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ABSTRACT

NEURAL NETWORKS FOR NONLINEAR PROGRAMNIING

By

Chia-Yiu Maa

Artificial neural networks (ANNs) for optimization are analyzed from the

viewpoint of optimization theory. A unifying optimization network theory for linear

programming, quadratic programming, convex programming, and nonlinear program-

ming is derived. A 2-phase optimization network is proposed which can obtain both

the exact solution, in contrast to the approximate solution by Kennedy and Chua’s

networks, as well as the corresponding Lagrange multipliers associated with each con-

straint. The quality of the solutions obtained by the optimization ANNs is quantified

through simulation.

The applicability of the optimization ANNs for solving real-world problems is

demonstrated with examples of the economic power dispatching problem and the

optimal power flow problem. It is shown that the mapping technique of the optimiza-

tion ANNs is simple and that they are able to handle various kinds of constraint sets.

Furthermore, it is demonstrated that the optimization ANNs attain a better objective

function value.

Overall, this work lays a solid groundwork for optimization ANNs in both

theoretical and practical aspects.
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CHAPTER I

INTRODUCTION

Conventional digital computers are very good at executing well-formulated

sequences of instructions represented by the stored program. There are some tasks,

however, which are very cumbersome to solve by conventional digital computers.

These include vision, speech, pattern recognition with distorted data, and information

retrieval where only partial input information is given. These tasks, on the other

hand, are accomplished and performed well by the human brain. The basic process-

ing elements of the human brain are neurons, which are electrochemical devices with

response times in the range of milliseconds. In the human brain there are approxi-

mately 1011 neurons and each of them may be connected to thousands of other neu-

rons. It is not yet well understood what interconnection structure organizes the neu-

rons, nor how this massively parallel interconnected system (a biological neural net-

work) interacts, stores and retrieves memory, and manipulates our thoughts.

In contrast, artificial nemal networks (ANNs) are machine models of the biologi-

cal neural networks with the aim of achieving human-like performance. Recently

there has been a resurgence in the field of ANN8 due» to new network topologies

(feed-forward multilayer network, Hopfield feedback network) and algorithms (back

propagation, stochastic neural network), implementation techniques (digital VLSI tech-

nology, analog VLSI technology, electro-optics technology), and various emerging

applications.



ANNs do not always outperform conventional (sequential or parallel) computers.

Rather they provide a different approach to attack certain problems which are not

easily solvable using conventional computers. The key characteristics of ANNs are

listed in Table 1.1 and contrasted with the corresponding characteristics of conven-

tional computers.

Table l. 1. Characteristics of ANNs and conventional computers.

 

 

 

Characteristics ANN8 Conventional Computers

Memory Distributed; Associative Localized; Specific

Fault-Tolerance Inherent Not Inherent

Pattern Recognition Ability Fast Slow

Classification Excellent Poor

Partial Information Retrieval Excellent Poor

Error Correction Ability Excellent Poor

Learning Ability Excellent Poor

Math & Algorithmic Ability Poor Excellent

Timing Scheme Asynchronous **

Execution Mode Highly Parallel **

Processing Element Simple Unit **

Connectivity High **   
 

** These characteristics are system-dependent.

The featm'e possessed by ANNs which difl‘ers most from conventional computers

is that ANNs store information in their structure rather than in specific locations. All

the parameters (connection weights, external biases, thresholds of neurons, initial

states of neurons) collectively determine the information stored in the network. As a

result, if some of the interconnections are disconnected or some of the neurons fail,

the function of the network is preserved qualitatively. This provides the inherent abil-

ity of fault tolerance and sometimes the ability to retrieve the full output data pattern

with only partial input information. For pattern recognition, correlations of the input

patterns and output pattern are stored in the network. With a distorted or noisy input
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pattern applied, a well-trained ANN is able to map it to an output whose correspond—

ing input pattern best matches the applied one. Training, also called learning or adap-

tation, is the process determining the connection weights, usually over time, to

improve performance. Massive parallelism is another feature possessed by neural net-

works which is necessary for high performance computation for applications like

speech and pattern recognition.

Because of the immaturity of ANN research, various kinds of network structures

have been proposed and tested for different applications. There is no agreement on

which network best fits a particular application. Neither is there a unified way to

classify the existing ANNs. One way, for example, is classifying them by topological

groupings of single-layered or multi-layered; feed-forward or feedback; fully con-

nected, nearest-neighbor connected, or hexagonally connected. ANNs can also be

divided into two categories depending on whether their usage is neuroscience-oriented

or engineering-oriented. The former tries to model simple nerve systems of some

animals and implement the functions of the model through software or hardware.

Then the implementation is used as a paradigm to validate and predict the behavior of

the original nerve system. The latter aims at mimicking the biological neurons and

their networks with some adaptation and modification based upon the available analyt-

ical methods and available implementation technology in order to exploit the

decision-making functions.

For the engineering-oriented ANNs, one strong area of application is the solving

of constrained optimization problems. The ANN which is most widely used and cited

for such an application is the Hopfield network [1-7]. This is an one-layered, fully

connected, feedback network. A often-adopted procedure to solve a specific problem

using the Hopfield network includes the following steps:

i) select a mapping (representation, transformation, or encoding) such that the out-

puts of the network correspond to the solution to the problem;



ii) choose a proper energy function, bounded from below, whose minimum

corresponds to a feasible solution to the problem;

iii) derive network connection weights and bias inputs, which properly embed the

objective function and constrains of the problem into the network; and,

iv) choose initial values for the neurons in such a way that the network converges to

. a stable state which is a feasible solution to the problem.

Currently, each of the above steps is based on ad hoc procedures [6-44]. A lot

of effort, however, is being placed on formulating rule-based methodologies to obtain

parameters, derive energy functions, and choose initial values [12-13,18-24,45-50,57-

60]. For a specific problem, there are various choices at each step of the above pro-

cedure, but, except in a few cases [18-1923-2458-60], most of the work reported to

date does not guarantee, or at least analytically guarantee, that the state to which the

network converges is a feasible solution to the problem.

1.1 Problem Statement

ANNs, particularly the Hopfield network, have been used to solve optimization

problems such as linear programming, nonlinear programming, and dynamic program-

ming. The stability and convergence of the Hopfield network is ensured due to its

gradient descent nature [6]. But a reasonably formulated network, like the one used

for linear programming is not sufficient to guarantee convergence to a feasible solu-

tion of the original problem. In fact, as will be shown in this dissertation, the linear

programming network by Hopfield will converge to a point which is in general not

close enough to an optimal solution. For certain networks, some states of conver-

gence (local minima) may even turn out to be infeasible with respect to the original

problem. An example of this phenomenon is the traveling salesman problem as
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solved by the Hopfield network, where some converged states set up a traveling

schedule to visit some cities more than once and not to visit some other cities at all.

To address this problem, a more thorough theoretical knowledge of the ANN

characteristics and more knowledge of the relationship between the ANNs and optimi-

zation theory is needed. As a result of this shallow understanding, trial-and-error

approaches are currently adopted in choosing the parameters of the network for solv-

ing various optimization problems. And what’s worse is the fact that the set of

parameters resulting from the trail-and-error procedures are case-dependent. Conse-

quently, the application variety of ANNs is limited, especially for applications requir-

ing real-time response. An urgent need is a more thorough establishment of the

theoretical analysis for ANNs from the viewpoint of optimization theory. A key ques-

tion is whether there is a general type network suitable for particular classes of optim-

ization applications. If a general network is possible, then a proper procedure for

mapping classes of optimization problems into this general network is desirable.

Additionally, guidelines are needed to verify whether a given network will converge

to the desired optimal solution(s) ornot. If an exact solution is not achievable due to

the finiteness of the network parameters, a network which will converge to an approx-

imate solution is sought.

For fully exploring the computational power of ANNs in optimization problems,

an investigation involving the following fundamental research tasks is to be done in

this dissertation.

(1) Analysis of ANNs from the viewpoint of optimization theory.

(2) Developing generalized network(s) for solving basic optimization problems such

as linear programming, quadratic programming, and nonlinear programming.

(3) Quantifying, through simulation, the potential advantages and disadvantages of

the generalized network(s).
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(4) Demonstrating the applicability of the generalized network(s) for solving some

optimization problems requiring real-time response.

The problems to be demonstrated are the economic power dispatching problem and

the optimal power flow problem.

1.2 Approach

The following plan is organized to achieve the goals of this research in a step-

wise and overlapping fashion and to set the stage for subsequent developmental

research further exploiting the anticipated results.

Task 1:

Objective:

Approach:

Network Analysis

Various network formulations of the Hopfield model will be analyzed

from the viewpoint of optimization theory in order to identify the rea-

sons why and when the network succeeds or fails.

The first step in this research is to analyze optimization formulations of

the Hopfield model. Various network formulations reported in recent

literature are classified into different categories to be analyzed in a sys-

tematic way from the viewpoint of optimization theory. The primary

theories used in the analysis include the Kuhn-Tucker optimality condi-

tions for constrained optimization and the penalty function methods

which translate constrained optimization problems to unconstrained

problems. Network formulations are translated to forms which can then

be analyzed for optimality conditions and the other criteria mentioned

above. Results of the analysis are compared with reported experiments

and used to verify the adequateness of the network formulations in the



Task 2:

Objective:

Approach:

Task 3:

Objective:

Approach:

literature. Based on the analysis results, guidelines for checking the

propriety of various network formulations are also sought.

Optimization Network Formulation

Formulate basic optimization networks and their extensions, and

develop, if possible, a generalized network structure.

With the analysis results obtained in Task 1, some optimization net-

works can be formulated in such a way that the stability, convergence,

and optimality of convergence of these networks are theoretically

assured. The network formulation is started on some basic problems

like linear programming, quadratic programming, and nonlinear pro-

gramming with affine (linear) constraints. Optimization networks for

more complicated optimization problems, such as nonlinear program—

ming with nonlinear constraints and other combinatorial optimization

problems, are examined next as possible extensions of those basic net—

works. All the developed networks are checked with the previously

derived guidelines to see whether they are legitimate. Based on the

experience of formulating various networks, a generalized network is

thus developed and a procedure for mapping classes of optimization

problems into this network is sought.

Network Simulation

Produce simulations of the optimization networks developed in the last

task and provide some benchmark comparison parameters.

Simulation programs for each of the optimization networks are

developed. For each optimization network there is a set of first order



Task 4:

Objective:

Approach:

differential equations which can be solved by standard numerical

analysis techniques. Simulation programs are used to provide perfor-

mance metrics for comparison with other approaches. Metrics to be

extracted include speed of convergence (throughput) and a measure of

computation accuracy (quality). The simulation is also used to study

the network sensitivity with respect to certain parameters, for example,

the input resistance and capacitance of each neuron and the time incre-

ment used solved the differential equations. Based upon the simulation

results, possible modification and re-formulation of the networks are

taken by going back to Task 2 for the purpose of performance improve-

ment.

Case Study

Apply the developments in new optimization networks to real engineer-

ing optimization problems: economic power dispatching (EPD) and

optimal power flow (OPF).

For the EPD problem, two cases, with and without the consideration of

the transmission line losses, are solved by using the developed network

r/formulations and their results are compared with the results obtained by

other traditional methods. The formulation of the OFF is modified by

delineating the various constraint types for a complete OPF so that this

reduced model can be handled by the developed networks. Simulations

of the OFF will be made thereafter and the results will be compared to

benchmark OPF formulations.



1.3 Overview of the Dissertation

Chapter 2 covers the background knowledge pertaining to neural networks. It

includes a biological review of neural networks, some simplified neuron models and

network topologies, and a literature review of optimization-related work done on

neural networks. Because of its pioneering role in applying ANN to optimization

problem, the Hopfield feedback network is covered in Chapter 2 to briefly introduce

the basic idea behind optimization neural networks.

Chapter 3 starts out with an introduction of the requisite mathematical back-

ground, followed by the analyses of three existing optimization neural networks. It

ends with an in-depth study of the linear programming problem with hypercube feasi-

ble region as solving by the Kennedy and Chua’s network [19].

The core of this dissertation is in Chapter 4 in which the theoretical results for

various optimization networks are derived. The derivation of the linear programming

network is given first. Then, the results are extended to the quadratic programming

network and finally the nonlinear programming network. The least squares problem is

shown to be solvable by the quadratic programming network. A two-phase network

described last is capable of converging to the exact solution of a optimization problem

and obtaining the corresponding Lagrange multipliers as well

Chapter 5 gives the simulation results of various optimization problems using the

developed network structures. Chapter 6 illustrates the applicability of the optimiza-

tion network to real-world problems by two case studies: economic power dispatch

and optimal power flow. The conclusion of this work is given in Chapter 7.



CHAPTER H

BACKGROUND

This chapter starts with a brief foundational review of neurobiology followed by

some simplified models of neurons and different network interconnection topologies.

A literature review of ANN applications to optimization problems is given next. The

Hopfield feedback network is covered independently in the last section because of its

pioneering role in applying ANN techniques to optimization problems.

2.1 Neurobiological Review

The major parts of a typical biological neuron include a nucleus, cell body, axon

hillock, axon, synapses, and dendrites as shown in Figme 2.1. Dendrites are the

receivers of incoming signal. When the incoming signal (a smooth varying analog

voltage) reaches a certain value, the nerve cell fires and the axon hillock generates a

pulse (action potential). The output of a typical neuron consists of a series of action

potentials each about 1 millisecond long. If a neuron has a strong input, action poten-

tials are generated at a high rate. If the input is weak or absent, action potentials are

produced at a low rate. The mean rate of the generation of action potentials as a

function of the input follows the form of a sigmoid function. The effective input usu-

ally refers to the short time average or running integral of an excitation; its frequency

10
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of generating action potentials is considered as the effective output [61].

The axon is very resistive and is in charge of transmitting action potentials to

synapses through which a neuron interacts with up to thousands of other neurons. A

synapse consists of two parts, the presynaptic membrane and the postsynaptic mem—

brane. They are separated by a gap called the synaptic cleft which is about 500A

wide. Inside the presynaptic membrane there are small and diffusible molecules

called neurotransmitters that are released into the cleft in response to an action poten-

tial. The released neurotransmitters difl’use to the postsynaptic membrane where they

combine with certain receptor molecules causing a depolarization of the postsynaptic

membrane. The depolarization signal is collected by the dendrite of the second neu-

ron and sent to its cell body [62]. The response of the postsynaptic membrane is a

graded response rather than a pulse. With an excitatory synapse the postsynaptic

potential will be more positive, whereas with an inhibitory synapse the postsynaptic

potential will be more negative.

 

dendrites nucleus

hr

F5) fig...

WW

 

 

endbde\    
cell body

Figure 2.1. A biological neuron.



-12-

2.2 Simplified Neuron Models and Network Topologies

Neuron models constructed for the purpose of studying the function of the brain

generally involve very complicated mechanisms and thus result in complex structures.

These models fall into the category of neuroscience-oriented ANNs and are of pri-

mary interest to neurobiologists. On the other hand, engineering-oriented neuron

models which are used for the purpose of improving the artificial (machine) process-

ing of data or information are of primary interest in this work.

The simplest neuron model sums the weighted inputs and passes the result

through a certain function. The outcome of the function, considered as the output of

the neuron, branches out via weighted connections to the inputs of other neurons. Let

a,- ’s be the inputs from other neurons, (0;,- be the weight of the connection from the

output of neuron i to the input of neuron j , f (o) be the neural function, and yj be the

output of the neuron j . As mentioned in the previous section, the firing of action

potentials of a neuron is a type of threshold mechanism. To model this mechanism

requires two more variables, 0j and(00,- , denoting the threshold value and its weight

for neuron j , respectively. This simplified representation of a neuron is shown in Fig-

ure 2.2.

From the computation viewpoint, this neuron model can be thought of as a pro-

cessing element (PE). The function f (0) maps input values to a prespecified range

and is generally of the following four types: linear, nonlinear ramp, step, and sig-

moidal. These input/output relationships are shown in Figure 2.3. The sigmoidal

function is the most pervasive because it is bounded, monotonic, nondecreasing and

provides a graded, nonlinear response which most resembles a real neuron. The range

of the sigmoidal function is sometimes changed from [0,1] to [-1,l], depending on the

application, giving symmetry with respect to the origin.
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Figure 2.2. Simplified representation of a neuron.
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Figure 2.3. Neuron response functions. (a) Linear function. (b) Nonlinear ramp func-

tion. (c) Step function. (d) Sigmoidal function.
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Figure 2.3. (cont’d.).
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The connection weight in the model corresponds to the correlating strength

between the presynaptic potential and the postsynaptic potential. A positive weight

models a excitatory synapse and a negative weight models a inhibitory synapse. A

positive connection weight implies a positive correlation between the connected neu-

rons or a rewarding relationship. A negative weight implies negative correlation or a

punishing relationship.

The interconnection structure of neurons in human brain is very complicated but

is thought not to be random. There is evidence showing that both the retina and cor-

tex are organized into layers of cells with interconnections within and between layers.

Connections within a layer are referred to as intra-field connections, lateral connec-

tions, or short-term memory (STM). Connections between layers are referred to as

inter-field connections, field connections, or long-term memory (LTM). The intra—

field connections are usually considered unidirectional while inter-field connections

may propagate signals in a feed-forward and/or feedback direction. Three intercon-

nection topologies are given in Figure 2.4. The networks shown in Figures 2.4 (b)

and (c) can be extended to n layers.

,2

CO.

_' 0..

(a)

Figure 2.4. Interconnection topologies. (a) One-layer laterally connected neural net-

work. (b) Two-layer feed-forward neural network. (c) Two—layer feedback neural net-

work.
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As an example of the functional difference between these interconnections, con-

sider the XOR problem [63]. This problem is not solvable using a single layer neural

network as was discovered early on in the ANN research. It can now be solved easily

using a multilayered trained network. This training, however, is nontrivial and it is

still an open question on how to best train a complicated ANN. The connection pat-

terns within and between the layers are not necessarily fully connected as is the case

illustrated. These connections may be nearest-neighbor type connections, connected

according to certain patterns, or randomly connected with fixed fan-in and fan-out.

Other connection topologies, such as mesh, feature map, and three-dimensional arrays,

have also been studied [4749,6164]. Though not shown in Figure 2.4, every connec-

tion is weighted.

2.3 Literature Review

According to the chronologically edited book by Anderson and Rosenfeld. which

contains over 40 important historical papers in this field, the idea of modern neural

networks can be traced back to as early as late 19th century [65]. Recent interest has

been sparked mainly due to the works of Hopfield [4—7], Grossberg [66-69], Kohonen

[61,70], McClelland [71-74], and Rumelhart [71-76]. An in-dcpth study of neural net-

work research and applications up to 1987 has been done by DARPA [77]. In this

study, the storage of a neural network is measured in terms of interconnects, and the

speed of a network is described in terms of interconnects-per-second. Also in this

study, interconnects versus interconnects-per-second charts have been used the first

time to measrn'e the computational capabilities of neural networks.

Tank and Hopfield first applied an ANN-based technique to solve optimization

problems like the traveling salesman problem and linear programming [67]. In the

case of linear programming, the objective function and inequality constraints are
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mapped into a closed-loop network in such a way that constraint violations loop back

to adjust the states of the neurons. The overall energy functions of a network so

designed decreases until it reaches a minimum. Under a high—gain limit assumption

often placed on certain neurons, the corresponding output of the network then presum-

ably approaches a solution to the original problem. However, this presumption is not

true in general as will be seen in the next chapter.

Motivated by the work of Tank and Hopfield, an abundance of research has been

done on applying the ANNs to other optimization problems. Some work has been

done on the justification of the ANN model used for the traveling salesman problem

and possible model modifications as well as extensions [8-13,78-79]. There is

increasing interest in applying ANNs to various linear programming problems, such as

integer linear programming and problems with equality constraints and to related

topics such as nonlinear programming and dynamic programming [l4-24,80.82].

For engineering-related optimization applications, ANNs have been developed to

solve the placement and the routing problems in VLSI design [86-93], general

computer-aided design [94—99], and power systems engineering problems like security

monitoring, contingency classification, and economic power dispatching [ZS-26,100-

109]. More general optimization-related applications using ANN-based techniques

can be found in [2746,110-117]. Most of the works cited, however, have not yet

been vindicated theoretically, and this limits their applicability.

Some researchers have also sought to combine both the ANN models and

another new optimization technique, namely, simulated annealing [118] in order to

explore the merits of the two [IS-24,51-54,119-122]. But the drawbacks are that the

amount of time needed for the annealing process is too long plus there is no simple

way to implement such models using any currently available technology.

Analysis is being carried out on some of the ANN models used for

optimization-related applications [SS-60,123-132]. But, except for a few papers
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reported to date [IS-20,2324], most of these analyses were not undertaken from the

viewpoint of optimization theory. As a result, the network so designed may converge

to a point which is useless to the original problem. Though the ANN model used in

[20] was developed based on some optimization methods, they merely replaced the

discrete procedures by a set of differential equations, which do not necessarily guaran-

tee the stability nor the convergence of the network. We will justify our argument in

the next chapter when the models in [6,19,24] are carefully studied under a unifying

optimization ANN theory developed in the process of this work.

2.4 The Hopfield Model

The Hopfield model falls into the category of a one-layer, laterally connected

network; it is sometimes referred to as the feedback network [133]. One of the major

contributions of the Hopfield model is that it can be built with analog circuit com-

ponents and .is suitable for analog VLSI implementation [134—142]. In this model

each neuron, with input u,- and output V,- , is modeled as an amplifier with a capacitive

element Ci and a resistive element p,- at the input node. These components partially

define the time constant of the neuron. The output of neuron j is connected to the

input of neuron i via a finite conductance Tij . This conductance models the synapse

and is symmetric, i.e., Tij = Tfi. Figure 2.5 illustrates the basic structure of a

Hopfield neuron. The input-output relationship of the amplifier is sigmoidal. The

excitatory synapse (Tij >0) and the inhibitory synapse (TU <0) are implemented by con-

necting the conductance to the normal output and inverted output of amplifier j,

respectively.

A general Hopfield network is shown in Figure 2.6. The rate of change of u; is

determined by the following equation derived using KCL.
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Figure 2..5 A basic neuron of the HOpfield model.

C( ‘) irw ) 1“ +1— = 00 .-—u. — -— t

8 dt i=1 1] J 8 pi l

n l

=JETif Vj -(zTij + —)u,- +113 (2.1)

where

V]. = fj(uj). (2.2)

Let R,-j = -7-}—, 1%.]= 3— + i—, and choose fj(.) =f(.) for all j. Then the above
r} r r 1R1]

equations can be rewritten as

dug u,-

Ci(7)= 1'ngif Vj- R—i + I‘- (2.3)

where

Vj =f(uj)’ (2.4)
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Figure 2.6. A general Hopfield network.

and

uj = f’1(Vj).

The first integral or the energy function of equation 2.3 is

"5355’0”“ ’ 21’ V" + rgk—tlv‘f-leodt.
i=1j=1

E:

 

(2.5)

(2.6)
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3E
for -87..= C(d;) The time derivative of the energy function can be found by

applying the chain rule as

as: = 55.3335;

. greats:
V,- dui dt

 

 (2.7)

Since f (u;) is monotonically increasing, %50 for all t. As a result, the value of the

energy function is strictly decreasing and becomes zero only at equilibrium points at

du-

which£=—C—— =0foralli.

3V ‘ dt

If uj in equation 2.4 is replaced by M)" where I. is a constant representing the

neuron gain, then equation 2.5 becomes

1 _

u.- = if ‘03-). (2.8)

Hopfield asserted that if A is chosen to be large enough, then the third term on the

right hand side of equation 2.6 is negligible compared to the other terms and thus can

be dropped [5]. This leads to the following:

C(—-—)-.. 21wj + 1 (2.9)

and

l n n n

1:i=1j=l
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Note that these two equations are valid only for the high gain limit assumption, that

is, when 2. is very large.

Equations 2.3 - 2.6 actually define a gradient system and thus guarantee no oscil-

lations or any complicated behavior in the system [133]. Furthermore, it has been

proven that such a system has only a finite number of isolated equilibria and they are

bounded [143-144]. The network can thus be envisioned as a system which tends to

find a path leading to a local minimum in the energy surface. This surface is collec-

tively defined by the network parameters. Those isolated equilibrium points may

correspond to memory patterns in associative memory, patterns in a pattern recogni-

tion problem, or locally optimal solutions to an optimization problem.



CHAPTER III

ANALYSIS OF NEURAL NETWORKS FOR OPTIMIZATION

The requisite mathematical backgron is given in the first section to introduce

the notations and the basic theorems used in this dissertation. The ANN models

described in [6,19,24] are studied in detail and justified by the theorems stated in Sec-

tion 3.1. A thorough analysis of the linear programming neural network for problems

with hypercube feasible region is covered in the last section. It serves to demonstrate

the dynamics of the optimization network in [19].

3.1 Mathematical Background

The following notation and conventions are used throughout this dissertation.

XCR" is said to be convex iff for any a,beX implies [a,b]cX, where

[a,b]={xeR" lx=ka+(l—K)b, 0951}. Let XCR" be a nonempty convex set, then

f:X-—)R is said to be convex iffox-t—(l-My )5 1f (x)+(l—)t)f(y), for any x,yeX

and for 09.51. The function f :X —>R is concave if -f is convex. An affine func-

tion f :X -)R is a function which is convex and concave. K is a cone in R” iff

wceK for any xeK and for any (120. K is a convex cone in R" iff K is a cone

and K is convex. Note that x={Ay IyZO}, where A is an nxm matrix, is a closed

convex cone. H is a hyperplane in R" iff there exists aeR”, a¢0, and oak, such
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that H = {xeRdl<a,x> = a}, where <.,.> is the Euclidean inner product on R", and

a is a normal vector of H. Hyperplanes H and H' are said to be parallel iff their

normals are proportional. Let H = H(a,0t) = {xeR" |<a,x> = a], and a¢0, then the

corresponding closed half spaces are defined by H+(a,0t) = {xeR" |<a,x> 2 a}, and

H_(a,a) = {xeR" |<a,x> S a]. Note that the quadratic function

f(x)= -;—xTAx +aTx +b

is convex (strictly convex) on R" iff A is positive semidefinite (positive definite),

where A is a symmetric nxn matrix, aeR", and beR.

Let the program (P )' be of the following form:

Minimize f (x) subject to constraints

810050. 8,0050. h1(x)=0. 12,,(x)=o,

where f and the 35’s are functions on R" and the hj’s are functions on R" for mSn.

(P) is said to be a convex program iff and the g,- ’s are convex functions on R" and

the hj’s are affine functions on R". A vector x is called a feasible solution to (P)

iff 1: satisfies the r+m constraints of (P). In other words, the feasibility set to (P) is

the (possibly empty) set

K0 = Kln...nK,nL1n...an

where

Ki={x|g,-(x)30], i=1,...,r,

and

 

"' (P) and other capital letters, such as (LP), (QP), and (NP), when enclosed with

parentheses represent mathematical programs.
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Lj={x Ihj (x )=0], j=1,....,fll

When K0 is empty, (P) is said to be infeasible; otherwise, (P) is feasible. If (P) is

a convex program, K0 is necessarily convex. For xeKo, the binding set at x is the

set I={i|g,-(x)=0}. Let xeKo; x is said to be a regular point if the gradients,

Vgi(x), th (x ), i E] (x), lSjSm, are linearly independent.

The following theorem is known as the Kuhn-Tucker optimality theorem. (For

proof see [145].)

Theorem 3.1: Let (P) be a convex program in the notation above. Let f be a feasi—

ble solution to (P). Suppose each g,- and it} is differentiable at 2'. Assume further

that f is a regular point. Then i is an optimal solution to (P) if and only if there

exists 2.:[11 1,17 and u=[tt1 um? together with I that satisfy:

(i) 1,20, gi(f')SO, and A;g,-(f)==0, i =1,...,r;

and

(ii) VflfH ixtvtztm +§u,Vh,-(f> = o. n
i=1 j=1. —

The variables 3.,- and 11; are known as Lagrange multipliers . Without the

assumption of the convexity of the functions, the conditions (i) and (ii) are only the

necessary conditions for f to be a local minimizer.

Theorem 3.2: Let (P) be a program in the notation above. Let f be a feasible solu-

tion to (P). Suppose each g,- is difl‘erentiable at 5.". Assume further that f is a regu-

lar point. If it solves (P) locally, then then: exists HA, x, 17‘ and u=[]l1 u... ]T

together with 1' that satisfy:

(i) 2.520, g;(5t')S0, and A;g,-(f')=0, i =l,...,r;

and
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r 1!:

(ii) Vf(f)+ E‘Vg‘m +51”th = o. a

For proof of above theorem see [146].

Define uj+=max{uj,O], and uj:min{uj,0}. Then, uj=ujt+ur for ISj_<_m. The

corresponding term in condition (ii) above can be written as

uJ-th = (Prim-Wk; (3.1)

= uj+th-(-uj-)th

= uj+Vh,-+(—u,--)(—Vh,->

= llj+th+(—Hj-)V(-hj)-

Since only one of pit or uj- is nonzero and hi =0, condition (ii) can be extended by

stipulating mutually exclusive terms for h130 and hj 20.

i=1 j=l

The Lagrange multipliers are now forced to be all non-negative. Let g,+2j_1=h-,

g,+2j=-hj, A,+2j_1=p.j+, and 2.,+2j=—p.j—, the extended program (P’) can now be

expressed as:

Minimize f (x) subject to g;(x)SO, 15i$r+2m

Under these notations, Theorem 3.1 may be restated as the following corollary.

Corollary 3.1: Under the assumptions of Theorem 3.1 and the notations above, it“ is

an optimal solution to (P’ ) if and only if there exists 2. = Del 1H2," 1T together with

x that satisfy

(1) 1320, 8; (i750, 811d A18;m, i=1,...,f;

and
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(ii) Vf (r) + 'gxthtm = o. n
i=1

Next, define an alternative binding set to be I’(x)= {i liq-$0, r+l$i$r+2m ],

then condition (ii) of Corollary 3.1 can be expressed as

Vf(f)+ 2 A,Vg,(x)+ E xivgicf) =0- (3.3)

iel(f) 36”?)

This implies that —Vf (1?) lies in the closed convex cone spanned by Vg, (r') for

i e! (f)ul' (f). If f is a regular point, then -Vf (f) can be uniquely decomposed into

a positive linear combination of Vg; , ieI (f')uI' (2’).

Define g;+(x )=max{0, g;(x)], i.e., g;+(x) is the magnitude of the violation of the

i th constraint in (P’) where 151' Sr+Zrn . The following theorem is known as the

penalty function theorem. (For proof see [147].)

Theorem 3.3: Let (P’ ) be the extended program stated above for f eC1 and g,-eC1

where 151' Sr-I-Zm . Let {s,‘ 11" be a nonnegative, strictly increasing sequence tending

to infinity. Define the function

L(s. x) =f(x) + {fume (3.4)
i=1

Let the minimizer of L(sk, x) be xk. Then any limit point of the sequence {xkli' is

an optimal solution to (P’) and, equivalently, to (P). Ftn'thermore, if x], —)x' and f is

a regular point, then stg,-+(xk )—)k,- , which is the Lagrange multiplier associated with

(P’ ). CI

Note that the penalty function L (s , x) is called the energy function in [6]. Later

it will be shown that it is a qualified Lyapunov function for a neural network. The

following corollary is a direct result from Theorem 3.3.

Corollary 3.2: Let the notations and assumptions be as defined in Theorem 3.3. Then

given 8>0, there exists a sufficient large 3 such that the minimizer of L (s , x) lies in
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N(0, e), where N(0, e) = {xl llx-flke, item and 0 is the set of minimizers of

(P’). E]

3.2 Networks-Analysis

There are cm'rently three ANN models proposed for solving nonlinear program-

ming problems [6,19,24]. Consider first only the case of linear programming. The

linear program (LP) considered here is of the following form:

Minimize f(x)=aTx

subject to g (x) = Dx-b 50,

where D is an mxn mauix, beR’", aeR", and xeR". If equality constraints are

considered as well, then each of them can be replaced by two inequality constraints as

shown in the last section so that the following discussion still holds. Note that

Vf (x) = a and Vg (x) = DT. For simplicity in notation, denote g*=[g f...g,,‘,‘]T.

3.2.1 The Model by Tank and Hopfield

The network su'ucture proposed by Tank and Hopfield for solving the linear pro-

gramming problems is shown in Figure 3.1 [6]. a,— and b,- are implemented by current

sources. The voltage outputs, x,- , on the upper right of the figme are the variables in

the linear programming problem. The outputs, gf, on the lower left of the figure,

measure the constraint satisfaction (violation). s in the rectangles is a large positive

constant.

Their model can be described in compact form by

i = C"{-Vf (I) - Vs (x)g“(X) - %R’1x}s. (3.5)
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Figure 3.1. Linear programming network by Tank and Hopfield.

where C is a n xn diagonal matrix due to the self-capacitance of each amplifier. R is

"I

a n xn diagonal matrix with lax—013+; where —-1- the self-conductance of

Rii j=1 Pi Pi

each amplifier. The so called energy function is chosen to be

2
m n xi

Etc) =f<x> + zero)? + 23—. (3.6)
i=1 i=12‘gRi

Taking the derivative of E 1(x) with respect to time yields
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= (—Ci)Tx

= 47me (3.7)

for all t . Equality holds only at equilibrium points since C is a positive, diagonal

matrix. Note that Vf and Vg are constant vectors for linear programming and g+(x)

is just a vector. Replace g+(x) by a vector 7t and take C to be the identity matrix,

then the minimizer f of El occurs when

—Vf (5r) - Vg or». - 71-12-15: = o. (3.8)

Comparing this equation with the condition (ii) of Theorem 3.2 shows that either the

system described by equation 3.5 does not have an equilibrium or else, even if it does,

the equilibrium would not be a solution to the program (LP).

Suppose s is sufficiently large, as suggested by Tank and Hopfield, the last terms

of equation 3.5 and equation 3.8 can be neglected. In this case equation 3.8 can be

viewed as fulfilling the necessary conditions of Theorem 3.2. But since it,- (=gf) is

required to be positive for some j , the equilibrium of equation 3.5 has to lie in the

infeasible region of the program (LP). Depending on a particular program, the equili-

brium may be quite far from the true minimizer of (LP) which is generally on a

corner (or boundary) of the feasible region. This drawback makes their model unreli-

able in solving linear programming problems even though the model has a big advan-

tage for hardware implementation.

3.2.2 The Model by Kennedy and Chua

The model developed by Kennedy and Chua [19] is based on the Chua’s previ-

ous work in [148]. The basic components in their network are integrators as shown in

Figure 3.2. Their network formulation requires more hardware components to form
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Frgure 3.2 The integrator used in Kennedy and Chua’s model.

the integrator in its analog circuit implementation when compared to the Tank and

Hopfield network. But it is superior in that it circumvents the undesired terms in

equations 3.5 and 3.6, namely, the terms due to self-conductance. Their model can be

described by

J? = C’1{-Vf (X) - 3V8 008+00} (39)

where C and s are defined as in equation 3.5. For argument sake, C is normally

taken to be an identity matrix. This model has been used to solve both linear pro-

gramming and quadratic programming problems. The corresponding energy function

is
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E2(X)=f(1)+ gimp»? (3.10)
j=l

Kennedy and Chua showed that E2(x) is a Lyapunov function for the system of equa-

tion 3.9. This ensures that the system will converge to a stable equilibrium point

without oscillation. Their network analysis is primarily based on the nonlinear circuit

theory derived in [149].

Comparing equations 3.4 and 3.10 indicates that their work actually fulfills the

penalty function method for a fixed penalty parameter. But they fail to justify the

assumption required for the penalty function theorem (Theorem 3.3) to hold. Nor do

they clarify the relations between the equilibrium point of the network and the true

minimizer to the original program, since there could be more than one equilibrium

point with respect to one minimizer unless the regularity of the minimizer is assumed.

A straightforward analysis from the viewpoint of optimization theory is undertaken in

the next chapter to establish a more sound theoretical foundation for Kennedy and

Chua’s network.

3.2.3 The Model by Rodriguez-Vazquez, et al.

The energy functions of the previous two networks are variations of penalty

function methods, since they are formed by adding the cost functions with penalty

terms. The penalty terms are derived by taking the magnitude of the constraint viola-

tion squared times a penalty parameter. According to the penalty function theorem,

the true minimizer can only be obtained when the penalty parameter s is infinite.

This is impossible to achieve in practice. To cope with this difficulty, Rodriguez-

Vazquez, et al. proposed a network model which is formed by two mutually exclusive

subsystems [2A]. (Mutually exclusive here means only one of the two will contribute

at a time.)
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Let u, be the feasibility index of x, i.e., ux=1 if xeKo; otherwise, u;=0. Their

model can be expressed as

i = -quf(X) - ng(x)g+(x). (3.11)

The corresponding energy function is

Ego) = uxf<x> + gimp»? (3.12)
j=l

The trajectory of the system moves along -Vf (x) if u,=1; otherwise, it moves

according to the negative gradients of the violated constraints. The combined effort

of these two mutually exclusive subsystems forces the conglomerate trajectory to

move toward the boundary of the feasible region. As long as it hits the boundary, the

trajectory chatters around the boundary and, at the same time, it also approaches the

optimum point. But a new problem arises: there is no equilibrium point in this sys-

tem, since the condition (ii) of Theorem 3.2 can not be met. The trajectory bounces

back and forth in a neighborhood of the minimizer, though the neighborhood can be

made very small. The authors, however, have suggested that the system can be

viewed as stable if the variation of the solution is bounded. They also suggested

another model with the following system equation and energy function:

i = —u,Vf (x) - ng(x)(1—ux). (3.13)

and

330:) = uxf (x) + sfigrtx) (3.14)
j=l

But the same problem still exists for this model.
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3.3 Linear Programming Network for Problem with Hypercube Feasible Region

The linear programming problem genre considered here is the minimization of a

cost function

f (x) = aTx (3.15)

subject to xe [0,1]", i.e., 09,51 for every i, where x,- is the ith component of the n-

vector x . Let 1,, and 0,, be n-vectors of all ones and zeros, respectively. Then the

constraints can be represented in matrix form as

g(x) = [35:1] = [3:11 + [31"] =Dx + b S0. (3.16)

f(x) is a hyperplane in R" and the feasible region is a unit hypercube in R". The

general assumption is made on the system that -a is not parallel to the normal vector

of any hyperplane g,- =0, where g,- is the j th component of g (x ). This ensures the

uniqueness of the optimum point, or in this case the minimizer of the cost function.

The minimizer of the cost function is one of the 2" cOrners of the hypercube depend-

ing on the normal vector of the hyperplane.

Let J = {j |gj>0} be the set of indices of the constraints which are violated. Let

It: card (J), the cardinality of J, i.e., the number of components of J. Then g1* takes

on the magnitudes of constraint violations. Consider next a network structure given

by the piecewise linear differential equation

' = -[D,Tg,+ ] = -[of(o,x+b,)++a]. (3.17)

This is similar to equation 3.5 without considering the term due to self-conductance.

Note that this structure of the dynamical system described varies with time since J

changes from time to time. D, is a kxn matrix consisting of the jth rows of D, for

every j a]; similarly b1 consists of the j th components of b . Observe that since
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there are at most n constraint violations, DJ is at most an n xn matrix.

3.3.1 The equilibrium of the system

Under the assumption placed on -a , the minimizer of the cost function is at an

intersection of n of Zn hyperplanes g,- =0. Recall that by the definition in Section 3.1,

I is the set of indices of these hyperplanes. By the Kuhn-Tucker theorem for

optimality, the necessary and sufficient condition for a point to be a minimizer is that

Vf + Zungj = 0 (3.18)

jel

where u,- >0. For any hypercube, the ng ’s are orthogonal for j e] . Therefore, equa-

tion 3.18 can be viewed as decomposing Vf into n orthogonal vectors ij ’s, each

along the direction of -ng.

Note that Vf =a and ng=DjT. Also, (D,-x+b,-)+ measures the one-sided dis-

tance of x to gj=0. If we denote (Djx+b,-)+ by w-, then the equilibrium of equation

3.17 must satisfy

Vf + 219,-ng = 0. (3.19)

jeJ

Matching I With I and w,- with u,- shows that the equilibrium of the system fulfills

the Kuhn-Tucker optimality condition. Furthermore the equilibrium is unique due to

the orthogonality of gj=0 for jeJ. Also observe that wj=(D,-x+b,-)+>0 for jeJ indi-

cating that the equilibrium lies in the infeasible region where n constraints are

violated.
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3.3.2 The initial state in the feasible region

When the initial state of the system is any point in the feasible region, then J is

simply empty and the trajectory moves in the direction of -a until it hits either one of

the hyperplanes or an intersection of certain hyperplanes. Assume the former is the

case. On the hyperplane g,- =0, the trajectory still follows the direction of -a and thus

it eventually enters into the other side of the hyperplane. At this time, DJ becomes a

lxn matrix denoted by D,- (small j ). The dynamics of the system are now described

by

r = -D,T(D,x+b,)+-a. (3.20)

-D,-T(D,-x +b,- )+ is a vector in the direction of —D,-T with magnitude proportional to

(Djx+b,-)+. If we decompose —a into two parts as —a = ale-t-aj, where a, is the pro-

jection of -a in the direction of D}, then equation 3.20 becomes

° _ T
x — [—Dj (Djx+bj)++a,-] + “I" (3.21)

As the system evolves in time, it reaches a point where the first two terms on the

right hand side of equation 3.21 cancel each other. Thereafter, the trajectory rolls

along with a1: until it hits another hyperplane.

When there is at least one constraint violation, similar to the case with the initial

state in the infeasible region, -a can be decomposed as -a=2a,-+aj, where a,- is the

jeJ

projection of -a on the span of DjT for 1's] and a, is the portion of .0. not in this

span. Note that a,- is fixed and unique for each ja] due to the orthogonality of the

normal vectors D}: I, however, is not fixed. The differential equation of the system

for k21 can now be written as

x = -};D,T(D,-x+b,.)+ + 2c, + a,. (3.22)

jeJ jeJ
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Extending the above argument to 1: >1 illustrates that as the trajectory moves

from one side of a hyperplane g,- =0 to the other side of the hyperplane, the projection

a,- will be continually reduced by DjT(D,-x+b,- )+ until it becomes zero. Although the

trajectory may hit another hyperplane, the orthogonality of the DjT’s nonetheless

guarantees that a,- —D,-T(Djx+b,- )+ eventually will become zero. It is clear at this point

that if a trajectory starting in the feasible region hits the intersection of certain hyper-

planes, each a,- will be diminished gradually by the corresponding term DjT(D,-x+b,- )+

and the result stated above still holds.

Since -a is not parallel to any hyperplane by assumption, it can be decomposed

into n orthogonal projections. As the trajectory moves from region to region, it will

eventually enter a region where n of the Zn constraints are violated. In this region

the trajectory settles to the unique equilibrium point on which -a is fully represented

by -zD,T(D,.x+b,)+.

jeJ

3.3.3 Example of a 2-dimensional hypercube

Due to the orthogonality of the hyperplanes, the trajectories of the system can be

illustrated by considering the case of a 2-dimensional hypercube. In Figure 3.3, the

vector —a is shown on the upper right comer together with its two orthogonal projec-

tions. The intersection of the two dotted lines is the equilibrium point of the system.

The broadened gray lines are trajectories of the system corresponding to different irri-

tial states.

Figure 3.4 gives several examples with the initial states in the infeasible region.

The corresponding -ED,.T(D,-x+b,- )+ with respect to each initial point is drawn by a

jeJ

solid line segment along with vector -a shown by a dotted line segment. The direc-

tion of the trajectory changes whenever it crosses a hyperplane. Once the trajectory



39

 

XZ=1 E
 

  
  

Figure 3.3. Trajectories starting in the feasible region.

reaches one of the dotted lines, i.e., one of the orthogonal projections of -a , it stays

on the line and moves toward the equilibrium point. The equilibrium point will

always lie in one of the four regions shown with light gray background in Figure 3.4.

If we consider that the normal vectors of the hyperplanes separate these four regions

from each other as bases of R 2, then there is only one region in which -a will have

positive coordinates. This is another interpretation of equation 3.17.



  

Frgure 3.4. Trajectories starting in the infeasible region.

3.3.4 Further Analysis

Consider now the system defined by

x = -s[DJT(DJx+bJ)+]-a

= -s

 

'eJ

sz(D,x+b,-)+]-a

I

(3.23)

which is same as equation 3.9 but more explicitly expressed. When s=l, equation

3.23 is the same as equation 3.17. When s>1, denoting vj=s(D,-x+b,-)+ for jeJ, the

equilibrium of equation 3.23 must satisfy
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Vf + ZvngJ- =0. " (3.24)

jeJ

The corresponding terms of equations 3.24 and 3.18, namely I=J and uj=vj, can be

u.

matched. Since u,- is fixed for a given cost function, (Djx+b,- )+=-;J- is the equili-

brium of equation 3.23. This means that the distance from the equilibrium point x to

g1:0 is reduced by a factor of s when compared to the case where s=1 (equation

3.19). By choosing s sufficiently large, the equilibrium point can thus be moved arbi-

trarily close to the intersection of the corresponding n hyperplanes, which is the

minimizer of the cost function.

Next, the energy function E is defined as

)3 [(0,x +12,- )+]2. (3.25)E: (”+1

f 21's]

The time derivative of E can is derived as

dE ddei

7:59am

_-. JET a+2st(D,-x+b,-)+

is]

T
= at it < o, (3.26)

for all x¢0. Thus E is a Lyapunov function for the system. Hence the equilibrium is

asymptotically stable by the asymptotical stability theorem [150]. In fact, it is also

asymptotically stable in the global sense due to the unboundedness of (D,x+b,- )+ as

le ll ->oo.

For s sufficiently large, equation 3.25 is a form of the penalty function method.

But, if we use the notation of v,- , then equation 3.25 becomes

E = f(x) + % gvj(ojx+b,)+, (3.27)
16
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which is a form of the Lagrangian function method. So the forms of both methods

are implicitly embedded in the network structure described by equation 3.23. As fol-

lows from the penalty function method theorem, the equilibrium of equation 3.23

approaches the minimizer of the cost function as s -)oo. This, however, is impossible

to implement in practice. A sufficiently large 5 will generally result in an equilibrium

state which is a reasonably good approximation to the minimizer of the cost function.

A diagram of the trajectories of equation 3.23 for s=oo is shown in Figure 3.5 for

a 2-dimensional hypercube. Whenever the trajectory lies in the infeasible region, it

will be forced to move directly to either the closest hyperplane or the intersection of

the hyperplanes if more than one constraint is violated. Then, it will move according

to —a to one of the hyperplanes g,~ =0, where jel . Once it reaches such a hyper—

plane, the trajectory slides on the hyperplane toward an intersection of hyperplanes

with indices j e] .

3.3.5 Extensions

The results of above analysis are directly applicable to cases where the hyper-

cube is being scaled up or down, translated from the origin to any point, and/or

rotated at any angle. It is also applicable to the region defined by

[ll,u1]x - - ° x[l,,, ,,] and its scaling, translation, and rotation, as long as the ortho—

gonality of the hyperplanes (gi=0 for j 61 ) is preserved. If the orthogonality is not

preserved, the equilibrium of the system defined by equation 3.23 may not be unique,

though the local asymptotic stability of the desired equilibrium still holds.

An extended theoretical argument for nonlinear programming in general is given

in the next chapter.
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Figure 3.5. Trajectories for s=oo.



CHAPTER IV

OPTIMIZATION NETWORK FORMULATION

A unifying mathematical framework for the Kennedy and Chua network for

linear and quadratic programming is given in the first two sections followed by its

extension to more complicated nonlinear programming problems. A two-phase optim-

ization network model is then proposed which can obtain both the exact solution, in

contrast to the approximate solution by Kennedy and Chua’s network, as well as the

corresponding Lagrange multipliers associated with each constraint.

4.1 Linear Programming Network Theory

Let the linear program (LP) be defined as in Section 3.2 and its objective func-

tions is referred as fI (x). In this section, the network by Kennedy and Chua for

linear programming is justified fi'om the viewpoint of optimization theory. As has

been pointed out in Section 3.2.2, E2(x) is precisely L(s, x) for a fixed penalty

parameter s . Thus we have the following proposition which is a restatement of

Corollary 3.2.

Proposition 4.1: Let 0 be the set of minimizers of a feasible (LP). If 0 is bounded

and contains only regular points, then given e>0, there exists a sufficiently large 5

such that M, the set of the rrrinimizers of the corresponding E2(x ), satisfies
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mirflIx—flke for xeM. Cl

area

Note that M is convex due to the fact that the sublevel set of a convex function,

namely E2(x ), is convex. Without the assumption of the boundedness of 0 , the pro-

position is still true. But when 0 is unbounded, any bounded subset of 0 is

sufficient for obtaining a minimizer. This is due to the fact that if an (LP) has a finite

optimum value, it must have a finite minimizer. Thus for 0 unbounded, we can place

some additional, suitable bounding constraints into the original program so that the

following discussion still holds.

Take C to be I in equation 3.9 and rewrite it as

r = -Vf (x) — sLigj+(x)VgJ-(x)]. (4.1)

‘=1

The block diagram of the system of described by equation 4.1 is drawn in Figure 4.1.

Define sgj+=vj and J (x)={j lgj+(x)>0, ISjSm ]. The equilibrium of equation 4.1

occurs when

0 = VfCE) + sfigfawttjtr)
j=l

= Vf (50+ 2 vngjCi). (4-2)

fem)

Since for linear programming problems, ng=dj, where d, is the jth row of D , equa-

tion 4.2 can be expressed as

me+ z v,d,-=0. (4.3)

jaw)

Proposition 4.2: If the (LP) is feasible with finite optimum value, then the system

described by equation 4.1 has an equilibrium. CI

Proof: Let 1? be a minimizer to the (LP). Then, according to Corollary 3.1, there

exists kj>0 for jelo‘c') such that
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Figure 4.1. The block diagram of the system of equation 4.1.

16“?)

Choosing J(xHa') and vj=7tj, verifies the Proposition. El

Proposition 4.3: Let f be a solution to a feasible (LP) with a finite optimum value.

If x" is not regular, then the equilibrium of equation 4.1 corresponding to x is not

unique. CI



47

Proof: Since it" is not regular, {dj )1. e1(3) are linearly dependent. This implies that

there exists two subsets of I ()7), say I' and I" where I’ztl” , such that

a + Enid,- = O, for (ll->0, (4.5)

jel’

and

a + z pjd, = o, for B,>o. (4.6)

jel”

Let aj=sgj+(xl) for jeI’ and Bj=sgj+(x7) for jeI”. Since I’ael”, then there is at

least one a,-¢Bj and, consequently, at least one g,- (x1)¢g,- (x?) Thus the equilibrium

corresponding to f is not unique. [3

Note that even though the equilibrium points corresponding to r are not unique,

they all result in same value of E2(x ), since any equilibrium point of equation 4.1 is a

minimizer to E2(x) as will be shown later.

In fact, it is observed that any convex combination of equations 4.5 and 4.6

satisfies the equilibrium condition. That is to say, for 038$],

a + 6 2 ajdj + (1—6) 2; ma, = o. (4.7)

jer jer'

Let i=I’UI" and r=card (f). Denote a as the vector in R' with its element equal to

at,- if jel’ , otherwise 0. Similarly, let p be the vector in R' with its element equal to

B,- if jeI” , otherwise 0. Then, equation 4.7 implies that the line segment [(1, B] C

R1 is mapped to a single point, —a, in the closed convex cone {y |y=27,~d,-, yj>0}.

je

More generally, from equation 4.3 -a lies in the closed convex cone {y ly= 2 7,- dj.

1' 61(1)

7} >0} as seen from equation 4.4.

For linear programming f (x) and (gj+(x ))2 are convex and continuously

differentiable as is E2(x ). Furthermore,
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i=1

 

= 47150 (4.8)

holds with equality only at the equilibrium .2 of equation 4.1. Thus if the (LP) has a

finite optimum value, E2(x) is a Lyapunov function of equation 4.1 and achieves its

minimum at 52.

Proposition 4.4: Let (LP) be a feasible program and E2(x) be correspondingly

defined. Then the set of equilibrium points of equation 4.1 is the set of minimizers of

E2(x ). El

Proof: Let M, be the set of minimizers of E2(x) and M2 the set of equilibrium points

of equation 4.1. For xeMz, we have

VE2(X) = .1. = 0

and

V2E2(x) = Vg, (x )ngot) 2 o,

for Vg,=[Vg,- ],61(1). Thus x satisfies the necessary condition of a minimum of

E2(x ). That is, M,c M2. To show the converse, i.e., Mzc M1, we proceed as fol-

lows.

Since MI: M2 and M110, there is at least one equilibrium point of equation

4.1, say it, which is a minimizer of 5,. Observe that V2520?) is strictly positive

except along the direction of y at which

yTVgrngfcb = o. (4.9)
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So i is a minimum except along the direction y . Therefore, E2(x) must be examined

along the direction of y. Equation 4.9 implies vg}(r)y =0, i.e., yeNull(Vg,T(5i)),

where Null (ngoz )) is the nullity of VgJT. Since VE2(52 )=o implies

—aeRange (Vg, (r )), we have aTy=0 due to the fact that the linear subspace of

Null (VgJTCc' )) is perpendicular to the linear subspace of Range (VgJCE )). Now

VE2(5i+y)=a+ 2‘, g,-+(i+y)Vg,-(i+y)

1916+”

=a + 2 g,-+(r+y>Vg,-(i)

i610?)

=0 4 2 [vgf(r+y) - bIngC?)

iela)

=a + z [ng5: -b]Vg,-(x)

few)

=a + 2 groove-(i)

i610)

= V820?) = 0, (4.10)

if J(x+y)=J(J‘2). Thus 5t+y, for yeNuiI(Vg,T(i)), is an equilibrium of equation 4.1

as long as it does not evoke any new constraint violation. Moreover,

Ezc+yl=aT<r+y>+i 2; (SfCZH‘DZ

jeJ(x+y)

= 0T} + ‘3' 2 ($4.637)?

i616)

aTr + g 2 (Vs-Tao) - b)2

i616)

H
taT

+ % z (ngi -b)2

ism)

.. s ..
aTx +3 2 (gj+(x))2

few!)



so

= 52(2), (4.11)

ifJ(i+y)=J(J‘i). This implies i-l-y is also a minimizer of E2, and thus Mzc M1. D

Proposition 4.5: Let 0 be the set of minimizers of a feasible (LP). If 0 is bounded

and contains only regular points, then there exists a sufficiently large s such that

J(i)=I(x'), for)? an equilibrium of equation 4.1 and 1760. D

Proof: From Proposition 4.4, it is a minimizer of E2(x ). According to Theorem 3.3,

5i-—>x'e 0 and v,- 4).,- as s —)oo. Since the convex cone spanned by ng (f) is closed,

there exists a sufficiently large s such that J (52)=I(x). CI

Note that 0 is necessarily convex. Also for x1, x260 , we have I (x1)=I(x2) and

the corresponding Lagrange multipliers 3e,- are the same.

Proposition 4.6: If the unique minimizer f of a feasible (LP) is a regular point, then

there exists a sufliciently large s such that the equilibrium of equation 4.1 x with

respect to f is unique. [3

Proof: let so be the parameter that satisfies Proposition 4.5 so that J (5i )=I (2'), for it

an equilibrium of equation 4.1. Since 2' is regular and unique, it implies that

card (I (f))=n , which furthermore implies card (J (5i ))=n by the choice of so . In this

case equation 4.2 is equivalent to solving a system of n linear equations for n unk-

nowns, namely, the v,- ’s. Since ng(i ), for j eJ (J‘i ), are linearly independent by the

choice of so , v is uniquely determined. But

vj = sogj+(1)-=So(V8jx “bj)9 (4-12)

so i is uniquely determined, again by the linear independency of ng(x ), for jeJ (5i ).

D

The above proposition considers only the case for which card (I (f))=n . Suppose

now that 0 contains more than one point, i.e., card (I (f))<n. let so be defined as in

. Proposition 4.6 and 56o be a corresponding equilibrium of equation 4.1, then
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0 +50 2 8j+(io)dj = 0. (4.13)

I510?)

As s changes continuously from so to co, :2 moves continuously from so to an is 0.

If now so is raised to s1, the system moves fiem J‘io to 521 so that

a +31 2 gj+(il)dj = 0. (4.14)

felt?)

Comparing equation 4.14 to 4.13, the constraint violation has been reduced by a factor

so . . . . . .

of T. Also at the trme of swrtchrng so to s, the system moves 1n the direction of a

1

as can be seen by evaluating the dynamics of the system at so .

ili, =—[a +51 2 gj+(io)dj]

I510?)

= -[(a + (304's 1'30) 2 git-(fa )dj]

1.5“!)

= -<sr-so) 2‘, gj+(io)dj

felt?)

—a

= -(S 1.30)—

o

S 1’50
 

= ( )a. (4.15)

0

Multiplying equation 4.13 by s, and equation 4.14 by so and taking their

difference, we have

0 = (SI " a)“ +3130 2 (8j+(io)‘gj+(il))dj

161(1)

=(s1-so)a +s1so E (dJTJ‘io -b,- — dfil +bj)dj

i610?)

=(Sr —s.)a ms. 2: dis. -ir)d,-

felt!)
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= (r1 -so)a + slso 2 djdfao -5i,). (4.16)

i616)

If d, is normalized, i.e., lldj IE1, then dde-TCio -J‘21) is an orthogonal projection of

J'c'o - it, along the direction of d,. So equation 4.16 actually says that the sum of the

projections of J‘io -J‘21 on the dj’s is in the direction of a. From equation 4.13 it is

clear that —a lies in the convex cone spanned by {dj )1. e,m. Also when switching so

to s 1, the trajectory of the system will not move in any direction perpendicular the

subspace spanned by (d,- )1.6 ,,5. Thus the following fact is noted:

Fact 4.1: Let io, 52,, 1', so, and S, be defined as above. Ifxo-i-y approaches f+yeO

as s changes fiem so to co, where y is perpendicular to {d,- 11.6“”, then, if so is

switched to s1 at x=5io, x1+y is the equilibrium of the system. C!

The above fact can be geometrically interpreted. First the following definitions

are helpful. Let KCR " , then a hyperplane H is said to be a supporting hyperplane of

K ifi‘ KCH+ or KcH_, and cl(K)nH is nonempty, where cl(K) is the closure of K.

Let KCR” be closed and convex, then FcK is called a face of K iff there exists a

supporting hyperplane H of K such that F = HnK . This relationship is illustrated in

Figure 4.2 in which K is represented by a gray background, H by a straight line, and

F by a broadened line segment.

When there is more than one minimizer, the set of minimizers of a linear pro—

gram (LP) actually forms a face. In Figure 4.3 the set of minimizers is represented

by broadened line segments. The straight lines in the figure are the hyperplanes that

define the feasible regions, which are shown with gray background. The equilibrium

points of equation 4.1 are plotted by dotted line segments. There are three possible

cases depending on whether the size of the equilibrium points of equation 4.1 is

larger, smaller, or equal to the size of the set of the minimizers. (The size of a com-

pact set S may be defined to be maxgllx-yll.) Three possible cases are illustrated in

x0e
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Figure 4.2. An illustration of the relationship among K , H, and F .

Figure 4.3. Any combination of these three cases is also possible. The arrows in Fig-

lue 4.3 depict the changing of the equilibrium set as the system is switched to a new

s value.

Using the results obtained thus far we are able to conclude the following

theorem. This is a very important result since it assures the complete stability of the

network described by equation 4.1.

Theorem 4.1: Under the notations and assumptions of Proposition 4.1, then, given

t-:>O, there exists a sufficiently large s such that the system is completely stable and it

satisfies minIIJT-xllqe. C!

re0

Proof: Let s1 be the parameter that satisfies Proposition 4.5. Given £>0, by Proposi-

tion 4.1 there exists a sufficiently large s2>s1 such that llx—flke, where x is an equili-

brium of equation 4.1 and 1760. Since 0 is bounded, by Proposition 4.1 the set M

of equilibrium points of equation 4.1 is bounded. (Otherwise, for 0 bounded and M

unbounded the conclusion of Proposition 4.1 would not be true.) Using E2(1) as the

Lyapunov function for the system, LeSalle’s Theorem [150] ensures that the system is
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Figrne 4.3. The relationship between the equilibrium set of equation 4.1 and the set of

minimizers. (a) They are of the same size. (b) The equilibrium set is smaller in size

than the set of the minimizers. (c) The equilibrium set is larger in size than the set of

the minimizers.

completely stable in the sense that every trajectory will converge to a point in M

without oscillation. El
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4.2 Quadratic Programnring Network Theory

Consider next the case of quadratic programming. Let the quadratic program

(QP) be of the following form:

Minimize fo(x) = é-xTAx + 07x

subject to g(x) = Dx-bSO,

where A is a symmeuic, positive semidefinite matrix. It is clear that Vfo (x )=A.x +a.

First the following lemma is needed.

Lemma 4.1: Let B be a symmetric, positive semidefinite matrix. Then Bx=0 if and

only if xTBx =0. U

Proof: The only if part is clear, since for Bx =0, it follows that

xTBx = xT(Bx) = 0.

The converse can be shown by using the Cauchy-Schwarz inequality; that is, if Q is

symmetric, positive semidefinite then the following is true:

(flay)2 s (xTQnyTQy). (4.17)

for any x and y. By assumption xTQx=0, we have

0 s (£ny s (xTQnyTQy) = o. (4.18)

for any value of y. This implies leQy |=0, for any y. But this implies xTQ=0, i.e.,

Qx=0. The proof is complete. El

Similar to Proposition 4.1 for linear programming, we have the following propo-

sition for quadratic programming which is a direct result of Corollary 3.2.

Proposition 4.7: Let 0 be the set of minimizers of a feasible (QP ). If 0 is bounded

and contains only regular points, then given e>0, there exists a sufficiently large s
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such that M, the set of the minimizers of the corresponding E2(x ), satisfies

minllx-x‘lke for xeM. [3

£60

Proposition 4.8: Let (QP) be a feasible program and E2(x) be correspondingly

defined. Then the set of equilibrium points of equation 4.1 is the set of the minimiz-

ers of 82(x ). El

Proof: Let M, be the set of the minimizers of 52(1) and M2 the set of equilibrium

points of equation 4.1. For xeMz, we have

VE2(X) = "X. = O

and

Wax) = A t Vs: (x )VXJT(x) 2 0. (4.19)

for Vg,=[Vg,-]je,(,,). If the A matrix in the definition of fo (x) is positive definite,

then the Hessian of E2 (equation 4.19) is positive definite. Thus the equilibrium of

equation 4.1 is necessarily and sufficiently the unique minimizer of E2(x ).

If, however, A is only positive semidefinite, then x satisfies only the necessary

condition of a minimum. That is to say M1: M2. To show the converse, i.e.,

M2: M12 we proceed as follows.

Since M1c M2 and M1150, there is at least one equilibrium of equation 4.1, say

i , which is a minimizer of E2. Observe that V2E2(5'c) is strictly positive except along

the direction of y at which

yT(A + Varngltrm = o. (4.20)

So J? is a strict minimum except along the direction of y . We need only examine

E2(x) along the direction of y . Equation 4.20 implies ngfi)y =0, i.e.,

y eNuiI (vg,T(r)). Equation 4.20 also implies yTAy =0, and this implies Ay=0 by

Lemma 4.1. Together we have yeNull (A )nNuu(Vg,T(r)). Also, since VE2(x)=0
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implies —Ax-a eRange (Vg, (i )), we have

0 = yT(AJ‘i + a)

= yTAj't + yTa

= yTa, (4.21)

due to the fact that y eNuii (A )rwuu (ngor )) and that the linear subspace of

Null (VgJTCc' )) is perpendicular to the linear subspace of Range (Vg, (i )).

Now

VEZCHy) =A(x +y) + a + 2 g,-+(x+y)Vg,-(f+)’)

jeJ(x+y)

=Ax +a + 2 gj+(x+y)Vg,-(i)

. jeltx)

=Ajt +a + E [ng(i+y)-b]V8j(i)

i816)

=Ai +a + z [VgJ-Ti -b]Vg,-(x)

i616)

=A55 +0 + )3 8j+(i)V8j(i)

161(1)

= V520?) = o, (4.22)

if J(J‘i+y)=J(i). Thus 5t+y, for yeNuii(A)nNuii(vg,T(r)), is an equilibrium of

equation 4.1 as long as it does not evoke any new constraint violation. Moreover,

Erato)=(ic+y)TA(i+y)+aTtiz+y>+i z (8j+(i+)’))2
jeJ(1+y)

=xTAr + a7)? + % E (8,°+(J'5"')’))2

felt!)

=iTAi' + a7: + g- z (vg,T(r+y) - 12)2

felt?)

= “TAx +aTx + g 2 (ng2 — b)2

jela)
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=2“: + oTr + % z (,gfci»2

isle)

if J(x+y)=.l(x'). This implies 5i+y is also a minimizer of E2, and thus M2: M1.

The proof is complete. El

Proposition 4.9: Let 0 be the set of minimizers of a feasible (QP ). If 0 is bounded

and contains only regular points, then there exists a sufficiently large s such that

J(J‘i)=I(x'), forx' an equilibrium of equation 4.1 and 2'60. D

Proof: Same proof as of Proposition 4.5. D

Proposition 4.10: If the unique minimizer r of a feasible program (QP) is a regular

point, then there exists a sufficiently large 3 such that the equilibrium :2 of equation

4.1 with respect to x is unique. El

Proof: let so be the parameter that satisfies Proposition 4.9 so that J (r )=I (r), for 52

an equilibrium of equation 4.1. Since 1? is regular and unique, it implies that

card (I (x’))=card (J (x' ))=n by the choice of so and Vnga) is of full rank. The latter

ensures that ng,)ngm is positive definite. Since it is an equilibrium of equation

4.1, from equation 4.2 and using J (i)=I(J't') we have

A: + a + So 2 ng(x')(Vg,-x' - bj) = O. (4.24)

felt!)

This is the same as

A? + a + sngIm[Vg,Tmi - by] = 0. (4.25)

By rearranging the variable, we have

[A + sng, VgT )).? + a - sngImb, = 0. (4.26)
(2') Hi
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Observe that A + so Vgl(z)V317(r) is positive definite, since A is positive semidefinite

and VngVgJTm positive definite. Hence 5i can be uniquely solved as

-1

x = -[A 4» so VgIngITm] [a — snglme]. Cl (4.27)

The above proposition considers only the case for which card (I (f))=n . Suppose

now that 0 contains more than one point, i.e., card (I (f))<n . Let so be defined as in

Proposition 4.10 and let to be a corresponding equilibrium of equation 4.1, then

Afio + a + so V813)[V811(z)io - bl] = 0. (4.28)

As s changes continuously from so to oo, 56 moves continuously from 52o to an is 0.

If now we raise so to s1, the system moves from J‘Zo to 521 so that

Ail + a + sIVgl(f)[ngmxl - by] = 0. (4.29)

Assume that so ail—9x" as so ->s1—>oo. Let yeNull (A )nNulI (V3170?) )) and

J (xo+y)=J(5io ). As the system of equation 4.1 is changed by raising s from so to s,

at x=xo+y , its dynamics are described by

rim =A(5io+y) + a +s1 z ng<rngf<a+y> - 12,)

jelm

=Aro + a + so 2 Vg,(r)(vg,-Tro — 12,-). (4.30)

law?)

This is same as the dynamics of equation 4.1 when changing so to s, at x=x'o. By

Proposition 4.8, zTa=0 for any zeNull (A )nNuIi(vg,T(ro)). It follows that

2T1? lit.” = 2T Ago +0 +51 2 ngmwgfio -bl')

1'6“!)

= s1 2‘, zTVg,(r)(Vg,Tro - b,-)

felt?)

= 0, (4.31)
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since zeNull (VgJTa )) implies that z is perpendicular to g,- for jeI (2'). Equations

4.30 and 4.31 actually say that any vector in Null (A )nNull (ngor )) remains

unchanged as the system evolves in time. This indicates the following fact.

Fact 4.2: Let 55o, 521, f, so, s1, and y be defined as above. If xo+y approaches

f+y60 as so —>oo, then, as so is switched to s, at x=7‘io, the system obtains an equili-

brium at x1+y . D

Similar to the case of linear programming network, for the sake of practicality,

the results for the quadratic programming network are summarized in the following

theorem.

Theorem 4.2: Under the notations and assumptions of Proposition 4.7, then, given

e>0, there exists a sufficiently large s such that the system is completely stable and it

satisfies minllx—ftlke. El

feO

Proof: Basically the same proof as for Theorem 4.1. [3

Note that the results of above argument still hold even if I (if) is empty, i.e., no

binding constraints. In this case the minizer lies in the interior of the feasibility set.

This is a very strong result with a myriad of applications. In particular, the following

two cases are examined.

Case (A): Solving B,,,o,x=b

B is assumed to be of full rank. This problem can be converted into minimizing

f(x) = élle—HP over R". But

f(x) = %xTBTBx - bTBx + #71; (4.32)

and

Vf (x) = BT(Bx—b ). (4.33)
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Since 3TB is symmetric and positive definite by the assumption placed on B, the

optimization network formulation described by equation 4.1 for the case of quadratic

programming can be applied. Define

i = _-Vf (X). (4.34)

It follows that 9%:4Wf (x )II2s0 with equality holds only at Bx=b. From

Theorem 4.2 the unique equilibrium of equation 4.1, x=B‘1b, is globally asymptoti-

cally stable. Thus the problem is solved without actually calculating the inverse

matrix of B .

Case (B): Solving Bmxnx=b

In this case, assume rank (B )=n<m . This is a least squares problem. Similarly,

we transform this problem into minimizing f (x) = élle-bll2 over R " and define a

system as equation 4.34. By the above theorems, the system converges asymptotically

to an equilibrium it which satisfies

0: BT(B:-b ).

This implies that

it = (Mm-13%.

But this is exactly the least squares solution to Bx=b . Again the problem is solved

without computing the inverse matrix.

The results derived can also be applied to the above two cases when rank (B )<n ,

though the equilibrium under such a condition is not unique. The above derivation is

summarized as the following corollary.

Corollary 4.1: Let B,,,,,,,x=b , where B is a constant matrix, b a constant vector, and

n Sm . If B is of full rank, then the dynamic system of equation 4.34 uniquely solves

the problem B,,,x,,x=b. If B is not of full rank, then depending on the initial states,
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the system of equation 4.34 approaches one of the solutions. [3

Least squares problems with linear constraints can be solved as well by the same

network formulation as described ill equation 4.1. But the solution thus obtained is an

approximation to the exact solution due to the finiteness of the penalty parameter s .

4.3 Nonlinear Programming Network Theory

Define the program (PP) to be

Minimize fo (x) subject to g (x )=Dx-b50,

where fo (x) is a Cl convex function and g (x) is similarly defined as in (QP ).

Proposition 4.11: let 0 be the set of minimizers of a feasible (PP). If 0 is

bounded and contains only regular points, then given e>0, there exists a sufficiently

large s such that M , the set of the minimizers of the corresponding E2(x) satisfies

minllx-x1|<e for xeM. El

feO

Proof: The proof follows from Corollary 3.2. III

This proposition implies that there exists a sufficiently large s such that M is

bounded. (Otherwise, there exists xeM and minllx-x1|>e which thus it draws a con-

£60

tradiction.)

Proposition 4.12: Let (PP) be a feasible program and E2(x) be correspondingly

defined. Then the equilibrium points of equation 4.1 are the minimizers of E2(x ). El

Proof: Since E2(x) is convex and continuously differentiable on R" , the critical

points of E2(x) are the minimizers. This can be seen from Theorem 3.1 by taking it

and it to be zero since there are no constraints for E2(x ). But the critical points

satisfy
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0 = VE2(X) = ‘1‘.

Thus the equilibrium points of equation 4.1 are just the minimizers of E2(x ). D

It is known that if f is a C2 (twice-continuously differentiable) real-valued func-

tion on an Open convex set S in R" , then f is convex if and only if its Hessian

matrix

V2f(x) = [L(1‘)]
3x,- 3x,-

is positive semidefinite for every x eS [145]. Using this fact, the implications of Pro-

position 4.12 can be extended.

Proposition 4.13: Let (PP) be a feasible program and E2(x) be correspondingly

defined. Assume that the Hessian matrix of fo (x) is positive definite. Then the

equilibrium point of equation 4.1 is the unique minimizer of E2(x ). Cl

Proof: By Proposition 4.12 the equilibrium of equation 4.1 is the minimizer of E2(x ).

Furthermore, we have that

vzrt'zct) = szo (x) + vg,(x)vg,T(x) (4.35)

is positive definite, since szo (x) is positive definite and Vg, (x )Vgflx) is positive

semidefinite. Thus x is necessarily and sufficiently a strictly local minimizer of

E2(x ). Due to the convexity of E2(x ), we can conclude that i is the global (and thus

unique) minimizer of E2(x ). El

Proposition 4.14: Let 0 be the set of minimizers of a feasible (PP). If 0 is

bounded and contains only regular points, then there exists a sufficiently large s such

that J(i)=l(f), where it is an equilibrium of equation 4.1 and £60. El

Proof: Same proof as of Proposition 4.5. D
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Theorem 4.3: Under the notations and assumptions of Proposition 4.11, then, given

e>0, there exists a sufficiently large s such that the system is completely stable and 5?

satisfies minlIf-J‘ilke. CI

is0

Proof: let it, be the parameter that satisfies both Propositions 4.11 and 4.14. Since

0 is bounded, by Proposition 4.11 there exists a s2>s1 such that the minimizers M of

E20!) are bounded. Using the fact that E2(x) is a Lyapunov function for the system

of equation 4.1, LeSalle’s theorem [150] ensures that the system is completely stable

in the sense that every trajectory converges to a point in M without oscillation. EJ

Corollary 4.2: Under the notations and assumptions of Proposition 4.13, then, given

€>0, there exists a sufficiently large s such that the unique equilibrium :2 is globally

asymptotically stable and llf-x'lke. El

Proof: let s, be the parameter satisfies Proposition 4.11. Using the uniqueness of Si

and applying Theorem 4.3, the result follows. E!

The discussion in this section up to now is just an extension of the quadratic pro-

gramming network with the objective function of the program allowed to be any Cl

convex function. The results obtained thus far apply to the program with linear equal-

ity constraints as well. In what follows, the discussion is extended to programs with

nonlinear constraints, either equalities or inequalities.

Consider/next the case of convex programming.

Lemma 4.2: let (CP) be a convex program. Then E2(x) is a convex function. CI

Proof: By definition,

52(1) =f(x) + g fierce)? + ivy-(of. (4.36)
i=1 i=1

where f and the g,- ’s are C1 convex functions on R" and the h,- ’s are affine functions

on R" . The Hessian matrix of the second term on the right hand side of equation
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4.36 is

WBEtgr-Txnz] = s
i=1 i6]

VSJVSJT + Egi+vz i],

 

r

which is clearly positive semidefinite. Thus 2(gi+(x ))2 is a convex function.

i=1

Since each h,- is an affine function, they can each be expressed as

T

for some vector c, and constant e,, ISjSm. By checking the positive

semidefiniteness of the Hessian matrix, it can be shown that the last term of equation

4.34 is also a convex function.

Now E2(x) is a sum of three convex functions, so it must be a convex functions

as well. CI

If E2(x) for some (CP) is bounded below, then by the formulation of equation

4.1 the system will converge to a minimizer of E2(x ). So the results obtained for

(PP) still hold for the case of convex programs.

Proposition 4.15: If the basic program (PP) is replaced by a convex program (CP)

in Propositions 4.11 - 4.14, Theorem 4.3, and Corollary 4.2 (with the assumption that

the minimizers of (CP) are bounded and contain only regular points), then their

results still hold. CI

Proposition 4.14 implies that for a sufficiently large s , the violated constraints at

an equilibrium 1‘? of equation 4.1 are the same as the binding constraints at a minim-

iw 5". For (PP). ifJ(i)=l(f). then

Vgiem) = ngertr)
(4.37)

since the gradient of a violated constraint is a constant vector. But this is not always

true for the case of convex programming. The gradient of a violated constraint for a
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convex program (CP) is a continuous vector function rather than a constant vector. It

is due to this continuity and the assumption of regularity of the minimizers that the

conclusion of Theorem 3.3 holds. For a convex program, it is only guaranteed that

equation 4.37 holds when s=oo. (For further discussion see Chapter 12 of [151].)

All the programs discussed thus far consider equality constraints (h,- ’s) with only

affine forms. The strategy to map such constraints into the optimization network is to

replace them by two inequality constraints, hJ-ZO and ll,- 50. Since each of these two

inequalities is again a convex function, the results of Theorem 3.1 are applicable. In

order to solve more general problems by the optimization network technique, we want

to relax the restriction on the affineness of equality constraints. First the following

theorem is needed which is an extension of Theorem 3.1. (For proof see [146]).

Theorem 4.4: Let (P) be a program in the notation described in Section 3.1. Let f

be a feasible solution to (P). Suppose that f is a regular point. Further suppose that

f, g,, ieI(x’), and h-, lSjSm, are convex and all are differentiable at 1’. Then 1? is

a global optimal solution to (P) if and only if there exists Hit, 2.,1T20 and

ll=[tt1 um]T>0 together with x that satisfy

(i) l,g,-(x') = 0 for i=1,...,r

and

i=1i=1

Corollary 4.3: let (P) be a program with the same notations and assumptions of

Theorem 4.4 except that h-, lSjSm, are all concave. Then i? is a global optimal

solution to (P) if and only if there exists Hit, mTzo and p.=[].11 umlT<0

together with f such that the conditions (i) and (ii) of Theorem 4.4 hold. El

Proof: Since -h,-(x) is convex for all j and

lle-hj) = (‘llehJ-r
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the result follows by applying Theorem 4.4. D

Since the h,- ’s are not assumed to be affine, the minimizers of the problem may

be isolated, rather than a convex set. If h,- is a convex function, then hjSO defines a

convex set. Similarly, —h,- S0 defines a convex set for It,- concave. Now using the

notation of a extended program, i.e., letting g,+2,-_1=h,- and g,+2,-=—h,-, leads to the

following corollary.

Corollary 4.4: Let (P’) be the extended program stated above for convex functions

feCl and g,eC1, 1SiSr, and convex or concave functions hjeCl, lSjSm. Let

L(s,x) and s be correspondingly defined. Let x), be a minimizer of L(s,,,x).

Assume x), —)f for some £60, where 0 is the set of minimizers of (P’). Suppose 0

is bounded and contains only regular points. Then for It,- convex, skg,‘.‘,2,-_1(x,,)-9u,-

and soggy (x), )-)0; for hj concave, skg,12j-l(x,,)-)0 and skg,12j(x,,)—)(—tlj ), where

uj is the corresponding Lagrange multiplier at x‘. [3

Proof: Rewrite equation 3.4 as

us. x) =f(x) + g iot+<x>>2+ feta-ha)? + ions-(xi)? (4.38)
i=1 j=l i=1

Applying Theorems 3.3 and 4.4, it follows that if h,- is convex then

skg,’f,2j_1(x,,)—)ll,- and soggy-(o )—)0. By applying Theorem 3.3 and Corollary 4.3 it

follows that if It, is concave, spg,12j-1(x,,)—)0 and skgfiozj (x), )—)(-|.lj ). D

In fact, since g,";2,-_1 (x) and g,";2,-(x) are continuous and mutually exclusive for

lSjSm , there exists a sufficiently large s), such that g,*;2,-_1(x,,) > 0 and g,T,2,-(x,,) = 0

for hj CODVCX, 811d 8,12j_1 (1*) = 0 and g,++2,-(x,,) > 0 for hi concave.

Proposition 4.16: Let so be the parameter stated above. Then L(s,,,x) is a convex

function in a neighborhood of x,, . D
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Proof: Due to the choice of s,, and the continuity of {g,-+},'I12"‘, there exists a neigh-

borhood N of x,, so that for xeN, s,g,+;2,._, (x) > 0 and soggy-(x) = 0 if h, is con—

vex; skg,‘.*,2j_1 (x) = 0 and skg,‘_‘,2,-(x) > 0 if h,- is concave. Now for xeN, if hj is

convex,

(atom at»2 + (erotic)? = (3.12)-. (x »2 = (hj“(x))2

is convex since It,” is convex. Similarly for xeN , if h,- is concave,

(rater (x »2 + (gape)? = (gas,- (x ))2 = «are»?

is convex since (—h,- )+ is convex. As a sum of some convex functions, it follows that

L(s,,,x) is convex. D

To see that It," is convex provided h,- is convex, consider the following lemma

Lemma 4.3: let g (x) be a convex function on a nonempty convex set XcR " , then

, _ g(x) ifgtxl>o
g (x)- 0 ifgu)g)

is a convex function over X . D

Proof: Choose x, y eX. By the convexity of g , it follows that for 0951

sax-«14034) S 1300+ (14030)

S MIG!) + (1-1)8+()').

If g(lxi-(l-lc)y)>0, then g+(2.x+(1-lt)y) =g(1x+(l-lv)y). and we are done. If

g (2.x+(1-1)y )50, then

Elia-”(140” = 0 S 48"(1) + (140840)

and the proof is complete. D

The neighborhood mentioned in Proposition 4.16 need not to be a R" ball

around x,,, i.e., B8 = {xeR"| |lx-x,,||<e}. In fact, it may be any shape convex set in
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which L(sk, x) is convex. By Proposition 4.16 there exists an s>s,, and a neighbor-

hood N such that E2(x) is convex over N. Thus if the boundedness of E2(X) is

assumed, then the network formulation of equation 4.1 is again useful to converge

locally to one of the minimizers of E2(x) provided the starting point lies in N. If the

set 0 of minimizers is isolated, there is more than one neighborhood and E2(x) is

convex over each one. To restrict the discussion to the local stability of equation 4.1

over a particular neighborhood, assume there is only one isolated minimizer set, and

correspondingly one such neighborhood.

Proposition 4.17: let (P’) be a program in its extended form such that f e C1 and

g,-eCl, ISiSr, are convex functions, and hjeCI, lSjSm, are convex or concave

functions. let N be a neighborhood that satisfies Proposition 4.16. Suppose that the

set of minimizers of (P’) is bounded and contains only regular points. Then if the

program (PP) is replaced by a program (P) in Propositions 4.11 - 4.14, Theorem 4.3.

and Corollary 4.2, the results still hold locally over N. D

Although in Proposition 4.17 the stability of equation 4.1 is gude only

locally, in practice the N neighborhood can be very large as will be shown in some

examples. Also in Proposition 4.17 the convexity and concavity are assumed

throughout R " , but this is not absolutely necessary so for the proposition to hold. It

is sufficient to assume that the convexity and concavity of the corresponding functions

hold on a nonempty open set, say OCR " , and restrict all discussion to (2 rather than

R" . That is to

MlmmIZC'' ' f (X)

subject to g,-(x)S0, for i=1 to r,

hj(x)=0, for j=l to m,

and
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er,

where f and g,- ’s are convex, differentiable on the open set (2, and h,- ’s are convex or

concave, differentiable on 9.

let f :X —-)R , where X is a nonempty convex set in R". The function f is said

to be quasiconvex if, for each x, and xzeX , the following inequality is true:

f Our + (1401(2) S maxtf (xi). f (1:2)} for each 460.1).

The function f is said to be quasiconcave if -f is quasiconvex. Let S be a

nonempty Open set in R" , and let g :S —>R be differentiable on S. The function g is

said to be pseudoconvex if for each x 1, x26 S with Vg (x 1)T (x2—x 1)20 we have

g(x2)2g (x1), or equivalently, if g(x7)<g(xl) then Vg(xl)T(x2-x1)<0. The function

g is said to be pseudoconcave if -g is pseudoconvex. The pseudoconvexity of f

ensures that if Vf (f)=0, then f is a global minimum of f. Figure 4.4 shows some

examples of quasiconvex and pseudoconvex functions. Both quasiconvex and pseu-

doconvex functions assure that there are only global minimizers. But quasiconvex

functions may have saddle points and pseudoconvex functions may not. Therefore,

for pseudoconvex functions, the point at which the gradient vanishes is a global

minimizer. Note that under difierentiability, convexity implies pseudoconvexity, and

under lower semi—continuity, pseudoconvexity implies quasiconvexity.

Thus, for a program (P) the results of Theorem 4.4 still hold by properly relax-

ing the convexity assumptions.

Theorem 4.5: Let (P) be a program in the notation described in Section 3.1. Let f

be a feasible solution to (P). Suppose that r is a regular point. Further suppose that

f is pseudoconvex, g,- is quasiconvex for 1'6! (1?), and hi is quasiconvex for 151'Sm .

And all are differentiable at x'. Then i? is a global optimal solution to (P) if and only

if there exists X=Dt1 1,]720 and [.l=[].l1 um]7>0 together with x' that satisfy
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Figure 4.4. (a) Quasiconvex. (b) Quasiconcave. (c) Pseudoconvex. ((1) Not Pseu-

doconvex and not quasiconvex.

(i) log-(f) = 0 for i=1,...,r

and

f m

(ii) VfO?) + 24iV8i(X-) + EMthjO?) = 0. Cl

i=1 j=l

Corollary 4.5: Let (P) be a program with same notations and assumptions as in

Theorem 4.5 except that hj, lSjSm , are all quasiconcave. Then if is a global optimal

solution to (P) if and only if there exists hot, 1,]T20 and ll=[ll1 um17<0

together with x' such that the conditions (i) and (ii) of Theorem 4.5 hold. El
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Proof: Same proof as Corollary 4.3. C]

Now following a similar argument used to derive Proposition 4.17 it can be

shown that the network formulation of equation 4.1 is also useful to obtain (locally)

an approximate solution to (P) with proper pseudo— and quasi-convexity assumptions.

Corollary 4.6: Let (P’) be an extended program such that f e C1 is a pseudoconvex

(:1 function, g,- is a quasiconvex Cl function for 1sisr, and hjecl is either

quasiconvex or quasiconcave for 151' Sm. Let N be a neighborhood that satisfies Pro-

position 4.16. Suppose that the set of minimizers of (P’ ) is bounded and contains

only regular points. Then if the program (PP) is replaced by a program (P) in Pro-

positions 4.11 - 4.14, Theorem 4.3, and CorOllary 4.2, the results still hold locally

overN. CI

Note that the network formulation of equation 4.1 may be cOnsidcred as a con-

tinuous approximation of the gradient projection method [147]. Figure 4.5(a) depicts

the idea of the gradient projection method. The negative gradient of the objective

function is projected onto the tangent surface of the active constraint set in order to

find a point y . Then a new point x,,+1 is found along the direction perpendicular to

the tangent plane of x,,. Figure 4.5(b) illustrates the dynamics of equation 4.1 when

the trajectory is on the boundary of the feasible region. The linear programming

problem with hypercube feasible region described in Section 3.3 is a good example

for illustrating the similarity between the gradient projection method and the dynamics

of equation 4.1.
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(b)

Figure 4.5. (a) Gradient projection method [147]. (b) The dynamics of equation 4.1 on

the boundary of the feasible region.
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4.4 A Two-Phase Optimization Network

In previous sections of this chapter it has shown that there exists a sufficiently

large s so the network formulation as described by equation 4.1 is guaranteed to con-

verge to an approximate solution for a large class of nonlinear programming prob—

lems. In what follows, a two—phase optimization network model, which can obtain

both the exact solution to the problem as well as the corresponding Lagrange multi-

pliers associated to each constraint is proposed. For linear programming problems,

the network solves both the primal and the dual problem exactly.

For the sake of argument, assume, unless otherwise explained, that the program

(P) considered in this section is a convex program for which f 6C1 and g,-eCl,

lsiSr, are convex functions, and hjecl, lsjsm, are affine functions. It is clear

that if the set M of minimizers of (P) contains only regular points, for feM it fol-

lows that q 5 card (I (17)) s n . The penalty function used here is

Ms. x) =f(x) + flioflxlf + ire-Rn]. (4.39)

i=1 j=l

It is formed based on the program (P) rather than on its extended form.

The block diagram of a two-phase optimization network is shown in Figure 4.6.

The network operates under different dynamics as the phase is changed by a predeter-

mined timing switch. For 0St<tl, the network operates according to the following

dynamics:

at = -Vf(x) — s[Vg,(x)gf(x) + Vh (x)h(x)]. (4.40)

It is just in this case the same as the system described by equation 4.1 except that the

sign of h,- for 15jSm may be either positive or negative. The subsystems within the

two large rectangles do not contribute for t<tl. When tZtl, the dynamics of the
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Figure 4.6. The block diagram of the two-phase optimization network.
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network becomes

ii = —Vf (x) — Vg,(sgf + 2.) — Vh (sh + u), (4.41)

i = soar). (4.42)

and

ti = 8(Sh ). (4.43)

where e is a small positive constant. For this network there is no restriction on the

initial condition of x while the initial values of It. and it are set to be zero vectors.

Due to the network formulation it is easy to check that the equilibrium of the

system occurs when gf(x) = 0, h(x) = 0, It > 0, and

Vf (x) + Avgyot) + th (x) = 0. (4.44)

But this actually satisfies the optimality conditions of Theorem 3.3, and thus a equili-

brium point of the two-phase network is nothing but a global minimizer to a convex

program (P ).

The rationale behind the two-phase network formulation is the following. In

phase 1 (t<t1) it follows from Theorem 3.3 and Proposition 4.15 that for a sufficiently

large s , equation 4.40 converges to an equilibrium i at which sg,-"'(x) and shj (it) are

very close to 2., and ll,- , respectively, where IL,- and it} are the corresponding

Lagrange multipliers defined in Theorem 3.1. Assume s is chosen such that

J(i) =I(x') for EEO, the minimizers of (P). By choosing t1 properly, the trajectory

of the system can be assumed to be within a small neighborhood of i, say

865,8) = {xeR’Hlx-filkS], such that the approximation of k,- and ll,- by sg,-+(x) and

sh,- (x) respectively is qualitatively preserved for xEB (x ,5).

In Phase 2 (t2: 1), the network begins to shift the directional vector sg,-+(x) gra-

dually to 1,, and shj(x) to llj. By imposing a small vector 8, the updating of
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equations 4.42 and 4.43 is comparatively much slower than that of equation 4.41.

Approximation of such dynamics is possible by considering 7t. and [.l. to be fixed.

Then it can be seen that equation 4.41 is seeln'ng a minimum point of the augmented

Lagrangian function

Lo(s, x) =f(x) + ”g(x) + llTh(x) + %[llg+(x)||2 + ||h(x)||2]. (4.45)

With a small enough 8, the stability of equation 4.41 is qualitatively preserved and the

system is driven toward a equilibrium point, which is a minimizer of (P).

In practice 8 may be chosen to be 2%- leaving the network with only one

preselected parameter. But using a 8 independent of 3 gives more freedom to control

the dynamics of the network. Also if the initial condition of x is in the feasible '

region, simulation results show that phase 2 of the network alone is sufficient to

ensure the convergence to a minimizer of a convex program (P). For a more general

program such as those covered in the last section, the convergence is only locally

assured.

The network formulation proposed here is similar to the multiplier method, or the

augmented Lagrangian method [147,152]. The multiplier method for the equality

constrained problem (EP)

minimize f (x)

subject to h(x) = 0

is to transform the problem into a successive process. Within each iteration an x,, is

sought to minimize

l,(x,ll,,)=f(x)+tl{h(x)+%||h(x)||2. (4.46)

If x,, is found, then ll), is updated according to

Ilk+1 = 111: + Sh (xii)- (4.47)
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Then, an x“, is sought to minimize I, (x, um): and so on. Equation 4.43 is the

same, in essence, as equation 4.47 with the former being a continuous approximation

to the latter.

In practice, the multiplier method converts the inequality constraint g,- (x) S 0 to

an equivalent equality constraint g, (x )+z,- = 0 by adding a dummy nonnegative vari-

able 2, . Then the problem is solved successively by finding x,, and 2,, 20 that minim-

ize

f(x)+2{[g(x)+z]+-;—||g(x)+z||2, (4.48)

and updating 2,, similar to equation 4.47. Finally, a mapping scheme similar to the

two-phase network can be formed to deal with only equality constraints. The state

variables of such a network include x , z , 2., and tr.



CHAPTER V

NETWORK SIMULATION

To demonstrate the behavior of the networks proposed in the last chapter and to

validate their properties, some examples for various problems have been performed

using the ACSL (Advanced Continuous Simulation Language) software package (Sun

version). The numerical algorithm used to integrate equations 4.1 and 4.38 to 4.41 is

a 4—th order Runge-Kutta method.

5.1 Linear Programming

For linear programming, consider the following problem (LP 1) taken from [6]:

Minimize f(x)=-x1-x2

subject to

-i _ _3_5
81(X)— 1211 I2 12 S0,

5 35

82(1) = 311442" 7 S 0.

g3(x) = -x1— 5 .<. 0,

g4(x) =x2 - 5 s 0.

79
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The corresponding feasible region is the gray area in Figure 5.1.

 
Figure 5.1. The feasible region of (LP,).

It is easy to verify that the optimal solution to this problem is x=(5.0, 5.0)T and

the corresponding Lagrange multipliers are 21:0, 21:04, 23:0, and 24:06. To illus-

trate the variation of E2(x) with respect to different values of s , the contours of E2(X)

for s=l and s=10 are shown in Figure 5.2. Comparing Figures 5.3(b) and (d), we see

that the larger the value of s, the closer the minimizer of E2(x) to the optimal solu-

tion. This is implied by Theorem 3.3. Since E2(x) is radially unbounded, the unique

equilibrium of equation 4.1, i.e., the minimizer of E2(X) is thus globally asymptoti-

cally stable for some large s. For this example, s 2 1 is more than sufficient. The

equilibrium point of the network and the terms sgj+(x) are given in Table 5.1 for
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Table 5.1. The equilibria of the network for (LP 1) for different values of s.

 

 

Parameter Equilibrium 52 r -f H sgf‘Ct)

s= 0.2 (4.600, 8.000) (0.400, 3.000) (0.0, 0.4, 0.0, 0.6)

s= 1 (4.920, 5.600) (0.080, 0.600) (0.0, 0.4, 0.0, 0.6)

s= 2 (4.960, 5.300) (0.040, 0.300) (0.0, 0.4, 0.0, 0.6)

s= 10 (4.992, 5.060) (0.008, 0.060) (0.0, 0.4, 0.0, 0.6)    
 

different values of s . It is evident that IL? -x ll decreases with respect to the increase of

s. It is in fact linear.

To demonstrate the dynamics of equation 4.1 for this problem, trajectories with

various initial conditions have been plotted on Figure 5.3 for s=10. Figure 5.3(a)

illustrates the trajectories converging to the equilibrium i=(4.992, 5.060) whereas Fig-

ure 5.3(b) shows the trajectories around 52 . The sliding efl‘ect of each trajectory along

the active constraint can be seen clearly in these figmes.

Next, the 2-phase network formulation is applied to this problem. In phase 1,

the trajectories are identical to those in Figure 5.3. In phase 2, the trajectories are

slowly moving fiom x to 'x' as shown in Figure 5.4(a) with s=10 and $0.2. The

corresponding trajectories of the objective function and Eg(x) With respect to time are

given in Figure 5.4(b). It is clear how they approach asymptotically the optimum

value ~10.0. In Figure 5.4(b) the line atop is the trajectory of E2(x) which is slightly

large than f (x) as long as there are constraint violations.

As mentioned in Section 4.4 if the initial point is in the feasible region, the net-

work structlue in phase 2 is suflicient to converge to a minimizer. To see this effect,

a simulation using only the phase-2 network structure is done for s =10, e=0.2, and

xo =[4.8, 4.817. The simulation results show that the trajectory of x is nearly identical
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to the one in Figure 5.4(a). The corresponding trajectories of E2(x) and f (x) are

given in Figures 5.5(a) and (b), respectively. The lines atop in Figure 5.5 are for the

case using only the phase-2 network structure. It is clear that they begin to exhibit

the asymptotical behavior only after few generic time steps.

If the initial condition is not in the feasible region, using only the phase-2 net-

work structure may not lead to convergence. This can be seen by that fact that equa-

tion 4.40 only increases the value of 2. For fixed s and e, choosing any initial point

from the infeasible region will result in a positive value of 2.,- for some i. If the irri-

tial point is far enough, 2,- will become larger than the correct Lagrange multiplier

before the state trajectory approaches the boundary of the feasible region. Once this

happens, there is no way to bring the value of the over-estimated 2,- back down.

And, the trajectory remains in the infeasible region since it can not enter into the

feasible region except through the minimizer with correct Lagrange multiplier. Even-

tually, the system diverges.

However, if the initial condition is restricted in a bounded region, it is possible

to find a small enough 8 such that the phase-2 network structure is stable over this

region. But the drawback is that the smaller the value of e, the slower the rate to

equilibrium.

To illustrate the phenomenon described by Fact 4.1, consider the program (LP 7):

Minimizef(x) = -x2

subject to the same constraints as (LPl). Notice from Figure 5.1 that the minimizers

of (LPZ) lie on the line segment x2=5 within the feasible region. If s is chosen to be

2 in equation 4.1, then its equilibrium points are the line segment x2=5.5 within

5 35
g(x) = 3x, +x2- 3— $0
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and

g3(x) = —x1 — 5 .<_ 0.

In this case, the size of the equilibrium set is smaller than the size of the mimmizer

set. Trajectories of equation 4.1 near (5.0, 5.5) are shown in Figure 5.6(a). If we

raise s from 2 to 10 after the system settles on the line segment x2=5.5, then all the

trajectories will move in parallel to x2=5.1 as shown in Figure 5.6(b). This is exactly

what have been described in Fact 4.1. Note that the trajectories of s=2->10 are

different from that of s=10. The latter have been shown in Figure 5.6(c) as contrast

to the trajectories in Figure 5.6(b).
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For the case where the size of the equilibrium set is larger than the size of the

minimizer set, consider the program (LP 3):

Minimizef(x) =x1

subject to the same constraints as (LPl). From Figure 5.1 it may be seen that the

minimizers of (LP?) lie on the line segment x 1=-5 within the feasible region. Choos-

ing s=2 in equation 4.1, the equilibrium points are the line segment x2=-5.5 within

__5_ _ -22
8100-1211 x2 1250

g4(x) =x2 - 5 S0.

Trajectories of equation 4.1 near (-5.5, -5.5) are shown in Figure 5.7(a). If we raise s

from 2 to 10 after the system settles on the line segment x1=-5.5, then all trajectories .

will move in parallel to x1=—5.l as shown in Figure 5.7(b).

The trajectory curving toward the upper-right in the middle of Figure 5.7(b) is

due to the fact that the size of the equilibrium set is reduced as s increases. (In fact,

the equilibrium set would eventually be identical to the set of minimizers when s

becomes infinity.) This trajectory would have been a straight line along g1(x)=0 if s

had been changed continuously. Since s=2—910 abruptly, the early stage of this tra-

jOCtory tends to move strictly to the right and thus results in new constraint violation

as it crosses to the other side of g 1(x )=0. Now the asymptotic nature of the system

talias place to remedy such a violation and drives the trajectory toward the correct end

P0th of the equilibrium set. The trajectories of equation 4.1 with s =10 are given in

Figure 5.7(c) for comparison to the trajectories in Figure 5.7(b).
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5.2 Quadratic Programming

For quadratic programming, consider a program (QP l):

minimizef(x)=x12 +x22 +x1x2+3x1+3x2

subject to the same constraints as (LP,). The minimum of f (x) occurs at

x, = x2 = —1. Since the unique minimizer lies in the interior of the feasible region, it

follows from the theorems derived in Section 4.2 that the unique equilibrium of the

(QP) network is exactly the minimizer. The simulation results of the trajectories of x

for the correspondingly formed (QP) network are shown in Figure 5.8. The equili—

brium r = [-l, —1]T clearly exhibits asymptotic stability. There is no need for using

a 2-phase network structure.
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Figure 5.8. Trajectories of x of the (QP) network for (QP 1).
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Suppose now the objective function in (QP 1) is replaced by

f(x)=x12 + x22 +rpt2 — 30x1 - 30x2,

and this new program is denoted by (QP 2). The unconstrained minimizer of f (x) of

(QP?) is [10, 10]. The simulation results using equation 4.1 are given in Figure 5.9.

Wherever the initial points of x are, the trajectories approach to the equilibrium

x = [4.97778, 5.174517.

It can be shown that the minimizer of (QP?) is r = [5.0, 5.0]T at which J(r) =

{2,4}. Solving the equation

Vf(f)+ 2 lngr-(f)=0.

i610?)

we get the corresponding Lagrange multipliers, 21:00, 24:60, 23:00, and 24:90.
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Figure 5.9. Trajectories of x of equation 4.1 for (QPZ) with s=50.
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Using the 2-phase network formulation for (QPZ), a simulation is run with s=50,

8:02, and initial condition xo =[4.8, 4.8]T. The trajectories of x and 2 are shown in

Figure 5.10(a) and (b), respectively. The network is switched from phase 1 to phase

2 at T=2.0. Figure 5.10 clearly shows the dynamics of the network during phase 2 in

which trajectories moves asymptotically toward the equilibrium f = [5.0, 5.0]T and

2 = [0.0, 6.0, 0.0, 9.017.

To make the example more representative, add one equality constraint x1 = 3 to

(QPI), and call this new program (QP3). In the network formulation this equality

constraint is replaced by

g5(x)=x1- 3 S 0

g6(x)=-x1+3 50

The minimizer of (QP3) is f = [3, -%]T at which 1(f) = {1,6}. The theoretical

values of Lagrange multipliers are

8 76'

A: —9 s 9 a 9—1.-[3 0000 9]

Simulation results for the network of equation 4.1 for (QP3) are shown in Figure

5.11(a) for s=50 and 8:0.2. All trajectories lead toward the equilibrium point

it = [2.84279, -1.77791]T. For the correspondingly formulated 2-phase network, a

simulation is performed with the initial condition xo = [2.5, -1]T and the same s and

8. The resulting trajectory of x is given in Figure 5.11(b). Again, the 2-phase net-

work demonsuates its capability to tune the state variable x to the exact minimizer.

Though not shown in figure, the final values of 2(t) for the 2-phase network are the

exact Lagrange multiplers described above.

As mentioned in Section 4.2 one of the applications of the quadratic program-

ming optimization network is for solving the least squares problem Bx=b . For
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illustration sake, consider the following least squares problem (LS) for which

I .

H
H
O

m ll

t
—
I
H
H
D
—
l
t
—
b

O
O
H
H
H

  

and

  

The least squares estimator calculated by the normal equation is

-1

5i =[BT31-IBTb = 10 .

-3

Since there is no constraint in this problem, E2(x) = f (x) = ~34le-b 112. Also since

B is of full rank, E2(x) is strictly convex and the unique equilibrium i=[-1, 10, —3]T

of equation 4.32 is globally asymptotically stable. A simulation with initial condition

x=[0, 0, 0]T has been performed and the trajectories of x and of E2(x) are plotted in

Figure 5.12. Note that the xj, ISan , does not approach 1, in a monotonic (increas-

ing or decreasing) manner as seen in Figure 5.12(a). But the network does converge

monotonically in the sense of E2(x) (see Figure 5.12(b)). More importantly, even

though the network has not yet converged to its equilibrium, E2(1) becomes very

close to its final value in only few generic time steps. Eight more simulations with

various initial conditions were done to vindicate the stability of ii and the results are

shown in Figures 5.l3(a)-(h).
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5.3 Nonlinear Programming

Consider the following program (NP 1):

Minimize f(x) =x,2 + (x2 -1)2

subject to g(x) = x2 — x12 = 0.

Note that f (x) is strictly convex on R2 as shown by the following derivation. For

2.8(0, 1),

f 09: + (1-2)y)

= 0x. + (May 112 +012 + (l—Mya - 1)2

= our + (Hm? + mics-1) + (moo-1112

= 22x12 + 22(1-2.)x1y1 + (140ny + 2282—1)2 + 22(1-2)(x2-1)(yz-1)

= 420:? + (12’1)21 + (1— )2er + 02—021 + 280-481;». +(12“1)0’2“'1)1

= 81x? + (xi-021+ (22-2)[x12 + (12.1)21'1'0-MD'12 + 02-1121

= [(1-702 - (18)]er + 02-021 + zul—xxxryr + (xi-norm

fl= Mot) + (l-w 0) + W-l)ffH12“1)2+y12+02“1)2“2-Xry1402-0024)]

 
= if (x) + (1-2)f (v) + Ml—l) _(xr “ xi)2 + ((xo-l) - 02-1))2]

< 2f (x) + (1-7»)f 0’).

since 2(2-1) < 0 and (x, - y,)2 + ((xz-l) — (342-1))2 > 0. To verify the convexity of

g (x), by definition it follows that

80x + (1403’)

= 0112 '1' (1'4”?) ‘ (411 ‘1' (1’4” 122

= 71x2 + (1-20)., .. [7121.12 + 22(1-2.)x1yr + (14023121
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= let, — x12) + (14002 - (140212) “ ”(l—W 1

= xg (x) + (1-2)g (x) — 2241-70101

s 2g (x) + (140g (x).

if xly120. Thus g(x) is convex on the closed half spaces {xeRzlleO} and

{xeR21x1S0}, but not on R2.

The program (NPl) is equivalent to finding points on the parabola x12=x2 closest

to the point (0, 1). To solve the problem precisely, substitute x12=x2 into f (x) and

 

solve

2 _
12+(12—1)—C.

This gives

1:1: )14c — 3

X2: 2 .

It can be seen geometrically that there is only one solution of x2. This implies

em, = % and x2 = -;-. Correspondingly, x1 = :t-‘(l—in Thus the minimizer of (NP 1) is

x = 8%. é)

at which f(x) = in

E2(x) for the above program (NP 1) is

Etc) =x? + (xi— 112 + %(12 -x.2>2.

The contours of Eg(x) for different values of s are shown in Figure 5.14. When 3 is

small, the shape of the contour of E2(1) is dominated by f (x). As s increases, it

tends toward the shape of the parabola g (x) with two minimizers
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Figure 5.14. Contours of E2(x) for (NP 1). (a) The contour for s=0.5.
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derived in the following.

By direct calculation, it follows that

 

_ 2x1(sx12 -sx2 +1)

V52“) — -sx12 + (s+2)x2 — 2

and

2+s(6ot,2 - 2.x?) -2sxl
2 _

V 520‘) "[ -2sxl s+2 '

By setting VE2(x) = 0 the critical points of E2(x) are found to be

 

=,(0 ——2'2—') and Xe2= (iVS—ZEE,-l").

For x = ,1, the eigenvalues of V2E2(x) are

4—2s

s+2

 

and (s +2)

and they are positive for s<2. Thus x = xol is the minimizer for E2(x) when s<2.

Similarly, the eigenvalues of VZE2(x) at x = 1.2 are

 

(3s +2) 8‘!(3s +2)2 - 4(4s -3)

2 >0
 

for s>2. Hence, xoz is the minimizer for E2(x) when s>2. As s -—)oo, the minimizer

x2 approaches (i— —), which are the exact minimizers of (NP 1).

«1" 2

Converting the program (NP 1) into the form of equation 4.1, the simulation

results of the trajectories of x with s=50 and various initial points are given in Figure

5.15. The trajectories of x, except for initial points with x1=0, converge to either

521 = (0.69282, 0.5) or 22 = (-0.69282, 0.5)
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.—

depending on whether x, of the initial point is greater or smaller the zero. In fact, it

can be shown that x, is asymptotically stable on {xeRzlxl>0] whereas 122 is asymp-

totically stable on {x eRzlxl<0]. Though it was mentioned in Section 4.3 that for

nonlinear programming the asymptotic stability of the equilibrium points of equation

4.1 are held locally for sufficiently large s , this example shows for (NP 1) that the

basins of attraction of the two equilibrium points nearly cover R2 except for the line

x1=0. For s=50 if a trajectory starts out with x1=0, it stays on x1=0 and moves

toward

x = (0.0, 0.03846),
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which is a saddle point originating from xel as s>2. Since in hardware irhplementa—

tion one can not select a point which is precisely zero, the effect of this saddle point

is actually unobservable. Thus the network may be thought of almost completely

stable in practice.

A 2—phase network has been used to shift the equilibrium points

s-2 i) to (i-l? 1

(i 23’2 (’3'
).

The simulation results are shown in Figure 5.16. The little hook near the end of the

trajectory is due to the effect of phase-2 dynamics. By the choice of s and e for the

2-phase network in solving (NP 1), the time for phase-2 to converge is roughly triple

of the time for phase-l. Generally speaking, the smaller 8, the longer the time for

phase-2 to converge.

Consider now the following nonlinear program (NP7) quoted from [19]:

I?
Minimize f(x)=x12 +Jc22 —x1x2+0.4x2+ 30

subject to g(x) = x1 + 0.5x2 2 0.4,

g(x) = 0.5xl + x2 2 0.5,

83(1)=1120:

g4(x)=x220.

This is in fact a convex program because f (x) is a convex function and the feasibility

set is convex. The convexity of f (1) may be seen by deriving the Hessian matrix of

f(X).

OBI-+2 -1

szu)=[ _l 2 J.
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115

and showing that its eigenvalues

(0.1x1+2)_+\/0.01x12+1

are positive for x1 2 0.

Using equation 4.1 to solve (NPZ), the trajectories of x of are shown in Figure

5.17(a). The simulations are done with s=10. The equilibrium of the network is

given in the first entry of Table 5.2 and contrasted to the equilibrium obtained by a

2-phase network with s=10 and 8:02. As seen from the table, the solution obtained

by the 2-phase network is very accurate. The trajectories of the 2-phase network with

initial points (0.25, 0.25) and (0.45, 0.45) are plotted in Figure 5.17(b). The line seg—

ment near the middle of the figure is caused by the phase-2 dynamics.

Table 5.2. The equilibrium points for different networks for (NP 2).

 

 

 

  

Network formulation x1 x2

Equation 4.1 with s=10 0.3023760 0.2825410

2-phase net with s=10, 8:0.2 0.3395630 0.3302180

Exact solution 0.3395628 0.3302186  

As shown in Section 4.3 the network formulation of equation 4.1 may be used

find minimizers of a pseudo-convex function subject to some quasi-convex and quasi-

concave constraints. If an equilibrium 2' of equation 4.1 occurs at the interior of the

feasibility set, Vf (i )=0 must hold. By the properties of a pseudo-convex function it

follows that i is a global minimizer of f . Suppose now that the objective function is

f:X—>R and feel, where x is an open interval in R. Let (P1) be the problem to

minimize f over S , where S is a subinterval of X . Mapping (P 1) to the network of

equation 4.1, the network dynamics drive the trajectory continuously along the des-

cending direction on the surface of f (x ). The trajectory ends at either the boundary

of S or a point in S for which Vf (x)=0. If the former happens, then f is strictly
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monotonic (either increasing or decreasing) on S . Both cases lead to an interesting

application, namely, solving p (x )=0 over an interval.

Let p :s ->R and peCz, for s an closed interval in R. Let (P 2) be the problem

to solve p (x)=0 for xeS . Assume (P2) is feasible, i.e., there exists an xeS such that

p (x )=0. Assume that p is strictly monotonic on S. Let E (x )=-%-p 2(x), then

For) =p’(x)p(x) (5.1)

and

15"0c)=<p’0c»2 +p(x)p”<x). (5.2)

For p (50:0 we have E’ (f)=0 and E" (x')=(p’ (f))2>0 by the strictly monotonic

assumption of p. Thus )7 is a local minimizer of E(x) and and a solution to p (x)=0.

In fact, 1? is also the global minimizer of E (x) on S, since the strictly monotonic

assumption assures that E (x) is pseudo—convex on S with a unique minimizer.

To relax the above argument to more general functions, assume that p e C 1.

Note that since p (f)=0, it follows

mm = limp—(W)
II—)0 h '

Now taking the limit of the difl‘erence quotient of E’ (x) at f, we get

E'(x-+h) - E’(5:')
 

 

 

lim

h-)0 h

= lim p’<f+h>p em.) *- p’mpm

II—)0 h

= m p’(f+h )p (f+h)

h—-)0 h

= . r- . p(f+h)

$30? (““335 h

= (p’(f))2 > 0. (5.3)
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Thus if is again a local minimizer of E (x) on S. By the suictly monotonic assump-

tion ofp(x) on S,i’is also a global minimizer ofE(x) on S.

Since E (x) is pseudo-convex in the above, choose the network

15 = -E’ (X) = -p (X)p’(X) (5.4)

such that

L35) =p(X)p’(x)i (5-5)

= -(p (x )p’ (x ))2.

Since by the assumption of strict monotonicity p’ (x )3'50 for x e S , the unique equili-

brium of equation 5.4 is f at which E (x) achieves its minimum. The idea behind this

technique is that since E (x) is pseudo-convex with its minimum in S , then it is a

valid Lyapunov function for the system of equation 5.4.

Same technique is applicable to solving any feasible problem q (x )=0 on a closed

interval S, where q is such that q2 is C1 pseudo-convex on S. Thus (12 may be a

valid Lyapunov function for equation 5.4. It is possible for 42 to have more than one

minimizer. If qu1, and if q2 has only a local minimum equal to zero, finitely many

local maximizers, and no saddle points, then this technique is also usable. Since for

such a function q , except when the initial point is one of the maximizers, the system

of equation 5.4 will converge to one of the minimizers f of q2 for which q(x')=0. In

hardware implementation, the effect of the finitely many maximizers is unobservable.

Thus the system may be regarded as almost completely stable in practice.

Consider the following problem (NP3):

Solve f(x) =x3 - 9x2 + 23x - 15 = 0.

The function f (x) is plotted in Figure 5.l8(a). It has three roots at l, 3, and 5. The

profile of f2(x) is shown in Figure 5.18(b). f2(x) has three minimizers, 1, 3, and 5.
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Figure 5.18. (a) f(x) for (NP3). (b) f2(x) for (NP3).
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and two local maximizers,

4.1547 and 1.8453.

Solving this problem by equation 5.4, the trajectories of of x versus E (x) are shown

in Figure 5.19. The asymptotical stability of equation 5.4 on its three equilibria can

be clearly seen in the figure. The regions of attraction for x=l, 3, and 5 are respec-

tively (—oo, 1.8435), (1.8435, 4.1547), and (4.1547, co). They indeed cover almost all

R except two points. It is thus clear the system is almost completely stable.
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Figure 5.19. The trajectories of x of equation 5.4 versus E (x) for (NP 3).



CHAPTER VI

CASE STUDIES

Two optimization problems encountered in power system engineering are solved

by the developed network formulation in this chapter. They are the economic power

dispatch (EPD) problem and the optimal power flow (OPF) problem. The results of

this case study demonstrate the applicability of the developed network for solving the

optimization problems encountered in real engineering situations.

6.1 Economic Power Dispatch

The EPD is a classical problem in power system optimization. The goal of EPD

is to determine the amount of power to be produced by each generating unit in the

system such that the load (demand) can be met with a minimum total generation cost.

The power system model typically consists of n thermal-generating units connected to

a single load R . Let x,- be the power generated by the i th unit and fi be the genera-

tion cost rate function of that unit. f,- is generally approximated by a quadratic poly-

nomial of the form

fi(xi) = bi + aixi + Aiixiz (6.1)

where b; , a,- , and 4,; are positive constants. Each x, is restricted between

(1:,-m , Iran] as determined by the generation limits of the unit. Without

121
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considering the transmission line losses, the EPD problem (D 1) may be expressed as:

Minimize f(x) = if;(x,~)

i=1

subject to ximei Sxim for i=l,...,n

II

and 2x,- —R = 0.
'=1

(D 1) is actually a quadratic program and thus the results of Section 4.2 may be

applied. Traditional methods to solve this problem can be found in [153].

If the line losses are taken into account, the EPD problem changes its form to

(D 2):

Minimize f(x)= inc.)
i=1

SUbjCCt t0 13mg x,- 51,-” for i=l,...,n

and for, —PL)-R =0

'=l

where PL represents the line losses. A general version of PL may be expressed as

the quadratic function

I! n n

,2 PL = zzxiBijxj + 23,-1; + 80' (6'2)

i=lj=l i=1

Due to the nonlinearity of PL it is more difficult to solve (D7) than (D 1). An itera-

tive process is normally adopted to solve (0;) (see Chapter 4 of [153]). The

developed optimization network is superior in that with same mapping technique it is

applicable no matter whether the line losses are considered or not.

Example 6.1 [153]: A power system consists three generating units. The minimum

and maximum output of units 1, 2, and 3 are [150 MW, 600 MW], [100 MW, 400

MW], and [50 MW, 200 MW], respectively. A total of 850 MW is to be delivered at
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a minimum overall cost.

Case I -' 311pposc the cost rates for the units are

f 1(x1) = 561 + 7.92::1 + 0.001562x12,

f20:7) = 310 + 7.85x2 + 0.00194x22,

and

f3(x3) = 78 + 7.97x3 + 0.00482x32.

Matching the corresponding terms of f (x) to the objective function of a quadratic

Progmm (QP ). gives

0 0 0.009

7.92

a = 7.85 ,

7.97

0.003124 0 0

A = 0 0.00388 0 .

54

and

[561]

c = 310 .

78

It is clear that A is positive definite. Furthermore, the feasibility set of this problem

is convex and compact. Therefore, the results in Section 4.2 can be applied presum-

ing that the minimizer set 0 contains only regular points.

The simulations of the network of equation 4.1 are done with s =50 and the ini-

tial condition x0=[400, 300, 150]T . The trajectories of the state variables are plotted

in Figme 6.1(a); the trajectories of f (x) and E2(x) are shown in Figure 6.1(b). The

asymptotic nature of the equilibrium point is clearly seen in these figures. The final

values of the state variables, E2(X ). and f (x) are given in Table 6.1 as is the exact

solution. The error between the simulation result and the exact solution is less than

0.1% on average. The value of E2(1) is slightly larger than the objective function.
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Figure 6.1. Simulation results for Case 1 of Example 6.1 using equation 4.1 with

s=50 and x,,=[400, 300, 15017”. (a) Trajectories of x. (b) Trajectories of f (x) and

52(1)-
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This is due to the fact that the equilibrium of the network always lies in the infeasible

region and thus results in a small positive value in the second term on the right hand

side of equation 3.10.

The simulation results for Case 1 using the 2-phase network with s =50 and e are

shown in Figure 6.2. The system is switched to phase-2 at t=1000. Normally,

phase-2 dynamics requires longer times to converge, but for this particular case the

phase-2 network converges rather quickly to its equilibrium as can be seen fiom Fig-

ure 6.2(b). From Table 6.1 the final values of state variables of the 2-phase network

are the same as the exact solution.

Table 6.1. Equilibrium points of two networks for Case 1 of Example 6.1.

 

Networks x1 x2 x3 f (x) E2(X)

 

Equation 4.1, s=50 393.10 334.52 122.20 8192.68 8193.52

2-phase net, s=50, $0.2 393.17 334.60 122.23 8194.36 8194.36

 

Exact Solution 393.17 334.60 122.23 8194.36 8194.36       
 

Case 2: Suppose now that due to fluctuation of the resource price, the cost rate

of unit 1 becomes

f1(x1) = 459 + 6.4st + 0.00128x12.

After adjusting the corresponding terms in the network, the simulation is performed

with the same parameter s and initial condition. The results are listed in Table 6.2.

Again, the results of using l-phase network (equation 4.1) approximate the exact solu-

tion closely while the results of using 2-phase network match it precisely. The trajec-

tories of the network variables for equation 4.1 are plotted in Figure 6.3. Unit 1 in

this case must produce its maximum output. In [153], a different scheme is required
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to handle the case when state variables are achieving their extremum. Oilr network

formulation, however, can apply to such a case without any change.

C]

Table 6.2. Equilibrium points of two networks for Case 2 of Example 6.1.

 

Networks x1 x2 X3 f(X) 52(X)

 

Equation 4.1, s=50 600.01 187.00 62.82 7250.63 7251.37

2-phase net, s=50, $0.2 600.00 187.13 62.87 7252.11 7252.11

 

Exact Solution 600.00 187.13 62.87 7252.11 7252.11        
 

The above example does not take the line losses into account. To demonstrate

the capability of the developed network formulation in solving the EPD problem with

line losses, consider the following.

Example 6.2: This example problem is taken from Example 4B in [153]. In this

power system there are three generation units with unit dispatch limits

50.0 MW le S 200 MW,

37.5 MW 5 x2 S 150 MW,

45.0 MW S x3 S 180 MW.

A total of 210 MW is to be delivered at a minimal overall cost. The generation cost

rates are

f 1(x1) = 213.1 + 11.669x1 + 0.00533x12,

f 20:7) = 200.0 + 10.333x2 + 0.00889x3,

f303) = 240.0 + 10.3331:3 + 0.00741x}.



 

Fig

5::



128

 

 

 

 

 

 

         
 

 

 

 

 

       

(a) a a a

ton to'- to'

o O O /

O O O

m" m" 111'

N N N F

CO CO CO

2"“ 7L“ 2““

to" m'- m‘

E a £8 E

X X X

D O D

D O O

(\I-l N-t

(N

O O O

W L0 in

o" o" o'

0.00 0.50 1.00 1.50 2.00

T .103

C) O

(b) 5% B

r\" l\'

O O

O 0

v- v-

r\" N.

225. "is
x ._ 3: .
AN 1\

:3, 5
N

“e In

O O

O O

N N

r\" l\.

C) O

9] 2

l'\

0.00 0.50 1.00 1.50 2.00

T *103

Figure 6.3. Simulation results for Case 2 of Example 6.1 using equation 4.1 with

s=50 and x0=[400, 300, 150]T. (a) Trajectories of x. (b) Trajectories of f (x) and

E2(1)-



128

 

 

 

 

 

 

         
 

 

 

 

 

       

(a) a a a
to" to'“ to'

o o o /

o o o

m" Ln" m'

N N N F

00 oo oo

7‘“ 7‘“ :m

m" m" m'

3 N 8E

X X x

o o c:
c: o o

N" N“ N

(H

o c:
m m or

o" o" d

0.00 0.50 1.00 1.50 2.00

T .103

o o

(b) B 8

m" r<g

a a\
o o
v- v

ix" n.

1225 '55
X . X .
AM' AN

5 5 \L
N

‘5 it)

o o
o o
N N

(\"1 TN.

0 o

9. 9.
l\." N.

0.00 0.50 1.00 1.50 2.00

T .103

Figure 6.3. Simulation results for Case 2 of Example 6.1 using equation 4.1 with

s=50 and x,=[400, 300, 150?. (a) Trajectories of x. (b) Trajectories of f (x) and

E2(1)-



129

3

It is clear that the objective function f (x)=2f,- (xi) is a convex function. The

i=1

corresponding B coefficients of the line losses PL are given by

6.760 0.953 -0.507

[BU]: 0.953 5.210 0.901 x104,

-0.507 0.901 2.940

—0.07660

[Bi] = ‘0.00342 ,

0.01890

and

B, = 4.0357.

Since [B,-j] is positive definite, the equality constraint for this problem is a concave

function. The feasible region, defined by the unit dispatch limits, is a rectangular

solid which is clearly convex. Therefore, the results in Section 4.3 can be applied

presuming that the set of optimal solutions 0 is nonempty and contains only regular

points.

The problem is mapped into the network formulation of equation 4.1. Simula-

tions of the network are done with s =50 and initial condition x, =[160, 40, 120]T

MW. The trajectories of the state variables are plotted in Figure 6.4(a). f (x) and

520:) are ploited in Figure 6.4(b) and the line losses in Figure 6.4(c). Again, the

asymptotic nature of the network equilibrium is seen in these figures. As the system

evolves with time, E2(x) is almost identical to f (x) due to the appropriate choice of

s . The final values of all variables are shown in Table 6.3 as are the results as given

in [153]. The proposed network achieves a better objective value with less line loss.

More importantly, even though the network has not yet converged to its equilibrium,

E205) becomes very close to its final value in only few generic time steps. This may

be explained by the slow manifold effect stemming from the smallness of [BiJ- ].
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Figure 6.4. (cont’d.) (c) The trajectory of PL.

Simulations with 8 possible dispatch limits as initial condition have been done and the

results confirm the complete stability of the system as well as the uniqueness of the

equilibrium in this example.

This problem has also been solved by the 2-phase network for s =50, $0.2, and

x0=[160, 40, 120]T . The trajectories of the variables of the 2-phase network are not

shown since they are nearly the same as the trajectories in Figure 6.4. The final

results are listed in Table 6.3. Though the exact solution of the problem is not avail-

able, the results obtained by the 2-phase network may be regarded as nearly exact.

This is because at the results obtained by the 2-phase network. the constraint viola-

tions are less than 2x10‘2, which is considered negligible. 1:!
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Table 6.3. Comparison of the simulation results for Example 6.2 with the results in [153].

 

 

Methods x1 x2 x3 PL f (x) E2(x)

Equation 4.1. s=50 72.8876 70.2605 75.4437 8.8484 3162.35 3164.00

2-phase net, s=50, $0.2 72.9822 70.3250 75.5580 8.8652 3165.64 3165.64

Method in [153] 60.2677 79.4462 80.1503 9.8650 3168.62 --        
 

6.2 Optimal Power Flow

The OPF is essentially a static optimization problem of power system operations.

The aim is to find an optimal generation schedule that evokes a minimal production

cost and simultaneously satisfies the power flow equations and the operational con-

straints. The general formulation of the OPF is:

Minimize f (u , x)

subject to g(u, x) S 0

h(u,x) = 0

where u is the set of independent variables, x is the set of dependent variables,

3 (u , x) reflects the operational constraints, and h (u , x) corresponds to the load flow

equations.

The cost functions f (u , x) of the OPF problem are similar to those of the EPD

problem. But, OPF problems are more difficult to solve because of the inclusion of

the smooth but non-convex power flow equations. Also the OPF problems differ from

the basic load flow problem in the presence of a performance index criterion (i.e., the

minimization of a cost function) and the explicit inclusion of inequality constraints

)1 (u , x). These constraints refer to lower and upper limits on real and reactive power

generation, power flows on lines and transformers, and voltage levels.
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Approaches currently used to solve the OPF problems include quadratic program-

ming, separable programming, and the Newton method [154]. These approaches, if

successful, converge to one of the local minimizers of the problem depending on the

starting point of the iterative process. If the developed optimization network tech-

nique is regarded as a continuous mode of the discrete, iterative optimization process,

it is expected that the region of attraction of the network is similar to the region that

results in convergence when using the traditional approaches. Moreover, the equili-

brium points of the network should be very close to the solution obtained by other

approaches.

Example 6.3: For a power system, Pg, (Qsi) is the real (reactive) power generation at

bus 1', Pd,- (Q43) is the real (reactive) power load at bus 1' , and V,- is the voltage mag-

nitude at bus 1' with a phase angle 5,- . Consider now the system shown in Figure 6.5

[155]. The costs of generation for generator] and 2 are, respectively,

flap“) = 1 + P81 + 300892

 
 

   

P313? P82=? 52:?

V1=1.O V2=1.0

Bus 1 Bus 2

l y = 1 - j10 i

Pdt=3.0 sz=1.0

2 generator : load

Figure 6.5. Power system network for Example 6.3.
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and

112(ng = 0.5 + 0.51982 + 0.5(Pg 7)?

Bus 1 is taken to be the swing bus (i.e., 51:0). By the power flow equation, we have

P31 - 3 =1 - cos82-10sin82

and

P82 - 1= 1 - cosfiz + 10sin52.

Replacing P31’ P32’ and 52 by x1, x2, and x3, respectively, produces the following

nonlinear programming problem:

Minimize f(x) =f1(xl) +f2(12)

subject to h1(x) = cosx3 + lOsinx3 + x1 — 4 = 0.

h2(X) = 00813 - 1081M}; +12 - 2 = O.

The non-convex nature of h 12 (x) and 1122 (x), as shown respectively in Figures

6.6 and 6.7, shows the difficulty encountered in solving such a problem. But the

smoothness of these two functions suggests a high probability that the E2(x) thus

formed will have a local convexity around the points for which h 1(x )=0 and h2(x )=0.

By presuming the existence of such points, this problem is mapped into the network

of equation 4.1.

Since there is no operation limits in this particular example, the initial values for

x1 and x2 are both chosen to be zero. If desired, artificial constraints x120 and x220

may be added to the network to ensure that the solution of these two variables stays

positive. The phase angle variable (x3 in this example) is generally assumed to be

close to 0 [156], thus x3(0)=0 is chosen. The simulation results are tabulated in Table

6.4 with s=100 and s =200 and are compared to the solution obtained by the 2-phase

network with s=100 and $0.1. Though the exact solution to the problem is not
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Table 6.4. Simulation results for Example 6.3.

136

 

 

      

NCtWOl'kS x1 XZ X3 f(X) E2(X)

Equation 4.1, S =100 0.52666 3.45379 0.23881 10.55“) 10.7147

Equation 4.1, S =200 0.53467 3.48660 0.25015 10.7138 10.7146

2-phase 1181. S =1“), 6:0.1 0.53938 3.52372 0.25187 10.8824 10.8824

 
 

available, the solution obtained by the 2-phase network may nonetheless be regarded

as nearly exact since at this solution the constraint violations are less than lxlO“.

Various initial points confirm the robustness of results obtained by these three net-

works. The exact Lagrange multipliers for h 1(x) and h 2(x) obtained by the 2-phase

network are

x, = -4.23629 and it, = -4.02371,

respectively. CI

It is worth noting that although a large value of s results in an equilibrium point

closer to the exact solution, thus giving a better initial point for the second phase

dynamics of a 2—phase network, a 2-phase network with a smaller value of s can still

converge the exact solution. This phenomenon eases the burden of selecting s in the

2—phase network.

Though the operation limits are not included in above example, they may be

easily incorporated into the network, since they are linear and define a hyper-rectangle

(naturally convex) in R" . Other criteria, such as pollution criterion, security criterion,

and load shedding criterion, may replace or be added to the operation cost criterion to

make the OPF problem more general. The same network formulation may be applied

to all these different OPF problems as long as the objective functions are C1 func-

tions.
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Furthermore, when compared to the OPF method in [155], the optimization net-

work technique in this thesis is also superior in that first, there is no need for Jacobian

matrix inversion. This is a necessity for most other OPF methods and is very time-

consuming. Second, the solution for the power flow equations is obtained simultane-

ously since the power flow constraints are satisfied automatically when the OPF is

solved. In fact, viewing the power flow equations (PFE) as a sub-problem of a gen-

eric OPF problem with a null objective function, the optimization network technique

can solve the PFE as well. To illustrate such an idea, consider the follow example.

Bus 1 (P 9 Bus 2 

  Bus 3 Bus 4

.1. l

 
 

   
 

   Bus 5

2 ‘ generator 1 load

Figure 6.8. A 5-bus power system used in Example 6.4.

Example 6.4: A 5-bus power system is connected as in Figme 6.8. The bus data and

the line data for this system are given in Tables 6.5 and 6.6, respectively. All the
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variables in Table 6.5 have been normalized. Bus 1 is the swing bus for which the

voltage is constant and its phase angle is zero (81:0). Bus 2 is a generation bus, i.e.,

a PV bus for which the voltage and the real power are constant. Busses 3-5 are

strictly load busses (PQ busses) because their real power P and reactive power Q are

 

 

      

 

 

 

       

constant.

Table 6.5. Bus data for the 5-bus system.

Bus # Gen Voltage P load Q load

(pu MW) (pu KV) (pu MW) (pu MVAR)

Swing l 0.00 1.05 0.00 0.00

2 0.80 1.07 0.00 0.00

3 0.00 1.05 0.50 , -0.30

4 0.00 1.05 0.50 0.30

5 0.00 1.05 0.50 -0.20

Table 6.6. Line data for the 5-bus system.

Line# From bus# To bus# R X G B

1 1 2 0.10 0.20 2.00 4.00

2 l 3 0.30 0.40 1.20 -1.60

3 l 4 0.10 0.30 1.00 -3.00

4 2 4 0.15 0.20 2.40 -3.20

5 3 5 0.10 0.20 2.00 -4.00

6 4 5 0.10 0.30 1.00 -3.00

 
 

The impedance of the transmission line from bus 1' to j is

Zij =Rij '11-in3

and the corresponding admittance is
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A matrix Yb,“ called the bus admittance matrix is often used when deriving the power

flow equations [156]. Yb“, is a symmetric nxn matrix (n is the number of busses in

the system) with elements

ya = sum of admittances of H-equivalent circuit elements incident to the ith

bus, and

ya = -(admittance of H-equivalent circuit element bridging the ith and k th

busses).

Denoting y”, = g”, + jbik, the power flow equations at bus 1' are

P,- = f; IV, IIV, I[g,.,cos(5,—8,) + biksin(5,-—8k)] (6.3)

h=l

and

Qi = i IV‘ ”Vt IIgik 8111(05—0") — bikcos(8i—8k )1, (6.4)

k=l

where 8,- is the phase angle of the voltage V,- at bus 1' , and P,- (Q,) is the real (reac-

tive) power delivered fi'om bus 1'. Also

P, = P8,- - P1,- (6.5)

and

Q: = Qgr' - Qli (6'6)

where Psi+sti is the complex power generation and P1,- +jQ,,- is the complex power

load at bus 1' .

By equations 6.3 and 6.4, a system with n busses has 2n power flow equations,

but only part of them are used to solve the system variables V,- and 8;. For the exam-

ple considered here, both real and reactive power flow equations are needed for busses

3-5 since they are strictly load busses. The real power flow equation for bus 2 is also
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needed because it is a voltage controlled generation bus. The real and reactive gen-

eration of bus 1 and the reactive generation of bus 2 do not contribute to the solution

of the problem; they are automatically obtained when the problem is solved by the

seven other power flow equations. Since 81 and V1 are fixed for the swing bus and

V2 is fixed for the voltage-controlled bus, there are only seven variables left in the

system, 8,- for i=2 to 4 and Vi for j=3 to 5. It is thus a nonlinear system with seven

equations and seven unknowns as follows.

h1(V,8) = V28 22 ‘1' V2[V1(8 21°°S(52'5l)+b2lSin(52‘51))

+ V418 7.4008(52-54)+b2451n(52"54))] - P32 = 0

M055) = V328 33 + V31V1(g31°°S(53‘51)+b313in(53-5l))

‘1' V503 35COS(53-55)+b358in(53‘55))] + P13 = 0

h3(V,8) = 'Vaibas + ValVl(gslSin(53—5l)’b31°08(53'5l))

+ V518 3581n(53—55)-b35008(53-55))] + Q13 = 0

h4(V:5) = V3844 4' V4lVl(841°°S(54'51)+b413in(54‘51))

+ V2042°°S(54‘57)+b4251110442»

+ V5(g 45cos(54—55)+b45sin(84-55))] + PM = 0

h5(V ,6) = -V}b44 + V4[V1(g41sin(54—61)—b 4lcos(84—81))

'1' V2@425i“(54‘52)‘b42°°S(54‘52))

+ V5(g455i“(54‘55)‘b45005(54‘55»] + QM = 0

h6(Vs5) = V528 55 + V5[V3(8 53008(55'53)+b538in(55—53))

+ V405400805442147548in(55'54))] + P15 = 0

h7(V.5) = 41521255 + V5[V3(853$in(5r53)-b53008(55—53))

4’ V40! 545in(85-84)-b540080754)” + Q15 = 0



141

To apply the optimization network, an energy function E (V ,8) is chosen as

7

Fw&=%zwwm. mm

1' =1

Denoting x = [V3 V4 VS a, 83 84 8sz and substituting in the values of V1, V2, and

81, the energy function becomes

E -1 7 2(X) - 3211.- (x). (6.8)

i=1

Viewing equation 6.8 as a nonlinear programming problem with the objective

.7

function Ehflx) and no constraints, the one-phase Kennedy and Chua network [19]

i=1

is sufficient to solve the problem. This is similar to the case where the minimizer of

a convex problem lies in the relative interior of the feasible region. In the problem

considered here the feasible region is simply the whole space. With such a viewpoint

in mind, the network structure for solving this PFE problem is formulated as

7

i = «Emmi/hm». (6.9)
i=1

The network of equation 6.9 is simulated by using the initial conditions given in

Table 6.5. Following the common practice for a flat start in solving PFE, the initial

values of V3, V4, and V5 are chosen to be the same as the voltage magnitude of the

swing bus. Though not shown in Table 6.5g.the initial values of all phase angles are

zero. Simulation results are given in Table 6.7. The values of P81, Q81’ and Q32 are

obtained by substituting V,- ’s and 8,- ’s into equations 6.3 to 6.6. The results have

been confirmed by a traditional method converging to the exact solution for the prob-

lem. Compared to the traditional methods for solving the PFE problem, the optimiza-

tion network technique eliminates the most time-consuming computation (inversion of

the Jacobian matrix) and results in the same exact solution. El
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Table 6.7. Power flow bus output for the 5—bus system.

 

 

 

Bus # Voltage Phase Angle Generation Load

degrees radians PG QG PL QL

1 1.050 0.000 0.0000 0.926 0.016 0.000 0.000

2 1.070 0.837 0.0146 0.800 0.170 0.000 0.000

3 0.964 -l6.529 -0.2885 0.000 0.000 0.500 -0.300

4 0.958 -5.932 -0.1035 0.000 0.000 0.500 0.300

5 0.959 -l6.530 -0.2885 0.000 0.000 0.500 -0.200         



CHAPTER VH

CONCLUSION

Solving optimization problems is one of the major applications for engineering-

oriented ANNs. Due to the lack of a more theoretically sound basis, however, the

Optimization formulations of artificial neural networks have been limited in applicabil-

ity and have caused overstatement of what the artificial neural networks can do, thus

abating their creditability. This shortcoming has been resolved as far as solving non-

linear programming problems by ANNs is concerned because of the outcome of this

work.

7.1 Summary

Based 6ft optimization theory, it has been shown that the network by Kennedy

and Chua, or equivalently the network of equation 4.1 fulfills both the Kuhn-Tucker

optimality conditions and the penalty function method. From this viewpoint, the net-

work structure of Hopfield and Tank is thus invalid and the network by Rodriguez—

Vazquez, et al. is a special case of equation 4.1 for s =oo.

The optimization network theory was derived in detail in Chapter 4. The key

idea is to use the energy function or the penalty function as a Lyapunov function.

The optimization network formed by equation 4.1 traverses along the surface of the
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energy function in a manner of steepest descent and eventually settles on a local

minimum of the energy function. If the problem is a linear program, a quadratic pro-

gram,oraconvexprogram,thislocalminimumisalsoaglobalminimum. Proper

pseudo- and quasi-convexity assumptions placed on the original problem also lead to

a global minimum. For a nonlinear program, however, the minimum is ensured only

locally. By the theorem of the penalty function method, the local minimum obtained

by the network is an approximation to the exact solution, and these two can be moved

arbitrarily close by making the penalty parameter sufficiently large.

One interesting application of the quadratic programming network is in solving

the least squares problem. The network may be used to solve regular least squares

problems as well as the non-negative least squares and least distance problem [157].

The regular least squares problem seeks the least squares solutions in the sense of I2

norm. The network in fact may be used to solve the least square solutions in the

sense of I, norm, for 1<p <oo, with or without constraints. This is because the 1,,

norm for 1<p <oo has been shown to be strictly convex [158].

It has also been shown in Chapter 4 that the optimization network formulation by

equation 4.1 is much like the gradient projection method. But they differ in that the

latter results in a solution in the feasible region while the former may end up at a

point in the infeasible region whenever there are binding constraints in the exact solu-

tion. The reason for such a slight infeasibility of the solution is due the fact that the

energy function used by the optimization network originates from the penalty function

method.

For most nonlinear programming problems, the approximate solution obtained by

the network is acceptable. But there are cases when the feasibility is very crucial to

the problem. A new 2-phase network formulation has been developed in Chapter 4 to

achieve such a goal. This network additionally provides the corresponding Lagrange

multipliers for each constraint. This is specially useful for linear programming
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problems because the Lagrange multipliers solve the dual problem of the primary pro-

gram. Though the 2-phase network has not been proven in a rigid argument, the simu-

lation results nevertheless show its robustness in converging to an exact solution.

Through simulation, it has been shown in Chapter 6 that the networks (l-phase

and 2-phase) are useful in solving EPD problems with or without the consideration of

transmission line losses, as well as OPF problems with all kinds of constraints as long

as the constraints are continuously differentiable. The network of equation 4.1 also

solves exactly h(x)=0 for h:R"—)R"' ecl, no matter whether it is linear or not, as

exemplified by the power flow equations problem. Reduced to one dimension, this is

equivalent to finding the root of f(x)=0 for f:R—>ReC1.

The optimization ANNs developed in this work are applicable to a very large

class of (constrained or unconstrained) nonlinear programming problems with f e C1

and gjze C1 for all i. For the unconstrained problems, they may be solved exactly by

equation 4.1, similarly to the constrained problems with the solution in the relative

interior of the feasible region. In such cases, the network performs similarly to a gra-

dient descent method. For a general constrained problem, the 2-phase network may

be used. If a problem has only constraints, h (x )=0 and g (x )SO, the objective func-

tion is formed by summing 112(1) and (g+(x))2 and the sum may then be regarded an

as unconstrained problem and be solved accordingly. A good example is the solution

of the power flow equations as shown in Chapter 6.

Note that in applying the optimization network, the problem must be feasible.

Furthermore, the regularity assumption and the boundedness of the solution set must

be met. This raises no difficulty at all, since in the practice of nonlinear programming

the regularity of the solution is normally presumed for large systems, and the bound-

edness of the solution may be achieved by adding some artificial upper and/or lower

bound constraints.



146

As mentioned above the optimization ANNs are similar in theory to many of the

existing optimization methods. In fact, the networks may be regarded as continuous

optimization systems in coth to the discrete nature of many optimization processes.

Any nonlinear programming problem which is solvable by the traditional discrete

methods is also solvable by the optimization ANNs developed in this work. Tradi-

tional discrete optimization methods such as the Newton’s method and Newton-

Raphson method often demand the calculation of the inverse of the Jacobian matrix

and then update the state variables by difference equations, which is a function of the

inverse Jacobian. The calculation of the inverse Jacobian grows factorially in compu-

tational complexity with respect to the size of the Jacobian and thus restricts the

applicability of these discrete optimization methods to large-scale systems. The

optimization ANNs, on the other hand, require no matrix inversion and, consequently,

have more potential for use with larger systems.

The above argument disagrees with the generalized networks proposed by

Tsirukis, er al.[159] In their networks, the difi‘erence equations used in uadifional

discrete optimization processes are transformed into differential equations in which the

inverse Jacobian is included. But since the differential equations describe a dynamic

system and there is no software algorithm nor hardware structure that can calculate

the inverse Jacobian instantaneously (not even for a small system), their networks are

not hardware implementable. Even when implementing their networks in software,

the inverse Jacobian in the differential equations actually slows down the convergence

rate when compared to the software implementation of difference equations in tradi-

tional optimization methods. This make their networks less useful. So a direct copy

from difference equations to differential equations does not necessarily yield any

advantage.
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Contributions

The following are the salient contributions of this dissertation:

ANNs for optimization have been analyzed from the viewpoint of optimization

theory leading to discovery of the reasons why the ANNs succeed or fail.

The optimization network theory for linear programming, quadratic program-

ming, convex programming, and nonlinear programming has been derived and a

2-phase optimization network has been developed. These results lay a

mathematically sound foundation for the optimization ANNs and extend the

applicability of ANNs.

The quality of the solutions obtained by the optimization ANNs has been

quantified through simulation. The solutions of the l-phase networks are adju-

stable by tuning the penalty parameter and the solutions of the 2-phase networks

are exact.

The applicability of the optimization ANNs for solving real-world problems like

the economic power dispatching problem and the optimal power flow problem

has been demonstrated. It was shown that the mapping technique of the optimi-

zation ANNs is simple and that they are able to handle various kinds of con-

straint sets. It was demonstrated that the optimization ANNs attain a better

objective function value.

As a whole, this work lays a solid groundwork for the optimization ANNs in

both the theoretical and practical aspects. As far as solving nonlinear programming

problems by ANNs is concerned, the work is completed, except perhaps a more rigid

analysis of the 2-phase network. The optimization ANNs also suggest a possible

structure for the next-generation analog computer. Future research should emphasize



148

developing suitable hardware implementation for the optimization ANNs so as to fully

exploit their capability.
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