journal dealing with set-theoretic prob-
lems written in French, English, German, or Italian, This
restriction of topic did not put the journal out of print
for lack of papers, as some mathematicians of that day had
feared, It even survived Nazi occupation in World War II,

although many of its contributors did not [78].






CHAPTER 5
INDECOMPOSABLE SUBCONTINUA OF IRREDUCIBLE CONTINUA

In this chapter we shall consider indecomposability as
a special case of irreducible continua theory. In partic-
ular, we shall exhibit some conditions that are both neces-
sary and sufficient for an irreducible continuum to be
indecomposable, This will give a partial answer to the
question: "How much stronger is the condition of indecompos-
ability than that of irreducibility?" Moreover, the inter-
relations between the two concepts will be more clearly
exposed.

Historically, the papers cited here date from 1922 to
1927, and all but one of them were written, at least in
part, by Kuratowski, Some of the results obtained in those
papers were valid only for non-bounded sets in Euclidean
spaces., These are omitted, not only because such sets are
not continua by our definition of a continuum, but also
because they do not contribute to our later developments,

The first result to be considered here was proved by
Paul Urysohn [116, p. 226] in 1926, His work was done in a
general metric space under the same definitions that we use
today. His definition of "compact" is actually our term

"countably compact", but there is no distinction between

58
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these concepts in a metric space [28, p, 230]., It is
interesting to note that this is the first paper we have
discussed in which the definitions agree with current usage.

Theorem 5.1: In order that a metric continuum C, irreducible

between a and b, should be indecomposable, it is necessary
and sufficient that it contain a semi-continuum S such that:
(a) either a or b is in S;
(b) § = c;
(¢) C=5 = C.
Proof: If C is indecomposable, then by Theorem 4,12, C
is irreducible between a and some x€C, Set S = P(a,C).
By Theorem 4,11, C-S = C, and by Theorem 4.17, S = C,

On the other hand, suppose the conditions of the theo-

rem are satisfied, and without loss of generality, assume
aéS, We claim that P(b,C)NS = @#. If not, choose x in
the intersection., Since x€ S, there exists a continuum
K< S, with a, x€X, x¢€P(b,C) implies that there is a
continuum X' < P(b,C), with x, b€K . C being irreducible
between a and b implies C = KIJK'. Therefore, C-S < C=K <
K', from which it follows that C = 0= c K < P(b,C). But
then a € P(b,C), which contradicts the irreducibility of C
between a and b, Thus, the claim is established.

Since P(b,c)NS = @, S = C-P(b,C)., Therefore, we have
C-P(b,C) > 5 = C. By Theorem 4,12, C is indecomposable.
(This proof is essentially as Urysohn gave it [116, pp. 226~
227].)

Urysohn notes that as a necessary condition, the theo-
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rem is not very interesting. However, it does provide pre-
cisely sufficient conditions, which he shows by removing
each condition one at a time and constructing counter-
examples,

As mentioned earlier (p. 29), he used this theorem to
outline a proof of the indecomposability of the Lakes of
Wada. Essentially, he lets Ms play the role of S, and he
states that the irreducibility of C = M

UML U M, follows

S P
from a convenient distribution of the canals [116, p. 232].
We next consider several results which Kuratowski

established in [69]). This work was the major portion of
his thesis, written under the direction of Mazurkiewicz and
Sierpinski in 1920 [69, p. 201]). It also contained the
previously discussed Knaster's "semi-circle example" (pp.
24, 5%), and is seemingly the only paper to use results of
Yoneyama,

Using Kuratowski's notation, let C be a T2 continuum
irreducible between a and b, and define R(a,C) to be the
empty set together with the set of all subcontinua L of C
containing a such that L = E:EET. The equation simply
requires that L = Tnt (L), a condition sometimes referred
to by saying that L is a regular set, This is not to be
confused with the separation axiom of the same name,

Before we can prove any of the major theorems, we
must establish some background results.

Lemma 5.2: Let C be irreducible between a and b, and let K

be a closed connected subset, Then C-K is either connected
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or else it is the union of two connected sets, one of which
contains a and the other of which contains b, If a€X, then
C-K is connected [69, pp. 202-203%],

Proof: Suppose C-K is not connected. Then C-K = PUQ,
where P, Q are nonempty, disjoint, open subsets of the open
set C-K. By Lemma 4.2, KUP, KUQ are closed connected
subsets of C, and hence are subcontinua, But then we have
C=(KUP) U(KUQ)., If a€K, then either KUP or KUQ is
a proper subcontinuum of C containing a, b. This violates
the irreducibility of C. Therefore, if a €K, then C-X is
connected,

Since a, b are not both in either KUP or KUQ, we may
assume a€P, and b éQ, Hence, C-(KUP) = Q is connected by
the first part of this lemma, and likewise P is connected.
Lemma 5,3: If A, B are two closed connected subsets of C,
with C irreducible between a, b, where a€ A, b €B, then
C-(A UB) is connected [76, p. 193].

Proof: We may assume ANB = @, for if not, then AUB
is a subcontinuum of C containing a, b. Thus, C = AUB by
the irreducibility of C, and consequently C-(AUB) = @.

C-A is connected by Lemma 5.2, Suppose that the set
(C-A)-B = C-(AUB) is disconnected, Then it is the union
of two nonempty sets U, V such that (UNV) u (Tnv) = @.
By Lemma 4,2, BUU and BUV are connected, Hence, their
closures, BUU, BUV are connected.

Since C = (AUB) U (C-K)-B, and ANB = @, then
AnNTCG=-E)=B # . For if not, then A and BUT{C=A)=B show C
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is disconnected. Moreover, § # ANTC=-E)=-B = ANT UV implies
that ANT £ @, or ANV £ §., Without loss of generality,
suppose ANT £ #., Therefore, AUTUB is connected and con-
tains a, b, By the irreducibility of C, C = AUTUB.
Pherefore, V « (C=A)=-B = U; however, VNTU = @#, so we must
conclude that V = @, This contradicts the fact that V # @.
Hence, C-(A UB) is connected.
Lemma 5,4: Let C be a continuum irreducible between a,b,
and let X be a subcontinuum., Then Int (X) is connected
[76, p. 194].

Proof: If K = C, then the result is clear. So suppose
K £ C. By the irreducibility of C, not both a, b are in K
assume a € C-K,

If C-K is connected, then so is C-X, In this case,
Lemma 4,2 shows that C-C-X = Int (X) is connected, If C-X
is not connected, then by Lemma 5,2, it is the union of two
connected sets, P, Q with a€ P, and b€Q, Let A =P and
B=10Q in Lemma 5,3, and it follows that C-C-K = C-PUQ =
C=(PuQq) is connected,

We need two more sequences of lemmas to enable us to
establish the major results, Theorems 5.14, 5.16, 5.17.
Lemma 5.5: Let S be a topological space with subsets A, B,
Then E-B < A=B [68, p. 183].

Proof: Let x € A-B, and let O be any neighborhood of x.
We must show that there is a y€ O such that ye A and y ¢ B.
But, there is an open set U, x €U, such that UNB = @,

Since x€ 0NU, this intersection is nonempty and open., So
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choose any y€ 0NU,
It is easily seen that the following formulas hold,
Lemma 5,6: For any sets A, B, C:
(a) (A-C)-(B-C) = (A-B)-C;
(v) (A-C) U (B-0C) = (A UB)-C;
(c¢) (a-C) n (B-C)
(a) (A-B)-(a=C) = A n (C-B);
(e) (A-B) U (A-C) = A-(BnC);
(f) (A-B) n (A-C) = A-(BUC).

(ANnB)-C;

Finally, we prove a sequence of lemmas which will show

Int YUY = Int X U Int Y.
Lemma 5,.7: Let S be a topological space. If X, Y are
nowhere dense in S, then so is XUY.

Proof: Since S-X = S = S-Y¥, then S-Y = 5-X-Y c (S-X)-V,

by Lemma 5.5, Thus, S = S=Y =« S=-(XUY) = S, from which the
Lemma follows at once,
Lemma 5.8: If X is nowhere dense in a topological space S,

and if O is open in S, then XN O is nowhere dense in S,

Proof: XNO < X implies S-XN0 2 S=-X > X ® XNO,
Lemma 5,9: X is nowhere dense in a topological space S iff
Int X = @; X is a boundary set in S iff Int X = §.

Proof: The result is obvious from the definitions.

Definition: X is locally nowhere dense (respectively a

boundary set) at pe S if there is a neighborhood O of p

such that O0NX is nowhere dense (respectively, a boundary

set).

Lemma 5.,10: X is nowhere dense at p iff X is a boundary set
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at p.

Proof: If X is not nowhere dense at p, and if G is any
open set containing p, then GNX is not nowhere dense, By
Lemma 5,9, there is an open set H such that f#Hc<GNX.
Therefore, H = HNGNX <« ANGNYX, since H is open, Hence,
HNG # §. Then § £ HNG c GNENX < ¢NT and Lemma 5,9
show GNX is not a boundary set. Hence, X is not a boundary
set at p.

Conversely, if X is not a boundary set at p, and if G
is any neighborhood of p, then there exists an open set H
such that § # H<= GNX, Since G is open, P £Hc< GNX <
GNX. Therefore, X is not nowhere dense at P.

Lemma 5.11: Int X is the set of points of S where X is not

locally a boundary set.

Proof: peInt X and G any neighborhood of P imply that
GNInt X #@P. Then P £ GNInt X = GNX shows that X is not
a boundary set at p.

On the other hand, pé& S-Int X implies (S-Int X) N X is
a boundary set, since Int [(S-InT X) NX]=Int (S-IntX)n IntX
= (S-Int X) N Int X = @,

Lemma 5,12: Int X is the set of points of S where X is not

locally nowhere dense,

Proof: The result is immediate from Lemmas 5,10, 5.,11.

Lemma 5,13: Int XUY = Int X U Int V.

Proof: One inclusion is easy and requires none of the

above machinery.

$5-5-% U S-5-T = (S-5-X) U (S-S-¥) = S-(S-X n S-Y) <
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S —————————

S=[(8-X) n (8-Y)] = S-S-(XuY).

Conversely, if p¢Int X, then by Lemma 5.12, X is
locally nowhere dense at P. Therefore, there is a neigh-

borhood O of p such that O NX is nowhere dense in S. Like-

wise, p¢ Int Y implies there is a neighborhood U of p such
that UNY is nowhere dense,

Then XNONU and YNONU are nowhere dense in S by
Lemma 5.8, By Lemma 5.7, we have (Xnonu)u(rYnonu) =
(XUY) n (0NU) is nowhere dense, Therefore, (XUY) is

nowhere dense at p, and hence by Lemma 5.12, p¢Int XUY.
The desired inclusion follows by taking complements,

This last sequence of lemmas has been adapted from
material in Volume I of Kuratowski's Topology [75]. We may
now return to indecomposable continua theory,

Definition: Two members K;» K5, of a family of sets 7{oform

a jump [saut] if for each K€ °° such that K; © K = K,, then

either X = X or else K = K2.

l'
Theorem 5,14: If K is a nonempty indecomposable continuum

contained in a T2 continuum C which is irreducible between

a and b, then K is either a continuum of condensation or

else K=C-C-K. In the latter case, there is a member RO of
R(a,C) such that R, and R, UK form a jump [69, pp. 210-212],
Proof: C-K < C-K implies C-C-K = K. Then, since X is

closed, C-C-K = K., By Lemma 5.4, C-C-K is connected, and

hence so is C-C-K. Therefore, C-UC-K is a continuum con-

tained in XK, If it is a proper sub-continuum of K, then,
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since K is indecomposable, Theorem 4.4 requires that C-C=K

be a continuum of condensation of K and hence of C., If it

is not proper, then K = C-G-K.

We now establish the second part of the theorem., If
K = C, then R, = $ will do., For let R be any member of
R(a,C), P cRc guC. IfR = C, there is nothing to prove,
If R # C, then by Theorem 4.4, O-R = C. But, R€R(a,C)

implies C-C-R = R, Therefore, R = 0=0 = g.
We now assume that X # C, and that a € C-K., By Lemma
5.2, C-K = PUQ, where PNQ = @, and P, Q are open in the
open set C-K, Furthermore, a €P, and either b €Q or else
Q = #. We shall show that in each case, R = P will do.
We must first show that Pe R(a,C). Clearly T is a

subcontinuum of C which contains a., It only remains to show

P = ¢-C-P, As in the first part of the proof of this theo-

rem, C-C-P <« P, P < P and P open in C imply C-P = O=F o

c-5, Therefore, P = C-C-P, from which the desired result
follows by taking closures.

The next step is to show ?lJKZéR(a,C), and the first
result needed for this is that PUK be a continuum con-
taining a, To establish this, it suffices to show that
PNK # #. Since C-K = PUQ, with a €C-K and either Q = @
or bé Q, then C-K is a continuum containing a and b or else
a and not b, In the first case, the irreducibility of C
shows C = C-K, . Therefore, P = PUT = C o K, and hence

PNK = XK # #. In the second case, P-P # @, for if not,
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then P is an open and closed nonempty subset of C which is
proper since b€ Q, This contradicts the connectivity of C.
Suppose that PNK = §. Then T < C-K. ILet x € P-P; then xe€ Q
or xe K, But, x ¢K implies x ¢C-K, whence P & C-K. On the
other hand, if x€Q, then x¢ T, since PNQ = @#. Therefore,
PNk # 4.

As before, PUK > C-C-(FUK). TFor the opposite inclu-

sion, K = C-C-K and P = C-C-P imply that

TUK = (C-0=K) U (C-C-T)

n

c-[(c-x) n (c-F)]

c-C-(K UP).

We shall next show that P and PUK form a jump. Let
S€R(a,C) be such that P = S« PUK., We must show that S =
P or else S = PUK. Since S€R(a,C), a€S. We wish to show
that E is connected, and this can be done by applying
Lemma 5.2, provided S is irreducible between a and some
other point. Thus, we first show that S is irreducible
between a and all points of Fr(S). Note that Fr(S) = ¢
iff S is closed open in C iff C is disconnected, provided
@ #£S £ C. Therefore, Fr(S) # #.

To prove the irreducibility of S, let F be any subcon-
tinuum of S such that a € F, and FNFr(S) # #. We must show
ScF., FNFr(S) # ¢ implies FN (C=5 N 5) # @#. Hence, in

particular, FNT=5 # @. Moreover, by Lemma 5.2, a¢ S
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implies C-S is connected, By the irreducibility of c,
b€ C=S, Therefore, FUC=3 is a continuum containing a, b

b4

and thus must be C, Consequently, C-G-85 < F, from which it

follows that S = C-C-8 < F. Thus, S is irreducible between
a and all points of the nonempty set Fr(s).

By Lemma 5.2, 5:% is connected, and hence is a subcon-
tinuum of K, since S € PUK, By Theorem 4.4, S-7 is either

not proper, or else it is a continuum of condensation, That

is, either S-P = K, or else K-S-P = K. In the first case,

PUK =TUSPcPUS=S5, sothat S = TUK,

The other case is slightly more complicated, We shall
investigate it with the help of the following lemma, which
will also be useful in proving the next theorem,

Lemma 5,15: Let T be any topological space, let A be a sub-

set such that A = T-T-A, and let B be closed in T.

(a) Then A=B = A-A-E-B,

(b) Moreover, if D = A is such that D = A-A=D, then

D = P-T=D [68, p. 184].

Proof: (a) Since A-A=B < A-E<B, then it follows that

A-B = A-(A-A-B) D A-A-A-B, Therefore, A=B D A-A-A=-B., On

the other hand, A-A-B < A-(A-B) by Lemma 5.5. Consequently,

A-E<B < B = B, whence A-A-A=B o E-=B,

(b) We need only prove that T-T=D = A-A=D. TLet x be

an element of T-T-D, and let O be any neighborhood of X in
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T. We must show that 0n (A-E=D) £ #. That is, we must
prove that there is a z€ 0 such that z € A and zg E=D. But,
since 0N (T-T=D) # @, there exists a we 0 such that we T and
w¢T-D. (Hence wgED,) wgT-D implies that we T-T=D =
Int D = D, Therefore, weD < A, and wgA-D, so z = w will
do,

On the other hand,

11K - T-T-D < (1-T=F) - (2-7=D)

T 0 [(T=D) - (T-K)]

n

= T=D - T-A
=T-D) - (T-
= E=D.

Since A = T-T-K, we have that A-T-T-D < A-D, by the above

equations, Therefore, T-T-D > A-A-D, whence T-T=D o A-A-D,
This concludes the proof of the Lemma,

Applying the Lemma with T = C, A = S, B =P, we con-

clude that S-F = S-S-S-F., Then in (b) of the Lemma, taking

D = S-F, we get that C-C-S-P = S-P, Purthermore, since

S-F < K, and K = C-C-K, we can apply the proof of (b) with

?=¢, D=S-P, and A = K, to conclude C-C-S-P = K-K-S-7P,

Therefore, S-P = K-K-S-P, Since K = K-S-P, the equation of

the last sentence shows that S-P = @, whence S < B, Thus,

the second case reduces to S = P, Therefore, P and PUK
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form a jump, and the theorem is established.

The above proof is not the original one, which is even
more complicated. This proof is from Kuratowski's Topology
vol, II, with the (many) details supplied.

As a converse to the above theorem, we have

Theorem 5.16: If the elements R, and Ry of R(a,C) form a

jump, then Fl—§o is either empty or an indecomposable con-

tinuum [69, p. 211].
Proof: Assume that RO < Rl’ since these elements form

a jump, and consequently one such inclusion must hold.
Moreover, we may assume Ro # Rl' for if not then ﬁz:ﬁo = g.

Since ae€ Rl, ﬁz:ﬁo is connected by the same argument
that showed S-P is connected in Theorem 5.14, Thus, ﬁI:ﬁo
is a continuum, Suppose that Rl-Ro = AUB, where A, B are
subcontinua of ﬁI:ﬁo. We must show that one of them is
i;:ﬁo'

Tet &% = 5:55=, and B* = E:EE%. By Lemma 5.4, A*, B*
are connected. By Lemma 5.15, C-C-(AUB) = AUB, By Lemma
5.13, Austaa UB, whence AUt = ﬁz:ﬁo. There are two
possibilities; R £ 8, or R, = P.

Tif R0 # @, then we shall show RO na* # @, or else
R, ng" # #. Suppose though that both those sets are empty.
Then RN (A*UB*) = @, Now, R, = Ry, and Ry © Ry-R , so
that R; = ﬁz:ﬁo = 2%us . Therefore, ﬁ;:ﬁo =2%uB* < Ri-R,
whence Rl'Ro is closed in C and in the closed set Rl' But,
since Rl is closed, Rl'Ro is open in Rl’ This, together
with the fact that @ # Ri-R, # Ry, violates the connectivity
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*
of Rl. Therefore, one of the two above sets, say Ro na -,

is nonempty. Therefore, R0 UA* is a continuum containing a,
* TR T
and Ry UA = C-C-(Ro UA"), by the same proof used in Theorem

bryam — ey *
5.14 to show PUK = C-C-(PUK). Consequently, RjUA €
* * *
R(a,C)s. If R, = @, then let A" be the one of A", B con-
taining a. In this case too, R, UA* € R(a,C).
By definition of "jump", either R0 UA* = Ro' or
Ro UA* = Rl' In the first case,
R URSR. = R_UATUB" =R UB"
Ry = R, URy-R, = R, UA U & 450 g
Therefore, Rl-Ro S B* < B, whence Rl'Ro < B. But since

Bca®uB" = K7, so that =R, = B.

If R, UAY = Ry, then Rj-R, < A% c A, and B7R, = a,
as above,

This proof is also from Kuratowski [76], again with
the details supplied.

Theorem 5.17: Let C be a T2 continuum irreducible between a
and b, Then C is indecomposable iff R(a,C) = {@, C}.

Proof: If C is indecomposable, then C = —C—-—ﬁ. So by
Theorem 5.14, R, = $, and CUP = C form a jump, If K is
any element of R(a,C), then § = X = C implies that X = §#,
or K = C. Therefore, R(a,C) = {@, C}.

If R(a,C) = {#, C}, then ¢ and C certainly form a
jump, Then Theorem 5.16 shows C = T-P is an indecomposable
continuum,

The fact that Theorems 5.14, 5.16, and 5.17 are not

used a great deal in the later literature leads one to
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believe that they are not as useful as those given in Chap-
ter 4., It is interesting to note, however, that all of the
theorems of this chapter hold in an arbitrary T2 space. In
Chapter 4, all the major theorems except the first required
"metric",

We conclude this chapter by presenting a result (Theo-
rem 5,20) from Kuratowski's "Théorie des continus irréduc-
tibles entre deux points II" [71] dealing with the set
Cc-P(a,C). Before presenting the theorem, we give a brief
description of the problem which Kuratowski was studying
when he proved the theorem, This digression seems appro-
priate because it also involves Zoretti and Brouwer, both
of whom we have met before,

Zoretti, considering that an irreducible continuum is
a generalization of a simple are, conjectured that any
irreducible continuum could be given a linear ordering.
Moreover, he published a theorem which would provide the
basis for this ordering [133]. When it was pointed out to
him that his method failed for an irreducible continuum
that is also indecomposable, he published a new method
based on a weaker theorem [135, p. 202]. Brouwer also
observed that this theorem was false for an indecomposable
continuum, The most that could be done in this case is to
order the points of each composant [17, pp. 144-145]. Thus,
Brouwer continued (see p. 16) to play the role of critic in
the development of indecomposable continua theory.

In 1927, however, Kuratowski provided a surprising cor-
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ollary to the linear ordering question. Given a continuum
C irreducible between points a and b, Kuratowski proved that
C has a decomposition ﬁ which is "linearly ordered"[71, pp.

225-228].

A decomposition of C is semi-continuous and linear

(terminology is due to R. L. Moore [99]) if C is decomposed
into a single element or else into a disjoint collection of

sets Tx’ Osx ¢1, such that l:{._l,!;l, Xy = X, implies that the

lim sup TX c T, (For a definition of "lim sup", see [44,
NI o n *o

p. 100].)
Kuratowski showed that  has the following properties:
(1) F is semi-continuous and linear, having continua
for the Tx;
o
(2) if £ is any decomposition satisfying (1), then

each '1‘x of &% is either in @ or else is the union

of members of & .,
A complete discussion of Kuratowski's paper would carry us
too far afield, However, we do require one of the theorems
from it, The following lemma will be used in the proof,
Lemma 5.18: (a) Let K be a component of a compact T2 space
S, and let U be any open set containing K., Then U contains
a closed open set V containing K.
(b) Let C be a T, continuum, and let O be an open

proper subset of C, Let K be a component of O, Then we

have (0-0) nX # ¢ [44, p. 47].

Proof: (a) By Lemma 4.15, each component is a quasi-

component, Therefore, K =N ')F,( , where each Fo is
~“¢&
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closed open in S and contains K, Let K <« U, If XK = U, then
K is open and closed, so let K =V, If K #IU, there is an

¢, such that 0 F_ < U, Therefore, U (S-F_ ) > S-U,

°
=< U, i ~«UX,
n

and since S-U is compact, there is a collection {S-FO“:}£“
a n

such that U (s-F,. ) = S-U, Hence, K= N F,. < TU, solet
[ L \ t

o V is both open and closed, so (a) holds.

(b) # # 0 # C and C connected imply that 0-0 #£ d.
Suppose (0-0)NX = #, Then K =« K =€ 0, so by the maximality
of X, X « K, Therefore, K is closed and hence compact.

0-0 is closed in C and hence is compact. Therefore, there
exist two disjoint sets U;, U, open in 0 such that U; 2 0-0,
and U, > K, Thus, U, < O, and K is a component of ﬁz. By

(a), there is a set U3 c U2 that is both closed and open in

jij Us is closed in C, and since U3 < U, and the latter is

2.
open, then Us is open in C., But, @ # Us # C, which contra-
dicts the connectivity of C. Therefore, (0-0)NK #£ ¢.

Theorem 5,19: Let C be a T2 continuum irreducible between

a and b, Then C-P(a,C) is connected.

Proof: We note first that it is no loss of generality
to consider only P(a,C), rather than P(4,C), where d is a
point such that C is not irreducible between d and any other
point of C, For in this case, P(4,C) = C,

Suppose C-P(a,C) = AUB, where (ANB) u (ANnB) = &.
bé C-P(a,C) by the irreducibility of C, so without loss of
generality, we may assume b €éB., Let O = C-A; O is open, and

BNE =@, so Bc 0O, ANO<ANO = AN(C-K) = #, Therefore,
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AND = 2.

By Lemma 5.6, (0-0)N(AUB)=[(AUB)-0]-[(AUB)-0] =
[(a-B) U (B-0)] - [(A-0) U (B-0)] = (AUB) - (AUP) = 4.

Let X be a component of b in 0, If A # @, then 0 # C,
since O = C implies C = C-X, whence X = @, Consequently, O
is a proper open subset, Therefore, K-0 # §, for by Lemma
5.18, (0-0) NK # P, Let peX-0. X = O implies pe 0-0,

Now, 0-0 = C-(AUB) = P(a,C), so pe P(a,C). Therefore,
there exists a proper subcontinuum L containing a, p. Since
b,p are in X, TUL is a continuum joining a, b, By the
irreducibility of ¢, ¢ = KUL, Thus, A = KXUL., But, K< 0
implies ANK < ANO =@, L < P(a,C) implies ANL = ANP(a,C)
and the latter set is empty. Therefore, AN(KUL) = @&,
whence A = ¢. [76, p. 210].

Theorem 5,20: Let C be a T2 continuum irreducible between a
and b, Then C-P(a,C) is either a continuum of condensation
or else a non-closed boundary set whose closure is an
indecomposable continuum such that T-P(a,C) = C-C-C-P(a,C)
[68, p. 239].

Proof: Theorem 5.19 implies c-P(a,C) is connected., If
it is closed in compact C, then it is a continuum, Moreover
T-[C-P(a,C)7] = P(a,C) = C, by Theorem 4,17, Thus, C-P(a,C)
is a continuum of condensation.

If c-P(a,C) is not closed, then the above equation

shows it is a non-closed boundary set. c-C-P(a,C) =
Tnt P(a,C). This last set is a proper subset of P(a,C) = C,

since C-P(a,C) is not closed. Let Q = C-C-P(a,CJ; Q # C.
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C-P(a,C) is a continuum by Theorem 5,19, and contains b.

Therefore, C-C-P(a,C) is connected by Lemma 5.2, and hence

Q= m}' is a continuum,

We claim that Q < P(a,C). If Q = @, the claim is
clearly true. Q # @ implies C # C-P(a,C). a €C-C-P(a,C)
by the irreducibility of C. Then a €Q, Q # C is a continuum
so that Q = P(a,C). Therefore, C-P(a,C) = C-Q, so we have

C-PF(a,C) = C-Q = C-C-G-P(a,C) < C-P(a,C). Thus, G-Q =
C-P(a,C), and so C-P(a,C) = C-C-C-P(a,C).

It only remains to show the indecomposability, Sup-
pose C-P(a,C) = MUN, where M, N are proper subcontinua of
T-P(a,C). We shall show that M-P(a,C) # § # N-P(a,C).

If, say N-P(a,C) = @, then C-P(a,C) < C-N, But this implies
Cc-P(a,C) « C-P(a,C) - N = M, Therefore, C-P(a,C) = M, which
is a contradiction to M # T-P(a,C). The assertion holds.,

If Q = @, then MUN = C=P(a,0) = C. aé€C, so without
loss of generality, aeM. M is a continuum, and M=-P(a,C) #

@, so M = C, This can not hold, for M # C-P(a,C) < C.

If Q # §, then a€Q, as above, c=ﬁum
= QU (MUN), Since C is connected, QN (MUN) # @,

Therefore, QUM = C, so C-Q = M, Since M is closed,
C-Q = M. Thus, C-P(a,C) = M; since M = T-P(a,C), we con-
clude that T-P(a,C) = M., This contradicts M being a proper
subcontinuum,

The above proof is adapted from Kuratowski [76, p.211].

In Chapter 4, we saw that any subset of any proper
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subcontinuum can be removed from a T2 indecomposable con-
tinuum without disconnecting it. We can say more for a
metric indecomposable continuum, We know by Theorem 4,12
that such a set is irreducible between any point and some
other point., It then follows from Theorem 5,19 that if the
composant of any point is removed, the resulting nonempty

set is still connected.







CHAPTER 6
KNASTER'S THESIS

In this chapter we briefly consider more examples of
indecomposable continua that appeared in the early 1920's,
In particular, we shall present two examples constructed by
Knaster, as well as a simplification of one of them, The
second example has a property not shared with any previously
discussed example., Not only is it indecomposable, but also
each of its subcontinua is indecomposable, In today's ter-
minology, such a set is called a hereditarily indecomposable
continuum, although no special name was given to it origi-
nally,

It is surprising enough that indecomposable continua
exist, but it seems truly remarkable that there are heredi-
tarily indecomposable continua, Even more remarkable is
the fact that an example was discovered comparatively early
in the study of indecomposable continua, However, we shall
defer a detailed study of such continua until Chapter 12,
since most of the investigations of hereditarily indecom-
posable continua have been made recently. For the moment,
we present the first construction of a hereditarily indecom-
posable continuum, not only for historical completeness,

but also because we shall need the existence of such con-
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tinua in the next chapter,
Knaster and Kuratowski had asked [62] if such a set

could exist in Ez. In 1922, the answer was shown to be

affirmative, Bronislaw Knaster described the continuum in

his thesis, which he wrote under the direction of Mazur-

kiewicz and Sierpinski [59, p. 248]. We will not give his

construction in detail, since it constitutes the major

portion of his forty page paper.
He called his construction technique the "method of

bands", and he credits Sierpinski with originating the con-

cept in 1918 [59, p. 247]. Essentially, the method of bands

provides a way of constructing a nested sequence of continua
in the plane in which the "nesting" is done in a special

manner. By varying this manner slightly, Knaster first con-

structed a previously unknown example of an ordinary indecom-

posable continuum, Then by placing more restrictions on the

nesting, he constructed the first hereditarily indecompos-

able continuum, Since each continuum in the nested sequence

resembles a band, it is not hard to see where the name of

the method probably originated,
We now show how Knaster used the method of bands to

construct an ordinary indecomposable continuum, Partition

the unit square into twenty-five equal squares. Our first

continuum, or band, Qo, is the union of a certain number of

those small squares, as shown in Figure 6,1 a. The band is

not allowed to intersect itself, hence the rows of buffer

squares. We construct the continuum Q1 as a subset of Qo
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L

Figure 6.2

by partitioning 12 into 54 equal squares and selecting
squares as shown in Figure 6.1 b, Likewise, each continuum

Q,; is formed by partitioning I? into 52(n+1)

equal squares
and selecting a band in Qn'

oo
The desired continuum is Q = g Q . DNote that it is a

n

continuum by Theorem 2.1. Knaster actually proved the
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indecomposability of this continuum using Theorem 4.4, How-
ever, it took ten pages of machinery to give a sufficiently
precise description of the Qn's and Q to allow the theorem
to be used.

Knaster later gave a much simpler description of his
indecomposable continuum in Kuratowski's paper "Théorie des
continus irréductibles entre deux points I", the same paper
which presented Knaster's simplification of Brouwer's
example [69, p. 216]. We now give the new construction,
which we will call Knaster's second semi-circle example.

Let E be the set of numbers of the segment [0,1] which
can be written in base five without the use of the digits 1
and 3, Let E, (n70) be the set of points e of E such that
2/(5"*1) g e ¢1/(5%). Tet F, be the set of points e such
that 1-e belongs to En'

For a given n, draw semi-circles below the x-axis
centered at (7/10)5™™ to each point of the set E . ILike-
wise, draw semi-circles above the x-axis centered at the
points 1 - (7/10)5™" to each point of the set F . The set
formed by the union of these semi-circles for all non-
negative n is the desired indecomposable continuum [69, p.
216], See Figure 6.3, p. 83.

Knaster does not give a proof of the indecomposability
of this continuum, but it could be obtained by modifying
the proof given for Knaster's first semi-circle example

(p. 53).

There is a major difference between these two semi-







Figure 6.3

circle examples. In order to describe it, we need another
definition., A point p is accessible from the set A if there
exists a continuum C such that p€C < A U{p}, and C # (p}.
The first example has only one composant (the one containing
(0,0) )containing points accessible from the complement of
the set, while the second has two such composants (the one
containing (0,0), and the one containing (1,0) ).

Knaster notes [59, p. 271] that Vietoris had independ-
ently constructed the example which Knaster had described
by the method of bands. Vietoris' example appeared near
the end of his thesis (Vienna) in 1920, He used it as an
example of a continuum irreducible between points a and b
which contains no connected subset irreducible between a
and b [120],

In his thesis, Knaster also constructed a type of

indecomposable continuum having the property that each of
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its subcontinua contains an indecomposable continuum, Since
the construction of this continuum is very similar to that
of his hereditary example, we do not include it.

We turn now to his hereditarily indecomposable con-
tinuum, The basic technique of construction is the same as
that discussed on pp. 79-82. The essential difference bet-
ween the two constructions lies in how the ad jacent squares
making up each Qn are determined from those formed by
rartitioning Qn-l'

Partition the unit square into twenty-five equal
squares, and choose Qo as before, Partition I2 into 54

equal squares, and select a band Q1 < QO, as shown:

Q, = Qp is shown in Figure 6.4, p. 85. The desired

continuum is Q = N Q.. Since this construction is a special
n







[
\ \\//f;{ig

B
I

\,
L-—— |






86
case of the construction of the first example in his thesis,
Knaster did not have to prove indecomposability again.
He established the hereditariness of this continuum by
applying Theorem 4.4 to each subcontinuum, In this case,
the major difficulty also lies in giving a sufficiently
precise description of the set to apply the theorem, It
took him twelve pages to set up the notation to describe
the Qn's and the Q's of his examples.

We have seen that Knaster was able to describe two
ordinary indecomposable continua in terms of Cantor sets
and semi-circles, There is no hope that such a simpli-
fication can be given for the hereditarily indecomposable
continuum, since the arcs of the semi-circles are decom—
posable subcontinua,

We shall discuss hereditarily indecomposable continua
in great detail in Chapter 12, At that time we shall also
give a precise description of an example of a hereditarily
indecomposable continuum which is homeomorphic to Knaster's.,
The more recent description and construction techniques are

not so cumbersome as Knaster's.







CHAPTER 7

EXISTENCE OF INDECOMPOSABLE CONTINUA

In previous chapters, we have presented several exam-
ples of indecomposable continua in E2 and many theorems
dealing with the properties of metric and non-metric
indecomposable continua., This chapter is devoted to showing
several existence theorems about these continua,

First, we shall prove Mazurkiewicz' +theorem which
Says that every compact metric space of dimension greater
than one contains an indecomposable continuum, In Chapter
2, we shall discuss Bing's result that there exist hered—
tarily indecomposable continua of all dimensions and the
elated result of J. L. Kelley. Second, we shall show that
on-metric indecomposable continua exist. This will be
one by an example, rather than by a general existence theo-
em, The last part of the chapter will be used to discuss
he question of how frequently indecomposable continua
cecur in 12.

Before establishing Mazurkiewicz' result, we summarize
he needed definitions and theorems from general topology.
efinition: Let X, Y be topological spaces, and let f, g be
1y two continuous functions from X to Y. The functions

re homotopic if there exists a continuous § : XxI—>Y such

87
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that ¥ (x,0) = f(x), and 2 (x,1) = g(x), for all xeX. f
is nullhomotopic if it is homotopic to a constant map,
Definition: Let f, g, X, Y be as above, and let A = X. Then
f, g are homotopic relative to A if there exists a con-
tinuous F : XxI—Y such that &(x,0) = f£(x), & (x,1) =

2(x), and & (a,t) = f(a) = g(a), for all xeX, aeA, teT.
Definition: Let f: R—>W" be a continuous surjection, where
" denotes a homeomorph of I®, If every continuous mapping
5: R —WE which is homotopic to f relative to f-l[Fr(Wn)]
satisfies g(R) = W*, then f is called essential, If f is

10t essential, then it is inessential,

The above terminology follows Alexandroff's "Dimension-

heorie" [3] and Nagata's Modern Dimension Theory [103].

emma 7,1: A continuous surjection f: R—>B", where B" =
:x(—Enl ]xlél} is essential iff every continuous mapping
: R~»B" which coincides with £ on £~1(S™"1) satisfies
(R) = B,

Proof: If f is essential, the conclusion follows at
nce, Conversely, if the condition holds, we only need to
rove that f is homotopic to g relative to f'l(Sn'l). The
omotopy given by & (x,t) = t- g(x) + (1-t) * £(x) estab-
ishes this.
emma_7,2: Let X be normal and A © X closed, with f: A—>s"
ontinuous, Then there exists a neighborhood U o A over
hich f can be extended relative to S™.

Proof: See [28, p. 151] for a proof of this corollary

> Tietze's extension theorem,
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emna 7.3: (Borsuk) Let X be a compact metric space, and let
< X be closed. Let £, g: D5 pe homotopic., If f has
n extension F: X— Sn, then so does g, G: X—)Sn, and G
an be chosen so that F and G are homotopic,

Proof: TLet P be the homotopy of f and g. Define the
P & ¢ Xx{0} U DxI 5™ by B (x,0) = F(x), Z(a,t) = P(a,t).
> extend & to all of XxI. By Lemma 7.2, # has an exten-
Lon i‘ over some neighborhood U > (Xx{0} U DxI). Since T
5 compact, there exists a neighborhood V > B such that

I = U [28, p, 228]. Since B and X-V are disjoint closed

ts, there exists a continuous function f :X =3I, say

i d(x, X-V = e
(x) = ETET’SVS'W%W , such that £ (B) = 1 and f(X V)

0. Then ¥ (x,t) = _%(x,t . ‘f(x)) is the required homotopy.
tting G(x) = ¥ (x,1) completes the proof.

There are also less stringent conditions on X under
ich the lemma holds; for our purposes, we only need it as
ated.  We now present the first of Mazurkiewicz' lemmas,
ma 7.4: If f is an essential transformation from a com-
>t metric space A onto B2Y then f: A; = f'l(sl)—)s1 is
b nullhomotopic [95, p. 327].

Proof: Suppose flA :A1~~>S1 is nullhomotopic, Then by
!

. il
ma 7,3, fm can be extended to a continuous F: A—9S
! Ay A
ich is also nullhomotopic). Then F(A) = S~ # B, so by

ma 7.1, f is inessential.

1
ma 7.5: Let X be any space, and let f: X—»S~ be con~-

— (2

uous. If f(X) # Sl, then f is nullhomotopic.
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? 1 :
Proof: Choose S,€ 87=f(X), and define g: x>l by g(x)

= =8 .

o
t . -t) R
% (x,1) i i I l_t - 24 ;‘ j s the required

homotopy.
Corollary 7.6: If f is an essential transformation from a
compact metric space A onto B2, then Ay = f'l(sl) contains
a component K such that f is anullhomotopic transformation
of X into Sl, and consequently, f(K) = st,

Proof: Suppose that for every component K < A1Y f,K is
nullhomotopic, (We now follow a proof of Eilenberg [29, p.
164].) There exists a continuous @ : KxI-%Sl such that
E(x,0) = £), (k) and B (x,1) = s_esl,

Let B = (Alx{O}) U (KxI) u (Alx(l)) < AyxI. Set

A

2 (x,0) = £(x), %(x,l) = s,, for all xeA,, and é‘(x,’c) =
@ (x,t), for all x €K, and t €I, There exists an open set
U > B such that % can be extended to U, As before, there
is a neighborhood V > X, such that VxI = U, Since X is a
component of a compact metric space, it is a quasi-component
(see p, 48). Consequently, there is a closed open set Vi

2
in Ay such that K €V,  V, from which VixI € U, Let

— A
§,= V]'_xlﬂsl be the extension of & on U restricted to

= g i
VixI. E\ establishes a nullhomotopy of flv':vl_’s o

Carry out this process for all components K to get an

open covering {V;} of the compact space Al' Then there is

T n
AN open subcover {Va(_}_ of Al' Moreover, we may choose
vt

these sets to be pairwise disjoint, since each of the
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finitely many sets is both open and closed., Since f, s
v,
LR

' ——
V‘,("._)S1 is nullhomotopic by §°‘i s we define J tA xI - st

S—

by ¥ (x,t) = %u‘ (x,T), for the unique (. such that x e
1Y

V.'(c . ¥ 1is clearly continuous, ¢ (x,0) = £(x), for all
Xehy, and ¥ (x,1)¢ (s .,C}‘:'. ¥ (x,1) is not a surjection,
so by Lemma 7,5, it is nullhomotopic, say by A .

Therefore, flA :Al—)S1 is nullhomotopic by

A ¥ (x,2t) 0¢t ¢1/2
¥ Gt - A(x, 2t=1) 1/2 ¢4 21,

But, f'“‘ :Al-—> S1 being nullhomotopic implies, by Lemma
T.4, that f: A—>B2 is inessential, Thus, the result holds.
Finally, fm‘ being not nullhomotopic implies f(X) = Sl, by
Lemma 7,5,
Lemma 7,7: Let f be an essential transformation from A onto
BZ. Let J < B2 be a simple closed curve, with H denoting

the one of the two domains determined by J in the plane that

lies in B2 Then, f is an essential transformation from

f'1(TT) onto H = HUJ [95, p. 328].

Proof: H is homeomorphic to B2. For convenience, let D
denote f'l(H). Suppose that f;  is an inessential transfor-
mation from D onto H, Then there is a homotopy $:DxI—FH
such that ¢ (x,0) = f(x), and & (x,1) is, say g(x), where
g(x) #£ a, for all xeD and some a €¢H, and such that &
fixes f-l(J). We extend f{, to a function F on all A by:

f(x) if x¢&=D
F(x) =
{g(x) if x e D,
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If xeDNE-D, then xe £ 1(J): DA = £~1(W) na-r-L(m)
implies f(DNZ=D) = Hn f(m) < ﬁnmﬁ_))by con-
tinuity of f. The last set is contained in the set ﬁn?_—%,
which is J, Therefore, f(x) = g(x) for all xe DNE=D, and
it follows that F is continuous,

F is homotopic to f relative to £~1(sl) by
$ (x,1t) if x€éD
? (x,t) =

f(x) if xe E=D.

But, since g(x) # a, for all x €D by construction, and since
f":\?o (x) # a, for all x € =D by definition of inverse
image, we have that F(X) # BZ. Therefore, f is inessential,
Corollary 7.8: If f is an essential transformation from A

2 a simple closed curve, then A contains

onto B%, with J = B
a continuum K such that f(K) = J,

Proof: By Lemma 7.7, f1p : D —F is essential. ILet
q): T‘T->B2 be a homeomorphism. We shall show that Qof‘D
is an essential transformation of D onto B2.

Let g be any continuous function which is homotopic,
say by & , to Peof), , relative to (Fo £y, »Lsty = £,
It only remains to show that g(D) = B2. But, ?-‘?f :DxI—H
shows that f,o 1is homotopic to ?“o g relative to f'l(J),
and since f), is essential, P-Io g(D) = H. Therefore,

g(d) = Q(A) = 82

By Corollary 7.6, there exists a component (which is,
of course, a continuum) K < (‘?nfm )_l(sl) such that
‘Paflo (K) = st. Therefore, £(K) = ‘P-I(Sl) =J.

Before we can establish Mazurkiewicz' first major
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result (Theorem 7.9), we need some results from set-theo-
retic topology.
Definition: Let {XQ} be a sequence of subsets of a topo-
logical space S, The limit inferior of { xn} is defined to

be the set lim inf X = {xé SI for all nbds N(x), NNX_ # ¢,
n -> oo n n

for all but a finite number of X '%}. Lim sup X =~{xé S|
n n>e D

for all nbds N(x), NNX # @, for an infinite number of xn}.
If these two sets are equal, then this set is denoted by

lim X , and the sequence of sets converges.,
e I b

References to this concept may be found in [44, p. 100]

or [75, p. 335]. It is clear that lim inf X lim sup X_.
nyeo R "o n

For the remainder of the discussion, S denotes a compact
metric space.

Lemma A: p €1lim sup Xn iff there exists a sequence of points
- no »

{pnk} such that n <n 4, fork=1,2, ..., p=

lim p_, and p_ ¢ A_ .

Ay P "k e g

Proof: Suppose that such a subsequence exists, Let U

. +
be a neighborhood of p., Then there exists Né 2" such that

n, 7N implies pnke U. Consequently, U ﬂXnk £ @, for an

infinite number of Xn's. Therefore, p)é%igciyp Xn‘
Conversely, if p 613T$%Sp X, then B(p, l/m)ﬂXn )

for an infinite number of X 's, say Xnk. Choose a Pn, in

each intersection. Then d(P,Pnk) <1/m implies {pnk}"p'
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Lemma B: Let f be continuous on S, If {Xn} converges, then
f(lim X = 1lim (X ).
(n-)- n) s ( n)
Proof: We need only show
f(}‘lg 'inf Xn) (= 1’}5:nf f(Xn) (= lzlLlug’os.up f(Xn) (= f(lﬁl_r’n,sup Xn)‘
To establish the first inclusion, note that y € £(lim inf Xn)
N>
implies that there exists an x 61}3Linf X, such that f(x) =
y. Let V be any neighborhood of y. f'l(V) is a neighbor-
hood of x, and therefore, £ 1(V) NX, # ¢ for all but a
finite number of X, 's. Consequently, V(ﬁf(xn) # @ for all
but a finite number of Xn's.
The second inclusion is trivial., To prove the third

inclusion, note by Lemma A that pé 13;171’ sup f(Xn) implies
-3

i i X . Th
there exists a sequence {pnk }_,p, with pnke £( nk) us,
there exist q, e X, such that :E'(qn ) = p, . Since S is a

k k k k
compact metric space, {‘qn } has a convergent subsequence,
k

qp — q €S, Therefore, q¢ lim sup Xn' and since f is
k1 n- oo

continuous, we have that f(an ) > f£(q), which must be p,
i

since f . Hence pe€ f(lim sup X ).
e (an) P p im sup X,
Lemma C: Every sequence of sets in S has a convergent sub-

sequence of sets.
Proof: See Hocking and Young [44, p. 102].

. . : then 1lim X = 1dm. X
Lemma D: If }\{)m-xn exists, nse Ny are D
L4
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Proof: See Kuratowski [75, p. 339],
Theorem 7.9: Let f be an essential transformation from A

onto B2, and let ¢ = B2

be a continuum, Then there exists
a continuum L = A such that f(L) = ¢ [95, p. 328].
Proof: We first indicate a proof that there exists a

sequence of simple closed curves Jn < B2 such that 1im Jn =

C. For each n %1, cover C by {B(c,l/n)}Cé g+ By compact-
“m
ness of C, there is a subcover 4’:13(::(i n),l/n)}, "' . For
’ [

each n, construct a simple closed curve Mn passing through

the points C(i,n)" M, has a convergent subsequence {Mnk}
,

by Lemma C, We claim that 1im M = C. It suffices to show
e By

that lim inf M. < C < 1im sup M_ . From x é1lim inf Lo
n9eo n, 15 co0 ny nseo e
it follows that x is a limit point of C, and hence is in C.

If y¢C, then for all n, there exist c(i,nk)e C such that
d(y,c(i’nk))<1/nk. B(y,1/ny) ank # @, and it follows that

every neighborhood of y meets infinitely many of the Xn's.
We now prove the theorem, By Corollary 7.8, there is a
continuum K, < A such that f(Kn) =J, forn=1,2,....

X so let lim X = L.
{Kn} has a convergent subsequence{ nify noe Dj

L <A and L is easily seen to be closed, and hence compact.

L is nonempty and by a theorem in Hocking and Young [44, p.

= lim Jn =

i = 1lim f(K
102], L is connected., Thus, f(L) AJ;ILI. ( ni) L

1lim Jn = @.

N-oo




1
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We are now ready to establish the principal result of
Mazurkiewicz' paper.

Theorem 7,10: Every compact metric space of dimension

greater than one contains an indecomposable continuum [95,
B 328].

Proof: For a definition and discussion of dimension,
see Hurewicz and Wallman [45] or Nagata [103]. Alexandroff
established the following result [3, p. 170], the proof of
which can also be found in [103, p. 59]. "A metric space A
has dimension less than or equal to one iff every continuous
mapping of A into B2 is inessential." Therefore, dim A 21
implies there exists a continuous function f: A~—-)B2 that
is essential,

Let Co be an indecomposable continuum contained in Bz,
say Knaster's first semi-circle example, shrunk sufficiently
to be contained in BZ. By Theorem 7.9, A contains a con-
tinuum L, such that f(Lo) = C,. Knaster and Mazurkiewicz
showed [65, P. 87] that Lo contains as indecomposable con-
tinuum L, such that f(Ll) = £(L,) = C,. The proof is as
follows, Using Zorn's lemma, it is easy to show that there
is a subcontinuum K of LO, irreducible with respect to the
property that f(X) = f(Lo)' If X = AUB, where A, B are
proper subcontinua, then we have L, = £(K) = £(A) UE(B).
f£(A), £(B) are subcontinua, but by the minimality of X,
neither is all of L,, whence L, is decomposable, This is a
contradiction, so the result holds, with I, = K.

This concludes Mazurkiewicz' two page paper. We shall
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consider related questions for hereditarily indecomposable
continua in Chapter 12,

The existence question for non-metric indecomposable
continua seems to be more difficult, This is not too sur-
prising in view of the fact that the only major theorems we
have presented thus far that deal with this case are 4.4
and 5,1; the rest deal with the metric case. However, in
1968, Bellamy constructed an example of a non-metric
indecomposable continuum in his thesis [6]. We again need
some preliminary definitions,

A topological space X is completely regular if for each

péX and closed set A not containing p, there exists a con-
tinuous function P: X—>I such that P (p) = 1, and P(a) = 0
for all a€A [28, p. 153]. Let IX denote the set of all

X
continuous functions f: X—>I, and let {If(f'éI } be a
am X 7’
family of unit intervals indexed by IX. Let P* = {ifl

f'GIX}; its points are denoted {tf}[28, p. 155].
Lemma 7,11: If X is a completely regular T2 space, then it

X . .
can be embedded in PX, That is, T : X—>P" given by o (x) =

X
{f(x)f} is a homeomorphism of X and f (X) = P,

Proof: See [28, p. 155].

A compactification of a space X is a pair (X,h), where

X is a compact T, space, and h is a homeomorphism of X onto

a dense subset of X. The Stone-éech compactification of X

is (B (x),f), where B (X) = PT).

Lemma 7,12: For each compact space Y and each continuous




ha
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f: X—>Y, there is a unique continuous extension F:Q(X)—-)Y
(f =FeP), Moreover, any other compactification of X
having this property is homeomorphic to B ).

Proof: See [28, p.243].

We now follow Bellamy, with only slight changes in
notation. Let A = [1,00), and A = @ (A)-A. Actually,

T B (a)- P(n), but we identify A with its image in (3 (A).
Lemma 7.13: Let U be an open set which meets A*. Then
UUA is unbounded [6, p.30].

Proof: Suppose UUA is not bounded., Then UUA < [1,x],
for some x €A, Thus, UN (B (4)-[1,x]) is a nonempty (since
B#Un(p(A)-A) cUn(P(a)-[1,x]) open subset of B (A) |
which misses A, This is impossible, since A is dense in
Beay.

Lemma 7,14: A* is a T2 continuum,

Proof: For all nw#l, let A = [n, ), and set P, =
0 .
A ua® Then A¥ = n P_. But, P. = A (closure in 3 (4)),
n & 0! n n

so that each P oisal, continuum., The intersection is
S "
monotone, so by Theorem 2.1, A 1is a T2 continuum,
Note that the above two lemmas hold for any compact-

ification of A, as Bellamy showed.

Theorem 7,15: A* is a non-metrizable indecomposable con-

tinuum,
Proof: By Lemma 7.14, A* is a continuum, Suppose that

*
A* = XUY, where X, Y are proper subcontinua of A, We

shall show that X is not connected.
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Let x €X-Y, ye Y-X, ILet U, V be open sets in (3 (4)

such that;1) xeU, yeV, and 2) TnV =TnYy =VnX = 4.

Choose sequences {pi}:’, {qi}_", , and {ri}:: from A as
s or

follows: DLet P, € UNA, Choose 7 Py such that 9 € Vs

this is possible since by Lemma 7.13, VN A is unbounded.
Next, choose r, > q; such that (ql,rl) < V; this can be done
since V is open and hence qllies in some open interval in V,

Suppose Pyr Qe Ty have been choosen for k¢ n such
that for each k:

1) PkéU;
2) the interval (qk,rk) c Vv,
3) PeQ eTy, and if ke n-1, then ry ey ;.

Then, since UNA is unbounded, there exists a 9,7 P, such

that qné V. Since V is open, T, may be chosen greater than

q, such that (qn,rn) c V.

o0
[ -]
The se ces ot r} are all unbounded,
quen {pn}‘ ’ {qn}. ’ {n ' unae

For if not, they would have a common supremum which would

have to belong to TNV, a contradiction.

Define f: A —»I as follows:

f(¢) = O if t<p1
0 if i is odd
1 1 if i is even
1/3 if i is odd
f(ql) =
2/3 if i is even
1/3 if i is even
f(ri) =
2/3 if i is odd
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Now extend f linearly to each of the intervals [pi,qi],

[qi,ri], and [ri,pi+l]. Then f is a continuous function

from A to I. By Lemma 7.12, f has a continuous extension
F:Q(A)—)I. F'l(o) is a closed subset of @ (4) containing

3 . . .
{p2k+l}; , and hence containing all limit points of the

sequence in @ (A)., Therefore, F'l(o)r1A* # §. But, since
the sequence lies in U, any 1limit point of it is an element
of U, and hence does not lie in Y, Therefore, F-l(O)I1X #
#, and thus O € F(X). Likewise, 1 ¢ F(X).

But, let a eF 1(1/3,2/3). a is a limit point of
f'1(1/3,2/3) = ?D (qk,rk) c V. Therefore, a ¢V, and hence
51¢X. Consequently, F(X)n (1/3,2/3) = #. Then, since F is
continuous and takes on the values O and 1, its domain can
not be connected, since its range is not.

The proof that A*is non-metrizable follows from a
corollary [6, p. 40} which says that A" has 2° points. Thus
A* can't be embedded in the Hilbert cube, as it could be if
it were metrizable., The proof that A* has 2° points is
rather long and will not be presented.

We conclude the chapter by briefly mentioning some
results dealing with a different type of existence question,
Namely, how frequently do indecomposable continua occur in
the space of all continua of a given space? This appears
to be a rather difficult question to answer. But the sur-
Prising result is that "most" continua in 12 are not only
indecomposable, but are also hereditarily indecomposable.

In this context, "most" means that the set of hereditarily
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indecomposable continua in 12 constitute a dense Gg set in
the space of all continua of 12, when the latter set is
given the Hausdorff (see [76, p. 47]) metric [94, pp. 151-
159]). In Chapter 12, we shall see that Bing established a
similar result for an even more singular type of continuum
(the pseudo-arc) in any Euclidean or Hilbert space.
Kuratowski also notes [76, p. 202] that in any compact
metric space, the set of indecomposable or hereditarily
indecomposable continua are a Gg set. There does not
appear to be much known about the frequency of occurrence of
indecomposable continua in spaces other than Euclidean or
Hilbert,

We shall content ourselves with an outline of Mazur-
kiewicz' proof that the hereditarily indecomposable con-

tinua in I2

are a dense Gg set. The nine pages of details
are not difficult and the interested reader may consult the
original paper for them,

He defined a sequence of sets of continua in 12,{5;}
2

L
]
as follows: f;h is the set of all continua C in I® such
that C o K, where K is a subcontinuum such that X = K, UK,,
and X,, K, are continua with the property that sup {d(K p)}

1 2 Pe Ky 1’
»1l/n and sup {d(Kz,q)}e;l/n. The major portion of his

9 €K,

paper was devoted to showing that the [\,'s are closed
nowhere dense sets, Letting ﬁ; denote the set of hered-
itarily indecomposable continua in 12, r‘ the set of all

2

continua in I, and f: the one point continua, it follows

that r; = [- ([: N (j [.‘,‘q), Thus, the result holds.
1







CHAPTER 8
THE COMMON BOUNDARY QUESTION

We have considered various examples and properties of
indecomposable continua in the preceding chapters, but we
have seen no application of them, except in their original
role of being pathological examples, In this chapter and
in Chapter 10, we shall present some other situations in
which indecomposable continua arise.

The topic we are going to discuss in this chapter is

2 and E3 which are common bound-

the structure of sets in E
aries to three or more domains, which we recall is the
problem that Brouwer was considering when he discovered
indecomposable continua, In the plane, such common bound-
aries must be indecomposable or else the union of two
indecomposable continua, It seems remarkable that by
shifting our setting to E3, nothing of the sort is true,
In fact, there is a set in E3 which 1s the common boundary
of three domains and is not only decomposable but is also
an absolute neighborhood retract.

Kuratowski and Knaster did the above mentioned work
on the planar case. Most of the chapter will be devoted %o

their results, but we shall also mention Eilenberg's work

on the common boundary question for SZ, various papers on
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prime end theory, and Burgess' thesis, which makes all of
the above planar results into special cases of a more
general theorem,
In 1924, Kuratowski wrote a paper on irreducible cuts
of the plane (to be defined on p. 104) in which he showed

2 into three or more domains

that if a compact set cuts E
and if it is the boundary of each of them, then the set is
either an indecomposable continuum or the union of two
indecomposable continua [70, p. 138], In 1928, he was able
to establish the same conclusion while only requiring the
set in question to be the boundary of at least three domains,
There are no restrictions on its relationships to any other
domains it may determine in E% [72, p. 36].
In 1925, Knaster gave examples Bn’ Cn which cut E2
irreducibly into n domains such that each B is indecompos-
able and each Cn is the union of two indecomposable continua,
Examples of the first type were already available from the
work of Brouwer and Wada. But, the existence of the second
class of examples was not previously known, Thus, the
"either-or" conclusion to Kuratowski's theorems can not be
improved, since there are common boundaries of both types,
Starting in the early 1920's, many papers dealt with
the idea of cutting the plane., In particular, several
Papers we will present in this chapter were written using
this terminology. More recently, the idea of a set sepa-

rating another set has become quite widely used. We shall

show that for closed subsets of En, the concepts agree., We
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first define the necessary terminology.
Definition: Let X be a topological space. The subset A ¢ X
cuts X if X-A is not a semi-continuum. A separates X if X-A
is not connected.

If A cuts X, we may express X-A as a disjoint union of
semi-continua which do not meet A. (The term used in the
older literature for these semi-continua is "regions com-
posants,") If A separates X, X-A is the usual disjoint
union of components, and if A is closed, recall that these
sets are called the complementary domains of A (see p, 8 ).

Definition: A cuts (respectively separates) X between p, q

if p, q lie in different semi-continua (respectively com-
ponents) of X-A,

It is clear that if A separates X, then it cuts X, To
see that the converse is not necessarily true unless more
is assumed about X, A, consider the space

X = {(x,y){ y = sin M/x, O(xel} U {(O,y)‘lylsl}
and take A = {(0,0)}. Then A cuts X between (0,1) and
(0,-1), but A certainly does not separate X. However, we
do have the following
Lemma 8,1: If A < ER is closed, then A separates EY iff A
cuts ET,

Proof: If A separates, then it cuts., If A does not
separate E", then E"-A is open and connected., By [28, p.
116], ER-A is path connected, which in our terminology means
there is a continuum disjoint from A joining any pair of

points in EP-A. Therefore, A does not cut E".
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Thus, we may use the phrases "A cuts B" and "A separates
B" interchangeably, whenever A is closed and B is a con-
nected open subset of E",
Lemma 8.2: Let A be a closed set in E". Then:
(a) each complementary domain of A is a path connected
open set;
(b) the boundary of each complimentary domain of A is
contained in Aj;
(c) if A separates En, but no proper closed subset
does, then the boundary of each complementary
domain of A is exactly A;
(d) if A is compact, then A has exactly one unbounded
complementary domain,
Proof: See [28, p. 356], and note that Dugundji's
hypothesis of compactness is not required for a - c.
Because the separators in (¢) are quite important, they
are given a special name below,
Definition: If a closed set A cuts E" between a, b and if
no proper closed subset does, then A is said to cut ER

irreducibly between a, b, If A cuts o irreducibly bet-

ween all points that it cuts between, then A is a completely

irreducible cut of En.

Using a Zorn's lemma argument, it is easy to see that
any closed set which cuts E2 between p, @ contains a closed
subset which cuts E2 irreducibly between p, gq. However, if
such a subset is to be completely irreducible, then the

original cut must determine only finitely many domains [70,
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p. 135]. Moreover, a cut is itself completely irreducible
iff it is the common boundary to all its complementary
domains (see the Corollary to Theorem 8.6). The following
is due to Mazurkiewicz.,
Lemma 8.3: Let R be a domain and let S be a complementary

°-R. Then Fr(s) is an irreducible cut of B2

domain of E
between all points a, b, where a€ R, bé S [90, p. 193].

Proof: It is clear that the boundary cuts B° between
such points a, b, for otherwise we could disconnect any
continuum joining a,b.

Fr(S) = Fr(R) holds, for by Lemma 8.2 (c), Fr(S) =R,
and always Fr(S) = S < Eﬁ:ﬁ. Then Fr(S) < ﬁ,]gﬁ:; = Fr(R).
Let A be any closed proper subset of Fr(S), and choose
p €Fr(S)-A < Fr(R). There must be points xéR, y €S in the
neighborhood B(p,[d(p,A)]/2). By Lemma 8,2(a), we can join
a to x by a path P, lying in § (and hence disjoint from A),
and we can join b to y by a path P, lying in R. The line
segment S joining a and y lies in the ball, so it too is
disjoint from A, P USUP, is therefore a continuum joining
a and b which does not meet A, Thus, A does not separate.

We shall also have need of the following result, first
proved by L, E, J. Brouwer in 1910.

Theorem 8,4: (Phragmen-Brouwer property) If the boundary of

—_— e

a complementary domain of a continuum is compact, then it

is a continuum,
Proof: See [102, p. 176], or [ 127, p. 106].

For the more general case in which the boundary is not
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assumed to be compact, see Wilder [130, p, 48],

Theorem 8.5: If the compact set C cuts E2 irreducibly bet-

ween a and b, then it is connected [70, p. 134].

Proof: Let R be the complementary domain of C con-
taining a, Let S be the complementary domain of R « RUC
(by Lemma 8.2 (b)) which contains b.

By Lemma 8.3, Fr(S) = Fr(R), and by Lemma 8,2(b), the
latter is in C. By Lemma 8,3, Fr(S) is an irreducible cut,
as is C., Therefore, C = Fr(S). By Theorem 8.4, Fr(S) is
connected; hence C is connected.

Theorem 8.6: In order that a closed set C should be the
common boundary of two domains Dl’ D2 in E2, it is necessary
and sufficient that C be an irreducible cut of E2 between a,
b for all a €D;, beD, (70, p. 133].

Proof: If C is an irreducible cut, then by Lemma 8.2
(e), it is the common boundary of Dl' D2.

Suppose C = Fr(Dl) = Fr(Dz). ¢ cuts EZ between all
points of D1 and DZ’ since any connected set containing
such a pair of points must meet the boundary, C. We shall
now show its irreducibility.

4 2 = e
Let D, be the complementary domain of E -D1 containing

3
b. Consequently, b ED3 nD2, and we shall show D3 = D2.
From Lemma 8.3, Fr(DB) < Fr(Dl) = Fr(D,). Since all points
of D, can be joined to b by a continuum (path) not meeting
FI‘(DZ), the same can be done while missing Fr(D3). Since
D, is connected and D, N Dy # @, we have D, = Ds.

On the other hand, since D3 is a complementary domain
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9 =
of E =Dy, D3n D, = @$. Thus, Dy ﬂFr(Dl) = @, and hence
Dg ﬂFr(Dz) = @. Therefore, all points of Dy can be joined
to b by a continuum disjoint from Fr(Dz) (Lemma 8.2(a)),

e
D, = D3 implies Fr(Dz) = Fr(D3) = C, so by Lemma 8,3,

Hence D3 < D]

C cuts E2 irreducibly between a and b,

As a corollary, note that C is a completely irreducible
cut of E2 iff it is the common boundary of all its comple-
mentary domains, We shall also have need of
Theorem 8.7: (Janiszewski)

(2) If A and B are continua such that ANB is discon-

nected, then A UB separates the plane.

(b) If A and B are compact sets, neither of which cuts

2 between p, q and if ANB is a continuum (perhaps

E
empty), then A UB does not cut E2 between P, Q.

Proof: See [49, p. 192], or [102, pp 175 and 173].

We note in passing that Kuratowski has shown that (a)
and (b) are equivalent in any locally connected continuum
[73, p. 311].

Lemma 8,8: Let K be a subcontinuum of a compact set C which
cuts E2 irreducibly between p, q. Then C-K is connected
(70, p. 136].

Proof: The result is clear if X = § or K = C, So
suppose # # K # C. If C-K is disconnected, then by Theorems
8.5 and 4,2, C-K = MUN, where M, N are nonempty, disjoint,
closed subsets of C-K., Moreover, KUM and KUN are proper

Subcontinua of C., By the irreducibility of C, neither cuts
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E2 between P, 9. So by Theorem 8,7 (b), (KUM) U (KUN) = C
does not cut either, This is a contradiction, Therefore,
C-K is connected.
Lemma 8.9: If a decomposable continuum C is the common
boundary of two domains in Ez. then C = AUB, where A, B
are proper subcontinua such that G-A = B, and C-B = A.

Proof: By Theorem 4.4, C contains a proper subcon-
tinuum K that is not nowhere dense: @ # C-K # C. Let A =
CX, B = C-K, Then

T=B = 0-C-& = C-C-0-K,

which is T=K = A by Lemma 5.15.

By Theorem 8.6, C is an irreducible cut of E2 between
all pairs of points a, b, for a and b in different comple-
mentary domains of C., Therefore, by Lemma 8.8, A is a con-
tinuum and hence so is B, It follows from the choice of K
that A is a proper subcontinuum of C. A # ¢ implies B # C,
and A # C implies B # §.

Finally, C = AUB, for

AUB = C-RUT=E = (C-A) U (C-T-K) = T-Fr(X) = C.

We have now established the foundation needed to prove
both of Kuratowski's common boundary theorems. To continue
with the proof of the first such theorem, we prove
Lemma 8,10: If C is a compact set which is a completely
irreducible cut of Ez, and if X is a non-degenerate proper
subcontinuum of C that is not nowhere dense in C, then
KNT=X is disconnected and G-X is a continuum irreducible

between all pairs of points belonging to different com-
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ponents of KNT-K [70, p. 136].

Proof: By Lemma 8.8, C-K is connected, Since O-K # C,
C#K, and KUC-K = C, it follows from Theorem 8,7 (b) that
KNT=K is disconnected.

Let a, b be in different components of this set, and
suppose that L is a continuum containing a, b and contained
in C=K. If LNK is connected, then {a,b} = KNL < KNT-K
implies that a, b are in the same component., Thus, LNK
must be disconnected, whence Theorem 8.7 (a) implies KUL
cuts E2, By the irreducibility of C, C = KUL, Then C-Kc1l
so that L = C-K. Therefore, C-K is an irreducible continuum,
Lemma 8,11: (Straszewicz) If A, B are compact sets which do
not cut E2 and if AUB cuts E2 into more than two domains,
then ANB contains at least three components.

Proof: See [112] or [76, p. 551]. For the case where
AUB cuts E° into more than n domains, see [113, pp. 159-
187]. Straszewicz showed in the latter paper that if the
union of two continua, neither of which cuts the plane, and
which have n %1 components in their intersection, then the
union cuts the plane into n domains, He also showed that
"n" can be replaced by "countably infinite" [113, 174].
Theorem 8.12: (Kuratowski's first common boundary theorem)
A compact set C which is a completely irreducible cut of E2
and which determines at least three domains is either an
indecomposable continuum or else the union of two indecom-
posable continua [70, p.138].

Proof: By Theorem 8.5, C is a continuum, Suppose it
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is decomposable. By Lemma 8,9, C = L UM, where L, M are
proper subcontinua of C such that C-T = M and T-W = L. L
is not nowhere dense in C. PFor if it were, then C = G=L = M
implies § = T-W = I, contradicting Lemma 8,9,

LNC-T =LNM =M NC-M. We apply Lemma 8,10 to both L
and M to conclude that LNM is not connected and that L and
M are continua irreducible between all pairs of points
belonging to different components of LNM, By the irreduc-
ibility of C, L and M do not cut B2, so by Lemma 8.11, LN
must contain at least three components, By the first part
of this proof, L and M are each irreducible continua between
all pairs of points in different components of LNM, There-
fore, by Theorem 4.11, L and M are indecomposable continua.

Eilenberg established a similar result for the sphere
s2 in [30, p.82].

We now prove Kuratowski's second common boundary theo-
rem, The distinction between Theorems 8.12 and 8,13 is
that in the former, C is required to be the common boundary
of all its complementary domains, while in the latter, C is
only assumed to be the common boundary of some (3) of them,
Theorem 8.13: If the plane continuum C is the boundary of at
least three domains, then it is either indecomposable or
the union of two indecomposable continua [72, p.36].

Proof: We follow the original proof, with only slight
modifications. Let Dl'DZ' D3 be the domains of the
hypothesis., C = Fr(Dk), x =1, 2, 3, If C is decomposable,

then by Lemma 8.9, there are proper subcontinua K1 and L1
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in C such that G-K; = L and T-T = K;.

Suppose further that C is not the union of two indecom-
posable continua, Then without loss of generality, L is
decomposable: L = K2 UK3, where K2, K3 are proper subcon-
tinua of L., Now Kl UK2 # C, since if equality held, then

C-Kl < K This would imply that L = 3-K1 < K,, contra-

e
dicting the decomposition of L. Likewise, X UK3 # C. Thus

¢ = Kl UK2 UK3. where the union of any two of the Ki's is a

proper subcontinuum of C.

Consequently, there are points X5 fKi, 1=l 2D
that are not in the other Kj's. Let €, denote one half
the distance from x; to the union of the other two Kj‘s.
Then B; = B(xi, €;) are pairwise disjoint sets such that
B; NK; # ¢,’a.nd BNk, = @, for j # i.

Since ? K; =¢C = Fr(Dk), k=1, 2, 3, we have B; N D, #
@, for i = 1, 2, 3, and k = 1, 2, 3, Because connected open
sets in B2 are polygonally arc-wise connected [44, p.108],
there are polygonal lines Pl' P2 such that Py < Dk' e = s 12
and Pklei # @, for k =1, 2, and i =1, 2, 3. The sets
P NB;, k=1, 2, i =1, 2, 3 are compact. So there exist
pMMSHe%n%,md%f%ﬂ%,i:l,&}smhmm
d(yi,zi) is the minimum with respect to the distances
between all pairs of points, one from Pl nEi and one from
P, N3B;.

Let Ti be a triangle in Bj having y; and z; for the

vertices of two of its acute angles, P, NT; =y;, and
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P,NT, = 2,

p) 3 i for i =1, 2, 3, Since Vi EDl, z5€ D2, there
are points of C in the interior of each triangle Ti, and
consequently, there are points of D3 in the interior of
each T

Thus, we can construct a polygonal line Z < D3 such
that Z 0T, # @ fori=1, 2, 3, since Dy is polygonally arc-
wise connected., Let W < Z be a polygonal line minimal with

respect to meeting each Ti' Therefore, W must meet two of
the Ti's, say Tl and T3 , only at their endpoints Ty, Tyt
WDy =), WAT, £ 8, Wty = ra.

We agree that (yizi) shall denote either the segment
joining those points, or else the line formed from the other
two sides of Ty depending on whether the segment contains

points of W. Thus, W n(yizi) =r;, i=1, 3and W N (y,2,) #

.
1) Py 0 (yy2;) = yy0 Bp0(yy2y) =25, 1 =1, 2, 3.
Since (y;z;) = T; = By, it follows from the con-
struction of the B;'s that

2) (3325) N (3y,%540) = 0 = (7320) 0 Ky UKy 00,
where the indices i+l, i+2 are reduced mod 3., Therefore,

3) (y;2,) Ky # 4.

Consider S = (ylzl) u (21Z3) u (ZBY3) u (Y5y1), where
(2123) and (y3y1) denote polygonal lines extracted from P2,
P, respectively.

S is a simple closed polygonal path by equations 1 and

Moreover, since W was a polygonal line having only its end-
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points on S, SUW cuts the plane into three domains, L, M,

N such that Fr(L) = (ylrl) uw U(r3y3) u(y3y1)Y Fr(M) =

(zlrl) uwu (r3z3) u (zszl), and Fr(N) = S,

I1
I3
L
Ty T3
M
b4 V4
1 = 3

By 2), (suw) nK, = #. Since K, is connected, it must
be in exactly one of the three domains. It can not be in N,

because X, U[(yzzz)-{yz,z2}] is connected by 3), it has

points in common with W (since WN (y;z;) # 8, 1 =1, 2, 3
and it is disjoint from S, which is the boundary of N, while
NNW = @, Without loss of generality, K, < L.

Starting from y,, let % be the last point of (y2z2)

which belongs to K,. Then (tzz) has no points in common
with C except t, and since W = D3Y Z, ¢D2, we conclude that
w ﬂ(tzz) = §. Therefore, P, U (tz,) is disjoint from Fr(L).
Consequently, P, U (tz,) = L, since t €K, = L, and P, U (tz,)
is connected, This is impossible, since (z1z3) < P, and
(2123) © S imply that SNP, # #, while SNIL = #. Thus, P,
is not in L. Therefore, the assumption that C was not the
union of two indecomposable continua leads to a contradic-
tion,

We next present some of Knaster's examples of common

boundaries of plane domains. Let A be the numbers in I that

can be written in base five without using the digits "1" and




... _
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"3". We now describe a continuum B/ that is both indecom-

posable and the common boundary of n domains, Fix nw2,

and let B = [‘i E U l:J\—‘ Fy, where Ej, B (0<k ¢n), and E,
are composed of semi-circular arcs satisfying respectively
the following conditions:
(x-5/2)2 + y2 = £, if x€1/2;
(x-2k-1/2)2 + y2 = 12, if 2k-1/2 £x £ 2k + 3/2;

(x-2n+3/2)2 + y2 2

n
H

if 2n-1/2 ¢x,
where y %0 and (r-1/2) €A.
For each k, Fk is composed of the following semi-

circles:

(x-2k—1)2 + y2 = rz‘ y¢ 0, TeA;

(x-2k-[7/215"™)2 & y2 = £2, y,0, (5"r-1/2)€4, m>0.
See Figure 8.1 (a). The solid, dashed, dotted lines
represent respectively the sets Do’ Dl' D2 to be defined on
Psr X1
Knaster also discovered the continua {Cn}, each being
the common boundary of n domains and the union of two

& L &
indecomposable continua [60, p. 274]. C, = B, UB;l', where

Al . 2 £ 1
Bn is obtained from Bn by replacing each Fk by Fk:

(x-2k-l)2 + y2 = r2, 2k+l¢x, y<O0, reh;

(x-2k-1)2 + (y+1-[7/215"™72 = r2, x ¢ 2k41,

m re, ’ '
(57r-1/2) ¢ A, m70. B, is obtained from B by reflecting

it through the line y = -1. See Figure 8.1 (b). The solid,
Al

dashed, and dotted lines represent respectively DO' Di, Dé,

to be defined on page 117.
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The verification that the Bn's are indecomposable can
be found in Knaster's paper [60, pp. 274-281]., We will not
present it due to its length. However, the essential idea
is to show that every proper subcontinuum is nowhere dense,
and then apply Theorem 4.4, Knaster accomplished this for
Bn by showing that every proper subcontinuum must be con-
tained in the union of an infinite number of successive
simple arcs (compare Knaster's first semi-circle example,

p. 24), The first arc in the first union is the semi-circle
in Fo starting at (0,0) and terminating at (2,0). The next
arc in this union is the semi-circle in B starting at (2,0)
and terminating at (3,0), and so on. This union is denoted
Dy, and it is represented by the solid line in Figure 8.1
(a). D; is the corresponding set in B; , with its first

arc starting at (1,-1).

The set Dk' for O<k<n, is constructed in the same
way as Do' However, we begin with the arc in Fk joining 2k
to 2k+2, D, is the dashed line and D, the dotted line in
Figure 8.1 (a). An analogous description holds for the
lines in Figure 8.1 (b).

Knaster was able to prove that Bn cuts the plane into
exactly n nonempty domains and that Bn is the common
boundary of each of these domains [60, pp. 278-279], More-

1
over, he showed none of the B;. B : cut the plane, But,

n

4 1
since B nB;" = {(2k+l,0)l 0¢ k<n}, the intersection has
exactly n components. Then by the generalized Straszewicz

Theorem (8,11), C_ cuts the plane into exactly n domains,

n
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Knaster showed Cn is the common boundary of all those
domains [60, p, 281]., Hence, by Theorem 8,12, C, is either
indecomposable or the union of two indecomposable continua,
But Cn is clearly decomposable, so B;. B;' must be indecom-
posable., Note that if Knaster would have had Theorem 8.13,
he would only have had to show that Cn is the boundary of
three of its complimentary domains,

We now have an abundant supply of indecomposable con-
tinua that do not cut the plane. Although some earlier
examples have this property, it was not discussed by the
original authors, For instance, Knaster's second semi=-
circle example is homeomorphic to Bé [60, p. 281], so it is
not a "common boundary".

Brouwer, Wada, and Urysohn knew it was possible to have
plane continua being the common boundary of a countably
infinite collection of domains, However, Knaster seems to
have been the first to actually publish a specific descrip-
tion of such sets, which he denoted By . He was certainly
the pioneer in constructing a continuum Cpo which is the
union of two indecomposable continua, and which is the com-
mon boundary of infinitely many domains, See Figure 8.1
(¢) for the upper half of Cop *

Knaster's construction is as follows: B, = (1,0) U

g oo
g Ln U U M_, where each L_ is composed of circular arcs
e N n
satisfying:
(1) y»0 for all cases;

(2) for n = 0, (x-3/10)2 + y2 = r2, 0¢ x ¢29/50,







119
(5r-1/2) € A;

-(m)/2y2 2 2

(3) for n odd, [x-1+(3/2)5
1-(21/2)5(10)/2  x 41_(972)5(10)/2,
[(s5™3)/2)r 5707 € a5

(4) for n even, [x-1+(7/2)5-(n+2)/2]2 2 2

Laysl el
1-(9/2)5~ (4212 4 & 1_(p1/2)5~ (m+4)/2
[(5(2+2)/2) 1727 e,

EBach Mn is the union of semi-circles satisfying:
(1) y¢ O for the first type:

2 2

(a) for n =0, x“ + ¥y =r2. Sr € A;

(b) for n odd, [x-1+7- 5-(n+3)/2]2 + y2 = r2,
5(41)/2 ¢y

-(me2)/292 2 2

(c) for n even, [x=1+3+5
[(5(0+4)/ 2y 0] € a5

(2) y70 and [5™

(a) for n = 0, [x+(1/15)=(7/2)5~(M1)12 4 2 _ 2

m 2> 0;

r-1/2]€ A for the second type:

(b) for n odd, [x-1+4 - 5-(1+n)/2-(7/2)5-(l+m)]2 +
y© = r2, where m » (n-1)/2;

(c) for n even, [x-1+2- 5-(n/2)_(7/2)5—(m+1)]2 +

y2 = rz, where m2n/2.
1 L L
On the other hand, C,, = B, UBs , where B, is the
symmetric image of B; with respect to y = -1, and B:,o is

Al Al
obtained from Boe bY replacing each Mn by Mn, where Mn is
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composed of semi-circles and straight line segments sat-
isfying:
(1) for the semi-circles, x¢O, [(5m+1)r-1/2] €A, and:
(2) for n = 0, % + [y=(1/5)+(7/2)57 (™12 = 42,
m> O3
(b) for n odd, [x-(4/5)+2.5
[y+(1/5)-(7/2)5~ @112 = 22, 05 (n-1)/2;

-(n+1)/2]2 =

(¢) for n even, [x-(4/5)+4 - 5—(n/2)]2 %

[y+(1/5)=(7/2)5"(™1)12 = 22 5 ynyo,

(2) The straight line segments are to have slope +1
and are to join to the x-axis not only the extremities of
the semi-circles in M;, but also the latter's points of
accumulation,

Knaster explains the relationship between B, and C on
one hand, and B, and C, on the other this way:

"It was easy to see that in the case of the continua
B, and C,, each domain Ry (0<¢ke¢n-1) wormed its way into

the next ones by means of an infinite number of narrower
and narrower blind alleys terminating in dead ends., They
were directed forward and could only reach a neighborhood
of an analogous blind alley of a preceding domain after
having wound through those of all the following [domains],
This is impossible in the case of an infinite number of
more and more distant domains.

Now one succeeds in restoring the dense disposition of
these blind alleys [in the infinite case] (in order that
they should have a common boundary) by occassionally
directing them directly backward toward those of the pre-
ceding domains, This is precisely the case of the con-
tinua Bua and Ca: where the first blind alley of each odd

region is directed, without winding through the following
ones, toward its point on the y-axis

[(7/2)5~ (172 _ a3
where "n" designates the number of that domain"[60, p.284].
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The fact that there exist indecomposable continua that
are the common boundaries of several plane domains allows
us to give examples where some familiar double integral
formulas fail, as Hocking and Young show [44, pp. 143-145],
Suppose we modify the Lakes of Wada construction by taking
the island to be IZ. We further modify it by digging suf-
ficiently long and narrow canals from the ocean and the two
internal lakes so that the three resulting domains, Dl' D2,

D3 each have measure 1/10, Then, if f=1, we have that

3 3
f{ff =1, while anf e 3/10., Moreover, since L'J Dy
L} L

is dense and since C = Fr(Di), i=1, 2, 3, we have

3
Z jT) jf = 3[(1/10)+(7/10)] #1.
) ¢

Before presenting some examples which show Kuratowski's
common boundary theorem fails in EB, we shall mention some
of the work done on the "prime end theory" and Burgess'
generalization of both it and Kuratowski's result,

Caratheodory introduced the term "prime end" in his
1912 paper on conformal mappings [22]. A prime end of the
boundary F of a domain D is the set of limit points of a
sequence of nested domains determined in D by a chain of
transversals tending to zero in length., A transversal is a
simple arc contained in DUF joining two points of F, Trans-
versals form a chain if they are pairwise disjoint and the
subdomain Djldetermined in D by the transversal Tj,con-

tains the domain determined by T,, for all T, following
k k
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Tj' This version of the definition was given by Marie
Charpentier [23%, p. 303].
In 1939, Charpentier investigated irreducible cuts of
E2 that were sufficiently complicated so that the entire
cut was one prime end. She showed [23, p. 306] that if the
continuum C cuts E2 into two domains and if C has a prime
end identical to itself, then C must be either an indecom-
posable continuum or else the union of two indecomposable
continua K, L such that K = C-L and L = C-K,
In 1935, Rutt considered the question of when "the set
of prime ends of a plane bounded simply connected domain
includes one which contains all the boundary points of the
domain," [109, p. 265] He established the following results:
(1) "In order that the collection of prime ends of the
plane bounded simply connected domain D with
boundary F should include one containing F, it is
sufficient that F be indecomposable." [109 p.268]

(2) "In order that a plane bounded simply connected
domain D with boundary F should have a prime end
containing F, it is necessary that F should be
either indecomposable or the union of two indecom-
posable continua." [109, p. 278]

In his thesis, C. E. Burgess investigated continua and
their complementary domains in EZ. using some results of P.
M. Swingle on generalized indecomposable continua, He
showed (among other things) that the following theorem
holds:
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"Suppose H is a closed set and M is a continuum in EE:E
and intersecting E2-H such that if Rl' R2, R3 are three
domains intersecting M, there exist three complementary
domains of MUH each intersecting each of the domains Rl‘ RZ,
RB' Then either M is indecomposable or there is only one
pair of indecomposable proper subcontinua of M whose union
is M." [19, p. 907]

Kuratowski's theorem (8.13), Charpentier's theorem,
and the second result of Rutt are now special cases of
Burgess' theorem [19, p. 908].

To_conclude the chapter, we shall consider the situ-
ation in EB. Kuratowski's common boundary theorem fails
there, a fact he knew when he published his works on Ez [70,
p. 132], [72, p. 36]. 1In fact, he gave the following
example, Let C be a plane continuum that is the boundary
of three plane domains, Join each point of C to a point
above the plane and to a point below the plane, The
resulting continuum is the common boundary of three domains
in EE, but it is certainly neither indecomposable nor the
union of two indecomposable continua.

R. L. Wilder showed in 1933 that there exists in E3 a
Peano continuum which is the boundary of three domains [129,
pp. 275-278]., He constructed this set by generalizing the
Lakes of Wada technique to three dimensions., That is, the
island becomes a solid ball, the lakes become two (tangent)
balls removed from inside the first ball, and the canals

become tunnels. His method can easily be generalized to
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give a peano continuum that is the common boundary of n
domains, or even a countably infinite number, although in
the latter case, the diameters of the inside balls must
tend to zero., In connection with this, P, M, Swingle has
shown in 1961 that if Wilder's tunnels of circular cross
section are replaced by tunnels of annular cross section,
then the resulting closed connected set in E" is indecom-
posable [114].

There is a familiar name in the background of Wilder's
work: Schoenflies, It is Wilder's belief that Schoenflies'
methods of investigating the topology of plane domains and
their boundaries could be extended to higher dimensions,
even though some topologists felt otherwise [129, pp. 273-
274]. His above paper was a step in that direction.

Perhaps the most frequently cited example showing that
the three dimensional case differs from the two dimensional
one is Lubanski's ANR. which is the boundary of three (or
more) domains and which can be decomposed into a finite
union of AR's whose diameters are arbitrarily small [81].
(See [28, pp. 151-152] for a definition of ANR, AR.) Thus,
we can have a "nice" continuum being a common boundary of
three or more complementary domains in E3.

Tubanski notes that a mathematician named Gruba con-
structed the first such example. It is not known if it had
Lubanski's decomposition property, since the paper was lost

in WW IT and never published [81, p. 29].




CHAPTER 9
ACCESSIBILITY OF PLANE INDECOMPOSABLE CONTINUA

In this chapter we shall present another characteri-
zation of indecomposable continua in the plane., This char-
acterization was given by Kuratowski in 1929, based on work
done by Mazurkiewicz in the same year.

Kuratowski asked whether every plane indecomposable
continuum contains a composant which contains no accessible
point., Magzurkiewicz' surprising answer was that "almost all"
composants have no accessible points, in the sense that the
union of all composants containing accessible points is of
first category with respect to the given continuum [92, p.
107], In a later paper [93], he showed that in a plane
indecomposable continuum, the collection of composants
which contain more than one accessible point is either

finite or countably infinite.

Using the first of these results, Kuratowski showed
[74] that a plane continuum is indecomposable iff it is
nowhere dense and contains a point which is contained in no
proper accessible subcontinuum,

Before proving this theorem, we need %o mention the
ways in which the term "accessible" is being used here.

. . 2
During the late 1920's, a point p contained in a set S <« E
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was said to be accessible from E2

=S if there were a simple
arc A having p as an endpoint and such that ANS = pP. Maz-
urkiewicz used this definition in his above-mentioned papers.,
Note that this definition differs slightly from the one
given on p, 83. However, Kuratowski's definition was dif-
ferent than both of the above, X = C is accessible iff
there is a continuum L such that LNC = X, and I-C # #.
Instead of establishing Mazurkiewicz' first result,
we shall prove Kuratowski's generalization of it.
Theorem 9,1: If C is an indecomposable continuum in Ez, the
union of its proper accessible subcontinua is of first cate-
gory with respect to C [74, p. 116].
Proof: Let a be any point of C, and let P(a,C) be its

composant, Let Gn X be any complementary domain of the set
’
CUB(E, I7n) in E, and let F, , be its boundary, Tet K(y)
’

be the component of ye¢ Fn X contained in C-B(a,1l/n), and set
,

Q, = 'l% rli&_,K(y) s Q= g Q.
Suppose D is an accessible subcontinuum of C., By
Kuratowski's definition of an accessible subset, there
exists a continuum T such that LNC = D, and L-C # @.
Either DnP(a,C) # @, or else DNP(a,C) = §. In the former
case, D = P(a.C). In the latter case, LNP(a,C) =
Ln(cne(a,c)) = DnP(a,C) = §. In particular, a ¢L. Con-
sequently, there is an n sufficiently large that Ln3B(a,/n)
= @, say 1/n = [d(a,L)]/2. Therefore, L-(CUB(&,I/n)) =

(1-C) n (1-B(&,1/n)) = (1-C)NL = I-C # #. Thus, there is a
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k such that Ln 7 -

a Gn,k # §. Moreover, § £ ILNC c L Gn,k'
Therefore, LNF, # 0. FoycecC UB(a,I/n), and, since
LNB(a,I/n) = @, we have @ # LNF, ,, <LNC =D, Hence,

DNF, . #@. Thus, LNCNB(&,I/n) = #, and so DNB(a,1/n) =
$. Therefore, D = C-B(a,1/n), and consequently, D = Q-
Thus, the union of all proper accessible subcontinua
of C is contained in Q UP(a,C). Theorem 4,11 (a) shows
that P(a,C) is first category with respect to C, Lemma 9.2
will show that Q is also first category with respect to C.
Therefore, D is first category.
Lemma 9,2: Under the hypotheses and notations of Theorem 9.1,
Q is first category with respect to C [92, pp. 112-115].
Outline of Proof: We shall show that each Q, is nowhere
dense in C, Suppose that the indices n, k are fixed, and
that c €C-B(a,1/n); d(c,B(a,1/n) ) > € »0. Let P, be some
composant of C, not P(a,C). By Theorem 4,17, Fl =C, so
P, NB(a,1/n) # §. Let x be in this intersection, and let
L(x) be the component of x in C-B(c, €/2). It is a nonempty
proper subcontinuum of C, so by Theorem 4.4, it is a con-
tinuum of condensation of C. That is, it is nowhere dense
in C, It follows that (P NB(a,1/n))-L(x) # §. Iet y be
in this set. Since x,y are in Pl’ there is a continuum J <
P, = C, irreducible between x, y. (The irreducibility
follows from the fact that any continuum containing a pair
of points contains a continuum irreducible between them. )

Set Jq = J-B(a,1l/n), Iy = JnB(a,1/n), and let cq be
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in the nonempty set J nB(c, €/2). J, and J, are closed and

satisfy x, ye J2y c € Jl'JZ’ and J1 UJ2 = J., Thus, the

hypotheses of the following lemma are satisfied,
Lemma: Let C be a continuum irreducible between P, q of a
compact metric space. Let F1 and F2 be two closed subsets

such that p, q €F,, F,-F, # #, and FUF, = C. If z€F-F,,

and if € > 0, then there exists a continuum K < Fl such
that X nF, # # and non-connected, and d(z,K) < ¢ [92,pp.
107-109].

Therefore, there exists a continuum M such that M <

Jy = (c-B(a,1/n)) ne, d(cl,M)L €/2,(hence d(c,M) ¢ €),

and, since M < J-B(a,1/n), Mn3B(a,l/n) = Mn (JnB(a,1l/n)).
The right hand side of this equation is MﬂJz, so by the
lemma, it is a nonempty non-connected set. Then, by Theo-
rem 8,7, MUB(a,1/n) cuts the plane. Consequently, M cuts
E?-B(&,T/5), and hence also cuts E>-B(a,1/n) [92, p. 110].

Let V(Pl) denote the component of C-B(a,l/n) containing
M. Clearly, V(Pl) < Py and d(cl,V(Pl))4 ¢ . By Theorem
4.4, V(P}) is nowhere dense in C, and hence in E2-B(a,1/n).
Then since M cuts E2-B(a,1/n), it follows that V(Pl) cuts
this set [92, p. 110].

By the proof of Theorem 4.11 (c), the composants are
uncountable, Thus, the collection of components V(Pl) is
uncountable., Distinct composants are disjoint by Theorem

' A : 5 p! # ! We can
4,10, so V(Pl) nv(Py ) € P NP = $, for Py L . We

now apply the following lemma of Mazurkiewicz.
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Lemma: Let A be a continuum in E2 which is locally connected,
Let £ be an uncountable collection of disjoint continua,
each of which cuts A, Then & contains three continua such
that one cuts A between the other two. That is, two con-
tinua are in different complementary domains of the one
continuum [92, pp., 109-110].
Thus, there are three composants Pi, P{', Pi", such

L3 g Tt
that V(P;) cuts E2-B(a,1/n) between V(P;') and V(2;''). e
"y e
claim that either V(P1 ) nFn,k =@, or V(P:L ) nFn,k =g,
1 Tty
If not, then choose vy EV(P1 yn Fn,k and v, ¢ V(Pl )n ank.
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