


#2229 0579

o LIRARY L
University "

This is to certify that the

dissertation entitled

NONLINEAR VIBRATIONS OF A FLEXIBLE
CONNECTING ROD

presented by

Shang-Rou Hsieh

has been accepted towards fulfillment
of the requirements for

Ph.D. Mechanical Engineering

degree in

Mo 4

i Major professor

Date 7_ 26’.(]’/

MSU is an Affirmative Action/Equal Opportunity Institution 0-12T1

|

IHN
h

SITY LIBRARIES

Il 'l'»\\.l\\\\\\\

T
\l | Hl \hl

L



PLACE IN RETURN BOX to remove this checkout from your record.
TO AVOID FINES return on or before date due.

DATE DUE DATE DUE DATE DUE
—JOC TS

MSU Is An Affirmative Action/E qual Opportunity Institution




NONLINEAR VIBRATIONS OF A FLEXIBLE
CONNECTING ROD

By
Shang-Rou Hsieh

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Mechanical Engineering

1991



e

/

ST

ABSTRACT

NONLINEAR VIBRATIONS OF A FLEXIBLE
CONNECTING ROD

By

Shang-Rou Hsieh

An analytical and computer simulation investigation of the dynamic behavior associated
with the flexible, uniform connecting rod of an otherwise rigid, in line, planar slider-crank
mechanism is presented. The main goal is to analyze the flexural response of the elastic
connecting rod and to study how this response depends on the system parameters. More-
over, this work emphasizes nonlinear analyses of the dynamic response and its associated
stability.

Two different approaches are used in modeling the flexural vibration of the elastic con-
necting rod. In the first approach, the model used is general and includes the effects of
finite axial and transverse deformations, internal material damping, bearing friction, slider
friction, shear deformation and rotary inertia. The axial and the flexural vibrations are
described by two nonlinear coupled partial differential equations. In the second approach,
the flexural vibration of the connecting rod is described by a single nonlinear ordinary dif-

ferential equation in the second approach which is obtained from the more general model



by a single mode Galerkin truncation. In deriving this equation, the effects of the shear
deformation and rotary inertia are neglected. Moreover, the contribution of axial inertia is
neglected in analyzing the acceleration components.

In studying the dynamic response of the connecting rod, the method of multiple scales
is employed to solve the equations of motion. The slenderness ratio of the connecting rod is
selected as the small scaling parameter. With the method of multiple scales, the solutions of
the axial and the transverse deformations are solved as asymptotic series expansions in terms
of this scale. In both of the approaches, several resonances, including the primary resonance,
the principal parametric resonance, and various super- and sub- harmonic resonances, are
investigated in detail. The analytical results are confirmed by the numerical solutions.

The analytical results show that the solutions and their associated stabilities depend
in a nontrivial manner on several parameters. They are the ratios of the crank radius to
the length of the connecting rod, the ratio of the connecting rod mass to the slider mass,
the ratio of the crank speed to the fundamental frequency of flexural vibration, internal
material damping, bearing friction and slider friction. The effects of these parameters on

the flexural vibration of the connecting rod are investigated analytically and numerically.
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Chapter 1

Introduction

1.1 Description of the Problem

In this dissertation, we study the flexural vibration associated with the flexible con-
necting rod of an otherwise rigid, in-line, planar slide crank mechanism. This problem is
equivalent to finding the flexural response associated with a simply supported beam sub-
jected to (1) the motion of foundation which arises from the motion of the crank shaft, (2)
axial load arising due to the friction force applied to the slider end and the inertial force of
the slider mass, (3) a distributed load which arises from the inertial loading and is applied
along the span of the beam, and (4) concentrated frictional moments arising due to the
presence of bearing friction.

One of the traditional approaches to the dynamic analysis of mechanisms is based on the
assumption that the system is composed of rigid bodies. In fact, a mechanism is defined as
"an assembly of rigid bodies, connected by movable joints, to form a closed kinematic chain
with one link fixed and having the purpose of transforming motion” [32]. Based on this
definition, the early works in the dynamics of mechanisms concerned themselves with deriv-
ing the displacements, velocities, accelerations, ... etc, of the mechanism. A basic concept
of kinematic analysis is to determine the maximum acceleration of the machine member

as a function of the input characteristics. The dynamic analysis includes the derivation of

1
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inertial forces resulting from the rigid-body accelerations found from the kinematic analysis.
However, the rigid body assumption may not always hold. As required by modern industry,
machinery often needs to operate at high speed while maintaining accurate performance.
Due to their inherent flexibility, machine elements deflect when subjected to external loads
and/or internal forces. An increase of the operating speed results in increased inertial forces;
this increase of the the inertial forces can cause sever deformation of the machine members
even without the action of external loads. In other words, inertial loading arising due to
the high operating speed can be responsible for link deformation and associated vibrational
beha.vior‘. Also, link members are being designed to be of smaller mass in order to reduce in-
ertial loads, but this often leads to increased flexibility and thus flexural vibrations. Hence,
the traditional rigid linkage analysis is insufficient to provide a satisfactory prediction and
description of the function of these mechanisms. Recognizing these shortcomings of rigid
body analysis, the idea of kineto-elastodynamics has been introduced[17, 27], which is the
study of the motion of mechanisms consisting of elements that deform due to external loads
or internal forces. Basically, kineto-elastodyanmics is a field combining kinematics, dynam-
ics and elasticity together. A study of high-speed mechanisms with flexible links requires
knowledge of this field. Among the mechanisms commonly used, the slider-crank mecha-
nism may be the simplest. The simplicity of of the structure of the slider-crank makes it
useful as a beginning example, especially when only one linkage, the connecting rod, of the
mechanism is assumed to be flexible. This mechanism is also of practical interest to the

automotive, manufacturing, and agricultural industries.

1.2 Literature Survey

The slider-crank mechanism, in which the connecting rod is considered to be a flexible
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member, has been investigated by several authors. In the following, we would like to review
some of the fundamental works by previous investigators. For more complete information,
please refer to the review articles27, 17, 26, 45]. The methods employed in studying the
elastic mechanism problem can be grouped into the following categories: the finite element
method, experimentation and analytical methods.

The basic idea in studying this problem with the finite element method is to model each
member of the flexible mechanism as discrete system with a finite number of degrees-of-
freedom. Therefore, each member can be divided into several small discrete elements. The
motion associated with each individual element is described by a set of ordinary differen-
tial equations. Finally, each element equation is assembled together and form the global
equations of motion describing the motion of the whole mechanism. The advantage of finite
element method is that it provides a systematic and easy-to-apply procedure in modeling
the mechanism. Winfrey[51, 52] was among the first investigators who applied the finite
element methods to study elastic mechanism problem. The application of the finite element
method in studying elastic mechanisms was limited by lack of computational powers, in the
early 1970s, because of the vast manipulation of the matrices associated with each element
and the assembling procedure. With the advent of the high-speed computers, the finite ele-
ment method has become more popular recently. In order that the finite element method be
applied to solve the elastic motion of the mechanisms, the continuous motion of the system
is modeled as a sequence of structure configurations at discrete crank angles upon which the
inertial loading is imposed. In order to solve these structures with finite element methods,
the rigid body motion associated with these instantaneous structures must be removed from
the model to avoid singular matrices. Winfrey[51, 52] accomplished this by directly apply-

ing the principle of conservation of momentum to the complete mechanism. Imam et al.[25],
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Midha et al.[1] and Gandhi et al.[18] considered the crank as a cantilever beam to avoid
this complication. Nath and Ghosh[28] removed the rigid-body degree of freedom from the
global matrices using a matrix decomposition approach. Concerning the formulation of the
equations of motion, two different approaches are employed: the stiffness and the flexibility
methods. Winfrey[51, 52] employed the displacement finite element method (the stiffness
technique of structural analyses) to study the elastic motion of mechanisms. This approach
yields directly the nodal displacements and requires displacement compatibility on inter-
element boundaries. Midha et al.[2] applied this approach to study the dynamic response
of a flexible member of a four-bar linkage. Erdman et al.[4, 3] employed flexibility method
of structural analysis to study flexible mechanisms. With this approach, adjacent elements
have equilibrating stress distributions on inter-element boundaries and the global degrees of
freedom are the stress components. Turcic et al.[48, 47, 13] studied the elastic mechanism
problem by using a general procedure in formulating the equations of motion, including
the effects of rigid-body motion and elastic coupling terms. Instead of a single type of
finite element, they generalized the procedure so that different types of finite elements can
be included in the same mechanism. The axial force is solved for by using a quasi-static
analysis, and is then included in the transverse component of the equation of motion by
the introduction of the geometrical stiffness matrix. The effects of elastic coupling terms
are included by adding the geometric stiffness matrix to the element stiffness matrix. This
approach is equivalent to modeling the deformation associated with the connecting rod by
von Karman’s finite deformation theory. Cronin and Liu[12] studied the linear vibration of
a connecting rod in a planar slider-crank mechanisin by using the finite element analysis
software NASTRAN. The steady state responses associated with the connecting rod are

investigated with different combinations of parameters. Their results show that superhar-
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monic resonances can be observed when the operating frequency is near to one third or one
half of the flexural natural frequencies associated with the connecting rod.

Unlike the finite element method, analytical methods treat each individual flexible mem-
ber associated with the mechanism as a single continuous system. Assuming that only one
of the members is flexible, the motion of the flexible member in an otherwise rigid mecha-
nism is described by a set of partial differential equations which, under some circumstances,
can be converted into ordinary differential equations by modal truncation. The major
analytical methods applied in these investigations are: Newtonian dynamics[15], Hamilto-
nian methods[49], variational methods[44, 43, 42] and lumped mass approaches[35, 36, 34].
We note that the last two methodologies, especially the variational principle approach, are
equivalent to the finite element method. Some of the related fundamental works are outlined
below.

Neubauer, Cohen and Hall[5] examined the transverse deflection of the elastic connecting
rod of the slider-crank mechanism by neglecting the longitudinal deformation, the Corio-
lis, relative tangential, and relative normal components of acceleration. They showed that
the amplitude of the transverse vibration increases when the the dynamical axial load ap-
proaches the Euler criterion for static buckling of long, slender columns. They also pointed
out that a more thorough analysis of the response requires a more complete study which
includes the following dimensionless parameters: the ratio of crank speed to natural fre-
quency of flexural vibration, the ratio of connecting rod mass to slider mass, and the ratio
of crank radius to connecting rod length. By the Method of Averaging, and assuming a
small length ratio, Jasinski, Lee and Sandor[30, 31] investigated the dynamic stability of
a flexible connecting rod in a slider-crack mechanism. In the first paper, they studied the

slider-crank mechanism for which a concentrated mass is assumed to be attached to one end
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of the connecting rod. In the second paper, the connecting rod is assumed to be hinged at
each end, an unrealistic assumption. Both longitudinal and transverse deflections are con-
sidered, and the coupled linear equations describing the motion are obtained from the force
and moment balance of a differential element. Linearization of these equations was accom-
plished by neglecting the nonlinear coupling terms. Assuming a one-term product solution,
they obtain two coupled, nonhomogeneous Mathieu equations. Finally, they use the Routh-
Hurwitz criterion investigate the stable regions, and the associated steady-state solutions
of the transverse and axial deflections are given. Their results showed that the amplitude
of the transverse responses depends upon the frequency ratio quadratically, while the axial
response is not so sensitive to this parameter. Moreover, the vibration amplitudes increases
as the mass ratio increases. They pointed that future work in this area should include
elastic stability analyses using similar asymptotic methods and include the effects of the
nonlinear coupling terms. Viscomi and Ayre[49] examined the nonlinear bending response
of the connecting rod. Assuming that the inertia force from axial deflection is negligible,
the axial dynamic force is approximated by solving the so-called reduced equation. With
this axial force, the transverse equation is reduced to a single ordinary differential equation
by the Galerkin method. The resultant equation is then studied numerically. They showed
that, within the frequency range of interest, the second mode is relatively unimportant
and the response is closely approximated by the first mode dynamics. By comparing the
responses from the linear and nonlinear equations, it was concluded that the system is not
adequately defined by the linear form of the equation. Moreover, the existence of multiple
steady state solutions was also observed in some parameter regions. They pointed out that
the response depends on the following dimensionless parameters: the frequency ratio, the

mass ratio, the length ratio, transverse damping and the external piston force. With the
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same assumptions, Chu and Pan[11] carried out a similar study by use of the Kantorovich
method and the method of weighted residual. The final governing equations are studied
numerically. Their results show the the effect of small viscous damping on longitudinal
vibration is small and can be neglected. Moreover, a sudden increase in the amplitude of
the steady state response accompanied with a small increase of the operating frequency, i.e.
the jump phenomenon, has also been observed. Using variational principles, Thompson and
Ashworth[43] studied a planar slider-crank mechanism mounted on a foundation sub jected
to a motion normal to the mechanism plane. They found that the combination resonances
can be observed when the sum or the difference of the operating and foundation frequencies
are approximately equal to the flexural natural frequencies associated with the connecting
rod. By applying regular perturbation method to Euler-Bernoulli and Timoshenko beam
models, Badlani and Kleinhenz([8] considered the dynamic stability of the undamped elastic
connecting rod of an in-line slider-crank, and compared the results from each approach.
Their results indicated that new regions of instability exist when both the rotary inertia
and the shear deformation are included in the analysis. Tadjbakhsh[41] introduces in a
general method for obtaining a single partial differential equation describing the transverse
vibration of an undamped elastic link of a mechanism which contains evolutes only, using a
two-parameter perturbation approach. The final dimensionless Hill’s equation is obtained
by assuming a sinusoidal shape function and using Galerkin’s method. His result shows that
contributions from the second mode and higher mode amount to less than one percent. Zhu
and Chen[54] studied the stability of the response of the connecting rod by using a regular
perturbation technique. A linear, undamped, nonhomogeneous partial differential equation
is used to described the transverse response based on Euler-Bernoulli beam theory. Using

this equation and Galerkin’s method, they obtain a set of decoupled homogeneous Hill’s
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equations. After reducing these to Mathieu equations, a first-order Floquet approach was
used to obtain the two highest p-periodic and 2p-periodic instability regions. Badlani and
Midha[9] studied the effect of internal material damping on the dynamic response behavior
of a slider-crank mechanism by using the regular perturbation method. Both steady-state
and transient solutions were determined and compared to those results obtained from the
undamped connecting rod. They concluded that the viscous internal material damping
may have significant influence, both fa.vora.bl;a and adverse, on the steady-state and tran-
sient transverse responses. Sandor and Zhuang[37] studied a planar four-bar mechanism
by using a linearized lumped parameter approach. The effects of rotary inertia and end
mass are included in their investigation. A set of nonlinear ordinary differential equations
describing the dynamic behavior of the mechanism is derived based on the lumped mass
approach. These equations are then linearized and decoupled by using the concept of kine-
matic influence coefficients. The resultant equations are solved by using a finite difference
approach. Their investigation shows that the linearized approach is sufficient in represent-
ing the dynamic response, and that the rotary inertia and end mass of the moving link have
considerable effect on the elastic response of the mechanisms.

In addition to the analytical and computational works describe above, some experimen-
tal works has been carried out [6, 7, 40, 19]. Golebiewski and Sadler[19] determined the
bending stress at the midpoint of the elastic connecting rod analytically and experimen-
tally for a model derived by a lumped parameter approach using d’Alembert’s principle
and Euler-Bernoulli beam theory. They examined the effects of the crank speed, crank
length, and slider offset on the maximum bending stress at the midpoint of the connecting
rod. Superharmonic responses appeared in both the analytical and experimental results.

Sutherland[40] studied a fully elastic planar four-bar mechanism analytically and experi-
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mentally. By using Euler-Lagrange formulation and modal analysis with only one mode,
the dynamic behavior associated with the mechanism is described by a set of ordinary
differential equations with two holonomic constraints. The resultant equations are then
simplified by neglecting the shear deformation, rotary inertia, joint frictions, bearing mass
and all the external forces except the torque required to keep the mechanism operating at
a constant speed. These equations were linearized based on the assumption that the deflec-
tions associated with each elastic member are small. Consequently, the resultant equations
describing the dynamic behavior associated with the mechanism are three coupled, linear,
nonhomogeneous ordinary differential equations with time-varying coefficients. The Method
of Harmonic Balance is then applied to solve these equations. He pointed out that length
ratios and frequency ratios are the essential dimensionless parameters for this investiga-
tion. An experimental study was carried out to support the analytical work. High order
superharmonic resonances were observed in the experiments. His results indicated that the
modal analysis using only a single mode is sufficient to represent the dynamic response of

the mechanism.

1.3 Scope and Purpose

All previous investigations lead to a nonhomogeneous Mathieu equation to describe
the transverse vibration, and only linear stability analyses were provided. The existence
of superharmonic, subharmonic and combination resonances have been observed both in
simulations and experiments [49, 11, 19, 40]. An analytical study of the overall nonlinear
response, especially dealing with the superharmonic, subharmonic responses, and their as-
sociated stability, is lacking. It is the purpose of this study to provide such an investigation

of the vibration associated with the flexible connecting rod of a planar slider-crank mech-



10

anism. Moreover, this work will focus on the nonlinear analysis of the dynamic response,

e.g., primary, principal parametric, superharmonic resonances and their stability.

1.4 Organization of Dissertation

This dissertation is organized as follows. Chapter 2 contains the basic assumptions and
the derivation of the partial differential equations used to describe the system. Chapter
3 provides the analysis of the partial differential equations obtained in chapter 2 by using
the method of multiple scales. In chapter 4, we simplify the model by using von Karmon’s
finite deformation theory and obtain an ordinary differential equation describing the flexural
vibration associated with the first flexural mode of the connecting rod. We then analyze this
ordinary differential equation by using the method of multiple scales. Chapter 5 contains
a detailed comparison between the results obtained in chapters 3 and 4. In chapter 6, we
compare the results obtained in chapter 4 with numerical simulations. In chapter 7, we
close this dissertation with some conclusions and some suggestions for future investigations.

In the course of this study, extensive use was made of the computer assisted symbolic
manipulation program MathematicaTM. This was essential in the lengthy calculations

involved in the perturbation procedures.



Chapter 2

Mathematical Modeling

In this chapter, equations describing the rotary, axial and transverse dynamic responses
associated with a flexible connecting of an otherwise rigid slider crank mechanism are de-
rived. The basic assumptions which are used in deriving these equations of motion are
given in section 2.1. Based on these assumptions in section 2.2, we then proceed to de-
rive the equations describing the axial as well as the transverse deflections associated with
the connecting rod, and the boundary conditions associated with these equations. In sec-
tion 2.3, we compare the resultant equations to the models which were used by previous
investigators. We then convert the equations of motion and their associated boundary con-
ditions into dimensionless form in order to minimize the number of the system parameters

in section 2.4.

2.1 Basic Assumptions

In deriving the equations which describe the axial and the transverse deflections associ-

ated with the flexible connecting rod, the following assumption are employed:
o Concerning the connecting rod AB

1. is an elastic member with uniform cross section

11
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2. all quantities are assumed to be independent of z, the out-of-plane coordinate
3. plane cross section remain plane after deformation
4. made of a viscoelastic material

5. simply-supported at both ends, with rotary damping at the pivot ends (to model

bearing effects)
6. point C on rod AB moves to point C’, after deformation,

7. shear deformation and rotatory inertia are included
e Concerning the crank element OA:

1. perfectly rigid

2. constant crank speed, w
e Concerning the slider mass D:

1. no clearance
2. no offset
3. velocity-dependent friction force acting between the slider and its contact surface

4. no external forces applied to the piston.

2.2 Equations of Motion

In the present section, equations describing the axial and transverse deflections as-
sociated with the flexible connecting rod are derived based on the assumptions given in
section 2.1. This problem is equivalent to a simply supported beam sub jected to the inertia

forces associated with its motion as specified by the kinematic constraints. These inertia
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forces are caused by the acceleration associated with the connecting rod. We first analyze
the acceleration components of a point located on the flexible connecting rod. We then
proceed to derive the equations of motion describing the axial and transverse deformations
of the connecting rod following the work of Chow[10]. By combining these results, we obtain
the equations describing the axial and transverse deflections associated with the connecting

rod subjected to the inertia forces.

2.2.1 Deformation

We now consider a segment of the beam with length Az taken from the connecting rod

as shown in figure 2.1. After deformation, the angle between the median line and the x-axis

Figure 2.1: Displacement of the beam element

is given as

a=0+~ (2.1)

where 0 = the bending angle and v = the shear angle. Let a material point located at (z,y)



14

in the undeformed state move to (z’ ,y’) after deformation. Therefore, we have

= z4+u-ysinb (2.2)

Y = v+ycosh (2.3)

where u(z,t) and v(z,t) are the displacements of the median line along the x and y direc-
tions, respectively. The length of an undeformed line element (dz,0) in the deformed state

is given by

ds = \/dzz + dy?

\/[ v+ (ycos8):]2+[1+ u; — (ysinh).]? dz (2.4)

where a subscript z stands for the partial derivative of the corresponding function with

respect to the spatial variable z. The relative elongation in the x-direction is defined as

d
e=d—;—1= w2+ (14 uz)2 =1 -y, = eo — yb, (2.5)

where e is the relative elongation of the median line. From the geometry of the deflection

curve as shown in Figure 2.2, we also have

Uz
t = .
ana 5o’ (2.6)
. oy
sina = ==, (2.7)
14 u,
cosa = T (2.8)

where eg is implicitly defined in equation (2.5).
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: u+(du/ dx)de

Figure 2.2: Geometry of the deflection curve
2.2.2 Acceleration Components
With the assumptions given in section 2.1, we now proceed to derive equations which

describe the axial and transverse vibrations associated with the connecting rod AB. Con-

sider a slider-crank mechanism as shown in Figure 2.3. The reference frames OXY and

«

S

NN

Figure 2.3: Slider crank mechanism with flexible connecting rod (undeformed state)

oxy represent the fixed and moving coordinate systems associated with this slider-crank

mechanism, respectively. Let u(z,t) and v(z,t) represent the axial and transverse displace-
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>

Figure 2.4: Slider crank mechanism with flexible connecting rod (deformed state)

ments of the connecting rod measured in the moving coordinate system, respectively. The
moving coordinate system (i.e., oxy) is shown in Figure 2.3 with its origin located at the
connecting point on the rigid crank and its x-axis always passing through the ends of the
elastic coupler. We now consider a point C located with (z,0) in the moving frame, which
moves to point C’ after deformation (Figure 2.4). Modeled by the embedded geometric

constraint method[33, 53], the position vector F of point C’ can be expressed as

t=(z+u)i+vj (2.9)

where 1 and j are the unit vectors along the x- and y-axes, respectively. The deviation of the

acceleration components begins with the following well- known result from dynamics[20, 23]:

A=Ay +OX (@XF)+@ X T+ Ty + 20X Ty =azi+ay) (2.10)

which allows the absolute acceleration of a point to be written in terms of a moving frame
of reference and where

a = absolute acceleration component seen from a fixed coordinate system,
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A ;s = absolute acceleration of the moving frame,

F = position vector for a particle as reviewed from the moving frame, and is defined in
equation (2.9),

@ = angular velocity of the moving frame.

Substituting equation (2.9) into equation (2.10), we obtain

a; = —rw?cos(wt— @)+ uy — vy — v — ¢'¢2(-’L‘ + u) (2.11)

ay, = —rw’sin(wt— @)+ ¢%(z+ u)+2¢us + vy — PP (2.12)

where a subscripts t presents the partial derivative of the corresponding function with
respect to the time variable, r is the length of the crank shaft, ¢ represents the angle between
OA and OB, measured counter-clockwise, a, and a, are the acceleration components along

the x— and y- axes, respectively.

2.2.3 Stress-Strain Relation

In this section, we consider the relationship between stress and strain. We assume that
the connecting rod is made of a viscoelastic material which can be described by models built
from discrete elastic and viscous elements. In this work, we assume that the connecting
rod is made of a the Kelvin-Voigt material which is modeled as shown in Figure 2.2.3.

Therefore, the stress-strain-time relationship for this material is given by

o=FEe+ p.e (2.13)

where o is the normal stress, and e is the strain, E is the elastic spring constant, and g, is

the dashpot coefficient. Based on this, we obtain the following equations for normal stress
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A4S

Figure 2.5: Viscoelastic model (Kelvin-Voigt model)

0z and shear stress oz,:

0z = Fe+pce;=FEeo— Eyb; + pceo, — pcybze (2-14)

oy = G7v. (2.15)

Now, we express the axial force N, bending moment M and shear force @ according to

N = / 02edA = EAe + peAcg, (2.16)
A

M = / 0oeydA = —EI0, — pelf,, (2.17)
A

= /A 0sydA = KG Ay (2.18)

where A is the cross-sectional area, [ is the area moment of the inertia of cross section, &’

is the shear-deflection coefficient, a modifying factor introduced by Timoshenko[46].

2.2.4 Equation of Motion

Consider the free body diagram shown in Figure 2.6, from which the equations of motion

are obtained by considering the balances of forces and bending moments. From this, we
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N(s)

u —
y
Figure 2.6: Free body diagram for beam element
obtain the following equations:
(Ncosa); — (@sinf), = pAa,, (2.19)
(Nsina); + (Qcosh), = pAay, (2.20)
M;-Q(1+ey)cos(a—0) = —Jb (2.21)

where the acceleration components a; and a, are defined by equation (2.11) and (2.12),
p stands for the density (mass per unit volume) of the connecting rod, and J is the mass
moment of inertia per unit length. We note the these equations are expressed in terms
of eight unknowns, namely N, M, @, a, 0, u, v and eg. We now proceed to transform
these equations into a form in which only the displacements and forces are involved. With

equations (2.18), (2.6), (2.7) and (2.8), equation (2.21) reduces to

_ J0u - Elozz - I‘clozzt
" vysind+ (1+ uz)cosf

(2.22)
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In deriving this equation, we assume that I, F,and g, are all independent of z.

equation (2.1) and (2.18), we have

_ _ Q
a=0tr=0+yuc
Equations (2.16) and (2.8) yield
14 u, 14 u;
= c = -1 ¢ - .
N = EAeo+ pcAeo, = EA(— = = 1) + peA(——= — 1),

Substituting equations (2.24) and (2.22) into equation (2.19), we obtain

14 u, 14+ u,
EA[(1+ u, r+ pA[(1+ug) - ,
Jott - EIo:cr - l‘clo.trt -
- 1 vz + (14 uz)cotd |- = pAas .
Equations (2.16) and (2.7) yield
Uz Uz
N = FAeo + pcAeo, = EA(—— - 1) + p.A(= —1).
sin a sin a

Substituting equations (2.26) and (2.22) into equation (2.20), we obtain

v V.
EAlv, - Z Alvr - = z
[ve \/v3+(1+uz?]’+”° [ v3+(1+ux2]'
+ [ JO0y — EIG,, — ﬂcIoa:z't
vztanf + (1 + uz)

lz = pAa, .

Substituting equations (2.24), (2.22) and (2.23) into equation (2.6), we obtain

J6y — EI6,, — I‘clorzt _ U
k'AG[vzsin@ + (1 + uz)cosf]” 1+ ug

tan (6 +

From

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)
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Equations (2.25), (2.27) and (2.28) describe the rotational, axial and transverse defections

associated with the flexible connecting rod.

2.2.5 Boundary Conditions

In the present section, we consider the the boundary conditions associated with equa-
tions (2.25), (2.27) and (2.28). We first consider the boundary conditions applied to the
connection point on of the crank shaft. Since the crank shaft is assumed to be perfectly
rigid and there is no relative displacement of the connection between the connecting rod

and the crank shaft, we must have

u(0,t) = 0, (2.29)
v(0,t) = 0. (2.30)

Due to the presence of the frictional moment at point A from the bearing, we have
EI6.(0,t) + ppI0.4(0,t) = —M4 = pp(w — ¢t — v(0,1)) (2.31)

where u; represents the friction coefficient, and the moment applied by the bearing is the
product of u; and the relative rotational speed. We now consider the boundary conditions
applied to the sliding end to which a mass my, the piston, is attached. At point B, the

piston motion is constrained to move along the X direction. Therefore, we have

v(L,t) = —u(L,t)tan¢. (2.32)

Because of the presence of the bearing at point B, there exists a frictional moment at this
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point. Therefore, at point B, we have

EI8,(L,t) + ppI0z(L,t) = —Mp = py(—¢ + voe(L, 1)), (2.33)

where the bearing friction law from point A is again employed. We now apply Newton’s

second law to the slider mass m4 and obtain the following condition:

(Ncosa — @sinf)cos(—¢)+ (Nsina+ Q cosf)sin(—¢)
+ myazcos(—¢) + mya,sin(—¢)

+ psZi+ psurcos(—¢) + psvesin(—¢) =0 (2.34)

where u, is the slider friction coefficient and Z; stands for the rigid motion of the slider
mass. We note that there are two slider friction forces in equation (2.34). The (u,Z;)
term represents the friction force caused by rigid body motion, while [pu,u;cos(—¢) +

wsvesin (—@)] stands for the friction force due to the elastic deformation.

2.3 Comparisons

In the present section, we compare the equations of motion obtained in section 2.2 to the
models used by other investigators in studying the dynamic response associated with the
flexible connecting rod of a slider crank mechanism. Regarding the acceleration components,
there is no difference between our approach and other’s. Therefore, we shall focus on the
beam theory used to model the connecting rod.

If the effect of shear deformation and rotary inertia terms are neglected in our formula-
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tion, we have a = 6 and

Q=—-Elf;; — pcl0ry: . (2.35)

Moreover, if we assume that the relative elongation of the median lines is very small com-

pared to unity, then equation (2.19) becomes

EA[(1+ uz) — cosb]; + Apc[(1+ uz) — cos 8], — (@sinb); = pAa, , (2.36)

and equation (2.20) becomes

EA[(1 + uz)tan® —sin6]; + (Q cos8), = pAa, . (2.37)

Since the relative elongation of the median line is assumed to be very small compared with
unity, we also have

sinf = v, (2.38)

from equation (2.7). Moreover, we assume that 8 is very small so that the last equation can
be reduced to

O~v,. (2.39)

Based on this, equation (2.35) becomes

Q = —-FElv;z, — Iﬂ'cv::zt . (2.40)

Substituting equations (2.39) and (2.40) into equations (2.36) and (2.37), we obtain the
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following equations:

1 1
pAa; = FEA(u;+ 51)3), + Apc(ur + 51}3), , (2.41)

1
pAay = Elvgzrr + pclVizzze — (E — pe)A[(uz + -2-v§)vz ]z - (2.42)

This derivation is mainly based on the von Karmons finite deformation theory. These
two equations were used by previous investigators[9] in studying the dynamic behavior
associated with the connecting rod. Viscomi[49] applied this model without considering
the effects of internal material damping p.. In chapter 4, we will use equations (2.41) and
(2.42), together with the work by Viscomi to study the flexural response associated with
the connecting rod. We now consider the model used by Badlani et al.[8]. Linearizing

equation (2.1) and neglecting the effects of internal material damping ., we obtain

Q

0+ TAG = Ur (2.43)
or
Q = KAG(v; - 9). (2.44)
Linearizing equation (2.16), we obtain
N =FAu;. (2.45)

Substituting equations (2.44) and (2.45) into equations (2.19) to (2.21) and linearizing the

resultant equations, we obtain

FAu,, = pAag, (2.46)
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Q= (2.47)

|
)

kS

)
<

EIO”+Q = p[&u (248)

where the mass moment of inertia J is expressed as J = pI. Substituting equation (2.44)

into equations (2.46) and (2.47), we obtain

EI8,, + K AG(v, — 6) = pI6y, , (2.49)

k' AG(vy — )z = pAuvy. (2.50)

These two equations were used by Badlani et al.[8] in studying the dynamic behavior asso-
ciated with the flexible connecting rod. This derivation is mainly based on Timoshenko’s

beam theory.

2.4 Nondimensionalization

We now convert the equations and their associated boundary conditions into dimen-
sionless form in order to minimize the number of system parameters. To achieve this, we

introduce the following dimensionless parameters:

io= Yoo s Tl g m o I
u - L’v—L’z-L,f_L’S—pAL,n_ALz,
EIx4 w o w
2 - Y s_ =Pc 1t
Wi = PAL4’Q—w",t wltty K2 2E )
o owr o m o _E
B3 = Al ™M~ pALey, T RGN T oI

Before we proceed to convert equations (2.25), (2.27) and (2.28) into dimensionless form,

let us explain the physical meanings of these parameters. The parameter £ is the ratio of
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the throw length of the crank shaft to the length of the connecting rod, which is referred to
hereafter as the length ratio. The parameter S is the ratio of the mass of the connecting rod
to the mass of the slider, and is specified as the mass ratio. The parameter 7 represents the
slenderness ratio of the connecting rod. The parameter a; is associated with the effects of
shear deformation. The parameter a3 is associated with the effects of rotary inertia. The
parameter (0 is the ratio of the operating frequency to the first flexural natural frequency
of the connecting rod, wy, and is referred to as the frequency ratio. The parameter pu,
represents the damping effects of the internal material damping acting on the connecting
rod. The parameter pu3 represents the damping coefficients of the bearing friction applied
to the joints at point B and C. The parameter p4 is used to model the friction force
acting between the slider and its contact surface. With these dimensionless parameters,

equation (2.25) becomes, after dropping the overbars for notational convenience,

(1+uz) 14+ u,
l T - T 2 1 )~ T
6 é
_ 4_4 tt 2 T
a3 [(1+u,)cot0+v, l+n [(1+u,)cot0+v, Je
[/}
2 T
t 2] (14 uz)cotf + v, Jet

= 7127|"[ —692 [o0] (Qt - QS) + uy — 2¢¢‘Ut - ¢uv b ¢)‘2($ + u)] y (2.51)

equation (2.27) becomes

Vr VU
X - T — = |z 2 T = I
(v 1+u,)2+v,2,] + 22l v (1+ux)2+v,2_.]t

0 0
4_4 tt _n2 Tz
o a3[(1+u,)+v,ta.n0]z K [(1+u,v)-§-v,taur\0]’c
0
_ 2 TT
2uan [(1+u,)+v,ta.n0]’:t

n*r4[ —£Q%sin Qt — ¢ + (T + u) + 20y — vy — $7v] , (2.52)



27

and equation (2.28) becomes

We now apply the same procedure to the boundary conditions. We obtain the following

tan (0 + azn

2 a31)21r40“ - 01::: - 2/‘201:1#
(14 uz)cos@ + v, sin b

VU

T 14 up

conditions at point A:

u(0,) = 0, (2.54)
v(0,2) = 0, (2.55)
0;,;(0, t) = 2[13[9 - ¢g - Uu(o, t)] . (256)

While, we have the following conditions at point B:

(14 u)

v(1,t) = -u(l,t)tang, (2.57)

6:(1,1)

14 u, ]
VO +u )2+

01' T
]

2
[(1+u,)cot0+v,,

\/(1(1 ::;Z’L op T 2l (14 ws) -

4[ o“
(14 uz)cot b + v,
b2z
le

[
(14 ug)cotf + v,
SnPmA[ —£Q% cos (U — ¢) + uey — 2640 — Puv — $2(z + u) ]

asn'r l+n

2p2m

Vg )

v — tan¢ — 2ug[ vy — Z t
RV e e e Y T
6 6

4_4 tt 2 T
r)1r03[(1+uz)+%tan0]tau¢+n[(1+uz)+vxtan0]tan¢

03:
(14 uz)— vy tanb

2;421)2[ Jetan ¢

) = (2.53)

2“3[ "¢t + vzt(l,t)] ] (258)
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Sn2xi[ —€Q%sin Qt — ¢ + du(z + u) + 2d1us — v — $Pv]tand

Zi + 29274 pg[uy — v tang] = 0. (2.59)

224
+ 777r"4cosq§

Equations (2.51) to (2.59) form the basis of the mathematical analysis in the thesis.



Chapter 3

Analysis of the Distributed Parameter Model

In the present chapter, we study equations (2.51), (2.52) and (2.53) by applying the
Method of Multiple Scales[29]. To apply this method, we must first locate a small, con-
stant parameter which will be used as a basic unit in scaling the response and the other
parameters. For the current problem, the slenderness ratio 7 of the flexible connecting rod
is chosen to be the basic measurement unit. The axial and transverse displacements u(z,t)
and v(z,t) are expressed in asymptotic series in terms of 7. We then expand the partial
differential equations describing the dynamical behavior associated with the connecting rod
with these assumed solution sequences and obtain a sequence of linear partial differential
equations. We then study the dynamic response associated with the elastic connecting rod
by solving these equations sequentially. In section 3.1, the Method of Multiple Scales is used
to outline each individual resonance case. In section 3.2, we study the case of the principal
parametric resonance. In section 3.3, we study the case of primary resonance. Superhar-
monic resonances of order 1/2 and 1/3 are studied in sections 3.4, and 3.5, respectively.
Section 3.6 contains the analysis for the case of the order two subharmonic resonance. We

summarize the results and provide a detailed parameter study in section 3.7.

29
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3.1 Application of the Method of Multiple Scales (MMS)

To apply MMS, we need to introduce a set of new independent time variables T, ac-
cording to

T, = et (3.1)

where ¢ is a small constant parameter which is related to the slenderness ratio of the
connecting rod. Because the connecting rod is assumed to made of a slender beam, its
slenderness ratio n = TIET is small. Based on this, we choose this quantity as a basic

measurement unit of the parameters that are used to model the problem. Therefore, we

scale the slenderness ratio of the connecting rod by letting

7 =o€l (3.2)

Moreover, the length ratio £ is scaled according to

€= . (3.3)

It follows that the derivatives with respect to t become expansions in terms of the partial

derivatives with respect to T, according to

d 8 8  ,8 _ .
i 6T0+ea—Tl+eaT2+...—Do+eD1+eD2+... (3.4)
2

= Do’ +2eDo Dy + €(Ds? + 2D D) + ... (3.5)

dr?

where Dj; stands for the derivatives with respect to the independent time variable T;. We

next assume that the solutions u(z,t) and v(z,t) can be represented by expansions having
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the forms:

U(ZL’, t) = ful(z’TO 1Tl 1T2) + 62“2(1:7 TO ’Tl aTQ) + 63“3(Z)T0 yTl ,TZ) + .y (36)

v(z,t) = evl(z,To,Tl ,Tz) + 6202(1‘,T0,T] ,Tz) + 631)3(27,T0 ,Th ,Tg) + ... (37)

Note that the number of independent time scales T; needed depends upon the order to
which the expansion are carried out. For the present problem, it is sufficient to expand the
solutions up to O(e3). Therefore, only the first three time scales are used in the expansions.
There are three damping parameters u2, 3 and p4 involved in equations (2.51), (2.52) and
(2.53). Basically, these damping parameters are rescaled in such a way that they will show
up in the final resonant condition together with the detuning parameter which is related to
the nearness of the frequency ratio 2 to a resonance condition. A trial and error approach
is used to show that the damping parameter u; must be of order O(€?), uz of order O(e?)
and uq4 is of order O(1). This leads to the following ordering of these damping coefficients

in terms of €

B2 = 62#22, (3:8)
ps = s, (3.9)
Be = B4 - (3°10)

Substituting equations (3.2) to (3.10) into equation (2.5), expanding and equating the co-
efficients of the like-power terms in ¢, we obtain the following expansions for the elongation

eo of the median line along the connecting rod:

€0 = €eo, + €leg, + Eeq, + €1(eo, — deo,vZ,) + O(€®)
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2
v
= euy, + €2 (ug, + f) + E(ua, + v1,v9,)

. v} vl v}y o 5
+€'((uq, + sttt v1,03,) — 4(uz, + —2-’-)1’1, 1+ 0(e) (3.11)

where eg, represents the j-th order term in the expansion of 9. Applying the same procedure

to equations (2.51), (2.52) and (2.53), we obtain the following equations:

Order ¢
ul:z = (eol )I = 0 b (3.12)

Order ¢?

v}

(u2; + 2: )z = (602):0 =0, (313)

Order &
(us, + v1,92,.)z = (€0,)z = —a; TEQ2% cos QT , (3.14)
a1 Do?vy + ayvy,,,, = (e0,v1, )z + 16 Q%(1 = z)sin QT (3.15)

Order ¢4

(€0, )z + 212,(Doeoy )z — (€0,v2,)r + @1 (VizV1zzz)z = a1 Doluy — €920, sin QT,

—£1Q%v; 5in QT + 26,Q(Dov1 ) cos QT + €202 sin? QTp - €202z cos? QTp],  (3.16)

a1 Do®vy + a1V2200: = (€05012)z + (€0,022 )z — 20174 (Do Dy v;)

+ oy7t2Q? cos QT sin QT , (3.17)
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Order €5

a17m*Do®v3 +  Q1V3zzzr = =02 Q9V1gzzzsr — 212,01 DoVizsrs + @1(€0,V1222)x
- al(”lr”?zz)r + (€0,v3z)z + (€0,V2z)z — %(eOQv?z)I
+  2pq, Do(eo,v1z)z + (€0, v12)z — (e?,, Viz)zr + 0%03”41)02”11:
— a7*(2DgDyvy 4+ 2DgDavy + Dy2vy) + oy 74€2Q%0; cos? QT
+ 2076 Q(Dous) cos Ty — oy w¢,Q%u, sin QT

- alw‘foQ-(l—-;—ﬂ sin3 QT + o 74€3Q2z cos? QT sin QT . (3.18)

Applying the same procedure to the boundary conditions, we obtain the following boundary

conditions:

Order ¢
Uy =v=v1,:=0,atx=0, (3.19)
u1,=v1=v1u=0, at x = 1, (320)

Order €2
Up =V =V =0, atx=0, (3.21)

vl

(u2z+7)=vg=0,vgu= —2u3,, atx =1, (3.22)

Order €3
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v
Vigz = —Q1Q2V1zzzr — vlzx—l;f- — 2p3, Dovyz — 23,640 cos Ty ,at x = 0, (3.23)

v3 = -—u2£1 sin QTO y
(usz + v1zv2z) = Say w602 cos QT + 2074y, €0 sin QT
2 Vizr

V3zz = —01Q3Vizzzz — le—2— = 2p3, Doviz + 23,6102 cos QTp,at x = 1, (3.24)

Order ¢!

eo, + 1V1zVizzz = —2u2,Doeo, + a;w‘ffﬂmo sin (2Q75)
+ ame2QS(cos? QTp - sin? QT ) — 74 S(Douy)
+ om6,Q%S0, sin QT — 204746, QS (Dovy) cos T,
- oqm€8(Do?vy ) sin QT — (eo,v12 )€1 sin QT + (e, v3,)

+ 01611222 5in QT — 20y 74 pg(Doug) , at x = 1. (3.25)

In the following, we show that u;(z, T, T1,T2) = 0 and hence we drop all the terms involving
products with u;(z, Ty, T1,T2). To show that u,(z, Ty, Ty, T2) = 0, we solve equation (3.12)

to obtain the general solution of u,(z, Ty, T1, T2), which takes the following form:

u1(z, To, T1, T2) = b1(To, Th, T2)z + b2(To, T, T2) (3.26)

where b, (7o, T1,T2) and by(To, Ty, T2) can be determined by the boundary conditions asso-
ciated with u;. By applying equations (3.19) and (3.20), we determine that b; = b, = 0.
Hence, 4; must be zero. This indicates that, for simply-supported slender beam, the axial

deformation is much smaller than the transverse one. Next, we consider equation (3.13)
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and its associated boundary condition (3.22). Together, they reveal that
(u2z + = 2 ) =€, =0. (3.27)
Consequently, equation (3.15) reduces to
a1 74 (Do?v1) + 112222 = Q% (1 - 2) sin QT (3.28)
which can be converted into the following equations:
(Do?b10) + Wity = n_27r5‘92 sin QT (3.29)

by Galerkin’s procedure with v; = ¥;,(sinnwz), where w2 = n* for n = 1,2,3,.... In

analyzing the particular solution of 9,,, we need to consider the following cases separately :
(1) Q is near to wy, and (2) Q is away from w,. The case in which Q is near to w, corresponds
to the primary resonance and will be investigated in section 3.3. At the present time, we
assume that  is away from w, and continue our analysis to consider the equation of higher

order. When Q is away from wy,, the general solution of #,, is given as
t1n = An(Th, T2)ezp(jwnTo) + Aq sin QT + c.c. (3.30)

where c.c. stands for the complex conjugate of the preceding term, and

1922

= (M) @l =) (3.31)

represents the amplitude of the particular solution. The function A,(T},T;) in equa-
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tion (3.30) is a complex function of time scales T} and T3, which represents the amplitude
of the homogeneous solution. The second term of equation (3.30) represents the particular
solution. Since the frequency ratio {2 is assumed to be away from w,, the magnitude of the
particular solution is finite (equation [3.31]). Note that, according to the linear theory, the
homogeneous solution will decay to zero due to the presence of the damping parameters.
However, as we will find out later on, due to nonlinear effects, this is not always true. When
certain conditions are met, the homogeneous solution may not decay to zero and hence must

be included. Equation (3.14), together with its boundary condition (3.23), leads to
€0, = (u3z + v1zv2z) = (1 — 2 + §)&Q2 cos Ty + 20146, Qg sin QT (3.32)

which represents the third order expansion of the axial elongation of the median line along

the connecting rod. Substituting equation (3.27) and (3.32) into equation (3.17), we obtain

a11r4D02v2 + a1V2zzzz = (111l’4€102[ (1 -z + S)‘Dl;,; ]z Cos QT() - 2017!'4DQD11)1

+ o w‘ffﬂz cos QT sin QT + 20 7r4p40 £1Qv; .2 sin QT (3.33)

which can be converted into the following equation:

— cosnmw

Do%ign + wlign = —2jwn(D1Ay)ezp(jwnTo) +( ————)€E2Q0%5in (2Q7Tp)

—Z(l + 28)(n7 )26, Q%[ Anezp(jwnTo + jT0) + Anezp(—jwnTo + jQT0)]

T . - . 2 .
14082 ()7 A ezp(1 Qo — Ty — /2) ~ P2 Ayezp(210Ty) )

_%(1 + 28)(n7)?A 16,9 sin (20To) (3.34)

with v = 92,(sin n7z), where an overbar stands for the complex conjugate of the corre-
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sponding term. Now, in analyzing the solution of this equation, we need to distinguish
between the following cases: (1) 2 is near to wy, (2) Q is near to 2w, and (3) N is away
from 2w, and 2. The first case corresponds a superharmonic resonance, and will be in-
vestigated in section 3.4. The second case corresponds the principal parametric resonance
which will be investigated in section 3.2. At the present time, we assume that Q is away

from 2w, and “2. Under this condition, we must have

DA, =0 (3.35)

in order to remove the secular term from the particular solution of ¥5,. This implies that
the amplitude A, of the free oscillation term in the general solution of v; (equation [3.30])
must be independent of the time scale T} = et. The particular solution of 9, is then given

as

Pon = A215in 20T, + Aggexp(jQTo + jwnTo) + A23e.’tp(jQTo - jwnTo)

+A24ezp(2QT5) + A2sexp(§QTo — jwnTo — j7/2) + c.c. (3.36)

where

1-cosnr  £2Q?

U

An = 122 (w,?,-4m)‘%(I’L?S)("")“‘m’ (3.37)
O B e ez .
Ayz = —%(1+2S)(n1r)2£1§22[w%_ (f:_ DOk (3.39)
pyy o Mi_(n)? (3.40)

2 w2 —402’
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and
Ays = &Q(nr) An (3.41)
25 = —H4o81 wﬁ—(Q—w,,)2' .
From the expression uz; + fz—‘ = 0, we solve uz(z,To, T1,T>) and obtain
_ 1 2.2 sin 2nwz
uz = — 2 (n7)* 00 (2 + ——) (3.42)

where 9, is given by equation (3.30). With this information, equation (3.16) reduces to

eo, + 01(VizVizzzr)z = 174 Doug — &0, sin QT

+  26Q(Dovy) cos T, + £2Q%sin? QT — £2Q%z cos? QT | (3.43)

subjected to the following boundary conditions:

eo, + 01(VizVizzz) = —Soqmi| Douy + €202 sin? QT — €202 cos® QT |
- al7r4p4o£19 sin 2QTo + a1 &1 V1222 sin QT

+ oqmipy (nm)2(Dodrn)din ,at x = 1. (3.44)

With these two equations, we solve for eg, and obtain

v14x v%t
e, = (usz+ ry + ) + v17v3z)
2
= —a1V1zVizzz + alw‘ffﬂz(% - 22— + §) cos® OTp + al7r"51202(1: -1-5)sin?QTp

COSNTT — COSNT
+al7r4§l(

)[ 921)1” sin QTO - 2Q(D061n) Ccos QTO]

nw

Da292
+a1n"——0—80¢[(n7r)2(1 + 28 — z%) —sin? nrz ] + oy 7ipa, £2Q sin 2QT

—a1£1(nr)3 cos nr sin QTp + o T4 usy (nm)?(Dod1n)o1n - (3.45)
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With these results, equation (3.18) reduces to

a1 Do®v3  + 0131202 = Q3021200222 — 20142, DoVizzes
+ (€0yv2:)z — @1(V12V555) + (€0,V12)z + @faam? Do’vyz,
— ay74(2DoDyvy + 2DoDyv; + Dy2vy) + agr“fozvl cos QT
+ 20y7,Q(Douz) cos NTp — oy 74€:Q%uy sin QT
(1+2z)

- al7r4£‘i392—2— sin QT + o 1*€30%z cos? QT sin QT

+ al1r4p4o(nw)z(Doﬁln)ﬁlnvlu (346)

subjected to boundary conditions (3.23) and (3.24). We note that equation (3.46), together
with its associated boundary conditions (3.23) and (3.24), represent a simply supported
beam subjected to (1) motion of its foundation and (2) external moments applied to its both
ends. It is not a straightforward procedure to reduce this partial differential equation into
ordinary differential equation. Here, we use the variational approach[16, 46] to compensate
for the effects of the nonhomogeneous boundary conditions and obtain an equivalent system
to which the Galerkin’s method can be applied directly. Appendix A contains the detailed
approach regarding this procedure. At this moment, we only present the final result as

below:

D0253n + "-’12;1"371 = _2jwn(D2An + B2, n4An)exp(jwnT0)
. .2 .
+ (a1a3+ alag)An(nx)2n4ezp(anTo) + ]Fnﬁzg, Anezp(jwnTp)
8 1 _ . ' .
~ ()~ (5 + S)(an 14 AnezplinT) + €} AnezplionTo)

+  j£2E3ezp(35QT0) + 7 fa€1A%exp(iQTo — 25w, To)



40
. o 1 .

= Jwnptao(n7) AL Anezp(jwnTo) = o pao An(nm) wn Afezp(jwnTo)
1 . - Q. .

+ §("7")4#4o A}Qezp(3jQT0) + (nm)*pao A1 AL (wn — 3)e2p(i 7o = 2jwnTo)

+ NST.+cec (3.47)

where N.S.T. represents those terms which have no effect when we consider the secular terms
in the particular solution of #3,. In analyzing the particular solution of equation (3.47),
there are three cases which need to be considered separately: (1) Q is near to 3 wy,, (2) Q
is near to “p, and (3) Q is away from 3 w, and “p. The case in which Q is near to 3 w,
corresponds to a subharmonic resonance and will be investigated in section 3.6. The case in
which  is near to “#, corresponds to a superharmonic resonance and will be investigated
in section 3.5.

At this point, we pause and discuss some general features of this pattern of analysis.
After a small, constant parameter ¢ has been iocated, the solutions are expressed in uniform
expansions based on this parameter. By using these assumed solution sequences, the equa-
tions describing the transverse and the axial deflection can be converted into a sequence
of partial differential equations which can be solved easily, since they are linearized by the
nature of the perturbation expansions. We note that in solving every sequential order for
the flexible vibration associated with the flexible connecting rod, we are considering a sim-
ply supported beam subjected to the following generalized forces: (1) a distributed load,
which comes form the inertia force associated with the gross beam motion, applied along
the span of the beam, (2) concentrated moments, which are caused by the presences of the
bearing damping us, shear deformation and rotary inertia, (3) motion of the foundation
which comes from the motion of the crank, and (4) axial loading which comes from the

inertia force associated with the slider mass and its friction force. In order to make the
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analysis as clear as possible, we provide a general procedure for solving this kind of prob-
lem in Appendix A. In solving these equations for the flexural vibration associated with
the connecting rod, the primary resonance arises first and then the principal parametric
resonance. After these two resonances, several secondary resonances arise. In principle, it
is possible to extend this analysis to study even higher order resonances, for instance the
subharmonic resonance which occurs when  is near to 5w,. However, this involves an
unreasonable amount of computational work. As a matter of fact, the present results are
accomplished with a great deal help from a Macintosh version of the computer symbolic
manipulation program MathematicaTM. Although the primary resonance occurs first, in
the analysis, we investigate the principle parametric resonance first rather than the primary
one, since this pattern will simplify the analysis and make it more easily understood. After

these two cases, the secondary resonances will be investigated case by case.

3.2 Principal Parametric Resonance

In analyzing the particular solution of equation (3.34), when the frequency ratio  is
near to 2wy, the principal parametric resonance takes place. To describe the nearness of
to 2w,, we express { as

Q = 2w, + 20y (3.48)

where 0, is the detuning parameter. At the same time, the damping parameter p; is rescaled

according to

H2 = 5#2, 9 (3.49)

so that it will show up in the final resonance equation, together with detuning parameter o,.

We first expand equations (2.51), (2.52) and (2.53) with these new ordering relations, and
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then carry out the same procedure as described in the last section. Since the computational
work is routine, we only present a few essential results in the following analysis. For a
detailed solution, refer to Appendix B. Following the same procedure as described in the
last section, the first order flexural vibration associated with the connecting rod is described
by equation (3.29). Consequently, the general solution of ©;, is given in equation (3.30).
When we try to solve the second order equation for the flexural vibration, we obtain the

following equation:

Do?tyn  + w?,t‘)gn = —2jwn(D1An)ezp(jwnTo) — 2j 12, Ann4wnexp(jw,,To)

- (1+28)(nr)W? A 61ezp(jwnTo + 2j01Th)

— 2u4,(n7) 2w, Anbrezp(jwnTo + 2501 Ty — ]%) + N.ST.+cc. (3.50)

where N.S.T. stands for those terms which have no effects in considering the secular term

in the particular solution of 9,,. Therefore, we must have

—2jwn(D14n) - 2jp2,wnAnn? — (14 28)(n7)2wk A, Eezp(2501Th)

< . .
= 2ao(nm)’wn Anbrezp(2jonT - j5) = 0, (3.51)

in order to remove the secular term from the particular solution of 9,,. In solving this

equation, the unknown complex function A,(T,T;) will be expressed in polar form
a .
A(Th T2) = 5‘33?(]‘1’) . (3.52)

Expanding equation (3.50) with this expression, and separating the resultant equation into
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the real and imaginary parts, we obtain

a —pg, nta — 2a€, A sin (29,) + a(n1r)2£1u4o cos (29,) (3.53)

a®), = o010 - 20614 cos (291) — a(n)2€puy, sin (29) (3.54)

where the phase angle ®; and A, are defined by

Ql = UlTl—-\I’, (355)
Ay = Q—-:l@(mr)znz (3.56)

and the prime indicate derivatives with respect to the time scale T,. Periodic steady state

conditions can be achieved whenever a’ = a®/| = 0, these yields the following conditions:

niuz,a = —2a€1A;sin (29)) + a(n7)?6ypq, cos (28))

o1a = 2a§1A;cos(29;)+ a(mr)z{lmo sin (2®,) . (3.57)

Squaring these equations and adding them together, we obtain the frequency response

equation which takes the form:

[0F + n°u3, — (2641)° = (nx)*p} €2 )a® = 0. (3.58)

From this frequency response equation, we note that the trivial solution a = 0 is always
the steady state response for this resonance. To determine the stability associated with
this trivial solution, we transform equation (3.50) into Cartesian coordinate by substituting

A, = (Br + jBy) exp(jo1T1 + vT1) , and then separating the resultant equation into the
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Figure 3.1: Frequency response equation for the principal parametric resonance

real and imaginary part to obtain two equations. From these two equations, we solve for

the nontrivial solutions of Bg and By. From this, we determine that when

o} + n®u3, > €[ 4A] - (n’1pq)? ] (3.59)

the trivial solution is unstable. Otherwise, it is stable. Figure 3.2 shows an example of a
stability boundary in the £-2 plane.

In order to capture the effects of the nonlinearities, we need to rescale either the solutions
or the parameters, so that the nonlinearity will then be included in the final equation
describing the resonant condition. This problem is equivalent to a simply supported beam
subjected to both the transverse and the axial force coming from the same source. We
note that this force source arises because of the inertial force acting on the the connecting
rod. Moreover, these inertial forces are proportional to the length ratio £. Because the

magnitude of this force source is proportional to the length ratio £, we rescale the length
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ratio in order to extend our analysis to include the nonlinearity. Therefore, we restart our
analysis by letting

£=é6 (3.60)

and keeping the orders of damping parameter pz, 3 and p4 be the same as given in equa-
tions (3.8), (3.9) and (3.10). Expanding equations (2.51), (2.52) and (2.53) with this new
length ratio, and equating the coefficient of like-power terms, we will obtain a new sequence
of linear partial differential equations. Carrying the same procedure for the boundary con-
ditions, we obtain a sequence of boundary conditions associated with these linear partial
differential equations. We then follow the same procedure as that described in the last sec-
tion. Because the computational work is tedious and routine, we only present a few results
which are essential to our work in the following analysis. For a complete solution procedure,

refer to Appendix C. The equation describing the first order flexural vibration becomes
Do*b1p 4 wliin =0 (3.61)
which admits the following solution
910 = Anezp(jwnTp) + c.c. . (3.62)

We then obtain the following ordinary differential equation describing the second order

flexural vibration:
2 . . .
Do% iz, + wlio, = Efgﬂz sin QT — 2jwn (D) A, )ezp(jwnTp) + c.c. . (3.63)

In analyzing the particular solution of 92,, we need to distinguish the following two cases:
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(1) Q is near to wy, and (2) 2 is away from w,. The first case is referred to as the the primary
resonance which will be investigated in section 3.3. At the present time, we continue our
analysis to consider the third order flexural vibration with the assumption that Q is away
from wy,. Under this condition, we must have D; A, = 0 in order to remove the secular term
from the particular solution of equation (3.63). This implies that the amplitude A, must
be independent of the time scale T;. Based on this, we assume that all the higher order
flexural response ,, also independent of T}. Therefore, we obtain the following equation

describing the third order flexural vibration:

Do’i3n + widsn = —2jwn(D2An)ezp(jwnTo) — 2jwnn’ sz, Anezp(jwnTo)
+ [aaz + avaz](n7)’nt Anezp(jwnTo) + 2jwaps, :—ZA,,ezp(jwnTo)
+ &o(nm) s, QAnezp(jQTo — jwaTo — j7/2)
- %(23 + 1)(n1)?62Q% A ezp(j Qo — jwaTo)
- [%5 - (% + S)(n7)?)(n7)?n* A2 A, exp(jwnTo)

— jpg,(nm) A2 A waezp(jwoTo) + N.S.T. + c.c.. (3.64)
To describe the nearness of § to 2w,,, we express § as
Q=2+ 20, . (3.65)
Hence, we must have

. . .nt ) i}
- 2an(D2An) - 2]“)""4”22’47; + 2.7 ;r—zAn.u% - J("W)4u4o A?;Anwn

+ &(n1)uy, QAnezp(2joTy — j7/2) + An(nm)?n[ayaq + aja3]
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- %(1 +28)(n7)%,Q2 A exp(2j02Th)

- [%5. - (% + 8)(nr)?)(n7)?ntA2A, =0

(3.66)

in order to remove the secular term from the particular solution of #3,. Expanding this

equation with A, = fezp(j¥), and separating the resultant equation into the real and

imaginary parts, we obtain

1 2 .
ad = -nipya+ “§("7’)4P4o"2“3 + %#320 — 2af;A,5in (29;) ,
+apy, fg(mr)2 cos (29,),

ad) 02a + Aza — Aga® — 2al\&; cos (29,) - au4o£2(n7r)2 sin (29,)

where

= L2151 2
Br = P~ (5 + S)nr)],
n? 2
A; = > (nm)*(a102 + 1 3) ,

QQ = 0'2T2— v

(3.67)

(3.68)

(3.69)
(3.70)

(3.71)

and primes indicate derivatives with respect to the time scale T;. The steady state condition

can be obtained by letting a’ = a®% = 0, which leads to

—a&2[2A sin (283) — pgy(nw)?cos (282)] = an?[uz,n® + E§—°(n7r)4a2 - %321],(3.72)

a[ 2A4§; cos (2@2) + y4°§2(n7r)2 sin (2@2) ] a[ o+ Az — A2l12 ] .

(3.73)
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Squaring these equations and adding them together, we obtain

1 n? .
a*[(n'pa, + g(nm )'aowna® = —p3,)? + (02— Axa® + Ag)?

— (2681)" - (n7)'€ug 1 =0 (3.74)

which is the frequency response equation for this parametric resonance. An example of this

frequency response equation is plotted in Figure 3.2. From equation (3.74), we solve for the

as = the magnitude of the nontrivial solution

3 T T T T T
& =10.01
S =0.00 .
pa = 0.02
. u3 = 0.00
s g =000 ]
a; = 1.00
Qg = 0.00 1
Qg = 0.00
n=1 _
1Mo | U3l 1
1.85 1.9 1.95 2 2.05 2.1 2.15

frequency ratio §2

Figure 3.2: Frequency response equation for the principal parametric resonance

nontrivial solution of a? and obtain

(a2)?

(D) -1+ VE—Fm], (3.75)
(@) = (Pl-i-VE—Fm] (3.76)
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where

ko= [(i‘g‘—")(nw)‘]2 + A2, (3.77)
U= (BR)(nm){nta, - (D), ] - (02 = Bo)e, (3.78)
m = [alyy, - (;)2;‘32 2+ (02 — A3)? — 46242 — (nm)e2pd . (3.79)

For the existence of these real amplitudes a;, a; and a3, the term inside the radical sign
must be positive or zero. This implies that, in order to produce a sustained nontrivial
steady state response, the magnitude of the forcing must be large enough to overcome the

effect of the energy dissipated. Moreover, we must have

72+ B3 < (260 8)? + (v €3, — gt = ()2, I (3.80)

for the existence of (a2)?, and

72+ B < =/ (26201)? + (nTIEIE, ~ (g — (s, )P (3.81)

for the existence of (a3)?. In order to determine the stability associated with these steady
state responses, we compute the the Jacobian matrix associated with equations (3.68) and
(3.68) and obtain

—(%)1’&2(%’)";14o —2(02 — A2a? + A3)a
(3.82)

—2Aza —2npy, — pag(n7)n?(%) 4 (2)%us,

After we compute the eigenvalues of this matrix, we obtain the following conclusions:

(1) when o2 > -A3 + \/(2ng1)2 + (nm)4€2u3 - (u2,n* — (2)2p3,)?, there is only one
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response: the trivial one, and it is stable,

(2) when 02 < —A3 + I\/(2£2A1)2 + (nx)4€2pud — (p2,n* — (2)%u3,)?, the trivial solution

becomes unstable, while a, exists and is stable,

(3) when o3 < —Aj3 - \/(2£2A1)2 + (nw)4€3u3 — (j2,n* — (2)?u3,)?, a3 exists and is un-

stable, while the trivial solution and a; are stable.

Remark: Before leaving this section, there are few points to make. We first compare the
linear and nonlinear results. If we neglect the effects of shear deformation a3, rotary inertia
a3, the friction force introduced by elastic deformation (u4a® term) and bearing damping

p3, then equations (3.68) and (3.68) become

d = -n*yya—2afAsin (28;) + ajg,€2(nm)? cos (29,) , (3.83)

ad), = o020 — Aza® — 2aA &, cos (28;) — apg,ba(n)?sin (287). (3.84)
In consequence, the frequency response equation becomes
a*[(n%p2,)? + (02 — B20%)? — (26241) — (nm)*€3ui, ] = 0. (3.85)

It is clear that equations (3.58) and (3.85) coincide with each other in their linear parts. To
show this, we substitute 2, = ey, , and € = €£;, into equation (3.85). Then equation (3.85)
reduces to equation (3.58) when a approaches zero. Moreover, the equation describing the
variation of the amplitude of the response (equations [3.53] and [3.84] ) are in the same
form. The difference between the linear and nonlinear analyses appears in the equation
describing the variation of the phase angle ®, (equations [3.54] and [3.84]). This implies

that the direct effect of the nonlinearity is to affect the phase angle. From another point of
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view, the nonlinearity affects the rate at which energy is pumped into the system. In the
absence of nonlinearity, the response is unstable when the parameters are located inside the
unstable regions. According the linear theory, the amplitude of response will grow without
limit. However, this increasing response amplitude will be accompanied with a change of
phase angle because of the presence of nonlinearity. A new steady state condition will
then be achieved when the energy put into the system is balanced by the energy dissipated
by the damping. Furthermore, let us consider the main nose of instability, a region in
which the trivial solution becomes unstable. If we substitute the trivial solution @ = 0 into
equation (3.85) then we will obtain equation (3.58). From the conclusion obtained from the
nonlinear analysis, we obtain the same region of instability regarding the trivial solution.
We next consider the effects of the shear deformation and the rotary inertia which are
included in the parameter A3 in this work. It is clear that these effects can only be found
in the nonlinear analysis. These nonlinearities affect the response by shifting the stability
region along the frequency axis to the left. In other words, the main nose of instability in
which the trivial response becomes unstable will be centered to the left of @ = 2w,,. We
note that the effect of Aj is of higher order. Therefore, its effect is included in the analysis
by using rescaling relation (3.60). In other words, its effect on the response may not be

significant.

3.3 Primary Resonance (2 = w,)

In this section, we consider the case in which the frequency  is near to w,. This is
referred to as the primary resonance. To begin our analysis, let us reconsider equation (3.63)
in section 3.2, and assume that § is near to w,. Moreover, the damping parameters u; and

pg4 are rescaled by equations (3.49) and (3.10). In order to make the analysis clear, we
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redefine o; to quantitatively represent the nearness of {2 to w,,. Hence, we let
Q =w, + €0y (3.86)
in equation (3.63). Under this condition, we must have
— 2jwn(D1Ay) — s—;ﬂzexp(jalTl ~ 5) = 2jpia,n Ao = 0 (3.87)

in order to remove the secular term from the particular solution of 9,,. Expanding this equa-
tion with A, = Jezp(j¥), and separating the resultant equation into real and imaginary

parts, we obtain

a = -—pynia- né cos®,; , (3.88)
T

ad, = o+ "—fl sin &, (3.89)

where @, is given in equation (3.55). The steady state condition can be achieved when

a’ = a®} = 0. Therefore, we obtain

niusa = —nT&-cosdh, (3.90)
na = —nT&sindn. (3.91)

Squaring these two equations and adding them together, we obtain the following frequency

response equation:

né; )2

(n®u3, + 0f)a® = (=7)°- (3.92)
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Therefore, solution of the flexural vibration is approximated by

v(z,t) ev (z,t) + O(€?)

€[ a cos (QTp — ®)]sinnrz + O(€?) (3.93)

where a and ® are described by equations (3.88) and (3.89), respectively. The steady state

value of the phase angle ¢ is described by
tan @, = (—L). (3.94)
H2,

Equation (3.92) is the frequency response of the primary resonance. We note that it does

a, = magnitude of 91, at ) ~ w,
0.16 T Y

0.14
0.12

0.1
0.08
0.06
0.04

0.02 L L L
0.9 0.95 1 1.05 1.1

frequency ratio )

Figure 3.3: Frequency response equation for the primary resonance

not contain any nonlinearity, and hence corresponds to the frequency response condition
for a linear oscillator. Figure 3.3 provides an example for this frequency response equation.
All these imply that the ordering relation (equation [3.60]) fails to capture the nonlinearity

in the analysis. In order to extend our analysis to includes the nonlinearity, we rescale the
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length ratio £ by letting

£=6%. (3.95)

Moreover, we rescale the damping parameters uz, p3 and p4 according to equation (3.8),
(3.9) and (3.10), respectively. Expanding equations (2.51), (2.52) and (2.53) with these new
ordering relations, and equating the coefficients of the like-power terms, we will obtain a
sequence of partial differential equations. Applying the same procedure to the boundary
conditions, we will obtain a sequence of boundary condition associated with these equations.
We then solve these equations by following the same procedure as described in the previous
sections. Because this procedure is routine and tedious, we only present a few essential
results in the following analysis. For a complete solution procedure, refer to Appendix D.
The equation describing the first order flexural vibration is given in equation (3.61). In
consequence, the solution of the first order flexural vibration is given by equation (3.62).
The equation describing the second order flexural vibration of the connecting rod is given
as

Do%ton 4 wign = —2jwn(D14n)ezp(jwaTo) - n_21r#3’n cosnr + c.c. (3.96)

where (—;"’;p;;,ﬂ cosnr) comes form the nonhomogeneous boundary conditions. The elim-
ination of the secular terms requires that (D;A,) = 0. This implies that the amplitude
function of the transverse response is independent of the time scale 7;. The third order

term for the flexural vibration of the connecting rod is described by the following equation:

4
Do’tan + whian = ~2jwn(D1An)ecp(junTo) + 25 =53, Anexp(jwnTo)
15 1 = .
- ['g‘ - (5 + §)(nx)?](n7)?n! A2 Apezp(jwnTo)

+ An(n71)’n(a102 + a1a3)ezp(jwnTo) — j(nm) us wn A2 A ezp(jwnTo)
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- 2jwanp,, Anezp(jwaTo) — j:—;exp(jQTg) + N.ST.+cec.. (3.97)
To describe the nearness of the frequency ratio 2 to w,,, we express Q as
Q= w, + €0, (3.98)
Therefore, we must have

—  2jwa(D14s) + An(n7)’n8(a1az + a1@3) — 2jwantug, A, — j(n1)waps, A2 A,

+ 2j24—/1. A —[E—(l+5)(n7r)2](n7r)2n4A2/i —j5—3ezp(ja2T2)=o (3.99)
x2 2o 8 3 LY ¢ '

in order to remove the secular term from the particular solution of #3,. Expanding this equa-
tion with A, = Jezp(j¥), and separating the resultant equation into real and imaginary

parts, we obtain

ad = -n'uya- -l-(mr)‘;q wna® + n—zp -8 cos @, (3.100)
78 o x2 20 T o ’
ad) = o9a- Aza®+ Aza+ %92 sin &, (3.101)

where ®; is defined by equation (3.71), A; is defined by equation (3.69) and Aj is defined
by equation (3.70). The steady state condition for these equations can be achieved when

a’ = a®) = 0. This leads to

n 1 n?
-(;r-)fa cos &, nius,a + §(n1r)4p4ow,,a3 - —3H%a, (3.102)

—(%)fa sin®; = 00— Aga®+ Aza. (3.103)
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Squaring these equations and adding them together, we obtain the following frequency

response equation:

1 2
@[(02 - Aga® + A3)? + (g, + g(n ) uagena® ~ 20ms, ] = (S22 (3.104)

Consequently, the frequency response curves take the following form when solved for the

detuning parameter:

n 1 n?
o2 = [Aga? — A3] £ (Z%)? — [n4p2, + g(nw)“mowna? - —5H% 2. (3.105)

This equation indicates that the steady-state response can reach its maximum amplitude

described by

(R

1 n?
=) = aj n'a, + (nm) pagwna) — —ps, |7 =0 (3.106)

which occurs at the frequency
Q= wn + €0, = wn + €(Agal - Ag) . (3.107)

Since A; < 0 and A3 > 0 for each individual mode, we have 0, < 0. Therefore, the
frequency response curves bend to the left. Figure 3.4 provides an example for this frequency
response equation. To determine the stability of these steady state responses, we compute
the Jacobian matrix associated with equations (3.100) and (3.101), which takes the form:

—nip,, - %(nw)“(.an;z.;oa2 + ;—‘;-p;a,, —(02 — Aza? + A3)a
(3.108)

(02 + 3A2a% + A3)/a —nipy, + ’;—;;;3, - %(mr)“wnp.goa2



57

a, = magnitude of 91, at Q@ = w,
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Figure 3.4: Frequency response equation for the primary resonance

By computing the eigenvalues of this matrix, we determine that when

3 n? 1 n?
[n'uz, + g(nm Ywnpa,a® - T7h% J[n4p2, + §("7f)4wn#4002 - —3h3]

+ (02 - A2112 + A3)(0’2 - 3A2(12 + A3) <0 (3109)

these steady state responses are unstable. Otherwise, they are stable. The solution v(z,t)

of the flexural vibration of the connecting rod can be approximated by

v(z,t) = ev(z,t)+ 0(e?)

e[acos(QTp — @) ]sinnrz + O(€?) (3.110)

where @ and @ are described by equations (3.100) and (3.101), respectively. The steady

state value of the phase angle is described by

o — A2(12 + As

tan ®, = ( 1 ” T
B2, 04 + g(nr)twapgga? — 233,

). (3.111)
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From Figure 3.4, it is clear that, when (2 is located between point b and c, there exists more
than one steady state response. Those steady state responses located along the bc portion
of the response curve are unstable, and hence will not be observed either in simulations
or experiments. Moreover, for frequences between point b and ¢ in Figure 3.4, the initial
conditions will decide the steady state response. In other words, the initial conditions will
decide whether the response shall appear along the ab curve or the cd portion. To be more
precise, there is a saddle node bifurcation[50, 21] associated with points band c in Figure 3.4.
For each stable steady state response, there is one corresponding basin of attraction. The

response is then determined by the location of the initial conditions.

Remark: Before proceeding to the next section, there are few points which need to be
made. We first compare the results from the linear and nonlinear analyses. By neglecting the
effects of shear deformation, rotary inertia, the friction parameters u3, and p4, associated

with equations (3.100) and (3.101), we obtain

d = —n‘p;za—%coﬂbg, (3.112)

ad) = oga+ Axd®+ ana sin® . (3.113)
The resultant frequency response equation takes the form:

n
@[ (02 = Aaa®) + (w2, )?] = (2212, (3.114)
Basically, the equations describing the variation of the amplitude of the response (equa-

tions [3.88] and [3.100]) are exactly the same. The only difference between linear and

nonlinear analyses shows up in the equations describing the variation of the phase angle
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(equations [3.89] and [3.101]). Moreover, equations (3.92) and (3.114) coincide with each
other in their linear parts. To show this, we substitute uz, = €uy,, &3 = €£2 and o3 = €0y
into equation (3.114). Then equation (3.114) will reduce to equation (3.92) as a approaches
zero. This implies that when the amplitude of response is small, linear theory works well.
However, as the amplitude of response increases, the nonlinearity affects the system by
changing the rate at which energy is pumped into the system. As a consequence, a new
”equilibrium” will be reached when the rate at which energy put into the system is balanced
by the rate of energy dissipated.

It is clear that the shear deformation and the rotary inertia do not affect the linear
response, because they are not included in the resonance condition. In consequence, they
will not affect the peak amplitude of the primary resonance. The shear deformation and
the rotary inertia affect the primary resonance by shifting the location of the frequency at
which the primary resonance reaches its peak amplitude to the left by a small amount of
order O(€?). In other words, the backbone curve, which is the locus of the peak amplitude
associated with the frequency response curves, will not originate from Q = w,,. However,
the effect of A3 is independent of the response and is of order O(€¢?). Hence, we may expect

that A3 affects the linear approximation by a very small amount.

3.4 Superharmonic Resonance (2 =~ <)

Recalling that in analyzing the particular solution of ?,, in section 3.1, we assumed that
the frequency ratio 2 is away from 2wy, and “?, and then proceeded to analyze the equations
of higher order. The case in which § is near to 2w, corresponds to the principal parametric
resonance and has been studied in section 3.2. In the current section, we investigate a

superharmonic resonance case in which the frequency ratio €2 is near to “p. To consider
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this case, let us express the frequency ratio § as

N = —(wn +e€07). (3.115)

| =

The damping parameters u; and pg4 are rescaled according to equations (3.49) and (3.10),
so that they will show up, together with detuning parameter o, in the final resonant condi-
tion. We then expand equations (2.51), (2.52) and (2.53) with these ordering relations, and
follow the same procedure as described in section 3.2. Again, we only present a few results
which are essential to our work. For a completed analysis, please refer to Appendix B.
Following the same procedure as described in the last section, the first order flexural vi-
bration associated with the connecting rod is described by equation (3.29). Consequently,
the general solution of #;, is given in equation (3.30). The equation describing the second

order flexural vibration becomes

Do*byn  + w?,f)g,, = —2jwn(DyAn)ezp(jwnTo) — 2jp2,wnn4A,,e:z:p(jwnTo)

nw cosnw
+ ( 2) p4°£IQAlezp(2]QTo)+—————fozezp(Q_)QT - 5)
- Z(l + 25)(nm)2A16,Q2%ezp(25 QT — j%) +N.ST. +cec.. (3.116)

Therefore, in order to remove the secular terms from the particular solution of #,,,, we must

have

—  2jwn(D1A,) - 2jnug,wa An +£ fl(nx)wnea:p(JalTl)

— cosnw

+ (El )(—)[ - -(1;(1 +25)(nr)?Jezp(jorTo — j%) =0. (3.117)

Expanding this equation with A, = $ezp(j¥), and then separating the resultant into the
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real and imaginary parts, we obtain the following equations:

flwn

d = -n'uya+ -‘%(nw){f sin ®; — [3(1 cosnw) — 2%]&5(}1, (3.118)

K4 2 f?“’n A,
ad] o1a + —g"-(nﬂ'){1 cos ®; + Sy [3(1 - cosnr) — 2?] sin §, (3.119)

where ®, is given in equation (3.55), and A, is defined by equation (3.56). The steady state

condition of these equations can be obtained by letting a’ = a¢] = 0, which yields

i‘ﬂ(mr){;"sin(l’l 61 "[3(1—cosn1r) 2A ) cos 4, (3.120)

4
n-p2,a

—-0a = Fo (n7r)§1 cos 9, + £lw" [3(1 cosnw) — 2;,})sin ;. (3.121)

Squaring these steady state responses and adding them together, we obtain the following

equation:

2 A
2,82 2y _ ¢41H40 2 wn _ _9BP1y2
a’(nu3, +07) = & 5 (nm))* + (241”_)2[3(1 cosn) 2n2] (3.122)

which is the frequency response equation for this superharmonic resonance. Figure 3.4
provides an example for this frequency response equation. Therefore, when € is near to 2,

the response of the flexural vibration can be approximated by

v(z,t) = evi(z,To,Th,T2) + O(€?)

= ¢[Aysin QTp + acos (2QTp — &) ]sinnrz + O(€?) (3.123)

where A; is given in equation (3.31), while @ and the phase angle ® are described by
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a, = magnitude of the homogeneous solution
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Figure 3.5: Frequency response equation for superharmonic resonance (2 = “#)

equations (3.119) and (3.119). The steady state value of the phase angle ®, is given as

—dpgo pia, (n)? + 01wa[3(1 — cos nr) — 2584 ]

tan ®, =
an 4114001 (n7) + wa[3(1 — cos n) — 284 ]

(3.124)

Remark: Equation (3.123)is the first order approximate solution to the flexural vibration
associated with the connecting rod. Note that this solution consists of two parts: the
homogeneous and the particular solutions. A simple calculation of the eigenvalues associated
with these steady state responses indicates that the homogeneous solution is stable for
p2, > 0. Hence, a steady state superharmonic resonance exists for all conditions and the
solution is composed of two periodic functions. The particular solution is, of course, of the
same frequency as the the operating frequency. While the homogeneous solution oscillates
with twice the frequency of the operating frequency. Therefore, for this superharmonic
resonance, the homogeneous solution of #;, interacts in 9,,, and hence does not decay to

zero. This indicates that the presence of this non-vanishing homogeneous solution is the
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character of the nonlinearity possessed by the system. Moreover, the magnitude of this
homogeneous solution is proportional to the square of the length ratio &. This implies that
the homogeneous solution vanishes more rapidly than the particular solution as the length

ratio § approaches zero.

Remark: The mass ratio S has a very interesting effect on the overall flexural response.
To analyze this point, we consider the frequency response equation (3.122). We note that
the right hand side of this equation represents the magnitude of the external force and is
always positive. Therefore, a local minimum will imply a local minimum value of magnitude
of the force, and hence a local minimum value of the amplitude of the homogeneous solution.
Figure 3.6 shows the influence of S on the magnitude of the homogeneous solution. We note
that a, decreases when S increases from zero to about 0.11, and then a, increases as S

increases beyond 0.11. Based on this, we find that a, reaches a minimum when

2A; — 3n%(1 — cosnr) = 0. (3.125)

This implies that a proper choice of the mass ratio will help in suppressing (but not totally
eliminating) the peak amplitude associated with this superharmonic resonance (Figure 3.6).
Figure 3.6 shows the variation of the peak amplitude a, with respect to the mass ratio S.
As shown in this figure, the peak amplitude a, decreases as S increases from 0 to 0.11, and
then it increases as S increases beyond 0.11. We note that the presence of the damping
parameter p4, in the right hand side of the frequency response equation (3.122) indicates
that the an increase in p4, will increase the amplitude of response. It can be interpreted
as follows. The presence of u4, implies the presence of the friction force acting on the

slider end, and hence increasing pu4, corresponding to increasing the axial load acting on



64

a, = magnitude of the homogeneous solution at = w; /2
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Figure 3.6: Influence of mass ratio S on the amplitude of superharmonic resonance (Q = #z)

the connecting rod. As a consequence, the amplitude of response will increase.

3.5 Superharmonic Resonance (2 ~ %)

In analyzing the particular solution of equation (3.47), a superharmonic resonance takes

place when  is near to “2. Under this condition, equation (3.47) reduces to

Dozf)gn + wa);;n = -2jw,,(D2A,, + n‘png,,)e:tp(jw,,To)
4
+ 2j:—2A,,p3,ezp(jw,.To) + An(102 + aja3)(nr)’ntezp(jw,To)
15 1 21.6 42 7 . (T"l’) 3 . .
- [g = (3 +5)(n7) |n°® A7 Anezp(jwnTo) + T536nHaoéiezp(jwnTo + joiT2)
. - . L, 1 .
—  jwn(nx) e, A2 A ezp(jwaTo) — 1(5-2-);140(mr)’AnwnEfezp(anTo)

+ fhfl?A,,e:cp(jwnTo) + jfglﬁi’ea:p(jwnTo + jo,T3)+ N.S.T.+ c.c. (3.126)



65

where f;, and f;, are given in Appendix A. Therefore, we must have

4
. ) N . _
- 2jwn(D1A,) - 2ann4p2,An + 2_]—2A,1;132 — Jjwn(nm)py, AiA,,

+ (a1a2+ 0103)(n7r)2 ‘A, - [ — + ( + 5) n7r)2]n6A3,/i,1 + th,,{f

)

1536‘%/‘4051 + 32,6 lezp(ja,T2) = 0 (3.127)

- i3 )/Am(mr)2 nwné] + |

in order to remove the secular term from the particular solution. Since the leading coefficient
of pg exp(jo2T?) is very small, we neglect this term in the following analysis. Expanding
equation (3.127) with A, = Jezp(j¥), and separating the resultant equation into real and

imaginary parts, we obtain

a = —an’[pgn? + B (nm)ta? 4 By (nr)2e] - 214 fz’& cos 8,,(3.128)

6
ad) aloz + 3 S 2 51 + Az — Aga?] - f221 3sin &, (3.129)

where A; is defined in equation (3.69) and Aj is defined in equation (3.70). The steady

state conditions can be achieved by letting a’ = a®), = 0. This yields

fz, {1 cos®, = a[uy,nt+ -“—"‘l(nﬂ')"nza2 + (%%"-)(nw)?nzfl - —ﬂ32 ], (3.130)

f21 fl sin ®, [02 + fll fl + A3 - Aza ] (3.131)

Squaring these equations and adding them together, we obtain the following equation:

n2
[(un* + Er(nr)'n?a? + (E2)(nr)n2€] - ua,)?

+ (ot Dagr g s - a1t = (Lugy (3.132)
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which is the frequency response equation for this superharmonic resonance. We then solve

the values of o, and obtain the following frequency response curves:

o= - fhfl-*-Aza -4

+ \/( Iy =61)% — i pg,n? + #40 —>(nm)ta? + (#40 )(nm)2 — #322 2. (3.133)

Thus, despite the presence of the damping parameters, the homogeneous solution does not

decay to zero. Furthermore, the steady state response takes the form:

v(z,t)

evi(z,t) + O(€?)

€[ Ay sin QT + a cos (3QTp — @) ]sinnrz + O(€?) (3.134)

where a and the phase angle ® are described by equations (3.128) and (3.129). The steady

state value of the phase angle & is described by

o, + g_:#flz + A3 - A2a2
pa,md + (52)(nw)*n2a? + (%2 )(nm)2n26} — (27 )ps,

tan®, = | ]. (3.135)

By computing the eigenvalues of the Jacobian matrix associated with equations (3.128) and

(3.129), we determine that when

n?
(ntp, + B2 () *n?a? + (B (nm)n?6] - Sps,)

3 2
(ntp, + 2 (nm)*n2a? + (B2 )(nm) 2] - Spa,)

f11

n

+(o2 + ﬁef — Aza? + Az)(0o2 +3 Sy 51 —3A2a% + A3) <0 (3.136)

these steady state responses are unstable. Otherwise they are stable.
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Remark: According to this analysis, the free oscillation term does not decay to zero,
despite the presence of the damping parameter. Therefore, the steady state response is
composed of two periodic functions. The particular solution oscillates with the same fre-
quency as that of the external frequency, while homogeneous solution oscillates with the
frequency that is three times the operating frequency §2. We note that the amplitude of the
particular solution is of order O(£), and the homogeneous solution is of order O(£3). This
indicates that the free oscillation term vanishes more rapidly than the forcing oscillation as
& approaches zero. From the frequency response curves and the stability analysis, we know
that within a certain frequency region, there exists more than one steady state response.

We note that the homogeneous solution possesses a peak amplitude a, described as

£ o 4, .2 4 a;  zil 2 2 n? 2
(far37)" = apl b n® + 0 () gy = + on(n7) pag — 5413, 1 = 0 (3.137)
which occurs at
g = T2 4 Ava? _ A 3.138
2p——2n2£l+ 2ap_ 3 - ( M )

We note that Az < 0 in the last equation. This indicates that the frequency response
curves bends to the left corresponding a superharmonic resonance with softening type of
nonlinearity. Figure 3.7 provides an example for the frequency response equation for this
superharmonic resonance. Note that, in Figure 3.7, there is almost no bending associated
with the response curve. This implies that, to observe higher order superharmonic reso-
nances, the bending effect may require a larger length ratio as well as a larger mass ratio.
In other words, it is necessary to have strong nonlinearity and a large response amplitude of
response in order to achieve a significant bending in the response curve. Another interesting

phenomenon accompanying this superharmonic resonance is the influence of the mass ratio
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on the peak amplitude a,. The numerator of equation (3.137) is the force applied to this
superharmonic resonance, and it is a quadratic function in terms of S. A proper choice of
the mass ratio S will minimize the magnitude of the force and hence minimize the amplitude
of the response. Figure 3.8 shows the influence of the mass ratio on the peak amplitude
associated with the superharmonic resonance. From this figure, we see that the amplitude
of the response will decrease when S is increases from zero to a critical value; while the peak

amplitude will increase when S is beyond this critical value.

a, = amplitude of homogeneous response
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Frequency ratio

Figure 3.7: Frequency response equation for superharmonic resonance (2 ~ «p)

3.6 Subharmonic Resonance (2 ~ 3w,)

In this section, we consider the case in which 2 is near to 3w,. Under this condition,
the system is potentially in a state of subharmonic resonance. To analyze this subharmonic

resonance, we express Q as

Q = 3w, + €203). (3.139)
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a, = amplitude of homogeneous response
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Figure 3.8: Influence of S on the peak amplitude of the superharmonic resonance (2 ~ “z)

Then equation (3.47) reduces to

D93, + whdsn = —2jwn[pzn* + DaAn + jpag(n7)* A} A, Jezp(jwnTo)
. . - 9 — . .
+  fr,68 Anezp(jwaTo) + [ f3,61A2 + (g)mo(nﬂ)awnfp‘iﬁ lezp(3j02T2 + jwnTo)
. . 81 i
+ (eaz 4 aya3)(n7)?nt A ezp(jwaTo) + ](ﬁ)y.,off(mr)?A,,ezp(]w,,To)
o151 27 442 7 ;
- (o) 5 = (3 + 8)(nm)*|n A7 Anezp(jwnTo)

4
+ 2j%y3, Anezp(jwnTo) + N.S.T. + c.c. (3.140)

where c.c. represents the complex conjugate term of the proceeding terms, and an overbar

stands for the complex conjugate term of the corresponding function. Hence, we must have

4

—  2jwn(ug,nt + D2A,) + 2.7'%;132 An + (@102 + aya3)(nr)’nA,
15 1 . .

- (n”)2[ ? - (§ + S)(nr)z]n4A31An + flszAnezp(anTO)

~ e[ (v7) A2 A + (G3)(n7 ) A ]
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4 LA+ (ag(nm)wnts A Jecp(3jouTs) = 0 (3.141)

in order to remove the secular term from the particular solution. Expanding equation (3.141)

with A, = Sezp(j¥), and separating the resultant equation into real and imaginary parts,

we obtain
& = =l — (3)us, + o (nm) e + (5 s (n7 ]
+(f315‘ )a? cos (38;) , (3.142)
a®) = o+ % S, f, :2 f3,0%sin (39;) + Aza — Aza®. (3.143)

The steady state conditions can be obtained by letting a’ = a®% = 0, these yield
falfl 4 n? 2 4 2
(Le8)a cos (38) = alnti, = Dpps, + a2 (am) (5 4 () (mm)nag {3,140

%f;;,a sin (3®;)

g2a + Sia g2 £la + Aza — Agd®. (3.145)

We obtain the frequency response equation which takes the form:

a?[ (ua,n* —-—#37 + pegn 2(M)‘( )+( )(M)znza&)2

+ (o2 +3 Jiz 3 fl + Az — Aga?)? - (f31€l )?a’] =0 (3.146)

by squaring equations (3.144) and (3.145), and adding them together. From equation (3.146),
we know that the trivial solution for a is always a steady state response. Due to the com-

plexity of this equation, we neglect the effect of p4, in the following analysis. We solve
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equation (3.146) for the nontrivial values of a? and obtain

(a2,3)? —( )[Pi\/P2 4q] (3.147)

where coefficients p and ¢ are

p = 2o+ S22 4 a0+ (D6, (3.148)

n
g = (kont - D)+ (o + D367 4+ 02 (3.149)

We note that ¢ is always positive. Therefore, these nontrivial free oscillations exist only
if p> 0 and p? — 4¢ > 0. When these conditions hold, it is possible for the system to
respond in such a way that the homogeneous oscillation does not decay to zero, in spite
of the presence of damping parameters. In consequence, the steady state response can be

approximated by
2 Q o, . 2
v(z,t) = evy + O(€®) = ¢(a, cos(ETo - ?) + Ay sin QTp) + O(€*) (3.150)

where a, is described by equation (3.147), A, is defined by equation (3.31), and the phase

angle &, is given by
o2+ %&61 + A3

nipz, — Srps,

tan @, = ( ) (3.151)

Remark: We note that the response of the system is described as follows. When the initial
conditions are selected in such a way that the resulting steady state corresponds to a stable
nontrivial solution of a,, then the magnitude of the free oscillation term does not equal to
zero. Under this condition, the first order flexural response associated with the connecting

rod contains frequencies of  and % Otherwise, the first term of equation (3.150) will be
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zero, only particular solution will exist, and the response contains only the frequency .
Friction parameter p4, which is used ot model the friction force acting between the slider
mass and its contact surface, has a favorable effect in reducing the amplitude of response.
This is caused by the friction force introduced by the elastic deformation, which behaves as

a resistance to prevent the connecting rod from further deformation.

3.7 Summary and Conclusion

In this section, we summarize the results obtained in previous sections. Based on the
observations from previous investigators[11, 49] and the analytical results obtained in the
previous sections, we select in turn the length ratio £, the frequency ratio €2, the mass
ratio S, and the damping parameters u2, 3 and p4 and then provide a detailed discussion

regarding the effect of each individual parameter on the overall response.

3.7.1 Effect of the Length Ratio ¢

As we mentioned in the introductory section, the increase of the inertial force is pri-
marily responsible for the failure of the traditional dynamic analysis of mechanisms. In
this problem, the acceleration components a; and a, are proportional to the length ratio
£ (equations [2.11] and [2.12]). Consequently, the inertial force is proportional to this pa-
rameter. The general solution of the first order flexural vibration is given as a combination
of the particular and homogeneous solutions. The magnitude of the particular solution
is proportional to £. If no resonance occurs, the free oscillation term will decay to zero,
and hence steady state response contains the particular solution only. In consequence, the
amplitude of the response will be proportional to the length ratio. In the case of primary

resonance, the amplitude of the resonance is proportional to £ (equation[3.106]). Figure 3.9
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shows the effect of § on the amplitude of the primary resonance. Moreover, the frequency
at which this peak amplitude is observed depends upon the square of the magnitude of the

particular solution, which in turn depends on £2.

a, = magnitude of 9,

0035 1 I ! T 1 1 1
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0.2
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Figure 3.9: Influence of £ on the primary resonance
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Figure 3.10: Influence of £ on the main nose of instability

In the case of the principal parametric resonance, the width of the frequency region in

which the trivial response becomes unstable also depends on £ (equation[3.59]). In other
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words, the width of main nose of instability is proportional to §{. Figure 3.6 shows the
effect of the length ratio on the main nose of instability. We note that, in Figure 3.6,
the width between the transition curves increases when ¢ increases. Figure 3.10 shows the
effect of the length ratio on the amplitude of the nontrivial responses. We note that, in
Figure 3.10, the region between points a and b indicates the region in which the trivial
response becomes unstable. In the case of superharmonic resonances, the magnitude of the
non-zero homogeneous solution also depends on €. To be more precise, when {2 is near to
wn /2, the magnitude of the non-zero free oscillation term is of order O(£2); when  is near
to wy, /3, while the magnitude of the non-zero free oscillation term is of order O(£3). Hence,
the contribution of the non-zero homogeneous solution depends on the order of £. All these

imply that the length ratio is the primary parameter for the current problem.

3.7.2 Effect of Mass Ratio S

The effect of this parameter is not immediately clear. Generally speaking, it acts as the
nonlinearity associated with the system. In order to make our discussion as clear as possible,
we need to consider each resonance case separately. In the case of primary resonance case, a
slight increase of S will cause a significant increase of the value of o, the value of detuning
at which the peak amplitude occurs. To make this point more clear, let us consider the
following cases: S = 0 and S = 1. When there is no mass attached to the slider end, the
value of o, is given as

2 15 n?

(0p)s=0 = (? -3)5 (3.152)

for the first mode (n=1). In consequence, the frequency at which the peak amplitude
associated with the primary resonance can be observed will shift to the left by an amount

€20, with the value of 0, being given by equation (3.152). Now, we consider the case in
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which § = 1. When S = 1, the value of g, becomes

(@)sms = (=) — 5 = O0)swo — 5 (3.153)

A rough estimate of the difference between these two values of o, shows that (0,)s_, is
about eight times the value of (0,)s.,. Moreover, this ratio will increase as the value of
S increases. This implies that the value of o, is very sensitive to the value of S. A slight
change of S will cause a significant change of 0,. Figure 3.11 shows the influence of the

mass ratio S on the primary resonance.

a, = the magnitude of ¥;,
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Figure 3.11: Influence of S on the primary resonance

The mass ratio S affects the principal parametric resonance by increasing the width
of the main noise of instability. Figure 3.12 shows the influence of S to the main nose of
instability. From this figure, it is very clear that the distance between two transition curves
increases when the mass ratio S increases. Figure 3.13 shows the amplitude of the nontrivial
homogeneous response associated with the principal parametric resonance.

In all the superharmonic resonances, S has a very interesting effect on the response. We
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Figure 3.13: Influence of S on the principal parametric resonance
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first consider the case in which 2 is near to 2. When this resonance occurs, the steady
state response is composed of particular and homogeneous solutions. The magnitude of
the free oscillation component depends on the value of S. It is interesting to find that the
magnitude of the free oscillation term decreases as S increases from zero up to a critical
value, while the magnitude increases as S is increased beyond this critical value (which is
the root of equation (3.125)). Hence, the magnitude of the overall response follows the same
trend as the homogeneous solution (Figure 3.6). This implies that a proper choice of the
mass ratio S can aid in decreasing the amplitude of superharmonic resonances. This may

have important practical implication for the design of slider crack mechanisms.

3.7.3 Effect of Damping Parameters yu;, p3 and p4

The internal material damping u; has a favorable effect on the overall response of the
system. In the primary resonance case, the presence of u; in the frequency response equa-
tions (3.104) and (3.92) will reduce the peak amplitude of the system. The amplitude of
this resonance will decrease as pg, is increased (Figure 3.14). In the principal parametric
resonance, the width of the main nose of instability will decrease as we increase the value
of p2, in equation (3.58). Moreover, the amplitude of the response decreases as we increase
the value of 2, in equation (3.74). Figure 3.15 shows the effect of the damping parameter
u2 on the width of the main nose of instability. We note that, in Figure 3.15, the presence
of pug will cause the upward vertical movement of the transition curve. Therefore, the width
of the main nose of instability will decrease. As a matter of fact, the shrinking accompanied
with the presence of u; may be so large that the width of the main nose of instability re-
duces to zero for a specific value of §. Figure 3.16 shows the influence of 2 on the branches

of the nontrivial responses associated with the principal parametric resonance. The am-
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Figure 3.14: Influence of y; on the primary resonance
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Figure 3.15: Influence of y; on the main nose of instability
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a, = nontrivial response
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Figure 3.16: Influence of u; on the principal parametric resonance

plitude of the nontrivial responses associated with the parametric resonance will decrease
as pug increases. The parameter u; is a measure of the system’s ability to dissipate energy
through material damping. Hence, in order to produce a sustained nontrivial steady-state
response, the magnitude of the external force must be large enough to overcome the energy
dissipated. Therefore, for a given system, the width of the main nose of instability shrinks
as the value of u; is increased. In both of the superharmonic resonances, the amplitude
of the free oscillation term will decrease as we increase the value of yu;, (equations [3.122),
[3.132]). These observations show that the presence of u; has a favorable effect on the
overall response.

The bearing friction p3 has an adverse effect on the overall response of the system. To
show this, let us consider the sign associated with parameter u3 in the frequency response
equation of each resonance case. The negative sign associated with parameter y3 in every
frequency response equation indicates that the presence of this parameter has an adverse

effect on the system. From another point of view, the presence of this parameter implies a
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constant positive energy flux and hence increase the amplitude of the response. Figure 3.17
shows the influence of 3 on the amplitude of the nontrivial response associated with the
principal parametric resonance. We note that s3 does not affect the main nose of instability
associated with the principal parametric resonance. From this figure, it is seen that the effect
of u3 on the nontrivial response is not very significant. Figure 3.18 shows the influence of
p3 on the primary resonance. From these two figures, it is very clear that the influence of
13 on each resonance case is not very significant, although u3 has an adverse effect. The
reason for this is that the relative angular motion associated with each joint point (A and
B) is constant in the first order. The presence of u3 will cause a constant friction moment

acting on each joint. These friction moments will enlarge the transverse deformation.

a, = nontrivial response
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Figure 3.17: Influence of u3 on the principal parametric resonance

The effect of the friction parameter pu4, which is used to model the friction between
the slider mass and its contact surface, is complicated. In order to have a clear picture
regarding the effect of 4 on the response, one must consider the nature of this friction

force. The slider friction force is composed of the actions of the rigid body motion as
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a, = overall response
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Figure 3.18: Influence of u3 on the primary resonance

well as the elastic deformation. When the response amplitude is small, slider friction is
mainly composed of the friction introduced by rigid body motion. As the value of uq4
increases, slider friction increases. This results an increase in the axial force acting on the
connecting rod. Consequently, the response amplitude increases. From this, u4 has an
adverse effect on the response. This can be observed in the second order superharmonic
(2 & }) resonance (Figure 3.19). Moreover, the width of the main nose of instability
associated with the principal parametric resonance resonance increases as we increase the
value of u4 (Figure 3.20).

The increase of the amplitude of response implies an increase of the foreshortening. This
results an increase in the friction force introduced by elastic deformation. The friction force
introduced by foreshortening acts as resistance which prevents the connecting rod from fur-
ther deformation and hence has a favorable effect. In general, the slider friction is composed
of two friction forces with compatible magnitude, and the system reaches dynamic equilib-

rium. This can be observed in the principal parametric resonance (Figure 3.21). Figure 3.21
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a, = amplitude of the homogeneous solution
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Figure 3.20: Influence of u4 on the main nose of instability (2 ~ 2w;,)
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shows branches of response originating from the main nose of instability associated with
the principal parametric resonance. From this figure, we find that p4 has a favorable effect
on the outgoing response by reducing the response amplitude; while it also has a tendency

to increase the width of the main nose of instability.
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Figure 3.21: Influence of p4 on the principal parametric resonance (Q ~ 2w;,)

Figure 3.22 shows the frequency response curve for the primary resonance. From this
figure, it is clear that friction parameter u4 has a favorable effect on the primary resonance
by reducing the amplitude of response. This is caused by the friction force introduced by

large elastic deformation.

3.7.4 Effect of Shear Deformation and Rotary Inertia

In this work, the effects of shear deformation and rotary inertia are included in the pa-
rameter A3z. In the primary resonance, the presence of shear deformation and rotary inertia
affect the frequency response curve in such a way that the locus of the peak amplitude, i.e.,
the backbone curve, will not originate from w,. The origin of the backbone curve is shifted

to the left by an amount of order O(€?). Figure 3.23 shows the effects of shear deformation
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Figure 3.22: Influence of u4 on primary resonance (2 =~ wiy,)

and rotary inertia to the primary resonance. We note that there is no difference in the
profile of the frequency response equations, while the shift between these curves is caused
by the presence of shear deformation and rotary inertia (a2 = a3z = 1). In the principal
parametric resonance, the presence of Az causes a ghift of the center of the main nose of in-
stability (Figure 3.24). In other words, the center of the region in which the trivial solution
becomes unstable will shift to the left by an amount of order O(e?), while the width of this
region remains unchanged. Figure 3.24 shows the effect of shear deformation and rotary
inertia on the principal parametric resonance. We note that the profiles associated with the
nontrivial responses for these two cases are very similar, while the shift of these nontrivial
responses is caused by the presence of shear deformation and rotary inertia (az = a3z = 1).

Shear deformation and rotary inertia do not affect the superharmonic resonance in which
§) is near to “2. In the superharmonic resonance in which 2 is near to a, these two terms
affect the response of the system in a way similar to the primary resonance. In other words,

the backbone curve will not originate from the point @ = “p. It shifts to the left by an
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Figure 3.23: Influence of shear deformation and rotary inertia on the primary resonance
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Figure 3.24: Influence of shear deformation and rotary inertia on the principal parametric
resonance



Chapter 4

Analysis of the Lumped Parameter Model

In the present chapter, we consider an alternative approach to the problem under in-
vestigation. Instead of a set of partial differential equations, the dynamic behavior of the
connecting rod is modeled by a single ordinary differential equation. This approach is based
on extending the work by Viscomi and Ayre[49] by the inclusion of internal material damp-
ing, bearing friction and sliding friction. In this chapter, we also demonstrate how an active
piston force can be incorperated in this model. Based on the assumptions given in section
2.1, except that the effects of the shear deformation and rotary inertia are neglected, the
elastic response of the connecting rod is modeled by two coupled nonlinear partial differ-
ential equations. Based on the first order approximation, the equation describing the axial
component is first solved to obtain the time-varying axial force. Using this axial force and
neglecting the axial displacement, the equation describing the flexural response becomes a
single uncoupled partial differential equation. This equation is then converted into a single
ordinary differential equation by Galerkin’s method with a single mode. We first consider
the linearized model and obtain the corresponding response curve. The Method of Multiple
Scales is then employed to locate the conditions in which the linear approximation fails
to provide a satisfactory prediction. Improved approximations are also obtained by the
Method of Multiple Scales. In section 4.2, the equation describing the elastic response as-

sociated with the connecting rod is derived, and converted into dimensionless form. Section

86



87

4.2 contains the main outline of the analysis, and several resonance cases are introduced.
The principal parametric resonance is investigated in section 4.3. Section 4.4 contains the
analysis for the primary resonance. Two superharmonic resonances in which the operating
frequency is near to one half and one third of the fundamental natural flexural frequency
are studied in section 4.5 and section 4.6, respectively. In section 4.7, we consider the sub-
harmonic resonance of order three. In section 4.8, we summarize the results and provide a

detailed parameter study.

4.1 Equation of Motion

In this section, an equation describing the flexural vibration associated with the con-
necting rod of an otherwise rigid slider-crank mechanism is derived. After this equation is
obtained, it is then transformed into dimensionless form in order to minimize the number
of system parameters.

The basic equations describing the motion along the transverse direction are derived
based on the assumptions given in section 2.1, except that the the effects of shear deforma-
tion and rotary inertia are neglected. In other words, we model the connecting rod using
the Euler-Bernoulli beam theory. With these assumptions, we proceed to derive equations
which describe the flexural vibration associated with the connecting rod AB. Consider a
slider-crank mechanism as shown in Figure 2.3. The OXY coordinate system represents a
fixed inertial reference frame with its origin being attached on the crank shaft. The oxy
coordinate system represents the moving reference frame with its origin being attached on
joint A. The ox axis passes through the idea pin joints at the ends of the elastic connecting
rod and makes an angle —¢ with the OX axis. Let u(z,t) and v(z,t) represent the axial

and transverse displacements of the connecting rod, respectively. The equations of motion
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in the oxy coordinate system are described by force and moment balance and are given by

0P(z,t)
0z

1 1
= FEA(u; + -2-v§), + Apc(uz + ivz)ﬂ = pAa, , (4.1)

1 1
Elvizze + IpcVzrzoe — EA[(“: + Evz)zvx ]:r: - l‘cA[ (uz: + 5”2){".1: ].t = PAay . (4'2)

where P(z,t) = axial force acting on the connecting rod,
p = mass density (mass per unit volume) of the connecting rod,
A = cross-sectional area of the connecting rod, and

az(z,t) and ay(z,t) are acceleration components given by

0*u 08¢ Ov 32¢

—  —rw? - 7 — 27 — 2
a; = -—rwcos(wt ¢)+ 20t TR T ( ) (z+u), (4.3)
2
a, = -—rwisin(wt-¢) + (:c +u)+ 2?;:) gl: + % - (%%)2” . (4.4)

The axial strain ep at the median line of the connecting rod is approximated by

=4 2Py (45)

From the analysis in chapter 3, we know that the axial displacement is small compared to the
transverse displacement. Therefore, we neglect the contribution of the axial displacement

on the inertia forces pa; and pa,. Equation (4.1) then becomes

oP

£ EA(uz + -;—v:)z + +Apc(uz + l1’}:)21
. 32¢ 2
pA[ —TWw* cos (wt - ¢) ("")(—) - _6? - (_) ] (4'6)
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and equation (4.2) becomes

1 1
EIv:cJ:::z + I/‘cv:n::::t - EA[ (ur + —vg)vz ]:r: - A/‘c[(uz + Evg)tvx ]:c =
2 2
= —pA[-rw?sin(wt - ¢) + Zt? % - ( )2 ]. (4.7)
Integrating equation (4.1) from 0 to x, we obtain
P(z,1) = P(0,1) + pA / azdz (4.8)
0

where P(0,1) stands for the force applied to the end to which the end mass m4 attached.
If the axial load acting along the connecting rod is known, then this equation is a partial
differential equation describing the transverse displacement v(z,t). Using the free body
diagram as shown in Figure 2.4 and summing forces along the x-direction, we can determine

the time-varying axial force P(z,t) to be of the form

t .
an¢ + psb

P(z,1) = pA/ azdz + mab + (Ma + Mp)

cos ¢

+pAtan¢

/ (ayz — azv)dz + (4.9)
0

where the overdot represents the time derivatives, F(t) is the active piston force, Z rep-
resents the piston acceleration from the rigid body motion of the mechanism, p,Z is the
friction force acting on the slider due to rigid body motion, § is the foreshortening due the
bending deflection of the rod, and the u,é term represents the slider friction due to elastic
deformation.

In order to determine the piston acceleration Z, let us digress and consider the rigid

body kinematic analysis. From Figure 2.4, in order to retain the motion of the piston end
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along the X-direction, we must have
Lsin (—¢) = rsinwt (4.10)
which can be written in the following dimensionless form:
sin ¢ = —§€sin wt (4.11)

where £ represents the ratio of the effective radius of the crank shaft to the length of the
connecting rod and is specified as the length ratio. With this geometrical relation, the

piston displacement function can be expressed as
Z(t) = rcosQt + Lcosp = L(EcosQt + cos ) . (4.12)

The foreshortening due to the bending deflection of the connecting rod can be approximated

6_/ ‘/1+(?-3)7d:v—L~—/( )dz . (4.13)

This approximation of the foreshortening effect is based on the small transversal deforma-

by

tion assumption. Hence, we keep only the first order term of the foreshortening effect.

Substituting equation (4.6) into equation (4.7), we obtain the following equation

Elvpzzr + pclVpzzzt — [P(I»t)vz ]:c =

3243 0%*v

pA[ —rw?sin (wt — @) + 22 ° 6t2

( ) v] (4.14)

where P(z,t) is given by equation (4.9). Equation (4.14) describes the transverse deflection
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of the connecting rod.
We now consider the boundary conditions for the connecting rod. Since the crank shaft
is assumed to be perfectly rigid and there is no relative displacement of the connection

between the connecting rod and the crank shaft, we have

v(0,2)=10. (4.15)

Also, at z = L, the piston motion is constrained to move along the X direction. Thus, we
have

v(L,t) = u(L,t)tan(—-¢) . (4.16)

Again, equation (4.5) implies that the axial displacement u(z,t) is much smaller than the
transverse one. It is shown in [9] that this boundary condition can be approximated by
v(L,t) = 0. Due to the presence of the fictional moments on points A and B due to

bearings, we have the following boundary conditions:

Elv..(0,t) —My = m[w — ¢ — v:4(0,1)], (4.17)

Elv . (L,t) —Mp = [ ¢ - vou(L,1)], (4.18)

where u; represents the friction coefficient such that the moment applied by the bearings
is the product of u; and the relative rotational speed. We assume the value of the friction
coefficient y; is very small compared to the length ratio so that these reaction moments can
be neglected for the first order approximation. Therefore, with the first order approxima-

tion, the reaction moments acting on points A and B are zero. Based on these observations
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and assumptions, the solution v(z,t) can be approximated as

o(z,1) = Z Ba(t) sm("” ) (4.19)

where 9, (t) represents the amplitude of the displacement at the midpoint of the beam, and
sin 27% are the natural modes of transverse vibrations of a uniform beam with pinned ends.
Previous work[49] has shown that higher order modes have insignificant influence on the
transverse response of the connecting rod for the region in which the model is valid. Hence,
we assume that the solution of v(z,t) can be approximated by a single mode (v;(t) sin (F£))-
Substituting this assumed solution into equation (4.14) and projecting the equations onto

the first mode, we obtain the following equation:

2pAL$ 4pArsin (wt — ¢)w? + Elrv 5pAdv + pAT2$2y

T T L4 4 3
+ 72p,vé sin ¢ B m2upvdtangd pArlvdtangd  wlu,rwvsinwi
cos oL L3 3 L2cos ¢
+ n2ppwv tan ¢ + pArz2wlvcos(wt — ¢) pArm2w?vtan dsin(wt — @)
L3 2L 2L
4 2¢?myv  nimydusing  wimyrvw?coswt w2 F(t)
L Lcos¢ L2cos ¢ Lcos¢
pArd  2pArmwltandcos(wt— @), ,  pAr2vitand
g+ 12 &
4lud  2pAxdvd  pAr2ptan div?  wimyvi? Ps 4,2,
L7 2 St
pAxvtan¢ = wimgv? .
+ (pA+ 5 )i =0 (4.20)

which is a single nonlinear ordinary differential equation describing the flexural vibration
associated with the connecting rod of a slider-crank mechanism under the assumptions
given above. In the following analyses, we only consider the cases in which there is no

external force acting on the piston, i.e., F(t) = 0 in equation (4.20). We note that these
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simplifications (equations [4.15] to [4.18]) are essential in truncating equations (4.14) with
the linear mode shape function (equation [4.19]) and obtaining equation (4.20). With the
same dimensionless parameters as those described in section 2.4, equation (4.20) can be

written into the following dimensionless form:

(14 rvtang + —§-7r4v2)i§ + 2u20 + %( é — 26Q%sin (Ut — ¢))

¢ g 1 i ﬁ 9 _§ l 9 _gcOs Ut
+ o[14dr(S+ g ) tang+ PG+ = 1)+ (5 + )

]
+ o[ 2u3(0 — 2¢)r% tan ¢ + 2u4(d — Q)7 tan ]
+ v*[rd+ 2xEQ% tan dcos (U — ¢)] + 2rdivtan

2 4 )
+ ¥ Z;—&;tancﬁ) + (%-)Si)% 4+ v?o(nlptangd + puar?) =0 (4.21)

where all the overdots represent the derivatives with respect to time, %, is replaced by v and
all the overbars have been dropped for notational simplification. Equation(4.21) is a second
order differential equation describing the flexural response associated with the connecting
rod. We note that it contains the following features: (1) nonlinear inertial terms, (2) exter-
nal as well as parametric forces arising from inertial forces, (3) dissipation effects, and (4)
time-dependent quadratic and cubic nonlinearities. Despite of its complexities, each term of
equation (4.21) has its own physical source. All the terms involving the parameter S, except
($74v?%) and (%w‘vb’), which represent the foreshortening effect, arise because of the iner-
tial force associated with the slider mass m4. The forcing term, [ 2($—2¢Q?sin (Qt — ¢)) ],
arises because of the action of the transverse acceleration component a, on the connecting
rod. The following terms arise because of the effects of bending moments caused by the
actions of a, and ay: 7vitang, gxzv tan ¢, v§?, §Q2r2v 22y, 2r£Q202 tan ¢ cos (U - ¢),

”—;vatz tan ¢ and r2v2vdtan é. All the terms involving the parameters ;3 and p4 arise from
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the actions of the bearing friction and friction force on slider mass, respectively.
Now, let us reconsider equation (4.11). Since in most of the applications, the length
ratio is smaller than one, we expand equation (4.11) in terms of the length ratio £ to obtain

the following asymptotic series:

¢ = sin~! (sin )

(&sinQt)®  (&sin Q)3
6 120

= —(&sin ) -

3¢3

3 5
o= (64 54 )sint— ( 35_ 4o sindt - (4 ) sins0 4 (4.22)

This equation indicates that the excitation provided to the connecting rod is a superposition
of harmonic inputs at frequencies which are multiples the crank rotation speed. Note that

the force amplitudes associated with higher harmonics are of small magnitude.

4.2 Application of the Method of Multiple Scales

Before applying MMS (Method of Multiple Scales) to study equation (4.21), let us first
consider a solution to the linearized model of equation (4.21). To achieve this end, we
expand the original equation (4.21), with the help of equations (4.11) and (4.22), and retain

all the first order terms in £, v and its time derivatives. This results in the equation
2
H(t) + 2u20(t) + v(t) = ;592 sin Q¢ (4.23)

which represents a linear oscillator subjected to an external excitation. The response of this
equation is given as

v(t) = Xsin(Qt - @) (4.24)
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where
x= (v (4.25)
™1 - 02)2 + 4302
and
@ = tan™}( 12f282) . (4.26)

Equation (4.24) represents the response curve of the linearized system for small length
ratios. From equation (4.25), we see that, to first order, the amplitude of the steady-state
response is proportional to the length ratio £ as well as the square of the frequency ratio
Q. However, this estimate may not be sufficient to capture the true response under certain
conditions. In the current section, we use the Method of Multiple Scales[29] to locate these
conditions, while we will improve our approximation in the subsequent sections for each
individual condition.

To apply MMS, we need to introduce a set of new independent time variables T, and, in
addition, reorder some parameters, such as the length ratio £ and the damping parameters
l2, p3 and pg. The new independent time variables 7', are introduced according to T, = €™ ¢.
It follows that the derivatives with respect to t become expansions in terms of the partial
derivatives with respect to T,, according to equations (3.4) and (3.5). Moreover, we assume
that the length ratio £ can be ordered by £ = €£;. Since the amplitude of the response is
proportional to the length ratio £, we assume that the solution v(t) can be represented by

an expansion taking the following form

v(t) = €v1(To,Th, T2) + € v2(To, 1, T2) + € v3(To, T1,T2) + ... . (4.27)

The damping parameters u3, 13 and p4 are treated in the same way as described in chapter 3.
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In other words, the ordering of uj3 is fixed to of order O(€2?), the ordering of u4 is fixed to
be of order O(1), and p; is reordered according to the order of o, the detuning parameter.
Substituting equations (3.1), (3.4), (3.5), (3.8), (3.9) and (3.10) into equation (4.21),

expanding and equating the coefficients of the like-power terms we obtain the following

equations:
Order ¢
2 2 2
Do*vi+ v = (;){1 Q4sin QT , (4.28)
Order ¢2
Do2 v2+v; = —2Do Dl v — (S + %)611|'2 92’01 Ccos QT() + (%) 92 f? sin QQTO ,(429)
Order €
D02v3 + v3 = —2D0D1‘02 - 2#22Dovl - D1201 - 2D0D201 - 7!'2(5 + %)619202 cos QTo

2
- (% + 728 - ;){f‘vlﬂ"’ cos QT2 + (% + 5)€2Q%, sin QT2
4
- 2#2;1409{11)1 sin QTO + 2{19%’(1)0‘01)’01 cos QTO - %S(Dovl )2‘01

4
— 55(Do?)v} + w62 Do( Dov?)] sin QTo = pagm*(Dov1)of (4.30)

In obtaining the general solution of v;(Tp,T},T;) from equation (4.28), we need to distin-
guish between the following special cases: (1) € is near to unity and (2) Q is away from
unity. The case in which  is near to one corresponds to the primary resonance. When
this occurs, the linear estimate (equations [4.24]) fails to provide a good prediction of the

response. Section 4.4 contains a complete analysis of the primary resonance. At the present
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time, let us assume that Q is away from one and continue our analysis. Under this condi-
tion, the general solution of v,(T,T1,T?) is given as the combination of the homogeneous

and particular solutions,
m (To , Tl , Tz) = Al(Tl y Tg)ezp(j To) + A4 sin To + c.c. (431)

where A; is an unknown complex function which will be determined later, A4 is given as

2. & N2

= (4.32)

a=(

and c.c. stands for the complex conjugate terms of the preceding terms on the right hand
side of equation (4.31). Note that, according to the linear theory, the homogeneous part of
solution (4.31), i.e. Ajezp(jTo) term, will decay to zero due the presence of the damping
parameters. Thus, the homogeneous solution is not included in the steady- state response
of the linear system (equation [4.24]). At the present moment, we include the homoge-
neous solution in this general solution and proceed to find the conditions in which this
homogeneous solution will not decay to zero. Substituting the solution v,(Ty,T;,7T?) into

equation (4.29), we obtain

} ) 1 ) )
Do®va + v, = —2j5(Dy Ay)ezp(3To) + (;)Efﬂzezp@]QTo - ]g-)
— (54 a0 Leap(2i0T, - 57)
1 2 2A1 . .
- (S+ -2—)619 T -?exp(]QTo + jTo)

1 A : :
- (S+ -é)flﬂzwz?lezp(JQTo - jTo) + c.c.. (4.33)

In analyzing the particular solution of equation (4.33), there are three cases which need to
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be considered separately: (1) Q is near to 1, (2) Q is near to 2 and (3) Q is neither near
to % nor to 2. The first case corresponds to a superharmonic resonance, while the second
one corresponds to a subharmonic resonance, or the principle parametric resonance. Both
of these cases will be studied in detail and improved approximations will be provided later
on. For the present, let us assume that  is away from % and 2, and continue our analysis.

When 2 is away from % and 2, we must have

D ATy, T2) =0 (4.34)

in order to remove the secular term from the particular solution of v,. This implies that
the unknown amplitude function A4;(7},7,) must be independent of the time variable T;.
As a consequence, all the higher order solutions are assumed to be independent of the
time variable Tj. Thus, all the derivatives with respect to time variable T} are zero. The

particular solution of vy(To,T?) is then given as

- 1 £¥02 S 1 202 . LT
v = 1-492 492[ r (Z + g)fﬂr Q%A Jezp(25QT, - ]-2—)
1 S 1., 2.2 _ '
- TTarape 9)2(5 + Z)&Q 1°A1ezp(§QTo + jTo)
1 s 1 _— ,
T 1-(1- 9)2(5 + Z)flﬂzszlezp(JQTo - jTo) + c.c.. (4.35)

Substituting v;(To, T2) and vo(7To, T2) into equation(4.30), we obtain

Do*v3 +v3 = —2jpz, Arezp(iTo) — jpaom A2 A exp(§To) — 2j(D2A1)exp(iTo)
+ n'SALA ezp(§To) + fr£2 Arexp(iTo) + j fa€lezp(3jQTo)

+ 25706 A exp(jQTo - 25To) - j(%)fdAlAiezp(jTo)
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7r4 3 . 4 Q 72 . .
+  —AiQue0ezp(35QT0) + pa, 7  Ay(1 — ) Afezp(QTo — 25T0)
8 2

+ N.ST.+c.c. (4.36)

where N.S.T. represents those terms which will not produce secular term in the particular
solution of v3. In analyzing the particular solution of equation (4.36), there are three cases
which need to be considered separately: (1) Q is near to 3, (2) Q is near to 1, and (3) Q
is away from 3 and :1-3 The first case corresponds to a subharmonic resonance, while the
second case corresponds to a superharmonic resonance. These two cases will be investigated
in sections 4.6 and 4.7, respectively, in order to obtain better approximations.

At this point, we pause and briefly consider some of the general features of this analysis
procedure. By using the assumed solution sequence, the equation describing the transverse
vibration of the connecting rod can be transformed into a sequence of ordinary differential
equations which can be solved quite easily, since they are linearized by the nature of pertur-
bation expansion. In solving these sequential equations, several resonant conditions arise.
The primary resonance appears first, and then the principle parametric resonance. After
these two resonances, some secondary resonances of subharmonic and superharmonic types
arise. When these occur, the linear approximation is insufficient to provide a good estimate
of the response of the system.

For simplicity, we follow the same analysis pattern as described in the last chapter. The
principal parametric resonance is examined first in section 3.2. The primary resonance is
investigated in section 3.3. After these two resonances, secondary resonances are examined

case by case.
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4.3 Principal Parametric Resonance (2 = 2)

Recalling that in analyzing the particular solution of equation (4.33) in section 4.2, when
the frequency ratio Q is near to 2, a principle parametric resonance takes place. To describe

the dynamics when the frequency ratio is close to 2, we express (2 as

D=2+ 20 (4.37)

where o, is the detuning parameter. The damping parameter u4 is reordered by pgq = p4,.
Moreover, the damping parameter u; is rescaled according to pz = €y, so that it will show
up, together with detuning parameter oy, in the final resonant condition. After carrying

out the same procedure as that described in the last section, equation (4.29) reduces to

D02v2 +v; = -2j(D1A1)ezxp(jTo) - 21#2;A13$P(jT0)

S 1\ 0225 orim 4o
5+ Z)flﬂzszleiDP(]Tl +2j01To)

— 6072y, Ayezp(2jor Ty — jg) +N.ST. +cc. (4.38)

where N.S.T. represent those terms which will not produce the secular terms in the partic-

ular solution of v2(7o,T;,7T2). In order to eliminate the secular terms, the following must

hold

; ) S 1 _ )
- 2j(D1 A1) - 2jp2, A1 — 4(5 + 2)5171’2/116-’51’(2]017‘0)

- : T
— 2x%puy 6 Arezp(2jor Ty - '75) =0. (4.39)

Expanding equation (4.39) with A; = ($)ezp(j¥), and separating the resultant equation
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into real and imaginary parts, we obtain

a = —pya—2a6 045028, + aruy € cos 28, , (4.40)

a®, = o01a-2a,A4c0s2®) — aripug & sin 29, (4.41)
where ®; = 01T) — ¥ and A4 are defined by
x2
Ay = (25 + l)(T) (4.42)

and the primes indicate derivatives with respect to T;. The steady state response conditions

are obtained by letting @’ = 0 and ®{ = 0, which yield

H2,@6 = —2aé,A45in 29, + a7l'2£1[l,40COS 20, , (443)

g6 = 2af1A4c082P, + aw2£1p4osin 29, . (4.44)
Squaring these equations, and adding them together, we obtain
[0 + p3, — (26104)% — (7*€1p14,)* Ja® = 0. (4.45)

Equation (4.45) is an equation for the amplitude of the response as a function of the
detuning parameter, the damping parameters and the length ratio. From this equation,
we see that the trivial solution @ = 0 is the unique steady state response for the cur-
rent resonant condition. To determine the stability of this solution, we substitute A; =
(Br + jBr)ezp(jorTi + 7T1) into equation (4.39), in which Br and B are two constants,

and separate the resultant equations into real and imaginary parts to obtain two equations.
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Figure 4.1: Frequency response equation for the principal parametric resonance (equa-
tion [4.45])

We then solve the nontrivial constant solutions of Bgr and B from these two equations.

From this, we determine that when

o} +u3, < (487 + i) (4.46)

this trivial solution become unstable. It is clear that o} + uj = £§(4A%+74uj ) represents
the transition curve which is the solid curve shown in Figure 4.1. Along this curve, the
eigenvalues associated with the responses are either +1 or -1. In the unstable region, any
disturbance, no matter how small, applied to the steady-state response results an unbounded
growth in the response amplitude of the linear model. However, as the amplitude of the
response becomes large, the nonlinear terms can no longer be neglected. In the remaining
part of this section, we extend our analysis to investigate these nonlinear effects. In stable

regions, equation (4.24) can be used to predict the response, since the trivial response is



103

stable and will remain zero. Thus, the steady state response can be approximated by

v(t) = ey (To,Th, T2 ) + O(€?) = e Ay sin QT + O(€?) . (4.47)

When the response is unstable, any small disturbance applied to the trivial response will
grow unbounded, and then dominate the response curve. This is an example of parametric
resonance.

In order to capture the effects of nonlinearities, it is necessary to reorder either the solu-
tion or the parameters so that the nonlinearities will be included in the equation describing
the resonant condition. For the present problem, the amplitude of the response is shown to
be proportional to the length ratio (equation [4.24] in section 4.2). Therefore, a reordering
of the length ratio is equivalent to the reordering of the solution. To carry out the nonlinear
analysis, we reorder the length ratio £ according to £ = €2£;. Expanding equation (4.21)

with this new length ratio, and equating the coefficients of the like-power terms in €, we

obtain
Order ¢
Do*vy+v, =0, (4.48)
Order ¢?
1)()2 v+ vy = —=2D¢g Dy v1 + (%)fgﬂzsin QT , (4.49)
Order &

Do*v3 + wv3=—2DgDyv; — 2p2, Doy — w‘S(Dozv:l’) — 244, wzfgﬂv! sin QT

1
- 0121)1 - 2DOD1‘02 - 7I'2(S + 5)6292 V1 COs QTo - 7\’4/1.40(1)01)1)‘0% . (450)
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Equation (4.48) admits the solution
v (To,Th,T2) = A(Th ,T2)ezp(j To) + c.c. . (4.51)
Substituting this solution into equation (4.49), we obtain
Do? vy + v5 = —2j(D; Ay)ezp(iTo) + (%)5292 sin QT + c.c. . (4.52)

In analyzing the solution of this equation, we need to distinguish between these two cases:
(1) Q is near to one and (2) Q is away from one. The first case is referred to as the primary
resonance and will be investigated in next section. At this moment, let us consider case (2).
When Q is away from one, we have D; A; = 0 which implies the independence of A; to the
time variable T}. Therefore, all the higher order solutions are assumed to be independent

of T;. With this assumption, equation (4.50) reduces to

Do’vy + v3 = =2jpg, Arezp(iTo) — 2j(D1A1)ezp(jTo) — jpa,n* A2 A1ezp(5To)
1 2.2 aA_l . . 2 1 . K
- (5+ 5)&9 n (—2—)ezp(JQTo — jTo) — 2pa,m“€2 A1exp(j QT — 15)

+ 74SA%A,ezp(jTo) + N.S.T. + c.c. (4.53)

which describes the third order term in the flexural response associated with the connecting

rod. To describe the nearness of 2 to 2, we express ( as

Q =2+2€e0;. (4.54)
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Hence, we must have

~2juz, A1 — 2j(D3Ay) — 462844 ezp(2509Ts) + 1S A2 A,

- . LT . -
— 2u4,72€A ezp(2j0, T — ]5) — jug, A4, =0 (4.55)

in order to remove the secular terms from the particular solution of v;. Substituting
Ay = (§)ezp(j¥) into equation (4.55) and separating the resultant equation into real and

imaginary parts, we obtain

3
d = —pya- p4o1r‘% — 2£2A4a5in 29, + £2w2u40a cos 2®, , (4.56)

a®, = o09a - 26,A4ac0828; — £31%pg,asin 28,5 + Asa® (4.57)

where ®, = 0,72 — ¥ and Aj is defined by

Ag = %fis (4.58)

and the primes represent the derivatives with respect to the time scale T>. The steady state

conditions for these equations are given as

3
P2,8 + pa, 11’4%- = —2£al45in 28 + 12 py a cos 29, (4.59)

020 + Asa® = 2£a04c052®; + E2m2ug,asin 29, . (4.60)
The frequency response equation takes the following form

2
@[ (ua, + ”40”4%')2 + (02 + Asa®)? - (26,84) — (7262p14,)* ] = 0. (4.61)
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From this equation, we solve for the nontrivial solution of a? and obtain

(a2)? = (%H—l+v02—km], (4.62)
(as)? = (Pl-i- VE—Fm], (4.63)
where
ko= (e P42, (4.64)
L= (Rhpn + Bsar (4.65)
m = pl 405 - (2684)7 - (72ap4,) . (4.66)

Figure 4.2 shows an example for these frequency response curves. From equations (4.62)

and (4.63), we know that a; and a3 exist only when

2—km>0. (4.67)

This implies that the magnitude of the forcing term must be large enough in order to

produce a sustained nontrivial steady-state response. Furthermore, we need

02 < \/(26284)? + (726apiso)? - 13, (4.68)

for the existence of a,, and

02 < —/(2684)2 + (72p10,)? — 43, (4.69)

for the existence of as.
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a, = magnitude of homogeneous solution
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Figure 4.2: Frequency response equation for the principal parametric resonance (equa-
tion [4.61])

In order to determine the stability of these steady-state responses, we compute the

Jacobian matrix associated with equations (4.56) and (4.57), which takes the form,

—(%2)r%a?  -2(02 + Asa?)a (
4.70)
2As5a —2p9, — (52)n2a?

The eigenvalues associated with this matrix are

Mz = —(p2, + %r’az) + \/(%‘lﬂa?)(ugz + %wzal’) + Asa?(o2 + Asa?) . (4.71)

Thus, the stability of each individual steady-state response is decided by the sign of the
term inside the radical sign. When this quantity is negative, we have a stable steady state

response. Otherwise, it is unstable. Thus, the following conclusion is obtained:

(1) when o7 > \/ (26204)% + (728ap4,)% - pgz, only the trivial solution is possible, and

it is stable.
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(2) when o3 < | \/ (26284)2 + (7263p4,)? — pd, |, the trivial solution becomes unstable,

while a; exists and is stable, and a3 does not exist.

(3)when o2 < —\/(2&A4)2 + (7264, )% — p%z, a3 exists and is unstable, and a; and a;

are stable.

Remark: Before leaving this section, a few points need to be made. First, let us compare
linear resonant equations (equations [4.40] and [4.41]) with the nonlinear version (equa-
tions [4.56] and [4.57]). Basically, they coincide with each other in the linear part. The dif-
ference in equations describing the variation of the amplitude is the nonlinear term ( % 4,03,
We note that (3)us,a® arises because of the slider friction introduced by elastic deforma-
tion. The difference in equations describing the variation of phase angle is the Asa3 term in
equation (4.57). Next, let us compare the frequency response equations obtained from the
linear and nonlinear analyses. Again, they coincide with each other in the linear part. The
influence of the nonlinearity on the response can be determined by a direct comparison. In
absence of the nonlinearity, the response is unstable when the parameters located inside the
unstable regions. According to linear theory, the amplitude of the response grows without
limit. Due to the nonlinear effects, this increasing response amplitude will be accompanied
with an increase of the resistance force and a change of the phase angle. The resistance
force arises because of the foreshortening introduced by elastic deformation. As the am-
plitude of the response increases, this resistance force whose magnitude is proportional to
the foreshortening also increases. The amplitude of response reaches its equilibrium state
when this resistance compensates the effect of the slider friction introduced by the rigid
body motion. We now consider the effect of the nonlinear terms in the equation describing

the variation of phase angle. Due the effects of nonlinearity, the increase of the amplitude
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of response will accompany with a change of the phase angle. This implies a change in the
rate at which energy is pumped into the system. When the energy put into the system is

balanced by the energy dissipated by the system, the system reaches its steady state.

4.4 Primary Resonance (2 = 1)

From equations (4.31) and (4.32) in section 4.2, it is clear that the amplitude of the
particular solution approaches infinity as 2 approaches one. This phenomenon is referred
to as the primary resonance. Let us reconsider equation (4.49), and now assume that Q is

near to one. To make the analysis more clear, let us express {0 as
Q=1+e¢0; . (4.72)

In addition, the damping parameter u; is rescaled according to equation (3.49). With these

arrangements, equation (4.49) becomes
2 .
D02v2 + Vg = —2D0D1v1 + (;)6292 sin QTO - 2[121 Dov1 (473)

by following the same procedure as that described in section 4.3. To retain the periodicity

of the solution, the following must hold
. . 52 2 . Ty
= 2j(D1A1) — 2jp2, Ar — (;)9 ezp(jorTo - j5) =0 (4.74)

after substituting v; = A,ezp(jTo) into equation (4.73). Expanding the last equation with

Ay = (%)ezp(j¥) and separating the the resultant equation into the real and imaginary
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parts, we obtain

— 2,0 — (fr—2)cos o,, (4.75)

)
I

ad®] = am-}-(%)sin o, (4.76)

where ®,; is given in equation (3.55). After solving these equations, solution v(t) of the

original equation is approximated by
v(t) = evy + O(€?) = eacos (NTp — ®) + O(€?) (4.77)

where the magnitude of the steady state response a, is described by

&1 1
RV
and the steady state value of the phase angle ®, is given by
tan &, = (L) . (4.79)
H2,

It is interesting, and not surprising, to find that equation (4.77) is the first order ap-
proximation of equation (4.24) which is the response for linearized model when § is near

to one. The local equivalence between equations (4.77) and (4.24) can be shown as below:

2 N2 2 €26, _(1 €€,

o~

X =(=) ~ (=) = (=)———= = ea,,
R R T LY T N

(4.80)
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while angles ¢ and ¢ are related by

220 2€0

tany = 1-Q2° 20,

=—cotP;. (4.81)

Hence, equations (4.77) and (4.24) are within O(€?) in an e-neighborhood of @ = 1. This
shows that the reordering relation (3.60) can not help us in including the nonlinearity
in our analysis. Based on this fact, let us rescale the length ratio £ according to § =
€3¢3. Substituting this reordering relation into equation (4.21), expanding and equating the

coefficients of the like-power terms, we obtain

Order ¢
D02‘01 +v = 0 y (482)

Order ¢2
D0202 +vo=-2D9gD;, v, (483)

Order

Do*>v3+v3 = —2DgDyvy — 2Dg Dyv; — Di%vy — 2p3, Do vy
2

- 718(Do*v3) + (;){392 sin (7o) — pa, 7*v? (Do) - (4.84)

The solution of equation (4.82) is given by equation (4.51). Also, from equation (4.83), we
know that A; must be independent of the time scale T; in order to eliminate the secular

term from the particular solution of v,. With this, equation (4.84) can be reduced to

D02‘03 + v3 = —2j(D2A1)€Ip(jT0) - 2j[l,23A1822p(jT0)

1 . . . _ .
+ (2)6Q%exp(jQTo — j7/2) = jpa;m* Al Arezp(iTo)
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+ n%A%4,ezp(jTo) + N.S.T. + c.c. . (4.85)
Therefore, we must have
. . . - 1 ) ) ~
= 2j(D241) = 2jp2, Ar — juagm AT Ay + (=)6aQ%ezp(jor Ty — jm/2) + 4 AT AL = 0 (4.86)

in order to eliminate the secular terms from the particular solution of v3. Expanding
equation (4.86) with A; = (§)ezp(j¥), and separating the resultant equation into real and

imaginary parts, we obtain

d = 49_3 €3 &
= —ll2,a@ — g, T — — =cos P, , (4.87)
8 .
ad, = oja+ Asa®+ %sin ®, (4.88)

where & is given in equation (3.71), As is given in equation (4.58) and the frequency ratio
Q is expressed as

Q=1+éo,. (4.89)

The steady-state response can be obtained by letting a’ = ®} = 0 in equations (4.87) and

(4.88), which gives

3
p2,a + p%w‘% = —%cos o, (4.90)
o.a + Asa® = —%sin ®, . (4.91)

The frequency response equation is then given by

a?[ ( 492 22 _ (832
K2+ pao™ 2 )" + (02 + Asa®)" | = ()7 (4.92)
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and the frequency response curve as

- 2 &y, LY
02 = —Asa’ % (E) — (p2, + pagm —8—) . (4.93)

Figure 4.3 provides an example of the frequency response equation associated with the
primary resonance. To find the peak amplitude a, of the steady-state response, we need to
solve the following equation:

() - 2l s, + (pag*a? P = 0 (4.94)

which is a cubic equation in terms of ag. Moreover, the steady-state response achieves its
maximum amplitude at frequency 2 =1+ Czdzp where

02, = —Asaf, (495)

where a, represents the solution of equation (4.94). The negative sign in the last equation
implies that the response curve reaches this peak amplitude at a frequency of less than one.
Moreover, over a region of  values, there exist more than one steady-state response (Fig-
ure 4.3). The frequency response curve bends to the left, corresponding to a softening type
of nonlinearity. The stability of these steady-state responses can be decided by computing
the eigenvalues of the Jacobian matrix associated with equations (4.87) and (4.88) which
takes the form
—pi2, — (3—‘;;’9-)7r“a2 —(02 + Asa?)a

(4.96)
(02 + 3Asa?)/a  —pg, - (1‘—1‘5‘1)7r‘a2
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From its eigenvalues, we determine that when

1 3
[ 2, + (5)Bao™*a? [ 2, + (S)kaom*a® | + (02 + Asa?)(02 + 3As5a?) < 0 (4.97)
8 8

the steady-state responses are unstable. Otherwise, they are stable. The solution v(t) can

approximated by
v(t) = en(To,Th,T2) + O(€?) = eacos (T — ®) + 0(€?) (4.98)

where a and ® are described by equations (4.87) and (4.88). The steady state value of the

phase angle ® is given by

o2 + A5(12

$, = tan~!( .
’ #22 + %#40‘”4“2

(4.99)

a, = magnitude of v;(t)
0.2 T T T T T

0.15

0.05

0 1 1 1 1 1
0.6 0.7 0.8 0.9 1 1.1 1.2
frequency ratio §

Figure 4.3: Frequency response equation for the primary resonance (equation [4.92])
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Remark: Before leaving this section, a few points need to be mentioned. First, let us
neglect the effect of u4, and then compare the final equations describing the resonant con-
ditions between linear and nonlinear analyses. We note that the amplitude function a is
described by equations of the same type (equations [4.87] and [4.75]), while the equations
describing the phase angles ®; and ®, (equations [4.76] and [4.88]) are coincident in the
linear part. The only difference between these two analyses is the existence of the nonlinear
term Asa? in the equation describing ®; (equation [4.88]). This implies that the nonlinear
affects the response of the system by changing the phase angle ®;. Therefore, there is a
change in the rate at which energy is pumped into the system accompanying this phase
change as a varies. The system achieves its steady state amplitude when the energy dissi-
pated by the system is balanced by the energy pumped into the system. This implies that
the magnitude of the steady state response may be remain unchanged but a considerable
shift of the phase angle of the steady state response can be expected. We now compare
the maximum amplitude of the response obtained from the linear and nonlinear analyses.
Again, the effect of slider friction is neglected. A prudent observation shows that these two
values are exactly the same. This implies that linear theory is sufficient to provide a good
approximation of the amplitude of the steady-state response. However, as we compare the
frequency at which the steady state response of the system reaches its maximum ampli-
tude, there exists a considerable difference between the results from linear and nonlinear
analyses. Linear analysis indicates that this peak amplitude can be observed when Q = 1.
The nonlinear analysis show that the response achieves this amplitude when § is at the
value given by equations (4.92) and (4.93). This indicates that linear theory may oﬁ'er a
poor prediction of the frequency near which large amplitudes occur. Finally, let us consider

the effect of u4, which represents the effect of slider friction. According the analysis, pq,
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has a favorable effect in reducing the amplitude of the response. This is caused by the
foreshortening accompanying with the transverse deformation of the connecting rod. The
existence of the slider friction will resist further deformation and hence has a tendency in

reducing the amplitude of the response.

4.5 Superharmonic Resonance (0~ 1)

In analyzing the particular solution of v; in section 4.2, we assumed that 2 is away from
2 and 1 and proceeded to analyze the solution of v3. When @ is near to }, a superharmonic

resonance occurs. For  near to %, the frequency ratio (2 is expressed as
1
Q= 5(1 +€0y) . (4.100)

At the same time, the damping parameter p; is rescaled according to u2 = €z, so that it will
appear together with detuning parameter o; in the final resonant condition. Consequently,

equation (4.29) reduces to

Do® vy + v, = —2j(Dy Ar)ezp(5To) — 2jp2, Arezp(jTo)
A .
+ BT 2&9?4831’(2]9%)
1 2_2 A4 . LT
- (S+ 5)519 x (T)G$P(2JQT0 - 1-2-)

+ %Efﬂ’ezp@jQTo - jg) 4+ N.ST. +cec.. (4.101)

The elimination of the secular terms of the particular solution of the last equation requires
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that
P4o 2 . . . f? . LTy
—G—flxezp(]alTl) - 2j(Dy A1) — 2jpg, A1 + m(:& — Ay)ezp(joTh — _75) =0 (4.102)

where o, is given in equation (4.100) and Ay is defined by equation (4.42). Substituting
A; = ezp(jV¥) into equation (4.102), expanding and separating the resultant equation into

real and imaginary parts, we obtain

2 2
ad = —pga+ @sin o, - 1—52-1-;(3 — A4)cos Py, (4.103)

2 2
ad®] = o1a+ m"c—é-z cos®; + 162_17r(3 - A4)sin®, (4.104)

where @, is given in equation (3.55). Therefore, when Q is near to 1, the response equation

takes the form

v(t) = en(To,Th,T2) + O(€?)

= ¢[Aqsin QT + acos (2QTp — @) ] + O(€?) (4.105)

where A4 is given in equation (4.32), a and @ are given by equations (4.103) and (4.104),

respectively. The steady state value of phase angle ® is given as

3-Ay)—272pyp
&, = tan-1[ 23— A 1P40 4.106
272014y + (3 = Ag)p2, (4.106)

and the amplitude of the steady state response a, is described by

3- A,
127 )]

(u, + oD)a? = [ (F2T) +( (4.107)
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Equation (4.107) represents the frequency response equation of this superharmonic reso-
nance. Figure 4.4 provide an example of the frequency response equation associated with

this superharmonic resonance. Equation (4.105) represents the first order approximation to

a, = magnitude of homogeneous solution

0.25 T T T

0.2 F \ =

\ £€=0.20
0.15 | \ S = 1.00

i

a,

0.1

0.05

0 A 1 |
0.4 0.45 0.5 0.55 0.6

frequency ratio Q

. . . . ~ 1
Figure 4.4: Frequency response equation for superharmonic resonance (Q = 3)

the steady state response. Note that v; consists of two parts, the first term is the particular
solution and the second term is from the free oscillation term. Hence, the homogeneous
solution does not decay to zero. This is caused by the last term in equation (4.29). Because
of the existence of this oscillating term, resonance arises when = % The amplitude of
the particular solution is proportional to the length ratio £, while the second term is pro-
portional to the square of length ratio. This implies that the second term vanishes more
rapidly than the first one as the length ratio £ approaches to zero. A simple calculation of
the eigenvalues of the Jacobian matrix associated with equations (4.103) and (4.104) shows
that this homogeneous solution is stable everywhere for u3, > 0. Hence, a steady state su-

perharmonic resonance exists for all conditions and the response is composed by two terms

with different frequencies. Certainly, the particular solution possesses the same frequency
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as that of the external excitation, while, the homogeneous solution, which is included to im-
prove the estimate, oscillates with twice the frequency of the external excitation. It should

be noted that this result is simply an expansion of the linear response in terms of £.

Remark: An interesting observation about the influence of the mass ratio S on the am-
plitude of the homogeneous solution needs to be pointed out. Since the amplitude of the
homogeneous solution is described by equation (4.107), a minimum value of this equation
implies a minimum amplitude of the homogeneous solution. Based on this fact, we find that
a, reaches a minimum value when A4 = 3. This implies that a proper choice of the mass
ratio can be used to suppress, but not eliminate, this superharmonic resonance. Further-
more, the existence of the damping parameter p4 , from the slider end, prevents us from
having a homogeneous solution with a zero amplitude for this superharmonic resonance.
This indicates that the damping parameter u4, has an adverse effect on the response of the

system for this superharmonic resonance.

4.6 Superharmonic Resonance (2 = 3})

In the current section, we consider the superharmonic resonance case where Q is near

to (3). In this case, equation (4.29) reduces to

Do’vs + v3=—25(D2A1)ezp(jTo) — 2jp2, A1ezp(iTo) — jpa,m* A2 Asezp(§To)

+ 54 Areap(iTo) + fr€] Arexp(iTo) - (52 ) Artlezp(iTo)
B4

1536 yréiezp(iTo + jooT2)

+ jfa€lezp(iTo + joaT2) + (

+ N.ST.+ce. (4.108)
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where the coefficients f7 and fg are given in Appendix E, and the detuning parameter o3

is defined by

Q= %(1 +eaz). (4.100)

Therefore, in order to eliminate the secular term of v3, we must have

~2u, A1 - 2i(DaAr) - juagmt A Ar - J(ER )T ME] + 7S AL,

M40

+ (1536

yr€lezp(jorTa) + f1,62A1 + j fs,Erexp(joT2) = 0. (4.110)

Substituting A; = $ezp(j¥) into equation (4.110), expanding and separating the resultant

equation into the real and imaginary parts, we obtain

a — 2,6 — (“4° )riad (#40 yr2€2a + fg, €3 cos B,

(1536)61#40 sin @3, (4.111)

f71

ad) 020 + —fla + Asa® — fg, €3 sin &5 + (—== )€ 4, cos &, (4.112)

1536

where ®; is given in equation (3.71), A5 is defined by equation (4.58), coefficients f7, and
fs, are given in Appendix E. Because the coefficient of p4,&3 is small compared with the
rest of terms in equations (4.111) and (4.112), we neglect the influence of this term in the
following analysis. From these equations, we find that the frequency response equation
takes the form,

a?[ (p, + ”§° ria? + Bl ”“° €2 4 (og + L0062 T+ Bsa?)?] = fR. 65 (4.113)
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and the frequency response curves are given by

2
P NP \/ o8 [, + Blortar 4 Bloragi o (4.114)

Figure 4.5 provides an example of the frequency response curve associated with this super-

harmonic resonance.

a, = amplitude of the homogeneous solution

0.16 T T T
0.14 | i
0.12 -
£=0.25
0.1} S=100 7
/ M2 = 0.02
a; 0.08 - / pa = 0.00 |
0.06 - 4
0.04 | 4
0 1 1 1

0.2 0.25 0.3 0.35 0.4

Frequency ratio {2

Figure 4.5: Frequency response equation for the superharmonic resonance (2 = %)

Despite the presence of the damping parameters, the homogeneous solution of v; does

not decay to zero. Moreover, the steady state response of the system can be approximated

by

e (To, Th,T2) + O(€?)

<
~~

o~
-

Il

€[ A4sin QTp + a cos (30T — @) ] + O(€?) (4.115)

where a and ® are described by equations (4.111) and (4.112), respectively. The steady
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state value ®, of the phase angle is defined by

(ot Un /D8 + 8

tan ®, =
Ty + (R)mta? + (5%

(4.116)

Note that equation (4.113) indicates that the homogeneous solution reaches its own maxi-

mum amplitude which is described by

(2,607 - a2l (s + (B)mtal + (E2)n?el 2 = 0 (4.117)

when the frequency ratio is @ = (1 + €0,)/3 with o, being defined by
op = —(f1,/2)€} — Asa . (4.118)

To determine the stability of each individual steady state response, we compute the Jacobian

matrix associated with equations (4.111) and (4.112), which takes the form,

—p2, — (3)ugymia? - (G2 )m2ed —(02 + (f1,/2)E} + Asa?)a
(4.119)

(02 + (f7,/2)€} +34sa%)/a  —p2, — (3)naoma? — (Ff)n2¢}

By computing the eigenvalues of this Jacobian matrix, we determine that these steady state

responses are unstable when

122 + (Gar'a? + (B2 )7 [ s, + (saom*a® + (5 )re2 )

+{o2 + E(fr,/2) + Asa® [0z + E2(f7,/2) + 3Asa®] < 0. (4.120)

Otherwise, they are stable.
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Remarks: First, the homogeneous solution does not decay to zero in spite of the exis-
tence of the damping parameters. Therefore, the steady state response is composed of two
functions with two different frequencies. The particular solution oscillates with the same
frequency as that of the external excitation, the homogeneous solution oscillates with a fre-
quency that is three times the external frequency. Note that the amplitude of the particular
solution given in equation (4.32), is proportional to the length ratio £;, while the amplitude
of the homogeneous solution (equation [4.113]) is proportional to the cube of the length
ratio £;. This implies that the homogeneous solution vanishes more rapidly than the partic-
ular solution as ¢ approaches zero. Note that the linear approximation may be applicable
when length ratio £ is small, since the homogeneous solution may be insignificant.

Next, let us consider the frequency response equation (4.113), which is cubic in a2. There
exists more than one steady state responses in some parameter regions (Figure 4.5). Note
that the value of Ag is always positive, this implies that the backbone curve, which is the
locus of the frequency responses, bends to the left. Moreover, the existence of f7, implies a
shift of the origin of the backbone curve. In other words, the backbone curve associated with
this superharmonic resonance does not originate from Q = %a. Together with the stability
results, we know that the frequency response curves bends to the left corresponding to
a superharmonic resonance with a softening type of nonlinearity. However, the influence
of A5a§ may be insignificant so that the no bending of the backbone is observed. This
indicates that, for small values of the length ratio £, there is no jump phenomenon.

Finally, let us discuss the influence of the mass ratio S on the amplitude of this su-
perharmonic resonance. Since the amplitude of the free oscillation solution is governed by
equation (4.113), it is possible to reduce the amplitude of this solution by reducing the value

of coefficient fs,. In other words, we can suppress the contribution of the homogeneous so-
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lution on the overall response by choosing a proper mass ratio. From a more physical point
of view, we can select a mass ratio so that the external force is diminished. When such a
mass ratio, which is about 1.40, is selected, equation (4.113) admits only the trivial solution,

and hence the contribution of the free oscillation term is eliminated.

4.7 Subharmonic Resonance (2 =~ 3)

In order to analyze a subharmonic resonance for {2 near to 3, we introduce the detuning
parameter o according to

2=3+3€o0,. (4.121)
Therefore, equation (4.36) reduces to
Do’vz + v3 = —2juz, Arezp(jTo) — jua,m A2 A ezp(iTo) — 25(D2A1)ezp(iTo)

81 . _ . .
- (3—2)#4or’€?Axexp(JTo) + 745 A2 A ezp(§To) + fr€2 Arexp(jTo)

.9 _ . .
+ [2j7Q6A2 + (g)mofﬂrsAf lezp(jTo + 3jo2T2) + N.S.T.+ c.c.  (4.122)

and we must have

- 2jug, Arexp(3To) — 25(D2A1)ezp(jTo) + r‘SAffilezp(jTo)
81 2,2 . . 4 42 7 . 2 >
- (ﬁ)#m &1 Arezp(3To) — jpa,m* AT Arezp(3To) + f1€7 Arezp(3To)

.9 - . :
+ [2j7Q6A% + (§)p4°£11rsA¥ lezp(§To + 3jo2T2) = 0 (4.123)

in order to eliminate the secular terms from the particular solution of v; and retain the

periodicity of the solution. Expanding equation (4.123) with A; = $ezp(j¥), and separating
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the resultant equation into real and imaginary parts, we obtain

7 81
d = —ppa-=2rte®~ 6—4'P'4oa7r2€1
+392p4°1r a%¢, sin (39,;) + £17ra cos (397) , (4.124)

9 — pgym3a2€; cos 30, — —flra sin3®, (4.125)

ad) oa+ =2 J12 ¢2 £1a + Asa® + — 55

where &, is given in equation (3.71), f7, can be found in Appendix E, and As is defined by
equation (4.58). From the last two equations, we obtain the frequency response equation of

the form,

81

@[ (uz, + ERwta? 4 o))’ +(oz+%£?+asa2)2
9
- [(5617r)’+(§u407r3£1)’]a2]=0. (4.126)

From equation (4.126), we see that the trivial solution is always a steady-state response of
this specific resonance. Due to the complexity of equation (4.126), we only consider the
case in which p4, is zero in the following analysis. After this simplification, equation (4.126)
reduces to

&[4, + (o2 + 126t 4 a2 - Camya?] = 0. (4.127)

Now, besides the trivial response, we obtain the following nontrivial responses,

(a2)?,(a3)® = Ezls_g[ -pty\/p?-q] (4.128)
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where coefficients p and ¢ are given by

p = Qo+ fuf)As - (Gar), (4.129)

¢ = A () + (o4 207, (4.130)

We note that g is always positive. Therefore, these nontrivial free oscillations exist only if

p? > 4q and p < 0. These conditions imply that
3 4 3 2 2 2,2
(Eflx) - 2(§£l1r) (202 + f1,€7)As — 4A5p3, 2 0, (4.131)

and

(3617) > 4202 + fr,€0)As . (4.132)

From equation (4.131), we solve for the values of Aj for given values of o2, 2, and &, and

obtain the following inequality:

1.3
2As5p2, £ - _(5761)2(202'*'].726%)2
K2,

+ \/ (——)2(2re)202 + fr80) + 4CEm). (4.133)
M2, 2 2

This inequality provides the criterion regarding the existence of the nontrivial subharmonic
response.

When these conditions hold, it is possible for the system to respond in such a way that
the homogeneous oscillation (the A;ezp(jTp) term in equation [4.31]) does not decay to
zero, in spite of the presence of damping. Moreover, in the steady state, the nonlinear term

adjusts the frequency of the free oscillation to one third that of the excitation. In this case,
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the steady state response can be approximated by

v(1) vy (To, Ty, T2) + O(€?)

€ela cos(%To - -;) + Ay sin QTp ] + O(€2) (4.134)

where a is described by equations (4.128), where A, is defined by equation (4.32), a and &
are described by equations (4.124) and (4.125), respectively. The steady state value of the

phase angle is given as

03 + f1,€3/2 + Asa®
H2,

tan &, = ( ). (4.135)

Note that the response of the system is dictated by the initial conditions as follow: When
the initial conditions are selected in such a way that the nontrivial subharmonic resonance
exists, then the response of the system can be approximated by equation (4.134). Otherwise,

the system settles onto a steady state given by equation (4.134) with a = 0.

4.8 Summary and Discussion

In this section, we summarize the results obtained in the previous sections. Based on the
observations of previous investigators[49], and the results from previous section, we select
important system parameters and provide detailed discussions regarding their individual

influence on the steady state response.

4.8.1 Effect of the Length Ratio ¢

This problem is equivalent to a simply-supported beam subjected to both vertical and
horizontal excitations coming from the same source. The magnitude of this excitation is

proportional to the length ratio £. At the beginning of section 4.2, we solved a linearized
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model to obtain a response whose amplitude is proportional to this parameter. In the
primary resonance (section 4.4), although the amplitude of the steady state response can
be predicted by using linear theory, the frequency at which the steady state response reaches
its maximum amplitude also depends on the length ratio. Figure 4.6 shows the effect of
the length ratio £ on the amplitude of the primary resonance. From this figure, it is
very clear that the amplitude of the primary resonance increases when § increases. In the
parametric resonant case, the width of the frequency region in which the trivial solution
becomes unstable is also proportional to the length ratio. Reconsidering Figure 4.1, the
width between the two transition curves increases as £ increases. Moreover, the amplitude
of the nontrivial response depends upon § also. Figure 4.7 shows the effect of varying £ on
the nontrivial solutions for the principal parametric resonance. We note that, in Figure 4.7,
the amplitude of the nontrivial solution increases as £ increases. Moreover, points m; and
my in Figure 4.7, which are used to mark the origins of the branches of the nontrivial
responses, represent the same points as those in Figure 4.1. Furthermore, the frequency
region between points m; and m; corresponds to the region in which the trivial response is
unstable. In all the superharmonic resonances, there exists an additional solution, besides
the particular solution. The magnitude of these homogeneous solutions are proportional to
a higher order power of the length ratio. To be specific, this non-zero homogeneous solution
is of order O(£?) in the case where Q is near to (}), and, is of order O(£3) when Q is near
to (}). These facts imply that the length ratio is the primary parameter, or in other words,

the most important parameter, for the current problem.

4.8.2 Effect of the Frequency Ratio 2

The influence of this parameter on the response is not immediately obvious. In order
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a, = amplitude of vy(t)
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Figure 4.6: Influence of £ on the primary resonance
a, = amplitude of homogeneous solution
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Figure 4.7: Influence of £ on the principal parametric resonance
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to understand the influence of 2 on the response of the system, we need to separate our
discussion in three categories: low frequency ratios, non-resonant frequency ratios and
resonant frequency ratios.

First, let us begin our analysis in the low frequency ratio region. Let us consider the
inertial force applied to the system. The accelerations a; and e, depend upon the square
of . This implies that the inertial force is also proportional to the square of the frequency
ratio, although this does not imply that the amplitude of the steady state response is overall
proportional to the square of 2. However, in the region of low frequency ratio, the amplitude
of the steady state response is proportional to the square of the frequency ratio. To show

this, let us consider the amplitude of the linear response, i.e., equation (4.25),

2 £
™\ /(1-Q2)2 + 4302

~ %592 (4.136)

for Q « 1. This implies that the amplitude of the response depends upon the length ratio as
well as the frequency ratio. This point had been pointed out by previous investigators[30).

Next, let us consider the non-resonant case. When resonance is excited, the free oscilla-
tion term will decay to zero due to the presence of the damping. Consequently, the linear
approximation will be sufficient to provide a good prediction. When a resonance is possible
at a given operating frequency, we have to include an additional term in order to capture
the effect of the homogeneous solution. Therefore, we may find that some additional peaks
exist along the smooth profile of the linear response curve.

However, let us consider the asymptotic expansion of the geometrical relation, i.e. equa-
tion (4.22). From this expansion, it is clear that the external applied force is composed of

multiple frequencies. Generally speaking, when Q is near to (%), we can expect a super-
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harmonic resonance arising from the response of the system. It will be very difficult to
verify these higher order(n > 3) superharmonic resonances, since the magnitude of the
homogeneous solution is proportional to the corresponding order of the length ratio. Un-
less the length ratio is large enough, the contribution of the homogeneous solution on the
steady state response will be very small. This explains the reason why these homogeneous

resonances do not appear in the simulation results.

4.8.3 Effect of the Mass Ratio S

In the primary resonance case, the mass ratio S appears in the nonlinearity of the system
and affects the response of the system by bending the backbone of the frequency response
curve to the left. Figure 4.8 shows the effect of S on the frequency response equation

(equation [4.92]). From this figure, it is very clear that S plays the role of nonlinearity in

a, = magnitude of v;(t)
0.2 T T T T T

S=1.00 S =0.50 S =0.00
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a, 0.1
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0 ‘ 1 1 1 | 1
0.6 0.7 0.8 0.9 1 1.1 1.2

frequency ratio

Figure 4.8: Influence of S on the primary resonance

the primary resonance. When S = 0, there is no nonlinearity associated with the primary
resonance, and hence no bending of the frequency response curve. When S # 0 there exists

some nonlinearity associated with the frequency response equation and the backbone curve
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of the frequency response curve bend to the left.

In the principal parametric resonance, the influence of S is included in the terms A4
and Ajs. According to the linear analysis, the main nose of instability, or in other words,
the unstable regions on the £ — 0; domain, will be enlarged if the value of S is increased. To
show this point, let us consider equations (4.62) to (4.69). From these equation we are aware
of the following facts: (1) the width of the region in which the trivial solution is unstable
increases when the mass ratio increases, (2) the amplitude of the nontrivial solutions a; and
a3 change slightly when the mass ratio increases. With these two observations, we know
that this parameter has both favorable and adverse effects on the principal parametric
resonance. An increment of S will enlarge the unstable region, while this increment will
also help to reduce the amplitude of the nontrivial solution. Figure 4.9 shows the effects
of S on the width of the main nose of instability. From this figure, it is very clear that the
distance between the two transition curves increases as S increases. Figure 4.10 shows the
effect of S on the branches of the nontrivial responses of the principal parametric resonance
(equation [4.92]). We use points m;, my, m3 and m4 to mark the origins of different
branches of nontrivial responses. We note that those two branches which originate from m,
and m3 correspond to the unstable responses, while those branches which originate from
points m, and my represent the stable responses.

In both of the superharmonic resonant cases, this parameter has a very interesting
influence on the response curves. When the frequency (2 is near to (%), the amplitude of the
homogeneous solution depends upon the length ratio and the mass ratio. Equation (4.107)
shows that the amplitude of the homogeneous solution is a linear function of the mass ratio.
Figure 4.11 shows the effect of S on the amplitude of the non-zero homogeneous solution

for the superharmonic resonance (2 ~ 1). The overall amplitude of this superharmonic
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a, = amplitude of the homogeneous solution
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Figure 4.9: Influence of S on the main nose of instability

a, = amplitude of the homogeneous solution
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Figure 4.10: Influence of S on the principal parametric resonance
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response first decreases as the mass ratio increases from 0 to a critical value which is about
0.11, while this amplitude will increase as the mass ratio increases beyond this critical value.
We note that the existence of this resonance is independent of the mass ratio. Hence, it is
possible to suppress the contribution of this resonance by choosing the mass ratio properly,

i.e., near 0.11. The mass ratio has the same effect on the other superharmonic resonance,

a, = magnitude of the homogeneous solution at ) = %

0.06 T T T T T T T T T
005 ¢ =0.10 7
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0.01 | .
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Figure 4.11: Influence of S on superharmonic resonance (2 = 1)

i.e, when Q is near to (}). Figure 4.12 shows the effect of S on the superharmonic resonance
in which @ = % From this figure, we can observe the trace of the peak amplitude a,
associated with this superharmonic resonance. From this it is seen that a proper choice of
the mass ratio will help us in reducing the amplitude of this resonance. A simple calculation
of the roots of coefficient fg, show that the optimal value of S is about 1.44. Therefore, for

this superharmonic resonance, we can diminish the contribution of the free oscillation term

by letting S be near to 1.44.

4.8.4 Effect of the Damping Parameters p, and pu4

The internal material damping parameter 2 has favorable effect on the response of the
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a, = peak amplitude associated with superharmonic resonance (§ & %)
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Figure 4.12: Influence of S on superharmonic resonance (Q = 1)

system. For the region in which the linear approximation is valid, the amplitude of the
particular solution decreases as u; increases (equation [4.25]). As shown by the analysis,
the peak amplitude associated with the primary resonance can be predicted by the linear
approximation. Hence, u2 is expected to have the same effect on the primary resonance.
Figure 4.13 shows the effect of 2 on the the primary resonance. From this figure, it is very
clear that the amplitude of the primary resonance decreases as u; increases. Moreover, the
shift of the frequency associated with the primary resonance also decreases as u; increases.

In the principal parametric resonance, this damping parameter decreases the region of
the instability by lifting it from the 2-axis and narrowing its boundaries in the £Q - plane.
Figure 4.14 shows the effect of u; on the region in which the trivial response becomes
unstable. From this figure, it is very clear that the main nose of instability associated with
the principal parametric resonance shrinks as u; increases. Figure 4.15 shows the effect of
i2 on the branches of the nontrivial responses associated with the parametric resonance.

Note that we use m;, mg, ms and mg to mark the origins of the nontrivial solutions. Those
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branches originating from points m; and ms correspond to the unstable responses, while

branches originating from points m; and mg represents the stable responses.

a, = magnitude of v;(2)
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Figure 4.13: Influence of u; on the primary resonance (equation [4.92])
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Figure 4.14: Influence of x; on the main nose of instability

In deriving the equation of motion, we assumed that the bearing damping is very small
compared to the transverse displacement. Based on this assumption, the bearing damping

3 is assumed to be of order O(£2). The analyses in previous sections show that this damping
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a, = amplitude of the homogeneous solution
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Figure 4.15: Influence of 2 on the principal parametric resonance

parameter has no influence on the response within the frequency region under investigation.
This does not imply that u3 can be ignored. If we extend the path of this work, it will be
very clear that this parameter can have influence on the higher-order (n > 3) superharmonic
resonances.

The effect of the damping parameter p4, which is used to model the friction between
the slider mass and its contact surface, is complicated. This slider friction force is made up
of two parts. The first part arises from the action of rigid body motion, while the second
one is caused by foreshortening. The friction force introduced by rigid body motion can be
treated as linear and has an adverse effect on the response. The slider friction introduced
by foreshortening is nonlinear and has a favorable effect on the response of the system.
When the response amplitude is small, the foreshortening introduced is small. In this case,
the slider friction is mainly composed of friction introduced by rigid body motion. Hence,
an increase of the value of u4 will be accompanied with an increase of the slider friction

force. This corresponds to an increase of the axial force acting on the connecting rod and
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hence an increase of the amplitude of the response. However, as the amplitude of the
response increases, the friction force introduced by the elastic deformation increases also.
This friction force acts as a resistance to prevent the connecting rod from further elastic
deformation. Hence, the friction introduced by foreshortening has a favorable effect on the
response of the system. Based on these observations, we now proceed to consider the effect

of p4 in each individual resonance case.

0.2

0.15

T

0.05

T

0 ] I 1 1 ]
0.6 0.7 0.8 0.9 1 1.1 1.2

Frequency ratio

Figure 4.16: Influence of u4 on the primary resonance (2 ~ 1)

In the cases of primary resonance (2 = 1), third order superharmonic (2 ~ }) and
subharmonic (2 & 3) resonances, u4 has a favorable effect. Figure 4.16 shows the effect of
p4 on the primary resonance. As shown in this figure, it is very clear that p4 has a favorable
effect on the response by reducing the amplitude of the response. In the superharmonic
resonance, we can not reduce the amplitude of the free oscillation term to zero because of
its existence. Figure 4.17 shows the effect of u4 on the superharmonic resonance in which
Q= % From this figure, it is very clear that the presence of p4 will increase the amplitude of

the non-zero homogeneous solution and hence has an adverse effect. Figures 4.18 and 4.19
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a, = amplitude of the homogeneous solution
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Figure 4.17: Influence of p4 on superharmonic resonance (2 =~

0.03 T T T T T T T
0.025

0.02

£ 0.015
0.01

0.005

0 1 1 | 1 1 1 1

1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 24
Frequency ratio

Figure 4.18: Influence of u4 on the main nose of instability (2 = 2)
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Figure 4.19: Influence of p4 on the principal parametric resonance (2 = 2)

show the effect of u4 on the the principal parametric resonance. From Figure 4.18, we note
that the distance between the transition curves increases as pu4 increases. In other words,
the presence of this damping parameter will increase the possibility for the existence of the
nontrivial response and hence has an adverse effect. However, Figure 4.18 only reveals the
effect of the friction force introduced by the rigid body motion. Hence, we conclude that
p4 has an adverse effect of the principal parametric resonance by increasing the width of
the main nose of instability associated with the principal parametric resonance. We now
consider Figure 4.19 which shows the effect of u4 on the principal parametric resonance.
From this figure, it is very clear that u4 has a favorable effect regarding response amplitudes.
This implies that the friction force introduced by the elastic deformation can help in reducing

the amplitude of the response.



Chapter 5

Comparisons between Distributed and Lumped

Parameter Models

In the present chapter, we compare the analytical results obtained by using the dis-
tributed and lumped parameter models. Instead of examining the effects of each parameter
on the overall response of the flexural vibration, this comparison proceeds by considering
the resultant equations describing the resonance conditions. In order to make this com-
parison, the analytical results obtained in chapter 3 need to be modified. Since the effects
of shear deformation and rotary inertia are not included in deriving equation (4.21), we
delete these two effects by setting az = a3z = 0 from the results obtained in chapter 3.
Moreover, we substitute the value of n = 1 into the results from chapter 3, because only the
first normal mode was used to convert equation (4.20) into a discrete system. After these
modifications have been completed, we first consider the primary resonance case, and then
the principal parametric resonance. After these resonances, we compare the results for the
superharmonic resonances, and then the subharmonic resonance. We close this chapter by

providing some summary points in the final section.

5.1 Primary Resonance (2 = 1)

In this section, we consider the case in which the operating frequency is near to the first
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flexural natural frequency. We first consider the linear results obtained in sections 3.3 and

4.4. By letting n = 1 in equations (3.88 ) and (3.89)

d = —-pgla—%cos%, (5.1)

ad; = oia+ £—1:sin o, (5.2)

which are exactly the same as equations (4.75) and (4.76) in section 4.4. This implies
that the continuous and discrete approaches will give us exactly the same result. Next, we
consider the nonlinear results. After the effects of shear deformation, rotary inertia and

bearing damping have been removed, we obtain the following equations:

ad = —pja-— (#—g"—)w"a3 - %cos ®,, (5.3)
ad, = ogia+A%°%+ % sin (5.4)
where
2 2
p o (P g 15y
p= (G a2 - D)% (5.5)

from equations (3.112) and (3.113) by letting n = 1. From the discrete analysis, we obtain

d = —py - (Ils——fl)w"a3 - %cos o, , (5.6)
ad®) = o0+ Asa®+ %sin o, , (5.7)
where
4
As = %s (5.8)

in describing the resonance condition when @ =~ 1, which is repeated for convenience.



143

Basically, these two sets of equations are of the same form. The equations describing the
variation of the amplitude function a are exactly the same. The only difference between
these two sets of equations is the strength of nonlinear terms, Aj and As, appearing in the
equations describing the variation of the phase angle. As we compare the values of A} and
As, we find that the difference between them is strongly dependent on the mass ratio S.
Moreover, the distributed parameter approach will provide a slightly stronger nonlinearity

than the lumped parameter one.

5.2 Principal Parametric Resonance (2 = 2)

In this section, we consider the principal parametric resonance. We first compare the
linear results obtained in the first parts of section 3.2 and 4.3. After we set n = 1 and
delete the effects of shear deformation, rotary inertia and bearing damping, we obtain the

following equations:

a = —ppa—2a6 A% sin (29,) + an?u, € cos (28;) , (5.9)
a®| = o01a - 2a£A] cos(2®;) — an?€y g, sin (28;) (5.10)
where
x?
Al =(1+2S)T (5.11)

from equations (3.53) and (3.54). From the discrete approach, we obtained

a = —pga—2afAysin2d, + a7r2;z4°£1 cos (29,), (5.12)

a®| = o010 - 2a6A4c0529, — an?p, € sin (29,) (5.13)
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where

2
Ag=(1+ 25)"T . (5.14)

When we compare these two sets of equations, it is interesting to find that they are exactly
the same. This implies that these two approaches will lead to the same linear results. In
consequence, the main nose of instability for the principal parametric resonance will be the
same. Next, we compare the nonlinear results obtained from the second part of sections 3.2

and 4.3. We obtain the following equations:

d = —pga- (%9_)”4‘13 — 2af, A sin (2®2) + apg €2 cos (282),  (5.15)

ad), = o9a+ Aha® — 2aA!€; cos (287) — apq, L2707 sin (28,) (5.16)

from equations (3.84) and (3.84) by letting n = 1, a; = a3 = 0 and deleting the effect of

bearing damping, p3, = 0. From the discrete analysis, we obtained the following equations:

ad = -—pga- (%)w‘as - 2af3A45in (28;) + &7l pg acos (28;),  (5.17)
a®; = o9a+ Asa® - 2af,A4 cos (28;) - €am2ug,asin (287) . (5.18)

We find that the equations describing the variation of the amplitude function are exactly
the same. The difference between these two approaches is the strength of the nonlinearities
(A% and As) appearing in the equations describing the variation of the phase angle. From
these, we recognize that the distributed parameter and the lumped parameter models will
provide the same result in determining the main nose of instability. Since the effects of
the nonlinearities are again described by the parameters, A} and Aj, we obtain the same

conclusion as that obtained in the last section. Briefly, the effect of nonlinearity is very
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sensitive to the mass ratio, and the distributed parameter approach will provide a stronger

nonlinearity than the lumped parameter one.

(I
N’

5.3 Superharmonic Resonance ({2 =

In this section, we consider the superharmonic resonance in which the operating angular
speed is near to one half of the first flexural natural frequency. After we delete the effects
of shear deformation, rotary inertia and the bearing damping, we obtain the following

equations:

r #406% .
d = —pga+ —¢ Sib ®, - (3 Al)cos ®, , (5.19)
[ p4o£l
a®] = oja+—>= g o, + (3 A})sin ¥, (5.20)

from equation (3.119) and (3.119) in section 3.4, where A} is given in equation (5.11). From

the lumped parameter model, we obtain

d = ”’4061 l2
= —pg @+ — 6 sin ®; — (3 — Ay)cos ®, (5.21)
ad] = o0+ #4°£1 cos + (3 A4)sin @, (5.22)

from equations (4.103) and (4.104), where Ay is given in equation (4.42). As we compare

these two sets of equations, we see that A4 = A and thus they are identical.

5.4 Superharmonic Resonance (2= 3)

In this section, we consider the superharmonic resonance in which the the operating

angular speed is near to one third of the first natural flexural frequency associated with the
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connecting rod. We first compare the results obtained in sections 3.5 and 4.6. After we
delete the effects of shear deformation, rotary inertia and bearing damping, we obtain the

following equations:

n .
ad = —pya- (#40 )a3r (#40 )Einla — (m)ffmo sin @3 + f3 & cos & ,(5.23)
ad, = oa+ ﬁ‘-a& + A% + (1536)&‘%’ cos &2 — f; & sin d; (5.24)
where
2 2
f{x = _2_51.+.11_”+_5_A'1_.A_1, (5.25)

2304 © 1728 ' 144 63
155 17x  91A7 AP
36864r © 27648 ' 115207 _ 3607

f2, (5.26)

from equations (3.128) and (3.129). From the lumped parameter analysis, we obtained

o = —pya- (BR)adrt - (ER)dnta - (o

ad), = 02a+&£1a+A5a + (—

1536 )61[“40 SIH QZ + f81 6:13 COs ¢2 ,(5.27)

1536)61“40 cos Q? - f81 61 SID Q? (5-28)

from equations (4.111) and ( 4.112), where

17 = x2S xS x1$?

fo = - Tost 32 " 232~ 252

_ 1 3, 3 A2

= g M (5.29)
P 5 + 17r x3 + 461xS n3§ w3S?
8 64T ' 2160 5760 ' 23040 1440 1440

5 50r | 461A, A2
= ~%ar 27648 T 11520r _ 3607 (5.30)

For this superharmonic resonance, the results obtained from two approaches agree with each
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other in a qualitative sense. However, the numerical values of each coefficient are different.
Generally speaking, the magnitude of coefficient f, is less than the magnitude of f; for
0.40 < S < 1.00. Otherwise, the magnitude of f;, is larger than that of fg,. This implies
that the lumped parameter model predicts a larger response amplitude than the distributed
parameter model for 0.4 < § < 1.0, while the lumped parameter model predicts a smaller

response amplitude for either § > 1.00or 0 < S < 0.4.

5.5 Subharmonic Resonance (2 =~ 3)

In this section, we consider the subharmonic resonance in which the frequency ratio is
near to three times of the first natural flexural frequency associated with the connecting
rod. After we neglect the effects of shear deformation, rotary inertia and bearing damping,
we obtain the following equations:
Foypags _ (

a = —pza—( 3 )Eﬂr TP

fs,fl o2

( )§1p40a sin (39;) + cos (38,) , (5.31)

a®, = oga+ AYa®+ Sy g2 £1a+( )§1p4°a cos (39;) - 3 fala sin (3®2) (5.32)

where

_4161 201 , 117, 27

! - 1

fia = —og e T gl - AT (5-33)
4595 2 a0 34

fi, = —omt IS4l (5.34)

from equations (3.142) and (3.143) in section (3.6). While, for the lumped parameter model,
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we obtain the following equations:

7 81
o = —pya- (%)W‘a3 - (567" a0
9 . 3
+ (ﬁ)&p%az sin (3®;) + -iflraz cos 3%, , (5.35)
fra

9 3 .
ad), = o0+ —i—ffa + Asa® + (5-2-)51;140 a’ cos (3®,) - 5617”12 sin (3®2) (5.36)

from equations (4.124) and (4.125), where

387 27x4 + 243728 B 2774S  2774S?

fo = 5 -5 32 20 20
387 24372  243A, 27A2
= 8 e T 5 (5.37)

From the results obtained by these two different approaches, we observe that they give the
same qualitative behavior, although the numerical values of the coefficients are different.
Generally speaking, the magnitude of coefficient f], is less than that of coefficient f7,. The
magnitude of coefficient f; is larger than 1.5. These implies that the distributed parameter

model predicts a larger nontrivial homogeneous solution.

5.6 Summary

In this chapter, we compared the results obtained by using two different models in
investigating the flexural vibration associated with the flexible connecting rod. Instead of
discussing the effects of each parameter on the overall response, we proceeded by considering
the resulting equations which describe the resonance conditions. The following conclusions
are drawn: (1) these two models provide the same results in the linear part, and (2) the

distributed parameter model will provide a stronger nonlinearity than the lumped parameter
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model. It can be seen from the value of A) that in the distributed parameter model the mass
ratio is not the only source of nonlinearity, and that the geometric nonlinearity (associated
with finite deformations) is more significant in the distributed parameter model than in the
lumped parameter model.

The absence of the bearing damping parameter p3 in the lumped parameter model is
caused by assuming that it is of order O(€?). Although the same assumed order is applied
in the distributed parameter analysis, the effect of this parameter has been recovered from
the final equation describing the resonance conditions, since the expansions included term
beyond O(e?). However, because of the nature of the lumped parameter model, the effect of
bearing damping was neglected from the very beginning of the analysis, since its presence
would require modification of the assumed mode shape employed. Actually, this parameter
can be included in the lumped parameter analysis by following the analysis pattern outlined

in Appendix A.



Chapter 6

Numerical Solutions and Comparisons

In the present chapter, we present some numerical simulation studies of equation (4.21).
The main purpose is to verify the analytical work with these numerical solutions. In order to
take a systematic approach and obtain a clear picture of the results, we identify the various
cases considered with the help of a table, Table 6.1. In obtaining the numerical solutions,
we use the programs LSODE[22] and AUTO([14]. The former is a numerical solution
package for solving initial value problems for ordinary differential equations, and the latter
is a software package capable of tracking steady state response curves and, simultaneously
providing stability information. AUTO is used to obtain the global picture for the response
curves, and LSODE to provide time traces for specific parameter values.

In Figure 6.1 we demonstrate that the general features of the response of the nonlinear
lumped paramter model are well predicted by our asymptotic results. This is done by com-
paring the analytically predicted frequency response curve with that computed by AUTO
and with simulations from LSODE at several frequencies for a specific set of parameter
values.

In Figure 6.1 we show the frequency response generated by the three methods described
above. We note that the agreement is very good, and that the improtant features are
captured by the analysis. In particular, the bending of the primary resonance near = 1,

and the parametric resonance near §2 = 2 all appear in the simulations and in both response
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curves. We now turn to the details of how the individual parameters affect the overall

response, and describe the accuracy of the analysis.

a, = amplitude of the flexural response
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Figure 6.1: Frequency response curves from MMS, LSODE and AUTO

In section 6.1, we consider the effect of the length ratio £ on the overall response of
equation (4.21). In section 6.2, the effect of the mass ratio on the overall response is
considered. We examine the effects of the damping parameters puz, 13 and p4 on the overall

response in section 6.3. In section 6.4, we summarize the observations to close this chapter.

6.1 Influence of the Length Ratio £

In this section, we consider the the effect of the length ratio £ on the overall response
of the model given by equation (4.21). It is the purpose of this section to verify the predic-
tions from the nonlinear approximation in chapter 4 with the help of the numerical tools
LSODE and AUTO. We use Table 6.1 to identify the various cases considered for different
parameters combinations.

We first compare the frequency response curves obtained in chapter 4 with the results



Case | £ S | p2 | pa | pa || Case| ¢ S B2 | p3 | pa
0.005 | 0.00 | 0.02 | 0.00 | 0.00 2 0.005 | 0.50 | 0.02 | 0.00 | 0.00

1

3 |0.005|1.00 | 0.02 | 0.00 | 0.00 4 |[0.010]0.00| 0.02 [ 0.00 | 0.00
5 |0.010 | 0.50 | 0.02 | 0.00 | 0.00 6 |(0.010]1.00|0.02 | 0.00 | 0.00
7

9

0.050 | 0.00 | 0.02 | 0.00 | 0.00 8 10.050 | 0.50 | 0.02 | 0.00 [ 0.00
0.050 | 1.00 { 0.02 | 0.00 { 0.00 || 10 | 0.100 | 0.00 | 0.02 { 0.00 | 0.00
11 | 0.100 | 0.50 | 0.02 | 0.00 { 0.00 || 12 | 0.100 | 1.00 | 0.02 | 0.00 | 0.00
13 | 0.010 | 0.00 | 0.04 { 0.00 { 0.00 | 14 | 0.010 | 0.50 [ 0.04 | 0.00 | 0.00
15 | 0.010 | 1.00 | 0.04 { 0.00 | 0.00 || 16 | 0.050 | 0.00 | 0.04 | 0.00 | 0.00
17 | 0.050 | 0.50 | 0.04 { 0.00 | 0.00 | 18 | 0.050 | 1.00 | 0.04 | 0.00 | 0.00
19 | 0.010 | 0.00 | 0.02 | 0.00 | 0.40 | 20 | 0.010 | 0.50 | 0.02 | 0.00 | 0.40
21 |0.010|1.00 | 0.02(0.00(040( 22 |0.050}| 0.00|0.02 0.00|0.40
23 | 0.050 | 0.50 | 0.02 { 0.00 ({ 0.40 || 24 | 0.050 | 1.00 | 0.02 | 0.00 | 0.40
25 |0.010 { 0.00 | 0.02 | 0.08 [ 0.00 || 26 | 0.010| 0.50 | 0.02 [ 0.08 | 0.00
27 | 0.010 | 1.00 | 0.02 | 0.08 | 0.00

Table 6.1: Identification of Combinations of Parameters

from AUTO. After this, we focus our attention on qualitative observations. Figure 6.2
shows the frequency response curves obtained from the analytical work and AUTO for
case 5. Figure 6.3 shows the frequency response curves for case 6. From these two figures,
it is clear that the nonlinear approximation matches the numerical results quite well when ¢
is small. When the length ratio £ is larger than 0.10, the analytical result can provide only
qualitative consistency with the numerical results. According to the analytical results, when
€ is larger than 0.10, the detuning associated with the primary resonance becomes so large
that the peak amplitude occurs at negative values of the frequency ratio. This is physically
impossible. Based on this observation, we would like to use results from AUTO to carry out
a qualitative investigation regarding the effect of the length ratio £ on the overall response
and verify the analytic predictions. Figure 6.4 shows frequency response curves for S =
0.0 with different £ values (cases 1, 4 and 7). According to the analytical results, S = 0
corresponds to a linear oscillator, because S plays the role of nonlinearity in equation (4.21).
This implies that there is no nonlinearity associated with equation (4.21), and hence there

is no detuning associated with the primary resonance. Moreover, the amplitude of the
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response is proportional to £. The main nose of instability does exist, because its existence
is independent of the nonlinearity. Both of these two points are verified by Figure 6.4. We
note that, in Figure 6.4, the peak amplitude increases from 0.06 to 0.39 when £ increases

from 0.005 to 0.05.

a, = overall response

0.16 T T T T T
0.14 - AUTO — ]
Analytical —
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a, 0.08 le = 0.00
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0.04 -
0.02 i
0 1 | 1 |
0 0.5 1 1.5 2 2.5 3

Frequency ratio 2

Figure 6.2: Comparison between Analytical result with AUTO ( case 5)

a, = overall response
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0.04 - 4
0.02 |+ N
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Figure 6.3: Comparison between Analytical result with AUTO ( case 6)

Next, we consider cases in which § # 0. According to the analytical predictions, the
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a, = overall response
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Figure 6.4: Frequency response for cases 1, 4 and 7

cases in which S > 0 correspond to systems with a softening type of nonlinearity. Moreover,
the strength of nonlinearity depends on the value of S. The peak amplitude of the response
shall be the same as that given in the linear approximation, while the detuning associated
with the primary resonance (o,) is proportional to the square of {. Figure 6.5 shows the
numerical results for different £ values with S = 0.50 (cases 2, 5 and 8), and the results for
S = 1.00 (cases 3, 6 and 9) are given in Figure 6.6. From these figures, we observe that the
analytical work does provide results which are consistent with the numerical solution. It is
interesting to note that as £ increases, the superharmonic resonance near Q = % begins to
appear in Figures 6.5 and 6.6. This is as predicted by the analysis of section 4.5. When
¢ is smaller than 0.10, the analytical approximation provides very good results. When ¢
is larger than 0.10, the analytical prediction again provides only qualitative information.
Table 6.1 contains bifurcation information obtained from analytical results and AUTO. In
this table, we use PD; and PD, to mark the points at which principal parametric resonance

instabilities occur, while we mark the turning point associated with the primary resonance
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by LP, and LP,. In other words, the region between points PD; and PD; represents the
main nose of instability, and the response curve between points LP; and LP; represents
the unstable response near the nonlinear primary resonance. The readers should refer to
Figure 6.7 for the locations of these points. For the sake of clearness in the figures, the
branches of the nontrivial response associated with the parametric resonance are generally
not included. However, the bifurcation points listed in table 6.1 are sufficient to provide
the important information. From Table 6.1, we draw the following conclusions. When the
length ratio £ increases, (1) the detuning associated with the primary resonance (the shift
of point LP,) increases, and (2) the width of the main nose of instability (the distance

between points PD; and PD,) increases, and (3) the superharmonic resonance near

[T

appears. We note that, when the length ratio £ is larger than 0.10, the analytical results
predict a considerable detuning associated with the primary resonance and the value of LP;
becomes negative. Since the Method of Multiple Scales can only provide local analysis, this
prediction becomes unreliable. Based on this fact, the bifurcation points for large £ values
are not provided. As a matter of fact, AUTO also fails to provide the overall response
curve when £ is larger than 0.10. We note that, in some cases, there may exist no limit
points LP; and L P; associated with the frequency response curves either from the analytical
approximations or from AUTO. This will be explained in section 6.2.

Figures 6.8 to 6.11 show comparisons between analytical approximations and simulation
results for time traces at the = -;— superharmonic resonance. From these figures, it is very

clear that the analytical approximations match the simulation results quite well.
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a, = overall response
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Figure 6.5: Frequency response for cases 2, 5 and 8
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Figure 6.6: Frequency response for cases 3, 6 and 9
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a, = overall response
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Figure 6.8: Comparison between simulation and analytical approximation for case 8
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Case Analytical AUTO
1 PD, =1.9855 PD; =2.0145 || PD, = 1.9700 PD, = 2.0330
2 LP, =0.9711 LP;, =0.999 LP =- LP, = -
PDy =19549 PD,; = 2.0451 | PD, = 1.9131 PD, = 2.1013
3 LP, =09270 LP, =0.9643 || LP, = 0.9505 LP; = 0.9390
PD, =1.9287 PD; =2.0713 | PD, = 1.8680 PD, = 2.1670
4 PD, =1.9549 PD,; =2.0450 | PD, = 1.9153 PD, = 2.0996
5 LP, =0.8477 LP, =0.9296 || LP, =0.9353 LP, =0.9104
PD; =19034 PD, =2.0966 || PD, = 1.8290 PD, = 2.2312
6 LP, =0.6925 LP, =0.9092 (| LP, =0.8582 LP, =0.9215
PD, =1.8533 PD,; = 2.1467 | PD, = 1.7564 PD, = 2.3909
7 PD, =1.7541 PD, = 2.2459 {| PD, = 1.6354 PD, = 2.8600
8 LP, =0.7830 LP, =-2.8534 || LP, =0.8430 LP, = 0.7003
PD, =1.5067 PD, =2.4931 || PD, = 1.3593 PD, > 3.00
9 LP =- LP = - LP, =0.8133 LP, = 0.5956
PD; =1.2600 PD, =2.7400 || PD, = 1.0936 PD, > 3.00
13 | PD,=1.9711 PD,; =2.0289 || PD,=1.9460 PD, = 2.0664
14 LP1= - LPz - = LPl‘—‘ - LP2 = -
PDy=19098 PD; =2.0902 || PD,=1.8406 PD, = 2.2169
15 | LP;=0.94222 LP; =0.9985 || LP,= - LP, = -
PD,= 18575 PD,; =2.1425 || PD,=1.7637 PD, = 2.3811
16 | PDy=1.7565 PD, = 2.2435 || PD,=1.6382 PD,; = 2.8602
17 | LA=0.7873 LP, =- LP=0.8473 LP, = 0.7799
PD,= 15081 PD,=24919 || PD,=1.3625 PD; > 3.0
18 | LPA=0.7293 LP, =- LP=08150 LP,=-
PD,=1.2609 PD, =27391 | PD,= PD; =
19 | PD;=1.9542 PD, =2.0458 || PD,=1.8882 PD, = 2.1314
20 | LPi=0.8477T LP, =- LP,=0.9376 LP, = 0.9120
PD,=1.9030 PD, =2.0970 || PD,=1.8156 PD, = 2.2493
21 | LPA=0.6925 LP, =- LP=0.8612 LP; = 0.9202
PD;=1.8531 PD; =2.1469 || PD,= 1.7481 PD, = 2.4045
22 | PD,=1.7509 PD, =2.2491 || PD,=1.5537 PD, = -
23 | LAA=0.7830 LP, =- LP=- LP = -
PD;= 15053 PD; =2.4947 || PD;= 13400 PD,; = -
25 | PD1=1.9549 PD, =2.0450 | PD;= 19141 PD, = 2.1009
26 | LP,=0.8477 LP, =0.9296 (| LP,=0.9376 LP, = 0.9088
PDy=19034 PD, =2.0906 || PD,=1.8283 PD, = 2.2319
27 | LPA=0.6925 LP, =0.9092 || LP,=0.8554 LP; = 0.9210
PD,= 18533 PD, = 2.1467 || PD,=1.7560 PD,; = 2.3915

Table 6.2: Comparison of Bifurcation Data
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a, = overall response
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Figure 6.9: Comparison between simulation and analytical approximation for case 5
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Figure 6.10: Comparison between simulation and analytical approximation for case 9
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a, = overall response
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Figure 6.11: Comparison between simulation and analytical approximation for case 6

6.2 Influence of the Mass Ratio S

In this section, we investigate the effect of the mass ratio S on the overall response
predicted by equation (4.21). According to the analytical work, the mass ratio S plays
the role of the nonlinearity in equation (4.21). Moreover, the strength of the nonlinearity
depends in a complicated way on the mass ratio. In section 6.1, it was shown that the
linear approximation matches the nonlinear approximation as well as the numerical solu-
tions for case in which S is zero. For the primary resonance, the detuning associated with
the primary resonance increases linearly as S increases, while the peak amplitude remains
unchanged. There will be no detuning associated with the primary resonance when S =
0. Hence, when S = 0, there is no bifurcation associated with the primary resonance. In
the principal parametric resonance, the width of the main nose of instability increases as
S increases. Moreover, the amplitude of the responses changes as the mass ratio changes.

In the superharmonic resonance in which € is near to one half, the mass ratio affects the
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response in a vei'y interesting way. The amplitude of the response decreases as S increases
from zero to a critical value, while the amplitude increases after S increases beyond this
critical value. Figure 6.12 contains the frequency response<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>