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ABSTRACT

NONLINEAR VIBRATIONS OF A FLEXIBLE

CONNECTING ROD

By

Shang—Rou Hsieh

An analytical and computer simulation investigation of the dynamic behavior associated

with the flexible, uniform connecting rod of an otherwise rigid, in line, planar slider-crank

mechanism is presented. The main goal is to analyze the flexural response of the elastic

connecting rod and to study how this response depends on the system parameters. More-

over, this work emphasizes nonlinear analyses of the dynamic response and its associated

stability.

Two different approaches are used in modeling the flexural vibration of the elastic con-

necting rod. In the first approach, the model used is general and includes the effects of

finite axial and transverse deformations, internal material damping, bearing friction, slider

friction, shear deformation and rotary inertia. The axial and the flexural vibrations are

described by two nonlinear coupled partial differential equations. In the second approach,

the flexural vibration of the connecting rod is described by a single nonlinear ordinary dif-

ferential equation in the second approach which is obtained from the more general model



by a single mode Galerkin truncation. In deriving this equation, the effects of the shear

deformation and rotary inertia are neglected. Moreover, the contribution of axial inertia is

neglected in analyzing the acceleration components.

In studying the dynamic response of the connecting rod, the method of multiple scales

is employed to solve the equations of motion. The slenderness ratio of the connecting rod is

selected as the small scaling parameter. With the method of multiple scales, the solutions of

the axial and the transverse deformations are solved as asymptotic series expansions in terms

of this scale. In both of the approaches, several resonances, including the primary resonance,

the principal parametric resonance, and various super- and sub- harmonic resonances, are

investigated in detail. The analytical results are confirmed by the numerical solutions.

The analytical results show that the solutions and their associated stabilities depend

in a. nontrivial manner on several parameters. They are the ratios of the crank radius to

the length of the connecting rod, the ratio of the connecting rod mass to the slider mass,

the ratio of the crank speed to the fundamental frequency of flexural vibration, internal

material damping, bearing friction and slider friction. The effects of these parameters on

the flexural vibration of the connecting rod are investigated analytically and numerically.
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Chapter 1

Introduction

1.1 Description of the Problem

In this dissertation, we study the flexural vibration associated with the flexible con-

necting rod of an otherwise rigid, in~1ine, planar slide crank mechanism. This problem is

equivalent to finding the flexural response associated with a simply supported beam sub-

jected to (1) the motion of foundation which arises from the motion of the crank shaft, (2)

axial load arising due to the friction force applied to the slider end and the inertial force of

the slider mass, (3) a distributed load which arises from the inertial loading and is applied

along the span of the beam, and (4) concentrated frictional moments arising due to the

presence of bearing friction.

One of the traditional approaches to the dynamic analysis of mechanisms is based on the

assumption that the system is composed of rigid bodies. In fact, a mechanism is defined as

”an assembly of rigid bodies, connected by movable joints, to form a closed kinematic chain

with one link fixed and having the purpose of transforming motion” [32]. Based on this

definition, the early works in the dynamics of mechanisms concerned themselves with deriv-

ing the displacements, velocities, accelerations, etc, of the mechanism. A basic concept

of kinematic analysis is to determine the maximum acceleration of the machine member

as a function of the input characteristics. The dynamic analysis includes the derivation of

1
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inertial forces resulting from the rigid-body accelerations found from the kinematic analysis.

However, the rigid body assumption may not always hold. As required by modern industry,

machinery often needs to operate at high speed while maintaining accurate performance.

Due to their inherent flexibility, machine elements deflect when subjected to external loads

and/or internal forces. An increase of the operating speed results in increased inertial forces;

this increase of the the inertial forces can cause sever deformation of the machine members

even without the action of external loads. In other words, inertial loading arising due to

the high operating speed can be responsible for link deformation and associated vibrational

behavior. Also, link members are being designed to be of smaller mass in order to reduce in-

ertial loads, but this often leads to increased flexibility and thus flexural vibrations. Hence,

the traditional rigid linkage analysis is insufficient to provide a satisfactory prediction and

description of the function of these mechanisms. Recognizing these shortcomings of rigid

body analysis, the idea of kineto-elastodynamics has been introduced[17, 27], which is the

study of the motion of mechanisms consisting of elements that deform due to external loads

or internal forces. Basically, kineto-elastodyanmics is a field combining kinematics, dynam-

ics and elasticity together. A study of high-speed mechanisms with flexible links requires

knowledge of this field. Among the mechanisms commonly used, the slider-crank mecha-

nism may be the simplest. The simplicity of of the structure of the slider-crank makes it

useful as a beginning example, especially when only one linkage, the connecting rod, of the

mechanism is assumed to be flexible. This mechanism is also of practical interest to the

automotive, manufacturing, and agricultural industries.

1 .2 Literature Survey

The slider-crank mechanism, in which the connecting rod is considered to be a flexible
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member, has been investigated by several authors. In the following, we would like to review

some of the fundamental works by previous investigators. For more complete information,

please refer to the review articles[27, 17, 26, 45]. The methods employed in studying the

elastic mechanism problem can be grouped into the following categories: the finite element

method, experimentation and analytical methods.

The basic idea in studying this problem with the finite element method is to model each

member of the flexible mechanism as discrete system with a finite number of degrees-of-

freedom. Therefore, each member can be divided into several small discrete elements. The

motion associated with each individual element is described by a set of ordinary differen-

tial equations. Finally, each element equation is assembled together and form the global

equations of motion describing the motion of the whole mechanism. The advantage of finite

element method is that it provides a systematic and easy-to-apply procedure in modeling

the mechanism. Winfrey[51, 52] was among the first investigators who applied the finite

element methods to study elastic mechanism problem. The application of the finite element

method in studying elastic mechanisms was limited by lack of computational powers, in the

early 19708, because of the vast manipulation of the matrices associated with each element

and the assembling procedure. With the advent of the high-speed computers, the finite ele-

ment method has become more popular recently. In order that the finite element method be

applied to solve the elastic motion of the mechanisms, the continuous motion of the system

is modeled as a sequence of structure configurations at discrete crank angles upon which the

inertial loading is imposed. In order to solve these structures with finite element methods,

the rigid body motion associated with these instantaneous structures must be removed from

the model to avoid singular matrices. Winfrey[51, 52] accomplished this by directly apply-

ing the principle of conservation of momentum to the complete mechanism. Imam et al. [25],
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Midha et al.[l] and Gandhi et al.[18] considered the crank as a cantilever beam to avoid

this complication. Nath and Ghosh[28] removed the rigid-body degree of freedom from the

global matrices using a matrix decomposition approach. Concerning the formulation of the

equations of motion, two different approaches are employed: the stiffness and the flexibility

methods. Winfrey[51, 52] employed the displacement finite element method (the stiffness

technique of structural analyses) to study the elastic motion of mechanisms. This approach

yields directly the nodal displacements and requires displacement compatibility on inter-

element boundaries. Midha et al.[2] applied this approach to study the dynamic response

of a flexible member of a four-bar linkage. Erdman et al.[4, 3] employed flexibility method

of structural analysis to study flexible mechanisms. With this approach, adjacent elements

have equilibrating stress distributions on inter-element boundaries and the global degrees of

freedom are the stress components. Turcic et al.[48, 47, 13] studied the elastic mechanism

problem by using a general procedure in formulating the equations of motion, including

the effects of rigid-body motion and elastic coupling terms. Instead of a single type of

finite element, they generalized the procedure so that different types of finite elements can

be included in the same mechanism. The axial force is solved for by using a quasi-static

analysis, and is then included in the transverse component of the equation of motion by

the introduction of the geometrical stiffness matrix. The effects of elastic coupling terms

are included by adding the geometric stiffness matrix to the element stiffness matrix. This

approach is equivalent to modeling the deformation associated with the connecting rod by

von Karman’s finite deformation theory. Cronin and Liu[12] studied the linear vibration of

a connecting rod in a planar slider-crank mechanism by using the finite element analysis

software NASTRAN. The steady state responses associated with the connecting rod are

investigated with different combinations of parameters. Their results show that superhar-
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monic resonances can be observed when the operating frequency is near to one third or one

half of the flexural natural frequencies associated with the connecting rod.

Unlike the finite element method, analytical methods treat each individual flexible mem-

ber associated with the mechanism as a single continuous system. Assuming that only one

of the members is flexible, the motion of the flexible member in an otherwise rigid mecha-

nism is described by a set of partial differential equations which, under some circumstances,

can be converted into ordinary differential equations by modal truncation. The major

analytical methods applied in these investigations are: Newtonian dynamics[15], Hamilto-

nian methods[49], variational methods[44, 43, 42] and lumped mass approaches[35, 36, 34].

We note that the last two methodologies, especially the variational principle approach, are

equivalent to the finite element method. Some of the related fundamental works are outlined

below.

Neubauer, Cohen and Hall[5] examined the transverse deflection of the elastic connecting

rod of the slider-crank mechanism by neglecting the longitudinal deformation, the Corio-

lis, relative tangential, and relative normal components of acceleration. They showed that

the amplitude of the transverse vibration increases when the the dynamical axial load ap-

proaches the Euler criterion for static buckling of long, slender columns. They also pointed

out that a more thorough analysis of the response requires a more complete study which

includes the following dimensionless parameters: the ratio of crank speed to natural fre-

quency of flexural vibration, the ratio of connecting rod mass to slider mass, and the ratio

of crank radius to connecting rod length. By the Method of Averaging, and assuming a

small length ratio, Jasinski, Lee and Sandor[30, 31] investigated the dynamic stability of

a flexible connecting rod in a slider-crack mechanism. In the first paper, they studied the

slider-crank mechanism for which a concentrated mass is assumed to be attached to one end
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of the connecting rod. In the second paper, the connecting rod is assumed to be hinged at

each end, an unrealistic assumption. Both longitudinal and transverse deflections are con-

sidered, and the coupled linear equations describing the motion are obtained from the force

and moment balance of a differential element. Linearization of these equations was accom-

plished by neglecting the nonlinear coupling terms. Assuming a one-term product solution,

they obtain two coupled, nonhomogeneous Mathieu equations. Finally, they use the Routh-

Hurwitz criterion investigate the stable regions, and the associated steady-state solutions

of the transverse and axial deflections are given. Their results showed that the amplitude

of the transverse responses depends upon the frequency ratio quadratically, while the axial

response is not so sensitive to this parameter. Moreover, the vibration amplitudes increases

as the mass ratio increases. They pointed that future work in this area should include

elastic stability analyses using similar asymptotic methods and include the effects of the

nonlinear coupling terms. Viscomi and Ayre[49] examined the nonlinear bending response

of the connecting rod. Assuming that the inertia force from axial deflection is negligible,

the axial dynamic force is approximated by solving the so—called reduced equation. With

this axial force, the transverse equation is reduced to a single ordinary differential equation

by the Galerkin method. The resultant equation is then studied numerically. They showed

that, within the frequency range of interest, the second mode is relatively unimportant

and the response is closely approximated by the first mode dynamics. By comparing the

responses from the linear and nonlinear equations, it was concluded that the system is not

adequately defined by the linear form of the equation. Moreover, the existence of multiple

steady state solutions was also observed in some parameter regions. They pointed out that

the response depends on the following dimensionless parameters: the frequency ratio, the

mass ratio, the length ratio, transverse damping and the external piston force. With the
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same assumptions, Chu and Pan[11] carried out a similar study by use of the Kantorovich

method and the method of weighted residual. The final governing equations are studied

numerically. Their results show the the effect of small viscous damping on longitudinal

vibration is small and can be neglected. Moreover, a sudden increase in the amplitude of

the steady state response accompanied with a small increase of the operating frequency, i.e.

the jump phenomenon, has also been observed. Using variational principles, Thompson and

Ashworth[43] studied a planar slider-crank mechanism mounted on a foundation subjected

to a motion normal to the mechanism plane. They found that the combination resonances

can be observed when the sum or the difference of the operating and foundation frequencies

are approximately equal to the flexural natural frequencies associated with the connecting

rod. By applying regular perturbation method to Euler—Bernoulli and Timoshenko beam

models, Badlani and Kleinhenz[8] considered the dynamic stability of the undamped elastic

connecting rod of an in-line slider-crank, and compared the results from each approach.

Their results indicated that new regions of instability exist when both the rotary inertia

and the shear deformation are included in the analysis. Tadjbakhsh[41] introduces in a

general method for obtaining a single partial differential equation describing the transverse

vibration of an undamped elastic link of a mechanism which contains evolutes only, using a

two-parameter perturbation approach. The final dimensionless Hill’s equation is obtained

by assuming a sinusoidal shape function and using Galerkin’s method. His result shows that

contributions from the second mode and higher mode amount to less than one percent. Zhu

and Chen[54] studied the stability of the response of the connecting rod by using a regular

perturbation technique. A linear, undamped, nonhomogeneous partial differential equation

is used to described the transverse response based on Euler—Bernoulli beam theory. Using

this equation and Galerkin’s method, they obtain a set of decoupled homogeneous Hill’s
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equations. After reducing these to Mathieu equations, a first-order Floquet approach was

used to obtain the two highest p-periodic and 2p-periodic instability regions. Badlani and

Midha[9] studied the effect of internal material damping on the dynamic response behavior

of a slider-crank mechanism by using the regular perturbation method. Both steadystate

and transient solutions were determined and compared to those results obtained from the

undamped connecting rod. They concluded that the viscous internal material damping

may have significant influence, both favorable and adverse, on the steady-state and tran-

sient transverse responses. Sandor and Zhuang[37] studied a planar four-bar mechanism

by using a linearized lumped parameter approach. The effects of rotary inertia and end

mass are included in their investigation. A set of nonlinear ordinary differential equations

describing the dynamic behavior of the mechanism is derived based on the lumped mass

approach. These equations are then linearized and decoupled by using the concept of kine-

matic influence coefficients. The resultant equations are solved by using a finite difference

approach. Their investigation shows that the linearized approach is sufficient in represent-

ing the dynamic response, and that the rotary inertia and end mass of the moving link have

considerable effect on the elastic response of the mechanisms.

In addition to the analytical and computational works describe above, some experimen-

tal works has been carried out [6, 7, 40, 19]. Golebiewski and Sadler[19] determined the

bending stress at the midpoint of the elastic connecting rod analytically and experimen-

tally for a model derived by a lumped parameter approach using d’Alembert’s principle

and Euler—Bernoulli beam theory. They examined the effects of the crank speed, crank

length, and slider offset on the maximum bending stress at the midpoint of the connecting

rod. Superharmonic responses appeared in both the analytical and experimental results.

Sutherland[40] studied a fully elastic planar four-bar mechanism analytically and experi-
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mentally. By using Euler-Lagrange formulation and modal analysis with only one mode,

the dynamic behavior associated with the mechanism is described by a set of ordinary

differential equations with two holonomic constraints. The resultant equations are then

simplified by neglecting the shear defamation, rotary inertia, joint frictions, bearing mass

and all the external forces except the torque required to keep the mechanism operating at

a constant speed. These equations were linearized based on the assumption that the deflec-

tions associated with each elastic member are small. Consequently, the resultant equations

describing the dynamic behavior associated with the mechanism are three coupled, linear,

nonhomogeneous ordinary differential equations with time-varying coefficients. The Method

of Harmonic Balance is then applied to solve these equations. He pointed out that length

ratios and frequency ratios are the essential dimensionless parameters for this investiga-

tion. An experimental study was carried out to support the analytical work. High order

superharmonic resonances were observed in the experiments. His results indicated that the

modal analysis using only a single mode is sufficient to represent the dynamic response of

the mechanism.

1.3 Scope and Purpose

All previous investigations lead to a nonhomogeneous Mathieu equation to describe

the transverse vibration, and only linear stability analyses were provided. The existence

of superharmonic, subharmonic and combination resonances have been observed both in

simulations and experiments [49, 11, 19, 40]. An analytical study of the overall nonlinear

response, especially dealing with the superharmonic, subharmonic responses, and their as-

sociated stability, is lacking. It is the purpose of this study to provide such an investigation

of the vibration associated with the flexible connecting rod of a planar slider-crank mech-
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anism. Moreover, this work will focus on the nonlinear analysis of the dynamic response,

e.g., primary, principal parametric, superharmonic resonances and their stability.

1.4 Organization of Dissertation

This dissertation is organized as follows. Chapter 2 contains the basic assumptions and

the derivation of the partial differential equations used to describe the system. Chapter

3 provides the analysis of the partial differential equations obtained in chapter 2 by using

the method of multiple scales. In chapter 4, we simplify the model by using von Karmon’s

finite deformation theory and obtain an ordinary differential equation describing the flexural

vibration associated with the first flexural mode of the connecting rod. We then analyze this

ordinary differential equation by using the method of multiple scales. Chapter 5 contains

a detailed comparison between the results obtained in chapters 3 and 4. In chapter 6, we

compare the results obtained in chapter 4 with numerical simulations. In chapter 7, we

close this dissertation with some conclusions and some suggestions for future investigations.

In the course of this study, extensive use was made of the computer assisted symbolic

manipulation program MathematicaTM . This was essential in the lengthy calculations

involved in the perturbation procedures.



Chapter 2

Mathematical Modeling

In this chapter, equations describing the rotary, axial and transverse dynamic responses

associated with a flexible connecting of an otherwise rigid slider crank mechanism are de-

rived. The basic assumptions which are used in deriving these equations of motion are

given in section 2.1. Based on these assumptions in section 2.2, we then proceed to de-

rive the equations describing the axial as well as the transverse deflections associated with

the connecting rod, and the boundary conditions associated with these equations. In sec-

tion 2.3, we compare the resultant equations to the models which were used by previous

investigators. We then convert the equations of motion and their associated boundary con-

ditions into dimensionless form in order to minimize the number of the system parameters

in section 2.4.

2.1 Basic Assumptions

In deriving the equations which describe the axial and the transverse deflections associ-

ated with the flexible connecting rod, the following assumption are employed:

0 Concerning the connecting rod AB

1. is an elastic member with uniform cross section

11
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2. all quantities are assumed to be independent of z, the out-of-plane coordinate

3. plane cross section remain plane after deformation

4. made of a Viscoelastic material

5. simply-supported at both ends, with rotary damping at the pivot ends (to model

bearing effects)

6. point C on rod AB moves to point C’, after deformation,

7. shear deformation and rotatory inertia are included

0 Concerning the crank element OA:

1 . perfectly rigid

2. constant crank speed, to

e Concerning the slider mass D:

1. no clearance

2. no offset

3. velocity-dependent friction force acting between the slider and its contact surface

4. no external forces applied to the piston.

2.2 Equations of Motion

In the present section, equations describing the axial and transverse deflections as-

sociated with the flexible connecting rod are derived based on the assumptions given in

section 2.1. This problem is equivalent to a simply supported beam subjected to the inertia

forces associated with its motion as specified by the kinematic constraints. These inertia
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forces are caused by the acceleration associated with the connecting rod. We first analyze

the acceleration components of a point located on the flexible connecting rod. We then

proceed to derive the equations of motion describing the axial and transverse deformations

of the connecting rod following the work of Chow[10]. By combining these results, we obtain

the equations describing the axial and transverse deflections associated with the connecting

rod subjected to the inertia forces.

2.2.1 Deformation

We now consider a segment of the beam with length As: taken from the connecting rod

as shown in figure 2.1. After deformation, the angle between the median line and the x-axis

 

-
-
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>

   

Figure 2.1: Displacement of the beam element

is given as

029+? (2.1)

where 0 = the bending angle and 7 = the shear angle. Let a material point located at (x,y)
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in the undeformed state move to (:c’ , 3”) after deformation. Therefore, we have

z' = x+u—ysin0 (2.2)

v + ycosd (2.3)t
: II

where u(a:, t) and v(:r,t) are the displacements of the median line along the x and y direc-

tions, respectively. The length of an undeformed line element (dx,0) in the deformed state

is given by

ds = «(12:2 + dy2

\/[ 1),, + (y cos 0);]? + [1+ us - (y sin 0);]2 (1.7: (2.4)

 

where a subscript :1: stands for the partial derivative of the corresponding function with

respect to the spatial variable 1:. The relative elongation in the x-direction is defined as

 
d3 ‘

e=E—1=\/v3+(1+u,)2—1—y9,=e0—y0, (2.5)

where so is the relative elongation of the median line. From the geometry of the deflection

curve as shown in Figure 2.2, we also have

”a:
 

 

 

t = , 2.an a 1 + at ( 6)

sin a = 1 :20 , (2.7)

1 + um

cos a _. 1 + 60 (2-8)

where so is implicitly defined in equation (2.5).
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Figure 2.2: Geometry of the deflection curve

2.2.2 Acceleration Components

With the assumptions given in section 2.1, we now proceed to derive equations which

describe the axial and transverse vibrations associated with the connecting rod AB. Con-

sider a slider-crank mechanism as shown in Figure 2.3. The reference frames OXY and

l
:

>

o

g \

$3“ ..---. Y

c i
s

i
s

Figure 2.3: Slider crank mechanism with flexible connecting rod (undeformed state)

oxy represent the fixed and moving coordinate systems associated with this slider-crank

mechanism, respectively. Let u(z, t) and v(z, t) represent the axial and transverse displace-
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Figure 2.4: Slider crank mechanism with flexible connecting rod (deformed state)

   

ments of the connecting rod measured in the moving coordinate system, respectively. The

moving coordinate system (i.e., oxy) is shown in Figure 2.3 with its origin located at the

connecting point on the rigid crank and its x-axis always passing through the ends of the

elastic coupler. We now consider a point C located with (22,0) in the moving frame, which

moves to point C’ after defamation (Figure 2.4). Modeled by the embedded geometric

constraint method[33, 53], the position vector i- of point C’ can be expressed as

r- = (z + u)i+ vj (2.9)

where i andj are the unit vectors along the x- and y-axes, respectively. The deviation of the

acceleration components begins with the following well- known result from dynamics[20, 23]:

5=A05,+ox(oxr-)+o,xr+r~u+2oxn=axi+ayj (2.10)

which allows the absolute acceleration of a point to be written in terms of a moving frame

of reference and where

a = absolute acceleration component seen from a fixed coordinate system,
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A05, = absolute acceleration of the moving frame,

r = position vector for a particle as reviewed from the moving frame, and is defined in

equation (2.9),

II) = angular velocity of the moving frame.

Substituting equation (2.9) into equation (2.10), we obtain

at = —rw2 cos (wt — (t) + u“ — ¢tv¢ — out) — 453(9: + u) (2.11)

0,, = —rw2 sin (wt — ¢) + 43?,(2: + u) + 2¢>tut + v“ - 45??) (2.12)

where a subscripts t presents the partial derivative of the corresponding function with

respect to the time variable, 1' is the length of the crank shaft, It represents the angle between

OA and OB, measured counter-clockwise, at and a, are the acceleration components along

the x— and y— axes, respectively.

2.2.3 Stress-Strain Relation

In this section, we consider the relationship between stress and strain. We assume that

the connecting rod is made of a Viscoelastic material which can be described by models built

from discrete elastic and viscous elements. In this work, we assume that the connecting

rod is made of a the Kelvin-Voigt material which is modeled as shown in Figure 2.2.3.

Therefore, the stress-strain-time relationship for this material is given by

a = Ee + poet (2.13)

where 0‘ is the normal stress, and e is the strain, E is the elastic spring constant, and no is

the dashpot coefficient. Based on this, we obtain the following equations for normal stress
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MN—

 

    

   

Figure 2.5: Viscoelastic model (Kelvin-Voigt model)

I7m and shear stress a”:

02:; = E6 ‘l” Poet : E‘30 —' E3102: + #630. " #cyoxt a (2-14)

on = G7. (2.15)

Now, we express the axial force N, bending moment M and shear force Q according to

A

M : / OzzydA = —E103 — #clart (2.17)

A

Q = / and/l = k'GA'y (2,18)

A

where A is the cross-sectional area, I is the area moment of the inertia of cross section, k’

is the shear-deflection coefficient, a modifying factor introduced by Timoshenko[46].

2.2.4 Equation of Motion

Consider the free body diagram shown in Figure 2.6, from which the equations of motion

are obtained by considering the balances of forces and bending moments. From this, we
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u A

Y

Figure 2.6: Free body diagram for beam element

obtain the following equations:

(N cos a), - (Q sin 0),, = pAaz , (2.19)

(N sin a), + (Q cos 0),, = pAay , (2.20)

M1, - Q(l + co) cos (a —— 0) = —J0tt (2.21)

where the acceleration components ax and ay are defined by equation (2.11) and (2.12),

p stands for the density (mass per unit volume) of the connecting rod, and J is the mass

moment of inertia per unit length. We note the these equations are expressed in terms

of eight unknowns, namely N, M, Q, a, 0, u, v and co. We now proceed to transform

these equations into a form in which only the displacements and forces are involved. With

equations (2.18), (2.6), (2.7) and (2.8), equation (2.21) reduces to

_ J0“ "" Elgar-#cloxzt

— vxsin9+(l+ux)c080'

 (2.22)
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In deriving this equation, we assume that I , E,and ye are all independent of 2:. From

equation (2.1) and (2.18), we have

  

_ _ Q

Equations (2.16) and (2.8) yield

1 + II; 1+ ux

N EAeo +11 .460, EA( cosa )+II ( cosa )t ( )

Substituting equations (2.24) and (2.22) into equation (2.19), we obtain

 

 

 

  

1+ ux 1+ 11,;

l( +11.) \/v§+(1+ur)2] +# l( +11.) \/‘U%‘i‘(l+ux)2]t

J0“ -' E1017: " ”claxxt_ .— = A x, 2.2
[ vz+(1+ux)cot0 ] p a ( 5)

Equations (2.16) and (2.7) yield

1) ‘U

=EA CA =EA I —1 cA ,3 —1. .N 60 + II 60. (sina )+ It (Sln a )z (2 26)

Substituting equations (2.26) and (2.22) into equation (2.20), we obtain

”’ 1+ AIv
¢e+a+mxx W ‘

+ [Jott‘Elazx-PCIOIM

v,tan0+(1+ux)

v3 ]

\/v,%+(1+ux)2 It

lat = pAay - (2.27)

  EA[v,

 

Substituting equations (2.24), (2.22) and (2.23) into equation (2.6), we obtain

J0“ "' E10121: - ”claret

0

tan( + k’AG[vac sin0 + (1 + 111-) c080
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Equations (2.25), (2.27) and (2.28) describe the rotational, axial and transverse defections

associated with the flexible connecting rod.

2.2.5 Boundary Conditions

In the present section, we consider the the boundary conditions associated with equa-

tions (2.25), (2.27) and (2.28). We first consider the boundary conditions applied to the

connection point on of the crank shaft. Since the crank shaft is assumed to be perfectly

rigid and there is no relative displacement of the connection between the connecting rod

and the crank shaft, we must have

u(0,t) II o (2.29)

v(0,t) II o (2.30)

Due to the presence of the frictional moment at point A from the bearing, we have

Ero.(o,t) + p510x¢(0,t)= -MA = ”5(0) — a. — v3¢(0, t) ) (2.31)

where m, represents the friction coefficient, and the moment applied by the bearing is the

product of m, and the relative rotational speed. We now consider the boundary conditions

applied to the sliding end to which a mass m4, the piston, is attached. At point B, the

piston motion is constrained to move along the X direction. Therefore, we have

v(L, t) = —u(L,t) tan cl). (2.32)

Because of the presence of the hearing at point B, there exists a frictional moment at this
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point. Therefore, at point B, we have

E10x(L,t)+ prOn(L,t) = —M3 = pb(—¢t + vx¢(L,t)) , (2.33)

where the bearing friction law from point A is again employed. We now apply Newton’s

second law to the slider mass m4 and obtain the following condition:

(N cosa — Q sin 0) cos(—¢) + (N sin a + Q cos 0) sin (—¢)

+ m4ar cos (—¢) + m4ay sin (—¢)

+ p,Z¢ + mu; cos(—¢) + #51); sin (—¢) = 0 (2.34)

where p, is the slider friction coefficient and Z; stands for the rigid motion of the slider

mass. We note that there are two slider friction forces in equation (2.34). The (p,Z¢)

term represents the friction force caused by rigid body motion, while [#3114 cos(-¢) +

mot sin (—¢)] stands for the friction force due to the elastic deformation.

2.3 Comparisons

In the present section, we compare the equations of motion obtained in section 2.2 to the

models used by other investigators in studying the dynamic response associated with the

flexible connecting rod of a slider crank mechanism. Regarding the acceleration components,

there is no difference between our approach and other’s. Therefore, we shall focus on the

beam theory used to model the connecting rod.

If the effect of shear deformation and rotary inertia terms are neglected in our formula-
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tion, we have a = 0 and

Q = “E10131: — I-‘clgxxt - (2.35)

Moreover, if we assume that the relative elongation of the median lines is very small com-

pared to unity, then equation (2.19) becomes

EA[(1+ u,,) — cos 0],, + AIIC[(1+ u,,) — cos 9],, — (Q sin 9),, = pAa, , (2.36)

and equation (2.20) becomes

EA[(1 + 11,) tan0 — sin 0],, + (Q cos 0),, = pAay . (2.37)

Since the relative elongation of the median line is assumed to be very small compared with

unity, we also have

sin 0 = v, (2.38)

from equation (2.7). Moreover, we assume that 0 is very small so that the last equation can

be reduced to

a z 22,. (2.39)

Based on this, equation (2.35) becomes

Q = ’Elvxxz: "’ II-‘cvxxxt . (2.40)

Substituting equations (2.39) and (2.40) into equations (2.36) and (2.37), we obtain the
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following equations:

pAa, = EA(u,, + évg), + Apc(u,, + $152,), , (2.41)

I

pAay = EIvmu + yclvxmzt — (E — IIC)A[ (u, + 512325,], . (2.42)

This derivation is mainly based on the von Karmons finite deformation theory. These

two equations were used by previous investigators[9] in studying the dynamic behavior

associated with the connecting rod. Viscomi[49] applied this model without considering

the effects of internal material damping pa. In chapter 4, we will use equations (2.41) and

(2.42), together with the work by Viscomi to study the flexural response associated with

the connecting rod. We now consider the model used by Badlani ct al.[8]. Linearizing

equation (2.1) and neglecting the effects of internal material damping no, we obtain

Q
0 +m = vl‘ (2.43)

or

Q = k'AG(v,, — 0). (2.44)

Linearizing equation (2.16), we obtain

N = EA u,,. (2.45)

Substituting equations (2.44) and (2.45) into equations (2.19) to (2.21) and linearizing the

resultant equations, we obtain

EAun = pAa,,, (2.46)
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Q. pAay, (2.47)

where the mass moment of inertia J is expressed as J = {11. Substituting equation (2.44)

into equations (2.46) and (2.47), we obtain

E10131: + k’AG(v,, — 9) 3 p19“ , (2.49)

k’AG(v,, — 0),, = pAv“. (2.50)

These two equations were used by Badlani et al.[8] in studying the dynamic behavior asso-

ciated with the flexible connecting rod. This derivation is mainly based on Timoshenko’s

beam theory.

2.4 Nondimensionalization

We now convert the equations and their associated boundary conditions into dimen-

sionless form in order to minimize the number of system parameters. To achieve this, we

introduce the following dimensionless parameters:

 

- _ 3: -_3 -_£ -1 __m..4 2- .1
u _ Liv“L7z—L1£—L’S—pAL,n —AL2,

EIIr" w - pw
2 _ 0-:— = t = C It

wlt pAL4, wu,t wltsf”? 2E a

_ m4 _ #3 0 __§_ 0 __{_
”3 ’ 2pAL3wn’ 2pALw1t’ ’ k’G’ 3” pI'

Before we proceed to convert equations (2.25), (2.27) and (2.28) into dimensionless form,

let us explain the physical meanings of these parameters. The parameter 5 is the ratio of
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the throw length of the crank shaft to the length of the connecting rod, which is referred to

hereafter as the length ratio. The parameter S is the ratio of the mass of the connecting rod

to the mass of the slider, and is specified as the mass ratio. The parameter 1) represents the

slenderness ratio of the connecting rod. The parameter (12 is associated with the effects of

shear deformation. The parameter 03 is associated with the effects of rotary inertia. The

parameter Q is the ratio of the operating frequency to the first fiexural natural frequency

of the connecting rod, w“, and is referred to as the frequency ratio. The parameter In

represents the damping effects of the internal material damping acting on the connecting

rod. The parameter #3 represents the damping coefficients of the bearing friction applied

to the joints at point B and C. The parameter p, is used to model the friction force

acting between the slider and its contact surface. With these dimensionless parameters,

equation (2.25) becomes, after dropping the overbars for notational convenience,

  

  

(1+ux) 1+u,,

1 1: - I 2 1 17 _ x[( +11) \/(1+u1:)2+v3.] + #2[( +11) «(1+u3)2+vg]t

0 0
_ 4 4 it 2 1:1:

03” 1r [(1+u,,)cott9-+-v,]x+1,7 [(l+u,)cot0+v,,]$

0317

+ 2I‘2772l lxt
 

(1+ u,.)cot0 + v,

: n21r4[ -ff22 cos (Qt — ¢) + u“ - 2¢¢v¢ — 45:20 - (15%,(1‘ + 14)] . (2-51)

equation (2.27) becomes

 
  

 
 

 

Iv. —- ”I 1. + 2y2[v. - ”’ 1..
\/(1+"z)2+v}.- \/(1+ux)2+v%

0 0
4 4 it _ 2 2:1:

+ nxa3[(1+u,)+vztan0]3 n[(1+u,,)+v,,tan0]x

0_ 2 1:2:

2M" [(1+ u,,) + v, tan0 L”

= 1727r4[ ‘502 sin Qt - ¢ + ¢II(-’D + ’U) + 2¢Iut — ‘Utt — 45%)] , (2.52)
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and equation (2.28) becomes

We now apply the same procedure to the boundary conditions. We obtain the following

tan( 0 + (1217
2 037727r40tt - 01:1: - 2”2prt

(1 + u,,) cos0 + 1), sin 0

v.2:

1+u,,°

 
 ):

conditions at point A:

u(0,t) = 0, (2.54)

v(0,t) = 0, (2.55)

03(0,t) = 2p3[Q-¢¢—vxt(0,t)]. (2.56)

While, we have the following conditions at point B:

l(1+ “3)

v(1,t)

0,,(1,t)

1+‘II,r

\/(1+ 11:92 + I)?

031‘

1 + u,,)cot0+ I),

«(1%:
132).]. 1,2] + 2fl2l (1 + u,) _.

4 9t:

[(1 + u,)cot0+ 12,,

02:1:

(1 + u,,) cot0 + v, k

S7727f4[ -£Q2 COS (Qt - ¢) + U“ — 2¢tvt — $117) — ¢?(.’B + 11.)]

it

1

 

  

(131747r l + 772i (

 

2712 flzl

v1-
v3

  

  

[v \/(1+ux)2+vg] an¢ [12]” ¢(1+u$)2+vg It an¢

0 0
4 4 t1 2 1:1:

t

’1 1r a3[(1+u,,)+v,,tan0] an¢+17 [(1+u,)+v,tan0]tan¢

01717

2p2n2[ ]¢tan¢ 

(1+ ux) — v,,tan9

(2.53)

—u(1,t) tan(;b , (2.57)

2p3l T¢t ‘l' ”11(190] I (258)
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5772774l ‘692 sin Qt - 43 + ¢tt($ + 10+ 2W4: - vtt — $31)] tan¢

Z

costqb + 2n21r4p4[u, — v, tangi] = 0 . (2.59) 

+ 2’72“!“

Equations (2.51) to (2.59) form the basis of the mathematical analysis in the thesis.



Chapter 3

Analysis of the Distributed Parameter Model

In the present chapter, we study equations (2.51), (2.52) and (2.53) by applying the

Method of Multiple Scales[29]. To apply this method, we must first locate a small, con-

stant parameter which will be used as a basic unit in scaling the response and the other

parameters. For the current problem, the slenderness ratio 1] of the flexible connecting rod

is chosen to be the basic measurement unit. The axial and transverse displacements u(a:, t)

and v(:r,t) are expressed in asymptotic series in terms of n. We then expand the partial

differential equations describing the dynamical behavior associated with the connecting rod

with these assumed solution sequences and obtain a sequence of linear partial differential

equations. We then study the dynamic response associated with the elastic connecting rod

by solving these equations sequentially. In section 3.1, the Method of Multiple Scales is used

to outline each individual resonance case. In section 3.2, we study the case of the principal

parametric resonance. In section 3.3, we study the case of primary resonance. Superhar-

monic resonances of order 1/2 and 1 /3 are studied in sections 3.4, and 3.5, respectively.

Section 3.6 contains the analysis for the case of the order two subharmonic resonance. We

summarize the results and provide a detailed parameter study in section 3.7.

29
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3.1 Application of the Method of Multiple Scales (MMS)

To apply MMS, we need to introduce a set of new independent time variables Tn ac-

cording to

Tn = ("t (3.1)

where c is a small constant parameter which is related to the slenderness ratio of the

connecting rod. Because the connecting rod is assumed to made of a slender beam, its

slenderness ratio 1) = 3%, is small. Based on this, we choose this quantity as a basic

measurement unit of the parameters that are used to model the problem. Therefore, we

scale the slenderness ratio of the connecting rod by letting

172 = 0162 . (3.2)

Moreover, the length ratio E is scaled according to

E = 661 . (3.3)

It follows that the derivatives with respect to t become expansions in terms of the partial

derivatives with respect to T, according to

d _ a a , a _ ,

d2
— = 002 + 2.1)0 D1 + 62(012 + 200 D2) + (3.5)

where D,- stands for the derivatives with respect to the independent time variable T,. We

next assume that the solutions u(:c,t) and v(:r,t) can be represented by expansions having
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the forms:

u(a:,t) = cu1(:r,To ,T1 ,T2) + £2u2(:c,To ,T1 ,T2) + 63u3(:I:,To ,T1 ,T2) + , (3.6)

12(3), t) = €01($,T0 ,T1 ,T2) + €202($,T0,T1,T2)+ €303($,T0 ,T1 ,T2) + . (3.7)

Note that the number of independent time scales T,- needed depends upon the order to

which the expansion are carried out. For the present problem, it is sufficient to expand the

solutions up to C(63). Therefore, only the first three time scales are used in the expansions.

There are three damping parameters #2, p3 and #4 involved in equations (2.51), (2.52) and

(2.53). Basically, these damping parameters are rescaled in such a way that they will show

up in the final resonant condition together with the detuning parameter which is related to

the nearness of the frequency ratio 0 to a resonance condition. A trial and error approach

is used to show that the damping parameter In must be of order 0(3), #3 of order C(62)

and II, is of order 0(1). This leads to the following ordering of these damping coefficients

in terms of e:

#2 : 62’122, (3.8)

#3 = 6%,, (3.9)

#4 = #40- (3-10)

Substituting equations (3.2) to (3.10) into equation (2.5), expanding and equating the co-

efficients of the like-power terms in c, we obtain the following expansions for the elongation

e0 of the median line along the connecting rod:

co = (co, + 6260., + 63603 + 64(e0, — 460,1)?1.) + 0(65)
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2
v

= an. + an... + ‘5‘") + 63(u3. + vim.)

  

4 v? v3 ”f 2 5

+.[(...,+ 8=+ 2:+v1.va.)-4(u2.+—,—’-)v..1+0(c) (3.11)

where so). represents the j-th order term in the expansion of co. Applying the same procedure

to equations (2.51), (2.52) and (2.53), we obtain the following equations:

 

Order 6

“'11: = (801)17 : 0 1
(3.12)

Order 62

vi
(“2: 'l' 2Jr )1: = (€02):c = 0 9 (3.13)

Order 63

(113, + 121,122, ), = (€03 ), = —olrr4£102 cos 9T0 , (3.14)

alrr4D02v1 + 01111,,” = (60,121,), + 017r4§192(1 — 1:) sin 0T0 , (3.15)

Order 6“

(60. )1: + 2H22(Do€og )1: - (6’02”th + 01(vizviux)x = 011751] 1302712 — £19201 sin QTo

—§1f22v1 sin 0T0 + 2619(00121) cos 9T0 + {1292 sin,2 9T0 — fflzx cos2 0T0] , (3.16)

a17T4D0202 + 01112.2“; = (60301101: + (Gown): - 201W4(DODIUI)

+ 011 «4892 cos 0T0 sin 9T0 , (3.17)
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Order (5

017T4D02‘U3 + alv3xxrx = ’afa2lexxzzx " 2l‘220100v1rxr1: + 01(802 v1xxx)1:

2 1 3

"’ 01(vlrlezlr + (€02v3r)x + (603 v2x)r " §(802 v11:)-’L‘

+ 2’12; 00(802 ”13):: + (8041,1101: — (cams): ‘l” 0:03W4D02v1x3

— 011r4(2D0D1v2 + 2Dngv1 + D12v1)+ alr4§fflzv1 cos2 9T0

+ 20:17r451 Q(Dou2) cos 0T0 — 011 «45192112 sin 0T0

— a11r4fi’flzgl—‘g—Q sin3 9T0 + 011r46i’flzz cos2 9T0 sin (Mb. (3.18)

Applying the same procedure to the boundary conditions, we obtain the following boundary

conditions:

Order 6

u1=v1=v1,,,,=0,atx=0, (3.19)

u13=v1=v1,,,,=0, atx= l, (3.20)

Order 62

u2=v2=v2,,,=0,atx=0, (3.21)

vi.
(rig, + 7) = v; = 0 ,v2,,,, = “‘2l4329 , at x = 1, (3.22)

Order 63

“3 = ”3:09
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03

( ”'31:

”31:1:

Order 64

604
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—o102v1,,u,, — ”$31123 — 2p32Dov1, — $132519 cos 9T0 ,at x = 0 , (3.23)

-‘U.2€1 SIIl 9T0 ,

01302;) = Salvr4£1f22 cos 9T0 + 2olir4u4o§1f2 sin 0T0 ,

v .-
—alagvl,,,,,,,, — vh¥ — 2fl32D0‘Ulz + 21132619 cos 9T0 , at x = 1, (3.24)

+ allelexz = -2#22 D060, + 017T4€f9714o sin (2QT0)

+ alrffiflzfl cos2 9T0 — sin2 0T0) — al7r4S(D02u2)

+ al7r4£1f225v1 sin 9T0 — 2al1r4£1SIS(Dovl) cos 0T0

— alrr4flS(D02v1) sin (ITO — (60,121,){1 sin 9T0 + (60212123,)

+ 0151111,,” sin (2T0 - 201n4p4(Dou2) , at x = 1 . (3.25)

In the following, we show that u1(1:, T0, T1, T2) = 0 and hence we drop all the terms involving

products with u1(1:,To,T1,T2). To show that u1(1:,T0,T1,T2) = 0, we solve equation (3.12)

to obtain the general solution of u1(:r,To,T1, T2), which takes the following form:

ui($.To.T1.T2) = b1(To.T1.T2)$ + b2(To.T1.T2) (326)

where 51(T0,T1,T2) and b2(To,T1,T2) can be determined by the boundary conditions asso-

ciated with It}. By applying equations (3.19) and (3.20), we determine that bl = b; = 0.

Hence, ul must be zero. This indicates that, for simply-supported slender beam, the axial

deformation is much smaller than the transverse one. Next, we consider equation (3.13)
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and its associated boundary condition (3.22). Together, they reveal that

”13:2

(71.23; + 7 ) = €02 = 0 . (3.27)

Consequently, equation (3.15) reduces to

011r4(1)02v1) + (11011-333, = 011f4€192(l -- 2) sin 9T0 (3.28)

which can be converted into the following equations:

2 ~ 2 ~ 2 2 -
(D0 ”111) +wnv1n =2 5610 8111 9T0 (3.29)

by Galerkin’s procedure with 121 = 61,,(sinn7r13), where w}, = n4 for n : 1,2,3,.... In

analyzing the particular solution of 61,, we need to consider the following cases separately :

(1) Q is near to can and (2) Q is away from w". The case in which 0 is near to can corresponds

to the primary resonance and will be investigated in section 3.3. At the present time, we

assume that Q is away from w, and continue our analysis to consider the equation of higher

order. When (2 is away from can, the general solution of 61,, is given as

131,, = An(T1, T2)e:cp(jw,,To) + A1 sin 9T0 + c.c. (3.30)

where c.c. stands for the complex conjugate of the preceding term, and

A. = (flag-25,3 (331)

represents the amplitude of the particular solution. The function An(T1,T2) in equa-
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tion (3.30) is a complex function of time scales T1 and T2, which represents the amplitude

of the homogeneous solution. The second term of equation (3.30) represents the particular

solution. Since the frequency ratio (2 is assumed to be away from can, the magnitude of the

particular solution is finite (equation [3.31]). Note that, according to the linear theory, the

homogeneous solution will decay to zero due to the presence of the damping parameters.

However, as we will find out later on, due to nonlinear effects, this is not always true. When

certain conditions are met, the homogeneous solution may not decay to zero and hence must

be included. Equation (3.14), together with its boundary condition (3.23), leads to

603 '3 (U31; + levgx) ‘2 (117F4(1 — 27 + S)€192 COS ”TO + 2017r4flflp40 sin 0T0 (3.32)

which represents the third order expansion of the axial elongation of the median line along

the connecting rod. Substituting equation (3.27) and (3.32) into equation (3.17), we obtain

011r4002v2 + alvgmm = alrr4flflz[ (1 -— a: + S)v1$]x cos 9T0 — 2al1r4DoDlv1

+ a11r4ffflz cos 9T0 sin 9T0 + 201 «4;;40 £19121” sin 9T0 (3.33)

which can be converted into the following equation:

002132,; + 003.13% 2: —2jwn(D1An)e:cp(jwnTo) + (WEEK)? sin (29%)

rm

1 . . - . .

7(1 + 2S)(mr)2£1s22[ AnexpownTo + Mo) + Anew-M7?) + 19%)]
2

-#4o€19[(n1r)2jinexp(jQTo
_ jWTo _ j1r/2) _ (mr)

 Alexp(2jSlTo)]

— i0 + 2.’5')(mr)21\1£192 sin (29%) (3-34)

with v2 = £22,,(sin mrz), where an overbar stands for the complex conjugate of the corre-
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sponding term. Now, in analyzing the solution of this equation, we need to distinguish

between the following cases: ( 1) 29 is near to can, (2) Q is near to 2%, and (3) Q is away

from 2w" and 923. The first case corresponds a superharmonic resonance, and will be in-

vestigated in section 3.4. The second case corresponds the principal parametric resonance

which will be investigated in section 3.2. At the present time, we assume that Q is away

from 2a)., and “—31. Under this condition, we must have

01A,. = o (3.35)

in order to remove the secular term from the particular solution of {22”. This implies that

the amplitude An of the free oscillation term in the general solution of v1 (equation [3.30])

must be independent of the time scale T1 = ct. The particular solution of 132,, is then given

 

 

 

as

122,; = A21 sin 2QTO + A22€$p(jQTo + jwnTo) + A23ezp(jQTo — jwnTo)

+A24ezp(2jQTo) + A25ezp(jQTo — jwnTo — j7r/2) + c.c. (3.36)

where

_ 1 — cos mr 892 l 2 {102
A21 — 12W (0): _ 402) -- 1(1+ 2S)(n7r) AIW , (3.37)

A22 - 4 (71”) {In [Lt-’3‘ _ (wn + “)2] 7 (3'38)

_ 1 2 2 [an

A23 _ 4(1+ 25)(mr) {In [.33 _ (w. _ 9),] , (3.39)

A 2

A24 — ‘ (m) (3.40)
_2-w,2, — 402 ’
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and

An
A25 = —p40£19(n1r)w2 _ (Q .— w )2 . (3.41)
 

2

From the expression uh + ”‘7’ = 0, we solve u2(x, T0, T1, T2) and obtain

$n2nwx

2n1r

u. = -;‘,-(mr)%¥.(x + ) (3.42)

where 131,, is given by equation (3.30). With this information, equation (3.16) reduces to

80. + 01(v1xlexr)x = 017r4l D02‘U2 - £19201 Sin QTo

+ 2519(D0v1) cos 9T0 + {$92 sin2 9T0 — ($923: cos2 9T0 ] (3.43)

subjected to the following boundary conditions:

e0, + 01(v13v13m) = —.S'al1r4[ 002122 + {1292 sin2 9T0 — {£2522 cos2 9T0]

- 011 ”4’140510 Sll'l 2QTO + (116101311- sin ”TO

+ a11r4p40(n1r)2(00131n)231n ,at x = 1 . (3.44)

With these two equations, we solve for 4304 and obtain

4 2
v I v

804 = (“42.- + —5‘ + ~¥ + le‘vax)

2

= -a1v1zlen + alw‘Efflz(-:- - £2- + 5) cos2 9T0 + aw‘ffflzfi - 1 - 5') sin2 9T0

COS mrx - COS 7MP

 +a11r4£1( )[ 92131,, sin 9T0 — 20(D01‘21n) cos 0T0]
mr

400253; 2 2 - 2 4 2 -
+al7r —-—8—[(mr) (1+ 25' — a: )— srn mrx] + alvr #40519 Sln 2QT0

—011£1(n1r)3 cos mr sin 9T0 + al1r4p4o(n1r)2(Dof)1n)131n . (3.45)
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With these results, equation (3.18) reduces to

air‘Do2v3 + alv3xxxa: = —a§azvimm — 20:11:122 Dolexxr

+ (803122;); - 01(levfu)z + (60.01:);- + a§a31r4D02v1n

— a11r4(2DoD2v1 + 2D0D1v2 + Dlzvl) + al1r4£ff22v1 cos 9T0

+ 201 «4519(00112) cos 9T0 — 0171'45192112 sin 9T0

— alw4f?92£1—:—xl sin3 9T0 + 01 #4611223: cos2 9T0 sin 0T0

+ a11r4p40(n1r)2(Doi}1,,)f21nv1u (3.46)

subjected to boundary conditions (3.23) and (3.24). We note that equation (3.46), together

with its associated boundary conditions (3.23) and (3.24), represent a simply supported

beam subjected to (1) motion of its foundation and (2) external moments applied to its both

ends. It is not a straightforward procedure to reduce this partial differential equation into

ordinary differential equation. Here, we use the variational approach[16, 46] to compensate

for the effects of the nonhomogeneous boundary conditions and obtain an equivalent system

to which the Galerkin’s method can be applied directly. Appendix A contains the detailed

approach regarding this procedure. At this moment, we only present the final result as

below:

D0203n + “9721531; = ’2jwn(D2An + I121n4An)ezp(jwnT0)

. . 2 .
+ (01103 + a1a2)A,,(mr)2n4ezp(anTo) + Jpn4p32AneprwnTo)

8 1 - . .
(mr)2n4[-1-§ — (-3- + S)(mr)2]A?,Ane:cp(]wnTo) + flffAneszwnTo)

+ jf2£?€$p(3jQTo) + jf3£1 Afi€$p(jQTo — 2jwnTo)
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. - . .1 .
- anmo(mr)‘A?.AnerchwnTo) -— J 5m. An(n7r)‘wnA¥exp(anTo)

1 . - n . .

+ §(n1r)4p4o A?9€$P(3J9To) + (n7r)4p40A1A?,(wn — Elexl’UQTo - 2anTo)

+ N.S.T. + c.c. (3.47)

where N.S.T. represents those terms which have no effect when we consider the secular terms

in the particular solution of £3... In analyzing the particular solution of equation (3.47),

there are three cases which need to be considered separately: (1) Q is near to 3 can, (2) Q

is near to 9311, and (3) Q is away from 3 can and 951. The case in which Q is near to 3 can

corresponds to a subharmonic resonance and will be investigated in section 3.6. The case in

which 9 is near to 33“, corresponds to a superharmonic resonance and will be investigated

in section 3.5.

At this point, we pause and discuss some general features of this pattern of analysis.

After a small, constant parameter c has been located, the solutions are expressed in uniform

expansions based on this parameter. By using these assumed solution sequences, the equa-

tions describing the transverse and the axial deflection can be converted into a sequence

of partial differential equations which can be solved easily, since they are linearized by the

nature of the perturbation expansions. We note that in solving every sequential order for

the flexible vibration associated with the flexible connecting rod, we are considering a sim-

ply supported beam subjected to the following generalized forces: ( 1) a distributed load,

which comes form the inertia force associated with the gross beam motion, applied along

the span of the beam, (2) concentrated moments, which are caused by the presences of the

bearing damping p1,, shear deformation and rotary inertia, (3) motion of the foundation

which comes from the motion of the crank, and (4) axial loading which comes from the

inertia force associated with the slider mass and its friction force. In order to make the



41

analysis as clear as possible, we provide a general procedure for solving this kind of prob-

lem in Appendix A. In solving these equations for the flexural vibration associated with

the connecting rod, the primary resonance arises first and then the principal parametric

resonance. After these two resonances, several secondary resonances arise. In principle, it

is possible to extend this analysis to study even higher order resonances, for instance the

subharmonic resonance which occurs when (2 is near to 5w... However, this involves an

unreasonable amount of computational work. As a matter of fact, the present results are

accomplished with a great deal help from a Macintosh version of the computer symbolic

manipulation program MathematicaTM . Although the primary resonance occurs first, in

the analysis, we investigate the principle parametric resonance first rather than the primary

one, since this pattern will simplify the analysis and make it more easily understood. After

these two cases, the secondary resonances will be investigated case by case.

3.2 Principal Parametric Resonance

In analyzing the particular solution of equation (3.34), when the frequency ratio 9 is

near to 2w“, the principal parametric resonance takes place. To describe the nearness of Q

to 2w“, we express 9 as

Q = 2a)., + 2601 (3.48)

where 01 is the detuning parameter. At the same time, the damping parameter [1.2 is rescaled

according to

”'2 = 6”'21 a (3°49)

so that it will show up in the final resonance equation, together with detuning parameter 0;.

We first expand equations (2.51), (2.52) and (2.53) with these new ordering relations, and
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then carry out the same procedure as described in the last section. Since the computational

work is routine, we only present a few essential results in the following analysis. For a

detailed solution, refer to Appendix B. Following the same procedure as described in the

last section, the first order flexural vibration associated with the connecting rod is described

by equation (3.29). Consequently, the general solution of 131,, is given in equation (3.30).

When we try to solve the second order equation for the flexural vibration, we obtain the

following equation:

Dozfizn + 013,132,, = —2jwn(D1An)exp(jwnTo) — 2jp21Ann4wnerp(jwnTo)

- (1 + 23)("7r)2w3.3n€18$1’(jwnT0 + 2j01T1)

_ 2p4o(n7r)2wn/I,,£lexp(jwnTo + 2j01T1 — j%) + N.S.T. + c.c. (3.50)

where N.S.T. stands for those terms which have no effects in considering the secular term

in the particular solution of {22”. Therefore, we must have

’2jwn(DlAn) - 2jlu'2iwnAfln4 - (1+ 2S)(nfi)2wgflnfle$p(2j01T1)

- . .W

- 2p40(mr)2wnA,,fle:cp(2]alT1 — )5) = O, (3.51)

in order to remove the secular term from the particular solution of 132". In solving this

equation, the unknown complex function A1(T1 ,Tz) will be expressed in polar form

a .

An(T1 T2) = §€$p(]\1’) . (3.52)

Expanding equation (3.50) with this expression, and separating the resultant equation into
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the real and imaginary parts, we obtain

a' = —p2, n4a — 2a§1A1 sin (2<I>1) + a(n1r)2§1p40 cos (2<I>1) (3.53)

a<I>’1 = 01a - 2a£1A1 cos (2<I>1) — a(n7r)2£1p4o sin (2‘15) (3.54)

where the phase angle {>1 and A1 are defined by

Q1 2 0'1T1 — ‘1’ , (3.55)

A1 = @(nnfnz (3.56)

and the prime indicate derivatives with respect to the time scale T1. Periodic steady state

conditions can be achieved whenever a’ = a<I>’1 = 0, these yields the following conditions:

n‘pgla —2a£1A1 sin (2%) + a(n7r)2£1p4o cos (2‘In) ,

01a 2 2a§1A1 cos (2<I>1) + a(mr)2£1,u4o sin (2<I>1) . (3.57)

Squaring these equations and adding them together, we obtain the frequency response

equation which takes the form:

[of + n33. —- (251m)” -(n7r)4#30612102 = 0. (3.58)

From this frequency response equation, we note that the trivial solution a = 0 is always

the steady state response for this resonance. To determine the stability associated with

this trivial solution, we transform equation (3.50) into Cartesian coordinate by substituting

An = (BR + jBI) ezp(j01T1 + 7T1) , and then separating the resultant equation into the
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Figure 3.1: Frequency response equation for the principal parametric resonance

real and imaginary part to obtain two equations. From these two equations, we solve for

the nontrivial solutions of BR and BI. From this, we determine that when

a? + 11%, > {fl 44? - (11279714. )2 ] (3-59)

the trivial solution is unstable. Otherwise, it is stable. Figure 3.2 shows an example of a

stability boundary in the {—0 plane.

In order to capture the effects of the nonlinearities, we need to rescale either the solutions

or the parameters, so that the nonlinearity will then be included in the final equation

describing the resonant condition. This problem is equivalent to a simply supported beam

subjected to both the transverse and the axial force coming from the same source. We

note that this force source arises because of the inertial force acting on the the connecting

rod. Moreover, these inertial forces are proportional to the length ratio 5. Because the

magnitude of this force source is proportional to the length ratio 6, we rescale the length
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ratio in order to extend our analysis to include the nonlinearity. Therefore, we restart our

analysis by letting

E = 6262 (3.60)

and keeping the orders of damping parameter #2, p3 and [14 be the same as given in equa~

tions (3.8), (3.9) and (3.10). Expanding equations (2.51), (2.52) and (2.53) with this new

length ratio, and equating the coefficient of like-power terms, we will obtain a new sequence

of linear partial differential equations. Carrying the same procedure for the boundary con-

ditions, we obtain a sequence of boundary conditions associated with these linear partial

differential equations. We then follow the same procedure as that described in the last sec-

tion. Because the computational work is tedious and routine, we only present a few results

which are essential to our work in the following analysis. For a complete solution procedure,

refer to Appendix C. The equation describing the first order flexural vibration becomes

00201.. + c0301.. = 0 (3.61)

which admits the following solution

£21,, = Anezp(jwnTo) + c.c. . (3.62)

We then obtain the following ordinary differential equation describing the second order

flexural vibration:

130262., + 023132,, = $5202 sin 0T0 — 2jwn(D1An)e:cp(jwnTo) + c.c. . (3.63)

In analyzing the particular solution of 62m we need to distinguish the following two cases:
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(1) Q is near to can and (2) Q is away from w... The first case is referred to as the the primary

resonance which will be investigated in section 3.3. At the present time, we continue our

analysis to consider the third order flexural vibration with the assumption that (2 is away

from w". Under this condition, we must have D1Afl = 0 in order to remove the secular term

from the particular solution of equation (3.63). This implies that the amplitude An must

be independent of the time scale T1. Based on this, we assume that all the higher order

flexural response 131,, also independent of T1. Therefore, we obtain the following equation

describing the third order flexural vibration:

002037. + 023,133,, = —2jwn(D2An)exp(jwnTo) — 2J'<..2,,n4pg2 Anezp(jwnTo)

+ [0102 + ala3 ](n1r)2n4Anezp(jwnTo) + 2j0.),,pg2 gAneszwnTo)

+ 52("lefl4094n63PUQTo - jwnTo - jW/2)

" £93 + 1)("W)2€2924n€$P(J'9T0 - jwnTol

- [185- - (é + sxmr)?1(n«)2n‘A3./i.exp(jw.ro)

— jmo(n1r)4A3,/Inwnezp(jwnTo) + N.S.T. + c.c. . (3.64)

To describe the nearness of Q to 20.2", we express (2 as

n = 2 + 25202 . (3.65)

Hence, we must have

. . .n4 . —
— 2302,,(D2An) — 2ann4p22An + 21;;Anp3, — ](n7r)4,u40A?,A,,wn

+ {2(n1r)2p4°Q/Inezp(2jang — j7r/2) + An(n1r)2n4[alag + 0103]
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_ 4(1 + 2S)(n1r)2£202/Inexp(2102T1l

— [18.5. -— (:13 + S)(n1r)2](n7r)2n4A,2,./4,, = 0 (3.66)

in order to remove the secular term from the particular solution of 133m. Expanding this

equation with An = geszW), and separating the resultant equation into the real and

imaginary parts, we obtain

1 n2 ,

a = —n4p2,a + —§(n7r)4p4on203 + fipgza - 2a§2A1 s1n(2<I>2) ,

+ap40 {2(7t1r)2 cos (2&2) , (3.67)

a<I>’2 = (720 + A30 — A203 — 2aA1§2 cos (2<I>2) — (12140 {2(1271')2 sin (2‘32) (3.68)

where

A. = 102629012 -(1+ S)(mr)"’]. (3.69)
8 8 3

“n2 2

A3 2 ?(mr) (011a; + a1a3) , (3.70)

T2 = 02T2 - ‘1’ (3.71)

and primes indicate derivatives with respect to the time scale T2. The steady state condition

can be obtained by letting a’ = a<I>’2 = 0, which leads to

—a§2 [2A1 sin (2‘52) — #4,,(mr)2 cos (2<I>2)] an2[;222n2 + E§—°(n7r)4a2 — %],(3.72)

a[ 2A1£2 COS (2&2) + p4o§2(n1r)2 SlIl (2T2) ] a[ 0'2 + A3 — A202 ] . (3.73)
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Squaring these equations and adding them together, we obtain

1 n2 .

“21013122 + g0”)41146wna2 - 311302 + (02 - A2612 + A3)2

— (252A1)2 4121045303.] = o (3.74)

which is the frequency response equation for this parametric resonance. An example of this

frequency response equation is plotted in Figure 3.2. From equation (3.74), we solve for the

a, = the magnitude of the nontrivial solution
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Figure 3.2: Frequency response equation for the principal parametric resonance

nontrivial solution of a2 and obtain

((6)2 = (bl—INP—km]. (3.75)

(as)? = (bl—I-x/fl—kml (3.76)
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where

k = [(f‘gaxmrr]? + A3, (3.77)

I = (%)(mr>"tn‘m. - ($13.1 — (a. — Aamz. (3.78)

m = [11%. - (2)2113: l2 + (02 — A3)2 - 463A? - (M)"£§H§o- (3-79)

For the existence of these real amplitudes a1, a2 and a3, the term inside the radical sign

must be positive or zero. This implies that, in order to produce a sustained nontrivial

steady state response, the magnitude of the forcing must be large enough to overcome the

effect of the energy dissipated. Moreover, we must have

 

02 + As < Joe/:1)? + (mrwguz. — [#22714 — (3mm (3.80)

for the existence of (a2)2, and

 

02 + As < -\/(2€2A1)2 + (Ml453l130 - (#227l4 - (%)2f‘32)2 (3-81)

for the existence of (a3)2. In order to determine the stability associated with these steady

state responses, we compute the the Jacobian matrix associated with equations (3.68) and

(3.68) and obtain

—(9;-)n2(mr)4p40 -2(02 — A202 + A3)a

(3.82)

‘2A20 ’2n4l‘22 _ #4o(n7r)4n2(a4_2) + (5921132

After we compute the eigenvalues of this matrix, we obtain the following conclusions:

 

(1) when 02 > —A3 + \/(2§2A1)2 + (n1r)4§§p§o — (p22n4 - (%)2p32)2, there is only one
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response: the trivial one, and it is stable,

 

(2) when 02 < —A3 + |\/(2§2A1)2 + (n1r)4§§p§0 - (”22124 — (%)2p32 )2I, the trivial solution

becomes unstable, while a2 exists and is stable,

 

(3) when a; < —/_\.3 — \/(2€2A1)2 + (n1r)4£%p§o — (”2,114 — (%)2pg2 )2, a3 exists and is un-

stable, while the trivial solution and a; are stable.

Remark: Before leaving this section, there are few points to make. We first compare the

linear and nonlinear results. If we neglect the effects of shear deformation 0:2, rotary inertia

03, the friction force introduced by elastic deformation (p4a3 term) and bearing damping

#3, then equations (3.68) and (3.68) become

a' = —n4p22a — 2a§2A1 sin (202) + a,u40§2(n7r)2 cos (24);») , (3.83)

a<I>’2 2 02a — A2a3 — 2aA1£2 cos (2<I>2) - ap4o£2(n1r)2 sin (2&2) . (3.84)

In consequence, the frequency response equation becomes

a2l("4#22)2 + (02 - A202)? — (252A1)2 — (”704531130 l = 0 - (3-85)

It is clear that equations (3.58) and (3.85) coincide with each other in their linear parts. To

show this, we substitute M, = (#2, , and £2 = ((1, into equation (3.85). Then equation (3.85)

reduces to equation (3.58) when on approaches zero. Moreover, the equation describing the

variation of the amplitude of the response (equations [3.53] and [3.84] ) are in the same

form. The difference between the linear and nonlinear analyses appears in the equation

describing the variation of the phase angle {>2 (equations [3.54] and [384]). This implies

that the direct effect of the nonlinearity is to affect the phase angle. From another point of
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view, the nonlinearity affects the rate at which energy is pumped into the system. In the

absence of nonlinearity, the response is unstable when the parameters are located inside the

unstable regions. According the linear theory, the amplitude of response will grow without

limit. However, this increasing response amplitude will be accompanied with a change of

phase angle because of the presence of nonlinearity. A new steady state condition will

then be achieved when the energy put into the system is balanced by the energy dissipated

by the damping. Furthermore, let us consider the main nose of instability, a region in

which the trivial solution becomes unstable. If we substitute the trivial solution a = 0 into

equation (3.85) then we will obtain equation (3.58). From the conclusion obtained from the

nonlinear analysis, we obtain the same region of instability regarding the trivial solution.

We next consider the effects of the shear deformation and the rotary inertia which are

included in the parameter A3 in this work. It is clear that these effects can only be found

in the nonlinear analysis. These nonlinearities affect the response by shifting the stability

region along the frequency axis to the left. In other words, the main nose of instability in

which the trivial response becomes unstable will be centered to the left of Q = 24.2". We

note that the effect of A3 is of higher order. Therefore, its effect is included in the analysis

by using rescaling relation (3.60). In other words, its effect on the response may not be

significant.

3.3 Primary Resonance (9 x can)

In this section, we consider the case in which the frequency 0 is near to w". This is

referred to as the primary resonance. To begin our analysis, let us reconsider equation (3.63)

in section 3.2, and assume that Q is near to can. Moreover, the damping parameters [12 and

m are rescaled by equations (3.49) and (3.10). In order to make the analysis clear, we
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redefine 01 to quantitatively represent the nearness of Q to can. Hence, we let

9 = wn + 601 (3.86)

in equation (3.63). Under this condition, we must have

- 2jwn(D1An) — gig-026312001111 — jg) — 2jp21n4Anwn = 0 (3.87)

in order to remove the secular term from the particular solution of €22“. Expanding this equa-

tion with An = §ezp(j\ll), and separating the resultant equation into real and imaginary

parts, we obtain

a’ = —p2,n4a — 73-6—2 cos <I>1 , (3.88)

1r

aQ’l 2 01a + 35—2 sin {>1 (3.89)

where <I>1 is given in equation (3.55). The steady state condition can be achieved when

a’ =: a¢I>’1 = 0. Therefore, we obtain

"52

n4p21a = -7 cos <I’1 , (3.90)

010 = —nT€25in Q1 . (3.91)

Squaring these two equations and adding them together, we obtain the following frequency

response equation:

(nap; +a¥)a2 = (if—2)? (3.92)
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Therefore, solution of the flexural vibration is approximated by

v(a:,t) cv1(z,t) + 0(62)

6] a cos (9T0 -— <I>) ] sin mm: + 0(3) (3.93)

where a and <I> are described by equations (3.88) and (3.89), respectively. The steady state

value of the phase angle 45 is described by

tan <I>, = (2) . (3.94)

#21

Equation (3.92) is the frequency response of the primary resonance. We note that it does

a, = magnitude of 231,, at 9 z an

I
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Figure 3.3: Frequency response equation for the primary resonance

not contain any nonlinearity, and hence corresponds to the frequency response condition

for a linear oscillator. Figure 3.3 provides an example for this frequency response equation.

All these imply that the ordering relation (equation [3.60]) fails to capture the nonlinearity

in the analysis. In order to extend our analysis to includes the nonlinearity, we rescale the



54

length ratio 5 by letting

g = 6353 . (3.95)

Moreover, we rescale the damping parameters #2, p3 and #4 according to equation (3.8),

(3.9) and (3.10), respectively. Expanding equations (2.51), (2.52) and (2.53) with these new

ordering relations, and equating the coefficients of the like-power terms, we will obtain a

sequence of partial differential equations. Applying the same procedure to the boundary

conditions, we will obtain a sequence of boundary condition associated with these equations.

We then solve these equations by following the same procedure as described in the previous

sections. Because this procedure is routine and tedious, we only present a few essential

results in the following analysis. For a complete solution procedure, refer to Appendix D.

The equation describing the first order flexural vibration is given in equation (3.61). In

consequence, the solution of the first order flexural vibration is given by equation (3.62).

The equation describing the second order flexural vibration of the connecting rod is given

as

. . 2

D0202“ + 013,132,. 2 —2]wn(D1An)ezp(]wnTo) — Emma cos mr + c.c. (3.96)

where (—-%p3,f2 cos mr) comes form the nonhomogeneous boundary conditions. The elim-

ination of the secular terms requires that (DlAn) = 0. This implies that the amplitude

function of the transverse response is independent of the time scale T1. The third order

term for the flexural vibration of the connecting rod is described by the following equation:

4
. . . . .n .

0027131. + £03,037; = -2.7wn(DlAn)€$P(anTo) + 2.7 jx—zllaz Anexp(anT0)

15 1 — .

- {-8— - (5 + Ser)”IInern‘AiAnezpewnro)

+ An(n1r)2n6(alag + ala3)ezp(jwnTo) — j(n7r)4p4ownA?,Ane$p(jwnTo)
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— 2jwnn4p22 Anexp(jwnTo) — j%6$p(jQT2) + N.S.T. + c.c. . (3.97)

To describe the nearness of the frequency ratio 9 to wn, we express 9 as

Q = w, + 6202. (3.98)

Therefore, we must have

- 2jwn(D1An) + An(n7r)2n6(alag + 01023) — 2jwnn4p22 An — j(n7r)“w,1n40 A211,,

.124 15 1 - . .
+ 2jfip32An — [§- — (3 + S)(n7r)2](mr)2n4A,2,An — J-TE—jreszong) = 0 (3.99)

in order to remove the secular term from the particular solution of 133m. Expanding this equa-

tion with An = §ezp(j\ll), and separating the resultant equation into real and imaginary

parts, we obtain

1 n2 53
a’ = —n4fl220 — -8-(n7r)4)u40wna3 + Fpgza — 5 cos (1)2 , (3.100)

a<I>'2 = 02a — A2a3 + A30 + %92 sin <I>2 (3.101)

where <I>2 is defined by equation (3.71), A2 is defined by equation (3.69) and A3 is defined

by equation (3.70). The steady state condition for these equations can be achieved when

a’ = a<I>’2 = 0. This leads to

n 1 n2

-(;)fa cos <I>2 = n‘nga + §(mr)4u40wna3 - Eusza , (3-102)

—(%)£3 sin Q2 = 020 - A203 + A30, . (3.103)
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Squaring these equations and adding them together, we obtain the following frequency

response equation:

1 n

021(02 - A2612 + A3)2 + (714/122 + §(n7r)4#4own02-22H32)21‘ ({if - (3-104)

Consequently, the frequency response curves take the following form when solved for the

detuning parameter:

 

n 1 n2

02-_ [A202 — A3] :t \/(71-1-r-£3 )2 — [ n4)”, + -8-(n7r)4p40<...vna2 - Fug, ]2 . (3.105)

This equation indicates that the steady-state response can reach its maximum amplitude

described by

n
( £3 )2

1 n2

,, ail n‘uz. + §(mr)4u4owna§ - 5%: 12 = 0 (3.106)

which occurs at the frequency

(2 = w. + co, = can + 52(A2ag — A3) . (3.107)

Since A2 < 0 and A3 > 0 for each individual mode, we have 0,, < 0. Therefore, the

frequency response curves bend to the left. Figure 3.4 provides an example for this frequency

response equation. To determine the stability of these steady state responses, we compute

the Jacobian matrix associated with equations (3.100) and (3.101), which takes the form:

—n“;122 — 3(n1r)4wnp4oa2 + 51132 —(02 — A202 + A3)a

(3.108)

(02 + 3132“2 + A3)/0 414/122 + $713. - %(mrrah/14002
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a, = magnitude of 131,, at O z w]
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Figure 3.4: Frequency response equation for the primary resonance

By computing the eigenvalues of this matrix, we determine that when

3 n2 1 n2

["0122 + '8'0"ryum/14002 — 1731132 “"4112: + §(mr)4wn#4oa2 - pflszl

+ (0'2 — A202 + A3)(02 — 3A202 + A3) < 0 (3.109)

these steady state responses are unstable. Otherwise, they are stable. The solution v(a:,t)

of the flexural vibration of the connecting rod can be approximated by

v(a:, t) ev1(a:,t) + 0(62)

e[acos(QTo — <I>)] sin mm: + 0(62) (3.110)

where a and (I) are described by equations (3.100) and (3.101), respectively. The steady

state value of the phase angle is described by

0'2 - A202 + A3

tan (P, = ( 4 1 4 2 n2

#22” + §(n7r) wnfl‘ioa — 767/132

 ). (3.111)
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From Figure 3.4, it is clear that, when 9 is located between point I) and 0, there exists more

than one steady state response. Those steady state responses located along the be portion

of the response curve are unstable, and hence will not be observed either in simulations

or experiments. Moreover, for frequences between point I) and c in Figure 3.4, the initial

conditions will decide the steady state response. In other words, the initial conditions will

decide whether the response shall appear along the ab curve or the cd portion. To be more

precise, there is a saddle node bifurcation[50, 21] associated with points b and c in Figure 3.4.

For each stable steady state response, there is one corresponding basin of attraction. The

response is then determined by the location of the initial conditions.

Remark: Before proceeding to the next section, there are few points which need to be

made. We first compare the results from the linear and nonlinear analyses. By neglecting the

effects of shear deformation, rotary inertia, the friction parameters #32 and #40 associated

with equations (3.100) and (3.101), we obtain

a' = —n4p22a — 1:3 cos (P2 , (3.112)

a<I>'2 = ago + A203 + 12% sin <I> . (3.113)

The resultant frequency response equation takes the form:

n

ail (a. — 12.3)2 + (124172321 = ($I". (3.114)

Basically, the equations describing the variation of the amplitude of the response (equa-

tions [3.88] and [3.100]) are exactly the same. The only difference between linear and

nonlinear analyses shows up in the equations describing the variation of the phase angle
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(equations [3.89] and [3.101]). Moreover, equations (3.92) and (3.114) coincide with each

other in their linear parts. To show this, we substitute 1122 = £112, , {3 = 662 and 02 = 601

into equation (3.114). Then equation (3.114) will reduce to equation (3.92) as a approaches

zero. This implies that when the amplitude of response is small, linear theory works well.

However, as the amplitude of response increases, the nonlinearity affects the system by

changing the rate at which energy is pumped into the system. As a consequence, a new

”equilibrium” will be reached when the rate at which energy put into the system is balanced

by the rate of energy dissipated.

It is clear that the shear deformation and the rotary inertia do not affect the linear

response, because they are not included in the resonance condition. In consequence, they

will not affect the peak amplitude of the primary resonance. The shear deformation and

the rotary inertia affect the primary resonance by shifting the location of the frequency at

which the primary resonance reaches its peak amplitude to the left by a small amount of

order C(62). In other words, the backbone curve, which is the locus of the peak amplitude

associated with the frequency response curves, will not originate from Q = w... However,

the effect of A3 is independent of the response and is of order C(62). Hence, we may expect

that A3 affects the linear approximation by a very small amount.

3.4 Superharmonic Resonance (Q a: 92“)

Recalling that in analyzing the particular solution of 132,, in section 3.1, we assumed that

the frequency ratio 9 is away from 20.7,, and 94;, and then proceeded to analyze the equations

of higher order. The case in which (2 is near to 2wn corresponds to the principal parametric

resonance and has been studied in section 3.2. In the current section, we investigate a

superharmonic resonance case in which the frequency ratio 9 is near to 9211. To consider
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this case, let us express the frequency ratio 9 as

1

Q = -2—(wn + 601). (3.115)

The damping parameters [12 and #4 are rescaled according to equations (3.49) and (3.10),

so that they will show up, together with detuning parameter 01, in the final resonant condi-

tion. We then expand equations (2.51), (2.52) and (2.53) with these ordering relations, and

follow the same procedure as described in section 3.2. Again, we only present a few results

which are essential to our work. For a completed analysis, please refer to Appendix B.

Following the same procedure as described in the last section, the first order flexural vi-

bration associated with the connecting rod is described by equation (3.29). Consequently,

the general solution of 771,, is given in equation (3.30). The equation describing the second

order flexural vibration becomes

13027321; + wzi’Zn = ’2jwn(D1An)ezp(jwnTO) "' 2jl‘21wnn4Anemp(jwnT0)

 

mr C smr

+ ( 2)moflflAlezpajflTo) + --—-9—5192€$P(219To — 11;)

_ 3(1 + 25)(mr)2A15102exp(2jQTo - j%) + N.S.T. + c.c. . (3.116)

Therefore, in order to remove the secular terms from the particular solution of 7‘22”, we must

have

— 2jwn(D1A—,.) 2jn4p21wnAn +—— f(n7r)wne:cp(jalT1)

—COS mr

+ (“X—)1—$0+2S)(mr)21exp(ja.To—j-’25).—.o. (3.117)

Expanding this equation with An = %e:cp(j W), and then separating the resultant into the
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real and imaginary parts, we obtain the following equations:

61w.
 a = —n4p2,a + -#—gfl(n1r)£f sin Q1— ”[3(1 — cos mr) — 2—] cos Q1, (3.118)

 aQ’ 01a + E33(n7r)§2 cos Q1 + {[2013[3(1 — cos mr) - 2—1]sin Q1 (3.119)

1 6 1 24n1r n2

where Q1 is given in equation (3.55), and A1 is defined by equation (3.56). The steady state

condition of these equations can be obtained by letting a’ = a¢’1 = 0, which yields

 114/1.210. Eg—°(mr)£f sin Q1 — 3:" [3(1 - cos mr) — 2—) cos Q1, (3.120)

 -01a = [13°—(mr)£1 cos Q1 +261:"W[3(1— cos mr) -— 2%)sinQ1. (3.121)

Squaring these steady state responses and adding them together, we obtain the following

equation:

 

A

c.2018”; + 012) = £14[%(n7r)]2+ (24nn7r)2[3(1— cos mr) - 212—21]2 (3.122)

which is the frequency response equation for this superharmonic resonance. Figure 3.4

provides an example for this frequency response equation. Therefore, when 0 is near to 231,

the response of the flexural vibration can be approximated by

v(:c, t) cv1(:r,To, T1,T2) + 0(62)

6[ A1 sin 0T0 + a cos (2QT0 — Q) ] sin mra: + 0(62) (3.123)

where A1 is given in equation (3.31), while a and the phase angle Q are described by
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a, = magnitude of the homogeneous solution
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Figure 3.5. Frequency response equation for superharmonic resonance (9 ~ 31*)

equations (3.119) and (3.119). The steady state value of the phase angle Q1 is given as

47140712, (W)2 + 01wn[3(1 - COS 7”) - 2%]

41140010”) + wn[3(1— cos mr) - 2%]

 tan Q, = (3.124)

Remark: Equation (3.123) is the first order approximate solution to the flexural vibration

associated with the connecting rod. Note that this solution consists of two parts: the

homogeneous and the particular solutions. A simple calculation of the eigenvalues associated

with these steady state responses indicates that the homogeneous solution is stable for

#21 > 0. Hence, a steady state superharmonic resonance exists for all conditions and the

solution is composed of two periodic functions. The particular solution is, of course, of the

same frequency as the the operating frequency. While the homogeneous solution oscillates

with twice the frequency of the operating frequency. Therefore, for this superharmonic

resonance, the homogeneous solution of 61,. interacts in 732,” and hence does not decay to

zero. This indicates that the presence of this non-vanishing homogeneous solution is the
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character of the nonlinearity possessed by the system. Moreover, the magnitude of this

homogeneous solution is proportional to the square of the length ratio {1. This implies that

the homogeneous solution vanishes more rapidly than the particular solution as the length

ratio 6 approaches zero.

Remark: The mass ratio S has a very interesting effect on the overall flexural response.

To analyze this point, we consider the frequency response equation (3.122). We note that

the right hand side of this equation represents the magnitude of the external force and is

always positive. Therefore, a local minimum will imply a local minimum value of magnitude

of the force, and hence a local minimum value of the amplitude of the homogeneous solution.

Figure 3.6 shows the influence of S on the magnitude of the homogeneous solution. We note

that 0, decreases when S increases from zero to about 0.11, and then a, increases as S

increases beyond 0.11. Based on this, we find that a, reaches a minimum when

2A1 — 3112(1— cos n7r) = 0 . (3.125)

This implies that a proper choice of the mass ratio will help in suppressing (but not totally

eliminating) the peak amplitude associated with this superharmonic resonance (Figure 3.6).

Figure 3.6 shows the variation of the peak amplitude a, with respect to the mass ratio S.

As shown in this figure, the peak amplitude a, decreases as S increases from 0 to 0.11, and

then it increases as S increases beyond 0.11. We note that the presence of the damping

parameter p40 in the right hand side of the frequency response equation (3.122) indicates

that the an increase in #40 will increase the amplitude of response. It can be interpreted

as follows. The presence of p40 implies the presence of the friction force acting on the

slider end, and hence increasing [140 corresponding to increasing the axial load acting on
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a, = magnitude of the homogeneous solution at Q = w] /2
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Figure 3.6: Influence of mass ratio S on the amplitude of superharmonic resonance ((2 z 2;)

the connecting rod. As a consequence, the amplitude of response will increase.

3.5 Superharmonic Resonance (0 z 9’3“)

In analyzing the particular solution of equation (3.47), a superharmonic resonance takes

place when (2 is near to 3311. Under this condition, equation (3.47) reduces to

130233.. + wits. = -2jwn(D2An + 1.41.2, An)e1:p(jwnTo)

4

+ 2j%An:132ezp(jwnTo) + An(0102 + ala3)(mr)2n4e:cp(jwnTo)

_ 1_5_ _ S 2 6A2A T (11W)

[ 8 (g + )(nfl') 1n Ane$p(jwn 0) + 1536wnfl40616zp(jwflTo +j02T2)

— jwn(n7r)”40/42/17:€$p(jwnTo)- j(‘3‘*12)/140(NW)2Anwn€1€$P(jwnTo)

+ fllffAneprwnTo) + jfglfii’expfiwnTo + jang) + N.S.T. + c.c. (3.126)
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where f1, and f2, are given in Appendix A. Therefore, we must have

4
. . ,n , _

- 2an(D1An) — 2ann4p22An + 2JFAnfl32 — an(n1r)4p4o AE‘An

15 l _

+ (0102 + 011013)(n7r)2n4An —- [—8—- + (5 + .S')(n7r)2]nBA,2,An + fllAnéf

(mr——)-1rwnp40€1 + jf2,£1 ]e:z:p(jc72T2)-— 0 (3.127)

. l

in order to remove the secular term from the particular solution. Since the leading coefficient

of p4oezp(j02T2) is very small, we neglect this term in the following analysis. Expanding

equation (3.127) with An = gezp(j‘I'), and separating the resultant equation into real and

imaginary parts, we obtain

a’ = —anz[pgzn2 + “48°(n1r)4a2 +p—°-p4o(mr)2£1—64#—3—22]+ —£1f2‘3 cos Q2, (3.128)

aQ'l a[02 +2Iii—1271361 + A3 - A202] — f2___1_3-——£1 sin Q2 (3.129)

where A; is defined in equation (3.69) and A3 is defined in equation (3.70). The steady

state conditions can be achieved by letting a’ = an : 0. This yields

2
n

{gamma = alpzzn“+%(mr)"n2a2+(%f)(mr)2n2€f-77/132]. (3.130)

[36135111 T2 = [02+ {112$61 + A3 — A202 ].
(3.131)

Squaring these equations and adding them together, we obtain the following equation:

n2

[(uzzn‘ + %<n«)4n2a’+(i‘§)(m>2nzs$73.)?

+ (02 +2-f—“$5? + A3 .— A2712)2 ]a= (ii;5;")2 (3.132)
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which is the frequency response equation for this superharmonic resonance. We then solve

the values of 02 and obtain the following frequency response curves:

- — -f——‘;£¥+A2a —A11

 

(/(f21053)” n4lfl22n2 + (”7040ng +(lu‘i°)(mr)2€1:3";2 12 . (3-133)

Thus, despite the presence of the damping parameters, the homogeneous solution does not

decay to zero. Furthermore, the steady state response takes the form:

v(:r,t) = €v1(m,t)+0(62)

= 6[ A1 sin 9T0 + acos (3QT0 — <I>)] sin mm: + 0(52) (3.134)

where a and the phase angle <I> are described by equations (3.128) and (3.129). The steady

state value of the phase angle <I> is described by

02 + £55? + A3 - A2a2
ta Q,=

11 1,.n4+(mxno4n2a2+(igrxnoznzé1—(:—2m3.
 ]. (3.135)

By computing the eigenvalues of the Jacobian matrix associated with equations (3.128) and

(3.129), we determine that when

2
n

(m. + -"—g£(mr)‘n2a2 + ($01,021.25: - FM»)

3712

(m. + _"4_O.(111)411212 (”4°)(11)2251- 7:11.11)

+(0’2 +2f_1_12—-El- A202 + A3)(0’2 +2f-1—127flfl - 3A2€12+ A3) < 0 (3.136)

these steady state responses are unstable. Otherwise they are stable.
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Remark: According to this analysis, the free oscillation term does not decay to zero,

despite the presence of the damping parameter. Therefore, the steady state response is

composed of two periodic functions. The particular solution oscillates with the same fre-

quency as that of the external frequency, while homogeneous solution oscillates with the

frequency that is three times the operating frequency 9. We note that the amplitude of the

particular solution is of order 0(5), and the homogeneous solution is of order C(53). This

indicates that thefree oscillation term vanishes more rapidly than the forcing oscillation as

5 approaches zero. From the frequency response curves and the stability analysis, we know

that within a certain frequency region, there exists more than one steady state response.

We note that the homogeneous solution possesses a peak amplitude (1,, described as

5? 2 2 4 2 4 af, “i 2 2 "2 2

(f21_2_) '— “pl #22" + n (nn) [‘40— + n ("'7") ”'40 '— 7/‘32 ] = 0 (3'13?)

11 8 64 71'

which occurs at

a - —-f—1—’—£2 + A a2 A (3138

We note that A2 < O in the last equation. This indicates that the frequency response

curves bends to the left corresponding a superharmonic resonance with softening type of

nonlinearity. Figure 3.7 provides an example for the frequency response equation for this

superharmonic resonance. Note that, in Figure 3.7, there is almost no bending associated

with the response curve. This implies that, to observe higher order superharmonic reso-

nances, the bending effect may require a larger length ratio as well as a larger mass ratio.

In other words, it is necessary to have strong nonlinearity and a large response amplitude of

response in order to achieve a significant bending in the response curve. Another interesting

phenomenon accompanying this superharmonic resonance is the influence of the mass ratio
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on the peak amplitude up. The numerator of equation (3.137) is the force applied to this

superharmonic resonance, and it is a quadratic function in terms of S. A proper choice of

the mass ratio S will minimize the magnitude of the force and hence minimize the amplitude

of the response. Figure 3.8 shows the influence of the mass ratio on the peak amplitude

associated with the superharmonic resonance. From this figure, we see that the amplitude

of the response will decrease when S is increases from zero to a critical value; while the peak

amplitude will increase when S is beyond this critical value.

a, = amplitude of homogeneous response

 

  
 

0.03 l I I

{=0%

0.025 - S = 1.0 r

[12 = 0.02

002 ,_ p3 = 0.00 T

01 = 1.00

as 0.015 '— 02 = 000 1

a3 = 0.00

0.01 - n = 1 '1

0.005 - a

——_——/ \\.1

0 l l J

0.2 0.25 0.3 0.35 0.4

Frequency ratio 9

Figure 3.7: Frequency response equation for superharmonic resonance (9 z 2311)

3.6 Subharmonic Resonance ((2 z 302,.)

In this section, we consider the case in which 9 is near to 3w”. Under this condition,

the system is potentially in a state of subharmonic resonance. To analyze this subharmonic

resonance, we express 0 as

n = 3(0),, + 6202). (3.139)
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a, = amplitude of homogeneous response
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Figure 3.8: Influence of S on the peak amplitude of the superharmonic resonance ((2 z 9311)

Then equation (3.47) reduces to

D0263" + 013,233,, = —2jw,,[m,n4 + DgAn + jp40(nr)4A:/ln]exp(jwnTo)

+ figfiAneprwnTO) + [37315133. + (g)fl4o(n’r)3wn€11§§l€$P(3j02T2 + jwnTO)

+ (0102 +5(11a3)(mr)2n‘lAnear,'19(.7'wnTo) + j(%)p4o£§(n1r)2Anexp(jwnTo)

- "700185- 4% + 5)(nfi)2ln4A§3ne$P(jwnTo)

+ 2j:—:p3, Anezp(jwnTo) + N.S.T. + c.c. (3.140)

where c.c. represents the complex conjugate term of the proceeding terms, and an overbar

stands for the complex conjugate term of the corresponding function. Hence, we must have

-— 2jwn(p2,n +D2An )+2.7':-—:72p;3,.4,,-{~(c11(3z2+crla3)(n7r)24A,1

l5

— (mrfl— —(- +S)(mr)"’]n“A3.A+f12£¥A.ezp(jw..To)

- jwnu4o[(nW)‘A§An+(8——:¥er)2€An]
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+ [1.1-3161A: +(§)#4o(n7r)3wn51/131l€93P(3j02T2) = 0 (3-141)

in order to remove the secular term from the particular solution. Expanding equation (3.141)

with An = gexp(j\Il), and separating the resultant equation into real and imaginary parts,

we obtain

 

a’ = «1124112. - ($121.3, “31450552 +(2—immow

(1.3161 )a2 cos (3<I>2), (3.142)

a<I>’2 =+éf—1—221fl€la—4€1:2 f31a2 SlIl (3Q2) + A30 - A203 . (3.143)

The steady state conditions can be obtained by letting a’ = a<I>"2 = 0, these yield

(f3161)a C05(3‘1’2) = aln4p22 - :—:#32 +Il4onz(mr)4(:32'2‘“)+(:erlgnzahllio 144)

if; a2 sin (3<I>2) = 020 +2f__1_221fl£la + A30 - A203- 3-145
413'2 1

We obtain the frequency response equation which takes the form:

2 4 "2 2 4 “2 81 2 2 2 2

a [0‘22" " fills: + #40" (“77) ('gl‘l’ (5;)(mr) n “51)

+(ag+¢f-—122£1+A3—A222a) (fl—15‘)2a2]=0 (3.146)

by squaring equations (3.144) and (3.145), and adding them together. From equation (3.146),

we know that the trivial solution for a is always a steady state response. Due to the com-

plexity of this equation, we neglect the effect of p40 in the following analysis. We solve
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equation (3.146) for the nontrivial values of a2 and obtain

0...)? = (52711;)1W — 4g] (3.147)

where coefficients p and q are

p = 2A2(0’2 +2f-1-2271261 + A3) + (-—-f3]T61? (3.148)

q = (#2271 -—#3.)2+(0'2+f1"’€1+A)2 ~ (3.149)

We note that q is always positive. Therefore, these nontrivial free oscillations exist only

if p 2 0 and p2 — 4q 2 0. When these conditions hold, it is possible for the system to

respond in such a way that the homogeneous oscillation does not decay to zero, in spite

of the presence of damping parameters. In consequence, the steady state response can be

approximated by

v(a:, t)-— £01 + 0(62)_— 6(0, 005(—To — —) + A1 sin 0T0) + 0(62) (3.150)

where a, is described by equation (3.147), A1 is defined by equation (3.31), and the phase

angle <I>, is given by

0’2 + $612 ‘1’ A3

n‘iuzz- $1132

 tan Q. =( ) (3-151)

Remark: We note that the response of the system is described as follows. When the initial

conditions are selected in such a way that the resulting steady state corresponds to a stable

nontrivial solution of a,, then the magnitude of the free oscillation term does not equal to

zero. Under this condition, the first order flexural response associated with the connecting

rod contains frequencies of Q and %. Otherwise, the first term of equation (3.150) will be
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zero, only particular solution will exist, and the response contains only the frequency (2.

Friction parameter m, which is used ot model the friction force acting between the slider

mass and its contact surface, has a favorable effect in reducing the amplitude of response.

This is caused by the friction force introduced by the elastic deformation, which behaves as

a resistance to prevent the connecting rod from further deformation.

3.7 Summary and Conclusion

In this section, we summarize the results obtained in previous sections. Based on the

observations from previous investigators[ll, 49] and the analytical results obtained in the

previous sections, we select in turn the length ratio 5, the frequency ratio 9, the mass

ratio S, and the damping parameters ”2, p3 and p4 and then provide a detailed discussion

regarding the effect of each individual parameter on the overall response.

3.7.1 Effect of the Length Ratio 5

As we mentioned in the introductory section, the increase of the inertial force is pri-

marily responsible for the failure of the traditional dynamic analysis of mechanisms. In

this problem, the acceleration components 0,, and (1,, are proportional to the length ratio

5 (equations [2.11] and [2.12]). Consequently, the inertial force is pr0portional to this pa—

rameter. The general solution of the first order flexural vibration is given as a combination

of the particular and homogeneous solutions. The magnitude of the particular solution

is proportional to f. If no resonance occurs, the free oscillation term will decay to zero,

and hence steady state response contains the particular solution only. In consequence, the

amplitude of the response will be proportional to the length ratio. In the case of primary

resonance, the amplitude of the resonance is proportional to 6 (equation[3.106]). Figure 3.9
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shows the effect of f on the amplitude of the primary resonance. Moreover, the frequency

at which this peak amplitude is observed depends upon the square of the magnitude of the

particular solution, which in turn depends on {2.

a, = magnitude of 01,,
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Figure 3.9: Influence of f on the primary resonance
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Figure 3.10: Influence of f on the main nose of instability

In the case of the principal parametric resonance, the width of the frequency region in

which the trivial response becomes unstable also depends on f (equation[3.59]). In other
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words, the width of main nose of instability is proportional to 6. Figure 3.6 shows the

effect of the length ratio on the main nose of instability. We note that, in Figure 3.6,

the width between the transition curves increases when 6 increases. Figure 3.10 shows the

effect of the length ratio on the amplitude of the nontrivial responses. We note that, in

Figure 3.10, the region between points a and b indicates the region in which the trivial

response becomes unstable. In the case of superharmonic resonances, the magnitude of the

non-zero homogeneous solution also depends on 6. To be more precise, when 0 is near to

can /2, the magnitude of the non-zero free oscillation term is of order C(52); when 9 is near

to can /3, while the magnitude of the non-zero free oscillation term is of order C(53). Hence,

the contribution of the non-zero homogeneous solution depends on the order of 5. All these

imply that the length ratio is the primary parameter for the current problem.

3.7.2 Effect of Mass Ratio S

The effect of this parameter is not immediately clear. Generally speaking, it acts as the

nonlinearity associated with the system. In order to make our discussion as clear as possible,

we need to consider each resonance case separately. In the case of primary resonance case, a

slight increase of S will cause a significant increase of the value of Up, the value of detuning

at which the peak amplitude occurs. To make this point more clear, let us consider the

following cases: S = 0 and S = 1. When there is no mass attached to the slider end, the

value of 0,, is given as

II2 15 1r2

(0p)s=o = (3 - g 73— (3.152)

for the first mode (n=1). In consequence, the frequency at which the peak amplitude

associated with the primary resonance can be observed will shift to the left by an amount

(20,, with the value of 0,, being given by equation (3.152). Now, we consider the case in
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which S = 1. When S = 1, the value of 0,, becomes

1r2 15 x2 W4 1r“

(Uplsu = (3' - -8—)—8_ - ‘8- = (0105.0 — 3 (3-153)

A rough estimate of the difference between these two values of 0,, shows that (01,)58l is

about eight times the value of (0,)5.,. Moreover, this ratio will increase as the value of

S increases. This implies that the value of 0,, is very sensitive to the value of S. A slight

change of S will cause a significant change of 01,. Figure 3.11 shows the influence of the

mass ratio S on the primary resonance.

a, = the magnitude of 01,,
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Figure 3.11: Influence of S on the primary resonance

The mass ratio S affects the principal parametric resonance by increasing the width

of the main noise of instability. Figure 3.12 shows the influence of S to the main nose of

instability. From this figure, it is very clear that the distance between two transition curves

increases when the mass ratio S increases. Figure 3.13 shows the amplitude of the nontrivial

homogeneous response associated with the principal parametric resonance.

In all the superharmonic resonances, S has a very interesting effect on the response. We
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Figure 3.13: Influence of S on the principal parametric resonance
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first consider the case in which (I is near to 53h. When this resonance occurs, the steady

state response is composed of particular and homogeneous solutions. The magnitude of

the free oscillation component depends on the value of S. It is interesting to find that the

magnitude of the free oscillation term decreases as S increases from zero up to a critical

value, while the magnitude increases as S is increased beyond this critical value (which is

the root of equation (3.125)). Hence, the magnitude of the overall response follows the same

trend as, the homogeneous solution (Figure 3.6). This implies that a proper choice of the

mass ratio 8 can aid in decreasing the amplitude of superharmonic resonances. This may

have important practical implication for the design of slider crack mechanisms.

3.7.3 Effect of Damping Parameters pg, #3 and #4

The internal material damping #2 has a favorable effect on the overall response of the

system. In the primary resonance case, the presence of m in the frequency response equa-

tions (3.104) and (3.92) will reduce the peak amplitude of the system. The amplitude of

this resonance will decrease as p22 is increased (Figure 3.14). In the principal parametric

resonance, the width of the main nose of instability will decrease as we increase the value

of pg, in equation (3.58). Moreover, the amplitude of the response decreases as we increase

the value of p22 in equation (3.74). Figure 3.15 shows the effect of the damping parameter

#2 on the width of the main nose of instability. We note that, in Figure 3.15, the presence

of #2 will cause the upward vertical movement of the transition curve. Therefore, the width

of the main nose of instability will decrease. As a matter of fact, the shrinking accompanied

with the presence of m may be so large that the width of the main nose of instability re-

duces to zero for a specific value of 5. Figure 3.16 shows the influence of m on the branches

of the nontrivial responses associated with the principal parametric resonance. The am-
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a, = magnitude of 01,,
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a, = nontrivial response
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Figure 3.16: Influence of #2 on the principal parametric resonance

plitude of the nontrivial responses associated with the parametric resonance will decrease

as [12 increases. The parameter [12 is a measure of the system’s ability to dissipate energy

through material damping. Hence, in order to produce a sustained nontrivial steady-state

response, the magnitude of the external force must be large enough to overcome the energy

dissipated. Therefore, for a given system, the width of the main nose of instability shrinks

as the value of p; is increased. In both of the superharmonic resonances, the amplitude

of the free oscillation term will decrease as we increase the value of #2, (equations [3.122],

[3.132]). These observations show that the presence of m has a favorable effect on the

overall response.

The bearing friction #3 has an adverse effect on the overall response of the system. To

show this, let us consider the sign associated with parameter #3 in the frequency response

equation of each resonance case. The negative sign associated with parameter p3 in every

frequency response equation indicates that the presence of this parameter has an adverse

effect on the system. From another point of view, the presence of this parameter implies a
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constant positive energy flux and hence increase the amplitude of the response. Figure 3.17

shows the influence of #3 on the amplitude of the nontrivial response associated with the

principal parametric resonance. We note that [13 does not affect the main nose of instability

associated with the principal parametric resonance. From this figure, it is seen that the effect

of [13 on the nontrivial response is not very significant. Figure 3.18 shows the influence of

#3 on the primary resonance. From these two figures, it is very clear that the influence of

#3 on each resonance case is not very significant, although #3 has an adverse effect. The

reason for this is that the relative angular motion associated with each joint point (A and

B) is constant in the first order. The presence of p;, will cause a constant friction moment

acting on each joint. These friction moments will enlarge the transverse deformation.

0, = nontrivial response
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Figure 3.17: Influence of #3 on the principal parametric resonance

The effect of the friction parameter #4, which is used to model the friction between

the slider mass and its contact surface, is complicated. In order to have a clear picture

regarding the effect of [14 on the response, one must consider the nature of this friction

force. The slider friction force is composed of the actions of the rigid body motion as



81

a, = overall response
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Figure 3.18: Influence of #3 on the primary resonance

well as the elastic deformation. When the response amplitude is small, slider friction is

mainly composed of the friction introduced by rigid body motion. As the value of #4

increases, slider friction increases. This results an increase in the axial force acting on the

connecting rod. Consequently, the response amplitude increases. From this, #4 has an

adverse effect on the response. This can be observed in the second order superharmonic

(Q m %) resonance (Figure 3.19). Moreover, the width of the main nose of instability

associated with the principal parametric resonance resonance increases as we increase the

value of [14 (Figure 3.20).

The increase of the amplitude of response implies an increase of the foreshortening. This

results an increase in the friction force introduced by elastic deformation. The friction force

introduced by foreshortening acts as resistance which prevents the connecting rod from fur-

ther deformation and hence has a favorable effect. In general, the slider friction is composed

of two friction forces with compatible magnitude, and the system reaches dynamic equilib-

rium. This can be observed in the principal parametric resonance (Figure 3.21). Figure 3.21
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a, = amplitude of the homogeneous solution
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Figure 3.19: Influence of #4 on the superharmonic resonance (Q z 221,11)
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Figure 3.20: Influence of [14 on the main nose of instability ((2 z 2w”)
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shows branches of response originating from the main nose of instability associated with

the principal parametric resonance. From this figure, we find that ”4 has a favorable effect

on the outgoing response by reducing the response amplitude; while it also has a tendency

to increase the width of the main nose of instability.
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Figure 3.21: Influence of m on the principal parametric resonance ((2 z 20.21”)

Figure 3.22 shows the frequency response curve for the primary resonance. From this

figure, it is clear that friction parameter III has a favorable effect on the primary resonance

by reducing the amplitude of response. This is caused by the friction force introduced by

large elastic deformation.

3.7.4 Effect of Shear Deformation and Rotary Inertia

In this work, the effects of shear deformation and rotary inertia are included in the pa-

rameter A3. In the primary resonance, the presence of shear deformation and rotary inertia

affect the frequency response curve in such a way that the locus of the peak amplitude, i.e.,

the backbone curve, will not originate from can. The origin of the backbone curve is shifted

to the left by an amount of order 0(62). Figure 3.23 shows the effects of shear deformation
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Figure 3.22: Influence of #4 on primary resonance (9 a: com)

and rotary inertia to the primary resonance. We note that there is no difference in the

profile of the frequency response equations, while the shift between these curves is caused

by the presence of shear deformation and rotary inertia (02 = 03 = 1). In the principal

parametric resonance, the presence of A3 causes a shift of the center of the main nose of in-

stability (Figure 3.24). In other words, the center of the region in which the trivial solution

becomes unstable will shift to the left by an amount of order C(62), while the width of this

region remains unchanged. Figure 3.24 shows the effect of shear deformation and rotary

inertia on the principal parametric resonance. We note that the profiles associated with the

nontrivial responses for these two cases are very similar, while the shift of these nontrivial

responses is caused by the presence of shear deformation and rotary inertia (02 = (13 = 1).

Shear deformation and rotary inertia do not affect the superharmonic resonance in which

0 is near to 229.111 the superharmonic resonance in which 9 is near to 9131, these two terms

affect the response of the system in a way similar to the primary resonance. In other words,

the backbone curve will not originate from the point 9 = 131. It shifts to the left by an
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amount of order 0(62).

0, = magnitude of 131,.
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Chapter 4

Analysis of the Lumped Parameter Model

In the present chapter, we consider an alternative approach to the problem under in-

vestigation. Instead of a set of partial differential equations, the dynamic behavior of the

connecting rod is modeled by a single ordinary differential equation. This approach is based

on extending the work by Viscomi and Ayre[49] by the inclusion of internal material damp-

ing, bearing friction and sliding friction. In this chapter, we also demonstrate how an active

piston force can be incorperated in this model. Based on the assumptions given in section

2.1, except that the effects of the shear deformation and rotary inertia are neglected, the

elastic response of the connecting rod is modeled by two coupled nonlinear partial differ-

ential equations. Based on the first order approximation, the equation describing the axial

component is first solved to obtain the time-varying axial force. Using this axial force and

neglecting the axial displacement, the equation describing the flexural response becomes a

single uncoupled partial differential equation. This equation is then converted into a single

ordinary differential equation by Galerkin’s method with a single mode. We first consider

the linearized model and obtain the corresponding response curve. The Method of Multiple

Scales is then employed to locate the conditions in which the linear approximation fails

to provide a satisfactory prediction. Improved approximations are also obtained by the

Method of Multiple Scales. In section 4.2, the equation describing the elastic response as-

sociated with the connecting rod is derived, and converted into dimensionless form. Section

86
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4.2 contains the main outline of the analysis, and several resonance cases are introduced.

The principal parametric resonance is investigated in section 4.3. Section 4.4 contains the

analysis for the primary resonance. Two superharmonic resonances in which the operating

frequency is near to one half and one third of the fundamental natural flexural frequency

are studied in section 4.5 and section 4.6, respectively. In section 4.7, we consider the sub-

harmonic resonance of order three. In section 4.8, we summarize the results and provide a

detailed parameter study.

4.1 Equation of Motion

In this section, an equation describing the flexural vibration associated with the con-

necting rod of an otherwise rigid slider-crank mechanism is derived. After this equation is

obtained, it is then transformed into dimensionless form in order to minimize the number

of system parameters.

The basic equations describing the motion along the transverse direction are derived

based on the assumptions given in section 2.1, except that the the effects of shear deforma-

tion and rotary inertia are neglected. In other words, we model the connecting rod using

the Euler-Bernoulli beam theory. With these assumptions, we proceed to derive equations

which describe the flexural vibration associated with the connecting rod AB. Consider a

slider-crank mechanism as shown in Figure 2.3. The OXY coordinate system represents a

fixed inertial reference frame with its origin being attached on the crank shaft. The oxy

coordinate system represents the moving reference frame with its origin being attached on

joint A. The ox axis passes through the idea pin joints at the ends of the elastic connecting

rod and makes an angle -¢ with the OX axis. Let u(z,t) and v(:c,t) represent the axial

and transverse displacements of the connecting rod, respectively. The equations of motion
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in the oxy coordinate system are described by force and moment balance and are given by

95g?) = EA(u. + $223.). + Anew.c +£22.12)“ = PM“ (4-1)

1 1

4):)xe lx — #cAl (”r + 51212,.)va ix = (”my ° (4-2)EIvzzxz + Iflcvxxxxt ‘ EA[ (“1: + 2

where P(:1:, t) = axial force acting on the connecting rod,

p = mass density (mass per unit volume) of the connecting rod,

A = cross-sectional area of the connecting rod, and

03(3, t) and ay(a:, t) are acceleration components given by

0212 045 61) (9—2451)
0,, = —rw2cos (wt — (,b) +0t— — 2552- — 3—t2v —(%¢x)2( + u), (4.3)

2 2?

0,, = —rwzsin (wt — 45) + 01&0: + u) + 2%??3—1;+ g-; -%—(f')-)2 (4.4)

The axial strain 60 at the median line of the connecting rod is approximated by

_3u+ 1 3v 2

co — — WI7.) (4.5)

From the analysis in chapter 3, we know that the axial displacement is small compared to the

transverse displacement. Therefore, we neglect the contribution of the axial displacement

on the inertia forces pa, and pay. Equation (4.1) then becomes

0P 1 1
5; EA(u,,. + i”:):: + +A#c(ua‘ + '03:)1't

pAl-rw’cos(wt—¢¢)— 2(%,—x8,) %%-(%>2x1. (4.6)
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and equation (4.2) becomes

1 1

Evaxza: + Iflcvzxxzt " EAI (U;- + 51):)‘01- lx — Al‘cl (”1: + 51):)11’1: 1:: =

2 2

= —pA[—rw2 sin (wt - 4)) + gig-a: + 9&7; — (g—va] . (4.7)

Integrating equation (4.1) from 0 to x, we obtain

P(a:,t) = P(0,t) + pA / axdz (4.8)
o

where P(O,t) stands for the force applied to the end to which the end mass m4 attached.

If the axial load acting along the connecting rod is known, then this equation is a partial

differential equation describing the transverse displacement v(:r,t). Using the free body

diagram as shown in Figure 2.4 and summing forces along the x-direction, we can determine

the time-varying axial force P(:c, t) to be of the form

 P(:I:,t) = pA/L azdz+m45+(MA+MB)ta2¢+/I,5

17(1) — 177.42 - flsz

cos¢

ta
L

21¢ [0 (aye: — axv)d:c +  

+pA (4.9)

where the overdot represents the time derivatives, F(t) is the active piston force, Z rep-

resents the piston acceleration from the rigid body motion of the mechanism, 0,2 is the

friction force acting on the slider due to rigid body motion, 6 is the foreshortening due the

bending deflection of the rod, and the p,5 term represents the slider friction due to elastic

deformation.

In order to determine the piston acceleration Z, let us digress and consider the rigid

body kinematic analysis. From Figure 2.4, in order to retain the motion of the piston end
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along the X-direction, we must have

Lsin(—¢) = rsin wt (4.10)

which can be written in the following dimensionless form:

sin¢ = —§sin wt (4.11)

where 5 represents the ratio of the effective radius of the crank shaft to the length of the

connecting rod and is specified as the length ratio. With this geometrical relation, the

piston displacement function can be expressed as

Z(t) = rcos Qt + LcosqS = L(£cos Qt + cos 03) . (4.12)

The foreshortening due to the bending deflection of the connecting rod can be approximated

L 612 1 L (912
= _.__2 _ z- —2 , .a /o‘/1+(6$)dx L 21) (63”.; (413)

This approximation of the foreshortening effect is based on the small transversal deforma-

by

tion assumption. Hence, we keep only the first order term of the foreshortening effect.

Substituting equation (4.6) into equation (4.7), we obtain the following equation

Elvzrxx + Mcvaxxzt - [1307:9003 la: =

, 62¢ 62v 005
pA[ rw Sln (wt 45) + 3t2 :1: + 6t2 (9t ) v] (4.14)

where P(a:, t) is given by equation (4.9). Equation (4.14) describes the transverse deflection
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of the connecting rod.

We now consider the boundary conditions for the connecting rod. Since the crank shaft

is assumed to be perfectly rigid and there is no relative displacement of the connection

between the connecting rod and the crank shaft, we have

v(0,t) = 0 . (4.15)

Also, at :c = L, the piston motion is constrained to move along the X direction. Thus, we

have

v(L,t) = u(L,t) tan(—¢) . (4.16)

Again, equation (4.5) implies that the axial displacement u(a:,t) is much smaller than the

transverse one. It is shown in [9] that this boundary condition can be approximated by

v(L,t) = 0. Due to the presence of the fictional moments on points A and B due to

bearings, we have the following boundary conditions:

EIvm(0,t) —MA = pb[w — q) — vzt(0,t)] , (4.17)

EIv,,(L,t) —M3 = III”) — v,,,(L,t)] , (4.18)

where III, represents the friction coefficient such that the moment applied by the bearings

is the product of III, and the relative rotational speed. We assume the value of the friction

coefficient [15 is very small compared to the length ratio so that these reaction moments can

be neglected for the first order approximation. Therefore, with the first order approxima-

tion, the reaction moments acting on points A and B are zero. Based on these observations
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and assumptions, the solution v(:c,t) can be approximated as

v(:c,t) = $540 sin (32—3) (4.19)

where 27,,(t) represents the amplitude of the displacement at the midpoint of the beam, and

sin a? are the natural modes of transverse vibrations of a uniform beam with pinned ends.

Previous work[49] has shown that higher order modes have insignificant influence on the

transverse response of the connecting rod for the region in which the model is valid. Hence,

we assume that the solution of v(:I:, t) can be approximated by a single mode (1)-1(t) sin (ELI—D.

Substituting this assumed solution into equation (4.14) and projecting the equations onto

the first mode, we obtain the following equation:

2pALd; 4pAr sin (wt — ¢)w2 + EIII4v 5pA<iSzv + pszqizv
  

   

   

 
  

   

  

1r 1r L4 4 3

+ Izmvdi sin (1) wzpbvd tan (1) pA1r2v$ tan (1) «2p,rwv sin wt

cos 43L L3 3 L2 cos d)

+ w’pbwv tan 43 + pArwzwzv cos (wt — <15) pAr‘Irzwzv tan <1) sin (wt — 45)

L3 2L 2L

+ «202mm «2m4div sin d) «2m4rvw2 cos wt + «2vF(t)

L L cos ()5 L2 cos 45 L cos 43

pA1rgf> 2pA1'Irw2 tan ¢ cos (wt — 45) 2 pA‘Irzciiv3 tan d)

+ ( L + L2 )” + L2

1r‘Ipct: 2pA1r§iSviJ pArrzgis tan 4313122 w‘mwfiz [1, 4 2 ,

+ L4 +——L + 1.2 2L3 tm“”

prv tan 05 141714122 .. _
+ (pA + L 2L3 )1) — 0 (4.20)

which is a single nonlinear ordinary differential equation describing the flexural vibration

associated with the connecting rod of a slider-crank mechanism under the assumptions

given above. In the following analyses, we only consider the cases in which there is no

external force acting on the piston, i.e., F(t) = 0 in equation (4.20). We note that these
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simplifications (equations [4.15] to [4.18]) are essential in truncating equations (4.14) with

the linear mode shape function (equation [4.19]) and obtaining equation (4.20). With the

same dimensionless parameters as those described in section 2.4, equation (4.20) can be

written into the following dimensionless form:

(1+ 7rvtan¢ +g1r4v2)ii + 2m?) + %( cf) — 2592 sin (Qt — ¢))

.. 1 . 1r2 5 1 cosflt
2 - 2 — 2 __ _ 2 2—

l

+ v[ 2p3(Q — 2(1'5)7r2 tan 4) + 2114(43 — (2)7r2 tan (15]

+ v2[1r<;3 + 2x502 tan 43 cos (Qt — d>)] + 21rdn'2v tan d)

+ v3( giditangb) + (1;)sz12 + v21}(1r2d>tan¢ + p47r4) = 0 (4.21)

where all the overdots represent the derivatives with respect to time, 1'51 is replaced by v and

all the overbars have been dropped for notational simplification. Equation(4.21) is a second

order differential equation describing the flexural response associated with the connecting

rod. We note that it contains the following features: (1) nonlinear inertial terms, (2) exter-

nal as well as parametric forces arising from inertial forces, (3) dissipation effects, and (4)

time-dependent quadratic and cubic nonlinearities. Despite of its complexities, each term of

equation (4.21) has its own physical source. All the terms involving the parameter S , except

(gr’vzii) and (g-r‘mfl), which represent the foreshortening effect, arise because of the iner-

tial force associated with the slider mass m4. The forcing term, [ %(¢— 2512 sin (Qt — ¢)) ],

arises because of the action of the transverse acceleration component (1,, on the connecting

rod. The following terms arise because of the effects of bending moments caused by the

actions of as and “v: xvii tan ¢, grzv tan qt, v43”, gflzw’vfi, 21(52sz tan¢cos(flt - ¢),

31,31,3(5 tan¢ and w’vzbé tan (b. All the terms involving the parameters [13 and p4 arise from
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the actions of the bearing friction and friction force on slider mass, respectively.

Now, let us reconsider equation (4.11). Since in most of the applications, the length

ratio is smaller than one, we expand equation (4.11) in terms of the length ratio £ to obtain

the following asymptotic series:

¢ = sin—1(sith)

 
(fsin Qt)3 _ (Esin Qt)5 +

= —(£srn Qt) - 6 120

353
3 5

a: = -( E + T + ...) sin Qt — ( 34— + ..) sin3Qt — ( % + ...)sin 5Qt + ...... (4.22)

This equation indicates that the excitation provided to the connecting rod is a superposition

of harmonic inputs at frequencies which are multiples the crank rotation speed. Note that

the force amplitudes associated with higher harmonics are of small magnitude.

4.2 Application of the Method of Multiple Scales

Before applying MMS (Method of Multiple Scales) to study equation (4.21), let us first

consider a solution to the linearized model of equation (4.21). To achieve this end, we

expand the original equation (4.21), with the help of equations (4.11) and (4.22), and retain

all the first order terms in f, v and its time derivatives. This results in the equation

2

v(t) + 2p21}(t) + v(t) = ;§Q2 sin Qt (4.23)

which represents a linear oscillator subjected to an external excitation. The response of this

equation is given as

v(t) = Xsin(Qt — (,9) (4.24)
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where

X = (3) 592 (4.25)

W ,/(1 — m)2 + 4ng2

and

,0 = tan’l( 125232) . (4.26)

Equation (4.24) represents the response curve of the linearized system for small length

ratios. From equation (4.25), we see that, to first order, the amplitude of the steady-state

response is proportional to the length ratio E as well as the square of the frequency ratio

Q. However, this estimate may not be sufficient to capture the true response under certain

conditions. In the current section, we use the Method of Multiple Scales[29] to locate these

conditions, while we will improve our approximation in the subsequent sections for each

individual condition.

To apply MMS, we need to introduce a set of new independent time variables Tn and, in

addition, reorder some parameters, such as the length ratio E and the damping parameters

#2, p3 and [14. The new independent time variables Tn are introduced according to Tn = c" t.

It follows that the derivatives with respect to t become expansions in terms of the partial

derivatives with respect to T,, according to equations (3.4) and (3.5). Moreover, we assume

that the length ratio 5 can be ordered by 5 = 651. Since the amplitude of the response is

proportional to the length ratio £, we assume that the solution v(t) can be represented by

an expansion taking the following form

v(t) : (1)1(T0 ,T1 ,T2) + £2 02(T0 ,T1,T2)+ 63 03(T0 , T1,T2)+ . (4.27)

The damping parameters [12, p3 and #4 are treated in the same way as described in chapter 3.
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In other words, the ordering of #3 is fixed to of order 0(62), the ordering of #4 is fixed to

be of order 0(1), and p; is reordered according to the order of a, the detuning parameter.

Substituting equations (3.1), (3.4), (3.5), (3.8), (3.9) and (3.10) into equation (4.21),

expanding and equating the coefficients of the like-power terms we obtain the following

equations:

Order 6

2 2 2 -
Do v1 + 121 = (;)£1 Q snn QTo , (4.28)

Order 62

Do2 122 + 222 = —2Do D1 121 - (S + %)£11r2 Q2221 cos QTo + (i) Q2 6? sin 2QT0 ,(4.29)

Order 63

D0203 + 123 = —200D1’02 - 2[122Do’01 - D1201 - 2D0D2v1 — 11'2(S + %)£1Q2v2 COS 0T0

_ f: 2 _ § 2 2 2 l 2 2 - 2
(3 +1 S 4)§1v1Q cosQTo +(3 +S)£1Q 121 stTo

4

— 21r2p4oQ£1v1 SlIl 0T0 + 2£1Q1r(Dov1)v1 COS 0T0 — :2-S(D0‘Ul )2'01

4
1r .

_ _2_S(D02v1)vf + n5,[Do(Dov;~’)] sm 9T0 — p407r4(Dov,)vf . (4.30)

In obtaining the general solution of 121(To ,T1 ,T2) from equation (4.28), we need to distin-

guish between the following special cases: (1) Q is near to unity and (2) Q is away from

unity. The case in which Q is near to one corresponds to the primary resonance. When

this occurs, the linear estimate (equations [4.24]) fails to provide a good prediction of the

response. Section 4.4 contains a complete analysis of the primary resonance. At the present
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time, let us assume that Q is away from one and continue our analysis. Under this condi-

tion, the general solution of v1(To ,T1 ,T2) is given as the combination of the homogeneous

and particular solutions,

01(T0 , T1 , T2) = A1(T1 , T2)e:cp(j To) + A4 sin 9 To + c.c. (4.31)

where A1 is an unknown complex function which will be determined later, A, is given as

2 £1Q2

#1755 (43?)
4=(

and c.c. stands for the complex conjugate terms of the preceding terms on the right hand

side of equation (4.31). Note that, according to the linear theory, the homogeneous part of

solution (4.31), i.e. Alexp(jTo) term, will decay to zero due the presence of the damping

parameters. Thus, the homogeneous solution is not included in the steady- state response

of the linear system (equation [4.24]). At the present moment, we include the homoge-

neous solution in this general solution and proceed to find the conditions in which this

homogeneous solution will not decay to zero. Substituting the solution v1(To ,T1 ,T2) into

equation (4.29), we obtain

. . 1 . .

130202 + 02 = "2J(D1 A1)€$P(JT0) + (;)§f92€3P(2JQTo - 1%)

— (S + belnzfii‘lexmwmo — 2'1)
4 2

1 2 2A] . .

- (5 + ‘2')619 1r 76931’097‘0 + 1T0)

1 A . .
— (5 + §)£1Q21r27lezp(JQTo — 3T0) + c.c. . (4.33)

In analyzing the particular solution of equation (4.33), there are three cases which need to
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be considered separately: (1) Q is near to %, (2) Q is near to 2 and (3) Q is neither near

to % nor to 2. The first case corresponds to a superharmonic resonance, while the second

one corresponds to a subharmonic resonance, or the principle parametric resonance. Both

of these cases will be studied in detail and improved approximations will be provided later

1
on. For the present, let us assume that Q is away from 2 and 2, and continue our analysis.

When Q is away from % and 2, we must have

D1A1(T1 ,Tz) 1' 0 (4.34)

in order to remove the secular term from the particular solution of v2. This implies that

the unknown amplitude function A1(T1 ,T2) must be independent of the time variable T1.

As a consequence, all the higher order solutions are assumed to be independent of the

time variable T1. Thus, all the derivatives with respect to time variable T1 are zero. The

particular solution of 122(To ,T2) is then given as

 

 

 

1 1’92 3 1 2 2 . .1r
02 1_ 402[ 1r '— (Z + §)£11f Q A1]exp(2]QTo - J5)

1 S 1 2 2 , .

1_(1+ (2)2(5 + Z)£IQ 7" A1€$p(]QTO +JT0)

1 s 1 - , _

1 _ (1 _ Q)2(§ + Z)£192"2A1€$P(J9T0 - 1T0) + c.c.. (4.35)

Substituting 121(To , T2) and v2(To , T2) into equation(4.30), we obtain

Do2v3 + v3 = —2jp22A1e:rp(jTo) — jp4o1r4Af/llexp(jTo) — 2j(DgA1)e:cp(jTo)

+ W‘sAiz‘fiezPUTO) + f7€iAIB$PUTol + jf8€i€$P(3j9To)

+ 2j1rnglfil’ezpuntro — 23711,) — j(%)w4A,A3exp(jT0)
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4
Q _ . .

+ :8-Af9#40€$P(3jQTol + uiow‘Am — §)Ai6$P(JQTo — 22%)

+ N.S.T.+c.c. (4.36)

where N.S.T. represents those terms which will not produce secular term in the particular

solution of v3. In analyzing the particular solution of equation (4.36), there are three cases

which need to be considered separately: (1) Q is near to 3, (2) Q is near to %, and (3) Q

is away from 3 and %. The first case corresponds to a subharmonic resonance, while the

second case corresponds to a superharmonic resonance. These two cases will be investigated

in sections 4.6 and 4.7, respectively, in order to obtain better approximations.

At this point, we pause and briefly consider some of the general features of this analysis

procedure. By using the assumed solution sequence, the equation describing the transverse

vibration of the connecting rod can be transformed into a sequence of ordinary differential

equations which can be solved quite easily, since they are linearized by the nature of pertur-

bation expansion. In solving these sequential equations, several resonant conditions arise.

The primary resonance appears first, and then the principle parametric resonance. After

these two resonances, some secondary resonances of subharmonic and superharmonic types

arise. When these occur, the linear approximation is insufficient to provide a good estimate

of the response of the system.

For simplicity, we follow the same analysis pattern as described in the last chapter. The

principal parametric resonance is examined first in section 3.2. The primary resonance is

investigated in section 3.3. After these two resonances, secondary resonances are examined

case by case.
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4.3 Principal Parametric Resonance (Q m 2)

Recalling that in analyzing the particular solution of equation (4.33) in section 4.2, when

the frequency ratio Q is near to 2, a principle parametric resonance takes place. To describe

the dynamics when the frequency ratio is close to 2, we express Q as

Q = 2 + 2c 01 (4.37)

where 01 is the detuning parameter. The damping parameter #4 is reordered by #4 = [440.

Moreover, the damping parameter #2 is rescaled according to M 2 (#2, so that it will show

up, together with detuning parameter 01, in the final resonant condition. After carrying

out the same procedure as that described in the last section, equation (4.29) reduces to

D021); + 122 = —2j(DlA1)exp(jTo) — 2.71121 Alezp(jT0)

S 1 ‘ - . .

(‘2' + z)€1927f2A16$P(JT1 + 2.701%)

_ 5,9,2p404,exp(2ja,rl _ jg) + N.S.T. + c.c. (4.38)

where N.S.T. represent those terms which will not produce the secular terms in the partic-

ular solution of v2(To ,T1 ,T2 ). In order to eliminate the secular terms, the following must

hold

. . S 1 - .

- 21(D1 A1) — 2Jp2,A1 — 4(5 + Z)El7r2A1ea:p(2_70'1To)

— . .1r
— 212p40£1Alexp(210‘1T1 — 35) = 0 . (4.39)

Expanding equation (4.39) with A1 = (%)ezp(j\Il), and separating the resultant equation
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into real and imaginary parts, we obtain

a = —u2 a — 2a§1A4 sin 2<I>1 + a7r2y4 {1 cos 24>] , 4.40
l 0

a<I>'1 = (no — 2a£1A4 cos 2<I>1 — a7r2p40£1 sin 2<I>1 (4.41)

where {>1 = alTl — \II and A4 are defined by

7r2

A4 = (25' + 1)(-4—) (4.42)

and the primes indicate derivatives with respect to T1. The steady state response conditions

are obtained by letting a’ = 0 and <I>’ = 0, which yield

[1210. = —2a{1A4sin 2<I>1 + a7r2£1p4ocos 2<I>1 , (4.43)

ala = 2a£1A4cos 2(121 + a1261u4osin 2<I>1 . (4.44)

Squaring these equations, and adding them together, we obtain

[of + #3, - (2511302 - ("2611140)2102 = 0 - (4-45)

Equation (4.45) is an equation for the amplitude of the response as a function of the

detuning parameter, the damping parameters and the length ratio. From this equation,

we see that the trivial solution a = 0 is the unique steady state response for the cur-

rent resonant condition. To determine the stability of this solution, we substitute A1 2

(83 + jBI)ea:p(j01T1 + 7T1) into equation (4.39), in which 33 and B; are two constants,

and separate the resultant equations into real and imaginary parts to obtain two equations.
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Figure 4.1: Frequency response equation for the principal parametric resonance (equa-

tion [4.45])

We then solve the nontrivial constant solutions of BR and B; from these two equations.

From this, we determine that when

0? + #3, < {H 4A} + ”4143, ) (4.46)

this trivial solution become unstable. It is clear that of +41%! = {fl 4A2 + «4&0 ) represents

the transition curve which is the solid curve shown in Figure 4.1. Along this curve, the

eigenvalues associated with the responses are either +1 or -1. In the unstable region, any

disturbance, no matter how small, applied to the steady-state response results an unbounded

growth in the response amplitude of the linear model. However, as the amplitude of the

response becomes large, the nonlinear terms can no longer be neglected. In the remaining

part of this section, we extend our analysis to investigate these nonlinear effects. In stable

regions, equation (4.24) can be used to predict the response, since the trivial response is
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stable and will remain zero. Thus, the steady state response can be approximated by

v(t) = £v1(T0,T1 ,T2 ) + 0(62) = 6A] sin QTo + 0(62) . (4.47)

When the response is unstable, any small disturbance applied to the trivial response will

grow unbounded, and then dominate the response curve. This is an example of parametric

resonance.

In order to capture the effects of nonlinearities, it is necessary to reorder either the solu-

tion or the parameters so that the nonlinearities will be included in the equation describing

the resonant condition. For the present problem, the amplitude of the response is shown to

be proportional to the length ratio (equation [4.24] in section 4.2). Therefore, a reordering

of the length ratio is equivalent to the reordering of the solution. To carry out the nonlinear

analysis, we reorder the length ratio 5 according to £ = 6252. Expanding equation (4.21)

with this new length ratio, and equating the coefficients of the like-power terms in e, we

obtain

Order 6

D02 ’01 + 01 = 0 , (4.48)

Order 62

D02 122 + 02 = -2Do D1 121 + (%)£2stin 9T0 , (4.49)

Order 63

D02 ‘03 + 1);; = —2Do ngl — 2fl22 D001 — W4S(D02’U:13) — 2y40 #262901. sin ”To

1

— 012121 — 2D0D1v2 — «2(5 + §)£2Q2 v1 cos QTo — «4p4o(Dov1)v¥ . (4.50)
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Equation (4.48) admits the solution

v1(To ,T1 ,T2) = A(T1 ,T2)e:cp(j To) + c.c. . (4.51)

Substituting this solution into equation (4.49), we obtain

Do2 122 + 122 = -2j(D1 A1)e:rp(jTo ) + (3.-)6ng sin QTo + c.c. . (4.52)

In analyzing the solution of this equation, we need to distinguish between these two cases:

(1) Q is near to one and (2) Q is away from one. The first case is referred to as the primary

resonance and will be investigated in next section. At this moment, let us consider case (2).

When Q is away from one, we have D1 A1 = 0 which implies the independence of A1 to the

time variable T1. Therefore, all the higher order solutions are assumed to be independent

of T1. With this assumption, equation (4.50) reduces to

002 Us + 123 = -2jM22/11€$PUT0) - 2j(DlA1)€$P(jTo) - flue"4Ali/ii61131437110)

1 A . . _ . .
— (S + §)£2Q21r2(—21)e:cp(]QTo — 1T0) — 2p407r2£2Alexp(JQTo — 312:)

+ w‘SAfzfleszTo) + N.S.T. + c.c. (4.53)

which describes the third order term in the flexural response associated with the connecting

rod. To describe the nearness of Q to 2, we express Q as

a = 2 + 26202 . (4.54)
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Hence, we must have

-2j[1.22A1 - 2j(D2 A1) — 462A414-1827p(2j0’2T2) + W4SA¥41

- . .1r . _

- 2p401r252Alexp(2]a'2T2 — .75) — Jp4o7f4A¥A1 = 0 (4.55)

in order to remove the secular terms from the particular solution of 121. Substituting

A1 = (%)ezp(jW) into equation (4.55) and separating the resultant equation into real and

imaginary parts, we obtain

3

a’ = —p2,a — mafia? — 262A” sin 2<I>2 + £21r2u40a cos 2<I>2 , (4.56)

a<I>’2 = 02a — 2£2A4a cos 2<I>2 — £21r2p40a sin 2(1); + A5a3 (4.57)

where <I>2 = ang - \II and A5 is defined by

A5 = lfi‘S (4.58)

and the primes represent the derivatives with respect to the time scale T2. The steady state

conditions for these equations are given as

3

#220 + [1407(4‘95' = —2€20A4 sin 2T2 + £27f2fl4oa COS 2T2 , (4.59)

02a + A5a3 = 2fgaA4 cos 2<I>2 + 52731140“ sin 2<I>2 . (4.60)

The frequency response equation takes the following form

2

02l (#22 + Morlaglz + (02 + A50%?)2 - (252402 - (W2€2#4o)2l = 0 - (4-61)
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From this equation, we solve for the nontrivial solution of a2 and obtain

(62)2 = (in —l + \/12 — km 1 , (4.62)

(as)? = (71,-) —I — W2 - km 1. (4.63)

where

k = [(94.44 12 + A: . (4.64)

l = (%)#4o#2,7r4 + A502 1 (4-55)

m = #32 + 0.3—(252134)? — (W2€2#4o)2 - (4-66)

Figure 4.2 shows an example for these frequency response curves. From equations (4.62)

and (4.63), we know that a2 and a3 exist only when

I2 — km > 0. (4.67)

This implies that the magnitude of the forcing term must be large enough in order to

produce a sustained nontrivial steady-state response. Furthermore, we need

 

02 < \/(2:2A4)2 + («264452 — #4, (4.68)

for the existence of a2, and

 

02 < —\/(242A4)2 + («242mm — #4, (4.69)

for the existence of a3.
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a, = magnitude of homogeneous solution
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Figure 4.2: Frequency response equation for the principal parametric resonance (equa-

tion [4.61])

In order to determine the stability of these steady-state responses, we compute the

Jacobian matrix associated with equations (4.56) and (4.57), which takes the form,

—(5§‘1)7r2a2 —2(02 + A502)a ( )

4.70

2A5a —2;422 — (i‘iflyr'za2

The eigenvalues associated with this matrix are

 

41.2 = —(/42., + ”—iflwzaz) :t \/(”—8431r2a2)(p22 + Eg—Wrza?) + A5a2(02 + A5a2) . (4.71)

Thus, the stability of each individual steady-state response is decided by the sign of the

term inside the radical sign. When this quantity is negative, we have a stable steady state

response. Otherwise, it is unstable. Thus, the following conclusion is obtained:

 

(1) when 02 > \/(2£2A4)2 + ("2521‘4ol2 — #32, only the trivial solution is possible, and

it is stable.
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(2) when 02 < I \/(2521\4)2 + («252,440 )2 — pg: I, the trivial solution becomes unstable,

while a2 exists and is stable, and a3 does not exist.

 

(3)when 02 < —\/(2£2A4)2 + (1r252p4o)2 - ”32, a3 exists and is unstable, and a2 and al

are stable.

Remark: Before leaving this section, a few points need to be made. First, let us compare

linear resonant equations (equations [4.40] and [4.41]) with the nonlinear version (equa-

tions [4.56] and [4.57]). Basically, they coincide with each other in the linear part. The dif-

ference in equations describing the variation of the amplitude is the nonlinear term (@1440 a3.

We note that (%)p40a3 arises because of the slider friction introduced by elastic deforma-

tion. The difference in equations describing the variation of phase angle is the A5a3 term in

equation (4.57). Next, let us compare the frequency response equations obtained from the

linear and nonlinear analyses. Again, they coincide with each other in the linear part. The

influence of the nonlinearity on the response can be determined by a direct comparison. In

absence of the nonlinearity, the response is unstable when the parameters located inside the

unstable regions. According to linear theory, the amplitude of the response grows without

limit. Due to the nonlinear effects, this increasing response amplitude will be accompanied

with an increase of the resistance force and a change of the phase angle. The resistance

force arises because of the foreshortening introduced by elastic deformation. As the am-

plitude of the response increases, this resistance force whose magnitude is proportional to

the foreshortening also increases. The amplitude of response reaches its equilibrium state

when this resistance compensates the effect of the slider friction introduced by the rigid

body motion. We now consider the effect of the nonlinear terms in the equation describing

the variation of phase angle. Due the effects of nonlinearity, the increase of the amplitude
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of response will accompany with a change of the phase angle. This implies a change in the

rate at which energy is pumped into the system. When the energy put into the system is

balanced by the energy dissipated by the system, the system reaches its steady state.

4.4 Primary Resonance (Q m 1)

From equations (4.31) and (4.32) in section 4.2, it is clear that the amplitude of the

particular solution approaches infinity as Q approaches one. This phenomenon is referred

to as the primary resonance. Let us reconsider equation (4.49), and now assume that Q is

near to one. To make the analysis more clear, let us express Q as

Q = 1 + £01 . (4.72)

In addition, the damping parameter #2 is rescaled according to equation (3.49). With these

arrangements, equation (4.49) becomes

2 .

D0202 + ’02 2’ —2DoDlv1 + (;)£202 S111 9T0 — 2p21 D001 (4.73)

by following the same procedure as that described in section 4.3. To retain the periodicity

of the solution, the following must hold

. . . ,1!‘

— 23(0141) _ 2342,41 — (%)Qzexp(]alTo _ )5) = o (4.74)

after substituting v1 = Alexp(jTo) into equation (4.73). Expanding the last equation with

A1 = (§)ezp(j '1!) and separating the the resultant equation into the real and imaginary
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parts, we obtain

a’ = —p2,a —(§1r3)cos‘1>1 , (4.75)

a<I>'1 = 01a+(%)sin<l>1 (4.76)

where in is given in equation (3.55). After solving these equations, solution v(t) of the

original equation is approximated by

v(t) = (121 + 0(62) 2 ca cos(QT0 — <I>) + 0(8) (4.77)

where the magnitude of the steady state response a, is described by

a, = 54—1—— (4.78)

I (M. + a?

and the steady state value of the phase angle (D, is given by

tan <1>, = (fl . (4.79)

I121

It is interesting, and not surprising, to find that equation (4.77) is the first order ap-

proximation of equation (4.24) which is the response for linearized model when Q is near

to one. The local equivalence between equations (4.77) and (4.24) can be shown as below:

2 £02 2 £262

) 4. (- = ‘5‘
7r \/(1 — Q2)? + 4p§Q2 1r \/4€20§ + 462p§1

2 2' = 6as a

\/01 +le

i (4.80)
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while angles w and 45 are related by

2flgfl 269

t ‘p 1 — Q2 -2£01 co (1)1 ( )

 

Hence, equations (4.77) and (4.24) are within 0(62) in an e-neighborhood of Q = 1. This

shows that the reordering relation (3.60) can not help us in including the nonlinearity

in our analysis. Based on this fact, let us rescale the length ratio 5 according to 5 =

(3&3. Substituting this reordering relation into equation (4.21), expanding and equating the

coefficients of the like-power terms, we obtain

Order 6

00201 + ’01 = 0 , (4.82)

Order 62

D0202 + 02 = —2Do Dl v1 , (4.83)

Order 63

002123 + 123 = -QDo Dz vi - 2D001122 - 012111 - 2H22-DO vi

2

— «45(00272?) + (:r-){3Q2 sin (QTo) - p4o7r4vi"(Dov1) . (4.84)

The solution of equation (4.82) is given by equation (4.51). Also, from equation (4.83), we

know that Al must be independent of the time scale T1 in order to eliminate the secular

term from the particular solution of 122. With this, equation (4.84) can be reduced to

00203 + ”3 = -2j(DzA1)€$P(jT0) - 2jfl22A1€$P(jTo)

1 . . . - .

+ (;)£39’ewp(JflTo — 24/2) — JMM‘AiAiexPUTo)
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+ 174A¥41ezp(jTo) + N.S.T. + c.c. . (4.85)

Therefore, we must have

. . . - 1 , , -

- 2J(D2AI) — 23I122A1 '7 .7/1'407r4AfA1 + (;)5392€93P(J02T2 - JW/Q) + W4AfAl = 0 (4-85)

in order to eliminate the secular terms from the particular solution of 123. Expanding

equation (4.86) with A1 = (%)ezp(j\lf), and separating the resultant equation into real and

imaginary parts, we obtain

I _ 403 £3 Q
a ... —p22a - p402 —— — —cos 2 , (4.87)

8 1r

a<I>'2 = 02a + A5a3 + s—f—sin <I>2 (4.88)

where <I>2 is given in equation (3.71), A5 is given in equation (4.58) and the frequency ratio

Q is expressed as

Q = 1 + 6202 . (4.89)

The steady-state response can be obtained by letting a’ = ’2 = 0 in equations (4.87) and

(4.88), which gives

3

[1.220 + 1440240? = —£—:cos {>2 , (4.90)

02a + A5a3 = —%—sin <I>2 . (4.91)

The frequency response equation is then given by

a2[( 4“_22 22 _ Q2

44mm 8) +(02+Asa) 1—(1r) . (4.92)
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and the frequency response curve as

 

= —A502 :l: E)? - ([122 + ”40146;? - (4°93)

Figure 4.3 provides an example of the frequency response equation associated with the

primary resonance. To find the peak amplitude tip of the steady-state response, we need to

solve the following equation:

(6;3)2 - “pl/‘22 +(-8)/‘4o7r0,2512: 0 (494)

which is a cubic equation in terms of a3. Moreover, the steady-state response achieves its

maximum amplitude at frequency Q = 1 + 6202? where

0'2p = —A5a: (4.95)

where (1,, represents the solution of equation (4.94). The negative sign in the last equation

implies that the response curve reaches this peak amplitude at a frequency of less than one.

Moreover, over a region of Q values, there exist more than one steady—state response (Fig-

ure 4.3). The frequency response curve bends to the left, corresponding to a softening type

of nonlinearity. The stability of these steady-state responses can be decided by computing

the eigenvalues of the Jacobian matrix associated with equations (4.87) and (4.88) which

takes the form

—m. - (338482 —(a2 + 45.2).
(4.96)

(02 + 3A5a2)/a -#22 - (97‘3“)??402
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From its eigenvalues, we determine that when

1 3

[I122 + (‘8')11407'402 ll #22 + (§)#4o7r402 ] + (02 + Asazxaz + 3A502) < 0 (4-97)

the steady-state responses are unstable. Otherwise, they are stable. The solution v(t) can

approximated by

v(t) = 6v1(To ,T1 ,T2 ) + 0(62) = ca cos (9T0 —- Q) + 0(62) (4.98)

where a and <I> are described by equations (4.87) and (4.88). The steady state value of the

phase angle <I> is given by

02 + A502

<I> = tan’1( .

8 ”'22 + %#4o7r4a2

 (4.99)

a, = magnitude of v1(t)

0.2 r I T r I 

0.15

    
0.05

0 ‘ 1 1 1 1 1

0.6 0.7 0.8 0.9 1 1.1 1.2

frequency ratio 0

Figure 4.3: Frequency response equation for the primary resonance (equation [4.92])
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Remark: Before leaving this section, a few points need to be mentioned. First, let us

neglect the effect of p40 and then compare the final equations describing the resonant con-

ditions between linear and nonlinear analyses. We note that the amplitude function a is

described by equations of the same type (equations [4.87] and [4.75]), while the equations

describing the phase angles (1)1 and (P2 (equations [4.76] and [488]) are coincident in the

linear part. The only difference between these two analyses is the existence of the nonlinear

term A5a2 in the equation describing {>2 (equation [4.88]). This implies that the nonlinear

affects the response of the system by changing the phase angle Q2. Therefore, there is a

change in the rate at which energy is pumped into the system accompanying this phase

change as a varies. The system achieves its steady state amplitude when the energy dissi-

pated by the system is balanced by the energy pumped into the system. This implies that

the magnitude of the steady state response may be remain unchanged but a considerable

shift of the phase angle of the steady state response can be expected. We now compare

the maximum amplitude of the response obtained from the linear and nonlinear analyses.

Again, the effect of slider friction is neglected. A prudent observation shows that these two

values are exactly the same. This implies that linear theory is sufficient to provide a good

approximation of the amplitude of the steady—state response. However, as we compare the

frequency at which the steady state response of the system reaches its maximum ampli-

tude, there exists a considerable difference between the results from linear and nonlinear

analyses. Linear analysis indicates that this peak amplitude can be observed when 9 = 1.

The nonlinear analysis show that the response achieves this amplitude when 9 is at the

value given by equations (4.92) and (4.93). This indicates that linear theory may offer a

poor prediction of the frequency near which large amplitudes occur. Finally, let us consider

the effect of #40 which represents the effect of slider friction. According the analysis, #40
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has a favorable effect in reducing the amplitude of the response. This is caused by the

foreshortening accompanying with the transverse deformation of the connecting rod. The

existence of the slider friction will resist further deformation and hence has a tendency in

reducing the amplitude of the response.

4.5 Superharmonic Resonance (Q m %)

In analyzing the particular solution of v; in section 4.2, we assumed that Q is away from

2 and -§— and proceeded to analyze the solution of 223. When (2 is near to %, a superharmonic

resonance occurs. For (2 near to %, the frequency ratio 9 is expressed as

1

Q 2 5(14- 601). (4.100)

At the same time, the damping parameter p; is rescaled according to #2 = cm, so that it will

appear together with detuning parameter 0; in the final resonant condition. Consequently,

equation (4.29) reduces to

D02 v2 + '02 = —2j(D1 A1)ea:p(jTo) — 2jp21Alezp(jTo)

A .
+ marzfifléeszJQTo)

1 2 2 A4 . ,7l'

- (5 + §)€19 7' (7)83142197‘0 - .75)

+ ififflzezpfljflfl) — j%) + N.S.T. + c.c. . (4.101)

The elimination of the secular terms of the particular solution of the last equation requires
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that

”40 2 - - - {f - '7’ _

_6_£l W3$P(JUIT1) “ 21(D1 A1) - 2J#21A1 + T2—1r(3 - A4)exp(]alT1 — 15) _ 0 (4.102)

where 01 is given in equation (4.100) and A4 is defined by equation (4.42). Substituting

A1 = §ezp(j \I!) into equation (4.102), expanding and separating the resultant equation into

real and imaginary parts, we obtain

2 2

a’ = —p21 a + E—‘iiél—E sin <I>1 - 1%?(3 — A4) cos <I>1 , (4.103)

2 2

a<I>’l = 01 a + $06—51: cos (1)] + 1%“ - A4) sin in (4.104)

where in is given in equation (3.55). Therefore, when S2 is near to %, the response equation

takes the form

v(t) = €‘Ul(To ,T1 ,T2 ) + 0(62)

= 6[ A4 sin 9T0 + a cos (2QT0 — <I>)] + 0(62) (4.105)

where A; is given in equation (4.32), a and (I) are given by equations (4.103) and (4.104),

respectively. The steady state value of phase angle <I> is given as

-1 01(3 - A4) - 2W2I121fl4o
 (I), = tan 4.106

2772011140 + (3 - A0112: ( )

and the amplitude of the steady state response a, is described by

1r 3 - A

(9%. + aha: = €1‘[(E‘—g-)2 + (Er—4?]. (4.107)
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Equation (4.107) represents the frequency response equation of this superharmonic reso-

nance. Figure 4.4 provide an example of the frequency response equation associated with

this superharmonic resonance. Equation (4.105) represents the first order approximation to

a, = magnitude of homogeneous solution

0.25 I I l

0.2 s \ 4

\ gznm

0.15 ~ \ 3 =1.00

 

l

as

0.05 -

 

  O l 4 1

0.4 0.45 0.5 0.55 0.6

frequency ratio Q

 

. . o 0 ~ 1

Frgure 4.4. Frequency response equation for superharmonic resonance ((2 ~ 5)

the steady state response. Note that v1 consists of two parts, the first term is the particular

solution and the second term is from the free oscillation term. Hence, the homogeneous

solution does not decay to zero. This is caused by the last term in equation (4.29). Because

of the existence of this oscillating term, resonance arises when (2 z %. The amplitude of

the particular solution is proportional to the length ratio 5, while the second term is pro-

portional to the square of length ratio. This implies that the second term vanishes more

rapidly than the first one as the length ratio 5 approaches to zero. A simple calculation of

the eigenvalues of the Jacobian matrix associated with equations (4.103) and (4.104) shows

that this homogeneous solution is stable everywhere for m, > 0. Hence, a steady state su-

perharmonic resonance exists for all conditions and the response is composed by two terms

with different frequencies. Certainly, the particular solution possesses the same frequency
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as that of the external excitation, while, the homogeneous solution, which is included to im-

prove the estimate, oscillates with twice the frequency of the external excitation. It should

be noted that this result is simply an expansion of the linear response in terms of 5.

Remark: An interesting observation about the influence of the mass ratio S on the am-

plitude of the homogeneous solution needs to be pointed out. Since the amplitude of the

homogeneous solution is described by equation (4.107), a minimum value of this equation

implies a minimum amplitude of the homogeneous solution. Based on this fact, we find that

a, reaches a minimum value when A; = 3. This implies that a proper choice of the mass

ratio can be used to suppress, but not eliminate, this superharmonic resonance. Further-

more, the existence of the damping parameter [:4 , from the slider end, prevents us from

having a homogeneous solution with a zero amplitude for this superharmonic resonance.

This indicates that the damping parameter p40 has an adverse effect on the response of the

system for this superharmonic resonance.

4.6 Superharmonic Resonance (Q m %)

In the current section, we consider the superharmonic resonance case where Q is near

to G). In this case, equation (4.29) reduces to

002 ”3 + v3 = -2j(Dz A1)€$P(jTo) - 2jflng1€$P(jTo) - jmgr‘AffileprTo)

+ r45A¥4163p(jT0)+ f7£fAlezp(jTo) — j(%52£)1r2A1€fe:cp(jTo)

fit;
1536)7r€f€-TP(J'T0 + 10273)+ jf8§f€3P(jTo + j02T2) +(

+ N.S.T. + c.c. (4.108)
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where the coefficients f7 and [3 are given in Appendix E, and the detuning parameter 02

is defined by

= 21:“, + 602) .
(4'109)

Therefore, in order to eliminate the secular term of 123, we must have

-2j#22A1 - 21(DzA1)— .7Il4o7r7l"1142/11 -J(M° )71’2/1 {1 +W4SA2A1

 + (IZE’GMrEfepragTz) + fag/ll + jfglfi’eprang) = 0 . (4.110)

Substituting A1 = 92—exp(j ‘1!) into equation (4.110), expanding and separating the resultant

equation into the real and imaginary parts, we obtain

a' —92.a-("—8‘°)vr‘a3 <"“°)vr2£.a+fs,s. cos<1>2

+(1—57r36)£1p4osin¢1>2, (4.111)

f712

a<I>'2 02a + -—£la + A5a3 - f3153 sin <I>2 + ()81140 cos (P2 (4.112)

1536

where <I>2 is given in equation (3.71), A5 is defined by equation (4.58), coefficients f71 and

f8, are given in Appendix E. Because the coefficient of 11406? is small compared with the

rest of terms in equations (4.111) and (4.112), we neglect the influence of this term in the

following analysis. From these equations, we find that the frequency response equation

takes the form,

a2] (#22 + Lgo’ra“2 +L10251 )2 + (‘72 +—f712‘2—51 + A502)2l— 1.8161 (4113)
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and the frequency response curves are given by

 

02 = —-f——7‘£2 a25JI—l-i‘f6i —[;1p22 + ”4°--—-1r“a2 +lg‘2’1r252]2. (4.114)

Figure 4.5 provides an example of the frequency response curve associated with this super-

harmonic resonance.

a, = amplitude of the homogeneous solution
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Figure 4.5: Frequency response equation for the superharmonic resonance ((2 z %)

Despite the presence of the damping parameters, the homogeneous solution of 121 does

not decay to zero. Moreover, the steady state response of the system can be approximated

by

v(t) 6121(T0,T1,T2)+0(€2)

6[ A4 sin 9T0 + acos (3QT0 — <I>)] + 0(62) (4.115)

where a and <I> are described by equations (4.111) and (4.112), respectively. The steady
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state value Q, of the phase angle is defined by

l 02 +(f71/2)€f+ A502
tan Q, =

#22 + (131)4492 + (%{L)”2§f

] . (4.116) 

Note that equation (4.113) indicates that the homogeneous solution reaches its own maxi-

mum amplitude which is described by

(41214112 - «1:1 (142. + ("—8"—° )1411; + (“$924 12 = o (4.117)

when the frequency ratio is Q = (1 + cap) /3 with 0,, being defined by

a, = —(f7, /2)§;~’ — Asag. (4.118)

To determine the stability of each individual steady state response, we compute the Jacobian

matrix associated with equations (4.111) and (4.112), which takes the form,

—#22 - (%)p4o1r4az-—(Ei°-)1r2£1 "(02 + (f71/2)€12 + A563)“

(02 + (f71/2)€f + 3A502)/a "f‘22 " (5)”4o7r4 —(%)”2£1

(4.119)

By computing the eigenvalues of this Jacobian matrix, we determine that these steady state

responses are unstable when

[1121 + (2)4114“112 + ("—j,° )«241 1192. + (—$141.49? + (4:... >441 1

+102 + €i(f71/2) + A5021102 + £f(f71/2) + 3A502l < 0- (4-120)

Otherwise, they are stable.
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Remarks: First, the homogeneous solution does not decay to zero in spite of the exis-

tence of the damping parameters. Therefore, the steady state response is composed of two

functions with two different frequencies. The particular solution oscillates with the same

frequency as that of the external excitation, the homogeneous solution oscillates with a fre-

quency that is three times the external frequency. Note that the amplitude of the particular

solution given in equation (4.32), is proportional to the length ratio {1, while the amplitude

of the homogeneous solution (equation [4.113]) is proportional to the cube of the length

ratio {1. This implies that the homogeneous solution vanishes more rapidly than the partic-

ular solution as f approaches zero. Note that the linear approximation may be applicable

when length ratio 5 is small, since the homogeneous solution may be insignificant.

Next, let us consider the frequency response equation (4.113), which is cubic in a3. There

exists more than one steady state responses in some parameter regions (Figure 4.5). Note

that the value of A5 is always positive, this implies that the backbone curve, which is the

locus of the frequency responses, bends to the left. Moreover, the existence of f7, implies a

shift of the origin of the backbone curve. In other words, the backbone curve associated with

this superharmonic resonance does not originate from Q = Sign. Together with the stability

results, we know that the frequency response curves bends to the left corresponding to

a superharmonic resonance with a softening type of nonlinearity. However, the influence

of Am}, may be insignificant so that the no bending of the backbone is observed. This

indicates that, for small values of the length ratio E, there is no jump phenomenon.

Finally, let us discuss the influence of the mass ratio S on the amplitude of this su-

perharmonic resonance. Since the amplitude of the free oscillation solution is governed by

equation (4.113), it is possible to reduce the amplitude of this solution by reducing the value

of coefficient f81 - In other words, we can suppress the contribution of the homogeneous so-
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lution on the overall response by choosing a proper mass ratio. From a more physical point

of view, we can select a mass ratio so that the external force is diminished. When such a

mass ratio, which is about 1.40, is selected, equation (4.113) admits only the trivial solution,

and hence the contribution of the free oscillation term is eliminated.

4.7 Subharmonic Resonance (9 z 3)

In order to analyze a subharmonic resonance for 9 near to 3, we introduce the detuning

parameter 0 according to

Q: 3+34202. (4.121)

Therefore, equation (4.36) reduces to

00203 + vs = -2j#22A1€$P(jTo) - jll4o7r4Af/‘1161PUT0) - 2j(DzA1)€$P(jTo)

81 . — . .
_. 52—)fl40W2£¥A1€$P(JT0) + 1r4SA¥A1€$P(JT0) + f7£fA133P(JTO)

. — 9 - - -
+ [2J1r061Af + (-8—)p4°£17r3A§ ]e:rp(JTo + 3jagT2) + N.S.T. + c.c. (4.122)

and we must have

— 2jp22Alexp(jTo) - 2j(D2A1)ezp(jTo) + 7r4SA¥14183p(jT0)

81 2 2 o . 4 2 " a 2 .

- (‘55)9407 £1Aiezp(JTo) - #140“ A1fliexp(JTo) + f7£1Ale=vp(JTo)

. — 9 - . .
+ [ 231rQ£1A§ + (§)p40£11raA¥ ]€$p(]T0 + 3302B) = 0 (4.123)

in order to eliminate the secular terms from the particular solution of 121 and retain the

periodicity of the solution. Expanding equation (4.123) with A1 = gezp(j ‘11), and separating
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the resultant equation into real and imaginary parts, we obtain

a, = ”220 ”go ”4‘13 _ gfl4o “W251

+39—2p401r3a261 sin (3<I>2) + —£11ra2 cos (302), (4.124)

a<I>52 = 02a +——£1af7’2 + A5a3 +—9—p4°1r3a2£1 cos 3<I>2 — Efnraz sin 3<I>2 (4.125)

32

where <I>2 is given in equation (3.71), f7, can be found in Appendix E, and A5 is defined by

equation (4.58). From the last two equations, we obtain the frequency response equation of

the form,

a+11%».+"—,‘;°7r“a2 + 3:...263)2+(02+-f—;’€i+4502)2

- [(%£1«)2+(:—21rp403£1)2 1021—0 (4-126)

From equation (4.126), we see that the trivial solution is always a steady-state response of

this specific resonance. Due to the complexity of equation (4.126), we only consider the

case in which #40 is zero in the following analysis. After this simplification, equation (4.126)

reduces to

a2lfl§2 + (02 + _;_2£1f + 135—02)2 (351702021: 0- (4-127)

Now, besides the trivial response, we obtain the following nontrivial responses,

(antes)? = ilk—gt -pi \/p2 - q] (4.128)
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where coefficients p and q are given by

p = (202+f7.£¥)A5—(%£11r)2, (4.129)

a = A§[(u22)2+(02+f—;’-£¥)21- (4-130)

We note that q is always positive. Therefore, these nontrivial free oscillations exist only if

p2 2 4g and p < 0. These conditions imply that

3 4 3 2 2 2 2

(5517‘) " 2(55170 (202 + f7251)A5 — 4A5H22 .>_ 0 , (4-131)

and

(3m)2 > 4(2a2 + f7,.£f)A5 . (4.132)

From equation (4.131), we solve for the values of A5 for given values of 02, p2, and £1, and

obtain the following inequality:

1 3

2115,... s — —(-1r£1)’(202+f72i)2
#22 2
 

+ (/(—1-)2(§«:1)4(2a2 + fvzéi) + «21704. (4.133)
#22 2 2

This inequality provides the criterion regarding the existence of the nontrivial subharmonic

response.

When these conditions hold, it is possible for the system to respond in such a way that

the homogeneous oscillation (the Alexp(jTo) term in equation [4.31]) does not decay to

zero, in spite of the presence of damping. Moreover, in the steady state, the nonlinear term

adjusts the frequency of the free oscillation to one third that of the excitation. In this case,
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the steady state response can be approximated by

0(1) = 601(T0,T1,T2)+0(62)

c[acos(%To — 4:1) + A1 sin 0T0] + 0(62) (4.134)

where a is described by equations (4.128), where A1 is defined by equation (4.32), a and <I>

are described by equations (4.124) and (4.125), respectively. The steady state value of the

phase angle is given as

02 + fag/2 + A502
tan<I>,=( [12

2

) . (4.135) 

Note that the response of the system is dictated by the initial conditions as follow: When

the initial conditions are selected in such a way that the nontrivial subharmonic resonance

exists, then the response of the system can be approximated by equation (4.134). Otherwise,

the system settles onto a steady state given by equation (4.134) with a = O.

4.8 Summary and Discussion

In this section, we summarize the results obtained in the previous sections. Based on the

observations of previous investigators[49], and the results from previous section, we select

important system parameters and provide detailed discussions regarding their individual

influence on the steady state response.

4.8.1 Effect of the Length Ratio 5

This problem is equivalent to a simply-supported beam subjected to both vertical and

horizontal excitations coming from the same source. The magnitude of this excitation is

proportional to the length ratio 5. At the beginning of section 4.2, we solved a linearized
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model to obtain a response whose amplitude is proportional to this parameter. In the

primary resonance (section 4.4), although the amplitude of the steady state response can

be predicted by using linear theory, the frequency at which the steady state response reaches

its maximum amplitude also depends on the length ratio. Figure 4.6 shows the effect of

the length ratio 6 on the amplitude of the primary resonance. From this figure, it is

very clear that the amplitude of the primary resonance increases when 6 increases. In the

parametric resonant case, the width of the frequency region in which the trivial solution

becomes unstable is also proportional to the length ratio. Reconsidering Figure 4.1, the

width between the two transition curves increases as 5 increases. Moreover, the amplitude

of the nontrivial response depends upon 5 also. Figure 4.7 shows the effect of varying E on

the nontrivial solutions for the principal parametric resonance. We note that, in Figure 4.7,

the amplitude of the nontrivial solution increases as 5 increases. Moreover, points m1 and

mg in Figure 4.7, which are used to mark the origins of the branches of the nontrivial

responses, represent the same points as those in Figure 4.1. Furthermore, the frequency

region between points 112; and m2 corresponds to the region in which the trivial response is

unstable. In all the superharmonic resonances, there exists an additional solution, besides

the particular solution. The magnitude of these homogeneous solutions are proportional to

a higher order power of the length ratio. To be specific, this non-zero homogeneous solution

is of order C(52) in the case where Q is near to (%), and, is of order C(53) when 0 is near

to (:13). These facts imply that the length ratio is the primary parameter, or in other words,

the most important parameter, for the current problem.

4.8.2 Effect of the Frequency Ratio 9

The influence of this parameter on the response is not immediately obvious. In order
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a, = amplitude of v1(t)
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Figure 4.6: Influence of 5 on the primary resonance
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to understand the influence of Q on the response of the system, we need to separate our

discussion in three categories: low frequency ratios, non-resonant frequency ratios and

resonant frequency ratios.

First, let us begin our analysis in the low frequency ratio region. Let us consider the

inertial force applied to the system. The accelerations ax and 0,, depend upon the square

of $2. This implies that the inertial force is also proportional to the square of the frequency

ratio, although this does not imply that the amplitude of the steady state response is overall

proportional to the square of (2. However, in the region of low frequency ratio, the amplitude

of the steady state response is proportional to the square of the frequency ratio. To show

this, let us consider the amplitude of the linear response, i.e., equation (4.25),

2

X = 3 in z $522 (4.136)
1r \/(1_ 92y + 4%92

for 9 << 1. This implies that the amplitude of the response depends upon the length ratio as

well as the frequency ratio. This point had been pointed out by previous investigators[30].

Next, let us consider the non-resonant case. When resonance is excited, the free oscilla-

tion term will decay to zero due to the presence of the damping. Consequently, the linear

approximation will be sufficient to provide a good prediction. When a resonance is possible

at a given operating frequency, we have to include an additional term in order to capture

the effect of the homogeneous solution. Therefore, we may find that some additional peaks

exist along the smooth profile of the linear response curve.

However, let us consider the asymptotic expansion of the geometrical relation, i.e. equa-

tion (4.22). From this expansion, it is clear that the external applied force is composed of

multiple frequencies. Generally speaking, when 0 is near to (%), we can expect a super-
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harmonic resonance arising from the response of the system. It will be .very diffith to

verify these higher order(n > 3) superharmonic resonances, since the magnitude of the

homogeneous solution is proportional to the corresponding order of the length ratio. Un-

less the length ratio is large enough, the contribution of the homogeneous solution on the

steady state response will be very small. This explains the reason why these homogeneous

resonances do not appear in the simulation results.

4.8.3 Effect of the Mass Ratio S

In the primary resonance case, the mass ratio S appears in the nonlinearity of the system

and affects the response of the system by bending the backbone of the frequency response

curve to the left. Figure 4.8 shows the effect of S on the frequency response equation

(equation [4.92]). From this figure, it is very clear that S plays the role of nonlinearity in

a, = magnitude of v1(t)
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Figure 4.8: Influence of S on the primary resonance

the primary resonance. When S = 0, there is no nonlinearity associated with the primary

resonance, and hence no bending of the frequency response curve. When 3 7i 0 there exists

some nonlinearity associated with the frequency response equation and the backbone curve
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of the frequency response curve bend to the left.

In the principal parametric resonance, the influence of S is included in the terms A,

and A5. According to the linear analysis, the main nose of instability, or in other words,

the unstable regions on the 5 - 01 domain, will be enlarged if the value of S is increased. To

show this point, let us consider equations (4.62) to (4.69). From these equation we are aware

of the following facts: (1) the width of the region in which the trivial solution is unstable

increases when the mass ratio increases, (2) the amplitude of the nontrivial solutions a2 and

a3 change slightly when the mass ratio increases. With these two observations, we know

that this parameter has both favorable and adverse effects on the principal parametric

resonance. An increment of S will enlarge the unstable region, while this increment will

also help to reduce the amplitude of the nontrivial solution. Figure 4.9 shows the effects

of S on the width of the main nose of instability. From this figure, it is very clear that the

distance between the two transition curves increases as S increases. Figure 4.10 shows the

effect of S on the branches of the nontrivial responses of the principal parametric resonance

(equation [4.92]). We use points m1, m2, m3 and m4 to mark the origins of different

branches of nontrivial responses. We note that those two branches which originate from m1

and ma correspond to the unstable responses, while those branches which originate from

points m2 and 1124 represent the stable responses.

In both of the superharmonic resonant cases, this parameter has a very interesting

influence on the response curves. When the frequency (2 is near to (%), the amplitude of the

homogeneous solution depends upon the length ratio and the mass ratio. Equation (4.107)

shows that the amplitude of the homogeneous solution is a linear function of the mass ratio.

Figure 4.11 shows the effect of S on the amplitude of the non-zero homogeneous solution

for the superharmonic resonance (0 z %). The overall amplitude of this superharmonic
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a, = amplitude of the homogeneous solution
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response first decreases as the mass ratio increases from 0 to a critical value which is about

0.11, while this amplitude will increase as the mass ratio increases beyond this critical value.

We note that the existence of this resonance is independent of the mass ratio. Hence, it is

possible to suppress the contribution of this resonance by choosing the mass ratio properly,

i.e., near 0.11. The mass ratio has the same effect on the other superharmonic resonance,

a, = magnitude of the homogeneous solution at Q = %
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Figure 4.11: Influence of S on superharmonic resonance (9 z %)

i.e, when 9 is near to (15). Figure 4.12 shows the effect of S on the superharmonic resonance

in which (2 z :13. From this figure, we can observe the trace of the peak amplitude ap

associated with this superharmonic resonance. From this it is seen that a proper choice of

the mass ratio will help us in reducing the amplitude of this resonance. A simple calculation

of the roots of coefficient f3, show that the optimal value of S is about 1.44. Therefore, for

this superharmonic resonance, we can diminish the contribution of the free oscillation term

by letting S be near to 1.44.

4.8.4 Effect of the Damping Parameters p2 and #4

The internal material damping parameter 112 has favorable effect on the response of the
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a, = peak amplitude associated with superharmonic resonance (Q m 31;)
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Figure 4.12: Influence of S on superharmonic resonance ((2 z %)

system. For the region in which the linear approximation is valid, the amplitude of the

particular solution decreases as [12 increases (equation [4.25]). As shown by the analysis,

the peak amplitude associated with the primary resonance can be predicted by the linear

approximation. Hence, it; is expected to have the same effect on the primary resonance.

Figure 4.13 shows the effect of M on the the primary resonance. From this figure, it is very

clear that the amplitude of the primary resonance decreases as 11; increases. Moreover, the

shift of the frequency associated with the primary resonance also decreases as 11; increases.

In the principal parametric resonance, this damping parameter decreases the region of

the instability by lifting it from the Q-axis and narrowing its boundaries in the 552 - plane.

Figure 4.14 shows the effect of m on the region in which the trivial response becomes

unstable. From this figure, it is very clear that the main nose of instability associated with

the principal parametric resonance shrinks as )1; increases. Figure 4.15 shows the effect of

112 on the branches of the nontrivial responses associated with the parametric resonance.

Note that we use m1, m2, m5 and me, to mark the origins of the nontrivial solutions. Those
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branches originating from points m1 and m5 correspond to the unstable responses, while

branches originating from points m2 and ms represents the stable responses.
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Figure 4.13: Influence of #2 on the primary resonance (equation [4.92])
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In deriving the equation of motion, we assumed that the bearing damping is very small

compared to the transverse displacement. Based on this assumption, the bearing damping

113 is assumed to be of order 0(5)). The analyses in previous sections show that this damping
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a, = amplitude of the homogeneous solution
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Figure 4.15: Influence of 112 on the principal parametric resonance

parameter has no influence on the response within the frequency region under investigation.

This does not imply that 113 can be ignored. If we extend the path of this work, it will be

very clear that this parameter can have influence on the higher-order (n > 3) superharmonic

resonances.

The effect of the damping parameter #4, which is used to model the friction between

the slider mass and its contact surface, is complicated. This slider friction force is made up

of two parts. The first part arises from the action of rigid body motion, while the second

one is caused by foreshortening. The friction force introduced by rigid body motion can be

treated as linear and has an adverse effect on the response. The slider friction introduced

by foreshortening is nonlinear and has a favorable effect on the response of the system.

When the response amplitude is small, the foreshortening introduced is small. In this case,

the slider friction is mainly composed of friction introduced by rigid body motion. Hence,

an increase of the value of 114 will be accompanied with an increase of the slider friction

force. This corresponds to an increase of the axial force acting on the connecting rod and
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hence an increase of the amplitude of the response. However, as the amplitude of the

response increases, the friction force introduced by the elastic deformation increases also.

This friction force acts as a resistance to prevent the connecting rod from further elastic

deformation. Hence, the friction introduced by foreshortening has a favorable eflect on the

response of the system. Based on these observations, we now proceed to consider the effect

of [14 in each individual resonance case.
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Figure 4.16: Influence of 114 on the primary reéonance ((2 z 1)

In the cases of primary resonance ((2 z 1), third order superharmonic (Q m %) and

subharmonic ((2 z 3) resonances, in, has a favorable effect. Figure 4.16 shows the effect of

114 on the primary resonance. As shown in this figure, it is very clear that [14 has a favorable

effect on the response by reducing the amplitude of the response. In the superharmonic

resonance, we can not reduce the amplitude of the free oscillation term to zero because of

its existence. Figure 4.17 shows the effect of [14 on the superharmonic resonance in which

9 z %. From this figure, it is very clear that the presence of 114 will increase the amplitude of

the non-zero homogeneous solution and hence has an adverse effect. Figures 4.18 and 4.19
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a, = amplitude of the homogeneous solution
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Figure 4.19: Influence of 114 on the principal parametric resonance (0 z 2)

show the effect of [14 on the the principal parametric resonance. From Figure 4.18, we note

that the distance between the transition curves increases as #4 increases. In other words,

the presence of this damping parameter will increase the possibility for the existence of the

nontrivial response and hence has an adverse effect. However, Figure 4.18 only reveals the

effect of the friction force introduced by the rigid body motion. Hence, we conclude that

114 has an adverse effect of the principal parametric resonance by increasing the width of

the main nose of instability associated with the principal parametric resonance. We now

consider Figure 4.19 which shows the effect of [14 on the principal parametric resonance.

From this figure, it is very clear that 114 has a favorable effect regarding response amplitudes.

This implies that the friction force introduced by the elastic deformation can help in reducing

the amplitude of the response.



Chapter 5

Comparisons between Distributed and Lumped

Parameter Models

In the present chapter, we compare the analytical results obtained by using the dis-

tributed and lumped parameter models. Instead of examining the effects of each parameter

on the overall response of the flexural vibration, this comparison proceeds by considering

the resultant equations describing the resonance conditions. In order to make this com-

parison, the analytical results obtained in chapter 3 need to be modified. Since the effects

of shear deformation and rotary inertia are not included in deriving equation (4.21), we

delete these two effects by setting a; = a3 = 0 from the results obtained in chapter 3.

Moreover, we substitute the value of n = 1 into the results from chapter 3, because only the

first normal mode was used to convert equation (4.20) into a discrete system. After these

modifications have been completed, we first consider the primary resonance case, and then

the principal parametric resonance. After these resonances, we compare the results for the

superharmonic resonances, and then the subharmonic resonance. We close this chapter by

providing some summary points in the final section.

5.1 Primary Resonance ((2 z 1)

In this section, we consider the case in which the operating frequency is near to the first

141
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flexural natural frequency. We first consider the linear results obtained in sections 3.3 and

4.4. By letting n = 1 in equations (3.88 ) and (3.89)

a = -p2,a—%cos<1>1, (5.1)

a0; = 01a + $8111 in (5.2)

which are exactly the same as equations (4.75) and (4.76) in section 4.4. This implies

that the continuous and discrete approaches will give us exactly the same result. Next, we

consider the nonlinear results. After the effects of shear deformation, rotary inertia and

bearing damping have been removed, we obtain the following equations:

a' = —p2,a — (fig—‘1)7r4a3 -— €r§cos (1)2 , (5.3)

a<I>’2 2 02a + A’za3 + $1 sin <I>2 (5.4)

where

2 2

I _ 1L 2 _ E L
2 — 3 ‘1' 1r 5 8 8 (5.5)

from equations (3.112) and (3.113) by letting n = 1. From the discrete analysis, we obtain

a’ = —p22 -— (fig—Urr‘a3 — grams in , (5.6)

a<I>§ 2 ago + A5a3 + 5—1:_3sin <I>2 , (5.7)

where

4

A5 = 7%5 (5.8)

in describing the resonance condition when 9 z 1, which is repeated for convenience.
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Basically, these two sets of equations are of the same form. The equations describing the

variation of the amplitude function a are exactly the same. The only difference between

these two sets of equations is the strength of nonlinear terms, A’2 and A5, appearing in the

equations describing the variation of the phase angle. As we compare the values of [3’2 and

A5, we find that the difference between them is strongly dependent on the mass ratio S.

Moreover, the distributed parameter approach will provide a slightly stronger nonlinearity

than the lumped parameter one.

5.2 Principal Parametric Resonance (Q a: 2)

In this section, we consider the principal parametric resonance. We first compare the

linear results obtained in the first parts of section 3.2 and 4.3. After we set 12 = 1 and

delete the effects of shear deformation, rotary inertia and bearing damping, we obtain the

following equations:

a’ = —p21 a — 2a51 ’1 sin (201) + a7r2p4051 cos (2<I>1) , (5.9)

at}; = ala — 2a51 '1 cos (2%) — a1r251p40 sin (2%) , (5.10)

where

1r2

i= (1+25)-4- (5.11)

from equations (3.53) and (3.54). From the discrete approach, we obtained

a’ = —p2,a —- 2a51A4 sin 2<I>1 + a1r2p4051 cos (2%) , (5.12)

a<I>’1 = 01a — 2a51A4 cos 2<I>1 - a7r2p4051 sin (2%) , (5.13)
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where

2

A4 = (1 + 25):}. (5.14)

When we compare these two sets of equations, it is interesting to find that they are exactly

the same. This implies that these two approaches will lead to the same linear results. In

consequence, the main nose of instability for the principal parametric resonance will be the

same. Next, we compare the nonlinear results obtained from the second part of sections 3.2

and 4.3. We obtain the following equations:

a ll’ —p2,a - (E§Q)7r4a3 — 2a52A'1 sin (2<I>2) + ap40527r2 cos (2<I>2) , (5.15)

04>; = 02a + A'2a3 — 2aA’152 cos (2&2) — a1140521r2 sin (2<I>2) (5.16)

from equations (3.84) and (3.84) by letting n = 1, 02 = 013 = 0 and deleting the effect of

bearing damping, 113, = 0. From the discrete analysis, we obtained the following equations:

a' '— —[.l.220 — (”—§Q)1r4a3 — 2052A4 sin (2&2) + 5211211400. COS (2Q2) , (5.17)

a<I>’2 - 020 + A5a3 — 2a52A4 cos (2<I>2) —521r2p4oa sin (2<I>2) . (5.18)

We find that the equations describing the variation of the amplitude function are exactly

the same. The difference between these two approaches is the strength of the nonlinearities

(A; and A5) appearing in the equations describing the variation of the phase angle. From

these, we recognize that the distributed parameter and the lumped parameter models will

provide the same result in determining the main nose of instability. Since the effects of

the nonlinearities are again described by the parameters, A; and A5, we obtain the same

conclusion as that obtained in the last section. Briefly, the effect of nonlinearity is very
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sensitive to the mass ratio, and the distributed parameter approach will provide a stronger

nonlinearity than the lumped parameter one.

5.3 Superharmonic Resonance (Q m %)

In this section, we consider the superharmonic resonance in which the operating angular

speed is near to one half of the first flexural natural frequency. After we delete the effects

of shear deformation, rotary inertia and the bearing damping, we obtain the following

equations:

2

a’ = -p21 a + gig-13in <I>1 - €131F—(3 A'1)cos<I>1 , (5.19)

a¢I _ U I‘ll—2051 I

1 — 1 a+—6 cos <I>1 +1%(3- A) $111 <I>1 (5.20)

from equation (3.119) and (3.119) in section 3.4, where A’l is given in equation (5.11). From

the lumped parameter model, we obtain

2 2

a' = —p2, a + 3%{1— sin <I>1 —62%(3 — A4) cos <I>1 , (5.21)

a<I>'l = a1 a+—#4051—cos <I>1 +1%(3— A4) sin <I>1 (5.22)

from equations (4.103) and (4.104), where A4 is given in equation (4.42). As we compare

these two sets of equations, we see that A4 = A’1 and thus they are identical.

5.4 Superharmonic Resonance ((2 z §)

In this section, we consider the superharmonic resonance in which the the operating

angular speed is near to one third of the first natural flexural frequency associated with the
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connecting rod. We first compare the results obtained in sections 3.5 and 4.6. After we

delete the effects of shear deformation, rotary inertia and bearing damping, we obtain the

following equations:

 

a' = —p22a — (”—gfl)a31r4— (fig—2° ){f 11'2a — (1—-—536)€1;1.1o sin <I>2 + f1',1£13 cos (D2 ,(5.23)

a<I>'2 = 02a + [#1151+ A’a3 +(1536)£f1440 cos (1)2 - £1513 sin (1’2 (5.24)

where

2 I2

fi1 : _2_51_+_1_1L+_5_.A’1_9_11 (5.25)

2304 1728 144 63

1559 171 9111'1 A12
+ + -————- -

368641 27648 115201 3601

  

f5, (5.26)

from equations (3.128) and (3.129). From the lumped parameter analysis, we obtained

a' = —p22a — (E19)a31r4—(”:1——°)£21r )511140 sin <I>2 + f31§1 cos <I>2 ,(5.27)

(_.__1536

a<I>'2 02a +——f77’——£1a + A5a3 + (———)£1p4o cos Q2 — f81£1 sin <I>2 (5.28)

1536

from equations (4.111) and ( 4.112), where

17 1r4 «25' «45' W452
 

   

f“ = ‘72“ 1008 32 " 252 ' 252

_ 17 3 2 3 A3

‘ ’72 " 641r +16A“ 63’ (5'29)

f _ __5_ 1711' 1r3 +46171'S 1r3S W352

8‘ ‘ 641 2160 5760 23040 1440 1440

__ 5 591 461A4 A:

‘ —641r ' 27648 + 115201 ’ 3601 ' (5'30)

 

For this superharmonic resonance, the results obtained from two approaches agree with each
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other in a qualitative sense. However, the numerical values of each coefficient are different.

Generally speaking, the magnitude of coefficient f81 is less than the magnitude of f1’,1 for

0.40 < S < 1.00. Otherwise, the magnitude of f2, is larger than that of f31. This implies

that the lumped parameter model predicts a larger response amplitude than the distributed

parameter model for 0.4 < S < 1.0, while the lumped parameter model predicts a smaller

response amplitude for either 5 > 1.0 or 0 < S < 0.4.

5.5 Subharmonic Resonance (Q m 3)

In this section, we consider the subharmonic resonance in which the frequency ratio is

near to three times of the first natural flexural frequency associated with the connecting

rod. After we neglect the effects of shear deformation, rotary inertia and bearing damping,

we obtain the following equations:

It: )7'403 ‘:(—:)€17r2#4oa

+(§§)§1p40a2 sin (3<I>2)+ f31§1—a2 cos (3<I>2) , (5.31)

a : —p220 _(—

I

a<I>'2 2 02a + A1013 + LZI-z-fifa + (21%)611140a2 cos (3<I>2) - Elf-f5.1 a2 sin (3‘I’2) (5.32)

where

f1? ‘ 256 + 64’r + 16 A 5LA‘ ’ (5'33)

45 9 27 3A’
I _ _ 3 _ 3 l

f31 - “6‘4”7+ 811' + 8 7r S + —81l’ (5.34)

from equations (3.142) and (3.143) in section (3.6). While, for the lumped parameter model,



148

we obtain the following equations:

11 81

a' = —14.a - (732123 - (511312111:

9 2 . 3 2
+ E)E1p4oa sm (3<I>2) + -2—£17ra cos 3‘32 , (5.35)

a<I>’2 = 020 + £51531: + A5a3 + (395)511140112 cos(3<I>2) — gémaz sin (34%;) (5.36)

from equations (4.124) and (4.125), where

  

387 271r4 + 243135 _ 271r‘S 2711452

 

f7” = _8" 80 32 20 20

387 24312 243A4 27A:

’8" 64 16 ' 5 ' (5'37)

From the results obtained by these two different approaches, we observe that they give the

same qualitative behavior, although the numerical values of the coefficients are different.

Generally speaking, the magnitude of coefficient f1: is less than that of coefficient f72. The

magnitude of coefficient fél is larger than 1.5. These implies that the distributed parameter

model predicts a larger nontrivial homogeneous solution.

5.6 Summary

In this chapter, we compared the results obtained by using two different models in

investigating the flexural vibration associated with the flexible connecting rod. Instead of

discussing the effects of each parameter on the overall response, we proceeded by considering

the resulting equations which describe the resonance conditions. The following conclusions

are drawn: (1) these two models provide the same results in the linear part, and (2) the

distributed parameter model will provide a stronger nonlinearity than the lumped parameter
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model. It can be seen from the value of A'2 that in the distributed parameter model the mass

ratio is not the only source of nonlinearity, and that the geometric nonlinearity (associated

with finite deformations) is more significant in the distributed parameter model than in the

lumped parameter model.

The absence of the bearing damping parameter 143 in the lumped parameter model is

caused by assuming that it is of order C(62). Although the same assumed order is applied

in the distributed parameter analysis, the effect of this parameter has been recovered from

the final equation describing the resonance conditions, since the expansions included term

beyond C(62). However, because of the nature of the lumped parameter model, the effect of

bearing damping was neglected from the very beginning of the analysis, since its presence

would require modification of the assumed mode shape employed. Actually, this parameter

can be included in the lumped parameter analysis by following the analysis pattern outlined

in Appendix A.



Chapter 6

Numerical Solutions and Comparisons

In the present chapter, we present some numerical simulation studies of equation (4.21).

The main purpose is to verify the analytical work with these numerical solutions. In order to

take a systematic approach and obtain a clear picture of the results, we identify the various

cases considered with the help of a table, Table 6.1. In obtaining the numerical solutions,

we use the programs LSODE[22] and AUTO[14]. The former is a numerical solution

package for solving initial value problems for ordinary differential equations, and the latter

is a software package capable of tracking steady state response curves and, simultaneously

providing stability information. AUTO is used to obtain the global picture for the response

curves, and LSODE to provide time traces for specific parameter values.

In Figure 6.1 we demonstrate that the general features of the response of the nonlinear

lumped paramter model are well predicted by our asymptotic results. This is done by com-

paring the analytically predicted frequency response curve with that computed by AUTO

and with simulations from LSODE at several frequencies for a specific set of parameter

values.

In Figure 6.1 we show the frequency response generated by the three methods described

above. We note that the agreement is very good, and that the improtant features are

captured by the analysis. In particular, the bending of the primary resonance near 9 = 1,

and the parametric resonance near (I = 2 all appear in the simulations and in both response

150
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curves. We now turn to the details of how the individual parameters affect the overall

response, and describe the accuracy of the analysis.

a, = amplitude of the flexural response

 

  
 

0.2 r l I 1 1

AUTO —

MMS —

0.15 - LSODE <> -

= 0.01

a‘ 0'1 ‘ 8:100

[£2 = 0.02

[14 = 0.00

0.05 ~
_

0 1 1 1

0 0.5 1 1.5 2 2.5 3

Frequency ratio 0

Figure 6.1: Frequency response curves from MMS, LSODE and AUTO

In section 6.1, we consider the effect of the length ratio 5 on the overall response of

equation (4.21). In section 6.2, the effect of the mass ratio on the overall response is

considered. We examine the effects of the damping parameters 112, p3 and 11.1 on the overall

response in section 6.3. In section 6.4, we summarize the observations to close this chapter.

6.1 Influence of the Length Ratio .5

In this section, we consider the the effect of the length ratio 6 on the overall response

of the model given by equation (4.21). It is the purpose of this section to verify the predic-

tions from the nonlinear approximation in chapter 4 with the help of the numerical tools

LSODE and AUTO. We use Table 6.1 to identify the various cases considered for different

parameters combinations.

We first compare the frequency response curves obtained in chapter 4 with the results



 

 

 

 
 

 

 

 

Case 6 S #2 #3 #4 Case 6 S #2 #3 #4

1 0.005 0.00 0.02 0.00 0.00 2 0.005 0.50 0.02 0.00 0.00

3 0.005 1.00 0.02 0.00 0.00 4 0.010 0.00 0.02 0.00 0.00

5 0.010 0.50 0.02 0.00 0.00 6 0.010 1.00 0.02 0.00 0.00

7 0.050 0.00 0.02 0.00 0.00 8 0.050 0.50 0.02 0.00 0.00

9 0.050 1.00 0.02 0.00 0.00 10 0.100 0.00 0.02 0.00 0.00

11 0.100 0.50 0.02 0.00 0.00 12 0.100 1.00 0.02 0.00 0.00
 

13 0.010 0.00 0.04 0.00 0.00 14 0.010 0.50 0.04 0.00 0.00

15 0.010 1.00 0.04 0.00 0.00 16 0.050 0.00 0.04 0.00 0.00

17 0.050 0.50 0.04 0.00 0.00 18 0.050 1.00 0.04 0.00 0.00

19 0.010 0.00 0.02 0.00 0.40 20 0.010 0.50 0.02 0.00 0.40

21 0.010 1.00 0.02 0.00 0.40 22 0.050 0.00 0.02 0.00 0.40

23 0.050 0.50 0.02 0.00 0.40 24 0.050 1.00 0.02 0.00 0.40

25 0.010 0.00 0.02 0.08 0.00 26 0.010 0.50 0.02 0.08 0.00

27 0.010 1.00 0.02 0.08 0.00

 

 

 

 

 

 

                
Table 6.1: Identification of Combinations of Parameters

from AUTO. After this, we focus our attention on qualitative observations. Figure 6.2

shows the frequency response curves obtained from the analytical work and AUTO for

case 5. Figure 6.3 shows the frequency response curves for case 6. From these two figures,

it is clear that the nonlinear approximation matches the numerical results quite well when 6

is small. When the length ratio 6 is larger than 0.10, the analytical result can provide only

qualitative consistency with the numerical results. According to the analytical results, when

g is larger than 0.10, the detuning associated with the primary resonance becomes so large

that the peak amplitude occurs at negative values of the frequency ratio. This is physically

impossible. Based on this observation, we would like to use results from AUTO to carry out

a qualitative investigation regarding the effect of the length ratio £ on the overall response

and verify the analytic predictions. Figure 6.4 shows frequency response curves for S =

0.0 with different 6 values (cases 1, 4 and 7). According to the analytical results, S = 0

corresponds to a linear oscillator, because S plays the role of nonlinearity in equation (4.21).

This implies that there is no nonlinearity associated with equation (4.21), and hence there

is no detuning associated with the primary resonance. Moreover, the amplitude of the
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response is proportional to 5. The main nose of instability does exist, because its existence

is independent of the nonlinearity. Both of these two points are verified by Figure 6.4. We

note that, in Figure 6.4, the peak amplitude increases from 0.06 to 0.39 when 6 increases

from 0.005 to 0.05.

a, 2 overall response
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Figure 6.2: Comparison between Analytical result with AUTO ( case 5)

a, 2 overall response
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Figure 6.3: Comparison between Analytical result with AUTO ( case 6)

Next, we consider cases in which S 51E 0. According to the analytical predictions, the
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a, = overall response
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Figure 6.4: Frequency response for cases 1, 4 and 7

cases in which 5' > 0 correspond to systems with a softening type of nonlinearity. Moreover,

the strength of nonlinearity depends on the value of S. The peak amplitude of the response

shall be the same as that given in the linear approximation, while the detuning associated

with the primary resonance (0,) is proportional to the square of 5. Figure 6.5 shows the

numerical results for different 6 values with S = 0.50 (cases 2, 5 and 8), and the results for

S = 1.00 (cases 3, 6 and 9) are given in Figure 6.6. From these figures, we observe that the

analytical work does provide results which are consistent with the numerical solution. It is

interesting to note that as 5 increases, the superharmonic resonance near (I z % begins to

appear in Figures 6.5 and 6.6. This is as predicted by the analysis of section 4.5. When

6 is smaller than 0.10, the analytical approximation provides very good results. When 6

is larger than 0.10, the analytical prediction again provides only qualitative information.

Table 6.1 contains bifurcation information obtained from analytical results and AUTO. In

this table, we use PD1 and PD; to mark the points at which principal parametric resonance

instabilities occur, while we mark the turning point associated with the primary resonance
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by LP1 and LP2. In other words, the region between points PD1 and PD; represents the

main nose of instability, and the response curve between points LP1 and LP; represents

the unstable response near the nonlinear primary resonance. The readers should refer to

Figure 6.7 for the locations of these points. For the sake of clearness in the figures, the

branches of the nontrivial response associated with the parametric resonance are generally

not included. However, the bifurcation points listed in table 6.1 are sufficient to provide

the important information. From Table 6.1, we draw the following conclusions. When the

length ratio .5 increases, (1) the detuning associated with the primary resonance (the shift

of point LPg) increases, and (2) the width of the main nose of instability (the distance

between points PD1 and P02) increases, and (3) the superharmonic resonance near

N
I
H

appears. We note that, when the length ratio f is larger than 0.10, the analytical results

predict a considerable detuning associated with the primary resonance and the value of LP1

becomes negative. Since the Method of Multiple Scales can only provide local analysis, this

prediction becomes unreliable. Based on this fact, the bifurcation points for large 5 values

are not provided. As a matter of fact, AUTO also fails to provide the overall response

curve when 5 is larger than 0.10. We note that, in some cases, there may exist no limit

points LP1 and LP; associated with the frequency response curves either from the analytical

approximations or from AUTO. This will be explained in section 6.2.

Figures 6.8 to 6.11 show comparisons between analytical approximations and simulation

results for time traces at the (2 = % superharmonic resonance. From these figures, it is very

clear that the analytical approximations match the simulation results quite well.
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a, = overall response
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Figure 6.5: Frequency response for cases 2, 5 and 8

a, = overall response
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Figure 6.6: Frequency response for cases 3, 6 and 9
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a, = overall response
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Figure 6.7: Location of points PD1, PD;, LP1 and LP;

a, = overall response
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Figure 6.8: Comparison between simulation and analytical approximation for case 8
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Case Analytical AUTO

1 PD1 = 1.9855 PD; = 2.0145 PD1 = 1.9700 PD; = 2.0330

2 LP1 = 0.9711 LP; = 0.999 LP1 = - LP; = —

PD1 = 1.9549 PD; = 2.0451 PD1 = 1.9131 PD; = 2.1013

3 LP1 = 0.9270 LP; = 0.9643 LP1 = 0.9505 LP; = 0.9390

PD1 = 1.9287 PD; = 2.0713 PD1 = 1.8680 PD; = 2.1670

4 PD1 = 1.9549 PD; = 2.0450 PD1 = 1.9153 PD; = 2.0996

5 LP1 = 0.8477 LP; = 0.9296 LP1 : 0.9353 LP; : 0.9104

PD1 = 1.9034 PD; = 2.0966 PD1 = 1.8290 PD; = 2.2312

6 LP1 = 0.6925 LP; = 0.9092 LP1 = 0.8582 LP; = 0.9215

PD1 = 1.8533 PD; = 2.1467 PD1 = 1.7564 PD; = 2.3909

7 PD1 = 1.7541 PD; = 2.2459 PD1 = 1.6354 PD; 2 2.8600

8 LP1 = 0.7830 LP; = —2.8534 LP1 = 0.8430 LP; = 0.7003

PD1 = 1.5067 PD; = 2.4931 PD1 = 1.3593 PD; > 3.00

9 LP1 = - LP; = - LP1 = 0.8133 LP; = 0.5956

PD1 = 1.2600 PD; = 2.7400 PD1 = 1.0936 PD; > 3.00

13 PD1: 1.9711 PD; = 2.0289 PD1: 1.9460 PD; = 2.0664

14 LP1: - LP; = — LP1: - LP; 2 —

PD1: 1.9098 PD; = 2.0902 PD1: 1.8406 PD; 2 2.2169

15 LP1: 0.94222 LP; 2 0.9985 LP1: - LP; 2 —

PD1: 1.8575 PD; = 2.1425 PD1: 1.7637 PD; = 2.3811

16 PD1: 1.7565 PD; = 2.2435 PD1: 1.6382 PD; 2 2.8602

17 LP1: 0.7873 LP; 2 - LP1: 0.8473 LP; : 0.7799

PD1: 1.5081 PD; = 2.4919 PD1: 1.3625 PD; > 3.0

18 LP1: 0.7293 LP; = - LP1: 0.8150 LP; = -

PD]: 1.2609 PD; = 2.7391 PD1: PD; =

19 PD1: 1.9542 PD; = 2.0458 PD1: 1.8882 PD; = 2.1314

20 LP1: 0.8477 LP; = — LP1: 0.9376 LP; = 0.9120

PD1: 1.9030 PD; = 2.0970 PD1: 1.8156 PD; = 2.2493

21 LP1: 0.6925 LP; = - LP1: 0.8612 LP; : 0.9202

PD1: 1.8531 PD; = 2.1469 PD1: 1.7481 PD; = 2.4045

22 PD1: 1.7509 PD; = 2.2491 PD1: 1.5537 PD; = -

23 LP1: 0.7830 LPz = - LP1: - LP; = *-

PD1= 1.5053 PD; = 2.4947 PD1: 1.3400 PD; = -

25 PD1: 1.9549 PD; = 2.0450 PD1: 1.9141 PD; = 2.1009

26 LP1: 0.8477 LP; = 0.9296 LP1: 0.9376 LP; = 0.9088

PD1: 1.9034 PD; = 2.0906 PD1: 1.8283 PD; = 2.2319

27 LP1: 0.6925 LP; = 0.9092 LP1: 0.8554 LP; = 0.9210

PD1: 1.8533 PD; = 2.1467 PD1: 1.7560 PD; = 2.3915   
 

Table 6.2: Comparison of Bifurcation Data
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Figure 6.9: Comparison between simulation and analytical approximation for case 5
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Figure 6.10: Comparison between simulation and analytical approximation for case 9
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Figure 6.11: Comparison between simulation and analytical approximation for case 6

6.2 Influence of the Mass Ratio S

In this section, we investigate the effect of the mass ratio S on the overall response

predicted by equation (4.21). According to the analytical work, the mass ratio S plays

the role of the nonlinearity in equation (4.21). Moreover, the strength of the nonlinearity

depends in a complicated way on the mass ratio. In section 6.1, it was shown that the

linear approximation matches the nonlinear approximation as well as the numerical solu-

tions for case in which S is zero. For the primary resonance, the detuning associated with

the primary resonance increases linearly as S increases, while the peak amplitude remains

unchanged. There will be no detuning associated with the primary resonance when S =

0. Hence, when S = 0, there is no bifurcation associated with the primary resonance. In

the principal parametric resonance, the width of the main nose of instability increases as

S increases. Moreover, the amplitude of the responses changes as the mass ratio changes.

In the superharmonic resonance in which 0 is near to one half, the mass ratio affects the
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response in a very interesting way. The amplitude of the response decreases as S increases

from zero to a critical value, while the amplitude increases after S increases beyond this

critical value. Figure 6.12 contains the frequency response curves for cases 4, 5 and 6.

Figure 6.13 shows the frequency response curves associated with cases 7, 8 and 9.

a, = overall response
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Figure 6.12: Frequency response curves from AUTO (cases 4, 5 and 6)
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Figure 6.13: Frequency response curves from AUTO (cases 7, 8 and 9)
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We first consider the primary resonance. As these figures show, the peak amplitude of

the response remains essentially unchanged while the detuning 0,, increases as S increases

from zero to one. This in turn enlarges the instability region associated with the primary

resonance. From the numerical results listed in Table 6.1, we know that the width of the

instability region increases from zero (case 4) to 0.0633 (case 6) as 8 increases from zero

to one. Figure 6.14 contains the simulation results for cases 7 and 8 with Q = 1.00. From

this figure, we observe that the larger the mass ratio is, the smaller the peak amplitude

of the response will be. This is caused by the bending of the frequency response curves

associated with the primary resonance (Figure 6.12 and Figure 6.13). Next, let us consider

the principal parametric resonance. The width of the main nose of instability, as shown

in Table 6.1, increases from 0.2338 (case 4) to 0.6409 (case 6) when S increases from zero

(case 4) to one (case 6). (In order to keep Figures 6.12 and 6.13 as clear as possible, the

branches of the nontrivial solution are not shown in these figures.) Figure 6.15 shows the

branches of parametric response for cases 5 and 6. From this figure, it is very clear that

as S is increased these response branches bend more, and the main nose of instability is

enlarged.

In order to consider the effect of the mass ratio S on the amplitude of the superharmonic

resonance, we need to consider the response curves when (I is near to one half. Figure 6.16

shows the amplitude of the response at Q = 0.50. Comparing this figure with Figure 4.11,

it is very clear that the numerical solution agrees the analytical prediction.
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Figure 6.14: Simulation results for cases 7 and 8
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Figure 6.16: Amplitude of the response at Q = %

6.3 Influence of the Friction Parameters p; and #4

In this section, we consider the effects of the damping parameters [12, p3 and #4 on the

overall response of equation (4.21). The parameter [1; corresponds to the internal material

damping associated with the connecting rod. The parameter #3 represents the damping

effect of the bearings at the joints between members. The parameter #4 is used to model

the friction force acting at the slider end. We focus our attention on the qualitative behavior

of the response as each of these parameters is changed.

6.3.1 Effect of the Damping Parameter ,u;

The analytic results indicate that this parameter has a favorable effect on the overall

response curves. According to the analytical results, this parameter affects the response by

reducing the amplitude of the response and the width of the instability region associated

with each resonance case. Near the primary resonance, the amplitude of the response
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decreases as p; increases. Therefore, the detuning of the frequency (0,) decreases. This

implies that the unstable region associated with the response curves (region between points

LP1 and LP;) will shrink as )1; increases. In the the principal parametric resonance, the

a, = overall response
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Figure 6.17: Frequency response curves from AUTO (case 5 and 14)
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Figure 6.18: Frequency response curves from AUTO (case 8 and 17)

main nose of instability also shrinks as It; increases. Moreover, the amplitude of response

which originates from the main nose of instability also deceases as )1; increases. Figure 6.17
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shows the response curves for cases 5 and 14. Figure 6.18 shows the response curves for cases

8 and 17. Figure 6.19 shows the simulation results for cases 8 and 17. From these figures, it
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Figure 6.19: Simulation results from LSODE (case 8 and 17)

is very clear that It; does have a favorable effect on the response. Moreover, all the trends

predicted by the analytical work are verified. Figure 6.17 and Figure 6.18 show that the

amplitude of response decreases as p; increases. This in turn reduces the contribution of

the nonlinearity on the overall response. In consequence, the response curve is smoother for

larger values of m. This point is clearly shown from Figure 6.19 which demonstrates how

the second harmonic18 reduced as [1; is increased near the Q: %superharmonic resonance.

Regarding the instability region associated with the primary resonance, let us consider the

locations of LP1 and LP;. From Table 6.1, we find that the width of the instability region

decreases from 0.1427 (case 8) to 0.0674 (case 17) as [1; increases from 0.02 to 0.04.

Next, let us consider the principal parametric resonance. Figure 6.20 shows branches

of response originating from the main nose of instability for cases 5 and 14, that is near

(2 = 2.0 with different p; values. Figure 6.21 shows the simulation results for cases 5 and
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14 associated with the principal parametric resonance. From Figure 6.20, it is clear that [1;

has a small but favorable effect on the principal parametric resonance. The width of the

main nose of instability associated with the principal parametric resonance decreases from

0.4022 (case 5) to 0.3763 (case 14), as p; increases from 0.02 to 0.04.

a, = overall response
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6.3.2 Effect of the Friction Parameter #4

According to the analytical results, the friction parameter ”4 has a favorable effect on

all the resonances, except the second order superharmonic resonance (0 z %) and the main

nose of instability associated with the principal parametric resonance ((2 z 2). Figure 6.22

shows the overall frequency response curves for cases 6 and 21. Figure 6.23 shows that the

a, = overall response
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Figure 6.22: Frequency response curves from AUTO (cases 6 and 21)

overall frequency response curves for cases 8 and 23. As shown in these figures, the friction

parameter In; affects the responses by reducing the peak amplitudes of the responses and

hence has a favorable effect. However, it should be noted that relative magnitude of the

superharmonic resonance near 9 = 0.5 is increased due to an increase ion the amplitude of

the second harmonic. Figure 6.24 depicts branches of response originating from the main

nose of instability associated with the principal parametric resonance (9 z 2) for cases 5 and

20. Figure 6.25 shows branches of response originating from the main nose of instability

for cases 6 and 21. From these figures, it is very clear that the friction parameter #4 has

a favorable on the principal parametric resonance. Form the bifurcation data contained in
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Figure 6.25: Nontrivial responses associated with the principal parametric resonance from

AUTO (cases 6 and 21)

Table 6.1, we find that the width of the main nose of instability increases from 0.2934 in case

6 to 0.6564 in case 21. This indicates that #4 has a tendency to increase the width of the

main nose of instability and hence has an adverse effect. Figure 6.26 shows the response for

9 z % for cases 7 and 22. Figure 6.27 and Figure 6.28 show the analytical approximations

and simulation results for case 7 and case 22, respectively. From these figures, it is clear

that the amplitude near the superharmonic resonance in which 9 is near to -§- increases as

[14 increases, as predicted. This increase of the amplitude is due to the increasing influence

of the nonlinearity on the overall response. Near this resonance, as #4 is increased, the

amplitude of the second harmonic, which comes from the free oscillation in this case, also

increases. In comparing Figures 6.26 and 6.27, we find that the perturbation approach can

provide very accurate results compared with the numerical solutions. This point is shown

from the profile of the responses given in Figures 6.26 and 6.27.
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Figure 6.28: Analytical approximation and simulation results for case 22

6.4 Conclusions

In this chapter, we considered the lumped parameter model with the help of the soft-

ware packages LSODE and AUTO. The main aim was to verify the qualitative predictions

from the analytical work. Instead of quantitative accuracy, we focused our attention of the

qualitative behavior associated with the analytical work. To achieve this goal, we conducted

these numerical studies by considering the effect of each parameter on the overall response

predicted from equation (4.21). As the results show, there are remarkable agreements be-

tween the analytical and numerical results. However, these numerical studies were restricted

to small length ratios 5 << 1. As we mentioned in the previous sections, the length ratio

.5 serves as the primary parameter for the current problem. The length ratio 5 represents

not only the magnitude of the inertia force, but also contributes to the strength of the

nonlinearity. When the length ratio 6 increases, the amplitude of the response increases.

At some value of f, the original equation develops an overly strong nonlinearity, which

the method of multiple scales is not able to handle. Although, according to the analytical
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approximation, the mass ratio S is the only source of nonlinearity, the numerical results

show that, for large 5, there exists a nonlinearity in addition to the one arising from the

inertia of the end mass m4 attached to the slider end. In order to demonstrate this, let

us consider the frequency response curve plotted in Figure 6.29. Note that there is a very

small frequency shift associated with the primary resonance in Figure 6.29. This frequency

shift implies that even without any mass attached to the slider end, there exists a small

nonlinearity of the softening type associated with the primary resonance. Because this

detuning of the frequency associated with the primary resonance is very small compared

with case 7, the nonlinearity associated with case 10 is very weak. Another interesting

observation arises from the type of nonlinearity associated with the principal parametric

resonance. To show this, let us consider Figures 6.30 and 6.31 which contain the branches

of the nontrivial responses associated with the principal parametric resonance for cases 4

and 7, respectively. From these figures, we find that these branches bend slightly to the
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Figure 6.29: Frequency response curve for case 10

right. This corresponds to a hardening nonlinearity. By considering the slopes associated
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with these branches, we conclude that the effects of the nonlinearity is very weak. Hence,

we know that equation (4.21) possesses a hardening type nonlinearity when there is no

end mass m4 attached to the slider end. In the distributed parameter approach, the mass

ratio S is not the only source of nonlinearity. The geometric nonlinearity does share this

role with the mass ratio S. Despite these disagreements, the analytical work does provide a

reasonable prediction regarding the qualitative behavior of equation (4.21), especially when

S is nonzero.

 

S t 112 S 5 #2

0 0.35 0.04 0 0.25 0.02

AUTO 0.5 0.25 0.04 0.5 0.20 0.02

1.0 0.15 0.04 1.0 0.10 0.02

0 no limit 0.04 0 no limit 0.02

MMS 0.5 0.05 0.04 0.5 0.025 0.02

1.0 0.036 0.04 1.0 0.018 0.02

 

 

 

 

 

 

           
Table 6.3: Limits of MMS and AUTO

Both the analytical method and the numerical simulations have difficulties in obtaining

the overall response curves over a wide range of frequencies (0 = 0.005 to 3.00). Table 6.3

contains information concerning the limitations for both the analytical method MMS and

the numerical tool AUTO. Since the effect of friction parameters #3 and 114 are not signif-

icant, we let #3 = 114 = 0 in generating Table 6.3. Since the length ratio é is the primary

parameter, we select it as the key parameter to monitor the limits of these two approaches.

Regarding the limits of AUTO, the data provided in the table indicate the maximum

length ratio 5 for which AUTO will generate the overall frequency response curves. For

the analytical solutions MMS, the data are the maximum values of 6 which will not pro-

duce a detuning associated with the primary resonance, larger than unity so that the peak

amplitude of the response can be observed for a positive operating frequency 9. It should
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be noted that significantly larger values of E can be handled by AUTO if one restricted

attention to a smaller frequency range.



Chapter 7

Summary and Conclusions

High operating speeds, superior reliability and accurate performance are major charac-

teristics of modern industrial machinery and commercial equipment. The traditional rigid

body analysis which presumes low operating speeds becomes insufficient for describing the

performance of such high speed machinery. A thorough understanding of the dynamic

behavior of machine elements undergoing high speed operations is necessary in these situa-

tions. It is the purpose of this dissertation to present an analytical approach for describing

the elastic mechanism problem and provide a theoretical explanation for some of the dy-

namic phenomena observed in both numerical and experimental works. One of the simplest

and most popular mechanisms, the slider-crank mechanism, is selected as the prototype

system to demonstrate this analytical work.

In this dissertation, we study the flexural vibration associated with the elastic connecting

rod of an otherwise rigid slider crank mechanism by using the Method of Multiple Scales

and the numerical techniques. Similar perturbation methods, such as the regular expansion

method[8, 9] and the Method of Averaging[30, 31], have been applied to study this problem.

However, up to the present time, all these investigations have provided only linear results.

In particular, analyses of the stability associated with the steady state response and detailed

studies of the nonlinear response have not been carried out.

177
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This problem is equivalent to the flexural vibration of a simply supported beam subjected

to (1) inertia force and the motion of its foundation, arising from the motion of the crank

shaft, (2) axial loads which come from the presence of the friction force on the slider mass and

the inertia force associated with the slider mass, (3) concentrated frictional moments which

come from the presence of bearing friction on the joints between links. The single mode

flexural response of the connecting rod can be approximated by a single ordinary differential

equation with multi-frequency harmonic excitations and time-varying coefficients which are

also of multi-frequency. These frequencies are composed of the crank speed plus harmonics

of it.

Several different types resonances can arise in this problem. The first type is caused by

the time-varying coefficients, and is referred to as the parametric resonances. The second

type occurs when one of the harmonic excitation terms has the same frequency as one of

the natural flexural frequencies, and correspond to as the primary and/or superharmonic

resonances. A third type, the subharmonic resonances can occur when a natural frequency

is a multiple of one of the excitation frequencies.

Two different models are used to study this problem. In the first model, the dynamic

response of the elastic connecting rod is described by a set of partial differential equations.

The dynamic behavior is studied by obtaining approximate solutions of these partial differ-

ential equations using the Method of Multiple Scales and Galerkin truncations. In second

model, the dynamic behavior of the connecting rod is described by a single nonlinear dif-

ferential equation obtained by direct modal truncation of the partial differential equations.

This latter procedure follows the works by Viscomi et al.[49] and Badlani[9], although we

have included the effects of bearing and slider friction. We analyze the response predicted by

this model by obtaining approximate solutions of the governing ordinary differential equa-
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tion using the Method of Multiple Scales. In both of these two models, several resonances,

such as the primary resonance, the principal parametric resonance and superharmonic res-

onances, were studied in detail and compared. In addition, extensive numerical studies

were carried out, including direct simulation as well as the generation of frequency response

curves using path following software.

The major features of this work are outlined here. The length ratio 5 turns out to be

the parameter which has the most direct influence on the response. The magnitude of the

response and the strength of the nonlinearity both depend on the this parameter. The

reordering of the length ratio is the essential step needed to extend the analysis to include

nonlinear effects. Since the external force is expressed as an asymptotic expansion in 6,

the validity of the application of the asymptotic method in studying this problem relies

on the order of length ratio 5. The mass ratio S is proved to be the strongest source of

nonlinearity. When there is no end mass attached to the slider, there exists only a very weak

geometrical nonlinearity associated with the geometrical effects of flexure. This point is

clearly shown by the numerical studies and the analysis of the distributed parameter system.

The presence of the end mass makes the system behave like a system possessing a softening

type of nonlinearity. As a consequence, the frequency response curve will bend to the left.

Regarding this parameter, our analysis is in conflict with previous investigations[30, 31]. Our

results, which are confirmed by the numerical studies, indicates that the peak amplitude of

the response is independent of the mass ratio. Moreover, the amplitude of the superharmonic

resonances can be slightly reduced by choosing a proper end mass. The eflects of three

damping mechanisms are included in the model, these are represented by the parameters

11;, [.13 and 114. The internal material damping 11;, as expected, has a favorable effect on

the overall response. This parameter affects the response by reducing the amplitude of the
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response and shrinking the width of the instability regions. The bearing friction, [13, has

an adverse effect on the overall response. Although, the effect of bearing friction is not

as significant as that of 11;, the presence of 113 will increase the amplitude of the response

and increase the parameter regions where instabilities occur. This occurs since the bearing

friction at the connection acts like a constant bias moment plus a fluctuating moment which

adds a constant bias to the response in addition to providing an additional source of periodic

input. The slider friction parameter 114 shows a variety of effects. The slider friction force

is composed of two actions: rigid body motion and elastic deformation. Friction based on

the rigid body motion has an adverse effect on the response. Friction based on the elastic

deformation has a favorable effect on the response. Although the effect of 114 may not as

significant as 11;, it has a not favorable effect on the overall response. The effects of shear

deformation and rotary inertia, included in the distributed parameter system analysis, affect

the response by shifting the entire frequency response curves leftward in frequency.

The results presented in this dissertation represents a successful extension of previous

eflorts in that the effects of nonlinearities have been analyzed in a systematic manner. The

major drawback of this approach is that tedious manipulations are involved in analyzing

the higher order resonances. This difficulty may be overcame with more advanced symbolic

manipulation programs. Also, with the advent of high speed computers, the finite element

approach becomes more and more favorable for specific design purposes. However, like

most numerically based approaches, the finite element approach can only provide pointwise

information in parameter space regarding the response. A recent finite element study[12]

used more than one hundred simulations with a commercially available package to obtain a

response curve. We must admit that the finite element approach will provide more reliable

and accurate solutions. However, this analytical approach provides important information
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useful for the prediction of the influence of various parameters, and a theoretical explanation

for the nonlinear phenomena associated with these systems.

Future works in this area can be separated into several distinct directions. First, this

analysis can be directly extended to study the elastic behavior associated with the flexible

coupler of an otherwise rigid four-bar mechanism. Second, for a more complete understand-

ing of the elastic behavior of the slider crank mechanism, the flexibility of the crank shaft

needs to be included. Moreover, the effects of ofl-set, clearances in the bearings, piston

cylinder clearances, external force on the slider mass, and out-of-pane deformation should

also be included. An application of Hsu’s method[24] to study the linearized model, with

multi-degree-of-freedom, should also be considered. A detailed study to the slider crank

mechanism with low frequency ratio 0 and large length ratio 5 is recommended.

As for the general improvement in the analysis techniques for elastic mechanism prob-

lems, a more thorough understanding of the inertia force is required. In all previous analyti-

cal works, the dynamics of the flexible link is formulated relative to a coordinate system that

follows the rigid body motion of the beam. This approach presumes an infinitesimal strain

and is sometimes referred to as the shadow beam approach. In future work, it is intended

to include large overall motion and strains by employing geometrically exact formulations.

Recent results from Simo and Vu-Quoc[38, 39] may prove useful for this extension.

In addition, future work should include careful systematic experiments to verify the

modeling assumptions and to examine the nature and consequences of the behaviors pre-

dicted in this study.
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Appendix A

Construction of the Linear Operator

In this appendix, we consider the flexural vibration of a simply supported beam sub-

jected to the following conditions: (1) a distributed force is applied along the span of this

beam, (2) concentrated bending moments are applied at both ends, and (3) motion of

the supporting foundation. This is modeled by a linear partial differential equation sub-

jected to nonhomogeneous boundary conditions. Because of the linear nature of the partial

differential operator, it can be converted into a partial differential equation with homo-

geneous boundary conditions. In this appendix, we solve this problem by using concepts

from vibration theory [16, 46] rather than rigorous mathematical arguments. Therefore,

the transverse deflection will be described by a linear partial differential equation subjected

to a set of homogeneous boundary conditions, which can then be truncated by Galerkin’s

method with the usual linear mode shape functions. To achieve this goal, we first convert

the nonhomogeneous kinematical (or rigid) boundary conditions[16] into homogeneous ones

by considering the motions of the foundation. Next, we consider the natural boundary con-

ditions and obtain the equivalent partial differential equation with homogeneous boundary

conditions. Based on this equivalent equation, and its associated boundary conditions, we

then apply Galerkin’s procedure to transform the continuous system into a discrete system.

After this procedure has been presented completely, we then provide an example problem

to demonstrate this procedure.
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The transverse deflection of this simply supported beam is described by

017F4(Dozv) + 01%”: = Q1(5€, t), (A-I)

with the following boundary conditions:

v(0,t) = Q;(t), (A.2)

v(1,t) = Q3(t), (A.3)

vu(0,t) = Q40). (A-4)

vm(1,t) = 050), (A-5)

where Do represents derivative with respect to the time variable, Q1(a:, t) represents a dis-

tributed load applied along the span of the beam, Q;(t) and Q3(t) stand for the motion of

the left and right points, respectively, and Q4(t) and Q5(t) represent the bending moments

applied to the left and right ends, respectively. We note that the first two boundary con-

ditions are referred to as the kinematical boundary conditions, while, equations (AA) and

(A5) are referred to as the natural boundary conditions. Our goal is to find an equivalent

ordinary differential equation which takes the form,

0:17I4(Do2wn) + wzwn = qn(t) (A.6)

describing the amplitude of the transverse deflection of this simply supported beam. First,

we compensate for the motion of the foundation by letting

”(3,1): 217(3', t) + 02(1) (1 - at) + 030) . (A-7)
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Substituting this expression into equation (A.1) and its associated boundary conditions (A.2)

to (A.5), we obtain

017F4D021D 'l' alwxxxx = Q($a t) : Ql(zat) - 017F4D02IQ2(1— it) '1' Q3] (A8)

and the following boundary conditions:

117(0,t) = 0, (A.9)

2D(1,t) = 0, (A.10)

w..(0.t) = Q40). (Aoll)

zsz(1,t) = 625(1). (A.12)

This procedure transforms the kinematical boundary conditions to zero, and replaces the

effect of the beam motion by a modification of the distributed force acting on the beam. We

note that equation (A.8) and its associated boundary conditions (A9) to (A.12) correspond

to a simply supported beam subjected to concentrated bending moments applied at each

end. Next, we apply the principle of virtual work to handle the nonhomogeneous bending

moments (A.11) and (A.12). First, we compute the virtual work done by the inertial force,

1

6U1 = —a11r4/ (D0211?)6wds (A.13)

o

and the virtual work done by the elastic force and the external loads

1 1

w2 = —a(/ alwg,dx)+/ Q(:1:,t)6112dz
0 0

1 1

= -01wmssx+a1mmm—al/ wmméwdz+ / magma. (11.14)
00
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From the principle of virtual work, we must have

6(U1 + U;) = 0 (A.15)

which yields

1 1 1

/ alvr4002u‘26u‘2da: = — / wuuéwda: + / Q(:1:,t)61Dd:c
o o 0

— 011701361131; + (11101-33361?) . (A.16)

We now assume 17) = w,,(sin mrz) and employ the boundary conditions for equation (A.16).

After carrying out all the integrations, we obtain

mr

alw4D02wn + wgwn = qn(t) — 017[ Q5(t) cos n7r — Q4(t)] (A.17)

where

1

Qn(t) = 21) Q(:1:,t)sinmra:ds

1 1

= 2/ Q1(z,t) sin mrxdz — 2011761002] [Q;(1— 2:) + Qs] sin n7rxda:(A.18)

o 0

represents the component of the external force projected onto the n-th mode.

To demonstrate the procedure described above, let us consider the following equation,

from section 3.1:

a11r4(D02v3)+ 01031:“: = Q1013, 1) (A19)
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where

2

—ala2lex:rz:1:x " 201/122D0v11'rx1: + (6031,21):
Q1(:r:,t)

— 01(v1xvfm)x + (60,121.04. + afaavr‘Dozvm

— alrr4(2DoD;v1 + 2D0D1 v; + Dlzvl) + 011r4£ffl2v1 cos 9T0

+ 2011461 0(D0u;) cos 0T0 - 0171'4619211; sin 9T0

— 01x46?92(—1—-:—z) sin3 9T0 + oznr‘Eiinx cos2 9T0 sin 9T0 (A.20)

with the following boundary conditions:

v3(0, t) = Q;(t) = 0 , (A.21)

v3(1,t) = Q3(t) = %(n7r)2f2,2,£1 sin 0T0 , (A.22)

vgm(0, t) = Q4(t) = —(3§—‘5 + ala2v1mx)x - 2,1132D0'1‘11n — 21132510 cos 9T0 ,(A.23)

”31:1:(lat) = Q50) = -(2§£ + 0110201qu + 21132 00131:: - 21‘32519 C0891b .(A.24)

After applying the procedure, we obtain

0021737. + wifisn = -2jwn(DzAn + #22 n4Anle-TPanTo)

- III...(mr)‘w.A?./i.ezp(jw..ro) - a?)(mr)"w.A..A¥exp(jw.To)

+ 2A,,(ala; + ala3)(n7r)2n4exp(jwnTo)

- 1% — (% + sour)?In‘(n«)2A3./i.ezp(jw.ro)

+ 3.1.4,... A.exp<jw.To) + (§)u..(mr)4m¥exp(3mo)

+ jf2€f€$P(3jQTo) + flffAneszWTo) + ifs/13516171909710 — ijnTo)
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+ [‘40 Ai(n1r)4A1(% - wn)e:cp(jflTo — 2jwnTo) + N.S.T. + c.c. (A.25)

where

f _ (22 2271202 NM!” «212694

1 ‘ _8_ + 12 ’ 8(1)}, _ my 6w, _ my

3526 «271296 + 11293 cos mr + 294 cos MI

8003. - 92V 6(0),“; - 92V (‘03. - 92) (‘03. - 92)

29%1 27.2mm mag (A 26)

"2003. - WY" (“’3 - 92)2 "404.2. - (Q + w71)?) ’ '

f _ ()2 n306 398 mrfl8

2 ' ‘87.? ' 27.14.23, _ n2)": 8n1r(w,2, — 92)3 60.23, _ 92)3

Q4 mrfl‘ + 02 cos MI 396 cos mr

161.1133, — 92) 24(1)}, — o2) 4n1r n1r(w,2, — o2)

Q4A1 2QSA1 04A}

’ 27.7433, — 4122 ) n31r(w§ - my n37r(w3, — 522)

04131 cos mr 96A?

2n31r(w,2, _ 4m) + n51r(w,2, _ mxwg - 492) ’ (A27)

f _ 3211592 + 32110“ «311394 «3511304

3 ‘ 2(a)}, _ 92) 16(1)}, — :22) 6(1)}, — 122) 2(w3, — o2)

31rnfl3wn «31139302,, «3512393121,, 9n1r (221.123,

3003. - 92) 3003. - n2) (“’3 - 92) 16(0),? - m)
3 3 2 2 3 2 2 2

1r n R can 3(n1r) 59 can mrQ cos n1r (A.28)
 

‘20s}; _ I22) " 205,2, — a2) ’ 4 ’

and N.S.T. represents those terms which have no effects in considering the secular terms of

the particular solution of 113... When the frequency ratio 9 is near to 9311, the superharmonic

resonance takes place. Under this condition, equation (A.25) reduces to

D0263" + 023133,, = —2jw,,(D;An + p;,n4An)exp(jwnTo)



188

. . 2 .

+ (01103 + ala;)(n7r)2n4ezp(]wnTo) «1» 357241132 AneerwnTo)

- (72521241135 - (é + 5)(n.)211311,..p(j..,2~0)

+ fllffAnexp(jwnT0) + jf21£?€$p(3jQTo)

- J'fl4o(mr)4A.2. fineszwnTo) - j(5%er)2wn512AneprwnTo)

+ %’E(nr)wn§?e$p(3jQTo) + N.S.T. + c.c.

  

  

where

f _ -91n“ + 111r2n6 + 5n4 cos mr 5n2A1 A'f

1’ ‘ 2304 1728 72 144 63

and

f _ 583113 171m5 + 61113 cos n7r 37nA1 nA1 cos mr A?

2‘ " 368642 27648 23041 115201 901 360n1r '

This case is fully investigated in section 3.5.

Next, we consider the case in which the frequency ratio fl is near to 3wn

(11.29)

(11.30)

(11.31)

. Under this

condition, a subharmonic resonance takes place and equation (A.25) reduces to

D02b3n 'I’ ”36371 = “zjwn(DlAn + #2; n4An)exp(jwnT0)

+ An(ala; + ala3)(n1r)2n4ezp(jwnTo)

15 1 2 4 2 2 - .

— {—8- — (5 + S)(n1r) ]n (mr) AnAneprwnTo)

2 . -
‘+ 331241132 An€$P(JWnTO) + flefAneszwTo)

+ jfzg.1 AfifleszQTo — 2jwnTo) — jp4o(n7r)4wnAi14nemp(jwnTo)

. 81 .

- J(E)(n7r)2wnfl4oéfAneprwnT0)

9 - .

+ (§)(mr)3wn114o£I AiempUQTo - 2wnTo) + N.S.T. + c.c. (11.32)
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where

1899124 8712116 189n4cosn1r 405n2A1 27A?

256 64 8 16 5

  
f12 =

and

f3: = 189 n5 —9—7ran7 + -2—7n31r3 + £23579 — 9 5

"s?" 16 16 8

This case is studied in detail in section 3.6.

ZWTI COS nn’ .

(11.33)

(11.34)



Appendix B

Superharmonic and Principal Parametric

Resonances for 5 = 661

Recalling that in analyzing the particular solution of 13;”, we need to distinguish between

the following cases: (1) Q is near to 21.)”, (2) Q is near to 11;, and (3) Q is away from 202,,

and “3211. The first case corresponds to the principal parametric resonance, while the second

one corresponds a superharmonic resonance. When these two resonances take place, it is

necessary to reorder the damping parameters 11; and 114 so that they will appear, together

with the detuning parameter 01, in the final resonant condition. To achieve this goal, we

rescale the damping parameters 11; and 114 according to equations (3.49) and (3.10), and

then redo all the relevant computations. In this appendix, we provide a detailed solution

procedure for obtaining the final resonant condition.

Expanding equations (2.51), (2.52) and (2.53) with these newly reordered damping

parameters, and equating the corresponding coefficients of the like-power terms in c, we

obtain the following equations:

Order (3

(1133 + 111,1);3); = (1303 )x = —a11r4§192 cos 9T0 , (B.1)

0177400201 + 01121,", = 017F46102(1 - ((2)8111 9T0 , (B.2)
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Order 6“

4 2 _ 4
Q17" Do v; + 0102:”: - (€03le):c - 20117? (0013101)

+ anr‘ffflz cos 0T0 sin 0T0 -— 20111;, Dovlmn . (B.3)

Applying the same procedure to the associated boundary conditions, we obtain the following

boundary conditions:

Order 6

v1 = 111” = 0 , at x = 0, (B4)

121 = ‘01:”; 2 0 , at X: 1, (3.5)

Order 62

v; = 021-;- : 0 , at X = 0, (B.6)

v?
(1121, + _2_:r) = v; = 0,021.1,- = —2fl329 , at X = 1, (13.7)

Order c3

1131: + 1211,1221, = 0112451925 cos 9T0 + 2a17r4/140519 sin 9T0 . at x = 1, (3.8)

Note that we have dropped all the terms involved in products with so, in obtaining the

2

equations, since we have already shown that so, = 11;, + 351 = 0 in section 3.1. We first

project equation (B.2) onto the n-th mode by setting v1 = 131,,(sinn1rx) and integrating

from :1: = 0 to a: = 1, resulting in equation (3.29). The general solution of 131,, is then given



 

 

..._.—. ___. __ ._ A . _ _ - _ — — i A . i .___
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in equation (3.30). Now, we solve the expression for e03 and obtain

(“31: ‘l’ vlzv2x)€03

0112461920 — :1: + 5') cos 9T0 + 2011141140510 sin 0T0. (B.9)

Hence, equation (B.3) reduces to

00217271 ‘I' “9:927: = —2j#21wnn4Anezp(jwnT0)

- 2jwn(DlAn)e:rp(jw,,To)

1 — cos mr . .

+ (—-——)€fflz€1p(2JQTo - J7r/2)
2n1r

1 . .

" 1(1 + 25)(n7r)2Anélflzexp(anTo + JQTO)

1 - . .
— 3(1 + 2S)(n1r)2An£1928$P(-JQT0 + anTo)

_ %(1+ 25)(n7r)2A1£1028$p(2jQT0 - J'W/2)

— p4o(nx)2£1Sl/Inexp(jQTo — jwnTo — j7r/2)

(W)2

2

 

p4o§IQAlezp(2jQTo) . (3.10)

Note that the difference between this equation and equation (3.34) in section 3.1. When 0

is near to 2112", we describe 9 as Q = 2(a)n + 601), then equation (B.10) reduces to

0021327. + 003.17% = ‘2jwn(DlAn)e$p(jwnTO) - 270111713121 An€$PanTol

—(1 + 2S)(nn)21inglw§exp(jwnro + 2jam)

-2p40(n1r)2£1wn/Inexp(jwnTo + 2j01T1 -— j7r/2)

+N.S.T.+ c.c. (B.11)
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which is equation (3.51) in section 3.2. When 9 is near to w—gl, we express 0 as Q =

20"“ + 601) in equation (3.51). In that case, we obtain

120212271 + 033527; = —2j(DlAn)wnea:p(jw,,To) — 2jwnn4p21Anexo(jwnTo)

-cosn1r . .
+ (n7r)2u4o£151Alezp(2jflTo) +1—61292€$p(2]QT0 — J7r/2)

_ 4(1 + 25)(nn)2A15192ezp(2jflT: — j1r/2) + N.S.T. + c.c. (B.12)

which is equation (3.117) in section 3.4.
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Solution Procedure for the Case 5 = 625;

In this appendix, we present a complete solution procedure for the case in which the

length ratio 5 is scaled by 5 = 625;. Moreover, in order to have the damping parameters

11;, p3 and 114 included in the final resonant equation, we scale these parameters according

to equations (3.8), (3.9) and (3.10). Expanding equations (2.51), (2.52) and (2.53) with

these ordering relations, and equating the coefficients of the like-power terms, we obtain

the following equations:

Order 6

“1.21: = (801)2' = 0 a (C1)

Order 62

vi".
(”2x + 7):: = 60; = 0 a (C2)

Order 63

(”3.2: + lev2z)z = (603 )1: = O 1 (C3)

4 2 ”fa:
a17r D0 ”1 ‘I' allexxx = [(1122: "l' 3")”1141: 1 ((3.4)

Order 6“

[u Eir— Egg - 4 D 2 92 QT4:: + 8 + 2 + 01:03:: 11: + al(”1:r”1.7:1::1:)1: — 0117f ( 0 U2 — £2 COS 0) I (C-5)
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(111T4D02‘02 + 0111233351- : 017F4£QQ2(1 — 2:) sin 9T0 — 201774DoD1'01 ,

Order (5

al1r4Do2v3 + 011 v3.1:zxz = -017|’4(D12vi + 2DoDzvi + 20013202)

+ O¥O3W4(D02lex) + (€04v1x)x — 01(vlrvixxlx

2
— (11 (122)131-3333 _ 201H22D0v131‘1’3

,

subjected to the following boundary conditions:

Order (1

ulzvlzvlmzo, atx=0,

u12=v1=v1m=0, atx=1,

Order 62

112:1)22‘0231-7—0, atx=0,

viz
(uk + —2—)x 2 v2 = 0mg“ 2 -2n329, at x = 1 ,

Order 63

u3=v3=0,

3

'0

”31:1: = -(% + a102lexx)x + 2H32 00011:, at X = 0 a

(“31: + lev2z) = ‘03 = 0 7

vi}
”31:1: : —("— "l' 0102lezr)x + ”132007113, at X = 1 a

6

(0.6)

((3.7)

(C.8)

(0.9)

(0.10)

((3.11)

((3.12)

(0.13)
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Order 6‘

”fr: v31: 4

(”41: + Y + —2" + '01::va) + 01(v1xvlz1‘x) = "2&1"r [140(D0u2)

— Sa11r4(Dozu2) + Saur‘fgflz cos 9T0 — 2011r4p4o£2 sin 9T0, at x = 1(C.14)

Because we have already shown that co, = (u23+ 321) = 0 in section 3.1, all terms involving

products with this quantity have been dropped in obtaining these equations. Moreover,

all terms involving products with 603 = (1:3,; + levgz) are dr0pped also, because 603 =

(11.33; + levgx) = 0 for the current case. To show this, we solve equations (C3) and obtain

its general solution which is

(“3.1: + vlzv2z) : Co ((3.15)

where co is a function independent of the spatial variable a: and it must be equal to zero,

because of the boundary condition (C.13). We now proceed to solve the first order equation

for flexural vibration which is described by equation (CA). Equation (C.4) becomes

002131.. + with" = 0 (C.16)

after being discretized by Galerkin’s procedure with v1 = 131n(sin mrz). Hence, the general

solution of 131,, takes the form

131,, = An(T1,T2) ezp(jwnTo) + c.c. . (ON)

2

We then solve for 112 from the ex ression uh + 311 = 0 to obtain
p 2

_ 1 2.2 sin2n1rz

u2——4(mr)v..(x+ 2M ) (0.18)
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where 131,. is given in equation (C.17). With the solution of 11.2, we next solve the expression

for 60, and obtain

vi‘ v3:1: :r:

604 = ("41: + — + — + vlzv3x)

8 2

= a11r4(£292)(1 - a: + 5) cos 9T0 — alleleu — 2al7r4p40£29 sin 0T0

+éal7r4(Do2i2fn)[— sin mm:2 +(n1r)2(1+ 25 -— 32)]

+a11r4(n7r)4p40(D0231n)131n . (C.19)

We can then convert equation (C.6) into

D0262" + will?" = -2jwn(Dli‘21n)e:cp(jwnTo) + £6292 sin ”TO ((3.20)

which is equation (3.66). In analyzing the particular solution of this equation, we need to

distinguish the following cases: (1) Q is near to can and (2) Q is away from can. The case in

which 0 is near to can will be investigated in section 3.3. At the present time, we assume

that Q is away from can and continue to consider the higher order equations. With all the

information obtained up to the present, equation (C.7) becomes

017F4Doz’03 + 0103”“,- = -201W4(D0D201) + O¥0137r4(D02012,-x) - 01(levimhc

- aiaz‘vluum - 201M; Dolez’xz - 2Oil 1r41140529711221: Sin QTo

- afivflvlmx): + a11r2[§2fl2(1 — :1: + 5')le cos 9T0];

+ c211r2[é(D()""t“)¥,,)[—-(sinmm)2 +(n1r)2(1— 2S — x2)]v1$]3

+ a11r4p40(mr)2(Dof21n)filnv1m (C21)
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subject to boundary conditions (C.12) and (C.13). This represents the flexural vibration

of a simply-supported beam subjected to a distributed load and to concentrated moments

applied at each end. This is a simplified case of the more general case handled in the Ap-

pendix A. Therefore, by applying the results obtained in the Appendix A, equation (C.21)

can be converted into

1

D0253" + a): = —2(Dng’f)1n) - a103n2(002f21n) + 11167313?”

1

+ alagx2n4fnn — 2p22n4(Dof)ln) — (E + S)1r2n2w§{2131n cos 9T0

3 , 1 mr 2 S mr 2 . .
— 114192)?” E - (—12—)— - -L4—-2-) + (71,7?)25201711140Q SIR QT0

— ju4o(nr)’A§finezp(jwnTo) (0.22)

by Galerkin’s procedure with 2);; = 133,, sin mrz. This equation is the equation describ-

ing the resonance condition for the principal parametric resonance. We note that the

there are two friction type forces in this equation, both arise from slider friction. The

[ (n7r)2£2i>1np4ofl sin 0T0 ] term arises because the action of rigid body motion; while the

l ‘jfl4o(nW)2A3, Anexp(jwnTo) ] represents the contribution of elastic deformation.
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Solution Procedure for the Case 6 = 6353

In this appendix, we present a detailed solution procedure for equations (2.51), (2.52)

and (2.53) expanded with 6 = 6363, 112 = 62112,, 113 = 52113, and 114 = 1140. We expand

equations (2.51), (2.52) and (2.53) with these new ordering relations and solve them se-

quentially. After application of the procedure in Appendix A to the partial differential

equation describing the third order flexural vibration, we obtain the ordinary differential

equation which is used in section 3.3.

Expanding equation (2.51), (2.52), (2.53) and their associated boundary conditions with

these ordering relations, and equating the coefficients of the like-powered terms in c, we

obtain the following equations:

Order 6

“11:1: : (601 )1: = 0

Order 62

vi"..-
(u21: 'l" ‘3")1: =(602)1: : 0 9

Order 63

(“31: + vlzv23)x = (803 )1: = 0 a

2
'0

0114002221 + a1 ”11:1:1'1: = [(1123 + fmxh ,
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(13.1)

(13.2)

(D.3)

(13.4)
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Order 64

”1‘1: ”31: 4 2

“4:: + —8_ + 3— + ”11:va + 01(lelem)x = 0177 (D0 ”2) , (1)-5)

01114002112 + 0102““ = -2017r4DoD1v1 , (D.6)

Order 65

4 2 4 2

01% Do 123 + 010333;; = —al7r (D1 ’01 + 2000201 + 2D002’02)

2 4 2 2 2

'l' 0103“ D0 ”11:1: + (3041,1117: " al(lev1xx)x - alaZvlzxxxxx

— 2011/122D0v1mu + (111463920 — 1:) sin (ITO , (D.7)

subjected to the following boundary conditions:

Order 6

u1=v1=v1m=0, atx=0, (D.8)

u13=v1=v1u=0, atx=1, (13.9)

Order 62

u2=v2=v2u=0, atx=0, (D.10)

v12..-
(‘ng + —2—-) = 02 = 0 ,‘Ugrx = —2p320 , at X = 0 , (D.11)

Order £3

“3 = '03 = 01

vi}
”31:1: : _(_ + 010201311): ‘l' 2[1321)01’11: , at X : 0 a (D12)

6
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(“31: + 011.023) 3 v3 = O 9

3

v 1:

”31:1: = "(—é + ala2lexx)1: + 2/‘32D0v11: 3 at X = 1 3 (D13)

Order 64

”f1: v31: 4 2

(”4: + _8 + —2 + 01:03:) + 01(lelemx) = —Sa11r (Do “2)

— 2a17r4;140(D0u2) ,at X = 1.03.14)

Note that in obtaining these equations and boundary conditions, we have dropped all those

terms involving products with 120., = (112;; + 11%,, /2) and 603 = (113,,- + levgr), since these two

quantities are zero. Equation (D.4) can be truncated with 121 = 131n(sin mm) to obtain

002131.. + with. = 0 (D15)

which admits the following solution:

131,, = An(T1 ,T2)e.7:p(jwnTo) + c.c. (D.16)

where c.c. stands for the complex conjugate term of the preceding terms. Substituting this

2
I g 0 v I 0

solution of 121,, into 112,, + $1 = 0 and solvmg for 112, we obtain

sin 2mm:

2” ) (13.17)112 = -%(n1r)2f)fn :1:

where 13,, is given in equation (D.16). Now, we solve equation (D5) and obtain

1)4 v2 - ,

“41: + J83 + —;£ + levaa: = -01(vlzvlmx) + 017T4ll40(n7r)4(Dovln)vln
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+ é-alw4(D0213fn)[(n1r)2(1+ 2S — 1:2) — (sin n1r:1:)2] (D.18)

which is the forth order relative elongation along the median line. In obtaining the solution

of 132“, we need to consider the following equation:

. 2

D0262n + «23132,. = —2jwn(D1An)ezp(]wnTo) - $11329 cos n7r + c.c. (D.19)

where —nlwp3,fl cos mr comes from the nonhomogeneous boundary condition. To remove

the secular term from the particular solution of 132", we must have (DlAn) = O. This

implies that An must be independent of the time scale T1. Collecting this information,

equation (D.7) reduces to

alx4(D02v3) + 01111335,,“ = 0114(3920 — 1:) sin 9T0 — 0114(2DOD2v1)

‘l‘ 012a3"4(002v1x1:) -' 01(levgxx)1: _ aga'zlerz‘xxx

_' 2all‘2gDovlz1rx1: - al(v¥xle1:1:)x + 01774H4o(nw)4(D0f)1n)filnvl1:1:

+ $011r4(D0213f,,)[ [(n1r)2(1 + 2.5' — 1:2) -— sin n112]v1x]$ (D.20)

subjected to boundary conditions (D.12) and (D.13). This equation and its associated

boundary conditions correspond to a simply supported beam subjected to distributed load

applied along its span and concentrated moments applied to each end. By using the proce-

dure described in Appendix A, equation (D.20) and its associated boundary conditions can

be transformed into the following equivalent system:

002133.. + 1.23133“: —2jwn(D1An)exp(jwnTo)— jy4o(n7r)4A,2,/lnea:p(jwnTo)

+ An(n1r)2n6(alag + ala3)ezp(jwnTo)
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4

. . .Tl .

- 21w..n“1122 AneprwnTo) + 2] F1132 AneerwnTo)

_ [18? _ (E15. + S)(n1r)2](nx)2n4A3,.dnexp(jwnTo) + N.S.T. + c.c. (D.21)

which is the resonant equation considered in section 3.3. We note that the term involving

with the friction parameter #4 in the last equation represents the slider friction force due to

the foreshortening. We note that the [p4o(n7r)4A3,/ln ] term in the last equation represents

the contribution of the slider friction acting on the connecting rod.



Appendix E

Coefficients f7 and f8

In this appendix, the values of f7, f8 and f9 in equation (4.36) are given. First, we

present the function f7, which is the coefficient multiplying exp(jTo),

_ 5112 612504 2122 4124

f7 ‘ 8 +(1_112)2’1—112‘1..112'

«4124 «45124 «43294

16(1— (1 + 12)2)+ 4(1 — (1 + (1)2) + 4(1 — (1 + 122)2)'

   

   +

For the superharmonic resonance occuring at 9 z (%), the coefficient f7 becomes

f _ E 1r4 3125' fig «452

7‘ ‘ 72 1008 32 252 252'

 
 

For the subharmonic resonance taking place at 0 z 3, the coefficient f7 becomes

f _§§ 2714+2431rzS 27145 271452.

7” 8 80 32 20 2o ’

  

(13.1)

(13.2)

(13.3)

Next, let us consider the coefficient function f3. The coefficient multiplying exp(3jOT0)

is given by

f _ -592+ 19“ + 1594 + 91598 596

8 ’ 87r 4(1—492) 2(1—492) (1—02)3—27r(1—92)2
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594 + 10‘ + «5'04 1396

161(1—92) 6(1— 122) 20422) 16(1 _4122)(1 422)

13596 135296
  

4(1— 402)(1 — Q2) _ 4(1 _ 492)(1_ ()2) ° (13.4)

This coefficient function becomes active only when the superharmonic resonance 9 z (35)

occurs. Under this condition, it becomes

—5 171r 1r3 46113 «35 1352

f3, = 64—1 + 2160 ’ 5760 + 23040 ' 1440 " 1440 '

    (E.5)
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