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ABSTRACT

NEURAL NETWORKS FOR NONLINEAR PROGRAMMING

By

Chia-Yiu Maa

Artificial neural networks (ANNs) for optimization are analyzed from the
viewpoint of optimization theory. A unifying optimization network theory for linear
programming, quadratic programming, convex programming, and nonlinear program-
ming is derived. A 2-phase optimization network is proposed which can obtain both
the exact solution, in contrast to the approximate solution by Kennedy and Chua’s
networks, as well as the corresponding Lagrange multipliers associated with each con-
straint. The quality of the solutions obtained by the optimization ANNs is quantified

through simulation.

The applicability of the -optimization ANNs for solving real-world problems is
demonstrated with examples of the economic power dispatching problem and the
optimal power flow problem. It is shown that the mapping technique of the optimiza-
tion ANNs is simple and that they are able to handle various kinds of constraint sets.
Furthermore, it is demonstrated that the optimization ANNs attain a better objective

function value.

Overall, this work lays a solid groundwork for optimization ANNs in both
theoretical and practical aspects.
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CHAPTER 1
INTRODUCTION

Conventional digital computers are very good at executing well-formulated
sequences of instructions represented by the stored program. There are some tasks,
however, which are very cumbersome to solve by conventional digital computers.
These include vision, speech, pattern recognition with distorted data, and information
retrieval where only partial input information is given. These tasks, on the other
hand, are accomplished and performed well by the human brain. The basic process-
ing elements of the human brain are neurons, which are electrochemical devices with
response times in the range of milliseconds. In the human brain there are approxi-
mately 10! neurons and each of them may be connected to thousands of other neu-
rons. It is not yet well understood what interconnection structure organizes the neu-
rons, nor how this massively parallel interconnected system (a biological neural net-

work) interacts, stores and retrieves memory, and manipulates our thoughts.

In contrast, artificial neural networks (ANNs) are machine models of the biologi-
cal neural networks with the aim of achieving human-like performance. Recently
there has been a resurgence in the field of ANNs due to new network topologies
(feed-forward multilayer network, Hopfield feedback network) and algorithms (back
propagation, stochastic neural network), implementation techniques (digital VLSI tech-
nology, analog VLSI technology, electro-optics technology), and various emerging

applications.



ANNs do not always outperform conventional (sequential or parallel) computers.
Rather they provide a different approach to attack certain problems which are not
easily solvable using conventional computers. The key characteristics of ANNs are
listed in Table 1.1 and contrasted with the corresponding characteristics of conven-

tional computers.

Table 1.1. Characteristics of ANNs and conventional computers.

Characteristics ANNs Conventional Computers
Memory Distributed; Associative | Localized; Specific
Fault-Tolerance Inherent Not Inherent
Pattern Recognition Ability Fast Slow
Classification Excellent Poor
Partial Information Retrieval | Excellent Poor
Error Correction Ability Excellent Poor
Learning Ability Excellent Poor
Math & Algorithmic Ability | Poor Excellent
Timing Scheme Asynchronous **

Execution Mode Highly Parallel g
Processing Element Simple Unit **
Connectivity High ¥

** These characteristics are system-dependent.

The feature possessed by ANNs which differs most from conventional computers
is that ANNs store information in their structure rather than in specific locations. All
the parameters (connection weights, external biases, thresholds of neurons, initial
states of neurons) collectively determine the information stored in the network. As a
result, }if some of the interconnections are disconnected or some of the neurons fail,
the function of the network is preserved qualitatively. This provides the inherent abil-
ity of fault tolerance and sometimes the ability to retrieve the full output data pattern
with only partial input information. For pattern recognition, correlations of the input

patterns and output pattern are stored in the network. With a distorted or noisy input
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pattern applied, a well-trained ANN is able to map it to an output whose correspond-
ing input pattern best matches the applied one. Training, also called learning or adap-
tation, is the process determining the connection weights, usually over time, to
improve performance. Massive parallelism is another feature possessed by neural net-
works which is necessary for high performance computation for applications like
speech and pattern recognition.

Because of the immaturity of ANN research, various kinds of network structures
have been proposed and tested for different applications. There is no agreement on
which network best fits a particular application. Neither is there a unified way to
classify the existing ANNs. One way, for example, is classifying them by topological
groupings of single-layered or multi-layered; feed-forward or feedback; fully con-
nected, nearest-neighbor connected, or hexagonally connected. ANNs can also be
divided into two categories depending on whether their usage is neuroscience-oriented
or engineering-oriented. The former tries to model simple nerve systems of some
animals and implement the functions of the model through software or hardware.
Then the implementation is used as a paradigm to validate and predict the behavior of
the original nerve system. The latter aims at mimicking the biological neurons and
their networks with some adaptation and modification based upon the available analyt-
ical methods and available implementation technology in order to exploit the
decision-making functions.

For the engineering-oriented ANNs, one strong area of application is the solving
of constrained optimization problems. The ANN which is most widely used and cited
for such an application is the Hopfield network [1-7]. This is an one-layered, fully
connected, feedback network. A often-adopted procedure to solve a specific problem

using the Hopfield network includes the following steps:

i)  select a mapping (representation, transformation, or encoding) such that the out-

puts of the network correspond to the solution to the problem;



i) choose a proper energy function, bounded from below, whose minimum

corresponds to a feasible solution to the problem;

iii) derive network connection weights and bias inputs, which properly embed the

objective function and constrains of the problem into the network; and,

iv) choose initial values for the neurons in such a way that the network converges to

_a stable state which is a feasible solution to the problem.

Currently, each of the above steps is based on ad hoc procedures [6-44]. A lot
of effort, however, is being placed on formulating rule-based methodologies to obtain
parameters, derive energy functions, and choose initial values [12-13,18-24,45-50,57-
60]. For a specific problem, there are various choices at each step of the above pro-
cedure, but, except in a few cases [18-19,23-24,58-60], most of the work reported to
date does not guarantee, or at least analytically guarantee, that the state to which the

network converges is a feasible solution to the problem.

1.1 Problem Statement

ANNs, particularly the Hopfield network, have been used to solve optimization
problems such as linear programming, nonlinear programming, and dynamic program-
ming. The stability and convergence of the Hopfield network is ensured due to its
gradient descent nature [6]. But a reasonably formulated network, like the one used
for linear programming is not sufficient to guarantee convergence to a feasible solu-
tion of the original problem. In fact, as will be shown in this dissertation, the linear
programming network by Hopfield will converge to a point which is in general not
close enough to an optimal solution. For certain networks, some states of conver-
gence (local minima) may even turn out to be infeasible with respect to the original
problem. An example of this phenomenon is the traveling salesman problem as
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solved by the Hopfield network, where some converged states set up a traveling

schedule to visit some cities more than once and not to visit some other cities at all.

To address this problem, a more thorough theoretical knowledge of the ANN
characteristics and more knowledge of the relationship between the ANNs and optimi-
zation theory is needed. As a result of this shallow understanding, trial-and-error
approaches are currently adopted in choosing the parameters of the network for solv-
ing various optimization problems. And what’s worse is the fact that the set of
parameters resulting from the trail-and-error procedures are case-dependent. Conse-
quently, the application variety of ANNs is limited, especially for applications requir-
ing real-time response. An urgent need is a more thorough establishment of the
theoretical analysis for ANNs from the viewpoint of optimization theory. A key ques-
tion is whether there is a general type network suitable for particular classes of optim-
ization applications. If a general network is possible, then a proper procedure for
mapping classes of optimization problems into this general network is desirable.
Additionally, guidelines are needed to verify whether a given network will converge
to the desired optimal solution(s) ornot. If an exact solution is not achievable due to
the finiteness of the network parameters, a network which will converge to an approx-
imate solution is sought.

For fully exploring the computational power of ANNs in optimization problems,
an investigation involving the following fundamental research tasks is to be done in
this dissertation.

(1) Analysis of ANNs from the viewpoint of optimization theory.

(2) Developing generalized network(s) for solving basic optimization problems such
as linear programming, quadratic programming, and nonlinear programming.

(3) Quantifying, through simulation, the potential advantages and disadvantages of
the generalized network(s).



(4) Demonstrating the applicability of the generalized network(s) for solving some

optimization problems requiring real-time response.

The problems to be demonstrated are the economic power dispatching problem and

the optimal power flow problem.

1.2 Approach

The following plan is organized to achieve the goals of this research in a step-

wise and overlapping fashion and to set the stage for subsequent developmental

research further exploiting the anticipated results.

Task 1:

Objective:

Approach:

Network Analysis

Various network formulations of the Hopfield model will be analyzed
from the viewpoint of optimization theory in order to identify the rea-
sons why and when the network succeeds or fails.

The first step in this research is to analyze optimization formulations of
the Hopfield model. Various network formulations reported in recent
literature are classified into different categories to be analyzed in a sys-
tematic way from the viewpoint of optimization theory. The primary
theories used in the analysis include the Kuhn-Tucker optimality condi-
tions for constrained optimization and the penalty function methods
which translate constrained optimization problems to unconstrained
problems. Network formulations are translated to forms which can then
be analyzed for optimality conditions and the other criteria mentioned
above. Results of the analysis are compared with reported experiments

and used to verify the adequateness of the network formulations in the



Task 2:

Objective:

Approach:

Task 3:

Objective:

Approach:

literature. Based on the analysis results, guidelines for checking the

propriety of various network formulations are also sought.

Optimization Network Formulation

Formulate basic optimization networks and their extensions, and

develop, if possible, a generalized network structure.

With the analysis results obtained in Task 1, some optimization net-
works can be formulated in such a way that the stability, convergence,
and optimality of convergence of these networks are theoretically
assured. The network formulation is started on some basic problems
like linear programming, quadratic programming, and nonlinear pro-
gramming with affine (linear) constraints. Optimization networks for
more complicated optimization problems, such as nonlinear program-
ming with nonlinear constraints and other combinatorial optimization
problems, are examined next as possible extensions of those basic net-
works. All the developed networks are checked with the previously
derived guidelines to see whether they are legitimate. Based on the
experience of formulating various networks, a generalized network is
thus developed and a procedure for mapping classes of optimization

problems into this network is sought.

Network Simulation

Produce simulations of the optimization networks developed in the last

task and provide some benchmark comparison parameters.

Simulation programs for each of the optimization networks are

developed. For each optimization network there is a set of first order



Task 4:

Objective:

Approach:

differential equations which can be solved by standard numerical
analysis techniques. Simulation programs are used to provide perfor-
mance metrics for comparison with other approaches. Metrics to be
extracted include speed of convergence (throughput) and a measure of
computation accuracy (quality). The simulation is also used to study
the network sensitivity with respect to certain parameters, for example,
the input resistance and capacitance of each neuron and the time incre-
ment used solved the differential equations. Based upon the simulation
results, possible modification and re-formulation of the networks are
taken by going back to Task 2 for the purpose of performance improve-

ment.

Case Study

Apply the developments in new optimization networks to real engineer-
ing optimization problems: economic power dispatching (EPD) and
optimal power flow (OPF).
For the EPD problem, two cases, with and without the consideration of
the transmission line losses, are solved by using the developed network
_formulations and their results are compared with the results obtained by
other traditional methods. The formulation of the OPF is modified by
delineating the various constraint types for a complete OPF so that this
reduced model can be handled by the developed networks. Simulations
of the OPF will be made thereafter and the results will be compared to
benchmark OPF formulations.



1.3 Overview of the Dissertation

Chapter 2 covers the background knowledge pertaining to neural networks. It
includes a biological review of neural networks, some simplified neuron models and
network topologies, and a literature review of optimization-related work done on
neural networks. Because of its pioneering role in applying ANN to optimization
problem, the Hopfield feedback network is covered in Chapter 2 to briefly introduce
the basic idea behind optimization neural networks.

Chapter 3 starts out with an introduction of the requisite mathematical back-
ground, followed by the analyses of three existing optimization neural networks. It
ends with an in-depth study of the linear programming problem with hypercube feasi-
ble region as solving by the Kennedy and Chua’s network [19].

The core of this dissertation is in Chapter 4 in which the theoretical results for
various optimization networks are derived. The derivation of the linear programming
network is given first. Then, the results are extended to the quadratic programming
network and finally the nonlinear programming network. The least squares problem is
shown to be solvable by the quadratic programming network. A two-phase network
described last is capable of converging to the exact solution of a optimization problem

and obtaining the corresponding Lagrange multipliers as well.

Chapter 5 gives the simulation results of various optimization problems using the
developed network structures. Chapter 6 illustrates the applicability of the optimiza-
tion network to real-world problems by two case studies: economic power dispatch

and optimal power flow. The conclusion of this work is given in Chapter 7.



CHAPTER II
BACKGROUND

This chapter starts with a brief foundational review of neurobiology followed by
some simplified models of neurons and different network interconnection topologies.
A literature review of ANN applications to optimization problems is given next. The
Hopfield feedback network is covered independently in the last section because of its

pioneering role in applying ANN techniques to optimization problems.
2.1 Neurobiological Review

The major parts of a typical biological neuron include a nucleus, cell body, axon
hillock, axon, synapses, and dendrites as shown in Figure 2.1. Dendrites are the
receivers of incoming signal. When the incoming signal (a smooth varying analog
voltage) reaches a certain value, the nerve cell fires and the axon hillock generates a
pulse (action potential). Thc output of a typical neuron consists of a series of action
potentials each about 1 millisecond long. If a neuron has a strong input, action poten-
tials are generated at a high rate. If the input is weak or absent, action potentials are
produced at a low rate. The mean rate of the generation of action potentials as a
function of the input follows the form of a sigmoid function. The effective input usu-

ally refers to the short time average or running integral of an excitation; its frequency

10
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of generating action potentials is considered as the effective output [61].

The axon is very resistive and is in charge of transmitting action potentials to
synapses through which a neuron interacts with up to thousands of other neurons. A
synapse consists of two parts, the presynaptic membrane and the postsynaptic mem-
brane. They are separated by a gap called the synaptic cleft which is about 5004
wide. Inside the presynaptic membrane there are small and diffusible molecules
called neurotransmitters that are released into the cleft in response to an action poten-
tial. The released neurotransmitters diffuse to the postsynaptic membrane where they
combine with certain receptor molecules causing a depolarization of the postsynaptic
membrane. The depolarization signal is collected by the dendrite of the second neu-
ron and sent to its cell body [62]. The response of the postsynaptic membrane is a
graded response rather than a pulse. With an excitatory synapse the postsynaptic
potential will be more positive, whereas with an inhibitory synapse the postsynaptic

potential will be more negative.

dendrites nucleus

)yl
WY .

endbulb |——

cell body

Figure 2.1. A biological neuron.
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2.2 Simplified Neuron Models and Network Topologies

Neuron models constructed for the purpose of studying the function of the brain
generally involve very complicated mechanisms and thus result in complex structures.
These models fall into the category of neuroscience-oriented ANNs and are of pri-
mary interest to neurobiologists. On the other hand, engineering-oriented neuron
models which are used for the purpose of improving the artificial (machine) process-
ing of data or information are of primary interest in this work.

The simplest neuron model sums the weighted inputs and passes the result
through a certain function. The outcome of the function, considered as the output of
the neuron, branches out via weighted connections to the inputs of other neurons. Let
a;’s be the inputs from other neurons, ®; be the weight of the connection from the
output of neuron i to the input of neuron j, f (s) be the neural function, and y; be the
output of the neuron j. As mentioned in the previous section, the firing of action
potentials of a neuron is a type of threshold mechanism. To model this mechanism
requires two more variables, 6; and @y;, denoting the threshold value and its weight
for neuron j, respectively. This simplified representation of a neuron is shown in Fig-

ure 2.2.

From the computation viewpoint, this neuron model can be thought of as a pro-
cessing element (PE). The function f(s) maps input values to a prespecified range
and is generally of the following four types: linear, nonlinear ramp, step, and sig-
moidal. These input/output relationships are shown in Figure 2.3. The sigmoidal
function is the most pervasive because it is bounded, monotonic, nondecreasing and
provides a graded, nonlinear response which most resembles a real neuron. The range
of the sigmoidal function is sometimes changed from [0,1] to [-1,1], depending on the
application, giving symmetry with respect to the origin.
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Figure 2.2. Simplified representation of a neuron.

Ca) 4

(a)
Figure 2.3. Neuron response functions. (a) Linear function. (b) Nonlinear ramp func-
tion. (c) Step function. (d) Sigmoidal function.
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Figure 2.3. (cont’d.).
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The connection weight in the model corresponds to the correlating strength
between the presynaptic potential and the postsynaptic potential. A positive weight
models a excitatory synapse and a negative weight models a inhibitory synapse. A
positive connection weight implies a positive correlation between the connected neu-
rons or a rewarding relationship. A negative weight implies negative correlation or a
punishing relationship.

The interconnection structure of neurons in human brain is very complicated but
is thought not to be random. There is evidence showing that both the retina and cor-
tex are organized into layers of cells with interconnections within and between layers.
Connections within a layer are referred to as intra-field connections, lateral connec-
tions, or short-term memory (STM). Connections between layers are referred to as
inter-field connections, field connections, or long-term memory (LTM). The intra-
field connections are usually considered unidirectional while inter-field connections
may propagate signals in a feed-forward and/or feedback direction. Three intercon-
nection topologies are given in Figure 2.4. The networks shown in Figures 2.4 (b)

and (c) can be extended to n layers.

(a)
Figure 2.4. Interconnection topologies. (a) One-layer laterally connected neural net-
work. (b) Two-layer feed-forward neural network. (c) Two-layer feedback neural net-
work.
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As an example of the functional difference between these interconnections, con-
sider the XOR problem [63]. This problem is not solvable using a single layer neural
network as was discovered early on in the ANN research. It can now be solved easily
using a multilayered trained network. This training, however, is nontrivial and it is
still an open question on how to best train a complicated ANN. The connection pat-
terns within and between the layers are not necessarily fully connected as is the case
illustrated. These connections may be nearest-neighbor type connections, connected
according to certain patterns, or randomly connected with fixed fan-in and fan-out.
Other connection topologies, such as mesh, feature map, and three-dimensional arrays,
have also been studied [47-49,61,64]. Though not shown in Figure 2.4, every connec-

tion is weighted.

2.3 Literature Review

According to the chronologically edited book by Anderson and Rosenfeld, which
contains over 40 important historical papers in this field, the idea of modern neural
networks can be traced back to as early as late 19th century [65]. Recent interest has
been sparked mainly due to the works of Hopfield [4-7], Grossberg [66-69], Kohonen
[61,70], McClelland [71-74], and Rumelhart [71-76]. An in-depth study of neural net-
work research and applications up to 1987 has been done by DARPA [77]. In this
study, the storage of a neural network is measured in terms of interconnects, and the
speed of a network is described in terms of interconnects-per-second. Also in this
study, interconnects versus interconnects-per-second charts have been used the first

time to measure the computational capabilities of neural networks.

Tank and Hopfield first applied an ANN-based technique to solve optimization
problems like the traveling salesman problem and linear programming [6-7]. In the

case of linear programming, the objective function and inequality constraints are
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mapped into a closed-loop network in such a way that constraint violations loop back
to adjust the states of the neurons. The overall energy functions of a network so
designed decreases until it reaches a minimum. Under a high-gain limit assumption
often placed on certain neurons, the corresponding output of the network then presum-
ably approaches a solution to the original problem. However, this presumption is not

true in general as will be seen in the next chapter.

Motivated by the work of Tank and Hopfield, an abundance of research has been
done on applying the ANNs to other optimization problems. Some work has been
done on the justification of the ANN model used for the traveling salesman problem
and possible model modifications as well as extensions [8-13,78-79]. There is
increasing interest in applying ANNS to various linear programming problems, such as
integer linear programming and problems with equality constraints and to related
topics such as nonlinear programming and dynamic programming [14-24,80-82].

For engineering-related optimization applications, ANNs have been developed to
solve the placement and the routing problems in VLSI design [86-93], general
computer-aided design [94-99], and power systems engineering problems like security
monitoring, contingency classification, and economic power dispatching [25-26,100-
109]. More general optimization-related applications using ANN-based techniques
can be found in [27-46,110-117]. Most of the works cited, however, have not yet
been vindicated theoretically, and this limits their applicability.

Some researchers have also sought to combine both the ANN models and
another new optimization technique, namely, simulated annealing [118] in order to
explore the merits of the two [18-24,51-54,119-122]. But the drawbacks are that the
amount of time needed for the annealing process is too long plus there is no simple

way to implement such models using any currently available technology.

Analysis is being carried out on some of the ANN models used for
optimization-related applications [55-60,123-132). But, except for a few papers
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reported to date [18-20,23-24], most of these analyses were not undertaken from the
viewpoint of optimization theory. As a result, the network so designed may converge
to a point which is useless to the original problem. Though the ANN model used in
[20] was developed based on some optimization methods, they merely replaced the
discrete procedures by a set of differential equations, which do not necessarily guaran-
tee the stability nor the convergence of the network. We will justify our argument in
the next chapter when the models in [6,19,24] are carefully studied under a unifying
optimization ANN theory developed in the process of this work.

2.4 The Hopfield Model

The Hopfield model falls into the category of a one-layer, laterally connected
network; it is sometimes referred to as the feedback network [133]. One of the major
contributions of the Hopfield model is that it can be built with analog circuit com-
ponents and .is suitable for analog VLSI implementation [134-142]. In this model
each neuron, with input ¥; and output V;, is modeled as an amplifier with a capacitive
element C; and a resistive element p; at the input node. These components partially
define the time constant of the neuron. The output of neuron j is connected to the
input of neuron i via a finite conductance T;;. This conductance models the synapse
and is symmetric, ie., T;; =T;. Figure 2.5 illustrates the basic structure of a
Hopfield neuron. The input-output relationship of the amplifier is sigmoidal. The
excitatory synapse (T;;>0) and the inhibitory synapse (7;;<0) are implemented by con-
necting the conductance to the normal output and inverted output of amplifier j,
respectively.

A general Hopfield network is shown in Figure 2.6. The rate of change of u; is
determined by the following equation derived using KCL.
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Figure 2.5. A basic neuron of the Hopfield model.
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Figure 2.6. A general Hopfield network.
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for —;)TE = C; ( ) The time derivative of the energy function can be found by
applying the chain rule as
dE _ 3 9E &
d 50V, dt
_ 3 OE dVi d
= odV; du; dt

_ M OE df W) 1 OE
=X oV, dy; = C; 9V,

L Ldf(u.-)[as]z

)

. 2.7)

2 G dy |9V

Since f (4;) is monotonically increasing, £SO for all t. As a result, the value of the

dt
energy function is strictly decreasing and becomes zero only at equilibrium points at
oE du;
which W——-—C,-—a—t-—Oforalll

If u; in equation 2.4 is replaced by Au;, where A is a constant representing the

neuron gain, then equation 2.5 becomes
1.
U = 'i'f v i) (2.8)

Hopfield asserted that if A is chosen to be large enough, then the third term on the
right hand side of equation 2.6 is negligible compared to the other terms and thus can
be dropped [S]. This leads to the following:

du,- n
C,' (7) = ZTIJ V] + Ii 2.9)
j=1

and

1 n n n
E = —-2—2 ETIleVJ - .Ell,-V,-. (2'10)
i=

i=1j=1
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Note that these two equations are valid only for the high gain limit assumption, that
is, when A is very large.

Equations 2.3 - 2.6 actually define a gradient system and thus guarantee no oscil-
lations or any complicated behavior in the system [133]. Furthermore, it has been
proven that such a system has only a finite number of isolated equilibria and they are
bounded [143-144]. The network can thus be envisioned as a system which tends to
find a path leading to a local minimum in the energy surface. This surface is collec-
tively defined by the network parameters. Those isolated equilibrium points may
correspond to memory patterns in associative memory, patterns in a pattern recogni-

tion problem, or locally optimal solutions to an optimization problem.



CHAPTER III
ANALYSIS OF NEURAL NETWORKS FOR OPTIMIZATION

The requisite mathematical background is given in the first section to introduce
the notations and the basic theorems used in this dissertation. The ANN models
described in [6,19,24] are studied in detail and justified by the theorems stated in Sec-
tion 3.1. A thorough analysis of the linear programming neural network for problems
with hypercube feasible region is covered in the last section. It serves to demonstrate

the dynamics of the optimization network in [19].

3.1 Mathematical Background

The following notation and conventions are used throughout this dissertation.
XcR™ is said to be convex iff for any a,beX implies [a,b]cX, where
[a,b]={xeR™ x=Aa+1-A)b, 0A<1}. Let XCR™ be a nonempty convex set, then
f X >R is said to be convex iff f Ax+H1-A)y)S Af x H(1-A)f (v), for any x,yeX
and for 0SA<1. The function f :X =R is concave if —f is convex. An affine func-
tion f X —5R is a function which is convex and concave. K is a cone in R" iff
axeK for any xeK and for any 020. K is a convex cone in R? iff K is a cone
and K is convex. Note that x={Ay ly20}, where A is an nxm matrix, is a closed

convex cone. H is a hyperplane in R" iff there exists aeR”, a#0, and aeR, such
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that H = {xeR%I<a x> = &}, where <.,> is the Euclidean inner product on R", and
a is a normal vector of H. Hyperplanes H and H' are said to be parallel iff their
normals are proportional. Let H = H(a,a) = {xeR"l<a x> = a}, and a#0, then the
corresponding closed half spaces are defined by H,(a,a) = {xeR"l<a x> 2 a}, and
H_(a,0) = {xeR"l<a x> < a). Note that the quadratic function

f(X)=%xTAx+aTx +b

is convex (strictly convex) on R" iff A is positive semidefinite (positive definite),
where A is a symmetric nxn matrix, aeR", and beR.

Let the program (P)" be of the following form:
Minimize f (x) subject to constraints
8 I(X)SO, esey 87 (x )SO, hl(x)=0! ooy hm (X)=0,

where f and the g;’s are functions on R" and the h;’s are functions on R" for m<n.
(P) is said to be a convex program if f and the g;’s are convex functions on R” and
the hj’s are affine functions on R”. A vector x is called a feasible solution to (P)
iff x satisfies the r+m constraints of (P). In other words, the feasibility set to (P) is

the (possibly empty) set
K, =K\Nn.NK,NLN..NL,
where
K;={xlg;(x)<0}, i=l,..r,

and

* (P) and other capital letters, such as (LP), (QP), and (NP), when enclosed with
parentheses represent mathematical programs.



26

Li=(x |hjx)=0}, j=1,..m.

When K, is empty, (P) is said to be infeasible ; otherwise, (P) is feasible. If (P) is
a convex program, K, is necessarily convex. For xeK,, the binding set at x is the
set I={ilg;(x)=0}. Let xeK,; x is said to be a regular point if the gradients,
Vgi(x), Vhj(x), iel(x), 15j<m, are linearly independent.

The following theorem is known as the Kuhn-Tucker optimality theorem. (For
proof see [145].)
Theorem 3.1: Let (P) be a convex program in the notation above. Let X be a feasi-
ble solution to (P). Suppose each g; and h; is differentiable at X. Assume further
that X is a regular point. Then X is an optimal solution to (P) if and only if there
exists A=[A, ... A, )T and p=[y, ... B,,)7 together with ¥ that satisfy:

) A;20, g;(x)<0, and A;g; X*)=0, i=1,...,r;

and

) VF (09 SAVei(0) + S,V (0 = 0. O

i=1 j=1 =
The variables A; and W; are known as Lagrange multipliers. Without the
assumption of the convexity of the functions, the conditions (i) and (ii) are only the

necessary conditions for X to be a local minimizer.

Theorem 3.2: Let (P) be a program in the notation above. Let X be a feasible solu-
tion to (P). Suppose each g; is differentiable at ¥. Assume further that ¥ is a regu-
lar point. If X solves (P) locally, then there exists A=[A; ... A,}7 and p=[y, ... p, 17
together with X that satisfy:

(i) 2;20, g;(¥)=0, and A;g; (X)=0, i=1,...,r;

and
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(i) Vf (o ill.-Vg,-m +5ilu,-Vh,- @=0. O
i= Jj=
For proof of above theorem see [146].
Define p;-=max{p;,0}, and p;=min{p;,0}. Then, p;=p;+y;- for 1<j<m. The
corresponding term in condition (ii) above can be written as
HiVhj = (L) Vh; 3.1
= W Vhj~(-11;-)Vh;
= W VhjH-;)(-Vh;)
= W, Vhj+H(— ) V(=h;).
Since only one of M+ Or l;- is nonzero and h; =0, condition (ii) can be extended by

stipulating mutually exclusive terms for 4;<0 and h;20.

Vi + T\ Vg + f:[pj.thﬂ—uj-)V(—hj)] = 0. (3.2)

i=1 j=1
The Lagrange multipliers are now forced to be all non-negative. Let g,.7; 1=h;,
8r+2j=hjs Aryzj1=Hj», and A,,9;=—{i;-, the extended program (P’) can now be
expressed as:

Minimize f (x) subject to g; (x)<0, 1<i <r+2m.

Under these notations, Theorem 3.1 may be restated as the following corollary.

Corollary 3.1: Under the assumptions of Theorem 3.1 and the notations above, ¥ is
an optimal solution to (P’) if and only if there exists A = [A; ... A,,5,,]7 together with
X that satisfy

(l) 2.,-20, & (X-)SO, and Xigi(f)=0, i=1,...,r;

and
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@ V@ + 3 4Vg @ =0. O
i=1

Next, define an alternative binding set to be I'(x)= {i I\;#0, r+1<i<r+2m},
then condition (ii) of Corollary 3.1 can be expressed as

VIaeH ¥ AV X A Vg(x) =0. (3.3)
iel(x) ierl (x)

This implies that —Vf (¥) lies in the closed convex cone spanned by Vg;(x) for
iel (@)Ul (x). If X is a regular point, then —Vf (¥) can be uniquely decomposed into
a positive linear combination of Vg;, iel (X)UI’ (X).

Define g;*(x )=max{0, g;(x)}, i.c., g;*(x) is the magnitude of the violation of the
ith constraint in (P’) where 1<i<r+2m. The following theorem is known as the
penalty function theorem. (For proof see [147].)

Theorem 3.3: Let (P’) be the extended program stated above for f eC! and g;eC!
where 1<i<r+2m. Let {s;};" be a nonnegative, strictly increasing sequence tending
to infinity. Define the function

r+2m
L, 0=f @)+ @t e)> (3.4)
i=1

Let the minimizer of L(s;, x) be x;. Then any limit point of the sequence {x;}{" is
an optimal solution to (P’) and, equivalently, to (P). Furthermore, if x, 5% and X is
a regular point, then s, g;*(x;)—A;, which is the Lagrange multiplier associated with
P).o

Note that the penalty function L (s, x) is called the energy function in [6]. Later
it will be shown that it is a qualified Lyapunov function for a neural network. The
following corollary is a direct result from Theorem 3.3.

Corollary 3.2: Let the notations and assumptions be as defined in Theorem 3.3. Then

given £0, there exists a sufficient large s such that the minimizer of L(s, x) lies in
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N(O, €), where N(O, ¢€) = {x | lx-xll<e, €O} and O is the set of minimizers of
P). o

3.2 Networks-Analysis

There are currently three ANN models proposed for solving nonlinear program-
ming problems [6,19,24]. Consider first only the case of linear programming. The
linear program (LP ) considered here is of the following form:

Minimize f(x)=alx
subject to g (x) = Dx-b<0,

where D is an mxn matrix, beR™, aeR", and xeR". If equality constraints are
considered as well, then each of them can be replaced by two inequality constraints as
shown in the last section so that the following discussion still holds. Note that

Vf (x) =a and Vg (x) =DT. For simplicity in notation, denote g*=[g{...g,1 .
3.2.1 The Model by Tank and Hopfield

The network structure proposed by Tank and Hopfield for solving the linear pro-
gramming problems is shown in Figure 3.1 [6). a; and b; are implemented by current
sources. The voltage outputs, x;, on the upper right of the figure are the variables in
the linear programming problem. The outputs, g j*', on the lower left of the figure,
measure the constraint satisfaction (violation). s in the rectangles is a large positive

constant.

Their model can be described in compact form by

x=C "{—Vf (x) - Vgx)g*tx) - -;—R'lx} S, (3.5)
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Figure 3.1. Linear programming network by Tank and Hopfield.

where C is a nxn diagonal matrix due to the self-capacitance of each amplifier. R is

m
a nxn diagonal matrix with —1—=2—D j,-+L where L the self-conductance of

R; 5 i Pi
each amplifier. The so called energy function is chosen to be

m n -2
Ey) =1 @)+ TGP+ ot 3.6
j::l i= i

Taking the derivative of E ;(x) with respect to time yields
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= (-Cx)x
==xTCx<0 (3.7)

for all . Equality holds only at equilibrium points since C is a positive, diagonal
matrix. Note that Vf and Vg are constant vectors for linear programming and g*(x)
is just a vector. Replace g*(x) by a vector A and take C to be the identity matrix,

then the minimizer X of E; occurs when

_Vf &) - Vg A — -;-R-lf - 0. (3.8)

Comparing this equation with the condition (ii) of Theorem 3.2 shows that either the
system described by equation 3.5 does not have an equilibrium or else, even if it does,

the equilibrium would not be a solution to the program (LP).

Suppose s is sufficiently large, as suggested by Tank and Hopfield, the last terms
of equation 3.5 and equation 3.8 can be neglected. In this case equation 3.8 can be
viewed as fulfilling the necessary conditions of Theorem 3.2. But since A; (=g;") is
required to be positive for some j, the equilibrium of equation 3.5 has to lic in the
infeasible region of the program (LP). Depending on a particular program, the equili-
brium may be quite far from the true minimizer of (LP) which is generally on a
corner (or boundary) of the feasible region. This drawback makes their model unreli-
able in solving linear programming problems even though the model has a big advan-

tage for hardware implementation.
3.22 The Model by Kennedy and Chua

The model developed by Kennedy and Chua [19] is based on the Chua’s previ-
ous work in [148]. The basic components in their network are integrators as shown in

Figure 3.2. Their network formulation requires more hardware components to form
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Figure 3.2 The integrator used in Kennedy and Chua’s model.

the integrator in its analog circuit implementation when compared to the Tank and
Hopfield network. But it is superior in that it circumvents the undesired terms in
equations 3.5 and 3.6, namely, the terms due to self-conductance. Their model can be

described by
x= C"{—Vf (x) - sVgx)g*x )} (3.9

where C and s are defined as in equation 3.5. For argument sake, C is normally
taken to be an identity matrix. This model has been used to solve both linear pro-
gramming and quadratic programming problems. The corresponding energy function

is
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Ew) =10+ £ T @7, (3.10)
j=1

Kennedy and Chua showed that E,(x) is a Lyapunov function for the system of equa-
tion 3.9. This ensures that the system will converge to a stable equilibrium point
without oscillation. Their network analysis is primarily based on the nonlinear circuit
theory derived in [149].

Comparing equations 3.4 and 3.10 indicates that their work actually fulfills the
penalty function method for a fixed penalty parameter. But they fail to justify the
assumption required for the penalty function theorem (Theorem 3.3) to hold. Nor do
they clarify the relations between the equilibrium point of the network and the true
minimizer to the original program, since there could be more than one equilibrium
point with respect to one minimizer unless the regularity of the minimizer is assumed.
A straightforward analysis from the viewpoint of optimization theory is undertaken in
the next chapter to establish a more sound theoretical foundation for Kennedy and

Chua’s network.
3.2.3 The Model by Rodriguez-Vazquez, et al.

The energy functions of the previous two networks are variations of penalty
function methods, since they are formed by adding the cost functions with penalty
terms. The penalty terms are derived by taking the magnitude of the constraint viola-
tion squared times a penalty parameter. According to the penalty function theorem,
the true minimizer can only be obtained when the penalty parameter s is infinite.
This is impossible to achieve in practice. To cope with this difficulty, Rodriguez-
Vazquez, et al. proposed a network model which is formed by two mutually exclusive
subsystems [24]. (Mutually exclusive here means only one of the two will contribute

at a time.)
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Let u, be the feasibility index of x, i.e., u,=1 if xeK,; otherwise, u,=0. Their
model can be expressed as

x =-u, Vf (x) - s Vg (x)g*(x). (3.11)

The corresponding energy function is

Es) = @) + £ 3 0002 (3.12)
j=1

The trajectory of the system moves along -Vf (x) if u,=1; otherwise, it moves
according to the negative gradients of the violated constraints. The combined effort
of these two mutually exclusive subsystems forces the conglomerate trajectory to
move toward the boundary of the feasible region. As long as it hits the boundary, the
trajectory chatters around the boundary and, at the same time, it also approaches the
optimum point. But a new problem arises: there is no equilibrium point in this sys-
tem, since the condition (ii) of Theorem 3.2 can not be met. The trajectory bounces
back and forth in a neighborhood of the minimizer, though the neighborhood can be
made very small. The authors, however, have suggested that the system can be
viewed as stable if the variation of the solution is bounded. They also suggested

another model with the following system equation and energy function:

x =-uVf(x)-sVgx)1-u,). (3.13)
and
Es(x) = 1f (x) + s 3,10 (3.14
j=1

But the same problem still exists for this model.
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3.3 Linear Programming Network for Problems with Hypercube Feasible Region

The linear programming problem genre considered here is the minimization of a

cost function
fax)=alx (3.15)

subject to xe[0,1]*, i.e., 0<x;<1 for every i, where x; is the ith component of the n-
vector x. Let 1, and 0, be n-vectors of all ones and zeros, respectively. Then the

constraints can be represented in matrix form as
@=F|=[Px+|"|=Dr+b 20 (3.16)
8X)= lx—1,| = | 1, -1, ~ ’ '

f (x) is a hyperplane in R" and the feasible region is a unit hypercube in R". The
general assumption is made on the system that —a is not parallel to the normal vector
of any hyperplane g;=0, where g; is the jth component of g(x). This ensures the
uniqueness of the optimum point, or in this case the minimizer of the cost function.
The minimizer of the cost function is one of the 2" corners of the hypercube depend-

ing on the normal vector of the hyperplane.

LetJ = {j |g,->0} be the set of indices of the constraints which are violated. Let
k= card (J), the cardinality of J, i.c., the number of components of J. Then g;* takes
on the magnitudes of constraint violations. Consider next a network structure given
by the piecewise linear differential equation

: = ~(Dsi+a] = ~[DJ D2 +5,)%+d). (3.17)

This is similar to equation 3.5 without considering the term due to self-conductance.
Note that this structure of the dynamical system described varies with time since J
changes from time to time. D; is a kxn matrix consisting of the jth rows of D, for

every jeJ; similarly b; consists of the jth components of b. Observe that since
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there are at most n constraint violations, D; is at most an nXn matrix.

3.3.1 The equilibrium of the system

Under the assumption placed on —a, the minimizer of the cost function is at an
intersection of n of 2n hyperplanes g;=0. Recall that by the definition in Section 3.1,
I is the set of indices of these hyperplanes. By the Kuhn-Tucker theorem for

optimality, the necessary and sufficient condition for a point to be a minimizer is that

Jjel
where u;>0. For any hypercube, the Vg;’s are orthogonal for je/. Therefore, equa-
tion 3.18 can be viewed as decomposing Vf into n orthogonal vectors Vf;’s, each
along the direction of —Vg;.
Note that Vf=g and ngﬁjT. Also, (DJ-Jc+bj)+ measures the one-sided dis-
tance of x to g;=0. If we denote (DJ-Jc+bj)+ by w;, then the equilibrium of equation
3.17 must satisfy

Vf + Yw;Vg; =0. (3.19)
jeJ
Matching J with I and w; with u; shows that the equilibrium of the system fulfills
the Kuhn-Tucker optimality condition. Furthermore the equilibrium is unique due to
the orthogonality of g;=0 for jeJ. Also observe that w;=(D;x+b;)*>0 for jeJ indi-
cating that the equilibrium lies in the infeasible region where n constraints are
violated.
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3.3.2 The initial state in the feasible region

When the initial state of the system is any point in the feasible region, then J is
simply empty and the trajectory moves in the direction of —a until it hits either one of
the hyperplanes or an intersection of certain hyperplanes. Assume the former is the
case. On the hyperplane g;=0, the trajectory still follows the direction of —a and thus
it eventually enters into the other side of the hyperplane. At this time, D; becomes a
Ixn matrix denoted by D; (small j). The dynamics of the system are now described
by

i =-DI(D;x+b;)*a. (3.20)

—DJ-T(DJ-x+bJ- )* is a vector in the direction of —DJT with magnitude proportional to
(Djx+b;)*. If we decompose —a into two parts as —a = a;+a;, where g; is the pro-

jection of —a in the direction of DJ-T, then equation 3.20 becomes
- _ T
X = [—Dj (Djx+bj)++aj] +a;. (3.21)

As the system evolves in time, it reaches a point where the first two terms on the
right hand side of equation 3.21 cancel each other. Thereafter, the trajectory rolls
along with a ; until it hits another hyperplane.

When there is at least one constraint violation, similar to the case with the initial

state in the infeasible region, —a can be decomposed as —a=3 a;+aj, where g; is the
jeJ

projection of —a on the span of DJ-T for jeJ and a; is the portion of —a not in this
span. Note that g; is fixed and unique for each jeJ due to the orthogonality of the
normal vectors Df. J, however, is not fixed. The differential equation of the system

for k21 can now be written as

x =—ZDJT(DJx+bj)++ Zaj + aj. (3-22)
jeJ jeJ
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Extending the above argument to k>1 illustrates that as the trajectory moves
from one side of a hyperplane g;=0 to the other side of the hyperplane, the projection
a; will be continually reduced by DY(D;x+b;)* until it becomes zero. Although the
trajectory may hit another hyperplane, the orthogonality of the DjT’s nonetheless
guarantees that g; —DjT(D jx+b;)* eventually will become zero. It is clear at this point
that if a trajectory starting in the feasible region hits the intersection of certain hyper-
planes, each a; will be diminished gradually by the corresponding term D] (D;x+b;)*
and the result stated above still holds.

Since —a is not parallel to any hyperplane by assumption, it can be decomposed
into n orthogonal projections. As the trajectory moves from region to region, it will
eventually enter a region where n of the 2n constraints are violated. In this region
the trajectory settles to the unique equilibrium point on which —a is fully represented

by -3 D] (D;x+b))*.
jeJ

3.3.3 Example of a 2-dimensional hypercube

Due to the orthogonality of the hyperplanes, the trajectories of the system can be
illustrated by considering the case of a 2-dimensional hypercube. In Figure 3.3, the
vector —a is shown on the upper right comer together with its two orthogonal projec-
tions. The intersection of the two dotted lines is the equilibrium point of the system.
The broadened gray lines are trajectories of the system corresponding to different ini-
tial states.

Figure 3.4 gives several examples with the initial states in the infeasible region.

The corresponding — ¥, D7 (D;x+b;)* with respect to each initial point is drawn by a
jeJ

solid line segment along with vector —a shown by a dotted line segment. The direc-
tion of the trajectory changes whenever it crosses a hyperplane. Once the trajectory
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X2=1 H

Figure 3.3. Trajectories starting in the feasible region.

reaches one of the dotted lines, i.c., one of the orthogonal projections of —a, it stays
on the line and moves toward the equilibrium point. The equilibrium point will
always lie in one of the four regions shown with light gray background in Figure 3.4.
If we consider that the normal vectors of the hyperplanes separate these four regions
from each other as bases of R, then there is only one region in which —a will have

positive coordinates. This is another interpretation of equation 3.17.



Figure 3.4. Trajectories starting in the infeasible region.
3.3.4 Further Analysis

Consider now the system defined by

X = —s[D,T(D,x+b,)*]—a

= -s[):of(njxw,- )*|-a (323)
[je!

which is same as equation 3.9 but more explicitly expressed. When s=1, equation

3.23 is the same as equation 3.17. When s>1, denoting v;=s (Djx+b;)* for jeJ, the

equilibrium of equation 3.23 must satisfy



41

jelJ
The corresponding terms of equations 3.24 and 3.18, namely /=J and u;=v;, can be
u.
matched. Since u; is fixed for a given cost function, (D;x+b; )+=T’ is the equili-
brium of equation 3.23. This means that the distance from the equilibrium point x to
;=0 is reduced by a factor of s when compared to the case where s=1 (equation
3.19). By choosing s sufficiently large, the equilibrium point can thus be moved arbi-
trarily close to the intersection of the corresponding n hyperplanes, which is the

minimizer of the cost function.

Next, the energy function E is defined as

2
) [(D ,-ijr] : (3.25)
jeJ

E=f<x)+§

The time derivative of E can is derived as

dE _ < dE &%
dt ~ Sdx; dt
=iT |a+ X sD](D;x+b)*
jelJ
_ T -
=-x"x <0, (3.26)

for all x#0. Thus E is a Lyapunov function for the system. Hence the equilibrium is
asymptotically stable by the asymptotical stability theorem [150]. In fact, it is also
asymptotically stable in the global sense due to the unboundedness of (D;x+b;)* as

llx | 0.

For s sufficiently large, equation 3.25 is a form of the penalty function method.

But, if we use the notation of Vi then equation 3.25 becomes

E=f@)+ %Evj(njx+bj)+, 327)
J
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which is a form of the Lagrangian function method. So the forms of both methods
are implicitly embedded in the network structure described by equation 3.23. As fol-
lows from the penalty function method theorem, the equilibrium of equation 3.23
approaches the minimizer of the cost function as s —es. This, however, is impossible
to implement in practice. A sufficiently large s will generally result in an equilibrium
state which is a reasonably good approximation to the minimizer of the cost function.
A diagram of the trajectories of equation 3.23 for s=o0 is shown in Figure 3.5 for
a 2-dimensional hypercube. Whenever the trajectory lies in the infeasible region, it
will be forced to move directly to either the closest hyperplane or the intersection of
the hyperplanes if more than one constraint is violated. Then, it will move according
to —a to one of the hyperplanes g;=0, where jel. Once it reaches such a hyper-
plane, the trajectory slides on the hyperplane toward an intersection of hyperplanes

with indices jel.

3.3.5 Extensions

The results of above analysis are directly applicable to cases where the hyper-
cube is being scaled up or down, translated from the origin to any point, and/or
rotated at any angle. It is also applicable to the region defined by
[7,,44]% - - - X[I,,u,] and its scaling, translation, and rotation, as long as the ortho-
gonality of the hyperplanes (g;=0 for jeJ) is preserved. If the orthogonality is not
preserved, the equilibrium of the system defined by equation 3.23 may not be unique,
though the local asymptotic stability of the desired equilibrium still holds.

An extended theoretical argument for nonlinear programming in general is given

in the next chapter.
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Figure 3.5. Trajectories for s =co.



CHAPTER IV
OPTIMIZATION NETWORK FORMULATION

A unifying mathematical framework for the Kennedy and Chua network for
linear and quadratic programming is given in the first two sections followed by its
extension to more complicated nonlinear programming problems. A two-phase optim-
ization network model is then proposed which can obtain both the exact solution, in
contrast to the approximate solution by Kennedy and Chua’s network, as well as the

corresponding Lagrange multipliers associated with each constraint.

4.1 Linear Programming Network Theory

Let the linear program (LP) be defined as in Section 3.2 and its objective func-
tions is referred as f;(x). In this section, the network by Kennedy and Chua for
linear programming is justified from the viewpoint of optimization theory. As has
been pointed out in Section 3.2.2, E,(x) is precisely L(s, x) for a fixed penalty
parameter s. Thus we have the following proposition which is a restatement of

Corollary 3.2.

Proposition 4.1: Let O be the set of minimizers of a feasible (LP). If O is bounded
and contains only regular points, then given €>0, there exists a sufficiently large s

such that M, the set of the minimizers of the corresponding E,(x), satisfies
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minllx-% ke for xeM. O

xe0

Note that M is convex due to the fact that the sublevel set of a convex function,
namely E,(x), is convex. Without the assumption of the boundedness of O, the pro-
position is still true. But when O is unbounded, any bounded subset of O is
sufficient for obtaining a minimizer. This is due to the fact that if an (LP) has a finite
optimum value, it must have a finite minimizer. Thus for O unbounded, we can place
some additional, suitable bounding constraints into the original program so that the
following discussion still holds.

Take C to be I in equation 3.9 and rewrite it as
m
x=-Vf(x)- sLZg,-"(x)Vg,-(x)}. .1
~

The block diagram of the system of described by equation 4.1 is drawn in Figure 4.1.
Define sg;j*=v; and J(x)={jlg;*(x)>0, 1Sj<m}. The equilibrium of equation 4.1

occurs when
0= Vf (@) + 538/ ()Vg;(®)
~

=Vf@)+ Y v;jVg;(®). 4.2)
jeJ &)

Since for linear programming problems, Vg;=d;, where d; is the jth row of D, equa-

tion 4.2 can be expressed as

jeJ@®)

Proposition 4.2: If the (LP) is feasible with finite optimum value, then the system
described by equation 4.1 has an equilibrium. O

Proof: Let X be a minimizer to the (LP). Then, according to Corollary 3.1, there
exists A;>0 for je I (X) such that
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X x
©, - | ] -
A W%

Vf la—
Vg, |le—
g—
ngi+V8i
: -
sgl-*"_

Figure 4.1. The block diagram of the system of equation 4.1.

jel&)

Choosing J (%)= (¥) and vj=3\.-, verifies the Proposition. O
Proposition 4.3: Let X be a solution to a feasible (LP) with a finite optimum value.
If X is not regular, then the equilibrium of equation 4.1 corresponding to X is not

unique. O
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Proof: Since X is not regular, {d;} jel@) e linearly dependent. This implies that

there exists two subsets of /(X), say I’ and I” where I’#I”, such that

a + Za]dl = (0, for aj>0, 4.5)
jer
and
jer

Let aj=sgj"'(xl) for jelI’ and Bj=sgj+(x,) for jelI”. Since I’#I”, then there is at
least one a;#B; and, consequently, at least one 8;(x1)#g;(x2). Thus the equilibrium

corresponding to X is not unique. O
Note that even though the equilibrium points corresponding to X are not unique,
they all result in same value of Ey(x), since any equilibrium point of equation 4.1 is a

minimizer to E,(x) as will be shown later.

In fact, it is observed that any convex combination of equations 4.5 and 4.6
satisfies the equilibrium condition. That is to say, for 0<6<1,

jer jer

Let /=I'UI” and r=card (). Denote  as the vector in R” with its element equal to
a; if jel’, otherwise 0. Similarly, let B be the vector in R” with its element equal to
B; if jeI”, otherwise 0. Then, equation 4.7 implies that the line segment [a, B]
R’ is mapped to a single point, —a, in the closed convex cone {y Iy=z'yjdj, v;>0}.

Jj€
More generally, from equation 4.3 —g lies in the closed convex cone {yly= Y, Yjdj»
jel®)

¥;>0} as seen from equation 4.4.

For linear programming f(x) and (g j"(x ) are convex and continuously

differentiable as is E,(x). Furthermore,
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dEz_ﬂ
dt_z

j=1

oE,
ox

&

i

=2T|lv ¥ o *Vp.

=x" |Vf +5s38/'Vg;
j=1

==xTx<0 4.8)

holds with equality only at the equilibrium ¥ of equation 4.1. Thus if the (LP) has a
finite optimum value, E,(x) is a Lyapunov function of equation 4.1 and achieves its
minimum at X.

Proposition 4.4: Let (LP) be a feasible program and E,(x) be correspondingly
defined. Then the set of equilibrium points of equation 4.1 is the set of minimizers of
E,x). O

Proof: Let M, be the set of minimizers of E,(x) and M, the set of equilibrium points

of equation 4.1. For xe M,, we have

VE,(x)=—% =0

and

V2E,(x) = Vg;(x)VgF(x) 2 0,

for Vg;=[Vg;ljesxy Thus x satisfies the necessary condition of a minimum of
E,(x). That is, Myc M,. To show the converse, i.c., MoC M,, we proceed as fol-
lows.

Since M,c M, and M #Q, there is at least one equilibrium point of equation
4.1, say %, which is a minimizer of E,. Observe that V2E,(%) is strictly positive

except along the direction of y at which

yTVg;®)Vgf @)y = 0. (4.9)
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So % is a minimum except along the direction y. Therefore, E;(x) must be examined
along the direction of y. Equation 4.9 implies Vg/(%)y=0, i.., yeNull (Vg](®)),
where Null(Vgf(%)) is the nullity of Vg/. Since VE,(%)=0 implies
—aeRange(Vg;(x)), we have aTy=O due to the fact that the linear subspace of
Null(V gJT(J'E )) is perpendicular to the linear subspace of Range (Vg;(¥)). Now

VE,G+y)=a + 3 g/ '(x+y)Vg;E+y)
jeJ(z+y)

=a+ ¥ g (R+y)Vg;(®)
jeJ(®)

=a+ Y [Vg/G+y)-b]Vg;®)
jeJ®)

jeJ®)

=a+ Y g'(*)Vg;®)
jel@)

= VE,(%) = 0, (4.10)

if J(X+y)=J(X). Thus X+y, for yeNull (Vg}'(i)), is an equilibrium of equation 4.1

as long as it does not evoke any new constraint violation. Moreover,

E,+y)=aTG4+y)+ = T (g G+y))
JjeJ(2+y)

.. S .
=als + 3 p (gj"(x+y))2
jeJ®)

a"x + 2 3 (Ve[ (x4y) - b)?
jeJ®)

al% + % Y (Vgfx -b)?
jel @

' + > ¥ (@)
jeJ®)



= E,(), @.11)

if J(X+y)=J(%). This implies X+y is also a minimizer of E,, and thus M,c M;. O
Proposition 4.5: Let O be the set of minimizers of a feasible (LP). If O is bounded
and contains 6nly regular points, then there exists a sufficiently large s such that
J(X)=I (X), for X an equilibrium of equation 4.1 and XeO. O

Proof: From Proposition 4.4, X is a minimizer of E(x). According to Theorem 3.3,
X—Xe€O and v;j—A; as s —eo. Since the convex cone spanned by Vg;(¥) is closed,

there exists a sufficiently large s such that J (X )=/ (¥). O

Note that O is necessarily convex. Also for x,, x,€ O, we have I (x)=I (x5) and
the corresponding Lagrange multipliers A; are the same.
Proposition 4.6: If the unique minimizer X of a feasible (LP) is a regular point, then
there exists a sufficiently large s such that the equilibrium of equation 4.1 ¥ with
respect to X is unique. O
Proof: Let s, be the parameter that satisfies Proposition 4.5 so that J (% )=/ (¥), for X
an equilibrium of equation 4.1. Since X is regular and unique, it implies that
card (I (X))=n, which furthermore implies card (J (X))=n by the choice of s,. In this
case equation 4.2 is equivalent to solving a system of n linear equations for n unk-
nowns, namel’)", the v;’s. Since Vg;(x), for jeJ (%), are linearly independent by the

choice of s,, v is uniquely determined. But

vj = 5,8 (%) = 5,(Vg[% - b)), (4.12)
so X is uniquely determined, again by the linear independency of Vg (%), for jeJ (%).
a

The above proposition considers only the case for which card (I (X))=n. Suppose
now that O contains more than one point, i.e., card(I (X))<n. Let s, be defined as in
Proposition 4.6 and X, be a corresponding equilibrium of equation 4.1, then
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a+s, E gj+(io)dj =0. (413)
jel®)

As s changes continuously from s, to ee, X moves continuously from X, to an X€O.

If now s is raised to s, the system moves from %, to ¥, so that

a+s, 2 g,"’(il)dj =0. 4.19)
jelx)

Comparing equation 4.14 to 4.13, the constraint violation has been reduced by a factor

so . . . . . .
of PR Also at the time of switching s, to s, the system moves in the direction of a
1

as can be seen by evaluating the dynamics of the system at %, .

ili, =-[a + 5 Z gl+(i°)dl]
jel(®)

= _[(a +(So+51-5,) X 8 j+(io )d]]
jel®)

=—51-5) X gj+(io)dj
jel(x)

—ﬂ
=152
so

5175

=(

)a. (4.15)

So

Multiplying equation 4.13 by s, and equation 4.14 by s, and taking their
difference, we have
0=(sy-5,)a + 515, E (gj+(io)-gj+(il»dj
jel(x)

=158 +515, T (@3, ~b; - dfx, + b))d;
jelx)

=(51-S)a +515, Y, df(i,, - X1)d;
jelkx)
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=(s)-5,)a +515, Y d;d]&, - %y). (4.16)
Jjel(®)

If d; is normalized, i.c., lld;l=1, then djdjT(io - X,) is an orthogonal projection of
X, — X, along the direction of d;. So equation 4.16 actually says that the sum of the
projections of X, — X, on the d;’s is in the direction of a. From equation 4.13 it is
clear that —a lies in the convex cone spanned by {d;} jel@y Also when switching s,

to s, the trajectory of the system will not move in any direction perpendicular the

subspace spanned by {d;} jel@y

Thus the following fact is noted:

Fact 4.1: Let X,, X,, X, 5,, and s, be defined as above. If X,+y approaches X+yeO
as s changes from s, to o, where y is perpendicular to {d; }je,m, then, if s, is
switched to s, at x=X,, X+y is the equilibrium of the system. O

The above fact can be geometrically interpreted. First the following definitions
are helpful. Let KcR", then a hyperplane H is said to be a supporting hyperplane of
K iff KcH, or KcH_, and cl(K)NH is nonempty, where c/(K) is the closure of XK.
Let KcR™ be closed and convex, then FcK is called a face of K iff there exists a
supporting hyperplane H of K such that F = HNK. This relationship is illustrated in
Figure 4.2 in which X is represented by a gray background, H by a straight line, and
F by a broadened line segment.

When there is more than one minimizer, the set of minimizers of a linear pro-
gram (LP) actually forms a face. In Figure 4.3 the set of minimizers is represented
by broadened line segments. The straight lines in the figure are the hyperplanes that
define the feasible regions, which are shown with gray background. The equilibrium
points of equation 4.1 are plotted by dotted line segments. There are three possible
cases depending on whether the size of the equilibrium points of equation 4.1 is
larger, smaller, or equal to the size of the set of the minimizers. (The size of a com-

pact set S may be defined to be maxéllx-yll.) Three possible cases are illustrated in

X )€
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y

Figure 4.2. An illustration of the relationship among K, H, and F.

Figure 4.3. Any combination of these three cases is also possible. The arrows in Fig-
ure 4.3 depict the changing of the equilibrium set as the system is switched to a new
s value.

Using the results obtained thus far we are able to conclude the following
theorem. This is a very important result since it assures the complete stability of the
network described by equation 4.1.

Theorem 4.1: Under the notations and assumptions of Proposition 4.1, then, given
>0, there exists a sufficiently large s such that the system is completely stable and %

satisfies minl¥-%ll<e. O
Xe0

Proof: Let s, be the p that satisfies Proposition 4.5. Given £>0, by Proposi-
tion 4.1 there exists a sufficiently large s,>s; such that llx—xll<e, where % is an equili-
brium of equation 4.1 and ¥€O. Since O is bounded, by Proposition 4.1 the set M
of equilibrium points of equation 4.1 is bounded. (Otherwise, for O bounded and M

bounded the lusion of Proposition 4.1 would not be true.) Using E(x) as the

Lyapunov function for the system, LeSalle’s Theorem [150] ensures that the system is
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Figure 4.3. The relationship between the equilibrium set of equation 4.1 and the set of
minimizers. (a) They are of the same size. (b) The equilibrium set is smaller in size
than the set of the minimizers. (c) The equilibrium set is larger in size than the set of
the minimizers.

completely stable in the sense that every trajectory will converge to a point in M

without oscillation. O
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4.2 Quadratic Programming Network Theory

Consider next the case of quadratic programming. Let the quadratic program
(QP) be of the following form:

Minimize f, () = 237 Ax +a7x
subject to g (x) = Dx-b<0,
where A is a symmetric, positive semidefinite matrix. It is clear that Vf,(x)=Ax+a.

First the following lemma is needed.

Lemma 4.1: Let B be a symmetric, positive semidefinite matrix. Then Bx=0 if and
only if xTBx=0. O

Proof: The only if part is clear, since for Bx=0, it follows that

xTBx =xT(Bx) =0.

The converse can be shown by using the Cauchy-Schwarz inequality; that is, if Q is

symmetric, positive semidefinite then the following is true:
«Toy)? < T e)6T 0y, (4.17)
for any x and y. By assumption xT Qx=0, we have
0<(Ty) <" o0 y) =0, (4.18)
for any value of y. This implies Ix” Qy I=0, for any y. But this implies x7 0 =0, i.e.,
QOx=0. The proof is complete. O

Similar to Proposition 4.1 for linear programming, we have the following propo-
sition for quadratic programming which is a direct result of Corollary 3.2.
Proposition 4.7: Let O be the set of minimizers of a feasible (QP). If O is bounded
and contains only regular points, then given €0, there exists a sufficiently large s
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such that M, the set of the minimizers of the comresponding E,(x), satisfies

minllx -xli<e for xeM. O
Xe0

Proposition 4.8: Let (QP) be a feasible program and E,(x) be correspondingly
defined. Then the set of equilibrium points of equation 4.1 is the set of the minimiz-
ers of E»(x). O

Proof: Let M, be the set of the minimizers of E,(x) and M, the set of equilibrium

points of equation 4.1. For xe M,, we have
VEz(X) =-x=0

and

VZE,(x) = A + Vg;(x)Vg](x) 20, (4.19)

for Vg,=[ng]jeJ(,). If the A matrix in the definition of f,(x) is positive definite,
then the Hessian of E, (equation 4.19) is positive definite. Thus the equilibrium of

equation 4.1 is necessarily and sufficiently the unique minimizer of Ey(x).

If, however, A is only positive semidefinite, then x satisfies only the necessary
condition of a minimum. That is to say M,c M,. To show the converse, i.c.,
M,c M,, we proceed as follows.

Since M ,c M, and M #Q, there is at least one equilibrium of equation 4.1, say
%, which is a minimizer of E,. Observe that V2E,(%) is strictly positive except along
the direction of y at which

yT(A + Vg;®)Vg/®)y =0. (4.20)

So X is a strict minimum except along the direction of y. We need only examine
E,(x) along the direction of y. Equation 4.20 implies Vgf(%)y=0, i.c.,
yeNull(Vgf(%)). Equation 420 also implies y?Ay=0, and this implies Ay=0 by
Lemma 4.1. Together we have yeNull (A)NNull (Vg,T(J‘E)). Also, since VE,(%)=0
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implies —A% —a € Range (Vg; (%)), we have
0=yT(A% +a)
=yTAx +yTa

=yTa, 4.21)

due to the fact that yeNull(A)"Null (VgJT(i )) and that the linear subspace of
Null (Vg] (%)) is perpendicular to the linear subspace of Range (Vg; (%)).
Now

VE,G+y)=AG +y)+a+ Y gi'G+y)Vg;E+y)
jeJ(X+y)

=Ax +a+ Y g/'G+y)Vg;X)

' jeJ(®)
=Ax +a+ Y [Vg]G+y)-b1Vg;)
jel@)
=A% +a+ Y [Vg]x - b]Vg;(®)
jeJE®)

=AX +a + 3 g'(¥)Vg;&)
jeJ(®)

= VE,(%) =0, 4.22)

if J@+y)=/&). Thus X+y, for yeNull(A)Null (VgJT(i)), is an equilibrium of

equation 4.1 as long as it does not evoke any new constraint violation. Moreover,

E(i4y) = @GV AGH) +aT @)+ S 3 (g G+y)?
jeJ(®+y)

=xTax +a"2 + > ¥ @Gy
jere)

=xTA% +a"x + - T (Ve[(r4y) - b)Y
jel )

= "TA.i +aTi + ';- 2 (Vgli - b)2
jel)
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=%TA% +aT% + % Y (gt@)?
jeJ®)

= E (%), 4.23)

if J@+y)=J(%). This implies X+y is also a minimizer of E,, and thus M,c M,.
The proof is complete. O

Proposition 4.9: Let O be the set of minimizers of a feasible (QP). If O is bounded
and contains only regular points, then there exists a sufficiently large s such that
J (@)=l (X), for ¥ an equilibrium of equation 4.1 and ¥€O. O

Proof: Same proof as of Proposition 4.5. O

Proposition 4.10: If the unique minimizer ¥ of a feasible program (QP) is a regular
point, then there exists a sufficiently large s such that the equilibrium £ of equation
4.1 with respect to X is unique. O

Proof: Let s, be the parameter that satisfies Proposition 4.9 so that J (% )=I (X), for X
an equilibrium of equation 4.1. Since X is regular and unique, it implies that
card (I (X))=card (J (x))=n by the choice of s, and ng(,) is of full rank. The latter
ensures that Vg J(,)nga) is positive definite. Since X is an equilibrium of equation
4.1, from equation 4.2 and using J (X )=/ (¥) we have

A% +a +s, ¥ Vgi®)NVglx -b;))=0. (4.24)
jel®
This is the same as
A% +a + s,,Vg,w[Vg,Tmi - b,] = 0. (4.25)

By rearranging the variable, we have

[A +s, Vg,(f)Vg,T(,)]i +a = 5,V8;4bs =0. (4.26)
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Observe that A + 5, Vg,(g)VgITm is positive definite, since A is positive semidefinite

and Vg J(x)VgJTa) positive definite. Hence X can be uniquely solved as
-1
x= —[A + s,,VgI(f)ng(f)] [a —sng,(i.)bJ]. m] 4.27)

The above proposition considers only the case for which card (I (X))=n. Suppose
now that O contains more than one point, i.e., card (I (X))<n. Let s, be defined as in
Proposition 4.10 and let X, be a corresponding equilibrium of equation 4.1, then

A%, +a +s, vg,m[vg,me"o - b,] = 0. (4.28)

As s changes continuously from s, to e, ¥ moves continuously from X, to an X€O.

If now we raise s to 53, the system moves from X, to X; so that
AX,+a + s1Vg,(f)[Vg,T(nil - b,] =0. (4.29)

Assume that ¥, —%,— as s5,—s;—e. Let yeNull (A)~WNull(Vg/(%,)) and
J@&,+y)=J(X,). As the system of equation 4.1 is changed by raising s from s, to s,
at x=X,+y, its dynamics are described by

ilg,, =AG+y)+a+ s1 ;ngj(f)(Vg}(iﬁy) - b;)
J€

=A%, +a +s, Y, Vg;®)XVglz, - b)). (4.30)
Jjel®)

This is same as the dynamics of equation 4.1 when changing s, to s; at x=%,. By
Proposition 4.8, z7a=0 for any ze Null (A)~\Null (Vg](%,)). It follows that

il =T (A%, +a 45 )I:ng,-mcvg,-Tio - b))
J€E

=51 ¥ zTVg;(®)Vgl%, - b))
jel(x)

=0, (4.31)



60

since ze Null (Vg}(i)) implies that z is perpendicular to gj for jel (X). Equations
430 and 4.31 actually say that any vector in Null (A )"Null (Vg_,T(i )) remains
unchanged as the system evolves in time. This indicates the following fact.
Fact 4.2: Let %,, X;, X, S,, 51, and y be defined as above. If X,+y approaches
X+y€eO as s,—oo, then, as s, is switched to 5, at x=%,, the system obtains an equili-
brium at X;+y. O

Similar to the case of linear programming network, for the sake of practicality,
the results for the quadratic programming network are summarized in the following
theorem.
Theorem 4.2: Under the notations and assumptions of Proposition 4.7, then, given
>0, there exists a sufficiently large s such that the system is completely stable and %

satisfies minl¥-%ll<e. O
Xe0

Proof: Basically the same proof as for Theorem 4.1. O

Note that the results of above argument still hold even if 7 (X) is empty, i.e., no
binding constraints. In this case the minizer lies in the interior of the feasibility set.
This is a very strong result with a myriad of applications. In particular, the following
two cases are examined.

Case (A): Solving B, ,,x=b
B is assumed to be of full rank. This problem can be converted into minimizing

f&)= %lle—bIP over R®. But

&)= %xTBTBx —bTBx + %b’b 4.32)

and

Vf (x) = BT (Bx-b). 4.33)
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Since BTB is symmetric and positive definite by the assumption placed on B, the
optimization network formulation described by equation 4.1 for the case of quadratic

programming can be applied. Define

x =-Vf(x). (4.34)

It follows that ng(tﬂ=—||Vf (x)MI2<0 with equality holds only at Bx=b. From

Theorem 4.2 the unique equilibrium of equation 4.1, x=B71p, is globally asymptoti-
cally stable. Thus the problem is solved without actually calculating the inverse

matrix of B.
Case (B): Solving B, ., x=b
In this case, assume rank (B )=n<m. This is a least squares problem. Similarly,

we transform this problem into minimizing f (x) = %-lll?x—bll2 over R" and define a
system as equation 4.34. By the above theorems, the system converges asymptotically
to an equilibrium X which satisfies
0=BT@Bz-b).

This implies that

% =(@BTB)'BTb.
But this is exactly the least squares solution to Bx=b. Again the problem is solved
without computing the inverse matrix.

The results derived can also be applied to the above two cases when rank (B )<n,
though the equilibrium under such a condition is not unique. The above derivation is

summarized as the following corollary.

Corollary 4.1: Let B,,,,x=b, where B is a constant matrix, b a constant vector, and
nSm. If B is of full rank, then the dynamic system of equation 4.34 uniquely solves
the problem B,,,,x=b. If B is not of full rank, then depending on the initial states,
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the system of equation 4.34 approaches one of the solutions. O
Least squares problems with linear constraints can be solved as well by the same

network formulation as described in equation 4.1. But the solution thus obtained is an

approximation to the exact solution due to the finiteness of the penalty parameter s.

4.3 Nonlinear Programming Network Theory

Define the program (PP) to be

Minimize f.(x) subject to g (x)=Dx-b <0,

where f.(x) is a C! convex function and g (x) is similarly defined as in (QP).

Proposition 4.11: Let O be the set of minimizers of a feasible (PP). If O is
bounded and contains only regular points, then given €0, there exists a sufficiently
large s such that M, the set of the minimizers of the corresponding E ,(x) satisfies

minllx-%ll<e for xeM. O
XeO

Proof: The proof follows from Corollary 3.2. O

This proposition implies that there exists a sufficiently large s such that M is

bounded. (Otherwise, there exists xe M and minllx—xll>e which thus it draws a con-
Xe0

tradiction.)

Proposition 4.12: Let (PP) be a feasible program and E,(x) be correspondingly
defined. Then the equilibrium points of equation 4.1 are the minimizers of E,(x). O
Proof: Since Ey(x) is convex and continuously differentiable on R™, the critical
points of E,(x) are the minimizers. This can be seen from Theorem 3.1 by taking A
and B to be zero since there are no constraints for E5(x). But the critical points

satisfy
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0= VEz(I) = —x.

Thus the equilibrium points of equation 4.1 are just the minimizers of E,(x). O
It is known that if f is a C2 (twice-continuously differentiable) real-valued func-

tion on an open convex set S in R", then f is convex if and only if its Hessian

matrix

sz (x) = [i&).]

ax,- axj

is positive semidefinite for every xeS [145]. Using this fact, the implications of Pro-
position 4.12 can be extended.

Proposition 4.13: Let (PP) be a feasible program and E,(x) be correspondingly
defined. Assume that the Hessian matrix of f.(x) is positive definite. Then the
equilibrium point of equation 4.1 is the unique minimizer of E,(x). O

Proof: By Proposition 4.12 the equilibrium of equation 4.1 is the minimizer of E 5(x).

Furthermore, we have that
V2E ,(x) = V3f.(x) + Vg;(x)VgF(x) (4.35)

is positive definite, since V2. (x) is positive definite and Vg, (x)Vg/(x) is positive
semidefinite. Thus x is necessarily and sufficiently a strictly local minimizer of
E5(x). Due to the convexity of E,(x), we can conclude that X is the global (and thus
unique) minimizer of E,(x). O

Proposition 4.14: Let O be the set of minimizers of a feasible (PP). If O is
bounded and contains only regular points, then there exists a sufficiently large s such
that J (X )=I (¥), where X is an equilibrium of equation 4.1 and X¥e 0. O

Proof: Same proof as of Proposition 4.5. O
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Theorem 4.3: Under the notations and assumptions of Proposition 4.11, then, given
0, there exists a sufficiently large s such that the system is completely stable and X

satisfies minll¥—xll<e. O
Xe0

Proof: Let s, be the parameter that satisfies both Propositions 4.11 and 4.14. Since
O is bounded, by Proposition 4.11 there exists a 5,>5; such that the minimizers M of
E,(x) are bounded. Using the fact that E(x) is a Lyapunov function for the system
of equation 4.1, LeSalle’s theorem [150] ensures that the system is completely stable

in the sense that every trajectory converges to a point in M without oscillation. O
Corollary 4.2: Under the notations and assumptions of Proposition 4.13, then, given
>0, there exists a sufficiently large s such that the unique equilibrium X is globally
asymptotically stable and llx—xll<e. O
Proof: Let 5, be the parameter satisfies Proposition 4.11. Using the uniqueness of X
and applying Theorem 4.3, the result follows. O

The discussion in this section up to now is just an extension of the quadratic pro-
gramming network with the objective function of the program allowed to be any c!
convex function. The results obtained thus far apply to the program with linear equal-
ity constraints as well. In what follows, the discussion is extended to programs with
nonlinear constraints, either equalities or inequalities.

Considerﬂ:lcxt the case of convex programming.
Lemma 4.2: Let (CP) be a convex program. Then E,(x) is a convex function. O

Proof: By definition,

Ew) =1 @)+ S| T@ 0 + Ty, (4.36)
i=]

j=1

where f and the g;’s are C! convex functions on R" and the h;’s are affine functions

on R". The Hessian matrix of the second term on the right hand side of equation
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4.36 is

i=1 ieJ

Vz[%i(gﬁ(x))z] = s[VgJVgJT + Z&-*Vzg.-],

r
which is clearly positive semidefinite. Thus ¥ (g;*(x ))? is a convex function.

i=1
Since each h; is an affine function, they can each be expressed as

T ,
ij +el

for some vector c; and constant e;, 1Sj<m. By checking the positive
semidefiniteness of the Hessian matrix, it can be shown that the last term of equation

4.34 is also a convex function.

Now E,(x) is a sum of three convex functions, so it must be a convex functions
as well. O

If Ey(x) for some (CP) is bounded below, then by the formulation of equation
4.1 the system will converge to a minimizer of E5(x). So the results obtained for
(PP) still hold for the case of convex programs.
Proposition 4.15: If the basic program (PP ) is replaced by a convex program (CP)
in Propositions 4.11 - 4.14, Theorem 4.3, and Corollary 4.2 (with the assumption that
the minimizers of (CP) are bounded and contain only regular points), then their
results still hold. O

Proposition 4.14 implies that for a sufficiently large s, the violated constraints at
an equilibrium X of equation 4.1 are the same as the binding constraints at a minim-
izer X. For (PP), if J (x)=I (¥), then

Vgiem) = vgjel(f) 4.37)

since the gradient of a violated constraint is a constant vector. But this is not always

true for the case of convex programming. The gradient of a violated constraint for a
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convex program (CP) is a continuous vector function rather than a constant vector. It
is due to this continuity and the assumption of regularity of the minimizers that the
conclusion of Theorem 3.3 holds. For a convex program, it is only guaranteed that
equation 4.37 holds when s=co. (For further discussion see Chapter 12 of [151].)

All the programs discussed thus far consider equality constraints (/;’s) with only
affine forms. The strategy to map such constraints into the optimization network is to
replace them by two inequality constraints, ;20 and h;<0. Since each of these two
inequalities is again a convex function, the results of Theorem 3.1 are applicable. In
order to solve more general problems by the optimization network technique, we want
to relax the restriction on the affineness of equality constraints. First the following
theorem is needed which is an extension of Theorem 3.1. (For proof see [146]).
Theorem 4.4: Let (P) be a program in the notation described in Section 3.1. Let X
be a feasible solution to (P). Suppose that X is a regular point. Further suppose that
f. 8, iel(X), and h;, 1Sj<m, are convex and all are differentiable at X. Then X is
a global optimal solution to (P) if and only if there exists A=[A; ... 2,170 and
H=[H; ... Ky ]7>0 together with ¥ that satisfy

@) A;g;X)=0fori=l,.r

and

(i) Vf @) + S Vg + S, VAi@® =0. O
i=1 j=l

Corollary 4.3: Let (P) be a program with the same notations and assumptions of
Theorem 4.4 except that h;, 1Sj<m, are all concave. Then X is a global optimal
solution to (P) if and only if there exists A=[A, ... A,J720 and p=[,; ... )7 <0
together with X such that the conditions (i) and (ii) of Theorem 4.4 hold. O

Proof: Since —h;(x) is convex for all j and

H;iV(=h;) = (-1;)Vh;,
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the result follows by applying Theorem 4.4. O

Since the h;’s are not assumed to be affine, the minimizers of the problem may
be isolated, rather than a convex set. If h; is a convex function, then h;<0 defines a
convex set. Similarly, —h;<0 defines a convex set for h; concave. Now using the
notation of a extended program, i.e., letting g,,5;_1=h; and g,,;;=—h;, leads to the
following corollary.
Corollary 4.4: Let (P’) be the extended program stated above for convex functions
feC! and g;eC!, 1<i<r, and convex or concave functions h;eC!, 1Sjsm. Let
L(s,x) and s be comespondingly defined. Let x, be a minimizer of L(s;, x).
Assume x; =X for some ¥e O, where O is the set of minimizers of (P’). Suppose O
is bounded and contains only regular points. Then for k; convex, s;g,%2;-1 (X¢)—K;
and s;8,%,;(x;)—0; for h; concave, 5;8,%5;_1 (xx)—0 and 5;8,%;(x;)—>(-1;), where
u; is the corresponding Lagrange multiplier at X. O

Proof: Rewrite equation 3.4 as
L) =1 )+ £ T@r 0P+ T@laja 0P + T@A 07| @38)
i=1 j=l j=

Applying Theorems 3.3 and 44, it follows that if h; is convex then
Sk8r42j-1 (Xg)—K; and s 8,%i(x;)—0. By applying Theorem 3.3 and Corollary 4.3 it
follows that if h; is concave, 5;8,%2j_1 (xx)—0 and s38,%5;(x;)—(-1;). O

In fact, since g,%5;_; (x) and g,%,;(x) are continuous and mutually exclusive for
1sj<m, there exists a sufficiently large s, such that g,%,;_; (x;) > 0 and g,%5(x;) = 0
for h; convex, and g,%5;_1 (x) = 0 and g,%,;(x;) > 0 for A; concave.
Proposition 4.16: Let s, be the parameter stated above. Then L(s;,x) is a convex
function in a neighborhood of x;. O
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Proof: Due to the choice of s, and the continuity of {g;*}7}2™, there exists a neigh-

borhood N of x, so that for xeN, 5;8,%5j1 (x) > 0 and s;8,%,;(x) =0 if h; is con-
vex; 5x8,%2j-1(x) =0 and s5;8,%,;(x) > 0 if h; is concave. Now for xeN, if h; is

convex,
(@42j-1 0% + (852,02 = (g/42j-1 ()P = (B (x))?
is convex since hj" is convex. Similarly for xeN, if h; is concave,
(@ h2j-1 G + (842,02 = (849, (x))? = (k) (x))?
is convex since (—h f )* is convex. As a sum of some convex functions, it follows that
L (sg,x) is convex. O

To see that h‘,-+ is convex provided h; is convex, consider the following lemma.

Lemma 4.3: Let g (x) be a convex function on a nonempty convex set X cR", then

oo e g0
gTx)= 0 if g (x)<0

is a convex function over X. O

Proof: Choose x, yeX. By the convexity of g, it follows that for 0<SA<1
8 AxH1-L)y) S Ag(x) + (1-M)g ()

SAgt(x) + (1-A)g* ().

If g(Ax+(1-A)y)>0, then g*(Ax+(1-A)y) = g(Ax+1-A)y), and we are done. If
g (Ax+(1-A)y )<0, then

g Ax+(1-A)y) =0 S Ag*(x) + (1-M)g* ()

and the proof is complete. O

The neighborhood mentioned in Proposition 4.16 need not to be a R* ball

around x;, i.c., B = {xeR" | Ix—x,ll<e}. In fact, it may be any shape convex set in
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which L (s;, x) is convex. By Proposition 4.16 there exists an s>s; and a neighbor-
hood N such that E,(x) is convex over N. Thus if the boundedness of E,(x) is
assumed, then the network formulation of equation 4.1 is again useful to converge
locally to one of the minimizers of E,(x) provided the starting point lies in N. If the
set O of minimizers is isolated, there is more than one neighborhood and E,(x) is
convex over each one. To restrict the discussion to the local stability of equation 4.1
over a particular neighborhood, assume there is only one isolated minimizer set, and

correspondingly one such neighborhood.

Proposition 4.17: Let (P’) be a program in its extended form such that feC! and
g;€Cl, 1<i<r, are convex functions, and hjeCI, 1<j<m, are convex or concave
functions. Let N be a neighborhood that satisfies Proposition 4.16. Suppose that the
set of minimizers of (P’) is bounded and contains only regular points. Then if the
program (PP) is replaced by a program (P) in Propositions 4.11 - 4.14, Theorem 4.3,
and Corollary 4.2, the results still hold locally over N. O
Although in Proposition 4.17 the stability of equation 4.1 is guaranteed only

locally, in practice the N neighborhood can be very large as will be shown in some
examples. Also in Proposition 4.17 the convexity and concavity are assumed
throughout R", but this is not absolutely necessary so for the proposition to hold. It
is sufficient to assume that the convexity and concavity of the corresponding functions
hold on a nonempty open set, say QcR", and restrict all discussion to £ rather than
R"™. Thatis to

Minimize f (x)

subject to g; (x)<0, for i=1to r,

hj(x)=0, for j=1tom,

and
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xef,

where f and g;’s are convex, differentiable on the open set €2, and h;’s are convex or

concave, differentiable on Q.

Let f X SR, where X is a nonempty convex set in R". The function f is said

to be quasiconvex if, for each x; and x,€X, the following inequality is true:
f (xy + (1-A)x) < max{f (x;), f (xp)} for each Ae (0,1).

The function f is said to be quasiconcave if —f is quasiconvex. Let S be a
nonempty open set in R", and let g:S —R be differentiable on S. The function g is
said to be pseudoconvex if for each x,,x,€S with Vg (x;)7 (x,~x{)20 we have
g (x2)2g (x;), or equivalently, if g(x,)<g(x;) then Vg (x,)T (x,~x;)<0. The function
g is said to be pseudoconcave if —g is pseudoconvex. The pseudoconvexity of f
ensures that if Vf (¥)=0, then X is a global minimum of f. Figure 4.4 shows some
examples of quasiconvex and pseudoconvex functions. Both quasiconvex and pseu-
doconvex functions assure that there are only global minimizers. But quasiconvex
functions may have saddle points and pseudoconvex functions may not. Therefore,
for pseudoconvex functions, the point at which the gradient vanishes is a global
minimizer. Note that under differentiability, convexity implies pseudoconvexity, and

under lower semi-continuity, pseudoconvexity implies quasiconvexity.

Thus, for a program (P) the results of Theorem 4.4 still hold by properly relax-
ing the convexity assumptions.
Theorem 4.5: Let (P) be a program in the notation described in Section 3.1. Let X
be a feasible solution to (P). Suppose that X is a regular point. Further suppose that
f is pseudoconvex, g; is quasiconvex for i€l (X), and h; is quasiconvex for 1<j<m.
And all are differentiable at X. Then X is a global optimal solution to (P) if and only
if there exists A=[A ... A,]720 and p={y, ... b, 17 >0 together with ¥ that satisfy
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(@) (b)
(c) ()

Figure 4.4. (a) Quasiconvex. (b) Quasiconcave. (c) Pseudoconvex. (d) Not Pseu-
doconvex and not quasiconvex.

() A; 8, (%) = O for i=1,..r
and
r m
(i) V&) + I Vg, (0 + T Vhi(x) =0. O
i=1 j=1
Corollary 4.5: Let (P) be a program with same notations and assumptions as in
Theorem 4.5 except that h;, 1<j<m, are all quasiconcave. Then X is a global optimal
solution to (P) if and only if there exists A=[A; ... A,J720 and p=[y, ... u,, 17 <0

together with X such that the conditions (i) and (ii) of Theorem 4.5 hold. O
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Proof: Same proof as Corollary 4.3. O

Now following a similar argument used to derive Proposition 4.17 it can be
shown that the network formulation of equation 4.1 is also useful to obtain (locally)
an approximate solution to (P) with proper pseudo- and quasi-convexity assumptions.
Corollary 4.6: Let (P’) be an extended program such that feC! is a pseudoconvex
C! function, g; is a quasiconvex C! function for 1<i<r, and h;eC! is either
quasiconvex or quasiconcave for 1<i<m. Let N be a neighborhood that satisfies Pro-
position 4.16. Suppose that the set of minimizers of (P’) is bounded and contains
only regular points. Then if the program (PP) is replaced by a program (P) in Pro-
positions 4.11 - 4.14, Theorem 4.3, and Corbllaxy 4.2, the results still hold locally

over N. O

Note that the network formulation of equation 4.1 may be cbnsidercd as a con-
tinuous approximation of the gradient projection method [147). Figure 4.5(a) depicts
the idea of the gradient projection method. The negative gradient of the objective
function is projected onto the tangent surface of the active constraint set in order to
find a point y. Then a new point x;,; is found along the direction perpendicular to
the tangent plane of x;,. Figure 4.5(b) illustrates the dynamics of equation 4.1 when
the trajectory is on the boundary of the feasible region. The linear programming
problem with hypercube feasible region described in Section 3.3 is a good example
for illustrating the similarity between the gradient projection method and the dynamics

of equation 4.1.
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®)

Figure 4.5. (a) Gradient projection method [147]. (b) The dynamics of equation 4.1 on
the boundary of the feasible region.
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4.4 A Two-Phase Optimization Network

In previous sections of this chapter it has shown that there exists a sufficiently
large s so the network formulation as described by equation 4.1 is guaranteed to con-
verge to an approximate solution for a large class of nonlinear programming prob-
lems. In what follows, a two-phase optimization network model, which can obtain
both the exact solution to the problem as well as the corresponding Lagrange multi-
pliers associated to each constraint is proposed. For linear programming problems,
the network solves both the primal and the dual problem exactly.

For the sake of argument, assume, unless otherwise explained, that the program
(P) considered in this section is a convex program for which feC! and g;eC!,
1si<r, are convex functions, and hjeC!, 1<j<m, arc affinc functions.. It is clear
that if the set M of minimizers of (P) contains only regular points, for Xe M it fol-
lows that ¢ < card (I (X)) < n. The penalty function used here is

L(s,x>=f(x)+§

Z'I(gi*(x N+ f‘,h,-z(x )]. (4.39)
i=1 =1

It is formed based on the program (P ) rather than on its extended form.

The block diagram of a two-phase optimization network is shown in Figure 4.6.
The network operates under different dynamics as the phase is changed by a predeter-
mined timing switch. For 0<t<t,, the network operates according to the following

dynamics:
x==-Vf(x)- s[Vg,(x)gj’(x) + Vh(x)h (x)]. (4.40)
It is just in this case the same as the system described by equation 4.1 except that the

sign of h; for 1Sj<m may be either positive or negative. The subsystems within the

two large rectangles do not contribute for z<f,. When r2r,, the dynamics of the
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Figure 4.6. The block diagram of the two-phase optimization network.
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network becomes

x =-Vf(x) - Vg;(sgj + ) — Vh(sh + p), (4.41)
A = e(sg;), (4.42)

and
i = e(sh). (4.43)

where € is a small positive constant. For this network there is no restriction on the

initial condition of x while the initial values of A and p are set to be zero vectors.

Due to the network formulation it is easy to check that the equilibrium of the
system occurs when g;'(x) =0, A(x) =0, A > 0, and

Vf(x)+AVg;(x) + uVh(x) = 0. (4.44)

But this actually satisfies the optimality conditions of Theorem 3.3, and thus a equili-
brium point of the two-phase network is nothing but a global minimizer to a convex
program (P).

The rationale behind the two-phase network formulation is the following. In
phase 1 (#<t,) it follows from Theorem 3.3 and Proposition 4.15 that for a sufficiently
large s, equation 4.40 converges to an equilibrium % at which sg;*(¥) and shj(x) are
very close to A; and p;, respectively, where A; and u; are the corresponding
Lagrange multipliers defined in Theorem 3.1. Assume s is chosen such that
J(x) =1(x) for xeO, the minimizers of (P). By choosing ¢, properly, the trajectory
of the system can be assumed to be within a small neighborhood of X, say
B(%,5) = {xeR"llx-%l<3}, such that the approximation of A; and u; by sg;*(x) and
shj(x) respectively is qualitatively preserved for x € B (%,9).

In Phase 2 (t21,), the network begins to shift the directional vector sg;*(x) gra-
dually to A;, and shj(x) to p;. By imposing a small vector €, the updating of
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equations 4.42 and 4.43 is comparatively much slower than that of equation 4.41.
Approximation of such dynamics is possible by considering A and B to be fixed.
Then it can be seen that equation 4.41 is seeking a minimum point of the augmented

Lagrangian function

Ls, x)=fx)+ATgx) +pTh(x) + —;—[Ilg'*(x)llz + IIh(x)||2]. (4.45)

With a small enough &, the stability of equation 4.41 is qualitatively preserved and the

system is driven toward a equilibrium point, which is a minimizer of (P).
In practice € may be chosen to be % leaving the network with only one

preselected parameter. But using a € independent of s gives more freedom to control
the dynamics of the network. Also if the initial condition of x is in the feasible
region, simulation results show that phase 2 of the network alone is sufficient to
ensure the convergence to a minimizer of a convex program (P). For a more general
program such as those covered in the last section, the convergence is only locally
assured.

The network formulation proposed here is similar to the multiplier method, or the
augmented Lagrangian method [147,152). The multiplier method for the equality
constrained problem (EP)

minimize f (x)
subject to A(x) =0

is to transform the problem into a successive process. Within each iteration an x; is

sought to minimize

!,(x,uk)=f(x)+u{h(x)+%Ilh(x)llz. (4.46)

If x, is found, then p; is updated according to

His1 = B + sh(xg). 4.47)
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Then, an x;,; is sought to minimize [ (x, M,;), and so on. Equation 4.43 is the
same, in essence, as equation 4.47 with the former being a continuous approximation
to the latter.

In practice, the multiplier method converts the inequality constraint g;(x) <0 to
an equivalent equality constraint g;(x )+z; = 0 by adding a dummy nonnegative vari-
able z;. Then the problem is solved successively by finding x; and z,20 that minim-

ize
f(x)+l{[g(x)+z]+%|lg(x)+z|l2, (4.48)

and updating A, similar to equation 4.47. Finally, a mapping scheme similar to the
two-phase network cah be formed to deal with only equality constraints. The state

variables of such a network include x, z, A, and Q.



CHAPTER V
NETWORK SIMULATION

To demonstrate the behavior of the networks proposed in the last chapter and to
validate their properties, some examples for various problems have been performed
using the ACSL (Advanced Continuous Simulation Language) software package (Sun
version). The numerical algorithm used to integrate equations 4.1 and 4.38 to 4.41 is
a 4-th order Runge-Kutta method.

5.1 Linear Programming

For linear programming, consider the following problem (LP,) taken from [6]:

Minimize f(x)=-x; - x5

subject to
=2 .35
g1(x) = 12x1 Xy 1 <0,
5 35
gz(x)=5x1+x2——2 <0,

83x)=-x;-5<0,

84x)=x,-5<0.

79
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The corresponding feasible region is the gray area in Figure 5.1.

5 3.
Shtn =5

X, =-5

Figure 5.1. The feasible region of (LP,).

It is easy to verify that the optimal solution to this problem is x=(5.0, 5.0)" and

the corresponding Lagrange multipliers are A,=0, A,=0.4, A;=0, and 1,=0.6. To illus-
trate the variation of E,(x) with respect to different values of s, the contours of E,(x)
for s=1 and s=10 are shown in Figure 5.2. Comparing Figures 5.3(b) and (d), we see
that the larger the value of s, the closer the minimizer of E,(x) to the optimal solu-
tion. This is implied by Theorem 3.3. Since E(x) is radially unbounded, the unique
equilibrium of equation 4.1, i.c., the minimizer of E,(x) is thus globally asymptoti-
cally stable for some large s. For this example, s 2 1 is more than sufficient. The

equilibrium point of the network and the terms sgj*(x) are given in Table 5.1 for
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Figure 5.2. Contours of E,(x) for (LP,). (a) The contour for s=10.
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Figure 5.2. (cont’d.) (c) The contour for s=1.
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Figure 5.2. (cont’d.) (d) Detailed plot of (c) around X=(5, 5).
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Table 5.1. The equilibria of the network for (LP,) for different values of s.

Parameter | Equilibrium ¥ X 58 (%)

s=0.2 (4.600, 8.000) | (0.400, 3.000) || (0.0, 0.4, 0.0, 0.6)
s=1 (4.920, 5.600) | (0.080, 0.600) || (0.0, 0.4, 0.0, 0.6)
s=2 (4.960, 5.300) | (0.040, 0.300) || (0.0, 0.4, 0.0, 0.6)
s=10 (4.992, 5.060) | (0.008, 0.060) || (0.0, 0.4, 0.0, 0.6)

different values of s. It is evident that llx—¥ ll decreases with respect to the increase of

s. It is in fact linear.

To demonstrate the dynamics of equation 4.1 for this problem, trajectories with
various initial conditions have been plotted on Figure 5.3 for s=10. Figure 5.3(a)
illustrates the trajectories converging to the equilibrium %=(4.992, 5.060) whereas Fig-
ure 5.3(b) shows the trajectories around . The sliding effect of each trajectory along

the active constraint can be seen clearly in these figures.

Next, the 2-phase network formulation is applied to this problem. In phase 1,
the trajectories are identical to those in Figure 5.3. In phase 2, the trajectories are
slowly moving from ¥ to X as shown in Figure 5.4(a) with s=10 and €=0.2. The
corresponding trajectories of the objective function and E,(x) with respect to time are
given in Figure 5.4(b). It is clear how they approach asymptotically the optimum
value -10.0. In Figure 5.4(b) the line atop is the trajectory of E,(x) which is slightly
large than f (x) as long as there are constraint violations.

As mentioned in Section 4.4 if the initial point is in the feasible region, the net-
work structure in phase 2 is sufficient to converge to a minimizer. To see this effect,
a simulation using only the phase-2 network structure is done for s=10, €=0.2, and

x,=[4.8, 4.8]T. The simulation results show that the trajectory of x is nearly identical
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to the one in Figure 5.4(a). The comresponding trajectories of E,(x) and f (x) are
given in Figures 5.5(a) and (b), respectively. The lines atop in Figure 5.5 are for the
case using only the phase-2 network structure. It is clear that they begin to exhibit

the asymptotical behavior only after few generic time steps.

If the initial condition is not in the feasible region, using only the phase-2 net-
work structure may not lead to convergence. This can be seen by that fact that equa-
tion 4.40 only increases the value of A. For fixed s and &, choosing any initial point
from the infeasible region will result in a positive value of A; for some i. If the ini-
tial point is far enough, A; will become larger than the correct Lagrange multiplier
before the state trajectory approaches the boundary of the feasible region. Once this
happens, there is no way to bring the value of the over-estimated A; back down.
And, the trajectory remains in the infeasible region since it can not enter into the
feasible region except through the minimizer with correct Lagrange multiplier. Even-
tually, the system diverges.

However, if the initial condition is restricted in a bounded region, it is possible
to find a small enough € such that the phase-2 network structure is stable over this
region. But the drawback is that the smaller the value of €, the slower the rate to
equilibrium.

To illustrate the phenomenon described by Fact 4.1, consider the program (LP ,):

Minimize f (x) = —x,

subject to the same constraints as (LP;). Notice from Figure 5.1 that the minimizers
of (LP,) lie on the line segment x,=5 within the feasible region. If s is chosen to be
2 in equation 4.1, then its equilibrium points are the line segment x,=5.5 within

5 35
8ax) = 311"'12" > <0
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Figure 5.5. Trajectories of E,(x) and f(x) for phase 2 with s=10, €=0.2, and
X,=[4.8, 4817 . (a) Trajectory of E,(x). (b) Trajectory of f (x).






and

83(1') ==X -5<0.

In this case, the size of the equilibrium set is smaller than the size of the minimizer
set. Trajectories of equation 4.1 near (5.0, 5.5) are shown in Figure 5.6(a). If we
raise s from 2 to 10 after the system settles on the line segment x,=5.5, then all the
trajectories will move in parallel to x,=5.1 as shown in Figure 5.6(b). This is exactly
what have been described in Fact 4.1. Note that the trajectories of s=2—10 are
different from that of s=10. The latter have been shown in Figure 5.6(c) as contrast
to the trajectories in Figure 5.6(b).
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Figure 5.6. Trajectories of equation 4.1 for (LP,) near (5.0, 5.5). (a) s = 2.
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For the case where the size of the equilibrium set is larger than the $ize of the

minimizer set, consider the program (LP 3):

Minimize f (x) = x;

subject to the same constraints as (LP,;). From Figure 5.1 it may be seen that the
minimizers of (LP,) lie on the line segment x,=—5 within the feasible region. Choos-
ing s=2 in equation 4.1, the equilibrium points are the line segment x,=-5.5 within

5 35
g1x)=5x1-x3—- 15 S0

g4x)=x,-5<0.

T rajectories of equation 4.1 near (-5.5, -5.5) are shown in Figure 5.7(a). If we raise s
from 2 to 10 after the system settles on the line segment x,=-5.5, then all trajectories .
will move in parallel to x;=—5.1 as shown in Figure 5.7(b).

The trajectory curving toward the upper-right in the middle of Figure 5.7(b) is
due to the fact that the size of the equilibrium set is reduced as s increases. (In fact,
the equilibrium set would eventually be identical to the set of minimizers when s
becomes infinity.) This trajectory would have been a straight line along g(x)=0 if s
had been changed continuously. Since s=2—10 abruptly, the early stage of this tra-
jectory tends to move strictly to the right and thus results in new constraint violation
as it crosses to the other side of g,(x)=0. Now the asymptotic nature of the system
takes place to remedy such a violation and drives the trajectory toward the correct end

point of the equilibrium set. The trajectories of equation 4.1 with s=10 are given in

Figure 5.7(c) for comparison to the trajectories in Figure 5.7(b).
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5.2 Quadratic Programming

For quadratic programming, consider a program (QP,):

minimize f (x) = xZ + x7 + x1x5 + 3x; + 3x,

subject to the same constraints as (LP;). The minimum of f(x) occurs at
X1 =X =-1. Since the unique minimizer lies in the interior of the feasible region, it
follows from the theorems derived in Section 4.2 that the unique equilibrium of the
(QP) network is exactly the minimizer. The simulation results of the trajectories of x
for the correspondingly formed (QP) network are shown in Figure 5.8. The equili-
brium % = [-1, —1]7 clearly exhibits asymptotic stability. There is no need for using

a 2-phase network structure.
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Figure 5.8. Trajectories of x of the (QP) network for (QP ).
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Suppose now the objective function in (QP,) is replaced by

f@)=x% +x? +xyx5 - 30x; — 30x,,

and this new program is denoted by (QP,). The unconstrained minimizer of f (x) of
(QP ) is [10, 10]. The simulation results using equation 4.1 are given in Figure 5.9.
Wherever the initial points of x are, the trajectories approach to the equilibrium
% = [4.97778, 5.1745]" .

It can be shown that the minimizer of (QP,) is X = [5.0, 5.0]T at which I(¥) =

{2,4}. Solving the equation

Vi@ + Y MVg @ =0,
iel(x)

we get the corresponding Lagrange multipliers, A,=0.0, A,=6.0, 1,=0.0, and 1,=9.0.

(

0.00

X (2)

//

-5.00

10.0 -5.00 0.00 5.00
X(1)

r10.0
.5€,
o

Figure 5.9. Trajectories of x of equation 4.1 for (QP,) with s=50.
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Using the 2-phase network formulation for (OP,), a simulation is run with s=50,
€=0.2, and initial condition x,=[4.8, 4.8]T. The trajectories of x and A are shown in
Figure 5.10(a) and (b), respectively. The network is switched from phase 1 to phase
2 at T=2.0. Figure 5.10 clearly shows the dynamics of the network during phase 2 in
which trajectories moves asymptotically toward the equilibrium ¥ = [5.0, 5.0 and
A = [0.0, 6.0, 0.0, 9.0]7.

To make the example more representative, add one equality constraint x; = 3 to
(QP), and call this new program (QP;). In the network formulation this equality

constraint is replaced by
gsx)=x,-3<0

gsx)==x,+3<0

The minimizer of (QP3) is X =[3, —%]T at which 7/(X) = {1,6}. The theoretical
values of Lagrange multipliers are

8 76
2'= AU Y, '1_T-
[30000 9]

Simulation results for the network of equation 4.1 for (QP ;) are shown in Figure
5.11(a) for s=50 and €=0.2. All trajectories lead toward the equilibrium point
% = [2.84279, -1.77791]7. For the correspondingly formulated 2-phase network, a
simulation is performed with the initial condition x, = [2.5, —l]T and the same s and
€. The resulting trajectory of x is given in Figure 5.11(b). Again, the 2-phase net-
work demonstrates its capability to tune the state variable x to the exact minimizer.
Though not shown in figure, the final values of A(t) for the 2-phase network are the
exact Lagrange multiplers described above.

As mentioned in Section 4.2 one of the applications of the quadratic program-

ming optimization network is for solving the least squares problem Bx=b. For
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illustration sake, consider the following least squares problem (LS) for which

- -

[u—y

[ I e T R
- O

> ]
[}
T et

and

The least squares estimator calculated by the normal equation is

-1
% =[BTB1'BTb = |10|.
-3

Since there is no constraint in this problem, E4(x) = f (x) = -%IIBx -bll2. Also since

B is of full rank, E,(x) is strictly convex and the unique equilibrium X=[-1, 10, —3]T
of equation 4.32 is globally asymptotically stable. A simulation with initial condition
x=[0, 0, 0JT has been performed and the trajectories of x and of E,(x) are plotted in
Figure 5.12. Note that the x;, 1Sj<n, does not approach X; in a monotonic (increas-
ing or decreasing) manner as seen in Figure 5.12(a). But the network does converge
monotonically in the sense of E,(x) (see Figure 5.12(b)). More importantly, even
though the network has not yet converged to its equilibrium, E,(x) becomes very
close to its final value in only few generic time steps. Eight more simulations with
various initial conditions were done to vindicate the stability of X and the results are

shown in Figures 5.13(a)-(h).
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Figure 5.13. (cont'd). (¢) x,=[-4, 11, -417. (@) x,=[11, 11, 41".
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