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ABSTRACT

POINCARE DUALITY SPACES

by Oliver Costich

This thesis is a study of algebraic conditions which

will guaranteethatziquotientSpace of a manifold is itself

a manifold.

Suppose X is a locally compact Hausdorff space and A

is a compact, connected subspace of X. Moreover assume that

there is a "Poincaré Duality" isomorphism A of the cohomo-

logy of X onto the homology of X, A : Hq(X) 4 Hn- (X).

A is said to be a divisor of X if the homomorphism

A-l n-q n-q
Hq(A)-—» Hq(X) ._» H (x)-_4 H (A)

is an isomorphism for q % O,n.

In Chapter I it is shown that if X is an orientable,

compact, polyhedral homology n-manifold, then A is a divi-

sor of X for singular homology and cohomology if and only

if the quotient X/A is an orientable, compact, polyhedral

homology n-manifold.

Chapter II demonstrates that if X is an orientable

n-dimensional cohomology manifold, then A is a divisor of

X for Alexander-Spanier cohomology and Borel-Moore homology

if and only if X/A is an orientable, n-dimensional cohomo-

logy manifold. In addition, the following generalization of

R. L. Wilder's theorem on monotone mappings of manifolds is



given.

,.Iheozgm: Let f : X 4 Y be a surjection of a compact,

orientable, n-dimensidnal cohomology manifold X to a locally

compact Hausdorff space Y. If f-1(y) is a divisor for

each y 6 Y, then Y is also an n-dimensional cohomology

manifold.
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INTRODUCTION

Various authors studying mappings of 2-manifolds dis-

covered that certain "monotoneity" conditions imposed on the

counter-images of points guaranteed that the image was also

a 2-manifold. In the study of mappings of higher dimensional

manifolds, as might be eXpected, similar conditions were im-

posed.

.Da£1n111gn: A mapping f : X 4 Y is said to be h.

monotone if Hr(f-1(y)) = 0 for all y E Y and r.$ n.

However, the identification mapping of the 3-Sphere onto

the Space obtained by collapsing a suitable "wild" arc [8,

EX 1.1] to a point is n-monotone for all n, but the image is

not a manifold.

There is a class of spaces for which such "monotoneity"

conditions are sufficient. R. L. Wilder has demonstrated

that a monotone mapping of a generalized manifold yields a

generalized manifold as its image [l6], [17].

In this thesis we prove that conditions closely related

to Poincaré duality imposed on counter-images of points give

similar results for mappings of generalized manifolds.



CHAPTER 0

PRELIMINARIES

We):

Throughout this dissertation X will denote a con-

nected, locally compact Hausdorff space. In fact, all spaces

will be locally compact and Hausdorff. We take L to be a

principal ideal domain and all homomorphisms to be L-module

homomorphisms.

If A is a compact subSpace of X, we denote by Y the

quotient Space X/A, by c : X a Y the canonical identifica-

tion, and by * the point C(A) 6 Y. Notice that the com-

pactness of A is essential in order that Y be locally

compact.

A hnmnlnzx_ihenrx (H,a) consists of a covariant func-

tor H from a category of locally compact pairs to the cate-

gory of graded L-modules and homomorphisms of degree 0, and

a natural transformation a of degree -1 from the functor

H on (X,A) to the functor H on (A,¢). The domain of

H need not contain all locally compact pairs nor all conti-

nuous maps. Indeed, different theories may have different

domains. We do require that the domain contain all prOper

maps. (g : S 4 T is proper if g-1(K) is compact for all

compact K in T.) In addition, we insist that (H,a)

satisfy
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(1) For A d X E (X,A), there is an exact sequence

3 1* 3* a

...4 Hq(A) -—o Hq(X) —-o Hq(X,A) 4 H (A) 4...
q-l

where 1* = H(i) whenever these homomorphisms are

defined.

(2) On the full subcategory of connected Spaces Ho

behaves as follows:

If g : S 4 T is in the domain of H and S

and T are connected, then

a) If S and T are compact, g* : HO(S) 4 HO(T)

is an isomorphism and HO(S) ~ L.

b) If S and T are non-compact, g* : HO(S) 4

HO(T) is an isomorphism.

Analogously. a.nnhomolagx_theorx (H*,6) consists of a

contravariant functor H* from a category of locally compact

Hausdorff pairs to the category of graded L-modules, and a

natural transformation 6 of degree +1 from the functor

H* on A to the functor H* on (X,A) satisfying

(1) For A &:X a (X,A), there is an exact sequence

”.9. Hq(X,A) if. Hq(X) l3 Hq(A) 9 Hq+l(X,A) 4

(2) On the full subcategory of connected spaces HO

behaves as follows

If g : S 4 T is in the domain of H* and S

and T are connected, then

a) If S and T are compact, g* : HOCT) 4 H°(S)
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is an isomorphism and H°(S) u L.

H0(T) 4b) If S and T are non-compact, g*

H°(S) is an isomorphism and H°(S) O.

The remarks made about the domains of homology theories

also apply to cohomology theories.

Suppose H;, H* are homology theories and H* is a

cohomology theory. By a "cap product" we mean a homomorphism

. ' q
n . Hm(X) e H (X) .4 Hm_q(X)

which is functorial in the following sense

Let f : X.4 Y which induces maps f; : H;(X) 4 H;(Y),

f : H*(X) 4 H*(Y), and f* : H*(Y) 4 H*(X). Then for a 6

Hé(X) the diagram

 

 

f*an

P A \H (Y) ,Hm_p(Y)

f* f*

p an

n (x) : Hm_p(X)

is commutative for all p, where f*an and on are induced

by the "cap product".

X is called.acEninnazé_Dnali;¥_£nane of formal dimension

n (n-PD) if there is a y e Ham such that yn : HP(X) 4

Hn_p(X) is an isomorphism for all p. The element y 6

H£(X) is called the fundamental class of X.

Suppose X is an n-PD and A is a compact, con-



5

nected subset of X. A is called a1di¥isnr of X if

(1) Hn(A) ~ Hn(A) = o

(2) the homomorphism ¢A : Hq(A) 4 Hn-q(A) defined by

qu) 2:. Hq(X) ~ n'qoo if. ammo is an iso-

morphism for q f’O, n.

When we wish to emphasize the base ring L, we will

write H(X,A;L), and "X is an n-PDL".

Wm

Our next step is to prove an algebraic lemma.

.Lsmma_Qil= Let

0 4 A’ i A l A” 4 o

and

R B’ 4 o .04B' B

be exact and let if : A 4 B be an isomorphism. Suppose

further that the diagrams

A‘——i‘5A A——l—4A”

Oi if and fl Ty are commutative,

B’(__k_B Beh—.B”

i.e., kofoi = m and jor’loh = t.

Then m is an isomorphism if and only if t is an isomorphism.

,Enggf: We will show that e is an isomorphism implies

p is. The converse is dual to this. To see p is a mono-

morphism, let a’ E A’ such that ¢(a’) = 0. Now f°i(a’)

6 h(B') and so there exists b' E B' such that h(b') =
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foi(a’). But ¢(b”) = jai(a’) = 0 so b” = 0. Thus

foi(a’) = O and since f°i is a monomorphism, a’ = 0.

To see that p» is an epimorphism, let b’ 6 B’. Then

there is a b e B such that k(b) = b’. Let a' e A” be

jor'1(b) and 'S e B be hot'1(a'). Now jor'1(bJB) =

a' - jOf-10h0t-l(a') = 0 so there is an a’ 6 A’ for which

i(a’) = r'1(hJB). Then ¢(a’) = k°f°i(a’) = k<bJB) = k(b) -

k(B) = b’ - kohot-l(a') = b’.

.ngnllazy_Q‘2: Let A be a compact, connected subset

of X, an n-PD satisfying Hn(A) ~ Hn(A) = 0. Moreover

assume that Hq(X,A) and Hq(X,A) are naturally isomorphic

to Hq(X/A) and Hq(X/A) for q f 0. Then A is a divisor

of X if and only if X/A is an n-PD with fundamental

class c;y.

.Enggfz In the algebraic lemma substitute the sequences

0 4 Hq(A) 4 Hq(X) 4 Hq(X/A) 4 o

and

o 4 Hn'q(x/A) 4 Hn‘q(x) 4 Hn'q(A) 4 o

and the vertical maps TA’ yn, and clyn.

If A is a divisor of X, then ciyn is an isomorphism

for O < q < n by the algebraic lemma. The commutative dia-

grams

~ ~

0(X)*“" o(X/A) Hn(X)————enn(x/A)

yn nu (3,;va vfl ~ ~ CéYn

Hn(XX%—;—-Hn(X/A) H°(x)e————H°(x/A)



I'FP.

:Al

r,.. .
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Show that ciyn is an isomorphism for q = O and q = n.

Thus X/A is an n-PD.

The converse is obvious.



CHAPTER I

DUALITY IN POLYHEDRAL HOMOLOGY MANIFOLDS

In this chapter we prove a Special case of the main

theorem of chapter 2. The proof of the general case is rather

lengthy and complicated whereas the proof of the Special case

is essentially geometric in nature. This case should suffice

for certain applications.

We recall some facts about finite polyhedra. The homo-

logy and cohomology theories used are the classical Singular

theories which, for Simplicial complexes, are naturally equi-

valent to the correSponding Simplicial theories.

A polyhedron X is anWW

over L (n-pth) if there is a triangulationi K of X

satisfying Hq(St v, LK v; L) ~ Hq(Bn, sn'l; L) for each

vertex v E K, where St v, Lk v denote the star of v in

K, link of v in K. Since this prOperty is invariant under

subdivision [1], this is eQuivalent to requiring that

Hq(X, Xéx; L) ~2Hq(Bn, Sn-l; L) for each x 6 X. An n-pth

X is orientable if Hn(X; L) u L. (Hereafter we omit the

coefficient domain L).

For an orientable n-phm, Hq(X) ~1Hn-q(X) [I]. More-

over,'this isomorphism is obtained as followszu

Let y e Hn(X) be a generator. Then y can be repre-

sented as the n-dimensional cycle c = 2301 where the sum

runs over all principal simplexes in a triangulation of X.
a _—u.- -"""’I"

8



There is a "cap product" [13]

. q
n . Hr(X) m H (X)-—4 Hr_q(X)

such that yn : Hq(X) 4 Hn_q(X) is an isomorphism for all

q [10]. Similar results are known for an.n-phm with non-empty

boundary X. That is

yn : Hq(X) 4 Hn_q(x,x)

yfl : Hq(X,X) 4 Hn_q(X)

are isomorphisms for all q, and y can be represented by

the cycle c = 2301 (mod X), the summation being taken over

all principal simplexes in a triangulation of X.

We say that a closed subset A of X is a.snhpolxhe-

.dnnn of X if there is a triangulation h : X 4.K such

that h(A) is a subcomplex of K. It is known that there

is a closed neighborhood N of A in X such that A is a

strong deformation retract of N. If X is an orientable

n-phm, N can be chosen to be an orientable n-phm with

nonempty boundary N. Namely N may be taken to be a closed

Simplicial neighborhood of A in a second barycentric sub-

division of a triangulation of (X,A).

Recall that for compact polyhedral pairs, a relative 1

homeomorphism induces an isomorphism of homology and cohomo-

logy [13].

Alhenzam_lil: Let X be a closed n-pth and A a

subpolyhedron of X. Then A is a divisor of X if and

only if X/A is an orientable n-pth.
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-122ggf: Let * = c(A) e X/A, where A is a divisor of

x. We first Show that X/A is an n-phm. For this, it is

sufficient to prove that Hq(X/A, X/A - *) ~ Hq(Bn, sn‘l).

Now Hq(X/A, X/A - *) ~ Hq(N/A, N/A - *) for any regular

neighborhood N of A in X via the excision mapping

(N/A, N/A - *) c (X/A, x/A - *). Since A is a strong defor-

mation retract of N, N/A is contractible. The long exact

sequence of the pair (N/A, N/A - *) quarantees that

Hq(N/A, N/A - *) ~‘fiq_l(N/A - *). By virtue of the fact that

N/A - * and (N/A)’ = N/A 2 N have the same homotOpy type,

Hq_l(N) ~‘Hq(N/A - *). Combining the above isomorphisms, we

see that Hq_l(N) ~ Hq(X/A, X/A - *) so that it is sufficient

to show that N has the homology of an (n-l)-Sphere.

Note that N is also a divisor of X so that TN is

an isomorphism for O < q < n.

Consider the diagram 0 < q < n

i j .

Hq(X)e * H (N) * )Hq(N,N)

4‘ 4x

 
 

Yn ~ h*°k*-1 (10

h*

   
 Hn‘q(x) >Hn'q(N)

1*
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N .- x, 3 : (N,¢) c: (N,N)

<x,¢> c (Lit-N), k : (N,N) c <x,x-1°v)

where

z
o
a
'
w
-

denotes the interior of N, and

a is the fundamental class of (N,N).

Now yn, an are isomorphisms by Poincaré duality, and k*

is an isomorphism since k is an excision map.

Since y is represented by the sum of the principal

simplexes in a triangulation of X, the commutative diagram

J—mmc-N)

i Tk

N—4(N,N)

shows that h*v = 3*a. Thus the diagram

 

L i
Hq(X)\ * qum)

(k*a)n = (h*c)nT * I an
- 0 — '

Hn q(X,X—N)—k—)Hn q(N,N)

 

is commutative, due to the commutativity of the correSponding

diagram at the chain and cochain levels.

Again, by a chain level argument, the following diagram

is commutative.

Hn‘q(x,x-N)-£*—->Hn'q(x)

(h*v)n J’ 1 lyn

a:

Hq(X)\ Hq(X) 

. Combining these results, we obtain (vn)°h* = i*°(an)°k*

Composing with 1* ‘we get i*h* = i*°(yn)-l°1*°(an)ok* =



12

oNo(cn)ok*. But i*oh* = j*ok* so oNo(cn)ok* = j*ok*.

Hence TN°(“n) = 3* so 3* is an isomorphism. Therefore

3* is an isomorphism for O < q < n.

From the long exact sequence of the pair (N,N), we See

that Hq(N) = 0 if 0 < q < n-l. Moreover O 4 Hn(N) 1:

Hn(N,N) 3 Hn_l(N) 4 O is exact. Since N is an orientable

nrphm, Hn_l(N) is a free L-module, so the preceding sequence

is Split. Thus L ~ Hn(N,N) ~ Hn(N) e>Hn_l(N). Therefore

L ~2Hn_1(N) ~ H°(N) by Poincare duality. This implies N

is connected and so N has the homology of an (n-l)-Sphere.

To show X/A is orientable, we prove that Hn(X/A) u L.

The argument above demonstrates that Hn(N) = 0, so Hn(A) =

0. Hence Hn(X) c: Hn(X/A) is a monomorphism. Because

either Hn(X/A) = 0 or Hn(X/A) ~ L [13], Hn(X/A) ~ L.

The proof of the reverse implication is obvious from

the corollary to the algebraic lemma of the preceding chapter.

.Bemazk: The proof of the above theorem also Shows that

c*y may be taken as the fundamental class of X/A.

.Exgmples: (1) Let T = 3le1 and R c T be the one

point union of two circles representing the canonical genera-

tors of nl(T>. Then T/R a 32. Thus R is a divisor of

T. More generally, if M is a closed, orientable, polyhe-

dral manifold, there is a closed subpolyhedron R C'X satis-

fying xa-mnun, nnnR=¢ and dimR<n [6]. Since

the one-point compactification of a locally compact Hausdorff

 



 

     



13

space is unique, X/R 2 Sn. Hence R is a divisor.

(2) If A and B are orientable polyhedral manifolds

of dimension n, then A #=B is obtained by removing a "nice"

n-dimensional ball from each of A and B and sewing the

resulting manifolds with boundary, A' and B', along the

boundaries by an orientation preserving homeomorphism. It is

easy to check that AfllB/A' 9.- B. Hence A' is a divisor

of Am“‘ B.

(3) Let M be an orientable 3-dimensional.manifold,

and let S be a Spine of M. Then since M/S is homeomor-

phic to S3, S is a divisor of M.



CHAPTER II

DUALITY IN COHOMOLOGY MANIFOLDS

on, .0". .- ocouo 0° .00 D . o oaouo ea

Manifnlds

In this section we develOp the concepts required in the

remainder of the thesis. Standard references for this mater-

ial are [5] and [2].

Let X be a t0pological Space. A mesheai‘ (of L-modules)

on X is a contravariant functor from the category of Open

subsets of X and inclusions to the category of L-modules

and L-homomorphisms. A morphism of presheaves on X is a

natural transformation of functors. A sheaf (of L-modules)

on X is a pair (am) where

(i) a is a t0pological Space (not generally Hausdorff).

(ii) 1r : 0.4 X is a local homeomorphism.

(iii) For each x e X, 1r-1(X) = 0.x is an L-module (and

is called the stalk of d, at x).

(iv) The module Operations are continuous.

EXplicitly, let a. Ad. be the subSpace of a x 4 consisting

of pairs ((1,5) with 1r(a) = 1r(B), and consider L x ax a

subSpace of L x (I. We require that the map 4, Ad 4 4

taking (a,B) to a - B and that the map L x43‘ 4 Q

taking (!,a) to La be continuous. A morphism of sheaves

(4,17) 4 (8,9) on X is a continuous map f : 4,48 such

that 1r = pof and f ‘dx = fx

l‘+

is an L-homomorphism of dx
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to E».
x

Given a presheaf A on X, we can construct a sheaf

0. on X in a canonical way. (L is called the sheaf gener-

ated by A. a is constructed as follows: For each Open

U c;X consider the Space U x A(U), where U has the sub-

space tOpology and A(U) is discrete. Form the disjoint

union E of {U x A(U) I U c X}. We define an equivalence

relation R on E : if (x,s) 6 U x A(U) and (y,t) 6

V x A(V) then (x,s) R (y,t) if and only if x = y and

there is a neighborhood W of x, W’c‘UflV, and le =

th (here 51W is the image of S in A(W)). There is

an identification q : E 4 E/R = a and a map p : E 4 x by

p(x,s) = x.

Then there is a map w : a.4 X so that the above diagram

commutes [7]. One easily verifies that (d,v) is a sheaf

on X. with stalks 0x = dir lim {afiU) l U a neighborhood

of x}.

If a. is a sheaf on X, let d(U) be all continuous

functions 5 : U 4 d for which was = 111.! This defines a

presheaf on X which generates a sheaf isomorphic to 0..

The construction of a sheaf from a presheaf or the con-

verse is functorial. That is, a morphism of the original

objects determines a morphism of the generated objects.
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A.£amilx_of_snppozts on X is a family m of closed

subsets of X such that

(l) A closed subset of a member of m is in m.

(2) m is closed under finite unions.

O is said to be a.pazangmpacti£xing family of supports if,

in addition:

(3) Each element of m is paracompact.

(h) Each element of m has a closed neighborhood which is

in m.

The family of all compact subsets of X is denoted by

C. It is paracompactifying if X is locally compact. It

is customary to use no symbol for the family of closed sub-

sets of X. This is paracompactifying if X is paracompact.

For s ea(x), define M = {x e x 1 S(x) # 0} to be

the support of S. If' a, is a sheaf on X, r¢(d) =

{s E a(X) 1 Is‘ 6 m}. For Y c X and m a family of sup-

ports on X, mnY is the family {KnY 1 K 6 m} and le is

thefamily {KIKEO and KcY}. '

We say d4 8 4 C is exact if and only if ax 4 8x 4 Cx

is exact as a sequence of L-modules.

AW- 1* is a sequence {1"} of sheaves, p

an integer. A differential_sheaf is a graded sheaf together

with homomorphisms d : 1p 41p+l such that d2 zip 411342

is zero for all p. A resolution of a sheaf a is a differ-

ential sheaf .1“ satisfying 1p = O for p < O and a homo-

morphism e : 4.4 I? such that
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0 40.3.1} gligiZ 4 ...

is exact. Similarly one defines graded and differential pre-

Sheaves.

If 1* is a differential sheaf, its banana—sheaf

11*(1*) is the graded sheaf given by, as usual,

VFW) = Ker (d : 1p 4Ip+l) / Im (d : .‘(p-l 41p)

If 1* is generated by the differential presheaf L* then

Vp(-f*) is generated by the presheaf U 0—4 Hp(L*(U)).

We are now ready to construct the cohomology theory we

need. We first construct a...gangniga.]__zes.o.lntion of a sheaf

0- on X.

Let C°(U;0.) be the collection of all functions (not

necessarily continuous) f : U 4 0. such that 1r0f = In,

i.e., C°(U;d_) = max I x E U}. Under pointwise Operations,

this is an L-module and the functor U I—4 C°(U;d.) is a pre-

sheaf on X which generates a sheaf C°(X;a). Moreover

C°<x;a) (U) = C°(U;Q). The inclusion J.(U) c: C°(U;d) provides

a natural monomorphism e : A 4 C°(X;a). For a family of sup-

ports on X we put C;(X;1) = I‘m(C°(X:d)).

Let 21(x;0.) be the cokernel of s so that

0 4 as C°(X;0.) E 21(X;d) 4 0

is exact. We define, inductively,

Cn(X;d) = C°(x;2n(x;d))

2n+1(X;d) = 21(Xin(x;a))

so that

0 42n(X;d) 3 Cn(X;d) 3 £n+l(X;4) 4 O
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is exact. Let d = so be the composite

cnma) A2“*1<x;a> Scn*1<x;a>

Thus the sequence

0 d . g 2 d
o 4 614 c (xm) 4 c (X34) c, (met) 4

is exact. That is, C*(X;A) is a resolution of d. This is

thawof 0.. Notice that C°(X;d.) is an

exact functor of 04 and, therefore, so is C*(X;d).

.
.
h
‘

For m a family of supports on X, we put

C:(X;d) = I‘m(Cn(X;d)) 1' Cgfin(X;d))

Since C;(X;d) and 2n(X;d) are exact functors of 1, so

is C3(X;d).

We now make the definition

H:(X;d) = Hn(C$(X;4))

 

From a short exact sequence

0 4 a’ 4 d4 4' 4 O

of sheaves on X we obtain a short exact sequence

0 4 c;(X;dj) 4 c;(x;d) 4 c$(x;a.') 4 o

of chain complexes and thus a long exact sequence

...4 H£(X;d’) 4 Hgmm) 9. Agnew) 4 Hg+l(X;d) 4...

Alternatively, we can define sheaf cohomology via injec-

tive resolutions of sheaves.

A sheaf .9 on X ism if given a monomorphism

i 44 6 of sheaves on X and h : 4 4J, there exists an

E : 8 4 .0 such that "hoi = h. That is, the functor

HomL (°,J) is exact. From the homological algebra of L-

modules, we know that any L-module is a submodule of an injec-
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tive L-module and that this injective module can be constructed

in a canonical way [12].

For a sheaf a. on X, let Max) be the canonical in-

jective L-module containing ax' Define J0(X;d) to be the

sheaf generated by the presheaf 30(X;d)(U) = MIMX) 1 x 6 U}.

Then JO(X;d) is injective and

U1Q1X6U}CH{I(AX)|er}

provides a monomorphism CO(X;d) 4 JP(X;O.). Composing with

the canonical monomorphism a. 4 CO(X;d) gives a monomorphism

a 4 30(X;a). Hence every sheaf is a subsheaf of an injective

sheaf and thus the standard methods of homological algebra

can be applied to sheaves.

Define ‘9];(X;a.) = 30(X;0.)/d. and

Thom) l°(x,yn(x,a))

where

fund) 91(x;9n‘1(x;m).

We obtain a resolution J*(X;0.) of d which is a covariant

functor of 4.. We refer to t9*(X;d) as the hamm-

Minof d.

In the usual way, if J* is a resolution of 4., then

there is a chain map 1* 4 3*(ng). that is, there is a com-

mutative diagram

4—610—‘1411 —9. ..

1 l
d—sJo—4a01 ——>- ..
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Let 1* = C*(X;d) and let p be a family of supports

on X. We then have a chain map P¢(l*) 4 C$(X;d) and hence

an induced map

P p .
H (r¢(.1*)) 4 H¢(X,d).

This is a natural isomorphism for all p [5]. Thus we can

determine the modules H£(X;d) from. A*(X;d) as well as

from C*(X;d).

To define relative cohomology, let i : A.c X and m

a family of supports on X. If a. is a sheaf on A, there

is a sheaf id. on X determined by id(U) = dKUnA) and a

continuous map a. 4 id. so that

A————>ia-

L i L
A ;X 

commutes.

If (4,11') is a sheaf on X, (dlAur’) is the sheaf on

X given by 41A =dmr-1(A), vr’ = 1r1(4.n1r-1(A)). For 4. on

X, we have a homomorphism, i* : C*(ng) 4 in(A;d1A) Of

sheaves on X. We introduce the notation

Ker i* = CF(X,A;a)

c;(x,A;(D F¢(C*(X,A;0.))

H;(X,A;0.) H*(C;(X,A;a))

From these definitions we obtain a short exact sequence

0 4 c;(x,A;a) 4 c;(x;d) 4 anA(A;a1A) 4 o

and hence a long exact sequence
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...4 H£(X,A;Q) 4 Hg(X;d) 4 HgnA(A;a1A) 4 Hg+1(x,A;d) 4...

For this cohomology theory, excision theorems, universal

coefficient theorems, Mayer-Vietoris sequences, and many re-

sults Similar to those available for "ordinary" cohomology

theories are provable [5, Chapter II].

If G is an L-module we also denote the.cnnstant_shea£

(GxX,w), where w : GxX 4 X is the projection, by G. If

m and mnA are both paracompactifying,

H*(X,A;G) 4 H*(X,A;G)
O mAS

where the right-hand side is the Alexander-Spanier cohomology

module of (X,A) with coefficients in G [5], [13]. If,

in addition, X and A are homologically locally connected

in the sense of singular homology (HLC),

H;(X,B;G) ~ AH;(X,B;G)

where the right-hand side is the "classical" singular cohomo-

logy module of (X,B) with coefficients in G.

To define the homology theory which is "dual" to sheaf

cohomology we need some additional objects.

A.pnennshaa£ u on X is a covariant functor from the

category of Open subsets of X to that of L-modules. A

precosheaf is aicnsheaf if the sequence

22mM952uwg4um)4o

<a,B> a

is exact for all collections {Ua} of Open sets with U =

U , where g = Z} (i - i ) and f = Z31

H a <a,B> UaUB UBUa a UUc

1

[iUV being the canonical map N(V) 4 u(U) for V c U and
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UaB = UanUBl. Graded and differential cosheaves are defined

in a manner analogous to that for sheaves.

Let 0 4 L 4 L0 4 L1 4 o be the canonical injective

resolution of L, i.e. L0 = I(L), L1 = I(L)/L which is

injective since it is divisible and L is a principal ideal

domain. We define Morn, (ELL) to be the sheaf generated by

the presheaf U 4 Hom (N(U),L). Now define a differential

sheaf

3(fl*;L) = na4t(u*,L*)

for a differential cosheaf fl*, where L* is the canonical

injective resolution of L. As usual, the term in degree n

is

.Bn(2t*;L) = z mmpmb
p+q=n

the differential being d’ - d” : en 4.en+1 ‘where d’ is

irniuced by the differential Mq 4 Mq+l and (-l)nd' is

induced by 21p+1 4 up.

Let 1* be a "nice" differential sheaf. Then TCI*

is a differential cosheaf with gradation

a 'p ‘(I‘Cl*)p I‘Ca‘. .

The differential sheaf h(rCI*;L) will also be denoted by

.DU't). Moreover, as above, we let .Bn stand for 19—11.

For a sheaf d, on X, we define

C¢<x3a) = £&(9*(X;L)) @(1

C$(X;a)

H$(X;A)

T (6*(X;a))
m

Hp(C$(X;a))
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This is called the.anal:Maana_hamnlnzx of X with support

in $-

The homology modules H*(X;L) and HE(X;L) correSpond

to the classical homology theories based on infinite and

finite chains respectively. These two cases will be of pri-

mary interest to us in the remainder of this dessertation.

To get a relative homology theory, there is a chain

monomorphism

c$1A(A;d|A) 4 c$(x;d.)

for any locally closed A c X. The cokernel of this map is

a chain complex whose homology we denote by H$(X,A;d).

A continuous map f : X 4 Y is proper (with reSpect

to families of supports m on X and t on Y) if f-lt

C’w. Such a map induces homomorphisms

f* : H$(X;L) 4 H$(Y;L)

and

f* : H:(Y;L) 4 H;(X;L)

which are natural with respect to the long exact sequences

Of pairs (X,A). All continuous mappings will be assumed to

be prOper.

By the.dimenaian.of X over L (dimLX) we mean the

value of the dimension function

dimLX a n e Hg+1(U;L) = o

for all Open U c X.

 

We say X ismhcmclcgicamlmallxmonnecisd in dimen-

sion. kt (X is k-cch) at x 6 X if given a neighborhood
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U of x there is a neighborhood V of x with V c U

such that Hk(U) 4 Hk(V) is trivial (henceforth, omission

of coefficients will mean the coefficients are in L). X

is clog at x if it is k-cch for all k s n, clef if

it is clc? for all n, and cch if it is clcf and for

each neighborhood U of x there is a neighborhood V of

x, V c'U such that H*(U) 4 H*(V) is trivial. The space

X is k-cch, clog, clef, or cch if it is so at every

point. Notice that clef is equivalent to cch if X has

finite cohomological dimension over L.

If U c-X is Open, the restriction map 0*(X;L) 4

C*(U;L) induces a homomorphism H*(X)h4 H*(U) [5, p.185].

Hence the functor U 4 H*(U) is a presheaf on X which

generates a sheaf y*(X;L) which is called thetsheaf_of_lncal

,hnmnlgg¥;gznnps. The stalk H*(X;L)x = 119 H*(U) (U rang-

ing over neighborhoods of x) is called the.lncal_homnlngy

.gznnp of X at x. _

A locally compact Space X is an (L-n)-space if flh(X;L)

is zero for p fi’n and torsion-free for p = n. fih(X;L) is

called thetnriantation_sheafn of X. An (L-n)~Space is an

nrdimensionalthnmalngx_maniflnld over L (n-th) if ”h(XgL)

is locally constant with stalks isomorphic to L, and if

dimLX < a. X is,L:orientahle.if ”h(X3L) is the constant

sheaf. We call X an n-dimensionalccahnmglngx_maniflnld over

L (n-cmL) if X is an n-th and cch. That this defini-

tion of n-cmL is equivalent to the usual one is known [5],

[2].

 

A
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To obtain a "duality" between the foregoing homology

and cohomology theories, we can extend the natural map

r¢(c*(x;L)ea)mr¢(<B) 4 rcmmnxumaao

to a homomorphism

n : H$(x;d)oH§(x;B) 4 HgD;(X;d®<B)

called the "cap product" whenever m, t, and mnt are para-

compactifying families of supports on X [5], [3].

Let O-= Mh(X;L) be the orientation sheaf of X, an

n-th. Then there is a unique sheaf 0&1 on X such that

over)"1 an L. Then

n : Hn(X:o-l)®H£(X;L) 4 H§_p(x;o'l),

if X is paracompact and m is paracompactifying. Moreover,

in this case, there exists a y E Hn(X;0fl) for which

yn : H£(X;L) 4 Hg_p(x;o'1)

is an isomorphism for all p, i.e. X is an n-PD.

The "cap product" is natural in the following sense

(for our purposes, the case 0 = L will be sufficient):

Let f : X 4'Y. Then for a 6 Hn(X;L), the diagram

 H8(Y;L) firm >H§_ (Y;L)

 

f*1/ T f...

p . an . C .HC(X,L) ,Hn_p(X,L)

is commutative for all p.

If U and V are Open subsets of X with V crU,

there is a homomorphism Tc(V) 4 PC(U) provided by "exten-

sion by zero", i.e. for s E Pc(V), extend s to U by
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s(x) = O, x e V - 151. This induces a homomorphism

jU'V : H6(V) 4 H6(U)

which is natural with respect to inclusions.

The Borel-Moore homology is frequently equivalent to

more familiar homology theories. This is treated in [5].

ikxUfl£EL£L__J&uledlLfllmmuxmh

In this section, we prove the main theorems of this

thesis.

The following may be found in [5].

.2.1 If A is closed in X, then we have the natural

isomorphisms.

(i) H5(X,A) ~ Hé‘ng(x-A) ~ H5(x-A)

(ii) HS(X,A) ~ HE“(X‘A)(x-A).

Using these we can prove a

.Lemma_2.2: Let A be a closed subset of a locally

compact Space X. Then for q > O,

(i) Hg(x/A) ~ Hg(x,A)

(ii) Hg(X/A) ~ Hg(x,A)

are naturally isomorphic.

m: (i) Hg(X/A) ~ Hg(X/A,*) ~ H8(X/A - *) ~ Hg(X-A)

~ H8(X,A). The isomorphisms are, successively, obtained

from the cohomology sequence of (X/A,*), 2.1(1), relative

.
1
:
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homeomorphism, and 2.l(i) again.

(ii) Similarly, Hg(X/A) ~ Hg(X/A,*) ~

H§“(X/A ' *)(X/A - 4) ~ 330(X'A)(x-A) ~ H:(X,A) from 2.1(ii).

Using 2.2(1), we get

2.3 If i : A c-X is a closed subSpace and U = X - A,

there is an exact cohomology sequence

...4 ago» 1X3 1130:) ii“. H8(A) 4 Hgflw) 4

.Jfiumm14adi: If W is a nondegenerate, locally compact

Space, and w E W, then dimLW = dimL(W¥w).

,Ezggf: In 2.3, take A = {w} and X any Open set in W.

.Qfinollany_2‘5: If dimLX < a, then dimL(X/A) < a.

.Ezggf: By 2.N, dimL(X/A) = dimL(X/A - *) = dimL(X-A) é

dimL(X).

We list a theorem about cohomology manifolds. A proof

may be found in [2].

[Theorem_2.fi: Let X be a connected n-cmL. Then

(T) For every non-empty Open subset U, the homomor-

phism

jXU : Hg(U) 4 H3(X)

is surjective, hence H€(A) = O for every prOper

closed subset A of X.

(2) x is orientable if and only if HSCX) ~ L. If x
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is orientable and U is an Open subset, then U

is orientable and, if U is moreover connected,

, n at n

im . new) 4 econ.

We also will require a universal coefficient formula

relating sheaf cohomology with compact support to Borel-Moore

homology with closed support.

2.7 If U is an Open subset of X, there is a sequence

0 4 Ext (H8+1(U),L) 4 Hp(U) 4 Hom (H8(U),L) 4 0

which is natural with respect to inclusions of Open sets,

that is, with reSpect to Hp(X) 4 Hp(U) and H6(U) 4 H6(X)

[5, p. 18%].

.Lemma_2‘8: Let X be an orientable n-cmL and let

U, V be Open, connected subsets of X with U c‘V. Then

the homomorphism Hn(V) 4 Hn(U) induced by restriction is

an isomorphism.

.Enggfl: From 2.6, jXUf and jxv are isomorphisms in

dimension n, and since jXU = jXVOjVU’ jVU is also an iso-

morphism. The universal coefficient formula produces a com-

Imtative diagram

o-—4Ext (Hg+1(v),L)-——4Bn(V)-——4Hom (Hg(V),L)-——)O

Ext (jVU,l) L if Hom (jVU’1)1

o-——4Ext (H3+1(U),L)-——4Hn(U)-——>Hom (H3(U),L)-——+0

Since dimLX s n, Ext (H8+1(V),L) = Ext(Hg+1(U),L) = o.
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Moreover, Hom (jVU'l) is an isomorphism since JVU is.

Thus Hn(V) 4 Hn(U) is an isomorphism as required.

By "divisor", we now mean a divisor with respect to sheaf

cohomology and Borel-Moore homology, both having constant

coefficients and compact supports.

In order to establish that the orientation sheaf of Y

is locally constant we need a

‘Lemma_2.9: If X is an orientable n-cmL and A is

a compact, connected divisor, then for any Open neighborhood

U of * in Y, the homomorphism c*: B8(U) 4 Hg(c'1u) a -..?

induced by c : X 4‘Y is a monomorphism for all p and is

an isomorphism for p = n.

,Enggf: Since the long exact sequence for cohomology

is functorial, the algebraic lemma provides a commutative

diagram, p > O

0—9H8(Y)—£:—)H8(X) h*z ;Hg(A>—40

1 1,4 1:

...__,hg(U)—‘L,Hg<c'1u>_k*_.ligm _,...

(since A is also a divisor of the n-cmL, c-lU) where h*,

k*, and the vertical homomorphisms are induced by inclusions.

Since k*or* = h* is an epimorphism, so is k* (for p > 0).

Thus c* : H8(U) 4 H8(c-1U) is a monomorphism for p > I,

and, because by 2.6 H8(A) = 0, an isomorphism for p = n.

Due to the fact that the augmented homology module H8(A) is
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trivial, c* : H%(U) 4 H%(c-1U) is a monomorphism. For

p = 0, any map of connected Spaces induces an isomorphism.

Combining the preceding results we are able to show

,,Lemma_2‘lQ: If X is an orientable n-cmL and It is a

compact, connected divisor, then the orientation sheaf fih(Y)

of Y is locally constant. In fact, it is locally isomor-

phic to the constant L-sheaf.

Proof This is clear for points of Y other than *.

To prove it for *, let U and V be connected neighbor-

hoods of * in Y with U c'V. The universal coefficient

formula 2.7 provides a commutative diagram (since dimLU,

 

 

dimLV a n)

Hn(V) ’ " sHom (HQ(V),L)

r* J] Hom (jVU’l)

Hn(U) "’ ;Hom (H8(U),L)

where r* is induced by restriction.

But in the commutative diagram

 Hgm) °* ;H3(c'1U)

j J _ -

VU c 1V,c lU

 Hgm °* s ng<c'1v>

the monomorphisms c* are isomorphisms due to 2.9, and

L
i
”
.
.
.
-

V
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jc-lU,c-1V is an isomorphism which causes Hom (jVU,l) to

be an isomorphism. Hence r* is an isomorphism.

Define a presheaf F on Y by F(U) = Hn(U’) where

U’ is the component of U containing *, and define the

homomorphism F(U) 4 F(V) for V C’U by restriction. Since

clog is equivalent to local connectedness [l5], and X is

clcg, connected neighborhoods of * in Y are cofinal in

the neighborhood system of * in Y. It is then easy to see

that the sheaf generated by F is isomorphic to the sheaf

flh(Y). The above discussion also yields that F is locally

constant with stalks isomorphic to L.

In order to see that Y is cch, we need that this

is equivalent to another condition;

2.11 [5, p. 77] Let X be a locally compact Hausdorff

Space, then the following two statements are equivalent.

(1) X is clcE

(ii) If U and W are Open, relatively compact

subSpaces of X with 'U C'W, then Image

[jWU : H8(U) 4 H8(W)] is finitely generated

for each p. (Here ‘U denotes the closure

of U.)

«Lemma_2‘12: If X is an orientable n-cmL and A is

a compact, connected divisor, then Y is cch.

.Bnggf: Since dimLY is finite, we only need prove that
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Y is clcE. In fact we only need prove that 2.ll(ii) holds

where U and W are neighborhoods of * in Y.

To see this, consider the following commutative diagram.

Bg(u) °* )H8(c-1U)

jWU ‘1’ i jc-IW,c-1U

Hg(W) °* ng<c'1w>

 

 

 

Now 'U c.W implies that c-lU c c-IW, but X is clef so

that Image [j _ _ : H8(U) 4 H8(c-1W)] is finitely gener-
l l

. c W,c U

. _ . p

ated. Thus we have that Image [Jc-lW’c lU°c* . HC(U) 4

H8(c-1W)] = Image [c*°jWU : H8(U) 4 Hg(c-1W)] is also finite-

ly generated. However, since c* : H8(W) 4 H8(c-1W) is a

monomorphism by 2.9, we can conclude that Image [ij : H8(U)

4 H8(W)] is finitely generated.

Recall that a Space X is,nompletslx_na2asomnact if

every Open subset of X is paracompact. This guarantees

that closed supports are paracompactifying for every Open

subset of X and thus Poincaré duality holds. (Actually,

for our purposes it would be sufficient to assume that X

and X-A are paracompact).

In order to see that Y is an (L-n)-Space we need

2.13 [5, p. 206] The homology sheaf flb(Y;L) .has

the stalk over y 6 Y isomorphic to H;(Y,Y-y).

[Lemma_2.l&: If A is a compact, connected divisor of

\
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X, a completely paracompact, orientable n-cmL, then

”h(Y;L) = 0 for q f'n.

Since Hg(Y,Y-y) = Hg(X,X-c-l(y)) = O for.Erocf

y'f *, 2.13 allows us to consider the single case y = *.

Let a 6 Hn(XrA) be the fundamental class of X-A abd

Y E Hn(X) be that of X. Consider the "box" diagram

 Hgf.q(.x-A) JXJX'A 7‘ Hg'qoo

 

 

 

0*

(c*a)n

 
  

The inclusions XrA c X and Y-* c'Y reSpectively in-

duce the homomorphisms 1* and k* respectively. The maps

cf and c* are all induced by the collapsing map c : X 4‘Y.

The right and left faces commute due to the functorial nature

of the cap product, and the rear face commutes because Of a

prOperty of Poincare duality [5, p. 210]. The tap and bottom

faces commute by reason of the fact that the homomorphisms

induced by a prOper map on the homology and cohomology modules

is functorial. We will demonstrate that the front face also
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commutes and that consequently k* is an isomorphism. By

chasing the diagram we get that

(c*v)fl°jY,Y_* c,.,<>vf1°c*°,j1Y’Y_,.l

= c*oynojx’x_Aoc*

= c*Oi*°anoc*

= k*oc*oanoc*

= k*°(c*a)n

Moreover, the exact sequence 2.3 with A = * and X = Y

shows that jY,Y-* is an isomorphism for q‘# 0. But

(c*y)n is an isomorphism because A is a divisor, and

(c*a)n is an isomorphism because it is the composite,

c*°an°c*, of isomorphisms. Thus k* is an isomorphism for

q %'n. The long exact homology sequence of the pair (Y,Y-*)

then yields that Hq(Y,Y-*) = o for q ,1! n. By 2.13,

fld(Y;L)* = O for q f n. We have already noted that

VCI(Y;L)y = O for q f’n and y E Y-* so flq(Y;L) is tri-

vial for q % n.

«Corollazy_2.15: If A is a compact, connected divisor

of X, a completely paracompact orientable n-cmL, then Y

is an (L-n)-Space.

.Eroof: By 2.14, ”h(Y;L) = O for q f n and by 2.10,

Nh(X;L) has stalks isomorphic to L so it is torsion-free.

Combining our previous results, we obtain the principal

results
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.Iheozem_2.16 If X is a completely paracompact,

orientable n-cmL, then A is a compact, connected divisor

if and only if Y is an orientable n-cmL. Moreover, in

either case, the sequences

HC C C
04 (A)4H(X)4H(X/A)4O

q q q

and

0 4 Hg(X/A) 4 H8(X) 4 Hg(A) 4 0 [T

are Split exact for q f 0.

[£2o9£: By 2.5, 2.10, and 2.15, Y is a finite-dimen-

sional (L-n)-Space satisfying wh(Y;L) is locally constant

 
with stalks isomorphic to L. Thus Y is an n-th. By

2.12, Y is cch and hence Y is an n-cmL. According

to 2.6(2), Y is orientable since c* : H§(X) 4 Hg(Y) is

an isomorphism.

The next theorem.genera1izes a result due to Wilder

[16. 17].

«Theorem_2.lz: Let X be a compact, orientable n-cmL

and let f : X 4 Y be surjective such that for each y‘e Y,

f-l(y) is a connected divisor. Then Y is an orientable

n-cmL o

lzogi: Let {A1 1 i E I} be the collection of point-

inverses of f which are not acyclic. Since H5(X) is

finitely generated [15] and since A1 is a divisor,

Ham/A1) is simpler than H6(X) in the sense that either

rank H5(x/Ai) < rank H500 or the torsion part of H5(X/Ai)
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is a non-trivial direct summand of the torsion part of H5(X).

Since such simplifications cannot be made infinitely many

times, I must be finite. Let Z be the space obtained

from X by collapsing each A1 to a point. By 2.16 and

induction, Z is an orientable n-cmL. The map Z 4'Y

induced by f has acyclic point-inverses so by Wilder's

monotone mapping theorem [16], Y is an orientable n-cmL.

.Example: The examples of chapter 1 are also examples

here since an n-pth is an n-cmL. To construct a non-poly-

hedral example, let C be a "sin 1/x curve" in a h-cell so

that 'C n S3 is an arc, where S3 = 6“. Let h : S3 4 82

be the HOpf map and let A = im [C U S3] in en Uh 82 =

6P2. Then A is a divisor since CPg/A is homeomorphic

to S”

.Bemazk: If X is completely paracompact and f is

prOper, one can drOp the compactness from the hypotheses of

theorem 2.17. In this case, choose for y E Y, neighborhoods

U and V so that f-1(U) c f-1(V) are connected and rela-

tively compact. Then by Poincard Duality and [5. p. 77],

im [HS(f-1U) 4 H$(f-1V)] is finitely generated and contains

the image of H$(A), for any divisor A in f-1(U), as a

direct summand. As in the proof of the theorem, only finitely

many such divisors can be non-acyclic, so that U is an n-cmL.
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