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ABSTRACT

A HISTORY AND DEVELOPMENT OF INDECOMPOSABLE CONTINUA THEORY

By

Francis Leon Jones

This thesis is an exposition of the history and devel-

opment of indecomposable continua theory from its origins

in 1910 until the present. It traces the rise of indecom-

posable continua from the status of pathological examples

to that of a general body of knowledge playing a fairly

important role in point-set topology.

The theory of ordinary indecomposable continua is

explored in great detail. In addition, most of the results

arising from the study of various special cases of indecom-

posability are surveyed. However, no results concerning

generalized indecomposable continua are included.

Chapter 2 gives some background material from general

topology. The specialized definitions are introduced as

they are needed.

Chapter 3 presents some early examples of indecompos-

able continua in essentially the same terminology as the

inventors used. Most of the results of Chapter 4 are

structure theorems dating from the 1920's; many are still

important today. In Chapter 5, several relationships
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between indecomposability and irreducibility are explored.

Chapter 6 presents some more examples of indecomposable con-

tinua and outlines Knaster's construction of a hereditarily

indecomposable continuum.

Chapter 7 deals with some existence questions. In

particular, the theorem that every metric space of dimen-

sion greater than one contains an indecomposable continuum

is proved. A proof is outlined showing that most plane con-

tinua are hereditarily indecomposable. Bellamy' non-

metrizable indecomposable continuum is also included.

Chapter 8 presents Kuratowski's common boundary theo-

rem for E2 and several of Knaster's examples. Chapter 9

relates accessibility to indecomposability.

Chapter 10 treats topological groups and inverse

limits. Wallace's work on clans constitutes the first part

of the chapter, while inverse limits and solenoids make up

the last. Chapter 11 examines the results of subjecting

indecomposable continua to several usual topological

operations.

Chapter 12 surveys the work from Moise's thesis in

1948 to the present. The pseudo—arc and pseudo-circle are

discussed, along with theorems for ordinary hereditarily

indecomposable continua.
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CHAPTER 1

INTRODUCTION

This thesis is an exposition of the history and devel-

opment of indecomposable continua theory from its origin

in 1910 until the present. It traces the rise of indecom-

posable continua from the status of pathological examples

to that of a general body of knowledge playing a fairly

important role in point-set topology.

We shall explore the theory of ordinary indecomposable

continua in some detail. We.shall also survey many re-

sults arising from the study of various special cases of

indecomposable continua. However, we shall not include

results from the theory of generalized indecomposable con-

tinua, since this vein of research has not yet been as

widespread as those of the ordinary and special theories.

Much of the work on generalized indecomposable continua

has been done by P. M. Swingle and C. E. Burgess.

In Chapter 2, we give some elementary background mate-

rial from general topology. The specialized definitions we

shall use later will be introduced as needed. Chapter 3

presents some early examples of indecomposable continua in

essentially the same terminology as the inventors used.

Most of the results of Chapter 4 are structure theorems
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dating from the 1920's; many are still important today. In

Chapter 5, we explore several relationships between indecom-

posability and irreducibility. Chapter 6 presents some

more examples of indecomposable continua and outlines Knas-

ter's construction of a hereditarily indecomposable con-

tinuum.

Chapter 7 deals with some existence questions. In par-

ticular, we show that every metric space of dimension

greater than one contains an indecomposable continuum. We

also outline a proof that in the space of all continua of

12, the set of hereditarily indeComposable continua is a

dense G5 set. Further results of this nature are in Chap-

ter 12. Bellamy's non-metrizable indecomposable continuum

is also included in Chapter 7.

Indecomposable continua arose from a study of common

boundaries of plane domains, and Chapter 8 continues this

investigation. Kuratowski's theorem for E2 and several of

Knaster's examples are included. Chapter 9 relates accessi-

bility to indecomposablity and gives Kuratowski's charac-

terization of the latter in terms of the former.

Chapter 10 treats topological groups and inverse lim_

its. Wallace's work of clans constitutes the first part of

the chapter, while inverse limits and solenoids make up the

last. Chapter 11 examines the results of subjecting inde-

composable continua to several usual topological operations.

Chapter 12 surveys the work from Moise's thesis in II

1948 to the present. The pseudo-arc and pseudo-circle are
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discussed, along with theorems for ordinary hereditarily

indecomposable continua. Because this work is recent and

readily available, few proofs are included.
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CHAPTER 2

BACKGROUND DEFINITIONS AND NOTATIONS

This chapter gives the fundamental definitions needed

from general topology, beginning with a formal definition

of a tepological space.

Let X be any set. By a topology gan, we mean a col-

lection T of subsets of X which satisfy the following con-

ditions:

(l) C and X are members of T;

(2) the union of any collection of members of T is a

member of T;

(3) the intersection of any finite collection of

members of T is a member of T.

The members of T are called 2222.223E1 and X together with

its topology T is a topological spagg. Where no confusion

can result, X is used to denote both the underlying set of

points, as well as the topological space.

If xeX, a neighborhood for x is any cpen set in X

containing x and will be denoted by U(x). (Some defi-

nitions of neighborhood require only that it be a set con-

taining an open set containing x.)

A set may have many distinct topologies on it, with

topologies T and T' being distinct if there is an open set

-
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in one that is not in the other. The branch of mathematics

known as topologies studies the consequences of imposing a

topological structure upon a set. Before giving any more

definitions, we make a few remarks about the ones above.

The definition of a topological space did not spring

into being as the result of any one person's inspiration,

but, like most abstractions, it developed as a result of

many persons' work and experiments. Of course, the choice

of axioms for a mathematical system is somewhat arbitrary,

with the only major restrictions being consistency and com-

pleteness. But to be useful, a system must neither be too

general nor too restrictive; in either case, very little of

value ensues.

Historically, topological spaces had their origin in

the process of giving analysis a rigorous foundation [84].

Several concepts from analysis were generalized and ab-

stracted in this process, among them being "limit," "neigh-

borhood," "continuity," and "distance".

In real analysis, given the notion of distance, we may

say that "x is near y" if for some real number r:rO,

(x-y\¢r, and that all such x for a given positive real num-

ber r constitute a neighborhood of y. If this neighborhood

concept is abstracted to a more general setting, not neces-

sarily involving distance, then "x is near y" can be given

meaning by saying that x is in some neighborhood of y,

where neighborhood has been defined, say in the manner

described on page 4.

,
—
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Next, consider a fixed set A C E1 and some point ye E1.

If for any r>O, there exists X6 A such that [x-ykr, then

y is a limit point of A c El. Certainly this concept can

be defined in terms of neighborhoods, with no reference to

distance. On the other hand, given the concept of limit

(or cluster) point, neither of the other two notions can be

defined in terms of it. This "linear ordering" of the three

concepts was known as early as 1914, when Hausdorff noted

it in his Grundzuge d2; Mengenlehre. He used neighborhood

axioms to define a topological space, but it was recognized

later that the "open set" axioms (p. 4) are simpler.

Once topological spaces have been defined, a precise

definition of continuous functions can be given. For exam-

ple, f: X-—)Y is continuous at erIX iff for each neigh-

borhood V in Y of f(xo), there exists a neighborhood U in X

of X0 such that f(U) C'V. f is continuous 22.; if it is 1

continuous at x, for each xeX. Alternatively, f is con-

tinuous on X iff for each open V in Y, f'1(V) =-CerXI

f(x)6“V} is open in X. Continuity can also be specified

in terms of "closed sets", which we do, following these

definitions.

A C X is closed iff X-A is open in X. These sets can

be described in other ways. For example, if A c X, the set

of cluster points of A is

A' = {xexlv U(x): U(x) n (A- x ) # 95}.

‘The closure of A is A = AIJA', and A is closed iff A = I.

If A is closed and A s A', then A is perfect.
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The open sets can be described in different ways, too.

The interior of A czx is Int (A) = x-XZI, and A is open iff

A = Int (A). The boundary of A CIX is Fr(A) = AITX:I. In

terms of the above definitions, continuous functions can be

characterized by the property that for each A CIX, f(K)‘c

'TTKT. Furthermore, f is a homeomorphism iff f is one-one,

onto, and for each A CIX, f(I) = f(A); that is, iff f is

one-one, onto, and both f and f"1 are continuous.

We shall need a few more basic definitions. A c X is

genes in x if I': x. A is nowhere ESEEE in X if A c:§:I.'

A collection,B,of subsets of X is a basis for a topology T

on X if each member of T is the union of members of B. If

B is countable, then the space is said to be 22_countab1e.

Thus, to specify a particular topology T for a set X, we

need not specify all the open sets; we can describe a

"smaller" collection of open sets and still have the origi-

nal topology.

In this thesis, we shall be primarily interested in

certain special t0pologica1 spaces, such as Hausdorff or

metric spaces.

A metric d on a set x is a function a: Xxx—49El sat—

isfying:

(l) d(x,y) 7/ O, for all x,yé X;

(2) d(x,y)

(3) d(x,y) = d(y,x), for all x,yeX;

0 iff X = y;

(4) d(X9Y) .4. d(x,z) + d(z,y), for all x,y,z EX.

B(X.I‘) = {ye X Id(x,y) <r} is called a ball of radius r



I'HE!
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at x. A topological space (X,T) is called a metric spage

if {B(x,r)| xeX, r7 0} is a basis for T. The distance

between nonempty sets A, B in a metric space is

d(A,B) = inf {d(a,b) I a cA, be B} ,

and the diameter of A is

8(A) = sup {d(a,b)I a,be A} .

The other general class of topological spaces that

will be used is the collection of Hausdorff spaces. A

tOpological space is Hausdorff, denoted T2, if every pair

of distinct points of that space have disjoint neighbor-

hoods. A space is regglar if there are disjoint open sets

containing each closed A C X, and xEX-A. Clearly every

metric space is T2.

We are now ready to give some definitions from con-

tinua theory. A space is connected if it is not the union

of two disjoint, nonempty, open subsets. If X is not con-

nected, it is often useful to know its maximal connected

subsets. The component of x€X is the union of all con-

nected subsets of X containing x. If for each xex, the

component C(x) = x, then X is totally disconnected. A con-

nected open set is a domain. If S is a closed pr0per sub-

set of X, then every component of X-S is called a comple-

mentary domain of S.

One of the useful properties of connectivity is its

invariance under continuous transformations. That is, if

A CIX is connected, and if f: X-49Y is continuous, then

f(A) is connected. We shall also be interested in another
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invariant of continuous functions, compactness.

A space X is compact if every open cover has a finite

sub v . h I 'co er T us for any {U,,'}°‘ ‘ 7 such that each U°< is

- n

0 en and X = U U there exists a 011 ti Up «‘7 q, c ec on{ “£35.,

1|

such that X = O U3, . Compact spaces are "very nice" in

L'I t

several respects. For example, if X is compact, then "all

limits" exist in X (in the sense that every maximal filter-

base in X converges in X [28, p. 223]). For our purposes,

a more useful version of the above is the Bolzano-Weier-

strass property, which says that in a compact space every

countably infinite subset has at least one cluster point.

Also, compact subsets of a T2 space have many of the same

properties as points, the most useful of which to us is that

two disjoint compact subsets of a T2 space have disjoint

neighborhoods. Moreover, if X is a metric space, A C'X

closed and C CIX compact with ArTC z ¢, then d(A,C) £ 0

[28, p. 234]. If X is itself a compact metric space, then

it is 2° countable. Finally, if the space is Euclidean,

the Heine-Borel theorem states that A C En is compact iff

it is closed and bounded.

Before considering those spaces which are both compact

and connected, we describe a very useful example of a com-

pact set, the Cantor set. Let I = [0,1]. Geometrically,

the Cantor set can be constructed by removing "open middle

thirds" from I. The first step is to remove (1/3, 2/3),

leaving two closed intervals, J1,1 = [0,1/3], and
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Jl’z a [2/3,1]. Let F1 be JLlUJl’Z. At the his step,

a
2

En =kO‘ Jn,k , where Jn,l , . . . , J

vals, each of length 3-n.

n 2n are closed inter-

9

st

The (n+l)-— step is performed by deleting from the

middle of each Jn k an open interval of length 3-(n+1).
9

10H G)

Then Fn+l = #3, Jn,k , and the Cantor set is F = O

This set can also be described as the set of all real

Fn.

numbers in I that do not require the use of the digit "1"

in their ternary expansion. That is, if xtI, then

m

an

X: '71-,

:3

n:\

ané {0,1,2} ; this gives a ternary (base 3) representation

for x. The expansion is unique except when x is of the

form b3'm, where 04b43m and b does not divide 3m. In

this case, there are exactly two such expansions for b E

1 (mod 3) and for b§2 (mod 3). If bEZ (mod 3), either

a

X: -%+%)

3 3

“=1

01‘

’m-I

a

n l 2
X: gi-t-3-fi+ 3n .



 

 

 



11

If bEEl (mod 3), then either

an.

[a

3 3

flat

-I 00

a

3n 3’“ E 3“

on (want:

We agree to take the first representation in the first

case, and the second expansion in the second case, so that

we do not force the use of the digit "1". Given this way

of expressing numbers between zero and one, we claim that

the Cantor set is the set of all such numbers that have a

ternary expansion not using "1". Thus in the above expan-

sion for x, ane {0,2}.

It can be shown by induction, that for each n,

Fn = {erI {8.1, . . . ,an} C {0,2}}

where Fn is as described in the geometric construction.

This means that the geometric process of deleting (1/3,2/3)

from I removes all those numbers which have a1 = 1 in their

ternary expansions. Deleting (1/9,2/9) and (7/9,8/9) from

F1 removes all numbers which have a2 = l, and so on. There-

an

fore, er Fn iff ané-(0,2} , for all n. Note that xéI

has the form x = b3"m iff x is an endpoint of some Jn,k'

(We do not distinguish between the interval on the x-axis

from zero to one and the real numbers from zero to one.)
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The Cantor set has some interesting topological prop-

erties; it is compact, perfect, totally disconnected, and

homogeneous. (A set is homogeneous if for each a, b in it,

there exists a homeomorphism of the set to itself taking a

to b.) For a proof of homogeneity, see Hocking and Young

[44, p. 100]. Actually, any metric space possessing the

first three of the above properties is homeomorphic to the

Cantor set [44, p. 100]. We now establish the other prop-

erties mentioned.

w

F=n F

0:! n' and eaCh Fn Closed. imply F is closed,

Since it is also bounded, F is compact by the Heine-Borel

theorem. We now show that F is perfect. Let x be any ele-

ment of F. Since xan, for all n, there exists, for each

n, a kn such that ern k . Let 6 7 0 be given. To estab-

’ n

lish the existence of elements of F within.re of x, choose

n large enough so that 3-n < 6. Then ern k C (x-E,x+6)

’ n

so that both endpoints are in the E-neighborhood. Since

these endpoints are in F, we have shown that F is perfect.

Since Fn contains no interval of length greater than

3-n, and since F C Fn’ we see that F contains no interval.

But the only connected subsets of I of more than one point

are intervals [28, p. 107]. Hence, each point is its own

component. Therefore F is totally disconnected.

If a topological space is both compact and connected,
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it is a continuum. Thus, a continuum is invariant under

continuous transformations. A non-degenerate continuum is

a continuum which contains more than one point. A semi-
 

continuum is any set S such that for any x,y in S, there is

a continuum C C S such that x,y6 C. A continuum C is a

 

222 2 continuum (sometimes called a Jordan continuum) if it

is also locally connected; that is, if for each x50 and

each open set U containing x, there exists a connected open

set containing x contained in U. We conclude this chapter

with a theorem which we shall find very useful.

Theorem 2.1: The monotone intersection of nonempty T2 con-

tinua is a nonempty continuum.

3329;: Let 0] be a (well-ordered) index set with «c.

is aas its first element. Suppose that {0“}w I 07

family of nonempty T2 continua such that 00‘ D . . . D

C D C 3 . . . .

n 2 then U C -C = C . Since C

is compact, and Cda-C°< are open, there is a collection

It
R

(00,356“ such that u (00‘ -c°,,) = C“ . Consequently,
. t o

«e = C, from which it follows that CN.. = O. This

a

n C

'

I

contradiction shows that the assumption of a vacuous inter-

section is false.

Since each C°< is closed, O Cu is closed in the

one;

compact set Co: and is therefore compact. If 2 C,>< is

0



 

 

 

t
I
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disconnected, then there exist disjoint, nonempty sets K1,

K2 that are closed in I; Co, and hence are closed in Co“.

Then K1 and K2 are compact, and, since Co“ is T2, there

exist disjoint sets 01, 02 open in C 0!. with Kl C 01 and

K2 C 02. .

O1 U02 :3 n“ Go, implies that (C°<o ~01) n (C°‘c ~02) is

contained in 3((00‘ ~Cq). Since the latter set is an open

9

covering for the compact set (Cor, ~01) n (Cu. -02), we have

M ,

(OX. -01) n (Cue—02) C O (can -C ‘,(d). Therefore, it follows

“I“

that 0111022? 0.“. seq”.

Now, cxmnoiagcca, nKi=Ki#¢,i=1, 2, and

(Cam, T101) O (CdmnOZ) = O. Consequently, Cu”m is not

connected, which is a contradiction, and the theorem holds.

  

 



 

 

 

 
 



 

 

CHAPTER 3

EARLY EXAMPLES

In this chapter we give the major definitions of the

thesis, along with some early examples of indecomposable

continua.

There are two distinct types of continua: the decom-

posable and the indecomposable. A continuum is decomposable
 

if it is the union of two proper subcontinua; otherwise, it

is indecomposable. The concept of indecomposability is

  very easy to state; however, it is not so easy to see that

such sets actually exist. Most of the usual examples of

continua are decomposable. For example, in E2 the line seg-

ment joining two distinct points a and b is "very decompos~

able": it is the union of the segments ac and ob, where c

is any point of the segment except a or b. Even the so- 
called "topologist's sine curve," the continuum

C '3 {(X,Y)I04X£l, y = SinT/x} U {(0,Y)I-IEYE1} 9

is not sufficiently pathological to be indecomposable.

:I
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However, this continuum does have the related property

of being irreducible between (1,0), and any point (O,y) for

‘ygé 1. A continuum is irreducible between two of its

points if no proper subcontinuum contains both points.

These seemingly distinct concepts are not only closely

related mathematically, but they also share a common his-

torical origin.

The first indecomposable continuum was constructed by

L. E. J. Brouwer in 1910 [15], although he never used the

term "unzerlegbaren Kontinuen" in his paper. He used this

set to disprove a conjecture made by Schoenflies that if a

"closed curve" is the common boundary of two plane domains,

 then it must be expressible as the union of two proper sub-  sets, each of which is a "curve".

The concept of an irreducible continuum was defined

and studied by Zoretti in 1909 [133]. He credited the

Schoenflies papers with inspiring his work, although his

terminology was different than Schoenflies'. Brouwer was

later involved in the developement of irreducible continua,

again as a critic. He pointed out several errors in

Zoretti's work, saying in particular that his own example

of an indecomposable continuum was a counterexample to

Zoretti‘s statement that the "exterior boundary of a domain"

can be decomposed into two subcontinua having only two

points in common [16]. Zoretti took note of these comments

[134] by pointing out that he had already published cor-

rections.
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The works of both Schoenflies and Zoretti were at least

partially motivated by a desire to give a set-theoretic

characterization of "curve". We shall see in later chapters

that this same goal inspired the works of several others

_who contributed to the study of indecomposable continua.

The rest of the chapter will be devoted to describing

several of the original examples of indecomposable continua:

Brouwer's example, along with certain related examples, and

the Lakes of Wada. In view of the opening remarks of this

chapter, we would not expect any of these continua to have

simple descriptions, and in fact they do not. This may be

one reason why indecomposable continua were viewed as being

just pathological examples. This opinion seems to have been

shared by the discoverers of indecomposable continua and

their contemporaries until about 1920, when several theo-

retical results were published. (We shall discuss these

in great detail in the next chapter.) We begin our list of

examples with Brouwer's construction (paraphrased slightly

in translation) of his first indecomposable continuum [15].

2 of length a and heightFirst, form a rectangle R0 in E

b. (He called this his "principal rectangle".) The general

procedure is to deform the boundary of RO by removing a

sequence of domains Rn inside R0 and to simultaneously

delete another domain D inside R0, disjoint from the Rn's.

R1 is a rectangle based in the middle of Ro's base-

line, constructed so that the twice-bent white strip, Ro-Rl,

possesses the same width in its three parts: d = d 2 d3.
1 2
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where 0< is any positive real number. Then the white strip

has a width of [%1§;:I)a.

Next, draw the shaded strip D between the cross-  
l

sections ?1Pl and QlQl’ as shown. It consists of a strip  
. 1 =( .

of Width [gazfafl Erazjqja, whose boundary is everywhere

cg

parallel to, and at a distance [%§::—:i7?]a, from the

boundary of the white domain which contains it.

’///////////////////////////
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R2 is now constructed surrounding the already drawn
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portion of D, beginning on the left hand side of the base-
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line of R0, and ending on the right at the height of qul‘

. 1 .

This strip also has a Width of 27;_3I that of the white

strip in whose center it lies. D is continued from QlQl

through the middle 1 32 part of the new white domain
2<x +I

to 020;; these latter points have the same distance from

the baseline of R0 as the vertical boundary through Q; has

from the boundary of R2.

/' ZL/Z/ ///44444444

///////////

§\\\\\\\ \ \

éé/ G! e
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R is constructed around the existing part of D,

beginning on the baseline of R0 and ending at the same

' l .

height as PlPl. It too removes 27§EII of the Width of the

white strip containing it.

Thus, in general, D is extended from both ends; a con-

i l . _

tinuation from QnQn to Qn+lQn+l is followed by an extens1on

' ' o c

d h e tenSlon of D isfrom PnPn to Pn+an+l‘ Each Rn an eac x

to have a width of 27§LTI that of the white strip which

contains it. See Figure 3.1, p. 20.
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Every point of the boundary of an Rn lies arbitrarily

near the domain D by a sufficient continuation of this

process. Likewise, every point of the boundary of D finally

lies arbitrarily near the Rn's. But D and the Rn's are

disjoint, being "fully separated" by K, the complete

boundary of D. The complement of K contains only two

domains, namely D and the Rn's together with the plane out-

side R0 [15, P. 424].

Brouwer gave several other examples by slightly modi—

fying the above construction. He also indicated that his

process could be used to construct a continuum that is the

common boundary of 3, 4, 5, . . . , or even a countably

infinite number of domains.

Janiszewski gave a simplification of the above example

in his thesis (1911) essentially by taking 0( = l, a = b,

and dropping the domain D [48, p. 114, or 49, p. 68]. Thus

his example does not have the property of being the common

boundary of two domains. Hence his continuum is actually

distinct from the quoted one of Brouwer, in spite of the

fact that it is based on the latter's work. Note that

Janiszewski's technique of describing his continuum is more

concise than Brouwer's.

"0n the base AlA of a square, let a sequence of points

Al’ Al" A2, A21, , , . be such that m = (1/3)m9 and

Ak'A = (2/3)AkA. Our figure is composed of:

1) the broken line AAl formed from three sides of the



 
 

 
 



 

 

square [as shown];

2) the segment AlA
1

A1 A1' A

3) the broken line Al'A2 parallel to AlA;

 

4) the segment A A
I.

2 2 ’
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5) the broken line A2'A3 parallel to the line A2Al' U

Al'Al U AlA;

 

     
A" Al' A2. ‘2' A3 A

6) and so on [48, p. 114, or 49, p. 68]." He does not

say so here, but he intends to include the closure

of the imbedded topological ray thus constructed

[48, p. 120, or 49, p. 74].

Janiszewski makes no mention of indecomposability in

connection with this example. Rather, since his thesis

concerned irreducibility, he used this as an example of a

continuum irreducible between A and B, where B is in the

closure of the imbedded topological ray. Later, [48, p. 120

or 49, p. 74] he notes that if C is any point on a vertical

segment whose abscissa is incommensurable with those of A,

and B, as well as with any linear combination of them with

rational coefficients, then his continuum is irreducible

between any two of A, B, C. The fact that a continuum is

indecomposable iff it contains three points such that it is

irreducible between any two of them (p. 43) was not pub-

lished (by him and Kuratowski) until 1920, but he seems to



 

 
H
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have thought that the property was interesting enough in

1911 to deserve mention.

Knaster developed a simpler means of describing Janis-

zewski's example. His work appeared in a paper by Kuratow-

ski on irreducible continua [69, pp. 209-210]. The con-

struction is given below, with only a slight change in

notation.

Let F denote the Cantor set, and let Gn’ for n2,1,

denote the set of points Gn = {x ‘F[(2/3n) 5 x e(1/31“1-l)} .

Using the point (1/2,0) as center, construct a set of semi-

circles above the x—axis having F as its set of endpoints.

The points (5/2)(l/3n) are the centers of the semi-circles

below the x-axis whose endpoints are the points of Gn' The'

set thus formed for all natural numbers n is an indecom-

posable continuum.

/

I

I

maxi:

Figure 3.2
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Thus, in the span of twelve years, Brouwer's example

was modified and condensed from the major point of a paper

to a footnote in small print. The verification that this

continuum is indeed indecomposable can be more easily given

after adequate theory has been developed; see p. 53. There

was no proof of indecomposability with the example when it

appeared in Kuratowski's paper.

To see that Knaster's first "semi—circle example" is

related to Janiszewski's version, we modify the latter's

example slightly. Suppose that his square is the unit

square and that we delete from it those regions contiguous

to its base along An'An+l' for n = l, 2, 3, . . . . Inter-

secting this figure with the line y = 1/2 gives the Cantor

set on that line. Moreover, if the rectilinear segments

are replaced by semi-circles, then we get Knaster's example

with left and right reversed.

The Brouwer example is fairly typical of the early

work in the study of indecomposable continua. It was viewed

as a pathological counterexample, and little else. This

may have been at least partially due to the fact that gen-

erally the early examples were described by means of rather

complicated constructions, as we have seen. A great deal

of machinery was required to verify that a given continuum

was indecomposable, if indeed explicit verification was

given at all. As Paul Urysohn put it, "the reason for this

is that the necessary and sufficient conditions for a con-

tinuum to be indecomposable are logically simple, but very
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few are manageable in practice [111, p. 225].

One of the most famous examples of an indecomposable

continuum was presented by the Japanese mathematician

Yoneyama in 1917. His extensive English paper entitled

"Theory of Continuous Sets of Points" [131] dealt with a

theory of "curves" in Euclidean space. But, it was most

noted in the literature of that day and this for its pre-

senting the example now known as the Lakes of Wada. This

example also occupied the status of being little more than

a novelty, so far as the author's major intent is concerned.

Yoneyama used Wada's example to show that in E2 there

exists a continuum C containing three points such that C

is irreducible between any two of them, although he did not

use this terminology. (See Chapter 4 for his wording.) He

was not concerned with indecomposability in this paper.

From the direction of his research, it seems doubtful that

he was aware that the example has this property. (Again

more information is in Chapter 4.)

Essentially, the continuum was described in terms of

digging canals in an ocean island containing a fresh water

lake. (Motivated perhaps by the geography of his native

Japan.) His construction is quoted at length below.

"Suppose that there is a land surrounded by sea and

that in this land there is a fresh lake. Also suppose that

from the lake and sea canals are built to introduce the

waters of them into the land according to the following

scheme.

"Let El’ E2, . . . , En’ En+l’

positive numbers monotonously [sic] converging to zero;

namely let E17 E27. . .7 En7En+1>.V . . and 33?: En = O.

. be a sequence ofO O
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"On the first day a canal is built from the lake such

that it does not meet the sea.water and such that the

shortest distance from any point on the shore of the sea to

that of the lake and canal does not exceed E1. The enp-

point of this canal is denoted by L1.

 

 

  
 

Figure 3.3

"On the second day a canal is built from the sea, never

meeting the fresh water of the lake and canal constructed

the day before, and the work is continued until the shortest

distance from any point on the shore of the lake and canal

filled with fresh water to that of the sea and canal filled

with salt water does not exceed E . The endpoint of this

canal is denoted by S2. [See Fig. 3.4.]

 

  

 

 

Figure 3.4,

"On the third day the work is begun from L1 never

cutting the canals already built, and the work is continued

until the shortest distance from any point on the shore of
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the sea and canal filled with salt water to that of the lake

and canal filled with fresh water does not exceed E3. The

endpoint of this canal is denoted by L3.

"Now it is clear that we can continue the work day by

day in the above way, by adequately narrowing the breadth

of the canals, since the land is always semi-continuous

[i.e. a semi-continuum] at the end of the work of every day.

If we proceed in this way indefinitely, we get at last an

everywhere dense set of waters, fresh and salt, which never

mingle together at any place.

"Now denote by ML the shore of the lake and canal

filled with fresh water, and by Ms that of the sea and

canal filled with salt water, and by MP the set of limiting

points of ML and Ms not contained in them. Then the sum of

ML' MS, MP forms a continuous set [continuum], and any

three points, each taken from the above different sets form

a system of three points, every two of which form a pair of

principal points of the set [i.e. the continuum is irreduc-

ible between any two of those three points].

". . . If we suppose that there are many such lakes in

the land, we may obtain by the similar method a continuous

set having the property [131, pp. 60-62]."

The construction mentioned in the last paragraph is

carried out in Hocking and Young's TOpology [44, pp. 143-

144] for two lakes. Yoneyama supplies no further proof

that his set has the desired properties, which is fairly

typical of the era prior to 1920.

Parenthetically, it is interesting to note that other

new disciplines were studying pathological examples of

their own. In the same volume of the T8hoku Mathematical

Journal in which Yoneyama described the Lakes of Wada,

Sierpinski gave an example of a non-measurable set which

is a slight generalization of today's standard example [110].

A further investigation of the Lakes of Wada was made

by Paul Urysohn [116, pp. 231-233] as a tool in his monu-

mental study of Cantor manifolds in a separable metric

 



 

 

 



29

space [115], [116], [117]. The goal of his work was to

establish the most general possible topological definitions

of "line" and "surface". Much of this work was published

posthumously under the supervision of Paul Alexandroff,

following Urysohn's death in 1924. His untimely death at

the age of twenty-six was the result of a swimming accident

[1].

Urysohn's contribution to the Lakes of Wada was an

outline of a proof of the indecomposability of the con-

tinuum, based on a necessary and sufficient condition for

indecomposability which he had developed. (See Chapter 5.)

He noted that for "a convenient distribution of canals" the

continuum is indecomposable, but that he did not know if

the "construction always gives an indecomposable continuum

for any distribution of canals [116, p. 232]."

He also indicated that the construction can be gen-

eralized by:

1) allowing a countable number of lakes, provided that

they "converge to a single point";

2) allowing certain lakes or even all lakes to have no

canals;

3) allowing other lakes to have several, or even a

countable number of canals;

4) allowing certain canals to have only a finite

length [116, p. 233].

In closing this chapter, we note one more contribution

to the study of the Lakes of Wada. While trying to extend
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Schoenflies' results on plane sets of points to higher

dimensions, R. L. Wilder showed that the Wada construction

does not necessarily yield an indecomposable continuum in

E3 [129, pp. 275-279]. His first result was to use this

construction to dig tunnels in a certain solid to get a

surface which is a Peano continuum (and hence decomposable),

and yet is the common boundary of three (or countably many)

domains in E3. More will be said about this in Chapter 8.

 

 



   

 

CHAPTER 4

BASIC STRUCTURE THEOREMS

Prior to 1920, there were only two papers on indecom-

posable continua which could be considered theoretical.

The first was by Arnaud Denjoy in 1910 [26], and the second

was Yoneyama's in 1917 [131]. However, neither work seems

to have been very influential in the study of indecompos-

able continua.

In his paper, Denjoy announced that he believed "one

could construct three domains and even a countable number

of domains which all have the same boundary [26, p.28]."

In such a case, "the points of such a frontier F situated

on an arbitrary straight line must form a perfect every-

where non-dense [nowhere dense] set e if the line contains

no continuous [connected] portion of F [26, p. 138]."

Since Denjoy's results were stated without proof, and later

papers make scant reference to them, we say no more about

them.

Yoneyama's paper had only slightly more impact on

later theoretical investigations of indecomposable continua.

One of his theorems was used by Kuratowski to help establish

a theorem on indecomposable continua [69, p. 208].

One reason why Yoneyama's work does not seem to have

31
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been very influential is that his terminology was highly

non-standard with respect to the European school of mathe-

matics. For example, he used the word "component" to mean

subset, and "continuous set", which corresponds to our word

"continuum", to mean a connected perfect set. Furthermore,

in place of "irreducible continuum", Yoneyama's concept was

stated in the following terms. Let S be a "continuous set"

and let a, b be points of S. a and b are principal points

of S if no proper "continuous component" of 8 contains a

and b [131, p. 47].

It is interesting to compare this terminology to the

European, so we state a theorem of Yoneyama both ways. The

original version reads as follows: "When a continuous set

has two pairs of principal points, it has always two pairs

of them having one point in common [131, p. 48]." On the

other hand, Kuratowski, in using the above result, stated

it this way: "If e is irreducible between a and b and bet—

ween c and d then e is irreducible between a and c or a and

d [69, p. 208]."

One apparent difference in the above viewpoints seems

to be that Yoneyama classifies "continuous sets" according

to the number and type of principal points which they pos-

sessed. 0n the other hand, Kuratowski and other Europeans

studied the entire continuum, rather than just certain'

points of it. Their technique seems a little more natural

in the sense that irreducibility between two points of a

set results from the structure of the set, rather than from
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any property inherent in those points alone.

As we proceed into more specialized concepts, we find

the differences in terminology and technique growing.

Yoneyama‘s definition of what we would call an indecompos-

able continuum is given as: "a continuous set having a

system of three points, every two of which form a pair of

principal points of the set, is called a singular set of

points [131, p. 62]."

He proved several theorems concerning some properties

of singular sets, but he gave no necessary and sufficient

conditions for a continuous set to be singular. Because he

was interested primarily in the principal points of a set,

rather than in properties of the entire set, it is doubtful

that he knew or was interested in the fact that singular   
sets are indecomposable. For example, his only use of the

Lakes of Wada was to show that singular sets exist. Thus,

a second reason why his work does not seem to have had a

significant influence is that his point of view and direc-

tion diverged from those of his western contemporaries.

Beginning in the early 1920's, indecomposable continua

were studied more as entities in themselves, rather than

just as pathological examples. The first European paper

devoted exclusively to studying properties of indecompos-

able continua -sans examples —-was published by the Polish

mathematician Stefan Mazurkiewicz in 1920. In it he an-

swered affirmatively the following question posed by Janis-

zewski, Knaster and Kuratowski [86, p. 35]. Given an





 

 

34

indecomposable continuum C, can one determine two points in

C such that C is irreducible between them? In fact, he

proved a stronger result. Using Baire category theory, he

was able to show that an indecomposable continuum in En has

three points such that the continuum is irreducible between

any two of them. Moreover, it appears that he was the first

to use the word "indecomposable" to name these sets, and R.

L. Moore credits him with being the originator of the term

[100, p. 363]. Instead of giving Mazurkiewicz' results

here in more detail, we include them in the next section of

the chapter where they can be more naturally presented.

It should be noted here that during this time, the

word "continuum" meant a closed connected set rather than

a compact connected set. However, Mazurkiewicz restricted

his work to bounded, closed, connected sets in En. So,

thanks to the Heine—Borel theorem, his concept of continuum

coincides with ours in En. The fact that he worked in En

was not a restriction as far as his contemporaries were

concerned, since they too were working in Euclidean space.

Often, papers of this era made no explicit mention of what

their underlying space was, perhaps because the geometric

nature of the results and examples seemed to be self-evident.

Perhaps also, interest in more general spaces had not yet

become widespread.

By far the most significant paper published on indecom-

posable continua theory during the early 1920's was "Sur

les Continus Indecomposables", by Janiszewski and Kuratowski.
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It appeared in the first volume of the Fundamenta Mathe-

maticae (1920), the same one which contained Mazurkiewicz'

above mentioned paper. The importance of the Janiszewski

and Kuratowski paper lies in the fact that it gave several

necessary and sufficient conditions for a continuum to be

indecomposable. The authors also defined the fundamental

concept of a "composant" and established some properties of

such sets. The significance of this paper is best proved

by the many later references to its results.

From the fact that several proofs make explicit use of

the metric properties of Euclidean space, it seems likely

that Janiszewski and Kuratowski considered an indecomposable

continuum as a subset of some En. However, their defi-

nitions and results can be placed in a more general setting

very easily, and we shall do just this.

Before discussing any of the results, we present some

definitions. A set A is called a boundary set in X if
 

A C X-A. A subcontinuum K of a continuum C is called a

continuum of condensation if K C C-K. Hence, if K is a
 

continuum of condensation of C, it is nowhere dense in C,

since it is closed. Equivalently, K is a continuum of con—

densation of 0 iff 531? = c. For if K is a continuum of

condensation of c, then c = KU (0-K) -.-.- KU (‘07:?) = 621?;

the converse is trivial. These definitions are still used

today, with the only change being that the word "continuum"

generally means a compact connected set rather than a

closed connected set.
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The first three results were not part of the original

paper, but we include them here because they simplify some

of Janiszewski and Kuratowski's proofs.

Lemma 4.1: A subset Y of a space 0 is connected iff there

do not exist two nonempty subsets A, B of Y such that Y =

ALJB and such that (KllB) u (ArfB) = ¢ [44, p. 15].

3393:: If the sets do exist, then C-I’is an open set

containing B and C4B is an open set containing A. Therefore

Y = [(c-I)I1Y] u [(c4§)rwy],

[(o-I)r1Y] n [(cié)riy] = [(CJI)rI(c£§)] n Y e

= [c-(KUEH n Y (6.

and

Thus Y is disconnected.

If Y is disconnected, then Y = (OtlY) U (VilY), where

O, V are open in C, and Ole, Vle are nonempty and disjoint.

Set A = Ole, B = Vle.

Lemma 4.2: Let X be a connected subset of a connected set C.
 

If C-X is disconnected, say C-X = MlJN, then XlJM and XtJN

are connected. Moreover, if X is closed, then XlJM and XlJN

are closed [62, pp. 210-211].

3339;: By Lemma 4.1, c-x = MlJN, where M i ¢ s N, and

(MITF) U (fiWlN) = ¢. Suppose XtJM = AlJB, where A i ¢

and B £ ¢. and (KIIB) u (AfIB) = ¢. Since x is connected,

we may assume XIlA = ¢, whence A C‘M. We now disconnect C.

C==XUMUN=AJMBUNM

A # ¢ £ (BlJN);

(AnB)U(Anfi)c(AnB)U(Mnfi)=¢;

(EnB)u(XnN)c(1nB)u(finN)

llAn(BUN)

ll

‘
8

Kn(BUN)
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This contradiction establishes the first part of the Lemma.

If x is closed, then m = XuM = xuM =

(XUM) n (XUMUN) = XUM, since MnN = 95. Therefore, XUM

is closed. Likewise XLJN is closed.

Lemma 4.3: Let C be an indecomposable continuum and let K

be any proper subcontinuum. Then C-K is connected.

2323;: If C-K is disconnected, then C-K = MlJN, where

M, N are nonempty sets such that (MTIN) U (Mle) = C, by

Lemma 4.1. By Lemma 4.2, KlJM, KlJN are continua, and their

union is C. Since each is a proper subcontinuum, we have a

contradiction.

The next theorem is of major importance. It was

included in the Janiszewski and Kuratowski paper, and is

due entirely to Janiszewski [50, p. 210].

Theorem 4.4: In order that a T2 continuum 0 should be
 

indecomposable, it is necessary and sufficient that each

proper subcontinuum of C should be a continuum of conden-

sation [50, p. 212].

Proof: If C is decomposable, then C = CllJCZ, where 01

and 02 are proper subcontinua of C. Thus, C—Cl C 02, from

which U-Cl c:02 # C. Therefore, 01 is a prOper subcon-

tinuum of C that is not a continuum of condensation of C.

(This part of the proof is essentially as Janiszewski gave

it.)

Conversely, let C be indecomposable. Suppose that the

condition does not hold, so that there exists a proper sub-
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continuum K of c such that 611! ,é o. c = KU (C-K) = KU (62K).

By Lemma 4.3, C-K is connected, and hence so is C3K. Thus,

the latter set is a proper subcontinuum of C, and we have

contradicted the indecomposability of C.

Corollary 4.5: Let C be a non-degenerate T2 indecomposable

continuum. Then C is not locally connected at any point.

am: On the contrary, suppose there is a point ac—C

such that C is locally connected at a. There exists bEEC,

distinct from a, and there exist disjoint open sets U, V

containing a, b respectively. By local connectiviety, there

exists a connected open set K containing a and contained in

U. K is a subcontinuum of C, and Kflv z ¢ implies K £ C.

Moreover, Ktl(C-K) = 0 implies Kflajf = ¢. Thus, K is a

proper subcontinuum of C which is not a continuum of conden-

sation, contradicting Theorem 4.4.

The converse to the Corollary is false. (Neither this

statement nor the Corollary were part of the Janiszewski-

Kuratowski paper.) To see that it is false, consider the

continuum in E3 constructed as follows: Construct the Cantor

set on the x-axis between (1,0,0) and (—l,0,0) and on the

line segment joining (0,0,1) and (0,1,0). Next, construct

all the line segments determined by the points of the two

Cantor sets. The set so formed is a decomposable continuum

that is locally connected at no point.

By definition, an indecomposable continuum is not the

- union of any two proper subcontinua. Surprisingly, "two"

can be replaced by a "countable number", provided 0 is T2.
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We prove this by using Theorem 4.4 and the following lemmas.

Lemma 4.6: If a topological space is compact and Hausdorff,

then it is regular.

3355);: See Dugundji, [28, p.223].

Lemma 4.7: Let X be regular, xex, and let U be any neigh-

borhood of x in X. Then there is a neighborhood 0 of-x

such that er C: U C: U.

13322;: See [28, p. 141].

Lemma 4.8: Let C be a T2 continuum. Then 0 is not the union

of a countable number of closed nowhere dense subsets.

Proof: Let {All}?ID be a collection of closed nowhere

(:0

co

dense subsets of C, and suppose that C = U A1. Then

L=(

00

0 (C-Ai) z ¢, which we shall show is false.
t='

Since each Ai is closed and nowhere dense in C, C-Ai

is open and dense in C, for each natural number i. We shall

show that n (C-Ai) is dense in 0. Suppose U is any nonempty

open set in C. Then, for each i, Ur1(C-Ai) i ¢. Hence,

Uf1(C-Al) is nonempty and open in C. If x is any element

of this set, then by Lemmas 4.6 and 4.7, there exists an

open subset Bl such that x e 131 c '31 c U n (C-Al). Likewise,

there exists an open set B2 in C such that ¢ £ 82 C 32 C

Inductively, we obtain a sequence {Bnk'of nonempty

cpen sets such that?n C Bn_lfl(C-An), for each n. Since

h on

Since 0 Bi = Bk # C and C is compact, then n Eh # ¢.

A.“ 0:!
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31 c: U n (C-Al) and En c: (C-An) n 13m1 imply that

¢£3oBczun°° °°n=‘ n £L.(C'An)’ Therefore, 2..(C'An) is dense

09

and certainly not empty. Therefore, U An fi c,

03'

Theorem 4.9: A Hausdorff indecomposable continuum is not the

union of any countable collection of proper subcontinua.

Proof: If (K1}f' is any family of proper subcontinua

t:|

of C, then by Theorem 4.4, each K1 is nowhere dense in C.

Each Ki is closed, so by Lemma 4.8, C £ g: K1.

This result was used by Urysohn in a paper [116, p.

243] that we shall consider in the next chapter.

To help establish the rest of their results, Janis-

zewski and Kuratowski made the following important defi-

nition. The notation is theirs. Let C be a continuum, and

let aéc. P(a,C) = {c €Cla,c can be joined by a proper sub-

continuum of C} . Hence, P(a,C) = £69K“ , where a 6K“  
and K0, is a proper subcontinuum of C. Clearly, P(a,C) is a semi-continuum. P(a,C) is called the comppsant of a in C.

In their paper, Janiszewski and Kuratowski only used

the word "composant" when the above sets had the property

that for all a, b in C, P(a,C) = P(b,C), or else

P(a,C)r1P(b,C) = ¢. Current usage is largely as we have

given it, although in some cases "subcontinuum" is

replaced by "closed connected set"o The next theorem was

actually proved nearer to the end of the Janiszewski-

Kuratowski paper, but we shall make use of it earlier.

Theorem 4.10: If a and b are any two points of an indecom-





41

posable continuum C, then the composants are either disjoint

or coincident [50, pp. 217-218].

2223;: Suppose instead that P(a,C) £ P(b,C) and that

P(a,C) nP(b,C) ,é 95. Pick c eP(a,C)-P(b,C), and choose

d€P(a,C) nP(b,C). By definition of composant, there exists

a proper subcontinuum C1 of C such that a,c 6 01' Likewise,

there exist proper subcontinua 02 and C3 of C containing

a,d and b,d respectively. 01' 02' C3 being compact imply

that Cl U 02 U C3 is compact. d E 02 n C3 and a e 01 n 02 imply

that CltJCZUC3 is connected. Therefore, this union is a

continuum, and b,c €01 UC‘2 UC3 C 0. Since c$P(b,C), C is

irreducible between b and c. Thus, ClUCZUC3 = C.

Finally, C = CllJCZ, or else 0 = (CIUCZ)UC3 show that C

is decomposable.

Using the definition of "composant", Janiszewski and

Kuratowski restated Mazurkiewicz' theorems as follows:

Theorem 4.11:

(a) If a is any point of a metric indecomposable con-

tinuum C, then the set P(a,C) is of first category.

(b) For any point a in a metric indecomposable con-

tinuum C, the set P(a,C) is a boundary set in C.

(c) If C is a metric indecomposable continuum, then

there exist three points such that C is irreducible

between any two of them [50, p. 215].

M: (a): (adapted from [44, p. 140]) Let aeC be

arbitrary, and let P(a,C) be as above. C being metric
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implies that C- {a} is open and has a countable basis {on}

[28, p. 233]. Let Kn(a) be the component of 0-?5'n containing

a. ThenK (a) is connected, and, since C is compact, K (a)

is compact. Moreover, this subcontinuum is proper, since

Kn(a) C C-Un implies that

Knla) C C-Un C C-Un :4 0.

Therefore, K337 C P(a,C), for each n, so that we have

if“W e mac).

0n the other hand, if x6 P(a,C), then there exists a

proper subcontinuum C. of C such that 0' contains a and x.

Let pé C-C'; 0-0. is open in C- a , and p ,4 a shows that

p6 C-{a}. Therefore, p eon, for some n such that On C C-C'.

Since an C C-C', 0-011 2 0'. Then by definition of 18(9),  
we have C' C %(a) C C-Un. Therefore, xeP(a,C) implies

m

that xegl(a). Hence, P(a,C) C U“ KnIa). By Theorem 4.4.

each X (a) is nowhere dense in C, and thus P(a,C) is a

first category set.

w

(b): By (a), P(a,C) = U“ Knta), so we have C-P(a,C) =

a:

- - d 1 cc a is2:‘(C K 4a)). Each C Knla) is open, an , s n Kn( )

nowhere dense, each is dense. By the proof of Lemma 4.8,

m

n (C-K (a!) is dense. But then C-P(a,C) being dense shows
“3'

that P(a,C) C C = C-Pla,C).

(c): By (a), each P(a,C) is the union of a countable

number of closed nowhere dense sets. If there were only a
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countable number of composants in C, then C would be the

union of a countable number of closed nowhere dense sub-

sets, violating Lemma 4.8. Therefore, C has uncountably

many composants. By Theorem 4.10, the composants are dis-

joint, so choose exactly one point from each one. By the

definition of "composant", C is irreducible between any

two of these points.

The above proof shows that a metric indecomposable

continuum has uncountably many composants, and that it is

irreducible between each two points of a certain uncount-

able set. Mazurkiewicz used the same technique in Euclidean

space, although he seemed to be satisfied with talking about

three points instead of uncountably many. This may have

been motivated by the fact that the converse needs only

three points. He may have been aware of this, since Janis-

zewski and Kuratowski established the converse as well as

suggesting the original problem to him. Mazurkiewicz later

showed [91] that a metric indecomposable continuum has as

many composants as there are real numbers.

Using Theorem 4.11, Janiszewski and Kuratowski were

able to establish the following necessary and sufficient

conditions for a continuum to be indecomposable.

Theorem 4.12: The following are equivalent:

(a) A metric continuum is indecomposable.

(b) For each a6 0, there is a point x6 C such that C

is irreducible between a and x.

(c) There exists a 6C such that P(a,C) is a boundary
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set in c; that is, P(a,C) c UIPTEIUT.

(d) There exist three points of C such that C is

irreducible between any two of them [50, p. 215].

2222f: That (a) implies (b), (c),(d) follows from

Theorem 4.11 (a), (b), (c) respectively.

Conversely, suppose that C is decomposable; that is

assume that C = CllJC2, where 01’ 02 are proper subcontinua.

To establish that (b) is now false, first choose a6‘lelCZ.

Then Cl C P(a,C) and 02 C P(a,C). Therefore, we have that

C = ClUC2 C P(a,C), so that C is not irreducible between

a and any other point of C.

Statement (c) is also false now. Let as C be such that

(0) holds, and without loss of generality, suppose 8.601.

Since 01 c P(a,C), then C-P(a,C) c C-01 c 02. 02 being

closed shows that C:P(5:CT C C2' If (c) were true, then

P(a,C) C CZPTETCT would imply that C1 C P(a,C) C C:TW§:CT C

C Thus, we would have Cl C 02’ which would imply that2.

C = CllJC2 = 02' This contradicts C £ C2. Therefore,

P(a,C) ¢ C:PTETCT, for any a6 C. Thus, (0) is false.

Finally, let a, b, c be any three points of C. With-

out loss of generality, a, be 01' Therefore, C is not

irreducible between a, b. This shows (d) is false.

Corollary 4.13: Let C be a metric continuum. C is indecom-

posable iff it is irreducible between some point p5 C and

each de D, where D is a dense subset of C.
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2522:: If C is indecomposable, then by Theorem 4.11 (b),

C = C:P(§TCT. Conversely, if D is any dense subset of C,

and if C is irreducible between some point p and all points

of D, then C-P(p,C) D D. Thus, C:PTETCTID D = C, so that

P(p,C) C C:PTETCT. By Theorem 4.12 (c), C is indecompos-

able.

This result was used often in the literature, but it

was never explicitly stated nor proved, possibly because

the proof is not difficult.

As an interesting application, Theorem 4.12 (d) can be

used to construct an indecomposable continuum in the manner

discussed in Hocking and Young's Topology, [44, p. 142].

This example was not part of the Janiszewski-Kuratowski

paper.

Let pl, p2, p3 be any three distinct points of E2.

Construct C1, a finite simple chain of connected open sets

from pl to p3, containing p2, as shown:
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Inside 01’ construct another finite chain of open con-

nected sets, 02’ from p2 to p3 containing p1. Inside 02’

construct another such chain C3 from pl to p2 containing p3,

as shown in Figure 4.1.

 

 
 

 
Figure 4.1

In general, C3n+l is a chain from pl to p3 containing

p2, C3n+2 is a chain from p2 to p3 containing pl, C3n+3 is

a chain from pl to p2 containing p3, and for all k, we have

Ck C Ck+l'
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no
no

h = = -
Note t at C 2:.C3n+1 gu’C3n+2 — fl. C3n+3‘ Moreover

W

o o
o

w
o

2:.C3n+l is irreduchble between p1 and p3; Ll“ C3n+2 is

as

no C3n+3 is irreducible bet-

irreducible between p2 and p3;

I):

ween p1 and p2. Therefore, C is indecomposable by Theorem

4.12.

Although we have explicitly given only three points,

p1, p2, p3, such that C is irreducible between any two of

them, it follows from the proof of Theorem 4.11 (c) that C

actually has uncountably many such points. (In more current

terminology, the continuum C is said to be cellular, since

it is the monotone intersection of a countable number of

2-cells.)

Janiszewski and Kuratowski established a further char-

acterization of indecomposability in terms of composants:

Theorem 4.14: In order that a metric continuum C should be
 

indecomposable, it is necessary and sufficient that it con-

tains two disjoint composants [50, p. 219].

2332:: By Theorems 4.10 and 4.11, a metric indecompos-

able continuum has uncountably many disjoint composants,

and hence certainly has two.

Conversely, suppose P(a,C) and P(b,C) are two dis-

joint composants of C. Assume C is decomposable: C =

CllJCZ, where Cl and C2 are proper subcontinua of C. Either

Cl C P(a,C), or else 02 C P(a,C). But, in any case, we

have C1002 C P(a,C). Likewise, 01002 C P(b,C). There-

fore, ¢ ¢ ClnC2 C P(a,C)rlP(b,C), contradicting the

 





 

hypothesis of disjointness. Hence, C is indecomposable,

and the theorem is established.

In the last three pages of their monumental paper,

Janiszewski and Kuratowski considered bounded closed con-

nected sets, while the rest of their results held (at least

in E2) regardless of boundedness. The principal theorem

established in this section may be stated in our terminology

as follows: "Each composant of a T2 continuum is dense."

Their proof was done via metric properties, but we give a

more general argument.

Definition: Let X be a topological space. Define a relation

"Aw" on X by Xaly iff there is no decomposition of X into

two nonempty disjoint, open subsets, one of which contains

x and the other of which contains y.

It can easily be seen that "ha" is an equivalence

relation. The equivalence classes are called the SEEEE'

components of X, and we denote the quasi-component con-

taining XGLX by Q(x). Moreover, Q(x) is the intersection

of all closed open subsets of X containing x [76, p. 148].

Furthermore, the component of x, C(x), is contained in Q(x).

For if A is any closed open set containing x, then C(x) C A,

and hence C(x) C Q(x). To see that C(x) C A holds, suppose

C(x) ¢ A; then C(x) = AlJ[C(x)-A], contradicting the con-

nectedness of C(x).

Lemma 4.15: In a compact T2 space, the components coincide

with the quasi-components.

Proof: By the above remarks, we have C(x) C Q(x), for
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each x6 X. By the maximality of C(x), it suffices to show

that Q(x) is connected in order to establish the opposite

inclusion.

Suppose Q(x) = AlJB, where A, B are nonempty, disjoint,

closed subsets of Q(x). Then A, B are closed in X, since

Q(x) is closed in X. Therefore, A, B are compact, since X

is compact. X being T2 implies there exist disjoint open

sets in X, U, V, such that A C U, B C V [28, p. 225].

Let M = X-(UUV); M is closed in X. Let {EJMQ be

all the closed open sets in X containing x, so that Q(x) =

SHE“. Now,2( (M0F“)=an(1ro, =Mn(AUB)=¢. By

applying De Morgan's laws to the definition of compactness,

it follows that there exists [me] n
(:l

D

such that n(M11£g.) =

C:: "
n

¢. Therefore, 0, F“, C UlJV.
L‘ L

'\

Claim: (0 Fu- )llU is closed open in X.
—-_' \': I L

~
3
3

F

'\

~I a, is certainly closed open and (?fl F“, )rlU is

A _ .

clearly open. Moreover, (0~ F“; )[1U 15 closed, and

L"

Q n _ n

Q F )nU= NF,“- nU), since 9:,ch cqu and Unv:
t |

( q;

¢. Therefore, the claim holds.

'\

There exists we Q(x) such that we QafFfit flU,s1nce

A u I l

¢ £ A C (Qn Fu; ) n U. ¢ # B implies that there ex1sts a

n n

zeQ(x) such that z eX-f] F“; 0U. But then t]:- Fou. nU and

L”

its complement are nonempty, disjoint, open subsets of X,

one of which contains w and the other of which contains 2,

contradicting the fact that Q(x) is a quasi-component.
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Therefore, Q(x) is connected, and hence Q(x) C C(x).

We use these results to establish the following impor-

tant lemma. Janiszewski and Kuratowski also established it,

although they did not use the "quasi-component technique".

Lemma 4.16: If K is a proper subcontinuum of a T2 continuum

C, then there exists a subcontinuum L such that K'E L CFC

[50, p. 220].

2322;: From C being compact and T2, it follows that C

is regular. Then x5 C-K and K closed imply there exists an

open V such that x 6V and VnK = C. Therefore, K C C-V,

and 6:? # C. Let L be the component of 6:? containing K. L

is connected , closed in the closed set 0-7 and hence also

closed in the compact set C. Thus, L is a proper subcon-

tinuum of C. It remains to show that L £K.

 

0n the one hand, K n C-C-V = 0, because ¢ = Kfl(C-C-V)==

 

 

K n C-C-V : K n c-c-V. 0n the other hand, suppose that

LflC-C-V = C. Since C is compact and T2, C-V is compact

 

and T Therefore, L is a quasi-component and hence is the
2.

intersection of all closed open sets in C-V containing a

given point ye K, by Lemma 4.15. Thus, L = $68G? , G9

closed open in C-V, and y<.GG . By assumption, we have

 

 

(nQGp) n 0-5:? = p, whence “(.(Gfi 00-63) = 95. As before,

 

mm m‘ ’—

there exists a set [05].»; such that Q G9; nc-c-V = p.

 

am _ ’m ..

In such a case, C = n GP' U [(C-V - T Gp. ) U C-C-V],

\ L lv
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which contradicts the connectivity of 0. Therefore, we have

 

Ln 0-53, and hence L ,é K.

The above proof is patterned after several in volume

two of Kuratowski's Topology [76].

Theorem 4.17: In a T2 continuum, each composant is dense

[50, p. 221].

‘Egggf: PTETCT is a continuum, since it is connected

and closed in the compact set C. If PTEICT # C, then it is

a proper subcontinuum of C containing a. Therefore,

P a, C P(a,C), whence P(a,C) is closed and is therefore

a continuum. But, since P(a,C) is then a proper subcon-

tinuum of C, there exists a prOper subcontinuum K of C

properly containing P(a,C), by Lemma 4.16. However, by

definition of P(a,C), K C P(a,C). Therefore, P(a,C) is

dense.

Corollary 4.18: In a T2 continuum, a composant is not a
 

proper subcontinuum.

Proof: This was shown in the proof of Theorem 4.17.

Corollary 4.19: If C is a metric indecomposable continuum,

then for any aeC, P(a,C) = C; for any a e C, P(a,C) C

C-P4a,0$ = C.

Proof: Theorem 4.17 establishes the first statement,

 

and the second follows from Theorem 4.11 (b).

Thus, an indecomposable continuum in a metric space

is "very irreducible" in the sense that given any point

as C, there is a point x «:0, arbitrarily near 3, such that

C is irreducible between a and x. For a given a 60, the
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set of all such xé=C is dense in C. 0n the other hand,

given any a6 C, C is not irreducible between a and all

points of a dense subset.

Furthermore, an indecomposable continuum is "very con-

nected" in the sense that any proper subcontinuum may be

removed without disconnecting it (Lemma 4.3). Knaster and

Kuratowski proved [64, p. 37] a similar result which showed

that any point could be removed from a (non-degenerate)

indecomposable continuum without disconnecting it. R. L.

Moore established an even stronger result for Hausdorff

spaces along these lines.

Theorem 4.20: Let C be a T2 indecomposable continuum, and
 

let K be any proper subcontinuum. If L is any subset of K,

then C-L is connected [100, p. 361].

2322:: If C-L is not connected, then by Lemma 4.1,

C-L = AlJB, where A, B are nonempty and (ArlB) U (Ale) = C.

By Lemma 4.3, C-K is connected, so C-K C A and B C K. By

Theorem 4.4, C = C:K C A. Therefore, K C‘A, and hence

B c:K, which is a contradiction. Thus, C-L is connected.

For a related result, see p. 76.

Janiszewski and Kuratowski also established two other

results for indecomposable continua. We shall present them,

but since they play no role in our later work, we do not

prove them.

Theorem 4.21: Let C be a metric indecomposable continuum.

 

Each subcontinuum situated in a composant is a boundary set

with respect to that composant [50, p. 221].
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The following is due to Mazurkiewicz.

Definition: The relative distance between x,ye S is

dr (x,y) = inf8(E), where 6(E) is the diameter of E, and

the infimum is taken over all connected sets E C S con-

taining x,y. The relative diameter of A C S is 5&(A) =

sup dr(x,y), for x,ye A. The oscillation of S at p68 is

10(p) = inffl5r(A), where A runs over all subsets of S such

that pe Int (A) [87, p. 170].

Theorem 4.22: For any point of an indecomposable continuum

C in a metric space, the oscillation of C at the point is a

constant and equal to the diameter of C [50, p. 217].

As our final result of the chapter, we prove Knaster's

first semi-circle example (see p. 24) really is an indecom-

posable continuum (of p. 161). Let DO be the set of semi-

circles with non-negative ordinates, centered at (l/2,0)

and having as endpoints the points of the Cantor set, F.

For n7/1, let Gn be as before, and let Dn be the set of

semi-circles with non-positive ordinates, centered at

(5/[2- 3n],0) and having as endpoints the points of Gn'

Then the set B = U,Dn will be shown to be an indecomposable

0

continuum.

Lets:

_
c
8

Sn’ where Sn is an infinite sequence of semi-

circles used in constructing B, satisfying:

(a) (0,0) and (1,0) are in S1;

(b) for nzrl, SnnSn+1 is the point of F common to

both.

Let K represent the points of the Cantor set,F§ which are

___— _.-L:. -o
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endpoints of some Jn,k (see p. 9 for the notation). It can

be shown by induction that K c:s; that is, for each "end-

point" in F, there is a semi-circle Sm having it as an end-

point. The proof that F is perfect shows (p. 12) that K is

dense in F. Therefore, K c:s and K = F imply that 8’: B. S

is clearly connected, and hence so is B. S is compact by

the Heine-Borel theorem, so we have shown that B is a con—

tinuum.

We shall next show that F31? = F. Given xeK, and e 70,

we must find ye F-K such that )x-yk g . Since x6 K, then

b

x = «—E, where bne:{0,2}, and there exists N such that

3

n3)

for all n7; N, bn = 0, or else bn = 2. Choose Nl7/N so large

that l/(3N‘ '1)<re . .Any element y in F-K has a ternary

so

an .

expansion of the form y = _H' For the des1red ye F-K,

3

I]: l

set

bn if n< N1

= ' ’ ven and Nan 0 if n 18 e 7/ 1

2 if n is odd and 79 N1.

00 an co 00

Th I an bn ‘ l——an-bn| 4 3— =
en 3(- = — " — '- n

n: ' fl=| {Li/V. “‘ A’.  

1/(3N: '1) < e-
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Since F:K = F, then B:§ = B. Therefore, B-S is dense

in B. By Corollary 4.13, it suffices to show that B is

irreducible between (0,0) and each point of B-S. To do

this, we first prove the following

Lgmma: If L is a proper subcontinuum of B such that LflS £

C, then there exists n such that L C Q 81'

M: Let qeLnS. Since S is dense in B, there is a

point pE'S in the nonempty open set B-L. In fact, p can be

chosen in such a way that if A denotes the arc in S between

(0,0) and p, then qetA. This can be done by simply adding

the are from (0,0) to q to the continuum L.

We shall next show L C A. If not, then there is a

point re L-A. Let n be a natural number such that the
0

distance from p to L exceeds 3.no (and hence the distance

0"!

from r to A exceeds 3'n0) and such that A C U Si'

Consider the band P formed by all the circles of radius

4/(3n0+2) centered on A. The boundary of P is composed of

two lines parallel to A and two semi-circles centered at

(0,0) and p respectively.

'fl- ‘

\

4’.— ~\ ‘

I, \ ‘

’1 I \\

l / P \ \

. ’ l ‘\ \
/ "\

I l I’ "

I 1’ \ \

I I / / "

I I ’ / ' \ ‘

I I I I ’ \ ‘
, ' ' , l/ I 4 ,

' \ q ' I | , .

\svl \ ’/ \\ / / X‘QXIS

" \
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The first three of these lines are disjoint from B, for

their points of intersection with the x-axis are in the

intervals that were deleted in constructing F (since A C
(IO-l

U Si). The fourth is disjoint from L, since the distance
|

from p to L is greater than l/(3n°)> 4/(3n°+2).

Therefore, the entire boundary of P is disjoint from L.

,. 9'

31,

Since L is a continuum, we either have L C P or LflP

—
c
:
~

II

contradicting r e L-P and q e L n P. Therefore L C A C

which establishes the lemma.

To verify the irreducibility of B between (0,0) and

any point of B-S, assume that there exists a proper subcon-

tinuum L of B such that (0,0) L, and ye L, for some ye B-S.

Then LrIS 4 ¢, and Lr1(B-s) # C, so that L ¢ 5. This

contradicts the lemma. Therefore, we conclude that no such

L can exist. Thus, B is irreducible between (0,0) and each

point of B-S, which proves the indecomposability of B.

The above proof is slightly modified from the one that

appeared in a paper by Knaster and Kuratowski [64]. They

were dealing with closed, connected, non-bounded sets in En.

This bounded example and proof were included because they

wanted to invert B-(1/2,l/2) with respect to a unit circle

centered at (l/2,l/2) to obtain a closed, connected, non-

bounded indecomposable set in E2.

Thus, the proof of the indecomposability of Knaster's

first semi-circle example appeared two years after the

example itself.
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We conclude this chapter with a few historical obser-

vations. Zygmund Janiszewski made several great contri-

butions to mathematics in general and to continua theory in

particular [49]. His thesis established many results on

irreducible continua that continue to be of use today. Of

course, the above paper with Kuratowski developed many of

the fundamental properties of indecomposable continua.

Janiszewski was also very instrumental in establishing both

the Polish school of mathematics and the journal, Funda-

mgnta Mathematicae. Sadly. the first volume carried his

obituary. He died January 3. 1920 at the age of 32, as a

result of a long illness.

The second remark concerns the Fundamenta Mathematicae itself. It was founded by Janiszewski, Mazurkiewicz, and

Sierpinski to be a journal dealing with set-theoretic prob-

lems written in French, English, German, or Italian. This

restriction of topic did not put the journal out of print

for lack of papers, as some mathematicians of that day had

feared. It even survived Nazi occupation in World War II,

although many of its contributors did not [78].



  



 

CHAPTER 5

INDECOMPOSABLE SUBCONTINUA OF IRREDUCIBLE CONTINUA

In this chapter we shall consider indecomposability as

a special case of irreducible continua theory. In partic-

ular, we shall exhibit some conditions that are both neces-

sary and sufficient for an irreducible continuum to be

indecomposable. This will give a partial answer to the

question:"How much stronger is the condition of indecompos-

ability than that of irreducibility?" Moreover, the inter—

relations between the two concepts will be more clearly

exposed.

Historically, the papers cited here date from 1922 to

1927. and all but one of them were written, at least in

part, by Kuratowski. Some of the results obtained in those

papers were valid only for non-bounded sets in Euclidean

spaces. These are omitted, not only because such sets are

not continua by our definition of a continuum, but also

because they do not contribute to our later developments.

The first result to be considered here was proved by

Paul Urysohn [116, p. 226] in 1926. His work was done in a

general metric space under the same definitions that we use

today. His definition of "compact" is actually our term

"countably compact", but there is no distinction between

58
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these concepts in a metric space [28, p. 230]. It is

interesting to note that this is the first paper we have

discussed in which the definitions agree with current usage.

Theorem 5.1: In order that a metric continuum C, irreducible

between a and b, should be indecomposable, it is necessary

and sufficient that it contain a semi-continuum S such that:

(a) either a or b is in S;

(b) S}: C;

(0) C38 = C.

2322:: If C is indecomposable, then by Theorem 4.12, C

is irreducible between a and some erC. Set S = P(a,C).

By Theorem 4.11, 5:8 = C, and by Theorem 4.17, S = C.

On the other hand, suppose the conditions of the theo-

rem are satisfied, and without loss of generality, assume

aé S. We claim that P(b,C) GS = C. If not, choose x in

the intersection. Since xe S, there exists a continuum

K C S, with a, x6 K. x€P(b,C) implies that there is a

continuum K. C P(b,C), with x, bEFK'. 0 being irreducible

between a and b implies c = K UK'. Therefore, c-s c C-K c

K', from which it follows that c = as c: K' c: P(b,C). But

then a €P(b,C), which contradicts the irreducibility of C

between a and b. Thus, the claim is established.

Since P(b,C)flS = C, S C C-P(b,C). Therefore, we have

ma s = c. By Theorem 4.12, c is indecomposable.

(This proof is essentially as Urysohn gave it [116, pp. 226-

227].)

Urysohn notes that as a necessary condition, the theo-

 

 



   



 

rem is not very interesting. However, it does provide pre-

cisely sufficient conditions, which he shows by removing

each condition one at a time and constructing counter—

examples.

As mentioned earlier (p. 29), he used this theorem to

outline a proof of the indecomposability of the Lakes of

Wada. Essentially, he lets MS play the role of S, and he

states that the irreducibility of C = MSUML U MP follows

from a convenient distribution of the canals [116, p. 232].

We next consider several results which Kuratowski

established in [69]. This work was the major portion of

his thesis, written under the direction of Mazurkiewicz and

Sierpinski in 1920 [69, p. 201]. It also contained the

previously discussed Knaster's "semi-circle example" (pp.

24, 53), and is seemingly the only paper to use results of

Yoneyama.

Using Kuratowski's notation, let 0 be a T2 continuum

irreducible between a and b, and define R(a,C) to be the

empty set together with the set of all subcontinua L of C

containing a such that L = 6:65L. The equation simply

requires that L = Tit—TL), a condition sometimes referred

to by saying that L is a regular set. This is not to be

confused with the separation axiom of the same name.

Before we can prove any of the major theorems, we

must establish some background results.

Lemma 5.2: Let C be irreducible between a and b, and let K

be a closed connected subset. Then C-K is either connected
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or else it is the union of two connected sets, one of which

contains a and the other of which contains b. If aEK, then

C-K is connected [69, pp. 202-203].

‘22222: Suppose C-K is not connected. Then C-K = PlJQ,

where P, Q are nonempty, disjoint, open subsets of the open

set C-K. By Lemma 4.2, KlJP, KlJQ are closed connected

subsets of C, and hence are subcontinua. But then we have

C = (KUP) U (KUQ). If aeK, then either KUP or KUQ is

a proper subcontinuum of C containing a, b. This violates

the irreducibility of C. Therefore, if aeK, then C-K is

connected.

Since a, b are not both in either KlJP or KlJQ, we may

assume aeP, and b 6Q. Hence, C-(KUP) = Q is connected by

the first part of this lemma, and likewise P is connected.

Lemma 5.3: If A, B are two closed connected subsets of C,
 

with C irreducible between a, b, where a6 A, b EB, then

C-(AlJB) is connected [76, p. 193].

2322:: We may assume Ale = C, for if not, then AlJB

is a subcontinuum of C containing a, b. Thus, C = AlJB by

the irreducibility of C, and consequently C-(AlJB) = C.

C-A is connected by Lemma 5.2. Suppose that the set

(C-A)-B = C-(AIJB) is disconnected. Then it is the union

of two nonempty sets U, V such that (UIIV) U (UTIV) = C.

By Lemma 4.2, BlJU and BlJV are connected. Hence, their

closures, BlJU, BlJV are connected.

Since C = (AlJB) U TC:KT:B, and AIIB = C, then

AllTC:K7:B s C. For if not, then A and B11T62K72B show 0
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is disconnected. Moreover, C C AIITC:K7:B = AIIUTTV implies

that AIIU C C, or Ath C C. Without loss of generality,

suppose AIIU C C. Therefore, AlJUlJB is connected and con—

tains a, b. By the irreducibility of C, C = AtJUlJB.

Therefore, V C (C-A)-B CIU; however, VI]U = C, so we must

conclude that V = C. This contradicts the fact that V C C.

Hence, C-(AlJB) is connected.

Lemma 5.4: Let C be a continuum irreducible between a,b,

and let K be a subcontinuum. Then Int (K) is connected

[76. p. 194].

2522;: If K = C, then the result is clear. So suppose

K C C. By the irreducibility of C, not both a. b are in K;

assume a 5 0-K.  If C-K is connected, then so is C-K. In this case,

Lemma 4.2 shows that C-C-K = Int (K) is connected. If C-K

is not connected, then by Lemma 5.2, it is the union of two

connected sets, P, Q with a6 P, and be Q. Let A = F and

 

B = 6 in Lemma 5.3, and it follows that C4EIK = C-PlJQ =

C-(FIJU) is connected.

We need two more sequences of lemmas to enable us to

establish the major results, Theorems 5.14, 5.16, 5.17.

Lemma 5.5: Let S be a topological space with subsets A, B.

Then I-B‘c:I:B [68. p. 183].

23932: Let xeK-B, and let 0 be any neighborhood of x.

We must show that there is a ye 0 such that ye A and y ¢ B.

But, there is an open set U, x eU, such that UrlB = C.

Since xe 0 CU, this intersection is nonempty and open. So

     ;______ .L
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choose any yé’OflU.

It is easily seen that the following formulas hold.

Lemma 5.6: For any sets A, B, C:

(a) (A-C)-(B-C) = (A-B)-C;

(b) (A-C) U (B-C) (AlJB)-C;

(c) (A-C) n (B-C) (AriB)-C;

(d) (A-B)-(A-C) = A n (C-B);

(e) (A-B) u (A-C) A-(Bnc);

(f) (A-B) n (A-C) = A-(BLJC).

Finally, we prove a sequence of lemmas which will show

 

 

 

Int KIT? = Int K'u Int Y.

Lemma 5.7: Let S be a tepological space. If X, Y are

nowhere dense in S, then so is XlJY.

'Prggf: Since S:X = S = S:F, then 8-? = S:FAY C (S:F7:F,

by Lemma 5.5. Thus, 3 = 5:? c:§:7§55§5'czs, from which the

Lemma follows at once.

Lemma 5.8: If X is nowhere dense in a topological space S,
 

and if 0 is open in S, then Xf10 is nowhere dense in S.

Proof: XIIO crx implies s-KWTC:= s-K': X 2 Xr10.

Lemma 5.9: X is nowhere dense in a topological space S iff
 

Int K = p; X is a boundary set in 3 iff Int X = C.

Proof: The result is obvious from the definitions.

Definition: X is locally nowhere dense (respectively a
 

boundary set) at pars if there is a neighborhood 0 of p

such that Of1X is nowhere dense (respectively, a boundary

set).

Lemma 5.10: X is nowhere dense at p iff X is a boundary set
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at p.

'Prggf: If X is not nowhere dense at p, and if G is any

open set containing p, then Gle is not nowhere dense. By

Lemma 5.9, there is an open set H such that C C H C G7TX.

Therefore, H = HFYCTTX<:'HTTG7TX, since H is open. Hence,

HnG C C. Then C C HnGcGnmcGnK‘ and Lemma 5.9

show Gle is not a boundary set. Hence, X is not a boundary

set at p.

Conversely, if X is not a boundary set at p, and if G

is any neighborhood of p, then there exists an open set H

such that C C H C Gle. Since G is open, C C H C Gle C

C7TX. Therefore, X is not nowhere dense at p.

Lemma 5.11: Int X is the set of points of S where X is not 

locally a boundary set.

m: pem and G any neighborhood of p imply that

GnInt X C C. Then C C GnInt X c an shows that X is not

a boundary set at p.

On the other hand, p6 s-m implies (S-Int X) n x is

a boundary set, since Int [(S-m) n X]: Int (S-Int X) n IntX

(s-m) n Int x = C.

Lemma 5.12: Int X’is the set of points of S where X is not

 

 

locally nowhere dense.

Proof: The result is immediate from Lemmas 5.10, 5.11.

  

Lemma 5.15: Int *XUY = Int 'K' u Int Y.

Proof: One inclusion is easy and requires none of the

above machinery.

    

s-EZ-K u s-fi = (8-33?) u (s-s-Y) = s-(ETK— n 33') c:
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____

s-[(s-K) n (s-Y)] .-. S-S-(XUX).

 

 

  

Conversely, if p¢Int X, then by Lemma 5.12, X is

locally nowhere dense at p. Therefore, there is a neigh-

borhood O of p such that OIIX is nowhere dense in S. Like-

 

wise, p¢ Int X implies there is a neighborhood U of p such

that Ule is nowhere dense.

Then Xf10flU and Y!]0[]U are nowhere dense in S by

Lemma 5.8. By Lemma 5.7, we have (XIlOflU)lJ(Yf]OI]U) =

(XlJY) n (OflU) is nowhere dense. Therefore, (XlJY) is

nowhere dense at p, and hence by Lemma 5.12, pfim.

The desired inclusion follows by taking complements.

This last sequence of lemmas has been adapted from

material in Volume I of Kuratowski's ToEology [75]. We may

now return to indecomposable continua theory.

Definition: Two members K1’ K2 of a family of sets 7(aform

a jump [saut] if for each Kf‘Hf such that Kl C K C K2, then

either K = K or else K = K2.19

Theorem 5.14: If K is a nonempty indecomposable continuum
 

contained in a T2 continuum C which is irreducible between

a and b, then K is either a continuum of condensation or

 

else K==C-C-K. In the latter case, there is a member R0 of

R(a,C) such that R0 and ROlJK form a jump [69. pp. 210-212].

Proof: C-K C C-K implies C-C-X C'K. Then, since K is
 

 

closed, C—C-K c K. By Lemma 5.4, C-C-K is connected, and

 

 

hence so is C-C-K. Therefore, C-C-K is a continuum con-

tained in K. If it is a proper sub-continuum of K, then,
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since K is indecomposable, Theorem 4.4 requires that C-C-K

be a continuum of condensation of K and hence of C. If it

 

is not proper, then K = C-C:X.

We now establish the second part of the theorem. If

K = C, then R0 = C will do. For let R be any member of

R(a,C), C C'R C CLJC. If R = C, there is nothing to prove.

If R .4 c, then by Theorem 4.4, “diff = 0. But, ReR(a,c)

 

implies c-‘cT-‘B = R. Therefore, R = 6273 = C.

We now assume that KC C, and that a6 C-K. By Lemma

5.2, 53X = FlJQ, where Ple = C, and P, Q are open in the

open set C-K. Furthermore, a (P, and either b GO or else

Q = C. We shall show that in each case, R0 = F will do.

We must first show that Fe R(a,C). Clearly F is a

subcontinuum of C which contains a. It only remains to show

 

F = C-C-F. As in the first part of the proof of this theo-

 

rem, C-C-F C'F. P C'F and P open in C imply C-P = C-F D

C:F. Therefore, P C C-C-F, from which the desired result

follows by taking closures.

The next step is to show FUK ER(a,C), and the first

result needed for this is that FlJK be a continuum con-

taining a. To establish this, it suffices to show that

FnK C C. Since C-K = PUQ, with aEC-K and either Q = C

or be Q, then C:X is a continuum containing a and b or else

a and not b. In the first case, the irreducibility of C

shows C = C3K. ,Therefore, F = FlJQ = C D K, and hence

FflK = K C C. In the second case. F—P C C, for if not,
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then P is an open and closed nonempty subset of C which is

proper since b6 Q. This contradicts the connectivity of C.

Suppose that FrlK = C. Then F C C-K. LetlceFLP; then x6 Q

or xe K. But, x eK implies xfC-K, whence F C C-K. 0n the

other hand, if er, then xCF, since Pr) Q = C. Therefore,

BnK C C.

  

As before, FlJK D C-C-(FLJK). For the opposite inclu-

 

 

—C-F imply thatt
d
l

Qsion, K = C—C-K and

FUK = (c-'C-_K) u (C-E)

 

= c-(fi n 0-?)

 

c C—[(C-K) n (05)]

C-C-(K UF).

We shall next show that F and FlJK form a jump. Let

s €R(a,C) be such that '15 c s <: FUK. We must show that s =

F or else S = FlJK. Since S €R(a,C), 8.68. We wish to show

that S:F is connected, and this can be done by applying

Lemma 5.2, provided S is irreducible between a and some

other point. Thus, we first show that S is irreducible

between a and all points of Fr(S). Note that Fr(S) = C

iff S is closed open in C iff C is disconnected, provided

C C S C C. Therefore. Fr(S) C C.

To prove the irreducibility of S, let F be any subcon-

tinuum of s such that a 6F, and FnFr(S) C C. We must show

S C F. Ff]Fr(S) C C implies Ff](C:S n S) C C. Hence, in

particular, FrlC-S C C. Moreover, by Lemma 5.2, as s
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implies 0-8 is connected. By the irreducibility of C,

bé‘C-S. Therefore, FlJC-S is a continuum containing a, b
9

and thus must be C. Consequently, C-C-S C F, from which it

 

follows that S = C-C:S'C’F. Thus, S is irreducible between

a and all points of the nonempty set Fr(S).

By Lemma 5.2, S:F is connected, and hence is a subcon-

tinuum of K, since S C FlJK. By Theorem 4.4, S:F is either

not proper, or else it is a continuum of condensation. That

 

is, either S-F = K, or else K-S-F = K. In the first case,

FUK = Bus—:‘PcPus = s, so that s = FUK.

The other case is slightly more complicated. We shall

investigate it with the help of the following lemma, which

will also be useful in proving the next theorem.

Lemma 5.15: Let T be any topological space, let A be a sub-

 

set such that A : T-T-K, and let B be closed in T.

 

(a) Then A-B = A-A-K-B.

 

(b) Moreover, if D C'A is such that D = A-A-D, then

 

D = T-“"'T-D [68, p. 184].

 

Proof: (a) Since A-_A-B c A-ATB, then it follows that

 

 

A-B = A-(A-A-B) D A-A-A-B. Therefore, A-B D A-A-A-B. On

the other hand, A-K:F C A-(A-B) by Lemma 5.5. Consequently,

 

A- -B CIF = B, whence A-A-A:F D A-E.

  

(b) We need only prove that T-T-D = A-A-D. Let x be

 

an element of T-T-D, and let 0 be any neighborhood of X in
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T. We must show that Ofl(A-A:D) C C. That is, we must

prove that there is a 260 such that z<A and zéf—F. But,

since OI](T-T:F) C C, there exists a we 0 such that we T and

wg‘m. (Hence wCATB.) ow implies that we T-fi =

Int D C D. Therefore, weD C A, and waTD, so 2 = w will

do.

On the other hand,

 

 

T-T-A - T-T- C (T—T-A) - (T-T~D)

 

T n [(TTD') - (TTKH

= T-D - T-A

= KID,

Since A = T-T-A, we have that A-T-T-D C A-D, by the above

 

equations. Therefore, T-T-D D A-A-D, whence T-T-D D A-A-D.

This concludes the proof of the Lemma.

Applying the Lemma with T = C, A = S, B = F, we con-

 

clude that s-P = s-s-s-P. Then in (b) of the Lemma, taking

 

D = S-F, we get that C-C-S-F = S-F. Furthermore, since

S-F C K, and K = C-C-K, we can apply the proof of (b) with

 

  

t
d
l

T = C, D = S-F, and A = K, to conclude C-C-S- = K-K-S-F.

  

Therefore, S-F = K-K-S-F. Since K = K-S-F, the equation of

the last sentence shows that S = C, whence S C F. Thus,-F

the second case reduces to S = F. Therefore, F and FlJK
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form a jump, and the theorem is established.

The above proof is not the original one, which is even

more complicated. This proof is from Kuratowski's Topology

vol. II, with the (many) details supplied.

As a converse to the above theorem, we have

Theorem 5.16: If the elements R0 and R1 of R(a,C) form a

jump, then F33F0 is either empty or an indecomposable con-

tinuum [69, p. 211].

2322:: Assume that RO C R1. since these elements form

a jump, and consequently one such inclusion must hold.

Moreover, we may assume R0 C R1, for if not then FI:FO = C.

Since as R1, F;:FO is connected by the same argument

that showed S:F is connected in Theorem 5.14. Thus, fil:fio

is a continuum. Suppose that Rl-Ro = AlJB, where A, B are

subcontinua of Rl-RO. We must show that one of them is

 

Rl-RO .

-X- — * .__. * *

Let A = C— -A, and B = C-C-B. By Lemma 5.4, A , B

 

are connected. By Lemma 5.15, C-C-(AlJB) = AlJB. By Lemma

5.13, A*lJB* = AlJB, whence A*lJB* = Rl-RO. There are two

possibilities; R0 C C. or R0 = C.

If Ro C C, then we shall show ROI]A* C C, or else

Ror]B* C C. Suppose though that both those sets are empty.

Then Rof](A*lJB*) = C. Now, R0 c R1, and R1 2 Rl-RO, so

that R1 2 fil:fio = A*(JB*. Therefore, KEZKO = A*lJB* c Rl—RO,

whence Rl-RO is closed in C and in the closed set R1. But,

since R1 is closed, Rl-RO is open in R1. This, together

with the fact that C C Rl-RO C R1, violates the connectivity
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*

of R1. Therefore, one of the two above sets, say RoflA ,

is nonempty. Therefore, ROlJA* is a continuum containing a,

-x- “‘T

and ROIJA = C—C-(RolJA ), by the same proof used in Theorem

: ‘X’

5.14 to show FlJK = C-C-(FlJK). Consequently, ROlJA 5

'X- * *

R(a,C). If R0 = C, then let A be the one of A , B con-

taining a. In this case too, ROLJA*€ R(a,C).

By definition of "jump", either ROlJA* = R0, or

*

ROlJA = R1. In the first case,

._._. -x- 13* R 13*

R1 = ROlJRl-RO = RolJA U = 0 U .

Therefore, Rl-Ro C B* C B, whence Rl-RO C B. But since

B c A*lJB* = KEZBO, so that Rl-RO = B.

If RolJA* = R1, then Rl-RO c A* c A, and KIZBO = a,

as above.

This proof is also from Kuratowski [76], again with

the details supplied.

Theorem 5.17: Let C be a T2 continuum irreducible between a

and b. Then C is indecomposable iff R(a,C) = (C, C}.

2322;: If C is indecomposable, then C = C:SES. So by

Theorem 5.14, R0 = C, and ClJC = C form a jump. If K is

any element of R(a,C), then C C K C C implies that K = C,

or K = C. Therefore, R(a,C) = {C, C].

If R(a,C) = {C, C}, then C and C certainly form a

jump. Then Theorem 5.16 shows C = C:C is an indecomposable

continuum.

The fact that Theorems 5.14, 5.16, and 5.17 are not

used a great deal in the later literature leads one to
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believe that they are not as useful as those given in Chap—

ter 4. It is interesting to note, however, that all of the

theorems of this chapter hold in an arbitrary T2 space. In

Chapter 4, all the major theorems except the first required

"metric".

We conclude this chapter by presenting a result (Theo-

rem 5.20) from Kuratowski's "Thgorie des continus irréduc-

tibles entre deux points II" [71] dealing with the set

C-P(a,C). Before presenting the theorem, we give a brief

description of the problem which Kuratowski was studying

when he proved the theorem. This digression seems appro-

priate because it also involves Zoretti and Brouwer, both

of whom we have met before.

Zoretti, considering that an irreducible continuum is

a generalization of a simple are, conjectured that any

irreducible continuum could be given a linear ordering.

Moreover, he published a theorem which would provide the

basis for this ordering [133]. When it was pointed out to

him that his method failed for an irreducible continuum

that is also indecomposable, he published a new method

based on a weaker theorem [135, p. 202]. Brouwer also

observed that this theorem was false for an indecomposable

continuum. The most that could be done in this case is to

order the points of each composant [17. pp. 144-145]. Thus,

Brouwer continued (see p. 16) to play the role of critic in

the development of indecomposable continua theory.

In 1927, however, Kuratowski provided a surprising cor-
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ollary to the linear ordering question. Given a continuum

C irreducible between points a and b, Kuratowski proved that

C has a decomposition if which is "linearly ordered"[7l, pp.

225-228].

‘ A decomposition of C is ppmi—continuous and linear

(terminology is due to R. L. Moore [99]) if C is decomposed

into a single element or else into a disjoint collection of

sets T , Oe=x 51, such that lim x = x implies that the
X A?” n O

X

0

lim sup T C T . (For a definition of "lim sup", see [44,

new Xn

p. 100].)

Kuratowski showed that J? has the following properties:

(1) 47 is semi-continuous and linear, having continua

for the TX;

(2) if i9* is any decomposition satisfying (1), then

each ‘1‘x of «5* is either in 3 or else is the union

of members of a8 .

A complete discussion of Kuratowski's paper would carry us

too far afield. However, we do require one of the theorems

from it. The following lemma will be used in the proof.

Lemma 5.18: (a) Let K be a component of a compact T2 space

S, and let U be any open set containing K. Then U contains

a closed open set V containing K.

(b) Let C be a T2 continuum, and let 0 be an open

proper subset of C. Let K be a component of 0. Then we

have (O-O)f]K C C [44, p. 47].

2322:: (a) By Lemma 4.15, each component is a quasi-

component. Therefore. K = n '7Fq , where each Fg‘ is

«e





 

K is open and closed, so let K = V. If K C‘U, there is an

<><o such that n F c U. Therefore, 0 (s-Pp) :2 S-U.

“7’“. “7’“.

n

and since S-U is compact, there is a collection {S-F°,,}.
L Ls!

“ n

such that U (S-de ) C S-U. Hence, K C’n Fa , C U, so let

i I. \ l

0

V = n F},.. V is both open and closed, so (a) holds.

‘
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closed open in S and contains K. Let K C U. If K = U, then

t

(b) C C 0 C 0 and 0 connected imply that 6;0 C C.

Suppose (OQO)I]K = C. Then K c:K’c 0, so by the maximality 1

of K, K CIK. Therefore, K is closed and hence compact. i

S—O is closed in C and hence is compact. Therefore, there

exist two disjoint sets U1, U2 open in C such that U1 3 5-0,

and U D K. Thus, U2 C‘O, and K is a component of U2. By
2

(a), there is a set U3 C U2 that is both closed and open in

U U3 is closed in C, and since U3 C U2 and the latter is2.

open, then U3 is open in C. But, C C U3 C C, which contra- I

dicts the connectivity of C. Therefore, (U—O)f)K C C.

Theorem 5.19: Let C be a T2 continuum irreducible between
 

a and b. Then C-P(a,C) is connected.

2323;: We note first that it is no loss of generality

to consider only P(a,C), rather than P(d,C), where d is a

point such that C is not irreducible between d and any other

point of C. For in this case, P(d,C) = C.

Suppose C-P(a,C) = AlJB, where (Ale) U (Ale) = C.

be C-P(a,C) by the irreducibility of C, so without loss of

generality, we may assume b 6B. Let 0 = 0-1:; 0 is open, and

BnK-sC, soBCO. Anch—Dn =An(0—'A)=C. Therefore,
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AIIC = C.

By Lemma 5.6, (6-0) n (A u B): [(A u B)-O] - [(A UB)-0] =

[(A-B) U (B-O)] - [(A-5) U (13-5)] = (AUC) - (AUC) = (4.

Let K be a component of b in 0. If A C C, then 0 C C,

since 0 = C implies C = C-K, whence A = C. Consequently, O

is a proper open subset. Therefore, X-O C C, for by Lemma

5.18, (6-0) nK‘ C C. Let peX—O. K c 0 implies paC—O.

Now, C-o c C—(A UB) = P(a,0), so p6 P(a,C). Therefore,

there exists a proper subcontinuum L containing a, p. Since

b,p are in K, KlJL is a continuum joining a, b. By the

irreducibility of 0, C = KUL. Thus. A c 'K‘UL. But, K c 0

implies Ale C AflS = C. L C P(a,C) implies AflL C A[]P(a,C)

and the latter set is empty. Therefore, Afl(XlJL) = C,

whence A = C. [76, p. 210].

Theorem 5.20: Let C be a T2 continuum irreducible between a

and b. Then C—P(a,C) is either a continuum of condensation

or else a non-closed boundary set whose closure is an

indecomposable continuum such that C:FT§:CT = C—C-C3FTETC7

[68, p. 259].

2322;: Theorem 5.19 implies C-P(a,C) is connected. If

it is closed in compact C, then it is a continuum. Moreover

 

C-[C-P(a,C)] = FTa,C) = C, by Theorem 4.17. Thus, C-P(a,C)

is a continuum of condensation.

If C-P(a,C) is not closed, then the above equation

shows it is a non-closed boundary set. C-C-F]a,C) =

Int P(a,C). This last set is a proper subset of P(a,C) = C,

since C-P(a,C) is not closed. Let Q = C—C-FZa,C); Q C C.
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C:FT§:C7 is a continuum by Theorem 5.19, and contains b.

Therefore, C-C:F(5:CT is connected by Lemma 5.2, and hence

Q = C:SEFF§?S§ is a continuum.

We claim that Q C P(a,C). If Q = C, the claim is

clearly true. Q C C implies C C C:FCETC). a EC-C:FT§:C7

by the irreducibility of C. Then a 6Q, Q C C is a continuum

so that Q C P(a,C). Therefore, C-P(a,C) C 0-0, so we have

C-Fia,C) C C—Q = C—C-C—FZa,C) C C-Fla,C). Thus, C-Q =

C-PZa,C), and so C-PZa,C) = C-C-C-Pia,C$.

It only remains to show the indecomposability. Sup-

pose C:FT5:C7 = MlJN, where M, N are proper subcontinua of

07131376). We shall show that M-P(a,c) C C C N—P(a,C).

If, say N-P(a,C) = C, then C-P(a,C) c C-N. But this implies

C-P(a,C) C C:FT§TC) - N C M. Therefore, C:FTE:C7 C M, which

is a contradiction to M C C:FT5TCT. The assertion holds.

If Q = C, then MlJN = C:FT§TC7 = C. 8.60, so without

loss of generality,zieDL M is a continuum, and M-P(a,C) C

C, so M = c. This can not hold, for M C W) c C.

If Q C C, then aeQ, as above. 0:0—mum

= QlJ(MlJN). Since C is connected, Q[](MlJN) C C.

Therefore, QlJM = C, so C-Q C M. Since M is closed,

C-Q C M. Thus, C-Pla,C) C M; since M C C-PZa,C), we con-

clude that C-Fia,C) = M. This contradicts M being a proper

subcontinuum.

The above proof is adapted from Kuratowski [76, p.211].

In Chapter 4, we saw that any subset of any proper
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subcontinuum can be removed from a T2 indecomposable con—

tinuum without disconnecting it. We can say more for a

metric indecomposable continuum. We know by Theorem 4.12

that such a set is irreducible between any point and some

other point. It then follows from Theorem 5.19 that if the

composant of any point is removed, the resulting nonempty

set is still connected.

 





CHAPTER 6

KNASTER'S THESIS

In this chapter we briefly consider more examples of

indecomposable continua that appeared in the early 1920's.

In particular, we shall present two examples constructed by

Knaster, as well as a simplification of one of them. The

second example has a property not shared with any previously

discussed example. Not only is it indecomposable, but also

each of its subcontinua is indecomposable. In today's ter-

minology, such a set is called a hereditarily indecomposable

continuum, although no special name was given to it origi-

nally.

It is surprising enough that indecomposable continua

exist, but it seems truly remarkable that there are heredi-

tarily indecomposable continua. Even more remarkable is

the fact that an example was discovered comparatively early

in the study of indecomposable continua. However, we shall

defer a detailed study of such continua until Chapter 12,

since most of the investigations of hereditarily indecom-

posable continua have been made recently. For the moment,

we present the first construction of a hereditarily indecom-

posable continuum, not only for historical completeness,

but also because we shall need the existence of such con-
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tinua in the next chapter.

Knaster and Kuratowski had asked [62] if such a set

could exist in E2. In 1922, the answer was shown to be

affirmative. Bronislaw Knaster described the continuum in

his thesis, which he wrote under the direction of Mazur—

kiewicz and Sierpinski [59, p. 248]. We will not give his

construction in detail, since it constitutes the major

portion of his forty page paper.

He called his construction technique the "method of

bands", and he credits Sierpinski with originating the con-

cept in 1918 [59, p. 247]. Essentially, the method of bands

provides a way of constructing a nested sequence of continua

in the plane in which the "nesting" is done in a special

manner. By varying this manner slightly, Knaster first con-

structed a previously unknown example of an ordinary indecom—

posable continuum. Then by placing more restrictions on the

nesting, he constructed the first hereditarily indecompos-

able continuum. Since each continuum in the nested sequence

resembles a band, it is not hard to see where the name of

the method probably originated.

We now show how Knaster used the method of bands to

construct an ordinary indecomposable continuum. Partition

the unit square into twenty-five equal squares. Our first

continuum, or band, 00, is the union of a certain number of

those small squares, as shown in Figure 6.1 a. The band is

not allowed to intersect itself, hence the rows of buffer

squares. We construct the continuum Ql as a subset of Q0
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Figure 6.2

by partitioning 12 into 54 equal squares and selecting

squares as shown in Figure 6.1 b. Likewise, each continuum

Q 2 2(n+1)
n+1 is formed by partitioning I into 5 equal squares

and selecting a band in Qn‘

w

The desired continuum is Q = g Q . Note that it is a
n

continuum by Theorem 2.1. Knaster actually proved the
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indecomposability of this continuum using Theorem 4.4. How-

ever, it took ten pages of machinery to give a sufficiently

precise description of the Qn's and Q to allow the theorem

to be used.

Knaster later gave a much simpler description of his

indecomposable continuum in Kuratowski's paper "Thgorie des

continus irréductibles entre deux points I", the same paper

which presented Knaster's simplification of Brouwer's

example [69, p. 216]. We now give the new construction,

which we will call Knaster's second semi-circle example.

Let E be the set of numbers of the segment [0,1] which

can be written in base five without the use of the digits 1

and 3. Let En (rizCD be the set of points e of B such that

2/(5n+l)£ e sl/(Sn). Let Fn be the set of points e such

that l-e belongs to En‘

For a given n, draw semi-circles below the x—axis

centered at (7/10)5-n to each point of the set En. Like—

wise, draw semi—circles above the x-axis centered at the

Points 1 - (7/10)5’n to each point of the set Fn. The set

formed by the union of these semi-circles for all non—

negative n is the desired indecomposable continuum [69, p.

216]. See Figure 6.3, p. 83.

Knaster does not give a proof of the indecomposability

of this continuum, but it could be obtained by modifying

the proof given for Knaster‘s first semi-circle example

(p. 55).

There is a major difference between these two semi-
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Figure 6.3

Circle examples. In order to describe it, we need another

definition. A point p is accessible from the set A if there

exists a continuum C such that pé(3C:A.U{p}, and C C {p}.

The first example has only one composant (the one containing

(0,0) )containing points accessible from the complement of

the set, while the second has two such composants (the one

containing (0,0), and the one containing (1.0) ).

Knaster notes [59, p. 271] that Vietoris had independ—

ently constructed the example which Knaster had described

by the method of bands. Vietoris' example appeared near

the end of his thesis (Vienna) in 1920. He used it as an

example of a continuum irreducible between points a and b

which contains no connected subset irreducible between a

and b [120].

In his thesis, Knaster also constructed a type of

indecomposable continuum having the property that each of
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its subcontinua contains an indecomposable
continuum. Since

the construction of this continuum is very similar to that

of his hereditary example, we do not include it.

We turn now to his hereditarily indecomposable con-

tinuum. The basic technique of construction is the same as

that discussed on pp. 79-82. The essential difference bet-

ween the two constructions lies in how the adjacent squares

making up each Qn are determined from those formed by

partitioning Qn-l'

Partition the unit square into twenty-five equal

squares, and choose Qo as before. Partition I2 into 54

equal squares, and select a band Ql C Q0, as shown:

 

 

 

 

  

 

 
  
 

 

        
 I T

Q2 C Ql is shown in Figure 6.4, p. 85. The desired

continuum is Q = n Qn’ Since this construction is a spec1al   
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case of the construction of the first example in his thesis,

Knaster did not have to prove indecomposability again.

He established the hereditariness of this continuum by

applying Theorem 4.4 to each subcontinuum. In this case,

the major difficulty also lies in giving a sufficiently

precise description of the set to apply the theorem. It

took him twelve pages to set up the notation to describe

the Qn's and the Q's of his examples.

We have seen that Knaster was able to describe two

ordinary indecomposable continua in terms of Cantor sets

and semi-circles. There is no hope that such a simpli-

fication can be given for the hereditarily indecomposable

continuum, since the arcs of the semi—circles are decom-

posable subcontinua.

We shall discuss hereditarily indecomposable continua

in great detail in Chapter 12. At that time we shall also

give a precise description of an example of a hereditarily

indecomposable continuum which is homeomorphic to Knaster's.

The more recent description and construction techniques are

not so cumbersome as Knaster's.

  





CHAPTER 7

EXISTENCE OF INDECOMPOSABLE CONTINUA

In previous chapters, we have presented several exam-

ples of indecomposable continua in E2 and many theorems

dealing with the properties of metric and non-metric

indecomposable continua. This chapter is devoted to showing

several existence theorems about these continua.

First, we shall prove Mazurkiewicz' theorem which

says that every compact metric space of dimension greater

than one contains an indecomposable continuum. In Chapter

L2, we shall discuss Bing's result that there exist hered-

Ltarily indecomposable continua of all dimensions and the

related result of J. L. Kelley. Second, we shall show that

ton-metric indecomposable continua exist. This will be

Lone by an example, rather than by a general existence theo-

'em. The last part of the chapter will be used to discuss

he question of how frequently indecomposable continua

ccur in 12.

Before establishing Mazurkiewicz' result, we summarize

he needed definitions and theorems from general topology.

efinition: Let X, Y be topological spaces, and let f, g be

my two continuous functions from X to Yo The functions

E'e homotopic if there exists a continuous § :XxI—-—>Y such

87
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that E (x.0) = f(x). and §(x,1) = g(x). for all x: x. r

is nullhomotopic if it is homotopic to a constant map.

Definition: Let f, g, X, Y be as above, and let A C X. Then

f, g are homotopic relative pp A if there exists a con-

tinuous § : XxI —>Y such that §(x,o) = f(x), E (x,l) =

g(x), and §E(a,t) = f(a) = g(a), for all xe X, a eA, t éI.

Definition: Let f: R——>Wn be a continuous surjection, where

Mn denotes a homeomorph of In. If every continuous mapping

5: R-—->Wn which is homotopic to f relative to f-1[Fr(wn)]

satisfies g(R) = Wn, then f is called essential. If f is

lot essential, then it is inessential.

The above terminology follows Alexandroff's "Dimension-

:heorie" [3] and Nagata's Modern Dimension Theory [103].

lemma 7.1: A continuous surjection f: R-9Bn, where Bn =

DCéEnllxlél} is essential iff every continuous mapping

: R‘~->Bn which coincides with f on f-1(Sn_l) satisfies

:(R) = Bn.

2392;: If f is essential, the conclusion follows at

nce. Conversely, if the condition holds, we only need to

rove that f is homotopic to g relative to f-l(Sn-l). The

omotopy given by §(x,t) = t . g(x) + (1—t) ' f(x) estab-

ishes this.

emma 7.2: Let X be normal and A C X closed, with f:.A---9’Sn

ontinuous. Then there exists a neighborhood U D A over

hich f can be extended relative to Sn.

Proof: See [28, p. 151] for a PTOOf Of this corollary

3 Tietze's extension theorem.   
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.emma 7.3: (Borsuk) Let X be a compact metric space, and let

 

>C X be closed. Let f, g: D'v9Sn be homotopic. If f has

n extension F: X-9Sn, then so does g, G: X—1>Sn, and C

an be chosen so that F and G are homotopic.

Ppppf: Let 7’be the homotopy of f and g. Define the

app; : Kx{0] u DxI ——>sn by §(x,0) = F(x), §(d,t) = 1’(d,t)

a extend SE to all of XxI. By Lemma 7.2, _§:has an exten-

Lon a% over some neighborhood U D (Xx{Q} U Dxl). Since I

3 compact, there exists a neighborhood V D B such that

:I C U [28, p. 228]. Since B and X-V are disjoint closed

ets, there exists a continuous function f flC-9I, say

(x) = am, if?) f‘ggx, B , such that 10(3) = 1 and f(X_V)

0. Then 32(xgt) = E§(x,t -‘F(x)) is the required homotopy.

tting C(x) = 3E(x,1) completes the proof.

There are also less stringent conditions on X under

ich the lemma holds; for our purposes, we only need it as

ated. We now present the first of Mazurkiewicz' lemmas.

Lma 7.4: If f is an essential transformation from a com-

:t metric space A onto B2, then f: A1 = f—l(Sl)--—,>Sl is

t nullhomotopic [95, P. 327]-

Proof: Suppose fIA :Al-—~9Sl is nullhomotopic. Then by

I

. l
lma 7.3, fM can be extended to a continuous F: A.~)S

' 1 2
lich is also nullhomotopic). Then F(A) c: s C B , so by

1ma 7.1, f is inessential.

l
lma 7.5: Let X be any space, and let f: X-9S be con-

 

.uous. If f(X) C 81, then f is nullhomotopic.

  



 



90

, 1 . 1Proof. Choose s05 S -f(X), and define g: X-—>S by g(x)

= —S o.

to 1-t - f x .
x, t = .o§( ) TMgx _ , x l is the required

homotOPY.

Corollary 7.6: If f is an essential transformation from a

compact metric space A onto B2, then A1 = f-l(Sl) contains

a component K such thatzfiSEinullhomotopic transformation

of K into 81, and consequently, f(K) = 81.

2322;: Suppose that for every component K C Al, fix is

nullhomotopic. (We now follow a proof of Eilenberg [29, p.

1 such that
164].) There exists a continuousf : KxI—9S

§(k.0)= f'K (k) and r (k, 1) = S0 581.

Let B: (Alx{0}) u (KxI) u (Alx{1)) c AlxI Set

§(X,O) = f(x), §(x,l) = 80’ for all xeAl, and £(x,t) =

§(X,t), for all x 6K, and t CI. There exists an open set

U D B such that SF can be extended to U. As before, there

is a neighborhood V D K, such that VxI C U. Since K is a

Component of a compact metric space, it is a quasi-component

(see P. 48). Consequently, there is a closed open set Vi

I

in A1 such that K c vi c V, from which leI c U. Let

‘ A

§|= Vixlfisl be the extension of § on U restricted to

I —- L
' lleI. §\ establishes a nullhomotopy of flK, : Vl——>S .

Carry out this process for all components K to get an

0P8n covering {K;} of the compact space Al. Then there is

an open subcover {K;L£:I of Al. Moreover, we may choose

these sets to be pairwise disjoint, since each of the
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finitely many sets is both open and closed. Since fl ,:

v
“i.' l . . ""‘

tifis is nullhomotopic by §u£ , we define f :AlxI -) S1

*N

by I (x,t) = E“. (x,T), for the unique N; such that x 6
t

V4, . I is clearly continuous, f(x,0) = f(x), for all

xeAl, and f (x,l)e (s “'43.. E (x,l) is not a surjection,

so by Lemma 7.5, it is nullhomot0pic, say by A .

Therefore, flA :Al--—)S1 is nullhomotopic by

a Q(x,2t) oat 9.1/2
Y (x,t) =

A(x, 2t-l) 1/2 st .91.

But, f". :Al--> Sl being nullhomotopic implies, by Lemma

7.4, that f: A—>B2 is inessential. Thus, the result holds.

Finally, fIA being not nullhomotopic implies f(K) = S1, by
I

Lemma 7.5.

Emma 7.7: Let f be an essential transformation from A onto 

32. Let J CIB2 be a simple closed curve, with H denoting

the one of the two domains determined by J in the plane that

lies in B2. Then, f is an essential transformation from

f'lCi) onto B‘ = HUJ [95, p. 528].

M: H is homeomorphic to B2. For convenience, let D

denote f-1(H). Suppose that flu is an inessential transfor-

mation from D onto H. Then there is a homotopy i : DxI—-—>H

such that § (x,0) = f(x), and § (x,l) is, say g(x), where

g(x) :4 a, for all xeD and some a eH, and such that E

fixes f-1(J). We extend ftp to a function F on all A by:

f(x) if x 6 PD

F(x) =

{g(x) if x 6 D.
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If xeDflATD, then xef_1(J): DDT-D = f-1(H)0AT-f:l—(H—)

implies f(DrlKIB) = Hr]f(A-f-I(H) c Br1f7X:f:I7P5)by
con-

tinuity of f. The last set is contained in the set Hle§:H,

which is J. Therefore, f(x) = g(x) for all x5 DrlK:D, and

it follows that F is continuous.

F is homotopic to f relative to f-1(Sl) by

§ (x,t) if xED

{E (x,t) =

f(x) if xé K:D.

But, since g(x) C a, for all x:fI)by construction, and since

flfiTB (x) C a, for all x GAID by definition of inverse

image, we have that F(X) C B2. Therefore, f is inessential.

Corollary 7.8: If f is an essential transformation from A

2 a simple closed curve, then A contains
onto B2, with J c B

a continuum K such that f(K) = J.

3322;: By Lemma 7.7, flo : D —9H is essential. Let

(P: H—->B2 be a homeomorphism. We shall show that Qof‘o

is an essential transformation of D onto B2.

Let g be any continuous function which is homotopic,

say by§ , to CFoflo , relative to (6(0le )-1(Sl) = f-1(J).

It only remains to show that g(D) = B2. But, qf‘fif :DxI-49H

shows that flo is homotOpic to 4?-L g relative to f-1(J).

and since flu is essential, 949 g(D) = H. Therefore,

s(D)==<P(E) = B2.

By Corollary 7.6, there exists a component (which is,

Of course, a continuum) K C (¢° flo )_1€Sl) such that

?°f'° (K) = 81. Therefore, f(K) = (P- (51) = J-

Before we can establish Mazurkiewicz' first major
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result (Theorem 7.9), we need some results from set-theo-

retic topology.

Definition: Let {XE} be a sequence of subsets of a topo-

logical space S. The limit inferior of fXn} is defined to

be the set lim inf X =:{xé SI for all nbds N(X). Nflx C C:n-?ao 11
n

for all but a finite number of X '8}. Lim sup X =.{x(=SI
11 n_,¢> n

for all nbds N(x), Nan C C, for an infinite number of Xn} .

If these two sets are equal, then this set is denoted by

lim Xn’ and the sequence of sets converges.

we

References to this concept may be found in [44, p. 100]

or [75, p. 335]. It is clear that limwinf Xn C 1%m*§pp Xn'

For the remainder of the discussion, 3 denotes a compact

metric space.

Lemma A: p>élim sup Xn iff there exists a sequence of points
"““" n4»a

{pnk} such that nk<nk+l’ for k = l, 2, . . . . P =

lim p , and p e A .

0,... nk “k “k

Proof: Suppose that such a subsequence exists. Let U

 . +
be a neighborhood of p. Then there ex1sts N6 Z such that

nk7/N implies pnké U. Consequently, U ank C C, for an

infinite number of Xn's. Therefore, p 610139301113 Xn'

Conversely, if p f 1312) sgp Xn, then B(p, l/m) n Xn # ¢

for an infinite number of Xn'S: say Xnk‘ Choose a pnk in

each intersection. Then d(p,pnk) < l/m implies {pnk}.9p.
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Lemma B: Let f be continuous on S. If [Kn] converges, then

f(liii Xn) = limb f(Xn).

2222f: We need only show

f(lim cinf Xn) C lrirp’oionf f(Xn) C li‘m’gup f(Xn) C f(lniinvsup Xn).

To establish the first inclusion, note that y'ef(lim§inf Xn)

implies that there exists an xzélipninf Xn such that f(x) =

y. Let V be any neighborhood of y. f’1(V) is a neighbor-

hood of x, and therefore, f-1(V)0Xn C C for all but a

finite number of Xn's. Consequently, Vr1f(Xn) C C for all

but a finite number of Xn's.

The second inclusion is trivial. To prove the third

inclusion, note by Lemma A that pé-lim,sup f(Xn) implies

co

‘ ' f X . Thusthere ex1sts a sequence {pnk }__,p, With pnké ( nk) ,

there exist X such that f(q ) = p . Since S is a
ané nk nk nk

compact metric space, {qn } has a convergent subsequence,

k

{an }..) q GS. Therefore, q(~ lrigljup Xn, and since f is

1

continuous, we have that f(qnk )-9 f(q), which must be p,

i

sinc f . Hence 6 f(lim sup X ).e (an)——>p P M”, n

Lemma C: Every sequence of sets in S has a convergent sub-

sequence of sets.

Proof: See Hocking and Young [44, p. 102].

, - ' then lim X = lim X .Lemma D. If £19m.- Xn eXlStS' "H,“ nk new n
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Proof: See Kuratowski [75, p. 339].

Theorem 7.9: Let f be an essential transformation from A

onto B2, and let C C B2
be a continuum. Then there exists

a continuum L C A such that f(L) = C [95, p. 328].

Proof: We first indicate a proof that there exists a

sequence of simple closed curves Jn C B2 such that lim Jn =

C. For each n‘wl, cover C by {B(c,l/n)}Cé C' By compact-

'7»,

uses of C, there is a subcover {B(c(i n),l/n[}.n' . For

0 L’-

each n, construct a simple closed curve Mn passing through

the points C(i n)‘ Mn has a convergent subsequence-{Mnk}

,

by Lemma C. We claim that lim M = C. It suffices to show

n-bw nk

that lim inf M C C C lim sup M . From x élim inf M ,

n-no nk new nk new fly:

it follows that x is a limit point of C, and hence is in C.

If ye C, then for all nk there exist C(i,nk)6 C such that

d(y,c(i,nk))4 l/nk. B(y,l/nk) nKnk C C, and it follows that

every neighborhood of y meets infinitely many of the Xn's.

We now prove the theorem. By Corollary 7.8, there is a

continuum Kn C A such that f(Kn) = Jn’ for n = l, 2, . . . .

K , so let lim K = L.[Kn] has a convergent subsequence { ni] ng, ni

L C A and L is easily seen to be closed. and hence compact.

L is nonempty and by a theorem in Hocking and Young [44. p.

102], L is connected. Thus, f(L) = d:29f(Kni) = lim Jni =

11111 J = C.

“#00 n  
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We are now ready to establish the principal result of

Mazurkiewicz' paper.

Theorem 7.10: Every compact metric space of dimension

greater than one contains an indecomposable continuum [95,

p. 328].

2322:: For a definition and discussion of dimension.

see Hurewicz and Wallman [45] or Nagata [103]. Alexandroff

established the following result [3, p. 170], the proof of

which can also be found in [103, p. 59]. "A metric space A

has dimension less than or equal to one iff every continuous

mapping of A into B2 is inessential." Therefore, dim A 71

implies there exists a continuous function f: An—9B2 that

is essential.

Let CO be an indecomposable continuum contained in B2,

say Knaster's first semi-circle example, shrunk sufficiently

to be contained in B2. By Theorem 7.9, A contains a con-

tinuum LO such that f(Lo) = C0. Knaster and Mazurkiewicz

showed [65, p. 87] that L0 contains as indecomposable con-

1 such that f(Ll) = f(Lo) = 00‘ The proof is as

follows. Using Zorn's lemma, it is easy to show that there

tinuum L

is a subcontinuum K of L0, irreducible with respect to the

Property that f(K) = f(LO). If K = AlJB, where A, B are

proper subcontinua, then we have L0 = f(K) = f(A)lJf(B).

f(A). f(B) are subcontinua, but by the minimality of K,

' ' ' m osable. This is aneither is all of L0, whence L0 is deco p

Contradiction, so the result holds, with L1 = K.

This concludes Mazurkiewicz' two page paper. We shall
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consider related questions for hereditarily indecomposable

continua in Chapter 12.

The existence question for non-metric indecomposable

continua seems to be more difficult. This is not too sur-

prising in view of the fact that the only major theorems we

have presented thus far that deal with this case are 4.4

and 5.1; the rest deal with the metric case. However, in

1968, Bellamy constructed an example of a non-metric

indecomposable continuum in his thesis [6]. We again need

some preliminary definitions.

A topological space X is completely regular if for each

peX and closed set A not containing p, there exists a con-

tinuous function 1’: X'—'*I such that c9(p) = l. and c[9(a) = O

for all aeA [28, p. 155]. Let IX denote the set of all

X
continuous functions f: X-91, and let {Iflf 61 }be a

X X
family of unit intervals indexed by I . Let P = 7T{%f]

I7élx}; its points are denoted {tf][28, p. 155].

Lemma 7.11: If X is a completely regular T2 space, then it

x . __
can be embedded in PX. That is, f : x—9P given by ‘1' (x) -

X

{filth-1: is a homeomorphism of X and f (X) C P .

Proof: See [28, p. 155].

A compactification of a space X is a pair (X,h), where

 

X is a compact T2 space, and h is a homeomorphism of X onto

a dense subset of X. The Stone-Cech compactification of X

is (@(X),‘f ), where (3 (X) = W7.

Lemma 7.12: For each compact space Y and each continuous
 

 

 



ha‘
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f: X->Y, there is a unique continuous extension F:Q(X)—->Y

(f = FP'P). Moreover, any other compactification of X

having this property is homeomorphic to 3 (X).

3329:: See [28, p.243].

We now follow Bellamy, with only slight changes in

notation. Let A = [1.00), and A*== @(A)-A. Actually,

4* = P (A)- f(A), but we identify A with its image in (3(A).

Lemma 7.13: Let U be an open set which meets A*. Then

 

UlJA is unbounded [6, p.30].

2322;: Suppose UlJA is not bounded. Then UlJA C [1,x],

for some xe.A. Thus, ur1(C (A)-[l,x]) is a nonempty (since

C C'Un (fi (A)-A) C U[]({3(A)-[l,x]) open subset of P (A)

which misses A. This is impossible, since A is dense in

((4).

* I

Lemma 7.14: A is a T2 continuum.

Proof: For all n7’1, let An = [n, OD), and set Pn =

-)(- * 00

A lJA . Then A = n

|

n Pn. But, Pn = A; (closure in F (A)),

so that each Pn is a T2 continuum. The intersection is

* . .

monotone, so by Theorem 2.1, A is a T2 continuum.

Note that the above two lemmas hold for any compact-

ification of A, as Bellamy showed.

Theorem 7.15: A* is a non-metrizable indecomposable con-

::'11uum0

P H . -

*

4* = XlJY, where X, Y are proper subcontinua of A . We

shall show that X is not connected.
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Let xéX-Y, ye Y-X. Let U, v be open sets in (3 (A)

such that:1) er, er, and 2) Tiny = HnY = an = C.

Choose sequences {pi}:’, {qi}; , and {r1}: from A as

v ' ‘

follows: Let pl 6 U nA. Choose qu pl such that ql 5 V;

this is possible since by Lemma 7.13, VflA is unbounded.

Next, choose r17 ql such that (ql,rl) C V; this can be done

since V is open and hence qllies in some open interval in V.

Suppose pk, qk, rk have been choosen for k<;n such

that for each k:

1) Pk6U9

2) the interval (qk.rk) C V.

3) pk‘ qurk, and if kt n-l, then rk‘pk+l'

Then, since UnA is unbounded, there exists a qn7pn such

that qne V. Since V is open, rn may be chosen greater than

qn such that (qn,rn) C'V.

on

w a

The sequences {pn}‘ , {qfi} , {r5}. are all unbounded.

For if not, they would have a common supremum which would

have to belong to HITV, a contradiction.

Define f: A-9I as follows:

0 if i is odd

f(Pi) = . . .
1 if l is even

1/5 if i is odd

f(qi) =

2/3 if i is even

1/3 if i is even

f(ri) =

2/5 if i is odd
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New extend f linearly to each of the intervals [pi,qi],

[qi,ri], and [ri,pi+l]. Then f is a continuous function

from A to I. By Lemma 7.12, f has a continuous extension

F:(3 (A)—)I. F'l(0) is a closed subset of (3 (A) containing

a» . . . .
[p2k+l], , and hence containing all limit pOlnts of the

sequence in (3 (A). Therefore, F'l(0) CA* C C. But, since

the sequence lies in U, any limit point of it is an element

of H, and hence does not lie in Y. Therefore, F-l(0)(]X C

C, and thus 0: F(X). Likewise, 1 e F(X).

But, let a.5Frl(l/3,2/3). a is a limit point of

f-l(l/3,2/3) = H) (qk'rk) C'V. Therefore, a.eVfl and hence

ai¢Xh Consequently, F(X)!)(l/3,2/3) = C. Then,since F is

continuous and takes on the values 0 and 1, its domain can

not be connected, since its range is not.

The proof that A*is non-metrizable follows from a

corollary [6, p. 40] which says that A* has 20 points. Thus

A* can't be embedded in the Hilbert cube, as it could be if

it were metrizable. The proof that A* has 20 points is

rather long and will not be presented.

We conclude the chapter by briefly mentioning some

results dealing with a different type of existence question.

Namely, how frequently do indecomposable continua occur in

the space of all continua of a given space? This appears

to be a rather difficult question to answer. But the sur-

prising result is that "most" continua in I2 are not only

indecomposable, but are also hereditarily indecomposable.

In this context, "most" means that the set of hereditarily
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indecomposable continua in 12 constitute a dense G5 set in

the space of all continua of 12, when the latter set is

given the Hausdorff (see [76, p. 47]) metric [94. PP. 151-

159]. In Chapter 12, we shall see that Bing established a

similar result for an even more singular type of continuum

(the pseudo-arc) in any Euclidean or Hilbert space.

Kuratowski also notes [76, p. 202] that in any compact

metric space, the set of indecomposable or hereditarily

indecomposable continua are a G5 set. There does not

appear to be much known about the frequency of occurrencecxf

indecomposable continua in spaces other than Euclidean or

Hilbert.

We shall content ourselves with an outline of Mazur-

kiewicz' proof that the hereditarily indecomposable con-

2
tinua in I are a dense G6 set. The nine pages of details

are not difficult and the interested reader may consult the

original paper for them.

He defined a sequence of sets of continua in 12,{fi;]f’

as follows: [22‘ is the set of all continua C in I2 such

that 0‘3 K, where K is a subcontinuum such that K = KllJKZ,

and K1, K2 are continua with the preperty that gap {d(K1,p)}

7/l/n and 511:}: {d(K2,q)} é l/n. The major portion of his

paper was devoted to showing that the “L's are closed

nowhere dense sets. Letting n: denote the set of hered-

itarily indecomposable continua in 12, F‘ the set of all

2
continua in I , and.[: the one point continua, it follows

that I: = P. (I: u U ['21) Thus, the result holds.

4

  

 





 

CHAPTER 8

THE COMMON BOUNDARY QUESTION

We have considered various examples and properties of

indecomposable continua in the preceding chapters, but we

have seen no application of them, except in their original

role of being pathological examples. In this chapter and

in Chapter 10, we shall present some other Situations in

which indecomposable continua arise.

The tOpic we are going to discuss in this chapter is

2 and E3 which are common bound-the structure of sets in E

aries to three or more domains, which we recall is the

problem that Brouwer was considering when he discovered

indecomposable continua. In the plane, such common bound-

aries must be indecomposable or else the union of two

indecomposable continua. It seems remarkable that by

shifting our setting to E3, nothing of the sort is true.

In fact, there is a set in E3 which is the common boundary

of three domains and is not only decomposable but is also

an absolute neighborhood retract.

Kuratowski and Knaster did the above mentioned work

on the planar case. Most of the chapter will be devoted to

their results, but we shall also mention Eilenberg's work

on the common boundary question for 82, various papers on

102
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prime end theory, and Burgess' thesis, which makes all of

the above planar results into special cases of a more

general theorem.

In 1924, Kuratowski wrote a paper on irreducible cuts

of the plane (to be defined on p. 104) in which he showed

2 into three or more domainsthat if a compact set cuts E

and if it is the boundary of gggp of them, then the set is

either an indecomposable continuum or the union of two

indecomposable continua [70, p. 138]. In 1928, he was able

to establish the same conclusion while only requiring the

set in question to be the boundary of at least threedomains.

There are no restrictions on its relationships to any other

domains it may determine in E2 [72, p. 36].

In 1925, Knaster gave examples Bn’ On which cut E2

irreducibly into n domains such that each Bn is indecompos-

able and each Cn is the union of two indecomposable continua.

Examples of the first type were already available from the

work of Brouwer and Wada. But, the existence of the second

class of examples was not previously known. Thus, the

"either-or" conclusion to Kuratowski's theorems can not be

improved, since there are common boundaries of both types.

Starting in the early 1920's, many papers dealt with

the idea of cutting the plane. In particular, several

papers we will present in this chapter were written using

this terminology. More recently, the idea of a set sepa—

rating another set has become quite widely used. We shall

Show that for closed subsets of En, the concepts agree. We
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first define the necessary terminology.

Definition: Let X be a topological space. The subset A C'X
 

pppp X if X-A is not a semi-continuum. A separates X if X-A

is not connected.

If A cuts X, we may express X-A as a disjoint union of

semi-continua which do not meet A. (The term used in the

older literature for these semi—continua is "regions com-

posants.") If A separates X, X-A is the usual disjoint

union of components,ennlif A is closed, recall that these

sets are called the complementary domains of A (see p. 8 ).

Definition: A pppp (respectively separates) X between p, q

if p, q lie in different semi-continua (respectively com-

ponents) of X-A.

It is clear that if A separates X, then it cuts X. To

see that the converse is not necessarily true unless more

is assumed about X, A, consider the space

X = {(XJH y = sin T/x, Q(xél] U [(O,y)] IYIél]

and take A = {(0,0)}. Then A cuts X between (0,1) and

(0,-l), but A certainly does not separate X. However, we

do have the following

Lgmma 8.1: If A C En is closed, then A separates En iff A

cuts En.

2322f: If A separates, then it cuts. If A does not

separate En, then En-A is open and connected. By [28, p.

 

116], En-A is path connected, which in our terminology means

there is a continuum disjoint from A joining any pair of

points in En-A. Therefore, A does not cut En.
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Thus, we may use the phrases "A cuts B" and WAseparates

B" interchangeably, whenever A is closed and B is a con—

nected open subset of En.

Lemma 8.2: Let A be a closed set in En. Then:
 

(a) each complementary domain of A is a path connected

open set;

(b) the boundary of each complimentary domain of A is

contained in A;

(c) if A separates En, but no proper closed subset

does, then the boundary of each complementary

domain of A is exactly A;

(d) if A is compact, then A has exactly one unbounded

complementary domain.

,Ppggf: See [28, p. 356], and note that Dugundji's

hypothesis of compactness is not required for a - c.

Because the separators in (c) are quite important, they

are given a special name below.

Definition: If a closed set A cuts En between a, b and if  
no proper closed subset does, then A is said to cut En

irreducibly between a, b. If A cuts En irreducibly bet-

ween all points that it cuts between, then A is a completely
 

irreducible cut of En.

Using a Zorn's lemma argument, it is easy to see that

any closed set which cuts E2 between p, q contains a closed

subset which cuts E2 irreducibly between p, q. However, if

such a subset is to be completely irreducible, then the

original cut must determine only finitely many domains [70,
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p. 135]. Moreover, a cut is itself completely irreducible

iff it is the common boundary to all its complementary

domains (see the Corollary to Theorem 8.6). The following

is due to Mazurkiewicz.

Lemma 8.3: Let R be a domain and let S be a complementary

Z-H. Then Fr(S) is an irreducible cut of E2domain of E

between all points a, b, where as R, be S [90, p. 193].

2322f: It is clear that the boundary cuts E2 between

such points a. b, for otherwise we could disconnect any

continuum joining a,b.

Fr(S) C Fr(R) holds, for by Lemma 8.2 (c), Fr(S) C H,

and always Fr(S) C S C E§:H. Then Fr(S) C HllE§:H = Fr(R).

Let A be any closed proper subset of Fr(S), and choose

PGFI‘(S)-A C Fr(R). There must be points xeR, yes in the

neighborhood B(p,[d(p,A)]/2). By Lemma 8.2(a), we can join

a to x by a path Pl lying in S (and hence disjoint from A),

and we can join b to y by a path P2 lying in R. The line

Segment S joining a and y lies in the ball, so it too is

diSJOint from A. PlUSUP2 is therefore a continuum joining

a and b which does not meet A. Thus, A does not separate.

We shall also have need of the following result, first

Proved by L. E. J. Brouwer in 1910.

Theorem 8.4: (Phragmen-Brouwer property) If the boundary of

a complementary domain of a continuum is compact, then it

is a continuum.

Proof: See [102, p. 176], or [ 127, p. 106].

For the more general case in which the boundary is not
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assumed to be compact, see Wilder [130, p. 48].

Theorem 8.5: If the compact set C cuts E2 irreducibly bet-

ween a and b, then it is connected [70, p. 154].

3329:: Let R be the complementary domain of C con-

taining a. Let S be the complementary domain of H C RlJC

(by Lemma 8.2 (b)) which contains b.

By Lemma 8.3, Fr(S) C Fr(R), and by Lemma 8.2(b), the

latter is in C. By Lemma 8.3, Fr(S) is an irreducible cut,

as is C. Therefore, 0 = Fr(S). By Theorem 8.4, Fr(S) is

connected; hence C is connected.

Theorem 8.6: In order that a closed set C should be the

common boundary of two domains D1, D2 in E2, it is necessary

. 2
and sufficient that C be an irreduClble cut of E between a,

b for all aéD bC-D2 [70, p. 133]-
1!

Proof: If C is an irreducible out, then by Lemma 8.2

(C), it is the common boundary of D1, D2.

2
Suppose 0 = Fr(Dl) = Fr(D2). 0 outs E between all

Points of D1 and D2, since any connected set containing

Such a pair of points must meet the boundary, C. We shall

now show its irreducibility.

. 2 — . .

Let D be the complementary domain of E -Dl containing

3

b. Consequently, t)€IB[lD2, and we shall show D3 = D2.

From Lemma 8.3, Fr(D5) c Fr(Dl) = Fr(D2). Since all points

0f D2 can be joined to b by a continuum (path) not meeting

Fr(D2), the same can be done while missing Fr(D3). Since

D2 is connected and D20D3 C C, we have D2 C D5.

' ' domain
0n the other hand, Since D3 is a complementary  
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2 _ _
of E -Dl, D3‘1Dl = C. Thus, Dsler(D1) = C, and hence

Daler(D2) = C. Therefore, all points of D3 can be joined

to b by a continuum disjoint from Fr(D2) (Lemma 8.2(a)).

Hence D3 C D2.

D2 = D3 implies Fr(D2) = Fr(DB) = C, so by Lemma 8.3,

C cuts E2 irreducibly between a and b.

As a corollary, note that C is a completely irreducible

2 iff it is the common boundary of all its comple-
cut of E

mentary domains. We shall also have need of

Theorem 8.7: (Janiszewski)

(a) If A and B are continua such that AllB is discon-

nected, then AlJB separates the plane.

(b) If A and B are compact sets, neither of which cuts

E2 between p, q and if AllB is a continuum (perhaps

empty), then AlJB does not cut E2 between p, q.

2332;: See [49, p. 192], or [102, pp 175 and 173].

We note in passing that Kuratowski has shown that (a)

and (b) are equivalent in any locally connected continuum

[75, p. 511].

Lemma 8.8: Let K be a subcontinuum of a compact set C which

cuts E2 irreducibly between p. Q.

[70, p. 136].

Proof: The result is clear if K = C or K = C. So

Then C-K is connected

suppose C C K C C. If C-K is disconnected, then by Theorems

8-5 and 4.2, C-K = MlJN, where M, N are nonempty, disjoint,

closed subsets of C-K. Moreover, KlJM and KLJN are proper

subcontinua of C. By the irreducibility of C, neither cuts
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E2 between p, q. So by Theorem 8.7 (b), (KlJM) U (KLJN) = C

does not out either. This is a contradiction. Therefore,

C-K is connected.

Lemma 8.9: If a decomposable continuum C is the common

boundary of two domains in E2. then C = AlJB, where A, B

are proper subcontinua such that C3K = B. and C:B = A.

2322f: By Theorem 4.4, C contains a proper subcon-

tinuum K that is not nowhere dense: C C CZK C C. Let A =

C:K, B = C:H. Then

63B = 5:55X = C-C-C:K,

 

which is 63K = A by Lemma 5.15.

By Theorem 8.6, C is an irreducible cut of E2 between

all pairs of points a, b, for a and b in different comple-

mentary domains of C. Therefore, by Lemma 8.8, A is a con-

tinuum and hence so is B. It follows from the choice of K

that A is a proper subCOntinuum of C. A C C imp1ies B C C,

and A C C implies B C C.

Finally, C = AlJB, for

AlJB = C:KlJC:H = (5:237IXEZFEX7 = 5:FFETK7 = C:

We have now established the foundation needed to prove

both of Kuratowski's common boundary theorems. To continue

with the proof of the first such theorem, we prove

Lemma 8.10: If C is a compact set which is a completely

 

irreducible cut of E2, and if K is a non-degenerate proper

subcontinuum of C that is not nowhere dense in C, then

Kflfi-X is disconnected and C—K is a continuum irreducible

between all pairs of points belonging to different com-
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ponents of KllC:X [70. p. 136].

3322;: By Lemma 8.8, C:K is connected. Since C:K C C,

c C K, and K UE'K = c, it follows from Theorem 8.7 (b) that

KIIC:K is disconnected.

Let a, b be in different components of this set, and

suppose that L is a continuum containing a, b and contained

in m. If L nK is connected, then {a,b} c K n L c K nc—IK'

implies that a, b are in the same component. Thus, LflK

must be disconnected, whence Theorem 8.7 (a) implies KlJL

cuts E2. By the irreducibility of 0, c = K UL. Then Cl‘KcL

so that L = C:K. Therefore. C:X is an irreducible continuum.

Lemma 8.11: (Straszewicz) If A, B are compact sets which do

2

 

not cut E and if AlJB cuts E2 into more than two domains,

then ArlB contains at least three components.

2329:: See [112] or [76, p. 551]. For the case where

AlJB cuts E2 into more than n domains, see [113, pp. 159-

187]. Straszewicz showed in the latter paper that if the

union of two continua, neither of which cuts the plane, and

which have nflpl components in their intersection, then the

union cuts the plane into n domains. He also showed that

"n" can be replaced by "countably infinite" [113, 174].

Theorem 8.12: (Kuratowski's first common boundary theorem)

. 2

A compact set C which is a completely irreduClble cut of E

and which determines at least three domains is either an

indecomposable continuum or else the union of two indecom-

posable continua [70. p.138].

Proof: By Theorem 8.5, C is a continuum. Suppose it
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is decomposable. By Lemma 8.9, C = LlJM, where L, M are

proper subcontinua of C such that C:L = M and C:M = L. L

is not nowhere dense in C. For if it were, then C = CZL = M

implies C = S-—M = L, contradicting Lemma 8.9.

Ln'cTL = mm = MncTM. We apply Lemma 8.10 to both L

and M to conclude that LrlM is not connected and that L and

M are continua irreducible between all pairs of points

belonging to different components of LflM. By the irreduc-

ibility of C, L and M do not cut E2, so by Lemma 8.11, LflM

must contain at least three components. By the first part

of this proof, L and M are each irreducible continua between

all pairs of points in different components of LflM. There—

fore, by Theorem 4.11, L and M are indecomposable continua.

Eilenberg established a similar result for the sphere

82 in [50, p.82].

We now prove Kuratowski's second common boundary theo-

rem. The distinction between Theorems 8.12 and 8.13 is

that in the former, C is required to be the common boundary

0f Ell its complementary domains, while in the latter, 0 is

only assumed to be the common boundary of ggpg (3) of them.

Theorem 8.13: If the plane continuum C is the boundary of at

least three domains, then it is either indecomposable or

the union of two indecomposable continua [72, p.36].

7 Proof: We follow the original proof, with only slight

modifications. Let D1,D2, D3 be the domains of the

hypothesis. C = Fr(Dk), k = l, 2, 3. If C is decomposable,

then by Lemma 8.9, there are proper subcontinua K1 and L1
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in C such that C:X1 = L and C:L = Kl.

Suppose further that C is not the union of two indecom-

posable continua. Then without loss of generality. L is

decomposable: L = K2lJK3, where K2, K3 are proper subcon-

tinua of L. Now KllJK2 C C, since if equality held, then

C-Kl C K This would imply that L = C-Kl C K2, contra-2.

dieting the decomposition of L. Likewise, KlUK3 C C. Thus

C = KllJKzlJKB, where the union of any two of the Ki's is a

proper subcontinuum of C.

Consequently, there are points xi (Ki, 1 = l, 2, 3

that are not in the other Kj's. Let 6; denote one half

the distance from xi to the union of the other two Kj's.

Then B1 = B(xi, 6‘) are pairwise disjoint sets such that

BinKi C C,3and BinKj = C, for j C i.

Since U Ki = C = Fr(Dk), k = l, 2, 3, we have Birle C

C, for i = l, 2, 3, and k = l, 2, 3. Because connected open

sets in E2 are polygonally arc-wise connected [44, p.108],

there are polygonal lines P1, P2 such that Pk C Dk, k = l, 2

and Pklei C C, for k = l, 2, and i = 1, 2. 3. The sets

Pklei, k = l, 2, i = l, 2, 3 are compact. So there exist

points yie PlrlBi, and zif P2r1Bi, i = l, 2, 3 such that

d(yi’zi) is the minimum with respect to the distances

between all pairs of points, one from Pllei and one from

P2 nBi.

Let Ti be a triangle in Bi having yi and zi for the

vertices of two of its acute angleS- P1 “Ti = yi. and
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P nT. = z., for i = l, 2, 3. Since yiEIHJ 216 D2, there
2 i l

are points of C in the interior of each triangle Ti, and

consequently, there are points of D3 in the interior of

each Ti'

Thus, we can construct a polygonal line Z C D3 such

that ZilTi C C for i = l, 2, 3, since D3 is polygonally arc—

wise connected. Let W C Z be a polygonal line minimal with

respect to meeting each Ti’ Therefore, W must meet two of

the Ti's, say T1 and T3 , only at their endpoints r1, r2:

wnTl = r1, wnT2 C C, WUT3 = r3.

We agree that (yizi) shall denote either the segment

joining those points, or else the line formed from the other

two sides of Ti’ depending on whether the segment contains

points of W. Thus, Wt)(yizi) = ri, i = 1, 3 and Wf](y222) C

C.

1) P1n(yizi) = yi’ P2“ (yizi) = Ziv j- : l, 29 30

Since (yizi) C Ti C Bi’ it follows from the con-

struction of the Bi's that

2) (yizi) n (yi+lzi+l) = ‘5 = (yizi) n (Ki+lUKi+2)’

Where the indices i+l, i+2 are reduced mod 3. Therefore,

5) (yizp M, C C.

Consider S = (ylzl) U (2123) U (szB) U (yayl), where

(le3) and (ysyl) denote polygonal lines extracted from P2,

P1 respectively.

S is a simple closed polygonal path by equations 1 and 2.

Moreover, since W was a polygonal line having only its end—   
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points on S, Sle cuts the plane into three domains, L, M,

N such that Fr(L) = (ylrl)lJWlJ(r3y3)lJ(y3yl), Fr(M) =

(zlrl)lJWlJ(r323)lJ(23zl), and Fr(N) = S.

 

 

   

y
l y3

L
1‘

r1 3

M

Z Z

1 N 3

By 2), (SUW)nK2 = C. Since K2 is connected, it must

be in exactly one of the three domains. It can not be in N,

_ ' , 't h sbecause K2LJ[(y2z2) {y2,22\] is connected by 3) i a

points in common with W (since W(](yizi) C C, i = l, 2. 3).

and it is disjoint from S, which is the boundary of N, while

erw = C. Without loss of generality, K2 C L.

Starting from y2, let t be the last point of (y2z2)

which belongs to K2. Then (tz2) has no points in common

with C except t, and since W C D3, 22 eD2, we conclude that

Wr](t22) = C. Therefore, P2lJ(tz2) is disjoint from Fr(L).

Consequently, P211(t22) C L, since tEK2 C L. and P2 U(tz2)

is connected. This is impossible, since (2123) C P2 and

(2123) c S imply that S 0P2 C C, while 3 nL = C. Thus, P2

is not in L. Therefore, the assumption that C was not the

union of two indecomposable continua leads to a contradic-

tion.

We next present some of Knaster's examples of common

boundaries of plane domains. Let A be the numbers in I that

can be written in base five without using the digits "1" and

 



 

£
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"3". We now describe a continuum Bn that is both indecom-

posable and the common boundary of n domains. Fix n712,

n ""

and let Bn = E Eli9 Fk’ where E0, Ek (O<1{<n), and En

are composed of semi-circular arcs satisfying respectively

the following conditions:

(x-5/2)2 + y2 = r2, if xél/Z;

(x—2k-l/2)2 + y2 = r2, if 2k—l/2 gxg 2k+3/2;

(x-2n+3/2)2 + y2 2ll *
1

if 2n—l/2 5x,

where y'hO and (r-l/2) 6A.

For each k, Fk is composed of the following semi-

circles:

(x-2k-l)2 + y"2 = r2, y; 0, reA;

(x-zk-[7/215'm)2 + y2 = r2, y70, (Smr-l/2)eA, m>O.

See Figure 8.1 (a). The solid, dashed, dotted lines

represent respectively the sets D0, D1, D2 to be defined on

p. 117.

Knaster also discovered the continua {On}, each being

the common boundary of n domains and the union of two

indecomposable continua [60, p. 274]. Cn = BALJBQ', where

' ' n u '

Bn 18 obtained from Bn by replaClng each Fk by Fk.

(x--2k—l)2 + y2 = r2, 2k+lsx, ys o, r EA;

(x-2k-l)2 + (y+l-[7/2]5‘m)2 = r2, x52k+l,

m 'l v

(5 r-l/2) (- A, m70. Bn is obtained from Bn by reflecting

it through the line y = -1. See Figure 8.1 (b). The solid, l

Ddashed, and dotted lines represent respectively D', Di, 2,

to be defined on page 117.
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The verification that the Bn's are indecomposable can

be found in Knaster's paper [60, pp. 274-281]. We will not

present it due to its length. However, the essential idea

is to show that every proper subcontinuum is nowhere dense,

and then apply Theorem 4.4. Knaster accomplished this for

Bn by showing that every proper subcontinuum must be con-

tained in the union of an infinite number of successive

simple arcs (compare Knaster's first semi-circle example,

p. 24). The first are in the first union is the semi-circle

in F0 starting at (0,0) and terminating at (2,0). The next

arc in this union is the semi-circle in El starting at (2,0)

and terminating at (3,0), and so on. This union is denoted

DO, and it is represented by the solid line in Figure 8.1

(a), D; is the corresponding set in B; , with its first

are starting at (l,-l).

The set Dk’ for 0<1£<rn is constructed in the same

way as DO. However, we begin with the arc in Fk joining 2k

to 2k+2. D1 is the dashed line and D2 the dotted line in

Figure 8.1 (a). An analogous description holds for the

lines in Figure 8.1 (b).

Knaster was able to prove that Bn cuts the plane into

exactly n nonempty domains and that Bn is the common

boundary of each of these domains [60, pp. 278-279]. More-

I I!

over, he showed none of the Bn, B cut the plane. But,
n

. v n

Since B DB;1 = {(2k+l,0)\ 0.6 k<n}, the intersection has

exactly n components. Then by the generalized Straszewicz

Theorem (8.11), Cn cuts the plane into exactly n domains.
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Knaster showed Cn is the common boundary of all those

domains [60, p. 281]. Hence, by Theorem 8.12, Cn is either

indecomposable or the union of two indecomposable continua.

But Cn is clearly decomposable, so BA, BQ‘ must be indecom-

posable. Note that if Knaster would have had Theorem 8.13,

he would only have had to show that Cn is the boundary of

three of its complimentary domains,

We now have an abundant supply of indecomposable con—

tinua that do not cut the plane. Although some earlier

examples have this property, it was not discussed by the

original authors. For instance, Knaster's second semi-

circle example is homeomorphic to B; [60, p. 281], so it is

not a "common boundary".

Brouwer, Wada, and Urysohn knew it was possible to have

plane continua being the common boundary of a countably

infinite collection of domains. However, Knaster seems to

have been the first to actually publish a specific descrip-

tion of such sets, which he denoted Ba,. He was certainly

the pioneer in constructing a continuum C0° which is the

union of two indecomposable continua, and which is the com—

mon boundary of infinitely many domains. See Figure 8.1

(c) for the upper half of Goo.

Knaster's construction is as follows: B“, = (1,0) U

°° co

3 LnLJ 2 Mn, where each Ln is composed of circular arcs

satisfying:

(1) 377,0 for all cases;

(2) for n = o, (x-3/10)2 + y2 = r2, os x 529/50,
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(5r-l/2) e A;

-(l+n)/2]2 + y2 = r2,
(3) for n odd, [x-l+(5/2)5

1-(21/2)5(1-n)/25Jcélr(9/2)5(l-n)/2.

[(5(n+3)/2)r-5/21 6 A;

2
(4) for n even, [x—l+(7/2)5'(n+2)

/2]2 + y2 = r ’

l'(9/2)5-(n+2)
/2§ x 5 1-(21/2)5'(n+

4)/2,

[(5(n+2)/2)r-1/216A.

Each Mn is the union of semi-circles satisfying:

(1) yg O for the first type:

(a) for n = 0, x2 + y2 = r2. SI‘GA;

(b) for n odd, [x-l+7. 5'(n+3)/2]2 + y2 = r2,

5(n+l)/2 e A;

-(n+2)/2]2 + y2 = r2
(c) for n even, [x-l+3 ° 5

[(5(n+4)/2)r-2] s A;

‘ (2) y70 and [5m+l

i (a) for n = O, [x+(l/15)-(7/2)5-(m+l)]2 + y2 = r2,

r-l/2]é A for the second type:

In )0;

(b) for n odd, [x-l+4- 5'(1+n)/2-(7/2)5‘(1+m)]2 +

y2 = r2, where m7(n-l)/2;

(c) for n even, [x—l+2 . 5"(11/2)--(7/.2)5"(m+l)]2 +

_ r2, where m7n/2.

<
< I

I I V V 1

0n the other hand, can = Bno UB, , where B“, is the

V

symmetric image of B00 with respect to y = -l, and 13;, is

u I ' l -

obtained from Boo by replaCing each Mn by Mn’ where Mn is
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composed of semi-circles and straight line segments sat-

isfying:

(l) for the semi-circles, x540, [(5m+l)r-l/2] (A, and:

-(m+l)]2 = 12,
(a) for n = 0, x2 + [y-(l/5)+(7/2)5

m>(h

(b) for 11 odd, [x-(4/5)+2 - 5'(n+1)/212

[37+(l/5)--(7/2)5_(m+1)12 = r2. m7(n-l)/2;

+

(c) for n even, [x-(4/5)+4- 5-(n/2)]2 +

[y+<1/5)-(7/2)5'(m”1)12 = r2, m 711/2.

(2) The straight line segments are to have slope +1

and are to join to the x-axis not only the extremities of

the semi-circles in MA, but also the latter's points of

accumulation.

Knaster explains the relationship between Bn and CD on

one handJand Bno and COO on the other this way:

"It was easy to see that in the case of the continua

Bn and Cn’ each domain Rk (O<]{¢er) wormed its way into

the next ones by means of an infinite number of narrower

and narrower blind alleys terminating in dead ends. They

were directed forward and could only reach a neighborhood

of an analogous blind alley of a preceding domain after

having wound through those of all the following [domains].

This is impossible in the case of an infinite number of

more and more distant domains.

Now one succeeds in restoring the dense disposition of

these blind alleys [in the infinite case] (in order that

they should have a common boundary) by occassionally

directing them directly backward toward those of the pre-

ceding domains. This is precisely the case of the con-

tinua B0° and Cup where the first blind alley of each odd

region is directed, without winding through the following

ones, toward its point on the y-axis

. [<7/2)5'(n+1)/2 - 1].
Where "n" designates the number of that domain"[60, p.284].
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The fact that there exist indecomposable continua that

are the common boundaries of several plane domains allows

us to give examples where some familiar double integral

formulas fail, as Hocking and Young show [44, pp. 143-145].

Suppose we modify the Lakes of Wada construction by taking

the island to be 12. We further modify it by digging suf-

ficiently long and narrow canals from the ocean and the two

internal lakes so that the three resulting domains, D D
19

D3 each have measure 1/10. Then, if fElq we have that

2'

3
3

[iff = 1, while 2:fo f :: 3/10. Moreover, since 0 Di

| l

is dense and since C = Fr(Di), i = l, 2, 3, we have

3

Z ITS- If = 3[(l/lo)+(7/lo)] £1.

l L

Before presenting some examples which show Kuratowski's

common boundary theorem fails in E3, we shall mention some

of the work done on the "prime end theory" and Burgess'

generalization of both it and Kuratowski's result.

Caratheodory introduced the term "prime end" in his

1912 paper on conformal mappings [22]. A RElEE 229 of the

boundary F of a domain D is the set of limit points of a

sequence of nested domains determined in D by a chain of

transversals tending to zero in length. A transversal is a

simple are contained in DlJF joining two points of F. Trans-

versals form a ghain if they are pairwise disjoint and the

subdomain Dj‘determined in D by the transversal Tj,con-

tains the domain Dk determined by Tk’ for all Tk following

 

 

 





 

122

Tj‘ This version of the definition was given by Marie

Charpentier [23, p. 303].

In 1939, Charpentier investigated irreducible cuts of

E2 that were sufficiently complicated so that the entire

cut was one prime end. She showed [23, p. 306] that if the

continuumC1cuts E2 into two domains and if C has a prime

end identical to itself, then C must be either an indecom-

posable continuum or else the union of two indecomposable

continua K, L such that K = 0:3 and L = 0:K.

In 1935, Rutt considered the question of when "the set

of prime ends of a plane bounded simply connected domain

includes one which contains all the boundary points of the

domain." [109, p. 265] He established the following results:

(1) "In order that the collection of prime ends of the

plane bounded simply connected domain D with

boundary F should include one containing F, it is

sufficient that F be indecomposable." [109 p.268]

(2

V

"In order that a plane bounded simply connected

domain D with boundary F should have a prime end

containing F, it is necessary that F should be

either indecomposable or the union of two indecom-

posable continua." [109, p. 278]

In his thesis, C. E. Burgess investigated continua and

their complementary domains in E2. using some results of P.

M. Swingle on generalized indecomposable continua. He

showed (among other things) that the following theorem

holds:
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"Suppose H is a closed set and M is a continuum in B§:H

and intersecting E2-H such that if R1, R2, R3 are three

domains intersecting M, there exist three complementary

domains of MlJH each intersecting each of the domains R1, R2,

R3. Then either M is indecomposable or there is only one

pair of indecomposable proper subcontinua of M whose union

is M." [19, p. 907]

Kuratowski's theorem (8.13), Charpentier's theorem,

and the second result of Rutt are now special cases of

Burgess' theorem [19, p. 908].

To conclude the chapter, we shall consider the situ-

ation in E5. Kuratowski's common boundary theorem fails

there, a fact he knew when he published his works on E2 [70,

Pa 132], [72, p. 36]. In fact, he gave the following

example. Let C be a plane continuum that is the boundary

of three plane domains. Join each point of C to a point

above the plane and to a point below the plane. The

resulting continuum is the common boundary of three domains

in E3, but it is certainly neither indecomposable nor the

union of two indecomposable continua.

. . 3

R. L. Wilder showed in 1933 that there ex1sts in E a

peano continuum which is the boundary of three domains [129,

PP. 275-278]. He constructed this set by generalizing the

Lakes of Wada technique to three dimensions. That is, the

island becomes a solid ball, the lakes become two (tangent)

balls removed from inside the first ball, and the canals

become tunnels. His method can easily be generalized to  
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give a peano continuum that is the common boundary of n

domains, or even a countably infinite number, although in

the latter case, the diameters of the inside balls must

tend to zero. In connection with this, P. M. Swingle has

shown in 1961 that if Wilder's tunnels of circular cross

section are replaced by tunnels of annular cross section,

then the resulting closed connected set in En is indecom-

posable [114].

There is a familiar name in the background of Wilder's

work: Schoenflies. It is Wilder's belief that Schoenflies'

methods of investigating the topology of plane domains and

their boundaries could be extended to higher dimensions,

even though some topologists felt otherwise [129, pp. 273-

274]. His above paper was a step in that direction.

Perhaps the most frequently cited example showing that

the three dimensional case differs from the two dimensional

one is Lubanski's ANR. which is the boundary of three (or

more) domains and which can be decomposed into a finite

union of AR's whose diameters are arbitrarily small [81].

(See [28, pp. 151-152] for a definition of ANR, AR.) Thus,

We can have a "nice" continuum being a common boundary of

three or more complementary domains in E5.

Lubanski notes that a mathematician named Gruba con-

structed the first such example. It is not known if it had

Lubanski's decomposition property, since the paper was lost

in WW II and never published [81, p. 29].

 



CHAPTER 9

ACCESSIBILITY OF PLANE INDECOMPOSABLE CONTINUA

In this chapter we shall present another characteri-

zation of indecomposable continua in the plane. This char-

acterization was given by Kuratowski in 1929, based on work

done by Mazurkiewicz in the same year.

Kuratowski asked whether every plane indecomposable

continuum contains a composant which contains no accessible

Point. Mazurkiewicz' surprising answer was that "almost all"

composants have no accessible points, in the sense that the

union of all composants containing accessible points is of

first category with respect to the given continuum [92, p.

107]. In a later paper [93], he showed that in a plane

indecomposable continuum, the collection of composants

which contain more than one accessible point is either

finite or countably infinite.

 Using the first of these results, Kuratowski showed

[74] that a plane continuum is indecomposable iff it is

nowhere dense and contains a point which is contained in no

Proper accessible subcontinuum.

Before proving this theorem, we need to mention the

ways in which the term "accessible" is being used here.

. . 2

During the late 1920's, a point p contained in a set S C E
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was said to be accessible from E2-S if there were a simple

are A having p as an endpoint and such that Arls = p. Maz-

urkiewicz used this definition in his above-mentioned papers.

Note that this definition differs slightly from the one

given on p. 83. However, Kuratowski's definition was dif-

ferent than both of the above. X C C is accessible iff

there is a continuum L such that LilC = X, and L—C £ C.

Instead of establishing Mazurkiewicz' first result,

we shall prove Kuratowski's generalization of it.

. . 2
Theorem 9.1: If C is an indecomposable continuum in E , the

 

union of its proper accessible subcontinua is of first cate-

gory with respect to C [74, p. 116].

Proof: Let a be any point of C, and let P(a,C) be its

comPosant. Let Gn k be any complementary domain of the set

’

c UTBa, "mu in E2, and let Fn k be its boundary. Let K(y)
Y

be the component of ye Fn k contained in C-B(a,l/n), and set

Qn = :4 73mm), Q = g on.

Suppose D is an accessible subcontinuum of C. By

Kuratowski's definition of an accessible subset, there

exists a continuum L such that LIIC = D, and L-C £ C.

Either Df1P(a,C) # C, or else Df1P(a.C) = C. In the former

case, D C P(a,C). In the latter case, Lf1P(a,C) =

Ln (C nP(a,C)) = DI'IP(a.C) = p. In particular, a $L. Con-

sequently, there is an n sufficiently large that LIIBTETI7HT

= ¢. say l/n = [d(a,L)]/2. Therefore, L-(ClJBTaTI7HT) =

(L-C) n (L-‘T—IT‘IBa, n ) = (L—C) nL = L-C .4 (23. Thus, there is a  
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k such that Ln Gmk .é {23. Moreover, C .4 an c L-Gmk.

Therefore, LnFn k ,4 C. Fn k c CWa, n , and, since

Lleia,I7n5 = C, we have C # Llan k C LIIC = D. Hence,

DnFnJ, :4 ¢. Thus, momma—3175 = o, and so DnB(a,1/n) =

¢. Therefore, D C C-B(a,l/n), and consequently, D C Qn.

Thus, the union of all proper accessible subcontinua

of C is contained in QlJP(a,C). Theorem 4.11 (a) shows

that P(a,C) is first category with respect to C. Lemma 9.2

will show that Q is also first category with respect to C.

Therefore, D is first category.

Lemma 9.2: Under the hypotheses and notations of Theorem 9.1,

Q is first category with respect to C [92, pp. 112-115].

Outline pf 3322;: We shall show that each Qn is nowhere

dense in C. Suppose that the indices n, k are fixed, and

that c EC-BTETI7E7; d(c,BTE:I7ET ) > 6 7(3. Let Pl be some

composant of C, not P(a,C). By Theorem 4.17, E1 = C, so

P1(1B(a,l/n) # C. Let x be in this intersection. and let

L(X) be the component of x in C-B(c, 6/2). It is a nonempty

proper subcontinuum of C, so by Theorem 4.4, it is a con-

tinuum of condensation of C. That is, it is nowhere dense

in C. It follows that (PlnB(a,l/n))—L(x) yé (25. Let y be

in this set. Since x,y are in P1’ there is a continuum J C

Pl C C, irreducible between x, y. (The irreducibility

follows from the fact that any continuum containing a pair

Of points contains a continuum irreducible between them.)

= J-B(a,l/n), J2 = JrlBTETI7n7, and let cl be
Set Jl  
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in the nonempty set J11B(c, 6/2). J1 and J2 are closed and

satisfy x, ye J2, clé Jl-JZ' and JlUJ2 = J. Thus, the

hypotheses of the following lemma are satisfied.

Lemma: Let C be a continuum irreducible between p, q of a

compact metric space. Let F1 and F2 be two closed subsets

such that p, q 6F Fl-F2 C C, and FllJFZ = C. If zéIFl-FZ,2,

and if €‘> 0, then there exists a continuum K C Fl such

that KnF2 C C and non-connected, and d(z,K)<.6 [92,pp.

107-109].

Therefore, there exists a continuum M such that M C

J1 C (C-B(a,l/n))f1Pl, d(cl,M)<L é/2,(hence d(c,M) 4 6),

and, since M C J-B(a,l/n), MIlBTEII7E) = Mf1(JI1B(a,l/n)).

The right hand side of this equation is Mfng, so by the

lemma, it is a nonempty non-connected set. Then, by Theo-

rem 8.7, MKJBTETI7ET cuts the plane. Consequently, M cuts

EZ-FIETI7E7, and hence also cuts E2-B(a,l/n) [92, p. 110].

Let V(Pl) denote the component of C-B(a,l/n) containing

M. Clearly, V(Pl) C P1 and d(cl,V(Pl))( 6. By Theorem

4.4, V(Pl) is nowhere dense in C, and hence in E2-B(a,l/n).

Then since M cuts E2-B(a,l/n), it follows that V(Pl) cuts

this set [92, p. 110].

By the proof of Theorem 4.11 (c), the composants are

uncountable. Thus, the collection of components V(Pl) is

uncountable. Distinct composants are disjoint by Theorem

' " ' " f P' C P" We can
4.10, so V(l>1)nV(Pl ) c PlriPl = C. or 1 1 .

now apply the following lemma of Mazurkiewicz.  
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Igmmaz Let A be a continuum in E2 which is locally connected.

Let f he an uncountable collection of disjoint continua,

each of which cuts A. Then if contains three continua such

that one cuts A between the other two. That is, two con-

tinua are in different complementary domains of the one

continuum [92, pp. 109-110].

III 1"

Thus, there are three composants P , P1 , Pl , such

I! IIIthat V(Pl) cuts E2-B(a,l/n) between V(P1 ) and V(l>l ). We

II '3'

claim that either v(P1 )len'k = C, or v(Pl )len,k = C.

II II!

If not, then choose vl 5V(Pl )nFn’k and vzeV(Pl )Ian’k.

V(Pi) cuts E2-B(a,l/n) between v1 and v2 [92, p. 109].

Since v1, v2 €Fn,k’ all neighborhoods of v1, v2 must contain

points of Gn k' Hence, V(Pi) cuts E2-B(a,l/n) between some
9

I . .

pair of points vi, v2 of Gn,k‘ However, Since Gn,k is a

domain, there is a continuum N C Gn,k containing those

2
points. Then N c on k c EZ-(CtJBTEII7ET) c (E -B(a,l/n))-

7

' 2
V(Pi). This contradicts the fact that V(Pl) cuts E -B(a,1/m

between v1 and v2. Therefore, take V to be the one of

' I n I

V(P1). V(Pi') which is dlSJOlnt from Fn,k. Consequently,

V n g F K(y) = C.
e ".k '

But, d(c,V)< e , since d(c,V(Pl)) < 6, so that we have

d(C.C-U K(y))< 6 . Since G is an arbitrary point of the

7e;
0

set C-Bia,l7n5 and e > 0 is arbitrarily small, we have that

C-U KZyS D C-BZa,I7n5, and CLCE' K(y) D Cf1B(a,l/n).
r

at6a,. .
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Moreover, C = C:Ef§?I7§I U C7TBT§TI7HT. If not, then C

would contain either a point of dimension zero, or else an

arc of Fr[B(a,l/n)] which would not be a continuum of con-

densation of C. This violates Theorem 4.4.

Therefore, C-Cénm y = C. Consequently, for any n, k

the closed set U K(y) is nowhere dense with respect to C.

II,”

Thus Q is first category.

Theorem 9.3: A plane continuum C is indecomposable iff it

 

is nowhere dense and contains a point which is contained in

no proper accessible subcontinuum [74, p. 116].

2322:: Suppose C is decomposable, say C = AlJB, where

A, B are proper subcontinua of C. If C is not nowhere

dense, then there is nothing to prove. If C is nowhere

dense, then C = Fr(C). Since the set of points accessible

from E2-C is dense on Fr(C), both A and B must contain

points that are accessible from EZ-C. (To prove the state-

ment about density, let p)éFr(C), and let (‘70 be given.

There is a point q in E2-C within. 6 of p. Starting from

q, let r be the first point of the segment qp in Fr(C).

Then qr lies in EZ—C, except for r, and hence r is acces-

Sible from EZ-C and is within. 6 of p.)

Let p, q be accessible points of C contained in A, B

respectively. Thus, there exist simple arcs L, K having

P. q as respective extremities, and such that Lth = p,

KIIC = q. Then LlJA, KlJB show that A, B are accessible in

the sense of Kuratowski, Since the union of these proper

Subcontinua contain all points of C, we have contradicted  
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the condition given in the theorem.

If C is indecomposable, then C is nowhere dense in E2

by an easy corollary of Theorem 4.4. The accessibility

condition follows by Theorems 9.1 and 4.8, the latter of

which says that no T2 indecomposable continuum is first

category with respect to itself.

 





CHAPTER 10

TOPOLOGICAL GROUPS AND INVERSE LIMITS

A. D. Wallace nicely expressed the reaction of many

mathematicians to the concept of indecomposable continua

when he said, "We commonly think of indecomposable spaces

as being monstrous things created by set—theoretic topol-

ogists for some evil (but purely mathematical) purpose."

[123, p. 96] We hope to dispel any such feelings about

indecomposable continua by showing that they can play a

role in areas other than point set topology.

In particular, we are going to explore two roles of

indecomposable continua in topological groups. First, we

shall present Wallace's proof of the fact that if we have a

continuous multiplication with a two sided identity defined

on a continuum, (such a structure is called a plan) then

the clan is a topological group, provided the continuum is

indecomposable. The second part of the chapter will be

devoted to the famous class of examples called solenoids,

which are both indecomposable continua and topological

groups.

We begin by defining some of the above terminology.

A 33922 is a set G together with an operation, *, such that:

(a) a,bGG implies a*b (G;

132  
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(b) * is associative;

(0) there is an identity element e, such that x*e = x =

e*x, for all x:6G;

(d) for each x:sG, there is an inverse x‘l, such that

xx.1 = e = x-lx.

If only a and b hold, we have a semi-group, while if

only a, b, and 0 hold, we have a monoid. If all of the

axioms hold and the operation is also commutative, the group

is abelian.

Definition: A topological group is a set G which has both a

group structure, (G,*) and a topological structure (G,T)

such that:

(a) f: GxG-—9G given by f((x,y)) = x*y is continuous;

(b) g: GJ-9G given by g(x) = x-1 is continuous.

For example, the real numbers under the usual addition

and topology form a topological group. Later in this chap-

ter we shall need the fact that (z! z is complex and (zl = l}

is a topological group under complex multiplication. Its

underlying topological space is 81.

A mgb is a T2 space (S,T) together with a continuous

associative multiplication, m. If (S,T) is also a continuum

and if (S,m) has a two sided identity, then the mob is a

_ci_ap [123, p. 96]. Let C C L c S, where s is a mob. L is

a lgfi $922; if SL C L. Similarly, one defines a Eight

M and a H2 and £1821.

The next theorem shows that the algebraic property of

existence of inverses in a clan is implied by the topo—  
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logical property of indecomposability. Wallace first proved

the result in 1953 under the additional restriction that the

space be metrizable [122]. He later simplified it [66], but

the version we give appeared in [123, p. 103].

Theorem 10.1: An indecomposable clan is a topological group.

 

2322f: Let S be an indecomposable clan. Let H denote

the maximal subgroup of S containing the identity. Let K

denote the minimal closed ideal of S. To prove its exist-

ence. let {1030‘ E ,7 denote the set of all closed ideals

of S. The collection is nonempty since S is in it, as well

as the closure of any ideal. If L and R are respectively

left and right ideals, then LflR C C, for x EL and ye R show

yKZELflR. Thus, [Id }d 6.7 is a collection of closed sub-

sets satisfying the finite intersection property. Since S

is compact, K : n I<x C C. K is the minimal closed two

x e‘fi

sided ideal of S.

If S = H, then S is a group. So suppose S C H. X =

S-H is a right ideal in S. For, let x GK, and let y be any

element of S. If xy'eH; then there exists (xy)-lé H. Then

X[V(Xy)-l] — e implies erL a contradiction. Hence, K C

S-H, so K(lH = C, Let U be a neighborhood of e such that

fiilK = C (recall that compact spaces are regular). Let J

be the union of all ideals of S contained in S-U. J is non—

empty since it contains all the elements of K. We shall

show that J is open.

Let x:€J C S-U. Sfx}S is an ideal contained in J C

S-fi. Define h: Sxfx}xS-9S by m(sxt) = m(m(s,x),t) = sxt.  
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Since m is continuous,‘m is continuous. Sxix3xS C‘m‘l(S-U).

By repeated applications of Corollary 2.6 of [28, p. 228],

there exist open sets V1, V2, V3 in S such that Sxtx}xS C

levzxv5 c E’Hs-fi), Vl = V3 = s, so Sxfx}xS c SXVZXS c

m-l(S-U). Therefore, SV2S C S-U, and hence it is contained

in J. Since 86 S, we have x 6V2 C SVZS C J, and thus J is

open.

Moreover, J is connected. For let a (J; {a}S is a

right ideal and is connected since it is the continuous

image of the connected set S under the map ma, defined by

ma(X) = m(a,x). 0n the other hand, each x EJ satisfies

x6 Sfx} C J, so that J is the union of connected left ideals.

As earlier in this proof, each of the Sfx}'s meets (ays,

whence the union is connected.

Therefore, I is a continuum. Moreover, it is a proper

subcontinuum of S: J C S:E C S:U = S-U C S. There are two

cases: S-J connected or not connected.

If S-J is connected, then we have S = JlJS—J. J is a

prOper subcontinuum of S, and S-J is a continuum. It is

also proper: S-S—J D S-S-J = J C C, since J is a nonempty

Open set. Thus, S is decomposable, which is a contradiction.

If S-J = AlJB, where A, B are nonempty, disjoint, open

subsets of S-J (hence open in S), then S = (AlJJ) U (BLJJ)

is a decomposition of S (see Lemma 4.2).

Therefore, we must have H = S. so that S is a group.

To show that it is a topological group, we must show that
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the map g: S—bS given by g(x) = x.1 is continuous. To do

this, we introduce the concept of a net.

The following definitions are from Kelley [58], chapter

II. A binary relation 7, on a set A is called a preorder if

it satisfies: (a) for all aéA, a74a, and (b) a 7,b and b7,c

imply a7,c. A directed it D is a preordered set such that

for all a, bED, there is a c (D such that age, and b 40.

A nit in a space X is a function €P:D—>X where D is a

directed set. We will use the notation {x 0/qu é .7 to rep—

resent the range of W . A net {XNBM e 07 converges to xéX

if for all neighborhoods U(x), there is an a (D such that

for all b wa, xb 6U. A net {x,dd 6'7 accumulates at x (X

if for all neighborhoods U(x) and for all a 5D, there is a

bED, b7/a, such that xb 6U. W : F->X is a subnet of

T: D—>X iff there exists a function f : F -)D such that

Y = cPof and for each In 6D, there is n in F such that if

P7/n, then f(p) 7,m.

Lemma 10.2: Consider (G,m,T), where (G,m) is a group and

 

(G,T) is a compact T2 space. If m is continuous, then so

iS g, where g(x) = x-l. That is, (G,m,T) is a topological

group,

_P_rgp_f: Let x6 G be arbitrary, and let (x(}_‘ e' 07 be

any net converging to x. To show that g is continuous, we

must show {g(xx )}fig(x) [58, Theorem 3.1 (f), p. 86].

{g(X.‘ )} is a net and since S is compact, there is a subnet

{g(xq )} converging to some unique yé S [58, p. 136].

(1  
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{x40} converges to x since {xx} does. {(x"! ,

g(x.(p ))} is a net in GxG and it converges to (x,y). Since

111 is continuous, {m(xxp ,g(xup )} = {e} converges to

m(x,y) = Xy. Therefore, xy = e, which implies y = x'1 =

g(x). Hence, {g(xocp )} Cag(x).

To see that {g(x°,)} converges to g(x), we note that

if {g(x,([} has any other accumulation point z, then the

above argument can be applied again to get z = x-l, so that

Z = y. Hence, g(x) is the unique accumulation point of

{g(xo. 15'. Since S is compact, {g(x_,%must in fact converge

to g(x). For otherwise, there exists a neighborhood U[g(x)]

such that for all a ED, there exists b 6D, b7/a, such that

g(xb)¢U. Then choosing aof D, there is a17,aO such that

g(xal)¢U. In general, given a, such that g(xax )¢U,

there exists a@ 7, a). such that g(xa0)¢'U. Then{g(xad)}

is a net none of whose terms is in U. Hence. it can not

accumulate at g(x). Since S is compact, it accumulates

elsewhere, contradicting the uniqueness of accumulation

point.

There is a great deal of information in the literature

on the subject of when an algebraic structure and a topo-

lOgical structure are sufficiently compatible to yield a

tOpological group. See,for example, the references at the

end of Wallace's paper [123; llOvll2]. Also, the book by

Husain [46] does a great deal in this direction.  
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It is interesting to note that the conclusion of Theo-

rem 10.1 holds if the hypothesis of being indecomposable is

replaced by that of being a manifold [122, p.2]. This is

especially curious since, in Wallace's words,"certainly

manifolds and indecomposable continua are antipodal points

on the sphere of topology." [122, p. 2]

The question naturally arises as to whether there are

any indecomposable continua that are also topological

groups. We would certainly hope so, for otherwise, the

preceding theorem would be of very little interest. In fact

we shall show that all solenoids have the desired properties.

Since one of the most useful ways of describing these spaces

involves inverse limits, the next few paragraphs are devoted

to stating some properties of inverse limits.

Paul Alexandroff introduced the concept in 1929,

although in a slightly different form and context than ours

[2]. The following material follows the treatment in Eilen-

berg and Steenrod [31], Chapter 8, except where otherwise

noted.

Let M be a directed set. A subset M' C M is ggfipgl

in M if for each méM, there is an m' 6 M' such that mtm'.

Let X = {X¢;}q e/W be a collection of sets and F = {f(p]-

a collection of functions such that whenever a 5 fl , then

f..@ (Xp)cx,,,, for all oxen, f...,(x,.) =X.,, and

o - 9‘1. I such a case X

fuefpV-foar’“-‘p n ’{“’

+

f is called an inverse system Q: sets. If M = Z ’
«’0 ‘M ._______ ____

 





139

we say it is an inverse sequence. The sets X... are called

the factor spaces of the system, and the functions F are

called the binding m. If each Xat is a topological space

and each binding map is continuous, then we have an inverse

system of topological spaces. If each X“ is a topological

group and each map is a continuous homomorphism, then we

have an inverse system of topological groups.

The inverse Emit of an inverse system of topological

spaces (or groups) {X,, ,f.,(,} is LiJ (X ) =

Xco = {x = (x...) 6 71X¢\u5(3 =) ffipopfl (x) = p~(x)}:

where 77X ,( is the product of the spaces X a. (see [28,pp.

21, 98]) and p3,:71X‘ -—>X2§ is given by P7! ({xu}) = xx ,

X00 is given the topology it inherits as a subspace of 71X,”

If each X.‘ is a topological group, then X” is a topo-

logical group.

Lemma 10.3: If {XOU fag} is an inverse system of topo-

logical spaces (groups), ' then each p a is a continuous

function (homomorphism).

3322;: See [31, p. 216].

Lemma 10.4: Let {X,,. , fa, a} be an inverse system of topo-

logical spaces. (a) If for each 0:5 (3 , f“ p is one—to-

one, then p.‘ is one-to-one; if fuf’ is one-to-one and 011130.

then so is pa . (b) If the index set M is countable or if

each X o. is a compact T2 space, and if each fN p is onto,

then pm is onto.

3392;: See [31, pp. 216, 218].

Lemma 105; Let [Xv , fag] be an inverse system of topo-  
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logical spaces. (a) If each X x is T2, then Xe, is a closed

subspace of WX, . (b) If each X o. is compact and T then2,

X” is compact and T2. If also each X,x C C, then Xe, C C.

2339;: See [31. pp. 216-217].

Lemma 10.6: If each X.‘ in the inverse system is a nonempty

T2 continuum, then X00 is a nonempty continuum.

_Pr_oo_f: See Engelking [32, p. 244].

Lemma 10.7: If {Xuquc} is an inverse system of spaces,

-1
then a, (U), where U runs over all open sets of X, and °<

over M, is a basis for the topology of X00.

Proof: See [31, p. 218].

I I }

If we have two inverse systems {Xu ,fup} , {Xx ,fdp

over M. we can sometimes define a collection of functions

I I

{TOD}: {X«,fqp} “fig“,fpp} , (f2: X“——>X« such that

if 0( g (3 then the following diagram commutes:

X {r1 X
a fix? P

7.. (Fe

 

 x15? . X (3

«e

In such a case, {19“} is called a map from {X,(,f« (3} to

{X'oc ’f'd a} . '

I 0

Lemma 10.8: Let {Xa ,fqp} , {Xat ,fm g} be inverse systems

of topological spaces (groups) over M with a map { Tu}.

Where each of the ch's is a continuous function (homo-
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morphism). Then {‘?«} induces a continuous function (homo-

mor hism : ' 'p ) CF” Xm—9XOD given by fi°~({x~}) s {find},

Proof: See [31, p. 218].

I O l ILemma 10.9. Let {Cfix}. {xwfw} -.[X,, ,fue} be a map of

the systems. If each ‘Rx is one-to-one, then so is the

induced map $90,. If each (qup“ is onto, then Cam”) is

dense in X . He ' ' 'an nce, if each X0‘ is compact, qt, is onto.

Proof: See [28, p. 430].

Lemma 10.10: Let M be a directed set, M' C M cofinal. Let

[Xohfoqfi be an inverse system over M and {Xd'ifu'p'} the

inverse system extracted from the first by choosing each u',

' I

F to be in M . Then Lim Xg, is homeomorphic t0 Lim Xof.

e— e—*

Proof: See [28, p. 431].

As our final result of this section, we present a

recent (1971) theorem of Kuykendall giving necessary and

sufficient conditions for an inverse limit of an inverse

sequence of metric continua to be indecomposable. We prove

only the sufficiency, since that is the only part that we

will be using in the chapter.

Th - 'eorem 10.11. Let {Xn' fn,m} be an inverse sequence such

that for each n, Xn is a non-degenerate metric continuum

with metric d and surjective binding maps. The following
n’

are equivalent:

(a) X00 is indecomposable.

(b) If n is a positive integer and 67’0, there is a

positive integer nr7n.and three points of Xm such

that if K is a subcontinuum 0f Xm containing two
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of them, then dn(x’fn,m[K])<'e for each x eXn.

2322:: For (a) implies (b), see Kuykendall's thesis

[77]. We only note that this proof makes use of Theorem

4.11, as we would expect.

(b) implies (a): Suppose that (a) does not hold. Since

M is non—degenerate, there are proper subcontinua H and K of

M such that M = HlJK. There is an n such that pn(H) and

pn(K) are proper subcontinua of Xn: Since H is proper,

there is an x = {xi} 6X” -H. For each y = {yi} 6 H, there

exists iy such that x. C yi . Further, if n7,iy, then

y y

Xn C yn. Otherwise, we would have xi = piy(x) = fiy,nq%£x)

= fi ,nopn(y) = piy(y) = yiy, a contradiction.

Thus, for each y: H, there exists an open set (see

-1
Lemma 10.7) Ui = pi (Xi -{xi }) such that pi (x)npi (Ui )

y y y y y y y

Since H is compact, there exists a finite subcover of

=,¢Uiy{3K . Then, for n17,max{iyj}, xnl C ynl , for all

‘ h t H_ {yi} 5H. Hence pnl(x)¢1%h(H), and we have t a pnl( )

is a proper subcontinuum of Xn . Likewise, there exists n2

1

Such that pn (K) is a proper subcontinuum of Xn2' Setting

2

n = maxfnl,n2} gives the desired result.

Thus, there is a point qleXn-pnm) and an 6, 7 0 such

. . _ d
that dn(q1,pn(H))), 5.. There is a pOlnt qzexn pn(K) an
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an 5,) 0 such that dn(q2,pn(K)) 7/ 62. Let 6 = min{€.,6,}.

Iflnwrgand a, b, c are three points of Xm, then two of a, b,

c are in one of pm(H), pm(K). Since fn,m’pm(H) = pn(H),

fn’m°pm(K) = pn(K)7 dn(ql’pn(H))7’ 6 y and dn(q2,Pn(K))>/ 6 ,

it follows that (b) does not hold.

We can now define and study the solenoids. Let {aj}be

a sequence of real numbers with iaj’7 1. Let S1 = {z' z is

l l .
complex and [z] = 1}. Let fn,n+l: S ————9Sn be given by

an
n n+1(z) = z , n = l, 2, . . . . The inverse limit off

this sequence is called a solenoid, 2:. If the sequence

{ad} is replaced by a sequence P = {p1, p2, . . .}, where

the pj are prime (1 is not considered to be a prime), then

the resulting inverse limit is the P-adic solenoid, 2::p.

If all the pj's are equal to say p, then we have the p—adic

solenoid, :E:p. However, if we took p = 1, then the circle

results, and we say that the solenoid is degenerate.

Historically, 2:: was the first solenoid to be discovered,
2

although its original formulation will be given later. We

make one last preliminary remark about 2::pu Note that the

set of all P-adic solenoids contains the set of all sole-

noids whose binding maps are zn, where n is any integer and

may vary with the binding map. For we can replace this

binding map by a finite sequence of factor spaces and

binding maps which arise from the prime factorization of n.

We now discuss some properties of 2:: . Note that

since each factor space is a non-degenerate T2 continuum,
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Z is a non—degenerate T2 continuum. Moreover, since each

factor space is a topological group and each binding map is

a continuous homomorphism, Z: is a topological group.

The indecomposability of 2: follows at once from Theorem

1
10.11. First, any subcontinuum K of Sm is an arc of the

form {claim (- 9 £- 6, 04 F-‘X C l T}. Then, given n 7,1,

- '7"; ‘0“.

C- > 0, choose the three points to be e10, e'1 , e4 in

l .
Sm’ where myn is large enough that [am-1 . . . . - n17’4’

which is possible since lajl )1. Then, if K is any subcon—

tinuum of Si containing any two of the above points, K must

contain an arc of length m/2 containing them. The image of

this are under fn, has length lam-1 . . . . ' an“?! /2)7/2 77.
m

Hence, fn,m(K) = Si, so that for any x6831, d(x,fn.m]K]) =

0 < E.

The indecomposability of Zp can also be shown

directly. Suppose Zp = A UB, where A, B are proper sub-

continua. There exists n such that pn(A) C Si C pn(B), (see

p. 142). Since pn is continuous and A is a continuum, pn(A)

is a continuum. Hence, Six—prim) must be an arc sans end—

points, say K = {819 ] N L 9< (3 , P-°< 52 rn'}. Then we have

_ Q's - ”n17, 177

=fn];n+1(K)=EJ {eff %\+ 7 2 Y4 1%. +117}

 

-1 1

= U I’m' Moreover, pn+l(A) C fn.n+l[pn(A)] C Sn+l-L' But

L is the disjoint union of the qn arcs L1, L2, . . ,,an,

and since p (A) is connected. we must have pn+l(A) c J
In+1
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where J is one of the components of Si+l-L. Thus, the arc

length of pn+1(A) is strictly less than 77. Likewise, the

arc length of pn+l(B) is strictly less than 77. Therefore,

the arc length of pn+l( 2 p) = pn+l(AlJB) = pn+l(A)U

pn+l(B)< 2 7r. contradicting the fact that the projections

are surjective (Lemma 10.4 (b)). This is essentially the

way the indecomposability of 2:. was proved by A. van

Heemert in 1938 [119, p. 323], although he did not supply

the details of the arc length argument.

D. van Dantzig described each :E::g as an intersection

of solid tori in 1930 [118, pp. 102-125], but he did not

mention indecomposability. We shall give this description

later and show its equivalence to the inverse limit defi-

nition. H. Freudenthal announced the indecomposability of

:E::n’ described in terms of inverse limits, but he gave

no proof [40, pp. 232—233]. Finally, Vietoris, the dis—

coverer of the first solenoid, 2::2, mentioned it was

indecomposable, but again he gave no proof [121, pp. 459—

460]. This is not surprising in view of his formulation of

2::2, which we now present without further comment.

Let F denote the Cantor set in the unit interval,I,

and consider FxI. For each x6 F, identify (x,0) with

(f(x),1), where f is defined on F as on p. 146. For con-

venience, we use the triadic expansion for the numbers used

in defining f.

Let x (F?  
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x+0.2 if 0£X£O.l

X + 0.12 -1 if 0.2 5x:£0.21

x + 0.012 -1 if 0.22 éx:g0.221

f(x) = x + 0.0012 -1 if 0.222 ex:§O.222l

0 if x = 1

See Figure 10.1, p. 147. For a discussion of why this is

homeomorphic to the toroidal description, see [118, pp.106-

108].

The solenoids 2:}nare often described as the inter- :

section of solid tori. The basic procedure is to put one }

torus inside another in a special fashion. Namely, the

torus Tn+1 must be wrapped longitudally pn times around the

inside of Tn' Thus, for p1 = 2, T2 is embedded in T1 as

shown:

I

‘

 





Figure 10.1
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More precisely, let T denote the solid torus, T = SlxD2

=1{(s,z)][s|= 1, \zlé l, s. z complex}. Define g from
n,n+l

P
Tn+1 to Tn by gn,n+l((s,z)) = (s n, [z/cn] + [s/2]), where

0<rc <‘(l/2) sin Tf/p . Then, g (T ) is a torus embedded
n n 1,2 2

in T1’ running pl times around T1. The choice of on assures

us that for each cross section of g the pn disks
n,n+l(Tn+l)’

are disjoint:

 

Consider the inverse sequence {T gn m]’ where each

9

n9

— ‘ . T denote the inverseTn _ T, and g +1 is as above Let ao

limit. We want a homeomorphism from Ta: to 2::p, so we look

1

at the map ‘Pw induced by {In}: {Tn.gn,m}-—&{S ’fn,m]’

where the function 9n : Tn—esi is given by ‘Pn((s.Z)) =

. .7. .
f—-'—1‘—-T2«(—°?—'-3—--T3(— e—Te—s—M’ Tn+l<—— Toon ...

if]<9] 13] fl ‘1’...

sle-LJ—sle—L'J—Jas «—wit—~81 *" 831,19— : - '2?

Everything in sight commutes, so there is a function

9)”: Too-9:? induced by {$11}. By Lemma 10.8, flu is

' ‘ ’ ' ' onto so is
continuous, Since each T; is. Since each T; is ,
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‘ED, by Lemma 10.9. If we can show i; is one-to-one,

then it will be a homeomorphism, since The is compact and

KP is T2 [28, p. 226].

So suppose w = {(si,zifl-, x = {(Ei,Ei)} are such that

w C x. Then there exists j such that (Sj’zj) C (53,23). If

33' C 33., then g(w) = {Si} C {5i} = ?w(x), so that (Pa, is

one-to-one in this case.

If Zj C E3, then let the distance between them be 6 .

Choose n-7j large enough that [2/(cn_l)- . . . -Cj]< 6.

Note that gj,n(Tn) is a torus running [pn-l' . . . 'pj]

times around inside Tj' When we take the sj-cross section

0f T3, we also get [pn_1' . . . 'pj] cross sections of

. th

gj,n(Tn)’ corresponding to the [pn-l. . . . 'pj]- roots Of

Sj' Each of the latter cross sections is a disk of diameter

2/(0 1' . . . . c.). Since Zj' Ej are coordinates of points
n

in the inverse limit. they must be in gj,n(T ). But, since

2/(c 1° . . . ' cj)< 6 , they must be in different disks;
n-

'§

that is, in disks corresponding to different (pn-l' .. .- pj)

roots of sj:
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Hence, at the n33 coordinates of w and x, we must have

(sn,zn) C (sn,zn) by virtue of sn C en, since sn is the

( i 0 )fl

pn-l ' ' ‘ Pj roots of sj in whose disk zj lay, and

Similarly for sn w1th respect to Sj’ 23' Thus, q%nls one-

to-one, and is therefore a homeomorphism.

The solid tori description of ZZI>can be given as

w

0 g1 n(T . To see that this is homeomorphic to the "unit

9

n)

circle" definition, we construct another inverse sequence.

Let Xn = gl,n(Tn)’ n = l, 2, . . . , let h = i, the
n,n+1

inclusion map, and consider the inverse sequence X ,h .
n n,n+1

We first show that Lim [Xn’h is homeomorphic to

6.. n,n+1]

oo

7 gl,n(Tn)'

Choose x = [Xi]é'£iE {Xn'hn,n+I]' Since the binding

maps are all inclusion maps, i(xn) = Xn-l = x for all n.
n!

Thus, all the coordinates of x must be the same, say x0.

Hence, x0 is in each factor space, and therefore, we have

09

x050 gl’n(Tn). Define (P: Iéi_m {gl’n(Tn),hn,n+l} —>

on

(‘1 gl,n(Tn) by [({xJfl = x0. ‘P is clearly one-to-one and

onto. Since the domain is compact and the range is T2, we

need only show that T’is continuous. But, the map

?: Lgpu{gl,n(Tn), hn,n+1]‘—9ml is just p1, the first pro-

jection map, which is known to be continuous (although it

is not onto). Therefore, f’: Big {81 n(Tn)’hn n+1] “‘T>

 

 

 





 

 

  

151

w 0 I

q><E$9'[gl,n(Tn)’hn,n+l]) = C gl,n(Tn) is continuous by

restricting the range [28, p. 79]. Finally, we show that

Lim [Tn’gn,n+I] is homeomorphic to EEE'[gl,n(Tn)’hn,n+1]‘

Consider the following diagram:

  

7'H- L. 3113 I in! 0*" . . .T16 T2. T3<———:~ e—«Tne— Tnfl- Ta,

1] an] 2...] 3.... 9.] C]
I. i. t

T16 €1,2(T2)‘c "‘ g1,3(T3)6_'"'e“gl,n(Tn)<“gl,n+l(T)€-‘ "'Xao

Since all the "blocks" in the diagram commute, there is an

induced map G: Tq;-—>X°°. Moreover, since each g1,n is a

homeomorphism, so is G.

Thus, 2::p, as first defined, is homeomorphic to

fielmwn) (by (race ‘83).

An obvious question to ask is this: are the solenoids

2::P homeomorphic? The answer is no, as the following theo-

rem shows. First, some terminology. Let P, Q be sequences

of prime numbers. P is equivalent to Q if a finite number

of terms can be deleted so that every prime number occurs

the same number of times (possibly infinitely often) in the

deleted sequences.

Theorem 10.12: :13 is homeomorphic to ZQ iff P is

equivalent to Q. Thus, in the case of Zn and Zm’ in

is homeomorphic to 2::m iff m and n have the same prime

factors.

239.923 Van Dantzig was the first to prove this for an

[118, p. 122]. Since his proof was based on the torus
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description of a solenoid, it was fairly involved. The

first proof based on inverse limits was given by McCord in

1965 and relies heavily on Cech cohomology theory [83,p.

198]. (Cook has also generalized van Dantzig's results,

but in a different direction [25].)

For the sake of completeness, we include McCord's proof,

but lack of space precludes introducing all the terminology

needed to make it self—contained.

"From the continuity theorem for Cech cohomology [31,

p. 261], one sees that Hl( Z:IHZ) is isomorphic to the group

FP of P-adic rationals (all rationals of the form k/(plc . .

.~pn), where k is an integer and n is a positive integer.)

Also it can be seen that 2::p, as a topological group, is

topologically isomorphic to the character group of FP' By

number-theoretic considerations one can see that FP is

isomorphic to F iff P is equivalent to Q." See his thesis

Q

[82, pp. 22-26] for more details.

As our next major result (10.17), we shall give van

Heemert's answer to the question of which metrizable compact

connected abelian topological groups are indecomposable.

Theorem 10.13: Let G be a metrizable compact aonnected

 

abelian topological group. Then G is topologically iso-

morphic to the inverse limit of a sequence of Lie groups.

In particular, these factor spaces are metrizable compact

connected locally connected abelian topological groups, and

the binding maps are continuous surjective homomorphisms.

Proof: The first statement is proved in Husain [46,
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p. 154], although its original discoverer seems to be H.

Freudenthal [39, p. 69]. In the proof, the n322 factor space

was shown to be G/Nn' where {Nn] is a decreasing sequence of

closed normal subgroups. Hence, each factor space is

abelian. Since the binding maps are continuous and onto and

the index set is countable, the projections are continuous

surjections. Thus, each factor space is compact and con-

nected. Since each factor space is a Lie group, it is also

locally connected. The metrizability follows from the con-

struction of the factor spaces.

Theorem 10.14: Let H be a metrizable compact connected

 

locally connected abelian topological group. Then H is

topologically isomorphic to a torus group Tk = fi'Sl, where

k is a positive integer or SU;.

2332:: See Pontrjagin [104, p. 380].

Thus, the G of Theorem 10.13 is topologically isomor-

phic to @{Tkm fn’m}.

It will be useful to express a torus Tm as Em/Zm, where

Z denotes the integers. If h: E-—)T is given by h(x) = eix,

then Em/Zm is homeomorphic to Tm under the map HIn = 7[h.

Moreover, if we have f: Tm——§Tn which is a continuous sur-

jective homomorphism, then there exists a continuous sur—

jective homomorphism F: Em——) En such that fon = Hno F [14,

p. 82]. Such an F is, of course, a linear transformation.

Moreover, we see that if we have an inverse sequence of

k

torii, T n, with surjective binding maps, the dimension, kn,

must be a non-decreasing function of n.
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Lemma 10.15: Let f: En——§Em,11wn1wl, be a continuous sur-

jective homomorphism. Then f is monotonic. That is, if

C C Em is connected, then f-l(C) is connected.

P_roo_f: Let ker (f) = {xennl f(x) = (0,0, . . .,0)_7y.

It is well known that ker (f) is a linear subspace, and

since f is onto, it has dimension k = n-m. Therefore,

ker (f) is topologically isomorphic to Ek.

Moreover, En~EInkxEgr [En/Ek]xEk; let E denote this

composite homeomorphism. Since f is onto, it is easy to see

that f is an open map. Hence, by [28, p. 130], the fol-

lowing diagram commutes:

[En/Ek]xEk 5 ;En f 7‘

xEn/Ek/

where p is the natural projection, and g is the natural

 

. -l “ -1
homeomorphism. Therefore, f (C) = g?» P [g(C)] =

-l 'I

§a[g(0)xEk]. Since g(C) and Ek are connected and E is

a homeomorphism, f-1(C) is connected. Thus, f'l(C) is

homeomorphic to CxKer (f), where C is the obvious homeomor—

phic image of C in En.

Theorem 10.16: Let {W fnfm] be an inverse sequence of

kn-dimensional torii with binding maps that are continuous

surjective homomorphisms. If there is an n such that kn7IL

then him-{Tmfn m is decomposable [119, p. 322].

Proof: Let m be the first integer such that km27l. By

n . .

Lemma i0..10, Lim-{Tk, fnfn+1]n.yl is homeomorphic to

Lim {T n,
b

There exist proper subcontinua Am, B
n,m]n7,m' m
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wh . . km -1 -1
ose union is T and such that H (A ) H (B ) are con-

km m ’ km m

k

nected in E m:

km i9 10
T ={(e \ ,0 o 99e km))0é9ié2fnr, i = 1, . . . ,km};1et

19 19

Am={(e lyoooge Kn“)|0 $915277, 1:1,...,km_1,

05 ohms 7T} u

'0
((el' ,. .. ,eigmm){0 = 91’ i = 1,. .. ,k -1,

ogm%42wh mm

B ={(e19., 000 yelofi’mHO 591‘: 277, i = 1y o o c 9k '11

m 4
. OK.“

i0 10 -

{(8 ’700‘96 KM)|O=91,1=1,...,km-l,

05 Omh

We next construct an inverse sequence of proper sub-

km+n -l
B of T . Let Am+l = f 1(Am),continu

a Am+n’ m+n m,m+

_ —l .
Bm+l _ fm,m+l(Bm)’ These sets are closed in the compact

km 1
Space T + and hence are compact. Moreover, we have seen

that the following diagram commutes:

k

 

me tHkM+l

k

Tkm if in», ......o T m+l
 

-1 _ '1 '1 A B choice ofTherefore, fm,m+l(Am) _ Hkm+lorm,m+1°Hkm( m). y

Am and Lemma 10.15, Am+1 is connected. Similarly. Bm+1 is

connected, and it is clear that these are two proper sub-  
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- - km+1
continua whose union is T .

= f'1 (Proceding inductively, we define X m+j,m+j+l
m+j+l

Xm+j)’ where X is A or B. As above, the sets are easily

seen to be compact and proper. To show that they are con-

nected and cover, consider the following diagram:

 

 

  

k . k _ k .

E Igj-J-l FM-riv'uvua. 4 E 13:3 Fmrj’m+j+0 *E m+J+1

H , ,, .

Kmfi" km” 9 “mu-J +8

wk . ~1k . k .
T 9:3-1 4M‘PJ-‘JM#J‘ I; iii-+3 in", j‘m+‘i$I T m+J+l

‘ ' r
 

 

Since the two small blocks commute, so does the large one.

We can establish the desired properties as before, since

-1 -1 . -l

k . H (X
111+.)

H (Xm+j) = Fm+j-l,m+j km+j~1 m+j-l)°

LetX=Lim{X f
‘5. m+n, m+n,m+n+i}!

X = A, B. we Claim that

km+n

A and B form a decomposition of Y = £39'[T , m+n,m+n+i];

A and B are subcontinua of Y by Lemma 10.6. AlJB = Y holds,

km
since given y = [yi] eY, we have ym eT , and hence either

in Am or Bm. Without loss of generality, suppose ymcFAm.

'1 ‘ ce eY. Inductively, if
Then ym+l 6 fm,m+1(ym) C Am+l’ Sin y

-1
. There-

m+j,m+j+l(ym+j)

C A . .

ym+j éAmt)" then ym+j+l6f m+j+l

fore, y e A.

Finally, A, B are proper subcontinua. Choose y={Ym+i}

EEAm-Bm, which exists since the projections are surjective.

f-l- = B

Then ym+1€:fm]m+l(ym) C Am+l' Since Bm+1 m,m+1( m)’  
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then ym+l ¢ Bm+l‘ Again induction shows that ym+ié AIn+i -

B for all i c 2*, so that yé A-B. Likewise, B-A ,4 C.m+i’

Theorem 10.17: Let G be a compact connected metrizable

 

abelian topological group. G is indecomposable iff G is a

non-degenerate solenoid 2:..

2322f: We have only to examine the binding maps from

Theorem 10.13. By [14, pp. 9, 82], the binding maps must

have th f. .e form j,j+l

a .

(C) = e j 19, aje E: if they are merely

assumed to be into. For them to be onto, we need ’ajl7yl:

given any eiv’é S1, it has ein/aj as a pre-image, provided

Waj l 2 77. That is, provided v24 27! [a3] . Taking Ly

arbitrarily close to 2'W forces ‘33] ml. However, if all

but a finite number of the aj's have absolute value 1, the

solenoid is degenerate and hence decomposable.

We know from their toroidal descriptions, that 2:];

can be considered as subspaces of E3. It is natural to ask

if these solenoids can actually be embedded in the plane.

The answer is no, as the following stronger result shows.

Theorem 10.18: A solenoid 2::p is not a continuous image of

any plane continuum.

2322:: Fort first proved this result for the dyadic

solenoid [P = (pi), pi = 2] in 1959 [38, p. 512]. In his

Yale thesis (1963), McCord established the theorem as stated

for a general class of spaces which include ZEIP [82, p. 80].

The embeddability question seems to have been answered

earlier, at least in the folklore of the subject.  





CHAPTER 11

OPERATIONS 0N INDECOMPOSABLE CONTINUA

It is natural to ask whether indecomposability is pre-

served by any of the usual set-theoretic operations. It is

clear that if A, B are two indecomposable continua, neither

contained in the other, then, even if the union is connected,

it is decomposable. However, Ale may be disconnected, even

if it is nonempty, so this case does not appear to be too

interesting either. Of course, if we assume the continua

are hereditarily indecomposable and the intersection is con-

nected, then ArlB is hereditarily indecomposable. There is

no hope for products at all:

Theorem 11.1: If A and B are non-degenerate T2 continua,

then AxB is decomposable [119, p. 319].

2322:: Let A = ClJD, where C, D are proper compact sub—

sets of A. (x, yeA and A being T2 imply there exist U, V

open disjoint sets containing x and y respectively. x¢7,

yew, since unv = C. Take 0 = t, D = 17?.) Let b€B be

arbitrary. We claim that the following is a decomposition:

AxB = [(03:13) u (Ax[b})] u [(DxB) u (Ax{b})] :- 01 u02.

If C is connected, then Cl is clearly connected. If C

is disconnected, and if {Fu}- are its components, then C

U F and c = [(u F )xB] u [Ax{b}] = [U(Fq xB] u [Ax{b}]

x ' 1 x a Ka
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= g [(Foch) U (Ax{b})]. Since Fe, xB, Ax{b} are connected,

and since F0. C C C A, b 6B, then (F... xB) U (Ax{b}) is con-

nected. Since each set contains the connected set Ax{b},

the union, 01’ is connected. Cl is closed in compact AxB,

so Cl is a continuum.

Likewise, C2 is a continuum. Both are proper subcon-

tinua of AxB. For C C A implies there is a (116 D-C, and B

non-degenerate implies there is a bl C b in B. (dl,b1)¢Cl.

Likewise, 02 is proper.

However, the situation changes for inverse limits. J.

H. Reed proved the following in 1967.

Theorem 11.2: (a) Let {X,,( ,fup ,07} be an inverse system

 

of T2 indecomposable continua over a directed set 07, where

the binding maps are continuous surjections. Then the

inverse limit, X00, is an indecomposable continuum.

(b) If each of the above X9, are also assumed to be

hereditarily indecomposable while the binding maps are only

assumed to be continuous, then X00 is hereditarily indecom—

posable [105, pp. 597-599].

M: (a) We have seen (Lemma 10.6) that X00 is a

continuum. Suppose X00 = A UB, where A, B are proper sub-

continua of Xw. As in the proof of Theorem 10.11, there is

an o< such that p9, (A), p,x (B) are proper subcontinua of ch'

Since p9, is surjective, we have X0. = p,)( (A) Upo, (B).

contradicting the indecomposability of X“.

(b) Let K be any subcontinuum of X00, let KO. = p0, (K),

- . Each K is an indecomposableandletgdp_ “51K“ OL  
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continuum. {K,x ,g u p , ’7} is an inverse system with con-

tinuous surjective binding maps, and K“, is homeomorphic to

K [21, p. 235, #2.8]. By (a), K is indecomposable.

We shall see in the next chapter that, under suitable

modifications, a similar theorem holds for pseudo-arcs.

We now consider mappings of indecomposable continua.

A continuous image of an indecomposable continuum need not

be indecomposable, as the projection of Knaster's first

semi-circle example onto the unit interval shows. On the

other hand, homeomorphisms clearly preserve indecompos-

ability. Is there any type of mapping satisfying inter-

mediate conditions that preserves indecomposability? The

answer is yes, as the following theorem shows.

Theorem 11.3: Let X be an indecomposable continuum and let

f be continuous and monotone. Then f(X) is an indecompos-

able continuum.

nggf: Since f is continuous, f(X) is a continuum. If

f(X) = AlJB, where A, B are proper subcontinua, then we have

X = f-1 (A)lJf-1(B). Since f is continuous, f-1(A), f-1(B)

are closed and therefore compact. Since f is monotone, they

are connected. A-B C C C B-A implies C C f'1(A-B) = f-1(A)—

f‘1(B) and C ,e f’1(B-A) = f'1(B)-f’1(A). Therefore, f'1(A),

and f‘l(B) are proper subcontinua , contradicting the

indecomposability of X.

We conclude this chapter with the following rather

startling result of J. W. Rogers Jr.: There is a plane

indecomposable continuum that is a continuous image of every
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indecomposable continuum. Consider the inverse sequence

[In’gn,m] where, for each natural number n, In is the unit

interval and

2x if 0 5x £l/2

gnbc) = {2-2x if 1/2 exal .

Let D denote the inverse limit of this sequence. By Kuyken-

dall's theorem (10.11), this continuum is indecomposable

(take the three points to be 0, 1/2, 1 and choose m = n+1).

Theorem 11.4: Let M be any metric indecomposable continuum.

Then there exists a continuous function f such that f(M) = D.

Pr_oqf: See [108, p. 452].

It is a "folk theorem" of the subject that D is actually

homeomorphic to the first Knaster semi-circle example [108,

p. 450].
  





CHAPTER 12

HEREDITARILY INDECOMPOSABLE CONTINUA

In this chapter, we shall survey some of the more

important results of the last twenty-five years in the study

of indecomposable continua. We shall be dealing with hered—

itarily indecomposable continua in general and with such

special cases as the pseudo—arc and the pseudo-circle. The

change in emphasis of this chapter from ordinary indecom—

posability to the more restrictive hereditarily indecompos-

able continua reflects the changing areas of major interest

in the investigation of indecomposable continua. We shall

also see that certain examples of hereditarily indecompos-

able continua have been studied intensively because of their

relationships to long-standing problems in plane topology.

Not only has the subject changed directions since the

late 1940's, but it has also undergone a "change of person—

nel." That is, most of the work done on indecomposability

prior to then was done by Europeans, primarily from the

Polish school of mathematics. However, since 1948 most of

the work seems to have been done by Americans, primarily by

first, second or third generation R. L. Moore students.

(For an interesting account of Moore's famous teaching

method, see the paper by Lucille Whyburn [128, pp. 35-39].)
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We shall also see that some problems originating in the

Polish school were either partially or fully solved in the

last quarter century by Moore descendants.

We recall from Chapter 6 that Knaster discovered the

first example of a hereditarily indecomposable continuum in

1922. His motivation was simply to prove that there exists

a continuum each of whose subcontinua is indecomposable.

Many of the examples of hereditarily indecomposable continua

presented in this chapter were constructed in order to have

an example of a continuum satisfying property P, where P was

something other than being hereditarily indecomposable.

After Knaster's thesis in 1922, there were only a few

theoretical results concerning hereditarily indecomposable

continua, and no really significant theorems or examples,

until 1948. In that year, E. E. Moise, in a thesis written

] under the supervision of R. L. Moore, found a homogeneous

(see p. 184) plane hereditarily indecomposable continuum,

the pseudo-arc, with the property that it is homeomorphic

to each of its non-degenerate subcontinua. This answered

negatively the question posed by Mazurkiewicz in 1921 [88]

as to whether every plane continuum homeomorphic to each of

its non-degenerate subcontinua is an an are (that is, a

homeomorph of I). However, Henderson showed in his thesis

(1959) that in any metric space, any decomposable continuum

that is homeomorphic to each of its non-degenerate subcon-

tinua is an arc [42]. Hence, the conjecture of Mazurkiewicz

was partially correct.
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Bing, Moise, and others have extensively studied the

pseudo-arc, and we shall present their findings later. For

now, we give one method of constructing this continuum.

A 22213 is a finite collection C of open (though not

necessarily connected) sets (01,. .. ,cn) called lipkg such

that cinej C C iff ji-j(£ 1. If each link has a diameter

less than 6 , C is called an é-chain. If pecl, and qécn,

then we have a chain from p to q. Chain D refines chain C

if each link of D is a subset of a link of C. If D refines

C in such a way that for each link 0 of C, the set of all

links of D that lie in c is a subchain of D,then D is

straight with respect to C.

The basic terminology we need to describe the construc-

tion of the pseudo-arc is that of "crooked chain." Consider

a chain C = (01,. .. ,cn) from p to q. If11é4w then a

chain D from p to q is 2221 crooked with respect to C if D

is straight with respect to C. If n p5, then a chain D from

p to q is very crooked with respect to C if D is a refine—

ment of C, and D is the union of:

(a) a chain from p to x5 Cn-l;

(b) a chain from x to y5.02;

(c) a chain from y to q,

such that these chains are very crooked with respect to

C-{cn}, C-[cl,cn}, and c-{bl[ respectively, and such that no

two of them have in common any link that is not an end link

of both of them. (If a chain C goes from p to q, then the
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end links of C are the links containing p and q.)

 

Note the similarity to Knaster's "method of bands" (Chapter

6). The above definitions are essentially as Moise gave

them [97, pp. 581-583]. We can now define the pseudo-arc.

Definition: Let 01’ C2, . . . be a sequence of chains from

p to q such that:

(a) C§ = U cl,j is a compact metric space;

3

(b) for each i, C is very crooked with respect to Ci

i+l

and Ci+1 is contained in the interior of Cf;

(c) C contains five links;
1

(d) if c is a link of Ci and X is a subchain of Ci+1

which is maximal with respect to the property of

being a subchain of Ci+1 and a refinement of the

chain whose only link is c, then X consists of

five links;

(e) for each 1, each link of Ci has diameter less than

l/i.

Let M = n Cf; M is called a pseudo-arc [97, p. 583].

Theorem 12.1: If M, N are any sets satisfying the definition

of a pseudo-arc, then they are homeomorphic.
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3322;: See [97, p. 585].

Theorem 12.2: Every pseudo-arc is hereditarily indecompos-

able [97, p. 585].

Outline of proof: M is clearly compact. Since we did

not assume the chains have connected links, we must show

that M is connected. Suppose it is the union of disjoint

nonempty open sets H, K. Let i be such that 3/i< d(H,K).

It follows that C1 is not a chain, which is a contradiction.

Suppose N is any subcontinuum of M. We will use Janis-

zewski's theorem (4.4) to show it is indecomposable. Let

G; be the subchain of Ci consisting of all links of C1 that

intersect N. Let K be any proper subcontinuum of N, and let

I I

01' be the subchain of C1 consisting of all links of C1

which intersect K. It can be shown that for all but a

I I I . _

finite number of integers, Ci - Ci contains two adjacent

links of Ci. It follows from this, that for such i, the

I . l I .

set of all links of Ci+l which lie in links of Ci contains

II

two chains which "lie close together" such that one has Ci+l

for a refinement. It follows from this that N-K C N. Thus,

by Theorem 4.4, N is indecomposable.

Moise comments [97, p.586] that his proof of M's

being hereditarily indecomposable is quite similar to the

corresponding proof in Knaster's thesis [59. p. 279]. We

have also mentioned that Knaster and Moise used similar

In fact, Moise suspected that

Thus,

methods of construction.

their continua might be homeomorphic [97, p. 581].  
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the following theorem of Bing should come as no surprise.

It was published in 1951, three years after the appearance

of the psuedo-arc. First, another definition. A metric

continuum is chainable or snake-like (a term Bing credits

to Choquet [8, p. 653]) if it can be covered by an E-chain

for each 6 7 0.

Theorem 12.3: If M, M' are non-degenerate compact metric

continua that are hereditarily indecomposable and chain-

able, then they are homeomorphic. Moreover, if p, q are in

different composants of M,and p', q' are in different com-

posants of M', then there is a homeomorphism of M to M.

sending p to p' and q to q'.

3332;: See [10, pp. 44-45].

However, not all hereditarily indecomposable continua

are homeomorphic to the pseudo-arc. In fact, Bing proved

Theorem 12.4: There are as many non-homeomorphic plane

 

hereditarily indecomposable continua as there are real

numbers.

3332‘: See [10, p. 50].

Bing also extended Mazurkiewicz' results (Chapter 7)

on the frequency ofoccurrence of indecomposable continua.

In his monumental 1951 paper, Bing proved

Theorem 12.5: Let S be En (n 02) or a Hilbert space. Then

most continua are pseudo-arcs in the sense that if the set

of all continua in S is given the Hausdorff metric, then

the set of pseudo-arcs is of second category and in fact is

a dense G6 set.  



168

2322:: See [10, p. 46].

He extended this result in 1964. Recall that the links

of a chain in E2 need not be connected, let alone open

disks. However, Bing showed that the above theorem is true

for pseudo-arcs constructed from chains with open disks for

links:

Theorem 12.6: Most (in the sense of Theorem 12.5) plane con-

tinua are pseudo-arcs which for each 6 7C)can be covered

with a linear chain whose links are open disks of diameter

less than 6 .

131%: See [12, p. 122].

It might be conjectured by now that all indecomposable

continua are at most one dimensional. In his thesis, direc-

ted by G. T. Whyburn, J. L. Kelley proved (1940) that if

there is a hereditarily indecomposable continuum of dimen-

sion greater than one, then there is one of infinite dimen-

sion [57, pp. 22-35]. However, the major result in this

direction was proved by Bing in 1951:

Theorem 12.7: There are infinite dimensional hereditarily

indecomposable continua in a Hilbert cube and n-dimensional

hereditarily indecomposable continua in En+l. More gen-

erally, each (n+l)-dimensional continuum contains an n-

dimensional hereditarily indecomposable continuum.

2322f: See [9, p. 270].

This is not merely an existence theorem: Bing's proof

actually gives a way of constructing higher dimensional

hereditarily indecomposable continua. We shall give that
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construction in E3 after these definitions. An arc is

E ~crooked if for each pair of points p, q there exist

points r, s between p, q on the arc such that r lies be-

tween p and s, and d(p,s)<’e , d(r,q)< 6:

I , . 266 L9 9 7]

Let a, b be two distinct points in E3. The desired

continuum is to be the intersection of a decreasing sequence

of bounded domains Di’ where Di 3 51+1; Di separates a and

b; EB-Di has only two components, and no point of Di is

more than l/i from either of them; and finally, each arc in

D1 is 1/i crooked.

D I!1 {X5E3‘ min [1/4, d(a,b)/3]4d(a.x)(_

min [1/2, 2d(a,b)/3]}. Bing proves a general theorem which

allows him to construct D2, D3, . . . satisfying the above

conditions. Since Di 3 D then C = n D = n D1+1, 1 hencei;

C is a continuum by Theorem 2.1. C separates a from b, and

 

  



 

170

it separates E3 irreducibly into two complementary domains

of C, by the third and fourth properties of the Di‘ Thus,

by [45, pp. 98-99], the dimension of C is two. The last

condition on the D1 gives the hereditarily indecomposability

of C: Let K be any subcontinuum of C, and suppose K = AlJB,

where A, B are proper subcontinua of K. Then there is an

n70, p €A, qu such that d(p,B) 71/n, d(q,A) 71/n. Let

U, V be connected cpen sets of Dn containing A, B respec-

tively and such that d(p,V) 71/n, d(q.U)7 1/n. Let ernV,

and consider an arc pxq in UlJV. Since d(p,xq)‘71/n, and

d(px,q) 71/n, then nxq is not 1/n crooked. This is a

contradiction [9, p. 268].

Although Bing and Moise proved that the pseudo-arc is

homogeneous (we shall say much more about this at the end

of the chapter), no such result is true for higher dimen-

sional hereditarily indecomposable continua. In fact, Bing  
proved the following  
Theorem 12.8: If n is an integer greater than 1, then no

n-dimensional hereditarily indecomposable continuum is

homogeneous.

pm: See [9, p. 272].

There are very few results in the literature charac-

terizing hereditarily indecomposable continua in terms of

other properties such as there are for ordinary indecompos-

able continua. (c.f. Theorems 4.4, 4.11) However, we do

have two theorems along this line. In 1929, Roberts and

Dorroh answered a question of G. T. Whyburn [125] by proving
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Theorem 12.9: A necessary and sufficient condition that a

metric continuum C be hereditarily indecomposable is that

no subcontinuum of C contain an irreducible separator of

itself.

pm: See [106, p. 61].

A much more recent (1966) result due to Zame is

Theorem 12.10: A T2 continuum C is hereditarily indecom-

posable iff for each pair of subcontinua, M, N, M-N is connected.

Outline of proof: Suppose there exists a pair of sub-

continua M, N such that M-N is disconnected: M-N = AlJB,

where A, B are open in M—N, disjoint, and nonempty. Then

by Lemma 4.2, NlJA, NlJB are continua. Hence NlJAlJB is a

decomposable subcontinuum of C.

Conversely, suppose M is a decomposable subcontinuum

of C, say M = HlJK. If HIIK is connected, then it is a sub-

continuum of C. (H u K)-(H n K) = [H-(Hn K)] u [K-(H nK)] is

disconnected.

The case of H11K disconnected is somewhat longer and

will not be presented here. See [132, pp. 709-710].

Recall that a corresponding theorem for ordinary

indecomposable continua (4.20) says that if C is a T2

indecomposable continuum and if K is any proper subcon-

tinuum, then C-L is connected, where L is any subset of K.

Just as for ordinary indecomposable continua, heredi-

tarily indecomposable continua can sometimes be effectively

represented by inverse limits. There always exists such a

representation for metric continua of any sort, which is a
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result first proved by Freudenthal [40]. See also [85, p.

149], and [47, pp. 75-76].

Conversely, Isbell proved in 1959 that if we are given

an inverse sequence of compact subspaces of En, then the

inverse limit is a subspace of E2n. Moreover, for n = 1,

the hypothesis of "compact" may be dropped [47, p. 78].

McCord proved a related theorem in his thesis: The inverse

limit of a sequence of compact metric spaces of dimension n

2n+1. We would like to start with suchmay be embedded in I

an inverse sequence and know when the inverse limit is a

hereditarily indecomposable continuum. In 1960, M. Brown

established a criterion for this to happen.

Let f: X——9Y, where X, Y are metric spaces, and let

67 0. Let L(E—,f) =sup{glx,yex, d(x,y)<6 =7 d(f(X).f(y))<6].

Suppose now that X is only assumed to be a topological

space. f is 6-—crooked if for every path g: I~—>X, there

c-t 4 1 such that |fg(0) - fg(t2)|4 e ,exists t t Oétl- 2-
1' 2'

and ‘fg(t1) - fg(l)] 4 6.

Theorem 12.11: Let {Xi’fi j] be an inverse sequence of

7

locally connected metric continua with diameter di. Suppose

é -for all n that fn,n+1 is n crooked, where

én (1331?.-. L(2-ndi,fi’n_l)}.

Then X“, is hereditarily indecomposable.

2323;: See [18, p. 130].

At this point, we seem to have exhausted the supply of

structure theorems for general hereditarily indecomposable
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continua. It would be interesting to know if such continua

can be characterized in terms of irreducibility or some

other property. Intuitively, a hereditarily indecomposable

continuum ought to be "more irreducible" than an ordinary

indecomposable continuum. However, there are some results

of this nature for the pseudo-arc.

In 1951, Bing gave the following characterization of

the pseudo-arc (Theorem 12.14). Let p be a point of a

metric continuum C such that for each 6 7'0, there exists

an 6 —chain covering C such that only the first link of each

chain contains p. Then p is an endpoint of C. (Under this

definition, the only endpoint of Knaster's first semi-circle

example is the origin [8, p. 662].)

Lemma 12.12: Let C be as above; the following are equivalent:

(a) Each non-degenerate subcontinuum of C containing p

is irreducible between p and some other point of C.

(b) If each of two subcontinua of C contain p, then one

contains the other.

2222:: See [8, p. 661].

Lemma 12.15: Let C be a metric snake-like continuum. A

 

point p613 is an endpoint of C iff it satisfies either a or

b above.

Proof: See [8, p. 661].

Theorem 12.14: A non-degenerate snake-like continuum is a

 

pseudo-arc iff each point of it is an endpoint.

Proof: See [8, p. 662].

We can restate the above results as follows. Let C be  



 

[
I
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a non-degenerate snake-like continuum. C is a pseudo-arc

iff for each pé>C and for each non-degenerate subcontinuum

K containing p, K is irreducible between p and some other

point. Compare this with the case of an ordinary snake—

1ike indecomposable continuum, such as Knaster's first semi-

circle example: Let p be any point except the origin and

3

let K = U Ci’ where 02 is the semi-circle containing p; 03

I

is a semi-circle having an endpoint in common with C2. C1

is the other such semi-circle, provided C2 is not the semi-

circle having (0,0) and (1,0) as endpoints; it is the empty

set in this case. Then K is not irreducible between p and

anything else.

In contrast to the higher dimensional hereditarily

indecomposable continua that Bing constructed, we have

Theorem 12.15: The pseudo-arc does not separate the plane.

 

Moreover, there exist plane hereditarily indecomposable

continua which are not homeomorphic to the pseudo-arc that

do not separate the plane. However, there exists a heredi-

tarily indecomposable continuum which does separate the

plane.

Proof: Moise showed that the pseudo-arc is planar and

homeomorphic to each of its non-degenerate subcontinua [97,

p. 581]. However, in 1950, G. T. Whyburn had shown that no

such continuum could separate the plane [126, pp. 519-520].

The second statement is due to R. D. Anderson [5, p.

185]. In fact, he announced that there exist in E2 uncount-

ably many hereditarily indecomposable continua not sepa-  
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rating E2 and not homeomorphic to the pseudo—arc, including

one containing no pseudo-arc and another one, all of whose

proper non—degenerate subcontinua are pseudo-arcs.

Finally, Bing showed that there exists an example of

the third type by constructing the example later known as

the pseudo-circle [10, p. 48]. We shall say more about

this example later.

The pseudo-arc has other interesting properties with

respect to the plane.

Theorem 12.16: (a) There is a continuous collection of

 

pseudo-arcs filling the plane.

(b) There exists in the plane an uncountable set of

disjoint continua, no one of which contains an are.

2392;: For (a), see R. D. Anderson [4, p. 550].

(b) This was first proved by R. L. Moore in 1928 [101,

P. 86]. Of course, this was during the time when the only

known example of a hereditarily indecomposable continuum was

thatof"Knaster, which is homeomorphic to the pseudo—arc.

So let 0 be a pseudo-arc. By the proof of Theorem 4.11, C

has uncountably many disjoint composants. From each com-

posant, select a subcontinuum of C contained in that com—

Posant. This set of continua is uncountable, each two

elements are disjoint, and none can be an arc. (C can be

any hereditarily indecomposable continuum, of course.)

We now consider some of the mapping properties of the

Pseudo-arc. Shortly after Moise announced the discovery of

the pseudo-arc, F. B. Jones asked 0. H. Hamilton whether

m
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the pseudo-arc has the fixed point property with respect d
-

0

continuous functions. That is, does the pseudo-arc C

satisfy the condition that for every continuous function f

taking C to itself there exists x530 such that f(x) = x?

Hamilton showed that the answer is yes for not only the

pseudo—arc, but for arbitrary snake-like continua.

Theorem 12.17: Let Y Y . be a sequence of chains
1’ 2’ ' ‘

such that:

(a) Y1 is a nonempty compact metric space, where Y1 is

the closure of the set of points lying in the links

of Y1;

(b) for each i, Yi D Y;:I;

(c) 133 giam(Yi) = 0, where diam(Yi) is the maximum

diameter of the links of the chain Y1.

Let M denote the continuum which is the intersection of the

sets Yi’ If T is any continuous transformation of M into a

subset of itself, then there exists a p6 M such that T(p)==p.

2322;: See [41].

At the Summer Institute on Set-Theoretic Topology, 1955,

R. H. Bing raised the question of what characterizes the

continuous images of the pseudo—arc. In other words, is

there an analog for the pseudo-arc of the Hahn-Mazurkiewicz

theorem for the arc. (This theorem says that a metric con—

tinuum C is a continuous image of an arc iff C is locally

connected [44, p. 129].) One result in this direction is

Theorem 12.18: Every snake-like continuum is a continuous

image of a pseudo-arc.  
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2322:: J. Mioduszewski proved this in 1962 [96] using

inverse limits. He also remarked that it seemed to follow

from one of Bing's theorems [8, Theorem 5] and one of

Lehner's [79, Theorem 1]. (G. Lehner was a thesis student

of Bing.) L. Fearnley also proved this theorem in 1964 [33,

p. 389].

The first characterization seems to have been given by

A. Lelek in 1962, using the following terms. A wgak ghain

in a metric space is a finite sequence of sets Xl" .. , X
m

such that Xiflxj £ ¢ if li-jl 51. Note that the X1 are not

assumed to be either open or connected. Moreover, Xiflxj #

¢ does not imply li-jl $14 A weak chain {Xi}m‘ is a refine-

I

'I

ment of a weak chain {Y3} provided that each Xi is con—

l

tained in some Y. such that 'j. - jklél.if li-kiéld

Ji 1

Finally, a continuum C is weakly chainable provided there

exists an infinite sequence {Ci} = {(01,5hff} of finite

open covers of C such that each G1 is a weak chain, each

link of G1 has diameter less than 1/1, and Gn+1 is a refine-

ment of Gn'

Theorem 12.19: A metric continuum is a continuous image of

a pseudo-arc iff it is weakly chainable.

3392;: See [80, p. 274].

Note that Theorem 12.18 follows directly from 12.19,

since if C is chainable, it is weakly chainable.

L. Fearnley also established some characterizations,

using the following terminology. A p-chain is a finite
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sequence of sets such that each, except the last, intersects

its successor. (c.f. "weak chain") If P = (p1,. .. ,Pn)

and Q = (q1" .. ,qm) are p-chains and each link pi of P is

a subset of a link qx of Q, then the sequence of ordered

i

pairs {(i,xi)} is a pattern of P in Q. If ‘Xi - lefil

whenever [i-j|.51, 15 i,jg¢n then the pattern is an 3:

pattern of P in Q. If a p-chain P = (p1,. .. ,pn) has an

r—pattern of the form (l,xl = 1), (2.x2),. .. ,(n,xn = m)

in a p-chain Q = (ql" .. ,qm) then P is a normal refinement

of Q. Finally, let H be a closed connected separable metric

space. H is p-chainable if there is a sequence of p-chains

P1,. .. such that for each i:

(a) the union of the elements of Pi is H;

(b) Pi+l is a normal refinement of Pi;

(c) the diameter of each link of Pi is less than l/i;

(d) the closure of each link of Pi+1 is a subset of

the link of Pi to which it corresponds under the

r-pattern of Pi+l in Pi.

Theorem 12.20: (a) In order that H (as defined above) be a

 

continuous image of the pseudo-arc, it is necessary and suf-

ficient that H be p-chainable.

(b) A metric continuum C is a continuous image of the

pseudo-arc iff C is p—chainable with p-chains whose links

are open sets.

Proof: For (a), see [55. p. 587], and for (b). see

[33, p. 588].  
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Theorem 12.21: (a) Let K be a chainable separable closed

connected metric space. Then K is a continuous image of

the pseudo-arc.

(b) The class of continuous images of the pseudo-arc

and the class of continuous images of all such sets as K

are identical.

2322:: For (a), see [55, p. 589]. Also compare (a)

with Theorem 12.17. (b) is a corollary of (a).

These results still do not fully answer the question

of whether there is an analog of the Hahn-Mazurkiewicz

theorem for the pseudo-arc. However, Fearnley went on to

show that there is no characterization of the continuous

images of the pseudo-arc in terms of local properties by

constructing locally homeomorphic metric continua H and K

such that H is a continuous image of the pseudo-arc and K

is not [33, pp. 591-395].

It might be conjectured that using inverse limits to

 

describe the pseudo-arc would be easier than using chain

conditions. However, in most cases there are infinitely

many different binding maps, so that the situation is not

greatly improved. In 1964, Henderson was able to construct

the pseudo-arc as an inverse limit of a sequence of arcs

and one binding map. Roughly speaking, the map was obtained

by taking f(x) = x2 on I and "notching its graph with an

infinite set of non-intersecting,yr's which accumulate at

(1,1)." [45, p. 421] See the figure on the next page.

The proof of this function's existence may be found in the
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 (1.1)

 (0.0)  
paper cited above. (See also the Math Reviews 29-4059 for

 

some comments about errors.)

The pseudo-arc is preserved by inverse limits and mono-

tone maps. Explicitly, Bing has shown

Theorem 12.22: Let M denote the pseudo-arc and let N be any

 

non-degenerate monotone continuous image of M. Then M and

N are homeomorphic.

2332;: See[10, p. 47].

Theorem 12.25: Let {Xi’ fi,j] be an inverse sequence of

pseudo-arcs, and let X“, be the inverse limit. If X“ is

non-degenerate, then it is a pseudo-arc [105, p. 599].

2229:: By Theorem 11.2, Xw is a hereditarily indecom—

posable continuum. Reed has shown that X“, is snake-like

[105, p. 598]. Therefore, by Theorem 12.3, Xag is a

pseudo-arc.

We now discuss one last example of a hereditarily

indecomposable continuum. In 1951, R. H. Bing described a

plane non-snake-like circularly chainable hereditarily
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indecomposable continuum. which has since become known as a

pseudo-circle. (A.metric continuum is circularly ppginable

if it can be covered for each 6 7C>by an 5'-chain whose

first and last links intersect each other.)

Bing described his example this way [10, p. 48]. Let

2
D such1’ D2,. .. be a sequence of circular chains in E

that:

(a) each link of D1 is an open circular disk of diame-

ter less than l/i;

(b) the closure of each link of D1+1 is contained in a

link of Di;

(0) the union, Ai’ of the links of D1 is homeomorphic

to the interior of an annulus;

(d) each complementary domain of A1+1 contains a com-

plementary domain of Ai;

(e

v

if E1 is a proper subchain of Bi and E1+1 is a

proper subchain of Di+l contained in Ei’ then

E1+1 is very crooked in E1.

M = ?)Ai is called a pseudo-circle. Bing proved that such

sets exist and that they separate the plane. Fearnley

pointed out that every proper non-degenerate subcontinuum

of it is a pseudo-arc [54, p. 491]. After defining it, Bing

asked if all such continua are homogeneous and whether they

are homeomorphic. Fearnley has recently (1969) answered

these questions, as well as some others.

Theorem 12.24: (a) The pseudo-circle is unique in the sense
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that any two continua satisfying the above definition are

homeomorphic.

(b) The pseudo-circle is not homogeneous.

3322:: See [55, pp. 598-401] or [57] for a proof of

(a). Fearnley's proof of (b) may be found in [56]. J. T.

Rogers Jr. also proved (b) [107] in a thesis supervised by

F. B. Jones.

Fearnley also investigated some mapping properties of

the pseudo-circle. We need the following definition in

order to state his result. A circular p-chain is a p-chain

in which the first and last links intersect.

Theorem 12.25: In order that a continuum C be a continuous

image of a pseudo-circle, it is necessary and sufficient

that C be circularly p-chainable.

3323;: See [34, p. 507].

Theorem 12.26: (a) Every plane circularly chainable con-

 

tinuum is a continuous image of the pseudo-circle.

(b) Every snake-like continuum is a continuous image

of the pseudo-circle.

3322;: See [34, p. 510] for (a) and [34, p. 512] for

(b).

Thus, the pseudo-arc is a continuous image of the

pseudo-circle. It is not known if the converse is true.

However, Fearnley has indicated that he has a paper in

progress which answers this question as well as whether

every solenoid is a continuous image of the pseudo-circle.

We have mentioned that the pseudo-arc is homogeneous,
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while the pseudo—circle fails to have this property. The

homogeneity of the pseudo-arc has an interesting history

which is closely related to that of finding all homogeneous

plane continua. Consequently, we shall discuss this prob-

lem in some detail. We begin with some developments in the

early Polish school of mathematics.

Sierpinski formulated the definition of homogeneity in

a paper which appeared in the first volume of the Fundamenta

Mathematicae [111, pp. 15-16]. In the same issue, Knaster

and Kuratowski posed the question of whether every non-

degenerate homogeneous plane continuum is a simple closed

curve (that is, a homeomorph of SI) [61]. Mazurkiewicz

proved in 1924 that the answer is yes if the continuum is

also assumed to be locally connected [89].

During the years between 1924 and 1948, two false

solutions were published. Of course, it was not known that

these solutions were false until Bing and Moise showed that

the pseudo-arc is homogeneous. Waraszkiewicz announced in

1957 that all non-degenerate homogeneous plane continua are

simple closed curves [124]. Choquet's paper [24] went even

further in 1944. In it, he asserted that every compact

homogeneous plane set is either:

(a) a finite set of points;

(b) a totally disconnected perfect set;

(c) homeomorphic to the union of a collection of con-

centric circles such that the intersection of this

union and a line through the center of the circles
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is either a finite set or a totally disconnected

perfect set.

In 1949, F. B. Jones proved that under slightly

stronger hypotheses, Waraszkiewicz' theorem is correct. We

need the following definition in order to give a precise

statement of Jones' result. A continuum C is aposypdetic

at x if for each point y6(L-fiq, there exists a subcontinuum

K of C and an open set U of C such that C-{y} D K D U D {x}.

Jones gives the following explaination of his term "apo-

syndetic": In Greek, "apo" means "away from", "syn" means

"together", while "deo" signifies "to bind". Thus, the word

"aposyndetic" means "bound together away from" [51, p. 546].

Theorem 12.27: Let C be a non-degenerate homogeneous plane

continuum. If C is either aposyndetic at all points or if

no point of C is a cut point, then C is a simple closed

curve.

3323:: See [52].

Jones also suggested that Waraszkiewicz' error may have

been to confuse the idea of a cut point of a continuum with

that of a separating point [54, p. 66].

Shortly after seeing Moise's pseudo-arc, R. H. Bing

proved that it is homogeneous. Moise gave his own proof

shortly thereafter.

Theorem 12.28: The pseudo-arc is homogeneous.

Epppf: See [7] for Bing's(l948)proof, and [98] for

Moise's proof (1949).

In view of the results of Warszkiewicz and Choquet, it
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is not surprising that some people questioned the homogene-

ity of the pseudo-arc. Isaac Kapuano presented a paper in

1955 in which he claimed that the pseudo-arc is not homo-

geneous [55]. He noted that it would be interesting to know

exactly what part of Bing's paper is contradicted by his

work. However, an error was discovered in his own work, so

later in 1955. he published an attempt to correct it [56].

Moreover, neither paper received much criticism in the

Mathematical Reviews [Math Reviews 15: 146, 555]. However,
 

mathematicians seem more inclined to accept the results of

Bing and Moise than those of Kapuano. Thus, what might

have developed into a "lengthy debate" just faded away.

Theorem 12.29: Each non-degenerate homogeneous snake-like

continuum is a pseudo-arc. Thus, a non-degenerate snake-

1ike continuum is a pseudo-arc iff it is either hereditarily

indecomposable or homogeneous.

2322:: For the first statement, see [11]. The second

statement is a summary of Theorems 12.2, 12.5, 12.28, and

the first statement of 12.29.

Knaster and Kuratowski's question can now be expanded

to the problem of finding all homogeneous plane continua.

F. B. Jones gave the following classification of possible

homogeneous plane continua [54, p. 67]:

(a) those which do not separate E2;

(b) those which are decomposable;

(0) those which separate E2 and are indecomposable.

This is a reasonable approach, in view of one of Jones'
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earlier theorems:

Theorem 12.50: If C is a homogeneous plane continuum which

does not separate the plane, then C is indecomposable.

M: See [53, p. 859].

At the time Jones gave his classification, a point and

the pseudo-arc were the only known non-homeomorphic examples

of type (a). A simple closed curve and an example dis-

covered simultaneously by Bing and Jones, called a circle

of pseudo-arcs [15] were the only known examples<xftype (b).

Many people conjectured that the pseudo-circle was an

example of type (c), but, in view of Fearnley's result, this

conjecture was false. There are no known examples of type

(c). C. E. Burgess summarized the state of the art in 1969

when he proved

Theorem 12.51: A non-degenerate circularly chainable plane

continuum is homogeneous iff it is either a simple closed

curve, a pseudo-arc, or a circle of pseudo-arcs.

m: See [20].

There have been other partial solutions to the homo-

geneity question. In his thesis [67], H. V. Kronk showed  
that if C is a homogeneous, continuously near-homogeneous

plane continuum, then C is a simple closed curve [67, p.

18]. (See [67] for the terminology.) He also showed that

if the hypothesis of homogeneity is dropped, the conclusion

becomes: "C is a simple closed curve or is indecomposable

[67, P- 25]." There is a corresponding result for con—

tinuously invertible spaces. P. H. Doyle and J. G. Hocking  
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have shown [27] that the only decomposable continuously

invertible plane continua are the simple closed curves [27,

p. 505]. It is an open question whether there are any

indecomposable continuously invertible plane continua, How-

ever, there do exist indecomposable continuously near homo—

geneous plane continua [67, pp. 16-18].

In concluding, we mention a few more open questions

and make some conjectures as to where future research in

indecomposable continua theory may lead. With only a few

exceptions, most of the recent work done in the field of

indecomposability has been done in special cases, such as

hereditarily indecomposable continua or special cases of

this. (In spite of this, there are no known structural

theorems for hereditarily indecomposable continua paral-

leling Theorem 4.12, for example.) It seems likely that

future work will also be concentrated in certain special

 cases of indecomposability theory. Perhaps further work

on the homogeneity problem will result in some new devel-

opments in indecomposability theory. It also seems likely

that there will be more effort devoted to solving certain

mapping questions. For example, J. W. Rogers Jr. has

indicated (1970) that the following questions are of inter-

est:

(a) Is the pseudo-arc a continuous image of every non-

degenerate hereditarily indecomposable continuum?

(b) Is every continuum a continuous image of some

(hereditarily) indecomposable continuum? [108,  
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p. 449].

Some results are known for various special cases of

(b). In his thesis [6] (1968), Bellamy proved that every

metric continuum is a continuous image of A* (Chapter 7),

his non—metrizable indecomposable continuum [6, p. 59].

More recently, he has shown that every metric continuum is

a continuous image of a metrizable indecomposable continuum

[To appear, Proc. Am. Math. Soc.]. In an unpublished

result, Gordh has shown that this theorem holds when metric

and metrizable are replaced by T2.
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