.7- —— This is to certify that the thesis entitled 3%)«C "(.Aygit‘ APP‘CCC‘+“°V\5 ‘0‘, SM‘ Fr. 1341/ KalnforcgJ CbtflCKtQ: {AM/whys GWJ De 3 presented by Abe‘esimw 'fi’e’yclctoug has been accepted towards fulfillment of the requirements for M°€>- degreein Cid.) CgW‘Eerb r—b ' "‘ , .C‘Iill“'\ \. ”Nv‘ syK .— \ Major professor Date ”’4” a 9 0-7639 MS U is an Affirmative Action/Equal Opportunity Institution IGAN STATE UNIVERSITY Carr. “.52.“, J Iriiflziigiflwmum; l 767 8836 t) V‘ WBMRIES i HIIHMI INNIHHNI PLACE II RETURN BOX to remove thlo checkout from your record. TO AVOID FINES return on or baton duo duo. ll DATE DUE DATE DUE DATE DUE U'UL MSU Is An Affirmdlvo Action/Equal Opportunity Institution crane-rum momentous or arm. r1332 uzmnczo concur-n ANALYSIS m nearer By Abdeslam Reklaoui — A THESIS Submitted to Michigan State University In partial fulfillment of the requirements of the degree of MASTER OF SCIENCE Department of Civil Engineering 1988 ABSTRACT STRUCTURAL APPLICATIONS OE STEEL EIEER REINEORCED CONCRETE ANALYSIS AND DESIGN By Baklaoui hbdoslan Structural analysis and design techniques were developed for reinforced concrete elements incorporating steel fibers as well as conventional reinforcement. The work.‘was performed in three phases which were concerned with flexural, shear and torsional fibrous reinforced concrete elements. In each phase structural design guidelines were developed which accounted for the effects of steel fibers on strength and ductility of reinforced concrete elements. In the case of flexural elements emphasis was made on the improvement in ductility and the consequent relaxation of limits on the tension and compression steel ratio in the presence of steel fibers. As far as shear and torsional elements were concerned, consideration was given to the improvements in strength characteristics of elements resulting from steel fiber reinforcement. The developed. design. guidelines were verified. using relatively large numbers of flexural, shear and torsional test data reported in literature. The final guidelines were used to assess the effects of steel fiber reinforcement on the performance characteristics of reinforced concrete structural elements. TO N! BELOVED PARENTS ii ACNNO'LEDGNENTS The writer wishes to express his sincere appreciation to his academic advisor, Dr. Parviz Soroushian, Assistant Professor of Civil and Environmental Engineering, for his encouragement, guidance, and aid throughout the writer’s master of science studies.’ Thanks also to the other members of the thesis committee: Dr. R. Harichandran, Assistant Professor of Civil and Environmental Engineering, and Dr. A. Altiero Professor’ of‘ Metallurgy, Mechanics And. Materials Science. Thanks are also extended to the Government of Morocco "Ministere de I/equipement, de la Formation Professionnelle et de la Formation des Cadres” for the financial assistance. Last, but not least, special. appreciation, admiration, and love to the writer's wife and his daughter for their continuous encouragement, and love. iii TABLE OF CONTENTS Page LIST OF TABLES .......................................... Vi LIST OF FIGURES ......................................... Vii NOTATIONS ............................................... xi CHAPTER 1 INTRODUCTION ........................................ GENERAL 00......OOOOOOOOOOOOOOOOO...0.0.0.0000... STEEL FIBER REINFORCED CONCRETE ................. STEEL FIBERS IN FLEXURAL REINFORCED CONCRETE ELEMENTS 0.......00...0.000000000000000.0.000.... STEEL FIBERS IN REINFORCED CONCRETE ELEMENTS SUNECTEDTOSHEAR FORCES OOOOOOOOOOOOOOOOOOOOOOO STEEL FIBERS IN TORSIONAL REINFORCED CONCRETE Ems .0...OO..0.0......0.0000000000000000...O 10 2 EFFECTS OF STEEL FIBERS ON FLEXURAL BEHAVIOR OF REINFORCED CONCRETE BEAMS: REFINED ANALYSIS AND DESIGN 0.0.000COOOOOOOOOOOOOOOOOOOOOOOOOOOO0.0.0.0... 13 H H Hwaw O O m 0H Ape no.» um.p Hes.s Hue.m Hmm.q Hqu.s uos.m uwo.m ~oe.m uuu mwnxsnew wwn any up.m ~E.m Hm» Hus.m HmH.u qu.w Hmo.q ~oo.u ~m~.m wou.u monsoon: on any ~m.~ ~m.m Hum.s Hue Hum.m How you Hmo.u ~mm.u new.» censusea eemdAev ua.e us Hmo pee wee no» mm» new uqm.u use.q memnn AH.\AIV H.oe p.65 H.oe H.oe .ms «as .ou .m~ ~.oe p.pm 800w ANV\AeV .mm H.0N H.0H .m» .mu .mu .qm .qq H.o~ H.om .uvxxsv H.ou p.om H.om .ee .eo .mo .00 .em H.ou H.o5 208M" 9 no I ~m.s as H we» I «.mmm ape H wep.ws I o.HHu xz.a ems I queen aHneusmnw 4000 psi Pb - reinforcement ratio for the balanced strain condition - tension steel ratio - area of tension reinforcement width of web ‘1 A! Jr 13 I - effective depth: distance from compression face to centroid of tension steel fy - yield strength of steel f’c- compressive strength of concrete, measured at 28 days after casting The objective of this part of the study was to decide the maximum limit on tension steel ratio in fibrous sections, at which the flexural ductility corresponds to that of conventional reinforced concrete sections with p - 0.75 Pb’ For this purpose a curvature ductility was defined as the maximum curvature at failure ( Where the refined flexural analysis by computer shows a major drop in flexural resistance in the post-peak region ) divided by the curvature corresponding to flexural yielding Figure 2.27 presents the flexural ductility of sections similar to the one shown in Figure 2.8, but with different tension steel ratios and fiber volume fractions. This figure which has been generated using 49 the results of refined flexural analysis clearly shows the improvement in flexural ductility resulting from steel fiber reinforcement. The data presented in Figure 2.27 indicate that a ductility of about 1.2 is achieved at p / Pb - 0.75 in beams with a minimal fiber reinforcement volume fraction of 0.35 8. This level of ductility can be achieved in the presence of 1 8 (Vflf / df - 70) fiber volume fraction at p /pb - 0.9, and with the presence of 1.5 8 (Vflf/ df - 105) fiber volume fraction at p / Pb - 1.05. Hence, in the presence of steel fibers the limits on maximum tension steel for ensuring flexural ductility can be relaxed, and smaller cross sections can be used in flexural elements to generate the required load capacity. The corresponding weight reductions and increase in useful height of the buildings and other structures can be an important economic advantages encouraging structural applications of steel fiber reinforced concrete. 50 2.5+ 1.5 L - 0.5 .... ._.. -1-.. ”1-.....“ ”1.-.-.. .-....m -11..-.) ~-LC THEN PPP-PUF*.S*VF/100/(3.14*DP‘2/4) ELSE PPP-. 1*TU*VF/100*LP/DP PRINTzPRINT: INPUT “DO YOU KNOW THE ULT. TENSILE STRENGTH OF FRC (Y/N)”;NU$ IF NUS-"N” OR NUS-”n" THEN PRINT: INPUT ”ENTER THE TENSILE STRENGTH OP CONC. MATRIX (psi). ABOUT h*Pc“.5';PTH ELSE 640 620 *.41 630 640 650 660 670 680 690 700 710 720 730 740 IP YNS-"Y' 0R YNS-"y' THEN PTP-PTH*(1-VP/100)+PPP ELSE PTP-PTH*(1-VP/100)+.5 *TU*VP/100*LP/DP IP NUS-"N" 0R NUS-”n” THEN 650 PRINT: INPUT "ENTER ULT. TENSILE STRENGTH OP PRC (psi)';PTP PRINT: INPUT 'DO YOU KNOW THE POST-PEAK TENSILE STRENGTH OP PRC (Y/N)”;NP$ IP NP$-'Y' 0R NP$-'Y' THEN 690 IP YN$-'Y' OR YN$-'y' THEN PPP-PPP ELSE PPP-.5*.41*TU*VP/100*LP/DP IP NPS-‘N' OR NUS-"n: THEN 700 I PRINT: INPUT “ENTER THE POST-PEAK TENSILE STRENGTH 0P PRC (psi)';PPP PRINT: INPUT “DO YOU KNOW THE CONP. STRENGTH OP PRC (Y/N)';NC$ IP NC$-'N' 0R NOS-”n“ THEN 740 PRINT: INPUT "ENTER THE COHP. STRENGTH OP PRC (psi)';PCP IP NOS-“Y” 0R NCS-‘y' THEN 860 PRINT: INPUT "ENTER THE CONP. STRENGTH 0P CONC. MATRIX (psi)";PC: PCP-PC+994 *VF/100*LF/DF 750 760 770 780 790 800 810 820 830 840 850 860 870 880 890 900 910 920 930 940 950 960 970 980 'COLOR 31.1 BEEP :BEEP LOGATE 20.65 PRINT “CHECK DATA- 'COLOR 15,1. LOCATE 24,10 INPUT "INPUT O/R LOCATE 12.66 'COLOR 7,0 REH ------------------------------------------------------------------------- (Y/N)':T$ IP TS-‘N' OR T$-'n' OR TS-‘NO' OR TS-‘no' THEN CLS :GOTO 580 CP-(AS*PY*(H-D)tASP*PY*(H-DP)+PCP*B*H*H/2)/(AS*PY+ASP*PY+PCP*B*H) PR-.12*PCP+2000*VP/100*LP/DP EP-(.00079+1.13/(PCP-99h*VP/100*LP/DP))*VP/100*LP/DP+.0021 Z--343*(PCP-994*VP/100*LP/DP)*(1-.64*SQRT(VP/100*LP/DP)):IP Z>O THEN 2-0 NPI-I: PI(NPI)-O: H(NPI)-0 SCREEN 2: KEY OPP KHAN-.OOIOOOOOOIO: YHAX-20000000#*.5 UINDOU (~XHAX/10,-YHAX/10)-(XHAX.YHAX): CLS LINE (0.0)-(0,YHAX): LINE (0,0)-(XNAX.0) FOR NN-I T0 10 LINE (0.YHAX*NN/IO)-(XNAX/65,YHAX*NN/10) LINE (XNAX*NN/10,0)-(XNAX*NN/10,YHAX/50) IP NN-2 0R NN-b OR NN-6 OR NN-B THEN LOCATE 24,6+72*NN/10: PRINT USING ".##8 s';XHAX*NN/10; 990 /100 1000 1010 1020 1030 1040 1050 1060 1070 1080 1090 IP NN-2 OR NN-h OR NN-6 OR NN-8 THEN LOCATE 22.5-22.5*NN/10,1: PRINT YHAX*NN 00; NEXT NN LOCATE 25.60: PRINT 'CURVATURE (1/1n)"; LOCATE 1,10: PRINT 'HOHENT (Kips.in)'; LOCATE 3.12:PRINT 'B (in) -';B LOCATE 3,32:PRINT “H (in) -";H LOCATE 4.12zPRINT "d (in) -';D LOCATE 4,32:PRINT 'dp (in) -';DP LOCATE 5.12:PRINT “As (in2) -';AS LOCATE 5.32:PRINT ”Asp (in2) -';ASP LOCATE 6,12 PRINT 'Py (psi) -';PY 1100 1110 1120 1130 1140 1150 1160 1170 1180 1190 1200 1210 1220 1230 1240 1250 1260 1270 1280 1290 1300 1310 1320 1330 1340 1350 1360 1370 1380 1390 1400 1410 1420 1430 110 LOCATE 6,32:PRINT "VI (4) -';VF LOCATE 7,12:PRINT 'df (in) -';DF LOCATE 8.33 IF FT$-'S' THEN PRINT "STRAIGHT FIBER” IF FT$-'H' THEN PRINT 'HOOKED FIBER” IF FT$-'C“ THEN PRINT 'CRIHPED FIBER" IF YNS-‘N' OR YN$-'n” THEN 1200 LOCATE 9,32 IF L>-LC THEN PRINT 'Lf >- Le“ IF LFY*AS THEN FS-FY*AS*FS/ABS(FS) FSP-ASP*EPSSP*29000*1000 EPSCX-(EPSPI)*(H-NA)/(CP-NA) GOSUB 2390 EPSTX--EPSPI*NA/(CP-NA) REH --------------------------------------------------------------- GOSUB 2480 ' PRINT 'NA,EPSPI.TC.CC,FS.FSP,TOTAL-':NA;EPSP1;TC;CC;FS;FSP;TC+C C+FS+FSP 1440 1450 1460 1470 1480 1490 1500 1510 1520 1530 1540 1550 1560 1570 T1-TC+CC+PS+PSP NA-CP+EPSP2/PIPI EPSSP--(H-DP-NA)/(NA-CP)*EPSP2 EPSS-EPSP2*(NA-H+D)/(NA-CP) PS-AS*EPSS*29000*1000 IF ABS(PS)>PY*AS THEN PS-PY*AS*PS/ABS(PS) PSP-ASP*EPSSP*29000*1000 1F ABS(FSP)>PY*ASP THEN PSP-PY*ASP*PSP/ABS(FSP) EPSCX-EPSP2*(H-NA)/(CP-NA) GOSUB 2390 EPSTX--EPSP2*NA/(CP-NA) REH ----------------------------------------------------------- GOSUB 2480 ' PRINT ”NA.EPSP2.TC.CC.PS,PSP.TOTAL-';NA;EPSP2;TC;CC;FS;FSP;TC+CC +FS+FSP 1580 1590 1600 1610 1620 1630 1640 1650 1660 1670 T2-TC+CC+PS+PSP EPSP3-(EPSP1+EPSP2)/2 NA-CP+EPSP3/PIPI IP NA > H THEN NA-H: EPSP3-PIPI*(NA-CP) IP NA < 0 THEN NA-O: EPSP3-PIPI*(NA-CP) 1P ABS(CP-NA)/CP < .0001 THEN EPSP3-.55*EPSP1+.45*EPSP2: GOTO 1610 EPSSP--(H-DP-NA)/(NA-CP)*EPSP3: EPSS-EPSP3*(NA-H+D)/(NA-CP) PS-AS*EPSS*29000*1000: IP ABS(PS)>PY*AS THEN PS-PY*AS*PS/ABS(FS) FSP-AS*EPSSP*29000*1000: 1P ABS(PSP)>PY*ASP THEN PSP-PY*ASP*FSP/ABS(PSP) EPSCX-EPSP3*(H-NA)/(CP-NA) 111 1680 GOSUB 2390 1690 EPSTXp-EPSP3*NA/(CP-NA) 1700 REH ------------------------------------------------------------------ 1710 60803 2480 1720 '. PRINT 'NA.EPSP3,TC.CC.FS.FSP.TOTAL~':NA;EPSP3:TC;CC:FS;FSP;TC+C C+PS+FSP 1730 T3-TC+CC+FS+FSP 1740 IF T1*T3 < 0 THEN T2-T3: EPSP2-EPSP3: GOTO 1780 1750 IF T2*T3 < 0 THEN T1-T3: EPSPl-EPSP3: GOTO 1780 1760 IF T3-T1 OR T2-T1 THEN EPSP3-EPSPI+.4*(EPSP2-EPSP1): GOTO 1610 1770 PRINT 'SOHETHING Is URONG, T3 13 NOT BETWEEN T1 AND T2-: STOP 1780 IF ABS(T3) < .002*(B*H*FCF+FY*AS+FY*ASP) THEN 1790 ELSE 1590 1790 GG-H 1800 BB-EP/FIFI+NA 1810 DD-FCF*FIFI/EP . 1820 EPSR-(FR- -FCF+2*EP)/2 1830 EE-EPSR/FIFI+NA 1840 IF EPscx <- EP THEN AR1--(GG 4/4- -NA*GG 3*2/3+NA 2*GG 2/2)*FIFI/EP+2*(GG 3/3 -NA*GG 2/2)+NA 4/12*FIFI/EP+NA 3/3 1841 IF EPscx <- EP THEN AR2--FIFI/EP*GC*(GG 2/3- -NA*GG+NA 2)+2*GG*(GG/2 NA)+FIFI /EP*NA 3/3+NA“ 2 1842 IF EPscx <- EP THEN ARHCC-ARI/AR2 1850 REH ---------------------------------------------------------------- 1860 IF EPscx > EP AND EPscx <- EPSR THEN ARI-DD*( FIFI/EP*BB 2*(BB 2/4- 2*NA*BB/ 3+NA 2/2)+2*BB 2*(BB/3- NA/2)+FIFI/EP*NA 4/12+NA 3/3)+GG 2*2*(GG/3*FIFL NA*FIFI/2 -EP/2)+GG 2*FCF/2 BB 2*2*(BB/3*FIFI— oNA/2*FIFI EP/2)- -BB 2*FCF/2 1870 IF EPscx > EP AND EPscx <- EPSR THEN AR2-DD*( FIFI/EP*BB*(BB 2/3 NA*BB+NA 2 )+2*BB*(BB/2 NA)+FIFI/EP*NA 3/3+NA 2)+Z*GG*(GG/2*FIFI~NA*FIFL EP)+FCF*GG- -Z*BB*(B B/2*FIFI~NA*FIFI~EP)~FCF*BB 1880 IF EPscx > EP AND EPscx <- EPSR THEN ARHcc-ARI/ARz 1890 IF EPscx > EPSR THEN ARHI-DD*(-PIPI*88‘2/EP*(88‘2/4-2*NA*88/3+NA‘2/2)+2*88‘ 2*(88/3-NA/2)+PIPI*NA‘4/EP/12+NA‘3/3)+EE‘2*2*(EE*EIPI/3-NA*PIPI/2-EP/2)+EE‘2*PGP /2-BB‘2*Z*(BB/3*FIFIoNA*FIFI/2-EP/2)-BB“2*FCF/2+FR/2*(GG‘2-EE‘2) 1900 IF EPscx > EPSR THEN ARH2-DD*(~PIPI/EP*88*(DE‘2/3-NA*88+NA‘2)+2*88*(88/2-NA )+FIFI/EP*NA‘3/3+NA‘2)+Z*EE*(EE/2*FIFI-NA*FIFI-EP)+FCF*EE-Z*BB*(BB/2*FIFI-NA*FIF I-EP)-FCF*BB+FR*(GC-EE) 1910 IF EPscx > EPSR THEN ARHCC-ARHI/ARHZ 1920 IF EPSTx <- PTP/(S7000!*PGP‘.5) THEN ARHcT-NA/3 1930 IF EPSTX > FTP/(57000!*FCF‘.5) THEN ARHGT1-570001*PGP‘.5*EIPI*(NA‘3/8-NA/2* (NA~PTP/(57000!*PGP‘.5)/P1PI)‘2+(NA-PTP/(570001*PGP‘.5)/PIPI)‘3/3)+PPP/2*(NA-PTE /(57000:*EGP‘.5)/PIPI)‘2 1940 IF EPSTx > FTP/(57000!*FCF‘.5) THEN ARNGT2-57000!*PGP‘.5*PIPI*(NA‘2/2-NA*(N A-PTP/(57000!*PGE‘.5)/EIPI)+(NA-PTE/(57000!*PGP“.5)/PIPI)‘2/2)+PPP*(NA-PTP/(5700 0!*FCF‘.5)/FIFI) 1950 IF EPSTx > FTP/(57000!*FCF‘.5) THEN ARNGT-ARHGTI/ARHcTz 1959 ' PRINT 'NA.TC,CC.PS,PSP.ARNCC.ARNCT-';NA;TC;CC;FS:FSP;ARHCC;ARHCT 1960 H(NPI)--TC* ARHCTo CC*ARHCC- PS*(H- -D)- PSP*(H- DP) 1970 REM ---------------------------------------------------------------------- 1980' PRINT 'PI, H -" .FI(NPI); H(NFI) 1990 LINE (PI(NPI-1).H(NFI- -1))- (FI(NPI). H(NF1)) 2000 IP INT(PIFI/DFIFI)><1NT(P IFIHAX/DPIPI-2) THEN 2180 2010 VIEU ((.1*XHAX+FIPI)*640/I.1/XHAX-16.80)-((.1*XHAX+P1PI)*640/1.1/XNAX+16.10 0)..l 2020 UINDOU (-FCP.0)-(PTP}H): LINE (0,0)-(0.H) 2030 FOR X-NA TO N STEP (H-NA)/20 2040 EE-(X-NA)/(H-NA)*ABS(EPSCX) 2050 IF EE<-EP THEN SS--(-FCP*(EE/EP)“2+2*FCP*EE/EP) ELSE 1F EE <- EPSR THEN SS- °(PCP+2*(EE-EP)) ELSE SS--PR 2060 2070 2080 2090 2100 2110 2120 2130 2140 2150 2160 2170 2180 2190 2200 2210 112 IP x-NA THEN LINE (SS.X)-(SS,X) ELSE LINE -(ss,X) NEXT x FOR x-NA To 0 STEP -NA/2o EE-(NA-X)/NA*ABS(EPSTX) IF EE <- FTF/(S7000!*FCP“.S) THEN ss-EE*570002*PCP‘.5 ELSE SS-FPF IF x-NA THEN LINE (SS.X)-(SS,X) ELSE LINE ~(SS,X) NEXT x VIEW WINDOW (-XHAX/10,-YMAX/10)-(XMAX,YMAX) EPSCU(FIFI)-EPSCX CCC(FIFI)-CC TCC(FIFI)-TC NEXT FIFI FOR IQ-l To NFI IF IQ-I THEN HHAX-HLIQ): GOTO 2220 IF H(IQ) > HHAx THEN HHAx-H(IQ):EPscuo-EPSGU(IQ) CCCO-CCC(IQ):TCCO-TCC(IQ): PIO-PI(IQ) 2220 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 2360 2370 2380 2390 2400 2410 2420 2430 2440 NEXT IQ LOCATE 6,53 PRINT 'EPSCU -";EPSCX LOCATE 7.53 PRINT 'FI (l/in) -";FIO LOCATE 3.53 PRINT ”AT max Moment"; LOCATE 4,53 PRINT " ------------- ”; LOCATE 5,53 PRINT "Hmax (K.IN)-";MHAX/1000 LOCATE 8,53 PRINT ”CC (Kips) -";CC/1000 LOCATE 9,53 PRINT ”TC (Kips) -";TC/1000 IF YYNNS-“Y” 0R YYNNS-"y' THEN GOSUB 2520 END DD-PCF*PIFI/EP GG-H BB-EP/FIFI+NA EPSR-(PR-FCF+Z*EP)/Z EE-EPSR/FIFI+NA 1P EPSCX<-EP THEN CC--DD*(-FIPI/EP*GG*(GC“2/3-NA*CC+NA“2)+2*GC*(CG/2~NA)+FI FI/EP*NAA3/3+NA22)*B 2450 IP EPSCX>EP AND EPSCX<-EP+(PCP-PR)/Z THEN CC--DD*(-PIPI/EP*BB*(BBA2/3—NA*BB +NAA2)+2*BB*(88/2-NA)+PIPI/EP*NAA3/3+NA22)*B-(Z*((GGA2/2-NA*GG)*FIPI-EP*GG)+FCP* GG-Z*((BB‘Z/Z-NA*BB)*PIPI-EP*BB)~PCP*BB)*B 2460 IP EPSCX > EP+(PCF-PR)/Z THEN CC--DD*(-PIPI/EP*BB*(BBA2/3-NA*BB+NAA2)+2*BB* (BB/2ENA)+PIPI/EP*NAA3/3+NAA2)*B-(Z*((EEA2/2-NA*EE)*PIPI-EP*EE)+FCF*EE-Z*((BBAZ/ 2-NA*BB)*PIPI—EP*BB)-PCP*BB)*B-PR*(GG—EE)*B 2470 2480 2481 2483 2490 2500 2501 2510 2520 2530 2540 2550 2560 RETURN Ec-57000!*PGP‘.5 FTFEC-FTF/EC ' PRINT 'EPSTX, FTP/EC-';EPSTX;FTFEC IF EPSTx <- FTFEC THEN TG-NA“2/2*8*EG*EIPI IF EPSTx > FTFEC THEN Tc-PTP*(PTP/Ec/PIPI)/2*8+PPP*(NA-PTP/EC/PIEI)*8 ' PRINT 'TC.FTF,FPF,EC-';TC;FTF;FR;EC RETURN WINDOW (0,0)-(639,199) WIDTH "LPTl:',255 LINESPACE9S-CHRS(27)+CHR$(65)+CHR$(8) LINESPACE6$-CHR$(27)+CHR$(65)+CHR$(12) CRAPH400$-CHR$(27)+CHR$(75)+CHR$(144)+CHR$(1) 2570 2580 2590 2600 2610 2620 2630 2640 2650 2660 2670 2680 2690 2700 2710 2720 2730 2740 113 LPRINT LINESPACE9S; FOR JA-I TO 9 LPRINT NEXT JD FOR COLA-O TO 79 LPRINT SPACE$(9); LPRINT GRAPH4OOS; FOR ROWS-O TO 199 GET (8*COL3+7,ROW§)-(8*COLA.ROW§).24 LPRINT GHR$(Z§(2))+CHR$(ZS(2)); NEXT ROWE LPRINT NEXT COL. FOR JO-I TO 10 LPRINT . NEXT J8 LPRINT LINESPACE6S; RETURN HICH IES 11111111111